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Preface

No applied mathematician can be properly trained without some basic un-
derstanding of numerical methods, i.e., numerical analysis. And no scientist
and engineer should be using a package program for numerical computa-
tions without understanding the program’s purpose and its limitations.
This book is an attempt to provide some of the required knowledge and
understanding. It is written in a spirit that considers numerical analysis
not merely as a tool for solving applied problems but also as a challenging
and rewarding part of mathematics. The main goal is to provide insight
into numerical analysis rather than merely to provide numerical recipes.

The book evolved from the courses on numerical analysis I have taught
since 1971 at the University of Gottingen and may be viewed as a successor
of an earlier version jointly written with Bruno Brosowski [10] in 1974. It
aims at presenting the basic ideas of numerical analysis in a style as concise
as possible. Its volume is scaled to a one-year course, i.e., a two-semester
course, addressing second-year students at a German university or advanced
undergraduate or first-year graduate students at an American university.

In order to make the book accessible not only to mathematicians but
also to scientists and engineers, I have planned it to be as self-contained as
possible. As prerequisites it requires only a solid foundation in differential
and integral calculus and in linear algebra as well as an enthusiasm to see
these fundamental and powerful tools in action for solving applied prob-
lems. A short presentation of some basic functional analysis is provided in
the book to the extent required for a modern presentation of numerical
analysis and a deeper understanding of the subject.



vi Preface

An introductory book of a few hundred pages cannot completely cover
all classical aspects of numerical analysis and all of the more recent devel-
opments. I am willing to admit that the choice of some of the topics in the
present volume is biased by my own preferences and that some important
subjects are omitted.

I was taught numerical analysis in the mid sixties by my thesis adviser,
Professor Erich Martensen, at the Technische Hochschule in Darmstadt.
Martensen’s perspective on teaching mathematics in general and numeri-
cal analysis in particular had a great and long-lasting impact on my own
teaching. Therefore, this book is dedicated to Erich Martensen on the oc-
casion of his seventieth birthday.

I would like to thank Thomas Gerlach and Peter Otte for carefully read-
ing the book, for checking the solutions to the problems, and for a number
of suggestions for improvements. Special thanks are given to my friend
David Colton for reading over the book for correct use of the English lan-
guage. Part of the book was written while I was on sabbatical leave at the
Department of Mathematical Sciences at the University of Delaware and
the Department of Mathematics at the University of New South Wales. I
gratefully acknowledge the hospitality of these institutions. I also am grate-
ful to Springer-Verlag for being willing to take the economic risk of adding
yet another volume to the already huge number of existing introductions
to numerical analysis.

Gottingen, September 1997 Rainer Kress
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Glossary of Symbols

Sets and Spaces

set of natural numbers

set of integers

set of real numbers

set of complex numbers

absolute value of a real or complex number z
open interval (a,b) :=={r € R:a < z < b}
closed interval [a,b] ;= {x € R:a <z < b}
conjugate of a complex number z
n-dimensional real Euclidean space
n-dimensional complex Euclidean space
space of real- or complex-valued continuous
functions on the interval [a, b]

space of m-times continuously
differentiable functions

space of real- or complex-valued
square-integrable functions

set of m elements aq,...,a,

product U x V := {(z,y) : x € U,y € V}
of two sets U and V

difference set U\ V :={x €U :z ¢V}

for two sets U and V

closure of a set U

a mapping with domain X and range in Y



xii

Glossary of Symbols

Vectors and Matrices

z=(x1,...,Zn)

T:(.’L'l,...’:l)n
— (71,...

Norms

-l

Il
Il l2
('7')

Miscellaneous

3

B

go=cnm

row vector in R™ or C"

with components zy,...,z,

the transpose of z, i.e., a column vector
the adjoint of x

m X n matrix with elements a

the transpose of A

the adjoint of A

the pseudo-inverse of A

the inverse of an n X n matrix A

the determinant of an n x n matrix A
the condition number of an n x n matrix A
the spectral radius of an n x n matrix A
the n x n identity matrix

diagonal matrix with

diagonal elements a;,...,a,

norm on a linear space

¢, norm of a vector, L, norm of a function
£ norm of a vector, Ly norm of a function
maximum norm of a vector or a function
scalar product on a linear space

element inclusion

set inclusion

union and intersection of sets
empty set

a quantity of order m

end of proof



1

Introduction

Numerical analysis is concerned with the development and investigation of
constructive methods for the numerical solution of mathematical problems.
This objective differs from a pure-mathematical approach as illustrated by
the following three examples.

By the fundamental theorem of algebra, a polynomial of degree n has
n complex zeros. The various proofs of this result, in general, are noncon-
structive and give no procedure for the explicit computation of these zeros.
Numerical analysis provides constructive methods for the actual computa-
tion of the zeros of a polynomial.

The solution of a system of n linear equations for n unknowns can be
given explicitly by Cramer’s rule. However, Cramer’s rule is only of the-
oretical importance, since for actual computations it is completely useless
for linear systems with more than three unknowns. An important task
in numerical analysis consists in describing and developing more practical
methods for the solution of systems of linear equations.

By the Picard-Lindelof theorem, the initial value problem for an ordinary
differential equation has a unique solution (under appropriate regularity as-
sumptions). Despite the fact that the existence proof in the Picard-Lindelof
theorem actually is constructive through the use of successive iterations, in
applied mathematics there is need for more effective procedures to numer-
ically solve the initial value problem.

In general, we may say that for the basic problems in numerical analysis
existence and uniqueness of a solution are guaranteed through the results
of pure mathematics. The main topic of numerical analysis is to provide
efficient numerical methods for the actual computation of the solution. In
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some cases these numerical methods are actually based on constructive
existence proofs.

By a constructive method we understand a procedure that for any pre-
scribed accuracy determines an approximate solution by a finite number
of computational steps. In general, the number of computational steps of
course will depend on the required accuracy. Only very few methods will
terminate with the exact solution after finitely many computational steps
as, for example, Gaussian elimination for solving a system of linear equa-
tions. In most cases, the numerical methods will only yield approximations
to the exact solution. As a typical example, the numerical evaluation of
a definite integral by the trapezoidal rule will, in general, provide only
an approximate value for the integral. In this context two main questions
arise, namely the question of estimating the error between the exact and
the approximate solution and the question of numerical stability.

A numerical method is useful only if it is possible to decide on the accu-
racy of the approximate solution, i.e., if reliable estimates on the difference
between the exact and approximate solution can be given. Therefore, be-
sides the development and design of numerical schemes, a substantial part
of numerical analysis is concerned with the investigation and estimation of
the errors occurring in these schemes. Here one has to discriminate between
the approximation errors, i.e., the errors that arise through replacing the
original problem by an approximate problem, and the roundoff errors, i.e.,
the errors that occur through the fact that in the actual computation, in
general, real numbers are replaced by floating-point decimal numbers with
a fixed number of digits.

As far as stability is concerned, one has to distinguish between properly
and improperly posed problems. A problem is called properly posed or
well-posed if the solution depends continuously on the data, i.e., if small
changes in the data cause only small changes in the solution. Otherwise, the
problem is called improperly posed or ill-posed. Numerical approximations
never can circumvent the improper posedness of a problem. However, it is
desirable to control the effects of the ill-posed nature of a problem by an
adequate choice of the numerical method. On the other hand, for properly
posed problems efforts have to be made not to destroy the well-posedness
by a poorly designed numerical approximation.

To the author’s taste, the topic of stability and properly posedness is
more challenging from a mathematical perspective than the rather unin-
spiring topic of roundoff errors. Therefore, in this book emphasis is given
to ill-posedness and the related issue of ill-conditioning, whereas the dis-
cussion of roundoff errors is given only cursory attention.

The basic problems of numerical analysis are as old as mathematics it-
self, and for a number of problems there exist classical approaches such as
Newton’s method for the solution of nonlinear equations, Gaussian elimi-
nation for the solution of systems of linear equations, Gauss—Seidel and
Jacobi iterations for linear systems, Lagrange interpolation for the ap-
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proximation of arbitrary functions by polynomials, Simpson’s rule for nu-
merical integration, and Euler’s method for the solution of initial value
problems. However, the main breakthrough of numerical methods is con-
nected with the advances in computer technology made within the last
four decades. Only the electronic computer allows one to perform exten-
sive numerical computations without error and within a reasonable amount
of time. Hence, progress in numerical analysis and computer science have
always been closely interrelated in recent history.

This book will introduce the reader to the following branches of numerical
analysis:

Solution of systems of linear and nonlinear equations,

Numerical solution of matrix eigenvalue problems,

Interpolation and numerical integration,

Numerical solution of initial and boundary value problems for differ-

ential equations,

Numerical solution of integral equations.
Of course, in an introductory exposition of only about three hundred pages
it is impossible to cover all of these areas exhaustively. Therefore, the reader
should not expect a comprehensive treatment of all existing numerical pro-
cedures. As already pointed out in the preface, our goal will be to guide
the reader toward the basic ideas and questions in each of the above top-
ics with an emphasis on the analysis and the understanding of numerical
methods rather than merely their description. In order to achieve this,
we will try to illustrate general principles by way of considering the main
and most important methods, and we will leave aside discussions of more
elaborate details of advanced methods and the consideration of lengthy
subtleties for exceptional cases. Given the rapid development of numerical
methods, a reasonable introduction to numerical analysis has to confine
itself to presenting a solid foundation by restricting the presentation to the
basic principles and procedures.

The book includes a chapter on the necessary basic functional-analytic
tools for the solid mathematical foundation of numerical analysis. These
are indispensable for any deeper study and understanding of numerical
methods, in particular for differential equations and integral equations.

The limit of space and the taste and restrictions in experience of the
author have caused the omission of some important topics such as linear
and nonlinear optimization, approximation theory, and parallel computing,
among others. On the other hand, with separate chapters on the solution
of ill-conditioned systems of linear equations and the numerical solution
of integral equations two topics are included that do not appear in most
introductions to numerical analysis. They are included because of their im-
portance and in order to indicate to the reader where the author’s mathe-
matical research interests lie.

A study of numerical analysis remains incomplete without the numer-
ical experience of individually implementing the numerical algorithms. It
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is very important to build up a familiarity with numerical methods by ac-
tually seeing the numbers working. For example, one has to complement
the theoretical understanding of the method of successive approximations
by the experience of actually running the numerical schemes. After hav-
ing understood the basic principles of a numerical method, it is important
to develop the ability to actually implement the method numerically and
work with it. In this sense the reader is encouraged to test on the computer
numerically all of the algorithms presented in this book.

The organization of the book is as follows. The first part of the book,
Chapters 2 to 7, covers numerical linear algebra and is concerned with
the solution of systems of linear and nonlinear equations. The necessary
functional-analytic tools will be presented in Chapter 3. The second part
of the book, Chapters 8 to 12, covers numerical analysis and is concerned
with interpolation, numerical integration, and the numerical solution of dif-
ferential and integral equations. At the reader’s convenience it is possible to
study most of the second part of the book before reading the first part, with
the exception of the chapter on functional analysis. Each chapter concludes
with a set of problems. These are intended as exercises and applications of
the material given in the chapter.

The references at the end of the book are intended as a possible guide to
some of the literature covering the topics of the individual chapters more
exhaustively. The list of references is not meant as a bibliography on the
vast number of introductions to numerical analysis competing with this
book. However, we explicitly encourage the reader to explore the libraries
and consult some of the other volumes on numerical analysis in order to
develop a broad perspective.
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Linear Systems

The solution of systems of linear equations arises in various parts of mathe-
matics and is of central importance in numerical analysis. To illustrate the
significance of linear systems, we will start this chapter by providing some
examples of their occurrence as part of the numerical solution of differential
and integral equations. After seeing the examples, we will proceed with the
solution of systems of linear equations. In principle, we have to distinguish
between two groups of methods for the solution of linear systems:

1. In the so-called direct methods, or elimination methods, the exact solu-
tion, in principle, is determined through a finite number of arithmetic
operations (in real arithmetic leaving aside the influence of roundoff
errors).

2. In contrast to this, iterative methods generate a sequence of approx-
imations to the solution by repeating the application of the same
computational procedure at each step of the iteration. Usually, they
are applied for large systems with special structures that ensure con-
vergence of the successive approximations.

A key consideration for the selection of a solution method for a linear
system is its structure. In some problems, the matrix of the linear system
may be a full matrix, i.e., it has few zero entries. And in other problems,
the matrix may be very large and sparse, i.e., only a small fraction of the
entries are different from zero. Roughly speaking, direct methods are best
for full matrices, whereas iterative methods are best for very large and
sparse matrices.
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We will begin our treatment of linear systems by presenting the best-
known and most widely used direct method, which is attributed to Gauss,
since it is based on considerations published by Gauss in 1801 in his Dis-
quisitiones Arithmeticae. The chapter concludes with a brief description of
elimination by orthonormal decomposition.

In this book, for an m x n matrix A = (a;¢), j=1,...,m, k=1,...,n,
with real or complex coefficients, A7 shall always denote the transposed
matrix; i.e., AT is the n x m matrix with entries

T _ _ -
ag; = aj, k=1,...,m,5=1,...,m.

. . . —=T .
By A* we denote the adjoint of the matrix A;i.e., A* = A is the transpose
of the matrix with complex conjugate entries. In particular, the transpose
and adjoint of a row vector are column vectors and vice versa.

2.1 Examples for Systems of Equations

Example 2.1 We consider the discretization of the boundary value prob-
lem for the ordinary differential equation

—u”('zl) = f(x,u(:c)), TE [07 1]7 (21)
with boundary condition
u(0) =u(1) =0. (2.2)

Here, f : [0,1] xR — IR is a given continuous function, and we are looking
for a twice continuously differentiable solution u : [0,1] — IR. Boundary
value problems of this type occur, for example, in the mathematical treat-
ment of vibrations of a string or a rod and in the solution of heat conduction
problems. They often also arise in the solution of problems like the following
Example 2.2 after applying separation of variables. The theory of ordinary
differential equations (see [12]) provides conditions on the right-hand side f
of (2.1), ensuring existence and uniqueness of a solution u to the boundary
value problem (2.1)-(2.2) (for the case of linear differential equations see
also Chapter 11).

For the approximate solution we choose an equidistant subdivision of the
interval [0, 1] by setting

zj=jh, j=0,...,n+1,

where the step size is given by h = 1/(n + 1) with n € IN. At the internal
grid points z;,j = 1,...,n, we replace the differential quotient in the
differential equation (2.1) by the difference quotient

u'(z;) =~ h1—2 [w(zjt1) — 2u(z;) + ul(z;j—1)]
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to obtain the system of equations

1
" h?
for approximate values u; to the exact solution u(z;). This system has to

be complemented by the two boundary conditions ug = up+1 = 0. For an
abbreviated notation we introduce the n x n matrix

[Uj_l —2u; + Uj+1] = f(.’L'j,Uj), i=1,...,n,

2 -1
-1 2 -1
1 -1 2 -1
A=13 .
-1 2 -1
-1 2

and the vectors U = (uy, . ..,un)” and F(U) = (f(z1,u1),. .., f(Tn,un))T.
Then our system of equations, including the boundary conditions, reads

AU = F(U). (2.3)

For obvious reasons, the above matrix A is called a tridiagonal matrix, and
the vector F' is diagonal; i.e., the jth component of F' depends only on
the jth component of u. If (2.1) is a linear differential equation, i.e., if f
depends linearly on the second variable u, then the tridiagonal system of
equations (2.3) also is linear.

The following two questions will be addressed later in the book (see

Chapter 11):

1. Can we establish existence and uniqueness of a solution to the system
of equations (2.3) for sufficiently small step size h, provided that the
boundary value problem (2.1)-(2.2) itself is uniquely solvable?

2. How large is the error between the approximate solution u; and the
exact solution u(z;)? Do we have convergence of the approximate
solution towards the exact solution as h — 07

At this point we would like only to point out that the discretization of

boundary value problems for ordinary differential equations leads to sys-
tems of equations with a large number of unknowns, since we expect that
in order to achieve a reasonably accurate approximation we need to choose
the step size h sufficiently small. a

Example 2.2 We now consider the discretization of the boundary value
problem for the elliptic partial differential equation

— Au(z) = f(z,u(z)), ze€D, (2.4)
with Dirichlet boundary condition

u(z) =0, =z € aD. (2.5)
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Here, D ¢ IR? is a bounded domain, A denotes the Laplacian

*u  0*u
Au:= — + —
v oz? = Ox3’

f:D xR — IR is a given continuous function, and we are looking for
a solution u : D — IR that is continuous in D and twice continuously
differentiable in D. Boundary value problems of this type arise, for example,
in potential theory and in heat conduction problems. The theory of elliptic
partial differential equations (see [24]) provides conditions on the given
function f that ensure existence and uniqueness of a solution .

For describing a numerical approximation method we restrict ourselves
to the case of the square D = (0,1) x (0,1). We choose an equidistant
quadratic grid with grid points

zij = (ih,jh), 4,j=0,...,n+1,

where the step size again is given by h = 1/(n+1) with n € IN. Analogously
to the previous example, at the internal grid points z;;, ¢,7 =1,...,n, we
replace the Laplacian by the Laplace difference operator

1
Du(zis) ~ 35 [u(@irng) +ul@iong) +u@ie) +ul@g-) - dulzg)].

Obviously, for each point z;;, this difference operator has nonvanishing
weights only at the four neighboring points on the vertical and horizontal
line through z;;. This observation also illustrates why the set of grid points
with nonvanishing weights is called the star associated with the Laplace
difference operator. Using this difference approximation leads to the system
of equations

1 .
— [duij — wir1j — wio1,j — Uit — Uij-1] = f(@ij,u), Li=1,...,m,

h2

for approximate values u;; to the exact solution u(z;;). This system has to
be complemented by the boundary conditions

Uoj =Unt1,; =0, j=0,...,n+1,
at the grid points on the vertical parts and
Uipg =Uiny1 =0, i=1,...,n,

at the grid points on the horizontal parts of the boundary dD. In order to
write this system in matrix form we rearrange the unknowns by ordering
them row by row and setting

U] = UL, U2 = U2, ..., Up = Un,1, Untl = UL2,-. -, Um = Unpn,
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where m = n?. Furthermore, we introduce an m x m matrix A in the form
of an n x n block tridiagonal matrix

B I
-1 B -I
1 -1 B -1
A=145 A K
-I B -—I
-I B

where I denotes the n x n identity matrix and B is the n x n tridiagonal
matrix

4 -1
-1 4 -1
B = -1 4 -1
-1 4 -1
-1 4

After introducing the vectors U and F(U) analogously to Example 2.1, we
can rewrite the system of equations in the short form

AU = F(U), (2.6)

which also includes the boundary conditions.

Again we postpone the questions of unique solvability of the system (2.6)
and the problem of convergence and error estimates for later parts of the
book (see Chapter 11). Here, we conclude the example with the observation
that the system has n? unknowns, where n will be fairly large if the step
size h is sufficiently small in order to achieve a reasonably accurate approxi-
mation to the solution of the boundary value problem. These large systems
of equations arising in the discretization of partial differential equations
call for efficient solution methods. O

Example 2.3 Consider the linear integral equation

1
(@) - / K(z,y)oly)dy = f(z), =€ [0,1],

where K :[0,1] x [0,1] = IR and f : [0,1] = IR are given continuous func-
tions and where we seek a continuous solution ¢ : [0, 1] = IR. Such integral
equations either arise directly in the solution of applied problems, or more
often they occur indirectly in the solution of boundary value problems for
differential equations. If the homogeneous form of this equation, i.e., the
integral equation with the right-hand side f = 0, admits only the trivial
solution ¢ = 0, then for each f the inhomogeneous integral equation has a
unique solution ¢ (see Chapter 12).
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For the numerical approximation we replace the integral by the rectan-
gular sum

/0 K (z,y)o(y) dy ~ % Y K(z,ok)p(wr)
k=1

with equidistant grid points zx = k/n, k = 1,...,n. If we require the
approximated equation to be satisfied only at the grid points, we arrive at
the system of linear equations

1< .
(PJ—;;K(I],Z']‘;)QO}C:]C(I]), ]:11"'Jn7

for approximate values ¢; to the exact solution y(z;). As in the preced-
ing examples, we postpone the question of unique solvability of the linear
system and the convergence and error analysis (see Chapter 12). o

Example 2.4 In this last example we will briefly touch on the method of
least squares. Consider some (physical) quantity u depending on time ¢ and
a parameter vector a = (ai,...,a,)T € IR" in terms of a known function

u(t) = f(ta).

In order to determine the values of the parameter a (representing some
physical constants), one can take m measurements of u at different times
ti,...,t,n and then try to find a by solving the system of equations

u(tj)zf(tj;a), j:l,...,m.

If m = n, this system consists of n equations for the n unknowns a;,...,a,.
However, in general, the measurements will be contaminated by errors.
Therefore, usually one will take m > n measurements and then will try to
determine a by requiring the deviations

u(t])—f(tjaa)7 jzla"'7m7

to be as small as possible. Usually the latter requirement is posed in the
least squares sense, i.e., the parameter a is chosen such that

m

g(a) =Y _[u(ty) — f(tx; a))?

k=1

attains a minimal value. The necessary conditions for a minimum,

0g
= =0, j=1,...
aa‘] b] ] b 7n‘l

lead to the normal equations

o Of (tr; )
};[u(tk) ~ f(te; )] fg—;“) —0, j=1,..n,
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for the method of least squares. These constitute a system of n, in general,
nonlinear equations for the n unknowns a,,...,a,. ]

At this point, the reader should be convinced of the need for effective
methods for solving large systems of linear and nonlinear equations and be
willing to be introduced to such methods in the subsequent chapters. We
also wish to note that the discretization of differential equations leads to
sparse matrices, whereas for the least squares problem and the discretiza-
tion of integral equations one is faced with full matrices.

2.2 Gaussian Elimination

We proceed with describing the Gaussian elimination method for a system
of linear equations
Az = y.

Here A is a given n x n matrix A = (a;j;) with real (or complex) entries, y
a given right-hand side y = (y1,...,¥,)T € R" (or C"), and we are looking
for a solution vector £ = (z1,...,2,)7 € R" (or C"). More explicitly, our
system of equations can be written in the form

n
Zajk:vk =y;, J=1,...,m

k=1
that is,
a11Z1 + @122 + -+ A1pTp =Y
a21T1 + Q22T2 + -+ Q2aTp = Y2
An1T1 + An2Z2 + -+ + AppTn = Yn.

Assuming that the reader is familiar with basic linear algebra, we recall the
following various ways of saying that the matrix A is nonsingular:

1. The inverse matrix A~! exists.

2. For each y the linear system Az = y has a unique solution.

3. The homogeneous system Az = 0 has only the trivial solution.

4. The determinant of A satisfies det A # 0.

5. The rows (columns) of A are linearly independent.

The very basic idea of the Gaussian elimination method is to use the first
equation to eliminate the first unknown from the last n — 1 equations, then
use the new second equation to eliminate the second unknown from the last
n — 2 equations, etc. This way, by n — 1 such eliminations the given linear
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system is transformed into an equivalent linear system that is of triangular

form
bz + biazs + +  binza =2

baoxs + s + bonTn = 29

bn—l,n-lwn—l + bn—l,nzn = 2n-1

bpnTn = 2n

Recall that two linear systems are called equivalent if every solution of one
is a solution of the other. The triangular system can be solved recursively
by first obtaining x,, from the last equation, then obtaining z,_; from the
second to last equation, etc. This procedure is known as backward substi-
tution. Explicitly, it is described by z, = 2, /by, and

1 n
Ty = —— (zm—— Z bm,kzk>, m=n-1n-2,...,1

b
mm k=m+1

We begin by considering a nonsingular matrix A. To eliminate the un-
known zi, for j = 2,...,n we multiply the first equation by a;i /a1 and
subtract the result from the jth equation. For this we have to require that
a11 # 0. Since we assume the matrix to be nonsingular, this can be achieved
by reordering the rows or the columns of the given system. This procedure
leads to a system of the form

biizi + baza + - 4 bipThn =2
ag):zzz + -+ agi)mn = yéz)
By + -+ aBz, = yP

with the new coefficients given by

bk = a&), k=1,...,n,

1 1
@) ._ o _ afiaiy

a5y = Oy o 5 k=2,...,n,
agn
and the new right-hand sides given by
(1), (1)
1 2 1) %1Y%
a=y), yP =y - =20

1
a’gl)
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Here, for the coefficients and right-hand sides of the original system we
have set a( )= ajr and y; (.- = yj.

Proceedmg in this way, the given nxn system for the unknowns z1,...,z,
is equivalently transformed into an (n—1) x (n—1) system for the unknowns
Z2,...,ZTy. Adding a multiple of one row of a matrix to another row does
not change the value of its determinant. Therefore, in the above elimina-
tion the determinant of the system remains the same (with the exception
of a possible change of its sign if the order of rows or columns is changed).
Hence, the resulting (n — 1) x (n — 1) system for zo,...,Z, again has a
nonvanishing determinant, and we can apply precisely the same procedure
to eliminate the second unknown z, from the remaining (n — 1) x (n — 1)
system.

By repeating this process we complete the forward elimination, by which
the system of linear equations

(1) (1) (1) (1

a1’Z1 + G192+ - F a1, Tn =Y
agll)zl + aglz)azz + - 4+ aéz)zn = yél)
(1)1‘1 + Ll(lz).'liz + - szlrzz'n = y( )

with a nonsingular matrix A = (aﬁ)) is equivalently transformed into a

triangular system
biiz1 + braze + +  binTn =2

booxo + s + bonZn = 29

bn—l,n—lxn~1 + bn—l,nxn = Zpn-1
bunTn = zn
by n — 1 recursive elimination steps of the form

2lm) g(m)

gtV = ol - ——”'”(m;"’“ L jk=m+1,....n
mm
m=1...,n—-1
a(_m) (m)
(m+1) (m) jm Im

y] '-y,] T, j:m"l'l,...,n,
Qmm
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The coefficients and the right-hand sides of the final triangular system are
given by .
bjg =a%, k=j,...n j=1...,n,

and

The condition '™ # 0, which is necessary for performing the algorithm,

always can be achieved by a reordering of the rows or columns, since oth-
erwise the matrix A would not be nonsingular.

We would like to compress the operations of one elimination step into
the following scheme

where the rectangle illustrates the remaining part of the matrix and the
right-hand side for which the elimination has to be performed. Here, a
stands for the elimination element, or pivot element; the elements b in
the elimination row remain unchanged; the elements ¢ of the elimination
column are replaced by zero (with the exception of the pivot element a);
and the remaining elements d are changed according to the rule

d—)d—@.
a

We note that in computer calculations, of course, the new values for the
coefficients of the matrix and the right-hand sides can be stored in the
locations held by the old values.

More explicitly, the entire Gaussian elimination can be written in the
following algorithmic form.

Algorithm 2.5 (Gaussian elimination)

1. Forward elimination:
Form=1,...,n—1 do

forj=m+1,...,n do

AjmAmk
fork=m+1,...,n do aj, := ajp — "=
Amm

L AimYm

Yi =Y

Amm
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2. Backward substitution:

Form=n,n—-1,...,1do zp, :=ym
fork=m+1,...,ndo &y :=2Tm — CurTk
T
Ty 1= ——
Amm

If the matrix A is singular and has rank r, the elimination procedure
will terminate after r steps. The matrix of the remaining (n —r) x (n —r)
system for the unknowns z,41, ..., Z, is the zero matrix, because otherwise
the rank of A would be different from r. Hence, in this case the given linear
system is solvable if and only if the right-hand sides after r elimination
steps satisfy

Zrp1 = =2, =0.

The solutions can be found from the triangular system by arbitrarily choos-
ing z,41,-.., I, and then recursively determining z,,...,zo. This way we
obtain the (n — r)-dimensional solution manifold.

In order to control the influence of roundoff errors we want to keep the

quotient agﬁ) / aﬁ,’l‘,}l small; i.e., we want to have a large pivot element a(,m.

