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Preface 

A good part of matrix theory is functional analytic in spirit. This statement 
can be turned around. There are many problems in operator theory, where 
most of the complexities and subtleties are present in the finite-dimensional 
case. My purpose in writing this book is to present a systematic treatment 
of methods that are useful in the study of such problems. 

This book is intended for use as a text for upper division and gradu­
ate courses. Courses based on parts of the material have been given by 
me at the Indian Statistical Institute and at the University of Toronto (in 
collaboration with Chandler Davis). The book should also be useful as a 
reference for research workers in linear algebra, operator theory, mathe­
matical physics and numerical analysis. 

A possible subtitle of this book could be Matrix Inequalities. A reader 
who works through the book should expect to become proficient in the art 
of deriving such inequalities. Other authors have compared this art to that 
of cutting diamonds. One first has to acquire hard tools and then learn how 
to use them delicately. 

The reader is expected to be very thoroughly familiar with basic lin­
ear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R. 
Halmos and Linear Algebra by K. Hoffman and R. Kunze provide adequate 
preparation for this. In addition, a basic knowledge of functional analy­
sis, complex analysis and differential geometry is necessary. The usual first 
courses in these subjects cover all that is used in this book. 

The book is divided, conceptually, into three parts. The first five chapters 
contain topics that are basic to much of the subject. (Of these, Chapter 5 
is more advanced and also more special.) Chapters 6 to 8 are devoted to 
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perturbation of spectra, a topic of much importance in numerical analysis, 
physics and engineering. The last two chapters contain inequalities and 
perturbation bounds for other matrix functions. These too have been of 
broad interest in several areas. 

In Chapter 1, I have given a very brief and rapid review of some basic 
topics. The aim is not to provide a crash course but to remind the reader 
of some important ideas and theorems and to set up the notations that are 
used in the rest of the book. The emphasis, the viewpoint, and some proofs 
may be different from what the reader has seen earlier. Special attention 
is given to multilinear algebra; and inequalities for matrices and matrix 
functions are introduced rather early. After the first chapter, the exposition 
proceeds at a much more leisurely pace. The contents of each chapter have 
been summarised in its first paragraph. 

The book can be used for a variety of graduate courses. Chapters 1 
to 4 should be included in any course on Matrix Analysis. After this, if 
perturbation theory of spectra is to be emphasized, the instructor can go 
on to Chapters 6,7 and 8. With a judicious choice of topics from these 
chapters, she can design a one-semester course. For example, Chapters 7 
and 8 are independent of each other, as are the different sections in Chapter 
8. Alternately, a one-semester course could include much of Chapters 1 
to 5, Chapter 9, and the first part of Chapter 10. All topics could be 
covered comfortably in a two-semester course. The book can also be used 
to supplement courses on operator theory, operator algebras and numerical 
linear algebra. The book has several exercises scattered in the text and a 
section called Problems at the end of each chapter. An exercise is placed at a 
particular spot with the idea that the reader should do it at that stage of his 
reading and then proceed further. Problems, on the other hand, are designed 
to serve different purposes. Some of them are supplementary exercises, 
while others are about themes that are related to the main development in 
the text. Some are quite easy while others are hard enough to be contents 
of research papers. From Chapter 6 onwards, I have also used the problems 
for another purpose. There are results, or proofs, which are a bit too special 
to be placed in the main text. At the same time they are interesting enough 
to merit the attention of anyone working, or planning to work, in this area. 
I have stated such results as parts of the Problems section, often with 
hints about their solutions. This should enhance the value of the book as 
a reference, and provide topics for a seminar course as well. The reader 
should not be discouraged if he finds some of these problems difficult. At a 
few places I have drawn attention to some unsolved research problems. At 
some others, the existence of such problems can be inferred from the text. 
I hope the book will encourage some readers to solve these problems too. 

While most of the notations used are the standard ones, some need a 
little explanation: 

Almost all functional analysis books written by mathematicians adopt 
the convention that an inner product (u, v) is linear in the variable u and 
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conjugate-linear in the variable v. Physicists and numerical analysts adopt 
the opposite convention, and different notations as well. There would be no 
special reason to prefer one over the other, except that certain calculations 
and manipulations become much simpler in the latter notation. If u and v 
are column vectors, then u*v is the product of a row vector and a column 
vector, hence a number. This is the inner product of u and v. Combined 
with the usual rules of matrix multiplication, this facilitates computations. 
For this reason, I have chosen the second convention about inner products, 
with the belief that the initial discomfort this causes some readers will be 
offset by the eventual advantages. (Dirac's bra and ket notation, used by 
physicists, is different typographically but has the same idea behind it.) 

The k-fold tensor power of an operator is represented in this book as 
®k A, the antisymmetric and the symmetric tensor powers as 1\ k A and V k A, 
respectively. This helps in thinking of these objects as maps, A ~ ®k A, 
etc. We often study the variational behaviour of, and perturbation bounds 
for, functions of operators. In such contexts, this notation is natural. 

Very often we have to compare two n-tuples of numbers after rearrang­
ing them. For this I have used a pictorial notation that makes it easy to 
remember the order that has been chosen. If x = (Xl' ... ' Xn) is a vector 
with real coordinates, then xl and xi are vectors whose coordinates are ob­
tained by rearranging the numbers Xj in decreasing order and in increasing 
order, respectively. We write xl = (xi, ... , x;) and xi = (x I, ... , xl), 
where xi :::: ... :::: x; and xI ::; ... ::; xl. 

The symbol III . III stands for a unitarily inv.ariant norm on matrices: one 
that satisfies the equality IIIU AVIII = IIIAIII for all A and for all unitary 
U, V. A statement like IIIAIII ::; IIIBIII means that, for the matrices A and B, 
this inequality is true simultaneously for all unitarily invariant norms. The 
supremum norm of A, as an operator on the space en, is always written 
as IIAII. Other norms carry special subscripts. For example, the Frobenius 
norm, or the Hilbert-Schmidt norm, is written as IIAI12. (This should be 
noted by numerical analysts who often use the symbol IIAI12 for what we 
callIIAII·) 

A few symbols have different meanings in different contexts. The reader's 
attention is drawn to three such symbols. If x is a complex number, Ixl de­
notes the absolute value of x. If x is an n-vector with coordinates (Xl' ... ' xn ), 

then Ixl is the vector (lxII, ... , Ixnl). For a matrix A, the symbollAI stands 
for the positive semidefinite matrix (A* A)I/2. If J is a finite set, IJI denotes 
the number of elements of J. A permutation on n indices is often denoted 
by the symbol u. In this case, u(j) is the image of the index j under the 
map u. For a matrix A, u(A) represents the spectrum of A. The trace of a 
,matrix A is written as tr A. In analogy, if x = (Xl, ... ,xn ) is a vector, we 
write tr x for the sum I:Xj. 

The words matrix and operator are used interchangeably in the book. 
When a statement about an operator is purely finite-dimensional in content, 
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I use the word matrix. If a statement is true also in infinite-dimensional 
spaces, possibly with a small modification, I use either the word matrix or 
the word operator. Many of the theorems in this book have extensions to 
infinite-dimensional spaces. 

Several colleagues have contributed to this book, directly and indirectly. I 
am thankful to all of them. T. Ando, J.S. Aujla, RB. Bapat, A. Ben Israel, 
1. lonascu, A.K. Lal, R-C.Li, S.K. Narayan, D. Petz and P. Rosenthal read 
parts of the manuscript and brought several errors to my attention. F'umio 
Hiai read the whole book with his characteristic meticulous attention and 
helped me eliminate many mistakes and obscurities. Long-time friends and 
coworkers M.D. Choi, L. Elsner, J.A.R Holbrook, R Horn, F. Kittaneh, 
A. McIntosh, K. Mukherjea, K.R Parthasarathy, P. Rosenthal and K.B. 
Sinha, have generously shared with me their ideas and insights. These ideas, 
collected over the years, have influenced my writing. 

lowe a special debt to T. Ando. I first learnt some ofthe topics presented 
here from his Hokkaido University lecture notes. I have also learnt much 
from discussions and correspondence with him. I have taken a lot from his 
notes while writing this book. 

The idea of writing this book came from Chandler Davis in 1986. Various 
logistic difficulties forced us to abandon our original plans of writing it 
together. The book is certainly the poorer for it. Chandler, however, has 
contributed so much to my mathematics, to my life, and to this project, 
that this is as much his book as it is mine. 

I am thankful to the Indian Statistical Institute, whose facilities have 
made it possible to write this book. I am also thankful to the Department 
of Mathematics of the University of Toronto and to NSERC Canada, for 
several visits that helped this project take shape. 

It is a pleasure to thank V.P. Sharma for his Iffi.TEXtyping, done with 
competence and with good cheer, and the staff at Springer-Verlag for their 
help and support. 

My most valuable resource while writing, has been the unstinting and 
ungrudging support from my son Gautam and wife Irpinder. Without that, 
this project might have been postponed indefinitely. 

Rajendra Bhatia 
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I 
A Review of Linear Algebra 

In this chapter we review, at a brisk pace, the basic concepts of linear and 
multilinear algebra. Most of the material will be familiar to a reader who 
has had a standard Linear Algebra course, so it is presented quickly with 
no proofs. Some topics, like tensor products, might be less familiar. These 
are treated here in somewhat greater detail. A few of the topics are quite 
advanced and their presentation is new. 

1.1 Vector Spaces and Inner Product Spaces 

Throughout this book we will consider finite-dimensional vector spaces over 
the field e of complex numbers. Such spaces will be denoted by symbols 
V, W, VI, V2 , etc. Vectors will, most often, be represented by symbols u, v, 
W, x, etc., and scalars by a, b, s, t, etc. The symbol n, when not explained, 
will always mean the dimension of the vector space under consideration. 

Most often, our vector space will be an inner product space. The inner 
product between the vectors u, v will be denoted by (u, v). We will adopt 
the convention that this is conjugate-linear in the first variable u and linear 
in the second variable v. We will always assume that the inner product is 
definite; i.e., ·;u, u) = 0 if and only if u = O. A vector space with such 
an inner product is then a finite-dimensional Hilbert space. Spaces of this 
type will be denoted by symbols 7i, K, etc. The norm arising from the inner 
product will be denoted by Ilull; i.e., Ilull = (u, U)I/2. 

As usual, it will sometimes be convenient to deal with the standard 
Hilbert space en. Elements of this vector space are column vectors with 
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n coordinates. In this case, the inner product (u, v) is the matrix product 
u*v obtained by multiplying the column vector v on the left by the row 
vector u*. The symbol * denotes the conjugate transpose for matrices of 
any size. The notation u*v for the inner product is sometimes convenient 
even when the Hilbert space is not en. 

The distinction between column vectors and row vectors is important in 
manipulations involving products. For example, if we write elements of en 
as column vectors, then u*v is a number, but uv* is an n x n matrix (some­
times called the "outer product" of u and v). However, it is typographically 
inconvenient to write column vectors. So, when the context does not de­
mand this distinction, we may write a vector x with scalar coordinates 
Xl, ... , xn, simply as (Xl, ... , Xn). This will often be done in later chap­
ters. For the present, however, we will maintain the distinction between 
row and column vectors. 

Occasionally our Hilbert spaces will be real, but we will use the same 
notation for them as for the complex ones. Many of our results will be true 
for infinite-dimensional Hilbert spaces, with appropriate modifications at 
times. We will mention this only in passing. 

Let X = (Xl, ... ,Xk) be a k-tuple of vectors. If these are column vectors, 
then X is an n x k matrix. This notation suggests matrix manipulations 
with X that are helpful even in the general case. 

For example, let X = (Xl' ... ' Xk) be a linearly independent k-tuple. We 
say that a k- tuple Y = (YI, ... , Yk) is biorthogonal to X if (Yi, Xj) = 8ij . 
This condition is expressed in matrix terms as Y* X = h, the k x k identity 
matrix. 

Exercise 1.1.1 Given any k-tuple of linearly independent vectors X as 
above, there exists a k-tuple Y biorthogonal to it. If k = n, this Y is unique. 

The Gram-Schmidt procedure, in this notation, can be interpreted as a 
matrix factoring theorem. Given an n-tuple X = (Xl' ... ' Xn) of linearly 
independent vectors the procedure gives another n-tuple Q = (ql, ... , qn) 
whose entries are orthonormal vectors. For each k = 1,2, ... ,n, the vectors 
{Xl, ... ,Xk} and {ql, ... ,qk} have the same linear span. In matrix notation 
this can be expressed as an equation, X = QR, where R is an upper 
triangular matrix. The matrix R may be chosen so that all its diagonal 
entries are positive. With this restriction the factors Q and R are both 
unique. If the vectors Xj are not linearly independent, this procedure can 
be modified. If the vector Xk is linearly dependent on Xl, ... ,Xk-l, set 
qk = 0; otherwise proceed as in the Gram-Schmidt process. If the kth 
column of the matrix Q so constructed is zero, put the kth row of R to be 
zero. Now we have a factorisation X = QR, where R is upper triangular 
and Q has orthogonal columns, some of which are zero. Take the nonzero 
columns of Q and extend this set to an orthonormal basis. Then, replace 
the zero columns of Q by these additional basis vectors. The new matrix 
Q now has orthonormal columns, and we still have X = QR, because the 
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new columns of Q are matched with zero rows of R. This is called the QR 
decomposition. 

Similarly, a change of orthogonal bases can be conveniently expressed in 
these notations as follows. Let X = (Xl, ... ,Xk) be any k-tuple of vectors 
and E = (el,.'. ,en) any orthonormal basis. Then, the columns of the 
matrix E* X are the representations of the vectors comprising X, relative 
to the basis E. When k = n and X is an orthonormal basis, then E* X is a 
unitary matrix. Furthermore, this is the matrix by which we pass between 
coordinates of any vector relative to the basis E and those relative to the 
basis X. Indeed, if 

then we have 

Hence, 

u=Ea, 
u=Xb, 

aj = eju, 
bj = xju, 

a = E*u, 
b = X*u. 

a = E* Xb and b = X* Ea. 

Exercise 1.1.2 Let X be any basis ofJi and let Y be the basis biorthogonal 
to it. Using matrix multiplication, X gives a linear transformation from 
en to Ji. The inverse of this is given by Y*. In the special case when 
X is orthonormal (so that Y = X), this transformation is inner-product­
preserving if the standard inner product is used on en. 
Exercise 1.1.3 Use the QR decomposition to prove Hadamard's inequal­
ity: if X = (Xl' ... ' xn ), then 

n 

I det XI ::; rlilXjl!. 
j=l 

Equality holds here if and only if either the Xj are mutually orthogonal or 
some Xj zs zero. 

1.2 Linear Operators and Matrices 

Let £(V, W) be the space of all linear operators from a vector space V to 
a vector space W. If bases for V, Ware fixed, each such operator has a 
unique matrix associated with it. As usual, we will talk of operators and 
matrices interchangeably. 

For operators between Hilbert spaces, the matrix representations are 
especially nice if the bases chosen are orthonormal. Let A E £(Ji, K), and 
let E = (el' ... ,en) be an orthonormal basis of Ji and F = (II, ... ,fm) an 
orthonormal basis of K. Then, the (i, j)-entry of the matrix of A relative 
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to these bases is aij = ft Aej = (Ii, Aej). This suggests that we may say 
that the matrix of A relative to these bases is F* AE. 

In this notation, composition of linear operators can be identified with 
matrix multiplication as follows. Let M be a third Hilbert space with or­
thonormal basis G = (gl,"" gp). Let B E .c(JC, M). Then 

(matrix of B . A) G*(B· A)E 

G*BF F*AE 

(G* BF)(F* AE) 

(matrix of B) (matrix of A). 

The second step in the above chain is justified by Exercise 1.1.2. 
The adjoint of an operator A E .c(H, JC) is the unique operator A* in 

.c(JC, H) that satisfies the relation 

(z,Ax)K: = (A*z,x)7t 

for all x E Hand z E JC. 

Exercise 1.2.1 For fixed bases in Hand JC, the matrix of A* is the con­
jugate transpose of the matrix of A. 

For the space .c(H, H) we use the more compact notation .c(H). In the 
rest of this section, and elsewhere in the book, if no qualification is made, 
an operator would mean an element of .c(H). 

An operator A is called self-adjoint or Hermitian if A = A *, skew­
Hermitian if A = -A *, unitary if AA * = I = A * A, and normal if 
AA* = A*A. 

