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PREFACE TO THE 
FIRST EDITION 

This book is an outgrowth and a considerable expansion of lectures given 
at Brandeis University in 1967-1968 and at Rice University in 1968-1969. 
The first four chapters are an attempt to surve)' in detail some recent 
developments in four somewhat different areas of mathematics: geometry 
(manifolds and vector bundles), algebraic topology, differential geometry, 
and partial differential equations. In these chapters, I have developed various 
tools that are useful in the study of compact complex manifolds. My moti
vation for the choice of topics developed was governed mainly by the 
applications anticipated in the last two chapters. Two principal topics 
developed include Hodge's theory of harmonic integrals and Kodaira's 
characterization of projective algebraic manifolds. 

This book should be suitable for a graduate level course on the general 
topic of complex manifolds. I have avoided developing any of the theory of 
several complex variables relating to recent developments in Stein manifold 
theory because there are several recent texts on the subject (Gunning and Rossi, 
Hörmander). The text is relatively self-contained and assurnes familiarity with 
the usual first year graduate courses (including so me functional analysis), but 
since geometry is one of the major themes of the book, it is developed from 
first principles. 

Each chapter is prefaced by a general survey of its content. Needless to 
say, there are numerous topics whose inclusion in this book would have been 
appropriate and useful. However, this book is not a treatise, but an attempt 
to follow certain threads that interconnect various fields and to culminate with 
certain key results in the theory of compact complex manifolds. In almost 
every chapter I give formal statements of theorems which are understandable 
in context, but whose proof oftentimes involves additional machinery not 
developed here (e.g., the Hirzebruch Riemann-Roch Theorem); hopefully, 
the interested reader will be sufficiently prepared (and perhaps motivated) to 
do further reading in the directions indicated. 
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vi Pre/ace 

Text references of the type (4.6) refer to the 6th equation (or theorem, 
lemma, etc.) in Sec. 4 of the chapter in which the reference appears. If the 
reference occurs in a different chapter, then it will be prefixed by the Roman 
numeral of that chapter, e.g., (11.4.6.). 

I would like to express appreciation and gratitude to many of my col
leagues and friends with whom I have discussed various aspects of the 
book during its development. In particular I would like to mention M. F. 
Atiyah, R. Bott, S. S. Chern, P. A. Griffiths, R. Harvey, L. Hörmander, 
R. Palais, J. Polking, O. Riemenschneider, H. Rossi, and W. Schmid whose 
comments were all very useful. The help and enthusiasm of my students 
at Brandeis and Rice during the course of my first lectures, had a lot to 
do with my continuing the project. M. Cowen and A. Dubson were very 
helpful with their careful reading of the first draft. In addition, I would like 
to thank two of my students for their considerable help. M. Windharn wrote 
the first three chapters from my lectures in 1968-69 and read the first draft. 
Without his notes, the book almost surely would not have been started. J. 
Drouilhet read the final manuscript and galley proofs with great care and 
helped eliminate numerous errors from the text. 

I would like to thank the Institute for Advanced Study for the opportunity 
to spend the year 1970-71 at Princeton, during which time I worked on the 
book and where a good deal of the typing was done by the excellent Institute 
staff. Finally, the staff of the Mathematics Department at Rice University 
was extremely helpful during the preparation and editing of the manuscript 
for publication. 

Houston 
December 1972 

R. O. WeHs, Jr. 
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PREFACE TO THE 
SECOND EDITION 

In this second edition I have added a new section on the classical 
finite-dimensional representation theory for 5[(2, C). This is then used to 
give a natural proof of the Lefschetz decomposition theorem, an observation 
first made by S. S. Chern. H. Hecht observed that the Hodge * -operator is 
essentiallya representation of the Weyl reftection operator acting on 5[(2, C) 
and this fact leads to new proofs (due to Hecht) of some of the basic Kähler 
identities which we incorporate into a completely revised Chapter V. The 
remainder of the book is generally the same as the first edition, except that 
numerous errors in the first edition have been corrected, and various 
examples have been added throughout. 

I would like to thank my many colleagues who have commented on the 
first edition, which helped a great deal in getting rid of errors. Also, I would 
like to thank the graduate students at Rice who went carefully througb the 
book witb me in a seminar. Finally, I am very grateful to David Yingst and 
David Johnson wbo botb collated errors, made many suggestions, and helped 
greatly witb the editing of tbis second edition. 

Houston 
July 1979 

R. O. WeHs, Jr. 
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CHAPTER I 

MANIFOLDS 

AND 

VECTOR BUNDLES 

There are many c1asses of manifolds which are under rather intense 
investigation in various fields of mathematics and from various points of 
view. In this book we are primarily interested in differentiable maniJolds 
and complex maniJolds. We want to study (a) the "geometry" of manifolds, 
(b) the analysis of functions (or more general objects) which are defined on 
manifolds, and (c) the interaction of (a) and (b). Our basic interest will be 
the application of techniques of real analysis (such as differential geometry 
and differential equations) to problems arising in the study of complex mani
folds. In this chapter we shall summarize some of the basic definitions and 
results (including various examples) of the e1ementary theory of manifolds 
and vector bundles. We shall mention some nontrivial embedding theorems 
for differentiable and real-analytic manifolds as motivation for Kodaira's 
characterization of projective algebraic manifolds, one of the principal resuIts 
which will be proved in this book (see Chap. VI). The "geometry" of a mani
fold is, from our point of view, represented by the behavior of the tangent 
bundle of a given manifold. In Sec. 2 we shall develop the concept of the 
tangent bundle (and derived bundles) from, more or less, first principles. 
We shall also discuss the continuous and c~ c1assification of vector bundles, 
wh ich we shall not use in any real sense but which we shall meet aversion of 
in Chap. IH, when we study Chern c1asses. In Sec. 3 we shall introduce al
most complex structures and the calculus of differential forms of type 
(p, q), including a discussion of integrability and the Newlander-Nirenberg 
theorem. 

General background references for the material in this chapter are Bishop 
and Crittenden [I], Lang [I], Narasimhan [I], and Spivak [I], to name a few 
relatively recent texts. More specific references are given in the individual 
sections. The c1assical reference for calculus on manifolds is de Rham [I]. 
Such concepts as differential forms on differentiable manifolds, integration 
on chains, orientation, Stokes' theorem, and partition of unity are all covered 
adequately in the above references, as weil as e1sewhere, and in this book 
we shall assume familiarity with these concepts, although we may review 
some specific concept in a given context. 
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2 Manifolds and Vertor Bundles Chap. I 

1. Manifolds 

We shall begin this section with some basic definitions in which we shall 
use the following standard notations. Let Rand C denote the fields of real 
and complex numbers, respectively, with their usual topologies, and let K 
denote either of these fields. If D is an open subset of Kn, we shall be con
cerned with the following function spaces on D: 

(a) K=R: 
(I) 8(D) will denote the real-valued indefinitely differentiable 

functions on D, which we shall simply call C~ functions on D; i.e.,J E 8(D) 
if and only if fis a real-valued function such that partial derivatives of all 
orders exist and are continuous at all points of D [8(D) is often denoted by 
C~(D)]. 

(2) Cl(D) will denote the real-valued real-analytie funetions on 
D; i.e., Cl(D) c 8(D), andf E Cl(D) if and only if the Taylor expansion of 

fconverges tofin a neighborhood ofany point of D. 
(b) K=C: 

(I) ß(D) will denote the complex-valued holomorphie functions 
on D, i.e., if (Zl' ... ,zn) are coordinates in Cn, then JE ß(D) if and only 
if near each point ZO E D,J can be represented by a convergent power se ries 
ofthe form 

-f(z) = f(zp ... , zn) = L a~I ..... ~.(zl - zD~' ... (Zn - z~)~·. 
(11 ••••• 11 .. =0 

(See, e.g., Gunning and Rossi [1], Chap. I, or Hörmander [2], Chap. 11, 
for the e1ementary properties of holomorphic functions on an open set in 
Co). These particular c1asses of functions will be used to define the particular 
c1asses of manifolds that we shall be interested in. 

A topological n-manifold is a Hausdorff topological space with a count
able basist which is locally homeomorphic to an open subset ofRn. The integer 
n is called the topological dimension of the manifold. Suppose that S is one 
ofthe three K-valued families offunctions defined on the open subsets of Kn 
described above, where we let S(D) denote the functions of S defined on 
D, an open set in Kn. [That is, S(D) is either 8(D), Cl(D), or ß(D). We shall 
only consider these three examples in this chapter. The concept of a family 
of functions is formalized by the not ion of a presheaf in Chap. 11.] 

Definition 1.1: An S-strueture, SM' on a k-manifold M is a family of 
K-valued continuous functions defined on the open sets of M such that 

tThe additional assumption of a countable basis ("countable at infinity") is important 
for doing analysis on manifolds, and we incorporate it into the definition, as we are less 
interested in this book in the larger class of manifolds. 
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(2) Cl(D) will denote the real-valued real-analytie funetions on 
D; i.e., Cl(D) c 8(D), andf E Cl(D) if and only if the Taylor expansion of 

fconverges tofin a neighborhood ofany point of D. 
(b) K=C: 

(I) ß(D) will denote the complex-valued holomorphie functions 
on D, i.e., if (Zl' ... ,zn) are coordinates in Cn, then JE ß(D) if and only 
if near each point ZO E D,J can be represented by a convergent power se ries 
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-f(z) = f(zp ... , zn) = L a~I ..... ~.(zl - zD~' ... (Zn - z~)~·. 
(11 ••••• 11 .. =0 

(See, e.g., Gunning and Rossi [1], Chap. I, or Hörmander [2], Chap. 11, 
for the e1ementary properties of holomorphic functions on an open set in 
Co). These particular c1asses of functions will be used to define the particular 
c1asses of manifolds that we shall be interested in. 

A topological n-manifold is a Hausdorff topological space with a count
able basist which is locally homeomorphic to an open subset ofRn. The integer 
n is called the topological dimension of the manifold. Suppose that S is one 
ofthe three K-valued families offunctions defined on the open subsets of Kn 
described above, where we let S(D) denote the functions of S defined on 
D, an open set in Kn. [That is, S(D) is either 8(D), Cl(D), or ß(D). We shall 
only consider these three examples in this chapter. The concept of a family 
of functions is formalized by the not ion of a presheaf in Chap. 11.] 

Definition 1.1: An S-strueture, SM' on a k-manifold M is a family of 
K-valued continuous functions defined on the open sets of M such that 

tThe additional assumption of a countable basis ("countable at infinity") is important 
for doing analysis on manifolds, and we incorporate it into the definition, as we are less 
interested in this book in the larger class of manifolds. 
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(a) For every p E M, there exists an open neighborhood V of p and a 
homeomorphism h : V ----+ V', where V' is open in K", such that for any open 
set V c V 

[: V _ K E SM if and only if[ 0 h- I E S(h(V». 

(b) If [: V ----+ K, where V = U I VI and Vj is open in M, then[ E SM 
if and only if [lul E SM for each i. 

It folio ws c1early from (a) that if K = R, the dimension, k, ofthe topologi
cal manifold is equal to n, and if K = C, then k = 2n. In either case n will 
be called the K-dimension of M, denoted by dimKM = n (wh ich we shall 
call real-dimension and complex-dimension, respectively). A manifold with 
an S-structure is ca lied an S-manifold, denoted by (M, SM)' and the ele
ments of SM are called S-functions on M. An open subset V c M and a 
homeomorphism h : V ----+ V' c K" as in (a) above is called an S-eoordinate 
system. 

For our three c1asses of functions we have defined 

(a) S = S: differentiable (or C~) manifold, and the functions in SM are 
called c~ [unetions on open subsets of M. 

(b) S = (i: real-analytie manifold, and the functions in (iM are called 
real-analytie [unetions on open subsets of M. 

(c) S = fl: eomplex-analytie (or simply eomplex) manifold, alJd the 
functions in flM are called holomorphie (or eomplex-analytie[unetions) on M. 

We shall refer to SM' (iM' and flM as dijferentiable, real-analytie, and eomplex 
struetures respectively. 

Definition 1.2: 

(a) An S-morphism F: (M, SM) ----+ (N, SN) is a continuous map, F: M 
----+ N, such that 

[E SN implies[o FE SM' 

(b) An S-isomorphism is an S-morphism F: (M, SM) -"" (N, SN) such 
that F : M- .. N is a homeomorphism, and 

It follows from the above definitions that if on an S-manifold (M, SM) 
we have two coordinate systems h I: V I --+ K" and h1 : V1 ----+ K" such that 
VI n V1 "* 0, then 

(1.1 ) "1 0 ".1: "I(VI n V1)· -. h1(V I n V1 ) is an S-isomorphism 
on open subsets of (K", SK.)' 
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Conversely, if we have an open covering {U"},,eA of M, a topological mani
fold, and a family of homeomorphisms {hOl: U" --+ U~ C Kft}"EA satisfying 
(1.1), then this defines an S-structure on M by setting SM = {f: U --+ K} 
such that U is open in M and f 0 h; 1 E S(h,,( U n U,,» for all IX E A; Le., 
the functions in SM are pullbacks of functions in S by the homeomorphisms 
(h"},,EA' The collection ( U", h")}"EA is called an atlas for (M, SM)' 

In our three c1asses of functions, the concept of an S-morphism and 
S-isomorphism ha ve special names: 

(a) S = 8: dijferentiable mapping and dijfeomorphism of M to N. 
(b) S = Cl: real-analytie mapping and real-analytie isomorphism (or 

bianalytie mapping) of M to N. 
(c) S = 0: h%morphie mapping and biholomorphism (biholomorphie 

mapping) of M to N. 

It follows immediately from the definition above that a differentiable mapping 

f:M~N, 

where M and N are differentiable manifolds, is a continuous mapping of 
the underlying topological space wh ich has the.property that in local coordi
nate systems on M and N, f can be represented as a matrix of c~ functions. 
This could also be taken as the definition of a differentiable mapping. A simi
lar remark holds for the other two categories. 

Let N be an arbitrary subset of an S-manifold M; then an S-function on 
N is defined to be the restriction to N of an S-function defined in some open 
set containing N, and SMIN consists of aII the functions defined on relatively 
open subsets of N which are restrietions of S-functions on the open subsets 
ofM. 

Definition 1.3: Let N be a cIosed subset of an S-manifold M; then N is 
called an S-submanifold of M if for each point X o E N, there is a coordinate 
system h: U --+ U' c K", where X o E U, with the property that h I UnN is 
mapped onto U' n Kk, where 0 <k < n. Here Kk c Kft is the standard 
embedding of the linear subspace Kk into Kft, and k is caIIed the K-dimension 
of N, and n - k is caIled the K-eodimension of N. 

It is easy to see that an S-submanifold of an S-manifold M is itself an 
S-manifold with the S-structure given by SMIN' Since the impIicit function 
theorem is valid in each of our three categories, it is easy to verify that the 
above definition of submanifold coincides with the more common one that 
an S-submanifold (of k dimensions) is a cIosed subset of an S-manifold M 
wh ich is locally the common set ofzeros ofn - k S-functions whose Jacobian 
matrix has maximal rank. 

It is c1ear that an n-dimensional complex structure on a manifold induces 
a 2n-dimensional real-analytic structure, which, Iikewise, induces a 2n
dimensional differentiable structure on the manifold. One of the questions 
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we shall be concerned with is how many different (i.e., nonisomorphic) 
complex-analytic structures induce the same differentiable structure on a 
given manifold? The analogous question of how many different differentiable 
structures exist on a given topological manifold is an important problem in 
differential topology. 

What we have actually defined is a category wherein the objects are S
manifolds and the morphisms are S-morphisms. We leave to the reader the 
proof that this actually is a category, since it follows directly from the defini
tions. In the course of what folIows, then, we shall use three categories-the 
differentiable (S = &), the real-analytic (S = Cl), and the holomorphic 
(S = 0) categories-and the above remark states that each is a subcategory 
of the former. 

We now want to give some examples of various types of manifolds. 

Example 1.4 (Euclidean spaee): K", (R", C·). For every p E K", U = K" 
and h = identity. Then R" becomes a real-analytic (hence differentiable) 
manifold and P is a complex-analytic manifold. 

Example 1.5: If (M, SM) is an S-manifold, then any open subset U of 
M has an S-structure, Sv = fflv:j E SM}· 

Example 1.6 (Projeetive spaee): If V is a finite dimensional vector space 
over K, thent P(V) := (the set of one-dimensional subspaces of V} is called 
the projective space of V. We shall study certain special projective spaces, 
namely 

P.(R):= P(R"+') 

p.(C) := P(C·+I). 

We shall show how P.(R) can be made into a differentiable manifold. 
There is a natural map n: R·+I - {O} -> P.(R) given by 

n(x) = n(xo, .•• , x.) := (subspace spanned by x = (xo' •.• , x.) E R'+ I}. 

The mapping n is onto; in fact, n Is": IxE R'·';\xl ,11 is onto. Let P.(R) have 
the quotient topology induced by the map n; i.e., U c P.(R) is open if and 
only if n- I (U) is open in R·+ I - [O}. Hence n is continuous and P .(R) is a 
Hausdorff space with a countable basis. Also, since 

n Is': S' ----+ P .(R) 

is continuous and surjective, P"(R) is compact. 
If x = (xo, ... ,x,,) E R·+I - {O}, then set 

n(x) = [xo, ••• , xJ 

We say that (xo, ••• ,x.) are homogeneous coordinates of [xo, •.. ,xJ If 
(x~, ... ,x:) is another set of homogeneous coordinates of [xo, ... , x.], 

t : = means that the object on the left is defined to be equal to the object on the right. 
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then x, = tx~ for some t E R - {O}, since [xo' ••. ,x.l is the one-dimen
sional subspace spanned by (xo' ••• , X.) or (x~, ... , x~). Hence also n(x) = 
n(tx) for t E R - (O}. Using homogeneous coordinates, we can define a 
differentiable structure (in fact, real-analytic) on P.(R) as folIows. Let 

U« = {SE Pn(R): S = [xo, ... , xn] and x« =1= O}, for IX = 0, ... , n. 

Each U" is open and Pn(R) = U:=o U,. since (xo' •.• , x.) E R·+l - {O}. 
Also, define the map h,.: U,. -> Rn by setting 

h,.([xo'.'" x.D = (~, ... , x,.-t, X"+I, ••• , X n ) ERn. 
x,. x,. x,. x,. 

Note that both U,. and h" are weil defined by the relation between different 
choices of homogeneous coordinates. One shows easily that h" is a homeo
morphism and that h" 0 h; 1 is a diffeomorphism; therefore, this defines a 
differentiable structure on P.(R). In exactly this same fashion we can define 
a differentiable structure on P(V) for any finite dimensional R-vector space 
V and a complex-analytic structure on P( V) for any finite dimensional C
vector space V. 

ExampIe 1.7 (Matrices of fixed rank): Let mlk .(R) be the k x n matrices 
with real coefficients. Let Mk .• (R) be the k x n ~atrices of rank k(k < n). 
Let Mk' .• (R) be the elements of mlk .• (R) of rank m (m < k). First, mlk .• (R) 
can be identified with Rk., and hence it is a differentiable manifold. We know 
that Mk .• (R) consists of those k x n matrices for which at least one k x k 
minor is nonsingular ; Le., 

I 

Mk .• (R) = U (A E mlk .• (R): det Ai *- O}, 
;= 1 

where for each A E mlk .• (R) we let (A p ••• , AJ be a fixed ordering of the 
k x k minors of A. Since the determinant function is continuous, we see 
that Mk .• (R) is an open subset of mlk .• (R) and hence has a differentiable 
structure induced on it by the differentiable structure on mlk .• (R) (see Example 
1.5). We can also define a differentiable structure on Mk' .• (R). For convenience 
we delete the Rand refer to Mk' .•. For Xo E Mk' .• , we define a coordinate 
neighborhood at X o as folIows. Since the rank of Xis m, there exist permuta
tion matrices P, Q such that 

PXoQ = , [AO Ba] 
Co Do 

where Ao is a nonsingular m X m matrix. Hence there exists an f > 0 such 
that 11 A - A oll < f implies A is nonsingular, where 11 All = maxu I aiJ I, 
for A = [au]' Therefore let 

W = {X E mlk •• : PXQ = [~ ~J and IIA - Aall < f}. 

Then W is an open subset of ml k ••• Since this is true, U := W n M'k .• is an 
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open neighborhood of Xo in M'l: .• and will be the necessary coordinate neigh
borhood of Xo• Note that 

X E U if and only if D = CA -I B, [A DBJ. where PXQ = C 

This follows from the fact that 

[-;A-I ~k-J[~ ~] = [~ ~ - CA-'B] 

and 

is nonsingular (where I j is the j x j identity matrix). Therefore 

and 

have the same rank, but 

[~ ~ - CA-'B] 

has rank m if and only if D - CA -I B = O. 
We see that M'l: .• actually becomes a manifold of dimension m(n + k -

m) by defining 

h: U -+ Rm'+(n-mlm'(k-mlm = R",(n+k-ml, 

where 

h(X) = [~ ~J E Rm(n+k-ml [A DB], for PXQ = C 

as above. Note that we can define an inverse for h by 

h-'([~ ~])=P-I[~ ~A-'BJQ-" 
Therefore his, in fact, bijective and is easily shown to be a homeomorphism. 
Moreover, if "I and "2 are given as above, 

where 

P p_,[A t BI ]Q-IQ _ [A z BzJ' 
2 t C C A-'B I 2 - C D 

I I t I 1 2 

and these maps are clearly ditreomorphisms (in fact, real-analytic), and so 
M'l: .• (R) is a ditrerentiable submanifold of mtk.n(R). The same procedure can 
be used to define complex-analytic structures on mtk.n(C), Mk .• (C), and 
M'l: .• (C), the corresponding sets of matrices over C. 
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Example 1.8 (Grassmannian manifolds): Let V be a finite dimensional 
K-vector space and let Gk(V) := {the set of k-dimensional subspaces of V}, 
for k < dimKV. Such a Gk(V) is ca lied a Grassmannian manifold. We shall 
use two particular Grassmannian manifolds, namely 

Gk .• (R) := Gk(R') and Gk .• (C) := Gk(C·). 

The Grassmannian manifolds are clearly generalizations of the projective 
spaces [in fact, P(V) = G1(V); see Example 1.6] and can be given a manifold 
structure in a fashion analogous to that used for projective spaces. 

Consider, for example, Gk .• (R). We can define the map 

n:: Mk .• (R) -- Gk .• (R), 
where 

n:(A) = n:(~ I) := {k-dimensional subspace of R' spanned by 
. the row vectors {aj} of A}. 

ak 

We notice that for g E GL(k, R) (the k X k nonsingular matrices) we have 
n:(gA) = n:(A) (where gA is matrix multiplication), since the action of g 
merely changes the basis of n:(A). This is completely analogous to the pro
jection n:: R'+ 1 - {O} ---+ P .(R), and, using the same reasoning, we see that 
Gk .• (R) is a compact Hausdorff space with the quotient topology and that 
n: is a surjective, continuous open map. t 

We can also make Gk .• (R) into a differentiable manifold in a way similar 
to that used for P.(R). Consider A E M k •• and let {A I' ••• , Aa be the collec
tion of k x k minors of A (see Example 1.7) .. Since A has rank k, A~ is 
nonsingular for some 1 < (X < land there is a permutation matrix P ~ such 
that 

AP,. = [A"Ä,,], 

where Ä~ is a k X (n - k) matrix. Note that if g E GL(k, R), then gA,. is a 
nonsingular minor of gA and gA~ = (gA),.. Let U,. = {S E Gk .• (R): S = 
n:{A), where A~ is nonsingular}. This is weil defined by the remark above 
concerning the action of GL(k, R) on Mk .• (R). The set U~ is defined by the 
condition det A,. -=1= 0; hence it is an open set in Gk .• (R), and {U~}~~ 1 covers 
Gk .• (R). We define a map 

by setting 
h,,(n:(A» = A;IÄ" E Rk(.-k), 

where AP~ = [A~Ä,,]. Again this is weil defined and we leave it to the reader 
to show that this does, indeed, define a differentiable structure on Gk,.(R). 

tNote that the compact set {A E Mk •• (R): A ~ = I} is analogous to the unit sphere 
in the case k = 1 and is mapped surjectively onto Gk .• (R). 
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Example 1.9 (Algebraic submanifolds): Consider p. = p.(C), and let 

H = [[zo, . ',' , z.] E p.: aozo + ... + anZn = O}, 

where (ao' ... ,an) E Cn+1 - [O}. Then His called a projeclive hyperplane. 
We shall see that His a submanifold of p. of dimension n - 1. Let V« be 
the coordinate systems for p. as defined in Example 1.6. Let us consider 
Vo () H, and let (Cl> ... , CII) be coordinates in C". Suppose that [zo, ... , Zll] 
E H n Vo; then, since Zo *' 0, we have 

a !..l + ... + a !.L = -a 
I Zo n Zo 0' 

which implies that if C = (C p •.• , C.) = ho([zo • ...• zn])' then , satisfies 

(1.2) 

which is an affine linear subspace of C', provided that at least one of a p ••.• 

a. is not zero. If, however, ao '* 0 and a l = ... = an = 0, then it is clear 
that there is no point (C p •.. ,C.) E CO which satisfies (1.2), and hence in 
this ca se Vo n H = 0 (however, H will then necessarily intersect all the other 
coordinate systems VI' ... , V.). It now follows easily that His a submanifold 
of dimension n - 1 ofP. (using equations similar to (1.2) in the other coordi
nate systems as a representation for H). More generally, one can consider 

V = {[zo, ... , z.] E p.(C): PI(ZO' ... , z.) = .. , = Pr(zo, ... , zn) = O}, 

where PI' ... ,Pr are homogeneous polynomials of varying degrees. In local 
coordinates, one can find equations of the form (for instance, in Vo) 

(1.3) 
(1 !..l Zn) - 0 PI , , ... ,- -

Zo ZO 

(I !..l Zn) - ° Pr , , ... ,- - , 
Zo Zo 

and V will be a submanifold of p. if the Jacobian matrix of these equations in 
the various coordinate systems has maximal rank. More generally, V is ca lied 
a projeclive algebraic variely, and points where the Jacobian has less than 
maximal rank are called singular points of the variety. 

We say that an ~-morphism 

f: (M, ~M) - (N, ~N) 
of two ~-manifolds is an ~-embedding if f is an ~-isomorphism onto an 
~-submanifold of (N, ~N)' Thus, in particular, we have the concept of dif
ferentiable, real-analytic, and holomorphic embeddings. Embeddings are 
most often used (or conceived of as) embeddings of an "abstract" manifold 
as a submanifold of some more concrete (or more elementary) manifold. 
Most common is the concept of embedding in Euclidean space and in projec
tive space, wh ich are the simplest geometrie models (noncompact and 
compact, respectively). We shall state some results along this line to give the 
reader some feeling for the differences among the three categories we have 
been dealing with. Until now they have behaved very similarly. 
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Theorem 1.10 (Whitney [I)): Let M be a differentiable n-manifold. Then 
there exists a differentiable embedding / of M into RZ.+I. Moreover, the 
image of M,j(M) can be realized as a real-analytic submanifold of RZ'+ I. 

This theorem teIls us that all differentiable manifolds (compact and non
compact) can be considered as submanifolds of EucJidean space, such sub
manifolds having been the motivation for the definition and concept of 
manifold in general. The second assertion, wh ich is a more difficult result, 
teIls us that on any differentiable manifold M one can find a subfamily of 
the family e of differentiable functions on M so that this subfamily gives a 
real-analytic structure to the manifold M; i.e., every differentiable manifold 
admits a real-analytic structure. It is strictIy false that differentiable mani
folds admit complex structures in general, since, in particular, complex 
manifolds must have even topological dimension. We shall discuss this ques
tion somewhat more in Sec. 3. We shall not prove Whitney's theorem since 
we do not need it later (see, e.g., de Rham [I], Sternberg [I], or Whitney's 
original paper for a proof of Whitney's theorems). 

A deeper result is the theorem of Grauert and Morrey (see Grauert 
[I] and Morrey [I]) that any real-analytic manifold can be embedded. by a 
real-analytic embedding, into RN, for some N (again either compact or non
compact). However, when we turn to complex manifolds, things are complete
Iy different. First, we have the relatively elementary result. 

Theorem 1.11: Let X be a connnected compact complex manifold and let 
/ E fl(X). Then/is constant; i.e., global holomorphic functions are neces
sarily constant. 

Proo/: Suppose that/ E fl(X). Then, since/is a continuous function on 
a compact space, I/I assumes its maximum at some point Xo E X and S = 
{x:/(x) = /(xo)} is cJosed. Let Z = (Zl' ... , zn) be local coordinates at XE S, 
with Z = 0 corresponding to the point x. Consider a small ball B about 
Z = 0 and let Z E B. Then the function g(A.) = /(A.z) is a function of one com
plex variable (A.) which assumes its maximum absolute value at A. = 0 and is 
hence constant by the maximum principle. Therefore, g(l) = g(O) and hence 
/(z) = /(0), for all Z E B. By connectedness, S = X, and / is constant. 

Q.E.D. 

Remark: The maximum principle for holomorphic functions in domains 
in C' is also valid and could have been applied (see Gunning and Rossi [I)). 

Corollary 1.12: There are no compact complex submanifolds of Cn of 
positive dimension. 

Proof: Otherwise at least one of the coordinate functions ZI" ..• zn 
would be a nonconstant function when restricted to such a submanifold. 

Q.E.D. 
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Therefore, we see that not all complex manifolds admit an embedding 
into EucJidean space in contrast to the differentiable and real-analytic situa
tions, and of course, there are many examples of such complex manifolds 
[e.g., p.(C)]. One can characterize the (necessarily noncompact) complex 
manifolds which admit embeddings into C·, and these are ca lied Stein 
man({olds, which have an abstract definition and have been the subject of 
much study during the past 20 years or so (see Gunning and Rossi [I] and 
Hörmander [2] for an exposition of the theory of Stein manifolds). In this 
book we want to develop the material necessary to provide a characterization 
ofthe compact complex manifolds which admit an embedding into projective 
space. This was first accomplished by Kodaira in 1954 (see Kodaira [2]) and 
the material in the next several chapters is developed partly with this char
acterization in mind. We give a formal definition. 

Definition 1.13: A compact complex manifold X which admits an embed
ding into p.(C) (for some n) is ca lied a projectil'e algehraic manifo/d. 

Remark: By a theorem of Chow (see, e.g., Gunning and Rossi [I]), 
every complex submanifold V of p.(C) is actually an algebraic submanifold 
(hence the name projective algebraic manifold), wh ich means in this context 
that V can be expressed as the zeros of homogeneous polynomials in homoge
neous coordinates. Thus, such manifolds can be studied from the point of 
view of algebra (and hence algebraic geometry). We will not need this result 
since the methods we shall be developing in this book will be analytical and 
not algebraic. As an example, we have the following proposition. 

Proposition 1.14: The Grassmannian manifolds Gk,.(C) are projective alge
braic manifolds. 

Proo/: Consider the following mal?: 

F: Mk,.{C) ---+ NC· 

defined by 

The image of this map is actually contained in N C· - {O} since {aj } is an 
independent set. We can obtain the desired embedding by completing the 
foJlowing diagram by F: 

Mk .• (C) ~ Ne· - {O} 

lna lnp 

Gk .• (C) -_!_--~ P(NC·), 
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where 11:0 , 1I:p are the previously defined projections. We must show that F 
is weil defined; i.e., 

1I:iA) = 1I:o(B) ==> 1I:p 0 F(A) = 1I:p 0 F(B). 

But 1I:o(A) = 1I:o(B) implies that A = gB for g E GL(k, C), and so 

a l /\··· /\a k = det g(b l /\ ••• /\bk ), 

where 

and 

but 

1I:p(a l /\··· /\a k ) = 1I:p(det g(b l /\ •• , /\b k » = 1I:p(b l /\ ••• /\b k ), 

and so the map Fis weil defined. We leave it to the reader to show that F 
is also an embedding. 

Q.E.D. 

2. Vector Bundles 

The study of vector bundles on manifolds has been motivated primarily 
by the desire to linearize nonlinear problems in geometry, and their use has 
had a profound effect on various modern fields of mathematics. In this 
section we want to introduce the concept of a vector bundle and give various 
examples. We shall also discuss so me ofthe now c1assical results in differential 
topology (the c1assification of vector bundles, for instance) wh ich form a 
motivation for so me of our constructions later in the context of holomorphic 
vector bundles. 

We shall use the same notation as in Sec. I. In particular S will denote one 
of the three structures on manifolds (8, <1, fl) studied there, and K = R or C. 

Definition 2.1: A continuous map 11:: E ----+ X of one Hausdorff space, E, 
onto another, X, is called a K-I'ector bundle 0/ rank r if the following co nd i
tions are satisfied: 

(a) E,,:= 1t- I(p), for pE X, i$ a K-vector space of dimension r (E" is 
called the jibre over p). 

(b) For every p E X there is a neighborhood V of p and a homeomor
phism 

h: 1I:- I (U) ~ V x Kr such that h(Ep) C {p} X Kr, 

and !tP, defined by the composition 

hp : Ep ~ {p} X Kr ~ Kr, 

is a K-vector space isomorphism [the pair (V, h) is ca lied a loeal tril'ializationJ. 

For a K-vector bundle 11:: E ----+ X, Eis ca lied the total spaee and Xis called 
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the base space, and we often say that E is a vector bundle over X. Notice 
that for two local trivializations (U .. , h .. ) and (Up, hp) the map 

induces a map 

(2.1) 

where 

h .. 0 h; I: (U .. () Up ) X Kr _ (U .. () Up ) X Kr 

g .. P(p) = h: 0 (hß)-I: Kr _ Kr. 

The functions g .. p are ca lied the transition functions of the K-vector bundle 
1t: E -+ X (with respect to the two local trivializations above). t 

The transition functions g .. p satisfy the following compatibility conditions: 

(2.2a) 

and 
(2.2b) g«« = Ir on U«, 

where the product is a matrix product and Ir is the identity matrix of rank 
r. This follows immediately from the definition of the transition functions. 

Definition 2.2: A K-vector bundle of rank r, 1t: E - X, is said to be an 
&-bund/e if E and X are &-manifolds, 1t is an &-morphism, and the local 
trivializations are &-isomorphisms. 

Note that the fact that the local trivializations are &-isomorphisms is 
equivalent to the fact that the transition functions are &-morphisms. In 
particular, then, we have differentiab/e vector bundles, real-analytic vector 
bund/es, and h%morphic vector bund/es (K must equal C). 

Remark: Suppose that on an &-manifold we are given an open covering 
~ = (U .. } and that to each ordered nonempty intersection U .. () Up we have 
assigned an &-function 

g .. p: U .. () Up - GL(r, K) 

satisfying the compatibility conditions (2.2). Then one can construct a vector 
bundle E -'!.... X having these transition functions. An outline of the construc
tion is as folIows: Let 

(disjoint union) 

equipped with the natural product topology and &-structure. Define an 
equivalence relation in E by setting 

(x, v) '" (y, w), for (x, v) E Up X Kr, (y, W)E U,. X Kr 

if and only if 

y=x and 

tNote that the transition function K,.P(P) is a linear mapping from the Up trivialization 
to the U .. trivialization. The order is significanl. 
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equivalent to the fact that the transition functions are &-morphisms. In 
particular, then, we have differentiab/e vector bundles, real-analytic vector 
bund/es, and h%morphic vector bund/es (K must equal C). 

Remark: Suppose that on an &-manifold we are given an open covering 
~ = (U .. } and that to each ordered nonempty intersection U .. () Up we have 
assigned an &-function 

g .. p: U .. () Up - GL(r, K) 

satisfying the compatibility conditions (2.2). Then one can construct a vector 
bundle E -'!.... X having these transition functions. An outline of the construc
tion is as folIows: Let 

(disjoint union) 

equipped with the natural product topology and &-structure. Define an 
equivalence relation in E by setting 

(x, v) '" (y, w), for (x, v) E Up X Kr, (y, W)E U,. X Kr 

if and only if 

y=x and 

tNote that the transition function K,.P(P) is a linear mapping from the Up trivialization 
to the U .. trivialization. The order is significanl. 
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The fact that this is a well-defined equivalence relation is a consequence of 
the compatibility conditions (2.2). Let E = E 1- (the set of equivalence 
c1asses), equipped with the quotient topology, and let TC: E -+ X be the map
ping which sends a representative (x, v) of a point p E E into the first 
coordinate. One then shows that an E so constructed carries on &-structure 
and is an &-vector bundle. In the examples discussed below we shall see more 
details of such a construction. 

Example 2.3 (Trivial bundle): Let M be an &-manifold. Then 

TC: M x Kn_+ M, 

where 1t is the natural projection, is an &-bundle ca lied a trivial bundle. 

Example 2.4 (Tangent bundle): Let M be a differentiable manifold. 
Then we want to construct a vector bundle overM whose fibre at each point 
is the linearization of the manifold M, to be called the tangent bundle to M. 
Let p E M. Then we let 

SM,p:= lim SM(U) 
~ 

pEU C M 
open 

be the algebra (over R) of germs of differentiable functions at the point p E M, 
where the inductive limitt is taken with respect to the partial ordering on 
open neighborhoods of p given by incluslon. Expressed differently, we can 
say that if fand gare defined and c~ near p and they coincide on some 
neighborhood of p, then they are equivalent. The set of equivalence c1asses 
is easily seen to form an algebra over Rand is the same as the inductive limit 
algebra above; an equivalence c\ass (element of SM,p) is called a germ of 
a C~ function at p. A derivation of the algebra SM,p is a vector space homo
morphism D: SM,p -+ R with the property that D(fg) = D(f) • g(p) + 
f(p)· D(g), where g(p) andf(p) denote evaluation of a germ at a point p 
(wh ich c\early makes sense). The tangent space to M at pis the vector space 
of all derivations of the algebra SM,p, which we denote by Tp(M). Since M 
is a differentiable manifold, we can find a diffeomorphism h defined in a 
neighborhood U of p where 

h: U -----+ U' eR" 
open 

and where, letting h*f(x) = f 0 h(x), h has the property that, for V c U', 

h*: San(V) -----+ SM(h-I(V» 

is an algebra isomorphism. It follows that h* induces an algebra isomorphism 
on germs, i.e., (using the same notation), 

h*: Sa',h(p) ~ SM,p, 

tWe denote by Iim the inductive (or direct) limit and by Iim the projective (or inverse) 
~ -

limit of a partially ordered system. 
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and hence induces an isomorphism on derivations : 

h.: TiM) ~ Th(p)(R·). 

It is easy to verify that 

(a) ajaxj are derivations of SR',h(p), j = I, ... , n, and that 
(b) {ajax l' ..• , ajax.l is a basis for T"(J7)(Rft), 

15 

and thus that Tp(M) is an n-dimensional vector space over R, for each point 
p E M [the derivations are, of course, simply the c1assical directional deriva
tives evaluated at the point h(p)]. Suppose thatf: M --+ N is a differentiable 
mapping of differentiable manifolds. Then there is a natural map 

dfp: Tp(M) ----+ Tf(p)(N) 

defined by the following diagram : 

r 
SM.p -SN.!(p) 

Dp~ /D p 0 f· = dfiDp), 
R 

for Dp E Tp(M). The mapping dfp is a linear mapping and can be expressed 
as a matrix of first derivatives with respect to local coordinates. The coeffi
cients of such a matrix representation will be c~ functions of the local 
coordinates. Classically, the mapping dfp (the deril'atil'e mapping, differential 
mapping, or tangent mapping) is ca lied theJacobian of the differentiable mapf 
The tangent map represents a first-order linear approximation (at p) to the 
differentiable mapf We are now in a position to construct the tangent bundle 
to M. Let 

T(M) = U TiM) (disjoint union) 
J7EM 

and define 

n:T(M)----+M 
by 

n(v) = p if v E TiM). 

We can now make T(M) into a vector bundle. Let {(U~, h~)} be an atlas for 
M, and let T(U .. ) = n-I(U.) and 

IJI~: T(U~) ----+ U~ x R" 

be defined as folIows: Suppose that v E Tp(M) c T(U~). Then dh~.p(V)E 
Thc(jI)(R'). Thus 

dh~,,(v) = t e/p) b l , 
j~ I fiX J ~c(J7) 

where ej E SM(U~) (the fact that the coefficients are c~ follows easily from 
the proof that {ajax .. ... , ajax,} is a basis for the tangent vectors at a point 
in R'). Now let 
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It is easy to verify that "'. is bijective and fibre-preserving and moreover that 

"'=: TiM) ~ {p) x R· ?~ R" 

is an R-Iinear isomorphism. We can define transition functions 

g.,: U, n U. - GL(n, R) 
by setting 

g.,(p) = "': 0 (",st l : R" - R". 

Moreover, it is easy to check that the coefficients of the matrices {g.,} are 
C~ functions in U. n U" since g., is a matrix representation for the composj
ti on dh. 0 dhi I with respect to the basis {a/ax l , ••• ,a/ax.) at TAJlI,I(R") and 
TA.I,I(R"), and that the tangent maps are differentiable functions of local 
coordinates. Thus the {(U., "'.)} become the desired trivializations. We have 
only to put the right topology on T(M) so that T(M) becomes a differentiable 
manifold. We simply require that U c T(M) be open jf and only if vi.(U n 
T( U.» is open in U. x R" for every cx. This is weil defined since 

"'.0 "'i I : (U. n U,) x R" - (U. n U,) x R" 

is a diffeomorphism for any cx and P such that U. n U, 0:/= 0 (since "'. 0 

"'i I = id x g.,. where id is the identity mapping). Because the transition 
functions are diffeomorphisms, this defines a differentiable structure on 
T(M) so that the projection n and the local trivializations "'. are differentiable 
maps. 

Example 2.S (Tangent bUDdle to a complex manifold): Let X = (X, Vx ) 
be a complex manifold of complex dimension n, let 

Vx ... := \im V{U) 
-+ 

"eu C X 
open 

be the C-algebra of germs of holomorphic functions at x E X, and let 
T..(X) be the derivations of this C-algebra (defined exact1y as in Example 
2.4). Then T..(X) is the h%morphie (or eomp/ex) tangent spaee to X at x. 
In local coordinates, we see that T,,(X) -- T,,(C·) (abusing notation) and that 
the complex partial derivatives {a/az l , ••• ,a/az.} form a basis over C for the 
vector space T,,(C") (see also Sec. 3). In the same manner as in Example 2.4 
we can make the union of these tangent spaces into a holomorphic vector 
bundle over X, i.e,. T(X) --+ X, where the" fibres are all isomorphie to Co. 

Remark: The same technique used to construct the tangent bundles 
in the above ex am pIes can be used to construct other vector bundles. For 
instance, suppose that we have n: E --+ X, where X is an S-manifold and n 
is a surjective map, so that 

(a) E, is a K-vector space, 
(b) For each p E X there is a neighborhood U of p and a bijective map: 

h: 1(-I(U) - U x Kr such that h(E,) c {p) x Kr. 
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(c) hp : Ep -----> [p} X Kr ~ Kr is a K-vector space isomorphism. 

Then, if for every (U«, h«), (UfI , hfl) as in (b) h« 0 h; I is an S-isomorphism, 
we can make E into an S-bundle over X by giving it the topology that makes 
h« a homeomorphism for every IX. 

Example 2.6 (Universal bundle): Let Ur .• be the disjoint union of the 
r-planes (r-dimensional K-linear subspaces) in K·. Then there is a natural 
projection 

1l: Ur .• - Gr .• , 

where Gr .• = Gr .• (K), given by 1l(V) = S, if V is a vector in the r-plane S, and 
S is considered as a point in the Grassmannian manifold Gr ••• Thus the inverse 
image under 1l of a point p in the Grassmannian is the subspace of K' which 
is the point p, and we may regard Ur," as a subset of Gr,lI X K". We can make 
Ur,lI into an S-bundle by using the co ordinate systems of Gr,lI to define 
transition functions, as was done with the tangent bundle in Example 2.4, and 
by then applying the re mark following Example 2.5. To simplify things 
somewhat consider UI,II ~ GI.II = PII_I(R). First we note that any point 
v E UI.II can be represented (not in a unique manner) in the form 

v = (IXo, . .. , lXII_I) = I(Xo, ... , XII_I) E R", 

where (xo, ... , XII_I) E R" - {O}, and I E R. Moreover, the projection 
1l: UI.II ~ Pli-I is given by 

7t(I(Xo,· . . , XII_I» = 7t(xo,···, XII-I) = [xo, .. . , xn-d E Pli-I' 

Letting U« = {[xo, ... , xlI-d E Pn-I: X« #- O}, (cf. Example 1.6), we see that 

7t- I(U«) = {v = I(Xo, ... , XII-I) E Rn: I E R, X« #- O}. 

N ow if v = I(Xo, ... , XII -I) E 1l- I( U«), then we can write v in the form 

(Xo 1 XII-I) v = I« -, ... , , ... ,-- , 
X« (<<) X« 

and t« = Ix s E R is uniquely determined by v. Then we can define the 
mapping 

by setting 

h«(v) = h«(I(Xo, . .. , XII-I» = ([xo,.· . ,XII-I]' (11), 

The mapping hs is bijective and is R-linear from the fibres of 1l- I (U «) to the 
fibres of U« X R. Suppose now that v = I(Xo, ... , xn - I ) E 1l- 1 (U« ("\ U(J)' 
then we have two different representations for v and we want to compute the 
relationship. Namely, 

h«{v) = ([xo, . .. , xlI-d, I«) 
h(J(v) = ([xo,· .. , xlI-d, I(J) 
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and then t" = tx .. , tp = txp, Therefore 

t=~=!.P.., 
x.. Xp 

wh ich implies that 

t .. = x .. tp• 
Xp 

Chap. I 

Thus if we let g .. p = x .. f.xp, then it follows that g"P'gp,g1" = I, and thus by 
the remark following Example 2.5, we see that U I •• can be given the structure 
of a vector bundle by means of the functions {h .. }, (the trivializations), and 
the transition functions of UI •n 

gll/l([xo, ... , xn - 1]) = XII. 
xtJ 

are mappings of U .. n Up - GL(l, R) = R - CO}. These are the standard 
transition functions for the universal bundle over p._ I • Exactly the same 
relation holds for UI .• (C) ----> p.-I(C), which we meet again in later chapters. 
Namely, for complex homogeneous coordinates [Zo, ... , zn-tl we have the 
transition functions for the universal bundle over p.- I (C): 

g",tJ([Zo,··., Zn-I]) =~. 
ZtJ 

The more general ca se of Ur,. ----> Gr,. can be treated in a similar manner, 
using the coordinate systems developed in Sec. I. We note that Ur,.(R) -+ 

Gr .• (R) is a real-analytic (and hence also differentiable) R-vector bundle and 
that Ur,.(C) -+ Gr .• (C) is a holomorphic vector bundle. The reason for the 
name "universal bundle" will be made more apparent later in this section. 

Definition 2.7: Let 11:: E -+ X be an S-bundle and U an open subset of 
X. Then the restriction of E to U, denoted by Elu is the S-bundle 

11: I.>I(U): 1I:- 1( U) ----+ U. 

Definition 2.8: Let E and F be S-bundles over X; i.e., 1I:E : E ----> X and 
1I:F : F -+ X. Then a homomorphism of S-bundles, 

f: E ----+ F, 

is an S-morphism of the total spaces which preserves fibres and is K-Iinear 
on each fibre; Le.,j commutes with the projections and is a K-Iinear mapping 
when restricted to fibres. An S-bund/e isomorphism is an S-bundle homomor
phism wh ich is an S-isomorphism on the total spaces and a K-vector space 
isomorphism on the fibres. Two S-bundles are equivalent if there is some 
S-bundle isomorphism between them. This c1early defines an equivalence 
relation on the S-bundles over an S-manifold, X. 

The statement that a bundle is locally trivial now becomes the following: 
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For every P E X there is an open neighborhood U of P and a bundle isomor
phism 

h:Elu~ Ux Kr. 

Suppose that we are given two K-veetor spaees A and B. Then from 
them we ean form new K-veetor spaees, for example, 

(a) A EB B, the direet sumo 
(b) A ® B, the tensor produet. 
(e) Hom(A, B), the linear maps from A to B. 
(d) A*, the linear maps from A to K. 
(e) NA, the antisymmetrie tensor produets of degree k (exterior 

algebra of A). 
(f) Sk(A), the symmetrie tensor produets of degree k (symmetrie algebra 

of A). 

Using the remark following Example 2.5, we ean extend all the above alge
braie eonstruetions to veetor bundles. For example, suppose that we have 
two veetor bundles 

and 1t,: F--+ X. 

Then define 

We then have the natural projeetion 

1t:EEBF--+X 

given by 

1t- I (p) = Ep EB Fp • 

Now for any P E X we can find a neighborhood U of P and loeal trivializa
tions 

and we define 

hE:Elu~ U X K

hF:Flu~ U X Km, 

hE(fJ': EEB Flu --+ U X (K- EB Km) 

by hE(fJ,(v + w) = (p, hf:(v) + M(w» for V E Ep and w E Fp • Then this 
map is bijeetive and K-linear on fibres, and for interseetions of loeal trivializa
tions we obtain the transition functions 

E(fJ'( ) = [g:,(P) 0 J. 
g., p 0 F ( ) 

g .fI\P 

So by the remark and the fact that g:, and g~, are bundle transition fune
tions, 1t: E EB F -> Xis a vector bundle. Note that if E and F were S-bundles 
over an S-manifold X, then g:, and g~, would be S-isomorphisms, and so 

Sec. 2 Vector Bund/es 19 

For every P E X there is an open neighborhood U of P and a bundle isomor
phism 

h:Elu~ Ux Kr. 

Suppose that we are given two K-veetor spaees A and B. Then from 
them we ean form new K-veetor spaees, for example, 

(a) A EB B, the direet sumo 
(b) A ® B, the tensor produet. 
(e) Hom(A, B), the linear maps from A to B. 
(d) A*, the linear maps from A to K. 
(e) NA, the antisymmetrie tensor produets of degree k (exterior 

algebra of A). 
(f) Sk(A), the symmetrie tensor produets of degree k (symmetrie algebra 

of A). 

Using the remark following Example 2.5, we ean extend all the above alge
braie eonstruetions to veetor bundles. For example, suppose that we have 
two veetor bundles 

and 1t,: F--+ X. 

Then define 

We then have the natural projeetion 

1t:EEBF--+X 

given by 

1t- I (p) = Ep EB Fp • 

Now for any P E X we can find a neighborhood U of P and loeal trivializa
tions 

and we define 

hE:Elu~ U X K

hF:Flu~ U X Km, 

hE(fJ': EEB Flu --+ U X (K- EB Km) 

by hE(fJ,(v + w) = (p, hf:(v) + M(w» for V E Ep and w E Fp • Then this 
map is bijeetive and K-linear on fibres, and for interseetions of loeal trivializa
tions we obtain the transition functions 

E(fJ'( ) = [g:,(P) 0 J. 
g., p 0 F ( ) 

g .fI\P 

So by the remark and the fact that g:, and g~, are bundle transition fune
tions, 1t: E EB F -> Xis a vector bundle. Note that if E and F were S-bundles 
over an S-manifold X, then g:, and g~, would be S-isomorphisms, and so 



20 Manifolds and Vector Bundles Chap. I 

E EB F would then be an S-bundle over X. The same is true for all the other 
possible constructions induced by the vector space constructions listed 
above. Transition functions for the algebraically derived bundles are easily 
determined by knowing the transition functions for the given bundle. 

The above examples lead naturally to the following definition. 

Definition 2.9: Let E ~ X be an S-bundle. An S-submanifold FeE is 
said to be an S-subbundle of E if 

(a) F () E" is a vector subspace of E". 
(b) 1C I,: F ---> X has the structure of an S-bundle induced by the S-bundle 

structure of E, i.e., there exist local trivializations for E and F wh ich are 
compatible as in the following diagram : 

Elu~Ux K' 

ji jid X j 

Flu ~ U X K', S < r, 

where the map j is the natural inclusion mapping of K' as a subspace of K' 
and i is the inclusion of F in E. 

We shall frequently use the language oflinear algebra in discussing homo
morphisms of vector bundles. As an example, suppose that E..!- Fis a vector 
bundle homomorphism of K-vector bundles over aspace X. We define 

Ker / = U Ker/" 
"EX 

Im / = U Im/", 
"EX 

where /" = f IEz' Moreover, we say that / has constant rank on X if rank /x 
(as a K-linear mapping) is constant for x E X. 

Proposition 2.10: Let E -.!.. F be an S-homomorphism of S-bundles over X. 
If/has constant rank on X, then Ker fand Im/are S-subbundles of E and 
F, respectively. In particular,Jhas constant rank if/is injective or surjective. 

We leave the proof of this simple proposition to the reader. 
Suppose now that we have a sequence of vector bundle homomorphisms 

over aspace X, 

... __ E~F--.!...~G __ ... , 

then the sequence is said to be exact at F if Ker g = Im f A short exact 
sequence ofvector bundles is a sequence ofvector bundles (and vector bundle 
homomorphisms) of the following form, 

0 __ E' ~ E ~ E" __ 0, 

which is exact at E', E, and E". In particular,Jis injective and gis surjective, 
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and Iml = Ker g is a subbundle of E. We shall see examples of short exact 
sequences and their utility in the next two chapters. 

As we have stated before, vector bundles represent the geometry of the 
underlying base space. Howe"er, to get some understanding via analysis of 
vector bundles, it is necessary to introduce a generalized notion of function 
(reftecting the geometry ofthe vector bundle) to which we can apply the tools 
of analysis. 

Definition 2.11: An s,-section of an S,-bundle E ~ X is an S,-morphism 
s: X ----> E such that 

nos = Ix, 

where Ix is the identity on X; Le., s maps a point in the base space into the 
fibre over that point. S,(X, E) will denote the S,-sections of E over X. S,(U, E) 
will denote the S,-sections of Elu over U c X; Le., S,(U, E) = S,(U, Elu) 
[we shall also occasionally use the common notation r(X, E) for sections, 
provided that there is no confusion as to which category we are dealing with]. 

Example 2.12: Consider the trivial bundle M x R over a differentiable 
manifold M. Then 8(M, M x R) can be identified in a natural way with 
8(M), the global real-valued functions on M. Similarly, 8(M, M x Rn) can 
be identified with global differentiable mappings of M into Rn (i.e., vector
valued functions). Since vector bundles are locally of the form U x Rn, we 
see that sections of a vector bundle can be viewed as vector-valued functions 
(Iocally), where two different local representations are related by the transition 
functions for the bundle. Therefore sections can be thought of as "twisted" 
vector-valued functions. 

Remarks: (a) A section s is often identified with its image s(X) c E; 
for example, the term zero section is used to refer to the section 0: X -+ E 
given by O(x) = 0 E E" and is often identified with its image, which is, in fact, 
S,-isomorphic with the base space X. 

(b) For S,-bundles E -'!.o. X and E' ~ X we can identify the set of s,
bundle homomorphisms of E into E', with S,(X, Hom(E, E'». A section 
s E S,(X, Hom(E, E'» picks out for each point x E X a K-Iinear map 
s(x): Ex -+ E~, and s is identified withf.: E ----> E' which is defined by 

.f.IE",., = s(n(e» for e E E. 

(c) If E -+ X is an S-bundle of rank r with transition functions {g/l/l} 
associated with a trivializing cover {U/I}, then let/.,: U/I -+ Kr be S-morphisms 
satisfying the compatibility conditions 

/., = gll./lh on U/I (") U/I =f. 0. 
Here we are using matrix multiplication, considering /., and 1/1 as column 
vectors. Then the collection {J..} defines an S-section 1 of E, since each /., 
gives a section of UII. X Kr, and this pulls back by the trivialization to a 
section of Elv". These sections of Elva agree on the overlap regions UII. (") U/I 
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by the compatibility conditions imposed on {f.}, and thus define aglobaI 
section. Conversely, any S-section of E has this type of representation. We 
call eachf« a trivialization of the sectionf 

Example 2.13: We use remark (c) above to compute the global sections of 
the holomorphic line bundles Bk ~ PI(C), which we define as folIows, using 
the transition function gOI for the universal bundle U1.ic) ~ PI(C) of 
Example 2.6. Let the PI(C) coordinate maps (Example 1.6) iP: U« ~ C be 
denoted by IPo([zo, z.J) = zllzo = z and IPI([ZO, z.J) = zolzl = W so that 
z = IPo ° IP1I(w) = l/w for w *- O. For a fixed integer k define the line 
bundle Ek ~ PI (C) by the transition function g~l: Uo t\ U, ~ GL(I, C) 
where gAI([zo, z.J) = (zolzl)t. Ek is the kth tensor power of UI.2(C) for 
k > 0, the kth tensor power of the dual bundle UI.ic)* for k < 0, and 
trivial for k = O. If fE O(PI(C), E k ), then each trivialization of J,h is in 
O( U«, U« X C) = O( U«) and the hO IP; I are entire functions, say fo ° IPö '(z) 
= I:'=o anzn andfl ° IPIJ(w) = I:'=o bnwn. If z = IPo(p) and w = IPI(P), then 
by remark (c), fo(p) = gA,(p)f,(p), for pE Uo t\ UI in the w-coordinate 
plane, and tQis becomes 
~ m 

I aillw)n=foolPö'(lPoolPl'(w»=gMlPll(w»flolPlJ(w)=w I bnwn. 
n=O n=O 

Hence, 

O(P (C) E k ) = {~ 
" homogeneous polynomials 

in C2 of degree -k 

for k > 0, 
for k = 0 (Theorem ].11), 
for k < O. 

When dealing with certain categories of S-manifolds, it is possible to 
define algebraic structures on S(X, E). First, S(X, E) can be made into a 
K-vector space under the following operations: 

(a) For s, t E S(X, E), 

(s + t)(x) := s(x) + t(x) for all x E X. 

(b) For s E S(X, E) and ex E K, (exs)(x) := «(s(x» for all sEX. 
Moreover, S(X, E) can be given the structure of an SAX) module [where 
the SAX) are the globally defined K-valued S-functions on X] by defining 

(c) For s E S(X, E) andf E SAX), 

fs(x) := f(x)s(x) for all x E X. 

To ensure that the above maps actually are S-morphisms and thus S-sections, 
it is necessary that the vector space operations on Kn be S-morphisms in the 
S-structure on K". But this is c1early the case for the three categories with 
wh ich we are dealing. 

Let M be a differentiable manifold and let T(M) -+ M be its tangent 
bundle. Using the techniques outlined above, we would like to consider new 
differentiable vector bundles over M, derived from T(M). We have 

22 Manifo/ds and Veclor Bund/es Chap. I 

by the compatibility conditions imposed on {f.}, and thus define aglobaI 
section. Conversely, any S-section of E has this type of representation. We 
call eachf« a trivialization of the sectionf 

Example 2.13: We use remark (c) above to compute the global sections of 
the holomorphic line bundles Bk ~ PI(C), which we define as folIows, using 
the transition function gOI for the universal bundle U1.ic) ~ PI(C) of 
Example 2.6. Let the PI(C) coordinate maps (Example 1.6) iP: U« ~ C be 
denoted by IPo([zo, z.J) = zllzo = z and IPI([ZO, z.J) = zolzl = W so that 
z = IPo ° IP1I(w) = l/w for w *- O. For a fixed integer k define the line 
bundle Ek ~ PI (C) by the transition function g~l: Uo t\ U, ~ GL(I, C) 
where gAI([zo, z.J) = (zolzl)t. Ek is the kth tensor power of UI.2(C) for 
k > 0, the kth tensor power of the dual bundle UI.ic)* for k < 0, and 
trivial for k = O. If fE O(PI(C), E k ), then each trivialization of J,h is in 
O( U«, U« X C) = O( U«) and the hO IP; I are entire functions, say fo ° IPö '(z) 
= I:'=o anzn andfl ° IPIJ(w) = I:'=o bnwn. If z = IPo(p) and w = IPI(P), then 
by remark (c), fo(p) = gA,(p)f,(p), for pE Uo t\ UI in the w-coordinate 
plane, and tQis becomes 
~ m 

I aillw)n=foolPö'(lPoolPl'(w»=gMlPll(w»flolPlJ(w)=w I bnwn. 
n=O n=O 

Hence, 

O(P (C) E k ) = {~ 
" homogeneous polynomials 

in C2 of degree -k 

for k > 0, 
for k = 0 (Theorem ].11), 
for k < O. 

When dealing with certain categories of S-manifolds, it is possible to 
define algebraic structures on S(X, E). First, S(X, E) can be made into a 
K-vector space under the following operations: 

(a) For s, t E S(X, E), 

(s + t)(x) := s(x) + t(x) for all x E X. 

(b) For s E S(X, E) and ex E K, (exs)(x) := «(s(x» for all sEX. 
Moreover, S(X, E) can be given the structure of an SAX) module [where 
the SAX) are the globally defined K-valued S-functions on X] by defining 

(c) For s E S(X, E) andf E SAX), 

fs(x) := f(x)s(x) for all x E X. 

To ensure that the above maps actually are S-morphisms and thus S-sections, 
it is necessary that the vector space operations on Kn be S-morphisms in the 
S-structure on K". But this is c1early the case for the three categories with 
wh ich we are dealing. 

Let M be a differentiable manifold and let T(M) -+ M be its tangent 
bundle. Using the techniques outlined above, we would like to consider new 
differentiable vector bundles over M, derived from T(M). We have 



Sec. 2 Vector Bund/es 23 

(a) The eotangent bundle, T*(M), whose fibre at X E M, T:(M), is the 
R-linear dual to TiM). 

(b) The exterior algebra bundles, NT(M), NT*(M), whose fibre at 
x E M is the antisymmetric tensor product (of degree p) of the vector spaces 
T,,(M) and T:(M), respedively, and 

1\ T(M) = EB NT(M) 
p~O 

1\ T*(M) = EB NT*(M). 
p~O 

(c) The symmetrie algebra bundles, S"(T(M», S"(T*(M», whose fibres 
are the symmetric tensor products (of degree k) of T,,(M) and T:(M), re
spectively. 

We define 

&P(U) = &(U, NT*(M», 

the C~ differentialforms of degree p on the open set U c M. As usual, we can 
define the exterior derivative 

d: &P(U) _ &P+I(U). 

We recall how this is done. First, consider U c Rn and recall that the deriva
tions {iJ/iJx" ... ,iJ/iJxnJ form a basis for T,,(Rn) at x E U. Let {dx" ... ,dxnJ 
be a dual basis for T:(Rn). Then the maps 

dx,: U - T*(Rn) lu 

given by 

dxix) = dx,l" 

form a basis forthe&(U) (= &R.(U»-module&(U, T*(Rn) = &'(U). Moreover, 
{dx1 = dx1, 1\ •• , 1\ dxl.J, where 1= (i" ... , ip ) and I < i, < i2 < ... < 
ip < n, form a basis for the &(U)-module&P(U). Wedefined: &P(U) ......... &P+'(U) 
as folIows: 

Case 1 (p = 0): Suppose thatf E &O(U) = &(U). Then let 

n iJf 
df = "'E -iJ dx, E &'(U). 

,~, xi 

Case 2 (p > 0): Suppose thatf E &P(U). Then 

f == ~' fl dxl , 
Itr=p 

where h E &(U), 1= (i" ... , ip ), 1/1 = the number of indices, and "'E' 
signifies that the sum is taken over strictly increasing indices. Then 

df= ~' dfJI\dx1 = ~' taiJfldxjl\dx/, 
l1f=p l1f=p ,~, x, 
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Suppose now that (U, h) is a coordinate system on a differentiable manifold 
M. Then we have that T(M) lu -=. T(R") Ih(U); hence 8P ( U) .::-- 8P(h( U», and 
the mapping 

d: 8P(h(U» ~ 8P+ 1(h(U» 

defined above induces a mapping (also denoted by d) 

d: 8P(U) ~ 8P+ 1(U). 

This defines the exterior derivative d locally on M, and it is not difficult to 
show, using the chain rule, that the definition is independent of the choice 
of local coordinates. It follows that the exterior derivative is weil defined 
globally on the manifold M. 

We have previously defined a bundle homomorphism of two bundles over 
the same base space (Definition 2.8). We now would Iike to define a mapping 
between bundles over different base spaces. 

Definition 2.14: An S-bundle morphism between two S-bundles XE: E-> 
X and XF : F -> Y is an S-morphism f: E -> F which takes fibres of E iso
morphically (as vector spaces) onto fibres in F. An S-bundle morphism 
f: E -> F induces an S-morphism j(xAe» = xF(J(e»; in other words, the 
following diagram commutes: 

E~F 

XEl lXF 

X~Y. 

If X is identified with Ü(X), the zero section, then j may be identified with 

j=fb·:X~Y=O(Y) 

since fis a homomorphism on fibres and maps the zero section of X into the 
zero section of Y, which can likewise be identified with Y. If E and F are 
bundles over the same space X andj is the identity, then E and F are said 
to be equivalent (wh ich implies that the two vector bundles are S-isomorphic 
and hence equivalent in the sense of Definition 2.8). 

Proposition 2.15: Given an S-morphism f: X -+ Y and an S-bundle 
x: E -> Y, then there exists an S-bundle x': E' -> X and an S-bundle 
morphism g such that the following diagram commutes: 

E'~E 

x' 1 ix 
X~Y. 

Moreover, E' is unique up to equivalence. We call E' the pul/back of E by f 
and denote it by f* E. 

Proof" Let 
(2.3) E' = (x, e) E X X E: fex) = x(e)}. 
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XEl lXF 

X~Y. 
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morphism g such that the following diagram commutes: 
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x' 1 ix 
X~Y. 
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and denote it by f* E. 

Proof" Let 
(2.3) E' = (x, e) E X X E: fex) = x(e)}. 
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We have the natural projeetions 

g:E'-E 

(x,e)-e 

Veclor Bund/es 25 

and x':E'-X 

(x,e)-x. 

Giving E~ = {x} X E,(x) the strueture of a K-veetor spaee indueed by E,(x), E' 
beeomes a fibered family of veetor spaees over X. 

If (U, h) is a loeal trivialization for E, i.e., 

then it is easy to show that 

E'I,-I(U) ~ f-I(U) x K" 

is a loeal trivialization of E'; henee E' is the neeessary bundle. 
Suppose that we have another bundle if: E --+ X and a bundle morphism 

g sueh that 

E~E 

ift t x 
X~Y 

eommutes. Then define the bundle homomorphism h: E --+ E' by 

h(~) = (if(~), g(~» E {x(~)} x E. 

Note that h(i) E E' sinee the eommutativity of the above diagram yields 
f(if(~» = x(g(~»; henee this is a bundle homomorphism. Moreover, it is a 
veetor spaee isomorphism on fibres and henee an S-bundle morphism indue
ing the identity I x: X - X, i.e., an equivalenee. 

Q.E.D. 

Remark: In the diagram in Proposition 2.15, the veetor bundle E' and 
the maps x' and g depend on fand x, and we shall sometimes denote this 
relation by 

f*E~E 

x,t 1x 
X~Y 

to indicate the dependenee on the map f of the pullbaek. For eonvenienee, 
we assume from now on thatf* Eis given by (2.3) and that the maps x, and 
f* are the natural projeetions. 

The eoneepts of S-bundle homomorphism and S-bundle morphism are 
related by the following proposition. 

Proposition 2.16: Let E ~ X and E' ~ Y be S-bundles. If f: E --+ E' 
is an S-morphism of the total spaees which maps fibres to fibres and whieh 
is a veetor spaee homomorphism on eaeh fibre, then f ean be expressed as 
the eomposition of an S-bundle homomorphism and an S-bundle morphism. 
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Proof: Let j be the map on base spaces j: X --+ Y induced by f. Let 
j* E' be the pullback of E' by j, and consider the following diagram, 

E~j*E'-ÄE' 

'" n ln~, ln' 
'\. I X _Y, 

where h is defined by h(e) = (n(e),f(e)) [see (2.3)]. It is cIear thatf = j* 0 h. 
Moreover,j* is an S-bundle morphism, and h is an S-bundle homomorphism. 

Q.E.D. 

There are two basic problems concerning vector bundles on a given space: 
first, to determine, up to equivalence, how many different vector bundles 
there are on a given space, and second, to decide how "twisted" or how far 
from being trivial a given vector bundle iso The second question is the motiva
tion for the theory of characteristic cIasses, wh ich will be studied in Chap. 
III. The first question has different "answers," depending on the category. 
A special important case is the following theorem. Let U = Ur .• denote the 
universal bundle over Gr •• (see Example 2.6). 

Theorem 2.17: Let X be a differentiable manifold and let E --+ X be a 
differentiable vector bundle of rank r. Then there exists an N > 0 (depending 
only on X) and a differentiable mappingf: X --+ Gr.N(R)), so thatf*U ~ E. 
Moreover, any mapping I which is homotopic to f has the property that 
j*U~ E. 

We recall that fand j are homotopic if there is a one-parameter family 
of mappings F: [0, I] X X --+ Gr.N so that FllOlxX = fand FllllxX = j. 
The content of the theorem is that the different isomorphism cIasses of 
differentiable vector bundles over X ar,e cIassified by homotopy cIasses of 
maps into the Grassmannian Gr •N . For certain spaces, these are computable 
(e.g., if Xis a sphere, see Steenrod [I]). If one assurnes that Xis compact, 
one can actually require that the mappingfin Theorem 2.17 be an embedding 
of X into Gr • N (by letting N be somewhat larger). One could have phrased 
the above result in another way: Theorem 2.17 is valid in the category of 
continuous vector bundles, and there is a one-to-one correspondence between 
isomorphism cIasses of continuous and differentiable (and also real-analytic) 
vector bundles. However, such a result is not true in the case of holomorphic 
vector bundles over a compact complex manifold unless additional assump
tions (positivity) are made. This is studied in Chap. VI. In fact, the problem 
of finding a projective algebraic embedding of a given compact complex 
manifold (mentioned in Sec. I) is reduced to finding a cIass of holomorphic 
bundles over X so that Theorem 2.17 holds for these bundles and the mapping 
f gives an embedding into Gr..{C), wh ich by Proposition 1.14 is itself projec
tive algebraic. We shall not need the cIassification given by Theorem 2.17 
in our later chapters and we refer the reader to the cIassical reference Steenrod 
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[I] (also see Proposition 111.4.2). A thorough and very accessible discussion 
of the topics in this section can be found in Milnor [2]. 

The set of all vector bundles on aspace X (in a given category) can be 
made into a ring by considering the free abelian group genera ted by the set 
of all vector bundles and introducing the equivalence relation that E - (E' 
+ E") is equivalent to zero if there is a short exact sequence of the form 
o ---+ E' --.... E ---+ E" ---+ O. The set of equivalence c1asses form a ring K(X) 
(using tensor product as multiplication), which was first introduced by 
Grothendieck in the context of algebraic geometry (Borel and Serre [2]) and 
generalized by Atiyah and Hirzebruch [I]. For an introduction to this area, 
as well as a good introduction to vector bundles wh ich is more extensive 
than our brief summary, see the text by Atiyah [I]. The subject of K-theory 
plays an important role in the Atiyah-Singer theorem (Atiyah and Singer 
[I]) and in modern differential topology. We shall not develop this in our 
book, as we shall concentrate more on the analytical side of the subject. 

