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PREFACE TO THE SECOND (REVISED) 
EDITION OF VOLUME 2 

Apart from a number of minor corrections and changes, a 
substantial reformulation and up-dating of Chapters 14 and 15 has taken 
place. This reformulation and up-dating is a major and very welcome 
contribution from my friend and colleague, Dr J.W. Sanders, to whom I 
express my sincere thanks. His efforts have produced a much better 
result than I could have achieved on my own. Warm thanks are also due 
to Dr Jo Ward, who checked some ofthe revised material. 

New Sections 16.9 and 16.10 have also been added. 
The bibliography has been expanded and brought up to date, though it 

is still not exhaustive. 
In spite of these changes, the third paragraph in the Preface to the 

revised edition of Volume 1 is applicable here. What has been 
accomplished here is not a complete ac count of developments over the 
past 15 years; such an account would require many volumes. Even so, it 
may assist some readers who wish to appraise some of these 
developments. More ambitious readers should consult M athematical 
Reviews from around V olume 50 onwards. 

R.E.E. 
CANBERRA, September 1981 
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PREFACE TO VOLUME 2 

The substance of the first three paragraphs of the preface to 
Volume 1 of Fourier Series: A Modern Introduction applies equaIly weIl to 
this second volume. To what is said there, the foIlowing remarks should 
be added. 

V olume 2 deals on the whole with the more modern aspects of Fourier 
theory, and with those facets of the classical theory that fit most nat
urally int<;> a function-analytic garb. With their introduction to distri
butional concepts and techniques and to interpolation theorems, respec
tively, Chapters 12 and 13 are perhaps the most significant portions of 
Volume 2. From a pedagogical viewpoint, the carefully detailed dis
cussion of Marcinkiewicz's interpolation theorem will, it is hoped, go some 
way toward making this topic more accessible to a beginner. 

A major portion of Chapter 11 is devoted to the elements of Banach 
algebra theory and its applications in harmonic analysis. In Chapter 16 
there appears what is believed to be the first reasonably connected intro
ductory account of multiplier problems and related matters. 

For the purposes of a short course, one might be content to cover 
Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to 
and including Section 12.10, Chapter 13 up to and including Section 13.6, 
Chapter 14, and Sections 15.1 to 15.3. Much of Chapters 13 to 15 is 
independent of Chapters 11 and 12, or is easily made so. While severe 
pruning might lead to a tolerable excision of Section 11.4, which is re
quired but rarely in subsequent chapters, it would be a pity thus to omit 
all reference to Banach algebras. 

I at one time cherished the hope of including in this volume a list of 
current research problems, but the available space will not accommodate 
such a list together with the necessary explanatory notes. The interested 
reader may go a long way toward repairing this defect by studying some 
of the articles appearing in [Bi] (see, most especially, pp. 351-354 
thereof). 

The cross-referencing system is as follows. With the exception of refer
ences to the appendixes, the numerical component of every reference to 
either volume appears in the form a . b . C, where a, b, and C are positive 
integers; the material referred to appears in Volume 1 if and only if 
1 ~ a ~ lO. In the case of references to the appendixes, all of which 
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viii PREFACE 

appear in Volume 1, a Roman numeral "I" has been prefixed as a 
reminder to the reader; thus, for example, "I,B.2.1 " refers to Appendix 
B.2.1 in Volume 1. 

An understanding of the main topics discussed in this book does not, I 
hope, hinge upon repeated consultation of the items listed in the bibli
ography. Readers with a limited aim should find strictly necessary only 
an occasional reference to a few of the book listed. The remaining items, 
and especially the numerous research papers mentioned, are listed as an 
aid to those readers who wish to pursue the subject beyond the limits 
reached in this book; such readers must be prepared to make the very 
considerable effort called for in making an acquaintance with current 
research literature. A few of the research papers listed cover devel
opments that came to my notice too late for mention in the main text. 
For this reason, any attempted summary in the main text of the current 
standing of a research problem should be supplemented by an examin
ation of the bibliography and by scrutiny of the usual review literature. 

Finally, I take this opportunity to renewall the thanks expressed in 
the preface to Volume 1, placing special reemphasis on those due to 
Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth 
Gaudry for his contributions to Chapter 13, and to my wife for her 
encouragement and help with the proofreading. My thanks for help in the 
latter connection are extended also to my son Christopher. 

CANBERRA, 1967 R.E.E. 
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CHAPTER 11 

Spans of Translates. Closed Ideals. 

Closed Subalgebras. Banach Algebras 

The first three seetions of this ehapter are devoted to some topies mentioned 
earlier, namely, the study of elosed invariant subspaees and closed ideals 
[mentioned in 2.2.1 and 3.1.I(g)], and that of elosed subalgebras [mentioned 
in 3.1.I(e) and (f)]. Throughout the diseussion E will denote any one of the 
eonvolution algebras U (I ~ P < (0) or C (see 3.1.1, 3.1.5, and 3.1.6) and 
we shall eonsider closed invariant subspaees, closed ideals, and elosed sub
algebras in E. The eases E = Ck and E = L'" eould also be treated similarly, 
provided that in the last ease one eonsidered L'" with its so-ealled weak 
topology, in whieh a sequenee or net (jj) eonverges to f if and only if 

li:n L I kl dx = LI fgdx 

is true for eaeh gE LI. Compare I, B.1.7 and I, C.1. 
For any eompaet group, Abelian or not, the strueture theory for closed 

invariant subspaees and closed ideals is simple. For the group T the 
details are fully elueidated in 11.2.1. By eontrast, exeept for the ease 
E = L2 , the strueture of elosed subalgebras is not yet fully deseribable, 
even for the group T. 

Subseetions 11.2.3 and 11.2.4 are ineluded on "eultural" grounds and 
are intended to show how the relatively simple problems treated in 11.2.1 
and 11.2.2 lead to ones of eonsiderable eomplexity and interest when the 
eompaet group T is replaeed by a noneompaet group sueh as R. (These 
subseetions are not essential to an understanding of the rest of the book.) 
The relevant problems for the dual group Z are mentiohed briefly in 
11.2.5. 

Seetion 11.3 is devoted to the problem of closed subalgebras in E. 
The final seetion of this ehapter (11.4) is devoted to a few of the funda

mentals of eommutative Banaeh algebra theory and some of its applieations 
to harmonie analysis. When applieations are made to the algebras E men
tioned above, we find that the topies mentioned in Seetion 4.1 undergo natural 
development. Applieations to other algebras will also be made and will 
provide proofs of results stated in Seetion 10.6. 

1 



2 TRANSLATES. IDEALS. SUBALGEBRAS. BANACHALGEBRAS 

Section 11.4 is in no sense a balanced introduction to the study of Banaeh 
algebras. References for further reading will be given in due course. 

11.1 Closed Invariant Subspaces and Closed Ideals 

By a closed invariant subspace of E is meant a linear subspace V of E 
which is (I) closed for the normal topology of E (see 2.2.4), and (2) 
invariant under translation, in the sense that! E V entails Ta! E V for all 
a E T. (Compare the definition ofinvariant subspaces given in 2.2.1.) 

Each! E Eis eontained in a smallest closed invariant subspace VI' which 
is none other than the closure in E of the invariant subspaee VI generated 
by f (as defined in 2.2.1). The reader will note that VI depends in general 
on the ambient space E: for example, if! is continuous, the closure of VI 
in V' will in general be strictly larger than the closure of V I in C. Despite 
this, we do not think it necessary to complicate the notation accordingly. 

In view of the fact that E is an algebra under eonvolution, we follow the 
usual algebraic terminology by describing as an ideal in E, a linear subspace 
I of E with the property that f * gEI whenever ! EI and g E E. A closed 
ideal in E is an ideal in E which is also a closed subset of E. 

As will be seen in 11.1.2, the closed invariant subspaces of E and the 
closed ideals in E are exactly the same things (although the invariant sub
spaces and the ideals are not the same things). 

11.1.1. If fEE, thenj(n}en E VI for all nE Z. 
Proof. Direct computation shows that 

j(n}en = en *f· 
Since en E LI, the assertion follows from 3.1.9. For an alternative proof, see 
Exercise 11.5. Yet another type of proof is described in 11.2.2. 

11.1.2. A subset of E is a closed invariant subspace of E if and only if it is 
a closed ideal in E. (Compare with 3.2.3.) 

Proof. (I) Let I be a closed ideal in E. We wish to show that I is transla
tion-invariant. For this purpose, we utilize an argument appearing in 3.2.3. 
Choose an approximate identity (kn}:'=l comprised of elements of E (for 
example, the Fejer kerneIs introdueed in Section 5.1). Since I is an ideal, 
(Takn) *! E Ifor all n ~ 1 and allf EI. But (Takn) * f = Ta(kn * f) by 3.1.2, 
and limn->CX> kn *f = f in E by 3.2.2. Therefore limn->cc Ta(kn *f) = Ta! in 
E. I being closed, it follows that T af E I. This shows that I is translation
invariant and is therefore a closed invariant subspace of E. 

(2) Let V be a closed invariant subspace of E. In order to prove that V is 
a closed ideal in E, it suffices to show that f * g E V whenever fE V and g E E. 
In doing this we may, since V is closed in E and since the trigonometrie 
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polynomials are everywhere dense in E (see 2.4.4), assume that g is a trigono
metrie polynomial; see 3.1.6. In tJ:lat ease, however, f * g is a finite linear 
eombination of terms j(n)en , and 11.1.1 shows at onee that f * g E V,. 
Finally, sinee fE V, V, C V, and therefore f * g E V. The proof is eomplete. 

11.1.3. Remarks. (1) It has been noted in 3.2.3 that E ia a module over LI; 
and in Seetion 12.7 it will appear that Eis even a module over the superspaee 
M of LI eomposed of all Radon meaSUres. It is quite simple to verify that the 
elosed submodules of E (qua module over LI or ovar M) are exaetly the elosed 
ideals in E. 

(2) Thc reader will take eare to remember that 11.1.2 ia established only 
for the ehoiees of E mentioned at the outset of this ehapter; it is not true in 
all eases of interest. For example, if L'" is taken with its normed topology, 
there are closed ideals in the eonvolution algebra L'" that are not translation
invariant; see Exereises 11.22 and 11.23. Theorem 11.1.2 is also false for the 
measure algebra M introdueed in Seetion 12.7; see Exereise 12.45. 

11.2 The Structure of Closed Ideals and Related Topics 

It ean now be shown that a closed ideal I in E is eharaeterized eompletely 
in terms of the eommon zeros of the Fourier transforms oe elements of I. 

For any fEE, we denote by Z, the set of n E Z for whieh j(n) = 0; and 
for any subset S of Ewe write 

Z. = n {Z,: fES}. 

11.2.1. Let I be any elosed ideal in E, and let fEE. Then f E I if and only 
if Z, ::::> Zr. 

Proof. Obviously, Z,::::> ZI whenever fE I. Suppose eonversely that 
fEE and Z, ::::> Zr; we have to show that fE I. Let n rt ZI and ehoose gEI 
sueh that g(n) "# O. By 11.1.1, en E V g; and by 11.1.2, V gel. Thus en E I, 
and this for any n rt Z •. A fortiori, e" E I for any n for whieh j(n) "# O. Now 
6.1.1 shows tha t fis the limit in E of finite linear eom binations of exponentials 
e" with n restricted by the conditionj(n) -# O. Sinee I is a elosed linear sub
spaee of E, it appears that f E I, as was to be proved. 

Remarks. (1) In view of 11.1.2, 11.2.1 may be reformulated in the 
following way. Let V be a elosed invariant subspaee of E and put 8 = Z\Zv; 
then Vis identieal with the elosedlinearsubspaee ofE generated by{e,,: nE8}. 
In brief, V is generated (as a elosed linear subspaee, a closed invariant 
subspaee, or a closed ideal) by the eontinuous eharaeters it eontains. 

The equivalenee of the two versions depends upon 6.1.1. As usual, the 
result remains true for E = L"', provided the weak topology is used through
out; in this eonneetion it is useful (although not essential) to note that 
limN .... '" uNf = f weakly in L'" whenever f E L"'. 
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(2) In 11.2.1 it is essential that the ideal I be assumed to be closed. For 
example, if I is any everywhere dense and nonclosed ideal in E, then 
ZI = 0 = ZE but I # E. In such cases there is no known simple structure 
theorem. 

(3) For a study of projections onto closed invariant subspaces of LP(G), 
where Gis a noncompact group, see Rosenthai [1]. 

11.2.2. The Hahn - Banach Theorem Applied to 11.2.1. A characteristically 
modern tool for the discovery and proof of theorems about linear approxima
tion is the Hahn-Banach theorem, which is described briefly in I, B.5. 
We propose to indicate here how this theorem may be used to prove 11.2.1; 
it is equally useful in connection with the analogous problems mentioned in 
11.2.3 and 12.11.4. 

It must be admitted that its application to the proof of 11.2.1 does not 
appear to be particularly economical, and it must be stressed that the great , 
merit of the theorem lies rather in the range of problems to which it pro vi des 
a useful common approach (see [E], Chapter 2). No account of the methods 
of modern analysis can afford to ignore it. 

The notation being as in 11.2.1, let us face anew the problem of showing 
that fE I whenever Zf ::::> ZI' Since I is a closed linear subspace of E, the 
Hahn-Banach theorem (specifically I, B.5.2) affirms that to do this it suffices 
(and is obviously necessary) to prove that, if F is any continuous linear 
functional on E, and if 

F(g) = 0 for all gEI, 
and 

then 
F(j) = O. 

Now, since I is invariant, (11.2.1) entails that 

for all gEI and all a. 

This suggests that we look at the function <pg defined by 

<pg(a) = F(Tag). 

(11.2.1) 

(11.2.2) 

(11.2.3) 

(11.2.4) 

(11.2.5) 

Since F is continuous on E, while a -c;.. Tag is continuous from R into E 
(see 2.2.4), <pg is a continuous function. The reader will also observe for 
future use the fact that <pg depends linearly and continuously on the 
variable gE E: 

The combination of these last re marks with a simple argument involving 
Riemann sums permits the computation of the Fourier coefficients of <pg. 
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Thus (using an obvious notation), 

by linearity of F, which in turn is equal to 

on account of continuity of F. Now, if gis continuous, it is easy to check that 
the limit appearing in the last expression displayed is none other than the 
function 

x -+ ~ f g(x - a)e-in" da, 
27T 

which is, by virtue of the basic properties of the invariant integral recounted 
in 2.2.2, the function g( -n) . Ln. Accordingly, the formula 

(11.2.6) 

is established for continuous gE E. However, for a fixed rt E Z, each side of 
(11.2.6) is a continuous linear functional of gE E; since the continuous 
functions are everywhere dense in E (a corollary of 2.4.4), (11.2.6) must 
hold for all g E E. The reader is urged to verify carefully all the steps in this 
computation of ~g. 

In view of (11.2.6), (11.2.4) entails that F(en ) = 0 whenever gEI and 
g(n) #- O. Therefore 

for all n E Z\ZI. 

On the other hand, for any fEE we have from 6.1.1 

f = lim 2: (1 - N 1nl I)J(n)en • 
N-oolnl';N + 

So, by linearity and continuity of F, 

F(j) = lim 2: (1 - N 1nl I)J(n)F(en ). 
N_oo Inl'; N + 

Finally, by (11.2.2) and (11.2.7), 

J(n)F(en) = 0 for all n E Z, 

so that (11.2.3) follows from (11.2.8). This completes the proof. 

(11.2.7) 

( 11.2.8) 

Remarks. The computation of the Fourier coefficients of <pg could be 
made to proceed more gracefully by appealing to the results of Chapter 12 
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and Appendix I, C.l concerning the analytic representation of continuous 
linear functionals F on E. However, we have preferred at this stage to 
sacrifice grace in favor of more elementary arguments. 

11.2.3. Closure of Translations Theorems. The \\Titer knows of no very 
significant applications of 11.2.1 to problems of concrete analysis, though it has 
its own interest as a structure theorem, albeit a simple one. However, it and 
certain corollaries one can deduce from it have analogues for other groups 
which are at once deeper and productive of genuinely significant results in 
concrete analysis. We propose to mention these analogues, devoting this 
subsection to so·called "closure of translations" theorems, and the next to 
some consequences of a Tauberian nature (see 5.3.5). 

The position is that 11.2.1 and its derivatives, pertaining to the group T, are 
simple prototypes of bigger and better things which owe their significance to 
their applicability to noncompact groups. 

When one contemplates replacing the compact group T by a noncompact 
(l,?cally compact Abelian) group G, it is difficult to repress the hope that an 
analogue of the case E = LI of 11.2.1 lurks around the corner and awaits 
discovery. There is little difficulty in framing a plausible analogue, and this 
plausible analogue turns out to be "approximately true," or to be "true in 
spirit but false in detail." (Concerning LI(G) for a general group, see, for 
example, [R], Chapter 1; [HR], Section 20; [R], Section 4.19; [Bo]; [BoI]' 
Chapitre 2.) 

Tbe simpiest chöice for a noncompact group G would undoubtedly be the 
group Z. Despite this, the description immediately following is expressed in 
terms of the groups Rm (R the additive group of real numbers with its usual 
topology and m a natural number). One reason for this chöice is that Rm is 
more typical of noncompact groups than is Z. Another reason is that the 
original "closure of translations" theorem of Wiener (see [Wi], pp. 99-100), 
which was the beginning of almost everything in this field, applies to the group 
R. Tbe analogous problems for the technically somewhat simpler group Z will 
receive further attention in 11.2.5 and 12.11.4. 

For 1 E LI(Rm), the Fourier transform of 1 is the function on Rm defined by 

for , = ('I'···' 'm) E Rm; Z, is defined to be the set of zeros of j; and, for 
any ideal I in LI(Rm), ZI is defined to be the intersection ofthe sets Z, whenl 
ranges over I. (A brief treatment of Fourier transforms of functions in L1(R) 
and V 2(R) appears in Chapters 9 and 19 of [RI]; see also [Wi] and [Ti], and the 
references cited therein.) 

The Wiener cloaure 01 translations theorem for Rm asserts that an ideal I in 
V(Rm) is everywhere dense in L1(Rm) if (and only if) ZI = 0. This is a perfect 
analogue ofthe corresponding special case of 11.2.1, and is indeed encouraging. 

For quite a while it remained tantalizingly in doubt whether a general closed 
ideal I in V(Rm) necessarily contains every 1 E LI(Rm) such that Z, :::> ZI. The 
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first example showing that this was not ah"ays the case was given by Laurent. 
Schwartz [IJ in 1948 and applied to Rrn with m ;?o 3; see also Reit .. r [IJ and 
12.11.5. Another deeade was to elapse before similar examples p .. rtaining first 
to R, and then to any noncompact G, were produced by Malliavin [IJ in 1959. 

Despite this disappointment, it turns out tImt if Z, is topologically simple 
enough, then I does indeed contain every f E LI( Rm) for which Zr :::J Z,; and 
that the conclusion stands, whatever Z" if in addition j is subject to smooth
ness conditions. Results of this type permit thc reader to jl1dge for himself to 
what extent the analogue of 11.2.1 (for E = LI) may bc claimed to bc 
"approximately true." See [HR], (39.24); [Re], p. 28; [Kz], p. 225; [R], 7.2.4; 
MR 37 # 6694; 40 # 6491; 46 # # 9650,9652,49 # 9542; 53 # 14025; 54 
# # 10980, 13464. 

A set S c Rrn having the property that 

JE LI(Rrn), Zr:::J Z, => JE I 
for every.closed ideal I in Ll(Rrn) for which Z, = S, is termed a speetral (or 
harmonie) synthesis set in Rrn; Rndin ([RJ, p. 158) rcfers to them more briefly 
as S-set~. It is known that S is a spectral synthesis set in this sense if and only 
if there is but one closed ideal I in LI(Rrn) satisfying Z, = S. 

Malliavin's result cited above asserts precisely that there exist closed sub sets 
of Rrn which are not spectral synthesis sets. On the other hand, the opcning 
statement in the last paragraph but one amounts to saying that conditions of 
topological simplicity are known which ensure that a given closed set S is a 
spectral synthesis set; compare Exercise 12.52. 

Malliavin's result cited above has given rise to many extensions, improve
ments and simplifications. For some (if not all) of the details, the reader should 
consult Malliavin [1], [2]; [R], Chapter 7; [KS], Chapitre IX; [Kz], pp. 229 
ff; [HR], §42; de Leeuw and Herz [1]; MR 31 # 256.7; 39 # 1977; Exercise 
12.53 below. At this point we remark merely that Malliavin's original construc
tion has been simplified by Kahane and Katznelson [2] and Richards [1]; and 
that Varopoulos [1], [2] introduced an entirely original (tensor product) ap
proach to spectral synthesis problems in Banach algebras; see MR 41 # 830 
and the remarks in 11.4.18(4) below. 

As has been indicated, strictly analogons problems arise when attention is 
transferred from Ll(Rm) to (l(Z); concerning this particnlar extension we shall 
have a little more to say in Subsections 11.2.5, 12.11.4, 12.11.5, and 12.11.6. 

Mention must also be made of analognes for noncompact groups G of the 
remaining cases eovered by 11.2.1, namely, the closure oftranslations theorems 
in E = LP (1 < p < (0) anel E = C. The results for L"'(G) with its weak 
topology (see the opening remarks to this chapter) go hand in hand with those 
for Ll(G) al ready discnssed. For L2(R) a eomplete solution was given by Wiener 
([WiJ, p. 100), and this extends without trouble to L2(G). In all other cases, 
that is, for values of p different from 1, 2, and 00, the known results are less 
complete. While conditions are known which are sufficient to ensure that the 
linear combinations of the translates of a givenf E LP(G) are everywhere dense 
in that space, anel yet others are known which are necessary for this to happen, 
there remains a gap between the two types of eonelitions. All at tacks on this 
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problem are bedevilled. by the preliminary task of devising and handling a 
traetable definition of the Fourier transform of a function belonging to an 
arbitrary space LP(G). This may be done in terms of pseudomeasures and 
similar objects (the p<'riodic prototypes of which are mcntioncd in Section 
12.11; see esp<,cially 12.11.4). Thore is, alas, no connected account in book 
form, but see Herz's survcy article [2], Guudry [l], [3], Edwards [4] and thc 
references there cited, and "Varner [1]. (The case of thc group Z is eliscussed 
briefly in 11.2.5.). See also MR 38 # 4904. 

One striking fact, applying when G is noncompact and I < P < 2, is that 
there exists a cIosed invariant subspace V =1= {o} in L 2 (G) which contains no 
nonzero element of LP(G); see MR 52 # 14849. See also MR 48 # 11915. 

Finally, an cvcn wider diversity obtains when one turns to analogues of the 
case E = C of 11.2.1. ThiH is duc to thc fact that there are, in relation to a 
noncompact G, several natural spaces of continuous functions which coalesce 
for compact groups but which otherwise are widcly different. The following 
four contenders havc rcceived attention: 

(1) the spacc C(G) of all continuous functions on G, with the topology of 
lotlally uniform convcrgence; 

(2) thc space BC(G) of bounded, continuous functions on G, with the 
topology of uniform eonvergcnce; 

(3) the space ·BUC(G) of boundeel, uniformly continuous functions on G, 
with thc topology of uniform convergence; 

(4) the spaee Co(G) of continuous functions which tend to zero at infinity, 
with the topology of nniform convergence. 

For Co(G) fairly complete results are known. For the remaining three, results 
are hard to comc by; in·the case ofBC(G) anel BUC(G), more progress has been 
made concerning approximation relative to a weaker (the so·calleel "strict") 
topology, originally sllggcsted by ideas of Beurling; see Edwards [5] and 
Harasymiv [1]. In the case of C(G), most attention has been paid to fllnctions, 
the linear combinations of translates of which are not everywhere dense in 
C(G): these were introdueerl anel stlldied (for G = R) by Laurent Schwartz [2] 
in 1947, who christened them mean periodie function8; see also [Kah3J. Some 
of Schwartz's results have since been extended to more general groups by 
Ehrenpreis [I], Elliott [1], Gilbert [I], and others. 

11.2.4. About Tauberian Theorems. Wc pass on to considcr briefly some 
conscquences of sllch closure of translat.ions theorems as are typified by the 
ease ZI = 0 of 11.2.1 ami tho genoralizations theroof mentioned in 11.2.3. 

Let us begin with the group T. Suppose we take a subset A of T and a 
nonvoid collection I1 of nonvoid subsets of A satisfying the following two 
conditions: 

(1) the intersection of any two members of Il contains a member of Il (in 
M. BOllrbaki's languago, this signifios that Il is a filter base on A); 

(2) if a E A anel PEIl, thore oxists P' EIl such that 

P' C a + P = {a + x: x E P}. 
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If Fis a real- or complcx-valueä function defined on A, we write 

lim F = 0 
rr 

if and only if to each e > 0 corresponds a set PE E rr such that /F(a)/ ~ e for 
a E PE' Owing to condition (1), limrr (F1 + F 2) = 0 whenever limrr F i = 0 for 
i = 1,2. Moreover, thanks to condition (2), limrr TaF = 0 whenever a E A 
and limrr F = O. 

By way of example, one might take for A the set of all ,cosets na + 27TZ 
obtained when a is a fixed real number and n ranges over Z, while for rr one 
might take the collection of sets P k (k = 1, 2, ... ), P k being the set of cosets 
na + 27TZ obtained for /n/ > k. In this case, limrr F would signify what would 
normally be denoted by limneZ.lnl~'" F(na + 27TZ), or by limnez.lnl~'" F(na), 
if F is first extended to T and then regarded as a periodic function on R. 

Given fo E LI, it may or may not be true to assert that the linear combi
nations of the translates Ta fo (a E A) are everywhere dense in LI. As may be 
deduced from 11.2.1, this assertion will be true whenever Jo is nonvanishing on 
Z and A is everywhere dense in T. (This second condition is satisfied by the 
particular A mentioned in the last paragraph, if a/rr. is irrational; see Exer
cise 2.2.) The assertion mayaIso be shown to be true for quite sparse subsets A 
of T, provided fo is, say, analytic and Jo is nonvanishing on Z (compare 
Exercise 11.9). 

In any case, one may proceed without much difficulty to establish the 
following result. 

(a) Suppose that A and II are as above, thatfo E LI, thatJo is nonvanishing 
on Z, and that A is everywhere dense in T. If gEL 00, and if 

then also 

limfo * g = 0, 
rr 

limf * g = 0 for allfE V. 
rr 

(11.2.9) 

(11.2.10) 

It is true, but irrelevant at the moment, to say that (11.2.10) is equivalent to 
the assertion that g = 0 almost everywhere. 

As far as the writer is aware, (a) has no especially significant consequences. 
However, (a) has a deeper analogue for the case in which T is replaced by any 
locally compact Abelian group G. and, when G is noneompact, very signifieant 
results are obtained in this way. 

Let us state such an analogue for the typical case in which G = R, special
izing on the way by taking A = G = Rand rr to be the set of complements 
in R of compact subsets of R. (This natural choice of rr is not permissible for 
compact groups, which is why (a) takes the rather complex form it does.) Then 
limrr F signifies what is normally written as limXeR.lxl~'" F(x). The analogue 
runs as folIows. 

(b) Ifio E V(R) satisfies 

low == In !(x)e- 2ngX dx f:. 0 
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and if gE L"'(R) is such that 

lim 10 * g(x) = 0, (11.2.11) 
lxi-CO 

then also 
lim 1* g(x) = 0 for aIl/E V(R). (11.2.12) 

!x\-ct) 

Statement (b), and its valid analogue for any 10caIly compact Abelian 
group G in place of R, is an almost immediate coroIlary of the closure of 
translations theorem mentioned in 11.2.3; see [R], p. 163; [HR], (39.36); 
[Kz], p. 228; [Re], p. lO. The case G = R is Wiener's famous general Tauberian 
theorem, so named because by design it includes as corollaries a number of 
results each of a Tauberian nature (see 5.3.5). The deductions of these special 
Tauberian theorems, which often require skillful choice of the "kernels "10 and 
I, followed by lengthy manipulations, would be out of place here. 'For an 
account the reader may be referred to Wiener's book [Wi] or, for more recent 
accounts, to [Ha] and/or [P]. (None of these references lays any stress on the 
relationship between the Wien er theorem and the ideal theory of L1 (R).) A 
brief proof of (b), using distributional techniques and the Hahn-Banach 
theorem, has been given by Korevaar [1]; the method is even more neatly 
expressible in terms of pseudomeasures (see Section 12.11 and compare the 
remarks in 1l.2.5). 

Weak versions of (b), in which more is assumed about the smallness of/o at 
infinity, can be proved by simpler arguments and retain some interest for 
applications; see, for example, Kac [1]. See also MR 50 # 7952; 52 # 1173. 

Concerning abstract Tauberian theorems, see Subsection 11.4.18(3). 

11.2.5. The Case of the Dual Group Z. The remarks in 11.2.3 that refer 
to analogues of 11.2.1, or of special eases of that theorem, may be further 
illustrated by looking at the situation in whieh the underlying group is Z. 
This we shall do very briefly. 

The problem is thatof elassifying the closed invariant subspaees of t P = tP(Z). 
For p = 1, in whieh ease we may speak equivalently of the closed ideals 

I in t 1, some at least of the diffieulties mentioned for general noneompaet 
groups in 11.2.3 are already visible. However, it is true that a given rp E t 1 

generates adense ideal if and only if its Fourier transform ~ is nonvanishing; 
this, and more besides, is proved in Exereise 12.32. 

The ease p = 2 is eompletely solved, the solution being as follows. Given 
rp E t 2 and '" E t 2, '" belongs to the closed invariant subspaee of t 2 generated 
by rp if and only if the set of zeros of ~ eontains, modulo a null set, the set of 
zeros of ~; regarding the transforms ~ and ~, see 8.3.3. 

For other finite values of p no eomplete solution is known, the remarks in 
11.2.3 applying without modifieation. In Seetions 12.11 and 12.12 we shall 
deseribe briefly the diffieulties, unsolved problems, and partial sueeesses in 
relation to this problem. It must here suffiee to remark that the sharpest 
results available apply to a problem posed by Beurling, namely: Suppose 
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that cf> E (1(Z) (c (P(Z) for every p ~ 1); what can be said about the size of 
E = ~-I({O}) in relation to those values of p for which the closed invariant 
subspace of (P(Z) generated by cf> is the whole of {P(Z)1 As we shall see, 
although the solution is not complete, quite precise results are expressible in 
terms of so-called "capacities" of E (or, what is essentially equivaleilt in the 
present context, the so-called "Hausdorff dimension" of E). Any reader who 
wishes to approach this problem independently will find the details in [KS], 
p. 112. See also Newman [3]. 

For p = 00, it is the case that a given cf> E {OO has the linear combinations 
of its translates weakly dense in {OO if and only if the pseudomeasure ~ has a 
full support (see 12.11.4). The same result holds for the uniformly closed 
invariant subspace of Co generated by a given cf> E co. (A pseudomeasure a on 
T has a fuIl support if and only if the only continuous function u on T 
having an absolutely convergent Fourier series and satisfying u . (J = 0 is 
the function u = 0.) See also [Kah], Chapter VIII. 

11.3 Closed Subalgebras 

We now turn to the consideration of structure theorems for closed sub
algebras ~ of E, analogous to 11.2.1 for closed ideals. 

The natural conjecture is that ~ is fully determined by knowledge of those 
subsets of Z which are common sets of constancy of the Fourier transforms 
j of elements f of ~; see 11.3.1 for details. When E = L2, this conjecture is 
true, as will be shown in 11.3.6. When E = LI, the conjecture is shown to be 
false by an example due to Kahane (1962); see 11.3.4. To the author's 
knowledge, its truth or falsity is undecided in all the remaining cases. 

On the other hand, as will become apparent from subsequent results, the 
conjecture is "approximately true" (compare with 11.2.3). 

For several other problems about subalgebras having close connections 
with harmonic analysis, see [R], Chapter 9. 

11.3.1. Equivalence Relations and Idempotents in ~. Let • be a 
closed subalgebra of E. We introduce the equivalence relation r(.) on Z 
which is defined by writing nr(~)n' if and only if n, n' E Z and j(n) = j(n') 
for all f E~. Accordingly, Z is partitioned into cosets 8 modulo r(.), of 
which there are at most countably many. We follow Kahane in terming each 
such coset 8 modulo r(.) a Rudin class of ~. On each Rudin class of ., each 
function j (f E ~) assurnes a constant value which we denote by j(8). Either 
j(8) = 0 for all f E ~, or 8 is finite (see 2.3.8). 

Given any equivalence relation r on Z, we shall write L~ for the set of all 
integrable functions f such that j(n) = j(n') whenever n, n' E Z and nrn'. 
Then E (\ L~ is a closed subalgebra of E, which is plainly the largest closed 
subalgebra ~ of E for which r(~) = r. 

It follows that ~ c E (\ L~dl> for any closed subalgebra • of E. 



12 TRANSLATES. IDEALS. SUBALGEBRAS. BANACH ALGEBRAS 

The natural conjecture is that ~ = E (\ L;<21l for any c10sed subalgebra 
~ ofE. 

Save for the ca ses mentioned in 11.3.4 and 11.3.6, the truth 01' falsity ofthis 
conjecture is an open problem. The basic positive result in fa vor of this 
conjecture asserts that in all cases ~ contains each of the trigonometrie 
polynomials 

where 8 is any coset modulo r(~) such that j(8) =1= 0 for some J E ~l. These 
elements es are easily seen to be precisely the minimal idempotents of the 
algebra ~I, that is, the idempotent elements e of ~l which are not expressible 
as sums of two 01' more nonzero idempotents of ~. Each idempotent element 
of ~I is a finite sum of those minimal idempotents. 

In order to prove that each es does indeed belong to ~l, we shall need to 
call upon the spectral radius formula 

lim [[f*k[[l/k = [[j[[", 
k~ '" 

(11.3.1) 

for elements J of E, the norm appearing on the left-hand side being that on E. 
For E = L2 this result is established in Exercise 8.8. The formula for 
E = C is easily deducible from the case E = L2 . A proof covering all the 
requil'ed cases will appeal' in 11.4.14. MeanwhiJe, (11.3.1) will be taken on 
trust. 

11.3.2. Let ~ be a cIosed sub algebra of E. Then es E ~l for any coset 8 
modulo r(~) for which j(8) =1= 0 for some (possibly 8-dependent) element J 
of ~. 

Proof. This is taken from [R], p. 232. 
Enumerate the co sets 8 modulo r(~I), for which j(8) =1= 0 for some 8-

dependent J E ~l, as 8 a , where a runs over some set of positive integers. 
Choose and fix any a and then any JE ~I such thatj(8a ) =1= O. There are at 

most a finite number of indices a' distinct from a for which j(8a,) = j(8a ). 

If no such indices a' exist, part (1) of the proof to follow simplifies and com
pletes the proof. Weshall proceed on the hypothesis that such indices a' 

exist, labeling them al, ... , an' and putting 

(In case no indices a' exist, the appl'opriate definition would read: t = esa .) 

(1) The first step is to show that t E ~. According to 2.3.8, j(8a ) is an 
isolated point ofj(Z), andj(Z) has no limit points other than zero. It follows 
that a polynomial F in one complex variable may be chosen so that 

F(O) = 0, [F(z)[ < Yz 
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for Z E!(Z)\!(Sa). Indeed, this may be reduced to the following constructional 
problem: given complex numbers Zm (m = 0, 1,2, ... ) such that Zo :f. 0, 
Zm :f. Zo (m > 0), Zm -+ 0 as m -+ 00, it is required to find a polynomial F 
such that F(O) = 0, F(zo) = 1, IF(zmll < Y2 for m > o. To this end, choose 
an integer k so large that IZml :::; Y2lzol for m > k, and put 

F(z) = (-=-)N. (z - Zl)···(Z-Zk) , 
Zo (zo - Zl)· .. (zo - Zk) 

where the positive integer N is to be chosen in amoment. Then, plainly, 
F(O) = 0, F(zo) = 1, and F(zm) = 0 for 0 < m :::; k. Moreover, if m > k, 

IF(zm)1 :::; 2- N (l zll +Y2lzoj)·· . (jzkl + Y2lzoj), 
j(zo - Zl)· .. (zo - Zk) I 

which can be made less than Y2 if only N be chosen sufficiently large (depend
ing upon k). If this be done, Fis a polynomial satisfying all the requirements. 

Suppose that 
F(z) = C1Z + ... + CMZM, 

and consider the function 

g = cd + Cd*2 + ... + cMf*M, 

where, as usual, f*k is the k-th convolution power of J. Since f E ~J and since 
~ is a subalgebra of E, g E ~1. Plainly, g = F 0 j. Since both g and t take the 
value 1 onSa U Sal U· .. U San' our choice of F ensures that Iig - liloo < Yt. 
The spectral radius formula for elements of E therefore entails that 

lim Ij(g - t)*k 11 1/" < Y2. "_00 (11.3.2) 

On the other hand we ha ve 

1 = tk = g ·tk-l = g2. t"-2 = ... = g"-l. t, 

since t is the characteristic function of Sa U Sal u· .. U San' on which set g 
assumes the value 1. Therefore 

or, by the uniqueness theorem 2.4.1, 

(g _ t)*" = g*" - t. 

Formula (11.3.2) now shows that 

lim IIg*k - W'" < Y2, k_oo 
so that 

IIg*" - tll < 2-" 

for all sufficiently large k. Since ~ is a closed subalgebra of E, it appears 
thence that t E ~. 
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(2) The next step is to show that ~ eontains trigonometrie polynomials t, 
(i = 1, 2, .. " n) sueh that 

It will suffiee to exhibit the eonstruetion of t l • 

Choose h E ~ sueh that h(Sa) # h(Sal) and put 

[h - h(Sal )t] 
hl = ~ ~ 

[h(Sa) - h(Sal)] 

by (1), hl E ~l; and plainly 

hl(Sa) = 1, 

If the eonstruetion deseribed in (1) be applied on starting with h l in plaee 
ofJ, the result is easily seen to be a trigonometrie polynomial t l E ~l satisfying 
the required eonditions. 

(3) By eomparing Fourier transforms and using the uniqueness theorem 
2.4.1, it is elear that es« = t * tl * t2 ••• * tn , whieh makes it evident that 
eSa E ~ and thus eompletes the proof. 

11.3.3. The Natural Conjecture as an Approximation Problem. Given a 
elosed subalgebra ~ of E, denote by ~lo the elosed subalgebra of E generated 
by the idempotents es, S being any eoset modulo r(~) sueh thatj(S) # 0 for 
some J E ~. By 11.3.2, ~o c ~. It is otherwise clear that r(~o) = r(~). 

The natural eonjeeture spoken ofin 11.3.1 is thus to the effeet that ~o = ~l 

for all elosed subalgebras ~ of E. 
Yet another way of expressing the eonjeeture is in the form of the following 

assertion about approximation. 
Given disjoint nonvoid finite subsets Sa of Z, eaeh JE E, sueh that j is 

eonstant on eaeh Sa and vanishes on Z\Ua Sa' is the limit in E of finite linear 
eombinations of the idempotent trigonometrie polynomials es«. 

Further diseussion of the eonjeeture will often make use of this last version 
thereof. 

11.3.4. Kahane's Results about Closed Subalgebras ofLI. Let us agree 
to write #S = k, or #S = 00, aeeording as the set S is finite and has k 
elements, or is infinite, respeetively; and to write Tc < 00 for every real number 
k. Then the main results established by Kahane [1] may be stated as follows: 

(a) There exist closed subalgebras ~ of LI whieh are not generated by 
their idempotent elements. 

(b) If ~ is a closed subalgebra of LI whose Rudin classes are of bounded 
lengths (that is, are eontained in intervals of bounded lengths), then ~ is 
generated by its idempotents. 
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(c) There exists a closed subalgebra ~ of L1, whose finite Rudin classes 8 
satisfy sup #8 < 00, and which is nevertheless not generated by its idem
potents. 

Kahane also raises a number of problems demanding attention. 
Problem 1. Are there any (infinite) subsets Q of Z with the property 

that, for any closed subalgebra ~ of L1, each f E ~ whose Fourier transform 
vanishes on Z\Q is the limit in V of finite linear combinations of the idem
potents in ~ ~ 

Kahane remarks that his proof of (a) can be adapted to show that a set Q 
with this property cannot contain arbitrarily long arithmetic progressions. 
On the other hand, the results of Chapter 15 (see especially 15.3.1) show that 
Sidon sets Q have the desired property. A similar result is true for closed 
subalgebras of E = C or LV, and may be obtained by combining 11.3.5 and 
the proof of 11.3.6 with 15.1.4 and 15.3.1, respectively. Nothing appears to 
be known concerning sets Q which fail to contain arbitrarily long arithmetic 
progressions and which are yet too "thick" to fall into the category of Sidon 
sets. 

Problem 2. Kahane has shown that algebras ~ ex ist with the property 
mentioned in (c) and whose finite Rudin classes contain at most four elements. 
Is it possible to reduce "four" to "two" in this assertion? 

Problem 3. Which equivalence relations r on Z have the synthesis 
property, that is, are such that any closed subalgebra ~{ of L1, for which 
r(~) = r, is generated by its idempotents ~ Result (b) seems to be as much 
as is as yet known in this connection. 

Although (a) decisively negatives the natural conjecture, the next four 
results use 11.3.2 in order to salvage something in the positive d.irection; they 
show that the natural conjecture is not absurdly wide of the mark. 

11.3.5. Let ~ be a closed subalgebra of E. Then ~ contains each fE L;(!I) 
for which Lnez li(n) I < 00. 

Proof. Using the notation introduced at the beginning of the proof of 
11.3.2, the absolutely convergent Fourier series of f may be regrouped to 
appear as 

'Li(Sa) 'L en = 'Li(8a)esa , 
a neSa a 

the regrouped series being again absolutely convergent. It follows that f is 
equal almost everywhere to the limit of a uniformly convergent sequence of 
finite linear combinations y/c (k = 1, 2, ... ) of the eSa ; and if fis continuous 
it is equal everywhere to this limit. So in any case f is the limit in E of the y/c' 
By 11.3.2, each y/c E ~. Since ~ is closed in E, it follows that f E ~. 

11.3.6. Let ~{ be a closed subalgebra of L2. Then ~{ = L2 () L:(,!(). 
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Proof. It suffices to verify that the approximation assertion appearing 
in 11.3.3 is true. Suppose then that 1 E L2, that j takes the constant value C" 

on S", and that j vanishes outside S = U" S". Writing e" in place of esa , 
the Parseval formula (8.2.2) gives for any finite set F of indices rx 

Now 

so that 

11I - 2: c"e"ll~ = 2: Ij(n) - 2: c"e,,(n)12 
aeF neZ aeF 

if n E S ß for some ß E F, 
otherwise, 

= 2: Ij(n)J2 = 2: i!(n)i2, 
neSj;o neS\Sp 

where S~ = UMF SO and SF = UoeF So. The regrouping of terms of the 
series is justified, because Lnez Ij(n)J2 < 00. This same condition ensures 
also that, given any e > 0, 

2: Ij(n)i2 < e2 

neS\Sp 

for all sufficiently large finite sets F of indices. For such finite sets F, it is 
therefore the case that 

11I - 2: c"e"lb < e, 
"eF 

which is what we had to show. 

11.3.7. The proof of 1l.3.6 shows in fact that, if 1 ~ P ~ 2, and if ~ is a 
closed sub algebra of V', then 

~ :::l L2 n L;(2{). 

(Recall that convergence in L2 implies convergence in LP for any p satisfying 
o < p < 2.) See Exercise 11.6. 

11.3.8. If ~ is a closed sub algebra of E, tlfen 1 * g E ~ whenever 

I, g E L2 n L;(21). 

Proof. As the proof of 11.3.6 shows, each of 1 and g is the limit in L2 of 
finite linear combinations of the esa . Since es" * esp = 0 or es" according as 
ß -=I a or ß = a, it follows that 1 * g is the uniform limit (a fortiori, the limit 
in E) of finite linear combinations of the eSa and therefore, by 11.3.2, belongs 
to ~. 

See also Exercise 11.7, where a somewhat more general result is given. 
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11.3.9. Existence of Zero Divisors. For closed subalgebras ~ of E, an 
answer ean now be given to the question [raised in 3.1.1(e)] about the 
existenee in ~ of zero divisors. The ans wer is as folIows: a closed subalgebra 
~ of E has no zero divisors if and only if ~ is either {O} or eonsists of the 
sealar multiples of some nonzero idempotent trigonometrie polynomial. 

Proof. It is evident that if ~( is of the stated type, then it possesses no 
zero divisors. 

Suppose on the other hand that ~ # {O}. Then there exists n o E Z and 
10 E ~( such that !o(no) # O. Let So be the eoset modulo r(~) containing no. 
By 11.3.2, eso E ~. If ~ were not exhausted by the sealar multiples of eso' 

there would exist n 1 E Z\So and11 E ~(sueh that!1(n1) # O. Then, by 11.3.2 
again, if SI is the eoset modulo r(~() containing n 1 , we have es, E ~l. Sinee 

SI # So, SI n So = 0, and therefore es, * eso = O. Eaeh of eso and es, 

would thus be a zero divisor belonging to ~. Consequently, ~l must be 
exhausted by, and so be identieal with, the set of scalar multiples of eso ' 

11.3.10. Maximal Subalgebras. A closed sub algebra ~( of E is termed a 
rnaximal 8ubalgebra of E if ~ # E and if the only closed subalgebras of E 
which eontain ~ are ~ and E itself. 

These maximal subalgebras of E ean be simply and fully eharaeterized, as 
in the seeond half of the following statement. 

11.3.11. Let ~(be a closed subalgebra ofE, %"~l the set ofFourier transforms 
of elements of ~, and Zu the set of eommon zeros of elements of ~l (as in 
Section 11.2). 

(i) If %"~( separates points of Z (that is, if, whenever n 1 # n 2 belong to Z, 
there exists 1 E ~ such that !(n 1 ) # !(n2 )), then either Z21 = 0 and ~ = E, 
or there exists no E Z such that ZIJ! = {no} and 

(11.3.3) 

(ii) The maximal subalgebras of E are preeisely the subalgebras ~no 

(no E Z) and the subalgebras 

(rI.3.4) 

where n 1 , n 2 E Z and n1 # n 2 • (Notiee that each ~no is actually an ideal in E, 
and not merely a subalgebra.) 

Proof. (i) To say that %"~ separates points of Z is equivalent to saying 
that each Rudin class of ~ is a singleton. This being so, two eases arise 
aceording as ZIJ! is or is not void. 

If Zu is void, 11.3.2 shows that en E ~l for all nE Z, and 6.1.1 then shows 
that ~ = E. 
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Otherwise, Z21 is a Rudin class of ~ and hence takes the form {no} for some 
n o E Z. If nE Z is distinct from no, then {n} is a Rudin class of ~ andJ(n) :f. 0 
for some J E ~. So 11.3.2 entails that en E ~ for an integers n different from 
n o, and 6.1.1 shows that ~ ::> ~no and so that in fact ~ = ~no' 

(ii) The proof is broken into several steps. 
(1) ~no is maximal For if !8 is a closed subalgebra of E containing ~no' 

then §!8 plainly separates points of Z. So, by (i), !8 is either E or is ~n for 
some n E Z. Since !8 ::> ~no' n must coincide with no and !8 with ~no' Whence 
results the maximality of ~no' 

(2) ~nl.n2 is maximal. For if !8 is a closed subalgebra of E containing 
~nlon2 properly, it is again clear that §!8 separates points of Z. So, by (i) 
again, !8 is either E or ~no for some no E Z. The latter alternative cannot 

arise since !8 ::> ~nl.n2' Hence !8 = E. 
(3) Suppose now tllat ~ is a maximal subalgebra of E, and suppose that 

eit"'er (a) there exists a Rudin class S of ~ having at least three elements, 
n lo n 2, n3' or (b) there exist at least two Rudin classes S = {nI' n2, ... } and 
S' of ~ each having at least two elements. 

Let !8 be the closed sub algebra ofE generated by ~U{enl}' Then !8 contains 
~ and !8 :f. ~t (because enl belongs to !8 but not to ~, since enl is not constant 
on S ::> {nI' n 2}). Any element of !8 is the limit in E of elements aenl + J, 
where a is a scalar and J E ~, and so each element of §!8 is constant on each 
of S\{n I } and 8'. By (a) or (b), at least one of these two sets has at least two 
elements, so that !8 :f. E. This would contradict the maximality of ~ and so 
negates both (a) and (b). 

Thus at most one Rudin class of ~ contains two elements, an others being 
singletons. 

If an are singletons, (i) shows that ~ = ~no for some integer no• Otherwise, 
there is just one Rudin class S = {nI' n2 } of ~ having two elements, an others 
being singletons. But then ~ C ~n,.n2 and, since ~nl.n2 is a closed subalgebra 
ofE different from E, the assumed maximality of ~ entails that ~ = ~nl.n2' 

This completes the proof. 

11.3.12. Remar ks. Maximal subalgebras were first discussed in a different 
context by Wermer; see Exercise 11.25 and Wermer [1]. For a discussion of 
analogues of 11.3.11 for more general groups, see Chapter 9 of [R], the 
references cited there, and Liu [1]. 

Problems concerning generators of the Banach algebra A (see 10.6.1 and 
11.4.17) have been studied in Newman, Schwartz and Shapiro [1]. 

Further reading: Greenleaf [2]; Reiter [2]; MR 38 # 486; 39 # # 
4608,6024; 40 # 7730; 41 # # 4138,4139,7730; 42 # 2254; 54 # 3298. 
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11.4 Banach Algebras and Their Applications 

In this section we are going to deal with some of the rudiments of the 
Gelfand theory of commutative complex Banach algebras that possess 
identity elements, the principal aim being to apply this theory in such a way 
as to derive the spectral radius formula (of which some instances are estab
lished in other ways in Exercises 8.8 and 3.12 and which has been stated and 
used in Section 11.3) and the theorems of Wiener and Levy mentioned in 
10.6.3. A few other loose ends will also be tied up. 

While our treatment is intentionally brief and highly selective, it may fairly 
claim to cover a few of the high spots of the Gelfand theory and its applica
tions. Another introductory account will be found in Chapter 18 of [Ri]. 
The reader who wishes to pursue Banach algebra theory further may do 
so by consulting any desired selection of the following references: [B], 
[BoI]' [N], [Lo], [Ri] , [HS], [GRS] , [Kz] , [HR] , [Mo]; see also the 
comment~ in 11.4.18. 

Among the algebras E in which we are primarily interested are E = LP 
(1 ~ P ~ 00) and E = Ck (k a nonnegative integer). These do not possess 
identity elements, however, and it is technically advantageous to adjoin to 
E a formal identity element to obtain an enlarged algebra BE to which the 
general Gelfand theory is then applied. 

Useful applications to other algebras will also be possible; see also Section 
16.6. 

11.4.1. Definitions and Examples. All the general developments and 
results we make and obtain will refer to a complex commutative Banach 
algebra B with an identity element. By this it is meant that 

(a) B is an associative and commutative algebra over the complex field 
that possesses an identity (or unit) element e relative to multiplication; 

(b) B is also a Banach space with a norm 11 • 11; 

(c) one has Iiell = 1 and 

Ilxyll ~ Ilxll . Ilyll 
for any two elements x, Y of B. 

From (c) it follows that 

(n = 1,2", .). 

It will be convenient to define XO to be e. 
We consider some examples. 
(1) The examples of such Banach algebras to which our first applications 

of the forthcoming general theory will be made are the algebras BE obtained 
in the following way. If E denotes any one of LP (1 ~ P ~ 00) or Ck (k a 
nonnegative integer), then it is known already from Chapters 2 and 3 that E 
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fulfils the conditions (a) to (c) above, save the parts referring to the existence 
of an identity element e. This defect is repaired by enlarging E into the 
algebra BE whose elements are by definition ordered pairs (ex, f), where ex is a 
complex scalar and fEE. The algebraic operations and the norm in BE are 
defined thus: 

(ex,f) + (ß, g) = (ex + ß, f + g), 

ß(ex, f) = (ßex, ßf), 

(ex, f) . (ß, g) = (exß, exg + ßf + f * g), 

[[(ex,f)[[ = [ex[ + [[filE' 

where ex and ß are complex scalars, fand g are elements of E, and where 
[[ • [[E denotes the appropriate norm in E (see 2.2.4). The mapping f --+ (0, f) 
imbeds E isometrically and isomorphically into BE' We leave to the reader 
the simple task of verifying that BE does indeed satisfy conditions (a) to (c) 
above, the identity element e being (1,0). The passage from E to BE is 
spoken of as that of adjoining a formal identity element. 

We remark in passing that in the language to be introduced in Chapter 12, 
BE can be identified algebraically with a set of Radon measures by means of 
the correspondence (ex, f) ~ exe + f, where e denotes the Dirac measure at 
the origin. However, unless E = Li, this correspondence does not preserve 
norms. Weshall nowhere in this chapter make use of this identification. 

(2) Perhaps the simplest nontrivial type of Banach algebra which engages 
the interest of the functional analyst is the algebra C(S) of all continuous 
complex-valued functions on a compact Hausdorff topological space S, the 
algebraic operations being pointwise (x + y, exx and xy being the functions 
s --+ x(s) + y(s), s --+ exx(s) and s --+ x(s)y(s), respectively) and the norm 
being the supremum (or maximum modulus) norm: 

[[xli = sup {[x(s) [ : SES}. 

The identity element in C(S) is just the constant function 1. 
Most of the problems we shall mention for Banach algebras in general 

admit rather transparent solutions for the algebras C(S). For this reason, the 
Gelfand theory is largely concerned with displaying to what extent a general 
algebra B is similar to an algebra C(S) for a suitably chosen S (which will 
depend upon B). Further comment on this matter will be made in 11.4.18(1). 

Although, as we have said, C(S) itself is rather simple, the same is far from 
true of various subalgebras of C(S) whose norms may or may not be obtained 
by restricting the above norm on C(S). One such subalgebra Qf C(Rj27TZ) has 
been encountered in Section 10.6 and there christened A; this algebra will be 
examined again in 11.4.17. For a survey of other closed subalgebras and the 
attendant problems, see the references cited in 11.4.18(4) and (5). 
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(3) Some further examples will appear in 11.4.17 and in Exercises 11.10, 
11.12 and 11.15. Meanwhile we turn to some generalities. 

11.4.2. Inverses and Spectra. An element x of a given algebra B is said 
to be inversible (in B) if and only if there exists an element y of B such that 
xy = e; there is then precisely one such element y of B, this element of B 
being termed, the inverse of x and denoted by x -1. 

It is evident that e is inversible and coincides with its inverse. Moreover, 
if x and y are both inversible, then xy is inversible and (xy) -1 = X -1y -1 

(recall that B is commutative by hypothesis). If x is inversible, we shall 
usually write x- n for (x- 1 )n, n being any positive integer. 

The concept of inversibility is, as we shall see, central in all subsequent 
developments. Major steps in the theory amount simply to criteria for 
inversibility, fruitful instances of which appear in 11.4.6 and 11.4.10. 

It is necessary to consider, along with a given x and its inversibility, the 
family of elements x - Ae obtained when A varies over all complex scalars. 
Given x, the scalars fall into two complementary sets: the set a(x) of scalars 
A such that x - Ae is not inversible, and the set R(x) of scalars A such that 
x - Ae is inversible. The sets a(x) and R(x) are termed, respectively, the 
spectrum and the resolvent set of x, the terminology being taken over from the 
so-called spectral theory of operators. The nonnegative real number [see 
(11.4.4)] 

p(x) = sup {lAI: A E a(x)} (11.4.1) 

is termed the spectral radius of x. 
The next two results collect together a number of basic properties of the 

set of inversible elements, the spectrum, the resolvent set, and the spectral 
radius. They provide also a proof that R(x) is nonvoid and open, that a(x) 
is nonvoid and compact, and that (x - Ae) -1 depends analytically on 
A E R(x). This last statement means that, for any continuous linear functional 
F on B, the complex-valued function cf> defined by 

cf>(A) = F[(x - Ae)-1] 

is analytic in the ordinary sense on the open set R(x). In brief, 11.4.3 and 
11.4.4 contain the analytic heart of the Gelfand theory. 

11.4.3. (1) If x is an inversible element of B, and if y is any element of B 
such that 

then y is inversible and 

'" 
y-1 = 2: x- n- 1(x _ y)n; (11.4.2) 

n=O 

in particular, any Z E B satisfying Ilz - eil < 1 is inversible. 
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(2) The set U of inversible elements of B is a nonvoid open subset of B 
and the mapping x -+ X-I is continuous from U into B; more precisely, 

Ily-1 - x-lll :;;; IIx- I II·{1 - Ilx-Illlly - Xll}-l 

whenever XE U and IIY - xii < Ilx-III- I. 
Proof. (1) Define Sn E B for n = 1,2,· .. by 

n 

Sn= 2 X- k- I (X-y)k. 
k=O 

For n > m one has 

Ilsn - Smll:;;; 2 Ilx-Illk+llly - xllk. 
m<k"n 

(11.4.3) 

Since IIY - xii< IIx-III-\ it appears that the sequence (Sn):'=l is a Cauchy 
sequence in B. By 11.4.1(b), therefore, S = limn ... ro Sn exists in B. Now a 
direct calculation shows that 

YSn = e - x-n-1(x - yt+l, 

whence it follows that YSn -+ e as n -+ 00. On the other hand, 11.4.1(c) shows 
that multiplication is continuous in the pair of factors, so that from Sn -+ S 

follows YSn -+ YS. Thus ys must coincide with e, showing that y is inversible 
and that y-l = s. This proves (11.4.2). The final statement in (1) ensues on 
taking x = e. 

(2) That U is open and nonvoid follows at once from (1). Also, by (11.4.2), 
N 

y-l _ X-I = lim 2 x-n-l(x _ y)n. 
N-CX) n=l 

Since 
N N 

112 x-n-l(x - y)nll :;;; 2 Ilx-Illn+llly - xll n, 
n=l n=l 

(11.4.3) emerges on account of continuity of the norm. 

11.4.4. (1) If XE B, then R(x) is open and contains every complex number " 
satisfying 1"1 > Ilxll, a(x) is compact and nonvoid, and 

p(x) :;;; Ilxll. (11.4.4) 

(2) If x E B, then (x - "e)-l depends analytically on "E R(x) and tends 
to zero as 1"1 -+ 00. 

Proof. (1) Since R(x) consists precisely of those scalars " such that 
x - "e E U, that R(x) is open follows from 11.4.3(2) and the continuity of 
the mapping ,,-+ x - "e. The complementary set a(x) is therefore closed. 
Also, x - "e = "("-lX - e) is, by 11.4.3(1), inversible whenever " #- 0 and 
11"-IXII < 1. Thus "ER(x) whenever 1"1 > Ilxll. This in turn entails that 
(11.4.4) holds. So a(x) is closed and bounded, and therefore compact. That 
a(x) is nonvoid will be established after the proof of (2) is finished. 
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(2) Take any continuous linear functional F on Band define the function 
,p on R(x) by 

,pp..) = F{(x - '\e)-l}. 

To see that ,p is analytic on R(x), we apply (11.4.2) on taking "0 E R(x) and 
replacing x by x - '\oe and y by x - '\e: it then appears that 

,p('\) = F{ ~ (x - ,\oe)-n-l(,\ - '\o)n} , 
n=O 

for 1'\ - '\01 < II(x - '\oe)-lll-l. Since Fis continuous and linear, one has 
for such values of ,\ the power series expansion 

<Xl 

,p(,\) = L F{(x - ,\oe)-n-l}(,\ - '\0)\ 
n=O 

which establishes the analytic character of ,po The relations 

'\(x - '\e)-l = (,\-lX _ e)-1 

and ,\ -lX - e -? - e as 1'\ I -? 00 combine with 11.4.3(2) to show that 

II(x - '\e)-lll = 0(1'\1- 1 ) as I'\I-? 00, 

and the proof of (2) is finished. 
Finally, let us return to complete the proof of (1) by showing that a(x) is 

never void. If a(x) were void, for any continuous linear functional F on B, 
the function ,p would be entire analytic. By Liouville's theorem, combined 
with the fact that ,p(,\) -? 0 as 1'\1 -? 00, it would appear that ,p is constantly 
zero. But then, by the Hahn-Banach theorem (I, B.5), (x - '\e) -1 would 
be zero for all '\, which is evidentlyabsurd. Thus a(x) must be nonvoid and 
the proof of 11.4.4 is complete. 

11.4.5. Ideals, Maximal and Otherwise. We now turn to topics of a 
more algebraic nature. 

By an ideal in B is meant a subset 1 of B which is a linear subspace and 
which is stable under multiplication, the latter clause .meaning that xy E 1 
whenever x E 1 and y E B. An ideal 1 in B is said to be proper if it does not 
exhaust B; this is so if and only if e 1: I, or again if and only if 1 contains no 
inversible element of B. 

For future use we observe that the closure in B of any ideal in B is again 
an ideal in B. 

Gelfand's theory lays special stress on the maximal ideals in B, an ideal m 
being termed maximal if it is proper and if m and Bare the only ideals in B 
which contain m. The first step is to prove the existence of maximal ideals in B. 

To this end wc consider any nonvoid set .fF of proper ideals in B having 
the property that any two members of.fF are contained in some one member 
of /F. Consider the union J of all members of .fF. It is easy to check that J 
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is an ideal in B, and (by showing that e i J) that J is proper. Plainly, J 
contains each member of ff. 

The preceding paragraph leads to this conelusion: if we partially order, by 
set-inelusion, the set of all proper ideals in B, then any linearly ordered subset 
thereof admits a supremum. As a consequence of this we may apply Zorn's 
lemma (see, for example [E], p. 6 or [HS], p. 14) to infer that: 

(1) Any proper ideal in B is contained in some maximal ideal in B. 

As we have seen, a proper ideal I in B can contain no inversible elements. 
By 11.4.3(1), therefore, I cannot be everywhere dense in B; the elosure i is 
thus a proper ideal in B. In particular, it folIo ws that iii must coincide with 
m whenever m is a maximal ideal in B. Thus: 

(2) Every maximal ideal in B is elosed in B. 

We can now state the first criterion of inversibility. 

11.4.6. Let XE B. Then x is inversible in B if and only if x belongs to no 
maximal ideal in B. 

Proof. If xis inversible, it can belong to no proper ideal (maximal or not) 
in B. Suppose on the other hand that x belongs to no maximal ideal. The set 
I = {xy : y E B}, the principal ideal generated by x, cannot bc proper: for 
otherwise 11.4.5( 1) announces the existence of a maximal ideal m 
containing I, and m would then contain x. Thus 1= B. In particular, 
e E I. This entails that x is inversible. 

Subsequent applications of 11.4.6 depend upon setting up a elose relation
ship between maximal ideals in Band complex homomorphisms of B (recall 
Exercise 4.1), and this is our next objective. The result we want appears as 
11.4.10; the following intermediate results are directed to this end. 

11.4.7. Quotient Al~ebras. Let B satisfy (as always) conditions (a) to (c) 
in 11.4.1, and let I be any proper closed ideal in B. The quotient set B/I, 
whose elements are the cosets i = x + I modulo I of elements of B, can be 
formed into an algebra of the same type in a manner now to be described. 

The algebraic operations and norm in B/I are defined thus (compare 
I, B.1.S): 

i + iJ = (x + y)., 

ai = (ax)', 

iiJ = (Xl))·, 

Ilill = inf {llx + yll : Y EI}. (11.4.5) 

It is then very simple to verify that 11.4.1(a) is fulfilIed, the identity 
element in B/I being e. The only norm property which is not evident is the 
one asserting that Ilill > 0 whenever i =1= Ö. However, if Ilill = 0, there 
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exist elements Yn E I such that Ilx + Ynll -+ 0 as n -+ 00. Since -Yn EI, and 
since I is closed, it follows that x E I and therefore x = o. 

Property 11.4.1(c) is plain to see, save perhaps the assertion concerning Iiell. 
As to that, (11.4.5) yields quite generally 

IIX!I ~ Ilxll· (11.4.6) 

Thus Iiell ~ 1. Were it the case that Iiell < I, (l1.4.5) would show that 
Ile + yll < 1 for some Y E I. But then -Y E I and, by 11.4.3(1), -Y is inver
sible. Since I is proper, this is a contradiction (see the outset of 11.4.5). Thus 

Iiell = 1. 
Finally we verify 11.4.I(b) for B/I. Suppose that (xn) is asequence extracted 

from B/I such that 
(11.4.7) 

we must show that this· sequence is convergent in B/I relative to the norm 
(11.4.5). Thanks to (11.4.7), a subsequence (xnk ) may be determined such that 

00 

~ Ilxnk+l - xnkll < 00. (1l.4.8) 
k=l 

Put Yk = xnk + 1 - xnk · By (11.4.5) and (11.4.8), elements Zk of I may be 
chosen so that 

00 

~ IIYk - zkll < 00. 
k=l 

Then, by the assumed completeness of B, 
00 

Y = ~ (Yk - Zk) 
k=l 

exists as an element of B, so that 
r r 

II Y - ~ Yk + ~ Zk II -+ 0 as r -+ 00 . (11.4.9) 
k=l k=l 

From (11.4.9) and (11.4.5) it appears that 

r 

IIY - ~ Ykll-+ O asr-+oo, 
k=l 

that is, that 
asr-+oo. (11.4.10) 

This shows that the subsequence (xnk)k'= 1 converges in B/I to x = Y - xnl • 

But then (11.4.7) shows that the original sequence (xn ) is convergent in B/I 
to the same limit. 

This completes the verification that B/I satisfies conditions (a) to (c) of 
11.4.1 whenever B does so and I is a proper closed ideal in B. The conclusion 
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therefore applies when I is assumed to be a maximal ideal in B [see 11.4.5(2)]. 
However, as the next result shows, much more can be said in this case. 

11.4.8. If rn is a maximal ideal in B, then to each x E B/rn corresponds a 
unique complex number t such that i = te. 

Proof. Granted the existence of t, its uniqueness is evident. On the 
other hand, if no such t existed, then i - Ae "# Ö for all complex A. For 
given A, the set 

I = {(x - Ae)y + m : y E B, mE rn} 

is an ideal in B which contains rn properly, x - Ae belonging to I but not to 
rn. Maximality of rn would imply that I = B, which in turn would imply 
that x - Ae is inversihle in B/rn. This heing true for any complex A, it 
would appeal' that lT(x) is void, which would contradict 11.4.4(1) applied 
to B/rn. This proves 1l.4.8. 

Remark. The preceding argument really goes to show that if B is a 
division algebra (that is, is such that every nonzero element of B is inversible 
in B), then B is isomorphie to the complex field (considered as an algebra 
over itself). This result, the Gelfand-M azur theorem, admits various extensions 
and variants; see [R l ], pp. 354-355 and [Ri], pp. 37-40, 109-110. 

11.4.9. Maximal Ideals and Complex Homomorphisms. Retaining the 
notations of 11.4.8, it is very simple to see that the mapping Lm : i --:>- t is 
hoth an algebraic isomorphism and an isometry of B/m onto the complex 
field. As a eonsequence the composite map Ym of B defined by 

Ym(x) = Lm(i) (11.4.11) 

proves to be a nontrivial continuous eomplex homomorphism of B whose 
kernel is exactly rn: 

Ym(x + y) = Ym(x) + Ym(Y), 

Ym(Ax) = A· Ym(x) , 

Ym(xy) = Ym(x)Ym(Y), 

Ym(e) = 1, 

IYm(x)1 :( Ilxll, 
m = {x E B : Ym(x) = O}. 

(11.4.12) 

(11.4.13) 

Conversely, if Y is a nontrivial complex homomorphism of B, its kernel 

rn y = {x E B : y(x) = O} (11.4.14) 

is easily verifiable to be a maximal ideal in B. Moreover, 

Ymy = Y, (11.4.15) 

the first relation eombines with (11.4.12) to show that any complex homo
morphism of B is necessarily continuous. 
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The relations (11.4.11) and (11.4.13) thus set up a one-to-one correspond
ence between the set of maximal ideals m in Band the set r = r(B) of aU 
nontrivial continuous complex homomorphisms of B. This correlation is one 
ofthe cornerstones ofthe Gelfand theory. The set r(B) is termed the Gelfand 
space (or representation space) of B. 

In viewing the symbol "y(x)" we have so far thought of "x" as the 
variable. It is, however, also possible and useful to think of "y" aEj the 
variable. In other words, with each XE B' one may associate the complex
valued function x on the set r(B) defined by 

x(y) = y(x). 

The function x is termed the Gelfand trans form of x, and the mapping x ~ x 
is referred to as the Gelfand transformation. (The notation is suggested by the 
circumstance that, when B = BE' the function x is very closely related to the 
Fourier transform; see 11.4.11.) The Gelfand transformation is an algebraic 
homomorphism of B into the algebra B(r) (with pointwise operations and 
supremum norm) of bounded complex-valued functions on r; compare 
11.4.1(2). We shall return to this matter in 11.4.18(1). 

Meanwhile we derive the promised crucial reformulation of 11.4.6 which 
is made possible by the substance of 11.4.8 and 11.4.9. 

11.4.10. An element x of B is inversible if and only if y(x) =F 0 for all 
y E r(B). More generally, 

a(x) = {y(x) : y E r(B)} , (11.4.16) 

p(x) = sup{ly(x)1 :yEr(B)}. (11.4.17) 

Proof. Ey 11.4.6, A E a(x) if and only if x - Ae belongs to some maximal 
ideal m in B, that is, by (11.4.13), if and only if Ym(x - Ae) = 0 for some m. 
Ey (11.4.12), this is the case if and only if A = Ym(x) for some m. Since Ym 
ranges over r(B) when m ranges over all maximal ideals in B, (11.4.16) is 
established. The first assertion is a special case of (11.4.16), since x is inversible 
if and only if 0 Ft a(x). Finally, (11.4.17) results on combining (11.4.16) and 
(11.4.1). 

Remarks. From 11.4.10 it appears that if x E B satisfies y(x) =F 0 for all 
XE r(B), then there exists y E B satisfying y(y) = y(X)-l for all y E r(B). 
An extension of this result is contained in Exercise 11.20. 

Regarding (11.4.16), it may be noted incidentally that a continuous 
linear functional y on B is multiplicative (that is, is a complex 
homomorphism of B) provided y(x) E O'(x) for all x E B; see MR 37 # 
4620. 

11.4.11. Example: The Algebra C(S). The notation is as in 11.4.1(2). 
Ey adapting the hints attached to Exercise 11.16, the reader should ex-
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perience no trouble in verifying that the maximal ideals in C(S) are precisely 
the sets 

ffis = {x E C(S) : x(s) = O} 

obtained when s vanes over S; the corresponding homomorphism Ym, is 
defined by 

Yms(X) = x(s). 

The correspondence s +-+ m s is one-to-one. 
It is to be noted that this identification of the maximal ideals in C(S) 

depends on the elementary fact that the multiplicative inverse of a non
vanishing continuous function is continuous; and that this fact is seen a 
posteriori to be just what is asserted by the opening sentence of 11.4.10 for 
the algebra B = C(S). Thus 11.4.10, when applied to B = C(S), teIls us nothing 
new. 

Any disappointment the reader may feel because of this apparent anti
climax can be relieved by hurrying on to a more fruitful application of 
1l.4~10. 

11.4.12. AppIication to BE. Suppose that E = V (l :( p:( 00) or Ck (k a 
nonnegative integer). In order to apply 11.4.10 to BE (see 11.4.1(1)), we need 
to identify the elements of r(BE ). The essential step has already been carried 
out in Section 4.1. 

Let Y E r(BE ) and define y' on E by 

y'(j) = y((O,j)), 
so that 

y((u.,j)) = u. + y'(.f) 

for a general element (u., j) of BE. 

Two cases arise, namely: 
(I) y' = 0, in which case (11.4.18) reads 

y((u., j)) = u., 
and we write y = Yoo; 

(11.4.18) 

(2) y' # 0, in which case 4.1.3 shows that there exists an integer nE Z 
such that 

y'(j) = J(n) 

for all fEE, and therefore [by (11.4.18) again] 

y((u.,j)) = u. + J(n); 
we denote this y by Yn. 

Bearing in mind the Riemann-Lebesgue lemma 2.3.8, we see that r(BE ) 

may be identified with Z U {oo} in such a way that 

Yn((u., j)) = u. + J(n), 

J(oo) being interpreted as o. 
(11.4.19) 
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It is also worth observing at this point that, if y' is any complex homo
morphism of E, the mapping y: (rx, f)-+ rx + y'(j) is a complex 
homomorphism ofBE' By 11.4.9, Y is continuous. It follows at once that y' 
is continuous and we have thus verified aremark made in 4.1.1, namely: 
any complex homomorphism of E is continuous. 

A direct appeal to 11.4.10 now results in a conclusion which is the analogue 
of a theorem established by Wiener for LI(R): 

11.4.13. Suppose that E denotes V, (1 ~ P ~ 00) or Ck (k a nonnegative 
integer). If fEE and a is a complex number, and if 

a :f: 0, a + j(n) :f: 0 for all nE Z, (11.4.20) 

then there exists g E E such that 

• j(n) 
g(n) = {a + j(n)} for all nE Z, (11.4.21) 

Proof. Consider x = (a,.f) E BE' In view of 11.4.12, the conditions 
(11.4.20) express precisely that y(x) :f: 0 for each y E f(BE). According to 
11.4.10, therefore, xis inversible in BE' Let X-I = (ß, h), where ß is a complex 
number and hE E. The properties (11.4.12) show that one has for aIl 
y E f(BE) the relation 

1 
y((ß, h» = y((a,f) 

Using (11.4.19) and taking y = Yoo, this relation gives ß = l/a; taking 
y = Yn (n E Z), it gives ß + h,(n) = 1/{a + j(n)} for an nE Z. It appears 
therefore that. 

1 
h,(n) = {a + j(n)} 

-a-Ij(n) 

{a + j(n)} 

for an n E Z, and it suffices to take g = - ah. 

1 
a 

Remarks. (I) The results of 11.4.12 and 11.4.13 apply with other 
choices of E: see 4.1.3(1) and Exercise 11.10. 

(2) The case E = LI of 11.4.13 expresses the fact that cf>/(a + cf» E A(Z) 
whenever cf> E A(Z), a :f: 0 is a complex number, and a + cf>(n) :f: 0 for an 
nEZ. 

(3) Generalizations of 11.4.10 and 11.4.13 appear in 11.4.15 and 11.4.16, 
respectively. Our approach to these extensions is based upon a study of the 
spectral radius formula, which constitutes our next objective. 
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11.4.14. The Spectral Radius Formula. For an algebra B of the type 
specified in 11.4.1, this formula reads 

p(x) = sup ly(x)1 = lim IlxnI11/n. (11.4.22) 
yer(B) n_ co 

When this is applied to the special case of an element x = (0, f) of BE' the 
formula takes the form 

1111100 = lim IIf*nllir, 
n_oo 

which is the version encountered elsewhere in this book [see Exercises 8.8 
and 3.12 and equation (11.3.1)]. 

Proof of (11.4.22). The first equality in (11.4.22) is just (11.4.17). Since 
y(xn) = y(x)n for each x and each y, this first equality entails that 

p(x) = p(xn)l/n. 

Accordingly, (11.4.4) shows that 

p(x) ~ lim infllxnI11/n. 
n- 00 

To establish (11.4.22) it will therefore suffice to show that 

lim sup Ilxnl11/n ~ p(x). 
n_ 00 

(11.4.23) 

To this end, write p = p(x) and fix any p' > p. By definition of p, (e - "\X)-l 
exists whenever 1"\ I ~ Ij p'. Choose any continuous linear functional F on B. 
Reference to 11.4.4(2) shows that 

4>("\) = F{(e - "\X)-l} 

is analytic on some open set containing the disk 1"\1 ~ Ijp'. 
On the other hand, a special case of (11.4.2) shows that 

00 

(e - "\X)-l = L ,.\nxn 
n=O 

for 1"\1 < Ilxll-1. Since Fis linear and continuous, we have correspondingly 
the Taylor expansion 

00 

4>("\) = L F(xn),.\n (11.4.24) 
n=O 

holding for 1"\1 < Ilxll-1. On account of (11.4.24), the Cauchy integral 
formulae for 4>, and the analyticity of 4> on a neighborhood of the disk 
1"\1 ~ Ijp', it results that 

(11.4.25) 

as n -i>- 00. The reader will notice that the derivation of (11.4.25) does not 
depend on knowing that (1l.4.24) is valid for all values of ,.\ satisfying 



[11.4] BANACH ALGEBRAS AND THEIR APPLICATIONS 31 

lAI ~ l/p': this last statement is in fact true (see Exercise 11.14), but we are 
neither asserting nor using it here. 

Armed with (11.4.25) we introduce the function p on B', the dual of the 
Banach space B (see I, B.1.7), defined by 

p(F) = sup p'-nIF(xn)l. 
n 

It is simple to verify that pis a seminorm on B' (see I, B.1.2), and that p 
is lower semicontinuous relative to the dual norm on B', with respect 
to which norm B' is a Banach space (I, B.1.7 again). The boundedness 
principle appearing in I, B.2.1 affirms that p is continuous on B', that 
is, that there exists a number c = c(x) such that p(F) ~ c· IIFII for all 
FE B'. Appeal to a corollary of the Hahn-Banach theorem (I, B.5.3) 
leads from this to the inequality 

which in turn shows at once that 

Ilxnlll/n ~ p'C1/n 

From this it follows immediately that 

(n = 1,2" .. ), 

(n = 1,2" .. ). 

lim sup Ilxnlll/n ~ p'. 
n-+co 

Since p' is freely chosen in excess of p, (11.4.23) follows and the proof of 
(11.4.22) is complete. 

Remark. The spectral radius formula was discovered first by Beurling 
[1] for Fourier transforms of functions integrable over the additive group R 
of real numbers. The extension to Banach algebras is due to Gelfand [1]. 
Beurling's paper has had a profound influence on many subsequent develop
ments in harmonie analysis. 

11.4.15. An Extension of 11.4.10. We are now going to make fuller use 
of the analytie nature of inversion in order to derive the following extehsion 
of 11.4.10. 

Suppose that XE Band that <I> is a eomplex-valued funetion defined and 
analytie on some open set 0 containing a(x). Then there exists an element y 
of B such that 

y(y) = <I>(y(x)) (y E r(B)). (11.4.26) 

Proof. Let e > 0 be the distanee between a(x) and the frontier of O. 
By eovering the eompaet set a(x) by a finite number of disks of radius e/4 
and then taking the frontier of the union of the eoneentrie disks of radius 
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e/2, one can obtain an oriented curve L (composed of a finite number of 
cireular ares) lying in Q\a(x) and such that the Cauehy formula 

holds for any ,\ E a(x). 

!D(A) = ~ r ~m d~ 
2m JL ~ - A 

The crucial step now is to assign a meaning to the integral 

which will make it an element of B having the property that 

(11.4.27) 

(11.4.28) 

(11.4.29) 

for each y E f(B). If this can be done, the properties (11.4.l2) lead from 
(11.4.29) to 

y(y) = _1 r !D(~) d~ , 
27Ti Jd~ - y(x)} 

and then (11.4.27) and (11.4.16) will carry us straight to (1l.4.26). 
To define the integral (11.4.28) with the desired properties, we first 

partition L into its eomponent ares L k (k = 1,2,· .. ), which are evidently 
finite in number. A little thought will show that it will suffice to define the 
integrals f as elements of B in such a way that they each possess the JLk 
property corresponding to (11.4.29), and then set fL = Lk fLk' 

N ow L k can be parametrized by means of a continuously differentiable 
eomplex-valued function t ~ ~k(t) defined on the interval 0 ~ t ~ 1. The 

natural definition of Zk = f is then Lk 

say, where 

Zk = f !D(~k(t))gk(t)e - X}-l~~(t) dt 

= f !Dk(t) dt, 

and the prime denotes differentiation, provided the existenee of this integral 
ean be ensured as an element of Band that the result of applying any 
y E f(B) to Zk is obtainable by applying y to the integrand !Dk(t) followed by 
integration. However, by 11.4.3(2) and the ehoiee of L, the integrand !Dk is 
continuous from [0, 1] into B. Aeeordingly, the obvious procedure to be used 
for defining Zk is the use of approximative Riemann sums, especially so since 
it is almost evident that this proeess, if effeetive in defining Zk E B, will 
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certainly arrange that the desired property 

Y(Zk) = f y{ <l>k(t)} dt 

will in fact hold for any continuous linear functional y on B. That this 
procedure does indeed work satisfactorily, the reader is asked to verify in the 
manner proposed in Exercise 11.11. When this is done, the proof of 11.4.14 
will be complete. 

Remark. There is in existence a general theory of the integration of 
B-valued functions of a much more general character than the ad hoc 
procedure suggested above; see, for example [E], Sections 8.14 to 8.20. 

On applying this last result to the case in which B = BE and referring to 
11.4.12, we shall obtain the following extension of 11.4.13. 

11.4.16. Suppose that E denotes LP (1 ~ p ~ 00) or Ck (k a nonnegative 
integer), that lEE and that <I> is a complex-valued function defined and 
analytic on some open set containing j(Z) U {O} and satisfying <1>(0) = O. 
Then there exists an element g of E such that 

g(n) = <I>(j(n)) (nE Z). (11.4.30) 

Proof. Take x = (O,f) E BE' From 11.4.10 and 11.4.12 it appears without 
difficulty that u(x) = j(Z) u {O}. Applying 11.4.15, we obtain the existence 
of y = (ß, g) in BE such that (11.4.26) holds for all y E f(BE). Referring 
again to 11.4.12 and taking y = y"" we see that ß = <1>(0) = O. On taking 
y = Y7l' it then appears from (11.4.26) that (11.4.30) holds for each n E Z. 

Remark. On taking E = Ll, 11.4.16 entails that <I> 0 4> E A(Z) whenever 
4> E A(Z), <I> is analytic on some neighborhood of 4>(Z) U {O} and <1>(0) = O. 
The result dual to this (with the group Z replacing T) has been mentioned 
in 10.6.3 and will now be proved by applying 11.4.15 to the algebra 
A=A(T). 

11.4.17. Aas a Banach Algebra: the Theorems of Wiener and Levy. 
We recall from 2.5.3 and Section 10.6 that A = A(T) denotes the set of 
continuous complex-valued functions f on T which have absolutely 
convergent Fourier series. As we then saw, Ais a Banach algebra under 
pointwise operations, the norm being 

II/IIA = 2: Ij(n)l. 
71eZ 

The conditions (a) to (c) of 11.4.1 are satisfied by A, the identity element 
being the constant function 1. 

Let us identify the elements of f(A), that is, let us determine an expression 
for a general nonzero continuous complex homomorphism y of A (compare 



34 TRANSLATES. IDEALS. SUBALGEBRAS. BANACH ALGEBRAS 

Exercise 4.7). To this end, write u for the element el of A. Then for any 
element I of A one may write 

1= 2: !(n)ufl , (11.4.31) 
flEZ 

the series being convergent in A because II/IIA < 00. Evidently, u is an 
inversible element of A and 

IIullA = IIu-lilA = 1. 

The properties (11.4.12) show that ly(u)1 ~ 1 and ly(u-l)1 = ly(U)l-l ~ 1, 
so that ly(u)1 = 1. Accordingly, y(u) = etx holds for precisely one x E Rj27TZ. 
From (11.4.31) we then obtain via (11.4.12) 

y(f) = 2: !(n)y(ufl ) = 2: !(n)y(u)fI 
flEZ flEZ 

= 2: !(n)etflx = I(x). 
flEZ 

Conversely and trivially, given XE T, the mapping Yx of A defined by 

yx(f) = I(x) (11.4.32) 

is evidently a nonzero continuous complex homomorphism of A. Thus r(A) 
consists precisely of the maps Yx obtained when x varies over T (or, if we 
wish, over all real numbers); the Gelfand space r(A) can be identified 
with T. 

From 11.4.10 we may now read offthe theorem of Wiener: ifl E A satisfies 
I(x) "# 0 for all real x, then 1/1 E A. ([Wi], p. 91.) 

Likewise, from 11.4.15 we may read off Uvy's extension of Wiener's 
theorem, namely: if I E A, and if 11> is defined and analytic on some open set 
containing I (T), then $ 0 I E A. 

These results were stated without proof in 10.6.3. There are extensions 
to other interesting algebras; see Exercises 11.15 and 11.20 below and 
also MR 38 # 485; 41 # 5864; 51 # # 1255, 8728. In 10.6.3 we also 
remarked on partial converses of such theorems of Wiener-Levy type; for 
instances see MR 53 # # 14017, 14018; 54 # # 858, 5747. 

11.4.18. Pointers to Further DevelopDlents. We have carried our excur
sion into the theory of Banach algebras as far as is needed for our primary 
applications; it remains only to indicate a few of the further possible develop
ments. 

(1) It has been seen in 11.4.9 that the Gelfand transformation x ...... x is an 
algebraic homomorphism of B into the algebra B(r) (with pointwise operations 
and supremumnorm) ofbounded complex-valued functions on r = r(B). From 
the spectral radius formula (11.4.22), the Gelfand transformation is seen to be 
one-to-one if and only if x = 0 is the only element of B for which 

lim Ilxnlll/n = o. (11.4.33) 
n~'" 



[11.4] BANACH ALGEBRAS AND THEIR APPLICATIONS 35 

Elements x of B which satisfy (11.4.33) are termed generalized (01' topologieal) 
nilpotent8 (compare Exercise 3.12). The spectral radius formula shows that x 
is a generalized nilpotent if and only if it belongs to every maximal ideal. If in 
B there ex ist no generalized nilpotents other than 0, B is sometimes said to be 
8emi8imple; in this case the Gelfand transformation provides an algebraically 
faithful representation of B. 

Unhappily, there are quite reasonable algebras B that are rar from being 
semisimple; for an example, see Exercise 11.12. As Exercise 11.13 shows, such 
algebras may still be of interest to the analyst. 

Even if B is semisimple, the Gelfand transformation is, in general, not an 
isometry; in general, p(x) = sup lxi is a strictly weaker norm thafl Ilxll, that is, 
there exist in general sequences (Xt) of elements of B such that p(xt ) --+ 0 but 
Ilxtll --1+ o. Much effort has been expended (with considerable success) in deter
mining categories of algebras B for which these norms are identical (or at least 
equivalent); and applications provide ample reward for these labors. 

So far, although we have spoken of r = r(B) as a "space," it has not been 
endowed with any topology. The standard way of topologizing r makes it into 
a compact Hausdorff space on which each of the Gelfand transforms x lS 

continuous. In this topology a base of neighborhoods of a point yo of r is 
formed of the sets 

W(F, e) = {y Er: Iy(x) - yo(x)1 < e for x E F}, 

where F ranges over finite subsets of Band e over positive numbers. Then the 
Gelfand transformation is an algebraic homomorphism of B into the algebra 
(with pointwise operations) e(n of continuous complex-valued functions on r. 
To determine conditions under which the image of B covers the whole of e(n 
is again a fruitful problem which has been attacked with success (see Exercise 
11.24; [N], p. 230; [Ri], p. 190; [Lo], pp. 78, 90-91) and which has many 
rewarding applications, two of which are mentioned in (2) and (3). There is a 
sense in which in any ca se the image ofB contains all analytic functions on r. 

Concerning the method just described for topologizing r = r(B), one 
quest ion will (01' should) arise in the reader's mind, namely: what happens if 
B = CiS) and S is a compact Hausdorff space (see 11.4.1(2»? He will doubtless 
expect that there should be a elose relationship between r = r(B) and S. WeIl, 
as has appeared in 11.4.11, r = r(B) = r(C(S» can be identified 
set-theoretically with S via the correspondence 8 +-+)ls == )Im" and this in such a 
way that 

x(y,) = x(s). 

It is not at all difficult to show that, once this identification is made, the 
topology on r described above is identical with the initial topology on S. For 
certain noncompact Hausdorff spaces S, r(C(S» proves to be homeomorphic 
with the Stone-Cech compactification of S. 

It is within the framework of the Gelfand transform that one finds the Banach 
algebra-based approach to extensions of the Bochner representation theorem 
mentioned in Section 9.4. This approach is very largely due to the Russian 
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mathematicians Gelfand and Raikov, who employed it as a basis for harmonie 
analysis. For details, see [N], pp. 404-425 or [Lo], Chapter VII. 

The study of versions of the Weierstrass·Stone theorem (mentioned in 
Subsection 6.2.3) applicable to compact differentiable manifolds is infiuenced 
markedly by the Gelfand theory; see Freeman [l] and the references cited there. 
It should perhaps be remarked that parts of the theory of Banach algebras 
have been extended to more general topological algebras; see [Mi], [Cl, Neubauer 
[1], [2], Allen ~1], [2], Waelbroeck [1], [2], Benedetto [1]. 

(2) Another of the applications of the developments mentioned under (1) 
arises when B is a certain type of commutative algebra of continuous normal 
endomorphisms of a Hilbert space, the result being in this case a novel approach 
to the simultaneous spectral resolution theorem for commutative sets of such 
endomorphisms. See [N], p. 248; [Lo], pp. 92-95. 

(3) A second application is to commutative harmonie analysis, B being 
taken to be Ll(G) with a, formal identity adjoined (as in 11.4.1(1)). This has 
resulted in an almost autonomous approach to the Fourier inversion theorem 
and Bochner's theorem (see Chapter 9). For accounts of this application, see 
[N], Chapter VI (especia11y pp. 404 ff.); [Ri], pp. 325 ff.; and [Lo], Chapter 
VII. See also Helson [6]. 

An effective treatment of other problems in harmonie analysis necessitates 
the treatment of algebras B which, like Ll(G) in the general case, are deprived 
of an identity element, and this in cases where the adjunction of a formal 
identity serves no useful purpose. The treatment of such problems has led to 
abstract versions of the Tauberian theorem mentioned in Subsection 11.2.4. 

In such an algebra B, the nontrivial complex homomorphisms y of B retain 
their fundamental significance, but now they correspond with those maximal 
ideals m in B which are regular or modular (that is, which possess "relative 
identities" e E B having the property that ex - XE m foI' a11 x E B; compare Exer· 
eise 4.1). The correspondence y ~ m remains exactly as described in Subsection 
11.4.9. The Gelfand space r(B) and the Gelfand transformation x ...... x are also 
defined as described in Subsection 11.4.9, but now r(B), when topologized in 
the fashion described in (1) immediately above, proves to be a 10ca11y compact 
Hausdorff space which is in general noncompact. However, there may be 
maximal ideals in B which are not modular; see Exercises 11.26 and 11.27. 

Certain algebras B of this type appear to form a natural setting for abstract 
Tauberian theorems which include Wiener's theorem applying when B = Ll(G) 
(see Subsection 11.2.4). Thus it is known (see, for example, [Lo], p. 85 and 
[HR], (39.27)) that, under certain conditions which we do not specify here, any 
proper closed ideal I in B is contained in some modular maximal ideal in B; in 
other words, a closed ideal I in B exhausts B if and only if it is annulled by no 
y E f'(B). This statement is the abstract Tauberian theorem: it includes the 
special case Z. = 0 of 11.2.1, as weIl as the extensions thereof mentioned in 
Subsections 11.2.3 and 11.2.4 and associated with Wiener's name. (As Loomis 
has wryly remarked, this abstract version is a Tauberian theorem in almost 
perfect disguise.) Tauberian theorems have been considered in still more 
general contexts; see, for example, Benedetto [1] (where, however, the 
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exposition i8 such as to demand a good deal of care on the reader's part). See 
also MR 39 # 779. 

(4) The problems spoken of in 11.2.3 for the case in which E = V(G) with 
G noncompact can and have been viewed from the point of view of Banach 
algebra theory. In this context the question might be formulated thus: given a 
Banach algebra (as in 11.4.1) and a closed ideal I in B, is I expressible as the 
intersection of a su:table set of maximal ideals in B ? 

There are nontrivial examples of algebras B for which the answer is "Yes": 
in fact, every algebra of the type C(S) (see llo4.I(2)) has this property. (One 
proof of this is suggested in Exercise 11.17; a different proof appears in 1004.6 
of[E].) The cases mentioned in 11.2.3 are ones in which the answer has turned 
out to be "No," but only after doubts persisted for a considerable time despite 
very elose attention. 

A more fruitful guide is provided by other examples in which the answer is 
transparently " No" and where the cause of failure is easier to detect. A typical 
such example is provided by the algebra B = Cl(K) formed of those complex
valued functions defi.1.ed and continuously differentiable on the compact interval 
K = [0, I], the algebraic operations being pointwise and the norm being 
defined by 

[11[[ = sup [f(x) I + sup [Df(x) [ . 
xEK xeK 

The maximal ideals in this algebra are just the sets 

m x = {f E Cl(K) : f(x) = O} 

obtained when x varies over K; see Exercise 11.16. On the other hand, for 
each x E K the set 

Ix = {f E Cl(K) : f(x) = Df(x) = O} 

is a closed ideal in Cl(K), and it is evident that Ix is not expressible as the 
intersection of any set of maximal ideals m y. 

In the above example the ideal Ix is primary, in the sense that it is contained 
in just one maximal ideal (to wit, m x )' and the example suggests that it may be 
fruitful to reformulate the general question by asking whether ideals can always 
be expressed as intersections of primary ideals (which may or may not them
selves be required to be elosed). 

To this question the answer is known to be "Y es" for a number of algebras of 
differentiable functions in one or several variables; see [Ri], pp. 300-302 and the 
references there cited; see also [Ho], Chapters 6 and 10; Srinivasan and Wang 
[2]; MR 37 # 1997. In L 1 (G), where the group G is noncompact, the answer is 
still "No," if only closed primary ideals are to be admitted. [This is a 
consequence of Malliavin's work, taken in conjunction with Wiener's Tauberian 
theorem (see 11.2.3) and a theorem of Kaplansky asserting that any closed 
primary ideal in Ll(G) is necessarily of the form {j E Ll(G): j (~) = o} for some 
~ in the character group of G; see, for example, [BOl], . p. 144, Corollaire. 
Kaplansky's theorem is itself a special case of known properties of spectral 
synthesis sets; see 11.2.3 again.] 

Most of the general work concerning primary decompositions is due to G. E. 
Silov; for an ac count of this, see Mirkil [I], See also Glaeser [1]; MR 33 # 
3053; 37 # # 1897,3361; 50 # 10689. 
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Beurling [2] has introduced a class of convolution algebras and has analyzed 
certain of these algebras in case the underlying group is R. His work shows, 
in particular, that the closed ideals in these algebras are characterized entirely 
by the set of common zeros of the Fourier transforms of their elements (compare 
11.2.3). The study of these algebras has been continued by Igari [1]. 

The reader versed in abstract algebra will recognize that the questions under 
discussion are suggested quite nattlrally by the relatively elementary primary 
decomposition theory for ideals in Noetherian rings (although there the term 
"primary" is usuaHy defined in a different way). Of course, one cannot expect 
to take this purely algebraic theory over to Banach algebras without important 
changes; almost aH Banach algebras of lasting interest to the analyst contain a 
multitude of ideals that are not finitely generated. 

(5) In 11.4.1(2) we made passing mention of various subalgebras of CIS). 
Among these appears the algebra A of 11.4.17 and its relatives (the Beurling 
algebras mentioned in Exercise 11.15) and the algebras of differentiable 
functions mentionedin (4) immediately above (for details of which the reader 
has been referred to Mirkil [1]; see also [Ma]) . 

. In addition to these "real variables" examples, there are similar algebras 
having their roots in complex variables theory which present many fascinating 
problems. For abrief introduction to these the reader is refer.red to the survey 
article of Wermer [1]. 

(6) The reader is recommended to examine P. J. Cohen's Banach 
algebra-based approach to factorization theorems (which have been otherwise 
treated in Section 7.5) and its subsequent developments (Cohen [4], Hewitt 
[1], Curtis and Figa-Talamanca [1], and Bryant [1]). 

In Hewitt's formulation (which is closely akin to [HR], (32.22» one is 
concerned with the situation in which B = {x, y, ... } is areal (respectively, 
complex) Banach algebra, which need not be commutative and which may fai! 
to possess an identity element, together with areal (respectively, complex) 
Banach space L = {j, g, ... }. It is assumed that there is given a mapping 
(x, j) -+ x . f of B x L into L such that the following conditions (a) to (d) are 
fulfilled: 

(a) (x, f) ~ x • fis linear in XE B for any fixed f E L; 
(b) (XY)'f = X' (y 'f) for x, y EB andfE L; 
(c) Ilx' f IIL ~ C' Ilxlln . Ilf IIL for XE Band fE L, c being independent of x 

andf; 
(d) there exists a number d > 0 such that for any finite subset {Xl , ... , xm} 

of B, any fE Land any 8 > 0, there exists Y E B such that I! y Ir n ~ d, 

IIYXJ - xJllB < e(j = 1,2,···,m)and IIY'f-fIIL < 8. 

Hc\\'itt's conelnsion is that to caehf E L amI caeh E > 0 correspond elements 
XE Ban<! gEL satisfying the following four conditions: 

(e) f = X' a; 
(f) g belongs to thc closure in L of thc set {y • f : Y E B}; 

(g) Ila - fflL ~ E; 
(h) lixl:u ~ d. 
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Further reading on factorization: [HR], §32; [DW]; MR H #- 5714; 37 #-
2003; 39 #-#- 1982,3311;40 #-#- 703,4779; 46 #- 16032; 4. #- 9537; 53 #-
1171. 

(7) Various group algebras of vector-valued functions have been considered; 
see MR 37 #- #- 2001, 2002. 

(8) A good deal of attention has been directed towards homogeneous Banach 
spaces and algebras of functions (the term" homogeneous" being either as in 
6.1.2 or in a slightly generalised sense) and the closely-related Segal algebras. 
For accounts of some of this work, see [Re], [Rei]' [Wa], [War], [GOI], 
Burnham [1], [2], [3], Burnham and Goldberg [1], de Leeuw [2]. 

Thc reader should derivc pleasure from verifying that this factorization 
theorem leads to those in Section 7.5, if Band L are suitably chosen sets of 
functions and " . " is interpreted as convolution. 

EXERCISES 

11.1. Define V to be the set of I E V such that 

as N --+ 00. 

Is V an invariant subspace of LI? Is it .an ideal in V? Is it closed in LI? 
J ustify your answers. 
11.2. Suppose that 1 ~ p < 00, and that (AN);=1 is a given sequence of 

positive numbers eonverging to infinity with N. Define V to be the set of 
I E V' such that 

as N --+ 00. 

Give (justified) answers to the questions posed in the preeeding exereise, 
with V' in plaee of V throughout. 

Do likewise for the ease in whieh sNI is replaeed by aNI in the definition 
ofV. 

Note: It follows from Exereise 10.2 that the relation 111 - sNIllI = 0(1) 
is false for a general I E V. It is true (but the proof does not appear until 
12.lO.1) that 111 - sNIlip = 0(1) when 1 < P < 00 andIEV'. 

11.3. Suppose that E is C or LP (1 ~ p ~ 00), and that (kl)le! is an arbitrary 
family of functions in LI. Show that the set of solutions lEE of the equations 
kl * I = 0 (i E I) is a closed ideal in E. 

11.4. Suppose that E is C or V' (1 ~ p < 00), and that lEE. Let V be 
the linear subspace of E generated by the translates of I. Show that V is 
closed in E if and only if I is a trigonometrie polynomial. 

Consider also the analogous problem arising when V is replaeed by the 
principal ideal I in E generated by f (that is, I is the set of functions f * g 
obtained when g ranges over E). 
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Note: Assume the known result (due to F. Riesz; see [E], p. 65) that any 
normed linear space having a compact neighborhood of zero is finite
dimensional. 

Hints: Supposing tha t V is closed in E, we consider the set V n formed of 
all g E V expressible in the form g = 2.~ ~ 1 Ctk • T aJ, where 2.~ ~ 1 [Ctk [ :;:;: n and 
al, ... , an E T. By using the category theorem (I, A.3) show that some Vn 

is a relative neighborhood of zero in V, and hence that V has a compact 
neighborhood of zero. Apply Riesz's theorem ci ted above and 11.1.1. 

11.5. Let fEE and e > 0 be given. Show that it is possible to choose a 
trigonometrie polynomial P such that p(O) = land 

[[ f - P * f [[ < e. 

Putting d for the degree of P, and supposing that N is an integer exceeding 
d, \ve deduce that 

N-l 

[[N-l 2: T(2nkINJ - j(O)I[[ < e. 
k=O 

Remark. This leads to another proof of 11.1.1; the argument is due to 
Salem (see [ZJ, pp. 180-181). 

11.6. Supply the details of the proof of the statement in 11.3.7. 
11.7. Let ~( be a closed subalgebra of LV, where 1 :;:;: p :;:;: 2. Suppose 

that f E Lq n L;(2() for some q > 1. Assuming 13.5.1(1), prove that 

f*N E ~ 

for any integer N not less than qj(2q - 2). 
11.8. Suppose that E denotes LV (1 :;:;: P < 00) or C, that f, g E E, and 

thatj(n) = 0 for n E Z and n < o. Let A be any set of real numbers having 
strictly positive Lebesgue measure. Show that if g belongs to the smallest 
closed ideal in E containing f, then g is the limit in E of finite linear com
binations of those translates Taf of f corresponding to points a E A. 

Hints: Use the Hahn-Banach theorem (1, B.5) in conjunction with 
Exercise 8.15. 

11.9. State and prove an analogue of the preceding exercise applying to 
the case in which the hypo thesis 

j(n) = 0 for n E Z and n < 0 

is replaced by the assumption that 

j(n) = O(e-elnl) 

for some e > O. 

for n E Z, [ni -+ 00 

11.10. State and prove the analogue of 11.4.13 for the case in which 
E = HP (1 ::; p ::; 00), defined as in Exercise 3.9. (For more about HP 
spaces, see MR 56 # # 6263,6264.) 
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11.11. Suppose that B is a Banach space and that <l> is a continuous 
B-valued function on [0, I]. By following the procedure suggested immediately 
below, show how to define the integral 

Z = f <l>(t) dt 

as an element of B with the property that 

y(z) = f y(<l>(t)) dt 

for each continuous linear functional y on B. 
Suggestions: Consider partitions 6.: 0 = to < t I ·· . <tn = 1 of [0,1] 

with "division points" ti , and associate with each 6. aRiemann sum 

n 

ZL\ = 2: <l>(td(ti - t i -1)· 
i=l 

A partition 6.' is a basic refinement of 6. if 6.' is obtained from 6. by inserting 
just one new division point; a (general) refinement 6.' of 6. is obtained as the 
result of a finite sequence of basic refinements, starting from 6.. Put 
16.1 = max (ti - ti-I) and 

w(o) = sup {li <l>(t) - <l>(t')11 : ° ~ t, t' ~ 1, It - t'l ~ O}, 

so that w( 0) --';> 0 with o. Verify that 

IIZL\ - zd ~ w(I6.I)(t' - ti-I) 

if 6.' is a basic refinement of 6. obtained by inserting a division point t' in the 
interval (ti-I' td. Deduce that 

IIZL\ - zd ~ 2w(o) 

for any two partitions 6. and 6.' satisfying 16.1 ~ 0 and 16.'1 ~ o. Show finally 
that there exists ZEB with the property: given e > 0, there exists 0 = O(e) > 0 
such that Ilz - ZL\II < e for all partitions 6. satisfying 16.1 ~ 0, and check 
that this Z satisfies all requirements. 

11.12. Let a be a positive real number and let B denote V(O, a) with its 
usual norm and linear space structure. As the product in B take the truncated 
convolution 

j * g(t) = f: j(t - s)g(s) ds. 

Verify that B is thus made into a Banach algebra satisfying conditions (a) 
to (c) of 11.4.1, save the parts referring to the existence and properties of an 
identity element. 

Show that there exist no nontrivial continuous complex homomorphisms 
ofB. 
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Hints: Let y. be a continuous complex homomorphism of Band put 
Cn = y(un ) for n = 1, 2, ... , where U n is that element of B defined by 
un(t) = tn - 1. Verify that 

r(m)r(n)Cm + n 
C C = . 
mn r(m + n) 

Using continuity of y, conclude that Cn = 0 for all n, and thence that y = O. 
11.13. Prove that if jE V(O, a) and * denotes truncated convolution, as 

in the preceding exercise, then 

lim IIf*n 11 1 = 0, 
n~'" 

where 
for n = 1,2,· ". 

Remork. This is a basic result in the Mikusinski operational calculus; 
see [Er], p. 46. 

Bint: Apply the spectral radius formula to the algebra obtained by 
adjoining a formal identity element to the algebra B described in the preceding 
exercise. 

