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PREFACE TO THE SECOND (REVISED)
EDITION OF VOLUME 2

Apart from a number of minor corrections and changes, a
substantial reformulation and up-dating of Chapters 14 and 15 has taken
place. This reformulation and up-dating is a major and very welcome
contribution from my friend and colleague, Dr J.W. Sanders, to whom I
express my sincere thanks. His efforts have produced a much better
result than I could have achieved on my own. Warm thanks are also due
to Dr Jo Ward, who checked some of the revised material.

New Sections 16.9 and 16.10 have also been added.

The bibliography has been expanded and brought up to date, though it
is still not exhaustive.

In spite of these changes, the third paragraph in the Preface to the
revised edition of Volume 1 is applicable here. What has been
accomplished here is not a complete account of developments over the
past 15 years; such an account would require many volumes. Even so, it
may assist some readers who wish to appraise some of these
developments. More ambitious readers should consult Mathematical
Reviews from around Volume 50 onwards.

R E E.
CANBERRA, September 1981



PREFACE TO VOLUME 2

The substance of the first three paragraphs of the preface to
Volume 1 of Fourier Series: A Modern Introduction applies equally well to
this second volume. To what is said there, the following remarks should
be added.

Volume 2 deals on the whole with the more modern aspects of Fourier
theory, and with those facets of the classical theory that fit most nat-
urally into a function-analytic garb. With their introduction to distri-
butional concepts and techniques and to interpolation theorems, respec-
tively, Chapters 12 and 13 are perhaps the most significant portions of
Volume 2. From a pedagogical viewpoint, the carefully detailed dis-
cussion of Marcinkiewicz’s interpolation theorem will, it is hoped, go some
way toward making this topic more accessible to a beginner.

A major portion of Chapter 11 is devoted to the elements of Banach
algebra theory and its applications in harmonic analysis. In Chapter 16
there appears what is believed to be the first reasonably connected intro-
ductory account of multiplier problems and related matters.

For the purposes of a short course, one might be content to cover
Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to
and including Section 12.10, Chapter 13 up to and including Section 13.6,
Chapter 14, and Sections 15.1 to 15.3. Much of Chapters 13 to 15 is
independent of Chapters 11 and 12, or is easily made so. While severe
pruning might lead to a tolerable excision of Section 11.4, which is re-
quired but rarely in subsequent chapters, it would be a pity thus to omit
all reference to Banach algebras.

I at one time cherished the hope of including in this volume a list of
current research problems, but the available space will not accommodate
such a list together with the necessary explanatory notes. The interested
reader may go a long way toward repairing this defect by studying some
of the articles appearing in [Bi] (see, most especially, pp. 351-354
thereof).

The cross-referencing system is as follows. With the exception of refer-
ences to the appendixes, the numerical component of every reference to
either volume appears in the form a - b - ¢, where a, b, and ¢ are positive
integers; the material referred to appears in Volume 1 if and only if
1 <a<10. In the case of references to the appendixes, all of which

vii



viii PREFACE

appear in Volume 1, a Roman numeral “I” has been prefixed as a
reminder to the reader; thus, for example, “1,B.2.1 " refers to Appendix
B.2.1 in Volume 1.

An understanding of the main topics discussed in this book does not, I
hope, hinge upon repeated consultation of the items listed in the bibli-
ography. Readers with a limited aim should find strictly necessary only
an occasional reference to a few of the book listed. The remaining items,
and especially the numerous research papers mentioned, are listed as an
aid to those readers who wish to pursue the subject beyond the limits
reached in this book; such readers must be prepared to make the very
considerable effort called for in making an acquaintance with current
research literature. A few of the research papers listed cover devel-
opments that came to my notice too late for mention in the main text.
For this reason, any attempted summary in the main text of the current
standing of a research problem should be supplemented by an examin-
ation of the bibliography and by scrutiny of the usual review literature.

Finally, T take this opportunity to renew all the thanks expressed in
the preface to Volume 1, placing special reemphasis on those due to
Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth
Gaudry for his contributions to Chapter 13, and to my wife for her
encouragement and help with the proofreading. My thanks for help in the
latter connection are extended also to my son Christopher.

CANBERRA, 1967 R E.E.
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CHAPTER 11

Spans of Translates. Closed Ideals.
Closed Subalgebras. Banach Algebras

The first three sections of this chapter are devoted to some topics mentioned
earlier, namely, the study of closed invariant subspaces and closed ideals
[mentioned in 2.2.1 and 3.1.1(g)], and that of closed subalgebras [mentioned
in 3.1.1(e) and (f)]. Throughout the discussion E will denote any one of the
convolution algebras L? (1 € p < o0) or € (see 3.1.1, 3.1.5, and 3.1.6) and
we shall consider closed invariant subspaces, closed ideals, and closed sub-
algebras in E. The cases E = C* and E = L* could also be treated similarly,
provided that in the last case one considered L™ with its so-called weak
topology, in which a sequence or net (f;) converges to f if and only if

1 1
hfné‘;ffigdx = %ffgdz

is true for each g € L!. Compare I, B.1.7 and I, C.1.

For any compact group, Abelian or not, the structure theory for closed
invariant subspaces and closed ideals is simple. For the group T the
details are fully elucidated in 11.2.1. By contrast, except for the case
E = L2, the structure of closed subalgebras is not yet fully describable,
even for the group 7.

Subsections 11.2.3 and 11.2.4 are included on “ cultural”’ grounds and
are intended to show how the relatively simple problems treated in 11.2.1
and 11.2.2 lead to ones of considerable complexity and interest when the
compact group 7 is replaced by a noncompact group such as E. (These
subsections are not essential to an understanding of the rest of the book.)
The relevant problems for the dual group Z are mentioned briefly in
11.2.5.

Section 11.3 is devoted to the problem of closed subalgebras in E.

The final section of this chapter (11.4) is devoted to a few of the funda-
mentals of commutative Banach algebra theory and some of its applications
to harmonic analysis. When applications are made to the algebras E men-
tioned above, we find that the topics mentioned in Section 4.1 undergo natural
development. Applications to other algebras will also be made and will
provide proofs of results stated in Section 10.6.

1



2 TRANSLATES. IDEALS. SUBALGEBRAS. BANACH ALGEBRAS

Section 11.4 is in no sense a balanced introduction to the study of Banach
algebras. References for further reading will be given in due course.

11.1 Closed Invariant Subspaces and Closed Ideals

By a closed invariant subspace of E is meant a linear subspace V of E
which is (1) closed for the normal topology of E (see 2.2.4), and (2)
invariant under translation, in the sense that f € V entails 7', f € V for all
a € T. (Compare the definition of invariant subspaces given in 2.2.1.)

Each f € E is contained in a smallest closed invariant subspace V,, which
is none other than the closure in E of the invariant subspace V, generated
by f (as defined in 2.2.1). The reader will note that V, depends in general
on the ambient space E: for example, if f is continuous, the closure of V,
in L? will in general be strictly larger than the closure of V, in C. Despite
this, we do not think it necessary to complicate the notation accordingly.

In view of the fact that E is an algebra under convolution, we follow the
usual algebraic terminology by describing as an ¢deal in E, a linear subspace
I of E with the property that f+g el whenever fel and ge E. A closed
tdeal in E is an ideal in E which is also a closed subset of E.

As will be seen in 11.1.2, the closed invariant subspaces of E and the
closed ideals in E are exactly the same things (although the invariant sub-
spaces and the ideals are not the same things).

11.1.1. If feE, then f(n)e, € ¥, for all n € Z.
Proof. Direct computation shows that

fn)e, = e, * f.
Since e, € L, the assertion follows from 3.1.9. For an alternative proof, see
Exercise 11.5. Yet another type of proof is described in 11.2.2.

11.1.2. A subset of E is a closed invariant subspace of E if and only if it is
a closed ideal in E. (Compare with 3.2.3.)

Proof. (1) Let I be a closed ideal in E. We wish to show that I is transla-
tion-invariant. For this purpose, we utilize an argument appearing in 3.2.3.
Choose an approximate identity (k,)r-, comprised of elements of E (for
example, the Fejér kernels introduced in Section 5.1). Since I is an ideal,
(T.k,) »felforalln > 1and all fel. But (T,k,) *f = T,(k, = f) by 3.1.2,
and lim,_,, k, * f = f in E by 3.2.2. Therefore lim,_ . Ty(k, *f) = T,f in
E. I being closed, it follows that 7',f e I. This shows that I is translation-
invariant and is therefore a closed invariant subspace of E.

(2) Let V be a closed invariant subspace of E. In order to prove that V is
a closed ideal in E, it suffices to show that f * g € V whenever fe Vand g € E.
In doing this we may, since V is closed in E and since the trigonometric
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polynomials are everywhere dense in E (see 2.4.4), assume that g is a trigono-
metric polynomial; see 3.1.6. In that case, however, f * ¢ is a finite linear
combination of terms f(n)e,, and 11.1.1 shows at once that fxgeV,.
Finally, since fe V, ¥, < V, and therefore f * g € V. The proof is complete.

11.1.3. Remarks. (1) It has been noted in 3.2.3 that E is a module over L!;
and in Section 12.7 it will appear that E is even a module over the superspace
M of L' composed of all Radon measures. It is quite simple to verify that the
closed submodules of E (qua module over L! or over M) are exactly the closed
ideals in E.

(2) The reader will take care to remember that 11.1.2 is established only
for the choices of E mentioned at the outset of this chapter; it is not true in
all cases of interest. For example, if L*® is taken with its normed topology,
there are closed ideals in the convolution algebra L that are not translation-
invariant; see Exercises 11.22 and 11.23. Theorem 11.1.2 is also false for the
measure algebra M introduced in Section 12.7; see Exercise 12.45.

11.2 The Structure of Closed Ideals and Related Topics

It can now be shown that a closed ideal I in E is characterized completely
in terms of the common zeros of the Fourier transforms of elements of 1.

For any f e E, we denote by Z, the set of n € Z for which f(n) = 0; and
for any subset S of E we write

Z,= {2 feS).

11.2.1. Let I be any closed ideal in E, and let f € E. Then f €I if and only
if Z, o Z,.

Proof. Obviously, Z, > Z; whenever fel. Suppose conversely that
feE and Z, o Z;; we have to show that fel. Let n ¢ Z; and choose gel
such that §(n) # 0. By 11.1.1, ¢, € ¥,; and by 11.1.2, ¥, = I. Thus ¢, €1,
and this for any n ¢ Z,. A fortiori, e, € I for any n for which f(n) # 0. Now
6.1.1 shows that f is the limit in E of finite linear combinations of exponentials
e, with n restricted by the condition f(n) # 0. Since I is a closed linear sub-
space of E, it appears that f € I, as was to be proved.

Remarks. (1) In view of 11.1.2, 11.2.1 may be reformulated in the
following way. Let V be a closed invariant subspace of E and put S = Z\Zy;
then Vis identical with the closed linear subspace of E generated by {e, : neS}.
In brief, V is generated (as a closed linear subspdce, a closed invariant
subspace, or a closed ideal) by the continuous characters it contains.

The equivalence of the two versions depends upon 6.1.1. As usual, the
result remains true for E = L®, provided the weak topology is used through-
out; in this connection it is useful (although not essential) to note that
limy., oy f = f weakly in L™ whenever fe L*®.
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(2) In 11.2.1 it is essential that the ideal I be assumed to be closed. For
example, if I is any everywhere dense and nonclosed ideal in E, then
Zy = @ = Zygbut I # E. In such cases there is no known simple structure
theorem.

(3) For a study of projections onto closed invariant subspaces of L?((),
where @ is a noncompact group, see Rosenthal [1].

11.2.2. TheHahn-Banach Theorem Appliedto11.2.1. A characteristically
modern tool for the discovery and proof of theorems about linear approxima-
tion is the Hahn-Banach theorem, which is described briefly in I, B.5.
We propose to indicate here how this theorem may be used to prove 11.2.1;
it is equally useful in connection with the analogous problems mentioned in
11.2.3 and 12.11.4.

It must be admitted that its application to the proof of 11.2.1 does not
appear to be particularly economical, and it must be stressed that the great
merit of the theorem lies rather in the range of problems to which it prov1des
a useful common approach (see [E], Chapter 2). No account of the methods
of modern analysis can afford to ignore it.

The notation being as in 11.2.1, let us face anew the problem of showing
that fel whenever Z, > Z,. Since I is a closed linear subspace of E, the
Hahn-Banach theorem (specifically I, B.5.2) affirms that to do this it suffices
(and is obviously necessary) to prove that, if ¥ is any continuous linear
functional on E, and if

Fg) =0 forallgel, (11.2.1)

and
Z, > Zy, (11.2.2)

then
F(fy=0. (11.2.3)

Now, since I is invariant, (11.2.1) entails that
F(T,g) =0 forallgeIand all a. (11.2.4)
This suggests that we look at the function ¢, defined by

$g(a) = F(T,9). (11.2.5)

Since F is continuous on E, while a — T,g is continuous from R into E
(see 2.2.4), ¢, is a continuous function. The reader will also observe for
future use the fact that ¢, depends linearly and continuously on the
variable ¢ € E:

I$slle < 1£]+ lgle-

The combination of these last remarks with a simple argument involving
Riemann sums permits the computation of the Fourier coefficients of ¢,.
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Thus (using an obvious notation),

a

¢y(n) = lim -217; Z do(a e "% Aa,

= lim F (%r Z Takg . pmina Aa,k) s
by linearity of F, which in turn is equal to
7 (lim 511-1 S Ty geemine Aak)

on account of continuity of F. Now, if g is continuous, it is easy to check that
the limit appearing in the last expression displayed is none other than the
function
x—»lfg(:c — a)e~ " dg,
2mr
which is, by virtue of the basic properties of the invariant integral recounted
in 2.2.2, the function §(—n) - e_,. Accordingly, the formula
$o(n) = G(—n) - Fle_,) (11.2.6)
is established for continuous g € E. However, for a fixed 7w € Z, each side of
(11.2.6) is a continuous linear functional of g € E; since the continuous
functions are everywhere dense in E (a corollary of 2.4.4), (11.2.6) must
hold for all g € E. The reader is urged to verify carefully all the steps in this
computation of ¢,.
In view of (11.2.6), (11.2.4) entails that F(e,) = 0 whenever geI and
g(n) # 0. Therefore
Fe,) =0 for all » € Z\Z,. (11.2.7)

On the other hand, for any f e E we have from 6.1.1

a

f=lim > (1 - N—'—%)f(n)%-

Now© 2N

So, by linearity and continuity of F,

F(f) = lim > (1 - Nl’ﬁ 1)f(n)F(en). (11.2.8)

Noo <N

Finally, by (11.2.2) and (11.2.7),

f(n)F(e,) =0 forallne Z,

so that (11.2.3) follows from (11.2.8). This completes the proof.
Remarks. The computation of the Fourier coefficients of ¢, could be
made to proceed more gracefully by appealing to the results of Chapter 12
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and Appendix I, C.1 concerning the analytic representation of continuous
linear functionals F' on E. However, we have preferred at this stage to
sacrifice grace in favor of more elementary arguments.

11.2.3. Closure of Translations Theorems. The writer knows of no very
significant applications of 11.2.1 to problems of concrete analysis, though it has
its own interest as a structure theorem, albeit a simple one. However, it and
certain corollaries one can deduce from it have analogues for other groups
which are at once deeper and productive of genuinely significant results in
concrete analysis. We propose to mention these analogues, devoting this
subsection to so-called ‘‘closure of translations’ theorems, and the next to
some consequences of a Tauberian nature (see 5.3.5).

The position is that 11.2.1 and its derivatives, pertaining to the group 7', are
simple prototypes of bigger and better things which owe their significance to
their applicability to noncompact groups.

When one contemplates replacing the compact group 7' by a noncompact
(locally compact Abelian) group @, it is difficult to repress the hope that an
analogue of the case E = L! of 11.2.1 lurks around the corner and awaits
discovery. There is little difficulty in framing a plausible analogue, and this
plausible analogue turns out to be ‘“approximately true,” or to be “true in
spirit but false in detail.” (Concerning L}(G) for a general group, see, for
example, [R], Chapter 1; [HR], Section 20; [E], Section 4.19; [Bo]; [Bo,],
Chapitre 2.)

The simplest choice for a noncompact group @ would undoubtedly be the
group Z. Despite this, the description immediately following is expressed in
terms of the groups R™ (R the additive group of real numbers with its usual
topology and m a natural number). One reason for this choice is that R™ is
more typical of noncompact groups than is Z. Another reason is that the
original ‘““closure of translations” theorem of Wiener (see [Wi], pp. 99-100),
which was the beginning of almost everything in this field, applies to the group
R. The analogous problems for the technically somewhat simpler group Z will
receive further attention in 11.2.5 and 12.11.4.

For f € L1(R™), the Fourier transform of f is the function on R™ defined by

fle) = J. T fR,,.f(xn ce, Tp)e T 2REE Y 8T oy L dayy

for ¢ = (&1, -+, &m) € B™; Z, is defined to be the set of zeros off; and, for
any ideal I in L1(R™), Z; is defined to be the intersection of the sets Z, when f
ranges over I. (A brief treatment of Fourier transforms of functions in L!(R)
and L2(R) appears in Chapters 9 and 19 of [R;]; see also [Wi] and [Ti], and the
references cited therein.)

The Wiener closure of translations theorem for R™ asserts that an ideal I in
L!(Rm™) is everywhere dense in L!(R™) if (and only if) Zy = @. This is a perfect
analogue of the corresponding special case of 11.2.1, and is indeed encouraging.

For quite a while it remained tantalizingly in doubt whether a general closed
ideal I in L1(R™) necessarily contains every f € L1(R™) such that Z, = Z;. The
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first example showing that this was not always the case was given by Laurent
Schwartz [1] in 1948 and applied to R™ with m > 3; see also Reiter [1] and
12.11.5. Another decade was to elapse before similar examples pertaining first
to R, and then to any noncompact G, were produced by Malliavin [1] in 1959.

Despite this disappointment, it turns out that if Z; is topologically simple
enough, then I does indeed contain every f € L}(R™) for which Z; > Zy; and
that the conclusion stands, whatever Zj, if in addition f is subject to smooth-
ness conditions. Results of this type permit the reader to judge for himself to
what extent the analogue of 11.2.1 (for E = L!) may be claimed to be
““ approximately true.” See [HR], (39.24); [Re], p. 28; [Kz], p. 225; [R], 7.2.4;
MR 37 # 6694; 40 # 6491; 46 # # 9650, 9652, 49 # 9542; 53 # 14025; 54
# # 10980, 13464.

A set § = R™ having the property that

feLYR™), Z,> Zy = fel

for every .closed ideal I in L}(R™) for which Z; = S, is termed a spectral (or
harmonic) synthesis set in B™; Rudin ([R], p. 158) refers to them more briefly
as S-sets. It is known that S is a spectral synthesis set in this sense if and only
if there is but one closed ideal I in L1(R™) satisfying Z; = S.

Malliavin’s result cited above asserts precisely that there exist closed subsets
of R™ which are not spectral synthesis sets. On the other hand, the opening
statement in the last paragraph but one amounts to saying that conditions of
topological simplicity are known which ensure that a given closed set S is a
spectral synthesis set; compare Exercise 12.52.

Malliavin’s result cited above has given rise to many extensions, improve-
ments and simplifications. For some (if not all) of the details, the reader should
consult Malliavin [1], [2]; [R], Chapter 7; [KS], Chapitre IX; [Kz], pp. 229
ff; [HR], §42; de Leeuw and Herz [1]; MR 31 # 2567; 39 # 1977; Exercise
12.53 below. At this point we remark merely that Malliavin’s original construc-
tion has been simplified by Kahane and Katznelson [2] and Richards [1]; and
that Varopoulos [1], [2] introduced an entirely original (tensor product) ap-
proach to spectral synthesis problems in Banach algebras; see MR 41 # 830
and the remarks in 11.4.18(4) below.

As has been indicated, strictly analogous problems arise when attention is
transferred from L!(R™) to ¢!(Z); concerning this particular extension we shall
have a little more to say in Subsections 11.2.5, 12.11.4, 12.11.5, and 12.11.6.

Mention must also be made of analogues for noncompact groups @ of the
remaining cases covered by 11.2.1, namely, the closure of translations theorems
in E=1L" (1 <p< o) and E = C. The results for L*(G) with its weak
topology (see the opening remarks to this chapter) go hand in hand with those
for LY(@) already discussed. For L2(R) a complete solution was given by Wiener
(Wi], p. 100), and this extends without trouble to L2(@). In all other cases,
that is, for values of p different from 1, 2, and oo, the known results are less
complete. While conditions are known which are sufficient to ensure that the
linear combinations of the translates of a given f € L?(@) are everywhere dense
in that space, and yet others are known which are necessary for this to happen,
there remains a gap between the two types of conditions. All attacks on this
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problem are bedevilled. by the preliminary task of devising and handling a
tractable definition of the Fourier transform of a function belonging to an
arbitrary space LP(G). This may be done in terms of pscudomeasures and
similar objects (the periodic prototypes of which are mentioned in Section
12.11; sce especially 12.11.4). There is, alas, no connected account in book
form, but sce Herz’s survey article [2], Gaudry [1], [3], Edwards [4] and the
references there cited, and Warner [1]. (The case of the group Z is discussed
briefly in 11.2.5.). See also MR 38 # 4904.

One striking fact, applying when ¢ is noncompact and 1 <p <2, is that
there exists a closed invariant subspace V # {0} in L%(@) which contains no
nonzero element of L?(G); see MR 52 # 14849. See also MR 48 # 11915.

Finally, an even wider diversity obtains when one turns to analogues of the
case E = C of 11.2.1. This is due to the fact that there are, in relation to a
noncompact G, several natural spaces of continuous functions which coalesce
for compact. groups but which otherwisc are widely different. The following
four contenders have reccived attention:

(1) the space C(G) of all continuous functions on @, with the topology of
locally uniform convergence;

(2) the space BC(G) of bounded, continuous functions on @, with the
topology of uniform convergence;

(3) the space -BUC(G) of bounded, uniformly continuous functions on G,
with the topology of uniform convergence;

(4) the space Cy(G) of continuous functions which tend to zero at infinity,
with the topology of uniform convergence.

For Cy(G) fairly complete results are known. For the remaining three, results
are hard to come by; in the case of BC(G) and BUC((), more progress has been
made concerning approximation relative to a weaker (the so-called ““strict’’)
topology, originally suggested by ideas of Beurling; see Edwards [5] and
Harasymiv [1]. In the casc of C{G), most attention has been paid to functions,
the linear combinations of translates of which are not everywhere dense in
C(G): these were introduced and studied (for @ = R) by Laurent Schwartz [2]
in 1947, who christened them mean periodic functions; see also [Kah;]. Some
of Schwartz’s results have since been extended to more general groups by
Ehrenpreis [1], Elliott [1], Gilbert [1], and others.

11.2.4. About Tauberian Theorems. We pass on to consider briefly some
conscquences of such closure of translations theorems as are typified by the
case Zy = @ of 11.2.1 and the generalizations therecof mentioned in 11.2.3.

Let us begin with the group 7. Suppose we take a subset 4 of T and a
nonvoid collection IT of nonvoid subsets of A satisfying the following two
conditions:

(1) the intersection of any two members of Il contains a member of II (in
M. Bourbaki’s language, this signifies that I is a filter base on A4);
(2) if a € A and P €11, there exists P’ € II such that

PPca+ P={a+zxz:2eP}.
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If F is a real- or comp]ox-valuea function defined on 4, we write

ImF =0
I

if and only if to each ¢ > 0 corresponds a set P, € Il such that |F(a)| < ¢ for
a € P.. Owing to condition (1), limpy (F; + F,) = 0 whenever limy F; = 0 for
2 = 1, 2. Morcover, thanks to condition (2), limg T, F = 0 whenever a€ 4
and limg 7' = 0.

By way of example, one might take for 4 the set of all cosets na + 272
obtained when a is a fixed real number and n ranges over Z, while for II one
might take the collection of sets P, (k = 1, 2, ---), P, being the sct of cosets
na + 27Z obtained for |n| > k. In this case, lim; F would signify what would
normally be denoted by lim,.z nj~w F(na + 27Z), or by lim,ez, 10|~ F(na),
if F is first extended to T' and then regarded as a periodic function on R.

Given f, € L', it may or may not be true to assert that the linear combi-
nations of the translates T, f, (@ € A) are everywhere dense in L!. As may be
deduced from 11.2.1, this assertion will be true whenever f, is nonvanishing on
Z and 4 is everywhere dense in 7'. (This second condition is satisfied by the
particular 4 mentioned in the last paragraph, if a/r is irrational; see Exer-
cise 2.2.) The assertion may also be shown to be true for quite sparse subsets 4
of T, provided f, is, say, analytic and f, is nonvanishing on Z (compare
Exercise 11.9).

In any case, one may proceed without much difficulty to establish the
following result.

(a) Suppose that 4 and IT are as above, that f, € L!, that f, is nonvanishing
on Z, and that 4 is everywhere dense in 7. If g € L®, and if

limfo*xg =0, (11.2.9)
I
then also
Iimfxg =0 for all fe L. (11.2.10)
I

It is true, but irrelevant at the moment, to say that (11.2.10) is equivalent to
the assertion that ¢ = 0 almost everywhere.

As far as the writer is aware, (a) has no especially significant consequences.
However, (a) has a deeper analogue for the case in which 7' is replaced by any
locally compact Abelian group @, and, when G is noncompact, very significant
results are obtained in this way.

Let us state such an analogue for the typical case in which G = R, special-
izing on the way by taking 4 = G = R and II to be the set of complements
in R of compact subsets of R. (This natural choice of II is not permissible for
compact groups, which is why (a) takes the rather complex form it does.) Then
limy F signifies what is normally written as lim,cp, z-» F(z). The analogue
runs as follows.

(b) If f, € LY(R) satisfies

fol) = [ f@erm=anz 0 (¢eB),
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and if g € L®(R) is such that

lim f, * g(x) = 0, (11.2.11)
lxj—®
then also
lim fxg(x) =0 for all f e LY(R). (11.2.12)

lxj—

Statement (b), and its valid analogue for any locally compact Abelian
group G in place of R, is an almost immediate corollary of the closure of
translations theorem mentioned in 11.2.3; see [R], p. 163; [HR], (39.36);
[Kz], p. 228; [Re], p. 10. The case @ = R is Wiener’s famous general Tauberian
theorem, so named because by design it includes as corollaries a number of
results each of a Tauberian nature (see 5.3.5). The deductions of these special
Tauberian theorems, which often require skillful choice of the ““kernels ” f, and
[, followed by lengthy manipulations, would be out of place here. For an
account the reader may be referred to Wiener’s book [Wi] or, for more recent
accounts, to [Ha] and/or [P]. (None of these references lays any stress on the
relationship between the Wiener theorem and the ideal theory of L}(R).) A
brief proof of (b), using distributional techniques and the Hahn-Banach
theorem, has been given by Korevaar [1]; the method is even more neatly
expressible in terms of pseudomeasures (see Section 12.11 and compare the
remarks in 11.2.5).

Weak versions of (b), in which more is assumed about the smallness of f; at
infinity, can be proved by simpler arguments and retain some interest for
applications; see, for example, Kac [1]. See also MR 50 # 7952; 52 # 1173.

Concerning abstract Tauberian theorems, see Subsection 11.4.18(3).

11.2.5. The Case of the Dual Group Z. The remarks in 11.2.3 that refer
to analogues of 11.2.1, or of special cases of that theorem, may be further
illustrated by looking at the situation in which the underlying group is Z.
This we shall do very briefly.

The problem isthat of classifying the closed invariant subspaces of £7 = #7(Z).

For p = 1, in which case we may speak equivalently of the closed ideals
Iin £%, some at least of the difficulties mentioned for general noncompact
groups in 11.2.3 are already visible. However, it is true that a given ¢ € £
generates a dense ideal if and only if its Fourier transform ¢ is nonvanishing;
this, and more besides, is proved in Exercise 12.32.

The case p = 2 is completely solved, the solution being as follows. Given
¢ € £? and € £2, s belongs to the closed invariant subspace of £2 generated
by ¢ if and only if the set of zeros of § contains, modulo a null set, the set of
zeros of ¢; regarding the transforms ¢ and J, see 8.3.3.

For other finite values of p no complete solution is known, the remarks in
11.2.3 applying without modification. In Sections 12.11 and 12.12 we shall
describe briefly the difficulties, unsolved problems, and partial successes in
relation to this problem. It must here suffice to remark that the sharpest
results available apply to a problem posed by Beurling, namely: Suppose
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that ¢ € £1(Z) (< ¢7(Z) for every p = 1); what can be said about the size of
E = ¢-1({0}) in relation to those values of p for which the closed invariant
subspace of £7(Z) generated by ¢ is the whole of £?(Z)? As we shall see,
although the solution is not complete, quite precise results are expressible in
terms of so-called ‘‘capacities” of F (or, what is essentially equivalent in the
present context, the so-called “Hausdorff dimension” of E). Any reader who
wishes to approach this problem independently will find the details in [KS],
p. 112. See also Newman [3].

For p = o0, it is the case that a given ¢ € £* has the linear combinations
of its translates weakly dense in £~ if and only if the pseudomeasure ¢ has a
full support (see 12.11.4). The same result holds for the uniformly closed
invariant subspace of ¢, generated by a given ¢ € ¢c,. (A pseudomeasure o on
T has a full support if and only if the only continuous function « on T
having an absolutely convergent Fourier series and satisfying u - ¢ = 0 is
the function u = 0.) See also [ Kah], Chapter VIII.

11.3 Closed Subalgebras

We now turn to the consideration of structure theorems for closed sub-
algebras % of E, analogous to 11.2.1 for closed ideals.

The natural conjecture is that % is fully determined by knowledge of those
subsets of Z which are common sets of constancy of the Fourier transforms
f of elements f of ¥; see 11.3.1 for details. When E = L2, this conjecture is
true, as will be shown in 11.3.6. When E = L!, the conjecture is shown to be
false by an example due to Kahane (1962); see 11.3.4. To the author’s
knowledge, its truth or falsity is undecided in all the remaining cases.

On the other hand, as will become apparent from subsequent results, the
conjecture is ““approximately true’’ (compare with 11.2.3).

For several other problems about subalgebras having close connections
with harmonic analysis, see [R], Chapter 9.

11.3.1. Equivalence Relations and Idempotents in %, Let % be a
closed subalgebra of E. We introduce the equivalence relation r(%) on Z
which is defined by writing nr(¥)n’ if and only if n, ' € Z and f(n) = f(n')
for all fe %. Accordingly, Z is partitioned into cosets S modulo (%), of
which there are at most countably many. We follow Kahane in terming each
such coset S modulo 7(%) a Rudin class of %. On each Rudin class of %, each
function f (f € %) assumes a constant value which we denote by f(S). Either
f(8) = 0 for all fe %, or S is finite (see 2.3.8).

Given any equivalence relation r on Z, we shall write L} for the set of all
integrable functions f such that f(n) = f(n') whenever n,n' € Z and nrn’.
Then E N L! is a closed subalgebra of E, which is plainly the largest closed
subalgebra % of E for which r(%) = r.

It follows that % < E N Ly, for any closed subalgebra % of E.
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The natural conjecture is that % = E N L}y, for any closed subalgebra
AU of E.

Save for the cases mentioned in 11.3.4 and 11.3.6, the truth or falsity of this
conjecture is an open problem. The basic positive result in favor of this
conjecture asserts that in all cases % contains each of the trigonometric
polynomials

€s = Z €ns

nesS

where § is any coset modulo (%) such that f(S) # 0 for some f e %. These
elements eg are easily seen to be precisely the minimal idempotents of the
algebra %, that is, the idempotent elements e of % which are not expressible
as sums of two or more nonzero idempotents of %. Each idempotent element
of % is a finite sum of those minimal idempotents.

In order to prove that each eg does indeed belong to %, we shall need to
call upon the spectral radius formula

lim || =
k-

1 Fllw (11.8.1)

for elements f of E, the norm appearing on the left-hand side being that on E.
For E = L? this result is established in Exercise 8.8. The formula for
E = C is easily deducible from the case E = L?. A proof covering all the
required cases will appear in 11.4.14. Meanwhile, (11.3.1) will be taken on
trust.

11.3.2. Let A be a closed subalgebra of E. Then ese % for any coset S
modulo 7(%) for which f(S) # 0 for some (possibly S-dependent) element f
of A.

Proof. This is taken from [R), p. 232.

Enumerate the cosets S modulo (%), for which f(S) # 0 for some 8-
dependent f € %, as S,, where o runs over some set of positive integers.

Choose and fix any « and then any f € % such that f(S,) # 0. There are at
most a finite number of indices o' distinet from o for which f(S,) = f(S,).
If no such indices «’ exist, part (1) of the proof to follow simplifies and com-
pletes the proof. We shall proceed on the hypothesis that such indices o’
exist, labeling them «,, - - -, «,, and putting

t = e, +oes, +toes, -

(In case no indices o’ exist, the appropriate definition would read: ¢ = eg,.)

(1) The first step is to show that t e %. According to 2.3.8, f(S,) is an
isolated point of f(Z), and f(Z) has no limit points other than zero. It follows
that a polynomial F in one complex variable may be chosen so that

F0)=0, F(fS) =1 |F@)| <%
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for z € f(Z)\f(S,). Indeed, this may be reduced to the following constructional
problem: given complex numbers z, (m = 0,1,2,---) such that z, # 0,
Zm # 29 (m > 0), 2, — 0 as m — o0, it is required to find a polynomial F
such that F(0) = 0, F(z) = 1, |F(z,)] < Y for m > 0. To this end, choose
an integer k so large that |z,| < 14|z, for m > k, and put

F(z) = (Z)N : ((z eV s

%0 Zg—21)" - (20 — %)

where the positive integer NV is to be chosen in a moment. Then, plainly,
F(0) =0, F(zo) = 1, and F(z,) = 0 for 0 < m < k. Moreover, if m > £k,

27 (] + Y Jzol)- - -zl + Yo [20])

FZ x
i (m)] < [(zo_zl)--'(zo“zk)l

which can be made less than 1% if only N be chosen sufficiently large (depend-
ing upon k). If this be done, F is a polynomial satisfying all the requirements.
Suppose that
F(z) = ¢z + -+ -+ cp2™,
and consider the function
g=ocf+caf* +- 4 enf*,

where, as usual, f** is the k-th convolution power of f. Since f & % and since
% is a subalgebra of E, g € %. Plainly, § = F o f. Since both § and i take the
value 1 on S, U S, U---U S, , our choice of F ensures that |§ — i|l, < Y.
The spectral radius formula for elements of E therefore entails that

lim (g — %[ < 15, (11.3.2)
On the other hand we have
ngk___gmzk—l :éz.gk—g =,,,=ék—1.z,
since { is the characteristic function of S, U 8y, U---US, , on which set §
assumes the value 1. Therefore
(¢ - =g -1,
or, by the uniqueness theorem 2.4.1,
(g — % = g** —t.
Formula (11.3.2) now shows that
Tim g+ — ] < %,

so that
lg** —t] <27

for all sufficiently large k. Since % is a closed subalgebra of E, it appears
thence that t € A.
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(2) The next step is to show that % contains trigonometric polynomials ¢;
(t=1,2,.--, n) such that

LS =1, #(S.) = 0.

It will suffice to exhibit the construction of ¢;.
Choose % € 9 such that A(S,) % E(Sa,) and put

[ — R(S,,)t]
hl = T
[A(S,) — h(Sal)]

by (1), h; € %; and plainly
ﬁl(Sa) = ]-a ﬁl(sal) = 0.

If the construction described in (1) be applied on starting with A, in place
of f, the result is easily seen to be a trigonometric polynomial {, € % satisfying
the required conditions.

(3) By comparing Fourier transforms and using the uniqueness theorem
2.4.1, it is clear that eg, = t x ¢; * t;- - - * t,, which makes it evident that
es, € % and thus completes the proof.

11.3.3. The Natural Conjecture as an Approximation Problem. Givena
closed subalgebra % of E, denote by %, the closed subalgebra of E generated
by the idempotents eg, S being any coset modulo (%) such that f(8) # 0 for
some fe A. By 11.3.2, A, < A. It is otherwise clear that 7(Ay) = r(¥A).

The natural conjecture spoken of in 11.3.1 is thus to the effect that A, = A
for all closed subalgebras % of E.

Yet another way of expressing the conjecture is in the form of the following
assertion about approximation.

Given disjoint nonvoid finite subsets S, of Z, each f e E, such that f is
constant on each S, and vanishes on Z\|_J, S,, is the limit in E of finite linear
combinations of the idempotent trigonometric polynomials eg_.

Further discussion of the conjecture will often make use of this last version
thereof.

11.3.4. Kahane’s Results about Closed Subalgebras of L'. Let usagree
to write #S = k, or #S = oo, according as the set S is finite and has &
elements, or is infinite, respectively; and to write £ < oo for every real number
k. Then the main results established by Kahane [1] may be stated as follows:

(a) There exist closed subalgebras ¥ of L' which are not generated by
their idempotent elements.

(b) If % is a closed subalgebra of L* whose Rudin classes are of bounded
lengths (that is, are contained in intervals of bounded lengths), then % is
generated by its idempotents.
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(¢) There exists a closed subalgebra % of L, whose finite Rudin classes S
satisfy sup #S8 < co, and which is nevertheless not generated by its idem-
potents.

Kahane also raises a number of problems demanding attention.

Problem 1. Are there any (infinite) subsets @ of Z with the property
that, for any closed subalgebra % of L1, each f € % whose Fourier transform
vanishes on Z\@ is the limit in L! of finite linear combinations of the idem-
potents in A?

Kahane remarks that his proof of (a) can be adapted to show that a set
with this property cannot contain arbitrarily long arithmetic progressions.
On the other hand, the results of Chapter 15 (see especially 15.3.1) show that
Sidon sets @ have the desired property. A similar result is true for closed
subalgebras of E = C or L?, and may be obtained by combining 11.3.5 and
the proof of 11.3.6 with 15:1.4 and 15.3.1, respectively. Nothing appears to
be known concerning sets ¢ which fail to contain arbitrarily long arithmetic
progressions and which are yet too ““thick’’ to fall into the category of Sidon
sets.

Problem 2. Kahane has shown that algebras % exist with the property
mentioned in (c¢) and whose finite Rudin classes contain at most four elements.
Is it possible to reduce “four’ to “‘two” in this assertion ?

Problem 3. Which equivalence relations » on Z have the synthesis
property, that is, are such that any closed subalgebra % of L!, for which
r(A) = r, is generated by its idempotents? Result (b) seems to be as much
as is as yet known in this connection.

Although (a) decisively negatives the natural conjecture, the next four
results use 11.3.2 in order to salvage something in the positive direction; they
show that the natural conjecture is not absurdly wide of the mark.

11.3.5. Let % be a closed subalgebra of E. Then % contains each f e Lk,
for which .., |f(n)] < oo.

Proof. Using the notation introduced at the beginning of the proof of
11.3.2, the absolutely convergent Fourier series of f may be regrouped to

appear as
Zf(sa) Z ey = zf(sa)esa:

neSy

the regrouped series being again absolutely convergent. It follows that f is
equal almost everywhere to the limit of a uniformly convergent sequence of
finite linear combinations g, (k = 1, 2, - - -) of the eg ; and if f is continuous
it is equal everywhere to this limit. So in any case f is the limit in E of the g,.
By 11.3.2, each g, € %. Since ¥ is closed in E, it follows that fe .

11.3.6. Let % be a closed subalgebra of L2. Then % = L2 N Ly,
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Proof. It suffices to verify that the approximation assertion appearing
in 11.3.3 is true. Suppose then that f € L?, that f takes the constant value c,
on S,, and that f vanishes outside S = |, S,. Writing e, in place of s,
the Parseval formula (8.2.2) gives for any finite set F of indices a

Hf_ Z caeanz = z [f(n) - Z caéa(n)l2

aeF nez aeF
= z Z 1619 - Z caéa(n)l2-
B neSg aeF
Now )
2 cibun) = {cﬁ ifn ES'? for some Be F,
= 0 otherwise,
so that
”f" zcaea”% = Z Z 16312
aeF B¢F mneSg
= > lfmPF= 2 fo)?,
nesy neS\Sp

where Sy = Uper Sy and Sy = {Uper S;- The regrouping of terms of the
series is justified, because 3,.; |f(n)|2 < co. This same condition ensures
also that, given any ¢ > 0,

z |f(n)|2 < &

neS\Sg

for all sufficiently large finite sets F of indices. For such finite sets F, it is
therefore the case that

“f - ZF cnetz”2 <e,

which is what we had to show.

11.3.7. The proof of 11.3.6 shows in fact that, if 1 < p < 2, and if A is a
closed subalgebra of L?, then
A>LZN L,].'(Q().

(Recall that convergence in L2 implies convergence in L? for any p satisfying
0 < p < 2.) See Exercise 11.6.

11.3.8. If A is a closed subalgebra of E, then f * g € % whenever
fr9el?n Lig,.

Proof. As the proof of 11.3.6 shows, each of f and g is the limit in L2 of
finite linear combinations of the e . Since eg, * e5, = 0 or eg, according as
B # aor B = «, it follows that f * g is the uniform limit (a fortiori, the limit
in E) of finite linear combinations of the e, and therefore, by 11.3.2, belongs
to .

See also Exercise 11.7, where a somewhat more general result is given.
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11.3.9. Existence of Zero Divisors. For closed subalgebras ¥ of E, an
answer can now be given to the question [raised in 3.1.1(e)] about the
existence in % of zero divisors. The answer is as follows: a closed subalgebra
9% of E has no zero divisors if and only if % is either {0} or consists of the
scalar multiples of some nonzero idempotent trigonometric polynomial.

Proof. It is evident that if % is of the stated type, then it possesses no
zero divisors.

Suppose on the other hand that % # {0}. Then there exists 7, € Z and
fo € % such that fi(ng) # 0. Let S, be the coset modulo () containing n,.
By 11.3.2, e5, € %. If % were not exhausted by the scalar multiples of e,
there would exist 7, € Z\S, and f, € % such that f;(n,) # 0. Then, by 11.3.2
again, if S; is the coset modulo (%) containing n,, we have e; € . Since
Sy # 8o, 8 NSy = @, and therefore e; *es, = 0. Each of e5, and eg,
would thus be a zero divisor belonging to . Consequently, % must be
exhausted by, and so be identical with, the set of scalar multiples of e o

11.3.10. Maximal Subalgebras. A closed subalgebra % of E is termed a
mazimal subalgebra of E if A # E and if the only closed subalgebras of E
which contain % are % and E itself.

These maximal subalgebras of E can be simply and fully characterized, as
in the second half of the following statement.

11.3.11. Let % be a closed subalgebra of E, # % the set of Fourier transforms
of elements of %, and Zy the set of common zeros of elements of % (as in
Section 11.2).

(i) If & A separates points of Z (that is, if, whenever n, # n, belong to Z,
there exists f € % such that f(n,) # f(ny)), then either Zy = @ and % = E,
or there exists n, € Z such that Zy = {n,} and

u =9 ={feE: fin) =0} (11.3.3)

(i) The maximal subalgebras of E are precisely the subalgebras A,
(ng € Z) and the subalgebras

a

Uy, 0y = {€E: flng) = f(ny)}, (11.3.4)

where n,, n, € Z and n, # n,. (Notice that each %, is actually an ideal in E,
and not merely a subalgebra.)

Proof. (i) To say that # % separates points of Z is equivalent to saying
that each Rudin class of % is a singleton. This being so, two cases arise
according as Zy is or is not void.

If Zy is void, 11.3.2 shows that e, € % for all n € Z, and 6.1.1 then shows
that % = E.
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Otherwise, Zy is a Rudin class of % and hence takes the form {n,} for some
ng € Z. If n € Z is distinct from n,, then {n} is a Rudin class of % and f(n) # 0
for some fe %. So 11.3.2 entails that e, € ¥ for all integers n different from
7o, and 6.1.1 shows that % > A, and so that in fact % = A, .

(ii) The proof is broken into several steps.

(1) %, is maximal. For if % is a closed subalgebra of E containing %, ,
then % B plainly separates points of Z. So, by (i), % is either E or is ¥, for
some 7 € Z. Since B > A, , n must coincide with n, and 8 with %, . Whence
results the maximality of o, .

(2) ¥, ,, is maximal. For if ® is a closed subalgebra of E containing
A, .», Properly, it is again clear that & 8 separates points of Z. So, by (i)
again, B is either E or ¥, for some n, € Z. The latter alternative cannot
arise since 8 > A . Hence % = E.

(3) Suppose now that % is a maximal subalgebra of E, and suppose that
either (a) there exists a Rudin class S of % having at least three elements,
7y, Ny, Ng, or (b) there exist at least two Rudin classes 8 = {ny, n,,-- -} and
S’ of U each having at least two elements.

Let % be the closed subalgebra of E generated by % {e, }. Then % contains
Aand B # A (because e, belongs to B but not to A, since €, is not constant
on § > {n;, ny}). Any element of B is the limit in E of elements «e, + f,
where « is a scalar and f € %, and so each element of # % is constant on each
of S\{n,} and S’". By (a) or (b), at least one of these two sets has at least two
elements, so that 8 # E. This would contradict the maximality of % and so
negates both (a) and (b).

Thus at most one Rudin class of ¥ contains two elements, all others being
singletons.

If all are singletons, (i) shows that % = A, for some integer n,. Otherwise,
there is just one Rudin class § = {n,, n,} of ¥ having two elements, all others
being singletons. But then % < ¥, . and, since A, .. isa closed subalgebra
of E different from E, the assumed maximality of ¥ entails that % = %

This completes the proof.

ny.np

ni.ng*

11.3.12. Remarks. Maximal subalgebras were first discussed in a different
context by Wermer; see Exercise 11.25 and Wermer [1]. For a discussion of
analogues of 11.3.11 for more general groups, see Chapter 9 of [R], the
references cited there, and Liu [1].

Problems concerning generators of the Banach algebra A (see 10.6.1 and
11.4.17) have been studied in Newman, Schwartz and Shapiro [1].

Further reading: Greenleaf [2]; Reiter [2]; MR 38 # 486; 39 # #
4608, 6024 ; 40 # 7730; 41 # # 4138, 4139, 7730; 42 # 2254 ; 54 # 3298.
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11.4 Banach Algebras and Their Applications

In this section we are going to deal with some of the rudiments of the
Gelfand theory of commutative complex Banach algebras that possess
identity elements, the principal aim being to apply this theory in such a way
as to derive the spectral radius formula (of which some instances are estab-
lished in other ways in Exercises 8.8 and 3.12 and which has been stated and
used in Section 11.3) and the theorems of Wiener and Lévy mentioned in
10.6.3. A few other loose ends will also be tied up.

While our treatment is intentionally brief and highly selective, it may fairly
claim to cover a few of the high spots of the Gelfand theory and its applica-
tions. Another introductory account will be found in Chapter 18 of [Ri].
The reader who wishes to pursue Banach algebra theory further may do
so by consulting any desired selection of the following references: [B],
[Bo,], [N], [Lo], [Ri], [HS], [GRS], [Kz], [HR], [Mo]; see also the
comments in 11.4.18.

Among the algebras E in which we are primarily interested are E = L?
(1 £ p £ ) and E = C* (k a nonnegative integer). These do not possess
identity elements, however, and it is technically advantageous to adjoin to
E a formal identity element to obtain an enlarged algebra Bg to which the
general Gelfand theory is then applied.

Useful applications to other algebras will also be possible; see also Section
16.6.

11.4.1. Definitions and Examples. All the general developments and
results we make and obtain will refer to a complex commutative Banach
algebra B with an identity element. By this it is meant that

(a) B is an associative and commutative algebra over the complex field
that possesses an identity (or unit) element e relative to multiplication;

(b) B is also a Banach space with a norm | - |;

(c} one has |le| = 1 and

lzyll < l=] - Iyl

for any two elements z, y of B.
From (c) it follows that
l="] < J=|”  (»=1,2--).

It will be convenient to define z° to be e.

We consider some examples.

(1) The examples of such Banach algebras to which our first applications
of the forthcoming general theory will be made are the algebras Bg obtained
in the following way. If E denotes any one of L? (1 < p < ) or C* (k a
nonnegative integer), then it is known already from Chapters 2 and 3 that E
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fulfils the conditions (a) to (c) above, save the parts referring to the existence
of an identity element e. This defect is repaired by enlarging E into the
algebra By whose elements are by definition ordered pairs («, f), where ¢ is a

complex scalar and f € E. The algebraic operations and the norm in Bg are
defined thus:

(.f) + (B:g) = (e + B, f+ g),
Ble. f) = (Be, Bf),
(0, f) " (B,9) = (B, g + Bf + f+9),
e O = le| + [fle>

where « and B are complex scalars, f and g are elements of E, and where
| * | denotes the appropriate norm in E (see 2.2.4). The mapping f — (0, f)
imbeds E isometrically and isomorphically into Bg. We leave to the reader
the simple task of verifying that Bg does indeed satisfy conditions (a) to (c)
above, the identity element e being (1, 0). The passage from E to By is
spoken of as that of adjoining a formal identity element.

We remark in passing that in the language to be introduced in Chapter 12,
B can be identified algebraically with a set of Radon measures by means of
the correspondence («, f) <> ae + f, where ¢ denotes the Dirac measure at
the origin. However, unless E = L, this correspondence does not preserve
norms. We shall nowhere in this chapter make use of this identification.

(2) Perhaps the simplest nontrivial type of Banach algebra which engages
the interest of the functional analyst is the algebra €(S) of all continuous
complex-valued functions on a compact Hausdorff topological space 8, the
algebraic operations being pointwise (z + y, ez and zy being the functions
s —x(s) + y(s), s — oax(s) and s — z(s)y(s), respectively) and the norm
being the supremum (or maximum modulus) norm:

l=| = sup {|z(s)] : s €8}.

The identity element in C(S) is just the constant function 1.

Most of the problems we shall mention for Banach algebras in general
admit rather transparent solutions for the algebras C(S). For this reason, the
Gelfand theory is largely concerned with displaying to what extent a general
algebra B is similar to an algebra C(S) for a suitably chosen S (which will
depend upon B). Further comment on this matter will be made in 11.4.18(1).

Although, as we have said, C(S) itself is rather simple, the same is far from
true of various subalgebras of C(S) whose norms may or may not be obtained
by restricting the above norm on €(S). One such subalgebra of C(R/27Z) has
been encountered in Section 10.6 and there christened A; this algebra will be
examined again in 11.4.17. For a survey of other closed subalgebras and the
attendant problems, see the references cited in 11.4.18(4) and (5).
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(3) Some further examples will appear in 11.4.17 and in Exercises 11.10,
11.12 and 11.15. Meanwhile we turn to some generalities.

11.4.2. Inverses and Spectra. Anelement z of a given algebra B is said
to be inversible (in B) if and only if there exists an element y of B such that
2y = e; there is then precisely one such element y of B, this element of B
being termed the ¢nverse of  and denoted by =~ *.

It is evident that e is inversible and coincides with its inverse. Moreover,
if z and y are both inversible, then ay is inversible and (xy)~ ' = 2~ 1y~?
(recall that B is commutative by hypothesis). If z is inversible, we shall
usually write =" for (x~1)", » being any positive integer.

The concept of inversibility is, as we shall see, central in all subsequent
developments. Major steps in the theory amount simply to criteria for
inversibility, fruitful instances of which appear in 11.4.6 and 11.4.10.

It is necessary to consider, along with a given z and its inversibility, the
family of elements 2 — Ae obtained when A varies over all complex scalars.
Given z, the scalars fall into two complementary sets: the set o(x) of scalars
A such that x — Ae is not inversible, and the set R(x) of scalars A such that
x — Xe is inversible. The sets o(x) and R(x) are termed, respectively, the
spectrum and the resolvent set of x, the terminology being taken over from the
so-called spectral theory of operators. The nonnegative real number [see
(11.4.4)]

p(z) = sup {|A| : A€ ofx)} (11.4.1)

is termed the spectral radius of .

The next two results collect together a number of basic properties of the
set of inversible elements, the spectrum, the resolvent set, and the spectral
radius. They provide also a proof that R(z) is nonvoid and open, that o(x)
is nonvoid and compact, and that (x — Xe)~! depends analytically on
A € R(z). This last statement means that, for any continuous linear functional
F on B, the complex-valued function ¢ defined by

$(A) = Fl(x — A¢)~7]
is analytic in the ordinary sense on the open set E(z). In brief, 11.4.3 and

11.4.4 contain the analytic heart of the Gelfand theory.

11.4.3. (1) If = is an inversible element of B, and if y is any element of B
such that

ly — <l < J==1]"*,
then y is inversible and

yr= > a Y a — ) (11.4.2)
n=0

in particular, any z € B satisfying ||z — e| < 1 is inversible.
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(2) The set U of inversible elements of B is a nonvoid open subset of B
and the mapping x — x~! is continuous from U into B; more precisely,
ly=t ===t < Je=t - {1 = =7 ]y — <[}~ (11.4.3)

whenever xe U and |y — 2| < ==~
Proof. (1) Defines,eBforn =1,2,--- by

n
Z k- 1 (x — y)k
k=0
For n > m one has
Isn — sl < = 2** |y — =]*.
m<k<n

Since |y — z| < |z~ '] %, it appears that the sequence (s,)~-; is a Cauchy
sequence in B. By 11.4.1(b), therefore, s = lim,_,, s, exists in B. Now a
direct calculation shows that

—n—l( )n+1’

Yys,=e—x x—y
whence it follows that ys, — e as # — c0. On the other hand, 11.4.1(c) shows
that multiplication is continuous in the pair of factors, so that from s, — s
follows ys, — ys. Thus ys must coincide with e, showing that y is inversible
and that y~! = s. This proves (11.4.2). The final statement in (1) ensues on
taking x = e.

(2) That U is open and nonvoid follows at once from (1). Also, by (11.4.2),

N
y ! — 2zt = lim z 7" Yz — y).

Now 21

Since
N

N
Z " — g)| z lz=1m*1 |y — |,

(11.4.3) emerges on account of continuity of the norm.

11.4.4. (1) If x € B, then R(z) is open and contains every complex number A
satisfying [A| > |z|, o(x) is compact and nonvoid, and

p(x) < 2. (11.4.4)

(2) If x € B, then (x — Ae)~! depends analytically on A € R(z) and tends
to zero as |A| — co.

Proof. (1) Since R(x) consists precisely of those scalars A such that
z — dee U, that R(x) is open follows from 11.4.3(2) and the continuity of
the mapping A —z — le. The complementary set o(x) is therefore closed.
Also, x — Ae = A(A~z — e) is, by 11.4.3(1), inversible whenéver A # 0 and
[A=*z| < 1. Thus A€ R(x) whenever |A| > |z|. This in turn entails that
(11.4.4) holds. So o(z) is closed and bounded, and therefore compact. That
o(z) is nonvoid will be established after the proof of (2) is finished.
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(2) Take any continuous linear functional F on B and define the function
¢ on R(x) by

$(A) = Fi(z — 2¢)7}.

To see that ¢ is analytic on R(z), we apply (11.4.2) on taking X, € R(x) and
replacing z by x — Age and y by  — 2Ae: it then appears that

$(A) = F{D (x — Age) " 1A — A},
n=0

for |X — | < |[( — Age)~1|| 1. Since F is continuous and linear, one has
for such values of A the power series expansion

PN = 2 Flla = 207" YA = ho),

which establishes the analytic character of ¢. The relations
Az — de)"l = (A7 1lx — ¢)?
and A~z — e — —e as |A\| — oo combine with 11.4.3(2) to show that
(@ — Ae)~1| = O(|A|"1) as |A] — o0,
and the proof of (2) is finished.

Finally, let us return to complete the proof of (1) by showing that o(x) is
never void. If o(z) were void, for any continuous linear functional F on B,
the function ¢ would be entire analytic. By Liouville’s theorem, combined
with the fact that ¢(A) — 0 as |A| — oo, it would appear that ¢ is constantly
zero. But then, by the Hahn-Banach theorem (I, B.5), (x — Ae)~! would

be zero for all A, which is evidently absurd. Thus o(x) must be nonvoid and
the proof of 11.4.4 is complete.

11.4.5. Ideals, Maximal and Otherwise. We now turn to topics of a
more algebraic nature.

By an ideal in B is meant a subset I of B which is a linear subspace and
which is stable under multiplication, the latter clause meaning that zy eI
whenever z € I and y € B. An ideal I in B is said to be proper if it does not
exhaust B; this is so if and only if e ¢ I, or again if and only if I contains no
inversible element of B.

For future use we observe that the closure in B of any ideal in B is again
an ideal in B.

Gelfand’s theory lays special stress on the maximal ideals in B, an ideal m
being termed maximal if it is proper and if m and B are the only ideals in B
which contain m. The first stepis to prove the existence of maximal ideals in B.

To this end we consider any nonvoid set & of proper ideals in B having
the property that any two members of & are contained in some one member
of #. Consider the union J of all members of #. It is easy to check that J
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is an ideal in B, and (by showing that e ¢ J) that J is proper. Plainly, J
contains each member of &.

The preceding paragraph leads to this conclusion: if we partially order, by
set-inclusion, the set of all proper ideals in B, then any linearly ordered subset
thereof admits a supremum. As a consequence of this we may apply Zorn’s
lemma (see, for example [E], p. 6 or [HS], p. 14) to infer that:

(1) Any proper ideal in B is contained in some maximal ideal in B.

As we have seen, a proper ideal I in B can contain no inversible elements.
By 11.4.3(1), therefore, I cannot be everywhere dense in B; the closure Iis
thus a proper ideal in B. In particular, it follows that m must coincide with
m whenever m is a maximal ideal in B. Thus:

(2) Every maximal ideal in B is closed in B.

We can now state the first criterion of inversibility.

114.6. Let x € B. Then =z is inversible in B if and only if 2 belongs to no
maximal ideal in B.

Proof. Ifzisinversible, it can belong to no proper ideal (maximal or not)
in B. Suppose on the other hand that 2 belongs to no maximal ideal. The set
I = {xy : y € B}, the principal ideal generated by x, cannot be proper: for
otherwise 11.4.5(1) announces the existence of a maximal ideal m
containing I, and m would then contain x. Thus I = B. In particular,
e € I. This entails that z is inversible.

Subsequent applications of 11.4.6 depend upon setting up a close relation-
ship between maximal ideals in B and complex homomorphisms of B (recall
Exercise 4.1), and this is our next objective. The result we want appears as
11.4.10; the following intermediate results are directed to this end.

11.4.7. Quotient Algebras. Let B satisfy (as always) conditions (a) to (c)
in 11.4.1, and let I be any proper closed ideal in B. The quotient set B/I,
whose elements are the cosets # = z + I modulo I of elements of B, can be
formed into an algebra of the same type in a manner now to be described.
The algebraic operations and norm in B/I are defined thus (compare
I, B.1.8):
E+y=(+y),

o = (ax),
2y = (vy),
|£] = inf{l|z + y| : yeL}. (11.4.5)

It is then very simple to verify that 11.4.1(a) is fulfilled, the identity
element in B/I being é. The only norm property which is not evident is the
one asserting that |#|| > 0 whenever 2 # 0. However, if || = 0, there
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exist elements y, € I such that |z + y,| — 0 as n — co0. Since —y, €I, and
since I is closed, it follows that z € I and therefore # = 0.

Property 11.4.1(c) is plain to see, save perhaps the assertion concerning ||¢é].
As to that, (11.4.5) yields quite generally

2] < | (11.4.6)

Thus ||é] < 1. Were it the case that |e] < 1, (11.4.5) would show that
le + y| < 1 for some y € I. But then —y €I and, by 11.4.3(1), —y is inver-
sible. Since I is proper, this is a contradiction (see the outset of 11.4.5). Thus
Jé) = 1.
Finally we verify 11.4.1(b) for B/I. Suppose that (£,) is a sequence extracted
from B/I such that
lim |2, — 2, = 0; (11.4.7)
m,n— o
we must show that this sequence is convergent in B/I relative to the norm
(11.4.5). Thanks to (11.4.7), a subsequence (%,,) may be determined such that

D NEngsy = a ]l < 0. (11.4.8)

k=

By (11.4.5) and (11.4.8), elements z, of I may be

[

Put y, = 2,,,, — x,,.

chosen so that
2 g — 2l < oo.
K=1

Then, by the assumed completeness of B,

Yy = kZ1 (¥ — 2)

exists as an element of B, so that
ly = > g+ D 2 >0 asr—co. (11.4.9)
k=1 k=1

From (11.4.9) and (11.4.5) it appears that

lg = 2, ol >0  asr—oo,
k=1
that is, that

lg — %, ,, — @, | =0 as r — 00. (11.4.10)

This shows that the subsequence (£, )7~ converges in B/I to £ = g — #,,.
But then (11.4.7) shows that the original sequence (%,) is convergent in B/I
to the same limit.

This completes the verification that B/I satisfies conditions (a) to (c) of
11.4.1 whenever B does so and I is a proper closed ideal in B. The conclusion
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therefore applies when I is assumed to be a maximal ideal in B [see 11.4.5(2)].
However, as the next result shows, much more can be said in this case.

11.4.8. If m is a maximal ideal in B, then to each # € B/m corresponds a
unique complex number ¢ such that z = &é.

Proof. Granted the existence of ¢, its uniqueness is evident. On the
other hand, if no such ¢ existed, then # — Aé # 0 for all complex A. For
given A, the set

I={(x— Ae)y + m:yeB, mem)

is an ideal in B which contains m properly, x — Ae belonging to I but not to
m. Maximality of m would imply that I = B, which in turn would imply
that & — Aé is inversible in B/m. This being true for any complex 4, it
would appear that o(&) is void, which would contradict 11.4.4(1) applied
to B/m. This proves 11.4.8.

Remark. The preceding argument really goes to show that if B is a
division algebra (that is, is such that every nonzero element of B is inversible
in B), then B is isomorphic to the complex field (considered as an algebra
over itself). This result, the Gelfand- Mazur theorem, admits various extensions
and variants; see [R;], pp. 354-355 and [Ri], pp. 37-40, 109-110.

11.4.9. Maximal Ideals and Complex Homomorphisms. Retaining the
notations of 11.4.8, it is very simple to see that the mapping vy: & — ¢ is
both an algebraic isomorphism and an isometry of B/m onto the complex
field. As a consequence the composite map y,, of B defined by

Ym(T) = (%) (11.4.11)
proves to be a nontrivial continuous complex homomorphism of B whose
kernel is exactly m:

Ym(® + ¥) = ym(®) + ym(¥),

Ym(Az) = A - '}’m(x)’

Ym(@Y) = Ym(@)ym(y), (11.4.12)
Ym(e) = 1,
lym(@)| < |l=],
m = {zeB:yyx) = 0}. (11.4.13)
Conversely, if y is a nontrivial complex homomorphism of B, its kernel
m, = {zeB:yx) = 0} (11.4.14)

is easily verifiable to be a maximal ideal in B. Moreover,
Ym, = V> m, = m; (11.4.15)

the first relation combines with (11.4.12) to show that any complex homo-
morphism of B is necessarily continuous.



[11.4] BANACH ALGEBRAS AND THEIR APPLICATIONS 27

The relations (11.4.11) and (11.4.13) thus set up a one-to-one correspond-
ence between the set of maximal ideals m in B and the set I' = I'(B) of all
nontrivial continuous complex homomorphisms of B. This correlation is one
of the cornerstones of the Gelfand theory. The set I'(B) is termed the Gelfand
space (or representation space) of B.

In viewing the symbol “y(x)” we have so far thought of “z” as the
variable. It is, however, also possible and useful to think of “y’’ as the
variable. In other words, with each z € B" one may associate the complex-
valued function £ on the set I'(B) defined by

i(y) = y(x).

The function £ is termed the Gelfand transform of x, and the mapping x — £
is referred to as the Gelfand transformation. (The notation is suggested by the
circumstance that, when B = B, the function £ is very closely related to the
Fourier transform; see 11.4.11.) The Gelfand transformation is an algebraic
homomorphism of B into the algebra B(I') (with pointwise operations and
supremum norm) of bounded complex-valued functions on I'; compare
11.4.1(2). We shall return to this matter in 11.4.18(1).

Meanwhile we derive the promised crucial reformulation of 11.4.6 which
is made possible by the substance of 11.4.8 and 11.4.9.

11.4.10. An element z of B is inversible if and only if y(z) # 0 for all
y € I'(B). More generally,

o(z) = {y(x) : y € T(B)}, (11.4.16)
p(x) = sup {|y(z)| : y € '(B)}. (11.4.17)

Proof. By 11.4.6, A € o(2) if and only if x — Ae belongs to some maximal
ideal m in B, that is, by (11.4.13), if and only if y,(x — Ae) = 0 for some m.
By (11.4.12), this is the case if and only if A = y,(x) for some m. Since y,
ranges over I'(B) when m ranges over all maximal ideals in B, (11.4.16) is
established. The first assertion is a special case of (11.4.16), since z is inversible
if and only if 0 ¢ o(x). Finally, (11.4.17) results on combining (11.4.16) and
(11.4.1).

Remarks. From 11.4.10 it appears that if « € B satisfies y(z) % 0 for all
z € I'(B), then there exists y € B satisfying y(y) = y(z)~! for all y e I'(B).
An extension of this result is contained in Exercise 11.20.

Regarding (11.4.16), it may be noted incidentally that a continuous
linear functional y on B is multiplicative (that is, is a complex
homomorphism of B) provided y(x) € o(x) for all x € B; see MR 37 #
4620.

11.4.11. Example: The Algebra C(S). The notation is as in 11.4.1(2).
By adapting the hints attached to Exercise 11.16, the reader should ex-
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perience no trouble in verifying that the maximal ideals in €(S) are precisely
the sets
m, = {zx € C(8) : z(s) = 0}
obtained when s varies over S; the corresponding homomorphism y,, is
defined by
Ym (%) = 2(s).
The correspondence s < m is one-to-one.

It is to be noted that this identification of the maximal ideals in C(S)
depends on the elementary fact that the multiplicative inverse of a non-
vanishing continuous function is continuous; and that this fact is seen a
posteriori to be just what is asserted by the opening sentence of 11.4.10 for
the algebra B = C€(S). Thus 11.4.10, when applied to B = (), tells us nothing
new.

Any disappointment the reader may feel because of this apparent anti-

climax can be relieved by hurrying on to a more fruitful application of
11.4.10.

11.4.12. Application to B;. Suppose that E = L” (1 < p < ) or C¥ (k a
nonnegative integer). In order to apply 11.4.10 to Bg (see 11.4.1(1)), we need
to identify the elements of I'(Bg). The essential step has already been carried
out in Section 4.1.

Let y € I'(Bg) and define 5’ on E by

y'(f) = »((0, ),
Y, [)) = a + ¥'(f) (11.4.18)

for a general element («, f) of Bg.
Two cases arise, namely:
(1) ' = 0, in which case (11.4.18) reads

Y f)) = o,

so that

and we write y = y,;
(2) " # 0, in which case 4.1.3 shows that there exists an integer ne Z
such that

¥'(f) =f)

for all f € E, and therefore [by (11.4.18) again]

(e f) = o + f(n);
we denote this y by y,.

Bearing in mind the Riemann-Lebesgue lemma 2.3.8, we see that I'(By)

may be identified with Z U {c0} in such a way that

yal(e ) = o« + f(n), (11.4.19)
f(o0) being interpreted as 0.
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It is also worth observing at this point that, if 4" is any complex homo-
morphism of E, the mapping y:(«, f)—a+7y(f) is a complex
homomorphism of Bg. By 11.4.9, y is continuous. It follows at once that y’
is continuous and we have thus verified a remark made in 4.1.1, namely :
any complex homomorphism of E is continuous.

A direct appeal to 11.4.10 now results in a conclusion which is the analogue
of a theorem established by Wiener for L!(R):

11.4.13. Suppose that E denotes L (1 € p < o) or C* (k a nonnegative
integer). If f € E and « is a complex number, and if

a#0, a+fn)£0 forallneZ, (11.4.20)

then there exists ¢ € E such that

O
{o +j(n)}

Proof. Consider # = (o, f) € Bg. In view of 11.4.12, the conditions
(11.4.20) express precisely that y(z) # 0 for each y € I'(Bg). According to
11.4.10, therefore, « is inversible in Bg. Let x~1 = (B, &), where 8 is a complex
number and ke E. The properties (11.4.12) show that one has for all
y € I'(Bg) the relation

d(n) foralln € Z, (11.4.21)

___1 .
(e f))

Using (11.4.19) and taking y = y,, this relation gives B = l/a; taking
y =7y, (n€Z), it gives B + h(n) = 1/{« + f(n)} for all ne Z. It appears
therefore that

{oe +f(n)} «
_ —alfn)
{o + f(n)}
for all n € Z, and it suffices to take g = —ah.

Remarks. (1) The results of 11.4.12 and 11.4.13 apply with other
choices of E: see 4.1.3(1) and Exercise 11.10.

(2) The case E = L! of 11.4.13 expresses the fact that ¢/(« + ¢) € A(Z)
whenever ¢ € A(Z), « # 0 is a complex number, and « + ¢(n) # 0 for all
ne Z.

(3) Generalizations of 11.4.10 and 11.4.13 appear in 11.4.15 and 11.4.16,
respectively. Our approach to these extensions is based upon a study of the
spectral radius formula, which constitutes our next objective.
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11.4.14. The Spectral Radius Formula. For an algebra B of the type
specified in 11.4.1, this formula reads

pl@) = sup [y(@)| = lim o], (11.4.22)

yel'(B)

When this is applied to the special case of an element x = (0, f) of Bg, the
formula takes the form

£l = lim e,

which is the version encountered elsewhere in this book [see Exercises 8.8
and 3.12 and equation (11.3.1)].

Proof of (11.4.22). The first equality in (11.4.22) is just (11.4.17). Since
y(x") = y(x)" for each x and each y, this first equality entails that

p(@) = pla)i.
Accordingly, (11.4.4) shows that

p(z) < lim inf |zn|f,
n—

To establish (11.4.22) it will therefore suffice to show that
lim sup [jz"|'" < p(x). (11.4.23)
To this end, write p = p(z) and fix any p’ > p. By definition of p, (¢ — Az)~!

exists whenever |A| < 1/p’. Choose any continuous linear functional F on B.
Reference to 11.4.4(2) shows that

$(A) = F{(e — dx)™ 1}

is analytic on some open set containing the disk |A] < 1/p’.
On the other hand, a special case of (11.4.2) shows that

(e — Ax)~! = Z Amgh
n=0

for [A| < |z| ~*. Since F is linear and continuous, we have correspondingly
the Taylor expansion

$(A) = i F(z™)A (11.4.24)
n=0

holding for [A| < |z ~!. On account of (11.4.24), the Cauchy integral
formulae for ¢, and the analyticity of ¢ on a neighborhood of the disk
|A| < 1/p', it results that

P = INo _

R (11.4.25)

as n — 0. The reader will notice that the derivation of (11.4.25) does not
depend on knowing that (11.4.24) is valid for all values of A satisfying
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|A] € 1/p’: this last statement is in fact true (see Exercise 11.14), but we are
neither asserting nor using it here.

Armed with (11.4.25) we introduce the function p on B’, the dual of the
Banach space B (see I, B.1.7), defined by

B(F) = sup p'~"| Fla™)|.

It is simple to verify that p is a seminorm on B’ (see I, B.1.2), and that p
is lower semicontinuous relative to the dual norm on B’, with respect
to which norm B’ is a Banach space (I, B.1.7 again). The boundedness
principle appearing in I, B.2.1 affirms that p is continuous on B’, that
is, that there exists a number ¢ = ¢(x) such that p(F) < ¢ ||F| for all
FeB'. Appeal to a corollary of the Hahn-Banach theorem (I, B.5.3)
leads from this to the inequality

Pl <o (=120,
which in turn shows at once that
22| < pletin n=12--:).
From this it follows immediately that
lim sup ||2*||*™ < p'.
n-w

Since p’ is freely chosen in excess of p, (11.4.23) follows and the proof of
(11.4.22) is complete.

Remark. The spectral radius formula was discovered first by Beurling
[1] for Fourier transforms of functions integrable over the additive group R
of real numbers. The extension to Banach algebras is due to Gelfand [1].
Beurling’s paper has had a profound influence on many subsequent develop-
ments in harmonic analysis.

11.4.15. An Extension of 11.4.10. We are now going to make fuller use
of the analytic nature of inversion in order to derive the following extension
of 11.4.10.

Suppose that € B and that ® is a complex-valued function defined and
analytic on some open set () containing o(z). Then there exists an element y
of B such that

(y) = Cy(x))  (ye'(B)). (11.4.26)
Proof. Let ¢ > 0 be the distance between o(x) and the frontier of Q.

By covering the compact set o(x) by a finite number of disks of radius &/4
and then taking the frontier of the union of the concentric disks of radius
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/2, one can obtain an oriented curve L (composed of a finite number of
circular arcs) lying in Q\o(z) and such that the Cauchy formula

_ 1 [ogd )
P(A) = 5~ T (11.4.27)
holds for any A € o(x).
The crucial step now is to assign a meaning to the integral
y = Lf D(L)(Le — z)~1 dL, (11.4.28)
2m J,
which will make it an element of B having the property that
1
A9 = 57 [ A0 - 2 L (11.4.29)
™ Jr

for each y e I'(B). If this can be done, the properties (11.4.12) lead from
(11.4.29) to

- 2mf {T— 7@} y(x

and then (11.4.27) and (11.4.16) will carry us straight to (11.4.26).

To define the integral (11.4.28) with the desired properties, we first
partition L into its component arcs L, (k = 1,2, ---), which are evidently
finite in number. A little thought will show that it will suffice to define the
integrals ka as elements of B in such a way that they each possess the

property corresponding to (11.4.29), and then set f L= 2k ka.

Now L, can be parametrized by means of a continuously differentiable
complex-valued function £ — {,(f) defined on the interval 0 < ¢ < 1. The
natural definition of 2z, = ka is then

1
2 = f DNt — 2} 1Lu(t) dt

1
- f o, (1) dt,
0
say, where

Dy (t) = D(L(t)H{Lult)e — 2} Li(t)

and the prime denotes differentiation, provided the existence of this integral
can be ensured as an element of B and that the result of applying any
y € I'(B) to 2, is obtainable by applying v to the integrand ®,(¢) followed by
integration. However, by 11.4.3(2) and the choice of L, the integrand @, is
continuous from [0, 1] into B. Accordingly, the obvious procedure to be used
for defining z; is the use of approximative Riemann sums, especially so since
it is almost evident that this process, if effective in defining z, € B, will
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certainly arrange that the desired property

1
o) = f A D) dt

will in fact hold for any continuous linear functional y on B. That this
procedure does indeed work satisfactorily, the reader is asked to verify in the
manner proposed in Exercise 11.11. When this is done, the proof of 11.4.14
will be complete.

Remark. There is in existence a general theory of the integration of
B-valued functions of a much more general character than the ad hoc
procedure suggested above; see, for example [E], Sections 8.14 to 8.20.

On applying this last result to the case in which B = Bg and referring to
11.4.12, we shall obtain the following extension of 11.4.13.

11.4.16. Suppose that E denotes L? (1 < p < o) or €* (k a nonnegative
integer), that f€ E and that ® is a complex-valued function defined and
analytic on some open set containing f(Z) U {0} and satisfying ®(0) = 0.
Then there exists an element g of E such that

jn) = O(f(n)) (ne 2). (11.4.30)

Proof. Takez = (0, f) € Bg. From 11.4.10 and 11.4.12 it appears without
difficulty that o(x) = f(Z) U {0}. Applying 11.4.15, we obtain the existence
of y = (B, g) in Bg such that (11.4.26) holds for all y € I'(Bg). Referring
again to 11.4.12 and taking y = y,, we see that 8 = ®(0) = 0. On taking
¥y = ¥,, it then appears from (11.4.26) that (11.4.30) holds for each n € Z.

Remark. On taking E = L, 11.4.16 entails that @ o ¢ € A(Z) whenever
é € A(Z), ® is analytic on some neighborhood of ¢(Z) U {0} and ®(0) = 0.
The result dual to this (with the group Z replacing 7') has been mentioned
in 10.6.3 and will now be proved by applying 11.4.15 to the algebra
A = A(T).

11.4.17. A as a Banach Algebra: the Theorems of Wiener and Lévy.
We recall from 2.5.3 and Section 10.6 that A = A(T') denotes the set of
continuous complex-valued functions f on 7T which have absolutely
convergent Fourier series. As we then saw, A is a Banach algebra under
pointwise operations, the norm being

Ifla = 2 Ifm)l.

nez

The conditions (a) to (c) of 11.4.1 are satisfied by A, the identity element
being the constant function 1.

Let us identify the elements of I'(A), that is, let us determine an expression
for a general nonzero continuous complex homomorphism y of A (compare
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Exercise 4.7). To this end, write « for the element e¢; of A. Then for any
element f of A one may write

;=2 faur, (11.4.31)

nez

the series being convergent in A because [[f]s < co. Evidently, » is an
inversible element of 4 and

lula = u=*]a = 1.
The properties (11.4.12) show that |y(u)| < 1 and |y(u~?)| = |y(u)|"* < 1,
so that |y(u)| = 1. Accordingly, y(u) = €= holds for precisely one x € R/27Z.
From (11.4.31) we then obtain via (11.4.12)
W) = 2 foptur) = 2, fnpytuy

nez nez

> fm)es = f(z).

nez

Conversely and trivially, given x € T', the mapping y, of A defined by
v2(f) = f(z) (11.4.32)

is evidently a nonzero continuous complex homomorphism of A. Thus I'(A)
consists precisely of the maps y, obtained when x varies over T (or, if we
wish, over all real numbers); the Gelfand space I'(A) can be identified
with 7'.

From 11.4.10 we may now read off the theorem of Wiener: if f € A satisfies
f(x) # 0 for all real z, then 1/f € A. ((Wi], p. 91.)

Likewise, from 11.4.15 we may read off Lévy’s extension of Wiener's
theorem, namely: if f € A, and if @ is defined and analytic on some open set
containing f (7'), then ® - f € A.

These results were stated without proof in 10.6.3. There are extensions
to other interesting algebras; see Exercises 11.15 and 11.20 below and
also MR 38 # 485; 41 # 5864; 51 # # 1255, 8728. In 10.6.3 we also
remarked on partial converses of such theorems of Wiener-Lévy type; for
instances see MR 53 # # 14017, 14018; 54 # # 858, 5747.

11.4.18. Pointers to Further Developments. We have carried our excur-
sion into the theory of Banach algebras as far as is needed for our primary
applications; it remains only to indicate a few of the further possible develop-
ments.

(1) It has been seen in 11.4.9 that the Gelfand transformation x — £ is an
algebraic homomorphism of B into the algebra B(I') (with pointwise operations
and supremum norm) of bounded complex-valued functions on I' = I'(B). From
the spectral radius formula (11.4.22), the Gelfand transformation is seen to be
one-to-one if and only if z = 0 is the only element of B for which

lim [z"|¥" = 0. (11.4.33)
n—»w
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Elements x of B which satisfy (11.4.33) are termed generalized (or topological)
nilpotents (compare Exercise 3.12). The spectral radius formula shows that =
is a generalized nilpotent if and only if it belongs to every maximal ideal. If in
B there exist no generalized nilpotents other than 0, B is sometimes said to be
semisimple; in this case the Gelfand transformation provides an algebraically
faithful representation of B.

Unhappily, there are quite reasonable algebras B that are far from being
semisimple; for an example, see Exercise 11.12. As Exercise 11.13 shows, such
algebras may still be of interest to the analyst.

Even if B is semisimple, the Gelfand transformation is, in general, not an
isometry; in general, p(x) = sup |£| is a strictly weaker norm than |z|, that is,
there exist in general sequences (x;) of elements of B such that p(x;) — 0 but
||| + 0. Much effort has been expended (with considerable success) in deter-
mining categories of algebras B for which these norms are identical (or at least
equivalent); and applications provide ample reward for these labors.

So far, although we have spoken of I' = I'(B) as a ‘“space,” it has not been
endowed with any topology. The standard way of topologizing " makes it into
a compact Hausdorff space on which each of the Gelfand transforms # is
continuous. In this topology a base of neighborhoods of a point y, of T is
formed of the sets

W(F,e) = {yel: |y@) — yol®)] < ¢ forze F},

where F ranges over finite subsets of B and & over positive numbers. Then the
Gelfand transformation is an algebraic homomorphism of B into the algebra
(with pointwise operations) C(I") of continuous complex-valued functions on I'.
To determine conditions under which the image of B covers the whole of C(T)
is again a fruitful problem which has been attacked with success (see Exercise
11.24; [N], p. 230; [Ri], p. 190; [Lo], pp. 78, 90-91) and which has many
rewarding applications, two of which are mentioned in (2) and (3). There is a
sense in which in any case the image of B contains all analytic functions on I.

Concerning the method just described for topologizing I' = I'(B), one
question will (or should) arise in the reader’s mind, namely: what happens if
B = C(S) and § is a compact Hausdorff space (see 11.4.1(2)) ? He will doubtless
expect that there should be a close relationship between I' = I'(B) and S. Well,
as has appeared in 11.4.11, I'=I(B)=T(C(S)) can be identified
set-theoretically with § via the correspondence s« 7y, = y,, and this in such a
way that

i('}’s) = z(s).

It is not at all difficult to show that, once this identification is made, the
topology on I' described above is identical with the initial topology on S. For
certain noncompact Hausdorff spaces S, I'(C(S)) proves to be homeomorphic
with the Stone-Cech compactification of §.

It is within the framework of the Gelfand transform that one finds the Banach
algebra-based approach to extensions of the Bochner representation theorem
mentioned in Section 9.4. This approach is very largely due to the Russian
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mathematicians Gelfand and Raikov, who employed it as a basis for harmonic
analysis. For details, see [N], pp. 404-425 or [Lo], Chapter VII.

The study of versions of the Weierstrass-Stone theorem (mentioned in
Subsection 6.2.3) applicable to compact differentiable manifolds is influenced
markedly by the Gelfand theory; see Freeman [1] and the references cited there.
It should perhaps be remarked that parts of the theory of Banach algebras
have been extended to more general topological algebras; see [Mi], [C], Neubauer
[1], [2], Allen 1], [2], Waelbroeck [1], [2], Benedetto [1].

(2) Another of the applications of the developments mentioned under (1)
arises when B is a certain type of commutative algebra of continuous normal
endomorphisms of a Hilbert space, the result being in this case a novel approach
to the simultaneous spectral resolution theorem for commutative sets of such
endomorphisms. See [N], p. 248; [Lo], pp. 92-95.

(3) A second application is to commutative harmonic analysis, B being
taken to be L}(G) with a formal identity adjoined (as in 11.4.1(1)). This has
resulted in an almost autonomous approach to the Fourier inversion theorem
and Bochner’s theorem (see Chapter 9). For accounts of this application, see
[N], Chapter VI (especially pp. 404 ff.); [Ri], pp. 325 ff.; and [Lo], Chapter
VII. See also Helson [6].

An effective treatment of other problems in harmonic analysis necessitates
the treatment of algebras B which, like L}(@) in the general case, are deprived
of an identity element, and this in cases where the adjunction of a formal
identity serves no useful purpose. The treatment of such problems has led to
abstract versions of the Tauberian theorem mentioned in Subsection 11.2.4.

In such an algebra B, the nontrivial complex homomorphisms y of B retain
their fundamental significance, but now they correspond with those maximal
ideals m in B which are regular or modular (that is, which possess ‘‘relative
identities”’ e € B having the property that ex — « € m for all x € B; compare Exer-
cise 4.1). The correspondence y «» m remains exactly as deseribed in Subsection
11.4.9. The Gelfand space I'(B) and the Gelfand transformation x — & are also
defined as described in Subsection 11.4.9, but now I'(B), when topologized in
the fashion described in (1) immediately above, proves to be a locally compact
Hausdorff space which is in general noncompact. However, there may be
maximal ideals in B which are not modular; see Exercises 11.26 and 11.27.

Certain algebras B of this type appear to form a natural setting for abstract
Tauberian theorems which include Wiener’s theorem applying when B = LY(@G)
(see Subsection 11.2.4). Thus it is known (see, for example, [Lo], p. 85 and
[HR], (39.27)) that, under certain conditions which we do not specify here, any
proper closed ideal I in B is contained in some modular maximal ideal in B; in
other words, a closed ideal I in B exhausts B if and only if it is annulled by no
y € I'(B). This statement is the abstract Tauberian theorem: it includes the
special case Z; = & of 11.2.1, as well as the extensions thereof mentioned in
Subsections 11.2.3 and 11.2.4 and associated with Wiener’s name. (As Loomis
has wryly remarked, this abstract version is a Tauberian theorem in almost
perfect disguise.) Tauberian theorems have been considered in still more
general contexts; see, for example, Benedetto [1] (where, however, the
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exposition is such as to demand a good deal of care on the reader’s part). See
also MR 39 # 779.

(4) The problems spoken of in 11.2.3 for the case in which E = L}(@) with
G noncompact can and have been viewed from the point of view of Banach
algebra theory. In this context the question might be formulated thus: given a
Banach algebra (as in 11.4.1) and a closed ideal I in B, is I expressible as the
intersection of a su’table set of maximal ideals in B?

There are nontrivial examples of algebras B for which the answer is *“Yes’":
in fact, every algebra of the type C(S) (see 11.4.1(2)) has this property. (One
proof of this is suggested in Exercise 11.17; a different proof appears in 10.4.6
of [E].) The cases mentioned in 11.2.3 are ones in which the answer has turned
out to be ‘“No,” but only after doubts persisted for a considerable time despite
very close attention.

A more fruitful guide is provided by other examples in which the answer is
transparently ‘“No” and where the cause of failure is easier to detect. A typical
such example is provided by the algebra B = C(K) formed of those complex-
valued functions defiaed and continuously differentiable on the compact interval
K = [0, 1], the algebraic operations being pointwise and the norm being
defined by

I7] = sup |f)| + sup | Df(=)].
x€EK x€eK
The maximal ideals in this algebra are just the sets
m; = {f e CY(K) : f(x) = 0}
obtained when x varies over K; see Exercise 11.16. On the other hand, for
each x € K the set
I; = {fe CY(K) : f(x) = Df(z) = 0}
is a closed ideal in C'(X), and it is evident that I is not expressible as the
intersection of any set of maximal ideals m,.

In the above example the ideal I, is primary, in the sense that it is contained
in just one maximal ideal (to wit, m_), and the example suggests that it may be
fruitful to reformulate the general question by asking whether ideals can always
be expressed as intersections of primary ideals (which may or may not them-
selves be required to be closed).

To this question the answer is known to be “Yes’’ for a number of algebras of
differentiable functions in one or several variables; see [Ri], pp. 300-302 and the
references there cited; see also [Ho], Chapters 6 and 10; Srinivasan and Wang
[2]; MR 37 # 1997. In L' (@), where the group G is noncompact, the answer is
still “No,” if only closed primary ideals are to be admitted. [This is a
consequence of Malliavin’s work, taken in conjunction with Wiener’s Tauberian
theorem (see 11.2.3) and a theorem of Kaplansky asserting that any closed
primary ideal in L!(G) is necessarily of the form {f € LY(®): f (£) = 0} for some
& in the character group of G; see, for example, [Bo,], p 144, Corollaire.
Kaplansky’s theorem is itself a special case of known properties of spectral
synthesis sets; see 11.2.3 again.]

Most of the general work concerning primary decompositions is due to G. E.
Silov; for an account of this, see Mirkilt [1]. See also Glaeser [1]; MR 33 #
3053; 837 # # 1897, 3361; 50 # 10689.
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Beurling [2] has introduced a class of convolution algebras and has analyzed
certain of these algebras in case the underlying group is E. His work shows,
in particular, that the closed ideals in these algebras are characterized entirely
by the set of common zeros of the Fourier transforms of their elements (compare
11.2.3). The study of these algebras has been continued by Igari [1].

The reader versed in abstract algebra will recognize that the questions under
discussion are suggested quite naturally by the relatively elementary primary
decomposition theory for ideals in Noetherian rings (although there the term
‘“primary " is usually defined in a different way). Of course, one cannot expect
to take this purely algebraic theory over to Banach algebras without important
changes; almost all Banach algebras of lasting interest to the analyst contain a
multitude of ideals that are not finitely generated.

(5) In 11.4.1(2) we made passing mention of various subalgebras of C(S).
Among these appears the algebra A of 11.4.17 and its relatives (the Beurling
algebras mentioned in Exercise 11.15) and the algebras of differentiable
functions mentioned in (4) immediately above (for details of which the reader
has been referred to Mirkil [1]; see also [Ma]).

JIn addition to these ‘“‘real variables’ examples, there are similar algebras
having their roots in complex variables theory which present many fascinating
problems. For a brief introduction to these the reader is referred to the survey
article of Wermer [1].

(6) The reader is recommended to examine P.J. Cohen’s Banach
algebra-based approach to factorization theorems (which have been otherwise
treated in Section 7.5) and its subsequent developments (Cohen [4], Hewitt
[1], Curtis and Figa-Talamanca [1], and Bryant [1]).

