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PREFACE TO THE
FIRST EDITION

This book is an outgrowth and a considerable expansion of lectures given
at Brandeis University in 1967-1968 and at Rice University in 1968-1969.
The first four chapters are an attempt to survey in detail some recent
developments in four somewhat different areas of mathematics: geometry
(manifolds and vector bundles), algebraic topology, differential geometry,
and partial differential equations. In these chapters, I have developed various
tools that are useful in the study of compact complex manifolds. My moti-
vation for the choice of topics developed was governed mainly by the
applications anticipated in the last two chapters. Two principal topics
developed include Hodge’s theory of harmonic integrals and Kodaira’s
characterization of projective algebraic manifolds.

This book should be suitable for a graduate level course on the general
topic of complex manifolds. I have avoided developing any of the theory of
several complex variables relating to recent developments in Stein manifold
theory because there are several recent texts on the subject (Gunning and Rossi,
Hormander). The text is relatively self-contained and assumes familiarity with
the usual first year graduate courses (including some functional analysis), but
since geometry is one of the major themes of the book, it is developed from
first principles.

Each chapter is prefaced by a general survey of its content. Needless to
say, there are numerous topics whose inclusion in this book would have been
appropriate and useful. However, this book is not a treatise, but an attempt
to follow certain threads that interconnect various fields and to culminate with
certain key results in the theory of compact complex manifolds. In almost
every chapter I give formal statements of theorems which are understandable
in context, but whose proof oftentimes involves additional machinery not
developed here (e.g., the Hirzebruch Riemann-Roch Theorem); hopefully,
the interested reader will be sufficiently prepared (and perhaps motivated) to
do further reading in the directions indicated.

v



vi Preface

Text references of the type (4.6) refer to the 6th equation (or theorem,
lemma, etc.) in Sec. 4 of the chapter in which the reference appears. If the
reference occurs in a different chapter, then it will be prefixed by the Roman
numeral of that chapter, e.g., (11.4.6.).

I would like to express appreciation and gratitude to many of my col-
leagues and friends with whom I have discussed various aspects of the
book during its development. In particular I would like to mention M. F.
Atiyah, R. Bott, S. S. Chern, P. A. Griffiths, R. Harvey, L. H6rmander,
R. Palais, J. Polking, O. Riemenschneider, H. Rossi, and W. Schmid whose
comments were all very useful. The help and enthusiasm of my students
at Brandeis and Rice during the course of my first lectures, had a lot to
do with my continuing the project. M. Cowen and A. Dubson were very
helpful with their careful reading of the first draft. In addition, I would like
to thank two of my students for their considerable help. M. Windham wrote
the first three chapters from my lectures in 1968-69 and read the first draft.
Without his notes, the book almost surely would not have been started. J.
Drouilhet read the final manuscript and galley proofs with great care and
helped eliminate numerous errors from the text.

I would like to thank the Institute for Advanced Study for the opportunity
to spend the year 1970-71 at Princeton, during which time I worked on the
book and where a good deal of the typing was done by the excellent Institute
staff. Finally, the staff of the Mathematics Department at Rice University
was extremely helpful during the preparation and editing of the manuscript
for publication.

Houston R. O. Wells, Jr.

December 1972



PREFACE TO THE
SECOND EDITION

In this second edition I have added a new section on the classical
finite-dimensional representation theory for 8[(2,C). This is then used to
give a natural proof of the Lefschetz decomposition theorem, an observation
first made by S. S. Chern. H. Hecht observed that the Hodge *-operator is
essentially a representation of the Weyl reflection operator acting on 3[(2,C)
and this fact leads to new proofs (due to Hecht) of some of the basic Kihler
identities which we incorporate into a completely revised Chapter V. The
remainder of the book is generally the same as the first edition, except that
numerous errors in the first edition have been corrected, and various
examples have been added throughout.

I would like to thank my many colleagues who have commented on the
first edition, which helped a great deal in getting rid of errors. Also, I would
like to thank the graduate students at Rice who went carefully through the
book with me in a seminar. Finally, I am very grateful to David Yingst and
David Johnson who both collated errors, made many suggestions, and helped
greatly with the editing of this second edition.

Houston R. O. Wells, Jr.
July 1979
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CHAPTER 1

MANIFOLDS
AND
VECTOR BUNDLES

There are many classes of manifolds which are under rather intense
investigation in various fields of mathematics and from various points of
view. In this book we are primarily interested in differentiable manifolds
and complex manifolds. We want to study (a) the “geometry” of manifolds,
(b) the analysis of functions (or more general objects) which are defined on
manifolds, and (c) the interaction of (a) and (b). Our basic interest will be
the application of techniques of real analysis (such as differential geometry
and differential equations) to problems arising in the study of complex mani-
folds. In this chapter we shall summarize some of the basic definitions and
results (including various examples) of the elementary theory of manifolds
and vector bundles. We shall mention some nontrivial embedding theorems
for differentiable and real-analytic manifolds as motivation for Kodaira’s
characterization of projective algebraic manifolds, one of the principal results
which will be proved in this book (see Chap. VI). The “geometry” of a mani-
fold is, from our point of view, represented by the behavior of the tangent
bundle of a given manifold. In Sec. 2 we shall develop the concept of the
tangent bundle (and derived bundles) from, more or less, first principles.
We shall also discuss the continuous and C= classification of vector bundles,
which we shall not use in any real sense but which we shall meet a version of
in Chap. III, when we study Chern classes. In Sec. 3 we shall introduce al-
most complex structures and the calculus of differential forms of type
(p, 9), including a discussion of integrability and the Newlander-Nirenberg
theorem.

General background references for the material in this chapter are Bishop
and Crittenden [1], Lang [1], Narasimhan [1], and Spivak [1], to name a few
relatively recent texts. More specific references are given in the individual
sections. The classical reference for calculus on manifolds is de Rham [1].
Such concepts as differential forms on differentiable manifolds, integration
on chains, orientation, Stokes’ theorem, and partition of unity are all covered
adequately in the above references, as well as elsewhere, and in this book
we shall assume familiarity with these concepts, although we may review
some specific concept in a given context.

1



2 Manifolds and Vector Bundles Chap. 1

1. Manifolds

We shall begin this section with some basic definitions in which we shall
use the following standard notations. Let R and C denote the fields of real
and complex numbers, respectively, with their usual topologies, and let X
denote either of these fields. If D is an open subset of K*, we shall be con-
cerned with the following function spaces on D:

(a) K=R:

(1) &(D) will denote the real-valued indefinitely differentiable
functions on D, which we shall simply call C*~ functions on D;i.e., f € &§(D)
if and only if f is a real-valued function such that partial derivatives of all
orders exist and are continuous at all points of D [&(D) is often denoted by
C=(D)].

(2) @(D) will denote the real-valued real-analytic functions on
D;ie., @ D) — &D), and f € Q(D) if and only if the Taylor expansion of
fconverges to fin a neighborhood of any point of D.

b K=C:

(1) o(D) will denote the complex-valued holomorphic functions
on D, ie., if (z,,...,z,) are coordinates in C, then f € O(D) if and only
if near each point z° € D, fcan be represented by a convergent power series
of the form

S@=fGp oz = B anle = 2

Ctyenny an=

(See, e.g., Gunning and Rossi [1], Chap. I, or Hormander [2], Chap. II,
for the elementary properties of holomorphic functions on an open set in
C"). These particular classes of functions will be used to define the particular
classes of manifolds that we shall be interested in.

A topological n-manifold is a Hausdorff topological space with a count-
able basist which is locally homeomorphic to an open subset of R”. The integer
n is called the topological dimension of the manifold. Suppose that § is one
of the three K-valued families of functions defined on the open subsets of K”
described above, where we let §(D) denote the functions of § defined on
D, an open set in K". [That is, $(D) is either &(D), @(D), or ©(D). We shall
only consider these three examples in this chapter. The concept of a family
of functions is formalized by the notion of a presheaf in Chap. 11.]

Definition 1.1: An §-structure, $,,, on a k-manifold M is a family of
K-valued continuous functions defined on the open sets of M such that

1The additional assumption of a countable basis (“countable at infinity™) is important
for doing analysis on manifolds, and we incorporate it into the definition, as we are less
interested in this book in the larger class of manifolds.
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(a) Forevery p € M, there exists an open neighborhood U of p and a
homeomorphism 4 : U — U’, where U’ is open in K*, such that for any open
set VU

f:V—>Ke §,ifand onlyif fo h™' € §(h(V)).

(b) Iff:U— K, where U = U, U, and U, is open in M, then f € §,,
ifand only if f |, € §,, for each i.

It follows clearly from (a) that if K = R, the dimension, k, of the topologi-
cal manifold is equal to n, and if K = C, then k = 2n. In either case n will
be called the K-dimension of M, denoted by dimyM = n (which we shall
call real-dimension and complex-dimension, respectively). A manifold with
an §-structure is called an §-manifold, denoted by (M, §,,), and the ele-
ments of §,, are called §-functions on M. An open subset U < M and a
homeomorphism & : U — U’ = K" as in (a) above is called an §-coordinate
system.

For our three classes of functions we have defined

(@) § = &: differentiable (or C~) manifold, and the functions in §,, are
called C* functions on open subsets of M.

(b) § = Q: real-analytic manifold, and the functions in @,, are called
real-analytic functions on open subsets of M.

(c) 8§ = 0: complex-analytic (or simply complex) manifold, and the
functions in 9,, are called holomorphic (or complex-analytic functions) on M.

We shall refer to §,,, @,,, and 0,, as differentiable, real-analytic, and complex
structures respectively.
Definition 1.2:

(a) An §-morphism F : (M, §,,) — (N, §) is a continuous map, F: M
— N, such that

f € S§yimplies fo F e §,,.

(b) An §-isomorphism is an §-morphism F: (M, &y) — (N, Sy) such
that F: M -» N is a homeomorphism, and

F~' : (N, §§) — (M, §,,) is an §-morphism.

It follows from the above definitions that if on an §-manifold (M, §,,)
we have two coordinate systems 4,: U, —— K" and h,: U, — K" such that
U, n U, # @, then

hyohi':h (U, 0 Uy) -~ hy(U, N U,) is an §-isomorphism

an on open subsets of (K", §«»).
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Conversely, if we have an open covering {U,},c, of M, a topological mani-
fold, and a family of homeomorphisms {h,: U, — U, < K"}, satisfying
(1.1), then this defines an $-structure on M by setting §,, = {f: U — K}
such that U is openin M and fo h;! € §h, (UN U,)) foralla € 4; i.e.,
the functions in §,, are pullbacks of functions in § by the homeomorphisms
{h.}ac4 The collection {(U,, h,)}.c is called an atlas for (M, §,,).

In our three classes of functions, the concept of an §-morphism and
S-isomorphism have special names:

(@) 8 = &: differentiable mapping and diffeomorphism of M to N.

(b) 8§ = Q: real-analytic mapping and real-analytic isomorphism (or
bianalytic mapping) of M to N.

(c) 8§ = 0©: holomorphic mapping and biholomorphism (biholomorphic
mapping) of M to N.

It follows immediately from the definition above that a differentiable mapping
fiM—N,

where M and N are differentiable manifolds, is a continuous mapping of
the underlying topological space which has the property that in local coordi-
nate systems on M and N, f can be represented as a matrix of C> functions.
This could also be taken as the definition of a differentiable mapping. A simi-
lar remark holds for the other two categories.

Let N be an arbitrary subset of an §-manifold M; then an §-function on
N is defined to be the restriction to N of an $-function defined in some open
set containing N, and §,,|y consists of all the functions defined on relatively
open subsets of N which are restrictions of §-functions on the open subsets
of M.

Definition 1.3: Let N be a closed subset of an §-manifold M; then N is
called an §-submanifold of M if for each point x, € N, there is a coordinate
system h: U — U’ < K*, where x, € U, with the property that h|,.y is
mapped onto U’ N K*, where 0 < k < n. Here K* = K" is the standard
embedding of the linear subspace K* into K*, and k is called the K-dimension
of N, and n — k is called the K-codimension of N.

It is easy to see that an §-submanifold of an §-manifold M is itself an
S-manifold with the $-structure given by §,|». Since the implicit function
theorem is valid in each of our three categories, it is easy to verify that the
above definition of submanifold coincides with the more common one that
an §-submanifold (of k dimensions) is a closed subset of an §-manifold M
which is locally the common set of zeros of n — k $-functions whose Jacobian
matrix has maximal rank.

It is clear that an n-dimensional complex structure on a manifold induces
a 2n-dimensional real-analytic structure, which, likewise, induces a 2n-
dimensional differentiable structure on the manifold. One of the questions
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we shall be concerned with is how many different (i.e., nonisomorphic)
complex-analytic structures induce the same differentiable structure on a
given manifold ? The analogous question of how many different differentiable
structures exist on a given topological manifold is an important problem in
differential topology.

What we have actually defined is a category wherein the objects are §-
manifolds and the morphisms are §-morphisms. We leave to the reader the
proof that this actually is a category, since it follows directly from the defini-
tions. In the course of what follows, then, we shall use three categories—the
differentiable (§ = §), the real-analytic (§ = @), and the holomorphic
(§ = 0) categories—and the above remark states that each is a subcategory
of the former.

We now want to give some examples of various types of manifolds.

Example 1.4 (Euclidean space): X", (R", C"). Foreveryp € K", U = K"
and h = identity. Then R" becomes a real-analytic (hence differentiable)
manifold and C” is a complex-analytic manifold.

Example 1.5: If (M, $,,) is an §-manifold, then any open subset U of
M has an §-structure, §, = {f|,:f € Su}

Example 1.6 (Projective space): If Vis a finite dimensional vector space
over K, thent P(¥) := {the set of one-dimensional subspaces of V} is called
the projective space of V. We shall study certain special projective spaces,
namely

P,(R) := P(R™"")
P (C) := P(C').

We shall show how P,(R) can be made into a differentiable manifold.
There is a natural map n: R**! — {0} — P, (R) given by
n(x) = n(x,, . . . , X,) := {subspace spanned by x = (x,, ..., x,) € R"*'}

The mapping 7 is onto; in fact, #|s. ,erm11x .1 is onto. Let P (R) have
the quotient topology induced by the map =; i.e., U < P,(R) is open if and
only if z~'(U) is open in R**' — {0}. Hence = is continuous and P (R) is a
Hausdorff space with a countable basis. Also, since

nt|g: S"—> P(R)
is continuous and surjective, P (R) is compact.

If x = (xg,...,%,) € R*1 — {0}, then set
a(x) =xg ..., x,)

We say that (x,, ..., x,) are homogeneous coordinates of [x,, ..., x,]. If
(x), ..., x)) is another set of homogeneous coordinates of [x,, ..., x,],

t := means that the object on the left is defined to be equal to the object on the right.
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then x, = tx; for some r € R — {0}, since [x,,..., x,] is the one-dimen-
sional subspace spanned by (x,, . .., x,) or (xi, . . ., x.). Hence also n(x) =
n(tx) for t € R — {0}. Using homogeneous coordinates, we can define a
differentiable structure (in fact, real-analytic) on P,(R) as follows. Let

U, ={SeP,R):S = [x,, ..., x,] and x, # 0}, fora =0,...,n

Each U, is open and P, (R) = ()i, U, since (x,,...,x,) € R**! — {0}.
Also, define the map A,: U, — R" by setting
Bu(Xgr s x]) = (’X&XT_'"T-';L) e R-.

Note that both U, and h, are well defined by the relation between different
choices of homogeneous coordinates. One shows easily that A, is a homeo-
morphism and that A, o h;! is a diffeomorphism; therefore, this defines a
differentiable structure on P,(R). In exactly this same fashion we can define
a differentiable structure on P(V) for any finite dimensional R-vector space
V and a complex-analytic structure on P(V) for any finite dimensional C-
vector space V.

Example 1.7 (Matrices of fixed rank): Let 91, ,(R) be the k X n matrices
with real coefficients. Let M, ,(R) be the k X n matrices of rank k(k < n).
Let M7 (R) be the elements of I, (R) of rank m (m < k). First, M, ,(R)
can be identified with R*", and hence it is a differentiable manifold. We know
that M, (R) consists of those k X n matrices for which at least one k X k
minor is nonsingular; i.e.,

Mo (R) =) {4 € 91, (R): det 4, = 0},

where for each 4 € 9, (R) we let {4,,..., 4] be a fixed ordering of the
k X k minors of A. Since the determinant function is continuous, we see
that M, ,(R) is an open subset of 91, ,(R) and hence has a differentiable
structure induced on it by the differentiable structure on 3N, ,(R) (see Example
1.5). We can also define a differentiable structure on M7 (R). For convenience
we delete the R and refer to M7,. For X, € M7,, we define a coordinate
neighborhood at X, as follows. Since the rank of X is m, there exist permuta-
tion matrices P, Q such that

PX,Q = |:Ao Bojl,

CO DO
where A4, is a nonsingular m X m matrix. Hence there exists an € > 0 such
that |4 — A,|| <€ implies A is nonsingular, where || 4| = max,|a,|,

for A = [a,)]. Therefore let
A B
W={Xe,, PXQ = [C D:‘ and |4 — Ayl <e€}.

Then W is an open subset of 9, ,. Since this is true, U := W N M7 is an
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open neighborhood of X, in M7, and will be the necessary coordinate neigh-
borhood of X,. Note that

X e Uifand only if D = CA~!B, whcrePXQz[g B]-
This follows from the fact that

1, 0 }[A B]_[A B }
—C4™ I,_,)lc D] [0 D-cAaB

I, 0}
—CcA™t I,

is nonsingular (where /; is the j X j identity matrix). Therefore
A B A B
and
C D 0 D—-CA'B
have the same rank, but
A B
0 D—-CA'B

has rank m if and only if D — CA™'B = 0.
We see that M7, actually becomes a manifold of dimension m(n + k —
m) by defining

and

. , 24 (n- k- — k-~
h‘ U Rm+(n mim+(k-m)m __ Rm(:w m),

h(X) = |:A B} € Rmintk-m for PXQ = l:A B}
cC 0 C D

where

as above. Note that we can define an inverse for 4 by

(2 1)l Ll

Therefore / is, in fact, bijective and is easily shown to be a homeomorphism.
Moreover, if 1, and 4, are given as above,

ene([2 2]) <[ B
P Ale, o c, 0

P;P:'[A‘ o ]QT‘Q; = [A‘ B‘}

C, C,A7'B, C, D,

and these maps are clearly difftfomorphisms (in fact, real-analytic), and so
M7 (R) is a differentiable submanifold of 9, ,(R). The same procedure can
be used to define complex-analytic structures on I, (C), M, ,(C), and
M7 (C), the corresponding sets of matrices over C.

where
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Example 1.8 (Grassmannian manifolds): Let V be a finite dimensional
K-vector space and let G, (V) := {the set of k-dimensional subspaces of V},
for k < dim, V. Such a G, (V) is called a Grassmannian manifold. We shall
use two particular Grassmannian manifolds, namely

G, (R):= G,R" and G, .(C) := G,(C").
The Grassmannian manifolds are clearly generalizations of the projective
spaces [in fact, P(V) = G,(V); see Example 1.6] and can be given a manifold

structure in a fashion analogous to that used for projective spaces.
Consider, for example, G, ,(R). We can define the map

T Mk,n(R) I Gk,n(R)a
where
a,

n(A) = n| - |:= {k-dimensional subspace of R” spanned by
the row vectors {a,} of 4}.
a

We notice that for g € GL(k, R) (the kK X k nonsingular matrices) we have
n(gA) = n(A) (where gA is matrix multiplication), since the action of g
merely changes the basis of #(4). This is completely analogous to the pro-
jection m: R"** — {0} — P (R), and, using the same reasoning, we see that
G, .(R) is a compact Hausdorff space with the quotient topology and that
7 is a surjective, continuous open map.t

We can also make G, ,(R) into a differentiable manifold in a way similar
to that used for P,(R). Consider 4 € M, ,andlet{4,, ..., 4;} be the collec-
tion of k X k minors of 4 (see Example 1.7). Since 4 has rank k, A4, is
nonsingular for some 1 << & </ and there is a permutation matrix P, such
that

APa = [A“.Z;],

where 4, is a k X (n — k) matrix. Note that if g € GL(k, R), then g4, is a
nonsingular minor of g4 and g4, = (gA4),. Let U, ={S € G, ,(R): S =
n(A), where A, is nonsingular}. This is well defined by the remark above
concerning the action of GL(k, R) on M, ,(R). The set U, is defined by the
condition det 4, # 0; hence it is an open setin G, ,(R), and {U,}._, covers
G,,.(R). We define a map

h,: U, —> R¥0»-0
by setting
h(n(A4)) = A;'4, € R¥H,
where AP, = [A,A,). Again this is well defined and we leave it to the reader
to show that this does, indeed, define a differentiable structure on G, ,(R).

tNote that the compact set {4 € Mk .(R): A ‘4 = I} is analogous to the unit sphere
in the case ¥ = 1 and is mapped surjectively onto Gy, »(R).
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Example 1.9 (Algebraic submanifolds): Consider P, = P (C), and let
H={zp...,2) € P ayz,+ -+ + a,z, =0},
where (a,,...,a,) € C"*! — [0}. Then H is called a projective hyperplane.
We shall see that H is a submanifold of P, of dimension n — 1. Let U, be
the coordinate systems for P, as defined in Example 1.6. Let us consider
U, N H, and let ({,, ..., {,) be coordinates in C". Suppose that [z, ..., z,]
e H N U,; then, since z, # 0, we have

V4 V4
al___l.{,_... +a"_ﬂ.-:._ao’
Zo Zo

which implies that if { =({,,...,{,) = h,(z,, ..., 2)), then { satisfies

(1'2) alcl + e + a»Cn = _a(h
which is an affine linear subspace of C”, provided that at least one of a,, . . .,
a, is not zero. If, however, a, # 0 and @, = --- =a, =0, then it is clear

that there is no point ({,,...,{,) € C" which satisfies (1.2), and hence in
this case U, " H = @ (however, H will then necessarily intersect all the other
coordinate systems U, . . ., U,). It now follows easily that H is a submanifold
of dimension n — 1 of P, (using equations similar to (1.2) in the other coordi-
nate systems as a representation for H). More generally, one can consider

V=_lzgs.-.,2)] € PC):pzgs...52,) =+ =pSz4y...,2,) =0},
where p,, . .., p, are homogeneous polynomials of varying degrees. In local
coordinates, one can find equations of the form (for instance, in U,)

2 _z_~)=
p,(l,zO,...,ZO 0

p'(],il’___,_z_l):o,

Zy Zy

(1.3)

and V will be a submanifold of P, if the Jacobian matrix of these equations in
the various coordinate systems has maximal rank. More generally, V is called
a projective algebraic variety, and points where the Jacobian has less than
maximal rank are called singular points of the variety.

We say that an §-morphism
f: (M’ SM) —_— (N, SN)

of two §-manifolds is an §-embedding if f is an $-isomorphism onto an
S-submanifold of (¥, §,). Thus, in particular, we have the concept of dif-
ferentiable, real-analytic, and holomorphic embeddings. Embeddings are
most often used (or conceived of as) embeddings of an “abstract” manifold
as a submanifold of some more concrete (or more elementary) manifold.
Most common is the concept of embedding in Euclidean space and in projec-
tive space, which are the simplest geometric models (noncompact and
compact, respectively). We shall state some results along this line to give the
reader some feeling for the differences among the three categories we have
been dealing with. Until now they have behaved very similarly.
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Theorem 1.10 (Whitney [1]): Let M be a differentiable n-manifold. Then
there exists a differentiable embedding f of M into R2"*!, Moreover, the
image of M, f(M) can be realized as a real-analytic submanifold of R2"*!,

This theorem tells us that all differentiable manifolds (compact and non-
compact) can be considered as submanifolds of Euclidean space, such sub-
manifolds having been the motivation for the definition and concept of
manifold in general. The second assertion, which is a more difficult result,
tells us that on any differentiable manifold M one can find a subfamily of
the family & of differentiable functions on M so that this subfamily gives a
real-analytic structure to the manifold M; i.e., every differentiable manifold
admits a real-analytic structure. It is strictly false that differentiable mani-
folds admit complex structures in general, since, in particular, complex
manifolds must have even topological dimension. We shall discuss this ques-
tion somewhat more in Sec. 3. We shall not prove Whitney’s theorem since
we do not need it later (see, e.g., de Rham [1], Sternberg [1], or Whitney’s
original paper for a proof of Whitney’s theorems).

A deeper result is the theorem of Grauert and Morrey (see Grauert
{1] and Morrey [1]) that any real-analytic manifold can be embedded, by a
real-analytic embedding, into R", for some N (again either compact or non-
compact). However, when we turn to complex manifolds, things are complete-
ly different. First, we have the relatively elementary result.

Theorem 1.11: Let X be a connnected compact complex manifold and let
f € 0(X). Then fis constant; i.e., global holomorphic functions are neces-
sarily constant.

Proof: Suppose that f € O(X). Then, since fis a continuous function on
a compact space, |f| assumes its maximum at some point x, € X and S =
{x: f(x) = f(xo)} is closed. Let z = (z,, ..., z,) be local coordinates at x € S,
with z = 0 corresponding to the point x. Consider a small ball B about
z = 0 and let z € B. Then the function g(1) = f(4z) is a function of one com-
plex variable (1) which assumes its maximum absolute value at A = 0 and is
hence constant by the maximum principle. Therefore, g(1) = g(0) and hence
f(2) = f(0), for all z € B. By connectedness, S = X, and f is constant.
Q.E.D.

Remark: The maximum principle for holomorphic functions in domains
in C" is also valid and could have been applied (see Gunning and Rossi []).

Corollary 1.12: There are no compact complex submanifolds of C* of
positive dimension.

Proof: Otherwise at lcast one of the coordinate functions z,,. .., z,
would be a nonconstant function when restricted to such a submanifold.
Q.E.D.
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Therefore, we see that not all complex manifolds admit an embedding
into Euclidean space in contrast to the differentiable and real-analytic situa-
tions, and of course, there are many examples of such complex manifolds
le.g., P(C)]. One can characterize the (necessarily noncompact) complex
manifolds which admit embeddings into C”, and these are called Stein
manifolds, which have an abstract definition and have been the subject of
much study during the past 20 years or so (see Gunning and Rossi [1] and
Hormander [2] for an exposition of the theory of Stein manifolds). In this
book we want to develop the material necessary to provide a characterization
of the compact complex manifolds which admit an embedding into projective
space. This was first accomplished by Kodaira in 1954 (see Kodaira [2]) and
the material in the next several chapters is developed partly with this char-
acterization in mind. We give a formal definition.

Definition 1.13: A compact complex manifold X which admits an embed-
ding into P,(C) (for some n) is called a projective algebraic manifold.

Remark: By a theorem of Chow (see, e.g., Gunning and Rossi [1]),
every complex submanifold V of P,(C) is actually an algebraic submanifold
(hence the name projective algebraic manifold), which means in this context
that V can be expressed as the zeros of homogeneous polynomials in homoge-
neous coordinates. Thus, such manifolds can be studied from the point of
view of algebra (and hence algebraic geometry). We will not need this result
since the methods we shall be developing in this book will be analytical and
not algebraic. As an example, we have the following proposition.

Proposition 1.14: The Grassmannian manifolds G, ,(C) are projective alge-
braic manifolds.

Proof: Consider the following map:
F~: Mk,n(C) - /\kCn
defined by
a,

FAy=F| . |=a,A - nra,

a

The image of this map is actually contained in A*¥C" — {0} since {a,} is an
independent set. We can obtain the desired embedding by completing the
following diagram by F:

M, ()5 pkCr — (0}
ng e
G, (C) --Feis P(N*CP),
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where #, m, are the previously defined projections. We must show that F
is well defined; i.e.,

n(A) = n(B) => m, o F(4) = n, o F(B).
But n5(4) = ny(B) implies that A = gB for g € GL(k, C), and so
a,A---Na, =detg(b,A---Ab),

where
a, b,

a b,
but
na, A+ - Nay) = n(det g(b,A-+-Ab)) = mu(b, A+ AD,),
and so the map F is well defined. We leave it to the reader to show that F

is also an embedding.
Q.E.D.

2. Vector Bundles

The study of vector bundles on manifolds has been motivated primarily
by the desire to linearize nonlinear problems in geometry, and their use has
had a profound effect on various modern fields of mathematics. In this
section we want to introduce the concept of a vector bundle and give various
examples. We shall also discuss some of the now classical results in differential
topology (the classification of vector bundles, for instance) which form a
motivation for some of our constructions later in the context of holomorphic
vector bundles.

We shall use the same notation as in Sec. 1. In particular § will denote one
of the three structures on manifolds (&, @, ©) studied there, and K = R or C.

Definition 2.1: A continuous map n: E — X of one Hausdorff space, E,
onto another, X, is called a K-vector bundle of rank r if the following condi-
tions are satisfied:

(@) E,:=rn"!(p), for pe X, is a K-vector space of dimension r (E, is
called the fibre over p).

(b) Forevery p € X there is a neighborhood U of p and a homeomor-

phism
h:n~'(U) —> U x K" such that h(E,) < {p} X K",

and h*, defined by the composition
h?: E, "> {p} x K* 25 K,

is a K-vector space isomorphism [the pair (U, h) is called a local trivialization).

For a K-vector bundle n: E — X, E is called the total space and X is called
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the base space, and we often say that E is a vector bundle over X. Notice
that for two local trivializations (U,, 4,) and (U, h,) the map

hyohg': (U, N Up) X K"—> (U, N Uy) X K"
induces a map
2.1 8.p: U, N Uy —> GL(r, K),

where
8p(p) = hZo(hy) "1 K" —> K".

The functions g, are called the transition functions of the K-vector bundle
n: E — X (with respect to the two local trivializations above).t

The transition functions g,, satisfy the following compatibility conditions:

(2.2a) 8o 8py * 8ya =1, onU,nU;,nU,
and
(22b) 8aa = Ir on Ua;

where the product is a matrix product and /, is the identity matrix of rank
r. This follows immediately from the definition of the transition functions.

Definition 2.2: A K-vector bundle of rank r,n: E — X, is said to be an
S-bundle if E and X are $-manifolds, = is an §-morphism, and the local
trivializations are §-isomorphisms.

Note that the fact that the local trivializations are §-isomorphisms is
equivalent to the fact that the transition functions are §-morphisms. In
particular, then, we have differentiable vector bundles, real-analytic vector
bundles, and holomorphic vector bundles (K must equal C).

Remark: Suppose that on an §-manifold we are given an open covering
A = {U,]} and that to each ordered nonempty intersection U, N U, we have
assigned an $-function
8.5 U, N Ug—> GL(r, K)
satisfying the compatibility conditions (2.2). Then one can construct a vector
bundle E -*~ X having these transition functions. An outline of the construc-
tion is as follows: Let

E=U, x K~ (disjoint union)
equipped with the natural product topology and §-structure. Define an
equivalence relation in £ by setting
(x,v) ~ (y,w), for(x,v)elU; x K", (y,w)eU, X K*
if and only if
=x and w = g.(x).

tNote that the transition function g.g(p) is a linear mapping from the Uy trivialization
to the U, trivialization. The order is significant.



14 Manifolds and Vector Bundles Chap. I

The fact that this is a well-defined equivalence relation is a consequence of
the compatibility conditions (2.2). Let E = E/~ (the set of equivalence
classes), equipped with the quotient topology, and let z: E — X be the map-
ping which sends a representative (x,») of a point p € E into the first
coordinate. One then shows that an E so constructed carries on $-structure
and is an §-vector bundle. In the examples discussed below we shall see more
details of such a construction.

Example 2.3 (Trivial bundle): Let M be an §-manifold. Then
nMXK—>M,
where z is the natural projection, is an $-bundle called a trivial bundle.

Example 2.4 (Tangent bundle): Let M be a differentiable manifold.
Then we want to construct a vector bundle over M whose fibre at each point
is the linearization of the manifold M, to be called the tangent bundle to M.
Let p € M. Then we let

8ypi= lim 8&,(U)
—

PEU C M
open

be the algebra (over R) of germs of differentiable functions at the pointp € M,
where the inductive limitt is taken with respect to the partial ordering on
open neighborhoods of p given by inclusion. Expressed differently, we can
say that if f and g are defined and C* near p and they coincide on some
neighborhood of p, then they are equivalent. The set of equivalence classes
is easily seen to form an algebra over R and is the same as the inductive limit
algebra above; an equivalence class (element of &, ,) is called a germ of
a C~ function at p. A derivation of the algebra §,, , is a vector space homo-
morphism D:§,, ,— R with the property that D(fg) = D(f) - g(p) +
f(p) - D(g), where g(p) and f(p) denote evaluation of a germ at a point p
(which clearly makes sense). The tangent space to M at p is the vector space
of all derivations of the algebra &,, ,, which we denote by 7,(M). Since M
is a differentiable manifold, we can find a diffeomorphism / defined in a
neighborhood U of p where
h:U— U CR"

open
and where, letting A*f(x) = f o h(x), h has the property that, for ¥ < U’,
h*: 8gu(V) —> &4(h™ (V)

is an algebra isomorphism. It follows that 4* induces an algebra isomorphism
on germs, i.e., (using the same notation),

*. [~
h*: SR".h(p) > SM,P’

{We denote by lim the inductive (or direct) limit and by lim the projective (or inverse)
—_— «—

limit of a partially ordered system.
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and hence induces an isomorphism on derivations:
hy: T (M) "> T, ,,(R™).
It is easy to verify that

(a) d/dx; are derivations of &gs 4,/ = I,..., n, and that
(b) {d/dx,,...,d/dx,} is a basis for Ty, (R"),

and thus that 7,(M) is an n-dimensional vector space over R, for each point
p € M [the derivations are, of course, simply the classical directional deriva-
tives evaluated at the point h(p)]. Suppose that /- M — N is a differentiable
mapping of differentiable manifolds. Then there is a natural map

dfp: Tp(M) - Tf(p)(N)
defined by the following diagram:

o
Em,p <8y r(p

D,\, /D, f* = d,(D),
R

for D, € T,(M). The mapping df, is a linear mapping and can be expressed
as a matrix of first derivatives with respect to local coordinates. The coeffi-
cients of such a matrix representation will be C~ functions of the local
coordinates. Classically, the mapping df, (the derivative mapping, differential
mapping, or tangent mapping) is called the Jacobian of the differentiable map f.
The tangent map represents a first-order linear approximation (at p) to the
differentiable map f. We are now in a position to construct the tangent bundle
to M. Let
M) = L{: T, (M) (disjoint union)

pE
and define
n.TM)— M
by
al) =p ifv e T,(M).
We can now make T(M) into a vector bundle. Let {(U,, 4,)} be an atlas for
M, and let T(U,) = n~'(U,) and

Ve T(Uu) - Uu X R

be defined as follows: Suppose that v € T,(M) < T(U,). Then dh, ,(v)e
T,..»n(R"). Thus
z J
dhl = ’
W =5awa|
where §, € 8,/(U,) (the fact that the coefficients are C~ follows easily from

the proof that {d/dx,, . . ., d/dx,} is a basis for the tangent vectors at a point
in R"). Now let

v.®) = (p,&(p), ..., ¢(p) € U, X R™.
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It is easy to verify that y, is bijective and fibre-preserving and moreover that
yz: T,(M) = {p} X R* 25 R*
is an R-linear isomorphism. We can define transition functions

8- Ug N U, —> GL(n, R)
by setting
&p(p) = yio(yp) ':R"—> R~
Moreover, it is easy to check that the coefficients of the matrices {g,,} are
C~ functions in U, N Uy, since g, is a matrix representation for the composi-
tion dh, o dh;' with respect to the basis {d/dx,, . .., d/dx,} at T,p»(R") and
T, »(R"), and that the tangent maps are differentiable functions of local
coordinates. Thus the {(U,, y,)} become the desired trivializations. We have
only to put the right topology on T(M) so that T(M) becomes a differentiable
manifold. We simply require that U = T(M) be open if and only if y,(U N
T(U,)) is open in U, X R” for every a. This is well defined since
Voo W' ' (U, N Ugp) X R"— (U, N Uy) X R

is a diffeomorphism for any a and B such that U, N U, # & (since y, o
v;! = id X 8,5 where id is the identity mapping). Because the transition
functions are diffeomorphisms, this defines a differentiable structure on
T(M) so that the projection & and the local trivializations y, are differentiable
maps.

Example 2.5 (Tangent bundle to a complex manifold): Let X = (X, 0,)
be a complex manifold of complex dimension n, let

Oy.:= lim o)

—
x€U C X
open

be the C-algebra of germs of holomorphic functions at x € X, and let
T.(X) be the derivations of this C-algebra (defined exactly as in Example
2.4). Then T,(X) is the holomorphic (or complex) tangent space to X at x.
In local coordinates, we see that T,(X) = T,(C") (abusing notation) and that
the complex partial derivatives {0/dz,, . . . , /dz,} form a basis over C for the
vector space T,(C") (see also Sec. 3). In the same manner as in Example 2.4
we can make the union of these tangent spaces into a holomorphic vector
bundle over X, i.e,. T(X) — X, where the fibres are all isomorphic to C".

Remark: The same technique used to construct the tangent bundles
in the above examples can be used to construct other vector bundles. For
instance, suppose that we have n: E — X, where X is an §-manifold and =
is a surjective map, so that

(a) E,is a K-vector space,
(b) Foreachp € X there is a neighborhood U of p and a bijective map:

h:a~'(U) —> U x K" such that h(E,) < {p} x K.
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(© h,:E,—{p} X K" Prok Kt is a K-vector space isomorphism.

Then, if for every (U,, h,), (U, hy) as in (b) h, o h;' is an §-isomorphism,
we can make E into an §-bundle over X by giving it the topology that makes
h, a homeomorphism for every a.

Example 2.6 (Universal bundle): Let U, , be the disjoint union of the
r-planes (r-dimensional K-linear subspaces) in K". Then there is a natural
projection

nU,,—G,,

where G, , = G, ,(K), given by n(v) = S, if v is a vector in the r-plane S, and
S is considered as a point in the Grassmannian manifold G, ,. Thus the inverse
image under 7 of a point p in the Grassmannian is the subspace of K" which
is the point p, and we may regard U, , as a subset of G, , X K". We can make
U,, into an S-bundle by using the coordinate systems of G,, to define
transition functions, as was done with the tangent bundle in Example 2.4, and
by then applying the remark following Example 2.5. To simplify things
somewhat consider U, ,— G;, = P,_;(R). First we note that any point
ve U,,, can be represented (not in a unique manner) in the form

U= ({Xg, ..., tXp—y) = t(Xo, ..., Xy—;) ER",
where (x,...,X,—;)€R" — {0}, and teR. Moreover, the projection
n: Uy ,— P,_, is given by
(t(X0s - - - » Xn—1)) = X0y« s Xn_1) = [Xos -+ s Xa_1] E Py,
Letting U, = {[xo, ..., X,—1] € P,_1: X, # O}, (cf. Example 1.6), we see that
W U) ={v=1(xp,..., Xp_1)ER" 1R, x, # O}.

Now if v = t(x,, ..., X,~,) € n~Y(U,), then we can write v in the form

v=t,(-x—°,..., l,,..,-x"—'—‘),
Xo (@) Xa
and ¢, = tx, € R is uniquely determined by ». Then we can define the
mapping
h:n'(U)— U, xR
by setting
hd(v) = ha(t(xOs ey xn-—l)) = ([x()! sy xn—l]9 tl)'

The mapping h, is bijective and is R-linear from the fibres of z-!(U,) to the
fibres of U, x R. Suppose now that v = (X, ..., Xa=1) €~ (Us N Up),
then we have two different representations for v and we want to compute the
relationship. Namely,

ha(v) = ([xo, L) xn-l]a ta)

h,(l)) = ([an ceey xn—l]; tﬂ)
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and then ¢, = tx,, t; = tx,, Therefore
t

t = »

%
S

which implies that

= Xay
« xﬁﬂ

-~

Thus if we let g,; = x,/x,, then it follows that g, ,-g,,+8,. = 1, and thus by
the remark following Example 2.5, we see that U, , can be given the structure
of a vector bundle by means of the functions {#,}, (the trivializations), and
the transition functions of U, ,

8ap([Xo0s - - - » Xn-1]) = ;::

are mappings of U, N U, —> GL(1, R) = R — {0}. These are the standard
transition functions for the universal bundle over P,_,. Exactly the same
relation holds for U, ,(C) — P,_,(C), which we meet again in later chapters.
Namely, for complex homogeneous coordinates [z, ..., z,_,] we have the
transition functions for the universal bundle over P,_,(C):
gaﬂ([ZO: ceey zn—l]) = :_a.
B
The more general case of U, , — G, , can be treated in a similar manner,
using the coordinate systems developed in Sec. I. We note that U, .R)—
G, ,(R) is a real-analytic (and hence also differentiable) R-vector bundle and
that U, ,(C) — G, ,(C) is a holomorphic vector bundle. The reason for the
name “universal bundle” will be made more apparent later in this section.

Definition 2.7: Let n: E— X be an $-bundle and U an open subset of
X. Then the restriction of E to U, denoted by E|, is the $-bundle

vyt 77 (U) —> UL

Definition 2.8: Let E and F be $-bundles over X; i.e., n;: E— X and
7y F — X. Then a homomorphism of $-bundles,

fi E—> F,

is an §-morphism of the total spaces which preserves fibres and is K-linear
on each fibre; i.e., f commutes with the projections and is a K-linear mapping
when restricted to fibres. An §-bundle isomorphism is an §-bundle homomor-
phism which is an §-isomorphism on the total spaces and a K-vector space
isomorphism on the fibres. Two $-bundles are equivalent if there is some
8-bundle isomorphism between them. This clearly defines an equivalence
relation on the $§-bundles over an $-manifold, X.

The statement that a bundle is locally trivial now becomes the following:
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For every p € X there is an open neighborhood U of p and a bundle isomor-
phism
h:El, —> UX K"
Suppose that we are given two K-vector spaces 4 and B. Then from
them we can form new K-vector spaces, for example,

(a) A @ B, the direct sum.

(b) A X B, the tensor product.

(c) Hom(4, B), the linear maps from A4 to B.

(d) A*, the linear maps from A to K.

() A*A, the antisymmetric tensor products of degree k (exterior
algebra of A).

(f) S$*(A), the symmetric tensor products of degree k (symmetric algebra
of A). ‘

Using the remark following Example 2.5, we can extend all the above alge-
braic constructions to vector bundles. For example, suppose that we have
two vector bundles

mg: E— X  and ap: F— X.

Then define

EQF=)E®F,
We then have the natural projection

nmE@PF—X
given by
N (p)=E,DF,

Now for any p € X we can find a neighborhood U of p and local trivializa-
tions

hg: El, —> U X K"

hy: Fly — U X K™,
and we define

hegr E@Q Fly — U X (K"@® K™)

by heer(v + w) = (p, h2(v) + h§(w)) for v € E, and w € F,. Then this

map is bijective and K-linear on fibres, and for intersections of local trivializa-
tions we obtain the transition functions

cor(y _ | 8arP) O }
g7 (p) [0 27p)

So by the remark and the fact that g£, and g£, are bundle transition func-
tions, n: E@® F — X is a vector bundle. Note that if E and F were §-bundles
over an §-manifold X, then g%, and gf, would be §-isomorphisms, and so
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E @ F would then be an §-bundle over X. The same is true for all the other
possible constructions induced by the vector space constructions listed
above. Transition functions for the algebraically derived bundles are easily
determined by knowing the transition functions for the given bundle.

The above examples lead naturally to the following definition.

Definition 2.9: Let E-"- X be an $-bundle. An $-submanifold F < E is
said to be an §-subbundle of E if

(@) F N E,is a vector subspace of E,.

(b) =m|p: F— X has the structure of an §-bundle induced by the §-bundle
structure of E, i.e., there exist local trivializations for E and F which are
compatible as in the following diagram:

Ely =>U x K’
Ti Tidxj
Fly —-UxK, s<r,

where the map j is the natural inclusion mapping of K* as a subspace of K’
and i is the inclusion of Fin E.

We shall frequently use the language of linear algebra in discussing homo-
morphisms of vector bundles. As an example, suppose that E -2 Fis a vector
bundle homomorphism of K-vector bundles over a space X. We define

Ker f = | Ker f,

xEX

Im f=U)Imf,

x€X

where f, = f |, Moreover, we say that f has constant rank on X if rank f,
(as a K-linear mapping) is constant for x € X.

Proposition 2.10: Let E-Z- Fbe an S-homomorphism of §-bundles over X.
If f has constant rank on X, then Ker fand Im f are §-subbundles of E and
F, respectively. In particular, f has constant rank if fis injective or surjective.

We leave the proof of this simple proposition to the reader.
Suppose now that we have a sequence of vector bundle homomorphisms
over a space X,
-—>E- L F 5% G—> cen,

then the sequence is said to be exact at F if Ker g =Im f. A short exact
sequence of vector bundles is a sequence of vector bundles (and vector bundle
homomorphisms) of the following form,

0—>E-ISE_ % E" >0,

which is exact at E’, E, and E”. In particular, fis injective and g is surjective,
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and Im f = Ker g is a subbundle of E. We shall see examples of short exact
sequences and their utility in the next two chapters.

As we have stated before, vector bundles represent the geometry of the
underlying base space. However, to get some understanding via analysis of
vector bundles, it is necessary to introduce a generalized notion of function
(reflecting the geometry of the vector bundle) to which we can apply the tools
of analysis.

Definition 2.11: An §-section of an §-bundle E -~ X is an §-morphism
s: X — E such that
mos =1y,

where 1, is the identity on X; i.e., s maps a point in the base space into the
fibre over that point. §(X, E) will denote the $-sections of E over X. §(U, E)
will denote the §-sections of E|, over U < X; ie., §(U, E) = §(U, E|,)
[we shall also occasionally use the common notation I'(X, E) for sections,
provided that there is no confusion as to which category we are dealing with)].

Example 2.12: Consider the trivial bundle M x R over a differentiable
manifold M. Then & M, M X R) can be identified in a natural way with
&(M), the global real-valued functions on M. Similarly, 8(M, M x R") can
be identified with global differentiable mappings of M into R" (i.e., vector-
valued functions). Since vector bundles are locally of the form U x R*, we
see that sections of a vector bundle can be viewed as vector-valued functions
(locally), where two different local representations are related by the transition
functions for the bundle. Therefore sections can be thought of as “twisted”
vector-valued functions.

Remarks: (a) A section s is often identified with its image s(X) < E;
for example, the term zero section is used to refer to the section 0: X — E
given by 0(x) = 0 € E, and is often identified with its image, which is, in fact,
S-isomorphic with the base space X.

(b) For $-bundles E-= X and E' =~ X we can identify the set of §-
bundle homomorphisms of E into E’, with $(X, Hom(E, E)). A section
s € §(X, Hom(E, E")) picks out for each point x € X a K-linear map
s(x): E, — E', and s is identified with f,: E — E’ which is defined by

Silenw = s(n(e)) fore € E.

(¢) If E— X is an 8-bundle of rank r with transition functions {g,s}
associated with a trivializing cover {U,}, then let f,: U, — K" be S-morphisms
satisfying the compatibility conditions

Je=8ufs onU,NU;#0.

Here we are using matrix multiplication, considering f, and f; as column
vectors. Then the collection {f,} defines an S-section f of E, since each f,
gives a section of U, X K', and this pulls back by the trivialization to a
section of E|y,. These sections of E|y_agree on the overlap regions U, N U,
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by the compatibility conditions imposed on {f,}, and thus define a global
section. Conversely, any S-section of E has this type of representation. We
call each f, a trivialization of the section f.

Example 2.13: We use remark (c) above to compute the global sections of
the holomorphic line bundles E* — P,(C), which we define as follows, using
the transition function g,, for the universal bundle U, ,(C)— P,(C) of
Example 2.6. Let the P,(C) coordinate maps (Example 1.6) ¢: U, — C be
denoted by ¢o([2o, 2,]) = 2,/20 = z and ¢,([zo, 2,]) = 2o/z, = w so that
z=g@go@r'(w)=1/w for w 0. For a fixed integer k define the line
bundle E*— P,(C) by the transition function g§,: U, N U, — GL(1, C)
where g§,([zo, 2;,]) = (20/24)*. E* is the kth tensor power of U, ,(C) for
k > 0, the kth tensor power of the dual bundle U, ,(C)* for k < 0, and
trivial for k = 0. If fe O(P,(C), E*), then each trivialization of f, f, is in
O(U,, U, x C) = 0O(U,) and the f, o ¢, ! are entire functions, say f, o ¢g '(2)
= 30 anz" and fy o o7 (W) = 30 byw". If z = @o(p) and w = ¢,(p), then
by remark (c), fo(p) = g&:(p)fi(p), for pe Uy N U, in the w-coordinate
plane, and this becomes

3, 1wy = oo 03002 977 '00) = ghi(@T )i 0 0708 = Wt 5 b

Hence,

0 for k > 0,

C for k = 0 (Theorem 1.11),
homogeneous polynomials  for k < 0.

in C? of degree —k

O(P,(C), E") =

When dealing with certain categories of $-manifolds, it is possible to
define algebraic structures on §(X, E). First, §(X, E) can be made into a
K-vector space under the following operations:

(a) Fors,t € $(X, E),
(s 4+ )(x) := s(x) + t(x) forallx € X.
(b) For s € §X, E) and « € K, (as)(x) := a(s(x)) for all s € X.
Moreover, $(X, E) can be given the structure of an §,(X) module [where

the §5(X) are the globally defined K-valued §-functions on X] by defining
(c) Fors e §(X, E)and f € $,(X),

S5(x) := f(x)s(x) forall x € X.

To ensure that the above maps actually are §-morphisms and thus $-sections,
it is necessary that the vector space operations on K" be §-morphisms in the
S-structure on K. But this is clearly the case for the three categories with
which we are dealing.

Let M be a differentiable manifold and let T(M) — M be its tangent
bundle. Using the techniques outlined above, we would like to consider new
differentiable vector bundles over M, derived from T(M). We have
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(a) The cotangent bundle, T*(M), whose fibre at x € M, T*(M), is the
R-linear dual to T,(M).

(b) The exterior algebra bundles, N\?T(M), N?T*(M), whose fibre at
x € M is the antisymmetric tensor product (of degree p) of the vector spaces
T.(M) and T*(M), respectively, and

AT(M) = @ APT(M)
AT*M) = ,@o AP T*(M).

(c) The symmetric algebra bundles, SX(T(M)), S*(T*(M)), whose fibres
are the symmetric tensor products (of degree k) of T, (M) and T*(M), re-
spectively.

We define

§2(U) = &(U, N\PT*(M)),

the C~ differential forms of degree p on the open set U = M. As usual, we can
define the exterior derivative

d: 8/ (U) — &**1(U).

We recall how this is done. First, consider U — R” and recall that the deriva-
tions {d/dx,, . . . , d/dx,} form a basis for T,(R*) at x € U. Let {dx,, ..., dx}
be a dual basis for T*(R"). Then the maps

dx;: U—> T*(R")|y
given by
dx(x) = dx,|,

form a basis for the §(U) (= &x-(U))-module §(U, T*(R") = §!(U). Moreover,
{dx, =dx, A --- Ndx,},where I =(i;,...,i)and 1 <i, <i, < -+ <
i, < n, form a basis for the §(U)-module §?(U). We define d: &7(U)— &7*'(U)
as follows:

Case 1 (p = 0): Suppose that f € 8%U) = &(U). Then let

df = z; dx,eS'(U)

Case 2 (p > 0): Suppose that f ¢ §?(U). Then

where f; € 8(U),I=(i,,...,i,),|I|=the number of indices, and Y}’
signifies that the sum is taken over strictly increasing indices. Then

R T 0f:
df = I;=p dfiNdx, = Iz: dx,/\dx,

P]l
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Suppose now that (U, k) is a coordinate system on a differentiable manifold
M. Then we have that T(M)|, = T(R")|,,; hence &2(U) < &»(h(U)), and
the mapping
d: 8°(h(U)) —> &*'(h(U))
defined above induces a mapping (also denoted by d)
d: 82(U) —> &**1(V).

This defines the exterior derivative 4 locally on M, and it is not difficult to
show, using the chain rule, that the definition is independent of the choice

of local coordinates. It follows that the exterior derivative is well defined
globally on the manifold M.

We have previously defined a bundle homomorphism of two bundles over
the same base space (Definition 2.8). We now would like to define a mapping
between bundles over different base spaces.

Definition 2.14: An §-bundle morphism between two $-bundles 7,: E —
X and 7.: F— Y is an §-morphism f: E — F which takes fibres of E iso-
morphically (as vector spaces) onto fibres in F. An $-bundle morphism
S+ E — F induces an $-morphism f(n.(e)) = n.(f(e)); in other words, the
following diagram commutes:

E-LF

”El lnr

x-L.y.

If X is identified with O(X), the zero section, then f may be identified with
f=flyX—Y=0Y)

since f is a homomorphism on fibres and maps the zero section of X into the
zero section of Y, which can likewis_e be identified with Y. If E and F are
bundles over the same space X and f is the identity, then E and F are said

to be equivalent (which implies that the two vector bundles are §-isomorphic
and hence equivalent in the sense of Definition 2.8).

Proposition 2.15: Given an $-morphism f: X — Y and an §-bundle
n: E— Y, then there exists an §-bundle n': E' — X and an $-bundle
morphism g such that the following diagram commutes:

E_:E
n’l ln
X Ly

Moreover, E’ is unique up to equivalence. We call E’ the pullback of E by f
and denote it by f*E.

Proof: Let
(2.3) E'={(x,e) € X X E: f(x) = n(e)}.
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We have the natural projections
g:EE—E and a:E—X
(x,e)—>e (x,e) — x.
Giving E', = {x} X E,,, the structure of a K-vector space induced by E,,, E’

becomes a fibered family of vector spaces over X.
If (U, h) is a local trivialization for E, i.e.,

h
E|, = U x K",
then it is easy to show that
E'py — f71(U) X K"
is a local trivialization of E’; hence E’ is the necessary bundle.

Suppose that we have another bundle %#: £ — X and a bundle morphism
£ such that

E- 5 E
itl ln
x5y
commutes. Then define the bundle homomorphism 4: E — E’ by
h(&) = (%), £(&)) € {n(e)} X E.
Note that #(&) € E' since the commutativity of the above diagram yields
f(#(&)) = n(&(8)); hence this is a bundle homomorphism. Moreover, it is a
vector space isomorphism on fibres and hence an §-bundle morphism induc-

ing the identity 1,: X — X, i.e., an equivalence.
Q.E.D.

Remark: In the diagram in Proposition 2.15, the vector bundle E’ and
the maps n’ and g depend on f and #, and we shall sometimes denote this
relation by

f*E-ISE
n, l ln
XLy
to indicate the dependence on the map f of the pullback. For convenience,

we assume from now on that f*E is given by (2.3) and that the maps z, and
[+ are the natural projections.

The concepts of §-bundle homomorphism and §-bundle morphism are
related by the following proposition.

Proposition 2.16: Let E-= X and E' =+ Y be $-bundles. If f: E — E’
is an §-morphism of the total spaces which maps fibres to fibres and which
is a vector space homomorphism on each fibre, then f can be expressed as
the composition of an §-bundle homomorphism and an §-bundle morphism.
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_ Proof:  Let f be the map on base spaces f: X — Y induced by f. Let
S*E’ be the pullback of E’ by f, and consider the following diagram,

E—2> f*E I E
no|n; '
\)lr'_fJ,

where A is defined by h(e) = (n(e), f(e)) [see (2.3)]. It is clear that f = f, o h.
Moreover, f, is an §-bundle morphism, and 4 is an §-bundle homomorphism.
Q.E.D.

There are two basic problems concerning vector bundles on a given space:
first, to determine, up to equivalence, how many different vector bundles
there are on a given space, and second, to decide how “twisted” or how far
from being trivial a given vector bundle is. The second question is the motiva-
tion for the theory of characteristic classes, which will be studied in Chap.
III. The first question has different “answers,” depending on the category.
A special important case is the following theorem. Let U = U, , denote the
universal bundle over G, , (see Example 2.6).

Theorem 2.17: Let X be a differentiable manifold and let E— X be a
differentiable vector bundle of rank r. Then there exists an N > 0 (depending
only on X) and a differentiable mapping /: X — G, ,(R)), so that f*U = E.
Moreover, any mapping f which is homotopic to f has the property that
f*U=E.

We recall that f and f are homotopic if there is a one-parameter family
of mappings F:[0,1] X X — G, y so that Flg,, = f and F|,.x = f.
The content of the theorem is that the different isomorphism classes of
differentiable vector bundles over X are classified by homotopy classes of
maps into the Grassmannian G, 5. For certain spaces, these are computable
(e.g., if X is a sphere, see Steenrod [1]). If one assumes that X is compact,
one can actually require that the mapping fin Theorem 2.17 be an embedding
of X into G, 5 (by letting N be somewhat larger). One could have phrased
the above result in another way: Theorem 2.17 is valid in the category of
continuous vector bundles, and there is a one-to-one correspondence between
isomorphism classes of continuous and differentiable (and also real-analytic)
vector bundles. However, such a result is not true in the case of holomorphic
vector bundles over a compact complex manifold unless additional assump-
tions (positivity) are made. This is studied in Chap. VI. In fact, the problem
of finding a projective algebraic embedding of a given compact complex
manifold (mentioned in Sec. 1) is reduced to finding a class of holomorphic
bundles over X so that Theorem 2.17 holds for these bundles and the mapping
S gives an embedding into G, ,(C), which by Proposition 1.14 is itself projec-
tive algebraic. We shall not need the classification given by Theorem 2.17
in our later chapters and we refer the reader to the classical reference Steenrod
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[1] (also see Proposition I11.4.2). A thorough and very accessible discussion
of the topics in this section can be found in Milnor [2].

The set of all vector bundles on a space X (in a given category) can be
made into a ring by considering the free abelian group generated by the set
of all vector bundles and introducing the equivalence relation that E — (E’
+ E") is equivalent to zero if there is a short exact sequence of the form
0 — E'— E— E” — 0. The set of equivalence classes form a ring K(X)
(using tensor product as multiplication), which was first introduced by
Grothendieck in the context of algebraic geometry (Borel and Serre [2]) and
generalized by Atiyah and Hirzebruch [1]. For an introduction to this area,
as well as a good introduction to vector bundles which is more extensive
than our brief summary, see the text by Atiyah [1]. The subject of K-theory
plays an important role in the Atiyah-Singer theorem (Atiyah and Singer
[1]) and in modern differential topology. We shall not develop this in our
book, as we shall concentrate more on the analytical side of the subject.

3. Almost Complex Manifolds and the d-Operator

In this section we want to introduce certain first-order differential opera-
tors which act on differential forms on a complex manifold and which
intrinsically reflect the complex structure. The most natural context in which
to discuss these operators is from the viewpoint of almost complex manifolds,
a generalization of a complex manifold which has the first-order structure
of a complex manifold (i.e., at the tangent space level). We shall first discuss
the concept of a C-linear structure on an R-linear vector space and will apply
the (linear algebra) results obtained to the real tangent bundle of a differ-
entiable manifold.

Let V be a real vector space and suppose that J is an R-linear isomorphism
J: V5 Vsuch that J2 = —1I (where I = identity). Then J is called a complex
structure on V. Suppose that V' and a complex structure J are given. Then
we can equip V with the structure of a complex vector space in the following
manner:

(@ + ifyw:= av + BJv, a, f R, i=./—1

Thus scalar multiplication on ¥ by complex numbers is defined, and it is
easy to check that V becomes a complex vector space. Conversely, if V is
a complex vector space, then it can also be considered as a vector space over
R, and the operation of multiplication by i is an R-linear endomorphism of
V onto itself, which we can call J, and is a complex structure. Moreover, if
{v,,...,v,} is a basis for V over C, then {v,,...,v,Jv,,...,Jv,} will be
a basis for V over R.

Example 3.1: Let C" be the usual Euclidean space of #-tuples of complex
numbers, {z,,...,2,}, and let z;, = x, +iy,,j=1,...,n, be the real and
imaginary parts. Then C" can be identified with R = {x,,y,...., x,. 3 }.
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x;, ¥, € R. Scalar multiplication by /in C” induces a mapping J: R?" — R?"
given by

J(xpyp D) x,.syn) = (—}’p Xys ooy " Vu x,.),
and, moreover, J* = —1. This is the standard complex structure on R,
The coset space GL(2n, R)/GL(n, C) determines all complex structures on R?"
by the mapping [4] — A~'JA, where [A] is the equivalence class of 4 €
GL(2n, R).

Example 3.2: Let X be a complex manifold and let 7,(X) be the (com-
plex) tangent space to X at x. Let X, be the underlying differentiable manifold
of X (i.e., X induces a differentiable structure on the underlying topologi-
cal manifold of X) and let T,(X,) be the (real) tangent space to X, at x. Then
we claim that T,(X,) is canonically isomorphic with the underlying real
vector space of T,(X) and that, in particular, T,(X) induces a complex struc-
ture J, on the real tangent space 7,(X,). To see this, we let (4, U) be a holo-
morphic coordinate system near x. Then h: U — U’ < C», and hence, by
taking real and imaginary parts of the vector-valued function h, we obtain

h:U—> R?»
given by
h(x) = (Re h,(x), Im h,(x), ..., Re h(x), Im h(x)),
which is a real-analytic (and, in particular, differentiable) coordinate system
for X, near x. Then it suffices to consider the claim above for the vector
spaces T,(C") and T,(R?") at 0 € C», where R?" has the standard complex

structure. Let {d/dz,, ..., d/dz,} be a basis for T,(C") and let {d/dx,, d/dy,,
...,0/dx,, d/dy,} be a basis for To(R?"). Then we have the diagram

T, (CH=C"

allta e

T (R*") = gR?",
where a is the R-linear isomorphism between T,(R?") and T,(C") induced by
the other maps, and thus the complex structure of T,(C") induces a complex
structure on T,(R?"), just as in Example 3.1. We claim that the complex struc-
ture J, induced on T,(X,) in this manner is independent of the choice of local
holomorphic coordinates. To check that this is the case, consider a biholo-
morphism f defined on a neighborhood N of the origin in C*, f: N — N,
where f(0) = 0. Then, letting { = f(z) and writing in terms of real and imagi-
nary coordinates, we have the corresponding diffeomorphism expressed in
real coordinates:

¢ = u(x,y)
n = vx,y),

where &, n,x,ye R and ¢ +in={ e C,x +iy=2z € C. The map
Jf(2) corresponds to a holomorphic change of coordinates on the complex

3.1
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manifold X; the pair of mappings u, v corresponds to the change of coordi-
nates for the underlying differentiable manifold. The Jacobian matrix
(differential) of these mappings corresponds to the transition functions for
the corresponding trivializations for T(X) and T(X,), respectively. Let
J denote the standard complex structure in C*, and we shall show that J
commutes with the Jacobian of the real mapping. The real Jacobian of (3.1)
has the form of an n X n matrix of 2 X 2 blocks,

du, du,

M= 9% (?y,,’ a,f=1,...,n
dv, dv,

dxp ays

which, by the Cauchy-Riemann equations (since fis a holomorphic mapping),
is the same as

dv, du,
0y; 0y,
_du, do,
dys 0y,

Thus the Jacobian is an n X n matrix consisting of 2 X 2 blocks of the form

a b
—b a
Moreover, J can be expressed in matrix form as an n X n matrix of 2 x 2
blocks with matrices of the form

I

along the diagonal and zero elsewhere. It is now easy to check that MJ =
JM. It follows then that J induces the same complex structure on 7,(X,)
for each choice of local holomorphic coordinates at x.