11.14. Prove that the formula 

(e - '\X)-1 

makes sense and is valid for 1'\1 < 1jp(x), the notations and hypotheses being 
as in 11.4.14. 

Bint: Use the spectral radius formula to show that both sides depend 
analytically on ,\ for 1'\1 < 1/ p(x). 

11.15. Explore as far as you are able the possibility of analogues of 
11.4.17 for the case in which A is replaced by the set Aw of continuous 
functions j for which 

L: W(n)lj(n)1 < 00, 
nEZ 

where W is a positive" weight function" defined on Z. 
Remork. As with many other things in harmonic analysis, the algebras 

Aw originated in the work (much of it unpublished) of Beurling. An accOlmt 
of these so-called Beurling algebras, and of their extensions relating to more 
general groups is to be found in Domar [1]. See also [War], Chapter 2. 

The algebra 

A + = {j E A: j(n) = 0 for all nE Z such that n < o} 

is also of interest. See [Kah2], Chapter XI. 
11.16. Suppose that C1 (K) is defined as in 11.4.18(4). Prove that if m is 

a maximal ideal in C1(K), then 

m = m x == {f E C1(K) : j(x) = O} 
for some XE K. 
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Hints.' Ifm were distinct from every mx, to each XE K would correspond 
Ix E m satisfying Ix fj: mx. Show that then there would exist points Xl' .. " X n 
of K such that 

is inversible in Cl(K) and so derive a contradiction. 
11.17. Let CiS) be as in 11.4.1(2) and 11.4.11, and let I be a closed ideal 

in CiS). Define 
F = {s ES: xis) = 0 for all X E I}. 

Prove that 
I = IF == {y E CiS) : y(s) = 0 for all SE F}. 

Hints.' It is trivial that I elF' To prove the reverse inclusion, show first 
that I contains every y E C(S) which vanishes on so me open subset U of S 
which contains F. Do this by using compactness of Sand the fact that to 
each s E S\ U corresponds X s E I which is nonvanishing on some neighborhood 
N s of s. Cover S\U by suitably chosen neighborhoods N S, ,"" N sn and 
consider the function equal to x-lyon Ur = 1 N Sk and to zero elsewhere, 

where X = :Lr=l XSkXSk ' 

Completetheproofby using Urysohn's lemma (see [E], 0.2.12 and 0.2.17(4); 
[HS], p. 75; [Rd, p. 39.) to show that any element ofC(S) which vanishes on 
F is the uniform limit of functions in CiS), each of which vanishes on 
some open subset of S which contains F. 

11.18. Let A be as in 11.4.17. Suppose that (U a) is a family of open 
subsets of T forming a covering of T. Show that there exists a finite 
sequence (Uk)k= 1 of elements of A with the following properties: 

(1) to each k corresponds an index a = ak such that supp U le C Ua ; 

(2) :L~=l U k = 1; 
(3) U k ~ O. 

In (1), supp U k denotes the support of U k , that is, the closure of the set of 
points of T at which uk =1= O. 

Remark. A sequence (Uk) with the first two properties above is said to 
form a partition 01 unity in A subordinate to the covering (U a)' As the next 
exercise illustrates, the existence of such partitions of unity is a usefql tool 
in passing from local to global assertions. It is quite simple to give explicit 
examples of partitions of unity (uk ) in A (see, for example, [Ba2], p. 188), 
but the proof hinted at here has a much wider range of applicability. Com. 
pare Exercise 12.28. 

Hints.' For each x E T choose a neighborhood V x of x and an index oex 

such that Vx C Ua.% and then a nonnegative gx E A such that gx(x) =1= 0 and 
gx(y) = 0 for all y E T\ V x' Show that Xk E T may be chosen so that 
h = Lk=l gXk is nonvanishing and use 11.4.17. 
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11.19. Let A be as in 11.4.17 and let I be an ideal in A. Suppose that f 
is a function on T which belongs locally to I in the sense that to each x E T 
correspond an open neighborhood U x of x and a functionfx E I such that 
f = fx on Ux· Prove thatf EI. 

Remark. This resuIt is due to Wiener, at least for the case in which 
I = A; see 10.6.2(6). 

Hint: Use a partition of unity in A sub.ordinate to the covering (U x), 
11.20. Suppose that B is as in 11.4.1 and that S is a subset of f = f(B) 

with the property that to each Yo E qs corresponds a (possibly yo-dependent) 
Z E B such that Yo(z) =f 0 and y(z) = 0 for all y ES. 

Prove that, if XE Band y(x) #- 0 for all y ES, then there exists Y E B, 
satisfying y(y) = y(X)-l for all y ES. 

Interpret this result when (1) B = BI,' as in 1l.4.1 and (2) B = A, as in 
1l.4.17. 

Hints: Introduce the ideal 

I = {x E B : y(x) = 0 for all y ES}, 

form the quotient algebra B/I and determine all the complex homomorphisms 
of B/I. 

11.21. Show that if ! E L'" has the property that the set of translates 
{Ta! : a E R} is a separable subset of L"', then! is equal almost everywhere 
to a continuous function. (Compare with Exercise 3.5.) 

Hints: Use Exercises 3.16 ahd 3.5. 
11.22. Let! E L"'. Show that thc smallest closed ideal Ir in the convolntion 

algebra L'" (taken with its usual norm) which contains! is identical with the 
set of elements of the form /..f + g, where ,\ is a complex number and g 

belongs to the closure in L'" of! * L"'. 
Deduce that Ir is translation-invariant if and only if! is equal alm ost 

everywhere to a continuous function. 
Hints: For the first part, observe that I, is the closure in L'" ofthe set of 

elements /..f + h, where ,\ is a complex num ber and h E! * L"'. Then consider 
separately two cases according to whether! is or is not equal alm ost every
where to a continuous function. 

For the second part, use the preceding exercise. 
11.23. Let (KN)';=l be an approximate identity in V (see 3.2.1), and let 

S denote the set of! E L'" such that 

!im 21 f K N! dx 
N-+ 00 1T 

exists. Show that S is a closed ideal in the convolution algebra L'" and that S 
is not translation-invariant. 

11.24. Let B be as in 1l.4.l. Assume further that there exists a mapping 
x --+ x* of B into itself such that (x*)~ = (x) -, (xy)* = x*y*, and x** = x 
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for all x, Y E B. Suppose finally that either 
(1) there exists a number c ~ 0 such that 

for each x E B, 

or (2) there exists a number c ~ 0 such that 

IIxl12 :::; cllxx*11 for each XE B. 

45 

Prove that the Gelfand transformation x --l>- X maps B one-to-one and 
bicontinuously onto C(f), where f = f(B). (If c = 1, the Gelfand trans
formation is also an isometry of B onto C(r).) 

lIil/lN: Fifi-;t make acquaintance with the Weil'rstruss-Stonc theorem, for 
which Sl'C \ HIS], pp. 94-9S, or lE], Section 4.10. 

Assurning condition (1), use 11.4.14 to show that 

(3) 

for each XE B. Assuming (2), establish l'quation (3) first for those XE B 
which are sdf-adjoint in thc sense that x = x*. Tlwn, observing that xx* 
is always Hdf-adjoint, clerivc l'quation (3) again for each XE B. 

Topologizl' f as clcscribed in 11.4.18(1) and apply the Wcierstrass-Stone 
theorem to show that thc Gelfand transform maps B onto an every"here 
den:;e subset of C(f). Combine this with equation (3) to achieve the desired 
aim. 

11.25. Let IR be (algebraieally) a subalgebra of C(T) containing T, all 
algebraic operations being pointwise. Suppose that IR is a Banach algebra 
with respect to a norm (not necessarily that induced by the usual norm 
on C(T)), that T is everywhere dense in IR, and that each element of r(1lI) 
is an evaluation map f--+ f (x) (x E T). Prove that 

~I+ == {JE ~I: j(n) = 0 fornEZ,n < O} 

is a maximal subalgebra of ~l. 
Remarks. The case in which IR is identical with C(T) (aigebraically 

and topologically) is a prototype result due to Wermer; see 11.3.12. It is 
easy to reformulate the result in terms of convolution algebras over Z; in 
this form the result bears upon the problems dual to those handled by 
11.3.11. 

lIints: First show that ~I+ is a closed subalgebra of ~1. Suppose that 
~I + c t\ c ~I, t\ # ~I, where t\ is a closed subalgebra of ~1. Show that there 
exists an integer s > 0 such that y(es) = 0 for some y E f( t\). Noting that, 
if n > 0 is an integer, one has mn > s for some integer m > 0, deduce that 

(n E Z, n > 0). (1) 

Show (compare the hints to Exercise 12.26 and recall (11.4.22)) that there 
exists a positive measure JL such that y(f) = JL(f) for fE t\. Using (1), deduce 
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that f-L = 1 (see the closing remarks in 12.2.3) and tImt 

y(f) = j(O) (jEl8). (2) 

Observing that Jen E l8 whenever JE l8 and n E Z and n > 0, deduce from 
(1) and (2) that l8 c ~l+. 

11.26. Suppose that B is as in 11.4.1, save that the existence of an 
identity element of B is not stipulated. Let m denote a maxinial ideal in B, Q 
the quotient algebra Bjrn, and K the set of x E Q such that xy = Ö for all 
Y E Q, where, for any Z E B, z denotes the coset modulo rn containing z. 

Show that Q has no ideals other than {Ö} and Q, so that, in particular, K is 
either {Ö} or Q. 

Provp that the fullowing fOllr Ktatenwllts a\'(' eqllivaknt: 
(a]) rn if; modular; 
(az) Q has an identity element; 
(a3 ) K = {Ö}; 
{a4 ) rn is the keflw! of somc (nonzero) continIlolls eomplex homolllorphiKm 

y of B. 
Provp abo tlll' equivah'lwe of the follO\\'ing foul' statements: 
(b]) rn is non modular ; 
(hz) K = Q; 
(h3 ) rn =:J B2 = {xy: XE B, ?I E B}; 
(h 4 ) rn is thc kernl'i of some (nollzl'ro) linear fllnet.ional ,\ Oll B satisfying 

A(B2) = {O}. 
Conelude that every maximal ideal in B is modular if and only if thc linear 

subspacp of B gencrated by ß2 is tl1(' whole of B. 
lIint.s: Thc cquivakncc of M.atemcnts (al) and (a2 ) is trivial. as also are 

thc implications (a2 ) => (a3 ) and (a 4 ) "". (a]). 1'0 prove timt (a3 ) implies (<1 2 ), 

show first that i'Q = Q for any x i= Ö in Q, amI ([(>duce timt Q IJas no zero 
divisors. Choose any ä i= Ö in Q am! e E Q such that ae = il; prove timt e is an 
identity element in Q. 

It rpmains to prove that (a2 ) implies (a4 ). Since Q has no ideals other than 
{Ö} and Q, (a2 ) show;; that every nonzero elcmpllt of Q is inverKihlc. Abo, (a]) 
implies that m is closed in B: to see this, let e be an identity modulo m and 
fihow, by consideration of the elcment y = - L~ ~](e - x)n. which ,<;atiKfies 
e == x - xy mod m. that m contains no x E B satisfying Ile - xii< 1. Thus 
Q is complete and therefore satisfies all the conditions of 11.4.1, and 
11.4.4(1) entails that each XE Q is uniquely expressible in the form 
x = ~e, where ~ is a suitable complex number. Consider the mapping 
y: x~x~~. 

The cquivalence of (b]) and (bz) comes from that of (a]) and (a3 ) ; and it is 
trivial that (b2 ) is equivalent to (b3 ). If (b 4 ) holds, it is eaflY to verify that m is 
a maximal ideal in B satisfying (b3 ). To show timt (b3 ) imp!ies (b 4 ), choose any 
X o E B\rn and consider the set I = {axo + rn: a a complex nnrnber, mE rn}. 
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11.27. Show that every maximal ideal in LI is modular, hut timt there 
t'xist nonmodular maximal ideals in L2. 

lhnts: Uso the preceding exercise, together with 7.5.1, 8.2.1, and 8.3.1. 
Remark. That there exist nonmodular maximal ideals in LP 

whenever p > 1 follows likewise from Exeroise 13.20 below. On the other 
hand. it follows from (b 3 ) that every closed maximal ideal in LP is 
modular. See also [HR], (38.23) and (39.41) and MR 40 # 4779. 



CHAPTER 12 

Distributions and Measures 

In this lengthy ehapter we are going to initiate the investigation of one 
way of handling and aeeounting for trigonometrie series 

(12.1) 

in whieh the eoeffieients Cn are subjeet merely to a relatively mild restrietion 
on their rate of growth, namely, 

(Inl-+ 00) (12.2) 

for some k whieh may vary from one series to the next. Such sequenees 
(cn)nez, and the eorresponding series (12.1), will be said to be tempered or 
temperate. 

Virtually all the trigonometrie series eonsidered in the classieal theory 
referred to in Chapter 1 are tempered, the said elassieal theory being eon
eerned mainly with the pointwise eonvergenee or summability (everywhere 
or alm ost everywhere) of such series, and with the relationship between the 
given series and the Fourier-Lebesgue series of the sum-function whenever 
the latter is integrable. 

The approach adopted in this ehapter initially throws overboard all 
questions of pointwise eonvergenee or summability in favor of a eoneept of 
eonvergenee suggested by formula (D) in 1.3.2. The sum of the series will, as 
a result, no longer be an ordinary funetion at all, but rather an entity of the 
type now termed a distribution or a generalized function as introdueed by 
Laurent Sehwartz. 

It will appear in 12.5.3 that any tempered trigonometrie series eonverges 
in this new sense to such a distribution, in terms of whieh the eoeffieients Cn 

are expressible in a fashion that is an exaet extension of the Fourier formulae 
(1.1.2*) for the ease in whieh the sum is an ordinary integrable funetion. It 
will thus be natural to speak of the eorresponding series as the Fourier
Schwartz series of its sum-distribution. To express the situation slightly 
differently, one may say that the theory of distributions provides one way of 
defining the Fourier transform ~ for any tempered funetion cf> on the 

48 
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group Z, a problem that was already raised in Section 2.5. The related 
matters mentioned in Sections 3.4 and 6.7 will accordingly be seen in 
sharper focus. 

Some of the operations performable on functions can be extended to 
distributions: this is notably the case with differentiation and convolution 
(see Sections 12.4 and 12.6). For what cannot be done, see 12.3.5. Indeed, 
distributions theory is usually approached for not-necessarily-periodic 
functions of one or more real variables, and the gay abandon enjoyed in 
differentiating distributions might almost be said to be their raison d'etre. 
We are here concerned solely with what may be termed periodic distributions 
in one variable (distributions on T) and lay special stress on their 
connections with trigonometrie series. A more balanced approach is to be 
found in the books by Schwartz ES] and those by Gelfand and Silo v [GS] 
and Gelfand and Vilenkin [GV], where distributions on the line R or on 
the product groups Rm, or on suitable subsets thereof, are the primary 
objects of study. Somewhat more leisurely accounts appear in [Ga], 
[MT], [Er], [HaI], [Lig], [Br], [Tr], [J]. See also [D]. 

The use of distributions will prove to be helpful in the discussion of certain 
questions existing in the classical theory of Fourier series-for example, in 
the study of so-called conjugate series (see·Section 12.8). 

In framing the definition of distributions, it is helpful to bear in mind two 
pointers: 

(1) In view of 2.3.4 and (12.2) we may expect that a tempered trigono
metrie series should be correlated with the result of repeated differentiation, 
in some generalized sense, of a suitable function. 

(2) If u is a sufficiently smooth function, and if (12.1) is the Fourier series 
of a function fELl, then (see 6.2.5 and 6.2.6) 

21 f f(x)u(x) dx = 2: c" • u( -n); 
~ neZ 

(12.3) 

in particular, this formula certainly holds for each u E C"". It is vital to 
observe that the left-hand side of (12.3) defines a continuous linear functional 
on C"'; and that, as follows from 2.4.1, knowledge of this linear functional 
determines the function f almost everywhere. 

From this last remark we shall take our cue, areturn to (1) being made via 
Section 12.4 and 12.5.7. Distributions will be introduced as continuous linear 
functionals on C"", but it is first of all necessary to consider the function-space 
C"" more closely. 

The measures referred to in the title of this chapter constitute an especially 
important class of distributions; they are defined in .12.2.3 and studied in 
more detail in 12.5.10 and Section 12.7. The Fourier-Schwartz series of a 
measure is often termed a Fourier-Stieltjes series, the reasons for the name 
being discussed in 12.5.10. 



50 DISTRIBUTIONS AND l\IEASURES 

As has been indicated, our approach to distributions is the analogue (for 
the periodic case) of that originally set forth by L. Schwartz (see [S]) for 
distributions on Rn; the reader is recommended to consult this reference, 
and/or [GS], frequently. A theory of distributions over an arbitrary locally 
compact Abelian group has been expounded by J. Riss [1]; as one miglü 
expect, this theory exhibits some rather weird features when the underlying 
group is locally very non-Euclidean. See also Reid [1]; MR 25 # 4354; 
49 # # 11145, 11243; 51 # 11022. For references to even broader exten
sions of the theory, see [E], 5.11.5. 

12.1 Concerning CO) 

In 2.2.4 we have defined the space C'" and its topology. Thus, if u E C"" 

and if (uJ:'= 1 is a sequence extracted from C"', we shall write 

C"" - lim u" = u or U" --J> U in C'" 
,,~ '" 

if and only if any one (hence all) of the following three equivalent 
conditions is(are) fulfilled: 

lim II DPu" - DPu II '" = 0 
,,~ '" 

lim Ilu" - ull(p) = 0 
,,~ 00 

lim Ilu" - ull(oo) = O. 
,,~ 00 

(p = 0,1,2, .. ·); 

(p = 0, 1,2, .. ·); 

(12.1.1) 

( 12.1.2) 

(12.1.3) 

The equivalence of (12.1.1) and (12.1.2) is visible after reference to the 
defining formula (2.2.16); that of (12.1.2) and (12.1.3) depends on the 
defining formula (2.2.17) and a simple argument, which the reader is urged 
to supply. 

A most important instance of this mode of convergence figures in the 
following result. 

12.1.1. A continuous function u belongs to Coo if and only if 

!im n'" u(n) = 0 
Inl~ 00 

in which case 

(k = 1,2, ... ), 

2: u(n)einx • 

Inl,;;N 

(12.1.4) 

(12.1.5) 

Proof. If u E coo, the relation (12.1.4) follo'ws from repeated use of 2.3.4, 
coupled with 2.3.2 (or with 2.3.8). Conversely, if u is continuous and (12.1.4) 
holds, then 2.4.3 shows that 

u(x) = L u(n)einX , 

nEZ 
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and that this series, as weIl as those obtained from it by repeated termwise 
differentiations, are uniformly convergent. A weIl-known theorem in real 
analysis implies that the sum-function U therefore belongs to C"" and that 

DPu(x) = L (in)Pu(n)einZ 

nEZ 

for p = 0, 1,2, ... ; see the proof of 12.1.3 below. 
The final assertion appears from what has just been said concerning 

uniform convergence of the above series, coupled with the criteria for con
vergence in C"" expressed in (12.1.1). 

Remark. If U is an integrable function satisfying (12.1.4), then u is 
equal almost everywhere to a function in C'" (see 2.4.2); and conversely. 

12.1.2. It will cause the reader no pain to verify that if U k -+ U and Vk -+ v 
in coo, and if (Ak) is any sequence of scalars converging to A, then AkUk -+ AU 
and uk + V k -+ U + v in C"'. 

12.1.3. That C'" is complete for the metric appearing in (12.1.3) will be 
vital in some of our subsequent arguments. 

To establish this, suppose that (uk ) is a Cauchy sequence of elements of 
C"'. Reference to (12.1.i), combined with Cauchy's general principle of con
vergence, shows that then vp = limk -+ '" DPuk exists uniformly for each 
p = 0, 1, 2, .. '. The limit function vp is continuous. Now 

DPuk(x) - DPUk(X') = f: DP+IUk(Y) dy 

and uniform convergence yields in the limit 

vp(x) - vp(x') = f: vp+1(Y) dy, 

which shows that Dvp = Vp+l' Putting v = vo, it appears thence that v E C'" 
and that vp = DPv (p = 0, 1,2, ... ). Accordingly, limk _ "" DP'uk = DPv 
uniformly for each p. In other words, Uk -+ v in C"'. This shows that C'" is 
indeed complete. 

12.1.4. From 12.1.2 and 12.1.3 we see that C"" is at once a linear space and 
a complete metric space, and that the linear operations are continuous. 

Moreover, the topology of C'" is definable in terms of the seminorms 11 • II<p) 
(p = 0, 1, 2, ... ), a base of neighborhoods of 0 in C'" consisting of the sets 

{U E C'" : Ilull<p) < e} 

obtained when p ranges over the nonnegative integers and e over the positive 
members. In other words (see I, B.1.3), C'" is a topologicallinear space of 
the type now customarily known as a Frechet space. 
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12.1.5. Not only are the linear space operations continuous on C"', so too is 
the operation of pointwise multiplication. That is, the mapping (u, v) -+ uv 
is continuous from C'" x Coo into Coo. 

In addition, D (the differentiation operator) is a continuous endomorphism 
ofC"'. 

Likewise, each translation operator Ta (see 2.2.1) is a continuous endo
morphism of coo. 

12.2 Definition and Examples of Distributions and Measures 

12.2.1. Definition of Distributions; the Space D. By a distribution is 
meant a continuous linear functional on coo. 

Henceforth we shall always denote by D the set of distributions. Since D 
is the set of continuous linear functionals on a topologipal linear space; it 
carries a natural linear space structure: if F 1, F 2 E D and .\ is a scalar, 
F 1 + F 2 and .\F are the functionals defined by 

(.\F)(u) = .\. F(u) 

for u E Coo; compare I, B.1.7. 

12.2.2. Functions as Distributions. The formula 

F(u) = 2~ J f(x)u(x) dx (12.2.1) 

associates with any integrable function f a linear functional F on coo. 
Inasmuch as 

it is plain that this functional is continuous on Coo. In this way we have 
associated with each fE L1 a distribution. Knowledge of this distribution 
determines the function f a.e. and we shall identify the function (or, more 
accurately, the equivalence class, modulo null functions, determined by that 
function) and the distribution it generates. L1 thus appears as a linear 
subspace of D. 

12.2.3. Definition of Measures; the Space M. The distributions genera ted 
by integrable functions are not the onIy distributions F satisfying an 
inequality of the form 

IF(u)1 :s;; const Ilull oo . (12.2.2) 

Distributions of this type will be termed (Radon) measures. 
The reason for the term "measure" is the fact that any functional F 

which is a measure in this sense can be expressed as an integral with respect 
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to some uniquely determined regular Borel measure m on the underlying 
group G = T: 

F(u) = L u(x) dm(x). 

This assertion, usually known as the Riesz-Markov-Kakutani theorem 
(for the compact space T), is a mild extension of Theorem 6.4d of [w]; a 
more detailed treatment in a more general setting appears in Chapter 4 of 
[E], especially Section 4.10 and Exercise 4.45: see also [EtJ, Part 1; [HS], 
Chapter 111, especially p. 177, and p. 364; [AB], Chapter 8; [Ra, 
pp. 40-47. This representation theorem confers much greater flexibility in 
the manipulation of Radon measures, largely because the expression of F 
as an integral combines with the appropriate integration theory to 
provide at once a good definition of F(u) for each bounded Borel 
measurable function u on T, instead of merely for functions u in Cco. (The 
possibility of extending F from Cco to C is established in a more 
elementary way in 12.2.8 and 12.2.9.) This added flexibility is almost 
essential for the discussion of so me of the subtier properties of Radon 
measures that feature in a number of recent researches (such as those 
referred to in 12.7.4 and those appearing in Chapter 5 of [R]). For the 
principal results in this book, however, we shall not need to make any 
essential use of the representation theorem and its consequences. 

An earlier and more concrete representation of aRadon measure was given 
by F. Riesz, who showed that such a functional F can be expressed as a 
Riemann-Stieltjes integral 

F(u) = 2~ f" u(x) drp(x) , 

where rp is a function of bounded variationl determined by F. A proof of this 
is to be found in the Appendix to [He]; see also [HS], (8.16), and [AB], 
p. 372. The sole explicit use to be made of this representation theorem 
appears in 12.5.10, where the use of the term "Fourier-Stieltjes series" 
receives some explanation. 

Henceforth we shall denote by M the set of measures. Evidently, M is a 
linear subspace of D. 

In view of 12.2.2, LI may be regarded as a linear subspace of M. 
Perhaps the simplest example of a measure that is not a function (that is, 

of an element of M\LI) is the so-called Dirae measure at the point x: this is 
the functional ex defined by 

ex(u) = u(x). 

The reader is urged to supply a proof that the measure ex is indeed not 
(generated by) a function in LI. In spite of this, the measure ex is often 

1 The function cp is in general not periodie. 
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improperly spoken of as "the Dirae o-funetion plaeed at x"; see 3.2.2, 3.2.4, 

and 12.3.2(3). (Ineidentally, we use the symbol ein plaee of 0, partly to keep 

clearly in mind the eorreet terminology, and partly beeause the former 

symbol seems more appropriate for what is the identity element relative to 

eonvolution; see 12.6.7(ll.) 
Concerning the definition of Radon measures. Some readers, especially 

those familiar with the use of the term "measure" to describe a species of 
set-function (as described in Section 13.1), will surely feel upset by the choice 
of the term "Radon measure" to describe something that is evidently closer 
in nature to an integral (compare the discussion in 2.2.2, that in Sections 2.5 
and 3.4 of [AB], the study by Schaefer in [Hi]); and see again [E!], Part 1. 
The terminology, which is due to M. Bourbaki, is by now fairly weil fixed and 
one must presumably make the best of it. 

The fact is that each Radon measure can be extended into a Lebesgne-like 
integral (in mnch the same way as the Riemann integral can be extended into 
the Lebesgue integral and a Riemann-Stieltjes integral into a Lebesgue
Stieltjes integral), and that there is a one-to-one correspondence between these 
extended Radon measures p. and a species of set-function measures m ß • Al though 
we have no space to go into all the details, more comment will be made and 
references given in 12.5.10. 

The execution of the details of the developments mentioned in the preceding 
paragraph are due to M. Bourbaki. The result is a complete theory of integra
tion which, within its range of application, is at least as good as those based on 
a set-fnnction-measure approach. In relation to the latter, Bourbaki's point of 
view amounts to amental somersault: one takes a theorem (in this case, the 
Riesz-Markov-Kakutani theorem), hitherto well-hidden in the heart of a 
subject, and sets it up as a basic definition in a reformulated theory. 

Notation for functions as measures. The Radon measure gencrated by 
a function fELl would, in more traditional notations, bear a symbol different 
from f. The invariant integral 1 is, of course a special Radon measure, the 
associated set-function measure m j being (27T) -1 times Lebesgue measure on 
[0, 2n) (where T is identified with [0, 2n)). To say that aRadon measure J1 is 
generated by a function f is to say that m~ is absolutely continuous with 
respect to mI and that the Lebesgue-Radon-Nikodym derivative dmidmI is f 
(see [HS], p. 328). 

Again, one could as weil write fL = f • 1 in place of fL = f; compare 12.3.4, 
12.11.3, and [E], p. 235. 

Yet another way of symbolizing the same relationship would amount to 
writingdfL = (27T)-lfdx. 

We shall not adopt any of these notations, partly because they involve 
essentially the set-function measure approach, and partly because they tend 
to obstruct the view we wish to foster, namely, the view that measures and 
distributions are generalized functions. 

12.2.4. Distributions That Are Not Measures. It is simple to give 

examples of distributions F that are neither functions nor measures. Consider, 
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for instance, the distribution F defined by 

F(u) = DPu(O), 

where p is a positive integer. It is apparent, on considering the functions 
u = en , that this F does not satisfy any inequality of the form (12.2.2) and 
therefore fails to be a measure. 

12.2.5. Continuity Expressed by Inequalities. It is possible to classify 
distributions by means of inequalities of which (12.2.2) is a special instance, 
but in which higher derivatives of u appear. 

The classification is based on the statement that a linear functional F on 
C'" is a distribution (that is, iscontinuous) if and only if there exists an 
integer m ~ 0 and a number c (both F-dependent) such that for all u E C'" 
one has 

IF(u)1 ~ C' sup liDPuli",· 
O';p';m 

(12.2.3) 

Proof. It is evident that the inequality (12.2.3) ensures the continuity of 
F. Conversely, suppose that F is continuous. If no inequality (12.2.3) were 
valid, functions Uk E C'" (k = 1,2,···) would exist such that 

IF(uk)1 > k· sup 11 DPukll "'. 
O';p.;k 

(12.2.4) 

This implies that uk i' 0, so that 

ak = sup IIDPukll", > O. 
O';p.;k 

Define Vk = (kak) -lUk. Then Vk E C'" and 

sup IIDPVkll", = k- 1 , 
O~p~k 

which entails that vk -+ 0 in C'" [compare (12.1.1)]. On the other hand, by 
(12.2.4) and the linearity of F, 

IF(vk)1 = (kak)-lIF(uk)1 > 1. 

This would contradict the assumed continuity of F, which must therefore 
satisfy an inequality of the type (12.2.3). 

12.2.6. Order of a Distribution. For a given distribution F, there exists 
therefore a least integer m ~ 0 such that (12.2.3) holds for a suitable (F
dependent) ilUmber c. We then say that Fis a distribution of order m. 

Reference to 12.2.3 shows that the measures are exactly the distributions 
of zero order. 

12.2.7. The Space Dm. We shall henceforth denote by Dm(m = 0, 1,2,· .. ) 
the set of distributions of order at most m. Dm is a linear subspace of D and 
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we have the relations 

'" LI C M = DO C DI C •.• c Dm c Dm+1 c ... , D = U Dm. 
m=O 

(One has here an extension of the chain of inclusions (2.2.18).) For each m, 
the inclusion Dm c Dm + I is easily seen to be proper. 

12.2.8. Dm and Continuous Linear Functionals on cm. There is another 
way of visualizing Dm which must be observed here. We shaH verify that Dm 
can be thought of as the set of continuous linear functionals on Cm, the lattcr 
being considered as a Banach space with the norm 11 • II<m)' 

Indeed, on the one hand it is evident that the restrietion to C'" c Cm of a 
continuous linear functional L on Cm is a distribution of order at most m. 
Moreover, since C'" ia dense in Cm (a coroHary of 6.1.1), a continuous linear 
functional L on Cm is uniquely determined by its restrietion to C"'. 

It thus remains only to verify that each F E Dm can be extended into a 
continuous linear functional L on cm (and of which it is the restricti"on to C"'). 
But suppose u E cm. Choose any sequence (uk ) from C'" such that 

lim Ilu - ukll<m) = O. 
k-", 

Then (12.2.3) shows that limk _ '" F(uk ) exists finitely. By the same token, 
the value ofthis limit is the same for any other sequence (u~) extracted from 
C'" and such that Ilu - u~ll<m) -+ 0 as k -+ 00. The required extension L of F 
is obtained by setting L(u) = limk _ '" F(uk ). It is clear that L is thereby 
defined as a linear functional on Cm whose restrietion to C'" is F. Beside this, 
(12.2.3) shows that 

= c'llull<m), 

so that L is indeed continuous on cm. 

12.2.9. Measures as Functionals on C. The case m = 0 of 12.2.8 is 
especiaHy important. It asserts that each measure can be extended into a 
continuous linear functional on C = Co, and that conversely each continuous 
linear functional on C is obtained by thus extending precisely one measure. 

This marks one more step in bringing our definition of measures into line 
with the Riesz-Markov-Kakutani representation theorem referred to in 
12.2.3. 

More about measures will appear in 12.3.8,12.3.9,12.5.10, and Section 12.7. 
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12.3 Convergence of Distributions 

12.3.1. Definition of Distributional Convergence. A sequence (Fn):=l 
of distributions will be said to converge in D to a distribution F if and only if 

for each U E C"'. A similar definition applies to the relationship 

lim F t = F in D, 
t ..... to 

where t -+ F t is a D-valued function of areal or complex variable t defined 
on a punctured neighborhood of to; to may here be -00 or co. 

This type of convergence of distributions is sometimes spoken of as 
distributional convergence. 

Remark. We note, but will never use, the fact that the general theory 
of duality for topologicallinear spaces leads to several topologies on D with 
respect to any one of which the notion of sequential convergence (or the 
convergence of D-valued functions F t as specified above) accords exactly 
with that prescribed in 12.3.1. 

12.3.2. Examples. (1) If FE D and a E T the translate TaF 1S the 
distribution defined by the formula 

for u E C"', this definition being so chosen that if F is (generated by) a 
function I E V (see 12.2.2), then TaF is the distribution (generated by) the 
function T af. That T aF so defined is indeed a distribution follows from 
12.1.5. Notice that T a+ 2n F = TaF, so that the distributions we are speaking 
of may be said to have period 27T. 

It is very simple to verify that T aF -+ Tao F in D as a -+ a o. 

(2) If the functions In (n = 1,2, ... ) in LI converge in mean in that space 
to I, thenln -+ I in D. This follows immediately from the substance of 12.2.2. 

As the next example shows, a sequence of functions in LI may weIl be 
distributionally convergent without being convergent in LI. 

(3) If (fn):=1 is any approximate identity In V (see 3.2.1), then In -+ e 
distributionally, where e = eo is the Dirac measure at the origin. 

This is a reformulation of a special case of 3.2.2; see also the remarks in 
3.2.4. 

(4) The relation 
n 

n - I 2: e2nlc/n -+ 1 
lc=1 
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holds distributionally. For the result of applying the measure appearing on 
the left-hand side to a function U E C'" is 

n- 1 i U(2TTk) = ~ i U(2TTk) [2TTk _ 2TT(k - 1)], 
k = 1 n 2TT k = 1 n n n 

which (even for any continuous u) tends to 

L fIt u(x) dx = l(u). 

(5) The following example is less transparent. In 12.2.2 we have seen how 
to associate a distribution with each integrable function. Now we shall 
illustrate a method of associating a distribution with certain nonintegrable 
functions. Viewed otherwise, it provides an instance of a sequence of 
integrable functions that converges to a distribution of order one. 

The nonintegrable function to be treated is w, defined almost everywhere 
on,[ - TT, TT) as cosec Yz x, and then extended by periodicity. The corresponding 
distribution is obtained as the limit, as e 1- 0, of the integrable functions Ws 

defined almost everywhere on (- TT, TT) by 

( ) = {cosec Yzx 
Ws x 0 

if e < lxi < TT, 
if lxi ~ e, 

Ws being defined elsewhere by periodicity. The distributional limit does 
indeed exist, since we may write 

ws(u) = 21 f 'u(x) cosec Yzx dx 
7T E<lxl~n 

= 21 f [u(x) - u(O)] cosec Yzxdx, 
11' e<lxl~ll 

because 

f cosec Yzx dx = 0 
&<Ixl~n 

owing to the integrand being an odd function of x. Furthermore, 

u(x) - u(O) = O(lxl) 

for sm all x, so that the integrand remaining is integrable. Thus the Ws 

converge distributionally to the distribution Q defined by 

Q(u) = L f [u(x) - u(O)] cosec Yzx dx 

Since the first mean value theorem shows that 

lu(x) - u(O)1 ~ lxi' IIUII(l)' 
we see that 

IQ(u)1 ~ L f Ix' cosec Yzxl dx' Ilull o ) 

(12.3.1) 

(12.3.2) 
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which confirms that Q is of order at most one: Q E Dl. 
This mode of defining Q suggests naming it the principal value of wand 

denoting it by P. V. w. 
The distribution Q is genuinely of order one, that is (in view of what we 

already know), it is not a measure. Indeed, were Q to be a measure, (12.2.2) 
and (12.3.1) would combine with Exercise 12.5(2) to show that 

1 rb 

217 Ja cosec % x dx :;;; const 

for 0 < a < b < 17. Eut it is easily seen that 

1 fb 1 b -2 cosec %x dx = -log - + 0(1), 
17 a 17 a 

and is therefore unbounded for 0 < a < b < 17. 

In Example 12.4.3(3) we shall see how to represent Q = P. V. w as the 
distributional derivative of an integrable function. Meanwhile, we return to 
some generalities. 

12.3.3. It is very simple to verify that if Fn --+ Fand Gn --+ G distribution
ally, then F n + Gn --+ F + G and cF n --+ cF distributionally, c denoting any 
constant. 

12.3.4. Product of a Distribution and a Ca:> Function. The second 
assertion in 12.3.3 may be extended. 

In the first place, we can define the product uF of any function u E Coo 
and any distriblltion F E D by writing 

(uF)(v) = F(uv) for v E Coo. 

The justification for this definition is contained in 12.l.5, the substance of 
which leads also to the conclusion that 

unF --+ uF distributionally 

if U n --+ u in coo, and that 

uF n --+ uF distributionally 

if u E coo and F n --+ F distributionally. 
It is also true that unFn --+ uF distributionally whenever u~ --+ u in Ca:> 

and F n --+ F distributionally, but this is less obvious. No use will be made of 
this fact and its proof is omitted. 

12.3.5. The Product in Other Cases. In connection with 12.3.4 we may 
observe that uF can be defined for u E Cm and FE Dm, the result being an 
element of Dm. The basis for this statement lies in 12.2.8. 
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Another case in which the product is satisfactorily definable will.appear in 
12.11.3. 

On the other hand there is no hope of giving a "reasonable" definition of the 
product of two arbitrary distributions-nor even of the product of two 
arbitrary measures. The qualification "reasonable" is here intended to cover a 
tacit assumption that the required definition shall retain one or more properties 
of the product as applied to smooth functions. 

For example, one can show (see Exercise 12.9) that it is impossible to define 
a product aß of two arbitrary measures in such a way that (a, ß) -;. aß is a 
bilinear mapping of M X M into D having the properties (1) if a(U) ;;;. 0 and 
ß(u) ;;;. 0 for nonnegative functions U E C'" (in which case the measllres a and ß 
are said to be positive), then aß(U) ;;;. 0 for such functions; and (2) if a and ß 
are (generated by) functionsj and g in C"', respectively, then aß is (generated 
by) the functionjg (ordinary pointwise product). 

12.3.6. Compacity Principles. Each of the next four results states in 
sequential form a compactness property of certain sets of distributions, of 
measures, or of functions. Each is a very elose analogue of the Weierstrass
Bolzano theorem, which asserts that from any bounded sequence of real or 
complex numbers may be extracted a convergent subsequence. The common 
source of these four results is an abstract compacity principle which is 
discussed in I, B.4; the fourth result uses also a characterization of the 
continuous linear functionals on the space V' (1 ~ P < co) which is dis
cussed in I, C.l. 

In order to heighten the analogy with the Weierstrass-Bolzano theorem, 
we first introduce the appropriate concepts of boundedness. These are as 
folIows: 

(1) A set S of distributions is said to be bounded in D, or to be distribution
ally bounded, if and only if 

sup {IF(u)1 : FES} < co (12.3.3) 
for each u E C"". 

(2) A set S of measures is said to be bounded in M, if and only if 

sup {If'(u) I : f' E S} < co (12.3.4) 
for each u E C. 

(3) A set S of functions in V (1 ~ P ~ co) is said to be bounded in V, 
if and only if 

sup {12~ I fu dxl :f ES} < co 

for each u E LP', where l/p + l/p' = 1. 
In each case the value of the supremum will in general depend upon u. 
The concept ofboundedness expressed in (2) [respectively (3)] is sometimes 

spoken of as weak boundedness in M [respectively in LP] (compare I, B.1.7), 
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in contradistinction from norm boundedness. As we shall soon see, however, 
the two concepts are equivalent. 

It is easily seen that, if S c V' and if we inject V c Ll into M, which is 
in turn injected into D, then (3) implies (2), and (2) implies (1). Also, if 
S c Lq and is bounded in Lq, and if 1 ~ P < q, then S is bounded in LV. 
The converse statements are false. For example, the sequence of measures 
n[e(lfn) - e] (n = 1,2" .. ) is bounded in D but not in M; again, the Fejer 
kerneis F n (n = 1,2, ... ) form a bounded subset of L1 and of M, but they 
are not bounded in LV for any p > 1. 

One might also define a subset S of Dm to be bounded in Dm, if and only if 

sup{IF(u)l: FES} < 00 (12.3.5) 

for each u E Cm. Weshall ha ve no special use for this concept of boundedness, 
however. 

12.3.7. Let (F n): = 1 be a sequence of distributions forming a bounded subset 
ofD. Then there exists a subsequence (Fnk )f'=l and a distribution F such that 

lim F nk = F 
k_oo 

inD. 
Proof. Since Coo is complete (see 12.1.3), and since D is defined to be the 

set of all continuous linear functionals on coo, the assertion is a special case 
of I, B.4.1; separability of C'" follows from 12.1.1. 

12.3.8. M as a Normed Linear Space. There is an analogue of 12.3.7 for 
bounded sequences in Dm. Especially significant for future developments is 
the case m = 0, to which the next result applies. 

Let us first define the norm of a measure /L E M by the equation 

(12.3.6) 

In other words, 11/L111 is the smallest number c ~ ° for which it is true that 

1/L(u)1 ~ c· Ilull oo 

for each u E C (or, what is equivalent, for each u E cool; compare equation 
(12.2.2). The reader will be able to verify without trouble that 11 . 111 is 
indeed a norm on M. The notation is suggested by the fact that, if /L is 
(generated by) a functionfELl, then 11/L111 turns out to be none other than 
111111 as defined in (2.2.13); see Exercise 12.10. 

12.3.9. A sequence (/Ln):=l of measures is bounded in M, if and only if 

sup II/Ln 111 < 00, 
n 
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in which case a subsequence (fLnJ;:'=l and a measure fL exist such that 
limk _ 00 fLnk = fL weakly in M, by which it is meant (see I, B.l.7) that 

lim fLnk (u) = fL(u) 
k- ro 

for each U E C. (See also Exercises 12.13 and 12.43.) 
Proof. Since C is complete, the first statement is a special case of the 

uniform boundedness principle (I, B.2.1). The second statement follows 
from I, B.4.1 because C is separable (see 6.1.1) and because ofthe identification 
of M with the set of continuous linear functionals on C established in 12.2.8. 

12.3.10. (1) If 1 ~ P ~ 00, a sequPllC(' (fnr:=l offunction" in LP i" boundcd 
in LP, if and only if 

sup Ilfnllp < 00. 
n 

(2) If 1 < P ~ 00, and if (fn):=l i" a bound('d sequen('e in LP, tllPI'e exist.t:J 
a subsequence (fn);:' = land a function f E LP such timt lilll h _ ro fn" I{,Cllkli! ill 

LP, by which it is meant (see I, B.1.7) that 

lim .: J fnk u d:c = i-J fu d:c 
k ...... a) _7T ... /TT 

for each U E LP' (where l/p + I/p' = 1). (Hee al"o Ex('rei"c 12.14.) 

Proof. Statement (1) follo\\'s from thc uniform boun<!pdllp",,; prineiple 
exactly as does the eorresponding ass('rtion in 12.:3.n, provi<!pd onp o1>,.;('rvp,.; 
that, if fE LP, 

Ilfllp = sup {I} Jf1l d:cl : U E LP', Iluilp ~ I}, 
~7T 

which is the converse of Hölder's inequality ("pe Exprcis(' :3.ß). 

Statement (2) again folio\\'8 from the eompaeity principlp in I, BA.I. 
coupled with the identification of thp set of continuous lilwar fllnc:tionals 
on Lq (1 ~ q < (0) with Lq' establishpd in I, C.l, q here being taken to be p'.l 

12.3.11. Remarks. Part (2) üf 12.:3.10 is false for p = 1. Für example, 
the sequence of Fejer kerneis (F N r:: = 1 is büunded in LI, but no su bsequellee 
(F Nk );:'= I converges weakly in LI. (The reader "houlet prove thiB, bearing in 
mind the substance üf 3.2.4.) Indeed, by apppal to I, C.2, it can be seen timt 
no such subsequence is a weak Callchy seqllence in LI, that is, that no 
such subsequence has the property timt 

lim 21 J F nk 1l dx 
k- 00 1T 

exists finitely for each U E L''' . 

1 That Lq (1 ,,:; '1 < CX)) i8 HüparublP, iH HhoWll by tU. I. 
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The same re marks apply when (PNr::~l is replaced by any approximatE' 
identity in LI. 

12.4 Differentiation of Distributions 

Hf is an absolutely continuom.; fllnction. the derived fllnction l~f i,.; defined 
almost everywhere and is intcgrable. Fmthcrmorc. partial integration (sec 
[W], Theorem 5.4a, Exercise 16 Oll p. 111. Theorem ß.:3d; IHS]. p. 287) 
shows that 

~ J Df' u rl:c = - _.1 J f' Du d:c 
2~ 2~ 

for each u E C"". This circumstan<.~(' prompts the fol\owing definition. 

12.4.1. Definition of Derivative. H F is a distribution, its (flistributional) 

derivative DF is the distribution defined by 

DF(u,) = - F(Du) (12.4.1) 

for u E Coo. 

12.4.2. Remarks on the Definition of Derivative. Wc havc taken care 
that this notion of derivative, the distributional derivative, coincides with the 
ordinary one when applied to distributions generated by absolutely con
tinuous fllnctions. It must therefore be made quite clear that a divergence 
appears when nonabsolutely continuous functions f are involved: in such 
cases it may weIl happen that the pointwise derivative l' will exist almost 
everywhere and be integrable, and yet the distributional derivative Df will 
be quite different from the distribution genera ted by the integrable funetion 

1'. 
As an illustration, consider the function f defined to be 0 on [ -~, 0], to be 

1 on (0, ~), and elsewhere so as to have period 2~. To compute the distri
butional derivative DJ we have 

1 J" Df(u) = -- f' Dudx 
2~ _" 

= - - 0 . Du dx - - 1 . Du dx 1 JO 1 i" 
2~ -Jt 2~ 0 

1 1 
= 0 - 2~ [u(~) - u(O)] = 2~ [u(O) - u(~)], 

which shows that Df = (1/2~)[e - e,,]. On the other hand, r = 0 a.e. and 
so generates the zero distribution. 
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Support for regarding the distributional derivative as an appropriate 
concept lies in the fact that if we wished to evaluate 

-- f' Dudx 1 J" 27T _" 

by using partial integration, it would be necessary to decompose the range 
of integration into subintervals [-7T, -e], [-e, e], [e,7T - e], [7T - e, 7T], on 
the first and third of which f is absolutely continuous, apply partial integra
tion to the first and third subintervals, and notice that the remaining 
integrals are in any case 0(1) as e -i>- O. The result would be (1/27T)[u(O) - U(7T)]. 
In other words, a correct application of partial integration leads to a demand 
for the distributional derivative rather than the pointwise one. 

It is to be noticed that the jump discontinuities of f at the origin and at 7T 
introduce into the distributional derivative terms involving Dirac measures 
at these points. Thisfeature is quite typical. Further differentiations in the 
distributional sense will introduce distributions of higher and higher order. 

In the sequel, failing any indication to the contrary, differentiation will 
always be performed in the distributional sense. With this convention one may 
(truthfully) say tImt a function fE LI is equal alm ost everywhere to an 
absolutely continuous function, if and only if Df E LI. (At the risk of over
repetition, we reaffirm that this statement is not true, if the derivative is 
interpreted in the pointwise sense.) Compare Exerci8e 12.12. 

It is similarly true that a function fELl is equal amost everywhere to a 
function of bounded variation, if and only if Df E M. (And again Df must 
here be interpreted distributionally.) A proof appears in 12.5.10. 

12.4.3. Examples. (1) The translates TaF of a distribution F have been 
defined in 12.3.2(1). It is simple to verify that 

DF = lim a-I(T _aF - F) 
a-O 

distributionally. For, if u E C"', 

by the definition of T _aF and by linearity of F. It will therefore suffice to 
verify that 

lim a-I(Tau - u) = -Du 
a-O 

in C ro, which follows by application of the first mean value theorem. 
(2) Let A be a given distribution and let us examine the possibility of 

solving the equation 
DF = A (12.4.2) 

for the unknown distribution F. 
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This equation is not always soluble. Indeed, since DF(l) = - F(Dl) 
= - F(O) = 0, a necessary condition for solubility is that A(l) = O. We 
shall show how to solve (12.4.2) whenever A(l) = O. 

Assuming that F is a solution of (12.4.2) we have, for each u E C"', 
F(Du) = -A(u). Putting u = Jv, where J is the endomorphism of C'" 
defined by 

Jv(x) = 50" [v(y) - v(O)] dy, 

we have Du = v - v(O)l and so 

Ffv - v(O)l] = -A(Jv). 

This mayaIso be written as 

F(v) = F(l)· l(v) - A oJ(v), 

or 

F = F(I) • 1 - A 0 J. (12.4.3) 

The reader will observe that, since J is a continuous endomorphism of C"', 
A 0 J is indeed a distribution. Formula (12.4.3) gives the solution of (12.4.2), 
assumed to exist. It remains to verify that (12.4.3) really is a solution, 
provided A(I) = O. 

But, if F is given by (12.4.3), we have for any u E C'" 

DF(u) = - F(Du) = - F(I) • I(Du) + A(J Du). 

Herein, I(Du) = 0 and J Du = u - u(O)l. So, since A(I) = 0, we obtain 

DF(u) = - F(I) ·0 + A[u - u(O)I] = A(u), 

which shows that DF = A. 
An alternative discussion of the equation (12.4.2) can be based on the use 

of Fourier series; see Example 12.5.9 and Exercise 12.15. 
(3) We revert temporarily to the distribution 

Q = P.V.w 

defined in Example 12.3.2(5). We have seen that, for u E C"', 

Q(u) = Iim 21 r u(x) cosec Y2 x dx = Iim w.(u). 
&-0 Tr JE<lxl~n 8-0 

Now one may write 

1 rn 1 rn 
w.(u) = 21T J. u(x) cosec Y2xdx -21T J. u(-x) cosec Y2xdx. (12.4.4) 
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Introduce the function rp on (0, 7T] defined by 

rp(x) = - f: cosec Y2 y dy. 

Then rp is integrable over (0, 7T), is O(log X-I) as x t 0, and is absolutely 
continuous on [e, 7T] for any e > O. Applying partial integration to each of 
the integrals appearing in (12.4.4). it is found that 

27TW.(U) = -u(e)rp(e) + u( -e)rp(e) - r rp(x)Du(x) dx - r rp(x)Du( -x) dx. 

(12.4.5) 

The integrated terms are together 0(1) as e -l>- 0 (since u is differentiable at 
the origin). So, since rp is integrable over (0, 7T). (12.4.5) leads to the relation 

27TQ(U) = - 50" rp(x)Du(x) dx - 50" rp(x)Du( -x) dx 

-f" .p(x)Du(x) dx, 

where we have defined 

.p(x) = rp(lxlJ, 

(12.4.6) 

first for 0 < lxi ~ 7T; .p(0) may be defined arbitrarily, and the definition 
completed by requiring .p to be periodic. The resulting function .p is integrable, 
and (12.4.6) signifies precisely that 

Q == P.V. W = D.p 

distributionally. 

12.4.4. Properties of Differentiation. There are a number of simple 
properties of the differentiation operator acting on distributions, cach of 
which is a direct and simple consequence of (12.4.1), together with the 
contents of Section 12.1. 

First, D is linear: 

D(F + G) = DF + DG, D(cF) = c' DF, 

c being any constant. 
Differentiation is also continuous: if F n --+ F in D then DFn --+ DF in D. 

This property appears in marked contrast to the situation prcvailing in 
relation to (say) uniform convergence or mean convergence in LV. 

Combining the preceding properties, we infer that 

00 00 

D(,'i Fn ) = 2: DFn 
n=l n=l 
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whenever the series L:~l F n converges distributionally, in.which case the 
series L:~l DFn is likewise convergent. 

12.4.5. Leibnitz's formula for differentiating a product function has a 
perfect analogue. Thus, if F E D and u E C"', then 

D(uF) = (Du)F + uDF; 

see 12.3.4. 

12.4.6. Reference to 12.2.6 will make it plain that DF E Dm+ 1 whenever 
FE Dm. More precisely, if rn > 0 and F E Dm\Dm- 1, then DF E Dm+ l\Dm; 
see Exercise 12.54. 

12.5 Fourier Coefficients and Fourier Series 
of Distributions 

Reference to 12.2.2 and formula (2.3.1) should ren der the following 
definition of the Fourier coefficients and series of a distribution seem entirely 
natural (and indeed obligatory, if a consistent extension is to be achieved). 

12.5.1. Definition. If FE D, we define its Fourier coefficients by the 
formula 

(n E Z), 

where, as usual, em E Ca:> is the function x -+ eimx• The series 

2: F(n)e inX 

nEZ 

is called the Fourier se ries of F. 

12.5.2. Fourier-Lebesgue, Fourier-Stieltjes, and Fourier-Schwartz 
Series. In order to avoid possible confusion in certain statements, aseries 
LnEZ cne inx is spoken of as a Fourier-Lebesgue series if and only if there is 
some (perhaps unspecified) integrable function f such that Cn = j(n) (n E Z); 

in a similar vein, the series will be described as a Fourier-Schwartz series if 
and only if there exists a (perhaps unspecified) distribution F such that 
Cn = F(n) (n E Z). In addition, if there is a measure fL such that Cn = p,(n) 

(n E Z), it is customary to speak of the series as a Fourier-Stieltjes series. 
Likewise, a function on Z of the form p" where fL E M, is often spoken of as a 
Fourier-Stieltjes transforrn. A more detailed explanation of the use of this 
term appears in 12.5.10. 

The problem of deciding whether a given series is a Fourier-Lebesgue 01' a 
Fourier-Stieltjes series, is often extremely difficult (see the remarks in 
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2.3.9). It may come as a surprise, therefore, to discover that the corre
sponding decision problem for Fourier-Schwartz series is comparatively 
trivial, as the next result shows. This result also makes it plain that most 
trigonometrie series whieh will arise in praetice, and certainly those normally 
considered in the classical Riemann theory, are Fourier-Schwartz series. 

12.5.3. (1) Suppose that FE Dis of order at most m. Then 

as Inl --+ 00, 

so that the Fourier series of F is tempered. Moreover, 

8NF == L P(n)en --+ F 
Inl<:;N 

in D [see relation (D) in Subseetion 1.3.2]. 

as N --+ Cf) 

(2) Given any tempered sequenee (cn)nez, the distributions 

(12.5.1) 

eonverge in D as N --+ Cf) to a distribution F such that P(n) = Cn (n E Z), 
so that the given series is the Fourier series of F. 

Proof. (1) The statement (12.5.1) follows immediately from the lll

equality (12.2.3) if we take therein u = Ln- Next we have for U E Cco 

8N F(u) = L P(n)u( -n) = F[ L u( -n)e_ n], 

Inl<:;N Inl<:;N 

the last step by definition of the Fourier coefficients of Fand by linearity of 
F. Thus 

8NF(u) = F[ L u(n)en]· 

Inl<:;N 

This eombines with (12.1.5) and the continuity of F to show that 

lim 8N F(u) = F(u), 
n_oo 

which says preeisely that 8N F --+ F in D. 
(2) To say that (cn ) is tempered signifies that 

(n =f. 0) 

for a suitable number A :;" 0 and a suitable integer k :;" O. For U E Co:), we 
have 

8N(U) = L cnu( -n). 
Inl<:;N 
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The series 2nez CnU( -n) is absolutely convergent, as follows from (12.1.4). 
Thus the formula 

F(u) == lim 8N(U) = L cn11( -n) 
N-+oo nEZ 

(12.5.2) 

defines F as a functional on C'" which is evidently linear. That F is continuous 
could be deduced from 12.3.7. A more direct argument uses 2.3.4 thus: 

jL cnu( -n)j ~ jcou(O)j + A L jnjkju( -n)j 
neZ n* 0 

jcou(O)j + [A L jnj-2]jjDk+2u jj",, 
n"O 

which clearly shows that F is a distribution of order at most k + 2 (see 
12.2.5 and 12.12.6). 

The reader will observe that the preceding argument shows even that the 
Fourier series of F is unconditionally convergent in D. 

Finally, (12.5.2) applied with u = e_ m shows that P(m) = Cm for all 
mEZ. 

12.5.4. Remarks. (I) The reader will notice that we have established 
en route the Parseval formula 

F(u) = L P(n)11( -n) (12.5.3) 
neZ 

for FE D and u E C"', the series being absolutely convergent. Compare also 
with equation (12.3). From this, or from 12.5.3(1), there follows an extension 
of the uniqueness theorem 2.4.1 from functions to distributions. 

(2) Armed with 12.5.3(2), the reader may with profit glance again at 
Sections 2.5 and 6.7. It can now be said that ~ is defined as a distribution for 
any tempered function q, on Z, and that the inversion formula (~)" = q, is 
valid. In particular, ~ is defined whenever q, belongs to fP for some p satisfying 
o < p ~ 00. 

(3) Nowhere in the sequel shall we turn aside to discuss conditions on a 
distribution that will ensure the pointwise convergence or summability of its 
Fourier series; concerning this and related questions, see Walter [I]. Related 
to this is the problem of assigning a numerical value to certain distributions 
at certain points; for this, see Lojasiewicz [I], [2]. 

12.5.5. From the definition of TaF set out in 12.3.2(1) it follows immediately 
that (compare 2.3.3) 

(TaF)"(n) = e- ina P(n) (n E Z). 



70 DISTRIBUTIONS AND MEASURES 

12.5.6. From 12.4.1 it is immediate that (compare 2.3.4) 

(DFr'(n) = in' 1'(n) (n E Z). (12.5.4) 

Moreover, 12.4.4 affirms that a Fourier-Schwartz series may be differentiated 
termwise-provided, of course, that differentiation and convergence are each 
interpreted in the distributional sense. This conclusion appears also from 
(12.5.4) and 12.5.3(2). 

12.5.7. Distributions as Derivatives of Functions. If F is a distribution 
of order at most m, (12.5.1) shows that 

" 1'(n)e1nZ 
j(x) = 1'(0) + L.. (' )m+2 

n;<O ~n 

is a continuous function, the series being absolutely and uniformly con
vergent. Repeated application of (12.5.4) leads to the conclusion that 

Dm+2j = F - 1'(0). 

Thus Fis, apart from the additive constant 1'(0) = F(I), the (m + 2)-nd 
distributional derivative of a continuous function. Compare with (1) in the 
introduction to this chapter. 

12.5.8. Example. We return momentarily to consider the distribution 
Q = P.V. w discussed in Examples 12.3.2(5) and 12.4.3(3). From 12.5.1 and 
(12.3.1) we have 

Q(n) = ;1T I (e- fnZ - 1) cosec Yz x dx 

= .!. Ie - !l"inz • - 2i sin Yz nx • cosec Yz x dx 
21T 

-~ I cos Yz nx • sin Yz nx • cosec Yz x dx 

- ~ I sin2 Yz nx' cosec Yz x dx. 

The last-written integral vanishes, since the integrand is an odd function, 
and so 

Q(n) = -2i I" sin nx' cosec Yz x dx. 
1T _" 

(12.5.5) 

From this formula the behavior of Q(n) for large values of Inl is readily 
inferred. Since (YzX)-l - cosec Yzx is integrable over (-1T, 1T), the Riemann-
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Lebesgue lemma 2.3.8 shows that 

Since 

it follows that 

Q(n) = _i f" sin nx dx + 0(1) 
7T _" x 

-- --dy + 0(1). i fn" sin y 
7T -nI< Y 

f'" sin y dy = 7T, 

-00 Y 

Q(n) = -i·sgnn + 0(1). (12.5.6) 

The result (12.5.6) should be compared with that expressed by (12.8.1) for 
the closely related Hilbert distribution H = P.V. cot 12x to be introduced 
in Section 12.8. 

12.5.9. Example. We reconsider the equation 

DF = A (12.5.7) 

examined in Example 12.4.3(2), where it was seen that a solution F exists if 
and only if A(I) = O. The same conclusion may be reached by looking at the 
transformed equation, namely, 

in·1'(n) = A(n) (nE Z), (12.5.8) 

which is attained by application of 12.5.6. This ShOWR that indeed a solution 
exists only if A(O) == A(I) = 0; and that if this condition is fulfilled, the 
solutions are given by 

F = 1'(0)1 + 2: (in)-lA(n)einX (12.5.9) 
n"O 

the series being distributionally convergent. 
An interesting special case is that in which A = e - 1. Then (12.5.9) 

leads to the unique solution F = E satisfying E(O) = 0, namely, 

E = 2: (in) -leinx • (12.5.10) 
n"O 

Now the series here is boundedly convergent (in the pointwise sense), as is 
seen from Exercise 1.5 or 7.2.2(2). The pointwise sum is identifiable with 
the distributional sum by virtue of the substance of Example 12.3.2(2). 
Thus E is (generated by) the pointwise sum function, which can be shown 
to be defined by 

E(x) = (7T - lxi) sgn x (12.5.11) 
for lxi :s; 7T. 
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By using the eoneept of eonvolution of distributions introdueed in the 
next seetion, the solution of (12.5.7) may be expressed in terms of A (assumed 
to be sueh that A(I) = 0) as F = 1'(0)1 + E * A. 

For periodie distributions, E plays the role of an elementary solution for the 
differential operator D. The notion of elementary solutions of linear differen
tial and partial differential operators is fundamental in mueh of the modern 
work in this field; see [E], Chapter 5. See also Exereise 12.16. 

12.5.10. Measures and Functions of Bounded Variation; Fourier
Stieltjes Series. We have in 12.2.3 referred to the theorem of F. Riesz 
aeeording to whieh eaeh (Radon) measure F is expressible in the form 

1 J" F(u) = 21T _" u(x) drp(x) (12.5.12) 

where rp is a suitable (F-dependent) funetion ofbounded variation on [-1T, 1T]. 
It is furthermore not diffieult to verify that, eonversely, any sueh funetion rp 
defines, via (12.5.12), aRadon measure F; eomplete details appear in [HS], 
Section 8 and [AB], Chapter 8. On eomputing the Fourier eoeffieients of F, 
we have from (12.5.12) 

and an applieation of the formula for partial integration in Riemann
Stieltjes integrals (whieh in this ease is easily redueed to a simple limiting 
proeess and partial summation applied to the approximating Riemann
Stieltjes sums; eompare the proof of 2.3.6) shows that 

1'(n) = 21 [rp(1T) - rp( -17)]( _1)n + (in)· 21 J" rp(x)e- inX dx, 
1T 17 -n 

that is, 

1'(n) = 2~ [rp(1T) - rp( -1T)] • (_I)n + in· ~(n). (12.5.13) 

Sinee (12.5.10) and (12.5.11) indieate that 

is the Fourier-Lebesgue series of a funetion of bounded variation, referenee to 
(12.5.13) and the faet (to be established ina moment), that the (distributional) 
derivative of any funetion of bounded variation is a measure, will show that 
a trigonometrie series 

2: cneinx 
neZ 

(12.5.14) 
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is a Fourier-Stieltjes series in the sense defined in 12.5.2, if and only if the 
formally integrated series 

L (in) - lcne1nx 
n*O 

(12.5.15) 

is the Fourier-Lebesgue series of some function 4> of bounded variation; or 
again if and only if the coefficients cn are expressible as Riemann-Stieltjes 
integrals with respect to such a function 4> in the fo11owing fashion: 

Cn = J.. In e- lnx d4>(x). 
27T -n 

It is this circumstance that explains most clearly the use of the qualifier 
"Fourier-Stieltjes" in this connection.1 

Inasmuch as the distributional derivative of (12.5.15) is (as fo11ows from 
12.5.6) exactly the series (12.5.14) shorn of its constant term, we may infer 
that any Radon measure fL is expressible in the form 

fL=c+D4>, (12.5.16) 

where c is a constant and 4> is a function of bounded variation. The converse 
is also true. 

To verify this last point, it suffices to show that, if 4> is ofbounded variation, 
then fL = D4> is aRadon measure. Now, by (12.4.1), 

D4>(u) = -2~ I Du· 4> dx. 

To majorize the absolute value of this expression, one may either apply 
partial integration for Riemann-Stieltjes integrals and so obtain 

1 I 1 I D4>(u) I = 127T u d4>1 ~ 27T· V(4))· Ilull oo ; 

or one can repeat the more pedestrian argument used in" the proof of 2.3.6 
(based on approximating the integrals by sums), which would again lead to 
the majorization 

1 
ID4>(u)1 ~ 27T· V(4)) • Ilull oo • (12.5.17) 

Comparing (12.5.17) with (12.2.2), it is seen that D4> is indeed aRadon 
measure. 

12.6. Convolutions of Distributions 

We tackle the problem of defining the convolution of any two distributions 
by first concentrating on the special case in which one of them is an element 
of C"". 

1 The function '" in (12.5.12) is not generally periodic; however, it may be replaced in 
the term in~(n) in (12.5.13), and in (12.5.16) and the proof (12.5.17), by one that iso 
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The ~p.liding light in framing the definition in this case will be that provided 
by the definition which applies when the remaining factor in the convolution 
is a distribution that is (generated by) a function. 

If u E Co:> and fE LI, and if u denotes the function t ---+ u( - t) (see Volume 
I, p. 31), then 

f * u(x) = L J f(y)u(x '- y) dy 

= L J f(y)u(y - x) dy. 

Regarding f as a distribution, this may be written 

f * u(x) = f(T,/t). 

The expression on the right makes sense even if f be replaced by an arbitrary 
distribution. Thus we are Ied to frame the following definition. 

12.6.1. The Convolution F * u. If F E D and u E Co:>, F * u is defined to 
be the function for which 

From this it is evident that F * u is bilinear in the pair (F, u). 

12.6.2. If F E D and u E C." then F * u E Co:> and 

D(F * u) = DF * u = F * Du. 

Similarly, 
Ta(F*u) = TaF*u = F* Tau. 

Proof. The defining equation (12.6.1) gives for any a #- 0: 

a-1[F * u(x + a) - F * u(x)] = F[a-1(Tx+au - Txu)] 

= F[Txa-1(Tau - u)]. 

Now it is easily shown (see Exercise 12.2) that 

lim a-1(Tau - u) = -Du = (Du)" 
a~O 

(12.6.1) 

in the sense of C." so that continuity of F shows that F * u is differentiable, 
that 

D(F * u) = F[Tx (Du)"] = F * Du, 

and at the same time that 

D(F*u) = F(-TxDu) = F(-DTxu) = (DF)(Txu) 

= (DF) * u. 
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Inasmuch as Du E Ca> whenever U E Ca>, it follows that F * U E Ca> • 
The relation involving translates is proved similarly. 

12.6.3. (1) If F E D and Uk --+ U in Ca>, then F * uk --+ F * U in Ca>. 
(2) If F k --+ F in D and U E Ca:>, then F k * U --+ F * U in Ca:>. 
Proof. (1) By 12.2.5, for some number c ~ 0 and some integer m, 

IF(v)1 ~ c· sup IIDPvlla> 
O"p"m 

for each v E Ca>. Hence 12.6.2 yields 

IDq(F * Uk)(X) - Dq(F * U)(x) I = IF * Dquk(x) - F * Dqu(x)I 
= IF[T,r(Dquk - Dqu)V]L 

~c· sup IIDPTz(Dquk-Dqu)lla> 
O"p"m 
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from which the stated result folIows, the last-written expression tending to 
zero as k --+ 00. 

(2) The proof of this is somewhat deeper. We may and will assurne 
(without loss of generality) that F = 0 and aim to show that F k * u--+ 0 
in C<Xl as k--+ 00. By 12.6.2, ifq E {O, 1,2," .}, 

Dq(F" * u) = F". Dqu. 

It will therefore suffice to prove that, given any v E C<Xl, A = F k * V --+ 0 in 
C. Now, by (12.6.1) and (12.4.1), 

f,,(x) = F,,(Txv), 

Df,,(x) = F,,(TxDv) 

for an indices k and an XE T, the first of which shows thatA(x)--+ 0 as 
k--+ 00 for an xE T. The crucial point now is an appeal to Appendix 
B.2.1(2), bearing in mind 12.1.4 and 12.2.1. This affirms that the F" are 
equicontinuous, which signifies that there exists m E {O, 1, 2 •... } such 
that 

sup IF,,(w) I ~ m· sup IIDPwll<Xl 
" OSpsm 

for an w E C<Xl. In particular, for an indices k and all XE T, 

I Df,,(x)I ~ m· sup IIDPTXDvll<Xl 
Ospsm 

~ m· sup 11 DPv 11 <Xl 
Ospsm+l 

=B 
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say, where B is independent of k and :r. Thus thefk are equicontinuous on 
T. Let e > O. Since T is compact, points Xl' "', X r of T may be chosen so 
that every point of T is modulo 211:, within distance 2- 1(B + 1)-le of 
{Xl, "', x r }. Then, for all indices k, the mean value theorem shows that 

Ilid", :s; B . 2- 1(B + 1)-1 e + sup{1 A(xtll, ... , I fk(Xr ) I}; 

and this is at most e for all suffieiently large k. Hence I1 j~11 '" - 0 as 
k- 00, and the proofis eomplete. 

12.6.4. For U E C'" we have 

and 

11 = 2:u(n)e_ n 
nEZ 

T xU = 2: einx • u(n)L n , 

nEZ 

theseries converging in C'" (see 12.1.1). Henee the definition 12.6.1 leads to 
the formula 

F * 1l(X) = 2: F(n)ii(n)einX , (12.6.2) 
nEZ 

which shows that we still have the relation 

(F * u('(n) = F(n)u(n) (nE Z); 

the series (12.6.2) is absolutely and uniformly eonvergent thanks to (12.1.4) 
and (12.5.1). 

12.6.5. Convolution of Distributions. On the basis of 12.6.3 we are now 
able to define F * Gas a distribution for arbitrary F, GE D. Thus, we define 

F * G(u) = F[(G * u) ..... ] (12.6.3) 

for each u E C"'. This makes F * Ga linear functional on C"" whose eontinuity 
follows from 12.6.3(1). 

Taking u = e_ n in (12.6.3) and using (12.6.2) and the orthogonality 
relations (1.3.1), it is seen at onee that 

(nE Z). (12.6.4) 

This last equation shows first that if G = u E C"', then the present definition 
of F * u agrees with that preseribed in 12.6.1 (provided, of course, that a 
function in C'" is identified with the distribution it generates). In view of 
12.5.4(1), equation (12.6.4) implies secondly the eommutativity of convolu
tion: 

and likewise the assoeiativity and distributivity of convolution. 
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Either of (12.6.3) or (12.6.4) shows that the mapping (F, G) -+ F * G is 
bilinear from D x D into D. 

From 12.5.5, 12.5.6, and (12.6.4) (or by other means) it is easy to verify that 

Ta(F*G) = TaF*G = F* TaG, 

D(F * G) = DF * G =.F * DG. 

12.6.6. If F k -+ F in D, then F k * G -+ F * Gin D. 

(12.6.5) 

(12.6.6) 

Proof. We know from 12.6.2 that (G * u)"" E C'" for each U E CO:>, and so 

which signifies that F k * G -+ F * G in D. 
Remark. It is even true that F k * Gk -+ F * G in D whenever F k -+ F 

and Gk -+ G in the same sense, but the proof is rather more difficult. Since we 
shall nowhere need this stronger assertion, the proof is omitted. 

12.6.7. Examples. (1) The Dirac measure e is the identity element for 
convolution, that is, e * F = F for all FE D. This explains how it comes 
about that all convolution algebras of functions, large enough to contain all 
trigonometrie polynomials, lack identity elements. 

More generally, Ba * F = TaF for FE D and a E T. 
(2) Ey (12.6.6), DF = (De) * F for every FE D. Thus differentiation can 

be expressed as convolution with the fixed distribution De. 
(3) Given A, BE D, the equation 

has a solution F E D if and only if there is an integer m ~ 0 such that 

in which case the solutions are of the form 

F = F o + 2: B~n)en, 
A(n)""O A(n) 

where A * F o = 0, that is, 

where (cn ) is some tempered sequence. 

(n E Z), 

These assertions follow readily from (12.6.4) and 12.5.3(2). 
(4) In order that the equation 
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shall have a solution FE D for an arbitrarily given BE D, it is necessary and 
sufficient that there ex ist a number c > 0 and an integer m ~ 0 such that 

(n E Z). 

This statement is verifiable by reference to (3) and the remark that the said 
equation is soluble for every B if and only if it is soluble when B = e (as 
folIo ws from the fact that e is the identity for convolution, together with 
associativity of convolution). 

12.6.8. Definition of F, P, and F*. The definitions of f,f, and J*, given 
for functions immediately prior to 2.3.1, may be extended to distributions 
via the formulae 

F(u) = F(ü), p(u) = F(u), F* = (F)" 

Then the map F -i>- P is linear, while F -i>- F* and F -i>- F are conjugate
linear. It is moreover easily verified that (F*)~ = (1') - (compare with 2.3.1). 

If fL is a measure, each of p" fL, and fL* is a measure, and (see 12.3.8) 

11p,lll = 11P:lll = IlfL*lll = IlfLlk 

12.6.9. A Glance at the Dual Situation. Let us pause in orner to bring into 
somewhat sharper focus the dual problem raison in Section 3.4. 

The position now is that the Fourier transform $ is defined as a distribution 
whenever<p is a tempered function on Z (see 12.5.4(2)), and the problem to be 
faced concerns the validity of the equation (3.4.1), namely, 

(12.6.7) 

Even now, however, this heuristic equation lacks meaning if 1/> and .p are 
unrestricted tempered fllnctions on Z. Thlls 

(1) <p * .p is defined only for restricted pairs <p, .p; 
(2) $. '" is likewise defined only for restrictcd pairs <p, .p. 
Regarding (1), it would be desirable to undertake a thorongh examination of 

the convolution process as applied to functions on Z; this might be done along 
the lines nsually followed in the case in wh ich the underlying group is R (see 
[E], 4.19 and the references cited thcre), but the task is not one that can be 
undertaken here. Regarding (2), see 12.3.5. 

It must suffice for the moment for us to remark that (12.6.7) is quite easily 
established on asound footing whenever <p and .p belong to {I (a case already 
mentioned in Scction 3.4), and again whenever at least one of 1> and .p, say <p, 
is rapidly vanishing at infinity, that is, is such that 

lim <p(n)nlc = 0 
Inj-+ co 

(k = 1,2,···). 

In this latter case $ belongs to C'" thanks to 12.1.1, and $. '" is well-definedas 
in 12.3.4. 

Another important case is discusscd in 12.11.3. 
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12.7 More about M and LP 

In this section we shall set forth some further properties of M and V, in 
relation to convolution and establish some properties of the sets of Fourier 
coefficients of measures and of functions in LV. In particular, we shall show 
that M is a Banach algebra under convolution (a fact to which partial 
reference has already been made in 3.3.2, 4.2.5 and 1l.4.1(1)). The structure 
of this Banach algebra M is still far from being known in its finer detail and 
appears to be a problem of great complexity. 

To begin with simpler things, we recall that in 12.3.8 a norm 11 • 111 has been 
defined on M which extends that on LI; this norm is just that dual to the 
norm on C, when we identify M with the set of all continuous linear functionals 
on C (see 12.2.9 and I, B.1.7). The explicit formula for this norm is 

(12.7.1) 

12.7.1. M is complete (and hence a Banach space). 
Proof. A direct proof is called for in Exercise 12.8. We here give an 

alternative proof based upon 12.:3.9. Snppose that (I-'n);:'= 1 is a Canehy 
sequence in M. It is then clear that 

By 12.3.9, therefore, a subsequence (I-'nJ:'= 1 may be extracted such that, 
for some I-' E M, we ha ve 

for each JE C. Now the Cauchy character of the original sequence signifies 
that to each e > 0 corresponds n(e) so that 

lIJ.Lm - J.Lnlll :::;; e 

Accordingly, by (12.7.1), 

for all m, n > n(e). 

1 J.LmU) - J.LnU) 1 :::;; e • 11 f 11 00 for all m, n > n(e), 

for any JE C. Taking herein m = nk and letting k ~ 00, it follows that 

for all n > n(e), 

and hence, by reference to (12.7.1) again, 

for all n > n(e). 

This shows that limn_ '" I-'n = I-' for the normed topology and exhibits the 
completeness of M. 

12.7.2. Convolutions of Measures and Functions. Since lU cD, I-' * u 
is defined for each U E C'" as in 12.6.l. However, using 12.2.9, we can denne 
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I-' * f for any f E C in a consistent fashion by setting 

I-' * f(x) = I-'(TJ); 

compare with (12.6.1). Since 

IITx! - Txolll",-+O 
as x-+xo (sincefis uniformly continuous), (12.7.1) ensures that l-'*fEC 
and that 

But the end is still not reached: I-' * f can be defined for still more general 
functions f in such a way as to extend 3.1.6. 

12.7.3. (1) Suppose that 1 ::;; p ::;; 00. If I-' E M andf E V, then I-' * f E V and 

(2) If '\, I-' E M, then A * I-' E M and 

IIA * 1-'111 ::;; IIAI11· III-'k 
Proof. (1) Suppose first that f, g E C. For any partition -71" = X o < Xl 

< ... < X n = 71" we ha ve 

(12.7.2) 

If we take a sequence of such partitions for which maxk ßXk -+ 0 then, owing 
to uniform continuity of I-' *fand g, the initial member of (12.7.2) converges to 

L J I-' *f(x)g(x) dx. 

At the same time, because of uniform continuity of fand g, the functions 

converge uniformly to the function 

1 J -y -+ 271" T xf(y)g(x) dx 

1 J - -= 271" f(y - x)g(x) dx = f * g(y). 
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Consequently, the last member of (12.7.2) converges to fJ-(j * g). We thus 
infer that 

2~ J (fJ- * f) . g dx = fJ-(J * g). 

By 3.1.4 and (12.7.1), therefore, 

The converse of Hölder's inequality (see Exercise 3.6) leads thence to the 
inequality 

(12.7.3) 
for iE C. 

Suppose now that i E LV and p < 00. One may then choose a sequence 
(fn);':=1 from C such that Ili - inllv ----+ 0 as n ----+ 00. Reference to (12.7.3) con
firms that (fJ- * in);':= 1 is a Cauchy sequence in LP [apply (12.7.3) with i 
replaced by im - in]. By completeness of LV, the functions fJ- *in therefore 
converge in mean in LV to some h E Lv. However, by 12.6.6, fJ- * in converges 
in D to fJ- * j. It folio ws at once timt fJ- * i and h are the same distribution, 
so that fJ- *i E LP and [by (12.7.3)] 

11fJ-*illv = Ilhll p = lim 11fJ-*inllv ~ 11fJ-lll'llillv' 
n~'" 

FinaIly, if P = 00, we may choose the in E C so that Ilinll '" ~ Ilill", and 
in ----+ i pointwise almost everywhere. Then (see (12.7.3)) 

By the case p = 1, fJ- * In ----+ fJ- * I in mean in LI, so that a suitably chosen 
subsequence is pointwise convergent alm ost everywhere. From this we 
conclude that 11fJ- */11 '" ~ 11fJ-lll . Il/il "', so completing the proof of (1). 

(2) By 12.6.5, A * fJ- is the distribution defined by 

A * fJ-(u) = A[(fJ- * ur] 
By 12.6.2, (fJ- * u)" E C'" and, by 12.7.2, 

11(fJ-*u)"II", ~ 11fJ-lll·llu ll",· 
Hence 

IA * fJ-(u) I ~ IIAlll . 11fJ-lll . IIUII<Xl' 
and so (see 12.2.6) A * fJ- E M and IIA * fJ-lll ~ IIAlll . IIfJ-k 

Remark. If 1 < P < 00 the inequality in 12.7.3(1) can be improved; 
see Exercise 13.5. 

12.7.4. M as an Algebra and Related Problems. The results of Section 
12.6, together with 12.7.1 and 12.7.3(2), affirm that M is a complex Banach 
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algebra under convolution with e as its identity element (see 11.4.1); it is in 
fact another strong contender for the title of "group algebra" (see Section 
3.3). In a few respects it is easier, but in most respects more difficult, to handle 
than LI. In particular, the important problem of determining the nontrivial 
complex homomorphisms of M is much more difficult than the analogous 
problem for Ll (which was solved in 4.1.2) and cannot even now be regarcled 
as satisfactorily solved. In outline the situation is still much as described in 

Chapter 3 of [Hew]. 

To illustrate the difficulties and the extent of existing ignorance, we recall 
from 4.1.2 that the only non trivial complex homomorphisms of LI are of the 

type Yn: f ->- j(n), where n ranges over Z. Each of these homomorphisms has a 
natural extension to M [see (12.6.4)], which we continue to denote by Yn. These, 
however, do not exhfitust thc nontrivial complex homomorphisms of M. There 
are several ways of supporting this statement; we briefiy describe two of them. 
T.he first is concerned with a purely existential proof, while the second is 
considerably more precise and interesting. 

(1) Considered as linear fllnctionals on M, the Yn are equicontinllolls. Apply
ing I, B.4.2 to the seqllence (Yn)::'= I' one derives thc existence of a eontinllolls 
linear fllnctional Y", on M with the following property: given any e > 0, any 
finite sllbset {JLI> ••• , JLr} of M, and any integer 710' there exists an integer 
n > 7/0 for which 

(i = 1,2,···, r).1 (l~.7.4) 

The relations (12.7.4) may be shown to imply that Y'" is a (continllous) complex 
homomorphism of M, and that Y'" I LI = o. In particular, Y'" is certainly 
distinct from all the Yn. Since (12.7.4) also entails that y",(e) = I, Y", is non
trivial. 

(2) Inasmuch as Yn(JL*) = Yn(JL) for all nE Z and all JL E M, any complex 
homomorphism yofM forwhich Y(JL*) #- Y(JL) holds forsome JL E M is necessarily 
nontrivial and distinct from all the Yn. Such homomorphisms y actllally do 
exist, and various ways of producing them have been discussed. One method 
is discussed in [R], Theorem 5.3.4. 

The existence of such homomorphisms y of M, which is usually expressed by 
saying that the Banach algebra M is asymmetrie, is one of the most striking and 
most significant differences between M and LI considered as Banach algebras. 
A direct corollary of this asymmetry of M is the existence of real-valued 
functions cf> on Z such that cf>(n) ;;. 1 for nE Z and cf> is a Fourier-Stieltjes 
transform but cf> -1 is not a Fourier-Stieltjes transform. This asymmetry and 
its corollary are known to hold whenever T is replaced by any nondiscrete 
group (see [R], Theorem 5.3.4; [HR], Vol. 2, p. 519; MR 43 # 6659); the 
corollary was first noted for the case in which the underlying group is R by 
Wiener and Pitt in 1938. 

1 I,BA.l is.not applicable, since M is not separable. 
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Even more surprising (not to say shocking) things can happen, as the reader 
will discover on looking at Seetion 5.4 of [R] and pp. 143-144 of [Hew]. Much 
of the early work on eomplex homomorphisms of M is due to the Russian 
mathematician Srelder; later elaborations are due to Hewitt [2J and Hewitt 
and Kakutani [IJ, [2J jointly. See also [TaJ; Taylor [IJ-[l1J; Johnson [IJ
[6J; MR 38 # # 6308, 6309; 41 # 2409. 

There are some subalgebras ofM ofmoderate interest forwhich the difficulties 
so far described are to some extent surmountable; see Exercises 12.51 and 16.28. 

\Ve have mentioned in Section 4.2 the problem ofhomomorphisms ofLl into 
itself. This, together with the problem of homomorphisms of V into M, has 
been solved for general groups by Cohen [2], [3], an essential step being the 
determination of all the idempotents in M (again for a general group). See (3) 
immediately below; also MR 41 # 8929; 42 # 6518; 54 # 5741. 

In view of the mystery surrounding the complex homomorphisms of M, it is 
not surprising that the problem of homomorphisms of M raises new difficulties. 
One knows (see 4.2.6) wh ich maps a of Z into Zu{oo} define homomorphisms T 
of LI into M by means of the formula (Tj)~ = J 0 a; and, as appears in Exercise 
12.49, each such homomorphism can be extended into a homomorphism T' of 
M into itself such that (T' p.)~ = f1. 0 a for p. E M, f1.( Cf)) being understood to be 0 
whenever p. E M. However, there ex ist homomorphisms of M that do not arise 
by thus extcnding a homomorphism of LI into M; in fact, there exist homo
morphisms T' cf. 0 ofM such that T'IV = O. One type ofsuch homomorphisms 
is described in Section 3.4.1 of [R]. Alternatively, it suffices to define 
T'p. = y(p.)', where y is any nonzero complex homomorphism of M such that 
ylLI = 0, and , is any nonzero idempotent in M. The elassifieation of such 
homomorphisms of M is, as far as the author is aware, stilliargely unsoh·ed. 

Coneerning norm-deereasing homomorphisms of LI into M, and thc same 
problem for more general underlying groups, see Glieksberg [I] and Greenleaf 
[I]. (In these papers, the underlying gronp is not assnmed to be Abelian.,) 

Further reading on some of the topies mentioned above: Brown and Hewitt 
[I], MR 22 # 9809; 36 # 6879; 37 # # 4222,4224,6693; 38 # # 489,491; 
44 # # 1993, 1994; 48 # # 2666, 4642; 49 # 9539; 50 # # 5359, 7950; 
51 # # 3798, 6287, 8737; 52 # # 8796, 8797, 14846, 14848; 54 # # 3291, 
3292, 5743, 5744, 8163; 56 # # 982, 3571, 3572, 16254, 1659; 57 # # 7034, 
7037. 

(3) Helsoll '8 theorem. In 3.l.I(d) we have remarked that the only idempotents 
in LI are trigonometrie polynomials 2nEF e inx , where F is a finite snbset of Z. But 
in M there are many other idempotents. In more eonerete terms, the problem is 
that of determining whieh subsets S of Z are such that 2nEs e inx is a Fourier-
8ticltjes series. The solution was given by Helson [2], [:3]; and the analogolls 
problem for general groups was solved by P. J. Cohen [3]. For details, see [R], 
Chapter 3. 

Helson's result is very simple to state: 2nEs ein.r is a FOllricr-Stieltjes series 
if am! only if S differs by a finite set from some periodie subset of Z. 

The "if" part of Helson's theorem is simple 1.0 prove; see Exereise 12.48. 
A special ease of the "only if" part is diseussed in Exereise 12.46. See also 
16.8.4. 
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In 12.7.5 we shall give a much more rudimentary necessary and sufficient 
condition in order that a general trigonometrie series 2nEz cneinx shall be a 
Fourier-Stieltjes series. This will be applied in 12.7.8 to show directly (that is, 
without any appeal to Helson's theorem) that in particular 2n;> 0 einx is not a 
Fonrier-Stieltjes series. This example is especially significant in connection 
with conjngate series (see Section 12.8). 

It is a simple consequence of 9.2.4,9.2.8 and the substance of 12.5.10 that, if 
(Cn)nEZ is odd and cn ;" 0 (n E Z, n > 0), then a necessary condition in order 
that 

~ c etnx -L n -
nEZ 

be a Fourier-Stieltjes series is that 

'" L 
n=l 

'" L 2icn sin nx 
n=l 

Cn 
-< 
n 

00; 

in particular, if also (cn):=o is ultimately periodic, then the said series is a 
Fourier-Stieltjes series only if the periodic part is zero. Inspired by some 
remarks of Helson, Goes [2], [3] has proved a great deal more of the same 
nature concerning series 2::'= 1 Cn cos nx and 2:= 1 Cn sin nx in which the 
coefficients exhibit ultimately periodic or almost periodic features. He shows in 
particular that, if (nk):' = 1 is any strictly increasing sequence of positive integers, 
then 2:'= 1 sin nkx is never a Fourier-Stieltjes series. 

(4) Littlewood's conjecture. Finally we mention an interesting issue relating 
to idempotents. Let 

k 

m(k) = inf 11 L ein,x 111, 
j=l 

the infimum being taken over all sets of k distinct integers n 1 , ••• , nk' What is 
the true order of magnitude of m(k) as k -;. oo? If the nj are in arithmetic 
progression, then m(k) ;" const log k; Littlewood conjectured that this in
equality is valid in general. Davenport proved in 1960 that 

m(k) ~ Ij8[Iog kjlog log k]1/4 

for all sufficiently large k. This estimate was extended to all compact Abelian 
groups by Hewitt and Zuckerman [2]. For some related results, see Salem [1], 
Uchiyama [1], Fournier [2], Pichorides [1], [2], [3], MR 40 # 6150. Just 
before this book went to press, McGehee, Pigno and Smith [1], [2] jointly 
announced a proof of a generalized Littlewood conjecture. In fact, they prove 
the following. Assurne that S = {nI < n2 < ... } is a subset of Z: then 

(i) (Generalized Hardy Inequality) For every S-spectral measure Jl (see 
15.1.1 below), 

00 

I k -1 I jl(nk) I ~ 3011 Jll11 ; 
k=1 

(ii) (Generalized Littlewood Inequality) for every positive natural number 
N and every complex-valued sequence (Ck):=l such that Ickl ~ 1 for 
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every k E {I, 2, "', N}, 

Ilkt ck en.1I1 ~ (30)-1 log N; 

(iii) for every complex-valued sequence (Ck )k=1 such that ICkl ~ k- 1 for every 
k E {I, 2, ... }, there exists FE L oo such that 11 F 1100 ~ 30 and F(nk) = ck 

for every k E {I, 2, ... }. 

The significance of estimates of the type involved in the Littlewood Conjec
ture is indicated in part by their application to the study of idempotents in 
measure algebras, which in turn is related to the problem of homomorphisms of 
measure algebras (Cohen [2], [3J); see Section 4.2 and Subsection 16.8.4. 

For remarks concerning the Littlewood conjecture in a more general setting, 
see Price [4]. 

12.7.5. Griterion for Fourier-Stieltjes Series. Let (Cn)nEz be a given 
sequence and put 

SN(X) = L cneinx , 
[n["N 

UN(X) = (N + 1) -l[SO(X) + ... + SN (X)] 

L (1 - -P-)cneinx . 
Inl" N ]). + 1 

(12.7.5) 

(12.7.6) 

In order that LnEz cneinx be a Fourier-Stieltjes series, it lS necessary and 
sufficient that 

lim sup IluNlll < 00. 
N-ro 

(12.7.7) 

Proof. If LnEz cneinx is a Fourier-Stieltjes series, there exists a measure 
p. E M such that Cn = p.(n) for n E Z. Hence (compare (5.l.6)) 

as follows from (12.6.4) and 12.5.4(1). Then 12.7.3 shows that 

IluNlll ~ 11p.lll ·IIFNlll = 11p.lh, 
and (12.7.7) is visibly fulfilled. 

Conversely, suppose that (12.7.7) holds. Then evidently 

sup IluNlll < 00, 
N 

and 12.3.9 entails that there exists a measure p. E M and a subsequence 
(UNk)k'=l such that 
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for eachfE C. Takingf = C n , this gives 

lim aN~(n) = Mn) 
k-oo 

(nEZ). 

The limit on thc left-hand side here is just Cn , as reference to (12.7.6) will 
confirm. Thus cn = j1(n) for all nE Z and LnEz cne inX is a Fourier·Stieltjes 
series. 

Remark. Some deeper questions are mentioned in 12.7.9. See also 
Exercise 12.50. 

12.7.6. Criterion for Fourier Series of Class V (p > 1). The notation 
being as in 12.7.5, suppose further timt 1 < P ,,; 00. In order that LnEz cneinx 

be the Fourier series of a function in LV, it is necessary and sufficient that 

limsup [[UN[[V < 00. (12.7.8) 
N_oo 

Proof. This proceeds on exactly the same lines as does that of 12.7.5, 
appealing to 12.3.10(2) in place of 12.3.9. We leave to the reader the task of 
filling in the details. 

12.7.7. Remark. When p = 1, the analogue of 12.7.6 is false, one of 
several possible corrected versions being in fact 12.7.5. In the last resort this 
breakdown is due to the fact that Li is not the dual of Loo in thc same sense 
that Lq' is the dual of Lq when 1 ,,; q < 00 (see I, C.l). Some other corrected 
versions will be discussed briefiy in 12.7.9. 

12.7.8. Example. Let us use 12.7.5 to show that Ln" 0 einx is not a Fourier
Stieltjes series. 

Direct calculation shows that here 

and 

UN(X) = (1 - eiX)-l{1 - [(N + 1)(1 _ eiX)]-l[eiX _ ei(N+2)X]}. 

Since [I - eiX [ = 2[sin 12x[, it follows that for large N we havc 

~ 12 cosec ~X[1 _ 7T ] 
(N + l)[x[ 

~ 14 cosec 12 x 
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for 2TT/(N + 1) ~ x ~ TT. Hence 

1 J" IlaAl ~ -2 cosec %x dx, 
TT 2,,/(N+1) 

which tends to infinity with N. Thus (12.7.7) is violated and Ln;,o einx is not 
a Fourier-Stieltjes series. 

From this example it may be inferred easily that if 

Cn = IX + ß . sgn n + bn , 

where IX and ß are constants, ß "# 0, and LnEZ Ibnl2 < 00, then LnEZ cneinx is 
not a Fourier-Stieltjes series. 

An alternative argument runs thus. Bochner's theorem 9.2.8 combines 
with 12.7.2 or 12.7.3 to show that, ifje L<Xl andj~ 11(Z), then sgnjis not 
a Fourier-Stieltjes transform. Applying this with j taken to be the 
function such that 

<Xl 

j(x) = i L n- 1 sin nx for aU xe R 
n=1 

(or 

<Xl 

j(x) = i L n- 1 (log(1 + n»-1 sin nx for aU x ER), 
n=1 

using 7.2.2, and noting that 

sgnj(n) = sgn n for aU n E Z, 

it foUows that the sequence whose n-th term is 

!(1 + sgnj(n» = 1 or 0 according as n > 0 or n < 0 

is not a Fourier-Stieltjes transform. 
For many other examples, see Exercise 12.37. 
Remark. Concerning maps IX of Z into itself such that 

is a Fourier-Stieltjes series, see Edwards [13]. 

12.7.9. Criteria for Fourier-Lebesgue Series; tbe Steinhaus-Littlewood 
Problem. We revert to the matters mentioned in 12.7.7. Let C = (cn ) be a 
funetion on Z and eonsider the trigonometrie series 

and its partial sums 

8N(X) = 2: cnefnx • 
In:IliiN 

(12.7.9) 

(12.7.10) 



88 DISTRIBUTIONS AND MEASURES 

As follows from 12.7.5, the condition 

(12.7.11) 

is sufficient in order that S be a Fourier.Stieltjes series. Helson [1] (see also 
[Zd, p. 286) showed that (12.7.11) also entails that CE co(Z). On the other hand, 
Mary Weiss [1] proved that (12.7.11) does not ensure that S is a Fourier
Lebesgue series; see also Hewitt and Zuckerman [4]. (Why such a failure is to 
be expected was explained in 12.7.7.) We proceed to consider briefly two devel
opments suggested by this breakdown, the second of which constitutes a 
necessary and sufficient condition on (c.) in order that S be a Fourier-Lebesgue 
series. (As always, the criterion is very difficult to apply to specific examples.) 

( 1) It seems that both Steinhaus and Littlewood are responsible for the 
following question: given that 

for all real x and N = 1, 2, ... , (12.7.12) 

does it follows that S is a Fourier-Lebesgtle series? 
Inasmuch as (12.7.12) implies (12.7.11), it ensures (by 12.7.5) that S is a 

Fourier-Stieltjes series; see also Exercise 12.25_ 
Steinhaus hirnself showed that if limN~'" SN(X) exists finitely and is non

negative for every real x, then S is a Fourier-Lebesgue series; see [Bad, p. 244 
and [Ba2]' p. 353. In this connection we remark that if 

for Inl ;;;. 2, 
for n = 0, ± 1 

then ](x) == limN~ '" SN(X) exists finitely for all x ;:j; 0 mod 217 and ](x) ;;;. 0 for 
all such x. It is moreover true (but far from trivial) that] E Ll and that S is the 

Fourier-Lebesgue series of ]; this follows from a general theorem (see [Ba2]' 
p. 353). From Exercise 13.1 it then appears that] does not belong to LP for any 
p > 1. This shows that Steinhalls's result is in a sense the best possible. 

As to the Steinhaus-Littlewood qllestion itself, a negative answer was 
established very recently by Katznelson [11, who constructed an example of a 
series S satisfying (12.7.12) but which is not a Fourier-Lebesgue series: in this 
ex am pie, the measure fL for which fl = c is in fact singular with respect to 
Lebesgue measure. See also Brown and Hewitt [1], [2]; MR 55 # 13160; 
56 # 9184; 54 # 10365. 

(2) By using 6.1.1 in conjunction with results in general integration theory 
referring to criteria for weak compactness for sllbsets of Ll (see [DSd, pp. 
294-295; [E], pp. 274-276), the following characterization of Fourier-Lebesgue 
series can be established. 

Introducing the Cesaro sums 

(12.7.13) 
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the following four conditions are equivalent: 
(a) a subsequence (aNk)~~1 exists such that the set fnnctions 

(k = 1,2",,) (12.7.14) 

are uniformly (or eqni-) absolutely continuous [that is, to each e > 0 corre
sponds Ö > 0 such that 

for all measurable sets E satisfying m(E) < ö]; 
(b) some subsequence (aNJ~~1 converges weakly in LI; 

(c) some subsequence (aNk)~~1 converges in LI; 

(d) (Cn)nez E A(Z). 
If any one of these conditions holds, and if 1 = limk aNk weakly or strongly in 

LI, then C = j, aN = aN1, and so (by 6.1.1) limN~", IlaN - 1111 = O. 
There is also a partial analogue of the above result, due to Keogh [1], in 

which aN is everywhere replaced by SN' If (a'), (b'), and (c') are the statements 
that result from (a), (b), and (c) respectively on replacing aN by SN' the analogue 
asserts the equivalence of (a'), (b'), and (c'), together with the fact that, if any 
one of these is satisfied, and if 1 = !imk SNk weakly or strongly in LI, then 

c = j, SN = SN1, and !imk~", IISNk - 1111 = o. 
In proving this analogue one uses, in pi ace of 6.1.1, the fact that sN1 ->-1 in 

measure as N ->- ct:) whenever 1 E LI. (Convergence in measure is defined in 
1.2.5, and the stated result follows from thc remarks in 12.10.2.) 

Remark. The uniform absolute continuity of the set functions (12.7.14) 
can be expressed as uniform absolute continuity of the point functions 

the condition being precisely that to each e > 0 corresponds a number 
Ö = öle) > 0 such that 

r 

sup 2: IF/c(b;) - Fk(a;) I .:;; e 
/c ; ~ 1 

for any finite sequence ((a;, bj))j~1 ofdisjoint open intervals (aj, bj ) the sum of 
whose lengths does not exceed Ö. In this connection see, for example, [HS], 
Theorem (19.53) and its proof. 

(3) If G is a general (locally compact Hausdorff) group, one can define the 
concept of bounded Radon measure on G; see the remarks following 12.13.3, 
the references cited there, Exercise 12.34, and also [HR]. Denote by M(G) the 
set of bounded Radon measures on G. If G is Abelian, one can introduce the 
character group X of G (see 2.2.1 and [HR], Chapter 6). To each jL E M(G) 
corresponds the Fourier (or Fourier-Stieltjes) transform fl = :F jL, namely, the 
bounded continuous function on X defined by 
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(This definition of fl presupposes sorne developrnent of the integration theory 
associated with IL; cornpare the closing rernarks in 12.2.3.) 

Most of the problems mentioned already in connection with M = M(T) have 
their exact analogues for M(G). In addition, and more specifically, some of the 
functional analytic properties of §"M(G), considered as a normed linear space 
with the norm 

Ilfllr = sup {Ifl(xl! : X EX}, 

have been investigated by Beurling and Hewitt (unpublished) and subsequently 
by Ramirez [1], [2], [3]. 

12.8 Hilbert's Distribution and Conjugate Series 

In this section and the next we shall examine the operation of passing 
from a trigonometrie ~ries 

2: c"el "'" 
"eZ 

to the so-called conjugate (or allied) series 

2: (- i . sgn n)c"el""'; 

"eZ 

the explanation of the use of the term" conjugate" will be given shortly. 
By way of example, the reader will notice that, in the notation of Chapter 7, 
(8) is the series conjugate to (C). 

Our glance will be incomplete in at least two respects. First, and as is by 
now customary in this book, we shall have next to nothing to say about the 
traditional approach to the problem of pointwise convergence or sum
mability (except in so far as the results of Chapter 10 and the attached 
exercises may be applied). Secondly, although the explanation of the term 
"conjugate" will hint at elose connections with complex variable theory, 
and with the study of those trigonometrie series said to be of power-series 
type because they are of the form 

there will be no space to give a fuH ac count of these connections. For these 
aspects we must refer the reader to [Zd, Chapters III and IV; [Ba2 ], Chapter 
VIII; [HaR] , Sections 4.8 and 5.8; [Hel]; [Kz], Chapter III; and, for 
the modern viewpoint applying to a category of more general groups, to 
[R], Chapter 8. See also [EG], Sections 6.7 and 6.8. 

For our part, we shaH be interested in representing the passage from the 
Fourier series of a distribution to the conjugate series as the operation of 
convolution with a certain distribution H which is neither a function nor a 
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measure, and with the nature of this operation in its aetion on the LP spaees. 
This outlook fits in weIl with the diseussion of multiplier operators to be 
diseussed in Chapter 16. It will also form the basis ofthe proof, given in 12.10, 
of the mean eonvergenee in LP of the Fourier series of a funetion in LP, 
when 1 < P < 00. 

The reason for the term" eonjugate" is simply and adequately explained 
by regarding any trigonometrie polynomial 

as the boundary value for r = 1 of the harmonie funetion 

reix -+ L cnrlnleinx. 
neZ 

For it then appears that the eonjugate series represents the value for r = 1 
of that one of the eonjugate harmonie functions of reix (these eonjugates 
being undetermined up to addition of eonstants; see [He], p. 55) whieh has a 
zero mean value. Some use will be made of this faet in 12.9.7. 

12.8.1. Hilbert's Distribution. It will be plain from (12.6.4) that the 
series eonjugate to the Fourier series of a distribution F is the Fourier series 
of the conjugate (or allied) distribution F == H * F, where the distribution H 
is given by 

H = L - i . sgn n . ein x ; (12.8.1) 
neZ 

here sgn n denotes 0 or 1 n 1- 1 n aeeording as n E Z is or is not equal to O. 
It will appear from (12.8.7) and (12.8.8) that the operation F -+ F ean be 
expressed in a way whieh makes it plainly analogous (for periodie funetions) 
to the so-ealled Hilbert transform for functions of a real variable. For this 
reason we take the liberty ofreferring to H as Hilbert's (periodie) distribution. 
Referring to (7.1.3), weseethatsN(H * F) = DN * F, and that H = limN _ oo DN 
inD. 

Starting from (12.8.1) we shall now derive some other expressions for H. 
To begin with, sinee we have by (7.1.3) the relations 

N 

DN(x) == L - i . sgn n • einx = 2 L sin nx 
Inl<:;N n=l 

1/ eos (N + 'l2)x 
= eot 72 x - . 11 ' 

sln 72x 
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we have for u E C<Xl 

H(u) = lim ~ I" u(x) [COS Yzx -. cos (N + %)X] dx 
N-<Xl 217 _" sm Yzx 

1· 1 I"[ ( ) ( )J[COS Yzx - cos (N + Yz)X] d = 1m - u x - u - x . 1 X. 
N-<Xl 217 0 sm Y2 x 

Now [u(x) - u( -x)J!sin Yzx is integrable over (0,17) and so the Riemann
Lebesgue lemma 2.3.8 shows that 

H(u) = - [u(x) - u( -x)J' % cot Yzx dx. 1 I" 
17 0 

The inequality 
lu(x) - u( -xli ,,;; 21xl . IIDul1 <Xl 

combines with (12.8.2) to show that 

2 I" IH(u)1 ,,;; - YzX' cot Yzx dx' IIDull<Xl' 
17 0 

(12.8.2) 

(12.8.3) 

so that HE Dl. On the other hand, the final statement in Example 12.7.8 
shows that the series (12.8.1) defining H is not a Fourier-Stieltjes series, so 
that H is not a measure. Thus H is a distribution of order exactly 1. 

From (12.8.2) we have also 

H(u) = lim - [u(x) - u( -x)]· % cot Yzx dx. 1 I" 
e-O 1T' e 

On expressing the remaining integral as the difference of those whose 
integrands are, respectively, u(x)Yz cot Yzx and u( -x)Yz cot Yzx, and 
making a change of variable in the second, it appears that 

H(u) = lim ~ I u(x)· Yz cot Yzx dx. 
8-0 7T e:os.;:[xl~n 

(12.8.4) 

In other words, and by comparison with Example 12.3.2(5), this may be 
expressed by writing 

H = P.V. cot %x. 