In Hewitt’s formulation (which is closely akin to [HR], (32.22)) one is
concerned with the situation in which B = {x, y, ---} is a real (respectively,
complex) Banach algebra, which need not be commutative and which may fail
to possess an identity element, together with a real (respectively, complex)
Banach space L={f, g, -}. It is assumed that there is given a mapping
(x, f)—x - f of B x L into L such that the following conditions (a) to (d) are
fulfilled :

(a) (x,f) — x - fis linear in z € B for any fixed f € L;

b) (zy) f=x(y-f)forz,yeBand feL;

(€) |xz+flo < c-|z|p ||f]L for z€B and fe L, ¢ being independent of
and f;

(d) there exists a number d > 0 such that for any finite subset {z; ,-- -, Zn}
of B, any feL and any ¢ > 0, there exists y € B such that |yfs < d,
Iy, — 2ls < e(G= L2 - mand |y-f — flo < =

Hewitt's conclusion is that to each f € L and each ¢ > 0 correspond clements
z € B and g € L satisfying the following four conditions:

e) f=x-yg;
f) g belongs to the closure in L of the set {y *f: y € B};
) g —Flu < &

(
(
(g

() foe < d.
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Further reading on factorization: [HR], §32; [DW]; MR 38 # 5714; 87 #
2003; 39 # # 1982, 3311; 40 # # 703, 4779; 46 # 16032; 49 # 9537; 53 #
1171.

(7) Various group algebras of vector-valued functions have been considered;
see MR 37 # # 2001, 2002.

(8) A good deal of attention has been directed towards homogeneous Banach
spaces and algebras of functions (the term ‘“homogeneous ™ being either as in
6.1.2 or in a slightly generalised sense) and the closely-related Segal algebras.
For accounts of some of this work, see [Re], [Re;], [Wa], [War], [Go,],
Burnham [1], [2], [3], Burnham and Goldberg [1], de Leeuw [2].

The reader should derive pleasure from verifying that this factorization
theorem leads to those in Section 7.5, if B and L are suitably chosen sets of
is interpreted as convolution.

[T

functions anc

EXERCISES

11.1. Define V to be the set of f € L such that
lsyf = fli—0 as N — 0.

Is V an invariant subspace of L'? Is it.an ideal in L*? Is it closed in L*?

Justify your answers.

11.2. Suppose that 1 < p < o0, and that (Ay)57-, is a given sequence of
positive numbers converging to infinity with N. Define V to be the set of
f € L” such that

Avlsnf — fll,—0 as N — 0.

Give (justified) answers to the questions posed in the preceding exercise,
with L? in place of L! throughout.

Do likewise for the case in which syf is replaced by oyf in the definition
of V.

Note: It follows from Exercise 10.2 that the relation |f — syf|, = O(1)
is false for a general f e L. It is true (but the proof does not appear until
12.10.1) that |f — syf|, = o(1) when 1 < p < oo and fe Lr.

11.3. Suppose that Eis Cor L? (1 < p < o), and that (k;),; is an arbitrary
family of functions in L!. Show that the set of solutions f € E of the equations
k;xf =0 (tel)is a closed ideal in E.

11.4. Suppose that E is €C or L? (1 < p < o), and that fe E. Let V be
the linear subspace of E generated by the translates of f. Show that V is
closed in E if and only if f is a trigonometric polynomial.

Consider also the analogous problem arising when V is replaced by the
principal ideal I in E generated by f (that is, I is the set of functions f * g
obtained when g ranges over E).
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Note: Assume the known result (due to F. Riesz; see [E], p. 65) that any
normed linear space having a compact neighborhood of zero is finite-
dimensional.

Hints: Supposing that V is closed in E, we consider the set V, formed of
all g € V expressible in the form g = >%_; o+ T,, f, where 37_, |o| < nand
ay, -, a, € T. By using the category theorem (I, A.3) show that some V,
is a relative neighborhood of zero in V, and hence that V has a compact
neighborhood of zero. Apply Riesz’s theorem cited above and 11.1.1.

11.5. Let fe E and ¢ > 0 be given. Show that it is possible to choose a
trigonometric polynomial P such that P(0) = 1 and

If = P=fl <.

Putting d for the degree of P, and supposing that N is an integer exceeding
d, we deduce that

N-1
|- Z Tomamf — fO)1] < e.
K=0

Remark. This leads to another proof of 11.1.1; the argument is due to
Salem (see [Z,], pp. 180-181).

11.6. Supply the details of the proof of the statement in 11.3.7.

11.7. Let % be a closed subalgebra of L?, where 1 < p < 2. Suppose
that f € L? N L}y, for some ¢ > 1. Assuming 18.5.1(1), prove that

e

for any integer N not less than ¢/(2¢ — 2).

11.8. Suppose that E denotes L7 (1 £ p < o) or C, that f, g e E, and
that f(n) = 0 forne Z and n < 0. Let 4 be any set of real numbers having
strictly positive Lebesgue measure. Show that if g belongs to the smallest
closed ideal in E containing f, then g is the limit in E of finite linear com-
binations of those translates 7', f of f corresponding to points a € 4.

Hints: Use the Hahn-Banach theorem (I, B.5) in conjunction with
Exercise 8.15.

11.9. State and prove an analogue of the preceding exercise applying to
the case in which the hypothesis

fn) =0 forne Zandn < 0
is replaced by the assumption that
f(n) = O(e-*1n) forneZ, |n]— o

for some ¢ > 0.

11.10. State and prove the analogue of 11.4.13 for the case in which
E=H? (1 <p< o), defined as in Exercise 3.9. (For more about H?
spaces, see MR 56 # # 6263, 6264.)
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11.11. Suppose that B is a Banach space and that ® is a continuous
B-valued function on [0, 1]. By following the procedure suggested immediately
below, show how to define the integral

1
z = f d(t) dt
0
as an element of B with the property that

Yo = f A () dt

0

for each continuous linear functional y on B.
Suggestions: Consider partitions A:0 =1t, < t,--- <t, =1 of [0, 1]
with ‘“division points”’ ¢;, and associate with each A a Riemann sum

= Z Q)8 — ti-1).

A partition A’ is a basic refinement of A if A’ is obtained from A by inserting
just one new division point; a (general) refinement A’ of A is obtained as the
result of a finite sequence of basic refinements, starting from A. Put
|A] = max (t, — ¢,_;) and

w(8) = sup {||®(t) — D) : 0 <t t' <1, |t — t'| < 8},
so that w(8) — 0 with 8. Verify that
lza = za]l < w(JADE — t-1)

if A’ is a basic refinement of A obtained by inserting a division point ¢’ in the
interval (¢, _4, t;). Deduce that

lza — zal| < 20(3)

for any two partitions A and A’ satisfying |[A| < §and |A’| < 8. Show finally
that there exists z€ B with the property: given ¢ > 0, there exists § = 8(¢) > 0
such that |z — z,|| < e for all partitions A satisfying |A| < 8, and check
that this z satisfies all requirements.

11.12. Let a be a positive real number and let B denote L*(0, a) with its
usual norm and linear space structure. As the product in B take the truncated
convolution

fxg(t) = J;f(t — 8)g(s) ds.

Verify that B is thus made into a Banach algebra satisfying conditions (a)
to (c) of 11.4.1, save the parts referring to the existence and properties of an
identity element.

Show that there exist no nontrivial continuous complex homomorphisms
of B.
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Hints: Let y be a continuous complex homomorphism of B and put
¢ = y(u,) for n =1,2,..., where u, is that element of B defined by
Uu,(t) = t"~ 1. Verify that
L(m)L(R)em o

OmCn = I'(m + n)

Using continuity of y, conclude that ¢, = 0 for all #, and thence that y = 0.
11.13. Prove that if f € L1(0, a) and * denotes truncated convolution, as
in the preceding exercise, then

lim [[f*], = 0,

where
f¥U=f and fHre+D = fy fEn forn=1,2,..-.

Remark. . This is a basic result in the Mikusinski operational calculus;
see [Er], p. 46.

Hint: Apply the spectral radius formula to the algebra obtained by
adjoining a formal identity element to the algebra B described in the preceding
exercise.

11.14. Prove that the formula

(e — Ax)~t = Z Ath
n=0

makes sense and is valid for |A| < 1/p(x), the notations and hypotheses being
asin 11.4.14.

Hint: Use the spectral radius formula to show that both sides depend
analytically on A for |A| < 1/p(z).

11.15. Explore as far as you are able the possibility of analogues of
11.4.17 for the case in which A is replaced by the set Ay of continuous
functions f for which

> W) fn)| < o,

nez
where W is a positive “ weight function” defined on Z.

Remark. As with many other things in harmonic analysis, the algebras
Ay, originated in the work (much of it unpublished) of Beurling. An account
of these so-called Beurling algebras, and of their extensions relating to more
general groups is to be found in Domar [1]. See also [War], Chapter 2.

The algebra

A*={feA:f(n)=0 forall ne Z such that n < 0}
is also of interest. See [Kah,], Chapter XI.
11.16. Suppose that C!(K) is defined as in 11.4.18(4). Prove that if m is
a maximal ideal in C*(K), then

m =m, = {fe CY(K) : f(z) = 0}
for some x € K.
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Hints: If m were distinct from every m_, to each z € K would correspond
f» € m satisfying f. ¢ m_. Show that then there would exist points z,, - - -, z,
of K such that

£= 3 et

is inversible in C'(K) and so derive a contradiction.
11.17. Let C(S) be as in 11.4.1(2) and 11.4.11, and let I be a closed ideal
in C(S). Define
F={seS:x(s) =0 forallzel}.

Prove that
I=I,={yeCS):y(s) =0 forallse F}.

Hints: It is trivial that I < I,. To prove the reverse inclusion, show first
that I contains every y € C{S) which vanishes on some open subset U of §
which contains #. Do this by using compactness of S and the fact that to
each s € S\U corresponds x, € I which is nonvanishing on some neighborhood
N, of 5. Cover S\U by suitably chosen neighborhoods N, ,---, N; and
consider the function equal to x~'y on |UJj-; N;, and to zero elsewhere,
where v = 37, x,, %, .

Complete the proof by using Urysohn’s lemma (see [E], 0.2.12 and 0.2.17(4);
[HS], p. 75; [R;], p. 39.) to show that any element of C(S) which vanishes on
F is the uniform limit of functions in C(S), each of which vanishes on
some open subset of S which contains F.

11.18. Let A be as in 11.4.17. Suppose that (U,) is a family of open
subsets of 7' forming a covering of 7. Show that there exists a finite
sequence (u;); = of elements of A with the following properties:

(1) to each k corresponds an index « = ¢, such that supp u, < U;

(2) 2ka1we =15

(3) u, = 0.

In (1), supp u, denotes the support of u,, that is, the closure of the set of
points of 7' at which u, # 0.

Remark. A sequence (u,) with the first two properties above is said to
form a partition of unity in A subordinate to the covering (U,). As the next
exercise illustrates, the existence of such partitions of unity is a useful tool
in passing from local to global assertions. It is quite simple to give explicit
examples of partitions of unity () in A (see, for example, [Ba,], p. 188),
but the proof hinted at here has a much wider range of applicability. Com-
pare Exercise 12.28.

Hints: For each x € T choose a neighborhood ¥V, of x and an index a,
such that 7, < U, and then a nonnegative g, € A such that g (x) # 0 and
g.(y) =0 for all y € T\V,. Show that o, € T' may be chosen so that
h= Z;= 1 9% is nonvanishing and use 11.4.17.
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11.19. Let A be asin 11.4.17 and let I be an ideal in A. Suppose that f
is a function on 7' which belongs locally to I in the sense that to each x € T'
correspond an open neighborhood U, of x and a function f, € I such that
f=fcon U,. Prove that fe L

Remark. This result is due to Wiener, at least for the case in which
I = A; see 10.6.2(6).

Hint: Use a partition of unity in A subordinate to the covering (U,).

11.20. Suppose that B is as in 11.4.1 and that S is a subset of I' = I'(B)
with the property that to each ¢, € I'\S corresponds a (possibly y,-dependent)
z € B such that yy(z) # 0 and y(z) = 0 for all y 8.

Prove that, if z € B and y(x) # 0 for all y €S, then there exists y € B,
satisfying y(y) = y(z)~* for all y € 8.

Interpret this result when (1) B = By, as in 11.4.1 and (2) B = A, as in
11.4.17.

Hunts: Introduce the ideal

I={zxeB:yx) =0 forallyes},

form the quotient algebra B/I and determine all the complex homomorphisms
of B/I.

11.21. Show that if fe L® has the property that the set of translates
{T.f : a € R} is a separable subset of L®, then f is equal almost everywhere
to a continuous function. (Compare with Exercise 3.5.)

Hints:  Use Exercises 3.16 and 3.5.

11.22. Let f e L*. Show that the smallest closed ideal I, in the convolution
algebra L™ (taken with its usual norm) which contains f is identical with the
set of elements of the form Af + g, where A is a complex number and ¢
belongs to the closure in L® of f+ L*.

Deduce that I, is translation-invariant if and only if f is equal almost
everywhere to a continuous function.

Hints: For the first part, observe that I, is the closure in L of the set of
elements Af + &, where X is a complex number and % € f *+ L®. Then consider
separately two cases according to whether f is or is not equal almost every-
where to a continuous function.

For the second part, use the preceding exercise.

11.23. Let (Ky)y -1 be an approximate identity in L' (see 3.2.1), and let
S denote the set of f € L™ such that

lim 1
N-o® 277

fKNfd:c

exists. Show that § is a closed ideal in the convolution algebra L™ and that S
is not translation-invariant.

11.24. Let B be as in 11.4.1. Assume further that there exists a mapping
x — z* of B into itself such that (x*)" = (£)~, (zy)* = z*y*, and 2** = x
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for all z, y € B. Suppose finally that either
(1) there exists a number ¢ > 0 such that

(]2 < cf? for each z € B,
or (2) there exists a number ¢ = 0 such that
lz[? € c|ax*| for each z € B.

Prove that the Gelfand transformation z — £ maps B one-to-one and
bicontinuously onto C(I'), where T" = I'(B). (If ¢ = 1, the Gelfand trans-
formation is also an isometry of B onto C(I').)

Hints:  Tirst make acquaintance with the Weierstrass-Stone theorem, for
which see [HS]. pp. 94-98, or |E], Section 4.10.

Assuming condition (1), use 11.4.14 to show that

[zl < cll2] (3)

for each z e B. Assuming (2), establish cquation (3) first for those ze B
which are self-adjoint in the sense that z = 2*. Then, observing that xa*
is always self-adjoint. derive equation (3) again for each z € B.

Topologize T' as described in 11.4.18(1) and apply the Weierstrass-Stone
theorem to show that the Gelfand transform maps B onto an everywhere
dense subset of C(I"). Combine this with equation (3) to achieve the desired
aim.

11.25. Let % be (algebraically) a subalgebra of C(T') containing T, all
algebraic operations being pointwise. Suppose that % is a Banach algebra
with respect to a norm (not necessarily that induced by the usual norm
on §(7T)), that T is everywhere dense in %, and that each element of I'()
is an evaluation map f— f(z) (x € T'). Prove that

At = {feU: fi(n) =0 forneZ, n < 0}
is a maximal subalgebra of .

Remarks. The case in which % is identical with C(7') (algebraically
and topologically) is a prototype result due to Wermer; see 11.3.12. It is
easy to reformulate the result in terms of convolution algebras over Z; in
this form the result bears upon the problems dual to those handled by
11.3.11.

Hints:  First show that A* is a closed subalgebra of A. Suppose that
AT < B < A B # A where B is a closed subalgebra of A. Show that there
exists an integer s > 0 such that y(e,) = 0 for some y € I'(®). Noting that,
if n > 0 is an integer, one has mn > s for some integer m > 0, deduce that

y(e,) =0 (neZ,n > 0). (1)

Show (compare the hints to Exercise 12.26 and recall (11.4.22)) that there
exists a positive measure p such that y(f) = u(f) for f € 8. Using (1), deduce
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that . = 1 (see the closing remarks in 12.2.3) and that

wWf) =f0)  (fe®). 2)

Observing that fe, € ¥ whenever fe 8 and n e Z and » > 0, deduce from
(1) and (2) that 8 < «A*.

11.26. Suppose that B is as in 11.4.1, save that the éxistence of an
identity element of B is not stipulated. Let m denote a maximial ideal in B, Q
the quotient algebra B/m, and K the set of # e Q such that #7 = 0 for all
7 € Q, where, for any z € B, £ denotes the coset modulo m containing z.

Show that Q has no ideals other than {0} and Q, so that, in particular, K is
either {0} or Q.

Prove that the following four statements are equivalent :

(al) m is modular;

a) Q has an identity element;
3) = {0};
( ,) mis the kernel of some (nonzero) continuous complex homomorphism
v of B.
Prove also the equivalence of the following four statements :
(b;) m is nonmodular;

(by) K = Q;
(bg) m > B? = {xy:xeB,yeB};
(by) m is the kernel of some (nonzero) linear functional A on B satisfying

%) = {0}

Conclude that every maximal ideal in B is modular if and only if the lincar
subspace of B generated by B2 is the whole of B.

Hints: The equivalence of statements (a;) and (ay) is trivial, as also are
the implications (a) = (ag) and (a,) = (a;). To prove that (a;) implies (a,),
show first that #Q = Q for any # # 0 in Q. and deduce that Q has no zero
divisors. Choose any @ # 0in Qand ¢ € Q such that @é = @ ; prove that é is an
identity element in Q.

It remains to prove that (a,) implies (a,). Since Q has no ideals other than
{0} and Q, (a,) shows that every nonzero clement of Q is inversible. Also, (a,)
implies that m is closed in B: to see this, let e be an identity modulo m and
show, by consideration of the clement y = —32_,(e — )", which satisfies
e = x — 2y mod m, that m contains no x € B satisfying |e — z| < 1. Thus
Q is complete and therefore satisfies all the conditions of 11.4.1, and
11.4.4(1) entails that each & € @ is uniquely expressible in the form
& = fe, where £ is a suitable complex number. Consider the mapping
yrax—ik— &

The equivalence of (b,) and (b,) comes from that of (a,) and (az); and it is
trivial that (b,) is equivalent to (bg). If (b,) holds, it is easy to verify that m is
a maximal ideal in B satisfying (bs). To show that (bs) implies (b,), choose any
ro, € B\m and consider the set I = {a2;, + m: « a complex number, m € m}.
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11.27. Show that every maximal ideal in L! is modular, but that there
exist nonmodular maximal ideals in L2

Hints:  Use the preceding exercise, together with 7.5.1, 8.2.1, and 8.3.1.

Remark. That there exist nonmodular maximal ideals in L7
whenever p > 1 follows likewise from Exercise 13.20 below. On the other
hand, it follows from (b;) that every closed maximal ideal in L? is
modular. See also [HR], (38.23) and (39.41) and MR 40 # 4779.



CHAPTER 12

Distributions and Measures

In this lengthy chapter we are going to initiate the investigation of one
way of handling and accounting for trigonometric series

D cen (12.1)
nez
in which the coefficients ¢, are subject merely to a relatively mild restriction
on their rate of growth, namely,

¢, = O(|n|¥)  (|n] — o) (12.2)

for some k£ which may vary from one series to the next. Such sequences
(Cn)nez, and the corresponding series (12.1), will be said to be tempered or
temperate.

Virtually all the trigonometric series considered in the classical theory
referred to in Chapter 1 are tempered, the said classical theory being con-
cerned mainly with the pointwise convergence or summability (everywhere
or almost everywhere) of such series, and with the relationship between the
given series and the Fourier-Lebesgue series of the sum-function whenever
the latter is integrable.

The approach adopted in this chapter initially throws overboard all
questions of pointwise convergence or summability in favor of a concept of
convergence suggested by formula (D) in 1.3.2. The sum of the series will, as
a result, no longer be an ordinary function at all, but rather an entity of the
type now termed a distribution or a generalized function as introduced by
Laurent Schwartz.

It will appear in 12.5.3 that any tempered trigonometric series converges
in this new sense to such a distribution, in terms of which the coefficients ¢,
are expressible in a fashion that is an exact extension of the Fourier formulae
(1.1.2%*) for the case in which the sum is an ordinary integrable function. It
will thus be natural to speak of the corresponding series as the Fourter-
Schwartz series of its sum-distribution. To express the situation slightly
differently, one may say that the theory of distributions provides one way of
defining the Fourier transform ¢ for any tempered function ¢ on the

48
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group Z, a problem that was already raised in Section 2.5. The related
matters mentioned in Sections 3.4 and 6.7 will accordingly be seen in
sharper focus.

Some of the operations performable on functions can be extended to
distributions: this is notably the case with differentiation and convolution
(see Sections 12.4 and 12.6). For what cannot be done, see 12.3.5. Indeed,
distributions theory is usually approached for not-necessarily-periodic
functions of one or more real variables, and the gay abandon enjoyed in
differentiating distributions might almost be said to be their raison d’étre.
We are here concerned solely with what may be termed periodic distributions
in one variable (distributions on 7) and lay special stress on their
connections with trigonometric series. A more balanced approach is to be
found in the books by Schwartz [S] and those by Gelfand and Silov [GS]
and Gelfand and Vilenkin [GV], where distributions on the line R or on
the produect groups R™, or on suitable subsets thereof, are the primary
objects of study. Somewhat more leisurely accounts appear in [Ga],
[MT], [Er], [Hal], [Lig], [Br], [Tr], [J]. See also [D].

The use of distributions will prove to be helpful in the discussion of certain
questions existing in the classical theory of Fourier series—for example, in
the study of so-called conjugate series (see Section 12.8).

In framing the definition of distributions, it is helpful to bear in mind two
pointers:

(1) In view of 2.3.4 and (12.2) we may expect that a tempered trigono-
metric series should be correlated with the result of repeated differentiation,
in some generalized sense, of a suitable function.

(2) If u is a sufficiently smooth function, and if (12.1) is the Fourier series
of a function f e L!, then (see 6.2.5 and 6.2.6)

21—# f f@yu(z) dz = ZZ W —n); (12.3)
in particular, this formula certainly holds for each u e C®. It is vital to
observe that the left-hand side of (12.3) defines a continuous linear functional
on C; and that, as follows from 2.4.1, knowledge of this linear functional
determines the function f almost everywhere.

From this last remark we shall take our cue, a return to (1) being made via
Section 12.4 and 12.5.7. Distributions will be introduced as continuous linear
functionals on C®, but it is first of all necessary to consider the function-space
€* more closely.

The measures referred to in the title of this chapter constitute an especially
important class of distributions; they are defined in.12.2.3 and studied in
more detail in 12.5.10 and Section 12.7. The Fourier-Schwartz series of a
measure is often termed a Fourier-Stieltjes series, the reasons for the name
being discussed in 12.5.10.
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As has been indicated, our approach to distributions is the analogue (for
the periodic case) of that originally set forth by L. Schwartz (see [S]) for
distributions on R"; the reader is recommended to consult this reference,
and/or [GS], frequently. A theory of distributions over an arbitrary locally
compact Abelian group has been expounded by J. Riss [1]; as one might
expect, this theory exhibits some rather weird features when the underlying
group is locally very non-Euclidean. See also Reid [1]; MR 25 # 4354;
49 # # 11145, 11243; 51 # 11022. For references to even broader exten-
sions of the theory, see [E], 5.11.5.

12.1 Concerning C*®
In 2.2.4 we have defined the space € and its topology. Thus, if v € C*

and if (u,);- is a sequence extracted from C®, we shall write

C® — lim u, = u or u,, — w in €

k— o

if and only if any one (hence all) of the following three equivalent
conditions is(are) fulfilled :

lim | DPu, — DPu|, =0 (p=0,1,2,--); (12.1.1)
k—
lim fug —ulpy =0  (p=0,1,2--); (12.1.2)
k— o
lim |u, — %[ = 0. (12.1.3)
k-

The equivalence of (12.1.1) and (12.1.2) is visible after reference to the
defining formula (2.2.16); that of (12.1.2) and (12.1.3) depends on the
defining formula (2.2.17) and a simple argument, which the reader is urged
to supply.

A most important instance of this mode of convergence figures in the
following result.

12.1.1. A continuous function u belongs to C* if and only if
lim »n*-«4(n) =0 (k=1,2,---), (12.1.4)
In|— ©
in which case
u=C"—1lim > dn)e". (12.1.5)
N=®@ <N
Proof. If u e C®, the relation (12.1.4) follows from repeated use of 2.3.4,
coupled with 2.3.2 (or with 2.3.8). Conversely, if  is continuous and (12.1.4)
holds, then 2.4.3 shows that

-
A

u(x) = Z da(n)en=,
nez
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and that this series, as well as those obtained from it by repeated termwise
differentiations, are uniformly convergent. A well-known theorem in real
analysis implies that the sum-function u therefore belongs to C* and that
Dry(z) = Z (in)Pdi(n)ein=
nez
forp =0, 1,2, ---; see the proof of 12.1.3 below.

The final assertion appears from what has just been said concerning
uniform convergence of the above series, coupled with the criteria for con-
vergence in C® expressed in (12.1.1).

Remark. 1If u is an integrable function satisfying (12.1.4), then w is
equal almost everywhere to a function in C® (see 2.4.2); and conversely.

12.1.2. It will cause the reader no pain to verify that if v, — » and v, — v
in €=, and if (A,) is any sequence of scalars converging to A, then A u, — Au
and %, + v, —u + vin C™.

12.1.3. That €C® is complete for the metric appearing in (12.1.3) will be
vital in some of our subsequent arguments.

To establish this, suppose that (u,) is a Cauchy sequence of elements of
C=. Reference to (12.1.1), combined with Cauchy’s general principle of con-
vergence, shows that then v, = lim, ., Dy, exists uniformly for each
p=0,1,2,.-.. The limit function v, is continuous. Now

Douy(x) — Druy(e’) = f " D (y) dy
)

and uniform convergence yields in the limit

x

?)p(.'E) - vp(xl) = J.lvzH-l(y) dya
which shows that Dv, = v, ,. Putting v = v,, it appears thence that v € C*
and that v, = D» (p =0,1,2,.--). Accordingly, lim,_., D", = D"
uniformly for each p. In other words, %, — v in C®. This shows that C* is
indeed complete.

12.1.4. From 12.1.2 and 12.1.3 we see that C* is at once a linear space and

a complete metric space, and that the linear operations are continuous.
Moreover, the topology of C* is definable in terms of the seminorms | - |,,

(p=0,1,2,---), a base of neighborheods of 0 in C® consisting of the sets

fueC:uly < e

obtained when p ranges over the nonnegative integers and e over the positive
members. In other words (see I, B.1.3), C*® is a topological linear space of
the type now customarily known as a Fréchet space.



52 DISTRIBUTIONS AND MEASURES

12.1.5. Not only are the linear space operations continuous on €C*, so too is
the operation of pointwise multiplication. That is, the mapping (u, v) — uv
is continuous from C* x € into C*.

In addition, D (the differentiation operator) is a continuous endomorphism
of C=.

Likewise, each translation operator 7', (see 2.2.1) is a continuous endo-
morphism of C*.

12.2 Definition and Examples of Distributions and Measures

12.2.1. Definition of Distributions; the Space D. By a distribution is
meant a continuous linear functional on C®.

Henceforth we shall always denote by D the set of distributions. Since D
is the set of continuous linear functionals on a topological linear space; it
carries a natural linear space structure: if F,, F, €D and X is a scalar,
F, + F, and AF are the functionals defined by

(Fy + Fo)u) = Fi(u) + Fy(u),  (AF)(u) = A+ F(u)

for u € C*; compare I, B.1.7.
12.2.2. Functions as Distributions. The formula
F(u) = —1- ff(x)u(x) dx (12.2.1)
21

associates with any integrable function f a linear functional F on C>.
Inasmuch as

55 [ feteydz] < 171 fulo,

it is plain that this functional is continuous on C®. In this way we have
associated with each fe L' a distribution. Knowledge of this distribution
determines the function f a.e. and we shall identify the function (or, more
accurately, the equivalence class, modulo null functions, determined by that
function) and the distribution it generates. L' thus appears as a linear
subspace of D.

12.2.3. Definition of Measures; the Space M. Thedistributions generated
by integrable functions are not the only distributions F satisfying an
inequality of the form

| F(u)] < const |ull.. (12.2.2)

Distributions of this type will be termed (Radon) measures.
The reason for the term ‘“measure” is the fact that any functional F
which is a measure in this sense can be expressed as an integral with respect
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to some uniquely determined regular Borel measure m on the underlying

group G =1T:
F(u) = fu(x) dm(x).
T

This assertion, usually known as the Riesz-Markov-Kakutani theorem
(for the compact space 7T'), is a mild extension of Theorem 6.4d of [W]; a
more detailed treatment in a more general setting appears in Chapter 4 of
[E], especially Section 4.10 and Exercise 4.45; see also [E, ], Part 1; [HS],
Chapter III, especially p. 177, and p. 364; [AB], Chapter 8; [R{],
pp- 40-47. This representation theorem confers much greater flexibility in
the manipulation of Radon measures, largely because the expression of F
as an integral combines with the appropriate integration theory to
provide at once a good definition of F(u) for each bounded Borel
measurable function w on 7', instead of merely for functions « in C*. (The
possibility of extending F from €® to C is established in a more
elementary way in 12.2.8 and 12.2.9.) This added flexibility is almost
essential for the discussion of some of the subtler properties of Radon
measures that feature in a number of recent researches (such as those
referred to in 12.7.4 and those appearing in Chapter 5 of [R]). For the
principal results in this book, however, we shall not need to make any
essential use of the representation theorem and its consequences.

An earlier and more concrete representation of a Radon measure was given
by F. Riesz, who showed that such a functional F can be expressed as a
Riemann-Stieltjes integral

F) = 5 [ ule) dgia),

where ¢ is a function of bounded variation® determined by F. A proof of this
is to be found in the Appendix to [He]; see also [HS], (8.16), and [AB],
p. 372. The sole explicit use to be made of this representation theorem
appears in 12.5.10, where the use of the term ‘Fourier-Stieltjes series”
receives some explanation.

Henceforth we shall denote by M the set of measures. Evidently, M is a
linear subspace of D.

In view of 12.2.2, L' may be regarded as a linear subspace of M.

Perhaps the simplest example of a measure that is not a function (that is,
of an element of M\L?) is the so-called Dirac measure at the point x: this is
the functional ¢, defined by

ex(u) = u(x).

The reader is urged to supply a proof that the measure e, is indeed not
(generated by) a function in L'. In spite of this, the measure e, is often

! The function ¢ is in general not periodic.
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improperly spoken of as ““the Dirac §-function placed at z’’; see 3.2.2, 3.2.4,
and 12.3.2(3). (Incidentally, we use the symbol ¢ in place of §, partly to keep
clearly in mind the correct terminology, and partly because the former
symbol seems more appropriate for what is the identity element relative to
convolution; see 12.6.7(1).)

Concerning the definition of Radon measures. Some readers, especially
those familiar with the use of the term ‘‘measure’ to describe a species of
set-function (as described in Section 13.1), will surely feel upset by the choice
of the term ‘ Radon measure’ to describe something that is evidently closer
in nature to an integral (compare the discussion in 2.2.2, that in Sections 2.5
and 3.4 of [AB], the study by Schaefer in [Hi]); and see again [E ], Part 1.
The terminology, which is due to M. Bourbaki, is by now fairly well fixed and
one must presumably make the best of it.

The fact is that each Radon measure can be extended into a Lebesgue-like
integral (in much the same way as the Riemann integral can be extended into
the Lebesgue integral and a Riemann-Stieltjes integral into a Lebesgue-
Stieltjes integral), and that there is a one-to-one correspondence between these
extended Radon measures u and a species of set-function measures m,. Although
we have no space to go into all the details, more comment will be made and
references given in 12.5.10.

The execution of the details of the developments mentioned in the preceding
paragraph are due to M. Bourbaki. The result is a complete theory of integra-
tion which, within its range of application, is at least as good as those based on
a set-function-measure approach. In relation to the latter, Bourbaki’s point of
view amounts to a mental somersault: one takes a theorem (in this case, the
Riesz-Markov-Kakutani theorem), hitherto well-hidden in the heart of a
subject, and sets it up as a basic definition in a reformulated theory.

Notation for functions as measures. The Radon measure generated by
a function f € L' would, in more traditional notations, bear a symbol different
from f. The invariant integral I is, of course a special Radon measure, the
associated set-function measure m; being (27)~! times Lebesgue measure on
[0, 2n) (where T is identified with [0, 27)). To say that a Radon measure p is
generated by a function f is to say that m, is absolutely continuous with
respect to m; and that the Lebesgue-Radon-Nikodym derivative dm,/dm, is f
(see [HS], p. 328).

Again, one could as well write p = f+ I in place of p = f; compare 12.3.4,
12.11.3, and [E], p. 235.

Yet another way of symbolizing the same relationship would amount to
writing dp = (27)~Yf dx.

We shall not adopt any of these notations, partly because they involve
essentially the set-function measure approach, and partly because they tend
to obstruct the view we wish to foster, namely, the view that measures and
distributions are generalized functions.

12.2.4. Distributions That Are Not Measures. It is simple to give
examples of distributions F that are neither functions nor measures. Consider,
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for instance, the distribution F defined by
F(u) = D*u(0),
where p is a positive integer. It is apparent, on considering the functions

u = e,, that this F does not satisfy any inequality of the form (12.2.2) and
therefore fails to be a measure.

12.2.5. Continuity Expressed by Inequalities. It is possible to classify
distributions by means of inequalities of which (12.2.2) is a special instance,
but in which higher derivatives of u appear.

The classification is based on the statement that a linear functional ¥ on
€~ is a distribution (that is, is continuous) if and only if there exists an
integer m > 0 and a number ¢ (both F-dependent) such that for all u € C*
one has

|[Fw)| < ¢+ sup || DPule. (12.2.3)
O<p<m

Proof. It is evident that the inequality (12.2.3) ensures the continuity of
F. Conversely, suppose that F is continuous. If no inequality (12.2.3) were
valid, functions w, € C* (k = 1, 2, - - -) would exist such that

| F(u,)| > k- sup |D*u|o. (12.2.4)
0<p<k
This implies that «, # 0, so that

o, = sup |Dful. > 0.

O<p<k
Define v, = (ko) ™ 'u,. Then v, € €* and

sup [ DPvylle = k77,
o<p<k

which entails that v, — 0 in C* [compare (12.1.1)]. On the other hand, by
(12.2.4) and the linearity of F,

[F(vp)| = (kay) Y| Fluy)] > 1.

This would contradict the assumed continuity of F, which must therefore
satisfy an inequality of the type (12.2.3).

12.2.6. Order of a Distribution. For a given distribution F, there exists
therefore a least integer m > 0 such that (12.2.3) holds for a suitable (F-
dependent) number ¢. We then say that F is a distribution of order m.

Reference to 12.2.3 shows that the measures are exactly the distributions
of zero order.

12.2.7. The Space D™. We shall henceforth denote by D™(m = 0,1, 2, -- )
the set of distributions of order at most m. D™ is a linear subspace of D and
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we have the relations
LLcM=DcDic...cDrcDr+ic.... D= )Dm
m=0
(One has here an extension of the chain of inclusions (2.2.18).) For each m.
the inclusion D™ < D™*! is easily seen to be proper.

12.2.8. D™and Continuous Linear Functionals on €. There is another
way of visualizing D™ which must be observed here. We shall verify that D™
can be thought of as the set of continuous linear functionals on C™, the latter
being considered as a Banach space with the norm || + ||.

Indeed, on the one hand it is evident that the restriction to €* < €™ of a
continuous linear functional L on €™ is a distribution of order at most m.
Moreover, since C® is dense in C™ (a corollary of 6.1.1), a continuous linear
functional L on C™ is uniquely determined by its restriction to C*.

It thus remains only to verify that each F € D™ can be extended into a
continuous linear functional L on €™ (and of which it is the restriction to C®).
But suppose u € C™. Choose any sequence (%,) from C® such that

lim ||u — wm = 0.
k— o

Then (12.2.3) shows that lim,_, , F(u,) exists finitely. By the same token,
the value of this limit is the same for any other sequence (u;) extracted from
C*® and such that ||u — ], — 0 as k — co. The required extension L of F
is obtained by setting L(u) = lim,_ ., F(u,). It is clear that L is thereby
defined as a linear functional on €™ whose restriction to € is F. Beside this,
(12.2.3) shows that

|L(u)| = lim |F(u,)] < c- li;n el cmy

C*

I

u“(m) ’

so that L is indeed continuous on C™.

12.2.9. Measures as Functionals on C. The case m = 0 of 12.2.8 is
especially important. It asserts that each measure can be extended into a
continuous linear functional on C = C°, and that conversely each continuous
linear functional on C is obtained by thus extending precisely one measure.

This marks one more step in bringing our definition of measures into line
with the Riesz-Markov-Kakutani representation theorem referred to in
12.2.3.

More about measures will appearin 12.3.8, 12.3.9, 12.5.10, and Section 12.7.
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12.3 Convergence of Distributions

12.3.1. Definition of Distributional Convergence. A sequence (¥,);-;
of distributions will be said to converge in D to a distribution F if and only if

lim F. (u) = F(u)

n—> o0

for each u € €C*. A similar definition applies to the relationship

lim F,= FinD,

t—to

where t — F, is a D-valued function of a real or complex variable ¢ defined
on a punctured neighborhood of ¢;; f, may here be —o0 or co.

This type of convergence of distributions is sometimes spoken of as
distributional convergence.

Remark. We note, but will never use, the fact that the general theory
of duality for topological linear spaces leads to several topologies on D with
respect to any one of which the notion of sequential convergence (or the
convergence of D-valued functions F, as specified above) accords exactly
with that prescribed in 12.3.1.

12.3.2. Examples. (1) If F €D and a €T the translate 7,F is the
distribution defined by the formula

(TaF)(u) = F(T—au)

for u e €, this definition being so chosen that if F is (generated by) a
function f e L! (see 12.2.2), then T, F is the distribution (generated by) the
function T,f. That T, F so defined is indeed a distribution follows from
12.1.5. Notice that T, ., F = T,F, so that the distributions we are speaking
of may be said to have period 2.

It is very simple to verify that T, F — T, F in D as a — a,,.

(2) If the functions f, (n = 1, 2, - - -) in L! converge in mean in that space
to f, then f, — f in D. This follows immediately from the substance of 12.2.2.

As the next example shows, a sequence of functions in L' may well be
distributionally convergent without being convergent in L*.

(3) If (f,)°-, is any approximate identity in L' (see 3.2.1), then f, — ¢
distributionally, where ¢ = ¢, is the Dirac measure at the origin.

This is a reformulation of a special case of 3.2.2; see also the remarks in
324.

(4) The relation

n

-1
n Z egmrim —> 1

k=1
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holds distributionally. For the result of applying the measure appearing on
the left-hand side to a function u € C* is

k=1

which (even for any continuous %) tends to
1 2n
2m Jo

(5) The following example is less transparent. In 12.2.2 we have seen how
to associate a distribution with each integrable function. Now we shall
illustrate a method of associating a distribution with certain nonintegrable
functions. Viewed otherwise, it provides an instance of a sequence of
integrable functions that converges to a distribution of order one.

The nonintegrable function to be treated is w, defined almost everywhere
on[— 7, 7) as cosec Y, z, and then extended by periodicity. The corresponding
distribution is obtained as the limit, as ¢ | 0, of the integrable functions w,
defined almost everywhere on (— m, ) by

ulz) de = 1(u).

_ [cosec Yo ife < 2] <,
(@) = {0 if 2] < e,

w, being defined elsewhere by periodicity. The distributional limit does

indeed exist, since we may write

1

27 e<lzlisn

1

2m e<lxl<n

w,(u) u(x) cosec Yoz dx

[u(x) — u(0)] cosec Yoz dx,
because
f cosec Yoxdx =0
e<|zri<m

owing to the integrand being an odd function of z. Furthermore,

u(x) — u(0) = O(|z|)
for small z, so that the integrand remaining is integrable. Thus the w,
converge distributionally to the distribution Q defined by

Qu) = %— J- [u(x) — u(0)] cosec Yoz dx (12.3.1)
w

Since the first mean value theorem shows that

lu(x) — w(0)] < || |ufw,
we see that

|Qu)| < %f | - coseec YVou| dx * |1 (12.3.2)
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which confirms that Q is of order at most one: Q € D

This mode of defining Q suggests naming it the principal value of w and
denoting it by P. V. w.

The distribution Q is genuinely of order one, that is (in view of what we
already know), it is not a measure. Indeed, were Q to be a measure, (12.2.2)
and (12.3.1) would combine with Exercise 12.5(2) to show that

b
— f cosec Yoz dx < const
2 J,

for 0 < a < b < =. But it is easily seen that

— bcosec Voxdr = —l—logl3 + 0(1),
27 ), o a
and is therefore unbounded for 0 < a < b < =.

In Example 12.4.3(3) we shall see how to represent Q = P. V. w as the
distributional derivative of an integrable function. Meanwhile, we return to
some generalities.

12.3.3. It is very simple to verify that if F, — F and G, — G distribution-
ally, then F, + G, — F + G and cF, — cF distributionally, ¢ denoting any
constant.

12.3.4. Product of a Distribution and a C* Function. The second
assertion in 12.3.3 may be extended.

In the first place, we can define the product «F of any function u € C*
and any distribution F € D by writing

(uF)(v) = F(uv) forve C®.

The justification for this definition is contained in 12.1.5, the substance of
which leads also to the conclusion that

u, F'— uF distributionally
if 4, — % in €, and that

uF, —uF distributionally

if w e €* and F, — F distributionally.

It is also true that w,F, — «F distributionally whenever u, — % in C®
and F, — F distributionally, but this is less obvious. No use will be made of
this fact and its proof is omitted.

12.3.5. The Product in Other Cases. In connection with 12.3.4 we may
observe that uF can be defined for » € C™ and F € D™, the result being an
element of D™, The basis for this statement lies in 12.2.8.
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Another case in which the product is satisfactorily definable will appear in
12.11.3.

On the other hand there is no hope of giving a ‘‘reasonable’” definition of the
product of two arbitrary distributions—nor even of the product of two
arbitrary measures. The qualification “‘reasonable” is here intended to cover a
tacit assumption that the required definition shall retain one or more properties
of the product as applied to smooth functions.

For example, one can show (see Exercise 12.9) that it is impossible to define
a product «f of two arbitrary measures in such a way that (a, ) — «f is a
bilinear mapping of M x M into D having the properties (1) if a(u) = 0 and
B(u) = 0 for nonnegative functions u € C* (in which case the measures « and 8
are said to be positive), then af(u) = 0 for such functions; and (2) if « and 8
are (generated by) functions f and g in €®, respectively, then «f is (generated
by) the function fg (ordinary pointwise product).

12.3.6. Compacity Principles. Each of the next four results states in
sequential form a compactness property of certain sets of distributions, of
measures, or of functions. Each is a very close analogue of the Weierstrass-
Bolzano theorem, which asserts that from any bounded sequence of real or
complex numbers may be extracted a convergent subsequence. The common
source of these four results is an abstract compacity principle which is
discussed in I, B.4; the fourth result uses also a characterization of the
continuous linear functionals on the space L? (1 < p < co) which is dis-
cussed in I, C.1.

In order to heighten the analogy with the Weierstrass-Bolzano theorem,
we first introduce the appropriate concepts of boundedness. These are as
follows:

(1) A set S of distributions is said to be bounded in D, or to be distribution-
ally bounded, if and only if

sup {|F(u)| : F eS8} < oo (12.3.3)
for each v € C*.
(2) A set S of measures is said to be bounded in M, if and only if

sup {|pu(®)| :pneS} < (12.3.4)
for each u € C.
(3) A set S of functions in L7 (1 € p < o0) is said to be bounded in L,
if and only if

sup{%ffudﬂ feS) <

for each w € L™, where 1/p + 1/p’ = 1.
In each case the value of the supremum will in general depend upon u.
The concept of boundedness expressed in (2) [respectively (3)] is sometimes
spoken of as weak boundedness in M [respectively in L?] (compare I, B.1.7),
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in contradistinction from norm boundedness. As we shall soon see, however,
the two concepts are equivalent.

It is easily seen that, if § < L? and if we inject L” < L! into M, which is
in turn injected into D, then (3) implies (2), and (2) implies (1). Also, if
S < L2 and is bounded in L% and if 1 € p < ¢, then 8 is bounded in L*.
The converse statements are false. For example, the sequence of measures
nleqm — €] (n = 1,2,...) is bounded in D but not in M; again, the Fejér
kernels F, (n = 1,2,---) form a bounded subset of L! and of M, but they
are not bounded in L? for any p > 1.

One might also define a subset S of D™ to be bounded in D™, if and only if

sup {|F(u)| : Fe8} < o (12.3.5)

for each u € C™. We shall have no special use for this concept of boundedness,
however.

12.37. Let (F,)r=1 be a sequence of distributions forming a bounded subset
of D. Then there exists a subsequence (F, )., and a distribution F such that

lim F, =F

k—
in D.
Proof. Since € is complete (see 12.1.3), and since D is defined to be the
set of all continuous linear functionals on €®, the assertion is a special case
of I, B.4.1; separability of C* follows from 12.1.1.

12.3.8. Mas a Normed Linear Space. There is an analogue of 12.3.7 for
bounded sequences in D™. Especially significant for future developments is
the case m = 0, to which the next result applies.

Let us first define the norm of a measure p € M by the equation

ey = sup {|u(w)] :uel, ||| < 1}. (12.3.6)
In other words, |u|, is the smallest number ¢ > 0 for which it is true that
)] < e Julw

for each u € € (or, what is equivalent, for each u € C); compare equation
(12.2.2). The reader will be able to verify without trouble that | - ||, is
indeed a norm on M. The notation is suggested by the fact that, if u is
(generated by) a function fe L', then ||u||; turns out to be none other than
[f]l: as defined in (2.2.13); see Exercise 12.10.

12.3.9. A sequence (u,);-; of measures is bounded in M, if and only if

Sl’llp lpalls < o0,
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in which case a subsequence (u, )r-; and a measure p exist such that
lim, _, o p,, = p weakly in M, by which it is meant (see I, B.1.7) that
lim pp, (w) = p(w)

k-

for each u € C. (See also Exercises 12.13 and 12.43.)

Proof. Since C is complete, the first statement is a special case of the
uniform boundedness principle (I, B.2.1). The second statement follows
from I, B.4.1 because Cis separable (see 6.1.1) and because of the identification
of M with the set of continuous linear functionals on € established in 12.2.8.

12.3.10. (1) If 1 < p < o0, a sequence (f,)2-; of funetions in L” is bounded
in L7, if and only if
sup [foly < 0.

(2) If 1 < p < oo, and if (f,)7-, is a bounded sequence in L, there exists
a subsequence (f, )7-; and a function f e L? such that lim,_ S, weakly in
L?, by which it is meant (see I, B.1.7) that
li 1 de = 1 o d
kfg 5 So, ude = 5 Ju dx
for each u € L* (where 1/p + 1/p’ = 1). (See also Exercise 12.14.)
Proof. Statement (1) follows from the uniform boundedness principle

exactly as does the corresponding assertion in 12.3.9, provided one observes
that, if f e L7,

Ifll, = sup {f%rffu de| cueL?, ||lull, <1},

which is the converse of Hélder’s inequality (see Exercise 3.6).

Statement (2) again follows from the compacity principle in I, B.4.1.
coupled with the identification of the set of continuous linear functionals
on L7 (1 € ¢ < o) with L established in I, C.1, g here being taken to be p’.*

12.3.11. Remarks. Part (2) of 12.3.10 is false for p = 1. For example,
the sequence of Fejér kernels (Fy)5-; is bounded in L', but no subsequence
(Fy,)i=1 converges weakly in L. (The reader should prove this, bearing in
mind the substance of 3.2.4.) Indeed, by appeal to I, C.2, it can be seen that
no such subsequence is a weak Cauchy sequence in L!, that is, that no
such subsequence has the property that

1 3
kILr?O 5 F, udx

exists finitely for each u € L>.

! That L7 (1 < q < o) is separable, is shown by 6.1.1.
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The same remarks apply when (Fy)5., is replaced by any approximate
identity in L.

12.4 Differentiation of Distributions

If f is an absolutely continuous function, the derived function Df is defined
almost everywhere and is integrable. Furthermore, partial integration (see
[W], Theorem 5.4a, Exercise 16 on p. 111, Theorem 6.3d; [HS], p. 287)
shows that

1 1
%fo-udx: —Eff-Dud:z:

for each u € C*. This circumstance prompts the following definition.

12.4.1. Definition of Derivative. If F is a distribution, its (distributional)
derivative D F is the distribution defined by

DF(u) = — F(Du) (12.4.1)

for u e C*.

12.4.2. Remarks on the Definition of Derivative. We have taken care
that this notion of derivative, the distributional derivative, coincides with the
ordinary one when applied to distributions generated by absolutely con-
tinuous functions. It must therefore be made quite clear that a divergence
appears when nonabsolutely continuous functions f are involved: in such
cases it may well happen that the pointwise derivative f’ will exist almost
everywhere and be integrable, and yet the distributional derivative Df will
be quite different from the distribution generated by the integrable function
f.
As an illustration, consider the function f defined to be 0 on [ —, 0], to be
1 on (0, 7), and elsewhere so as to have period 27. To compute the distri-
butional derivative Df we have

Df(w) = —%Tf_” - Dudz

i

L o pudr L ["1-Dua
5 ] wdz —5- | u dx

1 1
=0 —5-[u(m) — u(0)] = 5~ [u(0) — u(m)],
which shows that Df = (1/2m)[e — ¢,]. On the other hand, f’ = 0 a.e. and
so generates the zero distribution.
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Support for regarding the distributional derivative as an appropriate
concept lies in the fact that if we wished to evaluate

1 n
_%f-nf Du dx

by using partial integration, it would be necessary to decompose the range
of integration into subintervals [—m, —e], [—¢, €], [e, 7 — ], [7 — ¢, 7], on
the first and third of which f is absolutely continuous, apply partial integra-
tion to the first and third subintervals, and notice that the remaining
integrals are in any case o(1) as e — 0. The result would be (1/2#)[4(0) — u(x)].
In other words, a correct application of partial integration leads to a demand
for the distributional derivative rather than the pointwise one.

It is to be noticed that the jump discontinuities of f at the origin and at =
introduce into the distributional derivative terms involving Dirac measures
at these points. This feature is quite typical. Further differentiations in the
distributional sense will introduce distributions of higher and higher order.

In the sequel, failing any indication to the contrary, differentiation will
always be performed in the distributional sense. With this convention one may
(truthfully) say that a function fe L' is equal almost everywhere to an
absolutely continuous function, if and only if Df € L. (At the risk of over-
repetition, we reaffirm that this statement is not true, if the derivative is
interpreted in the pointwise sense.) Compare Exercise 12.12.

It is similarly true that a function f e L! is equal amost everywhere to a
function of bounded variation, if and only if Df e M. (And again Df must
here be interpreted distributionally.) A proof appears in 12.5.10.

12.4.3. Examples. (1) The translates 7, F of a distribution ¥ have been
defined in 12.3.2(1). It is simple to verify that
DF =lima-YT_,F — F)

a—=0
distributionally. For, if u € €=,
@ NT_oF — F))(u) = a™[F(Tou) — F(u)] = Fla~Y(Tou — )]

by the definition of 7'_,F and by linearity of F. It will therefore suffice to
verify that
lin; a~ YT — u) = —Du
in €, which follows by application of the first mean value theorem.
(2) Let A be a given distribution and let us examine the possibility of
solving the equation
DF = A (12.4.2)

for the unknown distribution F.



[12.4] DIFFERENTIATION OF DISTRIBUTIONS 65

This equation is not always soluble. Indeed, since DF(l) = — F(D1)
= — F(0) = 0, a necessary condition for solubility is that 4(l1) = 0. We
shall show how to solve (12.4.2) whenever A(1) = 0.

Assuming that F is a solution of (12.4.2) we have, for each ueC®,
F(Du) = —A(u). Putting u = Jv, where J is the endomorphism of €C*®
defined by

Jo(z) = f [v(y) — 5(0)] dy.

we have Du = v — $(0)1 and so
Flv — 3(0)1] = — A(Jv).
This may also be written as

F(v) = F(1)- 1(v) — Ao J(v),
or
F=F1)"1—AoJ. (12.4.3)

The reader will observe that, since J is a continuous endomorphism of €*,
A oJ is indeed a distribution. Formula (12.4.3) gives the solution of (12.4.2),
assumed to exist. It remains to verify that (12.4.3) really is a solution,
provided A4(1) = 0.

But, if F is given by (12.4.3), we have for any v € C*

DF(u) = — F(Du) = —F(1) - 1(Du) + A(JDu).
Herein, 1(Du) = 0 and JDu = u — u(0)1. So, since A(1) = 0, we obtain
DF(u) = —F(1)+0 + Alu — u(0)1] = A(w),

which shows that DF = 4.

An alternative discussion of the equation (12.4.2) can be based on the use
of Fourier series; see Example 12.5.9 and Exercise 12.15.

(3) We revert temporarily to the distribution

Q=PV. w

defined in Example 12.3.2(5). We have seen that, for u € €=,

Q(u) = lim if u(z) cosec Yoo do = lim w,(u).
s>0 27 e<lzl<n =0

Now one may write

w (u) = 2—177 f u(z) cosec Vo x dx -—%Tf u(—x) cosec Yo dx. (12.4.4)
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Introduce the function ¢ on (0, 7] defined by
p(z) = -—f cosec Yoy dy.

Then ¢ is integrable over (0, #), is O(log z~*) as = | 0, and is absolutely
continuous on [e, 7] for any ¢ > 0. Applying partial integration to each of
the integrals appearing in (12.4.4), it is found that

2w, (u) = —ule)gle) + u(—e)ole) — [ @) Dute) dz — [ gte) Du( ) do.
(12.4.5)

The integrated terms are together o(1) as ¢ — 0 (since u is differentiable at
the origin). So, since ¢ is integrable over (0, 7), (12.4.5) leads to the relation

27Q(u) = —f: o(z)Du(x) dx — f: p(x) Du(—x) dx
= - f " J(x) Du(x) dz, (12.4.6)
where we have defined
P(@) = o(|z]),

first for 0 < |z| < m; (0) may be defined arbitrarily, and the definition
completed by requiring ¢ to be periodic. The resulting function ¢ is integrable,
and (12.4.6) signifies precisely that

Q=PV.w= Dy
distributionally.

12.4.4. Properties of Differentiation. There are a number of simple
properties of the differentiation operator acting on distributions, each of
which is a direct and simple consequence of (12.4.1), together with the
contents of Section 12.1.

First, D is linear:

D(F + @) = DF + DG, D(cF) =c- DF,

¢ being any constant.

Differentiation is also continuous: if ¥, — F in D then DF, — DF in D.
This property appears in marked contrast to the situation prevailing in
relation to (say) uniform convergence or mean convergence in L”.

Combining the preceding properties, we infer that

8
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whenever the series >_, F, converges distributionally, in.which case the
series > ~-; DF, is likewise convergent.

12.4.5. Leibnitz’s formula for differentiating a product function has a
perfect analogue. Thus, if F € D and u € €, then

DuF) = (Du)F + uDF,;
see 12.3.4.

12.4.6. Reference to 12.2.6 will make it plain that DF € D™*! whenever
F € D™. More precisely, if m > 0 and F € D"\D™ !, then DF € D"*1\D™;
see Exercise 12.54.

12.5 Fourier Coefficients and Fourier Series
of Distributions

Reference to 12.2.2 and formula (2.3.1) should render the following
definition of the Fourier coefficients and series of a distribution seem entirely
natural (and indeed obligatory, if a consistent extension is to be achicved).

12.5.1. Definition. If FeD, we define its Fourier coefficients by the
formula

Fn) = Fle_,) (ne2),
where, as usual, e, € C® is the function x — e!™*_ The series

Z Fn)en=

nez

is called the Fourier series of F.

12.5.2. Fourier-Lebesgue, Fourier-Stieltjes, and Fourier-Schwartz
Series. In order to avoid possible confusion in certain statements, a series
Dnez C2€™F is spoken of as a Fourier- Lebesgue series if and only if there is
some (perhaps unspecified) integrable function f such that ¢, = f(n) (n € Z);
in a similar vein, the series will be described as a Fourier-Schwartz series if
and only if there exists a (perhaps unspecified) distribution F such that
¢, = F(n) (n e Z). In addition, if there is a measure w such that ¢, = fi(n)
(n€ Z), it is customary to speak of the series as a Fourier-Stieltjes series.
Likewise, a function on Z of the form i, where p € M, is often spoken of as a
Fourier-Stieltjes transform. A more detailed explanation of the use of this
term appears in 12.5.10.

The problem of deciding whether a given series is a Fourier-Lebesgue or a
Fourier-Stieltjes series, is often extremely difficult (see the remarks in
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2.3.9). It may come as a surprise, therefore, to discover that the corre-
sponding decision problem for Fourier-Schwartz series is comparatively
trivial, as the next result shows. This result also makes it plain that most
trigonometric series which will arise in practice, and certainly those normally
considered in the classical Riemann theory, are Fourier-Schwartz series.

12.5.3. (1) Suppose that F € D is of order at most m. Then
Fn) = O(|n|™) as |n| — o0, (12.5.1)
so that the Fourier series of F is tempered. Moreover,

syl = z F(n)e, - F as N — oo
In|<N

in D [see relation (D) in Subsection 1.3.2].

(2) Given any tempered sequence (¢,),.z, the distributions

Sn = Z Cnln
Inl<N

converge in D as N — oo to a distribution F such that F(n) = ¢, (n € Z),
so that the given series is the Fourier series of F.

Proof. (1) The statement (12.5.1) follows immediately from the in-
equality (12.2.3) if we take therein w = ¢_,. Next we have for v € C*

svF(w) = > Fmyi(—n) = F[ > d(=n)e_,),

Inl<s N Inf< N

the last step by definition of the Fourier coefficients of ' and by linearity of
F. Thus

syF(u) = F[ > di(n)e,].

Inls N

This combines with (12.1.5) and the continuity of F' to show that

lim syF(u) = F(u),

n— o

which says precisely that sy — F in D.
(2) To say that (c,) is tempered signifies that

les] < A|n|*  (n #0)

for a suitable number 4 > 0 and a suitable integer £ > 0. For u € €, we
have
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The series >,., ¢,&(—n) is absolutely convergent, as follows from (12.1.4).
Thus the formula
Flu) = lim sy(u) = > c,i(—n) (12.5.2)

Now® nez

defines F as a functional on €* which is evidently linear. That F is continuous
could be deduced from 12.3.7. A more direct argument uses 2.3.4 thus:

DX < leot(0)] + 4 > |n|*|d(—n)|
nez n#0
,‘ Dk+2 ©
< loat0)] + 4 3, - L=

= leo@(0)] + [4 D, [n]=2]| D**2ux,
n#0

which clearly shows that F is a distribution of order at most k + 2 (see
12.2.5 and 12.12.6).

The reader will observe that the preceding argument shows even that the
Fourier series of F is unconditionally convergent in D.

Finally, (12.5.2) applied with % = e_, shows that Fm) = ¢, for all
me Z.

12.5.4. Remarks. (1) The reader will notice that we have established
en route the Parseval formula
= > Fn)i(—n) (12.5.3)
nez
for F e D and u € C>, the series being absolutely convergent. Compare also
with equation (12.3). From this, or from 12.5.3(1), there follows an extension
of the uniqueness theorem 2.4.1 from functions to distributions.

(2) Armed with 12.5.3(2), the reader may with profit glance again at
Sections 2.5 and 6.7. It can now be said that ¢ is defined as a distribution for
any tempered function ¢ on Z, and that the inversion formula ( ()~ = ¢ is
valid. In particular, ¢ is defined whenever ¢ belongs to £? for some p satisfying
O<p <o

(3) Nowhere in the sequel shall we turn aside to discuss conditions on a
distribution that will ensure the pointwise conyvergence or summapbility of its
Fourier series; concerning this and related questions, see Walter [1]. Related
to this is the problem of assigning a numerical value to certain distributions
at certain points; for this, see L.ojasiewicz [1], [2].

12.5.5. From the definition of T', F set out in 12.3.2(1) it follows immediately
that (compare 2.3.3)

(T, F)~(n) = e~ inaP(n) (neZ).
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12.5.6. From 12.4.1 it is immediate that (compare 2.3.4)
(DF)~(n) = in* F(n) (neZ). (12.5.4)

Moreover, 12.4.4 affirms that a Fourier-Schwartz series may be differentiated
termwise—provided, of course, that differentiation and convergence are each
interpreted in the distributional sense. This conclusion appears also from
(12.5.4) and 12.5.3(2).

12.5.7. Distributions as Derivatives of Functions. If Fisa distribution
of order at most m, (12.5.1) shows that

F(n)einz

f@) = FO) + >

n#0

is a continuous function, the series being absolutely and uniformly con-
vergent. Repeated application of (12.5.4) leads to the conclusion that

Dr+2f = F — F(0).

Thus F is, apart from the additive constant F(0) = F(1), the (m + 2)-nd
distributional derivative of a continuous function. Compare with (1) in the
introduction to this chapter.

12.5.8. Example. We return momentarily to consider the distribution
Q = P.V. w discussed in Examples 12.3.2(5) and 12.4.3(3). From 12.5.1 and
(12.3.1) we have

1 .
Qn) = — | (e~"** — 1) cosec Y x dx
2
1 Y ..
=5 e~ %nT . 24 sin 1, nx * cosec Y x dx

i .
= —— fcos 15 na » sin V5 nax + cosec Y5 x dx
ko

1 (.
— = | sin? ¥, nx - cosec Y% z dx.
ki

The last-written integral vanishes, since the integrand is an odd function,
and so
, n
Qn) = - f sin nx - cosec Y5 x dx. (12.5.5)
27 J _ .
From this formula the behavior of Q(n) for large values of |n| is readily
inferred. Since (Y5z)~! — cosec Y4 z is integrable over (—#, 7), the Riemann-
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Lebesgue lemma 2.3.8 shows that

O(n) = __i'f” Si“x”xdx +o(1)

TS~z

_ i [" siny

== JLM ” dy + o(1).
Since

J‘“’ sinydy

co Y ’

it follows that
Q(n) = —i-sgnn + o(l). (12.5.6)

The result (12.5.6) should be compared with that expressed by (12.8.1) for
the closely related Hilbert distribution H = P.V. cot %4« to be introduced
in Section 12.8.

12.5.9. Example. We reconsider the equation
DF =4 (12.5.7)

examined in Example 12.4.3(2), where it was seen that a solution F exists if
and only if 4(1) = 0. The same conclusion may be reached by looking at the
transformed equation, namely,

in Fn) = An)  (ne 2), (12.5.8)

which is attained by application of 12.5.6. This shows that indeed a solution
exists only if 4(0) = A(1) = 0; and that if this condition is fulfilled, the
solutions are given by

F=FO)l+ > (in) *Am)ein (12.5.9)
n#0
the series being distributionally convergent.
An interesting special case is that in which 4 = ¢ — 1. Then (12.5.9)
leads to the unique solution F = E satisfying £(0) = 0, namely,

E =3 (in)le". (12.5.10)
n#0
Now the series here is boundedly convergent (in the pointwise sense), as is
seen from Exercise 1.5 or 7.2.2(2). The pointwise sum is identifiable with
the distributional sum by virtue of the substance of Example 12.3.2(2).
Thus E is (generated by) the pointwise sum function, which can be shown
to be defined by
E@x) = (7 — |z|)sgnz (12.5.11)
for x| < =
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By using the concept of convolution of distributions introduced in the
next section, the solution of (12.5.7) may be expressed in terms of 4 (assumed
to be such that 4(1) = 0) as F = F(0)1 + E = A.

For periodic distributions, £ plays the role of an elementary solution for the
differential operator D. The notion of elementary solutions of linear differen-
tial and partial differential operators is fundamental in much of the modern
work in this field; see [E], Chapter 5. See also Exercise 12.16.

12.5.10. Measures and Functions of Bounded Variation; Fourier-
Stieltjes Series. We have in 12.2.3 referred to the theorem of F. Riesz
according to which each (Radon) measure F is expressible in the form

Flu) = 517—7 ff u(z) d(x) (12.5.12)

where ¢ is a suitable (F-dependent) function of bounded variation on [ —m, 7r].
It is furthermore not difficult to verify that, conversely, any such function ¢
defines, via (12.5.12), a Radon measure F; complete details appear in [HS],
Section 8 and [AB], Chapter 8. On computing the Fourier coefficients of F,
we have from (12.5.12)

1 = _,

Py = - [ emm=aga),

2m J_ .
and an application of the formula for partial integration in Riemann-
Stieltjes integrals (which in this case is easily reduced to a simple limiting
process and partial summation applied to the approximating Riemann-
Stieltjes sums; compare the proof of 2.3.6) shows that

P = 52 (8(m) = p=m)(=1 + (i) 5= [ plae=me s,
that is,
Fn) = % [(m) — $(—m)]* (=1)" + in- §(n). (12.5.13)

Since (12.5.10) and (12.5.11) indicate that

(_ l)neinx
Z i = Z

n#0 n#0

pin(x + 1)

n

is the Fourier-Lebesgue series of a function of bounded variation, reference to
(12.5.13) and the fact (to be established in a moment), that the (distributional)
derivative of any function of bounded variation is a measure, will show that
a trigonometric series

> T (12.5.14)

nez
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is a Fourier-Stieltjes series in the sense defined in 12.5.2, if and only if the
formally integrated series
> (in) legein (12.5.15)
n#0
is the Fourier-Lebesgue series of some function ¢ of bounded variation; or
again if and only if the coefficients c, are expressible as Riemann-Stieltjes
integrals with respect to such a function ¢ in the following fashion:

1 * —inx
c"_ﬁ;f Jze dé(z).

It is this circumstance that explains most clearly the use of the qualifier
“Fourier-Stieltjes” in this connection.!

Inasmuch as the distributional derivative of (12.5.15) is (as follows from
12.5.6) exactly the series (12.5.14) shorn of its constant term, we may infer
that any Radon measure p is expressible in the form

p=c+ Do, (12.5.16)

where ¢ is a constant and ¢ is a function of bounded variation. The converse
is also true.

To verify this last point, it suffices to show that, if ¢ is of bounded variation,
then p = D¢ is a Radon measure. Now, by (12.4.1),

D(u) = _%fpu-qwx.

To majorize the absolute value of this expression, one may either apply
partial integration for Riemann-Stieltjes integrals and so obtain

Dp)] = Iz [wdd] < 5o V) - [l

or one can repeat the more pedestrian argument used in the proof of 2.3.6
(based on approximating the integrals by sums), which would again lead to

the majorization
1
|Dg(w)] < o= Vi) [l (125.17)

Comparing (12.5.17) with (12.2.2), it is seen that D¢ is indeed a Radon
measure.

12.6. Convolutions of Distributions

We tackle the problem of defining the convolution of any two distributions

by first concentrating on the special case in which one of them is an element
of C*.

! The function ¢ in (12.5.12) is not generally periodic; however, it may be replaced in
the term ing(n) in (12.5.13), and in (12.5.16) and the proof (12.5.17), by one that is.
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The guiding light in framing the definition in this case will be that provided
by the definition which applies when the remaining factor in the convolution
is a distribution that is (generated by) a function.

If w e €= and fe L, and if % denotes the function ¢t — u(—t) (see Volume
I, p. 31), then

7 ut@) = - [ e = ) dy

1 v
- 5 [ sty - o dy.
™
Regarding f as a distribution, this may be written
fxu(@) = f(TA).

The expression on the right makes sense even if f be replaced by an arbitrary
distribution. Thus we are led to frame the following definition.

12.6.1. The Convolution F 4. If FeD and u e C®, F % u is defined to
be the function for which
Fxux) = F(T ). (12.6.1)

From this it is evident that F * u is bilinear in the pair (F, u).

126.2. If FeD and u e C®, then F xu e C® and
D(F xu) = DF xu = F % Du.

Similarly,
T(Fsu)=T,Fxu=F=xT.u.

Proof. The defining equation (12.6.1) gives for any a # 0:
a Y F xulx + a) — Fxulx)] = Fla Y (T, 4 — T,i)]
= F[T,a YT — %)].
Now it is easily shown (see Exercise 12.2) that

lim a~}(T,i — @) = — Dii = (Du)”

a—0

in the sense of C*®, so that continuity of F shows that F % u is differentiable,
that
D(F xu) = F[T, (Du)’] = F % Du,

and at the same time that

D(F xu) = F(—T, Di)

It

It

(DF) * u.
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Inasmuch as Du € C® whenever u € C®, it follows that F % u € C=.
The relation involving translates is proved similarly.

1263. (1)If FeDand u, — » in C®, then F x u, — F x » in C®,
(2) f F,— Fin D and ue C®, then F;, x u — F % » in C=,
Proof. (1) By 12.2.5, for some number ¢ > 0 and some integer m,

[F@)] <o+ sup D]
o<psm
for each v € C*. Hence 12.6.2 yields
| DUF % u,)(x) — DUF % u)(x)| = |F * Dw,(x) — F % Dwu(z)]|

| F[T (D, — Dw)™]|.
¢ sup | DT (D%, — Dw)| o

ospsm

N

N

c: sup || DP(u — u)|w,

Os<p<m+gq
from which the stated result follows, the last-written expression tending to
zero as k — oo.

(2) The proof of this is somewhat deeper. We may and will assume
(without loss of generality) that F = 0 and aim to show that F} * u— 0
inC® ask— . By 12.6.2,ifqg € {0,1,2,--},

Dq(Fk*u)=Fk* un‘

It will therefore suffice to prove that, given anyv € C°, f, = F|, * v— 0 in
C. Now, by (12.6.1) and (12.4.1),

fk(x) = Fk(Txi;)’
Dfi(x) = F(T, Dv)
for all indices k£ and all x € T, the first of which shows that f,(x)— 0 as
k— oo for all x € T. The crucial point now is an appeal to Appendix
B.2.1(2), bearing in mind 12.1.4 and 12.2.1. This affirms that the F are

equicontinuous, which signifies that there exists m € {0, 1, 2, ---} such

that
sup | Fi(w)| < m + sup [DPw|,
k O<psm

for all w € C*. In particular, for all indices k and all z € 7,

|Dfi(x)l < m* sup ||DPT, D3|,

O<p<m

<m: sup [DP|,
O<p<m+1

=B
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say, where B is independent of k and 2. Thus the f; are equicontinuous on
T. Let £ > 0. Since T is compact, points x;, - -+, z, of T may be chosen so
that every point of 7' is modulo 2%, within distance 27 (B + 1) !¢ of
{xy, -++, z,}. Then, for all indices k, the mean value theorem shows that

”fk“oo SB ‘ 2_1(B+ 1)—18 +sup{|fk(xl)ln T, ‘fk(xr)l}z

and this is at most ¢ for all sufficiently large k. Hence | fi,— 0 as
k— o0, and the proof is complete.

12.6.4. For u e C® we have

% = d(n)e_,
€z

E}

and
T4 = Z et - d(n)e_,,
nez

the series converging in C® (see 12.1.1). Hence the definition 12.6.1 leads to
the formula
Fxu(x) = > Fnyi(n)er, (12.6.2)

nez

which shows that we still have the relation
(F % u)~(n) = Fn)i(n) (neZ,

the series (12.6.2) is absolutely and uniformly convergent thanks to (12.1.4)
and (12.5.1).

12.6.5. Convolution of Distributions. On the basis of 12.6.3 we are now
able to define F' % G as a distribution for arbitrary F, G € D. Thus, we define

F o« Gu) = F[(G *10)”] (12.6.3)

for each u € C*. This makes F % (@ a linear functional on C* whose continuity
follows from 12.6.3(1).

Taking 4 =e_, in (12.6.3) and using (12.6.2) and the orthogonality
relations (1.3.1), it is seen at once that

(F « @)™ (n) = F[Gm)e_,] = Fn)G(n) (ne Z). (12.6.4)

This last equation shows first that if @ = u € C®, then the present definition
of F % u agrees with that prescribed in 12.6.1 (provided, of course, that a
function in €C* is identified with the distribution it generates). In view of
12.5.4(1), equation (12.6.4) implies secondly the commutativity of convolu-
tion:

FxG@ =G+ F,

and likewise the associativity and distributivity of convolution.
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Either of (12.6.3) or (12.6.4) shows that the mapping (F, @) — F = G is
bilinear from D x D into D.
From 12.5.5,12.5.6, and (12.6.4) (or by other means) it is easy to verify that

T(F+@)=T,F+G=F=xT.,G, (12.6.5)
DF+x@) = DF «G =.F x DG. (12.6.6)

126.6. If F, — F in D, then F,. * G — F %« G in D.
Proof. We know from 12.6.2 that (G % @)~ € C* for each u € €®, and so

FxGQu) = F(G*u)]— F[(G*4)] = F % Gu),

which signifies that F, * @ — F x G in D.

Remark. It is even true that F * G, — F %= G in D whenever ¥, — F
and G, — G in the same sense, but the proof is rather more difficult. Since we
shall nowhere need this stronger assertion, the proof is omitted.

12.6.7. Examples. (1) The Dirac measure ¢ is the identity element for
convolution, that is, e * F = F for all ¥ € D. This explains how it comes
about that all convolution algebras of functions, large enough to contain all
trigonometric polynomials, lack identity elements.

More generally, e, *x F =T, F for FeDandae 7.

(2) By (12.6.6), DF = (De) x F for every F € D. Thus differentiation can
be expressed as convolution with the fixed distribution De.

(3) Given A4, B e D, the equation

AxF =B
has a solution F € D if and only if there is an integer m > 0 such that
|1§(n)| < const (1 + |n|)"|A(n)| (ne Z),
in which case the solutions are of the form

F=F,+ By,

Amy#0 (m)
where A * F, = 0, that is,

Fy = Z Crln»
Amy=o0

where (c,) is some tempered sequence.
These assertions follow readily from (12.6.4) and 12.5.3(2).
(4) In order that the equation

AxF =B
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shall have a solution F € D for an arbitrarily given B € D, it is necessary and
sufficient that there exist a number ¢ > 0 and an integer m > 0 such that

[Am) 2 c- 1+ |n))™™ (neZ).

This statement is verifiable by reference to (3) and the remark that the said
equation is soluble for every B if and only if it is soluble when B = ¢ (as
follows from the fact that ¢ is the identity for convolution, together with
associativity of convolution).

12.6.8. Definition of F, ¥, and F*. The definitions of f, f, and f*, given
for functions immediately prior to 2.3.1, may be extended to distributions
via the formulae

Fu)=F@), Fu) =FaE), F*=(F)> =) .

Then the map F — F is linear, while ¥ — F* and F — F are conjugate-
linear. It is moreover easily verified that (F*)™ = (F)~ (compare with 2.3.1).
If p is a measure, each of g, u, and p* is a measure, and (see 12.3.8)

12l = 1£1 = 1e*l = ledh

12.6.9. A Glance at the Dual Situation. Let us pause in order to bring into
somewhat sharper focus the dual problem raised in Section 3.4.

The position now is that the Fourier transform $ is defined as a distribution
whenever ¢ is a tempered function on Z (see 12.5.4(2)), and the problem to be
faced concerns the validity of the equation (3.4.1), namely,

G =4 (12.6.7)
Even now, however, this heuristic equation lacks meaning if % and i are
unrestricted tempered functions on Z. Thus

(1) ¢ * i is defined only for restricted pairs ¢, i;

2) ¢+ J is likewise defined only for restricted pairs ¢, i.

Regarding (1), it would be desirable to undertake a thorough examination of
the convolution process as applied to functions on Z; this might be done along
the lines usually followed in the case in which the underlying group is R (see
[E], 4.19 and the references cited there), but the task is not one that can be
undertaken here. Regarding (2), see 12.3.5.

It must suffice for the moment for us to remark that (12.6.7) is quite easily
established on a sound footing whenever ¢ and iy belong to £! (a case already
mentioned in Section 3.4), and again whenever at least one of ¢ and i, say ¢,
is rapidly vanishing at infinity, that is, is such that

lllim d(n)n* = 0 k=12,--+).
n|— o
In this latter case $ belongs to € thanks to 12.1.1, and $ « o is well-defined as
in 12.3.4.
Another important case is discussed in 12.11.3.
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12.7 More about M and L?

In this section we shall set forth some further properties of M and L” in
relation to convolution and establish some properties of the sets of Fourier
coefficients of measures and of functions in L?. In particular, we shall show
that M is a Banach algebra under convolution (a fact to which partial
reference has already been made in 3.3.2, 4.2.5 and 11.4.1(1)). The structure
of this Banach algebra M is still far from being known in its finer detail and
appears to be a problem of great complexity.

To begin with simpler things, we recall that in 12.3.8 a norm || - ||, has been
defined on M which extends that on L!; this norm is just that dual to the
norm on C, when we identify M with the set of all continuous linear functionals
on C (see 12.2.9 and I, B.1.7). The explicit formula for this norm is

lely = sup {|u(f)] : f€C, |f]le < 13 (12.7.1)

12.7.1. M is complete (and hence a Banach space).

Proof. A direct proof is called for in Ixercise 12.8. We here give an
alternative proof based upon 12.3.9. Suppose that (u,)7-; is a Cauchy
sequence in M. It is then clear that

SUp ualy < .

By 12.3.9, therefore, a subsequence (u, )7-, may be extracted such that,
for some p € M, we have
lim g, (f) = u(f)

k—

for each fe C. Now the Cauchy character of the original sequence signifies
that to each ¢ > 0 corresponds n(e) so that

Mt — tally < e for all m, n > n(s).
Accordingly, by (12.7.1),
() — 1 f)I <€ [ fllo  for all m, n > n(e),
for any fe C. Taking herein m = n, and letting & — oo, it follows that
la(f) =) <& 11 fllo  forall m > n(e),

and hence, by reference to (12.7.1) again,

e — .l <e for all n > n(g).
This shows that lim,_ , u, = p for the normed topology and exhibits the
completeness of M.

12.7.2. GConvolutions of Measures and Functions. Since M < D, uxu
is defined for each u € C* as in 12.6.1. However, using 12.2.9, we can define
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w * f for any f e C in a consistent fashion by setting

pr fl@) = w(Taf);
compare with (12.6.1). Since

I17of = Tepfw—0

as ¥ — x, (since f is uniformly continuous), (12.7.1) ensures that u * fe C
and that

lee# fllo < lella = 1l -

But the end is still not reached: u * f can be defined for still more general
functions f in such a way as to extend 3.1.6.

12.7.3. (1) Supposethatl < p € 0. Ifu e Mand fe L, then u » f € L? and

I Fllo < eells = 115
(2) If A, peM, then A x pe M and

A pls < AL ey

Proof. (1) Suppose first that f, g € C. For any partition —7 = 2y < @,
<--.<x, = m we have

i * f(x)g(xy) Axk— z,u Tx‘f g(x,) Az,

If we take a sequence of such partitions for which max, Az, — 0 then, owing
to uniform continuity of u * f and g, the initial member of (12.7.2) converges to

1
52 [ 1+ S@0) do.

At the same time, because of uniform continuity of f and g, the functions

1 «
57 2 Touf 9@ Ao,

converge uniformly to the function
L[ f d
Y=g | T=/(ylg(x) dz

- 5= [ — @)@ d = F g13)
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Consequently, the last member of (12.7.2) converges to u(f = g). We thus
infer that

5 [ gde = wifug).

By 3.1.4 and (12.7.1), therefore,

g7 [ s Do el < el 172l < il - 171, ol

The converse of Hélder’s inequality (see Exercise 3.6) leads thence to the
inequality

i 7l < Tl - 151, (12.7.3)
for feC.

Suppose now that feL” and p < c0. One may then choose a sequence
(fa)w=1 from C such that | f — f,||, — 0 as n — c0. Reference to (12.7.3) con-
firms that (u*f,)7-, is a Cauchy sequence in L? [apply (12.7.3) with f
replaced by f, — f,]. By completeness of L?, the functions p  f, therefore
converge in mean in L” to some & € L”. However, by 12.6.6, p * f, converges
in D to p« f. It follows at once that % f and & are the same distribution,
so that u * fe L” and [by (12.7.3)]

le xSl = 1Al = lim Jusfall, < sy ]

Finally, if p = oo, we may choose the f, € C so that |f,|. < |f|l» and
Ju — f pointwise almost everywhere. Then (see (12.7.3))

la* Fallo < Dl Mallo < Qlefla = 15 -

By the case p = 1, u* f, — p * f in mean in L!, so that a suitably chosen
subsequence is pointwise convergent almost everywhere. From this we
conclude that |u * f|o < |f;* ||f]«, S0 completing the proof of (1).

(2) By 12.6.5, A % p is the distribution defined by

Nop(u) = N(p*d)"]  (weC=).
By 12.6.2, (1 * %)~ € C* and, by 12.7.2,

Mo ) o < lefla® ) o -
Hence

A% w(@)] < A1 el - ] o,
and so (see 12.2.6) A« pe Mand |[A* pf, < A, el

Remark. If 1 < p < co the inequality in 12.7.3(1) can be improved;
see Exercise 13.5.

12.7.4. Mas an Algebra and Related Problems. The results of Section
12.6, together with 12.7.1 and 12.7.3(2), affirm that M is a complex Banach
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algebra under convolution with ¢ as its identity element (see 11.4.1); it is in
fact another strong contender for the title of *“group algebra” (see Section
3.3). In a few respects it is easier, but in most respects more difficult, to handle
than L. In particular, the important problem of determining the nontrivial
complex homomorphisms of M is much more difficult than the analogous
problem for L* (which was solved in 4.1.2) and cannot even now be regarded
as satisfactorily solved. In outline the situation is still much as described in
Chapter 3 of [Hew].

To illustrate the difficulties and the extent of existing ignorance, we recall
from 4.1.2 that the only nontrivial complex homomorphisms of L! are of the

type yn: f — f(n), where n ranges over Z. Each of these homomorphisms has a
natural extension to M [see (12.6.4)], which we continue to denote by y,. These,
however, do not exhaust the nontrivial complex homomorphisms of M. There
are several ways of supporting this statement; we briefly describe two of them.
The first is concerned with a purely existential proof, while the second is
considerably more precise and interesting.

(1) Considered as linear functionals on M, the y, are equicontinuous. Apply-
ing I, B.4.2 to the sequence (y,)7- 1, one derives the existence of a continuous
linear functional y, on M with the following property: given any ¢ > 0, any
finite subset {u,,---, u,} of M, and any integer n,, there exists an integer
n > n, for which

lynlit) = yolp)] < & (G =1,2,-+-,7). (12.7.4)

The relations (12.7.4) may be shown to imply that y, is a (continuous) complex
homomorphism of M, and that y. | L! = 0. In particular, vy, is certainly
distinct from all the y,. Since (12.7.4) also entails that y.(e) = 1, y, is non-
trivial.

(2) Inasmuch as y,(u*) = ;;,Tp,) for all n e Z and all u € M, any complex
homomorphism y of M for which y(u*) # m holds for some p € M is necessarily
nontrivial and distinet from all the y,. Such homomorphisms y actually do
exist, and various ways of producing them have been discussed. One method
is discussed in [R], Theorem 5.3.4.

The existence of such homomorphisms y of M, which is usually expressed by
saying that the Banach algebra M is asymmeltric, is one of the most striking and
most significant differences between M and L! considered as Banach algebras.
A direct corollary of this asymmetry of M is the existence of real-valued
functions ¢ on Z such that ¢(n) = 1 for ne Z and ¢ is a Fourier-Stieltjes
transform but ¢~! is not a Fourier-Stieltjes transform. This asymmetry and
its corollary are known to hold whenever T is replaced by any nondiscrete
group (see [R], Theorem 5.3.4; [HR], Vol. 2, p. 519; MR 43 # 6659); the
corollary was first noted for the case in which the underlying group is R by
Wiener and Pitt in 1938.

1 1,B.4.1 is.not applicable, since M is not separable.
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Even more surprising (not to say shocking) things can happen, as the reader
will discover on looking at Section 5.4 of [R] and pp. 143-144 of [Hew]. Much
of the early work on complex homomorphisms of M is due to the Russian
mathematician Sreider; later elaborations are due to Hewitt [2] and Hewitt
and Kakutani [1], [2] jointly. See also [Ta]; Taylor [1]-[11]; Johnson [1]-
[6]; MR 38 # # 6308, 6309; 41 # 2409.

There are some subalgebras of M of moderate interest for which the difficulties
so far described are to some extent surmountable; see Exercises 12.51 and 16.28.

We have mentioned in Section 4.2 the problem of homomorphisms of L! into
itself. This, together with the problem of homomorphisms of L' into M, has
been solved for general groups by Cohen [2], [3], an essential step being the
determination of all the idempotents in M (again for a general group). See (3)
immediately below; also MR 41 # 8929; 42 # 6518; 54 # 5741.

In view of the mystery surrounding the complex homomorphisms of M, it is
not surprising that the problem of homomorphisms of M raises new difficulties.
One knows (see 4.2.6) which maps « of Z into Z_{co} define homomorphisms 7’
of L! into M by means of the formula (Tf)" = fo a; and, as appears in Exercise
12.49, each such homomorphism can be extended into a homomorphism 7" of
M into itself such that (T"u)” = fi o « for u € M, fi(0) being understood to be 0
whenever y € M. However, there exist homomorphisms of M that do not arise
by thus extending a homomorphism of L! into M; in fact, there exist homo-
morphisms 7" # 0 of M such that 7"|L! = 0. One type of such homomorphisms
is described in Section 3.4.1 of [R]. Alternatively, it suffices to define
T’w = y(u)i, where y is any nonzero complex homomorphism of M such that
y|L' = 0, and . is any nonzero idempotent in M. The classification of such
homomorphisms of M is, as far as the author is aware, still largely unsolved.

Concerning norm-decreasing homomorphisms of L! into M, and the same
problem for more general underlying groups, see Glicksberg [1] and Greenleaf
[1]. (In these papers, the underlying group is not assumed to be Abelian.)

Further reading on some of the topics mentioned above: Brown and Hewitt
[1], MR 22 # 9809; 36 # 6879; 37 # # 4222, 4224, 6693; 38 # # 489, 491;
44 # # 1993, 1994; 48 # # 2666, 4642; 49 # 9539; 50 # # 5359, 7950;
51 # # 3798, 6287, 8737; 52 # # 8796, 8797, 14846, 14848; 54 # # 3291,
3202, 5743, 5744, 8163; 56 # # 982, 3571, 3572, 16254, 1659; 57 # # 7034,
7037.

(3) Helson’s theorem. In 3.1.1(d) we have remarked that the only idempotents
in L! are trigonometric polynomials 3 . €"%, where F is a finite subset of Z. But
in M there are many other idempotents. In more concrete terms, the problem is
that of determining which subsets S of Z are such that >, s e"* is a Fourier-
Stieltjes series. The solution was given by Helson [2], [3]; and the analogous
problem for general groups was solved by P. J. Cohen [3]. For details, see [R],
Chapter 3.

Helson’s result is very simple to state: > ,.s "* is a Fourier-Stieltjes series
if and only if S differs by a finite set from some periodic subset of Z.

The ““if”” part of Helson’s theorem is simple to prove; see Exercise 12.48.
A special case of the ““only if”’ part is discussed in Exercise 12.46. See also
16.8.4.
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In 12.7.5 we shall give a much more rudimentary necessary and sufficient
condition in order that a general trigonometric series >,.; c,e!** shall be a
Fourier-Stieltjes series. This will be applied in 12.7.8 to show directly (that is,
without any appeal to Helson’s theorem) that in particular 3,5, ¢~ is not a
Fourier-Stieltjes series. This example is especially significant in connection
with conjugate series (see Section 12.8).

It is a simple consequence of 9.2.4, 9.2.8 and the substance of 12.5.10 that, if
(Cn)nez is odd and ¢, = 0 (n€ Z, n > 0), then a necessary condition in order
that

@
Z ceinT = 2 2ic, sin nx
nez n=1

be & Fourier-Stieltjes series is that
@©
nzl

in particular, if also (c,)7-o is ultimately periodic, then the said series is a
Fourier-Stieltjes series only if the periodic part is zero. Inspired by some
remarks of Helson, Goes [2], [3] has proved a great deal more of the same
nature concerning series »>g.;¢,cosnx and Y., c¢,sinnx in which the
coefficients exhibit ultimately periodic or almost periodic features. He shows in
particular that, if (n,)7-, is any strictly increasing sequence of positive integers,
then 3., sin n,x is never a Fourier-Stieltjes series.

(4) Littlewood’s conjecture. Finally we mention an interesting issue relating
to idempotents. Let

c
< 0

3|$

k
m(k) = inf | > €7y,
f=1

the infimum being taken over all sets of k distinct integers n,, - - -, n,. What is
the true order of magnitude of m(k) as k — c0? If the n; are in arithmetic
progression, then m(k) = const log k; Littlewood conjectured that this in-
equality is valid in general. Davenport proved in 1960 that

m(k) = 1/8[log k/log log k]*/*

for all sufficiently large . This estimate was extended to all compact Abelian
groups by Hewitt and Zuckerman [2]. For some related results, see Salem [1],
Uchiyama [1], Fournier [2], Pichorides [1], [2], [3], MR 40 # 6150. Just
before this book went to press, McGehee, Pigno and Smith [1], [2] jointly
announced a proof of a generalized Littlewood conjecture. In fact, they prove
the following. Assume that § = {n; < n, < ---} is a subset of Z: then

(i) (Generalized Hardy Inequality) For every S-spectral measure u (see
15.1.1 below),

S am) <300kl
k=1

(ii) (Generalized Littlewood Inequality) for every positive natural number
N and every complex-valued sequence (c;)l-, such that |¢,|>1 for
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every ke {1,2, -, N},

> (30)"" log NV;
1

N
Z Ciny
k=1

(iii) for every complex-valued sequence (c;);-; such that |¢,| < k&~ ! for every
ke {l,2, -}, there exists F € L® such that | F |, < 30 and F(n,) = ¢,
forevery ke {1,2,---}.