R af=1...,n

Let ¥ be a real vector space with a complex structure J, and consider
¥ Qg C, the complexification of V. The R-linear mapping J extends to a C-
linear mapping on ¥ Xy C by setting Jo Q@ a) =J(v) Y a forv e V,a €
C. Moreover, the extension still has the property that J* = —1, and it follows
that J has two eigenvalues {/, —i}. Let V- ° be the eigenspace corresponding
to the eigenvalue / and let ¥'°'! be the eigenspace corresponding to —i. Then
we have

V@rC=Vo@yor

Moreover, conjugation on ¥ ®g C is defined by y Qa =v @ & forve V
and @ € C. Thus V':° =g V°! (conjugation is a conjugate-linear mapping).
It is easy to see that the complex vector space obtained from ¥ by means of
the complex structure J, denoted by V,, is C-linearly isomorphic to V!9,
and we shall identify ¥, with V!-° from now on.
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We now want to consider the exterior algebras of these complex vector
spaces. Namely, denote ¥ ®r C by V. and consider the exterior algebras

AV AV, and AVeL

Then we have natural injections

~a
Ve
/\VO.]//\ ¢

and we let A?-9V be the subspace of A V, generated by elements of the form
u Aw, where u € A?V"% and w € AV 1. Thus we have the direct sum
(letting 7 = dimcV'-9)

2n
AV.=X
r=0 p+

We now want to carry out the above algebraic construction on the tangent
bundle to a manifold. First, we have a definition.

APV,

q=r

Definition 3.3: Let X be a differentiable manifold of dimension 2n. Suppose
that J is a differentiable vector bundle isomorphism

J: T(X) —> T(X)
such thatJ,: T.(X) — T,(X) is a complex structure for T (X); i.e., J? = —I,
where 7 is the identity vector bundle isomorphism acting on T(X). Then J
is called an almost complex structure for the differentiable manifold X. If X

is equipped with an almost complex structure J, then (X,J) is called an
almost complex manifold.

We see that a differentiable manifold having an almost complex structure
is equivalent to prescribing a C-vector bundle structure on the R-linear
tangent bundle.

Proposition 3.4: A complex manifold X induces an almost complex struc-
ture on its underlying differentiable manifold.

Proof: As we saw in Example 3.2, for each point x € X there is a com-
plex structure induced on T,(X,), where X, is the underlying differentiable
manifold. What remains to check is that the mapping

JiT(X)—> T(X), x€ X,

is, in fact, a C~ mapping with respect to the parameter x. To see that Jisa
C=> vector bundle mapping, choose local holomorphic coordinates (h, U)
and obtain a trivialization for T(X,) over U, i.e.,

T(Xy)ly = h(U) x R,
where we let z, = x; + iy, be the coordinatesin /(U) and (§,, ,,...,¢&,, )
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be the coordinates in R?". Then the mapping J |, is defined by (with respect
to this trivialization)

id X J: ((U) x R2" —> h(U) x R,
where
J(él’ ”l’ T fu’ "n) = (—”l’ él! ceey —_'ln’ fn)’

as before, That is, in this trivialization J is a constant mapping, and hence
C~. Since differentiability is a local property, it follows that J is a differentiable
bundle mapping.

Q.E.D.

Remark: There are various examples of almost complex structures
which do not arise from complex structures. The 2-sphere S carries a complex
structure [= P,(C)], and the 6-sphere S° carries an almost complex structure
induced on it by the unit Cayley numbers in S7 (see Steenrod [1]). However,
this almost complex structure does not come from a complex structure (it
is not integrable; see the discussion below). Moreover, it is unknown whether
S carries a complex structure. A theorem of Borel and Serre [1] asserts that
only S? and S¢ admit almost complex structures among the even dimensional
real spheres. For more information about almost complex structures on mani-
folds, consult, e.g., Kobayashi and Nomizu [1] or Helgason {1].

Let X be a differentiable m-manifold, let T(X), = T(X) ®g C be the
complexification of the tangent bundle, and let T*(X), be the complexification
of the cotangent bundle. We can form the exterior algebra bundle A 7*(X),,
and we let

8"(X), = 8(X, N'T*(X),).

These are the complex-valued differential forms of total degree r on X. We
shall usually drop the subscript ¢ and denote them simply by &"(X) when
there is no chance of confusion with the real-valued forms discussed in Sec.
2. In local coordinates we have ¢ € &'(X) if and only if ¢ can be expressed
in a coordinate neighborhood by

o) = 3 pi(x)dx,

where we use the multiindex notation of Sec. 2. and ¢,(x) is a C~ complex-
valued function on the neighborhood. The exterior derivative d is extended
by complex linearity to act on complex-valued differential forms, and we
have the sequence
8%(X) > 8'(X) 2> ... L5 8m(X)—> 0,

where d2 = 0.

Suppose now that (X, J) is an almost complex manifold. Then we can
apply the linear algebra above to 7(X),. Namely, J extends to a C-linear

bundle isomorphism on T(X), and has (fibrewise) eigenvalues +i. Let T(X)!:°
be the bundle of (+i)-eigenspaces for J and let T(X)° ! be the bundle of
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(—i)-eigenspaces for J [note that these are differentiable subbundles of
T(X).]. We can define a conjugation on T(X),,

Q: T(X), — T(X),,
by fibrewise conjugation, and, as before,
Q: T(X)!+° —> T(X)o!
is a conjugate-linear isomorphism. Moreover, there is a C-linear isomorphism
T(X), = T(X)"°,

where T(X), is the C-linear bundle constructed from 7(X) by means of J.
Let T*(X)!-°, T*(X)°! denote the C-dual bundles of T(X)!-° and T(X)* !,
respectively. Consider the exterior algebra bundles AT*(X)., AT*(X)'?,
and AT*(X)%!, and, as in the case of vector spaces, we have

T*(X), = T*X)"* @ T*X)"!
and natural bundle injections
AT*X)" "\
A T*(X)O' 1 /
and we let A7 7T*(X) be the bundle whose fibre is A?-?T*(X). This bundle

is the one we are interested in, since its sections are the complex-valued
differential forms of type (p, q) on X, which we denote by

879(X) = &(X, AP T*(X)).

Moreover, we have that

/\ T*(X)c’

g(X)= 3 &79(X).

pPHqg=r
Note that the differential forms of degree r do not reflect the almost complex
structure J, whereas its decomposition into subspaces of type (p,q) does.
We want to obtain local representations for differential forms of type
(p, 9). To do this, we make the following general definition.

Definition 3.5: Let £ — X be an $-bundle of rank r and let U be an open
subset of X. A frame for E over U is a set of r §-sections {s,,...,s,},s, €
S(U, E), such that {s,(x), ..., 5,(x)} is a basis for E, for any x € U.

Any §-bundle E admits a frame in some neighborhood of any given point
in the base space. Namely, let U be a trivializing neighborhood for E so that
h:E|l,—> U X K,

and thus we have an isomorphism
he: $(U, El,) = $(U, U x K*).
Consider the vector-valued functions
e, =(1,0,...,0,e,=(0,1,...,0),...,e,=(0,...,0,1),
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which clearly form a (constant) frame for U x K", and thus {(hy) '(e,), . . .,
(hy)"'(e,)} forms a frame for E |, since the bundle mapping A is an isomor-
phism on fibres, carrying a basis to a basis. Therefore we see that having a
frame is equivalent to having a trivialization and that the existence of a
global frame (defined over X) is equivalent to the bundle being trivial.

Let now (X, J) be an almost complex manifold as before and let {w, . . .,
w,} be a local frame (defined over some open set U) for T*(X)'-°. It follows
that {w,,..., w}t is a local frame for T*(X)°-'. Then a local frame for
A??T*(X) is given by (using the multiindex notation of Sec. 2)

{w! A W}, 1| = p, |J|=4q,  ,J strictly increasing).
Therefore any section s € §2:9(X) can be written (in U) as
5= ﬁ:' a,w AW, a;; € 8%(U).
1
J

=p
=q

Note that

ds = Y da, AW AW + ap,dw’ AW,

H+
where the second term is not necessarily zero, since w/x) is not necessarily
a constant function of the local coordinates in the base space (which will,
however, be the case for a complex manifold and certain canonical frames
defined with respect to local holomorphic coordinates, as will be seen below).
We now have, based on the almost complex structure, a direct sum decom-

position of §"(X) into subspaces {€7-%(X)}. Let n, , denote the natural projec-
tion operators

m,. . 8(X)—> 879(X), ptg=r.
We have in general

d: gp,q(X) —_— gp+q+l(X) = Z 8"‘(X)

r+s=pt+q+1

by restricting d to §7:9. We define
9: 89(X) —> 87*19(X)
d: 879(X) —> 879*1(X)
by setting
=17y, ,0d
d=m,,. od
We then extend d and 4 to all
8*(X) = 3 &(X)
by complex linearity. "

Recalling that Q denotes complex conjugation, we have the following
elementary results.

Proposition 3.6: Qd(Qf) = df, for f € &*(X).

1We shall use both Q and overbars to denote the conjugation, depending on the context.
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Proof:  One has to verify thatif f € &"(X)andp +g=r,thenQn, . f =
n, ,Qf and Q(df) = dQf, which are simple, and we shall omit the details.
Q.E.D.

_ In general, we know that 4> = 0, but it is not necessarily the case that
d% = 0. However, it follows from Proposition 3.6 that 92 = 0 if and only if
9> =0.
In general
d: &7 9(X) —> §P*9*1(X)
can be decomposed as
d= Y m,od=d+d+ -

r+s=p+g+l

If, however, d = d + 9, then
d® = 3% + dd + dd + a2,
and since each operator projects to a different summand of &7*9*2(X) (in
which case the operators are said to be of different type), we obtain
8 =03 + 39 =2 =o.
If d = @ + Jd then we say that the almost complex structure is integrable.

Theorem 3.7: The induced almost complex structure on a complex manifold
is integrable.

Proof: Let X be a complex manifold and let (X, J) be the underlying
differentiable manifold with the induced almost complex structure J. Since
T(X) is C-linear isomorphic to T(X,) equipped with the C-bundle structure
induced by J, it follows that, as C-bundles,

T(X) = T(X,)"°,
and similarly for the dual bundles,
T*(X) = T*(X,)"°.

But {dz,,...,dz} is a local frame for T*(X) if (z,, . . ., z,) are local coordi-
nates (recall that {dz,,...,dz} are dual to {0/dz,,...,d/dz,}). We set

5%:%(0_65}“[%)’ j=1,...,n

d _1(d , .0 .
E_T(ax,Jrldy,-)’ j=heom
where {d/ox,,...,d/dx,,0d/dy,,...,d/dy,} is a local frame for T(X,),
and {9/dz,, . .., d/dz,} is a local frame for T(X) (cf. Examples 2.4 and 2.5).
We observe that d/dz; so defined is the complex (partial) derivative of a
holomorphic function, and thus the assertion that these derivatives form a
local frame for T(X) is valid. From the above relationships, it follows that
dz; = dx;, + idy,
dz, = dx; — idy,, Jj=4hL...,nm



Sec. 3 Almost Complex Manifolds and the 3-Operator 35

which gives
dx, = 5-(dz, + di)
dy,:zli(dzj—dz'j), J=1-n

This in turn implies that for s € &2-9(X)
s = 3"a,dz' NdZ.
1,J

We have
= Z (aa”dx + da"dy,)Adz ndZ!
=1 4 \d
:ZZ da,,
j=1 1]

ZZ d ”dz Adz! NdF
1,7

j=1
The first term is of type (p + 1, q) and so
a~zi¢
=1
and similarly

a_zﬁaﬂ

and hence d = d + d. Thus the almost complex structure induced by the

complex structure of X is integrable.
Q.E.D.

The converse of this theorem is a deep result due to Newlander and
Nirenberg [1], whose proof has been simplified in recent years (see, e.g.,
Kohn [1], Hérmander [2]).

Theorem 3.8 (Newlander-Nirenberg): Let (X,J) be an integrable almost
complex manifold. Then there exists a unique complex structure 9, on X
which induces the almost complex structure J.

We shall not prove this theorem, and instead refer the reader to Hér-
mander [2]. We shall mention, however, that it can easily be reduced to a
local problem—and, indeed, to solving particular partial differential equa-
tions (namely the inhomogeneous Cauchy-Riemann equations) with esti-
mates. In the case where (X, J) is a real-analytic almost complex manifold,
there are simpler proofs (see e.g., Kobayashi-Nomizu, Vol. II [1]). We shall
not need this theorem, but we shall mention that it plays an important role
in the study of deformations of complex structures on a fixed differentiable
manifold, a topic we shall discuss in Chap. V.



CHAPTER 1I

SHEAF THEORY

Sheaves were introduced some 20 years ago by Jean Leray and have had
a profound effect on several mathematical disciplines. Their major virtue is
that they unify and give a mechanism for dealing with many problems con-
cerned with passage from local information to global information. This
is very useful when dealing with, say, differentiable manifolds, since locally
these look like Euclidean space, and hence localized problems can be dealt
with by means of all the tools of classical analysis. Piecing together “solu-
tions” of such local problems in a coherent manner to describe, e.g., global
invariants, is most easily accomplished via sheaf theory and its associated
cohomology theory. The major virtue of sheaf theory is information-theoretic
in nature. Most problems could be phrased and perhaps solved without
sheaf theory, but the notation would be enormously more complicated and
difficult to comprehend.

In Sec. 1 we shall give the basic definition of presheaves and sheaves,
including a variety of examples. In Sec. 2 we shall develop one of the basic
computational tools associated with a sheaf, namely a resolution, and again
there are more examples. Section 3 contains an introduction to cohomology
theory via abstract (canonical) soft (or flabby) resolutions, and we shall
prove some basic isomorphism theorems which give us an explicit version
of de Rham’s theorem, for instance. In Appendix A is a brief summary of
Cech cohomology theory, an alternative and equally useful method for com-
puting cohomology. General references for this chapter include Bredon
[1], Godement [1], and selected chapters in Gunning and Rossi [1] and
Hirzebruch [1].

1. Presheaves and Sheaves

In this section we shall introduce the basic concepts of presheaves and
sheaves, giving various examples to illustrate the main ideas. We shall start
with some formal definitions.

Definition 1.1: A presheaf § over a topological space X is

36
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(a) An assignment to each nonempty open set U = X of a set F(U).
(b) A collection of mappings (called restriction homomorphisms)

rd :S(U) — F(V)

for each pair of open sets U and V such that V' < U, satisfying
(1) rg = identity on U (= 1,).
(2 ForUo VoW, rS=rory.

If ¥ and G are presheaves over X, then a morphism (of presheaves)
h:F—G
is a collection of maps
hy 1 5(U) — G(U)
for each open set U in X such that the following diagram commutes:
FU) — GW)

ry re
F(V)—>G(V), VcUcX.

F is said to be a subpresheaf of G if the maps A, above are inclusions.

Remark: We shall be dealing primarily with presheaves, ¥, where F(U)
has some algebraic structure (e.g., abelian groups). In this case we also require
that the subpresheaves have the induced substructure (e.g., subgroups) and
that restriction homomorphisms and morphisms preserve the algebraic
structure (e.g., r¢ and h, are group homomorphisms). Moreover, we shall
call the elements of F(U) sections of F over U for reasons which will become
apparent later.

Definition 1.2: A presheaf & is called a sheaf if for every collection U, of open
subsets of X with U = U U, then ¥ satisfies

Axiom S,;: If s, t € F(U) and rf(s) = r§ (1) for all i, then s = 1.
Axiom S,: Ifs, € §(U) and if for U, N U, # @& we have

"Z:nu,c(s.') = rg:nv,(sj)

for all i, then there exists an s € F(U) such that rY (s) = s, for all /.

Morphisms of sheaves (or sheaf mappings) are simply morphisms of the
underlying presheaf. Moreover, when a subpresheaf of a sheaf F is also a
sheaf, then it will be called a subsheaf of §. An isomorphism of sheaves (or
presheaves) is defined in the obvious way, namely 4, is an isomorphism in the
category under consideration for each open set U. Note that Axiom S, for
a sheaf says that data defined on large open sets U can be determined
uniquely by looking at it locally,and Axiom S, asserts that local data of a given
kind (in a given presheaf) can be pieced together to give global data of the
same kind (in the same presheaf).

We would now like to give some examples of presheaves and sheaves.
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Example 1.3: Let X and Y be topological spaces and let €, , be the
presheaf over X defined by

(@) Cxy(U):={f:U~— Y:fis continuous}.

(b) For feCy (U), r¥(f) := f|v, the natural restriction as a function.
It is easy to see that this presheaf satisfies Axioms S, and S, and hence is a
sheaf.

Example 1.4: Let X be a topological space and let K be R or C. Let
€y = G4, as in the above example. This is a sheaf of K-algebras; i.e.,
€,(U) is a K-algebra under pointwise addition, multiplication, and scalar
multiplication of functions.

Example 1.5: Let X be an §-manifold (as in Definition 1.1 in Chap D).
Then we see that the assignment §, given by

8$x(U) := $(U) = the §-functions on U

defines a subsheaf of ©,. This sheaf is called the structure sheaf of the mani-
fold X. In particular, we shall be dealing with §,, @, and 0, the sheaves of
differentiable, real-analytic, and holomorphic functions on a manifold X.

Example 1.6: Let X be a topological space and let G be an abelian
group. The assignment U — G, for U connected, determines a sheaf, called
the constant sheaf (with coefficients in G). This sheaf will often be denoted
simply by the same symbol G when there is no chance of confusion.

We want to give at least one example of a presheaf which is not a sheaf,
although our primary interest later on will be sheaves of the type mentioned
above.

Example 1.7: Let X be the complex plane, and define the presheaf
® by letting ®(U) be the algebra of bounded holomorphic functions in the
open set U. Let U, ={z:|z| < i}, and then C = U U,. Let f,.€ ®(U)
be defined by setting f(z) = z. Then it is quite clear that there is no f € ®(C)
with the property that f'|,, = f.. In fact, by Liouville’s theorem, ®(C) =
Consequently, ® is not a sheaf, since it violates Axiom S,.

We see in the above example that the basic reason B was not a sheaf
was that it was not defined by a local property (such as holomorphicity,
differentiability, or continuity).

Remark: A presheaf that violates Axiom S, can be obtained by taking
the sections of Cy x with X a two point discrete space but letting all proper
restrictions be zero.

A natural structure on presheaves which occurs quite often is that of a
module.
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Definition 1.8: Let ® be a presheaf of commutative rings and let 9 be a
presheaf of abelian groups, both over a topological space X. Suppose that
for any open set U C X, M(U) can be given the structure of an ®(U)-module
such that if & € ®(U) and f € M(U), then

rp(af) = pl(@)ry(f)

for ¥V < U, where r{ is the IM-restriction homomorphism and pY is the
®R-restriction homomorphism. Then I is called a presheaf of ®-modules.
Moreover, if 9 is a sheaf, then M will be a sheaf of ®-modules.

Example 1.9: Let E— X be an §-bundle. Then define a presheaf
S(E) (= Sx(E))t by setting S(EYU) = §(U, E), for U open in X, together
with the natural restrictions. Then §(E) is, in fact, a subsheaf of €, ; and is
called the sheaf of $-sections of the vector bundle E. As special cases, we have
the sheaves of differential forms &% on a differentiable manifold, or the sheaf
of differential forms of type (p, q), 829 on a complex manifold X. These
sheaves are examples of sheaves of §,-modules, and, more generally, $(E)
is a sheaf of §,-modules for an §-bundle £ — X.

Example 1.10: Let 0. denote the sheaf of holomorphic functions in the
complex plane C and let 3 denote the sheaf defined by the presheaf

U —> o(U), ifo¢ U
{U-»{fe o) :f0) =0}, if0e U

Then, clearly, this presheaf is a sheaf, and it is also a sheaf of modules over
the sheaf of commutative rings Oc (in fact, it is a sheaf of ideals in the sheaf
of rings, going one step further).

The most commonly occurring sheaves of modules in complex analysis
have names.

Definition 1.11: Let X be a complex manifold. Then a sheaf of modules
over the structure sheaf 0, of X is called an analytic sheaf.

As one knows from algebra, the simplest type of modules are the free
modules. We have a corresponding definition for sheaves. First, we note
that there is a natural (and obvious) notion of restriction of a sheaf (or pre-
sheaf) & on X to a sheaf (or presheaf) on an open subset U of X, to be denoted
by F|,.

Definition 1.12: Let ® be a sheaf of commutative rings over a topological
space X.

t$x(E) is not to be confused with §£(E), which are the global §-functions defined on
the manifold E. In context it will be clear which is meant.
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(a) Define ®?, for p > 0, by the presheaf
U-—®U):= RU)D--- DRWV).

p terms

®?, so defined, is clearly a sheaf of ®-modules and is called the direct sum
of ® (p times; p = 0 corresponds to the 0-module).

(b) TIf 9M is a sheaf of ®-modules such that 9 = R~ for some p > 0,
then N is said to be a free sheaf of modules.

(c) If M is a sheaf of ®R-modules such that each x € X has a neighbor-
hood U such that 91|, is free, then M is said to be locally free.

The following theorem demonstrates the relationship between vector
bundles and locally free sheaves.

Theorem 1.13: Let X = (X, §) be a connected §-manifold. Then there is
a one-to-one correspondence between (isomorphism classes of) §-bundles
over X and (isomorphism classes of ) locally free sheaves of §-modules over
X.

Proof: The correspondence is provided by
E— §(E)
and it is easy to see that $(E) is a locally free sheaf of §-modules. Namely,
by local triviality, for some neighborhood U of a point x € X, we have
E|, = U x K’, where r is the rank of the vector bundle E. It follows that

S(E)l, = $(U x K7). We claim that

SUXK)=8lyD- D8l
From the definition of a section, it follows that f e §(U x K)(V) (for V
open in U) if and only if f(x) = (x, g(x)), where g : V' -—— K" and g is an
S-morphism (cf. Example 1.2.12). Therefore g = (g,,..., &), & € &(V), and
the correspondence above is given by

f— (g, ... 8)E SV)D - DSuV),

which is clearly an isomorphism of sheaves. Therefore $(E) is a locally free
Sx-module.

We shall now show how to construct a vector bundle from a locally free
sheaf, which inverts the above construction. Suppose that £ is a locally free
sheaf of §-modules. Then we can find an open covering {U,} of X such that

&8st £!U, e lu,,

for some r > 0 (excluding the trivial case); note that r does not depend on
a, since X is connected. Then define

gaﬂ : S'IU‘,“Uﬁ — S'IU«OU}‘!

by setting g,; =g, g;'. Now g, is a sheaf mapping, so in particular (when
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acting on the open set U, N U,) it determines an invertible mapping of
vector-valued functions (g,s)y, v 25 which we write as

guﬂ : S(Ua N Uﬁ)' -—> S(Ua N Uﬂ)"

which is then a nonsingular r X r matrix of functions in §(U, N Up), i.e.,
8.5 : U, N Uy — GL(r, K), and hence determines transition functions for
a vector bundle E, since the compatibility conditions g,, - g5, = g,, are
trivially satisfied. Thus a vector bundle E can be defined by letting

E=uU U, x K (disjoint union)
and making the identification
(6, &) ~ (x,8,4(x)), fxeUnU#g2.

(Cf. the remark after Definition 1.2.2.)
We leave it to the reader to verify that isomorphism classes are preserved

under this correspondence.
Q.E.D.

Remark: Most of the sheaves we shall be dealing with will be locally
free sheaves arising from vector bundles; however, there is a generalization
which is of great importance for the study of function theory on complex
manifolds and, more generally, complex manifolds with singularities—
complex spaces. An analytic sheaf § on a complex manifold X is said to be
coherent if for each x € X there is a neighborhood U of x such that there is
an exact sequence of sheaves over U,

0?|y — Oy —> F|, —> 0,

for some p and g. For a complete discussion of coherent analytic sheaves on
complex spaces, see Gunning and Rossi [1]. For instance, let ¥ be a sub-
variety of C*; i.e., V is defined as a closed subset in C*, which is locally given
as the set of zeros of a finite number of holomorphic functions. Let g, be the
subsheaf of O defined by sections that vanish on V. Therefore 9, is an ideal
sheaf in the sheaf of rings O. Then 9, is a coherent analytic sheaf (by results
of Oka and Cartan; see Gunning and Rossi [1]) but not necessarily locally
free. A simple example of this situation is the case where V is simply the
origin in C2; then we see that 9, = 9, is similar to Example 1.10. Moreover,
910y is coherent because of the following exact sequence,

0—>0—>0*—%>g,—>0  (Koszul complex),

where
ufuh)=z/— 2./
W) =(2./, 2, /)
One can easily check that this is exact (by expanding the functions in power
series at the origin and determining the relations between the coefficients).
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2. Resolutions of Sheaves

A sheaf § on a space X is a carrier of localized information about the
space X. To get global information about X from ¥, we want to apply the
techniques of homological algebra to sheaves. For this we want to consider
exact sequences, quotients, etc. To do this, however, we have to look at
another, more localized, model of a sheaf. In fact, we shall make a sheaf into
a topological space of a particular type.

Definition 2.1: (a) An éralé space over a topological space X is a topolog-
ical space Y together with a continuous surjective mapping #:Y — X
such that 7z is a local homeomorphism.

(b) A section of an étalé space Y — X over an open set U c X is a
continuous map f : U — Y such that n o f = 1,,. The set of sections over
U is denoted by I'(U, Y).

It is clear that the sections of an étalé space form a subsheaf of €, ,.
We are going to associate to any presheaf § over X an étalé space § — X
such that the sheaf of sections of § gives another model for & if § happens to
be a sheaf. The reasons for this construction will become clear as we go along.

Consider a presheaf § over X, and let

F .= lim §(U)
xeU
be the direct limit of the sets F(U) with respect to the restriction maps {r//}
of ¥. If ¥ has an algebraic structure which is preserved under direct limits,
then &, called the stalk of § at x, will inherit that structure. For instance,
this is the case if § is a presheaf of abelian groups or commutative rings.
There is a natural map

Y ¥U)—9F,, x e U,

given by taking an element in $(U) into its equivalence class in the direct
limit. If s € F(U), then s, := rY(s) is called the germ of s at x, and s iscalled
a representative for the germ s,. Let

§F= U ¢,

x€X

and let # : § — X be the natural projection taking points in §_to x. We want
to make § into an étalé space, and all that remains is to give F a topology.
For each s € F(U) define the set function

§:U—§
by letting §(x) = s, for each x € U. Note that # o § = 1,,. Let
{§(U)} where Uis open in X, s € F(U)

be a basis for the topology of &. Then all the functions § are continuous.
Moreover, it is easy to check that z is continuous and indeed a local home-
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omorphism (5 provides a local inverse at s, for n for a given representative
sofs, € %).

Thus we have associated to each presheaf § over X an étalé space. More-
over, if the presheaf has algebraic properties preserved by direct limits, then
the étalé space § inherits these properties. For example, suppose that & is a
presheaf of abelian groups. Then § has the following properties:

(a) Each stalk is an abelian group.
(b) IfF-5F := {(s,1) € F x §F : n(s) = n(t)}, then the map
u:5.5§—g

given by (s,,1,) — s, — ¢, is continuous. This is true since if (s — r)~(U)
is a basic open set of 5, — ¢, for Uopenin X and s, t € §(U), then the inverse
image of (s — 1)~(U) by the above map is just §(U) o #(U), which is a basic
open setin § o §.

() For Uopenin X, the set of sections of  over U, I'(U, %) is an abelian
group under pointwise addition, i.e., for s, t € (U, §)

(s — D(x) = s(x) — t(x) forallx e U.

We see that s — ¢ is continuous since it is given by the following composi-
tion of continuous maps:

RS Y R

In associating an étalé space F to a presheaf §, we have also associated
a sheaf to §, namely the sheaf of sections of . We call this sheaf the sheaf
generated by . We would now like to look more closely at the relationship
between the presheaf, ', and the sheaf of sections of & which we shall call F
for the time being. We have already used the fact that there is a presheaf
morphism, which we now denote by

7:5—F,

namely 7, : §(U) — F(U) [:= (U, §)] is given by 1,(s) = 5. Recall that
§(x) = rY(s)for all x € U. In the case that ¥ is a sheaf, we have the following
basic result. Its proof will illustrate the use of the sheaf axioms in an abstract
setting.

Theorem 2.2: If § is a sheaf, then
71:5F—§F

is a sheaf isomorphism.
Proof: It suffices to show that 7, is bijective for each U.

(@) 1ty is injective: Suppose that s’, s”e $(U) and ty(s’) = 14(s").
Then

[Tu(H(x) = [T, (s"))(x) forall x e U;
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i.e., ri(s’)y = rY(s”) for all x € U. But when r¥(s") = rY(s") for some x € U,
the definition of direct limit implies that there is a neighborhood V of x
such that rJ(s’) = r¥(s"). Since this is true for each x € U, we can cover
U with open sets U, such that

rg(s’) = rj(s")
for all /. So since § is a sheaf, we have, by Axiom S,, 5" == 5".

(b) 7, is surjective: Suppose g € I'(U, §). Then for x € U there is a
neighborhood V of x and s € F(V) such that

o(x) = s, = [1,(9)](x).

Since sections of an étalé space are local inverses for z, any two sections
which agree at a point agree in some neighborhood of that point. Hence we
have for some V' * a neighborhood of x:

aly = 1,9 = 1,(r7(5)).

Since this is true for any x € U, we can cover U with neighborhoods U,
such that there exists s, € $(U,) and

TUI(S[') = aiUx'
Moreover, we have
Ty,(s;) = Ty(s;)) on U nNU,
so by part (a)
rlL/’.‘nU,(si) = rg:f\Ul(sj)'
Since § is a sheaf and U = U, U, there exists s € F(U) such that

rZ‘(s) =3,
Thus
7u(s),u, = Tu,(’g.(s)) = TU((si) = Ulu,,

and finally 7,(s) = 0.
Q.E.D.

The content of this theorem is that to each sheaf § one can associate an
étalé space § whose sheaf of sections is the original §; i.e., § contains the
same amount of information as ¥, and for this reason, a sheaf is very often
defined to be an étalé space with algebraic structure along its fibres, as dis-
cussed above (see, e.g., Bredon [I] and Gunning and Rossi [I]). For doing
analysis, however, the principal object is the presheaf, with its axioms (since
most sheaves occur naturally in this form), and the associated étalé space is
an auxiliary construction which is useful in constructing the homological
machinery which makes sheaves useful objects. One way, in particular, that
the étalé space is useful is to pass from a presheaf to a sheaf.

Definition 2.3: Let § be a presheaf over a topological space X and let § be
the sheaf of sections of the étalé space § associated with . Then ¥ is the
sheaf generated by F.
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By Theorem 2.2 above, we see that a presheaf, which is a sheaf, generates
itself; i.e., § = §. Moreover, we shall use both notations $(U) and I'(U, F)
to denote the set (or group or module) of sections of § over U, depending
on the context (the word section, of course, coming from the étalé space
picture of a sheaf).

We now want to study the elementary homological algebra of sheaves
of abelian groups; all the concepts we shall encounter generalize in a natural
manner to sheaves of modules.

Definition 2.4: Suppose that F and G are sheaves of abelian groups over a
space X with G a subsheaf of §, and let @ be the sheaf generated by the
presheaf U — F(U)/G(U). Then Q is called the quotient sheaf of § by Gand is
denoted by §/G.

The quotient mapping on presheaves above induces a natural sheaf sur-
jection § — F/G by going to the direct limit, inducing a continuous mapping
of étalé spaces, and then considering the induced map on continuous sections.
This is then the desired sheaf mapping onto the quotient sheaf.

One of the fundamental concepts of homological algebra is that of exact-
ness.

Definition 2.5: If @, ®, and @ are sheaves of abelian groups over X and
a->®—c
is a sequence of sheaf morphisms, then this sequence is exact at ® if the
induced sequence on stalks
e, > @, >e,
is exact for all x € X. A short exact sequence is a sequence
0—Q@—®B®-—>C—0,
which is exact at @, ®, and C, where 0 denotes the (constant) zero sheaf.

Remark: Note that exactness is a local property. The sheaves are not
defined to be exact at the presheaf level [i.e., exactness of
aU) — BU) — cU)

for each U open in X}, which, of course, was possible since homomorphism
of sheaves were so defined. The usefulness of sheaf theory is precisely in
finding and categorizing obstructions to the “global exactness” of sheaves.

We shall now give some examples of short exact sequences of sheaves.

Example 2.6: Let X be a connected complex manifold. Let © be the sheaf
of holomorphic functions on X and let 0* be the sheaf of nonvanishing holo-
morphic functions on X which is a sheaf of abelian groups under multipli-
cation. Then we have the following sequence:

2.1 0—Z>0250*—>0
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where Z is the constant sheaf of integers, i is the inclusion map, and
exp : © — 0* is defined by

expy (f)(2) = exp (2zif (2)).

Moreover, for some (sufficiently small) simply-connected neighborhood U
of x € X and for some representative g € 0*(U) of a germ g_ at x, we can
choose f, = ((1/2ni) log g), for some branch of the logarithm function, and we
have exp, (f,) = g.. Also, exp, (f,) = 0 implies thatt

exp 2nif (z) = 1, ze U,

for any f € ©(U) which is a representative of the germ f, on a connected
neighborhood U of x. Therefore f'is constant on U and is, in fact, an integer,
so that

Ker(exp,) = Z,

and the sequence (2. 1) is exact.

Example 2.7: Let @ be a subsheaf of @. Then
0—@a— ®-®a—0

is an exact sequence of sheaves, where i is the natural inclusion and g is the
natural quotient mapping.

Example 2.8: As a special case of Example 2.7, we let X = C and let
0 be the holomorphic functions on C. Let g be the subsheaf of © consisting
of those holomorphic functions which vanish at z = 0 € C (Example 1.10).
Then we have the following exact sequence of sheaves:
0—9—0—>0/9—>0.
We note that
C, ifx=0

©/9. = {o,‘ if x #0.

Example 2.9: Let X be a connected Hausdorff space and let a, b be two
distinct points in X. Let Z denote the constant sheaf of integers on X and
g denote the subsheaf of Z which vanishes at a and b. Then

0—9—>Z-—>Z/9—0
is exact and
Z, if x=agaorx=54

(Z]9), = .
0, if x a and x % b.

tNote that “0” here is the identity element in an abelian group.



Sec. 2 Resolutions of Sheaves 47

Remark: Example 2.9 shows the necessity of using the generated sheaf
for the quotient sheaf in Definition 2.4, since the presheaf of quotients of
sections of Z by sections of 4 violates Axiom S,.

Following the terminology of homological algebra for modules, we make
the following definitions where sheaf means sheaf of abelian groups or sheaf
of modules. A graded sheaf is a family of sheaves indexed by integers, F*
= {F°},ez- A sequence of sheaves (or sheaf sequence) is a graded sheaf con-
nected by sheaf mappings:

2.2 RSN { NN JINLAN: SNy £

A differential sheaf is a sequence of sheaves where the composite of any pair
of mappings is zero; i.e., &; o &, , = 0in (2.2). A resolution of a sheaf & is an
exact sequence of sheaves of the form

0—mF—>F'—HFl —...—>F"—>...,
which we also denote symbolically by
0—>F —> F*,

the maps being understood.

We shall see later that various types of information for a given sheaf
F can be obtained from knowledge of a given resolution. We shall close this
section with various examples of resolutions of sheaves. Their utility in com-
puting cohomology will be demonstrated in the next section.

Example 2.10: Let X be a differentiable manifold of real dimension m
and let 8% be the sheaf of real-valued differential forms of degree p. Then there
is a resolution of the constant sheaf R given by

(2.3) 0—R—>8,—>8,—5...—>g1—>0,

where i is the natural inclusion and d is the exterior differentiation operator.
Since d2 = 0, it is clear that the above is a differential sheaf. However, the
classical Poincaré lemma (see, e.g., Spivak [1], p. 94) asserts that on a star-
shaped domain U in R, if f € §?(U) is given such that df = 0, then there
exists a ¥ € 827 1(U) (p > 0) so that du = f. Therefore the induced mapping
d, on the stalks at x € X is exact, since we can find representatives in local
coordinates in star-shaped domains. At the term &}, exactness is an ele-
mentary result from calculus [i.e., df = 0 implies that fis a constant (locally)].
We shall denote this resolution by 0 — R — 8% (or 0 — C — &% if we are
using complex coefficients).

Example 2.11: Let X be a topological manifold. We want to derive a
resolution for the constant sheaf G over X, where G is an abelian group
(which will hold also for more general spaces). Let S?(U, G) be the group of
singular cochainsin Uwith coefficients in G i.e.,$?(U,G) = Homy(S (U, Z),G),
where S, (U, Z) is the abelian group of integral singular chains of degree
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pin U with the usual boundary map (see, e.g., MacLane [1] or any standard
algebraic topology text). Let § denote the coboundary operator, § : S7(U, G)
— SP*1(U, G), and let $7(G) be the sheaf over X generated by the presheaf
U — $?(U, G), with the induced differential mapping $7(G) - §7*!(G).
Consider the unit ball U in Euclidean space. Then the sequence

24) ... —> YU, G)—>> S(U, G) —> §?*1(U, G) —> - - -

is exact, since Ker 8/Im & is the classical singular cohomology for the unit
ball, which is well known to be zero for p > 0 (see MacLane [1], pp. 54-61,
for an elementary proof of this fact, using barycentric subdivision). Therefore
the sequence

0 —> G —> §%G) > §'(G) > §¥G) —> - - - —> §"(G) —> - - -
is a resolution of the constant sheaf G, noting that
Ker(d : S°(U, G) — SY(U, G)) = G.

We remark that we could also have considered C* chains if X is a dif-
ferentiable manifold, i.e. (linear combinations of) maps f : A? — U, where
fis a C~ mapping defined in a neighborhood of the standard p-simplex
A’. The corresponding results above still hold [in particular, the elementary
proof of the exactness of (2.4) still works in the C* case], and we have a
resolution by differentiable cochains with coefficients in G

0—> G—> §2(6) — 8LG) —> - —> UG —> -+,
which we abbreviate by
2.5) 0—> G —> §X(G).

Example 2.12: Let X be a complex manifold of complex dimension
n, let 877 be the sheaf of (p, q) forms on X, and consider the sequence of
sheaves, for p > 0, fixed,

0—Qr—>gr0 -5 gp1 s .5 grm_50,

where Q is defined as the kernel sheaf of the mapping &2:° 2 &2:1, which is
the sheaf of holomorphic differential forms of type (p, 0) (and we usually say
holomorphic forms of degree p); i.e., in local coordinates, ¢ € Q?(U) if and
only if

o= 3 @d, ¢ €00U),

=p
and we note that Q° = 0(= 0,). Then for each p we have a differential
sheaf
(2.6) 0—> Q7 —> 7%,

since 2 = 0, which is, in fact, a resolution of the sheaf_ Q°, by virtue of the
Grothendieck version of the Poincaré lemma for the d-operator. Namely,
if  is a (p, g)-form defined in a polydisc Ain C", A ={z :|z,| < r, i =,
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...,n},and dw = 0 in A, then there exists a (p, g — 1)-form u defined in a
slightly smaller polydisc A’ = < A, so that du = fin A’. See Gunning and
Rossi [1], p. 27, for an elementary proof of this result using induction (as in
one of the classical proofs of the Poincaré lemma) and the general Cauchy
integral formula in the complex plane.t

Example 2.13: Let X be a complex manifold and consider the differential

sheaf over X,

0—C—Q—>Q —> ... > Q—>0,

where the Q7 are defined in Example 2.12. Then we claim that this is a resolu-
tion of the constant sheaf C. First we note that ¢ = d, when acting on holo-
morphic forms of degree p, since d =9 + d, and d(Q*) =0 for p =0,
..., u; then exactness at Q° is immediate. Moreover, one can locally solve
the equation du = w for u if dw = O by the same type of proof as for the
operator d indicated in Example 2.12.

Suppose that £* and M * are differential sheaves. Then a homomorphism
[ &% — IM* is a sequence of homomorphisms f; : £/ — M/ which com-
mutes with the differentials of £* and 9M*. Similarly, a homomorphism of
resolutions of sheaves

00— a—a*

Lo

0— ® — ®*
is a homomorphism of the underlying differential sheaves.
Example 2.14: Let X be a differentiable manifold and let
00— R—> &*
0— R—> §X(R)

be the resolutions of R given by Examples 2.10 and 2.11, respectively. Then
there is a natural homomorphism of differential sheaves

I1:8*%— §%(R)

which induces a homomorphism of resolutions in the following manner:

. »8*
0—> R< 11
£ 8%(R).

The homomorphism / is given by integration over chains; i.e.,

I, :8%(U)—> SX(U,R)

+The same result holds for d: 7.9 — g§7*1.4, as one can easily see by conjugation.
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is given by
@)X = | ¢,

where ¢ is a C~ chain (with real coefficients, in this case), and then I,,(p)
e $*(U, R). Moreover, by Stokes’ theorem it follows that the mapping 7
commutes with the differentials.

We shall see in the next section how resolutions can be used to represent
the cohomology groups of a space. In particular, we shall see that every sheaf
admits a canonical abstract resolution with certain nice (cohomological)
properties, and we shall then compare this abstract resolution with our more
concrete examples of this section.

At this point we mention an analogue of the classical Poincaré lemma
mentioned above, for which we shall have an application later on.

Lemma 2.15: Let ¢ € §29U) for U open in C" and suppose that dp = 0.
Then for any point p € U there is a neighborhood N of p and a differential
form y € &7~1.9"!(N) such that

dy =¢ in N.

Proof: The proof consists of an application of the Poincaré lemmas for
the operators d, d, and d (see Examples 2.10 and 2.12). Namely, since
dp = 0, we have that there is a u € 8, (using germs at x), so that du = ¢,
where r = p + ¢ is the total degree of ¢p. Thus we see that if we write
u=w"10 4 ... 4 u% ! we have

du = duPa~' 4 Gur 1
dur~19 = Jure~1 = 0,

and then there exists (by the d and @ Poincaré lemmas, Example 2.12) forms
v, € 8271t and y, € §2719"! 50 that

awl — uﬂ.q‘l

57’2 =yt
which implies that

@ = du = ddy, + ddy,

= dé(V/z — V)
Q.E.D.

Remark: Let 3 = Kerdd : 8%° — §'! on a complex manifold X.
Then there is a fine resolution (see Definition 3.3)

d

0-——>5C——>8°'°i>8"‘—%82'1@8"2——>---,

where 3C is the sheaf of pluriharmonic functions, Lemma 2.15 showing exact-
ness at the §'-! term (see Bigolin [1]). This is analogous to the resolution of
0 by &%* and has a similar usefulness.
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3. Cohomology Theory

In this section we want to present a brief development of sheaf coho-
mology theory. We first consider the problem of “lifting” global sections of
sheaves. Consider a short exact sequence of sheaves:

3.1 0—a—8®—C—0.
Then it is easy to verify that the induced sequence
3.2 00— QX)) — BX)—CX)— 0

is exact at @(X) and ®(X) but not necessarily at @(X). Forinstance, in Exam-
ple 2.6, if we let X = C — {0}, the punctured plane, then we see that the
mapping 0(X) — 0*(X) is not surjective. Similarly, in Example 2.9, a section
of Z over X has the same value at both points a and b, whereas a section of
Z/9 over X may have different values at points @ and b and must be zero
elsewhere, and thus the map I'(X, Z) — I'(X, Z/9) is not surjective.

Cohomology gives a measure to the amount of inexactness of the se-
quence (3.2) at €(X). We need to introduce a class of sheaves for which this
lifting problem is always solvable, and cohomology will be defined in terms of
such sheaves by means of resolutions. Let § be a sheaf over a space X and
let S be a closed subset of X. Let

5(S) := lim (U),
Ubs
where the direct limit runs over all open sets U containing S. From the point
of view of étalé spaces F(S) can be identified with the set of (continuous) sec-
tions of ¥|;, where ¥|;:= n"1(S), and n : F — X is the étalé map. We
call F(S) the set (or abelian group) of sections of §F over S, and we shall often
denote 5(S) by I'(S, §). Moreover, we shall assume from now on for simplicity
that we are dealing with sheaves of abelian groups over a paracompact Haus-
dorff space X, this being perfectly adequate for the applications in this book.

Definition 3.1: A sheaf § over a space X is soft if for any closed subset
S < X the restriction mapping

F(X) —> F(S)

is surjective; i.e., any section of § over S can be extended to a section of §
over X.

There are no obstructions to lifting global sections for soft sheaves, as
we see in the following theorem.

Theorem 3.2: If @ is a soft sheaf and

0—a-5>82>c—0
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is a short exact sequence of sheaves, then the induced sequence

(3.3) 0 —> Q(X) > B(X) —> e(X) — 0
is exact.

Proof: Let ¢ € C(X). Then we want to show that there exists a section
b € ®(X) such that h,(b) = c. Since the sequence of sheaves is exact, it
follows that for each x € X there exists a neighborhood U of x and a b
®(U) such that h,(b) = c|,, where c|, denotes the presheaf restriction from
X to U. Thus we can cover X with a family U, of open sets such that there
exists b, € ®(U,) satisfying h(b,) = c|,, (dropping the subscript notation
for g and A). The object now is to show that the b, can be pieced together to
form a global section.

Since X is paracompact, there exists a locally finite refinement {S,} of
{U,} which is still a covering of X and such that the elements S, of the cover
are closed sets. Consider the set of all pairs (b, S), where S is a union of sets
in {S;} and b € ®(S) satisfies #(b) = c|s. The set of all such pairs is partially
ordered by (b, S) < (b, §) if S = S’ and b’|g = b. It follows easily from
Axiom S, in Definition 1.2 that every linearly ordered chain has a maximal
element. Thus, by Zorn’s lemma there exists a maximal set S and a section
b € ®(S) such that h(b) = c|,. It suffices now to show that § = X.

Suppose the contrary. Then there is a set S; € {S,} such that S, ¢ S.
Moreover, h(b — b,) =c — ¢ =0 on S N §,. Therefore, by exactness of
(3.3) at ®(X) we see that there exists a section a € @(S N §,) such that g(a)
= b — b,. Since @ is soft, we can extend a to all of X, and using the same
notation for the extension, we now define 6 € ®(S U S)) by setting

_ {b on §
b, + g(a) on §,
If follows that h(b) = c|s.s,, and hence S is not maximal. This contradiction

then proves the theorem.
Q.E.D.

Before continuing with the consequences of Theorem 3.2, we would like
to introduce another class of sheaves, which will give us many examples of
soft sheaves.

Definition 3.3: A sheaf of abelian groups § over a paracompact Hausdorff
space X is fine if for any locally finite open cover {U,} of X there exists a
family of sheaf morphisms

{n:5— 9}
such that

@ Xn =1
(b) n(F,) =0 for all x in some neighborhood of the complement of
U,
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The family {n,} is called a partition of unity of ¥ subordinate to the covering
{Uy}.

Example 3.4: The following sheaves are fine sheaves:

(a) €y, for X a paracompact Hausdorff space.

(b) &y, for X a paracompact differentiable manifold.

(c) &9 for X a paracompact almost-complex manifold.

(d) A locally free sheaf of &§,-modules, where X is a differentiable mani-
fold.

(e) If R is a fine sheaf of rings with unit, then any module over ® is a
fine sheaf.

The first four examples are fine sheaves because multiplication by a con-
tinuous or differentiable globally defined function defines a sheaf homomor-
phism in a natural way. Hence the usual topological and C* partitions of
unity define the required sheaf partitions of unity.

Proposition 3.5: Fine sheaves are soft.

Proof: Let § be a fine sheaf over X and let S be a closed subset of X,
Suppose that s € F(S). Then there is a covering of .S by open sets {U,} in X,
and there are sections s, € F(U,) such that

silSﬁU| = slsnu‘-
Let U, = X — S and s, = 0, so that {U.} extends to an open covering of all
of X. Since X is paracompact, we may assume that {U,} is locally finite and
hence that there is a sheaf partition of unity {#,} subordinate to {U,}. Now
n,(s;) is a section on U, which is identically zero in a neighborhood of the
boundary of U,, so it may be extended to a section on all of X. Thus we can
define

§= Z ﬂi(si)

in order to obtain the required extension of s. Q.E.D.

Example 3.6: Let X be the complex plane and let © = 0, be the sheaf
of holomorphic functions on X. It is easy to see that O is not soft and hence
cannot be fine (which is also easy to see directly). Namely, let S = {| 2] < 1},
and consider a holomorphic function f defined in the unit disc with the unit
circle as natural boundary [e.g., f(z) = Y z"]. Then f defines an element of
0(S) which cannot be extended to all of X, and hence O is not soft.

Example 3.7: Constant sheaves are neither fine nor soft. Namely,
if G is a constant sheaf over X and a and b are two distinct points, then let
s € G({a} U {b}) be defined by setting s(a) = 0 and s(b) = 0. Thenitis clear
that s cannot be extended to a global section of G over X.
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Now that we have some familiar examples of soft sheaves, we return to
some consequences of Theorem 3.2,

Corrollary 3.8: If @ and ® are soft and
0—Q@—&B—C—0

is exact, then @€ is soft.

Proof: Let S be a closed subset of X and restrict the sequence above to
the set S. Then Theorem 3.2 applies, and the given section of € over S to be
extended to all of X comes from a section of ® over S, which by softness then

extends to all of X. Its image in €(X) is a suitable extension.
Q.E.D.

Corollary 3.9: If
0—>8—>8§ —>8—>-+
is an exact sequence of soft sheaves, then the induced section sequence
0 —> §o(X) — §,(X) —> §:(X) —> - -

is also exact.

Proof: Let X, = Ker(§, — §,.,)- Then we have short exact sequences

For i =0, X, = §,, and §, is soft. Thus we have the induced short exact
sequence

0 — Xy(X) —> 81(X) — Kx(X)—> 0
by Theorem 3.2. An induction using Corollary 3.8 shows that X, is soft for
all 7, and so we obtain short exact sequences:

0— X(X) — 8§(X) —> X, (X)—>0.

Splicing these sequences gives the desired result.
Q.E.D.

We are now in a position to construct a canonical soft resolution f~or any
sheaf over a topological space X. Let § be the given sheaf and let § — X
be the étalé space associated to §. Let C°(§) be the presheaf defined by

C@U)={f:U—>§:mof=1,}.
This presheaf is a sheaf and is called the sheaf of discontinuous sections of
§ over X.t There is clearly a natural injection

0—>§ —>C%§).

tRecall that sections were defined to be continuous in Definition 2.1, so discontinuous
section is a generalization of the concept of section.
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Now let §'(8) = €%8)/S and define C!(§) = €°(F!(S)). By induction we
define

F(8) =C (Y /F (S
and

Ci(§) = C°F'(8))-
We then have the following short exact sequences of sheaves:

0— §—CY(§) —F(§)—0
0—> F(§) — C(§) —> F*1(§) — 0.
By splicing these two short exact sequences together, we obtain the long exact
sequence
0—§—C%§)—CH§)—C¥§)—>:---,
which we call the canonical resolution of §. We abbreviate this by writing
34 0—> § —> C¥(§).
The sheaf of discontinuous sections C°(8) is a soft sheaf, for any sheaf §, and
for this reason we call the resolution (3.4) the canonical soft resolution of
S.
Remark: A sheaf § is called flabby if $(X) — $(U) is surjective for all

open sets U in X. It can be shown that a flabby sheaf is soft (see Godement
[1]). To avoid the restriction of paracompactness in the above arguments,

one must deal with flabby sheaves rather than soft sheaves. However, we note
that most of our examples of soft sheaves are not flabby.

We are now in a position to give a definition of the cohomology groups
of a space with coefficients in a given sheaf. Suppose that § is a sheaf over a
space X and consider the canonical soft resolution given by (3.4). By taking
global sections, (3.4) induces a sequence of the form

0— TI'(X, 8§) — I'(X, €°(§)) —> I'(X, €'(§))
> —>r(Xa eq(s)) )
and this sequence of abelian groups forms a cochain complex.t This se-

quence is exact at I'(X, €°(§)), and if § is soft, it is exact everywhere by Co-
rollary 3.9. Let

(3.5

CHX(X, 8) := I'(X, €X(§)),
and we rewrite (3.5) in the form
00— I'(X, §) —> C*(X, §).

tA cochain complex means that the composition of successive maps in the sequence is
zero, but the sequence is not necessarily exact. We shall assume some elementary homolog-
ical algebra, and we refer to, e.g., MacLane [1], Chap. I.
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Definition 3.10: Let § be a sheaf over a space X and let

HY(X, §) := HY(C*(X, §)),
where HY(C*(X, §)) is the gth derived group of the cochain complex
C*(X, 8); i.e.,

Ker(C? —> C*! -1 _
HY(C*) = Im((C"" — C"))’ where C~! = 0.

The abelian groups HY(X, §) are defined for ¢ >> 0 and are called the sheaf
cohomology groups of the space X of degree q and with coefficients in §.

As we shall see later, there are various ways of representing more explic-
itly such cohomology groups in a given geometric situation. This abstract
definition is a convenient way to derive the general functorial properties of
cohomology groups, as we shall see in the next theorem.

Theorem 3.11: Let X be a paracompact Hausdorff space. Then
(a) For any sheaf § over X,
() HX, 8 =TI(X,8) (= 8(X)).
(2) If § is soft, then HY(X, §) = 0forg > 0.
(b) For any sheaf morphism
h:a—@®
there is, for each ¢ > 0, a group homomorphism
h, : H(X, @) — Hi(X, ®)
such that
(1) hy =hy : QX)) — B(X).
(2) h, is the identity map if 4 is the identity map, g > 0.
3) g,°h, = (goh)q forall ¢ > 0,if g2 # — € is a second sheaf
morphism.
(c) For each short exact sequence of sheaves
0—@—>®—>C—0

there is a group homomorphism
8: HY(X, €©) —> H™*\(X, @)
for all ¢ >> 0 such that
(1) The induced sequence
0—> H(X, @) —> H°(X, ®) —> H°(X,€) —> H'(X,@) —> - - -

—> HY(X, @) —> HY(X, ®) —> H%(X, €) > H*\(X, ) —>
is exact.
(2) A commutative diagram

0—@Q@ —>8® —C —0

Lo

0—aa—® —¢C-—0
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induces a commutative diagram
0— H'(X,Q) — H'(X,®) — H°(X,C) — H'(X,@) —> - - -

0— H'(X,@') — H(X,®)—> HYX,C)—> HY{(X,Q)—> --..
Proof:

(a), (1) We have that the resolution
0—TIX,8)—C'X,8) —C'(X,§) —>- -
is exact at C°(X, §), and so
I'(X, §) = Ker(C°(X, §) — C'(X, §)) = H%(X, §).

(a), (2) This follows easily from Corollary 3.9.
For the proof of (b) and (c) we shall show first that

h:a—®
induces naturally a cochain complex map t
(3.6) h* : C*(Q) —> C*®).

First we define

R : @%(@) —> CY(®)
by letting h°(s,) = (h o s),, where s is a discontinuous section of @. Now h°
induces a quotient map

m°:e@)/a— eY®)/®
[ |
F'(@) FU®),

and, as above, A° induces
h' : CYF(@)) —> CUF(®))
|

f
e a) e(®).

Repeating the above procedure, we obtain, for each ¢ > 0,
h : eY(R]) —> CY(®).

The induced section maps give the required complex map (3.6). It is clear
that h* is functorial [i.e., satisfies compatibility conditions similar to those
in(b), (1)-(3)]. Moreover, if

0—a—>®—>C—0
is exact, then this implies that
0 — C¥(@) —> C*(®) —> C*(C) —> 0

tLetting C*(@) = C*(X, @), etc.
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is an exact sequence of complexes of sheaves. However, the sheaves in these
complexes are all soft, and hence it follows that

0 —> C*@) —> C*®)—> C*E€) —> 0

is an exact sequence of cochain complexes of abelian groups. It now follows
from elementary homological algebra that there is a long exact sequence for
the derived cohomology groups

(3.7) —> HH(CH(@)) — HY(C*®) —> HY(C*©)
> H(CH@) — »

where the mapping d¢ is defined in the following manner. Consider the follow-
ing commutative diagram of exact sequences:

0 —> Co* /(@) > Co*{(®) —> Ca*1(€) —> 0

I I I

0— CY(@) = CY(® —> CY€) —> 0.

Suppose that ¢ € Ker p. Then by exactness, ¢ = v(b). Consider the element
B(b). Then v'(B(b)) = p(v(b)), by commutativity, and hence B(b) = u'(a)
for some a € C?*!(@). It is easy to check that (1) a is a closed element of
C*1(@), (2) the cohomology class of a in H?*!(@) is independent of the
various choices made, and (3) the induced mapping &7 : Hi(X, @) — H9*!
(X, @) makes the sequence (3.7) exact (the operator §7 is often called the
Bockstein operator). From these constructions it is not difficult to verify the
assertions in (b) and (c).

Q.E.D.

Remark: The assertions (a), (b), and (c) in the above theorem can be
used as axioms for cohomology theory, and one can prove existence and
uniqueness for such an axiomatic theory. What we have in the theorem is
the existence proof; see, e.g., Gunning and Rossi [l] for the additional
uniqueness. There are other existence proofs; e.g., Cech theory is a popular
one (cf. Hirzebruch [1]). In Appendix A we shall give a short summary of
Cech theory.

We now want to give the proof of an important theorem which will give
us a means of computing the abstract sheaf cohomology in given geometric
situations. First we have the following definition.

Definition 3.12: A resolution of a sheaf § over a space X
00— §—a*

is called acyclic if H(X, @?) = 0 forallg > O and p > 0.

Note that a fine or soft resolution of a sheaf is necessarily acyclic (Theorem
3.11). Acyclic resolutions of sheaves give us one way of computing the coho-
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mology groups of a sheaf, because of the following theorem (sometimes called
the abstract de Rham theorem).

Theorem 3.13: Let § be a sheaf over a space X and let
00— § — a*
be a resolution of §. Then there is a natural homomorphism
y? t HY(I'(X, @*)) — H?(X, §),

where HZ(I'(X, @*)) is the pth derived group of the cochain complex
I'(X, @*). Moreover, if

0— §—a*
is acyclic, p? is an isomorphism.
Proof: Let X? = Ker(@” — @**!) = Im(@?~! — @7?) so that X° = §.
We have short exact sequences

0—Xr!—@r!—X>—0,

and this induces, by Theorem 3.11,
0—TIX, X )—TX,ar ) —I'(X, X*) — H'(X, X*"1)
—> HY(X,@P 1) —> - - .

We also notice that

Ker(T(X, @*) — (X, @r*1)) = I'(X, X?),
so that

HA (X, a*) = (X, X?) [ Im(T(X, @* ') — T'(X, X7)).
Therefore, using the exact sequence above, we have defined
i HY(I(X, @%) — H'(X, X7,
and y? is injective. Moreover, if the resolution is acyclic,
HY{X,@*" =0

and y? is an isomorphism.
We now consider the exact sequences of the form

0 —Krr—@ " — Xt —>0
for 2 < r < p, and we obtain from the induced long exact sequences
Y2 HTHX, XPem) — H(X, X277,

and again p? is an isomorphism if the resolution is acyclic. Therefore we
define

Yo =Vpo¥p-1 ot ¥Eeo vl
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ie.,
HI'(X, a*)) RN H\(X, %7 ) oy HY(X, X°72) 2>
P
B> HAX, K%)= HA(X, §),

and y” is an isomorphism if the resolution is acyclic.
The assertion that p? is natural in Theorem 3.13 means that if

0—§—a*

Lol

00— J— ®*

is a homomorphism of resolutions, then

HA(T(X, @*) > H*(X, §)
8&» lfl
HA(I(X, @) > H?(X, )
is also commutative, where g, is the induced map on the cohomology of the

complexes. This is not difficult to check and follows from the naturality

assertions in Theorem 3.11.
Q.E.D.

Remark: Note that in the proof of the previous theorem we did not use
the definition of sheaf cohomology, but only the formal properties of coho-
mology as given in Theorem 3.11 (i.e., the same result holds for any other
definition of cohomology which satisfies the properties of Theorem 3.11).

Corollary 3.14: Suppose that
0— 8 —>a*
e
0— 33— ®*

is a homomorphism of resolutions of sheaves. Then there is an induced
homomorphism

HI(X, @%)) —=> H/([(X, ®*)),

which is, moreover, an isomorphism if fis an isomorphism of sheaves and
the resolutions are both acyclic.

As a consequence of this corollary, we easily obtain de Rham’s theorem
(see Example 2.14 for the notation).

Theorem 3.15 (de Rham): Let X be a differentiable manifold. Then the
natural mapping

I: H?(8%(X)) —> H*($*(X, R))



Sec. 3 Cohomology Theory 61

induced by integration of differential forms over C= singular chains with real
coefficients is an isomorphism.