3. Almost Complex Manifolds and the ä-Operator 

In this section we want t9 introduce certain first-order differential opera
tors which act on differential forms on a complex manifold and which 
intrinsically reflect the complex structure. The most natural context in which 
to discuss these operators is from the viewpoint of almost complex manifolds, 
a generalization of a complex manifold which has the first-order structure 
of a complex manifold (i.e., at the tangent space level). We shall first discuss 
the concept of aC-linear structure on an R-linear vector space and will apply 
the (linear algebra) results obtained to the real tangent bundle of a differ
entiable manifold. 

Let V be areal vector space and suppose that J is an R-linear isomorphism 
J: V ~ V such thatJ 2 = -I (where I = identity). Then J is called a comp/ex 
structure on V. Suppose that V and a complex structure J are given. Then 
we can equip V with the structure of a complex vector space in the following 
manner: 

(IX + ip)v: = IXV + pJv, IX, PER, i =,J=1. 

Thus scalar multiplication on V by complex numbers is defined, and it is 
easy to check that V becomes a complex vector space. Conversely, if V is 
a complex vector space, then it can also be considered as a vector space over 
R, and the operation of multiplication by i is an R-linear endomorphism of 
V onto itself, which we can call J, and is a complex structure. Moreover, if 
[vI' ... , v.} is a basis for V over C, then [vI' ... , v.' Jvl' ... ,Jv.} will be 
a basis for V over R. 

Example 3.1: Let C" be the usual Euclidean space of n-tuples of complex 
numbers, [z I' ... , z.}, and let Zj = x j + iYj' j = I, ... ,n, be the real and 
imaginary parts. Then C" can be identified with R2. = [XI' Y\ • ... ,x.' y.}. 
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Xj' Yj E R. Sealar multiplieation by i in Cn induees a mapping J: R2n ---> R2n 
given by 

J(xl' Yl' ... ,x" Yn) = (-Yl' xl' ... , -Yn' x), 

and, moreover, JZ = -I. This is the standard comp/ex structure on RZ'. 
The coset space GL(2n, R)/GL(n, C) determines all complex structures on R2/1 

by the mapping [A] -+ A-1JA, where [A] is the equivalence class of A E 

GL(2n, R). 

Example 3.2: Let X be a complex manifold and let T .. (X) be the (com
plex) tangent spaee to X at x. Let X o be the underlying differentiable manifold 
of X (i.e., X induces a differentiable structure on the underlying topologi
eal manifold of X) and let T .. {Xo) be the (real) tangent spaee to X 0 at x. Then 
we claim that T .. {Xo) is canonical1y isomorphie with the underlying real 
veetor spaee of T .. (X) and that, in particular, T .. (X) induces a complex struc
ture J .. on the real tangent space T .. {Xo)' To see this, we let (h, U) be a holo
morphic coordinate system near x. Then h: U ---> U' c Co, and hence, by 
taking real and imaginary parts of the vector-valued function h, we obtain 

h: U ______ R2n 

given by 

hex) = (Re h.(x), Im h.(x), ... , Re hn(x), Im h.(x», 

which is a real-analytic (and, in particular, differentiable) coordinate system 
for Xo near x. Then it suffices to consider the claim above for the vector 
spaces To(Cn) and To(RZn) at 0 E Cn, where RZn has the standard complex 
structure. Let {a/aZI' ... ,a/azn} be a basis for To(C') and let {a/axl' a/ayl' 
... , a/axn, a/ay.} be a basis for To(RZ,). Then we have the diagram 

To(Cn) - cC' 

(%11 la lila 

To{Rz") - aRZ", 

where (% is the R-Iinear isomorphism between To(RZ,) and To(Cn) induced by 
the other maps, and thus the complex structure of To(C') induces a complex 
structure on To(Rz"),just as in Example 3.1. We claim that the complex struc
ture J .. induced on T .. (Xo) in this manner is independent of the choice of local 
holomorphic coordinates. To check that this is the case, consider a biholo
morphism 1 defined on a neighborhood N of the origin in Co, I: N -> N, 
where 1(0) = O. Then, letting' = fez) and writing in terms of real and imagi
nary coordinates, we have the corresponding diffeomorphism expressed in 
real coordinates: 

(3.1) 
e = u(x,y) 

11 = v(x, Y), 

where e, 11, x, Y E R' and e + i11 = , E Co, X + iy = z E Co. The map 
fez) corresponds to a holomorphic change of coordinates on the complex 
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manifold X; the pair of mappings u, v corresponds to the change of coordi
nates for the underlying differentiable manifold. The Jacobian matrix 
(differential) of these mappings corresponds to the transition functions for 
the corresponding trivüilizations for T(X) and T(Xo), respectively. Let 
J denote the standard complex structure in C', and we shall show that J 
commutes with the Jacobian of the real mapping. The real Jacobian of (3.1) 
has the form of an n X n matrix of 2 X 2 blocks, 

M = axp ayp , rau" au,,] 
av,. av" 
axp ayp 

IX, P = I, ... , n, 

which, by the Cauchy-Riemann equations (sincefis a holomorphic mapping), 
is the same as 

r av" au,,] ayp ayp 

au" av,,' 
- ayp ayp 

IX, P = I, ... , n. 

Thus the Jacobian is an n X n matrix consisting of 2 X 2 blocks of the form 

Moreover, J can be expressed in matrix form as an n X n matrix of 2 X 2 
blocks with matrices of the form 

along the diagonal and zero elsewhere. It is now easy to check that MJ = 

JM. It folio ws then that J induces the same complex structure on Tx(Xo) 

for each choiee of local holomorphic coordinates at x. 

Let V be areal vector space with a complex structure J, and consider 
V ®R C, the complexification of V. The R-linear mapping J extends to a C
linear mapping on V ®R C by setting J(v ® IX) = J(v) ® IX for v E V, IX E 
C. Moreover, the extension still has the property that J2 = -I, and it follows 
that J has two eigenvalues {i, -i}. Let VI, ° be the eigenspace corresponding 
to the eigenvalue i and let vo, I be the eigenspace corresponding to -i. Then 
we have 

V ®R C = VI, ° E8 vO, I. 
Moreover, conjugation on V ®R C is defined by v ® IX = v ® a. for v E V 
and IX E C. Thus VI, ° - R vo, I (conjugation is a conjugate-linear mapping). 
It is easy to see that the complex vector space obtained from V by means of 
the complex structure J, denoted by VJ> is C-linearly isomorphie to VI, 0, 

and we shatl identify VJ with VI, ° from now on. 
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We now want to consider the exterior algebras of these complex vector 
spaces. Namely, denote V ®R C by V. and consider the exterior algebras 

/\ V., 

Then we have natural injections 

/\VI.O 

1\ VO.I 

and /\ VO.I. 

""-........ 
~I\V., 

and we let AM V be the subspace of /\ V. generated by elements of the form 
u 1\ W, where u E 1\ P VI, ° and W E NVo. I. Thus we bave tbe direct sum 
(Ietting., = dime VI, 0) 

We now want to carry out the above algebraic construction on the tangent 
bundle to a manifold. First, we have adefinition. 

Definition 3.3: Let X be a differentiable manifold of dimension 2n. Suppose 
that J is a differentiable vector bundle isomorphism 
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is called an a/most comp/ex slructure for the differentiable manifold X. Jf X 
is equipped with an almost complex structure J, then (X, J) is called an 
a/most comp/ex manifold. 

We see that a differentiable manifold having an almost complex structure 
is equivalent to prescribing a C-vector bundle structure on the R-Iinear 
tangent bundle. 

Proposition 3.4: A complex manifold X induces an almost complex struc
ture on its underlying differentiable manifold. 

Proo!; As we saw in Example 3.2, for each point x E X there is a com
plex structure induced on T,,(Xo), where Xo is the underlying differentiable 
manifold. What remains to check is that the mapping 

is, in fact, a c~ mapping with respect to the parameter x. To see that J is a 
C~ vector bundle mapping, choose local holomorphic coordinates (h, U) 
and obtain a trivialization for T(Xo) over U, Le., 

T(Xo) lu - heU) x RZ", 

where we let Zj = x j + iYj be the coordinates in h( U) and (e I' "1' ... , e., ,,") 
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be the coordinates in R2 •. Then the mapping J lu is defined by (with respect 
to this trivialization) 

id x J: heU) x R2. _ heU) X R2., 
where 

J(I; 1> '11> ... ,1;., 'I.) = (-'11> I; 1> ••• , -'1.,1;.), 

as before, That is, in this trivialization J is a constant mapping, and hence 
c~. Since differentiability is a local property, it follows that J is a differentiable 
bundle mapping. 

Q.E.D. 

Remark: There are various examples of almost complex structures 
wh ich do not arise from complex structures. The 2-sphere S2 carries a complex 
structure [~ P I (C)], and the 6-sphere S6 carries an almost complex structure 
induced on it by the unit Cayley numbers in S7 (see Steenrod [I]). However, 
this almost complex structure does not come from a complex structure (it 
is not integrable; see the discussion below). Moreover, it is unknown whether 
S6 carries a complex structure. A theorem of Borel and Serre [I] asserts that 
only S2 and S6 admit almost complex structures among the even dimensional 
real spheres. For more information about almost complex structures on mani
folds, consult, e.g., Kobayashi and Nomizu [I] or Helgason [I]. 

Let X be a differentiable m-manifold, let T(X)c = T(X) Q9R C be the 
complexification ofthe tangent bundle, and let T*(X)c be the complexification 
of the co tangent bundle. We can form the exterior algebra bundle 1\ T*(X)c' 
and we let 

B'(X)c = B(X, NT*(X)J. 

These are the complex-valued differential forms of total degree r on X. We 
shall usually drop the subscript c and denote them simply by B'(X) when 
there is no chance of confusion with the real-valued forms discussed in Sec. 
2. In local coordinates we have rp E B'(X) if and only if rp can be expressed 
in a coordinate neighborhood by 

rp{x) = I~" rpix)dxI , 

where we use the multiindex notation of Sec. 2. and rplx) is a C= complex
valued function on the neighborhood. The exterior derivative dis extended 
by complex Iinearity to act on complex-valued differential forms, and we 
have the sequence 

SO(X) ~ SI(X) ~ ., . ~ sm(x) _ 0, 

where d 2 = O. 
Suppose now that (X, J) is an almost complex manifold. Then we can 

apply the linear algebra above to T(X)c' NameIy, J extends to aC-linear 
bundle isomorphism on T(X)c and has (fibrewise) eigenvalues ± i. Let T(X)I. ° 
be the bundle of (+i)-eigenspaces for J and let T(X)o. I be the bundle of 
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(-i)-eigenspaces for J [note that these are differentiable subbundles of 
T(XU We can define a conjugation on T(X)c' 

Q: T(X)c -- T(X)c' 

by fibrewise conjugation, and, as before, 

Q: T(X) 1. ° __ T(X)o. I 

is a conjugate-Iinear isomorphism. Moreover, there is aC-linear isomorphism 

T(X), ~ T(X) 1. 0, 

where T(X), is the C-linear bundle constructed from T(X) by means of J. 
Let T*(X)I. 0, T*(X)o. I denote the C-dual bundles of T(X)I. ° and T(X)o. I, 

respectively. Consider the exterior algebra bundles A T*(X)c' A T*(X)I. 0, 

and A T*(X)o. I, and, as in the case of vector spaces, we have 

T*(X)c = T*(X)I. 0 EB T*(X)o. I 

and natural bundle injections 

AT*(X)I.o~ 

/' AT*(X)c' 
A T*(X)o. I 

and we let A p,q T*(X) be the bundle whose fibre is N' q '4*(X). This bundle 
is the one we are interested in, since its sections are the complex-l'alued 
differential forms of type (p, q) on X, which we denote by 

Sp,q(X) = SeX, A p,qT*(X». 

Moreover, we have that 

S'(X) = I: Sp,q(X). 
p+g=r 

Note that the differential forms of degree r do not retlect the almost complex 
structure J, whereas its decomposition into subspaces of type (p, q) does. 

We want to obtain local representations for differential forms of type 
(p, q). To do this, we make the following general definition. 

Definition 3.5: Let E --> X be an S-bundle of rank rand let U be an open 
subset of X. Aframefor E ol'er U is a set of r S-sections (s]>'" ,s,}, Sj E 

S(U, E), such that (SI(X), ... ,s,(x)} is a basis for Ex for any x E U. 

Any S-bundle E admits a frame in some neighborhood of any given point 
in the base space. Namely, let U be a trivializing neighborhood for E so that 

h: Elu ~ U X Kn, 

and thus we have an isomorphism 

h*: S(U, Elu) ~ S(U, U x K"). 

Consider the vector-valued functions 

e l = (1,0, ... ,0), ez = (0, 1, ... ,0), ... ,e" = (0, ... ,0, I), 
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which cIearly form a (constant) frame for V x K', and thus {(h'*tl(el), ... , 
(h*)-I(e.)} forms a frame for E lu, since the bundle mapping h is an isomor
phism on fibres, carrying a basis to a basis. Therefore we see that having a 
frame is equivalent to having a trivialization and that the existence of a 
global frame (defined over X) is equivalent to the bundle being trivial. 

Let now (X, J) be an almost complex manifold as before and let {w I' •.. , 

w.} be a local frame (defined over some open set V) for T*(X) 1. 0. It folIo ws 
that {w l' .•• , w.}t is a local frame for T*(X)o. I. Then a local frame for 
N,q*(X) is given by (using the multiindex notation of Sec. 2) 

{w l /\ w'}, 111 = p, I J I = q, (/, J strictly increasing). 

Therefore any section S E SM(X) can be written (in V) as 

Note that 

au E SO(U). 

ds = ~' dau /\ wl /\ w' + aud(wl /\ w'), 
I1 =p 
J =9 

where the second term is not necessarily zero, since w/x) is not necessarily 
a constant function of the local coordinates in the base space (which will, 
however, be the case for a complex manifold and certain canonical frames 
defined with respect to local holomorphic coordinates, as will be seen below). 

We now have, based on the almost complex structure, a direct sum decom
position of S'(X) into subspaces {SM(X)}. Let n p, 9 denote the natural projec
tion operators 

n M : S'(X) ----+ SM(X), P + q = r. 

We have in general 

d: SM(X) ----+ &P+9+ I(X) = L; S"'(X) 
r+I=I'+II+l 

by restricting d to SM. We define 

by setting 

a: SP09(X) ----+ SP+I,9(X) 

ä: SP09(X) ----+ SP,9+ I(X) 

a = np + I ,9 0 d 

ä = np ,9+1 0 d. 
We then extend a and ä to all 

dirn X 
S*(X) = L; S'(X) 

,=0 

by complex linearity. 
Recalling that Q denotes complex conjugation, we have the following 

elementary results. 

Proposition 3.6: Qä(Qf) = aj, for j E &*(X). 

tWe shall use both Q and overbars to denote the conjugation, depending on the context. 
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Proof: One has to verify that if f E 8'(X) and p + q = r, then QTC Mf = 
TCq. pQf and Q(df) = dQJ, whieh are simple, and we shall omit the details. 

Q.E.D. 

In general, we know that d2 = 0, but it is not neeessarily the ca se that 
ä2 = O. However, it follows from Proposition 3.6 that ä2 = 0 if and only if 
a2 = O. 

In general 

ean be deeomposed as 

d = 1: TC" s 0 d = a + ä + .... 
r+l=p+q+1 

If, however, d = a + ä, then 

d2 = a2 + aä + äa +ä2, 

and sinee eaeh operator projects to a different summand of 8P+Q+ 2(X) (in 
wh ich ca se the operators are said to be of different type), we obtain 

a2 = aä + äa = ä2 = O. 

If d = a + äthen we say that the almost complex strueture is integrable. 

Theorem 3.7: The indueed almost complex structure on a complex manifold 
is integrable. 

Proof: Let X be a eomplex manifold and let (Xo' J) be the underlying 
differentiable manifold with the indueed almost eomplex strueture J. Since 
T(X) is C-linear isomorphie to T(Xo) equipped with the C-bundle structure 
induced by J, it follows that, as C-bundles, 

T(X) - T(Xo) I, 0, 

and similarly for the dual bundles, 

T*(X) - T*(XO)I,O. 

But (dz p • •• ,dz.J is a local frame for T*(X) if(zp ... ,zn> are loeal coordi
nates (recall that fdz p ••• , dz.J are dual to ra/az p • •• ,a/az.}). We set 

a I(a .a) --- --1-aZj - 2 ax, ay,' j=I, ... ,n 

~ = l.(~ + i~), aij 2 ax, aYj j = I, ... , n, 

where ra/ax p •.• , a/ax., a/ayl' ... ,a/aY.J is a local frame for T(Xo)c 
and ra/az l' ... , a/az.J is a loeal frame for T(X) (cf. Examples 2.4 and 2.5). 
We observe that ajaz, so defined is the complex (partial) derivative of a 
holomorphic function, and thus the assertion that these derivatives form a 
local frame for T(X) is valid. From the above relationships, it follows that 

dZj = dXj + i dy, 
dij = dx, - i dy" j = I, ... , n, 
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which gives 

dXj = -t(dZj + dij} 

dYj = L(dZ j - di), 

This in turn implies that for S E ep.q(X) 

j = I", ·,n. 

We have 

s = L;' aJJdzl AdiJ. 
I,} 

ds = :t L;' (aal.Jdxj + aal.JdYj) Adz i AdiJ 
j~1 I,J aX j aYJ 

= t L;' aal,Jdz.Adzl AdiJ 
j=I/,J aZl J 

+ t L;' aa!,JdijAdzJ AdiJ. 
j=1 I,J aZ j 

The first term is of type (p + I, q), and so 

" a a = L;-a dz j , 
j= 1 Zj 

and similarly 

- "a-a = L; a-=-dz j, 
j~ 1 Zj 

3S 

and hence d = a + ä. Thus the alm ost complex structure induced by the 
complex structure of Xis integrable. 

Q.E,D. 

The converse of this theorem is a deep result due to Newlander and 
Nirenberg [1], whose proof has been simplified in recent years (see, e,g., 
Kohn [1], Hörmander [2]). 

Theorem 3.8 (Newlander-Nirenberg): Let (X, J) be an integrable almost 
complex manifold. Then there exists a unique complex structure 0x on X 
wh ich induces the alm ost complex structure J. 

We shall not prove this theorem, and instead refer the reader to Hör
mander [2]. We shall mention, however, that it can easily be redueed to a 
loeal problem-and, indeed, to solving particular partial differential equa
tions (namely the inhomogeneous Cauchy-Riemann equations) with esti
mates. In the ca se where (X, J) is a real-analytic alm ost complex manifold, 
there are simpler proofs (see e.g., Kobayashi-Nomizu, Vol. 11 [I]). We shall 
not need this theorem, but we shall mention that it plays an important role 
in the study of deformations of complex struetures on a fixed differentiable 
manifold, a topic we shall discuss in Chap. V. 
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CHAPTER 11 

SHEAF THEORY 

Sheaves were introduced some 20 years ago by Jean Leray and have had 
a profound effect on several mathematical disciplines. Their major virtue is 
that they unify and give a mechanism for dealing with many problems con
cerned with passage from local information to global information. This 
is very useful when dealing with, say, differentiable manifolds, since 10caJly 
these look Iike EucJidean space, and hence localized problems can be dealt 
with by means of aJl the tools of cJassical analysis. Piecing together "solu
tions" of such local problems in a coherent manner to describe, e.g., global 
invariants, is most easily accomplished via sheaf theory and its associated 
cohomology theory. The major virtue ofsheaftheory is information-theoretic 
in nature. Most problems could be phrased and perhaps solved without 
sheaf theory, but the notation would be enormously more complicated and 
difficult to comprehend. 

In Sec. 1 we shall give the basic definition of presheaves and sheaves, 
incJuding a variety of examples. In Sec. 2 we shall develop one of the basic 
computational tools associated with a sheaf, namely aresolution, and again 
there are more examples. Section 3 contains an introduction to cohomology 
theory via abstract (canonical) soft (or ftabby) resolutions, and we shall 
prove some basic isomorphism theorems which give us an explicit version 
of de Rham's theorem, for instance. In Appendix A is a brief summary of 
Cech cohomology theory, an alternative and equally useful method for com
puting cohomology. General references for this chapter incJude Bredon 
[I], Godement [I], and selected chapters in Gunning and Rossi [1] and 
Hirzebruch [I]. 

1. Presheaves and Sheaves 

In this section we shall introduce the basic concepts of presheaves and 
sheaves, giving various examples to illustrate the main ideas. We shall start 
with some formal definitions. 

Definition 1.1: A presheajff over a topological space Xis 
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Sec. 1 Presheaves and Sheaves 

(a) An assignment to each nonempty open set U c X of a set 5'(U). 
(b) A collection of mappings (ca lied restriction homomorphisms) 

r:; : 5'( U) - 5'( V) 

for each pair of open sets U and V such that V c U, satisfying 
(I) r~ = identity on U(= lu). 
(2) For U :::> V :::> W, r~ = r~ 0 r:J. 

If 5' and 9 are presheaves over X, then a morphism (of presheaves) 

h:5'-9 
is a collection of maps 

hu : 5'(U) - 9(U) 

for each open set U in X such that the following diagram commutes: 

5'(U) -9(U) 

1r :; 1r :; 
5'(V) -9(V), Vc U c X. 

(f is said to be a subpresheaJ of 9 if the maps hu above are inclusions. 
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Remark: We shall be dealing primarily with presheaves, 5', where 5'( U) 
has some algebraic structure (e.g., abelian groups). In this case we also require 
that the subpresheaves have the induced substructure (e.g., subgroups) and 
that restrietion homomorphisms and morphisms preserve the algebraic 
structure (e.g., r:; and hu are group homomorphisms). Moreover, we shall 
call the elements of 5'( U) sections of 5' over U for reasons wh ich will become 
apparent later. 

Definition 1.2: A presheaf5' is ealled a sheaJiffor every eollection Ui of open 
subsets of X with U = U Ui then 5' satisfies 

Axiom SI: If S, t E 5'( U) and r~l(s) = r~I(t) for all i, then s = t. 
Axiom Sz: If Si E 5'(UJ and if for UI () Ui '* 0 we have 

for all i, then there exists an S E 5'( U) such that r~.(s) = Si for all i. 

Morphisms of sheaves (or sheaJ mappings) are simply morphisms of the 
underlying presheaf. Moreover, when a subpresheaf of a sheaf 5' is also a 
sheaf, then it will be ca lied a subsheaJ of 5'. An isomorphism of sheaves (or 
presheaves) is defined in the obvious way, namely hu is an isomorphism in the 
category under eonsideration for each open set U. Note that Axiom SI for 
a sheaf says that da ta defined on large open sets U can be determined 
uniquely by looking at it loeally, and Axiom Sz asserts that loeal data of a given 
kind (in a given presheaf) can be pieeed together to give global data of the 
same kind (in the same presheaf). 

We would now like to give some examples of presheaves and sheaves. 
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Example 1.3: Let X and Y be topological spaces and let ex •y be the 
presheaf over X defined by 

(a) Cx.r(V):= {I: V- Y:/is continuous}. 
(b) Forle Cx.r(V), r~(f) := I1 v, tbe natural restriction as a function. 

It is easy to see that this presheaf satisfies Axioms SI and S2 and hence is a 
sheaf. 

Example 1.4: Let X be a topological space andlet K be R or C. Let 
ex = eX •K ' as in the above example. This is a sheaf of K-algebras; i.e., 
ex(V) is a K-algebra under pointwise addition, multiplication, and scalar 
multiplication of functions. 

Example 1.5: Let X be an g-manifold (as in Definition l.l in Chap. 1). 
Then we see that the assignment gx given by 

gx(V) := g(V) = the g-functions on V 

defines a subsheaf of e x' This sheaf is called the structure shealof the mani
fold X. In particular, we shall be dealing with 8x' (Ix, and f'x, the sheaves of 
differentiable, real-analytie, and holomorphie lunctions on a manifold X. 

Example 1.6: Let X be a topological space and let G be an abelian 
group. Tbe assignment V -+ G, for V connected, determines a sheaf, called 
tbe eonstant sheaf (with coefficients in G). This sheaf will often be denoted 
simply by the same symbol G when there is no chance of confusion. 

We want to give at least one example of a presheaf wh ich is not a sheaf, 
although our primary interest later on will be sheaves of the type mentioned 
above. 

Example 1.7: Let X be the complex plane, and define the presheaf 
<B by letting <B( V) be the algebra of bounded holomorphic functions in the 
open set V. Let V, = {z: Izl < i}, and then C = U V,. Let f,E <B(V,) 
be defined by settingf,(z) = z. Then it is quite clear that there is no I E <B(C) 
with the property that Ilu. = f,. In fact, by Liouville's theorem, <B(C) = C. 
Consequently, <B is not a sheaf, since it violates Axiom Sz. 

We see in the above example that the' basic reason <B was not a sheaf 
was that it was not defined by a local property (such as holomorphicity, 
differentiability, or continuity). 

Remark: A presheaf that violates Axiom SI can be obtained by taking 
the sections of CX •K with X a two point discrete space but letting all proper 
restrictions be zero. 

A natural structure on presheaves which occurs quite often is that of a 
module. 
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Definition 1.8: Let <R be a presheaf of commutative rings and let ml be a 
presheaf of abelian groups, both over a topological space X. Suppose that 
for any open set U C X, ml( U) can be given the structure of an <R( U)-module 
such that if IX E <R( U) and / E ml( U), then 

r~(IXf) = p~(IX)r~(f) 

for V c U, where r~ is the ml-restriction homomorphism and p~ is the 
<R-restriction homomorphism. Then ml is called a preshea/ 0/ <R-modules. 
Moreover, if ml is a sheaf, then ml will be a shea/ 0/ <R-modules. 

Example 1.9: Let E -+ X be an S-bundle. Then define a presheaf 
SeE) (= SAE»t by setting S(E)(U) = S(U, E), for U open in X, together 
with the natural restrictions. Then SeE) is, in fact, a subsheaf of eX •E and is 
called the shea/ 0/ S-sections 0/ the vector bundle E. As special cases, we have 
the sheaves of differential forms &~ on a differentiable manifold, or the sheaf 
of differential forms of type (p, q), &~.q, on a complex manifold X. These 
sheaves are examples of sheaves of &x-modules, and, more generally, SeE) 
is a sheaf of Sx-modules for an S-bundle E -+ X. 

Example 1.10: Let Oe denote the sheaf of holomorphic functions in the 
complex plane C and let ~ denote the sheaf defined by the presheaf 

{u -+ O(U), 

U -+ {/ E O(U) :/(0) = O}, 

ifO rf- U 

if 0 E U. 

Then, c1early, this presheaf is a sheaf, and it is also a sheaf of modules over 
the sheaf of commutative rings Oe (in fact, it is a sheaf of ideals in the sheaf 
of rings, going one step further). 

The most commonly occurring sheaves of modules in complex analysis 
have names. 

Definition l.ll: Let X be a complex manifold. Then a sheaf of modules 
over the structure sheaf Ox of X is called an analytic sheaf 

As one knows from algebra, the simplest type of modules are the free 
modules. We have a corresponding definition for sheaves. First, we note 
that there is a natural (and obvious) notion of restriction of a sheaf (or pre
sheaf) 5' on X to a sheaf (or presheaf) on an open subset U of X, to be denoted 
by 5'lu. 

Definition 1.12: Let<R be a sheaf of commutative rings over a topological 
space X. 

t~x(E) is not to be confused with ~E(E), which are the global ~-functions defined on 
the manifold E. In context it will be c\ear which is meant. 
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(a) Define (l{P, for p > 0, by the presheaf 

U ----+ CRP( U) : = CR( U) EB ... EB CR( U). 
p terms 

CRP, so defined, is clearly a sheaf of CR-modules and is called the direct sum 
of CR (p times; p = 0 corresponds to the O-module). 

(b) If:m is a sheaf of CR-modules such that :m - CRP for some p > 0, 
then :m is said to be a free sheaf of modules. 

(c) If:m is a sheaf of CR-modules such that each x E X has a neighbor
hood U such that :m lu is free, then :m is said to be locally free. 

The following theorem demonstrates the relationship between vector 
bundles and locally free sheaves. 

Theorem 1.13: Let X = (X, S) be a connected S-manifold. Then there is 
a one-to-one correspondence between (isomorphism classes of) S-bundles 
over X and (isomorphism classes of) locally free sheaves of S-modules over 
X. 

Proof: The correspondence is provided by 

E ----+ SeE) 

and it is easy to see that SeE) is a locally free sheaf of S-modules. Namely, 
by local triviality, for some neighborhood U of a point x E X, we have 
Elu - U x Kr, where r is the rank of the vector bundle E. It follows that 
S(E)lu - S(U x Kr). We claim that 

S(U x Kr) - Slu EB· .. (fJ Slu· 
From the definition of a section, it follows that f E SC U x Kr)(v) (for V 
open in U) if and only if fex) = (x, g(x», where g : V -~ Kr and g is an 
S-morphism (cf. Example 1.2.12). Therefore g = (gI, ... ,gr), gj E S( V), and 
the correspondence above is given by 

f ----+ (gI> ... , gr) E Su( V) EB ... EB Su(V), 

which is clearly an isomorphism of sheaves. Therefore SeE) is a locally free 
Sx-module. 

We shall now show how to construct a vector bundle from a locally free 
sheaf, which inverts the above construction. Suppose that oC is a locally free 
sheaf of S-modules. Then we can find an open covering {U.J of X such that 

g. : oClu. _-:-+ sr lu. 

for some r > 0 (excluding the trivial case); note that r does not depend on 
oe, since Xis connected. Then define 

by setting g.ß = g. 0 g p '. Now g.P is a sheaf mapping, so in particular (when 
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acting on the open set U« n Up) it determines an invertible mapping of 
vector-valued functions (g«p)u.nuP' which we write as 

g«p : S(U« n Up)' ---+ S(U« n Up)', 

which is then a nonsingular r x r matrix of functions in S(U« n Up), Le., 
g«p : U« n Up -> GL(r, K), and hence determines transition functions for 
a vector bundle E, since the compatibility conditions g«p . gPY = g«y are 
trivially satisfied. Thus a vector bundle E can be defined by letting 

(disjoint union) 

and making the identification 

(x, e) ,.., (x, g«p(x)e), if x E U« n Up *- 0. 

(Cf. the re mark after Definition 1.2.2.) 
We leave it to the reader to verify that isomorphism cIasses are preserved 

under this correspondence. 
Q.E.D. 

Remark: Most of the sheaves we shall be dealing with will be locally 
free sheaves arising from vector bundles; however, there is a generalization 
which is of great importance for the study of function theory on complex 
manifolds and, more generally, complex manifolds with singularities
complex spaces. An analytic sheaf ff' on a complex manifold X is said to be 
coherent if for each x E X there is a neighborhood U of x such that there is 
an exact sequence of sheaves over U, 

Oplu ---+ oqlu ---+ ff'lu ---+ 0, 

for so me p and q. For a complete discussion of coherent analytic sheaves on 
complex spaces, see Gunning and Rossi (1]. FOi instance, let V be a sub
variety of C'; Le., V is defined as a cIosed subset in C', which is locally given 
as the set of zeros of a finite number of holomorphic functions. Let !Iv be the 
subsheaf of c) defined by sections that vanish on V. Therefore !Iv is an ideal 
sheaf in the sheaf of rings C). Then !Iv is a coherent analytic sheaf (by results 
of Oka and Cartan; see Gunning and Rossi [I]) but not necessarily locally 
free. A simple example of this situation is the case where V is simply the 
origin in C2 ; then we see that!Iv = !I [01 is similar to Example 1.10. Moreover, 
d[ol is coherent because of the following exact sequence, 

where 

#(/1./2) = ZJI - zzfz 
v(f) = (zzf, zJ). 

(Koszul complex), 

One can easily check that this is exact (by expanding the functions in power 
series at the origin and determining the relations between the coefficients). 
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2. Resolutions of Sheaves 

A sheaf 5' on aspace X is a carrier of localized information about the 
space X. To get global information about X from ~, we want to apply the 
techniques of homological algebra to sheaves. For this we want to consider 
exact sequences, quotients, etc. To do this, however, we have to look at 
another, more localized, model of a sheaf. In fact, we shall make a sheaf into 
a topological space of a particular type. 

Definition 2.1: (a) An haJe space over a topological space Xis a topolog
ical space Y together with a continuous surjective mapping 7t : Y -. X 
such that 7t is a local homeomorphism. 

(b) A section of an etale space Y ~ X over an open set U c X is a 
continuous map f : U -. Y such that 7t 0 f = I u. The set of sections over 
U is denoted by r( U, Y). 

It is clear that the sections of an etale space form a subsheaf of ex •y • 

We are going to associate to any presheaf ~ over X an etale space ff -. X 
such that the sheaf of sections of ff gives another model for ff if ff happens to 
be a sheaf. The reasons for this construction will become c1ear as we go along. 

Consider a presheaf 5' over X, and let 

ff x := ~ ff(U) 
xEU 

be the direct limit of the sets ~(U) with respect to the restrietion maps {rn 
of~. If ff has an algebraic structure which is preserved under direct limits, 
then ff x' ca lied the stalk of ff at x, will inherit that structure. For instance, 
this is the ca se if ~ is a presheaf of abelian groups or commutative rings. 

There is a natural map 

r~ : ff(U) ~ ff x ' x E U, 

given by taking an element in ff( U) into its equivalence dass in the direct 
limit. If s E ff( U), then s x : = r~ (s) is called the germ of s at x, and s is called 
a representatil'e for the germ Sx' Let 

ff = U ~x 
XEX 

and let 7t : ff --+ X be the natural projection taking points in ff x to x. We want 
to make ff into an etale space, and all that remains is to give ff a topology. 
For each s E ff( U) define the set function 

s:U~ff 

by letting sex) = Sx for each x E U. Note that 7t 0 s = Iu. Let 

U(U)J where U is open in X, S E ff(U) 

be a basis for the topology of ff. Then all the functions s are continuous. 
Moreover, it is easy to check that 7t is continuous and indeed a local home-
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omorphism (S provides a local inverse at Sx for 1l for a given representative 
SOfSxEff). 

Thus we have associated to each presheaf5' over X an etale space. More
over, if the presheaf has algebraic properties preserved by direct limits, then 
the etale space ff inherits these properties. For example, suppose that 5' is a 
presheaf of abelian groups. Then ff has the following properties: 

(a) Each stalk is an abelian group. 
(b) Jf ff 0 ff := {es, t) E ff x ff : 1l(s) = 1l(t)}, then the map 

.u : ff 0 ff ----+ 5' 

given by (s x' t x) ----+ s x - t x is continuous. This is true since if (s - t)-(U) 
is a basic open set of s x - t x for U open in X and s, t E 5'( U), then the inverse 
image of (s - treU) by the above map is just s(U) 0 leU), which is a basic 
open set in ff 0 ff. 

(c) For U open in X, the set ofsections offf over U, r( u, ff) is an abelian 
group under pointwise addition, i.e., for s, t E r(U, ff) 

(s - t)(x) = sex) - tex) for all x E U. 

We see that s - t is continuous since it is given by the following composi
tion of continuous maps: 

In associating an etale space ff to a presheaf 5', we have also associated 
a sheaf to 5', namely the sheaf of sections of ff. We call this sheaf the sheaf 
generated by 5'. We would now like to look more cIosely at the relationship 
between the presheaf, :F, and the sheaf of sections of j which we shall call j 
for the time being. We have al ready used the fact that there is a presheaf 
morphism, wh ich we now denote by 

t' : 5' ----+ ff, 

namely t'u : 5'(U) ----+ ff(U) [:= r(U, ff)] is given by t'u(s) = s. Recall that 
sex) = r~(s) for all x E U. In the case that ff is a sheaf, we have the following 
basic result. Its proof will iIIustrate the use of the sheafaxioms in an abstract 
setting. 

Theorem 2.2: If 5' is a sheaf, then 

t' : 5' ----+ ff 

is a sheaf isomorphism. 

Proof' Jt suffices to show that t'u is bijective for each U. 

(a) Tu is injective: Suppose that s', s" E ff(U) and Tu(S') = Tu(S"). 
Then 

[t'u(s')](x) = [t'u(s")](x) for all x E U; 
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i.e., r~(s') = r~(sl/) for all x E U. But when r~(s') = r~(sl/) for some XE U, 
the definition of direct limit implies that there is a neighborhood V of x 
such that r~(s') = r~(sl/). Since this is true for each x E U, we can cover 
U with open sets Ui such that 

r~,(s') = r~,(sl/) 

for all i. So since ff is a sheaf, we have, by Axiom SI> Si = sl/, 
(b) 'u is surjective: Suppose (I E nU, if). Then for x E U there is a 

neighborhood V of x and s E ff(V) such that 

(I(x) = Sx = ['v(s)](x). 

Since sections of an etaIe space are local inverses for TC, any two sections 
which agree at a point agree in some neighborhood of that point. Hence we 
have for some V* a neighborhood of x: 

(llv' = 'v(s)lv' = 'v·(r~.(s». 
Since this is true for any x E U, we can cover U with neighborhoods Ui 

such that there exists Si E ff(U) and 

'U,(Si) = (llu,' 
Moreover, we have 

so by part (a) 

Since ff is a sheaf and U = U i Ui' there exists s E ff( U) such that 

r~,(s) = Si' 
Thus 

'u(s)lu, = 'u,(r~.(s» = 'U,(Si) = (llu" 

and finally 'u(s) = (I. 
Q.E.D. 

The content of this theorem is that to each sheaf ff one can associate an 
etale space if whose sheaf of sections is the original ff; i.e., if contains the 
same amount of information as ff, and for this reason, a sheaf is very often 
defined to be an etale space with algebraic structure along its fibres, as dis
cussed above (see, e.g., Bredon [I] and Gunning and Rossi [I]). For doing 
analysis, however, the principal object is the presheaf, with its axioms (since 
most sheaves occur naturally in this form), and the associated etale space is 
an auxiliary construction which is useful in constructing the homological 
machinery which makes sheaves useful objects. One way, in particular, that 
the etale space is useful is to pass from a presheaf to a sheaf. 

Definition 2.3: Let ff be a presheaf over a topological space X and let if be 
the sheaf of sections of the etale space if associated with ff. Then ff is the 
sheaf generated by ff. 
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By Theorem 2.2 above, we see that a presheaf, which is a sheaf, gene rates 
itself; i.e., 5' = 5. Moreover, we shall use both notations 5'(U) and r(U, 5') 
to denote the set (or group or module) of sections of 5' over U, depending 
on the context (the word section, of course, coming from the etaIe space 
picture of a sheaf). 

We now want to study the elementary homological algebra of sheaves 
of abelian groups; all the concepts we shall encounter generalize in a natural 
manner to sheaves of modules. 

Definition 2.4: Suppose that 5' and 9 are sheaves of abelian groups over a 
space X with 9 a subsheaf of 5', and let fJ be the sheaf generated by the 
presheaf U ~ 5'( U)!9( U). Then fJ is called the quotient shealol 5' by 9 and is 
denoted by 5'/9. 

The quotient mapping on presheaves above induces a natural sheaf sur
jection 5' ---+ 5'/9 by going to the direct limit, inducing a continuous mapping 
of etale spaces, and then considering the induced map on continuous sections. 
This is then the desired sheaf mapping onto the quotient sheaf. 

One of the fundamental concepts of homological algebra is that of exact
ness. 

Definition 2.S: If Cl, <B, and e are sheaves of abelian groups over X and 

Cl~<B~e 

is a sequence of sheaf morphisms, then this sequence is exaet at <B if the 
induced sequence on stalks 

is exact for all x E X. A short exaet sequenee is a sequence 

O~Cl~<B~e~O, 

which is exact at Cl, <B, and e, where 0 denotes the (constant) zero sheaf. 

Remark: Note that exactness is a loeal property. The sheaves are not 
defined to be exact at the presheaf level [i.e., exactness of 

Cl(U) ~ <B(U) ~ e(U) 

for each U open in Xl, which, of course, was possible since homomorphism 
of sheaves were so defined. The usefulness of sheaf theory is precisely in 
finding and categorizing obstructions to the "global exactness" of sheaves. 

We shall now give some examples of short exact sequences of sheaves. 

Example 2.6: Let X be a connected complex manifold. Let 0 be the sheaf 
of holomorphic functions on X and let 0* be the sheaf of nonvanishing holo
morphic functions on X wh ich is a sheaf of abelian groups under multi pli
cation. Then we have the following sequence: 

(2.1) 
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where Z is the constant sheaf of integers, i is the inclusion map, and 
exp : ß -+ ß* is defined by 

expu (f)(z) = exp (21lif(z». 

Moreover, for some (sufficiently smalI) simply-connected neighborhood U 
of x E X and for some representative g E ß*(U) of a germ gx at x, we can 
choose/x = «1/21li) logg)x for some branch ofthe logarithm function, and we 
have expx (fx) = gx. Also, expx (fJ = 0 implies thatt 

exp21llf(z)= I, Z E U, 

for any I E ß( U) which is a representative of the germ Ix on a connected 
neighborhood U of x. Therefore/is constant on U and is, in fact, an integer, 
so that 

Ker(expJ = Z, 

and the sequence (2. I) is exact. 

Example 2.7: Let d be a subsheaf of CB. Then 

j q 

O-d-CB-CB/d-O 

is an exact sequence of sheaves, where i is the natural inclusion and q is the 
natural quotient mapping. 

Example 2.8: As a special ca se of Example 2.7, we let X = C and let 
ß be the holomorphic functions on C. Let d be the subsheaf of ß consisting 
of those holomorphic functions which vanish at z = 0 E C (Example 1.10). 
Then we have the following exact sequence of sheaves: 

We note that 
0- d - ß - ß / d - O. 

(0/ dt - {C, 
0, 

if x = 0 

if x =1= O. 

Example 2.9: Let X be a connected Hausdorff space and let a, b be two 
distinct points in X. Let Z denote the constant sheaf of integers on X and 
d denote the subsheaf of Z wh ich vanishes at a and b. Then 

is exact and 

O-d-Z-Z/d-O 

(Z / dt - {Z, 
0, 

if x = a or x = b 

if x =1= a and x =1= b. 

tNote that "0" here is the identity element in an abelian group. 
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Remark: Example 2.9 shows the necessity of using the generated sheaf 
for the quotient sheaf in Definition 2.4, since the presheaf of quotients of 
sections of Z by sections of d violates Axiom S2' 

Following the terminology of homological algebra for modules, we make 
the following definitions where sheaf means sheaf of abelian groups or sheaf 
of modules. A graded sheaf is a family of sheaves indexed by integers, 5'* 
= (ff'm}mEZ' A sequence of sheaves (or sheaf sequence) is a graded sheaf eon
nected by sheaf mappings: 

(2.2) 

A differential sheafis a sequence of sheaves where the composite of any pair 
of mappings is zero; Le., (1,j 0 (1,'-1 = 0 in (2.2). Aresolution of a sheaf 5' is an 
exact sequenee of sheaves of the form 

0--5' __ 5'0 __ 5'1 __ .. . __ 5'm __ ..• , 

which we also denote symbolically by 

0--5' -- 5'*, 

the maps being understood. 
We shall see later that various types of information for a given sheaf 

5' can be obtained from knowledge of agiven resolution. We shall c10se this 
section with various examples of resolutions of sheaves. Their utility in com
puting cohomology will be demonstrated in the next section. 

Example 2.10: Let X be a differentiable manifold of real dimension m 
and let B~ be the sheaf of real-valued differential forms of degree p. Then there 
is aresolution of the constant sheaf R given by 

(2.3) 
I d d 

0-- R -- B~ -- B1--'" -- B~ -- 0, 
where i is the natural inc1usion and dis the exterior differentiation operator. 
Sinee d 2 = 0, it is c1ear that the above is a differential sheaf. However, the 
c1assical Poincare lemma (see, e.g., Spivak [I], p. 94) asserts that on a star
shaped domain U in R", if fE BP(U) is given such that df = 0, then there 
exists aUE Bp-I (U) (p > 0) so that du = f Therefore the indueed mapping 
dx on the stalks at x E Xis exact, sinee we can find representatives in loeal 
coordinates in star-shaped domains. At the term B~, exactness is an ele
mentary result from calculus [Le., df = 0 implies thatfis a eonstant (Iocally)]. 
We shall denote this resolution by 0 ----> R ----> Bi (or 0 ----> C ----> Bi if we are 
using complex coefficients). 

Example 2.11: Let X be a topological manifold. We want to derive a 
resolution for the eonstant sheaf G over X, where G is an abelian group 
(wh ich will hold also for more general spaces). Let SP(U, G) be the group of 
singular cochains in Uwith eoefficients inG; i.e;,SP(U,G) = Homz(SiU,Z),G), 
where S / U, Z) is the abelian group of integral singular chains of degree 
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Example 2.11: Let X be a topological manifold. We want to derive a 
resolution for the eonstant sheaf G over X, where G is an abelian group 
(wh ich will hold also for more general spaces). Let SP(U, G) be the group of 
singular cochains in Uwith eoefficients inG; i.e;,SP(U,G) = Homz(SiU,Z),G), 
where S / U, Z) is the abelian group of integral singular chains of degree 
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p in U with the usual boundary map (see, e.g., MacLane [1] or any standard 
algebraic topology text). Let ödenote the coboundary operator, Ö : SP(U, G) 
-> SP+I(U, G), and let gP(G) be the sheaf over X generated by the presheaf 
U -> SP(U, G), with the induced differential mapping gp(G) ~ gP+I(G). 
Consider the unit ball U in Euclidean space. Then the sequence 

(2.4) 

is exact, since Ker öjIm ö is the classical singular cohomology for the unit 
ball, which is weIl known to be zero for p > 0 (see MacLane [1], pp. 54-61, 
for an elementary proof ofthis fact, using barycentric subdivision). Therefore 
the sequence 

6 6 ° ____ G --+ gO(G) ____ gl(G) ____ g2(G) ____ ... ____ gm(G) ____ ... 

is aresolution of the constant sheaf G, noting that 

Ker(ö : SO(U, G) ---- SI(U, G» - G. 

We remark that we could also have considered C~ chains if Xis a dif
ferentiable manifold, i.e. (linear combinations of) maps f : l:!P -> U, where 
f is a Coo mapping defined in a neighborhood of the standard p-simplex 
l:!p. The corresponding results above still hold [in particular, the elementary 
proof of the exactness of (2.4) still works in the C~ case], and we have a 
resolution by differentiable cochains with coefficients in G: 

o ---- G ---- g~( G) ---- g!,( G) ____ ... ---- g::( G) ---- ... , 

which we abbreviate by 

(2.5) 0---- G ---- g!(G). 

Example 2.12: Let X be a complex manifold of complex dimension 
n, let SM be the sheaf of (p, q) forms on X, and consider the sequence of 
sheaves, for p > 0, fixed, 

I J J 
0---- OP ---- sp·o ---- SP.l ____ ••• ---- sp·· ---- 0, 

where OP is defined as the kernel sheaf of the mapping sp· 0 .!.... SP.l, wh ich is 
the sheaf of holomorphic differential forms of type (p, 0) (and we usually say 
holomorphic forms of degree p); i.e., in local coordinates, 'P E Op(U) if and 
only if 

'Pr E f)(U), 

and we note that 0 0 = o( = 0x)' Then for each p we have a differential 
sheaf 

(2.6) 

since ä2 = 0, which is, in fact, aresolution of the sheaf Clp, by virtue of the 
Grothendieck version of the Poincare lemma for the ä-operator. Namely, 
if ()) is a (p, q)-form defined in a polydisc l:! in C·, l:! = {z : 1 z/1 < r, i = I, 
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... ,n}, and äw = 0 in A, then there exists a (p, q - 1)-form u defined in a 
slightly smaller polydisc A' c c A, so that äu = / in A'. See Gunning and 
Rossi [1], p. 27, for an elementary proof of this result using induction (as in 
one of the c1assical proofs of the Poincare lemma) and the general Cauchy 
integral formula in the complex plane.t 

Example 2.13: Let X be a complex manifold and consider the differential 
sheaf over X, 

D D 
O~C~QO~QI~···~Q·~O, 

where the Qp are defined in Example 2.12. Then we claim that this is a resolu
tion of the constant sheaf C. First we note that a = d, when acting on holo
morphic forms of degree p, since d = a + ä, and ä(QP) = 0 for p = 0, 
... , u; then exactness at QO is immediate. Moreover, one can locally solve 
the equation au = w for u if aw = 0 by the same type of proof as for the 
operator ä indicated in Example 2.12. 

Suppose that .c* and ~* are differential sheaves. Then ~ homomorphism 
/: .c* ---+ ~* is a sequence of homomorphisms /j : .c j ---+~j which com
mutes with the differentials of .c* and ~*. Similarly, a homomorphism 0/ 
resolutions of sheaves 

o~a~a* 

1 1 
O~(B~(B* 

is a homomorphism of the underlying differential sheaves. 

Example 2.14: Let X be a differentiable manifold and let 

O~R~e* 

O~R~S!(R) 

be the resolutions of R given by Examples 2.10 and 2. II, respectively. Then 
there is a natural homomorphism of differential sheaves 

I: s* ~ S!(R) 

wh ich induces a homomorphism of resolutions in the following manner: 

ys* 
O~R 11 

~S!(R). 
The homomorphism 1 is given by integration over chains; i.e., 

lu: S*(U) ~ S!(U, R) 

tThe same result holds for a: &P.9 ---+ &p+ 1.9, as one can easily see by conjugation. 
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is given by 

Iu(rp)(c) = { rp, 

where c is a C~ chain (with real coefficients, in this case), and then lu(rp) 
E S!(U, R). Moreover, by Stokes' theorem it follows that the mapping I 
commutes with the differentials. 

We shall see in the next section how resolutions can be used to represent 
the cohomology groups of aspace. In particular, we shall see that every sheaf 
admits a canonical abstract resolution with certain nice (cohomological) 
properties, and we shall then compare this abstract resolution with our more 
concrete examples of this section. 

At this point we mention an analogue of the classical Poincare lemma 
mentioned above, for which we shall have an application later on. 

Lemma 2.15: Let rp E 8p,q(U) for U open in C' and suppose that drp = O. 
Then for any point p E U there is a neighborhood N of p and a differential 
form", E 8rl ,q-'(N) such that 

aä", = rp in N. 

Proof: The proof consists of an application of the Poincare lemmas for 
the operators d, a, and ä (see Examples 2.10 and 2.12). Namely, since 
drp = 0, we have that there is aUE 8~-' (using germs at x), so that du = rp, 
where r = p + q is the total degree of rp. Thus we see that if we write 
u = Ur-I,D + ... + uD,r-l, we have 

du = äup,q-I + aur' ,9 
äUr' ,9 = aup,q-I = 0, 

and then there exists (by the ä and a Poincare lemmas, Example 2.12) forms 
"'I E 8~-"q-\ and "'2 E 8~-I,q-\ so that 

which implies that 

a", I = uP,q-1 
ä"'2 = Url ,9 

rp = du = äa", I + aä", 2 

= aä(", 2 - '" I)' 

Q.E.D. 

Remark: Let 3C = Ker aä : 8°,0 --+ 81.\ on a complex manifold X. 
Then there is a fine resolution (see Definition 3.3) 

ilJ d 
0-- 3C -- 8°,0 -- 81.\ -- 82,\ EB 81.2 --"', 

where 3C is the sheaf of p/uriharmonic functions, Lemma 2.15 showing exact
ness at the 81.1 term (see Bigolin [I]). This is analogous to the resolution of 
e by 8°,* and has a similar usefulness. 
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3. Cohomology Theory 

In this section we want to present abrief development of sheaf co ho
mology theory. We first consider the problem of "lifting" global sections of 
sheaves. Consider a short exact sequence of sheaves: 

(3.1) O-a-CB-e-o. 

Then it is easy to verify that the induced sequence 

(3.2) 0- a(X) - CB(X) - e(X) - 0 

is exact at a(X) and CB(X) but not necessarily at e(X). Forinstance, in Exam
pie 2.6, if we let X = C - {O}, the punctured plane, then we see that the 
mapping 0(X) -> 0*(X) is not surjective. Similarly, in Example 2.9, a section 
of Z over X has the same value at both points a and b, whereas a section of 
ZiEl over X may have different values at points a and band must be zero 
elsewhere, and thus the map r(X, Z) -> r(X, ZiEl) is not surjective. 

Cohomology gives a measure to the amount of inexactness of the se
quence (3.2) at e(X). We need to introduce a class of sheaves for which this 
lifting problem is always solvable, and cohomology will be defined in terms of 
such sheaves by means of resolutions. Let 9' be a sheaf over aspace X and 
let S be a closed subset of X. Let 

9'(S) := lim 9'(U), -u~s 
where the direct limit runs over all open sets U containing S. From the point 
of view of etale spaces 9'(S) can be identified with the set of (continuous) sec
tions of ~Is, where ~Is := 1e l (S), and 1t : ~ -> X is the etale map. We 
call 9'(S) the set (or abelian group) of sections of9' over S, and we shall often 
denote 9'(S) by r(S, 9'). Moreover, we shall assume from now on forsimplicity 
that we are dealing with sheaves of abelian groups over a paracompact Haus
dorff space X, this being perfectly adequate for the applications in this book. 

Definition 3.1: A sheaf 9' over aspace X is soft if for any closed subset 
SeX the restriction mapping 

9'(X) - 9'(S) 

is surjective; i.e., any section of 9' over S can be extended to a section of 9' 
over X. 

There are no obstructions to lifting global sections for soft sheaves, as 
we see in the following theorem. 

Theorem 3.2: If ais a soft sheaf and 

o-a~CB~e-o 
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is a short exact sequence of sheaves, then the induced sequence 
Bx hx 

(3.3) 0 ~ a(X) ~ CB(X) ~ e(X) ~ 0 

is exact. 

Proo!, Let c E e(X). Then we want to show that there exists a section 
b E CB(X) such that hx(b) = c. Since the sequence of sheaves is exact, it 
folio ws that for each x E X there exists a neighborhood V of x and a b E 

CB(V) such that hu(b) = clu, where clu denotes the presheaf restriction from 
X to V. Thus we can cover X with a family VI of open sets such that there 
exists bj E CB(V) satisfying h(bl ) = clu• (dropping the subscript notation 
for g and h). The object now is to show that the bj can be pieced together to 
form agiobai section. 

Since Xis paracompact, there exists a locally finite refinement {SJ of 
{ VJ which is still a covering of X and such that the elements Sj of the cover 
are cIosed sets. Consider the set of all pairs (b, S), where S is a union of sets 
in {SJ and b E CB(S) satisfies h(b) = cis. The set of all such pairs is partially 
ordered by (b, S) < (b', S') if ScS' and b'ls = b. It follows easily from 
Axiom S2 in Definition 1.2 that every linearly ordered chain has a maximal 
element. Thus, by Zorn's lemma there exists a maximal set Sand a section 
b E CB(S) such that h(b) = cis. It suffices now to show that S = X. 

Suppose the contrary. Then there is a set SJ E {Sa such that SJ cf:. S. 
Moreover, h(b - bJ) = c - c = 0 on Sn Sr Therefore, by exactness of 
(3.3) at CB(X) we see that there exists a section a E a(S n SJ) such that g(a) 
= b - bJ' Since a is soft, we can extend a to all of X, and using the same 
notation for the extension, we now define 6 E CB(S U SJ) by setting 

6 _ {b 
bJ + g(a) on Si' 

on S 

If follows that h(b) = clsusJ' and hence S is not maximal. This contradiction 
then proves the theorem. 

Q.E.D. 

Before continuing with the consequences of Theorem 3.2, we would like 
to introduce another cIass of sheaves, wh ich will give us many examples of 
soft sheaves. 

Definition 3.3: A sheaf of abelian groups !F over a paracompact Hausdorff 
space X is fine if for any locally finite open cover {VJ of X there exists a 
family of sheaf morphisms 

such that 

(a) 1:"1 = 1. 
(b) "l!F ,) = 0 for all x in some neighborhood of the complement of 

V"~ 
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The family {'li} is called a partition of unity of 5' subordinate to the covering 
{Vd· 

Example 3.4: The following sheaves are fine sheaves: 

(a) e x, for X a paracompact Hausdorff space. 
(b) Sx' for X a paracompact differentiable manifold. 
(c) E~·q, for X a paracompact almost-complex manifold. 
(d) A locally free sheaf of Sx-modules, where Xis a differentiable man i

fold. 
(e) If<R is a fine sheaf of rings with unit, then any module over <R is a 

fine sheaf. 

The first four examples are fine sheaves because multiplication by a con
tinuous or differentiable globally defined function defines a sheaf homomor
phism in a natural way. Hence the usual topological and C= partitions of 
unity define the required sheaf partitions of unity. 

Proposition 3.5: Fine sheaves are soft. 

Proof: Let 5' be a fine sheaf over X and let S be a c10sed subset of X. 
Suppose that S E 5'(S). Then there is a covering of S by open sets {VI} in X, 
and there are sections Sj E 5'(V;) such that 

Let Vo = X - Sand So = 0, so that {V,.} extends to an open covering of all 
of X. Since Xis paracompact, we may assume that {V,.} is locally finite and 
hence that there is a sheaf partition of unity {'1,.} subordinate to {VJ Now 
'1ls;) is a section on Vj which is identicaIly zero in a neighborhood of the 
boundary of Vi' so it may be extended to a section on all of X. Thus we can 
define 

in order to obtain the required extension of s. Q.E.D. 

Example 3.6: Let X be the complex plane and let 0 = 0x be the sheaf 
of holomorphic functions on X. It is easy to see that 0 is not soft and hence 
cannot be fine (which is also easy to see directly). Name\y, let S = [I z I :s;; H 
and consider a holomorphic function f defined in the unit disc with the unit 
circ\e as natural boundary [e.g., fez) = 1: zn!]. Then f defines an element of 
O(S) which cannot be extended to all of X, and hence 0 is not soft. 

Example 3.7: Constant sheaves are neither fine nor soft. Namely, 
if G is a constant sheaf over X and a and bare two distinct points, then let 
S E G({a} U {bJ) be defined by setting s(a) = ° and s(b) =I=- O. Then it is c1ear 
that s cannot be extended to agIobaI section of G over X. 
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define 

in order to obtain the required extension of s. Q.E.D. 
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and consider a holomorphic function f defined in the unit disc with the unit 
circ\e as natural boundary [e.g., fez) = 1: zn!]. Then f defines an element of 
O(S) which cannot be extended to all of X, and hence 0 is not soft. 

Example 3.7: Constant sheaves are neither fine nor soft. Namely, 
if G is a constant sheaf over X and a and bare two distinct points, then let 
S E G({a} U {bJ) be defined by setting s(a) = ° and s(b) =I=- O. Then it is c1ear 
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Now that we have some familiar examples of soft sheaves, we return to 
some consequences of Theorem 3.2. 

Corrollary 3.8: If Cl and <B are soft and 

o ---+ Cl ---+ <B ---+ e ---+ 0 

is exact, then e is soft. 

Proof' Let S be a closed subset of X and restrict the sequence above to 
the set S. Then Theorem 3.2 applies, and the given section of e over S to be 
extended to all of X comes from a section of<B over S, wh ich by softness then 
extends to all of X. Its image in e(X) is a suitable extension. 

Q.E.D. 

Corollary 3.9: If 

0---+ &0 ---+ &1 ---+ &1 ---+ ... 

is an exact sequence of soft sheaves, then ihe induced section sequence 

0---+ &o(X) ---+ &1(X) ---+ &l(X) ---+ ... 

is also exact. 

Proof: Let XI = Ker(&1 -+ &1+ I)' Then we have short exact sequences 

o ---+ XI ---+ &1 ---+ X/+ 1 ---+ O. 

For i = 0, Xl = &o, and &0 is soft. Thus we have the induced short exact 
sequence 

0---+ X 1(X) ---+ &l(X) ---+ X 2(X) ---+ 0 

by Theorem 3.2. An induction using Corollary 3.8 shows that XI is soft for 
all i, and so we obtain short exact sequences: 

0---+ Xj(X) ---+ &j(X) ---+ XI+1(X) ---+ O. 

Splicing these sequences gives the desired result. 
Q.E.D. 

We are now in a position to construct a canonical soft resolution for any 
sheaf over a topological space X. Let & be the given sheaf and let S ~ X 
be the etale space associated to &. Let eO(&) be the presheaf defined by 

eO(&)(U) = {f: U-~ S: TC of = lu}· 

This presheaf is a sheaf and is called the sheaf of discontinuous sections of 
& over X. t There is clearly a natural injection 

0---+ & ---+ eO(&). 

tRecall that seetions were defined to be continuous in Definition 2.1, so disconlinuous 
seclion is a generalization of the concept of section. 
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Now let 5'1(S) = eO(S)/S and define e 1(S) = eO(5'I(S». By induction we 
define 

and 

el(S) = eO(5'I(S». 

We then have the following short exact sequences of sheaves: 

o ~ S ~ eO(S) ~ 5'1(S) ~ 0 

o ~ ffl(S) ~ el(S) ~ 5'1+ I(S) ~ o. 
By splicing these two short exact sequences together, we obtain the long exact 
sequence 

o ~ S ~ eO(S) ~ e 1(S) ~ e 2(S) ~ ... , 

which we call the canonical resolution 0/ S. We abbreviate this by writing 

(3.4) 

The sheaf of discontinuous sections eO(S) is a soft sheaf, for any sheaf S, and 
for this reason we call the resolution (3.4) the canonical soft resolution of 

S· 

Remark: A sheaf S is calledjiabby if S(X) - S(U) is surjective for all 
open sets U in X. It can be shown that a flabby sheaf is soft (see Godement 
[1]). To avoid the restriction of paracompactness in the above arguments, 
one must deal with flabby sheaves rather than soft sheaves. However, we note 
that most of our examples of soft sheaves are not flabby. 

We are now in a position to give adefinition of the cohomology groups 
of aspace with coefficients in a given sheaf. Suppose that S is a sheaf over a 
space X and consider the canonical soft resolution given by (3.4). By taking 
global sections, (3.4) induces a sequence of the form 

(3.5) 
o ~ r(X, S) ~ r(X, eO(S» ~ r(X, el(S» 
~ ... ~r(X, eq(s» ~ , 

and this sequence of abelian groups forms a cochain complex. t This se
quence is exact at r(X, eO(S», and if S is soft, it is exact everywhere by Co
rollary 3.9. Let 

C*(X, S) := r(X, e*(s», 

and we rewrite (3.5) in the form 

o ~ r(X, S) ~ C*(X, S). 

tA cochain complex means that the composition of successive maps in the sequence is 
zero, but the sequence is not necessarily exact. We shall assume some elementary homolog
ical algebra, anel we refer to, e.g., MacLane [1], Chap. I. 
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Definition 3.10: Let S be a sheaf over aspace X and let 

H9(X, S) := H9(C*(X, S», 

Chap.I1 

where H9(C*(X, S» is the qth derived group of the cochain complex 
C*(X, S); i.e., 

H9(C*) = Ker(C9~ C9+l), where C-l = O. 
Im(C9 1 ~C9) 

The abelian groups H9(X, S) are defined for q > 0 and are called the shea/ 
cohomology groups 0/ the space X 0/ degree q and with coefficients in S. 

As we shall see later, there are various ways of representing more explic
itly such cohomology groups in a given geometrie situation. This abstract 
definition is a convenient way to derive the general functorial properties of 
cohomology groups, as we shall see in the next theorem. 

Theorem 3.11: Let X be a paracompact Hausdorff space. Then 
(a) For any sheaf S over X, 

(1) HO(X, S) = r(X, S) (= S(X». 
(2) If S is soft, then H9(X, S) = 0 for q > O. 

(b) For any sheaf morphism 

h :a~<13 
there is, for each q > 0, a group homomorphism 

h9 : H9(X, a) ~ H9(X, (13) 

such that 
(I) ho = hx : a(X) ----> <13(X). 
(2) h9 is the identity map if h is the identity map, q > O. 
(3) gq 0 h q = (g 0 h)q for all q ~ 0, if g: !!J ~ rI is a second sheaf 

morphism. 
(c) For each short exact sequence of sheaves 

O~a~<13~e~O 

there is a group homomorphism 

~9: H9(X, e) ~ H9+l(X, a) 

for all q > 0 such that 
(I) The induced sequence 

o ~ HO(X, a) ~ HO(X, (13) ~ HO(X, e) ~ Hl(X, a) ~ ... 

is exact. 
(2) A commutative diagram 

O~a ~<13 ~e ~O 

1 1 1 
O~a'~<13'~e'~O 
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induees a eommutative diagram 

0- HO(X, CI) - HO(X, <B) - HO(X, e) - HI(X, CI) _ .•. 

! ! ! ! 
0- HO(X, CI') - HO(X, <B') - HO(X, e') - HI(X, CI') _ .... 

Proo!: 

(a), (I) We have that the resolution 

0- r(X,~) - CO(X,~) - CI(X,~) -~ ... 

is exaet at CO(X, ~), and so 

r(X, ~) = Ker(CO(X, ~) - CI(X, ~» = HO(X, ~). 

(a), (2) This follows easily from Corollary 3.9. 
For the proof of (b) and (e) we shall show first that 

h:(1-<B 

induees naturally a eochain eomplex map t 
(3.6) h* : C*«(1) - C*(<B). 

First we define 

hO : eO«(1) _ eO(<B) 

by letting hO(s,,) = (h 0 s)., where s is a diseontinuous seetion of (1. Now hO 
induees a quotient map 

;'0 : eO«(1) / (1- eO(<B) / <B 
11 11 

9=1«(1) 9=1 (<B), 

and, as above, ;'0 induees 

hl : eO(9=I«(1» _ eO(9=I(<B» 
11 11 

e l«(1) el(<B). 

Repeating the above proeedure, we obtain, for eaeh q :2: 0, 

h' : e'«(1) - e'(<B). 

The indueed seetion maps give the required eomplex map (3.6). It is clear 
that h* is functorial [Le., satisfies eompatibility eonditions similar to those 
in (b), (1)-(3)]. Moreover, if 

O_Cl_<B_e_O 

is exaet, then this implies that 

0- e*«(1) - e*(<B) - e*(e) - 0 

tLetting C*(<1) = C*(X, a), etc. 

Sec. 3 Cohomology Theory 57 

induees a eommutative diagram 

0- HO(X, CI) - HO(X, <B) - HO(X, e) - HI(X, CI) _ .•. 

! ! ! ! 
0- HO(X, CI') - HO(X, <B') - HO(X, e') - HI(X, CI') _ .... 

Proo!: 

(a), (I) We have that the resolution 

0- r(X,~) - CO(X,~) - CI(X,~) -~ ... 

is exaet at CO(X, ~), and so 

r(X, ~) = Ker(CO(X, ~) - CI(X, ~» = HO(X, ~). 

(a), (2) This follows easily from Corollary 3.9. 
For the proof of (b) and (e) we shall show first that 

h:(1-<B 

induees naturally a eochain eomplex map t 
(3.6) h* : C*«(1) - C*(<B). 

First we define 

hO : eO«(1) _ eO(<B) 

by letting hO(s,,) = (h 0 s)., where s is a diseontinuous seetion of (1. Now hO 
induees a quotient map 

;'0 : eO«(1) / (1- eO(<B) / <B 
11 11 

9=1«(1) 9=1 (<B), 

and, as above, ;'0 induees 

hl : eO(9=I«(1» _ eO(9=I(<B» 
11 11 

e l«(1) el(<B). 

Repeating the above proeedure, we obtain, for eaeh q :2: 0, 

h' : e'«(1) - e'(<B). 

The indueed seetion maps give the required eomplex map (3.6). It is clear 
that h* is functorial [Le., satisfies eompatibility eonditions similar to those 
in (b), (1)-(3)]. Moreover, if 

O_Cl_<B_e_O 

is exaet, then this implies that 

0- e*«(1) - e*(<B) - e*(e) - 0 

tLetting C*(<1) = C*(X, a), etc. 



58 Sheaf Theory Chap.1I 

is an exact sequence of complexes of sheaves. However, the sheaves in these 
complexes are all soft, and hence it follows that 

0-- C*(Cl) -- C*(<B) -- C*(G) -- 0 

is an exact sequence of cochain complexes of abelian groups. It now follows 
from elementary homological algebra that there is a long exact sequence for 
the derived cohomology groups 

(3.7) -- Hq(C*(Cl» -- Hq(C*(<B» -- Hq(C*(G» 
6' 
-- HQ+l(C*(Cl» -- , 

where the mapping öq is defined in the following manner. Consider the follow
ing commutative diagram of exact sequences: 

0-- Cq+l(Cl) Ä Cq+l(<B) ~ Cq+l(G) -- 0 

I« IP 11 

Suppose that C E Ker y. Then by exactness, C = v(b). Consider the element 
fl(b). Then v'(fl(b» = y(v(b», by commutativity, and hence fl(h) = ",'(a) 
for some a E Cq+l(Cl). It is easy to check that (I) a is a dosed element of 
Cq+ I (Cl), (2) the cohomology dass of a in Hq+ 1 (Cl) is independent of the 
various choiees made, and (3) the induced mapping öq : Hq(X, G) --+ Hq+ 1 

(X, Cl) makes the sequence (3.7) exaet (the operator öq is often called the 
Bockstein operator). From these constructions it is not difficult to verify the 
assertions in (b) and (c). 

Q.E.D. 

Remark: The assertions (a), (b), and (c) in the above theorem can be 
used as axioms for cohomology theory, and one can prove existenee and 
uniqueness for such an axiomatic theory. What we have in the theorem is 
the existence proof; see, e.g., Gunning and Rossi [I] for the additional 
uniqueness. There are other existenee proofs; e.g., Ceeh theory is a popular 
one (cf. Hirzebrueh [1]). In Appendix A we shall give a short summary of 
Cech theory. 

We now want to give the proof of an important theorem wh ich will give 
us a means of computing the abstract sheaf eohomology in given geometrie 
situations. First we have the following definition. 

Definition 3.12: Aresolution of a sheaf S over aspace X 

O-S---Cl* 

is ca lied acyclic if Hq(X, ClP) = 0 for all q > 0 and p > o. 

Note that a fine or soft resolution of a sheaf is neeessarily acyclic (Theorem 
3.11). Acyclic resolutions of sheaves give us one way of computing the coho-
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mology groups of a sheaf, because ofthe following theorem (sometimes called 
the abstract de Rham theorem). 

Theorem 3.13: Let S be a sheaf over aspace X and let 

o~s~a* 

be aresolution of S. Then there is a natural homomorphism 

yP : HP(r(X, a*» ~ HP(X, S), 

where HP(r(X, a*» is the pth derived group of the cochain complex 
r(X, a*). Moreover, if 

o~s~a* 

is acyclic, yP is an isomorphism. 