The significance of estimates of the type involved in the Littlewood Conjec-
ture is indicated in part by their application to the study of idempotents in
measure algebras, which in turn is related to the problem of homomorphisms of
measure algebras (Cohen [2], [3]); see Section 4.2 and Subsection 16.8.4.

For remarks concerning the Littlewood conjecture in a more general setting,
see Price [4].

12.7.5. Criterion for Fourier-Stieltjes Series. Let (¢,),.; be a given
sequence and put

sy(@) = O c.e, (12.7.5)
[n[<N
oy(®) = (N + 1) so(x) + - - - + sy(2)]
_ |n| inz
= IMZN (1 v l)cne : (12.7.6)

In order that >, ., c,e™® be a Fourier-Stieltjes series, it is necessary and
sufficient that

lim sup |oy|, < oo. (12.7.7)
N—-®
Proof. If 3, ;c.ei™ is a Fourier-Stieltjes series, there exists a measure
w1 € M such that ¢, = u{n) for n € Z. Hence (compare (5.1.6))
Oy = | * FN:
as follows from (12.6.4) and 12.5.4(1). Then 12.7.3 shows that

lolls < lefs [Fxlls = &l
and (12.7.7) is visibly fulfilled.
Conversely, suppose that (12.7.7) holds. Then evidently

sup |joy]; < o,
N

and 12.3.9 entails that there exists a measure p €M and a subsequence
(on, )i=1 such that

lim oy, (f) = p(f)

k- o
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for each f e C. Taking f = e_,, this gives

;}in:, Gy, (n) = (n) (n€eZ).
The limit on the left-hand side here is just c,, as reference to (12.7.6) will
confirm. Thus ¢, = fi(n) for all ne Z and 3., c,e™ is a Fourier-Stieltjes
series.
Remark. Some deeper questions are mentioned in 12.7.9. See also
Exercise 12.50.

12.7.6. Criterion for Fourier Series of Class L? (p > 1). The notation
being as in 12.7.5, suppose further that 1 < p < co. In order that >, ., c,e™*
be the Fourier series of a function in L, it is necessary and sufficient that

lim sup [oyf, < . (12.7.8)
N-w®

Proof. This proceeds on exactly the same lines as does that of 12.7.5,
appealing to 12.3.10(2) in place of 12.3.9. We leave to the reader the task of
filling in the details.

12.7.7. Remark. When p = 1, the analogue of 12.7.6 is false, one of
several possible corrected versions being in fact 12.7.5. In the last resort this
breakdown is due to the fact that L' is not the dual of L® in the same sense
that L¢ is the dual of L¢ when 1 < ¢ < oo (see I, C.1). Some other corrected
versions will be discussed briefly in 12.7.9.

12.7.8. Example. Let us use12.7.5 to show that 3, ., €'"* is not a Fourier-
Stieltjes series.
Direct calculation shows that here

sy(z) = (1 — €)1 — eiV+Dz)

and
ox(z) = (I — &) "H1 = [(V + 1)(1 = ¢)]1[e — e D=]).

Since |1 — €| = 2|sin Y5 |, it follows that for large N we have

1
S 1 1/ _— e
loy(z)|] = V4 |cosec /25"3||:1 (N + 1)[sin %xl]

> 1 1 _ T
15 cosec /zx[l T 1)|x|]

> Y} cosec Yo
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for 27/(N + 1) < € =. Hence

1 f”
o > — cosec Yoz dx,
” NNI 27 Jomn+ v &
which tends to infinity with N. Thus (12.7.7) is violated and 3, , ¢"* is not
a Fourier-Stieltjes series.

From this example it may be inferred easily that if

¢, =oa+ Brsgnn + b,,

where « and B are constants, 8 # 0, and >, ; |b,]? < oo, then 3, ., c,e™* is
not a Fourier-Stieltjes series.

An alternative argument runs thus. Bochner’s theorem 9.2.8 combines
with 12.7.2 or 12.7.3 to show that, if f € L® and f ¢ I*(Z), then sgn f is not

a Fourier-Stieltjes transform. Applying this with f taken to be the
function such that

f@)=i Y n !sinnx forallze R
n=1

f@)y=14 Y n '(log(l +n)) 'sinnx  forallzeR),

n=1

using 7.2.2, and noting that

n

sgn f(n) =sgn n for all n € Z,
it follows that the sequence whose n-th term is
10+ sgnf(n)) =1lor0 accordingas n>0orn<0

is not a Fourier-Stieltjes transform.
For many other examples, see Exercise 12.37.
Remark. Concerning maps « of Z into itself such that

Z zeia(n)+ inx
ne

is a Fourier-Stieltjes series, see Edwards [13].

12.7.9. Criteria for Fourier-Lebesgue Series; the Steinhaus-Littlewood
Problem. We revert to the matters mentioned in 12.7.7. Let ¢ = (c,) be a
function on Z and consider the trigonometric series

Sy cuens (12.7.9)
nez
and its partial sums
sy(@) = D cpein. (12.7.10)

Inl< N
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As follows from 12.7.5, the condition

sup [syfy < © (12.7.11)
N

is sufficient in order that S be a Fourier-Stieltjes series. Helson [1] (see also
[Z,], p- 286) showed that (12.7.11) also entails that ¢ € ¢o(Z). On the other hand,
Mary Weiss [1] proved that (12.7.11) does not ensure that S is a Fourier-
Lebesgue series; see also Hewitt and Zuckerman [4]. (Why such a failure is to
be expected was explained in 12.7.7.) We proceed to consider briefly two devel-
opments suggested by this breakdown, the second of which constitutes a
necessary and sufficient condition on (c,) in order that S be a Fourier-Lebesgue
series. (As always, the criterion is very difficult to apply to specific examples.)

(1) It seems that both Steinhaus and Littlewood are responsible for the
following question: given that

sy(z) = 0 forallrealz and N = 1,2, -, (12.7.12)

does it follows that S is a Fourier-Lebesgue series?

Inasmuch as (12.7.12) implies (12.7.11), it ensures (by 12.7.5) that S is a
Fourier-Stieltjes series; see also Exercise 12.25.

Steinhaus himself showed that if limy_, » sy(x) exists finitely and is non-
negative for every real x, then S is a Fourier-Lebesgue series; see [Ba,], p. 244
and [Ba,], p. 353. In this connection we remark that if

_ {(log [n])-2 for |n| = 2,
0 forn =0, +1

then f(x) = limy_, , sy(x) exists finitely for all x # 0 mod 27 and f(z) = 0 for
all such «. It is moreover true (but far from trivial) that f € L! and that S is the
Fourier-Lebesgue series of f; this follows from a general theorem (see [Bay],
p. 353). From Exercise 13.1 it then appears that f does not belong to L? for any
p > 1. This shows that Steinhaus’s result is in a sense the best possible.

As to the Steinhaus-Littlewood question itself, a negative answer was
established very recently by Katznelson [1], who constructed an example of a
series S satisfying (12.7.12) but which is not a Fourier-Lebesgue series: in this
example, the measure p for which & = ¢ is in fact singular with respect to
Lebesgue measure. See also Brown and Hewitt [1], [2]; MR 55 # 13160;
56 # 9184; 54 # 10365.

(2) By using 6.1.1 in conjunction with results in general integration theory
referring to criteria for weak compactness for subsets of L' (see [DS;], pp.
294-295; [E], pp. 274-276), the following characterization of Fourier-Lebesgue
series can be established.

Introducing the Cesaro sums

7]

N +1

) caeine, (12.7.13)

onl@) = > (1 -
Inl< N
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the following four conditions are equivalent:
(a) a subsequence (oy,)i-; exists such that the set functions

E»f ow (@) de  (k=1,2--") (12.7.14)
E

are uniformly (or equi-) absolutely continuous [that is, to each & > 0 corre-
sponds 6 > 0 such that

sup lf on,(x)dz| < e
k E

for all measurable sets E satisfying m(E) < 8];

(b) some subsequence (oy,)i’-1 converges weakly in L1;

(e) some subsequence (o, )i-1 converges in L1;

(d) (Ca)nez € A(Z).

If any one of these conditions holds, and if f = lim, oy, weakly or strongly in
L, then ¢ = f, oy = oyf, and so (by 6.1.1) limy_ & oy — f], = O.

There is also a partial analogue of the above result, due to Keogh [1], in
which oy is everywhere replaced by sy. If (a’), (b"), and (c’) are the statements
that result from (a), (b), and (c¢) respectively on replacing oy by sy, the analogue
asserts the equivalence of (a’), (b’), and (¢’), together with the fact that, if any
one of these is satisfied, and if f = lim, sy, weakly or strongly in L!, then
¢ = f, sy = syf, and lime_, o, |5y, — f|1 = 0.

In proving this analogue one uses, in place of 6.1.1, the fact that syf — f in
measure as N — co whenever fe L!. (Convergence in measure is defined in
1.2.5, and the stated result follows from the remarks in 12.10.2.)

Remark. The uniform absolute continuity of the set functions (12.7.14)
can be expressed as uniform absolute continuity of the point functions

Fyz) = f: o, (8) dt,

the condition being precisely that to each ¢ > 0 corresponds a number
8 = 0(¢e) > 0 such that

sup > | Filby) — Filay)|] < ¢
i=1

for any finite sequence ((a;, b,))}-; of disjoint open intervals (a;, b;) the sum of
whose lengths does not exceed 8. In this connection see, for example, [HS],
Theorem (19.53) and its proof.

(3) If G is a general (locally compact Hausdorff) group, one can define the
concept of bounded Radon measure on G; see the remarks following 12.13.3,
the references cited there, Exercise 12.34, and also [HR]. Denote by M(G) the
set of bounded Radon measures on G. If G is Abelian, one can introduce the
character group X of G (see 2.2.1 and [HR], Chapter 6). To each u e M(G)
corresponds the Fourier (or Fourier-Stieltjes) transform g = &% pu, namely, the
bounded continuous function on X defined by

Ay) = pi) (xeX).
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(This definition of ji presupposes some development of the integration theory
associated with u; compare the closing remarks in 12.2.3.)

Most of the problems mentioned already in connection with M = M(7') have
their exact analogues for M(®). In addition, and more specifically, some of the
functional analytic properties of #M((), considered as a normed linear space
with the norm

Il = sup {|a(x) : x € X},

have been investigated by Beurling and Hewitt (unpublished) and subsequently
by Ramirez [1], [2], [3].

12.8 Hilbert’s Distribution and Conjugate Series

In this section and the next we shall examine the operation of passing
from a trigonometric series
z cneinx

REZ

to the so-called conjugate (or allied) series

z (—1 - sgn n)c,en=;

nez
the explanation of the use of the term ‘‘conjugate’ will be given shortly.
By way of example, the reader will notice that, in the notation of Chapter 7,
(8) is the series conjugate to (C).

Our glance will be incomplete in at least two respects. First, and as is by
now customary in this book, we shall have next to nothing to say about the
traditional approach to the problem of pointwise convergence or sum-
mability (except in so far as the results of Chapter 10 and the attached
exercises may be applied). Secondly, although the explanation of the term
“conjugate’’ will hint at close connections with complex variable theory,
and with the study of those trigonometric series said to be of power-series
type because they are of the form

z Cneinx’

nz0
there will be no space to give a full account of these connections. For these
aspects we must refer the reader to [Z,], Chapters I1I and IV; [Ba,], Chapter
VIII; [HaR], Sections 4.8 and 5.8; [Hel]; [Kz], Chapter III; and, for
the modern viewpoint applying to a category of more general groups, to
[R], Chapter 8. See also [EG], Sections 6.7 and 6.8.

For our part, we shall be interested in representing the passage from the

Fourier series of a distribution to the conjugate series as the operation of
convolution with a certain distribution H which is neither a function nor a
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measure, and with the nature of this operation in its action on the L” spaces.
This outlook fits in well with the discussion of multiplier operators to be
discussed in Chapter 16. It will also form the basis of the proof, given in 12.10,
of the mean convergence in L? of the Fourier series of a function in LP,
when 1 < p < oo.

The reason for the term ‘‘conjugate” is simply and adequately explained
by regarding any trigonometric polynomial

Z ¢ einx
n

nez

as the boundary value for r = 1 of the harmonic function

relt —» Z c rinleinz,
nez

For it then appears that the conjugate series represents the value for r = 1
of that one of the conjugate harmonic functions of re'* (these conjugates
being undetermined up to addition of constants; see [He], p. 55) which has a
zero mean value. Some use will be made of this fact in 12.9.7.

12.8.1. Hilbert’s Distribution. It will be plain from (12.6.4) that the
series conjugate to the Fourier series of a distribution F is the Fourier series
of the conjugate (or allied) distribution F = H % F, where the distribution H
is given by

H = z —tesgnn - et (12.8.1)

nez

here sgn n denotes 0 or |n|™'n according as n € Z is or is not equal to 0.
It will appear from (12.8.7) and (12.8.8) that the operation F — F can be
expressed in a way which makes it plainly analogous (for periodic functions)
to the so-called Hilbert transform for functions of a real variable. For this
reason we take the liberty of referring to H as Hilbert’s (periodic) distribution.
Referring to (7.1.3), weseethat sy(H + F) = Dy % F,and that H = lim,_, , D,
in D.

Starting from (12.8.1) we shall now derive some other expressions for H.

To begin with, since we have by (7.1.3) the relations

N
Dy(x) = Z —trsgnn et = 2 zsinna:
Inis N n=1

cos (N + L)z

= cot Yo — -
7 sin 152
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we have for u € C®

H(u) = lim 1 fﬂ u(:v)[

cos Yo — cos (N + 1/2)x] I

Now 2m sin Voo
B cos Yoz — cos (N + 1/2):15]
_1\}1.12 .._Trf [u(@) — u( )}[ sin Vo x de.
Now [u(x) — u(—=x)]/sin Y5z is integrable over (0, 7) and so the Riemann-
Lebesgue lemma 2.3.8 shows that
w) =1 f" [u(z) — w(—2)] - Y cot Yz dx. (12.8.2)
T Jo

The inequality
|[u(@) — u(—2)| < 2Jz| - | Dul

combines with (12.8.2) to show that
\H@w)| < gfn%x'cot Yoz de | Dul., (12.8.3)
T Jo

so that H € D'. On the other hand, the final statement in Example 12.7.8
shows that the series (12.8.1) defining H is not a Fourier-Stieltjes series, so
that H is not a measure. Thus H is a distribution of order exactly 1.

From (12.8.2) we have also

H(u) = liml [u(z) — u(—=x)] * Y5 cot Yoz dx.
=0 T Jg
On expressing the remaining integral as the difference of those whose
integrands are, respectively, w(z)ls cot Yoz and wu(—=x)Y cot Yoz, and
making a change of variable in the second, it appears thab

H(u) = lim ! u(z) » V5 cot Yoz dx. (12.8.4)
e=0 T Jegizl<a
In other words, and by comparison with Example 12.3.2(5), this may be
expressed by writing
H =P.V.cot Ypz. (12.8.5)

Partial integration may be applied to (12.8.4) to show that
H = 2- Dllog |sin Y% z|]; (12.8.6)

the argument is very similar to that laid out in Example 12.4.3(3) and the
reader is urged to supply the details. Naturally, the differentiation involved
n (12.8.6) is understood in the distributional sense (see 12.4.1).

From 12.6.1 and (12.8.4) we derive for u € C*® the relation

H x u(z) = lim L f u(x — y) cot Yoy dy; (12.8.7)
e<lylsn

e~0 2m
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it is this expression that exhibits most clearly the similarity of the operation
% — H x u with the Hilbert transform. Similarly, using 12.6.1 and (12.8.2),
there follows the relation

H s u(z) = ;I-TL” [ulx — y) — u(x + y)]% cot Yoy dy (12.8.8)

for u e C~.

12.8.2. The Classical Approach to the Conjugate Function. The form
of equations (12.8.4), (12.8.7), and (12.8.8) suggests strongly the examination
of the pointwise limit

féz) = lim H, « f(x)

£—=0

lim L flx — y) cot Yoy dy (12.8.9)

e=0 4T Je<lyl<n

il

£m0 27

lim L f"[f(x —y) — flz + y)] cot Yoy dy,

where

_ fcot Yoxr fore < |2| < m,
Helz) = {0 for 0 < |2 < &,

and is defined elsewhere by periodicity, and where f is free from the smooth-
ness restrictions imposed upon « in (12.8.4), (12.8.7), and (12.8.8). The use
of the principal value integrals in (12.8.9) is suggested, since it is obvious
that the integrands in (12.8.9) are in general integrable over no neighborhood
of the origin.

The classical theory of conjugate series and functions [for which see the
references in (3) below] is expressed entirely in terms of f¢ rather than our
f = H = f. The reader must guard against thinking that f¢ and f are always
and obviously the same thing; see (3). Even for continuous functions f,
f¢(x) may fail to exist finitely for certain values of z; it is not trivial to show
even that f°(z) exists finitely for almost all « for an arbitrary continuous f.

We shall have neither occasion nor space to discuss the existence of f¢ in
general. All that we shall need, and all that we shall prove, is contained in (1)
and (2) immediately below. A good deal more that we shall not prove is
mentioned in (3) with the main aim of clarifying the connection between f°¢
and f.

(1) Suppose that f e L! is such that

f: |fx — y) — flz + y)| cot Yoy dy < oo



94 DISTRIBUTIONS AND MEASURES

for almost all z, so that for such 2 we have

F@) = = [z = 9) - flz + y)] cot Yoy dy:
27 Jo

suppose further that f¢, thus defined almost everywhere, belongs to L.
Then f¢ = f qua distributions. These hypotheses on f are fulfilled whenever
feL! and

|[fx —y) — fx + y)| < k@)|y|*

for almost all #, where % € L' and « > 0; and hence in particular whenever f
is absolutely continuous and Df € L® for some p > 1.

Proof. The hypotheses on f ensure that the theorems of Fubini and
Tonelli ((W], Theorems 4.2b and 4.2¢) can be applied to compute fﬂc. The
result of this computation reads:

A

- n
fé(n) = ——;f_f(n) f cot Y5y - sin ny dy.
0
Further computation on the remaining integral then shows that
f‘(n)= —i-sgnn'f(n) for all n € Z.

This combined, with (12.6.4) and (12.8.1), shows that f¢ = H « f = f qua
distributions. The details of these calculations are left to the reader (Exercise
12.18).

(2) If fe L2, then

lim Hyx«f=Hxf=f
£=0
in L2. In particular, there exists a sequence &, — 0 such that
f(z) = H« f(x) = lim H,, *f(x)

for almost all .

Proof. One can compute H, and verify that #, — H boundedly on Z
(see Exercise 12.18 again). So (12.6.4), (12.8.1), and 8.3.1 show that H % fe L?
and that H, * f — H % f in L? as ¢ — 0. The rest follows from the well-known
fact that a mean convergent sequence contains a subsequence which converges
pointwise almost everywhere (see the proof of [W], Theorem 4.5a).

Remark. From (2) it appears that f(x) = f°(z) a.e. for any fe L2 for
which f¢ is known to exist almost everywhere. (This last is in fact true for
every f e L?; see (3).)

(3) Perhaps the simplest route toward a fairly general identification of f¢
and f lies in proving (somewhat along the lines of the methods of Chapter 6)
that for any f € L! the conjugate series is Cesaro summable almost everywhere
to f¢(x), that is, that

lim oyf(z) = f(x)

N—=w®
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for almost all x; for a proof of this, see [Z;] p. 92; [Ba,], p. 58. Let us assume
this result.

As we shall prove in 12.9.1, fe L? whenever 1 < p < o and fe L*. In this
case, as follows from 6.1.1, oy f converges in L? to f, and it appears from the
last paragraph that f = f¢ a.e. Similarly, on the basis of the results in 12.9.9,
one can infer that f = f¢ a.e. whenever, more generally, f*log* |f| € L!; see
12.9.9(1) and (2) and compare 12.10.2.

For a general f € L!, f¢ may fail to be integrable (a result analogous, but not
trivially equivalent, to the corresponding assertion about f, which will be
proved in 12.8.3); see [Z,], p. 257; [Ba,], pp. 95, 112. In such cases f° does not
generate a distribution in the manner described in 12.2.2, and the question of
the identification of f¢ and f scarcely arises.

We mention that it was proved by Lusin and Privalov (see [Z;], p. 131;
[Z,], p- 252; [Bay], p. 62; [HaR], Theorem 89; G. Weiss [1], p. 164) that f°(x)
exists finitely almost everywhere for each f € L!; see also the remarks in 13.10.3.
The function f¢, although not necessarily integrable in Lebesgue’s sense, is
integrable in various generalized senses and the corresponding generalized
Fourier series of f¢ is indeed the series conjugate to the Fourier series of f;
for details, see [Z,], pp. 262-263 and [Bay], pp. 128-137. One suitable concept
of integration for this purpose is the so-called B-integral (see [Z,], pp. 262-263)
and the result is then due to Kolmogorov (1928); another is the so-called
A-integral (see [Bay], pp. 128-137), in which case the result is due to Ul'’yanov
(1957).

See also MR 54 # 5719.

12.8.3. Conjugates of Functions in I.?, L!, and C. It will be encouraging
to begin with one of the few really simple properties of the conjugate function
operator.

(1) If fe L2, then f = H * fe L? and

Iz < ]2 (12.8.10)
Proof. The relation (12.8.1) shows that’
|[A(n)| <1 foralln e Z

whence the stated result follows on the basis of (12.6.4) and 8.3.1.

(2) When L2 is replaced by L or C, the situation is less simple.

In the first place, Exercise 7.7 furnishes an example of a function fe L!

such that f¢ L.
Again, consider the pointwise sum-function f of the series

S osin na
Z TTogn (12.8.11)
n=2

By 7.2.2(1), f is continuous. We will show that in fact f is absolutely con-
tinuous and yet, neverthcless, f ¢ L.

Indeed, "
coS nx
bf = ,Z‘z log n
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and Exercise 7.7 and the substance of 12.4.2 affirm the absolute continuity
of f. The Fourier series of fis [see 7.2.2(3)]

i cos nx
&y nlogn

which, by 7.3.1, is pointwise convergent for z # 0 (mod 27). Since, according
to (1) immediately above, the series converges in L2 to f, it follows that

L=¢]
= cos nx

f@) = -

=, nlogn

(12.8.12)

pointwise almost everywhere. We proceed to estimate the pointwise sum of
the series (12.8.12), concentrating on small values of > 0.
For any such value of z, let N = N(z) be the positive integer such that
Nlog N < z7!' < (N + 1l)log (N + 1).

By partial summation and the estimate (see Exercise 1.2)

T
[z cos nx| € =
n=1

it follows that

«©

cos n

> <
nlogn

n=N+1

24
Z(N + ) log (N + 1)

< 4,

where 4 and 4’ are independent of xz. On the other hand, for 2 < n < N,
cos nx > cos Nx > cos {(log N) '}.

From (12.8.12) it now follows that, for any preassigned & > 0, there exists
8 = d8(¢e) > 0 such that

—fl@) > (1 — ¢)log log% (12.8.13)

for almost all z € (0, 8).

The inequality (12.8.13) shows that f¢ L*.

Even more striking examples of a similar nature have been constructed by
Lusin and Tolstov; see [Ba,], pp. 95-98. See also Goes [2], Section V.

A similar argument shows that the pointwise sum function

fla) = > S (12.8.14)

which (see Exercise 10.8) agrees on (0, 27) with (= — x)/2 (and so is but very
mildly discontinuous), is such that, for any given & > 0, there exists a
number § = 8(¢) > 0 such that

~f@) =1 —¢ IOgé + A, (12.8.15)
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for almost all z € (0, §), 4, being independent of z. This example will be
useful later [see 13.9.2(3)].

A little more generally, consider a function f with a finite number of
jump discontinuities at points aq, ..., @, in [ —x, ) and such that

k
Df = Z Ci€s; T G,
=1

J

where the ¢; are complex numbers and g is so smooth that g € L!. Then

Df=D(H * f)=H * Df
k
=Y Tyl +g.
i=1
Defining temporarily ¢(x) = 2 log|sin 3z for all x € (—n, n) and by
periodicity elsewhere, it follows from (12.8.6) that

k
f@) =3 ¢;o—a)+ hz),

where 4 is continuous. This exhibits the misbehaviour of f : in particular,
if ¢; # 0, fis unbounded near a; like

—log(|x _ajl_l)-

That the preceding examples are not in the nature of isolated freaks is
shown by the next result.

(3) The set of functions fe L! (respectively, C), for which fe M (respec-
tively, L), is a meagre subset of L! (respectively, C); the complementary set
is therefore everywhere dense in L' (respectively, C).

Proof. This will follow on combining the known fact that H is not a
measure with the more general theorem 12.8.4 immediately following, as a
preliminary to which the reader may find a glance at I, A and I, B.2 profitable.

12.8.4. Suppose that F € D satisfies either of the following two conditions
(1) F % feM for each f in a nonmeagre subset S of L?;
(2) F = fe L™ for each f in a nonmeagre subset 8 of C.

Then F € M.
Proof. (1) Suppose first that F satisfies condition (1). We write

S = g S,, (12.8.16)

where S, denotes the set of f e L' such that F «+ fe Mand ||F % f||;, < n [the,
norm on M being defined as in (12.3.6)]. The first step is to show that each
S, is a closed subset of L*.

To this end, suppose that f, (k = 1,2, ---) belongs to 8, and f,, — f in L!:
it must be shown that feS,. Now, by definition of 8,, F xf, €M and
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| F * fi|l; < n for all k. Hence, by 12.3.9, there is a subsequence (f}, )2, and
p € M such that F = f,, — u weakly in M. At the same time, however, 12.6.6
affirms that F = f, — F % f in D. It follows that F x f = € M. In addition,
by Exercise 12.13,

1l = luly < liminf [ Fxfy ], <=,

and so f does indeed belong to §,.

Knowing that 8, is closed in L! and that S is nonmeagre, the relation
(12.8.16) forces the conclusion that, for some =, S, has interior points relative
to L. For this n there exist a number p > 0 and a function f, € L! such that
h eS8, whenever he L' and |k — fo|; < p. Then, if feL* and |f||; < p,
h=fo+ fe8, and so

Fxf=Fxh— Fxf,

is seen to belong to M and to satisfy | F = f|, < 2n. It follows at once that
F«feMand

[ F = fll, < 2np7 1 fl (12.8.17)
for all fe L.
For the final step, we choose an approximate identity (f;);2, in L* satisfying
|fill: < 1 and infer from (12.8.17) that

IF *fill, < 2np~? (12.8.18)

for all 3.

Repeating the arguments employed three paragraphs above, and using
12.3.2(3) and 12.6.7(1), it may be inferred from (12.8.18) that F € M.

(2) Suppose now that F satisfies condition (2). It will suffice to show that

sup | F  fil|; < o (12.8.19)

is again true for some approximate identity (f;);2, in L!, which we may assume
to satisfy ||fi], < 1. For reasons that will appear shortly, we shall assume
that each f; e C*.

Now, by the case p = 1 of 3.1.4, we have

|F o f+fiO)] < |F«flolfils < |F*f]o
for each f e S. Thus
sup | F % f % fi(0)] < o0 (fe8). (12.8.20)

Since each f; € €=, and since convolution is associative (see 12.6.5), 12.6.2
and 3.1.4 make it plain that

f—Fxfxf(0)
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is, for each ¢, a continuous linear functional on €. In view of (12.8.20), an
application of I, B.2.1(2) leads to the existence of a number ¢ > 0 such that

sup | F # f* fi(0)] < ¢|f]« (fe0). (12.8.21)

Reference to (12.3.6) leads at once from (12.8.21) to

sup 1F = fil, < e,

which entails (12.8.19). The proof is complete.

12.8.5. Remarks concerning 12.8.3 and 12.8.4. (1) There are close
connections between 12.8.4 and problems concerning multiplier operators, a
topic discussed in Chapter 18; see especially Section 16.3.

(2) Concerning 12.8.3(2), we remark that it is possible to exhibit specific and
quite simple functions fe€ L} such that the function f¢ (sec 12.8.2) is non-
integrable over any nondegenerate interval; sce, for example, [Z,], p. 257.

(3) As 12.8.4 shows, the underlying reason for the existence of continuous
functions f such that f is essentially unbounded is simply that H is not a
measure, that is, in view of the substance of 12.5.10, that H is not of the form

const + D¢

with ¢ a function of bounded variation.

It is therefore interesting to note that the underlying reason for the existence
of absolutely continuous functions f such that f is essentially unbounded on
every nondegenerate interval (compare 12.8.3(2)) can be shown (Exercise 16.27
and Edwards [3]) to be the circumstance that H is not of the form

const + Dh

with A e L®. That H is not of this form follows easily from the fact that
>n=1cos nx/n is not the Fourier series of a function in L®, which in turn
follows from Exercise 6.3 or from (12.8.15).

(4) We take this opportunity to mention in passing a famous and remarkable
theorem due jointly to F. and M. Riesz, namely: if 4 and j are both measurcs,
then y € L. For proofs of this, see [Z,], p. 285; [Bas], pp. 87-92; [R,], p. 335;
and [R], Section 8.2.

An equivalent formulation of the theorem asserts that if f is a function of
bounded variation, and if f is (the distribution generated by) a function of
bounded variation, then f is in fact absolutely continuous; compare the Hardy—
Littlewood theorem quoted in 10.6.2(7). (The equivalence of the two versions
hinges upon the substance of 12.5.10; see Exercise 12.19.)

For some abstract versions of the theorem, see de Leeuw and Glicksberg [1],
Lumer [1], Ahern [1], and Glicksberg [2], [3].
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12.9 The Theorem of Marcel Riesz

The results stated in 12.8.3 may be extended and balanced by the following
major result, due to Marcel Riesz (1927).

12.9.1. Statement of the Theorem. Suppose that 1 < p < co. There
exists a number k£, > 1 such that H x f e L? and

12+ flp < &1 (12.9.1)
for each fe L®.

12.9.2. Start of Proof. The proof we shall give is somewhat lengthy and
will be prefaced by a number of reductions and manipulations. Many other
proofs are known; an entirely different one will be given in Section 13.9.

Although the following proof is intended to be complete in all details, the
reader may find it of interest to glance at the sketch proof using other complex
variable techniques that appears on pp. 165-167 of G. Weiss [1]. An approach
to 12.9.1 based upon the study of harmonic functions appears in [R,],
pp. 345-348 (especially Exercise 17); compare 12.9.8(2). See also [Kz],
pp- 68-70 and Remark (2) following 13.9.1 and 13.9.2 below.

12.9.3. For a given number £ > 0 denote by E, the set of f € L? such that
H « fe L? and

15 = fll, < E|f]l,- (12.9.1')

Our task is to show that, if 1 < p < oo, then some k = k, exists for which
E, = L?. We begin by observing some simple properties of E, for a given
k and p.

12.9.4. (1) E, is a closed subset of L?;

(2) if u = Re fand v = Im f belong to E,, then f e E,;;

(3) if f is real-valued, and if f, = sup (f, 0) and f_ = sup (—f, 0) belong
to E,, then fe E,,.

Proof. (1) Let (f,)7-1 be any sequence extracted from E, such that
fo—f in mean in L?. By (12.9.1') and 12.3.10(2), a suitable subsequence
(H * f, )<, converges weakly in L? to some g € L?. On the other hand, by
12.6.6, H = f, — H = f in D. It follows that H » f = g € L? and, by Exercise
12.14, that

|2 fl, = llgl, < lim inf [H « £, |,
< liminf k| fo, |, < &[],

This proves (1).
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(2) By linearity of H * f in the variable f, we see that Hxf = Hxu
+ i(H = v). If » and v belong to E,, it follows that H * f € L” and that

M+ flly < [H*ul, + |H * o],
< k(Jlul, + o)
< 2k( 115>

which proves (2).
(3) The proof is exactly similar to that of (2).

12.9.5. In order to establish 12.9.1 for a given p satisfying 1 < p < o0, it
suffices to show that for some k = k, the inequality (12.9.1) holds for each
trigonometric polynomial f > 0.

Proof. This follows by repeated applications of 12.9.4. Thus if (12.9.1')
holds for each trigonometric polynomial f > 0, 12.9.4(1) and 6.1.1 show that
(12.9.1") holds for all continuous f > 0. By 12.9.4(1), this inequality extends
to all continuous f > 0. Then 12.9.4(3) and (2) show that the same is true,
with 4k in place of k, for any complex-valued continuous f. Finally 12.9.4(1)
and 6.1.1 show that (12.9.1") is valid, with 4k in place of k, for any f e L*.

12.9.6. If (12.9.1) holds for some p satisfying 1 < p < oo and each feL?,
then it also holds, with k, =k, for each feL” (where, as usual,

1/p + 1/p" =1).
Proof. Suppose that f and g are trigonometric polynomials. Theri

5z [V <0 de = (H x ) %.9(0) = [ x (H % g)0)

= %T ff(H * g) dx.

By Hélder’s inequality and the main hypothesis, it follows that

1 [«
g5 [ £ 0 del < ylf1, - lal
The converse of Holder’s inequality (Exercise 3.6) now entails that

“H *gnv’ < kp“g"p’

for all trigonometric polynomials. Since p' < o0, 12.9.4(1) now serves to
show that (12.9.1) is true with p’ in place of p and k,. = k,.

Remark. The preceding result is a special case of a more general principle
which will appear in 16.4.1.

12.9.7. Final Stage of Proof. By 12.9.5 and 12.9.6, in order to prove
12.9.1 completely, it will suffice to consider a value of p satisfying 1 < p < 2
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and establish the existence of a number %k for which (12.9.1’) holds for all
trigonometric polynomials f > 0. We now undertake this task.
Write

g=H=xf= Z —i-sgnn - f(n)enz, (12.9.2)

nez

h=f+ig. (12.9.3)

Since f is real-valued, so thatm = f(—n) (see 2.3.1), it is easily seen that ¢
is real-valued. The reader will also observe that

h=f0)+2 > fn)en=. (12.9.4)

n>0

It is crucial to our proof to know either that
—Re —2—17—_; fh” dxz < const || f|5, (12.9.5)
or that
Re%r f B dz > 0. (12.9.5')

The discussion of (12.9.5) and (12.9.5") is deferred until 12.9.8. Meanwhile
we proceed on the assumption that at least one of these inequalities is valid.

Choose § = §,sothat 0 < 8§ < Yo < p8 < Yypm < 7 (recall that we are
assuming that 1 < p < 2) and put

o =ua, =secps, B=48,=(secd)?(l+ |a|),
so that « < 0 and 8 > 0. We claim that
1 < - cos pt + B(cos t)? for |t| € Vom. (12.9.6)

Indeed, if § < |t| < Y4w, the right-hand side is not less than « cos pt
2 acos pd = 1; and if |t| < 8, it is not less than B(cos §)* — |o| = 1.
Now f = |h| cos ¢t where, since f > 0, |t| < Y4#. So (12.9.6) yields

%Tflhlpdx < a(%r) f;hp cos pt - dx + ,9(2%) f;h]p(cos B dz

- a-Re(El;) fhvdx+,3(§1;) ff”dz,

provided we take that branch of the pth power which is real and positive on
the positive real axis. Since « < 0, either of (12.9.5) or (12.9.5') leads thence
to the inequality

1
5 J-|h]” dx < const || f|5.
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Then (12.9.3) yields

lgll, = =& — )], < const |f],,
which is equivalent to (12.9.1").

12.9.8. Return to (12.9.5) and (12.9.5"). It thus remains only to establish
one or the other of (12.9.5) or (12.9.5"). It is in fact true that

1 1
= f Wl =[5 f hdap, (12.9:7)

and we shall substantiate this in a moment. Since
! fkd — R0) = f(0) —iffdx
5, | Pz = hO) = J0) = 5 | fdz,

(12.9.7) plainly implies both (12.9.5) and (12.9.5’). Let us therefore consider
(12.9.7). »

(1) There is a proof of (12.9.7), due to Helson and based on the theory of
Banach algebras, which is indicated in Exercise 12.26. The above proof of
the M. Riesz theorem itself is also due in part to Helson.

(2) One may also observe that % is the boundary value (on the unit
circumference) of the polynomial

Hw) = f(0) + 2 > fn)w
n>0
in the complex variable w; see (12.9.4). Then, since f > 0 is the boundary
value of the harmonic function Re H, it follows from the maximum principle
for harmonic functions that Re H(w) > 0 for |w| < 1. An analytic branch
of H? may thus be defined and (12.9.7) follows at once from Cauchy’s theorem
applied to this branch.
(3) A third approach is as follows. It is simple to verify that

1 fPoh dx = P[i fh dzx] (12.9.8)
2 2m

is true for each polynomial P in one complex variable w. Now the range of &
lies within some compact rectangle in the half-plane Rew > 0 and one
may there choose an analytic branch of w?. This chosen branch can then be
approximated, uniformly on this rectangle, by polynomials P(w) (a special
case of Runge’s theorem proved in Appendix D in Volume 1;
alternatively, consider the chosen branch of w” in the disc |w — n| < 7,
where 7 is a sufficiently large positive integer). Then Af is the uniform
limit of the corresponding functions P o k. A limiting process on (12.9.8)
leads directly to (12.9.7).
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Of the arguments (1), (2), and (3), (1) and (3) may be taken over for more
general groups, but (2) cannot.

The proof of 12.9.1 is entirely complete.

Remarks. For extensions of 12.9.1 and related theorems, see [R],
Chapter 8; Helson [7]; MR 20 # # 4155, 5397 ; 41 # 4136.

Concerning the best possible value of &, in (12.9.1), see MR 47 # 702;
for the same question relating to (12.9.9), see MR 54 # 10967.

Weighted norm inequalities for the operator H have also been studied;
see, for example, MR 47 # 701; 54 # 5720.

12.9.9. Further Inequalities. As we know from 12.8.3 and 12.8.4,12.9.1
is false for p = 1 and for p = oo. It can however be shown that

|H*fll, < ky|f]l, for0<p<1 (12.9.9)
and that

17 %51 < 55 [17110g* 1] do + B (12:0.10)

whenever f is a trigonometric polynomial. Proofs will be found in [Z,], pp.
254-256; [Ba,], pp. 103-122; and [R], pp. 220-221. In each of these references
the proofs use the same general principles as does the preceding proof of
12.9.1. See also [Kz], p. 66. In Section 13.9 we shall discuss proofs of
12.9.1, and equations (12.9.9) and (12.9.10), depending on a general
interpolation theorem due to Marcinkiewicz.

We mention also that an elegant type of proof of (12.9.1), based upon a
study of rearrangements of functions and an inequality of Hardy (see [Z,],
p. 20), has been given by O‘Neil and Weiss [1].

Let us temporarily assume the truth of (12.9.9) and (12.9.10) for trigono-
metric polynomials f and see how their range of validity can be extended.

(1) If we take any fe L' and apply (12.9.9) to the trigonometric poly-
nomials oy f, noticing en route that

Hxoyf =oyHxf) = oNf,
we obtain
HUNf”p < kn”ful

Calling on the fact that oy f — f¢ almost everywhere (see 12.8.2(3)), it may be
deduced from Fatou’s lemma ([W], Theorem 4.1d) that

If¢l, < & lfl,  if0 < p < 1andfel!. (12.9.11)

In (2) it will be shown that H % fe L' and that (12.9.10) continues to
hold, provided f - log* |f| € L. In this case 6.4.4 gives

onf = on(H xf)—H=x*f a.e.
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Hence [by 12.8.2(3) once more] f = H * f = f¢a.e. whenever f - log* |f| e L.
This confirms an identification stated in 12.8.2(3). It shows also that (12.9.11)
holds with f in place of f whenever f - log* |f| € L, but this estimate will be
bettered in (2).

(2) Starting from the assumed validity of (12.9.10) for trigonometric
polynomials f, we aim to show that H % fe L and that (12.9.10) continues
to hold whenever f-log™* |f| € L.

Proof. Suppose first that fe L®. Then, by 12.8.2(2), H x fe L2 < L.
That (12.9.10) holds in this case is easily seen by approximating f by the
trigonometric polynomials oy f which, by 6.4.4 and 6.4.7, converge boundedly
and almost everywhere to f, and by making appeal to Lebesgue’s theorem
([W], Theorem 4.1b).

Before proceeding to handle a general f satisfying flog* |f] e L*, we
observe that if in (12.9.10) we replace f by «f, where « is any positive number,
and then divide both sides by «, it appears that to any ¢ > 0 corresponds a
number » = r(¢) > 0 such that

I fly < e+ %fm log* (rlf]) d. (12.9.12)

By virtue of what we have already established, (12.9.12) holds for any
feL~>.

Take now any f satisfying flog* |f| € L' and define f, to be equal to f at
points where |f| < n and to be zero elsewhere, so that f, € L®. Applying
(12.9.12) to f,, — f. in place of f, we see that

[ o = Bl < e+ 52 [1n = £l log* (lfu = S 4o, (120.13)

Suppose that m < n. The integrand appearing on the right-hand side of
(12.9.13) vanishes on the set £, of points x € [—=, 7] satisfying |f(x)| < m
and is everywhere majorized by 2|f| log* (27|f]), which is integrable. Since
the measure of the complement [—m, #]\E,, tends to zero as m — oo, it
follows from (12.9.13) that

|H *fr — H=f,|, < 2

provided n > m > m(e). The sequence (H *f,)*., is thus Cauchy, and
therefore convergent, in L!. But, since f, — f in L, H * f, — H * f distribu-
tionally (see 12.6.6). It follows that H x f € L. Finally, if (12.9.10) be written
down with f, in place of f, the passage to the limit as n — co will show, since
H % f,— H * f in L' and since Lebesgue’s theorem can be applied to the
integrals on the right-hand side, that (12.9.10) continues to hold for the
chosen f. The proof of (2) is thus complete.

Remark. Statement (2) is, in a sense, the best possible of its type; for
the details, see [Z,] p. 257.
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(3) We remark finally that there are also integral inequalities applying to
the functions conjugate to bounded functions and to continuous functions.
Thus, there exists an absolute constant A, > 0 such that

%Tfexp Af@)ldr <0 i |fle < land A < Ay. (12.9.14)

Moreover,

%r fexp Al f(@)]]1dz < if fe C and A is real. (12.9.15)

Complex variable proofs of these results will be found in [Z, ], pp. 254-257;
alternative proofs will appear in 13.9.2. See also [Kz], p. 70.

12.10 Mean Convergence of Fourier series in L” (1 < p < )

Kolmogorov remarked in 1925 on a way of expressing syf in terms of
conjugate functions, the use of which leads painlessly from 12.9.1 to mean
convergence of the Fourier series of a function in L” when 1 < p < oo [see
relation (B) in 1.3.2].

12.10.1. Another Theorem of Marcel Riesz. Suppose that 1 < p < co.
There exists a number £ = k, such that for f € L” one has

lsxflls < k|f]l, forall Ne{1,2,...} (12.10.1)
and
lim |f — syf], = 0. (12.10.2)
N- o

Proof. Put f, y(x) = e**"*f(z). Then
H x fy(x) = —1 Z sgnn - f(n — N)einz

nez

Hxf_yx) = —1 Z sgnn-f(n + N)einz,

nez

Hence, for N > 0,
e~V x fy)) — €VH 5 y(@)]
= —zz[sgn (n + N) — sgn (n— N)]f(n)ei=,

nez
or

i[e™ NI H x fy(x)] — ¥ [H = f_y(2)]]
_m}. (12.10.3)

= 28,.f(a) + fN)e™ + f-
Using 12.9.1 and 2.3.2, (12.10.1) follows directly. [The value of k appearing
in (12.10.1) is not necessarily the same as that appearing in (12.9.1).]

Now (12.10.1) shows that the set, say 8, of fe L? for which (12.10.2) is
true, is closed in L?. For suppose that (f,)<-, is a sequence extracted from S
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which converges in L” to f. Then

HSNf '—f“D < HSNf - San“p + HSan _fn"p + an. _fnﬂ
< k”f _fn”p + “San _fn“p + ”f _fn”P
=&+ D|f = fulo + lsufa = fal-

Given ¢ > 0, first choose and fix n = n(e) so that

€
”f_fnup < 2(k + 1)’
and then choose N, = N(e) so that

“8an - fn"p < ]/25
for all N > N,. This last choice is possible since f, € 8. It appears thus that

| louf = £l < &
for all N > N,, which shows that fe 8.

Having seen that 8 is closed in L?, it remains only to show that S is every-
where dense in L?. But it is evident that S contains all trigonometric poly-
nomials. These are everywhere dense in L? by 6.1.1. The proof is thus
complete.

12.10.2. Further Inequalities. Assuming the inequality (12.9.9) to hold
for trigonometric polynomials, the equation (12.10.3) yields at once the
estimate

lsnfll, <kl fls forall pe (0, 1)and all N € {1, 2, ...} (12.10.4)

for trigonometric polynomials f. (The constant k, need not have the same
value in (12.10.4) as in (12.9.9).) The extension to any f € L' is almost
immediate. (Approximate f by the trigonometric polynomials ayf.) Then,
much as in the closing stage of the proof of 12.10.1, it may be inferred
that (12.10.2) holds whenever f e L and 0 < p < 1.

Likewise, assuming the results in 12.9.9(2), it may be inferred that

A
lsn Sl SEJ‘IJ’I log*| f|dx+ B forall Ne{1,2,...} (12.10.5)

whenever f-log* |f| e L'. A little more argument will then show that
(12.10.2) holds with p = 1 whenever f-log* |f| € L; for the details, see
[(Z,], p. 267.
The result stated in Exercise 10.2 shows at once that (12.10.1) and (12.10.2)
are false when p = 1 and f is suitably chosen from L!. (But see 12.7.9(2).)
See also MR 55 # 963.
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12.10.3. Projection of L” onto H?. Consider the distribution

P = 1,1+ ¢+ iH), (12.10.6)
which is such that

Pny=1ifnz=o0, =0if n < 0. (12.10.7)
For any distribution F we have

Px F = Z ]’:‘(n)ei"I (12.10.8)
nz0

Most of the results about P can be read off from those of H appearing in
Section 12.8, 12.9.1, and 12.10.2. In particular, P is a distribution of order
exactly 1; and the set of f € L! for which P % f € M is meagre [see 12.8.3(3)].

The operation F' — P % F is a projection, that is, it is linear and idempotent.

If we introduce the Hardy space H? for 1 < p < o0 (see Exercise 3.9, the
references cited there, and also Chapter 17 of [R,]), then it follows from 12.9.1
that, when 1 < p < o, f— P % f is a continuous projection of L” onto HP”.
This assertion is false for p = 1 [see 12.8.3(3)]; indeed it is known (D. J.
Newman [1]) that there exists no continuous projection whatsoever of L! onto
H.

12.11 Pseudomeasures and Their Applications

12.11.1. Definition of Pseudomeasures; the Space P. By a pseudo-
measure is meant a distribution S such that S is a bounded function on Z;
the terminology appears to have been coined by Kahane and Salem; see [KS],
Appendices I and II; [Kah,], Chapitre I1T; [Kz], p. 150. Thus, the
distributions / and P introduced in 12.8.1 and 12.10.3, respectively, are
pseudomeasures. We denote by P the set of pseudomeasures; P is a linear
subspace of D, and M < P properly. P is also a convolution algebra.

Pseudomeasures arise quite naturally in the representation of multipliers,
to be discussed in Chapter 16.

12.11.2. Let us reintroduce the linear space A of continuous functions f
such that

(VAN

> 1fm)] < o; (12.11.1)

nez

see Section 10.6 and 11.4.17,
As has been noted in 10.6.1 and 11.4.17, A is a Banach space and also a
Banach algebra under pointwise operations.

12.11.3. P as a Dual Space. One reason for the significance of P is that it
can be identified with the set of continuous linear functionals on A: each
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continuous linear functional on A is expressible in the form

F=>8(f) = 2, 8m)f(=n)
neZ
for a uniquely determined S € P; and, conversely, each S € P generates thus
a continuous linear functional on A. The dual norm of S is

IS]le = sup {|S(/)] : fe A, [f]la < 1},

which proves to be equal to
8]« = sup {|S(n)| : n € Z}.

All this is scarcely more than a restatement of the fact that each continuous
linear functional on £*(Z) has the form

$— 2 (=)
nez
for a uni(jue Y € £°(Z), and conversely; see Exercise 12.32.
Since A is a Banach algebra, the product fS of fe A and Se€P can be
defined as a pseudomeasure by means of the relation

fS(g) = S(fy) (g€ A); (12.11.2)

compare the substance of 12.3.4.
If ¢ € £1(Z) and ¢ € £°(Z), then ¢ € A and i, the distributional sum of the
series

>, e,

nez

is a pseudomeasure. Moreover, ¢ * iy € £°(Z) and (see Exercise 12.32 again)

(¢ *4) = . (12.11.3)

12.114. Problems Involving Pseudomeasures. Spectral Synthesis
Sets. The most fascinating problems concerning pseudomeasures arise in
connection with applications of the Hahn-Banach theorem to the study of the
analogue, for the group Z. of the problems discussed in Section 11.2 in rela-
tion to the groups 7" and R (see 11.2.2 and 11.2.5; 12.12.6; [R], Chapter
7; [KS], Chapitres IX and X and Appendice IT).

In order to describe such problems, it is necessary to speak of the support
of a pseudomeasure. Generally speaking, one can show that for any distribu-
tion S there exists a smallest closed set £ with the following property:
S(u) = 0 for each u € C* whose support supp « = {x : u(x) # 0}~ does not
intersect £; this set E is the support of S, denoted by supp S. See Exercise
12.29 and also, for the case in which S is a measure, Exercise 12.27.
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A distribution S is said to be supported by a set £, and F is said to support
S, if and only if supp S < F.

Suppose now that S is a pseudomeasure. There is no good reason to expeet
the relation

S(fy=0 (12.11.4)
to be implied by
feA, f(E)<{0} suppSc E; (12.11.5)

compare Exercise 12.30. That (12.11.4) does not in general follow from
(12.11.5) is a corollary of the results due to Malliavin concerning spectral
synthesis mentioned in 11.2.3. (The connections hinge upon the use of the
Hahn-Banach theorem in the manner indicated in 12.12.6 and again in the
hints to Exercise 12.32.)

Actually, as subsequent work of Kahane and Rudin has disclosed, some-
thing more specific is true, namely: there exist real-valued functions fe A
such that, if J, denotes the closed ideal in the algebra A generated by f*
(k=1,2,---), thend, ., is a proper subset of J, for each k. (For the details,
see Exercise 12.53 and the references cited there. The statement remains true
when 7 is replaced by any infinite compact Abelian group whatsoever.)
Expressed otherwise (in dual form, in fact), this means that there exist
functions ¢ € £'(Z) with the property that, if I, denotes the closed ideal
in the convolution algebra £'(Z) generated by the convolution power ¢**
where k € {1, 2, ...}, then I, is a proper subset of I, for each k. The case
k =1 entails (via the Hahn-Banach theorem) that a pseudomeasure S
exists such that

28 =0, IS #0. (12.11.6)

Since the first equation in (12.11.6) shows that supp S < E = ¢-1({0}),
(12.11.6) entails at once that (12.11.5) does not imply (12.11.4).

Other striking counterexamples have been given by Kahane and Katz-
nelson [2].

Faced with this, two courses of investigation suggest themselves, namely:

(1) to seek special types of closed set £ for which the relations (12.11.5)

imply (12.11.4).
(2) to seek extra conditions upon fe A which, in conjunction with
(12.11.5), suffice to entail (12.11.4).

The pursuit of the aim specified in (1) amounts to the study of the analogue,
for the group 7' of the concept of spectral synthesis set in R™ mentioned
in 11.2.3. Thus, with our present approach, it is natural to define a
spectral or harmonic synthesis set (= ensemble de synthése spectrale ou
harmonique) in T as a closed subset E of T such that (12.11.5) im-
plies (12.11.4); the terminology will be explained in Subsection 12.11.6.
It is equivalent to say that E is a spectral synthesis set, if and only if
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(12.11.5) implies fS = 0. Thus if ¢ is as in (12.11.6), E = ¢~ *({0}) is a
closed set which is not a spectral synthesis set.

There is complete accord between the above definition of spectral
synthesis sets in 7" and the apparently different one used in Subsection
11.2.3 for spectral synthesis sets in R™. In other words, it can be shown
without trouble that a closed subset £ of 7' is a spectral synthesis set (as
defined in the preceding paragraph) if and only if it has the following
property: the relation

I=1,={$ect(Z2):$ =0o0nE}
holds for every closed ideal I in #(Z) for which

Zy= {670} :pel} = B,
The reader is invited to construct a proof of this equivalence, using the Hahn-
Banach theorem as an intermediary; compare the arguments presented in
Subsection 12.12.6.

The remarks made in Subsection 11.2.3 about spectral synthesis sets in R™
apply in the main to spectral synthesis sets in 7'; in particular, although
conditions are known which are sufficient to ensure that a given closed
set is a spectral synthesis set, a complete structural characterization of
such sets appear to be extremely difficult; see 12.11.5.

As regards (2), most of the known sufficient conditions impose smoothness
restrictions on f. Perhaps the simplest nontrivial sufficient condition is that
f shall belong to C' and that Df (as well as f itself) shall vanish on E; see
Exercise 12.31. A deeper result asserts that it is sufficient that'f satisfy a
supplementary Lipschitz condition of order 1, that is, that

|f(x) — f(z’)] < const lo — 2|22

the exponent § is known to be best possible (see MR 40 # 629). For this
and other similar sets of conditions, see Subsection 13.5.5 and [KS], p.
123. (These and similar questions are discussed in a more general setting
by Herz [2] and Edwards [4].) Once again, no necessary and sufficient
conditions are known.

12.11.5. Some Examples and Counterexamples concerning Spectral
Synthesis Sets. For details concerning the matters touched upon lightly
here, the reader should in general consult Chapter 7 of [R]; [HR],
Chapter 10; [Kah,], Chapitre V; and Chapitres IX and XI of [KS]; see
also [Kah] and Malliavin [2]. More specific references will appear as we
proceed.

(1) The simplest and oldest specific condition on a closed set E sufficient
(but not necessary) to ensure that E shall be a spectral synthesis set is that
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the frontier of £ contains no nonvoid perfect set (see 11.2.3 and Exercise
12.52). This condition is fulfilled whenever E is countable.

There is a version of this result applying to general groups (see [R], p. 161)
and another applying in the general context of commutative Banach algebras
(see [Lo], p. 86 and [N], p. 226, Theorem 5). In each of these references,
spectral synthesis sets in 7' are discussed in terms of closed ideals in
£Y(Z); see 11.2.3 and 11.2.5. See also [HR], (39.24) and (39.29).

(2) A number of examples of nonvoid perfect spectral synthesis sets are
known. Thus, Herz showed in 1956 that the Cantor ternary set (see Exercise
12.44) is a spectral synthesis set. Herz’s original proof has been developed
and generalized ; see [KS], pp. 124-125, and [R], Section 7.4 and [Kah,],
pp- 58-59. See also MR 50 # 7956; 52 # 8800.

(3) There is another method of constructing nonvoid perfect spectral
synthesis sets, due originally to Kahane and Salem; see [KS], pp. 125-127.
In order to explain this in a little detail, we introduce some notation, sup-
posing in what follows that £ denotes a closed subset of 7'.

Denote by M(E) [respectively, P(E)] the set of measures p (respectively,
pseudomeasures S) such that supp p = E (respectively, suppS < E). Denote
further by P°(Z) the set of pseudomeasures S such that S(f) = 0 whenever
f € A vanishes on E. P°(E) is weakly closed in P(E). It is then evident
that P°(E) = P(E) and almost evident that M(E)  P°(E). (The second
point depends on the remark that any econtinuous function which
vanishes on the complement of E is the uniform limit of continuous

functions, each having its support contained in the complement of E.)
Thus

M(E) < PE) < P(E). (12.11.7)

A moment’s thought will show that £ is a spectral synthesis set if and
only if
PYE) = P(E). (12.11.8)

A fortiori, therefore, any set E such that
M(E) = P(E) (12.11.9)

is a spectral synthesis set. Sets £ satisfying (12.11.9) are usually said to
“support no true pseudomeasures.” For example (see Exercise 12.33), every
finite set is of this type; however, there exist countable closed sets £ that do
not satisfy (12.11.9); see Exercise 15.21.

The first nontrivial examples of sets supporting no true pseudomeasures
were given by Kahane and Salem in 1956 and were nonvoid and perfect (see
[KS], pp. 126-127). More recently, Varopoulos [2] has shown that among the
sets supporting no true pseudomeasures are to be found all the so-called
Kronecker sets defined in Subsection 15.7.4.
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(4) On the other hand, as soon as one can exhibit (or prove the existence
of) pseudomeasures S € P(E) and functions f € A vanishing on E and satisfy-
ing S(f) # 0, it will become certain that £ is not a spectral synthesis set.

This prineiple is valid for quite general groups and lies behind Schwartz’s
proof that the unit sphere E = {x € R®: |x| = 1} is not a spectral synthesis
set in the group R? (see 11.2.3): in this case it suffices to take for S the distribu-
tional derivative ¢u/éx,, where p is the measure obtained by distributing a
unit total mass uniformly over E (see [R], pp. 165-166). In this connection we
remark that it is known ([R], p. 172) that each of the sets {x € R%: |z| < 1}
and {v e R%:|x| = 1} is a spectral synthesis set in R3; it follows that the
intersection of two spectral synthesis sets, and the frontier of a spectral
synthesis set, may fail to be such a set. See also [HR], (40.19); Varopoulos [3];
MR 20 # 7186; 48 # 2671; 51 # 13592; 55 # 8699.

The closing remarks of the last paragraph prompt the question: is the
union of two spectral synthesis sets always a spectral synthesis set? It is not
difficult to see that the union of two disjoint spectral synthesis sets is a set of
the same nature, but the general case is unsolved. See also Varopoulos [3]
and Drury [1], [2].

12.11.6. Spectral Synthesis in £*(Z). In order to explain briefly the
term ‘‘spectral synthesis set” applied to certain closed subsets of R/27Z, it
seems best to consider the spectral (or harmonic) analysis and synthesis
problems for the group Z.

For the group 7, these problems have been introduced in Subsection
2.2.1 and solved in the course of Sections 11.1 and 11.2. For the space L®
(with its weak topology), the analysis problem is that of determining
which (bounded continuous) characters e,(n € Z) of T belong to \_7}", the
weakly closed invariant subspace of L* generated by f. The answer is
contained in 11.1.1, namely, e, e V¥ if and only if » e supp f. The
synthesis problem is that of the recapture of f from these e,, in the sense
that f shall be the weak limit in L of linear combinations of characters
e, € Vf; the possibility of doing this is recorded in Remark (1) following
11.2.1.

In the case of 7' the same is true when we replace L® by L?
(I<p<ow)orC.

Let us now turn to the case of the discrete group Z, whose bounded
continuous characters are the functions e,:n—e* (xeT): see
Subsection 2.5.4 and Exercise 2.3. In this case we cannot discuss the
analysis and synthesis problems for £2(Z) (1 < p < o) or ¢4(Z), since no
character e, belongs to any of these spaces. There remains the space
£*(Z), which contains each e,. It will be necessary to consider £*(Z) with
its so-called weak topology generated by £'(Z) (see I, B.4.2): this is the
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weakest topology on £%(Z) such that, for each ¥ € £'(Z), the function
$— Y wez G(n)Y(n) is continuous in the said topology. (Thus, a sequence
or net (¢;) of elements of £*(Z) converges weakly to an element ¢ of
¢£*(Z) if and only if

lim > dn(n) = 2 $nhin)

nez nezZ
for each € £1(Z).)

The spectral analysis problem for £*(Z) is as follows: given ¢ € £*(Z),
which characters e, belong to VY, the weakly closed invariant subspace of
{*(Z) generated by ¢? By arguing much as in Subsection 12.12.6, the answer
is seen to take the form: ¢, € V? if and only if z € — E, where E = supp ¢.
(The minus sign is a consequence of the way we chose to define ¢ in equation
(2.5.1) and 12.5.4(2); it has no sinister significance.) As for the synthesis
problem, it can be shown (again by arguments similar to those to be used in
Subsection 12.12.6) that ¢ is the weak limit in #£*(Z) of linear combinations of
characters e, € VO if and only if f§ = 0 for each f € A which vanishes en — E.
In turn, this will be true for all ¢ € £*(Z) for which supp § = — E, if and
only if —E is a spectral synthesis set in 7', which is trivially equivalent to
saying that E itself is a spectral synthesis set in 7.

It is now evident why the term ““spectral (or harmonic) synthesis set”’ was
selected: put very crudely, all those functions in £*(Z), which ought to be
synthesizable from the characters e, (x € E), are in fact so synthesizable if
and only if £ is a spectral synthesis set in 7'.

At the same time, the results recalled above concerning spectral analysis
and synthesis in L*® signify in particular that every subset of the discrete
group Z is (or may be regarded as) a spectral synthesis set in Z.

Many of the problems concerned with spectral analysis and synthesis
stem from a study of the case in which the underlying group is R, given by
Beurling [3]. An exposition of generalizations and analogues of Beurling’s
work, applying to general groups, is to be found in Herz [2] and the references
cited there; see also MR 41 # 5893; 50 # 5366; 55 # 3685. For an
especially interesting chapter in this story, see Koosis [1].

12.12 Capacities and Beurling’s Problem

The aim in this section is to explain the concept of capacity referred to in
10.4.6, to apply it to the study of Beurling’s problem mentioned in 11.2.5,
to indicate its kinship with ideas in potential theory, and to provide a guide
to further reading.

It is not possible to provide detailed proofs of all the necessary results
about capacities, nor even to mention specifically all the concepts of capacity
which have shown themselves to be relévant to harmonic analysis and
trigonometric series; see the references cited in 12.12.7(5).
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In 12.12.1-12.12.5 we assemble as quickly as possible enough information
about capacity to make an application to Beurling’s problem, which is
discussed in 12.12.6. In 12.12.7 appear some diverse remarks of a general
nature.

The notion of support of a distribution (see 12.11.4) plays a vital role
throughout this section.

Save in 12.12.7(1), we assume that the number o satisfies 0 < « < 1.

12.12.1. The Kernels K,. For each « € (0, 1) we choose a corresponding
kernel of order a, namely, the function

K, (x) = [sin Ypz|-©. (12.12.1)

Each such kernel can be used to develop a corresponding potential theory in
which K, takes over the role played in Newtonian potential theory by the
Newtonian kernel |z| ! on R® (where |z| here denotes the Euclidean length
of the vector z e R3); see 12.12.7(5). In working toward our immediate
objective, we shall naturally use harmonic analysis much more than is
traditional in Newtonian theory (although modern trends in the latter field
also invoke harmonic analysis to a fair degree). Thus we shall be especially
interested in the Fourier transform of K,,.
The essential facts are that

K,n)>0 (neZ) (12.12.2)
and that
K (n) ~ Cyln|*~1  as |n| - o0, (12.12.3)

where C, is a positive number. The reader should experience no great
difficulty in proving (12.12.2) and (12.12.3); see [KS], pp. 32-33, 39—40.

12.12.2. The «-energy of a Distribution. If A denotes any distribution,
its a-energy is defined to be

B (4) = 3 R m)|d(m)? (<o0). (12.124)
nez
Using (12.12.2) and Bochner’s theorem 9.2.8, it is not difficult to verify
that E,(A4) is finite if and only if the distribution K, * 4 * A* is equal
distributionally to a continuous function f, in which case E,(4) = f(0). This
criterion could therefore be used to define the o-energy of A.
In view of (12.12.3) it appears that 4 has finite «-energy if and only if

> In|*=d@))? < . (12.12.5)

n#0
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12.12.3. The a-capacity of Closed Sets. If E is a closed subset of 7', its
a-capacity ¢,(E) is defined by the relation
1
c(E) = YA (12.12.6)
the infimum being taken with respect to all positive measures p having total
mass p(l) = 1 and with support supp u = E; it is to be understood that
inf {0} = inf @ = o0 and that 1/oo = 0. Recall also that a measure p is
positive if and only if u(f) > 0 for each nonnegative continuous function f
(compare Exercise 12.7); for this it is enough that u(f) > O for each non-
negative fe C®.
In particular, ¢ (£) = 0 if and only if £ supports no nonzero positive
measure p such that
2. 7= Ham)|? < oo,
n#0
It is plain that c¢,(E) = 0 implies that c;(E) = 0 whenever « < 8 < 1.
It is equally clear that ¢,(E) > 0 whenever E has positive measure. The
converse is false: given «, 0 < o < 1, there exist perfect sets £ of measure
zero and positive a-capacity (see [Ba,], p. 406).

12.12.4. Criterion for Positive ¢-capacity. By definition, in order that
a closed set E shall have positive «-capacity, it is necessary (and sufficient)
that E shall support a nonzero positive measure having finite «-energy.

It is true and entirely unexpected that a sufficient condition is that E
shall support a nonzero distribution having finite «-energy.

A proof of somewhat more than this, which depends on delving a little
more deeply into the potential-theoretic development of the notion of
a-energy, is suggested in Exercise 12.42.

12.12.5. Capacitary Dimension. For a closed set E = T we define the
capacitary dimenston of E, denoted by cap. dim. E, to be the supremum of
numbers o such that 0 < « < 1 and ¢,(#) > 0.

It is a fact, which need not detain us at all, that cap. dim. £ is numerically
equal to the so-called Hausdorff dimension of £; see [KS], p. 3¢ Théoréme I.

We shall have need of two results concerning capacitary dimension, one of
which is a very simple deduction from 12.12.4 and will be proved here; the
other is more difficult and we must refer the reader to [KS], p. 106, Théoréme
IV for its proof.

(1) If cap. dim. £ = «,0 < « < 1, and 0 < ¢ < 2/«, then E supports no
pseudomeasures o # 0 for which 6 € £4(Z). (The conclusion holds, indeed,
even if ¢ be assumed to be merely a distribution.)

(2) If 0 < @ <1 and g > 2/e, there exist a closed set E satisfying
cap. dim. £ = « and a nonzero positive measure u supported by £ for which
fe tyZ).
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Proof of (1). We may suppose that ¢ > 2 and choose «' so that
¢ (E) = 0and ¢ < 2/«'.

If supp o © £ and é € £9(Z), a simple application of Hélder’s inequality
for series shows that E,.(¢) < c0. Since ¢, (£) = 0 and supp e < £, 12.12.4
entails that ¢ = 0.

Remarks. If0 < o < 1, there exist closed sets £ with cap. dim. £ = «
which support nonzero positive measures p for which f(n) = O(|n|~%*) for
any preassigned 8 < «; and closed sets E of measure zero exist which support
nonzero positive measures p for which i(n) = O(|n|°~*) for any preassigned
e > 0; see [Z,], p- 146. The best such results are due to Ivasev-Mousatov;
see [KS], pp. 100-111 (and Hewitt and Zuckerman [3]; Hewitt and
Ritter [2], [3]; Brown [1], [2] for extensions to more general groups).
See also MR 37 # 3277.

The computation of the «-capacity, or even of the capacitary dimension,
of a given set is seldom easy. However, for the purposes of examples, whole
classes of sets (obtained in a fashion rather like that which leads to the famous
Cantor ternary set; see Exercise 12.44) have been defined and some informa-
tion about their capacitary dimensions accumulated; see [KS], Chapitres I,
II, and III.

So, for example, given any integer v > 2 and any number ¢ satisfying
0 < £ < 1/v, one can construct perfect nowhere dense sets £ (the Cantor set
corresponding to v = 2, ¢ = 14) having measure zero and for which
cap. dim. & = log v/log (1/¢); see [KS], pp. 16-17, 34. In particular, Cantor’s
set £ has capacitary dimension equal to «, = log 2/log 3 and «,-capacity
equal to zero.

Incidentally, among such sets Z one finds many sets of uniqueness (see
12.12.8 and [KS], p. 59).

12.12.6. Application to Beurling's Problem. This problem, already
mentioned in 11.2.5, can be formulated in the following terms: suppose that
$ € ¢t (Z) and that E = $-({0}); under what conditions upon E does the
closed invariant subspace V2 of #7(Z) generated by ¢ coincide with £7(Z)?
(The notation V2 is suggested by that introduced in Section 11.1.)

As we shall see, one of the most interesting cases of this problem is almost
(but not quite) completely solved in terms of the capacitary dimension of E.

We discuss three cases, according to the value of p involved.

(1) The case p = 1. The complete solution is contained in Wiener’s
closure of translations theorem for the group Z (see 11.2.5 and Exercise
12.32): V3 = ¢£(Z)ifand only if £ = o.

(2) Thecase 2 < p < 0. (If p = oo, it is understood that £°(Z) is taken
with its weak topology; see the introductory remarks to Chapter 11 and I,
B4.2)
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According to the Hahn-Banach theorem (I, B.5.2), V2 = ¢?(Z) if and only
if the unique ¢ € £7'(Z) satisfying

pxyp =0 (12.12.7)

is 6 = 0. In this application of the Hahn-Banach theorem, we are identifying
the dual of #7(Z) with ¢’ (Z) (a discrete analogue of I, C.1; see [E], Exercise
1.2 and, for p = o0, a special case of Theorem 8.1.1; and Exercise 12.32
below.)

Since ¢ € £1(Z), (12.12.7) is equivalent to

b =0, (12.12.8)

4 being at any rate a pseudomeasure and ¢ a member of A; see (12.11.3).

However, since 1 < p’ < 2, more can be said about {f:: as will be seen in
13.4.1, J is actually a function in L?; if p = oo, it is evident that f € C.

It follows that the condition that E be null suffices to ensure that
V2 = ¢7(Z); that this condition is also necessary when p = 2; that a necessary
condition for any of the specified values of p is that £ be nowhere dense; and
that this last condition is also sufficient when p = co.

Nothing more precise seems to be known for 2 < » < 0.

(3) The case 1 < p < 2. This is the case in which the capacitary dimen-
sion of E enters into the discussion. We will give two results.

(a) In order that V2 = £°(Z), it suffices that
cap. dim. E < 2/p’. (12.12.9)

(b) If 1 > « > 2/p’, there exists ¢ € £}(Z) such that cap. dim. £ = « and
Vo # t7(Z).

Proof of (a). We start by using the Hahn-Banach theorem exactly as in
(2) above. From (12.12.8), it appears that o = i satisfies supp ¢ = E.
Moreover, 6 = ¢ € £7(Z). So (12.12.9) and 12.12.5(1) combine to show that
a = 0 and therefore iy = 0. By virtue of the Hahn-Banach theorem, (a) is
thus established.

Proof of (b). If«>2/p’,12.12.5(2) affirms the existence of a closed subset
E of T satisfying cap. dim. £ =« and a nonzero positive measure u
supported by E and such that Y = fi € /7 (Z). Now it is not difficult to
construct a ¢ € £1(Z) such that ¢~ '({0}) = E; compare the proof of
Lemma, (6.1) in Edwards [4]. Then, since p is a measure, ¢u = 0, which is
equivalent to (12.12.8). Since u # 0, ¥ is not the zero element of £7(Z).
Thus (12.12.7) shows that V3 cannot coincide with £7(Z).

12.12.7. Further Remarks about Capacity. In thissubsection we collect
a few remarks about capacity and give references for further reading.

(1) The cases o = 0, 1 : logarithmic capacity. Hitherto it has been assumed
that 0 < o < 1.
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Corresponding formally to the case « = 0 is the logarithmic kernel
Ky(x) = log (|Jsin Yo z|~1);

the associated concept of capacity is termed logarithmic capacity.

The formulae (12.12.2) and (12.12.3) remain valid for o = 0, and it follows
that a closed set K for which ¢,(E) > 0 for some o satisfying 0 < « < 1 has
positive logarithmic capacity. The converse is false; compare the closing remark
in 12.12.3.

Corresponding to the case ¢ = 1 one must take as kernel the Dirac measure
e: this leads to a concept of capacity that is essentially equivalent to invariant
measure and is of little interest in the present context.

(2) Interior and exterior capacities. In search of greater flexibility, the
concept of capacity, so far defined only for closed sets, can be extended to
more general sets. The first step is the introduction of the so-called interior
and exterior capacities.

The interior a-capacity of an arbitrary set E is by definition

Cax(B) = sup c (F), (12.12.10)

the supremum being taken with respect to all closed sets F < E. Thus
cox(E) = co(E) if E is closed.
The exterior a-capacity of an arbitrary set E is defined to be

cX(E) = inf cou(U), (12.12.11)

the infimum being taken relative to all open sets U containing E.

Before saying any more about these set functions, we observe a further
connection with trigonometric series.

(3) Capacity and convergence of trigonometric series. Reverting to the topics
discussed in 10.4.6, it can be shown that if (c,),ez is such that

S Jnft=ele,]? < oo,
nez

then the (Borel) set of points of divergence of the series

Z cneinx
nez
has interior «-capacity zero. This is a special case of a result applying to more
general notions of capacity; see [Ba,], p. 411. The original result of Beurling
referred to in 10.4.6 concerns the case of logarithmic capacity (¢ = 0). There is
a converse assertion, also due to Beurling. For all this, see also [KS], p. 41-47.
(4) Capacities as set functions. The interior and exterior capacities just
defined are plainly nonnegative and increasing set functions, in which respect
they are like measures. There the similarity ends, however: interior and exterior
capacities are not even finitely additive on simple types of sets. However, it is
not difficult to show that c¥ is countably subadditive for arbitrary sets.
On the contrary, to show that ¢, «(E) = c¥ (E) for a reasonably wide class of
sets is much more difficult than is the corresponding problem for measures.
The satisfactory solution is due to Choquet, who showed that c,4(E) = c¥(¥)
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is true for a wide class of sets E containing at least all Borel sets. This result
dates from 1952 and was the outcome of a profound and original investigation
of nonadditive set functions carried out by Choquet.

A set E such that c,4(E) = c*(E) is said to be a-capacitable and its «-capacity
co(E) is the common value of c,.(E) and cX(E).

(5) Relations with potential theory. The ‘‘capacity’ terminology belonged
originally to potential theory, and its use in the present context is due to the
fact that in Newtonian potential theory (to take the classic example) one may
follow very similar steps. In place of K, one uses the Newtonian kernel
K(z) = |z|~! on R?, where |z| here denotes the Euclidean length of the point
z of R3, in terms of which the self-energy of the distribution of matter repre-
sented by the measure y on R? is expressed by the integral

E() = HK(m — y) du(z) da(y). (12.12.12)

The use of energy considerations in Newtonian potential theory dates back to
Gauss and was rejuvenated in modern times by Henri Cartan. The reader will
observe that the expression (12.12.12) involves viewing a measure as a set
function; see the remarks in 12.2.3 and Exercises 12.38-12.42. On replacing E,
by E, the definitions in 12.12.3 and (2) above lead to the Newtonian capacities
of subsets of R2.

The formal similarity is apparently complete, but we must indicate one
point that has to be checked with care, namely, it has to be verified that for all
positive measures u on 7' one has the equality

HK,,(x — y) du(x) du(y) = ZZ R (m)|am)|2. (12.12.13)
ne

This is not altogether trivial; see Exercise 12.40. (The analogous problem for

Newtonian potentials was investigated by Deny.)

The reader who wishes to look into the details of the relations with potential
theory may consult the long article by Ohtsuka [1] and the references cited
there (especially the items listed as Cartan [5], [6], Fuglede [1] and Deny [1],
[2] in Ohtsuka’s bibliography). Sad to say, the present writer knows of no
account in book form of modern potential theory. For more about connections
between capacity and harmonic analysis, see [Ba;], pp. 398 ff., [KS], Chapitres
III, IV, VIII and (for general groups) Herz [2], Section 3, and the references
cited in these works.

12.12.8. Sets of Multiplicity and Sets of Uniqueness. Other concepts of
smallness of sets, somewhat similar to that expressed by vanishing capacity,
play a central role in the theory of trigonometric series.

Consider again a closed subset £ of 7. It is known that to assert the
existence of at least one nonzero pseudomeasure ¢ with support contained in £
and satisfying

lim 6(n) =0 (12.12.14)

In|—= ©
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is necessary and sufficient in order that E be a so-called set of multiplicity in
the wide sense, or simply a set of multiplicity, that is, that there shall exist a
trigonometric series which converges to zero at all points not in £ and whose
coefficients are not identically vanishing; see [Z,], pp. 344-347: [Ba,], p. 366;
[Kah,], p.- 44; and [KS], p. 54; and compare with the closing remarks in
12.12.5.

In this case, contrary to what the substance of 12.12.4 may lead one to
expect, if in (12.12.14) one were to demand that ¢ must be a positive measure
(or a measure at all, positive or not), a different class of sets £ would result,
namely, the class of sets of multiplicity in the strict sense. In other words, there
exist closed sets of multiplicity that are not sets of multiplicity in the strict
sense; see [KS], p. 57.

A set that is not a set of multiplicity is termed a set of uniqueness (in the
strict sense); and a set that is not a set of multiplicity in the strict sense is
termed a set of uniqueness in the wide sense.

Cantor and Young (1870, 1908) showed that any countable set is a set of
uniqueness. It is virtually obvious that any set of positive measure is a set of
multiplicity in the strict sense. The advent of the theory of Lebesgue measure
and integration brought with it the feeling that all null sets should be sets of
uniqueness, but this expectation was shattered by Men’shov (1916).

For details concerning all these matters, see [Z;], Chapter IX; [Ba,],
Chapter XIV; [KS], Chapitres V and VI. See also Kahane and Mandelbrot
[1]; MR 35 # 3379; 40 # 631; 51 # 11016.

12.13 The Dual Form of Bochner’s Theorem

In this section we shall temporarily turn aside from our main pursuit in
order to apply something of what has been learned in this chapter to formu-
late and prove the form of Bochner’s theorem about positive definite func-
tions that is applicable to the group Z. The form of the theorem applicable
to the circle group 7" has been dealt with in Chapter 9.

12.13.1. Positive Definite Functions on Z. A complex-valued function
¢ on Z is said to be positive definite if and only if

> > $m — e, > 0 (12.13.1)

meZ nez

for each sequence (¢, ),z of complex numbers having a finite support (that is,
such that ¢, = 0 for all but a finite set of » € Z). This definition should be
compared with (9.2.1) and (9.2.2).

It follows readily from (12.13.1) that

$(—n) = $(n), |$(n)] < $0) (neZ); (12.13.2)

in particular, each positive definite ¢ belongs to £°(Z).



122 DISTRIBUTIONS AND MEASURES

12.13.2. Relation with Fourier-Stieltjes Transforms. Let us consider
a function ¢ on Z of the form ¢ = i, where p e M. In this case a simple
calculation shows that

> D dlm — n)enc, = u(t?), (12.13.3)

where ¢ is the trigonometric polynomial defined by

t(x) = z cr e,
nez
From this we infer at once that ¢ is positive definite whenever the measure u
is positive in the sense (compare Exercise 12.7) that u(f) > 0 for any non-
negative f e C.

On the other hand, if ¢ is positive definite, (12.13.3) shows that u(]¢|?) > 0
for every trigonometric polynomial ¢, whence it follows (see 12.2.3 and
Exercise 2.18) that p is a positive nieasure.

To sum up, we find that a Fourier-Stieltjes transform 4 is positive definite
if and only if the measure p is positive. If the measure u is (generated by) a
continuous function f, then the transform f is positive definite if and only if
f 1s nonnegative.

We are now ready to state and prove the appropriate Bochner representa-
tion theorem.

12.13.3. The Bochner-type Theorem. The positive definite functions ¢
on Z are precisely the functions of the form ¢ = 4 for some positive measure
peM.

Remarks. That this is indeed an exact analogue of the representation
formula (9.2.3) for positive definite functions on the circle group 7 hinges upon
the following remarks.

By a (bounded Radon) measure on Z will be meant a continuous linear
functional A on ey(Z) (compare the substance of 12.2.3 together with Exercise
4.45 of [E] or p. 364 of [HS]), and it is quite easy to show that to each such
measure A on Z corresponds a unique function A € £*(Z) such that

Alg) = 2 Amg(n)
nez

for all ¢ € ¢o(Z). Furthermore, the measure A is positive, in the sense that
A(é) = 0 for any nonnegative function ¢ € ¢o(Z), if and only if the corre-
sponding function X is nonnegative. Bearing this in mind, the Bochner theorem
9.2.8 for the group T asserts that any continuous positive definite function f on
the circle group is equal to the Fourier transform A of some positive (bounded
Radon) measure A on Z.

To this we might add that on the compact group 7' all Radon measures are
automatically bounded (because of compactness); and that on the discrete
group Z all functions are continuous (because of discreteness).
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12.13.4. Proof of 12.13.3. In view of 12.13.2 it remains only to show that,
if ¢ is a positive definite function on Z, then ¢ = i for some measure u € M.
To this end, we choose any approximate identity (k,);%; in L' such that

r=1

k. >0, |k|, <1, and k., € ¢£1(Z) for each r, and we consider the functions
¢, = k. (12.13.4)
Let us first verify that each ¢, is positive definite. We have in fact |

S5 dum — wlece = 52 [ D, 3 b — n)egeTo,en}

all sums appearing being over a finite range. The last integral appearing is
nonnegative since k, > Oand { ...} > 0, so that ¢, is indeed positive definite.
Besides this, ¢, € £1(Z) because k, € £1(Z) and ¢ € £=(Z). We can therefore
write
é, = f., (12.13.5)
where

f@) = 2 n)en=

nez

is a continuous function on the circle group. Since ¢, is positive definite,
12.13.2 shows that f, is nonnegative. Consequently,

I£:l: = f:(0) = $,(0) = £,(0)¢(0)
< ||k |1 - $(0) < $(0).

Applying 12.3.9, it follows that there exists a subsequence (f, )%, such that
the measures generated by the functions f, converge weakly in M to a
measure p € M. Then, by (12.13.5), we have

g =lim f, =lim ¢, (12.13.6)
§— 0 §—
pointwise on Z. But (12.13.4) combines with 3.2.4 to show that
lim ¢, = ¢ (12.13.7)
pointwise on Z. A comparison of (12.13.6) and (12.13.7) shows that ¢ = j.
That p is positive, follows either from 12.13.2, or from its construction as the

weak limit in M of the positive measures generated by the nonnegative
functions f, . The proof is thus complete.

12.13.5. Productof Positive Definite Functions onZ. It follows at once
from 12.13.3 that the pointwise product of two positive definite functions on
Z is again positive definite (compare Exercise 9.4).



124 DISTRIBUTIONS AND MEASURES

12.13.6. A Line to Pursue. We end this section with what it is hoped
will be a leading question and an invitation to the reader to provide his own
answer thereto.

Suppose that H denotes a Hilbert space and U a unitary endomorphism
of H Assign to each h € H the complex-valued function ¢, on Z defined by
dn(n (Umh, h), where (-, ) denotes the scalar (or inner) product in H.
It is snnple to verify that ¢, is positive definite. The question is: what
results if to ¢, one applies the Bochner theorem 12.13.3? Can you relate the
result to the so-called spectral resolution theorem for U and to an operational
calculus for U?

EXERCISES

12.1.  Supply a proof of the equivalence of (12.1.2) and (12.1.3).
12.2. Prove that if w € C*, then

C*—lim Tyu =T, u

a—ag
and
L T_u—u
C®—lim —%— —~ = Du.
a-0 a

12.3. Is it true that

(1) €° — lim,_, , sin nx/n*® = 0?

(2) €* — lim,_, ,, cos nxfexp [(log n)¥2] = 0?

Give your reasons.

12.4. Define u(z) = 0 for z = 0 (mod 27) and u(x) = exp (—cosec? Vs x)
otherwise. Show that u € C* and that D™4(0) = 0 for n = 0, 1,2, ... This
shows that C* contains many nonanalytic functions.

12.5. (1) Suppose n is an integer, » > 2, and define u,(z) tc be 0 if x = 0
or if 2m/n < |z| < =, to be exp (—cosec? Yonx) if 0 < || < 27r/n and else-
where so as to be periodic. Show that u, € C* and that 2n)™" [ u, dx =
¢, > 0. Verify that the v, = ¢, - u, form an approximate identity.

(2) Deduce from (1) that to each fe C and each neighborhood V of the
support {x : f(x) # 0} of f there corresponds at least one sequence (u,)r-;
extracted from C*® satisfying the following conditions:

3) [tallw < ] for all

(b) u, vanishes outside V for all »;

(c) lim, o, %, = f uniformly.

Show similarly that the conclusion stands when C is replaced by L*,
provided condition (c) is replaced by

(¢") lim, o, u,(x) = f(z) a.e.
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Note: We know that there exist approximate identities formed of
trigonometric polynomials. The essential feature of the v, is that they vanish
outside smaller and smaller neighborhoods of 0 in 7. This property is
crucial for the local study of distributions. The results in (2) have already
proved to be useful in 12.3.2(5); see also Exercises 12.29 and 12.30.

12.6. Verify in detail the statements made in 12.1.2 and 12.1.5.

12.7. A distribution F is said to be positive if and only if F(u) > 0 for
any nonnegative real-valued u € C*. Show that any positive distribution is a
measure.

12.8. Give a proof of 12.7.1 without using 12.3.9.

12.9. Prove the impossibility of multiplying measures in the fashion
described in 12.3.5.

Hints:  Use Exercise 12.7 to show that «8 e M whenever o and 8 are
positive measures. The next and crucial step is to show that there exists a
number ¢ > 0 such that

leBlly < ellefo]Blx

for any two positive measures « and B. Assuming the contrary, show that
there would exist positive measures «, and B, (n = 1,2,---) such that
loeally = [|Bally = 1 and

”aanHI > n®.
Consider the product of, where

@ = z n—z(xn’ B = z n_len’
n=1 n=1
in order to reach a contradiction, observing that the hypotheses made in
12.3.5 ensure that of is a positive measure such that «f > n~%«,B, for
all n.

12.10. Show that if 4 is the measure generated by a function f e L!, then
lully = 1£], (see 123.9).

12.11. Prove that if F is a distribution such that DF = 0, then F is a
constant function.

12.12. Suppose that F is a distribution and that DF = fe L'. Show that
f(0) = 0, and that F is the distribution generated by the absolutely con-
tinuous periodic function ¢ + J;C f(y) dy, ¢ being a suitably chosen constant.

12.13. Show that if p, — p weakly in M (see 12.3.9), then

lully < lim inf ||, .
n-—> 00

12.14. Show that if f, — f weakly in L?, where 1 < p < oo'(see 12.3.10),
then

171, < lim inf [,
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12.15. Show that if A(1) = A(0) = 0, then the solution of equation

(12.4.2) is
F = F0) + > (in) 'An)e=.
n#0

12.16. Show that the equation D?F + F = ¢ has no distributional
solutions F.

If P(D) is a linear differential operator with constant coefficients and
AeD is given, discuss the solubility and solutions of the equation
P(D)F = A, where the unknown F is to belong to D.

Remark. In case the reader finds the above conclusion puzzling, it
should perhaps be stressed that in this book we speak only of distributions
on the group 7. There are, of course, distributions F on the group R
which satisfy D?F + F =e¢. It can be shown that distributions on 7'
correspond to distributions on B which are periodic; it is this additional
requirement of periodicity that is incompatible with the given differential
equation.

12.17. If (K,)7-, is an approximate identity in L' and u € M, show that
K, * p— p weakly in M.

12.18. Verify in detail the computations referred to in 12.8.2(1) and (2).

12.19. Assuming the theorem of F. and M. Riesz cited in 12.8.5(4), show
that if f and f are each (equal almost everywhere to) functions of bounded
variation, then each is (equal almost everywhere to) an absolutely continuous
function.

Hint: Use the substance of 12.5.10.

12.20. Writing f = H  f, where f € L', and using the notations introduced
in 7.1.1, verify that

- 1 [* ~
suf@) = =32 [ e + ) = Je - 9Duw dy.
Show that
f Dy(y)dy ~ 21og N
0
for large N, and conclude that if f e L! and
fe+y) —flo—y) =d+ «y),
where £(y) — 0 as y — 0. Then
suf(z) ~ —g log N
as N — oo.
12.21. Show that if S is a pseudomeasure (see Section 12.11), then

8 = ¢ + Df, where c is a constant and f e L%
12.22. Suppose that F € D is such that

sup ||syF|w < .
N
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Prove that F € L® and that
IPlo < sup s P

12.23. Prove that a measure p € M such that |T,n — pfl; >0 asa—>0
is (generated by) a function in L*.

Remark. Numerous stronger results are known; see Edwards [2] and
the remarks following Exercise 3.5. See also MR 52 # 1161.

Hint: Show that if |[T,u — p|, < e for |a| < 8, then |puxf — p]; < e
for any feL?, f > 0, (1/2n) [fdx =1, f = 0 outside |#| < § modulo 27.
Choose a sequence of such f corresponding to 8 — 0 and use the completeness
of L.

12.24. Prove the assertion made in Remark 8.5.5(2).

12.25. Suppose that (¢,),ez is a complex-valued sequence such that, for
some feLtandal N = 1,2,.- -,

sylx) = IZ ce™® = f(x)
ni< N
for almost all . Show that there exists a measure p € M such that ¢, = ji(n)
(n € Z). Compare 12.7.9(1).

Hint: Use 12.7.5.