Partial integration may be applied to (12.8.4) to show that 

H = 2' D[log Isin Y2xl]; 

(12.8.5) 

(12.8.6) 

the argument is very similar to that laid out in Example 12.4.3(3) and the 
reader is urged to supply the details. Naturally. the differentiation involved 
in (12.8.6) is understood in the distributional sense (see 12.4.1). 

From 12.6.1 and (12.8.4) we derive for u E C'" the relation 

H * u(x) = lim 21 I u(x - y) cot J~Y dy; 
E-O 7T e~ [y! ~n: 

(12.8.7) 
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it is this expression that exhibits most clearly the similarity of the operation 
u ~ H * u with the Hilbert transform. Similarly, using 12.6.1 and (12.8.2), 
there follows the relation 

1 f" H * u(x) = -; Jo [u(x - y) - u(x + y)JY2 cot Y2y dy (12.8.8) 

for u E Coo. 

12.8.2. The Classical Approach to the Conjugate Function. The form 
of equations (12.8.4), (12.8.7), and (12.8.8) suggests strongly the examination 
of the pointwise limit 

where 

jC(x) == lim He *J(x) 
e-O 

== lim 21 J J(x - y) cot Y2y dy 
e-O 7T e"llIl"" 

1 J" == lim -2 [f(x - y) - J(x + y)] cot Y2y dy, 
&-0 1T s 

for e ~ lxi ~ 1T, 

for 0 ~ lxi < e, 

(12.8.9) 

and is defined elsewhere by periodicity, and where J is free from the smooth
ness restrietions imposed upon u in (12.8.4), (12.8.7), and (12.8.8). The use 
of the principal value integrals in (12.8.9) is suggested, since it is obvious 
that the integrands in (12.8.9) are in general integrable over no neighborhood 
of the origin. 

The classical theory of conjugate series and functions [for which see the 
references in (3) below] is expressed entirely in terms of jC rather than our 
J == H * f. The reader must guard against thinking that jC and J are always 
and obviously the same thing; see (3). Even for continuous functions J, 
jC(x) may faH to exist finitely for certain values of x; it is not trivial to show 
even that jC(x) exists fhiitely for almost all x for an arbitrary contimious f. 

Weshall ha ve neither occasion nor space to discuss the existence of jC in 
general. All that we shall need, and all that we shall prove, is contained in (1) 
and (2) immediately below. A good deal more that we shall not prove is 
mentioned in (3) with the main aim of clarifying the connection between jC 

andJ. 
(1) Suppose that J E Ll is such that 

So" IJ(x - y) - J(x + y)1 cot Y2y dy < CX) 
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for almost all x, so that for such x we have 

1 (" 
j"(x) = 27T Jo [f(x - y) - f(x + y)] cot Yzy dy; 

suppose further that fe, thus defined almost everywhere, belongs to Ll. 
Then j" = j qua distributions. These hypotheses on f are fulfilled whenever 
fELl and 

If(x - y) - f(x + y)1 ~ h(x) I yla 

for almost all x, where hELl and 0: > 0; and hence in particular whenever f 
is absolutely continuous and Df E LP for some p > 1. 

Proof. The hypotheses on f ensure that the theorems of Fubini and 
Tonelli ([W], Theorems 4.2b and 4.2c) can be applied to compute j'< The 
result of this computation reads: 

" i. J" j"(n) = -- f(n) cot YzY' sin ny dy. 
7T 0 

Further computation on the remaining integral then shows that 

je(n) = -i . sgn n . j(n) for all nE Z. 

This combined, with (12.6.4) and (12.8.1), shows that j" = H * f == j qua 
distributions. The details of these calculations are left to the reader (Exercise 
12.18). 

(2) If fE L2, then 

lim He *f = H *f =! 
e~O 

in L2. In particular, there exists a sequence ey ~ 0 such that 

!(x) == H *f(x) = lim He, *f(x) 
y~oo 

for alm ost all x. 
Proof. One can compute He and verify that He ~ H boundedly on Z 

(see Exercise 12.18 again). So (12.6.4), (12.8.1), and 8.3.1 showthat H *fE L2 
and that He * f ~ H * f in L2 as e ~ O. The rest follows frort;! the well-known 
fact that a mean convergent sequence contains a subsequence which converges 
pointwise almost everywhere (see the proof of [W], Theorem 4.5a). 

Remark. From (2) it appears that j(x) = j"(x) a.e. for any fE L2 for 
which fe is known to exist almost everywhere. (This last is in fact true for 
every fE L2; see (3).) 

(3) Perhaps the simplest route toward a fairly general identification of j" 
and j lies in proving (somewhat along the !in es of the methods of Chapter 6) 
that for any fELl the conjugate series is Cesaro summable almost everywhere 
to j"(x), that is, that 

!im UNj(X) = j"(x) 
N_oo 
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for almost all x; for a proof of this, see [Z,] p, 92; [Bazl, p. 58. Let us assume 
this result. 

As we shall prove in 12.9.1, fE L" whenever 1 < P < Cf) and 1 E L". In this 
case, as follows from 6.1.1, aNf eonverges in L" to f, and it appears from the 
last paragraph that, f = F a.e. Similarly, on the basis of the reslilts in 12.9.9, 
one ean infer thai f = j" a.e. whenever, more gener!lly, l' log+ 111 E L'; sec 
12,9.9(1) and (2) and compare 12.10.2. 

For a general 1 E L', j" may fail to be integrable (a result analogons, but not 
trivially equivalent, to the corresponding assertion about f, wh ich will be 
proved in 12.8.3); see [Z,], p. 257; [Baz], pp. 95, 112. In such easesj" does not 
generate a distribution in the manner described in 12.2.2, and thc question of 
the identification of Fand f scareely arises. 

We mention that it was proved by Lusin and Privalov (see [Z,], p. 131; 
[Zz], p. 252; [Ba2]' p. 62; [RaR], Theorem 89; G. Weiss [I], p. 164) thatf"(x) 
exists finitely alm ost everywhere for eaehl E L'; see also the remarks in 13.10.3. 
The funetion j", although not necessarily integrable in Lebesgue's sense, is 
integrable in various generalized senses and the eorresponding generalized 
Fourier series of j" is indeed the series eonjugate to the Fourier series of 1; 
for details, see [Z,], pp. 262-263 and [Baz], pp. 128-137. One suitable eoneept 
of integration for this purpose is the so-ealled B-integral (see [Z,], pp. 262-263) 
and the result is then due to Kolmogorov (1928); another is the so-ealled 
A-integral (see [Baz], pp. 128-137), in wh ich ease the result is due to UI'yanov 
(1957). 

See also MR 54 # 5719. 

12.8.3. Conjugates of Functions in L2, LI, and C. It will be eneouraging 

to begin with one of the few really simple properties of the conjugate function 

operator. 

(1) If fE L2, then J == H * f E V and 

Proof. The relation (12.8.1) shows that' 

IH(n)1 ,,;; 1 for all n E Z 

whenee the stated result folIo ws on the basjs of (12.6.4) and 8.3.1. 
(2) When L2 is replaeed by LI or C, the situation is less simple. 

(12.8.10) 

In the first plaee, Exereise 7.7 furnishes an example of a function f E LI 

such that J fj:: LI. 
Again, cOllsider thc pointwise sum-funetion f of the series 

~ sinnx. 
n~Z n log n 

(12.8.11) 

By 7.2.2(1), f is continuous. We will show that in fact fis absolutely eon

tinuous and yet, neverthdess, J fj:: L"'. 

Indeed, 
'" " eos nx 

Df = 1::2 log n 
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and Exercise 7.7 and the substance of 12.4.2 affirm the absolute continuity 
of f. The Fourier series of fis [see 7.2.2(3)] 

_ ~ cosnx 
n=2 n log n 

which, by 7.3.1, is pointwise convergent for x t=. 0 (mod 217). Since, according 
to (1) immediately above, the series converges in L2 to f, it follows that 

fix) = _ ~ cosnx 
n~ nlog n 

(12.8.12) 

pointwise almost everywhere. We proceed to estimate the pointwise sum of 
the series (12.8.12), concentrating on small values of x > O. 

For any such value of x, let N = N(x) be the positive integer such that 

NlogN ~ x- 1 < (N + 1) log (N + 1). 

By.partial summation and the estimate (see Exercise 1.2) 

it follows that 

J~ 
n=l 

A 
cos nxJ ~ -, 

x 

I ~ cos nxl 2A 
n =fr 1 n log n ~ x(N + 1) log (N + 1) ~ A', 

where A and A' are independent of x. On the other hand, for 2 ~ n ~ N, 

cos nx > cos Nx > cos {(log N) -l}. 

From (12.8.12) it now follows that, for any preassigned e > 0, there exists 
o = oie) > 0 such that 

for almost all XE (0, 0). 

1 
- fix) > (1 - e) log log-

x 

The inequality (12.8.13) shows that f rf= L<Xl. 

(12.8.13) 

Even more striking examples of a similar nature have been constructed by 
Lusin and Toistov; see [Ba2], pp. 95-98. See also Goes [2], Section V. 

A similarargument shows that the pointwise sum function 

fix) = ~ sinnnx, 
n=l 

(12.8.14) 

which (see Exercise 10.8) agrees on (0, 217) with (17 - x)/2 (and so is but very 
mildly discontinuous), is such that, for any given e > 0, there exists a 
nu mb er 0 = oie) > 0 such that 

1 
-fix) > (1 - e) log- + A. 

x 
(12.8.15) 
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for almost all XE (0, 0), Ac being independent of x. This example will be 
usefullater [see 13.9.2(3)]. 

A little more generally, consider a function f with a finite number of 
jump discontinuities at points a 1 , •.• , ak in [ -n, n) and such that 

k 

Df = L c/'aj + g, 
j=l 

where the cj are complex numbers and g is so smooth that gELl. Then 

Dj = D(H * j) = H * Df 

k 

= L cjTajH + g. 
j= 1 

Defining temporarily q>(x) = 2 log I sin 1x for aB XE (-n, n) and by 
periodicity elsewhere, it follows from (12.8.6) that 

k 

j (x) = L Cj q>(x - aj ) + h(x), 
j= 1 

where h is continuous. This exhibits the misbehaviour ofj: in particular, 
if cj =F OJis unbounded near aj like 

-log( I x - aj 1- 1 ). 

That the preceding examples are not in the nature of isolated freaks is 
shown by the next result. 

(3) The set of functions fELl (respectively, Cl, for which JE M (respec
tively, L"'), is a meagre subset of LI (respectively, Cl; the complementary set 
is therefore everywhere dense in LI (respectively, Cl. 

Proof. This will follow on combining the known fact that H is not a 
measure with the more general theorem 12.8.4 immediately following, as a 
preliminary to which the reader may find a glance at I, A and I, B.2 profitable. 

12.8.4. Suppose that FE D satisfies either of the following two conditions 
(1) F * f E M for each f in a nonmeagre subset S of LI; 
(2) F * f E L 00 for each f in a nonmeagre subset S of C. 

Then FEM. 
Proof. (1) Suppose first that F satisfies condition (1). We write 

00 

S = U Sn, (12.8.16) 
n=l 

where Sn denotes the set of fE LI such that F * fE M and 11 F * f 111 :::; n rthe, 
norm on M being defined as in (12.3.6)]. The first step is to show that each 
Sn is a closed subset of LI. 

To this end, suppose that fk (k = 1, 2, . : . ) belongs to Sn and fk -7 f in LI: 
it must be shown that fE Sn- Now, by definition of Sn, F * fk E M and 
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IIF * All! ~ n for all k. Hence, by 12.3.9, there is a subsequence (fk)i'=1 and 
JL E M such that F * Ik, -+ JL weakly in M. At the same time, however, 12.6.6 
affirms that F * In -+ F * I in D. It follows that F * I = JL E M. In addition, 
by Exercise 12.13, 

IIF*Illl = IIJLlll ~ liminfllF*Ik,lll ~ n, .-"" 
and so I does indeed belong to Sn. 

Knowing that Sn is closed in LI and that S is nonmeagre, the relation 
(12.8.16) forces the conclusion that, for some n, Sn has interior points relative 
to LI. For this n there exist a number p > 0 and a functionio E LI such that 
h E Sn whenever h E V and Ilh - 10 111 ~ p. Then, if I E LI and 111 111 ~ p, 

h = 10 + I E Sn and so 

F * I = F * h - F * 10 

is seen to belong to M and to satisfy 11 F * I 111 ~ 2n. It follows at once that 
F *IEM and 

(12.8.17) 

for alliE V. 
For the final step, we choose an approximate identity (ft)j',.1 in LI satisfying 

IIIdll ~ 1 and infer from (12.8.17) that 

(12.8.18) 

for all i. 
Repeating the arguments employed three paragraphs above, and using 

12.3.2(3) and 12.6.7(1), it may be inferred from (12.8.18) that FE M. 
(2) Suppose now that F satisfies condition (2). It will suffice to show that 

sup IIF *Idll < 00 
; 

(12.8.19) 

is again true for so me approximate identity (fi)t'= 1 in LI, which we may assume 
to satisfy IIIdll ~ 1. For reasons that will appear shortly, we shall assume 
that each I; E C"". 

Now, by the case p = 1 of 3.1.4, we have 

for each I E s. Thus 

(fES). (12.8.20) 

Since each Ii E C"", and since convolution is associative (see 12.6.5), 12.6.2 
and 3.1.4 make it plain that 
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is, for each i, a continuous linear functional on C. In view of (12.8.20), an 
application of I, B.2.1(2) leads to the existence of a number c > 0 such that 

sup IF *!*!;(O)I ~ cll!lI", (12.8.21) 
; 

Reference to (12.3.6) leads at once from (12.8.21) to 

sup IIF *!dll ~ c, 
; 

which entails (12.8.19). The proof is complete. 

12.8.5. Remarks concerning 12.8.3 and 12.8.4. (1) Tliere are elose 
connections between 12.8.4 and problems cOllcerning multiplicr operators, a 
topic discussed in Chapter 16; see especially Seetion 16.3. 

(2) Concerning 12.8.3(2), we re mark t.hat it is PORRible to exhibit. spoeifie anel 
quite simple functions fE V such that tho function r (sec 12.8.2) ii'l non· 
integrable over any nondegenerato interval; soe, for oxampln, [Zll, p. 257. 

(3) As 12.8.4 shows, the undcrlying roason for tho cxist,cnce of continllollS 
funetions f such that J is essentially unbounded is simply that H is not a 
measure, that is, in view of the substanee of 12.5.10, that His not of the form 

const + D4> 

with 4> a function of bounded variation. 
It is therefore interesting to note that the llnderlying rcason for t,he cxif;tenee 

of absolutely continuous functions f such that J is cssent.ially unbollhded on 
every nondegenerate interval (compare 12.8.3(2)) ean be shown (Exereise 16.27 
and Edwards [3]) to be the cireumstanee that H is not of the form 

eonst + Dh 

with h E L"'. That H is not of this form follows easily from thc faet that 
L:: = 1 eos nx/n is not the Fourier series of a function in L~', whieh in t.urn 
follows from Exercise 6.3 or from (12.8.15). 

(4) We take this opportunity to mention in passing a famous and remarkable 
theorem due jointly to F. and M. Riesz, namely: if fL and f1 are both measures, 
then fL E V. For proofs of this, see [Zd, p. 285; [Ba2], pp. 87-92; [Rd, p. 335; 
and [R], Section 8.2. 

An equivalent formulation of the theorem asserts that if f is a function of 
bounded variation, and if J is (the distribution generated by) a function of 
bounded variation, thenf is in fact absolutely continuous; compare the Hardy
Littlewood theorem quoted in 10.6.2(7). (The equivalence of the two vers ions 
hinges upon the substance of 12.5.10; see Exercise 12.19.) 

For some abstract versions of the theorem, see de Leeuw and Glicksberg [I], 
Lumer [1], Ahern [1], and Glicksberg [2], [3]. 
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12.9 The Theorem of Marcel Riesz 

The results stated in 12.8.3 may be extended and balanccd by the following 
major result, due to Marcel Riesz (1927). 

12.9.1. Statement of the Theorem. Suppose that 1 < p < 00. There 
exists a number kp ;:: 1 such that H * I E LP and 

(12.9.1 ) 

for each I E LV. 

12.9.2. Start of Proof. The proof we shall give is somewhat lengthy and 
will be prefaced by a number of reductions and manipulations. Many other 
proofs are known; an entirely different one will be given in Section 13.9. 

Although the following proof is intended to be complete in all details, the 
reader may find it of interest to glance at the sketch proof using other complex 
variable techniques timt appears on pp. 165-167 ofG. Weiss [1]. An approach 
to 12.9.1 based upon the study of harmonie functions appears in [Rd. 
pp. 345-348 (especially Exercise 17); compare 12.9.8(2). See also [Kz], 
pp. 68-70 and Remark (2) following 13.9.1 and 13.9.2 below. 

12.9.3. For a given number k ;:: 0 denote by E" the set of I E LV such that 
H *IE LV and 

(12.9.1') 

Our task is to show that, if 1 < p < 00, then some k = kp exists for which 
E" = LV. We begin by observing some simple properties of E" for a given 
k and p. 

12.9.4. (1) E" is a closed subset of LV; 
(2) if u = Re I and v = Im I belong to E", then I E E 2,,; 

(3) if I is real-valued, and if I + = sup (f, 0) and I _ = sup (-I, 0) belong 
to E", then I E E 2". 

Proof. (1) Let (fn)': = 1 be any sequence extracted from E" such that 
In ----?> I in me an in Lp. By (12.9.1') and 12.3.10(2), a suitable subsequence 
(H * In,);"'=l converges weakly in LV to some gE LV. On the other hand, by 

12.6.6, H * In ----?> H * I in D. It follows that H * I = gE LV and, by Exercise 
12.14, that 

]IH *I]]p = ]]g]]p < lim inf ]]H *In,]]p 
i_oo 

< lim infk]]In, ]]p < k]]I]]p. 
l~ 00 

This proves (1). 
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(2) By linearity of H * f in the variable f, we see that H * f = H * u 
+ i(H * v). If u and v belong to Ek , it follows that H * f EU and that 

IIH *fllp :s; IIH * ull p + IIH * vll p 

:s; k(llull p + Ilvll p ) 

:s; 2kllfllp, 
whieh proves (2). 

(3) The proof is exaetly similar to that of (2). 

12.9.5. In order to establish 12.9.1 for a given p satisfying 1 < P < co, it 
suffiees to show that for some k = kp the inequality (12.9.1) holds for eaeh 
trigonometrie polynomial f > o. 

Proof. This follows by repeated applieations of 12.9.4. Thus if (12.9.1') 
holds for eaeh trigonometrie polynomialf > 0, 12.9.4(1) and 6.1.1 show that 
(12.9.1') holds for all eontinuousf > o. By 12.9.4(1), this inequality extends 
to all eontihuous f ~ O. Then 12.9.4(3) and (2) show that the same is true, 
with 4k in plaee of k, for any eomplex-valued eontinuous f. Finally 12.9.4(1) 
and 6.1.1 show that (12.9.1') is valid, with 4k in plaee of k, for any f E LP. 

12.9.6. If (12.9.1) holds for some p satisfying 1 < P < co and eaeh f EU, 
then it also holds, with kp ' = kp , for eaeh fE LP' (where, as usual, 
l/p + l/p' = 1). 

Proof. Suppose that fand (/ are trigonometrie polynomials. TheIi 

2~ J (H * f)g dx = (H * f) * (/(0) = f * (H * (/)(0) 

By Hölder's inequality and the main hypothesis, it follows that 

The eonverse of Hölder's inequality (Exereise 3.6) now entails that 

for all trigonometrie polynomials. Sinee p' < co, 12.9.4(1) now serves to 
show that (12.9.1) is true with p' in plaee of p and kp ' = kp • 

Remark. The preeeding result is a special ease of a more general prineiple 
whieh will appear in 16.4.1. 

12.9.7. Filial Stage of Proof. By 12.9.5 and 12.9.6, in order to prove 
12.9.1 eompletely, it will suffiee to eonsider a value of p satisfying 1 < p :s; 2 
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and establish the existenee of a number k for whieh (12.9.1') holds for all 
trigonometrie polynomials f > o. We now undertake this task. 

Write 

g = H*f= L _iosgnnoj(n)einX, 
neZ 

h=f+ig. 

(12.9.2) 

(12.9.3) 

Sineefis real-valued, so thatj(n) = j( -n) (see 2.3.1), it is easily seen that g 
is real-valued. The reader will also observe that 

h = j(O) + 2 L j(n)einx. (12.9.4) 
n>O 

It is erueial to our proof to know either that 

- Re 2~ f hp dx :s;; eonst IlfII~, (12.9.5) 

or that 

Re 2~ f hp dx ~ o. (12.9.5') 

The diseussion of (12.9.5) and (12.9.5') is deferred until 12.9.8. Meanwhile 
we proeeed on the assumption that at least one of these inequalities is valid. 

Choose 0 = op so that 0 < 0 < Y2 17 < po < Y2P17 :s;; 17 (reeall that we are 
assuming that 1 < p :s;; 2) and put 

a = ap = see po , ß = ßp = (see W(l + lai), 

so that a < 0 and ß > O. We claim that 

1 :s;; a 0 eos pt + ß(eos t)P for Itl :s;; Y217. (12.9.6) 

Indeed, if 0 :s;; Itl :s;; Y2 17, the right-hand side is not less than a eos pt 
~ a eos po = 1; and if Itl :s;; 0, it is not less than ß(eos 0)1' - lai = 1. 

Now f = Ihl eos t where, sinee f > 0, Itl < Y2 17. So (12.9.6) yields 

L flhl P dx :s;; a(2~) flhl 1' eospt 0 dx + ß(2~) flhl1'(eos t)P dx 

= a 0 Re (2~) f h1' dx + ß(2~) fp dx, 

provided we take that braneh of the pth power whieh is real and positive on 
the positive real axis. Sinee a < 0, either of (12.9.5) or (12.9.5') leads thenee 
to the inequality 
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Then (12.9.3) yields 

which is equivalent to (12.9.1'). 

12.9.8. Return to (12.9.5) and (12.9.5'). It thus remains only to establish 
one or the other of (12.9.5) or (12.9.5'). It is in fact true that 

(12.9:7) 

and we shall substantiate this in amoment. Since 

(12.9.7) plainly implies both (12.9.5) and (12.9.5'). Let us therefore consider 
(12.9.7). 

(1) There is a proof of (12.9.7), due to Helson and based on the theory of 
Banach algebras, which is indicated in Exercise 12.26. The above proof of 
the M. H,iesz theorem itself is also due in part to Helson. 

(2) One may also observe that h is the boundary value (on the unit 
circumference) of the polynomial 

H(w) = 1(0) + 2 L 1(n)wn 

n>O 

in the complex variable w; see (12.9.4). Then, since f > 0 is the boundary 
value of the harmonie function Re H, it follows from the maximum principle 
for harmonie functions that Re H(w) > 0 for Iwl :0:; 1. An analytic branch 
of HP may thus be defined and (12.9.7) follows at once from Cauchy's theorem 
applied to this branch. 

(3) A third approach is as follows. It is simple to verify that 

(12.9.8) 

is true for each polynomial P in one complex variable w. Now the range of h 
lies within some compact rectangle in the half· plane Re w > 0 and one 
may there choose an analytic branch of w p • This chosen branch can then be 
approximated, uniformlyon this rectangle, by polynomials P(w) (a special 
case of Runge's theorem proved in Appendix D in Volume I; 
alternatively, consider the chosen branch of wP in the disc Iw - nl < n, 
where n is a sufficiently large positive integer). Then hP is the uniform 
limit of the corresponding functions P 0 h. A limiting process on (12.9.8) 
leads directly to (12.9.7). 
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Ofthe arguments (1), (2), and (3), (1) and (3) may be taken over for more 
general groups, but (2) eannot. 

The proof of 12.9.1 is entirely eomplete. 
Remarks. For extensions of 12.9.1 and related theorems, see [R], 

Chapter 8; Helson [7]; MR 20 # # 4155, 5397; 41 # 4136. 
Coneerning the best possible value of k p in (12.9.1), see MR 47 # 702; 

for the same question relating to (12.9.9), see MR 54 # 10967. 
Weighted norm inequalities for the operator H have also been studied; 

see, for example, MR 47 # 701; 54 # 5720. 

12.9.9. Further Inequalities. As we know from 12.8.3 and 12.8.4, 12.9.1 
is false for p = 1 and for p = 00. It ean however be shown that 

for 0 < p < 1 (12.9.9) 

and that 

IIH */111 ~ ~ J 1I1 log + 1I1 dx + B (12.9.10) 

whenever I is a trigonometrie polynomial. Proofs will be found in [ZlJ, pp. 
254-256; [Ba2J, pp. 103-122; and [RJ, pp. 220-221. In eaeh ofthese references 
the proofs use the same general prineiples as does the preceding proof of 
12.9.1. See also [Kz], p. 66. In Section 13.9 we shall diseuss proofs of 
12.9.1, and equations (12.9.9) and (12.9.10), depending on a general 
interpolation theorem due to Mareinkiewiez. 

We mention also that an elegant type of proof of (12.9.1), based upon a 
study of rearrangements of functions and an inequality of Hardy (see [ZlJ, 
p. 20), has been given by O'Neil and Weiss [1]. 

Let us temporarily assurne the truth of (12.9.9) and (12.9.10) for trigono
metrie polynomials I and see how their range of validity can be extended. 

(1) If we take any IE V and apply (lf9.9) to the trigonometrie poly
nomials UNI, noticing en route that 

H * UNI = uN(H *f) = uNI, 

we obtain 

Calling on the fact that UN! -+ r alm ost everywhere (see 12.8.2(3)), it may be 
deduced from Fatou's lemma ([WJ, Theorem 4.1d) that 

if 0 < p < 1 and I E V . (12.9.11) 

In (2) it will be shown that H * I E V and that (12.9.10) conti nu es to 
hold, provided I' log+ 1I1 E V. In this ease 6.4.4 gives 

UN! = uN(H *f) -+ H *1 a.e. 
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Henee [by 12.8.2(3) onee more]] == H * f = r a.e. whenever f 'log+ Ifl E Li. 
This eonfirms an identifieation stated in 12.8.2(3). It shows also that (12.9.11) 
holds with] in plaee of r whenever f . log + If I E Li, but this estimate will be 
bettered in (2). 

(2) Starting from the assumed validity of (12.9.lO) for trigonometrie 
polynomials f, we aim to show that H * f E V and that (12.9.10) eontinues 
to hold whenever f' log + If I E Li. 

Proof. Suppose first that fE va. Then, by 12.8.2(2), H * f E L2 C Li, 
That (12.9.lO) holds in this ease is easily seen by approximating f by the 
trigonometrie polynomials uNfwhieh, hy 6.4.4 and 6.4.7, eonverge boundedly 
and alm ost everywhere to J, and by making appeal to Lebesgue's theorem 
([W], Theorem 4.1b). 

Before proeeeding to handle a general f satisfying flog + If I E Li, we 
observe that if in (12.9.lO) we replaeef by af, where a is any positive number, 
and then divide both sides by a, it appears that to any e > 0 eorresponds a 
number r = r(e) > 0 such that 

IIH *flll ,,:; e + ~ flfllog+ (rlf!) dx. (12.9.12) 

By virtue of what we have already established, (12.9.12) holds for any 
fEL"'. 

Take now any f satisfying flog + Ifl E V and define fn to be equal to f at 
points where Ifl ,,:; n and to be zero elsewhere, so that fn E L"'. Applying 
(12.9.12) tofm - fn in plaee off, we see that 

Suppose that m < n. The integrand appearing on the right-hand side of 
(12.9.13) vanishes on the set E m of points XE [ -71",71"] satisfying If(x)1 ,,:; m 
and is everywhere majorized by 2lfllog+ (2rlfl), whieh is integrable. Sinee 
the measure of the eomplement [-71", 71"]\Em tends to zero as m -+ 00, it 
follows from (12.9.13) that 

IIH *fm - H *fnlll ,,:; 2e 

provided n > m ;;, m(e). The sequenee (H * fn)':= 1 is thus Cauehy, and 
therefore eonvergent, in Li. But, sinee fn -+ f in Li, H * fn -+ H * f distribu
tionally (see 12.6.6). It follows that H * f E V. Finally, if (12.9.lO) be written 
down with fn in plaee of f, the passage to the limit as n -+ 00 will show, sinee 
H * fn-+ H * f in L 1 and sinee Lebesgue's theorem ean be applied to the 
integrals on the right-hand side, that (12.9.lO) eontinues to hold for the 
ehosenf. The proof of (2) is thus eomplete. 

Remark. Statement (2) is, in asense, the best possible of its type; for 
the details, see [Zl] p. 257. 
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(3) We remark finally that there are also integral inequalities applying to 
the functions conjugate to bounded functions ando to continuous functions. 

Thus, there exists an absolute constant Ao > 0 such that 

;rr J exp [AIJ(x)IJ dx < 00 if IIJII <Xl ~ 1 and A < Ao. (12.9.14) 

Moreover, 

2~ J exp [AIJ(x)J] dx < 00 if! E C and A is real. (12.9.15) 

Complex variable proofe ofthese results will be found in [Zd, pp. 254-257; 
alternative proofs will appear in 13.9.2. See also [Kz], p. 70. 

12.10 Mean Convergence of Fourier se ries in LI' (1 < p < 00) 

Kolmogorov remarked in 1925 on a way of expressing SN! in terms of 
cQnjugate functions, the use of which leads painlessly from 12.9.1 to mean 
convergence of the Fourier series of a function in V' when 1 < P < 00 [see 
relation (B) in 1.3.2]. 

12.10.1. Another Theorem of Marcel Riesz. Suppose that 1 < P < 00. 

There exists a number k = kp such that for ! E V one has 

IlsN!llp ~ kll!llp for all N E {I, 2, ... } (12.10.1) 
and 

(12.10.2) 

Proof. Put! ±N(X) = etINZ!(x). Then 

H *!N(X) = -i L sgn n· j(n - N)e1nZ 
neZ 

H*!_N(X) = -i L sgnn·j(n + N)e1nz . 
neZ 

Hence, for N > 0, 

e-iNZ[H *!N(X)] - eiNX[H *!_N(X)] 

-i L [sgn (n + N) - sgn (n- N)]j(n)einX , 
neZ 

or 

i[e-iNX[H *!N(X)] - ~iNX[H *!-oN.(X)]] }. 

= 2sN_d(x) + j(N)eiNZ + j( _N)e- iNX 
(12.10.3) 

Using 12.9.1 and 2.3.2, (12.10.1) follows directly. [The value of k appearing 
in (12.10.1) is not necessarily the same as that appearing in (12.9.1).] 

Now (12.10.1) shows that the set, say S, of j E 1P for which (12.10.2) is 
true, is closed in LP. For suppose that (fn):=l is a sequence extracted from S 
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whieh eonverges in LP to f. Then 

IISNI - Illp ~ IlsNI - sNlnllp + IlsNln - Inllp + Illn - Illp 
~ kill - Inllp + IlsNln - Inllp + 11I - Inllp 
= (k + 1)111 - Inllp + IlsNln - Inllp· 

Given e > 0, first ehoose and fix n = n(e) so that 

11I - Inllp ~ 2(k ~ 1)' 

and then ehoose No = No(e) so that 

IISNln - Inllp ~ %e 
for all N ~ No. This last ehoiee is possible sinee In E S. It appears thus that 

IISNI - Illp ~ e 
for all N ~ No, whieh shows that I E S. 

Ha.vi,ng seen that S is elosed in LI', it remains only to show that S is every
where dense in V'. But it is evident that S eontains all trigonometrie poly
nomials. These are everywhere dense in LI' by 6.1.1. The proof is thus 
eomplete. 

12.10.2. Further Inequalitieso Assuming the inequality (12.9.9) to hold 
for trigonometrie polynomials, the equation (12.10.3) yields at onee the 
estimate 

for an pE (0, 1) and an N E {I, 2, ... } (12.10.4) 

for trigonometrie polynomials f. (The eonstant kp need not have the same 
value in (12.10.4) as in (12.9.9).) The extension to any I E LI is almost 
immediate. (Approximatel by the trigonometrie polynomials UN'f.) Then, 
mueh as in the elosing stage of the proof of 12.10.1, it may be inferred 
that (12.10.2) holds whenever I E LI and 0< p < 1. 

Likewise, assuming the resultH in 12.9.9(2), it may be inferred that 

11 SN I 111 :.;; ~ f I I I log + I I I dx + B for an N E {I, 2, ... } (12.10.5) 

whenever 1 0 log + 1I1 E LI. A little more argument will then show that 
(12.10.2) holds with p = 1 whenever lolog+ 1I1 E LI; for the details, see 
[Zd, p. 267. 

The result stated in Exereise 10.2 shows at onee that (12.10.1) and (12.10.2) 
are false when p = 1 and I is suitably chosen from LI. (But see 12.7.9(2).) 

See also MR 55 # 963. 
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12.10.3. Projection of LP onto HP. Consider the distribution 

P = I ~ (1 + e + iH), 
which is such that 

/>(n) 1 if n ;;, 0, = 0 if n < O. 

For any distribution F we have 

P * F = L l'(n)e inx 

n~O 

(12.10.6) 

(12.10.7) 

(12.10.8) 

Most of the results about P can be read off from those of H appearing in 
Section 12.8, 12.9.1, and 12.10.2. In particular, P is a distribution of order 
exactly 1; and the set of JE Ll for wh ich P * J E M IS meagre [see 12.8.3(3)]. 

The operation F -> P * Fis a projection, that is, it is linear and idempotent. 
If we introduce the Hardy space HP for 1 :s:; p :s:; 00 (see Exercise 3.9, the 

references cited there, and also Chapter 17 of [Rd), then it follows from 12.9.1 
that, when 1 < P < 00, J -;. P *J is a continuous projection of LP onto HP. 
This assertion is false for p = 1 [see 12.8.3(3)]; indeed it is known (D. J. 
Newman [1]) that there exists no continuous projection whatsoever of Ll onto 
Hl. 

12.11 Pseudomeasures and Their Applications 

12.11.1. Definition of Pseudomeasures; the Space P. By a pseudo
measure is meant a distribution S such that S is a bounded function on Z; 
the terminology appears to have been coined by Kahane and Salem; see [KS), 
Appendices land II; [Kah2], Chapitre III; [Kz] , p. 150. Thus, the 
distributions Hand P introduced in 12.8.1 and 12.10.3, respectively, are 
pseudomeasures. We denote by P the set of pseudomeasures; P is a linear 
subspace ofD, and Me P properly. P is also a convolution algebra. 

Pseudomeasures arise quite naturally in the representation of multipliers, 
to be discussed in Chapter 16. 

12.11.2. Let us reintroduce the linear space A of continuous functions f 
such that 

IlfilA == L Ij(n)1 < 00; (12.11.1) 
nEZ 

see Section 10.6 and 11.4.17. 
As has been noted in 10.6.1 and 11.4.17, A ia a Banach space and also a 

Banach algebra under pointwise operations. 

12.11.3. Pas a Dual Space. One reason for the significance of Pis that it 
can be identified with the set of continuous linear functionals on A: each 
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continuous linear functional on A is expressible in the form 

f....,. S(f) = 2: S(n)j( -n) 
neZ 

for a uniquely determined SE P; and, conversely, each S E P generates thus 
a continuous linear functional on A. The dual norm ,of S is 

IISllp == sup{IS(f)1 :fEA, IlfilA ~ I}, 

which proves to be equal to 

IISII", == sup{IS(n)1 :nEZ}. 

All this is scarcely more than arestatement of the fact that each continuous 
linear functional on (l(Z) has the form 

4> ....,. 2: 4>(n),p( -n) 
neZ 

for a uni<lue ,p E ("'(Z), and conversely; see Exercise 12.32. 
Since A is a Banach algebra, the product fS of fE A and S E P can be 

defined as a pseudomeasure by means of the relation 

fS(g) = S(fg) (gEA); (12.11.2) 

compare the substance of 12.3.4. 
If 4> E (l(Z) and,p E ("'(Z), then 1> E A and~, the distributional sum ofthe 

series 

2: ,pt n )einX , 
neZ 

is a pseudomeasure. Moreover, 4> * ,p E ("'(Z) and (see Exercise 12.32 again) 

(12.11.3) 

12.11.4. Problems Involving Pseudomeasures. Spectral Synthesis 
Sets. The most fascinating problems concerning pseudomeasures arise in 
connection with applications of the Hahn-Banach theorem to the study of the 
analogue, for the group Z. of the problems discussed in Seetion 11.2 in rela
tion to the groups T and R (see 11.2.2 and 11.2.5; 12.12.6; [R], Chapter 
7; [KS], Chapitres IX and X and Appendice II). 

In order to describe such problems, it is necessary to speak of the support 
of a pseudomeasure. Generally speaking. one can sho\\" that for any distribu
tion S there exists a smallest c10sed set E with the following property: 
S(u) = 0 for each U E C'" whose support supp u = {x : u(x) -# O} - does not 
intersect E; this set E is the support of 8, denoted by supp S. See Exercise 
12.29 and also. for the ca se in whieh S is a measure. Exercise 12.27. 
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A distribution S is said to be supported by a set F, and Fis said to support 
S, if and only if supp S c F. 

Suppose now that S is a pseudomeasure. There is no good reason to expect 
the relation 

S(j) = 0 (12.11.4) 

to be implied by 

fEA, f(E):";;{O} suppS cE; (12.11.5) 

compare Exercise 12.30. That (12.11.4) does not in general follow from 
(12.11.5) is a corollary of the results due to Malliavin concerning spectral 
synthesis mentioned in 11.2.3. (The connections hinge upon the use of the 
Hahn-Banach theorem in the manner indicated in 12.12.6 and again in the 
hints to Exercise 12.32.) 

Actually, as subsequent work of Kahane and Rudin has disclosed, some
thing more specific is true, namely: there exist real-valued functions fE A 
such that, if Jk denotes the closed ideal in the algebra A generated by r 
(k = 1,2",,), then J k + 1 is a proper subset of J k for each k. (For the details, 
see Exercise 12.53 and the references cited there. The statement remains true 
when T is replaced by any infinite compact Abelian group whatsoever.) 
Expressed otherwise (in dual form, in fact), this means that there exist 
functions 4> E f1(Z) with the property that, ifik denotes the closed ideal 
in the convolution algebra f1(Z) generated by the convolution power 4>*k 
where k E {I, 2, ... }, then Ik+1 is a proper sub set ofik for each k. The case 
k = 1 entails (via the Hahn-Banach theorem) that a pseudomeasure S 
exists such that 

~2S = 0, ~S i= O. (12.11.6) 

Since the first equation in (12.11.6) shows that suppS c E == ~-l({O}), 
(12.11.6) entails at once that (12.11.5) does not imply (12.11.4). 

Other striking counterexamples have been given by Kahane and Katz
nelson [2). 

Faced with this, two courses of investigation suggest themselves, namely: 
(1) to seek special types of closed set E for which the relations (12.11.5) 

imply (12.11.4). 
(2) to seek extra conditions upon fE A which, in conjunction with 

(12.11.5), suffice to entail (12.11.4). 
The pursuit ofthe aim specified in (1) amounts to the study ofthe analogue, 

for the group T of the concept of spectral synthesis set in R m mentioned 
in 11.2.3. Thus, with our present approach, it is natural to define a 
speetral or harmonie synthesis set (= ensemble de synthese speetrale ou 
harmonique) in T as a closed subset E of T such that (12.11.5) im
plies (12.11.4); the terminology will be explained in Subsection 12.11.6. 
It is equivalent to say that E is a spectral synthesis set, if and only if 
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(12.11.5) implies f8 = O. Thus if cP is as in (12.11.6), E = q5-1({O}) is a 
closed set which is not a spectral synthesis set. 

There is complete ac cord between the above definition of spectral 
synthesis sets in T and the apparently different one used in Subsection 
11.2.3 far spectral synthesis sets in R rn . In other words, it can be shown 
without trouble that a closed subset E of T is a spectral synthesis set (as 
defined in the preceding paragraph) if and only if it has the following 
property: the relation 

I = I E == {q, E fl(Z) : ~ = 0 on E} 

holds for every closed ideal I in (l(Z) for which 

ZI == n{~-l({O}):q,EI} = E. 

The reader is invited to construct a proof of this equivalence, using the Hahn
Banach theorem as an intermediary; eompare the arguments presented in 
Subsection 12.12.6. 

The remarks made in Subseetion 11.2.3 about speetral synthesis sets in Rrn 
apply in the main to spectral synthesis sets in T; in particular, although 
conditions are known which are sufficient to ensure that a given elosed 
set is a spectral synthesis set, a complete structural characterization of 
such sets appeal' to be extremely difficult; see 12.11.5. 

As regards (2), most of the known suffieient conditions impose smoothness 
restrictions on f. Perhaps the simplest nontrivial sufficient eondition is that 
f shall belong to Cl and that Df (as weil as fitself) shall vanish on E; see 
Exercise 12.31. A deeper result asserts that it is suffieient that f satisfy a 
supplementary Lipschitz eondition of order Y2, that is, that 

If(x) - f(x') I ~ eonst Ix - x' 11/2 ; 

the exponent t is known to be best possible (see MR 40 # 629). For this 
and other similaI' sets of conditions, see Subsection 13.5.5 and [KS], p. 
123. (These and similar questions are discussed in a more general setting 
by Herz [2] and Edwards [4].) Onee again, no neeessary and suffieient 
conditions are known. 

12.11.5. Some Examples and Counterexamples concerning Spectral 
Synthesis Sets. For details eoncerning the matters touched upon lightly 
here, the reader should in general consult Chapter 7 of [R]; [HR], 
Chapter 10; [Kah2], Chapitre V; and Chapitres IX and XI of [KS]; see 
also [Kah] and Malliavin [2]. More specific references will appeal' as we 
proceed. 

(l) The simplest and oldest specific condition on a closed set E sufficient 
(but not necessary) to ensure that E shall be a spectral synthesis set is that 
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the frontier of E contains no nonvoid perfeet set (see 11.2.3 and Exercise 
12.52). This condition is fulfilled whenever E is countable. 

There is aversion of this result applying to general groups (see [R], p. 161) 
and another applying in the general context of commutative Banach algebras 
(see [Lo], p. 86 and [N], p. 226, Theorem 5). In each of these references, 
spectral synthesis sets in T are discussed in terms of closed ideals in 
(l(Z); see 11.2.3 and 11.2.5. See also [HR], (39.24) and (39.29). 

(2) A number of examples of nonvoid perfeet spectral synthesis sets are 
knO\m. Thus, Herz showed in 1956 that the Cantor ternary set (see Exercise 
12.44) is a spectral synthesis set. Herz's original proof has been developed 
and generalized; see [KS], pp. 124-125, and [R], Section 7.4 and [Kah2], 

pp. 58-59. See also MR 50 # 7956; 52 # 8800. 
(3) There is another method of constructing nonvoid perfeet spectral 

sYllthesis sets, due originally to Kahane and Salem; see [KS], pp. 125~127. 
In order to explain this in a little detail, we introduce some notation, sup
posing in what follows that E denotes a closed subset of T. 

Denote by M(E) [respectively, P(E)] the set of measures p. (respectively, 
pseudomeasures S) such that supp p. c: E (respectively, suppS c: E). Denote 
further by PO(E) the set of pseudomeasures S such that S(f) = 0 whenever 
fE A vanishes on E. pO(E) is weakly closed in P(E). It is then evident 
that pO(E) c: P(E) and almost evident that M(E) c: pO(E). (The second 
point depends on the remark that any continuous function which 
vanishes on the complement of E is the uniform limit of continuous 
functions, each having its support contained in the complement of E.) 
Thus 

M(E) c: PO(E) c: P(E). (12.11.7) 

A moment's thought will show that E is a spectral synthesis set if and 
only if 

PO(E) = P(E). (12.11.8) 

A fortiori, therefore, any set E such that 

M(E) = P(E) (12.11.9) 

is a spectral synthesis set. Sets E satisfying (12.11.9) are usually said to 
"support no true pseudomeasures." For example (see Exercise 12.33), every 
finite set is of this type; however, there exist oountable closed sets E that do 
not satisfy (12.11.9); see Exercise 15.21. 

The first nontrivial examples of sets supporting no true pseudomeasures 
were given by Kahane and Salem in 1956 and.were nonvoid and perfeet (see 
[KS], pp. 126-127). More recently, Varopoulos [2] has shown that among the 
sets supporting no true pseudomeasures are to be found all the so-called 
Kronecker sets defined in Subsection 15.7.4. 
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(4) On the other hand. as soon as one can exhibit (or prove the existence 
of) pseudomeasures 8 E P(E) and functions f E A vanishing on E and satisfy
ing 8(j) # O. it will become cE'rtain that E is not a spectral synthesis set. 

This prineiple is valid for qllite w·neral groups an<! lies behin<! Sehwartz's 
proof that the unit sphere E = {x E R3 : lxi = 1: is not a spectral synthesis 
spt in thp group R3 (see 11.2.3): in this casc it sllffiees to take for8the distribu
tional dE'ri\"ative <-fL/b.,. where fL is thc mcasurc obtainefl by distributing a 
\lnit total mass uniformly over E (see [R]. pp. 165-166). In this eonncction we 
rcmark tImt it is kno\\"n ([R], p. 172) that each of the sets {x E R3 : 1.l:1 .;; I} 
and {x E R3 : 1.1'1 ~ I} is a spectral synthesis set in R3; it folio ws that the 
intpl'section of two spectral synthesis sets, and the frontier of a spectral 
synthesis set, may fai! to be such a set. See also [HRJ, (40.19); Varopoulos [3J; 
MR 20 # 7186; 48 # 2671; 51 # 13592; 55 # 8699. 

The closing rE'marks of the last paragraph prompt the question: is the 
union of two spectral synthesis sets always a spectral synthesis set? It is not 
difficult to see that the union of two dis joint spectral synthesis sets is a set of 
the same nature, but the general case is unsolved. See also Varopoulos [3J 
and Drury [IJ. [2]. 

12.11.6. Spectral Synthesis in (OO(Z). In order to explain briefty the 
term "spectral synthesis set" applied to certain closed subsets of Rj27TZ, it 
seems best to consider the spectral (or harmonie) analysis and synthesis 
problems for the group Z. 

For the group T, these problems have been introduced in Subsection 
2.2.1 and solved in the course ofSections 11.1 and 11.2. For the spaceL oo 

(with its weak topology), the analysis problem is that of determining 
which (bounded continuous) characters en(n E Z) of T belong to Vi, the 
weakly closed invariant subspace of L OO generated by j. The answer is 
contained in 11.1.1, namely, en E Vi if and only if n E supp j. The 
synthesis problem is that of the recapture off from these en , in the sense 
that f shall be the weak limit in L oo of linear combinations of characters 
en E Vi; the possibility of doing this is recorded in Remark (1) following 
11.2.1. 

In the case of T the same is true when we replace L 00 by LP 
(1 ~ P < (0) or C. 

Let us now turn to the case of the discrete group Z, whose bounded 
continuous characters are the functions ex : n _ eixn (x E T); see 
Subsection 2.5.4 and Exercise 2.3. In this case we cannot discuss the 
analysis and synthesis problems for {,P(Z) (1 ~ P < (0) or co(Z), since no 
character ex belongs to any of these spaces. There remains the space 
{'OO(Z). which contains each ex . It will be necessary to consider {'OO(Z) with 
its so-called weak topology generated by {'l(Z) (see I, B.4.2): this is the 
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weakest topology on tOO(Z) such that, for each !/J E t 1 (Z), the function 
cP- LnEZ cP(n)ljJ(n) is continuous in the said topology. (Thus, a sequence 
01' net (cPi) of elements of tOO(Z) converges weakly to an element cP of 
tOO(Z) if and only if 

lim 2: </>i(n).p(n) = 2: </>(n).p(n) 
t neZ neZ 

for eaeh .p E t1(Z).) 
The speetral analysis problem for tOO(Z) is as folIows: given </> E tOO(Z), 

whieh charaeters ex belong to V;, the weakly closed invariant subspaee of 
tOO(Z) generated by </>? By arguing mueh as in Subseetion 12.12.6, the ans wer 
is seen to take the form: ex E V; if and only if x E -E, where E = supp~. 
(The minus sign is a consequenee of the way we ehose to define $ in equation 
(2.5.1) and 12.5.4(2); it has no sinister significanee.) As for the synthesis 
problem, it ean be shown (again by arguments similar to those to be used in 
Subseetion 12.12.6) that </> is the weak limit in tOO(Z) oflinear eombinations of 
eharaeters ex E V; if and only iff~ = 0 for eaehf E A whieh vanishes en -E. 
In turn, this will be true for all </> E tOO(Z) for whieh supp ~ c -E, if and 
only if -E is a spectral synthesis set in T, which is trivially equivalent to 
saying that E itself is a speetral synthesis set in T. 

It is now evident why the term "speetral (or harmonie) synthesis set" was 
seleeted: put very erudely, all those functions in tOO(Z), whieh ought to be 
synthesizable from the eharaeters ex (x E E), are in fact so synthesizable if 
and only if Eis a spectral synthesis set in T. 

At the same time, the results recalled above concerning spectral analysis 
and synthesis in Loo signify in particular that every subset of the diserete 
group Z is (01' may be regarded as) a spectral synthesis set in Z. 

Many of the problems coneerned with speetral analysis and synthesis 
stern from a study of the ease in whieh the underlying group is R, given by 
Beurling [3]. An exposition of generalizations and analogues of Beurling's 
work, applying to general groups, is to be found in Herz [2] and the referenees 
cited there; see also MR 41 # 5893; 50 # 5366; 55 # 3685. For an 
espeeially interesting ehapter in this story, see Koosis [1]. 

12.12 Capacities and Beurling's Problem 

The aim in this seetion is to explain the eoneept of eapaeity referred to in 
10.4.6, to apply it to the study of Beurling's problem mentioned in 11.2.5, 
to indieate its kinship with ideas in potential theory, and to provide a guide 
to further reading. 

It is not possible to provide detailed proofs of all the neeessary results 
about eapaeities, Bor even to mention speeifieally all the eoneepts of eapaeity 
whieh have shown themselves to be relevant to harmonie analysis and 
trigonometrie series; see the referenees eited in 12.12.7(5). 
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In 12.12.1-12.12.5 we assemble as quickly aspossible enough information 
about capacity to make an application to Beurling's problem, which is 
discussed in 12.12.6. In 12.12.7 appear some diverse remarks of a general 
nature. 

The notion of support of a distribution (see 12.11.4) plays a vital role 
throughout this section. 

Save in 12.12.7(1), we assume that the number a satisfies 0 < a < 1. 

12.12.1. The Kerneis X". For each a E (0, 1) we choose a corresponding 
kernel oj order a, namely, the function 

(12.12.1) 

Each such kernel can be used to develop a corresponding potential theory in 
which X" takes over the role played in Newtonian potential theory by the 
Newtonian kernel Ixl-1 on R3 (where lxi here denotes the Euclidean length 
of the vector XE R3); see 12.12.7(5). In working toward our immediate 
objective, we shall naturally use harmonie analysis much more than is 
traditional in Newtonian theory (although modern trends in the latter field 
also invoke harmonie analysis to a fair degree). Thus we shall be especially 
interested in the Fourier transform of X". 

The essential facts are that 

(nEZ) (12.12.2) 

and that 

as Inl-* 00, (12.12.3) 

where C" is a positive number. The reader should experience no great 
difficulty in proving (12.12.2) and (12.12.3); see [KS], pp. 32-33, 39--40. 

12.12.2. The a-energy of a Distribution. If Adenotes any distribution, 
its a-energy is defined to be 

E,,(A) = L K,,(n)IA(n)12 (~oo). (12.12.4) 
neZ 

Using (12.12.2) and Bochner's theorem 9.2.8, it is not difficult to verify 
that E,,(A) is finite if and only if the distribution X" * A * A* is equal 
distributionally to a continuous functionj, in which case E,,(A) = j(O). This 
criterion could therefore be used to define the a-energy of A. 

In view of (12.12.3) it appears that A has finite a-energy if and only if 

L Inl"-lIA(n)12 < 00. (12.12.5) 
n"O 
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12.12.3. The a-capacity of Closed Sets. If E is a closed subset of T, its 
a-capacity ca(E) is defined by the relation 

1 
ca(E) = inf Ea(JL) (12.12.6) 

the infimum being taken with respect to all positive measures JL having total 
mass JL(I) = 1 and with support supp JL C E; it is to be understood that 
inf {oo} = inf 0 = 00 and that 1/00 = O. Recall also that a measure JL is 
positive if and only if JL(f) ~ 0 for each nonnegative continuous function f 
(compare Exercise 12.7); for this it is enough that JL(f) ~ 0 for each non
negative f E C"'. 

In particular, c,.(E) = 0 if and only if E supports no nonzero positive 
measure JL such that 

L Inla - 1 1,1(n)12 < 00. 
n"O 

It is plain that ca(E) = 0 implies that cß(E) = 0 whenever IX < ß < 1. 
It is equally clear that ca(E) > 0 whenever E has positive measure. The 

converse is false: given IX, 0 < IX < 1, there exist perfect sets E of measure 
zero and positive IX-capacity (see [Ba2), p. 406). 

12.12.4. Criterion for Positive IX-capacity. By definition, in order that 
a closed set E shall have positive IX-capacity, it is necessary (and sufficient) 
that E shall support a nonzero positive measure having finite IX-energy. 

It is true and entirely unexpected that a sufficient condition is that E 
shall support a nonzero distribution having finite IX-energy. 

A proof of somewhat more than this, which depends on delving a little 
more deeply into the potential-theoretic development of the notion of 
IX-energy, is suggested in Exercise 12.42. 

12.l2.5. Capacitary Dimension. For a closed set E c T we define the 
capacitary dimension of E, denoted by cap. dirn. E, to be the supremum of 
numbers a such that 0 < a < 1 and ca(E) > O. 

It is a fact, which need not detain us at all, that cap. dirn. E is numerically 
equal to the so-called Hausdorff dimension of E; see [KS), p. 34 Theoreme I. 

Weshall ha ve need of two results concerning capacitary dimension, one of 
which is a very simple deduction from 12.12.4 and will be proved here; the 
other is more qifficult and we must refer the reader to [KS), p. 106, Theoreme 
IV for its proof. 

(1) If cap. dirn. E = IX, 0 < IX < 1, and 0 < q < 2/IX, then E supports no 
pseudomeasures a -# 0 for which & E Iq(Z). (The conclusion holds, indeed, 
even if a be assumed to be merely a distribution.) 

(2) If 0 < IX < 1 and q > 2/IX, there exist a closed set E satisfying 
cap. dirn. E = IX and a nonzero positive measure JL supported by E for which 
,1 E Iq(Z). 
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Proof of (1). We may suppose that q > 2 and choose a' so that 
c,..{E) = 0 and q < 2/a'. 

If supp a c: E and a E [q(Z), a simple appIication of Hölder's inequality 
for series shows that Ea.(a) < 00. Since ca.(E) = 0 and supp a c: E, 12.12.4 
entails that a = O. 

Remarks. If 0 < cx < 1, there exist closed sets E with cap. dim. E = cx 
which support nonzero positive measures p. for which {t(n) = O(lnl- Y.B) for 
any preassigned ß < cx; and closed sets E of measure zero exist which support 
nonzero positive measures p. for which {t(n) = O(lnle-Y.) for any preassigned 
e > 0; see [Z2], p. 146. The best such results are due to Ivasev-Mousatov; 
see [KS] , pp. 100-111 (and Hewitt and Zuckerman [3]; Hewitt and 
Ritter [2], [3]; Brown [1], [2J for extensions to more general groups). 
See alsoMR37 # 3277. 

The computation of the cx-capacity, or even of the capacitary dimension, 
of a given set is seldom easy. However, for the purposes of examples, whole 
classes of sets (obtained in a fashion rather like that which leads to the famous 
Cantor ternary set; see Exercise 12.44) have been defined and some informa
tion ab out their capacitary dimensions accumulated; see [KS], Chapitres I, 
U, and IU. 

So, for example, given any integer v ~ 2 and any number g satisfying 
o < g < I/v, one can construct perfect nowhere dense sets E (the Cantor set 
corresponding to v = 2, g = Ya) having measure zero and for which 
cap. dirn. E = log v/log (lW; see [KS], pp. 16-17,34. In particular, Cantor's 
set E has capacitary dimension equal to ao = log 2/log 3 and cxo-capacity 
equal to zero. 

Incidentally, among such sets E one finds many sets of uniqueness (see 
12.12.8 and [KS], p. 59). 

12.12.6. Application to Beurling's Problem. This problem, already 
mentioned in 11.2.5, can be formulated in the following terms: suppose that 
cf> E [l(Z) and that E = ~-1({0}); under what conditions upon E does the 
closed invariant subspace V~ of [P(Z) generated by cf> coincide with [P(Z)1 
(The notation V~ is suggested by that introduced in Section 11.1.) 

As we shall see, one of the most interesting cases of this problem is alm ost 
(but not quite) completely solved in terms of the capacitary dimension of E. 

We discuss three cases, according to the value of p involved. 
(1) The case p = 1. The complete solution is contained in Wiener's 

closure of translations theorem for the group Z (see 11.2.5 and Exercise 
12.32): V~ = [l(Z) if and only if E = 0. 

(2) The case 2 ~ P ~ 00. (If p = 00, it is understood that [""(Z) is taken 
with its weak topology; see the introductory remarks to Chapter 11 and I, 
B.4.2.) 
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According to the Hahn-Banach theorem (I, B.5.2), V~ = (1'(Z) if and only 
if the unique .p E (P' (Z) satisfying 

4>*.p=0 (12.12.7) 

is.p = O. In this application ofthe Hahn-Banach theorem, we are identifying 
the dual of (1'(Z) with (P' (Z) (a discrete analogue of I, C.l; see [E], Exercise 
1.2 and, for p = 00, a special case of Theorem 8.1.1; and Exercise 12.32 
below.) 

Since 4> E P(Z), (12.12.7) is equivalent to 

~~ = 0, (12.12.8) 

~ being at any rate a pseudomeasure and ~ a member of A; see (12.11.3). 
However, since I ~ p' ~ 2, more can be said about ~: as will be seen in 

13.4.1, ~ is actually a function in LP; if p = 00, it is evident that ~ E C. 
It follows that the condition that E be null suffices to ensure that 

V~ ::;:: (1'( Z); that this condition is also necessary when p = 2; that a necessary 
condition for any of the specified values of p is that E be nowhere dense; and 
that this last condition is also sufficient when p = 00. 

Nothing more precise seems to be known for 2 < p < 00. 

(3) The case I < P < 2. This is the case in which the capacitary dimen
sion of E enters into the discussion. We will give two results. 

(a) In order that V~ = (P(Z), it suffices that 

cap. dirn. E < 2/p'. (12.12.9) 

(b) If I > IX > 2/p', there exists 4> E (l(Z) such that cap. dirn. E = IX and 
V~ =F (P(Z). 

Proof of (a). We start by using the Hahn-Banach theorem exactly as in 
(2) above. From (12.12.8), it appears that a == ~ satisfies supp acE. 
Moreover, a = .p E (P'(Z). So (12.12.9) and 12.12.5(1) combine to show that 
a = 0 and therefore .p = O. By virtue of the Hahn-Banach theorem, (a) is 
thus established. 

Pro.,f of (b). If IX> 2/p', 12.12.5(2) affirms the existence of a closed subset 
E of T satisfying cap. dim. E = IX and a nonzero positive measure Jl. 
supported by E and such that '" == p. E tP'(Z). Now it is not difficult to 
construct a <p E t 1 (Z) such that <p -1 ({ o}) = E; compare the proof of 
Lemma (6.1) in Edwards [4]. Then, since Jl. is a measure, ~Jl. = 0, which is 
equivalent to (12.12.8). Since Jl. =t= 0, '" is not the zero element of tP'(Z). 
Thus (12.12.7) shows that V~ cannot coincide with tP(Z). 

12.12.7. Further Remarks about Capacity. In thissubsection we collect 
a few remarks about capacity and give references for further reading. 

(1) The cases IX = 0,1 : logarithmic capacity. Hitherto it has been assumed 
that 0 < IX < 1. 
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Corresponding formally to the ease a = 0 is the logarithmie kernel 

Ko{x) = log (Isin % xl- 1 ); 

the assoeiated eoneept of capacity is termed logarithmic capacity. 
The formulae (12.12.2) and (12.12.3) remain valid for a = 0, and it follows 

that a closed set E for whieh ca{E) > 0 for some a satisfying 0 < a < 1 has 
positive logarithmie eapacity. The eonverse is false; eompare the closing remark 
in 12.12.3. 

Corresponding to the ease a = 1 one mnst take as kernel the Dirae measnre 
e: this leads to a eoneept of capacity that is essentially eqnivalent to invariant 
measure and is of little interest in the present eontext. 

(2) Interior and exterior eapaeities. In seareh of greater ftexibility, the 
eoneept of eapaeity, so far defined only for closed set.s, ean be extended to 
more general sets. The first step is the introdnetion of the so-ealled interior 
and exterior eapaeities. 

The interior a-eapacity of an arbitrary set E is by definition 

(12.12.10) 

the supremum being taken with respeet to all elosed sets F c: E. Thus 
ca*{E) = ca{E) if E is closed. 

The exterior a-capaeity of an arbitrary set E is defined to be 

(12.12.11) 

the infimum being taken relative to all open sets U eontaining E. 
Before saying any more about these set funetions, we observe a further 

eonneetion with trigonometrie series. 
(3) Capacity and convergenee oj trigonometrie series. Reverting to the topies 

diseussed in 10.4.6, it ean be shown that if {cn)neZ is such that 

L Inll-alcnl2 < co, 
nez 

then the (Borei) set of points of divergence of the series 

has interior a-eapaeity zero. This is a special case of a result applying to more 
general notions of capacity; see [Bad, p. 411. The original result of Beitrling 
referred to in 10.4.6 eoncerns the case oflogarithmic capacity (a = 0). There is 
a converse assertion, also due to Beurling. For all this, see also [KS], p. 41-47. 

(4) Capacities as set junctions. The interior and exterior eapacities just 
defined are plainly nonnegative and inereasing set functions, in which respeet 
they are like measures. There the similarity ends, however: interior and exterior 
capacities are not even finitely additive on simple types of sets. However, it is 
not difficult to show that c! is countably subadditive for arbitrary sets. 

On the eontrary, to show that c,,*{E) = c: (E) for a reasonably wide class of 
sets is much more diffieult than is the eorresponding problem for measures. 
The satisfactory solution is due to Choquet, who showed that ca*{E) = c:{E) 
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is true for a wide class of sets E containing at least all Borel sets. This result 
dates from 1952 and was the outcome of a profound and original investigation 
of nonadditive set functions carried out by Choquet. 

A set E such that ca*(E) = c~(E) is said to be a-capacitable and its a-capacity 
ca(E) is the common value of ca*(E) and c~(E). 

(5) Relation8 with potential theory. The "capacity " terminology belonged 
originally to potential theory, and its use in the present context is due to the 
fact that in Newtonian potential theory (to take the classic example) one may 
follow very similar steps. In place of K a one uses the Newtonian kernel 
K(x) = Ixl-l on Ra, where lxi here denotes the Euclidean length ofthe point 
x of Ra, in terms of which the self-energy of the distribution of matter repre
sented by the measure f.L on Ra is expressed by the integral 

E(f.L) = Jf K(x - y) df.L(x) d;I(Y)· (12.12.12) 

The use of energy considerations in Newtonian potential theory dates back to 
Gauss and was rejuvenated in modern times by Henri Cartan. The reader will 
observe that the expression (12.12.12) involves viewing a measure as a set 
function; see the remarks in 12.2.3 and Exercises 12.38-12.42. On replacing E a 

by E, the definitions in 12.12.3 and (2) above lead to the Newtonian capacitie8 
of subsets of Ra. 

The formal similarity is apparently complete, but we must indicate one 
point that has to be checked with care, namely, it has to be verified that for all 
positive measures J1 on Tone has the equality 

(12.12.13) 

This is not altogether trivial; see Exercise 12.40. (The analogous problem for 
Newtonian potentials was investigated by Deny.) 

The reader who wishes to look into the details of the relations with potential 
theory may consult the long article by Ohtsuka [1] and the references cited 
there (especially the items listed as Cartan [5], [6], Fuglede [1] and Deny [1], 
[2] in Ohtsuka's bibliography). Sad to say, the present writer knows of no 
account in book form of modern potential theory. For more about connections 
between capacity and harmonie analysis, see [Bal], pp. 398 ff., [KS], Chapitres 
111, IV, VIII and (for general groups) Herz [2], Section 3, jl.nd the references 
cited in these works. 

12.12.8. Sets of Multiplicity and Sets of Uniqueness. Other concepts of 
smallness of sets, somewhat similar to that expressed by vanishing capacity, 
playa central role in the theory of trigonometrie series. 

Consider again a closed subset E of T. It is known that to assert the 
existence of at least one nonzero pseudomeasure (J with support contained in E 
and satisfying 

li.m a(n) = 0 (12.12.14) 
Inl-CX) 
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is neeessary and suffieient in order that E be a so-ealled set of multiplieity in 
the wide sense, or simply a set of multiplieity, that is, that there shall exist a 
trigonometrie series whieh eonverges to zero at all points not in E and whose 
eoeffieients are not identieally vanishing; see [Zl]' pp. 344-347; [Ba2], p. 366; 
[Kah2], p. 44; and [KS], p. 54; and eompare with the closing remarks in 
12.12.5. 

In this ease, eontrary to what the substanee of 12.12.4 may lead one to 
expeet, if in (12.12.14) one were to demand that (] must be a positive measure 
(or a measure at aIl, positive or not), a different elass of sets E would result, 
namely, the elass of sets of multiplieity in the striet sense. In other words, there 
ex ist elose<! sets of multiplieity that are not sets of multiplieity in the striet 
sense; see [1\.S], p. 57. 

A set that is not a set of multiplieity is termed a set of uniqueness (in the 
striet sense); and a set that is not a set of multiplieity in the striet. sense is 
termed a set of uniqueness in the wide sense. 

Cantor and Young (1870, 1908) showed that any eonntable set is a set of 
nniqueness. It. is virtnally obvions that any set of positive measnre is a set of 
multiplieity in the striet sense. The advent of the theory of Lebesgne measure 
and integration brought with it the feeling that all null sets should be sets of 
uniqueness, but this expeetation was shattered by Men'shov (1916). 

For details eoneerning all these matters, see [Zl], Chapter IX; [Ba2]' 
Chapter XIV; [KS], Chapitres V and VI. See also Kahane and Mandelbrot 
[1]; MR 35 # 3379; 40 # 631; 51 # 11016. 

12.13 The Dual Form of Bochner's Theorem 

In this seetion we shall temporarily turn aside from our main pursuit in 
order to apply something of what has been learned in this ehapter to formu
late and prove the form of Boehner's theorem about positive definite fune
tions that is applieable to the group Z. The form of the theorem applieable 
to the eirele group T has been dealt with in Chapter 9. 

12.13.1. Positive Definite Functions on Z. A eomplex-valued funetion 
1> on Z is said to be positive definite if and only if 

2: 2: 1>(m - n)cmcn ~ 0 (12.13.1) 
meZ neZ 

for each sequenee (Cn)nEz of eomplex numbers having a finite support (that is, 
such that Cn = 0 for all but a finite set of n E Z). This definition should be 
compared with (9.2.1) and (9.2.2). 

It follows readily from (12.13.1) that 

1>( -n) = 1>(n), 11>(n)1 ~ 1>(0) (nEZ); (12.13.2) 

in partieular, eaeh positive dp,finite 1> belongs to lOO(Z). 
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12.13.2. Relation with Fourier-Stieltjes Transforms. Let us eonsider 
a function <!> on Z of the form<!> = (L, where fL E M. In this ease a simple 
ealeulation shows that 

where t is the trigonometrie polynomial defined by 

t(x) = L cneinx . 
neZ 

(12.13.3) 

From this we infer at onee that <!> is positive definite whenever the measure fL 

is positive in the sense (eompare Exereise 12.7) that fLU) ~ 0 for any non
negative J E C. 

On the other hand, if<!> is positive definite, (12.13.3) shows that fL(Itj2) ~ 0 
for every trigonometrie polynomial t, whenee it fo11ows (see 12.2.3 and 
Exereise 2.18) that fL is a positive nieasure. 

To sum up, we find that a Fourier-Stieltjes transform {L is positive definite 
if and only if the measure fL is positive. If the measure fL is (generated by) a 
eontinuous function J, then the transform J is positive definite if and only if 
J is nonnegative. 

We are now ready to state and prove the appropriate Boehner representa
tion theorem. 

12.13.3. The Bochner-type Theorem. The positive definite functions <!> 
on Z are preeisely the functions of the form<!> = {L for some positive measure 
fLE M. 

Remarks. That this is indeed an exact analogue of the representation 
formula (9.2.3) for positive definite functions on the circle group Thinges upon 
the following remarks. 

By a (bounded Radon) measure on Z will be meant a continuous linear 
functional A on co(Z) (compare the substance of 12.2.3 together with Exercise 
4.45 of [E] or p. 364 of [HS]), and it is quite easy to show that to each such 
measure A on Z corresponds a unique function A E fI(Z) such that 

A(<!» = 2: A(n)<!>(n) 
neZ 

for all <!> E co(Z). Furthermore, the measure A is positive, in the sense that 
A(<!» ;;;. 0 for any nonnegative function 4> E co(Z), if and only if the corre
sponding function ,\ is nonnegative. Bearing this in mind, the Bochner theorem 
9.2.8 for the group T asserts that any continuous positive definite functionf on 
the circle group is equal to the Fourier transform A of so me positive (bounded 
Radon) measure A on Z. 

To this we might add that on the compact group T all Radon measures are 
automatically bounded (because of compactness); and that on the discrete 
group Z all functions are continuous (because of discreteness). 
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12.13.4. Proof of 12.13.3. In view of 12.13.2 it remains only to show that, 
if 4> is a positive definite function on Z, then 4> = ;1 for some measure f.L E M. 
To this end, we choose any approximate identity (kr );"=l in Ll such that 
kr ~ 0, Ilkrll l ~ 1, and !cr E t 1(Z) for each r, and we consider the functions 

(12.13.4) 

Let us first verify that each 4>r is positive definite. We have in fact J 

L L 4>r(m - n)cmcn = 2~ I kr (X){L L 4>(m - n)CmeimXCneinX} dx, 

all sums appearing being over a finite range. The last integral appearing is 
nonnegative since kr ~ 0 and { ... } ~ 0, so that rPr is indeed positive definite. 

Besides this, rPr E t 1(Z) because !er E t 1(Z) and rP E fOO(Z). We can thcrcfore 
write 

(12.13.5) 
where 

fAx) = L rPr(n)einX 
nEZ 

is a continuous function on the circle group. Since rPr is positive definite, 
12.13.2 shows that fr is nonnegative. Consequently, 

Ilfrlll = ]r(O) = rPr(O) = !er(O)4>(Ü) 

~ Ilkrl1 1 ' rP(O) ~ rP(O). 

Applying 12.3.9, it follows that there exists a subsequence (fr,l:'=l such that 
the measures generated by the functions fr, converge weakly in M to a 
measure f.L E M. Then, by (12.13.5), we have 

;1 = lim ]r, = lim rPr, (12.13.6) 
s-+co s-co 

pointwise on Z. But (12.13.4) combines with 3.2.4 to show that 

(12.13.7) 

pointwise on Z. A comparison of (12.13.6) and (12.13.7) shows that 4> =;1. 
That f.L is positive, follows either from 12.13.2, or from its construction as the 
weak limit in M of the positive measures genera ted by the nonnegative 
functions fr,. The proof is thus complete. 

12.13.5. Product of Positive Definite Functions on Z. It follows at once 
from 12.13.3 that the pointwise product of two positive definite functions on 
Z is again positive definite (compare Exercise 9.4). 
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12.13.6. A Line to Pursue. We end this section with what it is hoped 
will be a leading question and an invitation to the reader to provide his own 
answer thereto. 

Suppose that H denotes a Hilbert space and U a unitary endomorphism 
of H. Assign to each h E H the complex-valued function r/>h on Z defined by 
r/>h(n) = (unh, h), where ( . ,.) denotes the scalar (or inner) product in H. 
It is simple to verify that r/>h is positive definite. The question is: what 
results ifto r/>h one applies the Bochner theorem 12.13.31 Can you relate the 
result to the so-called spectral resolution theorem for U and to an operational 
calculus for U1 

EXERCISES 

1'2.1. Supply a proof of the equivalence of (12.1.2) and (12.1.3). 
12.2. Prove that if U E Ca>, then 

C'" - Iim Tau = Taou 
a-ao 

and 

C'" I' T -aU - U D - 1m = U. 
a-O a 

12.3. Is it true that 
(1) C'" - Iimn _ '" sin nx/n lO = 01 
(2) C'" - Iimn _ '" cos nx/exp [(log n)3/2] = O? 

Give your reasons. 
12.4. Define u(x) = 0 for x == 0 (mod 27T) and u(x) = exp (- cosec2 Yzx) 

otherwise. Show that U E C'" and that Dnu(O) = 0 for n = 0, 1,2, .. '. This 
shows that C'" contains many nonanalytic functions. 

12.5. (1) Suppose n is an integer, n > 2, and define un(x) tc be 0 if x = 0 
or if 27T/n ~ lxi ~ 7T, to be exp ( - cosec2 Yz nx) if 0 < lxi < 27T/n, and else
where so as to be periodic. Show that Un E C<XJ and that (2n) -1 J Un dx == 
Cn > O. Verify that the Vn = C;1 . U n form an approximate identity. 

(2) Deduce from (1) that to each fE C and each neighborhood V of the 
support {x : f(x) t6 O} of f there corresponds at least one sequence (Un);:'=l 
extracted from C'" satisfying the following conditions: 

(a) Ilunll", ~ lifll", for all n; 
(b) U n vanishes outside V for all n; 
(c) Iimn _ '" U n = f uniformly. 
Show simiIarly that the conclusion stands when C is replaced by L"', 

provided condition (c) is replaced by 
(c') limn _ '" un(x) = f(x) a.e. 
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Note: We know that there exist approximate identities formed of 
trigonometrie polynomials. The essential feature of the V n is that they vanish 
outside smaiier and smaiier neighborhoods of 0 in T. This property is 
erueial for the loeal study of distributions. The results in (2) have already 
proved to be useful in 12.3.2(5): see also Exereises 12.29 and 12.30. 

12.6. Verify in detail the statements made in 12.l.2 and 12.l.5. 
12.7. A distributionF is said to be positive if and only if F(u) ;;, 0 for 

any nonnegative real-valued U E C"'. Show that any positive distribution is a 
measure. 

12.8. Give a proof of 12.7.1 without using 12.3.9. 
12.9. Prove the impossibility of multiplying measures In the fashion 

described in 12.3.5. 
Hints: Use Exercise 12.7 to show that aß E M whenev('r a anel ß are 

positive measures. The next and crucial skp is to show that tlwre exists a 
nuruber c > 0 such that 

for any two positive measures a and ß. Assnming the contrary, Rho\\' timt 
there would exist positive measures an and ßn (n = 1,2, . .. ) such that 

IIanl1 1 = IIßnlll = 1 and 

Consider the product aß, where 

'" 
a = " n -2a L n' 

n=l 

in order to reach a contradiction, observing that the hypotheses made in 
12.3.5 ensure that aß is a pORitive measure such that aß ;;, n - 4anßn for 
all n. 

12.10. Show that if I-'- is the measure generated by a fllnctionf E LI, then 
111-'-111 = Ilflll (see 12.3.8). 

12.11. Prove that if F is a distribution such that DF = 0, then Fis a 
constant funetion. 

12.12. Suppose timt Fis a distribution and that DF = fE LI. Show that 
1(0) = 0, and that F is the distribution generatecl by the absolutely eon
timlOus periodie function c + J; f( y) dy, c being a suitably chosen constant. 

12.13. Show that if I-'-n -+ I-'- weakly in M (see 12.3.9), then 

111-'-111 ~ !im inf III-'-nk 
n~'" 

12.14. Show that if fn -+ f weakly in LP, where 1 ~ P ~ oo'(see 12.3.10), 
then 

Ilfllv ~ lim inf Ilfnllp· 
n~'" 
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12.15. Show that if A(I) = A(O) = 0, then the solution of equation 
(12.4.2) is 

F = 1'(0) + L: (in) -1 A(n)ein.r. 
n"O 

12.16. Show that the equation D2F + F = e has no distributional 
solutions F. 

If P(D) is a linear differential operator with constant coefficients and 
A E D is given, discuss the solubility and solutions of the equation 
P(D)F = A, where the unknown Fis to belong to D. 

Remark. In case the reader finds the above conclusion puzzIing, it 
should perhaps be stressed that in this book we speak only of distributions 
on the group T. There are, of course, distributions F on the group R 
which satisfy D 2 F + F = B. It can be shown that distributions on T 
correspond to distributions on R which are periodic; it is this additional 
requirement of periodicity that is incompatible with the given differential 
equation. 

12.17. If (Kn):'=1 is an approximate identity in LI and p. E M, show that 
K n * p. ~ p. weakly in M. 

12.18. Verify in detail the computations referred to in 12.8.2(1) and (2). 
12.19. Assuming the theorem of F. and M. Riesz cited in 12.8.5(4), show 

that if fand J are each (equal almost everywhere to) functions of bounded 
variation, then each is (equal almost everywhere to) an absolutely continuous 
function. 

Hint: Use the substance of 12.5.10. 
12.20. WritingJ = H * f, wheref E V, and using the notations introduced 

in 7.1.1, verify that 

SNJ(X) = -L f [f(x + y) - f(x - y)]DN(y) dy. 

Show that 

f DN(y) dy '" 2 log N 

for large N, and conclude that if fE LI and 

f(x + y) - f(x - y) = d + e(y), 

where e(y) ~ 0 as y ~ O. Then 

as N ~oo. 
12.21. Show that if S is a pseudomeasure (see Section 12.11), then 

S = c + Df, where c is a constant and f E L2. 

12.22. Suppose that F E D is such that 

sup IlsNFIloo < 00. 
N 
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Prove that FE L'" and that 

12.23. Prove that a measure fL E M such that II TafL - fLIII ~ 0 as a ~ 0 
is (generated by) a function in LI. 

Remark. Numerous stronger results are known; see Edwards [2] and 
the remarks following Exercise 3.5. See also MR 52 # 116l. 

Hint: Show that if IITafL - fLIII ~ e for lai ~ 8, then IlfL *f - fLIII ~ e 
for any fE LI, f ~ 0, (lj2rr) J f dx = 1, f = 0 outside lxi ~ 8 modulo 217. 
Choose a sequence of suchf corresponding to 8 ~ 0 and use the completeness 
ofLI. 

12.24. Prove the assertion made in Remark R.5.5(2). 
12.25. HupposC' that (Cn)nEz is a complex-vailled sequence SlIch that, for 

somc fELl and all N = 1,2, ... , 

8N(X) == L cneinx ~ f(x) 
Inl<;N 

for alm ost all x. Show that there exists a meaHure fL E M such that Cn = P.(n) 

(n E Z). Compare 12.7.9(1). 
llint: Use 12.7.5. 
12.26. Let B denote the Het of h E C such that h(n) = 0 for an intcgers 

n < O. 
(1) Vcrify that B, when taken with pointwise operations and with the 

norm induced on it by that on C, ia a Banach algebra satisfying the conditions 
(a) to (c) in 11.4.1. 

(2) Show that if hEB and Re h(x) > 0 for an real x, then Re y(h) > 0 for 
y E r(B). 

(3) Deduce that if hEB is as in (2), and if p > 0, then 

(hP)"'(O) = (h(O))P, 

where the pth power deilotes the branch that is positive on the positive real 
axis. 

Remark. This is the argument referred to in 12.9.8(1). 
Hint8: For (2) use the Halm-Banaeh theorem (I, B.5.2) to show that 

there exists aRadon measure IL such that fL(h) = y(h) for an hEB and 
IlfLIII = Ilyll = 1. Use the relations fL(l) = y(l) = 1 = IlfLIII to show that 
fL ~ O. For (3), use (2), 11.4.10 and 11.4.15 with <D equal to the said branch 
of,V. 

12.27. Suppose that fL E M and let 

I = {f E C : fLUg) = 0 for an g E C}. 

Show that I is a elosed ideal in C = C(T) (see 11.4.1). 
Put E for the set of common zeros of elements of land regard E as a 

closed subset T. Let U be the complement of Ein T. By using Exereise 
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11.17, show that U is precisely the set of points x of T with the following 
property: there exists a neighborhood U x of :r in T such that /1(f) = 0 for 
every fEe which vanishes outside U x . 

Remarks. This last property is more briefly expressed by saying that 
the mcasure f1- vanishes on the neighborhood U x' and it appears timt f1- also 
vanishes in the same sense on the open set U. The dosed set E is the support 
of the measure f1- (compare the substance of 12.11.4). 

12.28. Formulate and prove an analogue of the result in Exercise 11.18 
applying to the case in which A is replaced throughout by Coo. 

12.29. As a matter of definition, a distribution S is said to vanish on a 
given open sub set Q of T(in symbols S = 0 on Q) if and only if S(u) = 0 
for every U E COO satisfying supp U c Q. Show that if (Q~) is a family of 
open sub sets of 1', and if S = 0 on Q~ for each IX, then S = 0 on U~Q~. 

Deduce that there exists a largest open sub set Q of T on which a given 
distribution S vanishes. The complement T\Q is the support of S, denoted 
by supp S; see 12.11.4. 

Show also that if S E Dm and S = 0 on an open subset Q of T, then 
S(u) = 0 for each U E Cm satisfying supp u c Q. 

12.30. Let SE Dm and write E = supp S. Show that S(u) = 0 whenever 
u E cm and DPu = 0 on E for 0 ~ p ~ m. 

Remark. Despite the preceding result, it is not generally true that 
limk~ 00 S(uk ) = 0 for any sequence (uk)f=l such that DPuk -J>- 0 uniformly 
on E as k -J>- 00 for p = 0, 1,2, .... 

Hints: Reduce the problem to showing that there exists a sequence 
(uj)j= 1 of elements of cm such that each u j coincides with u on some open set 
containing E and U j -J>- 0 in Cm. To construct (uj ) proceed as follows (x denotes 
the coset modulo 27TZ of x ER): introduce the metric 

d(x, iJ) = inf Ix - y + 2n7T1 
nEZ 

on T, in terms of which define E 6 as the set of points within distance (j of 
E. Then 

e(S) == sup {IDPu(x)1 : x E E ö' 0 ~ P ~ m} 

tends to 0 with S. Using the relation 

DPu(x) = (X DP + lU(t) dt; 
JXD 

where X o E Xo E E, show that 

for x E E 6 and 0 ~ p ~ m. 
Construct functions W ö E Ca) so that 

wö(x) = Ion Et;.ö, = 0 outside E ö,} 

IDPwöl ~ ApS-P; 

(1) 



EXERCISES 129 

this may be done by setting W ö = k{j * Vn, where kö E C, 0 :::; kö :::; 1, ko = 1 
on E%tJ' kö = 0 outside Ea;.tJ' and where V n is as in Exercise 12.5 with n 
chosen so that 27r/n :::; Y4 8; kö is easily constructed in terms of the function 

i; ---+ d(i;, E) == inf d(i;, y). 
YEE 

Now put u j = U' WÖf' where 8j is any sequence tending to O. Use (1) and 
(2) to verify that DPu j ---+ 0 uniformly as j ---+ 00, provided 0 :::; p :::; m. 

12.31. Let S be a pseudomeasure whose support is denoted by E (see 
12.11.4 and Exercise 12.29). Show that the relation j S = 0 holds whenever 
JE Cl andj = Dj = 0 on E. 

Hint: Use Exercises 12.21 and 12.30. 
12.32. Let 4>0 E t 1(Z) and E = <ßö 1({0}) C T. Prove that V~o contains 

every <P E fl(Z).such that ~ E Cl and ~ = D~ = 0 on E; and that Vb a = fl(Z) 
if Eis void. (The notations are as in 12.12.6. Compare 11.2.5.) 

Hints: First verify that any continuous linear functional on fl(Z) is 
expressible as 

8 ---+ L 8(n)tj;( -n) 
nEZ 

for some tj; E f"'(Z). Next, by applying the Hahn-Banach theorem (I, B.5.2), 
reduce the problem to showing that, if tj; E f"'(Z) satisfies <Po * tj; = 0, then 
<p * tj; = O. 1ntroduce the pseudomeasure 8 = f, verify (12.11.3), and so con
clude that it suffices to establish the implication 

~oS = 0 => ~S = O. 

Finally, show that the hypothesis here entails that supp SeE and then 
apply the preceding exercise. 

12.33. Let S be a distribution whose support is a finite subset of T, 
say {al' ... , ak}' Prove that there exists an integer m ~ 0 and complex 
numbers cjp(j = 1,2, ... , k; p = 0,1, ... , m) such that 

Deduce that a pseudomeasure with a finite support is a measure. 
Hints: Suppose SE Dm. Apply Exercise 12.30 in combination with the 

following simple lemma (which should be proved): if L is a linear space and 
t, tl' ... , t r are linear functionals on L such that t(y) = 0 whenever y E L 
and tl(y) = ... = tr(y) = 0, then t is a linear combination of tl' .. " tr. 
For an alternative proof, see MR 37 # 6752. 
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12.34. (1) Suppose that 4>r (r = 1,2,· .. ) and 4> are functions on Z such 
that 

(a) 4>r is positive definite (r = 1,2, ... ); 
(b) m == sUPr 4>r(O) < 00; 
(c) limr_o:> 4>r(n) = 4>(n) for n E Z. 

Show that there exist positive measures P.r E M (r = 1,2, ... ) and p. E M 
such that 4>r = flr (r = 1, 2, ... ), 4> = fl and limr_ 0:> P.r = P. weakly in M (see 
12.3.9). 

(2) State and prove an analogue of (1) for the case in which Z is replaced 
byT. 

Remarks. The analogue of (1) for the case in which Z is replaced by R 
is Levy's so-called continuity theorem. Positive definite functions on R have 
c10se connections with probability theory. 

A bounded (Radon) measure on R may be defined as a continuous linear 
functional on the Banach space Co(R) composed of the continuous functions 
on R which tend to zero at infinity, the norm on Co(R) being defined by 

Ilfll = sup {1/(x)1 : XE R}; 

see 12.2.9 and the remarks following 12.13.3. Such a measure, p., is said to 
be positive if and only if p.(f) ~ 0 whenever 1 E Co(R) is real and nonnegative
valued. 

A bounded positive Radon measure p. on R such that p.(I) = 1 is termed a 
probability measure on R. The Fourier transform of p., namely, the function 

IS m probability theory usually termed the characteristic lunction of the 
probability distribution defined by p.. 

As has been stated in Section 9.4, there is aversion of the Bochner theorem 
valid for positive definite functions Ion R: it asserts that the continuous 
positive definite functions 1 on R satisfying 1(0) = 1 are precisely the Fourier 
transforms (that is, characteristic functions) of prob ability measures on R. 

12.35_ A distribution F (on T) is said to be positive definite if and 
only if 

F(u * u*) ~ 0 

for each u E Co:> (compare 9.2.1). Show that this is so if and only if P ~ 0, 
and deduce that F is positive definite if and only if 

F - "'" c e1nx -L.,n' 
neZ 

where (cn)nez is a nonnegative tempered sequence. 
Remarks. We have mentioned in Section 9.4 some of the many ex

tensions of Bochner's theorem 9.2.8; the present exercise falls into this 
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category. If it in turn is generalized to distributions on the group Rm, a great 
profusion of possibilities arise. The interested reader should consult [GV], 
Chapter H, where diverse modifications ofthe concept ofpositive definiteness 
are also discussed. 

12.36. The Riesz-Markov-Kakutani theorem mentioned in 12.2.3 has as 
corollaries the following three statements. 

(1) To each measure /L E M corresponds a positive measure I/LI E M such 
that I/L(f) I ~ 1/L1(lfll for each bounded complex-valued Borel-measurable 
functionJ. 

(2) If fand fn (n = 1,2" .. ) are complex-valued Borel-measurable 
functions such that 

sup Ifn(x) I < 00, lim fn =fpointwise, 
n,X n-CXI 

then 
lim /L(fn) = /L(f) 

for each measure /L E M. 
(3) The set of points x for which 1/LI(x{x») > 0 is countable, /L denoting a 

given measure and XIx) denoting the characteristic function of {x}. 
Making use of these results, show that, if 1> is a complex-valued function 

on Z which is a Fourier-Stieltjes transform, and if 

SN,P(X) = N-l L 1>(n)einX 

p<n~p+N 

for N = 1,2, ... and p real, then 

lim sup ISN,P(x)1 = 0 
N- co peR 

(4) 

for all real values of x save perhaps those belonging to a countable set. 
Show that (4) remains true whenever 1> is the limit, uniformlyon Z, of 

Fourier-Stieltjes transforms. 
12.37. Let F be a real-valued function defined on some real interval 

(a, (0) and having the following properties: 
(1) the set E ofreal numbers x, such that F-l({X}) is unbounded above, is 

uncountable; 
(2) for any c > 0, 

sup IF(t) - F(T)I = O(-Tl ) as T--+oo. 
T<t .. T+c 

By using the preceding exercise, show that any function 1> on Z, such that 

1>(n) = exp {inF(n)} 

for nE Z and n > a, is not the limit, uniformlyon Z, of Fourier-Stieltjes 
transforms. 
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12.38. Suppose that E is a closed subset of T, that 0< (X < 1, and 
that ca(E) > O. Prove that there exists a unique positive measure f.l such 
that f.l(1) = 1, supp f.l cE, and 

Remarks. This measure fL is termed the equilibrium measure on (or for) 
E, mainly because of the physical significance of potential theory in the 
Newtonian case. Equilibrium measures play an essential role in the proof of 
the nontrivial assertion in 12.12.4; see Exercise 12.42. 

Hints: Verify that 
(1) E aCY2(A + B)) < YzE,.(A) + YzEa(B) for any two distinct distribu

tions A and B having finite a-energy; 
(2) Ea(A) :::::; lim infk .. ", Ea(A k ) whenever A k -+ A in D. 

Then use 12.3.9. 
12.39. Suppose that E and aare as in the preceding exercise. Denote by 

8 the set of measures ha ving finite a-energy, by 8 E the set of measures in 8 
supported by E, and by 8+ and 8t the set of positive measures in 8 and in 
8 E' respectively. In 8 define the inner (or scalar) product 

(fLlv) = 2: K a(n)j1(n)v(n) 
neZ 

and associated norm IIfLil = Ea (fL)Y2· 
Which (if any) of 8,8 E, 8+, 8t is complete for the above norm? 
Can the projection method, explained for the case of L2 in Exercise 8.14, 

be adapted to establish the conclusion of the preceding exercise? If so, give 
the details. 

Note: In the following three exercises it is necessary to assume the 
integration theory associated with aRadon measure; compare the remarks 
in 12.2.3; [E], Chapter 4; and [RS], Chapter III. Moreover, 0 < a < 1, Eis 
a closed subset of T, K = K a, c(E) = ca(E), f.l~ is the equilibrium measure 
on E (see Exercise 12.38); and in general we drop the suffix" (x". 

12.40. If A and B are distributions having finite energy, we define the 
inner product 

(AlB) = 2: K(n)A(n)ll(n) , 
neZ 

the corresponding norm being IIAII = (AIA)Y2, the square root of the energy 
of A; compare Exercise 12.39. 

Prove that if fL and v are positive measures having finite energy, then 

(fLlv) = J U/l dv, 

where U/l(x) = J K(x - y) dfL(Y) is a BoreI-measurable function belonging 
to LI which generates the distribution K * fL. 
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Remark. Uu is termed the (0:-) potential of /L; it can be defined as a 
nonnegative extended real-valued function by the above integral for any 
positive measure /L and is easily seen then to be lower semicontinuous. 

Hint: See [KS], p. 35, Proposition 3. 
12.41. Suppose that c(E) > 0 and that /LE is defined as in Exercise 12.38. 
Prove that 

at almost all points x of E. 

1 
UUE(X) =

c(E) 

Hint: See tKS], pp. 36-37, where more refined results are esta;blished. 
12.42. Suppose that c(E) > O. Prove that 

IIAI1 2 ~ c(~) 
for any distribution A such that supp AcE and ..4(0) = 1. 

What can be said if c(E) = O? 
Hints:' Let En denote the set of points of T at distance at most I/n 

(with respect to the metric introduced in the hints to Exercise 12.30) from 
E; put f.Ln = f.LE.' Show that 

where the V N are as in Exercise 12.5, and use the preceding exercise to deduce 
that (/LnlA) = lI/Ln11 2 and so that IIAII ~ II/Lnll. Using 12.3.9, extract a sub
sequence (fl-nk) converging weakly in M to a positive measure fl-' such that 
fl-'(I) = 1 and supp fl-' c E; apply (2) of the hints to Exercise 12.38. 

For the second part, show that c(En) -+ 0 if c(E) = O. 
12.43. Let (fl-k)k'=l be a sequence of measures such that 

and 

exists pointwise on Z. Show that there exists a measure /L such that 
limk~ <0 fl-k = /L weakly in M and p. = q,. 

Formulate and prove an analogous assertion applying when M is replaced 
throughout by LP where 1 < P ~ 00. 

12.44. Consider Cantor's ternary set E, formed as follows: from, [0, 21T] 
delete the open middle third, leaving the set E 1 ; from each component 
interval of E 1 delete the open middle third, leaving E 2 ; and so on indefinitely; 
define E = nk'=l E k • Verify that m(E) = O. (It is not difficult to show that 
Eis uncountable, perfeet, and nowhere dense.) 
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Construct Lebesgue's singular junction t as follows: define t k so that 
tk(O) = 0, t lc (21T) = 1, and t lc increases linearly by amount 2- k on each 
component interval of E k . The function t k is increasing and absolutely con
tinuous. The functions tlc converge uniformly as k -l>- 00 to a continuous 
increasing function t such that t(O) = 0, t(21T) = 1. (It can be shown that 
t'(x) = 0 a.e.) 

Let Ak be the measure defined by 

(u E C). 

Using the preceding exercise, show that limlc _ '" Ak = A weakly in M, where 
A is a positive measure for which 

(nE Z) 

and supp'\ c E. Verify in particular that :-I( ± 3k ) is equal to a nonzero 
number independent of k = 1. 2, 3,· .. , so that :-I(n) # 0(1) as Inl-l>- 00. (The 
associated set-function measure m" is easily seen to be continuous, in the 
sense that mll(J) -l>- 0 as m(J) -l>- 0 for subintervals J of [0, 21T].) 

FinaIly, define j(x) = 21T!(X) - x for 0 ~ x ~ 21T and by periodicity else
where. Show that j is continuous and of bounded variation, and that 
!(n) # o(I/lnl) as Inl-l>- 00 (compare the Remarks following 2.3.6). 

12.45. Consider M as a Banach algebra (see 11.4.1). 
Prove that any ideal in M is a translation-invariant subspace of M. 
Let V be the closed translation-invariant subspace of M generated by the 

Dirac tneasure e. Show that V is not an ideal in M. (See 11.1.3(2).) 
12.46. Let fL # 0 be an idempotent element of M satisfying IlfLlll ~ 1. 

Show that IlfLlll = 1 and that {L = XS, where 8 is a coset modulo some sub
group of Z (see 12.7.4(3)). 

Hint~: Show first that IlfLlll = 1. Choose no E Z such that ,\ = enofL 

satisfies :-1(0) = 1. Show that ,\ ;:" O. Put 8 0 = {n E Z : :-I(n) = I} = supp t 
Verify the inequality 

I:-I(m) - :-I(n)i2 ~ 2:-1(0) • Re {:-I(O) - :-I(m - n)} (m,nEZ) 

and deduce that 8 0 is a subgroup of Z. 
12.47. Let fL be an idempotent element of M satisfying IlfLIll > 1. Prove 

that IlfLlll ;:" 12V5. 
Remark. It is apparently unknown whether 12 V5 = 1.118· .. is the 

best-possible constant in the above statement. 
Hints: The proof of the preceding exercise shows that 

8 = {n E Z : (L(n) = I} = supp {L 
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is not a coset. Show that this entails the existence of n l , n2 , n3 ES such that 
n i + n2 - n3 f{:S. To estimate IlfLIII' consider fLU), where 

12.48. Any periodic subset P of Z is expressible in the form 

P = A + kZ == {a + kn : n E ~, a E A} 

where k is a positive integer and A is a (possibly void) subset of 

{O, 1, ... , k - I}. 

Use this remark to write down an explicit closed expression for the measure 
whose Fourier transform is the characteristic function of P. (Compare 
12.7.4(3)' and see .16.8.4(2).) 

12.49. Let E denote V' (1 < p ~ (0) or M, and let T be a homomorphism 
of LI into E (each being regarded as a convolution algebra). Using the 
arguments of 4.2.2, show that there exists a map Cl of Z into Zv{oo} such that 
(Tf)" = j 0 Cl for fELl, and deduce that T is continuous from LI into E. 

Show that T can be extended into a homomorphism T' of M into E such 
that (T' fL) = t1 0 Cl for fL E M, t1( (0) being interpreted to be 0, and 11 T' 11 ~ 11 TII. 

Hence (or otherwise) determine aB the homomorphisms of LI into LP, 
where 1 < p ~ 00. See also Subsection 15.3.6. 

Remark. The extension T' of T plays a useful role in the study of 
homomorphisms as set out in Chapter 4 of [R]. 

Hints: Use the closed graph theorem (I, B.3.3) to establish contin· 
uity. For the rest, use Exercise 12.43. A different type of proof for the 
case E = Mappears on p. 83 of [R]. 

12.50. Let rP be a complex-valued function on Z,and let m be a non-
negative real number. Prove that the foBowing assertions are equivalent: 

(1) 12: crrP(nr)I ~ mll2: cren, 11 <Xl for all trigonometrie polynomials 2: cren,; 

(2) rP = t1 for some fL E M satisfying IlfLIII ~ m. 
Remarks. There is an analogue of this assertion valid for general groups 

and due to Eberlein; see [R], Theorem 1.9.1 and the references cited there. 
The special case applying to the case in which T and Z interchange their 
roles reads as folIows: a continuous complex-valued function f on T 
belongs to A and satisfies 11 f 11 A ::;;; m, if and only if 

for all finite sequences (cr) and (xr) of complex numbers Cr and points Xr of 
T. See also MR 36 # 3065. 
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Hints: Consider the linear functional Y defined on the normed linear sub
space T of C by the formula y(t) = Lnez ~(n)t(n). Recall 12.2.9. 

12.51. Denote by Q the set of all measures JL E M expressible in the form 

JL = i Ck8ak + 1== l). + I, (1) 
k=l 

where fELl, (ak)k= 1 is a sequence of distinct points of T, and (Ck)k= 1 is a 
sequence of complex numbers satisfying Lk=i I ckl < 00, each off, (ak)k=i 
and (Ck)k=i possibly depending upon Jl. (Q is in fact the closed sub algebra 
of M generated by {Ba: a E T} u L i .) Measures of the form [) are termed 
discrete (or sometimes atomic or purely discontinuous); we will denote by 
Md the set of discrete measures. 

Verify that Q, regarded as a subalgebra of M, is a Banach algebra of the 
type described in llo4.l, and that 

IIJLl11 = i Ickl + 111111 
k=l 

whenever JL E Q is given by (1). 
Show that each y E r(Q) (see llo4.9) takes one of two forms, namely; 
(a) Y(JL) = 8(x) == L~=l ckX(ak), where X is a bounded (but not necessarily 

continuous) character of T; 
(b)Y(JL) = Yn(JL) == jl(n), where nE Z. 
By using the general version of Kronecker's theorem (see the Remarks 

following Exercise 2.2), deduce that the measure JL given by (1) is inversible 
in Q provided 

inf 18(n)1 > 0, jl(n) # 0 (n E Z). (2) 
neZ 

Remarks. Q does not exhaust M, comprising in fact precisely those 
measures whose continuous singular part vanishes; see [HS], Section 19, 
especially p. 337. The continuous singular measures are the ones that present 
all the difficulty in studying complex homomorphisms ofM; see 12.7.4. 

In view of the almost periodicity of 8 on Z (see Subsection 2.504), it turns 
out that (2) is actually equivalent to 

inf Ijl(n)i > O. (3) 
neZ 

Since it is trivial that (3) is necessary in order that JL be inversible in M, 
either of (2) or (3) is necessary and sufficient in order that JL be inversible 
in Q or in M. 

Hints: In discussing a given Y E r(Q), define the function X on T by 
x(a) = Y(L a). Discuss separately the cases in which Y I LI = 0 and Y I Li =1= 

0, using 4.1.2 in the later case. 
12.52. Let E be a closed subset of T whose fron tier F contains no 

nonvoid perfeet set. Prove that E is a spectral synthesis set. 
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Hints: Suppose that S E P(E) and that f E A vanishes on E; it has to be 
shown that fS = O. Putting S1 = fS, use Exercise 12.31 to show first that 
E1 == supp S1 is a subset of F. Assuming that S1 #- 0, E1 must have at least 
one isolated point, say a. Without loss of generality, assurne that a = O. 
Consider the functions U e constructed in Exercise 10.26 and show that 
IIueS 1 11p -7 0 with e. Verify that, on the other hand, ueS1 is independent of e 
if e is sm all enough, and show that this leads to a contradiction ofthe rel~tion 
OE EI = supp SI' 

12.53. This exercise provides a general basis for one half of the 
Malliavin-Kahane-Rudin non-synthesis theorem mentioned in 11.2.3 in 
connection with the algebra L 1(Rm ) and again in 12.11.4 for the algebra 
A = A(T); see [Kz], pp. 231-232; [HR], (42.15); [Kah2], pp. 63-64, 68. 
The other half of the programme consists of proving the existence off and 
(J as prescribed below for certain algebras B. This is in itself fairly 
complicated; see [R], Section 7.6.4; [Kz], pp. 233-235; [HR], 
(42.16)-(42.19); [Kah2], pp. 68-72; MR, 39 # 4611. 

In what folIows, B denotes a commutative Banach algebra with unit e 
(as in 11.4.1). If I is an ideal in B, the zero-set or hull ofI is defined to be 
the set 

Z(I) = {y E r(B) : I'U) = 0 for all f E I} ; 

the notation is a natural extension of that used in 11.4.3. For every ideal 
I in B, Z(I) is a closed subset of r(B) (see 11.4.18). 

If Eis a subset of r(B), the kernel of Eis defined to be the set 

I(E) = Cf E B: I'U) = 0 for all I' E E} ; 

this is always a closed ideal in B. For regular algebras B (see [Kz], 
p. 223), Z(I(E)) = E for every closed subset E of r(B). 

A closed subset E of r(B) is said to be a spectral synthesis set (or 
spectral set) for B, if and only if I(E) is the unique closed ideal I in B such 
that Z(I) = E. 

One says that spectral synthesis holds in B, if and only if every closed 
subset E of r(B) is a spectral set for B; this is so, if and only if 

1= I(Z(I)) 
for every closed ideal I in B. 

Denote by B' the topological dual of B, the duality being indicated by 
<, ). 

Assume that f E B, (J E B' and (J +- O. Define for all t E R, 

C(t) = Ilexp (itj) . (JIIB' 

and assume further that NE {I, 2, ... } is such that 

11 t INC(t) dt < 00. 

(1 ) 

(2) 
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For every ao E R, define fo = ao e + f; and, for every natural number n, 
define In to be the closed ideal in B generated by f~. Prove that there 
exists ao ERsuch thatlj =1= I k for allj, k E {I, ... , N + I} such thatj =1= k. 
(Since Z(In) = Z(Id = E, say, for all positive natural numbers n, it 
follows that E is not a spectral set for B.) 

Hint8: Proceed in the foBowing stages. 
(a) For aB hEB and aB a E B', define h . a E B' by 

<g, h . a) = <hg, a) for all g E B. 