Proof: Let J(p = Ker(ap ---> a p + 1) = Im(aP-1 ---> a p ) so that X o = S. 
We have short exact sequences 

and this induces, by Theorem 3.11, 

o ~ r(X, J(P-I) ~ r(X, aP-l) ~ r(X, J(P) ~ HI(X, J(p-I) 

~ HI(X, aP-l) -~ .... 

We also notice that 

so that 

Therefore, using the exact sequence above, we have defined 

and yf is injective. Moreover, if the resolution is acyclic, 

HI(X, aP-l) = 0 

and yf is an isomorphism. 
We now consider the exact sequences of the form 

for 2 < r < p, and we obtain from the induced long exact sequences 

yf: H,-I(X, J(P-'+I) ~ H'(X, J(P-'), 

and again yf is an isomorphism if the resolution is acyclic. Therefore we 
define 

y P = y; 0 y;- I .•.•. y~ ° Yf, 
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i.e., 

Sheaf Theory 

HP(r(X, Cl*» ~ Hl(X, :JCrl) ~ H2(X, :JCP:-2) "3"~ 
11 

Chap.I1 

... !4 H P(X, :JC0) = H P(X, S), 

and yP is an isomorphism if the resolution is acyclic. 
The assertion that yP is natural in Theorem 3.13 means that if 

O-S-Cl* 

l' 1, 
0- J -<B* 

is a homomorphism of resolutions, then 

HP(r(X, Cl*» ~ HP(X, S) 

!,. 1" 
HP(r(X, <B*» ~ H P(X, J) 

is also commutative, where gp is the induced map on the cohomology of the 
complexes. This is not difficult to check and follows from the naturality 
assertions in Theorem 3.11. 

Q.E.D. 

Remark: Note that in the proof ofthe previous theorem we did not use 
the definition of sheaf cohomology, but only the formal properties of coho
mology as given in Theorem 3.11 (i.e., the same result holds for any other 
definition of cohomology which satisfies the properties of Theorem 3.11). 

Corollary 3.14: Suppose that 

O-S-Cl* 

l' 1, 
0_ J -<B* 

is a homomorphism of resolutions of sheaves. Then there is an induced 
homomorphism 

HP(r(X, Cl*» ~ HP(r(X, <B*», 

which is, moreover, an isomorphism if fis an isomorphism of sheaves and 
the resolutions are both acyclic. 

As a consequence of this corollary, we easily obtain de Rham's theorem 
(see Example 2.14 for the notation). 

Theorem 3.15 (de Rham): Let X be a differentiable manifold. Then the 
natural mapping 

I: HP(f,*(X» - HP(S!(X, R» 
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... !4 H P(X, :JC0) = H P(X, S), 

and yP is an isomorphism if the resolution is acyclic. 
The assertion that yP is natural in Theorem 3.13 means that if 

O-S-Cl* 

l' 1, 
0- J -<B* 

is a homomorphism of resolutions, then 

HP(r(X, Cl*» ~ HP(X, S) 

!,. 1" 
HP(r(X, <B*» ~ H P(X, J) 

is also commutative, where gp is the induced map on the cohomology of the 
complexes. This is not difficult to check and follows from the naturality 
assertions in Theorem 3.11. 

Q.E.D. 
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mology as given in Theorem 3.11 (i.e., the same result holds for any other 
definition of cohomology which satisfies the properties of Theorem 3.11). 
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induced by integration of differential forms over c~ singular chains with real 
coefficients is an isomorphism. 

Proof: As in Example 2.14, consider the resolutions of R given by 

/8* 

O-R~ 
I S!(R) = S!. 

Then the sheaves 8* and S! are both soft. Since 8* is fine, it remains only to 
show that the sheaves S! are soft. First we note that the sheaf S! is an 
S~-module (given by cup product on open sets). Then we claim that S~ is 
soft. This follows from the observation that S~ = So = eO(X, R); i.e., for 
each point of X (a singular O-cochain), we assign a value of R. We now need 
the following simple lemma, which asserts that SP is soft, which concludes 
the proof, in view ofCorollary 3.14. 

Q.E.D. 

Lemma 3.16: If mI is a sheaf of modules over a soft sheaf of rings eR, then 
mI is a soft sheaf. 

Proof: Let S E r(K, mI) for K a closed subset of X. Then sextends to 
so me open neighborhood U of K. Let P E r(K u (X - U), eR) be defined by 

onK 

on X - U. 

Then, since eR is soft, p extends to a section over X, and p. s is the desired 
extension of s. 

Q.E.D. 

We now have an analogue of de Rham's theorem for complex manifolds, 
due to Dolbeault [I]. 

Theorem 3.17 (Dolbeault): Let X be a complex manifold. Then 

Proof: The resolution given in Example 2.12 is a fine resolution, and 
we can apply Theorem 3.13. 

Q.E.D. 

We want to consider a generalization of Theorem 3.17, and for this we 
need to introduce the tensor product of sheaves of modules. 
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Definiton 3.18: Let mI and m. be sheaves of modules over a sheaf of co m
mutative rings, ffi. Then mI ®(ft m., the tensor product ofmI andm. is the sheaf 
genera ted by the presheaf 

U - mI(U) ®(ftW) m.(U). 

Remark,' The necessity of using the generated sheaf is demonstrated by 
considering the presheaf 

U ~ O(E)( U) ®O(u) S( U), 

where E ~ X is a holomorphic vector bundle with no non-trivial global 
holomorphic sections (see Example 2.13). The presheaf does not satisfy 
Axiom S2, since O(E)(X) Q9o(X) SeX) = 0, but O(E)( UJ) Q9o(U/) S( Uj ) ~ 
S(E)( UJ) =1= 0 for the sets of any trivializing cover {UJ} of X. 

It follows from Definition 3.18 that 

(mI ®(ft m.)x = mIx Q9(ft. m.x· 

This easily implies the following lemma. 

Lemma 3.19: If ~ is a locally ffee sheaf of ffi-modules and 

O-a'_a_a"_O 

is a short exact sequence of ffi-modules, then 

0_ a' ®(ft ~ - a ®(ft ~ - a" ®(ft ~ - 0 

is also exaci. 

Recalling Example 2.12, we have aresolution of sheaves of O-modules 
over a complex manifold X: 

0- QP _ sp,O ~-+ SP,I ~ ••• -~ sp·n - O. 

Moreover, if E is a holomorphic vector bundle, then O(E) is a locally free 
sheaf, and so, using Lemma 3.19, we have the following resolution: 

(3.8) 
0- Qp ®o O(E) - sp,O ®o O(E) 

We also notice that 

and that 

J? I J?I tO\ ( 0 
~ ... - sp,n '6'0 0 E) -- . 

Qp ®o O(E) - O( 1\ p T*(X) ®c E) 

SM ®o O(E) - SM ®& SeE) 
- S( 1\ P.q T*(X) Q9c E), 

where SeE) is the sheaf of differentiable sections of the differentiable bundle 
E. This follows from the fact that 

O(E) ®o S = SeE), 

since SM is also an S-module. 
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We call e(X, /\ P T*(X) ®c E) the (global) holomorphic p-forms on X with 
coefficients in E, wh ich we shall denote for simplicity by {lP( X, E), and we 
shall denote the sheaf of holomorphic p-forms with coefficients in E by 
{lP(E). Analogously, we let 

(3.9) SP09(X, E) : = S(X, /\ Po9 T*(X) ®c E) 

be the differentiable (p, q)-forms on X with coefficients in E. Therefore the 
resolution (3.8) can be written in the form (Ietting äE = ä ® I) 

(3.10) 0 ~ {lP(E) ~ SP.O(E) ~ SP.I(E) ~ ... ~ sp·n(E) ~ 0, 

and since it is a fine resolution, we have the following generalization of 001-
beault's theorem. 

Theorem 3.20: Let X be a complex manifold and let E ---> X be a holomor
phic vector bundle. Then 

JE 
Hf(X, {lP(E» - Ker(SP09(X, E) --;., SP.f+ I (X. E». 

Im(Sp·~-I(X, E) ~ Sp,q(X, E» 

Appendix A. Cech Cohomology with Coefficients in a Sheaf 

Suppose that X is a topological space and that !/' is a sheaf of abelian 
groups on X. Let U = {Ua } be a covering of X by open sets. A q-simplex, 
a, is an ordered collection of q + 1 sets of the covering U with nonempty 
intersection; i.e., 

a = (Uo,"" Uq ) 

and n7=o Cl; =1= 0. The set nu E" Cl; is called the support of the simplex a, 
denoted lai. A q-cochain of U' with coefficients in !/' is a mapping / which 
associates to each q-simplex, a, 

/(a) E!/'(Ial). 

The set of q-cochains will be denoted by cq(U, !/') and is an abelian group 
(by pointwise addition). 

We define a coboundary operator 

8: Cq(U,!/') -+ Cq+1(U,!/') 

as follows. If / E Cq(U, !/') and a = (Uo, ... , Uq+ 1), define 

q+1 
8/(a) = L (-l);rll:,I/(a;), 

;=0 

where a; = (Uo,"" Cl;-1' Cl; + l' ... , Uq + 1) and rll;11 is the sheaf restrietion 
mapping. It is clear that 8 is a group homomorphism and that 8 2 = O. Thus 
we have a cochain complex: 

C*(U, ~) := CO(U, ~) ~ ... ~ Cf(U, ~) ~ Cf+ I(U, ~) 
~ Cf+Z(U,~) ~ .... 
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The cohomology of this cochain complex is the Cech cohomology 0/ U with 
coefficients in S; i.e., letting 

Z9(U, S) = Ker Ö : C9(U, S) ~ C9 + I (U, S), 
B9(U, S) = Im Ö : cq-I(U, S) ~ C9(U, S) 

we define 

H9(U, S) := Hq(C*(U, S» = zq(U, S) / Bq(U, S). 

We shall now summarize the properties of the Cech cohomology. For 
proofs, see the references Iisted below. 

and 

(a) If m3 is a refinement of U, there is a natural group homomorphism 

.u~ : H9(U, S) ~ Hq(m3, S) 

lim Hq(U, S) ~ Hq(X, S), 
---+ 
u 

where Hq(X, S) is the cohomology defined in Definition 3.10. 
(b) If U is a covering such that 

Hq(l (11, S) = 0 

for q > 1 and all simplices (1 in U, then 

Hq(X, S) - Hq(U, S) 

for all q > 0 (U is ca lied a Leray cover). 
(c) If Xis paracompact and U is a 10caUy finite covering of X, then 

Hq(U, S) = 0 

for q > 0 and S a fine sheaf over X. 
We shall most often use resolutions of particular sheaves in order to 

represent cohomology, principally because the techniques we develop are 
derived from the theory of partial differential equations and are applied to 
differential forms and their generalizations. Cech theory, on the other hand, is 
very important in complex analysis and arises very naturally in such problems 
as Cousin land 11 and their generalizations, being the general theory of Stein 
manifolds. See, e.g., Gunning and Rossi [I] and Gunning [1]. More generally, 
see Bredon [I], Godement [I], or Hirzebruch [I]. 
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CHAPTER III 

DIFFERENTIAL 

GEOMETRY 

This chapter is an exposition of some of the basic ideas of Hermitian 
differential geometry, with applications to ehern classes and holomorphic 
li ne bundles. In Sec. 1 we shall give the basic definitions of the Hermitian 
analogues of the classical concepts of (Riemannian) metric, connection, 
and curvature. This is carried out in the context of differentiable C-vector 
bundles over a differentiable manifold X. More specific formulas are obtained 
in the case of holomorphic vector bundles (in Sec. 2) and holomorphic line 
bundles (in Sec. 4). In Sec. 3 is presented a development of Chern classes 
from the differential-geometric viewpoint. In Sec. 4 this approach to charac
teristic class theory is cOlllpared with the classifying space approach and with 
the sheaf-theoretic approach (in the ca se of line bundles). We prove that the 
ehern classes are primary obstructions to finding trivial subbundles of a 
given vector bundle, and, in particular, to the given vector bundle being itself 
trivial. In the ca se of line bundles, we give a useful characterization of wh ich 
cohomology classes in HZ(X, Z) are the first ehern class of a line bundle. 
Additional references for the material covered here are Chern [2], Griffiths 
[2], and Kobayashi and Nomizu [I]. 

1. Hermitian Differential Geometry 

In this section we want to develop some of the basic differential-geometric 
concepts in the context of holomorphic vector bundles and, more generally, 
differentiable C-vector bundles. The basic purpose is to develop certain con
cepts such as metrics, connections, and curvatures which will have various 
applications in later sections. We do not relate these concepts in detail to 
their more classical counterparts in real differential geometry, as there are 
recent texts which do this quite weIl (e.g., Helgason [I] and Kobayashi and 
Nomizu [I)). We shall give more specific references as we go along. 

In this section we shall denote by the term vector bundle a differentiable 
C-vector bundle over a differentiable manifold, E --+ X. An analogous treat
ment can be given for R-vector bundles, but our applications are primarily 
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to Chern c1ass theory and holomorphic vector bundles, both of which re
quire complex-linear fibres. 

Suppose that E ---+ Xis a vector bundle of rank rand thatf = (eI> ... , 
er) is a frame at x E X; Le., there is a neighborhood U of x and sections 
{ei" .. ,er}' ej E 8(U, E), which are Iinearly independent at each point of 
U. If we want to indicate the dependence of the frame f on the domain of 
definition U, we write fu, although normally this will be understood to be 
some local neighborhood of a given point. Suppose that f = fu is a given 
frame and that g : U ---+ GL(r, C) is a differentiable mapping. Then there is 
an action of g on the set of all frames on the open set U defined by 

f ----+ fg, 

where 

XE U, 

is a new frame, i.e.,jg(x) = f(x)g(x), and we have the usual matrix product. 
Clearly, fg is a new frame defined on U, and we call such a mapping g a 
change offrarne. Moreover, given any two framesfandf' over U, we see that 
there exists a change of frame g defined over U such that f' = fg. t 

Using frames, we shall find local representations for all the differential 
geometrie objects that we are going to define. We start by giving a local 
representation for sections of a vector bundle. Let E ---+ X be a vector bundle, 
and suppose that e E 8(U, E) for U open in X. Letf= (el>"" er) be a 
frame over U for E (which does not always exist, but will if U is a sufficiently 
small neighborhood of a given point). Then 

(1.1) 

where ep(f) E 8( U) are uniquely determined smooth functions on U. This 
induces a mapping 

(1.2) 

wh ich we write as 

8(U, E) ~ 8(U)' ~8(U, U X Cr), 

r
el(f)l 

e ----+ e(f) = : ' 

er(f) 

tThe set of all frames over open sets in Xis the sheaf of seetions of the principal bundle 
P(E) associated with E, often ealled the frame bundle of E, a eoneept we shall not need; 
see, e.g., Kobayashi and Nomizu [I], or Steenrod [I]. Namely, the principal bundle P(E) 
has fibres isomorphie to GL(r, C), with the same transition funetions as the veetor bundle 
E ---+ X. 
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where ep(f) are defined by (1.1). Suppose that gis a change of frame over 
U. Then we eompute that 

whieh implies that 

or 

(1.3) 

all produets being matrix multiplieation at a given point x E U. Therefore 
(1.1) gives a veetor representation for seetions e E S( U, E), and (1.3) shows 
how the veetor is transformed under a change of frame for the veetor bundle 
E. Moreover, if E is a holomorphie veetor bundle, then we shall also have 
holomorphic frames, i.e.,f = (ei' ... ,er)' ej E 0(U, E), and e l 11 ... lIer(x) 
=F 0, for X E U; and holomorphic changes of frame, i.e., holomorphie 
mappings g : U --+ GL(r, q. Then with respeet to a holomorphie frame we 
have the veetor representation 

(1.4) 0(U, E) Ä 0(U)', 

given by e -+ e(f) as before, and the transformation rule for a holomorphie 
change of frame is still given by (1.3). 
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geometrie eoneepts: metrie, eonneetion, and eurvature. We shall then give 
some examples in the next seetion to illustrate the definitions. 

Definition 1.1: Let E -+ X be a veetor bundle. A Hermitian melrie h on E 
is an assignment of a Hermitian inner produet <, >x to eaeh fibre Ex of E 
such that for any open set U c X and e, 11 E 8(U, E) the funetion 

<e, 11> : U ---+ C 

given by 

<e, l1>(x) = <e(x), l1(x»x 

A veetor bundle E equipped with a Hermitian metric h is ealled a Her
mitian veetor bundle. Suppose that Eis a Hermitian veetor bundle and that 
f = (ei, ... , er) is a frame for E over so me open set U. Then define 

(1.5) 

and let h(f) = [h(f)p .. l be the r X r matrix of the c~ funetions {1t(f)P"}' 
where r = rank E. Thus h(f) is a positive definite Hermitian symmetrie 
matrix and is a (loeal) representative for the Hermitian metrie h with respeet 
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to the framef For any "" E S(U, E), we write 

<" ,,) = <~ ,'(f)e" ~ ,,"(f)e,,) , " 

(1.6) 

where the last product is matrix multipIication and tA denotes the transpose 
ofthe matrix A. Moreover, if gis a change offrame over U, it is easy to check 
that 

(1.7) h(fg) = 'gh(f)g, 

which is the transformation law for local representations of the Hermitian 
metric. 

Theorem 1.2: Every vector bundle E -+ X admits a Hermitian metric. 

Proof' There exists a locally finite covering {U .. } of X and frames I .. 
defined on U ... Define a Hermitian metric h .. on Elu. by setting, for "" E 

Ex, XE U", 

<" ,,): = '"c/,,)(x)·'(/,,)(x). 

Now let {p,,} be a c~ partition of unity subordinate to the covering CU,,} 
and let, for "" E Ex, 

<" ")x = ~ p"(x)<,, PI):· 

We can now verify that <, ) so defined gives a Hermitian metric for E -+ X. 
First, it is clear that if"" E S( U, E), then the function 

x -- <,(x), ,,(x»x = ~ p,,(x)<,(x), ,,(x»: .. 
= ~ P .. (x)',,(/.Xx)·'(/.Xx) 

~ 

is a C~ function on U. It is easy to verify that h is indeed a Hermitian inner 
product on each fibre of E, and we leave this verification to the reader. 

Q.E.D. 

We now want to consider differential forms with vector bundle coeffi
cients. Suppose that E -+ Xis a vector bundle. Then we let 

S'(X, E) = 8{X, N T*(X) ®c E) 

be the differentiallorms 01 degree p on X with coefficients in E (cf. the discus
sion following Lemma II.3. I 9). We want to relate this definition to one 
involving tensor products over the structure sheaf. 

Lemma 1.3: Let E and E' be vector bundles over X. Then there is an iso
morphism 

f : S(E) ®& S(E') ~ S(E ® E'). 
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Proof: We shall define the mapping T on presheaves generating the 
above sheaves 

Tu: S(U, E) ®&Wl S(U, E') ----+ S(E ® E')(U) 

by setting 

TU(e ® ,,)(x) = e(x) ® ,,(x) E Ex ® E:. 

If f = (eI' ... , er) and f' = (e'lo ... , e;') are frames for E and E' over an 
open set U, then we see that for any y E S( U, E ® E') we can write 

y(x) = I: y«p(x)e«(x) ® e~(x), Y«P E S(U). 
«.P 

But this shows that 

Y E S(U, E) ®SWl S(U, E'), 

and this implies easily that {Tu} defines a sheaf isomorphism when we pass 
to the sheaves generated by these presheaves. 

Corollary 1.4: Let E be a vector bundle over X. Then 

SP ®& SeE) - SP(E). 

Q.E.D. 

We denote the image of rp ® e under the isomorphism in Corollary 1.4 
by rp·e E SP(X, E), where rp E SP(X) and e E SeX, E). Suppose that f is 
a frame for E over U. Then we have a local representation for e E SP(U, E) 
similar to (1.2) given by 

SP(U, E) ~ [SP(U))' 

(1.8) [el~!)J e ----+ . , 

er(!) 

defined by the relation 

(1.1 ') 

Namely, let x E U and let (00 1, ••• ,OOs) be a frame for /\ P T*(X) ® C at 
x. Then we can write 

e(x) = f.t rpkix)ook(x) ® eix). 

where the rpkp are unique\y determined C~ functions defined near x. Let 

ep = I; rpkpook, 
k 

and it is easy to check that the differential form ep so determined is indepen
dent of the choice of frame (001) ... , OOs )' Since x was an arbitrary point of 
U, the differential forms rep } are defined in all of U, and thus the mapping 
(1.8) (Iocal representation of vector-valued differential forms) is weil defined 
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and, indeed, is an isomorphism. Moreover, we have the transformation law 
for a change of frame 

(1.3') { E &'(X, E) 

exactly as in (1.3) for sections. We now make the following definition. 

Definition 1.5: Let E --+ X be a vector bundle. Then a connection D on 
E ---+ Xis aC-linear mapping 

D: &(X, E) ~ &I(X, E), 

which satisfies 

(1.9) 

where rp E &(X) and e E &(X, E). 

Remarks: (a) Relation (1.9) implies that D is a first-order differential 
operator (cf. Sec. 2 in Chap. IV) mapping &(X, E) to &(X, T*(X) ® E), as we 
shall see below. 

(b) In the ca se where E = X x C, the trivial line bundle, we see that 
we may take ordinary exterior differentiation 

d : &(X) ~ &I(X) 

as a connection on E. Thus a connection is a generalization of exterior dif
ferentiation to vector-valued differential forms, and we shall later extend 
the definition of D to higher-order forms. 

We now want to give a local description of a connection. Let/be a frame 
over U for a vector bundle E --+ X, equipped with a connection D. Then we 
define the connection matrix (J(D,f) associated with the connection D and 
the frame / by setting 

where 

(1.10) 

We shall denote the matrix O(D,f) by O(J) (for a fixed connection) or often 
simply by (J (for a fixed frame in a given computation). We can use the con
nection matrix to explicitly represent the action of D on sections of E. 
Namely, if e E &(U, E), then, for a given frame/, 

De = D(1: ep(J)e p) 
P 

= 1: d{"(f)·e" + 1: {P(f)Dep 
" p 

= 1: [de"(f) + 1: ep(J)O"p(f)]·e" 
" P 

(1.11) D~ = L [d~(f) + O(f)~(f)] . ea , 
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where we have set 

Hermitian Differential Geometry 

dl;(f) = lde'(f)l. 
de'(f)J 

71 

and the wedge product inside the brackets in (1.11) is ordinary matrix 
multiplication of matrices with differential form coefficients. Thus we see that 

D~(f) = d~(f) + 8(f)~(f) 
= [d + fJ(f)]l;(f) 

thinking of d + fJ(f) as being an operator acting on vector-valued func
tions. 

Remark: If we let E = T(X), then the real analogue of a connection in 
the differential operator sense as defined above defines an affine connection 
in the usual sense (cf. Helgason [I], Nomizu [I], Sternberg [I], and Kobayashi 
and Nomizu [I]). If co = (co" ... , con) is a frame for T*(X) over U, then 

In the classical ca se these are the Schwarz-Christoffel symbols associated 
with (or defining) a given connection. 

Suppose that E -+ X is a vector bundle equipped with a connection D 
(as we shall see below, every vector bundle admits a connection). Let 
Horn (E, E) be the vector bundle whose fibres are Hom(Ex ' Ex>. We want to 
show that the connection D on Einduces in a natural manner an element 

0 E(D) E 82(X, Hom(E, E», 

to be ca lied the curvature tensor. 
First we want to give a local description of an arbitrary element X E 

8P(X, Hom(E, E». Let/be a frame for E over Uin X. Then/ = (e" ... ,e,) 
becomes a basis for the free 8P ( U)-module 

8P(U, Hom(E, E» - 8P(U) ®&<U) 8(U, Hom(E, E». 

Since Elu - U x e', by using / to effect a trivialization, we see that 

8(U, Hom(E, E» - mI,(U) = mI, ®c 8(U), 

where mI, is the vector space of r x r matrices, and thus mI,( U) is the 8( U)
module of r x r matrices with coefficients in 8(U). Therefore there is associ
ated with X under the above isomorphisms, an r x r matrix 

(1.12) 

Moreover, we see easily that X determines aglobai homomorphism of vector 
bundles 

X : SeX, E) --- 8P(X, E), 
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defined fibrewise in the natural manner. The frame f gives local representa
tions for elements in SeX, E) and &P(X, E) and the matrix (1.12) is chosen so 
that the following diagram commutes, 

&( U, E) -4 &P( U, E) 
III III 

&(U)' x(f~ [&P(U)]' 

e(f) -- x(f)e(f) = ,,(f), 
where 

"P(f) = 1: x(f)p"e"(f) 
" 

is matrix multiplication and the vertical isomorphisms are given by (1.2) 
and (l.8), respectively. Under this convention it is easy to compute how the 
local representation for X behaves under a change of frame; namely, if 

,,(fg) = x(fg)e(fg), 

then we see that 

which implies that 

(1.13) 

i.e., X transforms by a similarity transformation. Conversely, any assign
ment of a matrix of p-forms x(f) to a given frame f which is defined for al1 
frames and satisfies (1.13) defines an element X E &P(X, Hom(E, E», as is 
easy to verify. 

Returning to the problem of defining the curvature, let E ---> X be a vector 
bundle with a connection D and let 8(f) = 8(D,j) be the associated con
nection matrix. We define 

(1.14) 0(D,j) = d8(f) + (J(f)A(J{f), 

wh ich is an r X r matrix of 2-forms; Le., 

0 p" = d8p" + 1: (JPk A8k,,' 

We call 0{D,j) the curvature matrix associated with the connection matrix 
(J(f). We have the following two simple propositions, the first showing how 
8(f) and 0(f) transform, and the second relating 0(f) to the operator 
d + 8(f). 

Lemma 1.6: Let g be a change of frame and define (J(f) and 0(f) as above. 
Then 

(a) dg + (J(f)g = g8(fg), 
(b) 0(fg) = g-10(f)g. 

Proof' 
(a) If 

fg = (1: g,le" ... , 1: g"e,) = (e'l •... , e~), 
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then 

D(e~) = 1: 8v,,(fg)e~ 
v 

and, on the other hand, 

D (1: g""ep) = 1: dgp"ep + 1: gp,,().pe •. 
p p ~t 

By comparing coefficients, we obtain 

(1.15) g()(fg) = dg + ()(f)g. 

(b) Take the exterior derivative of the matrix equation (1.15), obtain-
ing 

(1.l6) d8(f)·g - ()(f)·dg = dg·()(fg) + g·d()(fg). 

Also, 

(1.17) 

and thus we obtain by substituting (1.17) into (1.16) an algebraic expression 
for gd()(fg) in terms ofthe quantities d()(f), ()(f), dg, g, and g-I. Then we 
can write 

(1.18) g[d()(fg) + ()(fg) 1\ ()(fg)] 

in terms of these same quantities. Writing this out and simplifying, we find 
that (1.18) is the same as 

[d()(f) + ()(f) 1\ ()(f)]g, 

wh ich proves part (b). 
Q.E.D. 

Lemma 1.7: [d + ()(f)][d + ()(f)]f.(f) = 0(f)e(f). 

Proof: By straightforward computation we have (deleting the nota
tional dependence on f) 

(d + ()(d + ()e = d 2e + ()'de + d«()·e) + () 1\ ()·e 

= ()·de + d()·e - ()·de + () 1\ ()·e 

= d()· e + () 1\ (). e 
=0·e· 

Q.E.D. 

The proof of the above lemma iIIustrates why we have taken care to see 
that the abstract operations and equations at the section level correspond, 
with respect to a local frame, to matrix operations and equations. 

We now make the following definition. 

Definition 1.8: Let D be a connection in a vector bundle E ---+ X. Then the 
cun'ature 0 E(D) is defined to be that element 0 E &2(X, Hom(E, E» such 
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Proof: By straightforward computation we have (deleting the nota
tional dependence on f) 

(d + ()(d + ()e = d 2e + ()'de + d«()·e) + () 1\ ()·e 

= ()·de + d()·e - ()·de + () 1\ ()·e 

= d()· e + () 1\ (). e 
=0·e· 

Q.E.D. 

The proof of the above lemma iIIustrates why we have taken care to see 
that the abstract operations and equations at the section level correspond, 
with respect to a local frame, to matrix operations and equations. 

We now make the following definition. 

Definition 1.8: Let D be a connection in a vector bundle E ---+ X. Then the 
cun'ature 0 E(D) is defined to be that element 0 E &2(X, Hom(E, E» such 
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that the C-Iinear mapping 

o : 8(X, E) ~ 82(X, E) 

has the representation with respect to a frame 

0(f) = 0(D,j) = d(J(f) + (J(f) 1\ (J(f). 

Chap.I1I 

We see by Lemma 1.6(b) that 0 E(D) is weil defined, since 0(D,j) satisfies 
the transformation property (1.13), wh ich ensures that 0(D,f) determines 
a global element in 82(X, Hom(E, E». 

Remark: It follows from the local definition of 0 E(D) that the cur
vature is an 8(X)-linear mapping 

o : 8(X, E) ~ 82(X, E), 

and it is this linearity property that makes 0 into a tensor in the cIassical 
sense. Note that the transformation formula for (J(f) involves derivatives of 
the change of frames and that of course the connection Dis not 8(X)-linear. 
If we denote by Dze the natural contraction of Z ® D, for Z E T(X) and 
, E f:(X, E), then the cIassical curvature tensor R(Z, W) = DzDw -

DwDz - D[Z,Wl defined from this affine connection agrees with 0(Z, W) E 

f:(X, Hom(E, E». This follows by an exterior algebra computation and (1.14), 
since for a frame f over U, De(J) = de(f) + 8(J) 1\ ,(f) implies 

Dze(J) = Ze(f) + (J(f)(Z)'(f). 

We can now define the action of D on higher-order differential forms by 
setting 

D,(f) = d,(f) + (J(f) 1\ ,(f), 

where , E 8P(X, E). Thus 

D : 8P(X, E) ~ 8P+ 1(X, E) 

if it is weil defined. But we only have to check wh ether the image satisfies the 
transformation law (1.3') in order to see that the image of D is a well-defined 
E-valued (p + I)-form. To check this, we see that 

g(de(fg) + (J(fg),(fg)] = d(g,(fg» - dg·'(fg) 
+ [dg + (J(f)g] 1\ g-I,(f) 

from (1.3) and Lemma 1.6(a), wh ich reduces to 

d,(f) + (J(f) 1\ '(f). 

Thus we have the extension of D to differential forms (E-valued) of higher 
order. This extension is known as covariant differentiation, and we have 
proved the folIowing. 

Proposition 1.9: D2 = 0, as an operator mapping 

8P(X, E) ~ 8P+Z(X, E), where D2 = D 0 D. 
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The only unproved part is for p > 0, but we observe that Lemma 1.7 
is still valid in this case. Then the curvature is the obstruction to DZ = 0 
and is therefore the obstruction that the sequence 

SeX, E) -~ SI(X, E) ~ SZ(X, E) ----* ... ----* 

be a complex (cf. Sec. 5 in Chap. IV). 
The differential forms SP(X, Hom(E, E» are locally matrices of p-forms. 

We want to use this fact to define a Lie product on the algebra 

S*(X, Hom(E, E» = ~ SP(X, Hom(E, E». 
P 

We proceed as folIows. If X E SP(X, Hom(E, E» and f is a frame for E 
over the open set U, then we have seen before that 

x(f) E ~r ®c SP(U), 

and thus if If/ E sq(X, Hom(E, E», we define 

(1.19) [x(f), If/(f)] = x(f) /I If/(f) - (-l)pq If/(f) /I x(f), 

where the right-hand side is matrix multiplication. If g is a change of frame, 
then by (1.13) we have 

and thus 

x(fg) = g-I x(f)g 

If/(fg) = g-I1f/(f)g, 

[xU g), If/U g)] = g-1 [x(f), If/(f)]g 

by a straightforward substitution. Therefore the Lie bracket is weIl 
defined on S*(X, Hom(E, E» and satisfies the Jacobi identity, making 
S*(X, Hom(E, E» into a Lie algebra (cf., e.g., Helgason [1]). 

Suppose that E is equipped with a connection D and that we let O(f), 
0(f) be the local connection and curvature forms with respect to so me frame 
f Then we can prove aversion of the Bianchi identity in this context, for 
which we shall have use later. 

Proposition 1.10: d0(!) = [0(f), O(f)]. 

Proof: Letting 0 = O(!) and 0 = 0(!), we have 

0= dO + 0 A 0, 

and thus d0 = dZO + dO /I 0 - 0 /I dO 

= dO /I 0 - 0 /I dO. 

But [0,0] = [dO + 0 /I 0,0] 

=dO/lO+OAO/lO 

- (-1)2'1(0 A dO + 0 /I 0 /I 0) 

= dO /I 0 - 0 A dO. 
Q.E.D. 

Sec. I Hermitian Differential Geometry 75 

The only unproved part is for p > 0, but we observe that Lemma 1.7 
is still valid in this case. Then the curvature is the obstruction to DZ = 0 
and is therefore the obstruction that the sequence 

SeX, E) -~ SI(X, E) ~ SZ(X, E) ----* ... ----* 

be a complex (cf. Sec. 5 in Chap. IV). 
The differential forms SP(X, Hom(E, E» are locally matrices of p-forms. 

We want to use this fact to define a Lie product on the algebra 

S*(X, Hom(E, E» = ~ SP(X, Hom(E, E». 
P 

We proceed as folIows. If X E SP(X, Hom(E, E» and f is a frame for E 
over the open set U, then we have seen before that 

x(f) E ~r ®c SP(U), 

and thus if If/ E sq(X, Hom(E, E», we define 

(1.19) [x(f), If/(f)] = x(f) /I If/(f) - (-l)pq If/(f) /I x(f), 

where the right-hand side is matrix multiplication. If g is a change of frame, 
then by (1.13) we have 

and thus 

x(fg) = g-I x(f)g 

If/(fg) = g-I1f/(f)g, 

[xU g), If/U g)] = g-1 [x(f), If/(f)]g 

by a straightforward substitution. Therefore the Lie bracket is weIl 
defined on S*(X, Hom(E, E» and satisfies the Jacobi identity, making 
S*(X, Hom(E, E» into a Lie algebra (cf., e.g., Helgason [1]). 

Suppose that E is equipped with a connection D and that we let O(f), 
0(f) be the local connection and curvature forms with respect to so me frame 
f Then we can prove aversion of the Bianchi identity in this context, for 
which we shall have use later. 

Proposition 1.10: d0(!) = [0(f), O(f)]. 

Proof: Letting 0 = O(!) and 0 = 0(!), we have 

0= dO + 0 A 0, 

and thus d0 = dZO + dO /I 0 - 0 /I dO 

= dO /I 0 - 0 /I dO. 

But [0,0] = [dO + 0 /I 0,0] 

=dO/lO+OAO/lO 

- (-1)2'1(0 A dO + 0 /I 0 /I 0) 

= dO /I 0 - 0 A dO. 
Q.E.D. 



76 Differential Geometry Chap.1II 

We now want to show that any differentiable vector bundle admits a 
connection. In the next section we shall see so me examples when we look at 
the special ca se of holomorphic vector bundles. Assurne that Eis a Hermitian 
vector bundle over X. Then we can extend the metric h on E in a natural 
manner to act on E-valued covectors. Namely, set 

( 1.20) 

for Ci) E NT:(X), Ci)' E N T~(X), and e, e' E E, for x E X. Thus the 
extension of the inner product to differential forms induces a mapping 

h : gP(X, E) ® gq(X, E) ~ gp+q(X). 

A connection D on Eis said to be compatible with a Hermitian metric h on 
E if 

(1.21) 

Suppose that f = (eI' . .. , er) is any frame and that D is a connection 
compatible with a Hermitian metric on E. Then we see that [letting h(f) 
= h, (J(f) = (J] 

and thus 

(1.22) 

dhpa = d<ea, ep) = <Dea, ep) + (ea, Dep) 

= <~ (Jtaet' ep) + (ea, ~ (JJAA,) 
t # 

= ~ (Jtahpt + ~ I}#ph#a 
t JA 

= (h(J)pa + ('I}h)pa, 

dh = h(J + 'I}h 

is a necessary condition that hand the connection D be compatible. More
over, it is sufficient. Namely, suppose that (1.22) is satisfied for all frames. 
Then one obtains immediately 

in terms of a local frame. Substituting (1.22) into the above equation, we get 
four terms which group together as 

'(dfJ + (Jrohe + 'fJh(de + (Je) = <e, D'I) + <De, 'I). 

Proposition 1.11: Let E --> X be a Hermitian vector bundle. Then there 
exists a connection D on E compatible with the Hermitian metric on E. 

Proof: A unitary frame f has the property that hU) = I. Such frames 
always exist near a given point xo, since the Gram-Schmidt orthogonaliza
tion process allows one to find r local sections which form an orthonormal 
basis for Ex at all points x near X o. In particular, we can find a locally finite 
covering U« and unitary framesf« defined in U«. Thecondition (1.21) reduces 
to 

o = (J + 'I} 
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for a unitary frame; i.e., 0 is to be skew-Hermitian. In each U~ we can choose 
the trivial skew-Hermitian matrix of the form O~ = 0; i.e., O(j~) = O. If we 
make a change of frame in U", then we see that we require that 

(1.23) 

by Lemma 1.6(a). Therefore, define O(j~g) by (1.23), and noting that h(j~g) 
= 'gh(j)g = 'gg, we obtain 

dh(/"g) = d('g·g) 
= d'g.g + 'g·dg 
= 1'g(,g)-I.'g.g + 'g.g.g-I·dg 

= 'Ö(j"g)h(j"g) + h(f"g)O(f~g), 
which verifies the compatibility. Let {(O,,} be a partition of unity subordinate 
to (U,,} and let D" be the connection in Elu. defined by 

(D,,~)(h) = d~(f;.). 
D" is defined with respect to other frames over U" by formula (1.23) and is 
compatible with the Hermitian metric on Elu., by construction. Then we 
let D = :E" (0" D", which is a well-defined (first-order partial-differential) 
operator 

D: seX, E) -+ SI(X, E). 

Moreover, D is compatible with the metric h on E since 

<De, ,,) + <e, D,,) = :E (O"[<D,,e, ,,) + <e, D.,,)l ,. 
= :E (O,.d<e,,,) = d<e, ,,). 

" Q.E.D. 

Remark: It is cIear by the construction in the proof of Proposition 1.11 
that a connection compatible with a metric is by no means unique because of 
the various choices made along the way. In the holomorphic category, we 
shall obtain a unique connection satisfying an additional restriction on 
the type of O. 

2. The Canonical Connection and Curvature oe a Hermitian 
Holomorphic Vector Bundle 

Suppose now that E --+ Xis a holomorphic vector bundle over a complex 
manifold X. If E, as a differentiable bundle, is equipped with a differentiable 
Hermitian metric, h, we shall refer to it as a Hermitian holamorphie l'eetor 
bundle. 

Recall that since Xis a complex manifold, 

S*(E) = :E sr(E) = :E Sp,q(E), 
r l',q 

where 

Sec. 2 Canonical Conneclion and Curvalure 77 

for a unitary frame; i.e., 0 is to be skew-Hermitian. In each U~ we can choose 
the trivial skew-Hermitian matrix of the form O~ = 0; i.e., O(j~) = O. If we 
make a change of frame in U", then we see that we require that 

(1.23) 

by Lemma 1.6(a). Therefore, define O(j~g) by (1.23), and noting that h(j~g) 
= 'gh(j)g = 'gg, we obtain 

dh(/"g) = d('g·g) 
= d'g.g + 'g·dg 
= 1'g(,g)-I.'g.g + 'g.g.g-I·dg 

= 'Ö(j"g)h(j"g) + h(f"g)O(f~g), 
which verifies the compatibility. Let {(O,,} be a partition of unity subordinate 
to (U,,} and let D" be the connection in Elu. defined by 

(D,,~)(h) = d~(f;.). 
D" is defined with respect to other frames over U" by formula (1.23) and is 
compatible with the Hermitian metric on Elu., by construction. Then we 
let D = :E" (0" D", which is a well-defined (first-order partial-differential) 
operator 

D: seX, E) -+ SI(X, E). 

Moreover, D is compatible with the metric h on E since 

<De, ,,) + <e, D,,) = :E (O"[<D,,e, ,,) + <e, D.,,)l ,. 
= :E (O,.d<e,,,) = d<e, ,,). 

" Q.E.D. 

Remark: It is cIear by the construction in the proof of Proposition 1.11 
that a connection compatible with a metric is by no means unique because of 
the various choices made along the way. In the holomorphic category, we 
shall obtain a unique connection satisfying an additional restriction on 
the type of O. 

2. The Canonical Connection and Curvature oe a Hermitian 
Holomorphic Vector Bundle 

Suppose now that E --+ Xis a holomorphic vector bundle over a complex 
manifold X. If E, as a differentiable bundle, is equipped with a differentiable 
Hermitian metric, h, we shall refer to it as a Hermitian holamorphie l'eetor 
bundle. 

Recall that since Xis a complex manifold, 

S*(E) = :E sr(E) = :E Sp,q(E), 
r l',q 

where 



78 Differential Geometry 

Suppose then that we have a connection on E 

D : SeX, E) -----+ SI(X, E) = SI.O(X, E) EB SO.I(X, E). 

Then D splits naturally jnto D = D' + D", where 

D' : seX, E) -----+ SI.O(X, E) 

D": sex, E) -----+ SO. I (X, E). 

Chap.I1I 

Theorem 2.1: If h is a Hermitian metric on a holomorphic vector bundle 
E -> X, then hinduces canonically a connection, D(h), on E which satisfies, 
for W an open set in X, 

(a) For e, 11 E S(W, E) 

d<e,l1> = <De, 11> + <e, DI1>; 

i.e., D is compatible with the metric h. 
(b) If e E 0(W, E), i.e., is a holomorphic section of E, then D"e = o. 

Proof' First, we point out that (b) is equivalent to the fact that the 
connection matrix Ou) is of type (I, 0) for a holomorphic frame f This 
folIows, since for e E fJ(W, E) andfa holomorphic frame, we have 

DeU) = (d + OU»e(f) 
= (a + Oo.O)U»e(f) + (ä + oeo·I)U»e(!), 

where 0 = oe 1.0) + oeo, I) is the natural decomposition. Therefore 

D'eU) = (a + OCl,O)U»eU) 

and 

But äeu) = 0 since e andfare holomorphic. Thus 

D" e(f) = oeo,I)U)eU)· 

Suppose now that we have a connection D satisfying (a) and (b). Then 
letf = (ei' ... , e,) be a holomorphicframe over U c Xand 0 theassociated 
connection matrix. Since D is compatible with the metric h, we have, by 
(1.22), 

dh = hO + 'eh. 

Since, in addition, D satisfies (b), we have seen that 8 is of type (I, 0). Thus, by 
examining types we see that 

ah = hO 

and 

äh = 'eh, 
from which it follows that 

(2.1) 
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We can then define (J by (2.1). Such a connection matrix c1early satisfies (a) 
and (b). Moreover, if!, = fg is another holomorphic frame, we have 

h(fg) = 'gh(f)g, 

so that 

and 

g(J(fg) = g[h- l(fg) oh(fg)] 

= h(f)-'['gr ' o['gh(f)g] 

= h(ft'['gr'['goh(f)g + 'gh(f)dg + o'gh(f)g]. 

Hut g is a holomorphic change of frame, from which it follows that 

Thus 
and og = dg. 

g(J(fg) = h(f)-' oh(f)g + dg 

= (J(f)g + dg. 

Recalling Lemma 1.6(a), we see that this is the necessary transformation 
formula for (J to define aglobai connection. 

Q.E.D. 

This theorem gives a simple formula for the canonical connection in 
terms of the metric h; namely, 

(2.2) (J(f) = h(f)-' dh(f) 

for a holomorphic frame f Moreover, D = D' + D" has the following 
representation with respect to a holomorphic frame f: 

(2.3) 
D' = d + (J(f) 

D" = ä. 
Thus we have the following proposition. 

Proposition 2.2: Let D be the canonical connection of a Hermitian holo
morphic vector bundle E -+ X, with Hermitian metric h. Let (J(f) and 0(f) 
be the connection and curvature matrices defined by D with respect to a 
holomorphic frame f Then 

(a) 8(f) is of type (I, 0), and o(J(f) = -8(f) /\ 8(f). 
(b) 0(f) = ä(J(f), and 0(f) is of type (I, I). 
(c) ä0(f) = 0, and d0(f) = [0(f), (J(f)]. 

Proof' Let h = h(f), (J = (J(f), and 0 = 0(f). Then we first note that 
eis of type (I, 0) by (2.2). Then by using 

dh- 1 = -h-1·dh·h- 1 

dZ = 0, 
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(b) 0(f) = ä(J(f), and 0(f) is of type (I, I). 
(c) ä0(f) = 0, and d0(f) = [0(f), (J(f)]. 
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eis of type (I, 0) by (2.2). Then by using 

dh- 1 = -h-1·dh·h- 1 
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80 

we see that 

Differential Geometry 

a() = a(h- 1 ah) = -h-1·ah·h- 1 1\ ah 

= -(h- 1 ah) 1\ (h- 1 ah) = -() 1\ e, 
which gives us part (a). Part (b) is a simple computation, namely, 

o = d() + () 1\ () = a() + () 1\ e + (je 

= (je, 

by using part (a). Part (c) then follows from 

(j0 = (jze = 0 

and Proposition 1.10. 

Chap.III 

Q.E.D. 

Let E -- X be a holomorphic vector bundle and let / = (eI> ... ,er) 
be a frame for / defined near a point P E X. Choose local coordinates z 
= (z I> ••• , zn) near p so that pis given by z = O. Then we can write 

fez) = (e1(z), ... ,er(z» 

to denote the dependence on the variable z near z = O. Suppose that h is a 
Hermitian metric on E -> X and that/(z) is the above frame. Then we write 

h(z) = h(f(z» 

near z = O. The next lemma teils us that we may always find a local frame 
/near p such that h(f(z» has a very nice form. Let 0(z) = 0(f(z». 

Lemma 2.3: There exists a holomorphic frame/such that 

(a) h(z)=I+O(lzj2). 
(b) 0(0) = (jah(O). 

Proof: Suppose that (a) holds. Then it follows that 

h-1(z) = I + O(lzn 

from which we see that 

0(z) = aah(z) + O(lzi), 

and hence (b) folIows. 
To show (a), we shall make two changes of frame. First we note that 

h(O) is a positive definite Hermitian matrix, and thus there exists a nonsing
ular matrix g E GL(r, C) such that 

g*h(O)g = I, 

where for any matrix M we let M* = 'M. The matrix ginduces a change of 
frame / ---+ j = f- g, and we see that 

(2.4) 

h(z) = h(j(z» = h(fg) 

= g*hg 

h(z) = 1+ O(lzi). 
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Assurne now that h(z) is given satisfying (2.4). We want to consider a 
change of frame of the form 

g = I + A(z), 

where A(f) = (1:) A~"zj) is a matrix of linear holomorphic functions of z. 
Since A(O) = 0, this change of frame will preserve (2.4). By choosing A(z) 
such that 

(2.5) h(z) = g(z)*h(z)g(z) = I + 0(1 z n 
we will have proved (a). But (2.5) is equivalent, by Taylor's theorem, to the 
vanishing of the first derivatives of (2.5) at z = 0; i.e., dh(O) = O. Thus we 
compute 

Therefore 

dh(z) = dh(z) + dA*(z)·h(z) 

+ h(z) dA(z) + 0(/ z 1). 

dh(O) = ah(O) + dA(O) + äh(O) + dA*(O). 

Suppose that we let 

(2.6) 

Then we see that 

dA(O) = -ah(O), 

which implies that 

dA*(O) = -äh(O). 

Then the choice of A(z) given by (2.6), depending on the derivatives of the 
metric h, ensures that (2.5) holds. 

Q.E.D. 

This lemma allows us to compute the curvature 0 at a particular point 
without having to compute the inverse of the local representation for the 
metric, provided that we have the right frame. 

We want to give one principal example concerning the computation of 
connections and curvatures. Further examples of specific Hermitian metries 
on tangent bundles are found in Chap. VI, where we shall discuss Kähler 
manifolds. In Sec. 4 we shalllook at the special case of line bundles in more 
detail. 

Example 2.4: Let U, .• -+ G". be the universal bundle over the Grass
mannian manifold G, .• (Example 1.2.6). We see that a frame! = (e" ... , 
e,) for U". -+ G". consists of an open set U c G, .• and smooth functions 
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so that el 1\ •.• 1\ er *- O. Thus I = (eI> ... , er) can be thought of as an 
n X r matrix with coefficients being smooth functions in U and whose 
columns are the vectors {e j }, and the matrix/is of maximal rank at each point 
Z E U. A holomorphic frame will simply have holomorphic coefficients. 
We define a metric on Ur .• by letting 

(2.7) h(f) = 'il 

for any frame I for Ur .•. This metric results from considering Ur .• C Gr .• X 

C· and restricting the standard Hermitian metrie on C~ to the fibres of 
Ur .• ~ Gr .•. First we note that h(f) is positive definite since (recall that/has 
maximal rank) 

'ih(!)z = '(fz)(fz) = I/z 12 > 0 if z *- o. 
Moreover, if gis a change of frame, then we compute that 

h(fg) = '(fg)(fg) = 'g'ilg = 'gh(f)g, 

so that (1.7) is satisfied, and thus we see that h defined by (2.7) on frames gives 
a well-defined Hermitian metric on Ur .• , since the frame representation trans
forms correctly. 

We can now compute the canonical connection and curvature for Ur .• 
with respect to this natural metric. If I is any holomorphic frame for Ur .• ' 
then by (2.2) and Proposition 2.2, we see that 

()(f) = h-I(f) ah(f) 

0(f) = ä(h-I(f) ah(f». 

We obtain, letting () = ()(f), etc., as before, 

(2.8) 0 = h-I·'dl 1\ dl - h-I·'dII:h- 1 1\ 'i·dl, 

where h- I = ['in-I. In the ca se r = I (projective space), we can obtain a 
more explicit formula. If rp E [SP(W»)", iJI E [sq(W»)", for W an open subset 
of Co, we set 

<rp, '1') = (-l)pq 'Iji 1\ rp, 

which generalizes the usual Hermitian inner product on vectors in C" [note 
that this is eompatible with (1.19), where we have the usual inner product on 
E = W X C" given by <u, v) = 'vu, u, V E Co]. Then the curvature form 
for U I ." becomes 

(2.9) 0(f) = - <I,f) <dl, dl) - <dl,f) 1\ <I, dl), 
<1,/)2 

where/is a holomorphic frame for JI."' Ifwe choose/to be ofthe form 
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where e, E fl(U) and :E I ej 12 = 1/12 =1= 0, then 

dl= [de'l' 
den 

and we obtain 

'dl = (del>"" de.) 
= (deI>' .. , de.), 

1/12 :t dei 1\ dei - :t ele,del 1\ dej 
(2.10) 9(f) = - 1=1 I/t=1 

83 

Recall that the functions el , ••• , e. are functions of the Iocal coordinates 
on GI.. = p._1> and that, in particuIar, 9(/) is a well-defined 2-form on 
U c p._ I • Alternatively, we can think of (e I> ••• , e.) as being homogeneous 
coordinates for P '-1' and by the homogeneity of (2.9), we see that the expres
sion in (2.9) induces a well-defined 2-form on all of p._ I , wh ich agrees with 
the 2-form on U mentioned above. We shall see this differential form again 
when we study Kähler metries in Chap. V. 

Returning to the general case of U, .• -+ Gr •• , we have seen in Lemma 2.3 
that, by a proper choice of holomorphic frame for U, .• and a proper choice 
of local holomorphic coordinates near some fixed point, we can find a very 
simple expression for the curvature. We shall now see an example of this. 
Let 

10 = [~J 
be a frame for Ur .• at the point X o E G, .• defined by 

where < ) denotes the span of the columns of the frame matrix inside, which 
is a subspace of C· and thus a point in G, .•. Letting 

B. = {Z E ~.-r., ~ CC.-,l, : I Z I< f}, 

the mapping 

B. -> G, .• 
given by 

is a coordinate system for G, .• near xo, with the property that Xo corresponds 
to Z = O. There is a natural action of GL(n, C) on Gr •• given by left multi
plication of frames (Le., left multiplication of homogeneous coordinates). 
Namely, ifl E M •. r , x = <I), and U E GL(n, C), then set 

u(x) = <uI). 
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Moreover, U(n), the unitary group, is transitive on Gr •• under this action 
(a weIl-known fact of linear algebra). 

Therefore if Yo is any point in Gr •• and Yo = u(xo) for a unitary matrix 
u, then the mapping 

gives local coordinates at Yo E Gr ••• The metric at Yo has the form, with res
pect to the frame 

f(z) = u[~l 

h(Z) = h(f(Z» = (u[~Jr (u[~J) 
= 1+ Z*Z 

=1+O(iZj2), 

which is the form occurring in Lemma 2.3(a) (note that the dependence on 
u disappears completely). Thus we see that 

0(yo) = 0(0) = äau + Z * Z)(O) 

(2.11) 0(yo) = dZ* I\dZ(O) 

which is the same for all points of Gr •• with respect to these par/icu/ar 
systems of local coordinates. We shall use this expression for the curvature 
to compute certain Chern c1asses of this vector bundle in the next section. 

3. Chern Classes of Differentiable Vector Bundles 

Our object in this section is to give a differential-geometric derivation 
of the Chern c1asses of a differentiable C-vector bundle E -+ X. The Chern 
classes will turn out to be the primary obstruction to admittingglobalframes, 
or, more gene rally, admitting k global sections '1' ... "k' 1 <k< rank cE, 
such that '1 1\ ••• 1\ 'k "* 0, at each point of E (Le., they are to be ob
structions to E or so me nonzero subbundle of E being trivial). Classically, 
the Chern classes are re la ted to the Euler characteristic of a compact mani
fold X, wh ich for oriented 2-manifolds, for instance, decides completely 
whether or not there are nonvanishing vector fields on X. More specificaIly, 
if E is a C-vector bundle ofrank r, then the Chern classes ciE),j = 1, ... , 
r, will be elements of the de Rham group Bli(X, R) having certain functorial 
properties. As we shall see, they can be defined in terms of the curvature 
of E with respect to a connection. Our approach here follows the exposition 
of Bott and Chern [1], based on the original ideas of Chern and Weil. 

To begin, we need some multilinear algebra. Recall that ~r is the set of 
r x r matrices with complex entries. A k-linear form 

;p : ~r X ... X ~r - C 
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is said to be invariant if 

;(gAlg-I, ... ,gAkg-l) = 9'(A ..... , Ak) 

for g E GL(r, C), AI E mI,. Let [k(mI,) be the C-veetor spaee of all invariant 
k-linear' forms on mI,. 

Suppose that ; E [k(mI,). Then ; induees 

9': mI, -- C 
by setting 

q1(A) = ;(A, ... , A). 

It is clear then that 9' is a homogeneous polynomial of degree k in the entries 
of A. Moreover, for g E GL(r, C), 

9'(gAg-l) = q1(A), 

and we say then that 9' is invariant. Let Ik(mI,) be the set of invariant homo
geneous polynomials of degree k as above. Sinee the isomorphism of the 
symmetrie tensor algebra S(mI~) and the polynomials on mI, preserves 
degrees (see Stern berg [1]), one obtainst from ({J E I,,(mI,) an element ;p E l,,(mI,) 
such that 

;P(A, ... , A) = ((J(A). 

We shall omit the tilde and use the same symbol for the multilinear form and 
its restrietion to the diagonal. 

Example 3.1: The usual determinant of an r X r matrix is a mapping 

det : mI, -- C, 

whieh is clearly a member of I,(mI,). Moreover, for A E mI, and I, the iden
tity in mI" we see that 

det(I + A) = t cJIk (A), 
k~O 

where eaeh cJIk E Ik(mI,). Note that cJIk , k = 0, ... , r, so defined is areal 
mapping; i.e., if M has real entries, then cJIk (M) is real. 

We would like to extend the action of 9' E lk(mI,) to S*(Hom(E, E». 
First, we define the extension to mI, ® &S.o. If U is open in X and AI' W/ 

E mI,(U) ®s(U) S.o(U~, then set 

9'u(A I ·w ..... , Ak·Wk) = W I 1\ ..• 1\ wk9'(A ..... , Ak). 

By linearity 9' becomes a well-defined k-linear form on mI, ®& s.o. If e, 
E S"( U, Hom(E, E», j = 1, ... , k, then set 

9'u('" ... ,ek) = 9'u(e I(f), ... , 'kU»· 

t This process is called polarization and a specific formula for q; is 
_ (-lf * 
.,,(A I ,. •• , At) = -kt I I (-1)icp(A 'I + ... + A'l)' 

. J-I '1<"'<11 

This shows that the invariance of q; follows from that of .". 

Sec. 3 ehern C1asses 0/ Differenliable Veclor Bundles 85 

is said to be invariant if 

;(gAlg-I, ... ,gAkg-l) = 9'(A ..... , Ak) 

for g E GL(r, C), AI E mI,. Let [k(mI,) be the C-veetor spaee of all invariant 
k-linear' forms on mI,. 

Suppose that ; E [k(mI,). Then ; induees 

9': mI, -- C 
by setting 

q1(A) = ;(A, ... , A). 

It is clear then that 9' is a homogeneous polynomial of degree k in the entries 
of A. Moreover, for g E GL(r, C), 

9'(gAg-l) = q1(A), 

and we say then that 9' is invariant. Let Ik(mI,) be the set of invariant homo
geneous polynomials of degree k as above. Sinee the isomorphism of the 
symmetrie tensor algebra S(mI~) and the polynomials on mI, preserves 
degrees (see Stern berg [1]), one obtainst from ({J E I,,(mI,) an element ;p E l,,(mI,) 
such that 

;P(A, ... , A) = ((J(A). 

We shall omit the tilde and use the same symbol for the multilinear form and 
its restrietion to the diagonal. 

Example 3.1: The usual determinant of an r X r matrix is a mapping 

det : mI, -- C, 

whieh is clearly a member of I,(mI,). Moreover, for A E mI, and I, the iden
tity in mI" we see that 

det(I + A) = t cJIk (A), 
k~O 

where eaeh cJIk E Ik(mI,). Note that cJIk , k = 0, ... , r, so defined is areal 
mapping; i.e., if M has real entries, then cJIk (M) is real. 

We would like to extend the action of 9' E lk(mI,) to S*(Hom(E, E». 
First, we define the extension to mI, ® &S.o. If U is open in X and AI' W/ 

E mI,(U) ®s(U) S.o(U~, then set 

9'u(A I ·w ..... , Ak·Wk) = W I 1\ ..• 1\ wk9'(A ..... , Ak). 

By linearity 9' becomes a well-defined k-linear form on mI, ®& s.o. If e, 
E S"( U, Hom(E, E», j = 1, ... , k, then set 

9'u('" ... ,ek) = 9'u(e I(f), ... , 'kU»· 

t This process is called polarization and a specific formula for q; is 
_ (-lf * 
.,,(A I ,. •• , At) = -kt I I (-1)icp(A 'I + ... + A'l)' 

. J-I '1<"'<11 

This shows that the invariance of q; follows from that of .". 



86 Differential Geometry Chap. III 

We can check that this definition is independent of the choice of frame. 
Namely, if gis a change of frame, then by (1.13) 

rpu({I(fg),··· , {k(fg» = rpU(g-I{I(f)g,··· , g-'{,if)g) 

= rpu({ l(f), ... , {kU», 

by the invariance of rp and the induced invariance of rp when acting on matri
ces with differential form coefficients. Thus we get an extension of rp to all 
of X, 

rpx : SP(X, Hom(E, E» X ... x SP(X, Hom(E, E» ~ Spk(X), 

which when restricted to the diagonal induces the action of the invariant 
polynomial rp E lk(~') on SP(X, Hom(E, E», which we denote by 

rpx : SP(X, Hom(E, E» ~ Spk(X). 

Now suppose that we have a connection 

D : SeX, E) ~ SI(X, E) 

defined on E --> X. Then we have the curvature 0 E (D), as defined in Defi
nition 1.8. So if rp E lk(;m,), rpA0 E(D» is aglobaI 2k-form on X. We can 
now state the following basic result due to A. Weil (cf. Bott and Chern [I)). 

Theorem 3.2: Let E ---> X be a differentiable C-vector bundle, let D be a 
connection on E, and suppose that rp E lk(~')' Then 

(a) rpA0 E (D) is cJosed. 
(b) The image of CPx(0E(D» in the de Rham group H 2k(X, C) is inde

pendent of the connection D. 

Proof: To prove (a), we shall show that for rp E lk(;m,), the associated 
invariant k-linear form rp satisfying 

rp(gA,g-', ... , gAkg-l) = rp(A p ••• , Ak) 

for all g E CL(r, C) satisfies 

(3.1) I: rp(AI'" . , [A j , B], ... , AJ = 0 
J 

for all A j , B E ~,. 

Assuming (3.1), we shall first see that (a) holds. Recalling the definition 
of the Lie product on ;m, ® S* preceding Proposition 1.10, equation (3.1) 
gives, for U open in x,t 

(3.2) 1: (_1)'(<<1 rpu(A l' ... , [A«, B], ... , Ak ) = 0 
« 

for aHA« E ~,@SP'(U)andB E ;m,@sQ(U), wheref(lX) =degB1:p<;«degAp. 
Moreover, it follows from the definition of a k-linear form that 

(3.3) drpu(A p ... , Ak ) = 1: (-I),(<<lrpu(A I' ••• , dA« • ...• Ak ) 
« 

tWe have previously defined the action of rp only on ~, ® &P, but this c1early exlends 
10 an action on ~, ® &*. 
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for A~ E ~, ® BP-(U), where g(<<) = l:p<~ deg Ap• We want to show that 
drp)0) = 0, and it suffices to show that for a frame J over U, 

drpu(0(f) = O. 

But from equation (3.3) we have [letting 0{f) = 0] 

drpu(0) = drpu(0, .•. ,0) = I; rpu(0, ... , d0, ... ,0), 

noting that deg 0 is even. From Proposition 1.10 we have that 

drpu(0) = l: rpu(0, ..• , [0, 8], ... , 0), 

but this vanishes by equation (3.2), and thus rpx<0E ) is a closed form. 
Now all that remains is to show that the invariance of 'I implies equation 

(3.1). First, if J(t} and ge,) are power series with matrix coefficients wh ich 
converge for all t E C, i.e., 

and 

then 

J(t)g(t) = AoBo + (AIBo + AoBI)t + 0(1 t 12), 

and ifrp is a linear functional on mI" then 

rp{f(t» = I; rp(An)tn. 
n 

Now for A, B E ~, it follows from the above re marks that 

(3.4) e-IB Ae'B - A = t[A, B] + 0(1 t 12). 

We now want to show that (3.1) holds. We consider, for simplicity, the ca se 
k = 2, the general case being an immediate generalization. Thus, ifrp E /2 (mI,), 
by the invariance of the associated bilinear form we obtain 

rp(e-IBA,e'B, e-IBA2e'B) - rp(A I, A2) = 0 

for all t E C and AI' A2 , B E ~" since e-IB·e'B = I. By adding and sub
tracting rp(e-IB A leB, A2) toJfrom the above identity, we obtain 

rp(e- IB Ale,B, e- IB A2e'B) - rp(e- IB A le'B, A2) + rp(e- IB A le'B, A2) 

- rp(A p A2) = O. 

Applying (3.4) to each of the differences above, we find that 

rp(e- IB Ale'B, t[A, B)) + 0(1 t 12» + rp(t[A I' B] + 0(1 t 12), A2) 

= t{rp(AI' [A 2, B]) + rp([AI' B], A2)} + 0(1 t 12) _ O. 

Thus the coefficient of t must also vanish identically, and this proves (3.1) 
in the ca se k = 2. It is now clear that the general ca se is obtained in the same 
way by adding and subtracting the appropriate k - I terms to/from the 
difference 

rp(e-IB A le'B, ... , e-,B Ake'B) - rp(A I' .•• , Ak ), 

and we omit further details. 
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Now that 'PAS E(D» is closed, it makes sense to consider its image in the 
de Rham group H2k(X, C). To prove part (b), we shall show that for two 
connections DI' D 2 on E --. X there is a differential form rx so that 

(3.5) 

To do this, we need to consider one-parameter families of differential forms 
on X and one-parameter families of connections on E --+ X, and to point out 
so me of their properties. 

Let rx(t) be a C= one-parameter family of differential forms on X, I ER; 
i.e., rx has the local representation 

rx(l) = 1: aJ(x, l)dxJ 

for I E Rand aJ is C= in x and I (cf. Sec. 2 in Chap. I). Define loeally 

ä(l) = arx(t) = 1: aal dx[ 
al al 

s: rx(t) dl = 1: (f: alx, I) dl) dx[ 

It is easy to check that these definitions are independent of the loeal coordi

nates used and that ä(/) and r rx(t) dl are well-defined global differential 
• 

forms. Also, 

~ (rx(/) A PU» = ~~(t) A pet) + rxCt) A ~ (t) 
and r ä(l) dt = rx(t)l! = rx(b) - rx(a) . 

• 
For a differentiable veetor bundle E --+ X, we define a C= one-parameter 
family of connections on E to be a family of connections {D'}'ER such that for 
a C= frame f over U open in X the eonnection matrix B,{f) := B(D"f) has 
coefficients which are C= one-parameter families of differential forms on 
E.t Suppose that D, is such a family of connections. Then for a C= frame f 
over U and ~ E S( U, E) we have 

~ D,~(f) = ~ (d~(f) + B,{f)~{f» 

= (~ BcCf) ) ~(f). 

Moveover, since a change of frame is independent of I, this clearly defines for 
each 10 E Ra mapping 

tWe shall need only CI families of connections in the applications, wh ich have the 
analogous definition. 
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by 

Moreover, this mapping is Sx-linear. Therefore b" defines an element of 
SI(X, Hom(E, E» which we also call bIO' As we pointed out above, b " 
has a local representation 

O,,(f) := b,,(f) = t 8,(f) Ir,. 

We can now reduce the proof of part (b) to the following lemma, which will 
be proved below. 

Lemma 3.3: Let D, be a C~ one-parameter family of connections, and for 
each t E R, let 0, be the induced curvature. Then for any 'P E I k (m7,), 

'Px(0b) - 'Px(0a) = dU: 'P' (0,; b,) dt), 

where 

«(X) denotes the (Xth argument, and e, 11 E 8*(X, Hom(E, E». 

Namely, if D I and D 2 are two given connections, for E ---+ X, then let 

D, = tD l + (1 - t)Dz, 

which is clearly a C~ one-parameter family of connections on E. Thus, by 
Lemma 3.3, we see that 

'PA0E(D\» - 'PA0E(D z» = 'Px(0\) - 'PA0z) = d(X, 

where 

fl • 

(X = 0 'P'(0,; D,) dt. 
Q.E.D. 

Prool 01 Lemma 3.3: It suffices to show that, for a frame lover U, we 
have 

(3.6) 

where ° = 0 E (D" j), 8 = 8(D,,J), and the dot denotes differentiation with 
respect to the parameter t, as above. Here we use the simple fact that exterior 
differentiation commutes with integration with respect to the parameter 
t. We proceed by computing 

d'P~(0; 0) = dCE 'Pu(0, ... , 0 , ... , O) 
.. < .. ) 

= 1: {1: 'Pu(0, ... , d0, ... , 0 , ... , O) 
IX i<tt. (j) (Cl) 

+ 'Pu(0, ... , dO, ... , O) 
< .. 1 

- 1: 'Put0, .. . , 0 , ... ,d0, .. . ,0)}. 
i>« (tl) (;) 
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By adding and subtracting 

L q1u(0, ... , [0, 0], ... ,0) 
~ (~) 

to/from the above equation and noting that 

(differentiation of (1.14» 0= dO + [0,0] 
d0 = [0,0] (Bianchi identity, Proposition 1.10), 

we obtain the equation 

dq1~(0; 0) = L q1u(0, ... , S, ... ,0) 
~ (~) 

+ L {L q1u(0, . .. ,[0,0], . .. ,0, . .. ,0) 
11 i<fI (i) llX) 

- q1u(0, . .. ,[0,0], . .. ,0) 
(~) 

- L q1u(0, ... , 0, ... , [0,0], ... ,0)}. 
i>tr. (ot) (;) 

By (3.2), we see that the second sum over (X vanishes, and we are left with 

dq1~(0; 0) = L q1u(0, ... , 0, ... , 0) 
GI (11) 

which is (3.6). 
Q.E.D. 

We are now in a position to define ehern classes of a differentiable vector 
bundle. From Example 3.1 we consider the invariant polynomials cl>k E 1&Jrl. r ) 

defined by the equation 

det(J + A) = L cl>k(A), A E g]1r' 
k 

Definition 3.4: Let E ----> X be a differentiable vector bundle equipped with 
a connection D. Then the kth Chern form of E relative to the connection D 
is defined to be 

ck(E, D) = (cI>k>X(2~0E(D») E 8 2k(X). 

The (total) Chernfo;m of E relatil'e to Dis defined to be 

c(E, D) = t c k(E, D), r = rank E. 
k=O 

The kth Chern dass of the vector bundle E, denoted by ck(E), is the coho
mology class of ck(E, D) in the de Rham group H2k(X, C), and the total 
Chern dass of E, denoted by c(E), is the cohomology class of c(E, D) in 
H*(X, C); Le., c(E) = Lk=O ck(E). 

It follows from Theorem 3.2 that the ehern classes are weil defined and 
independent of the connection D used to define them. Thus the ehern classes 
are topological cohomology classes in the base space of the vector bundle 
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E. We shall see shortly that they are indeed obstructions to finding, e.g., 
global frames. First we want to show that the ehern classes are real coho
mology classes. 

Proposition 3.5: Let D be a connection on a Hermitian vector bundle E 
compatible with the Hermitian metric h. Then the ehern form c(E, D) is a 
real differential form, and it follows that c(E) E H*(X, R), under the ca non i
cal inclusion H*(X, R) c H*(X, C). 

ProoJ: It suffices to show that for a local frame J the matrix represen
tation for the ehern form is a real differential form. Therefore let h = hU) 
E> = E>(D,J), as usual, and recall that D being compatible with the metric 
h was equivalent to the condition (1.22), 

dh = h() + 'Öh, 

whose exterior derivative is given by 

0= dh 1\ () + hd() + d'Ö·h - 'Ö /I. dh. 

By substituting the above expression for dh, we obtain 

(3.7) o =h9 + 'eh. 
In particular, ifJis a unitary frame, we note that E> is skew-Hermitian. Using 
(3.7) we can show that if 

c := c(E, D,J) = det(I + in 9)' 
then c = c; i.e., cis a real differential form. Namely, 

det (h + in 9h) = det (I + in 9) . det h 
11 

det(h - inh,e) = deth· det(I - 2~'e), 

where the vertical equality is given by (3.7). Now it follows that 

c = det (I + in 9) = det (I -l~ 'e) 
= det (I - in e) = c. 