12.26. Let B denote the set of & e € such that £(rn) = 0 for all integers
n < 0.

(1) Verify that B, when taken with pointwise operations and with the
norm induced on it by that on C, is a Banach algebra satisfying the conditions
(a) to (¢) in 11.4.1.

(2) Show that if € B and Re k(x) > O for all real x, then Re y(h) > 0 for
y € I'(B).

(3) Deduce that if & € B is as in (2), and if p > 0, then

(h")™(0) = (A(0))",

where the pth power denotes the branch that is positive on the positive real
axis.

Remark. This is the argument referred to in 12.9.8(1).

Hints: For (2) use the Hahn-Banach theorem (I, B.5.2) to show that
there exists a Radon measure p such that u(k) = (k) for all he B and
lely = |yl = 1. Use the relations u(l) = y(1) = 1 = |||, to show that
w = 0. For (3), use (2), 11.4.10 and 11.4.15 with @ equal to the said branch
of AP,

12.27. Suppose that p € M and let

I={feC:pu(fg) =0 forallgeC}.

Show that I is a closed ideal in € = C(T') (see 11.4.1).
Put E for the set of common zeros of elements of I and regard £ as a
closed subset 7. Let U be the complement of £ in 7. By using Exercise
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11.17, show that U is precisely the set of points « of T' with the following
property : there exists a neighborhood U of z in T such that u(f) = 0 for
every f € € which vanishes outside U, .

Remarks. This last property is more briefly expressed by saying that
the measure p vanishes on the neighborhood U, and it appears that y also
vanishes in the same sense on the open set U. The closed set £ is the support
of the measure u (compare the substance of 12.11.4).

12.28. Formulate and prove an analogue of the result in Exercise 11.18
applying to the case in which A is replaced throughout by €=.

12.29. As a matter of definition, a distribution § is said to vanish on a
given open subset Q of 7'(in symbols S = 0 on Q) if and only if S(u) = 0
for every u € C® satisfying supp » < Q. Show that if (Q,) is a family of
open subsets of 7', and if § = 0 on Q, for each «, then S = 0 on UaQa.

Deduce that there exists a largest open subset Q of T' on which a given
distribution § vanishes. The complement T\ is the support of S, denoted
by supp S; see 12.11 4.

Show also that if § € D™ and S =0 on an open subset Q of T, then
S(u) = 0 for each u € C™ satisfying supp » < Q.

12.30. Let S € D™ and write £ = supp S. Show that S(z) = 0 whenever
uelCm™and D?u = Qon E for 0 < p < m.

Remark. Despite the preceding result, it is not generally true that
lim,_, , S(u,) = 0 for any sequence (u,)g-, such that DPu, — 0 uniformly
onKask—>ocoforp=0,12,---.

Hints: Reduce the problem to showing that there exists a sequence
(u;)7%, of elements of C™ such that each u, coincides with % on some open set
containing £ and »; — 0 in C™. To construct (u;) proceed as follows (& denotes
the coset modulo 27Z of x € R): introduce the metric

d(@,y) = inf [z — y + 2nx|
nez
on T, in terms of which define E; as the set of points within distance J of

E. Then
(8) = sup {|D*u(%)| &€ E,, 0 < p < m}

tends to 0 with 8. Using the relation
Dru(#) = f D u(t) dt;
Zo
where z, € £, € E, show that

| DPu(g)| < 8™~ Pg(8) (1)
forteB;and 0 < p < m.
Construct functions w; € €* so that

wy(x) = 1 on Ey,,;, = 0 outside E’d,}

|D7w,| < 4,577 2)
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this may be done by setting w; = k; * v,, where k,€C, 0 < k; < 1, k; =1
on Ey,, ks, = 0 outside Ei,, and where v, is as in Exercise 12.5 with »
chosen so that 2#/n < Y, 8; k, is easily constructed in terms of the function

& —d(Z, E) = inf d(2, ).

yeE

Now put u; = u - w, , where 3, is any sequence tending to 0. Use (1) and
(2) to verify that DPu; — O uniformly as j — oo, provided 0 < p < m.

12.31. Let S be a pseudomeasure whose support is denoted by E (see
12.11.4 and Exercise 12.29). Show that the relation f8 = 0 holds whenever
feCand f= Df =0on K.

Hint: Use Exercises 12.21 and 12.30.

12.32. Let ¢y € £1(Z) and E = ¢ ({0}) = T. Prove that V}, contains
every ¢ € £1(Z) such that ¢ € C* and § = Dé = 0 on E; and that V;O = {YZ)
if E is void. (The notations are as in 12.12.6. Compare 11.2.5.)

Hints: First verify that any continuous linear functional on £}(Z) is
expressible as

8 > O(n)(—n)

nez

for some ¢ € £*(Z). Next, by applying the Hahn-Banach theorem (I, B.5.2),
reduce the problem to showing that, if € £(Z) satisfies ¢, * ¢y = 0, then
é # ¢y = 0. Introduce the pseudomeasure S = i, verify (12.11.3), and so con-
clude that it suffices to establish the implication

$sS =0= ¢S =0.

Finally, show that the hypothesis here entails that supp S < £ and then
apply the preceding exercise.

12.33. Let S be a distribution whose support is a finite subset of 7,
say {ay, ..., a;}. Prove that there exists an integer m > 0 and complex
numbers¢;,(j=1,2, ..., k;p=0,1,...,m) such that

k m
— p
8 = z Z 05D €ay -
j=1p=0

Deduce that a pseudomeasure with a finite support is a measure.

Hints: Suppose S e D™ Apply Exercise 12.30 in combination with the
following simple lemma (which should be proved): if L is a linear space and
£, 4y, -+, ¢, are linear functionals on L such that £(y) = 0 whenever y € L
and £;(y) =--- = £,(y) = 0, then / is a linear combination of £}, - - -, Z,.
For an alternative proof, see MR 37 # 6752.
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12.34. (1) Suppose that ¢, (r = 1,2,--+) and ¢ are functions on Z such
that

(a) ¢, is positive definite (r = 1,2,---);

(b) m = sup, ¢,(0) < oo;

(¢) lim,, , ¢.(n) = ¢(n) forne Z.

Show that there exist positive measures u,e M (r =1,2,---) and peM
such that ¢, = 4, (r = 1,2,---), ¢ = ji and lim,, , p, = p weakly in M (see
12.3.9).

(2) State and prove an analogue of (1) for the case in which Z is replaced
by T'.

Remarks. The analogue of (1) for the case in which Z is replaced by R
is Lévy’s so-called continuity theorem. Positive definite functions on R have
close connections with probability theory.

A bounded (Radon) measure on R may be defined as a continuous linear
functional on the Banach space Cy(R) composed of the continuous functions
on R which tend to zero at infinity, the norm on Co(R) being defined by

171 = sup {|f(2)] : x € B};

see 12.2.9 and the remarks following 12.13.3. Such a measure, u, is said to
be positive if and only if u(f) > 0 whenever f e Cy(R) isreal and nonnegative-
valued.

A bounded positive Radon measure p on R such that p(1) = 1 is termed a
probability measure on R. The Fourier transform of x, namely, the function

fié—ple™¥)  (¢€R),

is in probability theory usually termed the characteristic function of the
probability distribution defined by u.

As has been stated in Section 9.4, there is a version of the Bochner theorem
valid for positive definite functions f on R: it asserts that the continuous
positive definite functions f on R satisfying f(0) = 1 are precisely the Fourier
transforms (that is, characteristic functions) of probability measures on R.

12.35. A distribution F (on T') is said to be positive definite if and
only if

Flusxu*) 20

for each u € C* (compare 9.2.1). Show that this is so if and only if # > 0,
and deduce that F is positive definite if and only if

F = Z c.e"%,

nez

where (¢,),ez is & nonnegative tempered sequence.
Remarks. We have mentioned in Section 9.4 some of the many ex-
tensions of Bochner’s theorem 9.2.8; the present exercise falls into this
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category. If it in turn is generalized to distributions on the group R™, a great
profusion of possibilities arise. The interested reader should consult [GV],
Chapter II, where diverse modifications of the concept of positive definiteness
are also discussed.

12.36. The Riesz-Markov-Kakutani theorem mentioned in 12.2.3 has as
corollaries the following three statements.

(1) To each measure u € M corresponds a positive measure |u| € M such
that |u(f)| < |p|(|f]) for each bounded complex-valued Borel-measurable
function f.

(2) If f and f, (n =1,2,..-) are complex-valued Borel-measurable
functions such that

sup |fu(x)| < oo, lim f, = f pointwise,
then
lim u(f,) = w(f)

n—

for each measure p e M.
(3) The set of points « for which |u|(xz,) > O is countable, n denoting a
given measure and ., denoting the characteristic function of {z}.
Making use of these results, show that, if ¢ is a complex-valued function
on Z which is a Fourier-Stieltjes transform, and if

Syp@) =N-1 > $n)en=

p<n<p+N

for N =1,2,.-- and p real, then
lim sup |Sy (@) =0 (4)

N-—- o peR

for all real values of z save perhaps those belonging to a countable set.

Show that (4) remains true whenever ¢ is the limit, uniformly on Z, of
Fourier-Stieltjes transforms.

12.37. Let F be a real-valued function defined on some real interval
(a, ) and having the following properties:

(1) the set E of real numbers z, such that F~({z}) is unbounded above, is

uncountable;
(2) for any ¢ > 0,
sup |F() — F(T)| = o(l) as T — o0.

T<t<T+c T
By using the preceding exercise, show that any function ¢ on Z, such that
$(n) = exp {inF(n)}

for ne Z and n > a, is not the limit, uniformly on Z, of Fourier-Stieltjes
transforms.
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12.38. Suppose that £ is a closed subset of 7', that 0 < a < 1, and
that ¢, (£) > 0. Prove that there exists a unique positive measure u such
that u(1) = 1, supp p < K, and

1 .
Ea(l")

Remarks. This measure p is termed the equilibrium measure on (or for)
E, mainly because of the physical significance of potential theory in the
Newtonian case. Equilibrium measures play an essential role in the proof of
the nontrivial assertion in 12.12.4; see Exercise 12.42.

Hints: Verify that

(1) E,(%(4 + B)) < KL E, + % E,(B) for any two distinet distribu-

tions 4 and B having ﬁmte o-energy;

(2) E(4) < lim inf, , , E,(A4,) whenever 4, — 4 in D.

Then use 12.3.9.

12.39. Suppose that £ and « are as in the preceding exercise. Denote by
& the set of measures having finite «-energy, by & the set of measures in &
supported by E, and by &* and &% the set of positive measures in & and in
&g, respectively. In & define the inner (or scalar) product

() = > R (n)in)(n)

nez

ca(E) =

and associated norm |u| = E,(u)”.

Which (if any) of &, &, &%, &7 is complete for the above norm?

Can the projection method, explained for the case of L? in Exercise 8.14,
be adapted to establish the conclusion of the preceding exercise? If so, give
the details.

Note: In the following three exercises it is necessary to assume the
integration theory associated with a Radon measure; compare the remarks
in 12.2.3; [E], Chapter 4; and [HS], Chapter III. Moreover, 0 < « < 1, E is
a closed subset of T, K = K, ¢(E) = c,(E), g is the equilibrium measure
on K (see Exercise 12.38); and in general we drop the suffix “«

12.40. If A and B are distributions having finite energy, we define the
inner product

(4|B) = > R(m)A(n)B(n),
nez
the corresponding norm being ||4| = (A4|A4)", the square root of the energy
of A; compare Exercise 12.39.
Prove that if u and v are positive measures having finite energy, then

mm=fmm,

where U*( f K(x — y)du(y) is a Borel-measurable function belonging
to Lt Whlch generates the distribution K = p.
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Remark. U* is termed the (a-) potential of u; it can be defined as a
nonnegative extended real-valued function by the above integral for any
positive measure u and is easily seen then to be lower semicontinuous.

Hint: See [KS], p. 35, Proposition 3.

12.41. Suppose that ¢(E) > 0 and that pg is defined as in Exercise 12.38.

Prove that

1
Ute(z) = oF)
at almost all points z of E.
Hint: See [KS], pp. 36-37, where more refined results are established.

12.42. Suppose that c(E) > 0. Prove that

1
2
141* > 2z

for any distribution 4 such that supp 4 < E and 4(0) = 1.

What can be said if ¢(E) = 0?

Hints: Let E, denote the set of points of T at distance at most 1/n
(with respect to the metric introduced in the hints to Exercise 12.30) from
E; put y, = ug . Show that

(/“LnlA) = ]},1_12-0 (;u“n l A * vN)s

where the vy are as in Exercise 12.5, and use the preceding exercise to deduce
that (u,|A4) = ||p,]? and so that |4 > |u,|. Using 12.3.9, extract a sub-
sequence (u, ) converging weakly in M to a positive measure n’ such that
¢'(1) = 1 and supp ' < E; apply (2) of the hints to Exercise 12.38.

For the second part, show that ¢(E,) — 0 if ¢(E) = 0.

12.43. Let (1)~ be a sequence of measures such that

sup [y < o0

and
¢ = lim f,
k=
exists pointwise on Z. Show that there exists a measure p such that
lim,_, , g = p weakly in M and g = ¢.

Formulate and prove an analogous assertion applying when M is replaced
throughout by L? where 1 < p < 0.

12.44. Consider Cantor’s ternary set E, formed as follows: from, [0, 27]
delete the open middle third, leaving the set E,; from each component
interval of E, delete the open middle third, leaving E,; and so on indefinitely;
define E = M-, E,. Verify that m(E) = 0. (It is not difficult to show that
E is uncountable, perfect, and nowhere dense.)
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Construct Lebesgue’s singular function £ as follows: define 7, so that
£.(0) = 0, £,(2m) = 1, and ¢, increases linearly by amount 27% on each
component interval of E,. The funection 7, is increasing and absolutely con-
tinuous. The functions £, converge uniformly as £ — co to a continuous
increasing function ¢ such that £(0) = 0, /(27) = 1. (It can be shown that
£'(x) = 0a.e.)

Let A, be the measure defined by

2n
A(u) = fo u(x)ly(x) dz (we ).

Using the preceding exercise, show that lim,, , A, = A weakly in M, where
A is a positive measure for which

2mn

37 (neZ)

A(n) = exp (—imn) [ | cos
i=1
and supp A © E. Verify in particular that A(+3%) is equal to a nonzero
number independent of k = 1.2, 3, - - -, so that A(n) # o(1) as |n| — c0. (The
associated set-function measure m, is easily seen to be continuous, in the
sense that m,(J) — 0 as m(J) — 0 for subintervals J of [0, 2=].)

Finally, define f(x) = 2#/(z) — « for 0 < z < 27 and by periodicity else-
where. Show that f is continuous and of bounded variation, and that
f(n) # o(1/|n]) as |n| — oo (compare the Remarks following 2.3.6).

12.45. Consider M as a Banach algebra (see 11.4.1).

Prove that any ideal in M is a translation-invariant subspace of M.

Let V be the closed translation-invariant subspace of M generated by the
Dirac measure . Show that V is not an ideal in M. (See 11.1.3(2).)

12.46. Let p # O be an idempotent element of M satisfying ||u]; < 1.
Show that |u|; = 1 and that @ = x5, where S is a coset modulo some sub-
group of Z (see 12.7.4(3)).

Hints: Show first that |uf, = 1. Choose n,€ Z such that A =e, p
satisfies A(0) = 1. Show that A > 0. Put S, = {ne Z : A(n) = 1} = supp A.
Verify the inequality

[A(m) — A(n)|? < 2X(0) - Re {A(0) — A(m — n)} (m,neZ)

and deduce that S, is a subgroup of Z.

12.47. Let p be an idempotent element of M satisfying [|u]l; > 1. Prove
that ul, > % V3.

Remark. It is apparently unknown whether 14V5 = 1.118 - - - is the
best-possible constant in the above statement.

Hints: The proof of the preceding exercise shows that

S={neZ:jimn) =1} =suppi
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is not a coset. Show that this entails the existence of n,, ny, ny € S such that
ny + ng — ng ¢ S. To estimate ||u|;, consider w(f), where

F=2e (14 ey ) + en(l = €y _y)
=2e_n + 2 ny + € py — €nunyong)
12.48. Any periodic subset P of Z is expressible in the form
P=A+kZI={a+kn:neZacd)
where k is a positive integer and 4 is a (possibly void) subset of
{0,1,---,k — 1}.

Use this remark to write down an explicit closed expression for the measure
whose Fourier transform is the characteristic function of P. (Compare
12.7.4(3) and see 16.8.4(2).)

12.49. Let E denote L? (1 < p < o) or M, and let T be a homomorphism
of L' into E (each being regarded as a convolution algebra). Using the
arguments of 4.2.2, show that there exists a map « of Z into Z\U{co} such that
(Tf)™ = foafor feL!, and deduce that T is continuous from L! into E.

Show that T can be extended into a homomorphism 7" of M into E such
that (T'n) = 4 o o for u € M, ji(c0) being interpreted to be 0, and | 77| < | T'||.

Hence (or otherwise) determine all the homomorphisms of L! into L7,
where 1 < p < o0. See also Subsection 15.3.6.

Remark. The extension T of T plays a useful role in the study of
homomorphisms as set out in Chapter 4 of [R]. ‘

Hints: Use the closed graph theorem (I, B.3.3) to establish contin-
uity. For the rest, use Exercise 12.43. A different type of proof for the
case E = M appears on p. 83 of [R].

12.50. Let ¢ be a complex-valued function on Z, and let m be a non-
negative real number. Prove that the following assertions are equivalent:

(1) |2 ep(n,)| < m|> c.ep, || for all trigonometric polynomials > c.e, ;

(2) ¢ = i for some p € M satisfying |u|, < m.

Remarks. There is an analogue of this assertion valid for general groups
and due to Eberlein; see [R], Theorem 1.9.1 and the references cited there.
The special case applying to the case in which 7" and Z interchange their
roles reads as follows: a continuous complex-valued function f on T
belongs to A and satisfies | f|, < m, if and only if

IZ ¢ flx)| < m- sup Iz c et

for all finite sequences (¢,) and (z,) of complex numbers ¢, and points z, of
T'. See also MR 36 # 3065.
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Hints: Consider the linear functional y defined on the normed linear sub-
space T of C by the formula y(t) = 5,.; $(n)f(n). Recall 12.2.9.
12.51. Denote by Q the set of all measures u € M expressible in the form

l‘=zck8ak +f=8+/, (1)
k=1

where f € L, (a,)i% is a sequence of distinct points of T, and (¢,)i%; is a
sequence of complex numbers satisfying ) i | ¢, | < o0, each of £, (a,)& ,
and (¢;)i%; possibly depending upon u. (Q is in fact the closed subalgebra
of M generated by {e,: a € T} U L'.) Measures of the form & are termed
discrete (or sometimes atomic or purely discontinuous); we will denote by
M, the set of discrete measures.

Verify that Q, regarded as a subalgebra of M, is a Banach algebra of the
type described in 11.4.1, and that

Il = ,Zl leel + 171

whenever p € Q is given by (1).

Show that each y € I'(Q) (see 11.4.9) takes one of two forms, namely:

(a) y(p) = 8(x) = 3., cixlay), where y is a bounded (but not necessarily

continuous) character of T';

(b) y(p) = valp) = fi(n), where n e Z.

By using the general version of Kronecker’s theorem (see the Remarks
following Exercise 2.2), deduce that the measure p given by (1) is inversible
in Q provided

ing [§(n)] >0, fA(n) # 0 (ne Z). (2)

Remarks. Q does not exhaust M, comprising in fact precisely those
measures whose continuous singular part vanishes; see [HS], Section 19,
especially p. 337. The continuous singular measures are the ones that present
all the difficulty in studying complex homomorphisms of M; see 12.7 4.

In view of the almost periodicity of § on Z (see Subsection 2.5.4), it turns
out that (2) is actually equivalent to

inf |a(n)] > 0. (3)
nez

Since it is trivial that (3) is necessary in order that p be inversible in M,
either of (2) or (3) is necessary and sufficient in order that p be inversible
in Q or in M.

Hints: In discussing a given y € I'(Q), define the function y on T by
x(a) = y(e_,). Discuss separately the cases in which y| L' = 0 and y|L* #
0, using 4.1.2 in the later case.

12.52. Let E be a closed subset of 7" whose frontier F contains no
nonvoid perfect set. Prove that ¥ is a spectral synthesis set.
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Hints: Suppose that S € P(E) and that f € A vanishes on E; it has to be
shown that fS = 0. Putting S, = fS, use Exercise 12.31 to show first that
E, = supp 8, is a subset of F. Assuming that 8, # 0, B, must have at least
one isolated point, say a. Without loss of generality, assume that a = 0.
Consider the functions u, constructed in Exercise 10.26 and show that
llueS:||p — O with e. Verify that, on the other hand, .S, is independent of ¢
if £ is small enough, and show that this leads to a contradiction of the relation
0Oec B, = supp S,.

12.53. This exercise provides a general basis for one half of the
Malliavin-Kahane-Rudin non-synthesis theorem mentioned in 11.2.3 in
connection with the algebra L'(R™) and again in 12.11.4 for the algebra
A = A(T); see [Kz], pp. 231-232; [HR], (42.15); [Kah,], pp. 63-64, 68.
The other half of the programme consists of proving the existence of f and
o as prescribed below for certain algebras B. This is in itself fairly
complicated; see [R], Section 7.6.4; [Kz], pp.233-235; [HR],
(42.16)—(42.19); [Kah,], pp. 68-72; MR, 39 # 4611.

In what follows, B denotes a commutative Banach algebra with unit e
(as in 11.4.1). If I is an ideal in B, the zero-set or hull of I is defined to be
the set

ZO) ={yeB):y(f)=0 forall fel};
the notation is a natural extension of that used in 11.4.3. For every ideal
Iin B, Z(I) is a closed subset of I'(B) (see 11.4.18).
If £ is a subset of I'(B), the kernel of E is defined to be the set
IE)={feB:y(f)=0 forallyeE};
this is always a closed ideal in B. For regular algebras B (see [Kz],
p- 223), Z(I(E)) = E for every closed subset E of I'(B).

A closed subset £ of I'(B) is said to be a spectral synthesis set (or
spectral set) for B, if and only if I(E) is the unique closed ideal I in B such
that Z(I) = E.

One says that spectral synthesis holds in B, if and only if every closed
subset E of I'(B) is a spectral set for B; this is so, if and only if

I=1(Z{[)
for every closed ideal Iin B.
Denote by B’ the topological dual of B, the duality being indicated by
b >'
Assume that f € B, 6 € B’ and ¢ # 0. Define forall ¢t € R,
C(t) = llexp (itf) - ols. (1)
and assume further that N € {1, 2, ...} is such that

<

J [¢INC(t) dt < . (2)
R
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For every aq € R, define f, = ape + f; and, for every natural number =,
define I, to be the closed ideal in B generated by f{. Prove that there
exists ap € R such thatI; # I, forall j, k € {1, ..., N + 1} such thatj # k.
(Since Z(1,) = Z(1,) = E, say, for all positive natural numbers n, it
follows that £ is not a spectral set for B.)

Hints: Proceed in the following stages.

(a) Forallh e Band all ¢ € B, define & - 0 € B' by

{g, h - o) =<(hg, 0> forall geB.
Verify that
I% - ollg < [hlg - llole-
(b) Forall fe B and allt € R, define ¢, = exp (itf ) € B by
e = i (i) ke .
k=0

Prove that the function t— e, is uniformly continuous from R into B (cf.
[HR], (42.14)). Conclude from (2) that

lim [¢|¥C(¢t) = 0. (3)
|t] =0
Prove also that, for all t € R,
d . _
o= lim 5 Merss —¢) = ife. 4)
dt 5-0,8%0

(¢) One may assume that (e, ) # 0. (If not, replace ¢ by & - ¢, where
h is suitably chosen in B, and use (a).)

(d) Define ®(t) = (e, ¢, - ¢) for all t € R. Prove that @ is continuous on
R and

[®(¢)| <C(t) forallteR. (5)

Since ®@(0) = {e, ) # 0 (see (c)), the Fourier transform
O(s) = J O(t)e ™ dt
R

is non-vanishing for some real s, say for s = —a,. On replacing f by
fo = ay + f, one may assume that

~

®(0) # 0;
that is,

J {e, e, o)y dt+0. (6)
R
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(e) Suppose p € {0, 1,..., N}. Using (2) and (b), prove that there
exists 7, € B’ such that

{g, 1, =j‘ (¢t)? - {g, e, - o) dt forallgeB.
R
(f) Assume that ¢ € {0, 1,2, ...} and g € B. Define
Jpa=Laf% 1,0 = f (2t)? - Lgf % e, - o) di.
R

Use (3) and (4) and partial integration to prove that

J =) P Jpy g forallpe{l, 2, ..., N}andallge{l,2, ..}
pa Oforp=0andallge{l,2,...}. (N

(g) Deduce from (7) that, if p € {0, 1, ..., N}, then J, ,,; = 0 for all
g € B; hence that 7, annihilates I p+1- On the other hand, taking
p=qe{0,1,..., N} and g = ¢, deduce that

A 1717> =Jp,p= (—l)pp!J e, e - oy dt +0,
R

the last step by (6). Conclude that f? does not belong to I,

12.54. Prove that, if m is a positive integer, S a distribution, and
DS e D™, then 8 € D™ !, Deduce that, if F is a distribution and F e
D™D™" !, then DF € D™+ 1\D™.

Remark. This result was suggested to me by Dr Jo Ward.

Hints: Look again at 12.4.3(2) and 12.4.6.



CHAPTER 13

Interpolation Theorems

This chapter is devoted to the proofs and some of the applications of the
theorems of Riesz-Thorin and of Marcinkiewicz, each of which is concerned
with operators 7' defined on subsets of Lebesgue spaces (constructed over
fairly general measure spaces) and taking values in similar such spaces.
Only relatively simple versions of the theorems are treated. Even so, some of
the proofs are fairly complex and one aim has been to present all the
important details.

Section 13.1 collects some preliminaries concerning measure spaces. The
treatment of the Riesz-Thorin theorem and its applications occupies Sections
13.2-13.6, while Sections 13.7-13.11 deal with Marcinkiewicz’ theorem and
its applications. Among the latter is to be found the promised alternative
approach to the study of the conjugate operator f — H x f = f (see Sections
12.8 and 12.9).

Suggestions for reading on further developments will be found in 13.4.2
and 13.8.2.

Any reader who is perturbed by the introduction of general measure spaces
is advised to concentrate on the two concrete instances described in 13.1.3
and interpret all the general definitions and concepts in these special cases,
which suffice for all the important applications made in this book. See also
the remarks in 13.2.3(5).

13.1 Measure Spaces

13.1.1. Some Definitions. By a measure space is meant a triplet (X, 4, u)
in which X denotes a set, /# a o-algebra of subsets of X (see [HS], p. 4), and
p a function on . with values in [0, o] such that

waz) =0
and

wM) = > WM,
n=1
whenever M is the countable disjoint union of sets M, e # (n = 1,2,---).

140
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In connection with the second equation, a sum composed of nonnegative
terms, at least one of which is o, is interpreted to be co; and the sum of a
divergent series of nonnegative numbers is likewise interpreted to be co.

A subset M of X is said to be p-finite if M € 4 and (M) < co. The measure
space is (X, 4, u) is termed o-finite if X can be expressed as the union of a
countable sequence of u-finite sets. All the measure spaces we shall need to
consider are o-finite, and we shall therefore make this a standing hypothesis.
(The requirement of o-finiteness is not essential at all points; especially is this
the case when one considers the measure spaces associated with Radon
measures, which is the situation prevailing in harmonic analysis.)

Nor will anything be lost by assuming, as we shall henceforth, that all
measure spaces (X, M, p) are complete: this means (compare [HS], p. 155)
that, if M is a p-null set (that is, if M € # and u(M) = 0), then so too is
any subset of M.

13.1.2. The Spaces L?(X, .#, 1). As is indicated in Chapter 6 of [W], or
in greater detail in Sections 12 and 13 of [HS], and in 3.4 and 3.5 of [AB],
one can associate with any measure space (X, ., u) 3 Lebesgue-like integra-
tion theory. In particular, there is an associated concept of measurable
function (the members of .# playing the role of measurable sets); and one
can construct the associated Lebesgue spaces L*(u) = LP(X, A, p) for
0 < p < oo. (The reader will notice that the space here denoted by L* is
symbolized 2, in [HS].)

If f is a given function on X, the p-equivalence class of f is the set of all
functions on X that agree p-a.e. with f, that is, which agree with f save
perhaps on a p-null subset of X.

For an arbitrary measurable function f on X we define the symbol
I/ x7cs,2.40 OF, more briefty, |f]],., to mean

{f |f]? duprP if0 <p <o

and
ess sup |f| if p = c0.
X

Then (compare Exercise 8.17 and Section 13.7) || f| ,,, may be co. L?(X, A, u)
consists precisely of those complex-valued measurable functions f.on X for
which | f|,.. < co. If we identify functions belonging to any one p-equiva-
lence class, then (., fa) = [fy — fallou (OF [fi = o[, 10 < p < 1)appears
as a metric on LP(X, #, ) and makes the latter into a complete metric
space. If also 1 < p < oo, then || - ||, , is a norm on L?(X, .Z, 1) and makes
the latter into a Banach space. For details, see [W], pp. 68-72 and [HS],
Section 13.

13.1.3. Examples of Measure Spaces. For the applications we have in
mind there are essentially only two types of measure space required, namely:
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(1) The case in which X is a real interval, ./ is the set of Lebesgue measur-
able subsets of X and p is a multiple of the restriction of Lebesgue measure
to .#. The standard case for future reference is that in which X is the interval
[—m, m) (or indeed any chosen interval of length 27) and u is (27) ! times
the restriction of Lebesgue measure to the Lebesgue-measurable subsets of
the chosen interval, the associated Lebesgue space being what in this book
has been, and will continue to be, denoted by L*.

(2) The case in which X is Z, ./ comprises all subsets of Z and p is the
so-called counting measure: u(M) = the cardinal number of M whenever M
is finite, u(M) = oo whenever M is infinite. A slightly more general situation
is that in which X and . retain the same meaning while p is defined by

M) = > e, (13.1.1)
neM
where (c,),cz is a fixed nonnegative real-valued sequence defined on Z. Here,
as in a similar context in 13.1.1, it is to be understood that w(M) = oo
whenever M is infinite and such that the series on the right-hand side of
(13.1.1) is divergent. The aforesaid counting measure arises when ¢, = 1 for
allne Z.
In case p is specified by (13.1.1), L(X, #, 1) comprises exactly those
complex-valued functions ¢ on Z such that

> clém)]? < o

nez

if p < oo, or such that

sup {ip(n)| :ne Z,¢c, > 0} < 0

if p = oo, two functions being identified if they agree at all points ne Z
for which ¢, > 0. In particular, if u is the counting measure, L?(X, .4, p)
is just £7(Z) (as defined in 2.2.5).

Occasionally [Example 13.2.3(2) provides an instance], it is necessary to
speak of counting measures on sets other than Z. Accordingly, it should be
observed that the preceding remarks about counting measures and measures
of the type (13.1.1) apply equally when Z is replaced by any subset thereof,
or by any countable set whatsoever. In fact, similar considerations apply
when Z is replaced by an absolutely arbitrary set S, except that the counting
measure on S will be o-finite (see 13.1.1) if and only if § is countable.

13.1.4. Simple Functions. Given a measure space (X, /#, u), a complex-

valued function f on X is termed (X, 4, p)-simple (or just simple, if the
measure space is understood from the context) if it is expressible in the form

f=2 coxm, (13.1.2)
k=1
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where the c, are complex numbers, the M, are u-finite subsets of X, and y,,
is used to denote the characteristic function of the subset M of X.

It is easy to see that a simple f may always be represented in the form
(13.1.2) wherein, furthermore, the M, are disjoint.

A simple function f belongs to L?(n) for every p satisfying 0 < p < 0.
Moreover, the set of simple functions is everywhere dense in L?(u), provided
either that p < oo or, if p = o0, that X is p-finite. (See (W], p. 93 and [HS],
p. 187))

13.1.5. Another Converse of Hélder’s Inequality. For the proof of the
Riesz-Thorin theorem we shall need the following variant of the converse of
Holder’s inequality (compare Exercise 3.6).

Suppose that (X, .#, u) is a measure space and that f is a complex-valued,
measurable function on X which is known to be integrable over each u-finite
subset of X, that is, that

flel dp = L |flxm dp < 0

for each p-finite subset M of X. Then, if 1 < p < o, we have

Ifl5.. = sup Ifxfg dul, (13.1.3)

the supremum being taken with respect to all simple functions g satisfying

lgllp-.. < 1. (As usual, p’ is defined by the relation 1/p + 1/p’ = 1, together

with the convention that p’ =0 if p =1 and p' =1 if p = 0.) Our

hypotheses on f ensure that fg is integrable for every simple function g.
Itis to beremarked that, if f is assumed a priori to belong to

LP(p) = LP(X, M, ),

the assertion is contained in Theorem (15.1) of [HS]. It is essential that we
dispense with this assumption, and additional argument is needed.

Proof. The cases p = o0 and p = 1 are especially simple and demand
no further explanation. Assume therefore that 1 < p < oo.

Let m denote the supremum appearing in (13.1.3). If |f|, . is finite,
Hoélder’s inequality shows that

m < || fllps
the same is vacuously true if || f||, , is infinite. It thus suffices to show that
1flp. < m. (13.1.4)

Now if g is measurable, vanishes outside a p-finite set M, and |g],, < 1,
then g can be expressed as the pointwise limit of a sequence g, (k = 1,2,---)

of simple functions vanishing outside M and satisfying ||g,[,-, < 1. It then
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follows from Lebesgue’s convergence theorem that m, be it finite or infinite,
is unaltered if in its definition we allow g to range over all measurable
functions vanishing outside a p-finite set and subject to |g|,- , < 1. Then, on
replacing g by g * sgn f, where

@ it pm 20
(sgnf)@) = @]

0 otherwise,

we infer that
m > supf [flg du, (13.1.5)
X

where now g ranges over all nonnegative measurable functions vanishing
outside some u-finite set and satisfying [g|, , < 1. The monotone conver-
gence theorem, together with the assumed o-finiteness of the measure space
(X, A, n), shows next that the inequality (13.1.5) remains undisturbed if
the competing g¢’s are freed from the demand that they vanish outside some
p-finite set.

This being so, let f, = inf (|f|, rxy,) for r = 1,2,--., where M,e.#,
M. <M, ., s(M,) < 0, and | J2, M, = X. Then f, € L?(1) and it is clear
from the final version of (13.1.5) that

f frgdu < m
X

for any nonnegative measurable function g satisfying [g|,. , < 1. So, by
Theorem (15.1) of [HS],

Ifl < m. (13.1.6)

Since f, ¢ |f| as r 4 oo, the monotone convergence theorem combines with
(13.1.6) to yield (13.1.4) and so completes the proof.

13.2 Operators of Type (p, q)

13.2.1. The Concept of Type. Let (X, #, ) and (¥, A", v) be measure
spaces as described in 13.1.1, and let ® denote a linear subspace of

Lo(p) = L2(X, M, p).

We shall in this section be concerned with a linear operator 7' defined on P
and taking values in the space of complex-valued v-measurable functions on
Y which are v-integrable over v-finite sets (or in the set of v-equivalence
classes of such functions).

Given two exponents p and ¢ from the range [1, co], 7T is said to be of type
(. q) [or, more precisely, of strong type (p, ¢)] if and only if there exists a
number m > 0 such that

1T law < m [ £15. (13.2.1)
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for f e 2. The norms appearing in (13.2.1) are to be interpreted in the fashion
explained in 13.1.2. The least admissible value of m in (13.2.1) is denoted by
|Tl,.q 0r [Tl and is termed the (strong) (p, g)-norm of T. If T is not
of type (p, q) we shall write |7, , = co. These definitions apply even if T'
is not linear (see Section 13.7) but we shall in this section consider only the
case in which 7 is linear. They apply also when p > 0, ¢ > 0; but, unless
the contrary is explicitly stated, we assume that p > 1 and ¢ > 1.
From 13.1.5 it follows that in all cases

[T, = sup IL Tf-gdy|, (13.2.2)

the supremum being taken with respect to those fe D satisfying | f],, < 1
and those (Y, 4", v)-simple functions g satisfying ||g|, , < 1. Because of
linearity of 7', one may replace the inequality signs in the preceding sentence
by equality signs. It is also true that

1756 = sup [Tfq.vs (13.2.3)

the supremum being taken relative to those fe D satisfying | f|,,. < 1 (or
175 = D).

These remarks make it plain that 7 is of type (p, q) if and only if it maps the
normed linear subspace D of L?(1) into the Banach space Li(v) = LYY, A7, v)
in a continuous fashion.

In applications it often arises that the heuristic form of 7' is given in
advance and that there is a considerable freedom of choice in ®: T' may, for
example, be initially defined on L?(u), in which case ® might be selected to
be L2(u) itself, or to be the space of (X, .#, u)-simple functions. However we
will show that if, as is usually the case, D is everywhere dense in L?(u), then
the type classification of 7'is largely independent of thisambiguity, depending
in fact solely on the possibility or otherwise of extending 7' into a continuous
linear operator from the whole of LP(u) into Li(v).

13.2.2. Extension Theorem. Suppose thatT and D are as in 13.2.1 and
that T is of type (p, g). Suppose also that ® is everywhere dense in L?(u).
Then T can be uniquely extended into a continuous linear map of Lf(u)
into L9(v) which satisfies

1T o < 1Tl 11150 (13.2.4)
for all f e L*(p).
Proof. Ifsuch an extension exists, it is unique on account of its continuity
and the assumed denseness of ® in L?(u).
An extension of the desired type is obtainable in the following way. Given
f € LP(u), chose a sequence (f,)7-, of elements of D such that

lim “f - fn“p.u =0. (13.2.5)
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Taking any finite value of m not less than | T}, ., (13.2.1) gives

” Tfn - Tfn'ﬁq.v sm ”fn - fn’”p,u

for all » and »’, so that (13.2.5) indicates that the sequence (7f,)7-, is
Cauchy in L%v). Furthermore, (13.2.1) entails that the limit of (T'f,) -,
is independent of which sequence (f,)., is chosen, provided only that it is
subject to (13.2.5). Denote the limit by 7', f. It is then clear from the preceding
sentence that 7', maps L?(u) linearly into L(v), and that the restriction of 7',
to ® is none other than 7'. Finally, by (13.2.1) and (13.2.5), the definition of
T, f shows that

“ Tlf“q.v = nlgg “ Tfn”q,v

lim inf m | f,

N

I

=m [ fllpu- (13.2.6)

Since m is arbitrary save for the restriction

m 2 | T].q
(13.2.4) follows from (13.2.6).

13.2.3. Some Examples. (1) The Fourier transformation. Take (X, A, p)
as in 13.1.3(1), and (Y, 4", v) as in 13.1.3(2) with v the counting measure
on Y = Z. The operator T is taken to be the Fourier transformation:

Tf =f
for feL!(u) = L. It is evident that 7 maps L! into L*(u) = £*(Z).
Moreover, since the v-finite sets are just the finite sets, the hypotheses of
13.2.1 are fulfilled.

That T is of type (1, o0) is the content of 2.3.2.

On the other hand (8.2.2) says exactly that 7'|L2(yx) is of type (2, 2).

In particular, therefore, the restriction of 7' to the u-simple functions is
simultaneously of types (1, o) and (2, 2). This, combined with the Riesz-
Thorin theorem, will permit us to make further type-statements about 7';
see Section 13.4.

(2) The moment operator. Here we take X = [0,1], .# the set of
Lebesgue-measurable subsets of X, u the restriction of Lebesgue measure to ./,
Y =1{0,1,2,--.}, 4 the set of all subsets of Y, and v the counting measure
on Y. Let S be the so-called moment operator defined on L*(u) by Sf = f#,
where

FHn) = Jol f(x)z" dx n=01,2---).

Once again the hypotheses of 13.2.1 are satisfied.

It is not difficult to show (see Exercise 13.7) that S is a one-to-one linear
map of L(u) into ¢o(Y) < L*(v), and that S is of type (1, ). (The definition
of ¢o(Y) is exactly analogous to that of ¢y(Z) given in 2.2.5.)
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It is also true, but not trivial, that S L%(u) is of type (2, 2): this is in fact the
content of a famous inequality due to Hilbert (see [HLP], pp. 212 and 226).

Once more. an application of the Riesz-Thorin theorem leads to further
information about S; see Exercise 13.8.

(8) The conjugate function operator. Take (X, H#,u) = (Y, N ,v) as
in 13.1.3(1), so that LP(u) = LP(y) = L?. Consider the transformation
T:f—f = H x f defined in Section 12.8. We know that Tf is defined dis-
tributionally whenever f e L. M. Riesz’ theorem 12.9.1 asserts that T'|L” is
of type (p,p) whenever 1 < p < co. On the other hand, from 12.8.4 it
appears that 7' is not of type (1, 1) nor of type (o0, c0). More about the nature
of T acting on L! will appear in Section 13.9 in connection with the concept
of “weak type”’ of operators.

(4) Further examples appear in Section 13.6 and Exercises 13.5 and 13.6.

(6) Thisis a convenient point at which to interject some remarks addressed
to the reader who chooses to limit the general Theorems 13.4.1 and 13.8.1 to
versions possessing a degree of abstraction just adequate to cover the
essential applications made in this book.

As has been said in the introductory material to this chapter, it is for this
purpose enough to be prepared to meet cases in which each of (X, .#, u)
and (Y, A7, v) is one of the measure spaces described in 13.1.3.

The operators which are likewise essential to subsequent applications are
all expressible (or reducible without loss of essential scope) to one of two
forms. Those to which Theorem 13.4.1 will be applied are of the form

Tf(y) = lim Tyf(y), (13.2.7)

N-

while Theorem 13.8.1 will be applied also to certain operators of the form
Tf(y) = sup |Tuf(y)]; (13.2.8)

the domain of 7' may without loss be taken to a subset of L}(X, .#, u) and
to be such that earlier results in this book guarantee that (13.2.7) holds
pointwise v-a.e. and in mean with various exponents. In either case one can
choose the Ty (N = 1,2, - --) to be of the form

Tof(y) = fx Ky(, 9)f(@) dulz), (13.2.9)

where K, is bounded, measurable in the pair (z, y) (see [HS], p. 379), and
such that

L | K y(z, )P dulz) < oo

for 0 < p < co. (Different choices of the T’y can, of course, lead to the same
T; we do not always indicate explicitly an admissible choice of the T
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satisfying all these conditions.) It is then very simple to show that 7T'yf is a
bounded v-measurable function on ¥ whenever f belongs to LY(X, .#, p) for
some ¢ satisfying 1 < ¢ < oo.

For operators of the form (13.2.8), however, we shall not be able to
guarantee a priori that Tf is finite-valued (everywhere or even v-a.e.). The
opening remarks in Section 13.7 will refer specifically to this state of affairs.

13.2.4. Preamble to the Riesz-Thorin Theorem. In terms of the
“type”’ language, it is very simple to state roughly the aims of the Riesz-
Thorin theorem. This theorem asserts that if an operator 7' is simultaneously
of types (po, ¢o) and (P, ¢;), where 1 < p,, ¢; < oo for j = 0,1, then T is
also of type (p, q) for certain *intermediate’ pairs (p, ¢) and that for such
pairs, ||T']|,,, can be majorized in a certain way. This explains why the
theorem is often described as an interpolation theorem.

Before we can embark on the proof of the Riesz-Thorin theorem one more
auxiliary is required, this time from complex variable theory.

13.3 The Three Lines Theorem

The three lines theorem, a simple result in complex variable theory, is the
major tool used in the proof we give of the Riesz-Thorin theorem.
Throughout this section V denotes the vertical strip in the complex {-plane
defined by
{ =&+ in, 0< €<, neR. (13.3.1)
We are concerned with a function F defined, bounded, and continuous on

the strip ¥ and analytic interior to V. The crucial result is as follows.

13.3.1. With the above notations and assumptions, put
M =sup{|F(§ + i) :ne R}y (0<E<1).  (1332)
Then, for 0 < £ < 1,
M, < M{~M*. (13.3.3)

Proof. Since it is plainly enough to show that (13.3.3) holds when M,and
M, are replaced by arbitrary fixed numbers exceeding M, and M, respec-
tively, we may assume that M, and M, are positive.

Then, by considering the function F({)/M3~*M* in place of F, it is seen
to be enough to deal with the case in which M, = M; < 1. In other words,
we wish to show that from the assumptions

|Fp)| <1, |Fl+ip) <1  (neR) (13.3.4)
it follows that
[F(é + i) <1 (0<€é<1l,neR). (13.3.5)
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To this end we consider first the case in which

lim F(¢ + in) = 0 (13.3.6)

Il

holds uniformly for 0 < ¢ < 1. In this case the desired conclusion (13.3.5)
follows directly on applying the maximum principle to a rectangle 0 < ¢ < 1,
[9l < y, where y is chosen so large that

[F(¢ £ 1y)] <1

for 0 < £ < 1, the choice of such a number y being possible by virtue of
(13.3.6) holding uniformly for 0 < ¢ < 1.

In general, we apply the special case just established to each of the
functions

F.(y) = F({)rexpn~ X2 —-1) (n=12,--).
Each F, satisfies the condition (13.3.6) previously and temporarily imposed
upon F and
| Fa(é + )| <1

for ¢ = 0 or 1 by virtue of (13.3.4). Accordingly, (13.3.5) holds with F, in
place in F, and (13.3.5) itself follows thence on letting » — co.

13.3.2. Remark. Almost any textbook on complex function theory will
contain a discussion of many extensions and generalizations of 13.3.1, which
we leave in the simple and unadorned version directly useful in Section 13.4.

13.4 The Riesz-Thorin Theorem

13.4.1. (Riesz-Thorin) Let (X, .#, ) and (Y, A", v) be measure spaces, as
in 13.1.1, and let 7 be a linear operator defined for all u-simple functions and
taking values in the set of functions on Y which are v-integrable over each
v-finite set!. Suppose that 7' is simultaneously of types (p;,¢,) (j = 0, 1)
where 1 < p;, g; < 0. Then, for any exponent pair (p, g) of the form

1 _1-t ¢t 1 _1-t¢

+ - +i’ Oétél,
P Po y2h q 9o 9

T is of type (p, q) and

1Tlp0 < 1705050 * 1T 5101 - (13.4.1)

In particular, if p < oo, or if X is p-finite, 7' can be extended so as to map
L?(u) continuously into L(v).

Remarks. (1) The preceding result may be expressed in the
following way : the function log ||7'];/,,1/s On the rectangle 0 < o, f < 1 is
convex on any segment joining two points at which it is finite. This

1 Or in the set of v-equivalence classes of such functions.
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explains why the Riesz-Thorin theorem is often described as a convexity
theorem.

(2) If p; < o for j € {0, 1}, and if X is a locally compact Hausdorff
space and y a positive Radon measure on X, one may replace u-simple
functions by linear combinations of characteristic functions of relatively
compact y-measurable subsets of X.

Proof. Once (13.4.1) is established, the final sentence will follow at once
from 13.2.2.

To handle (13.4.1) we write o; = 1/p;, B, = 1/g, for j = 0,1 and o = 1/p,
B = 1/g, making the conventions that 1/0 = co and 1/oo = 0. Define also
al) = (1 = Doo + fea. PO = (1 — OB + LBy

for all complex {. Thus «(j) = «; and B(j) = B; for j = 0,1 and «(t) = «

and B(t) = B.
Let f be a u-simple function. By 13.1.5,

1Tflq = sup IL Tf-gdv|, (13.4.2)

the supremum being taken with respect to all v-simple functions ¢ satisfying

“gHQ’.v = 1.
In order to establish (13.4.1), it will thus suffice to choose and fix a u-simple

function f satisfying | f],, = 1. say
f= Z QX ay s
k

the A, being pairwise disjoint, and a v-simple function g satisfying ||g||,-, = 1,
say
g = Z thBh ’
R

the B, being pairwise disjoint and show that the integral

1 =f Tf+gdv
Y
satisfies the inequality
] < 1T 35a0 * 171510 - (13.4.3)

In the above expressions for f and g, each 4, is a p-finite set, each B, is a
v-finite set, the sums are finite, and we may assume that a, # 0 and b, # 0.
In proving (13.4.3) we write

f=1fle" g =lgle”,

where » and v are real-valued and p-measurable and v-measurable, respec-
tively. At this point we consider two cases in turn.
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(1) Suppose first that « > 0 and B < 1. In this case we introduce the
functions f, and g, defined by

fo= |f|s®eete, g, = |g|t BN =gt (13.4.4)
Define further

FQ) = [ 75 gc . (13.4.5)
Y
in terms of which
I = F(@). (13.4.6)
The linearity of T leads to the formula
F(l) = Z |ak’a(i)/a|bh|(l—B(C))/(1~B)J- TXy * X, €+ dv,
k.h Y

which makes it plain that F is an entire analytic function which is bounded
on the strip V. We aim to apply 13.3.1.

If ¢ = Re{ = 0, then Re «({) = «, and Hoélder’s inequality gives from
(13.4.5) and the assumptions about 7'

[FCn)| < | Tfinlluisg.w * 19l 1t = 5oy,

< N T v1ag. 1180 * 1 finllviag i * 1Finll1sca - 50, (13.4.7)
But from (13.4.4) it follows by direct calculation that
”fin”l/ao.u = ”f”‘;?o/zau =1

and that

19111 - 00v = 191G 5007 =1,

since 1/o = pand 1/(1 — B) = ¢’ and

1o = l9ler = 1.
Consequently (13.4.7) shows that

M, = sup{|F(in)| :ne B} < |T|ijag, 8 = [Tllpg.ao-  (13:4.8)
An exactly similar argument shows that
M, =sup{|F(l + iy)| :ne R} < |T]p,.q- (13.4.9)

On applying 13.3.1, equations (13.4.6), (13.4.8), and (13.4.9) lead to (13.4.3),
and the proof is complete in this case.

(2) Of the excluded cases, that in which « = 0 and 8 = 1 leaves nothing
to be proved.

If B = 1, in which case 8, = B; = 1, and « > 0, f; is defined as in (13.4.4)
while g, is defined to be g. The proof then proceeds as before.

An entirely similar modification appliesif « = 0, in which case ¢y = o; = 0,
and 8 < 1.
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13.4.2. Comments on the Riesz-Thorin Theorem. (1) In its original
form, as given by M. Riesz in 1926, the measure spaces involved had finite
sets X and Y and counting measures p and v, the functions (finite sequences)
allowed were real-valued, and convexity was asserted only for exponent pairs
(p, g) subject to the additional restriction 1 € p < ¢ < 0. Moreover, the
result was expressed in terms of bilinear functionals rather than linear
operators. (This corresponds to the introduction of the integral fy Tf-gdv
in the preceding proof and represents a standard possible variation in form of
the theorem.) See [HLP], pp. 214-220, where complex-valued sequences are
admitted but the proof really uses only real-variable methods, and the con-
clusion is again the restricted form of convexity. This restricted version is,
however, adequate for several important applications.

Thorin’s major contribution was the use of complex-variable methods,
together with some simplifications in the proof, leading to unrestricted
convexity (as formulated in 13.4.1); see Thorin [1], [2].

The proof given here is based on that appearing in [Z,], pp. 95-96. It
plainly depends crucially on using complex-valued functions. For a somewhat
more general discussion, see [DS,], pp. 520-526.

(2) Various important extensions of the theorem are now known.

Some of these apply to spaces L? with 0 < p < o and some to the Hardy
spaces HP? for the same range of values of p (see Exercise 3.9); for the details
see [Z;], Chapter XII, where convexity theorems for multilinear operators are
also considered. (An application of such a convexity theorem will be mentioned
briefly at the end of 16.4.9.) Other types of extension are given by O’Niel [2],
Campanato and Murthy [1].

‘We also direct the reader’s attention to extensions given by Stein and Weiss
[2] in which the measures p and v, as well as the exponents p and ¢, are
allowed to vary in a certain way. In this treatment 13.4.1 is formulated for
operators T' which are not necessarily linear but merely “ sublinear.” Stronger
versions of 13.4.1 are also proved; cf. [Moz], Chapter 1.

(3) As we shall see in 13.8.3, (13.4.1) does not express all that is known to
follow from hypotheses like those in 13.4.1. Moreover, a conclusion similar

to, but a little weaker than, (13.4.1) derives from weaker hypotheses; see
Theorem 13.8.1.

(4) Elaborate studies of interpolation problems and techniques, which are
in some senses abstract versions of the Riesz-Thorin theorem, have been made.
See, for example, Calderén [1] and the references cited there, Stampacchia [17;
Stein [2]; Schechter [1]; Peetre [1], [2], [3]; Coifmann, Cwikel, Rochberg,
Sagher and Weiss [1]. See also MR 87 # 1951.
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13.5 The Theorem of Hausdorff-Young

As a first application of the Riesz-Thorin theorem, we derive a result that
constitutes a partial extension of Parseval’s formula (8.2.2) and the Riesz-
Fischer theorem 8.3.1. The result we obtain appears in two mutually dual
assertions.

13.5.1. (Hausdorff-Young) Suppose thatl < p < 2.
(1) If fe L? then
112 < I£15-
(2) If ¢ € £7(Z), then the series
D, $(m)en
nez

converges in L’ to a function ¢ such that

Ié1 < 18],-

Proof. | (1) This will follow from applying 13.4.1 and 18.2.2 to the situation
described in 13.2.3(1). With the notation used there, 2.3.2 and (8.2.2) show
that, if we restrict 7' to the u-simple functions, then

1T]:.- <1, [T]z2=1. (13.5.1)
So, by 13.4.1,
17]5,. <1
whenever
1 1-—t ¢ 1 1-—-t¢ ¢
p- 1 T 7w t2

for some ¢ satisfying 0 < ¢ < 1. These requirements signify that 1 < p < 2
and ¢ = p’. To derive (1), it now suffices to apply 13.2.2.

(2) Here we interchange the roles of the measure spaces (X, #, u) and
(Y, A", v) used in the proof of (1). The v-simple functions ¢ are precisely
those with finite supports. For such ¢ we define

Té = > d(n)e,,

nez
a trigonometric polynomial. It is evident that 7' is of type (1, ) and of
type (2, 2), and that (13.5.1) holds. [The assertion concerning || 7| ,,, follows
from Exercise 1.7(1).] By 13.4.1 and 13.2.2 it follows, as in (1), that 7' can
be continuously extended so as to map L?(v) = ¢7(Z) into L?'(u) = L*’
whenever 1 < p < 2, and that

17050 < L.

The continuity of this extension of 7' shows at once that, for any ¢ € £2(Z),
the series appearing in (2) converges in L?" in accordance with the relation
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T¢ = limy_, Ty in L7, where
b(n) if [n| < N,
0 otherwise,

so that limy , ,, ¢y = ¢ in £7(Z).

Pn(n) =

13.5.2. Remarks. The theorem was proved by W. H. Young in 1912-1913
for the special values of p of the form 2k/(2k — 1), where k is a positive
integer. For general values of p in the interval [1, 2], the result is due origin-
ally to Hausdorff (1923). F. Riesz showed that the result was true for
expansions in terms of a general orthonormal system of functions u, satisfying
|u,] < 1 a.e.; this result also dates from 1923; see [Z,], p. 102.

The idea of deriving 13.5.1 and F. Riesz’s extension thereof from the
convexity theorem is itself due to M. Riesz (1926).

The Hausdorff-Young theorem, like the L2-theory of Chapter 8, can be
extended to Hausdorff locally compact Abelian groups in general. (That the
measure spaces involved are no longer o-finite in general leads to no insuper-
able difficulties.) See [R], Chapter 1; [E], Sections 10.3 and 10.4; [We],
Chapitre VI; [HR], (31.22). See also 13.6.3 below.

For other cases of inequalities of the type ||f]|, < o, see Prohorenko [1].

For further results, see Edwards [14]; Williams [1]; Fournier [1]; MR
49 # 9518; 51 # 1243; 52 # 8788; 55 # # 8689a,b; 56 # 953; 57 #
10366.

13.5.3. Best-possible Nature of the Hausdorfi-Young Theorem.
There are various senses in which 13.5.1 is the best possible of its type.

(1) In 13.5.1(1), the exponent p’ cannot be replaced by anything smaller;
that is, if ¢ < p’ is given, there exist functions f € L? such that f¢t2).

Indeed, as has been noted in 8.3.2, the breakdown is rather dramatic when
p = 2. For general values of p €[1, co) we observe that Exercise 7.8 shows
that, for any 8 > 0, there exists a function f € L? such that f(n) = |n| -7+
for n # 0. Since ¢ < p’, 8 can be chosen so small that ¢(1/p" + 8) < 1, in
which case it is evident that f ¢ £%(Z).

For the same purpose one might use the periodic function f for which f(x)
is ||*~* or 0 according as |z| < lor1l < |z| < =, where 0 < a < 1; for this
function it is easily verified that lim, |n|%f (n) exists and is nonzero,
so that fe L? if and only if (1 —a)p <1 and fe £%Z) if and only if
ag > 1.

This last example serves to show also that, in 13.5.1(2), the exponent p’
cannot be replaced by anything larger.

See also Brown [1]; Hewitt and Ritter [1]; Edwards, Hewitt and
Ritter [1].
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(2) Both 13.5.1(1) and 13.5.1(2) become false when p > 2: this will be
established in two ways in Sections 14.4 and 15.4, respectively.

(B) If1 < p < 2, FL? = {f : fe L*} is a proper subset of £'(Z) (whereas
the two sets are identical when p = 2); compare the next paragraph and see
also Section 15.4.

From (2) immediately above it follows that, dually, F¢* = {§ : 4 € £7(Z)}
is a proper subset of L7, whenever 1 < p < 2. (For otherwise it would
appear that § € £#(Z) whenever g € L¥', which is contrary to (2) since p’ > 2.)

13.5.4. Cases of Equality in 13.5.1 It is possible (see [Z;], p. 105) to show
that equality occurs in 13.5.1(1) if and only if f(x) = const e'** for some n € Z,
and in 13.5.1(2) if and only if ¢ vanishes for all but at most one element of Z.
In each case the ‘“if”’ assertion is trivial, but the ‘“only if”’ assertion is not
s0. The result is due to Hardy and Littlewood (1926).
A discussion applying to general groups (compare 13.5.2) is due to Hewitt
and Hirschman [1].

13.5.5. An Application. The Hausdorff-Young theorem will in this sub-
section be employed to prove a result stated in Subsection 12.11.4 in connection
with equalities of the type fS = 0, where f€ A and S € P.

Throughout the present subsection it will be supposed that 1 < g < oo;
that S is a pseudomeasure of the form S = $, where ¢ € £%Z) (so that, if
g = 0, S may be an arbitrary pseudomeasure); that E denotes a closed subset
of T containing supp §; and that f € A, so that f = for some ¥ € £1(Z). It
will be assumed furthermore that f vanishes on £ and that, for some sequence
(€;)j2, of positive numbers tending to zero,

flz) = O(Ly-ai) (13.5.2)

uniformly for x at periodic distance (see Exercise 12.30) at most ¢; from E.
Our aim is to show that under these conditions

fS = o0. (13.5.3)

Before commencing the proof we observe that if 1 < ¢ < 2, the condition
(13.5.2) becomes void and may be dropped entirely; in this case, too, the proof
presents no trouble since, by 13.5.1, S is a function in L. In case ¢ = o0, 1/q is
to be interpreted as zero: this case covers the statement made in Subsection
12.11.4.

As a final preliminary, it is to be observed that, by (12.11.3), the equation
(13.5.3) is equivalent to

yrd =0, (13.5.4)

which is what we shall in fact establish.

Proof of (13.5.3). For brevity we shall write ¢ in place of 1 — 1/q, and we
shall make a legitimate change of stance by regarding E as a closed periodic
set of real numbers. In view of the preliminary remarks, we may and will
assume that 2 < ¢ < . Throughout the computations, B will denote various
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numbers depending at most upon ¢ and S; the value denoted by B is not
necessarily the same at each appearance.
Let A; and U, denote the periodic sets

(— VYaey, Yoe;) (mod 27) and (—eéj, &) (mod 2m),
respectively, so that (13.5.2) holds for x € E + U,. Define further the functions

_ {xay * xay)
7T (ey/2m)?

and «; = IS,, and note that «; € £1(Z). It is very simple to verify that 0 < k;
< Bejl, and that k; vanishes outside U;. Consequently,

;s < Bej's~* (1 <s < o).
In particular, taking s = 2¢/(g — 2) > 2, 13.5.1 can be applied to yield
leslls < Nksller < Beye. (13.5.5)

Now the k; form an approximate identity in L!, so that lim; o, «; = 1
boundedly on Z, and therefore s * ¢ = lim;_, » ¢ * (x;¢) pointwise on Z. This
may also be written:

b+ $n) = lim .2.1; f o= n5f(2)S () dax (13.5.6)

for n e Z, where S; = (k;6)” = k; * S. Since §; is easily verified to vanish
outside £ + Uj, and since f = 0 on E, (13.5.6) and (13.5.2) combine to yield
the majorizations

L. 1
[+ $(m)| < lim inf fu, |8, de

< lim inf O(e;) -;;f 1S,| dz, (13.5.7)
Dy

jo©

where we have written D, for the intersection of (E + U;)\E with (0, 27).
Now the Cauchy-Schwarz inequality gives

1
27

f 1S, dz < (2m)~12m(D,) M2 ]IS, ], (13.5.8)
Dy

where m(D;) denotes the Lebesgue measure of D;. Furthermore, by Parseval’s
formula, Holder’s inequality for sums, and (13.5.5),

ISsllz = lxsdllz < lwslls - bl
< Be;~°. (13.5.9)
Accordingly, (13.5.7), (13.5.8), and (13.5.9) together show that
[ = p(n)] < li?_l.i,nf O(e,) * m(D;)¥2 - Bej ¢

= lim inf O[m(D,)"/2]. (13.5.10)
jo oo
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Since E is closed, the intersection of the D; is void; so countable additivity
of Lebesgue measure guarantees that m(D;) — 0 as j — o0, and (13.5.4) follows
from (13.5.10).

Remarks. (1) If one assumes E to be such that m(D;) — 0 as j — co with
some preassigned degree of rapidity, one may correspondingly relax the
condition (13.5.2).

In any case, in place of (13.5.2) one might assume that

{1712 ey = ofepa-vi), (13.5.11)
Dy

which in turn is satisfied if

{f |[f|P dz}tlP = O(ej/2~119) (13.5.12)
Dy

for some p > 2.

(2) Somewhat similar procedures can be applied to general groups; see Herz
[2], p. 210. See also MR 85 # 7081.

(3) In case ¢ = 00, the resulting exponent % is (13.5.2) is best possible; see
MR 40 # 629.

13.6 An Inequality of W. H. Young

We shall now apply 13.4.1 to the proof of a result about convolutions
forecast in Remark (2) following 3.1.6.

13.6.1. (W.H. Young) Suppose that
1
Ispsw, 1€ggw0, —=
r

Then f « g € L" and
If*gl, <Ufl,- lgl, (13.6.2)

whenever f € L” and g € L.

Proof. We take (X, 4, u) = (Y, A, v) as in 13.1.3(1). Fix f € Lf and
let 7 be the linear operator defined for all simple functions g by
Tg =f=*g. By3.1.6, T is of type (1, p) and

1T, p < Il
By 3.1.4, T is of type (p’, o0) and
1Ty, o < 11,

An application of 13.4.1 shows that
1T, < I£1,
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whenever there exists a number ¢ in [0, 1] such that
1 1—-¢t ¢ 1 1—¢ ¢
=+, —=—+
¢ 1 » r.p ®
and these requirements are equivalent to (13.6.1).
The simple functions are everywhere dense in L? and 13.2.2 shows that
T can be continuously extended so as to map L? into L in such a way
that

ITf - < 11, - Ngllg

Consequently it remains only to make sure that, for any g € L9, the
extension of 7' is such that Tg and f*g agree almost everywhere.
However, if we take a sequence (g,)°-; of simple functions converging to
g in L% then Tg=lim,,, Tg, in L" and Tg,=f*g, by the initial
definition of 7'. On the other hand, (3.1.2) shows that lim,_, f*g,=f*
g in L'. The desired identification follows at once and the proof is
complete.

13.6.2. There are more general results of a similar sort; see, for example, [E],
Theorem 9.5.1, where a proof quite independent of the convexity theorem is
given. The inequality extends to convolutions over quite general groups; for
the case of the group Z, see Exercise 13.4. For extensions in a somewhat
different direction, see O’Niel [1].

13.6.3. Best possible constants. Both 13.5.1(1) and 13.6.1 have
analogues for the groups R". It was for long unknown what were the best

possible values of the constants €, and C,, , , in the inequalities

1Al < Collfll,
ILf* gl < Cp o bl f I, - llglg

in the case of R". The answer was provided by Beckner (see MR 52 # #
6316, 6317), namely

Op — (pllp(p')—l/p’)n/Z

Cpar=Cp* Cye C,.

par

Regarding a similar question in relation to (13.6.2), see MR 57 # 1021.
See also MR 57 # # 10358, 10366.

13.7 Operators of Weak Type

The remainder of this chapter is concerned with the proof and applications
of the second of the two interpolation theorems on our program, namely, the
theorem of Marcinkiewicz. The present section sets out some definitions and
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concepts in terms of which Marcinkiewicz’s theorem is customarily expressed,
together with some simple preliminary results and some examples.

Some of the operators of weak type we shall wish to consider (the majorant
operators o* and s* are examples) are such that it is not a priori obvious that
they transform finite-valued functions into functions which are either finite-
valued or finite-valued almost everywhere. As a result of this, it is convenient
to allow into the discussion extended real-valued functions. (The introduction
of such functions is a convenience only and could be avoided in various ways
and at the expense of enough circumlocution; on balance, it seems a good
deal simpler to introduce them.) We begin by recalling very rapidly a few
basic facts and conventions concerning such functions.

By definition (compare [HS], pp. 54-55), the extended real number system
is the set R# = RU{ —o0, o0}, obtained by adjoining to R two new elements
—oo and oo, and endowed. with that linear order which extends the usual
order on R and which makes —oco and co the least and greatest elements,
respectively, of R#. The supremum (respectively, infimum) of any subset of
R which is unbounded above (respectively, below) relative to the usual order
of R will thus be co (respectively, —o0). An extended real-valued function on a
set X is simply a function on X with values in R#.

The manipulation of extended real numbers and extended real-valued
functions will be governed by the following rules, in which a denotes an
arbitrary real number:

o+a=a+0=0, —0O+a=a+ (—0)=a— 0 = —00,
© + o =0, (—w©)+ (—x©) = —0o0,

—(00) = —0, —(—00) =,

w*a=a'0 =00, (—©)*a=a*'(—0)= —0© ifa >0,

©0*a=a'0 = —0w0, (—©)*a=a°*(—w0) =00 ifa < 0,
o+ =0, 0°0=0"0=(-0)"0=0(-0) =0,
|o| =|—w| =0, w?=0 ifa>0.

We do not define the expressions oo + (—o0), (—o0) + 00, 00 * (—00),
(—00) * 00, (—00) * (—00).

In many cases where extended real-valued functions have to be handled,
they are nonnegative-valued; in such cases the above conventions appear
more intuitive than in the general situation.

Concerning the definition and properties of f f dp for extended real- and
complex-valued u-measurable functions f on X, see again [HS], Section 12.
In particular, if f is an extended real-valued p-measurable function on a
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measure space (X, 4, u) (see [HS], p. 149), we define fx |f| du to be

sup kZ inf f(M)u(My),
=1

the supremum being taken with respect to all partitions (M,);., of X in
which M, € 4 for all ke {1, 2, ---, n}; see [HS], Section 12 for details.
In terms of this convention, || f |, , is defined to be

([ 171 duyee

whenever 0 < p < c0. The definition of ||f| ., , remains almost the same as
when f is finite-valued: it is the smallest (extended real) number m such that
|f(x)] < m is true u-almost everywhere on X.

It is also convenient to modify the definition of L?(X, .#, u) given in
13.1.2 so as to include in LP(X, #, ) those p-measurable extended real-
vahied functions f for which || f|,,, < oo. This enlargement is in reality rather
trifling insofar as the relation | f|,, < oo entails that |f(z)] < co for p-almost
all x € X (compare [HS], pp. 154, 169-170) and, as far as integration with
respect to p is concerned, f can therefore be replaced by a function which is
everywhere finite-valued.

We now turn from generalities to particularities. In what follows the term
“function” means ‘‘extended real- or complex-valued function.”

13.7.1. Truncation of Functions. Suppose that f is a function on a set
X and that @ > 0 is a real number. The a-truncation f, , of f is the function
on X defined by the specification:

(@) = {f(x) if |f(@)] < a,
BT af @) f()] otherwise ;

here we make the special convention that +o0/o0 = +1.Thus

|f1,] = min (|f], a).

fz.a =f- fl,a'
Notice that f, , is always finite-valued, and that the relation

f =f1.a + fz,a

We define further

is universally valid.

13.7.2. Distribution Functions. Suppose that (X, .#, p) is a measure
space and that f is a u-measurable function on X. The distribution function
D, or D;/# is the nonnegative extended real-valued function on (0, o0)
defined as follows:

D) = p{xe X : |flx)| > t}). (13.7.1)
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(This use of the term ““distribution’’ has nothing whatsoever to do with that
in Chapter 12.) The reader will observe that D* = D, *, that D/* depends
only on the p-equivalence class of f, and that D#(¢) < u(X).
We shall often write
Et)={zeX:|f(z) > t},

so that
DA(t) = n(E(t)).

It is not difficult to see that D/* is decreasing (in the wide sense) and

continuous on the right, that is,
DAty = DMt + 0) = lim DA(t")
it

for 0 < t < co. Monotonicity ensures that D/* is Lebesgue-measurable on
(0, c0).

If f is a p-measurable function on X and @ > 0, the following relations
hold:

D, () = D) if0 <t <a,
F1..8) =0 if t>a, (13.7.2)
D4, () = DHt +a) if t>0.

The verification is left to the reader.

13.7.3. Integrals in Terms of Distribution Functions. For us the
main significance of the distribution function stems from the fact that it
enables us to express the integral of a nonnegative (extended real-valued)
p-measurable function on X in terms of a Lebesgue integral over (0, 00). The
appropriate formula reads

ff”d,u - J'wptv-lp,u(z) at, (13.7.3)
X 0

where 0 < p < oo, it being understood that co® = co. For a proof in the
case where f is real-valued, see [HS], Corollary (21.72), where (13.7.3) is
shown to be an almost immediate consequence of an appropriate form of the
Fubini theorem. The general case may be deduced from this by considering
the real-valued functions f, = inf (f, n), noting that D, “(t) 4 D*(t), and
using the theorem on termwise integration of monotone-increasing sequences
of measurable functions [[HS], Theorem (12.22)].

The remarks in 13.7.2 show that (13.7.3) holds with |f|” in place of f?
whenever f is any (complex- or extended real-valued) u-measurable function
fon X.

We remark in passing that (13.7.3) could be used quite effectively to
define integrals with respect to p.
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13.7.4. Quasilinear Operators. Suppose that (X, #, u) and (Y, A, v)
are measure spaces. Suppose further that 7 is an operator whose domain 9
is a set of p-measurable complex-valued functions on X. The range of T is
assumed to lie in the set of »-measurable complex-valued functions on Y, or
in the set of v-measurable nonnegative extended real-valued functions on Y,
or in the corresponding sets of v-equivalence classes of functions (see 13.1.2
and 13.2.1). (Quite often the operators 7 we need to consider can be assigned
a domain whose elements are p-equivalence classes of functions, but to
assume this is an unnecessary luxury.)

The operator T is said to be quasilinear (with constant «) if f; + fo€ D
and

[T(fy + f2)] < «(|Tf,] + |Tf2]) (13.7.4)

for v-almost all points of Y whenever f,, f, € ®. (In case Tf, and Tf, are
v-equivalence classes, |T'f,| + |Tf,| is of course the v-equivalence class of
any- function ¢, + g, where ¢, (k = 1,2) is a function chosen from the
equivalence class |Tf,|; and (13.7.4) is then understood to signify that the
same inequality holds at v-almost all points between functions chosen from
the appropriate v-equivalence classes.)

For example, any linear operator 7' whose domain and range are as
specified above is quasilinear with a constant « < 1.

Again, if (X, #, p) = (Y, A, v) are as in Example 13.1.3(1), the majorant
operators o* and s* defined in (6.4.10) and (6.4.14), respectively, have domain
L! = LY(X, #, u) and range in the set of nonnegative extended real-valued
v-measurable functions on Y. It is very simple to verify that they are each
quasilinear with constant « < 1. They are not linear operators.

Other illustrations appear in Example 13.7.6(2).

13.7.5. Operators of Weak Type. Suppose again that (X, #, n) and
(Y, A", v) are measure spaces and that p and ¢ are exponents chosen from
the interval [1, oo]. Suppose also that 7T is an operator whose domain 9 and
range are as described in 13.7.4; 7' may or may not be quasilinear, however.

If ¢ < oo, the operator T is said to be of weak type (p, q¢) on D if there
exists a number 4 > 0 such that

A q
v(Br(t) < (—”J;—”iﬁ) (13.7.5)
for all fe @ and all ¢ > 0, where (compare 13.7.2)
Er(t) = {ye Y:|Tf(y)| > t}.

To cover the excluded case in which ¢ = oo, it is agreed that T will be
said to be of weak type (p, o) on D if and only if it satisfies a (strong) type
(p, o0) inequality (see Section 13.2) on its domain of definition, that is, if
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and only if there exists a number 4 > 0 such that

1Tf o, < Al (13.7.6)
for all fe 2.

In (13.7.5) and (13.7.8), ||f|, is defined as in 13.1.2, so that | f|, may be
00; in this tase 00* = oo for any a > 0. (See the conventions listed at the
beginning of this section.)

In either case the smallest admissible value of 4 is termed the weak
(p, q)-norm of T, despite the fact that (apart from the case in which ¢ = «©
and all due precautions are taken over the addition of operators) the function
of T so defined has not the properties of a norm (see I, B.1.2). This abuse
of the term “norm” appears to be customary in this connection.

The inequality (13.7.5) may be written

Dr*(t) < (%‘)q- (13.7.7)

Most frequently the hypothesis that 7T is of weak type (p,q) (g < o0) is
brought into play by employing (13.7.7) in conjunction with (13.7.3) applied
with (Tf, ¢, v) in place of (f, p, p); see the proof of 13.8.1.

It is clear that the above definitions of the concept of weak type (p, q)
can be formulated if either or both of p and ¢ lie in the interval (0, 1), but
this extension appears to be of relatively little interest.

13.7.6. Examples of Operators of Weak Type. (1) If T is of type
(p, ) on a domain 2, then it is of weak type (p, ¢) on 2.

This is a matter of definition if ¢ = 0. If ¢ < 00, one has by hypothesis
for each fe 2:

1T o = ([ 1701783 < 1Tl s

confirming that for any ¢t > 0

{t** Dr, 0} < | Tl5,0lfllp.0
and therefore

T q q
Duty < 1L el I

which shows that 7 is of weak type (p, ¢) on ® and that the weak (p, g)-norm
of T does not exceed the (p, g)-norm ||T'|,.,.

Thus every operator of type (p, ) is ipso facto an example of an operator
of weak type (p, q); see 13.2.1, Section 13.6, and Exercises 13.5 and 13.6.
The converse is false, even for operators defined and linear on certain sub-
spaces of LP(1) and having ranges in L%(v); but see Exercise 13.16.

We shall in Sections 13.9 and 13.10 see that the conjugate function operator
f — f and the majorant operator f — o*f are of weak type (1, 1) on suitably
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chosen domains, even though they are not of type (1, 1) on those domains.
Another such example will appear in Section 13.11. The theorem of Kolmo-
gorov cited in 10.3.4 shows that the majorant operator f-— s*f is not of
weak type (1, ¢) on L! for any ¢ > 0.

In view of Carleson’s result cited in 10.4.5(3), together with Stein’s theorem
16.2.8, the operator s* is of weak type (2, 2) on L2

(2) The Hardy-Littlewood maximal operator. This operator is perhaps the
forerunner of all others as an example of an operator of weak type (1, 1).
Here we suppose that (X, ./, ) = (Y, A4, v), X denoting the real axis R,
A the set of Lebesgue-measurable subsets of R, and u the Lebesgue measure
on R.
For any measurable function f that is integrable over (—a, a) for cvery
a > 0, define

Sr(z)

i

x+s
sup s~ [*7 ()] dy,
§>0 x

f@) = sups= [ Ayl dy.

§>0
It can be shown ([HS], Lemma (21.75)) that if we write forj = /,rand¢ > 0
ES ={xeR: fizx) > ¢},
then

v(EY) < rlLt, [f] dp. (13.7.8)

The mazimal operator M’: f —~ f7 is clearly quasilinear, and (13.7.8) evidently
entails that M/ is of weak type (1, 1) on L(u).
However, consideration of the function

{x‘l(log )2 for0 <z < ¥

0 elsewhere,

Sflx) =

for which f/(x) > z~|log z| ! for small z > 0, shows that f— f¢ is not of
type (1, 1) on L(n). Similarly, f — f7 is not of type (1, 1) on L!(u).
Similar statements apply to the maximal operator
MA: f— f4 = sup (f4, 7).

It is shown in [HS], Theorem (21.76) that M’ (j = £, r, A) is of type (p, p)
on LP(u) for 1 < p < . This, together with certain other inequalities estab-
lished in [HS], Theorem (21.80), will follow, on the basis of Marcinkiewicz’s
theorem 13.8.1 and the results in 13.8.3, from the statement that each of these
operators is of weak type (1, 1) on L!(x) and (what is quite evident) that each
is also of type (00, c0) on L®(u). The proofs in [HS] are, on the contrary, direct
and lead to specific estimates for the constants involved in the inequalities. See
also [Kz], pp. 74-76.

The keystone in all these results is the assertion that M’ is of weak type (1, 1)
on L!(u). It is therefore interesting to note that this is itself a consequence of
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the general theorem of Stein recorded in 16.2.8 and the Lebesgue theorem on
the differentiability almost everywhere of an indefinite integral which is quoted
in 6.4.2; see Exercise 16.14.

The Hardy-Littlewood maximal operators have been defined and studied in
connection with more general measure spaces; see, for example, Smith [1],
Shimogaki [1], Rauch [1] and MR 35 # 6788. There will be no place in this
book for these extensions; but see also 13.10.3 below.

13.7.7. Remark. There is an analogue of 13.2.2 applying to linear opera-
tors of weak type (p, g), but which appears to be of somewhat peripheral
interest; see Exercise 13.19.

13.8 The Marcinkiewicz Interpolation Theorem

In the Riesz-Thorin convexity theorem 13.4.1, we have already en-
countered one result that enables us to “interpolate” properties of a func-
tional operator 7T on the basis of given ‘“‘extreme” properties of 7'. There,
continuity of type (p.q) of T was deduced, for certain pairs (p, ¢) inter-
mediate to two pairs (p;, ¢;) (j = 0, 1), from continuity of types (p;, ¢,)
(j =0,1) of T. It is now time to prove another famous interpolation
theorem, which asserts that the same conclusion applies to somewhat
different intermediate pairs on the basis of weak-type continuity for the
pairs (p;, q,), the latter being subject to special relations that are not needed
in the Riesz-Thorin theorem but which are essential for this second theorem
(compare 13.8.1 and 13.4.1, where no such conditions appear).

13.8.1. Marcinkiewicz’ Interpolation Theorem. Suppose that (X, 4, p)
and (Y, A", v) are nieasure spaces and that (p,, ¢;) and (p,, q,) are two
exponent pairs having the following properties:

l<p << (j=0,1),}
90 # 1

Let T be a quasilinear operator [with constant «; see (13.7.4)], whose domain

D is a linear subspace of LPo(X, ., u) N LP1(X, 4, ) which is closed under

the formation of truncations (see 13.7.1), and whose range is as described in

13.7.4. Suppose further that 7 is simultareously of weak types (p,, ¢o) and

(p1, q,) with weak norms 4, and 4,, respectively. Suppose finally that

1_t -p 1_& (-9

—_— —

(13.8.1)

. 0<t<l. (13.8.2)

P Po P 7 9 %
The conclusion is that T is of (strong) type (p, ¢) on ®, that is, that there
exists a number 4 = A(¢, Do, 90> P1> ¢1, Ao, 4,) such that

1Tf e < ALS 5.4 (13.8.3)
for fe 2.



166 INTERPOLATION THEOREMS

Proof. There are several cases to be considered separately. Throughout
the proof the symbols A,, A;, 4,,--- are used to denote nonnegative
numbers depending at most on T, p, v, ¢, Po, 9os P1> §1, Ao, and A4,.

(1) We shall begin with the case in which ¢, and ¢, are finite. Of this there
is one subcase which can be dismissed rather quickly, namely, the case in
which py = p, = p.

In this subcase we may suppose without loss of generality that ¢, <
g<g,.Ifa>0,(13.7.3) givesforfe D

17f e, = g f " ba-1 Dy, (b) db

= q{f: + Lm}.

In the first integral we majorize Dy,*(b) by using (13.7.5) with p and ¢
replaced by p, and g, respectively; the second integral is treated likewise.
using p, and ¢, in place of p and q. As a result it appears that

Il

I7f 8.y < const{a?=%|f |5, + a*~ | f]32,

since ¢, < ¢ < ¢; by hypothesis. If || f|,., > 0, and if we choose @ = | f], ..
the desired result (13.8.3) appears; and if | f], , = 0, Tf is null and (13.8.3)
is trivial.

Having disposed of this subcase, we suppose henceforth that p, # p, and
that in fact py < p < p;. (The proof to follow breaks down if p, = p,, so
the subcase just examined demands separate treatment.) Assume also to
begin with that ¢, < ¢,.

Suppose that f € 2. The substance of 13.7.1 and (13.7.4), coupled with the
hypotheses in 13.8.1, show that for any b > 0

Ery(b) < Epy, ,(Yax™'0) U Eqy, (Yox710)
and therefore

Dy*(b) < Dy, (Yor™'b) + Dy, (Yor™1D). (13.8.4)

It must be stressed that in (13.8.4) one is at liberty to choose a and b as
positive-valued functions each of the other. This freedom will play a vital
role in the subsequent proof.

Since T is of weak types (pq, ¢o) and (py, q1), (13.8.4) shows that

Dr*(b) < Ap(b%1||frallZt , + 7% foal52,)-

p1,u Po.u

The reader should experience no trouble in verifying that, if @ be chosen to
be a positive monotone function a(b) of b € (0, c0), then |f, .|, (j = 0,1;
k = 1,2) is a monotone, and therefore measurable, function of b € (0, ).
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So an application of (13.7.2) and (13.7.3) leads to

17712, = g f be=1D,,(b) db

< g4, fo BT fLaml@, + 0970 foaw i ) db

a(b

® )
< Aa{fo be-a- i \ D#(c)ePr~t de]ta/Pa db

+ fw be-% -1 N D4 (c)(c — a)Po ! dc]%’Po db}
0

a(b)
= Ay(I, + 1,). (13.8.5)

The crucial step is to choose a as a function a(b) of b € (0, co0) with properties
to be described as we go along. From this point on, it is to be assumed that
a(b) is a positive strictly monotone function of b€ (0, ), the inverse of
which is denoted by b = b(a).

We proceed to estimate I, and I,, taking first the case in which ¢, < ¢,
and assuming that a(b) is strictly increasing.

In considering I,, it will be convenient to introduce the measure A on
R, = (0, o) defined by

Mm=fmm*@
E

for Lebesgue-measurable subsets E of R,. Then I§1/% is the LaP(R,, A)-

norm of the function
a(b)

b— DHc)err~tdc,
4]

which is A-integrable over every A-finite measurable set; recall that ¢,/p, > 1.
So, in view of 13.1.5, I21/% is equal to

a(b

o )
sup [ be-s-2g00) [ D ey~ dey ) = sup 1],
0 0
the supremum being taken relative to all A-simple functions g satisfying
f lg(B)|“@r/Pvpr-01-1dh < 1.7 (13.8.6)
0

It is moreover clear that in this case it suffices to take the supremum relative
to those functions ¢ of the prescribed type which are nonnegative, for which
functions g it is evident that J > 0.

Now

J= f { f b7 9~ (b )xco.am(€) Dy(c)cs = dc} db
4] 4]

1 We assume that ¢,/p; > 1; otherwise, (13.8.6) and the following derivation of (13.8.7)
need slight and obvious modifications.
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and the Fubini theorem (in the form in which it appears in [HS], Theorem
(21.12)), together with the fact that a(b) is strictly increasing, shows that

J = f {f b7 9171 g(D)X iy, (D) Dy (C)eP1 1 db} de
0 0
= [T e[ venig) anyae
] b(c)

< fw ¢P1= 1D H(e)[ ” ba-9:-1 gp]Paiay ” g(b)@/Pha- 91 -1 gh]iasp 'y de
0

b(cy ble)
< f P I D) |  bemu-1dbyraian de, (13.8.7)
0 b(c)

the penultimate step being an application of Hélder’s inequality for integrals
with respect to the measure A restricted to (b(c), o), and the last step using
(13.8.6). Since ¢, < ¢4, ¢ < ¢, and

{ b(c)bQ—ql—-l db}pﬂql = b(c)<‘1‘ql)p1/‘11(ql —_ q)“”ﬂqx,

Thus (13.8.7) and the relation I2:/%1 = sup J show that
I, € A4{f cP17 1D H(c)b(c) @~ aP1iay deu/Py (13.8.8)
0

Turning to the consideration of I,, it is to be observed first that, since
(¢ —a)yPo=t g cPo™
I, <1, = f b1~ - Y cPo 1D H(c) dec}'Po db.
0

a(b)

The method used above to majorize I21/%1 can now be adapted so as to
majorize J370'%, which, by 13.1.5, is equal to

sup f * pe-a0 - by f " %0 -1D(c) dc} db,
0o al

(b)

the supremum being taken relative to a suitable set of nonnegative measur-
able functions A on (0, o) satisfying (compare the footnote to page 159)

f " h(b) oo b1 1 g < 1.
0

In the course of the argument, use is made of the fact that

Xaw, »)(€) = Xc0,00n(D)

and of the relation ¢ > ¢,. The outcome of this procedure is the estimate

I <I, < A f ¢70 1D H(e)b(c) - Wrold deione . (13.8.9)
0



[13.8] THE MARCINKIEWICZ INTERPOLATION THEOREM 169
From (13.8.5), (13.8.8), and (13.8.9) it follows that

T30 < Ad{[ o7 DAepe) s owrses dejisns
0

+ {fw ¢Po =1 D #(c)b(c) @~ % P0/% dc}iolPo].  (13.8.10)
[}

The aim being to obtain integrands on the right-hand side of (13.8.10)
which (compare (13.7.3)) are each of the form const ¢?~1D*(c), we write
tentatively

bla) = (K~ 'a)",
where it is hoped to choose K > 0 and p > 0 so as to achieve this aim. The
restrictions K > 0 and p > 0 will ensure that b(a) is a positive and strictly
monotone function of a, as has been deposed earlier.

If success is to be achieved at all, the only possible choice of p is already
discernible on looking at the first integrand in (13.8.10) and is that for which
p1 — 1 + plg — ¢1)p:/q, = p — 1, that is, that for which

plg/gy — 1) = p/p, — 1. (13.8.11)

Since ¢/q, < 1 and p/p, < 1, this choice renders p > 0. Direct calculations,
using (13.8.2), show that this choice of p arranges that

Po— 1+ pg — 90)Po/90 =P — 1,
thereby taking care of the second integrand in (13.8.10). Consequently,
(13.8.10) becomes
I1TF15,0 < Ae[K2aP2mP0Pa f[21007
+ K%®@o ~PIpo|| f||90PIpo], (13.8.12)
The quantity K is now to be chosen so as to achieve the desired gth power

of |f|l5.. on the right-hand side of (13.8.12). Assuming, as we may, that
| flls,. > O, this object is achieved by taking

K = |fl5..
where B is determined by the relation

q y4
1 - S S
(I — p/p,) B .. o
Then, indeed, straightforward calculations show that (13.8.12) reduces to

1Tf 15 < 2445150

and our goal is achieved provided ¢, < g¢;.

Let us now consider what happens when ¢, > ¢,. A careful examination of
the preceding proof shows that it is only in the step from (13.8.7) to (13.8.8),
and at the corresponding point in the estimate of I,, that the assumption
do < ¢, is essential. To counter this difficulty we observe that if, when
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go > ¢;, we assume that a(b) is strictly decreasing (instead of increasing),
then the integral J.;c) in (13.8.7) must (providentially) be replaced by f:(”
As a consequence, (13.8.8) remains intact. A similar escape takes place at
the corresponding point in the estimation of I,. Thus (13.8.10) stands un-
blemished. The proof then closes much as before: this time we require that
p < 0, and this is ensured by (13.8.11) since now ¢/¢; > 1 and p/p,; < 1.
The reader is urged strongly to write out the details of what has just been
sketched in brief; see Exercise 13.10.

This completes the proof in case (1).

(2) The case in which p, = p; = p, ¢, < 0, q; = o0: for this, see Exercise
13.11.

(3) The case in which 1 < py < ¢y < 0, P; = q; = oo: for this, see
Exercise 13.12.