Proof: As in Example 2.14, consider the resolutions of R given by

" 8x(R) = 82

Then the sheaves §* and §* are both soft. Since &* is fine, it remains only to
show that the sheaves §2 are soft. First we note that the sheaf §z is an
S%-module (given by cup product on open sets). Then we claim that $2 is
soft. This follows from the observation that §% = §° = €%(X, R); i.e., for
each point of X (a singular 0-cochain), we assign a value of R. We now need
the following simple lemma, which asserts that §? is soft, which concludes

the proof, in view of Corollary 3.14.
Q.E.D.

Lemma 3.16: If 91 is a sheaf of modules over a soft sheaf of rings ®, then
<M is a soft sheaf.

Proof: Lets € T(K, M) for K a closed subset of X. Then s extends to
some open neighborhood U of K. Let p € I'(K U (X — U), ®) be defined by

=l on K
P=10 onx-u

Then, since R is soft, p extends to a section over X, and p-s is the desired

extension of s.
Q.E.D.

We now have an analogue of de Rham’s theorem for complex manifolds,
due to Dolbeault [1].

Theorem 3.17 (Dolbeault): Let X be a complex manifold. Then

Ker(8»9(X) ——> g74* (X))

HY(X, Q%) = ;
Im(87971(X) — £79(X))

Proof: The resolution given in Example 2.12 is a fine resolution, and
we can apply Theorem 3.13.
Q.E.D.

We want to consider a generalization of Theorem 3.17, and for this we
need to introduce the tensor product of sheaves of modules.
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Definiton 3.18: Let 9 and I be sheaves of modules over a sheaf of com-
mutative rings, ®. Then I Q4 N, the tensor product of M and N is the sheaf
generated by the presheaf

U—> M(U) Qacwy NUU).
Remark: The necessity of using the generated sheaf is demonstrated by
considering the presheaf
U—> O(EXU) Qow 8(U),

where E— X is a holomorphic vector bundle with no non-trivial global
holomorphic sections (see Example 2.13). The presheaf does not satisfy
Axiom S,, since O(E)X) Qo) &X) =0, but H(ENU)) Kow, &(U,) =~
&(EX)U;) # 0 for the sets of any trivializing cover {U,} of X.

It follows from Definition 3.18 that

(M Qa N), = M, Qa, N,
This easily implies the following lemma.

Lemma 3.19: If g is a locally free sheaf of ®-modules and
0—a@ —a—a" —0
is a short exact sequence of ®-modules, then
0— Q@RI —ARad — A" Ra9—>0
is also exact.

Recalling Example 2.12, we have a resolution of sheaves of ©-modules

over a complex manifold X:

O———)QP—+8%°—J->8P»1—a—>...—~>8ﬂ.n——>0.

Moreover, if E is a holomorphic vector bundle, then O(E) is a locally free
sheaf, and so, using Lemma 3.19, we have the following resolution:

(3.8) 0—> Q2 Qo O(E) — 87° Qo O(E)
. *ﬂ"'ﬁl’s"'”®00(E)——‘>0.

We also notice that

Qf Qe (E) = O(AN?T*X)Qc E)
and that

£79 Qo O(E) = &7 Q)5 &(E)

=8N THX)RQc E),

where &(E) is the sheaf of differentiable sections of the differentiable bundle
E. This follows from the fact that

O(E) Qo & = &(E),
since §7+9 is also an &-module.
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We call (X, A? T*(X) @c E) the (global) holomorphic p-forms on X with
coefficients in E, which we shall denote for simplicity by Q?(X, E), and we
shall denote the sheaf of holomorphic p-forms with coefficients in E by
Q?(E). Analogously, we let
(3.9) 879X, E) 1= &(X, A**T*X) Qc E)

be the differentiable (p, g)-forms on X with coefficients in E. Therefore the
resolution (3.8) can be written in the form (letting d, =d ® 1)
(3.10) 0 —> QH(E) —> 87Y(E) —2> §p1(E) —> - - - —2> g27(E) —> 0,

and since it is a fine resolution, we have the following generalization of Dol-
beault’s theorem.

Theorem 3.20: Let X be a complex manifold and let £ — X be a holomor-
phic vector bundle. Then

Ker(&7(X, E)——>8””(X E))
Im(&77- (X, E)——>8”(X E))

HY(X, QYE)) =

Appendix A. Cech Cohomology with Coefficients in a Sheaf

Suppose that X is a topological space and that & is a sheaf of abelian
groups on X. Let U1 = {U,} be a covering of X by open sets. A g-simplex,
o, is an ordered collection of g + 1 sets of the covering 1 with nonempty
intersection; i.e.,

0= (Uo,...,U)

and N{_ U, # @. Theset Ny ¢, U is called the support of the simplex o,
denoted |o]. A g-cochain of I with coefﬁments in & is a mapping f which
associates to each g-simplex, o,

f(o) € £(jo)).
The set of g-cochains will be denoted by C%( U, &) and is an abelian group
(by pointwise addition).
We define a coboundary operator
8:C1(u, %) - Ccti(1n, )
as follows. If f€ CYU, &) and o = (,..., U, ), define
g+1

8f (o) = Z (-1 r|u||f(°)

where o, = (Up, ..., Ui_1, Usys..., Upyy) and rf5l is the sheaf restriction
mapping. It is clear that 8 isa group homomorphism and that §2 = 0. Thus
we have a cochain complex:

C*(U, §) := C°(l1, §) —> - - - —> C9(UU, §) —> C**'(11, §)
- C"”(u, 8) —_> ...,
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The cohomology of this cochain complex is the Cech cohomology of W with
coefficients in §; i.e., letting
Z:1, §) = Kerd : C/(ll, §) — C*'(1, ),
B, 8) =Imd:C (1, §) — CU, §)
we define
H'11, §) := HY(C*(U,8)) = Z*(, 8) / BY(U, §).

We shall now summarize the properties of the Cech cohomology. For
proofs, see the references listed below.

(a) If W is a refinement of U, there is a natural group homomorphism
uy: H(U, §) — HA(B, §)
and
lim H'(U, §) = H(X, §),
u

where H( X, §) is the cohomology defined in Definition 3.10.
(b) If U is a covering such that

Hq('alsg) =0

for ¢ > 1 and all simplices ¢ in U, then
HY(X, §) = H'll, §)

for all ¢ > 0 (U is called a Leray cover).
(c) If Xis paracompact and U is a locally finite covering of X, then

HMU,8)=0

for g > 0 and § a fine sheaf over X.

We shall most often use resolutions of particular sheaves in order to
represent cohomology, principally because the techniques we develop are
derived from the theory of partial differential equations and are applied to
differential forms and their generalizations. Cech theory, on the other hand, is
very important in complex analysis and arises very naturally in such problems
as Cousin I and II and their generalizations, being the general theory of Stein
manifolds. See, e.g., Gunning and Rossi [1] and Gunning [1]. More generally,
see Bredon [1], Godement [1], or Hirzebruch [1].



CHAPTER 111

DIFFERENTIAL
GEOMETRY

This chapter is an exposition of some of the basic ideas of Hermitian
differential geometry, with applications to Chern classes and holomorphic
line bundles. In Sec. 1 we shall give the basic definitions of the Hermitian
analogues of the classical concepts of (Riemannian) metric, connection,
and curvature. This is carried out in the context of differentiable C-vector
bundles over a differentiable manifold X. More specific formulas are obtained
in the case of holomorphic vector bundles (in Sec. 2) and holomorphic line
bundles (in Sec. 4). In Sec. 3 is presented a development of Chern classes
from the differential-geometric viewpoint. In Sec. 4 this approach to charac-
teristic class theory is compared with the classifying space approach and with
the sheaf-theoretic approach (in the case of line bundles). We prove that the
Chern classes are primary obstructions to finding trivial subbundles of a
given vector bundle, and, in particular, to the given vector bundle being itself
trivial. In the case of line bundles, we give a useful characterization of which
cohomology classes in H2(X, Z) are the first Chern class of a line bundle.
Additional references for the material covered here are Chern [2], Griffiths
[2], and Kobayashi and Nomizu [1].

1. Hermitian Differential Geometry

In this section we want to develop some of the basic differential-geometric
concepts in the context of holomorphic vector bundles and, more generally,
differentiable C-vector bundles. The basic purpose is to develop certain con-
cepts such as metrics, connections, and curvatures which will have various
applications in later sections. We do not relate these concepts in detail to
their more classical counterparts in real differential geometry, as there are
recent texts which do this quite well (e.g., Helgason [1] and Kobayashi and
Nomizu [1]). We shall give more specific references as we go along.

In this section we shall denote by the term vector bundle a differentiable
C-vector bundle over a differentiable manifold, E — X. Ananalogous treat-
ment can be given for R-vector bundles, but our applications are primarily

65
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to Chern class theory and holomorphic vector bundles, both of which re-
quire complex-linear fibres.

Suppose that E — X is a vector bundle of rank r and that /' = (e, .. .,
e,) is a frame at x € X; i.e., there is a neighborhood U of x and sections
{e,,...,el), e; € &, E), which are linearly independent at each point of
U. If we want to indicate the dependence of the frame f on the domain of
definition U, we write f,, although normally this will be understood to be
some local neighborhood of a given point. Suppose that f = f, is a given
frame and that g : U — GL(r, C) is a differentiable mapping. Then there is
an action of g on the set of all frames on the open set U defined by

S—f¢

where

() = (L 8100, ... 5 8u(0)ex)  x e U,

is a new frame, i.e., fg(x) = f(x)g(x), and we have the usual matrix product.
Clearly, fg is a new frame defined on U, and we call such a mapping g a
change of frame. Moreover, given any two frames fand f* over U, we see that
there exists a change of frame g defined over U such that ' = fg.t

Using frames, we shall find local representations for all the differential
geometric objects that we are going to define. We start by giving a local
representation for sections of a vector bundle. Let E — X be a vector bundle,
and suppose that { € &(U, E) for U open in X. Let f=(e,,...,e,) be a
frame over U for E (which does not always exist, but will if U is a sufficiently
small neighborhood of a given point). Then

(L1) &= >: & fe,

where &°(f) € &(U) are uniquely determined smooth functions on U. This
induces a mapping

(1.2) &U, E)—5 8(U) = &(U, U x C),
which we write as
&(f)
(—an=| - |
é’(.f )

tThe set of all frames over open sets in X is the sheaf of sections of the principal bundle
P(E) associated with E, often called the frame bundle of E, a concept we shall not need;
see, e.g., Kobayashi and Nomizu [1], or Steenrod [1]. Namely, the principal bundle P(E)
has fibres isomorphic to GL(r, C), with the same transition functions as the vector bundle
E— X.



Sec. 1 Hermitian Differential Geometry 67

where £#(f) are defined by (1.1). Suppose that g is a change of frame over
U. Then we compute that

& = 3 g ().

which implies that
() =g '¢(f)

or
(1.3) &(fg) = ¢{(f),

all products being matrix multiplication at a given point x € U. Therefore
(1.1) gives a vector representation for sections £ € &(U, E), and (1.3) shows
how the vector is transformed under a change of frame for the vector bundle
E. Moreover, if E is a holomorphic vector bundle, then we shall also have
holomorphic frames, ie.,f = (e,,...,¢,), e, € O(U,E),and e, A - - - Ae,(x)
# 0, for x € U; and holomorphic changes of frame, i.e., holomorphic
mappings g : U — GL(r, C). Then with respect to a holomorphic frame we
have the vector representation

(1.4) o(U, E) > oUY,

given by ¢ — £(f) as before, and the transformation rule for a holomorphic
change of frame is still given by (1.3).

Our object now is to give definitions of three fundamental differential-
geometric concepts: metric, connection, and curvature. We shall then give
some examples in the next section to illustrate the definitions.

Definition 1.1: Let E — X be a vector bundle. A Hermitian metric h on E
is an assignment of a Hermitian inner product <{, >, to each fibre E, of E
such that for any open set U — X and &, 5 € 8§(U, E) the function
<f’ "> :U—C
given by
& my(x) = <&(x), n(x),

is C~.

A vector bundle E equipped with a Hermitian metric 4 is called a Her-

mitian vector bundle. Suppose that F is a Hermitian vector bundle and that
f={(e,...,e,)is aframe for E over some open set U. Then define

(15) h(f)pa = <e,, ep>’

and let h(f) = [A(f),,] be the r X r matrix of the C* functions {A(f),},
where r =rank E. Thus h(f) is a positive definite Hermitian symmetric
matrix and is a (local) representative for the Hermitian metric /1 with respect
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to the frame f. For any &, n € &(U, E), we write
Gy = <L Tr(Ne
= § (D ha())E(S)
(1.6) <& > = nPONES),

where the last product is matrix multiplication and ‘4 denotes the transpose
of the matrix A. Moreover, if g is a change of frame over U, it is easy to check
that

(1.7 h(f8) = ‘gh(f)s,

which is the transformation law for local representations of the Hermitian
metric.

Theorem 1.2: Every vector bundle E — X admits a Hermitian metric.

Proof: There exists a locally finite covering {U,} of X and frames f,
defined on U,. Define a Hermitian metric A, on E|,,_ by setting, for &, 5 €
E.,xeU,,

& omz = n(fI(x)- &) ().

Now let {p,} be a C~ partition of unity subordinate to the covering {U,}
and let, for ¢, n € E,,

<f! 'l>x = Z p.(x)(f, ">:

We can now verify that {, > so defined gives a Hermitian metric for E — X.
First, it is clear that if §, n € &(U, E), then the function

x —> {&(x), n(x)), = E Pa(x)E(x), n(x))s
= T p)NTX)- (LX)

is a C~ function on U. It is easy to verify that 4 is indeed a Hermitian inner

product on each fibre of E, and we leave this verification to the reader.
Q.E.D.

We now want to consider differential forms with vector bundle coeffi-
cients. Suppose that E — X is a vector bundle. Then we let
8°(X, E) = §(X, N’ T*X)Rc E)

be the differential forms of degree p on X with coefficients in E (cf. the discus-
sion following Lemma I1.3.19). We want to relate this definition to one
involving tensor products over the structure sheaf.

Lemma 1.3: Let E and E’ be vector bundles over X. Then there is an iso-
morphism

11 8(E) Qs 8(E') => S(ER E').



Sec. 1 Hermitian Differential Geometry 69

Proof: We shall define the mapping T on presheaves generating the
above sheaves

Ty : 8(U, E) Qe) 8(U, E') —> E(E® E")(U)
by setting
7§ @ M(x) = §{(x) ® n(x) € E, ® E..

If f=(e,,...,e) and f' = (e),...,e/)are frames for E and E' over an
open set U, then we see that for any y € &(U, E® E’) we can write

y(x) = gr.p(X)e.(X)(@ €y(x),  Vap € 8(U).

But this shows that
y € 8, E) Qew) 8(U, E),

and this implies easily that {r,} defines a sheaf isomorphism when we pass
to the sheaves generated by these presheaves.

Q.E.D.
Corollary 1.4: Let E be a vector bundle over X. Then
8” ®s 8(E) = &*(E).
We denote the image of ¢ X £ under the isomorphism in Corollary 1.4
by ¢-¢ € &°(X, E), where ¢ € 8°(X) and { € &(X, E). Suppose that f is

a frame for E over U. Then we have a local representation for £ € §°(U, E)
similar to (1.2) given by

&°(U, E) —> [8*(U))
&)
(1.8) E—| - |
&)
defined by the relation
(1.1 = z &(f) e,

Namely, let x € U and let (w,,...,w,) be a frame for A?T*(X)® C at
x. Then we can write

$(x) = ,E,, Pie(X) @, (x) & e,(x).
where the ¢, , are uniquely determined C= functions defined near x. Let
$r = ; ProWis

and it is easy to check that the differential form §* so determined is indepen-
dent of the choice of frame (w,, . . ., ®,). Since x was an arbitrary point of
U, the differential forms {7} are defined in all of U, and thus the mapping
(1.8) (local representation of vector-valued differential forms) is well defined
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and, indeed, is an isomorphism. Moreover, we have the transformation law
for a change of frame

(1.3 (/e =g'(f) ¢ €8&XE)

exactly as in (1.3) for sections. We now make the following definition.

Definition 1.5: Let £ — X be a vector bundle. Then a connection D on
E — Xis a C-linear mapping
D .&(X,E)— &YX, E),
which satisfies
(1.9) D(p¢) = do-§ + 9DE.
where ¢ € 8(X) and £ € 8(X, E).

Remarks: (a) Relation (1.9) implies that D is a first-order differential
operator (cf. Sec. 2 in Chap. IV) mapping &(X, E) to (X, T*(X) & E), as we
shall see below.

(b) In the case where £ = X X C, the trivial line bundle, we see that
we may take ordinary exterior differentiation

d: &X)— 8'(X)

as a connection on E. Thus a connection is a generalization of exterior dif-
ferentiation to vector-valued differential forms, and we shall later extend
the definition of D to higher-order forms.

We now want to give a local description of a connection. Let f be a frame
over U for a vector bundle E — X, equipped with a connection D. Then we
define the connection matrix 6(D, f) associated with the connection D and
the frame f by setting

6(D,f) =10,.D.f)),  0,.D.f) € &8'(U),
where

(1.10) De, = ‘ia’”(D’ fe,

We shall denote the matrix 8(D, f) by 8(f) (for a fixed connection) or often
simply by @ (for a fixed frame in a given computation). We can use the con-
nection matrix to explicitly represent the action of D on sections of E.
Namely, if £ € &(U, E), then, for a given frame f,

DE = D(Z &(/)e)
= Zd(/) e, + TE)De,
= S + T N0,
(1.11) D¢ =L [d(f) + 6(1)E(1)] - e,
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where we have set

a&'(f)
aH=| - |
&' (f)

and the wedge product inside the brackets in (1.11) is ordinary matrix
multiplication of matrices with differential form coefficients. Thus we see that

DE(f) = dé(f) + 6(f)&(S)
= [d + 6(NIE(S)
thinking of d + 0(f) as being an operator acting on vector-valued func-
tions.

Remark: If we let E = T(X), then the real analogue of a connection in
the differential operator sense as defined above defines an affine connection
in the usual sense (cf. Helgason [1], Nomizu [1], Sternberg [1], and Kobayashi
and Nomizu [I)). If o = (w,, ..., ®,) is a frame for T*(X) over U, then

epc :kznl r:kwk’ rﬁk € S(U)'

In the classical case these are the Schwarz-Christoffel symbols associated
with (or defining) a given connection.

Suppose that E — X is a vector bundle equipped with a connection D
(as we shall see below, every vector bundle admits a connection). Let
Hom (E, E) be the vector bundle whose fibres are Hom(E,, E,). We want to
show that the connection D on E induces in a natural manner an element

O.(D) € 8*(X, Hom(E, E)),

to be called the curvature tensor.

First we want to give a local description of an arbitrary element y €
8°(X, Hom(E, E)). Let f be a frame for Eover Uin X. Thenf = (e,,...,e,)
becomes a basis for the free §?(U)-module

&°(U, Hom(E, E)) = &?(U) Q¢ &(U, Hom(E, E)).

Since E|, = U x C’, by using f to effect a trivialization, we see that

&(U, Hom(E, E)) = M (U) = M, Q¢ &),
where 9, is the vector space of r X r matrices, and thus M (U) is the §(U)-
module of r x r matrices with coefficients in §(U). Therefore there is associ-
ated with y under the above isomorphisms, an r X r matrix
1.12) XN =) x(f),e € 8(U).
Moreover, we see easily that y determines a global homomorphism of vector
bundles

X: S(X’ E)——) sp(X, E)9



72 Differential Geometry Chap. III

defined fibrewise in the natural manner. The frame f gives local representa-
tions for elements in §(X, E) and &?(X, E) and the matrix (1.12) is chosen so
that the following diagram commutes,

8, E)-Z%> 87U, E)
]l ]l
sUy 25 [e2(U)Y

§(N) —> (SR = n(f),

where

) = T AN f)

is matrix multiplication and the vertical isomorphisms are given by (1.2)
and (1.8), respectively. Under this convention it is easy to compute how the
local representation for y behaves under a change of frame; namely, if

n(f8) = x(/9)¢(f8),
then we see that
g 'n(f) = x(/8)g ' {(f),
which implies that

(1.13) x/8) = g ' x(Neg;

i.e.,, ¥ transforms by a similarity transformation. Conversely, any assign-
ment of a matrix of p-forms y(f) to a given frame f which is defined for all
frames and satisfies (1.13) defines an element y € &?(X, Hom(E, E)), as is
easy to verify.

Returning to the problem of defining the curvature, let E — X be a vector
bundle with a connection D and let (f) = (D, f) be the associated con-
nection matrix. We define

(1.14) (D, f) = di(f) + 6(f)N(f),

which is an r X r matrix of 2-forms; i.e.,
Opa = doPﬂ + E oﬁk/\okv'

We call O(D, f) the curvature matrix associated with the connection matrix
0(f). We have the following two simple propositions, the first showing how
0(f) and O(f) transform, and the second relating ©(f) to the operator
d + 6(f).

Lemma 1.6: Let g be a change of frame and define 8(f) and ©(f) as above.
Then

(@) dg +6(f)g = g0(f2),

(®) ©O(fz) =g '0(Ng.

Proof:
(@) If
fg = (E 80165+ -+ Z gprep) = (e’l! e e’,),
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then
D(E,) = T 0..(f2)e,
= 2 0..(/2)ges
and, on the other hand,
D (; 8po€s) = "; dg,.e, + pZ 8oo0: 8.
By comparing coefficients, we obtain

(1.15) g0(f8) = dg + 0(f)e.

(b) Take the exterior derivative of the matrix equation (1.15), obtain-
ing

(1.16) db(f)-g — O(f)-dg = dg-0(fg) + g-db(f3).
Also,
(1.17) 0(fg) = g 'dg + g7'0(f)g,

and thus we obtain by substituting (1.17) into (1.16) an algebraic expression
for gd6(fg) in terms of the quantities d0(f), 6(f), dg, g, and g~'. Then we
can write

(1.18) gld0(fg) + 0(fg) A 6(fg)]
in terms of these same quantities. Writing this out and simplifying, we find

that (1.18) is the same as
[40(f) + 6(f) A B(f)e;

which proves part (b).
Q.E.D.

Lemma 1.7:  [d + 6(/))ld + 6(N)K(f) = O()E(S).

Proof: By straightforward computation we have (deleting the nota-
tional dependence on f)
d+60)(d+0)E=d*6+0-dE+dO-&)+0rEG-¢&
=0-dé +d0-&E—0-dE +6 AB-&
=df-E+ 0 N0-&
=0-¢
Q.E.D.

The proof of the above lemma illustrates why we have taken care to see
that the abstract operations and equations at the section level correspond,
with respect to a local frame, to matrix operations and equations.

We now make the following definition.

Definition 1.8: Let D be a connection in a vector bundle E — X. Then the
curvature © (D) is defined to be that element ® € &2(X, Hom(E, E)) such
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that the C-linear mapping
© :8(X, E) — 8¥(X, E)
has the representation with respect to a frame

O(f) = O(D,f) = db(f) + 6(f) A 6(f).

We see by Lemma 1.6(b) that @¢(D) is well defined, since @(D, f) satisfies
the transformation property (1.13), which ensures that @(D, f) determines
a global element in §2(X, Hom(E, E)).

Remark: It follows from the local definition of ©.(D) that the cur-
vature is an §(X)-linear mapping
O :8X,E)— 8*(X,E),

and it is this linearity property that makes © into a tensor in the classical
sense. Note that the transformation formula for 8(f) involves derivatives of
the change of frames and that of course the connection D is not §(X)-linear.
If we denote by D¢ the natural contraction of Z ® D¢ for Z e T(X) and
{€&(X,E), then the classical curvature tensor R(Z, W)= D,D; —
Dy D; — Dz, defined from this affine connection agrees with ©(Z, W) e
§(X, Hom(E, E)). This follows by an exterior algebra computation and (1.14),
since for a frame f over U, DE(f) = dé(f) + 0(f) A &(f) implies

DoE(f) = ZE() + 8N Z)E(S)-

We can now define the action of D on higher-order differential forms by
setting

DE(f) = dé(f) + 6(f) A §(Sf),
where £ € &°(X, E). Thus
D . 8(X,E)— &**(X, E)

if it is well defined. But we only have to check whether the image satisfies the
transformation law (1.3") in order to see that the image of D is a well-defined
E-valued (p + 1)-form. To check this, we see that

8ldl(fg) + 0(f8)¢(/8)] = d(g{(f8)) — dg-{(f8)
+ [dg + 6(f)gl A &7'$(S)
from (1.3) and Lemma 1.6(a), which reduces to

di(f) + () A E(f).

Thus we have the extension of D to differential forms (E-valued) of higher
order. This extension is known as covariant differentiation, and we have
proved the following.

Proposition 1.9: D? = O, as an operator mapping
8°(X, E) —> &**2(X, E), where D* = D o D.
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The only unproved part is for p > 0, but we observe that Lemma 1.7
is still valid in this case. Then the curvature is the obstruction to D* =0
and is therefore the obstruction that the sequence

&X,E)-2> 8" (X, E) 2> 68X, E) —> - - - —>

be a complex (cf. Sec. 5 in Chap. 1V).
The differential forms &7(X, Hom(E, E)) are locally matrices of p-forms.
We want to use this fact to define a Lie product on the algebra
&*(X, Hom(E, E)) = ¥ £°(X, Hom(E, E)).
P

We proceed as follows. If y € &°(X,Hom(E, E)) and f is a frame for E
over the open set U, then we have seen before that

x(f) € M, Qc &7(U),
and thus if y € &(X, Hom(E, E)), we define
(1.19) (D), w(N = x(f) Aw(f) — (=D (f) A x(f)s

where the right-hand side is matrix multiplication. If g is a change of frame,
then by (1.13) we have

x(f8) =g ' x(fg
y(fg) = g 'w(f)g,

[x(f2), w(fe)) = g ' [x(/), w(f)lg

by a straightforward substitution. Therefore the Lie bracket is well
defined on &*(X, Hom(E, E)) and satisfies the Jacobi identity, making
8*(X, Hom(E, E)) into a Lie algebra (cf., e.g., Helgason [1]).

Suppose that E is equipped with a connection D and that we let 6(f),
O(f) be the local connection and curvature forms with respect to some frame
/. Then we can prove a version of the Bianchi identity in this context, for
which we shall have use later.

and thus

Proposition 1.10:  dO(f) = [O((), 8(f)).
Proof: Letting @ = 0(f) and ® = O(f), we have

O=dl+ 018,
and thus d® =d*0 +dd AO —0 A dO
=dd A8 —0 Adb.
But [0,0)=1[d0 + 8 A 8,0]

=ddn0+0r0N0
—(=D*' @ Ad0+816N16
=df A8 — 0 A db.
Q.E.D.



76 Differential Geometry Chap. 111

We now want to show that any differentiable vector bundle admits a
connection. In the next section we shall see some examples when we look at
the special case of holomorphic vector bundles. Assume that E is a Hermitian
vector bundle over X. Then we can extend the metric # on E in a natural
manner to act on E-valued covectors. Namely, set

(1.20) (D®& 0 ®ED, =wnd ¢,

for w € A’T¥(X), w' € N*TXX), and &,& € E, for x € X. Thus the

extension of the inner product to differential forms induces a mapping
h:8%(X, E) ® 8(X, E) —> &°*9(X).

A connection D on E is said to be compatible with a Hermitian metric h on

Eif

(1.2 d<¢, ny = <D, ny + <&, Dn).

Suppose that f = (e, ..., e,) is any frame and that D is a connection
compatible with a Hermitian metric on E. Then we see that [letting h(f)

= h, 0(f) = 6]
dh,, = dle,, e,> = De,,e,> + {e,, De,)
= <Z' 0,,8,, ep> + <ew Eu ouﬂeu>

— ; 6.4, + z 6,5,

= (hB),, + (‘Oh),,,
and thus
(1.22) dh = hO + 'Oh
is a necessary condition that # and the connection D be compatible. More-
over, it is sufficient. Namely, suppose that (1.22) is satisfied for all frames.
Then one obtains immediately

dl& > = d('fhE) = (dRhE + 'F(dh)E + 'Thdé

in terms of a local frame. Substituting (1.22) into the above equation, we get
four terms which group together as

"dij + Gmh¢ -+ ‘ThdE + 88) = <&, D> + <D§, ).

Proposition 1.11: Let £ — X be a Hermitian vector bundle. Then there
exists a connection D on E compatible with the Hermitian metric on E.

Proof: A unitary frame f has the property that A(f) = I. Such frames
always exist near a given point x,, since the Gram-Schmidt orthogonaliza-
tion process allows one to find r local sections which form an orthonormal
basis for E, at all points x near x,. In particular, we can find a locally finite
covering U, and unitary frames f, defined in U,. The condition (1.21) reduces
to

0=60+9
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for a unitary frame; i.e., 8 is to be skew-Hermitian. In each U, we can choose
the trivial skew-Hermitian matrix of the form 8, =0; i.e., (f,) = 0. If we
make a change of frame in U,, then we see that we require that
(1.23) 0(f.8) =g 'dg +0
by Lemma 1.6(a). Therefore, define §(f,g) by (1.23), and noting that h(f, g)
='gh(f)g = 'gg, we obtain
dh(f.g) = d(g-g)

=dg-g+'g-dg

= dEH Bt Eee g

='0(f.0)h(f.8) + h(f.8)0(/.8),

which verifies the compatibility. Let {¢,} be a partition of unity subordinate
to {U,} and let D, be the connection in E|,, defined by

(Dof) Sfa) = dE(fo)-

D, is defined with respect to other frames over U, by formula (1.23) and is
compatible with the Hermitian metric on E|,,, by construction. Then we
le¢ D=3, ¢.D,, which is a well-defined (first-order partial-differential)
operator

D :8(X, E)—> 8!(X, E).
Moreover, D is compatible with the metric 4 on E since

(D&, 1y + <& D1> = £ 9.KD.& 1> + <& Do)

= Z P&, > = dl&, n).
Q.E.D.

Remark: It is clear by the construction in the proof of Proposition 1.11
that a connection compatible with a metric is by no means unique because of
the various choices made along the way. In the holomorphic category, we
shall obtain a unique connection satisfying an additional restriction on
the type of 6.

2. The Canonical Connection and Curvature of a Hermitian
Holomorphic Vector Bundle

Suppose now that E — X is a holomorphic vector bundle over a complex
manifold X. If E, as a differentiable bundle, is equipped with a differentiable
Hermitian metric, A, we shall refer to it as a Hermitian holomorphic vector
bundle.

Recall that since X is a complex manifold,

§%(E) = T 8(E) = T &7(E),
where
&79(E) = 8%° Ry, 8(E).
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Suppose then that we have a connection on E
D : &(X, E)— §'(X, E) = 89X, E) @ &%\(X, E).
Then D splits naturally into D = D’ + D", where
D' : &(X, E) —> 89X, E)
D" :&X,E)—> 8%Y(X, E).

Theorem 2.1: If 4 is a Hermitian metric on a holomorphic vector bundle
E — X, then h induces canonically a connection, D(h), on E which satisfies,
for W an open set in X,
(@) For{,n € &W,E)
d<&, m) = <D& ny + <& D;

i.e., D is compatible with the metric h.
(b) If¢ € O(W, E), i.e., is a holomorphic section of E, then D"’§ = 0.

Proof: First, we point out that (b) is equivalent to the fact that the
connection matrix @(f) is of type (1,0) for a holomorphic frame f. This
follows, since for £ € O(W, E) and f a holomorphic frame, we have

DE(f) = (d + 0(fNES) )
=@ + 00C(NES) + @ + 9P NES),
where 8 = 619 + 9V js the natural decomposition. Therefore

D'E(f) = @ + 0 2(f)ES)

and

D E(f) = @ + 0°V(fNES).

But 9¢( f) = 0 since £ and f are holomorphic. Thus
D"{(f) = 0°V(f)E(S).

Suppose now that we have a connection D satisfying (a) and (b). Then
letf = (e,, ..., e,) be a holomorphic frame over U < X and 6 the associated
connection matrix. Since D is compatible with the metric h, we have, by
(1.22),

dh = ho + 'Gh.

Since, in addition, D satisfies (b), we have seen that 8 is of type (1, 0). Thus, by
examining types we see that

oh = h@
and

oh = 'Gh,
from which it follows that
2.1 0 = h™'dh.



Sec. 2 Canonical Connection and Curvature 79

We can then define 8 by (2.1). Such a connection matrix clearly satisfies (a)
and (b). Moreover, if f* = fg is another holomorphic frame, we have
h(f8) = 'gh(f)g,
so that
h™'(fg) = g 'h(f) 8]
and
g0(fg) = glh™'(f2) 9h(f3)]
= h(f)"'['g]"" dl'gh(f)g]
= h(f)7'['8]7'[' 0h(f)g + 'gh(f)dg + d'gh([)g].
But g is a holomorphic change of frame, from which it follows that

#3=d0g=0 and Jdg=dg
Thus
g0(fg) = h(f) ' dh(f)g + dg
= 0(f)g + dg.

Recalling Lemma 1.6(a), we see that this is the necessary transformation

formula for @ to define a global connection.
Q.E.D.

This theorem gives a simple formula for the canonical connection in
terms of the metric 4; namely,
(2.2) 6(f) = k() dh(f)

for a holomorphic frame f. Moreover, D = D’ + D" has the following
representation with respect to a holomorphic frame f:

D=4+ 6(f)
D" =a.

Thus we have the following proposition.

(2.3)

Proposition 2.2: Let D be the canonical connection of a Hermitian holo-
morphic vector bundle E— X, with Hermitian metric 4. Let 8(f) and O(f)
be the connection and curvature matrices defined by D with respect to a
holomorphic frame f. Then

(@) 6(f) is of type (1,0), and d6(f) = —6(f) A 6(f).

(b) O(f) = db(f), and O() is of type (I, 1).
(©) 90(f) =0, and dO(f) = [O(), O(/)).

Proof: Leth =h(f), 8 =0(f), and @ = O(f). Then we first note that
@ is of type (1, 0) by (2.2). Then by using
Oh' = —h'.gh-h™
9 =0,
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we see that
00 = d(h ' dh) = —h"'-0h-h™' A dh
= —h o)A )= -0,
which gives us part (a). Part (b) is a simple computation, namely,
O=dl+07r0=00+01r0+ 36

= d4,
by using part (a). Part (c) then follows from
00 =99 =0

and Proposition 1.10.
Q.E.D.

Let E— X be a holomorphic vector bundle and let /= (e,,...,e,)
be a frame for f defined near a point p € X. Choose local coordinates z
=(z,, ..., z,) near p so that p is given by z = 0. Then we can write

J(2) =(e2),...,e(2)
to denote the dependence on the variable z near z = 0. Suppose that 4 is a
Hermitian metric on £ — X and that f(z) is the above frame. Then we write

h(z) = h(f(2))

near z = 0. The next lemma tells us that we may always find a local frame
Jf near p such that A( f(z)) has a very nice form. Let ©(z) = O(f(2)).

Lemma 2.3: There exists a holomorphic frame f such that

(@) h(z) =1+ 0(z]).
(b) ©(0) = ddh(0).

Proof: Suppose that (a) holds. Then it follows that
h'(z) =1+ O(z ),
from which we see that
O(z) = ddh(z) + O(z)),
and hence (b) follows.

To show (a), we shall make two changes of frame. First we note that
h(0) is a positive definite Hermitian matrix, and thus there exists a nonsing-
ular matrix g € GL(r, C) such that

g*h(0)g = 1,
where for any matrix M we let M* = ‘M. The matrix g induces a change of
frame f — f = f-g, and we see that
h(z) = h(f(2)) = h(f2)
= g*hg
(2.4) h(z) = I+ O(z|).
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Assume now that A(z) is given satisfying (2.4). We want to consider a
change of frame of the form

g =1+ A@),

where A(f) = (32, 4},2’) is a matrix of linear holomorphic functions of z.
Since A(0) = 0, this change of frame will preserve (2.4). By choosing A(z)
such that

2.5 hz) = g(2)*h(z)g(z) = 1 + O( 2],

we will have proved (a). But (2.5) is equivalent, by Taylor’s theorem, to the
vanishing of the first derivatives of (2.5) at z = 0; i.e., dh(0) = 0. Thus we
compute
dh(z) = dh(z) + dA*(z)- h(z)
+ h(2) dA(z) + O( z)).
Therefore
dh(0) = 9h(0) + dA(0) + dh(0) + dA*(0).
Suppose that we let

\ =R (0),
2.6) A, — =9l

Then we see that

dA(0) = —dh(0),
which implies that

dA*(0) = —0dh(0).

Then the choice of A(z) given by (2.6), depending on the derivatives of the
metric 4, ensures that (2.5) holds.
Q.E.D.

This lemma allows us to compute the curvature © at a particular point
without having to compute the inverse of the local representation for the
metric, provided that we have the right frame.

We want to give one principal example concerning the computation of
connections and curvatures. Further examples of specific Hermitian metrics
on tangent bundles are found in Chap. VI, where we shall discuss Kdhler
manifolds. In Sec. 4 we shall look at the special case of line bundles in more
detail.

Example 2.4: Let U, , — G, , be the universal bundle over the Grass-
mannian manifold G, , (Example 1.2.6). We see that a frame ' = (e, .. .,
e,) for U, , — G, ,consists of an open set U = G, , and smooth functions

e,:U—C,
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so that e, A ... Ae, #0. Thus f=(e,,...,e,) can be thought of as an
n X r matrix with coefficients being smooth functions in U and whose
columns are the vectors {e;}, and the matrix fis of maximal rank at each point
z € U. A holomorphic frame will simply have holomorphic coefficients.
We define a metric on U, , by letting

2.7 h(f) ="ff

for any frame f for U, ,. This metric results from considering U, , < G, , X
C" and restricting the standard Hermitian metric on C* to the fibres of
U, ,— G, ,. First we note that A(f) is positive definite since (recall that f has
maximal rank)

Zh(f)z = (fo)(f2) =|fz* >0 if z£0.
Moreover, if g is a change of frame, then we compute that

h(fg) = '(fe)(fg) = 'g'ffg = 'gh(f)g,
so that (1.7) is satisfied, and thus we see that /1 defined by (2.7) on frames gives
a well-defined Hermitian metric on U, , since the frame representation trans-
forms correctly.
We can now compute the canonical connection and curvature for U, ,
with respect to this natural metric. If fis any holomorphic frame for U, ,,
then by (2.2) and Proposition 2.2, we see that

0(f) = h™'(f) Ih(f)
O(f) = d(h™'(f) h(f)).
We obtain, letting @ = 6(f), etc., as before,
(2.8) © =h'-df Ndf — kT -dff-h7Y A S,
where A~! = [ff]"!. In the case r = 1 (projective space), we can obtain a

more explicit formula. If ¢ € [82(W)]", ¥ € [84(W)]", for W an open subset
of C", we set

r,n®

oy =(=1""y A g,
which generalizes the usual Hermitian inner product on vectors in C” [note
that this is compatible with (1.19), where we have the usual inner product on
E =W x C given by {u,v> ='du,u, v € C"]. Then the curvature form
for U, , becomes

_ L df) —<df f) n<Sdf?,
29) o(f) = TT>

where fis a holomorphic frame for U, ,. If we choose f to be of the form

S

4
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where ¢, € O(U) and X |,|* = | f|* # O, then

¢,
) ‘[172(‘-1?1’""&?")
df = > >
d =(d,,...,d5,),
dfﬂ
and we obtain
|F2 3 de, A dE, — 5 EEde, n d,
(2.10) o) = ——1t ] ,

Recall that the functions &, . .., £, are functions of the local coordinates
on G,,=P,_,, and that, in particular, O(f) is a well-defined 2-form on
U < P,_,. Alternatively, we can think of (¢,, . . ., £,) as being homogeneous
coordinates for P,_,, and by the homogeneity of (2.9), we see that the expres-
sion in (2.9) induces a well-defined 2-form on all of P,_,, which agrees with
the 2-form on U mentioned above. We shall see this differential form again
when we study Kéhler metrics in Chap. V.

Returning to the general case of U, , — G, ,, we have seen in Lemma 2.3
that, by a proper choice of holomorphic frame for U, , and a proper choice
of local holomorphic coordinates near some fixed point, we can find a very
simple expression for the curvature. We shall now see an example of this.
Let

be a frame for U, , at the point x, € G, , defined by

(2]

where { ) denotes the span of the columns of the frame matrix inside, which
is a subspace of C" and thus a point in G, ,. Letting

B.={ZeMm,, =C"":|Z| <€),

the mapping
B.— G

r,n

1
Z—
4z)
is a coordinate system for G, , near x,, with the property that x,, corresponds
to Z = 0. There is a natural action of GL(n, C) on G, , given by left multi-
plication of frames (i.e., left multiplication of homogeneous coordinates).
Namely, iffe M, ,,x ={f),andu € GL(n, C), then set

u(x) = <u-f>.

given by
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Moreover, U(n), the unitary group, is transitive on G,, under this action
(a well-known fact of linear algebra).
Therefore if y, is any point in G, , and y, = u(x,) for a unitary matrix

[ }
Z

gives local coordinates at y, € G, ,. The metric at y, has the form, with res-

pect to the frame
1
o= 5|

WZ) = Wf(Z)) = (u[ ;}) (“[;])

=1+ 2*Z
=1+0(Zp),

which is the form occurring in Lemma 2.3(a) (note that the dependence on
u disappears completely). Thus we see that

0(y,) = ©(0) = dd(I + Z*Z)(0)
@.11) O(y,) = dZ* AdZ(0)

which is the same for all points of G, , with respect to these particular
systems of local coordinates. We shall use this expression for the curvature
to compute certain Chern classes of this vector bundle in the next section.

3. Chern Classes of Differentiable Vector Bundles

Our object in this section is to give a differential-geometric derivation
of the Chern classes of a differentiable C-vector bundle £ — X. The Chern
classes will turn out to be the primary obstruction to admitting global frames,
or, more generally, admitting k global sections &, . .., §,, | < k <rankcE,
such that &, A ... A, #= 0, at each point of E (i.e., they are to be ob-
structions to E or some nonzero subbundle of E being trivial). Classically,
the Chern classes are related to the Euler characteristic of a compact mani-
fold X, which for oriented 2-manifolds, for instance, decides completely
whether or not there are nonvanishing vector fields on X. More specifically,
if E is a C-vector bundle of rank r, then the Chern classes ¢ (E),j =1,...,
r, will be elements of the de Rham group H%/(X, R) having certain functorial
properties. As we shall see, they can be defined in terms of the curvature
of E with respect to a connection. Our approach here follows the exposition
of Bott and Chern [1], based on the original ideas of Chern and Weil.

To begin, we need some multilinear algebra. Recall that 9, is the set of
r X r matrices with complex entries. A k-linear form

F:M XXM -—C
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is said to be invariant if

¢(gAlg_l’ LR ] gAkg_l) = ¢(Al9 teey Ak)

forg € GL(r,C), 4, € M,. Let I,(9M,) be the C-vector space of all invariant
k-linear forms on IM,.

Suppose that @ € ,(91,). Then @ induces

o.M —C
by setting
o(A) = @4, ..., A).
It is clear then that ¢ is a homogeneous polynomial of degree k in the entries
of A. Moreover, for g € GL(r, C),
p(g4g™") = p(A),

and we say then that g is invariant. Let I,(91,) be the set of invariant homo-
geneous polynomials of degree k as above. Since the isomorphism of the
symmetric tensor algebra S(JM?) and the polynomials on I, preserves
degrees (see Sternberg [1]), one obtainst from ¢ € I,(I,) an element @ € [(M,)
such that

o(4,..., A) = ¢(A).

We shall omit the tilde and use the same symbol for the multilinear form and
its restriction to the diagonal.

Example 3.1: The usual determinant of an r X r matrix is a mapping

det : M, — C,

which is clearly a member of 1,(J1,). Moreover, for 4 € 91, and , the iden-
tity in 9N, we see that

det(7 + A) =§o D,(4),

where each ®, € I,(91,). Note that ®,,k =0, ..., r, so defined is a real
mapping; i.e., if M has real entries, then ®, (M) is real.

We would like to extend the action of ¢ € I,(9N,) to &*(Hom(E, E)).
First, we define the extension to M, %) ;6. If U is open in X and A;-wy
€ M (U) ey 8°(U), then set

P(A; Wi AW ) =w, A Awp(A,, ..., 4).
By linearity @ becomes a well-defined k-linear form on 91, ®, &°. If ¢,
€ &(U,Hom(E, E)),j =1, ..., k, then set
Pu§is- - -5 &) = @&, (f), - - L &)

t This process is called polarization and a specific formula for @ is

w (=1)* &
P(Ay,. .., A) = T > X I(—I)J‘P(Au + -+ Ay

J=1l1 <<

This shows that the invariance of ¢ follows from that of ¢.



86 Differential Geometry Chap. 111

We can check that this definition is independent of the choice of frame.
Namely, if g is a change of frame, then by (1.13)
Pu(§1(f8), ..., & f8) = pu(87'¢, ()8 - -, &7'6u(f)8)
= @i () s &N

by the invariance of ¢ and the induced invariance of ¢ when acting on matri-
ces with differential form coefficients. Thus we get an extension of ¢ to all
of X,

@y :87(X, Hom(E, E)) X .- X (X, Hom(E, E)) —> &§?*(X),
which when restricted to the diagonal induces the action of the invariant
polynomial ¢ € I,(9,) on &°(X, Hom(E, E)), which we denote by

oy 1 8°(X, Hom(E, E)) —> &°%(X).
Now suppose that we have a connection
D:&X,E)— &' (X, E)
defined on £ — X. Then we have the curvature @(D), as defined in Defi-

nition 1.8. So if ¢ € I(M,), p,(O (D)) is a global 2k-form on X. We can
now state the following basic result due to A. Weil (cf. Bott and Chern [1]).

Theorem 3.2: Let E -— X be a differentiable C-vector bundle, let D be a
connection on £, and suppose that ¢ € I,(91,). Then

(a) @x(Og(D) is closed.
(b) The image of ¢x(Og(D)) in the de Rham group H?*(X, C) is inde-
pendent of the connection D.

Proof: To prove (a), we shall show that for ¢ € I,(9M,), the associated
invariant k-linear form g satisfying

p(gd,g™',...,g4,87") = p(A,..., A)
for all g € GL(r, C) satisfies
3.D ;(p(A,,...,[Aj,B],...,Ak)-:O

forall 4,, B € M,.

Assuming (3.1), we shall first see that (a) holds. Recalling the definition
of the Lie product on M, (X) 6* preceding Proposition 1.10, equation (3.1)
gives, for U open in X,t

(3.2) (=1 py(dyy . [ Bl 4) =0

forall4, € M, R &*+(U)and B € M,(RQE(U), where f(a) =degBY ,<,degA,.
Moreover, it follows from the definition of a k-linear form that

(3 dpuldyr . A) = (D py(Ayr A A

tWe have previously defined the action of ¢ only on 9, ® &2, but this clearly extends
to an action on M, & &*.
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for A, € M, Q &7«(U), where g(@) = > ,-, deg 4;. We want to show that
dp.(©) = 0, and it suffices to show that for a frame f over U,

dg,(©(f)) = 0.
But from equation (3.3) we have [letting O(f) = @]
dpy(©) = dpy(©,...,0) = ¢,0,...,d0,...,0),
noting that deg © is even. From Proposition 1.10 we have that
doy(©) = ¥ 94(0,...,[0,6],...,0),

but this vanishes by equation (3.2), and thus ¢,(0;) is a closed form.

Now all that remains is to show that the invariance of ¢ implies equation
(3.1). First, if f(¢) and g(¢) are power series with matrix coefficients which
converge forallt € C,i.e.,

JO=XA4r and  gO)=3 B,
then
f(0)g(t) = A,B, + (4,8, + A,B,)t + O(t ),
and if ¢ is a linear functional on 9, then
o) = T oA
Now for 4, B € M, it follows from the above remarks that
(349 e BAe'® — A =1[A, B] + O(t]?).
We now want to show that (3.1) holds. We consider, for simplicity, the case
k =2,the general case being an immediate generalization. Thus, if @ € I, (IN,),
by the invariance of the associated bilinear form we obtain
ple™*24,e®, e'PA4,e') — p(4,, 4;,) =0
forall t € Cand 4,, 4,, Be M, since e '?-¢'® = ]. By adding and sub-
tracting g(e "4 ,e'®, A,) to/from the above identity, we obtain
¢(e—lBAlerB’ e-lBAzerH) — ¢(e—lﬂAletﬂ’ Az) + ¢(e—tﬂAlem, Az)
— ¢(A,, 4,) =0.
Applying (3.4) to each of the differences above, we find that

ple™"A,e®, 1[4, B]) + O(t ) + o(t[4,, B] + O(t ), 4,)
= t{p(4,,[4,, B]) + o((4,, B], 4,)} + O(t|*) = 0.
Thus the coefficient of ¢ must also vanish identically, and this proves (3.1)
in the case k = 2. It is now clear that the general case is obtained in the same
way by adding and subtracting the appropriate k — 1 terms to/from the
difference ,
ple™PA.e®, ..., e P4,e'%) — p(A,,..., A,

and we omit further details.
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Now that ¢,(@ (D)) is closed, it makes sense to consider its image in the
de Rham group H2*(X, C). To prove part (b), we shall show that for two
connections D,, D, on E — X there is a differential form « so that

(3.5) 9(O(D,)) — p(Ox(D,)) = da.
To do this, we need to consider one-parameter families of differential forms
on X and one-parameter families of connections on E — X, and to point out
some of their properties.

Let a(r) be a C~ one-parameter family of differential forms on X, t € R;
i.e., a has the local representation

() = 3 a/x, )dx,
fort € Rand a,is C~in x and ¢ (cf. Sec. 2 in Chap. I). Define locally

agr) = 380 — 5,014,

b b
[fawyar =3 ( [“aixn dt) dx,
It is easy to check that these definitions are independent of the local coordi-

b
nates used and that a&(z) and f a(?) dr are well-defined global differential

forms. Also,
O%(a(t) A B() = %?(t) A Bt + a(t) A %/7’(;)
and

Jb a(r) dt = a(1)|5 = a(b) — a(a).

For a differentiable vector bundle £ — X, we define a C~ one-parameter
family of connections on E to be a family of connections { D}, such that for
a C~ frame f over U open in X the connection matrix §,(f) := @(D,,f) has
coefficients which are C~ one-parameter families of differential forms on
E.t Suppose that D, is such a family of connections. Then fora C*= frame f
over U and ¢ € &(U, E) we have

d 4
ED:f(f) = ;;(df(f) + 0.
d
= ($60)en.

Moveover, since a change of frame is independent of 1, this clearly defines for
each r, € R a mapping

D, :8(X, E) —> §'(X, E)

TWe shall need only C! families of connections in the applications, which have the
analogous definition.
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by 3
D) = L DL
Moreover, this mapping is &,-linear. Therefore D,, defines an element of

&!(X, Hom(E, E)) which we also call D,. As we pointed out above, D,
has a local representation

6.) = D) = 26Dl

We can now reduce the proof of part (b) to the following lemma, which will
be proved below.

Lemma 3.3: Let D, be a C~ one-parameter family of connections, and for
eacht € R, let ©, be the induced curvature. Then forany ¢ € 1,(9M),

2x(0,) — 9x(©,) = d(f: 9'(©,;D,) dt),
where

¢I(€;ﬂ) = Z.¢(é,f"" ’c’ (?) ’61"' ’6)7
() denotes the ath argument, and &, n € §*(X, Hom(E, E)).

Namely, if D, and D, are two given connections, for E — X, then let
D,=tD, + (1 —1)D,,

which is clearly a C~ one-parameter family of connections on E. Thus, by
Lemma 3.3, we see that

Px(Og(D,)) — @x(O(D,)) = 9x(0,) — ¢,(0,) =da,
where

o= [ ¢@;D)a.
0 Q.E.D.

Proof of Lemma 3.3: It suffices to show that, for a frame f over U, we
have

(3.6) $4(©) = dpy(O; 0),

where © = Og(D,,f), § = 6(D,,f), and the dot denotes differentiation with
respect to the parameter ¢, as above. Here we use the simple fact that exterior
differentiation commutes with integration with respect to the parameter
t. We proceed by computing

d9y(©:6) = d(T 9u(®,.... 8 ..., ©)
=z{z%(e,...,({?,...,é,...,e)

@ i<a (a)

+¢u(0,...,519,...,e)

a)

~ ¥ ou®,...,0,...,d0,...,0)}

i>a (a) (i)
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By adding and subtracting
Z.:¢U(O""9[(€;e]’---,®)

to/from the above equation and noting that

© =db +1[6,68] (differentiation of (1.14))
do = [0, 6] (Bianchi identity, Proposition 1.10),

we obtain the equation
dgi(0;0) = g;%(@,...,g,...,e)
+ >.:{§,¢U(G’""’[0’3,]""'3;'“’@)
— %(e,...,[é,(g],...,e)

—‘;“ 0O, ... ,(g), ey [@,(g], ., 0

By (3.2), we see that the second sum over a vanishes, and we are left with
dp'y(®; 0) = ;%(@,...,g,...,e)

= ¢U(@)s
which is (3.6).
Q.E.D.

We are now in a position to define Chern classes of a differentiable vector
bundle. From Example 3.1 we consider the invariant polynomials @, € 1,(9,)
defined by the equation

det( + ) = T ®(4), A€M,

Definition 3.4: Let E — X be a differentiable vector bundle equipped with
a connection D. Then the kth Chern form of E relative to the connection D
is defined to be

¢(E, D) = (@) (5;0:D)) € E(X).
The (total) Chern form of E relative to D is defined to be
o(E,D) = S c(E,D), r=rankE.
k=0

The kth Chern class of the vector bundle E, denoted by ¢, (E), is the coho-
mology class of ¢,(E, D) in the de Rham group H2*(X, C), and the total
Chern class of E, denoted by c(E), is the cohomology class of ¢(E, D) in
H*(X, C);ie., c(E) = ko i(E).

It follows from Theorem 3.2 that the Chern classes are well defined and
independent of the connection D used to define them. Thus the Chern classes
are topological cohomology classes in the base space of the vector bundle
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E. We shall see shortly that they are indeed obstructions to finding, e.g.,
global frames. First we want to show that the Chern classes are real coho-
mology classes.

Proposition 3.5: Let D be a connection on a Hermitian vector bundle E
compatible with the Hermitian metric 4. Then the Chern form c¢(E, D) is a
real differential form, and it follows that ¢(E) € H*(X, R), under the canoni-
cal inclusion H*(X, R) ¢ H*(X, C).

Proof: 1t suffices to show that for a local frame f the matrix represen-
tation for the Chern form is a real differential form. Therefore let & = h(f)
O = O(D,f), as usual, and recall that D being compatible with the metric
h was equivalent to the condition (1.22),

dh = h6 + 'Oh,
whose exterior derivative is given by
0=dh A0+ hdd + db-h — 0 A dh.
By substituting the above expression for dh, we obtain
3.7 = hO + ‘Oh.

In particular, if f'is a unitary frame, we note that © is skew-Hermitian. Using
(3.7) we can show that if

1 f— _l_ s
¢ :=c(E, D,f) = det(l T 2n®>
then ¢ = ¢; i.e,, c is a real differential form. Namely,
i B o).
det(h + E@h) - det(l + 5 @) det
Il
i t — . — _il
det(h — 5h G)) — deth det(l 5 @),
where the vertical equality is given by (3.7). Now it follows that
— i _ _ i,
c= det(I n 27@) - det(l o G))
_ Y-\
- det(l 2n®) é.
Q.E.D.

We want to prove some functorial properties of the Chern classes. In
doing so we shall see that it is often convenient to choose a particular con-
nection to find a useful representative for the Chern classes. We remark that
the de Rham group H*(X, R) on a differentiable manifold X carries a ring
structure induced by wedge products; i.e., if

¢, ¢’ € H¥X,R)
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and ¢ = [p] and ¢’ = [¢'], then
cc=[pnol
which is easily checked to be well defined.t

Theorem 3.6: Suppose that £ and E’ are differentiable C-vector bundles
over a differentiable manifold X. Then

(@) Ifg:Y — X isa differentiable mapping where Y is a differentiable
manifold, then

c(p*E) = ¢*c(E),

where p*E is the pullback vector bundle and ¢*c(E) is the pullback of the
cohomology class ¢(E).

(b) «(E® E') =c(E)-c(E'), where the product is in the de Rham
cohomology ring H*(X, R).

(¢) c<(E) depends only on the isomorphism class of the vector bundle
E.

(d) If E*is the dual vector bundle to E, then

c(E*) = (—1)Yc(E).
Proof:

(a) Let D be any connection on E — X. To prove part (a), it will suffice
to define a connection D* on ¢*E so that
9*(6(D)) = ©(D*),
where @* is the induced map on curvature. We proceed as follows. Suppose
that f = (e,, ..., e,) is a frame over U in X. Then f* = (e}, . . ., e}), where
el =e, o p, is a frame for p*E over ¢p~!(U), and frames of the form f*
cover Y. Also, if g : U — GL(r, C) is a change of frame over U, then g* =
g o ¢ is a change of frame in ¢*E over ¢ !(U). Now define a connection
matrix
0*(f*) = ¢*9(f) = [¢* w]:
where ¢*8,, is the induced map on forms. Moreover, it is easy to see that
g*0*(f*g*) = 0*(f*)g* + dg*
so that 8* defines a global connection on A*E. And, finally, we have
G(D*,f*) — de*(f*) + 0*(!'*) A 0*(f*)
= dp*0(f) + ¢*0(f) A ¢*0(f)
= p*(do(f) + 6(f) A O(Sf))
= ¢*0(D.f),
which completes the proof of part (a).

1This is a representation for the cup product of algebraic topology; see, e.g., Bredon
[1] and Greenberg [1].
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(b) Given D and D’, connections on E and E’, respectively, it suffices
to find a connection D® on E @ E’ so that

(E@E', D®) = ¢(E, D) A «(E', D').

Also, as in part (a), it suffices to consider a local argument. Therefore for
6 and 6’ connection matrices over U on E and E’, respectively, it is easy to see

that
[ :’
06

is a connection matrix defining a global connection on E @ E’ (the details
are left to the reader). The associated curvature matrix is given by

@@_[9 0}
o @

i
I—I—EQ 0

Thus

c(E@E’, D®)|, = det ,
0 I' + ﬁe'

- det[l + %tejdet[l' n 2'_;:@']
= o(E, D)|y A (E’, D')|y.

(c) Suppose that  : E — E’ is a vector bundle isomorphism. Then we
want to show that ¢(E) = ¢(E’). This is simple, and similar to the argument
in part (a). Let D be a connection on E, and define a connection D’ on E’
by defining the connection matrix for D’ by the relation

0'(S") = 6(),

where f'is a frame for E and f' = (a(e,), . . ., &(e,)) is a frame for E'. Asin
(a), this is a connection for E’, and it follows that ®'(f') = ©(f), and hence
o(E) = c(E").

(d) Suppose that the duality between E and E* is represented by {, >
(not to be confused with a metric) and that D is a connection on E. If f and
f* are dual frames over an open set U, i.e., <e,, e¥)> = 4,,, then we can define
a connection D* in E* by setting

(3.8) 0* = 6(D*,f*) = —6(D, ).

We can check that §* defined by (3.8) is indeed a connection on E*. Suppose
that g is a change of frame f — fg on E. Then the induced change of frame for
the dual frame f* is given by f* — f*/(g™!), as is easy to verify. Thus, if we
let g* = (‘g)™', we have to check that

3.9 0*(f*g*) = (g*)'dg* + (g%)7'0*(f*)g*
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to see that 8* is a well-defined connection on E*. But (3.9) holds if and only
if
—'0(fg) = ‘gd'(g™") — 'g(f)(g™"),
which simplifies to, after taking transposes and using the fact that dg~!
= —g 'dgg™!,
0(fg) = g7'dg + g7'0(f)s,
which holds, since 8(f) is a connection matrix. Therefore the curvature for
E*is
O* = d6* 4 6* A 6*

=—d0+'9n0

= —d'0—"@n0)

= —df0 + 6 A6

= —'0.

Thus the Chern forms restricted to U are related by
c(E*, D¥) = dn(——z';,@)

= (—D¥*c,(E, D),

where we note that the invariant polynomial ®, is homogeneous of degree

k and is invariant with respect to transpose (since det is).
Q.E.D.

Remark: 1In the case where E — X is a holomorphic vector bundle and
h is a Hermitian matrix on E, h*, the induced metric on E*, is given by
*(f*) = ‘(' (f)),
where fand f* are dual holomorphic frames. From this we see that
0* = (h*)"! gn*
='hd'(h™")
= —(@hy(h™")
= —h"tdh)= —0
and
O* = —d0 = —O.

We now use the above functorial properties to derive the obstruction-
theoretic properties of Chern classes, i.e., the obstructions to finding global
sections.

Theorem 3.7: Let E — X be a differentiable vector bundle of rank r. Then



Sec. 3 Chern Classes of Differentiable Vector Bundles 95

(@) co(E) =1.

(b) If Ex= X x C is trivial, then ¢(E)=0, j=1,...,r; ie., ¢(E)
=1.

(c) fE=E @ T,, where T, is a trivial vector bundle of rank s, then

c(E)=0, j=r—s+1,...,r

Proof:
(a) This is obvious from the definition of Chern classes.
(b) IfE= X x Cr, then &(X, E) = (8(X))’, and a connection
D :&(X, E) —> &(X, E)
can be defined by
¢

DE—dt=d| . |\

¢

where {; € 8(X). In this case the connection matrix @ is identically zero.
Then the curvature vanishes, and we have

¢(E, D) = det(I + 0) = 1,

which implies that ¢(E, D) =0, j > 0.
(c) We compute
A(E)=cE'®DT)
=c(E’) - «(T,)
=c(E’') - 1
by Theorem 3.6 and part (b). Moreover, E’ is of rank r — s, and so we
have

(E) =1+ c(E) 4 ¢E) = 1 + ¢,(E) + -+ + ¢,_(E),
from which it follows that

c(E)=0, jJ=r—s+1,...,r
Q.E.D.

We shall now use Theorem 3.7 to show that some of our examples of vector
bundles discussed in Chap. I are indeed nontrivial vector bundles by showing
that they have nonvanishing Chern classes.