A Hermitian operator A is said to be positive or positive semidefinite 
if (x, Ax) ~ 0 for all x E H. The notation A ~ 0 will be used to express 
the fact that A is a positive operator. If (x, Ax) > 0 for all nonzero x, we 
will say A is positive definite, or strictly positive. We will then write 
A > O. A positive operator is strictly positive if and only if it is invertible. 
If A and B are Hermitian, then we say A ~ B if A - B ~ O. 

Given any operator A we can find an orthonormal basis Yl, ... ,Yn such 
that for each k = 1,2, ... , n, the vector AYk is a linear combination of 
Yl, ... ,Yk· This can be proved by induction on the dimension n of H. Let 
Al be any eigenvalue of A and Yl an eigenvector corresponding to AI, and 
M the I-dimensional subspace spanned by it. Let N be the orthogonal com­
plement of M. Let PN denote the orthogonal projection on N. For YEN, 
let ANY = PNAy. Then, AN is a linear operator on the (n-I)-dimensional 
space N. So, by the induction hypothesis, there exists an orthogonal ba­
sis Y2,"" Yn of N such that for k = 2, ... , n the vector ANYk is a linear 
combination of Y2, ... ,Yk. Now Yl, ... ,Yn is an orthogonal basis for H, and 
each AYk is a linear combination of Yl, ... , Yk for k = 1,2, ... ,n. Thus, the 
matrix of A with respect to this basis is upper triangular. In other words, 
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every matrix A is unitarily equivalent (or unitarily similar) to an up­
per triangular matrix T, i.e., A = QTQ*, where Q is unitary and T is upper 
triangular. This triangular matrix is called a Schur Triangular Form for 
A. An orthonormal basis with respect to which A is upper triangular is 
called a Schur basis for A. If A is normal, then T is diagonal and we have 
Q* AQ = D, where D is a diagonal matrix whose diagonal entries are the 
eigenvalues of A. This is the Spectral Theorem for normal matrices. 

The Spectral Theorem makes it easy to define functions of normal matri­
ces. If f is any complex function, and if D is a diagonal matrix with A!, . .. , 
An on its diagonal, then f(D) is the diagonal matrix with f(A1), ... , f(An) 
on its diagonal. If A = QDQ*, then f(A) = Qf(D)Q*. A special conse­
quence, used very often, is the fact that every positive operator A has a 
unique positive square root. This square root will be written as A 1/2. 

Exercise 1.2.2 Show that the following statements are equivalent: 

(i) A is positive. 

(ii) A = B* B for some B. 

(iii) A = T*T for some upper triangular T. 

(iv) A = T*T for some upper triangular T with nonnegative diagonal 
entries. 

If A is positive definite, then the factorisation in (iv) is unique. This is 
called the Cholesky Decomposition of A. 

Exercise 1.2.3 (i) Let {AnJ be a family of mutually commuting operators. 
Then, there is a common Schur basis for {An}. In other words, there exists 
a unitary Q such that Q* AnQ is upper triangular for all Q. 

(ii) Let {An} be a family of mutually commuting normal operators. Then, 
there exists a unitary Q such that Q* AnQ is diagonal for all Q. 

For any operator A the operator A* A is always positive, and its unique 
positive square root is denoted by IAI. The eigenvalues of IAI counted with 
multiplicities are called the singular values of A. We will always enu­
merate these in decreasing order, and use for them the notation s 1 (A) ~ 
s2(A) ~ ... ~ sn(A). 

If rank A = k, then sk(A) > 0, but Sk+1(A) = ... = sn(A) = O. Let S be 
the diagonal matrix with diagonal entries Sl (A), ... , sn(A) and S+ the k x k 
diagonal matrix with diagonal entries sl(A), ... ,Sk(A). Let Q = (Q1,Q2) 
be the unitary matrix in which Q1 is the n x k matrix whose columns are 
the eigenvectors of A* A corresponding to the eigenvalues si(A), ... , s%(A) 
and Q2 the n x (n - k) matrix whose columns are the eigenvectors of A* A 
corresponding to the remaining eigenvalues. Then, by the Spectral Theorem 

Q*(A* A)Q = (SO~ ~). 
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Note that 
Qi(A* A)QI = S~, Q2(A* A)Q2 = o. 

The second of these relations implies that AQ2 = O. From the first one we 
can conclude that if WI = AQIS:;:I, then WiWI = I k · Choose W2 so that 
W = (WI, W2) is unitary. Then, we have 

This is the Singular Value Decomposition: for every matrix A there 
exist unitaries Wand Q such that 

W*AQ = S, 

where S is the diagonal matrix whose diagonal entries are the singular 
values of A. 

Note that in the above representation the columns of Q are eigenvectors 
of A* A and the columns of Ware eigenvectors of AA* corresponding to 
the eigenvalues s~(A), 1 ::; j ::; n. These eigenvectors are called the right 
and left singular vectors of A, respectively. 

Exercise 1.2.4 (i) The Singular Value Decomposition leads to the Polar 
Decomposition: Every operator A can be written as A = UP, where U 
is unitary and P is positive. In this decomposition the positive part P is 
unique, P = IAI. The unitary part U is unique if A is invertible. 

(ii) An operator A is normal if and only if the factors U and P in the 
polar decomposition of A commute. 

(iii) We have derived the Polar Decomposition from the Singular Value 
Decomposition. Show that it is possible to derive the latter from the former. 

Every operator A can be decomposed as a sum 

A = Re A + i 1m A, 

where Re A = A~~t and 1m A = A-;t. This is called the Cartesian 
Decomposition of A into its "real" and "imaginary" parts. The operators 
Re A and 1m A are both Hermitian. 

The norm of an operator A is defined as 

We also have 

IIAII = sup IIAxll· 
IIxll=1 

IIAII = sup I(y, Ax)l· 
IIxll=IIYII=1 

When A is Hermitian we have 

IIAII = sup l(x,Ax)l· 
IITII=1 
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For every operator A we have 

When A is normal we have 

IIAII = max{IAjl : Aj is an eigenvalue of A}. 

An operator A is said to be a contraction if IIAII :::::: 1. We also use 
the adjective contractive for such an operator. A positive operator A is 
contractive if and only if A :::::: I. 

To distinguish it from other norms that we consider later, the norm IIAII 
will be called the operator norm or the bound norm of A. 

Another useful norm is the norm 
n 

IIAI12 = (2.:: S;(A))1/2 = (trA* A)1/2, 
j=1 

where tr stands for the trace of an operator. If aij are the entries of a 
matrix representation of A relative to an orthonormal basis of H, then 

IIAlb = (2.:: laijI2)1/2. 
i,j 

This makes this norm useful in calculations with matrices. This is called 
the Frobenius norm or the Schatten 2-norm or the Hilbert-Schmidt 
norm. 

Both IIAII and IIAlb have an important invariance property called uni­
tary invariance: we have IIAII = IIU AVII and IIAI12 = IIU AVI12 for all 
unitary U,V. 

Any two norms on a finite-dimensional space are equivalent. For the 
norms IIAII and IIAI12 it follows from the properties listed above that 

IIAII :::::: IIAI12 :::::: n 1/ 211AII 

for every A. 

Exercise 1.2.5 Show that matrices with distinct eigenvalues are dense in 
the space of all n x n matrices. (Use the Schur Triangularisation.) 

Exercise 1.2.6 If IIAII < 1, then I - A is invertible and 

(I - A)-1 = I + A + A2 +"', 

a convergent power series. This is called the Neumann Series. 

Exercise 1.2.7 The set of all invertible matrices is a dense open subset of 
the set of all n x n matrices. The set of all unitary matrices is a compact 
subset of the set of all n x n matrices. These two sets are also groups under 
multiplication. They are called the general linear group GL(n) and the 
unitary group U(n), respectively. 
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Exercise 1.2.8 For any matrix A the series 

A2 An 
expA = I + A + 2f + ... + -;y + ... 

converges. This is called the exponential of A. The matrix exp A is always 
invertible and 

(expA)-l = exp(-A). 

Conversely, every invertible matrix can be expressed as the exponential of 
some matrix. Every unitary matrix can be expressed as the exponential of 
a skew-Hermitian matrix. 

The numerical range or the field of values of an operator A is the 
subset W(A) of the complex plane defined as 

W(A) = {(x, Ax) : Ilxll = I}. 

Note that 

W(UAU*) 
W(aA + bI) 

W(A) 
aW(A) + bW(I) 

for all U E U(n), 
for all a, bE Co 

It is clear that if A is an eigenvalue of A, then A is in W(A). It is also clear 
that W(A) is a closed set. An important property of W(A) is that it is a 
convex set. This is called the Toeplitz-Hausdorff Theorem; an outline 
of its proof is given in Problem 1.6.2. 

Exercise 1.2.9 (i) When A is normal, the set W(A) is the convex hull 
of the eigenvalues of A. For nonnormal matrices, W(A) may be bigger 
than the convex hull of its eigenvalues. For Hermitian operators, the first 
statement says that W(A) is the closed interval whose endpoints are the 
smallest and the largest eigenvalues of A. 

(ii) If a unit vector x belongs to the linear span of the eigenspaces cor-
responding to eigenvalues AI, ... , Ak of a normal operator A, then (x, Ax) 
lies in the convex hull of AI, ... ,Ak. (This fact will be used frequently in 
Chapter III.) 

The number w(A) defined as 

w(A) = sup I(x, Ax)1 
Ilxll=l 

is called the numerical radius of A. 

Exercise 1.2.10 (i) The numerical radius defines a norm on £(H). 

(ii) w(U AU*) = w(A) for all U E U(n). 

(iii) w(A) ::; IIAII ::; 2w(A) for all A. 
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(iv) w(A) = HAil if (but not only if) A is normal. 

The spectral radius of an operator A is defined as 

spr(A) = max{IAI : A is an eigenvalue of A}. 

We have noted that spr(A) :::; w(A) :::; IIAII, and that the three are equal if 
(but not only if) the operator A is normal. 

1.3 Direct Sums 

If U, V are vector spaces, their direct sum is the space of columns (~) with 
u E U and v E V. This is a vector space with vector operations naturally 
defined coordinatewise. If H, K are Hilbert spaces, their direct sum is a 
Hilbert space with inner product defined as 

( (~), (~:) ) = (h, h'}1i + (k, k'k. 

We will always denote this direct sum as H E9 K. 
If M and N are orthogonally complementary subspaces of H, then the 

fact that every vector x in H has a unique representation x = u+v with u E 
M and v E N implies that H is isomorphic to M E9 N. This isomorphism 
is given by a natural, fixed map. So, we say that H = M E9 N. When a 
distinction is necessary we call this an internal direct sum. If M,N are 
subspaces of H complementary in the algebraic but not in the orthogonal 
sense; i.e., if M and N are disjoint and their linear span is H, then every 
vector x in H has a unique decomposition x = u + v as before, but not 
with orthogonal summands. In this case we write H == M + N and say H 
is the algebraic direct sum of M and N. 

If H = M E9 N is an internal direct sum, we may define the injection 
of Minto H as the operator 1M E .c(M, H) such that IM(U) = u for all 
u E M. Then, 1M is an element of .c(H, M) defined as IMx = Px for all 
x E H, where P is the orthoprojector onto M. Here one should note that 
1M is not the same as P because they map into different spaces. That is 
why their adjoints can be different. Similarly define IN. Then, (IM,!N) is 
an isometry from the ordinary ("external") direct sum M E9 N onto H. 

If H = M E9N and A E .c(H), then using this isomorphism, we can write 
A as a block-matrix 

A=(~ ~), 
where B E .c(M), C E .c(N, M), etc. Here, for example, C = IMAIN· 
The usual rules of matrix operations hold for block matrices. Adjoints are 
obtained by taking "conjugate transposes" formally. 
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If the subspace M is invariant under A; i.e., Ax E M whenever x EM, 
then in the above block-matrix representation of A we must have D = O. 
Indeed, this condition is equivalent to M being invariant. If both M and its 
orthogonal complement N are invariant under A, we say that M reduces 
A. In this case, both C and Dare O. We then say that the operator A is 
the direct sum of Band E and write A = B EEl E. 

Exercise 1.3.1 Let A = Al EEl A 2. Show that 

(i) W(A) is the convex hull ofW(AI) and W(A2); i.e., the smallest convex 
set containing W(Ad U W(A2)' 

(ii) IIAII 
spr(A) 
w(A) 

max(IIAIII, IIA2 11), 
max(spr(Ad, spr(A2 )), 

max(w(AI), W(A2))' 

Direct sums in which each summand H j is the same space H arise often in 
practice. Very often, some properties of an operator A on H are reflected in 
those of some other operators on HEEl 71. This is illustrated in the following 
propositions. 

Lemma 1.3.2 Let A E £(71). Then, the operators (11) and (2~ ~) are 
unitarily equivalent in £(H EEl H). 

Proof. The equivalence is implemented by the unitary operator 
1 (I I) 

y'2 -I I . • 

Corollary 1.3.3 An operator A on H is positive if and only if the operator 
(A A) 'lJ 'lJ' .. 

A A on I L EEl I L zs posztwe. 

This can also be seen by writing (11) = (1:;~ ~) (A~2 A~2), and 
using Exercise I.2.2. 

Corollary 1.3.4 For every A E £(71) the operator (111 11: I) is positive. 

Proof. Let A = UP be the polar decomposition of A. Then, 

A* ) 
IA*I ( P Pu*) 

UP UPU* 

(~~)(~ ~)(~ g*). 
Note that (b ~) is a unitary operator on HEEl H. • 
Proposition 1.3.5 An operator A on 71 is contractive if and only if the 
operator (~ ~') on 71 EEl H is positive. 
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Proof. If A has the singular value decomposition A = U SV*, then 

( I A * ) = (V 0) (I S) (v* 0) 
A IOU S I 0 U* . 

Hence (~ ~') is positive if and only if (~ ~) is positive. Also, !lAII = II SII· 
SO we may assume, without loss of generality, that A = S. 

Now let W be the unitary operator on 1t(f)1t that sends the orthonormal 
basis {e1,e2, ... ,e2n} to the basis {e1,en+1,e2,en+2, ... ,en ,e2n}. Then, 
the unitary conjugation by W transforms the matrix (~ ~) to a direct 
sum of n two-by-two matrices 

This is positive if and only if each of the summands is positive, which 
happens if and only if Sj :::; 1 for all j; i.e., S is a contraction. • 

Exercise 1.3.6 If A is a contraction, show that 

A*(I - AA*)1/2 = (I - A* A)1/2 A*. 

Use this to show that if A is a contraction on 11., then the operators 

U ( (I - A~ A)1/2 
(I - AA*)1/2 ) 

-A* , 

( A 
(I - A* A)1/2 

-(I - AA*)1/2 ) 
A* V = 

are unitary operators on 11. (f) 11.. 

Exercise 1.3.7 For every matrix A, the matrix (~ 1) is invertible and its 
inverse is (~ -/). Use this to show that if A, B are any two n x n matrices, 
then 

This implies that AB and BA have the same eigenvalues. (This last fact 
can be proved in another way as follows. If B is invertible, then AB = 
B-1(BA)B. So, AB and BA have the same eigenvalues. Since invertible 
matrices are dense in the space of all matrices, and a general known fact 
in complex analysis is that the roots of a polynomial vary continuously with 
the coefficients, the above conclusion also holds in general.) 

Direct sums with more than two summands are defined in the same way. 
We will denote the direct sum of spaces 11.1 , ... ,1tk as (f)1=11tj, or simply 

as (f)jltj. 
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1.4 Tensor Products 

Let Vj, 1 ::; j ::; k, be vector spaces. A map F from the Cartesian product 
V1 x ... X Vk to another vector space W is called multilinear if it depends 
linearly on each of the arguments. When W = C, such maps are called 
multilinear functionals. When k = 2, the word multilinear is replaced 
by bilinear. Bilinear maps, thus, are maps F : V1 x V2 -+ W that satisfy 
the conditions 

F(U,avl + bV2) 

F(aul +bU2,V) 

aF(u, Vl) + bF(u, V2), 

aF(u17 v) + bF(U2, v), 

for all a,b E Cj U,Ul,U2 E V1 and V,Vl,V2 E V2. We will be looking most 
often at the special situation when each Vj is the same vector space. 