(4) The case in which 1 < py < ¢p < 0, Py < Py < 0, ¢; = 00.

Applying (13.8.4) and making a change of variable, we shall have, if
a = a(b) is any positive and strictly monotone function of b € (0, ),

175, < Aqf f be-1Dy, . (b)db + f b1Dy, . (b)db}, (13.8.13)

On the other hand, by the weak type hypotheses on 7',
” Tfl.u(b)w,v < Al ”fl.a(b) ” Py.u*

In view of (13.7.2), (13.7.3), and the fact that p, > p, we have
a(b)
” Tfl,a(b)”ao,v < Al{fo thpl—lD/”(t) dt}”pl
< dga®) 7ol [ per=D0 dryie.
1]

So, by (13.7.3) once again,
1Zf1,aml 0,0 < Aoa(b)* P72 | f |55 (13.8.14)

Our hope is to choose @ and b as positive and strictly monotone functions
each of the other in such a way that

Aqa(b)t=7s||f|2: < b. (13.8.15)

For, if this is possible, (13.8.14) shows that Dy, _ () will vanish for all
b > 0 and the first term on the right-hand side of (13.8.13) will also vanish.

If, at the same time as satisfying (13.8.15), we can choose a(b) to be strictly
increasing, the estimate of I, in (1) (for the case in which p, # p,) will proceed
exactly as before and will yield, in place of (13.8.10), the inequality

1T, < Ay f o0 1D #(e)b(c)-wPold detolro . (13.8.16)
0
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Since, as before, we wish to obtain an integrand of the form const ¢? ~1.D*(c),
we again choose tentatively

b(a) = (K~'a),

and hope to dispose of K > 0 and p > 0 advantageously.
The only possible successful choice of p is given by

1+ plg — 9o)Po

Do — %

=p - 1:
that is, by
p(a/q0 — 1) = p/po — 1,
which, in view of (13.8.2) and the supposition that ¢; = oo, gives

p=1-—1p/p

This choice of p does indeed make p > 0; and direct calculations show that
it leads from (13.8.16) to

ITfN5, < A3 KPo~P%lPo | f 20570, (13.8.17)

In order to satisfy (13.8.15) and to obtain ||f]|2, on the right-hand side of
(13.8.17), we write K = K, K,, where

K, = "f”g,u

and 8 is to be chosen to obtain |f||2, on the right-hand side of (13.8.17),
and where K, > 0 is to be chosen (if possible) so as to accommodate (13.8.15).
For B the only possible choice is such that

BP0 — P)o | %P

Po Do -7

which signifies that p(1 — 8) = 1. Then, since p = 1 — p/p; and Bp = —p/p1,
(13.8.15) is seen to be accommodated by choosing K, > 0 so that

A9 < Kg/pl—l ,

a choice that is possible since p/p; — 1 # 0.

This completes the discussion of case (4).

(5) The final case, in which 1 < p; < ¢; < 0, Py < p; < wand g, = ©,
is left for the reader’s attention in Exercise 13.13.

13.8.2. Remarks. (1) It will be clear to the reader that the restrictions
p; < ¢;(j=0,1), go # ¢, are necessary in the preceding proof of 13.8.1; it
will further be apparent that one cannot by modifying the proof dispose of
the condition ¢, # ¢, (since otherwise the case p, = p,, o = ¢, of 13.8.1
would imply that any quasilinear operator of weak type (p, q) is also of
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strong type (p, q), which is shown to be false in Example 13.7.6(2), and also
by 12.8.3(2) in conjunction with 13.9.1).

A more important question is whether one can suppose that p, > g,
(j = 0,1) and still obtain a valid theorem. That the answer is negative has
been shown by Richard A. Hunt [1].

(2) An outline of a proof of 13.8.1 for the case in which g, and ¢, are
finite has been given by Hunt and Weiss [2]. Calderén (lecture notes) and
Hunt [1] have also extended the theorem to the case of an operator T acting
between pairs of Lorentz spaces (which generalize the L?-spaces). See also
Oklander [1] and Stampacchia [1].

(3) In the preceding proof, which is essentially an expanded and annotated
version of that appearing on pp. 112-115 of [Z,], no attention has been paid
to the precise form of the functional dependence of 4 on the p’s, q’s, Ay, Ay,
and ¢ There is no great difficulty in gaining some precision, though the
question of maximum precision is another matter. The interested reader may
seek' an estimate as an exercise, and also refer to [Z,], p. 114, where it is
shown that, if py = p, and ¢, and ¢, are finite, then

1705, < K454},

where

Ko = (207 {(po/p)“o"’o 4 (pyp)ua)
2 —al ¢ - al

It is important to note that, if T is a quasilinear operator of strong types
(25 ¢5) (7 = 0, 1), such estimates of 4 = | T, , as do result from a simple-
minded examination of the preceding proof of 13.8.1 do, in some cases, tend
to infinity as ¢t | 0 or as ¢t 1 1. The appropriate version of 13.4.1 shows,
however, that the best estimate of | 7|, , remains bounded. This shows that
simple-mindedness is not enough, and that 13.8.1 is not a complete substitute
for 13.4.1. For further comments in this vein, see [Z,], pp. 115-116.

(4) Although some applications of the Marcinkiewicz theorem to harmonic
analyis appear later in this chapter, the reader may wish to consult also
G. Weiss’ article [1]. Concerning the role of the same theorem in the study of
singular integral equations, see Calderdn [2].

A more restricted version of the Marcinkiewicz theorem, together with
some of its applications, appear on pp. 1166-1184 of [DS,]. (However, the
proof of the theorem itself presented by Dunford and Schwartz contains
several errors.) See also [EG], Appendix A.

(6) For generalised versions of the Marcinkiewicz theorem, see MR 37
# 4601. Multilinear versions of the theorem are given in MR 38 # 6346.
Vector-valued versions are dealt with in MR 52 # 1162.

(6) A stronger form of the theorem has been given by Stein and Weiss
[2] (see also [Moz], Chapter 1), the essential differences being that one
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assumes that 1 < p; <g¢; < oo; that p, # p; and go # ¢;; and that in
place of weak type conditions one assumes restricted weak type
conditions; the conclusion being that 7' is of type (p, ¢) whenever (13.8.2)
holds. To say that T is of restricted weak type (p, q), signifies that (13.7.5)
holds for all f which are characteristic functions of p-finite subsets of X.

13.8.3. Further Inequalities. Partly for their own interest, and partly
for subsequent application in Sections 13.9 and 13.10, we propose to establish
some inequalities subsidiary to those implied in Marcinkiewicz’s theorem
13.8.1.

It will be assumed that 7T':f->f# is quasilinear and has as domain a
linear subspace ® of LYX, 4, u) N L¥(X, A, u); which is stable under
multiplication by characteristic functions of u-measurable sets and under
truncation. The range of 7' is to lie in the space of v-measurable functions
(or in the space of equivalence classes thereof). It is further assumed that
v(Y) < oo.

The major hypotheses are that 7' is of weak types (1, 1) and (a, a) on D,
where 1 < a < o0, that is, that

Dyy(t) = v(E#(t)) < &’:”‘—'“, (13.8.18)
and either
Dyy(t) = v(E#(t)) < B”{a“g’“ (13.8.19)
ifa < o0, or
1 #1w, < Blf |0, (13.8.20)

if @ = o0, in each case for fe ® and ¢ > 0. In these inequalities we have
written

E¥t) = Bft) = {ye Y : |f4(y)] > &},
just as subsequently we shall write
E@¢) = Et) = {xe X :|f(z)| > t}.

The conclusions are that

If#), < 4"+ B f!f! log* |f]dp  ifw(X) < o0, (13.821)
and that
1f#py < 4pllfl1 0 <p <1, (13.8.22)

in each case for f€ ®; 4’ and B’ denote numbers that may depend on 7' and
the measure spaces involved, 4, a number that may depend on these things
and on p as well, but 4’, B’, and A4, are independent of f. These remarks
apply also to 4” and B”, which appear shortly.
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Details of the proofs will be given for the case in which 1 < @ < co. If
a = oo one can either make simple modifications in the proof exhibited
(compare the modifications in the proof of 13.8.1 to handle the case
P1 = ¢; = o0), or one can use Theorem 13.8.1 so as to reduce oneself to the
case in which a < oo.

Proof of (13.8.21). We denote by ¢ = «(t) a positive-valued function.of
t > 0 to be specified later and write

oy = {1 ¥ f@) > o,

0 otherwise,
so that g € D whenever f e 9. Accordingly
f=g+h,
where % € D satisfies |k| < «. By quasilinearity of T (compare (13.7.4)),

[f#| < «(|g#| + |#])
and so

t ¢
# # —\.
B C Eg(zk) v Ef (2,<)
By (13.8.18) and (13.8.19), therefore,
t t
Djut) < Dip(5) + D)

< 2eAlols , QorBIAE,

= 2xAt‘1f |f] dp + (2K)aBt-“f |f]® dp.
Ew) X\E@

Hence
%) < 2cdi=? j /] + (26)°Ba~1=%|f],,,.  (13.8.23)
E(a)

Now

A = [ 11 = [ D= [+ [

<uY) + f D) dt,
1

8o that it will suffice to show that f 1°° Djx(t) dt is majorized by an expression
of the type appearing on the right-hand side of (13.8.21).

To this end we choose any r satisfying 0 < r < 1 and take « = #', so that
o®~ 7% = t~5, where s > 1. Then (13.8.23) yields

Dis(t) < 2wdt~? f 17 du + @)eBE5| 1.0 (13.8.24)
E¢t")
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To 'flw Dix(t) dt the second term on the right-hand side of (13.8.24) contributes
a term majorized by

@Bl f o [ 470t = B f s

Inasmuch as u < C + C'ulog* w for w > 0, while u(X) < co, this last
term is majorized by an expression of the type appearing on the right-hand
side of (13.8.21). The remaining problem is therefore to verify that

f t“l{f /()| du(z)} dt < A” + B’ f If| log* |f] du. (13.8.25)
1 E(") X
However, it is a simple matter to show that the function

(@, t) = xgay (2)|f(2)]

is measurable in the pair (z, t), as a consequence of which the theorems of
Fubini and Tonelli show that the left-hand member of (13.8.25) is equal to

[ @] " ¢ s (o) ) duta),
X 1

in which the inner integral has the value

log + {11‘(3:) l l/r}

owing to the fact that g, () is 1 or 0 according as t™ < |f(z)| or t™ > |f(z)|.
Since log* {u} = c-log* u for v > 0, ¢ > 0, we see that the left-hand
member of (13.8.25) is in fact equal to

() [ 1rriog® 111 du,

so that (13.8.25) is certainly valid.
Proof of (13.8.22). We have in this case to show that
1418, = [ 2 Dpuce de < 4,11 8.0, (13.8.26)

provided 0 < p < 1.
Let e > 0. Then

f " ptP-1D(t) db < v(Y)eP. (13.8.27)
0
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Also, taking o(f) = ¢ in (13.8.23), it appears that
[T oD at < 2cap [T o[ (fo)] duta) at
€ ¢ E®

+ (2)°Bp|f||1.0 f -2 di. (13.8.28)
&

Since p < 1, the second term on the right of (13.8.28) is equal to

(26)°Bp || fll1,ue? "
1-p

By the theorems of Fubini and Tonelli, the first term is équal to

2ep [ 1SN xso@i? dt duto)
€
the inner integral in which is easily seen to equal

max {0, 2~ — |f(z)|*" 1} < g1
1—-» I )

because yzq () is 1 or 0 according as ¢t < |f(z)| or ¢ > |f(z)|. Thus (13.8.28)
and (13.8.27) lead to

(264 + 2°«*B)pe® 1| f|1.u
I-»p ’

from which (13.8.26) follows on letting & | | f| 1.,

If#2., < w(Y)e? +

13.8.4. Remarks. (1) Arguments very similar to those appearing in
13.8.3 will show that, if T is of weak types (1, 1) and (o0, c0) on D, then it is
of type (p,p) on ® for 1 < p < oo. (This is, of course, a special case of
Theorem 13.8.1.) The details, written out for the case of the Hardy-Littlewood
maximal operator (see Example 13.7.6(2)) but really quite general in scope,
appear in the proof of Theorem (21.76) in [HS].

Numerous further inequalities of the same general type appear in Exercise
13.22; see also [Z,], pp. 116-121.

(2) A significant class of operators 7' satisfying the conditions mentioned in
Remark (1) immediately above has been exhibited by Dunford and Schwartz
(see [DS,], pp. 668-684) in connection with ergodic theory.

They begin with a linear operator S with domain L*(X, A, u) " L*(X, 4, n)
and range in the space of y-measurable functions (or in the space of equivalence
classes of such functions), S being assumed to be of types (1, 1) and (o0, )
and to have associated norms

I81i: <1, [S]w,o <13
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such operators have since been christened Dunford-Schwartz operators. From S
one constructs its iterates S* (n = 0, 1, 2,.--; 8% = I, the identity operator),
their arithmetic means

N-1
Ay =N-1 % 8,
n=0
and finally the majorant operator A* defined by
A%f(z) = sup |4uf(@)].

It is clear that A* is sublinear and of type (oo, co). Dunford and Schwartz
show (what is by no means obvious) that 4* is of weak type (1, 1), so that the
inequalities (13.8.21) and (13.8.22) hold with A*f in place of f#. (They prove
these inequalities directly and with specific estimates of the constants 4’, B’,
and 4,.)

It is also shown that the sequence (4yf)5-; converges pointwise almost
everywhere if fe L?(X, .#,p) and 1 < p < o, and that it converges in
LA(X, M, p) if feL?(X, #,p) and 1 < p < . These statements constitute
the so-called pointwise and mean ergodic theorems, respectively (see [DS,],
loc. cit.).

13.9 Application to Conjugate Functions

It is now time to redeem the promise, made in 12.9.9, to provide an
alternative approach to the proofs of the inequalities (12.9.1), (12.9.9), and
(12.9.10). This is to be done by applying Marcinkiewicz’s theorem 13.8.1 and
the results in 13.8.3 to the conjugate function operator 7:f—f = H *f
introduced in Section 12.8. As will become clear in 13.9.2, the crucial step in
this program is the proof that 7', regarded as an operator with domain and
range in L2, is of weak type (1, 1). The required proof is quite troublesome
and occupies the major portion of the present section.

Before embarking on this task, a comment is in order. The reader may at
first be puzzled why we do not regard 7' as an operator with domain L! and
prove that it is of weak type (1, 1) on this domain. The reason why we cannot
follow this course is a consequence of our divergence from the traditional
treatment, discussed in 12.8.2. The traditional account works with the
operator 7": f — f¢ with domain L! and includes a proof of the fact that 7”
is of weak type (1. 1); see [Z,], p. 134 and [Ba,]. p. 113. Now f¢ is the point-
wise limit almost everywhere of H, % f, whereas our f is the distributional
limit of H, % f. in each case as ¢ |, 0. As we have seen in 12.8.2(2), f¢ and f
may be identified if (for example) f € L2. The identification is not, however,
possible for a general f € L. Indeed, it was seen in 12.8.3 that, for a general
feLl, the distribution f is not (generated by) a function at all. Thus we
cannot even hope to prove that 7' is of weak type (1, 1) on the domain L.
Instead, we must of necessity restrict its domain to a set of functions f for
which we can be sure that f is (generated by and identifiable with) a function,
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and which is still large enough for us to derive the inequalities (12.9.1),
(12.9.9), and (12.9.10). The domain L? is amply large enough to fit the bill and
is, moreover, convenient in other respects. (Smaller domains, such as L*,
would in fact suffice.)

After this preamble we proceed to state and prove the key result of this
section.

13.9.1. The Main Inequality. There exists an absolute constant 4 > 0
such that, for all fe L? and all A > 0,

m{ze[—m m): | f@)| > A} < AA‘lfn If(#)] dt, (13.9.1)

-
where m denotes Lebesgue measure. That is to say, the operator f — f, with
domain L? and range in L2, is of weak type (1, 1).

Proof. This will be broken into several steps, in the course of which it
will sometimes be convenient to write |E| in place of m(E). The symbols
A, A’ Ay, A,, - - - will be used to denote positive absolute constants.

Since the operator in questfon is linear, a little thought will convince the
reader that it is enough to prove (13.9.1) for nonnegative functions fe L?

satisfying
f /)] dt =

which restrictions will be assumed henceforth.

(1) We begin by transforming the problem. By 12.8.2(2), f = lim,_o H, * f
inL?, and also f = lim, _,,, H, * fpointwise almost everywhere for a suitable
(possibly f-dependent) sequence of positive numbers e, tending to 0. Write
Jo = H,_ *f, sothat

Jl@) = QL f@ — y) cot Yoy dy
™

en<lylsn

{Jx i J‘xi-sn} tan 1/2 t —z) (13.9.2)

As r and ¢ range separately over [ —m; 7), t — x ranges over (— 2w, 27). The
function cot ¥4 (t — ) has singularities to concern us at{ — x = —27, 0 and
27, and these plainly present the potentially important features in (13.9.2).
Accordingly, we examine, in place of the functions f,, the functions &,
defined on [ —, 7) as follows:

= {77 [ e

+ f” FO{t —x —2m)~t + (t — 2 + 27" dt (13.9.3)

N U_: + f:}{(t_)it (13.9.4)
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A little manipulation shows that

—2nf,(x) = 2h,(x) + ju(2), (13.9.5)
where

(@) = { f Tty f Mg — o) dt

I+E"
- [T st - 5 - 7 = )+ Y
T—¢p

the function g being defined on [—, ») by continuous extension of the
formula

gu) =cotw —u ! —(u —7)"! — (u + 7! 0 < |u| < m)

and being bounded and continuous, say |g| < 4,. It is evident that each j, is
continuous.
Defining the function j by the formula

i@ = [ g - ana,

it is easily shown that j, — j uniformly and so, a fortiori, in L*(—, m).
Therefore, since f, —f, pointwise almost everywhere, equation (13.9.5)
shows that the sequence (k,) converges in L2(—m, =) and pointwise almost
everywhere on [ —, 7) to a limit which we denote by &.

It is clear that

i@ < o [ 170]dt = 4. (13.9.6)
Moreover, (13.9.5) shows that
—2nf(2) = 2h(z) + j(2) (13.9.7)

for almost all x €[ —mr, 7).

By altering the functions concerned on null sets, we may and will assume
it arranged that f, — f, , — &, and j, — j pointwise everywhere on [ —m, m),
so that (13.9.7) also holds at all points x €[ —m, ). Such changes alter no
distribution functions and no integrals.

(2) Let us next justify the transference of attention from f to & by showing
that, in order to prove 13.9.1, it suffices to show that there exist absolute
constants A’ > 0 and A, > O such that

m{z e[—m =) : |h(x)] > A}) < A'JA (13.9.8)

for all A > Aq and all nonnegative f € L? satisfying

[ irera=1.
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To see this, write ¢ = 4,/(27), so that
1)\.
(g)ﬂ(x)

If A > A; = max (X, 2¢), the relation |f(x)| > A combines with (13.9.7) to
entail that

< c.

1y, 1
|h(z)| = |={flz) + (5;)](:1:)}] > 7 —¢) > §1r)\ > Al
For any such A, the assumed inequality (13.9.8) yields
m({xe[—m =) 1 |flx)] > A}) < 4/A.
On the other hand, if 0 < XA < A;, we have trivially

27, )
A

Thus (13.9.1) will hold for all A > 0, provided A is replaced by
max (4’, 271,),

m{ze[—m m) : |fx)] > A}) < 27 <

which is another absolute constant.
(3) For subsequent use in the proof of (13.9.8), we record the inequality

[Pl < Ay fll2s (13.9.9)

which follows from (13.9.6), (13.9.7), and (12.8.10).

(4) The proof of (13.9.8) may now begin. Let A and u be positive numbers;
p will later be chosen depending upon A.

Define functions ¢ and r as follows:

fx) if 0 < flz) < e,
$(2) ={ .
0 if f(x) > p,

and 7 = f — ¢ > 0. These are periodic functions. It is clear that
o« = fn r(t)dt < 1.
Introduce also the functions ¢ and 6 defined by
o = [ gwa

b(x) = () — Yop(x + m)

for x € [ — =, 7) and by periodicity for other values of z. Then §(—#) = 8(—=)
=0 and (7 — 0) = « < 1. Moreover, f(= — 0) = Y(r — 0) — um. From
here on it is to be supposed that p > 771, so that §(= — 0) < 0.

This being so, 8 has a largest zero, say z,, in [ —#, 7). Consider the set of
points £ € (x,, m) for which 8(¢) < sups<, ., 6(z); since 8 is continuous, this
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set is open. The union of this set with (—, x,) is an open set Q < (—, 7).
We assume that f(x) > pon a set of positive measure, thus ensuring that the
pointwise derivative 8'(x) is positive on a set of positive measure so that
Q is nonvoid. (In the contrary case we should have ¢ = fa.e. and, in the
notation of stages (5)—(8) below, & will agree with A,; (13.9.26) will follow
directly from (13.9.15) and will suffice to yield (13.9.8) with A’ = 4;.)

Let Q = |J ©; be the expression of Q as the union of a countable family
of nonvoid disjoint open intervals Q; = (a;, b;). It is easy to see (Exercise
13.14) that 8(a;) = 6(b; — 0) for all i. (We write 8(b; — 0) rather than 6(b,),
since the relation b; = 7 may obtain and 6 is not necessarily continuous at .)
From this it follows that

Yoy — 0) — You(d, + m) = l(a;) — Youla; + m),
and hence that

b;
[yt = g = 0) = pia) = uicl, (13.9.10)
and

fn r(t)dt = Yop > |Q. (13.9.11)

From the definitions of r and 6, it is easily seen that almost all points
t € [—m, =) for which r(t) > 0 belong to Q (since at almost all such points the
derivative 6'(t) exists and is positive). Because of this,

« = f ") dt = f r(t) dt (13.9.12)
Q

-n

and

f r(t)dt = 0.
[-a2,m\Q

From (13.9.11) aﬁd (13.9.12) we deduce that

Q] = > | == <z (13.9.13)

It is necessary to introduce one further auxiliary function, namely the

function @ defined on [ —=, ) to equal Y% uyg and defined elsewhere so as to
be periodic. For this function (13.9.10) gives

f o) dt = 1/2,L|Q]_J'b r(t) dt. (13.9.14)

ag
(5) The intervals ; are now to be enlarged into open intervals Q; having
the following properties:

(a) € is concentric with Q;;

(b) 2[4 <62 [;
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(e) |Qi] > 5]Q;
I

The condition (d) is to be regarded as void if the decomposition Q = | Q,

is finite; and in the contrary case it is supposed that the index ¢ ranges over

all positive integers. The intervals Q; may, of course, fail to be disjoint, and

some of them may project beyond [ —m, 7). It is left to the reader to verify

that it is possible to choose the intervals Q{so as to fulfill the above conditions.
We write

Sie = Q + 2km, S, = Q + 2km, 8 =S 8" = Uik Stis

(d) lim,;_, o = 0.

where k ranges over Z.
By (13.9.4) we have for zx € [— 7, m):

ho(z) = { f ::" + f::n {——(t_)—j;f

= hl.n(x) + hz_,,(x) + ha.n(x)

say, where A, ,, h, ,, and kg, are related to ¢, @, and r — @, respectively,
exactly as h, is related to f. For instance,

b= ([T [ 408

+&p

To the reader is bequeathed the task (see Exercise 13.15) of showing that
there exist functions &, € L?(— =, @) such that

nlf’i fgy = Bjnllz = O

for j = 1, 2, 3. By extracting subsequences and renaming, if necessary, we
may and will suppose that in addition

}ng by o(x) = k()

for almost all z €[ —, 7).
Since 0 < ¢ < p, it follows on replacing f by ¢ in (13.9.9) that

ol < 427 [* g0 de < it [ gy ae
< A2 f f(tydt = 4,%u. (13.9.15)
From the same source, taken in conjunction with (13.9.13), it appears that

ol < 4 [ 020t = 47040719

< %A% (13.9.16)
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A suitable majorization of kg, is more troublesome and will occupy the
next two stages of the proof.

(6) As a first step towards the majorization of A, we will show that, for
almost all z €[ — =, m)\S’,

bofe) = tim {3 [ TS
+Zf Mt-—m)}dt} (13.9.17)

where >’ indicates a summation over those pairs (¢, k) such that
Sip C[—3m, 2 — &,]

and >” a summation over those pairs (¢, k) such that S; , < [x + ¢,, 3n].
Suppose indeed that z €[ —, »)\S'. Since r(t) and ®(¢) vanish for almost
all ¢ outside S, it is clear that

o) = [ + |- 2o,
, [-3n,x—- e INS [z + &p,37]NS. t —x

Directing attention to the first integral on the right-hand side, a little further
thought will show that, owing to the periodic structure of S,

{r(t) — @)} dt < {r(t) — O(t)} dt
J‘[—an,x-s,‘]r\s t—z B Z + J;—an,x—en]ns‘o,ko t—x ’
(13.9.18)

where (29, ko) = (ig(n), ko(n)) is that index pair, if any such exists, such that
8y, .k, contains z — e,. It is almost obvious that, for sufficiently large n, k, is
independent of n.

To estimate the integral J appearing on the right-hand side of (13.9.18)
we use the fact that, since r and @ are nonnegative, there exist points ¢, and
t3 of 8, i, for which, if we write & for the range of integration,

i)yt
L T ¢ —x)~? L r(t) dt

O(t)dt .
fE Tz = (ty — ) fE D(t) dt.
Consequently;

1< =2

= Yoult, — x| "HQu | + Yoults — [ 71 Q ],

and

r(t) dt + |t; — x|t f D(t) dt

fo.ko Sig.ko
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the last step following by use of (13.9.14) together with periodicity. Since
¢S ks 1t — 2| = YW(]Qi | — Q) for s = 1, 2, and therefore

1<%, |

-1
[J| < Q,u(iQ l - l) (13.9.19)
fo

Consider what happens as n — co. If, for sufficiently large n, there exist
no intervals §; , containing x — ¢,, J vanishes for all sufficiently large n.
In the contrary case, the decomposition Q = | J Q; must be infinite and 4
ranges over all positive integers. In this case, let (n,) be the sequence of
values of n for which x — &, €S (n, x,n, fOr some pair of indices iy(n,),
ky(n;). For sufficiently large j, ko(n,) is constantly 0 or —1, while iy(n;) — o0
as j — co0. Thus (13.9.19) and property (d) in (5) show that J is zero, if » is
distinct from all the n,, or is majorized by a quantity tending to zero as n
ranges through the values n;. In either case, therefore,

J—>0 as n — 00.

A similar argument can be applied to the integrals involving right-hand
intervals [z + &,, 37|, and (13.9.17) follows on combining the two arguments.
(7) Having established (13.9.17), we proceed to estimate the integrals

J (@) = f {r(t) — D(t)} dt

t—x

for xe[—m, #)\S" and any pair (i, k) such that S;, < [—3m, 37]. An
appraisal of

f |J; ()| dz
[—n,m\S’

follows and leads finally to a crucial majorization of

f o ()] da.
[-7,72\S

Repeating an argument used in (6), we find that there exist points 7, and
72 of §; . for which

Jipl@) ={(r; — )71 — (75 — )71} You|Sikls

as before, (13.9.14) is being called into play here. If we denote by ¢, , the
midpoint of S; ,, and recall that x ¢ S} , and that |S; .| > 5[S, .|, we obtain

[i(@)] < AqplS; | e — @)~ 2. (13.9.20)
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On the other hand,

2
f ISi.kl dx < !Si_klzf (ci,k _ x)—2 dx
[—n,m\S’ ( R\S{ 1

Ci e — %)°

418, |2
|87kl

g lSi,kl 3

where the last step depends upon (¢) in (5). Thus (13.9.20) leads to
I, = f 1@ dz < AgulS, 4. (13.9.21)
[-n,m\s’

By Fatou’s lemma and (13.9.17) it follows directly that

[ le@lds < liming (3 L + 3 L.
{—~n,2\S’ n—ow

Now, in the sum >’ the index k must be either —1 or 0, and in >” it must be
either 0 or 1. Therefore (13.9.21) yields

f[ X [hea) ()| dz < Az}‘»z (8, 21l + [8i0l + [8i1])
= 34,1 > |Q < 64,,
where the last step makes use of (13.9.13) and the fact that S; , is a translate
of Q,. Thus
f Iho()| dz < 64,. (13.9.22)
[~7,m\s’
(8) For this final stage of the proof, the number A > 0 is supposed given.
Denote by E, (¢ = 1, 2, 3) the set of points z €[ — =, w) for which |h,(z)| > A/3,
and by E the set of points z €[ —=, 7} for which |A(z)| > X. The obvious

relation b = hy, + kg, + kg, a.e. entails that |E] < |E,| + |E,] + |E3|.
If By = By O\ ([—m, m)\S), (13.9.22) yields

Lé |hey(@)| do < 645,
whence it follows that
m(EB3) < 184,/A. (13.9.23)
On the other hand,
m(E3) < m(E3) + m([—7, =) N S'). (13.9.24)
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It has already been supposed (see (4)) that u > =~ !: we now suppose that
pw > 247~ 1. Then (13.9.13) and property (b) in (5) show that

S <6319 < 1#—2< i

The relation |Qj] < %= shows that the only S;, which make a nonzero
contribution to m([—m, ) N S’) are to be found among those for which
k = —1,0 or 1. Therefore

m([—m m) N S) <3 Q) <18 |Q < 36/u
and so, by (13.9.23) and (13.9.24),

m(B3) < 184,/A + 36/u, (13.9.25)
provided p > 24771,
Concerning E,, (13.9.15) yields

/\ 2
(5) m(E,) < A12“7
so that
m(E,) < 4/\%’-‘. (13.9.26)
Similarly, (13.9.16) entails that
m(E,) < A—/\‘g’-‘- (13.9.27)

On combining (13.9.25), (13.9.26), and (13.9.27), and taking p = A > 2471,
we obtain

Thus (13.9.8) is established for A > 247! and the proof is complete.

Remarks. (1) 1t is perhaps worthwhile to comment on the
introduction of the functions ¥ and 8 and the set Q. The reader should
observe that 6 is absolutely continuous on [—m, n) with a derivative
existing almost everywhere and equal to r — 3u. We know that r(z) = 0 or
r(x) > p for all . Roughly speaking, r(x) > u if and only if 0 is increasing
at the point x; the set Q is an open set consisting of those points where 6
is increasing, together with a subset, say F, of the set of points in [ —=, =)
where 6 is nonincreasing. It turns out that the set F is of negligible
importance when p is sufficiently large.

(2) The preceding proof of (13.9.1) is bare-handed and entirely *real
variable ” in nature. A good deal of economy can be achieved by using
the elements of complex variable theory, in particular the basic
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properties of harmonic functions. We sketch a proof based on such
principles; see [Kz], p. 66.

Since T': f— fis linear and continuous on L2 (see 12.8.3(1)), reference to
Exercise 13.18 shows that it is enough to establish (13.9.1) in case fis a
strictly positive-valued trigonometric polynomial satisfying [[f|, =1.
Taking principal branches of arg and log, consider the function H,
defined for all complex z satisfying Re z > 0 by

H,z)=1+4+7n"1"arg ((z —id)(z +i4)™Y)
=1+7"1-Im (log ((z — id)(z + i4) " 1)).

The function H, is clearly harmonic and nonnegative on the halfplane
defined by Re z > 0; moreover,

(i) H,(z) =% forall zsuch that |z >4 and Rez> 0.

Extend f and f from the unit circumference to the complex plane by
defining

fre®)y =3 rf (n)e,

neZ

fire®y = =i ¥ (sgn n)rf (n)e™®

neZ

for all real » > 0 and all real 8. Then

fre®) +if (re®) = 3, (1 + sgn ) f (n)e™

neZ

=f O +2 T rfme

nz1
is an entire function of z = re®®. Also, the extended f is harmonic and (by
the Maximum Principle for harmonic functions) is strictly positive
throughout a neighbourhood of the closed unit disc D in the complex
plane. It follows that the function z— H,(f(z) + 'Lf(z)) is harmonic on
this neighbourhood. By the mean value theorem for harmonic functions it
follows that

2n
(i) (2m)~* J; H,(f (") + if (%)) dt = H(f(0)) = H,(1)

=1—-2n"1tan ' A< 2 1271,

From (i) and (ii) it is easily deduced that the measure of the set of all
t € [0, 2n] such that | f(¢")| > A is at most 84~ !, as required.

13.9.2. Proof of the Results in Section 12.9. Knowing from Theorem
13.9.1 that T: f — f = H * f is of weak type (1, 1) on L*, say, together with
the (much more evident) property that 7 is of type (2, 2) on L2 [see 12.8.2(2)],
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the major results of Section 12.9 can now be derived by applying what has
been learned in Section 13.8.

(1) To begin with, Marcinkiewicz’s interpolation theorem 13.8.1 affirms
that 7 is of type (p, p) on L™ whenever 1 < p < 2, so that a number £k,
exists for which

1H = fllo < ko1 (12.9.1)

holds for 1 < p < 2 and f e L™. The extension to general f € L” follows from
12.9.4(1); and, exactly as in 12.9.6, it is seen that the inequality remains true
for 2 € p < o0. Thus we obtain M. Riesz’s theorem 12.9.1.

Furthermore, an appeal to the results in 13.8.3 now yields the inequalities

[H=*fll, < k|f], for0<p<l (12.9.9)
and

IH « f], < %fm log* |f| dz + B (12.9.10)

for fe L®. Then, as has been seen in 12.9.9, the first of these inequalities
continues to hold whenever fe L' and H x f is replaced by f¢ (and in its
given form whenever flog* |f| € L'), and the second whenever flog* |f| e L.
(2) We turn next to the proof of (12.9.14) and (12.9.15). For this purpose
we need to estimate | 7', , for large values of p.
For p € (1, 2) the result stated in 13.8.2(3) shows, on taking « = 1, p, =
Go=2,p,=¢q =1, 4, = 1 [see (12.8.10)] and 4; = 4 (as in 13.9.1), that

HT” <2 1/p{ 2 + 1 }1/;: Ae-»ip
e S BE =) T plp — 1)

To infer a corresponding estimate for values of p greater than 2, we use
12.9.6 (or 16.4.1). In this way it appears that there exists an absolute constant
B such that

171> < Bolfl, (p=2). (13.9.28)

For some remarks concerning this type of estimate, see [Ba,], p. 107.
Suppose now that fe L® and |f||, < 1. Then, for A > 0,

1 Sl P
5 fexp (A f]] d ,,Zo p (13.9.29)
Using the relations [ /], < [F]s < /2 and |, < |/ < 1, together
with (13.9.28), it is easily seen that the series on the right-hand side of
(13.9.29) converges to a finite sum, provided A < (eB)~*. This proves (12.9.14)
with Ay = (eB)~ L

(3) It should be added at this point that the complex variable proof of
(12.9.14) given in [Z,], p. 257, shows that it is possible to take A\, = Ypm.
That this is the best-possible value of A, follows at once on considering the
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function f defined by (12.8.14), whose conjugate f satisfies (12.8.15) for almost
all small positive values of z.

(4) As for (12.9.15), suppose that feC and ¢ > 0 are given. Choose a
trigonometric polynomial g such that |f — g|., < ¢ (see 2.4.4). Then
(12.9.14) and the linearity of 7' show that

1 .
g;fexp[)\lf— §l]dz < oo
provided e < Ay. Now § is also a trigonometric polynomial, and

exp [A|f]] < exp [A|§]] - exp [A|f — §l].
Therefore

1
%fexp[)\]ﬂ]dx < 0,

again provided eX < Aq. Since A, > 0 and e may be chosen arbitrarily small,
(12.9.15) follows.
Remark. From (12.9.15) it follows easily that

171, =o(p) asp—>o (13.9.30)

for each feC. Of course, this does not in itself imply the existence of a
function ¢, — 0 as p — oo such that for p > 2

11, < 2ellf 5 (13.9.31)

for each feC, ¢, being independent of f. Indeed, no relation (13.9.31) can
hold (with an f-independent e, — 0 as p — o) for each fe C: if it did, the
same would continue to hold for each fe L®, which would entail that exp
[A|f|] would be integrable for any fe L® and any A. The discussion in (3)
immediately above has shown this to be false.

As a consequence of this, the relation

[T)pps #0f(p — 1)1} asp—>1+0

is easily seen to follow.
See also Koizumi [2].

13.9.3. Remark on the Hilbert Transform. If one replaces the group
T by R, the analogue of the mapping f— f is the so-called Hilbert
transform

® d
Joteyep= 7 L0,

the integral being interpreted as a principal value. This, together with similar
operators involving singular integrals and functions of several real variables,
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have been the object of an enormous amount of study by, among others,
Titchmarsh, Kober, Koizumi, and Calderon and Zygmund. Many of the
developments are extremely closely linked with the ideas of type and of
weak type of operators. See Calderén and Zygmund [1], [2], Calderdn [2],
Cordes [1], Koizumi [1] and the references cited there, O’Neil and Weiss
[1]; [EG], Section 6.7; Coifman and Weiss [1]; Coifman, Rochberg and
Weiss [1]; MR 56 # 16143.

13.10 Concerning o*f and s*f

We return to the topics mentioned in 6.4.7 and utilize the results estab-
lished in Section 13.8 in order to establish the inequalities

lo*fll, < 4, fll» if feLr, l <p< o, (6.4.11)
lo*fll, < 4,0f].  iffel, 0<p<l, (6.4.12)

y/

4 .
lo*fll: < Q-T—rf[ﬂ log* |fl|dz + B if f log* |f| e L*. (6.4.13)
The reasoning proceeds as follows.

13.10.1. 'The Nature of ¢*. The operator o* is sublinear and, by (6.4.9),

o* is of type (c0, 00) on L*. (13.10.1)
The statement
o* is of weak type (1, 1) on L® (13.10.2)

can be established in several ways. (If o* were linear, (13.10.1) would imply
that o* is of type (1, 1), and nothing would remain in doubt!; but o* is not
linear and in fact o* is not of type (1, 1).)

One way of proving (13.10.2) is to-use the properties of the Hardy-Little-
wood maximal operator mentioned in Example 13.7.6(2) in conjunction with
some additional arguments of an elementary nature; see Exercise 13.17.

Alternatively, one can make appeal to 6.4.4 in combination with a powerful
and general theorem of Stein cited in 16.2.8.; compare Exercise 16.14.

13.10.2. Deduction of (6.4.11) to (6.4.13), (10.4.9), and (10.4.10).
Knowing that (13.10.1) and (13.10.2) hold, the Marcinkiewicz theorem 13.8.1
yields (6.4.11) for f € L®. On the other hand, (6.4.12) and (6.4.13) appear as
special cases of (13.8.22) and (13.8.21), again provided f € L. The extension
to the more general functions f specified is quite simple.

Since it is evident that o*f < o*|f|, we may assume that f is real and
nonnegative. For any such f, if we take any sequence of nonnegative func-
tions f, (n = 1,2, .- -) such that f, < f.,1 1 f, we have (by the monotone
convergence theorem for integrals)

1 The necessary argument would be similar to that appearing in 16.4.1.
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o*f = sup Fy*f
N

l

sup sup Fy = f,
N n

l

sup sup Fy = f,
n N
= sup o*fy;

and here o*f, < o*f,.,. Taking f, = inf (f, n) € L*, the validity of any one
of (6.4.11), (6.4.12), or (6.4.13) for each of the bounded functions f, leads (by
the monotone convergence theorem for integrals once again) to the same
inequality for f. These inequalities are thus seen to be valid for the specified
classes of functions f.

Using 16.2.8 again, if one grants the convergence almost everywhere of the
Fourier series of each feL” for some fixed p satisfying 1 < p < 2 [see
10.4.5(3) for the case p = 2], one could derive the inequalities (10.4.9) and
(10.4.10). In this connection, see Exercise 13.16.

13.10.3. Other Maximal Operators; Singular Integrals. The operators ¢* and
MI (j =¢,r, A) [see Example 13.7.6(2) and cf. Exercise 14.23] are instances of
what one might term *“ maximal >’ or ‘“majorant ’’ operators of the type

f— K*f = sup |K, * f|,
rzl

where (K,);~, is a sequence of well-behaved functions. As has been mentioned
earlier (see 6.4.7 and Section 6.6), the study of such maximal operators has
been made in the context of general (Hausdorff locally compact) groups in
Edwards and Hewitt [1] and, with special success for compact groups, by
Stein [1]; see also the closing remarks in Example 13.7.6(2). The results obtained
in this way assert that, under suitable conditions on the K,, K* will enjoy the
properties asserted of ¢* in (6.4.11) to (6.4.13); see Exercise 13.17.

It would nevertheless be a mistake to infer that this automatically disposes
of all problems associated with the pointwise surnmability of Fourier series on
more general groups, the fact being that the summability methods one may
wish to study do not always satisfy the required hypotheses placed on the
corresponding functions K,. This happens as soon as one passes from 7' to its
powers T™ that is, as soon as one passes to the consideration of multiple
Fourier series of periodic functions of several real variables. In particular, the
(unrestricted) Cesaro summability of such series does not behave in quite the
expected way. For the details, see [Z,], Chapter XVII. It is shown there that
the correct analogue of (6.4.12) requires the replacement of | f |, by

(%r)m flfl(log+ |-t da,

and that of (6.4.13) requires the replacement of

1
—_— +
5z | 171108 17] da
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by
()" [1r100s” 151 az,

l m
(é;) [ a
to denote the invariant integral on the group 7™. The difference can be traced
back to necessary changes in the form of the Hardy-Littlewood maximal
theorem in m dimensions, and this in turn is due at least in part to the
topological properties of the underlying group.

One motivation for expending effort on attempts to prove that maximal
operators K* satisfy strong- or weak-type inequalities on certain domains is
the assistance deriving from any such conclusion toward proving the existence
and finiteness almost everywhere of the pointwise limit of the sequence
(K, * f); see Exercise 13.26. Limits of such sequences are usually rather
loosely described as ““ singular integrals.”

As an example, consider the convolution operators introduced in 12.8.2,
namely,

where we have written

H, * f(x) = %—T J;<|y|<n fle — y) cot%ydy,
where 0 < ¢ < 7. The proof of 13.9.1 can be elaborated so as to yield the
conclusion that the associated maximal operator H*: f— supg<.<, |H: * f]
is of weak type (1, 1) on L' (compare Koizumi [1], I, p. 171; [Kz], p. 76).
Since, as has been seen in 12.8.2, the pointwise limit f(z) = lim,_ o H, * f(x)
exists finitely for all z whenever f € C* (say), it can be inferred from Exercise
13.26 that the limit f°(x) exists finitely for almost all  whenever fe L!, a
result due originally to Lusin and Privalov (see the end of 12.8.2). (The fact
that we have in this case a continuous parameter é— 0 in place of an integer
parameter »— oo causes no trouble whatsoever.)

Statements about mean convergence as ¢— 0 of the transforms H, * f also
follow quite easily from the above property of H*; see Exercise 13.27.

For further reading relating to maximal operators and singular integrals, see
[EG]; [HR], Section 44; [St]; [Kz], pp. 66 ff.; Gilbert [3]; MR 35 # 6788;
37 # # 5731, 6144, 6704, 6687; 38 # # 575, 576, 2268, 3466; 39 # # 4709,
4711; 40 # 799; 50 # 10670; 52 # 1162; 53 # 1143; 54 # # 844, 3290, 5720,
5721, 5736, 8133a,b,c, 8155, 13452; 55 # 3670, 6096; 56 # # 959, 960, 6259,
6260, 6261, 6266; 57 # 10340.

13.11 Theorems of Hardy and Littlewood, Marcinkiewicz and
Zygmund
Section 13.5 has produced one sort of valid extension of the Parseval

formula (8.2.2) and the Riesz-Fischer theorem 8.3.1. This section is devoted
to some more results of the same type.
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13.11.1. (Hardy-Littlewood) (1)Ifl < p < 2 and feL?, then
(O, @+ [l @I} < Al (13.11.1)
c
(2) If 2 € ¢ < o0 and ¢ is a function on Z satisfying
> (L + [n])2|g(n)|* < oo, (13.11.2)

nez

then the trigonometric polynomials

$ul@) = > $n)ens (13.11.3)

In|l<N

converge in L? as N — oo to a function f satisfying f = ¢ and

IFla < Aot 2 (1 + [m)e=2|glm|ye. (13.11.4)
ne

Remark. The function f appearing in statement (2) plainly provides a
sensible interpretation of ¢; see 2.5.1 and 8.3.3.

Proof. We derive (1) from an application of the Marcinkiewicz inter-
polation theorem in a suitable setting, and deduce (2) from (1).

(1) Here we take (X, #, n) as in Example 13.1.3(1), and (Y, A", v) as in
Example 13.1.3(2) with

¢, = (1 + |n|)~2.

Furthermore, take T to be defined by the formula

for, say, u-simple functions f.
Parseval’s formula (8.2.2) shows at once that 7' is of type (2, 2). We will
show that T is of weak type (1, 1). Indeed, if f# = Tf and ¢t > 0, then

Dit) = v{[f#(m)] > &) = > (1 + |n|)~2

summed over those integers n for which |nf(n)| > t. This last inequality
implies that |n| > t/|f];, so that

2
Du < S 1+t < 2,
In>¢/Aly

which shows that 7' is of weak type (1, 1). [It should be noticed that Exercise
3.14 shows that T is not of type (1, 1).]
Appeal to the Marcinkiewicz interpolation theorem 13.8.1 shows that T

is of type (p, p) whenever 1 < p < 2; as we have noted, the same is true
for p = 2. This leads to the inequality (13.11.1) for u-simple f. The extension



194 INTERPOLATION THEOREMS

to a general f € L? is carried out in a routine manner by approximating f in
L? by a sequence of u-simple functions; see 13.2.2.

(2) Write p = ¢', so that 1 < p < 2. For brevity write w, in place of
(1 + |n])*"2|¢(n)|?. Suppose that geLP and that N < N’ are positive
integers. On applying Hélder’s inequality and (1) it is seen that

e [Bgdel =1 > g

Infs N

=| > (1 + [n])*~29%(n) - (1 + |n|)*~274(—n)|

Inl< N
< Z w3t { Z 1 + |n))P-2|g(—n)|P}i
Inj<N In|sN
<{ 2wt 4,]gl,- (13.11.5)
In|<N
Similarly,
L (4 5.9 dz| < lg. 4 13.11.6
lo- | (B — dulg daf < {~<;<N,w”} gl (13.11.6)

On using 13.1.5, the inequalities (13.11.5) and (13.11.6) lead respectively to
the estimates

Idulle <L waiie- 4, (13.11.7)
In|<N
and
Iy — $ulla <L D walVo- A4, (13.11.8)
N<I|n|< N’

The last inequality combined with (13.11.2) shows that the sequence (¢y)2_ ;
is Cauchy and therefore convergent in L?; let f be its limit. Then, by mean
convergence,

fn) = lim (§y)"(n),

N—ow
which is easily seen to equal ¢(n). Moreover, the defining relation

f=1lim ¢y inlLe
N- oo
and the inequality (13.11.7) show that (13.11.4) holds and so complete the
proof.

13.11.2. Remarks. (1) The result 13.11.1 was extended by Paley to
expansions in terms of orthonormal systems of functions u, which are
uniformly bounded; see [Z,], p. 121 and compare the remarks in 13.5.2.
Yet further generality was achieved by Marcinkiewicz and Zygmund [1].
In Section 3 of Stein and Weiss [1], it is shown that this generalized version
can be deduced very neatly from their version of the Riesz-Thorin theorem
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[mentioned in 13.4.2(2)]. Compare also with Hérmander [1], Theorem
1.10 and Gaudry [5], Theorem 5.1.

For a variant of the Hardy-Littlewood-Paley theorem involving re-
arrangements of Fourier coefficients, see [Z,], p. 123.

(2) A more general version of 13.11.1 appears in Exercise 13.9. See also
Exercises 13.1, 13.9, 13.21, 13.23, Askey and Wainger [1] and Izumi [2].

13.11.3. The Dual Version of 13.11.1. It is possible to dualize 13.11.1,
that is, to formulate versions in which 7' and Z interchange their roles.
Before making any statement of this sort, we remark that in 13.11.1 the
expression (1 + |»|) might everywhere be replaced by a number of other
positive functions @ on Z subject to the condition

w(n)~2 < 4 (s > 0),
{w(n)> s} $

which would be used to ensure that the operator T: f — wf is of weak type
(1, 1).

This suggests a formulation of the dual result in terms of a measurable
function w on T such that

S

w(z) > 0 a.e., -—l—f w(x) %2dx < (s >0). (13.11.9)
27 Jiw@ >

S

We shall regard w as a function on R having period 27, and make use of the
measure space (Y, A7, v) in which Y is the interval [ —#, =), A4 is the collec-
tion of Lebesgue measurable subsets of ¥, and v is the measure defined by

W) = if w@)2de  (Ee).
27 Jg
It is easily verified that
1 -
f hdv = & f h(z)w(z) -2 de
¥ 2m

for any nonnegative Lebesgue measurable periodic function 4 on R.

13.11.4. (Marcinkiewicz-Zygmund) Let w be as explained in 13.11.3.
(1) If1 < p < 2 and ¢ € £7(Z), then

1 ,
& f“’p—2|‘/’|”d”}”” < 4,81, (13.11.10)
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(2) If 2 < ¢ < oo and f is measurable and _fw"‘?'[f[q dz < o0, then fe Ll
and

17l < 4q {% fw“'zlflqu}lfq. (13.11.11)

Proof. This is very similar to that of 13.11.1 and we shall be brief.

(1) We aim to apply the Marcinkiewicz interpolation theorem 13.8.1,
taking (X, #, p) as in Example 13.1.3(2) with u the counting measure on Z,
(Y, A", v) as described in 13.11.3, and the operator T’ defined by

Té(z) = w(x)(z)

for u-simple functions ¢ on Z.

Parseval’s formula shows that 7 is of type (2, 2). The condition (13.11.9)
ensures that 7 is of weak type (1, 1), since the set E, of points « at which
|T(x)| > tis contained in the set at which w(z) > t/||¢],, and so

=-1——f w ™ 2dxr £
27 Jg,

< Algls,
t

1

V(Et) 2—'
T J{w(@) > tidlly )

w(x) 2 dx

It follows, via Marcinkiewicz’s theorem 13.8.1, that T is of type (p, p)
whenever 1 < p < 2, which leads at once to (13.11.10) for u-simple ¢.
The extension to arbitrary ¢ € #7(Z) is routine and is left to the reader.

(2) Write p = ¢’. If fe L* and

1
= {e— q-2 q 1l/q
J_{2ﬂ_fw If|% da}'e < oo,
we have from Holder’s inequality and (1)

|%r ffquxl = l%r fwl‘zqu'wl‘z’p$dx|

e {%T f“p_2|$1p e

< T 4pé],-

This shows that the assighment
¢ — - féd
27 v

is a continuous linear functional on #?(Z). From the discrete analogue of
I, C.1 [see [E], Exercise 1.2 and Theorem- 4.16.1; [HS], Theorem (15.12)]
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it follows that there exists a function ¢ € £7'(Z) = £%(Z) such that

5 [ = 3 som-n) (13.11.12)
nez
for all ¢ € £7(Z) and
[$ls < 4,7 (13.11.13)

From (13.11.12) it follows that f = 4, so that (13.11.13) yields (13.11.11).
Thus (13.11.11) holds whenever fe L' and J < co. Supposing now that f

is nonnegative and measurable and that J < oo, an application of (13.11.11)

to f, = inf (f, r) e L, followed by a limiting process as r — oo, shows that

14l = 1/ < Iflle < 4 J

and therefore that f € L. On replacing f by |f], we see that f € L! whenever
J < oo. The proof is therefore complete.

13.11.5. Remarks. In 13.11.4 one may take
w(@) = |z|* for || < =

whenever « < 1. The case « = 1 is due to Marcinkiewicz and Zygmund [1]
and is treated otherwise in Theorems (3.8) and (3.9) of Stein and Weiss [1].

EXERCISES

13.1. Show that 5, ., |f(n)/n| < oo whenever f e L” for some p > 1.

Remarks. Since (see Exercise 7.7) >2_, cos nz/logn is the Fourier
series of an integrable function, it follows that 3, f(n)/|n| diverges for
suitably chosen fe L.

The stated result should be compared with Exercises 7.9, 13.21, and 13.23.

13.2. Assume that f is absolutely continuous and that Df e L?, where
1 < p < 2. Show that (with the notation introduced in 10.6.1) fe A and
that

Ifla < IfO] + 2Up3" | DS |,

where {(s) = >%_, n~ % for Res > 1.

Remark. There are analogous results applying when f is assumed merely
to be a distribution (in the sense of Chapter 12) and Df is replaced by D"f
(m a positive integer). These are simple periodic versions of results, named
collectively Sobolev’'s lemma, which apply to (not necessarily periodic)
distributions defined on domains in a Euclidean space R".
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13.3. Assume that 0 < @ < 7 and that f is defined and absolutely
continuous on [—a, a], that 1 < p < 2, and that

I=(= f |Df|P daite, M = sup |f(z)].
27 J_, IxI€a
Show that there exists a function g € A (see 10.6.1) such that g(z) = f(x)
for |z| < a and

”g”A < 0‘11)1” + Bp[’

where o, and B, are nonnegative numbers depending only on p.

Remarks. Estimates of the stated type are often useful in approximation
theory; see, for example, Domar [2]. The given estimate can be varied by
ringing changes on the construction of g.

Hint: Define g as a suitable periodic extension of f-and use Exercise 13.2.

13.4. State and prove an analogue of 13.6.1 for functions on Z.

13.5. Let ueM and define

B.() {II/AH&Z“"”‘Ilﬁll"éo“‘*"’) fl<p
A B () if2 <p

Prove that for 1 < p <

I flo < Bo(w) | f15

whenever f e L*.

Hint: Consider first the case 1 < p < 2, using the case p = 1 of 12.7.3,
the Parseval formula, and the Riesz-Thorin theorem. For the case 2 < p < oo,
appeal to Hoélder’s inequality and its converse (compare 16.4.1).

13.6. We revert to the matters discussed in Section 4.2. Let « be a map
of Z into ZU{oo} such that «~*({n}) is finite for each n € Z. Suppose that 7'
is the operator defined for trigonometric polynomials f by the formula

Tf = 2 fle(m)en;
nez
compare equation (4.2.5). Suppose further that 1 < p; < p, < oo and that
there exist numbers m,; and m, such that

1Tl < mall £,

for i = 1,2 and all trigonometric polynomials f. Prove that, if p satisfies
P1 € p € ps, T can be extended into a continuous homomorphism of L?
into itself.

Hint: The reader should pay especially close attention to the case in
which p = p, = 00, in which connection 12.3.10(2) will be useful.
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13.7. The notation is as in 13.2.3(2). Show that S is a one-to-one linear
map of L) into ¢y(Y) which is of type (1, o).

13.8. The notation is as in 13.2.3(2).

(1) Assuming that S|L?(u) is of type (2, 2), prove that it is of type (p, p')
whenever 1 < p € 2.

(2) Show by example that, if p > 2, then S|L*(u) is not of type (p, p’).

13.9. (1) Suppose that 1 < p < r < p’ (so that 1 < p < 2). Show that
there exists a number 4 = 4, > 0 such that

I+ |n)=20f), < Afif],
for each fe Lr,
(2) Suppose that ¢ < s < ¢ < oo (so that 2 < ¢ < ) and that ¢ is a
complex-valued function on Z such that (1 + |n|)!-Y2-1s ¢ € £5(Z). Show
that there exists a function g € L such that § = ¢ and

lglla < Ag (1 + [n])?=2a=2e ;.

Remarks. Results (1) and (2) generalize 13.11.1(1) and 13.11.1(2),
respectively. Compare with [Z,], p. 126.

There is an analogue applying in the case in which the group 7 is
replaced by R; see Hérmander [1], Corollary 1.6.

The stated results are of interest and use in connection with multipliers;
see 16.4.6(3).

Hints: For (1), use 13.5.1 and 13.11.1. Derive (2) from (1) by mimicking
the argument used in the text to deduce 13.11.1(2) from 13.11.1(1).

13.10. Write out the details of the subcase py < p < p;, © > qo > ¢4
of Theorem 13.8.1 [see the end of stage (1) of the proof given in the text].

13.11. Supply the proof of 13.8.1 in case (2) listed in the text.

Hints: Here po = p; = p, g < 0, g; = c0. Suppose @ > 0 and write

I7fls, = g f be=1Dy,"(b) db + g f b*=1 Dy, (b) db.

Leta | Ay f]5.u
13.12. Supply the proof of 13.8.1 in case (3) listed in the text.
Hints: Herel < py < g4 < o0, p; = ¢; = 0. Suppose a > 0; then

71 < const ([ " 02D, ) db + [ 001Dy, () dt)
Choose a = a(b) = A7 b, and estimate

f bq-lD;‘/z.a(b)(b) db

[}

as in stage /1) of the proof in the text.
13.13. Supply the proof of 13.8.1 in case (5) listed in the text.
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Hint: Modify the proof of case (4) given in the text, using as a guide the
changes made in (1) to handle the case in which ¢, > g;.

13.14. Let 8 and Q = |J; Q; = |J; (a;, b;) be as in 13.9.1(4). Show that
8(a;) = 6(b; — 0) for all s.

13.15. Verify the assertion made in part (5) of the proof of 13.9.1, namely,
if h, , are the functions there appearing, then there exist functions

by e L2 (—m, m)

such that k; , — kg, in L(—m, m) forj =1, 2, 3.

Hint: Consider, for example, k; ,. Observe that h,, bears the same
relationship to ¢ as A, does to f.

13.16. (1) Let (X. 4. u) be a measure space and f an extended real- or
complex-valued p-measurable function on X such that. for some p > 0,
A4 >0,

DAt < (A=Y (t > 0).

Prove that if 0 < ¢ < p, then

i1 < sy + Loy o

for any p-finite set S < X.

(2) Let (X, A, u), (Y, A ,v) and T:f— f# be as in 13.7.5, Y being
v-finite and the domain ® of 7 having the property that ¢f € ® whenever
f€® and c is a positive number. Suppose that T is of weak type (p, q),
where 0 < p < 0 and 0 < g < o0, and that |T(c¢f)| > ¢|Tf| v-a.e. for each
number ¢ > 0 and each fe 2. Prove that T satisfies a (strong) type (p, )
inequality on ® whenever r < gq.

13.17. Let (K;) be an arbitrary family of functions in L*® such that
|K;| < H;a.e.on (—m, ), where the functions H; are absolutely continuous
(but not necessarily periodic) and

A

sgp%rf H(z)dx < o0,

B = su {xH, z)| dx < 0.
P2

Define, for fe L,

K*f(@) = sup | K, * f(z)].
Show that

K*f(z) < (4 + 2B)f*(x)

where f2 is defined as in Example 13.7.6(2).
Show also that the same inequality holds almost everywhere if (K) is a
countable family of functions in L?, the other hypotheses remaining as before.
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Apply this procedure to o*f, taking Ky = Fyfor N = 0,1,2,.-.- and
Hy(x) = CN(1 + Njz|)~2

for |z| < =, C being a suitable constant, and thus conclude from the results
stated in Example 13.7.6(2) that o* is of weak type (1, 1) on L.

13.18. Let (X, #, ) be a measure space and f, (n = 1,2,---) and f
extended real- or complex-valued p-measurable functions on X that are
finite almost everywhere. Suppose that

lim fn = f
n—ow
in measure, that is, for any ¢ > 0,

lim D%_, (t) = 0.
n—0

(Notice that f — f, is defined p-a.e.; its definition may be completed in any
desired fashion.) Prove that
D(t) < inf liminf D, *(t — &)

e>0 n— ©

forany t > 0.

Note that the hypotheses are satisfied if f, — f in LP(X, 4, u) for any
p > 0.

13.19. Let (X, #,p) and (Y, 4, v) be measure spaces. Denote by
F = F(Y, N, v) the set of v-equivalence classes of v-measurable extended
real- or complex-valued functions on Y which are finite valued v-almost
everywhere. Suppose that Y is expressible as the union of disjoint v-finite
sets ¥, (k= 1,2,...) satisfying »(Y,) > 0. Verify that & is a complete
metric space when the distance is defined by

S 1 lg1 — gof dv
gy g2) = :
(91, 92) ;Zl k=2u(Y) Jy, 1 + |91 — 92l

(The convergence of a sequence of functions in this metric is the same as
convergence in measure on each v-finite set; see the preceding exercise.)

Suppose that 7' is a linear operator with domain a linear subspace ® of
L?(X, A, p) and range in & which is of weak type (p, ¢). Show that T has a
unique extension to the closure ® of 2 in L?(X, .#, ) which is continuous
from 3 into &, and that this extension is also of weak type (p, q).

Hints: Show that a sequence of functions which converges in measure
has a subsequence which converges pointwise almost everywhere. Use the
preceding exercise.

13.20. Show that L? # L7 < LP@-Pif ] < p < 2, and that L? « L7 < A
ifp > 2.

Prove also that

z |h(n)|P'2P-? < oo

nez
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whenever he L» x L and 1 < p < 2.

Remarks. These results show that L? x L? is a proper subset of L?
whenever p > 1; see 7.5.3, Section 8.4, and 15.3.4.

13.21. Prove that

> 0+ ) fm) < 4 + o [1]10g* || da
nez 2m
whenever the integral appearing on the right is finite, 4 and B denoting
suitably chosen positive numbers. Compare with Exercises 13.1 and 13.23.

Hint: Apply (13.8.21) to a suitably chosen particular case.

13.22. The notations and assumptions are as in 13.8.3, and we now
assume also that u(X) < oo, »(Y) < 00,and 1 < a < 0.

Suppose that ¥ is defined on {0, c0), vanishes on [0, 1], is elsewhere positive
and increasing, and

¥'(2t) = O(Y(t)) ast— 0.

Define

¢
o(t) = tf s ™W(s)ds (¢ > 0)
0
and suppose that

f D(s) dsfse*1 = O{D(t)/t*} ast — 0.
t
Prove that there exist (f-independent) numbers 4 and B such that

[ rusa <4+ B[ oqsyd

for each fe .

Remarks. One may take ¥'(t) = tfor¢ > 1, in which case ®(t) = tlog* ¢
and one recovers (13.8.21). One may also take V() = t(log* t)y> -1 for ¢t > 1,
where p > 0, and then ®(t) = p~(log™* t)*.

Hints: Write ¢ = max (2«, 1) and show first that

[ wuma <k + 3 g0, 1)
ji=0

where K denotes an f-independent number (not necessarily the same at each
appearance), 7; is the v-measure of the set where |f#| > ¢2/, and

8, = ¥(c2/*1) — P(c2Y).

For a fixed j, split f into f; + f,, where f; equals f or 0 according as |f| < 2/
or not. Apply (13.8.18) and (13.8.19) to f, and f,, respectively, in order to
derive the inequality

i o
n, < K270 Y 2%, 4 277 > 2}, (2)
i=0

i=j+1



EXERCISES 203

where ¢, is the p-measure of the set where |f ] < 1 and ¢; is the p-measure of
the set where 2'-! < |f| < 2! for ¢ = 1,2, - ... Substitute (2) into (1) and
obtain

L W (| f#) dv < K + K(S; + S3),

where

i=1
S, = z 2, > 8§27,

Show that each of S; and S, is majorized by an expression of the desired
form.

For more details, see [Z,], pp. 117-118.

13.23. Suppose that p > 0. Show that there exist f-independent numbers
A and B such that

[{log (2 p-l
gsz {og1++‘71:;f mDP %flfl(log*lf!)”dx

whenever the integral appearing on the right is finite.
Deduce that

|f(n)|{log (2 + |n])}>~?
nez 1+ ln[

is majorized by a similar expression under the same hypotheses on f.

Remark. This result generalizes that in Exercise 13.21.

Hints: TFor the first part, apply the preceding exercise to a suitably
chosen special case.

Derive the second part from the first by splitting the sum in question into
two parts according as |n| Y2 < |f(n)] < |n|? or not.

13.24. Suppose that 2 < p < oo and that F is a complex-valued function
of a complex variable that is expressible in the form

F(z) = az + bz + |2]#7¢(2),

where a and b are complex numbers and the function ¢ is bounded on some
neighborhood of the origin.

Show that to each f € L? corresponds g € L? such that § = F o f.

Remark. This is the simple half of Rider’s result cited in 10.6.3(2); it
is due to Rudin.

13.25. State and prove an analogue of the result asserted in the preceding
exercise that is applicable when 1 < p < 2

13.26. Let (X, #,p) and (Y, A",v) be measure spaces and K, (r =
1,2,---) bounded and measurable functions on the product measure space
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(X x Y, M x N, p x v) (see [HS], p. 379; the condition of boundedness on
each K, could be relaxed). For each r, T',f is defined by

T.4(0) = | Koo 9@ dute)
for fe LY(X, #, u) and y € Y. Define also the maximal operator
T*f(y) = sup |T.f(y)|-

Suppose the two following conditions are fulfilled:

(1) T* is of weak type (p,q) on L*(X,.#,pn), where 1 < p < oo,
0<gqg< o

(2) there is an everywhere-dense subset D of the set of real-valued functions
in LP(X, A, ) such that lim,_, , 7,f(y) exists finitely for v-almost all ye ¥
whenever fe D. ,

Show that lim,_ ., T,f(y) exists finitely for v-almost all y € ¥ whenever
felXX, A, u).

Remarks. (i) Special cases of this result appear as partial converses
0f 16.2.8.

(ii) It may be proved that, if in (2) it is assumed that, for every fe D,
lim,, , 7, f(y) = 0 for v-almost all y € ¥, then the same is true for every
fel?

Hints: Show that it suffices to handle the case in which the K, and f are
real-valued. Givene > 0, express any f € LP(X, 4, p)intheform f = f; + f,,
where f, € ® and || f;],,, < e Observe that

[lim sup 7'.f — lim inf T,f| < 27*f,.

13.27. Assume that the maximal operator H*: f— supg<,<.|H, * f |
is of weak type (1, 1) on L! (see 13.10.3). Deduce that

sup “He”p.p < ®©
O<e<nm

for 1 < p < 2, and then that the same is true for 2 < p < o0 (compare
12.9.6 or 16.4.1). Conclude that

lim H, « f=Hf=f inL?
£=0

whenever feL?and 1 < p < c0.



CHAPTER 14

Changing Signs of Fourier Coeflicients

In this chapter we shall be concerned with some remarkable facts
concerning not one Fourier series

Z f (n)einx’

neZ

but rather “most’’ series
2 j'_ f(n)einx
nelZ

of the family obtained by making random changes of sign in the
coefficients of the original series. It turns out that the behaviour of
“most”’ members of such a family depends solely on the convergence or
divergence of the series

X fm

neZ
if this series converges, then “most” members of the family are, in
particular, Fourier series of functions in L? for every p < o0 ; while, if this
series diverges, ‘“most’’ members of the family fail to be
Fourier-Lebesgue (or even Fourier-Stieltjes) series at all. We shall
concentrate principally on the good behaviour resulting from the assumed
convergence of ZI f (n)|?>; results pertaining to the case in which
Y f(n)]? = co are mentioned only briefly in 14.2.3 and 14.3.5.

The technique we use for handling such a family, which at the same
time gives a precise meaning to the term ‘“most ”’, stems from replacing it
by

Y. () f (n)e™,

neZ
where w is any function from Z to {—1, +1}. This leads us to consider
the set € of all such functions w and we impose upon % the natural
structure of a compact Abelian topological group and the associated
normalised Haar measure. We interpret ‘“ most”’ to mean ‘“ belonging to a

205



206 CHANGING SIGNS OF FOURIER COEFFICIENTS

set of Haar measure one”, and carry out some elementary harmonic
analysis on the group %. In the presence of the assumption Y. | fm)? <
oo we shall be able to perform a quick mental somersault and consider the
series

X o) f (m)e"

nelZ
as defining a function belonging to either L*(7T) or L*(%). This will
provide the results we need to study the above family of Fourier series.

Thus the first part of this chapter is taken up with establishing
properties of series which are the counterpart over 4 of Fourier series
over T', namely, infinite complex linear combinations

> el
Le€nr
where %" denotes the group of characters of ¥. These so-called
Walsh-Fourier series include the families above as special cases in which
the coefficients ¢, are nonzero only for those { belonging to a certain
lacunary (or thin) subset # of €. These lacunary series
Y. el
leR
are called Rademacher series and results about them established in this
chapter provide both an introduction to, and tools for the study of,
concepts introduced in Chapter 15.

It should be pointed out that our approach to Rademacher series was
not, historically, the first, in which Rademacher series appear instead as
series of functions defined on [0, 1]. For a treatment of the classical
approach we refer the reader to the first edition of this book, and for the
connection between the two approaches to Exercise 14.16 or to Appendix
Cof [EG].

In what follows, Z, will denote the set of nonnegative integers.
Further, for every set X, 1* will denote the constant function with
domain X and value 1.

14.1 Harmonic Analysis on the Cantor Group

14.1.1. The Cantor Group. We denote by € the set of all functions from
the integers into {—1, +1}, and write its elements @ = (w(n)),.z. Under
the operation of pointwise product, € is an Abelian group with identity
the constant function 1%, and each element is its own inverse: w? = 1%,
for every w € 8.

If {—1, +1} is given the discrete topology, it becomes a compact
Hausdorff space. Endowing € = {—1, +1}? with the product topology,
Tychonoff’s theorem ensures that € too becomes compact and Hausdorff.
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More precisely, a subbasis for the topology on € consists of all sets of the
form {w € €: w(n) = a}, where « € {—1, +1} and n € Z. Consequently an
open set in € is a countable union of sets of the form

{we ¥: wn)=a(n) for all n € ®},

where @ is a finite subset of Z and a € {—1, +1}®. A sequence (,)®,
converges in € to 1% if and only if for every N € Z, there exists an
ng € Z, such that w,(j)=1 for all je Z such that |j| < N and all
n € Z, such that n = ny. (The reader reluctant to appeal to Tychonoff’s
theorem may show directly that, with these open sets, € is compact and
Hausdorff.)

The group operation (w, ¢)— w¢ (pointwise product) is continuous
from the product space € x € to €; in other words, € shares with 7' the
property of being a compaet Abelian (Hausdorff) topological group. We
call it the Cantor group. (This name derives from the fact that, being a
perfect, nowhere dense, totally disconnected metrisable topological space,
% is homeomorphic to the Cantor ternary set (defined in Exercise 12.44).
For a construction of such a homeomorphism, see Exercise 14.16.
Sometimes % is termed the Walsh group; see Fine [1].)

14.1.2. Forevery N € Z,, define
€y ={we¥: wn)=1 for all n € Z such that |n| < N}.

Observe that for every such N, & is a subgroup of ¢ which has 22V*!
cosets. By definition of the product topology, every %y is both open and
closed; and, for every w € ¢, the family (0€y)5<o forms a basis for the
neighbourhoods of w.

14.1.3. The Dual of ¥. We now identify the dual group of ¥ (see
Volume 1, p.20): it consists of all characters (continuous group
homomorphisms) from € into 7. Obvious characters are provided by the
projection (that is, evaluation) functions. Prompted by tradition, for
every n € Z, we call the projection p,: €— {—1, +1} given by p,(0) =
w(n), the nth Rademacher character, and we write £ to denote the set
{pn: m € Z}. The characters of € are describable as follows.

(1) If @ is a nonvoid finite subset of Z then [[,.q p, is a character
of .

(2) Conversely, if { is a character of €, then there is a unique function a
from Z to {0, 1} with finite support and satisfying

{(w) = []o@)*™ forall w e %. (14.1.1)

neZ
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Proof. (1) is an easy exercise. For (2) suppose that { is a character of
% and that w € ¥. For every N € Z, denote by wy the truncate of w
defined by wy(j) = w(j) for all j € Z such that |j| < N and wy(j) =1 for
all other j € Z. Observe that @ = limy_, wy in €. Hence, by continuity
of ,

{(w) = lim {(wy). (14.1.2)
N-w
Now, for all ¢ € Z, we write &; for the element of ¥ which maps ¢ to ()
and all other integers to 1. Then

oy=¢_y° f—(N—n & Eyor N
so that
{wn) =L(&-§) - L(&o) -+ L&)

But &; has order 2 hence so does {(&;), whence {(&;) € {—1, +1}, for every
i. Choose a(i) € {0, 1} so that

{(&) = @)@  for every w € €.
Then
C(wn) — w(-‘N)“(_N) a)(O)"(O) e w(N)“(N)‘

Since, by (14.1.2), limy_, ,, {(wy) exists for w € €, it follows that the a(j)’s
must eventually equal zero. This proves (14.1.1), and uniqueness of the
function a is clear.

We write € " for the group of characters of ¥ under pointwise product,
and denote its identity 1. Traditionally, members of ¥~ are viewed as
functions on [0, 1]. The Rademacher characters are called Rademacher
functions and elements of €” termed Walsh functions; see Exercise
14.16.

The above proof justifies identifying the dual of {—1, +1} with {0, 1}
under the exponential map, and identifying the dual of the product {—1,
+1}# with the weak direct sum ({0, 1}%)* (the set of elements of {0, 1}2
which have finite supports), under the action (14.1.1). Observe that
multiplication of characters is the same as addition modulo 2 of their
corresponding sequences in the weak direct sum.

The appropriate topology on € is discrete; so €” is again an Abelian
topological group (see Volume 1, p. 20).

Property (2) above shows that the set £ of Rademacher characters
generates € " ; moreover Z is an independent set, in the sense that:

if ® c Z is nonvoid and finite, if @ € Z%, and if

14.1.
[T 0% = 1%, then p™ = 1% for every n € ®. ( 3)

ne®
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For a representation, due essentially to Paley, of " as the set Z,, see
Exercise 14.17.

14.1.4. Corresponding to the subgroups €y of ¥, we define
dy={eb": {(w)=1for all w € €y}, (14.1.4)
and note that
Ay={e€":{(j)=1for all j € Z such that |j| > N}. (14.1.5)

We observe that .y is the subgroup of ¥* generated by {p;: |j| < N}
and therefore possesses 2?¥*! elements. In general terms (see [HR],
(23.23)), o y is called the annihilator of €y. In Exercise 14.3 the reader is
asked to prove that, as topological groups,

(€/€y)" is isomorphic to &y,
and

%y is isomorphic to "/ y.

14.1.5. For every function f on ¥ and every w € €, the w-translate of f is
defined to be the function 7, fwith domain ¥, such that

(To f)(@) =f(wgp) forall g€,

(recall that ™! = w for all w € ¥).

There is an important operation on € which is fundamental to the
study of measure-preserving transformations on %, but for which we have
no need: the left shift 0: € — € is defined by

o(w)(n) =wn + 1) for all w € € and all n € Z.

All the Rademacher characters are expressible in terms of any chosen

one, together with iterates of ¢ and ¢~ *:

Pu+m(®) = py(c™(w)) forall w € %.

14.1.6. Integration on ¥. Just as an invariant integral on T was
crucial to our analysis of functions on 7', so we are now greatly aided by
the use of an invariant integral over € (see 2.2.2). Our idea is to define an
invariant integral I on the space C(%) of all continuous complex-valued
functions on €, by considering the obvious normalised invariant integral
Iy on the finite group 4/€y, and letting N tend to infinity. Indeed if
f € C(€) and f is constant on the cosets of €y (and so may be regarded as
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a continuous function on %/%y), then the normalised invariance of Iy
forces the equality

In(f)=2"CNV*DY f(w), (14.1.6)

where the sum runs over any subset of ¥ comprising precisely one w from
each coset of ¥y in €. If we define

S(€) = {f € C(%): for some N € Z,, f is constant on the cosets of €y},
(14.1.7)

then for f € S(¥), the sequence (Iy(f))¥=o is eventually constant and we
define I( f) to equal this constant. Aiming to extend this definition of I to
all of €(¥), we first prove that S(¥) is uniformly dense in C(¥). This is
easy, if the reader is prepared to tap the depths of the Stone-Weierstrass
theorem (see [SMA], pp. 30-87); however, since there is an elementary
proof (and since we shall need the result again in 14.9), we prove it now
from first principles.

Proof. Suppose fe C(¥) and &> 0. Since for every N e Z, the
characteristic function of every coset of €y is continuous, it suffices to
prove that N € Z, can be chosen so that, on every coset of €y, the
variation of f is, in absolute value, at most &. The existence of such an
N € Z, now follows from the continuity of f combined with the facts that
% is compact and the % form a basis for the neighbourhoods of 1.

So far we have defined I on 8(%), and it is easy to see that I is linear,
positive, translation invariant and of norm 1 (see 2.2.2). To extend I to
C(%¥) it now suffices to observe that whenever (fy)¥-o is a sequence in
S(%) which is Cauchy with respect to the supremum norm,

[I(fn) — I(fa)| = 1 L(fx =S| < I fv—fullo

and hence that there is a complex number I(f) towards which the
sequence (I(fy))ycz, converges.

The resulting invariant integral [ is again positive. Since also I(1€) = 1,
I may justifiably be christened the invariant (or Haar) integral on €. If f is
integrable on %, we shall often denote the number I(f) by [s fdA or
jg f(w) dA(w), wherein A is the appropriate measure on %. (Integration
theory over € is an instance of general integration theory which may be
found, for example, in [E] and/or [E,].) Observe that, since €, has 22V*1
cosets in €, A(xg,) = 27N+,

We write L?(%) for the space of equivalence classes (under equality
A-almost everywhere) of measurable functions f on € such that

1/p
Ilfllpf{j L fIP di} < . (14.1.8)
€
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14.1.7. The Orthogonality Relations. These state:

f 1di=1 (14.1.9)
€

J (di=0  for every { € €"\{1%}, (14.1.10)
€

and are provable by the general argument appearing in 2.2.3. The reader
may find it interesting to construct an alternative proof which uses the
special structure of ¢, ¥” and I.

14.1.8. The Walsh-Fourier Transform. For much the same reasons as
for T (see Chapter 1, especially 1.3.3), we now define the Fourier
transform over ¥, traditionally termed the Walsh-Fourier transform. If
feLY(%) then the complex-valued function f with domain €* is
defined by

f“({):fffdl:jf{ di  forall { e €*. (14.1.11)
€ €

It is easy to see that:

(1) The Walsh-Fourier transform f— fis linear and for all fe LY(%)
and (€ €°, | f(O)| < IIfll1- Moreover (f)* = (f)* and (f*)* = (f)~ for
all f € L'(%), where the notation is taken from Volume 1, p. 31.

(2) If fe LY%),{ € 4" and w € %, then

(T, £)*Q) = L) f(©). (14.1.12)
(3) If{,ne %", then
s 1 if n=¢(
{n) = {0 - (14.1.13)
When f € L!(€) we shall refer to the formal series
Y fox
Le€n

as the Walsh-Fourier series of f, and to f as the Walsh-Fourier tramsform

of f.

14.1.9. Trigonometric Polynomials on 4. We write T(4) for the
complex linear span of ¥, and call its elements trigonometric polynomials
on €. After the characters themselves, the most important examples are
the functions Py (for N € Z,), where Py is called the Nth Paley
polynomial and is defined by

Py= Y ¢ (14.1.14)

e dN



212 CHANGING SIGNS OF FOURIER COEFFICIENTS

The sequence (Py)y ¢z, is termed the Paley kernel.

It is clear that T(%) is a linear space stable under translation and under
pointwise products.

For every N € Z, and every { € &/, { assumes the value 1 at every
point of €y. It follows that T(¥) < S(¥) (see (14.1.7)). The converse
inclusion also holds, as we now show.

14.1.10. T(¥) = 8(%).

Proof. It remains to prove that S(¥) < T(¥). Assume fe€ S(¥%) and
choose N € Z, such that f is constant on every coset of €y. Then fis a
finite linear combination of characteristic functions of cosets of €y and,
by translation invariance, it suffices to prove that the characteristic
function of €y belongs to T(¥). However, this characteristic function

equals
[T a*+ P, (14.1.15)

Inl<N

which is clearly an element of T(%).

14.1.11. T(¥) is uniformly dense in C(%¥), and | - | ,-dense in L?(¥) for
1<p<oo.

Proof. Immediate from 14.1.6, 14.1.10 and the fact that C(¥) is
Il - | ,-dense in LP(%¥) whenever 1 < p < c0.

Define (cf. Volume 1, p. 29) ¢o(€ ") to be the set of all complex-valued
functions g on " such that, for every & > 0, the set {{ € ¥": |g({)| > ¢}
is finite. The next theorem is an exact analogue of the Riemann-Lebesgue
Lemma 2.3.8.

14.1.12. Iff e LY(%) then f € ¢o(¢").

Proof. This follows from 14.1.11, (14.1.13), 14.1.8, (1), and the fact
that C(%) is dense in L(%).

Convergence of the Walsh-Fourier series of a function to that function
is, in stark contrast to the situation for 7', all that could be wished for;
see 14.1.15 and Exercise 14.23. Over 7, the blame for failure of L!-
convergence rests with the Dirichlet kernels refusing to form an
approximate identity (cf. Volume 1, p. 155 and 10.3.2). On the other
hand for € we have the following result.

14.1.13. The Paley kernel forms an approximate identity in L*(%) (see
3.2.1). More specifically,

PN=22N+1XgN forall Ne Z,; (14.1.16)
Py=1q4, forallNeZ,; (14.1.17)
(Py)%-o forms an approximate identity in L}(¥).  (14.1.18)
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Proof. First we observe that

Py= [] 1%+ p,). (14.1.19)

|n| <N
From this, (14.1.16) is evident. Next, by multiplying out the product
appearing in (14.1.19), (14.1.17) is a restatement of the orthogonality
relations 14.1.7. Finally to demonstrate (14.1.18) we observe that

by (14.1.16),
j | Pyl d,1=f Pydl=1,
€ €

and

lim f | Py| dA =0 for any fixed M e Z, . (14.1.20)
e\en

N>
14.1.14. For every N € Z, and every f € L'(%), we define

sef= Y fC (14.1.21)

LedN

This symmetric partial sum of the Walsh-Fourier series of f could, of
course, have been defined using convolution on €. Indeed, more extensive
analysis over ¥ would (cf. Chapter 3) necessitate the definition of
convolution over €:

[ *gl)= L [ (@d)g(¢) dA(®)

= L f(@d™N)g(d) dA(D) (14.1.22)

for f, g € LY(%). Then, sy f= Py % f for every N € Z, and every f €
L!(%); see Exercise 14.19.

14.1.15. (1) Iff € C(¥), then |sy f — f |l — 0 as N tends to infinity.

(2) If f e LP(%) and 1 < p < 0, then [sy f—fll,— 0 as N tends to
infinity.

(3) If fe LY(%) and f({) = 0 for all { € ¥* then f(w) = 0 for A-almost
allw e @.

The reader is invited to prove these assertions in Exercise 14.20 (cf.
3.2.1 and 3.2.2). Regarding (1), see Volume 1, p. 155.

There is an L*-theory of functions on € just as satisfying as that for 7.
The procedure is closely analogous to that in Chapter 8, so we relegate
the proof of the following result to Exercise 14.2.1.
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14.1.16. The Walsh-Fourier transform is a Hilbert-space isomorphism
from L*(%¢) onto 1*(%"), the latter denoting the space of square-
summable sequences on €.

14.1.17. The reader may verify that Holder’s inequality holds for
functions on € just as it does for functions on 7: if 1 < p < o0, f € L?(¥)
and g € L7 (%), then the pointwise product fg belongs to L'(¥) and

I fglle < U SUplgl (14.1.23)
Directly from this we obtain, for all A-measurable functions f on €,
IFl,<Ifl, if0<p<gq; (14.1.24)

f | f 1P dA < U [ fIP dz}“{L | f |72 dl}sz, (14.1.25)
€ €

whenever py, p,, 81,8, > 0, p = p;8; + py s, and sy + 8, = 1.

14.1.18. We have not mentioned the probabilistic notion of
independence, nor stressed the importance of the Rademacher characters
in providing a model for such independence. This point of view, which
leads to the use of probabilistic methods in harmonic analysis (and is at
the heart of the results mentioned in 14.3.6), is vital for current
developments; we refer the reader to the delightful introduction [Kac]
and then to Kahane’s timely and substantial monograph [Kah,].

14.1.19. To exemplify the analogy between Walsh-Fourier and
(classical) Fourier series (noted in Exercise 14.17), we mention only the
following result (see Yano [1], Theorem 7) which should be compared
with 7.3.1: If (a,);%, is a quasi-convex sequence (see 7.1.2) and a,— 0
then Y, a, F~(n) is the Walsh-Fourier series of a function f € L1(%),
to which the Walsh-Fourier series converges (the bijection F is defined in
Exercise 14.17). Whilst in 7.3.1 the Fourier series is also nonnegative
whenever (a,);%, is actually convex and monotonically decreasing to zero,
this conclusion fails for the Cantor group result (see Coury [1], § 4).

In spite of the fact that harmonic analysis over € is usually simpler
than that over 7', there remain a multitude of topics yet to be studied.
Three areas which have been studied concern:

(1) Questions of A-almost everywhere convergence (see MR 30 # 2282;
34 # 8075;35 # 4667; 36 # 599; 38 # 6296; 39 # 3222; 41 # 4113; 49
# # 983, 5691; 50 # # 2803, 7939, 14045, 14046; 51 # # 10990, 13578;
52 # # 1150, 1155, 3871, 11458, 14826; 53 # # 3598, 13991, 13996,
13997; 54 # # 3281, 5728, 5730; 55 # # 3670, 3671; 57 # 10349; 58
# # 6893, 6895, 6898, 6899, 6900, 23330, 23331, 23332);
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(2) Walsh-Fourier series with well-behaved coefficients (see MR 22 #
863; 29 # 2597; 39 # 3227; 41 # 4112; 49 # # 11132, 7685, 5671; 50
# 2802; 51 # # 8727, 13576; 52 # 8805; 54 # 5727; 55 # # 3668,
8676; 58 # # 6894, 6897, 12165);

(3) Differentiability of Walsh-Fourier series (see MR 38 # 6298; 52 #
11457; 53 # # 1148, 8774, 8775, 13995; 54 # 13446; 55 # # 3669,
13149; 56 # 9176; 57 # # 7017, 7020; 58 # # 29796, 29799).

Other papers relevant to the study of Fourier series over % include:
MR 36 # 1909; 87 # 3272; 43 # 5244 ; 48 # 11896; 49 # 9530; 50 # #
5369, 13578, 14046; 51 # # 3789, 6258; 52 # # 6309, 14828; 53 # #
1149, 3589, 13994 ; 54 # 3280; 55 # 3667; 57 # 7016; 58 # 12177.

14.2 Rademacher Series Convergent in L2(¥).

As announced at the beginning of this chapter, we study ‘“most”’ series
Ynez +f n)e, by considering series Y ;. 5 ¢({). If K is a subset of €",
function f in LY(%) is called K-spectral if and only if f({) = 0 for all C €
#"\K. We denote by L{(¥), Cx(¥) and Tx(¥) the spaces of all K-spectral
elements of L?(%), C(¥) and T(%) respectively (cf. 15.1.1).

The positive results that are essential for further developments in this
book refer to some unexpected properties of functions in L%(%). These
results are stated as 14.2.1 and 14.2.2; although in fact 14.2.2 implies
14.2.1 (see Exercise 14.4), the latter is used as a stepping-stone to the
former and is best stated and proved separately.

14.2.1. The Basic Inequalities. To every p >0 there correspond
positive numbers 4, and B, such that for all f € L%(%),

AN fll < U fll, < Bl fllzs (14.2.1)

moreover, B, may be taken to be (k!)*’? where 2k is the least even integer
not less than p;and, if 0 <p <2, 4, may be taken to be 2P =2)/2p,

Proof. We begin by considering the right-hand inequality in (14.2.1).
Suppose first that p = 2k is an even integer and that f € Tg(%) (the latter
restriction being easily removed by use of 14.1.11 and Fatou s Lemma).

Let g =f* be the kth pointwise power of f. Then g is the k-fold
convolution of fand so, for all { € €*,

=Y ) - f&) - £, (14.2.2)

where the sum is over all k-tuples ({;, {5, ---, {) in #* whose product
(¢, -+ L equals {. But by (14.1.3), two k-tuples of elements of # have
the same product if and only if one is a permutation of the other. So there
are exactly k! such k-tuples ({y, - - -, {;) having a product equal to {. This,
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together with the Cauchy-Schwarz inequality, shows that

;g‘(ws[ Y 12][g Zg le@l)z--- |f‘(ck>|z]
Ly L=t 1o, Ge=
=k![ Y 1f<cl)12---|f(ck>|2].
{1

Ckzg
Hence

||f“2k = Hgllz Z 2 !f(Cl)!z |f(Ck)|2
Le®v L1 k=

=k Y IfEP 1 fC)P

€1,y k) e RE

=k![z|f<c>|z

LeR

=k!| f3* (14.2.3)

where the penultimate step follows by the multinomial theorem,
according to which

k
(Z a§> = Y oa,cca (14.2.4)
((STRREN M IR

LeR

for every complex-valued function { — a, with domain £.

For other choices of p we need only refer to (14.1.24) to deduce that the
right-hand half of (14.2.1) holds with B, = (kNP where 2k is the least
even integer not less than p.