Verify that 

Ilh . aliBI ~ IlhilB . IlaIlBI' 
(b) For aBf E Band all tE R, define et = exp (itj) E B by 

ex:> 
et = L (it)kfk/kL 

k=O 

Prove that the function t-+ et is uniformly continuous from R into B (cf. 
[HR], (42.14)). Conclude from (2) that 

!im I t INC(t) = O. (3) 
Itl-ex:> 

Prove also that, for aB t E R, 

d I' J: -1 ~l -et = Im u (et+~ - et) = zJet · 
dt ~-o.~~o 

(4) 

(c) One mayassume that <e, a) =1= O. (If not, replace a by h . a, where 
his suitably chosen in B, and use (a).) 

(d) Define <I>(t) = <e, et . a) for all t E R. Prove that <I> is continuous on 
Rand 

I <I>(t) I ~ C(t) for all t E R. (5) 

Since <1>(0) = <e, a) =1= 0 (see (c)), the Fourier transform 

cI>(8) = L <I>(t)e- ist dt 

is non-vanishing for so me real 8, say for 8 = -ao. On replacing f by 
fo = ao + f, one may assurne that 

cI>(O) =1= 0; 

that is, 

L <e, et . a) dt =1= O. (6) 
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(e) Suppose pE {O, 1, ... , N}. Using (2) and (b), prove that there 
exists T:p E Bf such that 

<g, T: p ) = 1 (itjP . <g, et • a) dt for all g E B. 

(f) Assume that q E {O, 1,2, ... } and gE B. Define 

Jp,q = <gr, T: p ) = 1 (itjP· <gr, et • a) dt. 

Use (3) and (4) and partial integration to prove that 

J = {-p . J p - 1• q - 1 for aB pE {I, 2, ... , N} and all q E {I, 2, ... } 
p,q ° for p = ° and all q E {I, 2, ... }. (7) 

(g) Deduce from (7) that, if pE {O, 1, ... , N}, then Jp,p+l = ° for all 
gE B; hence that T:p annihilates I p + 1 ' On the other hand, taking 
p = q E {O, 1, ... , N} and g = e, deduce that 

<fP, T: p ) = Jp,p = (-I)Pp! 1 <e, et ' a) dt =F 0, 

the last step by (6). Conclude that f p does not belong to I p + 1 

12.54. Prove that, if m is a positive integer, S a distribution, and 
DS E Dm, then SE Dm-I. Deduce that, if F is a distribution and FE 
Dm\Dm-t, then DF E Dh1 + I\Dm. 

Remark. This result was suggested to me by Dr Jo Ward. 
Hints: Look again at 12.4.3(2) and 12.4.6. 



CHAPTER 13 

Interpolation Theorems 

This chapter is devoted to the proofs and so me of the applications of the 
theorems of Riesz-Thorin and of Marcinkiewicz, each of which is concerned 
with operators T defined on subsets of Lebesgue spaces (constructed over 
fairly general measure spaces) and taking values in similar such spaces. 
Only relatively simple versions ofthe theorems are treated. Even so, some of 
the proofs are fairly complex and one aim has been to present all the 
important details. 

Section 13.1 collects some preliminaries concerning measure spaces. The 
treatment of the Riesz-Thorin theorem and its applications occupies Sections 
13.2-13.6, while Sections 13.7-13.11 deal with Marcinkiewicz' theorem and 
its applications. Among the latter is to be found the promised alternative 
approach to the study of the conjugate operator f --+ H * f = J (see Sections 
12.8 and 12.9). 

Suggestions for reading on further developments will be found in 13.4.2 
and 13.8.2. 

Any reader who is perturbed by the introduction of general measure spaces 
is advised to concentrate on the two concrete instances described in 13.1.3 
and interpret all the general definitions and concepts in these special cases, 
which suffice for all the important applications made in this' book. See also 
the remarks in 13.2.3(5). 

13.1 Measure Spaces 

13.1.1. Some Definitions. Bya measure space is meant a triplet (X, vft, fL) 
in which X denotes a set, vft a a-algebra of subsets of X (see [H~], p. 4), and 
fL a function on vft with values in [0, 00] such that 

fL(0) = 0 
and 

00 

fL(M) = L fL(M n) 
n=l 

whenever M is the countable disjoint union of sets Mn E vft (n = 1,2,· .. ). 

140 
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In connection with the second equation, a sum composed of nonnegative 
terms, at least one of which is 00, is interpreted to be 00; and the sum of a 
divergent series of nonnegative numbers is likewise interpreted to be 00. 

A subset M of Xis said to be p.-jinite if M E vif and p.(M) < 00. The measure 
space is (X, vif, p.) is termed a-jinite if X can be expressed as the union of a 
countable sequence of p.-finite sets. All the measure spaces we shall need to 
consider are a-finite, and we shall therefore make this a standing hypothesis. 
(The requirement of a-finiteness is not essential at all points; especially is this 
the case when one considers the measure spaces associated with Radon 
measures, which is the situation prevailing in harmonic analysis.) 

Nor will anything be lost by assuming, as we shall henceforth, that all 
measure spaces (X, vif, p.) are complete: this means (compare [HS], p. 155) 
that, if M is a p.-null set (that is, if M E vif and p.(M) = 0), then so too is 
any subset of M. 

13.1.2. The Spaces V(X, vif, p.). As is indicated in Chapter 6 of [W], or 
in greater detail in Sections 12 and 13 of [HS], and in 3.4 and 3.5 of [AB], 
one can associate with any measure space (X, vif, p.) a Lebesgue-like integra
tion theory. In particular, there is an associated concept of measurable 
function (the members of vif playing the role of measurable sets); and one 
can construct the associated Lebesgue spaces V(p.) = V(X, vif, p.) for 
o < p ~ 00. (The reader will notice that the spa.ce here denoted by V is 
symbolized ~I' in [HS].) 

If 1 is a given function on X, the p.-equivalence class of 1 is the set of all 
functions on X that agree p.-a.e. with I, that is, which agree with 1 save 
perhaps on a p.-null subset of X. 

For an arbitrary measurable function 1 on X we define the symbol 

1I/IILP(x . .It./L) or, more briefly, II/III'./L to mean 

and 

{J)/II' dp.}1'1' if 0 < p < 00 

ess sup 1I1 
x 

if p = 00. 

Then (compare Exercise 8.17 and Section 13.7) II/III'./L may be 00. V(X, vif, p.) 
consists precisely of those complex-valued measurable functions l.on X for 
which 11/111'." < 00. If we identify functions belonging to any one p.-equiva
lence class, then (/1,/2) ~ 11/1 - 12111'." (or 11/1 - 1211~." if 0 < p < 1) appears 
as a metric on V(X, vif, p.) and makes the latter into a complete metric 
space. If also 1 ~ P ~ 00, then 11 . 11M is a norm on LI'(X, .,/(, p.) and makes 
the latter into a Banach space. For details, see [W], pp. 68-72 and [HS], 
Section 13. 

13.1.3. Examples of Measure Spaces. For the applications we have in 
mind there are essentially only two types of measure space required, namely: 
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(1) The case in which X is areal interval, .ß is the set of Lebesgue measur
able subsets of X and fL is a multiple of the restriction of Lebesgue measure 
to.ß. The standard case for future reference is that in which X is the interval 
[-7T,7T) (or indeed any chosen interval of length 27T) and fL is (27T)-1 times 
the restriction of Lebesgue measure to the Lebesgue-measurable subsets of 
the chosen interval, the associated Lebesgue space being what in this book 
has been, and will continue to be, denoted by V'. 

(2) The case in which X is Z, .ß comprises all subsets of Z and fL is the 
so-called counting measure: fL(M) = the cardinal number of M whenever M 
is finite, fL(M) = 00 whenever M is infinite. A sIightly more general situation 
is that in which X and .ß retain the same meaning while fL is defined by 

fL(M) = L Cn , (13.1.1) 
neM 

where (cn)nez is a fixed nonnegative real-valued sequence defined on Z. Here, 
as in a similar context in 13.1.1, it is to be understood that fL(M) = 00 

wheitever M is infinite and such that the series on the right-hand side of 
(13.1.1) is divergent. The aforesaid counting measure arises when Cn = 1 for 
all nE Z. 

In case fL is specified by (13.1.1), V'(X,.ß, fL) comprises exactly those 
complex-valued functions cf> on Z !luch that 

if P < 00, or such that 

sup {Icf>(n)i : nE Z, Cn > O} < 00 
neZ 

if P = 00, two functions being identified if they agree at all points nE Z 
for which Cn > O. In particular, if fL is the counting measure, V'(X, .ß, fL) 
is just t"(Z) (as defined in 2.2.5). 

OCQ8,sionally [Example 13.2.3(2) provides an instance], it is necessary to 
speak of countjng measures on sets other than Z. Accordingly, it should be 
observed that the preceding remarks about counting measures and measures 
of the type (13.1.1) apply equally when Z is replaced by any subset thereof, 
or by any countable set whatsoever. In fact, similar considerations a,pply 
whe~ Z is replaced by an absolutely arbitrary set S, except that the counting 
measure on S will be a-finite (see 13.1.1) if and onIy if S is countable. 

13.1.4. Simple Functions. Given a measure space (X,.;{{, fL), a complex
valued function f on X is termed (X,.ß, fL)-simple (or just simple, if the 
measure space is understood from the context) if it is expressible in the form 

(13.1.2) 
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where the ck are complex numbers, the Mk are ,u-finite subsets of X, and XM 
is used to denote the characteristic function of the subset M of X. 

It is easy to see that a simple f may always be represented in the form 
(13.1.2) wherein, furthermore, the M k are disjoint. 

A simple function f belongs to U(,u) for every p satisfying 0 < p ~ 00. 

Moreover, the set of simple functions is everywhere dense in LP(,u), provided 
either that p < 00 or, if p = 00, that X is ,u-finite. (See [W], p. 93 and [HS], 
p.187.) 

13.1.5. Another Converse of Hölder's Inequality. For the proof of the 
Riesz-Thorin theorem we shall need the following variant of the converse of 
Hölder's inequality (compare Exercise 3.6). 

Suppose that (X,.ß,,u) is a measure space and thatfis a complex-valued, 
measurable function on X which is known to be integrable over each ,u-finite 
subset of X, that is, that 

for each ,u-finite subset M of X. Then, if 1 ~ P ~ 00, we have 

(13.1.3) 

the supremum being taken with respect to all simple functions g satisfying 
Ilgllp'.u ~ 1. (As usual, p' is defined by the relation l/p + I/p' = 1, together 
with the convention that p' = 00 if P = 1 and p' = 1 if P = 00.) Our 
hypotheses on f ensure that fg is integrable for every simple function g. 

Itis to beremarked that, iffis assumeda priori to belongto 

LP(,u) = LP(X,.ß, ,u), 

the assertion is contained in Theorem (15.1) of [HS]. It is essential that we 
dispense with this assumption, and additional argument is needed. 

Proof. The cases p = 00 and p = 1 are especially simple and demand 
no further explanation. Assurne therefore that 1 < P < 00. 

Let m denote the supremum appearing in (13.1.3). If Ilfllp.u is finite, 
Hölder's inequality shows that 

m ~ Ilfllp.u; 

the same is vacuously true if IlfilM is infinite. It thus suffices to show that 

Ilfllp.u ~ m. (13.1.4) 

Now if gis measurable, vanishes outside a ,u-finite set M, and Ilgllp'.u ~ 1, 
then g can be expressed as the pointwise limit of a sequence gk (k = 1, 2, ... ) 
of simple functions vanishing outside M and satisfying Ilgkllp'.u ~ 1. It then 
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fo11ows from Lebesgue's convergence theorem that m, be it finite or infinite, 
is unaltered if in its definition we allow g to range over all measurable 
functions vanishing outside a /L-finite set and subject to Ilgllp',~ ::;; 1. Then, on 
replacing g by g • sgnI, where 

we infer that 

{ 
I(x) 

(sgnj)(x) = ~(x)1 
if I(x) "* 0 

otherwise, 

m ~ sup Ix IIlg d/L, (13.1.5) 

where now g ranges over all nonnegative measurable functions vanishing 
outside some /L-finite set and satisfying Ilgllp'.~ ::;; 1. The monotone conver
gence theorem, together with the assumed a-finiteness of the measure space 
(X, ..It, /L), shows next that the inequality (13.1.5) remains undisturbed if 
the eompeting g's are freed from the demand that they vanish outside some 
/L-finite set. 

This being so, let Ir = inf(III, rXM,) for r = 1,2,···, where MrE.A, 
M r c M r + l' /L(Mr) < 00, and U~ 1 M r = X. Then Ir E LP(/L) and it is clear 
from the final version of (13.1.5) that 

Ix Irgd/L ::;; m 

for any nonnegative measurable function g satisfying Ilgllp',~ ::;; 1. So, by 
Theorem (15.1) of [HS], 

(13.1.6) 

Since Ir t 111 as r t 00, the monotone convergence theorem combines with 
(13.1.6) to yield (13.1.4) and so completes the proof. 

13.2 Operators of Type (p, q) 

13.2.1. The Concept of Type. Let (X, .A, /L) and (Y, .AI, v) be measure 
spaces as described in 13.1.1, and let ~ denote a linear subspace of 

LP(/L) = LP(X, .A, /L). 

We shall in this section be concerned with a linear operator T defined on ~ 
and taking values in the space of complex-valued v-measurable functions on 
Y which are v-integrable over v-finite sets (or in the set of v-equivalence 
classes of such functions). 

Given two exponents p and q from the range [1, co], T is said to be of type 
(p, q) [or, more precisely, of strang type (p, q)] if and only if there exists a 
number m ~ 0 such that 

IITIllq,v ::;; m IIIllp,1L (13.2.1) 
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for J E ~. Thc norms appearing in (13.2.1) are to be interpreted in the fashion 
explained in 13.1.2. The least admissible value of m in (13.2.1) is denoted by 
11 TIIM or 11 TIIM:U.V and is termed the (strang) (p, q)-narm of T. If T is not 
of type (p, q) we shall write 11 Tllp,q = 00. These definitions apply even if T 
is not linear (see Section 13.7) but we shall in this section consider only the 
case in which T is linear. They apply also when p > 0, q > 0; but, unless 
the contrary is explicitly stated, we assurne that p ~ 1 and q ~ 1. 

From 13.1.5 it follows that in all cases 

IITllv,q = sup I{ TJ·gdvl, (13.2.2) 

the supremum being taken with respect to those JE '.b satisfying IIJ Ilv,u ~ 1 
and those (Y, %, v)-simple functions g satisfying Ilgllq',v ~ 1. Because of 
linearity of T, one may replace the inequality signs in the preceding sentence 
by equality signs. It is also true that 

IITllv,q = sup IITJllq,v, (13.2.3) 

the supremum being taken relative to those JE '.b satisfying IIJllv,u ~ 1 (or 
IIJllv,u = 1). 

Theseremarks make it plain that T is oftype (p, q) ifandonlyifit mapsthe 
normed linear subspace '.b of LP(fL) into the Banach space Lq(v) = Lq( Y, %, v) 
in a continuous fashion. 

In applications it often arises that the heuristic form of T is given in 
advance and that there is a considerable freedom of choice in '.b: T may, for 
example, be initially defined on L2(fL), in which case '.b might be selected to 
be L2(fL) itself, or to be the space of (X, vIt, fL)-simple functions. However we 
will show that if, as is usually the case, '.b is everywhere dense in V'(fL), then 
the type classification of T is largely independent of this ambiguity, depending 
in fact solelyon the possibility or otherwise of extending T into a continuous 
linear operator from the whole of LV(fL) into Lq(v). 

13.2.2. Extension Theorem. Suppose that T and '.b are as in 13.2.1 and 
that T is of type (p, q). Suppose also that '.b is everywhere dense in LV(fL). 
Then T can be uniquely extended int'o a continuous linear map of LV(fL) 
into Lq(v) which satisfies 

(13.2.4) 

for all J E LV(fL). 
Proof. If such an extension exists, it is unique on account of its continuity 

and the assumed denseness of '.b in LV(fL). 
An extension of the desired type is obtainable in the following way. Given 

JE LV(fL), chose a sequence (fn):'= 1 of elements of '.b such that 

lim IIJ - Jnllv,u = O. (13.2.5) 
n-oo 
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Taking any finite value of m not less than 11 Tllp,q, (13.2.1) gives 

IITfn - Tfn,!lq,v ~ m IIfn - fn,IIp,u 

for all n and n', so that (13.2.5) indicates that the sequence (Tfn):=l is 
Cauchy in Lq(v). Furthermore, (13.2.1) entails that the limit of (Tf,,):=l 
is independent of which sequence Un):=l is chosen, provided only that it is 
subject to (13.2.5). Denote the limit by T d. It is then clear from the preceding 
sentence that Tl maps LP(J.') linearly into Lq(v), and that the restriction of Tl 
to \l) is none other than T. Finally, by (13.2.1) and (13.2.5), the definition of 
T d shows that 

~ lim inf m Ilfnllp.u "_00 

Since m is arbitrary save for the restriction 

m ~ IITllp.q, 
(13.2.4) follows from (13.2.6). 

(13.2.6) 

13.2.3. Some Examples. (1) The Fourier transformation. Take (X, J(, J.') 
as in 13.1.3(1), and (Y, %, v) as in 13.1.3(2) with v the counting measure 
on Y = Z. The operator T is taken to be the Fourier transformation: 

Tf=j 

for fE L1(J.') == L1. It is evident that T maps L1 into LOO(J.') == lOO(Z). 
Moreover, since the v-finite sets are just the finite sets, the hypotheses of 
13.2.1 are fulfilled. 

That T is of type (1, (0) is the content of 2.3.2. 
On the other hand (8.2.2) says exactly that TIL2(J.') is of type (2, 2). 
In particular, therefore, the restriction of T to the J.'-simple functions is 

simultaneously of types (1, (0) and (2,2). This, combined with the Riesz
Thorin theorem, will permit us to make further type-statements about T; 
see Section 13.4. 

(2) The moment operator. Here we take X = [0, 1], ..It the set of 
Lebesgue-measurable subsets of X, J.' the restriction of Lebesgue measure to J(, 

Y = {O, I, 2, ... }, % the set of all subsets of Y, and v the counting measure 
on Y. Let 8 be the so-called moment operator defined on L1(J.') by 8f = f#, 
where 

f#(n) = t f(x)x" dx (n = 0, I, 2, ... ). 

Once again the hypotheses of 13.2.1 are satisfied. 
It is not difficult to show (see Exercise 13.7) that 8 is a one-to-one linear 

map of L1(J.') into co( Y) c L"'(v), and that 8 is of type (1, <Xl). (The definition 
of co( Y) is exactly analogous to that of co(Z) given in 2.2.5.) 



[13.2] OPERATORS OF TYPE (p, q) 147 

It is also true, but not trivial, that S L2(fL) is of type (2, 2): this is in fad the 
eontent of a famous inequality due to Hilbert (see [HLP), pp. 212 and ~26). 

Onee more, an applieation of the Riesz·Thorin theorem leads to further 
information abont S; see Exereise 13.8. 

(3) The conjugate function operator. Take (X, vif, fL) = (Y,.AI, v) as 
in 13.1.3(1), so that V'(fL) = V'(v) = LP. Consider the transformation 
T: f --+ J = H * f defined in Seetion 12.8. We know that Tf is defined dis
tributionally whenever fELl. M. Riesz' theorem 12.9.1 asserts that TIV is 
of type (p, p) whenever 1 < P < 00. On the other hand, from 12.8.4 it 
appears that T is not oftype (1,1) nor oftype (00,00). More about the nature 
of T aeting on V will appear in Section 13.9 in conneetion with the concept 
of "weak type" of operators. 

(4) Further examples appear in Section 13.6 and Exereises 13.5 and 13.6. 
(5) This is a eonvenient point at whieh to interject some remarks addressed 

to the reader who ehooses to limit the general Theorems 13.4.1 and 13.8.1 to 
versions possessing a degree of abstraetion just adequate to cover the 
essential applieations made in this book. 

As has been said in the introductory material to this chapter, it is for this 
purpose enough to be prepared to meet cases in whieh each of (X, vif, fL) 
and (Y, .AI, v) is one of the measure spaees described in 13.1.3. 

The operators whieh are likewise essential to subsequent applications are 
all expressible (or reducible without loss of essential scope) to one of two 
forms. Those to which Theorem 13.4.1 will be applied are of the form 

(13.2.7) 

while Theorem 13.8.1 will be applied also to certain operators of the form 

Tf(y) = sup ITNf(y)l; (13.2.8) 
N~l 

the domain of T may without loss be taken to a subset of V(X, vif, fL) and 
to be such that earlier results in this book guarantee that (13.2.7) holds 
pointwise v-a.e. and in mean with various exponents. In either case one can 
choose the T N (N = 1,2,· .. ) to be of the form 

(13.2.9) 

where K N is bounded, measurable in the pair (x, y) (see [HS], p. 379), and 
such that 

for 0 < p < 00. (Different choices of the T N can, of course, lead to the same 
T; we do not always indicate explicitly an admissible choice of the T N 
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satisfying all these conditions.) It is then very simple to show that T Ni is a 
bounded v-measurable function on Y whenever i belongs to LG(X, jt, fL) for 
some q satisfying 1 ", q ", 00. 

For operators of the form (13.2.8), however, we shall not be able to 
guarantee apriori that Ti is finite-valued (everywhere or even v-a.e.). The 
opening remarks in Section 13.7 will refer specifically to this state of affairs. 

13.2.4. Preamble to the Riesz-Thorin Theorem. In terms of the 
"type" language, it is very simple to state roughly the aims of the Riesz
Thorin theorem. This theorem asserts that if an operator T is simultaneously 
of types (Po, qo) and (Pl' ql)' where 1 ", Pj' qj ", 00 for j = 0, 1, then T is 
also of type (p, q) for certain "intermediate " pairs (p, q) and that for such 
pairs, 11 Tllp,q can be majorized in a certain way. This explains why the 
theorem is often described as an interpolation theorem. 

Before we can em bark on the proof of the Riesz-Thorin theorem one more 
auxiliary is requircd, this time from complex variable theory. 

13.3 The Three Lines Theorem 

The three lines theorem, a simple result in complex variable theory, is the 
major tool used in the proof we give of the Riesz-Thorin theorem. 

Throughout this section V denotes the vertical strip in the complex ~-plane 
defined by 

~ = g + i7), 7) E R. (13.3.1) 

We are concerned with a function F defined, bounded, and continuous on 
the strip V and analytic interior to V. The crucial result is as follows. 

13.3.1. With the above notations and assumptions, put 

M~ = sup {IF(g + i7))1 : 7) E R} (0 ", g ", 1). (13.3.2) 

Then, for 0 ", g ", 1, 
(13.3.3) 

Proof. Since it is plainly enough to show that (13.3.3) holds when M o-and 
M1 are replaced by arbitrary fixed numbers exceeding Mo and M1 , respec
tively, we may assume that Mo and M 1 are positive. 

Then, by considering the function FW/Mä-cM1c in place of F, it is seen 
to be enough to deal with the case in which Mo = M 1 ", 1. In other words, 
we wish to show that from the assumptions 

(7) E R) (13.3.4) 

it follows that 

(13.3.5) 
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To this end we consider first the case in which 

lim F(~ + i7J) = 0 
Inl- oo 

(13.3.6) 

holds uniformly for 0 ~ ~ ~ 1. In this case the desired conclusion (13.3.5) 
follows directly on applying the maximum principle to a rectangle 0 ~ ~ ~ 1, 
17J1 ~ y, where y is chosen so large that 

IF(~ ± iy)i ~ 1 

for 0 ~ ~ ~ 1, the choice of such a number y being possible by virtue of 
(13.3.6) holding uniformly for 0 ~ ~ ~ 1. 
~n general, we apply the special case just established to each of the 

functions 
(n=I,2,···). 

Each F n satisfies the condition (13.3.6) previously and temporarily imposed 
upon Fand 

IFn(~ + i7J)i ~ 1 

for g = Oor 1 by virtue of (13.3.4). Accordingly, (13.3.5) holds with F n in 
place in F, and (13.3.5) itself follows thence on letting n ~ 00. 

13.3.2. Remark. Almost any textbook on complex function theory will 
contain a discussion of many extensions and generalizations of 13.3.1, which 
we leave in the simple and unadorned version directly useful in Section 13.4. 

13.4 The Riesz-Thorin Theorem 

13.4.1. (Riesz-Thorin) Let (X,.Jt, p.) and (Y,.AI, v) be measure spaces, as 
in 13.1.1, and let T be a linear operator defined for all p.-simple functions and 
taking values in the set of functions on Y which are v-integrable over each 
v-finite set~. Suppose that T is simultaneously of types (Pi' qi) (j = 0,1) 
where 1 ~ Pi' q, ~ 00. Then, for any exponent pair (p, q) of thc form 

1 1 - t t -=--+-, 
:P Po PI 

1 1 - t t 
- = -- +-, 
q qo ql 

o ~ t ~ 1, 

T is of type (p, q) and 

(13.4.1) 

In particular, if P < 00, or if Xis p.-finite, T can be extended so as to map 
I?(p.) continuously into Lq(v). 

Remarks. (1) The preceding result may be expressed in the 
following way: the function log 11 T" l/I%,l/{J on the rectangle 0 ~ ex, ß ~ 1 is 
convex on any segment joining two points at which it is finite. This 

1 Or in the set of v-equivalence classes of such functions. 
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explains why the Riesz-Thorin theorem is often deseribed as a convexity 
theorem. 

(2) If Pj < 00 for jE {O, I}, and if X is a loeally eompaet Hausdorff 
spaee and f.1 a positive Radon measure on X, one may replaee f.1-simple 
functions by linear eombinations of eharaeteristie functions of relatively 
eompaet f.1-measurable sub sets of X. 

Proof. Onee (13.4.1) is established, the final sentenee will follow at onee 
from 13.2.2. 

Ta handle (13.4.1) we write aj = l/pj' ßj = l/gj for j = 0, 1 and a = l/p, 
ß = l/g, making the eonventions that 1/0 = 00 and 1/00 = 0. Define also 

for all eomplex ~. Thus a(j) = aj and ß(j) = ßj for j = 0, 1 and a(t) = a 
and ß(t) = ß· 

Let 1 be a fL-simple funetion. By 13.1.5, 

II T11Iq,v = sup ILT1·gdvl, (13.4.2) 

the supremum being taken with respeet to all v-simple functions g satisfying 

Ilgllq',v = 1. 
In order to establish (13.4.1), it will thus suffiee to ehoose and fix a fL-simple 

funetion 1 satisfying 11111 p,U = 1. say 

1 = 2: akXAk ' 

k 

the A k being pairwisedisjoint, and a v-simple function g satisfying Ilgllq ',v = 1, 
say 

the B h being pairwise disjoint and show that the integral 

1 = L Tl· g dv 

satisfies the inequality 

(13.4,3) 

In the above expressions for 1 and g, eaeh A k is a fL-finite set, eaeh B h is a 
v-finite set, the sums are finite, and we may assurne that ak -:f ° and bh -:f 0, 

In proving (13.4.3) we write 

where u and v are real-valued and /L-measurable and v-measurable, respee
tively, At this point we eonsider two eases in turn, 



[13.4] THE RIESZ·THORIN THEOREM 151 

(1) Suppose first that a > 0 and ß < L In this case we introduce the 
functions fr. and gr. defined by 

(13.4.4) 
Define further 

(13.4.5) 

in terms of which 
1 = F(t). (13.4.6) 

The linearity of T leads to the formula 

F(~) = L lak la(O/albh l(l-ß(r.>l/O-ßl f TXAk ' XBhei(u+Vl dv, 
k.h Y 

which makes it plain that F is an entire analytic function which iR bounded 
on the strip V. We aim to apply 13.3.1. 

If g ;::, Re ~ = 0, then Re a(~) = ao and Hölder's inequality gives [rom 
(13.4.5) and the assumptions about T 

I F( i1J)I :::;; 11 Tfin 111/ßo, v . Iigin 111/0 -ßol, v 
:::;; 11 T II1Iao ,l/ßo • Ilfin 111/ao ,Il • Iigin 111/(1 -ßo l, V' 

But from (13.4.4) it follows by direct calculation that 

Ilfin 111/ao ,Il = Ilf 11~7~~1l = I 
and that 

Iig 11 - Ilgll(l- ßo l/(l-ßl - 1 in 1/(1-ßol,v - 1/(l-ßl.v -, 

since l/a = p and 1/(1 - ß) = q' and 

Ilfllp.1l = Ilgllq',v = 1. 

Consequently (13.4.7) shows that 

(13.4.7) 

Mo ;:: sup {IF(i1J)1 : 1J E R} :::;; 11 TlllIao,l/ßo = 11 Tllpo,qo' (13.4.8) 

An exactly similar argument shows that 

(13.4.9) 

On applying 13.3.1, equations (13.4.6), (13.4.8), and (13.4.9) lead to (13.4.3), 
and the proof is complete in this case. 

(2) Of the excluded cases, that in which a = 0 and ß = I leaves nothing 
to be proved. 

If ß = I, in which case ßo = ß1 = 1, and a > O,fr. is defined as in (13.4.4) 
while gr. is defined to be g. The proof then proceeds as before. 

An entirely similar modification applies if a = 0, in which case ao = a1 = 0, 
andß< L 
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13.4.2. Comments on the Riesz-Thorin Theorem. (1) In its original 
form, as given by M. Riesz in 1926, the measure spaces involved had finite 
sets X and Y and counting measures fL and v, the functions (finite sequences) 
allowed were real-valued, and convexity was asserted only for exponent pairs 
(p, q) subject to the additional restriction 1 ~ P ~ q ~ 00. Moreover, the 
result was expressed in terms of bilinear functionals rather than linear 
operators. (This corresponds to the introduction of the integral Jy Ti' g dv 
in the preceding proof and represents a standard possible variation in form of 
the theorem.) See [HLP], pp. 214-220, where complex-valued sequences are 
admitted but the proof really uses only real-variable methods, and the eon
clusion is again the restricted form of convexity. This restricted version is, 
however, adequate for several important applications. 

Thorin's major contribution was the use of complex-variable methods, 
together with some simplifications in the proof, leading to unrestricted 
convexity (as formulated in 13.4.1); see Thorin [1], [2]. 

The proof given here is based on that appearing in [Z2], pp. 95-96. It 
plainly depends crucially on using complex-valued functions. For a somewhat 
more general discussion, see [DS 1], pp. 520-526. 

(2) Various important extensions of the theorem are now known. 
Some of these apply to spaces LP with 0 < p < 00 and some to the Hardy 

spaces HP for the same range of values of p (see Exercise 3.9); for the details 
see [Z2], Chapter XII, where convexity theorems for multilinear operators are 
also considered. (An application of such a convexity theorem will be mentioned 
briefly at the end of 16.4.9.) Other types of extension are given by O'Niel [2], 
Campanato and Murthy [1]. 

We also direct the reader's attention to extensions given by Stein and Weiss 
[2] in which the measures {l and v, as weil as the exponents p and q, are 
allowed to vary in a certain way. In this treatment 13.4.1 is formulated for 
operators T which are not necessarily linear but merely "sublinear." Stronger 
versions of 13.4.1 are also proved; cf. [Moz], Chapter 1. 

(3) As we shall see in 13.8.3, (13.4.1) does not express all that is known to 
follow from hypotheses like those in 13.4.1. Moreover, a conclusion similar 
to, but a little weaker than, (13.4.1) derives from weaker hypotheses; see 
Theorem 13.8.1. 

(4) Elaborate studies of interpolation problems and techniques, which are 
in some senses abstract versions of the Riesz-Thorin theorem, have been made. 
See, for example, Calderon [1] and the references cited there, Stampacchia [1]; 
Stein [2]; Schechter [1]; Peetre [1], [2], [3]; Coifmann, Cwikel, Rochberg, 
Sagher and Weiss [1]. See also MR 37 # 1951. 
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13.5 The Theorem of Hausdorff-Young 
As a first application of the Riesz-Thorin theorem, we derive a result that 

constitutes a partial extension of Parseval's formula (8.2.2) and the Riesz
Fischer theorem 8.3.1. The result we obtain appears in two mutually dual 
assertions. 

13_5.1. (Rausdorff-Young) Suppose that 1 :;;;: P :;;;: 2. 
(1) If fE LP then 

IIJllp' :;;;: Ilfllp· 
(2) If 4> E fP(Z), then the series 

2: 4>(n)e1nx 

nEZ 

converges in LP' to a function ~ such that 

Proof. (1) This will follow from applying 13.4.1 and 1~.2.2 to the situation 
described in 13.2.3(1). With the notation used there, 2.3.2 and (8.2.2) show 
that, if we restriet T to the p.-simple functions, then 

II Tlll.", :;;;: 1, 
So, by 13.4.1, 

whenever 

1 1 - t t 
- = -- +-, 
P 1 2 

1 1 - t t 
-=--+
q 00 2 

(13.5.1) 

for some t satisfying 0 :;;;: t :;;;: 1. These requirements signify that 1 :;;;: p :;;;: 2 
and q = p'. To derive (1), it now suffices to apply 13.2.2. 

(2) Rere we interchange the roles of the measure spaces (X, A, p.) and 
(Y, %, v) used in the proof of (1). The v-simple functions 4> are precisely 
those with finite supports. For such 4> we define 

T4> = 2: 4>(n)en , 
nEZ 

a trigonometrie polynomial. It is evident that T is of type (1,00) and of 
type (2,2), and that (13.5.1) holds. [The assertion concerning IIT112.2 follows 
from Exercise 1.7(1).] By 13.4.1 and 13.2.2 it folIows, as in (1), that T can 
be continuously extended so as to map LP(v) == fP(Z) into LP'(p.) == U' 
whenever 1 :;;;: P :;;;: 2, and that 

IITllp.p' :;;;: L 

The continuity ofthis extension of T shows at once that, for any 4> E fP(Z), 
the series appearing in (2) converges in Lp' in accordance with the relation 
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CPN(n) = {~(n) 

so that limN~'" CPN = cP in tP(Z). 

if Inl ~ N, 

otherwise, 

13.5.2. Remarks. The theorem was proved by W. H. Young in 1912-1913 
for the special values of p of the form 2kj(2k - I), where k is a positive 
integer. For general values of p in the interval [1,2], the result is due origin
ally to Hausdorff (1923). F. Riesz showed that the result was true for 
expansions in terms of a general orthonormal system of functions U n satisfying 
Iunl ~ I a.e.; this result also dates from 1923; see [Z2]' p. 102. 

The idea of deriving 13.5.1 and F. Riesz's extension thereof from the 
convexity theorem is itself due to M. Riesz (1926). 

The Hausdorff-Young theorem, like the L2-theory of Chapter 8, can be 
extended to Hausdorff locally compact Abelian groups in general. (That the 
measure spaces involved are no longer a-finite in general leads to no insuper
able difficulties.) See [R], Chapter 1; [E], Sections 10.3 and 10.4; [We], 
Chapitre VI; [HR], (31.22). See also 13.6.3 below. 

For other cases of inequalities of the type IIJllq < 00, see Prohorenko [I]. 
For furt her results, see Edwards [14]; Williams [I]; Fournier [1]; MR 

49 # 9518; 51 # 1243; 52 # 8788; 55 # # 8689a,b; 56 # 953; 57 # 
10366. 

13.5.3. Best-possible Nature of the Hausdorff-Young Theorem. 
There are various senses in which 13.5.1 is the best possible of its type. 

(I) In 13.5.1(1), the exponent p' cannot be replaced by anything smaller; 
that is, if q < p' is given, there exist functions j E V such that J rf: tq(Z). 

Indeed, as has been noted in 8.3.2, the breakdown is rather dramatic when 
p = 2. For general values of pE [I, co) we observe that Exercise 7.8 shows 
that, for any 8 > 0, there exists a functionj E V such that J(n) = Inl- (l/p' +6) 

for n 'i- O. Since q < p', 8 can be chosen so small that q(ljp ' + 8) ~ 1, in 
which case it is evident that J rf: tq(Z). 

For the same purpose one might use the periodic function j for which j(x) 
is Ixl"-l or 0 according as lxi ~ I or I < lxi ~ 7r, where 0 < a < 1; for this 
function it is easily verified that limlnl-+oo Inj"j(n) exists and is nonzero, 
so that fE LP if and only if (I - a)p < 1 and jE (q(Z) if and only if 
aq> 1. 

This last example serves to show also that, in 13.5.1(2), the exponent p' 
cannot be replaced by anything larger. 

See also Brown [I]; Hewitt and Ritter [1]; Edwards, Hewitt and 
Ritter [1]. 
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(2) Both 13.5.1(1) and 13.5.1(2) beeome false when p > 2: this will be 
established in two ways in Seetions 14.4 and 15.4, respeetively. 

(3) If 1 ::::; P < 2, ffLP == {f : f E LV} is a proper subset of tP'(Z) (whereas 
the two sets are identieal when p = 2); eompare the next paragraph and see 

also Seetion 15.4. 
From (2) immediately above it follows that, dually, fftP == {~ : 4> E tP(Z)} 

is a proper subset of LP', whenever 1 ::::; p < 2. (For otherwise it would 
appear that g E tP(Z) whenever g E LP', whieh is eontrary to (2) sinee p' > 2.) 

13.5.4. Cases of Equality in 13.5.1 It is possible (see [Z2], p. 105) to show 
that equality oeeurs in 13.5.1(1) if and only ifj(x) = eonst ein., for some n E Z, 
and in 13.5.1(2) if and only if 4> vanishes for al1 but at most one element of Z. 

In eaeh ease the "if" assertion is trivial, but the "only if" assertion is not 
so. The result is due to Hardy and Littlewood (1926). 

A diseussion applying to general groups (eompare 13.5.2) is due to Hewitt 
and Hirschman [1]. 

13.5.5. An Application. The Hausdorff.Young theorem will in this sub· 
seetion be employed to prove a result stated in Subseetion 12.11.4 in eonneetion 
with equalities of the type j8 = 0, where jE A and 8 E P. 

Throughout the present subseetion it will be supposed that 1 ,;;; q ,;;; 00; 

that 8 is a pseudomeasure of the form 8 = ~, where 4> E tq(Z) (so that, if 
q = 00,8 may be an arbitrary pseudomeasure); that E denotes a closed subset 
of T eontaining supp S; and that fE A, so that f = t/I for some l/J E ('1(Z). It 
will be assumed furthermore that f vanishes on E and that, for some sequenee 
(1:)}=1 ofpositive numbers tending to zero, 

j(x) = O(B~1/2)-(1/q» (13.5.2) 

uniformly for x at periodie distanee (see Exereise 12.30) at most Bj from E. 
Our aim is to show that under these eonditions 

j8 = o. (13.5.3) 

Before eommeneing the proof we observe that if 1 ,;;; q ,;;; 2, the eondition 
(13.5.2) beeomes void and may be dropped entirely; in this ease, too, the proof 
presents no trouble sinee, by 13.5.1,8 is a function in Lq'. In ease q = 00, l/q is 
to be interpreted as zero: this ease covers the statement made in Subseetion 
12.11.4. 

As a final preliminary, it is to be observed that, by (12.11.3), the equation 
(13.5.3) is equivalent to 

( 13.5.4) 

whieh is what we shall in fact establish. 
Proof of (13.5.3). For brevity we shall write c in plaee of % - l/q, and we 

shall make a legitimate change of stanee by regarding E as a closed periodie 
set of real numbers. In view of the preliminary remarks, we may and will 
assume that 2 < q ,;;; 00. Throughout the eomputations, B will denote various 



156 INTERPOLATION THEOREMS 

numbers depending at most upon q and S; the value denoted by Bisnot 
necessarily the same at each appearance. 

Let Ai and Ui denote the periodic sets 

and 

respectively, so that (13.5.2) holds for x E E + Ui . Define further the functions 

k _ (XAj * XAj) 
j - (ei/217)2 

and Kj = kj , and note that Kj E (l(Z). It is very simple to verify that 0 ~ k j 
~ Beil, and that k j vanishes outside U j • Consequently, 

(1~8~oo). 

In particular, taking 8 = 2q/(q - 2) > 2, 13.5.1 can be applied to yield 

(13.5.5) 

Now the k j form an approximate identity in LI, so that limj~oo Kj = 1 
boundedly on Z, and therefore r/s * 4> = limi~"" r/s * (KI4» pointwise on Z. This 
mayaiso be written: 

r/s * 4>(n) = lim -21 fe-1n''f(X)Si(X) dx 
j ..... «J 7T 

(13.5.6) 

for nE Z, where Si = (Kj4>(' = kl * S. Since Sj is casily verified to vanish 
outside E + U j , and since 1 = 0 on E, (13.5.6) and (13.5.2) combine to yield 
the majorizations 

Ir/s * 4>(n) I ~ lim inf 21 f 11SI1 dx 
I~OO 17 DJ 

(13.5.7) 

where we have written D j for the intersection of (E + Uj)\E with (0, 217). 

Now the Cauchy.Schwarz inequality gives 

(13.5.8) 

where m(Dj ) denotes the Lebesgue measure of D j • Furthermore, by Parseval's 
formula, Hölder's inequality for sums, and (13.5.5), 

Accordingly, (13.5.7), (13.5.8), and (13.5.9) together show that 

Ir/s * 4>(n) I ~ lim inf O(e/) • m(Dj )l/2 • Bei-c 
I~OO 

= lim inf O[m(Di )1/2]. 
j~"" 

(13.5.9) 

(13.5.10) 
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Since E is closed, the intersection of the D j is void; so countable additivity 
ofLebesgue measure guarantees that m(Dj ) -+ 0 asj -+ 00, and (13.5.4) follows 
from (13.5.10). 

Remarks. (1) If one assumes E to be such that m(D j ) -+ 0 as j -+ 00 with 
some preassigned degree of rapidity, one may correspondingly relax the 
condition (13.5.2). 

In any case, in place of (13.5.2) one might assume that 

{J. 111 2 dX}1/2 = o(e}/2-1/Q), 

DJ 

which in turn is satisfied if 

for some p > 2. 

{J. 111 p dX}l/P = O(e}'2-1/Q) 
DJ 

(13.5.11) 

(13.5.12) 

(2) Somewhat similar procedures can be applied to general groups; see Herz 
[2], p. 210. See also MR 35 # 7081. 

(3) In case q = 00, the resulting exponent t is (13.5.2) is best possible; see 
MR40 # 629. 

13.6 An Inequality of W. H. Youn~ 

We shall now apply 13.4.1 to the proof of a result about convolutions 
forecast in Remark (2) following 3.1.6. 

13.6.1. (W. H. Young) Suppose that 

Thenf * geL' and 

whenever fe LP and ge Lq. 

1 1 1 
-=-+--1 ~O. 
r p q 

(13.6.1) 

(13.6.2) 

Proof. We take (X,.ß, J.l) = (Y, %, v) as in 13.1.3(1). Fixfe LP and 
let T be the linear operator defined for all simple functions g by 
Tg = f * g. By 3.1.6, T is of type (I, p) and 

IITI11, P ~ II flip' 
By 3.1.4, T is oftype (P', (0) and 

IITll p" 00 ~ Ilfllp' 
An application of 13.4.1 shows that 
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whenever there exists a number t in [0, 1] such that 

1 1 - t t 
-=--+-
q 1 p" 

1 1 - t t 
-=--+-; 
r p 00 

and these requirements are equivalent to (13.6.1). 
The simple functions are everywhere dense in Lq and 13.2.2 shows that 

T can be continuously extended so as to map Lq into Lr in such a way 
that 

Consequently it remains only to make sure that, for any gE Lq, the 
extension of T is such that Tg and f * g agree almost everywhere. 
However, if we take a sequence (gn):= 1 of simple functions converging to 
g in Lq, then Tg = limn -+ oo Tgn in Lr and Tgn = f * gn by the initial 
definition of T. On the other hand, (3.1.2) shows that limn -+ 00 f * gn = f * 
g in L 1 . The desired identification follows at on ce and the proof is 
complete. 

13.6.2. There are more general results of a similar sort; see, for example, [E], 
Theorem 9.5.1, where a proof quite independent of the convexity theorem is 
given. The inequality extends to convolutions over quite general groups; for 
the case of the group Z, see Exercise 13.4. For extensions in a somewhat 
different direction, see O'Niel [1]. 

13.6.3. Best possible constants. Both 13.5.1(1) and 13.6.1 have 
analogues for the groups Rn. It was for long unknown what were the best 
possible values of the constants C p and C p, q, r in the inequalities 

Ilfllp' ~ Cpllfllp 

Ilf * gllr ~ Cp,q,rllfll p ' Ilgll q 

in the case of Rn. The answer was provided by Beckner (see MR 52 # # 
6316,6317), namely 

C p = (pl/p(p') -1/p't/2 

Cp,q,r = Cp ' Cq ' Cr" 

Regarding a similar question in relation to (13.6.2), see MR 57 # 1021. 
See also MR 57 # # 10358, 10366. 

13.7 Operators of Weak Type 

The remainder of this chapter is concerned with the proof and applications 
of the second of the two interpolation theorems on our program, namely, the 
theorem of Marcinkiewicz. The present section 'sets out some definitions and 
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concepts in terms ofwhich Marcinkiewicz's theorem is customarily expressed, 
together with some simple preliminary results and some examples. 

Some of the operators of weak type we shall wish to consider (the majorant 
operators 0'* and s* are examples) are such that it is not apriori obvious that 
they transform finite-valued functions into functions which are either finite
valued or finite-valued almost everywhere. As a result ofthis, it is convenient 
to allow into the discussion extended real-valued functions. (The introduction 
of such functions is a convenience only and could be avoided in various ways 
and at the expense of enough circumlocution; on balance, it seems a good 
deal simpler to introduce them.) We begin by recalling very rapidly a few 
basic facts and conventions concerning such functions. 

By definition (compare [HS], pp. 54-55), the extended real number system 
is the set R# = Ru{ -00, oo}, obtained by adjoining to R two new elements 
-00 and 00, and endowed with that linear order which extends the usual 
order on Rand which makes -00 and 00 the least and greatest elements, 
respectively, of R#. The supremum (respectively, infimum) of any subset of 
R which is unbounded above (respectively, below) relative to the usual order 
of R will thus be 00 (respectively, -(0). An extended real-valuedfunction on a 
set X is simply a function on X with values in R#. 

The manipulation of extended real numbers and. extended real-valued 
functions will be governed by the following rules, in which adenotes an 
arbitrary real number: 

00 + a = a + 00 = 00, -00 + a = a + (-00) = a - 00 = -00, 

00 + 00 = 00, (-00) + (-00) = -00, 

-(00) = -00, -(-00) = 00, 

OO'a=a'oo=oo, (-oo)'a=a'(-oo) = -00 

oo'a=a'oo= -00, (-oo)'a=a'(-oo)=oo 

if a > 0, 

if a < 0, 

00' 00 = 00, 00' 0 = o· 00 = (-00) . 0 = o· (-00) = 0, 

1001 = 1-001 = 00, ooa = 00 if a > o. 

We do not define the expressions 00 + (-00), (-00) + 00, 00' (-00), 
(-00) • 00, (-00) • (-00). 

In many cases where extended real-valued functions have to be handled, 
they are nonnegative-valued; in such cases the above conventions appear 
more intuitive than in the general situation. 

Concerning the definition and properties of Ix f dp. for extended real- and 
complex-valued p.-measurable functions f on X, see again [HS], Section 12. 
In particular, if f is an extended real-valued p.-measurable function on a 
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measure space (X, ...11, JL) (see [HS], p. 149), we define Ix 1I1 dJL to be 

n 

sup L: inf/(Mk)JL(Mk), 
k=l 

the supremum being taken with respect to all partitions (Mk)~=l of X in 
which M k e Jt for all k e {I, 2, "', n}; see [HS], Section 12 for details. 
In terms of this convention, 11 I II p , Jl is defined to be 

{Ix 1/11> dJLp/1> 

whenever 0< p < 00. The definition of 11/1I"',1l remains almost the same as 
whenl is finite-valued: it is the smallest (extended real) number m such that 
I/(x) I ~ m is true JL-almost everywhere on X. 

It is also convenient to modify the definition of LI>(X, ...11, JL) given in 
13.1.2 so as to include in LI>(X, Jt, JL) those JL-measurable extended real
valued functions/for which 1I/III>,Il < 00. This enlargement is in reality rather 
trißing insofar as the relation 1I/III>,Il < 00 entails that I/(x)1 < 00 for JL-almost 
all x e X (compare [HS], pp. 154, 169-170) and, as far as integration with 
respect to JL is concerned, I can therefore be replaced by a function which is 
everywhere finite-valued. 

We now turn from generalities to particularities. In what follows the term 
"function" means "extended real- or complex-valued function." 

13.7.1. Truncation of Functions. Suppose that I is a function on a set 
X and that a > 0 is areal number. The a-truncation 11,4 of I is the function 
on X defined by the specification: 

{ /(X) 
11.4(X) = al(x)jl/(x) I 

if I/(x)1 ~ a, 
otherwise; 

here we make the special convention that ±oojoo = ± 1. Thus 

1/1,41 = min (1/1, a). 
We define further 

12.4 = 1- 11,4' 

Notice that 11,4 is always finite-valued, and that the relation 

I = !I, 4 +/2.a 
is universally valid. 

13.7.2. Distribution Functions. Suppose that (X, vif, JL) is a measure 
space and that I is a JL-measurable function on X. The distribution lunction 
D, or Dl is the nonnegative extended real-valued function on (0, (0) 
defined as follows: 

Dl(t) = JL({xeX: I/(x) I > t}). (13.7.1) 
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(This use of the term" distribution" has nothing whatsoever to do with that 
in Chapter 12.) The reader will observe that D/ = Dlflu, that D/ depends 
only on the J-'-equivalence class off, and that D/(t) ~ J-'(X). 

Weshall often write 
Ef(t) = {x EX: If(x)1 > t}, 

so that 
D/(t) = J-'(Ef(t)). 

It is not difficult to see that D/ is decreasing (in the wide sense) and 
continuous on the right, that is, 

D/(t) = D/(t + 0) == lim D/(t') 
t'lt 

for 0 < t < 00. Monotonicity ensures that D/ is Lebesgue-measurable on 
(0,00). 

If f is a J-'-measurable function on X and a > 0, the following relations 
hold: 

D/1,a(t) = D/(t) 

D'jl,a(t) = 0 

D/ 2 ,a(t) = D'j(t + a) 

The verification is left to the reader. 

if 0 

if 

if 

< t < a,} 
t ~ a, 

t > O. 

(13.7.2) 

13.7.3. Integrals in Terms of Distribution Functions. For us the 
main significance of the distribution function stems from the fact that it 
enables us to express the integral of a nonnegative (extended real-valued) 
J-'-measurable function on X in terms of a Lebesgue integral over (0, (0). The 
appropriate formula reads 

Lr dJ-' = 50''' ptP - 1 D/(t) dt, (13.7.3) 

where 0 < p < 00, it being understood that ooP = 00. For a proof in the 
case where f is real-valued, see [HS], Corollary (21.72), where (13.7.3) is 
shown to be an almost immediate consequence of an appropriate form of the 
Fubini theorem. The general case may be deduced from this by considering 
the real-valued functions fn = inf (j, n), noting that DfnU(t) t D/(t), and 
using the theorem on termwise integration of monotone-increasing sequences 
of measurable functions [[HS], Theorem (12.22)]. 

The remarks in 13.7.2 show that (13.7.3) holds with Ifl p in place of r 
whenever fis any (complex- or extended real-valued) J-'-measurable function 
fon X. 

We remark in passing that (13.7.3) could be used quite effectively to 
define integrals with respect to J-'. 
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13.7.4. Quasilinear Operators. Suppose that (X, A, p.) and (Y, %, v) 
are measure spaces. Suppose further that T is an operator whose domain '! 
is a set of p.-measurable complex-valued functions on X. The range of T is 
assumed to lie in the set of v-measurable complex-valued functions on Y, or 
in the set of v-measurable nonnegative extended real-valued functions on Y, 
or in the corresponding sets of v-equivalence classes of functions (see 13.1.2 
and 13.2.1). (Quite often the operators T we need to consider can be assigned 
a domain whose elements are p.-equivalence classes of functions, but to 
assurne this is an unnecessary luxury.) 

The operator T is said to be quasilinear (with constant K) if 11 + 12 E '! 
and 

(13.7.4) 

for v-almost an points of Y whenever 11' 12 E '!. (In case Tl1 and TI2 are 
v-equivalence classes, I Tl11 + I TI21 is of course the v-equivalence class of 
any' function Y1 + Y2 where Yk (k = 1,2) is a function chosen from the 
equivalence class I Tlkl; and (13.7.4) is then understood to signify that the 
same inequality holds at v-alm ost an points between functions chosen from 
the appropriate v-equivalence classes.) 

For example, any linear operator T whose domain and range are as 
specified above is quasilinear with a constant K :::; 1. 

Again, if (X, A, p.) = (Y, %, v) are as in Example 13.1.3(1), the majorant 
operators u* and 8* defined in (6.4.10) and (6.4,14), respectively, have domain 
U = U(X, A, p.) and range in the set of nonnegative extended real-valued 
v-measurable functions on Y. It is very simple to verify that they are each 
quasilinear with constant K :::; 1. They are not linear operators. 

Other illustrations appear in Example 13.7.6(2). 

13.7.5. Operators of Weak Type. Suppose again that (X, A, p.) and 
(Y, %, v) are measure spaces and that p and q are exponents chosen from 
the interval [1, 00]. Suppose also that T is an opera.tor whose domain '! and 
range are as described in 13.7.4; T may or may not be quasilinear, however. 

If q < 00, the operator T is said to be of weak type (p, q) on '! if there 
exists a number A ~ 0 such that 

v(ET[(t)) :::; (A "~ 11 P.l' r 
for aIl/E '! and an t > 0, where (compare 13.7.2) 

ET[(t) = {y E Y: I TI(y) I > t}. 

(13.7.5) 

To cover the excluded case in which q = 00, it is agreed that T will be 
said to be of weak type (p, (0) on '! if and onIy if it satisfies a (strong) type 
(p, (0) inequality (see Section 13.2) on its domain of definition, that is, if 



[13.7] OPERATORS OF WEAK TYPE 163 

and only if there exists a number A ? 0 such that 

IITill""v ~ Allfllv.u (13.7.6) 

for all i E '1l. 
In (13.7.5) and (13.7.6), Ililiv is defined as in 13.1.2, so that Ilfllv may be 

00; in this -case ooa = 00 for any a > O. (See the conventions listed at the 
beginning of this section.) 

In either case the smallest admissible value of A is termed the weak 
(p, q)-norm of T, despite the fact that (apart from the case in which q = 00 

and all due precautions are taken over the addition of operators) the function 
of T so defined has not the properties of a norm (see I, B.1.2). This abuse 
of the term "norm" appears to be customary in this connection. 

The inequality (13.7.5) may be written 

(13.7.7) 

Most frequently the hypothesis that T is of weak type (p, q) (q < (0) is 
brought into play by employing (13.7.7) in conjunction with (13.7.3) applied 
with (Tf, q, v) in place of (f, p, J-L); see the proof of 13.8.1. 

It is clear that the above definitions of the concept of weak type (p, q) 
can be formulated if either or both of p and q lie in the interval (0, 1), but 
this extension appears to be of relatively little interest. 

13.7.6. Examples of Operators of Weak Type. (1) If T is of type 
(p, q) on a domain '1l, then it is of weak type (p, q) on '1l. 

This is a matter of definition if q = 00. If q < 00, one has by hypothesis 
for each f E '1l: 

confirming that for any t > 0 

W· DTfV(tJF,q ~ IITllv,qllillv,1L 
and therefore 

which shows that T is ofweak type (p, q) on '1l and that the weak (p, q)-norm 
of T does not exceed the (p, q)-norm 11 Tllv,q. 

Thus every operator of type (p, q) is ipso facto an example of an operator 
of weak type (p, q); see 13.2.1, Section 13.6, and Exercises 13.5 and 13.6. 
The converse is false, even for operators defined and linear on certain sub
spaces of V(J-L) and having ranges in Lq(v); but see Exercise 13.16. 

We shall in Sections 13.9 and 13.10 see that the conjugate function operator 
i ~ J and the majorant operator f ~ a*f are of weak type (1, 1) on suitably 
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chosen domains, even though they are not of type (1, 1) on those domains. 

Another such example will appear in Section 13.11. The theorem of Kolmo

gorov cited in 10.3.4 shows that the majorant operator J --+ 8*J is not of 
weak type (1, q) on Ll for any q > O. 

In view ofCarleson's result cited in 10.4.5(3), together with Stein's theorem 

16.2.8, the operator 8* is of weak type (2,2) on L2. 

(2) The Hardy-Littlewood maximal operator. This operator is perhaps the 
forerunner of all others as an example of an operator of weak type (1, 1). 

Here we suppose that (X, jt, f-L) = (Y,.IV, v), X denoting thc real axis R, 
.4t the set of Lebesgnc-meaRllrable Rllbsets of R, ami f-L the LebcRglle meaRllrc 
on R. 

For any measllrable function j that iR intcgrable over (-a, a) for every 
a> O,define 

Jx+s 
j'(x) = supr 1 Ij(y)ldy, 

s> 0 x 

It can be shown ([HS], Lemma (21.75)) that ifwe write for j = f, rand t > 0 

E/ = {x ER: ji(x) > t}, 

then 

v(E/) ~ t- 1 f .111 df-L. 
JEt' 

(13.7.8) 

The maximal operator Mi:j-~ji is clearly quasilinear, and (13.7.8) evidently 
entails that Mi is of weak type (1, 1) on V(f-L). 

However, eonsideration of the function 

{
X-1(lOg x) - 2 

j(x) = 
o 

for 0 < x < % 
elsewhere, 

for whieh F(x) ;. x -11log xl- 1 for small x > 0, shows that j ->- F is not of 
type (1, 1) on L1(f-L). Similarly,j--+j' is not oftype (1, 1) on L1(f-L). 

Similar statements apply to the maximal operator 

M6: j ->- j6 == sup (jt,j'). 

It is shown in [HS], Theorem (21.76) that Mi (j = t, r, 6.) is of type (p, p) 
on LP(f-L) for 1 < p < 00. This, together with eertain other inequalities estab
lished in [HS], Theorem (21.80), will follow, on the basis of Marcinkiewicz's 
theorem 13.8.1 and the results in 13.8.3, from the statement that each of these 
operators is of weak type (1, 1) on V(f-L) and (what is quite evident) that each 
is also of type (00, 00) on L 00 (f-L)' The proofs in [HS] are, on the contrary, direct 
and lead to specific estimates for the constants involved in the inequalities. See 
also [Kz], pp. 74-76. 

The keystone in all these results is the assertion that Mi is ofweak type (1,1) 
on V(f-L). It is therefore interesting to note that this is itself a eonsequence of 
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the general theorem of Stein recorded in 16.2.8 and the Lebesgue theorem on 
the differentiability ahnost everywhere ot an indefinite integral wliich is quoted 
in 6.4.2; see Exercise 16.14. 

The Hardy-Littlewood maximal operators have been defined and studied in 
connection with more general measure spaces; see, for example, Smith [1], 
Shimogaki [1], Rauch [1] and MR 35 # 6788. There will be no place in this 
book for these extensions; but see also 13.10.3 below. 

13.7.7. Remark. There is an analogue of 13.2.2 applying to linear opera
tors of weak type (p, q), but which appears tö be of somewhat peripheral 
interest; see Exercise 13.19. 

13.8 The Marcinkiewicz Interpolation Theorem 

In the Riesz-Thorin convexity theorem 13.4.1, we have already en
countered one result that enables us to "fnterpolate" properties of a func
tioni11 operator T on the basis of given "extreme" properties of T. There, 
continuity of type (p, q) of T was deduced, for certaiil pairs (p, q) inter
mediate to two pairs (pj, qj) (j = 0, 1), from continuity of types (pj, qi) 

(j = 0, 1) of T. It is now time to prove another famous interpolation 
theorem, which asserts that the same conclusion applies to somewhat 
different intermediate pairs on the basis of weak-type continuity for the 
pairs (Pi' qj), the latter being subject to special relations that are not needed 
in the Riesz-Thorin theorem but which are essential for this second theorem 
(compare 13.8.1 and 13.4.1, where no such conditions appear). 

13.8.1. Marcinkiewicz' Interpolation Theorem. Suppose that (X, vif, J-L) 
aild (Y, %, v) are Iiieasure spaces arid that (Po, qo) and (PI' ql) are two 
exponent pairs having the followiilg properties: 

1 ~ Pi ~ q, ~ co 

qo :F ql' 

(j = 0, I),} (13.8.1) 

Let T be a quasilinear operator [with constant K; see (13.7.4)], whose domain 
'! is a iinear subspace of V'o(X, vif, J-L) () LP1(X, vi!, J-L) which is closed under 
the formation of truncations (see 13.7.1), and whose range is as described in 
13.7.4. Suppose further that T is simultarieously of weak types (Po, qo) and 
(PI' ql) with weak norms Ao and Al' respectively. Suppose finally that 

1 .. t (1 - t) 
- = - + ---, 
P Po PI 

1 t (1 - t) -=-+---, 
q qo ql 

O<t<l. (13.8.2) 

The conclusion is that T is of (strong) type (p, q) on 1), that is, that there 
exists a number A = A(t, Po, qo, PI' ql, A o, Al) such that 

IITJllq .• ~ AIIJllp.1l (13.8.3) 
for Je~. 
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Proof. There are several cases to be considered separately. Throughout 
the proof the symbols A 2 , A 3 , A 4,'" are used to denote nonnegative 
numbers depending at most on T, JL, v, t, Po, qo, Pl' ql' Ao, and Al' 

(1) We shall begin with the case in which qo and ql are finite. Ofthis there 
is one subcase which can be dismissed rather quickly, namely, the case in 
which Po = Pl = p. 

In this subcase we may suppose without loss of generality that qo < 
q< ql' If a > 0, (13.7.3) gives for fE 1) 

11 TfII~,v = q {" bq - l DT/(b) db 

In the first integral we majorize DT/(b) by using (13.7.5) with P and q 
replaced by Po and qo, respectivcly; the second integral is treated Iikewise, 
using PI and ql in place of P and q. As a rcsult it appears that 

11 Tf Iltv ~ const {aq-qollf 11:?lt + aq-qlllfll:~lt}, 

since qo < q < ql by hypothesis. If Ilfll",lt > 0, and ifwe choose a = Ilfll",t" 
the desired result (13.8.3) appears; and if Ilfll".lt = 0, Tf is null and (13.8.3) 
is trivial. 

Having disposed of this subcase, we suppose henceforth that Po #- Pl and 
that in fact Po < P < PI' (The proof to follow breaks down if Po = Pl' so 
the subcase just examined demands separate treatment.) Assume also to 
begin with that qo < ql' 

Suppose thatfE '!. The substance of 13.7.1 and (13.7.4), coupled with the 
hypotheses in 13.8.1, show that for any b > ° 

and therefore 

(13.8.4) 

It must be stressed that in (13.8.4) one is at liberty to choose a and b as 
positive-valued functions each of the other. This freedom will playa vital 
role in the subsequent proof. 

Since T is of weak types (Po, qo) and (Pl' ql)' (13.8.4) shows that 

The reader should experience no trouble in verifying that, if a be chosen to 
be a positive monotone function a(b) of b E (0, (0), then Ilfk,all"J' (j = 0, I; 
k = 1,2) is a monotone, and therefore measurable, function of bE (0, (0). 
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So an application of (13.7.2) and (13.7.3) leads to 

IITfiltv = q LXl bq - 1DT /(b) db 

,( qA ('" W- q,-lllf Ilq, + bq- qo - 11If IlqO }db 
'" 2 Jo ' 1.a(b) P,.1l 2.a(b) Po.1l 

('" (a(b) 
~ A 3{Jo bq- q,-l[Jo Dl(C)CP, -1 dc]Q,/p, db 

+ ('" bQ-QO-1[f'" D/(c)(c - a)Po-1 dc]Qo/Po db} 
Jo a(b) 

(13.8.5) 

The crucial step is to choose a as a function a(b) of b E (0, 00) with properties 
to be described as we go along. From this point on, it is to be assumed that 
a(b) is a positive strictly monotone function of bE (0, 00), the inverse of 
which isdenoted by b = b(a). 

We proceed to estimate 11 and 12, taking first the case in which qo < q1 
and assuming that a(b) is strictly increasing. 

In considering 11 , it will be convenient to introduce the measure ,\ on 
R + = (0, 00) defined by 

'\(E) = L bQ- q , -1 db 

for Lebesgue-measurable subsets E of R+. Then If,/q, is the LQ,/p,(R+, ,\)

norm of the function 
(a(b) 

b-;. Jo D/(C)CP,-ldc, 

which is '\-integrable over every ,\-finite measurable set; recall that q1/P1 ~ 1. 
So, in view of 13.1.5, If,!Q, is equal to 

sup 150'" bQ_Q,_lg(b){{a(b) D/(C)CP,-l dc} dbl == sup IJI, 

the supremum being taken relative to all '\-simple functions g satisfying 

50'" Ig(b)I(Q,!P,)'bQ- Q, - 1 db ~ I.' (13.8.6) 

It is moreover clear that in this case it suffices to take the supremum relative 
to those functions g of the prescribed type which are nonnegative, for wh ich 
functions g it is evident that J ~ 0. 

Now 

, We assurne that q,/p, > 1; otherwise, (13.8.6) and the following derivation of(13.8. 7) 
need slight and obvious modifications. 
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and the Fubini theorem (in the form in which it appears in [HS], Theorem 
(21.12)), together with the fact that a(b) is strictly increasing, shows that 

J = LX> {LX> bq-q,-lg(b)X<b<C).",)(b)D/,(e)eP,-ldb}de 

= f'" eP1 - 1D/'(e){f'" bq-q,-1g(b)db}de 
Jo JbCC) 

(13.8.7) 

the penultimate step being an application of Hölder's inequality for integrals 
with respect to the measure ,\ restricted to (b(e), CX)), and the last step using 
(13.8.6). Since qo < ql' q < ql and 

Thus (13.8.7) and the relation I~,/q, = sup J show that 

11 ~ A 4{L'" ePl-ID/,(e)b(e)CQ-q,)P,/q,de}q,/P,. (13.8.8) 

Turning to the consideration of 12 , it is to be observed first that, since 
(e - a)Po-l ~ ePo-1, 

The method used above to majorize l~l/Q, can now be adapted so as to 
majorize l;Po,qo, which, by 13.1.5, is equal to 

the supremum being taken relative to a suitable set of nonnegative measur
able functions h on (0, 00) satisfying (compare the foot note to page 159) 

L'" h(bYQo/po)'bQ-qo-ldb ~ 1. 

In the course of the argument, use is made of the fact that 

XCaCb).OO)(e) = X<o.bCc»(b) 

and of the relation q > qo. The outcome of this procedure is the estimate 

12 ~ I; ~ As{Jo'" ePo -1 D/,(e)b(eYQ-qo)po/Qo deFo'Po. (13.8.9) 
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From (13.8.5), (13.8.8), and (13.8.9) it follows that 

11 Tflltv ~ A6[{f" CPI -1 D/,(c)b(c)(q-ql)P1Iql dC}q1/P l 

+ {{Xl cPo - 1D/(c)b(c)(q-qO)Po,qo dc}qo/PO]. (13.8.10) 

The aim being to obtain integrands on the right-hand' side of (13.8.10) 
which (compare (13.7.3» are each of the form const CP-1Dr"(C), we write 
tentatively 

b(a) = (K -la)P, 

where it is hoped to choose K > 0 and p > 0 so as to achieve this aim. The 
restrictions K > 0 and p > 0 will ensure that b(a) is a positive and strictly 
monotone function of a, as has been deposed earlier. 

If success is to be achieved at all , the only possible choice of p is already 
discernible on looking at the first integrand in (13.8.10) and is that for which 
PI - 1 + p(q - q1)P1/q1 = P - 1, that is, that for which 

P(q/q1 - 1) = pIpI - 1. (13.8.11) 

Since q/ql < 1 and P/PI < 1, this choice renders p > O. Direct calculations, 
using (13.8.2), show that this choice of p arranges that 

Po - 1 + p(q - qo)Po/qo = P - 1, 

thereby taking care of the second integrand in (13.8.10). Consequently, 
(13.8.10) becomes 

IITfllL ~ A7[Kql(Pl-P)/P11If11~~:/Pl 

+ Kqo(po - p)/po Ilf 11~~:'Po]. (13.8.12) 

The quantity K is now to be chosen so as to achieve the desired qth power 
of Ilfllp,,. on the right-hand side of (13.8.12). Assuming, as we may, that 
Ilfllp,,. > 0, this object is achieved by taking 

K = Ilfll~,,., 
where ß is determined by the relation 

(1 - P/PI) ß = !l.. - J!... 
ql PI 

Then, indeed, straightforward calculations show that (13.8.12) reduces to 

IITfll~,v ~ 2A71Ifll~,,., 
and our goal is achieved provided qo < ql' 

Let us now consider what happens when qo > ql' A careful examination of 
the preceding proof shows that it is only in the step from (13.8.7) to (13.8.8), 
and at the corresponding point in the estimate of 12 , that the assumption 
qo < ql is essential. To counter this difficulty we observe that if, when 
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go > gl' we assurne that a(b) is striütly deereasing (instead of increasing), 
then the integral fb:) in (13.8.7) must (providentially) be replaped by f~(Cl. 
As a consequence, (13.8.8) remains intact. A similar es cape takes place at 
the corresponding point in the estimation of 12 , Thus (13.8.10) stands un
blemished. The proof then closes much as before: this time we require that 
p < 0, and this is ensured by (13.8.11) since now glgl > 1 and plp1 < l. 
The reader is urged strongly to write out the details of what has just been 
sketched in brief; see Exercise 13.10. 

This completes the proof in case (1). 
(2) The case in which Po = P1 = p, go < 00, gl = 00: for this, see Exercise 

13.11. 
(3) The case in which 1 ~ Po ~ qo < 00, P1 = q1 = 00: for this, see 

Exercise 13.12. 
(4) The case in which 1 ~ Po ~ qo < 00, Po < P1 < 00, q1 = 00. 
Applying (13.8.4) and making a change of variable, we shall have, if 

a = a(b) is any positive and strictly monotone function of bE (0, 00), 

IITfiltv ~ A s{{" bq-1Dh,.a(b)(b)db + L'" bQ - 1Dh2.a(b)(b)db}, (13.8.13) 

On the other hand, by the weak type hypotheses on T, 

11 Tf1.a(b)"'.v ~ A11If1.a(blllpl.Jl· 
In view of (13.7.2), (13.7.3), and the fact that P1 > P, we have 

(a(b) 
IITf1.a(blll",.v ~ A1{Jo p1tP,-1D/(t) dtp/P1 

~ A 9a(b)1-p/P 1{{" ptP- 1 D/(t) dlP/P ,. 

So, by (13.7.3) once again, 

IITf1.a(blll",.v ~ A9a(b)1-P/Plllfll~~~1 (13.8.14) 

Our hope is to choose a and b as positive and strictly monotone functions 
each of the other in such a way that 

(13.8.15) 

For, if this is possible, (13.8.14) shows that Dh,.a(b)(b) will vanish for all 
b > 0 and the first term on the right-hand side of (13.8.13) will also vanish. 

H, at the same time as satisfying (13.8.15), we can choose a(b) to be strictly 
increasing, the estimate of 12 in (1) (for the case in which Po =f P1) will proceed 
exactly as before and will yield, in place of (13.8.10), the inequality 

11 Tf Iltv ~ A1o{L'" ePo -1 D/(e)b(eyq -qo)po/qo deFo/Po . (13.8.16) 
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Since, as before, we wish to 0 btain an integrand of the form const cP - 1 D r"( c), 
we again choose tentatively 

and hope to dispose of K > 0 and p > 0 advantageously. 
The only possible successful choice of p is given by 

Po - 1 + p(q ~o qo)Po = P - 1, 

that is, by 

p(qlqo - 1) = pipo - 1, 

which, in view of (13.8.2) and the supposition that qi = 00, gives 

p = 1 - pipi 

This choice of p does indeed make p > 0; and direct calculations show that 
it leads from (13.8.16) to 

IITfllL :::; AllK(Po-P)qo/Pollfll~~:'Po. (13.8.17) 

In order to satisfy (13.8.15) and to obtain IlfllL. on the right-hand side of 
(13.8.17), we write K = Ki K2 , where 

K i = IlfllL, 
and ß is to be chosen to obtain Ilfll~.1t on the right-hand side of (13.8.17), 
and where K 2 > 0 is to be chosen (ifpossible) so as to accommodate (13.8.15). 

For ß the only possible choice is such that 

ß(po - p)qo + qop = q, 
Po Po 

which signifies that p(l - ß) = 1. Then, since p = 1 - pipi and ßp = -pipi> 
(13.8.15) is seen to be accommodated by choosing K 2 > 0 so that 

a choice that is possible since pipi - 1 # O. 
This completes the discussion of case (4). 
(5) The final case, in which 1 :::; Pi :::; qi < 00, Po < Pi < 00 and qo = 00, 

is left for the reader's attention in Exercise 13.13. 

13.8.2. Remarks. (1) It will be clear to the reader that the restrictions 
Pi :::; qj (j = 0,1), qo # qi are necessary in the preceding proof of 13.8.1; it 
will further be apparent that one cannot by modifying the proof dispose of 
the condition qo # qi (since otherwise the case Po = Pi' qo = qi of 13.8.1 
would imply that any quasilinear operator of weak type (p, q) is also of 



172 INTERPOLATION THEOREMS 

strong type (p, q), which is shown to be false in Example 13.7.6(2), and also 
by 12.8.3(2) in conjunction with 13.9.1). 

A more important question is whether one can suppose that Pj > qj 

(j = 0, I) and still obtain a valid theorem. That the answer is negative has 
been shown by Richard A. Hunt [I]. 

(2) An outline of a proof of 13.8.1 for the case in which qo and ql are 
finite has been given. by Hunt and Weiss [2]. Calderon (lecture notes) and 
Hunt [1] have also extended the theorem to the case of an operator T acting 
between pairs of Lorentz spaces (which generalize the LP-spaces). See also 
Oklander [1] and Stampacchia [1]. 

(3) In the preceding proof, which is essentially an expanded and annotated 
version of that appearing on pp. 112-115 of [Z2]' no attention has been paid 
to the precise form of the functional dependence of A on the p's, q's, A o, Al' 
and t. There is no great difficulty in gaining some precision, though the 
question ofmaximum precision is another matter. The interested reader may 
seek an estimate as an exercise, and also refer to [Z2], p. 114, where it is 
shown that, if Po ?= Pl and qo and ql are finite, then 

where 

It is important to note that, if T is a quasilinear operator of strang types 
(pj, qj) (j = 0, 1), such estimates of A = 11 Tllp,q as da result from a simple
minded examination of the preceding proof of 13.8.1 da, in some cases, tend 
to infinity as t t 0 or as t t 1. The appropriate version of 13.4.1 shows, 
however, that the best estimate of 11 Tllp,q remains bounded. This shows that 
simple-mindedness is not enough, and that 13.8.1 is not a complete substitute 
for 13.4.1. For further comments in this vein, see [Z2], pp. 115-116. 

(4) Although some applications ofthe Marcinkiewicz theorem to harmonie 
analyis appear later in this chapter, the reader may wish to consult also 
G. Weiss' article [I]. Concerning the role of the same theorem in the study of 
singular integral equations, see Calderon [2]. 

A more restricted version of the Marcinkiewicz theorem, together with 
so me of its applications, appear on pp. 1166-1184 of [DS2]. (However, the 
proof of the theorem itself presented by Dunford and Schwartz contains 
several errors.) See also [EG], Appendix A. 

(5) For generalised versions of the Marcinkiewicz theorem, see MR 37 
# 4601. Multilinear versions of the theorem are given in MR 38 # 6346. 
Vector-valued versions are dealt with in MR 52 # 1162. 

(6) A stronger form of the theorem has been given by Stein and Weiss 
[2] (see also [Moz], Chapter 1), the essential differences being that one 
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assurnes that I ~ Pi ~ qi < 00; that Po =1= Pl and qo =1= ql; and-that in 
place of weak type conditions one assurnes restricted weak type 
conditions; the conclusion being that T is of type (p, q) whenever (13.8.2) 
holds. To say that T is of restricted weak type (p, q), signifies that (13.7.5) 
holds for aH 1 which are characteristic functions of ,u-finite subsets of X. 

13.8.3. Further Inequalities. Partly for their own interest, and partly 
for subsequent application in Sections 13.9 and 13.10, we propose to establish 
sorne inequalities subsidiary to those irnplied in Marcinkiewicz's theorem 
13.8.1. 

It will be assumed that T: 1 -+ 1 # is quasilinear and has as domain a 
linear subspace ~ of LI(X, JI, p.) ('\ L4(X, JI, p.); which is stable under 
multiplication by characteristic functions of p.-rneasurable sets and under 
truncation. The range of T is to He in the space of v-measurable functions 
(or in the space of equivalence classes thereof). It is further assumed that 
v( Y) < 00. 

The major hypotheses are that T is of weak types (1, 1) and (a, a) on ~, 
where 1 < a ~ 00, that is, that 

(13.8.18) 

and either 

(13.8.19) 

if a < 00, or 

111#11 "" .• ~ BIIIII "".1' (13.8.20) 

if a = 00, in each case for 1 E ~ and t > 0 .. In these inequalities we have 
written 

E#(t) = E1(t) = {y E Y : 1j#(y)1 > t}, 

just as subsequently we shaH write 

E(t) = Ef(t) = {x EX: 11(x) I > t}. 

The conclusions are that 

111#lk. ~ A' + B' J 11l log+ 111 dp. ifp.(X) < 00, (13.8.21) 

and that 

ifO<p<l, (13.8.22) 

in each case for 1 E ~; A'and B' denote numbers that rnay depend on T and 
the rneasure spaces involved, A p a nurnber that may depend on these things 
and on P as weH, but A', B', and A p are independent of 1. These rernarks 
apply also to A" and B", which appear shortly. 
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Details of the proofs will be given for the case in which 1 < a < 00. If 
a = 00 one can either make simple modifications in the proof exhibited 
(compare the modifications in the proof of 13.8.1 to handle the case 
PI = ql = 00), or one can use Theorem 13.8.1 so as to reduce oneself to the 
case in which a < 00. 

Proof of (13.8.21). We denote by a = a(t) a positive-valued functionof 
t > 0 to be specified later and write 

g(x) = {~(X) if 11(x)1 > a, 
otherwise, 

so that gEi) whenever 1 E ~. Accordingly 

1 = g + h, 

where h E ~ satisfies Ihl ~ a. By quasilinearity of T (compare (13.7.4)), 

11#1 ~ K(/g#1 + IM/) 
and so 

By (13.8.18) and (13.8.19), therefore, 

D,#(t) ~ D~#(;K) + DI'.#(2tK) 

~ 2KAIIglll," (2K)aBllhll~,u 
"'" t + ta 

Hence 

D,#(t) ~ 2KAt- 1 r 111 dp- + (2K)aBaa- 1t- a lll111,". (13.8.23) 
JE<<<> 

Now 

IIl#I!I,v = L 11#1 dv = LX) D,#(t) dt = f + fU 
~ v( Y) + LX) D,#(t) dt, 

so that it will suffice to show that t'" Dr#(t) dt is majorized by an expression 
of the type appearing on the right-hand side of (13.8.21). 

To this end we choose any r satisfying 0 < r < 1 and take a = tr , so that 
aa- 1t- a = t- S , where 8 > 1. Then (13.8.23) yields 

(13.8.24) 
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To t" D;#(t) dt the second term on the right-hand side of (13.8.24) contributes 

a term majorized by 

(2K)<1Bllfku' f" t- s dt = B'llflll,u· 

Inasmuch as u ~ C + C'u log + u for u ~ 0, while p.(X) < 00, this last 
term is majorized by an expression of the type appearing on the right-hand 
side of (13.8.21). The remaining problem is therefore to verify that 

f'" t-l{ f If(x)1 dp.(x)} dt ~ A" + B" J Ifllog+ Ifl dp.. (13.8.25) 
1 JE(t') X 

However, it is a simple matter to show that the function 

(x, t) -7 XE(!') (x) If(x) I 

is measurable in the pair (x, t), as a consequence of which the theorems of 
Fubini and Tonelli show that the left-hand member of (13.8.25) is equal to 

in which the inner integral has the value 

log+ {lf(x)1 1/'} 

owing to the fact that XE(t')(X) is 1 or 0 according as t' < If(x)1 or tr ~ If(x)l. 
Since log+ {UC} '= C • log + u for u > 0, C > 0, we see that the left-hand 
member of(13.8.25) is in fact equal to 

G) Ix Ifllog+ Ifl dp., 

so that (13.8.25) is certainly valid. 

Proof of (13.8.22). We have in this case to show that 

Ilf#II~,v = So'" ptP-1D;#(t) dt ~ Apllflltu, 

provided 0 < p < 1. 
Let e > O. Then 

(13.8.26) 

(13.8.27) 
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Also, taking a(t) = t in (13.8.23), it appears that 

(<Xl pt11 - 1D;#(t)dt ~ 2KAp (<Xl t11-2{( II(x)1 dft(x)}dt 
J. J. JEm 

+ (2K)aBplllI11,,, f.<Xl t11 - 2 dt. (13.8.28) 

Since p < 1, the second term on the right of (13.8.28) is equal to 

(2K)a Bp 11I 11 1 ,,,e11 -1 

I-p 

By the theorems of Fubini and Tonelli, the first term is equal to 

2KAp Ix II(x) I{f. <Xl XE(t)(X)tP - 2 dt} dft(X) , 

the inner integral in which is easily seen to equal 

max {O, e11 - 1 - II(x)jP-l} ~ e11 - 1 

I-p I-p 

hecause XE(t)(X) is 1 or 0 according as t < II(x) I or t ~ II(x)l. Thus (13.8.28) 
and (13.8.27) lead to 

111#11~,v ~ v(Y)e11 + (2KA + 2at~);e11-111Ik", 

from which (13.8.26) follows on letting e t 111111,,,. 

13.8.4. Remarks. (1) Arguments very similar to those appearing in 
13.8.3 will show that, if T is of weak types (1, 1) and (00, (0) on '1), then it is 
of type (p, p) on '1) for 1 < p < 00. (This is, of course, a special case of 
Theorem 13.8.1.) The details, writtenout for the case ofthe Hardy-Littlewood 
maximal operator (see Example 13.7.6(2» hut really quite general in scope, 
appear in the proof of Theorem (21.76) in [HS). 

Numerous further inequalities of the same general type appear in Exercise 
13.22; see also [Z2), pp. 116-121. 

(2) A significant class of operators T satisfying the conditions mentioned in 
Remark (1) immediat,ely above has been exhibited by Dunford and Schwartz 
(see [DS1], pp. 668-684) in connection with ergodic theory. 

Theybegin withalinearoperator Swith domainLl(X, Jt, ft) f"I L""(X, Jt,ft) 
and range in the space of ft-measurable functions (or in the space of equivalence 
classes of such functions), S being assumed to be of types (1,1) and (00, (0) 
and to have associated norms 

IISII""", ~ 1; 
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such operators have since been christened Dunford-Sehwartz operators. From S 
one constructs its iterates sn (n = 0, 1, 2, ... ; SO = I, the identity operator), 
their arithmetic means 

N-l 
AN = N-l 2: sn, 

,,=0 

and finally the majorant operator A * defined by 

A *f(x) = sup IANf(x)l. 
N 

It is clear that A * is sublinear and of type (00, oo}. Dunford and Schwartz 
show (what is by no means obvious) that A * is ofweak type (1, 1), so that the 
inequalities (13.8.21) and (13.8.22) hold with A *f in place of f#. (They prove 
these inequalities directly and with specific estimates of the constants A', B', 
and A p .) 

It is also shown that the sequence (ANf)N=l converges pointwise almost 
everywhere if fE LP(X, JI; p.) and 1 ~ P < 00, and that it converges in 
LP(X, JI, p.) if fE LP(X, JI, p.) and 1 < p < 00. These statements constitute 
the so-citlled pointwise and mean ergodic thetJrems, respectively (see [DSd, 
loe. eit.). 

13.9 Application to Conju~ate Functions 

It is now time to redeem the promise, made in 12.9.9, to provide an 
alternative approach to the proofs of the inequalities (12.9.1), (12.9.9), and 
(12.9.10). This is to be done by applying Marcinkiewicz's theorem 13.8.1 and 
the results in 13.8.3 to the conjugate function operator T: 1 -+ I = H * 1 
introduced in Section 12.8. As will become clear in 13.9.2, the crucial step in 
this program is the proof that T, regarded as an operator with domain and 
range in L2, is of weak type (1, 1). The required proof is quite troublesome 
and occupies the major portion of the present section. 

Before embarking on this task, a comment is in order. The reader may at 
first be puzzled why we do not regard T as an operator with domain Ll and 
prove that it is ofweak type (1,1) on this domain. The reason why we cannot 
follow this course is a consequence of our divergence from the traditional 
treatment, discussed in 12.8.2. The traditional account works with the 
operator T': 1 -+ r with domain Ll and includes a proof of the fact that T' 
is of weak type (1. 1); see [ZI]' p. 134 and [Ba2], p. H3. Now r is the point
wise limit almost everywhere of H. *1, whereas our j is the distributional 
limit of H. * f. in eaeh ease as e -/, O. As we have seen in 12.8.2(2), rand J 
may be identified if (for example) fE L2. The identifieation is not, however, 
possible for a generalf E LI. Indeed, it was seen in 12.8.3 that, for a general 
1 E LI, the distribution I is not (generated by) a funetion at all. Thus we 
eannot even hope to prove that T is of weak type (1, 1) on the domain LI. 
Instead, we must of neeessity restriet its domain to a set of funetions f for 
whieh we ean be sure that J is (generated by and identifiable with) a funetion, 
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and which is still large enough for us to derive the inequalities (12.9.1), 
(12.9.9), and (12.9.10). The domain L2 is amply large enough to fit the bill and 
is, moreover, convenient in other respects. (Smaller domains, such as L"', 
would in fact suffice.) 

After this preamble we proceed to state and prove the key result of this 
section. 

13.9.1. The Main Inequality. There exists an absolute constant A > 0 
such that, for all j E L2 and all A > 0, 

m({x E [ -7T, 7T) : II(x)1 > A}) ~ AA -1 fit Ij(t)1 dt, (13.9.1) 

where m denotes Lebesgue measure. That is to say, the operator j -+ I, with 
domain L2 and range in L2, is of weak type (1, 1). 

Proof. This will b~ broken into several steps, in the course of which it 
will sometimes be convenient to write lEI in place of m(E). The symbols 
A, A', A o, Al,·· . will be used to denote positive absolute constants. 

Since the operator in quest'fun is linear, a little thought will convince the 
reader that it is enough to prove (13.9.1) for nonnegative functions jE L2 
satisfying 

fit Ij(t)1 dt = 1, 

which restrictions will be assumed henceforth. 
(1) We begin by transforming the problem. By 12.8.2(2),j = lim._o H. * j 

in L2, and also I = limn _ co H'n * j pointwise almost everywhere for a suitable 
(possibly f-dependent) sequence of positive numbers En tending to O. Write 
In = H'n *j, so that 

In(x) = 21 J j(x - y) cot %y dy 
7T 'n '" IYI "''' 

1 {Jx-.n f"} j(t) dt 
= -27T _" + x+en tan %(t - x)· 

(13.9.2) 

As x and t range separately over [-7T; 7T), t - x ranges over (-27T, 27T). The 
function cot %(t - x) has singularities to concern us at t - x = -27T, 0 and 
27T, and these plainly present the potentially important features in (13.9.2). 
Accordingly, we examine, in place of the functions In' the functions hn 

defined on [ -7T, 7T) as folIows: 

hn(x) = + --, {J"X - en fit } j(t) dt 

-" x+en t - x 

+ 5:" j(t){(t - x - 27T)-1 + (t - x + 27T)-1} dt (13.9.3) 

= {Ix-en + f3" }j(~ dt. (13.9.4) 
-3" x+en t x 
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A little manipulation shows that 

(13.9.5) 
where 

the function g being defined on [-TT, TT) by continuous extension of the 
formula 

g(u) = cot u - u- 1 - (u - TT)-l - (u + TT)-l (0 < lul < TT) 

and being bounded and continuous, say Igl ~ A o. It is evident that eachjn is 
continuous. 

Defining the function j by the formula 

j(x) = fIt j(t)g(Yz(t - x)) dt, 

it is easily shown that jn -7 j uniformly and so, a fortiori, in L2( -TT, TT). 
Therefore, since Jn -7 Jn pointwise alm ost everywhere, equation (13.9.5) 
shows that the sequence (hn) converges in L2( -TT, TT) and pointwise almost 
everywhere on [-TT, TT) to a limit which we denote by h. 

It is clear that 

Ij(x)1 ~ A o fIt 1!(t)1 dt = A o• (13.9.6) 

Moreover, (13.9.5) shows that 

- 2TTJ(X) = 2h(x) + j(x) (13.9.7) 

for almost all XE [ -TT, TT). 
By altering the functions concerned on null sets, we may and will assurne 

it arranged that Jn -7 J, hn -7 h, and jn -7 j pointwise everywhere on [ -TT, TT), 
so that (13.9.7) also holds at all points XE [-TT, TT). Such changes alter no 
distribution functions and no integrals. 

(2) Let us next justify the transference of attention from J to h by showing 
that, in order to prove 13.9.1, it suffices to show that there exist absolute 
constants A' > 0 and Ao > 0 such that 

m({XE[-TT,TT): Ih(x)1 > A}) ~ A'IA 

for all A > Ao and all nonnegative j E L2 satisfying 

f:" Ij(t)1 dt = 1. 

(13.9.8) 
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To see this, write c = A oJ(217), so that 

If A > Al = max (Ao, 2c), the relation 1!(x)1 > A combines with (13.9.7) to 
entail that 

Ih(x)1 = 117{!(X) + (2~)j(x)}1 > 17(A - c) > ~ 17A > A. 

For any such A, the assumed inequality (13.9.8) yields 

m({x E [-17,17) : 1!(x)1 > A}) ~ A'JA. 

On the other hand, if 0 < A ~ Al> we have trivially 

{ -I! 1 217A1 m( XE [-17,17): (x) > A}) ~ 217 ~ -A-' 

Thus (13.9.1) will hold for Ij,ll A > 0, provided Ais replaced by 

max (A', 217A1 ), 

which is another absolute constant. 
(3) For subsequent use in the proof of (13.9.8), we re cord the inequality 

(13.9.9) 

which follows from (13.9.6), (13.9.7), and (12.8.10). 
(4) The proof of (13.9.8) may now begin. Let A and /L be positive numbers; 

/L willlater be chosen depending upon A. 
Define functions cf> and r as folIows: 

ifO ~ j(x) ~ /L, 

ifj(x) > /L, 

and r = j - cf> ~ O. These are periodic functions. It is clear that 

a == J~" r(t) dt ~ 1. 

Introduce also the functions .p and 8 defined by 

.p(x) = J:" j(t) dt, 

8(x) = .p(x) - Y2/L(x + 17) 

for XE [ -17,17) and by periodicity for other va lues of x. Then.p( -17) = 8( -17) 
= 0 and .p(17 - 0) = a ~ l. Moreover, 8(71' - 0) = .p(17 - 0) - /L17. From 
here on it is to be supposed that /L > 17- 1 , so that 8(17 - 0) < O. 

This being so, 8 has a largest zero, say xo, in [ -17,17). Consider the set of 
points ~ E (xo, 17) for which 8(~) < sup~.;x<" 8(x); since 8 is continuous, this 
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set is open. The union of this set with (-TT, xo) is an open set 0 C (-TT, TT). 
We assume thatf(x) > p. on a set ofpositive measure, thus ensuring that the 
pointwise derivative 9'(x) is positive on a set of positive measure so that 
o is nonvoid. (In the contrary case we should have 1> = f a.e. and, in t.he 
notation of stages (5)-(8) below, h will agree with h(l); (13.9.26) will follow 
directly from (13.9.15) and will suffice to yield (13.9.8) with A' = A 3 .) 

Let 0 = U 0i be the expression of 0 as the union of a countable family 
of nonvoid disjoint open intervals 0i = (ai' bi ). It is easy to see (Exercise 
13.14) that 9(ai ) = 9(bi - 0) for all i. (We write 9(bi - 0) rather than 8(bi ), 

siqce the relation b, = TT may obtain and 9 is not necessarily continuous at TT.) 
From this it follows that 

"'(bi - 0) - Y2p.(bi + TT) = "'(al) - Y2p.(al + TT), 

and hence that 

and 

In r(t) dt = Y2p. 2 IOd· 

(13.9.10) 

(13.9.11) 

From the definitions of rand 8, it is easily seen that almost all points 
tE [ -TT, TT) for which r(t) > 0 belong to 0 (since at almost all such points the 
derivative 9'(t) exists and is positive). Because of this, 

a = I" r(t) dt = r r(t) dt 
-11 Jo 

and 

r r(t)dt = O. 
J[-1I,1I)\0 

From (13.9.11) and (13.9.12) we deduce that 

101 = 21011 = 2a ~ ~, 
p. p. 

(13.9.12) 

(13.9.13) 

It is necessary to introduce one further auxiliary function, namely the 
function <I> defined on [-TT, TT) to equal Y2P.Xo and defined elsewhere so as to 
be periodic. For this function (13.9.10) gives 

(13.9.14) 

(5) The intervals 0 1 are now to be enlarged into open intervals 0; having 
the following properties: 

(a) 0; is concentric with 0i; 
(b) 2:10;1 ~ 62:IOil; 
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(c) 10;1 > 510d; 
(d) 1· 10;1 

lmj_ex> IOd = 00. 

The condition (d) is to be regarded as void if the decomposition 0 = U Oj 
is finite; and in the contrary case it is supposed that the index i ranges over 
all positive integers. The intervals 0; may, of course, fail to be disjoint, and 
some of them may project beyond [ -TT, TT). It is left to the reader to verify 
that it is possible to choose the intervals 0; so as to fulfill the above conditions. 

We write 

St.k = 0 1 + 2kTT, S;.k = 0; + 2kTT, S = UI.k SI,}<' 

where k ranges over Z. 
By (13.9.4) we have for x E [-TT, TT): 

h,,(x) = + --{J ",-en 13" }f(t)dt 
-3" x+en t - x 

= hl.,,(x) + h2 .,,(x) + h3.,,(x) 

say, where h l .", h2 .", and h3 ." are related to cp, eil, and r - eil, respectively, 
exactly as h" is related to f. For instance, 

{J ",-en J3"} cp(t) dt 
kl.,,(x) = + --. 

-3" x+en t - x 

To the reader is bequeathed the task (see Exercise 13.15) of showing that 
there exist functions h(j) E L2( -TT, TT) such that 

lim Ilk(j) - hj .,,112 = 0 
" .... ex> 

for j = 1,2,3. By extracting subsequences and renaming, if necessary, we 
may and will suppose that in addition 

lim kj.,,(x) = h(j)(x) 
" .... IX) 

for almost all XE [ -TT, TT). 
Since 0 ~ cp ~ p., it follows on replacing f by cp in (13.9.9) that 

Ilh(1)ll~ ~ A l 2 f" cp2(t) dt ~ A l 2p. J~" cp(t) dt 

~ A 12p. J~" f(t) dt = A l 2p.. (13.9.15) 

From the same source, taken in conjunction with (13.9.13), it appears that 

Ilh(2)11~ ~ A12 f" eIl2(t) dt = Al 2(%p.)2101 

(13.9.16) 
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A suitable majorization of h(3) is more troublesome and will occupy the 
next two stages of the proof. 

(6) As a first step towards the majorization of h(3) we will show that, for 
almost all XE [-'TT, 'TT)\S', 

where L' indicates a summation over those pairs (i, k) such that 

Si,k C [-3'TT, X ~ EnJ 

(13.9.17) 

and Ln a summation over those pairs (i, k) such that Si,k C [x + En,3'TTJ. 
Suppose indeed that XE t -'TT, 'TT)\S'. Since r(t) and <l>(t) vanish for alm ost 

all t outside S, it is clear that 

h3 ,n(x) = [r + r ] {r(t) - <l>(t)} dt. 
JI-311."'-SnJ"S JI"'+ Sn ,311J"S t - x 

Directing attention to the first integral on the right-hand side, a little further 
thought will show that, owing to the periodic structure of S, 

l-all.",-snJ"s {r(t) ;_<l>;t)}dt = L' + l-all,,,,-snJ"StO'ko {r(t) ;_<l>;t)}dt, 

(13.9.18) 

where (io, ko) = (io(n), ko(n)) is that index pair, if any such exists, such that 
Slo.ko contains x - En. It is almost obvious that, for sufficiently large n, ko is 
independent of n. 

To estimate the integral J appearing on the right-hand side of (13.9.18) 
we use the fact that, since rand <l> are nonnegative, there exist points t1 and 
t2 of Sio .ko for which, if we write E for the range of integration, 

and 

L ;~ :t = (t2 - X)-l L <l>(t) dt. 

Consequently; 

I JI ~ Itl - XI-I LtO'kO r(t) dt + It2 - xl- l L.O'kO <l>(t) dt 

= %fLltl - xl-Ilnlol + %fLlt2 - xl-Ilniol, 
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the last step following by use of (13.9.14) together with periodicity. Since 
x cf: S;o,ko' Its - xl :;;, ~/2(1 0;0 I - 10io Il for 8 = 1, 2, and therefore 

(13.9.19) 

Consider what happens as n --,)- 00. If, for sufficiently large n, there exist 
no intervals Si,k containing x - en, J vanishes for all sufficiently large n. 
In the contl'ary case, the decomposition 0 = U 0i must be infinite and i 
ranges over all positive integers. In this case, let (nJ ) be the sequence of 
va lues of n for which x - Enj E Sio<nj),ko<nj) for some pair of indices io(n j ), 

ko(n j ). For sufficiently large j, ko(n j ) is constantly 0 or -1, while io(n j ) --,)- 00 

asj --,)- 00. Thus (13.9.19) and property (d) in (5) show that J is zero, if n is 
distinct from all the n j , or is majorized by a quantity tending to zero as n 
ranges through the values n j • In either case, therefore, 

J--,)-O asn--,)-oo. 

A similar argument can be applied to the integrals involving right-hand 
intervals [x + en, 31T], and (13.9.17) folIo ws on combining the two arguments. 

(7) Having established (13.9.17), we proceed to estimate the integrals 

for XE [-1T, 1T)\S' and any pair (i, k) such that Si,k C [-31T, 31T). An 
appraisal of 

r I Ji,k(X) I dx 
)[-",,,)\S' 

follows and leads finally to a crucial majorization of 

r Ih(3)(X) I dx. 
)[-",,,)\S' 

Repeating an argument used in (6), we find that there exist points Tl and 
T2 of Si,k for which 

as before, (13.9.14) is being called into play here. If we denote by Ci,k the 
midpoint, of Si,k' and recall that x cf: S;,k and that IS;,kl > 5lSi,kl, we obtain 

(13.9.20) 
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On the other hand, 

& 41SI.k1 2 

..., IS' I I.k 

:;;; ISI.kl, 

where the last step depends upon (c) in (5). Thus (13.9.20) leads to 

II.k == [ jJI.k(X)I dx :;;; A2f'ISI.kl· 
)[-II.II)\S-

By Fatou's lemma and (13.9.17) it follows directly that 

(13.9.21) 

Now, in the sum 2: the index k must be either -1 or 0, and in:L" it must be 
either 0 or 1. Therefore (13.9.21) yields 

[ Ih(a)(x)j dx :;;; A 2f' L (ISI.-11 + ISI.ol + ISI.1!> 
)[-II.II)\S- I 

= 3A2f' L 1011 :;;; 6A2 , 
j 

where the last step makes use of (13.9.13) and the fact that SI.k is a translate 
of 0 1, Thus 

(13.9.22) 

(8) For this final stage of the proof, the number A > 0 is supposed given. 
Denote by E q (q = 1,2,3) the set ofpointsxE[ -17,17) forwhich Ih(q)(x)1 > N3, 
and by E the set of points XE [-17,17) for which Ih(x)j > A. The obvious 
relation h = hm + h(2) + h(3) a.e. entails that lEI:;;; lEI! + IE21 + IEal. 

If E; = E a n ([ -17, 17)\S'), (13.9.22) yields 

whence it follows that 

(13.9.23) 

On the other hand, 

m(Ea) :;;; m(E;) + m([ -17, 17) n S') . (13.9.24) 
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It has already been supposed (see (4)) that /L > 7T- 1 : we now suppose that 
/L > 247T- 1 . Then (13.9.13) and property (b) in (5) show that 

:z: In;1 ~ 6:Z: Ind ~ 12 < ~ 7T. 
/L -

The relation I n;[ < Yz 7T shows that the only S;,k which make a nonzero 
contribution to m([ -7T, 7T) n S') are to be found among those for which 
k = -1,0 or 1. Therefore 

m([ -7T, 7T) n S') ~ 3:Z: In;1 ~ 18:Z: [nil ~ 36//L 

and so, by (13.9.23) and (13.9.24), 

m(E3 ) ~ 18Az/,\ + 36//L, 
provided /L > 247T - 1. 

Concerning EI' (13.9.15) yields 

so that 

(~r m(E1 ) ~ A I 2/L, 

A 3 /L 
m(E1 ) ~~. 

Similarly, (13.9.16) entails that 

(13.9.25) 

(13.9.26) 

(13.9.27) 

On combining (13.9.25), (13.9.26), and (13.9.27), and taking /L = ,\ > 247T-\ 
we obtain 

A 
m(E) ~ "A' 

Thus (13.9.8) is established for ,\ > 247T- 1 and the proof is complete. 
Remarks. (1) It is perhaps worthwhile to comment on the 

introduction of the functions t/I and f) and the set n. The reader should 
observe that f) is absolutely continuous on [-n, n) with a derivative 
existing almost everywhere and equal to r - t,u. We know that r(x) = 0 or 
r(x) > p, for aB x. Roughly speaking, r(x) > p, if and only if f) is increasing 
at the point x; the set n is an open set consisting of those points where f) 
is increasing, together with a subset, say F, of the set of points in [ - n, n) 
where f) is nonincreasing. It turns out that the set F is of negligible 
import an ce when p, is sufficiently large. 

(2) The preceding proof of (13.9.1) is bare-handed and entirely "real 
variable" in nature. A good deal of economy can be achieved by using 
the elements of complex variable theory, in particular the basic 
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properties of harmonie functions. We sketch a proof based on such 
prineiples; see [Kz], p. 66. 

Since T:f->jis linear and eontinuous onL2 (see 12.8.3(1)), reference to 
Exereise 13.18 shows that it is enough to establish (13.9.1) in easefis a 
strietly positive-valued trigonometrie polynomial satisfying 11 f 111 = 1. 
Taking prineipal branehes of arg and log, consider the function H .. 
defined for all eomplex z satisfying Re z > 0 by 

H~(z) = 1 + n- 1 • arg ((z - iA)(Z + iA)-l) 

= 1 + n- 1 • Im (log ((z - iA)(Z + iA)-l)). 

The funetion H ~ is clearly harmonie and nonnegative on the halfplane 
defined by Re Z > 0; moreover, 

(i) H ~(z) ~ t forall z such that Izl ~ A and Re z > O. 

Extend fand j from the unit eircumference to the eomplex plane by 
defining 

neZ 

neZ 

for all real r ~ 0 and all real e. Then 

f (rio) + ij (re iO ) = I r lnl (1 + sgn n)j (n)e inO 

neZ 

= j (0) + 2 I rlnlj (n)e inO 

n~l 

is an entire function of z = re iO • Also, the extended fis harmonie and (by 
the Maximum Prineiple for harmonie functions) is strictly positive 
throughout a neighbourhood of the closed unit dise D in the eomplex 
plane. It follows that the function Z-> H~(J(z) + ij(z)) is harmonie on 
this neighbourhood. By the mean value theorem for harmonie funetions it 
follows that 

(ii) (2n)-1 12 
"H .. (J (eil) + ij(ei/ )) dt = H .. (J(O)) = H~(I) 

= 1 - 2n -1 tan -1 A < 2n - 1A - 1. 
From (i) and (ii) it is easily dedueed that the measure of the set of all 
tE [0, 2n] such that I f (eil) I > Ais at most 8A -1, as required. 

13.9.2. Proof of the Results in Seetion 12.9. Knowing from Theorem 
13.9.1 that T: f --+ J = H * f is of weak type (1, 1) on L"', say, together with 
the (much more evident) property that T is oftype (2, 2) on L2 [see 12.8.2(2)], 
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the major results of Section 12.9 can now be derived by applying what has 
been learned in Section 13.8. 