Q.E.D. 

We want to prove some functorial properties of the ehern c\asses. In 
doing so we shall see that it is often convenient to choose a particular con
nection to find a useful representative for the ehern c\asses. We remark that 
the de Rham group H*(X, R) on a differentiable manifold X carries a ring 
structure induced by wedge products; i.e., if 

c, C' E H*(X, R) 
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We want to prove some functorial properties of the ehern c\asses. In 
doing so we shall see that it is often convenient to choose a particular con
nection to find a useful representative for the ehern c\asses. We remark that 
the de Rham group H*(X, R) on a differentiable manifold X carries a ring 
structure induced by wedge products; i.e., if 

c, C' E H*(X, R) 
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and c = [~] and c' = [ql], then 

c·c' = [~I\ ~'], 
which is easily checked to be weil defined. t 

Chap.II1 

Theorem 3.6: Suppose that E and E' are differentiable C-vector bundles 
over a differentiable manifold X. Then 

(a) If ~ : Y --+ X is a differentiable mapping where Y is a differentiable 
manifold, then 

c(~*E) = ~*c(E), 
where ~* E is the pullback vector bundle and ~*c(E) is the pullback of the 
cohomology class c(E). 

(b) c(E EB E') = c(E)· c(E'), where the product is in the de Rham 
cohomology ring H*(X, R). 

E. 
(c) c(E) depends only on the isomorphism class of the vector bundle 

(d) If E* is the dual vector bundle to E, then 

cIE*) = (-I)JcjE). 

Proof: 

(a) Let D be any connection on E --+ X. To prove part (a), it will suffice 
to define a connection D* on ~* E so that 

~*(9(D» = 9(D*), 

where ~* is the induced map on curvature. We proceed as folIows. Suppose 
thatf = (eI' ... ,e,) is a frame over U in X. Thenf* = (er, ... ,e:), where 
e1 = ei 0 ~, is a frame for ~* E over rp-I( U), and frames of the form f* 
cover Y. Also, if g : U --+ GL(r, C) is a change of frame over U, then g* = 
go qJ is a change of frame in rp*E over rp-I(U). Now define a connection 
matrix 

8*(f*) : = rp*8(f) = [rp*8 pa1, 
where rp*8 pa is the induced map on forms. Moreover, it is easy to see that 

g*8*(f*g*) = 8*(f*)g* + dg* 

so that 8* defines aglobaI connection on h* E. And, finally, we have 

9(D*,/*) = d8*(f*) + 8*(f*) 1\ 8*(f*) 

= drp*8(f) + rp*8(f) 1\ rp*8(f) 

= ~*(d8(f) + 8(f) 1\ 8(f» 

= ~*9(D,/), 

which completes the proof of part (a). 

tThis is a represenlalion for Ihe cup product of algebraic lopology; see, e.g., Bredon 
[I] and Greenberg [1). 
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(b) Given D and D', connections on E and E', respectively, it suffices 
to find a connection Dr±J on E EB E' so that 

c(E EB E', Dr±J) = c(E, D) 1\ c(E', D'). 

Also, as in part (a), it suffices to consider a local argument. Therefore for 
8 and 8' connection matrices over U on E and E', respectively, it is easy to see 
that 

0r±J=[8 0J o 8' 

is a connection matrix defining aglobaI connection on E EB E' (the details 
are left to the reader). The associated curvature matrix is given by 

[ 0 0 ] 
0r±J= 0 0" 

Thus 

r/+~0 2n 
c(E EB E', Dr±J)lu = det 0 

I' +~e.] 
2n 

= det[ 1+ dn 0 Jdet[1' + dn 0'J 

= c(E, D)lu 1\ c(E', D')lu' 

(c) Suppose that <X : E ---> E' is a vector bundle isomorphism. Then we 
want to show that c(E) = c(E'). This is simple, and similar to the argument 
in part (a). Let D be a connection on E, and define a connection D' on E' 
by defining the connection matrix for D' by the relation 

8'(f') = 8(f), 

wherefis a frame for E andf' = (<X(e l ), • •• ,<x(e,» is a frame for E'. As in 
(a), this is a connection for E', and it follows that 0'(f') = 0(f), and hence 
c(E) = c(E'). 

(d) Suppose that the duality between E and E* is represented by (, > 
(not to be confused with a metric) and that Dis a connection on E. If fand 
f* are dual frames over an open set U, i.e., (e", e:> = ö"p, then we can define 
a connection D* in E* by setting 

(3.8) 8* = 8(D* ,f*) = -'8(D,f). 

We can check that 8* defined by (3.8) is indeed a connection on E*. Suppose 
that gis a change of frame f ---> fg on E. Then the induced change of frame for 
the dual frame f* is given by /* ---> f*'(g-I), as is easy to verify. Thus, if we 
let g* = ('gt I, we have to check that 

(3.9) 8*(f*g*) = (g*t1dg* + (g*t I 8*(f*)g* 
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to see that (J* is a well-defined connection on E*. But (3.9) holds if and only 
if 

-'(J(fg) = 'gd'(g-I) - 'g'(J(f),(g-I), 

wh ich simplifies to, after taking transposes and using the fact that dg- I 

= -g-Idgg- I, 

(J(fg) = g-Idg + g-I(J(f)g, 

which holds, since (J(f) is a connection matrix. Therefore the curvature for 
E* is 

9* = d(J* + (J* 1\ (J* 

= -d'(J + '(J 1\ '(J 

= -d'(J - '«(J 1\ (J) 

= -'(d9 + (J 1\ 9) 

=-'9. 

Thus the Chern forms restricted to U are related by 

ck(E*, D*) = cllk ( - in 9) 
= (-I)kcllk(2~9) 
= (-l)kck(E, D), 

where we note that the invariant polynomial cllk is homogeneous of degree 
k and is invariant with respect to transpose (since det is). 

Q.E.D. 

Remark: In the ca se where E -- Xis a holomorphic vector bundle and 
his a Hermitian matrix on E, h*, the induced metric on E*, is given by 

h*(f*) = '(h-I(f», 

where fand f* are dual holomorphic frames. From this we see that 

and 

9* = (h*)-I ah* 

= 'h a'(h- I) 

= -(a'h)'(h- I) 

= -'(h- I ah) = _t(J 

9* = -J'(J = _'9. 

We now use the above functorial properties to derive the obstruction
theoretic properties of Chern c1asses, Le., the obstructions to finding global 
sections. 

Theorem 3.7: Let E -- X be a differentiable vector bundle of rank r. Then 
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(a) co(E) = I. 
(b) If E ~ X X C' is trivial, then ciE) = 0, j = I, ... ,r; Le., c(E) 

=1. 
(e) If E ~ E' EB T" where T, is a trivial veetor bundle ofrank S, then 

ciE) = 0, j = r - S + 1, ... , r. 

Proof' 

(a) This is obvious from the definition of Chern classes. 
(b) IrE = X xC', then 8(X, E) ~ (8(X»', and a connection 

D : 8(X, E) - 8\(X, E) 

can be defined by 

where " E 8(X). In this ease the conneetion matrix 8 is identieally zero. 
Then the eurvature vanishes, and we have 

c(E, D) = det(l + 0) = I, 

wh ich implies that ciE, D) = 0, j > 0. 
(c) We compute 

c{E) = c{E' EB T.) 
= c{E') . c{T,) 

= c(E') . 1 

by Theorem 3.6 and part (b). Moreover, E' is of rank r - s, and so we 
have 

c(E) = I + c\{E) + ... + c,{E) = 1 + c\{E') + ... + c,_,(E'), 

from whieh it follows that 

c,{E) = 0, j = r - S + 1, ... , r. 
Q.E.D. 

We shall now use Theorem 3.7 to show that some of our examples of veetor 
bundles diseussed in Chap. I are indeed non trivial vector bundles by showing 
that they have nonvanishing Chern classes. 

Example 3.8: Consider T(p \ (C», which is R-Iinear isomorphie to T{SZ), 
the real tangent bundle to the 2-sphere SZ, and we shall show that it has a 
nonzero first Chern class. The natural metrie on T(Pt(C» is the chordal metric 
defined by 

(a a) 1 
h(z) = h az' az = (l + IzIZ)Z 
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in the z-plane; if w = I/z is the coordinate system at infinity (from the classi
cal point of view), h(a/aw, a/aw) has the same form. We compute 

Therefore 

Now 

O(z) = h(zt l ah(z) 

= (I + Izlz)2a(1 + ~zIZ)z) 
2i 

O(z) = -(1 + IzlZ)dz 

- 2 -
0= ao = (I + IzlZ)zdz 1\ dz. 

cl(E, h) = 1t(1 )lzIZ)zdz 1\ di 

2dx 1\ dy 
= 1t(1 + IzIZ)z' 

f - 2 f~ f2~ pdpdO 
cl(E, h) -1i' (1 + p2)2 

P. 0 0 

f~ pdp 
= 4 0 (1 + p2)2 

= 2f~d~ 
I U 

=2. 

Thus the closed differential form cl(E, h) cannot be exact, since its integral 
over the 2-cycle PI is nonzero. Therefore T(P1(C» is a nontrivial complex 
line bundle. Note that the integral of the Chern class over PI was in fact 2, 
wh ich is the Euler characteristic ofPI. This is true in much greater generality. 
Namely, the classical Gauss-Bonnet theorem asserts that the integral of 
the Gaussian curvature over a compact 2-manifold is the Euler characteristic 
(see e.g. Eisenhart [I]). More generally, 

f x cn(T(X» = X(X) 

for a compact n-dimensional complex manifold X (see Chern [2]). We shall 
see the above computation on the 2-sphere in a different context in the next 
section. 

Example 3.9: Consider the universal bundle E = U 2•3 -> G2•3 , which 
is a vector bundle with fibres isomorphie to C 2• In Example 2.4 we have com
puted the curvature in an appropriate coordinate system, and we obtained 

0(yo) = dZ* 1\ dZ(O), 
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using the notation of Example 2.4. Thus we find that Z = (Z 11> Z 12)' Z 11 

E C, and we have the 2 X 2 curvature matrix 

dZ* /I. dZ = [d~11 /I. dZ 11 d~11 /I. dZ 12] 

dZ 12 /I. dZ 11 dZ 12 /I. dZ 12 

from which we compute 

= ( - 2~2) dZ 1 1 /I. dZ 1 1 /I. dZ 12 /I. dZ 12 

= ( - 2~2) . ( 7 r dX11 /I. dY11 /I. dX12 /I. dY12 

2 
= ldX11 /I. dY 11 /I. dX12 /I. dY 12 , 

1l 

which shows that c2(E, h) is a volume form for G2 • 3 and, consequently, that 

f ciE, h) > O. 
GI,' 

This shows that c2(E, h) "* O. Thus E has no trivial subbundles and is itself 
not trivial. 

4. Complex Line Bundles 

In this section we are going to continue our study of Chern classes of 
vector bundles by restricting attention to complex fine bund/es, i.e., differen
tiable or holomorphic C-vector bundles of rank I. In particular, we shall 
characterize which cohomology classes in H2(X, R) (for a given differen
tiable manifold X) are the first Chern class of a complex line bundle over X, 
a result which has an important application in Chap. VI when we proye 
Kodaira's fundamental theorem characterizing wh ich abstract compact 
complex manifolds admit an embedding into complex projective space. 

We start with the following two propositions, wh ich are true for vector 
bundles of any rank. 

Proposition 4.1: Let E -> X be a differentiable vector bundle. Then there 
is a finite open covering {U~}, IX = I, ... , N, of X such that Elu. is trivial. 

Proof: If Xis compact, then the result is obvious. By definition we are 
assuming that X is paracompact (see Chap. I). Now let {Vp} be an open 
covering of X such that Elv~ is trivial. By a standard result in topology, X 
has topological dimension n implies that there is a refinement {U.J of {VpJ 
with the property that the intersection of any (n + 2) elements of the cover
ing {U~J is empty, which, in particular means that {U.J is a locally finite cover
ing of X. Let {tp.J be a partition of unity subordinate to the covering {U.J. 
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Let Ai be the set of unordered (i + I )-tuples of distinct elements of the index 
set of [q1~}. Given a E Ai' a = [ao, ... ,aJ, let 

Wja = [x EX: q1~(X) < min [q1~.(X), ... , q1~.(X)] for all a '* ao, .•. , aJ. 

Then it follows that each W1a is open, and W1a n W1b = 0 if a =F b. More
over, 

W ia C supp q1~. n ... n supp q1~, C U~ 

for some a, where supp q1~j = support of q1~j' Then we see that if we let 

i = 0, ... , n, 

then (a) Elx. is trivial and (b) U Xi = X. Assertion (a) follows from the fact 
that Elw .. is trivial, since W ja C U~ and W ja n W jb = 0, a,* b. If x E X, 
then x is contained in at most n + I ofthe sets rU~J, and so at most n + 1 of 
the functions [q1~J are positive at x. Let a = (ao, ... , aJ, where q1~., ... , q1~, 
are the only functions in [q1.} which are positive at x, 0 < i < n. Then it 
follows that 

o = q1~(x) < min[q1~.(x), . .. , q1~'(x)J 

for any a '* a o, •.• ,ai' and hence x E Wja C Xi' Thus (Xj is a finite open 
covering of X such that Elx. is trivial. 

Q.E.D. 

Proposition 4.2: Let E -----+ X be a differentiable C-vector bundle of rank r. 
Then there is an integer N > 0 and a differentiable mapping CI> : X -----+ G,.N(C) 
such that CI>*(U'.N) ~ E, where U,.N -----+ G,.N is the universal bundle. 

Remark: This is one-half of the classification theorem for vector bun
dIes, Theorem 1.2.17, discussed in Sec. 2. of Chap. I. 

Proof: Consider the dual vector bundle E * --+ X. By Proposition 4.1, 
there exists a finite open cover of X, (U~J, and a finite number of frames f~ 
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frame, but we see that if g is a change of frame, then 

M(f*g) = [el(f*g),··· , eN(f*g)] 
= [g-Iel(f*),··· , g-leN(f*)] 
= g-IM(f*). 
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Thus the rows of M(f*) and M(f*g) span the same subspace, and therefore 
the mapping 

«I>:X-Gr •N 

is weil defined at every point. It follows from the construction, by Jooking at 
local coordinates in G,.N, that «I> is a differentiable mapping. We now claim 
that «I>*U,.N - E. To see this, it suffices to define a bundle morphism cl> 

which commutes with the mapping «I> and which is injective on each fibre. 
We define cI>(x, v), x E X, V E Ex, by setting 

cI>(x, v) = «v, el(x»"" , <v, eN(X»), 

where < , ) denotes the bilinear pairing between E and E*. Thus cl>IEz is a 
C-linear mapping into CN, and we claim that (a) cl>IEz is injective and (b) 
cI>(Ex ) = n-I(<<I>(x», where n is the projection in the universal bundle. Let 
f be a frame for E near x E X and let f* be a dual frame for E*; i.e., jf 
f = (ei' ... , e,) and f* = (er, ... , en, then <ep , e:) = ÖPtl• Then we see 
that the mapping cl> can be represented at x by the matrix product 

(4.2) ~(x, v) = 'v(f)·M(f*), 

where M(f*) is defined by (4.1) and is of maximal rank. Thus ~ is injective 
on fibres. But (4.2) shows that the image of ~(EJ is contained in the sub
space of CN spanned by the rows of M(f*), which implies that cI>(Ex) = 
n-I(<<I>(x». 

Q.E.D. 

It follows from Proposition 4.2 and Theorem 3.6(a) that c(E) = 
«I>*(C(U'.N»' In particular, one can show easily from this that line bundles 
have integral ehern classes. Let ji9(X, Z) denote the image of H9(X, Z) in 
H9(X, R) under the natural homomorphism induced by the inclusion of the 
constant sheaves ZeR [this means that fi 9(X, Z) is integral cohomoJogy 
modulo torsion]. 

Proposition 4.3: Let E ~ X be a complex line bundle, Then el(E) E 

B2(X, Z). 
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Proof: Since cl(E) = cl>*(CI(V I.N», where cl> is the mapping in Proposi
tion 4.2, we see that it suffices to show that 

CI(U1.N) E H2(PN_I' Z) 

[H2(P N-I' Z) has no torsion; see the discussion below]. In Sec. 2 we have co m
puted the curvature for the canonical connection D(h) associated with the 
natural metric h on the universal bundle Vl,N, and thus, by (2.10), we see that 

(4.3) C (V D(h» = _1 1 / 12 ~ d~i /\ deI - ~ ei~kd~1 /\ dek, 
I 1.N' 2ni 1 / 14 

where f = (~I' ... , eN) is a frame for VI,N' Now, it is weil known that 

Hq(P.(c), Z) :::: Z, q even, q < 2n 

Hq(P'(c), Z) ~ 0, q odd, or q > 2n, 

wh ich can be shown easily using singular cohomology (see Greenberg [I]). 
In fact there is a cell decomposition 

where PI-I C Pi is a linear hyperplane, and Pi - Pi-I ~ Cj. The submani
fold P j C P N-I is a generator for H 2/P N' Z), and there are no torsion ele
ments. A dosed differential form rp of degree 2j will be a representative of an 
integral cohomology dass in H Zi(P N _ I' Z) if and only if 

f rp E Z. 
P, 

Thus, to see that CI(VI,N) E H2(PN_ I' Z), it suffices to compute 

f IX, 
P, 

where IX is defined by (4.3). We can take PI C PN - I to be defined by the sub
space in homogeneous coordinates 

{(ZI"'" ZN): Zj = O,j = 3, ... , N}. 

Consider the frame f for V1.N -+ PN-p defined over W = {z : ZI :;t: O}, 
given by 

where (ez' ... , eN) are coordinates for PN in the open set W. Then /lwnP, 
is given by 

/([1, ez' 0, ... ,0)]) = (I, ~2' 0, .. ,0), 

and we can think of e 2 as coordinates in W n PI for PI' Thus the differential 
form IXlp, is given by (letting Z = e2) 

I dz /\ di IX =- , 
2ni(1 + Iz12)2 
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and therefore we obtain 

f~ rdr 
= -2 0 (I + r 2)2 

= -I. 

This shows that C1(Ul. N ) E H2(PN _ 1, Z) and hence that c1(E) E H2(X, Z). 
Q.E.D. 

Remark: This approach generalizes to vector bundles. In fact, G,.N(C) 
has a cell decomposition similar to that given above for G1.N(C) and has non
vanishing cohomology only ,in even degrees and has no torsion. The generali
zation of the cycIes (Pj C P N} generating the homology are called Schubert 
varieties. Moreover, one can show that the Chern cIasses of the universal 
bundle U,.N' appropriately normalized, are integral cohomology cIasses, and 
thus aversion of Proposition 4.3 is valid for vector bundles (see Chern [2]). 
In algebraic topology, one defines the Chern cIasses as the pullbacks under 
the cIassifying map of the Chern cIasses of the universal bundle, thus admit
ting torsion elements. However, the proof of Theorem 3.6 in that context is 
considerably different and perhaps not quite so simple. 

So far we have encountered two different approaches to Chern cIass 
theory: the differential-geometrie definition in Sec. 3 and the cIassifying space 
approach discussed in the above remark. A third approach is to define Chern 
c1asses only for line bundles, ex te nd the definition to direct sums of line bun
dies by using the required behavior on direct sums, and show that any vector 
bundle can be decomposed as a direct sum of line bundles by modifying the 
base space appropriately (see Hirzebruch [I)). For a comparison of almost all 
definitions possible, see Appendix I in Borel and Hirzebruch [1]. We shall 
present a simple sheaf-theoretic definition of Chern cIass for a complex line 
bundle and show that it is compatible with the differential-geometrie (and 
consequently cIassifying space) definition. We shall assurne a knowledge of 
Cech cohomology as presented in Appendix A in Chap. 11. 

Consider, first, holomorphic line bundles over a complex manifold X. 
Let e be the structure sheaf of X and let e* be the sheaf of nonvanishing holo
morphic functions on X. 

Lemma 4.4: There is a one-to-one correspondence between the equivalence 
cIasses of holomorphic line bundles on X and the elements of the cohomology 
group H 1 (X, e*). 
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Proo/: We shall represent Hl(X, 0*) by means of Cech cohomology. 
Suppose that E ----+ Xis a holomorphie line bundle. There is an open covering 
{Um} = U and holomorphic functions 

(4.4) gmP : Um n Up ~ GL(l, C) = C - CO} 

such that 

(4.5) gmp . gpy . gym = I 

g"'2 = I 

on Um n Up n Uy' 
on U"'. 

Namely, the [g«p} are the transition /unetions of the line bundle with respect 
to a suitable covering (see Sec. 2 of Chap. I). But the data [g«p} satisfying 
(4.5) define a cocycle g E ZI(U, 0*) and hence a cohomology dass in the 
direct limit Hl(X, 0*). Moreover, any line bundle E' ----+ X whieh is isomor
phie to E ----+ X will correspond to the same dass in Hl(X, 0*). This is easy 
to see by combining (via the isomorphism) the two sets oftransition functions 
to get a single set of transition functions on a suitable refinement of the given 
{Um} and {U~}. Thus they will correspond to the same cohomology dass. 
Conversely, given any cohomology dass e E Hl(X, 0*), itcan berepresented 
by a cocycle g = {g«p} on so me covering U = { Um}. By means of the functions 
{gmp} one can construct a holomorphic line bundle having these transition 
functions. Namely, let 

E = u U« X C (disjoint union) 

and identify 

(x, z) E Um X C with (y, w) E Up X C 

if and only if 
y=x and 

This identification (or equivalence relation on .l) gives rise to a holomQrphie 
line bundle. Again, appealing to a common refinement argument, it is easy 
to check that one does obtain the desired one-to-one correspondenct;. 

Q.E.D. 

As we know from the differential-geometrie definition, the Chern dass of 
a line bundle depends only on its equivalence class, and this is most easily 
represented by a cocyde in ZI(U, 0*) for a partieular covering. Recall the 
exact sequence of sheaves in Example II.2.6, 

o ~ Z ~ 0 ~ 0*- 0, 

and consider the induced cohomology sequence 

Hl(X, 0) _ Hl(X, 0*) ~ H2(X, Z) _ H2(X, 0) 
.................... ,........ 1 j 

'... ~ H2(X, R), 

where the vertical mapping is the natural homomorphism j induced by the 
inclusion of the constant sheaves ZeR and 6 is the Bockstein operator. 
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Note that the first Chern class, as defined in Sec. 3, gives a mapping (see 
the dashed arrow above) 

CI: HI(X, 0*) - H2(X, R). 

The following theorem teils us that we can compute Chern classes of line 
bundles by using the Bockstein operator t5. 

Theorem 4.5: The diagram 

HI(X, 0*) ~ H2(X, Z) 

'" CI li 
~H2(X,R) 

is commutative. 

Proof' The basic element of the proof is to represent de Rham cohomo
logy by Cech cohomology and then compute explicitly the Bockstein operato'r 
in this context. Suppose that U = {U .. J is a locally finite covering of X, and 
consider e = {e .. JlyJ E Z2(U, R). We want to associate with e a cIosed 2-form 
'P on X. Since e also is an element of Z2(U, &) and & is fine, there exists a 
r E CI(U, &) so that t5r = e, for instance, 

rfJy = L 'P .. e .. fJy , .. 
where 'P .. is a partition of unity subordinate to U. Exterior differentiation is 
weil defined on cochains in ef(U, &P) and commutes with the coboundary 
operator, and so we obtain 

t5dr = dt5r = de = O. 

Then dr E Z I (U, 8 1), but & I is also fine, so do the same thing once more, 
writing 

Then p, E CO(U, &1) and t5p, = dr, and thus dp, E eO(U, 8 2). But 

t5dp, = dt5 p, = d2r = 0, 

and so 'P = -dp, E ZO(U, &2) = &2(X) is a well-defined global differential 
form which is cIearly d-cIosed. Thus to a cocycIe e E Z2(U, R) we have asso
ciated a c10sed differential form 'P(e). This induces a mapping at the coho
mology level, 

(4.6) H2(X, R) _ H2(X, R), 
(Cechl (d. Rhlm) 

which one can show is weil defined arid is an isomorphism (cf. the proof of 
Theorem 11. 3. I 3). Note that the mapping at the cocycle level depends on 
the choices made (r and p,) but that the induced mapping on ~ohomology is 
independent of the choices made. This is thus an explicit representation for 
the isomorphism between de Rham cohomology and Cech cohomology. The 
choice of sign in this isomorphism was made so that the concept of "positiv
ity" for Chern classes is compatible for the sheaf-theoretic and differential-
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geometrie definitions ofChern c1asses(cf. Chap. VI; Kodaira [I]; Hirzebruch 
[I]; Borel-Hirzebruch [l; lI-Appendix]). 

Suppose now that U is a covering of X, with the property that any inter
section of elements of the covering is a cell (in particular is simply con
nected). t We want to use U to describe the Bockstein operator ~: 

~ : Hl(X, 0*) ----+ H2(X, Z). 

Suppose that g = {g .. JlJ E Zl(U, 0*). Then (I = {(I"JlJ, defined by 

(I .. JI = -21 . log g .. JI = exp-l(g .. JI)' 
1ll 

defines an element of Cl (U, 0) (here we use the simply connectedness and any 
partieular braneh of the logarithm). Thus ~(I E C2(U, 0), and since ~2 = 0, 
we see that ~(I E Z2(U, 0). But 

I 
(~(I)"JlY =2~(loggJly -logg .. y + log g .. JI) , 

1ll 

and this is integer-valued, since 

g"JI . gJly = g .. y; 

i.e., {g"JlJ is a eoeycle in Z 1 (X, 0*). Thus ~(I E Z 2(U, Z) and is a representa
tive for ~(g) E H2(X, Z). 

Now let g = [g"JlJ be the transition funetions of a holomorphic line bundle 
E ---> X and let h be a Hermitian metric on E. Sinee {U .. J is a trivializing cover 
for E, we have frames f .. for E over U .. , and we set h .. = h(f .. ). Note that h .. 
is a positive C= function defined in U ... Thus 

which we rewrite as 

in U .. , 

I -
c1(E, h) = 2~aa log h ... 

1ll 

Note that the functions h .. satisfy 

h .. = I gJl .. 12hJl 

on U .. n UJI , whieh follows from the change of frame transformation (1.7) 
for the Hermitian metric h. We want to use the functions {h .. J in the trans
formation from Cech to de Rham representatives. As above, let 

I 
~(I E Z2(U, Z), (I"JI = -2 . log g .. JI' 

1ll 

be the Bockstein image of (g .. JlJ in H2(X, Z). We now want to associate to 
~(I a c10sed 2-form via the construction giving (4.6), which will turn out to 

tSuch a covering always exists and will be a Leray covering for the constant sheaf; i.e., 
Hq(IO'I, R) = 0 for any simplex 0' of the covering U. If X is equipped with a Riemannian 
metric (considered as areal ditferentiable manifold), then every point x E X has a funda
mental neighborhood system of convex normal balls (Helgason [I], p. 54), and the inter
section of any finite number of such convex sets is again convex. Moreover, these convex 
sets are cells. 
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be the Chern form of E, concIuding the proof of the theorem. Choose rand 
P in the construction of the mapping (4.6) by letting r = a and P = {P.}, 
where 

I 
P. = -2 .a log h •. 

TCI 

Then we see that this choice of P = {P.} satisfies 

(ö p).P = Pp - P(I. = 2J....·a log hhp 
TCI (I. 

= -21 .a log g.pg.P 
7Cl 

= -21 .(a log g.p + a log g.p) 
TCI 

I 
= 2~dlogg.p 

TCI 

= da.p = droH 

(here a log gP. = 0, since gp(l. is holomorphic). Thus the cIosed 2-form asso
ciated with the cocycIe Öa is given by 

rp = -dp = d(iTCa log h.) 

Q.E.D. 

A modification of the above proof shows that Theorem 4.5 is also true 
in the C~ category. Namely, there is an exact sequence 

0--+ Z -+ 8 -+ 8* -+ ° 
on a differentiable manifold X, where 8* is the sheaf of nonvanishing C~ 
functions. The induced sequence in cohomology reads 

-+ Hl(X, 8) -+ Hl(X, 8*) ~ H2(H, Z) -+ H2(X, 8)-+, 

but Hf(X, 8) = 0, q > 0, since 8 is fine, and hence there is an isomorphism 

Hl(X, 8*) :~ H2(X, Z), 

wh ich asserts that all differentiable complex line bundles are determined by 
their Chern cIass in H2(X, Z) [but not necessarily by their real Chern cIass in 
jJ2(X, Z), as there may be so me torsion lost]. For holomorphic line bundles, 
the situation is more complicated. Let X be a complex manifold and consider 
the corresponding sequence 

(4.7) Hl(X, fl) --+ Hl(X, fl*) ~ H2(X, Z) -+ H2(X, fl) 

~ lj 
jJ2(X, Z). 
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Here we may have HI(X, 0) or H2(X,O) nonvanishing, and line bundles 
would not be determined by their Chern c\ass in H2(X, Z). We want to 
characterize the image of CI in the above diagram. Let Hf,I(X, Z) be the 
cohomology c1asses in H2(X, Z) wh ich admit a d-c\osed differential form of 
type (I, 1) as a representative, and let 

Hf, I(X, Z) = r I(Hf, I (X, Z» c H2(X, Z). 

Proposition 4.6: In (4.7), 

CI(HI(X, 0*» = Hf,t(X, Z). 

Proof: It suffices to show that 

J(H I(X, 0*» = Hf, I(X, Z) in (4.7). 

To see this, it suffices to show that the image of Hf, I (X, Z) in H2(X, 0) is 
zero. Consider the following commutative diagram of sheaves (all natural 
inc\usions), 

C 

/\ 
Z ----)0 0, 

and the induced diagram on cohomology, 

H2(X, C) 

/ ~ 
H2(X, Z) ----)0 H2(X, 0). 

Now Hf, I (X, Z) C H2(X, C) and is the image of Hf, I (X, Z) in the above 
diagram. Therefore it suffices to show that the image of Hf, I (X, C) (defined 
as before) in H2(X, 0) is zero. Consider the homomorphism of resolutions 
of sheaves 

0----)0 C ----)0 &0 ~ &1 ~ &2 ~ .•. 

1; 1; 1~'" 1~'" 
0----)0 0 ----)0 &0.0 ~ &0, I ~ &0. 2 ~ . , . 

where 1to.q : &q --+ &O,q is the projection on the submodule of forms of type 
(0, q). Therefore the mapping 

H2(X, C) ----)0 H2(X, 0) 

is represented by mapping a d-c1osed differential form 'P onto the ä-c1osed 
form 1tO,2'P. It is then c1ear that the image of Hf,I(X, C) in H2(X, 0) is zero, 
since a c\ass in H t, I (X, C) is represented by a d-c1osed form 'P of type (I, 1), 
and thus 1tO•2'P = O. 

Q.E.D. 

Closely related to holomorphic line bundles is the concept of a divisor 
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on a complex manifold X. Consider the exact sequence of multiplicative 
sheaves 

(4.8) 0~0*~~*~~*/0*~0 

where 0* was defined above and ~* is the sheaf of non-trivial meromorphic 
functions on X; i.e., the stalk ~~ is the group of non-zero elements of the 
quotient fie\d of the integral domain Ox at a point x E X (see Gunning and 
Rossi [I], for the proofs ofthe algebraic structure ofOx; i.e., Ox is a Noether
ian local ring; moreover, Ox is an integral domain, with unique factorization). 
We let i> = ~ * /0*, and this is called the sheaf of divisors on X. A section of 
i> is called a divisor. If D E HO(X, i», then there is a covering ~ = {V.} and 
meromorphic functions (sections of ~*) Ja defined in V. such that 

(4.9) 2 = g.p E 0*(V. n Vp). 

Moreover, 

g.p.gpy.gy. = 1 on v. n Up n Vy' 

Thus a divisor gives ris.e to an equivalence c\ass of line bundles represented 
by the cocyc\e {g.p}. This is seen more easily by looking at the exact sequence 
in cohomology induced by (4.8), namely 

(4.10) HO(X, ~*) ~ HO(X, :0) -+ H I(X, 0*) 

16 

H2(X, Z), 

where we have added the vertical map coming from (4.7). From the sequence 
(4.8) we see that a divisor determines an equivalence c\ass of holomorphic 
li ne bundles and that two different divisors give the same c\ass if they "differ 
by" (multiplicatively) agiobai meromorphic function (this is called linear 
equi~'alence in algebraic geometry). Divisors occur in various ways, but very 
often as the divisor determined by a subvariety V c X of codimension I. 
Namely, such a sub-variety V can be defined by the following data: a covering 
{U.} of X, holomorphic functions f. in U., and fp/f. = g.R nonvanishing and 
holomorphic on V. ('\ V8• The subvariety V is then defined to be the zeros of 
the functions f. in U •. This then clearly gives rise to a divisor (see Gunning 
and Rossi [I] or Narasimhan [2] for a more detailed discussion of divisors 
and subvarieties). We shall need to use this concept later on only in the case 
of a nonsingular hypersurface V c X, which then gives rise to an equivalence 
class of holomorphic line bundles. 
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CHAPTER IV 

ELLIPTIC 

OPERATOR THEORY 

In this chapter we shall describe the general theory of elliptic differential 
operators on compact differentiable manifolds, leading up to a presentation 
of a general Hodge theory. In Sec. I we shaIl develop the relevant theory of 
the function spaces on which we shaIl do analysis, namely the Sobolev spaces 
of sections of vector bundles, with proofs of the fundamental Sobolev and 
Rellich lemmas. In Sec. 2 we shall discuss the basic structure of differential 
operators and their symbols, and in Sec. 3 this same structure is generalized to 
the context of pseudodifferential operators. Using the results in the first 
three sections, we shaIl present in Sec. 4 the fundamental theorems concerning 
homogeneous solutions of eIliptic differential equations on a manifold. 
The pseudodifferential operators in Sec. 3 are used to construct a parametrix 
(pseudoinverse) for a given operator L. Using the parametrix we shall show 
that the kernel (null space) of L is finite dimensional and contains only CN 
sections (regularity). In the case of self-adjoint operators, we shall obtain the 
decomposition theorem of Hodge, which asserts that the vector space of 
sections of a bundle is the (orthogonal) direct sum of the (finite dimensional) 
kernel and the range of the operator. In Sec. 5 we shall introduce elliptic 
complexes (a generalization of the basic model, the de Rham complex) and 
show that the Hodge decomposition in Sec. 4 carries over to this context, 
thus obtaining as a corollary Hodge's representation of de Rham cohomo
logy by harmonic forms. 

1. Sobolev Spaces 

In this section we shall restrict ourselves to compact differentiable mani
folds, for simplicity, although many of the topics that we shall discuss are 
certainly more general. Let X be a compact differentiable manifold with a 
strict\y positive smooth measure J1. 

We mean by this that dJ1 is a volume element (or density) which can be 
expressed in local coordinates (x p ••. , x n) by 

dJ1 = p(x) dx = p(x) dx , ... dx. 
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where the coefficients transform by 

p(x)dx = P(y(x))ldeta~~)ldX' 

where p(y) dy is the representation with respect to the coordinates y = 
(y" ... , Yft), where x -+ y(x) and ay/ax is the corresponding Jacobian matrix 
of the change of coordinates. Such measures always exist; take, for instance, 

p(x) = Idetgij(x)I1,2, 

where ds 2 = I glJ(x) dx. ® dXJ is a Riemannian metric for X expressed in 
terms of the local coordinates (x I' •.• , x.).t If Xis orientable, then the vol
ume element dj.l can be chosen to be a positive differential form of degree 
n (wh ich can be taken as adefinition of orientability). 

Let E be a Hermitian (differentiable) vector bundle over X. Let &k(X, E) 
be the kth order differentiable sections of E over X, 0 < k < 00, where 
&~(X, E) = SeX, E). As usual, we shall denote the compactly supported 
sectionst by j)(X, E) c &(X, E) and the compactly supported functions by 
~(X) c SeX). Define an inner product ( , ) on SeX, E) by setting 

(e, 1/) = f x <e(x), 1/(X»E dj.l, 

where < , > E is the Hermitian metric on E. Let 

lIelio = (e, e)I/2 

be the V-norm and let WO(X, E) be the completion of SeX, E). Let [V., qJ.} 
be a finite trivializing cover, where, in the diagram 

Elu. ~ Da. x c" 

1 1 , -
v. ~v"" 

rp. is a bundle map isomorphism and IP.: v. -+ D", c R" are local coordinate 
systems for the manifold X. Then let 

rp:: S(V., E) ---- [s(D.)]" 

be the induced map. Let [p.l be a partition of unity subordinate to [V.}, 
and define, for e E SeX, E), 

Ilell,.E = ~ Ilrp:p.ell"R"' 
• 

where 11 II"R" is the Sobolev norm for a compactly supported differentiable 
function 

f: R· ---- C .. , 

tSee any elementary text dealing with calculus on manifolds, e.g., Lang [I). 
tA section e E &(X, E) has compact support on a (not necessarily compact) manifold 

X if (x E X: e(x) '* Oj is relatively compact in X. 
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defined (for a scalar-valued function) by 

(1.1 ) 

where 

J(y) = (21ft" f e-i(JC.Y)/(x)dx 

is the Fourier transform in R". We extend this to a vector-valued function by 
taking the s-norm of the Euclidean norm of the vector, for instance. Note 
that 11 11, is defined for all s E R, but we shall deal only with integral values 
in our applications. Intuitively, 11 eil, < 00, for s a positive integer, means 
that e has s derivatives in U. This foJIows from the fact that in Rn, the norm 
11 11,.Rn is equivalent [on :D(R")] to the norm 

[Jt, t.1 D~ 112 dx J/2, I E :D(R") 

(see, e.g., Hörmander [I], Chap. I). This follows essentially from the basic 
facts about Fourier transforms that 

...-...... -
D~/(y) = y"f(y), 

where y<l = y~l ... y:.,U = (-i)'<I' m1 ••• Unn, DJ = a/axj> and 11/110 = 
11/110. 

The norm 11 11, defined on E depends on the choice of partition of unity 
and the local trivialization. We let W'(X, E) be the completion of 8(X, E) 
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C~ process with compact supports) does not affect the growth conditions and 
hence the existence of the integrals. Thus the global result stated above is 
easily obtained. We have the following two important results concerning this 
sequence of Hilbert spaces. 

Proposition 1.1 (Sobolev): Let n = dimRX, and suppose that s > [nI2] + 
k + I. Then 

W'(X, E) c 8k (X, E). 

Proposition 1.2 (RelIich) : The natural inclusion 

j: W'(E) c W'(E) 

for t < s is a completely continuous linear map. 

Recall that completely continuous means that the image of a c10sed ball is 
relatively compact, Le., j is a compact operator. In Proposition 1.2 the com
pactness of X is strongly used, whereas it is inessential for Proposition 1.1. 

To give the reader so me appreciation of these propositions, we shall give 
proofs of them in special cases to show what is involved. The general results 
for vector bundles are essentially formalism and the piecing together of these 
special cases. 

Proposition 1.1' (Sobolev): Let f be a measurable V function in R" with 
11 f 11, < 00, for s > [nI2] + k + I, a nonnegative integer. Then f E Ck(R") 
(after a possible change on a set of measure zero). 

Let 

Proof: Our assumption 11 f 11. < 00 means that 

t.ll(~)lz(l + !eIZ)'d~ < 00. 

be the inverse Fourier transform, if it exists. We know that if the inverse 
Fourier transform exists, then !(x) agrees with f(x) almost everywhere, and 
we agree to say thatf E CO(R") if this integral exists, making the appropriate 
change on a set of measure zero. Similarly, for so me constant c, 

will be continuous derivatives of f if the integral converges. Therefore we 
need to show that for I CI I < k, the integrals 

f e'<"·()~·l(~) d~ 
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Now s has been chosen so that this last integral exists (wh ich is easy to see by 
using polar coordinates), and so we have 

f Il(~)II~ I'«' d~ < 00, 

and the proposition is proved. 
Q.E.D. 

Similarly, we can prove a simple version of RelIich's lemma. 

Proposition 1.2' (RelIich) : Supppose that h E W'(Rn) and that aH h have 
compact support in K c eRn. Assume that 11 I. 11. < I. Then for any t < s 
there exists a subsequence I., which converges in 11 11,. 

Proof" We observe first that for~, " ER", s E Z+, 

(1.2) (1 + "12)'12 < 25 / 2 (1 + I ~ - ,,12)'12(1 + I" 12)'12. 

To see this we write, using the Schwarz inequality, 

1 + I' + ~12 ~ 1 + (1'1 1- 1~1)2 < 1 1- 2(1'12 1- 1~12) 

< 2(1 1- I' 12)(11- I" 12). 

Now let e = , + ~, and we obtain (1.2) easily. 
Let rp E :D(R") be chosen so that rp = 1 near K. Then from a standard 

relation between the Fourier transform and convolution we have that 

I. = rpl. 
implies 

(1.3) 

Therefore we obtain from (1.2) and (1.3) that 

(1 + I ~ 12)'121 l.(~) I 

< 2'/2 f (1 + I~ -1112)'/214J(~ - ,,)1(1 + 1,,12)'12 I!.(,,) I d" 
< K,.r " I. 11, < K,.p, 

where K,." is a constant depending on sand rp. Therefore I !R,) I is uniformly 
bounded on compact subsets of Rn. Similarly, by differentiating (1.3) we ob
tain that all derivatives of l. are uniformly bounded on compact subsets in 
the same manner. Therefore, there is, by Ascoli's theorem, a subsequence 
I., such that l., converges in the C" topology to a C" function on Rn. Let us 
caH {Iv} this new sequence. 

112 Elliptic Operator Theory Chap. IV 

Now s has been chosen so that this last integral exists (wh ich is easy to see by 
using polar coordinates), and so we have 

f Il(~)II~ I'«' d~ < 00, 

and the proposition is proved. 
Q.E.D. 

Similarly, we can prove a simple version of RelIich's lemma. 

Proposition 1.2' (RelIich) : Supppose that h E W'(Rn) and that aH h have 
compact support in K c eRn. Assume that 11 I. 11. < I. Then for any t < s 
there exists a subsequence I., which converges in 11 11,. 

Proof" We observe first that for~, " ER", s E Z+, 

(1.2) (1 + "12)'12 < 25 / 2 (1 + I ~ - ,,12)'12(1 + I" 12)'12. 

To see this we write, using the Schwarz inequality, 

1 + I' + ~12 ~ 1 + (1'1 1- 1~1)2 < 1 1- 2(1'12 1- 1~12) 

< 2(1 1- I' 12)(11- I" 12). 

Now let e = , + ~, and we obtain (1.2) easily. 
Let rp E :D(R") be chosen so that rp = 1 near K. Then from a standard 

relation between the Fourier transform and convolution we have that 

I. = rpl. 
implies 

(1.3) 

Therefore we obtain from (1.2) and (1.3) that 

(1 + I ~ 12)'121 l.(~) I 

< 2'/2 f (1 + I~ -1112)'/214J(~ - ,,)1(1 + 1,,12)'12 I!.(,,) I d" 
< K,.r " I. 11, < K,.p, 

where K,." is a constant depending on sand rp. Therefore I !R,) I is uniformly 
bounded on compact subsets of Rn. Similarly, by differentiating (1.3) we ob
tain that all derivatives of l. are uniformly bounded on compact subsets in 
the same manner. Therefore, there is, by Ascoli's theorem, a subsequence 
I., such that l., converges in the C" topology to a C" function on Rn. Let us 
caH {Iv} this new sequence. 



Sec. 2 Differential Operators 113 

Let f > 0 be given. Suppose that t < s. Then there is a ball Bi such that 

I 
(l + lel2)' ,<f 

for e outside the ball Bi' Then consider 

11 I. - 11' Ilf = J R" I ~r;1 {i~~)}2 (l + I l; 12)' dl; 

< JB< 1(/. - ll'xe) 12(1 + lel2)' de 

+ f J R"-B< 1(/. - ll'xe) \2(1 + \ e \2)' de 

< J 1(1. - ll')(e) 12(1 + I e 12)' dl; + 2f, 
B< 

where we have used the fact thatll 1.11, < 1. Since we know thatl. converges 
on compact sets, we can choose v, f.llarge enough so that the first integral is 
< f, and thus I. is a Cauchy sequence in the 11 11, norm. 

Q.E.D. 

We now need to discuss briefly the concept of a lormal adjoint operator 
in this setting. 

Definition 1.3: Let 
L: SeX, E) -+ sex, F) 

be aC-linear map. Then aC-linear map 

is called an adjoint of L if 

(1.4) 

S: SeX, F) -+ sex, E) 

(Lf, g) = (f, Sg) 

for all I E SeX, E), g E sex, F). 

It is an easy exercise, using the density of SeX, E) in WO(X, E), to see that 
an adjoint of an operator L is unique, if it exists. We denote this transpose 
by L*. In later sections we shall discuss adjoints of various types of opera
tors. This definition extends to Hilbert spaces over noncompact manifolds 
(e.g., R") by using (\.4) as the defining relation for sections with compact 
support. This is then the lormal adjoint in that context. 

2. Differential Operators 

Let E and F be differentiable C-vector bundles over a differentiable mani
fold X.t Let 

L: seX, E) -+ S(X, F) 

tThe case of R-vector bundles is exactly the same. For simplicity we restrict ourselves to 
the case of complex coefficients. 
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be aC-linear map. We say that L is a differential operator if for any choice of 
local coordinates and local trivializations there exists a linear partial dif
ferential operator L such that the diagram (for such a trivialization) 

[&(U)]P ~ [&(U)]9 

III III 
&(U, U x 0) -----+ &(U, U x C9) 

U U 
&(X, E)lu ~ &(X, F)lu 

commutes. That is, for 1 = (fl' ... ,fp) E [8( UW 

LU); = t aij,D«lj , i = 1, ... ,q. 
j= I 

1.IS;k 

A differential operator is said to be of order k if there are no derivatives of 
order > k + 1 appearing in a local representation. (For an intrinsic defini
tion involving jet-bundles, see Palais [I], Chap. IV.) Let DiffiE, F) denote 
the vector space of all differential operators of order k mapping &(X, E) 
to &(X, F). 

Suppose Xis a compact differentiable manifold. We define OPk(E, F) as 
the vector space of C-linear mappings 

T: &(X, E) -----+ &(X, F) 

such that there is a continuous extension of T 

T,: W'(E) -----+ W'-k(F) 

for all s. These are the operators 01 order k mapping E to F. 

Proposition 2.1: Let L E OPk(E, F). Then L* exists, and moreover L* 
E OPk(F, E), and the extension 

(L*).: W'(X, F) -----+ W'-k(X, E) 

is given by the adjoint map 

(Lk _.)*: W'(X, F) -~ W'-k(X, E). 

This proposition is easy to prove since one has a candidate (Lk -.)* (for each s) 
which gives the desired adjoint when restricted to 8(X, F) in a suitable man
ner. One uses the uniqueness of adjoints and Proposition 1.1. 

Proposition 2.2: Diffk(E, F) c OPk(E, F). 

A 
The proof of this proposition is not hard. Locally it involves, again, D·f(~) = 

~«l(e), and the definition of the s-norm. 
We now want to define the symbol of a differential operator. The symbol 

will be used for the c1assification of differential operators into various types. 
First we have to define the set of all admissible symbols. Let T*(X) be the real 
cotangent bundle to a differentiable manifold X, let T'(X) denote T*(X) 
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with the zero cross section deleted (the bundle of nonzero cotangent vectors), 
and let T'(X)"::"'" X denote the projection mapping. Then 1l* E and 1l* F denote 
the pullbacks of E and F over T'(X). We set, for any k E Z, 

5mblk(E, F) := {a E Hom(1l*E, 1l*F): a(x, pv) 

= pka(X, v), (x, v) E T'(X), p > OJ. 
We now define a linear map 

(2.1) a k: Diffk(E, F) -----+ 5mblk(E. F), 

where a k(L) is ca lied the k-symbol of the differential operator L. To define 
a k(L), we first note that a k(L)(x, v) is to be a linear mapping from Ex to F., 
where (x, v) E T'(X). Therefore let (x, v) E T'(X) and e E Ex be given. 
Find g E SeX) and fE sex, E) such that dg" = v, and fex) = e. Then we 
definet 

ak(LXx,v)e = LU~(g - g(x)Yf)(x) E F". 

This defines a linear mapping 

ak(LXx, v): Ex --+ Fx• 

which then defines an element of 5mblk(E, F), as is easily checked. lt is also 
easy to see that the a k(L), so defined, is independent of the choices made. 
We call ak(L) the k-symbol of L. 

Proposition 2.3: The symbol map a k gives rise to an exact sequence 

(2.2) 0 --+ Diffk_I(E, F) ~ Diffk(E, F) ~~ 5mblk(E, F), 

where j is the natural inclusion. 

Proof: One must show that the k-symbol of a differential operator of 
order k has a certain form in local coordinates. Let L be a linear partial 
differential operator 

L: [S(U)]P --+ [S(UW 

where U is open in Rn. Then it is easy to see that if 

L = ~ A.D·, 
1.15k 

where [A.l are q X P matrices of C~ functions on U, then 

(2.3) 

where v = el dX 1 + ... + en dxn • For each fixed (x, v), ak(L)(x, v) is a linear 
mapping from x x cP --> X X Cq , given by the usual multiplication of a 
vector in CP by the matrix 

~ A,(x)e'· 
1,1 ~k 

t We inc1ude the factor i' so that the symbol of a differential operator is compatible 
with the symbol of a pseudodifferential operator defined in Sec. 3 by means ofthe Fourier 
transform. 
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What one observes is that if (1 k(L) = 0, then the differential operator L has 
kth order terms equal to zero, and thus L is a differential operator of order 
k - I. Let us show that (2.3) is true. Choose g E S( U) such that v = dg = 

L: ej dXj; i.e., Djg(x) = ej . Let e E P. Then we have 

(1k(L)(x, v)e = L: A,D'(ki",(g - g(X»ke)(X). 
1,lsk • 

Clearly, the evaluation at x of derivatives of order <k - 1 will give zero, 
sinee there will be a faetor of [g - g(x)] Ix = ° remaining. The only nonzero 
term is the one of the form (reealling that DY = (-j)Y Di1 ••• D~n) 

k' I~k A.(x) k!(DIg(x»" ... (Dng(x»" 

= ~ A,(x)ei' ... e~' = ~ A.(x)e', 
I:i=k I:i=k 

wh ich gives us (2.3). The mapping (1 k in (2.2) is weIl defined, and to see that 
the kernel is eontained in Diffk _ 1 (E, F), it suffiees to see that this is true for a 
loeal representation of the operator. This then follows from the loeal repre
sentation for the symbol given by (2.3). 

Q.E.D. 

We observe that the following property is true: If LI E Diffk(E, F) and 
L z E Diffm(F, G), then LzL I = L z 0 LI E Diffk+m(E, G), and, moreover, 

(2.4) (1k+m(LzL I) = (1m(L z) . (1k(L I), 

where the right-hand produet is the produet of the linear mappings involved. 
The relation (2.4) is easily eheeked for loeal differential operators on trivial 
bundles (the ehain rule for eomposition) and the general ca se is redueed to 
this one in a straightforward manner. 

We now look at some examples. 

Example 2.4: If L: [S(Rn)]p ---> [S(Rn)]q is an element of Diffk(R" X P, 
Rn X cq), then 

where 

L = '" A D' 4J , , 
1,ISk 

the [A,} being q X P matrices of differentiable funetions in Rn (cf. the proof 
of Proposition 2.3). 

Example 2.5: Consider the de Rham eomplex 

SO(X) ~ SI(X) ~ ... ~ S"(X), 

given by exterior differentiation of differential forms. Written somewhat 
differently, we have, for T* = T*(X) ® C, 
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and we want to compute the associated I-symbol mappings, 

(2.5) 

We claim that for e E /\ PT~, we have 

CT I (d)(x, v)e = iv /\e. 

Moreover, the sequence of linear mappings in (2.5) is an exact sequence of 
vector spaces. These are easy computations and will be omitted. 

Example 2.6: Consider the Dolbeault complex on a complex manifold 
x, 

Sp· O(X) ~ sp· I(X) ~ ... ~ sp· "(X) ---+ O. 

Then this has an associated symbol sequence 

---+ /\p.q-lT~(X)~ /\p,qT~(X)~ /\p·q+1T~(X)---+, 

where the v.ector bundles /\ p,qT*(X) are defined in Chap. I, Sec. 3. We have 
that v E T:(X), considered as areal cotangent bundle. Consequently, v = vl,O 
+ vO. I, given by the injection 

o -~ T~(X) ---+ T~(X) ® RC = T*(X)I. ° E8 T*(X)o. I 

= /\ 1, 0T*(X) E8 /\ 0. I T*(X). 

Then we claim that 

CT I (ä)(x, v)e = ivO. 1 /\e, 

and the above symbol sequence is exact. Once again we omit the simple 
computations. 

Example 2.7: Let E ---+ X be a holomorphic vector bundle over a co m
plex manifold X. Then consider the differentiable (p, q)-forms with coeffi
cients in E, sp,q(X, E), defined in (11.3.9), and we have the complex (11.3.10) 

JE 
---+ sp,q(x, E) ---+ sp·q+ I(X, E) ---+, 

which gives rise to the symbol sequence 
",(Je)(X.V) 

---+ /\P,qT* 'X' E ) /\P.q+IT* 'X' E ---+ x\c} x x'C:) x • 

We let v = Vi. ° + VO. I , as before, and we have for f® e E /\ P.q: ® E 

CT l(ä)(x, v)f ® e = (ivo. I /\ f) ® e, 

and the symbol sequence is again exact. 

We shall introduce the concept of el/iptic comp/ex in Sec. 5, which general
izes these four examples. 

The last basic property of differential operators wh ich we shall need is 
the existence of a formal adjoint. 

Proposition 2.8: Let L E Diffk(E, F). Then L * exists and L * E Diffk ( F, E). 
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Moreover, u,,(L*) = u,,(L)*, where u,,(L)* is the adjoint of the linear map 

ak(L)(x, v): EK ---+ F". 

Proof: Let L E Diffk(E, F), and suppose that p, is a strictly positive 
smooth measure on X and that hE and hp are Hermitian metrics on E and F. 
Then the inner product fot any e, " E :O(X, E) is given by 

(e,,,) = f x <e, ">E dp" 

and if e, " have compact support in a neighborhood where E admits a local 
frame f, we have 

where p(x) is a density, 

,,(x) = ,,(f)(x) = : ' r
"I(f)(X)j 

"r(f)(x) 

etc. Similarly, for a, l' E :O(X, F), we have 

(a,1') = f 'f(x)hp(x)a(x)p(x) dx . . " 

Suppose that L: :O(X, E) ----> :O(X, F) is a linear differential operator of order 
k, and assurne that the sections have support in a trivializing neighborhood 
U which gives local coordinates for X near so me point. Then we may write 

(Le, 1') = f R" 'f(x)hF(x)M(x, D)e(x)p(x) dx, 

where 

M(x, D) = ~ C,,(x)D" 
lotr" 

is an s x r matrix of partial differential operators; i.e., C,,(x) is an s X r 
matrix of C~ functions in Rn. Note that e and l' have compact support here. 
We can then write 

(Le, T) = f." loft" 'f(x)P(x)hP(x)Co(x)D"e(x) dx, 

and we can integrate by parts, obtaining 

(Le, T) = f ~ (-1)1 0 1 DO('f(x)p(x)hF(x)C,,(x»e(x) dx 
R" 101,;" 

= J '( ~ C,,(X)DOT(X»hE(x>e(x)p(x) dx, 
R" 1111,;" 

where Co(x) are r X s matrices of smooth functions defined by the formula 

(2.6) '( ~ C"D"T) = ~ (-I)loIDO('fphpC,,)h"E1p-1, 
I~" I"tr" 
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and hence the C« involve various derivatives of both metrics on E and F 
and of the density function p(x) on X. This formula suffices to define a linear 
differential operator L *: !D(X, F) -> !D(X, E), which has automatically the 
property ofbeing the adjoint of L. Moreover, we see that the symbol uk(L*) 
is given by the terms in (2.6) wh ich only differentiate T, since all other terms 
give lower-order terms in the expression I:1«I:::kC,,(X). One checks that the 
symbol of L * as defined above is the adjoint of the symbol of the operator L 
by representing uk(L) with respect to these loeal frames and eomputing its 
adjoint as a linear mapping. 

Q.E.D. 

We have given abrief discussion of the basic elements of partial differ
ential operators in a setting appropriate for our purposes. For more details 
on the subject, see Hörmander [1] for the basic theory of the modern partial 
differential equations (principally in Rn). Palais [I] has a formal presentation of 
partial differential operators in the context of manifolds and vector bundles, 
with a viewpoint similar to ours. In the next sections we shall generalize the 
concept of differential operators in order to find a dass of operators which 
will serve as "inverses" for elliptie partial differential operators, to be studied 
in Sec. 4. 

3. Pseudodifferential Operators 

In this section we want to introduce an important generalization of dif
ferential operators called, appropriately enough, pseudodifferential opera
tors. This type of operator developed from the study of the (singular) integral 
operators used in inverting differential operators (solving differential equa
tions). On compact Riemannian manifolds a natural differential operator is 
the Laplaeian operator, and our purpose here will be to give a sufficient 
amount of the recent theory of pseudodifferential operators in order to be 
able to "invert" such Laplacian operators, wh ich will be introduced later 
in this chapter. This leads to the theory of harmonie differential forms intro
duced by Hodge in his study of algebraic geometry. 

In defining differential operators on manifolds, we specified that they 
should locally look like the differential operators in Euclidean space with 
which we are all familiar. We shall proceed in the same manner with pseudo
differential operators, but we must spend more time developing the (relatively 
unknown) local theory. Once we have done this, we shall be able to obtain 
a general dass of pseudodifferential operators mapping sections of vector 
bundles to sections of vector bundles on a differentiable manifold, in which 
dass we can invert appropriate elliptic operators. 

Recall that if U is an open set in Rn and if p(x, e) is a polynomial in e of 
degree m, with coefficients being C~ functions in the variable x E U, then 
we can obtain the most general linear partial differential operators in U by 
letting P = p(x, D) be the differential operator obtained by replacing the 
veetor e = (e" . .. , en) by (-iD" ... , -iD.), where we set Dj = (ajax) 
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(j = I, ... ,n) and Da = (_i)laID~' .,. D~' replaces e~' .. , e~' in the poly
nomial p(x, e). By using the Fourier transform we may write, for U E 1)( U), 

(3.1) PU(x) = p(x, D)u(x) = f p(x, e)U(e)ei(.T,{) de, 

where <x, e> = Ej~ I xje} is the usual Euclidean inner product, and ü(e) = 
(21lt n f u(x)e-i(X,{) dx is the Fourier transform of u. 

Thus (3.1) is an equivalent way (via Fourier transforms) to define the 
action of a differential operator p(x, D) defined by a polynomial p(x, e) on 
functions in the domain U. We use compact supports here so that there is 
no trouble with the integral existing near a u, and since 1)( U) is den se in most 
interesting spaces, it certainly suffices to know how the operator acts on such 
functions. Of course, P(x, D): 1)( U) ~ 1)( U), since differential operators 
preserve supports. 

To define the generalization of differential operators we are interested 
in, we can consider (3.1) as the definition of differential operator and genera
lize the nature of the function p(x, e) which appears in the integrand. 

To do this, we shall define classes of functions which possess, axiomati
cally, several important properties of the polynomials considered above. 

Definition 3.1: Let U be an open set in Rn and let m be any integer. 

(a) Let sm( U) be the class of c~ functions p(x, e) defined on U x Rn, 
satisfying the following properties. For any compact set Kin U, and for any 
multi indices IX, p, there exists a constant Ca,P,K' depending on IX, p, K, and p 
so that 

(3.2) 

(b) 

(3.3) 

X E K,c. ER". 

Let sm( U) denote the set of p E sm( U) such that 

The limit U m( p)(x, e) = ~i:!! P(~ }e) exists for e i= 0, 

and, moreover, 

p(x, e) - !/I(e)um(p)(x, e) E sm-I(U), 

where '" E COO(R") is a cut-off function with !/Ice> == 0 near e = 0 and 
!/I(e> == 1 outside the unit ball. 

(c) Let S(f(U) denote the dass of pE sm( U) such that there is a compact 
set K c U, so that for any e ERn, the function p(X, e), considered as a 
function of XE U, has compact support in K [i.e., p(x, e) has uniform 
compact support in the x-variable]. Let S(f(U) = sm(u) n S(f(U). 

We notice that if p(x, e> is a polynomial of degree m (as before), then 
both properties (a) and (b) in Definition 3.1 above are satisfied. If the coeffi
cients of p have compact support in U, then p E S;j'( U). Property (a) expresses 
the growth in the e variable near 00, whereas um(p)(x, e) is the mth order 
homogeneous part of the polynomial p, the lower-order terms having gone 
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to zero in the limit. We shall also be interested in negative homogeneity, and 
the cut-off function in (b) is introduced to get rid of the singularity near 
e = 0, which occurs in this case. 

A second example is given by an integral transform with a smooth kerne!. 
Let K(x, y) be a C~ function in U X U with compact support in the second 
variable. Then the operator 

Lu(x) = f K(x, y)u(y) dy 
R" 

can be written in the form (3.1) for an appropriate function p(x, e); i.e., for 
u E :1)(U), 

Lu(x) = f p(x, e)ü(e)ei(x.{} de, 

where p E sm(u) for an m. To see this, we write, by the Fourier inversion 
formula, 

Lu(x) = f K(x, y)[f el(y.VÜ(e)de]dY 

= f ei("'{)[f ei(y-X,OK(x, y) dy]u(e) de 

and we let 

p(x, c!) = f ei(y-x·{)K(x, y) dy, 

wh ich we rewrite as 

p(x, e) = e-I(x,{) f ei(Y'~)K(x, y) dy. 

Thus p(x, e) is (except for the factor e-I(x.{» for each fixed x the Fourier 
transform of a compactly supported function, and then it is easy to see (by 
integrating by parts) that p(x, e), as a function of e, is rapidly decreasing at 
infinity; i.e., 

(l + lel)HlP(x,e)I-O 
as 1 e 1- 00 for all powers of N (this is the class ~ introduced by Schwartz 
[1]). It then follows immediately that P E S"'(U) for an m. Such an operator 
is often referred to as a smoothing operator with C~ kernei. The term smooth
ing operator refers to the fact that it is an operator of order -00, i.e., takes 
elements of any Sobolev space to C"" functions, wh ich is a simple consequence 
of Theorem 3.4 below and Sobolev's lemma (Proposition 1.1). 

Lemma 3.2: Suppose that p E S"'(U). Then (f",(p)(x, e) is a C"" function on 
U x (Ra - {O}) and is homogeneous of degree m in e. 

Proof: It suffices (by the Arzela-Ascoli theorem) to show that for any 
compact subset of the form K x L, where K iscompact in U and L is compact 
in R" - {OJ, we have the limit in (3.3) converging uniformly and that an 
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of Theorem 3.4 below and Sobolev's lemma (Proposition 1.1). 

Lemma 3.2: Suppose that p E S"'(U). Then (f",(p)(x, e) is a C"" function on 
U x (Ra - {O}) and is homogeneous of degree m in e. 

Proof: It suffices (by the Arzela-Ascoli theorem) to show that for any 
compact subset of the form K x L, where K iscompact in U and L is compact 
in R" - {OJ, we have the limit in (3.3) converging uniformly and that an 
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derivatives in x and e of p(x, le)/l'" are uniformly bounded on K x L for 
1 E (1,00). But this follows immediately from the estimates in (3.2) sinee 

DPDs(p(x,le») = DPD.p(x 1):) .11• 1, 
"~l'" "~,,, F 

and hence, for all multiindiees IX, p, 

IDPD.(p(x,le»)I<c (I + l!):I)",-I.I.ll.1 .. ~ 1'" - .,P,t; .. F 
< C.,p,x(l-I + I'!)"'-I.' 
< C.,p,t; sup (I + I e!)',,-I.I < 00. 

~eL 

Therefore all derivatives are uniformly bounded, and in partieular the limit 
in (3.3) is uniform. Showing homogeneity is even simpler. We write, for 
p>O, 

tI (x ""') = lim p(x, lpe) 
". ,,,,.. A_oo 1'" . 

= lim p(x, lpe) • pm 
A-oo (pI)'" 

= lim p(x',l'e) • p", (1' = pl) 
A-oo 0.)'" 

= tI .. (x, e) . p",. 
Q.E.D. 

We now define the prototype (loeal form) of our pseudodifferential opera
tor by using (3.1). Namely, we set, for any pE S"(U) and u E ~(U), 

(3.4) L(p)u(x) = f p(x, e)ü(e)el< .• ,~> de, 

and we eaU L(p) a canonical pseudodifferential operator 0/ order m. 

Lemma 3.3: L(p) is a linear operator mapping ~(U) into &(U). 

Proof' Sinee u E ~(U), we have, for any multiindex IX, 

e"ü(e) = (2nt n f D·U(X)e-I<",C> dx, 

and henee, sinee u has eompaet support, ! e"!! ü(e) 1 is bounded for any IX, 

which implies that for any large N, 

!ü(e)! < C(I + I'I)-N, 

i.e., ü(e) goes to zero at 00 faster than any polynomial. Then we have the 
estimate for any derivatives of the integrand in (3.4), 

1 D~p(x, e)u(e) 1 <C(I + "1)"'(1 + I' I)-N, 

wh ich implies that the integral in (3.4) eonverges nieely enough to differentiate 
under the integral sign as mueh as we please, and henee L(p)(u) E &(U). 
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It is clear from the same estimates that L(p) is indeed a continuous linear 
mapping from :neU) -+ 8(U). 

Q.E.D. 

Our next theorem teils us that the operators L(p) behave very much like 
differential operators. 

Theorem 3.4: Suppose that p E S~( U). Then L(p) is an operator of order m. 

Remark: We introduce functions with compact support to simplify 
things somewhat. Our future interest is compact manifolds and the functions 
p wh ich will arise will be of this form due to the use of a partition of unity. 

Proof: We must show that if u E :n(U), then, for some C> 0, 

(3.5) 11 L(p)u Ils < eil u IIs+m' 
where 11 • 11. = 11 Ils.Rn, as in (1.1), First we note that 

(3.6) L(;)u(e) = f p<e - l1,l1)U(l1) d.l1, 

where p(e - 11, 11) denotes the Fourier transform of p(x, ,,) in the first variable 
evaluated at the point e - ". Since p has compact support in the x-variable 
and because of the estimate (3.2), we have (as before) the estimate, for any 
large N, 

(3.7) I p<e - ",11) I < CN(1 + Ie - ,,12t N(I + I" 12)m/2 
for (e,,,) E Rn X Rn. We have to estimate 

11 Lu 11; = f I L(;)uCe) 12(1 + I e 12)' de 

in terms of 

11 u 1I:+m = f I u(e) 12(1 + I e 12)m+s deo 

We shall need Young's inequality, which asserts that if f * g is the convolu
tion of anf E VeR") and g E U(Rn), then 

11 f * giIL' < 11 f IILI 11 gilL' 
(see Zygmund [I]). 

Proceeding with the proof of (3.5) we obtain immediately from (3.6) 
and the estimate (3.7), letting C denote a sufficiently large constant in each 
estimate, 

I L(;)u(e) I <C f (1 + I e - 1112)-N(1 + 11112)m/21 u(,,) I d" 

< cf(1 + Ie -1112t N (1 + 1"12)(m+s)/2Iu(")ld" 
- (I + 11112)s/2 " " ". 
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Now, using (1.2), we easily obtain 

1 L{;)u(c!) 1 <C(I + lel1t,·1 f (1 + le - ,,11tN+,ll 

X (1 + 1"ll)( .. U):llu(1J)ld". 

Chap.IV 

Assume now that N is chosen large enough so that/(e) = (I + le11t N +l/1 

is integrable, and we see that 

lL(;;)u(e)KI + lelZ),/1 < Cf (1 + le - ,,11)-N+l/l 

X (l + 11J 12)( .. +1):11 u(,,) 1 d1J. 

By Young's inequality we obtain immediately 

IIL(p)ull, < CII/llo ·lIull'+JJI 
< Cllull,+JJI' 

Q.E.D. 

We now want to define pseudodifTerential operators in general. First 
we consider the case of operators on a difTerentiable manifold X mapping 
functions to functions. 

Definition 3.6: Let L be a linear mapping L: ~(X) ---> SeX). Then we say 
that L is a pseudodifferential operator on X if and only if for any co ordinate 
chart U cX and any open set U' c c U there exists a p E S~( U) (consider
ing U as an open subset of R") so that if u E ~(U'), then [extending u by zero 
to be in ~(X») 

Lu =L(p)u; 

i.e., by restricting to the coordinate patch U, there is a function p E S~(U) 
so that the operator is a canonical pseudodifTerential operator of the type 
introduced above. 

More generally, if E and F are vector bundles over the difTerentiable 
manifold X, we make the natural definition. 

Definition 3.7: Let L be a linear mapping L: ~(X, E) ---> S(X, F). Then 
L is a pseudodifferential operator on X if and only if for any coordinate chart 
U with trivializations of E and F over U and for any open set U' c c U 
there exists a r X p matrix (pi!), pI} E S~(U), so that the induced map 

Lu: ~(U')' ~ S(U)' 

with u E ~(U')' ~ Lu, extending u by zero to be an element of ~(X, E) 
[where p = rank E, r = rank F, and we identify S(U), with S(U, E) and 
S(U)' with S(U, F»), is a matrix of canonical pseudodifferential operators 
L(piJ), i = I, ... , r,j = I, ... ,p, defined by (3.4). 
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We see that this definition coincides (except for the restrietion to the 
relatively compact subset V') with the definition of a differential operator 
given in Sec. 2, where all the corresponding functions pi} are polynomials 
in sm(v). 

Remark,' The additional restriction in the definition of restricting the 
action of Lu to functions supported in V' c c V is due to the fact that in 
general a pseudodifferential operator is not a loeal operator; i.e., it does not 
preserve supports in the sense that supp Lu c supp u (wh ich is easy to see 
for the case of a smoothing operator, for instance). In fact, differential opera
tors can be characterized by the property of localness (a result of Peetre 
[I]). Thus the symbol of a pseudodifferential operator will depend on the 
choice of V' which can be considered as a choice of a cutoff function. The 
difference of two such local representations for pseudodifferential operators 
on VI ce V and V· c c V will be an operator of order - 00 acting on 
smooth functions supported in VI n V". 

Definition 3.8: The loeal m-symbol of a pseudodifferential operator L: 
D(X, E) -> seX, F) is, with respect to a coordinates chart V and trivializa
tions of E and F over V, the matnx t 

i = I, ... , r, j= 1, ... ,p. 

Note that in all these definitions the integer m may depend on the coordi
nate chart V. If X is not compact, then the integer m may be unbounded on 
X. We shall see that the smallest possible integer m in so me sense will be the 
order of the pseudodifferential operator on X. But first we need to investigate 
the behavior of the local m-symbol under local diffeomorphisms in order to 
obtain aglobai m-symbol of a global operator L. 