The left-hand inequality in (14.2.1) is trivial when p > 2 in view of
14.1.16 and (14.1.24). If 0 < p < 2, we write 2 = s;p + s, 4, where s; > 0,
s, >0 and s; + s, = 1. Then (14.1.25) combines with the case p =4 of
the right-hand half of (14.2.1) and the estimate B, < 2'/* to yield

YIfOPr= jlflzdz

LeR
<U 1F1P ‘”TU T «u]”
€ €
s1] 1/27)4s2
<[ Pk qu [2“‘*(2 If(C)lz) }
€ LeR

which in turn leads to

1/p . 1/2
U [ fIP d,l:I > 2“’"2’/21’[ Y1) |2] , (14.2.5)
4 leR

thereby completing the proof.
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14.2.2. Supplement to 14.2.1. Suppose again that f € L%(¥). Then for
every real number p,

jexp (el f13] di < . (14.2.6)
%

In fact, if [u|] f1I3 <1, then

Lexp [ul fIF1dA < (1= |ull fID)" (14.2.7)

Proof. The arguments are similar to those used in 13.9.2 to prove the
inequalities (12.9.14) and (12.9.15). By (14.2.1) and the estimate B, <
(kY2

fexp [ul FIETdh= 3 dhel)t) £ 12

keZ+

< X Uullfid*

keZ+
=1~ |ulllfI3)~!

provided that | 4| || f |3 < 1, and this establishes (14.2.7).

For (14.2.6) we need to free | u| from dependence on || f II. Whenever
|pu] > 0 we do this by choosing N so large that Zn>N | f p,)|? is small
enough for (14.2.7) to apply with f — sy f in place of f. It then suffices to
observe that

I f PP <20l f—snfI*+lsnfI7].

14.2.3. Pointwise Convergence Almost Everywhere. In Exercise 14.23
the reader is invited to prove that if fe L!'(%4) then the series

Z(s‘w A (w) is convergent for A-almost all w e . Concerning
R- spectral functlons it can be shown ([Zl] p- 212; [Balj PP-
230-233; [Kac], pp. 31-33) that if Y ;.4|f()|?> = oo, then dew FOw)

is A-almost everywhere nonsummable by Cesaro means (or, indeed, by
any of the usual linear summability methods used in analysis). Thus for
R-spectral Walsh-Fourier series, 14.2.1 provides the dichotomy: if
Yiealf( fO)I? < o then the Walsh-Fourier series of f converges A-almost
everywhere; if ZCEQ | f {)|* = oo, the same series diverges (and is non-
summable) 1-almost everywhere.

14.3. Applications to Fourier Series.

In this section we suppose that (c,),., is a given two-way-infinite
sequence such that
Y e, > < 0, (14.3.1)

neZ
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and get quite a lot of mileage out of considering (c,),.; to be either the
Fourier coefficients of an element Y, .z ¢, p, of L3(%) or of an element
Y wez Cuen of L2 = L*(T). For every w € € and x € T we write

Fol) = T pa@)e, e, (14.3.2)

neZ

the series being convergent in mean in L?; thus f,, € L? for every w € €.
(The notation f,(z) is conventionally sloppy. What is intended is that, for
every w € 4, f,, is an element of L? such that

a

Jo(n) = p(w)c, for all n € Z;

for a given x € T' (or R), the series on the right of (14.3.2) is purely
formal. The sloppiness can, of course, be removed; cf. [EG], pp. 20-23.)
However, as we shall now proceed to show, much more than this is true
for most values of w.

14.3.1. Suppose that (14.3.1) holds and that f, is defined by (14.3.2).
Then for A-almost all w € €,

% Lexp (| fol)|*] dx < o0 (14.3.3)

for every real number u.

Proof. We may obviously assume that yu > 0. Moreover, it is clearly
enough to show that, for every p> 0, (14.3.3) holds for A-almost all
wesd.

For every w € 4, every real x and every N € Z, , define

SN(xs CI)) = Z p"(w)c"einx.

In|<N

Then (14.3.1) and 14.2.2 show that, for some real number 4 independent
of N,

fexp [ulsyl?1di< A foral NeZ,.
¢

Thus

—1-J~ {fexp [ sy(z, @) 3] d/l(w)} dr < A.
27 Jr (Je

By Fubini’s theorem ([HS], (21.12)), this can be written

Iy = j {i Jexp [ sy(z, ®)]?] dx} dl(w) < A. (14.3.4)
¢ (27 Jr
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Now

';7; LI fw(x) - SN((L', w)|2 dx = Z !cnpn(w)‘z

|n|>N

= Y el
Inj]>N
which tends to zero as N — oo, uniformly with respect to w € €. Because
of this, a standard argument (see, for example, [W], Theorem 4.5a) shows
that nonnegative integers N; < N, < - may be chosen independent of
o € ¥, such that for every w € € one has

lim sy (x, ©) = f,(z)
k— oo

for almost all € 7. This being so, if we write

1
I) =5 fexp [ fule) ] de
T

and

1
Io(w) = lim inf — | exp [u|sy, (2, ®)|*] dz,
k= 2n T

two applications of Fatou’s lemma imply that
I(w) < Io(w)

and that

j Io() dA(o) < lim inf Jy, .
€

k=

Therefore, by (14.3.4),
jlo(w) dAw) < A < w0,
€

which entails that I(®) < Iy(w) < oo for 2-almost all w € ¥.

Remarks. We have commenced the proof by using the sy in order
that no trouble be experienced in appealing to Fubini’s theorem. Had f,,
been used from the start, knowledge of the measurability of f,(x) in the
pair (w, ) would have been necessary, and this property is by no means
evident.

Similarly, we have introduced I, as an intermediary simply to avoid
the necessity of showing that I is measurable (which is not very difficult).
Alternatively, of course, one could use versions of Fatou’s lemma in
which measurability is not assumed (see, for example, [HS], (9.39) or
[E], Proposition 4.5.4).
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14.3.2. If f e L?, it is possible to choose the + signs in such a way that

Y £ fn)e™ (14.3.5)

neZ

is the Fourier series of a function g such that

1
- J;exp [ulg(x)|*] dx < (14.3.6)

for every real number yu (so that, in particular, g € L” for every p < ).
Proof. It suffices to take ¢, = f(n) and g = f,,, @ € € being chosen so
that (14.3.3) holds. Since the series (14.3.2) converges in mean in L*(7'),

§(n) = fo(n) = pu(@)e, = py(@) f(n) = £f (n).

14.3.3. There exist a function g satisfying (14.3.6) for every real y, and a
sequence of + signs, such that

2 gnye™
neZ
is not the Fourier series of any function in | J,», L?.
Proof. Apply 14.3.2, choosing feL? so that fé|J,.,L? For
example, suppose that f is bounded except in the neighbourhood of the
origin, where it equals |x|~'?(log 1/|x|) % « being greater than 1/2.

14.3.4. Remarks. (1) Various strengthenings of 14.3.3 are derivable
with more work. It can be shown (Edwards [7], Theorem (2.8)) that a
continuous g may be chosen which satisfies the conditions stipulated in
14.3.3. Furthermore, g may be chosen so that .o 2~ %|d(n)|f < 0o for
alle > 0 and f§ > 0 (see MR 53, # 1168).

(2) It is easy to deduce from the proof of 14.3.1 that there exists an
absolute constant B with the following property: to every fe L? and
every o > 0 corresponds a set & < € satisfying A(&) < B/a and such that

I foll, < ep'1 £l

for all we¥\& and all p such that 1 <p < o0; compare 15.3.1.
Uchiyama [2] has discussed the reverse type of inequality and has shown
in particular that, for every f € L? and every ¢ > 0, there exists a number
B, ; > 0 such that

l(sn flollt = Ba,f Il sw fll2,

for all N € Z, and all w € ¥ save perhaps those belonging to a set of
A-measure at most .
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14.3.5. Pointwise  Convergence Almost Everywhere and Related
Matters. More detailed arguments based upon the results stated in 14.2.3
serve to show that, if (14.3.1) holds, then A-almost all the series on the right of
(14.3.2) are pointwise convergent almost everywhere. If, however, (14.3.1) is
false, then A-almost all these series are almost everywhere pointwise
non-summable (compare the remarks in 14.2.3). A consequence of this is the
following assertion, due to Littlewood:

(1) If, for every choice of the + signs, the series Z,,s z T, ™ is a
Fourier-Lebesgue series, then Y.z |¢,|> < 0. For the details, see [Z,], pp.
214-215 and/or [Ba,], pp. 234-235.

From (1) it is possible (cf. Exercise 14.7) to deduce a little more, namely :

(2) If, for every choice of the + signs, the series Z,,E z tc, ™ is a
Fourier-Stieltjes series, then Y .. ; |¢,|*> < .

It is possible (cf. Exercise 14.5) to show that (2) is equivalent to

(2) Y, zle, f(n)| < oo for every f e €, then Y,z ¢, > < co.

The theorem (2') is due to Orlicz, Paley and Sidon independently and almost
simultaneously. See also Section 16.9 below; Edwards [7]; Edwards, Hewitt
and Ritter [1].

A different approach to (1), (2) and (2) is due to Helgason [1], where
multipliers (see Chapter 16 below) form part of the theme. Some of the features
of particular cases of Helgason’s arguments, many of which refer to a fairly
general class of Banach algebras, are sketched in Exercises 14.11-14.14. See
also Helgason [2], [3].

In a somewhat similar and simpler vein is the following statement :

(3) If, for every choice of the + signs, the series Y, ., + ¢,e™ is the Fourier
series of a function in L, then Y, ., |¢,| < .

Indeed, by 10.5.2, the hypothesis entails that

lim ¥ (1 - N“_:l 1) +e, f(n)

N-w |nj]<N

exists finitely for every fe L'. The same is therefore true when c, f(n) is
replaced by its real and imaginary parts. Hence, by suitable choice of the +
signs, we conclude that

. |»| .
1 1—
Jim ;nén( NH)Ic,,f(n)l

exists finitely for every f € L', so that (see 5.3.4)

Y lenfm) <o

neZ

for every fe L'. Reference to Exercise 3.14 leads from this to the stated
conclusion.

It is known that in each of the statements (1), (2) and (3) it suffices to
impose the respective hypothesis, not for all choices of the + signs, but merely
for a suitable set of choices. One type of ‘“suitable set’ is a set of positive
A-measure in €. A second type is a nonmeagre subset (in the product topology,
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of course) of €. The technique for doing this is similar to that used in Edwards

[71.

14.3.6. Uniform Convergence and Related Matters. In view of 14.3.1 and
14.3.2 it is natural to ask under what conditions on (c,),.z it is possible to
choose the + signs in such a way that Y, ., & ¢,e™ is the Fourier series of a
continuous function; or is uniformly convergent on 7.

Let us write C, ;. (to indicate almost sure continuity) for the set of all f e L?
such that for A-almost all w € %, the series ., p,,(w)f(n)e"‘" is the Fourier
series of a continuous function on 7. Though it is not obvious, C, ; becomes a
Banach space when equipped with the norm

I Mlas. =f
€

(It has, for instance,-to be proved that || f|,, thus defined is finite for every
feC,

‘We mention two characterisations of C,, . Firstly, fe C,, if and only if
f=>%y h,*k, with h,eL? k,eL, and Y2 |&,l,]lk,l, < o0, wherein
d(u) = u(l + log (1 + u))!/? for nonnegative real u, and llglls denotes the norm
inf {u>0: [P(lgl/u) <1} in the Orlicz space L, (see Pisier [2]). The
appearance here of ¢ is not as mysterious as it might first seem; ¢ is, up to
equivalence of Orlicz functions, dual to the function (x) = exp (#?) — 1, and
the Orlicz space L, of functions for which there is some u>0 with
f V(| f1/u) < o has already been heralded in (14.3.3).

Furthermore, if || f|| denotes the infimum of Zf,‘;l (2l 2 1 all, over all
representations f= Y=, h, * k,, then || * || and || - |, are equivalent norms
onC, .

The second characterisation we mention follows either from the last one or
from more general probabilistic arguments. It states that f € C, ; if and only if

Y pal@) f(n)e™||  di(o).

neZ

ee

1
j (log F(r))'/? dr < 0,
0

where, by virtue of the hypothesis fe L? the definition d(u, v)=
IT,f—T,fl, gives a translation-invariant pseudo-metric, and F(r) is defined
to be inf {n: there is an open cover 4,, -+, 4, of T in which every A; has
d-length not larger than 27}. Furthermore, the norm || - ||;on C,, , defined by

a.s.?

1
1= 111+ [ tog P ar
0

is equivalent to || * ||, .-

Again, the appearance of the square root of the log term is to some extent
explained by being inverse to the exponential of the square which occurs in
(14.3.3).

Though it has been suppressed in this summary, underpinning both these
characterisations are results of Dudley and Fernique on characterising certain
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Gaussian processes with continuous sample paths. For an exposition of these
results, the reader is referred to Marcus and Pisier [1].

Returning to the question of uniform convergence, we write U, ; for the set
of functions f in L? for which Y, ., p.(®)f(n)e™ is a uniformly convergent
Fourier series for A-almost all w € ¥. A surprisingly tight solution to the
question as to when fe U, was given by Salem and Zygmund [1] using
classical methods; see also [Ba,], p. 331. Salem and Zygmund showed that, if

the remainders
. 1/2
m={2 UmW}

in|>N
satisfy the condition

3 < 0, 14.3.7
2, Niog I < © (14.3.7)

then f € U, . The conclusion is valid, in particular, when
Y, 1f () log**|n| < oo
n#0

for some £ > 0, a case discussed earlier by Paley and Zygmund and deducible
quite rapidly from 14.2.2. (see [Z,], p. 219). The condition

Y 1fm)? log |n| < oo

n#0

is, however, not enough to ensure the desired result: this may be seen by
applying 15.1.4 and 15.2.4 to the lacunary series

© eika

=y klog k'

Compare also the remarks in 10.4.5 and 10.4.6.

Ideas similar to those used to characterise C,, have enabled Pisier to
characterise U, . Firstly, for fe L?, we define a translation invariant
pseudo-metric d on T by

2 1/2
dl(w)}

dx, y) = o(x —y) = {L

and define the nondecreasing rearrangement & of ¢ by

Y pul@) f()e™ — Y p,(w) f(n)e™

neZ nelZ

Gu)=sup{yeR: {xeT: o) <y}
has invariant measure (on 7') less than u}.

(This ensures that the probability distributions of ¢ and ¢ coincide.) Now we
can state that f € U, if and only if

1 &(s)
L W ds < 0. (14.3.8)
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The reader may wonder at the appearance of ¢ here. To allay his doubts, we
mention that when f is real and F denotes the nonincreasing rearrangement of
£, 26(1/N) = {Ej>n (F(n))*}'7? for every integer N > 1; using this, we may
compare (14.3.8) with (14.3.7). For an expansive treatment we again refer to
Marcus and Pisier [1].

Incidentally, from the result mentioned above, Pisier also deduces that, if
feC,,, then so does the function g such that § equals the nonincreasing
rearrangement of f.

For an earlier approach to these questions, see Billard [1], [Kahs;] and
Fielder, Jurkat and Kérner [1].

14.4 Comments on the Hausdorff-Young Theorem and Its Dual
It has been seen in 13.5.1(1) that

2, lfm)” < o
nez
whenever 1 < p < 2 and f € L?. We can now verify that this assertion is no
longer true when p > 2; compare 13.5.3(2).
Indeed, if p > 2, then p’ < 2 and a sequence (¢, ),z may be chosen so that

Z lea|? < o0, z |ea]? = 0.

nez nez

By 14.3.2, if p < oo, there exists fe L? such that [f@)] = |ca| (ne 2),

so that
D f@) =3 Jen” = co.

nez nez

If, on the other hand, p = oo, the proposed extension signifies that
S |f(n)| < oo for each fe L=, This is negatived by the results mentioned in
14.3.6, and is otherwise clear from many simple examples (see Exercise 1.5).

From 14.3.5(2) it can be shown that the dual result, 13.5.1(2), is also false
when p > 2. In other words, if p > 2 there exist functions ¢ € £7(Z) such
that the distribution ¢ is not a Radon measure. A more explicit proof of this
will appear in Section 15.4. Even stronger results are known for a general
class of groups; see Gaudry [2], Theorem 2.5.

14.5 A Look at Some Dual Results and Generalizations

Inasmuch as functions on a set S and taking the values + 1 are simply and
obviously expressible in terms of characteristic functions y, of subsets 4 of §,
it turns out that the arguments leading to 14.3.2 will in fact establish something
slightly stronger and expressible as follows: if ¢ € £2(Z) then, for “almost all”
subsets A of Z, (y4¢)” belongs to L? for every finite p. On the other hand, the
results given in {Z,], p. 214, imply somewhat more than 14.3.5(1) and 14.3.5(2),
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namely: if ¢ is a tempered function on Z that does not belong to £2(Z), then,
for ““almost all” subsets 4 of Z, the distribution (y4¢)” is not a Radon measure.
(The term ‘“‘almost all” is to be interpreted by reversing the passage from
+ l-valued functions to characteristic functions and relating the former to €,
as has been done hitherto in this chapter.)

It is tempting to contemplate the duals of these results, that is, to consider
what can be said about the transforms (x, f)", where f is a given integrable
function on the group 7 and 4 denotes a variable measurable subset of that
group. Curiously enough, little if anything appears in the classical literature
concerning this matter. Related questions have recently been discussed for a
category of general groups by Figa-Talamanca [1], [2] and Gaudry ([2],
Theorems 2.6 and 2.7). Owing to the topological differences between the
smooth compact group 7' and the discrete group Z, the dual results are in our
case a little different from what one might perhaps expect on the basis of the
results mentioned in the preceding paragraph.

By using techniques similar to those employed in Gaudry [2] and Edwards
[8], it can be shown that, if f € L', and if to each 4 belonging to a nonmeager
set of measurable subsets of 7' there corresponds an index p < 2 such that
(4 f)* € ¢P, then f is null. (On the other hand, of course, (x,f)" € ¢? for
every measurable A whenever feL?) In this statement the term
“nonmeager ”’ is to be interpreted in terms of the metric space whose elements
are (equivalence classes modulo null sets of) measurable subsets 4 of 7', the
metric being defined by

1
U, B) = 5 fIXA — xa| de.

(It happens quite frequently that the meager subsets of a complete metric
space play a role somewhat similar to that filled by the null sets of a measure
space, especially in situations where no natural countably additive measure is
available. Compare also the closing remarks in 14.3.5.) An alternative formula-
tion asserts that if ¢ is a function in A(Z), and if to each 4 belonging to a
nonmeager set of measurable subsets of 7' there corresponds an index p < 2
and a function ¥ € £? such that x, ¢ =, then ¢ = 0.

A pointer to the existence of analogues of such results for the groups R™
(which analogues are in fact embraced in the results obtained by Figa-Tala-
manca and Gaudry mentioned above) seems first to have arisen in the work of
Hoérmander [1] on the multiplier problem for the spaces L?(R™). Corresponding
problems for the circle group 7' are dealt with in some detail in Chapter 16.

For extensions to compact groups, see Figa-Talamanca and Rider [2].

EXERCISES

14.1. Verify (without reference to Tychonoff’s theorem) that € is
compact. Show that the group (pointwise) product is a continuous
function from € x € to %.
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14.2. Suppose that g € L*(%) is such that

feXP [1lg(@)|*] dA(w) =
€

for some real number . Prove that g ¢ L%(%), and deduce that
f=9— 2 ¢

leR

belongs to L?(%), is nonnull, and yet
ff(w)Pn(w) di(w) =0 for all n € Z.
¢

(This establishes, in particular, that the set # of Rademacher characters
of €, is not a complete orthonormal set in L*(%). As an alternative proof
of this incompleteness, consider f= p,p,,, where n and m are distinct
integers.)

14.3. Verify the claims made about annihilators in 14.1.4.

14.4. Show that 14.2.2 implies 14.2.1, though perhaps with values of B,
and A, differing from the given ones by a nonzero constant factor.

14.5. (1) Using 14.3.2, show that if (¢,),., has the property that

> leafm)] < 0

nez

for each f such that

% fexp [n|f=@)|*]dz < oo

for all real numbers y, then >,.; |c,|? < .

(2) Assuming the result stated in 14.3.5(2), show that the conclusion of (1)
is valid when the hypothesis is merely that 3., |c,f(r)| < oo for each fe C.

Note: For numerous similar results, see Mahmudov [1] and MR 30 #
5113a, b.

14.6. (1) By using part (1) of the preceding exercise, show that if (¢,)cz
has the property that for some ¢ > 1 the series 3,., + c,e!"* is, for all choices
of the + signs, the Fourier series of a function in L9, then 3., |c,|? < oo.
[Compare 14.3.5(1).]

(2) Use part (2) of the preceding exercise to prove statement 14.3.5(2).

Hints: If, for example, > +c¢,e™* is always a Fourier-Stieltjes series, the
series > +c,f(n) is Cesaro-summable for each feC and each choice of +
signs.

14.7. Give a direct proof that 14.3.5(1) implies 14.3.5(2).

Hints:  Assuming that > +c,e'"® is always a Fourier-Stieltjes series, show
that 5 +c,f(n)ein is always a Fourier-Lebesgue series for fe L. Apply
14.3.5(1) and the hints to Exercise 3.14.
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14.8. Assuming the results due to Paley and Zygmund stated in
14.3.6, prove that if

Y. lea|?log* e n| < o0
n¥® 0
for some ¢ > 0, then there exists a continuous function f such that, for some
choice of the + signs, f(r) = +¢, (n€ Z).
14.9. Assume that

f= z cll pm
In|] <N
where N € Z, and ¢_y, ', cy are complex numbers. Prove that
Y IfOI<2if . )

Le€r
and conclude that

Y 1S OI<4Sf lones- (2)

fe€r

Remark. Denote by A(%) the set of all continuous complex-valued
functions f on € such that ) ;. ¢« | f(©)] < o; cf. 10.6.1. It follows from
(1) that C4(%) < A(%). In the terminology introduced in 15.1.1 below, #
is thus a Sidon subset of €* ; cf. 15.1.4(c).

Hints: Assume first that f is real-valued and show that there exists
¢ € € such that sgn ¢, = p,(w,) for all » € Z such that [n| < N.

For (2) observe that f is constant on the cosets of €y and use (14.1.24).

14.10. Let ¢ be a complex-valued function on Z, and let 1 < p < oo.
Consider the following statement:

(c,) Z |¢(n)f(n){ < @ for every f € L”.
nez
Prove that
(1) (c,) is true if and only if ¢ € £}(Z);
(2) if (c,) is true, then ¢ € £3(Z);
(3) if 2 < p < o, then (c;) is true if and only if ¢ € £2(Z);
4) if 1 < p < 2 and ¢ € £7(Z), then (c,) is true;
(6) if 1 < p < oo and (c,) is true, then

z Ani|d(n)| < ©

nezZ

for every sequence (a,)7-o | O such that

o
Z nP2q,P < 0.
n=1
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Hints: Recall Exercise 3.14, Subsections 7.3.5, 8.2.1, 13.5.1(1), and
Exercise 14.5(2).
14.11. Denote by F the set of f € L* such that

If*gli<Bsljl,  forallgelLl (1)

and let || f||x denote the smallest admissible value of B, in (1). Verify that

() |f]s < /]« for fe F, and that L2 < F and | f]l« < ||, for f e L;

(b) F is a Banach space under the norm | - | 4;

(c) F consists precisely of those feL! such that qu € A(Z) for each

¢ eco(Z).

These results are due to Helgason [1].

Hints: TFor (c), observe that if f €F, f defines a linear map F:g—f * g
of A(Z) into L'; show that it is possible to continuously extend F from
A(Z) to ¢4(Z). For the converse, if f is as in (c), consider the linear map
S: ¢ —( qu)" from ¢4(Z) into L' and apply the closed graph theorem.

14.12. The notation is as in Exercise 14.11. Prove that F = L2 as linear
spaces. (The result is due to Helgason [1]; actually, as is easily derived from
the proof sketched below, the norms || * |, and || - ||, are equivalent.)

Hints: In view of Exercise 14.11(a), it suffices to prove that F < L?;
and to do this it suffices to show that

Ifll, <const ||f], forallfeT. (1)
Let f= Y|, <y f(n)e,. Denote by @ the product group 7?¥*! and let
t=(t_n, -, ty) denote a generic element of G. By considering
g = Z exp (ia)en,
Inl<N

show that | f|4« > |f#* ¢g|; and hence that

1 » .
2 > inx
I1s > sup 5 | | 2, f(n) exp (it)e™]do

> I 13l dah,

where I denotes the normalized invariant integral on G. Using translation-
invariance, deduce that

£« = I F), (2)
where F(f) = 3, < f(n) exp (it,). Verify that
I(F|Y =23 1fm)22 - > |fm)]* = 2| f]3, (3)
and that
I(F1?) < A FDPI(F|3°, 4)

and so derive (1) from (2), (3) and (4).
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14.13. Let ¢ be a complex-valued function on Z such that ¢y € A(Z) for
each ¥ € ¢4(Z). Prove that ¢ € £3(Z).

Hints: Let S denote the set of ¢ with the stated property. By the pre-
ceding exercise, A(Z) NS < £%(Z). Use the closed graph theorem to show
that

[#9" ] < const 4.

whenever i € ¢y(Z) and ¢ €8, and so deduce that § < FM (recall 12.3.9).
Observe that as a consequence, if ¢ € S and b € L, then kp € A(Z) NS < £2(Z),
and apply the closed graph theorem again to deduce that |&$|, < const |A[,
for h e L.

14.14. Let ¢ be a complex-valued function on Z such that ¢w € FM for
each + 1-valued function w on Z. Prove that ¢ € £3(Z). [This statement is
equivalent to 14.3.5(2).]

Hints: The hypothesis signifies that ¢x € FM for every x € K, where K
denotes the set of all characteristic functions of subsets of Z. By using the
category theorem (see I, A.3 and Edwards [7]), show that there exists a
number B such that

l¢x)" |l < B forall yeK. 1)
Aim at deducing that
dpec FM forall y e £~(Z), @)
and then use Exercise 14.13 and the hints to Exercise 14.7.
To prove (2), consider any real-valued i € £*(Z) satisfying 0 < < 1.

For k,r=1,2,.--, define A,,={neZ:(r — 1)k < §(n) < r/k}, By,
=A4,,Y -V A4, B.o= @, and introduce the function

L
P = 2 ,;XA,,,,,
r=1

observing that ¢¢,, — ¢ as k — 0o. Since ., = y, — (1/k) S¥=¢ x,, where
Xr = XBy,,» (1) shows that

l(¢)" 1 < 2B.

Use 12.3.9 to infer that ¢ € FM.

14.15. Show that the dual group of €" is isomorphic to € (see Volume
1, p. 20). Identify the annihilator of &y, that is, identify {x € (¢*)":
z({) = 1 for all { € oy}.

14.16. (1) Prove that the function ®: ¥ — [0, 1] given by

=__1-4—co(0)+1+cu(1)+1+a>(——1)+1+co(2)+l+oo(—2)

®(@) 3 32 33 3 3°

is a homeomorphism from % onto the Cantor ternary set (with induced
topology), but that ® is not a group homomorphism (with addition
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modulo 1 taken as the group operation on [0, 1]) nor an isomorphism of
measure spaces. (Recall that two measure spaces (X, 4, u) and (Y, A", v)
are isomorphic if there is a u-negligible subset £ of X, a v-negligible
subset F' of Y and a bijection f: X\E— Y\F, such that for all N € A,
JTNIN\F) € M and u(f ~HN\F)) = v(N).)

(2) Prove that, in contrast, the function ¥: ¥ — [0, 1] such that

-0 l-o) l-o-1) l-o@) l-o(=2)

¥(w) 2 22 23 2 25

for all w € ¥, fails to be a bijection, because for every rational r € [0, 1]
of the form r = k277 where k, j € Z, are such that k < 2/ and j > 1, there
exist w, ¢ € € such that w # ¢ and ¥(w) = ¥(¢) = r. Let us denote by
¥, the restriction of ¥ to {w € €: w is not eventually 1}. Prove that ¥,
is a group homomorphism (with addition modulo 1 in [0, 1]), that ¥, is
not a homeomorphism (with the usual topology on [0, 1]), but that ¥ is
an isomorphism of measure spaces (when [0, 1] is endowed with the usual
Lebesgue structure). What is the image of €y under ¥, ?

(3) From (2) it follows that two compact Abelian groups which are
isomorphic as groups and measure spaces, need not be homeomorphic.
Suppose two infinite compact Abelian groups are homeomorphic and
isomorphic as measure spaces. Need they be isomorphic as groups?

(4) The (classical) Rademacher functions are defined by

7a(t) = sign (sin (2"*'nt))
for every n € Z, and every ¢ € [0, 1]; see 14.1.1 in the first edition of this
book. Prove that, for every n € Z,
Pn=Tim ° ¥1,

where j(n) equals —n/2 if n is even and equals (1 + n)/2 if = is odd. Can
you deduce what the classical definition of the Walsh functions is (see
14.1.3)?

14.17. Define F: € — Z, by

F(p,) = {22-"2 -1 %f "20;
274 if n<0
F(1%) = 0;
F(lveo Pn) = Ynco F(p,) for every nonvoid finite subset @ of Z.
Prove that F is a bijection, which takes /5 onto {0, 1, -+, 22¥*1 — 1},

The ordering defined on ¥* to make F increasing is called the Paley order
on €*. (Using this notation we can write a Walsh-Fourier series as Y 2%,
¢, F~(n), which highlights the similarity with Fourier series over 7' and
suggests analogous results; see 14.1.19.
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14.18. Even though the (unweighted) partial sums of the
Walsh-Fourier series of a continuous function on % converge uniformly to
f. C(%) does not collapse too dramatically; in particular C(¥)\A(%) is
nonvoid (in spite of the result in Exercise 14.9). (Recall that from the
results of Chapter 7 follow examples of continuous functions on 7' whose
Fourier series do not converge absolutely.) In the present exercise the
reader is asked to prove in two different ways that C(¥)\A(%¥) is nonvoid.

(1) Let (cy)y~; denote a decreasing sequence of nonnegative real
numbers such that Y §-; ¢y = 00. Show that the Walsh-Fourier series

o8}

Y (=127 CN Doy (Py — Py_y) (1)

N=1

converges uniformly on % to a continuous function f, say, for which

Y 1f01=3 ¥ ew=o0. (2)
[e®n N=1
Hints: TFor (1), use (14.1.16) to identify Py(w) — Py (w) for w € €y
and for w € €y_;\Ey. For (2), use (14.1.17).
(2) Show that A(%) is a Banach space when endowed with the norm

1fla="% 111
Le€nr
Hence show that A(%) is a proper subset of C(%).
Hints: The inclusion C(%) = A(¥) together with the closed graph
theorem B.3.3 shows that for some K € Z .,

Ifla<Klfllo,  forallfeC(®).
Then (look ahead to the proof of 15.3.1), there exists L € Z , such that
lgll. <Llgll,  forallgeT(%),

which inequality can be readily contradicted.

14.19. Pursue, as far as you are able and interested, the study of
convolution of functions on € (see 14.1.14). For instance if M(¥) is
defined to be the Banach space of continuous linear functionals on C(%),
can you extend convolution of functions to convolution of measures, and
prove the properties corresponding to those over 7' (see §12.7)?

14.20. Prove the claims made in 14.1.15 (1), (2) and (3).

14.21. Prove, using the method of Chapter 8, that the Walsh-Fourier
transform is an isomorphism between the Hilbert spaces L*(%) and
I2(€"); that is, f— f is bijective and linear, and f(gfg‘dl = Z%fg: for all
f. g e LY%).

14.22. (1) Prove Holder’s inequality (14.1.23) over %, and its
corollaries (14.1.24) and (14.1.25).
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(2) Prove that the invariant integral / on % is invariant under the left
shift (see 14.1.5).
14.23. Prove that, if f € L*(%), then for A-almost all w € ¥,

lim syf (@) = f ().

N->w
This result is in strong contrast with the analogue for T'; see
Kolmogorov’s example mentioned in 10.3.4 and 10.3.5. In view of 14.1.14
and (14.1.17), the result can be recast as: if f € L*(#¥) then, for i-almost
allw e &,

lim 22¥+1 f fdi=f(w),
N-w WwEN
which is a fundamental theorem of calculus for L(%). (As usual, 0%y
denotes the coset of €y containing w).

Hint: For f e L(%), define the maximal function Mf by

Mf (@) = sup {22¥*1 f

0¥

|fldi: Ne Z,} for all w € €.
N

Aim first to show that f— Mf is of weak type (1, 1) (see (13.7.5)). Do this
by showing that, if |f|, <t, then {we®:|Mf(w)|>1t} can be
partitioned into a countable number of sets of the form E, y = w%y such
that

t<A(Ew,N)—1f [ f1 dA

Eo,N

and use this fact to show that A(Mf|>¢t) <t ! [, |f|dA The desired
result now follows by choosing a sequence (gi)i.z, Of continuous
functions such that || f — gil; — 0 as k— oo and lim,_, , ¢;(®) = f (0) for
A-almost all w € €, and observing that

lsnf = F1 < |snf — sngi| + | sxgu — gil + lgx — S
SM(f—g) +Isnge—agul +lg—f1.

For (9;)icz, one may (by 14.1.15 (1)) take a suitable subsequence of
(88 f)nez,- (For an elaboration of the partitioning argument, see the
statement and proof of Lemma 2.2.1 in [EG].)

14.24. (1) Prove that, for 1-almost every w € %,

lim 2N +1)"' Y () =0

N-ow 1/ISN

(and so infer that most members of ¥ have, asymptotically, an equal
number of + signs).
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(2) Prove that for almost all real numbers = between 0 and 1, if z,
denotes the nth digit in the binary expansion of x, then

lim ™! Y z;=1%,
n— oo =1
which may be interpreted as asserting that most numbers have equal
quantities of 0’s and 1’s in their binary expansion. Observe that z, is well
defined only as long as z is not a dyadic rational (see Exercise 14.16 (2)),
and that the set of dyadic rationals is null in [0, 1].

Hint: For (1) define fyon € by

4
ful@) = (2N + 1)“‘( ) p,-(w))
lilsN
and show that Zﬁzl | fxlly < 0. For (2), use Exercise 14.16 (2) to replace
% by [0, 1].
14.25. Suppose that f is a function on € of the form

flw)=F((=M), -, oM) forallwe®,

where M € Z, and F is a complex-valued function on K = [[}L_y K;
and K;={—1, +1}forallje {—M, -, M}.

Prove that

I(f)= lim 272M-1Y F, (1)
M-

the sum extending over K.

Deduce that, if in addition there are functions G_,, -+, Gy on {-1,
+ 1} such that

M
F(S—Ma T 8M) = _1—_[ Gj(gj)

j=-M
for all (6_,, "**, €x) € K, then
M
I(fy=272""1 ] (G{(=D) +G1)). 2)
j=-M
More particularly still, if o_p, ===, oy € Z, then
Ip%ig, -+, pi)=1 or 0 3)
according as a; is even for all je {—M, -, M } or not. (Cf. equation

(14.1.5) in the first edition of this book.)
Remark. The equation (3) can be deduced from 14.1.7 and the
independence of # (see (14.1.3)).



CHAPTER 15

Lacunary Fourier Series

As the name suggests, a lacunary trigonometric series is, roughly speaking,
a trigonometric series »,.; ¢,¢'™* in which ¢, = 0 for all integers n save
perhaps those belonging to a relatively sparse subset £ of Z. Examples of
such series have appeared momentarily in Exercises 5.6 and 6.13. Indeed
for the Cantor group €, the good behaviour of a lacunary Walsh-Fourier
series

2 ol

e
(whose coefficients vanish outside the subset £ of €") has already been
noted: by Exercise 14.9, if the lacunary series belongs to C(%) then it
belongs to A(¥); and, by 14.2.1, if it belongs to LP(%¥) for some p > 0,
then it also belongs to L4(%) for ¢ € [p, o). In this chapter we shall be
mainly concerned with lacunary Fourier series on the circle group and
will deal more systematically with some (though by no means all) aspects
of their curious behaviour.

The classical theory concentrated to a large extent on the case of series
that exhibit Hadamard gaps, that is, series for which the corresponding set
E is of the form {+n,: k = 1,2,---}, where the n, are positive integers
forming a Hadamard sequence:

inf 2EtL 5 15

ko Ny
see the exercises just cited and Section 8.6; [Z,], pp. 203-212, 215, 247,
[Z,]), pp- 131-132; [Ba,], pp. 178-181; {Ba,], Chapter XI. Less éxtreme forms
of lacunarity have also been examined (see [Z,], pp. 222 ff.; [KS], Chapitre
XTII; Moeller and Frederickson [1]; [1], pp. 86 ff.; Izumi and Kahane [1],
Izumi[1]); but weshall concentrate mainly on the phenomena that are typified
by Hadamard gap series.

It has become possible to disentangle from any explicit assumptions of

lacunarity some of the characteristic properties of such series by means of
inequalities and functional analytic statements referring to the so-called

234
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‘““Sidon subsets” of Z. (The name, coined by Kahane, is explained by the
fact that Sidon established some of these properties for series with
Hadamard gaps, others being due to Banach.) We shall in the main
follow the account given by Rudin ([R], Chapter 5), which applies to
compact Abelian groups in general. Extensions to non-Abelian compact
groups were initiated by Hewitt and Zuckerman [1], and, for an
exposition, the reader is referred to [HR], §37; see also Rudin [6],
Figa-Talamanca [1], [DR] Chapter 5, [Kz] Chapter V, and the
monograph devoted to Sidon sets, [LR].

The approach via functional analytic inequalities and theorems is fairly
new, the first such approach appearing in print being that due to Hewitt and
Zuckerman [1]. The functional analytic background is explained briefly in
general terms in [E], Section 8.8. Many other concepts of lacunarity have
since been examined in this way and for general compact groups; see
Section 15.5 and 15.8 and the references cited immediately above.

Lacunarity for general orthogonal expansions on subintervals of R are
discussed in [KSt], Kap VII.

The dual aspects of the topics discussed in the main portion of this chapter
will be mentioned briefly in Section 15.7.

The harmonic analysis and synthesis of general continuous functions on
R", a topic mentioned in passing in 11.2.3(4), leads to the introduction of
“complex’ Sidon sets; for this we must refer the reader to Gilbert [1] and
the references cited there.

The reader may find it helpful to examine the brief survey article
Kahane [4], the historical notes in [HR], Volume II, pp. 445449, and
[LR], which is a more recent and systematic account covering almost all
the principal themes dealt with in this chapter.

15.1 Introduction of Sidon Sets

15.1.1. Some Definitions and Notations. Let E be a subset of Z.

A distribution F will be said to be E-spectral if and only if F(n) = 0 for
all n € Z\E; cf. 14.2 above.

It will be convenient when p > 1 to denote by Lg? the set of all E-spectral
functions in L?; by My the set of all E-spectral measures; by C; the set of
E-spectral functions in C; by T the set of all trigonometric polynomials; and
by Ty the set of all E-spectral trigonometric polynomials. The reader is left
to verify that Lg” is a closed linear subspace of L? (if p > 1); that C; is a
closed linear subspace of C; that My is a closed linear subspace of M; and
that Ty is a linear subspace of T.
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We also denote by £(E) (1 < p < o0) the set of complex-valued functions
¢ on E such that

D [gm)1r ifp < oo

I, =4 " _
sup [(n)| if p = oo,

is finite; ¢,(£) is the set of ¢ € £°(E) such that
lim |4(n)| = 0,

nekE,[n|—
and we regard c,(E) as a normed subspace of £*(E).

We write £7 and ¢, for #(Z) and ¢4(Z), respectively. The reader will note
that there is a natural injection of #7(E) into £* and of ¢,(E) into ¢,, obtained
by extending each function on £ so as to be zero on Z\E.

If § is any set of functions on Z, S|E will denote the set of restrictions
¢|E of functions ¢ € 8.

If H is a set of distributions, #H will denote the set of functions on Z
that are Fourier transforms of elements of H. Notice that FL! = A(Z), in
the notation introduced in 2.3.9. One may thus write (for example) FL! < ¢,
(by 2.3.8), FL? = £2 (by 8.3.1), and #M < ¢~ (by 12.2.9 and 12.5.3(1)).

The following result, which appears as Exercise 2.19, will be used later.

15.1.2. Given any finite subset F of Z and any e > 0, there exists a
trigonometric polynomial ¢ such that

A

Nty <1+4+e¢ 0<tr)<1l forallneZ, fln)y=1 forallneF.

Remarks. 1If {0} is a proper subset of F, we cannot in general
arrange that ¢ > 0. For suppose that {0, ny} = F, where ny # 0, and that
t = 0. Then

2z
(2m)~1 J t(z)(1 — e %) dx = 0,
o
hernce
2n
(2m)~! J tx)(1 — cos ngx) dxr =0,
0

and so, since t>0 and ny#0, #(x) =0 a.e. But then £0)=0, a
contradiction since 0 € F'.
However, if 0 ¢ F, it can be arranged that ¢t > 0. In fact, define P =
F U (—F)and
ty="Fy+ Y (1= Fym)e,+ Y, (1 —Fyn).

neP neP
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Thenty e T, ty = 0,

fy(n) = Fymn) + (1 — Fy(n))+0=1  forallne P
and

Ity = in(0) = Fy(0) + 0+ Y (1 — Fy(n))

neP

=1+ Y (1—Fn)

neP

which is at most 1 + ¢, if N is chosen sufficiently large (depending upon P
and &).

15.1.3. Sidon Sets. A subset E of Z is termed a Sidon set if and only if
there exists a nonnegative number B, possibly depending on ¥, such that

I7l: < B |f] (15.1.1)

for every f € Tg. The smallest such B, namely

sup {I //I fllo: fE€TE and | fll, # 0}

is called the Sidon constant of E, usually denoted hereinafter by Bg.

The above terminology is suggested by a theorem of Sidon ([Z,], p. 247;
[Ba,], p. 246) for series with Hadamard gaps, which corresponds closely to
15.1.4(b) and (c) below. Parts (d) and (e) of 15.1.4 show, on the other hand,
that all Sidon sets share certain properties which were established by Banach
for series with Hadamard gaps (see [Z,], p. 131).

15.1.4. Fundamental Criteria. If E is a subset of Z, the following five
statements about E are equivalent:

(a) E is a Sidon set;

(®) |Ifll. < oo for each fe Lg=;

(e) |flly < oo for each fe Cg;

@) FM|E = £=(B);

(e) FLE = cy(E).

Proof. This is conveniently broken into parts.

(1) Let us show that (a) implies (b), beginning with the remark that, if
feLg™, then ayf = Fy * fe Tg. So, by (a) and (15.1.1), we have

Hoxf)" 1 € B+ loxfllw = B* [Fy*fllo < B [Fyfs" [f]
=B*|f]w-
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the penultimate step following from 3.1.6. Now

lowr = 3 (1= 55w

<N

> Y% > |l

Inl< %N

whence it appears that

> |fm)] < 2B |f].-
Il < %N

From this, (b) follows easily on letting N —> c0.

(2) The implication (b) = (c¢) is a trivial consequence of the inclusion
C < L~

(3) It will next be shown that (c) implies (a). If (¢) holds, the map f — f
is a 1-1 linear map of C; onto £}(E). The inverse map is evidently continuous,
in view of the simple inequality || f |, < ||.f ;. The open mapping theorem
(I, B.3.2) entails that this mapping is bicontinuous, which requires that an
inequality of the form (15.1.1) be valid for E-spectral trigonometric poly-
nomials f, that is, that (a) is true.

At this stage we have established the equivalence of (a), (b), and (c).

(4) Next on the list comes a proof that (c) implies (d). Suppose that (c)
holds and that ¢ € £*(E). The mapping

=2 f)n)

nek

is then a continuous linear functional on C;. By the Hahn-Banach theorem
(I, B.5.1) and 12.2.3, there exists a measure u € M such that

2, foém) = u(f)
for f € C;. If herein we take f = ¢,, where n € E, and write A for g (defined in
12.6.8), then A € M and it appears that ¢(n) = A(n). Thus ¢ € FM|E, showing
that (d) holds.

(8) To deduce (e) from (d), we remark that the latter combines with the
open mapping theorem (Volume 1, Appendix B.3.2) to entail the
existence of a number B’ such that to each ¢ € /*(E) corresponds a
measure u € M such that

AE =6,  lul < B - [¢].. (15.1.2)

The reader will observe that an appeal to the open mapping theorem is
justified by 12.7.1. Suppose now that ¢ € ¢o(E) and |||, < 1. Let

E,={nek:27% < |H(n)] < 27%+1},
where k = 1,2, .- -, so that E, is a finite subset of E. Let i, be defined to be



[15.1] INTRODUCTION OF SIDON SETS 239

equal to ¢ on E, and to be zero elsewhere on E. According to (15.1.2), we
may choose for each k£ a measure p, € M such that

il B = ., Il < B - 207, (15.1.3)

Moreover, by 15.1.2, we may choose trigonometric polynomials ¢, such that

i, =1onE,, Itel: < 2. (15.1.4)
Put

f= i b * py.
E=1

Since t, * p, is a trigonometric polynomial and since, by (15.1.3), (15.1.4),
and 12.7.4

It * el s < B 227F,
it follows that f e L* and

fm) = 2 bmin(m)

for all n € Z. In particular, if n € E,, (15.1.3) and (15.1.4) yield

f(n) = fip(n) = Pi(n) = (n).

Since also f(n) = 0 at all points n € E at which P(n) = 0 (that is, at all
points of E not belonging to some E,), it is seen that f|E = . Thus
FLYE = ¢, and (e) is derived.

(6) Finally, let us show that (e) implies (a), thus completing the circle.
If (e) holds, the open mapping theorem (Volume 1, Appendix B.3.2)
comes into play once more and shows that there exists a number B” such
that to each ¥ € ¢o(E) corresponds a function f € L' such that

fIE=y,  |fli< B 4] (15.1.5)
Let g be any E-spectral trigonometric polynomial, and define (n) to be
|g(n)|/d(n) or O according as §(n) # 0 or §(n) = 0. Then ¢ € ¢,(E) and
[#]o < 1. Choose f as in (15.1.5). Then, since |f|, < B”, 3.1.6 yields

> lgm| = 3 fm)gm) = f*g(0)

neZ nez

< Il 19le < B9l

showing that (a) holds (with B” in place of B).
Remarks. (1) Part (3) of the preceding proof used the open mapping
theorem to show that, if (¢) holds, then there exists a number B such that

171 <BIflw (15.1.6)

for every f e Cg. The reader will find it instructive to construct a proof
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using the uniform boundedness principle (Volume 1, Appendix B.2.1); see
Exercise 15.1. A similar conclusion, with L;® in place of Cg, follows from
(b).

(2) If E is a Hadamard set, somewhat sharper versions of 15.1.4(b) and (¢)
are valid; see 15.2.6.

(3) As we have seen, an inequality of the form (15.1.6) holds for fe L;®
whenever E is a Sidon subset of Z. From 15.1.4(e) it is clear that no such
inequality is valid for general trigonometric polynomials f. More
specifically, an example of D. J. Newman [2] shows that there is an
absolute constant ¢ such that to every positive integer N corresponds a
trigonometric polynomial f of degree at most N for which || f|, =1 and
Il =38 —e. |

(4) Let E be a Sidon set. It follows from 15.1.4(d) that the operator
T: n— | E effects a homomorphism of the convolution algebra M onto the
algebra ¢*(E) with pointwise multiplication; and from 15.1.4(e) that 7'|L*
effects a homomorphism of the convolution algebra L! onto the algebra
¢o(E) (again with pointwise multiplication). On the other hand, it can be
shown (Edwards [12], Theorem 1) that, if E is any infinite subset of Z, there
exists no isomorphism of any subalgebra of M onto either of £*(E) or ¢co(E),
or indeed onto any Banach algebra B of the type specified in Exercise 11.24.
See also Remark (11) below.

This fact indicates that, if £ is an infinite Sidon set (see Section 15.2 for
examples), although 4|E can be specified as freely as one can expect, one
remains largely in the dark as to how freely one can simultaneously specify
fi|Z\E. One certainly cannot simultaneously demand that ji|Z\E shall coin-
cide with an arbitrarily given element of #*(Z\E) or of ¢,(Z\E). Can one,
however, demand that simultaneously fi|Z\E shall belong to ¢,(Z\E)?
Perhaps the most important single result in the positive direction is due
to Drury [3]. It may be stated as follows; cf. [LR], Chapter 3. Suppose
that K is a Sidon set with Sidon constant B, that 0 <& <1, and that
¢ € £*(E); then there exists u € M such that i|E = ¢, | i(n)] < ¢ for all
n € Z\E, and

< 512B%: 1.
[l

This seemingly innocuous extension of 15.1.4(d) incorporates a most
important step in the study of lacunarity and will be referred to again in
the sequel.

Fournier has shown (see [LR], Theorem 2.20) that Drury’s result is
best possible in the sense that, if ¥ is an infinite Sidon set and ¢ € /*(K),
then there is a measure y € M such that 4| E = ¢ and i| Z\E € eo(Z\E) if
and only if ¢ € ¢y(E).

Using Drury’s result, Hartman and Wells have independently shown
that, if £ is a Sidon set, 15.1.4(d) can be strengthened in another
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direction. Roughly speaking, a measure is called continuous if it assigns
zero measure to every point of 7'. (This is one instance where it is easier
to regard a measure as assigning values to certain subsets of 7'; see 12.2.3
above and [£,], 1.7.) The Hartman-Wells Theorem (see [LR], Chapter 4)
states: if £ is a Sidon set and ¢ € /*(E), then there is a continuous
measure 4 such that g| £ = ¢.

(56) The proof of 15.1.4 could be considerably shortened by making use
of general duality theory for Banach spaces as set out in Chapter 8 of [E]
(for example).

For instance, the equivalence of (a) and (e) of 15.1.4 follows from a
general theorem ([E], Corollary 8.6.15 or [KS], p. 141) which asserts that
if E and F are Banach spaces and U a continuous linear operator from E
into F, then U maps E onto F if and only if the adjoint operator U’ is a
topological isomorphism of F’ into E' (see I, B.1.7). On applying this
result to the case in which E=L! F =cy(E), and Uf=f|E, the
equivalence of (a) and (e) appears almost immediately.

(6) The proof of 15.1.4 actually shows that the following numbers
coincide:

(a) the Sidon constant of &

b) sup {[|f 11/ /- f € L§ and [ £ |, # 0}

(©) sup {1 F /I f1l0:f € Ceand | £l # 0}
) inf {sup {lpl/I¢lo: neM and A|E=¢}: ¢el®E) and
lol., £0] A
) inf {sup {IfI/I$l.: feL' and fIE=¢}: ¢eco(B) and
16l 0}

Sets whose Sidon constant takes on certain extreme values
(particularly in the non-abelian setting) have been investigated in
Cartwright, Howlett and McMullen [1].

(7) The space Cg in 15.1.4(c) may be replaced by a range of smaller
spaces (see Edwards, Hewitt and Ross [1]). Indeed E is Sidon whenever
one of the following spaces is contained in A:

(a) AP ={feC: fe(?(Z)}, where 1 <p < o

(b) A1+ = ﬂl<p<ooA

(c) U= {feC:s, f— funiformly as n— co}

(d) A, ={feC:of e £/(Z)}, where o is a given element of ¢y(Z).

(8) From the equivalence of (a), (b) and (c¢) in 15.1.4, it follows that, for
all subsets E of Z, if C; < A then Ly;® = C. The converse is false,
however; see Rosenthal [3], [HR], (37.25.¢) and 15.8.3 below.

(9) Regarding 15.1.4(d), a symmetric subset £ of Z is Sidon, if and
only if every ¥ € 1°(E) satisfying ¥/(—n) = ¥(n) for all n € E, belongs to
FM|E. This results from the fact that every ¢ € £ °°(E) can be written
¢ =y, + iy, where Yy (n) = 27 (d(n) + @(—n)) and Y, (n) = (2i)” (¢ (n)

— ¢(—n))foralln e E.
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Similarly, regarding 15.1.4(b) and 15.1.4(c), if E = Z is symmetric, then
E is Sidon if and only if

I/ 1l < const. || flq

for every real-valued f € Ty. This is so since, if g € Ty, then f; = Re g and
f2 = Im g both belong to T, are real-valued, and satisfy

11 < I fulls + 112l < const. || fillo + const. || f2lle

< 2 const. ||g]] -

See also 15.1.6 below.

(10) If E = Z is Sidon, so too is £ U (—E). To see this, appeal to the
first part of (9): if ¥ € £°(E U (—E) satifies y(—n) = §(n) for all n € E
U (—E), choose p € M such that i|E = | E and define v=2"(u + ji);
then

_ P(n) = 271 (fi(n) + A(—mn)) forallneZ

and it is easy to verify that
V(B v (-E)=y.

(11) The content of 15.1.4(e) is that every function belonging to ey(E)
has an extension to Z of the form f for some f € L'. On the other hand,
Dunkl and Ramirez [1] have shown that, if £ is infinite, then (contrary
to what one might suppose) there exists no continuous linear map V of
¢o(E) into L' such that

(Vo)™ (n) = ¢(n) for all ¢ € ¢o(E) and all n € K.

Concerning this, see Exercise 15.23 below.
We turn next to a refinement of criterion 15.1.4(d).

15.1.5. Supplement to 15.1.4. Let £ be a subset of Z. In order that £ be
a Sidon set, it is sufficient (and necessary, by 15.1.4) that for every
function ¢ on E taking only the values 1 and —1, there exists a measure
i € M such that

sup {|p(n) — A(n)| : n € E} < 1.

Proof. We will show that 15.1.4(c) is satisfied.

Let fe C; and suppose first that f is real-valued. Define the +1-valued
function ¢ on E so that ¢ - f = |f|. By hypothesis, there exists a measure
u € M and a positive number § satisfying

sup {|p(n) — ji(n)|: ne B} <1 —4. (15.1.7)

If A = {(u + p*), it is easily seen that 4 also satisfies (15.1.7), y) being just
the real part of 1. Moreover,

IFX=1fll=1fl"A-¢| <@ -8-|f|nE.
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Putting g = A * f, it follows that g € Cz and
Gg=X-f>8|flonE. (15.1.8)

Let F be any finite subset of E and choose a trigonometric polynomial ¢ as
in 15.1.2, taking ¢ = 1. Then (15.1.8) yields

8- > 1fm)] < 2 Hmdn) < D im)gn)

ner ner nez

= t%9(0) < ity gl < 2[pf [fle-

The last-written term being independent of F, it follows that f e £*.

If f is not real-valued, we write f = f, + if,, where f, = W(f + f*),
fa = —Y%i(f — f*), so that f, and f, are real-valued and f, and f, belong to
C;. By what we have established, f; and f, belong to £, so that the same is
true of f = f; + if,. This completes the proof.

Remark. A slightly shorter proof runs as follows. Having proved
(15.1.8), it follows that g is continuous and positive definite. Hence by
9.2.8, § € I' and so, since (15.1.8) implies that | f| <874, f €1 and the
proof is complete.

15.1.6. If E is assumed to be symmetric (that is, £ = — E), then we may in
15.1.5 assume that each ¢ referred to is either even or odd.

For, assuming again that f e Cg and that f is real-valued, we may write
f =fe +fo’ Wherefe = I/Z(f +.f)ECE is even, a’ndfo = 1/2(f_f)ECE is
odd. The two components f, and f, may be treated separately and call for
even and odd functions ¢, respectively.

15.1.7. Tt is evident from 15.1.4(b) or (c) that any subset of a Sidon set is a
Sidon set; that £ U F is a Sidon set whenever E is a Sidon set and F is a
finite subset of Z that if £ is a Sidon set and n € Z then the translate
n + E is a Sidon set; and that —F is a Sidon set if (and only if) £ is a
Sidon set.

15.2 Construction and Examples of Sidon Sets

In this section we give some structural properties of a subset E of Z which
ensure that E is a Sidon set, and which permit us to show in particular that
each Hadamard set is a Sidon set. We have already met this situation in
Chapter 14 for the Cantor group. Reference back to 14.2.1 will convince
the reader that one crucial point in proving that Y,.4 ¢/ { is the
Walsh-Fourier series of a function in LP(%) (for each p < c0) whenever it
is the Walsh-Fourier series of a function in L!(%) was that, apart from
order, each element of ¥* can be written uniquely as a product of ele-
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ments of #. In trying the same technique in Z, it suffices to bound the
number of representations of an integer as a sum of elements of K.

15.2.1. Notation. We call a subset F of Z asymmetric if n € F\{0}
implies —n ¢ F. For every subset E of Z, every positive integer s, and
every n € Z, denote by Ry(n, E) the number of asymmetric subsets F' of
E U (—E) having exactly s elements and satisfying

n= ) m. (15.2.1)
meF

A subset & of Z is called a Rider set if there is a number B such that, for
alln e Z,

Ryn, B)< B° for all positive integers s; (15.2.2)

the smallest such B is termed the Rider constant of E.
A finite union of Rider sets is termed a Stechkin set; note that if E is a
Stechkin set then so too is £ U (—E).

15.2.2. An Arithmetical Criterion. Every symmetric Stechkin set £ is a
Sidon set.

Proof. We may assume without loss of generality that O does not belong
to E. By assumption, £ is the union of finitely many Rider sets &, - -, B,
which, again without loss of generality, we suppose are symmetric and
pairwise disjoint. Let B denote the maximum of the Rider constants of
E,, -, E,. Since B > 1, setting b = (3tB?) ™! yields b < 4 and Bb < §. Let
¢ be an arbitrary function on ¥ taking only the values +b. Our aim is to
apply 15.1.5 and 15.1.6, in doing which it will suffice to deal with the case
in which ¢ is assumed to be even.

Fix j and assume that E, is enumerated as #*n,, +n, -, where
0 < n; <mny <---.Define

fel@) = 1 + ¢(n)e™* + ¢(_nk)e—lnkr}

15.2.
= 1 + 2¢(n,) cos nx = 0. (15.2.3)

(If ¢ were odd, we should argue with

ful@) =1 — igln)e™s= — i(—m)e™ "
=1+ 2¢(ny) sinmx > 0.)
Write also

N
tu(@) = [ | fula), (15.2.4)
k=1
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which is a nonnegative trigonometric polynomial. Evidently,
N
=11 X Fer.
r=1uecB
wherein B = {—1, 0, 1} and
F(r, u) = Y(n,)"!(exp (in, 2))"

At this point we make use of the formula (true for all complex-valued
functions Fon {1, -+, N} x B)

rllj ZFru Z nFrw(r)

weW r=

wherein W is the set of all functions w from {1, 2, ---, N} into B. Thus

th= ). H¢(n YOl exp (in,w(r)z)

weW r=
=3 HD(w r) (15.2.5)
weW r=

say. Defining W(s) to be the set of all w € W such that

N

2w =s,
r=1
W is the disjoint union of W(0), W(1), -+, W(N). Furthermore, W(0)

comprises only the zero function in W, and
N
z HD(w, r)=1;
weW(0) r=1

and W(1) comprises only these functions in W with singleton supports,
and

N N . N .
[1D, = ¥ dme™ + 3 dlme™
weW() r=1 k=1 k=1
Thus, by (15.2.5),
N . N .
= Z ’l’b )emkx + Z ¢(nk)e—mkx
k=1 k=1
N N
+ Z Y. T1D, ). (15.2.6)
=2 weW(s) r=1
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Expressing W(s) as the disjoint union of the W (s, n), where W(s, n) is the
set of all w € W(s) such that

N
2 w(r)n, = n,
r=1

and noting that W(s, n) is nonvoid for only finitely many =, it follows
that the fourth term on the right of (15.2.6) is

Z CN(")ei"x,

neZ

where
N

N
exm)=3% Y [lom)™"

s=2 weW(s, n)r=1

Accordingly, since ¢ assumes only the values +b,
N

lem| <) Y b

s=2 we W(s, n)
N

b« #(W(s, n)),

s=2

where, for every finite set 4, # (A4) denotes the cardinal of 4. For every
w € W(s, n) define 8(w) to be the set

{w(r)n,: re {1, 2, .-+, N} and w(r) # 0}.

It is simple (if a little tedious) to check that, for every se {1, 2,---,N}, 8
is an injective map of W (s, n) into the set of all asymmetric subsets F of
E; having exactly s elements and satisfying

Zm=n.

meF

Hence, by (15.2.2),

#(W(s, n)) < Ry(n, E;) < B*
forallm e Zand alls € {1, 2, -+, N}. Thus, foralln € Z,

N
len(n)| < 3 6°B° < B%b*(1 — Bb)™! < (6£2B?) ™. (15.2.7)

s=n

This shows that, in particular,
ltxlls = 1 + ¢y(0) < 1 + (662B2)~1,

Applying 12.3.9, it is seen that a subsequence (ty,) of (ty)¥-1 converges
weakly to a measure ;€ M. This entails that lim, _, ,, pr(n) = f,(n), so that
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(15.2.5) and (15.2.7) then show that
i) — ¢(n)| < (662B%)~  (ne k),

(15.2.8)
|4 (n)] < (662B2)"1 (ne BE\E)).
If weput p = py +---+ py, (15.2.8) shows that for ne £
|n) — $(n)] < t- (61287 = Y.

It now remains merely to appeal to 15.1.5 and 15.1.6.

15.2.3.  Another Arithmetical Criterion. Every asymmetric Stechkin set
E is a Sidon set.

Proof. This is very similar to that of 15.2.2: the set E; is this time
enumerated as n,, n,, - - - and f, is defined as

fk(x) =1 + 4) e”‘k“’ + 93 e —in,x
=1 + 2¢(n,) cos n,x,

from which point the argument proceeds as before.
Remarks. (1) The proofs of 15.2.2 and 15.2.3 witness the introduction of
trigonometric polynomials of the form

N
[T @+ e cos myzx)

k=1
and corresponding infinite products

el

T @+ o cosnz).

k=1
Such products are termed Riesz products; they appear in connection with
various problems in harmonic analysis. For more about them, see [Z,], pp.
208-212; [Ba,], pp. 246-249; [LR], Chapter [2]; Keogh [2]; Brown [4];
and [MG], Chapter 7.

(2) For more criteria like 15.2.3, see Rider [4]. In particular, the
conclusions of both 15.2.2 and 15.2.3 still hold when the assumption that
E be Stechkin is weakened to £ being a finite union £ = ( )i, E; of sets
E;, each of which satisfies (15.2.2) merely when »n = 0. The reader is asked
for a proof of this fact in Exercise 15.24.

15.24. Hadamard Sets Are Sidon Sets. Let ¥ be a Hadamard set,
that iS, E= {j——nh in2> o '}’ where 0 < Ny <My < and

. oM
g =inf™tt 5 1,
Ny
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It is then very simple to see that E can be partitioned into a finite number of
Hadamard sets E;, for each of which the corresponding value of ¢ exceeds 3.
But then, for any n € Z,

Rin, E) < 1. (15.2.9)

Indeed, if an integer n admitted two (or more) representations (15.2.1), we
should have a relation of the form

Uy, + 0y, + =0,

wherein r; > r, > -+ and o; is &1 or +2. Then, however, one would
deduce that

Ny K 2Ny, + npy +00) < 20y (7P 72+ )
<2q -1, <mn,

a contradiction.

By (15.2.9) and 15.2.2, E is both a Stechkin and a Sidon set.

Indeed, the same argument shows that any finite union of Hadamard sets
is a Sidon set.

However, there exist Sidon sets that are not finite unions of Hadamard
sets; see Exercise 15.3.

15.2.5. Any infinite subset A of Z contains an infinite Sidon set E.
Proof. Choose freely any nonzero n; € 4. Suppose that n,,-- -, n, have
already been selected from A4\{0}. The set S, of integers of the form

oy Ny, + aghy, + -+ agn,,

where 1 < 7, <7, <--- < ry < k and where each o; is +%, +1, or +2,
and at most one is of the latter form, is finite. So one may select a
nonzero integer

Mty € A\S,.

If E = {n,, ny, - - -}, it is clear that no n € E U {0} admits a representation in
the form
n=tn, £y, -0

with distinet k; and s > 1, so that 15.2.3 shows that K is a Sidon set.
Evidently,  is an infinite subset of 4.

The proofs of 15.2.2 and 15.2.3 lead to a refinement of 15.1.4(b) valid for
certain Sidon sets.

15.2.6. Suppose that £ is a Stechkin subset of Z (in particular, suppose
that £ is a finite union of Hadamard sets; see the proof of 15.2.4.). Then
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fe st for any E-spectral f € L! such that each of Re f and Im f is essen-
tially bounded above or essentially bounded below.

Proof. The proof is based on the observation that the measure p con-
structed in the proof of 15.2.2 (or of 15.2.3) is positive, being the weak limit
in M of nonnegative trigonometric polynomials. We now modify the proof of
15.1.5 so as to make use of this additional information about .

By a combination of changes from f to —f and from f to f, it is seen to be
enough to deal with the case in which Ref < m a.e. and Im f < m a.e.
(Notice that — E satisfies the stated conditions whenever E does so, and that
f is (— E)-spectral whenever f is E-spectral.) In this case, we can, as in the
proof of 15.1.5, decompose finto a sum f; + if,, where f, and f, are E-spectral,
f1 and f, are real-valued, and moreover Re f; < m a.e. and Re f, < m a.e.
So it will suffice to deal with the case in which Re f < m a.e. and f is real-
valued. Since alteration of f on a null set leaves f unchanged, we may as
well assume that Re f < m everywhere.

These preliminary reductions having been made, choose the + 1-valued
function ¢ on E such that ¢« f = |f|, setting ¢(n) = 1 whenever n € E and
f(n) = 0. Choose a positive measure p so that

[dp(n) — fi(n)] <1 -6 forallne K.
Multiplying through by |f(n)| and using the definition of ¢, it appears that
Re j(n)f(n) =6+ | fn)] forallne k. (15.2.10)

Consider now the function g = u * f. Since p is positive,

Reg=p*xRef<pum-1)=m" < 0.
Therefore [see (5.1.6), (5.1.8), and (5.1.9)]
Re(oyg) = Re (Fy*g) = FyxReg < m'.

In particular, evaluating at the origin and remembering that § = g - f,

Inl \.ovg .
Re IMZM (1 - 73 1) an)fn) < m'.

By (15.2.10) and the assumption that f is E-spectral, this implies that

||

IMZN (1 - N + l)lf(n)l < m'&1.

Since the right-hand term here is independent of N, it follows that fe £

At this point see also Exercise 15.12. For a still deeper analogous result,
due to Zygmund, see [Ba,], pp. 249-257.

15.2.7. Finite unions of Sidon sets. Drury [3] has proved that the
union of two Sidon sets is again a Sidon set. The reader will find it an
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easy exercise to show that this is a consequence of the result due to Drury
mentioned in 15.1.4, Remark (4). We refer to [LR], Chapter 3, for an
exposition of Drury’s result.

15.2.8. An Arithmetical Property of Sidon Sets. Given a subset E
of Z and a positive integer N, we denote by az(N) the largest integer « such
that some arithmetic progression of N terms contains « elements of E. In
other words, if we define agz(N, a, b) for a, be Z and b # 0 to be the number
of terms of the arithmetic progression a + b,a + 2b,---,a + Nb which
fall in E, then agz(N) is the supremum of «z(N, a, b) as @ and b vary.

It can be shown (see Exercise 15.8) that if £ is a Sidon set, then

oag(N) < Bg log N for all N = 3; (15.2.11)
and that on the other hand, if E is the Sidon set {1, 2, 22, 23, .. .}, then
log N
aE(N) > log2

for N = 2.

In particular, if £ is a Sidon set, the number of elements n of E satisfying
[n| < N is O(log N) for large positive integers N. So, for example, the range
of a nonconstant polynomial function on Z into Z is never a Sidon set.

It can also be shown (see Exercise 15.22) that if £ is a Sidon set, then E
does not contain the sum {n +m: n € F, m € G} of two infinite sets F
and . For a further discussion of the arithmetical properties of Sidon
sets, see [LR], Chapter 6.

There are two refinements of the estimate (15.2.11) (see [LR], Chapter
6). Each establishes that, for a certain set .# of well-behaved subsets

of Z,
#(E n M) < Bg * log (#(M)) (15.2.12)

for all M € /4 where, for every finite set F', # (F) denotes the cardinal of
F. In both of these refinements the set .# is large enough to cover the
situation dealt with in Exercise 15.22 and to arrange for (15.2.12) to yield

(15.2.11).
There seems to be little hope of an arithmetic characterisation of Sidon

subsets of Z. However for the Cantor group %, the situation is far better.
There, a Sidon set is defined (naturally enough) to be a subset E of €"
for which there exists a number B > 0 such that

171 < Bl f Il

for all f € Tg(%¥). Thus Exercise 14.9 amounts to showing that the set #
of Rademacher characters is a Sidon set. Now for subsets of " an
arithmetic characterisation is possible (though not easy): a subset of
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%" is a Sidon set if and only if it is a finite union of independent sub-
sets of ¥~ (see (14.1.3)). This theorem is due to Malliavin-Brameret and
Malliavin [1]; the reader may care to read Pisier’s proof (Pisier [2])
which characterises Sidon sets using, instead of an arithmetic condition,
the Orlicz spaces mentioned in 14.3.6.

15.3 Further Inequalities Involving Sidon Sets

We now use the properties of Rademacher characters discussed in
Chapter 14 to derive some fundamental functional analytic inequalities
stemming from the definition of Sidon sets.

15.3.1. Let E be a Sidon set, with Sidon constant B. If y € Mg is an
E-spectral measure, then y € L? for all p < o0, and

i, < BpM? |l for all p such that 2 <p < o0, (15.3.1)
lpll, < B2V ull,. (15.3.2)

Proof. We start by deducing the analogous inequalities for
Rademacher-spectral trigonometric polynomials on the Cantor group €.
From 14.2.1 it follows, since m! < m™ whenever m € Z*, that for all
m e Z* and for all g € Ty(¥),

gl 2m < mgll,, (15.3.3)

lgll2 < 2'2lgll;. (15.3.4)

Now whenever 2 < p < 00, we may write 2m —2 <p <m for some
integer m satisfying 1 < m < p. Then, by (15.3.3),

lgl, < lgl2m < m*2lgll, < pligll. (15.3.5)

In (15.3.5) and (15.3.4) we have the desired analogues of (15.3.1) and
(15.3.2).

Suppose now that f € Ty is an E-spectral trigonometric polynomial
over the circle group 7', and define on 7' x ¥ the function

9(@, ) = g,(¥) = g(@) = ¥, f(n)p(w)e,(x) (15.3.6)

neZ

where p, is the nth Rademacher character (see 14.1.3). Since £ is a Sidon
set, reference to 15.1.4(5) confirms that to each w € € corresponds a
measure p,, € M such that |ju,|; < Band

IL,(n) = p(w) foralln e K. (15.3.7)
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Since f and g, are E-spectral trigonometric polynomials on the circle, this
shows that f = u, * g, and therefore (see 12.7.3) that

1/p
£, < ltollillgoll, < BL(2m)~* j lg(x, )P dx] (15.3.8)
T

for all w € €. Integrating this inequality over € with respect to w and
using (15.3.5),

R 1/2
£, < Bp”z[ 2 | f (m)ey(x) Iz] = Bp'?| f|,. (15.3.9)

neZ

On the other hand, we also have g, = p,, * ffor all @ € € and therefore

(2m) ™" f lg(x, )| dz < [l flle < Bl fI;- (15.3.10)
T

But applying (15.3.4) to g, and integrating over the circle with respect to

x gives
) 1/2 '
s 51 7] <2 [ [ 1 ]
neZ T €

This, the Fubini-Tonelli theorem, and (15.3.10) combine to show that
£l < 2'2B| £, (15.3.11)

At this stage we have, therefore, established (15.3.1) and (15.3.2) for
E-spectral trigonometric polynomials f. For the rest, we apply these
special cases to the functions fy = Fy = p € Tg. Thus suppose first that p
is known to belong to L!. Then, by 6.1.1., fy— p in L', on applying
(15.3.11) and (15.3.9) to the differences fy, — fy, it is seen that (fy)¥=, is
Cauchy in L? for every p < oo, hence is convergent in L? for such p. The
limit can only be y, so that u € L? for every p < oo. Moreover on applying
(15.3.11) and (15.3.9) to the fy and using Fatou’s Lemma, (15.3.2) and
(15.3.1) follow.

Finally, if we assume merely that u € M, (15.3.11) may be applied to
the fy to yield

I fwll2 < 22BIFy * plly < 2'2Bljul;. (15.3.12)

At this point 12.3.10(2) comes into play and asserts that some
subsequence of (fy)¥-, is weakly convergent in L2. Since fy = Fy * u
converges weakly in M to p (see Exercise 12.17), it follows that y € L2 <
L!. The arguments of the preceding paragraph are now applicable and
complete the proof.
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Remarks. (1) The dependence on p of the constant appearing on the
right-hand side of (15.3.2) renders it possible to show that indeed exp (c|f]?)
is integrable for any number ¢ and any fe Lg!, £ being a Sidon set; see
Exercise 15.4 and cf. 14.2.2.

(2) The estimate (15.3.2) is the best possible in the sense that, given any
infinite subset £ of Z and any integer £ > 1, there exists an f € T such that

FAPER A S FAPY

see Exercises 15.14 to 15.16. This result is due to Rudin ([6], Theorem 3.4).
(3) Prompted by 15.3.1, a subset E of Z is called a A-set (cf.15.5.3) if
there is a constant B (independent of p) such that, for every p € (2, o),

1£ 1, < Bp*2li f 2,

for all f € T;. Thus 15.3.1 demonstrates that every Sidon set is a A-set.
Pisier [1] has shown that, conversely, every A-set is a Sidon set; the
techniques used by Pisier are related to those mentioned in 14.3.6.

The next result shows that all Sidon sets share another property similar
to 15.1.4(d) and (e).

15.3.2. If E is a Sidon set, then FC|E = {*(E).

Proof. This will be carried out in two stages, in the first of which_we
show in particular that FL>|E = £3(E).

(1) Let ¢ € ¢2(E). Regarding L;' as a normed linear subspace of LI,
(15.3.2) shows that the mapping

g— > §(n)d(n)
nez
is a continuous linear functional on L;! of norm at most 2Y/2B||¢|,. The
Hahn-Banach theorem (I, B.5.1) and I, C.1 combine to show that as a
consequence there exists a function f € L® such that || f|, < 2'?B|¢|,
and

>, i) = 5- [o@f(—2) dx

nez
for each g € Lg. On taking g = e,, where n € E, this shows that f(n) = ¢(n)
for ne K.
(2) Next suppose that ¢ is as before and partition E into finite sets
E,, E,, - such that

[2, [$m]*12 < ck=2

nek
where ¢ is independent of k. Define ¢, to be equal to ¢ on E, and to be
zero on E\E, . According to (1), there exists for each k a function f, € L*®
such that f,|E = ¢, and || f; |, < 212 Bek™ 2. Referring to 15.1.2, choose
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trigonometric polynomials ¢, so that
Itell: <2, % =1onkE,.

Then kb = &, * f, € Cand Al < Ity * I fill o < 2¥2Bck™2. Therefore

h = i by,
k=1

belongs to C, the series being uniformly convergent. By the latter token,
h = S, k. So, for n € E, one has

@

) = > Bun) = > b fuln) = > 1+ i)

k=1 k=1 k=1
= ¢(n).
Thus ¢ = A|E and the proof is complete.

15.3.3. Let E be a Sidon set and suppose that 1 < p < 2. Then

1/2
[ > f(nW] <Bp'*-|fll,

nekE

holds for each fe L*.
Proof. Let g be any E-spectral trigonometric polynomial:

g(@) = D e,
neg
¢, being zero for all but a finite set of n € E. Applying (15.3.1) with
p'(< o0) in place of p, we have by 3.1.4

|3 fmenl = Ig; [ (== del < 111, ol
1/2
<Hf!l,'Bp’”2'[Z |c,,|2] .

nekE

This entails that
) 1/2
[Z If(n)lz:l < B2 | £,
neE

as one sees on choosing ¢, to coincide with f(n) on larger and larger finite
subsets of E.

Remarks. (1) If 2 < p < o0, the inequality in 15.3.3 is valid for
arbitrary subsets E of Z, the factor Bp'*/? being replaced by unity. (This
is due to the Parseval formula and the inequality ||fll, < fl, for
2<p<K ™)

(2) The hypothesis p > 1 in 15.3.3 cannot be removed. More precisely,
if Ec Zandiff|E e Ug<w £UE) for every f € £*, then E is finite.-
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Indeed the hypothesis implies (by Appendix B.2.1 in Volume 1) that
there exists ¢ < oo such that

1/q
< Y 1 f(n) |‘1) < const.|| f for every f e L'. (15.3.13)
neE

From thisand Appendix C in Volume 1 it follows that every y € £ which
vanishes on Z\E has the form § for some g € L®. If E were infinite, there
would exist (by 15.2.5) an infinite Sidon set S < E. By 15.1.4(b),
therefore, every i € /% which vanishes on Z\S satisfies Y € £', in
particular

£7(8) < £1(8). (15.3.14)

Since ¢’ > 1 and S is infinite, the inclusion (15.3.14) is false and a
contradiction emerges.

15.3.4. Factorization in L? (p > 1). Throughout this subsection it is
assumed that 1 < p < co.

It has been proved in 7.5.1 that L' x L' = L*; in Section 8.4 that
L2 x L2 < A, which is evidently a proper subset of L?; and in Exercise 13.20
that L? = L? is always a proper subset of L?. Indeed, Exercise 13.20 shows
that any f € L? satisfying

2, |fm)r = oo

nez
is a prime element of L? (that is, does not belong to L? % L?); that such
functions f exist, follows from 13.5.3(1), since p'/2 < p'.
To this we may now add, as a corollary of 15.3.3, that any f € L satisfying

2, |fm)] = oo
nek
for some Sidon set £ < Z is a prime element of L?.
For some further results about the impossibility of factorizing a general
element of L?, see Edwards [6].

15.3.5. Comment on 15.3.1. It has been seen in 15.3.1 that M; < L?
whenever E is a Sidon set and p < co. One cannot here take p = co. Indeed,
it is not difficult to see that there exist no infinite subsets £ of Z having the
property that (),.. Lz < L®; see Exercise 15.15, which leads to an
extension of the results mentioned in Remark (2) following 15.3.1.

15.3.6. Application to Homomorphisms. Let « be a mapping of Z into
ZU{oo} and let us agree to set f(c0) = 0 whenever f € L'. Consider the homo-
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morphism 7, of the convolution algebra L! into the convolution algebra D
defined by the formula

(Tof)™ = foo. (15.3.15)

It is then natural to ask for necessary and sufficient conditions on « in order
that T, shall map L? into L? for given values of p and ¢, in which case we
shall for brevity say that « is of class (p, q).

The solution for maps of class (1, 1) is stated in Subsection 4.2.6, and from
this it is clear that such maps « cannot be specified with appreciable freedom
on any infinite subsets of Z. The same is true of maps of class (1, ¢) when
1 < g < o, as appears from Exercise 12.49.

In this subsection we will apply what has been learned about Sidon sets to
show that, on the contrary, if 1 < p < 0 and 1 < ¢ < co0, maps « of class
(p, q) can be prescribed with a fair amount of freedom on certain infinite
subsets of Z. (Compare the results in Subsection 16.4.3(1) applying to
multipliers.)

More precisely, suppose that 1 < p < 00, 1 < ¢ < o0, that « is of class
(p, q), that E is a subset of Z, that E N «~*(Z) = S is a Sidon subset of Z,
and that o' is a map of Z into Z\U{o0} such that

(1) o agrees on Z\E with o;

(2) «'(E) N Z is a Sidon set;

(3) there exists a number B such that, for m e «'(E) N Z, E N o' ~1({m})

has at most B elements.

We claim that then o' is of class (p, ¢).

Proof. Let fe L?. By (2), (3) and 15.3.3,

Z |feam)|? < B- Z [fm)|?2 < .

nek mea’(EYNZ

Also, since S is a Sidon set and « is of class (p, q), 15.3.3 gives

2 feam)|? = > [(Tuf) () < co.

nekE nes
Hence

D lfedm) — foam)? < o,

nek

so that there exists a function h € L? such that & = (fo o — foa)yz But
then, by 15.3.1, » € L It is furthermore clear from (1) that

Tof = Tof + hels,

and hence that «' is of class (p, ¢).
Remarks. (a) The other hypotheses being granted, (2) and (3) are
satisfied whenever o'|E is a permutation of E.
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(b) On taking « = oo (so that 7', = 0) and £ = Z, one infers directly that
a map B of Z into Z\U{co} is of class (p, ), where 1 < p < cvand1 < ¢ < oo,
whenever Z N B(Z) is a Sidon set and there exists a number B such that, for
each m € Z, B~1({m}) has at most B elements.

15.4 Counterexamples Concerning the Parseval Formula and
Hausdorff-Young Inequalities

15.4.1. In 13.5.1 it has been shown that FL? < £~ for 1 < p < 2; by
8.3.1, this inclusion relation can be replaced by equality when p = 2. Now
we can verify that the inclusion is proper whenever 1 < p < 2. This is
indeed trivial if p = 1. If 1 < p < 2, choose any infinite Sidon set E; since
p’ > 2 one may choose ¢ in #7(E) not in £%(E); extend ¢ to Z so that
S(Z\E) = {0}. Then, by 15.3.3, ¢ fails to belong to #L?. It can also be shown
(compare 2.3.9) that, if 1 < p < 2, then FL? is a meagre subset of £7".

In case p = 1 we have, of course, A(Z) = ZFL! < ¢,. Here again the
inclusion is proper. This (and more) has been proved in 2.3.9. Also, 10.1.6
shows that ({log (2 + |n])} !),ez € ¢ does not belong to FL!. Again, as
follows from the proof of 15.1.4, the relation FL' = ¢, would entail that
FM = £, which is false by 12.7.8. The same relation would also entail, via
10.5.2, that f € £* whenever f € C; this too is false (see 7.2.2 and 8.3.2).

15.4.2. As was heralded in 13.5.3(2), and proved in one way in Section 14.4,
13.5.1(2) is false for p > 2. To see this in another way, let £ be any infinite
Sidon set and choose a complex-valued function ¢ on Z which vanishes on
Z\E and which is such that ¢ € £” and ¢ ¢ £2(Z); this is possible precisely
because p > 2. Then 15.3.1 entails that ¢ does not belong to #M, a fortiori
¢ does not belong to FL?". The series

z qS(n)einx s

nez

although convergent in D, is not even weakly convergent in M and, a fortiori
again, not convergent in L?". A specific example is the series

[}
z k12 cos 2kx.
k=1

That 13.5.1(1) is also false when p > 2 can be proved in a similar fashion,
thus: suppose again that E is an infinite Sidon set and let » —n, be an
injection of {1,2,.-.} into E. Define the function ¢ on Z by setting
dn) = {r'?log (1 + r)} " tifn=mn, (r=1,2,---) and ¢(n) = 0 otherwise.
Then ¢ € £2(Z) and $(Z\E) = 0. By 15.3.1, therefore, there exists a function
f belonging to L? for every p < oo, such that f = ¢. However, it is evident
that f = ¢ fails to belong to #7'(Z) whenever p > 2 (in which case p’ < 2).
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15.5 Sets of Type (p, q) and of Type A(p)

In this section we shall touch briefly upon a milder type of lacunarity than
that exhibited by E-spectral functions with Z a Sidon set. The new concepts
were introduced and studied by Rudin [6] upon which this account is based.
Figa-Talamanca and Rider [1] and Rider [4] have extended some of Rudin’s
considerations to compact groups in general, but we have no space for an
account of these developments; a good account appears in [LR], Chapter
5.

In 15.3.1 we have seen that, if £ is a Sidon set, then to each exponent p
satisfying 0 < p < oo corresponds a number B, = B,(E) > 0 such that

”f“p < B, ”f”l

for each E-spectral trigonometric polynomial f. The sets £ we are about to
consider are characterized by similar, but weaker, inequalities.

15.5.1. Sets of Type (p, g). In what follows we suppose that all exponents
P, q, 7, and s lie in the real interval (0, c0).

If p < g, asubset E of Z is said to be of type (p, ¢) if and only if there exists
a number B = B(p, q, E) > 0 such that

Ifle < B[ fll» (15.5.1)

for all E-spectral trigonometric polynomials f. We observe once and for all
that if p > 1 and ¢ > 1, and if an inequality of this sort holds for all f € Ty,
then each E-spectral function in L belongs to L? and the same inequality
continues to hold for such functions. (This is an almost immediate conse-
quence of the fact that Ty is everywhere dense, relative to the topology
defined by | * ||,, in Lg?, provided 1 < p < co; compare 2.4.4, 6.1.1, and
6.2.1. The reader is advised to provide a proof of this assertion.)

By way of example, 15.3.1 affirms that any Sidon set Z is of type (1, q)
whenever ¢ > 1.

If E is of type (p, q), so too is any subset of E.

By using the open mapping theorem (I, B.3.2), it may be shown that E
is of type (p,q), where 1 < p < ¢, if and only if Lg? = Lg% see Exer-
cise 15.5.

Inasmuch as ||f], < ||f]s whenever r < s, it is evident that if p, < p,
< ¢, < g, and if B is of type (p,, q2), then E is of type (p,, ¢1)-

The next assertion is less trivial.

1552, If0 < p < ¢ < r < oo, then E is of type (p, r) if and only if it is
of type (g, 7).

Proof. By what has been said above, if £ is of type (p, r) then it is of
type (¢, 7).
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Suppose conversely that E is of type (g, ), so that
171, < B+ |fla (15.5.2)

for some B > 0 and all fe T;. Now an application of Hélder’s inequality
shows that

A1 = < IFI5 =2 - IF e (15.5.3)

On combining these inequalities, it is found that

I£1270 < Ba g,
or

Ifla < B[]
and substitution from this into (15.5.2) leads to

Ifl, < BB - |f]»
for all f e Ty, showing that E is of type (p, r).

15.5.3. Sets of Type A(g). Taking the cue suggested by 15.5.2, a subset
E of Z will be said to be of type A(g), where 0 < ¢ < oo, if and only if there
exists an exponent p satisfying 0 < p < ¢ such that E is of type (p, q).
Frequently we shall write £ € A(g) to signify that & is of type A(g).

By 15.3.1, the remarks in 15.5.1, and 15.5.2, a Sidon set E is of type A(q)
whenever 0 < ¢ < c0. However, there exist subsets E of Z which are of
type A(q) for all ¢ satisfying 0 < ¢ < co and which are not Sidon sets; see
Rudin [6], Theorem 4.11, and Exercise 15.7.

It is evident that A(g,) = A(g;) whenever ¢, <g,. In the other
direction, Bachelis and Ebenstein [1] have shown that if E € A(q,) for
some ¢; such that 1 < ¢, < 2, then E € A(g,) for some g, > g, ; the proof
involves reflexivity of the Banach space Lg'.

Any subset of a set of type A(qg) is again of type A(qg).

By partial analogy with each of 15.1.4, 15.3.1, 15.3.2, and 15.3.3, one has
the following criterion (Rudin [6], Theorems 5.1 and 5.4).

15.5.4. Criterion for Sets of Type A(p). If E is a subset of Z, and if
1 < p < oo, then the following five statements are equivalent:
(a) E e A(p);
(b) My = L?;
(c) Lg* = L#;
(d) FL*|E = FL7|E;
(e) FC|E = FL¥|E.
If furthermore p > 2, these are equivalent to
(f) FLP|E < £2(8).
(As usual, p’ is defined by 1/p + 1/p’ = 1.)
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Proof. This will be broken into several parts.
(1) Let us begin by showing that (a) implies (b). Assuming (a), take any
u € Mg and apply to the trigonometric polynomials Fy * u € Ty the inequality

Ifls < B- £l

Since |Fy * pf; < |p|, (by 12.7.3), it follows that the numbers | Fy * |,
are bounded with respect to N. A repetition of the final phase of the proof
of 15.3.1 leads thence to the conclusion that u € L*.

(2) The implication (b) = (c) is trivial.

(3) To show that (c) implies (a), it suffices to appeal to Exercise 15.5.

It is now certain that (a), (b), and (c¢) are equivalent.

(4) Now we show that (a) implies (d). Assuming (a), take any ge L¥
and consider the linear functional

f—>-2-1;ff'gdx (15.5.4)

on Ty, which we regard as a subspace of L*. According to (a) and the Hahn-
Banach theorem (I, B.5.1), this linear functional has a continuous extension
to L. By I, C.1, this extension must be of the form

f%%ff"hdx, (15.5.5)

where h € L*. Comparing (15.5.4) and (15.5.5) in the case where f = ¢, with
n € E, it is seen that §|E = k|, and (d) is thereby established.

(5) To show that (d) implies (e), we again take g e L’. By 7.5.1, 9 = fx ¢,
for suitably chosen fe L! and ¢, € L”". Assuming (d), there exists b, € L
such that %,|E = §,|E. Put h = f% k. Then he € and, for n e E,

h(n) = f(n)ky(n) = f(n)gs(n) = §(n),

so that (e) is verified.