(1) To begin with, Marcinkiewicz's interpolation theorem 13.8.1 aftirms 
that T is of type (p, p) on L'" whenever 1 < P :( 2, so that a number kp 

exists for which 

(12.9.1) 

holds for 1 < P :( 2 and f E L"'. The extension to general f E LV follows from 
12.9.4(1); and, exactly as in 12.9.6, it is seen that the inequality remains true 
for 2 :( P < 00. Thus we obtain M. Riesz's theorem 12.9.1. 

Furthermore, an appeal to the results in 13.8.3 now yields the inequalities 

for 0 < P < 1 (12.9.9) 
and 

(12.9.10) 

for fE L"'. Then, as has been seen in 12.9.9, the first of these inequalities 
continues to hold whenever fELl and H * f is replaced by r (and in its 
given form wheneverflog+ Ifl E LI), and the second whenever flog+ Ifl E LI. 

(2) We turn next to the proof of (12.9.14) and (12.9.15). For this purpose 
we need to estimate 11 Tllp,p for large values of p. 

For p E (1, 2) the result stated in 13.8.2(3) shows, on taking K = 1, Po = 
qo = 2, PI = q1 = 1, A o = 1 [see (12.8.10)] and Al = A (as in 13.9.1), that 

11 T 11 :( 2p1/P{ 2 + 1 }l/P A (2 - p)/p. 
P.P p(2 - p) p(p - 1) 

To infer a corresponding estimate for va lues of p greater than 2, we use 
12.9.6 (or 16.4.1). In this way it appears that there exists an absolute constant 
B such that 

Illllp :( Bpllfllp (p ~ 2). (13.9.28) 

For some remarks concerning this type of estimate, see [Ba2], p. 107. 
Suppose now that f E L'" and Ilf 11", :( 1. Then, for ,\ > 0, 

~ fex p ['\111] dx = i ,\PII{II~. (13.9.29) 
217 p=o p. 

Using the relations 111111 :( IIJI12 :( IIfl12 and Ilfllp :( Ilfll", :( 1, together 
with (13.9.28), it is easily seen that the series on the right-hand side of 
(13.9.29) converges to a finite sum, provided'\ < (eB) -1. This proves (12.9.14) 
with '\0 = (eB)-l. 

(3) It should be added at this point that the complex variable proof of 
(12.9.14) given in [Zl], p. 257, shows that it is possible to take '\0 = Y217. 
That this is the best-possible value of '\0 follows at once on considering the 



[13.9] APPLICATION TO CONJUGATE FUNCTIONS 189 

function1 defined by (12.8.14), whose conjugate!satisfies (12.8.15) for almost 
all small positive values of x. 

(4) As for (12.9.15), suppose that 1 E C and e > 0 are given. Choose a 
trigonometrie polynomial (/ such that 111 - (/11 <Xl ~ e (see 2.4.4). Then 
(12.9.14) and the linearity of T show that 

2~ f exp ["-I! - gll dx < 00 

provided e"- < "-0' Now g is also a trigonometricpolynomial, and 

exp ["-I!1l ~ exp ["-Igll· exp ["-I! - gl]· 
Therefore 

2~ f exp ["-I!1l dx < 00, 

again provided e"- < "-0' Since "-0 > 0 and e may be chosen arbitrarily smalI, 
(12.9.15)- folIows. 

Remark. From (12.9.15) it follows easily that 

II!III> = o(p) asp~oo (13.9.30) 

for each 1 E C. Of course, this does not in itself imply the existence of a 
function e1' ~ 0 as p ~ 00 such that for p ~ 2 

(13.9.31) 

for each 1 E C, e1' being independent of 1. Indeed, no relation (13.9.31) can 
hold (with an j-independent e1' ~ 0 as p ~ 00) for each 1 E C: if it did, the 
same would continue to hold for each 1 E L<Xl, which would entail that exp 
["-I!I] would be integrable for any 1 E L<Xl and any "-. The discussion in (3) 
immediately above has shown this to be false. 

As a consequence of this, the relation 

asp~1+0 

is easily seen to follow. 
See also Koizumi [2]. 

13.9.3. Remark on the Hilbert Transform. If one replaces the group 
T by R, the analogue of the mapping f--t j is the so-called Hilbert 
trans form 

the integral being interpreted as a principal value. This, together with similar 
operators involving singular integrals and functions of several real variables, 
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have been the object of an enormous amount of study by, among others, 
Titchmarsh, Kober, Koizumi, and Calderon and Zygmund. Many of the 
developments are extremely closely linked with the ideas of type and of 
weak type of operators. See Calderon and Zygmund [1], [2], Calderon [2], 
Cordes [1], Koizumi [1] and the references ci ted there, O'Neil and Weiss 
[1]; [EG] , Section 6.7; Coifman and Weiss [1]; Coifman, Rochberg and 
Weiss [1]; MR 56 # 16143. 

13.10 Concernin~ a*f and 8*f 

We return to the topics mentioned in 6.4.7 and utilize the results estab
lished in Section 13.8 in order to establish the inequalities 

11 0-*1 11 i> ~ Apll/llp 
1100*/llp ~ ApUlll 

if/E LP, 

ifl E LI, 

1 < p ~ 00, 

0< p < 1, 

(6.4.11) 

(6.4.12) 

110-*/111 ~ ~ I 1I1 log + 1I1 dx + B if I log+ 1I1 E LI. (6.4.13) 

The reasoning proceeds as folIows. 

13.10.1. The Nature of 0-*. The operator 0-* is sublinear and, by (6.4.9), 

0-* is oftype (00,00) on La:>. (13.10.1) 
The statement 

0-* is of weak type (1, 1) on La:> (13.10.2) 

can be established in several ways. (If 0-* were linear, (13.10.1) would imply 
that 0-* is of type (1, 1), and nothing would remain in doubt1; but 0-* is not 
linear and in fact 0-* is not of type (1, 1).) 

One way of proving (13.10.2) is tO'use the properties of the Hardy-Little
wood maximal operator mentioned in Example 13.7.6(2) in conjunction with 
some additional arguments of an elementary nature; see Exercise 13.17. 

Alternatively, one can make appeal to 6.4.4 in combination with a powerful 
and general theorem of Stein cited in 16.2.8.; compare Exercise 16.14. 

13.10.2. Deduction of (6.4.11) to (6.4.13), (10.4.9), and (10.4.10). 
Knowing that (13.10.1) and (13.10.2) hold, the Marcinkiewicz theorem 13.8.1 
yields (6.4.11) for I E La:>. On tne other hand, (6.4.12) and (6.4.13) appear as 
special cases of (13.8.22) and (13.8.21), again providedl E La:>. The extension 
to the more general functions I specified is quite simple. 

Since it is evident that 0-*1 ~ 0-*1/1, we may assume that I is real and 
nonnegative. For any such I, if we take any sequence of nonnegative func
tions In (n = 1,2" .. ) such that In ~ In+1 t I, we have (by the monotone 
convergence theorem for integrals) 

1 The neoessary argument would be similar to that appearing in 16.4.1. 
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a*f = SUp F N *f 
N 

= SUp SUp F N *fn 
N n 

= SUp SUp F N *fn 
n N 

= SUp a*fn; 
n 

191 

and here a*fn ~ a*fn+ l' Taking fn = inf (f, n) E LW, the validity of any one 
of (604.ll), (604.12), or (6.4.13) for each ofthe bounded functionsfn leads (by 
the monotone convergence theorem for integrals once again) to the same 
inequality for f. These inequalities are thus seen to be valid for the specified 
classes of functions f. 

Using 16.2.8 again, if one grants the convergence almost everywhere ofthe 
Fourier series of each fE LP for some fixed p satisfying 1 < P ~ 2 [see 
IO.4.5(3) for the case p = 2], one could derive the inequalities (10.4.9) and 
(lOo4.lO): In this connection, see Exercise 13.16. 

13.lO.3. Other Maximal Operators; Singular Integrals. The operators u* and 
Mi (j = t, r, ß) [see Example 13.7.6(2) and cf. Exercise 14.23] are instances of 
what one might term" maximal" or " majorant " operators of the type 

f ---+ K*f == sup IK, *fl, 
'''1 

where (K,):'= 1 is a sequence of well·behaved functions. As has been mentioned 
earlier (see 6.4.7 and Section 6.6), the study of such maximal operators has 
been made in the context of general (Hausdorff locally compact) groups in 
Edwards and Hewitt [1] and, with special success for compact groups, by 
Stein [1]; see also the closing remarks in Example 13.7.6(2). The results obtain~d 
in this way assert that, under suitable conditions on the K" K* will enjoy the 
properties asserted of a* in (6.4.11) to (6.4.13); see Exercise 13.17. 

It would nevertheless be amistake to infer that this automatically disposes 
of a11 problems associated with the pointwise summability of Fourier series on 
more general groups, the fact being that the summability methods one may 
wish to study do not always satisfy the required hypotheses placed on the 
corresponding functions Kr' This happens as soon as one passes from T to its 
powers Tm, that is, as soon as one passes to the consideration of multiple 
Fourier series of periodic functions of several real variables. In particular, the 
(unrestricted) Cesaro summability of such series does not behave in quite the 
expected way. For the details, see [Z2]' Chapter XVII. It is shown there that 
the correct analogue of (604.12) requires the replacement of 11 f 111 by 

(2~r Jlfl(log+ Ifllm - 1 dx, 

and that of (6.4.13) requires the replacement of 

2~ J Ifllog+ Ifl dx 
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by 

where we have written 

to denote the invariant integral on the group Tm. The differenee ean be traeed 
back to neeessary ehanges in the form of the Hardy-Littlewood maximal 
theorem in m dimensions, and this in turn is due at least in part to the 
topologieal properties of the underlying group. 

One motivation for expending effort on attempts to prove that maximal 
operators K* satisfy strong- or weak-type inequalities on eertain domains is 
the assistanee deriving from any such conclusion toward proving the existenee 
and finiteness almost everywhere of the pointwise limit of the sequenee 
(Kr * f);.",: 1; see Exereise 13.26. Limits of such sequenees are usually rather 
loosely deseribed as "singular integrals." 

As an example, eonsider the eonvolution operators introdueed in 12.8.2, 
namely, 

1 f 1 H.*f(x) = 2 f(x - y)eot"2 ydy , 
1T ... Iyl"" 

where 0 < E < 1T. The proof of 13.9.1 ean be elaborated so as to yield the 
eonclusion that the assoeiated maximal operator H*:f-"supo<t<" IH.*fl 
is of weak type (1, 1) on L 1 (eompare Koizumi [1], I, p. 171; [Kz], p. 76). 
Sinee, as has been seen in 12.8.2, the pointwise limit r (x) = lim,_o H, * f (x) 
exists finitely for all x whenever f E Ca) (say), it ean be inferred from Exereise 
13.26 that the limit r(x) exists finitely for almost all x whenever fELl, a 
result due originally to Lusin and Privalov (see the end of 12.8.2). (The fact 
that we have in this ease a eontinuous parameter e~ 0 in plaee of an integer 
parameter r~ CIJ eauses no trouble whatsoever.) 

Statements about mean eonvergenee as e~ 0 of the transforms H, * f also 
follow quite easily from the above property of H*; see Exereise 13.27. 

For further reading relating to maximal operators and singular integrals, see 
[EG]; [HR], Seetion 44; [St]; [Kz], pp. 66 ff.; Gilbert [3]; MR 35 # 6788; 
37 # # 5731,6144, 6704, 6687; 38 # # 575,576,2268,3466; 39 # # 4709, 
4711; 40 # 799; 50 # 10670; 52 # 1162; 53 # 1143; 54 # # 844, 3290, 5720, 
5721, 5736, 8133a,b,e, 8155, 13452; 55 # 3670, 6096; 56 # # 959, 960, 6259, 
6260,6261,6266; 57 # 10340. 

13.11 Theorems of Hardy and Littlewood, Marcinkiewicz and 
Zygmund 

Section 13.5 has produced one sort of valid extension of the Parseval 
formula (8.2.2) and the Riesz-Fiseher theorem 8.3.1. This section is devoted 
to some more results of the same type. 
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13.11.1. (Hardy-Littlewood) (1) If 1 < P ~ 2 andfELP, then 

{2: (1 + Ini)P- 2IJ(nWP'P ~ Apllfk (13.11.1) 
neZ 

(2) If 2 ~ q < 00 and t/> is a funetion on Z satisfying 

2: (1 + Ini)q- 21t/>(n)lq < 00, (13.11.2) 
neZ 

then the trigonometrie polynomials 

~N(X) = 2: t/>(n)einX (13.11.3) 
Inl"N 

eonverge in Lq as N 4- 00 to a funetionf satisfyingJ = t/> and 

Ilfllq ~ A q,{2: (1 + Ini)q- 2 1t/>(n)iqp,q. (13.11.4) 
neZ 

Remark. The funetion f appearing in statement (2) plainly provides a 
sensible interpretation of ~; see 2.5.1 and 8.3.3. 

Proof. We derive (1) from an applieation of the Mareinkiewiez inter
polation theorem in a suitable setting, and deduee (2) from (1). 

(1) Here we take (X,.A,,.,,) as in Example 13.1.3(1), and (Y, %, v) as in 
Example 13.1.3(2) with 

Furthermore, take T to be defined by the formula 

Tf(n) = nJ(n) 

for, say, ,.,,-simple funetions f. 
Parseval's formula (8.2.2) shows at onee that T is of type (2, 2). We will 

show that T is of weak type (1, 1). Indeed, if f# = Tf and t > 0, then 

Dr#(t) = v({lf#(n)1 > t}) = 2: (1 + Ini)-2 

summed over those integers n for whieh InJ(n) I > t. This last inequality 
implies that Inl > tillfll!> so that 

Dr#(t) ~ 2: (1 + Ini)-2 ~ 211f111, 
Inl>tl!lflll t 

whieh shows that T is ofweak type (1,1). [It should be notieed that Exereise 
3.14 shows that T is not of type (1, 1).] 

Appeal to the Mareinkiewiez interpolation theorem 13.8.1 shows that T 
is of type (p, p) whenever 1 < P < 2; as we have noted, the same is true 
for p = 2. This leads to the inequality (13.11.1) for ,.,,-simplef. The extension 
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to a general f E LP is carried out in a routine manner by approximating f in 
LP bya sequence of fL-simple functions; see 13.2.2. 

(2) Write p = q', so that 1 < P :;;; 2. For brevity write W n in place of 
(l + Ini)q- 214>(nW· Suppose that gE LP and that N < N' are positive 
integers. On applying Hölder's inequality and (1) it is seen that 

= I L (1 + In l)l-2Iq4>(n)' (1 + InI)1-2IPg(-n)1 
Inl.;N 

:;;; { L wnF1q. { L (1 + Ini)p- 2 Ig( -nWF1P 
Inl';N Inl';N 

:;;; { L wnF1q. Apllgllp· (13.11.5.) 
Inl';N 

Similarly, 

(13.11.6) 

On using 13.1.5, the inequalities (13.11.5) and (13.11.6) lead respectively to 
the estimates 

IIJNllq :;;; {L Wn}llq. A p (13.11.7) 
Inl.;N 

and 

IIJN - ~N'llq:;;; { L wnP1q'A p' (13.11.8) 
N<lnl.;N' 

The last inequality combined with (13.11.2) shows that the sequence (~N)fj=l 
is Cauchy and therefore convergent in Lq; let f be its limit. Then, by me an 
convergence, 

!(n) = lim (~N)~(n), 
N_ 00 

which is easily seen to equal 4>(n). Moreover, the defining relation 

f = lim JN in Lq 
N-oo 

and the inequality (13.11.7) show that (13.11.4) holds and so complete the 
proof. 

13.11.2. Remarks. (1) The result 13.11.1 was extended by Paley to 
expansions in terms of orthonormal systems of functions u" which are 
uniformly bounded; see [Z2]' p. 121 and compare the remarks in 13.5.2. 
Yet further generality was achieved by Marcinkiewicz and Zygmund [1]. 
In Section 3 of Stein and Weiss [1], it is shown that this generalized version 
can be deduced very neatly from their version of the Riesz-Thorin theorem 
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[mentioned in 13.4.2(2)]. Compare also with Hörmander [1], Theorem 
1.10 and Gaudry [5], Theorem 5.1. 

For a variant of the Hardy-Littlewood-Paley theorem involving rc
arrangements of Fourier coefficients, see [Z2J, p. 123. 

(2) A more general version of 13.11.1 appears in Exercise 13.9. See also 
Exercises 13.1, 13.9, 13.21, 13.23, Askey and Wainger [IJ and Izumi [2J. 

13.11.3. The Dual Version of 13.11.1. It is possible to dualize 13.11.1, 
that is, to formulate versions in which T and Z interchange their roles. 
Before making any statement of this sort, we remark that in 13.11.1 the 
expression (1 + I n I) might everywhere be replaced by a number of other 
positive functions (J) on Z subject to the condition 

2: w(n)-2:s:;:i 
{",(n»s} 8 

(8 > 0), 

which would be used to ensure that the operator T: f -+ wJ is of weak type 
(1, I). 

This suggests a formulation of the dual result in terms of a measul'able 
function (J) on T such that 

w(x) > 0 a.e., - w(X)-2 dx :s:; -I i A 
217 (o>(x) > sI 8 

(8 > 0). (13.11.9) 

We shall regard w as a function on R having period 217, and make use ofthe 
measure space (Y, %, v) in which Y is the interval [-17,17), % is the coIlec
tion of Lebesgue measurable subsets of Y, and v is the measure defined by 

v(E) = 2~ L w(X)-2 dx (EE%). 

It is easily verified that 

L h dv = 2~ I h(X)W(X)-2 dx 

for any nonnegative Lebesgue measurable periodic function h on R. 

13.11.4. (Marcinkiewicz-Zygmund) Let w be as explained in 13.11.3. 
(I) If I < p :s:; 2 and 4> E IP(Z), then 

(13.11.10) 
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(2) If 2 ,,; q < 00 and fis measurable and f w q- 2 lfl q dx < 00, then fELl 
and 

(13.11.11) 

Proof. This is very similar to that of 13.11.1 and we shall be brief. 
(I) We aim to apply the Marcinkiewicz interpolation theorem 13.8.1, 

taking (X, vif, jL) as in Example 13.1.3(2) with jL the counting measure on Z, 
(Y,.Ai, 1') as described in 13.11.3, and the operator T defined by 

Tcf>(x) = w(x)~(x) 

for jL-simple functions cf> on Z. 
Parseval's formula shows that T is of type (2,2). The condition (13.11.9) 

ensures that T is of weak type (I, I), since the set E t of points x at whieh 
1 T4>(x) 1 > t is eontained in the set at which w(x) > t/II4>lll, and so 

,,; A 114>111. 
t 

It follows, via Marcinkiewicz's theorem 13.8.1, that T is of type (p, p) 
whenever I < P ,,; 2, which leads at onee to (13.11.10) for jL-simple cf>. 
The extension to arbitrary cf> E tP(Z) is routine and is left to the reader. 

(2) Write p = q'. If fE LI and 

J == {2~ J wq- 2 lfl q dxF,q < 00, 

we have from Hölder's inequality and (I) 

This shows that the assignment 

is a continuous linear functional on tP(Z). From the discrete analogue of 
I, C.I [see [E], Exercise 1.2 and Theorem. 4.16.1; [HS], Theorem (15.12)] 
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it folIows that there exists a function .p E (P'{Z) = (q{Z) such that 

21 fI~ dx = 2: cf>{n).p( -n) 
7T neZ 

(13.11.12) 

for alI cf> E (P( Z) and 

(13.11.13) 

From (13.11.12) it folIows that f = .p, so that (13.11.13) yields (13.11.11). 
Thus (13.11.11) hoH.; \\'Iwn('ver I E LI anel J < co. Snpposing now that f 

is nonnegative and meaHurahle anel timt J < co, an application of (13.11.11) 
to Ir = inf (j, r) E L1, followed by a limiting proeess aH r -+ co, shows that 

and therefore that I E LI. On replacing I by 111, we see that I E LI whenever 
J < 00. The proof is therefore complete. 

13.11.5. Remarks. In 13.11.4 one may take 

w(x) = lxi« for lxi ~ 7T 

whenever cx ~ 1. The case cx = 1 is due to Mareinkiewiez and Zygmund [1] 
and is treated otherwise in Theorems (3.8) and (3.9) of Stein and Weiss [1). 

EXERCISES 

13.1. Show that 2:n .. O Ij(n)/nl < co whenever I E 1P for same p > 1. 
Remarks. Sinee (see Exercise 7.7) 2:;'=2 cos nx/log n is the Fourier 

series of an integrable funetion, it follows that 2:n .. o j(n)/Inl diverges for 
suitably chosen I E L1. 

The stated result should be eompared with Exereises 7.9, 13.21, and 13.23. 
13.2. Assume that I is absolutely continuous and that DI E LP, where 

1 < p ~ 2. Show that (with the notation introduced in 10.6.1) I E A and 
that 

where t(s) = 2:;'=1 n- S for Res> 1. 
Remark. There are analogous results applying wheniis assumed merely 

to be a distribution (in the sense of Chapter 12) and DI is replaced by D'"f 
(m a positive integer). These are simple periodic versions of results, named 
collectively Sobolev's lemma, which apply to (not necessarily periodic) 
distributions defined on domains in a Euclidean spaee Rn. 
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13.3. Assume that 0 < a < 7T and that I is defined and absolutely 
eontinuous on [-a, a], that 1 < P ~ 2, and that 

M = sup I/(x)l. 
Ixl.;a 

Show that there exists a funetion gE A (see 10.6.1) sueh that g(x) = I(x) 
for lxi ~ a and 

where a" and ß" are nonnegative numbers depending only on p. 
Remarks. Estimates ofthe stated type are often useful in approximation 

theory; see, for example, Domar [2]. The given estimate ean be varied by 
ringing ehanges on the eonstruetion of g. 

Hint: Define g as a suitable periodie extension ofJ-and use Exereise 13.2. 
13.4. State and prove an analogue of 13.6.1 for functions on Z. 
13.5. Let fL E M and define 

B _ {"fLli2/Pl-IIP-I!,-<2/Pl 
p(fL) - Bp'(fL) 

Prove that for 1 ~ P ~ 00 

whenever I E LP. 

ifl~p~2 

if 2 < P ~ 00. 

Hint: Consider first thc ease 1 ~ P ~ 2, using the ease P = 1 of 12.7.3, 
the Parseval formula, and the Riesz-Thorin theorem. For the ease 2 < P ~ 00, 

appeal to Hölder's inequality and its eonverse (eompare 16.4.1). 
13.6. We revert to the matters diseussed in Seetion 4.2. Let a be a map 

of Z into Zu{oo} sueh that a-l({n}) is finite for eaeh nE Z. Suppose that T 
is the operator defined for trigonometrie polynomials I by the formula 

TI = 2: j(a(n))en ; 

neZ 

eompare equation (4.2.5). Suppose further that 1 ~ PI < P2 ~ 00 and that 
there exist numbers ml and m2 sueh that 

for i = 1,2 and all trigonometrie polynomials J. Prove that, if P satisfies 
PI ~ P ~ P2' T ean be extended into a eontinuous homomorphism of LP 
into itself. 

Hint: The reader should pay espeeially elose attention to the ease in 
whieh P = P2 = 00, in whieh eonneetion 12.3.10(2) will be useful. 
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13.7. The notation is as in 13.2.3(2). Show that S is a one-to-one linear 
map of V(fL) into co( Y) which is of type (1, (0). 

13.8. The notation is as in 13.2.3(2). 
(1) Assuming that SIL2(fL) is of type (2,2), prove that it is of type (p, p') 

whenever 1 ::::; P ::::; 2. 
(2) Show by example that, if P > 2, then SIV(fL) is not of type (p, p'). 
13.9. (1) Suppose that 1 < P ::::; r ::::; p' (so that 1 < P ::::; 2). Show that 

there exists a number A = A p > 0 such that 

for eachfEV. 
(2) Suppose that q' ::::; 8 ::::; q < 00 (so that 2 ::::; q < (0) and that cf> is a 

complex-valued function on Z such that (1 + InW-i/Q-i/S cf> E (S(Z). Show 
that there exists a function U E U such that g = cf> and 

Ilullq::::; Aq,1I(l + InW-i/q-i/Scf>lls' 

Remarks. Results (1) and (2) generalize 13.11.1(1) and 13.11.1(2), 
respectively. Compare with [Z2], p. 126. 

There is an analogue applying in the case in which the group T is 
replaced by R; see Hörmander [1], Corollary 1.6. 

The stated results are of interest and use in connection with multipliers; 
see 16.4.6(3). 

Hints: For (1), use 13.5.1 and 13.11.1. Derive (2) from (1) by mimicking 
the argument used in the text to deduce 13.11.1(2) from 13.11.1(1). 

13.10. Write out the details of the subcase Po < P < Pi' 00 > qo > qi 
of Theorem 13.8.1 [see the end of stage (1) of the proof given in the text]. 

13.11. Supply the proof of 13.8.1 in case (2) listed in the text. 
Hints: Here Po = Pi = p, qo < 00, qi = 00. Suppose a > 0 and write 

IITfiltv = q f bq-iDTfV(b)db + q LX) bq-iDTfV(b) db. 

Let a t Adlfllp.u· 
13.12. Supply the proof of 13.8.1 in case (3) listed in the text. 
Hints: Here 1 ::::; Po ::::; qo < 00, Pi = qi = 00. Suppose a > 0; then 

IITfllg.v::::; const {fe bq-iD"fh.a(b) db + LX) bq-iDh2)b) db} 

Choose a = a(b) = A 1 i b, and estimate 

{CO bq- i Dh2.a(~)(b) db 

as in stage (1) of the proof in the text. 
13.13. Supply the proof of 13.8.1 in case (5) listed in the text. 
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Hint: Modify the proof of case (4) given in the text, using as a guide the 
changes made in (1) to handle the case in which qo > ql' 

13.14. Let Band n = Uj nj = Uj (ai> bj ) be as in 13.9.1(4). Show that 
B(aJ = B(bj - 0) for all i. 

13.15. Verify the assertion made in part (5) ofthe proof of 13.9.1, namely, 
if hf,n are the functions there appearing, then there exist functions 

h(j) E L2( -1',1') 

such that hf,n -+ h(j) in L2( -1',1') for j = 1,2,3. 
Hint: Consider, for example, hl,n' Observe that hl,n bears the same 

relationship to q, as hn does to f. 
13.16. (1) Let (X, vif, p.) be a. measure Hpace amI f an ('xtended real- or 

complex-valu<,d p.-m<'aHurable function on X sueh that. for Horne p > 0, 
A > 0, 

D/(t) ::;; (At-I)P 

Prove that if 0 < q < p, then 

(t > 0). 

r Ifl q dp. ::;; {p.(S) + -q -} Aq J, p - q 

for any p.-finite set 8 c X. 
(2) Let (X, vif, p.), (Y, S, v) and T:f -+f# bc as in 13.7.5, Y being 

v-finite and thc domain ~ of T having thc propcrty that cf E ~ whenevcr 
f E ~ and c is a positive number. Suppose that T is of weak type (p, q), 

where 0 < p ::;; 00 and 0 < q ::;; 00, and that I T(cf) I ~ clTfl v-a.e. for each 
number c > 0 and each f E ~. Prove that T satisfies a (strong) type (p, r) 
inequality on ~ whenever r < q. 

13.17. Let (Kj ) be an arbitrary family <,f functions in L«> such that 
IKjl ~ H j a.e. on (-1',1'), where the functions H j are absolutely continuous 
(but not necessarily periodic) and 

1 I" A == sup -2 Hj(x) dx < 00, 
t 1T_ n 

1 I'" B == sup -2 IxH;(x)1 dx < 00. 
j l' -" 

Define, for fELl, 

K*f(x) = sup IKj *f(x)l. 
j 

Show that 

K*f(x) ::;; (A + 2 B)f'"(x) , 

wherefll is defined as in Example 13.7.6(2). 
Show also that the same inequality holds almost everywhere if (Kj ) is a 

countable family of functions in LI, the other hypotheses remaining as before. 
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Apply this procedure to a*l, taking K N = F N for N = 0, 1,2, ... and 

HN(x) = CN(1 + Nlxj)-2 

for lxi < 1T, C being a suitable constant, and thus conclude from the results 
stated in Example 13.7.6(2) that a* is of weak type (1, 1) on Ll. 

13.18. Let (X,..ß, p.) be a measure space and In (n = 1,2" .. ) and I 
extended real- or complex-valued p.-measurable functions on X that are 
finite almost everywhere. Suppose that 

lim In = I 

in measure, that is, for any t > 0, 

lim D1-rn(t) = o. 
n-O 

(Notice that I - In is defined p.-a.e.; its definition may be completed in any 
desired fashion.) Prove that 

Dl(t) ~ inf lim inf Dr/(t - e) 
6> 0 n-+ co 

for any t > O. 
Note that the hypotheses are satisfied if In --+ I in LP(X, ..ß, p.) for any 

p > O. 
13.19. Let (X,..ß, p.) and (Y,.AI, v) be measure spaces. Denote by 

~ = ~(Y,.AI, v) the set of v-equivalence classes of v-measurable extended 
real- or complex-valued functions on Y which are finite valued v-almost 
everywhere. Suppose that Y is expressible as the union of disjoint v-finite 
sets Y k (k = 1,2",,) satisfying v(Yk ) > O. Verify that ~ is a complete 
metric space when the distance is defined by 

(The convergence of a sequence of functions in this metric is the same as 
convergence in measure on each v-finite set; see the preceding exercise.) 

Suppose that T is a linear operator with domain a linear subspace ~ of 
LP(X, ..ß, p.) and range in ~ which is of weak type (p, q). Show that T has a 
unique extension to the closure if of ~ in LP(X, ".{{, p.) which is continuous 
from if into ~, and that this extension is also of weak type (p, q). 

Hints: Show that a sequence of functions which converges in measure 
has a subsequence which converges pointwise almost everywhere. Use the 
preceding exercise. 

13.20. Show that LP * LP C LP{(2-p) if 1 ~ p < 2, aild that LP * LP C A 
if p ~ 2. 

Prove also that 

L 11i(n)IP{(2P -2) < 00 

neZ 
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whenever hE LV * LV and 1 < p :( 2. 
Remarks. These results show that LV * LV is a proper sub set of LV 

whenever p > I; see 7.5.3, Section 8.4, and 15.3.4. 
13.21. Prove that 

whenever the integral appearing on the right is finite, A and B denoting 
suitably chosen positive numbers. Compare with Exercises 13.1 and 13.23. 

Hint: Apply (13.8.21) to a suitably chosen particular case. 
13.22. The notations and assumptions are as in 13.8.3, and we now 

assume also that {-L(X) < 00, v( Y) < 00, and 1 < a < 00. 

Suppose that 'f' is defined on [0, 00), vanishes on [0, 1], is elsewhere positive 
and increasing, and 

o/(2t) = O(o/(t)) as t -+ 00. 

Define 

<I>(t) = t f: s- 2o/(S) ds (t ~ 0) 

and suppose that 

i<Xl <I>(s)dsjsa+1 = O{<I>(t);ta} as t -+ 00. 

Prove that there exist (j-independent) numbers A and B such that 

L o/([f#1) dv :( A + B Ix <I>([f[) d{-L 

for each f E ~. 

Remarks. One may take o/(t) = t for t > 1, in which case <I>(t) = t log+ t 
and one recovers (13.8.21). One mayaIso take o/(t) = t(log+ W- 1 for t > 1, 
where p > 0, and then <I>(t) = p- 1t(log+ W. 

Hints: Write c = max (2K, 1) and show first that 

(1) 

where K denotes an f-independent number (not necessarily the same at each 
appearance), 'r}j is the v-measure of the set where [f#[ > c2i , and 

0i = o/(c2i +1) - 'Y(c2i ). 

For a fixed j, split f into f1 + f2, where f1 equals f or ° according as [fr :( 2i 

or not. Apply (13.8.18) and (13.8.19) to f2 and f1' respectively, in order to 
derive the inequality 

i <Xl 
n j :( K{2- aj L 2aici + 2- i L 2ici}, (2) 

i=O i=j+l 
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where EO is the jL-measure of the set where 111 ~ 1 and EI is the jL-measure of 
the set where 21- 1 < 111 ~ 21 for i = 1,2,· . '. Substitute (2) into (1) and 
obtain 

where 

Show that each of Sl and S2 is majorized by an expression of the desired 
form. 

For more details, see [Z2], pp. 117-118. 
13.23. Suppose that p > O. Show that there existl-independent numbers 

A and B such that 

L Ij(n)I{log (2 + Inj(n)IW- 1 ~ A + B f 111(log+ 11\)P dx 
neZ 1 + Inl 217 

whenever the integral appearing on the right is finite. 
Deduce that 

L Ij(n)I{log (2 + In\)}P-1 
nEZ 1 + Inl 

is majorized by a similar expression under the same hypotheses on j. 
Remark. This result generalizes that in Exercise 13.21. 
Hints: For the first part, apply the preceding exercise to a suitably 

chosen special case. 
Derive the second part from the first by splitting the sum in question into 

two parts according as Inl-112 ~ Ij(n)1 ~ Inl112 or not. 
13.24. Suppose that 2 ~ p ~ 00 and that Fis a complex-valued function 

of a complex variable that is expressible in the form 

F(z) = az + bz + Iz I2IP'C(Z) , 

where a and bare complex numbers and the function c is bounded on some 
neighborhood of the origin. 

Show that to each 1 E V corresponds g E V such that g = F 0 j. 
Remark. This is the simple half of Rider's result cited in 10.6.3(2); it 

is due to Rudin. 
13.25. State and prove an analogue of the result asserted in the preceding 

exercise that is applicable when 1 < P ~ 2. 
13.26. Let (X,.A, jL) and (Y,.AI, v) be measure spaces and Kr (r = 

1,2, ... ) bounded and measurable functions on the product measure space 



204 INTERPOLATION THEOREMS 

(X x Y, vif x s, p. x v) (see [HS], p. 379; the conditionofboundedness on 
each Kr could be relaxed). For each r, Trf is defined by 

Trf(y) = Ix Kr(x, y)f(x) dp.(x) 

for f E Ll(X, vif, p.) and y E Y. Define also the maximal operator 

T*f(y) = sup ITrf(y)l. 
r 

Suppose the two following conditions are fulfilled: 
(1) T* is of weak type (p, q) on LP(X, vif, p.), where 1 :::;; p :::;; 00, 

o < q :::;; 00; 
(2) there is an everywhere-dense subset '! ofthe set ofreal-valued functions 

in V'(X, vif, p.) such that limr _ oo Trf(y) exists finitely for v-almost all y E Y 
whenever f E ~. 

Show that limr _ oo Trf(y) exists finitely for v-almost all y E Y whenever 
fE LP(X, vif, p.). 

Remarks. (i) Special cases of this result appear as partial converses 
of 16.2.8. 

(ii) It may be proved that, if in (2) it is assumed that, for every fE 1), 

limr .... oo Trf (y) = 0 for v-almost all y E Y, then the same is true for every 
fELp. 

Hints: Show that it suffices to handle the case in which the Kr andf are 
real-valued. Given e > 0, express any fE LP(X, vif, p.) in the formf = f1 + f2' 
wheref1 E ~ and IIf211p,1l :::;; e. Observe that 

Ilim sup Trf - lim inf Trfl :::;; 2T*f2' 
r .... oo T-+oo 

13.27. Assume that the maximal operator H*: f---+ supo<.<" I H. * f I 
is ofweak type (1, 1) on L1 (see 13.10.3). Deduce that 

sup IIH.llp,p < 00 
0<8<.71 

for 1 < p :::;; 2, and then that the same is true for 2 :::;; p < 00 (compare 
12.9.6or 16.4.1). Conclude that 

lim H. *f= Hf=j in LP 
..... 0 

whenever f E LP and 1 < p < 00. 



CHAPTER 14 

Changing Signs of Fourier Coefficients 

In this chapter we shall be concerned with so me remarkable facts 
concerning not one Fourier series 

L j(n)einx , 
neZ 

but rather " most" series 

L ±](n)einX 

neZ 

of the family obtained by making random changes of sign in the 
coefficients of the original series. It turns out that the behaviour of 
"most" members of such a family depends solelyon the convergence or 
divergence of the series 

if this series converges, then "most" members of the family are, in 
particular, Fourier series of functions in LP for every p < 00 ; while, if this 
series diverges, "most" members of the family fail to be 
Fourier-Lebesgue (or even Fourier-Stieltjes) series at all. We shall 
concentrate principally on the good behaviour resulting from the assumed 
convergence of LI j (n) 12 ; results pertaining to the case in which 
LI j (n) 12 = 00 are mentioned only briefly in 14.2.3 and 14.3.5. 

The technique we use for handling such a family, which at the same 
time gives a precise meaning to the term" most", sterns from replacing it 
by 

L w(n)j(n)einx , 

neZ 

where w is any function from Z to { - 1, + I}. This leads Us to consider 
the set ~ of all such functions wand we impose upon ~ the natural 
structure of a compact Abelian topological group and the associated 
normalised Haar measure. We interpret " most" to mean "belonging to a 

205 
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set of Haar measure one", and carry out some elementary harmonie 
analysis on the group fß. In the presence of the assumption LI j (n) 12 < 
00 we shall be able to perform a quick mental somersault and consider the 
series 

L w(n)j(n)einx 
neZ 

as defining a function belonging to either L 2 (T) or L 2 (fß). This will 
provide the results we need to study the above family of Fourier series. 

Thus the first part of this chapter is taken up with establishing 
properties of series which are the counterpart over fß of Fourier series 
over T, namely, infinite complex linear combinations 

where fß/\ denotes the group of characters of fß. These so-called 
Walsh-Fourier series include the families above as special cases in which 
the coefficients c~ are nonzero only for those , belonging to a certain 
lacunary (or thin) subset ~ offß/\. These lacunary series 

L c~, 
~ e 9f 

are called Rademacher series and results about them established in this 
chapter provide both an introduction to, and tools for the study of, 
concepts introduced in Chapter 15. 

It should be pointed out that our approach to Rademacher series was 
not, historically, the first, in which Rademacher series appear instead as 
series of functions defined on [0, 1]. For a treatment of the classical 
approach we refer the reader to the first edition of this book, and for the 
connection between the two approaches to Exercise 14.16 or to Appendix 
Cof[EG]. 

In what folIows, Z + will denote the set of nonnegative integers. 
Further, for every set X, IX will denote the constant function with 
domain X and value 1. 

14.1 Harmonie Analysis on the Cantor Group 

14.1.1. The Cantor Group. We denote by fß the set of all functions from 
the integers into {-I, +1}, and write its elements w = (w(n))neZ. Under 
the operation of pointwise product, fß is an Abelian group with identity 
the constant function l z, and each element is its own inverse: w2 = l z, 
for every w e fß. 

If {- 1, + I} is given the discrete topology, it becomes a compact 
Hausdorff space. Endowing fß == { -1, + I}Z with the product topology, 
Tychonoff's theorem ensures that fß too becomes compact and Hausdorff. 
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More precisely, a subbasis for the topology on ~ consists of all sets of the 
form {w E~: w(n) = <x}, where <X E {-I, + I} and n E Z. Consequently an 
open set in ~ is a countable union of sets of the form 

{w E~: w(n) = <x(n) for all n E «I>}, 

where «I> is a finite subset of Z and <X E { - 1, + I} «1>. Asequence (wn):'= 1 

converges in ~ to 1 Z if and only if for every N E Z + there exists an 
no E Z + such that wn(j) = 1 for all j E Z such that Ij I :.;; N and all 
nE Z+ such that n ~ no. (The reader reluctant to appeal to Tychonoff's 
theorem may show directly that, with these open sets, ~ is compact and 
Hausdorff. ) 

The group operation (w, <!J) -+ w<!J (pointwise product) is continuous 
from the product space ~ x ~ to ~; in other words, ~ shares with T the 
property of being a compaet Abelian (Hausdorff) topological group. We 
call it the Cantor group. (This name derives from the fact that, being a 
perfect, n~where dense, totally disconnected metrisable topological space, 
~ is homeomorphic to the Cantor ternary set (defined in Exercise 12.44). 
For a construction of such a homeomorphism, see Exercise 14.16. 
Sometimes ~ is termed the Walsh group; see Fine [1].) 

14.1.2. For every NE Z +, define 

~N = {w E~: w(n) = 1 for all n E Z such that Inl :.;; N}. 

Observe that for every such N, ~N is a subgroup of ~ which has 22N + 1 

cosets. Ey definition of the product topology, every ~ N is both open and 
closed; and, for every w E~, the family (W~N)N=O forms a basis for the 
neighbourhoods of w. 

14.1.3. The Dual of~. We now identify the dual group of ~ (see 
Volume 1, p. 20): it consists of all characters (continuous group 
homomorphisms) from ~ into T. Obvious characters are provided by the 
projection (that is, evaluation) functions. Prompted by tradition, for 
every n E Z, we call the projection Pn: ~ -+ { - 1, + I} given by Pn( w) = 
w(n), the nth Rademacher character, and we write §t to denote the set 
{Pn: n E Z}. The characters of ~ are describable as follows. 

(1) If «I> is a nonvoid finite subset of Z then nne«l> Pn is a character 
of~. 

(2) Conversely, if' is a character of~, then there is a unique function a 
from Z to {O, I} with finite support and satisfying 

'(w) = n w(nt(n) for all w E ~. (14.1.1) 
neZ 



208 CHANGING SIGNS OF FOURIER COEFFICIENTS 

Proof. (1) is an easy exercise. For (2) suppose that , is a character of 
ce and that W E ce. For every NE Z+ denote by WN the truncate of W 
defined by WN(j) = w(j) for all j E Z such that I j I ~ N and WN(j) = 1 for 
all other jE Z. Observe that W = limN .... oo WN in ce. Hence, by continuity 

of " 
'(W) = lim '(WN). (14.1.2) 

N .... oo 

Now, for all i E Z, we write 'i for the element of ce which maps i to w(i) 
and all other integers to 1. Then 

WN = '-N' '-(N-I) ... '0 ... 'N-I • 'N 

so that 

'(WN) = '('-N) ... '('0) ... '('N)· 

But 'i has order 2 hence so does '('i)' whence '('i) E {-I, + I}, for every 
i. Choose a(i) E {O, I} so that 

for every W E ce. 
Then 

'(WN) = w( -Nt(-N) ... w(O)O(O) ... W(Nt(N). 

Since, by (14.1.2), limN .... oo '(WN) exists for W E ce, it follows that the a(j)'s 
must eventually equal zero. This proves (14.1.1), and uniqueness of the 
function a is clear. 

We write ce" for the group of characters ofce under pointwise product, 
and denote its identity 1'6. Traditionally, members of ce" are viewed as 
functions on [0, 1]. The Rademacher characters are called Rademacher 
functions and elements of ce" termed Walsh functions; see Exercise 
14.16. 

The above proof justifies identifying the dual of {-I, + I} with {O, I} 
under the exponential map, and identifying the dual of the product { -1, 
+ I}Z with the weak direct sum ({O, l}z)* (the set of elements of{O, I}Z 
which have finite supports), under the action (14.1.1). Observe that 
multiplication of characters is the same as addition modulo 2 of their 
corresponding sequences in the weak direct sumo 

The appropriate topology on ce" is discrete; so ce" is again an Abelian 
topological group (see Volume 1, p. 20). 

Property (2) above shows that the set Pli of Rademacher characters 
generates ce" ; moreover Pli is an independent set, in the sense that: 

if CI> c: Z is nonvoid and finite, if a E Z·, and if 

n p:(n) = 1'6, then p:(n) = 1'6 for every n E CI>. 
ne. 

(14.1.3) 
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For a representation, due essentially to Paley, of CC" as the set Z +, see 
Exercise 14.17. 

14.1.4. Corresponding to the subgroups CC N of CC, we define 

(14.1.4) 

and note that 

d N = g E CC": CU) = 1 for allj E Z such that lil > N}. (14.1.5) 

We observe that .<;11 N is the subgroup of CC" generated by {p j: I j I ~ N} 
and therefore possesses 22N + 1 elements. In general terms (see [HR] , 
(23.23)), d N is called the annihilator of CC N. In Exercise 14.3 the reader is 
asked to prove that, as topological groups, 

(CC/CCN)" is isomorphie to d N, 

and 

CC N is isomorphie to cc" / d N. 

14.1.5. For every function f on CC and every CO E CC, the w-translate off is 
defined to be the function T co fwith domain CC, such that 

for all <p E CC, 

(recall that co -1 = co for all co E CC). 
There is an important operation on CC which is fundamental to the 

study of measure-preserving transformations on CC, but for which we have 
no need: the left shijt u: CC --+ CC is defined by 

u(co)(n) = co(n + 1) for all w E CC and all n E Z. 

All the Rademacher characters are expressible in terms of any chosen 
one, together with iterates of u and u- 1 : 

for all co E CC. 

14.1.6. Integration on f8. Just as an invariant integral on T was 
crucial to our analysis of functions on T, so we are now greatly aided by 
the use of an invariant integralover CC (see 2.2.2). Our idea is to define an 
invariant integral I on the space C(CC) of all continuous complex-valued 
functions on CC, by considering the obvious normalised invariant integral 
IN on the finite group CC/CCN, and letting N tend to infinity. Indeed if 
f E C(CC) and f is constant on the cosets of CC N (and so may be regarded as 
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a continuous function on CC/CCN) , then the normalised invariance of IN 
forces the equality 

(14.1.6) 

where the sum runs over any subset of CC comprising precisely one w from 
each coset of CC N in CC. Ir we define 

S(CC) == {f E C(CC): for so me N E Z + ,J is constant on the cosets of CC N}' 
(14.1.7) 

then for JE S(CC), the sequence (IN(f))'t/=o is eventually constant and we 
define I (f) to equal this constant. Aiming to extend this definition of I to 
all of C(CC), we first prove that S(CC) is uniformly dense in C(CC). This is 
easy, if the reader is prepared to tap the depths of the Stone-Weierstrass 
theorem (see [SMAJ, pp. 30-87); however, since there is an elementary 
proof (and since we shall need the result again in 14.9), we prove it now 
from first principles. 

Proof. Suppose JE C(CC) and s > O. Since for every N E Z + the 
characteristic function of every coset of CC N is continuous, it suffices to 
prove that NE Z+ can be chosen so that, on every coset of CCN , the 
variation of J is, in absolute value, at most s. The existence of such an 
N E Z + now follows from the continuity of J combined with the facts that 
CC is compact and the CC N form a basis for the neighbourhoods of 1 z. 

So far we have defined I on S(CC), and it is easy to see that I is linear, 
positive, translation invariant and of norm 1 (see 2.2.2). To extend I to 
C(CC) it now suffices to observe that whenever (fN)'t/=O is a sequence in 
S(CC) which is Cauchy with respect to the supremum norm, 

and hence that there is a complex number I(f) towards which the 
sequence (I(fN))NeZ+ converges. 

The resulting invariant integral I is again positive. Since alsoI(I() = 1, 
I may justifiably be christened the invariant (or Haar) integral on CC. IrJis 
integrable on CC, we shall often denote the number I(f) by $" J d)' or 
$" J (w) d)'(w) , wherein ). is the appropriate measure on CC. (Integration 
theory over CC is an instance of general integration theory which may be 
found, for example, in [E] and/or [E 1].) Observe that, since CC N has 22N + 1 
cosets in CC, ).(X"N) = 2-(2N+1). 

We write LP(CC) for the space of equivalence cIasses (under equality 
).-almost everywhere) of measurable functions J on CC such that 

(14.1.8) 
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14.1. 7. The Orthogonality Relations. These state: 

ll'f5 dA = 1 

1 (dA = 0 for every ( E ~"\{I'f5}, 

(14.1.9) 

(14.1.10) 

and are provable by the general argument appearing in 2.2.3. The reader 
may find it interesting to construct an alternative proof which uses the 
special structure of~, ~" and I. 

14.1.8. The Walsh-Fourier Transform. For much the same reasons as 
for T (see Chapter 1, especially 1.3.3), we now define the Fourier 
transform over ~, traditionally termed the Walsh-Fourier trans form. If 
f E L1(~) then the complex-valued function } with domain ~" is 
defined by 

for all ( E ~" . (14.1.11) 

It is easy to see that : 
(I) The W alsh -Fourier transform f -)0 } is linear and for all f E L 1 (~) 

and (E~", I }(O I :::; IIf111' Moreover (j)" = (})* and (j*)" = (})- for 
aUf E L1(~), where the notation is taken from Volume 1, p. 31. 

(2) Iff E L1(~), , E ~I\ and W E~, then 

(3) If C 11 E ~A , then 

~ {I if 11 = ( 
((11) = 0 if 11 i= (. 

Whenf E L1(~) we shall refer to the formal series 

(14.1.12) 

(14.1.13) 

as the Walsh-Fourier series of f, and to} as the Walsh-Fourier transform 
off· 

14.1.9. Trigonometrie Polynomials on C(J. We write T(~) for the 
complex linear span of ~ 1\ , and call its elements trigonometrie polynomials 
on ~. After the characters themselves, the most important examples are 
the functions P N (for NE Z+), where PN is called the Nth Paley 
polynomial and is defined by 

(14.1.14) 
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The sequence (PN)NeZ+ is termed the Paley kernei. 
It is clear that T(~) is a linear space stable under translation and under 

pointwise products. 
For every NE Z+ and every CE d N , C assumes the value 1 at every 

point of ~N' It follows that T(~) c S(~) (see (14.1.7)). The converse 
inolusion also holds, as we now show. 

14.1.10. T(~) = S(~). 
Proof. It remains to prove that S(~) c T(~). Assume f E S(~) and 

choose N E Z + such that f is constant on every coset of ~ N' Then f is a 
finite linear combination of characteristic functions of cosets of ~ N and, 
by translation invariance, it suffices to prove that the characteristic 
function of ~ N belongs to T(~). However, this characteristic function 
equals n (1~ + PlI) (14.1.15) 

1"lsN 

which is clearly an element ofT(~). 

14.1.11. T(~) is uniformly dense in C(~), and 11'llp-dense in LP(~) for 
l~p<oo. 

Proof. Immediate from 14.1.6, 14.1.10 and the fact that C(~) is 
11'llp-dense in LP(~) whenever 1 ~ P < 00. 

Define (cf. Volume 1, p. 29) co(~") to be the set of all complex-valued 
functions g on~" such that, for every 8 > 0, the set g E~": Ig(C)1 ::> 8} 
is finite. The next theorem is an exact analogue of the Riemann-Lebesgue 
Lemma 2.3.8. 

14.1.12. Hf E Ll(~) thenj E co(~"). 
Proof. This follows from 14.1.11, (14.1.13), 14.1.8, (1), and the fact 

that C(~) is dense in Ll(~). 
Convergence of the Walsh-Fourier series of a function to that function 

is, in stark contrast to the situation for T, all that could be wisJ::ted for; 
see 14.1.15 and Exercise 14.23. Over T, the blame for failure of L1 _ 

convergence rests with the Dirichlet kemeIs refusing to form an 
approximate identity (cf. Volume 1, p. 155 and 10.3.2). On the other 
hand for ~ we have the following result. 

14.1.13. The Paley kemel forms an approximate identity in Ll(~) (see 
3.2.1). More specifically, 

for all N E Z + ; 

P N = XJilN for all N E Z + ; 

(PN)'!l=o forms an approximate identity in Ll(~). 

(14.1.16) 

(14.1.17) 

(14.1.18) 
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Proof. First we observe that 

PN = n (I" + Pn)' 
InlsN 

(14.1.19) 

From this, (14.1.16) is evident. Next, by multiplying out the product 
appearing in (14.1.19), (14.1.17) is arestatement of the orthogonality 
relations 14.1.7. Finally to demonstrate (14.1.18) we observe that 
by (14.1.16), 

and 

lim r IPHI dA. = 0 for any fixed M E Z+. 
N .... oo J'i'\'i'M 

(14.1.20) 

14.1.14. For every NE Z+ and every j E Ll(~), we define 

SNj= L j((K. (14.1.21 ) 
{e .9IN 

This symmetrie partial sum of the Walsh-Fourier series of j could, of 
course, have been defined using convolution on ~. Indeed, more extensive 
analysis pver ~ would (cf. Chapter 3) necessitate the definition of 
convolution over ~: 

j * g(w) = 1 j(wcj»g(cj» dA.(cj» 

= 1 j(Wcj>-l)g(cj» dA.(cj» (14.1.22) 

for j, g E Ll(~). Then, SN j = PN * j for every NE Z+ and every j E 

Ll(~); see Exercise 14.19. 

14.1.15. (1) Ifj E C(~), then "SN j - 111 00 -+ 0 as N tends to infinity. 
(2) If j E LP(~) and 1 ~ P < 00, then "SN j - 1II p -+ 0 as N tends to 

infinity. 
(3) If j E Ll(~) and 1 (() = 0 for all ( E ~I\ then j (w) = 0 for A.-almost 

all w E~. 
The reader is invited to prove these assertions in Exercise 14.20 (cf. 

3.2.1 and 3.2.2). Regarding (1), see Volume 1, p. 155. 
There is an L2-theory of functions on ~ just as satisfying as that for T. 

The procedure is closely analogous to that in Chapter 8, so we relegate 
the proof ofthe following result to Exercise 14.2.1. 
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14.1.16. The Walsh-Fourier transform is a Hilbert-space isomorphism 
from L 2 (tC) onto 12 (tC"), the latter denoting the space of square
summable sequences on tC " . 

14.1.17. The reader may verify that Hölder's inequality holds for 
functions on tC just as it does for functions on T: if 1 ~ P ~ oo,f E LP(tC) 
and (J E LP'(tC), then the pointwise productjg belongs to L 1(tC) and 

(14.1.23) 

Directly from this we obtain, for all A.-measurable functionsf on tC, 

IIfllp~lIfllq ifO<p<q; (14.1.24) 

i I f IP dA. ~ {i I f IPI dA.}Sl{i I f IP2 dA.f, (14.1.25) 

14.1.18. We have not mentioned the probabilistic notion of 
independence, nor stressed the importance of the Rademacher characters 
in providing a model for such independence. This point of view, which 
leads to the use of probabilistic methods in harmonie analysis (and is at 
the heart of the results mentioned in 14.3.6), is vital for current 
developments; we refer the reader to the delightful introduction [Kac] 
and then to Kahane's timely and substantial monograph [Kah3]. 

14.1.19. To exemplify the analogy between Walsh-Fourier and 
(classical) Fourier series (noted in Exercise 14.17), we mention only the 
foUowing result (see Yano [1], Theorem 7) which should be compared 
with 7.3.1: If (an):'=o is a quasi-convex sequence (see 7.1.2) and an- 0 
then L:'=o an F- 1(n) is the Walsh-Fourier series of a function f E L 1(tC), 
to which the Walsh-Fourier series converges (the bijection F is defined in 
Exercise 14.17). Whilst in 7.3.1 the Fourier series is also nonnegative 
whenever (an):'=o is actually convex and monotonically decreasing to zero, 
this conclusion fails for the Cantor group result (see Coury [1], § 4). 

In spite of the fact that harmonie analysis over tC is usually simpler 
than that over T, there remain a multitude of topics yet to be studied. 
Three areas which have been studied concern: 

(1) Questions of A.-almost everywhere convergence (see MR 30 # 2282; 
34 # 8075;35 # 4667;36 # 599;38 # 6296;39 # 3222;41 # 4113;49 
## 983,5691; 50 ## 2803,7939,14045,14046;51 ## 10990,13578; 
52 # # 1150, 1155, 3871, 11458, 14826; 53 # # 3598, 13991, 13996, 
13997; 54 ## 3281,5728,5730; 55 ## 3670,3671; 57 # 10349; 58 
## 6893,6895,6898,6899,6900,23330,23331,23332); 
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(2) Walsh-Fourier series with weB-behaved coefficients (see MR 22 # 
863; 29 # 2597; 39 # 3227; 41 # 4112; 49 # # 11132, 7685, 5671; 50 
# 2802; 51 # # 8727, 13576; 52 # 8805; 54 # 5727; 55 # # 3668, 
8676;58 ## 6894,6897,12165); 

(3) Differentiability ofWalsh-Fourier series (see MR 38 # 6298; 52 # 
11457; 53 ## 1148,8774,8775,13995; 54 # 13446; 55 ## 3669, 
13149; 56 # 9176; 57 # # 7017,7020; 58 # # 29796, 29799). 

Other papers relevant to the study of Fourier series over rc include: 
MR 36 # 1909; 37 # 3272; 43 # 5244; 48 # 11896; 49 # 9530; 50 # # 
5369, 13578, 14046; 51 # # 3789, 6258; 52 # # 6309, 14828; 53 # # 
1149,3589,13994; 54 # 3280; 55 # 3667; 57 # 7016; 58 # 12177. 

14.2 Rademacher Series Convergent in L2 (I"ß). 

As announced at the beginning of this chapter, we study "most" series 
Ln E Z ± j( n Jen by considering series L!: E 9l (/J( 0," If K is a subset of rc A, a 
function f in L1 (rc) is caBed K -spectral if and only if j (0 = 0 for aB ( E 

rcA\K. We denote by Lk(rc), CK(rc) and TK(rc) the spaces of aB K-spectral 
elements ofLP(rc), C(rc) and T(rc) respectively (cf. 15.1.1). 

The positive results that are essential for further developments in this 
book refer to so me unexpected properties of functions in L~(rc). These 
results are stated as 14.2.1 and 14.2.2; although in fact 14.2.2 implies 
14.2.1 (see Exercise 14.4), the latter is used as a stepping-stone to the 
former and is best stated and proved separately. 

14.2.l. The Basic Inequalities. To every p > 0 there correspond 
positive numbers A p and B p such that for aB f E L~(rc), 

(14.2.1) 

moreover, B p may be taken to be (k!)1/p where 2k is the least even integer 
not less than p; and, ifO < p < 2, A p may be taken to be 2(p-2)/2P. 

Proof. We begin by considering the right-hand inequality in (14.2.1). 
Suppose first that p = 2k is an even integer and that fE T 91(rc) (the latter 
restrietion being easily removed by use of 14.l.11 and Fatou's Lemma). 

Let g = fk be the kth pointwise power of f. Then i is the k-fold 
convolution of j and so, for aB ( E rc A , 

(14.2.2) 

where the sum is over aB k-tuples ((1' (2' "', (k) in ~k whose product 
(1 . (2 ... (k equals (. But by (14.l.3), two k-tuples of elements of!Jf have 
the same product if and only if one is apermutation of the other. So there 
are exactly k! such k-tuples ((1' "', (k) having a product equal to (. This, 
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together with the Cauchy-Schwarz inequality, shows that 

I g(() 12 ~ LI ... t=~ 12 JLl. "~~k=~ 1]((d2 
.•. I!((k) 12 J 

= k{~I ... t=~ I ]((d 12 
... I !((kW J. 

Hence 

IIJII~~ = IIgll~ ~ k! L L 1]((1)1 2 "'I]((kW 
~e~v ~1 '''~k=~ 

=k! L 1j((dI2 "'I]((k)12 

('1, "','k)e91k 

=k!II!IW, (14.2.3) 

where the penultimate step follows by the multinomial theorem, 
according to which 

(14.2.4) 

for every complex-valued function (--+ a, with domain 91. 
For other choices of p we need only refer to (14.1.24) to deduce that the 

right-hand half of (14.2.1) holds with B p = (k!)1 /p , where 2k is the least 
even integer not less than p. 

The left-hand inequality in (14.2.1) is trivial when p ~ 2 in view of 
14.1.16 and (14.1.24). If 0< p < 2, we write 2 = 8 1P + 824, where 81 > 0, 
82> 0 and 8 1 + 8 2 = 1. Then (14.1.25) combines with the case P = 4 of 
the right-hand half of (14.2.1) and the estimate B 4 ~ 21/4 to yield 

L I j(() 12 = r I! 12 dA. 
'e91 J~ 

which in turn leads to 

[li! IP dA.JIP ~ 2(P-2)/2pL~91' j(() 12 J /2, (14.2.5) 

thereby completing the proof. 
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14.2.2. Supplement to 14.2.1. Suppose again that 1 E L~(ct). Then for 
every real number J.l, 

lexp [J.llfI 2] dA. < 00. (14.2.6) 

In fact, if 1J.l1 IIJ11~ < 1, then 

1 exp [J.l1 1 12] dA. :::;; (1 - 1 J.l1 11 1 m -1. (14.2.7) 

Proof. The arguments are similar to those used in 13.9.2 to prove the 
inequalities (12.9.14) and (12.9.15). By (14.2.1) and the estimate B 2k :::;; 

(k !)1/2k, 

r exp [J.l1 112] dA. = L J.lk(k!)-lllJII~Z 
J~ kEZ+ 

:::;; L (I J.l111 JII ~)k 

= (I - 1J.l1 IIJ11~)-l 

provided that 1J.l1 IIJ11~ < 1, and this establishes (14.2.7). 
For (14.2.6) we need to free 1J.l1 from dependence on 111112' Whenever 

1 J.l1 > 0 we do this by choosing N so large that Ln>N I! (Pn) 12 is small 
enough for (14.2.7) to apply with 1 - SN 1 in place of 1. It then suffices to 
observe that 

14.2.3. Pointwise Convergence Almost Everywhere. In Exercise 14.23 
the reader is invited to prove that if 1 E Ll(ct) then the series 
LI;E~A !(O((w) is convergent for A.-almost all w E ct. Concerning 
9l-spectral functions it can be shown ([Zl], p. 212; [BaI]' pp. 
230-233; [Kac], pp. 31-33) that if LI;E9i'I!(012 = 00, then LI;E~A !(()((w) 
is A.-almost everywhere nonsummable by Cesaro means (or, indeed, by 
any of the usual linear summability methods used in analysis). Thus for 
9l!-spectral Walsh-Fourier series, 14.2.1 provides the dichotomy: if 
LI;E9i' 1 !(O 12< 00 then the Walsh-Fourier series of 1 converges A.-almost 
everywhere; if LI;E9i' 1 !(O 12 = 00, the same series diverges (and is non
summable) A.-almost everywhere. 

14.3. Applications to Fourier Series. 

In this section we suppose that (cn)n E Z is a given two-way-infinite 
sequence such that 

(14.3.1) 
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and get quite a lot of mileage out of considering (Cn)neZ to be either the 
Fourier coefficients of an element Ln e Z Cn Pn of Li(c;&') or of an element 
Lnez cnen ofL2 == L 2 (T). For every W E c;&' and x E T we write 

fro{x) = L Pn(w)cnein", (14.3.2) 
neZ 

the series being convergent in mean in L2 ; thus fro E L2 for every W E c;&'. 
(The notationfro(x) is conventionally sloppy. What is intended is that, for 
every W E c;&',fro is an element ofL2 such that 

for all nE Z; 

for a given XE T (or R), the series on the right of (14.3.2) is purely 
formal. The sloppiness can, of course, be removed; cf. [EG], pp. 20-23.) 
However, as we shall now proceed to show, much more than this is true 
for most values of w. 

14.3.1. Suppose that (14.3.1) holds and that fro is defined by (14.3.2). 
Then for A-almost all W E c;&', 

~ [ exp Lul fro(X) 12] dx< 00 
2n JT 

for every real number J.l. 

(14.3.3) 

Proof. We may obviously assume that J.l > O. Moreover, it is clearly 
enough to show that, for every J.l > 0, (14.3.3) holds for A-almost all 
WEc;&'. 

For every W E c;&', every real x and every N E Z + , define 

SN(X, w) = L Pn(W)Cn ein". 
Inl"'N 

Then (14.3.1) and 14.2.2 show that, for some real number A independent 
ofN, 

for all N E Z + . 

Thus 

. 21n 1 {L exp [J.llsN(x, w) 12] dA(W)} dx ~ A. 

By Fubini's theorem ([HS], (21.12)), this can be written 

(14.3.4) 
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Now 

J... r 1 f",(x) - SN(x, co) 12 dx = L 1 CnPn(coW 
2n JT Inl>N 

= L Icn l2 , 
Inl>N 

which tends to zero as N -+ 00, uniformly with respect to co E C(j. Because 
of this, a standard argument (see, for example, [W], Theorem 4.5a) shows 
that nonnegative integers N 1 < N 2 < . .. may be chosen independent of 
co E C(j, such that for every co E C(j one has 

lim SNk(X, co) = f",(x) 
k .... oo 

for almost all x E T. This being so, if we write 

and 

1(co) = J... r exp [JlI f",(x) 12] dx 
2n JT 

two applications of Fatou's lemma imply that 

1(co) ~ 10 (co) 

and that 

r 10(co) dA(CO) ~ lim inf J Nk' Je k .... oo 

Therefore, by (14.3.4), 

L 1 o(co) dA(CO) ~ A < 00, 

which entails that 1(co) ~ 10 (co) < 00 for A-almost all CO E C(j. 

Remarks. We have commenced the proof by using the SN in order 
that no trouble be experienced in appealing to Fubini's theorem. Hadf", 
been used from the start, knowledge of the measurability of fw(x) in the 
pair (co, x) would have been necessary, and this property is by no means 
evident. 

Similarly, we have introduced 10 as an intermediary simply to avoid 
the necessity of showing that 1 is measurable (which is not very difficult). 
Alternatively, of course, one could use versions of Fatou's lemma in 
which measurability is not assumed (see, for example, [HS] , (9.39) or 
[E], Proposition 4.5.4). 
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14.3.2. Hl E L2, it is possible to choose the ± signs in such a way that 

L ±j(n)einx 

neZ 

is the Fourier series of a function g such that 

~ r exp [Ill g(x) 12] dx < 00 
2n JT 

(14.3.5) 

(14.3.6) 

for every real number Il (so that, in particular, g E LP for every p < 00). 

Proof. It suffices to take Cn = j (n) and g = lw' co E ce being chosen so 
that (14.3.3) holds. Since the series (14.3.2) converges in mean in L 2(T), 

14.3.3. There exist a function g satisfying (14.3.6) for every real Il, and a 
sequence of ± signs, such that 

L ± g(n)einx 

neZ 

is not the Fourier series of any function in U p> 2 LP. 
Proof. Apply 14.3.2, choosing 1 E L2 so that 1 t Up>2 LP. For 

example, suppose that 1 is bounded except in the neighbourhood of the 
origin, where it equals I x l- l/2(1og 1/1 x 1)-", a being greater than 1/2. 

14.3.4. Remarks. (1) Various strengthenings of 14.3.3 are derivable 
with more work. It can be shown (Edwards [7], Theorem (2.8)) that a 
continuous g may be chosen which satisfies the conditions stipulated in 
14.3.3. Furthermore, g may be chosen so that Ln .. o n-"Ig(n) IP < 00 for 
aII a > 0 and ß > 0 (see MR 53, # 1168). 

(2) It is easy to deduce from the proof of 14.3.1 that there exists an 
absolute constant B with the following property: to every 1 E L2 and 
everya > 0 corresponds a set f/ c ce satisfying 2(f/) < B/a and such that 

111,oI!p :::; apl/211 1112 

for all co E Cff\f/ and all p such that 1:::; P < 00; compare 15.3.1. 
Uchiyama [2] has discussed the reverse type of inequality and has shown 
in particular that, for every 1 E L2 and every e > 0, there exists a number 
B •. J > 0 such that 

for all N E Z + and aII co E ce save perhaps those belonging to a set of 
2-measure at most e. 
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14.3.5. Pointwise Convergence Almost Everywhere and Related 
Matters. More detailed arguments based upon the results stated in 14.2.3 
serve to show that, if (14.3.1) holds, then A.-almost all the series on the right of 
(14.3.2) are pointwise convergent almost everywhere. If, however, (14.3.1) is 
false, then A.-almost all these series are alm ost everywhere pointwise 
non-summable (compare the remarks in 14.2.3). A consequence of this is the 
following assertion, due to Littlewood: 

(I) If, for every choice of the ± signs, the series Ln e z ± Cn ein>: is a 
Fourier-Lebesgue series, then Lnez Icn l2 < 00. For the details, see [Zl]' pp. 
214-215 and/or [BaI]' pp. 234-235. 

From (I) it is possible (cf. Exercise 14.7) to deduce a little more, namely: 
(2) If, for every choice of the ± signs, the series Lnez ± cnein>: is a 

Fourier-Stieltjes series, then Ln e z I Cn 12 < 00. 

It is possible (cf. Exercise 14.5) to show that (2) is equivalent to 
(2') IfLnez IcnJ(n) I < 00 for every fEe, then Lnez ICn 12 < 00. 

The theorem (2') is due to Orlicz, Paley and Sidon independently and almost 
simultaI.leously. See also Section 16.9 below; Edwards [7]; Edwards, Hewitt 
and Ritter [I]. 

A different approach to (I), (2) and (2') is due to Helgason [I], where 
multipliers (see Chapter 16 below) form part of the theme. Some of the features 
of particular cases of Helgason's arguments, many of which refer to a fairly 
general class of Banach algebras, are sketched in Exercises I4.11-I4.I4. See 
also Helgason [2], [3]. 

In a somewhat similar and simpler vein is the following statement: 
(3) If, for every choice of the ± signs, the series Ln e Z ± Cn ein>: is the Fourier 

series of a function in L 00, then Ln e Z I Cn I < 00. 

Indeed, by 10.5.2, the hypothesis entails that 

~ ( In l ) A lim L... 1--- ± cnf(n) 
N ... oo Inl~N N + I 

exists finitely for every fELl. The same is therefore true when cn J (n) is 
replaced by its real and imaginary parts. Hence, by suitable choice of the ± 
signs, we conclude that 

. ~ ( In l ) A hm L... 1--- Icnf(n)1 
N ... oo Inl~N N + I 

exists finitely for every fELl, so that (see 5.3.4) 

for every fELl. Reference to Exercise 3.14 leads from this to the stated 
conclusion. 

It is known that in each of the statements (I), (2) and (3) it suffices to 
impose the respective hypothesis, not for alt choices of the ± signs, but merely 
for a suitable set of choices. One type of "suitable set" is a set of positive 
A.-measure in ~. A second type is a nonmeagre subset (in the product topology, 
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of course) ofrc. The technique for doing this is similar to that used in Edwards 
[7]. 

14.3.6. Uniform Convergence and Related Matters. In view of 14.3.1 and 
14.3.2 it is natural to ask under what conditions on (cn)neZ it is possible to 
choose the ± signs in such a way that In e Z ± Cn einx is the Fourier series of a 
continuous function; or is uniformly convergent on T. 

Let us write Ca .•. (to indicate almost sure continuity) for the set of all 1 E L2 

such that for A.-almost all W E rc, the series Inez Pn(w)j(n)einX is the Fourier 
series of a continuous function on T. Though it is not obvious, Ca .•. becomes a 
Banach space when equipped with the norm 

(It has, for instance, to be proved that 11I Ila .•. thus defined is finite for every 
1 E Ca .•. ·) 

'We mention twö characterisations of Ca .•. ' Firstly, 1 E Ca .•. if and only if 
1= I:'=l hn * kn with hn E L2, kn E Lq. and I:'=l IIhnll2l1knllq. < 00, wherein 
<P(u) = u(l + log (1 + U))1/2 for nonnegative real u, and Ilgllq. denotes the norm 
inf{Jl>O: f<p(lglfJl)~I} in the Orlicz space Lq. (see Pisier [2]). The 
appearance here of <p is not as mysterious as it might first seem; <p is, up to 
equivalence of Orlicz functions, dual to the function t/I(u) = exp (u2 ) - 1, and 
the Orlicz space L", of functions for which there is some Jl > 0 with 
f t/I( I 1 I fit) < 00 has al ready been heralded in (14.3.3). 

Furthermore, if 111 1 111 denotes the in firn um of I:,= I 11 hn 112 11 kn 11q. over all 
representations 1 = I:,= I hn * kn , then 111 • 111 and 11 . lIa .•. are equivalent norms 
on Ca .•.. 

The second characterisation we mention follows either from the last one or 
from more general probabilistic arguments. It states that 1 E C •.•. if and only if 

f (log F(r))1/2 dr< 00, 

where, by virtue of the hypothesis 1 E L2, the definition d(u, v) = 
IITul- Tv/1l 2 gives a translation-invariant pseudo-metric, and F(r) is defined 
to be inf {n: there is an open cover Al' ... , An of T in which every A j has 
d-Iength not larger than 2r}. Furthermore, the norm 11 • 1110n Ca .•. , defined by 

111111 = 11/112 + f(lOg F(r))1/2 dr, 

is equivalent to 11 . 11 •.•.. 
Again, the appearance of the square root of the log term is to some extent 

explained by being inverse to the exponential of the square which occurs in 
(14.3.3). 

Though it has been suppressed in this summary, underpinning both these 
characterisations are results of Dudley and Fernique on characterising certain 
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Gaussian processes with continuous sampIe paths. For an exposition of these 
results, the reader is referred to Marcus and Pisier [1]. 

Returning to the question of uniform convergence, we write Ua .s. for the set 
of functions j in L 2 for which In E Z Pn(w)j (n)inx is a uniformly convergent 
Fourier series for l-almost all w E C(i'. A surprisingly tight solution to the 
question as to when fE Uu . was given by Salem and Zygmund [1] using 
classical methods; see also [Bai]' p. 331. Salem and Zygmund showed that, if 
the remainders 

{ }
1/2 

r N = I Ij(n) 12 

Inl>N 

satisfy the condition 

(14.3.7) 

thenj E U a .s.' The conclusion is valid, in particular, when 

I Ij(n) 12 10gl+Elnl < 00 

n"O 

for some e > 0, a case discussed earlier by Paley and Zygmund and deducible 
quite rapidly from 14.2.2. (see [Zl]' p. 219). The condition 

I Ij(nWloglnl< 00 
n"O 

is, however, not enough to ensure the desired result: this may be seen by 
applying 15.1.4 and 15.2.4 to the lacunary series 

co ei2kx 

k~2 k log k' 

Compare also the remarks in 10.4.5 and 10.4.6. 
Ideas similar to those used to characterise Ca .s. have enabled Pisier to 

characterise Ua .s.. Firstly, for jE L 2 , we define a translation invariant 
pseudo-metric d on T by 

d(x, y) = a(x - y) = {r \ I Pn(w)j(n)einX - I Pn(W)](n)einy \2 dl(W)}1/2 
J~ neZ neZ 

and define the nondecreasing rearrangement ä of a by 

ä(u) = sup {y E R: {x E T: a(x) < y} 

has invariant measure (on T) less than u}. 

(This ensures that the prob ability distributions of ä and a coincide.) Now we 
can state thatj E Ua .s. if and only if 

e __ ä-,(-,s)~:-::: ds < 00. 

Jo s(log 4/S)1/2 
(14.3.8) 
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The reader may wonder at the appearance of ii here. To aUay his doubts, we 
mention that when j is real and F denotes the nonincreasing rearrangement of 
J, 2ii(I/N) ~ {Llnl>N (F(n))2}1/2 for every integer N ~ I; using this, we may 
compare (14.3.8) with (14.3.7). For an expansive treatment we again refer to 
Marcus and Pisier [I]. 

IncidentaUy, from the result mentioned above, Pisier also deduces that, if 
f E Ca .•. , then so does the function g such that g equals the nonincreasing 
rearrangement of j 

For an earlier approach to these questions, see Billard [I], [Kah3] and 
Fielder, Jurkat and Körner [I]. 

14.4 Comments on the Hausdorff-Young Theorem and Its Dual 

It has been seen in 13.5.1(1) that 

L IJ(nW' < 00 
neZ 

whenever 1 ~ P ~ 2 and f E V'. We can now verify that this assertion is no 
longer true when p > 2; compare 13.5.3(2). 

Indeed, if p > 2, then p' < 2 and a sequence (cn)nez may be chosen so that 

By 14.3.2, if P < 00, there exists fE V' such that I!(n)l 
so that 

L IJ(nW' = L Icnl!>' = 00, 
neZ neZ 

H, on the other hand, p = 00, the proposed extension signifies that 
2: Ij(n)l < 00 for each f E L"-'. This is negatived by the results mentioned in 
14.3.6, and is otherwise clear from many simple examples (see Exercise 1.5). 

From 14.3.5(2) it can be shown that the dual result, 13.5.1(2), is also false 
when p > 2. In other words, if p > 2 there exist functions <p E tp(Z) such 
that the distribution ~ is not aRadon measure. A more explicit proof of this 
will appear in Section 15.4. Even stronger results are known for a general 
class of groups; see Gaudry [2], Theorem 2.5. 

14.5 A Look at So me Dual Results and Generalizations 
Inasmuch as functions on a set Sand taking the values ± 1 are simply and 

obviously expressible in terms of characteristic functions XA of subsets A of S, 
it turns out that the arguments leading to 14.3.2 will in fact establish something 
slightly stronger and exprossible as foUows: if<p E [2(Z) then, for "almost aU" 
subsets A of Z, (XA<P)~ belongs to LI' for every finite p. On the other hand, the 
results given in [Zd, p. 214, imply somewhat more than 14.3.5(1) and 14.3.5(2), 
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namely: if 4> is a tempered function on Z that does not belong to [2(Z), then, 
for" almost all " subsets A of Z, the distribution (XA4»~ is not aRadon measure. 
(The term "almost all" is to be interpreted by reversing the passage from 
± I-valued functions to characteristic functions and relating the former to ce, 
as has been done hitherto in this chapter.) 

It is tempting to contemplate the duals of these results, that is, to consider 
what can be said about the transforms (XA f)", where f is a given integrable 
function on the group T and Adenotes a variable measurable subset of that 
group. Curiously enough, little if anything appears in the classical literature 
concerning this matter. Related questions have recently been discussed for a 
category of general groups by Figa-Talamanca [1], [2] and Gaudry ([2], 
Theorems 2.6 and 2.7). Owing to the topological differences between the 
smooth compact group T and the discrete group Z, the dual results are in our 
case a little different from what one might perhaps expect on the basis of the 
results mentioned in the preceding paragraph. 

By using techniques simlIar to those employed in Gaudry [2] and Edwards 
[8], it c/tn be shown that, if f E L I , and if to each A belonging to a nonmeager 
set of measurable subsets of T there corresponds an index p < 2 such that 
(XA f)" E (P, then f is null. (On the other hand, of course, (XA f)" E (2 for 
every measurable A whenever fE L2 .) In this statement the term 
" nonmeager" is to be interpreted in terms of the metric space whose elements 
are (equivalence classes modulo null sets of) measurable subsets A of T, the 
metric being defined by 

d(A, B) = 2~ fixA - xBI dx. 

(It happens quite frequently that the meager subsets of a complete metric 
space play a role somewhat similar to that filled by the null sets of a measure 
space, especially in situations where no natural countably additive measure is 
available. Compare also the closing remarks in 14.3.5.) An alternative formula· 
tion asserts that if 4> is a function in A(Z), and if to each A belonging to a 
nonmeager set of measurable subsets of T there corresponds an index p < 2 
and a function '" E (P such that XA cP = .p, then l/J = O. 

Apointer to the existence of analogues of such results for the groups Rm 
(which analognes are in fact embraced in the results obtained by Figa-Tala
manca and Gaudry mentioned above) seems first to have arisen in the work of 
Hörmander [1] on the multiplier problem for the spaces V(Rm). Corresponding 
problems for the circle group T are dealt with in some detail in Chapter 16. 

For extensions to compact groups, see Figa-Talamanca and Rider [2]. 

EXERCISES 

14.1. Verify (without reference to Tychonoff's theorem) that ~ is 
compact. Show that the group (pointwise) product is a continuous 
function from ~ x ~ to~. 
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14.2. Suppose that g E L2(~) is such that 

1 exp Lu 1 g(m) 12J dArm) = 00 

for some real number fl. Prove that g f/; L~(~), and deduce that 

f= g - L §(CK 

belongs to L2(~), is nonnull, and yet 

lf(m)Pn(m) dArm) = 0 for all n E Z. 

(This establishes, in particular, that the set f7l of Rademacher characters 
of~, is not a complete orthonormal set in L2(~). As an alternative proof 
of this incompleteness, consider f = Pn Pm' where n and mare distinct 
integers.) 

14.3. Verify the claims made about annihilators in 14.1.4. 
14.4. Show that 14.2.2 implies 14.2.1, though perhaps with values of B p 

and A p differing from the given ones by a nonzero constant factor. 
14.5. (1) Using 14.3.2, show that if (Cn)nEz has the property that 

L IcJ(n) I < OCJ 
nEZ 

for each f such that 

LI exp [p.lf(x)12] dx < 00 

for all real numbers p., then LnEz Icn l2 < 00. 

(2) Assuming the result stated in 14.3.5(2), show that the conclusion of (1) 
is valid when the hypothesis is merely that LnEz IcJ(n)1 < 00 for eachf E C. 

Note: For numerous similar results, see Mahmudov [lJ and MR 30 # 
5113a, b. 

14.6. (1) By using part (1) of the preceding exercise, show that if (Cn)nEz 
has the property that for some q > 1 the series LnEz ± cneinX is, for all choices 
of the ± signs, the Fourier series of a function in Lq, then LnEz Icn l2 < 00. 

[Compare 14.3.5(1).] 
(2) Use part (2) of the preceding exercise to prove statement 14.3.5(2). 
Hints: H, for example, L ± cneinx is always a Fourier-Stieltjes series, the 

series L ± cJ(n) is Cesaro-summable for each fEe and each choice of ± 
signs. 

14.7. Give a direct proof that 14.3.5(1) implies 14.3.5(2). 
Hints: Assuming that L ± cneinx is always a Fourier-Stieltjes series, show 

that L ± cnJ(n)einX is always a Fourier-Lebesgue series for fE LI. Apply 
14.3.5(1) and the hints to Exercise 3.14. 
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14.8. Assuming the results due to Paley and Zygmund stated in 
14.3.6, prove that if 

L Icn l2 logIH [ni< Cf) 

.*0 

for some e > 0, then there exists a continuous function f such that, for some 
choice of the ± signs, j(n) = ± Cn (n E Z). 

14.9. Assurne that 

f= L C.P., 
I·I"'N 

where NE Z+ and C-N, ... , CN are complex numbers. Prove that 

L 11(01 ~ 211fll00 (1) 
~ e 'iS'A 

and conclude that 

L 1](01 ~41IfI12N+l' (2) 
~ e 'iS' A 

Remark. Denote by A(~) the set of all continuous complex-valued 
functionsf on ~ such that L~e'iS'A 11(0 I< Cf); cf. 10.6.1. It follows from 
(1) that CBl(~) c A(~). In the terminology introduced in 15.1.1 below, q( 

is thus a Sidon subset of~A; cf. 15.1.4(c). 
Hints: Assurne first that 1 is real-valued and show that there exists 

Wo E ~ such that sgn C. = Pn(WO ) for all n E Z such that I n I ~ N. 
For (2) observe thatfis constant on the cosets of ~Nand use (14.1.24). 
14.10. Let cp be a complex-valued function on Z, and let I ~ P ~ 00. 

Consider the following statement: 

2: Icp(n)j(n) I < Cf) 

neZ 

Prove that 
(1) (cd is true if and only if cp E fl(Z); 
(2) if (cp ) is true, then cp E f2(Z); 

for every fE LP. 

(3) if 2 ~ p ~ Cf), then (cp ) is true if and only if cp E f 2 (Z); 
(4) if 1 < p < 2 and cp E fP(Z), then (cp ) is true; 
(5) if 1 < P < 00 and (cp ) is true, then 

2: alnllcp(n)1 < 00 
neZ 

for every sequence (an):~O t 0 such that 

00 

2: nP - 2anP < 00. 
n~l 



228 CHANGING SIGNS OF FOURIER COEFFICIENTS 

Hints: Recall Exercise 3.14, Subsections 7.3.5, 8.2.1, 13.5.1(1), and 
Exercise 14.5(2). 

14.11. Denote by F the set of 1 E LI such that 

(1) 

and let 11111* denote the smallest admissible value of Bf in (1). Verify that 
(a) 111111 ~ 11111* for 1 E F, and that L2 cF and 11111* ~ 111112 for 1 E V; 
(b) F is a Banach space under the norm 11 . 11 *; 
(c) F consists precisely of those 1 E LI such that Jrp E A(Z) for each 

rp E co(Z). 
These results are due to Helgason [1]. 
Hints: For (c), observe that if] EF,] defines a linear map F :fJ~] * g 

of A(Z) into LI; show that it is possible to continuously extend F from 
A(Z) to co(Z). For the converse, if 1 is as in (c), consider the linear map 
S: rp ~ (Jrp)'" from co(Z) into LI and apply the closed graph theorem. 

14.12. The notation is as in Exercise 14.11. Prove that F = L2 as linear 
spaces. (The result is due to Helgason [1]; actually, as is easily derived from 
the proof sketched below, the norms 11 . 11* and 11 . 112 are equivalent.) 

Hints: In view of Exercise 14.11(a), it suffices to prove that F c L2; 
and to do this it suffices to show that 

IIJII2~const"JII* foraIl]ET. (1) 

Let]= Llnl";N j(n)en . Denote by G the product group T 2N + I and let 
t = (t-N, ... , tN) denote a generic element of G. By considering 

g = L exp (itn)en, 
Inl';N 

show that 11111* ~ 11]* glll and hence that 

11111* ~ sup 21 JI L j(n) exp (itn)einxldx 
teG 7T Inl';N 

where I denotes the normalized invariant integral on G. Using translation
invariance, deduce that 

11111* ~ I(JFIJ, 

where F(t) = LI nl ';N J(n) exp (itn). Verify that 

I(JFI4) = 2{L IJ(n)J2}2 - L IJ(n)J4 ~ 211111~, 
and that 

I(/FI 2) ~ {I(/FI)}2/3{I(IFI 4W/3, 

and so derive (1) from (2), (3) and (4). 

(2) 

(3) 

(4) 
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14.13. Let cfo be a cömplex-valued function on Z such that cfotfo E A(Z) for 
each tfo E co(Z). Prove that cfo E (2(Z). 

Hint8: Let S denote the set of cfo with the stated property. By the pre
ceding exercise, A(Z) () S c f2(Z). Use the closed graph theorem to show 
that 

11 (cfotfo)'" !I 1 ~ const Iltfoll", 

whenever tfo E Co(Z) and cfo ES, and so deduce that S c §'M (reca11 12.3.9). 
Observethatas a consequence, if cfo E S andh E LI, thenlirpEA(Z) ()S c (2(Z), 
and apply the closed graph theorem again to deduce that Iilirpl12 ~ const Ilhll l 

for 1i. E LI. 
14.14. Let cfo be a complex-valued function on Z such that cfow E ~ f6r 

each ± I-valued function w on Z. Prove that cfo E (2(Z). [This statement is 
equivalent to 14.3.5(2).] 

Hint8: The hypothesis signifies that cfox E §'M for every XE K, where K 
denotes the set of a11 characteristic functions of subsets of Z. By using the 
category'theorem (see I, A.3 and Edwards [7]), show that there exists a 
number B such that 

fot a11 X EI{. (1) 

Aim at deducing that 

cfotfo E §'M for a11 tfo E ("'(Z), (2) 

and then use Exercise 14.13 and the hints to Exercise 14.7. 
To prove (2), consider any real-valued tfo E t"'(Z) satisfying 0 ~ tfo < l. 

For Tc, r = 1, 2, .. " define Ak,r = {n E Z : (r - 1)/Tc ::; tfo(n) < riTe}, Bk•r 
= A k•l u· .. U A k•r, Bk,o = 0, and introduce the function 

k r 
tfok = 2: k XAk,r' 

r=l 

observing that cfotfok -+- cfotfo as Te ~ 00. Since tfok = Xk - (I/Te) L.~;l Xr' where 
Xr = XB",r' (1) shows that 

11 (cfotfok)" 11 i ~ 2B, 

Use 12.3.9 to infer that cfot/l E §'M. 

14.15. Show that the dual group of~1\ is isomorphie to ~ (see Volume 
1, p. 20). Identify the annihilator of d N , that is, identify {x E (~I\)I\: 
x(') = 1 for a1l' E d N }. 

14.16. (1) Prove that the function 4>: ~-+ [0, 1] given by 

4>() 1 + w(O) 1 + w(l) 1 + w(-I) 1 + w(2) 1 + w(-2) 
w = 3 + 32 + 33 + 34 + 35 + ... 

is a homeomorphlsm from ~ onto the Cantor ternary set (with induced 
topology), but that 4> is not a group homomorphism (with addition 
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modulo 1 taken as the group operation on [0, IJ) nor an isomorphism of 
measure spaces. (Recall that two measure spaces (X, .ß, p.) and (Y, .AI, v) 
are isomorphie if there is a p.-negligible subset E of X, a v-negligible 
subset F of Y and a bijection f: X\E~ Y\F, such that for all NE.AI, 
f -1(N\F) E .ß and p.(j -1(N\F)) = v(N).) 

(2) Prove that, in contrast, the function '1': ce ~ [0, IJ such that 

l-w(O) l-w(l) l-w(-I) l-w(2) l-w(-2) 
'I'(w) = 2 + 22 + 23 + 24 + 25 + ... 

for all w E ce, fails to be a bijection, because for every rational rE [0, IJ 
ofthe form r = k2- j where k,j E Z+ are such that k ~ 2} andj ~ 1, there 
exist w, cf> E ce such that w"" cf> and 'I'(w) = 'I'(cf» = r. Let us denote by 
'I' 1 the restrietion of'l' to {w E ce: w is not eventually I}. Prove that '1'1 
is a group homomorphism (with addition modulo 1 in [0, IJ), that '1'1 is 
not a homeomorphism (with the usual topology on [0, IJ), but that 'I' is 
an isomorphism of measure spaces (when [0, IJ is endowed with the usual 
Lebesgue structure). What is the image of ce Nunder '1'1 ? 

(3) From (2) it follows that two compact Abelian groups which are 
isomorphie as groups and measure spaces, need not be homeomorphic. 
Suppose two infinite compact Abelian groups are homeomorphic and 
isomorphie as measure spaces. Need they be isomorphie as groups? 

(4) The (classical) Rademacher functions are defined by 

rn(t) = sign (sin (2n+ 1nt)) 

for every nE Z+ and every t E [0, IJ; see 14.1.1 in the first edition ofthis 
book. Prove that, for every nE Z, 

Pn = r}(n) 0 '1'1' 

where j(n) equals -n/2 if n is even and equals (1 + n)/2 if n is odd. Can 
you deduce what the classical definition of the Walsh functions is (see 
14.1.3) ? 

14.17. Define F: ce" ~ Z+ by 

{
22n if 

F(Pn) = 2- 2n - 1 if 

F(l'i) = 0; 

n~O 

n<O ' 

F(nne4> Pn) = Lne4> F(Pn) for every nonvoid finite subset cl) of Z. 

Prove that F is a bijection. which takes d N onto {O, 1, "', 22N + 1 - I}. 
The ordering defined on ce" to make F increasing is called the Paley order 
on ce". (Using this notation we can write a Walsh-Fourier series as L:'=o 
en F- 1 (n), which highlights the similarity with Fourier series over T and 
suggests analogous results; see 14.1.19. 
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14.18. Even though the (unweighted) partial sums of the 
Walsh-Fourier series of a continuous function on «/ converge uniformly to 
J, C(<(/) does not collapse too dramatically; in particular C(<(/)\A(<(/) is 
nonvoid (in spite of the result in Exercise 14.9). (Recall that from the 
resuIts of Chapter 7 follow examples of continuous functions on T whose 
Fourier series do not converge absolutely.) In the present exercise the 
reader is asked to prove in two different ways that C(<(/)\A(<(/) is nonvoid. 

(1) Let (C N)N=l denote a decreasing sequence of nonnegative real 
numbers such that LN=l CN = 00. Show that the Walsh-Fourier series 

L (-I)N2-(2N-1)CN(PN - P N- 1) (1) 
N=l 

converges uniformlyon «/ to a continuous functionJ, say, for which 

00 

L 1!(01=3 L cN=oo. (2) 
,E~" N=l 

Hints: For (1), use (14.1.16) to identify PN(OJ) - P N- 1(OJ) for OJ E «/N 
and for OJ E «/N-1\«/N' For (2), use (14.1.17). 

(2) Show that A(<(/) is a Banach space when endowed with the norm 

IIJIIA = L 1f(')I. 
\:E~" 

Hence show that A(<(/) is a proper subset of C(<(/). 
Hints: The inclusion C(<(/) c A(<(/) together with the closed graph 

theorem B.3.3 shows that for some K E Z +, 

11 J 11 A ~ K 11 J 11 00 for all J E C(<(/). 

Then (look ahead to the proof of 15.3.1), there exists L E Z + such that 

11 (J 112 ~ LII (J 111 for all (J E T(<(/), 

which inequality can be readily contradicted. 
14.19. Pursue, as far as you are able and interested, the study of 

convolution of functions on «/ (see 14.1.14). For instance if M(<(/) is 
defined to be the Banach space of continuous linear functionals on C(<(/) , 
can you extend convolution of functions to convolution of measures, and 
prove the properties corresponding to those over T (see §12.7)? 

14.20. Prove the claims made in 14.1.15 (1), (2) and (3). 
14.21. Prove, using the method of Chapter 8, that the Walsh-Fourier 

transform is an isomorphism between the Hilbert spaces L2(<(/) and 
l2(<(/A); that is, J~! is bijective and linear, and J~Ji dA = L~" N for all 
J, (J E L 2(<(/). 

14.22. (1) Prove Hölder's inequality (14.1.23) over «/, and its 
corollaries (14.1.24) and (14.1.25). 
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(2) Prove that the invariant integral I on CC is invariant under the left 
shift (see 14.1.5). 

14.23. Prove that, ifl E L 1(CC), then for Ä.-almost all w E CC, 

lim sNI (w) = I (w). 
N-a:; 

This result is in strong contrast with the analogue for T; see 
Kolmogorov's example mentioned in 10.3.4 and 10.3.5. In view of 14.1.14 
and (14.1.17), the result can be recast as: if/EL1(CC) then, for Ä.-almost 
all w E CC, 

lim 22N + 11 IdÄ. =/(w), 
N-a:; W'CN 

which is a fundamental theorem of calculus for L 1(CC). (As usual, wCC N 

denotes the coset of ~ N containing w). 
Hint: ForlE L1 (CC), define the maximal function Mlby 

MI(w) = sup {22N+1 1 I I I dÄ.: NE Z+} for all w E CC. 
W'CN 

Aim first to show that/-M/is ofweak type (1,1) (see (13.7.5». Do this 
by showing that, if II 1111 < t, then {w E CC: I MI (w) I > t} can be 
partitioned into a countable number of sets of the form Ew, N == wCC N such 
that 

t < Ä.(Ew ,N)-1 LW'NI/I dÄ. 

and use this fact to show that Ä.(IMI I > t) ~ r 1 I'C I I I dÄ.. The desired 
result now follows by choosing a sequence (gk)keZ+ of continuous 
functions such that II/-gklll-0 as k- 00 and limk_a:; gk(W) =/(w) for 
Ä.-almost all w E CC, and observing that 

ISNI - I I ~ ISNI - SNYk I + ISNYk - gk I + Igk - I I 
~ M(f - gk) + ISNgk - gk I + I gk - I I· 

For (gk)keZ+ one may (by 14.1.15 (1» take a suitable subsequence of 
(SN I)N e Z+' (For an elaboration of the partitioning argument, see the 
statement and proof of Lemma 2.2.1 in [EG].) 

14.24. (1) Prove that, for Ä.-almost every w E CC, 

lim (2N + 1)-1 L w(j) = 0 
N-a:; JiI~N 

(and so infer that most members of CC have, asymptotically, an equal 
number of ± signs). 
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(2) Prove that for alm ost all real numbers x between ° and 1, if x. 
denotes the nth digit in the binary expansion of x, then 

n 

1· -1" 1 1m n L... Xj = 2, 
n-+oo j=l 

which may be interpreted as asserting that most numbers have equal 
quantities of o's and 1 's in their binary expansion. Observe that xn is weIl 
defined only as long as x is not a dyadic rational (see Exercise 14.16 (2)), 
and that the set of dyadic rationals is null in [0, 1]. 

Hint: For (1) define IN on C(j' by 

IN(w) = (2N + 1)-4( L pj(W))4 
IiI';;N 

and show that LN= 1 11 INlll < 00. For (2), use Exercise 14.16 (2) to replace 
C(j' by [0, 1]. 

14.25. Suppose that I is a function on C(j' of the form 

I(w) =F(w(-M), ... , w(M)) for aIl w E C(j', 

where ME Z+ and F is a complex-valued function on K == n.f=-M K j 

and K j = { - 1, + I} for aIl j E { - M, ... , M}. 
Prove that 

I(J) = lim 2- 2M - l L F, (1) 
M-oo 

the sum extending over K. 
Deduce that, if in addition there are functions G _ M, ... , GM on { -1, 

+ I} such that 

M 

F(LM' ... , eM) = n Gj(ej) 
j=-M 

for all (LM' ... , eM) E K, then 

M 

I(f)=2- 2M - l n (Gj (-l) + Gj (l)). 
j=-M 

More particularly still, if !X-M, ••• , !XM E Z, then 

I (P'=--M , ... , p'f.;) = 1 or ° 

(2) 

(3) 

according as !Xj is even for all j E { - M, ... , M} or not. (Cf. equation 
(14.1.5) in the first edition of this book.) 

Remark. The equation (3) can be deduced from 14.1.7 and the 
independence of PJl (see (14.1.3)). 



CHAPTER 15 

Lacunary Fourier Series 

As the name suggests, a lacunary tr-igonometric 8erie8 is, roughly speaking, 
a trigonometrie series 2nez cneinx in which Cn = ° for all integers n save 
perhaps those belongip.g to a relatively sparse subset E of Z. Examples of 
such series have appeared momentarily in Exercises 5.6 and 6.13. Indeed 
for the Cantor group qJ, the good behaviour of a lacunary Walsh-Fourier 
series 

(whose coefficients vanish outside the subset &l of qJA) has al ready been 
noted: by Exercise 14.9, if the lacunary series belongs to C(qJ) then it 
belongs to A(qJ); and, by 14.2.1, if it belongs to LP(qJ) for some p> 0, 
then it also belongs to Lq(qJ) for q E [p, (0). In this chapter we shall be 
mainly concerned with lacunary Fourier series on the circle group and 
will deal more systematically with some (though by no means all) aspects 
of their curious behaviour. 

The classical theory concentrated to a large extent on the case of series 
that exhibit Hadamard gap8, that is, series for which the corresponding set 
E is of the form {± n k : k = 1,2, ... }, where the n k are positive integers 
forming a Hadamard sequence: 

inf nk + 1 > 1· , 
k n k 

see the exercises just cited and Section 8.6; [Zl]' pp. 203-212, 215, 247; 
[Z2], pp. 131-132; [Ba1], pp. 178-181; [Ba2], Chapter XI. Less extreme forms 
of lacunarity have also been examined (see [Zl], pp. 222 ff.; [KS], Chapitre 
XII; Moeller and Frederickson [1]; [I], pp. 86 ff.; Izumi and Kahane [1], 
Izumi [1]); but we shall concentrate mainly on the phenomena that are typified 
by Hadamard gap series. 

It has become possible to disentangle from any explicit assumptions of 
lacunarity some of the characteristic properties of such series by means of 
inequalities and functional analytic statements referring to the so-called 

234 
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"Sidon subsets " of Z. (The name, coined by Kahane, is explained by the 
fact that Sidon established some of these properties for series with 
Hadamard gaps, others being due to Banach. ) Weshall in the main 
follow the account given by Rudin ([R], Chapter 5), which applies to 
compact Abelian groups in general. Extensions to non-Abelian compact 
groups were initiated by Hewitt and Zuckerman [1], and, for an 
exposition, the reader is referred to [HR] , §37; see also Rudin [6], 
Figa-Talamanca [1], [DR] Chapter 5, [Kz] Chapter V, and the 
monograph devoted to Sidon sets, [LR]. 

The approach via functional analytic inequalities and theorems is fairly 
new, the first such approach appearing in print being that due to Hewitt and 
Zuekerman [1]. The functional analytic background is explained briefly in 
general terms in [E], Section 8.8. Many other concepts of lacunarity have 
since been examined in this way and for general compact groups; see 
Section 15.5 and 15.8 and the references cited immediately above. 

Lacunafity for general orthogonal expansions on subintervals of Rare 
diseussed in [KSt], Kap VII. 

The dual aspeets ofthe topics discussed in the main portion ofthis chapter 
will be mentioned briefly in Section 15.7. 

The harmonie analysis and synthesis of general continuous ftmetions on 
Rn, a topie mentioned in passing in 11.2.3(4), leads to the introduetion of 
"eomplex" Sidon sets; for this we must refer the reader to Gilbert [1] and 
the referenees eited there. 

The reader may find it helpful to examine the brief survey article 
Kahane [4], the historical notes in [HR] , Volume H, pp. 445-449, and 
[LR], which is a more recent and systematic account covering almost all 
the principal themes dealt with in this chapter. 

15.1 Introduction of Sidon Sets 

15.1.1. Some Definitions and Notations. Let E be a subset of Z. 
A distribution F will be said to be E-spectral if and only if P(n) = 0 for 

all nE Z\E; cf. 14.2 above. 
It will be eonvenient when p ~ 1 to denote by LEP the set of all E-spectral 

funetions in LP; by ME the set of all E-spectral measures; by CE the set of 
E-spectral functions in C; by T the set of an trigonometrie polynomials; and 
by TE the set of aIl E-spectral trigonometrie polynomials. The reader is left 
to verify that LEP is a closed linear subspaee of LP (if P ~ 1); that CE is a 
elosed linear subspace of C; that ME is a closed linear subspaee of M; and 
that TE is a linear subspace of T. 
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We also denote by IP(E) (1 ~ P ~ (0) the set of complex-valued functions 
4> on E such that 

{
[L 1!fo(nWF'P 

114>111' = neE 

sup l!fo(n)l 
neE 

if p < 00 

ifp = 00, 

is finite; co(E) is the set of 4> E lCO(E) stich that 

lim 14>(n)l = 0, 
neE.lnl-+ co 

and we regard co(E) as a normed subspace of lCO(E). 
We write 11' and Co for IP(Z) and co(Z), respectively. The reader will note 

that there is a natural injection of IP(E) into 11' and of co(E) into Co, obtained 
by extending each function on E so as to be zero on Z\E. 

If S is any set of functions on Z, SIE will denote the set of restrietions 
4>IE of functions !fo ES. 

If H is a set of distributions, ~ will denote the set of functions on Z 
that are Fourier transforms of elements of H. Notice that §'L! = A(Z), in 
the notation introduced in 2.3.9. One may thus write (for example) §'LI c Co 

(by 2.3.8), .~"L2 = 12 (by 8.3.1), and §'M c lco (by 12.2.9 and 12.5.3(1». 
The following result, which appears as Exercise 2.19, will be used later. 

15.1.2. Given any finite subset F of Z and any e > 0, there exists a 
trigonometrie polynomial t such that 

11 t 111 ~ I + 6, 0 ~ t( n) ~ I for all n E Z, t(n) = 1 for all n E F. 

Remarks. If {O} is a proper sub set of F, we cannot in general 
arrange that t ~ O. For suppose that {O, no} cF, where no =1= 0, and that 
t ~ O. Then 

(2" 
(2n)-1 Jo t(x)(1 - e- illOX ) dx = 0, 

hence 

(2n) -1 12"t(X)(1 - cos no x) dx = 0, 

and so, since t ~ 0 and no =1= 0, t(x) = 0 a.e. But then t(O) = 0, a 
contradiction since 0 E F. 

However, if 0 Ft F, it can be arranged that t ~ O. In fact, define P = 
F u (-F) and 

tN = FN + L (1 - FN(n))en + L (1 - FN(n». 
IIeP neP 
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for all n E P 

and 

nEP 

= 1 + L (1 - F(n)) 
nEP 

which is at most 1 + e, if N is chosen sufficiently large (depending upon P 
and e). 

15.1.3. Sidon Sets. A subset E of Z is termed a Sidon set if and only if 
there exists a nonnegative number B, possibly depending on E, such that 

(15.1.1) 

for every fETE' The smallest such B, namely 

sup {IIJlldllflloo:fETE and IIflloo +o} 

is called the Sidon constant of E, usually denoted herein after by BE' 
The above terminology is suggested by a theorem of Sidon ([Zl], p. 247; 

[Ba2], p. 246) for series with Hadamard gaps, which corresponds closely to 
15.1.4(b) and (c) below. Parts (d) and (e) of 15.1.4 show, on the other hand, 
that all Sidon sets share certain properties which were established by Banach 
for series with Hadamard gaps (see [Z2], p. 131). 