Example 3.8: Consider T(P,(C)), which is R-linear isomorphic to T(S2),
the real tangent bundle to the 2-sphere S, and we shall show that it has a
nonzero first Chern class. The natural metric on T(P,(C)) is the chordal metric
defined by

SYLI A
W) = h(3h 32 = ESHRE
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in the z-plane; if w = 1/z is the coordinate system at infinity (from the classi-
cal point of view), #(d/dw, d/dw) has the same form. We compute

0(z) = h(z)~' dh(z)
2)2 1
= +12P9( 5 1377)

2z
b0 =~
— 30 — 2 5
0 =00= TP |Z|z)2dz A dz.
Therefore
— i s
c(E, h) = AT 2P |z)2dz A dzZ
_ 2dx Ady
T A+ 2P
Now
d df
[emm=L [ [ pedks
—a | PAp__
, T+ po2

Thus the closed differential form c,(E, h) cannot be exact, since its integral
over the 2-cycle P, is nonzero. Therefore T(P,(C)) is a nontrivial complex
line bundle. Note that the integral of the Chern class over P, was in fact 2,
which is the Euler characteristic of P,. This is true in much greater generality.
Namely, the classical Gauss-Bonnet theorem asserts that the integral of
the Gaussian curvature over a compact 2-manifold is the Euler characteristic
(see e.g. Eisenhart [1]). More generally,

[ edm@n) = 20

for a compact n-dimensional complex manifold X (see Chern [2]). We shall
see the above computation on the 2-sphere in a different context in the next
section.

Example 3.9: Consider the universal bundle E = U, ; — G, ;, which
is a vector bundle with fibres isomorphic to C2. In Example 2.4 we have com-
puted the curvature in an appropriate coordinate system, and we obtained

O(y,) = dZ* A dZ(0),
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using the notation of Example 2.4. Thus we find that Z =(Z,,,Z,,), Z,,
€ C, and we have the 2 X 2 curvature matrix

JZ* A dZ — {d@, NdZ,, dZ, A dz,z}
dZ,, NdZ,, dZ,, NdZ,,

from which we compute

cy(E, h)(y,) = det(idz* A dZ)

2n
- (_zinz)dzl, NdZ, NdZ,, AdZ,,
- (——2%2) . (%)2‘1“,11 AdY, ANdX,, AdY,,

- %dX,, AdY,, AdX,, AdY,,
which shows that c¢,(E, h) is a volume form for G, , and, consequently, that
[ aEmn>o
Ga.s

This shows that c,(E, h) # 0. Thus E has no trivial subbundles and is itself
not trivial.

4. Complex Line Bundles

In this section we are going to continue our study of Chern classes of
vector bundles by restricting attention to complex line bundles, i.e., differen-
tiable or holomorphic C-vector bundles of rank 1. In particular, we shall
characterize which cohomology classes in H?2(X, R) (for a given differen-
tiable manifold X) are the first Chern class of a complex line bundle over X,
a result which has an important application in Chap. VI when we prove
Kodaira’s fundamental theorem characterizing which abstract compact
complex manifolds admit an embedding into complex projective space.

We start with the following two propositions, which are true for vector
bundles of any rank.

Proposition 4.1: Let £ — X be a differentiable vector bundle. Then there
is a finite open covering {U,}, & = 1, ..., N, of X such that E|,, is trivial.

Proof: 1f X is compact, then the result is obvious. By definition we are
assuming that X is paracompact (see Chap. I). Now let {V;} be an open
covering of X such that E|,, is trivial. By a standard result in topology, X
has topological dimension n implies that there is a refinement {U,} of {V,}
with the property that the intersection of any (n + 2) elements of the cover-
ing {U,} is empty, which, in particular means that {U,} isa locally finite cover-
ing of X. Let {p,} be a partition of unity subordinate to the covering {U,}.
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Let A, be the set of unordered (i + 1)-tuples of distinct elements of the index
set of {g,}. Givena € A,,a ={a,, ..., ], let

Wia = {x € X : ¢a(x) < min [¢ﬂo(x)! trc ¢,((X)] for all a ‘_/é ao, LR ] a,‘}-
Then it follows that each W, is open, and W,, N W, = @ if a # b. More-
over,

W, < suppg,, N---Nsuppeg, < U,
for some &, where supp ¢,, = support of ¢,,. Then we see that if we let
X.= UW,, i=0,...,n,

then (a) Ely, is trivial and (b) U X, = X. Assertion (a) follows from the fact
that El,  is trivial, since W, c U,and W, N W, =@,a# b. If x € X,
then x is contained in at most n + 1 of the sets {U,}, and so at most n + 1 of
the functions {p,} are positive at x. Let a = {a,, . . ., &}, where @,,, . . . , @a,
are the only functions in {p,} which are positive at x, 0 <<i < n. Then it

follows that
0 = ¢,(x) < min{g,,(x),. .., 9. (x)}

forany a #+ a,, ..., a; and hence x € W, < X,. Thus {X,} is a finite open

covering of X such that E|,, is trivial.
Q.E.D.

Proposition 4.2: Let E — X be a differentiable C-vector bundle of rank r.
Then there is an integer N > 0 and a differentiable mapping @ : X — G, ,(C)
such that ®*(U, ) = E, where U, , — G, y is the universal bundle.

Remark : This is one-half of the classification theorem for vector bun-
dles, Theorem 1.2.17, discussed in Sec. 2. of Chap. L.

Proof: Consider the dual vector bundle £E* — X. By Proposition 4.1,
there exists a finite open cover of X, {U,}, and a finite number of frames f,
=(e3,...,e),a=1,...,k, for the vector bundle E*. By a simple parti-
tion of unity argument, we see that there exists a finite number of global
sections of the vector bundle E*, £,,.. ., €y € 8(X, E*), such that at any
point x € Xthere are r sections {¢, , . . . , &, } which are linearly independent
at x (and hence in a neighborhood of x). We want to use the sections &,,
..., &y to define a mapping

D X—G,
Suppose that f* is a frame for E* near x, € X. Then
4.1 M(f*) = [E.(/*)(x)s - M) (X))

is an r X N matrix of maximal rank, whose coefficients are C> functions
defined near x,. The rows of M span an r-dimensional subspace of C, and
we denote this subspace by ®(x). A priori, ®(x) depends on the choice of
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frame, but we see that if g is a change of frame, then

M(f*g) = [E(f*8), ... En(f*8)]
= [g_lél(f*)’ ey g—lcN(f*)]
=g 'M(f*).

Thus the rows of M(f*)and M (f*g) span the same subspace, and therefore
the mapping

O:X—G,y

is well defined at every point. It follows from the construction, by looking at
local coordinates in G, ,, that @ is a differentiable mapping. We now claim
that ®*U, , = E. To see this, it suffices to define a bundle morphism &

E2uU,,

L,k

X326,

which commutes with the mapping ® and which is injective on each fibre.
We define &(x, v), x € X, v € E,, by setting

®(x, v) = ({2, £, ..., {0, En(x))),

where (, > denotes the bilinear pairing between E and E*. Thus ®|,, is a
C-linear mapping into C", and we claim that (a) ®|,, is injective and (b)
&(E,) = n~'(®(x)), where =z is the projection in the universal bundle. Let
S/ be a frame for E near x € X and let f* be a dual frame for E*;i.e., if
S=(e,...,e) and f* = (e}, ..., e}), then (e, e¥> =J,,. Then we see
that the mapping @ can be represented at x by the matrix product

4.2 B(x, v) = v(f)-M(f*),

where M(f*) is defined by (4.1) and is of maximal rank. Thus & is injective
on fibres. But (4.2) shows that the image of ®(E,) is contained in the sub-
space of C" spanned by the rows of M(f*), which implies that ®(E,) =
n~{(P(x)).

Q.E.D.

It follows from Proposition 4.2 and Theorem 3.6(a) that ¢(E) =
®*(c(U, »)). In particular, one can show easily from this that line bundles
have integral Chern classes. Let H%(X, Z) denote the image of H(X, Z) in
H4(X, R) under the natural homomorphism induced by the inclusion of the
constant sheaves Z < R [this means that H%X, Z) is integral cohomology
modulo torsion].

Proposition 4.3: Let £ — X be a complex line bundle, Then ¢,(E)
AYX,Z).
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Proof: Since ¢,(E) = ®*(c,(U, ), where @ is the mapping in Proposi-
tion 4.2, we see that it suffices to show that

c(Uin) € HXPy_,, 2)

[H?*P,_,, Z) has no torsion; see the discussion below]. In Sec. 2 we have com-
puted the curvature for the canonical connection D(h) associated with the
natural metric 4 on the universal bundle U, y, and thus, by (2.10), we see that

(4.3) ¢,(U, x> D(h)) =2_1_m|fIZZ dé; A df;|f~|42 EL.dE; N df,(,

where f = ({,,..., {y) is a frame for U, . Now, it is well known that
HYP(),Z)=1Z, q even, q<2n
HYP (C),Z) =0, q odd, or g > 2n,

which can be shown easily using singular cohomology (see Greenberg [1]).
In fact there is a cell decomposition

PocP - Py,

where P;_, < P, is a linear hyperplane, and P, — P,_, = C’. The submani-
fold P, = P,_, is a generator for H,,(P,, Z), and there are no torsion ele-
ments. A closed differential form ¢ of degree 2j will be a representative of an
integral cohomology class in H2/(P,_,, Z) if and only if

Plrp e Z.
Thus, to see that ¢, (U, ») € H*P,_,, Z), it suffices to compute

a,
P,

where a is defined by (4.3). We can take P, = P,,_, to be defined by the sub-
space in homogeneous coordinates

{(zys..ohzy)i12;=0,j=3,...,N}L
Consider the frame f for U, , — P,_,, defined over W = {z:z, # 0},
given by

UL & G = (1, &, &),

where (£,, ..., ¢y) are coordinates for Py in the open set W. Then f|,, p,
is given by A

f(1,¢,,0,...,0] =(1,¢£,,0,..,0),
and we can think of ¢, as coordinates in W N P, for P,. Thus the differential
form alp, is given by (letting z = ¢&,)

I dzndz

YTz
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and therefore we obtain

f . — f dz A dZ
Prow 27:1 I+ T +1z)?

1 dx A dy
r (A 1219)?

rdr
= 2f T+ ry

This shows that ¢,(U, y) € H%Py_,, Z) and hence that ¢ (E) € H¥ (X, Z).
Q.E.D.

Remark: This approach generalizes to vector bundles. In fact, G, ,(C)
has a cell decomposition similar to that given above for G, ,(C)and has non-
vanishing cohomology only in even degrees and has no torsion. The generali-
zation of the cycles {P, — P,} generating the homology are called Schubert
varieties. Moreover, one can show that the Chern classes of the universal
bundle U, 4, appropriately normalized, are integral cohomology classes, and
thus a version of Proposition 4.3 is valid for vector bundles (see Chern [2]).
In algebraic topology, one defines the Chern classes as the pullbacks under
the classifying map of the Chern classes of the universal bundle, thus admit-
ting torsion elements. However, the proof of Theorem 3.6 in that context is
considerably different and perhaps not quite so simple.

So far we have encountered two different approaches to Chern class
theory: the differential-geometric definition in Sec. 3 and the classifying space
approach discussed in the above remark. A third approach is to define Chern
classes only for line bundles, extend the definition to direct sums of line bun-
dles by using the required behavior on direct sums, and show that any vector
bundle can be decomposed as a direct sum of line bundles by modifying the
base space appropriately (see Hirzebruch [1]). For a comparison of almost all
definitions possible, see Appendix I in Borel and Hirzebruch [1]. We shall
present a simple sheaf-theoretic definition of Chern class for a complex line
bundle and show that it is compatible with the differential-geometric (and
consequently classifying space) definition. We shall assume a knowledge of
Cech cohomology as presented in Appendix A in Chap. II.

Consider, first, holomorphic line bundles over a complex manifold X.
Let O be the structure sheaf of X and let O* be the sheaf of nonvanishing holo-
morphic functions on X.

Lemma 4.4: There is a one-to-one correspondence between the equivalence
classes of holomorphic line bundles on X and the elements of the cohomology
group H!(X, 0*).
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Proof: We shall represent H'(X, 0¥) by means of Cech cohomology.
Suppose that E — X is a holomorphic line bundle. There is an open covering
{U,} = U and holomorphic functions

(4.49) 8. U, N Uy —> GL(1,C) = C — {0}
such that
4.5 8ap * 8oy * ya = 1 on U, nUyN U,

8 =1 on U,

Namely, the {g,,} are the transition functions of the line bundle with respect
to a suitable covering (see Sec. 2 of Chap. I). But the data {g,,} satisfying
(4.5) define a cocycle g € Z'(U, ©*) and hence a cohomology class in the
direct limit H!(X, 0*). Moreover, any line bundle E’ — X which is isomor-
phic to E — X will correspond to the same class in H'(X, 0*). This is easy
to see by combining (via the isomorphism) the two sets of transition functions
to get a single set of transition functions on a suitable refinement of the given
{U,} and {U,}. Thus they will correspond to the same cohomology class.
Conversely, given any cohomology class { € H'(X, 0*), it can berepresented
by a cocycle g = {g,,} on some covering U = {U,}. By means of the functions
{g.s} one can construct a holomorphic line bundle having these transition
functions. Namely, let

E=vuU,xC (disjoint union)
and identify
(x,2) e U, x C with (y,w) e U; xC

if and only if
y=x and z = g (x)w.

This identification (or equivalence relation on E) gives rise to a holomorphic
line bundle. Again, appealing to a common refinement argument, it is easy

to check that one does obtain the desired one-to-one correspondence.
Q.E.D.

As we know from the differential-geometric definition, the Chern class of
a line bundle depends only on its equivalence class, and this is most easily
represented by a cocycle in Z'(U, ©*) for a particular covering. Recall the
exact sequence of sheaves in Example 11.2.6,

0—Z— 025 09— 0,

and consider the induced cohomology sequence
H'(X,0) — H'(X, 0*) > H¥X, Z) — H*(X, 0)

~o j
~

U HYX, R),

where the vertical mapping is the natural homomorphism j induced by the
inclusion of the constant sheaves Z — R and ¢ is the Bockstein operator.
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Note that the first Chern class, as defined in Sec. 3, gives a mapping (see
the dashed arrow above)

¢, : H'(X, 0%) —> H¥(X, R).

The following theorem tells us that we can compute Chern classes of line
bundles by using the Bockstein operator d.

Theorem 4.5: The diagram
H\(X, 0% —°> H¥X, Z)
N
H¥X,R)
is commutative.

Proof: The basic element of the proof is to represent de Rham cohomo-
logy by Cech cohomology and then compute explicitly the Bockstein operator
in this context. Suppose that Il = {U,} is a locally finite covering of X, and
consider ¢ = {£,;5,} € Z*(U, R). We want to associate with £ a closed 2-form
@ on X. Since £ also is an element of Z?*(ll, 8) and & is fine, there exists a
t € C(U, 8) so that dt = &, for instance,

Tpy — Z ¢a€aﬂr’

where ¢, is a partition of unity subordinate to U. Exterior differentiation is
well defined on cochains in C9(ll, €?) and commutes with the coboundary
operator, and so we obtain

d0dt = dot = d& = 0.
Then dt € Z'(1, §'), but &' is also fine, so do the same thing once more,
writing
Hp = ; PadTep.

Then u € C°(11, 8') and du = dr, and thus du € C°(l, §2). But

ddu = doy = d*t =0,
and so ¢ = —du € Z°(l, &%) = 8%(X) is a well-defined global differential
form which is clearly d-closed. Thus to a cocycle £ € Z (11, R) we have asso-
ciated a closed differential form ¢(&). This induces a mapping at the coho-
mology level,
(4.6) HY(X,R) —> H¥X,R),

(Cech) (de Rham)

which one can show is well defined and is an isomorphism (cf. the proof of
Theorem II. 3.13). Note that the mapping at the cocycle level depends on
the choices made (t and ) but that the induced mapping on cohomology is
independent of the choices made. This is thus an explicit representation for
the isomorphism between de Rham cohomology and Cech cohomology. The
choice of sign in this isomorphism was made so that the concept of “positiv-
ity” for Chern classes is compatible for the sheaf-theoretic and differential-
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geometric definitions of Chern classes (cf. Chap. VI; Kodaira [1]; Hirzebruch
{1]; Borel-Hirzebruch {1; II-Appendix]).

Suppose now that 1l is a covering of X, with the property that any inter-
section of elements of the covering is a cell (in particular is simply con-
nected).t We want to use U to describe the Bockstein operator d:

0:H'(X,0%)— H¥X, Z).
Suppose that g = {g,,} € Z!'(U, 0*). Then o = {04}, defined by

1 -
Oup = 50 log 8.5 = €xp™'(8.s)s

defines an element of C'(U, 0) (here we use the simply connectedness and any
particular branch of the logarithm). Thus do € C*(l, 9), and since §2 = 0,
we see that do € Z*(ll, ©). But

1
(00)epy = 5. (l0g g5, — log 8., + l0g 2.p),
and this is integer-valued, since

8ap ° 8py =ga7;
i.e., {g.5} is a cocycle in Z!(X, 0*). Thus d¢ € Z*(Ul, Z) and is a representa-
tive for d(g) € H(X, Z).
Now let g = {g.,} be the transition functions of a holomorphic line bundle
E — Xand let 4 be a Hermitian metric on E. Since {U,} is a trivializing cover
for E, we have frames f, for E over U,, and we set h, = A(f,). Note that A,
is a positive C~ function defined in U,. Thus

¢ (E, h) = ﬁé (h;' dh,) inU,,
which we rewrite as
e (E, b) = %aé log ..

Note that the functions A, satisfy
ha = |gﬂa Izhﬂ
on U, N U, which follows from the change of frame transformation (1.7)

for the Hermitian metric 4. We want to use the functions {,} in the trans-
formation from Cech to de Rham representatives. As above, let

1
2 —_—
oo € Z¥U, Z), Oup = 577 log 2.5,
be the Bockstein image of {g,,} in H*(X, Z). We now want to associate to

do a closed 2-form via the construction giving (4.6), which will turn out to

tSuch a covering always exists and will be a Leray covering for the constant sheaf’; i.e.,
H4(|o], R) = 0 for any simplex o of the covering U. If X is equipped with a Riemannian
metric (considered as a real differentiable manifold), then every point x € X has a funda-
mental neighborhood system of convex normal balls (Helgason [1], p. 54), and the inter-
section of any finite number of such convex sets is again convex. Moreover, these convex
sets are cells.
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be the Chern form of E, concluding the proof of the theorem. Choose 7 and
4 in the construction of the mapping (4.6) by letting 1 = ¢ and u = {u.},
where

Ho = -2171.0 log h,.

Then we see that this choice of u = {u,} satisfies
Ot)ep = g — po = zl.d log e
ni h,

= 50 108 upks

1 -
= m(a log gaﬂ + a log gaﬂ)

1
= md log guﬁ
=do.; = di,,

(here d log g5, = 0, since g, is holomorphic). Thus the closed 2-form asso-
ciated with the cocycle do is given by

o= —du= d(%{d log h,)

i3 _
= z—nda log h, = ¢ (E, h).
Q.E.D.

A modification of the above proof shows that Theorem 4.5 is also true
in the C~ category. Namely, there is an exact sequence

0—Z—>86—>8—0
on a differentiable manifold X, where &* is the sheaf of nonvanishing C*
functions. The induced sequence in cohomology reads
—> H'(X, 8) — H'(X, &%) SLAN H*H,Z) — H¥X, §) —,
but H(X, &) = 0, ¢ > 0, since & is fine, and hence there is an isomorphism
H'(X, &%) 2> H¥(X, Z),

which asserts that all differentiable complex line bundles are determined by
their Chern class in H3(X, Z) [but not necessarily by their real Chern class in
H*(X, Z), as there may be some torsion lost]. For holomorphic line bundles,
the situation is more complicated. Let X be a complex manifold and consider
the corresponding sequence

4.7 H(X, 0) —> H'(X, 0%) —°> H¥X, Z) —> H*X, 0)

SNod
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Here we may have H'(X, 0) or H*(X, ©) nonvanishing, and line bundles
would not be determined by their Chern class in H(X, Z). We want to
characterize the image of ¢, in the above diagram. Let H?% (X, Z) be the
cohomology classes in (X, Z) which admit a d-closed differential form of
type (1, 1) as a representative, and let

H} (X,Z) = j~\(#},(X,2)) = H(X, Z).

Proposition 4.6: In (4.7),
¢)(H'(X,0%) = A1,,(X, Z).

Proof: Tt suffices to show that
O(H'(X,0*) = H? (X, Z) in (4.7).

To see this, it suffices to show that the image of H} (X, Z) in H*(X, 0) is
zero. Consider the following commutative diagram of sheaves (all natural

inclusions),
C
/N

Z— 0,
and the induced diagram on cohomology,
HY¥X,C)

/N

H¥X,Z)— H¥X, 0).

Now HA? (X, Z) = H*(X,C) and is the image of H} (X, Z)in the above
diagram. Therefore it suffices to show that the image of H? (X, C) (defined
as before) in H*(X, 0) is zero. Consider the homomorphism of resolutions
of sheaves

0—C—>8° ‘.8 2.8 _%,...

Col e e

0 >0 > §0.0 ";80,1 ",80.2 a.)...

where 7, , : 8% — 8°7 is the projection on the submodule of forms of type
(0, g). Therefore the mapping

H¥X,C)— HYX, 0)

is represented by mapping a d-closed differential form ¢ onto the d-closed
form =, ,p. It is then clear that the image of H? (X, C) in H*(X, 0) is zero,
since a class in H? (X, C) is represented by a d-closed form ¢ of type (1, 1),

and thus n, ,p = 0.
Q.E.D.

Closely related to holomorphic line bundles is the concept of a divisor
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on a complex manifold X. Consider the exact sequence of multiplicative
sheaves

(4.8) 00— 0* —> IM* —> M*/0* — 0

where O* was defined above and J1U* is the sheaf of non-trivial meromorphic
functions on X i.e., the stalk ¥ is the group of non-zero elements of the
quotient field of the integral domain O, at a point x € X (see Gunning and
Rossi [1], for the proofs of the algebraic structure of 9; i.e., O, is a Noether-
ian local ring; moreover, O, is an integral domain, with unique factorization).
We let D = M */O*, and this is called the sheaf of divisors on X. A section of
D is called a divisor. If D € H°(X, D), then there is a covering A = {U,} and
meromorphic functions (sections of I *) f, defined in U, such that

4.9) Jo _ g € OX(U, N Up).

a
Moreover,
8.5 8 8.=lonU,NU,NU,.
Thus a divisor gives rise to an equivalence class of line bundles represented
by the cocycle {g,,}. This is seen more easily by looking at the exact sequence
in cohomology induced by (4.8), namely

(4.10) HYX, M*) —> HOX, D) —> H'(X, 0%)
la
HYX, Z),

where we have added the vertical map coming from (4.7). From the sequence
(4.8) we see that a divisor determines an equivalence class of holomorphic
line bundles and that two different divisors give the same class if they “differ
by” (multiplicatively) a global meromorphic function (this is called linear
equivalence in algebraic geometry). Divisors occur in various ways, but very
often as the divisor determined by a subvariety ¥ < X of codimension 1.
Namely, such a sub-variety ¥ can be defined by the following data: a covering
{U,} of X, holomorphic functions f, in U,, and f;/f, = g., nonvanishing and
holomorphic on U, N Us. The subvariety V is then defined to be the zeros of
the functions f, in U,. This then clearly gives rise to a divisor (see Gunning
and Rossi [1] or Narasimhan [2] for a more detailed discussion of divisors
and subvarieties). We shall need to use this concept later on only in the case
of a nonsingular hypersurface ¥ < X, which then gives rise to an equivalence
class of holomorphic line bundles.



CHAPTER 1V

ELLIPTIC
OPERATOR THEORY

In this chapter we shall describe the general theory of elliptic differential
operators on compact differentiable manifolds, leading up to a presentation
of a general Hodge theory. In Sec. 1 we shall develop the relevant theory of
the function spaces on which we shall do analysis, namely the Sobolev spaces
of sections of vector bundles, with proofs of the fundamental Sobolev and
Rellich lemmas. In Sec. 2 we shall discuss the basic structure of differential
operators and their symbols, and in Sec. 3 this same structure is generalized to
the context of pseudodifferential operators. Using the results in the first
three sections, we shall present in Sec. 4 the fundamental theorems concerning
homogeneous solutions of elliptic differential equations on a manifold.
The pseudodifferential operators in Sec. 3 are used to construct a parametrix
(pseudoinverse) for a given operator L. Using the parametrix we shall show
that the kernel (null space) of L is finite dimensional and contains only C*
sections (regularity). In the case of self-adjoint operators, we shall obtain the
decomposition theorem of Hodge, which asserts that the vector space of
sections of a bundle is the (orthogonal) direct sum of the (finite dimensional)
kernel and the range of the operator. In Sec. 5 we shall introduce elliptic
complexes (a generalization of the basic model, the de Rham complex) and
show that the Hodge decomposition in Sec. 4 carries over to this context,
thus obtaining as a corollary Hodge's representation of de Rham cohomo-
logy by harmonic forms.

1. Sobolev Spaces

In this section we shall restrict ourselves to compact differentiable mani-
folds, for simplicity, although many of the topics that we shall discuss are
certainly more general. Let X be a compact differentiable manifold with a
strictly positive smooth measure u.

We mean by this that du is a volume element (or density) which can be
expressed in local coordinates (x, . . ., x,) by

dp = p(x) dx = p(x)dx, -- - dx,

108
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where the coefficients transform by

p(x) dx = ﬁ(y(x))] det 22)

dx,

where p(y)dy is the representation with respect to the coordinates y =
(J1s - - - » Va)» where x — y(x) and dy/dx is the corresponding Jacobian matrix
of the change of coordinates. Such measures always exist; take, for instance,

p(x) = |det g, (x)["?

where ds? = ¥, g,,(x) dx; @ dx, is a Riemannian metric for X expressed in
terms of the local coordinates (x,, ..., x,).T If X is orientable, then the vol-
ume element du can be chosen to be a positive differential form of degree
n (which can be taken as a definition of orientability).

Let E be a Hermitian (differentiable) vector bundle over X. Let §,(X, E)
be the kth order differentiable sections of E over X, 0 < k << oo, where
8.(X, E) = 8(X, E). As usual, we shall denote the compactly supported
sections} by D(X, E) < &(X, E) and the compactly supported functions by

D(X) < &(X). Define an inner product (,) on &(X, E) by setting

& m = [ &, 00 du,

where <, > is the Hermitian metric on E. Let

¢l = (€, )2
be the L2-norm and let W°(X, E) be the completion of &(X, E). Let {U,, ¢,}
be a finite trivializing cover, where, in the diagram

EIU- _’-—) Uu X Cm
b,

Ul _’L—’ Ua’
@. is a bundle map isomorphism and @,: U, — U, = R” are local coordinate
systems for the manifold X. Then let

¢¥: &(U.,, E) — (80"

be the induced map. Let {p,} be a partition of unity subordinate to {U,},
and define, for & € &(X, E),

€15 = Zllo2pd L

where || ||, »~ is the Sobolev norm for a compactly supported differentiable
function
[ R"—> Cm,

tSee any elementary text dealing with calculus on manifolds, e.g., Lang {1].
1A section ¢ € &(X, E) has compact support on a (not necessarily compact) manifold
Xif (x € X: &(x) % 0} is relatively compact in X.
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defined (for a scalar-valued function) by

(L.1) IS e = [1FDIREA + 1y dy,
where
f) = @my [ e p(x) dx

is the Fourier transform in R”. We extend this to a vector-valued function by
taking the s-norm of the Euclidean norm of the vector, for instance. Note
that {| ||, is defined for all s € R, but we shall deal only with integral values
in our applications. Intuitively, ||&]|, < oo, for s a positive integer, means
that ¢ has s derivatives in L2, This follows from the fact that in R*, the norm
Il lls,r» is equivalent [on D(R")] to the norm

[ = [ iperrax]” feomy

lal<s
(see, e.g., Hormander [1], Chap. 1). This follows essentially from the basic
facts about Fourier transforms that

NS a

D f(y) = yS(»),
S 1 =y D = (<D Dt D Dy = oy and. | 1o =
I/ lo-

The norm || ||, defined on E depends on the choice of partition of unity
and the local trivialization. We let W*(X, E) be the completion of &§(X, E)
with respect to the norm || ||,. Then it is a fact, which we shall not verify here,
that the ropology on W*(X, E) is independent of the choices made; i.e., any
two such norms are equivalent. Note that for s = 0 we have made two differ-
ent choices of norms, one using the local trivializations and one using the
Hermitian structure on E, and that these two L2-norms are also equivalent.

We have a sequence of inclusions of the Hilbert spaces W*(X, E),

COWSoWSt o oW o ..

If we let H* denote the antidual of a topological vector space over C
(the conjugate-linear continuous functionals), then it can be shown that

Wyp=w> (s>0)

In fact, we could have defined W~ in this manner, using the definition involv-
ing the norms || ||, for the nonnegative values of s. Locally this is easy to see,
since we have for f € W*(R"), g € W~*(R") the duality (ignoring the conjuga-
tion problem by assuming that fand g are real-valued)

o= [ f0)-g)dx = [ f&)-8) &,
and this exists, since
I<A 1< [IF@IA +1ER 8O + 1ERy2dg <1 f 1l Igll-, < oo

The growth is the important thing here, and the patching process (being a
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C= process with compact supports) does not affect the growth conditions and
hence the existence of the integrals. Thus the global result stated above is
easily obtained. We have the following two important results concerning this
sequence of Hilbert spaces.

Proposition 1.1 (Sobolev): Let n = dimgX, and suppose that s > [n/2] +
k + 1. Then

Ws(X, E) < &§,(X, E).

Proposition 1.2 (Rellich): The natural inclusion
Jj: W(E) =« WYE)

for ¢+ < s is a completely continuous linear map.

Recall that completely continuous means that the image of a closed ball is
relatively compact, i.e., j is a compact operator. In Proposition 1.2 the com-
pactness of X is strongly used, whereas it is inessential for Proposition 1.1.

To give the reader some appreciation of these propositions, we shall give
proofs of them in special cases to show what is involved. The general results
for vector bundles are essentially formalism and the piecing together of these
special cases.

Proposition 1.1’ (Sobolev): Let f be a measurable L? function in R with
[| fll; < oo, for s > [n/2] + k + 1, a nonnegative integer. Then f € C*(R")
(after a possible change on a set of measure zero).

Proof: Our assumption || f||, < co means that

fn_lf”(é)lz(l + &) dE < oo.
Let
fo = [ LTS d

be the inverse Fourier transform, if it exists. We know that if the inverse
Fourier transform exists, then f(x) agrees with f(x) almost everywhere, and
we agree to say that f € C°(R") if this integral exists, making the appropriate
change on a set of measure zero. Similarly, for some constant ¢,

D*/(x) = ¢ [ e=ogf () d

will be continuous derivatives of f if the integral converges. Therefore we
need to show that for |a| < k, the integrals

[ewoef@ a
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converge, and it will follow that f € C*(R"). But, indeed, we have

J1r@nerae = [170K +1ery Kl

<t ([ 4l e)

Now s has been chosen so that this last integral exists (which is easy to see by
using polar coordinates), and so we have

[17@1E dg < o,

and the proposition is proved.
Q.E.D.

Similarly, we can prove a simple version of Rellich’s lemma.

Proposition 1.2’ (Rellich): Supppose that f, € W*(R") and that all f, have
compact support in K < < R". Assume that || f,|], < 1. Thenfor any ¢ < s
there exists a subsequence f,, which converges in || ||.
Proof: We observe first thatforé, n € R, s € Z*,
(1.2) A+ 18R < 222 (1 + |§ — n )72 + [n2)2
To see this we write, using the Schwarz inequality,
T+ 0+ <1+ (0 + nD? <1+ 2012 + [n?)
<201+ [ A+ [n]?.
Now let £ = { 4+ 5, and we obtain (1.2) easily.

Let p € D(R") be chosen so that ¢ = 1 near K. Then from a standard
relation between the Fourier transform and convolution we have that

fo=9f
implies
(13) 746 = [ 8¢ — nfn) dn.
Therefore we obtain from (1.2) and (1.3) that
A+ €17 f42)|
< 22 [(L+ 1€ — nPy216E — m1Q + 0P| fuom)dn
<K, Al <K,

where X, , is a constant depending on s and ¢. Therefore | f,(¢)| is uniformly
bounded on compact subsets of R”. Similarly, by differentiating (1.3) we ob-
tain that all derivatives of f, are uniformly bounded on compact subsets in
the same manner. Therefore, there is, by Ascoli’s theorem, a subsequence
£, such that f,, converges in the C> topology to a C* function on R". Let us
call { f,} this new sequence.
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Let € > 0 be given. Suppose that ¢ < s. Then there is a ball B, such that
1

— <
aT+iemy ¢
for ¢ outside the ball B,. Then consider

17—t = [ ML= LR 1oy a

Sfa l(iv - f/l)(f)lz(l —+— Iell)rdf
+ Efnn‘_ |(f" - fﬂX£)|2(l + |€|2)s d&

< f 1. = FXOR+1ERY dE + 26,

where we have used the fact that|| f, ||, < 1. Since we know that f, converges
on compact sets, we can choose v, u large enough so that the first integral is
< ¢, and thus f, is a Cauchy sequence in the || ||, norm.

Q.E.D.

We now need to discuss briefly the concept of a formal adjoint operator
in this setting.

Definition 1.3: Let
L:8(X,E)— 8(X, F)

be a C-linear map. Then a C-linear map
S:8(X, F)— 8&(X,E)
is called an adjoint of L if

(1.4) (Lf, 8) = (/. S¢g)
for all f € &(X, E), g € 8(X, F).

It is an easy exercise, using the density of §(X, E) in W°(X, E), to see that
an adjoint of an operator L is unique, if it exists. We denote this transpose
by L*. In later sections we shall discuss adjoints of various types of opera-
tors. This definition extends to Hilbert spaces over noncompact manifolds
(e.g., R") by using (1.4) as the defining relation for sections with compact
support. This is then the formal adjoint in that context.

2. Differential Operators

Let E and F be differentiable C-vector bundles over a differentiable mani-

fold X.t Let
L:&(X, E)— &(X, F)

1The case of R-vector bundles is exactly the same. For simplicity we restrict ourselves to
the case of complex coefficients.
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be a C-linear map. We say that L is a differential operator if for any choice of
local coordinates and local trivializations there exists a linear partial dif-
ferential operator L such that the diagram (for such a trivialization)

()] 5> [BU))F
IR IE
&U, U x C?) —> &(U, U x C9)
U U
&(X, E)ly — &X, F)ly

commutes. That is, for f = (f}, ..., f,) € [B(U)]?
Ly =3 aiDf, i=1,...,q.

HEL

A differential operator is said to be of order k if there are no derivatives of
order > k + 1 appearing in a local representation. (For an intrinsic defini-
tion involving jet-bundles, see Palais [1], Chap. IV.) Let Diff,(E, F) denote
the vector space of all differential operators of order & mapping &(X, E)
to &(X, F).

Suppose X is a compact differentiable manifold. We define OP,(E, F) as
the vector space of C-linear mappings

T.8(X, E)— &(X, F)
such that there is a continuous extension of T
T,: Wi(E) — W* *(F)
for all s. These are the operators of order k mapping E to F.

Proposition 2.1: Let L € OP,(E, F). Then L* exists, and moreover L*
€ OP,(F, E), and the extension

(L*)s: Wi(X, F) —> W* (X, E)
is given by the adjoint map
(L )*: WX, F) — W* %X, E).

This proposition is easy to prove since one has a candidate (L, _;)* (for each )
which gives the desired adjoint when restricted to §(X, F) in a suitable man-
ner. One uses the uniqueness of adjoints and Proposition 1.1.

Proposition 2.2: Diff (£, F) = OP.(E, F).

The proof of this proposition is not hard. Locally it involves, again, D@’({) =
&=f (&), and the definition of the s-norm.

We now want to define the symbol of a differential operator. The symbol
will be used for the classification of differential operators into various types.
First we have to define the set of all admissible symbols. Let 7*(X) be the real
cotangent bundle to a differentiable manifold X, let 7'(X) denote T*(X)
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with the zero cross section deleted (the bundle of nonzero cotangent vectors),
and let 7'(X) - X denote the projection mapping. Then n*E and n*F denote
the pullbacks of E and F over T'(X). We set, for any k € Z,
Smbl (E, F) := {6 € Hom(n*E, a*F): 6(x, pv)
= p*o(x,v), (x,v) € T'(X), p > 0}.
We now define a linear map
2.1 o,: Diff (E, F) -—— Smbl,(E, F),

where o,(L) is called the k-symbol of the differential operator L. To define
a,(L), we first note that a,(L)(x, v) is to be a linear mapping from E, to F,,
where (x,v) € T'(X). Therefore let (x,v) € T'(X) and e € E, be given.
Find g € &(X) and f € &(X, E) such that dg_ = v, and f(x) = e. Then we
definet

r K
o, (L)x, v)e = L({5(8 — 8(x)f )(x) € F..
This defines a linear mapping
ak(L)(xa U): E,, —_—> an
which then defines an element of Smbl, (E, F), as is easily checked. It is also
easy to see that the &,(L), so defined, is independent of the choices made.
We call o,(L) the k-symbol of L.
Proposition 2.3: The symbol map o, gives rise to an exact sequence
(2.2) 0 —> Diff,_(E, F) —> Diff,(E, F) —*> Smbl,(E, F),

where j is the natural inclusion.

Proof: One must show that the k-symbol of a differential operator of
order k has a certain form in local coordinates. Let L be a linear partial
differential operator

L:[e)p — [&U)F
where U is open in R”. Then it is easy to see that if
L= A,D,
MZsk ’

where {4,} are ¢ X p matrices of C* functions on U, then
2.3) oULXx, ) = T AR

where v =&, dx, + --- + &, dx,. For each fixed (x, v), g, (L)(x, v) is a linear
mapping from x X C? — x x C4%, given by the usual multiplication of a
vector in C? by the matrix

|§ Av(x)év'

+ We include the factor i* so that the symbol of a differential operator is compatible
with the symbol of a pseudodifferential operator defined in Sec. 3 by means of the Fourier
transform.
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What one observes is that if g,(L) = 0, then the differential operator L has
kth order terms equal to zero, and thus L is a differential operator of order
k — 1. Let us show that (2.3) is true. Choose g € &(U) such that v =dg =
> & dxy;ie., Dig(x) = ¢, Let e € C?. Then we have

ouL)x, e = T AD (£ (g — g(x)re) o).

Clearly, the evaluation at x of derivatives of order <<k — 1 will give zero,
since there will be a factor of [g — g(x)]|, = 0 remaining. The only nonzero
term is the one of the form (recalling that D® = (—i)* D} - - - Dy»)

3 AGEDgx)" - (Dglx))
= 2 AR = X A

which gives us (2.3). The mapping o, in (2.2) is well defined, and to see that
the kernel is contained in Diff,_,(E, F), it suffices to see that this is true for a
local representation of the operator. This then follows from the local repre-
sentation for the symbol given by (2.3). QED

We observe that the following property is true: If L, € Diff,(E, F) and
L, € Diff (F, G), then L,L, =L,. L, € Diff,,,(E, G), and, moreover,
(2.4 Oiim(LyL)) = 0,(L,) - 04(L)),

where the right-hand product is the product of the linear mappings involved.
The relation (2.4) is easily checked for local differential operators on trivial
bundles (the chain rule for composition) and the general case is reduced to
this one in a straightforward manner.

We now look at some examples.

Example 2.4: If L: [8(R")]? — [6(R")] is an element of Diff,(R" x C?,
R" x C?), then
Gk(L)(x’ 'U) = ]%kAV(X)fV,

where
L=3% AD, wv= ]Z”: ¢, dx;,
=1

i<k

the {4,} being ¢ X p matrices of differentiable functions in R” (cf. the proof
of Proposition 2.3).
Example 2.5: Consider the de Rham complex
8(X) 1> 81(X) > - .- > E7(X),

given by exterior differentiation of differential forms. Written somewhat
differently, we have, for T* = T*(X) ® C,

8(X, A°T*) > 8(X, A\'T*) > ...,
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and we want to compute the associated 1-symbol mappings,

a1{d)(x,v) oi(d)(x,v)

2.5) NT* ——— A'T¥ ——— AT* —» ...,
We claim that for e € APT*, we have
o,(d)(x, v)e = ivAe.

Moreover, the sequence of linear mappings in (2.5) is an exact sequence of
vector spaces. These are easy computations and will be omitted.

Example 2.6: Consider the Dolbeault complex on a complex manifold
X,
g2.0(X) s 8o () 2> ... s grn(x) —> 0.
Then this has an associated symbol sequence
a1(d)(x,v) a1(d)(x,v)

> \PATITHX) DS \p o TH(Y) DI A2 et ITH(Y) —,
where the vector bundles A #¢T*(X) are defined in Chap. I, Sec. 3. We have
that v € T¥(X), considered as a real cotangent bundle. Consequently, » = »'-°
+ %!, given by the injection

00— THX)—> THX)®gC = T*X)"° P T*X)*!
— /\ 1, OT*(X) @ /\ 0,1 T*(X)
Then we claim that
a,(é)(x, v)e = iv® 1 Ae,

and the above symbol sequence is exact. Once again we omit the simple
computations.

Example 2.7: Let E — X be a holomorphic vector bundle over a com-
plex manifold X. Then consider the differentiable (p, g)-forms with coeffi-
cients in E, 89X, E), defined in (I1.3.9), and we have the complex (I1.3.10)

—> 829X, E) _a"'_, &r 9 I(X, E) —>,

which gives rise to the symbol sequence
a1(dg)(x,v)

—> NPT E, ~ NPT Q E, —.
We let v = v!"® 4 v% !, as before, and we have for fRX e € AP TR E
0,0)x, 0)f ®e = (Iv"'Af)@e,
and the symbol sequence is again exact.
We shall introduce the concept of elliptic complex in Sec. 5, which general-
izes these four examples.

The last basic property of differential operators which we shall need is
the existence of a formal adjoint.

Proposition 2.8: Let L € Diff,(E, F). Then L* exists and L* € Diff,(F, E).
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Moreover, o,(L*) = a,(L)*, where a,(L)* is the adjoint of the linear map
o (LYx,v): E,—>F..

Proof: Let L € Diff,(E, F), and suppose that g is a strictly positive
smooth measure on X and that 4 and 4, are Hermitian metrics on E and F.
Then the inner product for any &, 5 € D(X, E) is given by

¢ m= fx & medu,

and if £, n have compact support in a neighborhood where E admits a local
frame f, we have

@ m = | k(K (x)p(x) dx,
where p(x) is a density,
n'(fXx)
) =@ =| -
n"(fXx)
etc. Similarly, for o, 1 € D(X, F), we have
@7 = [, TIhelx)o(x)p(x) dx.

Suppose that L: D(X, E) — D(X, F) is a linear differential operator of order
k, and assume that the sections have support in a trivializing neighborhood
U which gives local coordinates for X near some point. Then we may write

(L&, 7) = [ TEhe()M(x, DIEx)p(x) dx,

where
M(x, D) = hé‘,k C,(x)D*

is an s X r matrix of partial differential operators; i.e., C,(x) is an s X r
matrix of C functions in R". Note that £ and t have compact support here.
We can then write

(L& D) = [, 3 Txpxhs(ICIDE() dx,
and we can integrate by parts, obtaining

(L&) = [ 5 (=D DCHRPIRCK() d
= [ (% CoDtihale)ixptx) dr,

lal <k
where C,(x) are r X s matrices of smooth functions defined by the formula

(2:6) '(la;Sk C.D*1) = |.§u (=D D*(TphCHhz'p~!,
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and hence the C, involve various derivatives of both metrics on E and F
and of the density function p(x) on X. This formula suffices to define a linear
differential operator L*: D(X, F) — (X, E), which has automatically the
property of being the adjoint of L. Moreover, we see that the symbol o, (L*)
is given by the terms in (2.6) which only differentiate 7, since all other terms
give lower-order terms in the expression Y ,,;-,C.(x). One checks that the
symbol of L* as defined above is the adjoint of the symbol of the operator L
by representing o,(L) with respect to these local frames and computing its
adjoint as a linear mapping.

Q.E.D.

We have given a brief discussion of the basic elements of partial differ-
ential operators in a setting appropriate for our purposes. For more details
on the subject, see Hérmander [1] for the basic theory of the modern partial
differential equations (principally in R*). Palais [1] has a formal presentation of
partial differential operators in the context of manifolds and vector bundles,
with a viewpoint similar to ours. In the next sections we shall generalize the
concept of differential operators in order to find a class of operators which
will serve as “inverses” for elliptic partial differential operators, to be studied
in Sec. 4.

3. Pseudodifferential Operators

In this section we want to introduce an important generalization of dif-
ferential operators called, appropriately enough, pseudodifferential opera-
tors. This type of operator developed from the study of the (singular) integral
operators used in inverting differential operators (solving differential equa-
tions). On compact Riemannian manifolds a natural differential operator is
the Laplacian operator, and our purpose here will be to give a sufficient
amount of the recent theory of pseudodifferential operators in order to be
able to “invert” such Laplacian operators, which will be introduced later
in this chapter. This leads to the theory of harmonic differential forms intro-
duced by Hodge in his study of algebraic geometry.

In defining differential operators on manifolds, we specified that they
should locally look like the differential operators in Euclidean space with
which we are all familiar. We shall proceed in the same manner with pseudo-
differential operators, but we must spend more time developing the (relatively
unknown) local theory. Once we have done this, we shall be able to obtain
a general class of pseudodifferential operators mapping sections of vector
bundles to sections of vector bundles on a differentiable manifold, in which
class we can invert appropriate elliptic operators.

Recall that if U is an open set in R” and if p(x, £) is a polynomial in £ of
degree m, with coefficients being C* functions in the variable x € U, then
we can obtain the most general linear partial differential operators in U by
letting P = p(x, D) be the differential operator obtained by replacing the
vector { = (¢,,...,¢,) by (—iD,,..., —iD,), where we set D, = (d/dx))
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(j=1,...,nand D* = (—i)*'D3* - -- D* replaces &% - - - £2" in the poly-
nomial p(x, £). By using the Fourier transform we may write, foru € D(U),

G0 Pu(x) = p(x, Du(x) = | p(x, Oi()e 0 de,

where (x, &) = 377., x,£; is the usual Euclidean inner product, and i#({) =
(2m)™" [ u(x)e~i*® dx is the Fourier transform of .

Thus (3.1) is an equivalent way (via Fourier transforms) to define the
action of a differential operator p(x, D) defined by a polynomial p(x, ) on
functions in the domain U. We use compact supports here so that there is
no trouble with the integral existing near dU, and since D(U) is dense in most
interesting spaces, it certainly suffices to know how the operator acts on such
functions. Of course, P(x, D): D(U) — D(U), since differential operators
preserve supports.

To define the generalization of differential operators we are interested
in, we can consider (3.1) as the definition of differential operator and genera-
lize the nature of the function p(x, £) which appears in the integrand.

To do this, we shall define classes of functions which possess, axiomati-
cally, several important properties of the polynomials considered above.

Definition 3.1: Let U be an open set in R” and let m be any integer.

(a) Let S™(U) be the class of C~ functions p(x, &) defined on U x R,
satisfying the following properties. For any compact set K in U, and for any
multiindices a, f§, there exists a constant C, ; «, depending on a, 8, K, and p
so that

(3.2)  |DEDzp(x, O < Cupx(1 + 1D, x e K, & e R
(b) Let S™(U) denote the set of p € S™(U) such that

(3.3) The limit & ( p)(x, &) = lim Lx}:;@exists for & 0,
200

and, moreover,

p(x, &) — Y(an(p)(x, &) € Sm~1(V),

where ¥ € C*(R") is a cut-off function with (&)= 0 near ¢ =0 and
Y(€) = | outside the unit ball.

(c) Let S(U) denote the class of p € S™(U) such that there is a compact
set K < U, so that for any & e R", the function p(x, £), considered as a
function of x e U, has compact support in K [i.e., p(x, &) has uniform
compact support in the x-variable]. Let S§(U) = S™(U) n Sp(U).

We notice that if p(x, &) is a polynomial of degree m (as before), then
both properties (a) and (b) in Definition 3.1 above are satisfied. If the coeffi-
cients of p have compact supportin U, thenp € S7(U). Property (a) expresses
the growth in the £ variable near oo, whereas o, (p)(x, &) is the mth order
homogeneous part of the polynomial p, the lower-order terms having gone
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to zero in the limit. We shall also be interested in negative homogeneity, and
the cut-off function in (b) is introduced to get rid of the singularity near
¢ = 0, which occurs in this case.

A second example is given by an integral transform with a smooth kernel.
Let K(x, y) be a C~ function in U x U with compact support in the second
variable. Then the operator

Lu(x) = [ Kx,yu(y)dy

can be written in the form (3.1) for an appropriate function p(x, £); i.e., for
u e HWU),

Lu(x) = [ p(x, (€= dg,

where p € S™(U) for all m. To see this, we write, by the Fourier inversion
formula,

Lu(x) = [ Kex, p) [ eo0i(@) de | ay
= [eso| [ ernoK(x, y) dy Juc) a2
and we let
px, &) = [ e xOK(x, y) dy,
which we rewrite as
Px, &) = 70 [ e@OK(x, y) dy.

Thus p(x, &) is (except for the factor e “*%) for each fixed x the Fourier
transform of a compactly supported function, and then it is easy to see (by
integrating by parts) that p(x, ), as a function of &, is rapidly decreasing at
infinity; i.e.,

(I + 10 px, )1 —0

as || — oo for all powers of N (this is the class § introduced by Schwartz
[1]). It then follows immediately that p € S™(U) for all m. Such an operator
is often referred to as a smoothing operator with C> kernel. The term smooth-
ing operator refers to the fact that it is an operator of order — oo, i.e., takes
elements of any Sobolev space to C® functions, which is a simple consequence
of Theorem 3.4 below and Sobolev’s lemma (Proposition 1.1).

Lemma 3.2: Suppose that p € S™(U). Then o,(p)(x, &) is a C® function on
U x (R* — {0}) and is homogeneous of degree m in .

Proof: It suffices (by the Arzela-Ascoli theorem) to show that for any
compact subset of the form K x L, where Kis.compactin U and L is compact
in R" — {0}, we have the limit in (3.3) converging uniformly and that all
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derivatives in x and & of p(x, AE)/A™ are uniformly bounded on K X L for
A € (1, o). But this follows immediately from the estimates in (3.2) since

D2Ds (Jgﬁzfzm_@) = DDzp(x, %) - %I;l ’

and hence, for all multiindices «, 8,
lal
!DfD?(&l’,.LO)ISC.,,,K(I + AlEDPm . %
< Cop (A7t + &m0
< Capx sup 1+ &=l < oo,
&€

Therefore all derivatives are uniformly bounded, and in particular the limit
in (3.3) is uniform. Showing homogeneity is even simpler. We write, for
p>0,
plx, 4p8)

A

am(x, p§) = }{rf_;

= lim px, /125) - pm

A—sco (pl)m
= lim B o7 @ =pb

= Um(x, é) * pm. Q E D

We now define the prototype (local form) of our pseudodifferential opera-
tor by using (3.1). Namely, we set, for any p € S™(U) and u € D(V),

(34) L(pwu(x) = [ px, Oi@)e o de,

and we call L(p) a canonical pseudodifferential operator of order m.
Lemma 3.3: L(p) is a linear operator mapping D(U) into &(U).

Proof: Since u € D(U), we have, for any multiindex a,
£a(®) = Quy™ | Dru(x)e 0 dx,
and hence, since ¥ has compact support,' & ]]4(&)| is bounded for any a,
which implies that for any large N,

[ <t +1eh™,

i.e., #(&) goes to zero at oo faster than any polynomial. Then we have the
estimate for any derivatives of the integrand in (3.4),

| D4 p(x, )| < (1 + | ED(E + 1§D,

which implies that the integral in (3.4) converges nicely enough to differentiate
under the integral sign as much as we please, and hence L(p)u) € &(U).
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It is clear from the same estimates that L(p) is indeed a continuous linear
mapping from D(U) — &(U).
Q.E.D.

Our next theorem tells us that the operators L(p) behave very much like
differential operators.

Theorem 3.4: Suppose that p € S7(U). Then L(p) is an operator of order m.

Remark: We introduce functions with compact support to simplify
things somewhat. Our future interest is compact manifolds and the functions
p which will arise will be of this form due to the use of a partition of unity.

Proof: We must show that if u € D(U), then, for some C > 0,

(3.3) HL(pull, < Cllull,sm

where || - ||, = || - ll;,r~ as in (1.1), First we note that
N “ n

(3.6) L(pw(®) = | B¢ — n, mya(n) dn,

where p(¢ — n, 1) denotes the Fourier transform of p(x, 1) in the first variable
evaluated at the point & — . Since p has compact support in the x-variable
and because of the estimate (3.2), we have (as before) the estimate, for any
large N,

3.7 |BE —n.m| <G +1& — )™ + g2
for (£, 1) € R* X R". We have to estimate
ILull = [ 1L A + 18Py dE
in terms of
ullom = [ 18P + €2 de.

We shall need Young’s inequality, which asserts that if f x g is the convolu-
tion of an f € L'(R") and g € L?(R"), then
LS * gl <N flle 1l gller

(see Zygmund [1]).

Proceeding with the proof of (3.5) we obtain immediately from (3.6)
and the estimate (3.7), letting C denote a sufficiently large constant in each
estimate,

| (@) < C f (1 +1& — n)™( + |02 |dn) | dn

l _ A
= Cf( (T'fl,,l:’)l/z) (L + [n 222 1d(n) | dn.
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Now, using (1.2), we easily obtain

I@U(fﬂ <l + |f|2)-:.‘zj(l 4 |& — gy Nz
X (L | PYmen2 ()| dn.

Assume now that N is chosen large enough so that f(§) = (1 + |E]p) "N+
is integrable, and we see that

NN 2 _
|L(PU@I1 + 18Py < C [ (1 +1¢ = Py~
X (L [n)m 22 [d(n) | dn.
By Young’s inequality we obtain immediately

WL, < Cll S o - Null,sm
<Cllullsn

Q.ED.

We now want to define pseudodifferential operators in general. First
we consider the case of operators on a differentiable manifold X mapping
functions to functions.

Definition 3.6: Let L be a linear mapping L: D(X) — &(X). Then we say
that L is a pseudodifferential operator on X if and only if for any coordinate
chart U — X and any open set U’ < < U there exists a p € S7(U) (consider-
ing U as an open subset of R”) so that if u € D(U’), then [extending u by zero
to be in D(X)]

Lu = L(p)u;

i.e., by restricting to the coordinate patch U, there is a function p € ST(U)
so that the operator is a canonical pseudodifferential operator of the type
introduced above.

More generally, if E and F are vector bundles over the differentiable
manifold X, we make the natural definition.

Definition 3.7: Let L be a linear mapping L: D(X, E) — &(X, F). Then
L is a pseudodifferential operator on X if and only if for any coordinate chart
U with trivializations of E and F over U and for any open set U' cc U
there exists a r X p matrix (p”), p” € SF(U), so that the induced map

Ly,: DUy — &UY

with ue:D(U’)'»'l'{ Lu, extending u by zero to be an element of D(X, E)
[where p = rank E, r =rank F, and we identify &U)*? with &U, E) and
&(U) with &(U, F)), is a matrix of canonical pseudodifferential operators
L(p"),i=1,...,r,j=1,...,p, defined by (3.4).
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We see that this definition coincides (except for the restriction to the
relatively compact subset U’) with the definition of a differential operator
given in Sec. 2, where all the corresponding functions p'/ are polynomials
in S™(U).

Remark: The additional restriction in the definition of restricting the
action of L, to functions supported in U’ = = U is due to the fact that in
general a pseudodifferential operator is not a local operator, i.e., it does not
preserve supports in the sense that supp Lu < supp u (which is easy to see
for the case of a smoothing operator, for instance). In fact, differential opera-
tors can be characterized by the property of localness (a result of Peetre
[1]). Thus the symbol of a pseudodifferential operator will depend on the
choice of U’ which can be considered as a choice of a cutoff function. The
difference of two such local representations for pseudodifferential operators
on U'cc Uand U" cc U will be an operator of order — oo acting on
smooth functions supported in U’ N U".

Definition 3.8: The local m-symbol of a pseudodifferential operator L:
DX, E) — &(X, F) is, with respect to a coordinates chart U and trivializa-
tions of E and F over U, the matrixt

0, (L)y(x, &) = [6,.(p7Xx, {)], i=1...,r, j=1...,p.

Note that in all these definitions the integer m may depend on the coordi-
nate chart U. If X is not compact, then the integer m may be unbounded on
X. We shall see that the smallest possible integer m in some sense will be the
order of the pseudodifferential operator on X. But first we need to investigate
the behavior of the local m-symbol under local diffeomorphisms in order to
obtain a global m-symbol of a global operator L.

The basic principle is the same as for differential operators. If a differential
operator is locally expressed as L = 3, ,<m €.(x) D and we make a change
of coordinates y = F(x), then we can express the same operator in terms of
these new coordinates using the chain rule and obtain

L= 3% a0
and
Lu(F(x)) = lu;m ¢(F(x))Dyu(F(x)).

Under this process, the order is the same, and, in particular, we still have a
differential operator. Moreover, the mth order homogeneous part of the
polynomial, ¥, - c,£% transforms by the Jacobian of the transformation
y = F(x) in a precise manner. We want to carry out this process for pseudo-
differential operators, and this will allow us to generalize the symbol map
given by Proposition 2.3 for differential operators. For simplicity we shall
carry out this program here only for trivial line bundles over X, i.e., for
tom(L)y will also depend on U’ = = U, which we have suppressed here.
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pseudodifferential operators mapping functions to functions, leaving the more
general case of vector bundles to the reader.
The basic result we need can be stated as follows.

Theorem 3.9: Let U be open and relatively compactin R*and letp € SP(U).
Suppose that Fis a diffeomorphism of U onto itself [in coordinates x = F(y),
x,y € R"]. Suppose that U’ = < U and define the linear mapping

L:DU")—> &)
by setting
Lu(y) = L(p)(F~")*o(F(»)).
Then there is a function g € S7(U), so that L= L(g), and, moreover,

a.aXy.m = o.(p(F [ (35)] 1)

Here (F~1)*: §(U) — &(U) is given by (F~')*» = v o F~!, and the basic
content of the theorem is that pseudodifferential operators are invariant under
local changes of coordinates and that the local symbols transform in a precise
manner, depending on the Jacobian (dF/dy) of the change of variables. Before
we prove this theorem, we shall introduce a seemingly larger class of Fourier
transform operators, which will arise naturally when we make a change of
coordinates. Then we shall see that this class is no larger than the one we
started with.

Let p € S7(U) for U open in R”. Then we see easily that from (3.4) we
obtain the representation

(3.8) L(pulx) = (2m)™| [ e=-2p(x, Ou(z) dz &,

using the Fourier expression for . We want to generalize this representa-
tion somewhat by allowing the function p above to also depend on z. Suppose
that we consider functions g(x, &, z) defined and C® on U x R" X U, with
compact support in the x- and z-variables and satisfying the following two
conditions (similar to those in Definition 3.1):

(@) |DzDEDyg(x,&,2)| < C, p (1 4 [EPmtel,
(39) (b) The limit lim 9528 _ 5 gy ¢, x), £ 0,

exists and ¥(&)a,(g)x, &, x) — q(x, &, x) € S 1(U).

Proposition 3.10: Let g(x, ¢, z) satisfy the conditions in (3.9) and let the
operator Q be defined by

(3.10) Qu(x) = @m)™" [ e¢x0g(x, &, 2)u(z) dz d¢
for u € D(U). Then there exists a p € SF(U) such that Q = L(p). Moreover,

0u(px, &) = lim € Lo X g g,
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This proposition tells us that this “more general” type of operator is in
fact one of our original class of operators, and we can compute its symbol.

Proof: Let §(x,¢,{) denote the Fourier transform of q(x, ¢, z) with
respect to the z-variable. Then we obtain, from (3.10),

Qu(x) = [ e=4(x, &, & — myi(n) dn dg
= fe"<"-*>{jef<“”'*>Q(x, EE—1n) df}ﬁ(n) dn.
Thus, if we set

plxm) = [ e€n04(x, &, — ) d
3.11)
= [e“24(x, ¢ + .0,

we have the operator Q represented in the form (3.4). First we have to check
that p(x,n) € S™(U), but this follows easily by differentiating under the
integral sign in (3.11), noting that §(x, { + n, y) decreases very fast at co due
to the compact support of g(x, &, z) in the z-variable. We now use the mean-
value theorem for the integrand:

(3.12) g0, &+ 1,0) = §40x, 0, ) + |§,D5‘7(X’ 1+ & OX°

for a suitable {, lying on the segment in R" joining 0 to {. We have the estimate
[D74Ge,m + Lo OIS Gy + [ + Lo D'+ LD

for sufficiently large N, and since |{,({)] < |{|, we see that we obtain, with
a different constant,

lD:ti(x, n+ Co*()l £C~’N(l + l}”)"'“([ + |Cl)—N+m—1.

By inserting (3.12) in (3.11), choosing N sufficiently large, and integrating the
resulting two terms we obtain

p(x;n) = q(x, n, x) + E(x, n),
where
(3.13) |ECe, p)| < C(1 4 [gDmt.

Therefore

lim f—(-);:mi”) = lim q(x,f’:], 2) + lim E(xl’,,.h’), n #0.
Aoseo Ao

A-scen

It follows that the limit on the left exists and that

an(pn, ) = lim L2,y 0,

since the last term above has limit zero because of the estimate (3.13).
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The fact that p(x, &) — Y(E)an(p)(x, &) € S™~1(U) follows easily from the
hypothesis on g(x, n, x) and the growth of E(x, ).
Q.E.D.

We shall need one additional fact before we can proceed to our proof of
Theorem 3.9. Namely, suppose that we rewrite (3.8) formally as

L(pu(x) = @r)*[{ [ exe-pix, &) defucz) az
and let
Kx,x —2) = J.e“'“"‘")p(x, $ds.
Then we have the following proposition.
Proposition 3.10':  K(x, w) is a C= function of x and w provided that w = 0.