The basic principle is the same as for differential operators. If a differential 
operator is locally expressed as L = l:1",I,sm c",(x)D~ and we make a change 
of coordinates y = F(x), then we can express the same operator in terms of 
these new coordinates using the chain rule and obtain 

l = ~ c",(y)D: 
I",~m 

and 

l(u(F(x» = I",itm c",(F(x»D:u(F(x». 

Under this process, the order is the same, and, in particular, we still have a 
differential operator. Moreover, the mth order homogeneous part of the 
polynomial, !Ial =m caea, transforms by the Jacobian of the transformation 
y = F(x) in a precise manner. We want to carry out this process for pseudo
differential operators, and this will allow us to generalize the symbol map 
given by Proposition 2.3 for differential operators. For simplicity we shall 
carry out this program here only for trivial line bundles over X, i.e., for 

tO'm(L)u will also depend on V' ce V, which we have suppressed here. 
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pseudodifferential operators mapping functions to functions, leaving the more 
general case of vector bundles to the reader. 

The basic result we need can be stated as folIows. 

Theorem 3.9: Let U be open and relatively compact in Rn and let P E SO'( U). 
Suppose that Fis a diffeomorphism of U onto itself[in coordinates x = F(y), 
x, Y ERn]. Suppose that U' c c U and define the linear mapping 

l: :D(U') ~ 8(U) 

by setting 

lv(y) = L(p)(F-l)*v(F(y». 

Then there is a function q E SO'(U), so that L = L(q), and, moreover, 

Cl m(q)(y, '1) = Clm(P)( F(y), [' (~~) TI '1). 

Here (F- 1)*: &( U) ~ &( U) is given by (F-1)*v = V 0 F-l, and the basic 
content ofthe theorem is that pseudodifferential operators are invariant under 
local changes of coordinates and that the local symbols transform in apreeise 
manner, depending on the Jacobian (aFjay) ofthe change ofvariables. Before 
we prove this theorem, we shall introduce a seemingly larger cIass of Fourier 
transform operators, which will arise naturally when we make a change of 
coordinates. Then we shall see that this cIass is no larger than the one we 
started with. 

Let p E SO'( U) for U open in Rn. Then we see easily that from (3.4) we 
obtain the representation 

(3.8) L(p)u(x) = (21l)-nf f ei({.x-z>p(x, e)u(z) dz de, 

using the Fourier expression for ü. We want to generalize this representa
tion somewhat by allowing the function p above to also depend on z. Suppose 
that we consider functions q(x, e, z) defined and C'" on U X Rn X U, with 
compact support in the x- and z-variables and satisfying the following two 
conditions (similar to those in Definition 3.1): 

(a) ID':D~D~q(x,e,z)I<C •. p.il + leDm-,o,. 

(3.9) (b) The limit lim q(x, le, x) = Cl (q)(x ): x) " -I- 0 
.!~_~ l m m' .. , , .. -r- , 

exists and t/t(e) Clm(q)(X, e, x) - q(x, e, x) E Sm-I(U). 

Proposition 3.10: Let q(x, e, z) satisfy the conditions in (3.9) and let the 
operator Q be defined by . 

(3.10) Qu(x) = (2n)-n f ei({.x-z)q(x, e, z)u(z) dz de 

for u E !D( U). Then there exists a p E Slf( U) such that Q = L(p). Moreover, 

Clm(p)(X, e) = ~i~ q(x'fme, x), e =f. O. 
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This proposition teils us that this "more general" type of operator is in 
fact one of our original dass of operators, and we can compute its symbol. 

Proof: Let q(x, e, () denote the Fourier transform of q(x, e, z) with 
respect to the z-variable. Then we obtain, from (3.10), 

Qu(x) = f f ei(~,X)q(x, e, e - 17)u(tO d17 dl; 

= f ei<~'X){f ei(~-p)q(x, e, I; - 17) de} u(17) d17· 

Thus, if we set 

(3.11) 
p(x,17) = f ei({-p)q(x, 1;, e - 17) dl; 

= f ei(C,x>q(x, ( + 17, () d(, 

we have the operator Q represented in the form (3.4). First we have to check 
that p(x, 17) E sm( U), but this follows easily by differentiating under the 
integral sign in (3.11), noting that q(x, ( + 17, y) decreases very fast at 00 due 
to the compact support of q(x, 1;, z) in the z-variable. We now use the mean
value theorem for the integrand: 

(3.12) q(x, ( + 17, () = q(x, 17, () + :E D;q(x,17 + (0' ()(<< 
1«1= I 

for a suitable (0 Iying on the segment in Rn joining 0 to(. We have the estimate 

ID;q(x,17 + (0,()1 < CN(l + 117 + (oDm-l(I -+- ICD-N 

for sufficiently large N, and since 1 (o«() 1 < 1 (I, we see that we obtain, with 
a different constant, 

1 D;q(x, 17 + (0' () 1 < C N(I + 117l)m-l(I + IC !)-N+m-I. 

By inserting (3.12) in (3.11), choosing N sufficiently large, and integrating the 
resulting two terms we obtain 

p(x,17) = q(x, 17, x) + E(x, 17), 

where 

(3.13) 

Therefore 

'1 =F O. 

It follows that the limit on the left exists and that 

(1m(p)(X, 17) = ~~~ q(x'fm17• x), '1 =F 0, 

since the last term above has limit zero because of the estimate (3.13). 
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Tbe fact that p(x,~) - "'(~)(1m(P)(x,~) E $m-l(U) folio ws easily from the 
hypothesis on q(x, ", x) and the growth of E(x, ,,). 

Q.E.D. 

We shall need one additional fact before we can proceed to our proof of 
Theorem 3.9. Namely, suppose that we rewrite (3.8) formally as 

L(p)u(x) = (2nt "fU ei({.x-·)P(x, e;) de;}u(z) dz 

and let 

K(x, x - z) = f el({.x-,>P(x, e;) de;. 

Then we have the following proposition. 

Proposition 3.10': K(x, w) is a C~ function of x and w provided that w -=/:. O. 

Proof' Suppose first that m < -n, then we have the estimate 

lP(x, e;)I< C(I + 1e;1)-·-1 
from (3.2), and thus the integral 

K(x, w) = f el({,w)P(x, e;) de; 

converges. Integrating repeatedly by parts, and assuming that, for instance, 
w I -=/:. 0, we obtain 

N f e'<c.w) K(x, w) = (-I) wr Dr,p(x, e;) de; 

for any positive integer N. Hence 

J ( I)Nf e;Je'<c,W) N D~DwK(x, w) = - N D~Dc,P(x, e) deo 
W1 

Using the estimates (3.2) we see that the integral on the right converges for 
N sufficiently large. Thus K(x, w) is C~ for w -=/:. 0, provided that m < -no 
Suppose now that m is arbitrary; then we write, choosing p > m + n, 

K(x, w) = f ei(C,w)(l + I e; Iltp(l + I e; Il)pp(X, e;) de; 

and we see that we have (letting 4 .. = 1: Df be the usual Laplacian in the 
w variable) 

K(x, w) = f[(l - 4.Yei(C'''>]p(x,e;Xl + 1e;1 2r Pde 
which is the same as 
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ifthe integral converges. But this then follows from the case considered above, 
since 

p(x, eXI + lellt' E Sö(UI)(U). 

So, for w * 0, the above integral is C~, and thus K(x, w) is c~ for w * O. 
Q.E.D. 

We shall now use these propositions to continue our study of the behavior 
of a pseudodifferential operator under a change of coordinates. 

Pro%/ Theorem 3.9: Now p(x, e) has compact support in U (in the 
x-variable) by hypothesis. Let ,,(x) E !D(U) be chosen so that " = I on 
supp p U U' and set VI(Y) = ,,(F(y». We have, as in (3.8), 

L(p)u(x) = (2nt- f f el«(,1C-'>P(x, e)u(z) dz de, 

for u E !D(U') c !D(U), We write z = F(w) and v(w) = u(F(w» and obtain 

L(p)u(F(y» = (2nt- f f el«(,F(Yl-F( .. l>p(F(y), e)I~~Iv(w)dW de, 

where I dF/dw I is the determinant ofthe Jacobian matrix dF/dw. By the mean
value theorem we see that 

F(y) - F(w) = H(y, w) • (y - w), 

where H(y, w) is a nonsingular matrix for w close to y and H(w, w) = 

(dF/dw)(w). Let X I(y, w) be a smooth nonnegative function - I near the 
diagonal Il. in U x U and with support on a neighborhood of Il. where 
H(y, w) is invertible. Let X z = I - X I' Thus we have 

L(p)u(F(y» = (2nt-f f el«(.H(y, .. l·(Y-"»p(F(y), e) / ~~ / v(w) dw de, 

which we may rewrite, setting C = ' H(y, w)e, 

L(p)u(F(y» = (2n)-- [f f el(C,Y-">p(F(y), ['H(y, wWIC) 

x/dF/VI<w) XI(y, w) v(w)dwdC + EU(F(y»] 
dw IH(y, w)1 

= (2nt" [f f el(C'Y-">q I(y, C, w)v(w) dw dC + Eu(F(y» J 
Here E is the term corresponding to X z and 

ql(Y' C, w) = P(F(y), ['H(y, W)]-IC)I~~I,~g: :], VI(w), 

while VI E !D( U) as chosen above is identically I on a neighborhood of supp 
v(y). Thus ql(y, C, w) has compact support in the y and w variables, and it 
follows readily that conditions (a) and (b) of (3.9) are satisfied. NameJy, 
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(a) will follow from the estimates for p by the chain rule, whereas for (b) 
we have 

moreover the desired growth of 

follows easily from the hypothesized growth of 

I/J(e)u(p)(x, C;) - p(x, C;). 

We still have to worry about the term E, which we claim is a smoothing 
operator of infinite order (see the example following Definition 3.1) and will 
give no contribution to the symbol. In fact, we have 

where 

Eu(x) = f e;({'x-z>p(x, C;)X2(X, z)u(z) dz dC; 

= fU e;<{.x-z>P(X,C;)Xlx,z)de}U(Z)dZ 

= f X2(X, z)K(x, x - z)u(z) dz 

= f W(x, z)u(z) dz, 

But we have seen earlier that K(x, w) is a C= function of x and w for w =F O.t 
Also, X2(X, z) vanishes identically near x - z = 0, so the product 
xix, z)K(x, x - z) = W(x, z) is a smooth function on U x Rn, and Eu(x) 
is then a smoothing operator with C= kerneI, wh ich we can write in terms of 
the new coordinates y = F-I(X), w = F-I(Z), 

Eu(F(y» = f W(F(y), F(W»U(F(w»I~~ldW 

= f WI(y, w)F*u(w)dw, 

where WI is a C~ function on U x U, which we rewrite as 

= f WI(y, w)V!(w)F*u(w) dw, 

tNote that K(x, w) has compact support in the first variable, since p(x,~) = rp(x)p(x,~) 
for an appropriate rp E :O( U). 
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where we note that 1/1 - 1 on supp F*u. Then we have 

Eu(F(y) = f Wz(y, w)v(w) dw, 

where v(w) = F*u(w), as before, and 

Wz(y, w) = W(F(y), F(w» I ~~ II/I(W), 

131 

which is a smoothing operator of order - CX) with c~ kernel with compact 
support in both variables, as discussed following Definition 3.1, Thus, by 
Proposition 3.10', 

where 

qz(y, c;) = f ei(y-w·e>Wz(y, w) dw, 

and q2 E So(U) for an r. This implies easily that CT m(q2)(y, c;) _ O. Thus 
we can let q = qt + qz' and we have 

lv(y) = L(q), 

and the symbols behave correctly [here we let qt(y, e, w) be replaced by 
q t (y, c;), as given by Proposition 3.10]. 

Q.E.D. 

We are now in a position to define the global symbol of a pseudodiffer
ential operator on a differentiable manifold X. Again we treat the case of 
functions first, and we begin with the following definition. 

Definition 3.11: Let X be a differentiable manifold and let L: :D(X) --> SeX) 
be a pseudodifferential operator. Then L is said to be a pseudodifferential 
operator of order m on X if, for any choice of local coordinates eh art U c X, 
the corresponding canonical pseudodifferential operator Lu is of order m; 
i.e., Lu = L(p), wherep E sm(u). The class ofall pseudodifferential operators 
on X of order m is denoted by PDiffm(X). 

Proposition 3.12: Suppose that X is a compact differentiable manifold. If 
LE PDiffm(X), then L E OPm(X). 

Proof: This is immediate from Theorem 3.4 and the definition ofSobolev 
norms on a compact manifold, using a finite covering of X by coordinate 
charts. 

Q.E.D. 

This proposition tells us that the two definitions of "order" of a pseudo
differential operator are compatible. We remark that if p E sm( U), for some 
U eR", then p E sm+k( U) for any positive k; moreover, in this case, CT m+k(P) 
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= 0, k > O. Thus we have the natural inclusion PDiffm(X) c PDiffm+k(X), 
k > O. Denote 5mblm(X x C, X x C) by 5mblm(X) for simplicity. 

Proposition 3.13: There exists a canonicallinear map 

(1 m: PDiffm(X) ---+ 5mblm(X), 

wh ich is defined locally in a coordinate chart U c X by 

(1m(Lu)(x, {) = (1m(P)(x, {), 

where Lu = L(p) and where (x, {) E U x (R" - (OD is a point in T'(U) 
expressed in the local coordinates of U. 

Proo/: We merely need to verify that the local representation of (1 m(L) 
defined above transforms correctly so that it is indeed globally a homomor
phism ofT'(X) x C into T'(X) x C, which is homogeneous in the cotangent 
vector variable of order m (see the definition in Sec. 2). But this follows easily 
from the transformation formula for (1m(P) given in Theorem 3.9, under a 
local change ofvariables. The linearity of (1 m is not difficult to verify. 

Q.E.D. 

This procedure generalizes to pseudodifferential operators mapping 
sections of vector bundles to sections of vector bundles, and we shall leave 
the formal details to the reader. We shall denote by PDiff,.(E, F) the space 
of pseudodifferential operators of order m mapping !D(X, E) into 8(X, F). 
Moreover, there is an analogue to Proposition 3.13, whose proof we omit. 

Proposition 3.14: Let E and F be vector bundles over a differentiable man i
fold X. There exists a canonical linear map 

(1,.: PDiffm(E, F) ---+ 5mblm(E, F), 

wh ich is defined locally in a coordinate chart U c X by 

(1m(Lu)(x, {) = [(1,.(pij)(x, {)], 

where Lu = [L(piJ)] is a matrix of canonical pseudodifferential operators, 
and where (x, {) E U x (R" - {OD is a point in T'( U) expressed in the local 
coordinates of U. 

One of the fundamental results in the theory of pseudodifferential opera
tors on manifolds is contained in the following theorem. 

Theorem 3.15: Let E and F be vector bundles over a ditferentiable mani
fold X. Then the following sequence is exact, 

(3.13) 

where (1,. is the canonical symbol map given by Proposition 3.14, K,.(E, F) 
is the kerne) of (1 m' and j is the natural injection. Moreover, Km(E, F) c 

OPm _ 1(E, F) if X is compact. 
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Proof: We need to show that (J m is surjective and that (J m(L) = 0 implies 
that L is an operator of order m - I. Doing the latter first, we note that 
(J m(L) = 0 for some L E PDiffm(E, F) means that in a local trivializing coordi
na te chart, L has the representation Lu = [L(ii»), ii E sm( U). Since (J m(L) lu 
= (Jm(Lu) = [(Jm(pii») = 0, by hypothesis, it follows that p'i E sm-I(U), 
by hypothesis on the class sm. Hence Lu is an operator of order m - I, 
and thus L will be an operator of order m - I. To prove that (J m is surjective, 
we proceed as folIows. Let {Up } be a locally finite cover of X by coordinate 
charts Up over wh ich E and F are both trivializable. Let {~p} be a partition 
of unity subordinate to the cover {Up} and let {f/I p} be a family of functions 
f/I p E :D( Up), where f/I p = 1 on supp ~p- We then let X be a C~ function on 
R" with X = 0 near 0 E R" and X = 1 outside the unit ball. Let S E 

5mblm(E, F) be given, and write S = :l:p ~I'S = :l:p sp; supp sp c supp 
~I' C Up- Then with respect to a trivialization of E and F over U, we see that 
sp = [s~), a matrix of homogeneous functions s~: Up x R" - {O} --+ C, 
and s~(x, pe) = rs~(x, e), for p > O. We let p~(x, e) = X(c;)s~(x, C;). It 
follows from the homogeneity that p~ E S'(;(U) and that (Jm(P~) = s~. We 
now let 

L p : :D(U)P --+ 8(Up )' 

be defined by L"u = [L(p~»)u, with the usual matrix action of the matrix 
of operators on the vector u. If U E :D(X, E), then we let U = :l: ~pu = :l: Up' 
considering each up as a vector in:D( Up)P by the trivializations. We then define 

Lu = I; f/I iLpup), 
p 

and it is clear that 

L: :D(X, E) --+ 8(X, F) 

is an element of PDiffm(E, F), since locally it is represented by a matrix of 
canonical pseudodifferential operators of order m. Note that it is necessary 
to multiply by f/I p in order to sum, since Lpup is C~, where we consider 
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A-~ 

Q.E.D. 
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We need to show now that the direct sum PDiff(E, F) = ~m PDiffm(E, F) 
forms an algebra under composition, which is c10sed under transposition. 
We formulate this in the following manner. 

Theorem 3.16: Let E, F, and G be vector bundles over a compact differenti· 
able manifold X. Then 

(a) If Q E PDiff,(E, F) and P E PDiff,(F, G), then the composition 
as operators P 0 Q E PDiffr+,(E, G), and, moreover, 

(J,+,(P 0 Q) = (J,(P) • (J,(Q), 

where the latter product is the composition product ofthe Iinearvector bundle 
maps 

n*E ~ n*F ~ n*G. 

(b) If P E PDiffm(E, F), then P*, the adjoint of P, exists, where p* E 

PDiffm(F, E), and, moreover, 

(Jm(P*) = (Jm(P)*, 

where (J m(P)* denotes the adjoint of the linear map 

n*E~ n*F. 

Proo/: To prove these facts it will suffice to consider local representations 
by canonical pseudodifferential operators, since this is how the action of the 
operator on functions is defined. First we consider the scalar case; i.e., 
E, F, and G are trivial line bundles, and we have the operators acting on 
c~ functions on X. 

We begin by proving the existence of an adjoint in PDiffm(X) and note 
that by Proposition 3.12 and Proposition 2.1, p* E OPm(X) exists. Let V be a 
coordinate chart (considered as an open subset of Rn) for X, and for any open 
set V' c: c: V, let u, v E ~(V/). If pE S:;'( V) such thatPu = L(p), then by (3.4) 

(u, P*v) = (Puu, v) = ff p(x, e)ei(x'()u(e)v(x) de dx 

= fff p(x, e)ei(X'()(2n)-ne- i(Y,()u(y)VW dy de dx 

= f u(y)(21t)-n ff p(x, e)el(Y-X,()v(x) dx de dy. 

Let r(y, e, x) = p(x, e), and we have 

(u, P*v) = f u(y)(21t)-n ff r(y, e, x)el(Y-X,()v(x) dx de dy. 

By Proposition 3.10, there exists q E S:;'( V) such that 

L(q)v(y) = (21t)-n ff r(y, e, x)el(Y-X,()v(x) dx deo 
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Therefore, 

(u, P*v) = f u(y)L(q)v(y) dy = (u, L(q)v) 

and we have Pt = L(q). Hence p* E PDiffm(X). Moreover, 

( )( J<) I' rex, A.~, x) I' p(x, A.~) ()( ~) C1m q x,.. = Im 1m = Im 1m = C1m P X, , 
'\-+00 11. A-+oo 11. 

and conjugation is the adjoint for trivial line bundles. 

135 

The composition formula now folio ws by a simple reduction to the adjoint 
problem. Note that (Q*)* = Q. For V, V' as above, let Pu = L(p), Qu = 
L(q), and Q~ = L(q') be representations in V. Then for u E ~(V'), the proof 
of the adjoint property shows that 

L(q)u(z) = (21t)-n ff q'(y, ~)el<:-Y·~)u(y) dy d~ 

= f el<:'~)«21t)-n f q'(y, ~)e-i(y·~)u(y) dy) d~. 

Thus, 

L(p) 0 L(q)u(x) = f p(x, ~)Lfq);;(~)el<x.ü d~ 

= (21t)-n ff p(x, ~)q'(y, ~)el<X-Y.üu(y) dy d~. 

Let sex, ~,y) = p(x, ~)q'(y, ~). Then Proposition 3.10 shows that there exists 
a tE So+S(V) such that po Qlu = L(t). Therefore po Q E PDiffr+.(X). 
Furthermore, 

( )( J<) _ I' sex, A.~, x) _ I' p(x, A.s) • I' q'(x, A.s) 
C1r+s t X,.. - Im 'r+s - Im ,. Im 'r 

A ..... CXI 11. A-+CXl JL Ä-+OO JL 

= C1.(p)(X, ~)C1r(q')(X, ~) 
= C1.(p)(X, ~)C1r(q)(X, ~) 

from the prooffor the adjoint. Hence, C1r+s(P 0 Q) = C1s(P)· C1.(Q) as desired. 
The proofs for vector-valued functions (sections ofbundles) are essentially 

the same as for scalar functions, with the added complication that we are 
dealing with matrices. Then the order of the terms in the integrals is crucial, 
since the matrix-valued entries will not, in general, commute. We shall omit 
any further details here. 

Q.E.D. 

For more detailed information about pseudodifferential operators on 
manifolds, consult the original papers of See)ey [1], Kohn and Nirenberg 
[I], and Hörmander [3, 4]. The expository articJe by Nirenberg [I] is an exce)
lent reference. t Palais [I] has a development of the theory presented he re 
along the Iines of the Kohn and Nirenberg paper. 

tOur presentation is simplified somewhat by the fact that we avoid the asymptotic 
expansion of a pseudodifferential operator (corresponding to the lower-order terms of a 
differential operator), since it is unnecessary for the applications to elliptic differential 
equations. 
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4. A Parametrix for Elliptic Differential Operators 

In this section we want to restrict our attention to operators which gener
alize the c1assic Laplacian operator in Euclidean space and its inverse. 
These will be called elliptic operators. We start with adefinition, using the 
same notation as in the preceding sections. Let E and F be vector bundles 
over a differentiable manifold X. 

Definition 4.1: Let s E 5mblk(E, F). Then s is said to be elliptic if and only 
if for any (x, e) E T'(X), the linear map 

sex, e): Ex -+ Fx 
is an isomorphism. 

Note that, in particular, both E and F must have the same fibre dimension. 
We shall be most interested in the ca se where E = F. 

Definition 4.2: Let L E PDiffk(E, F). Then L is said to be elliptic (o! order 
k) if and only if U k(L) is an elliptic symbol. 

Note that if L is an elliptic operator of order k, then L is also an operator 
of order k + I, but cJearly not an elliptic operator of order k + I since 
uk+I(L) = O. For convenience, we shall call any operator L E OP_I(E, F) 
a smoothing operator. We shall later see why this terminology is justified. 

Definition 4.3: Let L E PDiff(E, F). Then l E PDiff(F, E) is called a 
parametrix (or pseudoinverse) for L if it has the following properties, 

L 0 l - JF E OP _ I(F) 

lo L - JE E OP-I(E), 

where JF and JE denote the identity operators on Fand E, respectively. 

The basic existence theorem for elliptic operators on a compact manifold 
X can be formulated as folIows. 

Theorem 4.4: Let k be any integer and let L E PDiffk(E, F) be elliptic. 
Then there exists a parametrix for L. 

Proo!: Let s = (J k(L). Then S-I exists as a linear transformation, since 
s is invertible, 

S-I(X, e): Fx -+ Ex' 

and S-I E 5mbLk(F, E). Let l be any pseudodifferential operator in 
PDiff_k(F, E) such that u_k(l) = S-I, whose existence is guaranteed by 
Theorem 3.15. We have then that 

(Jo(L 0 l - JF) = (Jo(L 0 l) - (JO(lF)' 
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and letting ao(lF) = IF • the identity in 5mblo(F, F), we obtain 

ao(L 0 l - IF ) = ak(L) • a_k(l) - I F 

= IF - IF = O. 

Thus, by Theorem 3.15, we see that 

L 0 l - IF E OP_I(F, F). 

Similarly, l 0 L - IE is seen to be in OP -I(E, E). 
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Q.E.D. 

This theorem teils us that modulo smoothing operators we have an 
inverse for a given elliptic operator. On compact manifolds, this turns out 
to be only a finite dimensional obstruction, as will be deduced later from the 
following proposition. First we need a definition. Let X be a compact differ
entiable manifold and suppose that L E OP m(E, F). Then we say that L is 
compact (or completely continuous) if for every s the extension L s: W'(E) 
-> w,-m(F) is a compact operator as a mapping of Banach spaces. 

Proposition 4.5: Let X be a compact manifold and let SE ~p-leE, E). 
Then S is a compact operator of order o. 

Proof: We have for any s the following commutative diagram, 

W'(E) ~ W'(E) 

\s. J! 
WS+I(E), 

where S, is the extension of S to a mapping Ws -> Ws+ I, given since S E 

OP_I(E, E), and S. is the extension of S, as a mapping Ws -> Ws, given by 
the fact that OP _I (E, E) c OP o(E, E). Since j is a compact operator (by 
Rellich's lemma, Proposition 1.2), then S, must also be compact. 

Q.E.D. 

In the remainder of this section we shall let E and F be fixed Hermitian 
vector bundles over a compact differentiable manifold X. Assume that X is 
equipped with a smooth positive measure Jl (such as would be induced by 
a Riemannian metric, for example) and let WO(X, E) = WO(E), WO(F) denote 
the Hilbert spaces equipped with V-inner products 

<e. ")E = f x <e(x). ,,(x»EdJl, e, " E SeX, E) 

(a, -r)F = f x <a(x), -r(x»,dJl, a, -r E SeX, F), 

as in Sec. I. We shall also consider the Sobolev spaces WS(E), WS(F), defined 
for all integral s, as before, and shall make use of these without further 
mention. If L E OPm(E, F), denote by L s: W'(E)-> ws-m(F) the continuous 
extension of Las a continuous mapping of Banach spaces. We want to study 
the homogeneous and inhomogeneous solutions of the differential equation 
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Q.E.D. 
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Le = (1, for e E seX, E), (1 E sex, F), where L E Ditfm(E, F), and L* is 
the adjoint of L defined with respect to the inner products in WO(E) and 
WO(F); i.e., 

as given in Proposition 2.8. If L E Ditfm(E, F), we set 

Je L = (e E SeX, E): Le = O}, 

and we let 

Jet = (11 E WO(E): (e, I1)E = 0, e E Je L } 

denote the orthogonal complement in WO(E) of JeL . It follows immediately 
that the space Jet is a c10sed subspace of the Hilbert space WO(E). As we 
shall see, under the assumption that L is elliptic JeL turns out to be finite 
dimensional rand hence a c10sed subspace of WO(E»). Before we get to this, 
we need to recall some standard facts from functional analysis, due to 
F. Riesz (see Rudin [I)). 

Proposition 4.6: Let B be a Banach space and let S be a compact operator, 
S: B ---> B. Then letting T = I - S, one has: 

(a) Ker T = T-'(O) is finite dimensional. 
(b) T(B) is c10sed in B, and Coker T = BIT(B) is finite dimensional. 

In our applications the Banach spaces are the Sobolev spaces W'(E) which 
are in fact Hilbert spaces. Proposition 4.6(a) is then particularly easy in this 
case, and we shall sketch the proof for B, a Hilbert space. Namely, if the unit 
ball in a Hilbert space (J is compact, then it follows that there can be only 
a finite number of orthonormal vectors, since the distance between any two 
orthonormal vectors is uniformly bounded away from zero (by the distance 
--./2). Thus (J must be finite dimensional. Proposition 4.6(a), for instance, 
then follows immediately from the fact that the unit ball in the Hilbert space 
{J = Ker T must be compact (essentially the definition of a compact opera
tor). The proof that T(B) is c10sed is more difficult and again uses the com
pactness of S. Since S* is also compact, Ker T* is finite dimensional, and the 
finite dimensionality of Coker T folIows. More generally, the proof of 
Proposition 4.6 depends on the fundamental finiteness criterion in functional 
analysis which asserts that a locally compact topological vector space is 
necessarily finite dimensional. See Riesz and Nagy [I), Rudin [I), or any other 
standard reference on functional analysis for a discussion of this as weil as 
a proof ofthe above proposition. (A good survey of this general topic can be 
found in Palais [I).) 

An operator Ton a Banach space is called a Fredholm operator if T has 
finite-dimensional kernel and co kerne I. Then we immediately obtain the 
following from Theorem 4.4 and Propositions 4.5 and 4.6. 
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Theorem 4.7: Let L E PDiffm(E, F) be an elliptic pseudodifferential opera
tor. Then there exists a parametrix P for L so that L 0 P and poL have 
continuous extensions as Fredholm operators: W'(F) ---+ W'(F) and W'(E) 
---+ W'(E), respectively, for each integer s. 

We now have the important finiteness theorem for e\liptic differential 
operators. 

Theorem 4.8: Let L E Diffk(E, F) be elliptic. Then, letting JCL• = 

Ker L,: W'(E) ---+ W'-k(F), one has 

(a) XL, c tex, E) and hence XL, = XL' all s. 
(b) dirn XL, = dirn XL< 00 and dirn W'-k(F)/L.(W'(E» < 00. 

Proo!' First we shall show that, for any s, dirn JCL , < 00. Let P be a 
parametrix for L, and then by Theorem 4.7, it follows that 

(P 0 L),: W'(E) ~ W'(F) 

has finite dimensional kernei, and obviously Ker L, C Ker(P 0 L)" since 
we have the following commutative diagram of Banach spaces: 

Hence JCL , is finite dimensional for all s. By a similar argument, we see that 
L. has a finite dimensional cokernel. Once we show that JCL • contains only 
cer; sections of E, then it will follow that JCL • = JCL and that all dimensions 
are the same and, of course, finite. 

To show that JCL , C SeX, E) is known as the regularity of the homogene
ous solutions of an elliptic differential equation. We formulate this as a 
theorem stated somewhat more generally, which will then complete the proof 
of Theorem 4.8. 

Theorem 4.9: Suppose that L E Diffm(E, F) is elliptic, and e E W'(E) 
has the property that LJ = (1 E SeX, F). Then e E sex, E). 

Proo/" If P is a parametrix for L, then poL - I = S E OP_ 1(E). 
Now Le E SeX, F) implies that (P 0 L)e E S(X, E), and hence 

e = (po L - S~. 

Since we assumed that , E W'(E) and since (P 0 L~ E SeX, E) and Se E 

W'+I(E), it follows that e E W'+I(E). Repeating this process, we see that 
e E W'+k(E) for all k > O. But by Sobolev's lemma (Proposition 1.1) it 
follows that e E S/(X, E), for all / > 0, and hence e E SeX, E)( = S"'(X, E». 

Q.E.D. 
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We note that S is ca lied a smoothing operator precisely because of the 
role it plays in the proof ofthe above lemma. It smooths out the weak solution 
e E W'(E). 

Remark: The above theorem did not need the compactness of X whicb 
is being assumed throughout this section for convenience. Regularity of the 
solution of a differential equation is clearly a local property, and the above 
proof can be modified to prove the above theorem for noncompact manifolds. 

We have finiteness and regularity theorems for elliptic operators. Tbe one 
remaining basic result is the existence theorem. First we note the following 
elementary but important fact, whicb follows immediately from the definition. 

Proposition 4.10: Let L E Diffm(E, F). Then L is elliptic if and only if L* 
is eIliptic. 

We can now formulate the following. 

Theorem 4.11: Let L E Ditfm{E, F) be elliptic, and suppose tbat t' E Jet. ('\ 
6(X, F). Tben tbere exists a unique ~ E E(X, E) such tbat Le = t' and sucb 
tbat ~ is orthogonal to JeL in WO(E). 

Proo/: First we shall solve tbe equation Le = 1', where e E WO(E), 
and tben it will follow from the regularity (Theorem 4.9) of the solution e 
that e is C~ since l' is C~, and we shall have our desired solution. This reduces 
the problem to functional analysis. Consider tbe following diagram of Banach 
spaces, 

W"'(E) ~ WO(F) 

t . t 
w-m(E) Ä WO(F), 

where we note that (Lm)* = (L *)0, by the uniqueness of the adjoint, and 
denote same by L!. Tbe vertical arrows indicate the duality relation between 
the Banach spaces indicated. A well-known and elementary functional analy
sis result asserts that the cIosure of the range is perpendicular to the kernet of 
the transpose. Thus L",( W"'(E» is dense in Jet:.. Moreover, since L m has finite 
dimensional cokernel, it follows that L", has cIosed range, and bence tbe 
equation L",<; = l' has a solution<; E W"'(E). By orthogonally projecting 
c; along the closed subspace Ker L m (= Je L by Theorem 4.8), we obtain a 
unique solution. 

Q.E.D. 

Let L E Ditf",(E) = Ditf",(E, E). Then we say that L is self-adjoint if 
L = L*. Using the above results we deduce easily the following fundamental 
decomposition theorem for self-adjoint elliptic operators. 

140 E/liptic Operator Theory Chap. IV 

We note that S is ca lied a smoothing operator precisely because of the 
role it plays in the proof ofthe above lemma. It smooths out the weak solution 
e E W'(E). 

Remark: The above theorem did not need the compactness of X whicb 
is being assumed throughout this section for convenience. Regularity of the 
solution of a differential equation is clearly a local property, and the above 
proof can be modified to prove the above theorem for noncompact manifolds. 

We have finiteness and regularity theorems for elliptic operators. Tbe one 
remaining basic result is the existence theorem. First we note the following 
elementary but important fact, whicb follows immediately from the definition. 

Proposition 4.10: Let L E Diffm(E, F). Then L is elliptic if and only if L* 
is eIliptic. 

We can now formulate the following. 

Theorem 4.11: Let L E Ditfm{E, F) be elliptic, and suppose tbat t' E Jet. ('\ 
6(X, F). Tben tbere exists a unique ~ E E(X, E) such tbat Le = t' and sucb 
tbat ~ is orthogonal to JeL in WO(E). 

Proo/: First we shall solve tbe equation Le = 1', where e E WO(E), 
and tben it will follow from the regularity (Theorem 4.9) of the solution e 
that e is C~ since l' is C~, and we shall have our desired solution. This reduces 
the problem to functional analysis. Consider tbe following diagram of Banach 
spaces, 

W"'(E) ~ WO(F) 

t . t 
w-m(E) Ä WO(F), 

where we note that (Lm)* = (L *)0, by the uniqueness of the adjoint, and 
denote same by L!. Tbe vertical arrows indicate the duality relation between 
the Banach spaces indicated. A well-known and elementary functional analy
sis result asserts that the cIosure of the range is perpendicular to the kernet of 
the transpose. Thus L",( W"'(E» is dense in Jet:.. Moreover, since L m has finite 
dimensional cokernel, it follows that L", has cIosed range, and bence tbe 
equation L",<; = l' has a solution<; E W"'(E). By orthogonally projecting 
c; along the closed subspace Ker L m (= Je L by Theorem 4.8), we obtain a 
unique solution. 

Q.E.D. 

Let L E Ditf",(E) = Ditf",(E, E). Then we say that L is self-adjoint if 
L = L*. Using the above results we deduce easily the following fundamental 
decomposition theorem for self-adjoint elliptic operators. 



Sec. 4 A Parametrix Jor Elliptic Differential Operators 141 

Theorem 4.12: Let L E Diff",(E) be self-adjoint and elliptic. Then there 
exist linear mappings HL and GL 

so that 

H L : SeX, E) ~ sex, E) 

GL : sex, E) ~ sex, E) 

(a) HL(S(X, E» = JeL(E) and dimcJeL(E) < 00. 

(b) L 0 GL + HL = GL 0 L + HL = JE' where JE = identity on tex, E). 
(c) HL and GL E OPo(E), and, in particular, extend to bounded opera-

tors on WO(E)( = LZ(X, E». 
(d) S(X,E) = JeL(X, E) Ef)GL oL(S(X, E» = JeL(X,E)Ef)L 0 GL(S(X,E», 

and this decomposition is orthogonal with respect to the inner product in 
WO(E). 

Proo!, Let HL be the orthogonal projection [in WO(E)] onto the c10sed 
subspace JeL(E), which we know by Theorem 4.8 is finite dimensional. As we 
saw in the proof of Theorem 4.11, there is a bijective continuous mapping 

L",: W"'(E) n Jet ~ WO(E) n Jet. 

By the Banach open mapping theorem, L", has a continuous linear inverse 
which we denote by Go: 

Go: WO(E) n Jet ~ W"'(E) n Jet· 
We extend Go to all of WO(E) by letting Go(') = 0 if, E JeL, and noting that 
W"'(E) c WO(E), we see that 

Go: WO(E) ~ WO(E). 

Moreover, 

Lift 0 Go = JE - HL, 

since L", 0 Go = identity on Jet. Similarly, 

Go 0 L", = JE - HL 

for the same reason. Since Go(S(X, E» c SeX, E), by eIliptic regularity 
(Theorem 4.9), we see that we can restriet the linear Banach space mappings 
above to SeX, E). Let GL = Go 1&(X,El' and it becomes c1ear that all of the 
conditions (a)-(d) are satisfied. 

Q.E.D. 

The above theorem was first proved by Hodge for the case where E = 
1\ PT*(X) and where L = dd* + d*d is the Laplacian operator. defined with 
respect to a Riemannian metric on X (see Hodge [I] and de Rham [1]). 
Hodge called the homogeneous solutions of the equation Lrp = 0 harmonie 
p-forms, since the operator L is a true generalization of the Laplacian in the 
plane. Following this pattern, we sball call tbe seetions in JeL , for L a self
adjoint elliptic operator, L-harmonie seetions, and when there is no chance of 
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confusion, simply harmonie seetions. For convenience we shall refer to the 
operatorG Lgiven by Theorem 4.12 as the Green's operator associated toL, also 
dassical terminology.t The harmonie forms of Hodge and their generaliza
tions will be used in our study of Kähler manifolds and algebraic geometry. 
We shall refine the above theorem in the next section dealing with elliptic 
complexes and at the same time give some examples of its usefulness. 

Suppose that E -- X is a differentiable vector bundle and 
L: e(X, E) -. E(X, E) is an elliptic operator. Then the index of L is defined by 

i(L) = dirn Ker L - dirn Ker L*, 

which is a well-defined integer (Theorem 4.8). The Atiyah-Singer index theo
rem asserts that i(L) is a topological invariant, depending only on (a) the 
ehern dasses of E and (b) a cohomology dass in H*(X, C) defined by the 
top-order symbol of the differential operator L. Moreover, there is an explicit 
formula for i(L) in terms of these invariants (see Atiyah and Singer (1,2]). 
We shall see a special case of this in Sec. 5 when we discuss the Hirzebruch
Riemann-Roch theorem for compact complex manifolds. 

We would like to give another application of the existence of the paramet
rix to prove a semicontinuity theorem for a family of elliptic operators. Sup
pose that E--> X is a differentiable vector bundle over a compact manifold 
X, and let (L,} be a eontinuousfamily of elliptie operators, 

(4.1) L,: E(X, E) -~ E(X, E), 

where [ is a parameter varying over an open set U eRn. By this we mean 
that for a fixed t E U, L, is an elliptic operator and that the coefficients of 
L, in a local representation for the operator should be jointly continuous in 
x E X and t E U. 

Theorem 4.13: Let (L,) be a continuous family of elliptic differential opera
tors of order m as in (4.1). Then dirn Ker L, is an upper semicontinuous 
function of the parameter t; moreover if t 0 E U, then for f > 0 sufficiently 
smalI, 

dirn Ker L, < dirn Ker L" 

for I t - 10 I < f. 

Proof: Suppose that to = 0, let BI = WO(X, E) and B z = w-m(x, E), 
and let P he a parametrix for the operator L = L o. Denoting the extensions 
of the operators L, and P by the same symbols, we have 

L,:B I -~B2' tE U 

P: B z ---)0 BI' 

We shall continue the proof later, but first in this context we have the 
following lemma concerning the single operator L = L o' whose proof uses 

tNote that the Green's operator GL is a parametrix for L, but such that GLoL - I = 

- H L is a smoothing operator of infinite order which is orthogonal to G L, a much stronger 
parametrix than that obtained from Theorem 4.4. 
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the existence of the parametrix P at t = O. Let Je, = Ker L" t E U, and 
11 111> 11 Ilz denote the norms in BI and B 2 • 

Lemma 4.14: There exists a constant C > 0 such that 

11 U 11I < Cli LoU 112 
if U E Jet C BI (orthogonal complement in the Hilbert space BI)' 

Proo!: 
such that 

Suppose the contrary. Then there exists a sequence u] E Jet 

(4.2) 

Consider 

Ilu] 11I = 1 

I 
11 Lu] 112 < -r 

where T is compact, Then 

11 Tu] 11I < 11 PLu j 11I + 11 u j 11I 
<CIILuj I12 + Ilujll l 

< c(}) + 1 

<C, 
where C, C are constants which depend on the operator P (recall that P is 
a continuous operator from B2 to BI)' Since 11 u j 11 = 1, it follows that {TuJ 
is a sequence of points in a compact subset of BI> and as such, there is a 
convergent subsequence )'j, = Tu j .. -~)'o E BI' Moreover, )'0 *- 0, since 
Iim • ." Luj ; = 0, by (4.2), and thus 

0= lim PLu j , = lim U j , + .1'0' 

wh ich implies that uj , ---> - Yo and 

IIYoli = lim Iluj,1I = I. 

However, Lyo = -lim. H< Lu j , = 0, as above, and this contradicts the fact 
that Yo (which is the limit of uj ,) E Jet. 

Q.E.D. 

Proo! o/Theorem 4.13 continued: Let C be the constant in Lemma 4.14. 
We claim that for ~ sufficiently small there exists a somewhat larger constant 
C such that, for U E Jet, 

(4.4) 

provided that I t I < ~, where C is independent of t. To see this, we write 

Lo = L, + Lo - L" 

and therefore (using the operator norm) 

IILol1 < IIL,II + IILo - L,II· 
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For any f > 0, there is a ~ > ° so that 

IIL, - Loll < f, 

for I t I < ~, since the coefficients of L, are continuous functions of the para
meter t. Using Lemma 4.13, we have, for u E Jei, 

which gives 

Ilull, < CllLoullz 
<C(IIL,ull z + fllull,), 

(\ - Cf)llull, <CIIL,ullz 

for Itl <~. By choosing f < C-', we see that 

Ilull, < C(I - cft'IIL,ull z 

< C 11 L,u Ilz' 
wh ich gives (4.4). But u E Jet by assumption, and it follows from the ine
quality (4.4) that Je~ ('\ Jet = ° for Itl <~. Consequently, we obtain 
dirn Je, < dirn Jeo' 

Q.E.D. 

5. Elliptic Complexes 

We now want to study a generalization of elliptic operators to be called 
elliptic complexes. The basic fact of generalization is that instead of consider
ing a pair of vector bundles we now want to study a finite sequence of vector 
bundles connected by differential operators. Thus, let Eo, E" ... , EN be a 
sequence of differentiable vector bundles defined over a compact differenti
able manifold X. Suppose that there is a sequence of differential operators, 
of some fixed order k,Lo,L1, ... ,LN _ 1 mapping as in the following 
sequencet: 

(5.1) S(Eo) Ä SeE,) -~ S(Ez) ~ ••• -~ S(EN ). 

Associated with the sequence (5.1) is the associated symbol sequence (using 
the notation of Sec. 2) 

(5.2) ° *E ,,(Lo) *E ,,(L,) *E ,,(LN_I) 7t*E ° ---+ 7t ° ~ 7t ,~7t z ~ .•. ~ N ~ • 

Here we denote by a(L) the k-symbol of the operator Lj' In most of our 
examples we shall have first-order operators. 
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Suppose that Eis a complex as defined above. Then we Jet 

(5.3) Hq(E) = Ker(L,: SeE,) ~ &(E,+. » = Z'(E) 
Im(Lq_.: &(Eq_.) --+ &(Eq» Bq(E) 

be the cohomology groups (vector spaces) of the complex E, q = 0, ... , N 
[where Zq(E) and Bq(E) denote the numerator and denominator, respectively]. 
For this definition to make sense. we make the convention that L_. = LN 
= E_. = EN +. = 0 (i.e .• we make a trivial extension to a complex larger at 
both ends). 

A single elliptic operator L: S(Eo) ~ S(E.) is a simple example of an 
elliptic complex. Further examples are given in Sec. 2, namely, the de Rham 
complex (Example 2.5). the Dolbeault complex (Example 2.6), and the Dol
beault complex with vector bundle coefficients (Example 2.7). Elliptic com
plexes were introduced by Atiyah and Bott [I] and we refer the reader to this 
paper for further examples. 

Let E denote an elliptic complex of the form (5.1). Then we can equip 
each vector bundle Ej in E with a Hermitian metric and the corresponding 
Sobolev space structures as in Sec. I. In particular WO(Ej ) will denote the 
L 2 space with inner product 

(e, ")E, = f x <e(x). ,,(X»EJ dj.l, 

for an appropriate strictly positive smooth measure j.l. Associated with each 
operator Lj:S(Ej)~&(E,+.), we have the adjoint operator Lj:S(Ej+.) 
~ SeE,). and we define the Laplacian operators of the elliptic complex E by 

j= O.I •... ,N. 

It follows easily from the fact that the complex E is elliptic that the operators 
AJ are well-defined elliptic operators of order 2k. Moreover, each A, is self
adjoint. Namely, 

u(AJ) = u(L1)cT(LJ) + u(LJ-.)u(L1-.) 

= [u(L)*u(LJ) + u(LJ_.)u(Lj _.)*]. 

which is an isomorphism and, in fact, either positive or negative definite. 
The fact that u(AJ) is an isomorphism follows easily from the following 
linear algebra argument. If we have a diagram of finite dimensional Hilbert 
spaces and linear mappings, 

U~V~W 

tA.tB.t U __ V __ W, 

which is exact at V, where the vertical maps are the duality pairings in U, V, 
and W, then we see that V = Im(A) ® Im(B*). Moreover, AA* is injective on 
Im(A) and vanishes on Im(B*), while B* Bis injective on Im(B*) and vanishes 
on Im(A). Thus AA* + B*B is an isomorphism on Vand in fact is positive 
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definite. The self-adjointness of 4) follows easily from the fact that (Ln* = 
L) and that the adjoint operation is linear. 

Since each A) is self-adjoint and elliptic, we can, by Theorem 4.12, as
sociate to each Laplacian operator a Green's operator GA)' which we shall 
denote by Gi" Moreover, we let 

3C{E) = 3CA,{E) = Ker A): 8{E) --- B{EI ) 

be the 4)-harmonic sections, and let 

H I : S(E) --- S{E) 

be the orthogonal projection onto the c10sed subspace 3C{E). 
To simplify the notation somewhat, we proceed as folIows. Denote by 

N 

S(E) = Cf) SeE) 
1=0 

the graded vector space so obtained with the natural grading. We define 
operators L, L *, 4, G, H on SeE), by letting 

L{~) = L{~o + .,. + ~N) = Lo~o + ... + L~N' 
where ~ = ~o + . .. + ~N is the decomposition of ~ E SeE) into homogene
ous components corresponding to the above grading. The other operators 
are defined similarly. We then have the formal relations still holding, 

4 = LL* + L*L 

I = H + GA = H + AG, 

which follow from the identities in each of the graded components, coming 
from Theorem 4.12. We note that these operators, so defined, respect the 
grading, that L is of degree + I, that L * is of degree -], and that A, G, and 
H are all of degree 0 (i.e., they increase or decrease the grading by that 
amount). This formalism corresponds to that of the d or ä operator in the 
de Rham and Dolbeault complexes, these operators also being graded opera
tors on graded vector spaces. Our purpose is to drop the somewhat useless 
subscripts when operating on a particular subspace SeE}). We also extend the 
inner product on S(Ej ) to SeE) in the usual Euclidean manner, i.e., 

a consequence of which is that elements of different homogeneity are ortho
gonal in t(E). Let us denote by 3C(E) = EB 3C(EJ) the total space of A
harmonic sections. 

Using this notation we shall denote a given elliptic complex by the pair 
(S{E), L), and we shall say that the elliptic complex has an inner product if it 
has an inner product in the manner described above, induced by LZ-inner 
products on each component. Examples would then be (S*(X), d) for X a 
differentiable manifold and (SP'*(X), ä) for p fixed and X a complex manifold 
(see Examples 2.5 and 2.6). 
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We now have the following fundamental theorem concerning elliptic 
complexes (due to Hodge for the case of the de Rham complex). 

Theorem 5.2: Let (S(E), L) be an elliptic complex equipped with an inner 
product. Then 

(a) There is an orthogonal decomposition 

S(E) = 3C(E) EB LL * GS(E) EB L * LGS(E), 

(b) The following commutation relations are valid: 
(I) 1= H + 4G = H + G4. 
(2) HG =GH=H4 =4H=0. 
(3) L4 = 4L, L*4 = 4L*. 
(4) LG = GL, L*G = GL*. 

(c) dimc3C(E) < 00, and there is a canonical isomorphism 

3C(E) - Hi(E). 

Proof: From Theorem 4.12 we obtain immediately the orthogonal de
composition 

S(E) = 3C(E) EB (LL* + L*L)GS(E). 

If we show that the two subspaces of SeE), 

LL * GS(E) and L * LGS(E), 

are orthogonal, then we shall have part (a). But this is quite simple. Suppose 
that e,,, E S(E). Then consider the inner product (dropping the subscript 
E on the inner product symbol) 

(LL*G~, L*LG'1) = (L2L*G~, LG'1), 

and the latter inner product vanishes since V = O. 
Part (b), (I) and (2), follow from the corresponding statements in Theo

rem 4.12 and its proof. Part (b), (3) follows immediately from the definition 
of Land 4. In part (b), (4), we shall show that LG = GL, leaving the other 
commutation relation to the reader. First we have a simple proposition of 
independent interest, whose proof we shall give later. 

Proposition 5.3: Let e E SeE). Then 4e = 0 if and only if Le = L*e = 0; 
moreover, LH = HL = L*H = HL* = O. 

Using this proposition and the construction of G, we observe that both 
Land G vanish on 3C(E). Therefore it suffices to show that LG = GL on 
3C(E)J, and it follows immediately from the decomposition in Theorem 4.12 
that any smooth e E 3C(E)l is of the form e = 4rp for some rp in SeE). 
Therefore we must show that LG4rp = GL4rp for all rp E SeE). To do this, we 
write, using I = H + G4, 

Lrp = H(Lrp) + G4Lrp 
= HLrp + GL4rp, 
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since L4 = 4L. We also have 

rp = Hrp + G4rp, 

and applying L to this, we obtain 

Lrp = LHrp + LG4rp. 

Chap. IV 

Setting the two expressions above for Lrp equal to each other, we obtain 

GL4rp - LG4rp = LHrp - HLrp, 

and by Proposition 5.3 we see that the right-hand side is zero. 
In part (c), it is c1ear that the finiteness assertion is again apart ofTheorem 

4.12. To prove the desired isomorphism, we recall that Hq(E) = Zq(E)/ .ß9(E), 
as defined in (5.3), and let 

4»: zq(E) -- X(Eq) 

be defined by 4»(~) = H(I;). It then follows from Proposition 5.3 that 4» is 
a surjective linear mapping. We must then show that Ker 4» = Bq(E). Suppose 
that { E Zq(E) and H({) = O. Then we obtain, by the decomposition in part 
(a), 

e = HI; + LL*GI; + L*LGI;. 

Since HI; = 0 and since LG = GL, we obtain { = LL*GI;, and hence { E 

Bq(E). 
Q.E.D. 

Pro%/ Proposition 5.3: It is trivial that if LI; = L*{ = 0 for { E S(E), 
then 41; = O. Therefore we consider the converse, and suppose that t1{ = 0 
for some I; F SeE). We then have 

(t1I;, {) = (LL*I; + L*LI;, {) 

= (LL*{, {) + (L*L{, {) 

= (L*{, L*{) + (L{, L{) 

= IIL*I;W + IIL{W = O. 

It now follows that L*I; = LI; = 0, and, consequently, LH = L*H = O. 
To show that HL = 0, it suffices to show that (HLI;, ,,) = 0 for all {, " E 

SeE). But H is an orthogonal projection in Hilbert space, and as such it is 
self-adjoint. Therefore we have, for any {, " E S(E), 

(HL{,,,) = (L{, H,,) = (e, L*H,,) = 0, 

and hence HL = O. That HL * = 0 is proved in a similar manner. 
Q.E.D. 

Remark: We could easily have defined an elliptic complex to have dif
ferential operators of various orders, and Theorem 5.2 would still be valid, 
in a slightly modified form (see Atiyah and Bott [I]). We avoid this complica
tion, as we do not need the more general result later on in our applications. 

We now want to indicate some applications of the above theorem. 
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Example 5.4: Let (&*(X), d) be the de Rham complex on a compact 
differentiable manifold X. As we saw in our proof of de Rham's theorem 
(Theorem 11.3.15) 

W(X, C) :::::: t.W(X, C) :::::: W(&*(X)) 

(using complex coefficients). The first group is abstract sheaf cohomology, 
which is defined for any topological space; the second is singular cohomol
ogy; and the first isomorphism holds when we assume that X has the structure 
of a topological manifold (for example). When X has a differentiable struc
ture, as we are assuming, then differential forms are defined and the de Rham 
group on the right makes sense. Thus we can use differential forms to repre
sent singular cohomology. For convenience, we shalliet W(X, C) denote the 
de Rham group when we are working on a differentiable manifold, which will 
almost always be the case, making the isomorphisms above an identification. 
One further step in this direction of more specialized information about the 
homological topology of a manifold comes about when we assume that X 
is compact and that there is a Riemannian metric on X. This induces an 
inner product on 1\ PT*(X) for each p, and hence (&*(X), d) becomes an elliptic 
complex with an inner product. We denote the associated Laplacian by 
/1 = /1d = dd* + d*d. Let 

Je'(X) = Jet.( I\' T*(X» 

be the vector space of /1-harmonie r-forms on X. We shall call them simply 
harmonie forms, a metric and hence a Laplacian being understood. We thus 
obtain by Theorem 5.2.(c) that 

H'(X, C) - Je'(X). 

This means that for eaeh eohomology c1ass e E H'(X, C) there exists a unique 
harmonie form rp representing this c1ass e, which is, by Proposition 5.3, 
d-c1osed. Ifwe change the metric, we change the representation, but, neverthe
less, for a given metrie we have a distinguished r-form to represent a given 
c1ass. It will turn out that this representative has more specialized informa
tion about the original manifold than an arbitrary representative might, in 
partieular when the metrie is chosen carefully (to be Kähler, for example, 
as we shall see in the next ehapter). Thus we have continued the ehain of 
representations of the sheaf cohomology on X with eoefficients in C, but for 
the first time we have a specifie veetor spaee representation; there are no 
equivalenee c1asses to deal with, as in the previous representations. A conse
quence of Theorem 5.2 is that 

dimcH4(X, C) = dimcJeq(X) = bq < 00. 

This finiteness is not obvious from the other representations, and, in fact, 
the harmonie theory we are developing here is one of the basic ways of obtain
ing finiteness theorems in generaI.t The numbers bq , q = 0, I, ... , dimR(X), 

tOf course, we could represent the de Rham groups by singular cohomology and prove 
that a compact topological manifold has a finite celI decomposition. This is the point of view 
of algebraic topology. 
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ing finiteness theorems in generaI.t The numbers bq , q = 0, I, ... , dimR(X), 

tOf course, we could represent the de Rham groups by singular cohomology and prove 
that a compact topological manifold has a finite celI decomposition. This is the point of view 
of algebraic topology. 
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are the eelebrated Bett; numbers of the eompaet manifold X. By our results 
above the Betti numbers are topological im'ariants of X; i.e., (a) they depend 
only on the topologieal strueture of X, and (b) they are invariant under 
homeomorphisms. 

In the study of manifolds these numbers play an important role in their 
classifieation, and this is no less so if the manifold happens to be complex, 
as we shall see. We define 

dlmX 

x(X) = 1; (-I)"b" 
,=0 

the Euler characteristic of X, also a topological invariant. 

Example 5.5: Let X be a eompaet eomplex manifold of eomplex dimen
sion n, and eonsider the elliptie complex 

3 I I I ... ~8p·'(X)~8p·'+I(X)~8p,'+2(X)~ "', 

for a fixed p, 0 < P < n. As we saw in our previous study of this example 
(Example 2.6), this is elliptie, and in Chap. 11 (Theorem 3. I 7) we saw that 

H'(X, QP) - H'( A P'*T*(X), ä) 

(Dolbeault's theorem), where Qp is the sheaf of germs of holomorphic p
fonns. We want to represent these cohomology groups by means ofharmonie 
forms. Let A P.9T*(X) be equipped with a Hermitian metrie, 0 <p, q < n 
[indueed by a Hermitian metrie on T(X), for example1. Then the complex 
above beeomes an elliptie complex with an inner product (parametrized by 
the integer p). Denote the Laplacian by 

Ei = ää* + ä*ä, 
and let 

3CP.9(X) = 3CCi( N"T*(X» 

be the Ei-harmonie (p, q)-forms, wh ich we shaU caU simply harmonie (p, q)
forms when there is no eonfusion about which Laplacian is meant in a given 
context. 

Similar to the de Rham situation, we have the foUowing canonical isomor
phism (using Theorem 5.2 along with Dolbeault's theorem): 

H'(X, QP) - 3Cp , '(X). 

We define, for 0 <p, q < n, 

hM = dimcH'(X, QP) = dimc3CM(X), 

which are ealJed the Hodge numbers of the eompact complex manifold X. 
Note that these numbers are invariants of the eomplex strueture of X and do 
not depend on the ehoice of metric. The finite dimensionality again comes 
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from Theorem 5.2.t The following theorem shows us how the Hodge numbers 
and the Betti numbers are related, in general (on Kähler manifolds, more 
will be true). 

Theorem 5.6: Let X be a compact complex manifold. Then 

x(X) = 1: (-l)'b,(X) = 1: (-1)P+9hP.9(X). 

The proof of this theorem is a simple consequence of the fact that there 
is a spectral sequence (Fröhlicher [I)) 

Ef·9 ~ Hq(X, {lP) ~--> W(X, C) 

relating the Dolbeault and de Rham groups, and we omit the details as we 
do not need this result in later chapters. For Kähler manifolds this results 
from the Hodge theory developed in Chapter V. 

Example 5.7: Let E be a holomorphic vector bundle over a compact 
complex manifold X and let (SP·*(X, E), ä) be the elliptic complex of (p, q)
forms with coefficients in E. By the generalization of Dolbeault's theorem 
given in Theorem 11.3.20 the cohomology groups Hq(X, {lP(E» represent 
the cohomology of the above complex, where {lP(E) ~ O( NT*(X) ® E) 
is the sheaf of germs of E-valued holomorphic p-forms. The bundles in the 
complex are ofthe form I\p.qT*(X) ® E, and equipping them with a Hermitian 
metric [induced from a Hermitian metric on T(X) and E, for instance), we 
can then define a Laplacian 

o = ää* + ä*ä: SP.9(X, E) --- gP.9(X, E), 

as before. Letting JCP.9(X, E) = JCo( 1\ P.9T*(X) ® E) be the D-harmonic 
E-valued (p, q)-forms in SP.9(X, E) we have, by Theorem 5.2, the isomorphism 
(and harmonie representation) 

H9(X, {lP(E» ~ JCp.q(X, E), 

a generalization of the previous example to vector bundle coefficients. We let 

hp.q(E) = hM(X, E) = dimcJCp.q(X, E), 

where we drop the notational dependence on X unless there are different man i
folds involved. As before, it follows from Theorem 5.2 that hP.9(E) < 00, and 
we can define the Eu/er eharaeteristie 0/ the h%morphie I'eetor bund/e E to be 

X(E) = x(X, E) = t (-I )9ho. 9(E). 
9=0 

As before, the generalized Hodge r.umbers !tP. q(E) depend only on the complex 
structures of X and E, since the dimensions are independent of the particular 
metric used. However, it is a remarkable fact that the Euler characteristic of 

tA general theorem of Cartan and Serre asserts that the cohomology groups of any 
coherent analytic sheaf on a compact complex manifold are finite dimensional. This and 
the next example are special cases of this more general result, which is proved by different 
methods, involving Cech cohomology (cf. Gunning and Rossi [I)). 
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a holomophie veetor bundle ean be expressed in terms of topologieal invari
ants of the veetor bundle E (its Chern classes) and of the eomplex manifold 
X itself (the Chern classes of the tangent bundle to X). This is the eelebrated 
Riemann-Roeh theorem of Hirzebrueh, which we formulate below. 

Let E be a eomplex (differentiable) veetor bundle over X, where r = rank 
E and Xis a differentiable manifold of real dimension m. Let 

c(E) = I + cl(E) + ... + c,(E) 

be the total ehern class of E, whieh is an element of the eohomology ring 
H*(X, C), as we saw in Chap. 111. Reeall that the multiplieation in this ring 
is indueed by the exterior produet of differential forms, using the de Rham 
groups as a representation of eohomology.t We introduee a formal faetoriza
tion 

, 
c(E) = rr (l + xJ, 

j=1 

where the Xi E H*(X, C). Then any formal power se ries in XI> .•• ,X, wh ich 
is symmetrie in XI' ... ,X, is also apower series in cl(E), ... , c,(E). This 
follows from the fact that the cj(E) are the elementary symmetrie funetions 
of the (x I' .•. , x,) (analogous to the ease of the eoeffieients of a polynomial). 
Therefore we define 

:leE) = iI Xi 
i~ I 1 - e x, 

ch(E) = t e'\ 
;-=1 

whieh are formal power series, symmetrie in X I' ..• , x" and henee define 
a (more eomplieated-Iooking) formal power series in the Chern classes of E. 
We eall :leE) the Todd dass of E and ch(E) is ca lied the ehern character of E. 
Of course, there are only a finite number of terms in the expansion of the 
above formal power series sinee Hq(X, C) = 0 for q > dimRX. 

We now reeall that Xis assumed to be eompaet, and then we let, for c E 

H*(X, Cl, 

c[X] = f x rpm' 

where rpm is a closed differential form of degree m representing the homogene
ous eom ponent in c of degree m; i .e., from the viewpoint of algebraie topology 
we evaluate the eohomology class on the fundamental eycle. By Stokes' 
theorem the above definition is a sensible one. We are now in a position to 
state the following theorem due to Hirzebrueh for projeetive algebraie mani
folds. 

tOf course, the characteristic class theory is valid in a more general topological category, 
and the cohomology ring has the cup product of algebraic topology for multiplication, 
but on a ditferentiable manifold, the two theories are isomorphie. 
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Theorem 5.8 (Riemann-Roch-Hirzebruch): Let X be a compact complex 
manifold, and let E be a holomorphic vector bundle over X. Then 

X(E) = {ch(E) • J(T(X»}[X]. 

Note that the left-hand side of the equality depends apriori on the complex 
structure of X and E, whereas the right-hand side is apriori a complex number 
(we could have made it a rational number had we worked with integral coef
ficients for our cohomology). Therefore two immediate consequences of the 
above formula is that these dependences are superfluous; i.e., the left-hand 
side depends only on the underlying topological structure, and the right-hand 
side is an integer. 

This theorem is a special case of the Atiyah-Singer index theorem, dis
cussed in Sec. 4, and was formulated and proved for projective algebraic 
manifolds by Hirzebruch in a famous monograph (Hirzebruch (1]) in 1956. 
The special case of a Kähler surface had been proved earlier by Kodaira. For 
n = land E a line bundle, the above theorem is essentially the cIassic 
theorem of Riemann-Roch for Riemann surfaces (in the form proved by 
Serre [I]). This case is discussed thoroughly by Gunning (1]. For applications 
of the Riemann-Roch Theorem in this form to the study of compact complex 
surfaces (complex dimension 2), see Kodaira [5]. 
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CHAPTER V 

COMPACT 

COMPLEX MANIFOLDS 

In this ehapter we shall apply the differential equations and differential 
geometry of the previous two ehapters to the study of eompaet eomplex 
manifolds. In Sec. 1 we shall present a diseussion of the exterior algebra on 
a Hermitian veetor spaee, introdueing the fundamental2-form and the Hodge 
*-operator associated with the Hermitian metrie. In Sec. 2 we shall diseuss 
and prove the prineipal resuIts eoneerning harmonie forms on eompaet 
manifolds (real or eomplex), in partieular, Hodge's harmonie representation 
for the de Rham groups, and special eases of Poineare and Serre duality. In 
Sec. 3 we present the finite-dimensional representation theory for the Lie 
algebra ßl(2, C), from whieh we derive the Lefsehetz deeomposition theorem 
for a Hermitian exterior algebra. In Sec. 4 we shall introduee the eoneept of 
a Kähler metrie and give various examples of Kähler manifolds (manifolds 
equipped with a Kähler metrie). In terms of a Hermitian metrie we define the 
Laplaeian operators assoeiated with the operators d, c, and ä and show that 
when the metrie is Kähler that the Laplaeians are related in a simple way. 
We shall use this relationship in Sec. 5 to prove the Hodge deeomposition 
theorem expressing the de Rham group as a direet sum of the Dolbeault 
groups (of the same total degree). In Sec. 6 we shall state and prove Hodge's 
generalization of the Riemann period relations for integrals of harmonie 
forms on a Kähler manifold. We shall then use the period relations and the 
Hodge deeomposition to formulate the period mapping of Griffiths. In 
partieular, we shall prove the Kodaira-Speneer upper semieontinuity theorem 
for the Hodge numbers on eomplex-analytie families of eompaet manifolds. 

1. Hermitian Exterior Algebra on a Hermitian Vector Space 

Let V be a real finite-dimensional veetor spaee of dimension d whieh is 
equipped with an inner produet < , ), a Euclidean vector space, and suppose 
that /\ V denotes the exterior algebra of V. Then for eaeh degree p, the veetor 
spaee /\ P V has an inner produet indueed from the inner produet of V. 
Namely, if {ei' ... , edl is an orthonormal basis for V, then reit 1\ . .. 1\ e ip : 1::;; 
;1 < ;2 < ... < ip ::;; d} is an orthonormal basis for /\ p V. An orientation on 
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V is a choice of ordering of a basis such as {eh . .. , ed} up to an even permuta
tion, which is equivalent to a choice of sign for a particular n-form, e.g., 
e1 1\ ... 1\ etJ. 

We now define the Hodge *-operalor. Choosing an orthonormal basis 
{eh . .. , etJ} for Vas above, fix an orientation of V by specifying the n form 
e1 1\ . .. 1\ en which we will denote by vol (for volume element). The Hodge 
*-operator is a mapping 

defined by setting 

*(eh 1\ .•. 1\ e,p) = ±eil 1\ ... 1\ eid_p' 

where U" ... ,jtJ-p} is the complement of {ih ... , ip} in {I, ... , d}, and we 
assign the plus sign if {ih ... , ip ,j1' ... ,jd-P} is an even permutation of 
{I, ... , d}, and the minus sign otherwise. In other words * is defined so that 

(LI) eh 1\ •.• 1\ e,p 1\ *(eh 1\ ... 1\ e!p) = e1 1\ ... 1\ ed = vol. 

Extending * by linearity to all of 1\ p V we find that if a, ß E 1\ p V, then 

(1.2) a 1\ *ß = <a, ß) vol, 

where <a, ß) is the inner product induced on 1\ PV from V. Let us check that 
(1.2) is valid. Namely, if 

and 

using multi-index notation, then 

We see that the wedge product in each term of the sum vanishes unless 
1= {ih ... , ip} coincides with J = Uh . .. ,jp}, and then it follows immedi
ately from (1.1) that 

a 1\ *ß = Y a1bI vol 
Ilr=p 

= <a, ß) vol. 

It is easily checked that the definition of the Hodge *-operator is independent 
ofthe choice ofthe orthonormal basis, and depends only on the inner product 
structure of V as weil as a choice of orientation. t 

t The c1assical references for the .-operator are Hodge [I], de Rham [I], and Weil [I]. 
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We can extend (1.2) easily to complex-valued p-forms. Namely, if 
IX, ß E 1\ P V 0 C, then ß is weil defined (cf. Sec. 1.3). We write 

then we define an Hermitian inner product on 1\ P V 0 C by 

If oe, ß are real, then we have the original inner product, so we use the same 
symbol< , > for this complex extension. It follows then immediately that if 
• is extended to 1\ * V 0 C by complex linearity, we obtain the relation 

(1.3) IX 1\ *ß = <IX, ß> vol. 

Let 11, denote the projection onto homogeneous vectors of degree r, 
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be the complex vector space of complex-valued real-linear mappings of E to 
C. Then F has complex dimension 2n, and we let 

be the C-linear exterior algebra of F. We will refer to an W E 1\ P F as a p-form 
or as a p-covector (on E). Now, as before, I\F is equipped with a natural 
conjugation obtained by setting, if W E 1\ P F, 
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and this induees (as in See. 1.3) a bigrading on /\F, 
Zn 

/\F =.I .I N""F, 
,=01'+"-' 

and we see that if (J) e /\,.." F, then iij e /\"". F. 
Now we suppose than our eomplex veetor spaee is equipped with a 

Hermitian inner produet < , ). This inner produet is a Hermitian symmetrie 
sesquilineart positive definite form, and ean be represented in the following 
manner. If {Zh ... , zn} is a basis for /\ l,oF, then {Zh' .. , zn} is a basis for 
/\ 0,1 F, and we ean write, for u, v e E, 

(u, v) = heu, v), 

where 

and (h,./J) is a positive definite Hermitian symmetrie matrix. Now h is a 
eomplex-valued sesquilinear form aeting on E x E, and we ean write 

h= S+ iA, 

where Sand A are real bilinear forms aeting on E. One finds that S is a 
symmetrie positive definite bilinear form, whieh represents the Euelidean 
inner produet indueed on the underlying real veetor spaee of E by the 
Hermitian metrie on E. Moreover one can ealeulate easily that 

A = 21 • .I h,.y(z,. ® Zy - z. ® Z,.) 
, Il,Y 

Let us define 

(l.5) n = ~ ~y h,.yz,. " Zy, 

the fundamental 2-form associated to the hermitian metrie h. One sees 
immediately that 

n = -!A = -!Imh, 

and thus 

(1.6) h = S - 2in. 