(6) The proof that (e) implies (a) is a little more complicated. Assuming
(e), to each fe L? corresponds at least one (usually many) g € C such that
§|E = f|E. Since g is not generally uniquely deterniined by f, we must use a
quotient space (see I, B.1.8). Knowledge of f in fact determines g up to
addition of elements of Cp, where F = Z\E, and thus determines uniquely
the element § of the quotient linear space C/C; (that is, the coset ¢ + Cp
modulo C; corresponding to g). Now C is a Banach space, and Cj is a closed
linear subspace of C. Consequently (compare the substance of 11.4.7) the
quotient linear space C/C; is turned into a Banach space by defining on it the
norm

lgll = inf{|lg + || : b € Cg}. (15.5.6)

We now have a linear operator T from L into C/Cy defined by Tf = ¢,
where g is any element of C such that §|E = f|E. It is simple to show (see
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Exercise 15.6) that T has a closed graph. Hence (I, B.3.3) T is continuous
from L into C/Cy. This signifies that there exists a number B > 0 such that
to each f e L?" corresponds at least one g € € such §|E = f|E and

lgle < B« {fls-

This being so, if u € T; one has
1 . 1 (.
gz [ e = Iy [ig de) < Juls - ol

< fufy Bl

and this for each fe L?". Appeal to Exetcise 3.6 permits the inference that
lull, < B« |u|, for each u € Tz, showing that (a) holds.

This proves that (a) to (e) are equivalent.

(7) Finally, it is evident from the Parseval formula that (e) implies (f)
without the additional restriction p > 2. On the other hand, to show that
(f) implies (a) when p > 2, we note that (f) and 8.3.1 combine to show that
in this case FLP|E = FL?|E, and an argument exactly like that utilized
in (6) shows that E is of type (2, p) and so that e A(p).

Remarks. (1) Stage 7 of the above proof may alternatively be
accomplished as follows. Assume 15.5.4(f). Then (by the closed graph
theorem ; see Volume 1, Appendix B.3.3)

1/2
[ Y I fm) lz} < const. | £l for all f € L7
neE

Hence, for all g € T,

2n
|(2n>‘1L f@)g(—x)dz| = Y | f(n)gn)]

nekE

R 1/2
< < Y1fm) P) gl 2

neE
< const. | f || ,llgll,.

So, by the converse of Holder’s inequality (Exercise 3.6),
lgll,» < const.|gl, for all g € T

Thus £ is of type (2, p). If p > 2, this entails that £ is A(p).

(2) Tthasbeen proved (Bachelis, MR 42 # 6523) that, ifk € {1,2,3,...},
then Ec Z is of type A(2k), if and only if |f]e #FL? for every
J e Lg?

See also Exercise 16.30.
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15.5.5. Properties of Sets of Type A(p). Rudin ([6], pp. 216-223)
establishes a number of structural properties of sets of type A(p), somewhat
analogous to the results in Section 15.2; see Exercises 15.7 to 15.11. Besides
the results mentioned in these exercises, we quote one more such conclusion
involving the function r(n, E), defined to be the number of representations
of ninthe formn = n; + - - + nywithn,, - - -, n, € E (compare the definition
of R n, E) in 15.2.1), namely: if ¥ is a subset of Z N [0, o) and if s > 1 is
an integer, then
(a) if B is of type A(2s), we have

N
lim sup N -1 z r(n, B)? < c0;
n=0

N

(b) if £ is a finite union of sets £, - - -, E, such that

sup r((n, E;) < o for all j such that 1 <j <¢,

then £ is of type A(2s).
See Rudin [6], Theorem 4.5, Exercise 15.11, and [Ba,], p. 258.
It is only fair to add that there is a considerable gap between the necessary
condition (a) and the sufficient condition (b) in order that E be of type A(2s).
Also, as Rudin points out, (b) cannot be weakened to the demand that

N
limsup N-' > r((n, E) < oo. (15.5.7)

N-w n=0
For, if E consists of the perfect squares and s = 2, condition (15.5.7) is
satisfied; but (a) is not satisfied and E is therefore not of type A(4). It is
moreover apparently unknown whether the set of all perfect squares is of
type A(p) for any p whatsoever; see Rudin [6], p. 219. More generally, if
k is a positive integer and p > 2k, then the set £ of all kth powers of

positive integers is not of type A(p). In fact, by 7.3.5 (ii), if 0 < o < 1 the
series

a0
Z 7~ % cos nx
n=1

is the Fourier series of a function f € L” whenever ap > 1. Since p > 2k, a
may be chosen so that 0 <a <1, ap > 1 and 20k < 1, the last clause
implying that

Z n—Zaz = i m—-Zak = 0.

nekE m=1

Thus, 15.5.4(f) fails and % is not of type A(p).
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15.6 Pointwise Convergence and Related Matters

As usual, we have neglected the study of pointwise convergence, except
insofar as 15.1.4(b) and (c) trivially entail the absolute and uniform pointwise
convergence of Fourier series of functions in Lg® and Cg, respectively,
whenever E is a Sidon set. A further basic result of this sort, applying to
Fourier series with Hadamard gaps, is contained in Exercise 6.13.

Parallel to what comes about for Rademacher series (see 14.2.3) and as
might be suggested in some measure by 15.3.1, there is a rather startling
dichotomy concerning the pointwise convergence of a lacunary trigonometric
series

> cne™® (15.6.1)

in which ¢, = 0, except when n = +mn, for some Hadamard sequence (n,).
It turns out that if
Z lea]? < oo,

nez

then the series (15.6.1) is pointwise convergent almost everywhere; whereas if

S Jel? = oo,

nez

then the series (15.6.1) is pointwise divergent almost everywhere, and indeed
fails at almost all points to be summable by any one of the usual summability
methods. (The first assertion follows from Exercise 6.13 and 8.3.1.)

Usually treated in connection with pointwise convergence is the circum-
stance that the behavior on small subsets of the sum function of a lacunary
trigonometric series largely determines its global behavior. A variant of one
such result appears in Exercise 15.17.

For further details concerning these and other fascinating topics, see [Z,],
Chapter V; [Ba,], Chapter XI; [M], Chapitre VIII; Moeller [1]; Moeller and
Frederickson [1]; Emel’janov [1].

15.7 Dual Aspects: Helson Sets

The dual aspects of the problems discussed hitherto in this chapter arise
when the groups 7' and Z are interchanged. They are of more recent origin,
being in fact the outcome of work of Helson [4] on analogous problems for the
group R of real numbers. The Sidon subsets discussed earlier are peculiar to
discrete groups (such as Z): their analogues for nondiscrete groups (such as R
and T') are termed Helson sets. Rudin’s general treatment ([R], Chapter 5) is
designed to cover both concepts from a common point of view insofar as this is
possible; see also [KS], Chapitre XI. (There are differences of detail that
demand separate treatment at certain points, however.) Here we have space
merely to indicate some of the analogies and unsolved problems. For other
developments in the case of R, see Helson and Kahane [1].
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15.7.1. Restatement of 15.1.3. The definition of Sidon subsets of Z given in
15.1.3 can be reformulated as the statement that a subset E of Z is a Sidon set
if and only if there exists a number B = By > 0 such that

I8l < B [l
for all ¢ € £1(Z) satisfying supp ¢ < E.
As has been said in the Remarks following 12.13.3, £1(Z) can be identified
with the set of (bounded Radon) measures on Z. This observation paves the
way for the appropriate definition of a Helson subset of 7', which is as follows.

15.7.2. Helson Sets Defined. A subset E of T is termed a Helson set if and
only if there exists a number B = By > 0 such that

lely < B. |g]w (15.7.1)

for all measures peM such that suppu < E. (Concerning supports of
measures, see 12.11.4.)

For reasons stemming from the nondiscrete character of 7', it is customary
(as in [R]) to restrict attention to those Helson sets that are closed in T'; we
have avoided imposing this restriction from the outset, solely in order to
heighten the analogy with 15.7.1.

Somewhat surprisingly, it is the case that E is a Helson set if and only if
there exists a number B = By = 0 such that

luly < B. “ﬁf? sup |i(n)| (15.7.2)

for all measures p such that supp pu < E; see [KS], p. 143, and compare
McGehee [2].

15.7.3. Analogues of 15.1.4 and 15.1.5. There is a valid analogue of 15.1.4
for Helson sets, the most significant portion of which asserts that a closed
subset £ of T is a Helson set if and only if each continuous complex-valued
function on E is the restriction to E of the transform ¢ of a suitably chosen
¢ € £1(Z), that is, the restriction to £ of an element of A. In other words, in
the notation of 10.6.2(8), a closed set £ is a Helson set if and only if
A(E) = C(E). (This property is used by Rudin to define closed Helson sets; see
also Kahane [6].) The proof differs in no essential respect from that of 15.1.4.

There is also a valid analogue of 15.1.5.

It should be remarked at this point that general functional analytic principles
lead to yet other equivalent formulations of the definition of Helson sets. We
cite a few examples and mention a number of corollaries that relate Helson sets
to other categories of sets already encountered in Subsection 12.11.5. (As the
reader will perceive, harmonic analysis on a group @ gives rise to a somewhat
bewildering variety of classes of subsets of G. Among the major unsolved
problems of the subject are to be found those of determining reasonably direct
and verifiable criteria for membership of any one such class, as well as that of
determining relationships between the various classes. Except in the trivial
case in which G is finite, not a single one of these problems has yet received a
satisfactory solution.)
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If we reintroduce the notation established in 12.11.5(3), an easy application
of the closed graph theorem (I, B.3.3) combined with 12.3.9 will show that a
closed set E is a Helson set if and only if M(E) is closed in P(E), or (what is
equivalent) is closed in P. (Moreover, by a result from general duality theory
([E], Theorem 8.10.5) and 12.3.9 once more, E is a Helson set if and only if
M(E) is weakly closed in P.)

Again, it is not difficult to show that a closed set E is a Helson set if and
only if M(E) = P°(E); see [KS], p. 142 and Edwards [9]. It is always the case
that M(E) < P°(E), P(E) being defined as in 12.11.5(3) above.

It follows [compare 12.11.5(3)] that a closed set E which supports no true
pseudomeasures [so that M(E) = P(E)] is a Helson set, and that a closed set E
which is simultaneously a Helson set [so that M(E) = P°(E)] and a spectral
synthesis set [so that P°(E) = P(E)] supports no true pseudomeasures.

15.7.4. Examples of Helson Sets: Kronecker Sets. Although there is no
difficulty in exhibiting finite Helson sets, the production of infinite Helson sets
is a good deal more complicated. This task has been discharged through the
intervention of the so-called Kronecker sets.

The nomenclature, which is by now pretty firmly rooted, is due to Rudin;
however, such sets were first introduced and constructed by Hewitt and
Kakutani [1] and might well have been named accordingly.

A subset K of T is termed a Kronecker set if and only if each continuous
complex-valued function f on K such that | f(z)] =1 (¢ € K) is the limit,
uniformly on K, of characters e, (n € Z). (Here and again below we represent
points of 7' in the form &, where x is a real number and & the coset modulo 2nZ
containing x.)

It is known ([R], Theorem 5.2.2) that there exist Kronecker sets K in T
which are homeomorphic with Cantor’s ternary set on the line (see Exercise
12.44 and [HS], pp. 70-71); any such set K is perfect and uncountable.

On the other hand ([R], Theorem 5.6.6), every closed Kronecker set is a
Helson set (in 7).

15.7.5. Further Examples: Independent Sets. Another category of
infinite Helson sets in 7' arises in the following way.

A subset E of T is termed independent if, whenever &,, ---, &, are distinct
elements of E, the relations n,, -, ny € Z, n,&; + -+ + n, &, = 0 entail that
nji;=0forj=1,2 - k. (cf. (14.1.3).)

It is almost evident that any Kronecker set is independent, and that any
element # of a Kronecker set is of infinite order (that is, n@ # 0 for any
integer n # 0). It is also true ([R], Theorem 5.1.3) that any finite independent
set, each of whose elements is of infinite order, is a Kronecker set.

The major point to be made is that furthermore any countable closed
independent set is a Helson set ([R], Theorem 5.6.7; [KS], p. 148); compare
Exercise 15.21.

From this it follows incidentally that there exist closed independent Helson
sets which contain elements of finite order and which are therefore not
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Kronecker sets: the sets {1, #} and {1, (21/2):, #} are trivial examples of such sets.
It is also known ([KS], p. 148) that there exist perfect independent sets

which are not Helson sets.

For more examples and counter examples, see Korner [1].

15.7.6. Inclusion Relations. If we denote by , £, and A the classes
of closed Helson, closed independent, and closed Kronecker sets, respectively,
we can summarize the known relations between these classes in the following
scheme:

A= A < H
S ¢, HE A, FE A,
{countable} N I = H#,

where {countable} denotes the class of countable subsets of 7. In particular,
H, F, and A are all different.

-The relation # ¢ A has been amplified in the work of Wik [2] and
Kaufman [1]; Wik produces examples of sets £ which satisfy (15.7.1) with
B =1, for all u € M such that supp u € £, and which are not Kronecker sets.
For more details of this and other results, see [LP].

15.7.7. Another Characterization of Helson Sets. Helson sets can be
characterized in terms of approximation of functions. Thus it is known
(Edwards [6]) that a closed set £ in T is a Helson set if and only if the
following statement is true: to each continuous complex-valued function f on £
corresponds a number ¢ = ¢(f) such that f is the limit, uniformly on E, of a
sequence ( f,)> ; of functions of the form

N(r)

Jr = z &y * Grg * Py
i=1

where the ¢,; are complex numbers satisfying
N@r)
2 oyl <1 forallre {1,2, --}

j=1
and the g,; and k,; are functions in L? satisfying

lglla<e, Nfila<c forallre{l,2 ---} andallje{l,2, ---, N}

15.7.8. Perfect Helson Sets. It has been mentioned in 12.11.5(3) that one
can construct nonvoid perfect sets £ which support no true pseudomeasures.
Any such set E, satisfying as it does P(E) < M, has the property that
PO(E) = M and is therefore a Helson set (see 15.7.2).

This remark, taken together with the substance of Subsections 15.7.4,
15.7.5, 15.7.6, and Exercise 15.21, makes it abundantly clear that a charac-
terization of Helson sets in group-theoretic and topological terms represents an
extremely formidable undertaking. A solution does not appear to be in sight.
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15.7.9. Measures Supported by Helson Sets. What Helson originally
proved in [4] for the case of the group R is also true for 7' namely: if £ is a
Helson subset of 7', there exists no nonzero measure g€ M such that
supp p € E and i € ¢y(Z); in particular, ¢, - (E) =0 for 0 < a <1 (see 12.12.3
and 12.12.7), and E is a set of uniqueness in the wide sense (as defined in
12.12.8).

This result, which follows immediately from the characterization of Helson
sets contained in (15.7.2), provides some indication of the necessary sparseness
of Helson sets. It appears as Theorem 5.6.10 in [R].

15.7.10. Characterization Problems. Closed Helson sets are defined in
functional analytic terms (see 15.7.2). Other characterizations of this type
have been mentioned in 15.7.3 and 15.7.7; see also Rosenthal [2]. It would
plainly be of the greatest interest to characterize closed Helson sets in group-
theoretical (or arithmetical) and topological terms, but no such characterization
appears to be even remotely attainable at present. (Much the same is true, as
we have seen, of the spectral synthesis sets and the Sidon sets.)

The most that seems to be known in this direction is that Helson sets
certainly do possess specifiable and rather specialized arithmetical properties;
see Exercise 15.21 for indications of some such aspects.

15.7.11. Carleson Sets. It has been recorded in 15.7.3 that a closed subset
E of T is a Helson set if and only if each continuous complex-valued function f
on E is the restriction to £ of a function

> cqeine, (15.7.3)
nez
wherein the ¢, are complex numbers satisfying
> lea| < . (15.7.4)
nez
In 1952 Carleson [2] was led to introduce the class of closed subsets E of

T having a similar property, the sole difference being that the sequence (c,) is
to satisfy the additional condition

¢, =0 for all » € Z satisfying n < 0. (15.7.5)

These sets came to be termed Carleson sets.

It is trivial that any Carleson set is a Helson set. In 1960 Wik [1] established
the entirely unexpected result that the converse is also true: Carleson sets and
Helson sets are the same things. For an account of these matters, see [KS],
Chapitre XI.

15.7.12. Relations with Dirichlet Series. Bohr Sets. Over 50 years ago,
Harald Bohr proved a result about Dirichlet series that can be formulated in
the following way: if P denotes the set {2, 3, 5, - - -} of prime positive integers,
there exists a number B > 0 such that

> ey < B - sup | > ¢~ (15.7.8)
€ nez’

nepP
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for all complex-valued functions ¢ with compact supports defined on the set
Z’ of positive integers.

Rider [3] has attached the label Bohr set to each subset E of Z’ such that
(15.7.6) holds with E in place of P and a suitable number B = B; > 0. He
exhibits an interesting connection between such Bohr sets and certain Sidon
subsets of the character group of the product of denumerably many copies of
T, and uses this to produce further examples of Bohr sets, and an example of
an infinite subset of Z’ containing no infinite Bohr set (compare 15.2.5).

In connection with the definition of Bohr sets, compare Exercise 15.20.

15.7.13 Finite unions of Helson sets. The substance of 15.2.7 above suggests
the problem of proving that the union of two Helson sets is a Helson set. This
problem has a relatively lengthy history; see MR 89 # 6020; 40 # 3815; 43
# # 7866, 7867. The first complete proof is due to Varopoulos [5]. Other
proofs soon followed; see Saeki [2] and Herz [4]. See also McGehee’s fine
review (MR 46 # 5939) of Herz [4].

15.8 Other Species of Lacunarity.

There is an abundance of species of lacunarity now on the market (see,
for instance, [LLR], Chapters 7 to 10); here we mention only a few.

Some variants of the spaces involved in 15.1.4 have been seen to lead
back to Sidon sets (see 15.1.4, Remark (7)); naturally enough, other
variants lead to new types of lacunarity.

15.8.1. p-Sidon sets. Suppose p € [1, 2]. A subset £ of Z is termed a
p-Sidon set if fe Cp implies fe £2(Z) (cf. 15.1.4(c)). Evidently every
subset of Z is 2-Sidon and a subset of Z is 1-Sidon if and only if it is
Sidon. Tt is far from obvious that there are p-Sidon sets (with 1 < p < 2)
which are non-Sidon; however they do exist and were first constructed in
Edwards and Ross [1], to which the reader is referred for the basic results
concerning p-Sidon sets. See also the references in [LR], 10.6.

15.8.2. W-Sidon Sets. If E is a subset of Z and W is a complex-
valued function on £ then £ is called a W-Sidon set if f € €p implies
Nuer | Wn)f(n)| < o (cf. 15.1.4(c) again).

This weighted version of Sidonicity is, in its theory, intermediate
between the areas of lacunarity and multiplier theory (see Chapter 16). If
W € £*(E), every subset E is W-Sidon; and itis not obvious that there are
W-Sidon sets (with W ¢ £?(E)) which are not Sidon. For such examples,
for the basic results, and for the connection with p-Sidon sets, see Sanders

[1].
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15.8.3. Rosenthal Sets. From 15.1.4 it follows that if £ is a Sidon set
then Ly = Cg. A subset £ of Z is called a Rosenthal set if Ly = Cg.
Rosenthal [3] has constructed Rosenthal sets which are not Sidon; in
fact Blei has proved that every non-Sidon set contains a Rosenthal
set; see [LR], 10.4.

15.8.4. Interpolation Sets. Recall that a measure ue M is termed
discrete (or atomic; see Exercise 12.51) if it is expressible in the form

@
U= z ck‘gau(
k=1

for some choice of a sequence (a;);%; of distinct elements of 7', and of a
sequence (¢ )i~; of complex numbers satisfying Z,‘f:l lex]| < 00. (g, here
denotes the Dirac measure at x; see 12.2.3).

A subset E of Z is called an interpolation set if, for every ¢ € £(E),
there is a discrete measure u € M satisfying fi| B = ¢. Although every
interpolation set is Sidon, the converse is false; we refer to the references
in [LR], 10.10.

15.8.5. Riesz Sets. From 15.3.1 it follows that if £ is a Sidon set then
My = L}. There is an old theorem due to F. and M. Riesz (see [R], 8.2.1)
which guarantees that the set £ = Z, also has this property. Meyer [2]
has studied such sets and named them Riesz sets. Once again, see [LR],
10.5 for further references.

15.8.6. Fatou-Zygmund Sets. A complex-valued function ¢ on a subset
E of Z is called hermitian if, whenever n and —n both belong to E,
$(—n) = $(n).

A subset E of Z is called a Fatou-Zygmund set if there is a constant B
such that, for all hermitian elements ¢ of £®(E), there exists a positive
measure y € M such that | E = ¢ and |u|; < B|¢ll,. (Recall that a
measure y is positive if yu(f) > 0 for every nonnegative f € C.) It is easy
to see that every Fatou-Zygmund set is Sidon; the rather surprising
converse was proved by Drury (see [LR], 3.6) using a modification of the
techniques used to prove his result quoted in Remark (4) following 15.1 4.
For further results concerning Fatou-Zygmund sets, we refer to [LR],
Chapter 7.

15.8.7. Associated Sets. Suppose that K is a nonempty compact subset
of T and that E is a subset of Z. We say that E and K are strictly
associated if there is a constant B such that

171 < Bl frx o
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for all f € Ty (here yx denotes the characteristic function of the set K). By
definition, if E is a Sidon set then EZ and 7 are strictly associated.
However Déchamps-Gondim has proved that if £ is a Sidon set then E is
strictly associated with every compact subset K of 7' having nonempty
interior. See [LR], Chapters 8 and 9 for an exposition of this and related
topics.

EXERCISES

15.1. Use the uniform boundedness principle (I, B.2.1) to prove the fol-
lowing statement: if V is a closed linear subspace of C, and if p is an expo-
nent satisfying 1 < p < o0 and such that fe £ for each f eV, then there
exists a number B > 0 such that |f|, < B+ |f|. for each fe V.

15.2. Show that if  is a finite union of Hadamard sets, and if for ¢ > 0
we denote by N(¢) the number of elements n of E satisfying £ < |n| < 2¢,
then N(£) is bounded with respect to £.

15.3. Let E consist of all numbers of the form

m+2 om
32T 4 3T,

where je€ {0, 1, 2, ---, 2" '} and m e {0, 1, 2, ---}. Prove that E is a
Sidon set but is not a finite union of Hadamard sets (Hewitt and
Zuckerman [1]).

Hints: TUse 15.2.3 and the preceding exercise.

15.4. Show that if £ is a Sidon set and f € Lz, then

g;fexp (c|f]?) dx < oo

for any real number c.

Hint: Use 15.3.1 and look again at the proof of 14.2.2.

15.5. Prove that a subset E of Z is of type (p, ¢), where 1 < p < ¢ < o0,
if and only if L;? = Lg%

Hints: For the “if” assertion, use the open mapping (or the closed
graph) theorem. For the “only if”’ statemeént, use the remarks in 15.5.1.

15.6. The notations being as in the proof of 15.5.4, construct a detailed
proof of the statement that the operator 7" has a graph closed in L”" x (C/Cg).

15.7. Suppose that E is of type A(g), where ¢ > 2, so that ||f|, < B,|f]2
for feT;. Let «z(N) be the largest integer « such that some arithmetic
progression of N terms contains « elements of E; see 15.2.8. Prove that

as(N) < CB2N21

for all N, C being an absolute constant. (See Rudin [6], Theorem 3.5.)
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Remarks. It is shown by Rudin [6], Theorem 4.11) that if

lim N~ ¢e(N) =0 for each ¢ > 0,
N-w
then there exists a set £ of type A(q) for every ¢ < oo for which az(N) > «(N)
for infinitely many N. In view of the next exercise, if « be chosen so that
lim supy_, » «(N)/log N = o0, any such set E fails to be a Sidon set.
Hints: Suppose that some N-termed arithmetic progression

{a +b,a+2b.--,a + Nb}

contains numbers n,, - - -, n, each lying in E. Write Q(z) = emb=+iez F (bx),
where m = 1% N or Y4(N + 1) according as N is even or odd, and

f@ = 3 eme,
E=1

and observe that
o 1
Yo < D Om) = 5- [/-Qde.
k=1

Now use Hélder’s inequality and a suitable majorant for || F ]|,
15.8. Show that if £ is a Sidon set, then

op(N) < Bg-log N (N = 3).

(See Rudin [6], Theorem 3.6.)

Remark. If E is theset {2¥:k = 0,1,2,.-.}, then £ is a Sidon set and
yet
log N
ag(N) > Tog2
for N < 2F.

Hint: Use 15.3.1 and the preceding exercise.

15.9. Show that if E is of type A(1), then E does not contain arbitrarily
long arithmetic progressions, and indeed that ag(N)< N for all
sufficiently large N. (See Rudin [6], Theorem 4.1.)

Hints: Takep, 0 < p < 1, s0 that ||f[|; < B |f|, for f € Tz. Assuming
E to containa + b,a + 2b,---,a + Nb, where b # 0, consider

N
f(x) —_ eiaz z einbx.
n=1

15.10. Suppose that E; and E, are of type A(p) and that E = E, U E,.
Prove that

(1) if p > 2, then E is of type A(p);

(2) if p > 1, and if E, < [0, 00), E, < (—00, 0), then again E is of type
A(p).
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See Rudin [6], Theorem 4.4.

Hints: We may assume that E, and E, are disjoint. Suppose in case (1)
that |fi|, < B;* |fi|2 for fieTg, ¢ = 1,2. Decompose any feT; into
fi + fo with f; e Tg. For (2), take s satisfying 1 < s < p, so that now
Ifil» < Bi* ||fills- Proceed as for (1), using 12.10.3.

15.11. Prove the results appearing as (a) and (b) in.15.5.5.

Hints: Assume E = {n,}, where 0 < n, < ny < ---. Consider

k
f= ZenleTE.
i=1

Putting r(n) = r(n, E), check that f° is of the form
r(0) + r(1)ei® + r(2)e®® + . .- + r(ny)e™*F + .-+

the succeeding coefficients are immaterial. Deduce that

2. rm) < |f|% < B |f|F = B* k.
m=0

Now use the result of Exercise 15.7 and the obvious fact that ag(n, + 1) > k.
This leads to (a).

As for (b), by Exercise 15.10 it may be assumed that ¢ = 1. Consider any
f = 2ra(k)e,, €Tz Then

fs(x) = z bmeﬂn

where b, = > a(k,)- - - a(k,), summed over all representations
mo= N o+ Ny

Among these representations for a given m, choose one with indices k,(m),
say, which maximizes |a(k;)--a(k)|. Then, if r(n, E) < B, we have
1B, |2 < B?|a(ky(m)) - - a(ky(m))|*. So, obviously,

ZMPswgmmW.

Now use the Parseval formula for f¢ and for f.
15.12. Extend 15.2.6 to E-spectral Radon measures p such that

Rep() < m- July,  Impu(w) < m- |u],

for some m > 0 independent of » and each nonnegative u e C.
Hint: Consider the functions p =« feLg!, where f is a nonnegative
integrable function, apply 15.2.6, and finally appeal to Exercise 3.14.
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15.13. Using 15.3.2, show that there exists a continuous function f and
a sequence &, | O such that
> fof-e = oo;
n>0
see the remarks in 8.3.2.
15.14. Assume that k is a positive integer and that n,, -+, n, are
distinet integers. Prove that there exists a choice of + signs such that the
trigonometric polynomial

k
fay= Y *e

satisfies
If e = 273282 £,
Hints: Assume first that k = 2N + 1 is odd and relabel n;, -, n,,
n_y, ", Ny. Apply the conclusion of Exercise 14.9 to
N :
g, x)= Y pjw)™*
j=-N

to derive

2n
f <(2n)*1 J lg(ew, x)[* dx) dA(w) = 47K~
€ (4]

Then define f (x) = g(w,, z) for a suitably chosen w, € €.
If k=2N + 2 is even, observe that, if f is chosen as above, then
1F U= 1 f lawsene
15.15. Let V be an infinite dimensional closed invariant subspace of L?,
where 1 < @ < co. Show that the relation
N (VNL”) =L (1)

p<o
is false.

Hints: Make H = (\,<» (VN L?) into a Fréchet space (I, B.1.3). As-
suming (1) to hold, use the closed graph theorem (I, B.3.3) to deduce that
there exists B > 0 such that |f]., < B|f|, for some p < co and all fe H.
By Remark (ii) following 11.2.1, e, € H for infinitely many n € Z. Derive
a contradiction from 15.1.4(d) and 15.2.5.

15.16. Suppose that V and a are as in the preceding exercise. Define

B, = sup{|fl, :feVNT |fl. <1},

where T denotes (as usual) the set of all trigonometric polynomials. Prove
that
lim B, = .

p o
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15.17. Let E be a Hadamard set, as in 15.2.4. It can be shown (see, for
example, [Z,], pp. 203-204) that, if S is a measurable subset of 7' having
measure m(S) > 0, and if 1 > 1, there exists an integer v = v(S, 4, ¢) > 0
such that

It3 < A m(S)~*- fs |t(x)|2 dz 1)

for all E-spectral trigonometric polynomials ¢ satisfying {(n) = 0 for |n| < v.
Assuming this, prove the following result: if F is an E-spectral distribution,
Q a nonvoid open subset of 7', and if F coincides on Q with a function f
which is analytic on Q, then F is equal globally to an analytic function.
(See [Z,], p.- 206 for a more refined “pointwise” analogue applying to
E-spectral functions. Compare also Exercise 8.15.)

Hints: First extend (1) to functions more general than E-spectral trig-
onometric polynomials. Then apply this extension of (1) to the functions
F x vy, where vy is as in Exercise 12.5. Finally, use Exercise 2.8.

15.18. Let E and Q be as in the preceding exercise. What can be said
about the global nature of any E-spectral distribution F which is such that
F coincides on Q with a function in L2?

What if L? is here replaced by T?

15.19. Suppose that « > 0, that be Z and b > 1, and that (c,)P-, is a
bounded sequence. Define f, € C by

falz) = Z ¢~ cos bFx.
k=1

Prove that
(1) Qufula) = O(lal*) asa —0,if 0 < « < 1;
@) if

«©
2 |ckI2b(1—a)2k = 0,
k=1

then f, is not of bounded variation.

Remarks. Takingc, = 1, Weierstrass showed that f, is nowhere differen-
tiable in the pointwise sense whenever « is sufficiently small; that the same
is true whenever 0 < o < 1 was established by Hardy. It is interesting to
note that, although (1) is false if « = 1 and ¢, = 1, yet in this case it is true
that

sup [fy(@ + a) + filz — @) = 2fi(2)| = O(lal) ~ asa—0;

see [Z,], p. 47.

Hints: For (1), see [Z,], p. 47. For (2), use 12.5.10 and 15.3.1.

15.20. Do there exist any infinite subsets E of Z corresponding to which
a number B > 0 exists such that

> 1fm)| < Blf]

neg
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for each f e T? Justify your answer.

15.21. Let E be a subset of [0, 2#) which is closed when regarded as a
subset of 7 and which has the following property: there exist numbers
a; > 0 and positive integers N, (k= 1, 2, ---) such that lim,_, N, = o
and {ay, 2a;, -+, Nya,} < E.

Prove that E (viewed as a subset of 7') is not a Helson set (and
therefore, by 15.7.3, supports true pseudomeasures).

Remarks. Any set E of the specified sort is, of course, highly
nonindependent when viewed as a subset of T'; see 15.7.5.

As an example, one may take E = {0, 1, %, ¥4, - - -}; this provides an
instance of a countable closed set that supports true pseudomeasures; see
12.11.5(3).

There are stronger results, analogous to that cited in 15.2.8 for Sidon sets;
see [KS], p. 146, Théoréme VIII. Compare also with Exercises 15.7 to 15.9.

Hints: By hypothesis, for any positive integer N, the set Sy of numbers
a > 0such that {a, 2a, - - -, Na} < E is nonvoid. Define 8y = inf s, sup ||u|1,
the supremum being taken over all measures u of the form u = X¥.; ¢,
for which |u|p < 1. Show that 8y — 00 as N — 0.

15.22. Prove that, if £ is a Sidon set, then

sup {min {#(F), #(G)}: F+ G c E} < (1)

where, for every finite set F, # (F) denotes the cardinal of F, and where
F+G={n+m:neF and m € G}. In particular, a Sidon set does not
contain the sum of two infinite sets.

Hints: Assume (1) fails, let n € Z satisfy n > 1, and choose sets
F, G < 7Z such that F + @< E and min {#(F), #(G)} =>n®. Letting
F, c F have exactly n elements, first choose m; € G\F, and then show
that it is possible to select, for each k € Z satisfying 2 < k < n, an ele-
ment m; from @ so that

my & (Fy+ (=Fy) + {my, -, me_q}) U Fy.

Now, with F, = {l;, -+, I,} and G, = {m4, -, m,}, estimate both the A
and C norms of the trigonometric polynomial

7=

t, =
Js

ujk elj emk
1

where (uy) is an » X n unitary matrix satisfying | ;| = n~ Y2 for all j, k.
15.23. (i) Assume that E is an infinite subset of Z. Prove that there
exists no continuous linear map V of eq(E) into L' such that

(V)" (n) = d(n) for all @ € eo(E) and all n € E,;
cf. Remark (11) following 15.1.4.
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(ii) Prove that, if K is an infinite closed subset of 7T', then there exists
no continuous linear map U of C(K) into A such that (Uf)| K = f for all
f e C(K).

Hints: TFor (i), assume the existence of V with the stated properties.
Obviously, V is injective. Also, since [|[Vo|, = (V) [, = l@ll, for all
@ € eo(E), V™! is continuous. Deduce that V is a linear homeomorphism
of ¢o(E) onto a closed linear subspace of L'. Using Appendix C.2 in
Volume 1, conclude that ey(E) is weakly sequentially complete. Infer that
the constant function 1 with domain E belongs to e¢(E). Since E is
infinite, this is a contradiction.

For (ii), argue similarly, to the point where it is deducible that, for
every a € K, the characteristic function yy, g of {a} relative to K, belongs
to C(K). Obtain a contradiction by choosing @ € K which belongs to the
closure in K of K\{a}.

A different style of proof is given by Graham [1].

15.24. Verify the claim made in 15.2.3, Remark (2), namely that if E
is a symmetric subset of Z satisfying ‘

R0, E) < B° for all positive integers s,

then £ is a Rider set.
Hint: Apply the technique, used to prove (15.2.7), to the function

N
tN= I—I Uy,
k=1

wherein

U, = 1 + (2B)_1(e—-nk + enk)'



CHAPTER 16

Multipliers

A little less than sixty years ago, Fekete [1] discussed some generalities
and some particular questions pertaining to what has since come to be
known as the problem of Fourier “multiplier (or factor, or conversion)
sequences. (or functions)”’; see [Z,], pp. 175179, 378, where references will
be found to other special results due to many authors, and also the remarks
in 16.3.8, 16.3.9, and 16.7.6.

In this chapter we aim to describe a general approach to such problems
that places emphasis on the so-called *“multiplier operators’ associated with
such functions, an approach that appears to have been vitalized by Wendel
[1], [2] in connection with the isomorphism problem for group algebras
(mentioned in 4.2.7). In all the most important cases, these multiplier
operators belong to a category of operators that are very simply charac-
terizable in algebraic and topological terms involving convolutions; see
Section 16.2.

The leit-motiv of this chapter is accordingly the association with each
multiplier function ¢ of a corresponding multiplier operator U, followed by
the representation of U, as convolution with some distribution 4 (from
which ¢ is easily recaptured as the Fourier transform of 4), and a struggle
to tie down the nature of 4 as closely as possible in a manner depending on
the range and image spaces of U,. It is in this characterization of 4 that the
real sting lies. This task, along with the discussion of some important special
cases, occupies Section 16.3. The discussion of other important special cases
continues throughout Sections 16.4 to 16.6.

The number of particular cases of the multiplier problem that have been
effectively solved is limited, and it will become clear to the reader of this
chapter that there is no lack of enticing unsolved problems. A few such
problems, as well as some extensions of the multiplier concept, are mentioned
in Section 16.7.

In Section 16.8 we relate multiplier problems with questions concerning
direct-sum decompositions of standard function spaces in terms of their

271
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closed invariant subspaces (compare 2.2.1). Concerning the study of
multipliers in the general setting of Banach (and topological) algebras, see

[La].

16.1 Preliminaries

The so-called multiplier problem can be formulated in quite general terms
as follows.

16.1.1. Multiplier Functions and Operators. Suppose two sets, F and
G, of distributions are given. It is required to determine necessary and
sufficient conditions on the complex-valued function ¢ on Z in order that the
implication

feF=¢-fe FG (16.1.1)
shall be valid.

In (16.1.1), as elsewhere in this book, # G denotes the set of transforms §
of elements g of G.

A function ¢ satisfying (16.1.1) is termed a (Fourier) multiplier of type
(F, G), and we shall then write ¢ € (F, G). If F = L? and G = L9, where, as
will be assumed throughout this chapter, 1 < p < o0 and 1 < ¢ < oo, it is
customary to write simply (p, g) in place of (L?, L9).

The most interesting cases are those in which both F and G are chosen
from the arsenal of standard function- or measure-spaces, such as CF
(0 <k <o), L7 (1l <p < o), or M. However, complete solutions are not
yet available even for all these cases. Where necessary and sufficient con-
ditions are known, they are frequently expressed by membership of ¢ to FH
for some set H of distributions. As will by now be clear, the verification of
such a relation is more often than not a most formidable task.

The reader will by now have guessed that analogous multiplier problems
present themselves in cases where the underlying group @ is something more
general than 7. Although the methods employed in this chapter are
frequently specializations of those applicable in the more general
situation, we have space only to make a general reference to Brainerd and
Edwards [1] and the research papers referred to therein, together with a
few more specific references and comments at appropriate places. The
case in which @ = Z, the group dual to 7', is in some respects simpler
(inasmuch as measures and * distributions ” on Z are just functions on Z)
and in other respects more complicated, and here too there remain
numerous unsolved problems; we have insufficient space to deal with this
dual problem, but see Exercise 16.29 and the references cited in 16.4.7
and 16.4.9(3). In this connection it may be noted that the multipliers of
¢*(Z) correspond exactly with the so-called doubly infinite Toeplitz
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matrices; these entities and their close relatives occupy a small niche in
analysis, for an introduction to which the reader is referred to [Z,], p.
168 and Widom [1]. See also Hirschman [2], Widom [2].

Without missing any cases of current interest, much repetition will be
avoided by making the following standing hypotheses concerning F and G:

With the sole exception that G is sometimes chosen to be D, it will be assumed
that each of F and G is a linear space containing € and contained in D; each
18 stable under the translation operators T',; each is a Banach or a Fréchet space
(see Volume 1, Appendix B) and convergence of a sequence in F or in G
implies its distributional convergence (see Section 12.3); and each operator
of translation, or of convolution with a trigonometric polynomial, is a
continuous endomorphism of F and of G. (D itself fails to satisfy these
conditions only insofar as it is neither a Banach space nor a Fréchet
space.)

We shall make frequent use of the device that associates with a multiplier
é of type (F, G) the corresponding multiplier operator U, with domain F and
range in G, defined in the following way. The uniqueness theorem 2.4.1 and
12.5.4(1) shows that if ¢ is a multiplier of type (F, G), then to each feF
corresponds precisely one g € G such that § = ¢ * f; we then define U,f = g.

The notation U,f will continue to be used, whenever feD and ¢ is a
complex-valued function on Z such that ¢ - f is tempered, to denote that
distribution ¢ such that § = ¢ - f [see 12.5.3(2)].

The examples that follow illustrate a number of features common to most
multiplier operators which will be considered formally and in some detail in
subsequent sections.

16.1.2. Some Examples. (1) As a general comment, observe that if
F, © Fand G, © G, then (F,, G,) > (F, G). This is evident ffom the defining
property (16.1.1).

(2) The inclusions #* < (M, C) and #2 = (M, L?) for ¢ < 2 are evident, in
view of the case m = 0 of 12.5.3(1) and 8.3.1.

(8) If ¢ has the form ¢(n) = a,, where (ay)5-, is decreasing to zero and
convex, then ¢ belongs to each of (M, L), (L®, C), and (L?, L?); moreover, U,
is expressible as convolution with an integrable function; see Exercise 16.1.

(4) It is relatively simple (see Exercise 16.2) to show that (L2, L?) = £~.
In this connection the reader should observe that if ¢ € £°, then there exists
a unique pseudomeasure A4 such that 4 = ¢ (see Section 12.11), and the
associated multiplier operator U, is defined by convolution with 4:

Uyf=Axf (16.1.2)

for fe L2.
Observe also that each multiplier operator of type (L2, L?) is continuous
and commutes with the translation operators 7';; this follows from (16.1.2),
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(8.2.2), and 12.6.2. As will be seen in 16.2.1, this too is a characteristic
feature.

(6) From 12.7.2 and 12.7.3 one may (see Exercise 16.3) derive the following
inclusions

FM < (C,0), FMc(L,L), FMcMM).

It will appear in due course (see 16.3.2, 16.3.3, and Remark (2) following
16.3.5) that indeed

FM = (C,C) = (L*, L) = (L}, L!) = (M, M).

However, as will be seen in 16.4.3(1), #M does not exhaust (L7, L”) if
l<p<oo

Here again all the corresponding multiplier operators U, are linear,
continuous, commute with translations, and admit a representation as
convolution with a suitable distribution.

16.1.3. The Determination of (C*,D). We aim to show that (C*, D)
comprises just the tempered functions ¢ on Z, that is, the functions that
satisfy a majorization of the form

d(n) = O(|n|*) as |n| — o0 (16.1.3)

for some (¢-dependent) integer k. It will appear that (C*, C*) also comprises
exactly the tempered functions on Z.

It is on the one hand clear from 12.1.1 that any tempered sequence ¢
belongs to (€, €), and a fortiori to (C*, D).

Suppose on the other hand that ¢ belongs to (C*, D). Then ¢f is tempered
whenever f € C*. We wish to conclude from this that ¢ is tempered. However,
were this not the case, there would exist a sequence (n,) of integers such that
0 < |n,| — o0 and

[p(ni)| > |mpel*.

But then, by 12.1.1 again,

f@) = 2 |m] ~%* exp (in)
would belong to €, and yet

[puf ()| > [ 55,
contrary to the hypothesis that ¢f is tempered.
The reader will observe that the associated multiplier operator U, is given
by
Usf=Axf, (16.1.4)
where 4 is the distribution

A =7 $(n)en=; (16.1.5)

nezZ
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see 12.5.3(2). This operator U, is linear, commutes with translations and
with convolutions, and is easily seen to be continuous from C* into any one
of the “natural” spaces lying between C* and D (such as C, L?, and M).

As has been indicated, we shall see in Section 16.3 that virtually all
multiplier operators are expressible in the form (16.1.4), A being a suitably
chosen distribution.

16.1.4. Properties of Multiplier Operators. In all the examples con-
sidered in 16.1.2 and 16.1.3 the standing hypotheses on F and G (laid down
in 16.1.1) are fulfilled; and in all these examples it has appeared that the
multiplier operators U, concerned have the following properties:

(1) U, is linear, continuous, commutes with the translation operators 7',
and with convolution with trigonometric polynomials (the last condition
means that Uyt *f) = Uyt «f =t U,f for each t € T and each fe F);

(2) U, admits a convolution representation

Usf=A4xf,

where A4 is some distribution depending upon ¢.

In the course of the next two sections we shall see that properties (1) and
(2) persist in all the cases of practical interest, and that indeed these properties
come close to characterizing the multiplier operators. In particular, in
Section 16.3 we shall establish a convolution representation formula of the
type (16.1.4) for multipliers of various types (F, Q). The approach to be adopted
there will cover the case of (C*, D), but it also adapts to certain other choices
of (F, G) in such a way as to be more directly productive of the best results.

Although the case of (C®, D) provides a sort of “universal covering
theorem,” inasmuch as virtually all multiplier operators of interest have
restrictions to €* which are multiplier operators of type (C*, D), far too
much information is thrown away by this process of restriction for the
outcome to have any lasting interest in the discussion of multiplier operators
of type (F, G) for numerous other natural choices of F and G.

16.2 Operators Commuting with Translations and
Convolutions; m-operators.

We begin this section by summarizing in formal terms the essential
properties of multiplier operators already encountered.

16.2.1. Characteristic Properties of Multiplier Operators. Let ¢ be
a multiplier of type (F, G) and U, the associated multiplier operator map-
ping F into G (see 16.1.1). Then

(1) U, is linear;
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(2) U, commutes with translations; that is,
v,T,=1T,U,

for each group element a;

(3) U, commutes with convolution by trigonometric polynomials; that
is,

Ugtxf)=Ugtxf=1txU,f (16.2.1)
for every feF and every trigonometric polynomial ¢; and, more
generally, (16.2.1) holds whenevert e F,fe F,and ¢t * fe F;

(4) U, is continuous from F into G.

Note: The reader is reminded of the standing hypotheses concerning F
and G imposed throughout this chapter. It is well to remark, however, that
quite often not all of these hypotheses are essential for the truth of any one
assertion made: this will usually be quite clear from a close examination of
the proofs.

Proof. The first three statements are almost immediate consequences of
the definition of U, (namely, U,f = g signifies exactly that feF, ge G,
and § = ¢+ f) combined with the properties of convolution vis-a-vis the
Fourier transformation (see especially 12.5.5 and 12.6.5) and the uniqueness
theorem for Fourier transforms (see 2.4.1 in the case of functions, and 12.5.4
in the case of distributions). The reader is urged to write out in full detail at
least one of the proofs.

The proof of (4) is a little less immediate, being based upon the closed
graph theorem (see I, B.3.3). According to this theorem, to show that U, is
continuous, it suffices to prove that: if a sequence (f,) extracted from F
converges in F to the limit f, and if at the same time the sequence
(9.) = (Usf,) converges in G to the limit g, then necessarily ¢ = U,f. Now,
with the aid of the standing hypotheses, from f, — fin F and g, — ¢ in G it
follows that f, — f and §, — § pointwise on Z (see the definition of distribu-
tional convergence in 12.3.1). But, by the definition of U,, we have §, = ¢ f,
for each n. Passage to the limit as n — co shows that therefore § = ¢ * f,
which signifies exactly that ¢ = U,f and thus completes the proof.

Remark. Although D is not a Fréchet space, 16.2.1 still holds for
multipliers of type (F, D). The only modification needed is in the proof of (4),
the form of the closed graph theorem stated in I, B.3.3 being no longer
applicable (though the closed graph theorem can be shown to be valid for the
case in hand; see, for example, [E], Chapter 6 and Exercise 8.43). Often,
a simple direct proof of the continuity of U, is possible; see Exercise 16.4.

Before proceeding to a converse of 16.2.1, we shall deal with a simple
corollary thereof.

16.2.2. An Application of 16.2.1. It has been noted in 16.1.2(4) that
(L2, L?) = £*. A good deal more true is true, namely, (A, P) = (A, A) = £~.
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Indeed, since (A, A) < (A, P), and since it is quite evident that £* < (A, A),
it suffices to show that (A, P) < £=.

Now, if ¢ € (A, P), 16.2.1(4) affirms that the associated multiplier operator
U, is continuous from A into P. This signifies the existence of a number
¢ = 0 such that

1Us flle<cllflla

for each fe A. Taking f = e,, and noting that Uge, = $(n)e, and |e,|a
= |e,||p = 1, it follows that |¢(n)| < ¢ for all n € Z, and so that ¢ € £*.

We now return to the general development and establish a converse of
16.2.1.

16.2.3. A Converse of 16.2.1. (1) If U is a linear operator mapping F
into D such that

Ult+f) =t Uf (16.2.2)

for each trigonometric polynomial ¢ and each feF, then there exists a
function ¢ € (F, D) such that

Uf = U,f  (feF). (16.2.3)

(2) If U is a linear operator mapping F into D which commutes with
translations, then there exists a function ¢ such that

Ut = Ut (16.2.4)

for each trigonometric polynomial ¢.

Proof. (1)In (16.2.2) wetaket = e, = fand so deduce that Ue, = ¢(n)e,,
where ¢(n) = (Ue,)~(n). Then linearity of U shows that (Ut)™ = ¢ - for
each trigonometric polynomial ¢. From (16.2.2) again,

(Ut =N~ =i (U
and, from what we have just established, we have also
(U« =d-(txf)> =-E-f.

By comparison, therefore, {+ (Uf)™ = ¢+ {-f for all trigonometric poly-
nomials ¢, which implies (16.2.3).
(2) Let u, = Ue,. Since U commutes with translations,

T, = T,Ue, = UT e, = U(e~i"%,)
—_ C—inaun’

by linearity of U. It is easily seen (for example, by taking the Fourier
transform of this relation) to follow that u, = $(n)e, for some complex-
valued function ¢ on Z, and linearity of U now leads to (16.2.4).
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Remark. In case (2) it is not evident that the function ¢ belongs to
(F, D), there being no assurance (without further hypotheses upon U) that
(16.2.4) continues to hold when ¢ is replaced by an arbitrary element of F.
However, we do have the following corollary.

16.2.4. Another Converse of 16.2.1. Suppose that the trigonometric
polynomials are everywhere dense in F. Suppose too that U is a linear
operator mapping F into G such that either

(1) U satisfies (16.2.2) for each trigonometric polynomial ¢ and each

feF; or

(2) U is continuous and commutes with translations.

Then U = U, for some ¢ € (F, G).

Proof. Case (1) is already disposed of by 16.2.3(1).

In case (2), we know that (16.2.4) holds for each trigonometric polynomial ¢.
Moreover, given f € F, there is a sequence (¢,)- , of trigonometric polynomials
converging in F to f. Then, by the assumed continuity of U, the sequence
(Ut,) = (U,t,) converges in G to Uf. From this it follows that (Uyt,)™ = ¢ -
converges pointwise to ¢ f, so that the limit of (U,t,)-, in G, say g, must be
such that § = ¢« f. It follows thence that ¢ e (F, G) and that U = U,,.

16.2.5. The Cases F = L* and F = M. Although 16.2.4 shows that in
the majority of interesting cases there is identity between the multiplier
operators and those continuous linear operators which commute either with
translations or with convolutions, there are one or two interesting cases where
the identification is as yet in doubt. In these cases the doubt persists either
because one of the spaces F and G involved does not satisfy the standing
hypotheses laid out in 16.1.1, or because the trigonometric polynomials are
not everywhere dense in F.

Two especially significant such cases are those in which F = L* and
F = M, respectively. Even here, however, it is still true that any linear
operator from F into G, which commutes with translations or with con-
volutions with trigonometric polynomials, satisfies (16.2.4) for some function
¢ and all trigonometric polynomials ¢. If furthermore U is continuous, for
the weak topology on L® (or M), in the sense that Uf, — Uf in G whenever
fi. = f weakly in L*® (or in M), then it would again follow that ¢ € (F, G)
and U = U,. In this connection it should be recalled (from 12.3.9 and 12.3.10)
that f, — f weakly in L® (or in M) if and only if

1 1 .
:Z;Tffkgdx%gffgdx (geL?)

lor filg) = flg)  (9€C)].
The reader should also bear in mind that if fe L™ (or fe M), then oyf — f
weakly in L* (or weakly in M); see Exercise 16.5.
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16.2.6. Commutativity with Translations and with Convolutions.
In the preceding results we have had occasion to consider both continuous
linear operators that commute with translations, and those that commute
with convolutions. In many important instances one can show a priori that
these two categories of operators are identical. For instance, any continuous
linear operator U from C€* or L? (1 < p < o) into C*, or L9, or M, or D
commutes with translations if and only if it commutes with convolutions;
see Exercise 16.6. As one might expect from 16.2.5, however, this equivalence
is in doubt if the domain of U is L® or M, unless we demand continuity with
respect to weakly convergent sequences in L® or in M.

16.2.7. m-operators. Much repetition will be saved if, guided by the
foregoing results and discussion, we henceforth adopt the following definition.
By an m-operator of type (F, G) is meant a continuous linear operator from
F into G which (a) commutes with translations and (b) satisfies (16.2.2) for
each trigonometric polynomial ¢ and each f € F. In addition, we shall denote
by m(F, G) the set of m-operators of type (F, G).

It is to be observed that 16.2.6 shows that, in case F is C* or L (p # o0)
and G is C*, L9, M, or D, a continuous linear operator from F into G belongs
to m(F, G) provided it satisfies either (a) or (b) above.

From 16.2.1 and 16.2.3(1) it appears that U e m(F, G)ifand only if U = U,
for some ¢ € (F, G).

There is in general no special difficulty in verifying that, if 4 € D, the
convolution operator U defined by

Uf=Axf

belongs to m(F, G), provided only that it does indeed map F into G; in
particular, U always belongs to m(C*, €*). The converse will be examined in
16.3.1.

It is a consequence of the preceding remark that almost all linear operators
which arise naturally in harmonic analysis are m-operators (even though
they may not crop up directly from multiplier problems). Moreover, any
linear differential operator of order k with constant coefficients is an m-
operator of type (C¥, C). Reference to Section 6.6 will confirm that almost all
summability processes used in connection with Fourier series are definable
in terms of sequences of m-operators of type (L*, L?).

In 16.3.11 we shall discuss some relationships between m-operators and
the translation operators 7', (which are themselves especially simple m-
operators).

The pointwise theory of those m-operators defined by convolutions with
distributions that are not measures (compare 12.8.2 and the beginning of
Section 13.9) is, in those cases where pointwise existence theorems are valid
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at all, a part of a highly elaborate theory of singular integrals. Concerning
this aspect of the subject, the reader is recommended to examine the survey
article Calderén [2] and Cordes [1].

It may be added as an aside that, if F and G satisfy the standing
hypotheses stipulated in 16.1.1, if T is everywhere dense in F, if U is a
continuous linear map from F into G, and if U satisfies (a) (that is, if U
commutes with translations), then U satisfies (b). The proof is left as an
exercise for the reader.

16.2.8. A Theorem of Stein about Sequences of m-operators. For use
in Section 16.5 in connection with multipliers we propose to state here without
proof a deep and important theorem due to E. M. Stein ([1], Theorem 1 and
Corollary 1) about sequences of m-operators of type (L?, L?), where 1 < p < 2.
There is no reason at all why any reader who has persevered to the present
stage should not tackle the original paper.

Stein’s theorem reads as follows. Suppose that 1 < p < 2 and that U,
(k =1,2,...) is a sequence of m-operators of type (L?, L?). Assume that to
each fe LP corresponds a (possibly f-dependent) set E of positive measure
such that

lim sup | U, f(x)] < © forall z € E. (16.2.5)
k-
Define
U*f(zx) = sup |U,f(z)]| (< 0), (16.2.6)
k>1

The conclusion is that the operator U* is of weak type (p, p) that is (see 13.7.5),
there exists a number ¢ such that for each number « > 0 and each fe L?

m({z €0, 27) : U¥f(x) > «}) < cx~?|f|B, (16.2.7)

where m denotes Lebesgue measure.

In the paper cited, Stein uses this theorem to great effect in the discussion of
diverse problems; he also shows that various extensions are possible. Unfor-
tunately, the theorem is definitely false for p > 2 (Stein [1], p. 157).

Some at least of the roots of Stein’s theorem are due to Calderén and appear
in the discussion on pp. 165-166 of [Z,]. A proof of Stein’s Lemma 1 ([1],
p- 146), which makes no explicit reference to probability theory, is also to be
found on p. 166 of [Z,]. For further developments, see Coifman [1], Stein and
Zygmund [1], Sawyer [1] and Gilbert [1].

16.3 Representation Theorems for m-operators

In this section we begin the study of the representation of m-operators in
terms of convolution. In particular, and first of all, we shall recover the result
established in 16.1.3 for multiplier operators of type (C*, D). However, as
has been heralded in 16.1.4, a different approach will be used. This method
makes little explicit use of the Fourier transformation. As developed in this



[16.3] REPRESENTATION THEOREMS FOR m-OPERATORS 287

section, it will lead to complete solutions of the representation problem for
most of those cases in which a fully effective solution is known.

Both the statements and the proofs of our first theorem are variants (for
periodic functions and distributions) of those given first by Schwartz ([S,],
pp. 53-54; [E], pp. 332-335) for functions and distributions on R™.

16.3.1. Multipliers from C* to D. (1) To each U € m(C®, D) corresponds
a distribution 4 € D such that

Uf = Axf (16.3.1)

for fe €C*; and, conversely, if 4 € D, the equation (16.3.1) defines U as a
member of m(C>, D).

(2) m (C*, D) = m(C>, C~).

(3) (€=, D) = (€=, C°) comprises exactly all tempered functions on Z.

(4) If U e m(F, G), there exists a distribution 4 € D such that (16.3.1)
holds for each fe F.

Proof. (1) The converse portion stems from 12.6.2 and 12.6.3. The
direct assertion can be proved by writing U = U,, where ¢ € (C*, D) (see
16.2.3), using 16.1.3, and taking for 4 that distribution for which 4 = ¢.
The proof to be given here proceeds along different lines which are of interest
in other connections, ignoring as it does any relationship between U and
multipliers of type (C*, D).

Choose an approximate identity (k) ,, each k; being a member of C=.
If feC®, k; « f— fin C® so that continuity of U entails

Uf = D-lim U(k; = f).

i— o

From 16.2.1 and 16.2.7 it appears that this may be written in the form
Uf =D —lim 4; % f, (16.3.2)
where o
A; = Uk;eD. (16.3.3)
Now (16.3.2) signifies that

A; = f*xd(0) = A4; * flg)

converges, as ¢t — o, to Uf(g), and hence is bounded with respect to i, for
each f, g€ C*. On the other hand, as the reader will verify easily on using
12.1.1, each k € €= is expressible as f * g with f and g suitably selected from
C®. Thus the numbers A,(k) = 4, % %(0) are bounded with respect to 1 for
each h e C*.

At this point 12.3.7 shows that a subsequence of (4;) may be chosen which
converges in D to a limit 4. By dropping terms, we may therefore assume
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that 4; — 4 in D. This being so, 12.6.3(2) shows that
Axf—>Axf in C* (16.3.4)

whenever fe C*. Comparing (16.3.4) and (16.3.2), (16.3.1) is seen to follow.

(2) The inclusion m(€C, €*) < m(C>, D) being evident, it suffices to prove
the reverse inclusion.

But, if U e m(C®, D), (16.3.1) and 12.6.3(1) combine to show that u
maps C* continuously into €* (and not merely into D).

(3) This has been established in 16.1.3. (It also follows from 16.2.1 and the
Remark following that theorem, (1) of the present theorem, 12.5.3, and
12.6.5.)

(4) If U e m(F, G) the standing hypotheses on F and G ensure® that the
restriction of U to €C® belongs to m(C, D). Hence (1) shows that (16.3.1)
holds for some 4 € D and each fe C*. If fe F is given and ¢ is any trigono-
metric polynomial, ¢ * f belongs to C* and so

Utxf)=Axtx*f.
On the other hand, by 16.2.7(b),
Ug=f) =t= Uf.

Comparison of the last two equations, valid for any trigonometric polynomial
t, shows that Uf = 4 = f. (We are here using the associativity and com-
mutativity of convolution.)

Remarks. (1) There are restricted analogues of 16.3.1 for the case in

which 7 is replaced by a more general group; see Brainerd and Edwards
[1], Edwards [10], [11], and Gaudry [1], [2]. See also Taibleson [2].
" (2) The result 16.3.1, although satisfying, represents the beginning rather
than the end of multiplier problems. The interesting questions, many of them
still without effective solutions, are of the following nature: given the pair
(F, G) and an m-operator (or a multiplier operator) U of type (F, G), 16.3.1
shows that there is a distribution 4 such that (16.3.1) holds at any rate for
each fe ; C* the remaining problem is to effectively determine conditions on
the distribution 4 in order that A4 * f shall belong to G whenever fe F. If C®
is dense in F and if F and G are Banach spaces, this is so if and only if

|4 % flla < const | f]e

for fe €. Among the remaining results of this section appear instances in
which an effective answer is known. In Sections 16.4 and 16.5, however, we
handle some cases where no complete and effective answer is forthcoming.

The preceding representation theorem will now be used as a stepping stone
to others of a similar nature.

! Since the closed graph theorem shows that the injection of C* into F is continuous.
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16.3.2. Multipliers from Cto Cor L' toM. If U € m(C, €) (or m(L, M))
there exists a measure p € M such that

Uf = p+f (16.3.5)

for f € C (or for f € L!); and conversely. In particular, (C, €) = (L}, M) = #M.

Proof. If U is defined by (16.3.5), then 12.7.2 (or 12.7.3) and 12.6.5 show
that U e m(C, C) (or U € m(L*, M)). Conversely, if U belongs to either of
these two categories, 16.3.1(4) entails that Uf = 4 = f for some 4 € D and
all fe C (or fe L'); and then 12.8.4 shows that 4 must be a measure.

In the case of m(L!, M) the conclusion 4 € M may otherwise be reached by
noting that the 4; appearing in the proof of 16.3.1(1) form a norm-bounded
sequence of measures and so, by 12.3.9, a subsequence (4,, )., converges
weakly in M to a measure p. Since it is known that 4, x f — 4 % f for each
fe €=, A and u must coincide.

The final assertion follows from what is already established, if appeal be
made to 16.2.1 and 12.6.5.

Remarks. (1) Other proofs are possible; for the case of m(C, C), for
example, one might argue along the lines adopted in 16.3.5.

(2) It can be shown (see Exercise 16.20) that m(C, L°) = m(C, C).

16.3.3. L!-Multipliers. If U e m(L!, L!) there exists a measure ueM
such that (16.3.5) holds for f € L!; and conversely. In particular,

(L, LY) = #M.

Proof. Once again the converse assertion ensues from 12.7.3 and 12.6.5.
The direct assertion stems from 16.3.2, since L' is a subspace of M (see
12.3.8). As before, the statement about multiplier functions is contained in
what precedes, using 16.2.1.

Remarks. 1t can also be shown that (M, M) = (C, L*) = (L%, L%)
= %M, see Exercises 16.7 and 16.8.

16.3.4. Multipliers from L! to L? (p > 1). If Ue m(L!, L?), where
1 < p < oo, then there exists a function % € L? such that

Uf =k+f (16.3.6)

for each f € L*; and conversely. In particular, (L', L?) = FLrforl < p < oo.
Proof. The converse statement is a consequence of 3.1.2, 3.1.6, and the
associativity of convolution.
For the direct assertion, one begins by observing that appeal to 16.3.1(4)
shows that there exists a distribution 4 such that Uf = 4 = f for fe Ll
The continuity of U then entails the existence of a number b > 0 such that

14 *fl, < b 1fl (16.3.7)
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for fe L'. Suppose now that f is allowed to vary along an approximate
identity (k;), and put A; = 4 =k, € L?, as in the proof of 16.3.1(1). Then
(16.3.7) shows that the numbers ||4,], are bounded with respect to i, and
12.3.10 affirms that some subsequence of (4;) converges weakly in L? to a
limit, say k. On the other hand, since (k;) is an approximate identity, the
sequence (A;) converges in D to 4, as follows from 12.3.2(3) and 12.6.6. It
follows that A = k, so that (16.3.6) holds for f e L.

Finally, the last assertion stems from what is already established via 16.2.1
and 12.6.5.

Remarks. Without altering the essence of the preceding proof, explicit
reference to 16.3.1 could be avoided by simply mimicking the proof of the
latter in the present context: in other words, explicit reference to A is
avoided, the function k£ being obtained directly as a weak limiting point in
L? of the sequence (Uk;) = (4;) by appealing to 12.3.10 as before. The
reader is urged to construct such a proof in detail.

The next two results introduce a different technique, which is frequently
successful when discussing m-operators of type (F, C).

16.3.5. Multipliers from L* to €. If U e m(L?, C), where 1 < p < o0,
then there exists a function % € L?" such that :

Uf = hxf

holds for f € L?; and conversely. In particular, (L7, €) = #FL* for1 < p < o0.

Proof. The converse assertion follows from 3.1.2, 3.1.4, and the associa-
tivity of convolution. To prove the direct assertion, we suppose first that
p < oo and consider the linear functional f— Uf(0) defined on LP. The
assumed continuity of U ensures that this functional is continuous. Hence
(I, C.1) there exists a function A € L”" such that

Uf(0) = h % f(0).

If we apply this formula with 7'__ f in place of f, using 3.1.2 and the fact that
U commutes with translations, we find that

Uf(@) = T_,Uf(0) = UT _.f(0) = k= T_,f(0)
= T_o(h+f)(0) =k *f(x),

which is the desired result.

The preceding proof breaks down when p = oo (where?) and we proceed
as follows. Take an approximate identity (f;);>, composed of trigonometric
polynomials, and let &; be the trigonometric polynomial Uf;. If f e L®, Uf is
continuous (by hypothesis), and so lim, f; * Uf(0) exists finitely, being in
fact equal to Uf(0). By (16.2.2) this signifies that lim; &, * f(0) exists finitely
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for each fe L®. Consequently (see I, C.2), there exists a function heL!
such that

lim f; % Uf(0) = h  (0)

for each fe L™, that is,
Uf(0) = & * f(0)

for each f € L. From this point on, the argument proceeds exactly as before.

The final statement is deduced in the by-now-customary fashion, using
16.2.1 and 12.6.5.

Remarks. (1) Inasense, 16.3.5 containsa sort of analogue of the converse
of Holder’s inequality (given in Exercise 3.6); see Exercise 16.9.

(2) By 16.4.1, 16.3.3, and 16.3.4, it ensues that m(L?, L®) = m(L*, L*)
coincides with the set of operators by convolution with elements of L if
1 € p < o, of with elements of Mif p = 0. For 1 < p < o0, this conclusion
may be deduced from 16.3.5 in the manner indicated in Exercise 16.19.

16.3.6. Multipliers from M to C. If U e m(M, C), then there exists a
function & € C such that

Up =hsp (16.3.8)

for p € M; and conversely. In particular, (M, C) = #C.

Proof. We give a proof of the first assertion. The rest follows in the
usual fashion and will be left for the reader to verify.

If U € m(M, C) then, since L' is a subspace of M, 16.3.5 shows that there
exists a function h € L® such that

Uf = hxf (16.3.9)

for fe L'. Now, if peM, then f =t * pe L' for each trigonometric poly-
nomial ¢. Hence, using (16.3.9), (16.2.2) and the commutativity of convolu-
tion, we obtain

hx(@xp)=Ul*p) =txUp,

and thence Up = h* p. Finally, taking u = ¢ (the Dirac measure at the
origin; see 12.2.3), it appears at once that A = Ue e C.

16.3.7. Bounded and Uniform Convergence Multipliers. In Section
10.3 it has been seen that

sup [yl =
N

for suitable continuous functions f. With this in mind, we pose the following
question. Which complex-valued functions ¢ on Z have the property that,
for each continuous function f, the series

> dm)f(n)en (16.3.10)

nezZ
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has uniformly bounded partial sums? An answer to this mnltiplier problem
will be given in 16.3.8, for which we proceed to lay some foundations.
By taking
f@) = 2, (1+ n2)7rems,

nez
it becomes evident that any function ¢ possessing the stated property is
tempered, so that (16.3.10) is certainly the Fourier series of some distribution
g (see 12.5.3(2)). Moreover, if ¢ has the stated property, it is the case that

sup lsngllo < 0. (16.3.11)

According to Exercise 12.22, therefore, g € L®.

At this stage let us introduce the set L,® of functions g € L® for which
(16.3.11) holds. It follows from what precedes that our problem is precisely
that of determining which functions ¢ belong to (C, L,*). As usual, we shall
approach this problem in terms of the associated multiplier operator U,
from € into L,*.

We shall first of all wish to be sure that U, € m(C, L,). In seeking con-
firmation of this by appeal to 16.2.1 and 16.2.7, it is sufficient to check that
L,® can be made into a Banach space in such a way as to satisfy the standing
hypotheses laid out in 16.1.1. This can be achieved by taking as the norm on
L,> the function

lgl = sup Jlsng ]l (16.3.12)
and recalling from Exercise 12.22 the inequality

lglls < llgll- (16.3.13)

Armed with this, the verification is simple (see Exercise 16.10). Recall that
syg = Dy * g for every distribution g.
Now we are ready to state and prove the main result.

16.3.8. (1) The operators U € m(C, L,*) are precisely those of the form

Uf = pxf, (16.3.14)
where pu € M is such that

m = sup [|Dy * pl; < . (16.3.15)
N

(2) A function ¢ has the property that, for each continuous function f, the
series (16.3.10) has uniformly bounded partial sums, if and only if ¢ = 4 for
some p € M satisfying (16.3.15), and in that case

(3) the series (16.3.10) is uniformly convergent for each continuous function
f, and

(4) the series (16.3.10) is convergent in norm in L? whenever fe L? and
1<p <o
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Proof. (1) If (16.3.14) and (16.3.15) hold, we have for f € C:

sup [syUf [« = sup [ Dy * p % |
N N

N

sgp [ Dy % pfy - ”f”w

<me|flo < o,

as follows by use of 3.1.6. This shows that U maps € continuously into L,®.
The remaining properties of U called for in 16.2.7 are almost evidently attained,
so that U e m(C; L, ).

Suppose conversely that U e m(C, L,®). Then 16.3.1(4) is applicable and
shows that there exists a distribution 4 such that

Uf = Axf (16.3.16)

holds for f € C. Thanks to the continuity of U, there exists a number m for
which, on account of (16.3.16), we have

fles

sx:rp lsv(4A % f)]|w < m*
that is,

sup [ Dy * A #fllo < m*|fa

for fe C. Noticing that Dy * A is a trigonometric polynomial, Exercise 3.6
yields

sup |Dy * A, < m.

N

From this and 12.3.9 it is easily inferred that A4 is in fact a measure u € M.
This completes the proof of (1).

(2) This follows in the familiar manner from (1) applied to U = Uy, provided
the remarks in 16.3.7 are borne in mind.

(3) Let feC and & > 0 be given. Choose a trigonometric polynomial ¢
satisfying

If = tle < (2m)~te;

this is possible by 2.4.4. For all N we have by 3.1.6 and (16.3.15)

lon(h £) = sulp ¥ Dle < m-If — tle < Yoo (16.3.17)
Since p * ¢ is a trigonometric polynomial, sy(u ) = p * ¢t for N > N,, where
N, depends upon ¢. Hence, by (16.3.17), we have
”'SN(,M xf) —sylu*f)lo < e
provided N and N’ exceed N, which shows that the series (16.3.10) is uniformly
convergent.
(4) The proof follows the same lines as that of (3); note that (by 3.1.6 again)
lon(u *f) — snlp * ), < m - |f — ¢,

and that (by 2.4.4 again) ¢ may be chosen to satisfy ||f — ¢], < (2m)~le. (If
1 < p < o, the assertion is also a consequence of 12.7.3 and 12.10.1.)
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Remarks. (1) The condition (16.3.15) is not generally satisfied when
€ L (see Exercise 10.2); it is satisfied, however, if p € L? for some p > 1,
orif ueL! and p-log* |u| € L? (see 12.10.1 and 12.10.2).

(2) The analogous problem of determining (F, C,), where C, is the space
of continuous functions with uniformly convergent Fourier series, has been
solved in a number of cases by diverse authors, including Tomic, Karamata,
Katayama, and Goes; see Mathematical Reviews 20 #7184 and 21 #7392.
The conditions obtained sometimes vary from one author to the next, and
it may well be a nontrivial task to prove that the apparently different
conditions are indeed equivalent. For example, Karamata shows that in
case ¢(n) = ¢(—n), the conditions on

p=2 il @(n) cos nx

(convergent in D) required in 16.3.8 can be expressed in the form

0

>t > |0) — ¢iv + 1)| < .

n=1 van
In the form given here, 16.3.8 was proved in a somewhat different way by
Karamata [1] for the case in which ¢(n) = ¢(—n). He also remarked that in
this case a sufficient condition is that

40y = O(pz) (n—>o0), > (n+ DA < o3

log n
that this implies (16.3.15) follows from partial summation [compare formula
(7.3.5)].

(3) For some other results bearing directly or otherwise on multipliers,
see Goes [1], [2].

16.3.9. Lipschitz Multipliers. The discussion and arguments appearing
in 16.3.7 and 16.3.8 can be modified quite easily so as to characterize those
functions ¢ such that, for each continuous function f, the series (16.3.10) is
the Fourier series of a continuous function g satisfying a Lipschitz condition

179 — gl = Ow(a)), (16.3.18)

where w is a given nonnegative function such that w(a)/a is bounded away
from zero for small @ # 0, and such that w(a) — 0 as @ — 0. The O-constant
in (16.3.18) may, of course, depend upon g.

The set A, of continuous functions g satisfying a Lipschitz condition
(16.3.18) may be formed into a Banach space by introducing the norm

lglo = lglle + sup w(@)™*|Tog — g, (16.3.19)

and A, then satisfies the standing hypotheses laid down in 16.1.1.
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The problem posed at the outset of this subsection is that of determining
(C, A,) and may be approached by studying the operators U of type
m(C, A,). The conclusion proves to be that these operators are precisely
those of the form

Uf = k=«f, (16.3.20)
wherein k£ € L is such that

sup w(a) Tk — k|, < o; (16.3.21)
a#0

the functions ¢ of type (C, A,) are accordingly precisely those of the form
¢ = k, where & is as just described.

In Exercise 16.11, the reader is invited to construct a detailed proof of
these statements.

Remarks. Zygmund [1] determines, among other things, the functions
of type (A, A,) for w(8) = 8% where 0 < « < 1. He shows that a necessary
and sufficient condition for ¢ to be of this type is that

D) = > (in)”p(n)e™=

n#0

(convergent in D) be a function of class A}, that is (see [Z,], p. 45), that
sup @™ T,® + T_,® — 20|, < 0.

a>0
The function @ is, apart from an insignificant term, the indefinite integral of
the function k£ which would appear in the corresponding representation of
the form (16.3.20) for U = U,, and it is interesting to note that the
second difference 7,® + 7_,® — 2® now takes the place of the first
difference 7',k — k.
See also MR 44 # 7208.

16.3.10. Positive m-operators. An operator U € m(F, @) will be said to
be positive, if Uf > 0 whenever fe F and f > 0. (In this context a relation
h > 0is to be understood in the distributional sense, as described in Exercise
12.7: if h is a continuous function, the relation signifies that A(z) > 0 for all
x; if b is a general integrable function, it signifies that A(x) > 0 for almost
all z.)

From 16.3.1(4) and Exercise 12.7 it follows that any positive U € m(F, G)
is representable in the form

Uf =uxf (feF) (16.3.22)

where p is a positive measure.

IfF =G =C, L7 or M, 3.1.6 and 12.7.3 show that any u € M (positive or
not) yields, via (16.3.22), an operator U e m(F, F); evidently, this U is
positive if and only if p is positive.
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On the other hand, if p < ¢, not every measure p yields, via (16.3.22), an
element U of m(p, ¢) = m(L?, L9). Effective necessary and sufficient con-
ditions on p in order that U shall belong to m(p, ¢) are apparently unknown
(even assuming that p is positive); but see the partial results in 16.4.4 and
16.4.6.

It is perhaps worth remarking that (16.3.22) can be established in most
cases of interest without any appeal to distributional notions. By thus
working within the domain of functions and Radon measures, the arguments
become at once extendible to more general groups (see Brainerd and Edwards
[1], Part I, Section 3).

In this connection we may mention in passing the following facts and implied
problems. Suppose that G is a (Hausdorff locally compact) group, and that &
is a measurable function on G such that k x f exists in some sense for each
f e C(Q) (the space of continuous functions on G with compact supports); and
suppose further that

e % £l < const [ £]],

for a given g €[1, 0] and each f € C.(G). What can be deduced about k?

If G is the circle group, the case of the Hilbert distribution (see Sections
12.8 and 12.9) shows that k * f may exist as a Cauchy principal value and
satisfy the stated conditions for each g € (1, ), even though k is nonintegrable.
Much the same is true of the Hilbert transform on R or R™.

Let us consider further the case in which G is assumed to be noncompact
and k is given to be integrable over each compact subset of G. This ensures
that k *f exists pointwise as an absolutely convergent integral whenever
f € C.(G). The stated inequality is easily seen to imply that k € L}(G), if ¢ is 1
or oo; but this implication is generally not valid if ¢ € (1, ©). The additional
hypothesis that & be nonnegative permits the deduction that k € L(G) for
certain classes of groups G; see Brainerd and Edwards [1], Part I, Section 3.
Rather surprisingly, not even this much is true for general G and q € (1, ). In
fact, Theorem 9 of Kunze and Stein [1] shows that, if G is the group of real
2 x 2 unimodular matrices, then

I % fllz < const |f ]2
whenever k € LP(G,) for some p satisfying 1 < p < 2 and fe L%(Gy); if one
takes 1 < p < 2, the noncompactness of G, ensures that one can choose non-
negative functions k£ belonging to L?(G,) but not to L*(G,).
For further developments, see Gilbert [3]; Cowling [17, [2]; MR 35 # 3008;
38 # # 269, 5997; 42 # 6522; 51 # 135%4.

16.3.11. m-operators and Translations. Reverting for a moment to
generalities, we observe that from 16.3.1 and use of the Hahn-Banach theorem
(much as in 11.2.2; compare also part (2) of the proof of 11.1.2) it follows
that any U € m(F, F) leaves stable each closed (translation-) invariant sub-
space of F; compare Subsections 3.1.8 to 3.1.10. [When U = U, and F is €
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or L? (1 € p < ), this may also be deduced from the specification of the
closed invariant subspaces of F obtained in 11.1.1 and 11.2.1.] An equivalent
formulation of this property of U is as follows (compare 3.1.9): for each
feF, Ufis the limit in F of linear combinations of translates of f.

It is natural to ask whether, conversely, any endomorphism U of F (U
may or may not be assumed a priori to be continuous) that leaves stable each
closed invariant subspace of F is necessarily a member of m(F,F). An
affirmative answer is given in some (but by no means all) cases in Edwards
[11], and further results have since been given by Johnson [4].

On combining the results obtained in Section 1 of Edwards [11] with
16.3.1 one obtains a type of abstract characterization of convolution operators
on € and on L” (1 € p < ), namely: any endomorphism U of € or of L?
(continuity is not assumed) that leaves stable each closed invariant subspace
of C or of L? is of the form Uf = 4 % f for some A € D; U is therefore neces-
sarily continuous and, in the case of C, 4 is necessarily a measure (by 16.3.2).
Some similar results appear in Edwards [10].

16.3.12. Convolution as a Bilinear Operator. We turn aside briefly in
order to justify some remarks made in Subsection 3.1.10.
Let B denote a continuous bilinear mapping from €* x C® into D with the
property that
B(T.f, 9) = TuB(f, 9) = B(f, Tug) (16.3.23)

for f, g€ C* and a € RB/2nZ. Observe that continuity follows from bilinearity
whenever B is positive in the sense that B(f,g) = 0 for all nonnegative
functions f and g in €®; compare the hints to Exercise 12.9.

It will be shown that

(1) there exists a distribution A such that

B(f,g) = A*xfx*g (16.3.24)
for f,ge €;
(2) if B is positive, then A4 is a positive measure;
(3) if B is positive, and if furthermore

supp B(f, g) < suppf + suppy, (16.3.25)

whenever f, g € C*, then
B(f,g) = const fxg (16.3.26)
for f,ge C~.

Proof. Fix g e C* and consider the mapping U,: f — B(f, g) from €C* into
D. It is evident that U, is linear, continuous, and [by (16.3.23)] commutes
with translations. By 16.3.1, therefore, there exists 4, € D, which is evidently
uniquely determined by g, such that

B(f,9) = A;xf  (f,geC™). (16.3.27)

It is also evident that, if B is positive, then 4, is positive and hence (Exercise
12.7) is a positive measure.
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The map U: g — A4, is clearly linear from C® into D, and, by (16.3.23) once
more, U commutes with translations. A little thought will show that U is also
continuous from C*® into D (remember that €® x €= fills out €®). A second
appeal to 16.3.1 shows that there exists 4 € D such that

A,=Axg (geC>). (16.3.28)

Once again, if B is positive, 4 must be a positive measure (Exercise 12.7 once
more). In any case, (16.3.24) follows on combining (16.3.27) and (16.3.28).

Finally, on assuming that (16.3.25) obtains, it follows that supp 4 < {0}
(take f = g = v,, as in Exercise 12.5, and consider what happens as n — o).
Then, by Exercise 12.33, positivity of B entails that A = const ¢, and (16.3.26)
follows from (16.3.24). l

Remark. If the bilinear operator B maps € x € continuously into P and
satisfies (16.3.23) and (16.3.25) for f, g € C*, then (16.3.26) holds for f, g € C.
(In this case, there is no need to assume positivity.)

In fact, (16.3.24) holds for f, g € C*. The continuity of B on € x C then
shows that 4 must be such that A4 *f % g belongs to P and coincides with
B(f, g) whenever f, g € C; in particular, continuity shows that 4 itself belongs
to P. In addition, (16.3.25) shows that supp 4 < {0}, and the stated conclusion
follows once again from Exercise 12.33.

16.4 Multipliers of Type (L*, L9)

This and the two following sections will be devoted to a brief study of the
problem of multipliers of type (L?, L% and of the associated multiplier
operators. For pairs (p, ¢) of the special forms (2, 2) and (1, g), solutions
have already been obtained; see 16.1.2, 16.3.3, and 16.3.4. As will appear in
16.4.1, the solution for a pair (¢’, ) can be derived from that for (1, g).
Apart from these special cases, there is as yet no complete and effective
solution, and we are able here to give only a few conditions, some sufficient
and others necessary, in order that a given complex-valued function ¢ on Z
shall be a multiplier of type (L7, L9).

Except where other ranges of the parameters p and ¢ are specified, it is
hereafter supposed that 1 < p, ¢ < co; the conjugate exponents p’ and ¢’
then satisfy the same inequalities.

For brevity we shall write (p, q) in place of (L?, L?) and m(p, ¢) in place of
m(L?, L9).

From 16.3.1 it appears that m(p, ¢) is in a one-to-one correspondence with
a certain set of distributions in such a way that U e m(p, ¢) is associated
with that distribution 4 for which

Uf=Adxf (16.4.1)
for f € L?; the distribution 4 must be such that
|4 *fll, < const |f], (16.4.2)
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for fe L. On the other hand, if 1 < p < o, a simple continuity argument
shows that if (16.4.2) holds for fe C* then it and (16.4.1) hold for each
f€L?, A « f being then of necessity (the distribution generated by) an element
of L? whenever f € L?. We shall frequently discuss multiplier operators U in
terms of the associated distributions 4.

The smallest permissible value of the constant appearing on the right-hand
side of (16.4.2) will be denoted by | 4|, , or by |U|,... The latter is just the
(p, g)-norm of U, as defined in 13.2.1. On occasions we shall also write
Iélls.e = Usllp.q for ¢ € (p, g) and speak loosely of U, as a multiplier.

In view of the alias just explained, it is natural and convenient to use the
symbol m(p, ¢q) to denote also the set of distributions 4 which satisfy an
inequality of the form (16.4.2). With the usual conventions, together with
those explained in 13.1.2 and 13.2.1, one may say that m(p, g) comprises
those distributions A for which |4|,,, < . In view of 16.2.7, one may
accordingly write (p, ¢) = & m(p, q), the set of sequences (functions on Z)
of the form A obtained when A ranges over m(p, q).

From 12.7.3(1), 12.11.1, and the arguments used in 16.2.2 it follows that

M < m(p,p) < P. (16.4.3)
Further, and trivially,

m(py, §1) © M(py, q2) whenever p; > Py, ¢, < g5 (16.4.4)

As we shall see forthwith, the dependence of m(p, ¢) and (p, ¢) on the param-
eters p and ¢ can be further clarified by the use of simple general arguments
from duality theory in conjunction with the Riesz-Thorin convexity theorem
13.4.1. [A general discussion of duality theory will be found in Chapter 8 of
[E]; see also 16.7.5(2).]

16.4.1. The relation m(p, q) = m(¢’, p’). Since (p’)’ = p and (¢')’ = gq,
the stated equality will follow as soon as it is established that

m(p, ) < m(¢’, p).
The proof will proceed in three stages.

(1) Suppose first that p # oo and that 4 € m(p, g), so that (16.4.2) holds
(with const = || 4], ,) for f e L?. Hélder’s inequality then shows that

|4 * f*g(0)] = [%I(A % f) ¢ da

< |4ls.qlfl5l9le

for any g € L7. So, by the Hahn-Banach theorem (see I, B.5.1) and the
results in I, C.1, to any such ¢ corresponds a unique g’ € L¥ such that

A = fxg(0) = f*g'(0) (16.4.5)
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for all fe L? and
l9'lo < 11 415.ql9le -

From (16.4.5) it follows that ¢’ = A * g, and the last-written inequality thus
signifies that 4 € m(¢’, p') and that | 4|, , < |4|,.. This completes the
proof in case p # co.

(2) Next consider the case in which p = o0 and ¢ # 1. The same type of
argument as was used in (1), but making appeal to 12.2.9 in place of I, C.1,
shows that any 4 € m(co, ¢) belongs to m(L¥, M). However, since ¢’ # o0,
Exercise 12.23 can be applied to show that A maps L? into L! (and not
merely into M). Thus m(co, ¢) < m(¢’, 1), and again |4, . < [|4],.¢

(3) Finally, if p = o0 and ¢ = 1, there is nothing to prove, because
g =p=o0 and p' = ¢ = 1. Thus all cases are covered and the proof is
complete.

It is worth noting that the inequality |A4|, ., < |4],., known to be
true in all cases, yields also

[4ll5.e = [Alloy @y < 14]eps
and therefore
4l = [4ll5,q- (16.4.6)

The reader will also observe that, as a corollary, one obtains the relation
(»,9) = (¢, p’) and the equality resulting from (16.4.6) after replacement of
A by a function ¢ € (p, q).

16.4.2. A Convexity Theorem. Suppose that 4 € m(p,, ¢,) for j = 0,1
and that

1 1-1¢ ¢ 1 1-—¢ ¢
- = + —_

p Do P q %o %

for some ¢ satisfying 0 < ¢ < 1. Then 4 € m(p, q) and
1450 < 141555141

Po»q0 P1,q9;1 °

(The reader is left to formulate the analogous statement concerning multi-
plier functions ¢.)

Proof. The result is an immediate consequence of applying 13.4.1 to the
operator T' with domain L* defined by 7f = A = f. To say that 4 € m(p, q)
means exactly that 7' is of type (p, ¢) in the sense in which the term “type”
is defined in 13.2.1. The details may be left to the reader’s care; see Exercise
16.12.

Remark. We see that, in particular, if ¢ is a given complex-valued
function on Z, the set of exponents p for which ¢ € (p, p) is always either an
open interval (a, a’) or a closed interval [a, a'], where 1 < a < 2.
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16.4.3. Some Proper Inclusion Relations. We revert to the relations
(16.4.3) and show that, except in those cases in which we know already [see
16.3.3 and Remark (2) following 16.3.5] that equality obtains, the inclusions
are strict. Indeed, we shall prove somewhat more than this.

() If 1 < p<ooand 1 € g < o0, then m(p, q) contains distributions
that are not measures; in particular, if 1 < p < o0,

MgZ mpp), FMZ(pop) (16.4.7)
Proof. Take any infinite Sidon subset £ of Z (see 15.2.4 or 15.2.5) and

choose any bounded complex-valued function ¢ on Z that vanishes on Z\E
and which does not belong to £2(Z). Since p > 1, 15.3.3 shows that
2, lfm]? <

nekE

for each f € L”. So, since ¢ is bounded and vanishes on Z\E, 8.3.1 entails that
g = 2 d(n)f(n)e, € L2.

nez
Evidently, § vanishes on Z\E, so that 15.3.1 ensures that g e L? for any
finite q. It thus appears that ¢ € (p, ¢) and U, € m(p, ¢). Yet, since ¢ ¢ £2(Z),
15.3.1 shows that ¢ ¢ #F M.
For the case ¢ < p, an alternative proof is provided by the substance of
16.4.8.
(2) If1 < p < o0 and p # 2, then

w(p,p)z P, (p.p)Z £2(2). (16.4.8)

Proof. The relations (16.4.8) are true if p = 1 or p = o0 (see 16.3.3,
Exercise 16.7, and either Example 12.7.8 or Exercise 12.37). So, by 16.4.1,
we may assume that 2 < p < co. In this case, take g € L2, g ¢ L?. By 14.3.2,
there exists a +1-valued function ¢ on Z such that ¢4 is the Fourier
transform of some f e L?. Since then § = ¢ - f and g ¢ L?, ¢ cannot belong
to (p, p) in spite of the fact that ¢ € £°(Z) = FP.

Remarks. (1) If we use Remark 14.3.4(2) in place of 14.3.2, the proof of
16.4.3(2) will yield the following assertion. If « is a mapping of Z into
Z,={0,1,2,--} such that sup,.;, # o« !({m}) < oo (see 11.3.4 for the
notation), and if 1 < p < 00, p # 2, there is a +1-valued function w on
Z . such that ¢ = woa ¢ (p, p).

(2) On making use of 14.3.5(1), it can be seen that (16.4.8) remains valid
if therein m(p, p) and (p, p) are replaced by m(p, q) and (p, ¢), respectively,
provided the relations ¢ < 2 < p are not fulfilled. (If ¢ < 2 < p, it is evident
that m(p, q) = P and (p, q) = £°(2).)

The next three subsections are concerned with some rather crude con-
ditions, some necessary and others sufficient, in order that a given complex-
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valued function ¢ on Z shall belong to (p, g), or that a given distribution 4
shall belong to m(p, ¢q).

16.4.4. Some Necessary Conditions. Suppose that ¢ € (p, g). Then
Mifl<p<gowo, 1l <qgxg?

D 1+ [n])"T" ¢ g(n)|T < oo (16.4.9)
nezZ
for each ¢ > 0;

2)if2<p <o, 1<qgc< oo,

D (L + [n])"P¢|g(n)]? < oo (16.4.10)
neZ
for each £ > 0.