15.1.4. Fundamental Criteria. If E is a subset of Z, the following five 
statements about E are equivalent: 

(a) Eis a Sidon set; 
(b) 111111 < 00 for eachfELE<Xl; 
(c) 111111 < 00 for each f E CE; 
(d) ffMIE = 1<Xl(E); 
(e) ffVIE = co(E). 
Proof. This is conveniently broken into parts. 
(1) Let us show that (a) implies (b), beginning with the remark that, if 

I E L E <Xl, then UNI = F N * I E TE' So, by (a) and (15.1.1), we have 

11 (UN!)'" 11 1 ~ B· IIUNfl1 <Xl = B· IIFN */11 <Xl ~ B' IIFNl11 • 11I11 <Xl 

= B'II/II<Xl' 
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the penultimate step following from 3.1.6. Now 

~ %. L: Ii(n) I , 
'n'''YsN 

whence it appears that 

L: Ii(n) I ~ 2B' 11111",· 
'n'''YsN 

From this, (b) follows easily on letting N ~ co. 
(2) The implication (b) => (c) is a trivial consequence of the inclusion 

Ce L"'. 
(3) It will next be shown that (c) implies (a). If (c) holds, the map 1--+ j 

is a 1-1 linear map of CE anto 11(E). The inverse map is evidently continuous, 
in view of the simple inequality 11 I 11 <Xl ~ 11 j 111 . The open mapping theorem 
(I, B.3.2) entails that this mapping is bicontinuous, which requires that an 
inequality of the form (15.1.1) be valid for E-spectral trigonometrie poly
nomials I, that is, that (a) is true. 

At this stage we have established the equivalence of (a), (b), and (c). 
(4) Next on the list comes a proof that (c) implies (d). Suppose that (c) 

holds and that cp E 1"'(E). The mapping 

I ~ L: j(n)cp(n) 
neE 

is then a continuous linear functional on CE' By the Hahn-Banach theorem 
(I, B.5.1) and 12.2.3, there exists a measure fL E M such that 

L: j(n)cp(n) = fL(f) 
neE 

for I E CE' If herein we take I = en , where n E E, and write A for ;;. (defined in 
12.6.8), then A E M and it appears that cp(n) = A(n). Thus cp E §"MIE, showing 
that (d) holds. 

(5) To deduce (e) from (d), we remark that the latter combines with the 
open mapping theorem (Volume 1, Appendix B.3.2) to entail the 
existence of a number B' such that to each cp E (<Xl (E) corresponds a 
measure J.l E M such that 

P-IE = cp, (15.1.2) 

The reader will observe that an appeal to the open mapping theorem is 
justified by 12.7.1. Suppose now that '" E co(E) and 11"'11 '" ~ 1. Let 

E k = {n E E : 2- k < I"'(n) I ~ 2- k + 1}, 

where k = 1,2,· .. , so that Ek is a finite subset of E. Let "'k be defined to be 



[15.1] INTRODUCTION OF SIDON SETS 239 

equal to ,p on E k and to be zero elsewhere on E. Aeeording to (15.1.2), we 
may ehoose for eaeh k a measure {J-k E M sueh that 

(15.1.3) 

Moreover, by 15.1.2, we may ehoose trigonometrie polynomials tk sueh that 

(15.1.4) 
Put 

Sinee tk * {J-k is a trigonometrie polynomial and sinee, by (15.1.3), (15.1.4), 
and 12.7.4 

it follows that I E LI and 

'" 
!(n) = 2: tk(n)p-k(n) 

k=1 

for all nE Z. In partieular, if n E Ek , (15.1.3) and (15.1.4) yield 

!(n) = P-k(n) = ,pk(n) = ,p(n). 

Sinee also !(n) = 0 at all points nE E at whieh ,p(n) = 0 (that is, at all 
points of E not belonging to some Ek ), it is seen that !IE = ,p. Thus 
§VIE = Co and (e) is derived. 

(ß) Finally, let us show that (e) implies (a), thus eompleting the eirele. 
If (e) holds, the open mapping theorem (Volume 1, Appendix B.3.2) 
comes into play once more and shows that there exists a number B" such 
that to each '" E co(E) eorresponds a funetion I E L1 such that 

!IE =,p, 111111 ~ B" "11,p11 "'. (15.1.5) 

Let g be any E-speetral trigonometrie polynomial, and define ,p(n) to be 
Ig(n)l!Y(n) or 0 aeeording as g(n) =p 0 or g(n) = O. Then ,p E co(E) and 
11,p11 '" ~ 1. Choose I as in (15.1.5). Then, sinee 111111 ~ B", 3.1.6 yields 

2: Ig(n)l = 2: !(n)g(n) = 1* g(O) 
""z n"Z 

showing that (a) holds (with B" in place of B). 
Remarks. (1) Part (3) of the preeeding proof used the open mapping 

theorem to show that, if (c) holds, then there exists a number B sueh that 

111111 ~ Bill Ilex> (15.1.6) 

for every I E CE' The reader will find it instructive to construct a proof 
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using the uniform boundedness prineiple (Volume 1, Appendix B.2.1); see 
Exercise 15.1. A similar eonelusion, with L E "" in plaee ofCE , follows from 
(b). 

(2) If Eis a Hadamard set, somewhat sharper versions of 15.1.4(b) and (e) 
are valid; see 15.2.6. 

(3) As we have seen, an inequality of the form (15.1.6) holds for f E LE «> 

whenever E is a Sidon subset of Z. From 15.1.4(e) it is clear that no such 
inequality is valid for general trigonometrie polynomials f. More 
speeifically, an example of D. J. Newman [2] shows that there is an 
absolute constant c such that to every positive integer N eorresponds a 
trigonometrie polynomial f of degree at most N for which 11 f 11 "" = 1 and 
IIjlll ~ tN 1/2 - c. . 

(4) Let E be a Sidon set. It follows from 15.1.4(d) that the operator 
T: J.I. ~ PIE effeets a homomorphism of the eonvolution algebra M onto the 
algebra t«>(E) with pointwise multiplication; and from 15.1.4(e) that TIU 
effects a homomorphism of the eonvolution algebra U onto the algebra 
co(E) (again with pointwise multiplication). On the other hand, it can be 
shown (Edwards [12], Theorem I) that, if Eis any infinite subset of Z, there 
exists no isomorphism of any subalgebra of M onto either of t""(E) or co(E), 
or indeed onto any Banach algebra B ofthe type specified in Exercise 11.24. 
See also Remark (ll) below. 

This fact indicates that, if Eis an infinite Sidon set (see Section 15.2 for 
examples), although PIE can be specified as freely as one can expect, one 
remains largely in the dark as to how freely one ean simultaneously speeify 
PIZ\E. One certainly cannot simultaneously demand that PIZ\E shall eoin
eide with an arbitrarily given element of t«>(Z\E) or of eo(Z\E). Can one, 
however, demand that simultaneously it 1 Z\E shall belong to co(Z\E)1 
Perhaps the most important single result in the positive direction is due 
to Drury [3]. It may be stated as folIows; cf. [LR], Chapter 3. Suppose 
that E is a Sidon set with Sidon eonstant B, that 0< B ~ 1, and that 
4> E t""(E); then there exists p. E M such that it 1 E = 4>, 1 it(n)l ~ B for all 
nE Z\E, and 

This seemingly innocuous extension of 15.1.4(d) ineorporates a most 
important step in the study of laeunarity and will be referred to again in 
the sequel. 

Fournier has shown (see [LR], Theorem 2.20) that Drury's result is 
best possible in the sense that, if E is an infinite Sidon set and 4> E t""(E), 
then there is a measure p. E M such that it 1 E = 4> and it 1 Z\E E co(Z\E) if 
and only if 4> E co(E). 

Using Drury's result, Hartman and Wells have independently shown 
that, if E is a Sidon set, 15.1.4(d) can be strengthened in another 
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direction. Roughly speaking, a measure is called continuoU8 if it assigns 
zero measure to every point of T. (This is one instance where it is easier 
to regard a measure as assigning values to certain subsets of T; see 12.2.3 
above and [E1J, 1.7.) The Hartman-Wells Theorem (see [LRJ, Chapter 4) 
states: if E is a Sidon set and c/J e {OO (E), then there is a continuous 
measure J.l such that P-I E = c/J. 

(5) The proof of 15.1.4 could be considerably shortened by making use 
of general duality theory for Banach spaces as set out in Chapter 8 of [EJ 
(for example). 

For instance, the equivalence of (a) and (e) of 15.1.4 follows from a 
general theorem ([EJ, Corollary 8.6.15 OF [KSJ, p. 141) which asserts that 
if E and F are Banach spaces and V a continuous linear operator from E 
into F, then V maps E onto F if and only if the adjointoperator V' is a 
topological isomorphism of F' into E' (see I, B.1.7). On applying this 
result to the case in which E = L1, F = co(E), and Vf =]1 E, the 
equivalence of (a) and (e) appears almost immediately. 

(6) The proof of 15.1.4 actually shows that the following numbers 
coincide: 

(a) the Sidon constant of E 
(b) sup {li] 11 d 11 f 1100 : f e L;' and 11 f 11 00 =F o} 
(c) sup {li] 11 dll f 11 00 : fe CE and 11 fII 00 =F o} 
(d) inf {sup {11J.l11 dllc/JII 00: J.l e M and P-I E = c/J}: c/J e lOO(E) and 

Ilc/Jlloo =F o} 
(e) inf{sup{lIflldlic/Jlloo: feLl and ]IE=c/J}: c/Jeco(E) and 

11 c/J 11 00 =F o}. 
Sets whose Sidon constant takes on certain extreme values 

(particularly in the non-abelian setting) have been investigated in 
Cartwright, Howlett and McMullen [I]. 

(7) The space CE in I5.1.4(c) may be replaced by a range of smaller 
spaces (see Edwards, Hewitt and Ross [IJ). Indeed E is Sidon whenever 
one of the following spaces is contained in A : 

(a) AP == {f e C:] e (P(Z)}, where I < P < 00 

(b) A 1+ == n1<p<OO AP 
(c) U == {f e C: 8n f-+ f uniformly as n-+ oo} 
(d) A", == {f e C: w] e (l(Z)}, where w is a given element of co(Z). 
(8) From the equivalence of (a), (b) and (c) in 15.1.4, it follows that, for 

all subsets E of Z, if CE c Athen LE 00 c C. The converse is false, 
however; see Rosenthai [3J, [HRJ, (37.25.g) and 15.8.3 below. 

(9) Regarding I5.1.4(d), a symmetric subset E of Z is Sidon, if and 
only if every ljJ e lOO(E) satisfying ljJ( -n) = ljJ(n) for all ne E, belongs to 
$1'M I E. This results from the fact that every c/J e (OO(E) can be written 
c/J = ljJ1 + iljJ2' where ljJ1(n) = 2- 1(c/J(n) + c/J(-n)) and ljJ2(n) = (2i)-1(c/J(n) 
- c/J( -n») for all ne E. 
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Similarly, regarding 15.1.4(b) and 15.1.4(c), if E c Z is symmetrie, then 
E is Sidon if and only if 

11 I 111 :::::; const. 111 11 00 

for every real-valuedl E TE' This is so since, if gE TE' then11 = Re g and 
12 = Im g both belong to TE' are real-valued, and satisfy 

11 g 111 :::::; 1111 111 + 1112111 :::::; const. 11111100 + const. 11121100 

:::::; 2 const. Ilglloo' 
See also 15.1.6 below. 
(10) If E c Z is Sidon, so too is E u (-E). To see this, appeal to the 

first part of (9): if t/I E (oo(E u (-E) satifies t/I( -n) = t/I(n) for an nE E 
u (-E), choose JJ. E M such that jl I E = t/I I E and define v = 2- 1 (JJ. + jl); 
then 

v(n) = 2- 1(jl(n) + jl(-n)) 

and it is easy to verify that 

for an n E Z 

vl(E u (-E)) = t/I. 

(11) The content of 15.1.4(e) is that every function belonging to co(E) 
has an extension to Z of the form I for some 1 E L 1. On the other hand, 
Dunkl and Ramirez [1] have shown that, if Eis infinite, then (contrary 
to what one might suppose) there exists no continuous linear map V of 
co(E) into L 1 such that 

(V<p)"(n) = <p(n) for an <p E co(E) and an n e.E. 

Concerning this, see Exercise 15.23 below. 
We turn next to a refinement of criterion 15.1.4(d). 

15.1.5. Supplement to 15.1.4. Let E be a subset of Z. In order that E be 
a Sidon set, it is sufficient (and necessary, by 15.1.4) that for every 
function <p on Etaking only the values 1 and - 1, there exists a measure 
JJ. E M such that 

sup {I <p(n) - jl(n) I : n E E} < 1. 

Proof. We will show that 15.1.4(c) is satisfied. 
Let 1 E CE and suppose first that I is real-valued. Define the ± I-valued 

function 4> on E so that 4> ·1 = 1/1. By hypothesis, there exists a measure 
JJ. E M and a positive number 0 satisfying 

sup {I <p(n) - jl(n) I: nE E} :::::; 1 - o. (15.1.7) 

If Ä. = !(JJ. + JJ.*), it is easily seen that Ä. also satisfies (15.1.7), i being just 
the real part of jl. Moreover, 

1/· A - 1111 = 111 • IA - 4>1 :::::; (1 - 8) • 111 on E. 
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Putting g = A * 1, it follows that g E CE and 

g = J.. • I ~ 8' III on E. (15.1.8) 

Let F be any finite subset of E and choose a trigonometric polynomial t as 
in 15.1.2, taking e = 1. Then (15.1.8) yields 

8, L \/(n) I :s;; L l(n)g(n) :s;; L i(n)g(n) 
neF neF neZ 

= t * g(O) :s;; II t l1 1 'lIglloo :s;; 211fkll1 '1111100' 
The last-written term being independent of F, it follows that I E (1. 

If I is not real-valued, we write 1 = 11 + i/2, where /1 = Yz(f + 1*), 
12 = - Yzi(f - 1*), so that/1 and/2 are real-valued and/1 and/2 belong to 
CE' By what we have established,A and/2 belong to {1, so that the same is 
true of I = /1 + i/2. This cempletes the proof. 

Rernark. A slightly shorter proof runs as follows. Having proved 
(15.1.8), 'it follows that g is continuous and positive definite. Ilence by 
9.2.8, gE }1 and so, since (15.1.8) implies that I j I ~ ~-1g,j E }1 and the 
proof is complete. 

15.1.6. If Eis assumed to be symmetric (that is, E = -E), then we may in 
15.1.5 assume that each .p referred to is either even or odd. 

For, assuming again that I E CE and that I is real-valued, we may write 
1= le + 10' where le = Yz(f + J) E CE is even, and 10 = Yz(f - j) E CE is 
odd. The two components le and 10 may be treated separately and call for 
even and odd functions .p, respectively. 

15.1.7. It is evident from 15.1.4(b) or (c) that any subset of a Sidon set is a 
Sidon set; that E u F is a Sidon set whenever E is a Sidon set and F is a 
finite subset of Z that if E is a Sidon set and n E Z then the translate 
n + Eis a Sidon set; and that -E is a Sidon set if (and only if) Eis a 
Sidon set. 

15.2 Construction and Examples of Sidon Sets 

In this section we give some structural properties of a subset E of Z which 
ensure that E is a Sidon set, and which permit us to show in particular that 
each Hadamard set is a Sidon set. We have already met this situation in 
Chapter 14 for the Cantor group. Reference back to 14.2.1 will convince 
the reader that one crucial point in proving that Le e fit ce' is the 
Walsh-Fourier series of a function in V(~) (for each p < (0) whenever it 
is the Walsh-Fourier series of a function in L1(~) was that, apart from 
order, each element of ~I\ can be written uniquely as a product of ele-
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ments of PA. In trying the same teehnique in Z, it suffiees to bound the 
number ofrepresentations of an integer as a sum of elements of E. 

15.2.1. Notation. We eall a sub set F of Z asymmetrie if nE F\{O} 
implies -n rt F. For every subset E of Z, every positive integer s, and 
every nE Z, denote by Rs(n, E) the number of asymmetrie sub sets F of 
E u (-E) having exaetly s elements and satisfying 

n= Im. (15.2.1 ) 
meF 

A subset E of Z is ealled a Rider set if there is a number B such that, for 
all nE Z, 

Rs(n, E):::;; B S for all positive integers s; (15.~.2) 

the smallest such B is termed the Rider eonstant of E. 
A finite union of Rider sets is termed a Steehkin set; note that if E is a 

Steehkin set then so too is E u (-E). 

15.2.2. An Arithmetical Criterion. Every symmetrie Stechkin set E is a 
Sidon set. 

Proof. We may assurne without loss of generality that 0 does not belong 
to E. By assumption, E is the union of finitely many Rider sets EI' .. " Er 
which, again without loss of generality, we suppose are symmetrie and 
pairwise disjoint. Let B denote the maximum of the Rider eonstants of 
EI, "', Er. Sinee B ~ 1, setting b = (3tB2 )-1 yields b:::;; t and Bb :::;; l Let 
4J be an arbitrary function on Etaking only the values ± b. Our aim is to 
apply 15.1.5 and 15.1.6, in doing which it will suffice to deal with the case 
in which 4J is assumed to be even. 

Fix j and assume that E j is enumerated as ± n l , ± n 2 , .. " where 
o < n l < n2 < .. '. Define 

fk(X) = 1 + c/>(nk)einkX + c/>( -nk)e-lnkX} 

= 1 + 2c/>(nk) eos nkx ~ O. 

(If c/> were odd, we should argue with 

Write also 

fk(X) = 1 - ic/>(nk)elnkX - ic/>( _nk)e-inkX 

= 1 + 2c/>(nk) sin nkx ~ 0.) 

N 

tN(x) = fI fk(X) , 
k=I 

(15.2.3) 

(15.2.4) 
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whieh is a nonnegative trigonometrie polynomial. Evidently, 

N 

tN(x) = n I F(r, u) 
r=l UEB 

wherein B = {-I, 0, I} and 

F(r, u) = rjJ(nr)lul(exp (inrx))U. 

At this point we make use of the formula (true for an eomplex-valued 
functions F on {I, ... , N} x B) 

N N n I F(r, u) = I n F(r, w(r)), 
r= 1 u E B wEWr=l 

wherein W is the set of an ftmetions w from {I, 2, ... , N} into B. Thus 

N 

tN = I n cP(nr)I w(rll exp (inrw(r)x) 
we W r=l 

N 

= I nD(w, r) (15.2.5) 
weWr=l 

say. Defining W(s) to be the set of an w E W sueh that 

N 

I Iw(r)1 = s, 
r= 1 

W is the disjoint union of W(O), W(I), "', W(N). Furthermore, W(O) 
eomprises only the zero funetion in W, and 

N 

I nD(w, r) = 1; 
weW(O) r=l 

and W(I) eomprises only these functions in W with singleton supports, 
and 

N N N 

I n D r = I cP(nk)e inkX + I cP(nk)e- inkX • 

weW(l) r=l k=l k=l 

Thus, by (15.2.5), 

N N 

tN(x) = 1 + I cP(nk)einkX + I cP(nkle- inkX 

k=l k=l 

N N 

+I I nD(w, r). (15.2.6) 
.=2 weW(.) r=l 



246 LACUNARY FOURIER SERIES 

Expressing W(s) as the disjoint union of the W(s, n), where W(s, n) is the 
set of all W E W(s) such that 

N 

L w(r)nr = n, 
r= 1 

and noting that W(s, n) is nonvoid for only finitely many n, it follows 
that the fourth term on the right of (15.2.6) is 

L cN(n)einx , 
neZ 

where 

N N 

cN(n) = L L n q,(nr)lw(r)l . 
• =2 weW(s, n) r=1 

Accordingly, since q, assumes only the values ±b, 

s = 2 w e W(s, n) 

N 

= L bS • #(W(S, n)), 
s=2 

where, for every finite set A, #(A) denotes the cardinal of A. For every 
w E W(s, n) define O(w) to be the set 

{w(r)nr : rE {I, 2, "', N} and w(r) =1= O}. 

It is simple (if a little tedious) to check that, for every SE {I, 2,"', N}, 0 
is an injective map of W(s, n) into the set of all asymmetrie subsets F of 
Ei having exactly s elements and satisfying 

Lm=n. 
meF 

Hence, by (15.2.2), 

# (W(s, n)) ::::;; R.(n, Ei) ::::;; 13" 

for all nE Z and alls E {I, 2, "', N}. Thus, for all n E Z, 
N 

ICN(n) I ::::;; Lbs13"::::;; B 2b2(1- Bb)-1::::;; (6t2B 2 )-1. 
s=n 

This shows that, in particular, 

IltNlll = 1 + cN(O) ~ 1 + (6t2B2)-l. 

(15.2.7) 

Applying 12.3.9, it is seen that a subsequence (tN,,) of (tN)N'=l converges 
weakly to a measure /Lj E M. This entails that lim,,_<O lN,,(n) = ,1j(n), so that 
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(15.2.5) and (15.2.7) then show that 

IP-j(n) - </>(n) I :::; (6t2 B2)-1 

Ip-j(n) I :::; (6t2B2).-1 

(n E Ej ), 

(n E E\Ej ). 

If we put /L = /LI + ... + /LI' (15.2.8) shows that for nE E 

IP-(n) - </>(n) I :::; t· (6t2B2)-1 = 72 b . 

It now remains merely to appeal to 15.1.5 and 15.1.6. 

(15.2.8) 

15.2.3. Another Arithmetical Criterion. Every asymmetrie Steehkin set 
E is a Sidon set. 

Proof. This is very similar to that of 15.2.2: the set E j is this time 
enumerated as n 1 , n2 ,' •• andJ" is defined as 

J,,(x) = 1 + </>(n,,)einkX + </>(n,,)e -inkx 

= 1 + 2</>(n,,) eos n"x, 

from whieh point the argument proeeeds as before. 
Remarks. (1) The proofs of 15.2.2 and 15.2.3 witness the introduetion of 

trigonometrie polynomials of the form 

N 

TI (1 + (x" eos n"x) 
"=1 

and eorresponding infinite produets 

<Xl 

TI (1 + (x" eos n"x). 
"=1 

Sueh produets are termed Riesz products; they appear in eonneetion with 
various problems in harmonie analysis. For more about them, see [Zl], pp. 
208-212; [Ba2], pp. 246--249; [LR], Chapter [2]; Keogh [2]; Brown [4]; 
and [MG], Chapter 7. 

(2) For more eriteria like 15.2.3, see Rider [4]. In partieular, the 
eonelusions of both 15.2.2 and 15.2.3 still hold when the assumption that 
E be Steehkin is weakened to E being a finite union E = Ui= 1 E j of sets 
Ej , eaeh of whieh satisfies (15.2.2) merely when n = O. The reader is asked 
for a proof of this faet in Exereise 15.24. 

15.2.4. Hadamard Sets Are Sidon Sets. Let E be a Hadarnard set, 
that is, E = {±n1 , ±n2' ... }, where 0 < nl < n2 < ... and 

q == inf n/c+ 1 > 1. 
nIe 
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It is then very simple to see that E can be partitioned into a finite number of 
Hadamard sets Ei' for each of which the corresponding value of q exceeds 3. 
But then, for any n E Z, 

(15.2.9) 

Indeed, if an integer n admitted two (or more) representations (15.2.1), we 
should have a relation of the form 

wherein r l > r2 > ... and (Xi is ± 1 or ±2. Then, however, one would 
deduce that 

nT1 ~ 2(nT2 + nT3 + ... ) ~ 2nT1 (q-1 + q-2 + ... ) 

~ 2(q - 1)-lnT1 < nT1 , 

a contradiction. 
By (15.2.9) and 15.2.2, Eis both aStechkin and a Sidon set. 
Indeed, the same argument shows that any finite union of Hadamard sets 

is a Sidon set. 
However, there exist Sidon sets that are not finite unions of Hadamard 

sets; see Exercise 15.3. 

15.2.5. Any infinite subset A of Z contains an infinite Sidon set E. 
Proof. Choose freely any nonzero n 1 E A. Suppose that n1 , ... , n k have 

already been selected from A\{O}. The set Sk of integers of the form 

where 1 ~ r l < r2 < ... < rs ~ k and where each (Xj is ±~, ± 1, or ± 2, 
and at most one is of the latter form, is finite. So one may select a 
nonzero integer 

nk+l E A\Sk' 

If E = {ni' n 2, ... }, it is clear that no nE E U {O} admits a representation in 
the form 

with distinct k j and 8 > 1, so that 15.2.3 shows that E IS a Sidon set. 
Evidently, Eis an infinite subset of A. 

The proofs of 15.2.2 and 15.2.3 lead to a refinement of 15.1.4(b) valid for 
certain Sidon sets. 

15.2.6. Suppose that E is aStechkin sub set of Z (in particular, suppose 
that E is a finite union of Hadamard sets; see the proof of 15.2.4.). Then 
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jE t 1 for any E-speetral f E L1 such that eaeh of Re fand Im fis essen
tially bounded above or essentially bounded below. 

Proof. The proof is based on the observation that the measure I-' eon
strueted in the proof of 15.2.2 (or of 15.2.3) is positive, being the weak limit 
in M of nonnegative trigonometrie polynomials. We now modify the proof of 
15.1.5 so as to make use of this a?ditional information about 1-'. 

By a eombination of changes from f to -land from 1 to], it is seen to be 
enough to deal with the ease in whieh Re 1 ~ m a.e. and Im 1 ~ m a.e. 
(Notice that -E satisfies the stated conditions whenever E does so, and that 
] is (-E)-speetral whenever 1 is E-speetral.) In this case, we ean, as in the 
proofofl5.1.5, deeompose/into a sum/1 + i/2 , where/1 and/2 are E-speetral, 
A and 12 are real-valued, and moreover Re /1 ~ m a.e. and Re 12 ~ m a.e. 
So it will suffiee to deal with the ease in whieh Re 1 ~ m a.e. and I is real
valued. Sinee alteration of Ion a null set leaves I unehanged, we mayas 
well assume that Re 1 ~ m everywhere. 

These preliminary reduetions having been made, ehoose the ± I-valued 
function cf> on E such that cf>' 1= 111, setting cf>(n) = 1 whenever nE E and 
I(n) = o. Choose a positive measure I-' so that 

14>(n) - ,u(n) I ~ 1 - () for all n E E. 

Multiplying through by II(n)1 and using the definition of cf>, it appears that 

Re ,u(n)j (n) ~ () • I j(n) I for all n E E. 

Consider now the funetion fI = I-' * I. Since I-' is positive, 

Re fI = I-' * Re 1 ~ 1-'( m • 1) == m' < 00. 

Therefore [see (5.1.6), (5.1.8), and (5.1.9)] 

Re (UNfI) = Re (FN *fI) = FN*Refl ~ m'. 

(15.2.10) 

In particular, evaluating at the origin and remembering that g = P-' I, 

Re L: (1 - N 1nl 1) p-(n)l(n) ~ m'. 
Inl"N + 

Ey (15.2.10) and the assumption that 1 is E-spectral, this implies that 

L: (1 - N 1n1 l)ll(nli ~ m'S-1. 
Inl"N + 

Since the right-hand term here is independent of N, it follows that I E (1. 

At this point see also Exercise 15.12. For a still deeper analogous result, 
due to Zygmund, see [Ba2], pp. 249-257. 

15.2.7. Finite unions of Sidon sets. Drury [3] has proved that the 
union of two Sidon sets is again a Sidon set. The reader will find it an 
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easy exercise to show that this is a consequence of the result due to Drury 
mentioned in 15.1.4, Remark (4). We refer to [LR] , Chapter 3, for an 
exposition of Drury's result. 

15.2.8. An Arithmetical Property of Sidon Sets. Given a subset E 
of Z and a positive integer N, we denote by aE(N) the largest integer a such 
that some arithmetic progression of N terms contains a elements of E. In 
other words, if we define aE(N, a, b) for a, b E Z and b =1= 0 to be the number 
of terms of the arithmetic progression a + b, a + 2b, ... , a + Nb which 
fall in E, then aE(N) is the supremum of aE(N, a, b) as a and b vary. 

It can be shown (see Exercise 15.8) that if E is a Sidon set, then 

for all N ~ 3; (15.2.11) 

and that on the other hand, if Eis the Sidon set {I, 2, 22 , 23 , ••• }, then 

10gN 
aE(N) > log2 

for N = 2". 
In particular, if E is a Sidon set, the number of elements n of E satisfying 

Inl ~ N is O(log N) for large positive integers N. So, for example, the range 
of a nonconstant polynomial function on Z into Z is never a Sidon set. 

It can also be shown (see Exercise 15.22) that if E is a Sidon set, then E 
does not contain the sum {n + m: nE F, mE G} of two infinite sets F 
and G. For a further discussion of the arithmetical properties of Sidon 
sets, see [LR], Chapter 6. 

There are two refinements of the estimate (15.2.11) (see [LR], Chapter 
6). Each establishes that, for a certain set .ß of well-behaved subsets 
of Z, 

#(E fl M)::;; BE • log (#(M)) (15.2.12) 

for all M E .ß where, for every finite set F, # (F) denotes the cardinal of 
F. In both of these refinements the set .ß is large enough to cover the 
situation dealt with in Exercise 15.22 and to arrange for (15.2.12) to yield 
(15.2.11). 

There seems to be little hope of an arithmetic characterisation of Sidon 
subsets of Z. However for the Cantor group CC, the situation is far better. 
There, a Sidon set is defined (naturally enough) to be a subset E of CC A 

for which there exists a number B ~ 0 such that 

lIilll::;; Bllflloo 
for all f E TE(CC). Thus Exercise 14.9 amounts to showing that the set f!Il 
of Rademacher characters is a Sidon set. Now for sub sets of CC A an 
arithmetic characterisation is possible (though not easy): a subset of 
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Cf}" is a Sidon set if and only if it is a finite union of independent sub
sets of Cf}/\ (see (14.1.3)). This theorem is due to Malliavin-Brameret and 
Malliavin [IJ; the reader may care to read Pisier's proof (Pisier [2J) 
which characterises Sidon sets using, instead of an arithmetic eondition, 
the Orlicz spaces mentioned in 14.3.6. 

15.3 Further InequaIities Involving Sidon Sets 

We now use the properties of Rademacher characters discussed in 
Chapter 14 to derive some fundamental functional analytic inequalities 
stemming from the definition of Sidon sets. 

15.3.1. Let E be a Sidon set, with Sidon constant B. If J1. E ME 1S an 
E -spectral measure, then J1. E LP for aB p < 00, and 

for aB p such that 2 < p < 00, (15.3.1) 

(15.3.2) 

Proof. We start by deducing the analogous inequalities for 
Rademacher-spectral trigonometrie polynomials on the Cantor group Cf}. 

From 14.2.1 it foBows, since m! ~ mm whenever mE Z+, that for all 
m E Z+ and for all g E T[j!(Cf}), 

IIgl12m ~ m1/21IgI12' 

IIgl12 ~ 21/21IgI11' 

(15.3.3) 

(15.3.4) 

Now whenever 2< P < 00, we may write 2m - 2 ~ p ~ m for some 
integer m satisfying 1 < m ~ p. Then, by (15.3.3), 

(15.3.5) 

In (15.3.5) and (15.3.4) we have the desired analogues of (15.3.1) and 
(15.3.2). 

Suppose now that fETE is an E-spectral trigonometrie polynomial 
over the circle group T, and define on T x Cf} the function 

g(x, w) = gw(x) = gx(w) = I j(n)Pn(w)en(x) (15.3.6) 
nEZ 

where Pn is the nth Rademacher charaeter (see 14.1.3). Sinee E is a Sidon 
set, reference to 15.1.4(5) confirms that to each w E Cf} corresponds a 
measure J1.ro E M such that IIJ1.wlll ~ Band 

for all n E E. (15.3.7) 
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Since fand g{J) are E-spectral trigonometrie polynomials on the circle, this 
shows thatf = Ilro * gro and therefore (see 12.7.3) that 

(15.3.8) 

for all ()) E <'6'. Integrating this inequality over <'6' with respect to ()) and 
using (15.3.5), 

[ J1/2 

Ilfll p ::;;Bp 1/2 L 1 !(n)en(x) 12 = Bp 1/211 JII 2. 

nEZ 

(15.3.9) 

On the other hand, we also have gro = Ilro * ffor all ()) E <'6' and therefore 

(15.3.10) 

But applying (15.3.4) to gx and integrating over the circle with respect to 
x gives 

This, the Fubini-Tonelli theorem, and (15.3.10) combine to show that 

(15.3.11) 

At this stage we have, therefore, established (15.3.1) and (15.3.2) for 
E-spectral trigonometrie polynomials f. For the rest, we apply these 
special cases to the functions f N = F N * 11 E TE· Thus suppose first that 11 
is known to belong to L 1 . Then, by 6.1.1., fN-'> 11 in L 1 , on applying 
(15.3.11) and (15.3.9) to the differences fN' - fN, it is seen that (fN)'N=l is 
Cauchy in LP for every p < 00, hence is convergent in LP for such p. The 
limit can only be 11, so that 11 E LP for every p < 00. Moreover on applying 
(15.3.11) and (15.3.9) to the fN and using Fatou's Lemma, (15.3.2) and 
(15.3.1) follow. 

Finally, if we assurne merely that 11 E M, (15.3.11) may be applied to 
the f N to yield 

(15.3.12) 

At this point 12.3.10(2) comes into play and asserts that some 
subsequence of (fN)'N=l is weakly convergent in L2 • Since fN = F N * 11 
converges weakly in M to 11 (see Exercise 12.17), it follows that 11 E L2 C 

L 1 . The arguments of the preceding paragraph are now applicable and 
complete the proof. 
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Remarks. (1) The dependence on p of the constant appearing on the 
right-hand side of (15.3.2) renders it possible to show that indeed exp (cjfj2) 
is integrable for any number c and any fE LEl, E being a Sidon set; see 
Exercise 15.4 and cf. 14.2.2. 

(2) The estimate (15.3.2) is the best possible in the sense that, given any 
infinite subset E of Z and any integer k ~ 1, there exists anf E TE such that 

Ilfllk ~ 2- s/2k 1/2 I1flb 
see Exercises 15.14 to 15.16. This result is due to Rudin ([6], Theorem 3.4). 

(3) Prompted by 15.3.1, a subset E of Z is called a A-8et (cf.15.5.3) if 
there is a constant B (independent of p) such that, for every p E (2, 00), 

IIf II p :;:; Bp l/21lf b 
for all fETE' Thus 15.3.1 demonstrates that every Sidon set is a A-set. 
Pisier [1] has shown that, conversely, every A-set is a Sidon set; the 
techniques used by Pisier are related to those mentioned in 14.3.6. 

The next result shows that all Sidon sets share another property similar 
to 15.1.4(d) and (e). 

15.3.2. If E is a Sidon set, then ffCjE = f2(E). 
Proof. This will be carried out in two stages, in the first of which_we 

show in particular that ffLex> jE = f2(E). 
(1) Let cp E f2(E). Regarding LEI as a normed linear subspace of Ll, 

(15.3.2) shows that the mapping 

g -+ L g(n)cp(n) 
neZ 

is a continuous linear functional on L E 1 ofnorm at most 21/2BIII/>I12' The 
Hahn-Banach theorem (I, B.5.1) and I, C.l combine to show that as a 
consequence there exists a function f E L 00 such that 11 f 1100 :;:; 21/2 Bill/> 112 
and 

L g(n)cp(n) = 21 Jg(X)f( -x) dx 
neZ 7T 

for each gELEI. On taking g = en, where nE E, this shows thatJ(n) = cp(n) 
for nE E. 

(2) Next suppose that cp is as before and partition E into finite sets 
E 1 , E 2 , ••• such that 

[L jcp(n)i2]1/2 ~ ck- 2 

neEk 

where c is independent of k. Define I/>k to be equal to I/> on Ek and to be 
zero on E\Ek . According to (1), there exists for each k a functionfk E L oo 

such that AlE = I/>k and IIfk 1100 :;:; 21/2 Bck-2. Referring to 15.1.2, choose 
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trigonometrie polynomials tk so that 

'" 
h = 2: hk 

k=l 

belongs to C, the series being uniformly eonvergent. By the latter token, 
ft = L.k=l ftk. So, for n E E, one has 

ft(n) = i ftk(n) = i ik(n) 'jk(n) = i 1 ' rPk(n) 
k=l k=l k=l 

= rP(n). 

Thus rP = ftlE and the proof is eomplete. 

15.3..3.. Let E be a Si don set and suppose that 1 < P < 2. Then 

[ I 11(nWJ1/Z ~Bp'1/Z 'Ilflip 
nEE 

holds for eaeh f E V. 
Proof, Let g be any E-speetral trigonometrie polynomial: 

g(x) = 2: cne1nx , 
nEE 

Cn being zero for all but a finite set of nE E. Applying (15.3..1) with 
p'( < (0) in place of p, we have by 3.1.4 

l2:j(n)cn l = 121 jf(x)g( -x) dxl ~ Ilfllp' Ilgllp' 
nEE 7T 

~ 11 fIIp , Bp,1/Z , [I I Cn IZJ1/
Z. 

nEE 

This entails that 

[ J1/Z 
I lj(n)lz ~Bp'l/Z 'Ilflip, 

nEE 

as one sees on ehoosing Cn to eoineide with j(n) on larger and larger finite 
subsets of E. 

Remarks, (1) If 2 ~ P ~ 00, the inequality in 15.3.3 is valid for 
arbitrary subsets E of Z, the factor Bp,1 /Z being replaced by unity. (This 
is due to the Parseval formula and the inequality I1 f Ilz ~ 11 f 11 p for 
2 ~ P ~ 00.) 

(2) The hypothesis p > 1 in 15.3.3 eannot be removed. More preeisely, 
if E c Z and if 11 E E Uq< <Xl (q(E) for every fE {l, then E is finite.' 
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Indeed the hypo thesis implies (by Appendix B.2.1 in Volume 1) that 
there exists q < Cf) such that 

( )
l/q 

I 1!(n)lq ~const·llflll 
neE 

foreverYf EL1 . (15.3.13) 

From this and Appendix C in V olume 1 it follows that every t/J E t q' which 
vanishes on Z\E has the form g for some g E L OO • If E were infinite, there 
would exist (by 15.2.5) an infinite Sidon set SeE. By 15.1.4(b), 
therefore, every t/J E t q, which vanishes on Z\S satisfies t/J E t 1 , in 
particular 

(15.3.14) 

Since q' > 1 and S is infinite, the inclusion (15.3.14) IS false and a 
contradiction emerges. 

15.3.4. Factorization in V (p > 1). Throughout this subsection it is 
assumed that 1 < P ~ Cf). 

It has been proved in 7.5.1 that L1 * V = L1; in Section 8.4 that 
L2 * L2 c A, which is evidently a proper sub set of L2; and in Exercise 13.20 
that V * V is always a proper subset of 11'. Indeed, Exercise 13.20 shows 
that any j E LV satisfying 

L Ij(nW'/2 = Cf) 

neZ 

is a prime element of V' (that is, does not belong to V * LV); that such 
functionsj exist, follows from 13.5.3(1), since p'j2 < p'. 

To this we may now add, as a corollary of 15.3.3, that any jE V satisfying 

L Ij(n)1 = Cf) 

neE 

for some Sidon set E c Z is a prime element of 11'. 
For some further results ab out the impossibility of factorizing a general 

element of V, see Edwards [6]. 

15.3.5. Comment on 15.3.1. It has been seen in 15.3.1 that ME c LV 
whenever E is a Sidon set and p < Cf). One cannot here take p = Cf). Indeed, 
it is not difficult to see that there exist no infinite sub sets E of Z having the 
property that (IV< 00 LEv cL"'; see Exercise 15.15, which leads to an 
extension of the results mentioned in Remark (2) following 15.3.1. 

15.3.6. Application to Homomorphisms. Let a be a mapping of Z into 
Zu{ oo} and let us agree to set j( 00) = 0 whenever jE V. Consider the homo-
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morphism T" of the convolution algebra LI into the convolution algebra D 
defined by the formula 

(15.3.15) 

It is then natural to ask for necessary and sufficient conditions on a in order 
that T" shall map LV into Lq for given values of p and q, in which case we 
shall for brevity say that a is of class (p, q). 

The solution for maps of class (1, 1) is stated in Subsection 4.2.6, and from 
this it is clear that such maps a cannot be specified with appreciable freedom 
on any infinite subset,s of Z. The samc is true of maps of class (1, q) when 
1 < q ::;; 00, as appears from Exercise 12.49. 

In this subsection we will apply what has been learned about Sidon sets to 
show that, on the contrary, if 1 < p ::;; 00 and 1 < q < 00, maps a of class 
(p, q) can be prescribed with a fair amount of freedom on certain infinite 
subsets of Z. (Compare the results in Subsection 16.4.3(1) applying to 
multipliers. ) 

More precisely, suppose that 1 < p ::;; 00, 1 < q < 00, that a is of class 
(p, q), that E is a subset of Z, that E n a-1(Z) == S is a Sidon subset of Z, 
and that a' is a map of Z into Zu{oo} such that 

(1) a' agrees on Z\E with a; 

(2) a'(E) n Z is a Sidon set; 
(3) there exists a number B such that, for mE a'(E) n Z, E n a'-l({m}) 

has at most B elements. 
We claim that then r:x' is of class (p, q). 

Proof. Let 1 E LV. By (2), (3) and 15.3.3, 

L Ijo a'(n)i2 ::;; B· L Ij(mW < 00. 
nEE mE,,'(E)r>Z 

Also, since S is a Sidon set and ais of class (p, q), 15.3.3 gives 

L Ijo a(n)i2 = L I(T"l)"'(n)J2 < 00. 
neE neS 

Hence 

L Ijo a'(n) - jo a(n)J2 < 00, 
nEE 

so that there exists a function h E L2 such that Ji = (j 0 a' - j 0 a)XE' But 
then, by 15.3.1, hE Lq. It is furthermore clear from (1) that 

T ,,1 = T ,,1 + h E Lq, 

and hence that a' is of class (p, q). 

Remarks. (a) The other hypotheses being granted, (2) and (3) are 
satisfied whenever a'IE is apermutation of E. 
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(b) On taking a == 00 (so that Ta = 0) and E = Z, one infers directly that 
a map ß of Z into Zu{oo} is of class (p, q), where 1 < p ~ 00 and 1 < q < 00, 

whenever Z n ß(Z) is a Sidon set and there exists a number B such that, for 
each mEZ, ß-1({m}) has at most B elements. 

15.4 Counterexamples Concerning the Parseval Formula and 
Hausdorff-Young Inequalities 

15.4.1. In 13.5.1 it has been shown that ~V' c I'P' for 1 ~ P ~ 2; by 
8.3.1, this inclusion relation can be replaced by equaIity when p = 2. Now 
we can verify that the inclusiQn is proper whenever 1 ~ P < 2. This is 
indeed trivial if p = 1. If 1 < P < 2, choose any infinite Sidon set E; since 
p' > 2 one may choose cp in I'P'(E) not in 12 (E); extend cp to Z so that 
cp(Z\E) = {O}. Then, by 15.3.3, cp fails to belong to ~L'P. It can also be shown 
(compare 2.3.9) that, if 1 ~ P < 2, then ~L'P is a meagre subset of I'P'. 

In case p = 1 we have, of course, A(Z) == ~L1 c Co. Here again the 
inclusion is proper. This (and more) has been proved in 2.3.9. Also, 10.1.6 
shows that ({log (2 + Ini)}-1)nez E Co does not belong to ~L1. Again, as 
follows from the proof of 15.1.4, the relation ~L1 = Co would entail that 
~M = 100 , which is false by 12.7.8. The same relation would also entail, via 
10.5.2, that JE 11 whenever f E C; this too is false (see 7.2.2 and 8.3.2). 

15.4.2. As was heralded in 13.5.3(2), and proved in one way in Section 14.4, 
13.5.1(2) is false for p > 2. To see this in another way, let E be any infinite 
Sidon set and choose a complex-valued function cp on Z which vanishes on 
Z\E and which is such that cp E I'P and cp rf= 12 (Z); this is possible precisely 
because p > 2. Then 15.3.1 entails that cp does not belong to ~M, a fortiori 
cp does not belong to ~L'P'. The series 

L cp(n)e1n:r , 
neZ 

although convergent in D, is not even weakly convergent in M and, a fortiori 
again, not convergent in V". A specific example is the series 

i k- 1/2 cos 2kx. 
k=l 

That 13.5.1(1) is also false when p > 2 can be proved in a similar fashion, 
thus: suppose again that E is an infinite Sidon set and let r ~ n r be an 
injection of {I, 2, ... } into E. Define the function cp on Z by setting 
cp(n) = {r1/2 10g (1 + r)}-1 if n = nr (r = 1,2",,) and cp(n) = Ootherwise. 
Then cp E 12(Z) and cp(Z\E) = O. By 15.3.1, therefore, there exists a function 
f belonging to V' for every p < 00, such that J = cp. However, it is evident 
that J = cp fails to belong to I'P'(Z) whenever p > 2 (in which case p' < 2). 
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15.5 Sets of Type (p, q) and of Type A(p) 

In this section we shall touch briefly upon a milder type of lacunarity than 
that exhibited by E-spectral functions with E a Sidon set. The new concepts 
were introduced and studied by Rudin [6] upon which this account is based. 
Figa-Talamanca and Rider [1] and Rider[4] have extended some of Rudin's 
considerations to compact groups in general, but we have no space for an 
ac count of these developments; a good ac count appears in [LRJ, Chapter 
5. 

In 15.3.1 we have seen tha:t, if Eis a Sidon set, then to each exponent P 

satisfying 0 < P < 00 corresponds a number B p = B1'(E) ~ 0 such that 

for each E-spectral trigonometrie polynomial I. The sets E we are about to 
consider are characterized by similar, but weaker, inequalities. 

15.5.1. Sets of Type (p, q). In what follows we suppose that all exponents 
p, q, r, and slie in the real interval (0, 00). 

If P < q, a subset E of Z is said to be of type (p, q) if and only if there exists 
a number B = B(p, q, E) ~ 0 such that 

(15.5.1) 

for all E-spectral trigonometrie polynomials f. We observe once and for all 
that if p ~ 1 and q ~ 1, and if an inequality of this sort holds for all lET E, 

then each E-spectral function in LP belongs to Lq and the same inequality 
continues to hold for such functions. (This is an almost immediate conse
quence of the fact that TE is everywhere dense, relative to the topology 
defined by 11 • 111" in LE1', provided 1 ~ P < 00; compare 2.4.4, 6.1.1, and 
6.2.1. The reader is advised to provide a proof of this assertion.) 

By way of example, 15.3.1 affirms that any Sidon set E is of type (1, q) 

whenever q > 1. 
If E is of type (p, q), so too is any subset of E. 
By using the open mapping theorem (I, B.3.2), it may be shown that E 

is of type (p, q), where 1 ::::; p < q, if and only if LEP = LEq; see Exer
eise 15.5. 

Inasmuch as 1IIIIr ::::; IIll1s whenever r < s, it is evident that if PI < P2 
< ql < q2, and if Eis of type (PI' Q2), then E is of type (P2' ql)· 

The next assertion is less trivial. 

15.5.2. If 0 < P < q < r < 00, then E is of type (p, r) if and only if it is 
of type (q, r). 

Proof. By what has been said above, if E is of type (p, r) then it is of 
type (q, r). 
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Suppose conversely that E is of type (q, r), so that 

1IIIIr ::; B' 1IIIIq (15.5.2) 

for so me B ;::, 0 and all I E TE' Now an application of Hölder's inequality 
shows that 

11111~(r-p) ::; 11111~(r-q). 11111~(q-P). 

On combining these inequalities, it is found that 

1IIIIg(r-q) ::; Br(q-p). 11111~(r-q>, 

or 

and substitution from this into (15.5.2) leads to 

1IIIIr ::; BB'· 1IIIIp 
for all I E TE' showing that E is of type (p, r). 

(15.5.3) 

15.5.3. Sets of Type A(q). Taking the cue suggested by 15.5.2, a subset 
E of Z will be said to be of type A(q), where 0 < q < 00, if and only if there 
exists an exponent p satisfying 0 < p < q such that E is of type (p, q). 
Frequently we shall write E E A(q) to signify that E is of type A(q). 

By 15.3.1, the remarks in 15.5.1, and 15.5.2, a Sidon set E is of type A(q) 
whenever 0 < q < 00. However, there exist subsets E of Z which are of 
type A(q) for all q satisfying 0 < q < 00 and which are not Sidon sets; see 
Rudin [6], Theorem 4.11, and Exercise 15.7. 

It is evident that A(q2) c A(qtl whenever ql < q2' In the other 
direction, Bachelis and Ebenstein [1] have shown that if E E A(qtl for 
some ql such that 1 ::;; ql < 2, then E E A(q2) for some q2 > ql; the proof 
involves reftexivity of the Banach space L E 1 . 

Any subset of a set of type A(q) is again of type A(q). 

By partial analogy with each of 15.1.4, 15.3.1, 15.3.2, and 15.3.3, oue has 
the following criterion (Rudin [6], Theorems 5.1 and 5.4). 

15.5.4. Criterion for Sets of Type A(p). If E is a subset of Z, and if 
I < P < 00, then the following five statements are equivalent: 

(a) E E A(p); 
(b) ME c LP; 
(c) LEl c V; 
(d) ~LooIE = ~V'IE; 
(e) ~CIE = ~V'IE. 

If furthermore p > 2, these are equivalent to 
(f) ~V'IE c f2(E). 

(As usual, p' is defined by IJp + IJp' = 1.) 
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Proof. This will be broken into several parts. 
(1) Let us begin by showing that (a) implies (b). Assuming (a), take any 

/L E ME and apply to the trigonometrie polynomials F N * /L E TE the inequality 

Ilfllp :>; B' IIf111' 
Since IIFN * /Llll :>; II/-LIII (by 12.7.3), it follows that the numbers IIFN * /-L111 
are bounded with respect to N. Arepetition of the final phase of the proof 
of 15.3.1 leads thence to the conclusion that /L E LP. 

(2) The implication (b) => (c) is trivial. 
(3) To show that (c) implies (a), it suffices to appeal to Exercise 15.5. 
It is now certain that (a), (b), and (c) are equivalent. 
(4) Now we show that (a) implies (d). Assuming (a), take any gE LP' 

and consider the linear functional 

f-+~f!·gdX 27T 
(15.5.4) 

on TE, which we regard as a subspace of LI. According to (a) and the Hahn
Banach theorem (I, B.5.1), this linear functional has a continuous extension 
to V. By I, C.l, this extension must be of the form 

1 f v f-+ 27T f'hdx, (15.5.5) 

where hEL"". Comparing (15.5.4) and (15.5.5) in the case where f = en with 
nE E, it is seen that §IE = hlE, and (d) is thereby established. 

(5) To show that (d) implies (e), we again take g E LP'. By 7.5.1, g = f* gl 

for suitably chosen fE V and gl E LP'. Assuming (d), there exists h1 E L'Xl 
such that h1lE = §lIE. Put h = f * hl . Then hE C and, for n E E, 

h(n) = J(n)hl(n) = J(n)§l(n) = §(n) , 

so that (e) is verified. 
(6) The proof that (e) implies (a) is a little more complicated. Assuming 

(e), to each fE LP' corresponds at least one (usually many) g E C such that 
§IE = JIE, Since g is not generally uniquely deterniined by J, we must use a 
quotient space (see I, B,l.8), Knowledge of f in fact determines g up to 
addition of elements of CF' ",here F = Z\E, and thus determines uniquely 
the element g of the quotient linear space C/CF (that is, the coset g + CF 
modulo CF corresponding to g). Now C is a Banach space, and CF is a closed 
linear subspace of C. Consequently (compare the substance of 11.4.7) the 
quotient linear space C/CF is turned into a Banach space by defining on it the 
norm 

(15.5.6) 

We now have a linear operator T from LP' into C/CF defined by Tf = g, 
where g is any element of C such that §IE = JIE. It is simple to show (see 
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Exercise 15.6) that T has a closed graph. Hence (I, B.3.3) T is continuous 
from LV' into CICF • This signifies that there exists a number B ;;J!: 0 such that 
to each fE V" corresponds at least one gE C such OIE = jlE and 

Ilgll.., ~ B' Ilfll",· 
This being so, if U E TE one has 

12~ f ufdxl = 12~ f ugdxl ~ IIul11 ·llgll.., 

~ IIul11 . Bllfll", , 

and this for each fE L"'. Appeal to Exetcise 3.6 permits the inference that 
Ilull" ~ B' IIul11 for each u E TE' showing that (a) holds. 

This proves that (a) to (e) are equivalent. 
(7) Finally, it is evident from the Parseval formula that (e) implies (f) 

without the additional restrictioil p > 2. On the other hand, to show that 
(f) implies (a) when p > 2, we note that (f) and 8.3.1 combine to show that 
in this case ~L"'IE = ~L2IE, and an argument exactly like that utilized 
in (6) shows that E is of type (2, p) and so that E E A(p). 

Remarks. (I) Stage 7 of the above proof may alternatively be 
accomplished as folIows. Assume 15.5.4(f). Then (by the closed graph 
theorem; see Volume 1, Appendix B.3.3) 

[ J1/2 

L I ](nW ~ const.II!II p' 
neE 

for an fE LP'. 

Hence, for alI g E TE, 

12" I (2n) -1 f (x)g( -x) dx I == L I j(n)g(n) I 
o neE 

So, by the converse of Hölder's inequality (Exercise 3.6), 

for alI g E TE' 

Thus E is oftype (2, p). If p > 2, this entails that E is A(P). 
(2) It has been proved (Bachelis, MR 42 # 6523) that, if k E {I, 2, 3, ... }, 

then E c: Z iE! of type A(2k), if and only if 1]1 E S;;LP for every 
f E LEP. 

See also Exercise 16.30. 
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15.5.5. Properties of Sets of Type A(p). Rudin ([6J, pp. 216-223) 
establishes a number of structural properties of sets of type A(p), somewhat 
analogous to the results in Section 15.2; see Exercises 15.7 to 15.11. Besides 
the results mentioned in these exercises, we quote one more such conclusion 
involving the function rs(n, E), defined to be the number of representations 
of n in the form n = n l + ... + ns with n l , ... , n. E E (compare the definition 
of Rs(n, E) in 15.2.1), namely: if Eis a subset of Z n [0, (0) and if s > 1 is 
an integer, then 

(a) if Eis of type A(2s), we have 

N 

lim sup N-I L r.(n, E)2 < 00; 
N-+oo n=O 

(b) if Eis a finite union of sets EI' ... , EI such that 

for all j such that 1 ::;;; j ::;;; t, 

then E is of type A(2s). 
See Rudin [6J, Theorem 4.5, Exercise 15.11, and [Ba2 J, p. 258. 

It is only fair to add that there is a considerable gap between the necessary 
condition (a) and the sufficient condition (b) in order that E be oftype A(2s). 
Also, as Rudin points out, (b) cannot be weakened to the demand that 

N 

lim sup N-I L rs(n, E) < 00. 
N-+oo n=O 

(15.5.7) 

For, if E consists of the perfect squares and s = 2, condition (15.5.7) is 
satisfied; but (a) is not satisfied and E is therefore not of type A(4). It is 
moreover apparently unknown whether the set of all perfect squares is of 
type A(P) for any p whatsoever; see Rudin [6J, p. 219. More generally, if 
k is a positive integer and p > 2k, then the set E of all kth powers of 
positive integers is not of type A(P). In fact, by 7.3.5 (ii), if 0< ce < 1 the 
series 

00 

L n- a cos nx 
n=l 

is the Fourier series of a functionj E LP' whenever cep > 1. Since p > 2k, ce 
may be chosen so that 0 < ce < 1, cep > 1 and 2cek::;;; 1, the last clause 
implying that 

00 

L n- 2a = L m- 2ak = 00. 
nEE m=l 

Thus, 15.5.4(f) fails and Eis not of type A(P). 
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15.6 Pointwise Convergence and Related Matters 

As usual, we have neglected the study of pointwise convergence, except 
insofar as 15.1.4(b) and (c) trivially entail the absolute and uniform pointwise 
convergence of Fourier series of functions in LE 00 and CE' respectively, 
whenever E is a Sidon set. A further basic result of this sort, applying to 
Fourier series with Hadamard gaps, is contained in Excrcise 6.13. 

Parallel to what comes about for Rademacher series (see 14.2.3) and as 
might be suggested in some measure by 15.3.1, there is a rather startling 
dichotomy concerning the pointwise convergence of a lacunary trigonometrie 
series 

(15.6.1) 

in which Cn = 0, except when n = ± nk for some Hadamard sequence (nk ). 

It turns out that if 

then the series (15.6.1) is pointwise eonvergent almost everywhere; whereas if 

then the series (15.6.1) is pointwise divergent almost everywhere, and indeed 
fails at almost all points to be summable by any one ofthe usual summability 
methods. (The first assertion follows from Exercise 6.13 and 8.3.1.) 

Usually treated in eonnection with pointwise eonvergenee is the eireum
stanee that the behavior on small subsets of the sum funetion of a laeunary 
trigonometrie series largely determines its global behavior. A variant of one 
such result appears in Exercise 15.17. 

For further details eoneerning these and other fascinating topics, see [Zl]' 
Chapter V; [Ba2 ], Chapter XI; [M], Chapitre VIII; Moeller [1]; Moeller and 
Frederiekson [1]; Emel'janov [lJ. 

15.7 Dual Aspects: Helson Sets 

The dual aspeets of the problems diseussed hitherto in this ehapter arise 
when the groups T and Z are interehanged. They are of more recent origin, 
being in fact the outcome of work of Helson [4] on analogous problems for the 
group R of real numbers. The Sidon subsets discussed earlier are peculiar to 
discrete groups (such as Z): their analogues for nondiscrete groups (such as R 
and T) are termed Helson sets. Rudin's general treatment ([R], Chapter 5) is 
designed to cover both concepts from a common point of view insofar as this is 
possible; see also [KS] , Chapitre XI. (There are differenees of detail that 
demand separate treatment at certain points, however.) Here we have spaee 
merely to indicate some of the analogies and unsolved problems. For other 
developments in the case of R, see Helson and Kahane [1]. 
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15.7.1. Restatement of 15.1.3. ThedefinitionofSidonsubsetsof Z given in 
15.1.3 can be reformnlated as the statement that a snbset E of Z is a Sidon set 
if and only if there exists a nnmber B = BE ~ 0 such that 

114>11I ,.; B. 11~11<Xl 
for all 4> E [l(Z) satisfying supp 4> c E. 

As has been said in the Remarks following 12.13.3, fl(Z) can be identified 
with the set of (bounded Radon) measnres on Z. This observation paves the 
way for the appropriate definition of a Relson subset of T, which is as folIows. 

15.7.2. Helson Sets Defined. A subset E of T is termed a Helson set if and 
only if there exists a number B = BE ~ 0 such that 

IlfLl! 1 ,.; B. Ilflll <Xl (15.7.1) 

for all measures fL E M such that supp fL c E. (Concerning snpports of 
measures, see 12.11.4.) 

For reasons stemming from the nondiscrete character of T, it is customary 
(as in [R]) to restriet attention to those Relson sets that are closed in T; we 
have avoided imposing this restrietion from the outset, solely in order to 
heighten the analogy with 15.7.1. 

Somewhat surprisingly, it is the case that E is a Relson set if and only if 
there exists a number B = BE ~ 0 such that 

IlfLlll ,.; B . !im sup Ifl(n)1 
In\-oo 

(15.7.2) 

for all measures fL such that snpp fL C E; see [KS], p. 143, and compare 
McGehee [2]. 

15.7.3. Ana10gues of 15.1.4 and 15.1.5. There is a valid analogue of 15.1.4 
for Relson sets, the most significant portion of which asserts that a closed 
sub set E of T is a Relson set if and only if each continuous complex-valued 
function on E is the restrietion to E of the transform ,p of a suitably chosen 
4> E t 1(Z), that is, the restrietion to E of an element of A. In other words, in 
the notation of 10.6.2(8), a closed set E is a Relson set if and only if 
A(E) = C(E). (This property is used by Rudin to define closed Relson sets; see 
also Kahane [6].) The proof differs in no essential respect from that of 15.1.4. 

There is also a valid analogue of 15.1.5. 
It should be remarked at this point that general functional analytic principles 

lead to yet other equivalent formulations of the definition of Relson sets. We 
cite a few examples and mention a number of corollaries that relate Helson sets 
to other categories of sets already encountered in Subsection 12.11.5. (As the 
reader will perceive, harmonie analysis on a gronp G gives rise to a somewhat 
bewildering variety of classes of subsets of G. Among the major unsolved 
problems of the subject are to be found those of determining reasonably direct 
and verifiable criteria for membership of any one such class, as weil as that of 
determining relationships between the various classes. Except in the trivial 
case in which G is finite, not a single one of these problems has yet received a 
satisfactory solution.) 
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If we reintroduce the notation established in 12.11.5(3), an easy application 
of the closed graph theorem (I, B.3.3) combined with 12.3.9 will show that a 
closed set E is a Relson set if and only if M(E) is closed in P(E), or (what is 
equivalent) is closed in P. (Moreover, by a result from general duality theory 
([E], Theorem 8.10.5) and 12.3.9 once more, E is a Relson set if and only if 
M(E) is weakly closed in P.) 

Again, it is not difficult to show that a closed set E is a Relson set if and 
only if M(E) = pO(E); see [KS], p. 142 and Edwards [9]. It is always the case 
that M(E) c pO(E), pO(E) being defined as in 12.11.5(3) above. 
It follows [compare 12.11.5(3)] that a closed set E which supports no true 

pseudomeasures [so that M(E) =P(E)] is a Relson set, and that a closed set E 
which is simultaneously a Relson set [so that M(E) = PO(E)] and a spectral 
synthesis set [so that PO(E) = P(E)] supports no true pseudomeasures. 

15.7.4. Examples of Helson Sets: Kronecker Sets. Although there is no 
difficulty in exhibiting finite Relson sets, the production of infinite Relson sets 
is a good deal more complicated. This task has been discharged through the 
intervention of the so-called Kronecker sets. 

The nomenclature, which is by now pretty firmly rooted, is due to Rudin; 
however, such sets were first introduced and constructed by Rewitt and 
Kakutani [1] and might weIl have been named accordingly. 

A subset K of T is termed a Kronecker set if and only if each continuous 
complex-valued function f on K such that I f (x) I = 1 (x E K) is the limit, 
uniformlyon K, of characters en (n E Z). (Here and again below we represent 
points of T in the form x, where x is areal number and x the coset modulo 2nZ 
containing x.) 

It is known ([R], Theorem 5.2.2) that there exist Kronecker sets K in T 
which are homeomorphic with Cantor's temary set on the line (see Exercise 
12.44 and [HS], pp. 70-71); any such set K is perfect and uncountable. 

On the other hand ([R], Theorem 5.6.6), every closed Kronecker set is a 
Relson set (in T). 

15.7.5. Further Examples: Independent Sets. Another category of 
infinite Helson sets in T arises in the following way. 

A subset E of T is termed independent if, whenever Xl' "', xk are distinct 
elements of E, the relations n 1 , ••• , nk E Z, n 1x 1 + ... + nkxk = Ö entail that 
njx) = Ö for j = 1,2, ... , k. (cf. (14.1.3).) 

It is almost evident that any Kronecker set is independent, and that any 
element i; of a Kronecker set is of infinite order (that is, ni; :j; Ö for any 
integer n :j; 0). It is also true ([R], Theorem 5.1.3) that any finite independent 
set, each of whose elements is of infinite order, is a Kronecker set. 

The major point to be made is that furthermore any cotmtable closed 
independent set js a Relson set ([R], Theorem 5.6.7; [KS], p. 148); compare 
Exercise 15.21. 

From this it follows incidentally that there exist closed independent Relson 
sets which contain elements of finite order and which are therefore not 



266 LACUNARY FOURIER SERIES 

Kronecker sets: the sets {i, ?T} and {i, (2 1/2 )., ?T} are trivial examples ofsuch sets. 
It is also known ([KS], p. 148) that there exist perfect independent sets 

which are not Helson sets. 
For more examples and counter examples, see Körner [1]. 

15.7.6. Inclusion Relations. Ir we denote by Jf, J, and :f{' the classes 
of closed Helson, closed independent, and closed Kronecker sets, respectively, 
we can summarize the known relations between these classes in the following 
scheme: 

:f{' c J, 

J cF Jf, Jf cF :f{', J cF :f{'. 

{countable} f"'I J c Jf, 

where {countable} denotes the class of countable subsets of T. In particular, 
Jf, J, and:f{' are all different. 

,The relation Jf cF:f{' has been amplified in the work of Wik [2] and 
Kaufman [1]; Wik produces examples of sets E which satisfy (15.7.1) with 
B = 1, für all J1. E M such that supp J1. E E, and which are not Kronecker sets. 
For more details of this and other results, see [LP]. 

15.7.7. Another Characterization of Helson Sets. Helson sets can be 
characterized in terms üf approximation of functions. Thus it is known 
(Edwards [6]) that a closed set E in T is a Helson set if and only if the 
following statement is true: to each continuous complex-valued function f on E 
corresponds a number c = c(j) such that fis the limit, uniformlyon E, of a 
sequence (jr)~ 1 offunctiüns of the form 

N(r) 

Jr = 2: a,., • grl * kr/ , 
1=1 

where the aTI are complex numbers satisfying 

N(r) 

I I cxrjl ~ 1 
j= 1 

für all rE {I, 2, ... } 

and the grj and hrl are functions in L2 satisfying 

IIfrj ll2 ~ c für all rE {I, 2, ... } and allj E {I, 2, ... , N(r)}. 

15.7.8. Perfect Helson Sets. It has been mentiüned in 12.11.5(3) that one 
can construct nonvoid perfeet sets E which support no true pseudomeasures. 
Any such set E, satisfying as it does P(E) c M, has the property that 
PO(E) c M and is therefore a Helson set (see 15.7.2). 

This remark, taken together with the substance of Subsections 15.7.4, 
15.7.5, 15.7.6, and Exercise 15.21, makes it abundantly clear that a charac
terization of Helson sets in group.theoretic and topological terms represents an 
extremely formidable undertaking. A solution does not appear to be in sight. 



[15.7] DUAL ASPECTS: HELSON SETS 267 

15.7.9. Measures Supported by Helson Sets. What Helson originally 
proved in [4] for the case of the group R is also true for T namely: if Eis a 
Helson subset of T, there exists no nonzero measure Jl E M such that 
supp Jl E E and fi. E co(Z); in particular, ca* . (E) = 0 for 0 .::; IX .::; 1 (see 12.12.3 
and 12.12.7), and E is a set of uniqueness in the wide sense (as defined in 
12.12.8). 

This result, which follows immediately from the characterization of Helson 
sets contained in (15.7.2), provides some indication of the necessary sparseness 
of Helson sets. It appears as Theorem 5.6.10 in [R]. 

15.7.10. Characterization Problems. Closed Helson sets are defined in 
functional analytic terms (see 15.7.2). Other characterizations of this type 
have been mentioned in 15.7.3 and 15.7.7; see also Rosenthai [2]. It would 
plainly be of the greatest interest to characterize closed Helson sets in group
theoretical (or arithmetical) and topological terms, but no such characterization 
appears to be even remotely attainable at present. (Much the same is true, as 
we have seen, of the spectral synthesis sets and the Sidon sets.) 

The most that seems to be known in this direction is that Helson sets 
certainly do possess specifiable and rather specialized arithmetical properties; 
see Exercise 15.21 for indications of some snch aspects. 

15.7.11. Carleson Sets. It has been recorded in 15.7.3 that a closed subset 
E of T is a Helson set if and only if each continuous complex-valued function f 
on E is the restrietion to E of a function 

" c einx L.., n , (15.7.3) 
neZ 

wherein the Cn are complex numbers satisfying 

(15.7.4) 

In 1952 Carleson [2] was led to introduce the class of closed subsets E of 
T having a similar property, the sole difference being that the sequence (c.) is 
to satisfy the additional condition 

Cn = 0 for all n E Z satisfying n < O. (15.7.5) 

These sets came to be termed Oarleson sets. 

It is trivial that any Carleson set is a Helson set. In 1960 Wik [l] established 
the entirely unexpected result that the converse is also true: Carleson sets and 
Helson sets are the same things. For an aecount of these matters, see [KS], 
Chapitre XI. 

15.7.12. Relations with Dirichlet Series. Bohr Sets. Over 50 years ago, 
Harald Bohr proved a result about Dirichlet series that ean be formulated in 
the following way: if P denotes the set {2, 3, 5, ... } of prime positive integers, 
there exists a number B ;;. 0 such that 

L Icp(n)1 ,;;; B· sup I L cp(n)n -!tl 
neP teR nez' 

(15.7.6) 
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for all complex-valued functions <p with compact supports defined on the set 
Z' of positive integers. 

Rider [3] has attached the label Bohr set to each subset E of Z' such that 
(15.7.6) holds with E in pi ace of P and a suitabJe number B = BE ;;. O. He 
exhibits an interesting connection between such Bohr sets and certain Sidon 
subsets of the character group of the product of denumerably many copies of 
T, and uses this to produce further examples of Bohr sets, and an example of 
an infinite subset of Z' containing no infinite Bohr set (compare 15.2.5). 

In connection with the definition of Bohr sets, compare Exercise 15.20. 

15.7.13 Finite unions of Helson sets. The substance of 15.2.7 .above suggests 
the problem of proving that the union of two Helson sets is a Helson set. This 
problem has a relatively lengthy history ; see MR 39 # 6020; 40 # 3815; 43 
# # 7866, 7867. The first cotnplete proof is due to Varopoulos [5]. Other 
proofs soon followed; see Saeki [2] and Herz [4]. See also McGehee's fine 
review (MR 46 # 5939) of Herz [4]. 

15.8 Other Species of Lacunarity. 

There is an abundance of species of lacunarity now on the market (see, 
for instance, [LR], Chapters 7 to 10); here we mention only a few. 

Some variants of the spaces involved in 15.1.4 have been seen to lead 
back to Sidon sets (see 15.1.4, Remark (7)); naturally enough, other 
variants lead to new types of lacunarity. 

15.8.1. p-Sidon sets. Suppos~ pE [I, 2]. A subset E of Z is termed a 
p-Sidon set if fE CE implies fE tP(Z) (cf. I5.1.4(c)). Evidently every 
subset of Z is 2-Sidon and a subset of Z is I-Sidon if and only if it is 
Sidon. It is far from obvious that there are p-Sidon sets (with I < P < 2) 
which are non-Sidon; however they do exist and were first constructed in 
Edwards and Ross [I], to which the reader is referred for the basic results 
concerning p-Sidon sets. See also the references in [LR], 10.6. 

15.8.2. W-Sidon Sets. If E is a subset of Z and W is a complex
valued function on Ethen E is called a W-Sidon set if f E CE implies 
LneE I W(n)j(n) I < 00 (cf. I5.1.4(c) again). 

This weighted version of Sidonicity is, in its theory, intermediate 
between the areas of lacunarity and multiplier theory (see Chapter 16). If 
W E t 2 (E), every sub set E is W -Sidon ; and it is not obvious that there are 
W-Sidon sets (with W rj t 2 (E)) which are not Sidon. For such examples, 
for the basic results, and for the connection with p-Sidon sets, see Sanders 
[I]. 
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15.8.3. Rosenthai Sets. From 15.1.4 it follows that if E is a Sidon set 
then LE' = CE· A subset E of Z is called a Rosenthal set if LE' = CE. 
Rosenthai [3] has constructed Rosenthai sets which are not Sidon; in 
fact Blei has proved that every non-Sidon set contains a Rosenthai 
set; see [LR], 10.4. 

15.8.4. Interpolation Sets. Recall that a measure fJ. E M is termed 
discrete (or atomic; see Exercise 12.51) ifit is expressible in the form 

for some choice of a sequence (ak)k= 1 of distinct elements of T, and of a 
sequence (Ck)k= 1 of complex numbers satisfying 2:k= 1 I Ck I < 00. (ex here 
denotes the Dirac measure Itt x; see 12.2.3). 

A subset E of Z is called an interpolation set if, for every ljJ E (<Xl(E), 
there is a discrete measure fJ. E M satisfying jt I E = ljJ. Although every 
interpolation set is Sidon, the converse is false; we refer to the references 
in [LR], 10.10. 

15.8.5. Riesz Sets. From 15.3.1 it follows that if E is a Sidon set then 
ME = Li. There is an old theorem due to F. and M. Riesz (see [R], 8.2.1) 
which guarantees that the set E = Z+ also has this property. Meyer [2] 
has studied such sets and named them Riesz sets. Once again, see [LR] , 
10.5 for further references. 

15.8.6. Fatou-Zygmund Sets. A complex-valued function ljJ on a subset 
E of Z is called hermitian if, whenever n and -n both belong to E, 
ljJ( -n) = ljJ(n). 

A subset E of Z is called a Fatou-Zygmund set if there is a constant B 
such that, for all hermitian elements ljJ of (<Xl(E), there exists a positive 
measure fJ. E M such that jt I E = ljJ and 11 fJ.111 ~B IlljJ 11 <Xl. (Recall that a 
measure fJ. is positive if fJ.(f) ~ 0 for every nonnegative f E C.) It is easy 
to see that every Fatou-Zygmund set is Sidon; the rather surprising 
converse was proved by Drury (see [LR], 3.6) using a modification of the 
techniques used to prove his result quoted in Remark (4) following 15.1.4. 
For further results concerning Fatou-Zygmund sets, we refer to [LR] , 
Chapter 7. 

15.8.7. Associated Sets. Suppose that K is a nonempty compact subset 
of T and that E is a subset of Z. We say that E and Kare strictly 
associated if there is a constant B such that 
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for aUf E TE (here XK denotes the characteristic function ofthe set K). By 
definition, if E is a Sidon set then E and T are strictly associated. 
However Dechamps-Gondim has proved that if Eis a Sidon set then E is 
strictly associated with every compact sub set K of T having nonempty 
interior. See [LR], Chapters 8 and 9 for an exposition of this and related 
topics. 

EXERCISES 

15.1. Use the uniform boundedness principle (I, B.2.1) to prove the fol
lowing statement: if V is a closed linear subspace of C, and if p is an expo
nent satisfying 1 ~ P ~ 00 and such that fE fP for each f E V, then there 
exists a number B ~ 0 such that Ilfllp ~ B' Ilflloo for each f E V. 

15.2. Show that if E is a finite union of Hadamard sets, and if for g > 0 
we denote by NW the number of elements n of E satisfying g < Inl < 2g, 
then N W is bounded with respect to g. 

15.3. Let E consist of all numbers of the form 

where j E {O, 1, 2, ... , 2m - I } and mE {O, 1, 2, ... }. Prove that E is a 
Sidon set but is not a finite union of Hadamard sets (Hewitt and 
Zuckerman [1]). 

Hints: Use 15.2.3 and the preceding exercise. 
15.4. Show that if E is a Sidon set and f E L/~ then 

L f exp (clfI 2) dx < 00 

for any real number c. 
Hint: Use 15.3.1 and look again at the proof of 14.2.2. 
15.5. Prove that a sub set E of Z is oftype (p, q), where 1 ~ P < q < 00, 

if and only if LEP = LEq. 

Hints: For the "if" assertion, use the open mapping (or the closed 
graph) theorem. For the "only if" statement, use the remarks in 15.5.1. 

15.6. The notations being as in the proof of 15.5.4, construct a detailed 
proof ofthe statement that the operator T has a graph closed in LP' x (CjCF ). 

15.7. SupposethatEisoftypeA(q),whereq> 2,sothat Ilfllq ~ Bqllfl12 
for fETE' Let aE(N) be the largest integer a such that some arithmetic 
progression of N terms contains a elements of E; see 15.2.8. Prove that 

for all N, C being an absolute constant. (See Rudin [6], Theorem 3.5.) 
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Remarks. It is shown by Rudin [6], Theorem 4.11) that if 

lim N-Oa(N) = ° for each e > 0, 
N-«> 

then there exists a set E oftype A(q) for every q < 00 for which aE(N) > a(N) 
for infinitely many N. In view of the next exercise, if a be chosen so that 
lim SUPN_«> a(N)Jlog N = 00, any such set E fails to be a Sidon set. 

Hints: Suppose that some N-termed arithmetic progression 

{a + b, a + 2b, .. " a + Nb} 

contains numbers n1,' • " na each lying in E. Write Q(x) = elmb:r+ la:r FN(bx), 
where m = Y2N or Y2(N + 1) according as N is even or odd, and 

a 
f(x) = L: elnk:r, 

k=1 

and obser.ve that 

Now use Hölder's inequality and a suitable majorant for IIFNllq'. 
15.8. Show that if E is a Sidon set, then 

(N ~ 3). 

(See Rudin [6], Theorem 3.6.) 
Remark. If Eis the set {2k : k = 0, 1,2" .. }, then E is a Sidon set and 

yet 

for N ~ 2k • 

Hint: Use 15.3.1 and the preceding exercise. 
15.9. Show that if Eis of type A(I), then E does not contain arbitrarily 

long arithmetic progressions, and indeed that (X,E(N) < N for all 
sufficiently large N. (See Rudin [6], Theorem 4.1.) 

Hints: Take p, ° < p < 1, so that IIflll ~ B· IIflip for fETE' Assuming 
E to contain a + b, a + 2b,' . " a + Nb, where b f= 0, consider 

N 

f(x) = ela:r L: elnb:r. 

n=1 

15.10. Suppose that EI and E 2 are of type A(p) and that E = EI U E 2 • 

Prove that 
(1) if P > 2, then E is of type A(p); 
(2) if p > 1, and if EI C [0, (0), E 2 C (-00,0), then again E is of type 

A(p). 
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See Rudin [6], Theorem 4.4. 
Hints: We may assume that EI and E 2 are disjoint. Suppose in case (1) 

that Ilfdlp ~ BI' IIfdl2 for fl E TE" i = 1,2. Decompose any fETE into 
fl + f2 with fl E TE,. For (2), take s satisfying 1 < s < p, so that now 

Ilfdlp ~ BI' Ilfdls· Proceed as for (1), using 12.10.3. 
15.11. Prove the results appearing as (a) and (b) in.15.5.5. 
Hints: Assume E = {nk }, where 0 ~ n1 < n2 < .. '. Consider 

k 

f = L en/ETE • 
i= 1 

Putting r(n) = r.(n, E), check that f' is of the form 

r(O) + r(l)eIZ + r(2)e2IZ + ... + r(nk)elnkz + ... ; 

the succeeding coefficients are immaterial. Deduce that 

nk 
L r 2(m) ~ Ilfll~! ~ B2s. Ilfll~s = B2s. kS • 

m=O 

Now use the result ofExercise 15.7 and the obvious fact that cxE(nk + 1) ~ k. 
This leads to (a). 

As for (b), by Exercise 15.10 it may be assumed that t = 1. Consider any 
f = Lk a(k)enk E TE' Then 

where bm = L a(k1 ) .•• a(ks ), summed over all representations 

Among these representations for a given m, choose one with indices kdm), 
say, which maximizes la(k1 )··· a(ks)l. Then, if rs(n, E) ~ B, we have 
Ibm l2 ~ B 2 Ia(k1(m))'" a(k.(m)W. So, obviously, 

L Ibml2 ~ B2[L la(k)i2]s. 
m k 

Now use the Parseval formula for f' and for f. 
15.12. Extend 15.2.6 to E-spectral Radon measures p. such that 

Im p.(u) ~ m' Ilulll 

for so me m ~ 0 independent of u and each nonnegative u E C. 
Hint: Consider the functions p. *fE LEI, where f is a nonnegative 

integrable function, apply 15.2.6, and finally appeal to Exercise 3.14. 
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15.13. Using 15.3.2, show that there exists a eontinuous funetion land 
a sequenee en + 0 sueh that 

2: 1!(n)1 2 -Gn = 00; 
n>O 

see the remarks in 8.3.2. 
15.14. Assurne that k is a positive integer and that n I , "', nk are 

distinct integers. Prove that there exists a choice of ± signs such that the 
trigonometrie polynomial 

k 

f(x)=L ±einmx 
m=I 

satisfies 

Hints: Assurne first that k = 2N + 1 is odd and relabel n I , "', nk , 

n-N' ... , nN' Apply the conclusion of Exercise 14.9 to 

to derive 

N 

g(w, x) = L piw)einjX 
j= -N 

Then define f (x) = g(wo, x) for a suitably chosen Wo E Cfl. 
If k = 2N + 2 is even, observe that, if f is chosen as above, then 

11 f 11 k ~ 11 f 112N + I . 

15.15. Let V be an infinite dimensional closed invariant subspaee of La, 
where 1 ::;; a < 00. Show that the relation 

n (V n LV) c L"J (I) 
p< 00 

is false. 
Hints: Make H = np< 00 (V n LV) into a Freehet spaee (I, B.1.3). As

suming (I) to hold, use the closed graph theorem (I, B.3.3) to deduce that 
there exists B ~ 0 such that 1111100 ::;; Bilillp for some p < 00 and all fEH. 
By Remark (ii) following 11.2.1, en E H for infinitely many nE Z. Derive 
a eontradietion from 15.1.4(d) and 15.2.5. 

15.16. Suppose that V and aare as in the preeeding exereise. Define 

B p = sup{llfl~p :fEVnT, IIIlla::;; I}, 

where T denotes (as usual) the set of all trigonometrie polynomials. Prove 
that 

lim B p = 00. 
p-+ 00 
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15.17. Let E be a Hadamard set, as in 15.2.4. It ean be shown (see, for 
example, [Zl], pp. 203-204) that, if S is a measurable sub set of T having 
measure m(S) > 0, and if .,1. > 1, there exists an integer v = v(S, .,1., q) > 0 
such that 

[[t[[~ ~ '\·m(S)-l. L [t(x)[2dx (1) 

for all E-speetral trigonometrie polynomials t satisfying t(n) = 0 for [n[ < v. 
Assuming this, prove the following result: if F is an E-speetral distribution, 
n a nonvoid open subset of T, and if F coincides on n with a function f 
which is analytic on n, then F is equal globally to an analytic function. 
(See [Zl], p. 206 for a more refined "pointwise" analogue applying to 
E-spectral functions. Compare also Exercise 8.15.) 

Hints: First extend (1) to functions more general than E-spectral trig
onometrie polynomials. Then apply this extension of (1) to the functions 
F * vN , where vN is as in Exereise 12.5. Finally, use Exereise 2.8. 

1'5.18. Let E and n be as in the preeeding exereise. What ean be said 
about the global nature of any E-speetral distribution F whieh is such that 
F eoineides on n with a function in L2 1 

What if L2 is here replaced by T1 
15.19. Suppose that a > 0, that bE Z and b > 1, and that (Ck)k'=l is a 

bounded sequenee. Define fa E C by 

'" 
fa(x) = L ckb- ak cos bkx. 

k=l 

Prove that 
(1) n",fa(a) = O([a[a) as a.-7 0, if Ü < a < 1; 
(2) if 

'" L [ck[2b<1-al2k = 00, 

k=l 

then fa is not of bounded variation. 
Remarks. Taking ck = 1, Weierstrass showed thatfa is nowhere differen

tiable in the pointwise sense whenever a is sufficiently small; that the same 
is true whenever 0 < a < 1 was established by Hardy. It is interesting to 
note that, although (1) is false if a = 1 and ck = 1, yet in this case it is true 
that 

sup [fl(X + a) + fl(X - a) - 2fl(X) [ = O([a[) asa.-7Ü; 
x 

see [Zl], p. 47. 
Hints: For (1), see [Zl], p. 47. For (2), use 12.5.10 and 15.3.1. 
15.20. Do there exist any infinite subsets E of Z eorresponding to whieh 

a number B ~ 0 exists such that 

L [j(n)[ ~ B[[f[[", 
neE 
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for each f E T? Justify your answer. 
15.21. Let E be a subset of [0, 217) which is closed when regarded as a 

subset of T and which has the following property: there exist numbers 
ak > 0 and positive in te gers N k (k = 1, 2, ... ) such that limk_oo N k = 00 

and {ak' 2ab ... , Nkad cE. 
Prove that E (viewed as a subset of T) is not a Helson set (and 

therefore, by 15.7.3, supports true pseudomeasures). 
Remarks. Any set E of the specified sort is, of course, highly 

nonindependent when viewed as a sub set ofT; see 15.7.5. 
As an example, one may take E = {O, 1, Y2, %, ... }; this provides an 

instance of a countable closed set that supports true pseudomeasures; see 
12.11.5(3). 

There are stronger results, analogous to that cited in 15.2.8 for Sidon sets; 
see [KS], p. 146, Theoreme VIII. Compare also with Exercises 15.7 to 15.9. 

Hints: By hypothesis, for any positive integer N, the set SN of numbers 
a > 0 such that {a, 2a, ... , Na} c Eis nonvoid. Define SN = infaesN SUp IIJLII!> 
the supremum being taken over all measures JL of the form JL = Ir=l cj1i;a 

for which IIJLllp ~ 1. Show that SN -+ 00 as N -+ 00. 

15.22. Prove that, if E is a Sidon set, then 

sup {min {#(F), #(G)}: F + Ge E} < 00 (1) 

where, for every finite set F, # (F) denotes the cardinal of F, and where 
F + G = {n + m: nE Fand mE G}. In particular, a Sidon set does not 
contain the sum of two infinite sets. 

Hints: Assurne (1) fails, let nE Z satisfy n> 1, and choose sets 
F, Ge Z such that F + G c E and min {#(F), #(G)} ~ n3 . Letting 
F 1 cF have exactly n elements, first choose m 1 E G\F 1 , and then show 
that it is possible to select, for each k E Z satisfying 2 ::;; k ::;; n, an ele
ment mk from G so that 

mk ~ (Fl + (-F1) + {m1' "', mk-1}) u F 1· 

Now, with F 1 = {ll' "', ln} and G1 = {m1' "', mnL estimate both the A 
and C norms of the trigonometrie polynomial 

n 

tn = L ujkeljemk 
j, k= 1 

where (ujkl is an n x n unitary matrix satisfying IUjkl = n- 1/ 2 for allj, k. 
15.23. (i) Assurne that E is an infinite sub set of Z. Prove that there 

exists no continuous linear map V of co(E) into L 1 such that 

(VrjJ)"'(n) = rjJ(n) for all rjJ E co(E) and all n E E; 

cf. Remark (11) following 15.1.4. 
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(ii) Prove that, if K is an infinite closed subset of T, then there exists 
no continuous linear map U ofC(K) into A such that (Uf)IK =Jfor an 
JEC(K). 

Hint8: For (i), assume the existence of V with the stated properties. 
Obviously, V is injective. Also, since IIV4>lloo ~ 11 (v4» A 1100 = 114>1100 for an 
4> E eo(E), V- 1 is continuous. Deduce that V is a linear homeomorphism 
of eo(E) onto a closed linear subspaee of L 1 . Using Appendix 0.2 in 
Volume 1, eonclude that eo(E) is weakly sequentially eomplete. Infer that 
the eonstant funetion 1 with domain E belongs to eo(E). Sinee E is 
infinite, this is a eontradietion. 

For (ii), argue similarly, to the point where it is dedueible that, for 
every a E K, the eharacteristic funetion X{a}. K of {a} relative to K, belongs 
to C(K). Obtain a eontradietion by ehoosing a E K whieh belongs to the 
closure in K of K\{a}. 

A different style of proof is given by Graham [1]. 
l5.24. Verify the claim ~ade in 15.2.3, Remark (2), namely that if E 

is asymmetrie sub set of Z satisfying 

R.(O, E) ~ B' for an positive integers 8, 

then E is a Rider set. 
Hint: Apply the teehnique, used to prove (15.2.7), to the function 

wherein 



CHAPTER 16 

Multipliers 

A little less than sixty years ago, Fekete [1] discussed so me generalities 
and some particular questions pertaining to what has since come to be 
Imown as the problem of Fourier "multiplier (or factor, or conversion) 
sequences. (or functions)"; see [Zl], pp. 175-179,378, where references will 
be found to other special results due to many authors, and also the remarks 
in 16.3.8, 16.3.9, and 16.7.6. 

In this chapter we aim to describe a general approach to such problems 
that places emphasis on the so-called "multiplier operators" associated with 
such functions, an approach that appears to have been vitalized by Wendel 
[1], [2] in connection with the isomorphism problem for group algebras 
(mentioned in 4.2.7). In all the most important cases, these multiplier 
operators belong to a category of operators that are very simply charac
terizable in algebraic and topological terms involving convolutions; see 
Section 16.2. 

The Zeit-motiv of this chapter is accordingly the association with each 
multiplier function '" of a corresponding multiplier operator U dJ' followed by 
the representation of U dJ as convolution with some distribution A (from 
which '" is easily recaptured as the Fourier transform of A), and a struggle 
to tie down the nature of A as closely as possible in a manner depending on 
the range and image spaces of U <1>' It is in this characterization of A that the 
real sting lies. This task, along with the discussion of some important special 
cases, occupies Section 16.3. The discussion of other important special cases 
continues throughout Sections 16.4 to 16.6. 

The number of particular cases of the multiplier problem that have been 
effectively solved is limited, and it will become clear to the reader of this 
chapter that there is no lack of enticing unsolved problems. A few such 
problems, as weIl as some extensions ofthe multiplier concept, are mentioned 
in Section 16.7. 

In Section 16.8 we relate multiplier problems with questions concerning 
direct-sum decompositions of standard function spaces in terms of their 
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closed invariant subspaces (compare 2.2.1). Concerning the study of 
multipliers in the general setting of Banach (and topological) algebras, see 
[La]. 

16.1 Preliminaries 

The so-called multiplier problem can be formulated in quite general terms 
as follows. 

16.1.1. Multiplier Functions and Operators. Suppose two sets, Fand 
G, of distributions are given. It is required to determine necessary and 
sufficient conditions on the complex-valued function </> on Z in order that the 
implication 

(16.1.1) 

shall be valid. 
In (16.1.1), as elsewhere in this book, ffG denotes the set oftransforms g 

of elements g of G. 
A function </> satisfying (16.1.1) is termed a (Fourier) rnultiplier of type 

(F, G), and we shall then write </> E (F, G). If F = V and G = LO, where, as 
will be assumed throughout this chapter, 1 ~ P ~ 00 and 1 ~ q ~ 00, it is 
customary to write simply (p, q) in place of (V, LO). 

The most interesting cases are those in which both Fand G are chosen 
from the arsenal of standard function- or measure-spaces, such as Ck 
(0 ~ k ~ (0), V (1 ~ P ~ (0), or M. However, complete solutions are not 
yet available even for all these cases. Where necessary and sufficient con
ditions are known, they are frequently expressed by membership of</> to ffH 
for some set H of distributions. As will by now be clear, the verification of 
such a relation is more often than not a most formidable task. 

The reader will by now have guessed that analogous multiplier problems 
present themselves in cases where the underlying group G is something more 
general than T. Although the methods employed in this chapter are 
frequently specializations of those applicable in the more general 
situation, we have space only to make a general reference to Brainerd and 
Edwards [1] and the research papers referred to therein, together with a 
few more specific references and comments at appropriate places. The 
case in which G = Z, the group dual to T, is in some respects simpler 
(inasmuch as measures and "distributions" on Z are just functions on Z) 
and in other respects more complicated, and here too there remain 
numerous unsolved problems; we have insufficient space to deal with this 
dual problem, but see Exercise 16.29 and the references cited in 16.4.7 
and 16.4.9(3). In this connection it may be noted that the multipliers of 
(2(Z) correspond exactly with the so-called doubly infinite Toeplitz 
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matrices; these entities and their elose relatives occupy a small niche in 
analysis. for an introduction to which the reader is referred to [ZlJ, p. 
168 and \Vidom [1]. See also Hirschman [2], Widom [2]. 

Without missing any cases of current interest, much repetition will be 
avoided by making the following standing hypotheses concerning Fand G: 

W ith the sole exception that G is sometimes chosen to be D, 'it will be a8sumed 
that each oJ Fand Gis a linear space containing C'" and contained in D; each 
is stable under the translation operators Ta; each is a Eanach or a Frechet space 
(see Volume 1, Appendix B) and convergence oJ a sequence in F or in G 
implies its distribution al convergence (see Section 12.3); and each operator 
oJ tranßlation, or oJ convolution with a trigonometrie polynomial, is a 
continuous endomorphism oJ Fand oJ G. (D itself fails to satisfy these 
conditions only insofar as it is neither a Banach space nor a Frechet 
space.) 

We shall make frequent use of the device that associates with a multiplier 
1> of type (F, G) the corresponding multiplier operator U<I> with domain Fand 
range in G, defined in the following way. The uniqueness theorem 2.4.1 and 
12.5.4(1) shows that if 1> is a multiplier of type (F, G), then to each JE F 
corresponds precisely one g E G such that g = 1> • j; we then define U <l>J = g. 

The notation U <l>J will continue to be used, whenever JE D and 1> is a 
complex-valued function on Z such that 1> • j is tempered, to denote that 
distribution g such that g = 1> • j [see 12.5.3(2)]. 

The examples that follow illustrate a number of features common to most 
multiplier operators which will be considered formally and in some detail in 
subsequent sections. 

16.1.2. Some Examples. (1) As a general comment, observe that if 
F l c Fand Gl ::> G, then (F l , Gl ) ::> (F, G). This is evident from the defining 
property (16.1.1). 

(2) The inelusions [1 c (M, C) and [2 c (M, Lq) for q :::;; 2 are evident, in 
view of the case m = 0 of 12.5.3(1) and 8.3.1. 

(3) If 1> has the form 1>(n) = a 1nl , where (aN)~=O is decreasing to zero and 
convex, then 1> belongs to each of (M, Ll), (L"", Cl, and (V', V'); moreover, U<I> 
is expressible as convolution with an integrable function; see Exercise 16.1. 

(4) It is relatively simple (see Exercise 16.2) to show that (L2, L2) = ["'. 
In this connection the reader should observe that if 1> E [00, then there exists 
a unique pseudomeasure A such that A = 1> (see Section 12.11), and the 
associated multiplier operator U<I> is defined by convolution with A: 

(16.1.2) 

for JE L2. 
Observe also that each multiplier operator of type (V, V) is continuous 

and commutes with the translation operators Ta; this follows from (16.1.2), 
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(8.2.2), and 12.6.2. As will be seen in 16.2.1, this too is a characteristic 
feature. 

(5) From 12.7.2 and 12.7.3 one may (see Exercise 16.3) derivethefollowing 
inclusions 

§M c (C, Cl, jOM c (M, M). 

It will appear in due course (see 16.3.2, 16.3.3, and Remark (2) following 
16.3.5) that indeed 

§M = (C, C) = (LOO, LOO) = (LI, LI) = (M, M). 

However, as will be seen in 16.4.3(1), jOM does not exhaust (LP, LP) if 
1 < P < 00. 

Here again all the corresponding multiplier operators U tP are linear, 
continuous, commu~e with translations, and admit a representation as 
convolution with a suitable distribution. 

16.1.3. The Determination of (COO, D). We aim to show that (COO, D) 
comprises just the tempered functions if> on Z, that is, the functions that 
satisfy a majorization of the form 

if>(n) = O(lnl") as Inl ---+ 00 (16.1.3) 

for some (if>-dependent) integer k. It will appear that (COO, COO) also comprises 
exactly the tempered functions on Z. 

It is on the one hand clear from 12.1.1 that any tempered sequence if> 
belongs to (COO, COO), and a fortiori to (COO, D). 

Suppose on the other hand that if> belongs to (COO, D). Then if>j is tempered 
wheneverj E C"'. We wish to conclude from this that if> is tempered. However, 
were this not the case, there would exist a sequence (n,,) of integers such that 
o < In,,1 ---+ 00 and 

But then, by 12.1.1 again, 

j(x) = 2: Inkl- Y2k exp (in"x) 

would belong to C"', and yet 

Iif>(nk)!(nk) I > Inkl Y2", 

contrary to the hypothesis that if>j is tempered. 
The reader will observe that the associated multiplier operator U tP is given 

by 
UtP!=A*!, (16.1.4) 

where A is the distribution 

A = 2: if>(n)etncr ; (16.1.5) 
neZ 
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see 12.5.3(2). This operator U dJ is linear, commutes with translations and 
with convolutions, and is easily seen to be continuous from C'" into any one 
ofthe "natural" spaces lying between C'" and D (such as C, LV, and M). 

As has been indicated, we sha11 see in Seetion 16.3 that virtua11y a11 
multiplier operators are expressible in the form (16.1.4), A being a suitably 
chosen distribution. 

16.1.4. Properties of Multiplier Operators. In a11 the examples con
sidered in 16.1.2 and 16.1.3 the standing hypotheses on Fand G (laid down 
in 16.1.1) are fulfi11ed; and in a11 these examples it has appeared that the 
multiplier operators U dJ concerned have the fo11owing properties: 

(1) UdJ is linear, continuous, commutes with the translation operators Ta 
and with convolution with trigonometrie polynomials (the last condition 
meansthat UdJ(t*f) = UdJt*f= t* UdJfforeachtETandeachfEF); 

(2) U dJ, admits a convolution representation 

UdJf=A*f, 

where A is some distribution depending upon <p. 
In the course of the next two sections we sha11 see that properties (1) and 

(2) persist in a11 the cases of practical interest, and that indeed these properties 
come elose to characterizing the multiplier operators. In particular, in 
Section 16.3 we sha11 establish a convolution representation formula of the 
type (16.1.4) for multipliers of various types (F, G). The approach to be adopted 
there will cover the ease of (C"', D), but it also adapts to certain other choices 
of (F, G) in such a way as to be more directly productive of the best results. 

Although the case of (C"', D) provides a sort of "universal covering 
theorem," inasmuch as virtua11y a11 multiplier operators of interest have 
restrietions to C'" which are multiplier operators of type (C"', D), far too 
much information is thrown away by this process of restrietion for the 
outcome to have any lasting interest in the discussion of multiplier operators 
of type (F, G) for numerous other natural choices of Fand G. 

16.2 Operators Commuting with Translations and 
Convolutions; m-operators. 

We begin this section by summarizing in formal terms the essential 
properties of multiplier operators already encountered. 

16.2.1. Characteristic Properties of Multiplier Operators. Let <p be 
a multiplier of type (F, G) and U dJ the associated multiplier operator map
ping F into G (see 16.1.1). Then 

(1) UdJ is linear; 
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(2) U", eommutes with translations; that is, 

U",Ta = TaU", 

for eaeh group element a; 
(3) U t/> eommutes with eonvolution by trigonometrie polynomials ; that 

is, 
(16.2.1) 

for every I E Fand every trigonometrie polynomial t; and, more 
generally, (16.2.1) holds whenever tE F,j E F, and t * I E F; 

(4) U", is eontinuous from F into G. 
Note: The reader is reminded of the standing hypotheses eoneerning F 

and G imposed throughout this ehapter. It is weIl to remark, however, that 
quite often not all of these hypotheses are essential for the truth of any one 
assertion made: this will usually be quite elear from a elose examination of 
the proofs. 

Proof. The first three statements are alm ost immediate eonsequenees of 
the definition of U", (namely, U <pI = g signifies exaetly that I E F, gE G, 
and Y = 4> • i) eombined with the properties of eonvolution vis-s.-vis the 
Fourier transformation (see espeeially 12.5.5 and 12.6.5) and the uniqueness 
theorem for Fourier transforms (see 2.4.1 in the ease of funetions, and 12.5.4 
in the ease of distributions). The reader is urged to write out in fuU detail at 
least one of the proofs. 

The proof of (4) is a little less immediate, being based upon the elosed 
graph theorem (see I, B.3.3). Aeeording to this theorem, to show that U", is 
eontinuous, it suffiees to prove that: if a sequenee (fn) extraeted from F 
eonverges in F to the limit I, and if at the same time the sequenee 
(gn) = (U ",In) eonverges in G to the limit g, then neeessarily g = U ",I. Now, 
with the aid of the standing hypotheses, from In ~ I in Fand gn ~ g in G it 
follows that in ~ i and Yn ~ Y pointwise on Z (see the definition of distribu
tional eonvergenee in 12.3.1). But, by the definition of U "', we have Yn = 4>. in 
for eaeh n. Passage to the limit as n ~ 00 shows that therefore {] = 4> • i, 
whieh signifies exaetly that g = U ",I and thus eompletes the proof. 

Remark. Although D is not a Freehet space, 16.2.1 still holds for 
multipliers of type (F, D). The only modification needed is in the proof of (4), 
the form of the closed graph theorem stated in I, B.3.3 being no longer 
applicable (though the closed graph theorem can be shown to be valid for the 
case in hand; see, for example, [E], Chapter 6 and Exercise 8.43). Often, 
a simple direct proof of the continuity of U", is possible; see Exercise 16.4. 

Before proceeding to a converse of 16.2.1, we shall deal with a simple 
corollary thereof. 

16.2.2. An Application of 16.2.1. It has been noted in 16.1.2(4) that 
(L2, L2) = I"". A good deal more true is true, namely, (A, P) = (A, A) = I"". 
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Indeed, sinee (A, A) c (A, P), and sinee it is quite evident that 100 c (A, A), 
it suffiees to show that (A, P) c 100 • 

Now, if rfo E (A, P), 16.2.1(4) affirms that the assoeiated multiplier operator 
U IP is eontinuous from A into P. This signifies the existenee of a number 
c ~ 0 such that 

11 Uq, fIIp ~ cllfliA 
for eaeh fEA. Taking f = en, and noting that UlPen = rfo(n)en and Ilenll A 

= Ilenllp = 1, it follows that Irfo(n) I ~ c for all nE Z, and so that rfo E 100 • 

We no\\" return to the general devclopment and establish a eonverse of 
16.2.1. 

16.2.3. A Converse of 16.2.1. (1) If V is a linear operator mapping F 
into D such that 

(16.2.2) 

for eaeh trigonometrie polynomial t and eaeh fE F, then there exists a 
function rfo E (F, D) such that 

Vf = VlPf (fEF). (16.2.3) 

(2) If V is a linear operator mapping F into D which eommutes with 
translations, then there exists a funetion rfo such that 

(16.2.4) 

for eaeh trigonometrie polynomial t. 
Proof. (1) In (16.2.2) wetaket = en =fandsodedueethatVen = rfo(n)en , 

where rfo(n) = (Ven)"(n). Then linearity of V shows that (Vt)" = rfo • { for 
eaeh trigonometrie polynomial t. From (16.2.2) again, 

[V(t *f)]" = l· (Vf)"; 

and, from what we have just established, we have also 

By eomparison, therefore, i· (V f)" = rfo • i· j for all trigonometrie poly
nomials t, whieh implies (16.2.3). 

(2) Let Un = Uen. Sinee V eommutes with translations, 

by linearity of U. It is easily seen (for example, by taking the Fourier 
transform of this relation) to follow that U n = rfo(n)en for some eomplex
valued function rfo on Z, and linearity of U now leads to (16.2.4). 
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Remark. In ease (2) it is not evident that the function 4> belongs 1.0 
(F, D), there being no assuranee (without further hypotheses upon U) that 
(16.2.4) eontimles to hold when t is replaeed by an arbitrary element of F. 
However, we do have the following eorollary. 

16.2.4. Another Converse of 16.2.1. Suppose that the trigonometrie 
polynomials are everywhere dense in F. Suppose too that U is a linear 
operator mapping F into G such that either 

(1) U satisfies (16.2.2) for eaeh trigonometrie polynomial t and eaeh 
JE F; or 

(2) U is eontinuous and eommutes with translations. 
Then U = U,p forsome4>E(F,G). 

Proof. Case (1) is already disposed of by 16.2.3(1). 
In ease (2), we know that (16.2.4) holds for eaeh trigonometrie polynomial t. 

Moreover, givenf E F, there is a Rcquenee (tk ):,= 1 of trigonometrie polynomials 
eonverging in F to J. Then, by the assumed eontinuity of U, the sequenee 
(Utk) = (U ,ptk) eonverges in G to UJ. From this it folio ws that (U ,ptk )'"' = 4> . tk 
eonverges pointwise to 4> . j, so that the limit of (U ,ptk ):,= 1 in G, say g, must be 
such that § = 4> . j. It folIo ws thenee that 4> E (F, G) and that U = U,p. 

16.2.5. The Cases F = L'" and F = M. Although 16.2.4 shows that in 
the majority of interesting eases there is identity between the multiplier 
operators and those eontinuous linear operators whieh eommute either with 
translations or with eonvolutions, there are one or two interesting eases where 
the identifieation is as yet in doubt. In these ca ses the doubt persists either 
beeause one of the spaees Fand G involved does not satisfy the standing 
hypotheses laid out in 16.1.1, or beeause the trigonometrie polynomials are 
not everywhere dense in F. 