As a special example consider a Hilbert space 11. and fix two vectors x, y 
in it. Then, 

F(u, v) = (x,u)(y,v) 

is a bilinear functional on 11.. 
We see from this example that it is equally natural to consider conjugate­

multilinear functionals as well. Even more generally we could study func­
tions that are linear in some variables and conjugate-linear in others. As an 
example, let A E £(11.,K) and for u E K and v E 11., let F(u,v) = (u,Av)..c. 
Then, F depends linearly on v and conjugate-linearly on u. Such function­
als are called sesquilinearj an inner product is a functional of this sort. 
The example given above is the "most general" example of a sesquilinear 
functional: if F(u, v) is any sesquilinear functional on K x 11., then there 
exists a unique operator A E £(11.,K) such that F(u,v) = (u,Av). 

In this sense our first example is not the most general example of a 
bilinear functional. Bilinear functionals F( u, v) on 11. that can be expressed 
as F(u,v) = (x,u)(y,v) for some fixed x,y E 11. are called elementary. 
They are special as the following exercise will show. 

Exercise 1.4.1 Let x, y, z be linearly independent vectors in 11.. Find a 
necessary and sufficient condition that a vector w must satisfy in order 
that the bilinear functional 

F(u,v) = (x,u)(y,v) + (z,u)(w,v) 

is elementary. 

The set of all bilinear functionals is a vector space. The result of this 
exercise shows that the subset consisting of elementary functionals is not 
closed under addition. We will soon see that a convenient basis for this vec­
tor space can be constructed with elementary functionals as its members. 

The procedure, called the tensor product construction, starts by taking 
formal linear combinations of symbols x ® y with x E 11., y E K; then 
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reducing this space modulo suitable equivalence relations; then identifying 
the resulting space with the space of bilinear functionals. 

More precisely, consider all finite sums of the type LCi(xi ® Yi), 
i 

Ci E C, Xi E 'H, Yi E K and manipulate them formally as linear combi-
nations. In this space the expressions 

a(x®y) 

a(x ® y) 

Xl ® Y+X2 ® Y 

X ®Yl +X ®Y2 

(ax ® y) 

(x®ay) 

(Xl + X2) ® y 

X ® (Yl + Y2) 

are next defined to be equivalent to 0, for all a E C; X, Xl, X2 E 'H and 
Y, Yl, Y2 E K. The set of all linear combinations of expressions X ® Y for 
X E 'H, y E K, after reduction modulo these equivalences, is called the 
tensor product of 'H and K and is denoted as 'H ® K. 

Each term c( X ® y) determines a conj ugate-bilinear functional F* ( u, v) 
on 'H x K by the natural rule 

F*(u,v) = c(u,x)(v,y). 

This can be extended to sums of such terms, and the equivalences were 
chosen in such a way that equivalent expressions (i.e., expressions giving the 
same element of 'H®K) give the same functional. The complex conjugate of 
each such functional gives a bilinear functional. These ideas can be extended 
directly to k-linear functionals, including those that are linear in some of 
the arguments and conjugate-linear in others. 

Theorem 1.4.2 The space of all bilinear functionals on 'H is linearly spanned 
by the elementary ones. If (el, ... , en) is a fixed orthonormal basis of 'H, 
then to every bilinear functional F there correspond unique vectors Xl, ... , Xn 
such that 

F* = Lej ®Xj. 
j 

Every sequence Xj, 1 ::; j ::; n, leads to a bilinear functional in this way. 

Proof. Let F be a bilinear functional on 'H. For each j, F* (e j , v) is a 
conjugate-linear function of v. Hence there exists a unique vector Xj such 
that F*(ej,v) = (v,Xj) for all v. 

Now, if u = 'L,ajej is any vector in 'H, then F(u, v) = 'L,ajF(ej, v) 
'L,(ej,u)(xj,v). In other words, F* = 'L,ej ® Xj as asserted. • 

A more symmetric form of the above statement is the following: 

Corollary 1.4.3 If (el, ... , en) and (il,···, fn) are two fixed orthonormal 
bases of 'H, then every bilinear functional F on'H has a unique represen­

tation F = 'L,aij (ei ® fj) * . 
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(Most often, the choice (el' ... ,en) = (11, ... , In) is the convenient one for 
using the above representations.) 

Thus, it is natural to denote the space of conjugate-bilinear functionals 
on 1-£ by 1t ® 1-£. This is an n 2-dimensional vector space. The inner product 
on this space is defined by putting 

and then extending this definition to all of 1-£ ® 1-£ in a natural way. It 
is easy to verify that this definition is consistent with the equivalences 
used in defining the tensor product. If (el,"" en) and (iI,···, In) are 
orthonormal bases in 1t, then ei ® ij, 1::; i,j ::; n, form an orthonormal 
basis in 1-£ ® 1-£. For the purposes of computation it is useful to order this 
basis lexicographically: we say that ei ® Ii precedes ek ® h if and only 
if either i < k or i = k and j < f. 

Tensor products such as 1-£ ® K or K* ® 1-£ can be defined by imitating 
the above procedure. Here the space K* is the space of all conjugate-linear 
functionals on K. This space is called the dual space of K. There is a natu­
ral identification between K and K* via a conjugate-linear, norm preserving 
bijection. 

Exercise 1.4.4 (i) There is a natural isomorphism between the spaces K ® 
1-£* and £(1-£, K) in which the elementary tensor k ® h* corresponds to the 
linear map that takes a vector u of1-£ to (h, u)k. This linear transformation 
has rank one and all rank one, transformations can be obtained in this way. 

(ii) An explicit construction of this isomorphism rp is outlined below. Let 
el,"" en be an orthonormal basis for 1-£ and for 1-£*. Let iI,···, im be an 
orthonormal basis for K. Identitfy each element of £(1-£, K) with its matrix 
with respect to these bases. Let Eij be the matrix all whose entries are 
zero except the (i,j)-entry, which is 1. Show that rp(Ji ® ej) = Eij for all 
1 ::; i ::; m, 1 ::; j ::; n. Thus, if A is any m x n matrix with entries aij, 
then 

i,j j 

(iii) The space £(1-£, K) is a Hilbert space with inner product (A, B) 
tr A * B. The set E ij , 1 ::; i :S m, 1 :S j :S n, is an orthonormal basis 
for this space. Show that the map rp is a Hilbert space isomorphism; i. e., 
(rp-l(A), rp-l(B)) = (A,B) for all A,B. 

Corresponding facts about multilinear functionals and tensor products 
of several spaces are proved in the same way. We will use the notation ®k1t 
for the k-fold tensor product 1t ® 1-£ ® ... ® 1-£. 

Tensor products of linear operators are defined as follows. We first define 
A ® B on elementary tensors by putting (A ® B)(x ® y) = Ax ® By. We 
then extend this definition linearly to all linear combinations of elementary 
tensors, i.e., to all of 1t ® 1t. This extension involves no inconsistency. 
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It is obvious that (A ® B)(C ® D) = AC ® BD, that the identity on 
1-£ ® 1-£ is given by I ® I, and that if A and B are invertible, then so is 
A ® B and (A ® B)-1 = A-I ® B-1. A one-line verification shows that 
(A®B)* = A* ®B*. It follows that A®B is Hermitian if (but not only if) 
A and B are Hermitian; A ® B is unitary if (but not only if) A and Bare 
unitary; A ® B is normal if (and only if) A and B are normal. (The trivial 
cases A = 0, or B = 0, must be excluded f~r the last assertion to be valid.) 

Exercise 1.4.5 Suppose it is known that M is an invariant subspace for A. 
What invariant subspaces for A ® A can be obtained from this information 
alone'? 

For operators A, B on different spaces 1-£ and K, the tensor product can 
be defined in the same way as above. This gives an operator A ® B on 
1-£ ® K. Many of the assertions made earlier for the case 1-£ = K remain true 
in this situation. 

Exercise 1.4.6 Let A and B be two matrices (not necessarily of the same 
size). Relative to the lexicographically ordered basis on the space of tensors, 
the matrix for A ® B can be written in block form as follows: if A = (aij), 
then 

A®B = ( a~~~ a~~~ ) . 
anlB annB 

Especially important are the operators A ® A ® ... ® A, which are k-fold 
tensor products of an operator A E £(1-£). Such a product will be written 
more briefly as A®k or ®k A. This is an operator on the nk-dimensional 
space ®k1-£. 

Some of the easily proved and frequently used properties of these prod­
ucts are summarised below: 

3. (®kAr = ®kA*. 

4. If A is Hermitian, unitary, normal or positive, then so is ®k A. 

5. If CYl, ... ,CYk (not necessarily distinct) are eigenvalues of A with eigen-
vectors Ul, ... ,Uk, respectively, then CYI ••• CYk is an eigenvalue of ®k A 
and UI ® ... ® Uk is an eigenvector for it. 

6. If Si, , ... ,Sik (not necessarily distinct) are singular values of A, then 
Si, ... Sik is a singular value of ®k A. 

7. II ®k All = IIAW· 
The reader should formulate and prove analogous statements for tensor 

products Al ® A2 1'1, ... ® Ak of different operators. 
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1.5 Symmetry Classes 

In the space (g}H there are two especially important subspaces (for non­
trivial cases, k > 1 and n > 1). 

The antisymmetric tensor product of vectors Xl,"" Xk in H is de-
fined as 

XI/\"'/\ Xk = (k!)-1/2L>O"XO"(I) @ •.. @XO"(k), 
0" 

where u runs over all permutations of the k indices and CO" is ±1, depending 
on whether u is an even or an odd permutation. (cO" is called the signature 
of u.) The factor (k!)-1/2 is chosen so that if Xj are orthonormal, then 
XI/\' .. /\ Xk is a unit vector. The antisymmetry of this product means that 

Xl /\ ... /\ Xi /\ ... /\ Xj /\ ... /\ Xk = -Xl /\ ... /\ Xj /\ ... /\ Xi /\ ... /\ Xk, 

i.e., interchanging the position of any two of the factors in the product 
amounts to a change of sign. In particular, Xl /\ ... /\ Xk = 0 if any two of 
the factors are equal. 

The span of all antisymmetric tensors XI/\" '/\Xk in @kH is denoted by 
/\kH. This is called the kth antisymmetric tensor product (or tensor 
power) ofH. 

Given an orthonormal basis (el,"" en) in H, there is a standard way of 
constructing an orthonormal basis in /\kH. Let Qk,n denote the set of all 
strictly increasing k-tuples chosen from {1,2, ... ,n}; i.e., I E Qk,n if and 
only if I = (iI, i2, ... , i k ), where 1 :::; i l < i2 < ... < i k :::; n. For such an I 
let eI = ei, /\ ... /\ eik' Then, {eI : I E Qk,n} gives an orthonormal basis 
of /\ kH. Such I are sometimes called multi-indices. It is conventional to 
order them lexicographically. Note that the cardinality of Qk,n, and hence 
the dimensionality of /\kH, is G). 

If in particular k = n, the space /\kH is I-dimensional. This plays a 
special role later on. When k > n the space /\kH is {O}. 

Exercise 1.5.1 Show that the inner product (Xl /\ ... /\ Xk, YI /\ ... /\ Yk) is 
equal to the determinant of the k x k matrix ((Xi,Yj))' 

The symmetric tensor product of Xl, ... ,Xk is defined as 

where u, as before, runs over all permutations of the k indices. The linear 
span of all these vectors comprises the subspace VkH of @kH. This is called 
the kth symmetric tensor power of H. 

Let Gk,n denote the set of all non-decreasing k-tuples chosen from 
{I, 2, ... , n}; i.e., I E Gk,n if and only if I = (i l , ... ,ik), where 1 :::; i l :::; 
i2 ... :::; ik :::; n. If such an I consists of e distinct indices i l , ... ,ie with 
multiplicities ml,'" ,me, respectively, put m(I) = ml!m2!'" me!. Given 
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an orthonormal basis (el, ... , en) of'H define, for every I E Gk,n, ey = 
ei1 Vei2 V· .. Veik. Then, the set {m(I)-1/2 ey : I E Gk,n} is an orthonormal 
basis in vk'H. Again, it is conventional to order these multi-indices lexico­
graphically. The cardinality of the set Gk,n, and hence the dimensionality 
of the space Vk'H, is (n+Z-I). 

Notice that the expressions for the basis in I\k'H are simpler because 
m(I) = 1 for I E Qk,n. 

Exercise 1.5.2 The elementary tensors x IZI·· ·lZIx, with all factors equal, 
are all in the subspace Vk'H. Do they span it? 

Exercise 1.5.3 Let M be a p-dimensional subspace of 'H and N its or­
thogonal complement. Choosing j vectors from M and k - j vectors from 
N and forming the linear span of the antisymmetric tensor products of all 
such vectors, we get different subspaces of I\k'H; for example, one of those 
is 1\ k M. Determine all the subspaces thus obtained and their dimensional­
ities. Do the same for vk'H. 

Exercise 1.5.4 If dim'H = 3, then dimlZl3'H = 27, diml\3'H = 1 and 
dim V3'H = 10. In terms of an orthonormal basis of'H, write an element of 
(1\3'H EB V3'H) 1. . 

The permanent of a matrix A = (aij) is defined as 

per A = 2:a1cT(I) ... anlT(n). 

where (J varies over all permutations on n symbols. Note that, in contrast 
to the determinant, the permanent is not invariant under similarities. Thus, 
matrices of the same operator relative to different bases may have different 
permanents. 

Exercise 1.5.5 Show that the inner product (Xl V ... V Xk, YI V ... V Yk) is 
equal to the permanent of the k x k matrix ((Xi, Yj) ). 

The spaces 1\ k'H and Vk'H are also referred to as "symmetry classes" of 
tensors - there are other such classes in IZI k7t. Another way to look at them 
is as the ranges of the respective symmetry operators. Define PA and Pv as 
linear operators on IZIk'H by first defining them on the elementary tensors 
as 

PA(XI ®···IZI Xk) = (k!)-1/2 xI I\ ... 1\ Xk 

PV(XI IZI ... IZI Xk) = (k!)-1/2 XI V ... V Xk 

and extending them by linearity to the whole space. (Again it should be 
verified that this can be done consistently.) The constant factor in the above 
definitions has been chosen so that both these operators are idempotent. 
They are also Hermitian. The ranges of these orthoprojectors are I\k'H and 
vk 7t, respectively. 
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If A E £(Ji), then AXI A ... A AXk lies in AkJi for all Xl, . .. ,Xk in Ji. 
Using this, one sees that the space AkJi is invariant under the operator 
Q9k A. The restriction of Q9k A to this invariant subspace is denoted by AkA 
or A Ak. This is called the kth antisymmetric tensor power or the kth 
Grassmann power of A. We could have also defined it by first defining 
it on the elementary antisymmetric tensors Xl A ... A Xk as 

Ak A(XI A··· A Xk) = AXI A··· A AXk 

and then extending it linearly to the span A kJi of these tensors. 

Exercise 1.5.6 Let A be a nilpotent operator. Show how to obtain, from a 
Jordan basis for A, a Jordan basis for A2 A. 

The space vkJi is also invariant under the operator Q9k A. The restriction 
of Q9k A to this invariant subspace is written as Vk A or AV k and called the 
kth symmetric tensor power of A. 

Some essential and simple properties of these operators are summarised 
below: 

1. (Ak A)(Ak B) = Ak(AB), (Vk A)(Vk B) = Vk(AB). 

2. (AkA)*=AkA*, (VkA)*=VkA*. 

3. (AkA)-1 = AkA-I, (vkA)-1 = VkA-I. 

4. If A is Hermitian, unitary, normal or positive, then so are AkA and 
vkA. 

5. If al,"" ak are eigenvalues of A (not necessarily distinct) belonging 
to eigenvectors UI, ... , Uk, respectively, then al '" ak is an eigenvalue 
of v k A belonging to eigenvector UI v· .. VUk; if in addition the vectors 
Uj are linearly independent, then al'" ak is an eigenvalue of AkA 
belonging to eigenvector UI A ... A Uk. 

6. If Sl, ... ,Sn are the singular values of A, then the singular values 
of AkA are Si l '" Sik' where (i l , ... , i k) vary over Qk,n; the singular 
values of v k A are Si l ••• Sik' where (ii, ... ,ik), vary over Gk,n' 

7. trAk A is the kth elementary symmetric polynomial in the eigenval­
ues of A; trvk A is the kth complete symmetric polynomial in the 
eigenvalues of A. 