Therefore, instead of only requiring aﬁ,’ln,,)l # 0, in practice, either complete
pwoting or partial row or column pivoting is employed. For complete piv-
oting, both the rows and the columns are reordered such that a%”,% has
maximal absolute value in the (n —m + 1) x (n —m + 1) matrix remaining
for the mth forward elimination step. In order to minimize the additional
computational cost caused by pivoting, for row (or column) pivoting the
rows (or columns) are reordered such that am% has maximal absolute value
in the elimination column (or row), i.e., in the mth column (or row). Of
course, in the actual implementation of the Gaussian elimination algorithm
the reordering of rows and columns need not be done explicitly. Instead,
the interchange may be done only implicitly by leaving the pivot element
at its original location and keeping track of the interchange of rows and
columns through the associated permutation matrix.

The following example illustrates that partial pivoting does not always

prevent loss of accuracy in the numerical computations.
Example 2.6 We consider the system

z1 + 200z, = 100
Ty + o =1

with the exact solution ; = 100/199 = 0.502..., z2 = 99/199 = 0.497....
For the following computations we use two-decimal-digit floating-point
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arithmetic. Column pivoting leads to a;; as pivot element, and the elimi-

nation yields
r1 + 200z2 = 100

— 200.’172 = —99,

since 199 = 200 in two-digit floating-point representation. From the second
equation we then have z5 = 0.50 (0.495 = 0.50 in two decimal digits), and
from the first equation it finally follows that z; = 0.

However, if by complete pivoting we choose a;2 as pivot element, the

elimination leads to
1 + 200z5 = 100

I =0.5

(0.995 = 1.00 in two decimal digits), and from this we get the solution
x; = 0.5, z2 = 0.5 (0.4975 = 0.50 in two decimal digits), which is correct
to two decimal digits. O

Since complete pivoting is more costly than partial pivoting, in practical
computations one can try to overcome the disadvantages of partial pivoting
by scaling the matrix. This means that if B = D; ADs, in order to obtain
the solution z of Az = y we first solve Bz = D,y for z and then determine
x from z = Dsz. Here D; and D, are some diagonal matrices chosen such
that for the matrix B the row and column sums of the absolute values are
approximately equal. A diagonal matric D = (d;i) is a matrix with the
off-diagonal elements equal to zero; i.e., d;x = 0 for j # k. For a detailed
discussion of scaling we refer to [27]. Unfortunately, there is no known
general procedure for such scaling, i.e., for choosing the diagonal matrices
D1 and Dz.

For an estimate of the computational cost of Gaussian elimination we
perform a count of the number of multiplications. By a,, we denote the
number of multiplications that are required for solving a triangular n x n
system by back substitution. Obviously, for a, we have the recurrence
relation

an, = Qp_1 +N,

since we need n multiplications to obtain z; from the first equation after
having already determined zs,...,z,. Hence, we have

_n _n(n+1)
an—kz;zk— 5

since a; = 1. By 8, we denote the number of multiplications needed
for the forward elimination simultaneously for r different right-hand sides.
Here we have the recurrence relation

)Bn,r = BnAl,r + (n + 7‘)(” - 1)1
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since the elimination of the unknown x; requires n + r multiplications for
each row of the n — 1 rows. From this it follows that

- n? n(n — L)r

ﬁn,r=2(k+r)(k—-1)=—3——g+ :

k=1
because 3, = 0. Adding ra, and 3, we obtain the following result.

Theorem 2.7 Gaussian elimination for the simultaneous solution of an
n x n system for r different right-hand sides requires a total of

n3

3

+rn? —

maultiplications.

The computational cost, counting only the multiplications, in Gaussian
elimination is n3/3+ O(n?). It is left to the reader to show that the number
of additions is also n®/3 + O(n?) (see Problem 2.7). Doubling the number
of unknowns increases the computation time by a factor of eight. Assuming
1 psec = 1079 sec per addition and multiplication, i.e., on a computer with
one million floating point operations per second, the solution of a system
with n = 10% requires approximately ten minutes, and with n = 10* it
requires approximately six days. This illustrates dramatically that for the
solution of large linear systems iterative methods, which we will study in
Chapter 4, are better suited than direct methods. Row or column pivoting
leads to an additional cost proportional to n?, whereas complete pivoting
adds costs proportional to n®. For the latter reason, complete pivoting is
used only rarely in practical computations.

The Gaussian algorithm also allows the computation of the determinant
and the inverse of a matrix A. The determinant det A is simply given by the
product of the diagonal elements in the triangular matrix obtained through
the elimination procedure. If the determinant is computed using expansions
by submatrices, then the operational count is n! multiplications, as com-
pared to n3/3 for Gaussian elimination. This illustrates why Cramer’s rule
for the solution of linear systems is only a theoretical mathematical tool
and not a tool for practical computations.

The inverse of a matrix is obtained by solving the linear system simul-
taneously for the n right-hand sides given by the columns of the identity
matrix, i.e., by solving the n systems

Awi:ei, i:l,...,n,
where e; is the ith column of the identity matrix. Then the n solutions

Z1,...,Zn will provide the columns of the inverse matrix A~!. We would
like to stress that one does not want to solve a system Ax = y by first
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computing A~! and then evaluating x = A~!y, since this generally leads
to considerably higher computational costs.

The Gauss-Jordan method is an elimination algorithm that in each step
eliminates the unknown both above and below the diagonal. The com-
plete elimination procedure transforms the system equivalently into a di-
agonal system. The multiplication count shows a computational cost of
order n3/2 + O(n?), i.e., an increase of 50 percent over Gaussian elimina-
tion. Hence, the Gauss—Jordan method is rarely used in applications. For
details we refer to [26, 27].

2.3 LR Decomposition

In the sequel we will indicate how Gaussian elimination provides an LR
decomposition (or factorization) of a given matrix.

Definition 2.8 A factorization of a matriz A into a product
A=LR

of a lower (left) triangular matriz L and an upper (right) triangular matriz
R is called an LR decomposition of A.

A matrix A = (a;x) is called lower triangular or left triangular if aj;, =0
for j < k; it is called upper triangular or right triangular if aj, = 0 for
j > k. The product of two lower (upper) triangular matrices again is lower
(upper) triangular, lower (upper) triangular matrices with nonvanishing
diagonal elements are nonsingular, and the inverse matrix of a lower (upper)
triangular matrix again is lower (upper) triangular (see Problem 2.14).

Theorem 2.9 For a nonsingular matriz A, Gaussian elimination (without
reordering rows and columns) yields an LR decomposition.

Proof. In the first elimination step we multiply the first equation by a;j1/a11
and subtract the result from the jth equation; i.e., the matrix A; = A is
multiplied from the left by the lower triangular matrix

! )
a21 1
a1

&
I

_O0n1 1

a1l

The resulting matrix A; = L1 A; is of the form

_ [ en ¥
AZ""( 0 Anl)’
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where A,_; is an (n —1) x (n — 1) matrix. In the second step the same pro-
cedure is repeated for the (n—1) x (n — 1) matrix A,_;. The corresponding
(n — 1) x (n — 1) elimination matrix is completed as an n x n triangular
matrix Lo by setting the diagonal element in the first row equal to one. In
this way, n — 1 elimination steps lead to

Lpy---LiA=R,

with nonsingular lower triangular matrices L1,...,L,—; and an upper tri-
angular matrix R. From this we find

A= LR,
where L denotes the inverse of the product Ly_q--- L. [

We wish to point out that not every nonsingular matrix allows an LR
decomposition. For example,
01
10

has no LR decomposition. However, since Gaussian elimination with row
reordering always works, for each nonsingular matrix A there exists a per-
mutation matrix P such that PA has an LR decomposition (see Problem

2.16). A permutation matriz is a matrix of the form P = (e,1),.--,€pn))
where e, ..., e, are the columns of the identity matrix and p(1),...,p(n)
is a permuation of 1,... n.

Recall that an n x n matrix A is called symmetric if it has real coefficients
and A = AT. A symmetric matrix A is called positive definite if zT Az > 0
for all z € R™ with z # 0. Positive definite matrices have positive diagonal
elements (see Problem 2.10), and therefore a reordering of rows and columns
is not necessary for Gaussian elimination (for pivoting, the largest diagonal
element is chosen). It can be shown (see Problem 2.13) that symmetry and
positive definiteness are preserved throughout the elimination if diagonal
elements are taken as pivot elements. Therefore, for symmetric positive
definite matrices the LR decomposition is always possible. If A = LR, then
we have also A = AT = RTLT and from Problem 2.15 we can deduce that
L can be normalized such that A = LLT. Such a decomposition is used
in the Cholesky method for the solution of linear systems with symmetric
positive definite matrices. Because of symmetry, the computational cost
for the Cholesky method is n®/6 + O(n?) multiplications and n®/6+ O(n?)
additions. For details we refer to [26, 27].

2.4 QR Decomposition

We conclude this chapter by describing a second elimination method for
linear systems, which leads to a QR decomposition.
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Definition 2.10 A factorization of a matriz A into a product
A=QR

of a unitary matriz QQ and an upper (right) triangular matriz R is called a
QR decomposition of A.

We recall that a matrix @ is called unitary if
RO =QQ=1

The product of two unitary matrices again is unitary.

In terms of the columns of the matrices A = (aq,...,a,) and
Q = (q1,--.,9n) and the coeflicients of R = (rjz), the QR decomposition
A = QR means that

k
ap = Z?‘,’kqi, k= 1,...,”. (27)
i=1
Hence, the vectors aq,...,a, of C" have to be orthonormalized from the
left to the right into an orthonormal basis q1, . . ., ¢n. This, for example, can

be achieved by the Gram-Schmidt orthonormalization procedure (see The-
orem 3.18). However, since the Gram—Schmidt orthonormalization tends to
be numerically unstable, we describe the QR decomposition by Householder
matrices.

Definition 2.11 A matriz H of the form
H =1 - 2vv*,

where v is column vector with v*v = 1, i.e., a unit vector, is called a
Householder matrix.

Remark 2.12 Householder matrices are unitary and satisfy H = H*.
Proof. We compute
H =1"-2(w")*'=1-2w*"=H
and
HH* = H*H = (I — 2vv*)(I - 2vv*) = I — 4vv™ + 400" wv* =1,
where we use that v*v = 1. a

Geometrically a Householder matrix corresponds to reflection across the
plane through the origin orthogonal to v. To see this we write

T=wv'c +y
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with the component vv*z of z € €™ in the v-direction and a component y
orthogonal to v. Then we obtain

Hr=z - 2ww'z = —vv'z + y;

i.e., Hz has the opposite component —vv*z in the v-direction and the
same component y orthogonal to v. Because of this property, Householder
matrices are also called elementary reflection matrices.

We now describe the elimination of the unknown z; by multiplying A
from the left by a Householder matrix Hy = I — 2v1v]. By a1 we denote
the first column of A and by e the kth column of the identity matrix; in
particular, e; = (1,0,...,0)*. Then the first column b; of the product H; A
is given by

b1 = H1A€1 = H1a1 = a3y — 2’[}1’0?01.

We would like to achieve that b; = oe; with o # 0. Hence, except for the
first row, v; must be a multiple of a;. Therefore, we try

Uy = a1 Foe (28)

with

vaiar, a;; =0.
u’l‘ul = 2(0,;&1 F Iau[\/a{al )

Then we have

and

1
* * *
u{a; = a;a1 + ]a11| afal = Eulul.

Without loss of generality we may assume that /afa; — |a11] > 0, since
otherwise we would have that a; = a;1€e1, i.e., that the first column already
has the required form. Therefore, if we finally choose

u
Vuiur ’

then v; is a unit vector, and as requested we have

M =

b1 =a; — wjuia = a1 — up = toe;.

*

141

The remaining columns by = H; Ae;, are obtained from the columns ay of
A by

*
U0

bk = HlAek = Hlak = Q} — 21)1’1);‘(1/c = ar — -
u;ay
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From the two possible signs in (2.8) the positive sign yields the numerically
more stable variant.

The same procedure is now repeated for the remaining (n — 1) x (n — 1)
matrix. The corresponding (n — 1) x (n — 1) Householder matrix has to be
completed as an n x n Householder matrix. In general, if 4 is ann xn

matrix of the form
_( B x
Ae = ( 0 A,y )

with a k x k upper triangular matrix Ry and an (n — k) x (n — k) matrix
An—r, we apply the Householder transformation described above with the
first column of A,,_;. With the corresponding (n — k) x (n — k) Householder

matrix H,_j the n x n matrix

A I 0
Hy = ( 0 H,_x )
yields an n x n-Householder matrix Hj that leaves the first k¥ columns

in triangular form and, in addition, transforms the (k + 1)st column into
triangular form. In this way, after at most n — 1 steps, we arrive at

Hn_l"'HlA:R

with Householder matrices Hi,..., H,—; and an upper triangular matrix
R. From this we obtain

A=QR
with the unitary matrix
Q=(Hp_y---H) =H ---H,_;.
We summarize our result in the following theorem.

Theorem 2.13 To each n X n matriz e QR decomposition can be obtained
through n — 1 Householder transformations.

The elimination by QR decomposition via Householder matrices can be
considered as an alternative to Gaussian elimination, since it does not need
pivoting. However, the operation count shows that 2n3/3 + O(n?) multi-
plications are required (see Problem 2.18), i.e., twice the cost of Gaussian
elimination, and the added expense of partial pivoting in Gaussian elim-
ination does not close this gap. Hence, QR decomposition is rarely used
for the solution of linear systems. But later in this book we will see that
QR decomposition is an essential part of one of the best algorithms for
numerically computing the eigenvalues of a matrix (see Section 7.4).
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Problems

2.1 Solve the linear system

!
>

2r, + 4z2 + z3

2z1 + 6xz0 — z3 =10

Il
)

z1 + dz2 + 2z3
by Gaussian elimination.

2.2 Write a computer program for the solution of a system of linear equations
by Gaussian elimination with partial pivoting and test it for various examples.
You will need this code as part of other numerical algorithms later in this book.

2.3 Describe pivoting in Gaussian elimination by using permutation matrices.

2.4 Let A and B be two n x n matrices. Show that if AB is nonsingular, then
A and B are nonsingular.

2.5 Let A, B,C, and D be n x n matrices and let A be nonsingular. Show that

A B _
det( c D ) = det Adet(D — CA™'B).

2.6 Verify the summation formulas
- 1 - 1
— - 2 _ —
kg—l k= 3 n{n+1) and kE“I k= 5 n(n+1)(2n + 1)

that were used in the proof of Theorem 2.7.

2.7 Prove the analogue of Theorem 2.7 for the number of additions in Gaussian
elimination.

2.8 Show that tridiagonal matrices

ai C1
b2 a2 c2
b3 a3 c3

bno1 @n-1 Ca-a
bn an

with the properties
laj| > [b;| +lcjl, bjc; #0, j=2,...,n—1,
and |a1| > |c1] > 0 and |an| > |bn]| > 0 are nonsingular.

2.9 Show that Gaussian elimination for tridiagonal n X n matrices requires 4n
multiplications.
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2.10 Show that the diagonal elements of a positive definite matrix are positive.

2.11 Prove that if A = LL” where L is a real lower triangular nonsingular nx n
matrix, then A is symmetric and positive definite.

1 2 3
A= 2 3 4
3 4 4

2.13 Show that for a symmetric positive definite matrix the symmetry and pos-
itive definiteness are preserved in Gaussian elimination if diagonal elements are
taken as pivot elements, i.e., the submatrices aﬁn), J,k =m,..., n, are symmetric
and positive definite.

2.12 Show that

is not positive definite.

2.14 Show that the product of two lower (upper) triangular matrices again is
lower (upper) triangular, that lower (upper) triangular matrices with nonvanish-
ing diagonal elements are nonsingular, and that the inverse matrix of a lower
(upper) triangular matrix again is lower (upper) triangular.

2.15 Let A be a nonsingular matrix and suppose A = L1 R; = L2 R2, where L
and L2 are lower triangular matrices with diagonal elements equal to one and R;
and R. are upper triangular matrices. Show that Ly = Lz and R; = R».

2.16 Show that for each nonsingular n x n matrix A there exists a permutation
matrix P such that PA has an LR decomposition.

2.17 Solve the linear system

1 + 62 — 223 = 5
2x1 + o — 223 = 1

2z + 2z2 + 623 = 10
by QR decomposition.

2.18 Show that the solution of an n X n linear system by QR elimination with
Householder matrices requires 2n° /3 + O(n*) multiplications.

2.19 Let A be a complex n x n matrix and y € C" and assume that A, Re A4,
and Im A are nonsingular. Show that the n x n complex linear system Ax =y is
equivalent to the two n X n real systems

{ImA)"'Re A+ (ReA) 'Im A} Rez = (ImA) ' Rey + (Re A) "' Imy,
{ImA)"'ReA+ (ReA)'ImA}Imz = (ImA)~'Imy — (Re A) "' Rey.
2.20 Use QR decomposition to prove Hadamard’s inequality

| det A]* < ﬁ i lajk|?

j=1k=1

for the determinant of an n x n matrix A = (a;k).
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Basic Functional Analysis

In the subsequent chapters we want to discuss iterative methods for the
solution of systems of linear and nonlinear equations. For this we will need
some fundamental concepts of functional analysis, which we will start to
develop now. We shall use these functional-analytic tools also in later parts
of this book in some of our convergence and error analysis for the approx-
imate solution of differential and integral equations.

We begin by introducing the notions of normed spaces and their ele-
mentary properties, where we assume that the reader is familiar with the
concept of linear spaces or vector spaces and their basic properties. Then
we proceed by considering scalar product spaces as special cases of normed
spaces.

We will continue with the discussion of linear and continuous operators
acting between normed spaces. Particular attention is given to linear oper-
ators between finite-dimensional spaces, i.e., to matrices and their various
norms. The main part of this chapter is Banach’s fixed point theorem, also
known as the contraction mapping principle, which is one of the most im-
portant tools in numerical analysis and is the fundamental basis of our
investigations of iterative methods for linear and nonlinear systems. At the
end of the chapter we will introduce some of the basic concepts of approx-
imation theory, which will be useful later in other parts of this book.

For a broader and more detailed study we refer to [5, 34, 35, 39, 59] or
any other introductory book on functional analysis.
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3.1 Normed Spaces

Definition 3.1 Let X be a complex (or real) linear space (vector space).

A function || - || : X = IR with the properties
(N1) llzl] > 0O, (positivity)
(N2) llz]l = 0 if and only if £ =0, (definiteness)
(N3)  lazl| = |of|lll, (homogeneity)
(N4) [z +yll < ll=ll + llyll, (triangle inequality)

for all z,y € X and all @ € C (or R) is called a norm on X. A linear
space X equipped with a norm is called a normed space. For X = R" or
X = C" we will also call the norm a vector norm.

Example 3.2 Some examples of norms on IR™ and C" are given by

1/2

n n
el =3 lzsl elle = { Do lasl ) lalloo = max_ o]
j=1 j=1

for z = (z1,...,2,)7. It is an easy exercise for the reader to verify that
the norm axioms (N1)—(N3) are satisfied. The triangle inequality for the
norms || - ||; and || - ||co follows immediately from the triangle inequality in
IR or C. The verification of the triangle inequality for the norm || - ||z is
postponed until Section 3.2. O

The norms in Example 3.2 are denoted the ¢;, 5, and £, norm, respec-
tively. For obvious reasons the £ norm is also called the Euclidean norm,
and the ¢, norm is called the mazimum norm. The three norms are special

cases of the ¢, norm
i/p

n
lellp = | D lzl? ) 3.1)
=1
defined for any real number p > 1. The £, norm is the limiting case of
(3.1) as p — oo (see Problem 3.1).
Remark 3.3 For each norm, the second triangle inequality
Hzll =yl < llz = yll
holds for all z,y € X.

Proof. From the triangle inequality we have

lzll = llz =y + yll <l =yl +lyll,
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whence {|z|| — |ly]| < ||z — y|| follows. Analogously, by interchanging the
roles of z and y we have ||y|| — |iz|| < |ly — || a

For two elements z,y in a normed space ||z — y|| is called the distance
between x and y.

Definition 3.4 A sequence (z,,) of elements in a normed space X is called
convergent if there exists an element x € X such that

n—oo

i.e., if for every € > 0 there exists an integer N(g) such that ||z, — z|| < &
for all n > N(€). The element x is called the limit of the sequence (x,),
and we write

lim z, =z
n—oo

or
Tp =T, 10— 00.

A sequence that does not converge is called divergent.
Theorem 3.5 The limit of a convergent sequence is uniquely determined.

Proof. Assume that z, = z and x,, = y for n — 0o0. Then from the triangle
inequality we obtain that

lz —yll = llz — &n + 2o —yll < |l — 2|l + [J&n —yll 20, n - oco.
Therefore, ||z — y|| = 0 and z = y by (N2). m|

Definition 3.6 Two norms on a linear space are called equivalent if they
have the same convergent sequences.

Theorem 3.7 Two norms ||-||o and ||-||s on a linear space X are equivalent
if and only if there exist positive numbers ¢ and C such that

cllzlla < lizlls < Cllzlla

for all z € X. The limits with respect to the two norms coincide.

Proof. Provided that the conditions are satisfied, from ||z, — z|l — 0,
n — 0o, it follows that ||z, — z||s — 0, n = o0, and vice versa.
Conversely, let the two norms be equivalent and assume that there is
no C > 0 such that ||z|ls < C||z||. for all x € X. Then there exists a
sequence () with ||z,|ls = 1 and {|z,|ls > n?. Now, the sequence (y,)
with y, := z,/n converges to zero with respect to || - ||,, whereas with
respect to || - || it is divergent because of ||y,|ls > n. a

Theorem 3.8 On a finite-dimensional linear space all norms are equiva-
lent.
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Proof. In a linear space X with finite dimension n and basis uq,...,u,
every element can be expressed in the form

n
T = E U,
j=1

As in Example 3.2,
lalloe = max o (32)

defines a norm on X. Let || - || denote any other norm on X. Then, by the
triangle inequality we have

llzll < D" lagl llusl < Clllloo

=1

for all z € X, where
n
Ci= llull.
i=1

Assume that there is no ¢ > 0 such that ¢||z||e < ||z|| for all z € X .
Then there exists a sequence (z,) with ||z,|| = 1 such that ||z,|l > v.
Consider the sequence (y,) with y, := 2, /||z, || and write

n
Yp = E TIPS
j=1

Because of ||y, ||cc = 1 each of the sequences (a;,), j = 1,...,n, is bounded
in C. Hence, by the Bolzano-Weierstrass theorem we can select convergent
subsequences a; ,(s) = @j, £ — 0o, for each j = 1,...,n. This now implies
”yV(Z) - y”oo — 07 L~ 0, where

n
Yy = E a;uj,
j=1

and also ||y, ) — ¥ll < Cllyu(e) — Ylloo — 0, £ — 0o. But on the other hand
we have ||y, || = 1/||zv]loc = 0, ¥ = o00. Therefore, y = 0, and consequently
l¥»(e)lloo —* 0, £ — 00, which contradicts ||y,||cc = 1 for all v. a

The following definitions carry over some useful concepts from Euclidean
space to general normed spaces.

Definition 3.9 A subset U of a normed space X is called closed if it con-
tains all limits of convergent sequences of U. The closure U of a subset U
of a normed space X is the set of all limits of convergent sequences of U. A
subset U is called open if its complement X \ U is closed. A set U is called
dense in another set V if V C U, i.e., if each element in V is the limit of
a convergent sequence from U.
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Obviously, a subset U is closed if and only if it coincides with its closure.
For z¢ in X and r > 0 the set Blzo,r] := {z € X : ||z — xo|| < r} is closed
and is called the closed ball of radius r and center zy. Correspondingly, the
set B(zo,r) := {x € X : ||z — zo|| <} is open and is called an open ball.

Definition 3.10 A subset U of a normed space X is called bounded if
there exists a positive number C such that ||z|| < C for all z € U.

Convergent sequences are bounded (see Problem 3.6).

Theorem 3.11 Any bounded sequence in a finite-dimensional normed space
X contains a convergent subsequence.

Proof. Let uy,...,u, be a basis of X and let (z,) be a bounded sequence.
Then writing
n
Ty = Z AjpUj
Jj=1

and using the norm (3.2), as in the proof of Theorem 3.8 we deduce that

each of the sequences (¢;,), j = 1,...,n, is bounded in C. Hence, by
the Bolzano-Weierstrass theorem we can select convergent subsequences
a;,(e) = aj, £ = oo, for each j = 1,...,n. This now implies

n
Ty(e) —)Zajuj €X, {£— o0,
J=1

and the proof is finished. a

3.2 Scalar Products

Definition 3.12 Let X be a complex (or real) linear space. Then a func-
tion (-,-) : X x X = C (or R) with the properties

(H1) (z,z) > 0, (positivity)
(H2) (z,x) = 0 if and only if © =0, (definiteness)
(H3) (z,y) = (y,2), (symmetry)
(H4) (az + By,2) = oz, z) + By, 2), (linearity)

forall z,y,z € X and o,8 € C (or R) is called a scalar product, or an
inner product, on X. (By the bar we denote the complex conjugate.) A
linear space X equipped with a scalar product is called a pre-Hilbert space.
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As a simple consequence of (H3) and (H4) we note the antilinearity
(He) (z, 0y + B2) = a(z,y) + B(, 2).

Example 3.13 An ezample of a scalar product on R"™ and C" is given by
n
(IE, y) = Z xigi
j=1

forz = (x1,...,2,)T andy = (y1,...,yn)T. (Note that (z,y) = y*z.)

Theorem 3.14 For a scalar product we have the Cauchy-Schwarz inequal-
ity

(z,9)I” < (z,2)(y,y)
for all z,y € X, with equality if and only if  and y are linearly dependent.

Proof. The inequality is trivial for £ = 0. For z # 0 it follows from

(az + By, ax + By) = |a*(z,z) + 2Re{af(z,y)} + 81> (v, y)

= (.’E, .’L')(y, y) - !(Iv y),21

where we have set a = —(z,z)"/?(z,y) and 8 = (z,z)'/2. Since (-,-) is
positive definite, this expression is nonnegative, and it is equal to zero if
and only if az + By = 0. In the latter case x and y are linearly dependent
because 3 # 0. m]

Theorem 3.15 A scalar product (-,-) on a linear space X defines a norm

by
el := (,2)"/?

for all x € X; i.e., a pre-Hilbert space is always a normed space.

Proof. We leave it as an exercise for the reader to verify the norm axioms.
The triangle inequality follows by

lz+yll* = (@ +y,z +y) < izl + 2llll 1yl + lyll* = (l=ll + [lyl)?

from the Cauchy-Schwarz inequality. O

Note that we can rewrite the Cauchy-Schwarz inequality in the form

[z, 9)| < =l lyll-

The scalar product of Example 3.13 generates the Euclidean norm of Ex-
ample 3.2, and therefore it is called the Euclidean scalar product. Theorem
3.15 includes the triangle inequality for the Euclidean norm that we post-
poned in Example 3.2.

The following definition generalizes the concept of orthogonality from
Euclidean space to pre-Hilbert spaces.
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Definition 3.16 Two elements z and y of a pre-Hilbert space X are called
orthogonal if

(:E,y) =0.

Two subsets U and V of X are called orthogonal if each pair of elements
xz € U and y € V are orthogonal. For two orthogonal elements or subsets
we write x L y and U L V, respectively. A subset U of X is called an
orthogonal system if (z,y) = 0 for all z,y € U with = # y. An orthogonal
system U is called an orthonormal system if ||z|| =1 for allz € U.

Theorem 3.17 The elements of an orthonormal system are linearly inde-
pendent.

Proof. From
n
D okg =0
k=1

for the orthonormal system {qi,...,¢n}, by taking the scalar product with
gj, we immediately have that o =0forj =1,...,n. O

The Gram—-Schmidt orthogonalization procedure as described in the fol-
lowing theorem provides a converse of Theorem 3.17. For a subset U of
a linear space X we denote the set spanned by all linear combinations of
elements of U by span{U}.