Two espeeially signifieant such eases are those in whieh F = L'" and 
F = M, respeetively. Even here, however, it is still true that any linear 
operator from F into G, whieh eommutes with translations or with eon
volutions with trigonometrie polynomials, satisfies (16.2.4) for some function 
4> and all trigonometrie polynomials t. If furthermore U is eontinuous, for 
the weak topology on L'" (or M), in the sense that Ufk --+ UJ in G whenever 
Jk --+ J weakly in L'" (or in M), then it would again follow that 4> E (F, G) 
and U = U,p. In this eonneetion it should be reealled (from 12.3.9 and 12.3.10) 
that fk --+ J weakly in L'" (or in M) if and only if 

L jJkg dx --+ L jJgdx (g E LI) 

[or Jk(g) --+ f(g) (g E C) ] . 

The reader should also bear in mi nd that if JE L'" (or JE M), then uNf --+ J 
weakly in L'" (or weakly in M); see Exereise 16.5. 
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16.2.6. Commutativity with Translations and with Convolutions. 
In the preeeding results we have had oeeasion to eonsider both eontinuous 
linear operators that eommute with translations, and those that eommute 
with eonvolutions. In many important instanees one ean showapriori that 
these two eategories of operators are identieal. For instanee, any eontinuous 
linear operator U from C" or V (1 ~ P < 00) into eh, or Lq, or M, or D 
eommutes with translations if and only if it eommutes with eonvolutions; 
see Exereise 16.6. As one might expeet from 16.2.5, however, this equivalenee 
is in doubt if the domain of U is L'" or M, unless we demand eontinuity with 
respeet to weakly eonvergent sequenees in L'" or in M. 

16.2.7. m-operators. Mueh repetition will be saved if, guided by the 
foregoing results and diseussion, we heneeforth adopt the following definition. 
By an tit-operator 01 type (F, ,G) is meant a eontinuous linear operator from 
F into G whieh (a) eommutes with translations and (b) satisfies (16.2.2) for 
eaeh trigonometrie polynomial t and eaeh 1 E F. In addition, we shall denote 
by m(F, G) the set of m-operators of type (F, G). 

It is to be observed that 16.2.6 shows that, in ease F is C" or V (p :F 00) 
and G is Ch, Lq, M, or D, a eontinuous linear operator from F into G belongs 
to m(F, G) provided it satisfies either (a) or (b) above. 

From 16.2.1 and 16.2.3(1) itappearsthat U Em(F, G) ifandonlyifU = U4> 
for some .p E (F, G). 

There is in general no speeial diffieulty in verifying that, if A E D, the 
eonvolution operator U defined by 

belongs to m(F, G), provided only that it does indeed map F into G; in 
partieular, U always belongs to m(C"', C"'). The eonverse will be examined in 
16.3.1. 

It is a eonsequenee of the preeeding remark that almost all linear operators 
whieh arise naturally in harmonie analysis are m-operators (even though 
they may not erop up direetly from multiplier problems). Moreover, any 
linear differential operator of order k with eonstant eoeffieients is an m
operator oftype (C", C). Referenee to Seetion 6.6 will eonfirm that almost all 
summability proeesses used in eonneetion with Fourier series are definable 
in terms of sequenees of m-operators of type (Li, Li). 

In 16.3.11 we shall diseuss some relationships between m-operators and 
the translation operators Ta (whieh are themselves espeeially simple m
operators). 

The pointwise theory of those m-operators defined by eonvolutions with 
distributions that are not measures (eompare 12.8.2 and the beginning of 
Seetion 13.9) is, in those eases where pointwise existenee theorems are valid 
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at an, apart of a highly elaborate theory of singular integrals. Conceming 
this aspect of the subject, the reader is recommended to examine the survey 
article Calderon [2] and Cordes [1]. 

lt may be added as an aside that, if Fand G satisfy the standing 
hypotheses stipulated in 16.1.1, if T is everywhere dense in F, if U is a 
continuous linear map from F into G, and if U satisfies (a) (that is, if U 
commutes with translations), then U satisfies (b). The proof is left as an 
exercise for the reader. 

16.2.8. A Theorem of Stein about Sequences of rn-operators. For tise 
in Section 16.5 in connection with multipliers we propose to state here without 
proof a deep and important theorem due to E. M. Stein ([1], Theorem 1 and 
Corollary 1) about sequences ofrn-operators oftype (LI', LI'), where 1 ~ P ~ 2. 
There is no reason at all why any reader who has persevered to the present 
stage should not taekle the original paper. 

Stein's theorem reads as follows. Suppose that 1 ~ P ~ 2 and that Ule 

(k = 1,2",,) is a sequence of rn-operators of type (LP, LP). Assume that to 
each fELl' corresponds a (possibly f-dependent) set E of positive measure 
such that 

lim sup I Uk fex) I< 00 for aIl XE E. (16.2.5) 
k-oo 

Define 
U*f(x) = sup IUd(x) I 

k;.l 
(~ 00), (16.2.6) 

The conclusion is that the operator U* is ofweak type (p, p) that is (see 13.7.5), 
there exists a number c such that for each number K > 0 and each f E LP 

m({x E [0, 21T) : U*f(x) > K}) ~ CK-p"fII~, (16.2.7) 

where m denotes Lebesgue measure. 
In the paper cited, Stein uses this theorem to great effect in the discussion of 

diverse problems; he also shows that various extensions are possible. Unfor
tunately, the theorem is definitely false for p > 2 (Stein [1], p. 157). 

Some at least of the roots of Stein's theorem are due to Calderon and appear 
in the discussion on pp. 165-166 of [Z2]' A proof of Stein's Lemma 1 ([1], 
p. 146), which makes no explicit reference to probability theory, is also to be 
found on p. 166 of [Z2]' For further developments, see Coifman [1], Stein and 
Zygmund [1], Sawyer [1] and Gilbert [1]. 

16.3 Representation Theorems for rn-operators 

In this section we begin the study of the representation of rn-operators in 
terms of convolution. In particular, and first of aIl, we shall recover the result 
established in 16.1.3 for multiplier operators of type (COO, D). However, as 
has been heralded in 16.1.4, a different approach will be used. This method 
makes little explicit use of the Fourier transformation. As developed in this 
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section, it will lead to complete solutions of the representation problem for 
most of those cases in which a fully effective solution is known. 

Both the statements and the proofs of our first theorem are variants (for 
periodic functions and distributions) of those given first by 8chwartz ([82], 

pp. 53-54; [E], pp. 332-335) for functions and distributions on Rm 

16.3.1. Multipliers from C'" to D. (1) To each U E m(C"', D) corresponds 
a distribution A E D such that 

(16.3.1) 

for fE C"'; and, conversely, if A E D, the equation (16.3.1) defines U as a 
member of m(C"', D). 

(2) m (C"', D) = m(C"', COO). 
(3) (C"', D) = (C"', cool comprises exactly all tempered functions on Z. 
(4) If U E m(F, G), there exists a distribution A E D such that (16.3.1) 

holds for each f E F. 
Proof. (1) The converse portion sterns from 12.6.2 and 12.6.3. The 

direct assertion can be proved by writing U = U "" where </> E (COO, D) (see 
16.2.3), using 16.1.3, and taking for A that distribution for which A = </>. 

The proofto be given here proceeds along different lines which are of interest 
in other connections, ignoring as it does any relationship between U and 
multipliers of type (C"', D). 

Choose an approximatc identity (k,)j= 1, each k i being a member of C"'. 
If fE Coo, ki * f -'>- f in C'" so that continuity of U entails 

Uf = D-lim U(k j *j). 
i-co 

From 16.2.1 and 16.2.7 it appears that this may be written in the form 

Uf = D -lim Ai *f, (16.3.2) 
i_oo 

where 

(16.3.3) 
Now (16.3.2) signifies that 

Ai *f* g(O) = Ai *f(g) 

converges, as i -'>- 00, to Uf(g), and hence is bounded with respect to i, for 
each f, gE C"'. On the other hand, as the reader will verify easily on using 
12.1.1, each hE Coo is expressible as f * g with fand g suitably selected from 
C"'. Thus the numbers Ai(h) = Ai * h(o) are bounded with respect to i for 
each h E C"'. 

At this point 12.3.7 shows that a subsequence of (A;) may be chosen which 
converges in D to a limit A. By dropping terms, we may therefore assurne 
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that Ai ---* A in D. This being so, 12.6.3(2) shows that 

Ai*f---*A*f inC'" (16.3.4) 

whenever fE C"'. Comparing (16.3.4) and (16.3.2), (16.3.1) is seen to follow. 
(2) The inelusion m(C"', C"') c m(C"', D) being evident, it suffiees to prove 

the reverse inclusion. 
But, if U E m(COO, D), (16.3.1) and 12.6.3(1) eombine to show that u 

maps Coo eontinuously into Coo (and not merely into D). 
(3) This has been established in 16.1.3. (It also follows from 16.2.1 and the 

Remark following that theorem, (1) of the present theorem, 12.5.3, and 
12.6.5.) 

(4) If U E m(F, G) the standing hypotheses on Fand G ensure1 that the 
restrietion of U to C'" belongs to m(C"', D). Hence (1) shows that (16.3.1) 
holds for some A E D and eaeh f E C"'. If fE Fis given and t is any trigono
metrie polynomial, t * f belongs to C'" and so 

U(hf)=A*t*f· 

On the other hand, by 16.2.7(b), 

U(t*f) = t* Ufo 

Comparison of the last two equations, valid for any trigonometrie polynomial 
t, shows that Uf = A * f. (We are here using the assoeiativity and com
mutativity of eonvolution.) 

Remarks. (1) There are restrieted analogues of 16.3.1 for the case in 
which T is replaced by a more general group; see Brainerd and Edwards 
[1], Edwards [10], [11], and Gaudry [1], [2]. See also Taibleson [2]. 
. (2) The result 16.3.1, although satisfying, represents the beginning rather 
than the end of multiplier problems. The interesting questions, many of them 
still without effective solutions, are of the following nature: given the pair 
(F, G) and an m-operator (or a multiplier operator) U of type (F, G), 16.3.1 
shows that there is a distribution A such that (16.3.1) holds at any rate for 
each fE ; C'" the remaining problem is to effectively determine conditions on 
the distribution A in order that A * f shall belong to G whenever fE F. If C'" 
is dense in Fand if Fand Gare Banach spaces, this is so if and only if 

IIA * filG ~ const IlfilF 

for fE C"'. Among the remaining results of this section appear instances in 
whieh an effective answer is known. In Seetions 16.4 and 16.5, however, we 
handle some cases where no complete and effeetive answer is forthcoming. 

The preceding representation theorem will now be used as a stepping stone 
to others of a similar nature. 

1 Since the closed graph theorem shows that the injection of C" into F is continuous. 
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16.3.2. Multipliers from C to C or Li to M. If V E m(C, C) (or m(Li, M)) 
there exists a measure p. E M such that 

(16.3.5) 

forlE C (orforl E Li); and conversely. Inparticular, (C, C) = (Li, M) = ~. 
Proof. If V is defined by (16.3.5), then 12.7.2 (or 12.7.3) and 12.6.5 show 

that V E m(C, C) (or V E m(Li, M)). Conversely, if V belongs to either of 
these two categories, 16.3.1(4) entails that VI = A * I for some A E D and 
aUI E C (or I E Li); and then 12.8.4 shows that A must be a measure. 

In the case of m(Li, M) the conclusion A E M may otherwise he reached by 
noting that the Ai appearing in the proof of 16.3.1(1) form a norm-hounded 
sequence of measures and so, hy 12.3.9, a suhsequence (Aik)k'=i converges 
weakly in M to a measure p.. Since it is known that Ai * I -+ A * I for each 
I E C<X>, A and p. must coincide. 

The fina.l assertion follows from what is already established, if appeal he 
made to 16.2.1 and 12.6.5. 

Remarks. (1) Other proofs are possible; for the case of m(C, C), for 
example, one might argue along the lines adopted in 16.3.5. 

(2) It can be shown (see Exercise 16.20) that m(C, L<x» = m(C, C). 

16.3.3. Li-Multipliers. If U E m(Li, Li) there exists a measure p. E M 
such that (16.3.5) holds for.f E Li; and conversely. In particular, 

(Li, Li) = jöM. 

Proof. Once again the converse assertion ensues from 12.7.3 and 12.6.5. 
The direct assertion stems from 16.3.2, since Li is a subspace of M (see 
12.3.8). As before, the statement ahout multiplier functions is contained in 
what precedes, using 16.2.1. 

Remarks. It can also be shown that (M, M) = (C, L<x» = (L<X>, L<x» 
= jöM; see Exercises 16.7 and 16.8. 

16.3.4. Multipliers from Li to LP (p > 1). If U E m(Li, LP), where 
1 < p ::0; 00, then there exists a function k E LP such that 

(16.3.6) 

for each I E Li; and conversely. In particular, (Li, LP) = jöV' for 1 < p ::0; 00. 

Proof. The converse statement is a consequence of 3.1.2,3.1.6, and the 
associativity of convolution. 

For the direct assertion, one begins by observing that appeal to 16.3.1(4) 
shows that there exists a distribution A such that VI = A * I for I E Li. 
The continuity of U then entails the existence of a number b ~ 0 such that 

(16.3.7) 
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for fELl. Suppose now that f is allowed to vary along an approximate 
identity (kj ), and put Ai = A * ki E V', as in the proof of 16.3.1(1). Then 
(16.3.7) shows that the numbers IIAjll" are bounded with respect to i, and 
12.3.10 affirms that some subsequence of (Ai) converges weakly in V' to a 
limit, say k. On the other hand, since (ki ) is an approximate identity, the 
sequence (At) converges in D to A, as follows from 12.3.2(3) and 12.6.6. It 
follows that A = k, so that (16.3.6) holds for f E V. 

Finally, the last assertion stems from what is already established via 16.2.1 
and 12.6.5. 

Remarks. Without altering the essence of the preceding proof, explicit 
reference to 16.3.1 could be avoided by simply mimicking the proof of the 
latter in the present context: in other words, explicit reference to A is 
avoided, the function k being obtained directly as a weak limiting point in 
LV of the sequence (Ukj ) = (A j ) by appealing to 12.3.10 as before. The 
reader is urged to coristruet such a proof in detail. 

The next two results introduce a different technique, which is frequently 
successful when discussing m.operators of type (F, C). 

16.3.5. Multipliers from L" to C. If U E m(L", C), where 1 ::;; P ::;; 00, 

then there exists a function hEL'" such that 

holds for fE L"; and conversely. In particular, (L", C) = .~L'" for 1 ::;; p ::;; 00. 

Proof. The converse assertion follows from 3.1.2, 3.1.4, and the aSHocia· 
tivity of convolution. To prove the direct assertion, we suppose first that 
p < 00 and consider the linear functional f ~ Uf(O) defined on L". The 
assumed continuity of U ensures that this functional is continuous. Hence 
(I, C.l) there exists a function hEL'" such that 

Uf(O) = h * f(O). 

Ifwe apply this formula with T _xfin place off, using 3.1.2 and the fact that 
U commutes with translations, we find that 

Uf(x) = T _xUf(O) = UT -xf(O) = h * T -xf(O) 

= T _x(h *f)(O) = h *f(x), 

which is the desired result. 
The preceding proof breaks down when p = 00 (where?) and we proceed 

as folIows. Take an approximate identity (ft),= I composed of trigonometrie 
polynomials, and let hi be the trigonometrie polynomial Ufi' If fE L'Xl, Uf is 
continuous (by hypothesis), and so limdi * Uf(O) exists finitely, being in 
fact equal to Uf(O). By (16.2.2) this signifies that liIil t hj * f(O) exists finitely 
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for eaeh fE L"'. Consequently (see I, C.2), there exists a funetion hELl 
such that 

lim fl * Uf(O) = h * f(O) 
1 

for eaeh f E L"', that is, 
Uf(O) = h *f(O) 

for eaehf E L"'. From this point on, the argument proeeeds exaetly as before. 
The final statement is dedueed in the by-now-eustomary fashion, using 

16.2.1 and 12.6.5. 
Remarks. (1) In asense, 16.3.5 eontainsa sortof anaiogue ofthe eonverse 

of Hölder's inequality (given in Exereise 3.6); see Exereise 16.9. 
(2) By 16.4.1, 16.3.3, and 16.3.4, it ensues that m(V', L"') = m(Ll, V'') 

eoineides with the set of operators by eonvolution with eltlments of V' if 
1 ~ P < 00, oi with elemen~s of M if P = 00. For 1 ~ P < 00, this eonclusion 
may be dedueed from 16.3.5 in the manner indieated in Exereise 16.19. 

16.3.6. Multipliers from M to C. If U E m(M, Cl, then there exists a 
funetion h E C such that 

(16.3.8) 

for po E M; and eonversely. In partieular, (M, C) = FC. 
Proof. We give a proof of the first assertion. The rest follows in the 

usual fashion and will be left for the reader to verify. 
If U E m(M, C) then, sinee Ll is a subspace of M, 16.3.5 shows that there 

exists a funetion hEL'" such that 

(16.3.9) 

for fELl. N ow, if po E M, then f = t * po E Ll for eaeh trigonometrie poly
nomial t. Henee, using (16.3.9), (16.2.2) and the eommutativity of eonvolu
tion, we obtain 

h * (t * po) = U(t * po) = t * U po, 

and thenee U po = h * po. Finally, taking po = B (the Dirae measure at the 
origin; see 12.2.3), it appears at onee that h = U B E C. 

16.3.7. Bounded and Uniform Conver~ence Multipliers. In Seetion 
10.3 it has been seen that 

sup IlsNfll", = 00 
N 

for suitable eontinuous funetions f. With this in mind, we pose the following 
question. Whieh eomplex-valued funetions ~ on Z have the property that, 
for eaeh eontinuous funetion f, the series 

L ~(n)j(n)e!n:r (16.3.10) 
neZ 
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has uniformly bounded partial sums? An answer to this mllitiplier problem 
will be given in 16.3.8, for which we proceed to lay some foundations. 

By taking 

j(x) = 2: (1 + n2 ) -1efnx, 

neZ 

it becomes evident that any function '" possessing the stated property is 
tempered, so that (16.3.10) is certainly the Fourier series of some distribution 
g (see 12.5.3(2)). Moreover, if'" has the stated property, it is the case that 

sup IlsNgll", < 00. (16.3.11) 
N 

According to Exercise 12.22, therefore, gEL"'. 
At this stage let us introduce the set Lb<Xl of functions gEL'" for which 

(16.3.11) holds. It follows from what precedes that our problem is precisely 
that of determining which functions '" belong to (C, Lb <Xl). As usual, we shall 
approach this problem in terms of the associated multiplier operator U ~ 
frop! C into Lb<Xl. 

We shall first of all wish to be sure that U~ E ru(C, Lb "'). In seeking con
firmation of this by appeal to 16.2.1 and 16.2.7, it is sufficient to check that 
Lb'" can be made into a Banach space in such a way as to satisfy the standing 
hypotheses laid out in 16.1.1. This can be achieved by taking as the norm on 
Lb<Xl the function 

(16.3.12) 

and recalling from Exercise 12.22 the inequality 

(16.3.13) 

Armed with this, the verification is simple (see Exercise 16.10). Recall that 
sNg = DN * g for every distribution g. 

Now we are ready to state and prove the main result. 

16.3.8. (1) The operators U E ru(C, Lb "') are precisely those of the form 

Uj=l1-*j, (16.3.14) 
where 11- E M is such that 

m == sup IIDN * 11-111 < 00. 
N 

(16.3.15) 

(2) A function '" has the property that, for each continuous functionj, the 
series (16.3.10) has uniformly bounded partial sums, if and only if'" = P- for 
some 11- E M satisfying (16.3.15), and in that case 

(3) the series (16.3.10) is uniformly convergent foreach continuous function 
j, and 

(4) the series (16.3.10) is convergent in norm in V whenever jE V and 
1 ~ P < 00. 
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Proof. (1) If (16.3.14) and (16.3.15) hold, we have for i E C: 

sup 118N UfII., = sup !IDN * IJ- *ill., 
N N 

~ sup IIDN * fLlh • 11!lI., N . 

~ m • IlfII., < 00, 

as follows by use of 3.1.6. This shows that U maps C eontinuously into Lb ". 

The remaining properties of U ealled for in 16.2.7 are almost evidently attained, 
so that U E m(C; Lb""). 

Suppose eonversely that U E m(C, Lb"'). Then 16.3.1(4) is applieable and 
shows that there exists a distribution A such that 

(16.3.16) 

holds for i E C. Thanks to the eontinuity of U, there exists a number m for 
whieh, on aceOtmt of (16.3.16), we have 

that is, 

for iE C. Notieing that D N * A is a trigonometrie polynomial, Exereise 3.6 
yields 

sup IIDN * Alll ~ m. 
N 

From this and 12.3.9 it is easily inferred that A is in fact a measure p. E M. 
This eompletes the proof of (1). 

(2) This follows in the familiar manner from (1) applied to U = U "', provided 
the remarks in 16.3.7 are borne in mind. 

(3) Let i E C and e > 0 be given. Choose a trigonometrie polynomial t 
satisfying 

Ili - tll", ~ (2m)-le; 

this is possible by 2.4.4; For all N we have by 3.1.6 and (16.3.15) 

118N(fL *i) - 8N(fL * t)llco ~ m' Ili - tll", ~ % e. (16.3.17) 

Sinee fL * t is a trigonometrie polynomial; 8N(fL * t) = fL * t for N > No, where 
No dopends upon t. Henee, by (16.3.17), we have 

118N(fL * j) - 8N'(fL * i) 11 co ~ e 

provided N and N' exeeed No, whieh shows that the series (16.3.10) is uniformly 
eonvergent. 

(4) Tbe prooffollows the same lines as that of (3); note that (by 3.1.6 again) 

118N(fL * i) - 8N(fL * t>!l" ~ m' Ili - tll", 
and that (by 2.4.4 again) t may be chosen to satisfy Ili - tll" ~ (2m)-le. (If 
1 < p < 00, the assertion is also a eonsequenee of 12.7.3 and 12.10.1.) 
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Remarks. (1) The condition (16.3.15) is not generally satisfied when 
JL E LI (see Exercise 10.2); it is satisfied, however, if JL E V, fgr some p > 1, 
or if JL E LI and JL' log+ IJLI E LI (see 12.10.1 and 12.10.2). 

(2) The analogous problem of determining (F, Cu), where Cu is the space 
of continuous functions with uniformly convergent Fourier series, has been 
solved in a number of cases by diverse authors, including Tomfe, Karamata, 
Katayama, and Goes; see Mathematica.l Reviews 20 #7184 and 21 #7392. 
The conditions obtained sometimes vary from one author to the next, and 
it may weH be a nontrivial task to prove that the apparently different 
conditions are indeed equivalent. For example, Karamata shows that in 
case cf.>(n) = cf.>( -n), the conditions on 

<Xl 

JL = 2 2: cf.>(n) cos nx 
.. =1 

(convergent in D) req:uired in 16.3.8 can be expressed in the form 

I n- 1 2: Icf.>(v) - cf.>(v + 1)1 < 00 • 
.. = 1 v .... 

In the form given here, 16.3.8 was proved in a somewhat different way by 
Karamata [1] for the case in which cf.>(n) = cf.>( -n). He also remarked that in 
this case a sufficient condition is that 

cf.>(n) = O(lo~n) (n~oo), 
<Xl 

2: (n + 1)1 A2cf.>(n) I < 00; 
.. =0 

that this implies (16.3.15) foHows from partial summation [compare formula 
(7.3.5)]. 

(3) For some other results bearing directly or otherwise on multipliers, 
see Goes [1], [2]. 

16.3.9. Lipschitz Multipliers. The discussion and arguments appearing 
in 16.3.7 and 16.3.8 can be modified quite easily so as to characterize those 
functions cf.> such that, for each continuous function J, the series (16.3.10) is 
the Fourier series of a continuous function g satisfying a Lipschitz condition 

I/T a!l - gl/", = O(w(a» , (16.3.18) 

where w is a given nonnegative function such that w(a)ja is bounded away 
from zero for small a =F 0, and such that w(a) ~ 0 as a ~ O. The O·constant 
in (16.3.18) may, of course, depend upon g. 

The set AC/) of continuous functions g satisfying a Lipschitz condition 
(16.3.18) may be formed into a Banach space by introducing the norm 

(16.3.19) 

and AC/) then satisfies the standing hypotheses laid down in 16.1.1. 
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The problem posed at the outset of this subsection is that of determining 
(C, A",) and may be approached by studying the operators V of type 
m(C, A",). The conclusion proves to be that these operators are precisely 
those of the form 

(16.3.20) 
wherein k E Ll is such that 

sup w(a)-lIITak - kill< 00; 
a"'O 

(16.3.21) 

the functions 4> of type (C, A",) are accordingly precisely those of the form 
4> = k, where k is as just described. 

In Exercise 16.11, the reader is invited to construct a detailed proof of 
these statements. 

Remarks. Zygmund [1] determines, among other things, the functions 
oftype (A"" A",) for w(S) = SC!, where 0 < a ~ 1. He shows that a necessary 
and sufficient condition for 4> to be of this type is that 

<I>(x) = L (in)-l4>(n)etnx 

""'0 
(convergent in D) be a function of class A~, that is (see [Zd, p. 45), that 

sup a-lllTa<l> + T -a<l> - 2<1>111 < 00. 
a>O 

The function <I> is, apart from an insignificant term, the indefinite integral of 
the function k which would appear in the corresponding representation of 
the form (16.3.20) for V = V 4>' and it is interesting to note that the 
second difference Ta <I> + T _ a <I> - 2<1> now takes the place of the first 
difference Tak - k. 

See also MR 44 # 7208. 

16.3.10. Positivem-operators. An operator V E m(F, G) will be said to 
be positive, if VI ~ 0 whenever 1 E Fand 1 ~ O. (In this context a relation 
h ~ 0 is to be understood in the distributional sense, as described in Exercise 
12.7: if his a continuous function, the relation signifies that h(x) ~ 0 for all 
x; if h is a general integrable function, it signifies that h(x) ~ 0 for almost 
all x.) 

From 16.3.1(4) and Exercise 12.7 it follows that any positive V E m(F, G) 
is representable in the form 

(JE F) (16.3.22) 

where p. is a positive measure. 
HF = G = C, LV, or M, 3.1.6 and 12.7.3 show that any p. E M (positive or 

not) yields, via (16.3.22), an operator V E m(F, F); evidently, this V is 
positive if and only if p. is positive. 
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On the other hand, if p < q, not every measure p. yields, via (16.3.22), an 
element U of m(p, q) = m(V', Lq). Effective necessary and sufficient con
ditions on p. in order that U shall belong to m(p, q) are apparently unknown 
(even assuming that p. is positive); but see the partial results in 16.4.4 and 
16.4.6. 

It is perhaps worth remarking that (16.3.22) can be established in most 
cases of interest without any appeal to distributional notions. By thus 
working within the domain of functions and Radon measures, the arguments 
become at once extendible to more general groups (see Brainerd and Edwards 
[1], Part I, Section 3). 

In this connection we may mention in passing the following facts and implied 
problems. Suppose that G is a (Hausdorff locally compact) group, and that k 
is a measurable function on G such that k * 1 exists in some sense for each 
1 E Cc(G) (the space of continuous functions on G with compact supports); and 
suppose further that 

for a given q E [1, CXl] and each1 E Cc(G). What can be deduced about k? 
If G is the circle group, the case of the Hilbert distribution (see Sections 

12.8 and 12.9) shows that k * 1 may ex ist as a Cauchy principal value and 
satisfy the stated conditions for each q E (1,00), even though k is nonintegrable. 
Much the same is true of the Hilbert transform on R or Rn. 

Let us consider further the case in which G is assumed to be noncompact 
and k is given to be integrable over each compact subset of G. This ensures 
that k * 1 exists pointwise as an absolutely convergent integral whenever 
1 E Cc(G). The stated inequality is easily seen to imply that k E Ll(G), if q is 1 
or 00; but this implication is generally not valid if q E (1, 00). The additional 
hypothesis that k be nonnegative permits the deduction that k E Ll(G) for 
certain classes of groups G; see Brainerd and Edwards [1], Part I, Section 3. 
Rather surprisingly, not even this much is true for general G and q E (1, 00). In 
fact, Theorem 9 of Kunze and Stein [1] shows that, if Go is the group of real 
2 x 2 unimodular matrices, then 

[[k *1[[2 :0;;; const [[1[[2 

whenever k E V'(Go) for some p satisfying 1 :0;;; P < 2 and 1 E L2(Go); if one 
takes 1 < P < 2, the noncompactness of Go ensures that one can choose non
negative functions k belonging to V'(Go) but not to Ll(GO). 

For further developments, see Gilbert [3]; Cowling [1], [2]; MR 35 # 3008; 
38 # # 269, 5997; 42 # 6522; 51 # 13594. 

16.3.11. m-operators and Translations. Reverting for a moment to 
generalities, we observe that from 16.3.1 and use ofthe Hahn-Banach theorem 
(much as in 11.2.2; compare also part (2) of the proof of 11.1.2) it follows 
that any U E m(F, F) leaves stable each closed (translation-) invariant sub
space of F; compare Subsections 3.1.8 to 3.1.10. [When U = U<p and F is C 
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or LI' (1 ~ P < 00), this mayaIso be deduced from the specification of the 
closed invariant subspaces of F obtained in 11.1.1 and 11.2.1.] An equivalent 
formulation of this property of U is as follows (compare 3.1.9): for each 
fE F, Uf is the limit in F of linear combinations of translates off. 

It is natural to ask whether, conversely, any endomorphism U of F (U 
may or may not be assumed apriori to be continuous) that leaves stable each 
closed invariant subspace of F is necessarily a member of m(F, F). An 
affirmative answer is given in some (but by no means all) cases in Edwards 
[11], and further results have since been given by Johnson [4]. 

On combining the results obtained in Section 1 of Edwards [11] with 
16.3.1 one obtains a type of abstract characterization of convolution operators 
on C and on LP (1 ~ P < 00), namely: anyendomorphism U of C or of U 
(continuity is not assumed) that leaves stable each closed invariant subspace 
of C or of Lp is of the form UJ = A * f for some A E D; U is therefore neces
sarily continuous and, in the case of C, A is necessarily a measure (by 16.3.2). 
Some similar results appear in Edwards [10]. 

16.3.12. Convolution as a Bilinear Operator. We turn aside briefly in 
order to justify some remarks made in Subsection 3.1.10. 

Let B denote a continuous bilinear mapping from COO x COO into D with the 
property that 

(16.3.23) 

for j, g E COO and a E R/27TZ. Observe that continuity follows from bilinearity 
whenever Bispositive in the sense that B(j, g) ~ 0 for an nonnegative 
functionsj and g in COO; compare the hints to Exercise 12.9. 

It will be shown that 
(1) there exists a distribution A such that 

B(j, g) = A *j * g 
for j, g E COO; 

(2) if Bis positive, then Ais a positive measure; 
(3) if B is positive, and if furthermore 

supp B(j, g) c supp j + supp g, 

whenever j, gE COO, then 

B(j, g) = const j * g 
for j, gE COO. 

(16.3.24) 

(16.3.25) 

(16.3.26) 

Proof. Fix gE COO and consider the mapping Ug : j -'? B(j, g) from COO into 
D. It is evident that U g is linear, continuous, and [by (16.3.23)] commutes 
with translations. By 16.3.1, therefore, there exists Ag E D, which is evidently 
uniquely determined by g, such that 

B(j, g) = Ag *j (j, gE COO). (16.3.27) 

It is also evident that, if B is positive, then Ag is positive and hence (Exercise 
12.7) is a positive measure. 
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The map U: g ->- Ag is elearly linear from C'" into D, and, by (16.3.23) onee 
more, U eommutes with translations. A little thought will show that U is also 
eontinuous from COO into D (remember that COO * COO fills out COO). A seeond 
appeal to 16.3.1 shows that there exists A E D such that 

Ag = A * g (g E COO). (16.3.28) 

Onee again, if Bis positive, A must be a positive measure (Exereise 12.7 onee 
more). In any ease, (16.3.24) follows on eombining (16.3.27) and (16.3.28). 

Finally, on assuming that (16.3.25) obtains, it follows that supp A c: {Öl 
(take J = g = Vn, as in Exereise 12.5, and eonsider what happens as n ->- co). 
Then, by Exereise 12.33" positivity of B entails that A = eonst e, and (16.3.26) 
follows from (16.3.24). 

Remark. If the bilinear operator B maps C x C eontinuously into P and 
satisfies (16.3.23) and (16.3.25) for J, g E COO, then (16.3.26) holds for J, gE C. 
(In this ease, there is no need to assume positivity.) 

In fact, (16.3.24) holds for J, g E Coo. The eontinuity of B on C x C then 
,shows that A must be such that A * J * g belongs to P and eoineides with 
B(J, g) whenever J, g E C; in partieular, eontinuity shows that A itself belongs 
to P. In addition, (16.3.25) shows that supp A c {Öl, and the stated eonelusion 
follows onee again from Exereise 12.33. 

16.4 Multipliers of Type (LI', Lq) 

This and the two following sections will be devoted to abrief study of the 
problem of multipliers of type (V', Lq) and of the associated multiplier 
operators. For pairs (p, q) of the special forms (2,2) and (1, q), solutions 
have already been obtained; see 16.1.2, 16.3.3, and 16.3.4. As will appear in 
16.4.1, the solution for a pair (q', (0) can be derived from that for (I, q). 
Apart from these special cases, there is as yet no complete and effective 
solution, and we are able here to give only a few conditions, some sufficient 
and others necessary, in order that a given complex-valued function rP on Z 
shall be a multiplier of type (V', Lq). 

Except where other ranges of the parameters p and q are specified, it is 
hereafter supposed that 1 ~ p, q ~ 00; the conjugate exponents p' and q' 
then satisfy the same inequalities. 

For brevity we shall write (p, q) in place of (V', Lq) and m(p, q) in place of 
m(V', Lq). 

From 16.3.1 it appears that m(p, q) is in a one-to-one correspondence with 
a certain set of distributions in such a way that U E m(p, q) is associated 
with that distribution A for which 

Uf = A *f (16.4.1) 

for f E V; the distribution A must be such that 

IIA *fl!q ~ const Ilfllp (16.4.2) 
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for J E V. On the other hand, if 1 ~ P < 00, a simple continuity argument 
shows that if (16.4.2) holds for JE C'" then it and (16.4.1) hold for each 
fE V, A *fbeing then ofnecessity (the distribution generated by) an element 
of Lq whenever J E V. We shall frequently discuss multiplier operators U in 
terms of the associated distributions A. 

The smallest permissible value ofthe constant appearing on the right.hand 
side of (16.4.2) will be denoted by IIAIIM or by IIVIIM' The latter is just the 
(p, q)-norm of U, as defined in 13.2.1. On occasions we shall also write 
II</IIIM = IIV tbilM for </I E (p, q) and speak loosely of U tb as a multiplier. 

In view of the alias just explained, it is natural and convenient to use the 
symbol m(p, q) to denote also the set of distributions A which satisfy an 
inequality of the form (16.4.2).With the usual conventions, together with 
those explained in 13.1.2 and 13.2.1, one may say that m(p, q) comprises 
those distributions A for 'Yhich IIAIIM < 00. In view of 16.2.7, one may 
accordingly write (p, q) = $' m(p, q), the set of sequences (functions on Z) 
of the form A obtained when A ranges over m(p, q). 

From 12.7.3(1), 12.11.1, and the arguments used in 16.2.2 it follows that 

Me m(p,p) c P. (16.4.3) 

Further, and trivially, 

whenever PI ~ P2' ql ~ q2' (16.4.4) 

As we shall see forthwith, the dependence of m(p, q) and (p, q) on the param
eters p and q can be further clarified by the use of simple general arguments 
from duality theory in conjunction with the Riesz-Thorin convexity theorem 
13.4.1. [A general discussion of duality theory will be found in Chapter 8 of 
[E]; see also 16.7.5(2).] 

16.4.1. The relation m(p, q) = m(q', p'). Since (p')' = p and (q')' = q, 
the stated equality will follow as soon as it is established that 

m(p, q) c m(q', p'). 

The proof will proceed in three stages. 
(1) Suppose first that p =F 00 and that A E m(p, q), so that (16.4.2) holds 

(with const = IIA 11l>,q) for J E V. Hölder's inequality then shows that 

IA*J*g(O)1 = 12~f(A*f).gdXI 

~ IIAIIMllflll>llgllq· 

for any gE Lq'. So, by the Hahn-Banach theorem (see I, B.5.1) and the 
results in I, C.l, to any such g corresponds a unique g' E LP' such that 

(16.4.5) 
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for all f E LP and 

From (16.4.5) it follows that g' = A * g, and the last-written inequality thus 
signifies that A E m(q',p') and that IIAllq·,p· ~ IIAllp,q. This completes the 
proof in case p #- 00. 

(2) Next consider the case in which p = co and q #- 1. The same type of 
argument as was used in (1), but making appeal to 12.2.9 in place of I, C.l, 
shows that any A E m(co, q) belongs to m(Lq', M). However, since q' #- 00, 

Exercise 12.23 can be applied to show that A maps Lq' into LI (and not 
merely into M). Thus m(oo, q) c m(q', 1), and again IIAllq·,p· ~ IIAllp.q. 

(3) Finally, if p = co and q = 1, there is nothing to prove, because 
q' = p = 00 and p' = q = 1. Thus all cases are covered and the proof is 
complete. 

It is worth noting that the inequality IIA Ilq',p' ~ IIA IIp,q, known to be 
true in all cases, yields also 

and therefore 

IIAllq·,p· = IIAllp,q· (16.4.6) 

The reader will also observe that, as a corollary, one obtains the relation 
(p, q) = (q', p') and the equality resulting from (16.4.6) after replacement of 
A bya function ~ E (p, q). 

16.4.2. A Convexity Theorem. Suppose that A E m(pj, qj) for j = 0, 1 
and that 

1 1 - t t 
- = -- +-, 
P Po PI 

1 1 - t t 
-=--+
q qo qI 

for some t satisfying 0 ~ t ~ 1. Then A E m(p, q) and 

IIAllv,q ~ IIAII~o-,UAII~l,ql' 

(The reader is left to formulate the analogous statement concerning multi
plier functions ~.) 

Proof. The result is an immediate consequence of applying 13.4.1 to the 
operator T with domain L'" defined by Tf = A * f. To say that A E m(p, q) 
means exactly that T is of type (p, q) in the sense in which the term" type" 
is defined in 13.2.1. The details may be left to the reader's care; see Exercise 
16.12. 

Remark. We see that, in particular, if ~ is a given complex-valued 
function on Z, the set of exponents p for which ~ E (p, p) is always either an 
open interval (a, a') or a closed interval [a, a'], where 1 ~ a ~ 2. 
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16.4.3. Some Proper Inclusion Relations. We revert to the relations 
(16.4.3) and show that, except in those cases in which we know already [see 
16.3.3 and Remark (2) following 16.3.5] that equality obtains, the inclusions 
are strict. Indeed, we shall prove somewhat more than this. 

(1) If 1 < P ~ 00 and 1 ~ q < 00, then m(p, q) contains distributions 
that are not measures; in particular, if 1 < P < 00, 

M ~ m(p,p), ~M ~ (p,p) (16.4.7) 

Proof. Take any infinite Sidon sub set E of Z (see 15.2.4 or 15.2.5) and 
choose any bounded complex-valued function 4> on Z that vanishes on Z\E 
and which does not belong to t 2 (Z). Since p > 1, 15.3.3 shows that 

L Ij(n)1 2 < 00 
neE 

for eachf E V. So, since 4> is bounded and vanishes on Z\E, 8.3.1 entails that 

g = L 4>(n)!(n)en E L2. 
neZ 

Evidently, {j vanishes on Z\E, so that 15.3.1 ensures that gE Lq for any 
finite q. It thus appears that 4> E (p, q) and U c/J E m(p, q). Yet; since 4> rt t2 (Z), 

15.3.1 shows that 4> rt ~M. 
For the ca se q ~ p, an alternative proof is provided by the substance of 

16.4.8. 
(2) If 1 ~ P ~ 00 and p "# 2, then 

m(p,p) ~ P, (p,p) ~ t<Y>(Z). (16.4.8) 

Proof. The relations (16.4.8) are true if p = 1 or p = 00 (see 16.3.3, 
Exercise 16.7, and either Example 12.7.8 or Exercise 12.37). So, by 16.4.1, 
we may assurne that 2 < p < 00. In this case, take g E L2, g rt V. By 14.3.2, 
there exists a ± 1-valued function 4> on Z such that 4>' {j is the Fourier 
transform of some fE V. Since then {j = 4> • j and g rt V, 4> cannot belong 
to (p, p) in spite of the fact that 4> E t<Y>(Z) = ~P. 

Remarks. (1) If we use Remark 14.3.4(2) in place of 14.3.2, the proof of 
16.4.3(2) will yield the following assertion. If IX is a mapping of Z into 
Z+ == {O, 1, 2,···} such that sUPmeZ+ # IX- 1({m}) < 00 (see 11.3.4 for the 
notation), and if 1 ~ P ~ 00, p "# 2, there is a ± I-valued function w on 
Z + such that 4> = wo IX rt (p, p). 

(2) On making use of 14.3.5(1), it can be seen that (16.4.8) remains valid 
if therein m(p, p) and (p, p) are replaced by m(p, q) and (p, q), respectively, 
provided the relations q ~ 2 ~ P are not fulfilled. (If q ~ 2 ~ p, it is evident 
that m(p, q) = P and (p, q) = t<Y>(Z).) 

The next three subsections are concerned with some rather crude con
ditions, some necessary and others sufficient, in order that a given complex-
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valued function cf> on Z shall belong to (p, q), or that a given distribution A 
shall belong to m(p, q). 

16.4.4. Some Necessary Conditions. Suppose that cf> E (p, q). Then 
(1) if 1 ~ p ~ 00, 1 < q ~ 2, 

2: (1 + InD -q'lp' -·Icf>(nW < 00 (16.4.9) 
neZ 

for each e > 0; 
(2) if 2 ~ p < 00, 1 ~ q ~ 00, 

2: (1 + InD-p'Q- 6 1cf>(n)j" < 00 (16.4.l0) 
neZ 

for each e > O. 
Proof. Since (2) derives from (1) on the basis of 16.4.1, it suffices to 

prove (1). 
By Exercise 7.8, if eS> 0, there existsfEV such thatj(n) = Inl-1/p'-6 

for n '# O. Since 1 < q ~ 2, and since cf>j E ~q by hypothesis, 13.5.1(1) 
shows that cf>j E tq'. This conclusion is evidently equivalent to (16.4.9). 

16.4.5. Remarks. (1) If P = 1 a stronger result is implied by 16.3.4 
and 13.5.1(1). If q ~ p (that is, q' ~ p') the conclusions are obviously trivial 
(since cf> is necessarily bounded); thus the only interesting conclusions are 
those in which either 1 < P < q ~ 2 or 2 ~ P < q < 00. 

(2) If P < 2 < q, the results in 16.4.4 do not apply directly. However, if 
cf> E (p, q), then cf> E (p, 2) and cf> E (2, q); to each of these two relations 16.4.4 
can be applied. It thus results that, if r = max (p', q), then 

2: (1 + Inj)-2/r - 6 1cf>(n)j2 < 00 
neZ 

for each e > O. 
(3) The results stated in 16.4.4 can be slightly strengthened byappealing 

to 7.3.4 and 7.3.5 to show that if p ~ 1 and (an);:' = 1 is sllch that an t 0 and 

00 

2: np - 2anp < 00, 
n=l 

then there exists an fELl' such that j(n) = ajnl or sgn n • a\n\ for nE Z, 
n '# O. Taking an to be of the form n -1/1" (log n) - C for n ~ 2, where c > l/p, 
it will be seen that the factor (1 + Inj)-· could be replaced by 

{log (2 + Inln-q'lp-. 

in (16.4.9), and by {log (2 + Inln-plq'-. in (16.4.10). 
Naturally, further refinements of the same nature can be made, but there 

is no indication of anything definitive being forthcoming in this fashion. 
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16.4.6. Some Sufficient Conditions. Suppose that 1 ,;:; p ,;:; q ,;:; 00 and 
that positive numbers rand 8 are defined by the relations 

1 1 1 
1 - - = - - -, 

1 1 1 
- = - - -0 

r p q 8 P q 

Then (1) V c m(p, q) and IIA 11M';:; IIA IIr for A E V; 
(2) if 8 ,;:; 2, then (S(Z) c (p, q) and 114>1Ip,q ,;:; 114>11, for 4> E ('tZ); 
(3) if 1 < p ,;:; 2 ,;:; q < 00, and if 4> is a complex-valued function on Z 

such that 
M == sup (1 + Inl)l/SI4>(n)1 < 00, 

nEZ 

then 4> E (p, q) and 114>11p,q ,;:; ApAQ.M, where At is defined for 1 < t ,;:; 2 as 
in Exercise 13.9(1). (Cf. Hörmander [1], Theorem l.ll, p. 106.) 

Proof. Statement (1) is a'll immediate deduction from 13.6.1. Statement 
(2) follows from (1) combined with the Hausdorff-Young theorem 13.5.1(2), 
according to which any 4> E {S(Z) can be written in the form A for some 

A E V' satisfying IIAlis' ,;:; 114>lIs· 
As for (3), for any f E V the case r = 2 of Exercise 13.9(1) shows that 

{L (1 + Inj)-2"lj(n)!2F /2 ,;:; Apllfllp, 
nEZ 

where Cl = Ijp - Y2. Writing ß = Ijq - Y2, we have therefore 

L 1(1 + Inj)-°4>(n)j(n)i2 ,;:; L M2(1 + Inj)-20- 2/s lj(n)12 
neZ nEZ 

= M2 L (1 + In\)-Z"lj(n)12 
nEZ 

The case 8 = 2 of Exercise 13.9(2) now shows that 4>j = g for some gE LQ 
satisfying 

IIgIlQ';:; AQ.• MApllfllp· 

Thus 4> E (p, q) and 114>1Ip,q ,;:; ApAQ.M, as alleged. 

16.4.7. Some Results of Hirschman. We propose to consider two 
interesting results concerning (p, p) given by Hirschman ([1], pp. 231-236). 
Throughout this subsection 4> denotes a complex-valued function on Z. 
For ß > 0 Hirschman defines (compare 8.7.2). 

r - 1 

Vß(4)) = sup {L 14>(nk + 1 ) - 4>(nk WF 10 , 
k=l 
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the supremum (whieh may be (0) being taken over all strietly inereasing 
sequenees (nk)k=O of integers. The results are as folIows: 

(I) If 
1>(n) = O(lnl-O) as Inl --"'" 00 

for some 0 > 0 and 
Vp(1)) < 00 

for some ß > 2, then 1> E (p, p) whenever 

2ß 2ß 
ß+2<P<ß-2· 

(If the eondition ß > 2 is here replaeed by I ~ ß < 2, 8.7.3 and 3.1.6 show 
at onee that 1> E (p, p) for all p satisfying I ~ P ~ 00.) 

(2) If 

1>(n) = O(lnl- a ) as Inl --"'" 00, 

where 0 < IX ~ %, then 1> E (p, p) whenever 

2 2 
I + 2IX < P < I - 2IX· 

Of these, (2) folio ws from (I), beeause the hypotheses of (2) entail that 

Vß(1)) < 00 

for ß > I/IX. Before. giving the fairly elaborate proof of (I), it is worth noting 
that both Hirsehman (loe. eit., p. 235) and Zygmund ([ZlJ, pp. 200-202) 
give results bearing upon the membership to (p, p) for various values of p 
of eertain funetions cP of the form 

(n> 0) 

(n ~ 0), 

where a, b, and c are positive real numbers. (Zygmund's results, whieh are 
in a sense complementary to those of Hirsehman, take the form of estimates 
of the behavior of the sum function 

00 

,p(x) = L n -b exp (icna)einX 

n=l 

near its only possible singularity at the origin.) 
Hirsehman also obtains somewhat similar results for the ease in whieh the 

underlying group is Z or Rrn. In this eonneetion see also 16.4.9(3) and de 
Leeuw [1]. 

Proof of (1). In view of 16.4.1, it suffices to deal with the case in which 

2ß 
ß + 2 < p ,;:; 2. (16.4.11) 
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Furthermore, we may suppose that ,p is real-valued, that ,p(0) = 0, and that 
Ö < 1. We therefore write 

2 
a = 8> 2, 

so that 

(16.4.12) 

The idea of the proof is to approximate,p by functions,pm (m = 0, 1, 2, ... ), 
in the sense that 

(16.4.13) 

pointwise on Z, where the ,pm are to be chosen rather carefully. The proof is 
presented in several stages. 

(a) Construction of the ,pm. We begin by interpolating ,p linearly between 
the integers, thus obtaining a real-valued function defined on R; this new 
function will be denoted by ,p again. 

Let m be any nonnegative integer. 
If 1,p(x)1 < 2- m for all x > 0, define Xl = 0; otherwise, let Xl be the largest 

X > 0 such that ,p(x) = ± 2 - m. If there exist numbers X satisfying 0 < X < Xl 
and ,p(x) = ,p(X1) ± 2- m, let X2 be the largest; otherwise, let X2 = O. This 
procedure will terminate after a finite number of steps with a number XN' so. 
that 0 = XN < XN-1 < ... < Xl. 

The numbers X -1 < X _ 2 < ... < X _ M = 0 are defined in an exactly 
analogous fashion. 

Define ,pm by the relations 

if n = 0, or n > Xl> or n < X-1 

if Xk + 1 < n .;;; Xk' 1 .;;; k .;;; N - 1, 

if X_k .;;; n < X-k-1' 1 .;;; k .;;; M - 1. 

It is almost evident that (16.4.13) holds; in fact, l,pm(n) - ,p(n)i .;;; 2- m, so 
that (16.4.13) holds uniformly. Also, (16.4.12) and a careful study of the 
definition of ,pm will show that 

l,pm(n) I .;;; K 1(1 + Inj)-2Ia; (16.4.14) 

the reader may find some use for a rough figure at this point. 
(b) The next step is to verify that, if 0 < e < 1, 

(16.4.15) 

To begin with, an argument like that appearing in the last paragraph on 
p. 227 of Hirschman [1] will show that any sum 

.-1 
L l,pm(nj+1) - ,pm(nj )12-E, 

j=O 

in which no < n1 < ... < n. are integers, is majorized by 

L 1,p(Xh+1) - ,p(Xh)i2-E. 
h 
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Next, since ICP(Xh+Il - CP(Xh) I is either 0 or a positive integer multiple of 2- m, 
this last-written sum is majorized by 

2(P-2+Elm L ICP(Xh+l) - CP(Xh)ili· 
h 

Finally, since cP is linear between successive integers, the remaining sum does 
not exceed Vp(cp)P, whence (16.4.15). 

(c) We now define!fo = cpo and tPm = CPm - CPm-l for m = 1,2"", so that 

and therefore 
." 

IICPmll".,,'" L II!fmll".,,· (16.4.16) 
m=O 

From (16.4.14) and (16.4.15) it follows immediately that 

(16.4.17) 

aild 
(16.4.18) 

At this point we apply 8.7.3 tO!fm and use (16.4.17) and (16.4.18) to derive 
the inequality 

In addition, since l.p - .pm I ... 2-m, we have 

IItPmll2.2 = II!fmll." ... 2.2- m 

By (16.4.11),. 

where 

1 1 - t t -=--+
P 1 2 

ß-2 
t > -ß-' 

SO, using 16.4.2, (16.4.19), and (16.4.20), we see that 

." 

L II!fmll"." < IX) , 
m=O 

provided 

(ß - 2 + e)(a - 2)(1 - t) 0 
';:"""--.:-:--"';"';"-,--'-'----'- - t < 

2(a - 2 + e) , 

which, in view of (16.4.21), is truc for sufficicntly small e > O. 
(d) From (16.4.16) and (16.4.22) it appears that 

sup IICPmll"." < IX). 
m 

(16.4.19) 

(16.4.20) 

(16.4.21) 

(16.4.22) 

This relation, together with (16.4.13), entails that cP E (p, p); see Exercisc 16.21. 
The proof is therefore complete. 
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16.4.8. The Hilbert Distribution as a Multiplier. Let H denote the 
Hilbert distribution. as defined in Section 12.8. The distrihution H is a 
pseudomeasure but (as was seen in 12.8.1) not a measure. By Marcel Riesz's 
theorem 12.9.1, HE m(p, p) whenever 1 < p < 00. 1t follo\\'s immediately 
that H * p- E m(p, p) whenever 1 < p < 00 and p- E M. On the other hand, by 
12.8.4(1) and the fact that H is not a measure, H * p- E M is true for but a 
meager set of f1 E M (compare 16.4.3(1)). See also [EG], Section 6.7. 

16.4.9. Further Results. (1) Hörmander [1] makes a detailed study ofmulti
pliers for the case in which the group T is replaced by a group Rm. He 
obtains analogues of 16.4.6 in the shape of his Theorems 1.11 and 2.4 and 
his Corollary 1.2. Hörmander's work also includes similar results ([I], 
Theorem 2.5) which are more complicated and which, as far as the author 
is aware, have no published analogues for the group T; further results of 
the same .nature have been obtained by Littman [I]. Still for the case 
G = Rm , Schwartz [3] discussed multipliers that are direct analogues of 
the conjugate function operator studied in Sections 12.8, 12.9, and 13.9; 
Kree [1] has continued work on this theme. See also Calderon [3]. 

Calderon [2] provides a survey of these and many other related questions. 
(We may point out here that both Hörmander and Calderon speak of 
"translation invariant operators" when the operators in question in fact 
commute with translations.) See also Cordes [1] and Peetre [1], [2], [3]. 

Concerning multipliers on more general groups, see in addition Gaudry [1], 
[2], [3] and :Figa-Talamanca [3]. 

(2) For a discussion of some of the properties of functions a : Z -7 Z such 
that exp 0 (ia) E (p, p), see Edwards [13]. 

(3) Hahn [1] gives some interesting extensions of the results discussed in 
16.4.7, together with a proof of the inclusion 

[P(Z) * [P'(Z) C (r, r) if 1 ~ p ~ 2, rp ~ r ~ r;, (16.4.23) 

where rp = 2p/(3p - 2). Hahn's proof of (16.4.23) is fairly simple and ti es 
up with the general developments mentioned in 13.4.2(2). lt may be briefly 
described in the following fashion. 

Denote by r/> and .p complex-valued functions on Z having finite supports and 
by ] and g functions in L"'. Define 

Q(r/>, .p,], g) = L r/> * .p(n)j(n)g(n). 
neZ 

By 3.1.6, the Cauchy-Schwarz inequality, and (8.2.2), 

IQ(r/>, .p,], g)1 ~ Ilr/> * .pli", !Ifglll ~ ilr/>hll.pll", IIfl1211g112 

= IIr/>bll.pII",II]1121Igk (16.4.24) 
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Similarly, 
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IQ(.p, .p,J, g)1 = I(.p * .p)~ *J * g(O)i = I($~) *J * g(O)1 

0;;; 11$~IIIIIJ * gll", 0;;;11$1[211~1121IJII11Igll", 
= 11.p 11211.p11211J 11 dg 11 "'. (16.4.25) 

Since Q is quadrilinear (that is, linear in each of its four arguments when the 
other three remain fixed), an appropriate convexity theorem ([Z2], p. 106) 
leads from (16.4.24) and (16.4.25) to the inequality 

IQ(.p, .p,J, q)1 0;;; 11.pllpll.pllqIIJ 11 ,llqll. 
whenever 

(~, !, L~) = t(~, 1.., ~,~) + (1 - t)(~, ~, ~, ~) 
prqs 10022 22100 

for some tE [0, 1]. In other words, 

IQ(.p, rp,J, g)1 0;;; 11.pllpll.pllp,IIJII ,llgll" 
provided 1 0;;; P 0;;; 2 and r = rp = 2p/(3p - 2). In view of the definition of Q 
and the converse of Hölder's inequality, it follows from this that 

(16.4,26) 
for 10;;; P 0;;; 2 and r = rp • Appeal to Exercise 16.21 will now show that (16.4.26) 
holds whenever .p E Ip(Z), .p E 1"'(Z) and r = rp. By 16.4.2, (16.4.26) holds also 
for the same .p and .p, provided r lies in the interval [rp , r~]. This establishes 
(16.4.23). 

(4) The area of harmonie analysis known as Littlewood-Paley theory has 
e10se connections with multiplier theory. For an account of some aspects of 
this, see [EG]. 

(At this point it is perhaps fair to comment on the bizarre so-called review of 
[EG] appearing in Bull. Amer. Math. Soc. 84 (1978), pp. 242-250. This 
so-called review is a splendid survey of the complex variable aspects of 
Littlewood-Paley theory, which aspects are merely mentioned and deliberately 
left aside in [EG]; see the fourth complete paragraph on p. 3 of [EG]. Only a 
tiny fraction of the said review is devoted to [EG] itself. It would therefore be 
a good plan to consult other reviews; for example, that appearing in Austral. 
Math. Soc. Gazette 5(3) (1978), 100-108 and/or that to appear in Mathematical 
Reviews. 

(5) For other aspects see Okikiolu [1]; Pigno [1], [2]; Price [1], [2]; 
Figa-Talamanca and Gaudry [2], [3], [4]; Gaudry [1], [2], [6]; Saeki [1]; 
Figa-Talamanca and Price [1]; RiviElre and Sagher [1]; powling [3]; Goes [4]; 
Littman, McCarthy and Riviere [1], [2]; Doss [1]; LanconeIli [1]; Kree [1]; 
Edwards and Price [1]. 

16.5 A Theorem ofKaczmarz-Stein 

The theorem of Kaczmarz [1] and Stein [1], Theorem 9 gives a 
condition that comes elose to being necessary and sufficient in order that 
a bounded complex-valued function <p on Z shall belong to (p, p); see also 
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Goes [4]. A slightly modified ac count of the theorem will be given in this 
section. Its proof depends on the Marcinkiewicz interpolation theorem 
13.8.1 and the theorem of Stein quoted in 16.2.8. 

The first two subsections deal with some preliminaries. 

16.5.1. The Function Space Vp • If 1 :::; p :::; 00, Vp will denote the set 
of functions CI> E V' such that 

r 

sup 11 L (Tb.CI> - TakCl»llp < 00, (16.5.1) 
k=l 

the supremum being taken with respect to all finite sequences ([ak, bkm=l 
of nonoverlapping subintervals of [0, 217] (or of any other interval of length 
217). 

Although the case p = 00 will be of little direct concern to us in this 
section, it is interesting in connection with 16.3.3 and 16.3.5 to note that 
V 00 comprises exactly those functions eI> E L oo that are equal almost 
everywhere to functions of bounded variation (that is, for which DeI> E M; 
see 12.5.10). The proof of this is not completely trivial; see Exercise 
16.15. 

It is quite evident that V p is a linear subspace of LV, and that V q C V p 

if p < q. 

16.5.2. From this point onward in this section, </> will denote a bounded 
complex-valued function on Z. We introduce the function CI> defined by 

CI>(X) = L (in) -l</>(n)einX , (16.5.2) 
n;"Q 

the series converging in L2 (for example). 
It is to be observed that, if</> E (p, p), and if we denote by ß the function 

ß(x) = L (in)-leinX , (16.5.3) 
n;"Q 

then Exercise 1.5 shows that ß E LOO C LV' and 16.4.1 then entails that 
eI> = U ",ß E LV'. (It is true, of course, that in this case CI> E LP, too.) Moreover, 
in this case 

Ud = {</>(O) + DCI>} *1, (16.5.4) 

which shows by way of interest that U", corresponds to the distribution 
A = </>(0) + DCI>. 

We can now stl:j.te and prove the Kunze-Stein theorem. 

16.5.3. (Kaczmarz-Stein) Suppose that 1 < p :::;; 2 and that the nota
tion is as in 16.5.1 and 16.5.2. Then: 

(1) if </>E (p, p), then CI> E Vp'; 

(2) if CI> E Vp " then </> E (r, r) for all exponents r satisfying p < r < p'. 
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Proof. We may and will assurne throughout that 4>(0) = O. 
(1) We know already from 16.5.2 that 4lI E LI", and it thus remains to show 

that 4lI satisfies (16.5.1) with p' in place of p. 
Let f E L" and consider the function g defined by 

g(x) = I: U4>f(Y) dy. 

Using the notation of 16.5.1, we then have 

Ikt {g( -bk) - g( -ak)}1 ,;;; JJ--b:" I U4>f(y) I dy 

On the other hand, by 6.2.8, 

,;;; 21TIIU4>fII1 ,;;; 21TIIU4>ill" 

,;;; 21T114>11",,,llill,,· 

g( -b) - g( -al = L (in)-l4>(n)j(n)(e- tnb - e- in,,), 
n,.o 

(16.5.5) 

w'hich, by 10.5.4 and the fact that 4lI E L'" (see 16.5.2), is none other than 

the last step relying on 3.1.2. Thus (16.5.5) entails that 

T 

I{ L (Tb,,4lI - T",,4lI)} *f(O)1 ,;;; 21T114>11",,,llill,,, 
k=l 

which combines with the converse of Hölder's inequality (Exercise 3.6) to 
show that 

r 

11 L (Tb,,4lI - T",,4lI)11,,· ,;;; 21T114>11",,,· 
k=l 

Thus <11 E V p' and this portion of the proof is complete. 
(2) Let i E LI' and write '" = 4lI * i and, for m = 1, 2, .. " 

"'m(x) = m{",(x + ~) - "'(x)} = m{T<_lfm)4lI - 4lI} *f(x). 

Since by hypothesis 4lI E L'" C Ll, 

um:f-----"'m 

is an m-operator of type (L", LP) (see 3.1.6 and 16.2,7). 
The function '" is of bounded variation since, by Hölder's inequality, 

I ± {"'(bk) - "'(ak)} I ,;;; 11 ± {4lI(bk - x) - 4lI(ak - x)} 11", • 111 11" 
k=l k=l 

,;;; 11 ± (T -b,,4lI - T -a,,4lI) 11,,' ·llill" 
k=l 

for all finite sequences ([ak' bk])k=l of nonoverlapping subintervals of[O, 21T], 
and since W E V po by hypothesis. (This yields an independent proof that um is 
an rn-operator oftype (L", BV).) 
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By standard results ([W], Theorem 5.2e and Lemma 6.4b), 

lim umJ(x) = ifJ'(x) 
m-'" 

exists finitely for almost all x. (Note that we write ifJ' and not DifJ: it is the 
pointwise, not the distributional, derivative of ifJ that is here involved.) 

Stein's theorem 16.2.8 now applies to show that the operator J -4- ifJ' is of 
weak type (p, p). 

Also, if I is absolutely eontinuous, the same is true of ifJ (by 3.1.5), and we 
may then identify ifJ' and DifJ. In this case, (16.5.4) shows that ifJ' = Ur/JI (reeall 
the assumption that cp(O) = 0). Accordingly, reference to 13.7.2 and 13.7.5 
shows that there exists a number A such that 

D (t),;:: (AIIIllv)V 
Ur/Jf '" t (16.5.6) 

for all absolutely eontinuous I and all t > O. 
The fact that Ur/J is of type (2,2) can now be used to show that (16.5_6) 

continuE;ls to hold for any I E L2, any such funetionJ being approximable in L2 
(and therefore in LV) by a sequence of absolutely continuous functions In; see 
Exercise 13.18. Knowing this, we may affirm that Ur/J' with domain L2, is of 
weak type (p, p) and of type (2,2). This, together with the Marcinkiewicz 
interpolation theorem 13.8.1, shows that Ur/J is oftype (r, r) for eaeh r satisfying 
p < r ~ 2. Thus cp E (r, r) for any such r. That the same is true for 2 ~ r < p' 
follows at onee from 16.4.1, and the proof is compiete. As was pointed out to 
me by Professor G. Goes, Kaczmarz [1] aetually proves that, for every p such 
that 1 < p ~ 00,4> E (p, 1) if and onIy if cI> E Vg •• 

16.6 Banach Algebras Applied to Multipliers 
Z. 

It is very simple to verify that (p, p) is a eomplex eommutative Banaeh 
algebra with identity (the eonstant function 1) relative to pointwise algebraie 
operations and the norm 11 • 11 P.p' For all p one has 

(1, 1) = jOM c (p, p) c (2,2) = 1"'(Z). (16.6.1) 

For cp E (p, p), 
(16.6.2) 

and for p. E M, 
(16.6.3) 

The determination of all the eontinuous eomplex homomorphisms of (p, p) 
meets with diffieulties that are presumably of the same order of magnitude 
as are eneountered in the ease of the algebra M of measures (see 12.7.4). 
To eaeh n E Z eorresponds the homomorphism n -+ cp(n), but there are others. 
(The reader should provide a proof of the last statement.) 

In view of this, we look at a subalgebra of (p, p) whieh is more traetable 
and still of some interest, namely, the closure mp in (p, p) of ~Ll. From 
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(16.6.2) and 2.3.8 it appears that mp c co(Z); as a consequence, mp has no 
identity element. 

The introduction of mp is suggested by the step taken by Hörmander 
([I], pp. 111-113) in his study of multipliers for groups Rm. 

Reference to 4.1.3 leads to the conclusion that the evaluation maps 
ifJ- ifJ(n) (n E Z) exhaust the nontrivial continuous complex 
homomorphisms of the algebra mp-

(Actually, 4.1.3 is to be applied to E = LI with the norm induced by 
that of m(p, p). Conditions (a)-(d) in 4.1.3 are satisfied. Hence one 
concludes that every nontrivial continuous complex homomorphism of E 
is of the form f - j (n) for some n E Z. The same is therefore true of the 
nontrivial continuous complex homomorphisms of the closure in m(p, p) 
ofE, as alleged.) 

Knowing this, one can apply 11.4.15 to the algebra obtained by adjoining 
a formal identity to mp (see 11.4.1 and an analogous procedure in 11.4.16). 
The outcome is the following assertion. 

16.6.1. Functions of Multipliers. Suppose that 1> E mp and that the 
function<J> is defined and analytic on some open subset of the complex plane 
containing 1>(Z) U {O} and satisfies <1>(0) = O. Then <I> 01> E mp • 

This is the analogue, for the group T, of Hörmander's Theorem 1.18. 
Still following Hörmander ([IJ, pp. 111-113, Theorem 1.16), we can 
obtain a useful inclusion relation. 

16.6.2. If I < p, q < 00, and if 

then 

Proof. In view of 16.4.1 and (16.6.4), we may assurne that 

I t 1 - t q = p + -2-

for some t satisfying 0 ~ t < 1. 

(16.6.4) 

Let 1> E (p, p) () co(Z) and define 1>N = 1>P N'. Then it is trivial to assert 
that 1>N E j<'"Ll. Moreover (see Exercise 16.16), 

so that 

Since 1> E co(Z), 

II1>NIIp,p ~ IIFNlllll1>llv,v ~ 111>llp,p, 

111> - 1>Nllv,v ~ 2111>llv,v 

111> - 1>N112,2 = 111> - 1>NII<Xl --+ 0 as N --+ 00. 

(16.6.5) 

(16.6.6) 



[16.7] FURTHER DEVELOPMENTS 313 

Now we appeal to 16.4.2, which shows that 

114> - 4>Nllq,q ~ 114> - 4>NII~,pll4> - 4>NII~:2t. 

By (16.6.5) and (16.6.6), the right-hand member of this inequality tends to 
zero as N -+ 00 (remember that 0 ~ t < 1). Thus 4> E mq and the proof is 
complete. 

16.6.3. Remarks. It is natural to ask whether the relation 

(p, p) n co(Z) c mp (16.6.7) 

is true. The answer is affirmative when p = 2. The answer is negative when 
p = 1 or 00: this is due to the existence ofmeasures /L rt Ll for which fl E co(Z). 
The existence of such measures in turn hinges on the existence of sets of 
multiplicity in the strict sense and having zero measure (see 12.12.8); 
although the question is a fairly delicate one, it is known that such sets exist 
in abundance (see [Zl], pp. 348-349; [Z2], pp. 147-152; [KS], Chapitres V 
and VI). 

For 1 < p < 2, (16.6.7) has been shown to be false by Gaudry and 
Figa-Talamanca [2]. 

It follows from 12.7.4 that the characters of T generate only a scant 
subset of all continuous complex homomorphisms of the Banach algebra 
(1, 1) = .1F M; in particular the so-called W iener-Pitt phenomenon asserts 
the existence of a measure Jl E M such that j). is real-valued on Z == T" but 
is not real-valued on the whole Gelfand space r(M) (the notation is as in 
11.4.9). Zafran [1] has shown that this phenomenon persists for, amongst 
others, the multiplier algebras (p, p) n co(Z) when 1 < P < 2. See also 
Brown [3]. 

On page 178 of Volume 1, the functions which operate on A(T) and 
A(Z) are identified. Igari [2], [3] has shown that only entire functions 
operate on the Banach algebra (P,p) when 1 < P < 2; that is, if F:[ -1, 1] 
~ C and F 0 ({J E (p, p) for every ({J E (p, p) such that ({J: r((P, p))~ 
[ -1, 1], then there exists 6 > 0 such that F agrees on (-6, 6) with some 
entire function. For p = 1 Varopoulos [4] and for 1 < P < 2 Zafran [2], 
[3] have shown that the same conclusion holds with (p, p) replaced 
throughout by the smaller algebra (p, p) n co(Z). 

16.7 Further Developments 

This section consists of brief comments on further results associated with 
multipliers and with extensions of the concept.1 References are given to 
assist those readers who may wish to pursue the matters mentioned. 

1 For the majority of such developments, multipliers app.ear more naturally in their 
guise as operators (rather than as functions on some dual object); compare the opening 
paragraphs of Section 16.4 
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16.7.1. Multipliers and Isomorphism Problems. We have in 4.2.7 
referred to the interest that attaehes itself to the study of multipliers on 
aeeount of their relationship with isomorphism problems. The reader should 
by now be in a better position to appreeiate the details and the diffieulties. 

The question proves to be largely one of seeking to eharaeterize in a 
suffieiently effeetive manner the multipliers U E m(F, F), where F is (say) L", 
C, or M, whieh map F in a one-to-one manner onto itself and whieh have 
eertain additional properties (such as being bipositive or isometrie). 

It may be helpful to begin by looking at the problem in reverse, so to 
speak. Suppose that n E Z, and that' is an automorphism ofthe (topologieal) 
group T. It is then easy to verify that the operator S: J---+ en (f 0 0 is an 
automorphism of eaeh of the eonvolution algebras LP and C whieh is 

(1) isometrie in any ease, 
(2) bipositive (that is, is such that SJ ~ 0 if and only if J ~ 0) provided 

n=O. 

Moreover, if a E T, the eorresponding multiplier Ua = S-lTaS (see 4.2.7) 
is given by Ua J = en( -a) • T{(a) J, and is thus a sealar multiple of a 
translation operator. The knowledge of Ua determines C(a) uniquely. 

More generally , if S is any automorphism of the eonvolution algebra LP 
or C whieh satisfies (1) [or (2)], it is still visibly the ease that U a is an 
isometrie (or bipositive) multiplier of LP or C. The question is: does this 
imply that U ais a multiple of a translation operator? 

One is thus led to pose this same question in respeet of isometrie or bi
positive multipliers U of various other group algebras F. An answer to this 
question provides an answer to the eorresponding isomorphism problem for F. 

For F = LI the problem was solved affirmatively by Kawada [1] in the 
bipositive ease and by Wendel [1], [2] for the isometrie ease; for F = M and 
the isometrie ease by Johnson [1]; for F = L'" and the isometrie ease by 
Gaudry ([3], Theorem 5.2.1); and for F = L" (1 ~ P ~ 00, p =I- 2) and the 
isometrie ease by Striekartz [1] and Parrott [1]. Some other eases are dis
eussed in Edwards [10] and Gaudry [4]. For a eonneeted aeeount of some of 
these results, see Gaudry [3], Chapter 5. See also Greenleaf [1], [3]. 

The results mentioned apply to groups more general than T. On the 
other hand, the problem of isomorphisms that are neither isometrie nor 
bipositive would appear to remain largely open. 

Related problems are diseussed by Forelli [1], Rudin [7] and 
Rigelhof [I]. 

16.7.2. Compact and Weakly Compact Multipliers. It is eustomary 
to apply the adjeetive cornpact to a linear operator U from a Banach 
spaee E into a Banach spaee F, if U transforms the elosed unit ball ofE into 
a relatively eompaet subset of F; see, for example, [E], Seetion 9.2. 



[16.7] FURTHER DEVELOPMENTS 315 

Gaudry ([3], Theorems 4.2.2 and 4.2.3) has given characterizations of 
multipliers U E m(p, q) that are compact in the above sense, the characteriza
tions being in terms of the possibility of approximating U in a certain way 
by multipliers defined by convolution with functions. He gives also ([3], 
Theorem 4.2.5) a characterization of those multipliers U E m(I, I) that are 
weakly compact, that is (see [E], Section 9.2), which transform the closed 
unit ball of LI into a weakly relatively compact subset of LI: while (as we 
know) every multiplier of type m(I, I) is represented by convolution with a 
measure, the weakly compact multipliers of type m(I, I) are precisely those 
representable as convolution with a function in LI. These results apply to 
groups more general than T. See Exercise 16.25 and Akeman [I]. 

16.7.3. Approximation of Multipliers. Having decided (see 16.4.3(1)) 
that, if p is different from land 00, not every multiplier U E m(p, p) is 
representable as convolution with a measure, it is natural to ask wp.ether 
and in what sense any such multiplier U can be approximated by multipliers 
U p, of the form 

Up,/ = p. */, 
where p. E M. This problem has been tackled with success for general groups 
by Figa-Talamanca [I], [2] and by Figa-Talamanca and Gaudry [I]. For the 
case of the group T, some results of this sort are very easily obtainable; 
see Exercise 16.18. 

This discussion has at the same time led to a characterization of m(p, p) 
in terms of the dual of a suitable space of continuous functions on the 
underlying group. See also Rieffel [I]. 

16.7.4. Generalized Multipliers. If B denotes a Banach, or even a more 
general type of topological, algebra, it is natural to define a left (respectively, 
right) multiplier or centralizer ofB to be a continuous linear space endomorphism 
U of B such that 

U(xy) = (Ux)y (respectively, U(xy) = x(Uy)) 
for x, yEB. 

We have in this book no space to spare for this extended concept; the 
interested reader should consult Helgason [1]; Wang [1]; Birtel [1], [2], [3]; 
Johnson [2], [3]; Mate [1], [2], [3]; [La]. 

16.7.5. Two Variants of the Multiplier Problem. We mention briefly 
two interesting and largely unsolved variants of the multiplier problems 
considered earlier in this chapter. 

(I) Multipliers 0/ quotient spaces. Suppose that Fand Gare as in 16.1.1, 
that S is a suhset of Z, and that cP is a complex-valued function on S. The 
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problem is to determine necessary and sufficient conditions on cp in order 
that to each 1 E F shall correspond at least one gE G such that 

g(n) = c/J(n) • j(n) for all n E S. (16.7.1) 

A function cp possessing this property may conveniently be said to be of 
type (F, G; Si. 

Plainly, the original multiplier problem corresponds exactly to the case in 
which S = z. 

Equally plainly, if cp is the restrietion to S of a multiplier of type (F, G), 
then cp is of type (F, G; Si. The nontrivial part of the problem thus remains 
in deciding whether, conversely, each cp of type (F, G; S) is the restrietion to 
S of some multiplier of type (F, G). The answer may, apriori at any rate, 
depend upon the choice of F, of G, and of S. 

An affirmative answer has been established for the case F = G = Ll by 
Wells [1] and, independently, by Brainerd and Edwards [1], Part II, Theorem 
3.3. In other words (see 16.3.3), a function cp is of type (LI, LI; S) if and only 
if there exists a measure I-" E M such that cp(n) = p.(n) for all nE S. The 
arguments used in the latter reference could be adopted to deal with (Ll, M; S) 

and (Ll, V; Si. 
The answer is also affirmative when F = G = L2, as follows readily from 

the results of Chapter 8. 
As far as the writer is aware, the problem is unsolved for all other choices 

of the pair (F, G) of the form (V, Lq) and for the choice F = G = C. 
It is a simple matter to formulate the problem in terms of associated 

multiplier operators commuting with translations. Indeed, if we denote by 
I = I(G, S) the set of gE G such that g(S) = 0, the problem is virtually the 
same as that which asks for a representation theorem for those linear 
operators U from F into the quotient space G/I that commute with trans
lations. (Translation has a natural meaning in G/I, T a(g + I) being by 
definition the same as Tag + I.) In most cases ofinterest, Fand G/I will be 
such that the relevant operators U are continuous (compare with 16.2.1). 
The operator U", associated with a function cp of type (F, G; S) will be 
defined so that U ",1 is the unique element g + I of G/I defined by any g E G 
satisfying (16.7.1). 

(2) Multipliers 01 invariant subspaces. Viewed from the standpoint of 
multiplier operators in general, the problems discussed in (1) are clüsely 
related to those of multipliers of closed (translation-) invariant subspaces. 
The basis of the connection between the two types of problem lies in duality 
theory for topological linear spaces and especially the concept of adjoint 
operator (see [E], Chapter 8). We illustrate in the case of closed invariant 
subspaces (that is, closed ideals) I in V, assuming that 1 < P < 00. 
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Let U be a multiplier operator ofI that is, a continuous endomorphism ofI 
which cominutes with translations. We introduce the closed ideal J in U' 
defined by 

J = {g E U' : f * g = 0 for all f E I} 

and form the quotient space U'jJ. The adjoint operator U' is the endo
morphism of U'jJ defined in the following fashion: if g E U', the linear 
functional on I defined by 

f --+ Uf * g(O) 

is continuous and depends oniy on the coset g + J. From I, C.l it follows 
that there exists a unique coset g' + J = U'(g + J) such that 

Uf * g(O) = f * g'(O) (JE I). (16.7.2) 

There is no difficulty in verifying that U' is a multiplier of U'jJ, continuity 
of U' being interpreted relative to the quotient norm on LP'jJ (see I, B.l.8). 

The recovery of U from U' presents no trouble. If, for exarnple, U' has 
been shown to be expressible in the form 

U'(g + J) = A * g + J 

for some A E D, then (16.7.2) shows that 

(JE I). 

A somewhat similar procedure allows one to pass from problems of type (2) 
back to problems of type (1). 

Although the connections thus elicited between multipliers of invariant 
subspaces and multipliers of quotient spaces are theoretically satisfying and 
potentially useful, no 80lved cases of (1) are useful in studying type (2) 
problems. 

For other aspects of this type of problem, see Wells [2]; Wada [1]; 
Meyer [1]; Glicksberg and Wik [1]. 

16.7.6. Transformations of Fourier Coefficients. It has become 
apparent that multiplier problems can be regarded as a study of subsets of 
the set of all continuous linear operators from Ca:> into D which commute with 
translations. One may ask how the picture changes if the condition of com
mutativity with translations is dropped. 

It is quite simple to show that the continuous linear operators U from C'" 
into D are precisely those definable by a system of equations 

(Uj)A(n) = L rjJ(n, m)j(m) for aIlf E C"" and all n E Z, (16.7.3) 
meZ 

where ~ is a complex-valued function on Z x Z determined by, and deter
mining, U and subject to a majorization 

for aIl n, mEZ, (16.7.4) 
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c and k being U -dependent numbers. In other words, such operators U may be 
regarded as linear transformations of Fourier coefficients defined by infinite 
matrices cp. 

In this latter guise, such operators were discussed long ago by Hardy in 
special cases; more recent and more general studies are due to Bellman [1], 
Young [1], and Konyushkov [1]. In all cases, the principal aim has been to 
determine conditions on cp in order that U shall map V' into itself. 

16.8 Direct Sum Decompositions and Idempotent Multipliers 

As an adjunct to this chapter, we return to the question (first broached in 
2.2.1) of direct sum decompositions of the standard function spaces C and V' 
in terms of their closed (translation-) invariant subspaces. Here we shall 
relate such decompositions to certain families of idempotent multipliers of 
C or V', as the case tnay be; compare the remarks in 3.1.1. 

The first two subsections are occupied by precise definitions of the decom
positions and families involved. 

Failing any special indication to the contrary E will, throughout this 
section, denote one of C or LP (1 ~ p < (0). 

16.8.1. Direct Sum Decompositions. Bya direct sum decomposition of 
E we shall mean a family (VI)lel of closed (translation-) invariant subspaces 
VI of E satisfying the following conditions: 

(1) Vi (') Vj = {o} for aU i,j E I such that i =l=j; 
(2) the index set I is expressed in adefinite way as the union of an 

increasing sequence (Ir);'..1 offinite subsets Ir of I; 
(3) to each 1 E E corresponds at least one family (f1)lel such that 

for aU i E I, 

1 = lim L: I1 in E. 
r-+ co ie/r 

Although it is tempting to write in place of (16.8.2) the relation 

(16.8.1) 

(16.8.2) 

some caution is required whenever I is infinite because there is no assurance 
whatsoever that the series will be unconditionaUy convergent; the specifica
tion of the sequence (Ir), which governs the grouping of terms, is one way of 
taking precautionary measures. Despite this, we shaU frequently speak 
loosely of "a decomposition (VI)'" 

It will appear in the course of the proof of 16.8.3 that the family (fl) 
referred to in (3) is uniquely determined by I, (VI) and (Ir)' 
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16.8.2. Idempotent Decompositions of e. Our aim will be to relate any 
direct sum decomposition of E of the type described in 16.8.1 with a family 
(Gi)iEI of idempotent pseudomeasures (see Section 12.11) such that 

(Ji E m(E, E), (Ji * (Jj = 0 for all i, j E I such that i =1= j, (16.8.3) 

sup 11 L GiIIE,E < 00, 
r iElr 

(16.8.4) 

and 

lim L GI = e. 
T- 00 iElr 

(16.8.5) 

The convergence referred to in (16.8.5) will be understood apriori to be weak 
convergence in P (the dual of A: see Section 12.11 and I, B.1.7); however, as 
will appear in stage (g) of the proof of 16.8.3, (16.8.4) ensures that (16.8.5) 
remains true with a stronger sense of convergence. 

Idempotence of GI means, of course, that Gi * Gi = Gi or, what is equivalent, 
that <Ti is the characteristic function of some sub set of Z. 

The first clause of (16.8.3) signifies that Gi E M if E = C or V (see 16.3.2) 
and Gi E m(p, p) if E = V (see the beginning of the present section). More
over, II·IIE,E means 11·111 or 11·llp,p according as E is C or V, respectively. 
The second clause of (16.8.3) signifies that Si n Sj = 0 whenever i, jE land 
i '# j, where Si denotes the support of <TI' 

We shall speak of the family (Gi)iEI as an idempotent decomposition 01 e in 
m(E,E). 

We can now state and prove the principal result. 

16.8.3. Decomposition Theorem. Let (Vi)iEI form a direct surn decom
position of E, as described in 16.8.1. Then there exists an idempotent de
composition (Gi)iEI of e in m(E, E), as described in 16.8.2, such that: 

(1) VI = {f E E : GI * 1 = f} = {f E E :!(Z\SI) C {O}} where SI is the 
support of <Ti; 

(2) the decomposition of 1 E E specified in 16.8.1(3) is unique and is given 
by 

for aB i E I. (16.8.6) 

Conversely, given an idernpotent decomposition (Gi)iEI of ein m(E, E), let 
Si be the support of <Ti' Then the Vi defined as in (1) immediately above form 
a direct sum decomposition of E in which (16.8.6) holds for each 1 E E. 

Proof. We begin with the direct assertion, the proof of which proceeds in 
a number of easy stages. 

(a) By 11.1.2 and 11.2.1, to each i E I corresponds a subsetSI of Z such that 
VI is the closed linear subspace of E generated by the en with n E SI (SI = 0 if 
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and only ifVt = {O}); equivalently, Vt is the set off E E such thatj(Z\St) C {O}. 
Conditions (1) and (3) of 16.8.1 entail that 

Si fl Sj = 0 for all i, jE I such that i =1= j (16.8.7) 
and 

(16.8.8) 

(b) Givenf E E, the decomposition referred to in 16.8.1(3) is unique. 
To see this it is enough to show that the only family (ft) such that ft E Vt 

for each i and 

lim 2: ft = 0 
T~ co tElr 

(16.8.9) 

is that for which ft = 0 for each i. But choose and fix any j E I. If Vj = {O}, 
then fj = o. If Vj f::. {O}, then Sj f::. 0. If nE Sj' (a) shows that j t(n) = 0 
whenever i f::. j. Accordingly, (16.8.9) entails that 

lim 2:hn) = 0, 
T- 00 ie/r 

~hich reduces to fj(n) = O. Thus jj(Sj) C {O} and jj(Z\Sj) C {O}, and 2.4.1 
shows that fj = o. 

(c) From (b) it follows that to each i corresponds a map Pt: f --->- ft of E 
into Vt; that Pt is linear; that p t2 = Pt (so that Pt actually maps E onto V;); 
and that Pt commutes with translations (since each Vt is translation·invariant). 

(d) Let us next show that each Pt is a continuous endomorphism of E, in 
doing which we sha11 use the closed graph theorem (I, B.3.3). 

Take any sequence (fk)k=l extracted from E such that fk -+ 0 in E and 
Pd k -+ 9 in E: we must show that 9 = O. 

We may, by (16.8.2) and (a), write 

fk = Pdk + hk , 

where hk vanishes at a11 points of Sb so that 

On letting k -+ 00, it follows that y = limk~oojk = 0 on St. Since Vt is closed 
in E, 9 E Vt; since it has a Fourier transform vanishing on St, it fo11ows 
that 9t must be 0, as required. 

(e) By (c) and (d), Pt is a multiplier of E, so that there exists a pseudo
measure Gt E m(E, E) such that 

(16.8.10) 

for each fEE. Since Pt is idempotent (see (c)), the same must be true of Gt. 
Therefore Gt is the characteristic function of a subset of Z which, since Pt 
maps E onto Vt, must be St: 

(16.8.11) 

(f) The relation (16.8.2) can now be written 

inE (16.8.12) 
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for eaehf E E. From this (16.8.4) follows by appeal to the uniform boundedness 
prineiple (I, B.2.2), while (16.8.5) is an immediate eonsequenee of (16.8.12), 
(16.8.4) and the remark that a sequenee (Ar):'=l of pseudomeasures eonverges 
weakly in P to a pseudomeasure A if and only if limr~ co Ar = A boundedly 
on Z. 

On eolleeting together the results (a) to (f), it is easily seen that the direet 
assertion is now eompletely proved. 

(g) As for the eonverse, all that requires proof is the assertion that (16.8.4) 
and (16.8.5) together entail (16.8.12). Define Ar E m(E, E) to be 

2: (11) 

ie/r 

so that (16.8.4) signifies that the Ar are equieontinuous endomorphisms of E. 
Now (16.8.5) ensures that (16.8.12) is true for eaeh trigonometrie polynomial 

f. Sinee the trigonometrie polynomials are dense in E (see 2.4.4), equieontinuity 
of the Ar shows that (16.8.12) dQes indeed persist for a general fEE. 

To verify this final point (whieh is a perfeetly general prineiple), observe 
that th~ equieontinuity of the Ar means that 

m == sup IIArII E.E < 00, 
r 

so that 
(16.8.13) 

for every 1 E E. Given {) > 0 and 1 E E, ehoose a trigonometrie polynomial 10 
such that 

8 
Ilf - foliE ~ (m + 1) 

An applieation of (16.8.13), withf - fa written in plaee off, shows that 

So, sinee limr~ '" Ar * fa = fa in E, 

if r ~ raU», and the eonvergenee of (Ar * f):'= 1 follows. 

16.8.4. Remarks and Special Cases. (1) The summand JI in (16.8.2) 

has now been identified with. (1j * J, that is, with 

if Si is infinite, this infinite sum is interpretable (since (1j is known to define 
a continuous endomorphism of E) as the limit in E, as N -+ 00, of 

When E = V', where 1 < P < 00, the summation factors may be omitted. 
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Accordingly, 16.8.3 verifies in detail what might have been anticipated on 
heuristic grounds, namely, that a direct sum decomposition of E corresponds 
to a mode of bracketing of the terms of the Fourier series of a general fEE 
in such a way that the resulting series is convergent in E. (A bracket may 
contain infinitely many terms of the original series.) 

(2) Tlte Ca.ses E = C 07 LI. When E = C or LI, each Uj is a measure; and, 
by Helson's theorem [cited in 12.7.4(3)], Sj differs by a finite set from a 
periodic subset of Z. It is quite simple to verify that this means that Uj is of 
the form 

(16.8.14) 
where a j E Z, a j > 0; 

which is the invariant measure of the cyclic subgroup of T of order a j ; Uj 

is a trigonometrie polynomial of the form 

a, -1 

Uj = L cj.kek , 
k=O 

eaeh Cj • k being 0 or 1; and Vj is a trigonometrilJ polynomial. 
The measures 

which are likewise idempotent, must have the same general form (16.8.14). 
From the preceding remarks, it is easily seen how to construct direct sum 

decompositions of E of the type specified in 16.8.1 in which I is finite and 
each Sj is infinite. 

On the other hand, there exist no decompositions in which each Sj is finite 
(that is, in which each Vj is of finite dimension). Indeed, in any such decom
position the equicontinuity of the endomorphisms "r (see part (g) of the 
proof of 16.8.3) would in this case mean that 

sup lI"rlll < 00. (16.8.15) 
r 

However, 

where 
T r = USj 

leT, 

and the result cited in 12.7.4(4)(ii) shows that 

11 1, "1 > const log k, 
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where kr is the number of elements of T r. Since kr ~ 00 with r, this would 
contradict (16.8.15). 

(3) The Gase E = LP (1 < P < 00). Except when p = 2, there is no 
known explicit description of the idempotent elements U of m(E, E) = m(p, p) 
analogous to (16.8.14) and therefore no complete classification of all possible 
decompositions of E of the type described in 16.8.1. (When p = 2, all idem
potent pseudomeasures are acceptable and all possible bracketings lead to 
decompositions. ) 

Theorem 12.10.1 guarantees the decomposition in which I = {O, 1, 2, ... }, 
Ir = {O, 1,···, r - I} forr = 1,2,.··, andSj = {±i}fori E I. Otherdecom
positions may be derived from this one by arbitrary finite bracketing. 

Yet other decompositions result from the use of the idempotent measures 
of the type (16.8.14). 

(4) For further study and results, see [Ro]; Rosenthai [1]; Rudin [8]; 
Price [3], Chapter 4. See also Exercise 16.30. 

16.9 Absolute Multipliers 

16.9.1. Definition. Given a set of distributions F (as in 16.1.1) and a 
complex-valued function <p on Z, <p is said to be an ab80lute multiplier of 
F, if and only if <pj E {l(Z) for every fE F. This signifies that <p is a 
multiplier function of type (F, A), in the sense of 16.1.1; or, equivalently, 
that the operator U rp maps F into A. 

16.9.2. Examples. (i) It follows from Exercise 3.14 that the absolute 
multipliers ofL1 are precisely the elements of {l(Z). 

(ii) By 14.3.5(2'), <p is an absolute multiplier of C, if and only if <p E 

{2(Z). Alternative proofs of this and various analogous results appear in 
Edwards, Rewitt and Ritter [1], Rewitt and Ritter [1] and Edwards and 
Relson [1]; cf. also Brown [1], [2]. 

(iii) Paley [1] proved in effect that <p is an absolute multiplier of 

Cz+ = {JE C: suppj~ Z+}, 

where Z + denotes the set of nonnegative integers (cf. the spaces HP 
defined in Exercise 3.9 and the space A + mentioned in the Remark 
attached to Exercise 11.15), if and only if <p I Z + (the restrietion of <p to 
Z+) belongs to {2(Z+). 

A generalisation of this theorem to a general class of compact Abelian 
groups appears in [R], Section 8.7.8; see the next subsection. See also 
Fournier [3], and Relson [7]. 

Sometimes Cz+ is denoted by CA (the suffix "A" indicating "analytic 
type" or "power series type"); we shall here avoid this notation because 
of the obvious conflict with that employed in Chapter 15. 
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16.9.3. Paley's theorem and its proof. To reiterate, the theorem asserts 
that a complex-valued function qJ on Z is an absolute multiplier of Cz+, if 
and only if qJIZ+ E t 2(Z+). 

The "if" part is elose to trivial. 
The proof of "only if" to follow is based upon that appearing in [R], 

Section 8.7.8. To lighten the notation we shall, throughout the proof to 
follow, write E in place of Cz + • 

To begin with, it follows from (12.9.9) (proved in 13.9.2) that, for every 
p E (0, 1), there exists a number kp ~ 0, independent of h, such that 

I/ L h(n)en // ~ kpllhlli (16.9.1) 
neZ+ p 

for all trigonometrie polynomials h. 
Assume that qJ is an absolute multiplier of E. An appeal to either the 

Boundedness Principle or the Closed Graph Theorem (Volume 1, 
Appendix B.2.1(1) or B.3.3) shows that there exists a number k ~ ° such 
that, for all! E E, 

L I qJ(n)j(n) I ~ kll fII 00' (16.9.2) 
neZ+ 

Let F be a finite subset of Z +, expressed as the range of an irijective 
sequence (nk)1:>;k:>;N' By Exercise 2.19, there exists a trigonometrie 
polynomial P such that 

and 

P(n) = 1 

Define, for all W E ~ and all real x, 

N 

for all n E F. 

!1ro(x) = L Pj(w)qJ(nj) exp (injx), 
j=1 

(16.9.3) 

(16.9.4) 

(16.9.5) 

By (16.9.2) and the Hahn-Banach theorem (Volume 1, Appendix B.5.1), 
combined with 12.2.3, 12.2.9 and 12.3.8, for every W E ~ there exists a 
measure J1.ro such that, for all W E ~ and all! E E, 

(16.9.6) 

and 
N 

L piw)qJ(n)j(nj ) = J1.ro(!). (16.9.7) 
j=1 

From (16.9.7) it follows in particular that, for all W E~, 

for allj E {I, "', N} 
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and 

J1,ro(n) = 0 

Hence, for all w E ~ and all n E Z+, 

(P * Jlro)"(n) = gro(n). 

Therefore, by (16.9.1), (16.9.3) and (16.9.6), 

(L2"1 gro(X) 11/2 dx Y = Ilgro111/2 ::::; k 1/211 P * Jl",111 

::::; k1/211P1I11IJl",1I1 (see 12.7.3) 

::::; 2k1/2 k = k' for all w E~. (16.9.8) 

Integrating with respect tD w over ~ and interchanging the order of 
integrations, (16.9.8) implies that 

f"( LI gro(X) 11/2 dA,«(j)) dx ::::; k'1 /2, 

whence follows the existence of Xo ERsuch that 

L,gro(xo) 11/ 2 dA,(W) ::::; k'1/2. 

Defining, for all W E: ~, 

N 

h(w) = L Pj(w)({)(nj) exp (injxo), 
j= 1 

his a Rademacher polynomial; and, by (16.9.9), 

LI h(w) 11/2 dA,(W) ~ k,1/2. 

(16.9.9) 

(16.9.10) 

On the other hand, by (14.2.1), there exists a number k 2 ~ 0 such tliat 

(Llh(W)1 2 dA,(W)Y I2 ::::; k2(1Ih(W)'1/2 dA,(W)Y· 

By (16.9.10) and (16.9.11), 

(Llh(WW dA,(W)YI2 ::::; k2k'. 

This, together with (16.9.5) and 14.1.7 or 14.1.16, implies that 

N 

L I ({)(n) 12 = L I ({)(n) 12 ::::; k2 k,2. 
ne F j= 1 

(16;9.11) 

(16.9.12) 
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Since k 2 and k' are independent of F, it follows from (16.9.12) that 

L 1 cp(n) 12 < CI) , 

which completes the proof. 

16.9.4. Remarks. (1) It is clear that Paley's theorem holds, with CZ+ 
replaced by 

Cs = {JE C: suppjc S}, 

whenever S is a subset of Z having the property that there exists p > 0 
and k ~ 0 such that 

11 .~s h(n)e. IIp ~ kllhll 1 for all h E T. (16.9.1') 

No systematic study of the class of such sets S seems to have been 
published. A few properties ofthis class are discussed in Exercise 16.31. 

(2) The appearance of Cz + in Paley's theorem naturally suggests the 
systematic consideration of multipliers of the Hardy spaces HP defined in 
Exercise 3.19. 

A good deal of work has been done on this topic, but space forbids an 
attempt at any account in this book. Any interested reader should 
consult, for example, Meyer [1]; Gaudry [5]; Hedland [1]; Yamaguchi 
[1]; and the references listed in these papers. 

16.10 Multipliers ofweak type (p, p) 

A multiplier cjJ of type (p, p), as described in 16.1.1, defines and is 
defined by a linear operator Ur/> from LP into itself having the property 
that (Ur/>j)" = cjJ' j for every JE LP. As is proved in 16.21, Ur/> is 
necessarily continuous. In view of the terminology introduced in 13.2.1, 
such a multiplier cjJ might for emphasis be said to be of strong type (p, p). 

Zafran [4] has studied multipliers cjJ which he describes as being of 
"weak type (p, p) ", a description which is suggested by the terminology 
introduced in 13.7.5 above. If confusion is to be avoided, a little care is 
needed in approaching this new concept because, in spite of what might 
be read into the description "of weak type (p, p) ", such a multiplier does 
not in general map LP into itself, but rather into a bigger space LP' 00 to be 
defined in 16.10.1. This in turn raises the possibility that cjJ may fail to be 
of strong type (p, p). It is, on the other hand, by no means obvious that 
this possibility is actually realised, a proof of which is Zafran's 
achievement. 

Although Zafran's work applies to certain other familiar groups, we 
shall concentrate on the case of the circle group T. 

Throughout this section, it will be aS8umed that 1 ~ P < CI). 
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16.10.1. The space LP' ce. The space LP' ce == LP' ce(T) is defined to be the 
complex linear space of all complex-valued measurable functions Ion T 
such that 

11 I 11;, ce == sup {t(D,(t»l/P: t real and t> o} < 00, (16.10.1) 

D, being defined as in 13.7.2. (As with the spaces LP, the elements ofLP' ce 

are, in many contexts, to be thought of as equivalence classes, modulo 
equality almost everywhere, of functions I satisfying (16.10.1).) For 
further details about LP' ce (which is one amongst a class of so-called 
Lorentz spaces), see [StW] , Chapter V, §3 where LP' ce is denoted by 
L(p, 00). 

It is evident that LP' ce is translation invariant. From Exercise 13.16 it 
follows that LP' ce is a subset of Lq for every q satisfying 0 < q < p. It can 
also be proved that LP is a proper subset of LP' ce; see Exercise 16.32. 

The function 1- 11 111;, ce defined by (16.10.1) is not sub additive and 
hence nota norm, but there is (see [StW], p. 204) a norm 1I'llp , ce on LP' ce 

which, if 1 < P < 00, makes LP' ce into a Banach space and which is such 
that 

IIfII;, ce ~ 11I II p , ce ~ p(p - 1)-lllfll;, ce 

for every I E LP' ce • 

16.10.2 Multipliers of weak type (p, p). By definition, a complex
valued function cjJ on Z (and/or the assoqiated operator U 4» is said to be 
of weak type (p, p), if and only if it is a multiplier of type (LP, LP' ce) in the 
sense described in 16.1.1. This is the case, if and only if there exists a 
number K ~ 0 such that, for every I E LP, the function g = U 4> I satisfies 

Dg(t) ~ K ' IIfII~ , t- P for every real t > 0 ; (16.10.2) 

cf. 13.7.5. 
To make things a little more explicit, cjJ is of weak type (p, p), if and 

only if (16.10.2) holds for all lET, g = U 4> I being in this case the 
trigonometrie polynomial 

L cjJ(n)j (n)en • 
neZ 

The extension of U 4> to LP is then obtained as follows: givenl E LP, choose 
a T-valued sequence (fn) converging in LP to I; then, by Exercise 13.19 
and (16.10.2) applied for trigonometrie polynomials, the sequence (gn) = 
(U 4> In) converges in measure to a function g, the equivalence class of g 
being independent of the sequence (fn); then U 4> I is, by definition, the 
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equivalence class of g; and (16.10.2) continues to hold for every! E LP; in 
particular, U t/>! E LP' 00 for every! E LP. 

Evidently, every multiplier c/J of (strong) type (p, p) is also of weak 
type (p, p). Regarding the converse, see the next subsection. 

16.10.3 Zafran's theorem. The substance of 16.10.1 and 16.10.2 makes 
it evident that every multiplier of weak type (p, p) is a multiplier of 
strong type (p, q) for every q < p. On the other hand, the substance of 
12.8.1, 12.8.4, 12.9.1 and 13.9.1, shows that the functions c/Jo, such that 
c/Jo(n) is 1 or 0 according as n E Z satisfies n ;;:, 0 or n < 0 respectively, is a 
multiplier ofweak type (1,1), is not ofstrong type (1,1), and is ofstrong 
type (q, q) for all q such that 0 < q < 1. 

Zafran's achievement in [4] is to prove (among other things) that part 
of this phenomenon is reproduced for every p satisfying 1 < P < 2. More 
precisely: for every p satisfying 1 < P < 2, there exists a multiplier c/J of 
weak type (p, p) which is not of strong type (p, p). The proof is quite 
elaborate and will not be presented here. 

It is to be noted that, if c/J is of weak type (2, 2), then (trivially) c/J is 
bounded and hence (by 16.1.2(4)) of strong type (2, 2); thus, Zafran's 
result breaks down in the excluded case p = 2. 

EXERCISES 

16.1. Verify the statement made in 16.1.2(3). What is the representation 
of the corresponding operator U cP in terms of convolution? 

16.2. Prove that (L2, L2) = t"'(Z). 
16.3. Verify the inclusion relations stated in 16.1.2(5). 
16.4. Suppose that </> E (F, D) and that limk_"'!k = 0 in F implies that 

limk_", IIJkl1 = O. Without using the closed graph theorem, prove that U cP is 
continuous from F into D (eompare the Remark following 16.2.1). 

16.5. Verify that UN! ----?! weakly in L'" whenever ! E L"', and that 
UNfL ----? fL weakly in M whenever fL E M. (See 16.2.5.) 

16.6. Let U be a continuous linear operator from F = Ck or LI' (1 ~ P < 00) 

into G = Ch, Lq (1 ~ q < 00), M or D. Prove that U commutes with trans
lations if and only if 

whenever t is a trigonometrie polynomial and! E F; and that in this ease 

whenever k E LI and! E F. 
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16.7. Dsing 16.3.2, show that every U E m(C, L CXl ) ean be expressed in 
the form 

Uf=IL*f for allf E C 

for some IL E M, and that the analogous statement is true for every 
U E m(L CXl , L CXl ). 

Deduee that (C, L'lO) = (L'lO, Loo) = §M. 

16.8. Prove that (M, M) = §M. 

16.9. Suppose that A E D has the property that A * f E C for every 
fE LP, where 1 ~ P ~ 00. Prove that A E LP'. 

16.10. Dsing the notation of 16.3.7, verify that Lb 00 is a Banaeh spaee 
whieh satisfies the standing hypotheses listed in 16.1.1. 

16.11. Construet detailed proofs of the results stated in 16.3.9. (You will 
need to eall upon the result stated in Exereise 12.23.) 

16.12. Write out a detailed proof of 16.4.2. 
16.13. 'Show that U E m(A, A) (where A is as in Seetion 10.6) if and only 

if U is expressible in the form 

Uf= S *f, for aUf E A, 

where S is a pseudomeasure. 
16.14. Show how to use Stein's theorem eited in 16.2.8 and Lebesgue's 

theorem eited in 6.4.2 to prove that the Hardy-Littlewood maximal operators 
defined in Example 13.7.6(2) are ofweak type (1, 1) on LI. 

16.15. Verify the statement made in 16.5.1 concerning the nature of the 
elements of V 00' 

H int: If <I> E V 00' eonsider the functions <I> N = F N * <1>; these are trigo
nometrie polynomials whieh are of uniformly bounded variation. Show that 
a subsequenee of (<I>N) may be selected which eonverges pointwise to a 
function of bounded variation. 

16.16. Verify that M E (p, p) and 

IIMllv.v ~ 11p.lllll4>llv,v 
whenever p. E M and 4> E (p, p). (The notation is as in Seetion 16.6.) 