(These polynomials are defined as follows. Given any n-tuple (al,"" an) 
of numbers or other commuting objects, the kth elementary symmetric 
polynomial in them is the sum of all terms ail ai2 ••• aik for (iI, i2, ... , ik) 
in Qk,n; the kth complete symmetric polynomial is the sum of all terms 
ai l a i 2 "'aik for (i l ,i2, ... ,ik) in Gk,n.) 

For A E £(Ji), consider the operator A Q9 I Q9"'Q9 I + I Q9 A Q9 I··· Q9 I 
+ ... + I Q9 I Q9 ... Q9 A. (There are k summands, each of which is a product 
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of k factors.) The eigenvalues of this operator on ®k1{ are sums of eigenval­
ues of A. Both the spaces 1\ k1{ and vk1{ are invariant under this operator. 
One pleasant way to see this is to regard this operator as the t-derivative 
at t = 0 of ®k(I + tA). The restriction of this operator to the space I\k1{ 
will be of particular interest to us; we will write this restriction as A [kl. If 
UI, ... ,Uk are linearly independent eigenvectors of A belonging to eigen­
values ctl, ... ,ctk, then UI 1\ ... 1\ Uk is an eigenvector of A[kl belonging to 
eigenvalue ctl + ... + ctk. 

Now, fixing an orthonormal basis (el, ... , en) of 1{, identify A with its 
matrix (aij). We want to find the matrix representations of 1\ k A and Vk A 
relative to the standard bases constructed earlier. 

The basis of I\kJi we are using is ey,I E Qk,n. The (I, ..7)-entry of I\k A 
is (ey, (I\k A)e.J-)' One may verify that this is equal to a subdeterminant 
of A. Namely, let A[II..7] denote the k x k matrix obtained from A by 
expunging all its entries aij except those for which i E I and j E ..7. Then, 
the (I, ..7)-entry of I\k A is equal to det A[II..7]. 

The special case k = n leads to the I-dimensional space I\ n Ji. The oper­
ator 1\ n A on this space is just the operator of multiplication by the number 
det A. We can thus think of det A as being equal to 1\ n A. 

The basis of vk 1{ we are using is m(I)-1/2ey , I E Gk,n. The (I, ..7)­
entry of the matrix V k A can be computed as before, and the result is 
somewhat similar to that for I\k A. For I = (il, ... , ik) and..7 = (il, ... ,jk) 
in Gk,n, let A[II..7] now denote the k x k matrix whose (r, s)-entry is the 
(iT, j s) - entry of A. Since repetitions of indices are allowed in I and ..7, 
this is not a submatrix of A this time. One verifies that the (I, ..7)-entry of 
vk A is (m(I)m(..7))-1/2 per A[II..7]. 

In particular, per A is one of the diagonal entries of vn A: the (I, I)-entry 
for I = (1, 2, ... , n). 

Exercise 1.5.7 Prove that for any vectors UI, ... ,Uk, VI, ... ,Vk we have 

1 det ( ( Ui , V j) ) 12 

Iper( (Ui' Vj) )1 2 

< det((ui,uj))det((vi,Vj)), 

< per((Ui,Uj))per((vi,Vj)). 

Exercise 1.5.8 Prove that for any two matrices A, B we have 

Iper(AB)1 2 ::; per(AA*)per(B* B). 

(The corresponding relation for determinants is an easy equality.) 

Exercise 1.5.9 (Schur's Theorem) If A is positive, then 

per A 2: det A. 

[Hint: Using Exercise 1.2.2 write A = T*T for an upper triangular T. Then 

use the preceding exercise cleverly.} 
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We have observed earlier that for any vectors Xl, . .. ,Xk in 1t we have 

When 1t = JR.n, this determinant is also the square of the k-dimensional 
volume of the parallelepiped having Xl, ... , X k as its sides. To see this, note 
that neither the determinant nor the volume in question is altered if we add 
to any of these vectors a linear combination of the others. Performing such 
operations successively, we can reach an orthogonal set of vectors, some of 
which might be zero. In this case it is obvious that the determinant is equal 
to the square of the volume; hence that was true initially too. 

Given any k-tuple X = (Xl, ... ,Xk), the matrix ((Xi,Xj}) = X*X is 
called the Gram matrix of the vectors Xj; its determinant is called their 
Gram determinant. 

Exercise 1.5.10 Every k x k positive matrix A = (aij) can be realised as a 
Gram matrix, i.e., vectors Xj, 1::; j ::; k, can be found so that aij = (Xi,Xj) 
for all i,j. 

1.6 Problems 

Problem 1.6.1. Given a basis U = (Ul,'" ,un), not necessarily orthonor­
mal, in 1t, how would you compute the biorthogonal basis (Vl,"" vn )? 
Find a formula that expresses (Vj, x) for each x E 1t and j = 1,2, ... , k in 
terms of Gram matrices. 

Problem 1.6.2. A proof of the Toeplitz-Hausdorff Theorem is outlined 
below. Fill in the details. 

Note that W(A) = {(x,Ax) : Ilxll = I} = {trAxx* : x*x = I}. It is 
enough to consider the special case dim 1t = 2. In higher dimensions, this 
special case can be used to show that if x, yare any two vectors, then any 
point on the line segment joining (x, Ax) and (y, Ay) can be represented as 
(z, Az), where z is a vector in the linear span of x and y. Now, on the space 
of 2 x 2 Hermitian matrices consider the linear map <P(T) = tr AT. This is 
a real linear map from a space of 4 real dimensions (the 2 x 2 Hermitian 
matrices) to a space of 2 real dimensions (the complex plane). We want 
to prove that <P maps the set of I-dimensional orthoprojectors xx* onto a 
convex set. The set of these projectors in matrix form is 

(
COS t ) ( . iw' ) 1 1 ( cos 2t -iw . t cos t e sm t = - + - -iw' 2t e sm 2 2 e sm 

eiw sin2t ) 
-cos2t . 

This is a 2-sphere centred at (~ ~) and having radius 1/ v'2 in the Frobe-
2 

nius norm. The image of a 2-sphere under a linear map with range in JR.2 
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must be either an ellipse with interior, or a line segment, or a point; in any 
case, a convex set. 

Problem 1.6.3. By the remarks in Section 5, vectors Xl, ... , Xk are lin­
early dependent if and only if Xl /\ ... /\ Xk = O. This relationship between 
linear dependence and the antisymmetric tensor product goes further. Two 
sets {Xl, ... ,xd and {Yl,' .. ,yd of linearly independent vectors have the 
same linear span if and only if X 1/\ ... /\ X k = CYI/\' .. /\ Yk for some constant 
c. Thus, there is a one-to-one correspondence between k-dimensional sub­
spaces of a vector space Wand I-dimensional subs paces of /\kW generated 
by elementary tensors Xl /\ ... /\ Xk. 

Problem 1.6.4. How large must dim W be in order that there exist some 
element of /\2W which is not elementary? 

Problem 1.6.5. Every vector w of W induces a linear operator Tw from 
/\ k W to /\ k+ 1 W as follows. T w is defined on elementary tensors as 
Tw (VI /\ ... /\ Vk) = VI /\ ... /\ Vk /\ w, and then extended linearly to all 
of /\kW. It is, then, natural to write Tw(x) = X /\ w for any X E /\kW. 
Show that a nonzero vector X in /\ k W is elementary if and only if the space 
{w E W : X /\ w = O} is k-dimensional. 

(When W is a Hilbert space, the operators Tw are called creation oper­
ators and their adjoints are called annihilation operators in the physics 
literature. ) 

Problem 1.6.6. (The n-dimensional Pythagorean Theorem) Let 
Xl, ... ,Xn be orthogonal vectors in ]Rn. Consider the n-dimensional sim­
plex S with vertices 0, Xl,"" x n . Think of the (n - I)-dimensional sim­
plex with vertices Xl, ... ,Xn as the "hypotenuse" of S and the remaining 
(n - I)-dimensional faces of S as its "legs". By the remarks in Section 5, 
the k-dimensional volume of the simplex formed by any k points Yl, ... , Yk 

together with the origin is (k!)-lIIYl /\ ... /\ Yk II. The volume of a simplex 
not having 0 as a vertex can be found by translating it. Use this to prove 
that the square of the volume of the hypotenuse of S is the sum of the 
squares of the volumes of the n legs. 

Problem 1.6.7. (i) Let Q/\ be the inclusion map from /\krt into &irt 
(so that Q~ equals the projection p/\ defined earlier) and let Qv be the 
inclusion map from vkrt into &}H. Then, for any A E £(H) 

(ii) II/\k All::::: IIAIIk, 
(iii) IdetAI ::::: IIAlln, 

/\k A = p/\(&i A)Q/\, 

V k A = pv(&i A)Qv. 

II Vk All::::: IIAllk. 
IperAI ::::: IIAlln. 
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Problem 1.6.8. For an invertible operator A obtain a relationship between 
A-l,AnA, and An-lA. 

Problem 1.6.9. (i) Let {el, ... , en} and {h, ... , in} be two orthonormal 
bases in H. Show that 

(ii) Let P and Q be orthogonal projections in H, each of rank n - 1. Let 
x, y be unit vectors such that Px = Qy = o. Show that 

Problem 1.6.10. If the characteristic polynomial of A is written as 

then the coefficient ak is the sum of all k x k principal minors of A. This 
is equal to tr AkA. 

Problem 1.6.11. (i) For any A, BE £(H) we have 

where 

Hence, 

k 

®k A - ®k B = L Cj , 

j=l 

II ®k A - ®k BII ~ kMk-lllA - BII, 

where M = max(IIAII, IIBII). 
(ii) The norms of Ak A - Ak Band vk A - Vk B are therefore also bounded 

by kMk-lllA - BII. 
(iii) For n x n matrices A, B, 

IdetA - detBI ~ nMn-lllA - BII, 

IperA - perBI ~ nMn-lllA - BII. 

(iv) The example A = aI, B = (a + c)I for small c shows that these 
inequalities are sometimes sharp. When IIAII and IIBII are far apart, find a 
simple improvement on them. 

(v) If A, Bare n x n matrices with characteristic polynomials 



respectively, then 

lak - bkl :5 k(~)Mk-11IA - BII, 

where M = max(llAII, IIBII). 
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Problem 1.6.12. Let A, B be positive operators with A 2:: B (i.e., A - B 
is positive). Show that 

®kA > ®kB, 
/\kA > /\k B, 
vkA 2:: VkB, 

detA > detB, 

perA > perB. 

Problem 1.6.13. The Schur product or the Hadamard product of 
two matrices A and B is defined to be the matrix A 0 B whose (i,j)-entry 
is aijbij . Show that this is a principal submatrix of A®B, and derive from 
this fact two significant properties: 

(i) IIA 0 BII :5 IIAIIIIBII for all A, B. 

(ii) If A, B are positive, then so is A 0 B. (This is called Schur's 
Theorem.) 

Problem 1.6.14. (i) Let A = (aij) be an n x n positive matrix. Let 

Show that 

n 

ri = I::aij, 1:5 i :5 n, 
j=l 

s Laij. 
i,j 

n 

snperA 2:: n! II Iri 12. 
i=l 

[Hint: Represent A as the Gram matrix of some vectors Xl,' .. ,Xn as 
in Exercise 1.5.10. Let u = s-l/2(X1 + ... + xn). Consider the vectors 
u V u V ... V u and Xl V ... V X n , and use the Cauchy-Schwarz inequality.] 

(ii) Show that equality holds in the above inequality if and only if either 
A has rank 1 or A has a row of zeroes. 

(iii) If in addition all aij are nonnegative and all ri = 1 (so that the 
matrix A is doubly stochastic as well as positive semidefinite), then 

n! 
per A 2:: -;;:. 

n 



24 I. A Review of Linear Algebra 

Here equality holds if and only if aij = ~ for all i, j. 

Problem 1.6.15. Let A be Hermitian with eigenvalues al ~ a2 ~ ... > 
an. In Exercise 1.2.7 we noted that 

al = max{ (x, Ax) : Ilxll = I}, 

an = min{ (x, Ax) : Ilxll = I}. 

Using these relations and tensor products, we can deduce some other ex­
tremal representations: 

(i) For every k = 1,2, ... ,n, 
k k 

Laj = max L(xj,Axj), 
j=l j=l 

n k 

L aj = min L(xj,Axj), 
j=n-k+l j=l 

where the maximum and the minimum are taken over all choices of or­
thonormal k-tuples (Xl"'" Xk) in H. The first statement is referred to as 
Ky Fan's Maximum Principle. It will reappear in Chapter II (with a 
different proof) and subsequently. 

(ii) If A is positive, then for every k = 1,2, ... ,n, 

n k 

II aj = min II (Xj, AXj), 
j=n-k+l j=l 

where the minimum is taken over all choices of orthonormal k-tuples 
(XI, ... ,Xk) in H. 

[Hint: You may need to use the Hadamard Determinant Theorem, which 
says that the determinant of a positive matrix is bounded above by the 
product of its diagonal entries. This is also proved in Chapter II.] 

(ii) If A is positive, then for every I E Qk,n 

n k 

II aj:::; det A[III] :::; II aj. 
j=n-k+l j=l 

Problem 1.6.16. Let A be any n x n matrix with eigenvalues al, ... , an. 
Show that 

\a j _ t~A i :::; [n: 1 (IIAII~ _ Itr:12) ] 1/2 

for all j = 1,2, ... , n. (Results such as this are interesting because they 
give some information about the location of the eigenvalues of a matrix in 
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terms of more easily computable functions like the Frobenius norm IIAI12 
and the trace. We will see several such statements later.) 

[Hint: First prove that if x = (Xl, ... , Xn) is a vector with Xl + ... +xn = 
0, then 

( 1) 1/2 
max IXj I::; n ~ Ilxll .] 

Problem 1.6.17. (i) Let Zl, Z2, Z3 be three points on the unit circle. Then, 
the numerical range of an operator A is contained in the triangle with 
vertices Zl, Z2, Z3 if and only if A can be expressed as A = zlAl + Z2A2 + 
Z3A3, where AI, A2, A3 are positive operators with Al + A2 + A3 = I. 

[Hint: It is easy to see that if A is a sum of this form, then W(A) is 
contained in the given triangle. The converse needs some work to prove. 
Let Z be any point in the given triangle. Then, one can find aI, a2, a3 
such that aj :::: 0, al + a2 + a3 = 1 and Z = alZI + a2Z2 + a3z3. These 
are the "barycentric coordinates" of Z and can be obtained as follows. Let 
'Y = Im(zlz2 + Z2Z3 + Z3Z1). Then, for j = 1,2,3, 

(z - Z+d(Z+2 - Z+l) aj = 1m J J J, 

'Y 

where the subscript indices are counted modulo 3. Put 

Aj = 1m (A - Zj+1I)(Zj+2 - Zj+1) . 
'Y 

Then, Aj have the required properties.] 
(ii) Let W(A) be contained in a triangle with vertices Zl, Z2, Z3 lying on 

the unit circle. Then, choosing AI, A2, A3 as above, write 

( I A*) 3 ( A-
A I = f; ZjAj 

Zj Aj ) = ~ A- ® ( 1 
A. ~ J z· 

J j=l J 

This, being a sum of three positive matrices, is positive. Hence, by Propo­
sition 1.3.5 A is a contraction. 

(iii) If W(A) is contained in a triangle with vertices Zl, Z2, Z3, then IIAII ::; 
max IZjl. This is Mirman's Theorem. 

Problem 1.6.18. If an operator T has the Cartesian decomposition T = 
A + iB with A and B positive, then 

Show that, if A or B is not positive then this need not be true. 
[Hint: To prove the above inequality note that W(T) is contained in a 

rectangle in the first quadrant. Find a suitable triangle that contains it and 
use Mirman's Theorem.] 
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1. 7 Notes and References 

Standard references on linear algebra and matrix theory include P.R Hal­
mos, Finite-Dimensional Vector Spaces, Van Nostrand, 1958; F.R Gant­
macher, Matrix Theory, 2 volumes, Chelsea, 1959 and K. Hoffman and 
R Kunze, Linear Algebra, 2nd ed., Prentice Hall, 1971. A recent work is 
RA. Horn and C.R Johnson, in two volumes, Matrix Analysis and Top­
ics in Matrix Analysis, Cambridge University Press, 1985 and 1990. For 
more of multilinear algebra, see W. Greub, Multilinear Algebra, 2nd ed., 
Springer-Verlag, 1978, and M. Marcus, Finite-Dimensional Multilinear Al­
gebra, 2 volumes, Marcel Dekker, 1973 and 1975. A brief treatment that 
covers all the basic results may be found in M. Marcus and H. Minc, A Sur­
vey of Matrix Theory and Matrix Inequalities, Prindle, Weber and Schmidt, 
1964, reprinted by Dover in 1992. 