Theorem 3.18 Let {ug,uy,...} be a finite or countable number of linearly
independent elements of a pre-Hilbert space. Then there exists a uniquely
determined orthogonal system {qo,q1, ...} of the form

Qn:un+7’na Tl:O,l,..., (33)
with ro = 0 and r, € span{ug,...,un—1}, n =1,2,..., satisfying
span{ug,...,u,} = span{qo,...,qn}, n=0,1,.... (3.4)

Proof. Assume that we have constructed orthogonal elements of the form
(3.3) with the property (3.4) up to g,—1. By (3.4), the {qo,...,qn-1} are
linearly independent, and therefore {|gi|| # 0 for £ =0,1,...,n — 1. Hence,

= (un,qx)
dn ‘= Up — Z = q

k
= 9k, qr)

is well-defined, and using the induction assumption, we obtain (g, qm) =0
form=0,...,n—1and

span{ug,...,Un—1,Un} = span{qo,-..,qn-1,un} = span{qo, ..., qn—1,qn}-

Hence, the existence of g, is established.
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Assume that {qo,q1,...} and {go,1,...} are two orthogonal sets of el-
ements with the required properties. Then clearly o = up = §o- Assume
that we have shown that equality holds up to ¢,_; = §n_1. Then, since
Gn — Gn € span{ug,...,u,_1}, we can represent ¢, — ¢, as a linear combi-
nation of ¢q1,...,q,_1; i.e.,

n—1
o —Gn = ) Okl
k=0

Now the orthogonality yields

n—1
”qn - ij’nllz = (qn - qny Z aqu) = 07
k=0

whence ¢, = §p- ]

3.3 Bounded Linear Operators

By the symbol A : X — Y we will denote a mapping whose domain of
definition is a set X and whose range is contained in a set Y’; i.e., for every
z € X the mapping A assigns a unique element Az € Y. The range is the
set A(X) := {Az : ¢ € X} of all image elements. We will use the terms
mapping, function, and operator synonymously. (We have already used this
convention in Definitions 3.1 and 3.12.)

Definition 3.19 An operator A mapping a subset U of a normed space X
tnto a normed space Y is called continuous at x € U if for every sequence
(zy) from U with lim,_,o T, =  we have lim,_, o, Az, = Az. The function
A:U —>Y is called continuous if it is continuous for all z € U.

An equivalent definition is the following: A function A : U ¢ X - Y
is continuous at x € U if for every € > 0 there exists § > 0 such that
|Az — Ay|| < € for all y € U with ||z —y|| < 6. Here we have used the same
symbol || - || for the norms on X and Y. Note that by the second triangle
inequality of Remark 3.3 the norm is a continuous function.

Definition 3.20 An operator A : X — Y mapping a linear space X into
a linear space Y is called linear if

Alaz + By) = aAz + fAy
forallz,y € X and all a,B € C (or R).

Theorem 3.21 A linear operator is continuous if it is continuous at one
element.
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Proof. Let A: X — Y be continuous at g € X. Then for every z € X and
every sequence (z,) with z,, = z, n — 0o, we have

Az, = A(zp —xz+20) + Az —20) = A(0) + A(T —20) = A(Z), N — 00,
since £, — = + x9 — o, N — OO. O

Definition 3.22 A linear operator A : X — Y from a normed space X
into a normed space Y is called bounded if there exists a positive number
C such that

|Az|| < Cll=|]
for all x € X. Each number C for which this inequality holds is called a
bound for the operator A. (Again we have used the same symbol || - || for

the norms on X and Y.)
Theorem 3.23 A linear operator A: X — 'Y is bounded if and only if

|4]] := sup ||Az]| < oo.
lell=1

The number ||A|| is the smallest bound for A and is called the norm of A.
Proof. Assume that A is bounded with the bound C. Then

sup [|Az|| < C,
lzll=1

and, in particular, || A|| is less than or equal to any bound for A. Conversely,
if [|A|] < oo, then using the linearity of A and the homogeneity of the norm,

we find that
T
Al =
(HﬂrH)'

for all z # 0. Therefore, A is bounded with the bound [|4]|. a

| Az|| =

llzll < 1Al |l

Theorem 3.24 A linear operator is continuous if and only if it is bounded.

Proof. Let A: X — Y be bounded and let (x,) be a sequence in X with
zn — 0, n = oco. Then from ||Az,|] < C|lz,|| it follows that Az, — 0,
n — oo. Thus, A is continuous at £ = 0, and because of Theorem 3.21 it is
continuous everywhere in X.

Conversely, let A be continuous and assume that there is no C' > 0 such
that ||Az|| < C||z|| for all z € X. Then there exists a sequence (z,) in X

with ||z,|| = 1 and ||Az,|| > n. Consider the sequence y,, := z,/||Az,||.
Then y, — 0, n = o0, and since A is continuous, Ay, — A(0) = 0,n - oo.
This is a contradiction to ||Ay,|| = 1 for all n. Hence, A is bounded. O

Remark 3.25 Let X,Y, and Z be normed spaces and let A: X - Y and
B :Y — Z be bounded linear operators. Then the product BA : X — Z,
defined by (BA)x := B(Azx) for all x € X, is a bounded linear operator
with || BA|| < [|AIH|B][-

Proof. This follows from |[(BA)z|| = ||B(Az)|| < | BIl Al l|z]I. u)
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3.4 Matrix Norms

Theorem 3.26 Let (a;x) be a real or compler n x n matriz. Then the
linear operators A:IR™ -5 R" and A : C" — C", defined by

(Az); = Zajkka, i=1,...,n,

k=1

are bounded with respect to each norm on R"™ and C". In particular, we
have

Al = max > ajel, (3.5)
= ,...,nj:l
n
14lleo = max 3 Jajl, (36)
Jj=1,..., i
1/2
n
lAllz < [ D lal?] - (3.7)
7,k=1

In this case the norms are also called matrix norms. (Note that in (8.5)-
(3.7) both the domain and the range are given the same norm.)

Proof. By Theorem 3.8 it suffices to prove boundedness of A with respect

to one norm. For || - || we can estimate
n n n
Azl = ) 1(Az);| =YD ajeex
j=1 j=1 k=1

n n

n n
<D Izl ) ekl < max > lagel Y Jakl.
k=1,...,n 4
k=1 j=1 j=1 k=1

Therefore, we have that
n
14]l < kgllaxnz lajkl- (3-8)
een £

Now choose 7 such that
n

n
> lajil = kl‘}a"nz |ajk |,
—ln e

=1
and choose z € R™ with z; = 1 and z; = 0 for k # i. Then ||z||; = 1 and

n n n
Z Ajk2k| = Z {aﬁ| = k_rrllax Z lajk[.
st = ,...,n]_:1

n

EEDMCENEDS

i=1 k=1
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Hence
1All: = SIUP1 Azl > [|Az[l =  max Z iajkl, (3.9)
Z|1=
and from (3.8) and (3.9) we obtain (3.5).
For || - | We can estimate
sl = max [(Az);] = max |3 asen

<]max Z|a,k|{xk|< max Zla]k| max Izk|
k=1

Therefore, we have that
n
14lloo < max 3 Jajul. (3.10)
k=1
Now choose 7 such that
n n
> o] = ._Irllaxnz |ajxl,
k=1 -t

and choose z € C" with zx = G /|asx| if aix # 0 and 2z, = 1 if ag, = 0.
Then [|2]loc = 1 and

142lloc = max_|(42);] = Zagm
> Zazmc —Zlamt mmax Zlagk'
Hence
lAllo = sup IlAzllooZNAleoo— max Ziaﬂcl (3.11)
Ti|loco=

and from (3.10) and (3.11) we obtain (3.6).

Finally, for || - ||z, using the Cauchy-Schwarz inequality we can estimate
n n n 2
ll4zl3 =D 1(42);1* = D | D ajuz
i=1 i=1 lk=1

n n n
< Z{Zlaz‘klzzlsz} Z |ajx|? X:lﬂfkl2
k=1 k=1

j=1 i,k=1
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Therefore,

n
AR < S lagl?,

Jk=1

and (3.7) is proven. In this inequality equality does not hold, in general, as
can be seen by considering the identity matrix. m]

In order to derive a representation for ||A||2 we need to recall the defini-
tion and some basic facts about eigenvalues and eigenvectors of a matrix.
A number A € C is called an eigenvalue of the matrix A if there exists a
vector € C" with = # 0 such that

Az = Ax.

The vector z is called an eigenvector for the eigenvalue A\. Each n x n
matrix has at least one and at most n eigenvalues, since the characteristic
polynomial det(A — M) has at least one and at most n zeros. Eigenvectors
for different eigenvalues are linearly independent (see Problem 3.12). The
algebraic multiplicity of an eigenvalue of a matrix is its multiplicity as a zero
of the characteristic polynomial; its geometric multiplicity is the number of
linearly independent eigenvectors associated with the eigenvalue.

Theorem 3.27 To each matriz A there exists a unitary matriz () such
that Q*AQ is an upper triangular matriz.

Proof. Assume that it has been shown that for each (n — 1) x (n — 1)
matrix A, _; there exists a unitary (n— 1) x (n — 1) matrix Q,—; such that
Q}_1An_1Qn_1 is an upper triangular matrix. Let A be an eigenvalue of the
n X n matrix A, with eigenvector u. We may assume that (u,u) = 1, where
(+,-) is the Euclidean scalar product. Using the Gram—Schmidt procedure
of Theorem 3.18 we can construct an orthonormal basis of C" of the form
U, V2, ...,U,. Then we define a unitary n x n matrix by

U, = (u,v2,...,0,).

With the aid of (u,v;) =0, j = 2,...,n, we see that

UpAnUn = Up(Au, Ay, ... Apoy) = ( E)\ A* ) ) )

with some (n—1) x (n—1) matrix A,_;. By the induction assumption there
exists a unitary (n — 1) x (n — 1) matrix Qn— such that @Q}_;An_1Qn_1
is upper triangular. Then

o 1 0
Qn L Un ( 0 Qn—l )

defines a unitary n x n matrix, and @}, A,Q, is upper triangular. O
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Lemma 3.28 For an n x n matriz A and its adjoint A* we have that
(Az,y) = (z,A"y)
for all x,y € C", where (-,-) denotes the Euclidean scalar product.

Proof. Simple calculations yield

(Az,y) = ) (Az);7; = Zzajkzky]

j=1 i=1k=1

> magy; = Zka*yk = (z,A"y),

1j=1 k=1

n
k=

where we have used that aj; = @jk. o

Theorem 3.29 The eigenvalues of a Hermitian n x n matriz are real, and
the eigenvectors form an orthogonal basis in C™.

Proof. If A is Hermitian, i.e., if A = A*, then the matrix A = Q*AQ from
Theorem 3.27 is also Hermitian, since

— (Q*AQ)* — Q*A*Q** — Q*AQ — A

Therefore, in this case the upper triangular matrix A must be diagonal;
i.e.,
A =D :=diag(\y,. .., An).

Since from Q*AQ = D it follows that AQ = QD, we can conclude that
the columns of @ = (uy,...,up) satisfy Au; = Aju,, j = 1,...,n. Hence
the eigenvectors of a Hermitian matrix form an orthogonal basis in C".
Because of

/\j = (Auj,uj) = (Uj,A'U,j) = (AUj,Uj) = /\j,
the eigenvalues of Hermitian matrices are real. O

For a positive semidefinite matrix A, i.e., for a Hermitian matrix with
the property
(Az,z) >0, z¢€C",

all eigenvalues are real and nonnegative. Analogously, the eigenvalues of a
positive definite matrix A, i.e., of a Hermitian matrix with the property

(Az,z) >0, z€C", z#0,

are positive.
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Definition 3.30 The number
p(A) ;== max {|A| : A eigenvalue of A}
is called the spectral radius of A.
Theorem 3.31 For an n x n matriz A we have
1All2 = v p(A*A).

If A is Hermitian, then
lAll2 = p(A4).

Proof. From Lemma 3.28 we have that
| Azl = (Az, Az) = (2, A* Ax)

for all z € C". Hence the Hermitian matrix A*A is positive semidefinite
and therefore has n orthonormal eigenvectors

A*Au; = ,u?u]-, ji=1,...,n,

with real nonnegative eigenvalues. We use the orthonormal basis of eigen-
vectors and represent x € C" by

n
r = E ajuj
i=1

and have

n n n
Il = (z,2) = [ D ogus, > asue | =Y lay[?
j=1 k=1 j=1

and

n n n
| Az||} = (Az, Az) = (z, A" Az) = (Zajuj,Zuiakuk) =Y uilayl®
j=1 k=1 j=1

From this we obtain that
| Az||3 < p(A* A)llx]l3,

whence
llAlI3 < p(A*A)

follows. On the other hand, if we choose j such that u? = p(A*A), then we
have that

IAlI5 = [ sup llAz||2]® > || Au;l3 = (uj, A" Au;) = pj = p(A" A).

|zll2=1
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This concludes the proof of ||A]l2 = +/p(A*A). If A is Hermitian, then
A*A = A% whence p(A*A) = p(A?%) = [p(A)]? follows. O

The following final theorem of this section is of basic importance for
establishing a necessary and sufficient condition for the convergence of it-
erative methods for linear systems.

Theorem 3.32 For each norm on C" and each n x n matriz A we have
that
p(4) < ||A]l.
Conversely, to each matriz A and each ¢ > 0 there exists a norm on C"
such that
lA]l < p(4) +&.

Proof. Let A be an eigenvalue of A with eigenvector u. We may assume that
|lu|] = 1. Then the first part of the theorem follows from

4]l = hd llAzl| > || Aul = [IAu|l = |A].
o=

For the second part, by Theorem 3.27 there exists a unitary matrix Q
such that

b1y b2 bz . . bin

bao b2z . . ban

B=Q*AQ = b3z . . b3,
bnn

is upper triangular. Because of det(AI — A) = det(A] — B), the eigenvalues
of A are given by A\; = b;;,j =1,...,n. We set

b:= ;
(x| (bl

and define the diagonal matrix

D := diag(1,4,482,...,6™ 1)

and

with the inverse
D™ = diag(1,671,67%,.. . 5",
Then for C := D~1BD we have that

b1 Obio (52b13 . (Sn_lbln
boa obas . . 6n_2b2n
C= b33 .. (5n~3b3n

bnn
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Since < 1, by Theorem 3.26, we can estimate

Clles < max_{by;]+ (n— 1)0b < p(4) +e.

After setting V := QD we define a norm on C" by ||z|| := ||V "1z||s. Using
C = V1AV we now obtain

lAz|| = [V Azlloo = ICV ' 2lloo < IClloollV ™ &loo = ICllcoll |
for all z € C". Hence
Al < |IClleo < p(A) + ¢,

and the proof is finished. ]

3.5 Completeness

Definition 3.33 A sequence (x,) of elements in a normed space X is
called a Cauchy sequence if for every € > 0 there exists an integer N (¢)
such that

|zn — zmll <€

for alln,m > N(g), i.e., if limp mosoo [|Zn — || = 0.
Theorem 3.34 FEvery convergent sequence is a Cauchy sequence.

Proof. Let £, — , n — 0o. Then, for € > 0 there exists N(¢) € IN such
that ||z, — z|| < /2 for all n > N(¢). Now the triangle inequality yields

[£n = Zmll = llzn — T + & — Tl < (lzn — 2| + ||z — 2wl <¢

for all n,m > N(e). O

The fact that the converse of Theorem 3.34 is not true in general gives
rise to the following definition.

Definition 3.35 A subset U of a normed space X is called complete if
every Cauchy sequence of elements in U converges to an element in U. A
normed space is called a Banach space if it is complete. A pre-Hilbert space
is called o Hilbert space if it is complete.

The subset of rational numbers is not complete in IR. In order to give
further examples, we introduce some infinite-dimensional normed spaces.

The set Cla,b] of continuous functions f : [a,b] - IR equipped with
pointwise addition and scalar multiplication,

(f +9)(@) == f(x) + g(x), (af)(z):=af(z),

obviously is a linear space. Since the monomials z — z", n =0,1,..., are
linearly independent (see Theorem 8.2), C[a, b] has infinite dimension.
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Example 3.36 The linear space C|a, b] furnished with the maximum norm
o := ma £(o)

is a Banach space.

Proof. The norm axioms (N1)-(N3) are trivially satisfied. The triangle in-
equality follows from

If + 9llo = Inax, I(f + 9)(@)| = [(f + 9)(2o)| < |f(20)| + |9(0)|

< = o)
< max [7(@)] + max lo(@)] = 1/l + gl

for some zg € [a,b]. Since the condition ||f, — fllcoc < € is equivalent to
| frlz) — f(z)| < € for all z € [a, b], convergence of a sequence of continuous
functions in the maximum norm is equivalent to uniform convergence on
[a, b]. Since the Cauchy criterion is sufficient for uniform convergence of a
sequence of continuous functions to a continuous limit function, the space
Cla, b] is complete with respect to the maximum norm. a

Example 3.37 The linear space Cla,b] equipped with the Ly norm

b
171l == / 1 (@)| de

s not complete.

Proof. The norm axioms are trivially satisfied. Without loss of generality
we take [a, b] = [0, 2] and choose

z", 0<z<1,

fn(m)::
1, 1<z <2
Then for m > n we have that
Uf = fonll /(m ™ dr < — 50, no
n mlll1 = +1 n 00,

and therefore (f,) is a Cauchy sequence. Now we assume that (f,) con-
verges with respect to the L; norm to a continuous function f; i.e.,

Nfo—fllh =0, n— oo.

Then

1 1 1
/Olf(wﬂdws/o if(w)—m"ldz+/0 2o <|If ~ falli + 5 0
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for n — oo, whence f(z) = 0 follows for 0 < z < 1. Furthermore, we have

2 2
/1 1f(z) — 1] de = / 1£(@) = fa@)lde < [If = fulh = 0, 1 — oo.

This implies that f(z) = 1 for 1 < z < 2, and we have a contradiction,
since f is continuous.

However, we note that the space L![a,b] of measurable and Lebesgue
integrable real-valued functions is complete with respect to the L; norm
(see [5, 51, 59]). a

Example 3.38 The linear space C[a,b| equipped with the L norm
b 1/2
il = ( / If(w)lzdw)

Proof. The norm is generated by the scalar product

s not complete.

b
(f,9) 5‘—‘/ f(z)g(z) dz.

Considering the same sequence as in Example 3.37, it can be seen that
Cla, b] also is not complete with respect to the Ly norm. Again note that
the space L?[a, b] of measurable and Lebesgue square-integrable real-valued
functions is complete with respect to the Lo norm (see [5, 51, 59]). O

Theorem 3.39 FEach finite-dimensional normed space is a Banach space.

Proof. Let X be finite-dimensional with basis u1,...,u, and assume that
(z,) is a Cauchy sequence in X. We represent

n
r, = E Ay Uj
j=1

and recall from Theorem 3.8 that there exists C' > 0 such that

for all v,u € IN. Hence for j = 1,...,n the (¢;,) are Cauchy sequences
in €. Therefore, there exist aq,...,an such that aj, = o4, v = oo, for
j =1,...,n, since the Cauchy criterion is sufficient for convergence in C.
Then we have convergence,

n
ac,,——)z::Zajuj €X, v— oo,
Jj=1

and the proof is finished. O
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Remark 3.40 Complete sets are closed, and each closed subset of a com-
plete subset is complete.

Proof. This is trivial. O

3.6 The Banach Fixed Point Theorem

Definition 3.41 Let U be a subset of a normed space X. An operator
A : U = X is called a contraction operator if there exists a constant
q € [0,1) such that

|Az — Ayl < qllz - yl|

for all z,y € U. Each constant q satisfying this inequality is called a con-
traction number of the operator A.

Frequently, we will call a contraction operator simply a contraction.
Remark 3.42 FEach contraction operator is continuous.

Proof. This is trivial, since the convergence ||z, — z|| = 0, n = oo, implies
that ||Az, — Az|| < ¢||lz, — z|]| = 0, n — o0. a

An operator A : U — X is called Lipschitz continuous with Lipschitz
constant L if there exists a positive constant L such that

| Az — Ayl < Ll - y||

for all z,y € U. Thus, contraction operators are Lipschitz continuous op-
erators with Lipschitz constant less than one.

Definition 3.43 An element = of a normed space X is called a fixed point
of an operator A: U C X = X if

Az = .
Theorem 3.44 Each contraction operator has at most one fized point.

Proof. Assume that z and y are two different fixed points of the contraction
operator A. Then

0# l|lz - yll = |4z — Ayl < qllz - yll,

whence 1 < q follows. This is a contradiction to the fact that A is a con-
traction operator. 0

Theorem 3.45 (Banach) Let U be a complete subset of a normed space
X and let A: U — U be a contraction operator. Then A has a unique fized
point.
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Proof. Starting from an arbitrary element o € U we define a sequence (z,,)
in U by the recursion

Tpy1 = Az, n=0,1,2,....
Then we have
|Znt1 ~ Zull = [Azn — Aznoa|| < gllzn — Tnall,
and from this we deduce by induction that
lZns1 — zall < ¢"lley —zoll, n=1,2,....

Hence, for m > n, by the triangle inequality and the geometric series it
follows that

1Tn = Tmll < 120 = Tatill + |Tat1 — Tosall + -+ + |Tm—1 — Tl
(3.12)

<@+ 4Tl - moll < 1 5 Il = zoll-
Since ¢" — 0, n — oo, this implies that (z,) is a Cauchy sequence, and
therefore because U is complete there exists an element z € U such that
T, — x, n — 00. Finally, the continuity of A from Remark 3.42 yields

z= lim z,4; = lim Az, = Ax;
n—00 n—oo

i.e., z is a fixed point of A. That this fixed point is unique we have already
settled by Theorem 3.44. O

The main importance of Banach’s fixed point theorem in numerical anal-
ysis originates from its constructive proof. Besides establishing existence of
a fixed point by the method of successive approximations, it also provides
an algorithm for obtaining numerical approximations. And this algorithm
is very easy to program because of its iterative nature. We explicitly state
this in the following theorem.

Theorem 3.46 Let A be a contraction operator with contraction constant
q mapping a complete subset U of a normed space X into itself. Then the
successive approximations

Tpy1 = Az, n=0,1,2,...,

with arbitrary zo € U converge to the unique fired point x of A. We have
the a priori error estimate

qn
ln = all < T2 o1 ~ ol
—q
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and the a posteriori error estimate

llzn — f| < llzn = zn-1ll

1—-g¢
for alln € IN.

Proof. The a priori error estimate follows from (3.12) by passing to the
limit m — oc. The a posteriori estimate follows from the a priori estimate
applied with starting element 29 = z,_1. a

The a priori estimate is used in order to obtain upper bounds on the
number of iteration steps, which are necessary to achieve a desired accuracy.
In order to guarantee that

llzn —zl| < &
for a given accuracy ¢, by the a priori estimate we need

n > I—IE
~ Ing

iterations, where £ = (1 — q)&/{|z1 — zol|- The smaller the contraction con-
stant g, the fewer iteration steps are required. The a posteriori estimate,
which in general yields better estimates as compared with the a priori esti-
mate, is used to check the accuracy during the computation and terminate
the iterations when the required accuracy is reached.

The property
lAz — Ayll < [lz —yl|

for all z,y with x # y, which is weaker than the contraction property, is not
sufficient in general to ensure the existence of a fixed point, as illustrated
in the following example (see also Problem 3.18).

Example 3.47 The function f : [0, 00) — [0, 00) given by

flz):=z+ 52
as a consequence of
_TzH+y+uwy _
1@ =10 = Tty @)

fulfills the condition
|f(x) = FW)l < |z — |
for x # y. However, because of
1

>
1+z 0

for all z > 0, it does not have a fixed point. a
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We conclude this section by considering the special case of linear opera-
tors, i.e., by considering the Neumann series (see Problem 3.16).

Let A: X — Y be an operator mapping a set X into a set Y. If for
each y € A(X) there is only one element z € X with Az = y, then A is
said to be injective and to have an inverse A™! : A(X) — X defined by
A~ 'y := z. The inverse mapping satisfies A™!A =T on X and AA~! =1
on A(X), where I denotes the identity operator mapping each element into
itself. If A(X) =Y, then the mapping is said to be surjective. The mapping
is called béjective if it is injective and surjective, i.e., if the inverse mapping
A71:Y = X exists.

Theorem 3.48 Let B : X — X be a bounded linear operator on a Banach
space X with ||B|| < 1, and let I : X — X denote the identity operator.
Then I — B 1is bijective; i.e., for each z € X the equation

z—Bzx=z
has a unique solution ¢ € X. The successive approrimations
Tpy1:=Br,+2z, n=0,1,2,...,

with arbitrary xo € X converge to this solution, and we have the a priori
estimate

81"
lzn — || < zy — ol|
| - |
and the a posteriori estimate
I Bl|
llzn — 2|l < lzn — Zn-1ll
" 1— B

for all n € IN. Furthermore, the inverse operator (I — B)™! is bounded by
1
1—|IB|l

Proof. For fixed, but arbitrary, z € X we define the operator A : X — X
by

(1~ B)"'ll <

Ar:=Br+2, xz€X.
Then we have
Az — Ayl = [|B(z — )|l <||Bll ||z - yl|

for all z,y € X;i.e., A is a contraction with contraction number ¢ = ||B||.
Now the statements of the theorem can be deduced from Theorem 3.46.
With the starting element zo = z the successive approximations lead to

n
Ty, = E Bz
k=0



3.7 Best Approximation 47

with the iterated operators B* : X — X defined recursively by B := I
and B* := BB*~! for k € IN. Hence, in view of Remark 3.25, we have

lznll < Z 1821l < Z B4 <

and therefore, since z,, = (I — B)"'2z, n - oo, it follows that

for all z € X. 0

3.7 Best Approximation

Definition 3.49 Let U C X be a subset of a normed space X and let
w € X. An element v € U is called a best approximation to w with respect
to U if
— ol = inf -
Jho = o] = inf [jw - ull,

i.e., if v € U has smallest distance from w.

Theorem 3.50 Let U be a finite-dimensional subspace of a normed space
X. Then for every element in X there exists a best approxrimation with
respect to U .

Proof. Let w € X and choose a minimizing sequence (u,,) for w; i.e., u, € U
satisfies
llw —up|| = d:= inf [|Jw—ul, n— occ.
uelU

Because of |jup)] < |lw — ug|| + ||w|] the sequence (uy) is bounded. By
Theorem 3.11 the sequence (u,) contains a convergent subsequence (un(s))
with limit v € U. Then

Jw = oll = lim [lw = une | = d

completes the proof. O

Theorem 3.51 Let U be a linear subspace of a pre-Hilbert space X. An
element v is a best approzimation to w € X with respect to U if and only
if

(w—wv,u) =0 (3.13)

forallu e U, ie., if and only if w—v L U. To each w € X there exists at
most one best approzimation with respect to U .
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Proof. We begin by noting the equality
llw —u||* = |lw — v||* + 2Re(w — v,v — u) + ||v — u|?, (3.14)

which is valid for all u,v € U. From this, sufficiency of the condition (3.13)
is obvious, since U is a linear subspace.

To establish the necessity we assume that v is a best approximation and
(w — v,up) # 0 for some ug € U. Then, since U is a linear subspace, we
may assume that (w — v,ug) € IR. Choosing

from (3.14) we arrive at

(w -, U())2
llwoll?

which contradicts the fact that v is a best approximation of w.

Finally, assume that v, and v, are best approximations. Then from (3.13)
it follows that (w — v1,v;y —v2) = 0 = (w — ve,v; — v2). This implies
(v1 — v2,v1 —v2) = 0, whence v; = vy follows. O

llw = ull* = [lw - v||* - < lw —ll?,

Theorem 3.52 Let U be a complete linear subspace of a pre-Hilbert space
X. Then to each element w € X there exists a unique best approzimation
with respect to U. The operator P : X — U mapping w € X onto its best
approzimation is a bounded linear operator with the properties

P’=P and |P|=1.
It is called the orthogonal projection from X onto U.