Moreover ne /\k 1F, i.e., n is a real2-form oftype (I, 1). We ean always 
ehoose a basis {Z,.} of /\ l,oF so that h has the form 

(1.7) h = .I z,. ® z,.. ,. 

t We recall that a mapping I: E x E -+ C is sesquilinear if I is real bilinear, and 
moreover, I(Au, v) = ).I(u, v), and/(u, ).11) = "/(u,II), ). e C. 
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It then follows that, if we let 

Z/l + z/l 
X/l = 2 ' 

be the real and imaginary parts of {zu}, then 

and thus from (1.5), with respect to this basis, 

S = ! X/l 0 X/l + Y/l 0 Y/l 

(1.9) 

o = ! X/l 1\ Y/l = ~ ! Z/l 1\ Z/l' 

It follows from this that 

(1.10) 0" = n!xI 1\ YI 1\ .. . 1\ XII 1\ YII' 

Chap. V 

Thus the fundamental 2-form associated to a Hermitian metric is a real form 
of type (1, 1) whose coefficient matrix is positive definite, and moreover, 0" 
is a nonzero volume element of E'. Thus O" determines an orientation on E', 
and we see from (1.9) that {X/l' Y/l} is an orthonormal basis for E' in the 
induced Euclidean metric of E'. Thus we see that there is a naturally defined 
Hodge *-operator 

(1.11) 

coming from the Hermitian structure of E. Namely, E' has the dual metric 
to the real underlying vector space of E, while E' is equipped with the 
orientation induced by the 2n-form 0" coming from the Hermitian structure 
of E. We define 

(1.12) 
1 

vol =,0", n. 

which, with respect to the orthonormal basis used above, becomes 

vol = Xl 1\ Y1 1\ . .. 1\ XII 1\ YII' 

Note that the definition (1.l2) does not depend on the choice of the basis, 
and is an intrinsic definition of a volume element on E'. 

We are now interested in defining various linear operators mapping 
/\ F - /\ F in terms of the above structure. Recall that we al ready defined w 
for an even dimensional vector space by (1.4), and this therefore defines 

w: /\E' __ /\E ' 

wh ich we extend by complex-linearity to 

w: /\F __ /\F 

where 

n,: /\F-- /\'F 
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is the natural projection. Similarly, since E has a Hermitian structure, as we 
saw above, there is a natural *-operator 

which we also extend as a complex-linear isomorphism to 

Both wand * are real operators. Now we let 

n",q: /\F-:,. /\J7.4F 

be the natural projection, and we define 

J: /\F -:,. /\F 

by 

J = ! i"-qn,,,q' 

Recall that the real operator J which represents the complex structure of the 
vector space F has the property that if v E /\ l,oF, then Jv = iv, and if 
v E /\ o,lF, then Jv = -iv. Thus we see immediately that J defined above 
is the natural muItilinear extension of the complex structure operator J to 
the exterior algebra of F. We note also that J2 = was linear operators. 

We now define a linear mapping L in terms of n, the fundamental form 
associated to the Hermitian structure of E, namely, let 

L: /\F-:,. /\F 

be defined by L(v) = n /I. v. We see that 

L: /\"F-:,. /\,,+2F 

so it is homogeneous and of degree 2. Moreover, 

and L is bihomogeneous of bidegree (I, I), and it is apparent that L is areal 
operator since n is areal 2-form. Recall from (1.3) that /\"F has a natural 
Hermitian inner product defined by 

<IX, ß>vol = IX A *11, 
where vol = (I In !)n n as before. With respect to this inner product L has a 
Hermitian adjoint 

2 <p< 2n, 

and one finds that 

(1.13) 
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To see that (1.13) holds we compute, for 0( E N'F, PE /\P+2F, 

<La, P>vol = n A 0( A (*ß) 
= 0( An A (*P) 
= 0( A L*P 
= 0( A *w*L*P 
= 0( A *w*L*ß 
= <0(, w*L*P>vol 
= <O(,L*P>vol 

Chap. V 

using the fact that *w* = id, and *, L, and ware real operators. It follows 
from (1.13) that L* is a real operator, homogeneous of degree -2. It will 
follow from the next proposition that L * is bihomogeneous of degree 
(-1, -1). 

If M and N are two endomorphisms of a vector space, then we will denote 
by [M, N] = MN - NM the commutator of the two endomorphisms. We 
now have a basic proposition giving fundamental relationships between the 
above operators. 

Proposition 1.1: Let E be a Hermitian vector space of complex dimension 
n with fundamental form n and associated operators w, J, L, and L*. Then 

(a) *I1P•4 = I1n - 4 •n - p *, 

(b) [L, w] = [L, J] = [L*, w] = [L*, J] = 0, 

(c) [L*, L] = !;'!.o (n - p)I1p • 

To prove Proposition 1.1, it is necessary to introduce some notation which will 
allow us to effectively work with the covectors in /\F. Let N = {I, 2, ... , n}, 
and let us consider multi-indices I = (/li> ... ,/lp), where /lh"" /lp are 
distinct elements of N, and set III = p. Let {Zl" .. , zn} be a basis for 1\ l.°F 
such that the Hermitian metric h on E has the form h = !jl Zjl @ zjl as in 
(1.7), with Q given by (1.9), and with (ljn!)Qn = vol = Xl A YI A··· A 
Xn A Yn where Zjl = Xjl + iYjl' as in (1.10). The operator * is now well-defined 
in terms of the orthonormal basis {Xl> Yi> ... , Xn, Yn}. If I = (/li> ... , /lp), 
then we let 

Z/ = zl'J'\ZI'.A··· AZI" 

XI = xl',Axl',A'" Ax". 

If M is a multiindex, we let 

WM = II zl'Azl' = (-2iYMI II XI'Ayl" 
I'EM "EM 

In this last product it is dear that the ordering of the factors is irrelevant, 
since the terms commute with one another, and we shall use the same symbol 
M to denote the ordered p-tuple and its underlying set of elements, provided 
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that this leads to no eonfusion. Any element of 1\ F ean be written in the 
form 

where CA,B,M E C, and A, B, and Mare (for a given term) mutually disjoint 
multiindiees, and, as before, the prime on the summation sign indieates that 
the sum is taken over multiindiees whose elements are strietly inereasing 
sequences (what we shall eall an inereasing multiindex). 

We have the following fundamental and elementary lemma wh ich shows 
the interaetion between the *-operator (defined in terms of the real strueture) 
and the bigrading on I\F (defined in terms of the eomplex strueture). 

Lemma 1.2: Suppose that A, B, and Mare mutually disjoint inereasing 
multiindiees. Then 

*(ZAAiBAWM) = y(a, b, m)zAAiBAwM, 

for a nonvanishing eonstant y(a, b, m), where a = 1 AI, b = 1 B I, m = 1 M I, 
and M' = N - (A U B UM). Moreover, 

'}'(a, b, m) = jG-b(_l)P(P+I):Z+m(-2i)P-' 

where p = a + b + 2m is the total degree of ZA A ZB A W M • 

Proo/: Let v = ZA A i B A wM • If A = AI U A z for some multiindex A, 
let 

if AI n Az * 0 
if A IA z is an even permutation of A 
if A IAz is an odd permutation of A. 

Using this notation it is easy to see that 

where the sum runs over all deeompositions of A into inereasing multiin
diees AlU A z' and a l = 1 A I I, ete. Thus we obtain 

v = (-2i)m l:' f~,A'f:,B'jG,-b'XA,AYA,AxB,AYB,A TI x"Ayl" 
A=AIUAI IJEM 
B=BluB. 

We now want to eompute *V, having expressed v in terms of a real basis, 
and we shall do this term by term and then sum the result. To simplify the 
notation, eonsider the ease where B = 0. We obtain 

(I.l) *(zAAWM) = (-2i)m I: d'A'jG' * {XA,AYA,A n x"Ay,.}. 
A=A,UA, "EM 

It is clear that the result of * acting on the braeketed expression is of the form 

(1.2) 

where M' = N - (A UM). The only problem left is to determine the sign. 
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To do this it suffices (because ofthe commutativity of III'EM xl'Ayl') to con
sider the product (setting a2 = I A 2 1) 

XAI/\YA,/\XA,/\YAI = (-I)G"xA,/\YA,/\xA,/\YA,' 

Now, in general, 

xc/\Yc = (_I)lcl\lcl-n'2x l', A yl"/\'" /\xl',c'/\YI"C" 

and applying this to our problem above, we see immediately that the sign 
in (1.2) is of the form 

(_I)G"+G'(G,-I)/2+4'(G,-I)/2 = (-I)'. 

Putting this into (l.l), we obtain 

(1.3) *(ZA/\WM) = (-2i)m 1:' d,A'jG'(-I)'xA,AYA'/\ II xl'Ayl" 
..4=..4IU..4, pEM' 

The idea now is to change variables in the summation. We write 

f"1 1A, = (-I )GIG' f"1,A I 

jG' = jG(_IY'jG', 

and substituting in (1.3) we obtain 

*(zAAW M ) = jG( -2i)m 1:' d'A,ja'f( _1)da,+a'G'J 
A=AluA~ 

. xA,AYA,A II xl'Ayl" 
I'EM' 

wh ich is, modulo the bracketed term, of the right form to be const(zA A W M)' 
Apriori, the bracketed term depends on the decompositions A = AlU A 2; 
however, one can verify that in fact 

(_1)'+aI+GIG' = (_I)G(G+I),'2 = (_I)P(P+I)!2+m, 

and the bracketed constant puIls out in front the summation, and we obtain 

*(ZAAWM) = ja( _1)P(P+I)!2+m( -2i)P-.ZA/\W M,. 

The more general case is treated similarly. 
Q.E.D. 

Proof of Proposition 1.1: Part (a) follows immediately from Lemma 1.2. 
We note that (a) is equivalent to 

Part (b) follows from the fact that Land Aare homogeneous operators and 
are real. 

We shaIl show part (c). Using the notation used in Lemma 1.2, we observe 
that 

( 1.4) 
L(ZAAZBA wM ) = ~ (tl zl' AZI') AZAAZBA WM 

= 2j ZAAzBA( L: WMull'l)' 
I'EM' 
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..4=..4IU..4, pEM' 
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f"1 1A, = (-I )GIG' f"1,A I 

jG' = jG(_IY'jG', 

and substituting in (1.3) we obtain 

*(zAAW M ) = jG( -2i)m 1:' d'A,ja'f( _1)da,+a'G'J 
A=AluA~ 

. xA,AYA,A II xl'Ayl" 
I'EM' 

wh ich is, modulo the bracketed term, of the right form to be const(zA A W M)' 
Apriori, the bracketed term depends on the decompositions A = AlU A 2; 
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The more general case is treated similarly. 
Q.E.D. 

Proof of Proposition 1.1: Part (a) follows immediately from Lemma 1.2. 
We note that (a) is equivalent to 

Part (b) follows from the fact that Land Aare homogeneous operators and 
are real. 

We shaIl show part (c). Using the notation used in Lemma 1.2, we observe 
that 

( 1.4) 
L(ZAAZBA wM ) = ~ (tl zl' AZI') AZAAZBA WM 
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I'EM' 
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where M' = N - (A u B uM), as before. On the other hand, we see that, 
using Lemma 1.2 and the definition of A, 

(1.5) 

Using these formulas, one obtains easily, assuming that z,j 1\ Zs 1\ wM has 
total degree p, 

AL - LA = (n - p)z,jI\ZSI\WM , 

and part (e) of Proposition 1.1 follows immediately. 

2. Harmonie Theory on Compact Manifolds 

Q.E.D. 

In this seetion we want to give further applieations of the theory of har
monie differential forms on eompaet (differentiable or eomplex) manifolds. 
As we have seen in Chap. IV, the Laplacian on a Riemannian manifold is 
defined by dd* + d*d, where d* is the adjoint with respeet to some inner prod
·uet on the (elliptie) eomplex S*(X) of eomplex-valued differential forms on 
x. We want to use the *-operator of Sec. I to define a particular inner product 
for the vector space of differential forms of a given degree, from which will 
follow a useful formula for the adjointoperator d* (and related operators). 

Suppose that X is a compact oriented Riemannian manifold of d dimen
sions. Then the orientation and Riemannian structure define the *-operator 
as in Sec. 1: 

*: I\PT~(X)~ I\d-PT~(X) 

at each point x E X. Moreover, * defines.a smooth bundle map, since we 
can define it in the neighborhood of a point by ehoosing a smooth loeal 
(oriented) orthonormal frame. Hence * induces an isomorphism of sections 
(assuming that we extend * to 1\ PT*(X) ® C by complex linearity), 

*: t;P(X) ~ Sd-p(X), 

where d = dimRX. 
Suppose that rp E t;d(X). Then we can define, in a standard manner, 

by using a partition of unity [rps} subordinate to a finite covering of X by coor
dinate patches. Namely, let 

Ir.: Us C Rd ---+ X 
open 

be the coordinate mappings, and set 

f rp=~f f:(rpsrp)=~f gs(x)dx 1 1\···l\dxd , 
x Qt u« CI Kill' 

where the CM function gs has compact support in Us. This is easily seen to 
be independent of the coordinate covering and partition of unity used. 
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If X is an oriented Riemannian manifold, then X earries a I'olume ele
ment dV, whieh is nothing but a d-form Cf' E t;"(X), with the property that in 
any oriented system of loeal coordinates U c X 

tp(x) = f(x)dx 1/\ . , . /\dx", 

wheref(x) > 0 for aII x E U. By means ofthe *-operator it is easy to see that 

tp = *(1), (I E C c t;O(X» 

is indeed a volume element on X. 

Remark: Denote in loeal coordinates the Riemannian metric on X by 

ds 2 = gu dx' 0 dxJ, 

using the summation eonvention, where g,j is a symmetrie positive definite 
matrix of funetions. If we let g'J be defined by 

glJgjk = t5L 

and if we raise indices by setting 

(Kronecker delta), 

a'l' .. I. = g'llt • g'2J2 ... , • g'.J·a,l .. '1., 

then we ean express the *-operator given by the metric ds 2 explicitly in terms 
of these quantities (cf., deRham [I], pp. 1I9-122). Namely, we have, if 

then 

where 

(*cx) = l: (*cx)h"'Jd_. dxJl /\ ..• /\ dxJd-P, 
h<"'<Jd-p 

(*cx)i1"'Jd_. = ±Vdet(glj)cx'l ''' 'p, 
where {i1 , ••. , ip,h, ... ,j,,_p} = {I, ... , d}, and we have the positive sign if 
the permutation is even and negative sign in the other case (just as in the case 
of an orthonormal basis). Thus in particular 

*(1) = V det(glj) dx1 /\ ••• /\ dx" 

is the volume element in this case. 

Define 

(2.1) 
(tp, "') = Ix tp /\ *Vi, 

(tp, "') = 0, 

tp, '" E SP(X) 

tp E SP(X), '" E S9(X), p,* q 

and the integral is weIl defined since Cf' 1\ *ifi is a d-form on X. We ean ex
tend this definition to noneompact manifolds by considering only forms with 
compact support. We then have the foIIowing proposition. 
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Proposition 2.1: The form ( , ) defined by (2.1) defines a positive definite, 
Hermitian symmetrie, sesquilinear form on the eomplex veetor spaee s*(X) 
= ffi:=oSP(X). 

Proof· The Riemannian metrie on X induees an Hermitian inner 
product < , > on 1\ PT}( X) for eaeh x E X, given by, for ep, '" p-forms on X, 

ep /I. *i[i = <ep, "'>vol 

as we saw in (1.3). It is then clear that 

(ep, "') = Ix ep /I. *i[i = Ix <ep, "'>vol 

is a positive semidefinite, sesquilinear Hermitian form on f?(X). To see that 
( , ) is positive definite, suppose that ep E SP(X) is not equal to zero at 
X o E X, then near xo, we ean express ep in terms of a loeal oriented ortho
normal frame for T*(X) 0 C, {eh' .. , ed}, 

and 

near xo, and !IJI =p I ep,I 2 > 0 ne ar xo. Then the eontribution to the integral 

(ep, ep) = Ix ep /I. *ip 

will be nonzero, and thus (ep, ep) > o. 
Q.E.D. 

Thus the elliptie eomplex (S*(X), d) is equipped with a eanonical inner 
produet depending only on the orientation and Riemannian metrie of the 
base spaee X (in Sec. 5 of Chap. IV we had allowed arbitrary metries on eaeh 
of the veetor bundles appearing in the eomplex). We would have arrived 
at the same inner produet had we merely used the metrie on I\PT*(X) natu
rally indueed by that of T(X) and for our strictly positive measure d)., used 
the volume element *(1). However, the representation we have given here for 
the inner produet on S*(X) will prove to be very useful, as we shall see. For 
convenience, we shall eall the inner produet (2.1) on S*(X) the Bodge inner 
product on S*(X). 

Suppose that X is a Hermitian complex manifold. Then we can define 
the Hodge inner produet on S*(X) with respect to the underlying Riemannian 
metrie and a fixed orientation given by the eomplex strueture (all eomplex 
manifolds are orientable). 

Proposition 2.2: The direet sum decomposition S'(X) = I;p+q=, SM(X) 
is an orthogonal direet sum decomposition with respect to the Hodge 
inner product. 
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Proof: Suppose that rp E. eM(X) and that 'I' E er. ,(X), where p + q 
= r + s. Then we see that rpl\*/j! is of type (n - r + p, n - s + q), since 
/j! is of type (s, r) and */j! is then of type (n - r, n - s) by Proposition 1.1. 
Therefore rp 1\ */j! is a 2n-form if and only if r = p and s = q. Otherwise, 
rp 1\ */j! is identically zero. This proves the proposition. 

Q.E.D. 

Using the Hodge inner product, it will be very easy to compute the ad
joints of various linear operators acting on &*( X) (cf. the computation of L * 
in Sec. 1). First we want to modify the *-operator in a manner which will be 
convenient for this purpose. On an oriented Riemannian manifold we define 

*: e*(X) ~ e*(X) 

by setting *(rp) = *ip. Thus * is a conjugate-linear isomorphism of vector 
bundles, 

*: /\ PT*(X)c ~ /\ m-PT*(X)c' 

where m = dimaX. Suppose that X is now a Hermitian complex manifold 
and that E ----> Xis a Hermitian vector bundle. Let 

'r: E~E* 

be a conjugate-linear bundle isomorphism of E onto its dual bundle E*. 
The mapping -r depends on the Hermitian metric of E and is defined fibre
wise in a standard manner. We then define 

*E: NT*(X)c ® E ~ Nn-PT*(X)c ® E* 
by setting 

*Arp ® e) = *(rp) ® -r(e) 

for rp E NT:(X)c and e E Ex. Thus *E is a conjugate-linear isomorphism 
of Hermitian vector bundles. We recall that we defined er(X, E) to be the 
sections of /\,T*(X)c ® E and that, moreover, there is a decomp~sition into 
bidegrees 

er(x, E) = L: eP.9(X, E). 
p+q=, 

Thus we note that first the Hodge inner product on e*(X) can be written as 

(rp, '1') = f x rp 1\ *'1', 

and we extend this to a Hodge inner product on e*(X, E) by setting 

(2.4) (rp, '1') = Ix rp 1\ *E'I' 

if rp, 'I' E er(X, E). It is easy to see that rpl\*E'I' does make sense and is a 
scalar 2n-form which can be integrated over X (where n = dime X). In fact, 
if we let< , > represent the bilinear duality pairing between E and E*, then we 
set, for rp E /\ PT:(X)c' e E Ex, 'I' E /\ 2n-Q:(X)c,f E E:, 

(rp ® e)l\('I' ® f) = '11\'1' • <e, f> E /\ 2nT:(X)c' 
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By using a basis for E and a dual basis for E*, we can extend this exterior 
product to vector-bundle-valued differential forms, and it is easily checked 
that the resulting exterior product is independent of the choice of basis. 
Thus (2.4) defines wh at we shall call a Hodge inner product on S*(X, E). 
Then it is easy to see that *E preserves the bigrading on S*(X, E), and that, 
in fact, 

*E: SM(X, E) ~ S·-P··-q(X, E*) 

is a conjugate-linear isomorphism.lt is then dear that Proposition 2.2 extends 
to this case. 

We are now in a position to compute the adjoints of various operators 
with respect to the Hodge inner product. Moreover, all adjoints in this and 
later sections 0/ the book will be with respect 10 fhe Hodge inner producf. 

Proposition 2.3: Let X be an oriented compact Riemannian manifold of 
real dimension m and let A = dd* + d*d, where the adjoint d* is defined with 
respect to the Hodge inner product on S*(X). Then 

(a) d* = (_l)",+m p+ l*d* = (_I)m+m p+ I *d* on t;P(X). 
(b) *A = A*, *A = A •. 

Proo/: The basic fact we need is that ** = w, as defined in Sec. I. 
Suppose that rp E srl(X) and that '1/ E SP(X). Then we consider 

(drp, '1/) = L drp /\ *'1/ 

= Ld(rp/\*'I/) - (_l)P-l Lrp/\d*'I/, 

by the rule for differentiating a product of forms. Moreover, by Stokes' 
theorem, we see that the first term vanishes, and hence we obtain (noting 
that ** = ** = w, since * is real) 

and thus we have 

(drp, '1/) = ( -I)P f x rp /\ *(*-ld*)'1/ 

= (- I)p L rp /\ *(*wd*)'1/ 

= (_l)m+m p+l(rp, *d*'I/), 

d* = (-I )m+m p+ l*d*, 

and since d is real, we also obtain 

d* = (_I)m+mp+l*d*. 

To prove (b), we compute, for rp E SP(X), 

*Arp = (-I)m+mp+l(*d*d* + (-I)'" **d*d)rp 

A*rp = (_l)m+m(m- P I+l(d*d** + (_I)m *d*d*)rp, 
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and so it suffices to show that (recall that w = **) 

wd*drp = d*dwrp. 

Chap. V 

But this is simple, since w = 2:( -1)p+mPllp, and thus the right-hand side 
is d*d( -I)P +m prp , whereas the left-hand side has degree m -p, and so 

wd*drp = (_l)m- p+m(m- pld*drp = (-I)p+mPd*drp. 
Q.E.D. 

We have a similar result for the Hermitian case. Note that *E' is defined 
in the same way as *E by using ,-I: E* ~ E. 

Proposition 2.4: Let X be a Hermitian complex manifold and let E ~ X 
be a Hermitian holomorphic vector bundle. Then 

(a) ä: SM(X, E) ~ SP.q+I(X, E) has an adjoint ä* with respect to the 
Hodge inner product on S**(X, E) given by 

ä* = -*pä*E' 

(b) If 0 = ää* + ä*ä is the complex Laplacian acting on S**(X, E), 
then 

Proof: In this ca se we also have *E*E' = W = 2:( -1)Pllp , a simpler 
expression since the real dimension of X is even. The proof of (a) then follows 
as before, with minor modification. Suppose that rp E SP.q-I(X, E) and that 
IJI E SM(X, E). Then we have that rp 1\ * EIJI is a scalar differential form of 
type (n, n - I), and hence ä(rp 1\ *EIJI) = d(rpl\ *EIJI). Moreover, 

ä(rp 1\ *EIJI) =ärp 1\ *EIJI + (-W+q-1rp 1\ ä*EIJI· 

Substituting into the inner product, we obtain, using Stokes' theorem as in 
the proof of Proposition 2.3, 

(ärp, IJI) = (-I)p+q Ix rpl\ä*EIJI 

= (-l)p+q f rpl\*Aw*E"ä*EIJI) 

= - f rpl\*E(*E·ä*EIJI) 

= (rp, -*E·ä*EIJI), 

and hence (a) is proved. The proof of (b) is exactly the same as in Proposition 
2.3 (Note that Ei acting on S**(X, E) and S**(X, E*) denotes two different 
operators ). 

Q.E.D. 

Remark: We note that only ä acts naturallyon Sp,q(X, E) for a non
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do not annihilate the transition funetions defining E. However, in the sealar 
ease, we have a: gP·q(X) ---+ gP+l,q(X), and by the same ealculation as above 
we obtain that a* = - *a* and that. 0 = aa* + a*a eommutes with *, 
exaetly the same as the ä-operator ease. 

Using the above results we ean derive two well-known duality theorems. 
We first remark that a finite dimensional eomplex veetor spaee E is eon
jugate-Iinearly isomorphie to a eomplex veetor spaee F if and only if F is 
complex-Iinearly isomorphie to E*, the dual of E (and the bilinear pairing 
of E to F ean be obtained from a Hermitian inner produet on E). 

Theorem 2.5 (Poincare duality): Let X be a eompaet rn-dimensional orien
table differentiable manifold. Then there is a eonjugate linear isomorphism 

(1: H'(X, C) ---+ Hm-,(x, C), 

and henee Hm-,(x, C) is isomorphie to the dual of H'(X, C). 

Proof: Introduee a Riemannian metrie and an orientation on X and let 
* be the associated *-operator. Then we have the eommutative diagram 

g'(X) ~ gm-,(x) 

lH4 _ lH4 

Je'(X) ~ Jem-,(x) 

III III 
H'(X, C) ~ Hm-,(x, C), 

where H 4 is the projeetion onto the harmonie forms given by Theorem 
IV.4.12, and the mapping *" maps harmonie forms to harmonie forms sinee 
ä. = .ä, as we saw in Proposition 2.3. Moreover, the de Rham groups 
H'(X, C) are isomorphie to Je'(X) (Example IV.5.4), and (1 is the indueed 
eonjugate linear isomorphism. 

Q.E.D. 

Remark: We eould have restrieted ourselves to real-valued differential 
forms and obtained the same result. Also, the more general Poincare duality 
theorem of algebraie topology is true with eoefficients in Z and is indepen
dent of any differentiable strueture on X, but one needs a different type of 
proof for that (see, e.g., Greenberg [I)). 

Corollary 2.6: Let X be as in Theorem 2.5. Then 

r =0, ... ,mo 

Our next result is more analytieal in nature and depends very mueh on 
the eomplex struetures involved, in eontrast to the Poineare duality above. 
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Theorem 2.7 (Serre duality): Let X be a eompaet eomplex manifold of eom
plex dimension n and let E ---> X be a holomorphic veetor bundle over X. 
Then there is a eonjugate linear isomorphism 

(1: H'(X, {lP(E» -+ Hn-,(X, {ln-p(E*», 

and henee these spaees are dual to one another. 

Proof: By introdueing Hermitian met ries on X and E, we ean define 
the *E operator. Then we obtain the following eommutative diagram, 

*E ep,q(X, E) -+ en- p, n-q(X, E*) 

lHo * lHo 
Jep,q(X, E) ~ Jen-p,n-q(x, E"') 

HP, ~ix, E) ~ Hn- p, n-~ix, E*) 

111 111 
Hq(X, {lP(E») ~ Hn(x, {ln-p(E*», 

whieh proves the result immediately. Onee again, *E maps harmonie forms 
to harmonie forms by Proposition 2.4, and the [H p,q(X, E)} are the Dol
beauIt groups [the eohomology of the eomplex (e p, *(X, E), ä)], whieh are 
isomorphie to Hq(X, QP(E)), as we saw in Theorem 11.3.20. 

Q.E.D. 

Remark: Serre proved this also in the ease of noneompaet manifolds, 
under eertain c10sed range hypotheses on ä and by using eohomology with eom
paet supports, i.e., H'HX, Qp(E)) is the topologieal dual of Hn-q(x, Qn-q(E*), 
where H'H) denotes eohomology with eompaet supports. In our ease 
we have finite dimensional veetor spaees (due to the harmonie theory), 
in whieh ease Serre's hypothesis is fulfilled and the eompact support is auto
matie. Serre's proof (in Serre [I]) used resolutions ofQP(E) by both COO forms 
and by distribution forms, and he was able to utilize the natural duality of 
these spaces to obtain his results. The proof above is due to Kodaira [I). 

Corollary 2.8: Let X be a eompact eomplex manifold of complex dimen
sion n. Then 

(a) b,(X) = b2n-,(X), r = 0, ... ,2n. 
(b) hp,q(X) = hn-p.n-q(X), p, q = 0, ... ,n. 

3. Representations of sI(2, C) on Hermitian Exterior Aigebras 

In this section we summarize the finite-dimensional complex representa
ti on theory for the Lie algebra sI(2, C) of 2 X 2 complex matrices with trace 
zero, and then we will apply this theory to specific representations arising 
from Hermitian exterior algebras as in Sec. 1. This representation theory is 
available in various references (e.g., Serre [3], Varadarajan [I]), and we will 
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survey the principal ideas needed for the applications we have in mind. We 
will use some elementary facts and terminology concerning Lie groups and 
Lie algebras as is found in any introduction to the subject (e.g., Chevalley 
[I], Helgason [I], Varadarajan [I]), such as the Lie algebra of a Lie group, 
and the associated exponential mapping, invariant measure on Lie groups, 
etc., although we will be using these concepts only for specific low-dimen
sional matrix groups and matrix algebras. 

We recall that a Lie algebra is a vector space ~{ equipped with a Lie 
bracket product [ , ] which is anticommutative, and which satisfies the 
Jacobi identity 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = O. 

An algebra of matrices equipped with the commutator Lie bracket is the 
prototypical example of a Lie algebra. A representation of a Lie algebra III on 
a complex vector space V is an algebra homomorphism 

7t: III ~ End( V), 

where End(V) is the Lie algebra of endomorphisms of Vequipped with the 
commutator Lie bracket [A, B] = AB - BA. If n = dirn V< 00, then we 
say that the representation has dimension n. If dirn V = 00, then we say that 
7t is an infinite-dimensional representation. A representation 7t is irreducible 
if there is no proper invariant subspace Vo =F 0 of V. Here Vo is a proper 
invariant subspace if 0 =1= Vo =1= V, and 

7t(X) Vo C Vo, for all XE Ill. 

If 7t1 and 7t2 are representations on VI and V2 , respectively, then 7t = 7t1 EB 7t2 
is a representation orlll on VI EB V2 in a natural manner. Two representations 
7tl and 7t2 are equivalent if there is an isomorphism S: VI --* V2 so that 
7tl = S-I7t2S, A representation 7t is completely reducible if it is equivalent to 
a direct sum of irreducible representations. A representation of a Lie group 
(e.g., a matrix group) G on a finite-dimensional complex vector space V is a 
real-analytic homomorphism p: G --* GL(V), where GL(V) denotes the Lie 
group of nonsingular endomorphisms of the vector space V. In this case, one 
has the same notions of irreducibility, complete reducibility, etc. as discussed 
above for representations of Lie algebras. 

The Lie algebra 6(2, C) is, by definition, 2 X 2 complex matrices with 
trace zero. One finds that 5(2, C) is the Lie algebra of the Lie group SL(2, C), 
the group of 2 x 2 matrices with complex coefficients and determinant equal 
to I. There is an exponential mapping 

(3.1) 

given by 

exp: 6(2, C) ~ SL(2, C) 

co 

exp X = eX = I X"jn!, 
n=O 
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which is norm convergent, and where, for t E C, 

(3.2) 
e tX = 1+ tX + 0(1 t 12), 

etXetY = 1+ t(X + Y) + 0(1 t 12), 

etXetYe-tXe-tY = 1+ t 2([X, Y)) + 0(1 t 13), 

Chap. V 

which indicates the basic relationship between the group law in SL(2, C) 
and the Lie bracket in 51(2, C). 

Now consider the subgroup SU(2) of SL(2, C) consisting ofunitary 2 X 2 
matrices of determinant one. It follows readily from (3.2) that 5u(2), the 
corresponding Lie algebra of SU(2), consists of skew-Hermitian 2 x 2 
matrices of trace zero, i.e., X + X* = 0, tr(X) = 0, where X* = t Xis the 
Hermitian adjoint. Thus we have the following diagram of groups and 
algebras, where i is the natural inc1usion: 

5u(2) ~ 51(2, C) 

(3.3) lexp lexp 

SU(2) ~ SL(2, C). 

For reference, we will write down explicit generators for these algebraic 
objects. First we note that 51(2, C) has dimension 3 and a basis is given by 

(3.4) X= [~ b]' Y = [~ ~]. 
One checks that the commutation relations 

(3.5) [X, Y] = H, [H, X] = 2X, [H, Y] = -2Y 

hold. We see easily that 5u(2) is a real form of 5(2, C) (Le., as vector spaces, 
51(2, C) = 5u(2)!&IR C), and has a basis (over R) given by 

iH, X- Y, i(X + Y). 

We note that i(X + Y) generates a one-parameter subgroup of SU(2) given 
by 

ex [it(X + Y)] = [~~S t i sin t] tE R. 
P I sm t cos t ' 

This can be checked by a direct computation or by noting that both 1-
parameter subgroups have the same generator, namely 

i(X+Y)=i[O I]=d[~~st iSint]/ 
I ° dt I sm t cos t 1_ 0 

Let 

(3.6) w = exp[ti1t(X + Y)] = [~ ~], 
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and we see that conjugation by w in sI(2, C) gives rise to a refiection with 
respect to the above basis (the Weyl group refiection). Namely, 

wHw- 1 = -H, wXw- 1 = Y, wYw- 1 = X. 

We return now to diagram (3.3). For each ofthe algebraic objects in (3.3) 
one considers representations on a complex vector space V, as we have done 
before: 

[eu(2) -+ End(V)]a ~ [el(2, C) -+ End(V)]c 
(3.7) 4 t cd 

[SU(2) -+ GL(V)]a ~ [SL(2, C) -+ GL(V)]c 

Here [eu(2) -+ End(V)]R denotes R-linear algebra homomorphisms, 
[el(2, C) -+ End(V)]c denotes C-linear algebra homomorphisms, [SU(2)-+ 
GL(V)]a denotes real-analytic group homomorphisms, and [SL(2, C)-+ 
GL(V)]c denotes complex-analytic group homomorphisms. The mappings'l 
and '2 are the natural restriction mappings, and dis the derivative mapping, 
recalling that the Lie algebra of a Lie group is the tangent space to the Lie 
group at the identity element, and noting that the derivative of a representa
tion of a Lie group is indeed a representation of the associated Lie algebra. 

We now have the following proposition. 

Proposition 3.1: The mappings '1' '2 and d in (3.7) are all bijective, i.e., there 
is a one-to-one correspondence between representations of SL(2, C), 51(2, C), 
SU(2) and eu(2). 

P,oo/; First we see that '1 is bijective since 51(2, C) is the complexifica
ti on of eu(2), and R-linear homomorphisms defined on 5u(2) extend naturally 
and uniquely as C-linear homomorphisms on 51(2, C). The mappings d are 
bijective since SL(2, C) and SU(2) are both connected and simply-connected 
[SL(2, C) ~ S3 X R3, SU(2) ,...., S3], thus insuring that the inverse of exp 
(the "logarithm") is well-defined on SU(2) and SL(2, C). The diagram is 
commutative, and we conclude that'2 is bijective. In fact, if 

p: 91(2, C) -+ End( V) 

is given, and if g = eX E SL(2, C) where XE !l!1(2, C), then the representation 

n: SL(2, C) -+ GL( V) 

corresponding to the given p is of the form 

(3.8) 

It is clear that dn = p. 

Q.E.D. 

Thus we have that representations of 51(2, C) are in one-to-one corre
spondence with representations of SU(2), a compact Lie group. We now have 

Sec. 3 Representations 0/ el(2, C) on Hermitian Exterior Aigebras 173 

and we see that conjugation by w in sI(2, C) gives rise to a refiection with 
respect to the above basis (the Weyl group refiection). Namely, 

wHw- 1 = -H, wXw- 1 = Y, wYw- 1 = X. 

We return now to diagram (3.3). For each ofthe algebraic objects in (3.3) 
one considers representations on a complex vector space V, as we have done 
before: 

[eu(2) -+ End(V)]a ~ [el(2, C) -+ End(V)]c 
(3.7) 4 t cd 

[SU(2) -+ GL(V)]a ~ [SL(2, C) -+ GL(V)]c 

Here [eu(2) -+ End(V)]R denotes R-linear algebra homomorphisms, 
[el(2, C) -+ End(V)]c denotes C-linear algebra homomorphisms, [SU(2)-+ 
GL(V)]a denotes real-analytic group homomorphisms, and [SL(2, C)-+ 
GL(V)]c denotes complex-analytic group homomorphisms. The mappings'l 
and '2 are the natural restriction mappings, and dis the derivative mapping, 
recalling that the Lie algebra of a Lie group is the tangent space to the Lie 
group at the identity element, and noting that the derivative of a representa
tion of a Lie group is indeed a representation of the associated Lie algebra. 

We now have the following proposition. 

Proposition 3.1: The mappings '1' '2 and d in (3.7) are all bijective, i.e., there 
is a one-to-one correspondence between representations of SL(2, C), 51(2, C), 
SU(2) and eu(2). 

P,oo/; First we see that '1 is bijective since 51(2, C) is the complexifica
ti on of eu(2), and R-linear homomorphisms defined on 5u(2) extend naturally 
and uniquely as C-linear homomorphisms on 51(2, C). The mappings d are 
bijective since SL(2, C) and SU(2) are both connected and simply-connected 
[SL(2, C) ~ S3 X R3, SU(2) ,...., S3], thus insuring that the inverse of exp 
(the "logarithm") is well-defined on SU(2) and SL(2, C). The diagram is 
commutative, and we conclude that'2 is bijective. In fact, if 

p: 91(2, C) -+ End( V) 

is given, and if g = eX E SL(2, C) where XE !l!1(2, C), then the representation 

n: SL(2, C) -+ GL( V) 

corresponding to the given p is of the form 

(3.8) 

It is clear that dn = p. 

Q.E.D. 

Thus we have that representations of 51(2, C) are in one-to-one corre
spondence with representations of SU(2), a compact Lie group. We now have 



174 Compact Complex Man;folds Chap. V 

the folJowing important theorem of H. Weyl concerning complete reducibility 
of representations of compact Lie groups (the "unitary trick"). We state the 
theorem in full generality, but will use it only for G = SU(2). 

Theorem 3.2: Let G be a compact Lie group, and let p: G _ GL(V) be a 
representation on a finite-dimensional complex vector space. Then p is com
pletely reducible. 

Proo/: Choose a basis for V so that V '" C". Let dg be the natural left 
invariant measure on the Lie group Gwhich can be constructed from left 
invariant differential forms dual to the left invariant vector fields wh ich 
comprise the Lie algebra of G (see Helgason [I], Chapter X, §I). Then 

M(g) = p(g)p(g)* 

is a Hermitian positive definite matrix for each gE G. Define 

M = JG M(g) dg, 

and it follows that M is Hermitian positive definite also. Then consider 

p(g)Mp(g)* = JG p(g)p(t)p(t)*p(g)* dt 

= JG p(gt)p(gt)* dt 

= JG p(t)p(T)* dT = M, 

using the invariance of dt under the action of G on itself by left translation. 
Since M is positive definite, we can write 

M=NN* 

where N is positive definite. Then we see that p = N-lpN is equivalent to p 
and moreover 

P(g)P(g)* = (N-lp(g)N)(N-lp(g)N)* 
= N-lp(g)NN*p(g)*(N-l)* 
= N-IM(N- 1)* 

=/, 

and thus P(g) is a unitary matrix for ali gE G. Now we check that P is 
completely reducible. Suppose that Va is any subspace of V invariant under 
the action of p. Then let V~ be the orthogonal complement to Va with respect 
to the usual Hermitian metric on C". Then P(Va) eVa, and it follows 
immediately that p(vt) c V~, since p(g), being unitary, preserves the inner 
product in C" for each gE G. 

Q.E.D. 

CoroUary 3.3: Let p be a representation of sl(2, C) on a finite-dimensional 
complex vector space, then p is completely reducible. 
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Proo/: This follows immediately from Proposition 3.1, Theorem 3.2 and 
the fact that the bijections in (3.7) are natural and preserve irreducibility and 
direct sums. 

Q.E.D. 

Now we know that any representation p of 5[(2, C) on a finite-dimensional 
complex vector space V is the direct sum of irreducible representations. We 
now turn to an explicit description of these irreducible representations, 
which can be characterized, up to equivalence, by the dimension of the 
representation space, as we shall see. We start with adefinition. 

Definition 3.4: Let p be a representation of 51(2, C) on a finite-dimensional 
complex vector space V. Let VA be the eigenvectors of p(H) with eigenvalue 
A, i.e., for A E C, 

VA = {v E V:p(H)v = AV}. 

We say that v E VA has weight A.. A vector v E V is said tö be primitive 0/ 
weight A if v is nonzero, v E VA and p(X)v = O. 

We now have some elementary lemmas which lead up to the basic 
canonical form for a representation of 5[(2, C). We assurne a fixed finite
dimensional representation p on 51(2, C) on a complex vector space V. 

Lemma 3.5: 

(a) The sum ~AeC VA is a direct sumo 
(b) If v is of weight A, then p( X) is of weight A + 2 and p( Y) is of weight 

A - 2. 

Proo/: (a) is simply the assertion that eigenvectors corresponding to 
different eigenvalues are hnearly independent. For (b) we observe that 

p(H)p(X)v = (p(H)p(X) - p(X)p(H»v + p(X)p(H)v 
= p([ H, X])v + Ap( X)v 
= p(2X)v + Ap(X)V 
= (A + 2)p(X)v. 

Similarly, p(H)p( Y)v = (A - 2)p( Y)v. 
Q.E.D. 

Lemma 3.6: Every representation p of 5[(2, C) on a finite-dimensional 
complex vector space has at least one primitive vector. 

Proo/: Let Vo be an eigenvector of p(H), and consider the sequence of 
eigenvectors of p(H) 

Va, p(X)vo, p(X)2VO' ... , p(X)"vo, .... 
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The nonzero terms in this sequenee are linearly independent, sinee they are 
eigenveetors with differing eigenvalues (Lemma 3.5), so the sequenee must 
terminate, and henee for so me fixed k, p(X)kVO = 0, p(xt-Ivo i= 0, and 
thus v = p(X)k-IVO is a primitive veetor. 

Q.E.D. 

We now have the basic deseription of an irredueible representation of 
sl(2, C) on a finite-dimensional eomplex veetor spaee. 

Theorem 3.7: Let p be an irredueible representation of sI(2, C) on a finite
dimensional eomplex veetor spaee V. Let Vo E V be a primitive veetor of 
weight A. for the representation p. Then, letting V-I = 0, and setting 

one obtains, for n > 0, 

(a) p(H)vn = (A. - 2n)vno 

(b) p(Y)vn = (n + I)Vn+l' 
(e) p(X)vn = (A. - n + l)vn _ l . 

n = 0, 1, ... , m, .. . , 

Moreover, A. = m, where m + 1 = dime V, and 

p(yn)Vo = 0, n>m. 

Proof: (a) asserts that vn is of weight A. - 2n, whieh follows immediately 
from Lemma 3.5. (b) is clear from the definition of Vn, while (e) follows by 
induetion on n. Namely, for n = 0, we have p(X)vo = 0, sinee Vo was 
primitive, and V-I = O. Suppose we know (e) for n - I, then we eompute 

np(X)vn = p(X)p(Y)Vn-1 = p(Y)p(X)Vn-1 + p([X, Y])Vn-1 
= (A. - n + 2)p(Y)Vn-2 + p(H)vn- 1 
= (A. - n + 2)(n - l)vn _ 1 + (A. - 2n + 2)Vn-1 
= n(A. - n + I)Vn-l, 

and we obtain (e) after dividing by n. 
We now show that A. is neeessarily an integer. Sinee V is finite-dimensional, 

there is an integer m :2: 0 such that 

Vo,···, Vm are non zero 
Vm + I ,··., Vm+k"" = 0 

reealling that the nonzero v/s are eigenveetors of p(H) with differing eigen
values. Now apply (e) to Vm + l , obtaining 

0= p(X)Vm+1 = (A. - (m + I) + I)vm 

= (A. - m)vm, 

and sinee Vm i= 0, it follows that A. = m. 
Let Vm be the veetor spaee spanned by {vo, ... , vm}. Then we claim that 
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Vm is invariant under the action of p on V. Suppose v = !:=o IXnVn• IX) E e, 
then 

m 

p(H)v = ! IXlm - 2n)vn 
n=O 

m 

p(Y)v = ! IXn(n + 1)vn+ 1 
n=O 

m 
p(X)v = ! IXn(m - n + 1)vn_1 , 

n=O 

so p(!lII(2, C)Vm c Vm• Thus Vm is a nonzero invariant subspace, and sinee p 
is assumed irreducible, it follows that V = Vm, and that m + 1 = dirn V. 

Q.E.D. 

Remark: We see that the basis {vn} in Theorem 3.7 gives a eanonieal 
form for the matriees representing the linear mappings p(H), p( Y) and p(X) 
aeting on V. Namely 

whieh for m = 1 gives the original 2 x 2 matriees in (3.4), showing that they 
are in the same eanonieal form. 

Next we see that there is, up to equivalenee, only one irredueible repre
sentation of dimension m + I. Somewhat later we will deseribe an explieit 
example of an (m + J )-dimensional irredueible representation, arising from 
symmetrie tensor produets. 
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Theorem 3.8: Let V be a complex vector space of dimension m + 1, with 
m ::2: 0, and let {vo, ... , Vm} be a basis for V. Then define a representation p 
of sl(2, C) on V by setting 

(3.9) 
(a) 
(b) 
(c) 

p(H)vn = (m - 2n)vn , 

p(Y)vn = (n + l)vn+i> 

p(X)vn = (m - n + l)vn - 1, 

where n = 0, ... , m, and V-I = Vm + 1 = 0. This representation is irreducible, 
and any irreducible complex representation of dimension m + 1 is equivalent 
to this one. 

Proo/: One checks readily that the mapping p: sI(2, C) ~ End( V) given 
by (3.9) is indeed a representation. Suppose now that Vo is a nonzero subspace 
of V invariant under p. Then there is an eigenvector of p(H) contained in Vo. 
The list of eigenvectors of p(H) in (3.9a) is complete, so Vo must contain one 
of the vectors Vk for some k. But then applying (3.9c) to vk , we see that 
Vo E Vo. Then using (3.9b) we see that Vo must contain vft> n = 0, ... , m. 
Thus Vo = V, and p is irreducible. It is cIear from Theorem 3.7 that an 
arbitrary irreducible representation of dimension m + I is equivalent to this 
one. 

Q.E.D. 

Corollary 3.9: Suppose p: sI(2, C) ~ V is an irreducible representation of 
dimension m + I, m ::2: 0. Let qJ E V be an eigenvector of p(H) of weight A; 
then there exists a pri(Jtive vector of weight A + 2r, for some integer r > 0, 
so that 

and where 

(m - r)! r 
qJo = m!r! p(X) qJ. 

Proo!, Let {vo, ... ,vm} be a basis for V satisfying (3.9) for the given 
representation p. Then we see that for r fixed, ° < r S m, we have 

p(X)vr = (m - r + l)vr-i> 
p(X)2vr = (m - r + I)(m - r + 2)vr-z, 

etc., and thus 

p(X)'Vr = (m - r + I)· .. (m)vo = (m:! r)! vo· 

Then applying the second "ladder operator," we see that 

p( Y)p(X)'vr = (m :! r)! Vi> 

( ) 2 (x)r _ m! 2 
p Y p Vr - (m _ r)! V2' 
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ete., and thus 

(Y)' (X)' mIr! P P v, = (m _ r)! Vro 

and thus we obtain the useful identity 

(3.10) (m - r)! (YY (xy v, = m! r! P P v,. 

Now suppose that qJ is any eigenvector of p(H). Then qJ is a multiple of one 
of the eigenveetors {vo, ... , Vm} above, say, qJ = (Xv,. Then it follows from 
(3.10) that 

(m - r)' qJ = . p(YYp(XYqJ 
mIr! ' 

and letting 
(m - r)! , 

qJo = mIr! p(X) qJ, 

we see that qJo is primitive, and the eorollary is proven. 
Q.E.D. 

We now introduce a specifie representation of SL(2, C) and its derived 
representation of 61(2, C). Consider C2 as eolumn veetors, and let 

Vt,O = [~J. Vt,t = [~] 
be standard basis veetors. Then SL(2, C) aets on C2 by left matrix multipliea
tion, and we eall this representation 1tt. Then if we consider sm(C2), the 
m-fold symmetrie tensor product of C2 with itself, we define 1tm = sm(7t l ), 

where each matrix 7tm(g) is the multilinear extension of 7t l (g) = g to sm(C2), 
and we note that dirn sm(C2) = m + 1. The representation 7tm induces 
a derived representation Pm = d7tm of 61(2, C) on sm(C2). We note that Pl 
is simply matrix multiplication on the left by elements of 61(2, C) [just as for 
the Lie group SL(2, C)), whereas Pm(g) = d7tm(g) is the extension of the 
linear mapping Pl(g) to sm(C2) as a derivation, which is easy to check. 

Thus in particular we obtain the following results: 

ete., and this representation satisfies the relations in (3.9) for m = 1. Now 
define 

o ~k ~m, 
m + I elements of sm(C2). Then {vm•k } is a basis for sm(C2). Moreover, one 
can compute easily that 

Pm(H)Vm,k = (m - 2k)vm.k' 0 ~ k ~ m, 
Pm(X)vm.o = 0, 
Pm( Y)vm.m = 0, 
Pm(X)Vm,k = kVm.k_h I <k < m, 
Pm(y)Vm,k = (m - k)Vm,k+h 0 <k< m - 1. 
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It is clear from these relations that any basis vector Vm.k is expressible as 
powers of Pm(X) and Pm( Y) acting on Vm.o, which we see is a primitive vector 
of weight m. Thus vm.o generates sm(C2) by the action of Pm, and thus Pm is 
irreducible, and hence equivalent to the representation in Theorem 3.8. In 
fact, if we set 

we see that 

- m! if.' -"if. ({Jk - (m _ k)! 1.0 1.1> 

from which follows the irreducibility. 
Now let us compute the action of w, the Weyl element in SL(2, C), on 

({J". We see that 

But 

and hence 

Thus we obtain 

(3.11) 

1tm(w)({J" = (m :! k)! 1tm(w)(v1.0)m-"(Vl.1)" 

(m :! k)! sm(1tl(W»(Vl.0)m-"(V1.l)'" 

1tl(W)Vl,O = iV1.l 
1tl(W)Vl.1 = iVl.O, 

( ) 'm k! 
1tm W ({J" = I (m _ k)! ({Jm-k' 
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Now we note that the identity (3.11) whichinvolves both the representation 
of SL(2, C) and sl(2, C) was derived from this particular explicit representa
tion, but we see from its form that it will be valid on any irreducible representa
tion of SL(2, C) and s[(2, C) on a vector space of dimension m + I. 

Now consider a specific representation of sl(2, C) on the exterior algebra 
of forms on an Hermitian vector space E. We will use the notation and 
terminology of Sec. I. Let E be a fixed Hermitian vector space of complex 
dimension n, and associate to E the algebra of forms /\ F, and the operators 
Land L*. We introduce the notation: 

A:=L* 
2n 

B:= L (n - p)ll". 
p=O 

We then define a representation 

(X: sl(2, C) ~ End( /\ F) 
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by setting 

IX(X) = A, IX(Y) =L, IX(H) = B. 

We see by Proposition 1.1 that IX is indeed a representation of SL(2, C), since 
the commutation relations [B, L] = -2L, [B, A] = 2A, and [A, L] = Bare 
easy to verify. 

Definition 3.10: A p-form cp E 1\ PF is said to be primitive if Acp = 0, i.e., if 
IX(X)cp = 0. 

Remark: RecaIl that B = I~'!,o (n - p)np , and thus any homogeneous 
form of degree p is an eigenvector of IX(H) of weight n - p. Hence a primitive 
p-form is a primitive vector for the representation IX of weight n - p. 

If cp is a primitive p-form, then the action of IX generates a subspace 
F", c I\F of dimension n - p + 1 on wh ich IX acts irreducibly. Moreover, the 
action of IX leaves the real forms l\aF invariant since L, A, and B are real 
operators. The decomposition of l\aF into irreducible components is called 
the LeJschetz decomposition of the exterior algebra, and this is compatible 
with the decomposition F = (J) 1\ MF, since L, A, and Bare bihomogeneous 
operators. This is elaborated in the theorems wh ich follow. By Proposition 3.1, 
we see that IX induces a representation of SL(2, C) on I\F, for which we will 
use the notation 1t~. We can restrict 1t~ to SU(2), and we observe that 1t~lsu(2) 
is unitary, which follows from the fact that 1XI'.(2) are skew-Hermitian opera
tors, i.e., 

lX(iH) = iB, lX(i(X + Y» = i(A + L), IX(X - Y) = A - L. 

The foIlowing theorems are consequences of the representation theory of 
61(2, C) for the specific representation IX on the Hermitian exterior algebra 
I\F. The first results can be proved directIy without appealing to representa
tion theory, as is done in Weil [1], but we prefer to use the representation 
theory as it gives more insight into the major results (cf. ehern [3] and 
Serre [3]. We can then give Hecht's elegant proof of the fundamental Kähler 
identities using the language developed here. Let (x)+ = max(x, 0). 

Theorem 3.11: Let E be an Hermitian vector space of complex dimension n. 

(a) If cp E I\PF is a primitive p-form, then Ucp = 0, q :2 (n - p + 1)+. 
(b) There are no primitive forms of degree p > n. 

Proof' Let cp be a primitive p-form, and let F", be the subspace of 1\ F 
generated by the action of 61(2, C) on cp by the representation IX. Then 
p(H)cp = mcp, where dirn F", = m + I. But p(H)cp = (n - p)cp, so m = 
n - p. Thus p( y)qcp = Ucp = 0, for q :2 (n - p + 1)+, by Theorem 3.7. 
Part (b) is a simple coroIlary of the fact that dirn F", = n - p + I. 

Q.E.D. 
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We will refer to the following theorem as the LeJschetz decomposition 
theorem for an Hermitian exterior algebra. 

Theorem 3.12: Let E be an Hermitian vector space of complex dimension 
n, and let <P E /\ p F be a p-form, then 

(a) One can write <P uniquely in the form 

(3.12) <P = I Lr<p" 
rO!:(p-n)+ 

where, for each r > (p - n)+, <Pr is a primitive (p - 2r)-form. Moreover, 
each <Pr can be expressed in the form 

(3.13) '(I = ~ a LSAr+s", 
't'r ~ r.s 't" 

r.s 
ar•s E Q. 

(b) If L m<p = 0, then the primitive (p - 2r )-forms <Pr appearing in the 
decomposition vanish if r > (p - n + m)+, Le., 

(p-n+m)+ 
<P = I L'<p" 

r=(J.-n)+ 

(c) if p < n, and Ln-p<p = 0, then <p = o. 

Proof: The representation space V = /\ F of the representation oe decom
poses into a direct sum of irreducible subspaces V = VI EB· .. EB V,. Let <p 

be a p-form, then 

<p = 1/11 + ... + 1/1', 
I/IJ E VJ' Then each 1/1 J is an eigenvector of p(H) of weight n - p, and hence 
by Corollary 3.9, we see that 

I/IJ = Lrl Xb 

where XJ is a primitive (p - 2rJ)-form, and 

(3.14) XJ = cJA'II/IJ, cJ E Q. 

Collecting the primitive forms of the same degree, we obtain a decomposition 
of <p of the form 

<p = I Lr <p" 
rO!:(n-p)+ 

where each <Pr is primitive of degree (p - 2r). 
To see that the decomposition is unique, we suppose that 

(3.15) 

where each <PJ is primitive j = 0, ... , m > l. We note that it follows from 
Theorem 3.7 that 

(3.16) k = 1, ... , m 
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for a rational nonzero constant Ck' depending only on p, k and n. Applying 
Am to (3.15) and using (3.16) we find that 

0= Amcpo + Am-l(AL)CPl + ... + A(Am-1Lm-l)CPm_l + AmLmcpm, 

which implies immediately that CPm = 0, contradicting our assumption that 
CPm was primitive. Thus the decomposition (3.12) is unique. 

To see that (3.13) holds we proceed in a similar manner. Let the p-form cP 
have the decomposition 

cP = CPo + Lcpl + ... + Lmcpm, 

where cP J are primitive (p - 2j)-forms. Then 

and so 

Amcp = Amcpo + Am-l(AL)CPl + ... + AmLmcpm 
= 0 + ... + 0 + CmCPm, 

CPm = (l/cm)Amcp. 

By induction from above, we get formulas of the type (3.13) for each cP j' 
j = 0, ... , m. 

Parts (b) and (c) follow simply from the uniqueness. Namely, for part (b), 
we see that 

0= Lmcp = I Lm+rcpr' 
r .. (p-n)+ 

Since CPr is primitive, it follows from Theorem 3.11 that Ucpr = 0 if q 2 
(n - (p - 2r) + 1)+, which implies that g+mcpr = 0 if r < (p - n + m). 
Thus we have 

The total degree of each term is 2m + p, and thus we have a primitive 
decomposition of the zero form of degree p + 2m, from which it follows that 
CPq-m = 0, q 2 (p + 2m - n)+, i.e., CPr = 0, r > (p - n + m)+, as desired. 
Finally, part (c) is a special case of part (b). 

Q.E.D. 

Corollary 3.13: Let cP be a p-form in I\F. Then a necessary and sufficient 
condition that cP be primitive is that both (a) p ~ n and (b) Ln-p+lcp = O. 

This corollary is a simple consequence of the Lefschetz decomposition 
theorem (Theorem 3.12). 

We now want to prove so me fundamental results concerning the relation
ship between the operators *, Land A which are important in the theory of 
Kähler manifolds. The development we give here is due to Hecht [I] and 
differs from the more traditional viewpoint of Weil [I] in that agiobaI 
representation of both SL(2, C) and 61(2, C) on the Hermitian exterior algebra 
is utilized, leading to so me simple ordinary differential equations which 
simplifies some of the combinatorial arguments found in Weil [I]. 
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Let E now be an Hermitian vector space with fundamental form 

given by (1.9) where {xlt , )'It} is an orthonormal basis for E', as before. Now, 
if T) is any p-form in AF, we let 

e(rf)<p : = 1'/ 11 <p 

be the operator acting on AF given by wedging with 1'/. If 1'/ is a real I-form, 
then we check easily that 

(3.17) 

and if {eI' ... , ez.} is areal oriented orthonormal basis for E', we see from 
Sec. I that 

(3.18) 
e*(eh)(eh 11· •. 11 eh) = eh 11· .. 11 ejk' 

if jl rt Uz, ... ,A}, and Ootherwise. 

We note that 

• 
L = e(Q) = ! e(xlt)e(YIt), 

1t;1 

• 
A = e*(Q) = ! e*(YIt)e*(xlt ). 

1t;1 

It is clear that 

(3.19) [L, e(I'/)] = 0, for any 1'/ E AF, 

since Q is a 2-form. On the other hand, we claim that 

(a) [A, e(xlt )] = e*(YIt), 
(b) [A, e(YIt)] = -e*(xlt), 

(3.20) 

for J1 = I, ... , n. We note that (3.20b) follows from (3.20a) by reversing the 
role of x lt ' Ylt in the definition of the operator L. To see that (3.20a) holds we 
consider 

• • 
(3.21) 

[A, e(xj )] = ! e*(YIt)e*(xlt)e(xj ) - e(xj ) ! e*(YIt)e*(xlt ) 
1t;1 It;l 

= e*(Yj)e*(xj)e(xj) - e(xj)e*(Yj)e*(xj), 

since e(xj ) commutes with e*(xlt) and e*(YIt) for J1 #- j, which follows readily 
from (3.18). Now we consider the action of both [1\, e(xj )] given by (3.21) 
and e*(Yj) on monomials, i.e., multiples of products of x/s and Yi'S. Then we 
see that if '" is a given form, then 

'" = "'1 + Xj 11 "'Z + Yj 11 "'3 + Xj 11 Yj 11 "'4' 
where "'1' "'Z, "'3 and "'4 do not contain xj or Yj or a wedge factor. It follows 
readily that 
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and also that 

so (3.20b) folIows. 
Now suppose that " is a (1, O)-form. Then 

(3.22) 
[A, e(,,)] = -ie*(;;), 
[A, e(;;)] = ie*(,,). 

Moreover, if" is a real I-form, then 

(3.23) 

]85 

We see that (3.22) follows from (3.20), since it suffices to consider the special 
case of" = xJ + iYJ. To see that (3.23) is true, we simply note that any real" 
I-form can be written in the form" = qJ + €p, where qJ is of type (I, 0), and 
then one checks that 

-ie*(;;) = -Je*(;;)J-l, 
ie*(,,) = -Je*(,,)J-l. 

With these preparations made, we now want to prove two basic lemmas 
due to Hecht [I]. We introduce the following operator on AFinduced by the 
action of SL(2, C) on A F by the representation 7t". Let 

# = 7t,,(w) = expHi7t(x(X + Y» = exp(!i7t(A + L». 

The first lemma shows us that # is closely related to the * operator. 

Lemma 3.14: Let" be a real I-form. Then 

(3.24) #e(,,)#-l = -iJe*(,,)J-l. 

Proof: We set, for tE C, 

er(,,) = exp(ita(X + y». e(,,)' exp(-ita(X + Y», 
= exp(it[A + L)) . e(,,) • exp( -it(A + L», 

and we note that e .. /2(") = #e(,,)#-l. We will see that er(,,) satisfies a simple 
differential equation with initial condition eo(") = e(,,), wh ich can be easily 
solved, and evaluating the solution at t = !7t will give the desired result. 
First we let 

ad(X) Y = [X, Y] 

for operators X and Y. Then one obtains 

co 

(3.25) er(,,) = I (I/k!)adk[it(A + L)]e(,,). 
k=O 

This follows from the fact that if (J is any representation of SL(2, C) on V, 
then (cf. (3.8» 
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i.e., representations commute with the exponential mapping. In this case u is 
conjugation by 1I:a , and du is given by ad(a) (cf., Helgason [I] or Varadarajan 
[I]), and ada(X + Y) = ad(A + L). 

Now adk(A + L) is a sum of monomials in ad(A) and adeL). Since 
AL = LA + B, ade L)e(r,) = 0, and ade - B)e(I'/) = e(I'/) (since 1'/ is of degree 
1), we see that e,(1'/) can be expressed in the form 

where ak(t) are real-analytic functions in t. Now (3.23) implies that adk(A)e(I'/) 
= 0, for k > 2, since A commutes with J and e*(1'/). Thus 

(3.26) e,(1'/) = ao(t)e(I'/) + a1(t)ad(A)e(I'/). 

Let!'(t) denote differentiation with respect to I. Then we see, by differentiat
ing (3.25), that e,(1'/) satisfies the differential equation 

(3.27) (a) e;(1'/) = i(ad(A) + ad(L»e,(I'/). 
(b) eo(I'/) = e(I'/). 

We can solve (3.27) by using (3.26). Namely, we have 

(3.28) e,(1'/) = a~(t)e(I'/) + a~(t)ad(A)e(I'/) 
must equal 

i(ad(A + L»[ao(t)e(I'/) + a1(t)ad(A)e(I'/)] 
= iao(t)ad(A)e(I'/) + ia1(I)ad(L)ad(A)e(I'/), 

using the fact that ad2(A)e(I'/) = 0, and ad(L)e(I'/) = 0. But 

ad(L)ad(A)e(I'/) = ad([L, A])e(I'/) +ad(A)ad(L)e(I'/) 
= ade - B)e(I'/) = e(I'/), 

and thus (3.28) must equal 

This will be satisfied if 

iao(t)ad(A)e(I'/) + ia1(t)e(I'/). 

ao(/) = ;a1(/), 

aal) = iao(l)· 

Then letting ao(l) = cos I, a1(t) = i sin t, we find that 

(3.29) e,(1'/) = cos t e(I'/) + i sin t ad(A)e(I'/) 

is the unique solution to (3.27). Letting t = 111: in (3.29) yields 

e1f12 = i[A, e(I'/)1, 

which by (3.23) gives (3.24) as desired. 
Q.E.D. 

The next lemma shows the precise relationship between * and # acting on 
p-forms. 
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Lemma 3.15: Let 1'1' E /\"F, then 

*1'1' = i tIJ - ItJ- 1#1P. 

Proof: The *-operator satisfies 

(3.30) 

(3.31) 

*1 = vol = (ljn!)L"(I), 

*e(,,) = (-I )"e*(,,)*, 

187 

as an operator on /\"Ffor any real I-form PI. Relation (3.30) is clear. To see 
(3.31), let 1'1' E /\"F, and write 

*e(,,)1P = *e(,,)**-11P = (-1)2"-"e*(,,)*q>. 

Now * is the only linear operator on /\Fsatisfying both (3.30) and (3.31), as 
the forms obtained from I by repeated application of e(,,) span I\F. Now let 

• = i"I_ItJ-l# 

be an operator defined on /\ "F. We recall from (3.11) that 

(3 32) # (y\A: 'm k! (y)m-t 
• IX ) 1'1'0 = I (m _ k)! IX 1'1'0' 

where 1'1'0 is primitive of weight m. Dut 1'1'0 = 1 is a primitive O-form of weight 
n, so we have, using (3.32) for k = 0, 

#1 = (iltjn!)L"(I). 

Thus 

iiil = i- lI(i lt jn!)LIt(1) = vol. 

Similarly, if" E /\iF, and 1'1' E /\"F, we see that 

iiie(,,)1P = i(,,+1l1 - ItJ- 1#e(rOIP, 
= ;,,1_,,( -1)"iJ-1#e(,,)#-1#1P, 
= i"I_,,( -1)"e*(,,)J-l#lP, 

= (-I )"e*(,,)*IP, 

thus verifying (3.31) for •. Thus * = •. 
Q.E.D. 

We now have an important relation between * and Lr acting on primitive 
p-forms (cf., Weil [I]), the proof of which is due to Hecht [I]. 

1beorem 3.16: Let 1'1' be a primitive p-form in /\" F, then 

r' L' (l)P(P+l)/2 • Ln-p-n * cp = - "cp, 
(n-p-r)! 

o :5: r :5: n - p. 

Proof: LetF. bethesubspaceof /\Fgenerated by{LrlP},O < r < n - p. 
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Then 1t~IF .. is an irreducible representation of SL(2, C), and we see by (3.32) 
that 

#Lrq> = in-li r! Ln-II-rq>. 
(n - p - r)! 

Henee, by Lemma 3.15, 

*Lrq> = iCII+2r)2-nJ-1#Lrq> 

= i'l2-nJ-lin-'l r! Ln- II -rq> 
(n - p - r)! 

= (_I)'1C'1+1)/2 rl Ln-II-rJq>. 
(n - p - r)! 

Q.E.D. 

4. Differential Operators on a Kähler Manifold 

Let X be a Hermitian eomplex manifold with Hermitian metrie h. Then 
there is assoeiated to X and h a fundamental form Cl, whieh at eaeh point 
x E X is the form of type (l, I), whieh is the fundamental form assoeiated 
as in (1.5) with the Hermitian bilinear form 

h,,: T,,(X) x T,,(X) - C, 

given by the Hermitian metrie. 

Definition 4.1: A Hermitian metrie g on X is ealled a Kähler metric if the 
fundamental form Cl assoeiated with g is c1osed; i.e., dCl = O. 

Definition 4.2: 

(a) A eomplex manifold X is said to be of Kähler type if it admits at 
least one Kähler metrie. 

(b) A complex manifold equipped with a Kähler metrie is ealled a Köhler 
manifold. 

We shall see later that not every eomplex manifold X admits a Kähler 
metrie. On a eomplex manifold a Hermitian metric can be expressed in local 
coordinates by a Hermitian symmetrie tensor 

h = 1: h".(z)dz" ® dz., 
where h = [h".] is a positive definite Hermitian symmetrie matrix (depend
ing on z); i.e., h = 'jj and 'ühu > 0 for all vectors u E Cn. The associated 
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fundamental form is then, in this notation, 

Cl = ~ I: h"v(z)dz"Adzv' 

In the notation of Chap. I1I, 

h"v(z) = h(a~,,' a~J(Z). 
Let us first give some examples of Kähler manifolds. 

Example 4.3: Let X = C' and let h = I:~o' dz" ® dz", Then 

Cl = ; j;., dZ"Adz" = J;, dX"Ady", 

189 

where z" = x" + iy", J.l = 1, ... ,n, is the usual notation for real and imagi
nary coordinates. Then, cIearly, dCl = 0, since Cl has constant coefficients, 
and hence h is a Kähler metric on CO. 

Example 4.4: Let w" ... ,w2• be 2n vectors in C' which are linearly 
independent over Rand let r be the lattice consisting of all integral linear 
combinations of [w" ... , w2.J. The lattice r acts in a natural way on CO 
by translation, Z ---+ Y + z, ify E r. Let X = c'/r be the set of equivalence 
cIasses with respect to r, where we say that z and ware equivalent with re
spect to r if z = w + y for some Y E r. By giving Xthe usual quotient topo
logy, we see that X is in a natural manner a complex manifoldt and that its 
universal covering space is C'. We call X a comp/ex torus, and Xis home
omorphic to S' X ... X S', with 2n-factors. The Kähler metric h on C·, 
given above, is invariant under the action of r on C'; i.e., if Y E r gives a 
mapping y : C· ---+ C·, then y*h = h, where y* is the induced mapping on 
(covariant) tensors. Because ofthis invariance, we can find a Hermitian metric 
h on X so that if 11: : C· ---+ C· Iris the holomorphic projection mapping, 
then 1I:*(h) = h. This is easy to see, and we omit any details here. Moreover, 
11: is a local diffeomorphism, and hence in a neighborhood U of a point 
z E C', we have 1I:v := 11: luis a biholomorphic mapping. Hence (1I:u')*h Iv 
= h I.w), and similarly for the corresponding Cl and Ö. Since d commutes 
with (1I:u')*, we have 

dÖ I.w) = (1I:u' )*dCl Iv = 0. 

Then h defined on Xis a Kähler metric, and all complex tori are then neces
sarily of Kähler type. 

Example 4.5: One of the most important manifolds of Kähler type is 
Po, Let (eo' ...• e.) be homogeneous coordinates for p •• and consider the 
differential form Ö, 

tSee Proposition 5.3 for a proof of this fact. 
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where we have let I e IZ = c;5 + ... + c;:, as usual. This form is the homo
geneous representation for the curvature form of the universal bundle over 
P with the standard metric on the frame bundle [except for sign; see equation 
(4.3) in Chap. III). In particular, then, fi defines a d-c1osed differential form 
o on p. of type (I, I). In terms of local coordinates in a particular coordinate 
system, for example, 

} = 1, ... , n, 

we can write 0 as 

. (I + IwI Z) t dw" A dw" - t w"w.dw" A dw. 
O(w)=~ ,,=1 (l+lwlzV=1 

Thus the associated tensor 

h = (I: h",.(w) dw" ® dw.)(1 + Iw IZt Z 

has for coefficients (ignoring the positive denominator above) 

h",{w) = (I + I wI 2)t5". - W"W., f.l, v = I, ... , n. 