Proof. Since (2) derives from (1) on the basis of 16.4.1, it suffices to
prove (1).

By Exercise 7.8, if 8 > 0, there exists f € L” such that f(n) = |n| =179
for n # 0. Since 1 < ¢ < 2, and since ¢f e FL? by hypothesis, 13.5.1(1)
shows that ¢f € #7. This conclusion is evidently equivalent to (16.4.9).

16.4.5. Remarks. (1) If p = 1 a stronger result is implied by 16.3.4
and 13.5.1(1). If ¢ < p (that is, ¢’ > p’) the conclusions are obviously trivial
(since ¢ is necessarily bounded); thus the only interesting conclusions are
those in which either 1 < p < ¢ < 20r2 < p < ¢ < .

(2) If p < 2 < g, the results in 16.4.4 do not apply directly. However, if
¢ € (p, q), then ¢ € (p, 2) and ¢ € (2, q); to each of these two relations 16.4.4
can be applied. It thus results that, if » = max (9, q), then

> 1+ |n)-2r-¢|pn)|?2 < o

nezZ
for each ¢ > 0.

(3) The results stated in 16.4.4 can be slightly strengthened by appealing
to 7.3.4 and 7.3.5 to show that if p > 1 and (a,)7-, is such that e, | 0 and

KO
Z nP~2q,P < o0,
n=1

then there exists an fe L? such that f(n) = a,, or sgnn- ay, for ne Z,
n # 0. Taking a, to be of the form »~?(log n)~¢ for n > 2, where ¢ > 1/p,
it will be seen that the factor (1 + |z|)~¢ could be replaced by

{log (2 + [n[)}~"7-¢

in (16.4.9), and by {log (2 + |n|)}~*7"~¢ in (16.4.10).
Naturally, further refinements of the same nature can be made, but there
is no indication of anything definitive being forthcoming in this fashion.
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16.4.6. Some Sufficient Conditions. Suppose that 1 < p € ¢ < oo and
that positive numbers 7 and s are defined by the relations

Then (1) I/ < m(p, ) and | 4], , < 4], for 4 eL7;
(2) if s < 2, then £%(Z) < (p, ) and ||, < |4, for ¢ € £42);
3)ifl <p <2 <gq< o, and if ¢ is a complex-valued function on Z
such that
M= sup (1 + |n])*¢|¢(n)| < o,

then ¢ € (p, ¢) and ||¢||,., < 4,4, M, where 4, is defined for 1 <t < 2 as
in Exercise 13.9(1). (Cf. Hormander [1], Theorem 1.11, p. 106.)

Proof. Statement (1) is an immediate deduction from 13.6.1. Statement
(2) follows from (1) combined with the Hausdorff-Young theorem 13.5.1(2),
according to which any ¢ € £(Z) can be written in the form A for some
A €L satistying 4], < |4

As for (3), for any f € L? the case r = 2 of Exercise 13.9(1) shows that

> 1+ |n))= 2| fm)[52 < 4, f],,

nez

where « = 1/p — V5. Writing B = 1/¢ — Y%, we have therefore

D+ [2]) ) fm)|2 < D MA(L + |n])=26-25f(n)|2
nezZ nez
- M2 ZZ 1 + |n|)=2¢|f(n)|?

< M2A2|f|3-
The case s = 2 of Exercise 13.9(2) now shows that ¢f = § for some g e L?
satisfying
lglle < Ag - MA|f],-
Thus ¢ € (p, q) and ||$||,., < 4,4, M, as alleged.

16.4.7. Some Results of Hirschman. We propose to consider two
interesting results concerning (p, p) given by Hirschman ([1], pp. 231-236).
Throughout this subsection ¢ denotes a complex-valued function on Z.
For B > 0 Hirschman defines (compare 8.7.2).

r—1
V(@) = sup { > |$(mer1) — blmy) |53,
k=1
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the supremum (which may be co) being taken over all strictly increasing
sequences (n,); -, of integers. The results are as follows:
(1) If
é(n) = O(|n|~°) as |n| — o0
for some 8 > 0 and
V() < 0

for some B > 2, then ¢ € (p, p) whenever

28 28
Bre~P<pg_

2
(If the condition 8 > 2 is here replaced by 1 < B < 2, 8.7.3 and 3.1.6 show
at once that ¢ € (p, p) for all p satisfying 1 < p < ©.)
(2) If

$(n) = O(|n|~%)  as |n| - oo,
where 0 < o < 15, then ¢ € (p, p) whenever

T+2 P T2

Of these, (2) follows from (1), because the hypotheses of (2) entail that

Vg(é) < o0

for B > 1/o. Before giving the fairly elaborate proof of (1), it is worth noting
that both Hirschman (loc. cit., p. 235) and Zygmund ([Z,], pp. 200-202)
give results bearing upon the membership to (p, p) for various values of p
of certain functions ¢ of the form

n~? exp (icn?) (n > 0)

$(n) = {0 (n <0),

where a, b, and c are positive real numbers. (Zygmund’s results, which are
in a sense complementary to those of Hirschman, take the form of estimates
of the behavior of the sum function

d) = Z n~b exp (icn®)ei"®
n=1
near its only possible singularity at the origin.)
Hirschman also obtains somewhat similar results for the case in which the
underlying group is Z or R™ In this connection see also 16.4.9(3) and de
Leeuw [1].

Proof of (1). In view of 16.4.1, it suffices to deal with the case in which

28
Fr3<P< 2. (16.4.11)
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Furthermore, we may suppose that ¢ is real-valued, that ¢(0) = 0, and that
8 < 1. We therefore write
2
o = S > 2,
so that
|(n)| < K(1 + |n|)~2e. (16.4.12)

The idea of the proof is to approximate ¢ by functions ¢, (m = 0, 1, 2, --),
in the sense that
é = lim ¢, (16.4.13)
Mmoo
pointwise on Z, where the ¢,, are to be chosen rather carefully. The proof is
presented in several stages.

(a) Construction of the ¢,. We begin by interpolating ¢ linearly between
the integers, thus obtaining a real-valued function defined on R; this new
function will be denoted by ¢ again.

Let m be any nonnegative integer.

If |¢p(z)| < 2-™ for all z > 0, define z; = 0; otherwise, let x; be the largest
z > 0 such that ¢(x) = +2-™. If there exist numbers z satisfying 0 < =z <
and ¢(x) = ¢(x,) + 2°™, let x, be the largest; otherwise, let xz, = 0. This
procedure will terminate after a finite number of steps with a number xy, so
that 0 = ay < xy_; <--- < 2.

The numbers ®_; < x_, <---< xz_y =0 are defined in an exactly
analogous fashion.

Define ¢,, by the relations

0 ifn=00rn>zx,0orn < x_,
buln) = < Pxy) fey,y<n<a, l<ksN-1,
b _y) fe ., <n<x_ ., 1<k M-1.

It is almost evident that (16.4.13) holds; in fact, |§n,(n) — $(n)| < 27™, so
that (16.4.13) holds uniformly. Also, (16.4.12) and a careful study of the
definition of ¢,, will show that

|pn(n)| < Kyi(1 + |n])~—2e; (16.4.14)

the reader may find some use for a rough figure at this point.
(b) The next step is to verify that, if 0 < ¢ < 1,

Vo_eldm)?—¢ < 26-24amP (4)5, (16.4.15)

To begin with, an argument like that appearing in the last paragraph on
p. 227 of Hirschman [1] will show that any sum

s—1
z |pm(n41) — Pumlny)|2~%,
i=0
in which ny < n; < --- < ng are integers, is majorized by

g |p(@ns1) — Pl@n)]22.
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Next, since |¢(x, 1) — ¢(zy)| is either 0 or a positive integer multiple of 2-™,
this last-written sum is majorized by

20-250m 5 | 41) — ()|
h

Finally, since ¢ is linear between successive integers, the remaining sum does
not exceed V,(¢$)?, whence (16.4.15).
(c) We now define i, = ¢ and ¢, = ¢, — -1 form = 1,2, .-, so that

‘}Sm N ugo ,’bu

and therefore
Ifmllor < ZO 7 - (16.4.16)
=

From (16.4.14) and (16.4.15) it follows immediately that
[fm(n)] < Ky(l + |n|)-2e (16.4.17)
and
Vaoelhm)?™° < 4:26-240mY (4)8, (16.4.18)

At this point we apply 8.7.3 to i, and use (16.4.17) and (16.4.18) to derive
the inequality

“l/’m”1,1 < Ag 208 -2+Na-DI2Aa-24Nm (16.4.19)
In addition, since |¢ — ¢,| < 2°™, we have

nlzz = [Pnle < 2.2°m (16.4.20)
By (16.4.11),.

where

t> (16.4.21)
B
So, using 16.4.2, (16.4.19), and (16.4.20), we see that
2 lallsn < ©, (16.4.22)
m=0

provided
(ﬂ — 2 4+ &) — 2)(1 — @)
2 — 2 + ¢€)

-t <0,

which, in view of (16.4.21), is true for sufficiently small ¢ > 0.
(d) From (16.4.16) and (16.4.22) it appears that

Sl”llp [!¢MI'P.P < ©.

This relation, together with (16.4.13), entails that ¢ € (p, p); see Exercise 16.21.
The proof is therefore complete.
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16.4.8. The Hilbert Distribution as a Multiplier. Let H denote the
Hilbert distribution, as defined in Section 12.8. The distribution H is a
pseudomeasure but (as was seen in 12.8.1) not a measure. By Marcel Riesz’s
theorem 12.9.1, H € m(p, p) whenever 1 < p < co. It follows immediately
that H * p € m(p, p) whenever 1 < p < oo and pu € M. On the other hand, by
12.8.4(1) and the fact that H is not a measure, H * u € M is true for but a
meager set of 4 € M (compare 16.4.3(1)). See also [EG], Section 6.7.

16.4.9. Further Results. (1) Hormander[1] makes a detailed study of multi-
pliers for the case in which the group 7' is replaced by a group E™. He
obtains analogues of 16.4.6 in the shape of his Theorems 1.11 and 2.4 and
his Corollary 1.2. Hormander’s work also includes similar results ([1],
Theorem 2.5) which are more complicated and which, as far as the author
is aware, have no published analogues for the group 7'; further results of
the same nature have been obtained by Littman [1]. Still for the case
G = R™, Schwartz [3] discussed multipliers that are direct analogues of
the conjugate function operator studied in Sections 12.8, 12.9, and 13.9;
Krée [1] has continued work on this theme. See also Calderon [3].

Calderén [2] provides a survey of these and many other related questions.
(We may point out here that both Hoérmander and Calderén speak of
“translation invariant operators’ when the operators in question in fact
commute with translations.) See also Cordes [1] and Peetre [1], [2], [3].

Concerning multipliers on more general groups, see in addition Gaudry [1],
[2], [3] and Figa-Talamanca [3].

(2) For a discussion of some of the properties of functions « : Z — Z such
that exp o (ia) € (p, p), see Edwards [13].

(3) Hahn [1] gives some interesting extensions of the results discussed in
16.4.7, together with a proof of the inclusion

P2y« P"(Z2)C (r,r) if 1< p<2,r, <7<, (16.4.23)

where 7, = 2p/(3p — 2). Hahn’s proof of (16.4.23) is fairly simple and ties
up with the general developments mentioned in 13.4.2(2). It may be briefly
described in the following fashion.

Denote by ¢ and ¢ complex-valued functions on Z having finite supports and
by f and ¢ functions in L*®. Define

Qe 4 fr @) = > ¢ * g(n)f ()g(n).

nez

By 3.1.6, the Cauchy-Schwarz inequality, and (8.2.2),

Qs ¥ fs D < 16 | Fdl1 < I blalgllol T 2112
= l¢lilglelfl2lgl2- (16.4.24)
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Similarly,

A

Q¢ v f. )] = (¢ % 9)" +f % 9(0)] = |($) = f % g(0)]
< [ 1L0S * gllw < 161221 ]9] -
= [¢lzl¢llfl1]g]- (16.4.25)

Since @ is quadrilinear (that is, linear in each of its four arguments when the
other three remain fixed), an appropriate convexity theorem ([Z,], p. 106)
leads from (16.4.24) and (16.4.25) to the inequality

1R, ¢ fs )| < llol¢lall 1 -llalls
whenever
1111 11 11 1111

(59 ;a a’ E) = t('i-y &-)—7 -2', "2-) + (]_ —_ t)(—2-’ §’ 19 5)
for some ¢ € [0, 1]. In other words,

1R, . f, DI < lbloldle 17 ] gl +

provided 1 < p < 2 and r = r, = 2p/(3p — 2). In view of the definition of
and the converse of Hélder’s inequality, it follows from this that

g * &l rr < I8lalls (16.4.26)

for 1< p < 2and r = r,. Appeal to Exercise 16.21 will now show that (16.4.26)
holds whenever ¢ € £7(Z), € £*(Z) and r = r,. By 16.4.2, (16.4.26) holds also
for the same ¢ and ¢, provided r lies in the interval [r,, r;]. This establishes
(16.4.23).

(4) The area of harmonic analysis known as Littlewood-Paley theory has
close connections with multiplier theory. For an account of some aspects of
this, see [EG].

(At this point it is perhaps fair to comment on the bizarre so-called review of
[EG] appearing in Bull. Amer. Math. Soc. 84 (1978), pp. 242-250. This
so-called review is a splendid survey of the complex variable aspects of
Littlewood-Paley theory, which aspects are merely mentioned and deliberately
left aside in [EG]; see the fourth complete paragraph on p. 3 of [EG]. Only a
tiny fraction of the said review is devoted to [EG] itself. It would therefore be
a good plan to consult other reviews; for example, that appearing in Austral.
Math. Soc. Gazette 5(3) (1978), 100-108 and/or that to appear in Mathematical
Reviews.

(6) For other aspects see Okikiolu [1]; Pigno [1], [2]; Price [1], [2];
Figa-Talamanca and Gaudry [2], [3], [4]; Gaudry [1], [2], [6]; Saeki [1];
Figa-Talamanca and Price [1]; Riviére and Sagher [1]; Cowling [3]; Goes [4];
Littman, McCarthy and Riviére [1], [2]; Doss [1]; Lanconelli [1]; Krée [1];
Edwards and Price [1].

16.5 A Theorem of Kaczmarz—Stein

The theorem of Kaczmarz [1] and Stein [1], Theorem 9 gives a
condition that comes close to being necessary and sufficient in order that
a bounded complex-valued function ¢ on Z shall belong to (p, p); see also
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Goes [4]. A slightly modified account of the theorem will be given in this
section. Its proof depends on the Marcinkiewicz interpolation theorem
13.8.1 and the theorem of Stein quoted in 16.2.8.

The first two subsections deal with some preliminaries.

16.5.1. The Function Space V,. If 1 < p < o0, V, will denote the set
of functions @ € L? such that

sup || > (Tp, ® — Tq,P)], < 0, (16.5.1)
K=1

the supremum being taken with respect to all finite sequences ([ay, b,]);_,
of nonoverlapping subintervals of [0, 27] (or of any other interval of length
2m).

Although the case p = oo will be of little direct concern to us in this
section, it is interesting in connection with 16.3.3 and 16.3.5 to note that
V, comprises exactly those functions ® € L® that are equal almost
everywhere to functions of bounded variation (that is, for which D® € M ;
see 12.5.10). The proof of this is not completely trivial; see Exercise
16.15.

It is quite evident that V, is a linear subspace of L?, and that V, <V,
ifp <gq.

16.5.2. From this point onward in this section, ¢ will denote a bounded
complex-valued function on Z. We introduce the function @ defined by
D(z) = > (in) '$(n)ein*, (16.5.2)
n#0
the series converging in L? (for example).
It is to be observed that, if ¢ € (p, p), and if we denote by B the function
Bx) = D (in)"'e=, (16.5.3)
n#0 -
then Exercise 1.5 shows that feL® < L” and 16.4.1 then entails that
® = U, BeL”. (It is true, of course, that in this case ® € L?, too.) Moreover,
in this case
Usf = {$(0) + DO}« f, (16.5.4)
which shows by way of interest that U, corresponds to the distribution
A = ¢(0) + DO.
We can now state and prove the Kunze-Stein theorem.

16.5.3. (Kaczmarz-Stein) Suppose that 1 <p <2 and that the nota-
tion is as in 16.5.1 and 16.5.2. Then:

(1) if $.€ (p, p), then P V,;
(2) if ® eV, then ¢ € (r, r) for all exponents r satisfying p < r < p'.
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Proof. We may and will assume throughout that ¢(0) = 0.

(1) We know already from 16.5.2 that ® € L', and it thus remains to show
that @ satisfies (16.5.1) with p’ in place of p.

Let f € LP and consider the function g defined by

9(@) = [ Uafty) dy.

Using the notation of 16.5.1, we then have

!'Z {g(—b) — g(—an}| < i f:bakonf(y)l dy
k=1 k=1 13
< 27| Usf s < 27| Usfll, (16.5.5)
< 277”¢|Ip.puf||p-
On the other hand, by 6.2.8,
g(=b) — g(=a) = 3 (i) $(n)f(m)(e="" — e~e),

which, by 10.5.4 and the fact that ® € L?" (see 16.5.2), is none other than
O % f(—=b) — ®xf(—a) = (T,® — T.®) *f(0),
the last step relying on 3.1.2. Thus (16.5.5) entails that

(3 (T0,® = 70, @) 2 JO) < 211l s

which combines with the converse of Holder’s inequality (Exercise 3.6) to
show that

T
”kzl (To, @ — T4, @) < 275,
Thus ® € V,. and this portion of the proof is complete.
(2) Let fe L? and write y = ® xfand, form = 1,2,---,

1
hnl@) = mlh(= + =) = @)} = MTam® = B} +f@).
Since by hypothesis ® e L7 < L1,

U™ f— i

is an m-operator of type (L7, L?) (see 3.1.6 and 16.2.7).
The function ¢ is of bounded variation since, by Hélder’s inequality,

|3, 060 - flad] < | 3 100, = 2) = @ = )l IS5

< ”kzl(T~bk(D = T 0@ Ifl»

for all finite sequences ([ay, bc]);-1 of nonoverlapping subintervals of [0, 27],
and since ® € V,, by hypothesis. (This yields an independent proof that U™ is
an m-operator of type (L?, BV).)
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By standard results ((W], Theorem 5.2¢ and Lemma 6.4b),
lim U™f(z) = ¢’ (x)

exists finitely for almost all z. (Note that we write ¢ and not Diy: it is the
pointwise, not the distributional, derivative of ¢ that is here involved.)

Stein’s theorem 16.2.8 now applies to show that the operator f — ¢’ is of
weak type (p, p)-

Also, if f is absolutely continuous, the same is true of ¢ (by 3.1.5), and we
may then identify ¢" and Di. In this case, (16.5.4) shows that ' = U,f (recall
the assumption that ¢(0) = 0). Accordingly, reference to 13.7.2 and 13.7.5
shows that there exists a number 4 such that

Dy, ) < (‘ﬂ{”—”)p (16.5.6)

for all absolutely continuous f and all ¢ > 0.

The fact that U, is of type (2, 2) can now be used to show that (16.5.6)
continues to hold for any f € L2, any such function f being approximable in L2
(and therefore in L?) by a sequence of absolutely continuous functions f,; see
Exercise 13.18. Knowing this, we may affirm that U,, with domain L2, is of
weak type (p, p) and of type (2, 2). This, together with the Marcinkiewicz
interpolation theorem 13.8.1, shows that U, is of type (r, r) for each r satisfying
p < r < 2. Thus ¢ € (r, r) for any such r. That the same is true for 2 < r < p’
follows at once from 16.4.1, and the proof is complete. As was pointed out to
me by Professor G. Goes, Kaczmarz [1] actually proves that, for every p such
that l <p < 0, € (p, 1)ifandonlyif e V.

16.6 Banach Algebras }Applied to Multipliers

It is very simple to verify that (p, p) is a complex commutative Banach
algebra with identity (the constant function 1) relative to pointwise algebraic
operations and the norm || ||, ,. For all p one has

(LL1)y=%M < (p,p) < (2,2) = £°(Z). (16.6.1)

For ¢ € (p, p),
I¢le < I¢ls.05 (16.6.2)

and for pe M,
“:a”p.p < n/"'Hl (16.6.3)

The determination of all the continuous complex homomorphisms of (p, p)
meets with difficulties that are presumably of the same order of magnitude
as are encountered in the case of the algebra M of measures (see 12.7.4).
To each n € Z corresponds the homomorphism n — ¢(n), but there are others.
(The reader should provide a proof of the last statement.)

In view of this, we look at a subalgebra of (p, p) which is more tractable
and still of some interest, namely, the closure m, in (p, p) of #L. From
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(16.6.2) and 2.3.8 it appears that m, < ¢y(Z); as a consequence, m, has no
identity element.

The introduction of m, is suggested by the step taken by Hérmander
([1], pp. 111-113) in his study of multipliers for groups R™.

Reference to 4.1.3 leads to the conclusion that the evaluation maps
¢— ¢d(n) (neZ) exhaust the nontrivial continuous complex
homomorphisms of the algebra m,.

(Actually, 4.1.3 is to be applied to E = L' with the norm induced by
that of m(p, p). Conditions (a)-(d) in 4.1.3 are satisfied. Hence one
concludes that every nontrivial continuous complex homomorphism of E
is of the form f— f(n) for some n € Z. The same is therefore true of the
nontrivial continuous complex homomorphisms of the closure in m(p, p)
of E, as alleged.)

Knowing this, one can apply 11.4.15 to the algebra obtained by adjoining
a formal identity to m, (see 11.4.1 and an analogous procedure in 11.4.16).
The outcome is the following assertion.

16.6.1. Functions of Multipliers. Suppose that ¢ em, and that the
function @ is defined and analytic on some open subset of the complex plane
containing ¢(Z) U {0} and satisfies ®(0) = 0. Then ® o ¢ € m,,.

This is the analogue, for the group 7', of Hormander’s Theorem 1.18.
Still following Hormander ([1], pp. 111-113, Theorem 1.16), we can
obtain a useful inclusion relation.

16.6.2. Ifl < p, g < oo, and if

1 1 1 1
then

(P, p) N eo(Z) = m,.
Proof. In view of 16.4.1 and (16.6.4), we may assume that
1 -1t

[\

for some ¢ satisfying 0 < t < 1.
Let ¢ € (p, p) N €o(Z) and define ¢y = ¢Fy. Then it is trivial to assert
that ¢y € FL. Moreover (see Exercise 16.16),

lénllos < [ Exllaldlse < [$l5.0,

"¢ - <}"N”p,p < 2”‘#“1:,1: (16-6-5)

so that

Since ¢ € ¢y(Z),
¢ — énllze = l¢ — dnlow—=>0 asN-—o0. (16.6.6)
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Now we appeal to 16.4.2, which shows that

I$ — dullaa < Ié = dnlbnld — Sullaz"

By (16.6.5) and (16.6.6), the right-hand member of this inequality tends to
zero as N — oo (remember that 0 < ¢ < 1). Thus ¢ € m, and the proof is
complete.

16.6.3. Remarks. It is natural to ask whether the relation
(P, p) N eo(Z) = m, (16.6.7)

is true. The answer is affirmative when p = 2. The answer is negative when
p =1 or oo: this is due to the existence of measures u ¢ L for which 4 € ¢4(2).
The existence of such measures in turn hinges on the existence of sets of
multiplicity in the strict sense and having zero measure (see 12.12.8);
although the question is a fairly delicate one, it is known that such sets exist
in abundance (see [Z,], pp. 348-349; [Z,], pp. 147-152; [KS], Chapitres V
and VI).

For 1 <p <2, (16.6.7) has been shown to be false by Gaudry and
Figa-Talamanca [2].

It follows from 12.7.4 that the characters of 7' generate only a scant
subset of all continuous complex homomorphisms of the Banach algebra
(1, 1) = # M ; in particular the so-called Wiener-Pitt phenomenon asserts
the existence of a measure u €M such that fiis real-valued onZ = T but
is not real-valued on the whole Gelfand space I'(M) (the notation is as in
11.4.9). Zafran [1] has shown that this phenomenon persists for, amongst
others, the multiplier algebras (p, p) N ¢o(Z) when 1 < p < 2. See also
Brown [3].

On page 178 of Volume 1, the functions which operate on A(7') and
A(Z) are identified. Igari [2], [3] has shown that only entire functions
operate on the Banach algebra (p,p) when1 < p < 2; that is,if F:[—1, 1]
—C and F o ¢ € (p, p) for every ¢ € (p, p) such that ¢: I'((p, p))—
[—1, 1], then there exists ¢ > 0 such that F agrees on (—e, ¢) with some
entire function. For p = 1 Varopoulos [4] and for 1 < p < 2 Zafran [2],
[3] have shown that the same conclusion holds with (p, p) replaced
throughout by the smaller algebra (p, p) N €4(Z).

16.7 Further Developments

This section consists of brief comments on further results associated with
multipliers and with extensions of the concept.? References are given to
assist those readers who may wish to pursue the matters mentioned.

! For the majority of such developments, multipliers appear more naturally in their

guise as operators (rather than as functions on some dual object); compare the opening
paragraphs of Section 16.4
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16.7.1. Multipliers and Isomorphism Problems. We have in 4.2.7
referred to the interest that attaches itself to the study of multipliers on
account of their relationship with isomorphism problems. The reader should
by now be in a better position to appreciate the details and the difficulties.

The question proves to be largely one of seeking to characterize in a
sufficiently effective manner the multipliers U € m(F, F), where F is (say) L7,
C, or M, which map F in a one-to-one manner onto itself and which have
certain additional properties (such as being bipositive or isometric).

It may be helpful to begin by looking at the problem in reverse, so to
speak. Suppose that n € Z, and that { is an automorphism of the (topological)
group T'. It is then easy to verify that the operator S: f— e, (f ° {) is an
automorphism of each of the convolution algebras Lf and C which is

(1) isometric in any case,
(2) bipositive (that is, is such that Sf > 0 if and only if f > 0) provided
n=0.

Moreover, if a € T, the corresponding multiplier U, = 87T, 8 (see 4.2.7)
is given by U, f=e,(—a) T, f and is thus a scalar multiple of a
translation operator. The knowledge of U, determines {(a) uniquely.

More generally, if § is any automorphism of the convolution algebra L?
or € which satisfies (1) [or (2)], it is still visibly the case that U, is an
isometric (or bipositive) multiplier of L? or C. The question is: does this
imply that U, is a multiple of a translation operator ?

One is thus led to pose this same question in respect of isometric or bi-
positive multipliers U of various other group algebras F. An answer to this
question provides an answer to the corresponding isomorphism problem for F.

For F = L' the problem was solved affirmatively by Kawada [1] in the
bipositive case and by Wendel [1], [2] for the isometric case; for F = M and
the isometric case by Johnson [1]; for F = L® and the isometric case by
Gaudry ([3], Theorem 5.2.1); and for F = L? (1 < p < o0, p # 2) and the
isometric case by Strickartz [1] and Parrott [1]. Some other cases are dis-
cussed in Edwards [10] and Gaudry [4]. For a connected account of some of
these results, see Gaudry [3], Chapter 5. See also Greenleaf [1], [3].

The results mentioned apply to groups more general than 7. On the
other hand, the problem of isomorphisms that are neither isometric nor
bipositive would appear to remain largely open.

Related problems are discussed by Forelli [1], Rudin [7] and
Rigelhof [1].

16.7.2. Compact and Weakly Compact Multipliers. It is customary
to apply the adjective compact to a linear operator U from a Banach
space E into a Banach space F, if U transforms the closed unit ball of E into
a relatively compact subset of F; see, for example, [E], Section 9.2.



[16.7] FURTHER DEVELOPMENTS 315

Gaudry ([3], Theorems 4.2.2 and 4.2.3) has given characterizations of
multipliers U € m(p, ¢) that are compact in the above sense, the characteriza-
tions being in terms of the possibility of approximating U in a certain way
by multipliers defined by convolution with functions. He gives also ([3],
Theorem 4.2.5) a characterization of those multipliers U € m(1, 1) that are
weakly compact, that is (see [E], Section 9.2), which transform the closed
unit ball of L! into a weakly relatively compact subset of L!: while (as we
know) every multiplier of type m(1, 1) is represented by convolution with a
measure, the weakly compact multipliers of type m(1, 1) are precisely those
representable as convolution with a function in L!. These results apply to
groups more general than 7. See Exercise 16.25 and Akeman [1].

16.7.3. Approximation of Multipliers. Having decided (see 16.4.3(1))
that, if p is different from 1 and oo, not every multiplier U € m(p, p) is
representable as convolution with a measure, it is natural to ask whether
and in what sense any such multiplier U can be approximated by multipliers
U, of the form

U.f = p+,

where u € M. This problem has been tackled with success for general groups
by Figa-Talamanca [1], [2] and by Figa-Talamanca and Gaudry [1]. For the
case of the group 7, some results of this sort are very easily obtainable;
see Exercise 16.18.

This discussion has at the same time led to a characterization of m(p, p)
in terms of the dual of a suitable space of continuous functions on the
underlying group. See also Rieffel [1].

16.7.4. Generalized Multipliers. If B denotes a Banach, or even a more
general type of topological, algebra, it is natural to define a left (respectively,
right) multiplier or centralizer of B to be a continuous linear space endomorphism
U of B such that

U(zy) = (Ux)y (respectively, U(zy) = z(Uy))
for z, y € B.
We have in this book no space to spare for this extended concept; the
interested reader should consult Helgason [1]; Wang [1]; Birtel [1], [2], [3];
Johnson [2], [3]; Maté [1], [2], [3]; [La].

16.7.5. Two Variants of the Multiplier Problem. We mention briefly
two interesting and largely unsolved variants of the multiplier problems
considered earlier in this chapter.

(1) Multipliers of quotient spaces. Suppose that F and G are as in 16.1.1,
that 8 is a subset of Z, and that ¢ is a complex-valued function on S. The
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problem is to determine necessary and sufficient conditions on ¢ in order
that to each f e F shall correspond at least one g € G such that

d(n) = ¢(n) 'f(n) foralln e S. (16.7.1)

A function ¢ possessing this property may conveniently be said to be of
type (F, G; S).

Plainly, the original multiplier problem corresponds exactly to the case in
which § = Z.

Equally plainly, if ¢ is the restriction to S of a multiplier of type (F, G),
then ¢ is of type (F, G; S). The nontrivial part of the problem thus remains
in deciding whether, conversely, each ¢ of type (F, G; S) is the restriction to
8 of some multiplier of type (F, G). The answer may, a priori at any rate,
depend upon the choice of F, of G, and of S.

An affirmative answer has been established for the case F = G = L! by
Wells [1] and, independently, by Brainerd and Edwards [1], Part IT, Theorem
3.3. In other words (see 16.3.3), a function ¢ is of type (L', L*; S) if and only
if there exists a measure p €M such that ¢(n) = fi(n) for all neS. The
arguments used in the latter reference could be adopted to deal with (L, M; S)
and (L', L*; S).

The answer is also affirmative when F = G = L2, as follows readily from
the results of Chapter 8.

As far as the writer is aware, the problem is unsolved for all other choices
of the pair (F, G) of the form (L?, L?) and for the choice F = G = C.

It is a simple matter to formulate the problem in terms of associated
multiplier operators commuting with translations. Indeed, if we denote by
I = X(G, S) the set of g € G such that §(8) = 0, the problem is virtually the
same as that which asks for a representation theorem for those linear
operators U from F into the quotient space G/I that commute with trans-
lations. (Translation has a natural meaning in G/I, T,(g + I) being by
definition the same as 7', + I.) In most cases of interest, F and G/I will be
such that the relevant operators U are continuous (compare with 16.2.1).
The operator U, associated with a function ¢ of type (F, G;8) will be
defined so that U,f is the unique element g + I of G/I defined by any g€ G
satisfying (16.7.1).

(2) Multipliers of invariant subspaces. Viewed from the standpoint of
multiplier operators in general, the problems discussed in (1) are closely
related to those of multipliers of closed (translation-) invariant subspaces.
The basis of the connection between the two types of problem lies in duality
theory for topological linear spaces and especially the concept of adjoint
operator (see [E], Chapter 8). We illustrate in the case of closed invariant
subspaces (that is, closed ideals) I in L?, assuming that 1 < p < oo.
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Let U be a multiplier operator of I that is, a continuous endomorphism of I
which commutes with translations. We introduce the closed ideal J in L’
defined by

d={gel” :fxg=0foral fel}

and form the quotient space L?’/J. The adjoint operator U’ is the endo-
morphism of L*’/J defined in the following fashion: if g € L, the linear
functional on I defined by

f— Uf % 9(0)
is continuous and depends only on the coset ¢ + J. From I, C.1 it follows
that there exists a unique coset ¢' + J = U’(g + J) such that

Ufg(0) = f+g'(0) (fel). (16.7.2)

There is no difficulty in verifying that U’ is a multiplier of L#'/J, continuity
of U’ being interpreted relative to the quotient norm on L* /J (see I, B.1.8).

The recovery of U from U’ presents no trouble. If, for example, U’ has
been shown to be expressible in the form

Ug+d)=Axg+ 4 (g e L7)
for some A € D, then (16.7.2) shows that
Uf=Axf (fel).

A somewhat similar procedure allows one to pass from problems of type (2)
back to problems of type (1).

Although the connections thus elicited between multipliers of invariant
subspaces and multipliers of quotient spaces are theoretically satisfying and
potentially useful, no solved cases of (1) are useful in studying type (2)
problems.

For other aspects of this type of problem, see Wells [2]; Wada [1];
Meyer [1]; Glicksberg and Wik [1].

16.7.6. Transformations of Fourier Coefficients. It has become
apparent that multiplier problems can be regarded as a study of subsets of
the set of all continuous linear operators from €C® into D which commute with
translations. One may ask how the picture changes if the condition of com-
mutativity with translations is dropped.
It is quite simple to show that the continuous linear operators U from C*
into D are precisely those definable by a system of equations
(Uf) (n) = Z d(n, m)f(m) forallfeC® and alln e Z, (16.7.3)

meZ

where ¢ is a complex-valued function on Z x Z determined by, and deter-
mining, U and subject to a majorization

lpm, m)| < c(l + |n| (1 +|m|)*  foralln, me Z, (16.7.4)
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¢ and k being U-dependent numbers. In other words, such operators U may be
regarded as linear transformations of Fourier coefficients defined by infinite
matrices ¢.

In this latter guise, such operators were discussed long ago by Hardy in
special cases; more recent and more general studies are due to Bellman [1],
Young {1], and Konyushkov [1]. In all cases, the principal aim has been to
determine conditions on ¢ in order that U shall map L” into itself.

16.8 Direct Sum Decompositions and Idempotent Multipliers

As an adjunct to this chapter, we return to the question (first broached in
2.2.1) of direct sum decompositions of the standard function spaces C and L?
in terms of their closed (translation-) invariant subspaces. Here we shall
relate such decompositions to certain families of idempotent multipliers of
€ or L?, as the case may be; compare the remarks in 3.1.1.

The first two subsections are occupied by precise definitions of the decom-
positions and families involved.

Failing any special indication to the contrary E will, throughout this
section, denote one of € or L? (1 € p < o0).

16.8.1. Direct Sum Decompositions. By a direct sum decomposition of
E we shall mean a family (V,),.; of closed (translation-) invariant subspaces
V; of E satisfying the following conditions:

(1) V;nV; = {0} for all 4, j € I such that ¢ # j;

(2) the index set [ is expressed in a definite way as the union of an
increasing sequence (I,)%, of finite subsets I, of I;

(3) to each f e E corresponds at least one family (f;);.,; such that

fieV, foralliel, (16.8.1)
f=1lim > f, inE. (16.8.2)

iel,

Although it is tempting to write in place of (16.8.2) the relation

f=2 fo
iel

some caution is required whenever I is infinite because there is no assurance
whatsoever that the series will be unconditionally convergent; the specifica-
tion of the sequence (I,), which governs the grouping of terms, is one way of
taking precautionary measures. Despite this, we shall frequently speak
loosely of ““a decomposition (V;).”

It will appear in the course of the proof of 16.8.3 that the family (f;)
referred to in (3) is uniquely determined by f, (V;) and (I,).
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16.8.2. Idempotent Decompositions of e&. Our aim will be to relate any
direct sum decomposition of E of the type described in 16.8.1 with a family
(0;)ie; of idempotent pseudomeasures (see Section 12.11) such that

o;em(E, E), o;,%0;=0 foralli jelsuchthati=+j, (16.8.3)

sup | > olge < o0, (16.8.4)
r icly
and
lim > o = . (16.8.5)

iely

The convergence referred to in (16.8.5) will be understood a priori to be weak
convergence in P (the dual of A: see Section 12.11 and I, B.1.7); however, as
will appear in stage (g) of the proof of 16.8.3, (16.8.4) ensures that (16.8.5)
remains true with a stronger sense of convergence.

Idempotence of o; means, of course, that o, * o, = o, or, what is equivalent,
that &, is the characteristic function of some subset of Z.

The first clause of (16.8.3) signifies that o;e M if E = C or L! (see 16.3.2)
and o; € m(p, p) if E = L” (see the beginning of the present section). More-
over, ||| g, means |||, or |||, , according as E is € or L?, respectively.
The second clause of (16.8.3) signifies that S; N S; = @ wheneveri, j e I and
i # j, where S; denotes the support of 4.

We shall speak of the family (o,);.; as an idempotent decomposition of & in
m(E, E).

We can now state and prove the principal result.

16.8.3. Decomposition Theorem. Let (V,);; form a direct sum decom-
position of E, as described in 16.8.1. Then there exists an idempotent de-
composition (o;);c; of e in m(E, E), as described in 16.8.2, such that:

(1) Vi={feE:o,xf =f} = {feE:f(Z\S,) < {0}} where S, is the
support of &;;
(2) the decomposition of f € E specified in 16.8.1(3) is unique and is given
by
fi=a xf for all ¢ € 1. (16.8.6)

Conversely, given an idempotent decomposition (g;);c; of ¢ in m(E, E), let
8; be the support of ;. Then the V, defined as in (1) immediately above form
a direct sum decomposition of E in which (16.8.6) holds for each f e E.

Proof. We begin with the direct assertion, the proof of which proceeds in
a number of easy stages.

(a) By 11.1.2 and 11.2.1, to each ¢ € I corresponds a subset S; of Z such that
V, is the closed linear subspace of E generated by the e, with n €S, (S, = @ if
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and only if V; = {0}); equivalently, V, is the set of f € E such tha,tf(Z\Si) < {0}.
Conditions (1) and (3) of 16.8.1 entail that

8;n8;=g for all 4, j € I such that i # j (16.8.7)
and
zZ=US§. (16.8.8)

iel

(b) Given f € E, the decomposition referred to in 16.8.1(3) is unique.

To see this it is enough to show that the only family (f;) such that f, eV,
for each 7 and

lim > fi=0 (16.8.9)
T=9 el
is that for which f; = 0 for each <. But choose and fix any je I. If V; = {0},
then f; = 0. If V, # {0}, then S; # @. If neS,, (a) shows that fim) =0
whenever ¢ # j. Accordingly, (16.8.9) entails that
lim > fin) = 0,
T ®© jel,
which reduces to f(n) = 0. Thus f,(S;) < {0} and f,(Z\S,) < {0}, and 2.4.1
shows that f; = 0.

(¢) From (b) it follows that to each i corresponds a map P;: f—f, of E
into V,; that P, is linear; that P2 = P; (so that P; actually maps E onto V;);
and that P; commutes with translations (since each V, is translation-invariant).

(d) Let us next show that each P, is a continuous endomorphism of E, in
doing which we shall use the closed graph theorem (I, B.3.3).

Take any sequence (f¥)®., extracted from E such that f¥ — 0 in E and
P,fk — g in E: we must show that g = 0.

We may, by (16.8.2) and (a), write

f k= P lf k + h’kr
where ﬁk vanishes at all points of S;, so that
fe= (PS> onS,.

On letting k — 00, it follows that § = lim, ., f*¥ = 0on 8, Since V, is closed
in E, g€ V,; since it has a Fourier transform vanishing on §j, it follows
that g; must be 0, as required.
(e) By (c) and (d), P; is a multiplier of E, so that there exists a pseudo-
measure o; € M(E, E) such that
Pf =o,+f (16.8.10)

for each f € E. Since P, is idempotent (see (c)), the same must be true of ;.
Therefore &, is the characteristic function of a subset of Z which, since P,
maps E onto V;, must be S;:

by = xs; (16.8.11)

(f) The relation (16.8.2) can now be written

lim {> o}*xf=f mE (16.8.12)

T X el
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for each f € E. From this (16.8.4) follows by appeal to the uniform boundedness
principle (I, B.2.2), while (16.8.5) is an immediate consequence of (16.8.12),
(16.8.4) and the remark that a sequence (A,);%; of pseudomeasures converges
weakly in P to a pseudomeasure A if and only if lim,_, » A =2 boundedly
on Z.

On collecting together the results (a) to (f), it is easily seen that the direct
assertion is now completely proved.

(g) As for the converse, all that requires proof is the assertion that (16.8.4)
and (16.8.5) together entail (16.8.12). Define A, € m(E, E) to be

ZE Oy

tely

so that (16.8.4) signifies that the A, are equicontinuous endomorphisms of E.

Now (16.8.5) ensures that (16.8.12) is true for each trigonometric polynomial
J. Since the trigonometric polynomials are dense in E (see 2.4.4), equicontinuity
of the A, shows that (16.8.12) does indeed persist for a general f € E.

To verify this final point (which is a perfectly general principle), observe
that the equicontinuity of the A, means that

m = sup A ]er < 0,
so that
A *f = fle < (m + D|fle (16.8.13)

for every f e E. Given 6 > 0 and f € E, choose a trigonometric polynomial f,
such that

_8
m+ 1)

If = folle <
An application of (16.8.13), with f — f, written in place of f, shows that
1A *f = fle < A *fo = fole + 8.
So, since lim,, o A, * fo = fo In E,
1A %f = fle < 28
if r = r4(8), and the convergence of (A, * f)%; follows.
16.8.4. Remarks and Special Cases. (1) The summand f; in (16.8.2)
has now been identified with o, * f, that is, with

> fme.;

nes;

if §; is infinite, this infinite sum is interpretable (since o; is known to define
a continuous endomorphism of E) as the limit in E, as N — oo, of

"Esznst (1 - NIZ—I 1)f(n)en.

When E = L?, where 1 < p < o0, the summation factors may be omitted.
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Accordingly, 16.8.3 verifies in detail what might have been anticipated on
heuristic grounds, namely, that a direct sum decomposition of E corresponds
to a mode of bracketing of the terms of the Fourier series of a general f e E
in such a way that the resulting series is convergent in E. (A bracket may
contain infinitely many terms of the original series.)

(2) The Cases E = C or L'. When E = C or L!, each o, is a measure; and,
by Helson’s theorem [cited in 12.7.4(3)], S; differs by a finite set from a
periodic subset of Z. It is quite simple to verify that this means that o, is of
the form

oy = ;" pg, + v, (16.8.14)
where a, € Z, a; > 0;
a—1

— -1
Koy = @4 Z E2nkiay)»

which is the invariant measure of the cyclic subgroup of T of order a;; %;
is a trigonometric polynomial of the form

a -1

Uu; = Z Ci, i€

K=0

each c; , being 0 or 1; and v, is a trigonometric polynomial.
The measures
AT = z a;,

iel,

which are likewise idempotent, must have the same general form (16.8.14).

From the preceding remarks, it is easily seen how to construct direct sum
decompositions of E of the type specified in 16.8.1 in which I is finite and
each §; is infinite.

On the other hand, there exist no decompositions in which each 8; is finite
(that is, in which each V, is of finite dimension). Indeed, in any such decom-
position the equicontinuity of the endomorphisms A, (see part (g) of the
proof of 16.8.3) would in this case mean that

sup ||A ], < co. (16.8.15)
However,
’\r = z €n,
neTy
where
Tr = U Si
ielr

and the result cited in 12.7.4(4)(ii) shows that

[f 4, |; > const log k,
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where k, is the number of elements of 7',. Since k, — oo with r, this would
contradict (16.8.15).

(3) The Case E = L* (1 < p < o). Except when p = 2, there is no
known explicit description of the idempotent elements ¢ of m(E, E) = m(p, p)
analogous to (16.8.14) and therefore no complete classification of all possible
decompositions of E of the type described in 16.8.1. (When p = 2, all idem-
potent pseudomeasures are acceptable and all possible bracketings lead to
decompositions.)

Theorem 12.10.1 guarantees the decomposition in which I = {0, 1, 2, -- -},
I, ={0,1,---,7 — 1}forr =1,2,---,and S; = {+4¢} fors € I. Other decom-
positions may be derived from this one by arbitrary finite bracketing.

Yet other decompositions result from the use of the idempotent measures
of the type (16.8.14).

(4) For further study and results, see [Ro]; Rosenthal [1]; Rudin [8];
Price [3], Chapter 4. See also Exercise 16.30.

16.9 Absolute Multipliers

16.9.1. Definition. Given a set of distributions F (as in 16.1.1) and a
complex-valued function ¢ on Z, ¢ is said to be an absolute multiplier of
F, if and only if (pf € £1(Z) for every feF. This signifies that ¢ is a
multiplier function of type (F, A), in the sense of 16.1.1; or, equivalently,
that the operator U, maps F into A.

16.9.2. Examples. (i) It follows from Exercise 3.14 that the absolute
multipliers of L! are precisely the elements of £*(Z).

(ii) By 14.3.5(2'), ¢ is an absolute multiplier of C, if and only if ¢ €
¢?(Z). Alternative proofs of this and various analogous results appear in
Edwards, Hewitt and Ritter [1], Hewitt and Ritter [1] and Edwards and
Helson [1]; ef. also Brown [1], [2].

(iii) Paley [1] proved in effect that ¢ is an absolute multiplier of

C;, ={feC:supp fc Z,},

where Z, denotes the set of nonnegative integers (cf. the spaces H?
defined in Exercise 3.9 and the space A* mentioned in the Remark
attached to Exercise 11.15), if and only if ¢ |Z, (the restriction of ¢ to
Z ,) belongs to £2(Z ).

A generalisation of this theorem to a general class of compact Abelian
groups appears in [R], Section 8.7.8; see the next subsection. See also
Fournier [3], and Helson [7].

Sometimes C,, is denoted by C, (the suffix “A” indicating ‘‘ analytic
type’’ or ‘ power series type ”’); we shall here avoid this notation because
of the obvious conflict with that employed in Chapter 15.
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16.9.3. Paley’s theorem and its proof. To reiterate, the theorem asserts
that a complex-valued function ¢ on Z is an absolute multiplier of C,_, if
andonly if 9| Z, € £%(Z,).

The “if "’ part is close to trivial.

The proof of ““only if” to follow is based upon that appearing in [R],
Section 8.7.8. To lighten the notation we shall, throughout the proof to
follow, write E in place of C, .

To begin with, it follows from (12.9.9) (proved in 13.9.2) that, for every
p € (0, 1), there exists a number k, > 0, independent of A, such that

Y Ene,

neZ+

< kylkll, (16.9.1)

4

for all trigonometric polynomials 5.

Assume that ¢ is an absolute multiplier of E. An appeal to either the
Boundedness Principle or the Closed Graph Theorem (Volume 1,
Appendix B.2.1(1) or B.3.3) shows that there exists a number k > 0 such
that, for all f € E,

Y lem) fm)| <kl fly (16.9.2)

neZ+
Let F be a finite subset of Z,, expressed as the range of an injective

sequence (m;);<x<y- By Exercise 2.19, there exists a trigonometric
polynomial P such that

1Pl <2 (16.9.3)
and
Pm)=1 forallneF. (16.9.4)
Define, for all w € € and all real z,
N
Jol®) = Y pj(@)p(n;) exp (in;z). (16.9.5)
j=1

By (16.9.2) and the Hahn-Banach theorem (Volume 1, Appendix B.5.1),
combined with 12.2.3, 12.2.9 and 12.3.8, for every @ € ¥ there exists a
measure i, such that, for all w € ¥ and all f € E,

ol < % (16.9.6)

and
N
_Zl pi(@)p(n)) f () = ol f). (16.9.7)

From (16.9.7) it follows in particular that, for all w € ¥,
fo(n) = @(ny)pjw)  forallje{l,---, N}
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and
f,(n)=0 for all n € Z \{n,, -, ny}.

Hence, forallwe € andallne Z,,

(P * ty)" (0) = fo(n).
Therefore, by (16.9.1), (16.9.3) and (16.9.6),

2n 2
(j | goo() |1/ dx) = |lgoull1j2 < k12l P * polly
o .

< kl/zl’P”ﬂIﬂwlh (see 12.7.3)
<2k b=k  foralwe®¥. (16.9.8)

Integrating with respect to @ over € and interchanging the order of
integrations, (16.9.8) implies that

2r
j (flgw(x) |12 dl(w)) dz < K12,
0 €

whence follows the existence of 2, € R such that
L | go(@o) ' dA(w) < B2, (16.9.9)
Defining, for all w € €,
hw) = ji pj(@)@(n;) exp (in;xo),
k is a Rademacher polynomial; and, by (16.9.9),
L| h(w)|? dA(w) < kY2 (16.9.10)
On the other hand, by (14.2.1), there exists a number k, = Osuch that

12 2
(flh(w)lz di(w)) < k2<J-|h(w)l”2 dl(w)) . (16:9.11)
Je ¢

By (16.9.10) and (16.9.11),
172
(f | h(w) |2 d/l(w)) <k, k.
¢
This, together with (16.9.5) and 14.1.7 or 14.1.16, implies that

N
Y lom)? = ‘Zl lo(n) | < ky k2. (16.9.12)
P

neF
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Since k, and k' are independent of F, it follows from (16.9.12) that
Y lom)? < oo,

neZ+

which completes the proof.

16.9.4. Remarks. (1) It is clear that Paley’s theorem holds, with C,,
replaced by
Cs={feC:suppfcS},

whenever S is a subset of Z having the property that there exists p > 0
and k£ = 0 such that

< k||All, forall heT. (16.9.1")

p

Y, h(ne,

neS

No systematic study of the class of such sets S seems to have been
published. A few properties of this class are discussed in Exercise 16.31.

(2) The appearance of C;, in Paley’s theorem naturally suggests the
systematic consideration of multipliers of the Hardy spaces H” defined in
Exercise 3.19.

A good deal of work has been done on this topic, but space forbids an
attempt at any account in this book. Any interested reader should
consult, for example, Meyer [1]; Gaudry [5]; Hedland [1]; Yamaguchi
[1]; and the references listed in these papers.

16.10 Multipliers of weak type (p, p)

A multiplier ¢ of type (p, p), as described in 16.1.1, defines and is
defined by a linear operator U4 from L7 into itself having the property
that (U, f)" =¢ * f for every feL?. As is proved in 16.21, U, is
necessarily continuous. In view of the terminology introduced in 13.2.1,
such a multiplier ¢ might for emphasis be said to be of strong type (p, p).

Zafran [4] has studied multipliers ¢ which he describes as being of
“weak type (p, p)”’, a description which is suggested by the terminology
introduced in 13.7.5 above. If confusion is to be avoided, a little care is
needed in approaching this new concept because, in spite of what might
be read into the description ‘‘ of weak type (p, p)”’, such a multiplier does
not in general map L? into itself, but rather into a bigger space L” ® to be
defined in 16.10.1. This in turn raises the possibility that ¢ may fail to be
of strong type (p, p). It is, on the other hand, by no means obvious that
this possibility is actually realised, a proof of which is Zafran’s
achievement.

Although Zafran’s work applies to certain other familiar groups, we
shall concentrate on the case of the circle group 7'.

T hroughout this section, it will be assumed that 1 < p < 0.
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16.10.1. The space L” ®. The space L? ® = L? (T is defined to be the
complex linear space of all complex-valued measurable functions f on T
such that

I f1I¥ o = sup {{(D/(t))"/?: t real and t > 0} < c0, (16.10.1)

D, being defined as in 13.7.2. (As with the spaces L?, the elements of L?* ®
are, in many contexts, to be thought of as equivalence classes, modulo
equality almost everywhere, of functions f satisfying (16.10.1).) For
further details about L” ® (which is one amongst a class of so-called
Lorentz spaces), see [StW], Chapter V, §3 where L?” ® is denoted by
L(p, ).

It is evident that L ® is translation invariant. From Exercise 13.16 it
follows that L” ® is a subset of L7 for every ¢ satisfying 0 < ¢ < p. It can
also be proved that L? is a proper subset of L ©; see Exercise 16.32.

The function f— || f |}, , defined by (16.10.1) is not subadditive and
hence not'a norm, but there is (see [StW], p. 204) a norm | |, ,, on L”®
which, if 1 < p < o, makes L ® into a Banach space and which is such
that

1A} e < Uflp o <P@—=D7HFIF o

for every f e L ©.

16.10.2 Multipliers of weak type (p, p). By definition, a complex-
valued function ¢ on Z (and/or the associated operator U) is said to be
of weak type (p, p), if and only if it is a multiplier of type (L7, L? ©) in the
sense described in 16.1.1. This is the case, if and only if there exists a
number K > 0 such that, for every f € L?, the function g = U, fsatisfies

D)y<K-|fl5-t"* for every real t > 0; (16.10.2)

cf. 13.7.5.

To make things a little more explicit, ¢ is of weak type (p, p), if and
only if (16.10.2) holds for all feT, g= U, f being in this case the
trigonometric polynomial

2 o) f(n)e,.

neZ
The extension of U, to L? is then obtained as follows: given f € L?, choose
a T-valued sequence (f,) converging in L? to f; then, by Exercise 13.19
and (16.10.2) applied for trigonometric polynomials, the sequence (g,) =
(U, f.) converges in measure to a function g, the equivalence class of g
being independent of the sequence (f,); then U, f is, by definition, the



328 MULTIPLIERS

equivalence class of g; and (16.10.2) continues to hold for every f € L?; in
particular, U, f € L7 ® for every f € L?.

Evidently, every multiplier ¢ of (strong) type (p, p) is also of weak
type (p, p). Regarding the converse, see the next subsection.

16.10.3 Zafran’s theorem. The substance of 16.10.1 and 16.10.2 makes
it evident that every multiplier of weak type (p, p) is a multiplier of
strong type (p, q) for every ¢ < p. On the other hand, the substance of
12.8.1, 12.8.4, 12.9.1 and 13.9.1, shows that the functions ¢, such that
¢o(n) is 1 or 0 according as n € Z satisfies n = 0 or n < 0 respectively, is a
multiplier of weak type (1, 1), is not of strong type (1, 1), and is of strong
type (g, ¢) forallgsuch that 0 < ¢ < 1.

Zafran’s achievement in [4] is to prove (among other things) that part
of this phenomenon is reproduced for every p satisfying 1 < p < 2. More
precisely : for every p satisfying 1 < p < 2, there exists a multiplier ¢ of
weak type (p, p) which is not of strong type (p, p). The proof is quite
elaborate and will not be presented here.

It is to be noted that, if ¢ is of weak type (2, 2), then (trivially) ¢ is
bounded and hence (by 16.1.2(4)) of strong type (2, 2); thus, Zafran’s
result breaks down in the excluded case p = 2.

EXERCISES

16.1. Verify the statement made in 16.1.2(3). What is the representation
of the corresponding operator U, in terms of convolution?

16.2. Prove that (L%, L?) = £*(Z).

16.3. Verify the inclusion relations stated in 16.1.2(5).

16.4. Suppose that ¢ € (F, D) and that lim,_ . f, = 0 in F implies that
lim,_ ,, | fi| = 0. Without using the closed graph theorem, prove that U, is
continuous from F into D (compare the Remark following 16.2.1).

16.5. Verify that oyf—f weakly in L*® whenever fe L®, and that
oyp —> p weakly in M whenever € M. (See 16.2.5.)

16.6. Let U be a continuous linear operator from F = C¥or L” (1 < p < o)
into G = C*, L7 (1 € ¢ < ), M or D. Prove that U commutes with trans-
lations if and only if

Utxf) =t Uf

whenever ¢ is a trigonometric polynomial and f € F; and that in this case

Ukx*f) =k Uf
whenever k£ € L! and fe F.
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16.7. Using 16.3.2, show that every U € m(C, L*®) can be expressed in
the form

Uf=uxf for all fe C

for some p e M, and that the analogous statement is true for every
U e m(L*, L*®).

Deduce that (C, L°) = (L°,L*) = FM.

16.8. Prove that (M, M) = #M.

16.9. Suppose that A € D has the property that A # fe C for every
feL? where 1 <p < o0. Prove that 4 € L”.

16.10. Using the notation of 16.3.7, verify that L,® is a Banach space
which satisfies the standing hypotheses listed in 16.1.1.

16.11. Construct detailed proofs of the results stated in 16.3.9. (You will
need to call upon the result stated in Exercise 12.23.)

16.12. Write out a detailed proof of 16.4.2.

16.13. ‘Show that U € m(A, A) (where A is as in Section 10.6) if and only
if U is expressible in the form

Uf=8 = f, forall fe A,

where S is a pseudomeasure.

16.14. Show how to use Stein’s theorem cited in 16.2.8 and Lebesgue’s
theorem cited in 6.4.2 to prove that the Hardy-Littlewood maximal operators
defined in Example 13.7.6(2) are of weak type (1, 1) on L.

16.15. Verify the statement made in 16.5.1 concerning the nature of the
elements of V.

Hint: 1If ®eV,, consider the functions ®y = Fy x ®; these are trigo-
nometric polynomials which are of uniformly bounded variation. Show that
a subsequence of (®,) may be selected which converges pointwise to a
function of bounded variation.

16.16. Verify that id € (p, p) and

|lﬂ¢np.p < ”F‘”lnql’up,p

whenever p € M and ¢ € (p, p). (The notation is as in Section 16.6.)
16.17. Exhibit a sequence (f,)-; of nonnull trigonometric polynomials
such that

im ”anP.D —_
e AT

for every p satisfying 1 < p < oo, where

Ifllp.0 =sup{|f*gl,:9elr |g|, <1}.

16.18. Suppose that U e m(p,q), where 1 < p < o0 and 1 < g < oo.
Show that there exists a sequence (k)2 , of trigonometric polynomials such
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that
Uf = lim hy# f in Lo,

uniformly with respect to f e Q whenever Q is a relatively compact subset
of L7, and

N2 flle < [1Ul5.qlf e

for all 7 and all fe L”.

16.19. Suppose that U e m(L?, L®), where 1 < p < co. Show that, if
one agrees to identify any two functions that agree almost everywhere, then
Ue mr, ().

Hint: See Exercise 3.5.

16.20. Show that, with the convention mentioned in Exercise 16.19,
m(C, L°) = m(C,C) = M.

Hint: This is as for Exercise 16.19, together with a reference to 16.3.2.

16.21. Suppose that 1 < p < 0,1 < ¢ < o, ¢, €(p,q) (k=1,2,--+),
that

¢ = lim ¢, pointwise on Z,
k-

and that

£ =1im |y, < 0.
k—= o

Prove that ¢ € (p, q), that
I$lse < 7,

and that lim,_ ., U, f = U,fin L for each fe L?.

What can you prove of a similar nature in case p = oo?

16.22. Suppose that U € m(l, p), where 1 < p < co. Show that there
exist positive integers n such that U™ € m(L!, C) and make an estimate of the
smallest positive integer n with this property.

Is anything of a similar nature true for operators U € m(p, g), where
1<p<g< oo?

16.23. Suppose that 4 € D and that 4~1(0) and the range of 4 are finite.
Show that A € m(p, q) is false whenever 1 < p < ¢ < .

16.24. Suppose that 1 < p < 2 and that F is a complex-valued function
on Z. Prove that Fw € (p, p) for every + 1-valued function w on Z if and
only if F € (p, 2).

What is the appropriate version of this result when2 < p < co?

16.25. Let U be a compact multiplier of type (p,q), where 1 < p,
g < oo, represented by convolution with a pseudomeasure o. Show that
G € eo(Z).

State and prove a converse for the case in which p > 2 > ¢.

Remark. Stronger results are known; see the references cited in 16.7.2.
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16.26. Let E and F each denote one of the spaces C* (ke Z, k > 0),
L (1 < p < oo),or M. Forme Z, m > 0, let W™ denote the set of fe E
such that D'fe E for re Z, 0 < r < m. (Regarding this notation, see [So],
p. 45 and [L,], p. 50.)

Show that (W™, Wp™) = (E, F).

16.27. Let AC denote the space of absolutely continuous functions
endowed with the norm

171 = 170) + | Df ;-

Show that m(AC, L®) = m(AC, C) consists precisely of those distributions
of the form const + D¢, where ¢ € L® [compare 12.8.5(3)].
16.28. Let each of E and F denote one of €, L? (1 < p < ), or M, and
let A € m(E, F). Consider the equation
Axf=g. (h
Prove the following statements.
(a) If (1) is soluble for f € E whenever g € F, then

inf |4(n)| > 0, (2)

and therefore (1) is uniquely soluble for f € E whenever g € F.

{(b) If (1) is soluble for f € E whenever g € F, then there exists B € m(F, E)

such that
AxB=e¢. (3)

(c¢) If A has the form & + A, where 8 is a discrete measure (see Exercise
12.51) and & € L!, and if (2) is satisfied, then (1) has a unique solution fe E
whenever g € E.

16.29. Discuss analogues, for the case in which 7 and Z interchange
their roles, of the results in 16.3.2 to 16.3.6 and 16.4.1 to 16.4.6.

16.30. Suppose that K is a subset of Z and that yz denotes the
characteristic function of E relative to Z. Discuss connections between
assertions of the type E € A(p) and those of the type xg € (g, 7).

As an instance, prove that if p>2 and E € A(p), then yz €
@' p)-

16.31. Refer to 16.9.4. Denote by B the set of all subsets S of Z
for each of which there exist p > 0 and k& > 0 such that

Y. h(ne,

neS

< k|R|l, forall 2 eT.

p

Prove the following (in which yg denotes the characteristic function of 8
relative to Z):

(a) If S € B, then Z\S € B.

(b) If ys € FM, then S € B.

(¢) If S € P and S is A(1), then y5 € FM and hence (see 12.7.4(3) and
Exercise 15.9) S is finite.
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(d) If S € P and S is ¢-Sidon for some g < 2 (see 15.8.1 above), then §

is finite.
(e) If the operator

h— Z ﬁ(n)u,,

neS

is of weak type (1, 1), then S € .
16.32. Assume that 1 <p < oo. Exhibit a function f such that

feLP®andf¢Lr.
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co(E), 236
eo(€"), 212

Ca» Cag > Co*> 116, 119
%, 206 ’
€y, 207

359

%", 208
CBV, 10.12
I'(B), 27

D, 28, 63

D, 52

D", 55

Dy, 11,79
Dy, 110
Dy*, 110
Dy*, 110
D.*, D;, 160
A, 110

E, 115
Exf, 99
ENPf, 176
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&, &g, Ext,12.39
&, & 53, 57
fiff*, 31
f, 30

F, F F* 178
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f. F.a1
Fy,11,79
@, 43

FU
FH,236
H?, 3.9

1, 21,209 ff.
Iy, 209 ff.
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L?(%), 210
Lg?, 235
L¢%(%), 215
L,*, 202

L' 11
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4,210

A,, 294
A, 295

M, 53

M,;, 12,51
M(%), 14.19
M(E), 112
Mg, 235
m(F, G), 285
m(p, q), 298
m,, 311

P, 108

P(E), P(E), 112
Py, 211
PV, 59,692
(p, q), 259, 298
B, 16.31

R, 15

X, 208
R/2rZ, 15
R(x), 21
r(A), 11
p(x), 21

pnf. 99
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s*f, 165

syf, 3.1, 78
supp, 11.18, 109
a*f, 97
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T, 42

Ty, 1.7

Tg, 235
T(¥), 211
Tk(¥), 215
T,, 16
T.,,209
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Vf, 33

Vg, 141, 303
V., 17,2
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Numerals in italic type refer to Volume 1. Numerals in bold-
face type refer to the exercises, the exercise labeled x.y
appearing in Volume 1 if and only if 1 < x < 10.

Abel (-Poisson) kernel, 103
Abel means, 103
Abel summability, 103, 6.16
Absolute multiplier, 323 ff.
Absolutely continuous functions, 32,
33,127,7.10,7.11, 136, 63, 64
Absolutely convergent Fourier series,
173 ff., 33, 34, 11.18-11.20,
108 ff., 12.53, 155
Abstract Tauberian theorem, 36
Adjoint, self-, 11.24
Affine map, 4.9
Algebra,
Banach, 52, 56, 72, 119, 165, 10.16,
19 ff.
Beurling, 11.15
closed sub-, 11 ff.
convolution, 52, 56, 87, 77, 81
division, 26
group, 62 ff., 82
quotient, 24
Segal, 39
Algebraic (Hamel) base, 165
Almost periodic function, 45
a-capacity, 116
o-energy, 115
a-potential, 12.40
Annihilator, 209
Approximate identity, 60 ff., 212
Approximation by trigonometric poly-
nominals, 42, 99 ff., 6.5-6.10,
6.17, 131
Associated set, 269
Atomic (discrete) measure, 12.57, 269

Banach algebra, 62, 57, 72, 124, 126,
173, 178, 10.16, 19 ff.
Banach space, 192

Banach—Steinhaus theorem, 195
Base, algebraic (Hamel), 165
Base, topological, 165
Bases of trigonometric polynomials,
165, 166

Bernstein polynomials, 91
Bernstein’s inequality, 1.9, 102
Berstein’s theorem, 91
Beurling algebra, 11.15
Beurling’s problem, 10, 117, 118
Bipositive multiplier, 314
Bochner’s theorem, 157, 121, 12.34
Bohr set, 267
Bosanquet-Kestelman lemma, 3.14
Bounded set,

inD, 60

in D™, 61

in L?, 60, 62

in M, 60, 61

in topological linear space, 193
Bounded variation, 33, 111

function of, 33, 8.18, 156, 158, 162,

171, 12.44
sequence of, 111

Cantor (Walsh) group, 155, 206 ff.
Cantor-Lebesgue theorem, 2.14
Cantor ternary set, 12.44, 207, 14.16
Capacitable set, 120
Capacitary dimension, 116
Capacity,

a-, 116

exterior, 119

interior, 119

logarithmic, 118, 119

Newtonian, 115, 120

and trigonometric series, 171, 119,

120 ff.
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Carleson set, 267
Carleson’s theorems, 169, 170
Category, first (meagre), 187
Category, second (nonmeagre), 187
Category theorem, 187
Cesaro means, 8, 79, 82, 87
Cesaro summability, 82 ff., 5.6-5.8,
87 ff.
in mean, 87
pointwise, 94 ff.
Change of variable relative to A, 179
Character, 18, 3.19
(dual) group, 20, 2.3, 207 ff.
principal, 19
Rademacher, 208
Characteristic function
of set, 143
of probability distribution, 12.34
Circle group, 15
Class (p, q), mapping of, 144 ff., 256,
298 ff.
Closed graph, 1956
Closed graph theorem, 197
Closed ideal, 53, 3.4, 2, 3, 24 ff., 36 ff.,
11.4, 11.17, 11.21, 11.23, 12.27,
12.45, 12.53, 317
Closed invariant subspace, 2, 11.22
11.23, 316, 317
Closed linear operator, 195
Closed subalgebra, 11 ff.
Closure of translations theorem, 6 ff.,
10,11, 117,118
Comeagre, 187
Compacity principles, 197, 60 ff.
Compact operator, 314
Compact multiplier, 315
Complete measure space, 141
Complex homomorphism, 69 ff., 4.1,
4.7, 26 ff., 82, 83, 12.26, 12.51,
311
Conjugate Dirichlet kernel, 7110
Conjugate exponent, 28
Conjugate function, 91 ff., 177 ff.
Conjugate function operator, 140, 147,
177 ff.
Conjugate series, 109, 110, 90 ff.
Continuity, modulus of, 36, 99, 135
Convergence,
in D, 57 ff.
inM, 61
in mean, 29, 131

INDEX

in measure, 6, 13.18, 13.19
weak (in dual space), 193
weak in L?, 62

weak in M, 62

Convergence of Fourier series,
in mean, 119-121, 131, 106 ff., 213
pointwise, 41, 42, 114, 117, 120, 151,

155 ff., 213, 217, 221, 14.23

Convex sequence, 111

Convexity theorem, Riesz—Thorin, 149
for multipliers, 300

Convolution algebra, 52, 56, 57, 74,

78 ff.

Convolution, 50 ff., 73 ff.
characterisation of, 58, 281, 282, 297
of distributions, 76 ff.
of functions, 50 ff.
of measures, 80
of measures with functions, 79 ff.
of sequences, 64, 3.15, 78, 109, 12.32,

16.29
truncated, 11.12, 11.13

Coset (equivalence class),
modulo an ideal, 24
modulo a subspace, 193
of functions, 27, 141, 210
of reals modulo 2=n, 15

Cosine series, 114 ff., 117 ff., 119, 123

Counting measure, 142

Decomposition,
direct sum, 17, 318 ff.
idempotent, 319 ff.
Defining family of seminorms, 191 ff.
Dense, everywhere, 187
Dense, nowhere, 187
Density theorems, 42, 90, 91, 210, 212
Derivative,
distributional, 63
pointwise, 7, 30, 33, 63, 64
symmetric, 6.16
Diagonal subsequence, 3.5, 140, 197
Dini’s test, 159
Dirac §-function, 62, 53, 54
Dirac measure, 53, 54
Direct sum dexomposition, 17, 318 ff.
Dirichlet kernel, 1.1, 79
conjugate, 110
modified, 110
Discrete (atomic measure), 12.51, 269
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Distribution
48 ff.

conjugate, 91 ff.

generated by function, 52

Hilbert’s periodic, 91 ff., 99, 13.27,

307

order of, 55

positive, 12.7

positive definite, 12.35

principal value, 59, 93

support of, 104, 12.27, 12.29
Distributional convergence, 57
Distributional derivative, 63
Distributions,

convergence of, 57

convolution of, 73 ff.

differentiation of, 63 ff.

Fourier coefficients of, 67

Fourier series of, 67

product of, 59, 60
Distribution function, 160
Divergence of Fourier series, 160 ff.

Fejér’s example, 164
Division algebra, 26
Dual,

of ¢g, 8.12

of C, 56

of C™, 56

of C*, 52

of L?, 201

of £7, 118, 12.32
Dual (character) group, 20, 2.3, 207 ff.
Dual space, 193
Duality, 20, 207
Duality law (Ponryagin), 20, 2.3
Duality theory, 316
Dunford-Schwartz operator, 177

(generalized function),

Eberlein’s theorem, 12.50
Elementary solution, 72
Energy,

o-, 115, 116, 12.38-12.42

Newtonian, 115, 120
Equidistributed sequence, 2.15
Equilibrium measure, 12.38, 12.41
Equivalence class (coset),

modulo an ideal, 24

modulo a subspace, 193

of functions, 27, 141, 210

of reals modulo 27, 15
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Ergodic theorem, 176, 177
E-spectral, 217, 235

Everywhere dense, 187

Extended real number system, 159
Extended real-valued function, 159
Exterior capacity, 119

Factorisation problems, 53, 124, 134,
38, 13.20, 255
F. and M. Riesz theorem, 99, 12.19
Fatou’s theorem, 6.12
Fatou-Zygmund set, 269
Fejeér kernel, 79
Fejér’s example, 161
Fejér’s lemma, 2.16
Filter base, 8
First category (meagre), 187
Formal identity element, 20
Fourier coefficients, 1, 30 ff., 67 ff.
Fourier-Lebesgue coefficients, 67
Fourier-Lebesgue series, 30, 67, 87 ff.
Fourier series, 2
Fourier-Schwartz series, 48, 67
Fourier—Stieltjes series, 67, 84-86
Fourier-Stieltjes transform, 49, 67,
12.36, 12.37
Fourier transform, 30, 50, 67
F. Riesz’ theorem, 11.4
M. Riesz’ theorem, 100, 106
Fréchet space, 191, 51
Function,
absolutely continuous, 32, 33, 127,
7.10, 7.11, 36, 63, 64
almost periodic, 45
of bounded variation, 33, 8.18, 156,
158,171,172, 73, 12.44
characteristic (of set), 143
characteristic (of probability distri-
bution), 12.34
conjugate, 91 ff., 177 ff.
as distribution, 52
distribution, 160 ff.
extended real-valued, 159
generalised (distribution), 48, 52
integrable, 22, 27, 159, 160, 210
Lebesgue’s singular, 12.44
lower semicontinuous, 7188
mean periodic, 8
measurable, 27, 141, 210
periodic, 15, 27



364 INDEX
positive definite, 149 ff., 121 ff. Harmonic (spectral) synthesis, 19,
quasianalytic, 2.8 113 ff., 12.53
Rademacher, 14.16 Harmonic (spectral) synthesis set, 7,
simple, 142 109 ff., 12.53
support of, 11.18 Hausdorff-Young theorem (inequal-

vector-valued, 33, 39, 11.11
Walsh, 208
Weierstrass’ nondifferentiable, 15.19

Gaps, Hadamard, 234
Gelfand—Mazur theorem, 26
Gelfand (representation) space, 27, 35
Gelfand theory, 19 ff.
Gelfand topology, 35
Gelfand transform, 27, 34
Generalised function (distribution), 48,
52
Generalised multiplier, 315
Generalised (topological)
3.12, 35
Gibbs phenomenon, 10.8
Graph, 195
Group,
Cantor (Walsh), 155, 206 ff.
character (dual), 20, 2.3, 207, 14.15
cirele, 16
of integers, 1§ _
locally compact Abelian, 15, 206
quotient, 15, 209, 14.3
of real numbers, 15
topological, 15, 207
Group algebra, 62 ff., 82

nilpotent,

Haar (invariant) integral, 21 ff., 24,
209 ff.

Hadamard gaps, 234

Hadamard sequence, 138, 234

Hadamard set, 247

Hahn-Banach theorem, 199

Hamel (algebraic) base, 165

Hardy inequality (generalised), 84

Hardy spaces, 3.9, 8.15, 11.10, 108, 326

Hardy’s theorem, 84, 5.8, 123, 169

Hardy-Littlewood maximal operator,
164, 13.17

Hardy-Littlewood theorem (inequal-
ity), 193

dual version of, 195
Harmonic (spectral) analysis, 19

ity), 153, 224, 257
Helson set, 177, 263 ff. ,
Helson’s theorems, 83, 12.46-12.48
Hilbert space, 130
Hilbert transform, 189
Hilbert’s (periodic) distribution, 91 ff.,
99, 13.27, 307
Holder (Lipschitz) condition, 100
Holder’s inequality, 28, 30, 214
converse of, 3.6, 143
Homogeneous Banach space, 87, 39
Homomorphism, 72 ff., 4.2-4.5, 4.8,
4.9,8.1, 179, 12.49, 255
complex, 69 ff., 4.7, 26 ff., 82 ff,
12.26, 12.51, 312
problem, 72 ff.
Hull, 12.53

Ideal, 54, 3.4, 2, 3, 23 ff., 11.19,
closed, 54, 3.4, 2, 3, 24, 36 ff., 11.4,
11.17, 11.22, 11.23, 12.27, 12.45,
12.53
maximal, 4.1, 23 ff.
modular (regular), 4.1, 35, 11.26,
11.27
primary, 37
proper, 23
Idempotent, 53, 12, 83, 12.46, 12.47,
283
decomposition, 319 ff.
multiplier, 319 ff.
Independence, 214
Independent set, 208, 265
Inequality,
Bernstein’s, 1.9, 102
Hardy (Generalised), 84
Hardy-Littlewood, 193
Hardy-Littlewood, dual version of,
195
Hausdorff-Young, 153, 224, 257
Holder’s, 28, 30, 214
Holder’s, converse of, 3.6, 143
Littlewood (Generalised), 84
Marcinkiewicz-Zygmund, 195
Minkowski’s, 27, 30
Young’s, 157



INDEX

Integral,
Haar (invariant), 21 ff. 24, 209 ff.
Lebesgue, 22, 26
Lebesgue—Stieltjes, 52
relatively invariant, 2.4
Riemann, 22, 26
Riemann—Stieltjes, 34, 53, 72, 73
singular, 192
Interior capacity, 119
Interior measure, 3.16
Interpolation set, 269
Interpolation theorem, Marcinkiewicz,
165
Interpolation (convexity)
Riesz—-Thorin, 149
Invariant (Haar) integral, 21 ff., 24,
209 ff.
Invariant subspace, 17, 2, 11.22, 316,
318
closed, 2, 11.22, 11.23, 316, 317, 318
multiplier of, 316, 317
Inversible element, 21, 26, 27
Inversion formula, 103, 134
Isometric multiplier, 314
Isomorphism problem, 75, 76, 314
Isoperimetric problem, 8.16

theorem,

Jackson polynomial, 702
Jordan’s test, 155

Kaczmarz—Stein theorem, 309
Kahane’s theorems, 14
Kernel,
a-, 115
Abel (—Poisson), 103
conjugate Dirichlet, 110
Dirichlet, 1.1, 79
Fejér, 1.1, 79
logarithmic, 119
modified Dirichlet, 110
Newtonian, 115, 120
of subset of I'(B), 12.53
Paley, 212
Kolmogorov’s theorem, 138, 10.21
Kolmogorov-Seliverstov—Plessner
theorem, 169, 171
Kronecker set, 265
Kunze—Stein theorem, 296

365

Lacunary series, 5.6, 6.13, 234 ff.

Lebesgue integral, 22, 26

Lebesgue point, 96

Lebesgue set, 96

Lebesgue’s singular function, 12.44

Lebesgue—Stieltjes integral, 52

Left shift, 209

Lemma, Bosanquet—Kestelman, 3.14

Lemma, Fejér’s, 2.16

Lemma, Riemann-Lebesgue, 36, 212

Lemma, Steckin’s, 1.8

Lévy’s continuity theorem, 12.34

Lévy’s theorem, 178, 34

Lipschitz (Ho6lder) condition, 100

Lipschitz multiplier, 294

Littlewood’s conjecture, 84

Localisation principle, 81 ff.

Locally compact Abelian group, 15,
206

Locally convex space, 195

Logarithmic capacity, 118, 119

Logarithmic kernel, 119

Lower semicontinuous function, 118

Lusin-Denjoy theorem, 2.13

Lusin—Privalov theorem, 95

Majorant (maximal) operator, 163,
164, 190, 191, 13.26, 13,27,
14.23

for sy f, 165, 164
for oy f, 97, 163, 190
Mapping of class (p, q), 255, 256
Marcinkiewicz interpolation theorem,
165
Marcinkiewicz-Zygmund theorem (in-
equality), 195
Maximal ideal, 4.1, 23 ff.

Maximal (majorant) operator, 163,
164, 190, 191, 13.26, 13.27,
14.23

Maximal subalgebra, 17 ff.
Meagre (first category), 187
Mean convergence, 29

of Fourier series in L2, 131

of Fourier series in L7, 106 ff.
Mean periodic function, 8
Measure,

algebra, 72, 73, 75, 81 ff.

counting, 142

diserete (atomic), 12.51, 269
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equilibrium, 12.38, 12.41
interior, 3.16
positive, 60, 122, 12.34, 295
probability, 12.34
Radon, 52 ff., 122, 12.34
Measure space, 140 ff.
complete, 141
Mikusinski operational calculus, 11.13
Minimal positive definite function, 9.5
Minkowski’s inequality, 27, 30
Modified Dirichlet kernel, 110
Modular (regular) ideal, 41, 35, 11.26,
11.27
Module, 57, 3.2, 3
Modulus of continuity, 36, 100, 135
m-operator, 285
Multiplier (function, sequence), 278
absolute, 323 ff.
Multiplier (operator), 76, 279
bipositive, 314
bounded convergence, 291 ff.
compact, 315
isometric, 314
positive, 295
uniform convergence, 291 ff.
weakly compact, 315
of invariant subspace, 316
of quotient space, 315
of weak type (p, p), 326 ff.
of type
(A, A), 16.13
(AC, €), (AC, L®), 16.27
(€, €), 289
C*, C®), 287
C*, D), 280, 287
C, L>), 289, 16.7
F C ) 294

M M) 289, 16.8
(W m W, ("')) 16.26
weakly compact, 315
Multipliers, convexity theorem for, 300
Multipliers and isomorphism problems,
76, 314

INDEX

Newtonian kernel, 15, 120
Nilpotent, generalised
3.12, 35

Nonmeagre (second category), 187
Norm, 191

A-, 173,33

dual, 193

LP-, 27

£P-, 29

M-, 61

P-, 109

quotient-, 194, 24

strong (p, q)-, 145

weak (p, q)-, 163
Nowhere dense, 187

(topological),

Open linear operator, 195
Open mapping theorem, 196
Operational  caleulus  (Mikusinski),
11.13
Operator,
commuting with convolution, 281 ff.
commuting with translations, 281 ff.
compact, 314
Dunford-Schartz, 177
m-, 281
majorant (maximal), 163, 164, 190,
191, 13.26, 13.27, 14.23
multiplier, 76, 279
of restricted weak type, 173
of type (p, q), 144 ff., 256, 298 ff.
of weak type (p, q), 162
weakly compact, 315
Order of distribution, 55
Order of magnitude,
of sy f, 166 ff., 10.2
of oy f, 97 ff., 6.18
Orthogonality relations, 3, 25, 26, 211
Orthonormal base, 130

Paley kernel, 212

Paley polynomial, 211

Parseval formula, 1.7, 131 ff., 8.17,
152,171 1., 69

Partial summation, 111

Periodic function,. 15

Poisson (Abel-Poisson) kernel, 103

Poisson (Abel-Poisson) summability,
103, 6.16



INDEX

Poisson’s summation formula, 10.9—
10.11
Pointwise convergence of Fourier
series, 33, 41, 42, 6.12, 6.13, 114,
117, 120, 151, 155 ff., 213, 217,
221, 14.23
Pointwise derivative, 7, 30, 33, 63
Pointwise summability of Fourier
series, 87 ff., 103, 16.14, 16.16
Polynomial,
Berstein, 91
Jackson, 102
Paley, 211
Rademacher-spectral trigonometric,
251
trigonometric, 1.7, 42, 211, 251
Pontryagin duality law, 20
Positive definite distribution, 12.35
Positive definite function, 149 ff.,
121 ff.
minimal, 9.5
Positive distribution, 12.7
Positive measure, 60, 122, 12.34, 295
Positive multiplier, 295
Potential
a-, 12.40
Newtonian, 115, 120
strong, 145
weak, 163
(p, g)-norm, 163
Primary ideal, 37
Principal character, 19, 208
Principal value, 59, 93
Principle, uniform boundedness, 194
Principle, weak compacity, 197, 60 ff.
Problem, Steinhaus-Littlewood, 87
Product (of distribution or measure by
function), 59, 60, 109, 12.9
Projection of L? onto H?, 108
Projection principle, 8.14, 12.39
Proper ideal, 23
Pseudomeasure, 108 ff.
p-Sidon set, 268

Quasianalytic function, 2.8
Quasiconvex sequence, 111
Quasilinear operator, 162
Quotient algebra, 24
Quotient group, 15, 209, 14.3
Quotient map, 194, 24 ff.

367

Quotient norm, 194, 24
Quotient seminorm, 194
Quotient space, 193
multiplier of, 280, 281
Quotient topology, 15, 193

Rademacher character, 208

Rademacher function, 14.16

Rademacher-spectral trigonometric
polynomial, 251

Rademacher series, 206

Regular (modular) ideal, 4.1, 35, 11.26,
11.27

Relatively invariant integral, 2.4

Representation by trigonometric series,
3 ff.

Representation (Gelfand) space, 27, 35

Resolvent set, 21

Restricted weak type, operator of, 173

Riemann integral, 22, 26

Riemann-Lebesgue lemma, 36, 212

Riemann—Stieltjes integral, 34, 53, 72,
73

Riemann summability, 6.14

Riesz—Fischer theorem, 133

Riesz—Markov-Kakutani theorem, 53,
12.36

Riesz product, 247

Riesz representation theorem, 53, 72

Riesz set, 269

Riesz—Thorin convexity (interpolation)
theorem, 149

Rosenthal set, 269

Rudin class, 11

Runge’s theorem, 205

Saks’ theorem, 10.20
Saturated sequence, 6.10
Self-adjoint, 11.24
Second category (comeagre), 187
Seminorm, 191
quotient, 194
Semisimple, 35
Sequence,
Hadamard, 138, 234
multiplier, 278
of bounded variation, 111
tempered, 48
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Sequences, convolution of, 64, 3.15, 78,
109, 12.32, 16.29

Series,
cosine, 114 ff., 117 ff., 119, 123 ff.
Fourier, 2
Fourier-Lebesgue, 30, 67, 87 ff.
Fourier-Schwartz, 48, 67
Fourier-Stieltjes, 67, 84 ff.
Rademacher, 206
sine, 114 ff., 117 ff., 119, 123 ff.
tempered, 48
trigonometric, I ff., 2.13, 2.14
Walsh—Fourier, 206, 211

Set,
associated, 269
Bohr, 268

Carleson, 267
of differences, 3.16

Fatou-Zygmund, 269

Hadamard, 247

Helson, 177, 263 ff.

independent, 208, 265

interpolation, 269

Kronecker, 265

u-finite, 141

p-null, 141

of multiplicity, 120, 121

of multiplicity in strict sense, 121

of type A(p), 259 ff.

of type (p, q), 144 ff., 258 ff.

of uniqueness, 121

resolvent, 21

Riesz, 269

Rosenthal, 269

p-Sidon, 268

Sidon, 237

o-finite, 141

spectral radius, 21

spectral (harmonic)

109 ff., 12.53

W-Sidon, 268
Sidon constant, 237
Sidon set, 237
Simple function, 142
Sine series, 114 ff., 117 ff., 119, 123 f1.
Singular integral, 192
Space,

Banach, 192

dual, 193

Fréchet, 191

Gelfand (representation), 27, 35

synthesis, 7,

INDEX

locally convex, 195

measure, 140

topological linear, 191
Spectral, K-, E-, 215, 235
Spectral (harmonic) analysis, 19
Spectral radius, 21
Spectral radius formula, 8.8, 30
Spectral resolution theorem, 36

Spectral (harmonic) synthesis, 19,
113 ff., 12.53

Spectral (harmonic) synthesis set, 7,
109 ff., 12.53

Spectrum, 21
Steckin’s lemma, 1.8
Stein’s theorem, 286
Steinhaus-Littlewood problem, 87
Steinhaus’ theorem, 3.16
Stone—Cech compactification, 35
Stone—Weierstrass theorem, 91, 210
Subalgebra, 53, 11 ff.
Subalgebra, maximal, 17 ff.
Submodule, 3.2
Subspace, (translation) invariant, 17,
2 ff., 282 ff.
Summability, 82 ff., 5.6, 5.8
Abel (-Poisson), 103, 6.16
Cesaro, 87 ff.
Riemann, 6.14

Summation formula, Poissons, 10.9-
10.11

Support of distribution, 104, 12.27,
12.29

Support of function, 11.18
Symmetric derivative, 6.16

Tauberian theorem, 84, 8 ff.
abstract, 36
Wiener’s, 10
Tempered sequence (function), 48
Tempered series, 48
Three lines theorem, 148
Topological base, 1656
Topological group, 15, 207
Topological linear space, 191
Topological (generalised)
3.12, 35
Topology, quotient, 15, 193
Total variation, 33

nilpotent,



INDEX

Transform,
Fourier, 30, 50, 67
Walsh—Fourier, 211
Transformation of Fourier coefficients,
317
Translates of distributions, 57
Translates of functions, 16, 209
Translation invariant subspace, 17,
2 ff., 11.22, 316, 318
Translation operators, 16, 57
Trigonometric polynomial, 1.7, 42, 211,
251
Trigonometric polynomials,
bases of, 165, 166
density of, 42, 212
Trigonometric series, 1 ff., 2.13, 2.14
Truncated convolution, 11.12,11.13
Truncation, 160
Type A(p), set of, 259 fF.
Type (p, q), operator of, 144 ff., 256,
298 ff.

Type (p, ), set of, 144 ff., 258 ff.

Uniform boundedness principle, 194
Uniqueness,

set of, 121

theorem, 40, 69

Variation,
bounded, 33, 111
total, 33
Vector-valued function, 33, 39, 11.11

Walsh—Fourier series, 206, 211
Walsh-Fourier transform, 211

369

Walsh function, 208
Walsh (Cantor) group, 207
Wave equation, 8.10
Weak compacity,

inD, 61

in L?, 62

in M, 61, 62
Weak compacity principle, 197, 60 ff.
Weak convergence,

in dual space, 193

in L?, 62

in M, 61, 62
Weak (p, ¢q)-norm, 163
Weak sequential completeness, 202
Weak type (p, q), operator of, 162
Weak type (p, p), multiplier of, 327
Weakly compact multiplier, 315
Weakly compact operator, 315
Weierstrass’ approximation theorem,

90, 91

Weierstrass’ nondifferentiable func-
tion, 15.19

Wiener’s closure of translations the-
orem, 6

Wiener—-Pitt phenomenon, 313

Wiener’s Tauberian theorem, 10

Wiener’s theorems, 8.18, 177, 29, 34,
11.15,11.19

W-Sidon set, 268

Young’s inequality, 157

Zafran’s theorem, 328
Zero divisors, 53, 17
Zero-set, 12.53
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