16.17. Exhibit a sequenee (fn);:'=l of nonnull trigonometrie polynomials 
such that 

for every p satisfying 1 < p < 00, where 

16.18. Suppose that U E m(p, q), where 1 ~ P < 00 and 1 ~ q ~ 00. 

Show that there exists a sequenee (ht)i"=l of trigonometrie polynomials such 
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that 
U 1 = Um hi * 1 in Lq, 

1_00 

uniformly with respect to 1 E Q whenever Q is a relatively compact subset 
ofV, and 

for all i and all 1 E v'. 
16.19. Suppose that U E m(V, L"'), where 1 :::; P < 00. Show that, if 

one agrees to identify any two functions that agree almost everywhere, then 
UE m(V,C). 

Hint: See Exercise 3.5. 
16.20. Show that, with the convention mentioned in Exercise 16.19, 

m(C, L"") = m(C, C) = M. 
Hint: This is as for Exercise 16.19, together with a reference to 16.3.2. 
16.21. Suppose that 1 :::; p < 00, 1 :::; q :::; 00, <Pk E (p, q) (k = 1,2, ... ), 

that 

pointwise on Z, 

and that 

t == lim II<pkllv,q < 00. 
k-+ '" 

Prove that <P E (p, q), that 
11<pllv,q :::; t, 

and that limk-+ '" U rPJ = U rPl in Lq for each 1 E V. 
What can you prove of a similar nature in case p = oo? 
16.22. Suppose that U E m(I, p), where 1 < p :::; 00. Show that there 

exist positive integers n such that un E m(V, C) and make an estimate of the 
smallest positive integer n with this property. 

Is anything of a similar nature true for operators U E m(p, q), where 
1 < P < q :::; oo? 

16.23. Suppose that A E D and that A -1(0) and the range of A are finite. 
Show that A E m(p, q) is false whenever I :::; p < q :::; 00. 

16.24. Suppose that I :::; p :::; 2 and that Fis a complex-valued function 
on Z. Prove that Fw E (p, p) for every ± I-valued function w on Z if and 
only if F E (p, 2). 

What is the appropriate version ofthis result when 2 < p :::; oo? 
16.25. Let U be a compact multiplier of type (p, q), where I :::; p, 

q :::; 00, represented by convolution with a pseudomeasure a. Show that 
a E co(Z). 

State and prove a converse for the case in which p ~ 2 ~ q. 
Remark. Stronger results are known; see the references cited in 16.7.2. 
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16.26. Let E and F each denote one of the Spacl'lS Ck (k E Z, k ~ 0), 
LP (1 ::;; p ::;; 00), or M. For mEZ, m ~ 0, let wE(ml denote the set of I E E 
such that DT I E E for rE Z, 0 ::;; r ::;; m. (Regarding this notation, see [So], 
p. 45 and [L2], p. 50.) 

Show that (wE<ml, wF<ml) = (E, F). 
16.27. Let AC denote the space of absolutely continuous functions 

endowed with the norm 

11111 = 11(0)1 + II Dlk 

Show that m(AC, LOO) = m(AC, C) consists precisely of those distributions 
of the form const + Dcp, where cp E LOO [compare 12.8.5(3)]. 

16.28. Let each of E and F denote one of C, LP (1 ::;; P ::;; 00), or M, and 
let A E m(E, F). Consider the equation 

A*I=g. (1) 
Prove the following statements. 

(a) If (1) is soluble for I E E whenever gE F, then 

inf IA(n)1 > 0, (2) 
nEZ 

and therefore (1) is uniquely soluble for I E E whenever gE F. 
(b) If (1) is soluble for I E E whenever g E F, then there exists BE m(F, E) 

such that 
A * B = e. (3) 

(c) If A has the form 0 + h, where 0 is a discrete measure (see Exercise 
12.51) and hELl, and if (2) is satisfied, then (1) has a unique solution I E E 
whenever g E E. 

16.29. Discuss analogues, for the case in which T and Z interchange 
their roles, of the results in 16.3.2 to 16.3.6 and 16.4.1 to 16.4.6. 

16.30. Suppose that E is a subset of Z and that XE denotes the 
characteristic function of E relative to Z. Discuss connections between 
assertions ofthe type E E A(P) and those ofthe type XE E (q, r). 

As an instance, prove that if p > 2 and E E A(P), then XE E 

(P', p). 
16.31. Refer to 16.9.4. Denote by m the set 01 all subsets S of Z 

for each of which there exist p > 0 and k > 0 such that 

,,"~s h(n)en IIp ~ kllhll 1 for all h E T. 

Prove the following (in which Xs denotes the characteristic function of S 
relative to Z) : 

(a) If S E \.13, then Z\S E \.13. 
(b) If Xs E ~M, then SEm. 

(c) If SE \.13 and S is A(I), then Xs E ~M and hence (see 12.7.4(3) and 
Exercise 15.9) S is finite. 
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(d) If S E ~ and S is q-Sidon for sorne q< 2 (see 15.8.1 above), then S 
is finite. 

(e) Ifthe operator 

is ofweak type (1,1), then S E~. 
16.32. Assurne that 1:;;;; P < 00. Exhibit a function f such that 

fE LP' co andf rfo LP. 



Bibliography 

Background readir1{J in general topology, functional analysis, and integration th,eory. 

[AB] 

[E] 

[GP] 

[HS] 

[K] 

[W] 

[A] 

[B] 

[Be] 

[Bi] 

[Bo] 

[Br] 

ASPLUND, E. AND BUNGART, L. A Pirst Course in Integration. Holt, Rinehart 
and Winston, Inc., New York (1966). 
DUNFORD, N. AND SCHWARTZ, J. T. Linear Operators, Parts I, II. Interscience 
Publishers, Inc., New York (1958,1963). 
EDWARDS, R. E. Functional Analysis: Theory and Applications. Holt, Rinehart 
and Winston, Inc., New York (IQ65). 

GOFFMAN, C. AND PEDRICK, G. First Course in Functional Analysi8. 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1965). 

HEWITT, E. AND STROMBERG, K. Real and Abstract AnalY8is. Springer-Verlag, 

Berlin (1965). 
KELLEY, J. L. General Topology. D. Van Nostrand Company, Ine., Princeton, 

New Jersey (1955). 
WILLIAMSON, J. H. Lebesgue Integration. Holt, Rinehart and Winston, Ine., 

New York (1962). 

References on Fourier Series and other specialized topics. 

ALEXITS, G. Convergence Problems of Orthogonal Series. Pergamon :press, Inc., 
New York (1961). 

BACHMAN, G. Elements 01 Abstract Harmonic Analysis. Aeademic Press, Ine., 
New York (1964). 

BARY, N. A Treatise on Trig01UYfl1,etric Series, Vols. 1 and 2. Pergamon Press, 
Ine., New York (1964). 

BENEDETTO, J. Harmonic Analysis on Totally Disconnected Sets. Leeture Notes 

in Mathematies 202. Springer-Verlag, Berlin-Heidelberg-New York (1971). 

BIRTllL, F. T. (editor). Function Algebras. Scott, Foresman and Company, 
Glenview, Illinois (1966). 

BOURBAKI, N. Integration. Ckapitres 7, 8. Aet. Sei. et Ind. 1306. Hermann & 
Cie, Paris (1963). 

BOURBAKI, N. Theories Spectrales. Chapitres 1, 2. Aet. Sei. et Ind. 1332. 

Hermann & Cie, Paris (1967). 
BREMERMANN, H. Distributions, Camplex Variable and Fourier Transforms. 
Addison-Wesley Publishing Company, Ine. (1965). 

333 



334 BIBLIOGRAPHY 

[e] CARTAN, H. Theorie speetrale des C-algebres eommutatives. Seminaire Bourbaki, 

Expose 125. Paris (1956). 
[CH] COURANT, R. AND HILBERT, D. Methods 01 Mathematical Physics, Val. 1I. 

[dBR] 

[D] 

[DR] 

[DW] 

[EG] 

[Eh] 

[Er] 

[G] 

[Ga] 

[Go] 

[Gr] 

[GRS] 

[GS] 

[GV] 

[Ha] 
[Hai] 

[HaR] 

[He] 

[Hel] 

Interseienee Publishers, New York (1962). 
DE BRANGES, L. AND ROVNYAK, J. Square Summable Power Series. Holt, 

Rinehart and Winston, Ine., New York (1966). 
DONOGHUE, W. F., JR. Distributions and Fourier Translorms. Aeademie Press, 

Ine., New York and London (1969). 
DUNKL, C. F. AND RAMIREZ, D. E. Topics in Harmonie Analysis. 
Appleton-Century-Crofts, New York (1971). 

DORAN, R. S. AND WICHMANN, J. Approximate identities and lactorization in 
Banach Modules. Springer Leeture Notes Vol. 768, Springer-Verlag, Berlin 
(1979). 

EDWARDS, R. E. Integration and Harmonie Analysis on Compact (koups. 
Cambridge University Press (1972). 
EDWARDS, R. E. AND GAUDRY, G. I. Littlewood-Paley and Multiplier Theory. 
Ergebnisse der Math. und ihrer Grenzgebiete 90. Springer-Verlag, 
Berlin-Heidelberg-New York (1977). 

EHRENPREIS, L. Fourier Analysis in Several Complex Variables. Wiley 
Interseience Publishers, New York (1970). 

ERDELYI, A. Operational Caleulus and Generalized Functions. Holt, Rinehart 
and Winston, Ine., New York (1962). 
GROSS, L. Harmonie Analysis on Hilbert Space. Mem. Amer. Math. Soe., No. 46, 
Amer. Math. Soe. (1963). 
GARSOUX, J. Espaces Veetoriels Topologiques et Distributions. Dunod, Paris 

(1963). 
GOLDBERG, R. R. Fourier Translorms. Cambridge Traets in Mathematics and 

Mathematieal Physies, No. 52. Cambridge University Press, New York (1961). 
GOLDBERG, R. R. Reeent results on Segal algebras. Leeture Notes in Mathematies 
399, Springer-Verlag (1974). 
GRAHAM, C. C. Harmonie analysis and locally eompact Abelian groups. M.A.A. 
Stud. l\fath., Vol. 13, pp. 161-197. Math. Assoe. of America, Washington, D.C. 

(1976). 
GELFAND, I. M., RAIKov, D. AND SHILOV, D. Commutative Normed Rings. 
Chelsea Publishing Company, New York (1964). 

GELFAND, I. M. ET CHILOV, G. E. Les Distributions, Tomes 1-3. Dunod, Paris 

(1962, 1964, 1965). 
GELFAND, I. M. AND VILENKIN, N. YA. Generalized Functions, Vol. 4. 
Applications 01 Harmonie Analysis. Aeademie Press, Ine., New York (1964). 
HARDY, G. H. Divergent Series. Oxford University Press, New York (1949). 

HALPERIN, I. Introduction to the Theory 01 Distributions. University of Toronto 
Press (1962). 

HARDY, G. H. AND ROGOSINSKI, W. Fourier Series. Cambridge University 

Press, New York (1944). 

HEINS, M. Topics in Complex Function Theory. Holt, Rinehart and Winston, 

Ine., New York (1962). 
HELSON, H. Lectures on Invariant Subspaces. Aeademie Press, Ine., New York 

(1964). 



[Hew] 

[Hi] 

[HLP] 

[Ho] 

[HR] 

[I] 

[J] 

[Kac] 

[Kah] 

[KS] 

[KSt] 

[KZ] 

[La] 

[Li] 

[Lig] 

[Lo] 

[LP] 

[LR] 

BIBLIOGRAPHY 335 

HEWITT, E. A Survey of Abstract Harmonie Analysis. Surveys in Applied 
Mathematics, IV. John Wiley & Sons, Inc., New York (1958),107-168. 
HIRSCHMAN, I. 1., JR. (editor). Studies in Real and Gamplex Analy8is. Studies in 
Mathematics, Vol. 3. Math. Association of America; Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey (1965). 
HARDY, G. H., LITTLEWOOD, J. E. AND POLYA, G. Inequalities. Cambridge 
University Press, New York (1934). 

HOFFMAN, K. Banach Spaces of Analytic Functions. Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey (1962). 

HEWITT, E. AND Ross, K. A. Abstract Harmonie Analy8is, I, H. 
Springer-Verlag, Berlin (1963, 1979). 

IZUMI, S.-1. Introduction to the Theory of Fourier series. Institute of 
Mathematics, Academia Sinica, Taipei (1965). 

JONES, D. S. Generalisedfunctions. McGraw-Hill Book Co., New York-Toronto, 
Ontario-London (1966). 
KAC, M. Statistical IiuJependence in Probability, Analy8is and Number Theory. 
,The Math. Assoc. of America (Inc.); Carus Math. Monograph 12. John Wiley 
and Sons, Inc., New York (1959). 

KAHANE, J.-P. Algebras de Gonvolucion de Sucessiones, Funciones y Medidas 
Sumables. Cursos y Seminarios de Matematica, Fasc. 6. Univ. de Buenos Aires 
(1961). 
KAHANE, J.-P. Leetures on Mean Periodic Functions. Tata Institute of 
Fundamental Research Lectures on Mathematics and Physics, No. 15, Bombay 
(1959). 
KAHANE, J.-P. Series de Fourier absolument eonvergentes. Ergebnisse der 
Mathematik und ihrer Grenzgebiete, Bd. 50. Springer-Verlag, 
Berlin-Heidelberg-New York (1970). 
KAHANE, J.-P. Same randam series of functions. D. C. Heath and Company, 
Lexington, Mass. (1968). 
KAHANE, J.-P. AND SALEM, R. Ensembles Parfaits et Series Trigonometriques, 
Hermann & Cie, Paris (1963). 
KACZMARZ, S. AND STEINHAUS, H. Theorie der Orlhogonalreihen. Chelsea 
Publishing Company, New York (1951). 
KATZNELSON, Y. An Introduction to Harmonic Analysis. John Wiley and Sons, 
Inc., New York (1968). 

LARSEN, R. An Introduction to the Theory of Multipliers. Die Grund. der math. 
Wiss. in Einzeldarstellungen, Bd. 175. Springer-Verlag, Berlin-Heidelberg-New 
York (1971). 

LITTLEWOOD, J. E. Same Problems in Real and Gamplex Analysis. Lecture 
notes, Univ. ofWisconsin, Madison (1962). 

LIGHTHILL, M. J. An Introduction to Fourier Analy8is and Generalized 
Functions. Cambridge University Press, New York (1958). 

LOOMIS, L. H. An Introduction to Abstract Harmonie Analy8is. D. Van Nostrand 
Company, Inc., Princeton, New Jersey (1953). 

LINDAHL, L.-A. AND POULSEN, F. Thin Sets in Harmonic Analysis. Marcel 
Dekker, Inc., New York (1971). 
LOPEZ, J. M. AND Ross, K. A. Sidon Sets. Lecture Notes in Pure and Applied 
Mathematics. Marcel Dekker, Inc., New York (1975). 



336 BIBLIOGRAPHY 

[M] MANDELBROJT, M. Series de Fourier et classes quasianalytiques de 1onctions. 
Gauthier-Villars, Paris (1935). 

[Ma] MALGRANGE, B. Ideals 01 Differentiable Functions. Tata Institute of 
Fundamental Research Studies in Mathematics. Oxford University Press, New 
York (1967). 

[MG] MCGEHEE, O. C. AND GRAHAM, C. Essays in Commutative Harmonic Analysis. 
Springer-Verlag, New York (1979). 

[Mi] MICHAEL, E. Locally multiplicatively-convex topological algebras. Memoirs Amer. 

[Mo] 

[MOZ] 

[MT] 

Math. Soe., No. 7. American Mathematical Society, Providence, Rhode Island 
(1952). 

MOSAK, R. D. Banach algebras. Chicago Lectures in Mathematics, University of 
Chicago Press, Chicago and London (1976). 

MOZZOCHI, C. P. On the pointwise convergenee 01 Fourier series. Lecture Notes in 
Mathematics, 199. Springer-Verlag, Berlin-Heidelberg-New York (1971). 
MARTINEAU, A. ET TREVES, F. Elements de la Theorie des Espaces Vectoriels 
Topologiques et des Distributions, Fascicules I, II. Centre de la Documentation 
Universitaire et S.E.D.E.S. Reunis, Paris (1962, 1964). 

[11.1 NAIMARK, M. A. Normed Rings. P. Noordhoff, N. V., Groningen, Netherlands 
(1959). 

[P] PITT, H. R. Tauberian Theorems. Oxford University Press, New York (1958). 
[R] RUDlN, W. Fourier Analysis on Groups. Interscience Publishers, New York 

[Re] 

[Ri] 

[Ro] 

[SHA] 

[SMA] 

[So] 

[St] 

[StW] 

(1962). 

RUDlN, W. Real and Complex Analysis. McGraw-Hill Book Company, New 
York (1966). 

REITER, H. Classical Harmonic Analysis on Locally Compact Groups. Oxford 
University Press (1968). 

REITER, H. LI-algebra and Segal algebra. Lecture Notes in Math. 231, 
Springer-Verlag (1971). 

RICKART, C. E. Banach Algebras. D. Van Nostrand Company, Inc., Princeton, 
New Jersey (1960). 

ROSENTHALL, H. P. Projections onto translation-invariant subspaces 01 LP(G). 
Mem. Amer. Math. Soc. No. 63 (1966). 

SCHWARTZ, L. Theorie des Distributions, Tomes I et II. Hermann & Cie, Paris 
(1950 and 1951). 

Studies in Harmonie Analysis. Vol. 13 (edited by J. M. Ash). The Math. Assoc. 
of America (Inc.) (1976). 

Studies in Modern Analysis, Vol. I. (Edited by R. C. Buck.) Math. Assoc. of 
America (1962). 

SOBOLEV, S. L. Applieations 01 Funetional Analysis in Mathematical Physies. 
Amer. Math. Soc. Translations ofMath. Monographs, Vol. VII (1963). 

STEIN, E. M. Singular Integrals and Differentiability Properties 01 Functions. 
Princeton University Press (1970). 

STEIN, E. M. AND WEIBS, G. Introduction to Fourier Analysis on Euclidean 
Spaces. Princeton University Press (1971). 

[T] TONELLI, L. Serie Trigonometriehe. Bologna (1928). 

[Ta] TAYLOR, J. L. Measure algebras. Amer. Math. Soc., Providence, R.1. (1973). 

[Tm] TITCHMARSH, E. C. An Introduction to the Theory 01 Fourier Integrals. Oxford 
University Press, New York (1948). 



[Tr] 

[TV] 

[VW] 
[W] 
[Wa] 

[War] 

EWe] 

[Wi] 

BIBLIOGRAPHY 337 

TREVES, F. Topological Vector Spaces, Distributions and Kernels. Academic 
Press, New York (1967). 
TOLSTOV, G. P. Faurier Series. Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey (1962). 
VAN DER WARDEN, B. L. Moderne Algebra. Springer-Verlag, Berlin (1937). 
WERMER, J. Seminar über Funktionen-Algebren. Springer-Verlag, Berlin (1964). 
WANG, H. C. Homogeneous Banack algebras. Lecture Notes in Pure and Applied 
Mathematics. Marcel Dekker Inc., New York (1977). 
WARD, J. A. Banack spaces 0/ pseudomeasures on compact graups witk emphasis 
on homogeneous spaces. Ph.D. Thesis, Australian National University (1979). 
WEIL, A. L'lntegration dans les Graupes Topologiques et BeB Applications. 
Hermann & Cie, Paris (1951). 
WIENER, N. Tke Faurier Integral and Gertain 0/ Its Applications. Cambridge 
University Press, New York (1933). 
ZYGMUND, A. Trigonometrical Series, Vols. I and II. Cambridge University 
Press, New York (1959). 



Research Publications 

The following list makes 1W attempt at completeness; it is rather a supplement to the 
bibliographies of such standard references as [ZJ, [BaJ, and [RJ. Where it is necessary, 
references are numbered 80 as to follow on from the bibliography in V olume 1. 

AHERN, P. R. 
[IJ On the generalized F. and M. Riesz theorem. Pacific J. Math. 15 (1965), 373-376. 

AKEMAN,C.A. 

[IJ So me mapping properties of the group algebras of a compact group. Pacific J. 
Math. 22 (1967), 1-8. 

ALLEN, G. R. 
[IJ A spectral theory for locally convex algebras. Proc. London Math. Soc. 15 (1965), 

399-421. 
[2J On a class oflocally convex algebras. Proc. London Math. Soc. 17 (1967), 91-114. 

ASKEY, R. AND WAINGER, S. 
[IJ Integrability theorem for Fourier series. Duke Math. J. 33 (1966), 223-228. 

BACHELIS, G. F. AND EBENSTEIN, S. E. 
[IJ On A(p) sets. Pacific J. Math. 54 (1974), 35-38. 

BELLMAN, R. 
[1] A note on a theorem of Hardy on Fourier constants. Bull. Amer. Math. Soc. 50 

(1944),741-744. 

BENEDETTO, J. J. 
[1] Tauberian translation algebras. Ann. Mat. Pura Appl., IV Sero 74 (1966), 255-282. 

BEURLING, A. 

[1] Sur les integrales de Fourier absolument convergentes et leur application a une 
transformation fonctionelle. Neuvü"me Congress Math. Scand. (Helsinki, 1938), 

345-366. 
[2] Construction and analysis of some convolution algebras. Ann. Inst. Fourier 14 

(1964), Nr 2 (1965), 1-32. 

[3] Un theoreme sur less fonctions bornees et uniformement continues sur I'axe ree!. 
Acta Math. 77 (1945), 127-136. 

338 



RESEARCH PUBLICATIONS 339 

BILLARD, P. 
[1] Baries de Fourier aleatoirement bornes, eontinues, uniformement eonvergentes. 

Ann. Sei. Eeole Norm. Sup. (3) 82 (1965), 131-179. 

BIRTEL, F. T. 
[1] Banaeh algebras ofmultipliers. Duke Matk. J. 28 (1961), 203-21l. 
[2] Isomorphisms and isometrie multipliers. Proc. Amer. Matk. Soc. 13 (1962), 204-210. 
[3] On a eommutative extension of a Banaeh algebra. Proc. Amer. Matk. Soc. 13 (1962), 

815-822. 

BRAlNERD, B. AND EDWARDS, R. E. 
[1] Linear operators whieh eommute with translations, land 11. J. Austr. Molk. Soc. VI 

(1966),289--350. 

BROWN,G. 
[1] Fourier transforms on the line and Gronwall's theorem. J. Lcmdon Matk. Soc. (2) 16 

(1977), 475-482. 
[2] Integrability of Fourier transforms under an ergodie hypothesis. J. Austral. Matk. 

Soc. 2fJ (2) (1978), 129--153. 
[3] Construetion ofFourier multipliers. Bull. Austral. Matk. Soc. 16 (1977), 463-472. 
[4] Riesz produets and generalized eharaeters. Proc. London Molk. Soc. (3) 30 (1975), 

209--238. 

BROWN, G. AND HEWITT, E. 
[1] Some new singular Fourier-Stieltjes series. Proc. Nat. Acad. Sei. U.S.A. 75 (11) 

(1978), 5268-5269. 
[2] Continuous singular measures with small Fourier-Stieltjes transforms. Advances in 

Matkemq,tics 37 (1) (1980), 27-60. 

BRYANT,J. 
[1] On eonvolutions and Fourier series. Bull. Amer. Matk. Soc. 73 (1967), 149--150. 

BURNHAM, J. T. 
[1] Closed ideals in subalgebras ofBanaeh algebras, I. Proc. Amer. Matk. Soc. 32 (1972), 

551-555. 
[2] Closed ideals in subalgebras ofBanaeh algebras, 11. Monat8k. Matk. 78 (1974),1-3. 
[3] Segal algebras and dense ideals in Banaeh algebras. Lecture Notes in Molk. _, 

Springer-Verlag (1974), 33-1>8. 

BURNHAM, J. T. AND GoLDBERG, R. R. 
[1] Basie properties ofSegal algebras. J. Matk. Anal. App. 42 (1973), 323-329. 

CALDERON, A. P. 
[1] Intermediate spaees and interpolation, the eomplex method. Studia Matk. XXIV 

(1964), 113-190. 
[2] Singular integrals. Bull. Amer. Matk. Soc. 72 (1966), 427-465. 
[3] Lebesgue spaces of differentiable funetions and distributions. Proc. Sympos. Pure 

Matk., Vol.IV, 33-49. Amer. Math. Soe., Providenee R.I. (1961). 

CALDERON, A. P. AND ZYGMUND, A. 
[1] On the existenee of certain singular integrals. Acta Matk. 88 (1952), 85-139. 
[2] Singular integrals and periodie funetiollS. Studia Matk. XIV (1956), 259--27l. 



340 RESEARCH PUBLICATIONS 

CAlfPANATO, S. AND MURTHY, M. K. V. 
[1] Una generalizzazione deI teorema di Riesz-Thorin. Ann. Scuola Norm. Sup. Pisa (3) 

19 (1965),87-100. 

CARLESON, L. 
[2] Sets of uniqueness for functions regular in the unit circle. Acta Math. 87 (1952), 

325-345. 

CARTWRIGHT, D., HowLETT, R. B. AND McMuLLEN, J. R. 
[1] Extreme values for the Sidon constant. To appear. 

COHEN, P. J. 
[2] On homomorphisms of group algebras. Amer. J. Math. 82 (1960), 213-226. 
[3] On a conjecture of Littlewood and idempotent measures. Amer. J. Math. 82 (1960), 

.91-212. 
[4] A note on constructive methods in Banach algebras. Pro-c. Amer. Math. So-c. 12 

(1961), 15!H63. 

COIFMAN, R. R. 
[1] Remarks on weak type inequalities for operators commuting with translations. Bull. 

Amer. Math. So-c. 74 (1968), 7l(}-714. 

COIFMAN, R. R., CWP;:EL, M., ROCHBERG, R., SAGHER, Y. AND WEISS, G. 
[1] Complex interpolation for families of Banach spaces. Pro-c. Symp. Pure Math. 35 

(1979), 26~282. (Amer. Math. Soc. Publicatjon) 

COIFMAN, R., ROCF!BERG, R. AND WEISS, G. 
[1] Applieations of Transferenee: The LP version of von Neumann's inequality and the 

Littlewood-Paley-8tein theory. To appear. 

COIFMAN, R. R. AND WEISS, G. 
[1] Transference methods in analysis. CBMS Regional (Jonference Serie8 in Math., 

No. 31, Amer. Math. Soe. (1977). 

CORDES, H. O. 
[1] The algebra of singular integral operators on R". J. Math. Mech. I4 (1965), 

1007-1032. 

CqURY, J. E. 
[1] Walsh series with eoefficients tending monotonieally to zero. Pacific J. Math. 54 (2) 

(1974), 1-16. 

COWLING, M. 
[1] The Kunze-8tein phenomenon. Rendi. dei Sem. Mat. e Fis. di Milano- 46 (1976), 

35-41. 
[2] The Kunze-8tein phenomenon. Annals of Math. 107 (1978), 209-234. 
[3] La synthese des eonvoluteurs de V de certains groupes pas moyennables. Boll. U. 

M. I. 14-A (1977), 551-555. 
[4] The Planeherel f'Ormula for a Group not of Type I. Boll. U. M. I. 15-A (1978), 

616-623. 
[5] An applieation of Littlewood-Paley theory in harmonie analysis. Molh. Ann. 241 

(1979), 83-96. 



RESEARCH PUBLICATIONS 341 

CURTIS, P. C., JR. ~D FIGA-TALAMANCA, A. 

[1] Faetorization theorems for Banach algebras. Function Algebra/!, pp. 169-185. Seott, 
Foresman and Cpmpany, Glenview, Ill. (1966). 

DELEEUW, K. 

[1] On L" multipliers. Ann. 0/ Math. 81 (1965),364--379. 
[2] Homogeneous algebras on eompaet abelian groups. Trans. Amer. Math. Soc. 87 

(1958),372-386. 

DE LEEUW, K. AND GLIOKSBE~, I. 
[1] Quasi-invariance and analytieity of measures on compaet groups. Acta Math. 109 

(1963),179-205. 

DE LEEUW, K. AND HERZ, C. 

[1] An invarianee property ofspeetral synthesis. Illinois J. Math. 9 (1965), 220-229. 

DOMAB, Y. 
[1] Harmonie analysis based on certain eommutative Banach algebras. Acta Math. 96 

(1956), 1-66. 
[2] On speetral analysis in the narrow topology. Math. Seand. 4 (1956), 328-332. 

Doss, R. 
n] Some incJusions in multipliers. Paciftc J. Math. 32 (1970), 643-646. 

DRURY,S. W. 
[1] Sur la synthese harmonique. C. R. Acad. Sei. Paris Ser. A-B 271 (1970), A42-A44. 
[2] Sur les ensembles parfait et les series trigonometriques. C . .fl. Acad. Sei. Paris Sero 

A-B 271 (1970), A94--A95. 
[3] Sur les ensembles de Sidon. C. R. Acad. Sei. Paris sero A-B 271 (1970), AI62-AI63. 

DUDLEY, E. AND HALL, P. 

[1] The Gaussian law and laeunary sets of eharacters. J. Austral. Math. Soc. A 27 (1) 
(1979),91-107. 

DUNKL, C. F. AND RAMIREZ, D. E. 

[1] Seetions induced from weakly sequentially complete spaces. Studia Math. 49 (1973), 
95-97. 

EDWABDS, R. E. 

[2] Translates of L«> funetions and ofbounded measures. J. AUBtr. Math. Soc.1V (1964), 
403-409. 

[3] Boundedncss principles and Fourier theory. Paciftc J. Math. 21 (1967), 255-263. 
[4] Spans pf translates in L"(G). J. Austr. Math. Soc; V (1965), 216-233. 
[5] Uniform approximation on noneompaet spaees. Trans. Amer. Math. Soc. 122 (1966), 

249-276. 
[6] Approximation by eonvo)utipns. Paciftc J. Math. 15 (1965), 85-95. 
[7] Changing signs ofFourier coeffieients. Paciftc J. Math. 15 (1965), 463-475. 
[~] Bounded functions and Fourier transforms. Proc. Amer. Math. Soc. 9 (1958), 

440-446. 
[9] 8qpports and singular supports of pseudomeasures. J. Ait$tr. Math. Soc. VI (l966), 

65-75. 



342 RESEARCH PUBLICATIONS 

[lO] Bipositive and isometrie isomorphisms of some eonvolution algebras. Canad. J. 
Math. 17 (1965), 839-846. 

[11] Endomorphisms of funetion-spaees whieh leave stable all translation-invariant 

manifolds. Pacific J. Math. 14 (1964), 31-48. 
[12] On funetions whieh are Fourier transforms. Proc. Amer. Math. Soc. 5 (1954), 71-78. 

[13] A class ofmultipliers. J. Austr. Math. Soc. vn (1968), 584-590. 
[14] Inequalities related to those of Hausdorff-Young. Bull. Austr. Math. Soc. 6 (1972), 

185-2lO. 
[15] Criterion for Fourier transforms. J. Austral. Math. Soc. 7 (1967), 239-246. 

EDWARDS, R. E. AND HELSON, H. 

[1] Absolute Fourier multipliers. To appear Res. der. Math. (1). 

EDWARDS, R. E. AND HEWITT, E. 
[1] Pointwise limits for sequenees of eonvolution operators. Acta Math. H3 (1965), 

181-218. 

EDWARDS, R. E., HEWITT, E. AND RITTER, G. 
[1] Fourier multipliers for eertain spaces of funetions with eompaet supports. 

Inventiones Math. 40 (1977), 37-57. 

EDWARDS, R. E., HEWITT, E. AND Ross, K. A. 

[1] Laeunarity for eompaet groups, 11. Pacific J. Math. 41 (1972), 99-lO9. 

EDWARDS, R. E. AND PRICE, J. F. 

[1] A naively eonstruetive approach to boundedness prineiples, with applieations to 
harmonie analysis. L'Ens. Math. XVI,fasc. 3-4 (1970), 255-296. 

EDWARDS, R. E. AND Ross, K. A. 

[1] Helgason's number and laeunarity eonstants. Bull. Austral. Math. Soc. 9 (1973), 
187-218. 

[2] p-Sidon sets. J. Functional Anal. 15 (1974), 404-427. 

EHRENPREIS, L. 
[1] Mean periodie functions. Amer. J. Math. 78 (1955), 292-328. 

ELLIOTT, R. J. 

[1] Some results in speetral synthesis. Proc. Camhridge Phil. Soc. 61 (1965), 395-424. 

EMEL'JANOV, V. F. 

[1] On eonvergence oflaeunary trigonometrie series on sets. Soviet Math. Dokl. 6 (1965), 

1437-1438. 

FEKETE, M. 
[1] Über die Faktorenfolgen welche die "Klasse" einer Fouriersehen Reihe unverändert 

lassen. Acta Sci. Math. (Szeged) 1 (1923), 148--166. 

FIEDLER, H., JURKAT, W. AND KÖRNER, O. 
[1] On Salem's problem for Fourier and Dirichlet series. Period. Math. Hungar. 8 

(1977), No. 3-4, 229-242. 



RESEARCH PUBLICATIONS 343 

FIGA-TALAMANCA, A. 

[1] On the subspaces of LP invariant under multiplication of transforms by bounded 

continuous functions. Rend. Sem. Mat. d. Univ. di Padova (1965), 176--189. 
[2] Translation invariant operators in LP. Duke Math. J. 32 (1965), 495-502. 

[3] Multipliers of p-integrable functions. Bull. Amer. Math. Soc. 70 (1964), 666--669. 

FrGA-TALAMANCA, A. AND GAUDRY, G. I. 

[1] Density and representation theorems for multipliers of the type (p, q). J. Austr. 
Math. Soc. vn (1967), 1-6. 

[2] Multipliers of LPwhich vanish at 00. J. Fundional Anal. 7 (3) (1971), 475-486. 

[3] Multipliers and sets of uniqueness of LP. Michigan Math. J. 17 (1970), 179-191. 
[4] Extension of multipliers. (ltalian summary). Boll. Uno Mat. Ital. (4) 3 (1970), 

1003-1014. 

FIGA-TALAMANCA, A. AND PRICE, J. F. 

[1] Applications of random Fourier series over compact groups to Fourier multipliers. 
Pacific J. Math. 43 (1972), 531-541. 

FIGA-TALAMANCA, A. AND RIDER, D. 

[1] A theorem of Littlewood and lacunary series for compact groups. Pacific J. Math. 
16 (1966), 505-514. 

[2] A theorem on random Fourier series on compact groups. Pacific J. Math. 21 (1967), 

487-492. 

FINE, N. J. 
[1] On the Walsh functions. Trans. Amer. Math. Soc. 65 (1949), 372-414. 

FORELLI, F. 

[1] Homomorphisms of ideals in group algebras. Illinois J. Math. 9 (1965), 410-417. 

FOURNIER, J. J. F. 

[1] Local complements to the Hausdorff-Young theorem. Michigan Math. J. 20 (1973), 

263-276. 
[2] On a theorem of Paley and the Littlewood conjecture. Amer. J. Math. 82 (1960), 

191-212. 
[3] Extensions of a Fourier multiplier theorem of Paley. Pacific J. Math. 30 (1969), 

415-431. 

FREEMAN, M. 

[1] Some conditions for uniform approximation on a manifold. Function Algebras, pp. 
42-60. Scott, Foresman and Company, Glenview, Ill. (1966). 

GAUDRY,G.I. 

[1] Quasimeasures and operators commuting with convolutions. Pacific J. Math. 18 

(1966), 461-476. 

[2] Multipliers of type (p, q). Pacific J. Math. 18 (1966),477-488. 

[3] Quasimeasures and multiplier problems. Doctoral thesis, Australian National 
University (1966). 

[4] Isomorphisms oI multiplier algebras. Oanad. J. Math. 20 (1968), 1165-1172. 
[5] HP multipliers and inequalities of Hardy and Littlewood. J. Austral. Math. Soc. 10 

(1969),23-32. 



344 RESEARCH PUBLICATIONS 

[6] Bad behaviour and inclusion results for multipliers of type (p, q). Pacifie J. Molk. 
35 (1) (1970), 83-94. 

GELFAND, I. M. 
[1] Normierte Ringe. Mol. Sbornik (N.S.) 9 (1941), 3-24. 

GILBERT, J. E. 
[1] Spectral synthesis problems for invariant subspaces on groupB. 11. Function 

Algebraa, pp. 257-264. Scott, Foresman and Company, Glenview, Ill. (1966). 
[2] Convolution operators on V(G) and properties of locally compact groupB. Pacijic J. 

Molk. Z4 (1968), 257-268. 
[3] NildSin-Stein theory. Informallecture notes. 

GLAESER, G. 

[1] Synthese spectrale des ideaux de fonctions lipschitziennes. C. R. Acad. Sei. Paris 
260 (1965), 1539-1542. 

GLICKSBERG, I. 
[1] Homomorphisms of certain measure algebras. Pacifie J. Molk. 10 (1960), 167-191. 
[2] Fourier-Stieltjes transforms with small supports. lllinois J. Molk. 9 (1965), 

418-427. 
[3] The abstract F. and M. Riesz theorem. J. Functional Analysis 1 (1967), 109-122. 

GLICKSBERG, I. AND WIK, I. 
[1] Multipliers of quotients of L 1• Pacific J. Molk. 38 (1971), 619-624. 

GOES, G. 

[1] Komplementä.re Fourierkoeffizientenrä.ume und Multiplikatoren. Molk. Ann. 137 
(1959), 371-384. 

[2] On Fourier-Stieltjes series with finitely many distinct coefficients and on almost 
periodie sequences. J. Molk. An. Applied. 19 (1967), 26-34. Addendum ibid. 21 
(1968),618. 

[3] Fourier-Stieltjes Transforms of Discrete Measures; Periodic and Semiperiodie 
functions. Molk. Ann. 174 (1967),148--156. 

[4] über einige Multiplikatorenklassen. Molk. Z. 80 (1963), 324-327. 

GOLDBERG, R. R. AND SIMON, A. B. 
[1] The Riemann-Lebesgue theorem on groups. Aeta Sei. Molk. (Szeged) 27 (1966), 

35-39. 

GRAHAM, C. C. 
[1] Helson sets and simultaneous extensions to Fourier transforms. Studia Molk. 43 

(1972),57--60. 

GREENLEAF, F. P. 
[1] Norm decreasing homomorphisms of group algebras. Bull. Amer. Molk. Soc. 70 

(1964),536-539. 
[2] Closed subalgebras of group algebras which are group algebras. Function Algebraa, 

pp. 276-281. Scott, Foresman and Company, Chicago (1966). 
[3] Norm decreasing homomorphisms of group algebras. Pacific J. Molk. 15 (1965), 

1187-1219. 



RESEARCH PUBLICATIONS 345 

GROSS, K.1. 
[1] On the evolution of noneommutative harmonie analysis. Amer. Math. Monthly 85 

(1978),525-548. 

HAHN, L.-S. 
[1] On multipliers of p-integrable funetions. Trans. Amer. Math. Soc. 128 (1967), 

321-335. 

HARASYMIV, S. R. 
[1] A note on dilations in LP. Pacijic J. Math. 21 (1967), 493-501. 

HEDLUND, J. H. 

[1] Multipliers of HP spaces. J. Math. Mech. 18 (1969), 1067-1074. 

HELGASON, S. 
[1] Multipliers ofBanach algebras. Ann. oj Math. 64 (1956), 240-254. 
[2] Topologies of group algebras and a theorem of Littlewood. Trans. Amer. Math. Soc. 

86 (1957), 269-283. 
[3] Laeunary Fourier series on noneommutative groups. Proc. Amer. Math. Soc. 9 

(1958),782-790. 

HELSON, H. 

[1] Proof of a eonjeeture of Steinhaus. Proc. Nat. Acad. Sei. U.S.A. 40 (1954), 205-206. 
[2] Note on harmonie funetions. Proc. Amer. Math. Soc. 4 (1953), 68tHi91. 
[3] On a theorem of Szego. Proc. Amer. Math. Soc. 6 (1955), 235-242. 
[4] Fourier transforms on perfeet sets. Studia Math. XIV (1954), 209-213. 
[5] Compaet groups with ordered duals. Proc. London Math. Soc. XIV A (1965), 144-156. 
[6] Foundation ofthe theory ofDiriehlet series. Acta Math. 118 (1967), 61-77. 
[7]' Conjugate series and a theorem ofPaley. Pacijic J. Math. 8 (1958), 437-446. 

HELSON, H. AND KAHANE, J.-P. 
[1] A Fourier method in Diophantine problems. J. Analyse Math. XV (1965), 245-262. 

HERZ, C. S. 
[2] The speetral theory of bounded funetions. Trans. Amer. Math. Soc. 94 (1960), 

181-232. 
[3] Remarques sur la note preeedente de Varopoulos. O. R. Acad. Sei. Pari8 260 (1965), 

6001-6004. 
[4] Drury'slemma and Helson sets. Studia Math. 42 (1972), 205-219. 

HEWlTT, E. 
[1] The ranges of certain eonvolution operators. Math. Scand. 15 (1965), 147-155. 
[2] The asymmetry of eertain algebras of Fourier-Stieltjes transforms. Michigan Math. 

J. 5 (1958), 149-158. 

HEWlTT, E. AND HIRSCHMAN, I. I. JR. 

[I] A maximum problem in harmonie analysis. Amer. J. Math. 76 (1954), 839-852. 

HEWITT, E. AND KAKUTANI, S. 
[I] A class of multiplieative linear funetionals on the measure algebra of a loeally 

eompaet Abelian group. Illinois J. Math. 4 (1960), 553-574. 
[2] Some multiplieative linear functionals on M(G). Ann. Math. (2) 79 (1964), 489-505. 



346 RESEARCH PUBLICATIONS 

HEWITT, E. AND RITTER, G. 
[1] Über die Integrierbarkheit von Fourier-Transformierten auf Gruppen; Teil I: 

Stetige Funcktionen mit Kompakten Träger und ein Bermerkung über 

hyperbolische Differentialoperatoren. Math. Ann. 224 (1976),77-96. 
[2] On the integrability of Fourier transforms on Groups; Part 11: Fourier-Stieltjes 

transforms of singular measures. Proc. Roy. Irish Academy 76 (1976), No. 25, 

265-287. 
[3] The Orlicz-Paley-Sidon phenomenon for singular measures. Symposia Mathematica, 

Vol. XXII (Convegno sull'Analisi Armonica e Spazi di Funzioni 8U Gruppi 
Localmente Compatte, Indam, Rome, 1976), pp. 21-31. Academic Press, London 1977. 

HEWITT, E. AND ZUCKERMAN, H. S. 
[1] Some theorems on lacunary Fourier series, with extensions to compact groups. 

Trans. Amer. Math. Soc. 93 (1959), 1-19. 
[2] On a theorem of P. J. Cohen and H. Davenport. Proc. Amer. Math. Soc. 14 (1963), 

847-855. 
[3] Singular measures with absolutely continuous convolution squares. Proc. Camb. 

Phil. Soc. 62 (1966), 399-420. Corrigendum. Ibid. 63 (1967), 367-368. 

[4] Some singular Fourier-Stieltjes series. Proc. London Math. Soc. 19 (1969), 3W-326. 

HIRSCHMAN, I. I. JR. 

[1] On multiplier transformations. Duke Math. J. 26 (1959), 221-242. 
[2] Szegö functions on a locally compact Abelian group with ordered dual. Trans. Amer. 

Math. Soc. 121 (1966), 133-159; 123 (1966), 548. 

HÖRMANDER, L. 
[1] Estimates for translation invariant operators in LP spaces. Acta Math. 104 (1960), 

93-140. 

HUNT, R. A. 
[1] Operators acting on Lorentz spaces. Ph.D. thesis, University ofWashington (1965). 

HUNT, R.. A. AND WEISS, G. 
[1] The Marcinkiewicz interpolation theorem. Proc. Amer. Math. Soc. 15 (6) (1964), 

996-998. 

IGARI, S. 
[1] Sur les fonctions qui operent sur l'espace .12 • Ann. Inst. Fourier, Grenoble, 15 

(1965),525-536. 
[2] LP-multipliers. Ti3hoku Math. J. (2) 21 (1969), 304-320. 
[3] LP-multipliers. Ti3hoku Math. J. (2) 26 (1974), 555-561. 

IZUMI, M. AND S.-1. 
[1] On lacunary Fourier series. Proc. Japan Academy 41 (1965), 648-651. 

[2] On the Leindler's theorem. Proc. Japan Academy 42 (1966),533--534. 

IZUMI, M. AND S.-1. AND KAHANE, J.-P. 

[1] Theoremes elementaires sur les series de Fourier lacunaires. J. Analyse Math. 14 
(1965),235-246. 



RESEARCH PUBLICATIONS 347 

JOHNSON, B. E. 
[1] Isometrie isomorphisms of measure algebras. Proc. Amer. MaJh. Soc. 15 (1964), 

186-188. 
[2] An introduction to the theory of centralisers. Proc. London Math. Soc. 14 (1964), 

299-320. 
[3] Centralisers of certain topological algebras. J. London MaJh. Soc. 39 (1964), 

603-614. 
[4] Continuity of transformations which leave invariant certain translation-invariant 

subspaces. Pacijic J. MaJh. 20 (1967), 223-230. 

[5] Symmetrie maximal ideals in M(G). Proc. Amer. Math. Soc. 18 (1967),1040-1044. 

[6] The Silov boundary of M(G). Tran<!. Amer. MaJh. Soc. 134 (1969), 289-296. 

KAc,M. 
[1] Aremark on Wiener's Tauberian theorem. Proc. Amer. MaJh. Soc. 16 (1965), 

1155-1157. 

KACZMARZ, S. 
[1] On some classes ofFourier series. J. London Math. Soc. 8 (1933), 39-46. 

KAHANE, J.-P. 

[1] Idempotents and elosed subalgebras of A(Z). Function Algebras, pp. 198-207. Seott, 
Foresman and Company, Glenview, Ill. (1966). 

[2] Sur eertaines classes de series de Fourier absolument convergentes. J. Math. Pures et 

Appl. 35 (1956), 249-258. 
[3] Sur un probleme de Littlewood. Nederl. Akac. Wetensch. Proc. Sero A.60 = Indag. 

MaJh. 19 (1957), 268-271. 

[4] Lacunary Taylor and Fourier series. Bull. Amer. Math. Soc. 70 (1964), 199-213. 

[5] On the construction of certain bounded continuous functions. Pacijic J. Math. 16 
(1966), 129-132. 

[6] Ensembles de Ryll-Nardzewski et ensembles de Helson. Colloq. Math. 15 (1966), 
87-92. 

KAHANE, J.-P. AND KATZNELSON, Y. 
[2] Contribution a deux problemes coneernant les fonctions de la classe A. Israel J. 

MaJh. I (1963), 110-131. 

[3] Sur les ensembles de divergenee des series trigonometriques. Stndia MaJh. 26 (1966), 
305-306. 

KAHANE, J.-P. AND MANDELBROT, B. 
[1] Ensembles de multiplicite aleatoires. C. R. Acad. Sei. Paris 261 (1965),3931-3933. 

KAMAZOLOV, A. I. 
[1] Multiplicative transformations of Fourier integrals in LP spaces with weight. 

(Russian) Izv. Vyso UCebn. Zaved. MaJemaJika No. 7 (86) (1969),54-58. 

KARAMATA, J. 

[1] Suites de fonctionelles lineaires et facteurs de convergence de series de Fourier. J. 
Math. Pures et Appl. 35 (1956),87-95. 



348 RESEARCH PUBLICATIONS 

KATZNELSON, Y. 
[1] Trigonometrie series with positive partial sums. BuU. Amer. Math. Soc. 71 (1965), 

718-719. 
[2] Sur les ensembles de divergence des series trigonometriques. Studia Math. 26 (1966), 

301-304. 

KAUFMAN, R. 
[1] Examples in Heison sets. Butl. Amer. Math. Soc. 72 (1966), 139-140. 

KAWADA, Y. 
[1] On the group ring of a topologieal group. Math. Japan. 1 (1948), 1-5. 

KEOGH,F. R. 
[1] On strong and weak eonvergence oftrigonometrie series. Proc. Rag. Irish Acad. Seet. 

A63 (1964), 75-85. 
[2] Riesz produets. Proc. London Math. Soc. (3) 14& (1965),174-182. 

KOIZUMI, S. 

[1] On the Hilbert transform I, 11. J. Fac. Sei. Hokkaido Univ. Sero I 14 (1959), 
153-224; 15 (1960),93-130. 

[2] Loeal estimations of eonjugate funetions, I. Proc. Japan Acad. 42 (1966), 891-895. 

KONHEIM, A. G. AND WEISS, B. 
[1] Funetions whieh operate on eharacteristie funetions. Pacific J. Math. 15 (1965), 

1279-1293. 

KONYUSHKOV, A. A. 
[1] On the Lipsehitz elasses. (In Russian.) Izv. Akad. Nauk SSSR Sero Mat. 21 (1957), 

423-448. 

KOOSIS, P. 

[1] On the spectral analysis ofbounded funetions. Pacific J. Math. 16 (1966), 121-128. 

KOREVAAR, J. 
[1] Distribution proof of Wiener's Tauberian theorem. Proc. Amer. Math. Soc. 16 

(1965), 353-355. 

KÖRNER, T. W. 

[1] Some results on Kroneeker, Diriehlet and Helson Sets. Ann. Inat. Fourier (Grenoble) 
20 (1970), fase. 2, 219-324 (1971). 

KREE,P. 

[1] Sur les multiplieateurs clans §U. C. R. Acad. Sei. Paris 260 (1965), 4400-4403. 
[2] Sur les multiplicateurs dans §U avee poids. Ann. Inat. Fourier (Grenoble) 16 

(1966), fase. 2,91-121. 

KROGSTAD, H. E. 
[1] Multipliers on homogeneous Banaeh spaees on eompact groups. Ark. Mat. 12 (1974), 

203-212. 

KUNZE, R. A. AND STEIN, E. M. 
[1] Uniformly bounded representations and harmonie analysis of the 2 x 2 real 

unimodular group. Amer. J. Math. LXXXII (1960), 1-62. 



RESEARCH PUBLICATIONS 349 

LANCONELLI, E. 
[IJ SU una classe di moltiplicatori di g; L p ed applicazioni (English summary). Atti 

Aeead. Naj. Lincei Rend. GI. Sei. Fis. Mat. Natur. 8 (51) (1971), 133-139. 

LITTl\IAN, W. 
[IJ Multipliers in LP and interpolation. Bull. Amer. Math. Soc. 71 (1965), 764-766. 

LITT:IIAN, W., MCCARTHY, C. AND RIVIERE, N. 
[1J LP-multiplier theorems. Studia Math. 30 (1968), 193-217. 
[2J The non-existence of LP estimates for certain translation-invariant operators. Shulia 

Math. 30 (1968), 219--229. 

LIU, T. S. 
[IJ On vanishing algebras. Proc. Amer. Math. Soc. 14 (1963),162--166. 

LIZORKIN, P. i. 
[IJ Multipliers of Fourier integrals in the spaces Lp • o. (Russian). Tnt.dy Mat. In<!t. 

Steklov. 89 (1967), 231-248. 

-!:'OJASIEWICZ, S. 
[IJ Sur la valeur d'une distribution dans un point. Bull. Acad. Polon. Sei. GI. III. 4 

(1956), 239--242. 
[2J Sur la valeur et la limite d'une distribution en un point. Studia Math. 16 (1957), 

1-36. 

LUl\IER, G. 

[I] Analytic functions and the Diriehlet problem. Bull. Amer. Math. Soc. 70 (1964), 
98-104. 

MAHl\IUDOV, A. S. 

[IJ On the Fourier and Taylor coefficients of continuous funetions. (In Russian.) Izv. 
Akad. Nauk Azerbaidzan. SSSR Sero Fiz.-Tehn. Mat. Nauk 2 (1964), 23-29; 4 
(19M), 35-44. 

MALLIA vlN, P. 

[1] lmpossibilite de la synthese speetrale sur les groupes Abeliens non eompacts. Publ. 

Math. Inst. Hautes EtudesSei. Paris (1959), 61-68. 
[2] Ensembles de resolution spectrale. Proc. Internat. Gongr. Math. (Stoekholm, 1962), 

367-378. lnst. Mittag-Leffler, Djursholm (1963). 

MALLIAVIN-BRA:IIARAT, M.-P. AND MALLIAVIN, P. 

[I] Caraeterisation arithmetique d'une elasse d'ensembles de Helson. G. R. Acad. Sei. 
Paris, 264 A (1967),192-193. 

MARCINKIEWICZ, J. AND ZYG:IIUND, A. 

[1] Some theorems on orthogonal systems. Fund. Malh. 28 (1937), 309-335. 

MARCUS, M. B. AND PISIER, G. 

[IJ Random Fourier series with applications to harmonie analysis. Gentre for Statistics 
and Probabilüy, Northwestern University, Evanston, Illinois (1980). 



350 RESEARCH PUBLICATIOt\S 

M..\TE, L. 
[1] Multiplier operators and quotient algebra. Bull. Aead. Polon. Sero Sei. ltJath. 

Astr01wm. Phys. 13 (8) (1955), 523-526. 

[2] Embedding multiplier operators of a Banach algebra B into its second conjugate 

space B** BuH. Acad. Polon. Sero Sei. Math. Astronom. Phys. 13 (1l-12) (1965), 
809-812. 

[3] Some abstract results concerning multiplier algebras. Rev. Roumaine Malh. Pures 
Appl. 10 (1965), 261-266. 

MCGEHEE, O. C. 

[2] Two remarks about Fourier analysis on thin sets. Notices Amer. Math. Soc. 14 
(1967), 76. 

MCGEHEE, O. C., PIGNO, L. AND SMITH, B. 

[1] Hardy's inequality and the Littlewood conjecture. To appeal'. Bull. Amer. Math. 
Soe. 

[2] Hardy's inequality and the LI norm of exponential sums. To appeal'. Annals of 

M ath. 

MEYER, Y. 

[1] Endomorphismes des ideaux fermes de LI(G), classes de Hardy, et series de Fourier 

lacunaires. Ann. Seient. Ecole Norm. Sup. 4' serie 1 (1968), 499-580. 
[2] Spectres des mesures et mesures absolument continus. Studia Math. 30 (1968), 

87-89. 

MIRKIL, H. 
[1] The work of Silov ori commutative semisimple Banach algebras. Notas de 

Matemutiea, No. 20. Fascieulo Publicado pelo Jnstituto de Matemutiea Pura e 
Aplicada da Gonselho de Pcsquisas. Rio de Janeiro (1959). 

MOELLER, J. W. 
[1] On the extrapolation of lacunary Fourier series . .J. Reine Angew. Math. 222 (1966), 

13&-141. 

Mo ELLER, J. W. AND FREDERICKSON, P. O. 
[1] A density theorem for lacunary Fourier series. Bull. Amer. Math. Soc. 72 (1966), 

82-86. 

t\EUBAUER, D. 
[1] The non-existence of projections from LI to BI. Proc. Amer. Math. Soc. 12 (1961), 

[2] Zur Spektraltheorie in lokalkonvexen Algebren, 11. Math. Ann. 143 (1961), 251-263. 

t\EWMAN, D. J. 
[1] The non-existence of projections form LI to BI. Proc. Amer. Math. Soc. 12 (1961), 

98-99. 
[2] An LI extremal problem for polynomials. Proc. Amer. Math. Soc. 16 (1965), 

1287-1290. 

[3] The closure of translates in lP. A mer . .J. JJl ath. 86 (1964), 651-667. 

t\EWMAN, D. J., SCHWARTZ, J. T. AND SHAPIRO, H. S. 

[1] On generators of the Banach algebras 11 and LI(O, (0). Tran.s. Amer. Math. Soc. 107 
(1963),46&-484. 



RESEARCH PUBLICATIONS 351 

OHTSUKA,M. 

[1] On potentials on locally eompaet spaces. J. Sei. Hiro8hima Univ. Sero A-I Math. 25 
(1961), 135-352. 

OKIKIOLU, G. O. 

[1] On Fourier transform multipliers of IJ'. J. Amtral. Math. Soc. 13 (1972), 219-223. 

OKLANDER, E. T. 
[1] Lpq interpolators and the theorem of Mareinkiewiez. Bull. Amer. Math. Soc. 72 

(1966),49-53. 

O'NEIL, R. 
[1] Convolution operators and L(p, q) spaces. Duke Math. J. 30 (1963), 129-142. 
[2] Two elementary theorems on the interpolation of linear operators. Proc. Amer. 

Math. Soc. 17 (1966), 76-82. 

O'NEIL, R. AND WEISS, G. 
[1] The Hilbert transform and rearrangement of funetions. Studia Math. xxm (1963), 

18~198. 

[2] The Mareinkiewiez interpolation theorem. Proc. Amer. Math. Soc. 15 (1964), 
996-998. 

PALEY, R. E. A. C. 
[1] A note on power series. Proc. London Math. Soc. 7 (1932), 122-130. 

PARROTT, S. K. 
[1] Isometrie multipliers. Pacific J. Math. 25 (1968), 159-166. 

PEETRE,J. 

[1] Espaces d'interpolation et theoreme de Soboleff. Ann. Imt. Fourier, Grenoble, 16 
(1966),279-317. 

[2] Applieations de la theorie des espaces d'interpolation dans l'analyse harmonique. 
Ricerche Mat. XV (1966),1-34. 

[3] On convolution operators leaving IJ'.A spaees invariant. Ann. Mat. Pura Appl. Sero 
IV, LXXII (1966), 295-304. 

PICHORIDES, S. K. 
[1] Norms of exponential sums. Publ. Math. Or8ay (1977), #73. 
[2] On a eonjeeture ofLittlewood. To appear. Bull. Greek Math. Soc. 
[3] On the LI norm of exponential sums. Annal8 Imt. Fourier, (Grenoble) 30 (2) 1980, 

79-89. 

PIGNO, L. 
[1] A multiplier theorem. Pacific J. Math. 34 (1970), 755-757. 
[2] Restrietion of 1J' transforms. Proc. Amer. Math. Soc. 29 (1971), 511-515. 

PISIER, G. 
[1] Ensembles de Sidon et processus gaussiens. C. R. Acad. Sei. Pari8 286 A (1978), 

671-674. 
[2] De nouvelles caraeterisations des ensembles de Sidon. To appear. 



352 RESEARCH PUBLICATIONS 

PRICE,J. F. 
[1] Multipliers between some spaces of distributions. J. AU8tral. Math. Soc. 9 (1969), 

415-423. 
[2] Some strict inclusions between spaces of LP-multipliers. Tram. Amer. Math. Soc. 

152 (1970), 321-330. 
[3] (LP, Lf)-Multiplier Problems. Doetoral thesis, Australian National University (1970). 
[4] Littlewood's eonjeeture for Diriehlet kerneis. Australian Math. Soc. Gazette 8 (2) 

(1981),37-40. 

PROHORENKO, V.1. 
[1] Certain properties of Fourier eoeffieients. (In Russian; English summary.) Vestnik 

M08kav. Univ. Sero I Math. Meh. (1964), No. 6, 51-60. 

RAMIREZ, D. E. 
[1] Uniform approximation by Fourier-Stieltjes transforms. Proc. Camb. Phil. Soc. 64 

(1968),323-333. 
[2] Uniform approximation by Fourier-Stieltjes transforms. Proc. Camb. Phil. Soc. 64 

(1968), 615--623. 
[3] Weakly almost periodie funetions and Fourier-Stieltjes transforms. Proc. Amer. 

Math. Soc. 19 (1968), 1087-1088. 

RAUCH, H. E. 
[1] Harmonie and analytic funetions of several eomplex variables and the maximal 

theorem ofHardy and Littlewood. Canad. J. Math. 8 (1965),171-183. 

REID, G. A. 
[1] Coneepts of differentiability and analytieity on eertain classes of topologieal groups. 

Proc. Camb. Phil. Soc. 61 (1965), 347-379. 

REITER, H. 
[1] Contributions to harmonie analysis, IV. Math. Ann. 135 (1958), 467-476. 
[2] Subalgebras of L 1(G). Nederl. Akad. Wetemch. Proc. Sero A68 = Indag. Math. 27 

(1965),691-696. 

RICHARDS, I. 
[1] On Malliavin's eounterexample to speetral synthesis. Bull. Amer. Math. Soc. 72 

(1966),698--700. 

RIDER, D. 
[1] Central idempotents in group algebras. Bull. Amer. Math. Soc. 72 (1966), 

1000-1002. 
[2] Transformations of Fourier eoeffieients. Paciftc J. Math. 19 (1966), 347-356. 
[3] A relation between a theorem of Bohr and Sidon sets. Bull. Amer. Math. Soc. 72 

(1966),558--561. 
[4] Gap series on eircles and spheres. Oanad. J. Math. 18 (1966),389--398. 
[5] Closed subalgebras of L 1(T). Yale UniverBity, Department ofMathematies (1967). 

RIEFFEL, M. 
[1] Multipliers and tensor produets of LP spaces of loeally eompaet groups. Studia 

Math. 33 (1969), 71-82. 



RESEARCH PUBLICATIONS 353 

RIGELHOF, R. 
[1] Norm deereasing homomorphisms of measure algebras. Trans. Amer. Math. 800. 136 

(1969), 361-371. 

RISS, J. 
[1] E:Jements de ealeul differentiel et theorie des distributions sur les groupes Abeliens 

loealement eompaets. Acta Math. 89 (1953), 45-105. 

RIVIERE, N. M. AND SAGHER, Y. 
[1] Multipliers of trigonometrie series and pointwise convergence. Trans. Amer. Math. 

Soo. 140 (1969), 301-308. 

ROSENTHAL, H. P. 
[1] Projeetions onto translation-invariant subspaces of V(G), G noneompact. Function 

AlgebrlUl, pp. 265-275. Seott, Foresman and Company, Glenview, IJI. (1966). 
[2] Caracterisation d'ensembles de Helson, par l'existenee de certains projeeteurs. O. R. 

Acad. Sei. Paris Sero A-B 26Z (1966), A286-A288. 
[3] On trigonometrie series assoeiated with weak * elosed subspaces of eontinuous 

funetions. J. Math. Mech. 17 (1967), 485-490. 

RUDIN, W. 
[6] Trigonometrie series with gaps. J. Math. Mech. \} (1960), 203-228. 
[7] Ideals with small automorphisms. Bull. Amer. Math. Soo. 72 (1966), 339-341. 
[8] Projections on invariant subspaces. Proo. Amer. Math. Soo. 13 (1962), 429-432. 

SAEKI, S. 

[1] Translation invariant operators on groups. Tohoku Math. J. n (1970), 409-419. 
[2] On the union oftwo Helson sets. J. Math. Soo. Japan 23 (1971), 636--648. 

SALEM, R. 
[1] On a problem of Littlewood. Amer. J. Math. 77 (1955), 535-540. 

SALEM, R. AND ZYGMUND, A. 

[1] Some properties of trigonometrie series whose terms have random signs. Aeta Math. 
91 (1954), 245-301. 

SANDERS, J. W. 
[1] Weighted Sidon sets. Pacific J. Math. 63 (1976), 255-279. 

SAWYER,S. 

[1] Maximal inequalities ofweak type. Ann. Math. 84 (1966),157-174. 

SCHECHTER, M. 
[1] Interpolation spaces by eomplex methods. Bull. Amer. Math. 800. 7Z (1966), 

526-533. 

SCHW ARTZ, L. 

[1] Sur une propriete de synthese speetrale dans les groupes noncompaets. O. R. Acad. 
Sei. Paris zn (1948), 424-426. 

[2] Theorie generale des fonetions moyennes-periodiques. Ann. Math. 48 (1947), 
857-929. 

[3] Sur les multiplieateurs de FL". Kungl. Fysiogr. 8ä"sk. Lund Forh. ZZ (1953), 
124-128. 



354 RESEARCH PUBLICATIONS 

SHIMOGAKI, T. 

[1] Hardy-Littlewood majorants in function spaces. J. Math. Soc. Japan 17 (1965), 
365-373. 

SIMON, A. B. 
[1] Cesaro summability on groups: Characterization and inversion of Fourier 

transforms. Function Algebras, pp. 208-215. Scott, Foresman and Company, 

Chicago (1966). 

SIMONENKO, I. B. 
[1] Multidimensional discrete convolutions. (Russian). Mat. Iss1ed. 3 (1968). ryp. 1 (7), 

108-122. 

SKVORCOVA, M. G. 
[1] Some new theorems on class of multipliers transforming Fourier series. II. 

(Russian). Kabardino-Balkarsk. G08. Univ. Ucen. Zap. No. 30 (1966),220-228. 

SMITH, K. T. 

[I] A generalization of an inequality of Hardy and Littlewood. Ganad. J. Math. 8 
(1956), 157-170. 

SRINIVASAN, T. P. AND WANG, J.-K. 
[2] On c10sed ideals of analytic functions. ProG. Amer. Math. SOG. 16 (1965), 49-52. 

STAMPACCHIA, G. 
[1] !t'(P·).)-spaces and interpolation. Gomm. Pure Appl. Math. 17 (1964), 293-306. 

STEIN, E. M. 
[1] On limits ofsequenees of operators. Ann. Math. 74 (1961),140-170. 
[2] Interpolation of linear operators. Trans. Amer. Math. Soc. 83 (1956), 482-492. 

STEIN, E. M. AND WEISS, G. 
[1] An extension of a theorem of Marcinkiewicz and some of its applications. J. Math. 

Mech. 8 (1959),263-284. 
[2] Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87 

(1965), 159-162. 

STEIN, E. M. AND ZYGMUND, A. 
[1] Boundedness of translation invariant operators on Hölder spaces and LP-spaces. 

Ann. Math. (2) 85 (1967),337-449. 

STRICKARTZ, R. 

[1] Isomorphisms of group algebras. Proc. Amer. Math. SOG. 17 (1966), 858-862. 

TAIBLESON, M. 
[1] Fourier coefficients of functions of bounded variation. Proc. Amer. Math. Soc. 18 

(1967),766. 
[2] On the theory of Lipschitz spaces of distributions on Euclidean n-space. II. 

Translation-invariant operators, duality and interpolation. J. Math. Mech. 14 

(1965),821-839. 



RESEARCH PUBLICATIONS 355 

TAYLOR, J. L. 
[1] The Shilov boundary of the algebra of measures on a group. Proc. Amer. Math. Soc. 

16 (1965), 941-945. 

[2] The structure of convolution measure algebras. Trans. Amer. Math. Soc. U9 (1965), 
150-166. 

[3] Convolution measure algebras with group maximal ideal spaces. Trans. Amer. Math. 
Soc. 128 (1967), 257-263. 

[4] L-subalgebras of M(G). Trans. Amer. Math. Soc. 135 (1969), 105-113. 
[5] Ideal theory and Laplace transforms for a class of measure algebras on a group. 

Acta Math. 121 (1968), 251-292. 
[6] Non-commutative convolution measure algebras. Pacific J. Math. 31 (1969), 

809-826. 

[7] Measures which are convolution exponentials. BulZ. Amer. Math. Soc. 76 (1970), 
415-418. 

[8] The cohomology of the spectrum of a measure algebra. Acta Jfath. 126 (1971), 
195-225. 

[9] Inverses, logarithms and idempotents in M(G). Roeky Mountain J. Math. 2 (2) 
(1972), 183-206. 

[10] Homology and cohomology for topological algebras. Advances in Math. 9 (1972), 
137-182. 

[ll] On the speetrum of a measure. Advances in Math. 12 (1974), 451-463. 

THORIN, G. O. 

[1] An extension of a convexity theorem due to M. Riesz. Kungl. Fysiografiska 
Saellskapet i Lund ForltaendZinger 8 (1939), No. 14. 

[2] Convexity theorems. Dissertation, Lund (1948), 1-57. 

UCHIYAMA, S. 
[1] Apropos d'un probleme de M. J. E. Littlewood. C. R. Acad. Sei. Paris 260 (1965), 

2675-2678. 

[2] On the mean modulus of trigonometrie polynomials whose eoefficients have random 
signs. Proc. Amer. Math. Soc. 16 (1965), II 85-1190. 

VAROPOULOS, N. TH. 

[1] Sur les ensembles parfaits et les series trigonometriques. C. R. Acad. Sei. Paris 260 
(1965), 4668-4670; 5165-5168; 5997-6000. 

[2] Sur les ensembles parfaits et les series trigonometriques. C. R. Aead. Sei. Paris 260 
(1965),3831-3834. 

[3] Speetralsynthesis on spheres. Proc. Cambridge Phil. Soe. 62 (l966), 379-387. 

[4] The funetions that operate on Botr) of a diserete group r. Bull. Soc. Math. France 
93 (1965), 301-321. 

[5] Sur la reunion de deux ensembles de Helson. C. R. Acad. Sei. Paris Ser. A-B 271 
(1970), A251-253; Acta Matlt. 125 (1970),109-154. 

WADA, J. 
[1] A note on multipliers of ideals in funetion algebras. Proe. Japan. Aeademy 42 (10) 

(1966), 1134-1138. 



356 RESEARCH PUBLICATIONS 

W AELBROECK, L. 
[1] Le ealeul symbolique dans les algebres eommutatives. J. de Math. Pure et Appl. 33 

(1954), 147-186. 
[2] On the analytie speetrum of Arens. Paciji.c J. Math. 13 (1963), 317-319. 

WALTER, G. 
[1] Pointwise eonvergence of distribution expansions. Studia Math. 26 (1966), 143-154. 

WANG,J.-K. 

[1] Multipliers of eommutative Banach algebras. Dissertation, Stanford Univ. (1959). 

WARNER, C. R. 
[1] Ciosed ideals in the group algebra L 1(G) n L 2(G). Trans. Amer. Math. Soc. 121 

(1966),408-423. 

WEISS, G. 
[1] Harmonie Analysis. Studies in MathematiCB, Vol. 3, pp. 124-178. The Mathematieal 

Assoeiation cif Ametiea; Prentice-Hall, Ine., Englewood Cliffs, N.J. (1965). 

WEISS, M. 
[1] On a problem of J. E. Littlewood. J. London Math. Soc. 34 (1959), 217-221. 

WELLS, J. 

[1] Restrietion for Fourier-8tieltjes transforms. Proc. Amer. Math. Soc. 15 (1964), 
243-246. 

[2] Multipliers ofideals in funetion algebras. Duke Math. J. 31 (1964), 703-709. 

WENDEL, J. G. 
[1] On isometrie isomorphisms of group algebras. Pacijic J. Math. 1 (1951), 305--311. 
[2] Left centralizers and isomorphisms of group algebras. Paciji.c J. Math. 2 (1952), 

251-261. 

WERMER,J. 

[1] Banach Algebras and Ailalytie Funetions. Advances in MathematiCB, 1. Fa8c, 1. 
Aeademie Press, Ine., New Vork (1961), 51-102. 

WIDOM, H. 
[1] Toeplitz Matriees. Studies in Real and Gomplex Analysi8, Vol. 3, pp. 179-209. The 

Mathematieal Assoeiation of Ameriea; Prentice-Hall, Ine., Englewood CIiffs, N.J. 
(1965). 

[2] 

WIK, I. 
[1] 
[2] 

Toeplitz operators on Hp. Paciji.c J. Math. 19 (1966), 573-582. 

On linear dependenee in elosed sets. Arch. Mat. 4 (1960), 209-218. 
Some examples of sets with linear independenee. Ark. Mat. 5 (1964), 207-214. 

WIi.LIAMS, L. R. 
[1] Generalized Hausdorff-Young inequalities and mixed-norm spaees. Pacijic J. Math. 

38 (1971), 823-833. 

WONG, J. S. W. 

[1] On a eharaeterisation ofFourier transforms. Monat8Ch. Math. 70 (1966), 74-80. 



RESEARCH PUBLlCATIONS 357 

Y AMAGUOHI, H. 
[1] Some multipliers on H}(G). J. Austral. Math. Soc. 29 (1) (1980), 52-60. 

YANO, S. 
[1] On Walsh-Fourier series. T8hoku Math. J. 3 (1971), 223-242. 

YAP,L.P.H. 
[1] Some remarks on convolution operators and L(p, q) spaces. Duke Math. J. 36 

(1969), 647-658. 

YOUNG, F. 
[1] Transformations ofFourier coeffwierits. Proc. Amer. Math. Soc. 3 (1952), 783-79i. 

ZAFRAN, M. 
[I] The spectra of multiplier transformations on the Lp spaces. Ann. Math. 103 (2) 

(i976),355--374. 
[2] The functions operating on certain algebras of multipliers. Bull. Amer. Math. 8oc. 

82 (1976), No. 6, 939-940. 
[3] The functions operating on multiplier algebras. J. Functional Analysis 26 (1977), 

No. 3, 289-314. 
[4j Multiplier transformations of weak type. Ann. Math. (2) 101 (1975), 34--44. 

ZYGMUND,A. 

[1] On the preservation of classes offtinctions. J. Math. Mech. 8 (1959), 889-895. 



CORRIGENDA TO 2nd (REVISED) EDITION OF VOLUME 1 

Page Line Für Read 

30 22 1 j 
45 10- R/2nZ T 

45 9- R/2nZ T 

75 13 R/2nZ T 

75 4- R/2nZ T 

77 10- R/2nZ T 

111 7 ~O ~O; ~ 0; 

173 4 A(R/2nZ) A(T) 

194 15 Pk(AY) Pk(AX) 

2WLHC A(R/2nZ) A(T) 

219 RHC 6 78 79 

219 RHC 17 35, 128 36, 135 

221 LHC 9- 101 102 

221 LHC 5- 34 111 

221 RHC 9 191 179 

221 RHC 1- ADD 119, 123 

214 12- Tü appear Paeifie J. Math. 
Paeifie J. M ath. 21 (1967), 255-263. 

215 17, 18 Tü appear A reh. History 
The M athematical Exaet Sei. 
l ntelligeneer. 21 (1979), 129-159. 

358 



Symbols 

Numerals in italic type refer to Volume 1. Numerals 
in boldface type refer to the exercises, the exercise 
labeled x.y appearing in Volume 1 if and only 
ifl ~ x ~ 10. 

A = A(T), 44 
AC, 127 
A(CC),14.9 
A(E), 168 
A(Z),37 
A w ,11.15 
A +,11.15 
slN ,209 
BC(G),8 
B(r),27 
B(E),19 
B E ,237 
BUC(G),8 
BV,34 
C(S),20 
C(T), 17, 27 ff. 
C(CC),209 
C(G), 8 
CA' Cz+, 323 
CAG), Co(G), 21, 8 
C", Coo, 27 ff., 50, 56 
CE ,235 
CK (CC),215 
Cu ,294 
Ca .•. , 222 
Co = Co(Z), 29 
co(E),236 
Co(CC"), 212 
CIl , C«*, C« *,116,119 
CC,206 

CCN ,207 

359 

CC",208 
CBV, 10.12 
r(B),27 
D, 28, 63 
D,52 
Dm, 55 
DN , 1.1, 79 
DN ,110 
DN #, 110 
DN #, 110 

D/" DJ , 160 
.:\, 110 
E«,115 
E N f,99 
EN(Plj', 176 
es, 12 
S, SE' SE +,12.39 
s", s, 53,57 

J,J,f*, 31 
j, 30 
F, F, F*, 78 
F,67 
j, P, 91 
F N , 1.1, 79 
~, 43 
~~ 

~H, 236 
HP, 3.9 
I, 21, 209 ff. 
IN, 209 ff. 
J N ,102 



360 

LP = LP(T), 27 
LP(~), 210 
L EP,235 

LKP(~), 215 

L b co, 292 

L,!,ll 
{P = {P (Z), 24, 29 
(P(E),236 

LP' co, 327 
Ä,210 
A",,294 

A* 1,295 
M,53 
Md ,12.51 
M(~), 14.19 
M(E),112 
M E ,235 
m(F, G), 285 
m(p, q), 298 
mp ,311 
P,108 
P(E), pO(E), 112 
P N ,211 
P.V., 59, 92 
(p, q), 259, 298 
~, 16.31 
R,15 
Bf,208 
R/2nZ, 15 
R(x),21 
r(~), 11 
p(x),21 

PNj,99 

SYMBOLS 

Pn,207 
S(~), 210 
s*j,165 
SNj, 3.1, 78 
supp, 1I.IS, 109 
u*j,97 
u(x), 21 
T,42 
TN ,1.7 
TE ,235 
T(~), 211 
TK(~)' 215 
T a ,16 
T",,209 
'LNj,102 
Ua.s., 223 
Vj,33 
Vp, 141, 303 
Vf ,17,2 
Vfco, 113 

V,l, 117 

Vp ,309 
wE(m>, 16.26 

X, 15 
Z,15 
Z+, 206, 323 
IX, 206 

XM,143 
wp j,36,135 
#(A), #(F), 246, 250 

11'11;, co' 11'll p , co ,327 



Index 

Numerals in italie type refer to Volume 1. Numerals in bold
face type refer to the exereises, the exercise labeled x.y 
appearing in Volume 1 if and only if 1 :0:::; x :0:::; 10. 

Abel (-Poisson) kerneI, 103 
Abel means, 103 
Abel summability, 103, 6.16 
Absolute multiplier, 323 ff. 
Absolutely eontinuous funetions, 32, 

33,127,7.10,7.11,136,63, 64 
Absolutely eonvergent Fourier series, 

173 ff., 33, 34, 11.18-11.20, 
108 ff., 12.53, 155 

Abstract Tauberian theorem, 36 
Adjoint, self-, 11.24 
Affine map, 4.9 
Algebra, 

Banach, 52, 56, 72, 119, 165, 10.16, 
19 ff. 

Beurling, 11.15 
closed sub-, 11 ff. 
eonvolution, 52, 56, 57, 77, 81 
division, 26 
group, 62 ff., 82 
quotient, 24 
Segal,39 

Algebraie (Hamel) base, 165 
Almost periodie funetion, 45 
ex-eapaeity,116 
ex-energy, 115 
ex-potential, 12.40 
Annihilator, 209 
Approximate identity, 60 ff., 212 
Approximation by trigonometrie poly-

nominals, 42, 99 ff., 6.5-6.10, 
6.17,131 

Associated set, 269 
Atomie (diserete) measure, 12.57, 269 

Banach algebra, 52, 57, 72, 124, 126, 
173, 178, 10.16, 19 ff. 

Banach spaee, 192 

Banaeh-Steinhaus theorem, 195 
Base, algebraie (Hamel), 165 
Base, topologieal, 165 
Bases of trigonometrie polynomials, 

165,166 
Bernstein polynomials, 91 
Bernstein's inequality, 1.9, 102 
Berstein's theorem, 91 
Beurling algebra, 11.15 
Beurling's problem, 10, 117, 118 
Bipositive multiplier, 314 
Boehner's theorem, 157, 121, 12.34 
Bohr set, 267 
Bosanquet-Kestelman lemma, 3.14 
Bounded set, 

in D, 60 
in Dm, 61 
in 11',60,62 
inM, 60, 61 
in topologieallinear spaee, 193 

Bounded variation, 33, 111 
funetion of, 33, 8.13, 156, 158, 162, 

171,12.44 
sequenee of, 111 

Cantor (Walsh) group, 155, 206 ff. 
Cantor-Lebesgue theorem, 2.14 
Cantor ternary set, 12.44, 207, 14.16 
Capaeitable set, 120 
Capaeitary dimension, 116 
Capacity, 

361 

ex-, 116 
exterior, 119 
interior, 119 
logarithmie, 118, 119 
Newtonian, 115, 120 
and trigonometrie series, 171, 119, 

120 ff. 



362 INDEX 

Carleson set, 267 
Carleson's theorems, 169, 170 
Category, first (meagre), 187 
Category, second (nonmeagre), 187 
Category theorem, 187 
Cesaro means, 8, 79, 82, 87 
Cesaro summability, 82 ff., 5.6-5.8, 

87ff. 
in mean, 87 
pointwise, 94 ff. 

Change of variable relative to A, 179 
Character, 18, 3.19 

(dual) group, 20, 2.3, 207 ff. 
principal, 19 
Rademacher, 208 

Characteristic function 
ofset, 143 
of prob ability distribution, 12.34 

CirQle group, 15 
Class (p, q), mapping of, 144 ff., 256, 

298 ff. 
Closed graph, 195 
Closed graph theorem, 197 
Closed ideal, 53, 3.4, 2, 3, 24 ff., 36 ff., 

11.4, 11.17, 11.21, 11.23, 12.27, 
12.45, 12.53, 317 

Closed invariant subspace, 2, 11.22, 
11.23, 316, 317 

Closed linear operator, 195 
Closed subalgebra, 11 ff. 
Closure of translations theorem, 6 ff., 

10,11,117,118 
Comeagre,187 
Compacity principles, 197, 60 ff. 
Compact operator, 314 
Compact multiplier, 315 
Complete measure space, 141 
Complex homomorphism, 69 ff., 4.1, 

4.7, 26 ff., 82, 83, 12.26, 12.51, 
311 

Conjugate Dirichlet kerneI, 110 
Conjugate exponent, 28 
Conjugate function, 91 ff., 177 ff. 
Conjugate function operator, 140, 147, 

177 ff. 
Conjugate series, 109, 110, 90 ff. 
Continuity, modulus of, 36, 99, 135 
Convergence, 

inD, 57 ff. 
inM,61 
in mean, 29, 131 

in measure, 6, 13.18, 13.19 
weak (in dual space), 193 
weak in Il', 62 
weakin M, 62 

Convergence of Fourier series, 
in mean, 119-121,131, 106 ff., 213 
pointwise, 41, 42, 114, 117, 120, 151, 

155 ff., 213, 217, 221, 14.23 
Convex sequence, 111 
Convexity theorem, Riesz-Thorin, 149 

for multipliers, 300 
Convolution algebra, 52, 56, 57, 74, 

78 ff. 
Convolution, 50 ff., 73 ff. 

characterisation of, 58, 281, 282, 297 
of distributions, 76 ff. 
of functions, 50 ff. 
of measures, 80 
of measures with functions, 79 ff. 
of sequences, 64, 3.15, 78, 109, 12.32, 

16.29 
truncated, 11.12, Il.13 

Coset (equivalence class), 
modulo an ideal, 24 
modulo a subspace, 193 
offunctions, 27,141,210 
of reals modulo 2x, 15 

Cosine series, 114 ff., 117 ff., 119, 123 
Counting measure, 142 

Decomposition, 
direct sum, 17, 318 ff. 
idempotent, 319 ff. 

Defining family of seminorms, 191 ff. 
Dense, everywhere, 187 
Dense, nowhere, 187 
Density theorems, 42, 90, 91, 210, 212 
Derivative, 

distributional, 63 
pointwise, 7,30,33,63,64 
symmetrie, 6.16 

Diagonal subsequence, 3.5, 140, 197 
Dini's test, 159 
Dirac ö-function, 62, 53, 54 
Dirac measure, 53, 54 
Direct sum dexomposition, 17, 318 ff. 
Dirichlet kerneI, 1.1, 79 

conjugate, 110 
modified,110 

Discrete (atomic measure), 12.51, 269 
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Distribution (generalized function), 
48 'ff. 

conjugate, 91 ff. 
generated by function, 52 
Hilbert's periodic, 91 ff., 99, 13.27, 

307 
order of, 55 
positive, 12.7 
positive definite, 12.35 
principal value, 59, 93 
support of, 104, 12.27, 12.29 

Distributional convergence, 57 
Distributional derivative, 63 
Distributions, 

convergence of, 57 
convolution of, 73 ff. 
differentiation of, 63 ff. 
Fourier coefficients of, 67 
Fourier series of, 67 
product of, 59, 60 

Distribution function, 160 
Divergence ofFourier series, 160 ff. 

Fejer's example, 164 
Division algebra, 26 
Dual, 

of co, 8.12 
ofC, 56 
ofcm,56 
ofC"',52 
ofLP, 201 
of t P, 118, 12.32 

Dual (character) group, 20, 2.3, 207 ff. 
Dual space, 193 
Duality, 20, 207 
Duality law (Ponryagin), 20, 2.3 
Duality theory, 316 
Dunford-Schwartz operator, 177 

Eberlein's theorem, 12.50 
Elementary solution, 72 
Energy, 

1%-, 115, 116, 12.38-12.42 
Newtonian, 115, 120 

Equidistributed sequence, 2.15 
Equilibrium measure, 12.38, 12.41 
Equivalence class (coset), 

modulo an ideal, 24 
modulo a subspace, 193 
offunctions, 27, 141,210 
of reals modulo 271:, 15 

Ergodie theorem, 176, 177 
E-spectral, 217, 235 
Everywhere dense, 187 
Extended real number system, 159 
Extended real-valued function, 159 
Exterior capacity, 119 

Factorisation problems, 53, 124, 134, 
38, 13.20, 255 

F. and M. Riesz theorem, 99, 12.19 
Fatou's theorem, 6.12 
Fatou-Zygmund set, 269 
Fejer kerneI, 79 
Fejer's example, 161 
Fejer's lemma, 2.16 
Filter base, 8 
First category (meagre), 187 
Formal identity element, 20 
Fourier coefficients, 1,30 ff., 67 ff. 
Fourier-Lebesgue coefficients, 67 
Fourier-Lebesgue series, 30, 67, 87 ff. 
Fourier series, 2 
Fourier-Schwartz series, 48, 67 
Fourier-Stieltjes series, 67, 84-86 
Fourier-Stieltjes transform, 49, 67, 

12.36, 12.37 
Fourier transform, 30, 50, 67 
F. Riesz' theorem, 11.4 
M. Riesz' theorem, 100, 106 
Frechetspace, 191,51 
Function, 

absolutely continuous, 32, 33, 127, 
7.10,7.11,36,63,64 

almost periodie, 45 
of bounded variation, 33, 8.13, 156, 

158,171,72,73,12.44 
characteristic (of set), 143 
characteristic (of probability distri-

bution),12.34 
conjugate, 91 ff., 177 ff. 
as distribution, 52 
distribution, 160 ff. 
extended real-valued, 159 
generalised (distribution), 48, 52 
integrable, 22, 27, 159, 160, 210 
Lebesgue's singular, 12.44 
lower semicontinuous, 188 
mean periodic, 8 
measurable, 27, 141,210 
periodic, 15, 27 
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positive definite, 149 ff., 121 ff. 
quasianalytic, 2.8 
Rademacher, 14.16 
simple, 142 
support of, H.18 
vector-valued, 33, 39, lI.lI 
Walsh,208 
Weierstrass' nondifferentiable, 15.19 

Gaps, Hadamard, 234 
Gelfand-Mazur theorem, 26 
Gelfand (representation) space, 27, 35 
Gelfand theory, 19 ff. 
Gelfand topology, 35 
Gelfand transform, 27, 34 
Generalised function (distribution), 48, 

52 
Generalised multiplier, 315 
Generalised (topologieal) nilpotent, 

3.i2,35 
Gibbs phenomenon, 10.8 
Graph,195 
Group, 

Cantor (Walsh), 155, 206 ff. 
character (dual), 20, 2.3, 207, 14.15 
circle, 15 
of integers, 15 
locally compact Abelian, 15, 206 
quotient, 15, 209, 14.3 
ofreal numbers, 15 
topologieal, 15, 207 

Group algebra, 62 ff., 82 

Haar (invariant) integral, 21 ff., 24, 
209 ff. 

Hadamard gaps, 234 
Hadamard sequence, 138, 234 
Hadamard set, 247 
Hahn-Banach theorem, 199 
Hamel (algebraic) base, 165 
Hardy inequality (generalised), 84 
Hardy spaces, 3.9, 8.15, H.I0, 108, 326 
Hardy's theorem, 84, 5.8, 123, 169 
Hardy-Littlewood maximal operator, 

164,13.17 
Hardy-Littlewood theorem (inequal

ity), 193 
dual version of, 195 

Harmonie (spectral) analysis, 19 

Harmonie (spectral) synthesis, 19, 
113 ff., 12.53 

Harmonie (spectral) synthesis set, 7, 
109 ff., 12.53 

Hausdorff-Young theorem (inequal-
ity), 153, 224, 257 

Helson set, 177, 263 ff. 
Helson's theorems, 83, 12.46-12.48 
Hilbert space, 130 
Hilbert transform, 189 
Hilbert's (periodie) distribution, 91 ff., 

99,13.27,307 
Hölder (Lipschitz) condition, 100 
Hölder's inequality, 28, 30, 214 

converse of, 3.6, 143 
Homogeneous Banach space, 87, 39 
Homomorphism, 72 ff., 4.2-4.5, 4.8, 

4.9,8.1,179, 12.49, 255 
complex, 69 ff., 4.7, 26 ff., 82 ff., 

12.26, 12.51,312 
problem, 72 ff. 

Hull,12.53 

Ideal, 54, 3.4,2,3,23 ff., 1I.19, 
closed, 54, 3.4, 2, 3, 24, 36 ff., H.4, 

1I.17, H.22, 11.23, 12.27, 12.45, 
12.53 

maximal, 4.1, 23 ff. 
modular (regular), 4.1, 35, H.26, 

H.27 
primary,37 
proper, 23 

Idempotent, 53, 12, 83, 12.46, 12.47, 
283 

decomposition, 319 ff. 
multiplier, 319 ff. 

Independence, 214 
Independent set, 208,265 
Inequality, 

Bernstein's, 1.9, 102 
Hardy (Generalised), 84 
Hardy-Littlewood, 193 
Hardy-Littlewood, dual version of, 

195 
Hausdorff-Y oung, 153, 224, 257 
Hölder's, 28, 30, 214 
Hölder's, converse of, 3.6, 143 
Littlewood (Generalised), 84 
Marcinkiewicz-Zygmund, 195 
Minkowski's, 27, 30 
Y oung's, 157 
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Integral, 
Haar (invariant), 21 ff. 24, 209 ff. 
Lebesgue, 22, 26 
Lebesgue-8tieltjes, 52 
relatively ~nvariant, 2.4 
Riemann, 22, 26 
Riemann-Stieltjes, 34, 53, 72, 73 
singular, 192 

Interior eapaeity, 119 
Interior measure, 3.16 
Interpolation set, 269 
Interpolation theorem, Mareinkiewiez, 

165 
Interpolation (eonvexity) theorem, 

Riesz-Thorin, 149 
Invariant (Haar) integral, 21 ff., 24, 

209 ff. 
Invariant subspace, 17, 2, 11.22, 316, 

318 
elosed, 2, 11.22, 11.23, 316, 317, 318 
multiplier of, 316, 317 

Inversible element, 21, 26, 27 
Inversion formula, 103, 134 
Isometrie multiplier, 314 
Isomorphism problem, 75, 76, 314 
Isoperimetrie problem, 8.16 

Jaekson polynomial, 102 
Jordan's test, 155 

Kaezmarz-8tein theorem, 309 
Kahane's theorems, 14 
Kemei, 

CX-, 115 
Abel (-Poisson), 103 
eonjugate Diriehlet, 110 
Diriehlet, 1.1, 79 
Fejer, 1.1, 79 
logarithmie,119 
modified Diriehlet, 110 
Newtonian, 115, 120 
of subset of r(B), 12.53 
Paley,212 

Kolmogorov's theorem, 138, 10.21 
Kolmogorov-8eliverstov-Plessner 

theorem, 169, 171 
Kroneeker set, 265 
Kunze--Stein theorem, 296 

Laeunary series, 5.6, 6.13, 234 ff. 
Lebesgue integral, 22, 26 
Lebesgue point, 96 
Lebesgue set, 96 
Lebesgue's singular funetion, 12.44 
Lebesgue--Stieltjes integral, 52 
Left shift, 209 
Lemma, Bosanquet-Kestelman, 3.14 
Lemma, Fejer's, 2.16 
Lemma, Riemann-Lebesgue, 36, 212 
Lemma, Steckin's, 1.8 
Uvy's eontinuity theorem, 12.34 
Ikvy's theorem, 178, 34 
Lipsehitz (Hölder) eondition, 100 
Lipsehitz multiplier, 294 
Littlewood's eonjeeture, 84 
Loealisation principle, 81 ff. 
Loeally eompaet Abelian group, 15, 

206 
Loeally eonvex space, 195 
Logarithmie eapaeity, 118, 119 
Logarithmie kernei, 119 
Lower semieontinuous funetion, 118 
Lusin-Denjoy theorem, 2.13 
Lusin-Privalov theorem, 95 

Majorant (maximal) operator, 163, 
164, 190, 191, 13.26, 13,27, 
14.23 

for 8N!, 165, 164 
for uNI, 97, 163, 190 

Mapping of class (p, q), 255, 256 
Mareinkiewiez interpolation theorem, 

165 
Mareinkiewiez-Zygmund theorem (in

equality), 195 
Maximal ideal, 4.1,23 ff. 
Maximal (majorant) operator, 163, 

164, 190, 191, 13.26, 13.27, 
14.23 

Maximal subalgebra, 17 ff. 
Meagre (first eategory), 187 
Mean eonvergenee, 29 

of Fourier series in L2, 131 
ofFourier series in L", 106 ff. 

Mean periodie funetion, 8 
Measure, 

algebra, 72, 73, 75,81 ff. 
eounting, 142 
diserete (atomie), 12.51, 269 
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equilibrium, 12.38, 12.41 
interior, 3.16 
positive, 60, 122, 12.34, 295 
probability, 12.34 
Radon, 52 ff., 122, 12.34 

Measure space, 140 ff. 
complete, 141 

Mikusinski operation al calculus, 11.13 
Minimal positive definite function, 9.5 
Minkowski's inequality, 27, 30 
Modified Diriehlet kerneI, 110 
Modular (regular) ideal, 41, 35, 11.26, 

11.27 
Module, 57, 3.2,3 
Modulus of eontinuity, 36, 100, 135 
rn-operator, 285 
Multiplier (funetion, sequence), 278 

absolute, 323 ff. 
Multiplier (operator), 76, 279 

bipositive, 314 
bounded eonvergenee, 291 ff. 
eompact, 315 
isometrie, 314 
positive, 295 
uniform eonvergence, 291 ff. 
weakly eompaet, 315 
of invariant subspaee, 316 
of quotient space, 315 
ofweak type (p, p), 326 ff. 
oftype 

(A, A), 16.13 
(AC, Cl, (AC, L oo ), 16.27 
(C, Cl, 289 
(Coo, cool, 287 
(C oo , D), 280, 287 
(C, L oo ), 289, 16.7 
(F, Cu), 294 
(V, Cl, 290 
(LI, LI), 289 
(LI, LP), 289 
(LI, M), 289 
(L2 , L2 ), 279 
(LP, Lq), 298 ff. 
(Loo , L oo ), 289,16.7,16.8 
(M, Cl, 291 
(M, M), 289, 16.8 
(wE(m), W,(m)), 16.26 

weakly eompaet, 315 
Multipliers, eonvexity theorem for, 300 
Multipliers and isomorphism problems, 

76,314 

Newtonian kerneI, 15, 120 
Nilpotent, generalised (topologieal), 

3.12,35 
Nonmeagre (seeond eategory), 187 
Norm, 191 

A-, 173, 33 
dual,193 
LP-, 27 
(P_, 29 
M-,61 
P-, 109 
quotient-, 194, 24 
strong (p, q)-, 145 
weak (p, q)-, 163 

Nowhere dense, 187 

Open linear operator, 195 
Open mapping theorem, 196 
Operational ealeulus (Mikusinski), 

11.13 
Operator, 

eommuting with convolution, 281 ff. 
eommuting with translations, 281 ff. 
eompaet, 314 
Dunford-Sehartz, 177 
rn-,281 
majorant (maximal), 163, 164, 190, 

191,13.26,13.27,14.23 
multiplier, 76,279 
of restrieted weak type, 173 
of type (p, q), 144 ff., 256, 298 ff. 
ofweak type (p, q), 162 
weakly eompaet, 315 

Order of distribution, 55 
Order of magnitude, 

of SN!' 166 ff., 10.2 
of uNI, 97 ff., 6.18 

Orthogonality relations, 3, 25, 26, 211 
Orthonormal base, 130 

Paley kerneI, 2i2 
Paley polynomial, 211 
Parseval formula, 1.7, 131 ff., 8.17, 

152,171 ff., 69 
Partial summation, 111 
Periodie funetion,.15 
Poisson (Abel-Poisson) kerneI, 103 
Poisson (Abel-Poisson) summability, 

103,6.16 
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Poisson's summation formula, 10.9-
10.11 

Pointwise eonvergenee of Fourier 
series, 33, 41, 42, 6.12, 6.13,114, 
117, 120, 151, 155 ff., 213, 217, 
221, 14.23 

Pointwise derivative, 7, 30, 33, 63 
Pointwise summability of Fourier 

series, 87 ff., 103, 16.14, 16.16 
Polynomial, 

Berstein, 91 
Jaekson,102 
Paley,211 
Rademaeher-speetral trigonometrie, 

251 
trigonometrie, 1.7,42,211,251 

Pontryagin duality law, 20 
Positive definite distribution, 12.35 
Positive definite funetion, 149 ff., 

121 ff. 
minimal, 9.5 

Positive distribution, 12.7 
Positive measure, 60, 122, 12.34, 295 
Positive multiplier, 295 
Potential 

IX-, 12.40 
Newtonian, 115, 120 
strong,145 
weak,163 

(p, q)-norm, 163 
Primary ideal, 37 
Prineipal eharaeter, 19, 208 
Prineipal value, 59, 93 
Prineiple, uniform boundedness 194 
Prineiple, weak eompaeity, 197: 60 ff. 
Problem, Steinhaus-Littlewood, 87 
Produet (of distribution or measure by 

funetion), 59, 60, 109, 12.9 
Projeetion ofV onto HP, 108 
Projeetion prineiple, 8.14, 12.39 
Proper ideal, 23 
Pseudomeasure, 108 ff. 
p-Sidon set, 268 

Quasianalytie funetion, 2.8 
Quasieonvex sequenee, 111 
Quasilinear operator, 162 
Quotient algebra, 24 
Quotient group, 15, 209, 14.3 
Quotient map, 194, 24 ff. 

Quotient norm, 194, 24 
Quotient seminorm, 194 
Quotient spaee, 193 

multiplier of, 280, 281 
Quotient topology, 15, 193 

Rademacher eharaeter, 208 
Rademacher funetion, 14.16 
Rademaeher-speetral trigonometrie 

polynomial, 251 
Rademacher series, 206 
Regular (modular) ideal, 4.1, 35, 11.26, 

11.27 
Relatively invariant integral, 2.4 
Representation by trigonometrie series, 

3 ff. 
Representation (Gelfand) spaee, 27, 35 
Resolvent set, 21 
Restricted weak type, operator of, 173 
Riemann integral, 22, 26 
Riemann-Lebesgue lemma, 36, 212 
Riemann-Stieltjes integral, 34, 53, 72, 

73 
Riemann summability, 6.14 
Riesz-Fiseher theorem, 133 
Riesz-Markov-Kakutani theorem 53 

12.36 ' , 
Riesz produet, 247 
Riesz representation theorem, 53, 72 
Riesz set, 269 
Riesz-Thorin eonvexity (interpolation) 

theorem, 149 
RosenthaI set, 269 
Rudin class, 11 
Runge's theorem, 205 

Saks' theorem, 10.20 
Saturated sequenee, 6.10 
Self-adjoint, 11.24 
Seeond eategory (eomeagre), 187 
Seminorm, 191 

quotient, 194 
Semisimple, 35 
Sequenee, 

Hadamard, 138, 234 
multiplier, 278 
of bounded variation, 111 
tempered, 48 



368 INDEX 

Sequenees, eonvolution of, 64, 3.15, 78, 
109, 12.32, 16.29 

Series, 
eosine, 114 ff., 117 fl., 119, 123 ff. 
Fourier, 2 
Fourier-Lebesgue, 30, 67, 87 ff. 
Fourier-Sehwartz, 48, 67 
Fourier-Stieltjes, 67, 84 ff. 
Rademacher, 206 
sine, 114 ff., 117 ff., 119, 123 ff. 
tempered,48 
trigonometrie, 1 ff., 2.13, 2.14 
Walsh-Fourier, 206, 211 

Set, 
assoeiated, 269 
Bohr, 268 
Carleson, 267 
of differenees, 3.16 
Fatou-Zygmund, 269 
Hadamard, 247 
Helson, 177, 263 ff. 
independent, 208, 265 
interpolation, 269 
Kronecker , 265 
p-finite, 141 
p-nuII, 141 
ofmultiplieity, 120, 121 
of multiplicity in striet sense, 121 
of type A(P), 259 ff. 
of type (p, q), 144 ff., 258 ff. 
of uniqueness, 121 
resolvent, 21 
Riesz,269 
RosenthaI, 269 
p-Sidon, 268 
Sidon,237 
O'-finite, 141 
speetral radius, 21 
speetral (harmonie) synthesis, 7, 

109 ff., 12.53 
W -Sidon, 268 

Sidon eonstant, 237 
Sidon set, 237 
Simple funetion, 142 
Sine series, 114 ff., 117 ff., 119, 123 ff. 
Singular integral, 192 
Spaee, 

Banach, 192 
dual, 193 
Freehet, 191 
Gelfand (representation), 27, 35 

loeally eonvex, 195 
measure, 140 
topologie al linear, 191 

Speetral, K-, E-, 215, 235 
Speetral (harmonie) analysis, 19 
Speetral radius, 21 
Speetral radius formula, 8.8, 30 
Speetral resolution theorem, 36 
Speetral (harmonie) synthesis, 19, 

113 ff., 12.53 
Speetral (harmonie) synthesis set, 7, 

109 ff., 12.53 
Speetrum, 21 
Steckin's lemma, 1.8 
Stein's theorem, 286 
Steinhaus-Littlewood problem, 87 
Steinhaus' theorem, 3.16 
Stone-Ceeh eompaetifieation, 35 
Stone-Weierstrass theorem, 91, 210 
Subalgebra, 53, 11 ff. 
Subalgebra, maximal, 17 ff. 
Submodule, 3.2 
Subspace, (translation) invariant, 17, 

2 ff., 282 ff. 
Summability, 82 ff., 5.6, 5.8 

Abel (-Poisson), 103, 6.16 
Cesaro, 87 ff. 
Riemann,6.14 

Summation formula, Poissons, 10.9-
10.11 

Support of distribution, 104, 12.27, 
12.29 

Support of funetion, 11.18 
Symmetrie derivative, 6.16 

Tauberian theorem, 84, 8 ff. 
abstract, 36 
Wiener's, 10 

Tempered sequence (function), 48 
Tempered series, 48 
Three lines theorem, 148 
Topologieal base, 165 
Topological group, 15, 207 
Topologieallinear spaee, 191 
Topological (generalised) nilpotent, 

3.12,35 
Topology, quotient, 15, 193 
Total variation, 33 
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Transform, 
Fourier, 30, 50, 67 
Walsh-Fourier,211 

Transformation of Fourier eoeffieients, 
317 

Translates of distributions, 57 
Translates of funetions, 16, 209 
Translation invariant subspaee, 17, 

2 ff., 11.22, 316, 318 
Translation operators, 16, 57 
Trigonometrie polynomial, 1.7,42,211, 

251 
Trigonometrie polynomials, 

bases of, 165, 166 
density of, 42, 212 

Trigonometrie series, 1 ff., 2.13, 2.14 
Truneated eonvolution, 11.12, 11.13 
Truneation, 160 
Type A(P)~ set of, 259 ff. 
Type (p, q), operator of, 144 ff., 256, 

298 ff. 
Type (p, q), set of, 144 ff., 258 ff. 

Uniform boundedness prineiple, 194 
Uniqueness, 

set of, 121 
theorem, 40, 69 

Variation, 
bounded, 33, 111 
total, 33 

Veetor-valued funetion, 33, 39, 11.11 

Walsh-Fourier series, 206, 211 
W alsh-Fourier transform, 211 

Walsh funetion, 208 
Walsh (Cantor) group, 207 
Wave equation, 8.10 
Weak eompaeity, 

inD,61 
in LP, 62 
in M, 61, 62 

Weak eompaeity prineiple, 197, 60 ff. 
Weak eonvergenee, 

in dual spaee, 193 
in LP, 62 
in M, 61, 62 

Weak (p, q)-norm, 163 
Weak sequential eompleteness, 202 
Weak type (p, q), operator of, 162 
Weak type (p, p), multiplier of, 327 
Weakly eompaet multiplier, 315 
Weakly eompaet operator, 315 
Weierstrass' approximation theorem, 

90, 91 
Weierstrass' nondifferentiable fune

tion, 15.19 
Wiener's c!osure of translations the-

orem,6 
Wiener-Pitt phenomenon, 313 
Wiener's Tauberian theorem, 10 
Wiener's theorems, 8.13, 177, 29, 34, 

11.15, 11.19 
W -Sidon set, 268 

Young's inequality, 157 

Zafran's theorem, 328 
Zero divisors, 53, 17 
Zero-set, 12.53 
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