Proof. Choose a sequence (u,) with
1
lw — un||? < d® + oo e N, (3.15)
where d := inf,cy ||w — ul|. Then

l(w = un) + (w = um)|l* + llun — umll* = 2w — uall? + 2|lw = um|>

2 2
<4d®+ =+ =
n m

for all n,m € N, and since % (un + um) € U, it follows that

2

2
<=
n

3w

+

2 2 1
||un—um|12§4d2+—+———4“111——(un+um)
n m 2
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Hence, (u,) is a Cauchy sequence, and since U is complete, there exists an
element v € U such that u, = v, n = 0. Passing to the limit n = oo
in (3.15) shows that v is a best approximation of w with respect to U.
Uniqueness of the best approximation follows from Theorem 3.51.

Trivially, we have Pu = u for all u € U, and this implies P? = P. From
(3.13) it can be deduced that P is a linear operator and that

[wl? = |Pwll? + [lw — Pwl® > || Pw]?

for all w € X. Therefore, P is bounded with ||P|| < 1. From Remark 3.25
and P? = P it follows that ||P|| > 1, which concludes the proof. O

Corollary 3.53 Let U be a finite-dimensional linear subspace of a pre-
Hilbert space X with basis uq,...,u,. The linear combination

n
v = Z apuy
k=1

is the best approximation to w € X with respect to U if and only if the

coefficients a, . . ., a, satisfy the normal equations
n
Sk ug) = (), j=1,...m. (3.16)
k=1

Proof. The normal equations (3.16) obviously are equivalent to (3.13). O

The normal equations for the best approximation in pre-Hilbert spaces
provide further examples of systems of linear equations. The solution be-
comes trivial if the basis uy,...,u, is orthonormal.

Corollary 3.54 Let U be a finite-dimensional linear subspace of a pre-
Hilbert space X with orthonormal basis uy,...,u,. Then the orthogonal
projection operator is given by

n

Pw = Z(w,uk)uk, w € X.
k=1

Proof. This is trivial from either the orthogonality condition of Theorem
3.51 or the normal equations of Corollary 3.53. O

Problems

3.1 Show that (3.1) defines a norm on C™ for p > 1 and that
lim ||z, = |zl
p-r00

for all x € C".
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3.2 Indicate the closed balls {z € R? : ||z||, < 1} for p = 1,2,00. What
properties do they have in common?

3.3 Show that (3.1) does not define a norm on €” for 0 < p < 1.

3.4 For the £, and £ norms on C" show that ||z|le < ||z|l1 < n||z||co-

3.5 Let X and Y be normed spaces with norms || - ||x and || - ||y, respectively.
Show that

Iz, »II = llzllx + llylly,

o)l == ek + llyll) 2,

(=, Il := max(llzllx, llylly),
for (z,y) € X x Y define norms on the product X x Y.

3.6 Show that convergent sequences are bounded.

3.7 Let (z.) be a sequence of elements of a normed space X. The series

oo
2o
k=1

is called convergent if the sequence (S,) of partial sums

n
Sn = E T
k=1

converges. The limit S = limn o Sn is called the sum of the series. Show that
in a Banach space X the convergence of the series

e o)
>l
k=1

is a sufficient condition for the convergence of the series E:o=1 zi and that

oo oo
POEN BN
k=1 k=1

3.8 Anorm ||-||. on a linear space X is called stronger than a norm |[-[|, if every
sequence converging with respect to the norm || - ||o also converges with respect
to the norm || - ||s. Show that || - || is stronger than || - ||, if and only if there
exists a positive number C such that ||z|ls < C||z||o for all z € X. Show that on
Cla, b] the maximum norm is stronger than the Ly norm (and stronger than the
L, norm). Construct a counterexample to demonstrate that the maximum norm
and the Ly norm (and the maximum norm and the L; norm) are not equivalent.

3.9 Show that in a normed space the operations of addition and multiplication
by a scalar are continuous functions. Show that in a pre-Hilbert space the scalar
product is a continuous function.
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3.10 Show that a norm ||.|| on a linear space X is generated by a scalar product
if and only if the parallelogram equality

Iz + ylI* + llz — ylI* = 2(llII* + IlylI*)

holds for all z,y € X. Show that the ¢; and £ norms on C" are not generated
by scalar products.

3.11 Let A be a positive definite n x n matrix and denote by (-, -) the Euclidean
scalar product on C". Show that (Az,y) defines a scalar product on C”.

3.12 Show that eigenvectors of a matrix for different eigenvalues are linearly
independent.

3.13 Let X and Y be normed spaces and denote by L(X,Y) the linear space
of all bounded linear operators A : X = Y. Show that L(X,Y) equipped with

lAll := sup ||Az]
lizil=1
again is a normed space and that L{X,Y) is a Banach space if Y is a Banach
space.

3.14 Let A : X — X denote an operator from a normed space X into itself.
The iterated operators A™ : X — X, n = 0,1,..., are defined recursively by
A® = I and A™ := AA™"! for n € IN. If A is bounded and linear, show that
LA™ < (lAl™

3.15 Show that for n x n matrices A the series

2

oo
k=0

=

k
T A

b

converges (with respect to any norm on €"), and denote the sum of the series by
e”. Show that if A is an eigenvalue of A, then e is an eigenvalue of e*.

3.16 Show that if B: X — X is a linear operator on a Banach space X with
||Bl| < 1, then the Neumann series

iB" =(-B)"

k=0
converges in the Banach space L(X, X).

3.17 Let U be a complete subset of a normed space X and let A: U — U be
a continuous operator, and assume that A™ is a contraction for some m € IN.
Show that A has a unique fixed point and that the successive approximations
Tnt1 = Azn, n=0,1,..., with arbitrary zo € U converge to this fixed point.

3.18 A subset U of a normed space X is called sequentially compact if each
sequence from U contains a convergent subsequence with limit in U. Let U be a
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complete and sequentially compact subset of a normed space X andlet A: U - U
be an operator with the property

Az — Ayl| < ||z — yll

for all z,y € U with = # y. Show that A has a unique fixed point and that the
successive approximations Tn4+1 = Az,, n = 0,1,..., with arbitrary zo € U
converge to this fixed point.

3.19 Let {u, : n € IN} be an orthonormal system in a pre-Hilbert space X.
Show that the following properties are equivalent:

(a) span{u, : n € IN} is dense in X

(b) Each ¢ € X can be expanded in a Fourier series

o0
Y= Z(‘Pa Un )Un
n=1

(c) For each ¢ € X we have Parseval’s equality
llll* = 1, ua) .
n=1

Show that properties (a)—(c) imply that
(d) = =0 is the only element in X with (z,u,) =0 for all n € N,
and that (a), (b), (c), and (d) are equivalent if X is a Hilbert space.

3.20 Show that the best approximation to a function f € C[0,2n] in the L?
norm with respect to the space of trigonometric polynomials of degree at most n
is given by the partial sum

(Puf)(z) = t12_0 + Zak coskz + Zbk sinkz, = € [0,2n],

k=1 k=1

of the Fourier series of f with the Fourier coefficients

1 27 1 2
ar = ——/ f(x)coskxzdz, by = —/ f(z)sinkz dx.
T Jo T Jo
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Iterative Methods for Linear Systems

This chapter is devoted to applying the analysis developed in the previous
chapter to the iterative solution of systems of linear equations. In particular,
we will discuss in detail the Jacobi and the Gauss-Seidel iterations, which
essentially go back to Gauss. In Supplementum Theoriae Combinationis
Observationum Erroribus Minime Obnozia, published in 1822, Gauss used
a variant of the Gauss—Seidel method for the solution of the linear systems
arising through his least squares method, since they were too large for
elimination methods.

With the advent of computers the size of the linear systems that could
be solved grew enormously, leading to the requirement of speedup of the
convergence of the classical Jacobi and Gauss—Seidel iterations. In this
context, we will introduce the reader to the idea of relaxation methods,
including a typical example that illustrates the dramatic gain in the speed
of convergence by overrelaxation. We will conclude the section with the idea
of defect correction iteration and indicate its application to the very efficient
solution of the large linear systems arising from the discretization of linear
differential and integral equations by two-grid and multigrid methods.

4.1 Jacobi and Gauss—Seidel Iterations

We start by supplementing the sufficient condition of Theorem 3.48 for
convergence of the method of successive approximations by establishing a
necessary and sufficient condition for the finite-dimensional case.
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Theorem 4.1 Let B be an n X n matriz. Then the successive approzima-
tions
Typ1 =Bz, +2, v=0,12...,

converge for each z € C" and each o € C" if and only if
p(B) <1
for the spectral radius of B.

Proof. If p(B) < 1, then by Theorem 3.32 there exists a norm || - || on C"
such that ||B|| < 1. Now convergence follows from Theorem 3.48 together
with the equivalence of all norms on C” according to Theorem 3.8.
Conversely, suppose that convergence holds. If we assume that p(B) > 1,
then there exists an eigenvalue A of B with || > 1. Let = denote an as-
sociated eigenvector. Then the successive iterations for the right-hand side
z = z and the starting element zy = z lead to the divergent sequence
z, = (3 p_o A¥) z. This is a contradiction. 0

We note that Theorem 4.1 remains valid for bounded linear operators
B : X — X in infinite-dimensional Banach spaces with the definition of
the spectral radius appropriately modified. However, the proof requires a
different and deeper analysis.

For the iterative solution of a system of linear equations of the form

Az =y

we distinguish different methods by the way in which the original system
is transformed into an equivalent fixed-point form. We decompose A by

A=D+ A + Ag
into a diagonal matrix
D = diag(ais,- . -, ann),

a proper lower (left) triangular matrix

0
asi 0

Ap=1] an az 0 )
an1 Qn2 . . Gpn-1 0

and a proper upper (right) triangular matrix

0 a2 a3 . . ain
0 a3 . . a4
Agp = .
0 an—-1,n

0
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We assume that all the diagonal entries of A are different from zero. Hence
the inverse D! of D exists.

In the method attributed to Jacobi, which is sometimes also called the
method of simultaneous displacements, the system Az = y is transformed
into the equivalent form

z=-D"Y (AL + Ap)x + D1y,
and the latter is solved by successive approximations
Ty :=-D7YAL + AR)z, + D'y, v=0,1,2,...,

with arbitrarily chosen starting element zo. Written in components, one
step of the Jacobi iteration scheme reads

n

Ak Y4 .
— J J —
x”+1’f—_za..$",k+F7 ji=1...,n.
oy &di 4i
k#j

Theorem 4.2 Assume that the matriz A = (a;i) satisfies

n

- Qjk
doo ~j:rr}?,fn Z _ajj <1 (4.1)
k=1
k£
or
q1 *= max Ll<1 (4.2)
k=1,...n € ajj
=1
Ak
or
1/2
n a 2
ik
qo 1= — < 1. 4.3
2 o (43)
J.k=1
#k

Then the Jacobi method, or method of simultaneous displacements,

n
Qjk Y .
— J J — —_
xV—f‘lyj""—E :a“zl/yk+a__’ .7_17"'777'5 V“071a2a---7
ko1 9 Ji
k#j

converges for each y € C" and each xo € C" to the the unique solution of
Az = y (in any norm on C"). For p = 1,2,00, if g, < 1, we have the a
priori error estimate

v

q
— < ©
|z -T”u =1-4q,

lz1 — zoll,
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and the a posteriori error estimate

du

|z, — 2|, < 1 |z, — Ty—1]lu

for all v € IN.

Proof. The Jacobi matrix —D~!(Ay + Ag) has diagonal entries zero and
off-diagonal entries —a;x/a;;. Hence by Theorem 3.26 we have

| =D Y(AL + AR)|lso = doos
|- D' (AL + ARr)lli = a1,

| - D™ (AL + ARz < 2.

Now the assertion follows from Theorem 3.48. ]

Note that the sufficient convergence conditions (4.1)—(4.3) are not equiv-
alent. Roughly speaking, each criterion ensures convergence if the diagonal
entries of A are dominant. The condition (4.1) can also be written as

n

> el <lajil, i=1,....m (4.4)
k=1
k#j

i.e., the matrix A is required to be strictly row-diagonally dominant. From
(4.2) it can be deduced (see Problem 4.4) that if

n
Zla’jk‘ < Iakkla k= 17"'7”’5 (45)
i=1
ik
i.e., if the matrix A is strictly column-diagonally dominant, then the Jacobi
iterations converge.

For the Gauss-Seidel method, which is also known as the method of
successive displacements, we proceed differently and transform Az = y via

(D+ AL)z=—-Apz+y
into the equivalent form
z=—-(D+AL) "Apz+ (D+ AL) 'y,
which is then solved by the successive approximations

ZTyp1 :=—(D + AL)_IARQI,, + (D + A Yy, v=0,1,2,...,
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with arbitrarily chosen starting element zo. For the actual computations
we rewrite this as

(D+ AL)zyy1 = —Agz, +y, v=0,1,2,...,

and solve the linear system for z, 1 with the lower triangular matrix D+ Ay,
by forward substitution. This leads to the Gauss—Seidel iteration scheme
in the following explicit form:

Ak Y .

J 2 —

$u+1,]:“§ -731/+1k_ E qu,k+ ik Jj=1...,n
k=j+1 a.” aJJ

Here and in the sequel empty sums have to be interpreted as zero.

In the Jacobi iteration scheme all the components of the new approx-
imation vector x,4, are obtained by using only the components of the
previous approximation vector x,, which explains why this method is also
called the method of simultaneous displacements. However, in the Gauss—
Seidel iterations each new component of z,,; is immediately used in the
computation of the next component; i.e., for computing the jth compo-
nent r,41,5, the values x,41,1,2Z,41,2,...,%u41,j—1 are already used. This
is very convenient for computer calculations, since the new values can be
stored in the locations held by the old values, which reduces the storage
requirements.

Theorem 4.3 Assume that the matriz A = (ajx) fulfills the Sassenfeld
criterion
pi= nllax p; <1,

i=1,..,n

where the numbers p; are recursively defined by

D1 3=i z_:l

k=2
Then the Gauss-Seidel method, or method of successive displacements,

n

>

k=j+1

a1k
az;

a;k .
i
, J=2,...,m.

ajj

Jj=1 a " Y
— Jk jk i —
iL‘u+1,j——E = Tyiik— E —— Ty k f,]—l,...,n,l/_(),l,?,...,
w1 s kg1 % ajj

converges for each y € C" and each xo € C" to the the unique solution of
Az =y (in any norm on C"). We have the a priori error estimate

pll
Iz = #lloe < T2 llz1 = zolle

and the a posteriori error estimate

D
Iz, — zljoo < 1-p 1z — 2y —1lloo

for all v € IN.
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Proof. Consider the equation
(D+ Ap)x = —Apz

for z € C" with ||2||ec = 1, that is,

it “. a
_ jk jk .
z]--—E _a-'xk_ E -a--zk’ ji=1...,n.
k=1 73 k:j+1 1

By induction, this implies that |z;| < p; for j = 1,...,n, and therefore
|z]lco < p. Hence we have

D+ AL) ' Arllo <
and the assertion of the theorem follows from Theorem 3.48. a

Corollary 4.4 Assume that the matriz A is strictly row-diagonally domi-
nant. Then the Gauss—Seidel iterations converge.

Example 4.5 The tridiagonal matriz

2 -1
-1 2 -1
A= -1 2 -1
-1 2 -1
-1 2

from Ezample 2.1 is not strictly row-diagonally dominant, but it satisfies
the Sassenfeld criterion.

Proof. Obviously, goo = 1; i.e., (4.1) is not fulfilled. We have the recursion

1 1 1 . 1
50 Pj='2—Pj—1+—, j=2,...,n-1, Pn =5 Pn-1:

= 2

From this, by induction, it follows that

1
~ o

B =

pjzl_.Tv jzly"wn—l, Dn =

Therefore,

pP= 1- 211_—1 < 1,
and this implies convergence of the Gauss—Seidel iterations by Theorem

4.3. O
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Since the matrix A is tridiagonal, the system Ar = y can be solved
efficiently by elimination (see Problem 2.9). Nevertheless, this matrix pro-
vides a very suitable example for the analysis of iterative methods for lin-
ear systems arising in the discretization of ordinary and partial differential
equations. This is due to the fact that in more general cases, for exam-
ple for the linear system of Example 2.2, there are more technical details
to consider, which distract from the basic principles. However, these basic
principles do not depend on the dimension of the underlying differential
equation problem.

In Example 4.5, if n is large, the contraction number p will be close to
one, i.e., the convergence rate of the Gauss-Seidel iterations will be unsat-
isfactorily slow. Before we indicate how the convergence can be accelerated,
we continue by discussing a weaker form of row-diagonal dominance.

Definition 4.6 Ann xn matriz A = (a;i) is called reducible if there exist
two nonempty sets N,M C {1,...,n} such that

NnM=0, NUM=/{1,...,n},

and
ajr =0, jJEN, ke M.

Otherwise the matriz is called irreducible.

A reducible matrix A, after a reordering of the rows and columns, can
be partitioned into a 2 x 2 block matrix of the form

A11 0
A=
( Az A )
(see Problem 4.5). Therefore, solving a linear system with the matrix A

can be reduced to solving two smaller linear systems with the matrices A;;
and A22.

Theorem 4.7 Assume that the matriz A = (aji) is irreducible and weakly
row-diagonally dominant; i.e., A is row-diagonally dominant,

> el <lajil, j=1,...,n, (4.6)
k=1
k#j

with inequality holding for at least one row j. Then the Jacobi iterations
converge for each y € C" and each zo € C" to the unique solution of
Az =y (in any norm on C™).

Proof. By (4.6) and Theorem 3.26 we have that ||B||.. < 1 for the Jacobi
matrix B = —D~'(AL + Ag). Therefore, from Theorem 3.32 it follows that
p(B) < 1 for the spectral radius.
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Now assume that there exists an eigenvalue A of B with |A| = 1. For the

associated eigenvector we may assume that ||z||cc = 1. Then from Az = Bz
we obtain the inequality

1, j=1,...,n. (4.7)

k#] k#]

Let N := {j : |z;| = 1}. Since ||z|lc = 1, we have that N # 0. For j € N
we have || |z;| = 1, and therefore equality holds in (4.7); i.e.,

n

2 g,

k=
i

a]k

1, jEN.

From this it follows that

M:={1,...,n}\N #0,

since A is weakly row-diagonally dominant. Because A is irreducible, there
exists jo € N and ko € M such that ajx, # 0. Now by using

|ajoko| |$ko| < |ajokol

we obtain the contradiction

k Qjok
1=|wjo|:|Al|wjol*Z Sdok. Iw |<Z —~
k=1 Q5050
k#3j k#]

Therefore, we have p(B) < 1, and the statement of the theorem follows
from Theorem 4.1. O

We leave it to the reader as an exercise to show that the matrix A
from Example 4.5 is irreducible and weakly row-diagonally dominant (see
Problem 4.6), implying convergence of the Jacobi iterations.

4.2 Relaxation Methods

From combining the a priori error estimate of Theorem 3.48 with Theorem
4.1 we see that the spectral radius p(B) of the iteration matrix B may
be considered as a measure for the speed of convergence of the successive
approximations. Therefore, it is desirable to design the iterative scheme
such that p(B) becomes small. This aim is the motivation of the relaxation
methods to be discussed in this section.
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Each step of the Jacobi iterations can be written in the form
Ty =2z, + DYy — Az,),

indicating how the new approximation z,,; is obtained by correcting the
previous approximation z,. The basic idea of the relaxation methods is
to multiply the correction term by some weight factor. Note that if the
following relaxation iterations converge, then they converge to a solution
of Az =y.

Definition 4.8 The iterative scheme
Ty =2, +wD Ny - Az,), v=0,1,2,...,

i.e., in components

n

w .

Tut1j = Tuj+ — [yj -> :ajkwu,k] , i=1...,m,
13 k=1

15 known as the Jacobi method with relaxation. The weight factor w > 0 is
called the relaxation parameter.

Theorem 4.9 Assume that the Jacobi matriz B := —D~ (AL + Ag) has
real eigenvalues and spectral radius less than one. Then the spectral radius
of the iteration matriz

I-wD A= (1-w)I—wD YA} + Ag)

for the Jacobi method with relaxation becomes minimal for the relaxzation

parameter
2

Wopt =
2 - /\ma.x - /\min

and has spectral radius

— /\max - Amin
P = o D) = 5 A

where Apin and Anmax denote the smallest and the largest eigenvalue of B,
respectively. In the case Amin # — Amax the convergence of the Jacobi method
with optimal relaxzation parameter is faster than the convergence of the
Jacobi method without relazation.

Proof. For w > 0 the equation Bu = Au is equivalent to
(1 —w)] + wBlu = [1 —w + wAu.

Hence the eigenvalues A of B correspond to the eigenvalues 1 — w + w of
(1 — w)I + wB. Therefore, the eigenvalues of (1 — w)I + wB are real, and
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the smallest eigenvalue of (1 —w)I + wB is given by 1 — w + wAnin and the
largest by 1 — w + wAnax. Obviously, the spectral radius becomes minimal
if the smallest and the largest eigenvalue are of opposite sign and have the
same absolute value, i.e., if

1- Wopt + wopt/\min =-1+ Wopt — wopt}\max-

From this, elementary algebra yields the optimal parameter wqp¢ and the
spectral radius p(I — wopt D1 A) as stated in the theorem. O

For the Gauss-Seidel iterations, from (D + Ap)z,4+1 = —Agz, + ¥ it
follows that

Ty+1 =Ty + D—l[y - ALZV+1 - (D + AR):L'V]-

Hence, the corresponding relaxation method is defined as follows. Note
again that if the relaxation iterations converge, then they converge to a
solution of Az = y.

Definition 4.10 The iterative scheme
T, =z, +wD Ny — Apz,y1 — (D + AR)z,], v=0,1,2,...,

i.e., in components

w Jj-1 n
Ty41,j = Tu,j + —'—a” Yij — E Ak Ty+1,k — E AikTuk| 5 j=1,...,n,
33 k=1 k=j

1s known as the Gauss—Seidel method with relaxation or as the successive
overrelaxation (SOR) method with relazation coefficient w > 0.

From
(D 4+ wAL)Ty41 = wy + [(1 — w)D — wARg|z,

we obtain that the iteration matrix of the SOR method is given by
B(w) := (D +wAL) (1 - w)D — wAg].

Here, as opposed to the relaxation of the Jacobi method, the iteration
matrix depends nonlinearly on the relaxation parameter. This makes the
convergence analysis of the SOR method more complicated.

Theorem 4.11 (Kahan) A necessary condition for the SOR method to
be convergent is that 0 < w < 2.

Proof. Since the eigenvalues i, ..., u, of B(w) are the zeros of the char-
acteristic polynomial, they satisfy

ﬁ p; = det B(w)

Jj=1
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(where multiple eigenvalues are repeated according to their algebraic mul-
tiplicity). From this, by the multiplication rules for determinants and since
D +wAr and (1 — w)D — wAg are triangular matrices, it follows that

fI p; = det(D +wAr) " det{(1 —w)D — wAg] = (1 —w)™
j=1

This now implies
pIB(w)] > |1 - wl,

and from Theorem 4.1 we conclude the necessity of 0 < w < 2 for conver-
gence. a

Theorem 4.12 (Ostrowski) If A is Hermitian and positive definite, then
the SOR method converges for all zop € C*, ally € C", and all 0 < w < 2
to the unique solution of Ax = y.

Proof. Let u be an eigenvalue of B(w) with eigenvector z; i.e.,
[(1-w)D —wApg|z = p(D +wAL)z.
With the aid of
(2-w)D -wA - w(Ar — AL) =2[(1 —w)D — wAR]

and
(2—w)D+wA—-w(Ar — AL) = 2[D + wA;]

we deduce that
[(2-w)D —wA ~w(Ag — AL)]lz = p[(2 ~ w)D + wA ~ w(AR — ApL)]z.
Taking the Euclidean scalar product with x, it now follows that

_ (2-w)d—-wa+iws
T (2-w)d+wa+iws’

where we have set
a:={Az,z), d:=(Dz,z), s:=i(Agx— ALz,T).

Since A is positive definite, we have a > 0 and d > 0, and since A is
Hermitean, s is real. From

(2 - w)d —wa| < |(2 —w)d + wa|

for 0 < w < 2 we now can conclude that |u] < 1 for 0 < w < 2. Hence
convergence of the SOR method for 0 < w < 2 follows from Theorem 4.1. O
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The calculation of the optimal relaxation parameter, i.e., the parameter
minimizing the spectral radius, is difficult except in some simple cases.
Usually it is obtained only approximately by trial and error, based on trying
several values of w and observing the effect on the speed of convergence.
However, the effort is well worth the time, since the resulting improvement
of the convergence can be considerably large, as we will indicate by the
following analysis, which relates the convergence of the SOR method to
that of the Jacobi method for a certain class of matrices that occurs in the
discretization of boundary value problems.

Definition 4.13 A matriz A = D + Aj, + Ar with nonsingular diagonal
D is called consistently ordered if the eigenvalues of

1
Cla) == —aD 'Ap - o D 'Ap, a€C\{0},
do not depend on a.

The following theorem ensures that the analysis we are going to develop
applies to the matrix of Example 2.1, i.e., of Example 4.5.

Remark 4.14 Tridiagonal matrices with nonzero diagonal elements are
consistently ordered.

Proof. After introducing the diagonal matrix
S(a) := diag(1,a,a?,...,a" 1)
for tridiagonal matrices A = D + Ay, + Ag, we have that
S(@)C(1)S(a)™" = C(a);

i.e., all matrices C'(«) are similar, and therefore they have the same eigen-
values. o

Without going into detail, we wish to say that a much wider class of
matrices arising in the discretization of differential equations enjoys the
property of being consistently ordered in the sense of Definition 4.13. For
a more comprehensive study we refer to [61, 63, 66).

Theorem 4.15 (Young) Assume that A is a consistently ordered matriz
and that the eigenvalues of the Jacobi matrix —D~1(AL + AR) are real
with spectral radius A = p[~D~'(AL + Ag)] < 1. Then the SOR method
converges for all 0 < w < 2. The spectral radius of the SOR matriz B(w)

s minimal for
2

opt, = —————— > 1.
et T T VIoA® ©
In this case we have
1-+v1-A2
PlB(wop)] = Y22
1+v1-A
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Proof. From
(I + wD 'Ap)[ul — B(w)] = p(I + wD™1AL) — D7Y[(1 — w)D — wAER]

1
=pt+w-DI+/pw (\/ﬁ DAL+ — D“IAR)
Vi
and the fact that I + wD™! Ay, is nonsingular it can be seen that p # 0 is
an eigenvalue of B(w) if and only if

ptw-—1

is an eigenvalue of
1
- D_IAL - — D_IAR.
Vi Vi

Since A is assumed to be consistently ordered, it follows that g # 0 is an
eigenvalue of B(w) if and only if X is an eigenvalue of —D~1(AL + AR).
Solving the quadratic equation

pt+w—1=/pw

2
WA w22
==+ 1- .
Setting @ = —1 in Definition 4.13, it is obvious that if X is an eigenvalue
of ~D7!(AL + AR), then —\ also is an eigenvalue of —D~!(AL + Ag).

Therefore, since we are interested only in the spectral radius of B(w), we
can confine our considerations to

2
[ wi) + w22 tl—w
F=1"2 4 '

Because of |A| < 1, the quadratic equation

yields

WA —dw+4=0

has two real solutions, and only one of them belongs to the interval (0, 2),

namely
2

= e 2t

This implies that

WA —4w4+4>0, 0<w<we(N).
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Therefore, we have

2
A 222
|e(w)| = (u%l—ﬁ- L—U—Z—+1—w) , 0 <w < w(N). (4.9)
For wp(A) < w < 2 the eigenvalues are complex, with

W) =w-1, wo(N) <w<2. (4.10)

From the expressions (4.9) and (4.10) it can be seen that |p(w)| is mono-
tonically nondecreasing with respect to |A|. Hence

2
A 2A2
<‘—U—2-+ w4 +1—w) , 0 < w <wp(A),
w—1, wo(A) <w < 2.
The function
wA w2A2
f(w) = T + 4 +1—-w
has the properties f(0) = 1 and
A wA?2 -2

0.