Proof: Suppose first that m < —n, then we have the estimate
, lp(x, QI < C + )
from (3.2), and thus the integral
K(x, w) = [ ep(x, &) dg

converges. Integrating repeatedly by parts, and assuming that, for instance,
w, # 0, we obtain
el<ew>

Kexow) = (— Y [ €52 Dy e, e

for any positive integer N. Hence

i&,w
D:DEK(x,w) = (— 1 [ £E5 DDy pix, ) .
1

Using the estimates (3.2) we see that the integral on the right converges for
N sufficiently large. Thus K(x, w) is C~ for w % 0, provided that m < —n.
Suppose now that m is arbitrary; then we write, choosing p > m + n,

K(x,w) = [ el + | ERY 1 + | Pyp(x, &)

and we see that we have (letting A, = 3. D? be the usual Laplacian in the
w variable)

Kxw) = [[(1 = Are” |ptx, X1 + 1817 d
which is the same as

(1= Ay [ e mp(x, &1 + P> dE
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if the integral converges. But this then follows from the case considered above,
since

px, gX1 + )7 € Sg™ (V).

So, for w £ 0, the above integral is C=, and thus K(x, w) is C= for w 0.
Q.E.D.

We shall now use these propositions to continue our study of the behavior
of a pseudodifferential operator under a change of coordinates.

Proof of Theorem 3.9: Now p(x, {) has compact support in U (in the
x-variable) by hypothesis. Let @(x) € D(U) be chosen so that ¥ = 1 on
supp p U U’ and set w(y) = w(F(y)). We have, as in (3.8),

Lphu(x) = (@m)™ [ [ exex2p(x, Eu(z) dz d,
for u € D(U’) « D(U). We write z = F(w) and v(w) = u(F(w)) and obtain

LWEO) = @0 [ [ ecro-ropee, o) 3

where | dF/dw | is the determinant of the Jacobian matrix ¢F/dw. By the mean-
value theorem we see that

F(y) — F(w) = H(y, w) - (y — w),
where H(y, w) is a nonsingular matrix for w close to y and H(w, w) =
(0F/dw)(w). Let x,(y, w) be a smooth nonnegative function = 1 near the

diagonal A in U x U and with support on a neighborhood of A where
H(y, w) is invertible. Let y, = 1 — x,. Thus we have

ww) dw di,

LMF) = @y [ [ ecnomropr, &) |5E| o aw e,

which we may rewrite, setting { = ‘H(y, w)¢,

L(pWu(F(y)) = (m)~ f f I F(y), [H(p, w10

9F Xy, w)
X aw W(W)WU(W) dw d{ + Eu(F(}’)):'

= @] [ [ e a0t ity dw g + Eu(ny»].
Here E is the term corresponding to y, and

_ ' -1y |9F , X, (y,w)
0.0 L. w) = PO EHOn 0| JE | Z2 Dy,
while y € D(U) as chosen above is identically 1 on a neighborhood of supp
v(y). Thus q,(y, {, w) has compact support in the y and w variables, and it
follows readily that conditions (a) and (b) of (3.9) are satisfied. Namely,



130 Elliptic Operator Theory Chap. 1V

(a) will follow from the estimates for p by the chain rule, whereas for (b)
we have

o(g)», & y) = lim q,(y,;nf, »_ lim PF(y), ['(il:/dy)]' 144

= ap(FOL[(§E)] '¢) = 0:
moreover the desired growth of
¥(Oo(g,)» &) — 4:(0, 4. »)

follows easily from the hypothesized growth of
‘P(é) U(P)(X, f) - p(X, é)

We still have to worry about the term E, which we claim is a smoothing
operator of infinite order (see the example following Definition 3.1) and will
give no contribution to the symbol. In fact, we have

Eu(x) = [ e6x=p(x, Oo(x, u(z) dz d§
= [{f e mptx, Ot 2) defuca) dz
= [ talx, DKx, x — D) dz
= [W(x, Du(z) a2,
where
K(x, w) = [ ep(x, &) de.

But we have seen earlier that K(x, w) is a C~ function of x and w for w % 0.1
Also, yx,(x,z) vanishes identically near x — z =0, so the product
X.(x, 2)K(x, x — z) = W(x, z) is a smooth function on U X R”, and Eu(x)
is then a smoothing operator with C> kernel, which we can write in terms of
the new coordinates y = F~!(x), w = F~!(2),

Eu(F(3) = [ WCFO), FOOputF )| |

= le(y’ W)F*U(W) dW,
where W, is a C~ function on U x U, which we rewrite as
= f W\ (y, ww(wW)F*u(w) dw,

tNote that K(x, w) has compact support in the first variable, since p(x, &) = p(x)p(x, &)
for an appropriate ¢ € D(U).
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where we note that ¥ = 1 on supp F*u. Then we have
Eu(F(y) = [ W(y, wi(w) dw,
where v(w) = F*u(w), as before, and
W) = W), Fo | e won),

which is a smoothing operator of order —oo with C= kernel with compact
support in both variables, as discussed following Definition 3.1, Thus, by
Proposition 3.10,

Eu(F()) = [ e0q,(3,&)5(8) d¢,

where
9.8 = [0 OW (3, w) dw,

and g, € S3(U) for all r. This implies easily that a,(g,)(y, £) = 0. Thus
we can let ¢ = q, + q,, and we have

Lo(y) = L(g),
and the symbols behave correctly [here we let q,(y, &, w) be replaced by

q,(y, £), as given by Proposition 3.10].
Q.E.D.

We are now in a position to define the global symbol of a pseudodiffer-
ential operator on a differentiable manifold X. Again we treat the case of
functions first, and we begin with the following definition.

Definition 3.11: Let X be a differentiable manifold and let L: D(X) — &(X)
be a pseudodifferential operator. Then L is said to be a pseudodifferential
operator of order m on X if, for any choice of local coordinates chart U = X,
the corresponding canonical pseudodifferential operator L, is of order m;
i.e.,, Ly = L(p), where p € S™(U). The class of all pseudodifferential operators
on X of order m is denoted by PDiff,,(X).

Proposition 3.12: Suppose that X is a compact differentiable manifold. If
L e PDiff,(X), then L € OP,(X).

Proof: Thisisimmediate from Theorem 3.4 and the definition of Sobolev
norms on a compact manifold, using a finite covering of X by coordinate

charts.
Q.E.D.

This proposition tells us that the two definitions of “order” of a pseudo-
differential operator are compatible. We remark that if p € S™(U), for some
U < R, then p € S™**(U) for any positive k; moreover, in thiscase, g,,,,(p)



132 Elliptic Operator Theory Chap. 1V

=0,k > 0. Thus we have the natural inclusion PDiff,,(X) = PDiff,,, . (X),
k > 0. Denote Smbl (X x C, X x C) by Smbl_(X) for simplicity.

Proposition 3.13: There exists a canonical linear map
o,,: PDIiff ,(X) —> Smbl_(X),
which is defined locally in a coordinate chart U = X by

am(LU)(xa 6) = Um(l’)(x, f),

where L, = L(p) and where (x,{) € U X (R* — {0}) is a point in T'(U)
expressed in the local coordinates of U.

Proof: We merely need to verify that the local representation of o,(L)
defined above transforms correctly so that it is indeed globally a homomor-
phism of T'(X) x Cinto T'(X) x C, which is homogeneous in the cotangent
vector variable of order m (see the definition in Sec. 2). But this follows easily
from the transformation formula for o, (p) given in Theorem 3.9, under a

local change of variables. The linearity of g,, is not difficult to verify.
Q.E.D.

This procedure generalizes to pseudodifferential operators mapping
sections of vector bundles to sections of vector bundles, and we shall leave
the formal details to the reader. We shall denote by PDiff,.(E, F) the space
of pseudodifferential operators of order m mapping D(X, E) into 8(X, F).
Moreover, there is an analogue to Proposition 3.13, whose proof we omit.

Proposition 3.14: Let £ and F be vector bundles over a differentiable mani-
fold X. There exists a canonical linear map

o,: PDiff (E, F) — Smbl_(E, F),
which is defined locally in a coordinate chart U < X by

0. (LyXx, ) = [o,(p"Xx, )
where L, =[L(p")] is a matrix of canonical pseudodifferential operators,
and where (x,§) € U x (R* — {0}) is a point in T'(U) expressed in the local
coordinates of U.

One of the fundamental results in the theory of pseudodifferential opera-
tors on manifolds is contained in the following theorem.

Theorem 3.15: Let E and F be vector bundles over a differentiable mani-
fold X. Then the following sequence is exact,
(3.13) 0 —> K, (E, F)—L> PDiff,(E, F) -==> Smbl_(E, F) —> 0,

where o, is the canonical symbol map given by Proposition 3.14, K,.(E, F)
is the kernel of g, and j is the natural injection. Moreover, K,(E, F) <
OP,,_,(E, F) if X is compact.
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Proof: We need to show that o, is surjective and that ¢,,(L) = 0 implies
that L is an operator of order m — 1. Doing the latter first, we note that
0,.(L) =0forsome L € PDiff,(E, F) means that in a local trivializing coordi-
nate chart, L has the representation L, =[L(p")], p'/ € S™(U). Since o,(L)y
= 0,(Ly) = [6.(p)] =0, by hypothesis, it follows that p’/ e S=~(U),
by hypothesis on the class S™. Hence L, is an operator of order m — 1,
and thus L will be an operator of order m — 1. To prove that g, is surjective,
we proceed as follows. Let {U,} be a locally finite cover of X by coordinate
charts U, over which E and F are both trivializable. Let {¢,} be a partition
of unity subordinate to the cover {U,} and let {y,} be a family of functions
v, € D(U,), where y, =1 on supp ¢,. We then let y be a C function on
R" with y =0 near 0 € R" and y = 1 outside the unit ball. Let s €
Smbl,(E, F) be given, and write s =Y ,¢,s =3 ,5,; supp s, < supp
¢, = U,. Then with respect to a trivialization of E and F over U, we see that
s, =[sY], a matrix of homogeneous functions s7: U, X R* — {0} — C,
and s¥/(x, p&) = p™sii(x, §), for p > 0. We let pl(x, &) = x(&)sii(x, &). It
follows from the homogeneity that p'/ € S7(U) and that a,(p%) = s'/. We
now let

L,:DWU,)y—8UYy

be defined by L,u = [L(p')Ju, with the usual matrix action of the matrix
of operators on the vector u. If u € D(X, E), thenweletu =3, ¢ u= > u,,
considering each u, as a vector in D(U,)” by the trivializations. We then define

Lu =3y, (Lu,),
and it is clear that
L:D(X,E)—> &(X, F)

is an element of PDIff,,(E, F), since locally it is represented by a matrix of
canonical pseudodifferential operators of order m. Note that it is necessary
to multiply by y, in order to sum, since L,u, is C=, where we consider
L,u, as an element of &U,, F) in U,, but that it does not necessarily extend
in a C~ manner to a C* section of F over X. Thus we have constructed from
s a pseudodifferential operator L in a noncanonical manner; it remains to
show that o,(L) = s. But this is simple, since (y,L,) € PDiff,,(E, F) and

TVl )o(x, §) = 0,(Wux)pi(x, §)) = wu(x) lim pifCx, A$)/A"
= y.(x)sl(x,¢) = 5/(x,{),
since w, = 1 on supp s,. It follows that
OnWul,) = Su
and by linearity of the symbol map

o, (Zﬂ} v.L)= ; 5, =S.
Q.E.D.
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We need to show now that the direct sum PDiff(E, F) = 3, PDiff,(E, F)
forms an algebra under composition, which is closed under transposition.
We formulate this in the following manner.

Theorem 3.16: Let E, F, and G be vector bundles over a compact differenti-
able manifold X. Then

(a) If O € PDIff,(E, F) and P € PDiff,(F, G), then the composition

as operators P o Q € PDiff,, (E, G), and, moreover,
0,.(P°Q)=0/P)-0/(0Q),
where the latter product is the composition product of the linear vector bundle
maps
n*E =8 n*F 25 7*G.

(b) If P € PDIff (E, F), then P*, the adjoint of P, exists, where P* €

PDiff,(F, E), and, moreover,
am(P*) = am(P)*!

where o, (P)* denotes the adjoint of the linear map

m(P)
n*E =25 g*F.

Proof: To prove these facts it will suffice to consider local representations
by canonical pseudodifferential operators, since this is how the action of the
operator on functions is defined. First we consider the scalar case; i.e.,
E, F, and G are trivial line bundles, and we have the operators acting on
C~ functions on X.

We begin by proving the existence of an adjoint in PDiff,,(X) and note
that by Proposition 3.12 and Proposition 2.1, P* € OP,(X) exists. Let U be a
coordinate chart (considered as an open subset of R") for X, and for any open
set U' << U, letu,ve DU’). If p € S§(U) such that Py = L(p), then by (3.4)

(, P*0) = (Pou, 0) = [[ plx, e =Cu(Eolx) d dx

= [[[ px, Oex@m)=re= 10 Ou(y)o) dy de dx
— [u@my [[PCe Be==u(x) dx dE dy.

Let r(y, &, x) = p(x, £), and we have

(u, P*0) = f u(y)(2n)=" f f r(y, €, x)e"r=5Op(x) dx dE dy.

By Proposition 3.10, there exists g € S§(U) such that

L(@)(y) = @m)™" [[r(r, & x)e'">0u(x) dx de.
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Therefore,
(, P*0) = [u(WL(g)() dy = (v, L(g)0)

and we have P§ = L(q). Hence P* € PDiff,(X). Moreover,

Iy J—
oulg)x, § = lim "2 _ i 252 _ S

and conjugation is the adjoint for trivial line bundles.

The composition formula now follows by a simple reduction to the adjoint
problem. Note that (Q*)* = Q. For U, U’ as above, let Py = L(p), Qy =
L(q), and QF = L(q") be representations in U. Then for u € D(U’), the proof

of the adjoint property shows that
Ligu(@) = @0~ [[70, De's=r0u(y) dy de
= [e=o@n) [T, Be-*Ouy) dy) de.
Thus,
L(p) o L(g)u(®) = [ plx, OLgHi(E)e= di
=(Qn)™" U pCx, O9'(y, Ee'<=7Ou(y) dy d.

Let s(x, &, y) = p(x, £)q'(y, £). Then Proposition 3.10 shows that there exists
a teSg*s(U) such that Po Q|y = L(t). Therefore P o Q e PDiff,, (X).
Furthermore,

0,005 &) = lim S5 20D i PEAS) i 2 1)
A0 A A0 A A0 A

= Us(p)(xs é)ar(q,)(xs E)
= as(p)(x’ f)"r(‘I)(x; 6)

from the proof for the adjoint. Hence, 4, , (P - Q) = a(P)-6,(Q) as desired.

The proofs for vector-valued functions (sections of bundles) are essentially

the same as for scalar functions, with the added complication that we are

dealing with matrices. Then the order of the terms in the integrals is crucial,

since the matrix-valued entries will not, in general, commute. We shall omit
any further details here.

Q.E.D.

For more detailed information about pseudodifferential operators on
manifolds, consult the original papers of Seeley [1], Kohn and Nirenberg
[1], and Hormander [3, 4]. The expository article by Nirenberg[1] is an excel-
lent reference.} Palais [1] has a development of the theory presented here
along the lines of the Kohn and Nirenberg paper.

tOur presentation is simplified somewhat by the fact that we avoid the asymptotic
expansion of a pseudodifferential operator (corresponding to the lower-order terms of a
differential operator), since it is unnecessary for the applications to elliptic differential
equations,
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4. A Parametrix for Elliptic Differential Operators

In this section we want to restrict our attention to operators which gener-
alize the classic Laplacian operator in Euclidean space and its inverse.
These will be called elliptic operators. We start with a definition, using the
same notation as in the preceding sections. Let E and F be vector bundles
over a differentiable manifold X.

Definition 4.1: Let s € Smbl, (E, F). Then s is said to be elliptic if and only
if for any (x, €) € T'(X), the linear map

s(x,&): E,.—> F,
is an isomorphism.

Note that, in particular, both E and F must have the same fibre dimension.
We shall be most interested in the case where E = F.

Definition 4.2: Let L € PDIff (E, F). Then L is said to be elliptic (of order
k) if and only if g,(L) is an elliptic symbol.

Note that if L is an elliptic operator of order k, then L is also an operator
of order k + I, but clearly not an elliptic operator of order k + 1 since
o..,(L) = 0. For convenience, we shall call any operator L € OP_,(E, F)
a smoothing operator. We shall later see why this terminology is justified.

Definition 4.3: Let L < PDIiff(E, F). Then L < PDIifi(F, E) is called a
parametrix (or pseudoinverse) for L if it has the following properties,

LoL — I, € OP_,(F)
LoL —I; e OP_(E),
where I; and 7, denote the identity operators on F and E, respectively.

The basic existence theorem for elliptic operators on a compact manifold
X can be formulated as follows.

Theorem 4.4: Let k be any integer and let L € PDIff,(E, F) be elliptic.
Then there exists a parametrix for L.

Proof: Let s = a,(L). Then s™! exists as a linear transformation, since
s 1s invertible,
s Ux, &) F,— E,,
and s~' € Smbl_,(F, E). Let L be any pseudodifferential operator in

PDIff_,(F, E) such that o_,(L) = s~!, whose existence is guaranteed by
Theorem 3.15. We have then that

oo(Lo L —I,)=a,Lo L) — a,),
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and letting o,(I;) = 1, the identity in Smbl (F, F), we obtain
oL o L— P =0L)- a—k(z) — Iy
=1,—1,=0.
Thus, by Theorem 3.15, we see that
Lo L — I, € OP_(F,F).

Similarly, L o L — I, is seen to be in OP_,(E, E).
Q.E.D.

This theorem tells us that modulo smoothing operators we have an
inverse for a given elliptic operator. On compact manifolds, this turns out
to be only a finite dimensional obstruction, as will be deduced later from the
following proposition. First we need a definition. Let X be a compact differ-
entiable manifold and suppose that L € OP,(E, F). Then we say that L is
compact (or completely continuous) if for every s the extension L,: W*(E)
— W+™(F) is a compact operator as a mapping of Banach spaces.

Proposition 4.5: Let X be a compact manifold and let S € OP_,(E, E).
Then S is a compact operator of order 0.

Proof: We have for any s the following commutative diagram,
WHE) > W(E)
S, J
W+ Y(E),

where S, is the extension of S to a mapping W* — W**!, given since S €
OP_,(E, E), and §, is the extension of S, as a mapping W* — W?, given by
the fact that OP_,(E, E) = OP(E, E). Since j is a compact operator (by
Rellich’s lemma, Proposition 1.2), then S, must also be compact.

Q.E.D.

In the remainder of this section we shall let E and F be fixed Hermitian
vector bundles over a compact differentiable manifold X. Assume that X is
equipped with a smooth positive measure g (such as would be induced by
a Riemannian metric, for example) and let Wo(X, E) = W°(E), W°(F) denote
the Hilbert spaces equipped with L2-inner products

& my = [ & neDeds  &m € BXE)
(0,7) = fx {a(x), T(x))pdu, 0,7 € §X, F),

as in Sec. 1. We shall also consider the Sobolev spaces W*(E), W*(F), defined
for all integral s, as before, and shall make use of these without further
mention. If L € OP,(E, F), denote by L,: W*(E) — W+ ™(F) the continuous
extension of L as a continuous mapping of Banach spaces. We want to study
the homogeneous and inhomogeneous solutions of the differential equation
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L¢ = o, for & € 8(X, E),a € &§(X, F), where L € Diff,(E, F), and L* is
the adjoint of L defined with respect to the inner products in W°(E) and
W(F); i.e.,

(LS, 1) = (§, L*7)g,
as given in Proposition 2.8. If L € Diff,,(E, F), we set
K, = (¢ € &X, E): L& = 0},
and we let
Ki={ne WAE):({,m: = 0,{ € 3.}

denote the orthogonal complement in WO(E) of 3C,. It follows immediately
that the space X7 is a closed subspace of the Hilbert space WO(E). As we
shall see, under the assumption that L is elliptic 3¢, turns out to be finite
dimensional [and hence a closed subspace of WO(E)). Before we get to this,
we need to recall some standard facts from functional analysis, due to
F. Riesz (see Rudin [1]).

Proposition 4.6: Let B be a Banach space and let S be a compact operator,
S: B — B. Then letting T = I — S, one has:

(a) Ker T = T7!(0) is finite dimensional.
(b) T(B) is closed in B, and Coker T = B/T(B) is finite dimensional.

In our applications the Banach spaces are the Sobolev spaces W*(E) which
are in fact Hilbert spaces. Proposition 4.6(a) is then particularly easy in this
case, and we shall sketch the proof for B, a Hilbert space. Namely, if the unit
ball in a Hilbert space [ is compact, then it follows that there can be only
a finite number of orthonormal vectors, since the distance between any two
orthonormal vectors is uniformly bounded away from zero (by the distance
~/2). Thus § must be finite dimensional. Proposition 4.6(a), for instance,
then follows immediately from the fact that the unit ball in the Hilbert space
) = Ker T must be compact (essentially the definition of a compact opera-
tor). The proof that T(B) is closed is more difficult and again uses the com-
pactness of S. Since S* is also compact, Ker T* is finite dimensional, and the
finite dimensionality of Coker T follows. More generally, the proof of
Proposition 4.6 depends on the fundamental finiteness criterion in functional
analysis which asserts that a locally compact topological vector space is
necessarily finite dimensional. See Riesz and Nagy [1], Rudin [1], or any other
standard reference on functional analysis for a discussion of this as well as
a proof of the above proposition. (A good survey of this general topic can be
found in Palais [1].)

An operator T on a Banach space is called a Fredholm operator if T has
finite-dimensional kernel and cokernel. Then we immediately obtain the
following from Theorem 4.4 and Propositions 4.5 and 4.6.



Sec. 4 A Parametrix for Elliptic Differential Operators 139

Theorem 4.7: Let L € PDiff,(E, F) be an elliptic pseudodifferential opera-
tor. Then there exists a parametrix P for L so that Lo P and P o L have
continuous extensions as Fredholm operators: W*(F) — W*(F) and W*(E)
— W*(E), respectively, for each integer s.

We now have the important finiteness theorem for elliptic differential
operators.

Theorem 4.8: Let L < Diff,(E, F) be elliptic. Then, letting I, =
Ker L : W*(E) — W+ *(F), one has

(a) J¥., < &X, E) and hence X, = X, all s.
(b) dimX,, = dim ¥, < co and dim W*~X(F)/L(W*(E)) < .

Proof: First we shall show that, for any s, dim J;, < co. Let Pbe a
parametrix for L, and then by Theorem 4.7, it follows that

(Po L),: WI(E) —> W*(F)

has finite dimensional kernel, and obviously Ker L, < Ker(P o L),, since
we have the following commutative diagram of Banach spaces:

WH(E) 5 w«E)

N

W k(F).

Hence 3C,, is finite dimensional for all s. By a similar argument, we see that
L, has a finite dimensional cokernel. Once we show that 3, contains only
C* sections of E, then it will follow that JC,, = JC, and that all dimensions
are the same and, of course, finite.

To show that 3¢, = &(X, E) is known as the regularity of the homogene-
ous solutions of an elliptic differential equation. We formulate this as a
theorem stated somewhat more generally, which will then complete the proof
of Theorem 4.8.

Theorem 4.9: Suppose that L € Diff,(E, F) is elliptic, and ¢ € W*(E)
has the property that L §{ = ¢ € &(X, F). Then & € §(X, E).

Proof: 1If P is a parametrix for L, then PoL — I = S € OP_\(E).
Now L¢ € &(X, F) implies that (P o L)t € &(X, E), and hence

E=(PL— S

Since we assumed that £ € W*(E) and since (P o L} € &(X, E) and S¢
W:*(E), it follows that ¢ € W**!(E). Repeating this process, we see that
¢ € Wetk(E) for all k > 0. But by Sobolev’s lemma (Proposition 1.1) it
follows that ¢ € §,(X, E), forall! > 0,and hence ¢ € &(X, E)(= &..(X, E)).
Q.E.D.
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We note that S is called a smoothing operator precisely because of the
role it plays in the proof of the above lemma. It smooths out the weak solution
& € WH(E).

Remark: The above theorem did not need the compactness of X which
is being assumed throughout this section for convenience. Regularity of the
solution of a differential equation is clearly a local property, and the above
proof can be modified to prove the above theorem for noncompact manifolds.

We have finiteness and regularity theorems for elliptic operators. The one
remaining basic result is the existence theorem. First we note the following
elementary but important fact, which follows immediately from the definition.

Proposition 4.10: Let L € Diff (E, F). Then L is elliptic if and only if L*
is elliptic.

We can now formulate the following.

Theorem 4.11: Let L € Diff, (£, F) be elliptic, and suppose that 7 € 3Ct. N
&(X, F). Then there exists a unique ¢ € §(X, E) such that L& = 7 and such
that £ is orthogonal to 3¢, in WO(E).

Proof: First we shall solve the equation L¢ = 1, where & € WO(E),
and then it will follow from the regularity (Theorem 4.9) of the solution &
that £ is C~ since 1 is C=, and we shall have our desired solution. This reduces
the problem to functional analysis. Consider the following diagram of Banach
spaces,

Wm(E) > W°(F)

W-m(E) <5 wo(F),

where we note that (L,)* = (L*),, by the uniqueness of the adjoint, and
denote same by L. The vertical arrows indicate the duality relation between
the Banach spaces indicated. A well-known and elementary functional analy-
sis result asserts that the closure of the range is perpendicular to the kernel of
the transpose. Thus L (W™(E)) is dense in J¢{s. Moreover, since L, has finite
dimensional cokernel, it follows that L has closed range, and hence the
equation L, = 7 has a solution £ € W™(E). By orthogonally projecting
¢ along the closed subspace Ker L,, (=3C, by Theorem 4.8), we obtain a
unique solution.

Q.E.D.

Let L € Diff,(E) = Diff,(E, E). Then we say that L is self-adjoint if
L = L*. Using the above results we deduce easily the following fundamental
decomposition theorem for self-adjoint elliptic operators.
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Theorem 4.12: Let L € Diff,,(E) be self-adjoint and elliptic. Then there
exist linear mappings H, and G,
H,:8(X, E)—> & X, E)
G,:&X,E)— &(X, E)
so that
(a) H(8(X, E)) = 3C,(E) and dimcIC(E) < oo.
(b) LoG,+ H, =G,oL+ H, = I, where I = identity on §(X, E).
(c) H,and G, € OPy(E), and, in particular, extend to bounded opera-
tors on WO(E)(= L* X, E)).
(d) &(X,E) =%, (X,E)DG,oLEX,E)) =3 (X,E)DLo Gy (&(X,E)),
and this decomposition is orthogonal with respect to the inner product in
WO(E).

Proof: Let H, be the orthogonal projection [in W°(E)] onto the closed
subspace JC,(E), which we know by Theorem 4.8 is finite dimensional. As we
saw in the proof of Theorem 4.11, there is a bijective continuous mapping

L,:WmE) N I} —> WOUE) N Xt

By the Banach open mapping theorem, L, has a continuous linear inverse
which we denote by GO:

o WUE) N Xt —> Wm™(E) N 3CL.
We extend G, to all of WO(E) by letting G(¢) = 0if & € 3C,, and notmg that
Wm(E) = W°(E), we see that
G,: W(E) —> W(E).

Moreover,

L,oG, =1, —H,
since L, o G, = identity on 3C}. Similarly,

G,oL,=1—H,

for the same reason. Since G,(8(X, E)) = &(X, E), by elliptic regularity
(Theorem 4.9), we see that we can restrict the linear Banach space mappings
above to 8(X, E). Let G, = G, le(x, £)» and it becomes clear that all of the
conditions (a)—(d) are satisfied.

Q.E.D.

The above theorem was first proved by Hodge for the case where E =
APT*(X) and where L = dd* + d*d is the Laplacian operator, defined with
respect to a Riemannian metric on X (see Hodge [1] and de Rham [l}).
Hodge called the homogeneous solutions of the equation Ly = 0 harmonic
p-forms, since the operator L is a true generalization of the Laplacian in the
plane. Following this pattern, we shall call the sections in 3C,, for L a self-
adjoint elliptic operator, L-harmonic sections, and when there is no chance of
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confusion, simply harmonic sections. For convenience we shall refer to the
operator G, given by Theorem 4.12 as the Green’s operator associated to L, also
classical terminology.t The harmonic forms of Hodge and their generaliza-
tions will be used in our study of Kahler manifolds and algebraic geometry.
We shall refine the above theorem in the next section dealing with elliptic
complexes and at the same time give some examples of its usefulness.

Suppose that E - X is a differentiable vector bundle and
L: 8(X, E) — &(X, F)is an elliptic operator. Then the index of L is defined by

i(L) = dim Ker L — dim Ker L*,

which is a well-defined integer (Theorem 4.8). The Atiyah-Singer index theo-
rem asserts that /(L) is a topological invariant, depending only on (a) the
Chern classes of E and (b) a cohomology class in H*(X, C) defined by the
top-order symbol of the differential operator L. Moreover, there is an explicit
formula for /(L) in terms of these invariants (see Atiyah and Singer [I, 2]).
We shall see a special case of this in Sec. 5 when we discuss the Hirzebruch-
Riemann-Roch theorem for compact complex manifolds.

We would like to give another application of the existence of the paramet-
rix to prove a semicontinuity theorem for a family of elliptic operators. Sup-
pose that E -—— X is a differentiable vector bundle over a compact manifold
X, and let {L,} be a continuous family of elliptic operators,

(4.1) L, &X, E) —> &(X, E),

where r is a parameter varying over an open set U — R". By this we mean
that for a fixed t+ € U, L, is an elliptic operator and that the coefficients of
L, in a local representation for the operator should be jointly continuous in
x e Xandt e U.

Theorem 4.13: Let {L,} be a continuous family of elliptic differential opera-
tors of order m as in (4.1). Then dim Ker L, is an upper semicontinuous
function of the parameter 1; moreover if ¢, € U, then for € > 0 sufficiently
small,

dim Ker L, < dim Ker L,
for|t —1t,| <e.

Proof: Suppose that t, =0, let B, = W°(X, E) and B, = W™ ™(X, E),
and let P be a parametrix for the operator L = L,. Denoting the extensions
of the operators L, and P by the same symbols, we have

L:B, —> B, te U
P:B,—> B,.

We shall continue the proof later, but first in this context we have the
following lemma concerning the single operator L = L,, whose proof uses

tNote that the Green's operator G is a parametrix for L, but such that GoL — I =
— H, is a smoothing operator of infinite order which is orthogonal to GG, a much stronger
parametrix than that obtained from Theorem 4.4,
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the existence of the parametrix P at t = 0. Let 3C, = Ker L, t € U, and
Il Hi> Il |l denote the norms in B, and B,.

Lemma 4.14: There exists a constant C > 0 such that
ull, < CllLoqu

if u € 3¢t = B, (orthogonal complement in the Hilbert space B,).

Proof: Suppose the contrary. Then there exists a sequence u; € 3¢
such that

llu;ll, = 1
42
“2) I Lull, < L.
j
Consider

PLu; = u; + Tu,,
where T is compact, Then
H Tuj“l < HPLujHl + ”uij
< CllLully + llully

1
< c(—.—) 1
<C,
where C, C are constants which depend on the operator P (recall that P is
a continuous operator from B, to B,). Since ||u;|| = 1, it follows that {Tu }

is a sequence of points in a compact subset of B,, and as such, there is a
convergent subsequence y; = Tu; -— y, € B,. Moreover, y, % 0, since
lim, ... Lu;; = 0, by (4.2), and thus

0 = lim PLu;, = limu; + y,,

LIRES n

which implies that u;, -— —y, and
poll = lim [juy, || = 1.

However, Ly, = —lim, .. Lu; = 0, as above, and this contradicts the fact

that y, (which is the limit of u;) € 3C¢.
QE.D.

Proof of Theorem 4.13 continued: Let C be the constant in Lemma 4.14,
YVe claim that for J sufficiently small there exists a somewhat larger constant
C such that, for u € 3C§,

4.4) lull, < Cll Lull,
provided that |¢| < &, where C is independent of ¢. To see this, we write
L,=L +L,— L,
and therefore (using the operator norm)
HLoII<ILA+ 1T Lo — LI
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For any € > 0, there is a § > 0 so that
L, — Lyl <€,

for |z| < 8, since the coefficients of L, are continuous functions of the para-
meter ¢. Using Lemma 4.13, we have, for u € 3§,

”“”1 gC”Lou”z
< C(”L«“”z + f”“”l)’
which gives
(1 —Ce)llull, <C||Lull,

for |7| < J. By choosing € < C~!, we see that

llull, <C(1 — Ce)™" || Lull,
< Cl[Lull,

which gives (4.4). But u € JC{ by assumption, and it follows from the ine-
quality (4.4) that 3z NI =0 for |f] < J. Consequently, we obtain
dim ¥, < dim 3C,.

Q.E.D.

5. Elliptic Complexes

We now want to study a generalization of elliptic operators to be called
elliptic complexes. The basic fact of generalization is that instead of consider-
ing a pair of vector bundles we now want to study a finite sequence of vector
bundles connected by differential operators. Thus, let E,, E,, ..., Ey be a
sequence of differentiable vector bundles defined over a compact differenti-
able manifold X. Suppose that there is a sequence of differential operators,
of some fixed order k,L,, L,,...,Ly_, mapping as in the following
sequencef :

5.1 &(E,) > &(E,) -=> §(E,) —> - - - 23 §(Ey).

Associated with the sequence (5.1) is the associated symbol sequence (using
the notation of Sec. 2)

(5.2) 0—>*E, ™8 n*E, Z8 n*E, —> ... "5 a*Ey > 0.

Here we denote by o(L)) the k-symbol of the operator L,. In most of our
examples we shall have first-order operators.

Definition 5.1: The sequence of operators and vector bundles E (5.1) is called
a complex if L,oL,_, =0,i=1,..., N— 1. Such a complex is called an
elliptic complex if the associated symbol sequence (5.2) is exact.

tFor simplicity we denote in this section &(X,E;) by &(E;), not to be confused with
the sheaf of sections of E ;.
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Suppose that E is a complex as defined above. Then we let

Ker(L,: &(E,) —> &(E,.,)) _ ZXE)

(5.3) HYE) = Im(L,_,:&E,_)— &E,) B(E)

be the cohomology groups (vector spaces) of the complex E,q =0,..., N
[where Z*(E) and B*(E) denote the numerator and denominator, respectively].

For this definition to make sense, we make the convention that L_, = L,
= E_, = Ey., = 0 (i.e.,, we make a trivial extension to a complex larger at
both ends).

A single elliptic operator L: &(E,) — &(E,) is a simple example of an
elliptic complex. Further examples are given in Sec. 2, namely, the de Rham
complex (Example 2.5), the Dolbeault complex (Example 2.6), and the Dol-
beault complex with vector bundle coefficients (Example 2.7). Elliptic com-
plexes were introduced by Atiyah and Bott [1] and we refer the reader to this
paper for further examples. '

Let E denote an elliptic complex of the form (5.1). Then we can equip
each vector bundle E; in E with a Hermitian metric and the corresponding
Sobolev space structures as in Sec. 1. In particular W°(E)) will denote the
L? space with inner product

& e, = G0 100>z, dp,

for an appropriate strictly positive smooth measure . Associated with each
operator L;: §(E;) — &(E;,,), we have the adjoint operator L}:&(E;,,)
— &(E;), and we define the Laplacian operators of the elliptic complex E by

A,=L!,+ L, L} :&E)— &E), j=0,1,...,N.

It follows easily from the fact that the complex E is elliptic that the operators
A, are well-defined elliptic operators of order 2k. Moreover, each A, is self-
adjoint. Namely,

o(A) = o(L}a(L)) + o(L;_,)o(L}-))
= [a(Lj)'a(Lj) + U(Lj—l)o(Lj—l)*]’
which is an isomorphism and, in fact, either positive or negative definite.
The fact that o(A)) is an isomorphism follows easily from the following
linear algebra argument. If we have a diagram of finite dimensional Hilbert
spaces and linear mappings,

which is exact at ¥, where the vertical maps are the duality pairings in U, V,
and W, then we see that ¥ = Im(A4) @ Im(B*). Moreover, A4* is injective on
Im(A) and vanishes on Im(B*), while B*B is injective on Im(B*) and vanishes
on Im(A4). Thus A4* 4 B*B is an isomorphism on V and in fact is positive



146 Elliptic Operator Theory Chap. 1V

definite. The self-adjointness of A, follows easily from the fact that (L})* =
L, and that the adjoint operation is linear.

Since each A, is self-adjoint and elliptic, we can, by Theorem 4.12, as-
sociate to each Laplacian operator a Green’s operator G,;, which we shall
denote by G,. Moreover, we let

H(E) = HA(E)) = Ker A;: &(E)) —> &(E)
be the A,-harmonic sections, and let
H; 8(E)— &(E)

be the orthogonal projection onto the closed subspace JC(E)).
To simplify the notation somewhat, we proceed as follows. Denote by

aE) = § &E)

the graded vector space so obtained with the natural grading. We define
operators L, L*, A, G, H on &(E), by letting

L(f)zL(fo‘f“"' +¢N):Lofo+ +LN6N1

where & =&, + - - + £, is the decomposition of £ € §(E) into homogene-
ous components corresponding to the above grading. The other operators
are defined similarly. We then have the formal relations still holding,

A=LL* + L*L
I=H+ GA=H+ AG,

which follow from the identities in each of the graded components, coming
from Theorem 4.12. We note that these operators, so defined, respect the
grading, that L is of degree +1, that L* is of degree —1, and that A, G, and
H are all of degree O (i.e., they increase or decrease the grading by that
amount). This formalism corresponds to that of the d or d operator in the
de Rham and Dolbeault complexes, these operators also being graded opera-
tors on graded vector spaces. Our purpose is to drop the somewhat useless
subscripts when operating on a particular subspace &(E;). We also extend the
inner product on §(E,) to §(E) in the usual Euclidean manner, i.e.,

(f’ ")E = }_ZNO (éj’ "j)En

a consequence of which is that elements of different homogeneity are ortho-
gonal in &(E). Let us denote by JC(E) = P I(E,) the total space of A-
harmonic sections.

Using this notation we shall denote a given elliptic complex by the pair
(8(E), L), and we shall say that the elliptic complex has an inner product if it
has an inner product in the manner described above, induced by L*-inner
products on each component. Examples would then be (8*(X), d) for X a
differentiable manifold and (8>*(X), d) for p fixed and X a complex manifold
(see Examples 2.5 and 2.6).
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We now have the following fundamental theorem concerning elliptic
complexes (due to Hodge for the case of the de Rham complex).

Theorem 5.2: Let (8(E), L) be an elliptic complex equipped with an inner
product. Then

(a) There is an orthogonal decomposition
&(F) = X(FE) @ LL*GE(E) P L*LGS(E),

(b) The following commutation relations are valid:
(1) I=H+ AG = H + GA.
(2) HG=GH =HA =AH =0.
(3) LA =AL,L*A = AL*.
(4) LG =GL,L*G = GL*.
(c) dim/3C(E) < oo, and there is a canonical isomorphism

3(E,) = H/(E).

Proof: From Theorem 4.12 we obtain immediately the orthogonal de-
composition
&(E) = I(E) D (LL* + L*L)GS(E).
If we show that the two subspaces of &(E),
LL*GE&(E) and L*LGE&(E),

are orthogonal, then we shall have part (a). But this is quite simple. Suppose
that ¢, n € &(E). Then consider the inner product (dropping the subscript
E on the inner product symbol)

(LL*G¢, L*LGn) = (L’L*G¢, LGn),

and the latter inner product vanishes since L2 = 0.

Part (b), (1) and (2), follow from the corresponding statements in Theo-
rem 4.12 and its proof. Part (b), (3) follows immediately from the definition
of L and A. In part (b), (4), we shall show that LG = GL, leaving the other
commutation relation to the reader. First we have a simple proposition of
independent interest, whose proof we shall give later.

Proposition 5.3: Let { € &(E). Then A¢ = 0 if and only if L = L*¢ = 0;
moreover, LH = HL = L*H = HL* = 0.

Using this proposition and the construction of G, we observe that both
L and G vanish on J(E). Therefore it suffices to show that LG = GL on
I(E)', and it follows immediately from the decomposition in Theorem 4.12
that any smooth ¢ € JC(E)L is of the form ¢ = Agp for some ¢ in §(E).
Therefore we must show that LGAg = GLAg for all ¢ € &(E). To do this, we
write, using / = H + GA,

Lp = H(Lg) + GALp
= HLp + GLAgp,
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since LA = AL. We also have
¢ = Hp + GAp,
and applying L to this, we obtain
Lp = LHp + LGAgp.
Setting the two expressions above for Ly equal to each other, we obtain
GLAp — LGA¢p = LHyp — HLyg,

and by Proposition 5.3 we see that the right-hand side is zero.

In part (c), it is clear that the finiteness assertion is again a part of Theorem
4.12. To prove the desired isomorphism, we recall that HY(E) = Z%E)/B(E),
as defined in (5.3), and let

®: ZY(E) — K(E,)

be defined by ®(&) = H(&). It then follows from Proposition 5.3 that ® is
a surjective linear mapping. We must then show that Ker @ = B?(E). Suppose
that { € Z9(E) and H({) = 0. Then we obtain, by the decomposition in part
(a),

& = HE + LL*GE + L*LG¢.

Since H¢ = 0 and since LG = GL, we obtain § = LL*G¢, and hence ¢ €
BY(E).
Q.E.D.

Proof of Proposition 5.3: 1t s trivial that if LE = L*¢ = 0 for & € &§(E),
then A{ = 0. Therefore we consider the converse, and suppose that A = 0
for some & € §(E). We then have

(AL, &) = (LL*¢ + L*LE, ¢)

= (LL*{,{) + (L*LS, §)

= (L*¢, L*) + (LE, LY)

= ||L*¢|* + || L&I)? = 0.
It now follows that L*¢ = L& =0, and, consequently, LH = L*H = 0.
To show that HL = 0, it suffices to show that (HLE, ) =0 for all &, €
&(E). But H is an orthogonal projection in Hilbert space, and as such it is
self-adjoint. Therefore we have, for any &, n € §(E),

(HLE, ) = (L&, Hy) = (§, L*Hn) = 0,

and hence HL = 0. That HL* = 0 is proved in a similar manner.
Q.E.D.

Remark: We could easily have defined an elliptic complex to have dif-
ferential operators of various orders, and Theorem 5.2 would still be valid,
in a slightly modified form (see Atiyah and Bott [1]). We avoid this complica-
tion, as we do not need the more general result later on in our applications.

We now want to indicate some applications of the above theorem.
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Example 5.4: Let (68%(X), d) be the de Rham complex on a compact
differentiable manifold X. As we saw in our proof of de Rham’s theorem
(Theorem 11.3.15)

H'(X,C)= ,H"(X,C) = H(8%(X))

(using complex coefficients). The first group is abstract sheaf cohomology,
which is defined for any topological space; the second is singular cohomol-
ogy; and the first isomorphism holds when we assume that X has the structure
of a topological manifold (for example). When X has a differentiable struc-
ture, as we are assuming, then differential forms are defined and the de Rham
group on the right makes sense. Thus we can use differential forms to repre-
sent singular cohomology. For convenience, we shall let H'(X, C) denote the
de Rham group when we are working on a differentiable manifold, which will
almost always be the case, making the isomorphisms above an identification.
One further step in this direction of more specialized information about the
homological topology of a manifold comes about when we assume that X
is compact and that there is a Riemannian metric on X. This induces an
inner product on A *T*(X) for each p, and hence (68*(X), d) becomes an elliptic
complex with an inner product. We denote the associated Laplacian by
A=A, =dd* + d*d. Let
(X)) = Ka(AN'T*X))
be the vector space of A-harmonic r-forms on X. We shall call them simply

harmonic forms, a metric and hence a Laplacian being understood. We thus
obtain by Theorem 5.2.(c) that
H'(X, C) = X"(X).
This means that for each cohomology class ¢ € H'(X, C) there exists a unique
harmenic form ¢ representing this class ¢, which is, by Proposition 5.3,
d-closed. If we change the metric, we change the representation, but, neverthe-
less, for a given metric we have a distinguished r-form to represent a given
class. It will turn out that this representative has more specialized informa-
tion about the original manifold than an arbitrary representative might, in
particular when the metric is chosen carefully (to be Kihler, for example,
as we shall see in the next chapter). Thus we have continued the chain of
representations of the sheaf cohomology on X with coefficients in C, but for
the first time we have a specific vector space representation; there are no
equivalence classes to deal with, as in the previous representations. A conse-
quence of Theorem 5.2 is that
dimcHY(X, C) = dimc3%(X) = b, < oo.

This finiteness is not obvious from the other representations, and, in fact,
the harmonic theory we are developing here is one of the basic ways of obtain-
ing finiteness theorems in general.t The numbers b, =0, I, ..., dimg(X),

1Of course, we could represent the de Rham groups by singular cohomology and prove

that a compact topological manifold has a finite cell decomposition. This is the point of view
of algebraic topology.
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are the celebrated Betti numbers of the compact manifold X. By our results
above the Betti numbers are topological invariants of X i.e., (a) they depend
only on the topological structure of X, and (b) they are invariant under
homeomorphisms.

In the study of manifolds these numbers play an important role in their
classification, and this is no less so if the manifold happens to be complex,
as we shall see. We define

dimX
2 = 3 (~1rb,
<
the Euler characteristic of X, also a topological invariant.

Example 5.5: Let X be a compact complex manifold of complex dimen-
sion n, and consider the elliptic complex

s grax) s grati(x) L, graryx) s ...,

for a fixed p, 0 < p < n. As we saw in our previous study of this example
(Example 2.6), this is elliptic, and in Chap. II (Theorem 3.17) we saw that

HY(X, Q%) = HI(\**T*(X), 9)

(Dolbeault’s theorem), where Q7 is the sheaf of germs of holomorphic p-
forms. We want to represent these cohomology groups by means of harmonic
forms. Let A#*T*(X) be equipped with a Hermitian metric, 0 < p,q <n
[induced by a Hermitian metric on 7(X), for example]. Then the complex
above becomes an elliptic complex with an inner product (parametrized by
the integer p). Denote the Laplacian by

a - é-* + é*éa
and let
37 9(X) = Feg( \#T*(X))
be the O-harmonic (p, q)-forms, which we shall call simply Aarmonic (p, q)-
forms when there is no confusion about which Laplacian is meant in a given
context.

Similar to the de Rham situation, we have the following canonical isomor-
phism (using Theorem 5.2 along with Dolbeault’s theorem):

HY(X, Q?) = 37 % X).
We define, for 0 < p, g <n,
h?1 = dimcHY(X, Q*) = dimcdC? 9(X),

which are called the Hodge numbers of the compact complex manifold X.
Note that these numbers are invariants of the complex structure of X and do
not depend on the choice of metric. The finite dimensionality again comes
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from Theorem 5.2.t The following theorem shows us how the Hodge numbers
and the Betti numbers are related, in general (on Kahler manifolds, more
will be true).

Theorem 5.6: Let X be a compact complex manifold. Then
x(X) = 2 (=1yb(X) = 3 (—1)"""h>(X).

The proof of this theorem is a simple consequence of the fact that there
is a spectral sequence (Frohlicher [1])

Epe = Hi(X, Q°) ==> H'(X, C)
relating the Dolbeault and de Rham groups, and we omit the details as we

do not need this result in later chapters. For Kihler manifolds this results
from the Hodge theory developed in Chapter V.

Example 5.7: Let E be a holomorphic vector bundle over a compact
complex manifold X and let (67 *(X, E), d) be the elliptic complex of (p, 9)-
forms with coefficients in E. By the generalization of Dolbeault's theorem
given in Theorem 11.3.20 the cohomology groups H( X, Q’(E)) represent
the cohomology of the above complex, where Q?(E) = O(A’T*(X) ® E)
is the sheaf of germs of E-valued holomorphic p-forms. The bundles in the
complex are of the form A?9T*(X) X E, and equipping them with a Hermitian
metric [induced from a Hermitian metric on T(X) and E, for instance], we
can then define a Laplacian

O = d0* + d*d: &7 %X, E) — &7-9(X, E),
as before. Letting 3C? (X, E) = H5(A”*T*(X) ® E) be the T-harmonic
E-valued (p, g)-forms in §7-9( X, E) we have, by Theorem 5.2, the isomorphism
(and harmonic representation)
HY(X, Q?(E)) = 3> Y(X, E),
a generalization of the previous example to vector bundle coefficients. We let
h?-%(E) = h* %X, E) = dimc3CP9( X, E),

where we drop the notational dependence on X unless there are different mani-
folds involved. As before, it follows from Theorem 5.2 that 4?-%(E) < oo, and
we can define the Euler characteristic of the holomorphic vector bundle E to be

X(E) = x(X, E) = z: (— 19h®-%(E).

As before, the generalized Hodge riumbers /7-(E) depend only on the complex
structures of X and E, since the dimensions are independent of the particular
metric used. However, it is a remarkable fact that the Euler characteristic of

tA general theorem of Cartan and Serre asserts that the cohomology groups of any
coherent analytic sheaf on a compact complex manifold are finite dimensional. This and
the next example are special cases of this more general result, which is proved by different
methods, involving Cech cohomology (cf. Gunning and Rossi [1]).
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a holomophic vector bundle can be expressed in terms of topological invari-
ants of the vector bundle E (its Chern classes) and of the complex manifold
X itself (the Chern classes of the tangent bundle to X). This is the celebrated
Riemann-Roch theorem of Hirzebruch, which we formulate below.

Let E be a complex (differentiable) vector bundle over X, where r = rank
E and X is a differentiable manifold of real dimension m. Let

(E) =1+ c,(E)+ -+ + c(E)

be the total Chern class of E, which is an element of the cohomology ring
H*(X, C), as we saw in Chap. I1I. Recall that the multiplication in this ring
is induced by the exterior product of differential forms, using the de Rham
groups as a representation of cohomology.t We introduce a formal factoriza-
tion

o(E) = .-Ijl(l + X))

where the x; € H*(X, C). Then any formal power series in x,, . . . , x, which
is symmetric in x, ..., x, is also a power series in ¢,(E), ..., c¢,(E). This
follows from the fact that the c,(E) are the elementary symmetric functions
of the (x,, . .., x,) (analogous to the case of the coefficients of a polynomial).
Therefore we define
T X;
IE) = H e
ch(E) = 3 &%,
i1
which are formal power series, symmetric in x,,..., x,, and hence define

a (more complicated-looking) formal power series in the Chern classes of E.
We call 3(E) the Todd class of E and ch(E) is called the Chern character of E.
Of course, there are only a finite number of terms in the expansion of the
above formal power series since H%(X, C) = 0 for ¢ > dimgX.

We now recall that X is assumed to be compact, and then we let, for ¢ €
H*(X, C),

c[X] = JX P>

where ¢, is a closed differential form of degree m representing the homogene-
ous component in ¢ of degree m; i.e., from the viewpoint of algebraic topology
we evaluate the cohomology class on the fundamental cycle. By Stokes’
theorem the above definition is a sensible one. We are now in a position to
state the following theorem due to Hirzebruch for projective algebraic mani-
folds.

TOf course, the characteristic class theory is valid in a more general topological category,
and the cohomology ring has the cup product of algebraic topology for multiplication,
but on a differentiable manifold, the two theories are isomorphic.



Sec. 5 Elliptic Complexes 153

Theorem 5.8 (Riemann-Roch-Hirzebruch): Let X be a compact complex
manifold, and let E be a holomorphic vector bundle over X. Then

X(E) = {ch(E) - A(T(XDHX].

Note that the left-hand side of the equality depends a priori on the complex
structure of X and E, whereas the right-hand side is a priori a complex number
(we could have made it a rational number had we worked with integral coef-
ficients for our cohomology). Therefore two immediate consequences of the
above formula is that these dependences are superfluous; i.e., the left-hand
side depends only on the underlying topological structure, and the right-hand
side is an integer.

This theorem is a special case of the Atiyah-Singer index theorem, dis-
cussed in Sec. 4, and was formulated and proved for projective algebraic
manifolds by Hirzebruch in a famous monograph (Hirzebruch [1]) in 1956.
The special case of a Kihler surface had been proved earlier by Kodaira. For
n=1 and E a line bundle, the above theorem is essentially the classic
theorem of Riemann-Roch for Riemann surfaces (in the form proved by
Serre [1]). This case is discussed thoroughly by Gunning {1]. For applications
of the Riemann-Roch Theorem in this form to the study of compact complex
surfaces (complex dimension 2), see Kodaira [5].



CHAPTER V

COMPACT
COMPLEX MANIFOLDS

In this chapter we shall apply the differential equations and differential
geometry of the previous two chapters to the study of compact complex
manifolds. In Sec. 1 we shall present a discussion of the exterior algebra on
a Hermitian vector space, introducing the fundamental 2-form and the Hodge
x-operator associated with the Hermitian metric. In Sec. 2 we shall discuss
and prove the principal results concerning harmonic forms on compact
manifolds (real or complex), in particular, Hodge’s harmonic representation
for the de Rham groups, and special cases of Poincaré and Serre duality. In
Sec. 3 we present the finite-dimensional representation theory for the Lie
algebra 31(2, C), from which we derive the Lefschetz decomposition theorem
for a Hermitian exterior algebra. In Sec. 4 we shall introduce the concept of
a Kihler metric and give various examples of Kéhler manifolds (manifolds
equipped with a Kéhler metric). In terms of a Hermitian metric we define the
Laplacian operators associated with the operators d, 2, and ¢ and show that
when the metric is Kéhler that the Laplacians are related in a simple way.
We shall use this relationship in Sec. 5 to prove the Hodge decomposition
theorem expressing the de Rham group as a direct sum of the Dolbeault
groups (of the same total degree). In Sec. 6 we shall state and prove Hodge’s
generalization of the Riemann period relations for integrals of harmonic
forms on a Kéhler manifold. We shall then use the period relations and the
Hodge decomposition to formulate the period mapping of Griffiths. In
particular, we shall prove the Kodaira-Spencer upper semicontinuity theorem
for the Hodge numbers on complex-analytic families of compact manifolds.

1. Hermitian Exterior Algebra on a Hermitian Vector Space

Let ¥ be a real finite-dimensional vector space of dimension d which is
equipped with an inner product < , >, a Euclidean vector space, and suppose
that A V denotes the exterior algebra of V. Then for each degree p, the vector
space A’V has an inner product induced from the inner product of V.
Namely, if {e,, . . ., e,} is an orthonormal basis for ¥, then{e;, A--- A ;1 1<
Iy < iy <---<i, <d} is an orthonormal basis for A?V. An orientation on

154
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V is a choice of ordering of a basis such as {e,, . . ., €,} up to an even permuta-
tion, which is equivalent to a choice of sign for a particular n-form, e.g.,
ey AN+ A ey

We now define the Hodge *-operator. Choosing an orthonormal basis
{e1, ..., ey} for V as above, fix an orientation of V by specifying the n form
e, A--- A e, which we will denote by vol (for volume element). The Hodge
»-operator is a mapping

*: APV —> A"PV
defined by setting
*(eu A A eip) =de; A Nejy

where {j,,...,Jj4—p} is the complement of {ij,..., i} in {l,...,d}, and we
assign the plus sign if {i;,..., {5 f1,...,/a-p} IS an even permutation of
{1,..., d}, and the minus sign otherwise. In other words * is defined so that

(1.1 ey N Ney, AN*xey, A---Ne,)=¢e N---Aeyg=vol
Extending * by linearity to all of APV we find that if a, f € APV, then
(1.2) a A *f = <{a, B> vol,

where {a, B) is the inner product induced on APV from V. Let us check that
(1.2) is valid. Namely, if

o= ; aey,
lIi=p

and
_ b ,
B ”|2=p 1€y

using multi-index notation, then

a A *ﬂ B z’ a,b_,e, A *€y.

15125

We see that the wedge product in each term of the sum vanishes unless

I={i,...,i,} coincides with J = {j,, ..., J,}, and then it follows immedi-
ately from (1.1) that

o A*f= lIépa,b, vol
= <a, B> vol.

It is easily checked that the definition of the Hodge *-operator is independent
of the choice of the orthonormal basis, and depends only on the inner product
structure of V as well as a choice of orientation.

t The classical references for the #-operator are Hodge [1], de Rham [1], and Weil [1].
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We can extend (1.2) easily to complex-valued p-forms. Namely, if
a, Be AV & C, then B is well defined (cf. Sec. 1.3). We write

a= 3 oe, aeC,
Hi=p

ﬁ = ”Epﬂleh ﬁl € C’
then we define an Hermitian inner product on A’V @ C by

{a, B> := u;-'n sB;.

If «, B are real, then we have the original inner product, so we use the same
symbol < , > for this complex extension. It follows then immediately that if
* is extended to A*V & C by complex linearity, we obtain the relation

(1.3) a A *B = <a, B) vol.
Let IT, denote the projection onto homogeneous vectors of degree r,
IL,: AV — ATV,
and define the linear mapping w: A ¥V — AV by setting
w = I(—1)**+1I,.
It is easy to see that ** = w, and we remark that if d is even, then we have
(1.4) w = X(—1)1I,.

Let E be a complex vector space of complex dimension n. Let E’ be the
real dual space to the underlying real vector space of E, and let

F=E’®RC

be the complex vector space of complex-valued real-linear mappings of E to
C. Then F has complex dimension 2n, and we let
2n

ANF= 3 APF

p=0

be the C-linear exterior algebra of F. We will refer to an w € A?F as a p-form
or as a p-covector (on E). Now, as before, AF is equipped with a natural
conjugation obtained by setting, if w € A’F,

(g, . .., V) = (y,...,0,), v,€E.

We say that w € APF is real if ® = w, and we will let ARF denote the real
elements of APF (noting that APE' ~ ARF).

Let A!°F be the subspace of A!'F consisting of complex-linear 1-forms
on E, and let A%!'F be the subspace of conjugate-linear 1-forms on E. Then
we see that A1'°F = A%!F and moreover

NF = NVYF @ NF,
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and this induces (as in Sec. 1.3) a bigrading on AF,

2n

NF= 3 2 APF,

r=0p+q=r

and we see that if w € A?9F, then @ € A\9PF.

Now we suppose than our complex vector space is equipped with a
Hermitian inner product < , ). This inner product is a Hermitian symmetric
sesquilineart positive definite form, and can be represented in the following
manner. If {z;,..., z,} is a basis for A!'OF, then {Z,,..., Z,} is a basis for
A% 1F, and we can write, for u,ve E,

<u, v> = h(u’ v)’
where
h= ) huvzu ® 2y
B,v
and (h,p) is a positive definite Hermitian symmetric matrix. Now 4 is a
complex-valued sesquilinear form acting on E X E, and we can write
h=S+iA,

where S and A4 are real bilinear forms acting on E. One finds that S is a
symmetric positive definite bilinear form, which represents the Euclidean
inner product induced on the underlying real vector space of E by the
Hermitian metric on E. Moreover one can calculate easily that

1 - _
4= Z Ev huv(zu ®zv — 2, ®zu)

= —iYh,z, A2,
n,v
Let us define

(1.5) Q=%£M@AZ,

the fundamental 2-form associated to the hermitian metric 4. One sees
immediately that

= —44 = —4Imh,
and thus
(1.6) h=S -—2iQ.

Moreover Qe AE'F, ie., Q is a real 2-form of type (1, 1). We can always
choose a basis {z,} of A!'°F so that A has the form

(.7 h=32Q%.

t We recall that a mapping f: E x E— C is sesquilinear if f is real bilinear, and
moreover, f(Au, v) = Af(u, v), and f(u, Av) = Af(u, v), AeC.
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It then follows that, if we let

x_z,,+z',, _Zy— 2,
vET 0 T

be the real and imaginary parts of {z,}, then

(1.8) h= ; @ xu + 1. Q¥ — 28T (x4 A ),

and thus from (1.5), with respect to this basis,

S=zxu®xu+yu®yu
(1.9
Q=3x, /\y,,=%§'_z,‘ A Z,.

It follows from this that
(1.10) Q'=nlx; Ay A+ A Xy A Ype

Thus the fundamental 2-form associated to a Hermitian metric is a real form
of type (1, 1) whose coefficient matrix is positive definite, and moreover, Q"
is a nonzero volume element of E’. Thus Q" determines an orientation on E’,
and we see from (1.9) that {x,, y,} is an orthonormal basis for E’ in the
induced Euclidean metric of E’. Thus we see that there is a naturally defined
Hodge *-operator

(1.11) *: A\PE' —> A\?"~PE’

coming from the Hermitian structure of E. Namely, E’ has the dual metric
to the real underlying vector space of E, while E’ is equipped with the
orientation induced by the 2n-form Q" coming from the Hermitian structure
of E. We define

1 n
(1.12) vol=;’—!Q,

which, with respect to the orthonormal basis used above, becomes
vol=x; Ay A- - A Xp A Y

Note that the definition (1.12) does not depend on the choice of the basis,
and is an intrinsic definition of a volume element on E"'.

We are now interested in defining various linear operators mapping
AF— AF in terms of the above structure. Recall that we already defined w
for an even dimensional vector space by (1.4), and this therefore defines

w: ANE' —> AE’
which we extend by complex-linearity to

w: AF—> AF
where

II,: A\F—> A\'F
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is the natural projection. Similarly, since E has a Hermitian structure, as we
saw above, there is a natural x-operator

*: APE' —> A\2"-PE’
which we also extend as a complex-linear isomorphism to
*: A\PF—> AZ"-PF,
Both w and * are real operators. Now we let
I, ,: NF—> A™F
be the natural projection, and we define
J: ANF—> AF
by
J=3i""T],,.

Recall that the real operator J which represents the complex structure of the
vector space F has the property that if ve A!'°F, then Jv = iv, and if
ve A®'F, then Jv = —iv. Thus we see immediately that J defined above
is the natural multilinear extension of the complex structure operator J to
the exterior algebra of F. We note also that J> = w as linear operators.