Though not as important as the determinant, the permanent of a matrix 
is an interesting object with many uses in combinatorics, geometry, and 
physics. A book devoted entirely to it is H. Minc, Permanents, Addison­
Wesley, 1978. 

Apart from the symmetric and the antisymmetric tensors, there are other 
symmetry classes of tensors. Their study is related to the glorious subject 
of representations of finite groups. See J.P. Serre, Linear Representations 
of Finite Groups, Springer-Verlag, 1977. 

The result in Exercise 1.3.6 is due to P.R Halmos, and is the beginning of 
a subject called Dilation Theory. See Chapter 23 of P.R Halmos, A Hilbert 
Space Problem Book, 2nd ed., Springer-Verlag, 1982. 

The proof of the Toeplitz-Hausdorff Theorem in Problem 1.6.2 is taken 
from C. Davis, The Toeplitz-HausdorjJ theorem explained, Canad. Math. 
Bull., 14(1971) 245-246. For a different proof, see P.R Halmos, A Hilbert 
Space Problem Book. 

For relations between Grassmann spaces and geometry, as indicated in 
Problem 1.6.3, see, for example, I.R Porteous, Topological Geometry, Cam­
bridge University Press, 1981. The simple proof of the Pythagorean Theo­
rem in Problem 1.6.6 is due to S. Ramanan. 

Among the several papers in quantum physics, where ideas very close 
to those in Problems 1.6.3 and 1.6.5 are used effectively, is one by N.M. 
Hugenholtz and RV. Kadison, Automorphisms and quasi-free states of the 
CAR algebra, Commun. Math. Phys., 43 (1975) 181-197. 

Inequalities like the ones in Problem 1.6.11 were first discovered in con­
nection with perturbation theory of eigenvalues. This is summarised in 
R Bhatia, Perturbation Bounds for Matrix Eigenvalues, Longman, 1987. 
The simple identity at the beginning of Problem 1.6.11 was first used in 
this context in R Bhatia and L. Elsner, On the variation of permanents, 
Linear and Multilinear Algebra, 27(1990) 105-110. 

The results and the ideas of Problem 1.6.14 are from M. Marcus and 
M. Newman, Inequalities for the permanent function, Ann. of Math., 75(1962) 
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47-62. In 1926, B.L. van der Waerden had conjectured that the inequality in 
part (iii) of Problem I.6.14 will hold for all doubly stochastic matrices. This 
conjecture was proved, in two separate papers in 1981, by G.P. Egorychev 
and D. Falikman. An expository account is given in J.H. van Lint, The 
van der Waerden conjecture: two proofs in one year, Math. Intelligencer, 
4(1982)72-77. 

The results of Problem I.6.15 are all due to Ky Fan, On a theorem of Weyl 
concerning eigenvalues of linear transformations 1,11, Proc. Nat. Acad. 
Sci., U.S.A., 35(1949) 652-655, 36(1950)31-35, and A minimum property 
of the eigenvalues of a Hermitian transformation, Amer. Math. Monthly, 
60(1953)48-50. 

A special case of the inequality of Problem I.6.16 occurs in P. Tarazaga, 
Eigenvalue estimates for symmetric matrices, Linear Algebra and Appl., 
135(1990) 171-179. 

Mirman's Theorem is proved in B.A. Mirman, Numerical range and norm 
of a linear operator, Trudy Seminara po Funkcional' nomu Analizu, No. 10 
(1968), pp. 51-55. The inequality of Problem I.6.18 is also noted there as 
a corollary. Our proof of Mirman's Theorem is taken from Y. Nakamura, 
Numerical range and norm, Math. Japonica, 27 (1982) 149-150. 



II 
Majorisation and Doubly 
Stochastic Matrices 

Comparison of two vector quantities often leads to interesting inequali­
ties that can be expressed succinctly as "majorisation" relations. There is 
an intimate relation between majorisation and doubly stochastic matrices. 
These topics are studied in detail here. We place special emphasis on ma­
jorisation relations between the eigenvalue n-tuples of two matrices. This 
will be a recurrent theme in the book. 

11.1 Basic Notions 

Let x = (Xl, ... , xn) be an element of ]Rn. Let xl and xi be the vectors 
obtained by rearranging the coordinates of x in the decreasing and the 
increasing orders, respectively. Thus, if xl = (xi, ... , x~)" then xi 2": ... 2": 

1 S' '1 1 'f i - ( iT) h i i N h x n · lml ar y, 1 X - Xl"" 'X n "t en Xl ::; ... ::; Xn- ote t at 

1 ::; j ::; n. (1l.1 ) 

Let X, Y E ]Rn. We say that x is majorised by y, in symbols x --< y, if 

and 

k k 

'" xl < "'yl L J - L J' 
j=l j=l 

n n 

1 ::; k ::; n, 

LX; = LyJ· 
j=l j=l 

(11.2) 

(II.3) 
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Example: If Xi ~ ° and I;Xi = 1, then 

1 1 
(-, ... ,-) --< (X1, ... ,Xn ) --< (1,0, ... ,0). 
n n 

The notion of majorisation occurs naturally in various contexts. For ex­
ample, in physics, the relation x --< y is interpreted to mean that the vector 
x describes a "more chaotic" state than y. (Think of Xi as the probability 
of a system being found in state i.) Another example occurs in economics. 
If Xl, ... , Xn and Y1, ... , Yn denote incomes of individuals 1,2, ... , n, then 
x --< Y would mean that there is a more equal distribution of incomes in the 
state X than in y. The above example illustrates this. 

From (II. 1 ) we have 

k n n-k 

I>J = LXj - LX;. 
j=l j=l j=l 

Hence X --< y if and only if 

and 

k k 

~ xi> ~yi 1 :::; k :::; n 
~ 1 - ~ l' 
j=l j=l 

n n 

LX} = LY]' 
j=l j=l 

(II.4 ) 

(II.5) 

Let e denote the vector (1,1, ... ,1), and for any subset I of {1,2, ... ,n} 
let eI denote the vector whose jth component is 1 if j E I and ° if j f/- I. 
Given a vector X E ~n, let 

n 

tr x = LXj = (x,e), 
j=l 

where (-, .) denotes the inner product in ~n. Note that 

k 

~x; = max(x,eI), 
~ III=k 
1=1 

where III stands for the number of elements in the set I. 
So, x --< Y if and only if for each subset I of {I, 2, ... , n} there exists a 

subset J with III = IJI such that 

(II.6) 

and 
tr x = tr y. (II.7) 



30 II. Majorisation and Doubly Stochastic Matrices 

We say that x is (weakly) submajorised by y, in symbols x -<w y, if 
condition (1I.2) is fulfilled. 

Note that in the absence of (II.3), the conditions (II.2) and (II.4) are not 
equivalent. We say that x is (weakly) supermajorised by y, in symbols 
x -<w y, if condition (II.4) is fulfilled. 

Exercise 11.1.1 (i) x -< y {:} x -<w Y and x -<w y. 
(ii) If a is a positive real number, then 

x -<w Y =} ax -<way, 

x -<w y =} ax -<way. 

(iii) x -<w Y {:} -x -<w -yo 
(iv) For any real number a, 

x -< y =} ax -< ay. 

Remark 11.1.2 The relations -<, -<w, and -<ware all reflexive and tran­
sitive. None of them, however, is a partial order. For example, if x -< y 
and y -< x, we can only conclude that x = Py, where P is a permutation 
matrix. If we say that x'" y whenever x = Py for some permutation matrix 
P, then'" defines an equivalence relation on JRn . If we denote by JR~ym the 
resulting quotient space, then -< defines a partial order on this space. This 
relation is also a partial order on the set {x E JRn : Xl 2: ... 2: x n }. These 
statements are true for the relations -<wand -<Was well. 

For a, bE JR, let a V b = max(a, b) and a /\ b = min(a, b). For x, y E JRn, 
define 

Let 

x V Y = (Xl V Yl,··· ,Xn VYn) 

x /\ y = (Xl/\ Yl,··· ,Xn /\ Yn). 

x+ X V 0, 

Ixl xV(-x). 

In other words, x+ is the vector obtained from x by replacing the negative 
coordinates by zeroes, and Ixl is the vector obtained by taking the absolute 
values of all coordinates. 

With these notations we can prove the following characterisation of ma­
jorisation that does not involve rearrangements: 

Theorem 11.1.3 Let x, y E JRn. Then, 
(i) x -<w Y if and only if for all t E JR 

n n 

l)Xj - t)+ ~ :L(Yj - t)+. 
j=l j=l 

(1I.8) 
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(ii) x -<w Y if and only if for all t E lR 

n n 

2::(t - Xj)+ :::; 2::(t - Yj)+. (II.9) 
j=1 j=1 

(iii) x -< Y if and only if for all t E lR 

n n 

2::lxj - tl :::; 2::IYj - tl· (ILlO) 
j=1 j=1 

Proof. Let x -<w y. If t > xL then (Xj - t)+ = 0 for all j, and hence 
(II.8) holds. Let xi+1 :::; t :::; xi for some 1 :::; k :::; n, where, for convenience, 

X;'+1 = -00. Then, 

n k k 

2::(Xj - t)+ 2::(x; - t) = :Lx; - kt 
j=1 j=1 j=1 

k k 

< 2::Y; - kt:::; 2::(y; - t)+, 
j=1 j=1 

and, hence, (II.8) holds. 
To prove the converse, note that if t = Yk, then 

n k k 

2::(Yj - t)+ = 2::(y; - t) = 2::Y; - kt. 
j=1 j=1 j=1 

But 

k k k 

2::x; - kt 2::(x; - t) :::; 2::(x; - t)+ 
j=1 j=1 j=1 

n n 

< 2::(x; - t)+ = 2::(Xj - t)+. 
j=1 j=1 

So, if (II.8) holds, then we must have 

k k 

'" xl < "'yl ~ J - ~ J' 
j=1 j=1 

i.e., x -<w y. 
This proves (i). The statements (ii) and (iii) have similar proofs. • 

Corollary 11.1.4 If x -< Y in lRn and u -< w in lRm, then (x, u) -< (y, w) 
in lRn+m. In particular, x -< y if and only if (x, u) -< (y, u) for all u. 
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An n x n matrix A = (aij) is called doubly stochastic if 

aij ~ ° for all i,j, (II.ll) 
n 

I:aij = 1 for all j, (II.12) 

i=l 
n 

I:aij = 1 for all i. (II.13) 

j=l 

Exercise 11.1.5 A linear map A on en is called positivity-preserving if 
it carries vectors with nonnegative coordinates to vectors with nonnegative 
coordinates. It is called trace-preserving if tr Ax= tr x for all x. It is 
called unital if Ae = e. Show that a matrix A is doubly stochastic if and 
only if the linear operator A is positivity-preserving, trace-preserving and 
unital. Show that A is trace-preserving if and only if its adjoint A * is unital. 

Exercise 11.1.6 (i) The class of n x n doubly stochastic matrices is a 
convex set and is closed under multiplication and the adjoint operation. It 
is, however, not a group. 

(ii) Every permutation matrix is doubly stochastic and is an extreme 
point of the convex set of all doubly stochastic matrices. (Later we will 
prove Birkhoff's Theorem, which says that all extreme points of this convex 
set are permutation matrices.) 

Exercise 11.1. 7 Let A be a doubly stochastic matrix. Show that all eigen­
values of A have modulus less than or equal to 1, that 1 is an eigenvalue of 
A, and that IIAII = 1. 

Exercise 11.1.8 If A is doubly stochastic, then 

IAxl :::: A(lxl), 

where, as usual, Ixl = (lxll, ... , IXnU and we say that x :::: y if Xj :::: Yj for 
all j. 

There is a close relationship between majorisation and doubly stochastic 
matrices. This is brought out in the next few theorems. 

Theorem 11.1.9 A matrix A is doubly stochastic if and only if Ax -< x 
for all vectors x. 

Proof. Let Ax -< x for all x. First choosing x to be e and then 
ei = (0,0, ... ,1,0, ... ,0),1 :::: i :::: n, one can easily see that A is dou­
bly stochastic. 

Conversely, let A be doubly stochastic. Let y = Ax. To prove y -< x we 
may assume, without loss of generality, that the coordinates of both x and 
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yare in decreasing order. (See Remark 11.1.2 and Exercise 11.1.6.) Now 
note that for any k, 1::::; k ::::; n, we have 

k k n 

LYj = L L aijXi· 
j=l j=l i=l 

k n 

If we put ti = Laij, then 0 ::::; ti ::::; 1 and Lti = k. We have 
j=l i=l 

j=l j=l i=l i=l 

n k n 

Ltixi - LXi + (k - Lti)Xk 
i=l i=l i=l 

k n 

L(ti - l)(xi - Xk) + L ti(Xi - Xk) 
i=l i=k+l 

< o. 

Further, when k = n we must have equality here simply because A is doubly 
stochastic. Thus, Y -< x. • 

Note that if x, Y E 1R2 and X -< y then 

Note also that if x, y E IRn and X is obtained by averaging any two coordi­
nates of y in the above sense while keeping the rest of the coordinates fixed, 
then x -< y. More precisely, call a linear map T on IRn a T-transform if 
there exists 0 ::::; t ::::; 1 and indices j, k such that 

Then, Ty -< y for all y. 

Theorem 11.1.10 For x, y E IRn , the following statements are equivalent: 

(i) x -< y. 

(ii) x is obtained from y by a finite number of T-transforms. 

(iii) x is in the convex hull of all vectors obtained by permuting the coor­
dinates of y. 

(iv) x = Ay for some doubly stochastic matrix A. 
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Proof. When n = 2, then (i) =} (ii). We will prove this for a general 
n by induction. Assume that we have this implication for dimensions up 
to n - 1. Let x, Y E lRn. Since x! and y! can be obtained from x and Y 
by permutations and each permutation is a product of transpositions ~ 
which are surely T-transforms, we can assume without loss of generality 
that Xl ;::: X2 ;::: ... ;::: Xn and YI ;::: Y2 ;::: ... ;::: Yn· Now, if x -< y, then 
Yn ::::;. Xl ::::; YI· Choose k such that Yk ::::; Xl ::::; Yk~l· Then Xl = tYI +(I-t)Yk 
for some 0 ::::; t ::::; 1. Let 

Tlz = (tzl + (1 - t)Zk' Z2, ... , Zk~l, (1 - t)ZI + tZk, Zk+l,···, zn) 

for all Z E lRn. Then note that the first coordinate of Tly is Xl· Let 

X' (X2' ... ,xn ) 

Y' (Y2, ... ,Yk~l, (1 - t)YI + tYk, Yk+l, ... ,Yn). 

We will show that x' -< y'. Since YI ;::: ... ;::: Yk~l ;::: Xl ;::: X2 ;::: ... ;::: Xn , 
we have for 2 ::::; m ::::; k - 1 

For k::::; m::::; n 

m 

LYj 
j=2 

m m 

LXj ::::;LYj. 
j=2 j=2 

k~l m 

LYj + [(1 - t)YI + tYk] + L Yj 
j=2 
m 

LYj - tYI + (t - I)Yk 
j=l 

j=k+l 

m m m 

LYj -Xl;::: LXj -Xl = LXj. 
j=l j=l j=2 

The last inequality is an equality when m = n since X -< y. Thus x' -< y'. 
So by the induction hypothesis there exist a finite number of T-transforms 
T2, ... , Tr on lRn~1 such that x' = (Tr ··· T2)y'. We can regard each of 
them as a T-transform on lRn if we prohibit them from touching the first 
coordinate of any vector. We then have 

(Tr ··· Tdy = (Tr ··· T2)(XI, Y') = (Xl, X') = X, 

and that is what we wanted to prove. 
Now note that a T-transform is a convex combination of the identity map 

and some permutation. So a product of such maps is a convex combination 
of permutations. Hence (ii) =? (iii). The implication (iii) =} (iv) is obvious, 
and (iv) =? (i) is a consequence of Theorem II. 1.9. • 

A consequence of the above theorem is that the set {x : X -< y} is the 
convex hull of all points obtained from Y by permuting its coordinates. 
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Exercise II.loll If U = (Uij) is a unitary matrix, then the matrix (IUijI2) 
is doubly stochastic. Such a doubly stochastic matrix is called 
unitary-stochastic; it is called orthostochastic if U is real orthogonal. 
Show that if x = Ay for some doubly stochastic matrix A, then there exists 
an orthostochastic matrix B such that x = By. (Use induction.) 