W=+ <
fW =3+ i
The latter follows from
A2(4 — 4w + W?A?) < 4 - 4wA® + WA = (2 - wA?)R

Therefore, the spectral radius described by (4.11) is strictly monotonically
decreasing for 0 < w < wp and strictly monotonically increasing for
wp < w < 2 (see Figure 4.1). Since p[B(0)] = p[B(2)] = 1, we finally
obtain that p[B(w)] < 1 for all 0 < w < 2 and that p[B(w)] assumes its
minimum for w = wy(A) with value p[B(wo(A))] = wo(A) — 1. a

Corollary 4.16 Under the assumptions of Theorem 4.15 the Gauss—Seidel
method converges twice as fast as the Jacobi method.

Proof. From (4.8) we observe that p = A? for w = 1; i.e., we have
p[B(1)] = {p|-D~}(AL + AR)]}*

for the spectral radii of the Gauss—Seidel matrix B(1) and the Jacobi ma-
trix —D~!(AL + Ag). Now the statement follows from the observation that
by the a priori estimate of Theorem 3.48 the number N of iterations re-
quired for a desired accuracy is inversely proportional to the modulus of
the logarithm of the spectral radius; i.e.,

N(Gauss-Seidel) In p[-D (AL + AR)] _ 1
N (Jacobi) - In p[B(1)] 27

and this proves the assertion. O
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p[B(w)]

1 1
1 Wo 2 W

FIGURE 4.1. Spectral radius for SOR

Example 4.17 For the tridiagonal matriz A from Ezample 4.5 we have

N{SOR) =«
N(Jacobi)  4(n+1)

for the optimal relaxation parameter.
Proof. Using the trigonometric addition theorem

ESIHM_}_E SinM:COS——WL sin Tr]k
2 n+1 2 n+1 n+1 n+1

it can be seen that the Jacobi matrix

01
1 01
DA Am =5 PO
1 01
10
corresponding to Example 4.5 has the eigenvalues
Aj :cosn—?I , J=1...,n,
and associated eigenvectors v; with components
Uik :sinn—mj% , k=1,...,n, 7=1,...,n.
Hence,
2

A=p[-D'(A =008 —— 1 —
Pl=D™ (AL + Ap)] = cos Ty ~ 1= o
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and
1 7!'2
From Theorem 4.15 we obtain
2
Wopt = T
1 +sin
n+1
and
1 —sin
+1 27
pIB(Wopt)] = —F— ~ 1 - ——,
T L sin— n+1
n+1
whence 5
T
~ In plBwop)] &~
follows. This concludes the proof. [mi

For example, for n = 30 the optimal SOR method is about forty times
as fast as the Jacobi method. Note that the improvement on the speed
of convergence improves as n increases. The fact that in Example 4.17,
and, more generally, in almost all linear systems arising in the discretiza-
tion of boundary value problems, the optimal relaxation parameter has the
property w > 1 explains why the method is known as the overrelaxation
method.

4.3 Two-Grid Methods

Consider the linear system
Az =y (4.12)

with a nonsingular matrix A, and assume that we already have an approx-
imate solution o available with a residual, or defect,

To ‘=Y — AIL'(),
for which, in general, 7o # 0. Then we try to improve on the accuracy by
writing
T1 = To + 0o (413)

with some correction term dy. Substituting this into (4.12) we obtain that
do has to satisfy the defect correction equation

A(So =To
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in order that x; satisfy (4.12). We observe that the correction term &g will,
in general, be small compared to zo, and therefore it is unnecessary to solve
the defect correction equation exactly. Hence we write

do = approxr

where Az, is some approximation for the inverse A~! of A. Substituting
this into (4.13) we obtain

Ty =9 + Aapprox[y - A(L’o] I AappmxA)"L-O + A;p}proxy (414)

as our new approximate solution to (4.12). This procedure is known as the
defect correction principle.
Repeating this process yields the defect correction iteration defined by

Tys1 =Ty + Apporox[y — Az], v =0,1,2,..., (4.15)

for the solution of (4.12). By Theorem 4.1, the iteration (4.15) converges
to the unique solution = of Az}, [y — Az] = 0, provided that the spectral
radius of the iteration matrix - A} . A is less than one. Since the unique
solution z of Az = y trivially satisfies Aapprox[y — Az] = 0, we then have
convergence of the scheme (4.15) to the unique solution of (4.12). For a
rapid convergence it is desirable that the spectral radius be close to zero,
which will be the case if A; ), .y is a reasonable approximation to A~ For
a more complete introduction to the defect correction principle we refer to
[56].

Here we wish to indicate briefly two applications. Firstly, the defect cor-
rection principle (4.14) can be used to improve on the accuracy of an
approximate solution zg, obtained for example by Gaussian elimination.
Then, in principle, the computation of zy corresponds to some approxima-
tion xo = Ay} 0.y Obtained from an LR decomposition. This means that
evaluating 6y = Az} .o is achieved by applying again the same elimi-
nation algorithm to the defect correction equation. This way, the defect
correction principle provides a simple tool to improve on the accuracy of a
solution to a linear system obtained by elimination.

Secondly, we would like to illustrate the more systematic use of the defect
correction principle for the development of multigrid methods as a powerful
tool for the fast iterative solution of linear systems arising in the discretiza-
tion of differential and integral equations. For the sake of simplicity we will
confine ourselves to the case of two-grid iterations.

The basic idea of two-grid methods is to use the defect correction princi-
ple with the approximate inverse Aappmx for the matrix Agpe of a large lin-
ear system corresponding to a fine approximation grid given simply by the
exact inverse of the matrix Acoarse Of 2 smaller linear system, correspond-
ing to a coarse approximation grid. Of course, a number of mathematical
problems arise in the design of such methods concerning the appropriate
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relation between the fine and coarse grid and the transfer between the two
grids. We will outline some ideas on the structure of two-grid methods by
again considering the simple model problem from Example 2.1 as a typical
case.

Recall that the solution vector U*) € R™ of the linear system

AWy = pk) (4.16)

with the n x n tridiagonal matrix

2 -1
-1 2 -1
Am = L -1 2 -1
2 . - . .
-1 2 -1
-1 2
corresponds to approximate values ugh) ~ u(jh), j = 1,...,n, for the

solution u of the boundary value problem (2.1)—(2.2) at the internal grid
points. Since we want to make use of two different grids in our analysis, we
indicate the dependence on the mesh width

1
n+1

in the matrix A and the solution U". We assume that n is odd because
later we want to choose the coarser grid by doubling the mesh width.
We start from the Jacobi iteration with relaxation

UM, =u® — oD AWy — FW y=0,1,2,...,  (4.17)

as introduced in Definition 4.8. From our analysis in Example 4.17 we
deduce that A®) has the n eigenvalues

4 | ,7wjh .
pj:ﬁs1n2-—2—, j=1,...,n, (4.18)

. . h) .
and associated eigenvectors vg- ) with components

WP =sin(njkh), k=1,...,n, j=1,...,n. (4.19)

Note that by Theorem 3.29, the eigenvectors of the Hermitian matrix AW
form an orthogonal basis for IR" (see Problem 4.18). The v§h), ji=1,...,n,
are also eigenvectors of the Jacobi matrix 7—[D™]~1 A" with eigenvalues

Aj =cos(mjh), j=1,...,n.
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From Theorem 4.9 we observe that w = 1 is the optimal choice for the
Jacobi iteration with relaxation. However, it will turn out that in the con-
text of two-grid methods the damped, or underrelazed, Jacobi method with
0 < w < 1 is more important. This is due to the following observation.
Since the vgh), j =1,...,n, provide a basis for IR", we can represent the
difference between the exact solution U® and the vth iteration U, in the
form

n
U(h) - U,, = Z aj,l,vg-h).

Jj=1

From the fact that
{I- w[D(h)]_lA(h)}vﬁh) = {1 — 2wsin® ﬂ;—h} oM =1,
we derive the recurrence relation
Qi1 = {1 — 2wsin? %ﬁ} aj., j=1,...,n,

for the coefficients a;,,. In particular, if we choose w = 0.5, we have that

wjh .
Qjyt+1 = COS® % aj,, j=1...,n (4.20)
From this we observe that even though convergence of the iterations (4.17)
becomes slower when we decrease w, for w = (0.5 the convergence restricted
to the subspace

W, = span{v%, ceoy U}

of high frequencies is dramatically accelerated, since in this case from (4.20)
we have that
n+1

5

This fact can be expressed by saying that the damped Jacobi iteration is a
smoothing iteration. In the sequel we will consider only the damping factor
w = 0.5.

The slow convergence with respect to low frequencies will now be taken
care of by the defect correction principle through incorporating a so-called
coarse grid correction on the grid with mesh width 2h. For this we need
to transfer vectors corresponding to the fine grid to vectors correspond-
ing to the coarse grid and vice versa. The transfer from the fine grid
to the coarse grid requires a restriction and corresponds to a mapping

R® :R"® » R"T . Note that we only need to consider this mapping for
the interior grid points. Instead of choosing the restriction (R™y); = yax,

1 ,
lojut1] < 3 logul, = .,n.
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k=1,..., "—;—1, for y € IR™ it turns out to be advantageous to also incor-
porate information contained in the odd nodal points of the fine grid by
using the restriction

n—1
2 b

1
(RMy), = 1 lyak—1 + 2y2k + Y2r41), k=1,...,

as illustrated in Figure 4.2.

[
[

NS
e
NS
N
S
)

—
[\
w

FIGURE 4.2. Restriction operator of the two-grid method for n =7

The corresponding matrix is

1
(h) = =
R 4

With the aid of elementary trigonometric manipulations one can establish
the relation

h 2h h 2h ) n-—1
R(h)uj(- ) = c?v; ), R(h)vfllle = —sf-vﬁ ), i=1... 5 (4.21)
between the eigenvectors (4.19) for the fine and the coarse grid (see Problem
4.19). Here we have set

j . jmh ) n—1
cj::cos%, sj:sm—J—Q—, j=1,..., .

The transfer from the coarse grid to the fine grid is called prolongation

and corresponds to a mapping P(P) : R"T — RR". The simplest choice for
P(h) is given by the piecewise linear interpolation (see Chapter 8)

n—1
(P(h)y)Zk = Yk, k= 17"'3 9 5
1 n+1
(PWy)ap_y = 3 lye +ye—1]l,  k=1,..., 5
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for y € H{l;_l, as illustrated in Figure 4.3. The corresponding matrix is
given by P = 2R(L_ Either by direct computation or from (4.21) and
the fact that the matrices P(®) and 2R are adjoint one can establish that
(see Problem 4.19)

-1
P(h)v§2h) = c?vﬁ-h) — s?vfﬁgl_j, i=1,..., n 5 - (4.22)

L ] ] ] J
1 2 3

FIGURE 4.3. Prolongation operator of the two-grid method for n =7

Now we are in a position to use the n x n matrix P(M[ACM]-1R(A) a5
the coarse-grid correction. Computing P")[A(M]~1R(My corresponds to

first restricting the vector y € IR"™ to Ry € IRnT_l, then solving the

2=l x 2=l gystem APz = R(My by an elimination method, and finally

prolonging the solution z € R*T to Pz € R™. Combining this coarse-
grid correction with IV steps of the damped Jacobi iteration in the sense of
(4.14) now yields one step of the two-grid iteration scheme

Upsr = In(U,, F®)) — pB[AEMN) 71 R AM) gy (U, FP) — F®),

where Jn(U,, F®") denotes the result of N steps of the damped Jacobi
iterations (4.17) with starting element U,. Obviously, the iteration matrix
corresponding to this two-grid method is given by

N
Tn = {I — PM[ACW]1R(K) 4(h)y {I - -;- [D(")]‘IA(")} . (4.23)

For an investigation of the convergence for our two-grid iteration scheme
we need to determine the spectral radius of Tn. For simplicity we confine
ourselves to the case where V = 1; i.e., one step of the damped Jacobi itera-
tion on the fine grid alternates with a coarse-grid correction by elimination
on the coarse grid. We set T} = T.

Theorem 4.18 For the spectral radius of T we have that p(T) = 0.5; i.e.,
the two-grid iterations converge.



74 4. TIterative Methods for Linear Systems

Proof. We note that from (4.18) and (4.19), with h replaced by 2h, we have
that

2h 1 h) 4
A(Qh)v§ ) = 3 sin’ (mjh) v; (2h) = st v§~2h),
whence )
h n-1
Aewen o B en gy
[ ] U] 4C ? .7 ) bl 2 9

follows. From this, using (4.20)-(4.22) and R h)v(h) =0, it can be derived

that " 0
To! sof 1 1 .
( Tvp {1 JI\N1 1 v

forj=1,...,2% and

Tug’; - uﬁ?_ . (4.25)
Since the matrix
11
@={11 )

has the eigenvalues 0 and 2, from (4.24) and (4.25) it can be seen that the
matrix T has the eigenvalues

1 . . . n+1
23?c?=§ sin®wjh, j=1,..., 7
and the eigenvalue zero of multiplicity 25=. This implies the assertion on
the spectral radius of T'. m|

Theorem 4.18 shows that the two-grid method is a very fast iteration. As
compared to the classical Jacobi and Gauss—Seidel methods and also to the
SOR method with optimal relaxation parameter, it decreases the spectral
radius from a value close to one to one-half, which causes a substantial
increase in the speed of convergence. However, for practical computations
it has the disadvantage that in each step the solution of a system with half
the number of unknows is required.

This drawback of the two-grid method is remedied by the multigrid
method. Whereas for the two-grid method as described above only two
grids are used, the multigrid method uses M > 2 different grids with mesh
widths h, = 2*h,p = 1,..., M, obtained from the mesh width h on the
finest grid. The multigrid method is defined recursively. The method for
M + 1 grids performs one or several steps of the damped Jacobi iteration
on the finest grid with mesh width h and uses as approximate inverse for
the defect correction one or several steps of the multigrid iteration on the
M grids with mesh widths 2h,4h, ..., 2Mh. To be more explicit, the three-
grid method uses one or several steps of the two-grid method as the defect
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correction of the damped Jacobi iteration on the finest grid; the four-grid
method uses one or several steps of the three-grid method as the defect
correction; and so on. To describe further details of the multigrid method,
in particular showing that the computational cost of one step of a multigrid
iteration is proportional to the cost of the Jacobi iterations on the finest
grid provided that the coarsest grid is coarse enough, is beyond the aim of
this introduction. For a comprehensive study we refer to [8, 26, 29, 63].

Problems

4.1 Consider the solution of the linear system
5z — 2x3 = —1
—4z; + 8z2 + 2z3 = 18
S5z + 9z3 = 37

by the Jacobi method. Give an estimate on the number of iterations needed to
ensure that ||z, — z|lco < 1073 if the iteration is started with zo = (0,0,0)7.

4.2 Write a computer program for the Jacobi method, the Gauss—Seidel method,
and the SOR method and test it for various examples.

4.3 Show that a matrix A has spectral radius p(A) < 1 if and only if it satisfies
lim, o0 AY = 0.

4.4 Prove that the Jacobi method converges for strictly column-diagonally dom-
inant matrices (compare (4.5)).

4.5 Show that an n x n matrix A is reducible if and only if there exists an n x n
permutation matrix P such that

_ Aqq 0
P'AP =
( A1 Aa )’

where Ay is a kx k matrix and Az; is an (n—k)x(n—k) matrix with 1 < k <n-—1.

4.6 Show that the matrix A from Example 4.5 is irreducible and weakly row-

diagonally dominant.
1 o «
A=| a 1 a |.
a a 1

Show that for 1 < 2a < 2 the Gauss—Seidel method is convergent and the Jacobi
method is not.

4.7 Let
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1 -2 2
A= -1 1 -1
-2 -2 1

show that the Jacobi method is convergent and the Gauss-Seidel method is not.

21 -1
A= -2 2 -2
1 1 2

show that the Gauss-Seidel method is convergent and the Jacobi method is not.

4.8 For the matrix

4.9 For the matrix

4.10 Show that the matrix
2 0 -1 -1
0 2 -1 -1
-1 -1 2 0
-1 -1 0 2

A=

is irreducible and that the Jacobi method is not convergent.

4.11 Show that the iteration matrix of the Gauss—Seidel method has eigenvalue
zero.

4.12 Consider the variant of the Gauss—Seidel iteration where the components
are iterated from the nth component backward to the first component. What is
the iteration matrix of this method? Obtain a symmetric method by alternating
one step of the forward Gauss-Seidel method and one step of the backward
Gauss—Seidel method. What is the iteration matrix of this method?

4.13 Show that the Jacobi iteration converges for a matrix A if and only if it
converges for the transposed matrix AT.

4.14 Show that the matrix A of Example 2.2 is irreducible, positive definite,
and weakly row-diagonally dominant.

4.15 Compute the eigenvalues of the Jacobi iteration matrix for the matrix A
of Example 2.2.

4.16 Let A = (ajx) be a nonnegative n X n matrix, i.e., a;5 >0, 5,k =1,...,n,
and let p(A) < 1. Show that I — A is nonsingular and (I ~ A)~' is nonnegative.

4.17 Give a counterexample to show that the Jacobi method, in general, does
not converge for positive definite matrices (see Theorem 4.12).

4.18 Show by direct computations that the eigenvectors given by (4.19) are
orthogonal.

4.19 Prove the relations (4.21), (4.22), (4.24), and (4.25).
4.20 Show that
p(Tn) < max [t(1 - )" + (1 - 1)"¢]
o<t<y

for the two-grid iteration matrix with N damped Jacobi iterations at each step.
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[1l-Conditioned Linear Systems

For problems in mathematical physics Hadamard [31] postulated three re-
quirements: A solution should exist, the solution should be unique, and the
solution should depend continuously on the data. The third postulate is
motivated by the fact that in general, in applications the data will be mea-
sured quantities and therefore always contaminated by errors. A problem
satisfying all three requirements is called well-posed. Otherwise, it is called
tll-posed. If A : X — Y is a bounded linear operator mapping a normed
space X into a normed space Y, then the equation Az = y is well-posed
if A is bijective and the inverse operator A™! : Y — X is bounded (see
Theorem 3.24). Since the inverse of a linear operator again is linear, in
the case of finite-dimensional spaces X and Y, by Theorem 3.26 bijectivity
of A implies boundedness of the inverse operator. Hence, in the sense of
Hadamard, nonsingular linear systems are well-posed.

However, since one wants to make sure that small errors in the data
of a linear system will cause only small errors in the solution, there is an
additional need for a measure of the degree of well-posedness, or stability.
Such a measure is provided through the notion of the condition number,
which we will introduce in this chapter. This will enable us to distinguish
between well-conditioned and ill-conditioned linear systems. For the latter,
small errors in the data may cause large errors in the solution, and therefore
their numerical solution requires special care.

Hence, we will continue the chapter with a brief discussion of the singular
value cutoff and the Tikhonov regularization as efficient means to deal with
ill-conditioned linear systems. Our analysis will be based on the singular
value decomposition and will include the introduction of the pseudo-inverse,
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or Moore-Penrose inverse. For an extension of these ideas to ill-posed linear
operator equations in infinite-dimensional spaces we refer to [14, 22, 28, 37,
39, 43].

5.1 Condition Number

We begin with an example of an ill-conditioned linear system arising through
a simple least squares problem.

Example 5.1 We consider the best approximation of a given continuous
function f : [0,1] = R by a polynomial

n
p(x) =Y axat
k=0

of degree n in the least squares sense, i.e., with respect to the Ls norm.
Using the monomials z — =¥, k = 0,1,...,n, as a basis of the subspace
P, C C[0,1] of polynomials of degree less than or equal to n (see Theorem
8.2), from Corollary 3.53 and the integrals

o 1
/ Hrkdr = ————

it follows that the coefficients ap,...,a, of the best approximation are
uniquely determined by the normal equations

n 1 1 ] )
Zmak:/o fl@)x? dz, j=0,...,n. (5.1)
k=0

In the special case .

1+z

f(z) =

we have the right-hand sides

jo: Z, .
J 0 1+.1: ’ ’

In particular, rg =In2, and from the geometric sum

o 1—-(-1)lz? .
—1)i gttt = X 2 T =1,...,n,
;( )z iT. 0 J=Lom

we deduce that

rj=(-1) {1n2+i(—1)"1—_}, i=1...,n

=1
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Therefore, the solution of (5.1) is of the form
ajzﬂjln2+'yj, j=0,...,n,

with rational numbers 3; and +y;. Table 5.1 gives the exact solution of the
linear system (5.1) obtained by Gaussian elimination carried out in terms of
rational numbers to compute the coefficients 3; and -y; and then inserting
In2 with ten-decimal-digit accuracy. The results indicate convergence of
the coefficients to the coefficients oy, = (—1)* of the Taylor series for f.

TABLE 5.1. Exact solution of the linear system (5.1)

n Qo (03] (8] (0 %3 (877 (273 (073
1109314 | —0.4766

2 1 0.9860 | —0.8040 | 0.3274

310.9972 | —0.9389 | 0.6645 | —0.2247

4109994 | —0.9830 | 0.8630 | —0.5334 | 0.1543

51 0.9999 | —0.9956 | 0.9512 | —0.7688 | 0.4191 | —0.1059

6 [ 0.9999 | —0.9989 | 0.9843 | —0.9011 | 0.6672 | —0.3242 { 0.0727

However, if we take as right-hand sides the values obtained for r; by using
In 2 with five-decimal-digit accuracy, then Gaussian elimination yields the
results of Table 5.2.

TABLE 5.2. Numerical solution of the linear system (5.1)

n Qg (83] (653 Qs Q4 (87 (8733
11093 —-047

21098 ] —-0.80 0.32

31099 —-095 0.70 -0.24

41 1.00 —-1.16 1.63 —1.69 0.72

51 1.06 —2.74 12.68 | -31.16 33.87 | -13.25

61139 —16.58 | 151.09 | —584.79 | 1071.93 | —926.75 | 304.49

Despite the fact that the changes in the right-hand sides are less than
0.000005, we obtain drastic changes in the solution. Therefore, qualitatively
we may say that our linear system provides an example of an ill-conditioned
system. The matrix of this example is known as the Hilbert matriz. 0

For a quantitative analysis of the phenomenon illustrated by Example
5.1 we introduce the concept of the condition number.
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Definition 5.2 Let X and Y be normed spaces and let A: X - Y be a
bounded linear operator with a bounded inverse A~':Y — X. Then

cond(A) := ||A||||A7]|
is called the condition number of A.

Clearly, cond(A) depends on the chosen norm. Because of (see Remark
3.25)
1= |l7]| = [|JAAH]| < lAlHIATY

we always have cond(A) > 1. Definition 5.2, in particular, includes the
condition number of a nonsingular n X n matrix A. Here, in the case where
both the domain and range are given the £, norm for p = 1,2, 00 we will
write cond,(A).

Theorem 5.3 Let X andY be Banach spaces, let A: X =Y be a bounded
linear operator with a bounded inverse A~ :Y — X andlet A% : X -5 Y
be a bounded linear operator such that ||A=Y||||A% — A|| < 1. Assume that
x and z° are solutions of the equations

Az =y (5.2)
and
Al =40, (5.3)
respectively. Then
Jo? — ol . cond(4) { Iy’ ~ gl | [14° - 4] )
T 1 onay LA AT T

Proof. Writing A% = A[I + A~*(A% — A)], by Theorem 3.48 we observe
that the inverse operator [A°]™1 = [I + A71(A4% — A)]"1A~! exists and is
bounded by

14~
NA=H1A° — Al

4% < <= (5.4)
From (5.2) and (5.3) we find that
A@ —2) =y’ —y— (4 - A)g,

whence
2 —z=[A Ny’ —y - (4° - A)z}

follows. Now we can estimate

lle® — 2l < AT IHIlY® — yll + 1A° — Al <1}
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and insert (5.4) to obtain

ll2° — 2| cond(A) { ly® — il , 114° - Al } ‘
flzll = 1=l A-14° = Al U4l flAll
From this the assertion follows with the aid of ||A]| ||z{| > |ly||- ad

Theorem 5.3 shows that the condition number may serve as a measure of
stability for linear operator equations and, in particular, for linear systems.
A linear system with a small condition number is stable, whereas a large
condition number indicates instability. We call a linear system with a small
condition number well-conditioned. Otherwise, it is called ill-conditioned.

By Theorem 3.31, the condition number of a Hermitian matrix A in the
Euclidean norm is given by

_ Pl
‘Aminl ’

where Apax and A\min denote the eigenvalues of A with largest and smallest
modulus, respectively. Table 5.3 is obtained by employing the QR algorithm
(see Section 7.4) for the computation of matrix eigenvalues. It illustrates
quantitatively the degree of instability, i.e., the ill-conditionedness of the
linear system from Example 5.1.

condz(A)

TABLE 5.3. Condition number for the linear system (5.1)

n 2 3 4 ) 6
Amax 1.27 1.41 1.50 1.57 1.62
Amin | 6.57-1072 | 2.69-107% | 9.67-107° | 3.29-107¢ | 1.08 - 10~
condy 19.3 5.24 - 10? 1.55-10% 4.77-10° 1.50 - 107

5.2 Singular Value Decomposition

In the sequel we wish to introduce some of the basic concepts for the
approximate solution of ill-conditioned linear systems. Qur approach will
be based on the singular value decomposition of a matrix A, which need
not be a square matrix.

For each m x n matrix A, representing an operator A : C* — C™, the
n X n matrix A*A is Hermitian and positive semidefinite (see Problem 5.9).
Therefore, the eigenvalues of A* A are real and nonnegative (see Theorem
3.29). The nonnegative square roots of these eigenvalues are called the
singular values of A.

For the remainder of this chapter, by (-,:) we denote the Euclidean
scalar product in €". For an m x n matrix A of rank r, the nullspace



82 5. IlIl-Conditioned Linear Systems
N(A) = {z € C" : Az = 0} has dimension dim N(A) = n — r. We note
that A*Au = 0 implies that

[|Aulls = (Au, Au) = (u, A* Au) = 0;

i.e., the nullspaces of A and A* A coincide. Hence dim N(A4*A) = n—r, and
therefore A has exactly r positive singular values p (counted according to
their geometric multiplicity, i.e., according to the dimension of the nullspace
of u2I — A*A).

Theorem 5.4 Let A be an m X n matriz of rank r. Then there exist non-
negative numbers

M2 o> 2 e >y == =0
and orthonormal vectors uy,...,u, € C" and vy,...,v, € C™ such that

Auj = pyuj,  A'vy=piuy, j=1,...,T,
Auj :0’ j:7'+1,...,’l'l, (55)

A*w; =0, j=r+1,...,m.
For each £ € C" we have the singular value decomposition
T
Az = Z i (T, uj) v;. (5.6)
j=1

Each system (p;,u;,v;) with these properties is called a singular system of
the matriz A.

Proof. The Hermitian and semipositive definite matrix A*A of rank r has
n orthonormal eigenvectors us, ..., u, with nonnegative eigenvalues

A*Auj = pduy, j=1,...,n, (5.7)

which we may assume to be ordered according to p; > pg > --- > pu, >0
and pr41 = = p, = 0. We define

1 .
Uj :—_—;;AU]', j=1,...,r

Then, using (5.7) we have
1 1
Vi, V) = — Au-,Auk = - u~,A*Auk = 0k, j,k=1,... T,
( WAl ) ﬂj”k ( 7 ) l‘juk ( J ) 7 ’
where 6;; = 1 for k = j, and d;z = 0 for k # j. Further, we compute that

A*vj = pjuj, j = 1,...,r, and hence the first line of (5.5) is proven. The
second line of (5.5) is a consequence of N(A) = N(A*A).
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If r < m, by the Gram-Schmidt orthogonalization procedure from The-
orem 3.18 we can extend vy,...,v, to an orthonormal basis vy,...,v, of
C™. Since A* has rank r, we have dim N(A*) = m — r. From this we can
conclude the third line of (5.5).