It is easy to see that h = [h".J is Hermitian symmetric and positive definite. 
In fact, suppose that U E C·. Then 

tühu = I: h".u"ü, = I: (I + I wI 2 )t5",u,.ü, - (I: w"u,.)(I: w,ü,) 
P, v Pt... P v 

= lu 12 + lu 12 1 W 12 - (w, ü)(w, u), 

letting (,) denote the standard inner product in C·. Hence by Schwarz's 
inequality we have 

tÜhu>luI2 , 

and hence h is positive definite. It then foJlows that h defines a Hermitian 
metric on p. (which is called the Fubini-Study metric c1assicaIly). Since 0 
is a c10sed (I, I )-form on p., as noted earlier, we see that his, in fact, a Kähler 
metric. This Kähler metric is invariant with respect to transformations of 
p. induced by unitary transformations of Cn+ 1 - {O} onto itself, a property 
wh ich will not concern us too much but which is important from the point 
of view of homogeneous spaces. 

The next proposition combined with the above basic examples gives 
many additional examples of Kähler manifolds. 

Proposition 4.6: Let X be a Kähler manifold with Kähler metric hand let 
M be a complex submanifold of X. Then hinduces a Kähler metric on M, 
and with this metric M becomes, therefore, a Kähler manifold. 

Proof: Let): M ~ X be the injection mapping. Then 17 M = j*h defines 
ametrie on M, and j*O = 0M is the associated fundamental form to 11 M 

on M. Since dOM = j* dO = 0, it is c1ear that 0M is also a Kähler funda
mental form. 

Q.E.D. 
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In terms of the differential operators d, a, and ä on a Hermitian man i-
fold, we can define the following Laplacian operators, 

Ll == dd* + d*d 

0== aa* 1- a*a 

Ei ='" ää* f ä*ä, 

of wh ich the first and last will play an important role in our study of Kähler 
manifolds later in this chapter. Note that iS is the complex conjugate of the 
operator 0, thus justifying the ~otation. What can we say about the relation 
between the Laplacians Ll and O? In general, not too much,t but on Kähler 
manifolds there is a striking relationship. Recall that an operator P : &*(X) 
--. &*(X) is said to be real if Prp = P;p, i.e., P = P. 

Theorem 4.7: Let X be a Kähler manifold.t If the differential operators 
d, d*, ä, ä*, a, a*, 0, 0, and Ll are defined with respect to the Kähler metric 
on X, then Ll commutes with *, d, and L, and 

Ll=20=20. 
In particular, 

(a) 0 and 0 are real operators. 
(b) LlI.,.,: &M ---> &M. 

Remark: Neither (a) nor (b) of the above theorem are true in general 
and these properties will imply topological restrietions on Kähler manifolds, 
as we shall see in the next section. 

To prove Theorem 4.7, we shall first develop some consequences of the 
representation theory from Sec. 3 as applied to the study of the interaction 
of the operators d and a and their adjoints. The operators Land L * will be 
used as auxiliary tools in this work§ and we shall also use the concept of a 
primitive differential form on a Hermitian complex manifold X. We shall say 
that rp E &P(X) is primitil'e if L *rp = 0, and we shall denote by &g(X) the vector 
space of primitive p-forms. All the resuIts of Sec. I concerning primitive 
forms on an Hermitian vector space then apply to the primitive differential 
forms. 

We also define the operators 

de = J-1dJ = wJdJ 

d~ = J-1d*J = wJd*J, 

tThere is a relationship which involves the torsion tensor; cf. ehern [2) or Goldberg[I). 
tNote that we do not necessarily assume compactness here. In the noncompact case, 

we assume that the formal adjoints are given by ä* = -.ä., etc. (cf. Propositions 2.2 and 
2.3), which would be the formal L2-adjoints for forms with compact support on an open 
manifold. 

§Note that L· = ...... L* (cf. Sec. I) can be s lOwn to be identical with the L2-formal 
adjoint of the linear operator L [for the Hodge metric on 1\ *T·(X») in the same way that 
ä* = - .ä. is derived as in Proposition 2.3. 
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Ll=20=20. 
In particular, 

(a) 0 and 0 are real operators. 
(b) LlI.,.,: &M ---> &M. 

Remark: Neither (a) nor (b) of the above theorem are true in general 
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as we shall see in the next section. 

To prove Theorem 4.7, we shall first develop some consequences of the 
representation theory from Sec. 3 as applied to the study of the interaction 
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used as auxiliary tools in this work§ and we shall also use the concept of a 
primitive differential form on a Hermitian complex manifold X. We shall say 
that rp E &P(X) is primitil'e if L *rp = 0, and we shall denote by &g(X) the vector 
space of primitive p-forms. All the resuIts of Sec. I concerning primitive 
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We also define the operators 

de = J-1dJ = wJdJ 

d~ = J-1d*J = wJd*J, 

tThere is a relationship which involves the torsion tensor; cf. ehern [2) or Goldberg[I). 
tNote that we do not necessarily assume compactness here. In the noncompact case, 

we assume that the formal adjoints are given by ä* = -.ä., etc. (cf. Propositions 2.2 and 
2.3), which would be the formal L2-adjoints for forms with compact support on an open 
manifold. 

§Note that L· = ...... L* (cf. Sec. I) can be s lOwn to be identical with the L2-formal 
adjoint of the linear operator L [for the Hodge metric on 1\ *T·(X») in the same way that 
ä* = - .ä. is derived as in Proposition 2.3. 
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a twisted conjugate to d. These are real operators which are useful in applica
tions involving integration and Stokes' theorem, and this is one reason for 
introducing them. For instance, if we let dc act on a function rp, we have 

d/p = wJ dJq> 
= (--l)J(arp + ärp) 

= (--l)(iarp -- iärp) 

= --i(a -- ä)rp, 

and we could use this last expression for dc as adefinition. From dc = 

--i(a -- ä), it follows immediately that 

(4.1) ddc = 2iaä, 

which is a real operator of type (I, 1) acting on differential forms in S*(X). 
We now have an important theorem concerning the commutators of these 

various operators. 

Theorem 4.8: Let X be a Kähler manifold. Then 

(a) [L, d) = 0, [L*, d*) = O. 
(b) [L, d*) = de> [L*, d) = --d:. 

Proof' Part (a) is simple and follows from the fact that the fundamental 
form Cl on Xis c1osed, the basic Kähler assumption. The second part of (a) 
is the adjoint form of the first part. Similarly, the second part of (b) is the 
adjoint statement of the first part, and the first statement holds if and only 
if the second statement holds. Let us show then that 

L*d - dL* =-J-1d*J. 

Letting L * = A as before, we see by Proposition 2.3 that 

acting on p-forms. 

Now let q> be a p-form on X; then we find that, from Lemma 3.15, 

#q> = i- p2 +nJ*q>, 
#-lq> = j<2n- p)"-n*-lJ-lq> = jP2_,,*-lJ-lq>. 

Therefore we see that 

(4.2) 

Now let 

#d#-lq> = j-<2n- p+l)2+nj P2_ nJ*d*-lJ-lq> 
= j-lj 2Phd*-lJ-lq> 
= iJ[(-I)p+l*d*-l)J-lq> 
= iJd*J- 1q>. 

dt = exp[ita(X + Y») 0 d 0 exp[ --ita(X + Y») 
= exp[it(A + L») 0 d 0 exp[ -it(A + L»). 
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Just as in the proof of Lemma 3.14, we have 

dt = i (1Ik!)adk[it(A + L)]d 
k=O 

and, sinee ad(L)d = 0, by the Kähler hypothesis, 
CD 

(4.3) dt = I alt)adk(A)d, 
k=O 

where ak(t) are real-analytie funetions of t. Now d"/2 is an operator of degree 
-1, whieh implies that 

(4.4) 

sinee all other terms in the expansion (4.3) are operators of degree + 1, - 3, 
-5, ... , ete., and the expansion clearly has only a finite number of nonzero 
terms. But then it follows from (4.2) and (4.4) that iJd*J- 1 is proportional 
to ad(A)d, and henee that adk(A)d = 0 for k ;::::: 2, sinee A eommutes with d* 
and J. Thus 

dt = ao(t)d + al(t)ad(A)d, 

and just as in the proof of Lemma 3.14, we eonclude that 

dt = (eos t)d + i(sin t)ad(A)d, 

and now the theorem follows by letting t = n/2 and observing that Jd*J-l = 
-J- 1d*J. 

Q.E.D. 

Corollary 4.9: Let X be a Kähler manifold. Then 

[L, dc1 = 0, [L*, d:'] = 0, and [L*, dc1 = d*. 

Proof' This foJIows easily from Theorem 3.8, since the operator J 
eommutes with the real operators, L, L*, and so (dJc = -d and (dn 
= -d*. 

Q.E.D. 

Considering the bidegree structure of the differential forms, we obtain 
the following corollary to Theorem 3.8. 

Corollary 4.10: Let X be a Kähler manifold. Then 

(4.5) 

(4.6) 

[L, a] = [L, ä] = [L*, a*] = [L*, ä*] = 0 

[L, a*] = iä, [L, ä*] = -ia 

[L*, a] = iä*, [L*, ä] = -ia*. 

d*dc = -dcd* = d*Ld* = -dcL*dc 

dd~ = -d~d = d~ Ld~ = -dL *d 

aä* = -ä*a = -iä*Lä* = -iaL*a 

äa* = -a*ä = ia*La* = iäL*ä. 
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Proof: Equations (4.5) follow from Theorem 4.8 by comparing bidegrees 
and using the fact that dc = i(ä - a). 

To obtain (4.6) we use, for example, d* = [L*, dc] as folIows: 

d*dc = L*dcdc - dcL*dc = -dcL*dc 

-dcd* = -dcL *dc + dcdcL * = -dcL *dc' 

and so 

Similarly for the others, setting dc = [L, d*], etc. 
Q.E.D. 

Using the above results, we are now in a position to prove Theorem 4.7 
concerning the Laplacians on a Kähler manifold. 

Proof ofTheorem 4.7: It is c1ear from the definition of d* and tl that tl 
commutes with d and *. So we have to see that Ltl - tlL vanishes. We have 

tlL - Ltl = dd*L + d*dL - Ldd* - Ld*d 

= dd*L + d*Ld - dLd* - Ld*d 

= -d[L, d*] - [L, d*]d, 

and substituting, from Theorem 4.8, we obtain 

tlL - Ltl = -ddc - dcd. 

It follows from (4.1) that ddc = -dcd, since aä + äa = 0; thus we obtain 
tlL - Ltl = O. 

To prove the relationship between tl and the other Laplacians, we write, 
using Corollary 4.9, 

tl = dd* + d*d = d[L*, dc1 + [L*, dc]d 

= dL*dc - ddcL* + L*dcd - dcL*d. 

Note that all the information about the metric in the operator tl is contained 
in the operator L*, since d and dc depend only on the differentiable and com
plex structure, respectively. Multiply on the left by J- 1 and on the right by 
J; we obtain 

But since dcd = -ddc> we have that tl = tl c, in a trivial manner. 
We now write (noting that 2a = d + idc' etc.) 

4(aa* + a*a) = (d + idJ(d* - idn 

+ (d* - id:Xd + idJ 

= (dd* + d*d) + (dcd: + d:dc) 

+ i(dcd* + d*dJ - i(dd: + d:d). 
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By (4.6) in Corollary 4.10, we see that the last two parentheses vanish. We 
also have 

Therefore we have 

I1c = J- l I1J = J-1dd*J + J-1d*dJ 

= dcd: + d:dc' 

40 = 11 + I1c + 0 
= 211. 

Thus, 20 = 11. The other assertion is proved in a similar manner. The fact 
that 11 is of bidegree (0, 0) follows now trivially from the fact that 0 is of 
bidegree (0, 0). Similarly, since 11 is a real operator, 0 and 0 must also be 
real operators. 

Q.E.D. 

Corollary 4.11: On a Kähler manifold, the operator 11 commutes with J, 
L*, d, a, ä, a*, and d*. 

Since L* commutes with 11 on a Kähler manifold, we have an analogue 
to Theorem 3.12. On a Kähler manifold X, l1-harmonic differential forms are 
the same as, by Theorem 4.7, O-harmonic or O-harmonic forms, and we 
shall say simply harmonie forms on X, to be denoted by 3Cr(X) and 3CP.9(X) 
as before. We shall denote by 3C~(X) and 3Cg,q(X) the primitive harmonie 
r-forms and (p, q)-forms, respectively; i.e., 3C~(X) is the kernel of the map
ping L* : 3C r(X) --+ 3C r - 2(X) and 3Cg,q(X) is the kernel of the mapping 
L* : 3CP ,Q(X)--+3CP - 1 ,Q-I(X). These maps are weil defined since L* com
mutes with 11. 

Corollary 4.12: On a compact Kähler manifold X there are direct sum 
decompositions: 

3C r(X) = :E L'3C~- 2'(X) 
.r~(r-IIV 

3Cp,q(X) = :E L'JCg-"q-,(X). 
s';:::(p+q-n)+ 

This result follows immediately from the primitive decomposition theorem 
(Theorem 3.12) and the fact that 11 commutes with Land L *. 

Our last corollary to the Lefschetz decomposition theorem is the following 
result, also due to Lefschetz. 

Corollary 4.13: Let X be a compact Kähler manifold, then 

Ln- p = e(nn- P): HP(X, C) ~ H 2n- p(x, C) 

is an isomorphism, where n is the Kähler form on X. 

Remark: This implies the Poincare duality theorem (Theorem 2.5) in 
this context, and is referred to in algebraic geometry as the "strong Lefschetz 
theorem" (cf., Grothendieck [1]). 
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Proo/: This is an immediate consequence of part (c) of the Lefschetz 
decomposition theorem (Theorem 3.12), where we represent the cohomology 
groups by harmonic forms as in Corollary 4.12. 

Q.E.D. 

Remark: The basic resuIt of this section is Theorem 4.7, and we shall 
develop its consequences in the next section. The derivation of this resuIt 
was based on Theorem 4.8 and its corolJaries, and this depended in turn on 
the representation theory of Sec. 3. However, the statement of Theorem 4.7 
does not involve the representation theory, and there are alternative methods 
of deriving Theorem 4.8 (from which then follows Theorem 4.7) which do not 
involve this concept. One basic approach is the following one. Suppose that 

n = ~ E h,..(z)dz" lI di, 

is the fundamental form on a Kähler manifold for z near 0 in so me appro
priate coordinate system. By a linear change of coordinates, one can obtain 
easily that the matrix h(z) = [h",(z)] is the identity at z = 0 

h,,/O) = J", 
or 

h(z) = I + 0(1 zl). 

By using the fact that dn = 0, one finds easily that the coefficient matrix 
satisfies the differential equations 

(4.7) 

ah",( ) _ ahA,( ) a z-a z, 
ZA Z" 

ah,4Y ( ) = dhl'A( ) a- Z a- z, 
ZA Z, 

j.J.,V,A. = I, ... ,n 

j.J., v, A. = I, ... , n. 

By making a new (quadratic) change of variables of the form 

'1" = Z" + ! E A~pz_zp, 
-.P 

where [A~p] is a symmetric (in IX, ß) complex matrix (for fixed j.J.), one can 
choose the coefficients A~II [by using the differential equations (4.7)] so that 

AI' - _ ahpl'(O) 
op - azo- ' 

and it will follow that 

h(z) == I + O(lzI I ); 

i.e., all the linear terms in the Taylor expansion of h at 0 vanish. Such a 
coordinate system is called a geodesie coordinate system. At the point 0, one 
can derive Theorem 4.8 by ignoring the higher-order terms, since in the com
mutator only first-order derivations of Land L* will appear. Then one is 
reduced to proving the commutator relations in C' with the canonicaI Kähler 
metric as in Example 4.3. This is not diftkuIt but will involve a sort of com-
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binatoric multilinear algebra similar to that developed in Sec. I in going back 
and forth between the real and complex structures. 

One can also prove the Lefschetz decomposition theorem for differential 
forms on a Kähler manifold independent of the representation theory of 
61(2, C), per se, and then use this to prove the basic Kähler identities. This is 
the approach followed by Weil [1]. 

5. The Hodge Decomposition Theorem 
on Compact Kähler Manifolds 

In this section we shall derive the Hodge decomposition theorem for 
Kähler manifolds and give various applications. Let X be a compact complex 
manifold. Then we have the de Rham groups on X, {H'(X, C)}, represented 
by d-c1osed differential forms with complex coefficients, and the Dolbeault 
groups on X, {HP09(X)}, represented by ä-c1osed (p, q)-forms (Sec. 3 in Chap. 
11). We have seen that these vector spaces are finite dimensional (Sec. 5 in 
Chap. IV). Moreover, there is a spectral sequence relating them (Fröhlicher 
[I]). However, in general, if rp is a ä-c1osed (p, q)-form on X, then rp need not 
be d-c1osed, and, conversely, if '" is a d-c1osed r-form on X and '" = 

"," ° + ",,-1. I + ... + ",0.' are the bihomogeneous components of "', then 
the components ",P09 need not be ä-c1osed. On manifolds of Kähler type, 
however, such relations are valid, as we see in the following decomposition 
theorem of Hodge (as amplified by Kodaira). 

Theorem 5.1: Let X be a compact complex manifold of Kähler type. Then 
there is a direct sum decompositiont 

(5.1) H'(X, C) = L HP09(X), 
p+q=, 

and, moreover, 

(5.2) 

Proof: We shall show that 

X'(X) = L Xp.q(X), 
p+q-~r 

and th~n (5.1) follows immediately. Suppose that rp E JC'(X). Then 6..rp = 0, 
but 20 = 6.., by Theorem 4.7, and hence Orp = O. But rp = rp" ° + 
+ rpo., (writing out the bihomogeneous terms), and, moreover, 

Orp = Orp"o + ... + Orpo.,. 

tStrictly speaking. there is an isomorphism H'(X. C)~ :l:p+q:, HM(X). and it is 
easy to verify that the isomorphism is independent of the ehoice of the metrie. We 
shall normally identify H M(X) with its image in H ,(X. C) under this isomorphism. When 
both the Dolbeault groups and the de Rham groups are represented by harmonie forms for 
the same Kähler metric. then we have strict equality. as we see in the proof of the theorem. 
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Since 0 preserves bidegree, we see that 091 = ° implies that 091,,0 = 

= 091°" = 0, and therefore there is a mapping 

.: JC'(X) -~ ~ JCp.q(X) 
p tq=r 

given by 91 --+ (91" 0, ' .• , 91°' '), The mapping is c1early injective, and, more
over, if 91 E JCp,q(X), then 091 = -i~Q1 = 0, which implies that 91 E JCp+q(X), 
and thus • is surjective, proving (4,1). 

Assertion (5.2) follows immediately from the fact that 0 is real (Theorem 
4.7) and that conjugation is an isomorphism from ep,q(X) to eq, P(X). 

Q,E,D. 

Remark: One can also prove Theorem 5.1 by showing that the spectral 
sequence relating the Dolbeault and de Rham groups degenerates at the 
EI term (see Fröhlicher [1] and the appendix to Griffiths [4]). This proofalso 
makes heavy use of the differential operators ~, [] and the harmonie repre
sentation of the de Rham and Dolbeault groups, This approach, via spectral 
sequences, deserves mention because there are examples, namely K-3 sur
facest where one does not know (yet) whether they are Kähler in general 
or not. However, one can show by other means that the spectral sequence 
degenerates, and one still obtains a Hodge decomposition, and this in turn 
is useful in the study of the moduli problem for K-3 surfaces, 

As a consequence of the Hodge decomposition theorem, we have the 
following relations for the Betti numbers and Hodge numbers of a Kähler 
manifold. Recall that we set (see Sec, 5 in Chap, IV) 

b,(X) = dimcH'(X, C), hp,q(X) = dirn cHp,q(X). 

Corollary 5.2: Let X be a compact Kähler manifold. Then 

(a) b,(X) = ~p+q=, hp,q(X). 
(b) hp,q(X) = hq,P(X). 
(c) bq(X) is even for q odd. 
(d) hl,O(X) = -ibl(X) is a topological invariant. 

These results are a simple consequence of the preceding theorem, We 
shall see shortly that there are examples of compact complex manifolds X 
which violate property (c), and hence such manifolds are not of Kähler type, 
Thus Corollary 5.2 places topological restrictions on a compact complex 
manifold admitting a Kähler metric. We already know that any such mani
fold always admits a Hermitian metric. 

The simplest example of a non-Kähler compact complex manifold is 
given by a Hopf surface, which we shall now construcL First, we recall one 

tA K-3 surface is a compact complex manifold X 01' complex dimension 2 such that 
(a) H I(X, Ox) = 0 and (b) /\2 T*(X) = K, the canonical bundle of X, is trivial; see, e.g., 
Kodaira [31 and Safarevic [I], Chap. 9. 
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of the basic ways of constructing compact complex manifolds in general, 
namely, "dividing a given manifold by a group of automorphisms," an exam
pIe being the complex tori considered in Sec. 4. Let X be a complex manifold 
and let r be a subgroup ofthe group of automorphisms of X (an automorphis/1/ 
of X is a biholomorphic self-mapping of X onto itself). We say that r is 
properly discontinuous if for any two compact sets K h K2 c X, y(K I ) n K2 

'* 0, for only a finite number of elements y E::' r. The group r is said to 
have no fixed points if for each y E r - [e} (e = identity in n y(x) '* x 
for all x E X. We let x/r be the set of equivalence c1asses with respect to 
the action of the groUP r; i.e., x and Y E X are equivalent (with respect to 
n if x = y(y) for some y E r. Let x/r have the natural quotient topology 
given as folIows: A basis for the open sets in x/r is given by the projection 
of the open sets in X under the natural projection mapping n : X ~ x/r. 

Proposition 5.3: Let X be a complex manifold and let r be a properly 
discontinuous group of automorphisms of X without fixed points. Then 
x/r is a Hausdorff topological space which can be given uniquely a com
plex structure, so that the natural projection mapping n : X -- x/r is a 
holomorphic mapping, which is locally biholomorphic. 

Proof: Let N be any compact neighborhood of a point X o E X. Then 
there exists only finitely many elements y E r so that y(xo) E N. This follows 
immediately from the definition of properly discontinuous, letting K I and 
K2 = N. Thus for each point Xo EX there exists an open neighborhood No 
so that y(No) n No = 0 for all y Er - tel. Then, c1early, y(No) will be a 
neighborhood ofy(xo) with the same property; i.e., y(No) is the only translate 
of No by r that meets y(No). Let Yo = rr(xo). Then, cIearly, Wo = rr(No) 
= n(Ur Er y(No» is a neighborhood of Yo' If YI '*)'0 is a second point in x/r, 
then letting x I be any point in n-I(YI)' we can find a neighborhood NI of x I 
so that: (a) y(x l ) tf. NI for all y E r _. [e} and (b), NI n y(No) =~ 0, for 
all y E r. Thus n(U,er y(NI » is an open neighborhood W I of)'1 which does 
not intersect Wo, and hence x/r is Hausdorff. We can use these neighbor
hoods as coordinate charts near the point )'0' Namely, No is homeomorphic 
to Wo under n since n I No is one-to-one, open, and continuous. Moreover, 
if Wo and W I are two such coordinate systems near )'0 and J'I and Wo n W I 
#- 0, then there exists a y E r so that the corresponding y(No) n NI =I=- 0, 
and thus the overlap transformation will be of the form 

yINOny-l(Nl): No n y-I(NI) ~ y(No} n NI' 

which is a biholomorphic mapping. Hence we have a complex structure, 
and the mapping 1t is c1early holomorphic and locally biholomorphic. 
The uniqueness is easy to verify, and we omit the proof. 

Q.E.D. 

Classical examples of complex manifolds constructed in this manner are 

Sec. 5 The Hodge Decomposirion Theorem 199 

of the basic ways of constructing compact complex manifolds in general, 
namely, "dividing a given manifold by a group of automorphisms," an exam
pIe being the complex tori considered in Sec. 4. Let X be a complex manifold 
and let r be a subgroup ofthe group of automorphisms of X (an automorphis/1/ 
of X is a biholomorphic self-mapping of X onto itself). We say that r is 
properly discontinuous if for any two compact sets K h K2 c X, y(K I ) n K2 

'* 0, for only a finite number of elements y E::' r. The group r is said to 
have no fixed points if for each y E r - [e} (e = identity in n y(x) '* x 
for all x E X. We let x/r be the set of equivalence c1asses with respect to 
the action of the groUP r; i.e., x and Y E X are equivalent (with respect to 
n if x = y(y) for some y E r. Let x/r have the natural quotient topology 
given as folIows: A basis for the open sets in x/r is given by the projection 
of the open sets in X under the natural projection mapping n : X ~ x/r. 

Proposition 5.3: Let X be a complex manifold and let r be a properly 
discontinuous group of automorphisms of X without fixed points. Then 
x/r is a Hausdorff topological space which can be given uniquely a com
plex structure, so that the natural projection mapping n : X -- x/r is a 
holomorphic mapping, which is locally biholomorphic. 

Proof: Let N be any compact neighborhood of a point X o E X. Then 
there exists only finitely many elements y E r so that y(xo) E N. This follows 
immediately from the definition of properly discontinuous, letting K I and 
K2 = N. Thus for each point Xo EX there exists an open neighborhood No 
so that y(No) n No = 0 for all y Er - tel. Then, c1early, y(No) will be a 
neighborhood ofy(xo) with the same property; i.e., y(No) is the only translate 
of No by r that meets y(No). Let Yo = rr(xo). Then, cIearly, Wo = rr(No) 
= n(Ur Er y(No» is a neighborhood of Yo' If YI '*)'0 is a second point in x/r, 
then letting x I be any point in n-I(YI)' we can find a neighborhood NI of x I 
so that: (a) y(x l ) tf. NI for all y E r _. [e} and (b), NI n y(No) =~ 0, for 
all y E r. Thus n(U,er y(NI » is an open neighborhood W I of)'1 which does 
not intersect Wo, and hence x/r is Hausdorff. We can use these neighbor
hoods as coordinate charts near the point )'0' Namely, No is homeomorphic 
to Wo under n since n I No is one-to-one, open, and continuous. Moreover, 
if Wo and W I are two such coordinate systems near )'0 and J'I and Wo n W I 
#- 0, then there exists a y E r so that the corresponding y(No) n NI =I=- 0, 
and thus the overlap transformation will be of the form 

yINOny-l(Nl): No n y-I(NI) ~ y(No} n NI' 

which is a biholomorphic mapping. Hence we have a complex structure, 
and the mapping 1t is c1early holomorphic and locally biholomorphic. 
The uniqueness is easy to verify, and we omit the proof. 

Q.E.D. 

Classical examples of complex manifolds constructed in this manner are 



200 Compact Comp/ex Mani/o/ds Chap. V 

(a) Riemann surfaces of genus g = I (elliptic curves), where X = C 
and r is a two-dimensionallattice in C generated by two periods independent 
over R. 

(b) Complex tori (see Example 4.4). (a) is a complex torus of one com
plex dimension. 

(c) Riemann surfaces of genus g > I, where X = unit disc in C and r 
is a properly discontinuous fixed point free subgroup of the group of auto
morphisms of X (which are all fractional-linear transformations of the unit 
disc onto itself, i.e., Möbius transformations). 

Remark: If we omitted the assumption that r had no fixed points in 
Proposition 5.3, then x/r can still be given a complex structure as a complex 
space (a generalization of a complex manifold) with singularities at the image 
of thc fixed points (see Cartan [I] for a proof of this). 

To construct an example of a Hopf surface, we proceed as folIows. 
Consider the 3-sphere S3 defined by {z = (zl> Z2) E C2 : 1 z 11 2 + 1 z212 = l}, 
and then we observe that there is a diffeomorphism 

j: S3 X R ~ C2 - {O} 

given by 

j(ZI> ZZ' t) = (e'zl' e'z2) 

for (ZI> zz) E S3 C CZ, t E R (i.e., we are shrinking and expanding S3 in 
C2 by the parameter t exponentially). The infinite cyclic group Z acts on 
S3 x R in a natural manner, namely, 

for mEZ, 

and it is clear that the quotient space under this action (defined as above) 
(S3 x R)/Z is diffeomorphic to S3 x SI. Under the diffeomorphismjwe can 
transfer the action of Z on S3 x R to an action of Z on C2 - {O}. Namely, 

for (ZI> Z2) E C2 - {O} and mEZ. Moreover, for a fixed mEZ, the map
ping above is an automorphism of C2 - {O}. Thus the action of Z on C2 
-{O} is the action of a subgroup r of Aut(C2 - {O}), which, it is easy to 
check, is properly discontinuous without fixed points (the orbit of a point 
under r is a discrete sequence of points with limits at 0 and 00). Since the 
action of the groups Z and r commutes with the diffeomorphism, we have 
the commutative diagram 

S3 x R ~ C2 - {O} 

1 1 
(S3 x R)/Z ~ (C2 - {o})/r 

11/ 111 
S3 x SI x, 
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where the vertical arrows are the natural projections. By Proposition 5.3 
we see that X is a complex manifold wh ich is diffeomorphic under J to 
S3 X SI (and this is compact). An integral basis for the homology of S3 x SI 
is given by the factors SI, S3 in those dimensions, and we have the Betti 
numbers 

bo(X) = bl(X) = b3(X) = b4(X) = I 

b2(X) = 0. 

In particular, bt(X) = I, and hence X cannot be Kähler, since odd degree 
Betti numbers must be even on Kähler manifolds. A deep result of Kodaira 
[4] asserts that any compact complex manifold which is homeomorphic to 
JI X S3 is of the form (C 2 - {o})fr for some appropriate r chosen in a 
manner similar to that of our example. Such manifolds are called Hopf sur
faces. 

We would like to give one last important example of Kähler manifolds. 

Theorem 5.4: Every complex manifold X of complex dimension 1 (a Rie
mann surface) is of Kähler type. 

Proof: Let g be an arbitrary Hermitian metric on X. Then it suffices to 
show that this metric is indeed a Kähier metric. But this is trivial, since the 
associated fundamental form 0 is oftype (1,1) and therefore oftotal degree 
2 on X. Since X has two real dimensions, it follows that dO = 0, since there 
are no forms of higher degree. 

Q.E.D. 

Suppose that X is a compact Riemann surface. Then we have, by the 
Hodge decomposition theorem for Kähler manifolds, 

HI(X, C) = HI.O(X) E8 HO.I(X). 

Moreover, hl,O(X) = ho.I(X), and hence 2h1.0(X) = bl(X). Thus h1,O(X) 
is a topological invariant of X, called the genus of the Riemann surface, 
usually denoted by g. 

6. The Hodge-Riemann Bilinear Relations 
on a Kähler Manifold 

In this section we want to study the structure of the de Rham groups 
on a Kähler manifold. If Xis a Kähler manifold, then the fundamental form 
o on X determines the Lefschetz decomposition, 

(6.1) Hr(x, C) = L: L'H~-2s(X, C), 
s::::'(r -11)+ 

where H~(X, C) is the vector space of primitive cohomology cIasses of degree 
r. This follows immediately from the harmonic forms representation of the 
de Rham group and Corollary 4.12. Since we represent the cohomology ring 
H*(X, C) by differential forms, we shall write e 1111 for the product of two 
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eohomology classes, where we mean by this the following: If rp, '" E 

Z*(X, C), the d-closed differential forms, and [rp], ["'] are the classes of rp and 
'" in H*(X, C), then [rp]A[",] is defined by [rpA",], and it is easy to verify that 
this eohomology produet is weil defined and, moreover, satisfies C; 1\11 
= (-I )des {'des ~ 11 A C;. If n is the fundamental form on X, let w = [n]; then 
we define 

L : H*(X, C) ---)- H*(X, C) 

by L(C;) = WAC;. Thus the Kähler strueture on X determines the linear map
ping L on eohomology. However, the mapping L depends only on the class 
wand not on the differential form representing it (nor on the metrie indueing 
n); any eohomologous differential form would give the same result. The exist
enee of a Kähler metrie therefore implies the existenee of a linear mapping 
L : H*(X,C) ---> H*(X, C), whieh is real, i.e., L is aetually defined on H*(X, R), 
and, moreover, the above Lefschetz deeomposition (5.1) holds. The primitil'e 
cohomology classes H~(X, C) c H'(X, C) are those satisfying L"-'+ IC; = 0, 
as before. The point we wish to make here is that the existence of Land of the 
decomposition (6.1) is a topological necessity that a (say, differentiable or 
topological) manifold admit a Kähler complex structure. This is analogous 
to and related to the requirement that odd degree Betti numbers must be even 
for Kähler manifolds. 

Suppose that such an L exists on a compact oriented differentiable 
manifold of real dimension 2n, i.e., 

L : H'(X, R) ----;. H'+2(X, R), r = 0, ... , 2n - 2 

and 

H'(X, R) = I: L'H~-2S(X, R), 
s:?:(r-n)+ 

where Hg(X, R) is the kernel of the mapping 

Ln-p+1 : HP(X, R) -----+ H2n- p+2(X, R), p < n, 

and L is extended to the complexification by linearity. We want to introduce 
a bilinear form on W(X, R) as folIows: For C;, 11 E W(X, R), we let 

(6.2) Q(C;, 11) = I: (_I)ld'+ 1)'2)+, f Ln-'+2'(c;, Al1,), 
$;;::::(' -n)+ X 

where C; = I: L'C;, and 11 = I: L'l1s are the primitive decompositions of C; 
and 11, respeetively. In the case where Xis a Kähler manifold, the quadratic 
form above is weil defined by the fundamental form n. However, we do not 
assume for the present that Xis Kähler to emphasize the topological nature 
of the quadratic form Q above. Such a quadratic form was first introduced 
by Lefschetz in the context of a projective algebraie variety and then reinter
preted in the same context (for a projective algebraic manifold) by Hodge for 
de Rham cohomology represented by harmonie differential forms. The quad
ratic form Q is a sort of intersection matrix for eycles in X, and the signs 
reflect the decomposition induced by L. As we shall see, Q will have many 
important properties and applieations, but first we want to discuss it from 
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an intuitive and geometrie point ofview. Suppose that dimRX = 2. Then we 
have, for HI(X, R), 

Qce, 10 = - Ix e A11, 

sinee H I (X, R) = H ~CX, R) and n = r = I. Thus, if (e4} is a real basis for 
HI(X, R) and if we let (e4} be a dual basis for H1CX, R)* ::::: H1CX, R), then 
(e 4} ean be represented by geometrie I-eycies on X, whieh in turn ean be repre
sented by an algebraie sum of oriented ciosed eurves r 4 on X. Then the matrix 
Q(e«, ep) = QaP ean be represented by (and is the same as) the intersection 
matrix Cr.. . r p), wh ich is defined by r« . r P = the algebraie sum of the num
ber of interseetions of r« with r p, assuming that they are in general position, 
meeting only in a finite number of points. The sign of the interseetion number 
is given by whether the loeal orientation of the interseeting eurves agrees or 
disagrees with the orientation of X. This was, in fact, the eontext in whieh 
Lefsehetz worked (see Lefsehetz [I] or Hodge [1], where higher-dimensional 
interseetions are also eonsidered). The interaction between the two points 
of view is very important (espeeially in algebraie geometry), but in this book 
we shall restriet ourselves primarily to a diseussion ofthe eohomology groups 
H*(X, C), defined by differential forms, and deduee what we ean from the 
existenee of a Kähler metrie and other eonsiderations. 

Suppose now that X is a eompaet Kähler manifold with fundamental 
form n and that we have the Lefsehetz deeomposition as given by (6.1) and 
the quadratie form Q defined by (6.2), whieh we extend to H'(X, C) by eom
plex-linearity. Sinee Xis a Kähler manifold, there is a bigrading on H *(X, C) 
indueed by the eomplex strueture; i.e., 

H'(X, C) = 2: Hp.q(X), 
p+q=r 

given by the Hodge deeomposition, Theorem 5.1. The linear operator J 
= 2:M i P - q IIp,q is weil defined on H'(X, C), where IIp,q denotes projeetions 
onto Hp.q(X) (cf Sec. I). Then we have the following theorem. 

Theorem 6.1: Let X be a eompaet Kähler manifold with fundamental form 
n and with the assoeiated quadratie form Q defined by (5.2). Then Q is a 
nondegenerate real bilinear form with the following properties: If e and 11 
E H'(X, C), then 

(a) Q(e, 11) = (-I)'Q(11, e). 
(b) Q(Je, J11) = Q(e, '1). 
(e) QCe, J11) = Q('1, Je). 
(d) Q(e, Je) > 0, if e *- o. 

Proo/: Property (a) is obvious from the definition of Q. Property (d) 
has as a eonsequenee that the quadratie form Q is nondegenerate, sinee 
Q(e, Jr,) is the eomposition of the bilinear form Q with two isomorphisms 
of H'(X, C) onto itself. In a matrix representation of this eomposition we 
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would have the produet of the matriees, and sinee the eomposition is a posi
tive definite Hermitian symmetrie form, it must have a nonzero determinant. 
Thus Q must have a nonzero determinant with respeet to some basis and 
henee is nonsingular. 

To show property (d), we note that we ean rewrite 

Q(e,Jr!> = :E c, J Ve,I\*V'1" 
J2!(,-n'· X 

where the {cs} are positive eonstants. This follows from Theorem 3.16. 
Namely, in this ease we have (reeall that degree "S = r - 13) 

where c"s is a positive eonstant. Thus we obtain, with Cs > 0, 

Q(e, J~) = '''~')' c, J x L'e, 1\ ""Ve" 
and this is > 0 sinee e =1= 0 implies at least one of the Ve, =1= 0 and henee the 
sum is positive, by the positive definite nature of the Hodge inner produet. 

The proofs for properties (b) and (e) are similar and will be omitted. 
Q.E.D. 

Property (a) in Theorem 6.1 teils us that Q is either symmetrie or skew
symmetrie depending on wh ether Q is aeting on eohomology of even or odd 
degree. It is weil known from linear algebra that there are eanonieal forms for 
sueh quadratie forms. Namely, for r odd, there exists a basis Ce~l for Hr(x, R) 
so that if we let Q(e~, ep) = Q~p, then the matrix [Q~p] has the form 

(6.3) [ 0 J.] 
[Q~p] = - J. 0 _ ' 

where g = tbr(X) and J. is the g x g identity matrix [note that it is neeessary 
that br(X) be even in this ease]. Similarly, if r is even, then there is a basis 
Ce .. l of Hr(x, R) so that 

(6.4) 

and h - k is the signa/ure of the quadratie form Q. 
Our next results will show that the subspaees of Hr(x, C) on whieh Q is 

positive or negative definite are very mueh related to the bigrading of H'(X, C) 
given by the Hodge deeomposition. First, however, we want to diseuss the 
distinetion between primitive and nonprimitive eohomology c1asses. We 
shall be interested primarily in the de Rham groups Hr(X, C) for r < n, 
sinee by Poineare duality the veetor spaees HZ.-r(X, C) for r < n, are eon
jugate-linearly isomorphie to Hr(x, C) and, in effeet, do not eontain any new 
information. 
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Let us compute the primitive cohomology of a simple space, X c= P.( C). 
We have seen before that 

bo(P.) = ... = bz.(p.) = I 

bl(P.) = '" = bz• I(P.) = 0, 

as is most easily seen by a cell decomposition, and the generators of the homo
logy groups are given by 0 = Po c ... c p •. The cohomology groups 
H*(P., C) have as basis elements I, w, w 2, ... ,w', where 0 is the funda
mental form of p. and [0] = W is the c1ass of 0 in H2(P., C); i.e., 

H*(X, C) = C EB Cw EB Cw 2 EB ... EB Cro', 

where Cwm represents the complex vector space spanned by the (m, m) c1ass 
wm in HZm(x, C). We claim that the only primitive cohomology c1asses in 
H*(P., C) are the constants, i.e., H2(P., C) ::::: C, H;m(p., C) = 0, 111 =~ I, 
... , n. This follows from the fact that w is not primitive, since 

w·~z'+I/\w' = W,··'+I *- 0 if r > I. 

Thus, in a very easy case, all of the cohomology is determined by primitive 
cohomology (the constants) and the fundamental form. In general, on a 
compact Kähler manifold a nonprimitive cohomology c1ass C; is of the form 

C; = C;o + WAC;I + ... + wm AC;m' 

where the C;j are primitive cohomology c1asses and w is the fundamental 
c1ass, and some C;j *- 0 for j > O. How large is H:(X, C) in general? Let 
b~ = dimcH~(X, C). Then we have the following proposition. 

Proposition 6.2: Let X be a compact Kähler manifold. Then 

b~(X) = dirn H~(X, C) = b,(X) - b'~2(X) 

for r < n. 

Before we give the proof, we note that for projective space we get the right 
answer, since b, - b,~ 2 = 0 for r > I. Similarly, another simple example 
(wh ich follows from Proposition 6.2) would be cohomology of degree 2 on 
a Kähler manifold X, and we see that in this ca se bg = bo, b~ = b p and b; 
= b2 - bo = b2 - I. Moreover, if w is the fundamental c1ass on X, then 
w is of type (I, I), and hence we have 

HZ(X, C) = HZ. O(X) EB H I. I(X) EB HO. Z(X) 

= H;·O(X) EB H ~.I(X) EB Cro EB Hg·2(X), 

noting that, by dimension considerations, we have H2.0(X) = H;'O(X) and 
HO.2(X) = Hg· 2(X); i.e., all of the nonprimitive cohomology is in the middle 
and is one-dimensional. 

Geometrically, what this means is the following. If X is a smooth complex 
submanifold of p. (and hence Kähler), then there are many cycles on X of 
the form XnPj,j=O,I, ... ,n-l, where Poc ... cP. isthe cell 
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decomposition of Pn (assuming that the intersecting manifold X and P j are 
in general position). This determines part of the homology of X; the remain
der of the homology, which is not so determined, is the primitil'e part (or as 
Lefschetz ca lied them, effectil'e cycles). In the ca se of a complex surface 
X c P 3' then, X n P 2 is (generically) areal two-dimensional c10sed sub
manifold, wh ich is a cycle in H 2(X, Z), which corresponds in cohomology 
to Ci) E H2(X, Z) (since Ci) is, in this case, an integral cohomology c1ass). 
Again, we shall not formally prove this correspondence; we merely mention 
it as motivation for the discussion at hand. 

Prool 01 Proposition 6.2: The proposition is c1early true for r = 0, I, 
and so we shall prove it by induction for general r. Suppose that b~ = bq 

-bq - 2 for q = 0, ... ,r - I. Then let (c;jj)} be a basis for H~-2j(X, C), 
i = I, ... ,b'-2j - b,-2j-2,j = 1, ... ,[r/2](bq = 0, for q < 0, by defini
tion), and consider the set [Uc;jj)} of c1asses in H'(X, C). We claim that these 
vectors are linearly independent. Suppose that 

"(1. .. U;:~j) = 0 ~ I) ~, , 
ij 

Then we have 

o = I: U(I: (1.ijej j », 
J , 

and by the uniqueness of primitive decomposition, we obtain I:i (1.ijejn 
= O,j = I, ... ,[r/2]. By the linear independence ofthe rein} in H~-2j(X, C), 
we see that (1.i) = 0 for all i andj. We claim now that none of the vectors of 
the form VeF) can be primitive in H'(X, C). To show this, suppose that 
e E H~-2j(X, C), and, moreover, suppose that Ue is primitive; i.e., 
L"-r+l(Ue) = O. Then it follows from Theorem 3.12 that e must be zero. 
Suppose that (11" ... ,11m} is a basis for H~(X, C). Then it follows from the 
above remark that the vectors [111' ... ,11m' Vc;jj}} are linearly independent 
in H'(X, C). By the primitive decomposition theorem, they c1early span 
H'(X, C), and hence 

b~ = m = b,- [(b'-2 - b'-4) + (b'-4 - b,-6) + ... } 
= b, - b,-z. 

Q.E.D. 

It is interesting to note that although the primitive cohomology is defined 
via the fundamental dass Ci), the dimensions b~(X) are topological invariants 
of X and independent of the fundamental dass Ci) (of course, for j < n).t 

We would now like to discuss the restriction of the quadratic form Q for 
a compact Kähler manifold X to subspaces of H'(X, C). For reasons which 
will become apparent, we shall want to consider Q restricted to the primitive 
cohomology H;(X, C). We have the following important theorem, due to 

tThe same proof shows that for the Hodge numbers hp,q we have h~,q = 
hP,9 - h p-I,q-I. 
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Hodge, whieh generalizes a theorem of Riemann for the ease n = r = I (in 
whieh ease primitive eohomology eoincides with eohomology). 

To simplify the notation we let P"(X, C) = H:(X, C) and pp,q(X) = 

H:·9(X, C) denote primitive eohomology, and by definition P.(X, C), ete., 
will be the dual primitive homology groups (the effeetive eycles of Lefsehetz). 

Theorem 6.3: Let X be a eompaet Kähler manifold, let pr(x, C) = 
~p+9~rPp,q(X) be the primitive eohomology on X, r = 0, ... , 2n, and let Q 
be the quadratie form on pr(x, C) given by (6.2). Then 

(a) Q(pr-9.9, ps,r-s) = 0 (q"* s). 
(b) j-r(_1)9Q(pr-9.9, pr-9,9) > O. 

Here (a) means Q(e,l1) = 0 for e E pr-9,9 and 11 E ps.r-" and (b) means 
that 

for all nonzero c; E pr-q,q. 

Proof: First we observe that Q restrieted to pr(x, C) has a simpler 
form, namely, 

(6.5) Q(e,l1) = (_I)r(r+ 1)/2 f x V-re 1111, e,11 E pr(x, C) 

and as in the proof of Theorem 6.1, we have 

*11 = (_l)r(r+1li2 cö IL·-rJI1, Co> 0, 

as given by Theorem 3.16, Substituting in, we find that 

Q(e, 1'/) = coih - a f xe (, *1'/ 

if1'/ ce: pa.h. Now, for part (a), suppose that c; E pr-q,q and 11 E ps.r-s, q"* S. 

Then we have 

Q(e,1'/) = coi r - 2s Ix e 11*"11, 

and e and 11 have different bidegrees, by assumption, and so, by Proposition 
2.2, Q(c;, 1'/) = O. Similarly, if e E pr-q.9 and c; "* 0, then we see that j2q-r 
= i-re -I)q, and thus 

i-re -1)qQ(C;, e) = Co f xe; lI*e > O. 

Q.E.D. 

We shall eall the relations in Theorem 5.3 (a) and (b) the Hodge-Riemann 
bilinear relations. These play an important role in the study of the modul i of 
algebraie manifolds (cf. Griffiths [I], [3]). They are the natural generalization 
of the Riemann period matrix of aRiemann surfaee or of an abelian variety 
(cf. Sec. VI 4 ). These topies will be diseussed briefly in the remainder of this 
seetion in eonneetion with the general modul i problem for eompaet eomplex 
manifolds. The reason we restriet our attention to primitive eohomology in 
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Theorem 6.3 is that the corresponding quadratic form in (b) for the full 
Dolbeault gtoup HM(X) contained in the full de Rham group H'(X, C) is 
an Hermitian symmetrie form whieh is nondegenerate, but it is no longer 
positive definite, in general (cf. Hodge [I]). Since the primitive cohomology 
generates the full cohomology by means of the fundamental c1ass 00, there is 
no essential loss of information. 

Remark: If X is a compact Kähler manifold of el'en complex dimension 
2m, then one can use the above type of considerations to show that the 
signature of the underlying topological manifold, which is the same as the 
signature of the quadratic form 

can be computed in terms of the Hodge numbers hP09(X). More precisely, 
one has 

O'(X) = L (-I)PhP09(X) = L (-l)PhP09(X), 
P.q po:q(2) 

where O'(X), the signature of X, is the difference between the number of posi
tive and negative eigenvalues of the (symmetrie, nondegenerate) quadratic 
form A, and, as is weil known in algebraic topology, is a topological invariant 
of such areal 4m-dimensional oriented topological manifold (see, e.g., 
Hirzebruch [I]). For more details see Weil [I], p. 78. 

Let X be a compact Kähler manifold and consider the Hodge decom
position of the primitive cohomology group of degree r, 

P'(X, C) = L PP09(X). 
p+q=, 

Then we have the subspace relation 

pp,q(X) c P'(X, C), 

and we note that Theorem 6.3 imposes restrictions that subspaces be of this 
form. Let cp = {cpl, ... , cph} be a basis for PM(X), where h = h!·q(X), and 
let y = {y I' ..• , Yb} be a basis for P'(X, R) with dual (real) basis y = fy J> 

... , Yb} for P,(X, R). For instance, we can choose the basis Y so that Q in 
terms of this basis has the canonical form (6.3) or (6.4) depending on the 
parity of r, hut this is not necessary for our discussion here. We can express 
'Po in terms ofthe basis y, namely, 

and we can integrate this relationship over the cycles {y p}, obtaining 

f 'Po == L WO" f y" = w.P 
Yp ts 'Yp 

since y and y are dual bases and the duality pairing is given (via de Rham's 
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theorem) by integration of differential forms over cycIes. Thus we have a 
matrix 

which we call the period matrix of the differential forms {qI«} with respect to 
the cycIes {yp}. It is clear that n is an h x b matrix of maximal rank. We can 
now express the Hodge-Riemann bilinear relations in terms of this matrix 
representation for the subspace relation pP.q eHr. Namely, we see that 

and, similarly, 

Q(qI«, qI/I) = Q(1: (O~"1',,, 1: (0/1.1'.) 
" . 

= 1: (O«"Q"'(O/I' = 0, 
", . 

i-re -1)qQ(q..«, 91/1) = i-re -l)q 1: (O~"Q,,/i)/I' > 0, 

which can be expressed in the form (Ietting Q denote the matrix [Q".D 

(a) nQ'n = o. 
(b) i-re -1)qnQ'Q > O. 

The bilinear relations above were first written down in this form by Riemann 
for periods of holomorphic l-forms (abelian differentials) on aRiemann 
surface (Riemann [I]). If we make a change of basis for PP,q(X), then we get 
another period matrix n which is related to the original Cl by the relation 
n = An for A E GL(h, C). 

If we consider the Grassmannian manifold 

Gh(pr(x, C», 
then the subspace relation Pp,q(X) c reX, C) defines a point in the above 
Grassmannian manifold. We thus have the association 

x ----+ ~(X) = (pp,q(X) C pr(x, C) E Gh(pr(x, C», 
where ~(X) is, by definition, the associated point in the Grassmannian, given 
by the subspace relation. We call ~ the period mapping since the image point 
~(X) can be represented by periods of integrals as above. The choice of basis 
(1'1' ... ,1'b} gives us 

Gh(pr(X, C» - Gh(Cb) = Gh,b(C)' 

and the choice of basis {qlp ... ,q..h} gives us an h x b matrix (the period 
matrix) n E Mh,b(C)' which is mapped onto the corresponding point in the 
Grassmannian via the canonical projection mapping 

Mh,b(C) ~ Gh,b(C) 
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(see Chap. 1). The invariant description of the period mapping given above 
is due to Griffiths. If the complex structure on Xis allowed to vary in some 
manner (for a fixed cup product operator L on a fixed topological manifold 
X top ), then the subspace pp,q(X) c P'(X, C) will vary, although the primitive 
de Rham group remains fixed. Thus the variation of the Hodge group pp,q 
in pr is a reflection of the variation of the complex structure on the underly
ing topological manifold Xtop.t We refer to this generally as a variation 0/ 
Hodge structure, and Griffiths has introduced a formulation for making this 
variation of Hodge structure precise and in many instances a true measure 
of the variation of complex structures (see Griffiths (I], where he introduces 
the period mapping, and his survey article [3], which contains an up-to-date 
bibliography of the very active work in this field as weil as a long list of con
jectures and problems). 

We shall introduce here what we shall call a Griffiths domain, which is a 
classifying space for Hodge structures and which is chosen in such a manner 
that an apriori holomorphic variation of complex structures induces a 
holomorphic mapping into the Griffiths domain (a subset of an appropriate 
Grassmannian-type domain manifold generalizing the classical upper half
plane and Siegel's upper half-space). 

Let X be a Kähler manifold as above and let 

P,(X) = I: pp,q(X) 
p+q"-"r 

be the Hodge decomposition for primitive cohomology. Then we define 

P(X) = pr.O(X) + ... + pr-s.s(x), 

and we see that 

FI C F2 C .•. c Fr = pr 

s < r, 

and we call {PJ the Hodge filtration of the primitive de Rham group prJ Then 
let P = dirncP, a = [er - 1)/2], and / = (/0, ... , r) ([ ] denotes greatest 
integer). We consider the flag rnanifold F(f, W), where W = reX, C); Le., 
a point in F(f, W) (called aflag) is by definition a sequence of subspaces 

FO c FI C .•. c F" c W, 

where 

dimcP =Ji. 
Thus F(f, W) is a natural generalization of a Grassmannian Gh( W), which 
is the flag manifold for a = 0 (wh ich is the case if r = 1, for instance). The 
detailed construction of a flag manifold is analogous to that of a Grassman
nian, and we omit any details here. Now, to a Kähler manifold X we can 

tThe above discussion works equally weil for nonprimitive cohomology, Le., consider
ing H P·q(X) c H r(X, C) as a point in a different Grassmannian. The period relations which 
will playa role later are defined only for primitive cohomology, and hence the restriction. 
However, by the Lefschetz decomposition theorem, there is no loss of information. 

tOne can also define the Hodge filtration of the full de Rham group in the same manner. 

210 Compact Complex Mani/olds Chap. V 

(see Chap. 1). The invariant description of the period mapping given above 
is due to Griffiths. If the complex structure on Xis allowed to vary in some 
manner (for a fixed cup product operator L on a fixed topological manifold 
X top ), then the subspace pp,q(X) c P'(X, C) will vary, although the primitive 
de Rham group remains fixed. Thus the variation of the Hodge group pp,q 
in pr is a reflection of the variation of the complex structure on the underly
ing topological manifold Xtop.t We refer to this generally as a variation 0/ 
Hodge structure, and Griffiths has introduced a formulation for making this 
variation of Hodge structure precise and in many instances a true measure 
of the variation of complex structures (see Griffiths (I], where he introduces 
the period mapping, and his survey article [3], which contains an up-to-date 
bibliography of the very active work in this field as weil as a long list of con
jectures and problems). 

We shall introduce here what we shall call a Griffiths domain, which is a 
classifying space for Hodge structures and which is chosen in such a manner 
that an apriori holomorphic variation of complex structures induces a 
holomorphic mapping into the Griffiths domain (a subset of an appropriate 
Grassmannian-type domain manifold generalizing the classical upper half
plane and Siegel's upper half-space). 

Let X be a Kähler manifold as above and let 

P,(X) = I: pp,q(X) 
p+q"-"r 

be the Hodge decomposition for primitive cohomology. Then we define 

P(X) = pr.O(X) + ... + pr-s.s(x), 

and we see that 

FI C F2 C .•. c Fr = pr 

s < r, 

and we call {PJ the Hodge filtration of the primitive de Rham group prJ Then 
let P = dirncP, a = [er - 1)/2], and / = (/0, ... , r) ([ ] denotes greatest 
integer). We consider the flag rnanifold F(f, W), where W = reX, C); Le., 
a point in F(f, W) (called aflag) is by definition a sequence of subspaces 

FO c FI C .•. c F" c W, 

where 

dimcP =Ji. 
Thus F(f, W) is a natural generalization of a Grassmannian Gh( W), which 
is the flag manifold for a = 0 (wh ich is the case if r = 1, for instance). The 
detailed construction of a flag manifold is analogous to that of a Grassman
nian, and we omit any details here. Now, to a Kähler manifold X we can 

tThe above discussion works equally weil for nonprimitive cohomology, Le., consider
ing H P·q(X) c H r(X, C) as a point in a different Grassmannian. The period relations which 
will playa role later are defined only for primitive cohomology, and hence the restriction. 
However, by the Lefschetz decomposition theorem, there is no loss of information. 

tOne can also define the Hodge filtration of the full de Rham group in the same manner. 



Sec. 6 The Hodge-Riemann Bilinear Relations 211 

associate the integersjO, ... ,Ja coming from the Hodge filtration, and there 
is then a mapping defined, 

X - P(X) c P(X) c ... c F"(X) c reX, C), 

wh ich we then write as 

(J)(X) E F(/, W). 

This is Griffiths' period mapping (Griffiths [I)). 
Let X ~ T be a proper surjective holomorphic mapping of maximal 

rank from a complex manifold X to a complex manifold T. Then X ~ T is 
ca lied a complex-analytic family of compact complex manifolds. Let X, 
= n-1(t). Then X, is the fibre over t, or the compact complex submanifold 
of X corresponding to the parameter t E T. A basic fact about such families 
is the following proposition asserting that they are locally differentiably 
trivial. 

Proposition 6.4: If t 0 E T, then there exists a neighborhood U of t 0 in T and 
a fibre preserving diffeomorphism 

(6.6) 

Proof: This is a Iocal problem in the parameter space T, and so let T 
be an open set in Ck and let t 0 = 0 be the origin assumed to be in T. Then we 
have coordinates (t l' ..• , t k) for points in T, and by the implicit function 
theorem, if p E X o = n-1(O), it follows that we can find a neighborhood 
Up and a biholomorphic mapping 

VI p : Up - U~ c C' X C\ 
opeo 

with 
VlpIUpnx,~ U~ n CO X (t}; 

i.e., the fibres of the family in this coordinate system are given by [1 = con
stant], where (z, t) EU;, Z E C', 1 ECk. In other words, near p, the family 
is holomorphically trivial (= to a product family). We can find a finite cover
ing (U"'} of a neighborhood of Xo in X by such coordinate systems, and we 
denote the coordinates for U" by (z", t). The transition functions from (z", t) 
coordinates to (zP, t) coordinates are of the form 

[~",iZ, t) ~l 

where f",iz, t) is an n X n complex matrix of holomorphie functions. By 
using a partition of unity we can piece together the usual Euclidean metrie 
in each coordinate system to obtain aglobai Hermitian metric h, which, 
expressed in one of the above coordinate systems, has the form (in real coor
dinates) 
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where 

j = I, ... , n Zj = x j + ix j +n , 

I} = Sj + iSj+k' j = I, ... , k, 

and where (gjj) is a real positive definite matrix and z} = zj (dropping the 
notational dependence on oe). Consider a curve of the form (in U~) 

Yp,lr) = (z(r), 'rI), 

depending on the parameters (p, t), where p = (z, 0) is a point on Xo n U~. 
We require that 

(a) Y p,,(O) = (z, 0). 
(b) The curve Y p,' be orthogonal to Xu with respect to the metric h at 

Yp,,(r). 

Note that the nature of the parameterization and the coordinate system en
sures us that the curve intersects XT , precisely at the point Y p.,(r). Condition 
(b) can be rewritten as the system of ordinary differential equations 

2. 2k 

L gjlx(r), rs)x~(r) + L h...{x(r), rs)s. = 0, 
j=1 y=1 

i=I, ... ,2n. 

It follows that this nonlinear system of equations satisfies a Lipschitz con
dition (it is quasilinear) such that the standard existence, uniqueness, and 
parameter dependence theorems for ordinary differential equations hold, 
and thus there is a unique curve associated to each parameter point (p, t), 
and we define 

f(p, t) = yp,,(l) 

and obtain a mapping 

f:Xo X T---+X, 

wh ich is (for I tlsmall) an injective differentiable mapping. Moreover, the 
differential of this mapping at points of Xo is readily seen to be invertible, 
and thus the mapping 

f: Xo x fI t I< f} ----+ XII'!« 
is a diffeomorphism for ( sufficiently small. 

Q.E.D. 

Remark,' The above result c1early does not depend on the complex strllc
tllres. 

Proposition 6.4 teils us, in particular, that all the fibres X, for 1 near t 0 

are diffeomorphic. Then we can consider f-I(X,) as inducing possibly dif
ferent complex structures on the same differentiable manifold (X,,)difr. 
This is the point of view of deformation theory, introduced in the general 
context by Kodaira and Spencer in 1958 and begun by Riemann in his study 
of the number of moduli necessary to parameterize the different complex 
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structures on aRiemann surface. The recent book by Morrow and Kodaira 
[I] gives a good introduction to deformation theory along with many exam
pies, and we refer the reader to this reference as weil as the original papers 
of Kodaira and Spencer [1,2]. One of Griffiths' objects in introducing the 
period mapping above was to obtain a representation for the variation of 
complex structure (in the sense of deformation theory) in terms of the varia
tion of Hodge structure. To describe this mapping, we need so me auxiliary 
results from deformation theory, which we shall now describe. 

Proposition 6.5: Let X --"-. T be 'a complex-analytic family and let hf·· = 
hf··(X,). Then hf·· is an upper semicontinuous function of the parameter t; 
moreover, hf·· < hf.··, to E T and t near to. 

Proof: This is a local result. Let T c Ck and t o = 0 ECk. We first use 
(6.6) to get a diffeomorphism 

!,: X,- Xo, 

which induces a differentiable vector bundle isomorphism, 

f~ : 1\' T*(Xo) - 1\' T*(X,). 

The almost complex structure J, acting on T(X,) induces an almost complex 
structure J, on T(Xo), via!" and hence a projection 

np ••• ,: 1\ * T*(Xo) - l\f"q*(Xo)' 

which is maximal rank for t = 0 and thus for t near O. Therefore the diagram 

1\ r T*(Xo) - 1\ f·· T*(Xo) ~ 1\ P·q*(X,) 

I\JT*(Xo)~ 
induces an isomorphism jJ. for t sufficiently smalI. Thus we have the operator 
ä on X, acting on the complex 1\ p,qT*(X,), induces via jJ., the complex 

- SPoQ(Xo) -~ SP'.+ '(Xo)-' 

where äo = ä and the operator ä, depends continuously on the parameter 
t. The proposition now follows from Theorem 4.13 and Sec. 5 in Chap. IV. 

Q.E.D. 

Corollary 6.6: Suppose that X --"-. T is a complex-analytic family such that 
T is connected and X, is Kähler for t E T. Then hf·· = hf,·· for some fixed 
t o E T; i.e., hf"· is constant on T. 

Proof: By Corollary 4.2 we know that I:p+.~, hf·· = b,." but since all 
the fibres are diffeomorphic, b,., = br ." = b,. Thus for 11- 10 I< &, we 
have hf'· < hf,'·, and therefore 

b = '" hM < '" hp " = b , ~ I _ ~'o ,. 
p+q=r p+q=r 
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If for some p, q, hf,q < hf, q, for I t - to I< 0, then we would have a con
tradiction. 

Q,E,D. 

If now X...!:.... T is a complex-analytic family of Kähler manifolds (e.g., a 
family of projective algebraic submanifolds, parameterized by varying the 
coefficients of the defining homogeneous equations) and T is connected, then 
for all fibres X, in the family we have the same Hodge numbers hp,q and hence 
the same primitive Hodge numbers h~,q, and finally the same Hodge filtration 
numbers f', 0 < s < (J' = [r/2]. Thus for this family we may define the flag 
manifold 

F(jO, ... ,f", W), W = P'(X,., C), 

and we see that the mapping 

(6.6) <I> : T ---+ F(f, W) 

given by 

<I>(t) = <I>(X,) = [P(X,) c ... c P(X,) c W] 

is weil defined. 

Theorem 6.7 (Griffiths): The period mapping (6.7) is a holomorphic map
ping. 

Remark: The proof of this theorem depends principally on the Kodaira
Spencer deformation theory formalism (Kodaira and Spencer [I]), which 
we do not develop here (see e.g., Morrow and Kodaira [I]). In fact, Griffiths 
shows many more properties of the period mapping such as the nature of the 
curvature of certain natural metries restricted to <I>(T), or that <I>(T) is a 
locally c10sed analytic subvariety of F(f, W), etc. (see Griffiths [2,6]). He also 
gives conditions (verifiable in many examples) such that if <1>(11) *- <1>(12)' 
then the two complex manifolds X" and X" are not biholomorphicallyequi
valent. In other words, the period mapping is a description (sometimes 
complete) of the variation of the complex structure, 

If Q is the fundamental quadratic form defined on P'(X, C) (6.5), then let 

Xc F(jO, .. , ,f", W) = F(f, W) 

be defined by the set of flags in F(f, W) satisfying the first bilinear condition 

(6.8) 

where P/P-I is defined to be a subspace of P c W by defining 

PjFs-t = {v E P: Q(v, P-I) = O} 

(note that Q is nondegenerate). Then let D c X be the set of flags in F(f, W) 
satisfying in addition to (6.8) the second bilinear condition 

(6.9) 
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One proves that X is a compact projective algebraic manifold and that D 
is an open subset of X. Both are homogeneous spaces, with natural invariant 
metries. We call such a domain Da Griffiths domain.t Because ofTheorem 
6.3, it follows that 

<l>(T) c D c X c F(/, W). 

Moreover, there is a natural fibering of D (because of the homogeneous 
structure) as a real-analytic family of compact complex submanifolds of 
D, as in Example 6.8 below (possibly zero-dimensional, as in the c1assical 
case), and Griffiths obtains an infinitesimal period relation which asserts that 
the mapping <l> is transversal to the fibres in the real-analytic fibering men
tioned above. 

We mention two examples of Griffiths domains. 

Example 6.8: Let r = I. Then (1 = 0, P = H I. O(X), and the flag mani
fold F(/, W) becomes 

F(/, W) = Gh,2h(C)' 

and letting Q be in standar~ form (6.3), 

Q = [ 0 IhJ, 
-Ih 0 

we see that X and D are defined in terms of the "homogeneous coordinates" 

for Gh,2h(C)' 

X = (0 E Mh,2h(C): OQ'O = O} 

D = {O E Mh,a(C): OQ'O = 0, -ioQ'fi > O}. 

This Griffiths domain D is biholomorphically equivalent to Siegel's upper 
half-space (see Griffiths [I]), 

Ds = (Z E ~h,h(C) : Z = 'Z, Im Z > O}, 

which is itself a generalization of the c1assic upper half-plane (h = I) (see 
Siegel [I)). D can also be expressed in the homogeneous space form 

D = ~p(h)/(I(h) 
where ~p(h) is the real symplectic group and (I(h) is the unitary group and 
is a c1assical bounded symmetrie domain (see Helgason [I)). 

Example 6.9: If r = 2, then we have the relationship 

FO = p2,0 C p2 

(note that p2. ° = HZ, 0), and, moreover, 

dirn P = dirn H2,0, 

tGriffiths ca lied these domains period matrix domains (Griffiths [I]) and classifying spaces 
Jor Hodge structures (Griffiths (3)). 
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and 

jIQ IH2'O+HO" is positive definite 

and 

jIQ IPhl is negative definite. 

Therefore we have that 

jIQ = [IIh 0 J' o -Ik 

where k = dirn pI - 211. D then has the homogeneous representation 

D = SO(2h, k)j(U(h) x SO(k», 

and we note that the maximal compact subgroup of the noncompact real 
group SO(2h, k) is SO(2h) x SO(k). Thus we have a natural fibering 

D = SO(2h, k)j(U(h) x SO(h» 

1 1 
M = SO(2h, k)j(SO(2h) x SO(k», 

and it so happens that the fibres of this mapping are compact complex sub
manifolds of positive dimension when h *- I. 

The reader is referred to Griffiths' papers in the References for a further 
discussion ofthe period mapping and its relation to the study ofthe variation 
of complex structure on a given (usuaHy projective algebraic) manifold. 

The discussion and analytic behavior of the period mapping into a Grif
fiths domain is contained in Griffiths [I, 3, and 6], while the geometry of a 
Griffiths domain itselfis discussed in Griffiths and Schmid [I], Schmid [I], and 
WeHs [1, 2], WeHs-Wolf [1]. The relation ofthe periods ofharmonic forms on 
an algebraic hypersurface V of Pn and the rational forms on Pn - V with 
poles of various orders along V is studied in Griffiths [5] along with some 
interesting applications to algebraic geometry. 
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CHAPTER VI 

KODAIRA'S 

PROJECTIVE EMBEDDING THEOREM 

In this chapter we are going to prove a famous theorem due to Kodaira, 
which gives a characterization of which compact complex manifolds admit 
an embedding into complex projective space. In Sec. I we shall define Hodge 
manifolds as those wh ich carry an integral (1, I) form wh ich is positive defi
nite in local coordinates. We then give various examples of such manifolds. 
Kodaira's theorem asserts that a compact complex manifold is projective 
algebraic if and only if it is a Hodge manifold. This is a very useful theorem, 
as we shall see, since it is often easy to verify the criterion. Chow's theorem 
asserts that projective algebraic manifolds are indeed algebraic, i.e., defined 
by the zeros of homogeneous polynomials. Thus the combination of these 
two theorems allows one to reduce problems of analysis to ones of algebra 
(cf. Serre's famous paper [2] in which this program of comparison is carried 
out in great detail). 

In Sec. 2 we shall use the Hodge theory developed in the previous two 
chapters to prove Kodaira's vanishing theorem, which plays a role in compact 
complex manifold theory similar to that of Theorem B of Cartan in Stein 
manifold theory (see Gunning and Rossi [I]). 

In Sec. 3 we shall introduce the concept of a quadratic transform of a 
complex manifold at a given point (the Hopf blowup) and study the behavior 
of metrics on holomorphic line bundles under pullbacks with respect to a 
quadratic transform. In Sec 4. we shall bring together the tools of Secs. 2 
and 3 (which depended in turn on the work in the previous chapters) to prove 
Kodaira's embedding theorem. 

1. Hodge Manifolds 

In this section we want to consider a restricted class of Kähler manifolds 
defined by a certain topological (integrality) condition. If X is a compact 
complex manifold, then a d-cIosed differential form '{J on X is said to be 
integral if its cohomology class in the de Rham group, ['{J] E H*(X, C), is 
in the image of the natural mapping: 

H*(X, Z) -~ H*(X, C). 
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Let h be a Kähler metric on a complex manifold of Kähler type and let 
Cl be the associated fundamental form. 

Definition 1.1: If Cl is an integral differential form, then Cl is called a Hodge 
form on X, and h is ca lied a Hodge metric. A manifold of Kähler type is 
called a Hodge manifold if it admits a Hodge metric. 

This terminology was first used by A. Weil. The main theorem of this 
chapter (due to Kodaira [2]) is that a compact complex manifold is Hodge if 
and only if it is projective algebraic. First we shall see that there are many 
examples of Hodge manifolds, some of which are not at all obviously projec
tive algebraic, and in passing we shall note that the Hodge condition is often 
easy to verify in practice. 

Let E be a holomorphic line bundle over a complex manifold X. Then we 
let 

EP=~(8) ... (8)E 
IJ r.cton 

and 

E-p = (E*)I', 

for any positive integer p. We let EO = X x C, the trivialline bundle over 
X, which is isomorphie to EI' (8) E-p for all positive p, as is easy to see. If 
{g .. ,} is a set of transition functions for E with respect to some locally finite 
set of trivializations, then {g:,} is a set of transition functions for E'" for aU 
integers p. This is a simple fact, whose verification we leave to the reader (cf. 
Sec. 2 in Chap. I). In various examples below we shall use this principle to 
compare different line bundles on the same space, by comparing appropriate 
transition functions on the same open covering. If Xis of complex dimension 
n, then we let 

Kx = /\"T*(X) 

be the canonicalline bundle of X. It follows that 

f)x(Kx) = f)x( /\"T*(X» = Clx 
the sheaf of holomorphic n-forms on X. For simplicity we denote the canoni
calline bundle simply by K whenever Xis fixed in a given discussion. 