Exercise II.1.12 Let A be an n x n Hermitian matrix. Let diag (A) denote 
the vector whose coordinates are the diagonal entries of A and >'(A) the 
vector whose coordinates are the eigenvalues of A specified in any order. 
Show that 

diag (A) -< >'(A). (ILl4) 

This is sometimes referred to as Schur's Theorem. 

Exercise 11.1.13 Use the majorisation (II.14) to prove that if >';(A) de­
note the eigenvalues of an n x n Hermitian matrix arranged in decreasing 
order then for all k = 1,2, ... ,n 

k k 

L>';(A) = max L(xj,Axj), (ILl5) 
j=l j=l 

where the maximum is taken over all orthonormal k-tuples of vectors 
{Xl, ... ,xd in en. This is the Ky Fan's maximum principle. (See 
Problem 1.6.15 also.) Show that the majorisation (II.14) can be derived 
from (II. 15). The two statements are, thus, equivalent. 

Exercise 11.1.14 Let A, B be Hermitian matrices. Then for all k = 1, 2, 
... , n 

k k k 

L>';(A + B) ::; L>';(A) + L>';(B). (ILl6) 
j=l j=l j=l 

Exercise 11.1.15 For any matrix A, let A be the Hermitian matrix 

- [0 A] A = A* 0 . (ILl 7) 

Then the eigenvalues of A are the singular values of A together with their 
negatives. Denote the singular values of A arranged in decreasing order by 
sl(A), ... , sn(A). Show that for any two n x n matrices A, B and for any 
k = 1,2, ... ,n 

k k k 

LSj(A + B) ::; LSj(A) + LSj(B). (ILlS) 
j=l j=l j=l 

When k = 1, this is just the triangle inequality for the operator norm IIAII· 
For each 1 ::; k ::; n, define IIAII(k) = 2:;=1 Sj(A). Prom (II.1B) it follows 
that IIAII(k) defines a norm. These norms are called the Ky Fan k-norms. 
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II.2 Birkhoff's Theorem 

We start with a combinatorial problem known as the Matching Problem. 
Let B = {bl , ... , bn } and G = {gl,"" gn} be two sets of n elements 

each and let R be a subset of B x G. When does there exist a bijection f , 
from B to G whose graph is contained in R? This is called the Matching 
Problem or the Marriage Problem for the following reason. Think of B 
as a set of boys, G as a set of girls, and (b i , gj) ERas saying that the boy 
bi knows the girl gj. Then the above question can be phrased as: when can 
one arrange a monogamous marriage in which each boy gets married to a 
girl he knows? We will call such a matching a compatible matching. 

For each i let G i = {gj : (bi , gj) E R}. This represents the set of girls 
whom the boy bi knows. For each k-tuple of indices 1 :::; i l < ... < ik :::; n, 

k 

let Gi" " ik = U Gir · This represents the set of girls each of whom are known 
r=1 

to one of the boys bi1 , ... , bik . Clearly a necessary condition for a compatible 
matching to be possible is that IGi1 ... d 2:: k for all k = 1,2, ... ,n. Hall's 
Marriage Theorem says that this condition is sufficient as well. 

Theorem 11.2.1 (Hall) A compatible matching between Band G can be 
found if and only if 

IGi, ... ik l2:: k, 

for all 1 :::; i l < ... < i k :::; n, k = 1,2, ... ,n. 

(II.19) 

Proof. Only the sufficiency of the condition needs to be proved. This is 
done by induction on n. Obviously, the Theorem is true when n = 1. 

First assume that we have 

for all 1 :::; i l < ... < i/o :::; n, 1 :::; k < n. In other words, if 1 :::; k < n, then 
every set of k boys together knows at least k + 1 girls. Pick up any boy and 
marry him to one of the girls he knows. This leaves n - 1 boys and n - 1 
girls; condition (II.19) still holds, and hence the remaining boys and girls 
can be compatibly matched. 

If the above assumption is not met, then there exist k indices iI, ... ,ik , 

k < n, for which 

IGi, ... ikl = k. 

In other words, there exist k boys who together know exactly k girls. By the 
induction hypothesis these k boys and girls can be compatibly matched. 
Now we are left with n - k unmarried boys and as many unmarried girls. If 
some set of h of these boys knew less than h of these remaining girls, then 
together with the earlier k these h+k boys would have known less than h+k 
girls. (The earlier k boys did not know any of the present n - k maidens.) 
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So, condition (II.19) is satisfied for the remaining n - k boys and girls who 
can now be compatibly married by the induction hypothesis. • 

Exercise II.2.2 (The Konig-Frobenius Theorem) Let A = (aij) be an n x 
n matrix. If u is a permutation on n symbols, the set {alo-(l), a2o-(2), ... , 
ano-(n)} is called a diagonal of A . Each diagonal contains exactly one 
element from each row and from each column of A. Show that the following 
two statements are equivalent: 

(i) every diagonal of A contains a zero element. 

(ii) A has a k x e submatrix with all entries zero for some k, e such that 
k +e > n. 

One can see that the statement of the Konig-Frobenius Theorem is equiv­
alent to that of Hall's Theorem. 

Theorem 11.2.3 (BirkhojJ's Theorem) The set of n x n doubly stochastic 
matrices is a convex set whose extreme points are the permutation matrices. 

Proof. We have already made a note of the easy part of this theorem in 
Exercise II.1.6. The harder part is showing that every extreme point is a 
permutation matrix. For this we need to show that each doubly stochastic 
matrix is a convex combination of permutation matrices. 

This is proved by induction on the number of positive entries of the ma­
trix. Note that if A is doubly stochastic, then it has at least n positive 
entries. If the number of positive entries is exactly n, then A is a permuta­
tion matrix. 

We first show that if A is doubly stochastic, then A has at least one 
diagonal with no zero entry. Choose any k x e submatrix of zeroes that A 
might have. We can find permutation matrices PI. P2 such that P1AP2 has 
the form 

where 0 is a k x e matrix with all entries zero. Since P1AP2 is again doubly 
stochastic, the rows of B and the columns of C each add up to 1. Hence 
k + e ::::; n. So at least one diagonal of A must have all its entries positive, 
by the Konig-Frobenius Theorem. 

Choose any such positive diagonal and let a be the smallest of the ele­
ments of this diagonal. If A is not a permutation matrix, then a < 1. Let P 
be the permutation matrix obtained by putting ones on this diagonal and 

let 
A-aP 

B=--­
I-a 

Then B is doubly stochastic and has at least one more zero entry than A 
has. So by the induction hypothesis B is a convex combination of permu­
tation matrices. Hence so is A, since A = (1 - a)B + aP. • 
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Remark. There are n! permutation matrices of size n. Birkhoff's Theorem 
tells us that every n x n doubly stochastic matrix is a convex combination 
of these n! matrices. This number can be reduced as a consequence of a 
general theorem of Caratheodory. This says that if X is a subset of an 
m-dimensional linear variety in IRN , then any point in the convex hull of 
X can be expressed as a convex combination of at most m + 1 points of X. 
Using this theorem one sees that every n x n doubly stochastic matrix can 
be expressed as a convex combination of at most n 2 - 2n + 2 permutation 
matrices. 

Doubly substochastic matrices defined below are related to weak ma­
jorisation in the same way as doubly stochastic matrices are related to 
majorisation. 

A matrix B = (bij ) is called doubly substochastic if 

bij ::::: 0 for all i,j, 
n 

2:)' < 1 'J - for all j, 
i=l 

n 

2:) .. < 1 'J - for all i. 
j=l 

Exercise 11.2.4 B is doubly substochastic if it is positivity-preserving, 
Be :::; e, and B*e :::; e. 

Exercise 11.2.5 Every square submatrix of a doubly stochastic matrix is 
doubly substochastic. Conversely, every doubly substochastic matrix B can 
be dilated to a doubly stochastic matrix A. Moreover, if B is an n x n 
matrix, then this dilation A can be chosen to have size at most 2n x 2n. 
Indeed, if Rand C are the diagonal matrices whose jth diagonal entries 
are the sums of the jth rows and the jth columns of B, respectively, then 

A=( B 
I -C 

I -R) 
B* 

is a doubly stochastic matrix. 

Exercise 11.2.6 The set of all n x n doubly substochastic matrices is con­
vex; its extreme points are matrices having at most one entry 1 in each row 
and each column and all other entries zero. 

Exercise 11.2.7 A matrix B with nonnegative entries is doubly substochas­
tic if and only if there exists a doubly stochastic matrix A such that bij :::; aij 
for all i,j = 1,2, ... ,no 

Our next theorem connects doubly substochastic matrices to weak 
majorisation. 
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Theorem 11.2.8 (i) Let x, y be two vectors with nonnegative coordinates. 
Then x -<w Y if and only if x = By for some doubly substochastic matrix 
B. 

(ii) Let x, y E IRn. Then x -<w Y if and only if there exists a vector u 
such that x ::::; u and u -< y. 

Proof. If x, u E IRn and x ::::; u, then clearly x -<w u. So, if in addition 
u -< y, then x -<w y. 

Now suppose that x, yare nonnegative vectors and x = By for some 
doubly substochastic matrix B. By Exercise II.2.7 we can find a doubly 
stochastic matrix A such that bij ::::; aij for all i,j. Then x = By ::::; Ay. 
Hence, x -<w y. 

Conversely, let x, y be nonnegative vectors such that x -<w y. We want to 
prove that there exists a doubly substochastic matrix B for which x = By. 
If x = 0, we can choose B = 0, and if x -< y, we can even choose B to 
be doubly stochastic by Theorem II.l.lO. So, assume that neither of these 
is the case. Let r be the smallest of the positive coordinates of x, and let 
s = 1": Yj - 1": Xj' By assumption s > O. Choose a positive integer m such 
that r 2: s I m. Dilate both vectors x and y to (n + m )-dimensional vectors 
x' ,y' defined as 

x' (Xl,.'" x n , slm, ... , slm), 

y' (Yl,···,Yn,O, ... ,O). 

Then x' -< y'. Hence x' = Ay' for some doubly stochastic matrix of size 
n + m. Let B be the n x n submatrix of A sitting in the top left corner. 
Then B is doubly substochastic and x = By. This proves (i). 

Finally, let x, y E IRn and x -<w y. Choose a positive number t so that 
x+te and y+te are both nonnegative, where e = (I, 1, ... ,1). We still have 
x+te -<w y+te. So, by (i) there exists a doubly substochastic matrix B such 
that x + te = B(y + te). By Exercise II.2.7 we can find a doubly stochastic 
matrix A such that bij ::::; aij for all i, j. But then x+te ::::; A(y+te) = Ay+te. 
Hence, if u = Ay, then x ::::; u and u -< y. • 

Exercise 11.2.9 A matrix A is doubly substochastic if and only if for every 
x::::: 0 we have Ax 2: 0 and Ax -<w x. (Compare with Theorem lI.l.9.) 

Exercise 11.2.10 Let x, y E IRn and let x 2: 0, y 2: O. Then x -<w Y if 
and only if x is in the convex hull of the 2nn! points obtained from y by 
permutations and sign changes of its coordinates (i. e., vectors of the form 

(±Ya(l), ±Ya(2), ... , ±Ya(n»), where (J" is a permutation). 
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II.3 Convex and Monotone Functions 

In this section we will study maps from ~n to ~m that preserve various 

orders. 
Let f : ~ ----+ ~ be any function. We will denote the map induced by f 

on ~n also by f; i.e., f(x) = (f(xd, ... , f(x n )) for x E ~n. An elementary 
and useful characterisation of majorisation is the following. 

Theorem 11.3.1 Let x, y E ~n. Then the following two conditions are 

equivalent: 

(i) x --< y. 

(ii) tr 'P(x) ::::: tr 'P(y) for all convex functions 'P from ~ to K 

Proof. Let x --< y. Then x = Ay for some doubly stochastic matrix A. So 
n n 

Xi = ~aijyj, where aij :::: 0 and ~aij = 1. Hence for every convex func-
j=l j=l 

n n n 

tion 'P, 'P(Xi) ::::: ~aij'P(yj). Hence ~'P(Xi) ::::: ~aij'P(yj) = ~'P(Yj). 
j=l i=l i,j j=l 

To prove the converse note that for each t the function 'Pt(x) = Ix - tl is 
convex. Now apply Theorem II.1.3 (iii). • 

Exercise 11.3.2 For x, y E ~n the following two conditions are equivalent: 

(i) x --<w y. 

(ii) tr 'P(x) ::::: tr 'P(y) for all monotonically increasing convex functions 
'P from ~ to K 

Note that in the two statements above it suffices to consider only con­
tinuous functions. 

A real valued function 'P on ~n is called Schur-convex or S-convex if 

x --< y =? 'P(x)::::: 'P(Y)· (11.20) 

(This terminology might seem somewhat inappropriate because the condi­
tion (11.20) expresses preservation of order rather than convexity. However, 
the above two propositions do show that ordinary convex functions are 
related to this notion. Also, if x --< y, then x is obtained from y by an 
averaging procedure. The condition (II.20) says that the value of 'P is di­
minished when such a procedure is applied to its argument. Later on, we 
will come across other notions of averaging, and corresponding notions of 
convexity. ) 

We will study more general maps that include Schur-convex maps. 
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Consider maps <I> : ]Rn ---> ]Rm. The domain of <I> will be either all of]Rn or 
some convex set invariant under coordinate permutations of its elements. 
Such a map will be called monotone increasing if 

x::; Y =? <I>(x)::; <I>(y), 

monotone decreasing if 

-<I> is monotone increasing, 

convex if 

<I>(tx + (1- t)y) ::; t<I>(x) + (1- t)<I>(y) , 0::; t::; 1, 

concave if 
-<I> is convex, 

isotone if 
x-<y ===} <I>(x) -<w <I>(y) , 

strongly isotone if 

x -<w Y ===} <I>(x) -<w <I>(y), 

and strictly isotone if 

x-<y ===} <I>(x) -< <I>(y). 

Note that when m = 1 isotone maps are precisely the Schur-convex maps. 
The next few propositions provide examples of such maps. We will denote 

by Sn the group of n x n permutation matrices. 

Theorem 11.3.3 Let <I> : ]Rn ---> ]Rm be a convex map. Suppose that for any 
P E Sn there exists P' E Sm such that 

<I>(Px) = P'<I>(x) for all x E ]Rn. (II.21) 

Then <I> is isotone. In addition, if <I> is monotone increasing, then <I> is 
strongly isotone. 

Proof. Let x -< y in ]Rn. By Theorem ILl.I0 there exist P1 , ... ,PN in Sn 
and positive real numbers t 1 , ... ,tN with L;tj = 1 such that 

x = L;tjPjy. 

So, by the convexity of <I> and the property (II.21) 

<I>(x) ::; L;tj<I>(Pjy) = L;tjPj<I>(y) = z, say. 

Then z -< <I>(y) and <I>(x) ::; z. So <I>(x) -<w <I>(y). This proves that <I> is 

isotone. 
Suppose <I> is also monotone increasing. Let u -<w y. Then by Theorem 

11.2.8 there exists x such that u ::; x -< y. Hence <I>(u) ::; <I>(x) and <I>(x) -<w 
<I>(y). So, <I>(u) -<w <I>(y). This proves <I> is strongly isotone. • 
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Corollary 11.3.4 If cp : JR. ----+ JR. is a convex function, then the induced 
map cp : JR.n ----+ JR.n is isotone. If cp is convex and monotone on JR., then the 
induced map is strongly isotone on JR.n . 

Note that one part of Theorem II.3.l and Exercise II.3.2 is subsumed by 
the above corollary. 

Example 11.3.5 From the above results we can conclude that 

(i) x -< y in JR.n ::::} \x\ -<w \y\. 

(ii) x -< y in JR.n ::::} x2 -<w y2. 

(iii) x -<w Y in JR.+- ::::} xP -<w yP for p > l. 

(iv) x -<w Y in JR.n ::::} x+ -<w y+. 