Since the u,,...,u, form an orthonormal basis of C", we can represent
n
T = Z(.’L‘, Uj) Uy,
j=1
and (5.6) follows by applying A and observing (5.5). a

Clearly, we can rewrite the equations (5.5) in the form

A=VDU~*, (5.8)
where U = (ui,...,u,) and V = (v1,...,v,) are unitary n x n and m x m
matrices, respectively, and where D is an m xn diagonal matrix with entries
d;j; = p; for j =1,...,7 and dj;, = 0 otherwise.

Theorem 5.5 Let A be an m x n matriz of rank r with singular system
(15, u;,vj). The linear system

Az =y (5.9)
is solvable if and only if
(y,2) =0 (5.10)
for all z € €™ with A*z = 0. In this case a solution of (5.9) is given by
"1
To = Z — (y,v;) u;. (5.11)
j=1

Proof. Let z be a solution of (5.9) and let A*2 = 0. Then
(y,2) = (Az,2) = (2,A4"2) =0

This implies the necessity of condition (5.10) for the solvability of (5.9).
Conversely, assume that (5.10) is satisfied. In terms of the orthonormal

basis vy, ..., v, of C™ condition (5.10) implies that
Y= Z(y,vj)vja (512)
j=1

since A*v; = 0for j =r+1,...,m. For the vector z¢ defined by (5.11) we
have that

-
Axg = Z(y,vj) v;.
j=1
In view of (5.12) this implies that Azy = y, and the proof is complete. O
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Since N(A) = span{ur41,...,u,}, the vector zo defined by (5.11) has
the property
(z0,2) =0

for all z € N(A). In the case where equation (5.9) has more than one
solution, the general solution is obtained from (5.11) by adding an arbitrary
solution z of the homogeneous equation Az = 0. Then from

llzo + I3 = l|zoll3 + 2 Re(zo, z) + [l2ll3 = llzoll3 + ll[l3

we observe that (5.11) represents the uniquely determined solution of (5.9)
with minimal Euclidean norm.
In the case where equation (5.9) has no solution, we represent

m
y=> (v;)v;
Jj=1
in terms of the orthonormal basis vy, ..., v,,. Let 2o be given by (5.11) and

let £ € C™ be arbitrary. Then
(Az — Azg, Azg —y) =0,

since Az — Azg € span{vy,...,v,} and Azo—y € span{v,41,...,VUm}. This
implies
|4z - ylI3 = || Az — Azo|l3 + ||Azo — yll3,

whence (5.11) represents a least squares solution of (5.9) (see Example 2.4).
Again, it can be shown that (5.11) is the uniquely determined least squares
solution of (5.9) with minimal Euclidean norm (see Problem 5.11).

Hence, (5.11) defines a linear operator A" : C™ — €™ by

T

1
Aly:=Y" ” (y,vj)uj, yecC™, (5.13)

i=1"7

which of course also allows a representation by an n x m matrix. Due to
the properties of Aty as discussed above, this operator or matrix is known
as the pseudo-inverse or Moore—Penrose inverse of A (see [7]). It was first
introduced by Moore in 1920 and independently rediscovered by Penrose
in 1955. For an alternative introduction of A see Problem 5.12.

By Theorem 3.31 the condition number of a nonsingular matrix with
respect to the Euclidean norm is given by the quotient of the largest and
smallest singular value. Theorem 5.5 demonstrates the influence of small
singular values on the condition of the matrix A. If for some § € C we
perturb the right-hand side by setting y° = y + dv;, we obtain a perturbed
solution % = z + du;/p;. Hence, the ratio ||z° — z||2/|ly® — yll2 = 1/p;
becomes large if A possesses small singular values.
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This observation suggests stabilizing an ill-conditioned linear system by
damping or filtering out the influence of the factor 1/u; in the solution
formula (5.11). In the so-called spectral cutoff, the terms in (5.11) cor-
responding to small singular values are simply neglected. Of course, this
requires some strategy on how to determine the number of terms being
summed up in (5.11). A very effective strategy is provided by the following
discrepancy principle. If the right-hand side y of a linear system is known
only within an error level § then it is quite natural to require Az = y to be
satisfied only up to the same accuracy &, since it does not make much sense
to try to satisfy the linear system more accurately than the right-hand side
is known. To describe the discrepancy principle more precisely, given an
erroneous right-hand side y® with known error level ||y® — y||2 < 6, in the
spectral cutoff the solution z = Aty of Az = y is approximated by

P
1
Tp = Z w (%, v;) u; (5.14)

=1 J

for some 0 < p < r. For the following theorem we have to assume that
Az = y is solvable.

Theorem 5.6 Let A be an m x n matriz with singular system (p;,u;,v;)
and let y € A(C"), y® € C™ satisfy

g’ —yllz <8 <11y’
for 6 > 0. Then there exists a smallest integer p = p(6) such that
Az, — 3’} < 6. (5.15)

This discrecancy principle for the spectral cutoff is regular in the sense that
if the error level & tends to zero, then

z, > Aly, § 0. (5.16)
Proof. Consider the function F: {0,1,...,r} = IR defined by
F(p) = ||Azp —y°|I3 - 6.

In terms of the singular system, we can write

m
Fp)= Y 16" u)° - & (5.17)
J=p+1
Hence, F' is monotonically nonincreasing with F(0) = ||y’||?> — 6% > 0 and
F(r) = —4§% < 0 if the rank r of A is equal to m. If r < m, then using

(y,v;) =0,j7=r+1,...,m (see the proof of Theorem 5.5), we have

Fry= > |0’ -y -8 <’ —uld - 8 <0.
Jj=r+1
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Therefore, there exists a smallest integer p = p(é) such that F(p) < 0. Note
that p < r. In actual computations, this stopping parameter p is determined
by terminating the sum (5.14) when the right-hand side of (5.17) becomes
smaller or equal to zero for the first time.

In order to show the convergence (5.16), we note that ||Az, — y%||» < &
implies

lAzp — yllz < lAzp = 4’1l + lly° — yll2 <20 50, &0,

i.e., Az, — y, § = 0. From this, since At Av = v for allv € span{vy,...,v,},
we finally can conclude that =, — Afy, § = 0. 0

The spectral cutoff method requires the full solution of the eigenvalue
problem for the matrix A* A, which we will describe in Chapter 7. As an
alternative, in the following section we shall describe the Tikhonov regu-
larization, which can be performed without explicitly knowing the singular
value decomposition.

5.3 Tikhonov Regularization

Tikhonov regularization as introduced independently by Phillips in 1962
and Tikhonov 1963 is obtained from (5.11) by multiplying 1/p; by the
damping factor
2
K
a+ u? ’

where « is some positive regularization parameter.

Theorem 5.7 Let A be an m X n matriz of rank r with singular system
(Bj,u;,v;) and let o > 0. Then for each y € C™ the linear system

o, + A*Az, = A%y (5.18)

1s uniquely solvable, and the solution is given by

r

2= s (y,0)) ;. (5.19)

=1

Proof. For a > 0 the matrix ol + A*A is positive definite and therefore
nonsingular. Since
auj + A*Auj = (a + pd)u;,

a singular system for the matrix al + A*A is given by (a + u?,uj,uj),
j=1,...,n. Now the assertion follows from Theorem 5.5 with the aid of
(A*y,u;) = (y, Au;) and using (5.5). a
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Corollary 5.8 Under the assumptions of Theorem 5.7 we have conver-

gence:
lim (o + A*A)"1A*y = Aly.

a—0

Proof. This is obvious from (5.13) and (5.19). o

Before we proceed with a discussion on how to choose the regularization
parameter «, we give an interpretation of Tikhonov regularization as a
penalized least squares method.

Theorem 5.9 Let A be an m x n matriz and let a > 0. Then for each
y € C™ there exists a unique T, € C" such that

1420~ yl}3 + alleall = inf {142~y +allelB}.  (5.20)

The minimizing vector x, is given by the unique solution of the linear
system (5.18).

Proof. (Compare to the proof of Theorem 3.51.) We first note the relation

1Az — y|f + allzl} = [|Aza — ylIf + allzall3
+2Re(z — zq,az, + A* Az, — A*y) (5.21)

+lAz - Azall3 + allz — zall3,

which is valid for all z,z, € C". From this it is obvious that the solution
T, of (5.18) satisfies (5.20).
Conversely, let z, be a solution of (5.20) and assume that

oty + A*Az, # A'y.

Then, setting z := axy + A* Az, — A*y, for © := z, — 2z with € € R from
(5.21) we have

1Az — yll} + ellz]l; = [|Aza — ylI3 + al|zall; — 2¢a + €%,

where
a:=|zllf and b:= (A2} + allzll}

are both positive. By choosing ¢ = a/b we obtain
|4z — ylI3 + ellzll3 < l|Aza — ylI3 + allzl3,
which contradicts (5.20). O
The interpretation of Tikhonov regularization through the above Theo-

rem 5.9 indicates that it keeps the residual || Az, — y||2 small and stabilizes
by preventing z, from becoming large through the penalty term al|z,||3.
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From the proof of Theorem 5.7 we know that the eigenvalues of the
Hermitian matrix o + A*A are given by a + u?, j =1,...,n. Hence by
Theorem 3.27 we have that

0t il

conds (af + A*A) = ar e S .
By

, 0<a<ud. (5.22)

Therefore stability of the linear system (5.18) requires the regularization
parameter « to be fairly large. On the other hand, in order to keep the
system (5.18) reasonably close to the original system Az = y, we expect
that a needs to be small. This observation is made more precise through the
following considerations on the error occurring in Tikhonov regularization.

error 4

Etota.l

Eapprox

Edata

>
>

a
FIGURE 5.1. Total error for Tikhonov regularization

Given an erroneous right-hand side y® with error level ||y® — yl|2 < 4, the
Tikhonov regularization approximates the solution z = Ay of Az =y by
the solution z, of the regularized linear system

az, + A* Az, = A%y, (5.23)
Then, for the total error, writing
To —a = (al + A*A) A (y? —y) + (al + A" A)7 1A%y — Aly,
by the triangle inequality we have the estimate
Iza = zll2 < [l(ad + A% A) " A%l 6 + ||(al + A*A) 7' A%y — Aly[,.
This decomposition shows that the total error consists of two parts:
Eiotal < Egata + Eapprox-

The first term, with the aid of Theorem 3.31, can be estimated by

_ * —1 A% p'T
Egata = ||[(aI + A*A)71A™||26 > a2 J.
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It reflects the influence of the incorrect data and, for fixed §, becomes large
as a — 0, if the smallest positive singular value y, is close to zero (see also
Problem 5.16). The second term,

Eapprox = [|(aI + A*A)"1 A%y — Aly||,

describes the approximation error due to the replacement of Az = y by the
regularized equation (5.23), and by Corollary 5.8, it goes to zero as a — 0.
This error behavior is illustrated in Figure 5.1.

On one hand, in view of (5.22) the stability of the system requires a large
regularization parameter o to keep Eyat, small, i.e., to keep the influence
of the data error ||y’ —y||2 small. On the other hand, keeping Eapprox small
asks for a small parameter a.

Obviously, the choice of the parameter o has to be made through a
compromise between accuracy and stability. An efficient strategy to achieve
this is again provided by the discrepancy principle. In the following theorem
we need to assume that Ax = y is solvable.

Theorem 5.10 Let A be an m x n matriz and let y € A(C™), y* € C™
satisfy
lly’ = yll2 <6 < lly°]l2

for & > 0. Then there exists a unique o = a(8) > O such that the unique
solution x, of (5.23) satisfies

[ Azo = y°ll2 = 6. (5.24)

This discrecancy principle for Tikhonov regularization is regular in the
sense that if the error level § tends to zero, then

zq = Aly, 0. (5.25)
Proof. We have to show that the function F : (0,00) — IR defined by
Fl(a) := || Aza — (13 ~ 6°
has a unique zero. In terms of a singular system, from the representation
(5.19) we find that

m 2
Fle) =3 ooy 10wl =

=1

Therefore, F is continuous and strictly monotonically increasing with the
limits F(a) - =42 < 0,a = 0, and F(a) — |[¥°]|2 — 6% > 0, a = .
Hence, F" has exactly one zero a = a(9).

Note that the condition |Jy® — y||2 < & < ||y’||2 implies that y # 0. Using
(5.23), (5.24), and the triangle inequality we can estimate

Iyl = & = lly°ll2 — lAza —3°ll2 < l|Azall2
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and
al|Azalz = |AA*(¥° — Aza)|l2 < [JAA®||20.

Combining these two inequalities and using ||y®||2 > ||y||2 — d yields

o [|AA*||2 0 .
~ |lylla — 26

This implies that o — 0, § — 0. Now the convergence (5.25) follows from
the representations (5. 13) for ATy and (5.19) for z, (with y replaced by
y%) and the fact that ||y — y|l2 = 0, § = 0.

In practice, of course, one does not need to determine the regularization
parameter satisfying (5.24) exactly. Usually the following strategy will be
sufficient: Choose some moderately sized a and then keep decreasing a by
a constant factor v, say v = 0.5, until F(a) becomes negative.

In order to illustrate that Tikhonov regularization works, Table 5.4 gives
some numerical results for the linear system of Example 5.1 with the erro-
neous right-hand side generated by using In 2 ~ 0.69315 and choosing the
regularizing parameter @ = 107!° (without attempting to use Theorem
5.10).

TABLE 5.4. Regularized solution of the linear system (5.1)

n (o 7)) a Qa2 Qs (6 7] Qs Qg
1] 0.9315 | —0.4767

2 | 0.9862 | —0.8052 | 0.3285

3 | 0.9987 | —0.9546 | 0.7021 | —0.2491

4] 1.0015 | —1.0193 | 1.0154 | —0.7605 0.2644

5 (0.9992 | —0.9659 | 0.7236 | —0.1458 | —0.2838 0.1735

6 | 0.9995 | —0.9618 | 0.6564 0.0254 | —0.2818 | —0.1512 | 0.2166
Problems

5.1 For the condition number of linear operators show that
cond(AB) < cond(A) cond(B).
5.2 Let A be an n x n matrix and @ be a unitary n x n matrix. Show that
condz(QA) = condz(A)

and
condz (A" A) > conda(A).

5.3 Determine condz(A) for the matrix A of Example 2.1 and discuss its be-
havior for large n.
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5.4 Find the inverse of the matrix

5 7 3
A= 7 11 2
3 2 6

and find the condition numbers cond,(A) for p = 1,2, c0.

5.5 Find the inverse of the matrix

10 1 4 0

and find the condition numbers cond,(A) for p = 1,2, c0.

5.6 Calculate condo(A) for the matrix

1 1 1
A= 1 10 100 .
1 100 10000
Show that one can improve the condition of a matrix by scaling through calcu-
lating cond (DA) where D is the diagonal matrix
D = diag(1/3,1/111,1/10101).

5.7 Let A = (a;jx) be an n x n matrix satisfying

n
Z|a,»k{=1, j=1,...,n
k=1

Show that
condeo (A) < conde (DA)

for all n x n diagonal matrices D (see Problem 5.6).
5.8 For a nonsingular matrix A show that

1

1 . o
cond(A) ~ A min{||B]| : A+ B is singular}.

This indicates that if a nonsingular matrix has a large condition number, it is
close to a singular matrix.

5.9 Show that for an m x n matrix A the n X n matrix A* A is Hermitian and
positive semidefinite.

5.10 Find the singular value decomposition of

1 0 11
A= 1 0 -1 0 ).
11 01
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5.11 Show that Aty is the least squares solution of Az = y with minimal norm.

5.12 Show that the pseudo-inverse A is uniquely determined by the properties
AAY = (441, ATA=(A4)", AAtA=4, A'AA' = Al

Express the pseudo-inverse in terms of the decomposition (5.8).

5.13 For the pseudo-inverse show that (Af)! = 4 and (47)" = (4")".

5.14 Give an example to show that in general, (AB)" # Bt AT

5.15 What is the pseudo-inverse of A : €* — C™ given by Az = (z,a)b with
a€C™andbeC"?

5.16 For an m x n matrix show that

(el + A*A)"TA*||2 <

8-

for a > 0.

5.17 Give an alternative proof of Theorem 5.9 by using the necessary and suf-
ficient conditions for the minimum of a function of n variables.

5.18 Let X and Y be finite-dimensional pre-Hilbert spaces and let A: X - Y
be a linear operator. Show that there exists a uniquely determined linear operator
A* :Y — X with the property

(Az,y)y = (z,A"y)x

for all z € X and y € Y. Use this result to formulate and prove a generalization
of Theorem 5.9 for the minimization of

4z — il + ook
5.19 Show that
(@y) =Y @G + Y _ (@5 — j-1)(F = Fi-1)
j=0 i=1

defines a scalar product on C". Discuss its use in Tikhonov regularization as
indicated in Problem 5.18, where in addition to large components of the solution
vector oscillations between consecutive components are also penalized.

5.20 Show that A : C[0,1] — C]0, 1] defined by

(Af)(z) = / fw)dy, ze1]
0

is a bounded linear operator that does not have a bounded inverse; i.e., show
that differentiation is an ill-posed problem.
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[terative Methods for
Nonlinear Systems

In this chapter we will study the solution of systems of nonlinear equa-
tions. As opposed to linear equations, no explicit solution techniques are,
in general, available for nonlinear equations, and hence their solution com-
pletely relies on iterative methods. In the first section we shall begin with
the application of the Banach fixed point theorem for systems of nonlin-
ear equations with one or several variables. Given the fact that iterative
techniques have a long history in mathematics, the significance of Banach’s
fixed point theorem originates from its unified approach, covering a wide
variety of different successive approximation methods.

In the second section, we will continue with the study of Newton’s it-
eration method for finding zeros of functions of one or several variables.
This iteration scheme is attributed to Newton, since in 1669 he developed
a solution method for cubic equations by linearization that may be viewed
as a precursor of what is now known as Newton iteration. He also used this
method for approximately solving Kepler’s equations for planetary motion.

In the concluding two sections of this chapter we will consider the appli-
cation of Newton’s method for finding zeros of polynomials and its modifi-
cation into the more recently developed Levenberg-Marquardt scheme for
solving the least squares problem.

Given the vast number of iterative methods available for nonlinear equa-
tions, we will confine our presentation to describing the fundamental ideas
and will not aim at a complete treatment of the subject.
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6.1 Successive Approximations

In this section, we will consider systems of n nonlinear equations for n
unknowns of the form

f(z) ==,

where z = (z1,...,2,)7 and f(z) = (fi(T1,---,Zn),-- s fu(@1,- -, 20)T.
We begin by studying the case of a single nonlinear equation with one
unknown. Obviously, in one dimension, solving f(z) = z geometrically
corresponds to determining the intersection of the graph of the function f
with the straight line described by the function z — z.

Theorem 6.1 Let D C R be a closed interval and let f : D — D be a
continuously differentiable function with the property

g := sup |f'(z)| < 1.
zeD

‘IT'hen the equation f(x) = x has a unique solution z € D, and the successive
approzimations
Ty+41 1= f(l?,,), I/=O,1,2,...,

with arbitrary xo € D converge to this solution. We have the a priori error
estimate

q
o, —al < 2 o1 —
and the a posteriori error estimate
'IL',,—-’L'| < 1—g¢ va—xu—l
for all v € IN.
Proof. Equipped with the norm || - || = |- | the space IR is complete. By the

mean value theorem, for z,y € D with x < y, we have that

f@)—fly) ==z -y

for some intermediate point £ € (z,y). Hence
|f(z) — fW)l < sup IOl |z -yl = glz —yl,

which is also valid for z,y € D with x > y. Therefore, f is a contraction,
and the assertion follows from the Banach fixed point Theorem 3.46. O

Figure 6.1 illustrates graphically the successive approximations for func-
tions f with positive and negative slope, respectively, of absolute value
less than one. Note that the sequence (z,) converges to the fixed point
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monotonically if f has positive slope and that it converges with values al-
ternating above and below the fixed point if f has negative slope. In both
cases the slope of the function f has absolute value less than one in a
neighborhood of the fixed point. From drawing a corresponding figure for
a function with a slope of absolute value greater than one it can be seen
that the corresponding iteration will move away from the fixed point (see
Problem 6.2).

A r 3
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r3To
FIGURE 6.1. Fixed point iteration

The following theorem states that for a fixed point x with |f'(z)| < 1 we
always can find starting points xo ensuring convergence of the successive
approximations.

Theorem 6.2 Let x be a fized point of a continuously differentiable func-
tion f such that |f'(z)| < 1. Then the method of successive approzimations
Zyt1 = f(z,) is locally convergent; i.e., there exists a neighborhood B of
the fized point = such that the successive approzimations converge to x for
all o € B.

Proof. Since f' is continuous and |f'(z)| < 1, there exist constants 0 < ¢ < 1
and § > 0 such that |f'(y)] < g for ally € B := [z —§,2 + 6]. Then we have
that

lf) —z|=fly) - f@)| <gly—=z|<|ly—z| <6
for all y € B;i.e., f maps B into itself and is a contraction f : B — B.
Now the statement of the theorem follows from Theorem 6.1. O

Theorem 6.2 expresses the fact that for a fixed point z with |f'(z)| < 1
the sequence z,41 := f(z,) converges if the starting point z is sufficiently
close to z. In practical situations the problem of how to obtain such a good
initial guess is unresolved in general. Frequently, however, a good estimate
of the fixed point might be known a priori from the underlying application
or might be deduced from analytic observations.

The following examples illustrate that in some cases we also have global
convergence, where the successive approximations converge for each start-
ing point in the domain of definition of the function f.
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Example 6.3 In order to describe a division by iteration, for a > 0 we
consider the function f : R = IR given by f(z) := 2z — ax?. The graph of
this function is a parabola with maximum value 1/a attained at 1/a. By
solving the quadratic equation f(z) = z it can be seen that f has the fixed
points 2 = 0 and 2 = 1/a. Obviously, f maps the open interval (0,2/a)
into (0,1/a). Since f'(z) = 2(1 — az), we have f'(0) = 2 and f'(1/a) = 0.
From the the property z < f(z) < 1/a, which is valid for 0 < z < 1/a,
it follows that the sequence z,4; := 2z, — ax? is monotonicly increasing
and bounded. Hence, the successive approximations converge to the fixed
point x = 1/a for arbitrarily chosen zo € (0,2/a). Figure 6.2 illustrates the
convergence. The numerical results are for a = 2 and two different starting

points, g = 0.3 and zo = 0.4. [m}
P\
v my 2:V
| : 0 | 0.30000000 | 0.40000000
- 1 | 0.42000000 | 0.48000000
: : : 2 | 0.48720000 | 0.49920000
P 3 | 0.49967232 | 0.49999872
1 1 1 1 »

1/a '2/(1

FIGURE 6.2. Division by iteration

Example 6.4 For computing the square root of a positive real number a
by an iterative method we consider the function f : (0,00) — (0, 00) given
by .
a
f@) =3 (:17+ 5) .

By solving the quadratic equation f(z) = z it can be seen that f has
the fixed point £ = /a. By the arithmetic geometric mean inequality we
have that f(z) > v/a for z > 0; i.e., f maps the open interval (0, 00) into
[v/a, c0), and therefore it maps the closed interval [\/a, 00) into itself. From

1 a
’ —_—— _ —
fl=) = 2 (1 1‘2)
it follows that

1
¢:= sw |f(2)=5.
VaLz<oo

Hence f : [\/a,00) — [y/a,0) is a contraction. Therefore, by Theorem 6.1
the successive approximations

1
Tyt 1= 3 (a:,,+i), v=0,1,...,

v
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converge to the square root v/a for each o > 0, and we have the a posteriori
error estimate
IVa -z, < |y — Tu1].

Figure 6.3 illustrates the convergence. The numerical results again are for
a=2. a

v Ty

5.00000000
2.70000000
1.72037037
1.44145537
1.41447098
1.41421359
1.41421356

[« R A VY

\

I
I
|

Va
FIGURE 6.3. Square root by iteration

In both of Examples 6.3 and 6.4 the numerical values exhibit a very
rapid convergence. This is due to the fact that because of f'(z) = 0 at the
fixed point, the contraction number is very small. We shall elaborate on
this observation later when we consider Newton’s method.

TABLE 6.1. Iterations for Example 6.5

v T, v T,
0 | 1.00000000 7 1 0.72210243
1 | 0.54030231 . .

2 | 0.85755322 . .

3 | 0.65428979 45 | 0.73908513
4 | 0.79348036 46 | 0.73908514
5 | 0.70136877 47 | 0.73908513
6 | 0.76395968 48 | 0.73908513

Example 6.5 Consider the function f : [0,1] — [0,1] given by
f(x) :=cosz.
Here we have

g= sup |f'(z)| =sinl <1,
0<z<1
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and Theorem 6.1 implies that the successive approximations z,4+1 := cos,
converge to the unique solution z of cosz = x for each o € [0, 1]. Table
6.1 illustrates the convergence, which is notably slower than in the two
previous examples. a

By the following example we illustrate how to obtain a fixed point of
a function with derivative greater than one by working with the inverse
function.

Example 6.6 The function h : (0,1) — (—o0,00) given by h(z) := z+Inz
is strictly monotonically increasing with limits lim;_,o h(z) = —oo and
lim;_,o h(z) = oo. Therefore, the function f(z) := —Inz has a unique
fixed point z. Since this fixed point must satisfy 0 < £ < 1, the derivative

F@l=3>1

implies that f is not contracting in a neighborhood of the fixed point.
However, we can still design a convergent scheme because z = —Inz is
equivalent to e~® = x. We consider the inverse function

of f, which has derivative |¢’'(z)| = e™® < 1 at the fixed point, so that we
can apply Theorem 6.2. Obviously, for each 0 < a < 1/e the exponential
function g maps the interval [a, 1] into itself. Since

g= sup |g'(z)|=€e"%<1,
a<lz<1

by Theorem 6.1 it follows that for arbitrary zo > 0 the successive approx-
imations x,41 = e~ ** converge to the unique solution of z = e™%. O

Now we will extend Theorem 6.1 to systems of nonlinear equations. A
subset D of a linear space X is called convex if

A+ (1-XNyeD

for all z,y € D and all A € (0,1), i.e., if the straight line connecting = and
y is contained in D.

Theorem 6.7 Let D C IR" be open and convez and let f : D — IR" be a

mapping
f(x) - (fl(x17"'1$n)7"'7fn(z1a"'1mn)Ta

where the f; : D - R, j = 1,...,n, are continuously differentiable func-

tions. By of
fl=)= (8—:1;2 (x))j,kzl,..,,n
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we denote the Jacobian matrix of f. Then we have the mean value theorem
f— l — —
1£(2) = S < gmax, 15D + (1= gl o = ol

for all z,y € D (and all norms || - || on R™).

Proof. Let g : [0,1] - IR™ be continuous. We will show that

H/ol 9 d’\” < /01 llg(A)[| dA, 6.1)

where the integral on the left-hand side has to be understood as the vector
of the integrals over the components of g. The function A — ||g(A)|} is
continuous, since the norm is a continuous function. Therefore, the integral
on the right-hand side of (6.1) is well-defined. Consider the equidistant
subdivision A; = i/m,i = 0,1,...,m, for m € IN. Then we have the
converging Riemann sums

m 1
S llgQall i = Aia) = / g ldr, m - oo,
i=1 0

and

™ 1
Zg()\i) (Ai — A1) = / g(A)d\, m — co.

From the second limit, by the continuity of the norm we conclude that

m

Z g(Ae) (i — Aiz1)

i=1

1
—)”/ g(/\)d/\H, m — 0.
0

Now (6.1) follows by passing to the limit m — oo in the inequality

Z( )(/\_Azl

which is a consequence of the triangle inequality.
Since D is convex, for all z,y € D we have that

<Z|l9 M Ai = Aimy),

i=1

b d
K@= fw = [ HHPe+a-Ndr, =1.n

By the chain rule we compute

LD+ (1= W] = ng— D + (1= A)g) (2 — ),
k=1
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and therefore
1 n
H@ =5 = [ 3 52 Da+ (1= ) o - ) dx
i.e., in vector form,

f(@) - fy) = /O FDa+ (1 - Ayl (@ - y) dA.