We now define a linear mapping L in terms of Q, the fundamental form
associated to the Hermitian structure of E, namely, let

L: NF—> AF
be defined by L(v) = Q A v. We see that
L: N\PF—> A\P*2F
so it is homogeneous and of degree 2. Moreover,
L: \P9F —> A\PtLA+IF

and L is bihomogeneous of bidegree (1, 1), and it is apparent that L is a real
operator since Q is a real 2-form. Recall from (1.3) that APF has a natural
Hermitian inner product defined by

{a, pyvol = a A *P,

where vol = (1/n!)Q" as before. With respect to this inner product L has a
Hermitian adjoint

L¥: N\PF—> AP72F, 2<p<on,
and one finds that
(1.13) L* = wxLx,
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To see that (1.13) holds we compute, for o € APF, B AP*?F,

{La, BYvol = Q A a A (xB)
=a AQ A (*p)
=a A L*p
= o A *wkLxp
= o A swxLaj
= {a, wxLxf>vol
= {a, L*B)vol

using the fact that *wx = id, and *, L, and w are real operators. It follows
from (1.13) that L* is a real operator, homogeneous of degree —2. It will
follow from the next proposition that L* is bihomogeneous of degree
(-1, —=1).

If M and N are two endomorphisms of a vector space, then we will denote
by [M, N] = MN — NM the commutator of the two endomorphisms. We
now have a basic proposition giving fundamental relationships between the
above operators.

Proposition 1.1: Let E be a Hermitian vector space of complex dimension
n with fundamental form Q and associated operators w, J, L, and L*. Then

(@) *Hn,q = nn—-q.n—p*:
(b) [L,w]=[L,J] = [L*¥, W] = [L*,J] =0,
(© [L*L]= 33% (n — p)I,.

To prove Proposition 1.1, it is necessary to introduce some notation which will
allow us to effectively work with the covectors in AF. Let N = {1,2,...,n},
and let us consider multi-indices I = (4,,..., u,), where u,,..., u, are
distinct elements of N, and set |I| = p. Let {z,, ..., z,} be a basis for A\1'°F
such that the Hermitian metric 4 on E has the form 4 = 3,2, ® Z, as in
(1.7), with Q given by (1.9), and with (1/n)Q" =vol=x;, A y; A--- A
X, A y, Where z, = x, + iy,, as in (1.10). The operator * is now well-defined
in terms of the orthonormal basis {xy, y;,..., Xp Vu}- If T = (s, ..., ),
then we let

2y = Zu N2y r e A2,

Xp = Xy AXy N AXy,

If M is a multiindex, we let
Wy = H zﬂ/\z-ﬂ = (_2i)'MI H X, AV,
HEM HUEM
In this last product it is clear that the ordering of the factors is irrelevant,

since the terms commute with one another, and we shall use the same symbol
M to denote the ordered p-tuple and its underlying set of elements, provided
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that this leads to no confusion. Any element of A F can be written in the
form

’ -
Y CupmZaNIgAWy,
ABM

where ¢, 5, € C, and 4, B, and M are (for a given term) mutually disjoint
multiindices, and, as before, the prime on the summation sign indicates that
the sum is taken over multiindices whose elements are strictly increasing
sequences (what we shall call an increasing multiindex).

We have the following fundamental and elementary lemma which shows
the interaction between the x-operator (defined in terms of the real structure)
and the bigrading on A F (defined in terms of the complex structure).

Lemma 1.2: Suppose that 4, B, and M are mutually disjoint increasing
multiindices. Then

*(2 NZgAWy) = Y(a, b, M)z NZgAw .
for a nonvanishing constant y(a, b, m), where a =|A|,b =|B|, m =|M|,
and M’ = N — (A U B U M). Moreover,
y(a’ b’ m) —_ ia—b(__])p(p+l)/’2+M(_2,‘)p—n
where p = a + b + 2m is the total degree of z, A Z; A w,,.

Proof: Letv =2z, AZgAwy If A=A, U A, for some multiindex A4,
let
0 fA,NA,+0
et = 1 if A,A4, is an even permutation of A
—1 if A,A, is an odd permutation of A.

Using this notation it is easy to see that
2= X' E€EMMTX N Y 4
A=AV A

where the sum runs over all decompositions of A4 into increasing multiin-
dices 4, U A4,,and a, =| A4, etc. Thus we obtain

v = (=2)" ,Eﬁ, eaMreBBrjorbiy Ay AXp AYp A “g” XAV,
B=Bi1uB:

We now want to compute *v, having expressed v in terms of a real basis,
and we shall do this term by term and then sum the result. To simplify the
notation, consider the case where B = &. We obtain

(L.1) (2, AWy) = (—2i)" EA €4 % { X ANy 44 N ].E_[qu/\)’u]-
= T H

=4V
It is clear that the result of * acting on the bracketed expression is of the form
(1.2) +x,Ayan T1 Xy N Vs
HEM’

where M’ = N — (A U M). The only problem left is to determine the sign.
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To do this it suffices (because of the commutativity of [],c» x,A y,) to con-
sider the product (setting a, = |4, )
XNV ANX A Vay = (=D XA Y4 AX gAY 4y
Now, in general,
XcAYe = (—=DIHC=D2x AV - AX i A Vs

and applying this to our problem above, we see immediately that the sign
in (1.2) is of the form

(_l)ﬂ:’+ﬂ|(ﬂ|‘1)/2+m(d:—l)/z — (___l)r.
Putting this into (1.1), we obtain
(1.3)  H(zAwp) = (=20 30" €44i(—1)x A Y4 A H XuNYur

A=A VA,
The idea now is to change variables in the summation. We write

E:Mz — (_l)mdtegnﬁ
iag — ia(_l)mian,
and substituting in (1.3) we obtain
Kz Awy) = (=207 T eqhinf(—1yretan)

=A4u

N ‘xAz/\yAl/\ H xu/\yw
HeM’

which is, modulo the bracketed term, of the right form to be const(z A w,,).
A priori, the bracketed term depends on the decompositions 4 = 4, U A, ;
however, one can verify that in fact

(___ 1)r+a|+a|az — (__ l)a(a+1)/2 — (__ l)p(p+ 1 )/2+m’
and the bracketed constant pulls out in front the summation, and we obtain
#(zZgAWpg) = P(—1)PPTD2Im(=2027" 2 A w ..

The more general case is treated similarly.
Q.E.D.

Proof of Proposition 1.1: Part (a) follows immediately from Lemma 1.2.
We note that (a) is equivalent to

@) *|arer: APIF—> A""%"PF is an isomorphism.

Part (b) follows from the fact that L and A are homogeneous operators and
are real.

We shall show part (c). Using the notation used in Lemma 1.2, we observe
that

L(ZA/\Z,,/\WM)——-<Z )/\z,,Az'E/\wM

(1.4)

i
= ZZA/\ZB ( wMu(ul)’
HEM'
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where M' = N — (4 U B U M), as before. On the other hand, we see that,
using Lemma 1.2 and the definition of A,

(1.5) A(zA/\E,,/\wM)=%zA/\fB/\( 5 W)

Using these formulas, one obtains easily, assuming that z, A 7, A w,, has
total degree p,
AL — LA = (n — p)z,NZgAw,,,

and part (c) of Proposition 1.1 follows immediately.
Q.E.D.

2. Harmonic Theory on Compact Manifolds

In this section we want to give further applications of the theory of har-
monic differential forms on compact (differentiable or complex) manifolds.
As we have seen in Chap. IV, the Laplacian on a Riemannian manifold is
defined by dd* + d*d, where d* is the adjoint with respect to some inner prod-
auct on the (elliptic) complex *(X) of complex-valued differential forms on
X. We want to use the =-operator of Sec. 1 to define a particular inner product
for the vector space of differential forms of a given degree, from which will
follow a useful formula for the adjoint operator d* (and related operators).

Suppose that X is a compact oriented Riemannian manifold of d dimen-
sions. Then the orientation and Riemannian structure define the *-operator
as in Sec. 1:

*2 NPTHX) = A4PTHX)
at each point x € X. Moreover, * defines a smooth bundle map, since we
can define it in the neighborhood of a point by choosing a smooth local
(oriented) orthonormal frame. Hence * induces an isomorphism of sections
(assuming that we extend * to A?T*(X) & C by complex linearity),

*1 87(X) "> 8477(X),

where d = dimgJX.
Suppose that ¢ € &(X). Then we can define, in a standard manner,

J o

by using a partition of unity {¢,} subordinate to a finite covering of X by coor-
dinate patches. Namely, let

[ U CR— X

open

be the coordinate mappings, and set

Jo=X] rioo =3[ edcn-rds,

where the C* function g, has compact support in U,. This is easily seen to
be independent of the coordinate covering and partition of unity used.
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If X is an oriented Riemannian manifold, then X carries a volume ele-
ment dV, which is nothing but a d-form ¢ € §4(X), with the property that in
any oriented system of local coordinates U < X

p(x) = f(x)dx A - - Ndxg,
where f(x) > 0for all x € U. By means of the x-operator it is easy to see that
p =*(1),(1 € C = &(X))

is indeed a volume element on X.

Remark: Denote in local coordinates the Riemannian metric on X by
ds? =g, dx' Q dx/,

using the summation convention, where g;; is a symmetric positive definite
matrix of functions. If we let g"/ be defined by

gg; = 6k (Kronecker delta),
and if we raise indices by setting
au-..l, — ghh . gizjg P gl,J,au.”i’,

then we can express the x-operator given by the metric ds? explicitly in terms
of these quantities (cf., deRham [1], pp. 119-122). Namely, we have, if

a= 3 oy dx't Ao Adxs,
‘1<"'<‘p
then
()= 3 (0., dxt Ao A dxtass,
J1<e-"<ja-p
where
(*a)jl"'jﬂ-p = :t»\/det(gu)a‘l“'iv,
where {is, ..., 5 j1,...,Ja-p} = {1,...,d}, and we have the positive sign if

the permutation is even and negative sign in the other case (just as in the case
of an orthonormal basis). Thus in particular

*(1) = Videt(g,) dx! A--- A dx®
is the volume element in this case.
Define
(9 y) = wa*v'/, P,y € 8/(X)
(o, ¥) =0, pe&X)ye&X), p*tq

and the integral is well defined since ¢ A *J is a d-form on X. We can ex-
tend this definition to noncompact manifolds by considering only forms with
compact support. We then have the following proposition.

2.1
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Proposition 2.1: The form (,) defined by (2.1) defines a positive definite,
Hermitian symmetric, sesquilinear form on the complex vector space &*(X)

= BDp=08"(X).

Proof: The Riemannian metric on X induces an Hermitian inner
product < , > on APT¥(X) for each x € X, given by, for ¢, ¢ p-forms on X,

@ A *f = <o, Y)vol
as we saw in (1.3). It is then clear that

@) =[ 0 Al = [ <o, g)vol

is a positive semidefinite, sesquilinear Hermitian form on &°(X). To see that
(', ) is positive definite, suppose that ¢ € &°(X) is not equal to zero at
Xo € X, then near x,, we can express ¢ in terms of a local oriented ortho-
normal frame for T*(X) Q C, {e,, . .., €4},

¢ = z, @€y,
\Ii=p

and
® AN*@ = 3 |¢;|*vol
f=p

near xo, and X, =, |@;|?> > 0 near x,. Then the contribution to the integral

(¢,<p)=fx<p A *@

will be nonzero, and thus (¢, ¢) > 0.
Q.E.D.

Thus the elliptic complex (8*(X), d) is equipped with a canonical inner
product depending only on the orientation and Riemannian metric of the
base space X (in Sec. 5 of Chap. IV we had allowed arbitrary metrics on each
of the vector bundles appearing in the complex). We would have arrived
at the same inner product had we merely used the metric on A?T*(X) natu-
rally induced by that of T(X) and for our strictly positive measure di used
the volume element *(1). However, the representation we have given here for
the inner product on &*(X) will prove to be very useful, as we shall see. For
convenience, we shall call the inner product (2.1) on §*(X) the Hodge inner
product on §*(X).

Suppose that X is a Hermitian complex manifold. Then we can define
the Hodge inner product on §*(X') with respect to the underlying Riemannian
metric and a fixed orientation given by the complex structure (all complex
manifolds are orientable).

Proposition 2.2: The direct sum decomposition &(X) =3 ,,_, >%X)
is an orthogonal direct sum decomposition with respect to the Hodge
inner product.
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Proof: Suppose that ¢ € §79X) and that y € &"*(X), where p + ¢
=r + 5. Then we see that pA*y is of type (n — r + p,n — s + q), since
¥ is of type (s, r) and = is then of type (n — r, n — s) by Proposition 1.1.
Therefore ¢ A+ is a 2n-form if and only if r = p and s = q. Otherwise,
@ A~ is identically zero. This proves the proposition. QED

Using the Hodge inner product, it will be very easy to compute the ad-
joints of various linear operators acting on §*(X) (cf. the computation of L*
in Sec. 1). First we want to modify the x-operator in a manner which will be
convenient for this purpose. On an oriented Riemannian manifold we define

*: 8%(X) — &¥(X)
by setting *(¢p) = =@. Thus ¥ is a conjugate-linear isomorphism of vector
bundles,
FAPT¥X), — A™?T*X),,
where m = dimg X. Suppose that X is now a Hermitian complex manifold
and that £ — X is a Hermitian vector bundle. Let

1. E—> E*
be a conjugate-linear bundle isomorphism of E onto its dual bundle E*.
The mapping 7 depends on the Hermitian metric of E and is defined fibre-
wise in a standard manner. We then define
*pt NPTHX), ® E—> A" PT*(X), ® E*
by setting
*£(p ® ) = *(p) @ (e)
for p € A’T¥(X), and e € E,. Thus % is a conjugate-linear isomorphism
of Hermitian vector bundles. We recall that we defined &(X, E) to be the
sections of A'T*(X),® E and that, moreover, there is a decompgsition into
bidegrees
8'(X,E)= Y &»%X,E).

ptg=r

Thus we note that first the Hodge inner product on §*(X) can be written as

(p.y) = LMW,

and we extend this to a Hodge inner product on &§*(X, E) by setting

24 (. ¥) = fx PA%Y

if o, w € &(X, E). It is easy to see that p A% does make sense and is a
scalar 2n-form which can be integrated over X (where n = dimcX). In fact,
if we let (, > represent the bilinear duality pairing between E and E*, then we
set, forg € A°T¥X).,e € E,,y € N> °T¥X),,f € E¥,

PR NY Q [f) = oAy - le, f) € N"THX)..
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By using a basis for E and a dual basis for E¥, we can extend this exterior
product to vector-bundle-valued differential forms, and it is easily checked
that the resulting exterior product is independent of the choice of basis.
Thus (2.4) defines what we shall call a Hodge inner product on &§*(X, E).
Then it is easy to see that ¥ preserves the bigrading on §*(X, F), and that,
in fact,

%.:879%X, E) N g rnmy( X, E¥)
is a conjugate-linear isomorphism. It is then clear that Proposition 2.2 extends
to this case.
We are now in a position to compute the adjoints of various operators

with respect to the Hodge inner product. Moreover, all adjoints in this and
later sections of the book will be with respect to the Hodge inner product.

Proposition 2.3: Let X be an oriented compact Riemannian manifold of
real dimension m and let A = dd* + d*d, where the adjoint d* is defined with
respect to the Hodge inner product on &¥(X). Then

(a) d* = (—1yrms*15d% = (— 1ym*mo*iade on 8(X).
(b) *A = Asx, FA = Aw.

Proof: The basic fact we need is that xx = w, as defined in Sec. 1.
Suppose that ¢ € §77'(X) and that y € &?(X). Then we consider

(dp,y) = | _dpnwy
= [ dorzy) — =1y | _pnaFy,

by the rule for differentiating a product of forms. Moreover, by Stokes’
theorem, we see that the first term vanishes, and hence we obtain (noting
that ** = %% = w, since * is real)

(dp.y) = (=1y fxga/\i(z-‘d;)w

= (=1 | _pnsGwdmy
= (=Dt (g, xdxy),
and thus we have
d* = (—1ym*met iR,
and since d is real, we also obtain
d¥ = (—1)y"+mr¥lydx,
To prove (b), we compute, for ¢ € 87(X),
*Ap = (— )" mP* (xdxdx + (—1)" *xd*d)p
Axp = (= 1)yt mim=22* Y dxdwx + (—1)" *xdxd*)p,
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and so it suffices to show that (recall that w = xx)
wdxdp = dxdwe.

But this is simple, since w = X (—1)?*m#I1,, and thus the right-hand side
is dxd(—1)P*m?¢p, whereas the left-hand side has degree m - p, and so

wdrdp = (— 1Y"=P+mm=Pdxdy = (—1)P*m2dxdyp.
Q.E.D.

We have a similar result for the Hermitian case. Note that .. is defined
in the same way as ¥; by using t7!': E* — E.

Proposition 2.4: Let X be a Hermitian complex manifold and let £ — X
be a Hermitian holomorphic vector bundle. Then
(@) d:8&”9X, E) — &79*1(X, E) has an adjoint d* with respect to the
Hodge inner product on §**(X, E) given by
0* = —%.0%,.
(b) If O =dd* + d*d is the complex Laplacian acting on &**(X, E),
then

EIE = IEE.

Proof: In this case we also have % %,. = w = Y (—1)°II,, a simpler
expression since the real dimension of X is even. The proof of (a) then follows
as before, with minor modification. Suppose that ¢ < §7-¢7!(X, E) and that
y € 89X, E). Then we have that ¢ A ¥,y is a scalar differential form of
type (n, n — 1), and hence d(p A % ) = d(pA ¥ y). Moreover,

Ao A Fep) =0 A Fey + (—1)7*1p A IFy.
Substituting into the inner product, we obtain, using Stokes’ theorem as in
the proof of Proposition 2.3,

@, w) = (=)' | pndEey
X
= (—1)r*e f q)/‘\?E(wEFE.JIEy/)

= - J'wA;E(;E“;;EW)
= (g, "—"?Ej"—‘EW),
and hence (a) is proved. The proof of (b) is exactly the same as in Proposition

2.3 (Note that O acting on §**(X, E) and &§**(X, E*) denotes two different

operators).
Q.E.D.

Remark: We note that only d acts naturally on §”9(X, E) for a non-
trivial holomorphic vector bundle E, whereas d and hence d do not, since they
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do not annihilate the transition functions defining E. However, in the scalar
case, we have d: &7:9(X) — &°7*!:9(X), and by the same calculation as above
we obtain that ¢* = —%d% and that [] = dd* + 0*d commutes with ¥,
exactly the same as the d-operator case.

Using the above results we can derive two well-known duality theorems.
We first remark that a finite dimensional complex vector space E is con-
jugate-linearly isomorphic to a complex vector space F'if and only if F is
complex-linearly isomorphic to E*, the dual of E (and the bilinear pairing
of E to F can be obtained from a Hermitian inner product on E).

Theorem 2.5 (Poincaré duality): Let X be a compact m-dimensional orien-
table differentiable manifold. Then there is a conjugate linear isomorphism

o: H'(X,C)— H™'(X, C),
and hence H™"(X, C) is isomorphic to the dual of H'(X, C).

Proof: Introduce a Riemannian metric and an orientation on X and let
* be the associated *-operator. Then we have the commutative diagram

8'(X) _E_) Sm—r(X)
LA A
3e7(X) —> 3em1(X)

b 1k
H'(X,C) —~> H" (X, C),

where H, is the projection onto the harmonic forms given by Theorem
1V.4.12, and the mapping ¥ maps harmonic forms to harmonic forms since
A% = %A, as we saw in Proposition 2.3. Moreover, the de Rham groups
H'(X, C) are isomorphic to 3C’(X) (Example 1V.5.4), and ¢ is the induced
conjugate linear isomorphism.

Q.E.D.

Remark: We could have restricted ourselves to real-valued differential
forms and obtained the same result. Also, the more general Poincaré duality
theorem of algebraic topology is true with coefficients in Z and is indepen-
dent of any differentiable structure on X, but one needs a different type of
proof for that (see, e.g., Greenberg [1]).

Corollary 2.6: Let X be as in Theorem 2.5. Then
b(X) =0b,_(X), r=0,...,m.

Our next result is more analytical in nature and depends very much on
the complex structures involved, in contrast to the Poincaré duality above.
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Theorem 2.7 (Serre duality): Let X be a compact complex manifold of com-
plex dimension n and let E— X be a holomorphic vector bundle over X.
Then there is a conjugate linear isomorphism

o: H(X, Q?(E)) —> H" (X, Q" »(E¥)),

and hence these spaces are dual to one another.

Proof: By introducing Hermitian metrics on X and E, we can define
the %, operator. Then we obtain the following commutative diagram,

&7-9(X, E) —> £2»-+9(X, E*)
o . |m
Jer-9(X, E) —> 32 "9(X, E*)
I I
H?%(X, E)——> H"»""%(X, E¥)
I I
H(X, Q*(E)) —> H" (X, Q" *(E*)),
which proves the result immediately. Once again, ¥, maps harmonic forms
to harmonic forms by Proposition 2.4, and the {H” (X, E)} are the Dol-
beault groups [the cohomology of the complex (87 *(X, E), d)], which are

isomorphic to HY(X, Q?(E)), as we saw in Theorem 11.3.20.
Q.E.D.

Remark: Serre proved this also in the case of noncompact manifolds,
under certain closed range hypotheses on d and by using cohomology with com-
pact supports, i.e., H4(X, Q?(E)) is the topological dual of H*~9( X, Q"~%(E*)),
where H%() denotes cohomology with compact supports. In our case
we have finite dimensional vector spaces (due to the harmonic theory),
in which case Serre’s hypothesis is fulfilled and the compact support is auto-
matic. Serre’s proof (in Serre [1]) used resolutions of Q(E) by both C~ forms
and by distribution forms, and he was able to utilize the natural duality of
these spaces to obtain his results. The proof above is due to Kodaira [1].

Corollary 2.8: Let X be a compact complex manifold of complex dimen-
sion n. Then

(a) br(X) = bZn-r(X)s r= 0’ ] 2"'
(b) h*9(X) = h=?m%X), p,q =0,...,n.

3. Representations of 3((2, C) on Hermitian Exterior Algebras

In this section we summarize the finite-dimensional complex representa-
tion theory for the Lie algebra 81(2, C) of 2 X 2 complex matrices with trace
zero, and then we will apply this theory to specific representations arising
from Hermitian exterior algebras as in Sec. 1. This representation theory is
available in various references (e.g., Serre [3], Varadarajan [1]), and we will
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survey the principal ideas needed for the applications we have in mind. We
will use some elementary facts and terminology concerning Lie groups and
Lie algebras as is found in any introduction to the subject (e.g., Chevalley
[1], Helgason [1], Varadarajan [1]), such as the Lie algebra of a Lie group,
and the associated exponential mapping, invariant measure on Lie groups,
etc., although we will be using these concepts only for specific low-dimen-
sional matrix groups and matrix algebras.

We recall that a Lie algebra is a vector space 2 equipped with a Lie
bracket product [ , ] which is anticommutative, and which satisfies the

Jacobi identity
(X [Y,Z]1 + (Y, [Z, X1 + [Z,[X, Y]] = 0.

An algebra of matrices equipped with the commutator Lie bracket is the
prototypical example of a Lie algebra. A representation of a Lie algebra 2 on
a complex vector space V is an algebra homomorphism

n: A —> End(V),

where End(V) is the Lie algebra of endomorphisms of ¥ equipped with the
commutator Lie bracket [4, B] = AB — BA. If n = dim V < o0, then we
say that the representation has dimension n. If dim V = oo, then we say that
n is an infinite-dimensional representation. A representation = is irreducible
if there is no proper invariant subspace ¥V, # 0 of V. Here V,, is a proper
invariant subspace if 0 # V, # V, and

a(X)Vo <= Vo, forall Xe.

If =, and =, are representations on V; and V,, respectively, then n = n, @ =,
is a representation of A on V; @ V, in a natural manner. Two representations
ny and 7, are equivalent if there is an isomorphism S: V; — V, so that
n, = S~ !n,S. A representation n is completely reducible if it is equivalent to
a direct sum of irreducible representations. A representation of a Lie group
(e.g., a matrix group) G on a finite-dimensional complex vector space V is a
real-analytic homomorphism p: G — GL(V), where GL(V) denotes the Lie
group of nonsingular endomorphisms of the vector space V. In this case, one
has the same notions of irreducibility, complete reducibility, etc. as discussed
above for representations of Lie algebras.

The Lie algebra 81(2, C) is, by definition, 2 X 2 complex matrices with
trace zero. One finds that 81(2, C) is the Lie algebra of the Lie group SL(2, C),
the group of 2 X 2 matrices with complex coefficients and determinant equal
to 1. There is an exponential mapping

3.1 exp: 812, C) — SL(2, C)
given by

exp X =eX = é’:o X"[n!,
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which is norm convergent, and where, for t € C,

eX =T41tX+ 0],
3.2 eXeY =TI+ (X + Y)+ 0(t]3),
erxerye—:xe—zy — I+ tl([X’ Y]) + 0(’['3)’

which indicates the basic relationship between the group law in SL(2, C)
and the Lie bracket in 3[(2, C).

Now consider the subgroup SU(2) of SL(2, C) consisting of unitary 2 x 2
matrices of determinant one. It follows readily from (3.2) that 3u(2), the
corresponding Lie algebra of SU(2), consists of skew-Hermitian 2 x 2
matrices of trace zero, i.e., X + X* =0, tr(X) = 0, where X* = 'X is the
Hermitian adjoint. Thus we have the following diagram of groups and
algebras, where i is the natural inclusion:

au(2) — 31(2, ©)
3.3) lexp lexp
SUQ2) > SL(2, C).

For reference, we will write down explicit generators for these algebraic
objects. First we note that 81(2, C) has dimension 3 and a basis is given by

(.4) X=[8 (1)] Y=[(l) g], H=[(l) _?].

One checks that the commutation relations
(3.5) [X,Y]=H, [H, X] = 2X, [H, Y] = —-2Y

hold. We see easily that 3u(2) is a real form of 8(2, C) (i.e., as vector spaces,
8l(2, C) = 3u(2) Qg C), and has a basis (over R) given by

iH, X-7Y i(X+7)
We note that i(X + Y) generates a one-parameter subgroup of SU(2) given
by

explit(X + Y)) = [°°s‘ i sin ’], teR.

isint cost

This can be checked by a direct computation or by noting that both I-
parameter subgroups have the same generator, namely

, 0 17 _d[cost isint
X+ Y)_l[l 0]_'E[isint cost]

t=0

Let

(.6) w = expldin(X + Y)] = [? 6]
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and we see that conjugation by w in 8[(2, C) gives rise to a reflection with
respect to the above basis (the Weyl group reflection). Namely,

wHw=! = —H, wXw =Y, wlw!'=JX.

We return now to diagram (3.3). For each of the algebraic objects in (3.3)
one considers representations on a complex vector space V, as we have done
before:

[8u(2) —> End(V)]p <= [3I(2, C) —> End(V)]¢
(3.7 at at
[SUQ) — GL(V)lr <2 [SL(2,C)—> GL(V)]c

Here [3u(2) > End(V)]g denotes R-linear algebra homomorphisms,
[81(2, C) — End(¥V)]¢ denotes C-linear algebra homomorphisms, [SU(2) >
GL(V)]r denotes real-analytic group homomorphisms, and [SL(2, C) —
GL(V)]c denotes complex-analytic group homomorphisms. The mappings r,
and r, are the natural restriction mappings, and d is the derivative mapping,
recalling that the Lie algebra of a Lie group is the tangent space to the Lie
group at the identity element, and noting that the derivative of a representa-
tion of a Lie group is indeed a representation of the associated Lie algebra.
We now have the following proposition.

Proposition 3.1: The mappings r;, r, and d in (3.7) are all bijective, i.e., there
is a one-to-one correspondence between representations of SL(2, C), 31(2, C),
SU(2) and 3u(2).

Proof: First we see that r, is bijective since 3I(2, C) is the complexifica-
tion of 3u(2), and R-linear homomorphisms defined on 3u(2) extend naturally
and uniquely as C-linear homomorphisms on 3l(2, C). The mappings d are
bijective since SL(2, C) and SU(2) are both connected and simply-connected
[SL2, C) =~ S3 x R3, SU(2) =~ §3), thus insuring that the inverse of exp
(the “‘logarithm™) is well-defined on SU(2) and SL(2, C). The diagram is
commutative, and we conclude that r, is bijective. In fact, if

p: 812, C) —> End(V)

is given, and if g = e* € SL(2, C) where X € 3l(2, C), then the representation
n: SL(2, C) — GL(V)

corresponding to the given p is of the form

(3.8) n(e¥) = eP™,

It is clear that dn = p.
Q.E.D.

Thus we have that representations of 31(2, C) are in one-to-one corre-
spondence with representations of SU(2), a compact Lie group. We now have
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the following important theorem of H. Weyl concerning complete reducibility
of representations of compact Lie groups (the “‘unitary trick’). We state the
theorem in full generality, but will use it only for G = SU(2).

Theorem 3.2: Let G be a compact Lie group, and let p: G— GL(V) be a
representation on a finite-dimensional complex vector space. Then p is com-
pletely reducible.

Proof: Choose a basis for ¥ so that V'~ C". Let dg be the natural left
invariant measure on the Lie group G which can be constructed from left
invariant differential forms dual to the left invariant vector fields which
comprise the Lie algebra of G (see Helgason [1], Chapter X, §1). Then

M(g) = p(g)p(8)*
is a Hermitian positive definite matrix for each g € G. Define

M= [ M(g)ds,

and it follows that M is Hermitian positive definite also. Then consider

p(g)Mp(g)* = fa p(g)p(D)p(v)*p(g)* dr
= fG p(gr)p(gn)* du
= ja p(D)p(1)* dr = M,

using the invariance of dr under the action of G on itself by left translation.
Since M is positive definite, we can write

M = NN*

where N is positive definite. Then we see that § = N ~!pN is equivalent to p
and moreover

p(g)p(g)* = (N~1p(g)N)(N~'p(g)N)*
= N~ 1p(g)NN*p(g)*(N~1)*
= N-IM(N-1)*
= ],

and thus j(g) is a unitary matrix for all ge G. Now we check that j is
completely reducible. Suppose that ¥, is any subspace of V invariant under
the action of 5. Then let V3 be the orthogonal complement to ¥, with respect
to the usual Hermitian metric on C". Then j(V,) < V,, and it follows
immediately that j(¥§) < V¢, since j(g), being unitary, preserves the inner
product in C" for each g € G.

Q.E.D.

Corollary 3.3: Let p be a representation of 3[(2, C) on a finite-dimensional
complex vector space, then p is completely reducible.
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Proof: This follows immediately from Proposition 3.1, Theorem 3.2 and
the fact that the bijections in (3.7) are natural and preserve irreducibility and
direct sums.

Q.E.D.

Now we know that any representation p of 8{(2, C) on a finite-dimensional
complex vector space V is the direct sum of irreducible representations. We
now turn to an explicit description of these irreducible representations,
which can be characterized, up to equivalence, by the dimension of the
representation space, as we shall see. We start with a definition.

Definition 3.4: Let p be a representation of 3I(2, C) on a finite-dimensional
complex vector space V. Let V'* be the eigenvectors of p(H) with eigenvalue
A, ie., for AeC,

Vi={veV.p(HWw = Av}.

We say that v € V'* has weight 1. A vector ve V is said to be primitive of
weight A if v is nonzero, v € V* and p(X)v = 0.

We now have some elementary lemmas which lead up to the basic
canonical form for a representation of 3l(2, C). We assume a fixed finite-
dimensional representation p on 81(2, C) on a complex vector space V.

Lemma 3.5:

(a) The sum 3 ;.c V*is a direct sum.
(b) Ifvis of weight A, then p(X) is of weight A + 2 and p( Y) is of weight
A—2.

Proof: (a) is simply the assertion that eigenvectors corresponding to
different eigenvalues are linearly independent. For (b) we observe that

p(H)p(X)v = (p(H)p(X) — p(X)p(H))v + p(X)p(H)w
= p((H, XDv + Ap(X)v
= pQ2X) + Ap(X )
= (A + 2)p(X)v.

Similarly, p(H)p(Y)v = (A — 2)p(Y)v.
Q.E.D.

Lemma 3.6: Every representation p of 8l(2, C) on a finite-dimensional
complex vector space has at least one primitive vector.

Proof: Let v, be an eigenvector of p(H), and consider the sequence of
eigenvectors of p(H)

vas P(X)vg, p(X)0q, . .., p(X)'0g, - . ..
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The nonzero terms in this sequence are linearly independent, since they are
eigenvectors with differing eigenvalues (Lemma 3.5), so the sequence must
terminate, and hence for some fixed k, p(X)'vo = 0, p(X)*~'vy # 0, and
thus » = p(X)*~'v, is a primitive vector.

Q.E.D.

We now have the basic description of an irreducible representation of
81(2, C) on a finite-dimensional complex vector space.

Theorem 3.7: Let p be an irreducible representation of 3I(2, C) on a finite-
dimensional complex vector space V. Let vo€ V be a primitive vector of
weight A for the representation p. Then, letting v_, = 0, and setting

v, = (1/mNp(YMwe, n=0,1,....m,...,
one obtains, for n > 0,

(a) p(H)Un = (j' - 2n)l),,,
(b P( Yy, = (l’l + l)vn+1,
© p(X)y=@A—n+ 1)p,_;.

Moreover, A = m, where m + 1 = dim¢ V, and

p(YNwe=0, n>m.

Proof: (a) asserts that v, is of weight A — 2n, which follows immediately
from Lemma 3.5. (b) is clear from the definition of v,, while (c) follows by
induction on n. Namely, for n = 0, we have p(X)v, = 0, since v, was
primitive, and v_; = 0. Suppose we know (c) for n — 1, then we compute

np(X)o, = p(X)p(¥)vn-1 = p(Y)p(X)0u_1 + p([X, Y])vn-y
= ('l —n+ 2)p( Y)vn—z + p(H)vn—l
=@A—n+2)n— D,y + (A —2n+ 2),_;
=n(A—n+ Do,_,,

and we obtain (c) after dividing by ».
We now show that 1 is necessarily an integer. Since V is finite-dimensional,
there is an integer m > 0 such that

Voy..-» Uy  are nonzero
Umstse s Umaks-.. =0

recalling that the nonzero v;’s are eigenvectors of p(H) with differing eigen-
values. Now apply (c) to v,,, , obtaining

0= p(X)Wmir=@A—(m+ 1)+ Doy,
= ('l - m)vrm

and since v,, # 0, it follows that A = m.
Let ¥, be the vector space spanned by {v, ..., v,}. Then we claim that



Sec. 3 Representations of 81(2, C) on Hermitian Exterior Algebras 177

V. is invariant under the action of p on V. Suppose v = Y7 a,0,, @; € C,
then

p(HYo = 3 a(m — 2y,

(0= 3 a,(n + Donsy
(X = é,‘o o,(m — n + Do,_,,

so p(8l(2, C))V,, < V,. Thus V,, is a nonzero invariant subspace, and since p

is assumed irreducible, it follows that ¥ = V,,, and that m + 1 = dim V.
Q.E.D.

Remark: We see that the basis {v,} in Theorem 3.7 gives a canonical
form for the matrices representing the linear mappings p(H), p(Y) and p(X)
acting on V. Namely

'm 0 0
0 m—2
p(H) = "
0
K 0 —m
0. m 0 0
0 m—1
p(X) = :
.1
| 0 0 o0
r0.0 01
1
p(Y)= |0 ,
m—l" 0
o ... 0 m’ ol

which for m = 1 gives the original 2 x 2 matrices in (3.4), showing that they
are in the same canonical form.

Next we see that there is, up to equivalence, only one irreducible repre-
sentation of dimension m + 1. Somewhat later we will describe an explicit
example of an (m + 1)-dimensional irreducible representation, arising from

symmetric tensor products.
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Theorem 3.8: Let V' be a complex vector space of dimension m + 1, with
m >0, and let {v,, . . ., v,,} be a basis for V. Then define a representation p
of 81(2, C) on V by setting

(@  p(Hv, = (m — 2n)v,,
(3.9) ()  p(Y)o, = (n+ Donsy,

(C) p(X)U,, = (m —n+ ])vn—h
wheren =0,...,m,andv_,; = v,,, = 0. This representation is irreducible,
and any irreducible complex representation of dimension m + 1 is equivalent
to this one.

Proof: One checks readily that the mapping p: 81(2, C) — End(V) given
by (3.9) is indeed a representation. Suppose now that ¥V, is a nonzero subspace
of ¥V invariant under p. Then there is an eigenvector of p(H) contained in V.
The list of eigenvectors of p(H) in (3.9a) is complete, so ¥, must contain one
of the vectors v, for some k. But then applying (3.9¢) to v,, we see that
vy € Vo. Then using (3.9b) we see that V, must contain v,,n=20,..., m.
Thus Vo = V, and p is irreducible. It is clear from Theorem 3.7 that an
arbitrary irreducible representation of dimension m + 1 is equivalent to this

one.
Q.E.D.

Corollary 3.9: Suppose p: 31(2, C) — V is an irreducible representation of
dimension m + 1, m > 0. Let ¢ € V be an eigenvector of p(H) of weight 4;
then there exists a priitive vector of weight A + 2r, for some integer r > 0,
so that

¢ = p(YY¢o,
and where

(m—r)!
Po = —1r

p(XYo.
Proof: Let {vo, ..., v,} be a basis for V satisfying (3.9) for the given
representation p. Then we see that for r fixed, 0 < r < m, we have

p(X), = (m —r + Do, _y,
pHXYo,=(m—r+ D)m—r+ 2v,._,,

etc., and thus

m!
P(X)'Ur = (m —r+ 1) T (m)vo = (m o.

Then applying the second ‘‘ladder operator,” we see that
m!

p(Y)p(X)v, = =

PN PAX Yo, = s
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etc., and thus
ey, mir!
p(Y) p(X) l),. - (m — ")' U,,

and thus we obtain the useful identity
(m _ r)‘ r r

Now suppose that ¢ is any eigenvector of p(H). Then ¢ is a multiple of one

of the eigenvectors {v,, ..., v,} above, say, ¢ = av,. Then it follows from

(3.10) that

— )
¢ = (1,",—,.5)— p(YYp(X)o,
and letting
_(m—=r)! Xy
‘Po - m|r! P P,

we see that ¢, is primitive, and the corollary is proven.
Q.E.D.

We now introduce a specific representation of SL(2, C) and its derived
representation of 81(2, C). Consider C? as column vectors, and let

1 0
V1,0 = [O]’ Vig = [1]

be standard basis vectors. Then SL(2, C) acts on C? by left matrix multiplica-
tion, and we call this representation n;. Then if we consider S™(C?), the
m-fold symmetric tensor product of C? with itself, we define n,, = S™(x,),
where each matrix n,,(g) is the multilinear extension of n,(g) = g to S™(C?),
and we note that dim S™(C?) = m + 1. The representation n, induces
a derived representation p, = dn,, of 3I(2, C) on S™(C?). We note that p,
is simply matrix multiplication on the left by elements of 3[(2, C) [just as for
the Lie group SL(2, C)], whereas p,(g) = dn,(g) is the extension of the
linear mapping p,(g) to S™(C?) as a derivation, which is easy to check.
Thus in particular we obtain the following results:

pi(H)vy 0 = 04,0, p1(X)vy0 =0, pi(Y)vy0 =011,
etc., and this representation satisfies the relations in (3.9) for m = 1. Now

define
vm,k = U’l’.‘.(—)ku’{,lv 0 S k S m,

m + 1 elements of S™(C?). Then {v,,,} is a basis for S™(C?). Moreover, one
can compute easily that

pm(H)vm,k = (m — Zk)vm.k! 0<k<m,

pm(X)vm,o =0,

pm( Y)U,,._,,, =0,

Pm( X0 = k-1, I <k<m,

pm(Y)vm,k = (m — k)vm.k+1’ 0<k<m—1.
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It is clear from these relations that any basis vector v,,, is expressible as
powers of p,(X) and p,(Y) acting on v,, o, Which we see is a primitive vector
of weight m. Thus v, , generates S™(C?) by the action of p,,, and thus p,, is
irreducible, and hence equivalent to the representation in Theorem 3.8. In
fact, if we set

P = pm( Y)kvm.oy
we see that

!
o = (_r—n—-”i—k—)_' v7.o* vk 1

from which follows the irreducibility.

Now let us compute the action of w, the Weyl element in SL(2, C), on
¢x. We see that

m!
Tn(W)Py = m — B! Tn(W)(01,0)" ~ (01,00

= G ST E e o)

But

(W0 = ivy,4
ny(Whvy,1 = vy

and hence
. k!
7tm(w)(pk =i" (m — k)! Pm—k-

Thus we obtain

@3.11) Ruon( V00 = i" sy pu V"4,

Now we note that the identity (3.11) which involves both the representation
of SL(2, C) and 3I(2, C) was derived from this particular explicit representa-
tion, but we see from its form that it will be valid on any irreducible representa-
tion of SL(2, C) and 8I(2, C) on a vector space of dimension m + 1.

Now consider a specific representation of 81(2, C) on the exterior algebra
of forms on an Hermitian vector space E. We will use the notation and
terminology of Sec. 1. Let E be a fixed Hermitian vector space of complex
dimension n, and associate to E the algebra of forms AF, and the operators
L and L*. We introduce the notation:

= L*
2n
B:= 3% (n—pIl,.
p=0
We then define a representation
a: 312, C) —> End(AF)
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by setting
oX)y=A, «¥Y)=L, ofH)=B.

We see by Proposition 1.1 that o is indeed a representation of SL(2, C), since
the commutation relations [B, L] = —2L, [B, A] = 2A, and [A, L] = B are
easy to verify.

Definition 3.10: A p-form ¢ € AF is said to be primitive if Ap = 0, i.e., if
o X)p = 0.

Remark: Recall that B = 33", (n — p)II,, and thus any homogeneous
form of degree p is an eigenvector of a(H) of weight n — p. Hence a primitive
p-form is a primitive vector for the representation « of weight n — p.

If ¢ is a primitive p-form, then the action of « generates a subspace
F, = AFofdimensionn — p + 1 on which « acts irreducibly. Moreover, the
action of a leaves the real forms AgF invariant since L, A, and B are real
operators. The decomposition of AgF into irreducible components is called
the Lefschetz decomposition of the exterior algebra, and this is compatible
with the decomposition F = @AP9F, since L, A, and B are bihomogeneous
operators. This is elaborated in the theorems which follow. By Proposition 3.1,
we see that « induces a representation of SL(2, C) on AF, for which we will
use the notation n,. We can restrict , to SU(2), and we observe that Ta|suca
is unitary, which follows from the fact that a|s,q,, are skew-Hermitian opera-
tors, i.e.,

aiH) = iB, a(i(X+ Y))=i(A+L), oX—Y)=A—L.

The following theorems are consequences of the representation theory of
81(2, C) for the specific representation « on the Hermitian exterior algebra
AF. The first results can be proved directly without appealing to representa-
tion theory, as is done in Weil [1], but we prefer to use the representation
theory as it gives more insight into the major results (cf. Chern [3] and
Serre [3]. We can then give Hecht’s elegant proof of the fundamental Kihler
identities using the language developed here. Let (x)* = max(x, 0).

Theorem 3.11: Let E be an Hermitian vector space of complex dimension .

(@) If ¢ € APF is a primitive p-form, then L% = 0,q >(n — p + D*.
(b) There are no primitive forms of degree p > n.

Proof: Let ¢ be a primitive p-form, and let F, be the subspace of AF
generated by the action of 81(2, C) on ¢ by the representation a. Then
p(H)p = mo, where dim F, =m + 1. But p(H)¢ = (n — p)p, so m =
n —p. Thus p(Y)¢ = L% =0, for ¢ > (n — p + 1)*, by Theorem 3.7.
Part (b) is a simple corollary of the fact that dim F, =n —p + 1.

Q.E.D.



182 Compact Complex Manifolds Chap. V

We will refer to the following theorem as the Lefschetz decomposition
theorem for an Hermitian exterior algebra.

Theorem 3.12: Let E be an Hermitian vector space of complex dimension
n, and let ¢ € APF be a p-form, then

(a) One can write ¢ uniquely in the form

(3.12) ¢ = 2 Lo,

r2(p-n+
where, for each r > (p — n)*, ¢, is a primitive (p — 2r)-form. Moreover,
each ¢, can be expressed in the form
(313) @ = Z ar,sLsAH.s(pr a,s€ Q'
TS

(b) If L™p = 0, then the primitive (p — 2r)-forms ¢, appearing in the
decomposition vanish if r > (p — n + m)*, i.e.,
(p=-n+mt

p= 3 Lo,

r=(p-mt*

(¢c) ifp<n,and L"~Pp = 0, then ¢ = 0.

Proof: The representation space ¥ = A F of the representation « decom-
poses into a direct sum of irreducible subspaces V=V, @--- @ V,. Let ¢
be a p-form, then

o=Vt

Y’ € V. Then each i/ is an eigenvector of p(H) of weight n — p, and hence
by Corollary 3.9, we see that

'ﬁj = LP'XJa
where yx; is a primitive (p — 2r,)-form, and
(3.19) x=cA"W, ¢eQ.

Collecting the primitive forms of the same degree, we obtain a decomposition
of ¢ of the form

o= 3 Lo,

rz(n-p+

where each ¢, is primitive of degree (p — 2r).
To see that the decomposition is unique, we suppose that

(3.15) 0=¢o+ Loy +---+ L™y,

where each ¢; is primitive j = 0,..., m > 1. We note that it follows from
Theorem 3.7 that

(3.16) AkLk(pk = Ck(Pk, k == 1, oo m
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for a rational nonzero constant ¢,, depending only on p, k and n. Applying
A™ to (3.15) and using (3.16) we find that

0 = A"go + A""HAL)g, +- -+ AA"IL""Y)g,,_; + A"L"y,

which implies immediately that ¢, = 0, contradicting our assumption that
¢, Was primitive. Thus the decomposition (3.12) is unique.

To see that (3.13) holds we proceed in a similar manner. Let the p-form ¢
have the decomposition

¢ =@o+ Loy +---+ L™y,
where ¢, are primitive (p — 2j)-forms. Then

Amp = A"y + A" (AL)py + -+ A"L"o,
=0+"'+0+cm(pm,
and so
Pm = (l/cm)Am(p

By induction from above, we get formulas of the type (3.13) for each ¢,
j=0,...,m.
Parts (b) and (c) follow simply from the uniqueness. Namely, for part (b),
we see that
O0=L"p= I L™,
rz(p-n+
Since ¢, is primitive, it follows from Theorem 3.11 that Lip, =0 if ¢ >
(n — (p — 2r) + 1)*, which implies that L"*™p, =0 if r < (p — n 4+ m).
Thus we have
0= D .
r2(p-n+m+ qz(p+2m-m+
The total degree of each term is 2m + p, and thus we have a primitive
decomposition of the zero form of degree p + 2m, from which it follows that
Po-m=0,9=(p+2m—n)*,ie, @, =0,r >(p —n+ m)*, as desired.
Finally, part (c) is a special case of part (b).
Q.E.D.

Corollary 3.13: Let ¢ be a p-form in AF. Then a necessary and sufficient
condition that ¢ be primitive is that both (a) p < n and (b) L"?*1¢ = 0.

This corollary is a simple consequence of the Lefschetz decomposition
theorem (Theorem 3.12).

We now want to prove some fundamental results concerning the relation-
ship between the operators *, L and A which are important in the theory of
Kihler manifolds. The development we give here is due to Hecht [1] and
differs from the more traditional viewpoint of Weil [1] in that a global
representation of both SL(2, C) and 31(2, C) on the Hermitian exterior algebra
is utilized, leading to some simple ordinary differential equations which
simplifies some of the combinatorial arguments found in Weil [1].
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Let E now be an Hermitian vector space with fundamental form
Q=3 x, A Yy,
u=1
given by (1.9) where {x,, y,} is an orthonormal basis for E’, as before. Now,
if n is any p-form in AF, we let
emMe:=nhre

be the operator acting on A F given by wedging with 5. If 5 is a real 1-form,
then we check easily that
3.17) e*(n) = xe(n)x,
and if {e,, ..., e,,} is a real oriented orthonormal basis for E’, we see from
Sec. 1 that

e*(eh)(eh Ao A e.ik) =€ NNy,

(3.18) if  ji¢{...,J» and O otherwise.

We note that
L=e@ =3 e(x)e(n)
A =e*¥Q) = ix e*(y,)e*(x,).
i
It is clear that
(3.19) [L,e(n)] =0, foranyne AF,
since Q is a 2-form. On the other hand, we claim that
@  [A, e(x)] = e*(yu)s
() [A, e(y)] = —e*(xy),

foru = 1,..., n. We note that (3.20b) follows from (3.20a) by reversing the
role of x,, y, in the definition of the operator L. To see that (3.20a) holds we
consider

(3.20)

Gay el = 5 e00etex) — ex) 3 e (re(x,)
= e*(y;)e*(x))e(x;) — e(x;)e*(y)e*(x;),

since e(x;) commutes with e*(x,) and e*(p,) for 4 # j, which follows readily
from (3.18). Now we consider the action of both [A, e(x,)] given by (3.21)
and e*(y;) on monomials, i.e., multiples of products of x;’s and y;’s. Then we
see that if i is a given form, then

Y=Y+ x; AN+ A+ x5 Ay A Y,

where /,, 5, Y3 and Y, do not contain x; or y; or a wedge factor. It follows
readily that

(A, e(x)l = s — x; A s
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and also that
YW = Y3 — x5 A s,
50 (3.20b) follows.
Now suppose that 5 is a (1, 0)-form. Then
[A, e(n)] = —ie*(q),
[A, e(@)] = ie*(n).
Moreover, if n is a real 1-form, then

(3.23) [A, e(n)] = —Je*(n)J ~1.

We see that (3.22) follows from (3.20), since it suffices to consider the special
case of n = x; + iy;. To see that (3.23) is true, we simply note that any real’
1-form can be written in the form n = ¢ + @, where ¢ is of type (1, 0), and
then one checks that

(3.22)

—ie*(i) = —Je*(i)J !,
ie*(n) = —JeX*(m)J .

With these preparations made, we now want to prove two basic lemmas
due to Hecht [1]. We introduce the following operator on A F induced by the
action of SL(2, C) on AF by the representation m,. Let

# = n(w) = exp(ina(X + Y)) = exp(}in(A + L)).

The first lemma shows us that # is closely related to the * operator.

Lemma 3.14: Let n be a real 1-form. Then
(3.24) #e(m# ' = —iJe*(n)J ~1.

Proof: We set, for t e C,
e(n) = exp(ite(X + Y)) - e(n) * exp(—ita(X + Y)),
= exp(it[A + L]) - e(n) - exp(—it(A + L)),

and we note that e,;(n) = #e(n)#~'. We will see that e,(n) satisfies a simple
differential equation with initial condition eo(7) = e(n), which can be easily
solved, and evaluating the solution at ¢ = 4n will give the desired result.
First we let

ad(X)Y = [X, Y]

for operators X and Y. Then one obtains
(3.25) e(n) = 2 (1/kDadk[it(A + L)e(n).

This follows from the fact that if ¢ is any representation of SL(2, C) on V,
then (cf. (3.8))

a(e?) = et 4,
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i.e., representations commute with the exponential mapping. In this case ¢ is
conjugation by 7,, and do is given by ad(a) (cf., Helgason [1] or Varadarajan
[1]D), and ada(X + Y) = ad(A + L).

Now ad*(A + L) is a sum of monomials in ad(A) and ad(L). Since
AL = LA + B, ad(L)e(n) = 0, and ad(— B)e(n) = e(n) (since n is of degree
1), we see that e,(n) can be expressed in the form

e) = 3 a(tad(Aeln),

t=0
where a,(?) are real-analytic functions in t. Now (3.23) implies that ad*(A)e(n)
= 0, for k£ > 2, since A commutes with J and e*(y). Thus

(3.26) e(n) = ao(t)e(n) + a,(H)ad(A)e(n).

Let f7(¢t) denote differentiation with respect to z. Then we see, by differentiat-
ing (3.25), that e,(n) satisfies the differential equation

(@)  eln) = i(ad(A) + ad(L))e,(n).
(®)  eo(n) = e(n).

We can solve (3.27) by using (3.26). Namely, we have
(3.28) e(n) = ag(t)e(n) + aj(t)ad(A)e(n)
must equal

i(ad(A + L))ao()e(n) + a,(t)ad(A)e(n)]
= iag()ad(A)e(n) + iay(t)ad(L)ad(A)e(n),

using the fact that ad*(A)e(yy) = 0, and ad(L)e(yy) = 0. But

ad(L)ad(A)e(n) = ad([L, ADe(n) +-ad(A)ad(L)e(n)
= ad(—B)e(n) = e(n),

and thus (3.28) must equal
iao(t)ad(A)e(n) + iay(1)e(n).
This will be satisfied if

(3.27)

ao(t) = iay(t),
a(t) = iag(t).

Then letting ay(t) = cos ¢, a,(t) = i sin ¢, we find that

(3.29) e.(n) = cos t e(n) + isin t ad(A)e(n)

is the unique solution to (3.27). Letting ¢ = = in (3.29) yields
exz = i[A, e(m)],

which by (3.23) gives (3.24) as desired.
Q.E.D.

The next lemma shows the precise relationship between * and # acting on
p-forms.
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Lemma 3.15: Let ¢ € APF, then
xp = " .

Proof: The x-operator satisfies
(3.30) x1 = vol = (1/n)L*(1),
(3.31) *e(n) = (—1)Pe*(n)*,

as an operator on A’F for any real 1-form #. Relation (3.30) is clear. To see
(3.31), let ¢ € APF, and write

xe(n)p = xe(n)x*x~1p = (—1)*"~Pe*(n)*o.

Now * is the only linear operator on A F satisfying both (3.30) and (3.31), as
the forms obtained from 1 by repeated application of e(n) span AF. Now let

R L

be an operator defined on APF. We recall from (3.11) that

(3.32) Ha(F Py = i" B a4,

where ¢, is primitive of weight r1. But ¢, = 1 is a primitive 0-form of weight
n, so we have, using (3.32) for k = 0,
#1 = (i"/n)L(1).
Thus
# =i""i"n)L"(1) = vol.
Similarly, if n € ALF, and ¢ € APF, we see that

ge()p = i®* V=T~ fe(n)o,
= iP"N(— 1T ~ ‘et~ #o,
= i7" (—1)’e*(n)J ~#o,
= (—1ye*(n)*e,
thus verifying (3.31) for #. Thus * = %.
Q.E.D.

We now have an important relation between * and L" acting on primitive
p-forms (cf., Weil [1]), the proof of which is due to Hecht {1].

Theorem 3.16: Let ¢ be a primitive p-form in A?F, then
r!
(n=p—-r)
Proof: Let F, be the subspace of A F generated by {L"¢},0 <r <n — p.

=I(L’<p=(—1)"’("+1)/2 L * o, O0<r<n-p.
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Then 7,|r, is an irreducible representation of SL(2, C), and we see by (3.32)
that

r
r [ Lt 4 n—-p- P
#Lo =i G=p =7 r)’L

Hence, by Lemma 3.15,
*L’(p — i(p+2r)3—nJ—1#Lr¢

M

— jp%-n —l‘n—p—___ n—-p- r
= {P*-nJ -1 G —p =) L
Y ) LI D
n—p—n) ¢
ip3— r! n~p-r
= P P(_I)P (;___p__—_-r)! L 14 J(p
= (—1)po+ iz r! L*=?"Jo.

B—p—n)
Q.E.D.

4. Differential Operators on a Kiihler Manifold

Let X be a Hermitian complex manifold with Hermitian metric 4. Then
there is associated to X and 4 a fundamental form Q, which at each point
x € X is the form of type (1, 1), which is the fundamental form associated
as in (1.5) with the Hermitian bilinear form

hx: TX(X) X TX(X) -_—> C’

given by the Hermitian metric.

Definition 4.1: A Hermitian metric g on X is called a Kdhler metric if the
fundamental form Q associated with g is closed; i.e., dQ = 0.

Definition 4.2:

(a) A complex manifold X is said to be of Kdhler type if it admits at
least one Kéhler metric.
(b) A complex manifold equipped with a Kihler metric is called a Kdhler

manifold.

We shall see later that not every complex manifold X admits a Kéhler
metric. On a complex manifold a Hermitian metric can be expressed in local
coordinates by a Hermitian symmetric tensor

h=3Y h,(2)dz,®dz,
where h = [h,"] is a positive definite Hermitian symmetric matrix (depend-
ing on z); i.e., A ='h and ‘@hu > 0 for all vectors u € C". The associated
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fundamental form is then, in this notation,
Q = 5 ¥ h(2)dz,\dz,

In the notation of Chap. III,
. d 0
h(z) = h(az &—v)(z).

Let us first give some examples of Kihler manifolds.
Example 4.3: Let X =Crandleth = Y., dz, ® dZ,. Then
Q=L $dzndz, = 3 dx,ndy,,
2 = H H = H

where z, = x, + iy,, £ =1, ..., n, is the usual notation for real and imagi-
nary coordinates. Then, clearly, dQ = 0, since Q has constant coefficients,
and hence /1 is a Kihler metric on C.

Example 4.4: Let w,,..., ®,, be 2n vectors in C" which are linearly
independent over R and let I" be the lattice consisting of all integral linear
combinations of {w,, . .., ®,,}. The lattice " acts in a natural way on C"

by translation,z — y + z,ify € T". Let X = C*/T be the set of equivalence
classes with respect to I', where we say that z and w are equivalent with re-
spect to ' if z = w + y for some y € T. By giving X the usual quotient topo-
logy, we see that X is in a natural manner a complex manifoldt and that its
universal covering space is C*. We call X a complex torus, and X is home-
omorphic to ' X --- x §!, with 2n-factors. The Kéhler metric & on C*,
given above, is invariant under the action of I" on C~; i.e., if y € T gives a
mapping y : C" — C7, then y*h = h, where p* is the induced mapping on
(covariant) tensors. Because of this invariance, we can find a Hermitian metric
h on X so that if & : C* — C" /T is the holomorphic projection mapping,
then 7*(h) = h. This is easy to see, and we omit any details here. Moreover,
n is a local difftomorphism, and hence in a neighborhood U of a point
z € C", we have m,:=n|, is a biholomorphic mapping. Hence (ng')*A|,
= h|,w,, and similarly for the corresponding Q and Q. Since d commutes
with (zm;')*, we have
dQ |,y = (ng')*dQ|, = 0.

Then % defined on X is a Kihler metric, and all complex tori are then neces-
sarily of Kahler type.

Example 4.5: One of the most important manifolds of Kéhler type is
P, Let (&,,...,¢&,) be homogeneous coordinates for P,, and consider the
differential form Q,

o i P B~ 3L dL,
~7 I

tSee Proposition 5.3 for a proof of this fact.
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where we have let [£|? = &2 + - -+ + &%, as usual. This form is the homo-
geneous representation for the curvature form of the universal bundle over
P, with the standard metric on the frame bundle [except for sign; see equation
(4.3) in Chap. III]. In particular, then, Q defines a d-closed differential form
Qon P, of type (1, 1). In terms of local coordmates in a particular coordinate
system, for example,

we can write Q as

(l +[wl’)Zdw Adw, — Z ww, dw, A dw,
Qw) = = ov=
2 (r+ IWIZ)2
Thus the associated tensor

= (X h,(w)dw, ® dw,)(1 + |w|?)?

has for coefficients (ignoring the positive denominator above)

ho(w) = +|wl)d,, —w,w, wyv=1...,n

It is easy to see that & = [h,,] is Hermitian symmetric and positive definite.
In fact, suppose that u € C~. Then

ihu = Y hu,d, = = D F I wPBuui, — (X Pu)E wi)
- ‘ull + Iulzlwlz - (W’ ii)(w, u),

letting (,) denote the standard inner product in C". Hence by Schwarz’s
inequality we have
‘dhu > |u?,

and hence / is positive definite. It then follows that A defines a Hermitian
metric on P, (which is called the Fubini-Study metric classically). Since Q
isaclosed (1, 1)-form on P, as noted earlier, we see that A is, in fact, a Kédhler
metric. This Kahler metric is invariant with respect to transformations of
P, induced by unitary transformations of C**! — {0} onto itself, a property
which will not concern us too much but which is important from the point
of view of homogeneous spaces.

The next proposition combined with the above basic examples gives
many additional examples of Kadhler manifolds.

Proposition 4.6: Let X be a Kédhler manifold with Kéhler metric 4 and let
M be a complex submanifold of X. Then / induces a Kdhler metric on M,
and with this metric M becomes, therefore, a Kihler manifold.

Proof: Letj: M — X be the injection mapping. Then h,, = j*) defines
a metric on M, and j*Q = Q,, is the associated fundamental form to /,,
on M. Since dQ,, = j* dQ = 0, it is clear that Q,, is also a Kahler funda-

mental form.
Q.E.D.
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In terms of the differential operators d, d, and 0 on a Hermitian mani-
fold, we can define the following Laplacian operators,

A = dd* + d*d
O = 89* + 3%
G- dd* + 3+,

of which the first and last will play an important role in our study of Kihler
manifolds later in this chapter. Note that O is the complex conjugate of the
operator [, thus justifying the notation. What can we say about the relation
between the Laplacians A and O ? In general, not too much,! but on Kahler
manifolds there is a striking relationship. Recall that an operator P : 8*(X)
—» 8*(X) is said to be real if Pp = P@, i.e., P =

Theorem 4.7: Let X be a Kahler manifold.} If the differential operators
d, d*,d,0*% 4, 9*, O, O, and A are defined with respect to the Kihler metric
on X, then A commutes with %, 4, and L, and

A =20 =20.
In particular,

(a) O and O are real operators.
(b) Al,.:879 — P9,

Remark: Neither (a) nor (b) of the above theorem are true in general
and these properties will imply topological restrictions on Kihler manifolds,
as we shall see in the next section.

To prove Theorem 4.7, we shall first develop some consequences of the
representation theory from Sec. 3 as applied to the study of the interaction
of the operators d and d and their adjoints. The operators L and L* will be
used as auxiliary tools in this work$ and we shall also use the concept of a
primitive differential form on a Hermitian complex manifold X. We shall say
that p € 8°(X)is primitive if L*¢ = 0, and we shall denote by §2(X) the vector
space of primitive p-forms. All the results of Sec. 1 concerning primitive
forms on an Hermitian vector space then apply to the primitive differential
forms.