(v) If cp is any function such that cp(et ) is convex and monotone increas­
ing in t, then log x -<w logy in JR.+- ::::} cp(x) -<w cp(y). 

(vi) log x -<w log y in JR.+- ::::} x -<w y. 

(vii) For x, y E JR.+-

k k k k 

ITx; ~ ITy;,l ~ k ~ n,::::} LX; ~ LY;' 1 ~ k ~ n. 
j=l j=l j=l j=l 

Here JR.+- stands for the collection of vectors x ::=:: 0 (or, at places, x > 0). 
All functions are understood in the coordinatewise sense. Thus, e.g., \x\ = 

(\X1\' ... ' \xn \). 

As an application we have the following very useful theorem. 

Theorem 11.3.6 (Weyl's Majorant Theorem) Let A be an n x n matrix 
with singular values Sl ::=:: ... ::=:: Sn and eigenvalues A1, : .. , An arranged in 
such a way that \ A1\ ::=:: ... ::=:: \An \. Then for every function cp : JR.+ ----+ JR.+, 
such that cp(et ) is convex and monotone increasing in t, we have 

(11.22) 

In particular, we have 

(11.23) 

for all p ::=:: o. 

Proof. The spectral radius of a matrix is bounded by its operator norm. 
Hence, 
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Apply this argument to the antisymmetric tensor powers I\k A. This gives 

k k 

ITIAjl:::; IT Sj, 1:::; k :::; n. (II.24) 
j=l j=l 

Now use the assertion of 11.3.5 (vii). • 
Note that we have 

n n 

ITIAjl = IT Sj, (II.25) 
j=l j=l 

both the expressions being equal to (det A* A)1/2. 

Remark 11.3.7 Returning to Theorem II. 3. 3, we note that when m = 1 
the condition (II. 21) just says that <I> is permutation invariant; i.e., 

<I>(Px) = <I>(x), (II.26) 

for all x E ~n and P E Sn. So, in this case Theorem II.3.3 says that if 
a function <I> : ~n ----+ ~ is convex and permutation invariant, then it is 
isotone (i.e., Schur-convex). 

Also note that every isotone function <I> from ~n to ~ has to be permu­
tation invariant because Px and x majorise each other and hence isotony 
of <I> implies equality of <I>(Px) and <I>(x) in this case. 

However, we will see that not every isotone function from ~n to ~ (i.e. 
not every Schur-convex function) is convex. 

Exercise 11.3.8 Let III : ~n ----+ ~ be any convex function and let <I>(x) = 

max IlI(Px). Prove that <I> is isotone. If, in addition, III is monotone in­
PESn 

creasing, then <I> is strongly isotone. 

Exercise 11.3.9 Let rp : ~ ----+ ~ be convex. For each k = 1,2, ... , n, define 
functions rpCk) : ~n ----+ ~ by 

k 

rpCk)(x) = max Lrp(xdCj)), 
u 

j=l 

where (]" runs over all permutations on n symbols. Then rpCk) is isotone. If, 
in addition, rp is monotone increasing, then rpCk) is strongly isotone. Note 

that this applies, in particular, to 

n 

rpCn) (x) = Lrp(Xj) = tr rp(x). 
j=l 

Compare this with Theorem II.3.1. The special choice rp(t) = t gives rpCk) (x) = 
k 

LX;. 
j=l 
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Example 11.3.10 For x E IRn let x = ~L;xj. Let 

1 '"' 2 V(x) = - L)Xj - x) . 
n . 

J 

This is called the variance function. Since the maps Xj --+ (Xj - x)2 are 
convex, V(x) is isotone (i.e., Schur-convex). 

Example 11.3.11 For x E IR+. let 

H(x) = - LXj log Xj, 
j 

where by convention we put t log t = 0, if t = 0. Then H is called the 
entropy function. Since the function f (t) = t log t is convex for t ~ 0, we 
see that - H (x) is isotone. (This is sometimes expressed by saying that the 
entropy function is anti-isotone or Schur-concave on IR+..) In particular, if 
Xj ~ ° and L;xj = 1 we have 

1 1 
H(l,O, ... ,0)::::: H(X1, ... ,xn ) ::::: H( -, ... , -), 

which is a basic fact about entropy. 

Example 11.3.12 For p ~ 1 the function 

n 1 
cI>(x) = L(Xj + -)P 

j=l Xj 

n n 

is isotone on IR+.. In particular, if x j > ° and L;x j = 1, we have 

(n2 +1)P n 1 
n P - 1 ::::: L(Xj + ~)p. 

j=l J 

Example 11.3.13 A function cI> : IRn --+ IR+ is called a symmetric gauge 
function if 

(i) cI> is a norm on the real vector space IRn, 

(ii) cI>(Px) = cI>(x) for all x E IRn, P E Sn, 

(iii) cI>(c1X1, ... , cnxn) = cI>(X1, ... , xn) if Cj = ±l, 

(iv) cI>(1, 0, ... ,0) = l. 

(The last condition is an inessential normalisation.) Examples of sym­
metric gauge functions are 

n 

(LlxjIP)l/P, 1::::: p < 00, 

j=l 

max IXjl. 
l$j$n 
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These norms are commonly used in functional analysis. If the coordinates 
of x are arranged so as to have IXII ;:::: ... ;:::: IXn I, then 

k 

cI>(k)(X) = 2)xjl, 
j=l 

is also a symmetric gauge function. This is a consequence of the majorisa­
tions (Il.29) and (i) in Examples Il.3.5. 

Every symmetric gauge function is convex on ~n and is monotone on 
~+ (Problem Il.5.11). Hence by Theorem Il.3.3 it is strongly isotone; i.e., 

x -<w Y in ~+ =} cI>(x) ~ cI>(y). 

For differentiable functions there are necessary and sufficient conditions 
characterising Schur-convexity: 

Theorem 11.3.14 A differentiable function cI> : ~n ----+ ~ is isotone if and 
only if 

(i) cI> is permutation invariant, and 

(ii) for each x E ~n and for all i, j 

ocI> ocI> 
(Xi - Xj)(-(X) - -(x)) ;:::: O. 

OXi OXj 

Proof. We have already observed that every isotone function is permu­
tation invariant. To see that it also satisfies (ii), let i = 1, j = 2, without 
any loss of generality. For 0 ~ t ~ 1 let 

X(t) = ((1 - t)XI + tX2, tXI + (1 - t)X2' X3,"" xn). (1I.27) 

Then x(t) -< x = x(O). Hence cI>(x(t)) ~ cI>(x(O)), and therefore 

0;:::: -<I>(x(t)) = -(Xl - X2)( ~(x) - ~(x)). [ d] ocI> ocI> 
dt t=O UXI UX2 

This proves (ii). 
Conversely, suppose <I> satisfies (i) and (ii). We want to prove that cI>(u) ~ 

cI>(x) if u -< x. By Theorem 1I.l.10 and the permutation invariance of cI> we 
may assume that 

u = ((1 - S)Xl + SX2, SXl + (1 - S)X2' X3,"" xn) 

for some 0 ~ S ~ ~. Let x(t) be as in (11.27). Then 

cI>(u)- cI>(x) -cI>(x(t))dt 18 d 

o dt 
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t [ 8<I> 8<I>] - Jo (Xl - X2) 8X l (x(t)) - 8X 2 (x(t)) dt 

_ t x(th - x(th [8<I> (x(t)) _ 8<I> (x(t))] dt 
Jo 1 - 2t 8Xl 8X2 

< 0, 

because of (ii) and the condition ° ::; s ::; ~. • 

Example 11.3.15 (A Schur-convex function that is not convex) Let 
<I> : [2 ~ JR, where [ = (0,1), be the function 

1 1 
<I> (Xl ,X2) = log( - - 1) + log( - - 1). 

Xl X2 

Using Theorem JI.3.14 one can check that <I> is Schur-convex on the set 

{x: x E [2,Xl + X2 ::; I}. 

However, the function log(i - 1) is convex on (0, ~l but not on [~, 1). 

Example 11.3.16 (The elementary symmetric polynomials) For each k = 
1,2, ... ,n, let Sk : JRn ~ JR be the functions 

Sk(X) = E Xi , Xi2"·Xik • 

l:'Oi,<i2<,,·<ik:'On 

These are called the elementary symmetric polynomials of the n variables 
Xl, ... , x n . These are invariant under permutations. We have the identities 

and 
Sk(Xl, ... ,Xi,··· ,Xn ) - Sk(Xl, ... ,Xj,'" ,Xn ) 

= (Xj - Xi)Sk-l(Xl, ... ,Xi, .. ' ,Xj,'" ,xn ), 

where the circumflex indicates that the term below it has been omitted. 
Using these one finds via Theorem JI.3.14 that each Sk is Schur-concave; 
i.e., -Sk is isotone, on JR+.. 

n n 

The special case k = n says that if x, y E JR+. and x -< y, then IT x j 2: IT Yj· 
j=l j=l 

Theorem 11.3.17 (The Hadamard Determinant Theorem) If A is an n x n 
positive matrix, then 

n 

det A ::; IT ajj. 
j=l 
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Proof. Use Schur's Theorem (Exercise II.1.12) and the above statement 

about the Schur-concavity of the function f(x) = IIXj on JR.+. . 
j • 

More generally, if AI, ... , An are the eigenvalues of a positive matrix A, 
we have for k = 1,2, ... , n 

Sk(Al, .. . , An) :::; Sk(all, ... , ann). (1I.28) 

Exercise 11.3.18 If A is an m x n complex matrix, then 

m n 

det(AA*) :::; II :L)aijI2. 
i=l j=l 

(See Exercise I.l.3.) 

Exercise 11.3.19 Show that the ratio Sk(X)/Sk-l(X) is Schur-concave on 
the set of positive vectors for k = 2, ... , n. Hence, if A is a positive matrix, 
then 

Sn(all, ... ,ann ) 
Sn(Al, ... , An) 

> Sn-l(all, ... ,ann ) > ... > Sl(all, ... ,ann ) 
Sn-l(Al, ... ,An) - - Sl(Al, ... ,An ) 

trA 
tr A = 1. 

Proposition 11.3.20 If A is an n x n positive definite matrix, then 

(det A)l/n = min {tr :B : B is positive and det B = 1} . 

If A is positive semidefinite, then the same relation holds with min replaced 
by info 

Proof. It suffices to prove the statement about positive definite matrices; 
the semidefinite case follows by a continuity argument. Using the spectral 
theorem and the cyclicity of the trace, the general case of the proposition 
can be reduced to the special case when A is diagonal. So, let A be diago­
nal with diagonal entries AI, ... , An. Then, using the arithmetic-geometric 
mean inequality and Theorem II.3.17 we have 

tr AB = ~ LAjbjj 2: (IIAj)l/n(IIbjj)l/n 2: (det A)l/n(det B)l/n, 
n n. . . 

J J J 

for every positive matrix B. Hence, tr :B 2: (det A)l/n if det B = 1. When 
B = (det A)l/n A-I this becomes an equality. • 

Corollary 11.3.21 (The Minkowski Determinant Theorem) If A, Bare 
n x n positive matrices then 

(det(A + B))l/n 2: (det A)l/n + (det B)l/n. 
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11.4 Binary Algebraic Operations and 
Majorisation 

For x E ~n we have seen in Section 11.1 that 

It follows that if x, y E ~n, then 

x + y --< xl + yl . (II.29) 

In this section we will study majorisation relations of this form for sums, 
products, and other functions of two vectors. 

A map <p : ~2 ----+ ~ is called lattice superadditive if 

(11.30) 

We will call a map <p monotone if it is either monotonically increasing or 
monotonically decreasing in each of its arguments. 

In this section we will adopt the following notation. Given <p : ~2 ----+ ~, 
we will denote by <[> the map from ~n x ~n to ~n defined as 

(11.31 ) 

Example 11.4.1 (i) <p(s, t) = s+t is a monotone and lattice superadditive 
function on ~2 . 

(ii) <p( s, t) = st is a monotone and lattice superadditive function on ~~. 
For (i) above we have 

and for (ii) we have 

Theorem 11.4.2 If cp is monotone and lattice superadditive, then 

(II.32) 

for all X,Y E ~n. 

Proof. Note that if we apply a coordinate permutation simultaneously to 
x and y, then <[>(x, y) undergoes the same coordinate permutation. The two 
outer terms in (II.32) remain unaffected and so do the majorisations. Hence, 
to prove (II.32) we may assume that x = xl; i.e., Xl 2': X2 2': ... 2': x n . Next 
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note that we can find a finite sequence of vectors u(O), u(l), ... ,u(N) such 
that 

yl = u(O), y I = u(N), y = u(j) for some 1 :::; j :::; N, 

and each u(k+l) is obtained from u(k) by interchanging two components in 
such a way as to move from the arrangement yl to y I ; i.e., we pick up two 
indices i, j such that 

i < j 

and interchange these two components to obtain the vector U(k+l). So, to 
prove (II.32) it suffices to prove 

<I>(x, U(k+l)) -<w <I>(x, u(k)) (II.33) 

for k = 0,1, ... , N -1. Since we have already assumed Xl ::::: X2 ::::: •.• ::::: x n , 

to prove (II.33) we need to prove the two-dimensional majorisation 

(II.34) 

if Sl ::::: S2 and h ::::: t2. Now, by the definition of weak majorisation, this is 
equivalent to the two inequalities 

'P(Sl, t2) V 'P(S2, h) < 'P(Sl, t l ) V 'P(S2, t2), 

'P(Sl, t2) + 'P(S2, h) < 'P(Sl, td + 'P(S2, t2), 

for Sl ::::: S2 and tl ::::: t2. The first of these follows from the monotony of 'P 
and the second from the lattice superadditivity. • 

Corollary 11.4.3 For X, y E lRn 

xl + y I -< X + Y -< xl + yl . 

For x,y E lR+-
Xl . Y I -<w X . Y -<w xl . yl , 

where X· Y = (X1Yl, ... ,xnYn). 

Corollary IIAA For x, y E lRn 

(xl,yl):::; (x,y):::; (xl,yl). 

(II.35) 

(II.36) 

(11.37) 

Proof. If x ::::: 0 and y ::::: 0, this follows from (11.36). In the general case, 
choose t large enough so that x + te ::::: 0 and y + te ::::: 0 and apply the 

special result. • 

The inequality (II.37) has a "mechanical" interpretation when x ::::: 0 
and y ::::: o. On a rod fixed at the origin, hang weights Yi at the points 
at distances Xi from the origin. The inequality (II.37) then says that the 
maximum moment is obtained if the heaviest weights are the farthest from 

the origin. 
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Exercise 11.4.5 The function cp : ]R2 -+ ]R defined as cp(s, t) = s 1\ t is 
monotone and lattice superadditive on ]R2. Hence, for x, Y E ]Rn 

xl 1\ Y i -<w x 1\ Y -<w xl 1\ yl. 

11.5 Problems 

Problem 11.5.1. If a doubly stochastic matrix A is invertible and A -1 is 
also doubly stochastic, then A is a permutation. 

Problem 11.5.2. Let y E ]Rt-. The set {x : x E ]Rt-' x -<w y} is the convex 
hull of the points (rl Ycr(l) , ... , r nYcr(n)), where (j varies over permutations 
and each rj is either 0 or 1. 

Problem 11.5.3. Let Y E ]Rn. The set {x E ]Rn : Ixl -<w lyl} is the 
convex hull of points ofthe form (cIYcr(l), ... ,cnYcr(n)), where (j varies over 
permutations and each Cj = ±1. 

Problem 11.5.4. Let A = (~~~ ~~~) be a 2 x 2 block matrix and let 

C(A) = (At, A~2J If U = (~ ~I)' then we can write 

C(A) = ~(A + U AU*). 

Let A(A) and seA) denote the n-vectors whose coordinates are the eigen­
values and the singular values of A, respectively. 

Use (ILl8) to show that 

s(C(A)) -<w seA). 

If A is Hermitian, use (11.16) to show that 

A(C(A)) -< A(A). 

Problem 11.5.5. More generally, let PI, ... ,Pr be a family of mutually 
orthogonal projections in en such that tBPj = I. Then the operation of 
taking A to C(A) = 'EPjAPj is called a pinching of A. In an appropriate 
choice of basis this means that 

l :~: Al2 ... 
A~~ 1 r Au ... A22 

A= ... ,C(A) = ... 