From this, with the aid of (6.1) and the continuity of A — f'[Az+(1—A)y],
we obtain

1
1@ - f@)l < / 1Az + (1 - Nl [l — yl| dA

< Jmax, If' Az + (1= Ny]ll [l ~ yll,

which ends the proof. m)

Theorem 6.8 Let D C R"™ be closed and convex (with a nonempty inte-
rior) and let f : D — D be a continuous mapping. Assume further that f
is continuously differentiable in the interior of D and that its Jacobian can
be continuously extended to all of D such that

sup ||f'(z)ll <1
z€D

in some norm ||-|| on R™. Then the equation f(z) = = has a unique solution
x € D, and the successive approzimations

Tyt1 = f(mu)v V2071727""

converge for each Ty € D to this fized point. We have the a priori error
estimate

v
lle, — all < 2

llz1 — zol|
and the a posteriori error estimate

Iz, — 2l <

1—¢ lz, — zu—1]]

for all v € IN.

Proof. By the mean value Theorem 6.7 the mapping f : D — D is a con-
traction. O
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By Theorem 3.26 we have that each of the conditions

n

of
sup max 91 () <1,
zeDi=1,n &= | Oz}

n

of.
sup max —L(w) <1,
zeD k=1,...,n amk
n 6f 2 12

i
sup —(z <1
zeD Z axk( )

Jik=1

ensures convergence of the successive approximations in Theorem 6.8.
The following local convergence theorem can be proven analogously to
Theorem 6.2.

Theorem 6.9 Let z be a fized point of a continuously differentiable func-
tion f such that ||f'(z)|| < 1 in some norm || - || on R". Then the method
of successive approzimations x4 := f(z,) is locally convergent, i.e., there
exists a neighborhood B of the fized point © such that the successive approz-
imations converge to x for all starting elements zo € B.

Example 6.10 For the system

x1 = 0.5c0osx, — 0.5s5inxy

z9 = 0.5sinz; + 0.5cosxz,

f(z) = ( —0.58inz; —0.5coszs )’

0.5cosxz; —0.5sinzo

we have

and therefore ||f'(z)||2 < V0.5 for all z € IR?. Hence Theorem 6.8 is
applicable. O

The reader will not be surprised to learn that for speeding up convergence
of the successive approximations, concepts developed for linear equations
like relaxation methods or multigrid methods can also be successfully em-
ployed in the nonlinear case. However, since we discussed these methods
in some detail in Sections 4.2 and 4.3 for linear equations, we shall refrain
from repeating the analysis for nonlinear equations.

6.2 Newton’s Method

We now want to determine zeros of a function of n variables; i.e., we want
to solve equations of the form

f(z) =0,
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where f : D — IR" is a continuously differentiable function defined on some
open subset D C IR".

We begin by considering a function of one variable. Let o be an approx-
imation to a zero of the function f. In a neighborhood of zg, by Taylor’s
formula we have that

f(@) = f(xo) + f' (o) (z — o) =: g(). (6.2)

Therefore, we may consider the zero of the affine linear function ¢ as a
new approximation to the zero of f and denote it by z;. From the linear
equation

f(@o) + (o) (x1 —x0) =0 (6.3)
we immediately obtain
T = — f(o)
f!(zo)

Geometrically, the affine linear function g describes the tangent line to the
graph of the function f at the point zg.

This consideration can be extended to the case of more than one variable.
Given an approximation zg to a zero of f, by Taylor’s formula we still have
the approximation (6.2), where now, as in the previous section,

f(@) = (% (””)>j,k=1,...,n

denotes the Jacobian matrix of f. Again we obtain a new approximation
x; for the solution of f(z) = 0 by solving the linearized equation (6.3), i.e.,
by

z1 = 2o — [f'(20)] ! f(20)-

Geometrically, the function g of (6.2) corresponds to the hyperplane tan-
gent to f at the point z.

Iterating this procedure leads to Newton’s method, as described in the
following definition. In the case of one variable, the geometric situation is
shown in Figure 6.4.

Definition 6.11 Let D C IR" be open and let f : D — IR" be a continu-
ously differentiable function such that the Jacobian matriz f'(x) is nonsin-
gular for all x € D. Then Newton’s method for the solution of the equation

flx)=0
1s given by the iteration scheme
Typ1:=x, — [f(x)]  flzn), v=0,1,...,

starting with some x9 € D.
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A

FIGURE 6.4. Newton’s method

We explicitly note that z,, is obtained by solving the system of linear
equations

(@) (@0 — 2041) = flzo)

for z, — z,41; i-e., no matrix inversion is required.

Example 6.12 For the function

where a > 0, the Newton iteration is given by
Tyt 1= 2%, — a:r?,.
By Example 6.3 we have convergence for all z¢ € (0,2/a). ]

Example 6.13 For the function
flz)=:2"-a

where a > 0, the Newton iteration is given by

T '—l :L'+i
V+1‘—2 v T, .

By Example 6.4 we have convergence for all zo € (0, 00). O

Of course, we cannot expect that Newton method’s will always converge.
However, by the following analysis we can assure local convergence.

Theorem 6.14 Let D C IR be open and convex and let f : D — IR"™ be
continuously differentiable. Assume that for some norm || - || on R™ and
some xg € D the following conditions hold:
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(a) f satisfies
If'(2) = F @I <Allz -yl

for all z,y € D and some constant y > 0.

(b) The Jacobian matriz f'(z) is nonsingular for all x € D, and there
ezists a constant 3 > 0 such that

Nf'@)]" I <B, =zeD.
(¢) For the constants

a:=[|[f'(zo)] ' f(zo)ll and q:=apBy

the inequality
1
< —_
1<%

is satisfied.

(d) Forr :=2q the closed ball B[zg,r] := {z : ||z — zo|| < r} is contained
in D.

Then f has a unique zero z* in Blzo,r]|. Starting with zo the Newton
iteration

LTy41 =Ty — [fl(z'/)]_lf(xl/)7 v= O; 17 RS (64)

is well-defined. The sequence (z,) converges to the zero x* of f, and we
have the error estimate

llz, — 2*|| < 2a¢* 7Y, v=0,1,....

Proof. 1. Let z,y,z € D. From the proof of Theorem 6.7 we know that

) - f(@) = / F + (- Ay (v — 7) d.
0
Hence
f@) - f(@) - '(2) (v —z) = / (FDa+ (1 - Ny] - F1(2)} (v — 2) d,

and estimating with the aid of (6.1) and condition (a) we find that

1) - f@) - (=) (y — D)
<Ally -zl / Az = 2) + (1 = A) (g ~ 2)|| dA

< 3y = ol {lle = 2l + lly — 11}
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Choosing z = x shows that
15 @) = £@) ~ £ @) (=)l < § Iy — Il (6.5)
for all z,y € D, and choosing z = z¢ yields

() = f(x) = f'(zo) (y — DI < rylly — 2| (6.6)

for all z,y € B[zo,r].
2. We proceed by proving through induction that

|z, —zo|| <7 and ||z, —zp_1|| < aq2u—1_1, vr=12,.... (6.7)

This is valid for v = 1, since

lex = zoll = I (zo)) ™ flao)| = e = £ <
as a consequence of conditions (¢) and (d). Assume that the inequalities
(6.7) are proven up to some v > 1. Then by condition (b) and since
z, € Blzo,r] C D, the element z, ., is well-defined. With the aid of condi-
tion (b), the definition (6.4) applied to z,, the estimate (6.5), the induction
assumption, and the definition of ¢ we can estimate

lzvts = 2ol = (f (@) F(@)] < Bllf (@)l
= Bllf() - f(@v-1) = F(@0-1) (@0 — 2ol

By ﬂfy[ 2,,_1_1]2 a g,
< — —
- 2 2 *q 2 q

From this, with the help of the triangle inequality, the induction assump-
tion, and condition (c), we obtain that

2% —1

lz, — 2,1l < < aq

lzy+1 — moll < [|Bpr — |l + - + |21 — 20|

<a(l+g+g+q ++g) < - <=7

[}

i.e., the inequalities (6.7) also hold for v + 1.
3. For p > 0, using ¢ < 1/2, we now can estimate

lzy = Zoipll < 2w ~ Tpia|| +--- + ”wu+u*1 |

2vtl_q

<a (q2"‘1 +q

+ -4 q2u+“'l—l)

2Y —1 2¥ 2v i1 2v 1
= aq 1+4q +~--+[q ] <2aq° "
(6.8)
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From this we observe that (x,) is a Cauchy sequence, since ¢ < 1/2 and by
Theorem 3.39 the limit

¥ = lim z,
V—00

exists. Passing to the limit ¥ — oo in (6.7) we obtain ||z* — zo|| < r, i.e.,
z* € Blzo,r], and passing to the limit 4 — oo in (6.8) the error estimate
of the theorem follows.

4. We now show that the limit z* is a zero of the function f. With the aid
of (6.4) and condition (a) we can estimate

1f @)l = I1f'(z0) (241 — 2]
< |1f'(zv) = (o) + f' (@)l 1241 — 2|

< blles = zoll + 11/ (o)l |#v+1 — @]l 0, v — o0.

Hence f(z,) — 0,v — oo, and the continuity of f implies that indeed

f(z*) =0.
5. We conclude the proof by showing that xz* is the only zero of f in the
ball B[zg,r]. For this we consider the function g : B[zg,r] & R" defined

by
9(@) =z — [f'(z0)] "' f(2).
From conditions (b) and (c) and the inequality (6.6), by writing

9(x) = g(y) = [f'(@o)] 7 {f(y) — f(2) — f'(z0)(y — )}
we deduce that

llg(z) — gl < Byrlly — =l < 2qlly — =]l

for all z,y € B[zo,r]; i.e., ¢ is a contraction. Therefore, by Theorem 3.44
the function g has at most one fixed point in B[zg,7]. Now uniqueness
of the zero of f in B[zg, 7] follows from the equivalence of the equations
g(z) =z and f(z) = 0. a

Our main application of Theorem 6.14 consists in deriving the following
local convergence result for Newton’s method.

Corollary 6.15 Let D C IR" be open and let f : D — IR" be twice con-
tinuously differentiable, and assume that x* is a zero of f such that the
Jacobian f'(z*) is nonsingular. Then Newton’s method is locally conver-
gent; i.e., there exists a neighborhood B of the zero x* such that the Newton
iterations converge to x* for all xo € B.

Proof. Since f is twice continuously differentiable, by the mean value The-
orem 6.7 applied to the components of f' there exists v > 0 such that

1 (@) = £ @Il < vllz - yll
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for all z,y in some closed ball B[z*, p| centered at z*. We write
f'@) = f'@HI+ [ @) (=) - f'(@)])}

and deduce from the above estimate and Theorem 3.48 that the radius p
of B[z*,p| can be chosen such that f'(z) is nonsingular on B[z*,p] and
[#(z*)]~ || < 8 for all z € Blz*, p] and some constant 8 > 0.

Since f is continuous, f(z*) = 0 implies that there exists § < p/2 such

that
1ol < min { £ =)

for all ||zo — z*|| < &. Then, after setting a := ||[f'(z0)]™" f(z0)|| we have
the inequalities

1

afy < | f(zo)llB?y < 5

and
2a < 28| f(2o)ll <

* N

Hence for the open and convex ball B(z*,p) and for each z with
|lzo — z*|| < & the assumptions of Theorem 6.14 are satisfied. O

Corollary 6.16 Let f : (a,b) —> IR be twice continuously differentiable
and assume that * is a simple zero of f. Then Newton’s method is locally
convergent.

Proof. For simple zeros we have f'(z*) # 0. O
Example 6.17 For the function f(z) := z — cosz the Newton iteration

reads
T, — COST,

Tyl = Ty — .
+ 1+sinz,

and leads to the numerical values of Table 6.2. O

TABLE 6.2. Newton iterations for Example 6.17

v T,
0 | 1.00000000
1] 0.75036387
21 0.73911289
3 | 0.73908513
4 | 0.73908513
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Example 6.18 For the function f(z) := z — e™* the Newton iteration
reads

T = Ty —e ™
v+l -— 4y 1 T e
and leads to the numerical values of Table 6.3. O

TABLE 6.3. Newton iterations for Example 6.18

v z,
0 | 1.00000000
1 | 0.53788284
2 | 0.56698699
3 | 0.56714329
4 1 0.56714329

In both examples we observe that the speed of convergence is consider-
ably improved as compared with the simple successive approximations of
Examples 6.5 and 6.6. For a general description of this more rapid conver-
gence of Newton’s method we need the following definition.

Definition 6.19 A convergent sequence (z,) from a normed space with
limit = is said to be convergent of order p > 1 if there exists a constant
C > 0 such that

lzvs1 — 2l < Clley —2lI’, v=12,....

Convergence of order one or two is also called linear or quadratic conver-
gence, respectively. We note that the convergence in Banach’s fixed point
Theorem 3.45 is, in general, linear.

Theorem 6.20 Under the assumptions of Theorem 6.1} Newton’s method
converges quadratically.

Proof. Using condition (b) of Theorem 6.14 and the inequality (6.5) we can
estimate

llz* = zyiall = llz* — 2o + [ ()] 7" f 20
<N @I @) = F(@) = f(@0) (@™ = )l
B

< G lla* —alP,

since f(z*) = 0. a
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Roughly speaking, the quadratic convergence of Newton’s method means
that the number of correct digits in the numerical approximation is doubled
in each iteration step, as observed in Examples 6.3, 6.4, 6.17, and 6.18.
Although by this property Newton’s method is very attractive, it has to be
observed that one step of the Newton iteration for nonlinear systems can be
very costly both through the need for evaluating the entries of the Jacobian
f'(z,) and through the cost of solving the linear system to arrive at the
new iteration z,.1. Therefore, a great variety of modifications of Newton’s
method have been developed that mitigate, in particular, the first difficulty.
These modified Newton methods, in general, are of the form

Tyt+1 = xV—AVf(xV)i v=0,1,...;

i.e., the inverse [f'(x,)]~! of the Jacobian is replaced by some approximat-
ing matrix A,. Here we will only briefly mention two classical and simple
possibilities for avoiding the evaluation of the Jacobian at each iteration
step.

In the simplified, or frozen, Newton method, for all steps the matrix A,
is kept the same and chosen as the inverse of the Jacobian for the starting
point; i.e., the iteration scheme is

Tyr1 =Ty — [f(x0)] 7 flz), v=0,1,....

Geometrically, in the one-dimensional case this means that the tangent line
of f at z, is replaced by the parallel to the tangent line of f at zy passing
through (z,, f(z,)).

Theorem 6.21 Under the assumptions of Theorem 6.14 the simplified
Newton method converges linearly to the unique zero of f in Blzg,r].

Proof. Recall that the function
9(2) := &~ [f'(z0)] " f(2)

defined in the proof of Theorem 6.14 is a contraction. We show that g maps
Blxy,r] into itself. For this we write

o — g(z) = [f'(z0)] " H{f(z) = f(20) — f'(z0)(x — z0) + f(z0)}-

Then estimating with the help of conditions (b), (¢} and (d) and the in-
equality (6.5) we obtain

lg(z) — zol| < %Y' |z — zol* + @ < 2a%By+a=(2g+1a<2a=r

for all  with ||z — 2o]| < 7. Now the statement of the theorem follows from
the Banach fixed point Theorem 3.46. a
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In the secant method for a function of one variable the derivative f'(z,)
is approximated by the difference quotient and the corresponding iterative
scheme is given by

x =g — Ty — Ty
T T (@) - fwe)

Geometrically, this means that the tangent line at z, is replaced by the
secant line through the two points z, and z,_;. Obviously, this method
needs two initial elements zo and z;. Generalizations to functions in IR"
are possible (see [47]).

In general, for the simplified Newton method and for the secant method
we can expect only linear convergence. The idea underlying the more so-
phisticated modified Newton methods is to choose the approximating ma-
trices A, in a manner leading to an improvement over linear convergence
without requiring the computational costs of the full Newton method. In
the so called rank one methods suggested by Broyden in 1965, in each it-
eration step the matrix A, is updated from the previous matrix A,_; by
adding only a matrix of rank one such that the resulting iteration scheme is
superlinearly convergent. Roughly speaking, the latter means that for the
sequence T, — &, ¥ — 00, we have that

f(z,), v=0,1,.... (6.9)

|zy41 —z|| < Collzw — 2f|, v=1,2,...,

such that C, — 0, v — oo. For details we refer to the literature (see
(20, 47]).

6.3 Zeros of Polynomials

In this section we shall apply Newton’s method to the computation of the
zeros of polynomials. Finding the zeros of polynomials is a classical problem
in mathematics and numerical analysis despite the fact that it very seldom
occurs in applications. We first observe that Newton’s method also works
for a complex function of a complex variable, allowing the computation of
complex zeros.

Consider the polynomial

p(z) = apz" + a1z" ' +az™ * + - +ap_1z +a,

with real or complex coefficients ag, a4, ..., a,. For the application of New-
ton’s method, in each iteration step we need to compute the values of p and
p' at the point x,,. This can be effectively done by the Horner scheme. This
is based on writing the polynomial in the form of nested multiplications

p(z) = (- ((apz + a1)z +az)z + -+ + apn-1)z + an,
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which suggests the recursion
bn =bm-1z2+a,, m=1,...,n, (6.10)

starting with by = ao. Performing these n multiplications and additions,
we arrive at the value of the polynomial p(z) = b,.
For the polynomial

D1 (:L‘) = b[)."L‘"_l + b].’En_Q + b2$n_3 + -+ bn_Q.’B + bn—ly

using (6.10) we compute

n—1 n
p(z)(x —2)+ by, = Z bz 1™z —2) + b, = Z amz™”™ ™ = p(z).
m=0 m=0

This implies that for a zero z the Horner scheme provides the coefficients
of the polynomial obtained by dividing p by the linear factor z — z. In
addition, we have that

p(z) = pi(z) (z — 2) + p1 (), (6.11)

and in particular,

P'(2) = p1(2).
Hence, applying the Horner recursion to the polynomial p; yields the value
of the derivative p'(z). By repeating this process recursively, we can deter-

mine all the derivatives of p at the point z, since by induction, from (6.11)
we obtain that

P (@) = p{P () (z - 2) + kpl* V) (2),
whence
p®(z2) = kplF V()

follows for k¥ = 1,...,n. Therefore, defining recursively polynomials p; of
degree n — k by applying the Horner scheme to the preceding polynomial
pr—1 leads to

pP(z) = klpe(2), k=1,...,n.
We can summarize this in the following theorem.

Theorem 6.22 Let

2

p(z) = apz" +a12™ ¥ agx™ 2+ - -+ a1z +an

be a polynomial of degree n. For z € C the complete Horner scheme
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ag ay az - : an—1 Gn
z bo bl bg . . bn—l bn
z| b b 5 o by
2| bbb b

b‘gn—l) bgn—l)
By

contains the derivatives

O p®(2)
n—-k = k' ’

of the polynomial p at the point z. The scheme is recursively defined by
bg{l) = Ay, m=0,...,n, and

B = b, b = 6 4D m=1,.. n—k,
fork=0,...,n.

Example 6.23 For the polynomial p(z) := z* — 22 + 3z — 5 the Horner
scheme

z|1 -1 3 -5
211 1 5 5
21 3 1
211 5
211
for z = 2 leads to p(2) = 5, p'(2) = 11, p"(2) = 10, p"'(2) = 6. O

We continue by outlining how to compute all the zeros of a polynomial
p of degree n with real coefficients. We first assume that p has only simple
real zeros and proceed as follows:

1. Either from analytic considerations or by plotting a graph of the
polynomial we obtain a rough estimate of the location of the zeros
Zn < 2p-1<---<29< 2.

2. Starting with some xp > z;, by Newton iteration we compute the
largest zero z;. The global convergence of Newton’s method in this
case follows from monotonicity arguments (see Problem 6.13).

3. By the Horner scheme we divide p by the linear factor £ —2; and carry
out step two for the reduced polynomial to compute z;. Repeating
this procedure, we successively obtain approximations for all zeros.

4. In order to improve the accuracy, for all zeros Newton’s method is ap-
plied to the full polynomial p with the starting points of the iteration
given by the approximations obtained in step three.
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Now we consider the case of multiple real zeros. If z is a zero of order m,
then we can write

p(z) = (z — 2)"q(z), (6.12)

where the polynomial q of degree n — m has a value g(2) # 0. To see the

effect of (6.12) on Newton’s method we consider it as a fixed-point iteration
ZTy41 = g(z,) with ¢ defined by

p(z)
P'(z)
Using (6.12), by elementary differentiation we obtain

1
2)=1- —.
g'(2) =

Therefore, by Theorem 6.2, at a multiple zero Newton’s method is locally
convergent. Obviously, the convergence at a multiple zero is only linear.
However, one can modify Newton’s method for multiple zeros such that
the quadratic convergence is preserved (see Problem 6.14).

For finding complex zeros, in principle one can apply Newton’s method
in €. For this one has to keep in mind that for polynomials with real coef-
ficients, the starting values need to be complex, since otherwise Newton'’s
method would produce only real approximations. For the conjugate com-
plex zeros of a polynomial with real coefficients Bairstow’s method avoids
working in the complex plane by using the fact that for two conjugate zeros,
the product of the linear factors (z — z)(z — Z) is a polynomial of degree
two with real coefficients. The basic idea is to write the polynomial p of
degree n in the form

g(z) === -

p(z) = (2% — uz — v)q(z) + a(x — u) + b,

where ¢ is a polynomial of degree n—-2, and a and b are constants depending
on u,v € R. The factor 2 — uz — v corresponds to two conjugate complex
zeros of p if the pair u, v solves the nonlinear system a(u,v) = 0, b(u,v) = 0.
The latter can be solved by Newton’s method, and once the solution u, v is
known, the two zeros of p are obtained by solving the quadratic equation
2 —uz —v =0.

We conclude this section with some consideration of the question of sta-
bility. In particular, we show that the zeros of polynomials can be quite
sensitive to small changes in the coefficients even if all the zeros are simple
and well separated from each other.

Let p and ¢ be polynomials of degree n and assume that zg is a simple
zero of p. Consider the perturbed polynomial

p(-,€) :=p+eq,

where ¢ is small. Using the theory of functions of a complex variable, it can
be shown that in a neighborhood of € = 0 the zero z(¢) depends analytically
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on the parameter €. The derivative 2’ can be obtained by differentiating
plz(€),€] = 0 with respect to €. This yields

{P'l2(e)] + eq'[z(e)]}2' () + gql2(e)] = 0,

and setting € = 0, it follows that

2(0) = — Q(ZO) )
=)
Hence, for small £ we have that
q(20)
z(e)~m2g — € . 6.13
(©) 0 P'(20) ( )

Example 6.24 The polynomial
p(z):=(-1)(x~2)---(z—10) = z'% = 552° + - .. + 10!

has the zeros 1, 2,...,10, which are well separated from each other. We
perturb the coefficient of z° by choosing g(z) := 552°. Since p'(10) = 9!,
by (6.13), the zero 29 = 10 of the polynomial p is perturbed into

5-10°
10-2 TR 10 — 1.5 - 10%.
This illustrates that finding the zeros of p is an ill-conditioned problem and
that a reliable approximation of the zeros is impossible. O

6.4 Least Squares Problems

Quite often the problem of solving a system of nonlinear equations may
be replaced by an equivalent problem of minimizing a function and vice
versa. We illustrate this by introducing the Levenberg-Marquardt method
as one of the most effective procedures for solving nonlinear least squares
problems.

Let g : R®™ - IR be a twice continuously differentiable function and
consider the problem of minimizing g. Let z¢ be an approximation for a
local minimum of g. In a neighborhood of g, by Taylor’s formula we may
approximate

9(2) = g(z0) + (& — 20)" grad g(wo) + 3 (& — 20)"9" (20) & — 20), (614

where
2

9%g
" _
) = (6‘”13‘”'6)]’,1::1,...,71
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denotes the Hessian matriz of g. Minimizing the quadratic function on the
right-hand side of (6.14) yields

x1 = To — [g" (z0)] ! grad g(z¢) (6.15)

as a new approximation for the minimum of g. We observe that (6.15) ob-
viously coincides with one Newton step for solving the necessary condition
grad g(z) = 0 for a local minimum.

However, if (6.14) is only a very poor approximation to g, then we expect
the Newton step (6.15) not to be very effective. In this case it is more
appropriate to use a so-called method of steepest descent; i.e., choose

1 = xo — AM grad g(zo) (6.16)

as a new approximation. Here M is a positive definite matrix, and the
step size A > 0 is chosen such that g(z;) < g(zo) is satisfied. This can be
achieved, since by Taylor’s formula we have that

glwo — AM grad g(zo)] = g(z0) — Algrad g(zo)]" M grad g(zo)

and M is assumed to be positive definite.
After introducing the vector y € IR™ and the n x n matrix A by

g &g
(2) = ——2(z), a; = , 6.1
Yj (1’.) a:EJ (‘7") Ajk (ZL') 6.’E]afl'k T ( 7)
we can rewrite the Newton iteration (6.15) as the linear system
A(zo)(z1 — m0) =, (6.18)

which we have to solve for the difference z; — xo. Similarly, one step of the
steepest descent (6.16) can be transformed into

Ty —Ig = )\My (619)
Now recall the least squares problem of Example 2.4. In a slight refor-

mulation, this problem consists in minimizing the function

m

9(z) = [fila) — w]’

=1

over some domain D, where the f; : D — IR are given functions and the
u; € IR are given constants for i = 1,...,m. We compute the derivatives

Ofs
afltj

5"’% @) =23 1) ~wl g @
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and

0% “ afz 3fz & f;
T ® =22 52, @) oy W+~ 5 @)}
In this case the matrix (a;x) contains second derivatives of the functions
fi. However, since these derivatives are multiplied by the factor [f;(z) — u;],
which will become small by minimizing g, it is justified to neglect this term.
Note that if Newton’s method converges, it always will converge to a zero,
even if we do not use the exact Jacobian for the computation, provided that
the approximate Jacobian at the limit is nonsingular. Hence, we simplify

and replace (6.17) by

ajr(z) := 22 6f’ 6f, (z) (6.20)

1 3.73] Bxk

and note that a;;(z) > 0.
Now the Levenberg-Marquardt method combines (6.18) and (6.19) by
first introducing the n x n matrix A = (@;x) with entries

aj; = (1 +7)ajj, Gk =aje, J#Fk,
where «y is some positive parameter, and then replacing (6.18) and (6.19)

by 5
A(zo)(z1 —x0) = . (6.21)

Obviously, for large v the matrix A will become diagonally dominant, and
(6.21) will get close to the steepest descent, with

M = diag (—1— ey —1—)
an Ann
and A = 1/v. For v — 0, on the other hand, (6.21) will turn into the Newton
step (6.18). This ability to gradually vary between Newton’s method and
the steepest descent method is one of the basic features of the Levenberg—
Marquardt method, which we describe as follows:
1. Choose an initial guess g, some moderately sized value for v, and a
factor a, say v = 0.001 and a = 10.
2. Solve the linear system (6.21) to obtain z;.
3. If g(x1) > g(zo), then reject x; as a new approximation, replace v by
a7, and go back and repeat step two.
4. If g(z1) < g(=z0), then accept z¢ as a new approximation, replace zg
by z; and 7 by v/a, and go back to step two.
5. Terminate when the difference |g(z1) — g(zo)| is smaller than some
given tolerance.
For a detailed analysis of this method we refer to [44]. For a study of
nonlinear optimization methods and their relation to nonlinear systems we
refer to [20].
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Problems

6.1 Prove Brouwer’s fized point theorem in IR, i.e., show that if D C R is a
closed and bounded interval and if f : D — D is continuous, then f has a (not
necessarily unique) fixed point.