We now present a list of examples of Hodge manifolds. 

Example 1.2: Let X be a compact projective algebraic manifold. Then 
Xis a submanifold of P N for some N. Let Cl be the fundamental form associ
ated with the Fubini-Study metric on P N (see Example V.4.5). Since n is 
the negative of the Chern form for the universal bundle U1• N + 1 --+ PN , it 
follows that Cl is a Hodge form on PN (see Propositions 1II.4.3 and III.4.6). 
The restriction of Cl (as a differential form) to X will also be a Hodge form, 
and hence X is a Hodge manifold. In general, by the same principle, a 
complex submanifold of a Hodge manifold is again a Hodge manifold. 
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Example 1.3: Let X be a compact complex manifold which is an un
ramified covering of a Hodge manifold Y; i.e., there is a holomorphic map
ping X ~ Y such that 1C I (p) is discrete and 11: is a local biholomorphism at 
each point x E X. Then X is a Hodge manifold. To see this, simply let 0 
be a Hodge form on Yand then 11:*0 will be a Hodge form on X. Similarly, 
if X J.... Y is an immersion, thenf*O will give a Hodge manifold structure to 
X. 

Example 1.4: Let X be a compact connected Riemann surface. Then X 
is a Hodge manifold. Namely, since dimRX = 2, we have by Poincare duality 
that C ~ HO(X, C) ~ Hl(X, C), and, moreover, H2(X, C) = HI,I(X). Let 
o be the fundamental form on X associated with a Hermitian metric. Then 0 
is a closed form [of type (I, 1)] wh ich is a basis element for the one-dimen-

sional de Rham group Rl(X, C). Let c = Ix 0, and then 0 = c-IO will 

be an integral positive form on X of type (1,1). Hence Xis Hodge. This 
example generalizes to the assertion that any Kähler manifold X with the 
property that dimeR!' I(X) = I is necessarily Hodge. This follows from the 
fact that multiplication by an appropriate constant will make the Kähler 
form on X integral, as above in the Riemann surface case (one has to also 
make an appropriate choice of basis for the integral 2-cydes). 

Example 1.5: Let D be a bounded domain in C" and let r be a fixed 
point free properly discontinuous subgroup of the group of biholomorphisms 
of D onto itself [= Aut(D)] with the property that X = Dir is compact (cf. 
Proposition V.S.3). Then Xis a Hodge manifold. Let ClD be the fundamental 
form associated with the Bergman metric hD on D (see, e.g., Bergman [I], 
Helgason [I], or Weil [I]). The Bergman metric has the very useful property 
that it is invariant under the action of Aut(D) and hence under the action of 
any subgroup r. Thus hD induces ametrie h on X, which has associated with 
it a fundamental form Cl which is of type (I, I) and positive definite. More
over, since (for a particular normalization) 

(1.1) 

where kD(z) is the Bergman kernel function for the domain D, it follows 
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shall also need the property that 

(1.2) Y E Aut(D), 

where aylaz is the Jacobian matrix of the biholomorphism y (see Bergman 
[I] or Weil [I]). Suppose that (Um} is a covering of X by a finite number of 
coordinate patches, with lfI m: Um -+ D being the coordinate functions (wh ich 
can be taken as local inverses for the projection Tl: D -+ X = DIr). Then 
the transition function Ymp = IfIm 0 IfIpl E rand is defined on all of D. It 
then follows that (aYoplaz)(lfIp(p))} are the transition functions for T(X) and 
that gop(z) = det (aYop/az)(lfIp(p)) are the transition functions for /\ ·T(X). 
Thus the functions (g;;} are the transition functions for the canonical li ne 
bundle Kx = /\ "T*(X). Let ko = k D 0 lfIo be positive functions defined on 
Um C X. Then it is easy to check from (1.2) that 

where z = IfIp(P). This shows that the (k o} transform like ametrie for K and 
thus define ametrie on Kx . By the results in Chap. 111, we see that 

i -
= - 2Tlaa log k(z) (in the coordinates of D), 

but this is (except for sign) the fundamental form associated with the Bergman 
metric and thus the induced Bergman metric is a Hodge metric. Therefore, 
X is a Hodge manifold. 

Remark: Note that the above example is quite different from the 
example ofa Hopfsurface given in Sec. 5 ofChap. V, since the Hopf surface 
was defined as a quotient space Dir, where D was not a bounded domain, 
and by the results above it cannot be biholomorphically equivalent to one. 
Being biholomorphically equivalent to a bounded domain is rather crucial for 
the Bergman kernel theory to apply. 

Example 1.6: Consider a complex torus X, as in Example V.4.4, with 
2n independent periods (cop ... , coz.} in C', and let 

_ rCO.II . .. CO~'2I1j 
!l-. . 

. . 
COnl COn.2n 

be the matrix of periods. Suppose that there exists a nonsingular integral 
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skew-symmetric matrix Q of rank 2n such that 

(I) nA'n = 0 
(1.3) 

(11) -inA'n = M> 0 (positive definite), 

where A = Q-I. Then we say that n is aRiemann matrix (cf. Conforto [I] 

and Siegel [I]). Consider the matrix P = [~J called the big period matrix. 

Then it follows from the conditions above that P is nonsingular. Namely, 
consider the product [using the relations (1.3) above] and, noting that 'M = 

M, 

(1.4) - [nJ;oo;. [iM PA'P = n A['u,'n] = 0 

which is nonsingular, since M > 0, and hence P is nonsingular. Thus we find 
that, by taking the inverse of (1.4), 

Q = ; ['nHn - 'fiRn], 

where we let' H = 2M -I, which is also positive definite, and thus we find that 

(1.5) 

Conversely, if the periods (Ci)~J satisfy (1.5) for so me Hermitian positive definite 
matrix H, where Q is a skew-symmetric nondegenerate matrix with integer 
coefficients, then n is aRiemann matrix. Let 

Ci) = ; 1: hp.dzplldi. 

be the fundamental form for a Hermitian metdc for X defined by the constant 
positive definite matrix H. The integral homology group H2(X, Z) is generat
ed by the integral 2-cydes (C~,8J, defined by the parametrie representation 

C~,8 = (SCi)~ + tCi),8: 0 <s, t < IJ, 

where Ci)~, Ci),8 are given periods, I < ~ < p < 2n. Then the period of Ci) over 
the 2-cydes is given by 

f Ci) = ; 1: hp.(Ci)p~äJ.,8 - Ci)p,8cij.~). 
C(JlP P." 

This is easy to verify and consists of evaluating the integral of dZplldi. 
over the real two-dimensional parallelogram determined by the two vectors 
Ci)~ and Ci),8 in C·. Thus Ci) is a Hodge form for the torus X. 

In the other direction, suppose that we know that a torus X admits an 
embedding into some projective space PN • Then the standard Kähler form 
on P N induces a Hodge form Ci) on X and in the coordinates of C·, 

(1.6) 
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where the functions h"o are not necessarily constant, as we had above. 
However, 

f co E Z, 
c.~ 

and we can replace h' fI in (1.5) by the mean value 

h'fI = jI.(X)-1 f x h'fldjl., 

where jI. is the invariant measure on the torus induced by Lebesgue measure 
in Co. One can then verify that the resulting form ro will satisfy the condition 
(1.5) and will have a positive definite coefficient matrix. Thus the existence 
of a Hodge form on X implies that the period matrix is aRiemann matrix. 

An example of a complex torus not satisfying Riemann's condition is 
given by the period matrix (n = 2) 

(1.7) n = [I 0 ,J=2 FSJ. 
o I .J=3 J=7 

Namely, suppose that there existed a matrix A with rational coefficients such 
that 

(1.8) nAtn = o. 
Then the element in the first row and second column of (1.8) is given by 

a l2 + alJ,J=} + a 14F'7 - aZJ ,J=2 - a 24FS 
+ a J4(,vJ4 - .vTI') = 0, 

from which it follows easily that 

since A was assumed to have rational entries. Since A is skew-symmetric, 
it follows that A cannot be nonsingular, wh ich contradicts the assumption of 
n being aRiemann matrix. Thus this particular complex torus cannot be 
projective algebraic. One can show, in fact, that the complex torus defined by 
the period matrix n in (1.7) does not admit any nonconstant meromorphic 
function (cf. Siegel [1], pp. 104-106), which also implies that X is not em
beddable in any projective space. 

2. Kodaira 's Vanishing Theorem 

The vanishing theorem of Kodaira plays a role in the theory of compact 
complex manifolds analogous to the wcll-known Theorem B of Stein mani
fold theory (due to Cartan and Serre; see, e.g., Gunning and Rossi [I]). 
The basic difference is that on a compact complex manifold X, the cohomo
logy groups H9(X, O(E», q > I, do not need to vanish for all holomorphic 
vector bundles E, which would be the case for Stein manifolds. There are 
basic obstructions, due to the compactness. 
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We shall now formulate the vanishing theorems for line bundles. A dif
ferential form rp of type (I, I) on a complex manifold is said to be positil'e 
if, in local coordinates at any point p, 

rp = i:2:: rp".(z)dz,,/\div' 
". v 

and the matrix [rp"v(z)] is a positive definite Hermitian symmetrie matrix for 
each fixed point z near p. Notationally, we denote this condition by rp > o. 

Definition 2.1: Let E --+ X be a holomorphic line bundle and let c, (E) 
be the first Chern c1ass of E considered as an element of the de Rham group 
H2(X, R). Then Eis said to be positive if there is areal c10sed differential 
form", of type (I, I) such that '" E c, (E) and '" is a positive differential form. 
Eis said to be negative if E* is positive. 

For computational ease we prove the following proposition. 

Proposition 2.2: Let E --+ X be a holomorphic li ne bundle over a compact 
complex manifold X. Then E is positive if and only if there is a Hermitian 
metric h on E such that i0E is a positive differential form, where 0 E is the 
curvature of E with respect to the canonical connection induced by h. 

Proof: It is obvious from the differential-geometrie definition of c, (E) 
that i0E positive for some metric h will imply that Eis positive. Conversely, 
suppose that Eis positive and that rp E c ,(E), where rp is a positive differential 
form. Let h be any metric on E, and then with respect to a local frame f we 
have [h = h{f)] 

and hence 
rp - rpo = dyt, 

Moreover, the differential form rp is a Kähler form on X, and X becomes a 
Kähler manifold when equipped with the associated Kähler metric. Then 
we may apply the harmonie theory, and let H be the harmonie projection onto 
JC*(X), and let G be the Gre(!n's operator associated with the d-Laplacian 
~ = 20 = 20. Then we note that 

yt = Hyt + ~Gyt, 
and hence 

dl1 = dHyt + d ~Gyt = ~Gdyt, 

since dH = 0 and d commutes with both ~ and G.t It follows that 

dyt = 2ää*Gdyt + 2ä*Gädyt, 

and we claim that ädyt = 0 and adyt = O. This follows from the fact that ärp 

tThe operators a and ä also commute with G = !Go = !GEi. (cf. Theorem IV. 5.2). 
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= ärpo = 0, and arp = arpo = 0, since rp can locally be written in the form 
rp = aäu, for some C" function u (Lemma J 1.2.15), and 'Po is al ready of this 
form. Thus 

d" = 2ää*Gd", 

and we can use the Kähler identity 

iä* = L*a - aL* 

(Corollary V.4.1O), obtaining 

d" = 2iäaL * Gd", 

since aG = Ga and ad" = O. Therefore we set r = 2L * Gd", and by letting 
h' = h • e2XT be a new metric for E, we obtain 

in äa log h' = in äa log h -t iäar 

= rpo + d" 
= 'P. 

Q.E.D. 

Example 2.3: Let X = Pn' and consider the following three basic line 
bundles over Pn: 

(a) The hyperplane seetion bundle: H -+ Pn' 
(b) The unil'ersal bundle: U -+ P n (U = U'.n+')' 
(c) The canonical bundle: K = ;\"T*(Pn) --, Pn' 

Here H is the line bundle associated to the divisor of a hyperplane in Pn' 
e.g., [ta = 0], in the homogeneous coordinates [ta, ... , tn]. Then the divisor 
is defined by {to/t~} in U~ = {t~ *' O}, and the line bundle H has transition 
functions (cf. (111.4.9» 

h~p = G: )(~: f' 
= !.L. 

t~ 

The universal bundle (Example 1.2.6) has transition functions 

and thus H* = U. Let us now compute the transition functions for the 
canonical bundle K on Pn' Ifwe let C1 = t)tp,j *' p, the usual coordinates 
in Up, then a basis for Kl u6 is given by the n-form 

cl>p = (-IYdCg 11 ... IIdC:-,lIdCG+ ,11 ... IIdC~· 

Since 

224 Kodaira's Projective Embedding Theorem Chap. VI 

= ärpo = 0, and arp = arpo = 0, since rp can locally be written in the form 
rp = aäu, for some C" function u (Lemma J 1.2.15), and 'Po is al ready of this 
form. Thus 

d" = 2ää*Gd", 

and we can use the Kähler identity 

iä* = L*a - aL* 

(Corollary V.4.1O), obtaining 

d" = 2iäaL * Gd", 

since aG = Ga and ad" = O. Therefore we set r = 2L * Gd", and by letting 
h' = h • e2XT be a new metric for E, we obtain 

in äa log h' = in äa log h -t iäar 

= rpo + d" 
= 'P. 

Q.E.D. 

Example 2.3: Let X = Pn' and consider the following three basic line 
bundles over Pn: 

(a) The hyperplane seetion bundle: H -+ Pn' 
(b) The unil'ersal bundle: U -+ P n (U = U'.n+')' 
(c) The canonical bundle: K = ;\"T*(Pn) --, Pn' 

Here H is the line bundle associated to the divisor of a hyperplane in Pn' 
e.g., [ta = 0], in the homogeneous coordinates [ta, ... , tn]. Then the divisor 
is defined by {to/t~} in U~ = {t~ *' O}, and the line bundle H has transition 
functions (cf. (111.4.9» 

h~p = G: )(~: f' 
= !.L. 

t~ 

The universal bundle (Example 1.2.6) has transition functions 

and thus H* = U. Let us now compute the transition functions for the 
canonical bundle K on Pn' Ifwe let C1 = t)tp,j *' p, the usual coordinates 
in Up, then a basis for Kl u6 is given by the n-form 

cl>p = (-IYdCg 11 ... IIdC:-,lIdCG+ ,11 ... IIdC~· 

Since 



Sec. 2 Kodaira's Vanishing Theorem 225 

we have 
C1 = Cj ·(C;)-I 

in V" () VII which is the (nonlinear) change of coordinates for Pli from V" 
to VII' Thus we obtain easily, by substituting into the above form ~'" 

~" = (C,),,+ I( -I)fldCg /\ ... /\dC~-I/\dC~+ 1/\ ... /\dCe 
= (C;rl~1I 

Now we see that these transition functions for the frames {cf) .. } induce transi
tion functions {kcrJl} for the canonical bundle K which are given by 

( I )"+1 k"P([/o, ••• , I,,]) = I; . 

We note that the choice of the minus sign in the trivializing sections was 
necessary for the transition functions for K to be comparable to the transition 
functions for Vand H. Thus K = I\"T*(P,,) = V,,+I = (H*)"+I. Moreover, 
the universal bundle V ~ Pn has the curvature form given in (III.2.10), which 
is the negative of the positive differential form 

• ... Jf... _ 

. 1 I 12 I; dl" /\dl" - I; I "I.dl" /\dl. 
Cl - I ,,=0 p,.=O 

- 2 1/\4 ' 

expressed in homogeneous coordinates. Namely, Cl is the canonical Kähler 
form on Pli associated with the Fubini-Study metric (see Example V.4.5). 
Thus H*, V, and Kare negative line bundles over p., and the hyperplane sec
tion bundle H -+ PlI is positive. These are the primary examples of positive 
and negative line bundles. 

Remark: It follows from the Hodge decomposition theorem that 
HI(P., ß) = H2(P., ß) = O. Namely, 

HI(P", C) = HI,O(P,,) EB HO, I(p.), 

and HI(P., C) = 0, by the cell decomposition of p •. Also, 

C - H2(P., C) = H2.0(P.) EB HI.I(P.) EB HO, 2(p.), 

and since H I. I(P.) = qOJ, where Cl is the fundamental form on p., it follows 
that H2(P •• ß) :::: HO,2(p.) = O.t Now consider the short exact sequence 

0--+ Z --+ ß --+ ß* --+ 0 

on p. and the induced cohomology sequence 

HI(P •• ß) --+ HI(P •• ß*) ~ H2(P". Z)~ H2(P., ß), 

which gives US, since Hl(P., ß) = H2(P., ß) = 0, 

o ~ Hl(P", ß*) ~ H2(P., Z) ~ o. 
111 
Z 

tIn the same manner. one obtains that Hq(PII• Qp) = O. P *- q. Hp(P •• Qp);:-:; 
Hlp(P •• Cl. which are special cases of a vanishing theorem due to Bott [11. 
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and negative line bundles. 

Remark: It follows from the Hodge decomposition theorem that 
HI(P., ß) = H2(P., ß) = O. Namely, 

HI(P", C) = HI,O(P,,) EB HO, I(p.), 

and HI(P., C) = 0, by the cell decomposition of p •. Also, 

C - H2(P., C) = H2.0(P.) EB HI.I(P.) EB HO, 2(p.), 

and since H I. I(P.) = qOJ, where Cl is the fundamental form on p., it follows 
that H2(P •• ß) :::: HO,2(p.) = O.t Now consider the short exact sequence 

0--+ Z --+ ß --+ ß* --+ 0 

on p. and the induced cohomology sequence 

HI(P •• ß) --+ HI(P •• ß*) ~ H2(P". Z)~ H2(P., ß), 

which gives US, since Hl(P., ß) = H2(P., ß) = 0, 

o ~ Hl(P", ß*) ~ H2(P., Z) ~ o. 
111 
Z 
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Let PI C p. be a generator for H2(P., Z), and then we see that ifwe consider 
powers of the hyperplane section bundle Hm, we obtain 

ct(Hm){P I) = m. 

Namely, by the properties of Chern c1asses,t 

cl(H) = cl(U*) = -cl(U) and 

Since CI is an isomorphism of abelian groups, it follows that every holomor
phic line bundle L -> p. (in particular U and Kin the above example) is a 
power ofthe hyperplane section bundle, L = Hm, and cl(L)(P t) = m. We use 
here the fact that cl{L) = cl(Hm) = cl{H@ .. , @ H) = cI(H) + ... + 
CI (H) (cf. the proof ofTheorem IlI.3.6). In particular, we obtain from Example 
2.3 that cl(KpJ(P.) = -(n + 1). Thus the holomorphic Jine bundles on p. 
are completely c1assified in this manner by their Chern c1asses. 

We now state the basic vanishing theorem due originally to Kodaira 
[I ]. 

Theorem 2.4: Suppose that Xis a compact complex manifold. 

(a) Let E -> X be a holomorphic line bundle with the property that 
E @ K* is a positive line bundle. Then 

q > O. 

(b) Let E -> X be a negative line bundle. Then 

p +q < n. 

Remark: Kodaira's theorems were first proved in Kodaira [I] ((a) and 
p = 0 in (b» and were generalized later by Nakano [I] to the case we have 
given here. There are various generalizations of these types of results for 
vector bundles which are not as precise as the above theorems but which have 
numerous applications. See, e.g., Grauert [2], Griffiths [2], Nakano [I], 
Hartshorne [I], and Grauert and Riemenschneider [I]. 

To prove the above theorem we want to derive some fundamental in
equalities due to Nakano. First suppose that X is a Kähler manifold with a 
fundamental form Cl associated to the Kähler metrie. Then the operators 
Land L * are well-defined endomorphisms of 8*(X). Suppose that E -> X 
is a holomorphic vector bundle over X. Then we want to show that Land L* 
extend in a natural manner to endomorphisms of 8*(X, E) (differential forms 
with coefficients in E). If C; E 8 P(X, E), then for a choice of a local holomor
phic frame/for E in an open set U c X, we see that 

I;(fl ~ 1"(fJj, 
lc;p(f) 

t Compare the proof of Proposition 1II.4.3, where cl(U)(Pd = f P, CI(U) = - I. 
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where ei(f) E SP( U). Moreover, if gis a holomorphic change of frame, then 
we have the compatibility condition that 

g-If.(f) = f.(gf) 

(see Sec. 2 of Chap. IlI), where the matrix g-I of functions is multiplied with 
the vector e(f) of differential forms. We now let * be the Hodge operator 
defined with respect to the Kähler metric on X, and * acts naturallyon vector
valued forms by setting l*f.I(f)j *f.(f) = : 

*f.P(f) 

and noting that, since * is C-linear, 

*e(gf) = *g-Ie(gf) = g-I *f.(f), 

and hence *f.(f) satisfies the compatibility conditions and defines agiobai 
element in SP(X, E). This is true of any zeroth order differential operator 
(wh ich is a homomorphism of the underlying vector bundles). Thus 

L: SP(X, E) -_ SP+2(X, E) 

is weil defined by letting 

L(f.(f» = (Lei(f», j = I, ... , p, 

and hence L * = w*L* is also defined. Of course, exterior differentiation d 
does not extend to vector-valued forms, and we have to introduce a connec
tion on E in order to define cOl'ariant d(IJerentiation on E, a generalization of 
exterior differentiation. Namely, as in Chap. 111, we let 

D = d + 0, 

where 0 is the connection defined by 

o = h-1ah (with respect to a local holomorphic frame) 

if h is the metric. Moreover, 

where 

D = D' + D", 

D' = a + 0 

D" = ä 
are the splitting of the covariant differentiation into types. With respect to 
the Hodge inner product on S*(X, E), we have the U-adjoints of the above 
differential operators, computed as in Proposition V.2.3: 

(2.1) (D')~ = - *ä* = a* 
(2.2) (D")~ = - *a* + w*O* on r-forms 

= ä* + w*O*. 
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Note that in making this computation the Hodge inner product can be repre
sen ted with respect to a local holomorphic frame 

(',1'f) = (-I)P f "i'1'f.h·', e, 1'f e&P(X, E), 

where, = ,(j), 1'f = 1'f(j), and h = h(j) are vectors and matrices, respectively, 
and the multiplication inside the integral is matrix multiplication. Also it 
suffices to compute the adjoint (which we know is a differential operator by 
Proposition IV.2.S), to assurne that, and 1'f have support where the holomor
phic frame is defined. The crucial factor for our later use is that the adjoint 
(D'n does not depend on the Hermitian metric of the fibres of E, and, in 
particular, is the more cIassical scalar adjoint a* acting in S*(X). The adjoint 
of ä (a scalar operator) is no longer scalar, however, Then we can conclude 
that, by Corollary V.4.1 0, since the scalar operator adjoints are with respect 
to a scalar metric, 

(2.3) äL * - L*ä = ia* = i(D')l. 

Under these circumstances we have the following inequality due to Nakano 
[11· 

Proposition 2.5: Let e E X P09(E). Then 

(a) (i/2)(0 AL *" ,) < o. 
(b) Uj2)(L*0A', ,) > o. 

In both (a) and (b) 0 (= äh- Jah) is the curvature form for the metrie h on 
the holomorphic veetor bundle E. 

Proo/: We reeall that (Proposition I1I.1.9);as an operator, 

D2 = (d + 8)2 = 0, 
and thus 

0A1'f = D21'f = (D'ä + äD')" 

for " E S*(X, E) (noting that (D')2 = 0, because of type). Hence we have 

i(a*" a*,) = ([äL * - L *äl', a*,) 
by (2.3), and since e is harmonie, we have äe = äle = 0, and thus 

i(a*e, a*e) = (äL*e, a*e) 
= (L *e, [ä~a* + a*älle), 

since ä~e = O. Then, taking adjoints, we get 

i(a*e, a*e) = ([D'ä + äD']L*e, e) 
= (0AL*e, e), 

which immediately gives part (a). Part (b) is proved in a similar manner. 
Q.E.D. 

It is now a simple matter to derive Kodaira's vanishing theorem. 
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Pro%/ Theorem 2.4: Suppose that Eis a negative line bundle. Then 
a fundamental form for a Kähler metric on X is given by n = -(;/2)9 
[noting that 9 is a closed form of type (I, I), whose coefficient matrix is 
negative definite]. Then subtract part (b) from part (a) in Proposition 2.5, 
and we obtain [noting that -(i/2)9 /\ gets replaced by L] 

([L*L - LL*le, e) < O. 

Recalling from Proposition V.l.l(c) that 

(L*L - LL*le = (n - p - qle, 

we have immediately 

(n - p - qXe, e) < 0 

if e E Jep. q(E), and thus part (b) of Theorem 2.4 folIows, by using the results 
in Example IV.5.7. Part (a) follows from part (b) by Serre duality (Theorem 
V.2.7). Namely, if E ® K* is positive, then (E® K*)* = K® E* is negative. 
We then have 

Hq(X, f>(E» = H4(X, f>(K ® K* ® E) = H4(X, n·(K* ® E», 

which is dual to H·-4(X, f>(K ® E*», wh ich vanishes for q > 0, by part (b). 
Q.E.D. 

3. Quadratic Transformations 

In this section we are going to study the behavior of positive line bundles 
under quadratic transformations. Let X be a complex manifold and suppose 
that p E X. Then we want to define the quadratic trans/orm of the manifold 
X at the point p. Let U be a coordinate neighborhood of the point p, with 
coordinates z = (z I' •••. z.), where z = 0 corresponds to the point p. Consider 
the product U X p._1> where we assume that (11' •••• t.) are homogeneous 
coordinates for p._ I • Then let 

(3.1) W = {(z, t) E U X p._ I : tmzp - tpzm = 0, IX, P = I, ... , n}, 

which is a submanifold of U x Pli-I' Then there is a holomorphic projection 
1C: W - U given by 1C(Z, t) = z. Moreover, 1C has the following properties, 
as is easy to verify: 

1C- 1(0) = S = {O) X p._ 1 ~ p._ 1 
(3.2) 

1C Iw-s: W - S --~ U - {O) is a biholomorphism. 

We define X = Qp(X), the quadratic trans/orm 0/ X at p, by letting 

_ {W,X E U 
X= 

X- U, XE X- U. 

This process if often referred to as blowing up X at the point p. We mayaiso 
denote the manifold g by Qp(X) to indicate the dependence on the point p, 
and the projection will be denoted by 1Cp: Qp(X) - x. 
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We recall from Sec. 4 in Chap. 111 that a divisor D in a complex manifold 
X determines an associated holomorphic line bundle L(D) ---> X, which is 
unique up to holomorphic equivalence of line bundles. Let X ~ X be the 
quadratic transform of X at the point p and let S = n-'(p). Then S ~ p._, 
and is an (n - I)-dimensional compact hypersurface embedded' in X. As 
such it is a divisor in X and determines a line bundle L(S) --+ X, wh ich we 
shall simply denote by L. Moreover, since S ~ p._ I' there is a canonical 
line bundle, the hyperplane section bundle H -> S (cf. Example 2.3), which 
is the line bundle determined by the divisor corresponding to a fixed linear 
hyperplane (e.g., [t, = 0] c p._,), all such line bundles being isomorphie. 
Let (1 denote the projection (1: W -> p._" (1(z, I) = t, and let L Iw denote 
the restrietion ofthe line bundle L --; X to W c X. Then we have the follow
ing proposition. 

Proposition 3.1: L Iw = (1* H*. 

Proof: Let U be a coordinate neighborhood of p in X, and represent 
X near n-'(U) by W c U x p._I' with coordinates (z" ... , z.) E U, 
[I" ••• , t.] E p._,. Then S is defined by z, = .,. = z. = 0 in the product 
space U x p._,. Now the hyperplane [tl = 0] is defined by the equations 
[(t,/t«) = 0] in V. c p._I> where V« = ([I" ... , t.]: t« * O} is a coordinate 
patch for p._ ,. Therefore H -> S is the line bundle given by the transition 
functions 

h«p = (!..L) . (!..L) -, = !.L 
I« t pI« 

and (1* H has the same transition functions in (U x V« n Vp) n W. Now 
Sn (U x V«) n W is defined by the single equation [z« = 0], as is easily 
checked, using the defining relation for W. Thus the line bundle L associated 
to the divisor S c W has the transition functions 

g«p(z, I) = z« in (U x V« n Vp) n W. 
zp 

It follows that g«p = h;) and thus L Iw = (1* H*. 
Q.E.D. 

We now want to study the differential-geometrie behavior of a line bundle 
on X when lifted to a quadratic transformation of X at so me point p. First 
we look at the behavior of the canonical bundles. Let X be a compact com
plex manifold, which will remain fixed in the following discussion, and L p 

-----+ Qp(X) is the line bundle given in Proposition 3.1. 

Lemma 3.2: KQ.x=n;Kx®L~-'. 

Proof: First we note that (z" tz/t" . .. , t./I,) are holomorphic coordi
nates for U x VI n W (using the same coordinates as above). Hence 

f, = dz, AdG:)A'" Ad(::) 
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is a holomorphic frame for Kx over this open set, letting X = QpX. More
over, one obtains easily that 

using the defining equations for W. More gene rally, we have that 

is a frame for Kx over U x Vm n W, and hence transition functions for the 
line bundle Kx Iw are given by 

(3.3) 

since the local frames Um} define a system of trivializations, which then gives 
(3.3). It then follows that gmfJ = (zm/zfJ)n-l, wh ich implies that 

Kxlw = Ln-I Iw - Ln-I ® x!Kxlw 
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are positive holomorphic line bundles. 

Proof: To prove the above proposition, we shall construct a metric 
on each of the above line bundles whose curvature form multiplied by i 
is positive. We shall first look at a special case. Suppose that p E Xis fixed, 
and let QpX 0= ..\";, as before. The basic fact that we shall be using is that if 
Fand G lire Hermitian line bundles over a complex manifold Y, then, denot
ing the curvature by e, 
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This is easy to see, since if p« = I gp.12 pP and '« = I hp« 12, p are local transition 
functions for metrics fp«} and fr«} for Fand G, respectively (cf. Chap. 1II), 
then 

0 F = äa log p«, 

0 G = äa log '«, 

but fg«p • h.p} are the transition functions for F ® G, and thus fp« • , «} defines 
a metric for F ® G, since 

Thus 

0 F®G = äa log (p.,.) 

= 0 F + 0 G • 

We have, then, using the given metric on E and letting:n: = :n:p , 

0 n • E " = :n:*0E " = p.:n:*0E • 

We now need to construct appropriate metrics on L p and Ki. 
First we consider L p ' Suppose that V is a coordinate neighborhood near 

p, with coordinates (z I' ••• ,z.), that p._ 1 has homogeneous coordinates 
[tl>"" t.1 as before, and that W c V X P'_ I is the local representation for 
X near :n:;I(p) as given by (3.1). Let V' be an open subset of V such that 
o E V' c c V, and let p E :O( V) be chosen so that p > 0 in V and p = I 
on V'. Let 

be the curvature of the hyperplane section bundle H ---> p._ p with respect 
to the natural metric ho (see Example 111.2.4 for the construction of this 
metric for VI,._I =H*). In particular (i/2)0H is the fundamental form 
associated with the standard Kähler metric on p._ I . Since Llw = a*H*, 
we can equip L* Iw with the metric hl = a*ho' Now L* lx-v' is trivial, and we 
can equip it with a constant metric hz. Then, letting p be chosen as above, we 
see that 

h = phI + (I - p)h z 

defines a metric on L* ---> X and that, moreover, h = hl in W' = V' X 

p._ I n W. Thus 

0L' = 0"'H 

0L' =0 

in W' 

in X - W. 

We now let Kx be equipped with an arbitrary Hermitian metric, and then 
we have from Lemma 3,2 (Ietting L be equipped with the dual metric) 

0 xx = 0 •. xx + (n - 1)0L , 
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Therefore it follows that 

Consider the sum 

#9~'E + 9"'H 

as differential forms in V' x p._1> with the coordinates (z, t) as before. Then 
9"'E depends only on the z-variable and 9 .... H depends only on the I-variable, 
and the coefficient matrix of each is positive definite in each of the respective 
directions, so their sum is a positive differential formt in V' x p._ I' and the 
rest riet ion to W is likewise positive. Moreover, 9~'E is positive on U - V', so 
there exists a J.l1(P) such that J.l > J.l1(P) implies that 

(3.5) [#9"'E] + 9 L • > 0 

on all of X. 
Let #2 be chosen such that 

#29E + 9 Kx > 0, 

which is possible since Eis positive and since Xis compact. Thus we see that 
there is a #o(p) such that 

(3.6) #9".'E + n9L• + 9""Kx > 0 

if J.l > J.lo(p), Namely, let #o(p) = J.l2 + nJ.ll(p) and note that 

#29 .·E + 9"'Kx 

is positive everywhere on X except at points of S, where it is positive semide
finite (in the obvious sense). 

Suppose that q E V'. Then we claim that if # > #I(P), then the estimate 
(3.5) will hold for points q near p, namely, 

#9." E + 9 L• > 0 

for all x E X. This is a simple continuity argument wh ich is easily seen by 
expressing the equations for the quadratic transform at q in terms of local 
coordinates centered at p, namely, 

Wq = {(Z, I) E V X p._ 1 : (Zi - qJl j = (Zj - qj)/J, 

where q = (qp ... ,q.) and P = (0, ... ,0). 
By covering X with a finite number of such neighborhoods, we find that 

there is a #0 such that (3.6) holds for all points P E X, if # > #0' and this 
concludes the proof of part (a). Parts (b) and (c) are proved in exactly the same 
manner. In (b) we put the same metric on L p near the point pas above, and 
(L:)2 will have the same positivity properties as L:, compensating for the lack 
of positivity of 1C: P on 1C; I (p). In part (c) one has the same local construc
tions near each of the two distinct points p and q. The continuity and compact-

Hn this argument we ignore the factor of i and mean by > 0 that the coefficient matrix 
of the (I, I) form is positive definite. 
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ness arguments go through in exactIy the same manner, and we leave further 
details to the reader. 

Q.E.D. 

4. Kodaira's Embedding Theorem 

After the preliminary preparations of the previous sections we are now 
prepared to prove Kodaira's embedding theorem for Hodge manifolds. 
This theorem was conjectured by Hodge [2] and proved by Kodaira [2]. 

Theorem 4.1: Let X be a compact Hodge manifold. Then Xis a projective 
algebraic manifold. 

Remarks: (a) As a consequence ofthe Kodaira embedding theorem, each 
of the examples of Hodge manifolds in Sec. 1 admits a projective algebraic 
embedding. In particular, any compact Riemann surface is projective aIgebraic 
(a welI-known cIassicaI resuIt), and a complex torus admits a projective 
embedding if and only if the periods defining the torus give rise to aRiemann 
matrix. Such tori are called abelian varieties and can also be characterized 
by the fact that a complex torus X is an abelian variety if and only if there are 
n algebraically independent nonconstant meromorphic functions on X, 
where n = dimcX (cf. Siegel [I]). 

(b) It follows immediately f,om Theorem 4.1 that any compact complex 
manifold X which admits a positive line bundle L ----+ Xis projective algebraic 
(and conversely). Namely, in this case, cl(L) will have a Hodge form as a 
representative, and thus X will be projective algebraic. This is a very useful 
version of the theorem, and in this form the theorem has been generalized 
by Grauert [2] to incIude the case where X admits singularities. Grauert's 
proof can be found in Gunning and Rossi [I], and it depends on the finiteness 
theorem for strongly pseudoconvex manifolds and spaces. 

Proof: By hypothesis, there is a Hodge form Cl on X. By Proposition 
III.4.6, it follows that there is a holomorphic line bundle E ----+ X such that n 
is a representative for cl(E). Hence, Eis a positive holomorphic line bundle. 
Let Ilo be given by Proposition 3.3, let Il > Ilo' and set F = Ei'. Consider the 
vector space of holomorphic sections 0(X, F) = r(F), for short, which is 
finite dimensional by Theorem IV.5.2. Our object is to show that there is 
an embedding of Xinto P(r(F». We shall prove this bya sequence oflemmas, 
wh ich will reduce the embedding problem and hence the proof of Theorem 
4.1 to the vanishing theorem proved in Sec. 2. First we have some preliminary 
considerations. 

Consider the subsheaf of 0 = 0x consisting of germs of holomorphic 
functions which vanish at p and q; call i t m pq' I f p = q, then we mean by this 
the holomorphic functions which vanish to second order at p, and we denote 
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it simply by m; (= mpp)' where mp is the ideal sheaf of germs vanishing to 
first order at p. Then there is an exact sequence of sheaves 

0--+ mpq --+ 0 --+ O/mpq --+ 0, 

and we can tensor this with the locally free sheaf O(F) (the sheaf of holomor
phic sections of F), obtaining 

(4.1) 0 --+ mpq (8)6 O(F) --+ O(F) --+ O/mpq (8)0 O(F) --+ O. 

We see that the quotient sheaf in this sequence becomes 

(4.2) 

if p = q and 

(4.3) 

x=p=q 

x"*p 

x=p 
x=q 

0, x"* p or q 

if p "* q, where we have used the fact that 0 plm p - C, where m pis the maximal 
ideal in the local ring 0 p. 

Lemma 4.2: Op/m; - C EB T,,*(X), and the quotient mapping is represented 
by fE Op -+ f(p) + df(p). 

Proof: 1ft E 0 pis expanded in apower series near z = p in local coordi
nates, we have 

using the standard multiindex notation (see Chap. IV). Then if [ ) denotes 
equivalence classes in Olm;, we see that 

since the higher-order terms E m;. Then define the mapping 

Op ~ C E8 T:(X) 

by 'PU) = [f(p), df(p»), and it is easy to check that 'P factors through the 
quotient mapping 

Op ~ C E8 T:(X) 

\ Vi/ 
Op/m; 

and Vi is an isomorphism. 
Q.E.D. 
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Consider now the sequence (4.1) and the induced mapping on global 
sections 

(4.4) fJ(X, F) ~ 6,lm! ® F, 
111 

[C E9 T!(X)] ® F,. 

If / is a local frame for F near p and if, E 6(X, F), then 

r(,(f» = (,(/)(p), d,(f)(p)} E C E9 T!(X), 

noting that F, - C, by the choice of a frame f Suppose that the map r in 
(4.4) is surjective. Then we can find sections {eo' el" .. ,eR]' el E r(x, F), 
such that 

eo(p) = I 

(4.5) eip) = O,j = I, ... , n 

(in local coordinates). 

This means that the global sections 'I" .. ,e", expressed in terms of the 
frame f, give local coordinates for X, in particular, de I (f) 11 ••• 11 de,,(f) =t= O. 
Moreover, eo(p) =t= O. 

Similarly, suppose that the mappiag 

(4.6) fJ(X, F) ~ F, E9 F" 

induced from the sheaf sequence (4.3) is surjective. Then we can find global 
sections el and el such that 

(4.7) 
el(p) =t= 0, 

ez(p) = 0, 

el(q) = 0 

ez(q) =t= O. 

Lemma 4.3: If the mappings rand s in (4.4) and (4.5) are surjective for all 
points p and q E X, then there exists a holomorphic embedding of X into 
p 1ft' where dimc6(X, F) = m + I. 

Proo/: Let, = {,o, ... , 'm] be abasis for 6(X, F). If/is a holomorphic 
frame for F at p, then ('o(f)(x), ... , 'm(f)(x)} E C"'+ I for x near p. By as
sumption, (4.4) is surjective, and hence at least one of the basis elements '1 is nonzero at p and hence in a neighborhood of p. Thus ['o(f)(x), ... , 
,,,,(f)(x)] is a well-defined point in P 1ft' for x near p, and is a holomorphic 
mapping as a function of the parameter x. If! is another holomorphic frame 
at p, then it is easy to check that 

'1(f)(X) = c(x)tpi!)(x), 

where c is holomorphic and nonvanishing near p, and thus we have a well
defined holomorphic mapping from X into P 1ft by 
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with 
<I>~(x) = [QJo(f)(x), ... , QJmU)(x»). 

Suppose that the basis QJ is replaced by another basis, iP = {iP i ], where 

and that the matrix C = [cijJ is nonsingular. Then consider the diagram 

where Cis the mapping on Pm defined by the action of the matrix C on the 
homogeneous coordinates. The diagram is then commutative, and since C 
is a biholomorphic mapping, it follows that the holomorphic mapping <1>" 
has maximal rank or is an embedding if and only if <1>, has the same property. 

To complete the proof of the lemma, we see that to prove that <I>~ has 
maximal rank at p E X it suffices to find a nice choice of basis QJ which 
demonstrates this property. By hypothesis, the mapping r in (4.4) is surjective, 
and it follows that we can find sections eo' e p ... , e. E e(X, F) satisfying 
the conditions in (4.5). It is easy to verify that eo' e" ... , e. are linearly 
independent in the vector space e(X, F) and that we can extend them to a 
basis, iP. Then the mapping <1>, is defined, in terms of the frame used in (4.5), 
by 

<I>,,(x) = [eo(f)(x), el(f)(x), . .. , e.(f)(x), ... ), 

and using the local coordinates 

(I,CI""''"'''') 

in Pm and (z I' ••• , z.) in X, we see that the Jacobian determinant 

a(cl"""') 
a(zl""'z.) 

is given by the coefficient of 

which is nonzero. Thus <1>, and hence <1>" have maximal rank at p, and conse
quently <1>" is an immersion. 

To see that <1>" is one to one, we let p and q be two distinct points on X 
and choose global sections el and e 2 satisfying (4.7). Then el and e 2 are cJearly 
linearly independent and extend to a basis 
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Q.E.D. 
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The following lemma will then complete the proof of Theorem 4.1. 

Lemma 4.4: The mappings rand s in (4.4) and (4.6) are surjective for all 
points p and q E X. 

Proof" Consider first the mapping r in (4.4). Let X = QpX and let 
S = n;l(p). Then let l1s be the ideal sheaf of the submanifold SeX, i.e., 
the sheaf of holomorphic functions on X wh ich vanish along S. Let 11} be the 
ideal sheaf of holomorphic functions on X which vanish to second order 
along S, i.e.J. E l1L if!" = (g,,)2, where g" E !ls.,,' Let <9. = 0; be the struc
ture sheaf for X, let 0 = 0 x be the structure sheaf for X, and let F = n* F. 
Then we have the exact sequence of sheaves over X (tensor products are 
over the structure sheaves), 

(4.8) 0 --+ <9(F) ® 11} - <9(F) -~ <9(F) ® <9/11} --~ 0, 

and the mapping np induces a commutative diagram 

o - <9(F) ® 11} - <9(F) -~ <9(F) ® <9/11} ---~ 0 

(4.9) t nf t n* t n~ 
0- O(F) ® m; - O(F) - O(F) ® Olm; -~ 0 

given by the topological pullback of the sheaves on X to sheaves on X, where 
nf is the restriction of n* to the subsheaf O(F) ® m;, and n~ is the induced 
map on quotients. We note that if! E re U, F) for some U c X, then!vanish
es to second order at p if and only if n*! Eren; I (U), F) vanishes to second 
order along S, where Sen; I (U), if p E U. This only has to be verified for 
the structure sheaves, since F is trivial near p, and hence F is trivial in a 
neighborhood of S. This is easy to do using the local coordinates (z, t) in 
W as in Sec. 3. Thus nf and hence n~ are weil defined mappings and one 
checks easily that nt is injective. Moreover, we claim that there exist isomor
phisms 0; and ß making the following diagram commutative: 

0- reX, <9(F) ® 11}) -+ rcX, Ö(F» --~ rcX, <9(F) ® Ö/l1}) 
(4.10) 0; {1nf ß 0 n* i nt 

0- rcX, O(F) ® m;) -~ rex, O(F»~ rcX, O(F) ® 0/ m;). 

If we can show that Hl(X, (>(F) 0 11}) = 0, it follows from (4.10) that r must 
be surjective. First, we shall construct rx. and ß. For n = I this is trivial, since 
X = X and 7t = identity. For n > I we shall need to use Hartogs' theorem, 
which asserts that a holomorphic function! defined on U - {O}, where U 
is a neighborhood of the origin in C', n > I, can be analytically continued 
to all of U.t We shall define ß and see that the restriction of ß to the subspace 
f(X, (J(t) 0 l1D (which we shall call rx.) has the desired image. Namely, 
suppose that e E f(X, (J(t». Then the projection 7t p : X -+ Xis biholomorphic 
on the complement of S, and let 

p(~) = (n; I )*~, 
tFor an elementary proof of this theorem, see Hörmander [2]. Chap. 11. 
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which is a well-defined element of r(X - {p}, CJ(F», Then by Hartogs' 
theorem, there is a unique extension of P(e) to a section of O(F) on X, which 
we call pe,). Clearly, we have that P-I = 11:; and hence Pis an isomorphism. 
Moreover, as noted above P-I(,,) will vanish to second order along S if and 
only if" E f(X, O(F) ® m;). 

It thus remains to show that 

(4.11) 

To do this, we note that d s is a locally free sheaf of rank I, since it is the ideal 
sheaf of a divisor in X. Moreover, any locally free sheaf corresponds to the 
sheaf of sections of a vector bundle, and we see that in fact 

ds - Ö(L*), 

where L is the line bundle associated to the divisor SeX. This is easy to 
check by verifying that L* and ds have the same transition functions in terms 
ofthe coverings of S used in Sec. 3 in its coordinate representation as a subset 
of W c U X p._ I. Moreover, one also has dl- O«L*)2), and then we see 
that 

HI(X, Ö(F) ® dl) = HI(X, Ö(F ® (L*)2». 

But, by hypothesis, F = Eil, where P > Po' and by Proposition 3.3(b) 

F ® (L *)2 ® Kl > 0, 

and thus by Kodaira's vanishing theorem [Theorem 2.4(a)], we see that (4.11) 
holds. 

To see that s in (4.6) is surjective, we let S = 1I:;ql(fp} U fq}), let ds be the 
ideal sheaf of this divisor, let Ö be the structure sheaf for QpQqX, and let 
F = 1I:~F. We then have the exact sequence 

(4.12) 0 -- Ö(F) ® ds -- Ö(F)-- Ö(F) ® Ölds -- 0, 

and there exists isomorphisms « and P such that the following diagram 
commutes: 

0-- f(X, Ö(F) ® ds) -- r(X, Ö(F» -~ f(X, Ö(F) ® Ö/ds) 

(4.13) « (111:;.q P (l1I:;.q 11I:;.q 

0 __ f(X, e(F) ® m pq) -- f(X, O(F» ~ f(X, O(F) ® Olmpq)' 

The isomorphisms «and P are constructed using Hartogs' theorem as before, 
and thus we see that the vanishing of H I (X, Ö(F) ® ds) will ensure the sur
jectivity of s. But ds - Ö(L~), and it follows from Proposition 3.3(c) that 
F ® L~ ® Kl > O. Applying Kodaira's vanishing theorem again, we obtain 
the desired result. 

Q.E.D. 

Remark: Note that in the diagrams (4.10) and (4.13) we would be able 
to complete the proof if we knew that 

HI(X, e(F) ® m;) = HI(X, O(F) ® m pq) = O. 
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This is the approach taken by Grauert [2] and gives an alternative proof of 
the embedding theorem. Namely, Grauert proves the more general vanishing 
theorem: If E is a positive line bundle and 5' is any coherent analytic sheaf, 
then there is an integer Jlo > 0 so that 

Hq(X, O(E") ® 5') = 0 

for Jl > Jlo and q > 1. This result is derived from the general theory of 
coherent analytic sheaves on pseudoconvex analytic spaces and involves, 
in particular, Grauert's solution to the Levi problem (Grauert [I]; see Gun
ning and Rossi [I] for this derivation). Moreover, one needs to know that the 
ideal sheaves m; and mpq are coherent analytic sheaves (wh ich for these 
par/icu/ar ideals sheaves is not too difficult to prove), Kodaira's approach, 
wh ich we have followed here, says, in effect, that if you blow up the points 
p appropriately, then the coherent sheaves m; and mpq become locally free 
on the blown up eomplex manifold X, and then the theory of harmonie 
differential forms (wh ich applies at this time only to loeally free sheaves, 
i.e., vector bundles) ean be applied to give the desired vanishing theorems. 
To prove Grauert's vanishing theorem via harmonie theory, it is necessary 
to first obtain a projective embedding; then, by finding agiobai projective 
resolution of the given coherent sheaf by locally free sheaves (wh ich follows 
from the work of Serre [2]), one can deduce Grauert's result (see Griffiths 
[I] for this derivation). 

Arecent generalization of Kodaira's vanishing and embedding theorems 
to Moishezon spaees (generalizations of projective algebraie spaces) by 
Grauert and Riemenschneider [2] and Riemenschneider [I] has involved the 
approach used by Kodaira presented here, eombined with the theory of 
eoherent analytie sheaves on pseudoeonvex spaees. 
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differentiable funetions (see also C", func

tions), 16, 116 
differentiable manifold (C", manifold), 1, 

3,4-5, 11, 14-16,22, 24, 26-31, 34, 
35,36,39,47-49,53,60,65,91,92, 
97,105,114, 119, 124, 131, 132, 146, 
152, 212 

differentiable mapping, 4, 15, 26, 92, 98, 99 
differentiable strueture, 3-5,8, 16,28, 149, 

169, 194 
differentiable vector bundle, 13,22,26,62, 

65,76,77,84,86,88,90,92,94,97, 
98, 103, 142, 144 

differential equations, 1 
differential forms, 1,27,47,61,64,68-70, 

74-76,83,86,91,96,100,103,106, 
116, 149, 152, 163, 168, 189, 190, 
193, 197, 201-203, 209, 217, 223-
227 
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cohomology class, 58, 65, 90, 97,102,106, 
142,202,217 

cohomology groups, 50, 55, 58, 145, 196, 
203, 205, 222 

cohomology ring, 152, 201 
cohomology theory, 36, 51, 58 
commutation relation, 172, 181, 196 
compact complex manifold, 10, 11, 26, 96-

97,142,150,151,153,154,163,170, 
197,198,200,201,211,217-219,223 

compact complex submanifold, 10,216 
compaet complex surfaees, 153 
compaet differentiable manifolds, 108, 114, 

131,134,137,144,149,163,169,202 
eompaet Kähler manifold, 195, 197, 198, 

203, 205-208 
compact Lie group, 173, 174 
compact linear map (operator; see also 

eontinuous map), 111 
compaet manifold, 84, 96, 123, 131, 136, 

137, 142, 1 SO, 154 
compatibility conditions, 13, 14,41,227 
compatible eonneetion, 76, 78 
eompletely eontinuous linear map, 111, 137 
eompletely reducible, 171, 174 
complex-analytic family, 154, 2JJ, 213, 214 
eomplex analytie funetion (see also holo-

morphie funetions), 3 
eomplex-analytie manifold (see also eom

plex manifold), 3, 5 
complex-analytic structure (see also eom-

plex structure), 5, 7 
complex dimension, 3, 16 
complex line bundles, 96, 97, 99, 101, 105 
complex manifold, 1,3, 1(}-11, 16,27-30, 

34,39,41,45,48-50,61,62,77,101, 
105, 107, 117, 146, 165, 188, 189, 
199, 201, 211, 214, 217, 218, 223, 
229, 230, 231, 240 

complex projective spaee, 97, 217 
complex strueture, 3-4, 10, 27, 28-31, 35, 

15(}-153, 159, 165, 169, 194, 199, 
200, 203, 210,212 

complex submanifold, 11, 190,205,218 
complextorus, 189, 199, 200, 22(}-222,234 
complex-valued differential forms, 31-32, 

156, 163 
complex veetor space, 156, 157, 169 
complex of veetor bundles, 75, 144 
conneetion, 70, 73-78, 81, 84, 86, 88-95 
eonneetion matrix, 70, 72, 79, 88, 92-95 
constant sheaf, 38, 46-48, 53, 102 
continuous family of elliptic operators, 142 
convex normal balls, 104 

coordinates systems (chart, neighborhood, 
pateh; see also 8-eoordinate sys
tem), 3, 9, 17, 18, 24, 31, 124, 125, 
131, 133, 134, 163, 190, 192, 199, 
211,212,220,230,232 

eotangent bundle, 23, 31, 114 
cotangent vector, 115 
eovariant differentiation, 74, 227 
cup produet, 61, 92, 210 
eurvature, 73, 74, 81, 84, 86, 89, 92, 96, 

223,231,232 
eurvature form, 75, 82, 190, 225, 228, 231 
eurvature matrix, 72, 79, 93-97 
eurvature tensor, 71, 74 
C", funetion (see also differentiable fune

tions), 2-3, 68-69, 98, 104, 105, 113, 
121, 133, 163 

C", mapping (see also differentiable map
ping), 30, 48 

C", seetion, 133, 138, 139 

D 

deformation theory, 212, 214 
deR harn eohomology (ring), 92, 103, 104, 

108,202 
deRhameomplex, 108, 116, 145-147, 149 
deRharn group, 84, 86, 88, 91, 149, 151, 

152, 154, 169, 197, 198, 201, 204, 
208,210,217,219,223 

deRham's theorem, 36, 60, 61, 149,208 
derivation, 14 
derivative mapping, J 5 
diffeomorphism,4, 126,211 
differential embedding, 9-10 
differentiable funetions (see also C", func

tions), 16, 116 
differentiable manifold (C", manifold), 1, 

3,4-5, 11, 14-16,22, 24, 26-31, 34, 
35,36,39,47-49,53,60,65,91,92, 
97,105,114, 119, 124, 131, 132, 146, 
152, 212 

differentiable mapping, 4, 15, 26, 92, 98, 99 
differentiable strueture, 3-5,8, 16,28, 149, 

169, 194 
differentiable vector bundle, 13,22,26,62, 

65,76,77,84,86,88,90,92,94,97, 
98, 103, 142, 144 

differential equations, 1 
differential forms, 1,27,47,61,64,68-70, 

74-76,83,86,91,96,100,103,106, 
116, 149, 152, 163, 168, 189, 190, 
193, 197, 201-203, 209, 217, 223-
227 
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differential forms: 
of degree p, 23 
of type (p, q), 1,32,61, 117 
with vector bundle coefficients (see also 

vector-bundle-valued differentiable 
(p, q)-forms), 68 

differential mapping (map), 15, 16,21,66 
differential operator, 70, 108, 114, 115-

120,125,135,142,144,198,227,228 
differential sheaf, 47, 49 
dimension of a representation, 171 
direct limit, 14,42-45,51, 102 
directional derivative, 15 
divisor, 106, 107, 224, 230, 239 
Dolbeault complex, 117, 145, 146 
Dolbeault group, 151, 154,170,197,198, 

208 
Dolbeault's theorem, 61-63, 151 
dual vector bundle, 92, 98, 166 
a-operator, 27, 48 

E 

effective cycles, 206, 207 
eigenvalue, 175, 176 
eigenvector, 175, 176, 178, 179, 181, 182 
elliptic complexes, 108, 117, 142, 144, 145-

148, 150, 151, 163, 165 
e\liptic differential equations, 108, 135, 139 
elliptie differential operators, 108, 119, 139 
e\1iptic operators, 119, 136, 137, 140, 142, 

145 
e\1iptic symbol, 136 
embedding, 26 
equivalence (of 8-bundles), 18, 24 
equivalence of representations, 171 
etale space, 42, 43-45, 51, 54 
Euler characteristic, 84, 96, 150, 151 
exact (sequence of vector bundles), 20 
exact sequence of sheaves (see also short 

exact sequence of sheaves), 41, 42, 
45,46-47,54,55,102,105,107,238 

exponential mapping, 171, 186 
exterior algebra, 19, 30 

bundles, 23, 32 
exterior derivative, 24, 31, 73, 91 
exterior differentiation, 70, 89, 103, 116, 

227 
operator, 47 

F 

fibre, 12, 211 
fine resolution, 50, 58, 61 

fine sheaf, 52, 53, 64 
finiteness theorem, 140 
first bilinear condition, 214 
flabby sheaf, 55 
flag manifold, 210, 214, 215 
formal adjoint operator, 113, 117 
Fourier inversion theorem (inverse Fourier 

transform), 111, 121, 135 
Fourier transform, 110, 112, 115, 120-123, 

127, 135 
frame, 32 
frame bundle, 66, 190 
Fredholm operator, 138 
free sheaf of modules, 40, 71 
Fubini-Study metric, 190, 218, 225 
fundamental class (cycle), 206, 208 
fundamental form, 157-160, 184, 188-190, 

192, 196, 201-203, 205, 218-221, 
225, 226, 229, 232 

fundamental 2-form, 154, 157 

G 

Gauss-Bonnet theorem, 96 
Gaussian curvature, 96 
genus, 200, 201 
geodesic coordinates system, 196 
germ, 42 

differentiable function (C <Xl function), 
14 

global m symbol, 125, 131 
global sections of holomorphie line 

bundles,22 
graded sheaf, 47 
Grassmannian manifold, 8,11,17,26,81, 

209,210 
Green's operator, 142, 146, 223 
Griffiths domain, 210, 214 
Griffiths period mapping, 211 

H 

harmonic forms, 108, 119, 141, 149-151, 
154, 163, 169, 170, 195-197, 201, 
202, 216, 240 

harmonie representation, 154 
harmonie sections, 142, 146 
Hartog's theorem, 238, 239 
Hermitian complex manifold, 165, 166, 

168, 188, 191 
Hermitian exterior algebra, 170, 182, 183 
Hermitian holomorphic vector bundle, 77, 

79, 168 
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finiteness theorem, 140 
first bilinear condition, 214 
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flag manifold, 210, 214, 215 
formal adjoint operator, 113, 117 
Fourier inversion theorem (inverse Fourier 

transform), 111, 121, 135 
Fourier transform, 110, 112, 115, 120-123, 

127, 135 
frame, 32 
frame bundle, 66, 190 
Fredholm operator, 138 
free sheaf of modules, 40, 71 
Fubini-Study metric, 190, 218, 225 
fundamental class (cycle), 206, 208 
fundamental form, 157-160, 184, 188-190, 

192, 196, 201-203, 205, 218-221, 
225, 226, 229, 232 

fundamental 2-form, 154, 157 

G 

Gauss-Bonnet theorem, 96 
Gaussian curvature, 96 
genus, 200, 201 
geodesic coordinates system, 196 
germ, 42 

differentiable function (C <Xl function), 
14 

global m symbol, 125, 131 
global sections of holomorphie line 

bundles,22 
graded sheaf, 47 
Grassmannian manifold, 8,11,17,26,81, 

209,210 
Green's operator, 142, 146, 223 
Griffiths domain, 210, 214 
Griffiths period mapping, 211 

H 

harmonic forms, 108, 119, 141, 149-151, 
154, 163, 169, 170, 195-197, 201, 
202, 216, 240 

harmonie representation, 154 
harmonie sections, 142, 146 
Hartog's theorem, 238, 239 
Hermitian complex manifold, 165, 166, 

168, 188, 191 
Hermitian exterior algebra, 170, 182, 183 
Hermitian holomorphic vector bundle, 77, 

79, 168 
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Hermitian metrie, 67, 68, 76-82, 91, 94, 
104, 109, 118, 145, 150, 151, 154, 
158, 160, 166, 170, 174, 188, 190, 
198,201,211,219,221,223,228,232 

Hermitian veetor bundle, 67, 76, 91, 109, 
137, 166 

Hermitian veetor spaee, 154, 181, 182, 184, 
191 

Hilbert spaees, 110, 111, 113, 137, 138, 143 
Hirzebrueh-Riemann-Roeh theorem, 153 
Hodge deeomposition (theorem), 108, 154, 

197,198,201,203,204,208,210,225 
Hodge filtration, 210, 211, 214 
Hodge form, 218, 219, 221, 222, 234 
Hodge inner produet, 165, 166, 167, 168 
Hodge manifold, 217, 218, 219, 234 
Hodge metrie, 191,218,220 
Hodge numbers, 150, 151, 154, 198, 206, 

208, 214 
Hodge *-operator (see also star-operator), 

154, 155, 158, 185, 227 
Hodge-Riemann bilinear relations (see 

also period relations), 201, 207, 209 
Hodge strueture, 213 
holomorphic eategory, 5, 77 
holomorphic ehanges of frame, 67, 79, 227 
holomorphie differential forms, 48-49, 63, 

150, 151,218 
holomorphic embedding, 9, 236 
holomorphic frames, 67, 78-83, 94, 231,236 
holomorphie funetions, 2, 3,10,34,41,46, 

53, 81, 102, 107,211,234,238 
holomorphic line bundles, 65, 101-106, 

217,218,223,226,230,234 
holomorphic mapping, 4, 29, 67, 199,214, 

236 
holomorphic section, 28, 234 
holomorphic tangent space, 16 
holomorphie veetor bundle, 12, 13, 16, 18, 

26,62,65-67,76-78,80,94,97,117, 
151-153, 170,222,226,228 

homogeneous coordinates, 5, 6, 11, 18,83, 
100,189,215,224,225,229,232,237 

homogeneous spaee, 190,215 
homomorphisms of resolutions, 49, 60, 106 
Hopf blowup, 217 
Hopf surfaee, 198, 200, 201, 220 
hyperplane seetion bundle, 224, 226, 230, 

232 

I 

ideal sheaf, 41, 239, 240 
indefinitely differentiable funetions (see 

also C<Xl functions, differentiable 
functions), 2 

index, 142 
infinitesimal period relation, 215 
integrable, 34, 35 
integral eohomology (c1ass), 99-101, 206, 

219 
integral eyc1es, 219, 221 
integral differential form, 217, 218 
integral singular chains, 47 
intersection matrix, 202, 203 
invariant homogeneous polynomials, 85-

86,90,94 
invariant K-Iinear form, 85, 86 
invariant subspace, 171, 177 
irreducible representation, 171, 175, 177, 

178, 180, 188 
irreducible subspaee, 182 
isomorphism of sheaves, 37, 60 

J 

Jacobi identity, 171 
Jacobian (matrix), 4, 9, 15, 29, 109, 125, 

126, 129, 220, 237 

K 

K-eodimension (of submanifold), 4 
K-dimension, 3, 4 
K-theory, 27 
K-3 surface, 198 
K-vector bundle of rank r, 12 
Kähler fundamental form, 190, 219 
Kähler identity, 197, 224 
Kähler manifold, 81, 142, 151, 154, 183, 

188, 189-198, 201-203, 205, 210, 
214,217,219,223,226 

Kähler matric, 83, 149, 154,188, 189-191, 
197, 198, 201-203, 218, 223, 226, 
227, 229, 232 

Kähler surface, 153 
Kähler type, 188, 187, 197, 198, 201, 218 
Kodaira's embedding theorem, 217, 234, 

240 
Kodaira's vanishing theorem, 217, 228, 

239-240 
Koszul complex, 41 

L 

Laplacian operator, 119, 128, 136, 141, 
145, 146, 149-151, 154, 163, 168, 
191, 194,223 
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Hodge manifold, 217, 218, 219, 234 
Hodge metrie, 191,218,220 
Hodge numbers, 150, 151, 154, 198, 206, 

208, 214 
Hodge *-operator (see also star-operator), 

154, 155, 158, 185, 227 
Hodge-Riemann bilinear relations (see 

also period relations), 201, 207, 209 
Hodge strueture, 213 
holomorphic eategory, 5, 77 
holomorphic ehanges of frame, 67, 79, 227 
holomorphie differential forms, 48-49, 63, 

150, 151,218 
holomorphic embedding, 9, 236 
holomorphic frames, 67, 78-83, 94, 231,236 
holomorphie funetions, 2, 3,10,34,41,46, 

53, 81, 102, 107,211,234,238 
holomorphic line bundles, 65, 101-106, 

217,218,223,226,230,234 
holomorphic mapping, 4, 29, 67, 199,214, 

236 
holomorphic section, 28, 234 
holomorphic tangent space, 16 
holomorphie veetor bundle, 12, 13, 16, 18, 

26,62,65-67,76-78,80,94,97,117, 
151-153, 170,222,226,228 

homogeneous coordinates, 5, 6, 11, 18,83, 
100,189,215,224,225,229,232,237 

homogeneous spaee, 190,215 
homomorphisms of resolutions, 49, 60, 106 
Hopf blowup, 217 
Hopf surfaee, 198, 200, 201, 220 
hyperplane seetion bundle, 224, 226, 230, 

232 

I 

ideal sheaf, 41, 239, 240 
indefinitely differentiable funetions (see 

also C<Xl functions, differentiable 
functions), 2 

index, 142 
infinitesimal period relation, 215 
integrable, 34, 35 
integral eohomology (c1ass), 99-101, 206, 

219 
integral eyc1es, 219, 221 
integral differential form, 217, 218 
integral singular chains, 47 
intersection matrix, 202, 203 
invariant homogeneous polynomials, 85-

86,90,94 
invariant K-Iinear form, 85, 86 
invariant subspace, 171, 177 
irreducible representation, 171, 175, 177, 

178, 180, 188 
irreducible subspaee, 182 
isomorphism of sheaves, 37, 60 

J 

Jacobi identity, 171 
Jacobian (matrix), 4, 9, 15, 29, 109, 125, 

126, 129, 220, 237 

K 

K-eodimension (of submanifold), 4 
K-dimension, 3, 4 
K-theory, 27 
K-3 surface, 198 
K-vector bundle of rank r, 12 
Kähler fundamental form, 190, 219 
Kähler identity, 197, 224 
Kähler manifold, 81, 142, 151, 154, 183, 

188, 189-198, 201-203, 205, 210, 
214,217,219,223,226 

Kähler matric, 83, 149, 154,188, 189-191, 
197, 198, 201-203, 218, 223, 226, 
227, 229, 232 

Kähler surface, 153 
Kähler type, 188, 187, 197, 198, 201, 218 
Kodaira's embedding theorem, 217, 234, 

240 
Kodaira's vanishing theorem, 217, 228, 

239-240 
Koszul complex, 41 

L 

Laplacian operator, 119, 128, 136, 141, 
145, 146, 149-151, 154, 163, 168, 
191, 194,223 
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Lefschetz decomposition (theorem), 154, 
181, 182, 183, 195-197, 201, 202, 
203, 210 

left invariant differential forms, 174 
left invariant vector fields, 174 
Leray cover, 64, 104 
Lie algebra, 75, 171, 174 

sI (2, C), 154, 170, 171-173, 178, 181 
su (2), 172, 173 
of a Lie group, 171, 173 

Lie bracket, 171, 172 
Lie group, 171 

SL (2, C), 171-173, 179, 185 
SU (2), 172-174 

Lie product, 75, 86 
line bundles, 65, 81, 99, 101-102, 106,223, 

224,231,239 
linear equivalence, 107 
linear partial differential operator, 11 5, 

118, 119 
local coordinates, 15, 16,24,30,33,47,80, 

83, 84, 88, 99, 108, 109, 114, 115, 
118, 132, 164, 190,223, 236, 237 

local diffeomorphism, 125 
local frame, 33, 34, 73, 80, 91, 118, 223, 

236 
local holomorphic coordinates, 28-29, 30, 

33,83 
local rn-symbol of a pseudodifferential 

operator, 125, 126 
local orthonormal frame, 163 
local representations, 21, 66-69, 72, 88-89, 

114, 116, 132, 142 
local trivialization, 13, 16, 19, 20, 25, 110, 

114, 133 
locally biholomorphic, 199, 219 
locally free sheaf, 40, 41, 53, 62, 234, 239, 

240 
long exact sequence, 55, 58, 59 

M 

matrix representation, 15-16, 91 
meromorphic functions, 107,222,234 
morphism (of presheaves), 37 
morphisms of sheaves, 37 

N 

natural metric (standard metric, standard 
Kähler form), 95,100,214,221,232 

negative line bundle, 223, 225, 226, 229 
Newlander-Nirenberg theorem, 1, 35 
noncompact manifolds, 113, 140, 164 

nonprimitive cohomology c1asses, 204, 210 
nontrivial vector bundles (complex line 

bundle), 95-96, 168 

o 

order: 
differential operator, 114 
operators, 114 
pseudodifferential operators, 131 

orientation, 154, 155, 158, 163, 165, 169 
oriented manifold, 84 
oriented Riemannian manifold, 163, 164, 

166, 167 

p 

parametrix, 136, 142 
partition ofunity, 1,53,68,77,97,98,103, 

109,110,133,163,211 
per iod mapping, 154,209,210,214 
period matrix, 207, 209, 220-222 

domain,215 
period relations (see also Hodge-Riemann 

bilinear relations), 154 
pluriharmonic function, 50 
Poincare duality, 154, 169, 195,204,219 
Poincare lemma, 47, 49-50 
polarization, 85 
positive differential form, 109, 219, 223, 

225,233 
positive line bundle, 223, 225, 226, 229, 

231,240 
positivity, 26, 103 
presheaf, 2, 36, 37, 42 

abelian groups, 43 
.1t-modules, 39 

primitive cohomology (group), 205-208, 
210 

primitive cohomology c1ass, 201, 202, 204, 
205 

primitive decomposition, 202, 206 
theorem, 195, 206 

primitive deRham group, 210 
primitive differential form, 181, 182, 183, 

187,191 
primitive form, 191 
primitive harmonic forms, 195 
primitive homology, 207 
primitive vector, 175, 176, 178-181 
principal bundle, 66 
projective algebraic embedding, 26, 234, 

240 
projective algebraic manifold, 1, 11, 214, 

218, 234 
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114, 116, 132, 142 
local trivialization, 13, 16, 19, 20, 25, 110, 

114, 133 
locally biholomorphic, 199, 219 
locally free sheaf, 40, 41, 53, 62, 234, 239, 

240 
long exact sequence, 55, 58, 59 

M 

matrix representation, 15-16, 91 
meromorphic functions, 107,222,234 
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negative line bundle, 223, 225, 226, 229 
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noncompact manifolds, 113, 140, 164 

nonprimitive cohomology c1asses, 204, 210 
nontrivial vector bundles (complex line 

bundle), 95-96, 168 
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order: 
differential operator, 114 
operators, 114 
pseudodifferential operators, 131 

orientation, 154, 155, 158, 163, 165, 169 
oriented manifold, 84 
oriented Riemannian manifold, 163, 164, 
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p 

parametrix, 136, 142 
partition ofunity, 1,53,68,77,97,98,103, 

109,110,133,163,211 
per iod mapping, 154,209,210,214 
period matrix, 207, 209, 220-222 

domain,215 
period relations (see also Hodge-Riemann 

bilinear relations), 154 
pluriharmonic function, 50 
Poincare duality, 154, 169, 195,204,219 
Poincare lemma, 47, 49-50 
polarization, 85 
positive differential form, 109, 219, 223, 

225,233 
positive line bundle, 223, 225, 226, 229, 

231,240 
positivity, 26, 103 
presheaf, 2, 36, 37, 42 
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primitive cohomology (group), 205-208, 
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primitive cohomology c1ass, 201, 202, 204, 
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primitive differential form, 181, 182, 183, 

187,191 
primitive form, 191 
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primitive vector, 175, 176, 178-181 
principal bundle, 66 
projective algebraic embedding, 26, 234, 

240 
projective algebraic manifold, 1, 11, 214, 
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projeetive algebraie variety, 9 
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