We also define the operators

d = J-'dJ] = wid]
d* = J=1d*] = wid*J,

tThere is a relationship which involves the torsion tensor, cf. Chern [2] or Goldberg[1].

{Note that we do not necessarily assume compactness here. In the noncompact case,
we assume that the formal adjoints are given by 3* = —#¥d¥, etc. (cf. Propositions 2.2 and
2.3), which would be the formal L2-adjoints for forms with compact support on an open
manifold.

§Note that L* = w+L=* (cf. Sec. 1) can be siown to be identical with the L2-formal
adjoint of the linear operator L [for the Hodge metric on A*T*(X)] in the same way that
d* = —#d% is derived as in Proposition 2.3.



192 Compact Complex Manifolds Chap. V

a twisted conjugate to d. These are real operators which are useful in applica-
tions involving integration and Stokes’ theorem, and this is one reason for
introducing them. For instance, if we let d; act on a function ¢, we have
do = wldlp
= (—1)J(dp + dp)
= (—=1)(idp — idp)
and we could use this last expression for 4, as a definition. From d, =
—i(d — @), it follows immediately that
@.1 dd, = 2idd,
which is a real operator of type (1, 1) acting on differential forms in §*(X).
We now have an important theorem concerning the commutators of these
various operators.

Theorem 4.8: Let X be a Kihler manifold. Then
(@) [L,d]=0,[L* d*] =0.
(b) [La d*] = dca [L*’ d] = _d:‘

Proof: Part (a) is simple and follows from the fact that the fundamental
form Q on X is closed, the basic Kihler assumption. The second part of (a)
is the adjoint form of the first part. Similarly, the second part of (b) is the
adjoint statement of the first part, and the first statement holds if and only
if the second statement holds. Let us show then that

L*d — dL* =—J~'d*J.
Letting L* = A as before, we see by Proposition 2.3 that
d* = (—1)**'xdx~1,  acting on p-forms.

Now let ¢ be a p-form on X; then we find that, from Lemma 3.15,

#o = i~P*"xg,
#-l(p — i(Zn-p)z—n*—lJ—l(p — ip’-n*-lj—l(p.

Therefore we see that

#d#—l(p — i—(2n—p+1)3+nip’-—n‘]*d*—lJ—l(p
=i~ 12 ]xdx"1J "¢
4.2) = iJ[(—1)P* xdx— T 1o
= iJd*J .

Now let

, = explitae(X + Y)] o doexp[—ita(X + Y)]
= explit(A + L)] o d o exp[—it(A + L)].
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Just as in the proof of Lemma 3.14, we have
d, = kﬁo (1/kNad"[it(A + L)d
and, since ad(L)d = 0, by the Kihler hypothesis,

43) d,= 3 a(t)ad(hd,

where a,(¢) are real-analytic functions of t. Now d,, is an operator of degree
—1, which implies that

@4 dy2 = ay(n/2)ad(A)d,

since all other terms in the expansion (4.3) are operators of degree +1, —3,
—5, ..., etc., and the expansion clearly has only a finite number of nonzero
terms. But then it follows from (4.2) and (4.4) that iJd*J~! is proportional
to ad(A)d, and hence that ad*(A)d = 0 for k > 2, since A commutes with d*
and J. Thus

d, = ay(t)d + ay(t)ad(N)d,
and just as in the proof of Lemma 3.14, we conclude that
d, = (cos t)d + i(sin t)ad(A)d,
and now the theorem follows by letting ¢ = 7/2 and observing that Jd*J 1 =
—Jid*J.
Q.E.D.
Corollary 4.9: Let X be a Kédhler manifold. Then
[L,d]=0, [L*d¥]=0, [L,d¥]=—d, and [L*d]=d"
Proof: This follows easily from Theorem 3.8, since the operator J
commutes with the real operators, L, L*, and so (d,). = —d and (d¥).

= —d*.
Q.E.D.

Considering the bidegree structure of the differential forms, we obtain
the following corollary to Theorem 3.8.
Corollary 4.10: Let X be a Kéhler manifold. Then
[L,d) = [L,d] = [L*, %] = [L*,d*] = 0

(4.5) [L,d*] = id, [L,0*] = —id
[L*,d] = id*, [L*,d] = —id*.

d*d, = —d d* = d*Ld* = —d L*d,

dd* = —d¥d = d*Ld* = —dL*d

30* = —0*d = —id*Lo* = —idL*d

00* = —9*d = i9*Lo* = idL*d.

(4.6)
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Proof: Equations (4.5) follow from Theorem 4.8 by comparing bidegrees
and using the fact that d. = i(d — d).
To obtain (4.6) we use, for example, d* = [L*, d.] as follows:
d*d, = L*dd, — d.L*d. = —d.L*d,
—dd* = —d.L*d, + ddL* = —dL*d,
and so '
d*d, = —d L¥d. = —d d*.

Similarly for the others, setting d. = [L, d*], etc.
Q.E.D.

Using the above results, we are now in a position to prove Theorem 4.7
concerning the Laplacians on a Kéhler manifold.

Proof of Theorem 4.7: 1t is clear from the definition of 4* and A that A
commutes with d and *. So we have to see that LA — AL vanishes. We have

AL — LA = dd*L + d*dL — Ldd* — Ld*d
=dd*L + d*Ld — dLd* — Ld*d
= —d[L,d*] — [L, d*]d,
and substituting, from Theorem 4.8, we obtain
AL — LA = —dd, — d d.
It follows from (4.1) that dd, = —d.d, since dd + dd = 0; thus we obtain
AL — LA =0.

To prove the relationship between A and the other Laplacians, we write,
using Corollary 4.9,

A =dd* + d*d =d[L*,d)) +[L*,d.)d
=dL*d, — dd.L* + L*d.d — d.L*d.
Note that all the information about the metric in the operator A is contained
in the operator L*, since d and d, depend only on the differentiable and com-

plex structure, respectively. Multiply on the left by J~! and on the right by
J; we obtain

A, = —d . L*d + ddL* — L*dd, 4 dL*d..

But since d.d = —dd,, we have that A = A_, in a trivial manner.
We now write (noting that 2d = d + id,, etc.)

4(09* + 0*d) = (d + id)(d* — id¥)
+ (d* — id*)d + id.)
= (dd* + d*d) + (d.d¥ + d*d,)
+ i(d.d* + d*d) — i(dd* + d*d).
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By (4.6) in Corollary 4.10, we see that the last two parentheses vanish. We
also have

A, = J7AT = J-tdd*J 4 J-td*d]
=dd¥ + d*d..
Therefore we have
40=A+A4.4+0
=2A.

Thus, 20 = A. The other assertion is proved in a similar manner. The fact
that A is of bidegree (0, 0) follows now trivially from the fact that O is of
bidegree (0, 0). Similarly, since A is a real operator, 00 and 0O must also be

real operators.
Q.E.D.

Corollary 4.11: On a Kihler manifold, the operator A commutes with J,
L* d, d, d, d* and d*.

Since L* commutes with A on a Kihler manifold, we have an analogue
to Theorem 3.12. On a Kihler manifold X, A-harmonic differential forms are
the same as, by Theorem 4.7, [J-harmonic or O-harmonic forms, and we
shall say simply harmonic forms on X, to be denoted by 3’(X) and 3C?-9(X)
as before. We shall denote by 3C(X) and 3C2%(X) the primitive harmonic
r-forms and (p, q)-forms, respectively; i.e., 3;(X) is the kernel of the map-
ping L* : (X)) — ¥ %(X) and 329 X) is the kernel of the mapping
L* :3CP-9(X) — JC»~'-97!(X). These maps are well defined since L* com-
mutes with A,

Corollary 4.12: On a compact Kihler manifold X there are direct sum
decompositions:
XX = 3 LX)
s=(r-n)*

XrqX)y= ¥ LX),

s=(p+q-n)*

This result follows immediately from the primitive decomposition theorem
(Theorem 3.12) and the fact that A commutes with L and L*.
Our last corollary to the Lefschetz decomposition theorem is the following

result, also due to Lefschetz.

Corollary 4.13: Let X be a compact Kihler manifold, then
L""? = ¢(Q"~*): H?(X, C)—> H*~?(X, C)
is an isomorphism, where Q is the Kihler form on X.
Remark: This implies the Poincaré duality theorem (Theorem 2.5) in

this context, and is referred to in algebraic geometry as the “strong Lefschetz
theorem” (cf., Grothendieck [1]).
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Proof: This is an immediate consequence of part (c) of the Lefschetz
decomposition theorem (Theorem 3.12), where we represent the cohomology

groups by harmonic forms as in Corollary 4.12.
Q.E.D.

Remark: The basic result of this section is Theorem 4.7, and we shall
develop its consequences in the next section. The derivation of this result
was based on Theorem 4.8 and its corollaries, and this depended in turn on
the representation theory of Sec. 3. However, the statement of Theorem 4.7
does not involve the representation theory, and there are alternative methods
of deriving Theorem 4.8 (from which then follows Theorem 4.7) which do not
involve this concept. One basic approach is the following one. Suppose that

Q = £ 5 h(2)dz,ndi,

is the fundamental form on a Kéhler manifold for z near 0 in some appro-
priate coordinate system. By a linear change of coordinates, one can obtain
easily that the matrix A(z) = [h,,(2)] is the identity at z =0

huv(o) == 611\!
or

h(z) = I + O(z).

By using the fact that dQ = 0, one finds easily that the coefficient matrix
satisfies the differential equations

Q;L“—"(Z) ah‘”() v, A=1,....n
4.7
4.7 o,

(9' WLy, A=1...,n

By making a new (quadratic) change of variables of the form
L=zt 3 Al

where [4%,] is a symmetric (in o, ) complex matrix (for fixed u), one can
choose the coefficients 4%, {by using the differential equations (4.7)] so that

- Z0),

A{.‘ﬂ =

and it will follow that
h(z) = I 4 O( z|*);

i.e., all the linear terms in the Taylor expansion of # at O vanish. Such a
coordinate system is called a geodesic coordinate system. At the point 0, one
can derive Theorem 4.8 by ignoring the higher-order terms, since in the com-
mutator only first-order derivations of L and L* will appear. Then one is
reduced to proving the commutator relations in C" with the canonical Kahler
metric as in Example 4.3. This is not difficult but will involve a sort of com-
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binatoric multilinear algebra similar to that developed in Sec. 1 in going back
and forth between the real and complex structures.

One can also prove the Lefschetz decomposition theorem for differential
forms on a Kéhler manifold independent of the representation theory of
81(2, C), per se, and then use this to prove the basic Kihler identities. This is
the approach followed by Weil [1].

5. The Hodge Decomposition Theorem
on Compact Kihler Manifolds

In this section we shall derive the Hodge decomposition theorem for
Kihler manifolds and give various applications. Let X be a compact complex
manifold. Then we have the de Rham groups on X, {H"(X, C)}, represented
by d-closed differential forms with complex coefficients, and the Dolbeault
groups on X, {H?-9(X)}, represented by d-closed (p, q)-forms (Sec. 3 in Chap.
II). We have seen that these vector spaces are finite dimensional (Sec. 5 in
Chap. IV). Moreover, there is a spectral sequence relating them (Fréhlicher
[1]). However, in general, if ¢ is a d-closed (p, g)-form on X, then ¢ need not
be d-closed, and, conversely, if y is a d-closed r-form on X and y =
pyo +y !t 4+ ... 4 wOr are the bihomogeneous components of y, then
the components w?¢ need not be d-closed. On manifolds of Kahler type,
however, such relations are valid, as we see in the following decomposition
theorem of Hodge (as amplified by Kodaira).

Theorem 5.1: Let X be a compact complex manifold of Kéhler type. Then
there is a direct sum decompositiont

.1) H(X,C) = ¥ H"(X),

prq=r

and, moreover,
(5.2 Heo(X) = He?(X).

Proof: We shall show that
X(x)= 3 K7(X),

prag=r
and then (5.1) follows immediately. Suppose that ¢ € 3C"(X). Then Ap =0,
but 20 = A, by Theorem 4.7, and hence Q¢ =0. But ¢ = ¢"° + ...
+ @% " (writing out the bihomogeneous terms), and, moreover,

Op = Op"° + --- + Oe°".

tStrictly speaking, there is an isomorphism H7(X, C) = > p+q-r HP9(X), and it is
easy to verify that the isomorphism is independent of the choice of the metric. We
shall normally identify H #.9(X) with its image in H7(X, C) under this isomorphism. When
both the Dolbeault groups and the de Rham groups are represented by harmonic forms for
the same Kihler metric, then we have strict equality, as we see in the proof of the theorem.
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Since O preserves bidegree, we see that (g = 0 implies that Og"° = - - -
= O¢®" =0, and therefore there is a mapping
T: (X)) —> Y H»9(X)
ptg=r

given by ¢ — (9% ..., ¢*"). The mapping is clearly injective, and, more-
over, if p € 3?9(X), then Op = }Ap =0, which implies that p € J?*9(X),
and thus 7 is surjective, proving (4.1). .

Assertion (5.2) follows immediately from the fact that O is real (Theorem

4.7) and that conjugation is an isomorphism from &2:9(X') to & 7(X).
Q.E.D.

Remark: One can also prove Theorem 5.1 by showing that the spectral
sequence relating the Dolbeault and de Rham groups degenerates at the
E, term (see Frohlicher [1] and the appendix to Griffiths [4]). This proof also
makes heavy use of the differential operators A, O and the harmonic repre-
sentation of the de Rham and Dolbeault groups. This approach, via spectral
sequences, deserves mention because there are examples, namely K-3 sur-
facest where one does not know (yet) whether they are Kahler in general
or not. However, one can show by other means that the spectral sequence
degenerates, and one still obtains a Hodge decomposition, and this in turn
is useful in the study of the moduli problem for K-3 surfaces.

As a consequence of the Hodge decomposition theorem, we have the
following relations for the Betti numbers and Hodge numbers of a Kahler
manifold. Recall that we set (see Sec. 5 in Chap. 1V)

b(X) = dimcH"(X, C), h#%(X) = dim cH?%(X).

Corollary 5.2: Let X be a compact Kdhler manifold. Then

@) b(X) =23 ,4p-, h7(X).

(b) A*(X) = h**(X).

(c) b, (X)is even for g odd.

(d) A"°(X) = 1b,(X)is a topological invariant.

These results are a simple consequence of the preceding theorem. We
shall see shortly that there are examples of compact complex manifolds X
which violate property (c), and hence such manifolds are not of Kéhler type.
Thus Corollary 5.2 places topological restrictions on a compact complex
manifold admitting a Kéhler metric. We already know that any such mani-
fold always admits a Hermitian metric.

The simplest example of a non-Kéhler compact complex manifold is
given by a Hopf surface, which we shall now construct. First, we recall one

1A K-3 surface is a compact complex manifold X of complex dimension 2 such that
(@) H'(X, 0x) =.0 and (b) A2T*(X) = K, the canonical bundle of X, is trivial; see, e.g.,
Kodaira [3] and Safarevié [1}], Chap. 9.
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of the basic ways of constructing compact complex manifolds in general,
namely, “dividing a given manifold by a group of automorphisms,” an exam-
ple being the complex tori considered in Sec. 4. Let X be a complex manifold
and let I" be a subgroup of the group of automorphisms of X (an automorphism
of X is a biholomorphic self-mapping of X onto itself). We say that I is
properly discontinuous if for any two compact sets K,, K, = X, »(K,) N K,
% ¢, for only a finite number of elements y € I'. The group I is said to
have no fixed points if for each y € T’ — {e} (e = identity in T") p(x) &= x
for all x € X. We let X/T" be the set of equivalence classes with respect to
the action of the group I'; i.e., x and y € X are equivalent (with respect to
I)if x = p(y) for some y € T. Let X/T" have the natural quotient topology
given as follows: A basis for the open sets in X/I" is given by the projection
of the open sets in X under the natural projection mapping 7 : X — X/I'.

Proposition 5.3: Let X be a complex manifold and let I" be a properly
discontinuous group of automorphisms of X without fixed points. Then
X/T is a Hausdorff topological space which can be given uniquely a com-
plex structure, so that the natural projection mapping n : X — X/I" is a
holomorphic mapping, which is locally biholomorphic.

Proof: Let N be any compact neighborhood of a point x, € X. Then
there exists only finitely many elements y € I so that y(x,) € N. This follows
immediately from the definition of properly discontinuous, letting K; and
K, = N. Thus for each point x, € X there exists an open neighborhood N,
so that y(Ng) N Ny = @ for all ye I' — {e}. Then, clearly, y(N,) will be a
neighborhood of y(x,) with the same property; i.e., y(No) is the only translate
of N, by I' that meets y(N,). Let yo = n(x). Then, clearly, W, = n(No)
= (U, er (Vo)) is a neighborhood of y,.If y, 5 y, is a second pointin X/T,
then letting x, be any point in n~'(y,), we can find a neighborhood ¥, of x,
so that: (a) p(x,) ¢ N, forally € T — {e} and (b), N, N p(N,) = O, for
ally € T. Thus n({_,<r p(V,)) is an open neighborhood W, of y, which does
not intersect Wy, and hence X/T" is Hausdorff. We can use these neighbor-
hoods as coordinate charts near the point y,. Namely, N, is homeomorphic
to W, under = since m |, is one-to-one, open, and continuous. Moreover,
if W, and W, are two such coordinate systems near y, and y, and W, N W,
# o, then there exists a y € I’ so that the corresponding y(No) N N, # &,
and thus the overlap transformation will be of the form

Ynonr-1ap: No 0y~ H(N;) —> y(No) N Ny,

which is a biholomorphic mapping. Hence we have a complex structure,
and the mapping = is clearly holomorphic and locally biholomorphic.

The uniqueness is easy to verify, and we omit the proof.
Q.E.D.

Classical examples of complex manifolds constructed in this manner are
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(a) Riemann surfaces of genus g = 1 (elliptic curves), where X = C
and I is a two-dimensional lattice in C generated by two periods independent
over R.

(b) Complex tori (see Example 4.4). (a) is a complex torus of one com-
plex dimension.

(c) Riemann surfaces of genus g > 1, where X = unit disc in Cand I
is a properly discontinuous fixed point free subgroup of the group of auto-
morphisms of X (which are all fractional-linear transformations of the unit
disc onto itself, i.e., Mdbius transformations).

Remark: 1f we omitted the assumption that I' had no fixed points in
Proposition 5.3, then X/I" can still be given a complex structure as a complex
space (a generalization of a complex manifold) with singularities at the image
of the fixed points (see Cartan [1] for a proof of this).

To construct an example of a Hopf surface, we proceed as follows.
Consider the 3-sphere S° defined by {z = (z,,2,) € C* :|z,|> +]z,|* =1},
and then we observe that there is a diffeomorphism

f:8* x R € — {0}
given by
f(z,,2,,1) = (¢'2,, €'2,)

for (z,,z,) € S* = C?,t € R (i.e., we are shrinking and expanding S? in
C? by the parameter ¢ exponentially). The infinite cyclic group Z acts on
S? x R in a natural manner, namely,

(z,,2,,0) —> (2,2, t + m), form e Z,

and it is clear that the quotient space under this action (defined as above)
(S§* x R)/Z is diffeomorphic to S* x S'. Under the diffeomorphism f we can
transfer the action of Z on $* X R to an action of Z on C2 — {0}. Namely,

(zy, 25, m) — (e"z,, €"z,)

for (z,,z,) € C* — {0} and m € Z. Moreover, for a fixed m € Z, the map-
ping above is an automorphism of C? — {0}. Thus the action of Z on C?
—{0} is the action of a subgroup I' of Aut(C? — {0}), which, it is easy to
check, is properly discontinuous without fixed points (the orbit of a point
under T is a discrete sequence of points with limits at 0 and o). Since the
action of the groups Z and I commutes with the diffeomorphism, we have
the commutative diagram

S*xR L5 C2— {0}

($* x RyZ 1> (c2 — {opir
i "
S x St X,
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where the vertical arrows are the natural projections. By Proposition 5.3
we see that X is a complex manifold which is difftomorphic under f to
S3 x S' (and this is compact). An integral basis for the homology of S* x S'
is given by the factors S', S* in those dimensions, and we have the Betti
numbers

bo(X) = b,(X) = by(X) =b(X) =1
b,(X) = 0.

In particular, b,(X) = 1, and hence X cannot be Kihler, since odd degree
Betti numbers must be even on Kéihler manifolds. A deep result of Kodaira
[4] asserts that any compact complex manifold which is homeomorphic to
S!' x 8% is of the form (C? — {0})/T" for some appropriate I' chosen in a
manner similar to that of our example. Such manifolds are called Hopf sur-
faces.

We would like to give one last important example of Kahler manifolds.

Theorem 5.4: Every complex manifold X of complex dimension 1 (a Rie-
mann surface) is of Kihler type.

Proof: Let g be an arbitrary Hermitian metric on X. Then it suffices to
show that this metric is indeed a Kihler metric. But this is trivial, since the
associated fundamental form Q is of type (1, 1) and therefore of total degree
2 on X. Since X has two real dimensions, it follows that dQ = 0, since there

are no forms of higher degree.
Q.E.D.

Suppose that X is a compact Riemann surface. Then we have, by the
Hodge decomposition theorem for Kédhler manifolds,

H'(X,C) = H"(X)® H*'(X).
Moreover, h'°(X) = h®'(X), and hence 2A"-°(X) = b,(X). Thus A"°(X)

is a topological invariant of X, called the genus of the Riemann surface,
usually denoted by g.

6. The Hodge-Riemann Bilinear Relations
on a Kiihler Manifold

In this section we want to study the structure of the de Rham groups
on a Kihler manifold. If X is a Kidhler manifold, then the fundamental form
Q on X determines the Lefschetz decomposition,

(6.1 H'(X,C)= 3> LH;*X,C),

sz(r-n)*

where H(X, C) is the vector space of primitive cohomology classes of degree
r. This follows immediately from the harmonic forms representation of the
de Rham group and Corollary 4.12. Since we represent the cohomology ring
H*(X, C) by differential forms, we shall write £An for the product of two



202 Compact Complex Manifolds Chap. V

cohomology classes, where we mean by this the following: If ¢,y €
Z*(X, C), the d-closed differential forms, and [¢], [y] are the classes of ¢ and
v in H*(X, C), then [p]A[y] is defined by [pAy], and it is easy to verify that
this cohomology product is well defined and, moreover, satisfies &An
= (—1)tssdesn p AL If Q is the fundamental form on X, let w = [Q)]; then
we define

L : H¥(X, C) —> H*(X, C)

by L(§) = wA¢&. Thus the Kéhler structure on X determines the linear map-
ping L on cohomology. However, the mapping L depends only on the class
 and not on the differential form representing it (nor on the metric inducing
Q); any cohomologous differential form would give the same result. The exist-
ence of a Kahler metric therefore implies the existence of a linear mapping
L : H¥(X,C)— H*(X, C), which is real, i.e., Lis actually defined on H*(X, R),
and, moreover, the above Lefschetz decomposition (5.1) holds. The primitive
cohomology classes Hi(X, C) = H'(X, C) are those satisfying L"""*'¢ =0,
as before. The point we wish to make here is that the existence of L and of the
decomposition (6.1) is a topological necessity that a (say, differentiable or
topological) manifold admit a Kdhler complex structure. This is analogous
to and related to the requirement that odd degree Betti numbers must be even
for Kéhler manifolds.

Suppose that such an L exists on a compact oriented differentiable
manifold of real dimension 2n, i.e.,

L:H(X,R)— H"** X, R), r=0,...,2n—2
and
H'(X,R)= 3 L'H;7*(X,R),

s=(r—n)*

where H?(X, R) is the kernel of the mapping
Lr-pt1 . Hp(X, R) - H2n—p+2(X’ R)’ P < n,

and L is extended to the complexification by linearity. We want to introduce
a bilinear form on H’(X, R) as follows: For &, n € H'(X, R), we let

62) QGm = 3 (—hrerva [ L an),

where £ = 3 L¢, and n = 3 L°n, are the primitive decompositions of &
and #n, respectively. In the case where X is a Kédhler manifold, the quadratic
form above is well defined by the fundamental form Q. However, we do not
assume for the present that X is Kdhler to emphasize the topological nature
of the quadratic form Q above. Such a quadratic form was first introduced
by Lefschetz in the context of a projective algebraic variety and then reinter-
preted in the same context (for a projective algebraic manifold) by Hodge for
de Rham cohomology represented by harmonic differential forms. The quad-
ratic form Q is a sort of intersection matrix for cycles in X, and the signs
reflect the decomposition induced by L. As we shall see, Q will have many
important properties and applications, but first we want to discuss it from
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an intuitive and geometric point of view. Suppose that dimg X = 2. Then we
have, for H'(X, R),

o¢m =~ [ ¢nn,

since H'(X,R) = HXX, R) and n = r = 1. Thus, if {£,} is a real basis for
I{‘(X, R) and if we let {f,} be a dual basis for H'(X, R)* = H (X, R), then
{&,} can be represented by geometric 1-cycles on X, which in turn can be repre-
sented by an algebraic sum of oriented closed curves I', on X. Then the matrix
Q(,, &) = Q.; can be represented by (and is the same as) the intersection
matrix (I', + I'g), which is defined by I', - I'; = the algebraic sum of the num-
ber of intersections of I', with I";, assuming that they are in general position,
meeting only in a finite number of points. The sign of the intersection number
is given by whether the local orientation of the intersecting curves agrees or
disagrees with the orientation of X. This was, in fact, the context in which
Lefschetz worked (see Lefschetz [1] or Hodge [1], where higher-dimensional
intersections are also considered). The interaction between the two points
of view is very important (especially in algebraic geometry), but in this book
we shall restrict ourselves primarily to a discussion of the cohomology groups
H*(X, C), defined by differential forms, and deduce what we can from the
existence of a Kédhler metric and other considerations.

Suppose now that X is a compact Kéhler manifold with fundamental
form Q and that we have the Lefschetz decomposition as given by (6.1) and
the quadratic form Q defined by (6.2), which we extend to H*(X, C) by com-
plex-linearity. Since X is a Kéhler manifold, there is a bigrading on H*(X, C)
induced by the complex structure; i.e.,

H'(X,C) = 3 H"Y(X),
ptg=r
given by the Hodge decomposition, Theorem 5.1. The linear operator J
=Y ,¢ 7?11, is well defined on H'(X, C), where I1, , denotes projections
onto H?:9(X) (cf. Sec. 1). Then we have the following theorem.

Theorem 6.1: Let X be a compact Kihler manifold with fundamental form
Q and with the associated quadratic form Q defined by (5.2). Then Q is a
nondegenerate real bilinear form with the following properties: If ¢ and #
€ H'(X, C), then

@@ Q¢ n = (—1yQm27).
(d QU¢, In) = 0, n).
© QK Jn) = Q. JO).
(d) Q¢ JE >0,if &~ 0.

Proof: Property (a) is obvious from the definition of Q. Property (d)
has as a consequence that the quadratic form Q is nondegenerate, since
Q(¢&, J7) is the composition of the bilinear form @ with two isomorphisms
of H'(X, C) onto itself. In a matrix representation of this composition we
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would have the product of the matrices, and since the composition is a posi-
tive definite Hermitian symmetric form, it must have a nonzero determinant.
Thus Q must have a nonzero determinant with respect to some basis and
hence is nonsingular.

To show property (d), we note that we can rewrite

0, = X e | LEnwL,
s2(r—n)* X

where the {c;} are positive constants. This follows from Theorem 3.16.
Namely, in this case we have (recall that degree 5, = r — 2s)

*Ls”s — (__ ])[r(r+1)/2]+:C,,:Lu—r+:‘]’1_‘,

where c, ; is a positive constant. Thus we obtain, with ¢, > 0,

Q€I = X o LEasLE,
s2(r~n)* X

and this is > 0 since £ 5 0 implies at least one of the L*¢, 5= 0 and hence the

sum is positive, by the positive definite nature of the Hodge inner product.

The proofs for properties (b) and (c) are similar and will be omitted.
Q.E.D.

Property (a) in Theorem 6.1 tells us that Q is either symmetric or skew-
symmetric depending on whether Q is acting on cohomology of even or odd
degree. It is well known from linear algebra that there are canonical forms for
such quadratic forms. Namely, for r odd, there exists a basis {£,} for H'(X, R)
so that if we let Q(¢,, &;) = Q.,, then the matrix [Q,,] has the form

0 1,
(63) o=} ¢l

4

where g = }b,(X)and I, is the g x g identity matrix [note that it is necessary
that b,(X) be even in this case]. Similarly, if r is even, then there is a basis
{&€.} of H"(X, R) so that

I, 0
(6.4 0A=|0 _ lj,
and h — k is the signature of the quadratic form Q.

Our next results will show that the subspaces of H'(X, C) on which Q is
positive or negative definite are very much related to the bigrading of H"(X, C)
given by the Hodge decomposition. First, however, we want to discuss the
distinction between primitive and nonprimitive cohomology classes. We
shall be interested primarily in the de Rham groups H'(X, C) for r < n,
since by Poincaré duality the vector spaces H2*"(X, C) for r < n, are con-
Jjugate-linearly isomorphic to H'(X, C) and, in effect, do not contain any new
information.
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Let us compute the primitive cohomology of a simple space, X == P.(C).
We have seen before that

bO(Pn) = = bln(Pn) =

bl(Pn) = = bZn’l(Pn) - 0’
as is most easily seen by a cell decomposition, and the generators of the homo-
logy groups are given by 0 =P, < ... < P,. The cohomology groups

H*(P,, C) have as basis elements |, w, w?, ..., w", where Q is the funda-
mental form of P, and [Q] = w is the class of Q in H%(P,, C); i.e.,

H* X, O =CHCoPCw*DP -+ P Cor,
where Cow™ represents the complex vector space spanned by the (n1, m) class
o™ in H*"(X, C). We claim that the only primitive cohomology classes in
H*®P,, C) are the constants, i.e., HJ(P,,C) = C, H}™(P,,C) =0, m == |,
..., n. This follows from the fact that w is not primitive, since
wn-21+l/\\wr:wno-r+l io ’frzl

Thus, in a very easy case, all of the cohomology is determined by primitive
cohomology (the constants) and the fundamental form. In general, on a
compact Kdhler manifold a nonprimitive cohomology class & is of the form

é:‘:o +one, + - FomAE,,

where the ¢, are primitive cohomology classes and @ is the fundamental
class, and some ¢; = 0 for j > 0. How large is H}(X, C) in general? Let
b! = dimcHi( X, C). Then we have the following proposition.

Proposition 6.2: Let X be a compact Kéhler manifold. Then
by(X) = dim H{(X, C) = b(X) — b,_,(X)
forr <n.

Before we give the proof, we note that for projective space we get the right
answer, since b, — b,_, = 0 for r > 1. Similarly, another simple example
(which follows from Proposition 6.2) would be cohomology of degree 2 on
a Kihler manifold X, and we see that in this case b = b,, b! = b,, and b2
=b, — b, = b, — 1. Moreover, if w is the fundamental class on X, then
w is of type (1, 1), and hence we have

H¥(X,C) = H*(X)® H"'(X) ® H**(X)
= H}M(X) D H;'(X) @ Co @ HYXX),

noting that, by dimension considerations, we have H2 %(X) = H*°(X) and
H°%*(X) = H>*X); i.e., all of the nonprimitive cohomology is in the middle
and is one-dimensional.

Geometrically, what this means is the following. If X is a smooth complex
submanifold of P, (and hence Kihler), then there are many cycles on X of
the foorm XN P,, j=0,1,...,n— 1, where P, « .- < P, is the cell
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decomposition of P, (assuming that the intersecting manifold X and P, are
in general position). This determines part of the homology of X; the remain-
der of the homology, which is not so determined, is the primitive part (or as
Lefschetz called them, effective cycles). In the case of a complex surface
X < P,, then, X N P, is (generically) a real two-dimensional closed sub-
manifold, which is a cycle in H,(X, Z), which corresponds in cohomology
to w € H*(X,Z) (since w is, in this case, an integral cohomology class).
Again, we shall not formally prove this correspondence; we merely mention
it as motivation for the discussion at hand.

Proof of Proposition 6.2: The proposition is clearly true for r =0, 1,
and so we shall prove it by induction for general r. Suppose that b2 = b,
—b,., for g =0,...,r — 1. Then let {£{’} be a basis for H; ?/(X, C),
i=1,...,b, ;= b, 4.0, =1,...,[r/2(b, =0, for g <0, by .defini-
tion), and consider the set {L/{{"} of classes in H'(X, C). We claim that these
vectors are linearly independent. Suppose that

o, LN =0, a,; € C,

L)
Then we have

0= Z L’(E aij{x('j));
7 :

and by the uniqueness of primitive decomposition, we obtain Y, a, &Y
=0,j =1,...,[r/2]. By the linear independence of the {&'} in H.~2/(X, C),
we see that a,, = 0 for all i and j. We claim now that none of the vectors of
the form L/¢{? can be primitive in H'(X, C). To show this, suppose that
¢ € H;%(X, C), and, moreover, suppose that L/¢ is primitive; i.e.,
L-r*+1(LJE) = 0. Then it follows from Theorem 3.12 that £ must be zero.
Suppose that {n,,...,n,]} is a basis for H,(X, C). Then it follows from the
above remark that the vectors {n,, ..., n,, L’,"} are linearly independent
in H'(X, C). By the primitive decomposition theorem, they clearly span
H'(X, C), and hence

b; =m= br - {(br‘Z - br-4) '+ (br—4 - br“6) + o }
=b, —b,_,
Q.E.D.

It is interesting to note that although the primitive cohomology is defined
via the fundamental class w, the dimensions b(X) are topological invariants
of X and independent of the fundamental class w (of course, for j < n).t

We would now like to discuss the restriction of the quadratic form Q for
a compact Kahler manifold X to subspaces of H'(X, C). For reasons which
will become apparent, we shall want to consider Q restricted to the primitive
cohomology Hj(X, C). We have the following important theorem, due to

tThe same proof shows that for the Hodge numbers h»e we have h2? =
hPa — pp-1.9-1,
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Hodge, which generalizes a theorem of Riemann for the case n = r =1 (in
which case primitive cohomology coincides with cohomology).

To simplify the notation we let P"(X, C) = H}(X, C) and P X) =
H?(X, C) denote primitive cohomology, and by definition P,(X, C), etc.,
will be the dual primitive homology groups (the effective cycles of Lefschetz).

Theorem 6.3: Let X be a compact Kahler manifold, let P/(X, C) =
> p+e=PP%(X) be the primitive cohomology on X, r =0, ..., 2n, and let Q
be the quadratic form on P(X, C) given by (6.2). Then

(@) O(PTs, ) = 0/(q ).
(b) (= 1yQ(Ps, Pe) > 0.

Here (a) means Q(&,n) =0 for £ € P%7 and n € P*'"*, and (b) means
that

i"(—1)Q¢, &) >0, for all nonzero & € PT-o9,

Proof: First we observe that Q restricted to P'(X, C) has a simpler
form, namely,

(65) QG m = (=1ye o [ LiEnn, &n e P(X,©)

and as in the proof of Theorem 6.1, we have
wp = (— 1y 2 Lrr ]y, co >0,
as given by Theorem 3.16. Substituting in, we find that

Q& m = ot [ Eren

if n = P« Now, for part (a), suppose that { € P"*7and g € P*""*,q % s.
Then we have

Q& m) = ey | EAF,

and ¢ and 7 have different bidegrees, by assumption, and so, by Proposition
2.2, O, n) =0. Similarly, if £ € P79 and & = 0, then we see that i2¢~"
= i"(—1)%, and thus

(10§ = [ EnsE >0,
Q.E.D.

We shall call the relations in Theorem 5.3 (a) and (b) the Hodge- Riemann
bilinear relations. These play an important role in the study of the moduli of
algebraic manifolds (cf. Griffiths [1], [3]). They are the natural generalization
of the Riemann period matrix of a Riemann surface or of an abelian variety
(cf. Sec. VI*). These topics will be discussed briefly in the remainder of this
section in connection with the general moduli problem for compact complex
manifolds. The reason we restrict our attention to primitive cohomology in
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Theorem 6.3 is that the corresponding quadratic form in (b) for the full
Dolbeault group H”% X) contained in the full de Rham group H'(X, C) is
an Hermitian symmetric form which is nondegenerate, but it is no longer
positive definite, in general (cf. Hodge [1]). Since the primitive cohomology
generates the full cohomology by means of the fundamental class w, there is
no essential loss of information.

Remark: 1f X is a compact Kahler manifold of even complex dimension
2m, then one can use the above type of considerations to show that the
signature of the underlying topological manifold, which is the same as the
signature of the quadratic form

A&w:ﬂkﬂm {,ne H™X,R),

can be computed in terms of the Hodge numbers 4?-9(X). More precisely,
one has
o(X) =2 (—1yhi(X)= 3 )(—1)‘/1”"’(1\’),
p.q 2

p=q(

where g(X), the signature of X, is the difference between the number of posi-
tive and negative eigenvalues of the (symmetric, nondegenerate) quadratic
form A, and, as is well known in algebraic topology, is a topological invariant
of such a real 4m-dimensional oriented topological manifold (see, e.g.,
Hirzebruch [1]). For more details see Weil [1], p. 78.

Let X be a compact Kihler manifold and consider the Hodge decom-
position of the primitive cohomology group of degree r,

P(X,C)= X ProyX).

prg=r
Then we have the subspace relation
Pri(X) = P'(X, C),

and we note that Theorem 6.3 imposes restrictions that subspaces be of this
form. Let ¢ = {¢, ..., ¢"} be a basis for P?9(X), where h = h?%(X), and
let § ={5,,...,9,) be a basis for P'(X, R) with dual (real) basis y = {y,,

., 75} for P (X, R). For instance, we can choose the basis § so that Q in
terms of this basis has the canonical form (6.3) or (6.4) depending on the
parity of r, but this is not necessary for our discussion here. We can express
@* in terms of the basis $, namely,

b
9" = X Oubs
and we can integrate this relationship over the cycles {y,}, obtaining
fw:Z%J%:%
Yo 4 Yo

since p and $ are dual bases and the duality pairing is given (via de Rham’s
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theorem) by integration of differential forms over cycles. Thus we have a

matrix
Jr|¢l J'“("l

Q=(,)= -

b h

S
which we call the period matrix of the differential forms {¢*} with respect to
the cycles {y,}. It is clear that Q is an 4 X b matrix of maximal rank. We can

now express the Hodge-Riemann bilinear relations in terms of this matrix
representation for the subspace relation P»-¢ — H". Namely, we see that

0(p°, ) = QX Waobor 2 0p:F0)
=Y 0,000 = 0,
and, similarly, ”
(=17 Qe 98) = i"(— 1V 2 04Q,.®p. > 0,

which can be expressed in the form (letting Q denote the matrix [Q,.])

(@ QgQ =0.
(b) i"(—1)QQQ > 0.

The bilinear relations above were first written down in this form by Riemann
for periods of holomorphic 1-forms (abelian differentials) on a Riemann
surface (Riemann [1]). If we make a change of basis for P?%(X), then we get
another period matrix & which is related to the original Q by the relation
A = AQ for A € GL(h, C).

If we consider the Grassmannian manifold

Gh(Pr(X: C))’
then the subspace relation P?79(X) < P’(X, C) defines a point in the above
Grassmannian manifold. We thus have the association
X— OX) = (P(X) < P(X,C) € G,(P(X,CQ)),

where ®(X) is, by definition, the associated point in the Grassmannian, given
by the subspace relation. We call ® the period mapping since the image point
®(X) can be represented by periods of integrals as above. The choice of basis
{P1s-.., P} gives us
Gi(P'(X, C) = G(C") = G,,(0),

and the choice of basis {¢,, ..., ¢,} gives us an A X b matrix (the period
matrix) Q € M, ,(C), which is mapped onto the corresponding point in the
Grassmannian via the canonical projection mapping

M, ,(C) = G, ,(C)
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(see Chap. 1). The invariant description of the period mapping given above
is due to Griffiths. If the complex structure on X is allowed to vary in some
manner (for a fixed cup product operator L on a fixed topological manifold
X..p), then the subspace P79(X) < P’(X, C) will vary, although the primitive
de Rham group remains fixed. Thus the variation of the Hodge group P?¢
in P' is a reflection of the variation of the complex structure on the underly-
ing topological manifold X,,,.f We refer to this generally as a variation of
Hodge structure, and Griffiths has introduced a formulation for making this
variation of Hodge structure precise and in many instances a true measure
of the variation of complex structures (see Griffiths [1], where he introduces
the period mapping, and his survey article [3], which contains an up-to-date
bibliography of the very active work in this field as well as a long list of con-
jectures and problems).

We shall introduce here what we shall call a Griffiths domain, which is a
classifying space for Hodge structures and which is chosen in such a manner
that an a priori holomorphic variation of complex structures induces a
holomorphic mapping into the Gritfiths domain (a subset of an appropriate
Grassmannian-type domain manifold generalizing the classical upper half-
plane and Siegel’s upper half-space).

Let X be a Kédhler manifold as above and let

Pr(X)= 3 PPYX)

pPrq=r
be the Hodge decomposition for primitive cohomology. Then we define
F(X)=P%(X) +--- + P (X), s<r,
and we see that
F‘Ccm...cF’:P’
and we call {F*} the Hodge filtration of the primitive de Rham group P".1 Then
let f* = dimcF*, 0 = [(r — 1)/2], and /= (/% ..., f°) ([ ] denotes greatest
integer). We consider the flag manifold F(f, W), where W = P"(X, C); i.e.,
a point in F(f, W) (called a flag) is by definition a sequence of subspaces
FocF'lc...c F°c W,
where
dimcF/ = fi.
Thus F(f, W) is a natural generalization of a Grassmannian G,(W), which
is the flag manifold for 6 = 0 (which is the case if r = 1, for instance). The

detailed construction of a flag manifold is analogous to that of a Grassman-
nian, and we omit any details here. Now, to a Kihler manifold X we can

tThe above discussion works equally well for nonprimitive cohomology, i.e., consider-
ing H7.9(X) = H"(X, C) as a point in a different Grassmannian. The period relations which
will play a role later are defined only for primitive cohomology, and hence the restriction.
However, by the Lefschetz decomposition theorem, there is no loss of information.

$One can also define the Hodge filtration of the full de Rham group in the same manner.
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associate the integers f°, . . ., f° coming from the Hodge filtration, and there
is then a mapping defined,

X—F(X)c FI(X)c.--c F(X) = P'(X, C),
which we then write as
O(X) € F(f, W).

This is Griffiths’ period mapping (Griffiths [1]).

Let X -5 T be a proper surjective holomorphic mapping of maximal
rank from a complex manifold X to a complex manifold 7. Then X -= T is
called a complex-analytic family of compact complex manifolds. Let X,
= n"'(¢). Then X, is the fibre over t, or the compact complex submanifold
of X corresponding to the parameter 1 € T. A basic fact about such families
is the following proposition asserting that they are locally differentiably
trivial.

Proposition 6.4: If ¢z, € T, then there exists a neighborhood U of ¢, in T'and
a fibre preserving diffeomorphism

(6.6) f:X, Xx U—> " (V).

Proof: This is a local problem in the parameter space T, and so let T
be an open set in C* and let 7, = 0 be the origin assumed to be in T. Then we
have coordinates (¢,, ..., t,) for points in 7, and by the implicit function
theorem, if p € X, = n71(0), it follows that we can find a neighborhood
U, and a biholomorphic mapping

y,:U,— U, c Cx C
open
with
Wolosnx,—> Up N C" X {1}

i.e., the fibres of the family in this coordinate system are given by [t = con-
stant], where (z, t) € Uy, z € C7, t € C*. In other words, near p, the family
is holomorphically trivial (= to a product family). We can find a finite cover-
ing {U,} of a neighborhood of X, in X by such coordinate systems, and we
denote the coordinates for U, by (2%, t). The transition functions from (2% )
coordinates to (2%, r) coordinates are of the form

[faﬁ(za t) 0} ,
0 1

where f,,(z,t) is an n X n complex matrix of holomorphic functions. By
using a partition of unity we can piece together the usual Euclidean metric
in each coordinate system to obtain a global Hermitian metric A, which,
expressed in one of the above coordinate systems, has the form (in real coor-
dinates)

h= 3 g/x,8)dx, @ dx, + X h,(x, 5)dx, & ds, + - - -,
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where
z; =x; +ix;,, j=1...,n
=8, +is;,, Jj=1...,k

and where (g;,) is a real positive definite matrix and z, = z§ (dropping the
notational dependence on a). Consider a curve of the form (in U*)

?,.{(t) = (2(2), 70),

depending on the parameters (p, t), where p = (2, 0) is a point on X, N\ U,.
We require that

@ 7,40 =(z,0).
(b) The curve y,, be orthogonal to X,, with respect to the metric 4 at

75.{7)-

Note that the nature of the parameterization and the coordinate system en-
sures us that the curve intersects X, precisely at the point y, (7). Condition
(b) can be rewritten as the system of ordinary differential equations

35 8,0, D) + 3 hx(@), 1), =0, i=1,...,2n.
j=1 v=1

It follows that this nonlinear system of equations satisfies a Lipschitz con-
dition (it is quasilinear) such that the standard existence, uniqueness, and
parameter dependence theorems for ordinary differential equations hold,
and thus there is a unique curve associated to each parameter point (p, ),
and we define

S(p, ) =7,
and obtain a mapping
f:X, x T— X,
which is (for |¢| small) an injective differentiable mapping. Moreover, the

differential of this mapping at points of X, is readily seen to be invertible,
and thus the mapping

FiXy X ([t < €} — Xyee

is a diffeomorphism for € sufficiently small.
Q.E.D.

Remark: The above result clearly does not depend on the complex struc-
tures.

Proposition 6.4 tells us, in particular, that all the fibres X, for ¢ near ¢,
are diffeomorphic. Then we can consider f~'(X,) as inducing possibly dif-
ferent complex structures on the same differentiable manifold (X, )y
This is the point of view of deformation theory, introduced in the general
context by Kodaira and Spencer in 1958 and begun by Riemann in his study
of the number of moduli necessary to parameterize the different complex
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structures on a Riemann surface. The recent book by Morrow and Kodaira
[1] gives a good introduction to deformation theory along with many exam-
ples, and we refer the reader to this reference as well as the original papers
of Kodaira and Spencer [1, 2]. One of Griffiths’ objects in introducing the
period mapping above was to obtain a representation for the variation of
complex structure (in the sense of deformation theory) in terms of the varia-
tion of Hodge structure. To describe this mapping, we need some auxiliary
results from deformation theory, which we shall now describe.

Proposition 6.5: Let X - T be a complex-analytic family and let /179 =
hP9(X,). Then A9 is an upper semicontinuous function of the parameter r;
moreover, hf? < h?9, t, € T and f near ¢,.

Proof: This is a local result. Let 7 < C* and ¢, = 0 € C*. We first use

(6.6) to get a diffeomorphism
fii X, — X,
which induces a differentiable vector bundie isomorphism,
T8 NTTHX) —> ATTHX).
The almost complex structure J, acting on T(X,) induces an almost complex
structure J, on T(X,), via f;, and hence a projection
I, o0 A*THX) —> APTT*(X,),
which is maximal rank for ¢+ = 0 and thus for ¢ near 0. Therefore the diagram
ATTHX ) —> APITHX,) = A T*(X,)

T /
APITX(X,) =

induces an isomorphism u for ¢ sufficiently small. Thus we have the operator
0 on X, acting on the complex A 7T*(X,), induces via u, the complex

—> 829X p) > £8PV (X)) —>,

Pt

where d, = d and the operator d, depends continuously on the parameter

1. The proposition now follows from Theorem 4.13 and Sec. 5 in Chap. IV.
Q.E.D.

Corollary 6.6: Suppose that X = T is a complex-analytic family such that
T is connected and X, is Kéhler for ¢t € T. Then 4?7 = h?? for some fixed
t, € T;ie., h%is constant on T.

Proof: By Corollary 4.2 we know that 3 . _, h#? = b, ,, but since all
the fibres are diffeomorphic, b,, = b,,, = b,. Thus for |t — 1,] < J, we
have hp¢ < h??, and therefore

bl = 2: hfﬂ E; 2: hﬂd = bf

pta=r pta=r
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If for some p,q, h?»* < h2, for |t — t,| < J, then we would have a con-

tradiction.
Q.E.D.

If now X = T is a complex-analytic family of Kéhler manifolds (e.g., a
family of projective algebraic submanifolds, parameterized by varying the
coefficients of the defining homogeneous equations) and T is connected, then
for all fibres X, in the family we have the same Hodge numbers 4#-¢ and hence
the same primitive Hodge numbers 429, and finally the same Hodge filtration
numbers f~, 0 < s <{ ¢ = [r/2]. Thus for this family we may define the flag
manifold

F(f°,...,f°, W), W =P'(X,, C),
and we see that the mapping
(6.6) ®:T— F(f, W)
given by
(1) = (X)) =[F'(X) = -+ = F(X)) = W]

is well defined.

Theorem 6.7 (Griffiths): The period mapping (6.7) is a holomorphic map-
ping.

Remark: The proof of this theorem depends principally on the Kodaira-
Spencer deformation theory formalism (Kodaira and Spencer [1]), which
we do not develop here (see e.g., Morrow and Kodaira [1]). In fact, Griffiths
shows many more properties of the period mapping such as the nature of the
curvature of certain natural metrics restricted to ®(T), or that ®(T) is a
locally closed analytic subvariety of F(f, W), etc. (see Griffiths [2, 6]). He also
gives conditions (verifiable in many examples) such that if ®(¢,) = ®(z,),
then the two complex manifolds X,, and X,, are not biholomorphically equi-
valent. In other words, the period mapping is a description (sometimes
complete) of the variation of the complex structure.

If Q is the fundamental quadratic form defined on P’(X, C) (6.5), then let
Xc F(f°,....fe, W)y=F(f, W)
be defined by the set of flags in F(f, W) satisfying the first bilinear condition
(6.8) O(Fs[Fs~', F:[F~') = 0,
where F*/F*~ ! is defined to be a subspace of F* < W by defining
Fs[Fs~' = {v € F*:Q(v, F*~') = 0}

(note that Q is nondegenerate). Then let D — X be the set of flags in F(f, W)
satisfying in addition to (6.8) the second bilinear condition

(6.9) i(— 1y Q(Fs|Fs-', Fs[F*~') > 0.
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One proves that X is a compact projective algebraic manifold and that D
is an open subset of X. Both are homogeneous spaces, with natural invariant
metrics. We call such a domain D a Griffiths domain.t Because of Theorem
6.3, it follows that

®(T) < Dc X < F(f, W).

Moreover, there is a natural fibering of D (because of the homogeneous
structure) as a real-analytic family of compact complex submanifolds of
D, as in Example 6.8 below (possibly zero-dimensional, as in the classical
case), and Griffiths obtains an infinitesimal period relation which asserts that
the mapping ® is transversal to the fibres in the real-analytic fibering men-
tioned above.

We mention two examples of Griffiths domains.

Example 6.8: Letr =1. Theno =0, F° = H' °(X), and the flag mani-
fold F(f, W) becomes

F(f’ W)= Gh,Zh(C)’
and letting Q be in standard form (6.3),

0= 0 I,
—l:_lh O]

we see that X and D are defined in terms of the “homogeneous coordinates”
for G,,,,(C),

X ={Q € M,.(C): Q0'Q = 0}
D ={Q € M, .,(C): QQ'Q =0, —iQQ'D > 0}.

This Griffiths domain D is biholomorphically equivalent to Siegel’s upper
half-space (see Griffiths [1]),

Dy ={Z € M, (C) : Z ="Z, Im Z > 0},

which is itself a generalization of the classic upper half-plane (h = 1) (see
Siegel [1]). D can also be expressed in the homogeneous space form

D = Sp(h)/U(h)

where Sp(h) is the real symplectic group and U(#4) is the unitary group and
is a classical bounded symmetric domain (see Helgason [1]).

Example 6.9: If r = 2, then we have the relationship
FO p— PZ.O fans PZ
(note that P9 = H? %), and, moreover,
dim F° =dim H?*?,

tGriffiths called these domains period matrix domains (Griffiths [1]) and classifying spaces
Jor Hodge structures (Griffiths [3]).
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and
i2Q |0, yo: 18 positive definite

and
i2Q |p... is negative definite.

i2Q = L 0}
0 —I,

where k = dim P2 — 2h. D then has the homogeneous representation
D = SOQ2h, k)/(U(h) x SO(k)),

and we note that the maximal compact subgroup of the noncompact real
group SO(2h, k) is SO(2h) X SO(k). Thus we have a natural fibering

D = SO(2h, k)/(U(h) x SO(h))

Therefore we have that

M = SOQ2h, k)[(SO(2h) X SO(k)),

and it so happens that the fibres of this mapping are compact complex sub-
manifolds of positive dimension when & = 1.

The reader is referred to Griffiths’ papers in the References for a further
discussion of the period mapping and its relation to the study of the variation
of complex structure on a given (usually projective algebraic) manifold.

The discussion and analytic behavior of the period mapping into a Grif-
fiths domain is contained in Griffiths [1, 3, and 6], while the geometry of a
Griffiths domain itself is discussed in Griffiths and Schmid [1], Schmid [1], and
Wells [1, 2], Wells-Wolf [1]. The relation of the periods of harmonic forms on
an algebraic hypersurface V of P, and the rational forms on P, — V with
poles of various orders along ¥V is studied in Griffiths [5] along with some
interesting applications to algebraic geometry.



CHAPTER VI

KODAIRA’S
PROJECTIVE EMBEDDING THEOREM

In this chapter we are going to prove a famous theorem due to Kodaira,
which gives a characterization of which compact complex manifolds admit
an embedding into complex projective space. In Sec. 1 we shall define Hodge
manifolds as those which carry an integral (1, 1) form which is positive defi-
nite in local coordinates. We then give various examples of such manifolds.
Kodaira’s theorem asserts that a compact complex manifold is projective
algebraic if and only if it is a Hodge manifold. This is a very useful theorem,
as we shall see, since it is often easy to verify the criterion. Chow’s theorem
asserts that projective algebraic manifolds are indeed algebraic, i.e., defined
by the zeros of homogeneous polynomials. Thus the combination of these
two theorems allows one to reduce problems of analysis to ones of algebra
(cf. Serre’s famous paper [2] in which this program of comparison is carried
out in great detail).

In Sec. 2 we shall use the Hodge theory developed in the previous two
chapters to prove Kodaira’s vanishing theorem, which plays a role in compact
complex manifold theory similar to that of Theorem B of Cartan in Stein
manifold theory (see Gunning and Rossi [1]).

In Sec. 3 we shall introduce the concept of a quadratic transform of a
complex manifold at a given point (the Hopf blowup) and study the behavior
of metrics on holomorphic line bundles under pullbacks with respect to a
quadratic transform. In Sec 4. we shall bring together the tools of Secs. 2
and 3 (which depended in turn on the work in the previous chapters) to prove
Kodaira’s embedding theorem.

1. Hodge Manifolds

In this section we want to consider a restricted class of Kihler manifolds
defined by a certain topological (integrality) condition. If X is a compact
complex manifold, then a d-closed differential form ¢ on X is said to be
integral if its cohomology class in the de Rham group, [¢p] € H*(X, C), is
in the image of the natural mapping:

H*(X,Z) — H*(X,C).

217
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Let 4 be a Kihler metric on a complex manifold of Kahler type and let
Q be the associated fundamental form.

Definition 1.1: If Q is an integral differential form, then Q is called a Hodge
form on X, and 4 is called a Hodge metric. A manifold of Kéhler type is
called a Hodge manifold if it admits a Hodge metric.

This terminology was first used by A. Weil. The main theorem of this
chapter (due to Kodaira [2]) is that a compact complex manifold is Hodge if
and only if it is projective algebraic. First we shall see that there are many
examples of Hodge manifolds, some of which are not at all obviously projec-
tive algebraic, and in passing we shall note that the Hodge condition is often
easy to verify in practice.

Let E be a holomorphic line bundle over a complex manifold X. Then we
let

EF=EX--- X E
< =

u factors

and
E* = (E*Y,

for any positive integer u. We let E° = X X C, the trivial line bundle over
X, which is isomorphic to E# Q) E~# for all positive u, as is easy to see. If
{g.5} is a set of transition functions for E with respect to some locally finite
set of trivializations, then {g%} is a set of transition functions for E* for all
integers u. This is a simple fact, whose verification we leave to the reader (cf.
Sec. 2 in Chap. I). In various examples below we shall use this principle to
compare different line bundles on the same space, by comparing appropriate
transition functions on the same open covering. If X is of complex dimension
n, then we let

Ky = N'THX)
be the canonical line bundle of X. It follows that
0x(Kx) = Ox(A"TH*(X)) = Q%

the sheaf of holomorphic n-forms on X. For simplicity we denote the canoni-
cal line bundle simply by K whenever X is fixed in a given discussion.
We now present a list of examples of Hodge manifolds.

Example 1.2: Let X be a compact projective algebraic manifold. Then
X is a submanifold of P,, for some N. Let Q be the fundamental form associ-
ated with the Fubini-Study metric on P, (see Example V.4.5). Since Q is
the negative of the Chern form for the universal bundle U, ,, — Py, it
follows that Q is a Hodge form on Py, (see Propositions 111.4.3 and 111.4.6).
The restriction of Q (as a differential form) to X will also be a Hodge form,
and hence X is a Hodge manifold. In general, by the same principle, a
complex submanifold of a Hodge manifold is again a Hodge manifold.
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Example 1.3: Let X be a compact complex manifold which is an un-
ramified covering of a Hodge manifold Y; i.e., there is a holomorphic map-
ping X = Y such that n~'(p) is discrete and  is a local biholomorphism at
each point x € X. Then X is a Hodge manifold. To see this, simply let Q
be a Hodge form on Y and then z*Q will be a Hodge form on X. Similarly,
if X L. Y is an immersion, then f*Q will give a Hodge manifold structure to
X.

Example 1.4: Let X be a compact connected Riemann surface. Then X
is a Hodge manifold. Namely, since dimg X’ = 2, we have by Poincaré duality
that C = H°(X, C) = H¥X, C), and, moreover, H*(X, C) = H"'(X). Let
€3 be the fundamental form on X associated with a Hermitian metric. Then £}
is a closed form [of type (1, 1)] which is a basis element for the one-dimen-

sional de Rham group H%*(X, C). Let ¢ = f Q, and then Q = ¢~ ' will
X

be an integral positive form on X of type (1, 1). Hence X is Hodge. This
example generalizes to the assertion that any Kahler manifold X with the
property that dimcH'' 1(X) = 1 is necessarily Hodge. This follows from the
fact that multiplication by an appropriate constant will make the Kihler
form on X integral, as above in the Riemann surface case (one has to also
make an appropriate choice of basis for the integral 2-cycles).

Example 1.5: Let D be a bounded domain in C" and let I' be a fixed
point free properly discontinuous subgroup of the group of biholomorphisms
of D onto itself [= Aut(D)] with the property that X = D/I" is compact (cf.
Proposition V.5.3). Then X is a Hodge manifold. Let Q,, be the fundamental
form associated with the Bergman metric 4, on D (see, e.g., Bergman [1],
Helgason (1], or Weil [1]). The Bergman metric has the very useful property
that it is invariant under the action of Aut(D) and hence under the action of
any subgroup I'. Thus A, induces a metric 4 on X, which has associated with
it a fundamental form Q which is of type (1, 1) and positive definite. More-
over, since (for a particular normalization)

(1.n Q,(z) = 44 log k »(2),

where k(2) is the Bergman kernel function for the domain D, it follows
that Q is Kdhler. What remains to be shown is that the Bergman metric form
(1.1) above induces an integral form Q on X. To do this, we shall show that
(i/2n)Q is, in fact, the Chern form of the canonical bundle over X and hence
belongs to an integral cohomology class in H?(X, Z). We shall need the prop-
erty that k,(z) > O for all z € D [which is almost self-evident from the fact
that

ko(2) = Slo.2)

for an orthonormal basis {g,} for the Hilbert space L*(D) N ©(D)], and we
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shall also need the property that

(1.2) ko(¥(2)) = kp(2)

det‘z%(;z—)'_z, y € Aut(D),

where dy/dz is the Jacobian matrix of the biholomorphism y (see Bergman
[1] or Weil [1]). Suppose that {U,} is a covering of X by a finite number of
coordinate patches, with y,: U, — D being the coordinate functions (which
can be taken as local inverses for the projection n: D — X = D/T"). Then
the transition function y,; = y, o w3' € T and is defined on all of D. It
then follows that {(dy,,/dz)(w,s(p))} are the transition functions for T(X) and
that g, ,(z) = det (dy,,/0z)(w,(p)) are the transition functions for A"T(X).
Thus the functions {g;}} are the transition functions for the canonical line
bundle Ky = A"T*(X). Let k* =k, o y, be positive functions defined on
U, = X. Then it is easy to check from (1.2) that

ke(p) = |det 25D s,

where z = y4(p). This shows that the {k*} transform like a metric for K and
thus define a metric on K. By the results in Chap. 111, we see that

e(Ky) = A0k 10k, = 2:7:'05 log k.

i
2n
- ﬁ dd log k(z)  (in the coordinates of D),

but this is (except for sign) the fundamental form associated with the Bergman
metric and thus the induced Bergman metric is a Hodge metric. Therefore,
X is a Hodge manifold.

Remark: Note that the above example is quite different from the
example of a Hopf surface given in Sec. 5 of Chap. V, since the Hopf surface
was defined as a quotient space D/I", where D was not a bounded domain,
and by the results above it cannot be biholomorphically equivalent to one.
Being biholomorphically equivalent to a bounded domain is rather crucial for
the Bergman kernel theory to apply.

Example 1.6: Consider a complex torus X, as in Example V.4.4, with

2n independent periods {w,, . . . , w,,} in C", and let
Wy Oy
fo
@py  *°t Wp2n

be the matrix of periods. Suppose that there exists a nonsingular integral
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skew-symmetric matrix Q of rank 2n such that
O Q4Q=0
() —iQAQ =M >0  (positive definite),

where 4 = Q~'. Then we say that Q is a Riemann matrix (cf. Conforto [1]

(1.3)

. . . Q
and Siegel [1]). Consider the matrix P = [ﬁ]’ called the big period matrix.