6.2 Draw figures illustrating monotone or alternating divergence of the succes-
sive iterations for a fixed point of a function of one variable.

6.3 Show how to solve the equation tan z = z by successive approximations.

6.4 Show that

V=300 N\,

lim \/2+\/2+---+\/§=2.

v square roots

6.5 Let D C IR be an open interval and let f : D — D be m times continuously
differentiable. Under the assumption that the sequence .41 := f(z,) converges
to some z in D with f'(z) = f'(z) = --- = f™ V() = 0, show that the
convergence is of order m.

6.6 Let the sequence (z,) in IR converge to z such that z, # z for all v € IN
and
Tor1—T={g+ &)z —2), v=0,1,...,

where |g| < 1 and £, — 0, ¥ — co. Show that

2
(Zyg1 —2,)
ZTyt2 — 2Tup41 + T,

Yo := Ty —

is well-defined for sufficiently large » and that

. v — T
lim 2
vaoo Ty — &

=0

i.e., the sequence {y.) converges to = more rapidly than the sequence (z,).
This method for speeding up the convergence of sequences is known as Aitken’s
d*method.

6.7 Let D C IR be an open interval, let f : D — IR be twice continuously dif-
ferentiable, and let x be a fixed point of f with f'(z) # 1. Show that Steffensen’s

method o ]2
Ty)— Ty _
T @ - 2@) v VT

is locally and quadratically convergent to the fixed point z (see Problem 6.6).

Tyt ‘= Ty fay

6.8 Discuss Steffensen’s method of Problem 6.7 for the fixed point £ = 0 of the
function f(z) := 2z + 3.
6.9 Show that
T, (z2 + 3a)
3zl +a
is a method of order three for computing the square root of a positive number a.

Tyl 1= , v=0,1,...,
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6.10 Prove an analogue of Corollary 6.16 for the secant method (6.9).

6.11 Give conditions for monotone convergence of Newton’s method for a func-
tion of one variable.

6.12 Show that Newton’s method for the function f(z) := z™ —a, £ > 0, where
n > 1 and a > 0, converges globally to a'/™.

6.13 Assume that the polynomial p with real coefficients has only real zeros
and denote the largest zero by z;. Show that for any initial point z¢ with zo > 21
Newton’s method converges to zi.

6.14 Assume that z is a zero of order m of the polynomial p. Show that

p(zv) _
_mp’(:l:.,)’ =0,1,...,

converges locally and quadratically to the zero z.

Tyt1 =T,

6.15 Show that for a nonsingular n x n matrix A the sequence
AI/+1 = A,,[2I——AAV], U=0,1,...,
converges quadratically to the inverse A™!, provided that || — AAo|| < 1.

6.16 Write a computer program for finding n simple zeros of a polynomial of
degree n with real coefficients. Use this code for the computation of the zeros of
the Laguerre polynomial Ly(z) = z* — 16 2% + 7222 — 96 = + 24.

6.17 Show that for the function f : (0,00) — IR given by

In2 | Inz
f(z):= —— sin (271' m) +1

the Newton iterations starting with zo = 1 converge and that the limit, however,
is not a zero of f.

6.18 The eigenvalue problem Az = Az for an n X n matrix A is equivalent to
the equation f(z) =0, where f: IR" x R - IR" x IR is defined by

T Az — A\r
(1) ()

Write down Newton’s method for this equation.

6.19 Write a computer program for solving a least squares problem by the
Levenberg-Marquardt method.

6.20 The set of all points ¢ € € for which the fixed point iteration z,41 := 22+¢
starting with zp = 0 remains bounded is called the Mandelbrot set. Write a
computer program for visualizing the Mandelbrot set.
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Matrix Eigenvalue Problems

Many problems in science and engineering lead to eigenvalue problems for
matrices. These occur either directly or by discretization of eigenvalue prob-
lems for differential or integral operators. In the latter case the size of the
matrices will be rather large. It is the purpose of this chapter to intro-
duce some of the main ideas in matrix eigenvalue computations without
attempting to be comprehensive. For a more detailed study we refer to
[27, 65].

For the numerical computation of matrix eigenvalues we have to distin-
guish between two groups of methods:

1. In the so-called direct methods the eigenvalues are obtained as zeros

of the characteristic polynomial.

2. In contrast, iterative methods approximate the eigenvalues through a
successive approximation procedure without using the characteristic
polynomial.

Since, as illustrated in Example 6.24, the computation of zeros of poly-
nomials of high degree tends in general to be ill-conditioned, in practice it-
erative methods are used almost exclusively. In this chapter we will discuss
the two most important methods of this class, namely the Jacobi method
and the QR algorithm. In the last section we will also briefly describe the
Hessenberg method as an example of a direct method.

A key factor in all eigenvalue computations is the fact that similarity
transformations leave the eigenvalues of a matrix invariant; i.e., for a given
matrix A the matrices A and C~!AC have the same eigenvalues for all
nonsingular matrices C. This can be seen either from the equivalence of
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the equations
Az =Xz and (C'AC)C 'z =XC"'z
or from the multiplication theorem for determinants
det(A] — A) = det[C' (A — A)C] = det(A\ — C"LAC);

i.e., similar matrices have the same characteristic polynomial. This invari-
ance allows one to transform a given matrix A by a similarity transfor-
mation into a matrix of simpler form with the same eigenvalues as 4. In
particular, the iterative methods successively construct sequences of similar
matrices that converge to a diagonal matrix or an upper (or lower) trian-
gular matrix from which the eigenvalues can be read off as the diagonal
elements.

7.1 Examples

We begin by illustrating how the discretization of eigenvalue problems for
differential operators leads to eigenvalue problems for large matrices.

Example 7.1 The vibrations of a string are modeled by the so-called wave
equation

Pw 1 0w

o2~ ¢ o’
where w = w(x,t) denotes the vertical elongation and c is the speed of
sound in the string. Assuming that the string is clamped at z = 0 and
z = 1, the boundary conditions w(0,t) = w(1,t) = 0 must be satisfied for
all times t. Obviously, the time-harmonic wave

w(z,t) = v(z)e™?

with frequency w solves the wave equation, provided that the space-dependent

part v satisfies
—v" =Xv on|0,1],

where A := w?/c?. The boundary conditions w(0,t) = w(1,t) = 0 are
satisfied if v satisfies the boundary conditions

v(0) = v(1) = 0.
Hence, introducing the linear space
U := {v € C[0,1] : v is twice continuously differentiable,v(0) = v(1) = 0}

and defining the differential operator D : U — C[0,1] by D : v = —2',
we are led to the eigenvalue problem Dv = Av. Elementary calculations
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show that the functions v,,(z) = sinmnz are eigenfunctions of D with the
eigenvalues A, = m27? for m = 1,2,.... It can be shown that these are
the only eigenvalues and eigenfunctions of D.

For discussing an approximate solution we consider the slightly more
general differential equation

~v"+pv=2X2 on]0,1]

with boundary conditions v(0) = v(1) = 0, where p € C[0, 1] is a given pos-
itive function. We can proceed as in Example 2.1 and choose an equidistant
mesh z; = jh, j =0,...,n+1, with stepsize h =1/(n+1) and n € IN. At
the internal grid points z;, j = 1,...,n, we replace the differential quotient
by the difference quotient

1
v(2;) ® o5 {o(@i41) = 2v(z;) +v(zj-1)}
to obtain the system of equations
1 .
Fz—{——vj_1+2vj—vj+1}+pjvj =M, j=1,...,n,

for approximate values v; to the exact solution v(z;). Here, we have set
p; = p(x;) for j = 0,...,n + 1. This system has to be complemented by
the two boundary conditions vy = v,41 = 0. For an abbreviated notation
we introduce the n x n tridiagonal matrix

2+ h2p1 -1
-1 2+ h2p2 -1
1 -1 2+ h?p; —1
-1 2+ thn—l -1
-1 2+ h’p,
and the vector 4 = (vy,...,v,)7. Then the above system of equations,
including the boundary conditions, reads

Au = Au;

i.e., the eigenvalue problem for the differential operator D is approximated
by the eigenvalue problem for the matrix A. m]

The important question as to how well the matrix eigenvalues approx-
imate the eigenvalues of the differential operator and whether we have
convergence of the eigenvalues as b — 0 is beyond the scope of this book
(see Problem 7.2). The example is meant only as an illustration of the fact
that eigenvalue problems for large matrices arise through the discretiza-
tion of eigenvalue problems for ordinary differential operators and also for
partial differential operators. In the same spirit, eigenvalue problems for
integral operators can be approximated by matrix eigenvalue problems, as
indicated in the following example.
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Example 7.2 Consider the eigenvalue problem

/0 K(z,y)pw)dy = dp(), @€ [0,1],

for a linear integral operator with continuous kernel K. For the numerical
approximation we proceed as in Example 2.3 and approximate the integral
by the rectangular rule with equidistant quadrature points z, = k/n for
k=1,...,n. If we require the approximated equation to be satisfied only
at the grid points, we arrive at the approximating system of equations

1 & ]
;E:K(ﬂfj,xk)@k:)\cpj, ji=1,...,n,
k=1

for approximate values ¢; to the exact solution ¢(z;). Hence, we approx-
imate the eigenvalues of the integral operator by the eigenvalues of the
matrix with entries K (z;,zr)/n. Of course, instead of the rectangular rule
any other quadrature rule can be used. A discussion of the convergence of
the matrix eigenvalues to the eigenvalues of the integral operator is again
beyond the aim of this introduction. ]

7.2 Estimates for the Eigenvalues

At this point we urge the reader to recall the basic facts about eigenvalues
of matrices, in particular those that were presented in Section 3.4. In the
sequel, by (-,-) we denote the Euclidean scalar product in € and by || - ||2
the corresponding Euclidean norm.

The eigenvalues of Hermitian matrices can be characterized by the fol-
lowing maximum principles. These can be used to get some rough estimates
for the eigenvalues. Note that for the eigenvalues of Hermitian matrices the
geometric and the algebraic multiplicity coincide (see Problem 7.4).

Theorem 7.3 (Rayleigh) Let A be a Hermitian n x n matriz with eigen-

values
)‘1.>_/\222/\n

(where multiple eigenvalues occur according to their multiplicity) and cor-

responding orthonormal eigenvectors x1,%2,...,z,. Then
Az, zx .
Aj =max( ) , j=1,...,n,
z€V; (sz)
z#0

where the subspaces Vi, ..., V, are defined by V; := C" and

Vi={z € C": (z,2x)=0,k=1,...,5—1}, j=2,...,n.
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Proof. Let z € V; with  # 0. Then
z=Y (z,zx)ze and Y |(z,z) = ().
k=j k=j

Hence

Az = Z Ae(@, Tk )Tk

k=j
and

(Az,2) = Y Mel(@, 2)l* < A Y |, 2)|* = A2, ).
k=j k=j

This implies

A
sup LA8)
z€eV; ("L‘,‘IE)
Tz#0
and the statement follows from (Az;,z;) = A\; and z; € V. O

This maximum principle can be used in a simple manner to obtain lower
bounds for the largest eigenvalue of Hermitian matrices. For the matrix

1 3 2
A=13 5 1],
2 1 4
by using z = (1,1,1)7 we find the estimate \; > 7.33 as compared to the
exact eigenvalue A; = 7.58.... Using z = (1,2,1)7 leads to the estimate
A1 > 7.50.

Using Rayleigh’s principle to obtain bounds for the smaller eigenvalues
" requires the knowledge of the eigenvectors for the preceding larger eigen-
values. This problem is circumvented in the following minimum maximum
principle.

Theorem 7.4 (Courant) Let A be a Hermitian n x n matriz with eigen-
values

AM>A > >
(where multiple eigenvalues occur according to their multiplicity). Then
Aj = min max

UjGMjIGUJ‘ (:L',:l‘) ’
z#0

=1,...,n,

where M; denotes the set of all subspaces U; C C" of dimension n+1 —j.
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Proof. First we note that because of

Ax,

sup (Az,7) = sup (Az,z)
:EGU]' (x’ m) ZEU]'

z#£0 (z,z)=1

and the continuity of the function z — (Az, z), the supremum is attained;
i.e., the maximum exists.

By zi,z2,...,z, we denote orthonormal eigenvectors corresponding to
the eigenvalues A\; > Ay > .-+ > A,. First, we show that for a given
subspace U; of dimension n + 1 — j there exists a vector € U; such that

(,zg) =0, k=j+1,...,n. (7.1)
Let z1,...,2n41-; be a basis of U;. Then we can represent each z € U; by

n+1—j

T = Zl a;Z;. (7.2)

In order to guarantee (7.1), the n + 1 — j coefficients a1, ..., an+1-; must
satisfy the n — j linear equations

n+1-j
> aizi,z) =0, k=j+1,...,n.

i=1
This underdetermined system always has a nontrivial solution. For the
corresponding z given by (7.2) we have = # 0, and from

z=) (z,2)Tk

J
=1

k
we obtain that

J J
(Az,z) = Mel(@ze)® > X D (@, 2)|? = Nj(z, @),
k=1 k=1

whence 4
max (Az, 2) >\
zeU; (Z,7)
z#0

follows.

On the other hand, for the subspace
Ui={zeC":(z,2¢)=0,k=1,...,5 -1}
of dimension n + 1 — j, by Theorem 7.3 we have the equality
(Az,z) _ |

max
zev; (z,%) ]’
z#0

and the proof is finished. 0
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Corollary 7.5 Let A and B be two Hermitian n X n matrices with eigen-
values A1 (A) > Aa(A) > -+ > M(A4) and A (B) > Xa(B) > -+ > A(B).
Then

IA;(4) = A;(B) < lIA=-Bll, j=1,...,n,

Jor any norm || - || on C™.
Proof. From the Cauchy-Schwarz inequality we have that
(Az — Bz,z) < [|(A - B)zllz llzll2 < |4 - Bz ||=Il3

and hence
(Az,z) < (Bz,7) + ||A - B2 ||=|13.

By the Courant minimum maximum principle of Theorem 7.4 this implies
M(A) < N(B) + 14— Blz, j=1...,n
Interchanging the roles of A and B, we also have that
Ai(B) S Aj(A)+[|B—All, j=1...,n
and therefore
1Ai(4) = A (B)| < |J[A=Bll2, j=1,...,n
Now the statement follows from
|A— Bll2 = p(A- B) < [|A - B,
which is a consequence of Theorems 3.31 and 3.32. O

Corollary 7.6 For the eigenvalues A\y > Ay > -+ > A, of a Hermitian
n x n matriz A = (a;x) we have that

—al ]2 < Z|a,k| i=1,...,n,

F.k=1

#k
where the elements a},,...,al,, represent a permutation of the diagonal
elements a11,...,an, of A such that oy > aby > --- > al,
Proof. Use B = diag(aj;) and || - || = || - ||2 in the preceding corollary. O

We conclude this section with an extension of the above results to general
matrices that gives a rough estimate as to where in € the eigenvalues are
located.
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Theorem 7.7 (Gerschgorin) Let A = (ajx) be a compler n x n matriz
and define the disks

¢

n
Gj={A€C:A—a;| <D lajlp, i=1,...,n,
k=1
\ k#j

and
4

Gy :=¢AeC:A=aj;| <D laglp, i=1,...,n.

k=1'
\ k#j

Then the eigenvalues A of A satisfy

n n
rxelJainlJas
j=1 ji=1

Proof. Assume that Az = Az and ||zl = 1, and for £ = (z1,...,2,)T
choose j such that |z;| = ||z||cc = 1. Then

n n
X —ajil =X = aj)zil = D aze| < lajxl,

k=1 k=1
k#j k#j
and therefore
n
xe lJa;.
j:l

Since the eigenvalues of A* are the complex conjugate of the eigenvalues of
A (see Problem 7.3) we also have that

n
rxe g,
j=1

and the theorem is proven. D

7.3 The Jacobi Method

The method described in this section was discovered by Jacobi in 1846 and
can be used to iteratively compute all the eigenvalues and eigenvectors of
real symmetric matrices.
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Lemma 7.8 The Frobenius norm

1/2
n

IAllr = [ D lapl?

Jrk=1

of an n x n matriz A = (ajx) is invariant with respect to unitary transfor-
mations.

Proof. The trace
n
trd = Z aj;
j=1

of a matrix A is commutative; i.e., tr AB = tr BA. This follows from

D (AB);; =D ajibe; = Z Z brjajr = Z(BA

n
j=1 j=1 k=1 k=1 j=1

In particular, we have that
n n n n
trAA* =" ajap; =) ) lajl®.
i=1 k=1 j=1k=1
Therefore, for each unitary matrix @ it follows that
Q" AQIIF = tr(Q*AQQ* A*Q) = tr(Q* AA*Q) = tr(AA*QQ*) = ||All%,
and the lemma is proven. O

Corollary 7.9 The eigenvalues of an n X n matriz A (counted repeatedly
according to their algebraic multiplicity) satisfy Schur’s inequality

I < DAl

j=1
Equality holds if and only if the matriz A is normal, i.e., if AA* = A*A.

Proof. By Theorem 3.27 there exists a unitary matrix @ such that
R := Q*AQ is an upper triangular matrix. Hence

IAllE = IRIIE = Z A7 + Z Z Irjl?, (7.3)

J=1k=j+1

since the diagonal elements of R = (r;;) coincide with the eigenvalues of
the similar matrices R and A. Now Schur’s inequality follows immediately
from (7.3).
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For the discussion of the case of equality, we first note that any unitary
transformation of a normal matrix is again normal. This is a consequence
of the identity

QT AQ(Q*AQ)" — (QAQ)*QAQ = Q" (44" - A" A)Q.

If equality holds in Schur’s inequality, then (7.3) implies that R is a diagonal
matrix. Hence R, and therefore A, is normal.

Conversely, if A is normal, then the upper triangular matrix R must also
be normal. Now, from

n n
(RR")j5 =) rixri; = O Iral?
k=1 k=j
and )
n J
(R*R)jj = Y mhures = 3 Iragl’
k=1 k=1

we conclude that
n J
Z:|7‘jk|2 = erkjlz, j=1,...,n.
k=j k=1

This implies r;; = 0 for j < k, i.e., R is a diagonal matrix, and from (7.3)
we deduce that equality holds in Schur’s inequality if A is normal. O

For any n x n matrix A = (a;j) we introduce the quantity
1/2
n
N(A) = | Y lal? (7.4)
jk=1
#k
as a measure for the deviation of A from a diagonal matrix.

Lemma 7.10 Normal matrices A satisfy

n

SN =" lag ) + NP
j=1

j=1
Proof. This follows from Corollary 7.9. O

The main idea of the Jacobi method for real symmetric matrices is to
successively reduce N(A) by elementary plane rotation matrices such that
in the limit the matrix becomes diagonal (with the eigenvalues as diagonal
entries).
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Lemma 7.11 For each pair j < k and each ¢ € R the matriz

1
cos —sin¢p
U= . )
sin cos @
1

which coincides with the identity matriz except for uj; = ugr = cosy and
ukj = —ujk = sing (and which describes a rotation in the z;Ti-plane) is
unitary.

Proof. This follows from
cosy —sing cosp sinp \ (1 0
sinp cosy —sing cose /O \ 0 1

cosp  singp cosy —sing \ (1 0
—sing cosy sing cosp /O \ 0 1 )°
Lemma 7.12 Let A be a real symmetric matriz and let U be the unitary

matriz of Lemma 7.11. Then B = U*AU is also real and symmetric and
has the entries

and

bj; = ajj cos® @ + aji $in 2¢ + ags sin? o,
brk = ajjsin® ¢ — aj sin 2p + agx cos® ¢,

1 .
bjk = bkj = ajicos2p + 5 (akk — ajj) sin 2,
bij = bji = azjcosp+agsing, i#j,k,
bik = brs = —aijsinp +acosp, i # j,k,
bi = au, 4,1# 4k

i.e., the matriz B differs from A only in the jth and kth rows and columns.

Proof. The matrix B is real, since A and U are real, and it is symmetric,
since the unitary transformation of a Hermitian matrix is again Hermitian.
Elementary calculations show that

cosy sing aj; Qg cosp —sing \ [ by b
—singp cosgp akj Ak sing cosp ) T\ br; bk



130 7. Matrix Eigenvalue Problems

with bj;, bjk, bxj, and by as stated in the theorem. For 7 # j,k we have
that

n
,. .
bi; = E Ui Bsrlrj = GijUjj + QigUkj = G5 COS Y + Ajx sin @
r,8=1
and

n
* .
bik = E U;sQgrUrg = AijUjk + Qik Uk = —Qij S Y + a;r cos PL.
r,8=1

Finally, we have

*
by = E Ui Qarliy] = Q4

r,s=1
for i,1 # j,k. a
Lemma 7.13 For
2a;
tan2p = ——2& ajj # Qkk,
ajj — Qkk
T
Y= 1’ Aj5 = Qkk,

the transformation of Lemma 7.12 annihilates the elements
bjx =bx; =0
and reduces the off-diagonal elements according to
[N(B))? = [N(A)]® - 2a%.

Proof. bjy = bg; = 0 follows immediately from Lemma 7.12. Applying
Lemma, 7.8 to the matrices

(ajj ajk) and (bjj bjk)
Qg Grk br; ik

a +2a]k +akk-——b']’+bik
From this, with the aid of Lemmas 7.8 and 7.12 we find that

[NB)? = |IBIIF - >_ 0% = Al - )b
i=1 i=1

yields

N(A) + Z(an [N( )] - 20’?’0’

which completes the proof. O
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Note that the quantities required for the computation of the elements of
the transformed matrix can be obtained by the trigonometric identities

1

V1+tan?2p

1 1
cosp = \/5 (14 cos2¢p), sinp= \/5 (1 — cos2yp).

The sign of the root in the expression for sin ¢ has to be chosen such that
it coincides with the sign of tan 2.

The classical Jacobi method generates a sequence (A4,) of similar matri-
ces by starting with the given matrix Ap := A and choosing the unitary
transformation at the vth step according to Lemma 7.13 such that the non-
diagonal element of A, _; with largest absolute value is annihilated. It is
obvious that the elements annihilated in one step of the Jacobi iteration,
in general, do not remain zero during subsequent steps. However, we can
establish the following convergence result.

cos2¢ =

Theorem 7.14 The classical Jacobi method converges; i.e., the sequence
(A,) converges to a diagonal matriz with the eigenvalues of A as diagonal
elements.

Proof. For one step of the Jacobi method, from

[N(A)F < (n* —n) max dj
» _z:,él’

we obtain that 5
N4

2 > IN(A”

%k 2 Wn—1)

for the nondiagonal element a;; with largest modulus. Hence, from Lemma
7.13 we deduce that

[NB)]? = [N(A)]* - 205, < ¢*[N(A)P,

For the sequence (A4,) this implies that

where

N(Ay) < ¢"N(Ao)

for all v € IN, whence N(4,) — 0, v = oo, since ¢ < 1. a
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Note that for large n the value of ¢ is close to one, indicating a slow
convergence of the Jacobi method. Writing A, = (a;i,,) by Corollary 7.6
we have the a posteriori error estimate

IAj_ajjylllSN(AV)7 j=1,...,n,

after performing v steps of the Jacobi method. Further error estimates can
be derived from Gerschgorin’s Theorem 7.7.

Approximations to the eigenvectors can be obtained by successively mul-
tiplying the unitary transformations of each step. We have A, = Q3 AQ,,
where @, = U; - - - U, is the product of the elementary unitary transforma-
tions for each step. From

A, = D = diag(\y, ..., A\n)

it follows that AQ, ~ @,D. Hence the columns @, = (ui,...,u,) of Q,
satisfy Au; = Aju; for j = 1,...,n; i.e., they provide approximations to
the eigenvectors.

In each step, the classical Jacobi method requires the determination of
the nondiagonal element with largest modulus. In order to reduce the com-
putational costs, in the cyclic Jacobi method the nondiagonal elements are
annihilated in the order

(1,2),...,(1,n),(2,3),...,(2,n),(3,4),...,(n — 1,n)

independent of their size. Convergence results can also be established for
this variant (see [27]).

A further refinement is to choose a constant threshold and to annihilate
in each cyclic sweep only those off-diagonal elements that are larger in
absolute value than the threshold. Of course, the threshold needs to be
lowered after each sweep, i.e., after performing a full cycle. For details we
refer to [48, 65].

Example 7.15 For the matrix

2 -1 0
A= -1 2 -1
0 -1 2

the first six transformed matrices for the classical Jacobi method are given
by
1.0000  0.0000 -0.7071
A = 0.0000  3.0000 -0.7071 |,
-0.7071 -0.7071  2.0000

0.6340 —-0.3251  0.0000
A, = —-0.3251 3.0000 -0.6280 |,

0.0000 -0.6280  2.3660
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0.6340 —-0.2768 —0.1704
—0.2768  3.3864  0.0000
—0.1704  0.0000  1.9796

0.6064  0.0000 -0.1695
Ay = 0.0000  3.4140 0.0169 |,

—0.1695 0.0169  1.9796

0.5858  0.0020  0.0000
0.0020 3.4140 0.0168
0.0000 0.0168  2.0002

0.5858  0.0020 —0.0000
Ag = 0.0020 3.4142 0.0000 | .
—0.0000  0.0000 2.0000
The exact eigenvalues of A are A\; =2+ V2, A=2, A3 =2— V2. O

7.4 The QR Algorithm

The QR algorithm was suggested by Francis in 1961 and is an iterative
method for computing all eigenvalues and eigenvectors for arbitrary com-
plex matrices. In applications, it is the most commonly used method for
eigenvalue computations. Qur presentation of the QR algorithm follows
[62].

For motivation we first consider the power method introduced by von
Mises in 1929 for finding the eigenvalue with largest modulus.

Definition 7.16 A matriz A is called diagonalizable if there exists a non-
singular matriz C such that C~* AC is a diagonal matriz; i.e., A is similar
to a diagonal matriz.

Theorem 7.17 An n x n matriz A is diagonalizable if and only if it has
n linearly independent eigenvectors.

Proof. Assume that C~'AC = D, where D = diag(\y, ..., An), is diagonal.
Then De; = MAjej, 7 = 1,...,n, with the canonical orthonormal basis
ei1,...,e, of C". This implies that the vectors z; := Ce;, j = 1,...,n, are
eigenvectors of A, since

A-'E]' = ACe] = CD€] = C/\]e] = /\]'TJ
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The vectors x1,...,z, are linearly independent because C is nonsingular
and the ey,...,e, are linearly independent.

Conversely, assume that z,,...,z, are n linearly independent eigenvec-
tors of A for the eigenvalues Aq,..., A,. Then the matrix C' = (z1,...,z,)
formed by the eigenvectors as columns is nonsingular, and we have that

AC = (A.’L'l,...,A.’IIn) = (/\Izl,...,,\nxn) =CD,
where D = diag(\,...,\,). Hence C"'AC = D. O

We order the eigenvalues of a diagonalizable n x n matrix A according
to their absolute values and assume that

[Ar] > |A2] > [As] > -+ > |Anl;

i.e., there is only one eigenvalue of maximal modulus. Starting from an
arbitrary vector vg € €™ we construct the sequence

v, = A%vy, v=12,...,

by the successive iterations v, := Av,_;. Note that in order to avoid nu-
merical overflow or underflow we need to scale after each step. Since the
n linearly independent eigenvectors x1,...,z, of A form a basis of C", we

can represent
n
Vo = E ATk,
k=1

whence
n
Ay = E QAL Tk
k=1

follows. Scaling after each step by the factor 1/A; leads to

AV'U() . n )\k v
/\,1, - Zak (—)\—1 Tk,

k=1

and consequently

AVUO — 1T and ||’U,,+1“2

Wvliz 1y
X o M

as v — oo, provided that a; # 0. Of course, in principle, A; cannot be
used as a scaling factor, since it is not known. However, this is irrelevant,
since the eigenvector is determined only up to multiplication by a complex
constant; i.e., only the direction of the eigenvector is relevant. In practical
computations, the condition a; # 0, i.e., vo & span{za,...,z,}, will be
automatically satisfied through roundoff errors.
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