Then it follows from the conditions above that P is nonsingular. Namely,
consider the product [using the relations (1.3) above] and, noting that ‘M =
M,
- Q iM 0

1.4 PAP=| _|A[Q,'Q] = p
0o ana-[2 5
which is nonsingular, since M > 0, and hence P is nonsingular. Thus we find
that, by taking the inverse of (1.4),

0= -é—[‘QHQ — QAQ),
where we let ‘H = 2M !, which is also positive definite, and thus we find that

(1'5) Quﬁ = 'li' ; huv(myu@vﬂ - wuﬁa-)va)‘

Conversely, if the periods {w, } satisfy (1.5) for some Hermitian positive definite
matrix H, where Q is a skew-symmetric nondegenerate matrix with integer
coefficients, then Q is a Riemann matrix. Let

© = 5 ¥ hudz,nds,

be the fundamental form for a Hermitian metric for X defined by the constant
positive definite matrix H. The integral homology group H,(X, Z) is generat-
ed by the integral 2-cycles {C,,}, defined by the parametric representation

Cop = {50, + twp: 0 < syt < 13,

where @,, @, are given periods, 1 << & << f# < 2n. Then the period of w over
the 2-cycles is given by

i — -
J‘ = 3 Z huv(mﬂaww - wuﬂwva)'
Cap v

This is easy to verify and consists of evaluating the integral of dz,Adz,
over the real two-dimensional parallelogram determined by the two vectors
®, and w, in C". Thus w is a Hodge form for the torus X.

In the other direction, suppose that we know that a torus X admits an
embedding into some projective space P,. Then the standard Kéhler form
on P, induces a Hodge form @ on X and in the coordinates of C”,

(1.6) = % > h,dz,Ndz,
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where the functions h,, are not necessarily constant, as we had above.
However,

_[ weZ,
C,g

and we can replace 4,4 in (1.5) by the mean value

hag = (X)) fx hopdps,

where y is the invariant measure on the torus induced by Lebesgue measure
in C", One can then verify that the resulting form @& will satisfy the condition
(1.5) and will have a positive definite coefficient matrix. Thus the existence
of a Hodge form on X implies that the period matrix is a Riemann matrix.

An example of a complex torus not satisfying Riemann’s condition is
given by the period matrix (n = 2)
Q- 1 0 /-2 /-5

01 /-3 /-7

Namely, suppose that there existed a matrix 4 with rational coefficients such
that
(1.8) QA4Q = 0.

Then the element in the first row and second column of (1.8) is given by

ay, + apn/—3+ a7 — a0/ =2 — ay /-5
+ 03‘(ﬁ_ - N/B) = 0)

from which it follows easily that

(1.7)

a,,=a,;=0,,=0a,; =a,,=a,, =0,

since A was assumed to have rational entries. Since 4 is skew-symmetric,
it follows that 4 cannot be nonsingular, which contradicts the assumption of
Q being a Riemann matrix. Thus this particular complex torus cannot be
projective algebraic. One can show, in fact, that the complex torus defined by
the period matrix Q in (1.7) does not admit any nonconstant meromorphic
function (cf. Siegel (1], pp. 104-106), which also implies that X is not em-
beddable in any projective space.

2. Kodaira’s Vanishing Theorem

The vanishing theorem of Kodaira plays a role in the theory of compact
complex manifolds analogous to the well-known Theorem B of Stein mani-
fold theory (due to Cartan and Serre; see, e.g., Gunning and Rossi [l1]).
The basic difference is that on a compact complex manifold X, the cohomo-
logy groups He(X, O(E)), ¢ > 1, do not need to vanish for all holomorphic
vector bundles E, which would be the case for Stein manifolds. There are
basic obstructions, due to the compactness.
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We shall now formulate the vanishing theorems for line bundles. A dif-
ferential form ¢ of type (1, 1) on a complex manifold is said to be positive
if, in local coordinates at any point p,

9 =i 9,(2)dz,Ndz,,
H, v

and the matrix [, (2)] is a positive definite Hermitian symmetric matrix for
each fixed point z near p. Notationally, we denote this condition by ¢ > 0.

Definition 2.1: Let £ — X be a holomorphic line bundle and let ¢,(E)
be the first Chern class of E considered as an element of the de Rham group
H*(X,R). Then E is said to be positive if there is a real closed differential
form y of type (1, 1) such thaty € c¢,(F)and y is a positive differential form.
E is said to be negative if E* is positive.

For computational ease we prove the following proposition.

Proposition 2.2: Let £ — X be a holomorphic line bundle over a compact
complex manifold X. Then E is positive if and only if there is a Hermitian
metric 4 on E such that i@, is a positive differential form, where @, is the
curvature of E with respect to the canonical connection induced by A.

Proof: 1t is obvious from the differential-geometric definition of c,(E)
that i@, positive for some metric A will imply that E is positive. Conversely,
suppose that E is positive and that ¢ € ¢,(E), where ¢ is a positive differential
form. Let 4 be any metric on E, and then with respect to a local frame f we
have [ = h(f)]

0o = ﬁéa log h € ¢ ,(E),
and hence
¢ — @, =dn, 1 e &X)
Moreover, the differential form ¢ is a Kéhler form on X, and X becomes a
Kidhler manifold when equipped with the associated K#hler metric. Then
we may apply the harmonic theory, and let H be the harmonic projection onto

JC*(X), and let G be the Green’s operator associated with the d-Laplacian
A =20 = 20. Then we note that

n = Hn + AGn,
and hence
dn = dHn + dAGn = AGdy,

since dH = 0 and 4 commutes with both A and G.1 It follows that
dn = 200*Gdn + 20*Gddy,
and we claim that ddn = 0 and ddn = 0. This follows from the fact that dg

1The operators d and d also commute with G = {Gg = }Gg, (cf. Theorem IV. 5.2).
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= J(ao_: 0, and d¢p = dp, = 0, since @ can locally be written in the form
@ = ddu, for some C~ function u (Lemma 11.2.15), and ¢, is already of this
form. Thus

dn = 200*Gdn,
and we can use the Kihler identity

i0* = L*d — JL*
(Corollary V.4.10), obtaining

dn = 2iddL*Gdn,
since G = Gd and ddn = 0. Therefore we set r = 2L*Gdn, and by letting
I’ = h . e** be a new metric for E, we obtain

i3 / i3 .3
E&& logh' = 2—ndd log h + iddr
=@ + dn

:¢'
Q.E.D.

Example 2.3: Let X = P,, and consider the following three basic line
bundles over P,:

(a) The hyperplane section bundle: H — P,.
(b) The universal bundle: U — P, (U = U, ,,,).
(c) The canonical bundle: K = A"T*P,) - P,.

Here H is the line bundle associated to the divisor of a hyperplane in P,
e.g., [to, = 0], in the homogeneous coordinates [f,, . . . , t,}. Then the divisor
is defined by {r,/t,} in U, = {t, = 0}, and the line bundle H has transition
functions (cf. (I11.4.9))

= (@)5) v

The universal bundle (Example 1.2.6) has transition functions
u,ﬁ:t—’ in U,ﬁ Uﬁy
Iy

and thus H* = U. Let us now compute the transition functions for the
canonical bundle K on P,. If we let {# = 1,/t5, j # B, the usual coordinates
in Uj, then a basis for K|y, is given by the n-form

D = (—1PdliN-- - NdlE_ NdLE A - NdEA.
Since

t
=t
J ”

;‘I:‘
.
O‘I"
w |®
-
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we have

O=0-C
in U, N U, which is the (nonlinear) change of coordinates for P, from U,
to U,. Thus we obtain easily, by substituting into the above form ®,,

©, = 8y (—1YdliA-- - ndls-  AdLG. A - - ALK
= {5 '®,
Now we see that these transition functions for the frames {®,} induce transi-
tion functions {k,,} for the canonical bundle K which are given by

kepltor. .. > 1) = (_;;)' .

We note that the choice of the minus sign in the trivializing sections was
necessary for the transition functions for K to be comparable to the transition
functions for U and H. Thus K = A"T*(P,) = U*! = (H*)"*!. Moreover,
the universal bundle U — P, has the curvature form given in (III.2.10), which
is the negative of the positive differential form
|t S dendE, — 3 fdt,Adi,

—_ _l_ u2=0 #,v=0

2 []*
expressed in homogeneous coordinates. Namely, Q is the canonical Kihler
form on P, associated with the Fubini-Study metric (see Example V.4.5).
Thus H*, U, and X are negative line bundles over P,, and the hyperplane sec-
tion bundle H — P, is positive. These are the primary examples of positive
and negative line bundles.

’

Remark: 1t follows from the Hodge decomposition theorem that
H'(P,, 0) = H*P,, 0) = 0. Namely,

H'\P,,C) = H"%P,) P H*'(P,),
and H'(P,, C) = 0, by the cell decomposition of P,. Also,
C = H*P, C) = H*(P,)® H"'(P,) @ H"*(P,),

and since H'- (P,) = C[Q], where Q is the fundamental form on P,, it follows
that H¥(P, 0) = H®**[P,) = 0.t Now consider the short exact sequence

0—Z-—>0—0*—0
on P, and the induced cohomology sequence
H'(P, 0) — H'(P, 0*) —> H*P, Z)— H*P,, 0),
which gives us, since H'(P,, 0) = H*P,, 0) = 0,

0 —> H'(P,, 0%) %> H¥P,, Z) —> 0.
I
Z

tIn the same manner, one obtains that Hu(P,, Qr) =0, p =g, HP(P, Qr)==
He(P,, C), which are special cases of a vanishing theorem due to Bott [1].
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Let P, < P, be a generator for H%(P,, Z), and then we see that if we consider
powers of the hyperplane section bundle H™, we obtain
c,(H™)(P,) = m.

Namely, by the properties of Chern classes,t

¢, (H) =c(U*) = —c(U) and c,(U)P) =—1.
Since ¢, is an isomorphism of abelian groups, it follows that every holomor-
phic line bundle L — P, (in particular U and K in the above example) is a
power of the hyperplane section bundle, L = H™, and ¢ ,(L)(P,) = m. We use
here the fact that ¢(L) =c(H™") =c(HQ - Q H)=c,(H) + --- +
c¢,(H)(cf. the proof of Theorem 111.3.6). In particular, we obtain from Example
2.3 that ¢,(Kp X(P,) = —(n + 1). Thus the holomorphic line bundles on P,
are completely classified in this manner by their Chern classes.

We now state the basic vanishing theorem due originally to Kodaira

[11.
Theorem 2.4: Suppose that X is a compact complex manifold.

(a) Let E — X be a holomorphic line bundle with the property that
E X K* is a positive line bundle. Then

HY(X,0(E)) =0, q>0.
(b) Let £— X be a negative line bundle. Then
Hy(X, Qr(E)) =0, p+q<n.

Remark: Kodaira's theorems were first proved in Kodaira [1] ((a) and
p = 0in (b)) and were generalized later by Nakano [1] to the case we have
given here. There are various generalizations of these types of results for
vector bundles which are not as precise as the above theorems but which have
numerous applications. See, e.g., Grauert [2], Griffiths [2], Nakano [1],
Hartshorne [1], and Grauert and Riemenschneider [1].

To prove the above theorem we want to derive some fundamental in-
equalities due to Nakano. First suppose that X is a Kihler manifold with a
fundamental form Q associated to the Kdhler metric. Then the operators
L and L* are well-defined endomorphisms of §*(X). Suppose that £ — X
is a holomorphic vector bundle over X. Then we want to show that L and L*
extend in a natural manner to endomorphisms of §*(X, E) (differential forms
with coefficients in E). If & € &7(X, E), then for a choice of a local holomor-
phic frame ffor Ein an open set U < X, we see that

0
&n=| - |
&(f)

t+ Compare the proof of Proposition I111.4.3, where ¢;(U)}P,) = I,, ca(U)= -1.
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where &/(f) € §°(U). Moreover, if g is a holomorphic change of frame, then
we have the compatibility condition that
g '¢(f) = <(gf)

(see Sec. 2 of Chap. I11), where the matrix g~! of functions is multiplied with
the vector &(f) of differential forms. We now let = be the Hodge operator
defined with respect to the Kdhler metric on X, and x acts naturally on vector-
valued forms by setting

*¢'(f)
*(f) =
**(f)

and noting that, since  is C-linear,
xG(gf) = xg '¢(gf) = & '+{(f);
and hence *&(f) satisfies the compatibility conditions and defines a global

element in 87(X, E). This is true of any zeroth order differential operator
(which is a homomorphism of the underlying vector bundles). Thus

L:&*(X, E)— &°**X, E)
is well defined by letting
LE(f) = (LE(f), Jj=1,...,p
and hence L* = wxLx is also defined. Of course, exterior differentiation d
does not extend to vector-valued forms, and we have to introduce a connec-

tion on E in order to define covariant differentiation on E, a generalization of
exterior differentiation. Namely, as in Chap. I1I, we let

D=d+0,
where 6 is the connection defined by
@ =h'dh  (with respect to a local holomorphic frame)

if h is the metric. Moreover,

D =D 4+ D",
where
D'=d+0
D" =4

are the splitting of the covariant differentiation into types. With respect to
the Hodge inner product on §*(X, E), we have the L2-adjoints of the above
differential operators, computed as in Proposition V.2.3:

Q.n (D)t = — *xdx = g*

2.2) (D)t = — xdx + wxf+ on r-forms
= 0* + wxbx.
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Note that in making this computation the Hodge inner product can be repre-
sented with respect to a local holomorphic frame

&m = (=1p [¥n-h-& & ned(X,E),

where & = §(f),n =n(f),and h = h(f)are vectors and matrices, respectively,
and the multiplication inside the integral is matrix multiplication. Also it
suffices to compute the adjoint (which we know is a differential operator by
Proposition 1V.2.8), to assume that £ and 5 have support where the holomor-
phic frame is defined. The crucial factor for our later use is that the adjoint
(D)% does not depend on the Hermitian metric of the fibres of E, and, in
particular, is the more classical scalar adjoint ¢* acting in §*(X'). The adjoint
of d (a scalar operator) is no longer scalar, however, Then we can conclude
that, by Corollary V.4.10, since the scalar operator adjoints are with respect
to a scalar metric,

(2.3) JL* — L*d = ig* = iD')%.

Under these circumstances we have the following inequality due to Nakano

[1.

Proposition 2.5: Let £ € JC#¢(E). Then
(@) (/2)© AL*,{) <0.
(®) ([/2)(L*OAE, ) =0.

In both (a) and (b) © (= dh~'dh) is the curvature form for the metric 4 on
the holomorphic vector bundle F.

Proof: We recall that (Proposition 111.1.9),"as an operator,
D*=(d + 6)* =0,
and thus o
OAn =D =(D'd + dD')n
for n € 8*(X, E) (noting that (D’)> = 0, because of type). Hence we have
i(9*¢, 9*¢) = (OL* — L*d), 9*¢)
by (2.3), and since ¢ is harmonic, we have ¢ = d%¢ = 0, and thus
i(@%¢, 9*¢) = (IL*E, 9*¢)
= (L*¢, [0%0* + d*d%)5),
since d%¢ = 0. Then, taking adjoints, we get
i@*¢, 9*¢) = (ID'd + ID'IL*E, &)
= (OAL*, ),

which immediately gives part (a). Part (b) is proved in a similar manner,
Q.E.D.

It is now a simple matter to derive Kodaira’s vanishing theorem.
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Proof of Theorem 2.4: Suppose that E is a negative line bundle. Then
a fundamental form for a Kihler metric on X is given by Q = —(i/2)©
[noting that © is a closed form of type (1, 1), whose coefficient matrix is
negative definite]. Then subtract part (b) from part (a) in Proposition 2.5,
and we obtain [noting that —(i/2)© A gets replaced by L]

(IL*L — LL*K, &) <0.
Recalling from Proposition V.1.1(c) that
(L*L — LLY, = (n — p — q),
we have immediately

n—p—9X5 <0

if & € 37 %(E), and thus part (b) of Theorem 2.4 follows, by using the results
in Example IV.5.7. Part (a) follows from part (b) by Serre duality (Theorem
V.2.7). Namely, if E ® K* is positive, then (E® K*)* = K E* is negative.
We then have

HY(X, O(E)) = HY(X, 0K ® K* ® E) = H(X, Q(K* ® E)),

which is dual to H*"(X, O(K (X E*)), which vanishes for ¢ > 0, by part (b).
Q.E.D.

3. Quadratic Transformations

In this section we are going to study the behavior of positive line bundles
under quadratic transformations. Let X be a complex manifold and suppose
that p € X. Then we want to define the quadratic transform of the manifold
X at the point p. Let U be a coordinate neighborhood of the point p, with
coordinates z =(z,, . . . . z,), where z =0 corresponds to the point p. Consider
the product U x P,_,, where we assume that (¢,, .. ..t,) are homogeneous
coordinates for P,_,. Then let

3.1 W={(z1)eUXP, itz —tgz,=0,a,=1,...,n}

which is a submanifold of U x P,_,. Then there is a holomorphic projection
n: W — U given by n(z, 1) = z. Moreover, n has the following properties,
as is easy to verify:

2 0)=S={0}xP,_ =P, ,
fly_s: W —S-—> U — {0} isa biholomorphism.
We define X == Q,(X), the quadratic transform of X at p, by letting
. {W,x e U
X =
X—-U, xe X—U.

This process if often referred to as blowing up X at the point p. We may also
denote the manifold £ by Q ,(X) to indicate the dependence on the point p,
and the projection will be denoted by z,: Q,(X) — X.

3.2)
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We recall from Sec. 4 in Chap. I1I that a divisor D in a complex manifold
X determines an associated holomorphic line bundle L(D) — X, which is
unique up to holomorphic equivalence of line bundles. Let X - X be the
quadratic transform of X at the point p and let § = n7'(p). Then S= P, _,
and is an (n — 1)-dimensional compact hypersurface embedded in X. As
such it is a divisor in X and determines a line bundle L(S) — X, which we
shall simply denote by L. Moreover, since S = P,_,, there is a canonical
line bundle, the hyperplane section bundle H — S (cf. Example 2.3), which
is the line bundle determined by the divisor corresponding to a fixed linear
hyperplane (e.g., [t, = 0] = P,_,), all such line bundles being isomorphic.
Let o denote the projection o: W — P,_,,0(z,t) =, and let L|, denote
the restriction of the line bundle L — X to W < X. Then we have the follow-
ing proposition.

Proposition 3.1: L[, = oc*H*.

Proof: Let U be a coordinate neighborhood of p in X, and represent
X near n7'(U) by W< U x P,_,, with coordinates (z,,...,z,) € U,
[t,,...,t] € P,_,. Then Sis defined by z, = .-- =z, =0 in the product
space U x P,_,. Now the hyperplane [¢, = 0] is defined by the equations
[(t,/t,) =0]in ¥V, < P,_,, where V, ={[¢,,...,1,]: t, # 0} is a coordinate
patch for P,_,. Therefore H — S is the line bundle given by the transition
functions
= ’_n).(i)" =l
h,p (te, i, =7 mV, NV,
and g*H has the same transition functions in (U X V, N V;) N W. Now
SN WU x V)N W is defined by the single equation [z, = 0}, as is easily
checked, using the defining relation for W. Thus the line bundle L associated
to the divisor § — W has the transition functions
galz) =2 inUxV, V)W
8
It follows that g,, = h;} and thus L|, = a*H*.
Q.E.D.

We now want to study the differential-geometric behavior of a line bundle
on X when lifted to a quadratic transformation of X at some point p. First
we look at the behavior of the canonical bundles. Let X be a compact com-
plex manifold, which will remain fixed in the following discussion, and L,
— @ ,(X) is the line bundle given in Proposition 3.1.

Lemma 3.2: Ko,y =n}K, @ L}

Proof: First we note that (z,, 1,/t, ..., 1,/t,) are holomorphic coordi-
nates for U X V; N W (using the same coordinates as above). Hence

f|=dz,/\d(:—?)/\.../\d(%)
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is a holomorphic frame for K3 over this open set, letting X = Q,X. More-
over, one obtains easily that

fi=z7dz N Nz,
using the defining equations for W. More generally, we have that
Je=2z"dz A Nz,

is a frame for Ky over U x V, N W, and hence transition functions for the
line bundle Kg|, are given by

(3.3) S5 = &apfos

since the local frames {f,} define a system of trivializations, which then gives
(3.3). It then follows that g, = (z,/z,)""!, which implies that

Kelw =L, = L' ® ”:Kx lw

since Ky is trivial on U. Also, L|;_,, is trivial, and z, is biholomorphic on
X — W. Hence

KX ‘X—W = KX ® L1 L\’-w-
Thus

(3.4) Ky = L' ® n*Ky.
Q.E.D.

Let p € X and let L, — Q,X be the line bundle corresponding to the
divisor #;'(p) < X. If g # p is another point on X, then it is clear that
0,0,X = Q,0,X, since blowing up at the points p and g are local and inde-
pendent operations. Let 7, ,: Q,0,X -—— X be the composite projection and
and let L, be the line bundle corresponding to the divisor =; }({p} U {g}).

Proposition 3.3: Let E — X be a positive holomorphic line bundle. There
exists an integer u, > 0 such that if u > u,, then for any points p, q € X,
pP+4q,

@) m;E QL KE,x

(b) mrE*®(L¥)*® K§,x, and

©) m B QLS ® Ko

are positive holomorphic line bundles.

Proof: To prove the above proposition, we shall construct a metric
on each of the above line bundles whose curvature form multiplied by i
is positive. We shall first look at a special case. Suppose that p € X is fixed,
and let Q,X = X, as before. The basic fact that we shall be using is that if
Fand G are Hermitian line bundles over a complex manifold Y, then, denot-
ing the curvature by O,

®F®G = @F + GG‘
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This is easy to see, since if p, =| g, |2p, and r, =|h,, |*r, are local transition
functions for metrics {p,} and {r,} for F and G, respectively (cf. Chap. 11I),
then

©; = dd log p.,

O, = dd log r.,
but {g,, - h,,} are the transition functions for F ®) G, and thus {p, - r,} defines
a metric for F (&) G, since

pa.ra = lgﬁu IZ ,hﬁa Izpﬂ’ﬁ'

Thus
Orgc = 00 log (p.r,)
= GF + OG-

We have, then, using the given metric on E and letting 7 = #,,
O,,-El‘ = ﬂ*eEﬂ = ﬂﬂ*@E.

We now need to construct appropriate metrics on L, and K.

First we consider L,. Suppose that U is a coordinate neighborhood near
p, with coordinates (z,, ..., z,), that P,_, has homogeneous coordinates
[t:, ..., ] as before, and that W < U x P,_, is the local representation for
X near n,'(p) as given by (3.1). Let U’ be an open subset of U such that
0e U cc U andlet p € D(U) be chosensothat p > 0inUand p =1
on U’. Let

- 2
0, = dd log T +|fa.|. T (inV,<P, )

be the curvature of the hyperplane section bundle H — P,__,, with respect
to the natural metric h, (see Example 111.2.4 for the construction of this
metric for U, ,., = H*). In particular (i/2)@, is the fundamental form
associated with the standard Kiahler metric on P,_,. Since L|, = o*H*,
we can equip L* |, with the metric 4, = g*h,. Now L*|z_,. is trivial, and we
can equip it with a constant metric /,. Then, letting p be chosen as above, we
see that

h = ph, + (1 — p)h,

defines a metric on L* — X and that, moreover, A =h,in W =U"x
P,., N W. Thus

0,.=0,., in W’
0,.=0 inX —w.

We now let K, be equipped with an arbitrary Hermitian metric, and then
we have from Lemma 3.2 (letting L be equipped with the dual metric)

Or; = Oy, + (n — 1)O,.
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Therefore it follows that

ex's“@u@x} = U0,.; + nO,. + erx'x-

Consider the sum
”GR'E + ev'ﬂ

as differential forms in U’ X P,_,, with the coordinates (z, ¢) as before. Then
O,.; depends only on the z-variable and ©,., depends only on the t-variable,
and the coefficient matrix of each is positive definite in each of the respective
directions, so their sum is a positive differential formt in U’ X P,_,, and the
restriction to W is likewise positive. Moreover, ©,.; is positiveon U — U’, so
there exists a g,(p) such that g > u (p) implies that

(3.5) (49.£] + ©,. >0

on all of X.
Let u, be chosen such that

U,09p + Oy, >0,

which is possible since E is positive and since X is compact. Thus we see that
there is a u,(p) such that

(3-6) #en,‘E + n@,_. + @,,,-K;\, > 0
if 4 > u,(p). Namely, let u,(p) = u, + nu,(p) and note that
”zeu'E + eu‘K}

is positive everywhere on X except at points of S, where it is positive semide-
finite (in the obvious sense).

Suppose that g € U’. Then we claim that if 4 > u,(p), then the estimate
(3.5) will hold for points g near p, namely,

40, .x +0,.>0

for all x € X. This is a simple continuity argument which is easily seen by
expressing the equations for the quadratic transform at ¢ in terms of local
coordinates centered at p, namely,

W,={zDe UxP,_ :(z; —g)t;=(z; — q))t},
whereg =(q,,...,9,)and p =(0,...,0).

By covering X with a finite number of such neighborhoods, we find that
there is a g, such that (3.6) holds for all points p € X, if 4 > u,, and this
concludes the proof of part (a). Parts (b) and (c) are proved in exactly the same
manner. In (b) we put the same metric on L, near the point p as above, and
(L})* will have the same positivity properties as L}, compensating for the lack
of positivity of z¥E* on =n;'(p). In part (c) one has the same local construc-
tions near each of the two distinct points p and ¢. The continuity and compact-

t1n this argument we ignore the factor of i and mean by > 0 that the coefficient matrix
of the (1, 1) form is positive definite.
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ness arguments go through in exactly the same manner, and we leave further

details to the reader.
Q.E.D.

4. Kodaira’s Embedding Theorem

After the preliminary preparations of the previous sections we are now
prepared to prove Kodaira’s embedding theorem for Hodge manifolds.
This theorem was conjectured by Hodge [2] and proved by Kodaira [2].

Theorem 4.1: Let X be a compact Hodge manifold. Then X is a projective
algebraic manifold.

Remarks: (a) Asaconsequence of the Kodaira embedding theorem, each
of the examples of Hodge manifolds in Sec. 1 admits a projective algebraic
embedding. In particular, any compact Riemann surface is projective algebraic
(a well-known classical result), and a complex torus admits a projective
embedding if and only if the periods defining the torus give rise to a Riemann
matrix. Such tori are called abelian varieties and can also be characterized
by the fact that a complex torus X is an abelian variety if and only if there are
n algebraically independent nonconstant meromorphic functions on X,
where n = dim¢ X (cf. Siegel [1]).

(b) It follows immediately from Theorem 4.1 that any compact complex
manifold X which admits a positive line bundle L — X is projective algebraic
(and conversely). Namely, in this case, ¢,(L) will have a Hodge form as a
representative, and thus X will be projective algebraic. This is a very useful
version of the theorem, and in this form the theorem has been generalized
by Grauert [2] to include the case where X admits singularities. Grauert’s
proof can be found in Gunning and Rossi [1], and it depends on the finiteness
theorem for strongly pseudoconvex manifolds and spaces.

Proof: By hypothesis, there is a Hodge form Q on X. By Proposition
111.4.6, it follows that there is a holomorphic line bundle E — X such that Q
is a representative for ¢ (E). Hence, E is a positive holomorphic line bundle.
Let u, be given by Proposition 3.3, let u > u,, and set F = E». Consider the
vector space of holomorphic sections O(X, F) = I'(F), for short, which is
finite dimensional by Theorem IV.5.2. Our object is to show that there is
an embedding of X into P(I'(F)). We shall prove this by a sequence of lemmas,
which will reduce the embedding problem and hence the proof of Theorem
4.1 to the vanishing theorem proved in Scc. 2. First we have some preliminary
considerations.

Consider the subsheaf of © = 0, consisting of germs of holomorphic
functions which vanish at p and ¢; call it m .. If p = g, then we mean by this
the holomorphic functions which vanish to second order at p, and we denote
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it simply by m2 (= m,,), where m, is the ideal sheaf of germs vanishing to
first order at p. Then there is an exact sequence of sheaves

0—> m,,—> 60— 06/m,,—>0,

and we can tensor this with the locally free sheaf O(F) (the sheaf of holomor-
phic sections of F), obtaining

4.1) 0 —> m,, ® O(F) —> O(F) —> 6/m,,, @ O(F) —> 0.
We see that the quotient sheaf in this sequence becomes

Op/m:®CFp' X=p=4q

4.2 0, % p
if p=gand

F, xX=p
4.3) F, x=9q

0, xX#porgqg
if p # g, where we have used the fact that © /m, = C, where m,, is the maximal
ideal in the local ring O,

Lemma 4.2: 0,/m? = C @ T*(X), and the quotient mapping is represented
byfe 0,—f(p) + df(p).

Proof: 1ff € 0, isexpanded in a power series near z = p in local coordi-
nates, we have

f(@@) = D *f(pXz — p),

la]20

using the standard multiindex notation (see Chap. 1V). Then if [ ] denotes
equivalence classes in O/m2, we see that

U1, =)+ X DYf(pXz — pYI,
since the higher-order terms € m?. Then define the mapping
0, > CO THX)
by w(f) =[f(p), df(p)], and it is easy to check that y factors through the
quotient mapping
Op '.!_) C @ TP*(X)
N
0,/m;

and ¥ is an isomorphism.
Q.E.D.
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Consider now the sequence (4.1) and the induced mapping on global
sections

) OX,F)_*, 0,/m,® F,
Ul

CDT;XNIRF,.
If fis a local frame for F near p and if £ € O(X, F), then
r$(N) = C(fXp) d(fXp)) € CD T3H(X),

noting that F, = C, by the choice of a frame /. Suppose that the map r in
(4.4) is surjective. Then we can find sections {{.. ¢, ..., &), & € T(X, F),
such that

$o(p) =1
4.5) ((p)=0,j=1,...,n
d¢(p) = dz; (in local coordinates).

This means that the global sections ¢, . . ., &,, expressed in terms of the
frame f, give local coordinates for X, in particular, 4 (f)A - -+ AdE(f) # 0.
Moreover, £,(p) # 0.

Similarly, suppose that the mapping

4.6) OX,F)—> F,®F,

induced from the sheaf sequence (4.3) is surjective. Then we can find global
sections &, and &, such that

S(p#0, (=0

4.7
fz(P) =0, fz(q) # 0.

Lemma 4.3: If the mappings r and s in (4.4) and (4.5) are surjective for all

points p and ¢ € X, then there exists a holomorphic embedding of X into

P, where dimcO(X, F) = m + 1.

Proof: Letg ={g,,...,9,}bea basis for O(X, F). If fis a holomorphic
frame for F at p, then (p,(f)(x), . .., @,(f)(x)) € C™*! for x near p. By as-
sumption, (4.4) is surjective, and hence at least one of the basis elements
@, is nonzero at p and hence in a neighborhood of p. Thus [p,(f)(x), ...,
@.(f)(x)] is a well-defined point in P, for x near p, and is a holomorphic
mapping as a function of the parameter x. If £ is another holomorphic frame
at p, then it is easy to check that

P (fXx) = c(x)p (fXx),

where ¢ is holomorphic and nonvanishing near p, and thus we have a well-
defined holomorphic mapping from X into P,, by

o, X —P,
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with
D,(x) = [Po(SNX);s - - 5 9, (X))

Suppose that the basis ¢ is replaced by another basis, § = {@ ], where

g = E CijP ¢ € G
and that the matrix C = [c, | is nonsingular. Then consider the diagram

where C is the mapping on P, defined by the action of the matrix C on the
homogeneous coordinates. The diagram is then commutative, and since C
is a biholomorphic mapping, it follows that the holomorphic mapping @,
has maximal rank or is an embedding if and only if @, has the same property.

To complete the proof of the lemma, we see that to prove that @, has
maximal rank at p € X it suffices to find a nice choice of basis ¢ which
demonstrates this property. By hypothesis, the mapping r in (4.4) is surjective,
and it follows that we can find sections {,, &, ..., ¢, € O(X, F) satisfying
the conditions in (4.5). It is easy to verify that £, &, ..., , are linearly
independent in the vector space O(X, F) and that we can extend them to a
basis, @. Then the mapping ®, is defined, in terms of the frame used in (4.5),
by

@,(x) = [o( ), ()X, -, &), - -]

and using the local coordinates

L, 8 )
inP_and (z,,...,z)in X, we see that the Jacobian determinant
¢, .-, ¢
oz, .., 2,)

is given by the coefficient of

NN f_"LQ _ . N
AR (G ) = Erxp)dzn e n,

which is nonzero. Thus @, and hence ®, have maximal rank at p, and conse-
quently @, is an immersion.

To see that @, is one to one, we let p and g be two distinct points on X
and choose global sections ¢, and ¢, satisfying (4.7). Then ¢, and &, are clearly
linearly independent and extend to a basis

=118

and itis clear that @, is one to one, and thus that @, is an embedding.
Q.E.D.
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The following lemma will then complete the proof of Theorem 4.1.

Lemma 4.4: The mappings r and s in (4.4) and (4.6) are surjective for all
points p and g € X.

Proof: Consider first the mapping r in (4.4). Let X = Q,X and let
S = m;'(p). Then let 95 be the ideal sheaf of the submanifold S = X, ie.,
the sheaf of holomorphic functions on X which vanish along S. Let 92 be the
ideal sheaf of holomorphic functions on X which vanish to second order
along S,i.e., f, € 9%, iff, = (g,)? whereg, € 95 ,. Let & = O3 be the struc-
ture sheaf for X, let © = O, be the structure sheaf for X, and let F = n*F.
Then we have the exact sequence of sheaves over .X (tensor products are
over the structure sheaves),
(4.8) 0 —> 8(F) ® 92 —> O(F) — O(F) R 6/9%2 — > 0,
and the mapping 7, induces a commutative diagram

0 —> 6(F) ® 9% — 6(F) —> 8(F) ® 8/9%3 -0
(4.9) Tn’.“ Tn* Tn}‘
0 —> O(F) ® mj —> O(F) —> O(F) & 0/m} —> 0

given by the topological pullback of the sheaves on X to sheaves on X, where
n} is the restriction of n* to the subsheaf O(F) X m2, and &¥ is the induced
map on quotients. We note thatif f € ['(U, F) for some U < X, then fvanish-
es to second order at p if and only if z*f € I'(r;'(U), F) vanishes to second
order along S, where S < #,'(U), if p € U. This only has to be verified for
the structure sheaves, since F is trivial near p, and hence F is trivial in a
neighborhood of S. This is easy to do using the local coordinates (z, ¢) in
W as in Sec. 3. Thus =¥ and hence n¥ are well defined mappings and one
checks easily that ¥ is injective. Moreover, we claim that there exist isomor-
phisms & and # making the following diagram commutative:

0 —> (X, 8(F) ® 9%) —> [(X, 8(F)) — (X, &(F) ® 8/9%)
(4.10) a ((ar B (I |n2
0 — I'(X, O(F) ® m2) —> [(X, O(F)) ~> [(X, O(F) ® 0/m}).

If we can show that H!(X, O(F) ® 92) = 0, it follows from (4.10) that r must
be surjective. First, we shall construct « and . For n = 1 this is trivial, since
X = X and n = identity. For n > 1 we shall need to use Hartogs’ theorem,
which asserts that a holomorphic function f defined on U — {0}, where U
is a neighborhood of the origin in C", n > 1, can be analytically continued
to all of U.T We shall define § and see that the restriction of § to the subspace
I(X, 9(F) ® g%) (which we shall call a) has the desired image. Namely,
suppose that & € [(f, O(F)). Then the projection n,: £ — X is biholomorphic
on the complement of S, and let

B&) = (m;hy*¢,

tFor an elementary proof of this theorem, see Hormander [2], Chap. 11.
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which is a well-defined element of I'(X — {p}, O(F)). Then by Hartogs’
theorem, there is a unique extension of ﬂ({) to a section of O(F) on X, which
we call B(¢). Clearly, we have that #~! = #} and hence § is an isomorphism.
Moreover, as noted above '(s) will vanish to second order along S if and
only if n € T(X, O(F) ® m3).

It thus remains to show that
4.11) H\(X,8(F)® 92) = 0.
To do this, we note that 9 is a locally free sheaf of rank 1, since it is the ideal
sheaf of a divisor in X. Moreover, any locally free sheaf corresponds to the
sheaf of sections of a vector bundle, and we see that in fact

9s = 6(L*),
where L is the line bundle associated to the divisor S — X. This is easy to
check by verifying that L* and g have the same transition functions in terms
of the coverings of S used in Sec. 3 in its coordinate representation as a subset
of W< U x P,_,. Moreover, one also has 9% =~ 0((L*)?), and then we see
that
H'(X,8(F) ® 9%) = H'(X,8(F ® (L*)?).
But, by hypothesis, F = E*#, where u > u,, and by Proposition 3.3(b)
FRL*»®K}:>0,

and thus by Kodaira’s vanishing theorem [Theorem 2.4(a)], we see that (4.11)
holds.

To see that s in (4.6) is surjective, we let S = n,!({p} U {q]), let 9, be the
ideal sheaf of this divisor, let & be the structure sheaf for 0,0 X, and let
F = n* F. We then have the exact sequence

4.12) 0— 8(F)® 9, — & F) —> 8(F) ® 8/, —> 0,

and there exists isomorphisms a and f# such that the following diagram
commutes:

0 —> [(X, &(F) ® 95) —> (X, &(F)) —> T(X, 8(F) ® 8/a5)

(4.13) e (1n2, B (]nse |3,
0—TI'(X,(F)®m,) — I'(X, o(F)) > I'(X, O(F) X 0/m,,).

The isomorphisms & and § are constructed using Hartogs’ theorem as before,

and thus we see that the vanishing of H!(X, 8(F) X 95) will ensure the sur-

jectivity of s. But g5 = 6(L*), and it follows from Proposition 3.3(c) that

F ® L*, ® K% > 0. Applying Kodaira’s vanishing theorem again, we obtain

the desired result.
Q.E.D.

Remark: Note that in the diagrams (4.10) and (4.13) we would be able
to complete the proof if we knew that

H'(X, (F)® m2) = H'(X, 6(F) ® m,) = 0.
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This is the approach taken by Grauert [2] and gives an alternative proof of
the embedding theorem. Namely, Grauert proves the more general vanishing
theorem: If E is a positive line bundle and F is any coherent analytic sheaf,
then there is an integer u, > 0 so that
HYX,0(E)®F) =0

for 4 > u, and g > 1. This result is derived from the general theory of
coherent analytic sheaves on pseudoconvex analytic spaces and involves,
in particular, Grauert’s solution to the Levi problem (Grauert [1]; see Gun-
ning and Rossi [1] for this derivation). Moreover, one needs to know that the
ideal sheaves ml and m,, are coherent analytic sheaves (which for these
particular ideals sheaves is not too difficult to prove). Kodaira’s approach,
which we have followed here, says, in effect, that if you blow up the points
p appropriately, then the coherent sheaves m? and m,, become locally free
on the blown up complex manifold X, and then the theory of harmonic
differential forms (which applies at this time only to locally free sheaves,
i.e., vector bundles) can be applied to give the desired vanishing theorems.
To prove Grauert’s vanishing theorem via harmonic theory, it is necessary
to first obtain a projective embedding; then, by finding a global projective
resolution of the given coherent sheaf by locally free sheaves (which follows
from the work of Serre [2]), one can deduce Grauert’s result (see Griffiths
[1] for this derivation).

A recent generalization of Kodaira’s vanishing and embedding theorems
to Moishezon spaces (generalizations of projective algebraic spaces) by
Grauert and Riemenschneider [2] and Riemenschneider [1] has involved the
approach used by Kodaira presented here, combined with the theory of
coherent analytic sheaves on pseudoconvex spaces.
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almost complex structure, 1, 30, 31-36, 213
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Arzela-Ascoli theorem, 112, 121
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atlas, 4
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Banach open mapping theorem, 141
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Bergman kernel function, 219

Bergman metric, 219-220
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bianalytic (real analytic isomorphism), 4

Bianchi identity, 75, 90

big period matrix, 221

biholomorphic mapping, 4, 189, 199, 211,
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Bockstein operator, 58, 102-105

bundle homomorphism, 24-25

bundle isomorphism, 19, 30, 175

bundle mapping, 33, 109, 163

bundle morphism, 25, 99

C

canonical abstract (soft) resolution, 36, 50,
54, 55

canonical bundle, 198, 217, 224, 225, 230

canonical connection, 71-79, 82, 100, 223

canonical Kéhler metric (form; see also
standard metric), 196

canonical line bundle, 218, 220

canonical pseudodifferential operator, 122,
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Cartan’s Theorem B, 217, 222

Cauchy-Riemann equations, 29, 35

Cech coboundary operator, 63

Cech cochain, 63

Cech cohomology, 36, 58, 63-64, 101-104,
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cell decomposition, 100-101, 205, 225

change of coordinates, 109, 129, 196, 225

change of frame, 66, 67, 70, 72, 74, 77, 81—
82, 86, 88, 92-93, 99, 104

change of variables, 126, 132, 196

characteristic classes, 26, 65

Chern character, 152

Chern class, 1, 65-66, 84, 90, 91, 95-106,
142, 152, 223, 226

Chern form, 90, 91, 94, 105, 218, 219

chordal metric, 95

Chow's theorem, 217

classification of vector bundles, 12, 98, 101

classifying space, 101, 215

coboundary operator (see also Cech co-
boundary operator), 48, 103

coherent analytic sheaf, 41, 240
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cohomology class, 58, 65, 90, 97, 102, 106,
142, 202, 217

cohomology groups, 50, 55, 58, 145, 196,
203, 205, 222

cohomology ring, 152, 201

cohomology theory, 36, 51, 58

commutation relation, 172, 181, 196

compact complex manifold, 10, 11, 26, 96~
97, 142, 150, 151, 153, 154,163, 170,
197, 198, 200, 201, 211, 217-219, 223

compact complex submanifold, 10, 216

compact complex surfaces, 153

compact differentiable manifolds, 108, 114,
131, 134,137, 144, 149, 163, 169, 202

compact Kihler manifold, 195, 197, 198,
203, 205-208

compact Lie group, 173, 174

compact linear map (operator; see also
continuous map), 111

compact manifold, 84, 96, 123, 131, 136,
137, 142, 150, 154

compatibility conditions, 13, 14, 41, 227

compatible connection, 76, 78

completely continuous linear map, /11, 137

completely reducible, 171, 174

complex-analytic family, 154, 211, 213, 214

complex analytic function (see also holo-
morphic functions), 3

complex-analytic manifold (see also com-
plex manifold), 3, 5

complex-analytic structure (see also com-
plex structure), 5, 7

complex dimension, 3, 16

complex line bundles, 96, 97, 99, 101, 105

complex manifold, 1, 3, 10~11, 16, 27-30,
34, 39,41, 45,48-50, 61, 62,77, 101,
105, 107, 117, 146, 165, 188, 189,
199, 201, 211, 214, 217, 218, 223,
229, 230, 231, 240

complex projective space, 97, 217

complex structure, 3-4, 10, 27, 28-31, 35,
150-153, 159, 165, 169, 194, 199,
200, 203, 210, 212

complex submanifold, 11, 190, 205, 218

complex torus, 189, 199, 200, 220222, 234

complex-valued differential forms, 3/-32,
156, 163

complex vector space, 156, 157, 169

complex of vector bundles, 75, 144

connection, 70, 73-78, 81, 84, 86, 88-95

connection matrix, 70, 72, 79, 88, 92-95

constant sheaf, 38, 46-48, 53, 102

continuous family of elliptic operators, 142

convex normal balls, 104

coordinates systems (chart, neighborhood,
patch; see also 8-coordinate sys-
tem), 3, 9, 17, 18, 24, 31, 124, 125,
131, 133, 134, 163, 190, 192, 199,
211, 212, 220, 230, 232

cotangent bundle, 23, 31, 114

cotangent vector, 115

covariant differentiation, 74, 227

cup product, 61, 92, 210

curvature, 73, 74, 81, 84, 86, 89, 92, 96,
223, 231, 232

curvature form, 75, 82, 190, 225, 228, 231

curvature matrix, 72, 79, 93-97

curvature tensor, 7/, 74

C» function (see aiso differentiable func-
tions), 2-3, 68-69, 98, 104, 105, 113,
121, 133, 163

C, mapping (see also differentiable map-
ping), 30, 48

C, section, 133, 138, 139

D

deformation theory, 212, 214

deRham cohomology (ring), 92, 103, 104,
108, 202

deRham complex, 108, 116, 145-147, 149

deRham group, 84, 86, 88, 91, 149, 151,
152, 154, 169, 197, 198, 201, 204,
208, 210, 217, 219, 223

deRham’s theorem, 36, 60, 61, 149, 208

derivation, /4

derivative mapping, /15

diffeomorphism, 4, 126, 211

differential embedding, 9-10

differentiable functions (see also C, func-
tions), 16, 116

differentiable manifold (C, manifold), 1,
3, 4-5, 8, 14-16, 22, 24, 26-31, 34,
35, 36, 39, 47-49, 53, 60, 65, 91, 92,
97,105, 114, 119, 124, 131, 132, 146,
152, 212

differentiable mapping, 4, 15, 26, 92, 98, 99

differentiable structure, 3-5, 8, 16, 28, 149,
169, 194

differentiable vector bundle, 13, 22, 26, 62,
65, 76, 77, 84, 86, 88, 90, 92, 94, 97,
98, 103, 142, 144

differential equations, 1

differential forms, 1, 27, 47, 61, 64, 68-70,
74-76, 83, 86, 91, 96, 100, 103, 106,
116, 149, 152, 163, 168, 189, 190,
193, 197, 201-203, 209, 217, 223-
227
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differential forms:
of degree p, 23
of type (p, 9), 1, 32, 61, 117
with vector bundle coefficients (see also
vector-bundle-valued differentiable
(p, q9)-forms), 68
differential mapping (map), 15, 16, 21, 66
differential operator, 70, 108, 114, 115-
120, 125,135, 142, 144, 198, 227, 228
differential sheaf, 47, 49
dimension of a representation, 171
direct limit, 14, 42-45, 51, 102
directional derivative, 15
divisor, 106, 107, 224, 230, 239
Dolbeault complex, 117, 145, 146
Dolbeault group, 151, 154, 170, 197, 198,
208
Dolbeault’s theorem, 61-63, 151
dual vector bundle, 92, 98, 166
d-operator, 27, 48

E

effective cycles, 206, 207

eigenvalue, 175, 176

eigenvector, 175, 176, 178, 179, 181, 182

elliptic complexes, 108, 117, 142, 144, 145-
148, 150, 151, 163, 165

elliptic differential equations, 108, 135, 139

elliptic differential operators, 108, 119, 139

elliptic operators, 119, 136, 137, 140, 142,
145

elliptic symbol, 136

embedding, 26

equivalence (of S-bundles), 18, 24

equivalence of representations, 171

étalé space, 42, 43-45, 51, 54

Euler characteristic, 84, 96, 150, 151

exact (sequence of vector bundles), 20

exact sequence of sheaves (see also short
exact sequence of sheaves), 41, 42,
45, 46-47, 54, 55, 102, 105, 107, 238

exponential mapping, 171, 186

exterior algebra, 19, 30

bundles, 23, 32

exterior derivative, 24, 31, 73, 91

exterior differentiation, 70, 89, 103, 116,
227

operator, 47

F

fibre, 12, 211
fine resolution, 50, 58, 61

fine sheaf, 52, 53, 64

finiteness theorem, 140

first bilinear condition, 274

flabby sheaf, 55

flag manifold, 210, 214, 215

formal adjoint operator, 113, 117

Fourier inversion theorem (inverse Fourier
transform), 111, 121, 135

Fourier transform, 110, 112, 115, 120-123,
127, 135

frame, 32

frame bundle, 66, 190

Fredholm operator, 138

free sheaf of modules, 40, 71

Fubini-Study metric, 190, 218, 225

fundamental class (cycle), 206, 208

fundamental form, 157-160, 184, 188-190,
192, 196, 201-203, 205, 218-221,
225, 226, 229, 232

fundamental 2-form, 154, 157

G

Gauss-Bonnet theorem, 96

Gaussian curvature, 96

genus, 200, 201

geodesic coordinates system, 796

germ, 42

differentiable function (C, function),

14

global m symbol, 125, 131

global sections of holomorphic
bundles, 22

graded sheaf, 47

Grassmannian manifold, 8, 11, 17, 26, 81,
209, 210

Green’s operator, 142, 146, 223

Griffiths domain, 210, 214

Griffiths period mapping, 211

line

H

harmonic forms, 108, 119, 141, 149-151,
154, 163, 169, 170, 195-197, 201,
202, 216, 240

harmonic representation, 154

harmonic sections, 142, 146

Hartog’s theorem, 238, 239

Hermitian complex manifold, 165, 166,
168, 188, 191

Hermitian exterior algebra, 170, 182, 183

Hermitian holomorphic vector bundle, 77,
79, 168
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Hermitian metric, 67, 68, 76-82, 91, 94,
104, 109, 118, 145, 150, 151, 154,
158, 160, 166, 170, 174, 188, 190,
198, 201, 211, 219, 221, 223, 228, 232

Hermitian vector bundle, 67, 76, 91, 109,
137, 166

Hermitian vector space, 154, 181, 182, 184,
191

Hilbert spaces, 110, 111, 113, 137, 138, 143

Hirzebruch-Riemann-Roch theorem, 153

Hodge decomposition (theorem), 108, 154,
197,198, 201, 203, 204, 208, 210, 225

Hodge filtration, 210, 211, 214

Hodge form, 218, 219, 221, 222, 234

Hodge inner product, 165, 166, 167, 168

Hodge manifold, 217, 218, 219, 234

Hodge metric, 191, 218, 220

Hodge numbers, 150, 151, 154, 198, 206,
208, 214

Hodge *-operator (see also star-operator),
154, 155, 158, 185, 227

Hodge-Riemann bilinear relations (see
also period relations), 201, 207, 209

Hodge structure, 213

holomorphic category, 5, 77

holomorphic changes of frame, 67, 79, 227

holomorphic differential forms, 48-49, 63,
150, 151, 218

holomorphic embedding, 9, 236

holomorphic frames, 67, 78-83, 94,231,236

holomorphic functions, 2, 3, 10, 34, 41, 46,
53, 81, 102, 107, 211, 234, 238

holomorphic line bundles, 65, 101-106,
217, 218, 223, 226, 230, 234

holomorphic mapping, 4, 29, 67, 199, 214,
236

holomorphic section, 28, 234

holomorphic tangent space, /6

holomorphic vector bundle, 12, /3, 16, 18,
26, 62, 65-67, 76-78, 80, 94,97, 117,
151-153, 170, 222, 226, 228

homogeneous coordinates, 5, 6, 11, 18, 83,
100, 189, 215, 224, 225, 229, 232, 237

homogeneous space, 190, 215

homomorphisms of resolutions, 49, 60, 106

Hopf blowup, 217

Hopf surface, 198, 200, 201, 220

hyperplane section bundle, 224, 226, 230,
232

I

ideal sheaf, 41, 239, 240
indefinitely differentiable functions (see

also C, functions, differentiable
functions), 2

index, 142

infinitesimal period relation, 215

integrable, 34, 35

integral cohomology (class), 99-101, 206,
219

integral cycles, 219, 221

integral differential form, 217, 218

integral singular chains, 47

intersection matrix, 202, 203

invariant homogeneous polynomials, 85—
86, 90, 94

invariant K-linear form, 85, 86

invariant subspace, 171, 177

irreducible representation, 171, 175, 177,
178, 180, 188

irreducible subspace, 182

isomorphism of sheaves, 37, 60

J

Jacobi identity, 171
Jacobian (matrix), 4, 9, 15, 29, 109, 125,
126, 129, 220, 237

K

K-codimension (of submanifold), 4

K-dimension, 3, 4

K-theory, 27

K-3 surface, 198

K-vector bundle of rank r, 12

Kaihler fundamental form, 190, 219

Kibhler identity, 197, 224

Kaihler manifold, 81, 142, 151, 154, 183,
188, 189-198, 201-203, 205, 210,
214, 217, 219, 223, 226

Kihler matric, 83, 149, 154, 188, 189-191,
197, 198, 201-203, 218, 223, 226,
227, 229, 232

Kibhler surface, 153

Kibhler type, 188, 187, 197, 198, 201, 218

Kodaira’s embedding theorem, 217, 234,
240

Kodaira’s vanishing theorem, 217, 228,
239-240

Koszul complex, 41

L
Laplacian operator, 119, 128, 136, 141,

145, 146, 149-151, 154, 163, 168,
191, 194, 223
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Lefschetz decomposition (theorem), 154,
181, 182, 183, 195-197, 201, 202,
203, 210
left invariant differential forms, 174
left invariant vector fields, 174
Leray cover, 64, 104
Lie algebra, 75, 171, 174
8l (2, C), 154, 170, 171-173, 178, 181
3u (2), 172, 173
of a Lie group, 171, 173
Lie bracket, 171, 172
Lie group, 171
SL (2, C), 171-173, 179, 185
SU (2), 172-174
Lie product, 75, 86
line bundles, 65, 81, 99, 101-102, 106, 223,
224, 231, 239
linear equivalence, 107
linear partial differential operator, 11§,
118, 119
local coordinates, 15, 16, 24, 30, 33, 47, 80,
83, 84, 88, 99, 108, 109, 114, 115,
118, 132, 164, 190, 223, 236, 237
local diffeomorphism, 125
local frame, 33, 34, 73, 80, 91, 118, 223,
236
local holomorphic coordinates, 28-29, 30,
33, 83
local m-symbol of a pseudodifferential
operator, 125, 126
local orthonormal frame, 163
local representations, 21, 6669, 72, 88-89,
114, 116, 132, 142
local trivialization, 13, 16, 19, 20, 25, 110,
114, 133
locally biholomorphic, 199, 219
locally free sheaf, 40, 41, 53, 62, 234, 239,
240
long exact sequence, 55, 58, 59

M

matrix representation, 15-16, 91
meromorphic functions, 107, 222, 234
morphism (of presheaves), 37
morphisms of sheaves, 37

N

natural metric (standard metric, standard
Kihler form), 95, 100, 214, 221, 232
negative line bundle, 223, 225, 226, 229
Newlander-Nirenberg theorem, 1, 35
noncompact manifolds, 113, 140, 164

nonprimitive cohomology classes, 204, 210
nontrivial vector bundles (complex line
bundle), 95-96, 168

o

order:

differential operator, 114

operators, 114

pseudodifferential operators, 13!
orientation, 154, 155, 158, 163, 165, 169
oriented manifold, 84
oriented Riemannian manifold, 163, 164,

166, 167

P

parametrix, 136, 142
partition of unity, 1, 53, 68, 77, 97, 98, 103,
109, 110, 133, 163, 211
period mapping, 154, 209, 210, 214
period matrix, 207, 209, 220-222
domain, 215
period relations (see also Hodge-Riemann
bilinear relations), 154
pluriharmonic function, 50
Poincaré duality, 154, 169, 195, 204, 219
Poincaré lemma, 47, 49-50
polarization, 85
positive differential form, 109, 219, 223,
225, 233
positive line bundle, 223, 225, 226, 229,
231, 240
positivity, 26, 103
presheaf, 2, 36, 37, 42
abelian groups, 43
R-modules, 39
primitive cohomology (group), 205-208,
210
primitive cohomology class, 201, 202, 204,
205
primitive decomposition, 202, 206
theorem, 195, 206
primitive deRham group, 210
primitive differential form, 181, 182, 183,
187, 191
primitive form, 191
primitive harmonic forms, 195
primitive homology, 207
primitive vector, 175, 176, 178-181
principal bundle, 66
projective algebraic embedding, 26, 234,
240
projective algebraic manifold, 1, 11, 214,
218, 234

255



projective algebraic variety, 9

projective hyperplane, 9

projective space, 5, 8, 9, 82, 189, 205, 218,
221

properly discontinuous group, 7199, 200,
219

pseudoconvex spaces, 234, 240

pseudodifferential operators, 108, 115, 119,
122, 124, 126, 129, 131, 132-136

pseudoinverse, 136

pullback (vector bundle), 24, 25, 92, 101,
217, 238

Q

quadratic transform, 217, 229, 230
quotient sheaf, 45, 47, 235
quotient topology, 5, 8, 14, 189, 199

R

real-analytic embedding, 9-10
real-analytic fibering (family), 215
real-analytic functions, 2, 3
real-analytic isomorphism (bianalytic), 4
real-analytic manifold, 1, 3, §, 10
real-analytic mapping, 4
real-analytic structure, 3, 4
real-analytic submanifold, 10
real-analytic vector bundle, 13, 18
real-dimension, 3
real tangent bundle, 27, 95
regularity of homogeneous solutions, 139
Rellich lemma, 108, 111-112
representation,
Lie algebra, 171
infinite-dimensional, 171
8l (2, C), 173-177, 179, 180, 183, 197
3u (2), 173
SL (2, C), 173, 179-181, 183, 185, 188
SU (2), 173
space, 182
representation theory, 154, 170, 181, 191,
196
representative of germ, 42
resolutions of sheaves, 36, 42, 47, 58, 60, 62
Riemann matrix, 221, 222, 234
Riemann surfaces, 153, 200, 201, 207, 209,
213, 219
Riemannian manifold, 163, 164, 166, 167
Riemannian metric, 65, 104, 137, 141, 149,
164, 165, 169
Riemann-Roch theorem, 153

S

S-bundle (see also vector bundle), 13, 17,
18, 19-20, 21, 25, 39, 40
homorphism, 20, 21, 25, 26
isomorphism, /8
morphism, 24, 25-26
8-coordinate system, 3
S-embedding, 9
S-functions, 3, 4
8-isomorphism, 3, 4, 9, 13, 17, 19
8-manifold (see also complex, differen-
tiable manifold), 3, 4, 5, 13, 16, 19,
38, 40
S-morphism (see also differentiable, holo-
morphic mapping), 3, 4, 13, 18, 21—
22, 24, 25
§-section, 21, 22, 32
8-subbundle, 20
8-submanifold, 4, 9, 20
S-structure, 2, 4-5, 13
Schubert varieties, 101
Schwarz inequality, 112
Schwarz-Christoffel symbols, 71
second bilinear condition, 2/4
sections, 37
étalé space, 42
vector bundles, 108, 132, 135
self-adjoint elliptic operator, 140, 141
self-adjoint operators, 108, /40
sequence of sheaves (see also short exact
sequence of sheaves), 47
Serre duality, 154, 170, 229
sheaf:
abelian groups, 45, 47, 51, 52
cohomology, 51, 56, 58, 149
differentiable functions, 38
discontinuous sections, 54
divisors, 107
holomorphic functions, 38, 39, 45, 53
holomorphic p-forms, 63
isomorphism, 43, 60, 69
mappings, 37, 40, 45
modules, 47, 61
morphism, 45, 52, 56
R-modules, 39, 40
real-analytic functions, 38
rings, 39, 41
8-sections, 39
sheaves, 36, 37, 38
short exact sequence, 20, 27, 59
short exact sequence of sheaves, 45, 46, 51,
54-58, 62
Siegel upper-half-space, 210, 215
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signature, 204, 208

singular cochains, 47, 61

singular cohomology, 48, 100, 149

singular points, 9

smoothing operator, 121, 125, 130-131,
136, 137, 140

infinite order (operator of order _),

125, 130, 142

Sobolev lemma, 108, 111, 121, 140

Sobolev norm, 109, 131

Sobolev spaces, 108, 121, 137, 145

soft resolutions, 36, 58

soft sheaf, 51, 52, 53-56, 58, 61

spectral sequence, 197, 198

stalk, 42

standard complex structure, 28

star-operator (*-operator, see also Hodge
*-operator), 158, 161, 163, 164, 169,
170

Stein manifold, 11, 64

Stokes’ theorem, 50

strictly positive smooth measure, 108, 118,
137, 145

structure sheaf, 38, 39, 101, 238

submanifold, 9

subpresheaf, 37

subsheaf, 37, 39, 46

symbol mappings, 115, 117, 125, 132

symbol of differential operator, 115

symbol sequence, 117, 144

symmetric algebra bundles, 23

T

tangent bundle, 1, 14, 15, 16, 17, 22, 30,
31, 81, 95, 152

tangent mapping (map), 15, 16

tangent space, /4, 16

tensor product of sheaves, 62, 68

Todd class, 152

topological dimension, 2, 10, 97

topological invarient, 142, 150, 198, 201,
206, 208

topological manifold (see also topological
n-manifold), 3-5, 28

topological n-manifold, 2

torsion tensor, 191

total Chern class, 90

total Chern form, 90

total space, 12, 18, 25

transformation rule (law, formula), 67, 68,
70, 74, 79, 132

transition functions, 13, 16-20, 22, 29, 41,
66, 102, 104, 169, 211, 218, 220, 224,
225, 230, 231, 232, 239

trivial bundle (line bundle, vector bundle),
14, 21, 70, 95, 116, 125, 135, 218

trivial subbundles, 84, 97

trivialization of sections, 22

trivializing cover, 104, 109

trivializing neighborhood, 32, 118

U

unitary group, 84, 215

unitary frame, 76, 91

unitary matrix, 174

unitary trick, 174

universal bundle, 17, 18, 26, 81-84, 96, 98-
101, 190, 218, 224, 225

\4

vanishing theorems, 223, 225, 226

variation of Hodge structure, 210

vector bundles, 1, 12, 17-18, 20-21, 26-27,
40, 41, 65-73, 84, 90, 95-98, 101,
111, 119, 124, 126, 132, 134, 136,
144, 152, 165, 239

vector bundle isomorphism:

8-bundle homomorphism, 18, 21, 72

vector bundle isomorphism, 93, 213

vector-bundle-valued differentiable (p, g)-
forms (holomorphic p-forms), 63,
69, 167

vector-valued functions, 21, 28, 32, 71, 110,
135

volume element (volume form), 107-109,
155, 158, 159, 164

w

wedge product, 71, 91, 155

weight, 175, 176, 178, 180-182, 187
Weyl element, 180

Weyl group reflections, 173
Whitney’s theorem, 10

Y

Young’s inequality, 123, 124

Z

zero section, 21, 24, 115
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