Ar2 ... Arr 

Each such pinching is a product of r - 1 pinchings of the 2 x 2 type intro­
duced in Problem 11.5.4. Show that for every pinching C 

s(C(A)) -<w seA) (I1.38) 
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for all matrices A, and 
'\(C(A)) -< '\(A) (II.39) 

for all Hermitian matrices A. When Pi. ... , Pn are the projections onto the 
coordinate axes, we get as a special case of (Il,38) above 

n 

Itr AI::; LSj(A) = IIAlh· 
j=l 

From (Il,39) we get as a special case Schur's Theorem 

diag (A) -< '\(A), 

which we saw before in Exercise II.1.12. 

Problem II.5.6. Let A be positive. Then 

det A ::; det C(A), 

(II.40) 

(II.41) 

for every pinching C. This is called Fischer's inequality and includes the 
Hadamard Determinant Theorem as a special case. 

Problem II.5.7. For each k = 1,2, ... ,n and for each pinching C show 
that for positive definite A 

(II.42) 

where Sk('\(A)) denotes the kth elementary symmetric polynomial of the 
eigenvalues of A. This inequality, due to Ostrowski, includes (II.28) as a 
special case. It also includes (II.41) as a special case. 

Problem II.5.S. If I\k A denotes the kth antisymmetric tensor power of 
A, then the above inequality can be written as 

tr I\k A ::; tr I\k (C(A)). (II.43) 

The operator inequality 
I\k A::; I\k(C(A)) 

is not always true. This is shown by the following example. Let 

[
2001] [1000] o 1 1 0 0 100 

A= 0 1 2 0 ' P= 0 0 0 0 ' 
100 1 0 0 0 0 

and let C be the pinching induced by the pair of projections P and 1- P. 
(The space 1\ 2C4 is 6-dimensional.) 
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Problem 11.5.9. Let p.l, ... , An}, {fLl, ... , fLn} be two n-tuples of complex 
numbers. Let 

where the minimum is taken over all permutations on n symbols. This is 
called the optimal matching distance between the unordered n-tuples 
A and fl. It defines a metric on the space C~ym of such n-tuples. Show that 
we also have 

Problem 11.5.10. This problem gives a refinement of Hall's Theorem un­
der an additional assumption that is often fulfilled in matching problems. 
In the notations introduced at the beginning of Section 11.2, define 

1::; i::; n. 

This is the set of boys known to the girl gi. Let 

k 

Bil ···ik = U B ir , 1::; i l < ... < ik ::; n. 
r=l 

Suppose that for each k = 1,2, ... , [~] and for every choice of indices 
1 ::; i l < ... < ik ::; n, 

Show that then 

IGi1 ··· ik I 2:: k for all k = 1,2, ... , n, 1 ::; i l < ... < i k ::; n. 

Hence a compatible matching between Band G exists. 

Problem 11.5.11. (i) Show that every symmetric gauge function is con­
tinuous. 

(ii) Show that if i[> is a symmetric gauge function, then i[>CXl(X) ::; i[>(x) ::; 
i[>l(X) for all x E !R.n. 

(iii) If i[> is a symmetric gauge function and 0 ::; tj ::; 1, then 

(iv) Every symmetric gauge function is monotone on !R.+.. 

(v) If x,y E !R.n and Ixi ::; Iyl, then i[>(x) ::; i[>(y) for every symmetric 
gauge function i[>. 
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(vi) If x, Y E ~+, then x -<w Y if and only if <I>(x) ::; <I>(y) for every 
symmetric gauge function <I>. 

Problem 11.5.12. Let f : ~+ -+ ~+ be a concave function such that 
f(O) = O. 

(i) Show that f is subadditive: f(a + b) ::; f(a) + feb) for all a, b E ~+. 

(ii) Let <I> : ~~n -+ ~+ be defined as 

n n 

<I>(x,y) = Lf(xj) + Lf(Yj), X,Y E ~+. 
j=1 j=1 

Then <I> is Schur-concave. 

(iii) Note that for x, Y E ~+ 

(x, y) -< (x + Y, 0) in ~~n. 

(iv) From (ii) and (iii) conclude that the function 

n 

F(x) = Lf(lxjl) 
j=1 

is subadditive on ~n. 

(v) Special examples lead to the following inequalities for vectors 
X,Y E ~n: 

n n n 

Llxj +YjIP::; LlxjlP + LIYjIP, 0 < p::; 1. 
j=1 j=1 j=1 

n n n 

Llog (1 + IXj + Yjl) ::; L log(1 + IXjl) + L log(1 + IYjl)· 
j=1 j=1 j=1 

Problem 11.5.13. Show that a map r.p : ~2 -+ ~ is lattice superadditive if 
and only if 

r.p(X1 + 81,x2 - 82 ) + r.p(X1 - 81,x2 + 82 ) 

::; r.p(X1 + 81 , X2 + 82 ) + r.p(Xl - 81 , X2 - 82 ) 

for all (Xl,X2) and for all 81 ,82 ~ O. If r.p is twice differentiable, this is 
equivalent to 
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Problem 11.5.14. Let 'P : lR2 ---+ lR be a monotone increasing lattice super­
additive function, and let f be a monotone increasing and convex function 
from lR to R Show that if 'P and f are twice differentiable, then the com­
position f 0 'P is monotone and lattice superadditive. When 'P(s, t) = s + t 
show that this is also true if f is monotone decreasing. These statements 
are also true without any differentiability assumptions. 

Problem 11.5.15. For x, y E lR+. 

-log(x! + yT) -<w -log(x + y) -<w -log(x! + y!) 

log(x! . yT) -<w log(x· y) -<w log(x! . y!). 

From the first of these relations it follows that 

n n n 

II(x; +y;):::; II(Xj +Yj):::; II(x; +yJ). 
j=l j=l j=l 

Problem 11.5.16. Let x, y, u be vectors in lRn all having their coordinates 
in decreasing order. Show that 

(i) (x, u) :::; (y, u) if x -< y, 

(ii) (x, u) :::; (y, u) if x -<w Y and u E lR+.. 

In particular, this means that if x, y E lRn, x -<w y, and u E lR+., then 

[Use Theorem 11.3.14 or the telescopic summation identity 

k k 

2:>jbj = 2:)aj - aj+l)(b1 + ... + bj ), 
j=l j=l 

where aj, bj , 1:::; j :::; k, are any numbers and ak+l = 0.] 

II.6 Notes and References 

Many of the results of this chapter can be found in the classic Inequalities 
by G.H. Hardy, J.E. Littlewood, and G. Polya, Cambridge University Press, 
1934, which gave the first systematic treatment of this theme. The more 
recent treatise Inequalities: Theory of Majorization and Its Applications 
by A.W. Marshall and 1. Olkin, Academic Press, 1979, is a much more 
detailed and exhaustive text devoted entirely to the study of majorisation. 
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It is an invaluable resource on this topic. For the reader who wants a quicker 
introduction to the essentials of majorisation and its applications in linear 
algebra, the survey article Majorization, doubly stochastic matrices and 
comparison of eigenvalues by T. Ando, Linear Algebra and Its Applications, 
118(1989) 163-248, is undoubtedly the ideal course. Our presentation is 
strongly influenced by this article from which we have freely borrowed. 

The distance d(A, J.L) introduced in Problem II.5.9 is commonly employed 
in the study of variation of roots of polynomials and eigenvalues of matri­
ces since these are known with no preferred ordering. See Chapter 6. The 
result of Problem II.5.lO is due to L. Elsner, C. Johnson, J. Ross, and J. 
Sch6nheim, On a generalised matching problem arising in estimating the 
eigenvalue variation of two matrices, European J. Combinatorics, 4(1983) 
133-136. 

Several of the theorems in this chapter have converses. For illustration 
we mention two of these. 

Schur's Theorem (II.14) has a converse; it says that if d and A are real 
vectors with d --< A, then there exists a Hermitian matrix A whose diagonal 
entries are the components of d and whose eigenvalues are the components 
of A. 

Weyl's Majorant Theorem (II.3.6) has a converse; it says that if AI, ... , An 
are complex numbers and Sl, ... ,8n are positive real numbers ordered as 
IA11 :::: ... :::: IAnl and 81 :::: ... :::: 8 n, and if 

k k 

IIIAjl ::; II 8j for 1::; k ::; n, 
j=l j=l 

n n 

IIIAjl = II 8j, 

j=l j=l 
then there exists an n x n matrix A whose eigenvalues are AI,···, An and 
singular values 81, ... ,8n · 

For more such theorems, see the book by Marshall and Olkin cited above. 
Two results very close to those in 11.3.16-11.3.21 and II.5.6-1L5.8 are given 

below. 
M. Marcus and L. Lopes, Inequalities for symmetric functions and Her­

mitian matrices, Canad. J. Math., 9(1957) 305-312, showed that the map 
CP : lR+. -+ lR given by cp(x) = (Sk(X))l/k is Schur-concave for 1 ::; k ::; n. 
Using this they showed that for positive matrices A, B 

(II.44) 

This can also be expressed by saying that the map A -+ (tr I\k A)l/k is 
concave on the set of positive matrices. For k = n, this reduces to the 
statement 

[det(A + B)]l/n :::: [det A]l/n + [det B]l/n, 

which is the Minkowski determinant inequality. 
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E.H. Lieb, Convex trace functions and the Wigner- Yanase-Dyson conjec­
ture, Advances in Math., 11(1973) 267-288, proved some striking operator 
inequalities in connection with the W.-Y.-D. conjecture on the concavity of 
entropy in quantum mechanics. These were proved by different techniques 
and extended in other directions by T. Ando, Concavity of certain maps 
on positive definite matrices and applications to Hadamard products, Linear 
Algebra Appl., 26(1979) 203-241. One consequence of these results is the 
inequality 

(II.45) 

for all positive matrices A, B and for all k = 1,2, ... ,n. In particular, this 
implies that 

When k = n, this reduces to the Minkowski determinant inequality. Some 
of these inequalities are proved in Chapter 9. 



III 
Variational Principles for 
Eigenvalues 

In this chapter we will study inequalities that are used for localising the 
spectrum of a Hermitian operator. Such results are motivated by several 
interrelated considerations. It is not always easy to calculate the eigen­
values of an operator. However, in many scientific problems it is enough 
to know that the eigenvalues lie in some specified intervals. Such infor­
mation is provided by the inequalities derived here. While the functional 
dependence of the eigenvalues on an operator is quite complicated, several 
interesting relationships between the eigenvalues of two operators A, Band 
those of their sum A + B are known. These relations are consequences of 
variational principles. When the operator B is small in comparison to A, 
then A + B is considered as a perturbation of A or an approximation to A. 
The inequalities of this chapter then lead to perturbation bounds or error 
bounds. 

Many of the results of this chapter lead to generalisations, or analogues, 
or open problems in other settings discussed in later chapters. 

IlLl The Minimax Principle for Eigenvalues 

The following notation will be used throughout this chapter. If A, Bare 
Hermitian operators, we will write their spectral resolutions as AUj = 
O;jUj, BVj = {3jVj, 1 ::::: j ::::: n, always assuming that the eigenvectors Uj 

and the eigenvectors Vj are orthonormal and that 0;1 2: 0;2 2: ... 2: O;n 

and {31 2: {32 2: ... 2: (3n- When the dependence of the eigenvalues on the 
operator is to be emphasized, we will write >J(A) for the vector with com-
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ponents >'i(A), ... ,>';(A), where >';(A) are arranged in decreasing order; 

i.e., >';(A) = aj. Similarly, >.r(A) will denote the vector with components 

>.} (A) where >.} (A) = an-j+I! 1 ~ j ~ n. 

Theorem 111.1.1 (Poincare's Inequality) Let A be a Hermitian operator 
on fi and let M be any k-dimensional subspace offi. Then there exist unit 
vectors x,y in M such that (x,Ax) ~ >.i(A) and (y,Ay) ~ >.r(A). 

Proof. Let N be the subspace spanned by the eigenvectors Uk, ... ,Un of 
A corresponding to the eigenvalues >'hA) , ... , >.;(A). The~ 

dim M +dimN = n+ 1, 

and hence the intersection of M and N is nontrivial. Pick up a unit vector 
n n 

X in M nN. Then we can write x = L~jUj, where LI~jI2 = 1. Hence, 
j=k j=k 

n n 

(x, Ax} = LI~jI2>';(A) ~ LI~jI2>.i(A) = >'i(A). 
j=k j=k 

This proves the first statement. The second can be obtained by applying 
this to the operator -A instead of A. Equally well, one can repeat the 
argument, applying it to the given k-dimensional space M and the (n -
k + I)-dimensional space spanned by Ul, U2,· .. , Un-k+l. • 

Corollary 111.1.2 (The Minimax Principle) Let A be a Hermitian opera­
tor on fi. Then 

max min (x,Ax) 
MC1t xEM 

dim M=k Ilxll=l 

min max (x, Ax). 
MC1t xEM 

dim M=n-k+l Ilxll=l 

Proof. By Poincare's inequality, if M is any k-dimensional subspace of 
fi, then min(x, Ax} ~ >'i(A), where x varies over unit vectors in M. But if 

x 
M is the span of {UI! . .. ,Uk}, then this last inequality becomes an equality. 
That proves the first statement. The second can be obtained from the first 
by applying it to -A instead of A. • 

This minimax principle is sometimes called the Courant-Fischer-Weyl 
minimax principle. 

Exercise 111.1.3 In the proof of the minimax principle we made a par­
ticular choice of M. This choice is not always unique. For example, if 
AhA) = Ai+l(A), there would be a whole l-parameter family of such sub-

spaces obtained by choosing different eigenvectors of A belonging to Ai(A). 
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This is not surprising. More surprising, perhaps even shocking, is the fact 
that we could have Ai(A) = min{(x, Ax) : x E M, Ilxll = I}, even for a 
k-dimensional subspace that is not spanned by eigenvectors of A. Find an 
example where this happens. (There is a simple example.) 

Exercise 111.1.4 In the proof of Theorem III.l.l we used a basic principle 
of linear algebra: 

dim (MI n M 2) dim MI + dim M2 - dim(M I + M 2) 

> dim MI + dim M2 - n, 

for any two subspaces MI and M2 of an n-dimensional vector space. Derive 
the corresponding inequality for an intersection of three subspaces. 

An equivalent formulation of the Poincare inequality is in terms of com­
pressions. Recall that if V is an isometry of a Hilbert space Minto 1-£, then 
the compression of A by V is defined to be the operator B = V* AV. Usu­
ally we suppose that M is a subspace of 1-£ and V is the injection map. 
Then A has a block-matrix representation in which B is the northwest 
corner entry: 

A=( ~ :). 
We say that B is the compression of A to the subspace M. 

Corollary 111.1.5 (Cauchy's Interlacing Theorem) Let A be a Hermitian 
operator on 1-£, and let B be its compression to an (n - k)-dimensional 
subspace N. Then for j = 1,2, ... ,n - k 

(Ill. 1 ) 

Proof. For any j, let M be the span of the eigenvectors VI, ... , v j of B 
corresponding to its eigenvalues Ai(B), ... , A;(B). Then (x, Bx) = (x, Ax) 
for all x E M. Hence, 

Al (B) = min (x, Bx) = min (x, Ax) :s: A; (A). 
J xEM xEM 

Ilxll=l Ilxll=l 

This proves the first assertion in (Ill. 1 ). 
Now apply this to -A and its compression -B to the given subspace N. 

Note that 

and 

d (B) \ i (B) d ( B) for all 1 <_ J' :s: n - k. -Aj = Aj - = A(n-k)-j+1 -
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Choose i = j+k. Then the first inequality yields-A; (B) ::; -A;+k(B), which 
is the second inequality in (IIl.1). • 

The above inequalities look especially nice when B is the compression of 
A to an (n - I)-dimensional subspace: then they say that 

(III.2) 

This explains why this is called an interlacing theorem. 

Exercise III.1.6 The Poincare inequality, the minimax principle, and the 
interlacing theorem can be derived from each other. Find an independent 
proof for each of them using Exercise III.1.4. (This "dimension-counting" 
for intersections of subspaces will be used in later sections too.) 

Exercise III.1.7 Let B be the compression of a Hermitian operator A to 
an (n - 1) -dimensional space M. If, for some k, the space M contains the 
vectors U1, ... ,Uk, then (3j = aj for 1 ::; j ::; k. If M contains Uk, ... ,Un, 
then aj = (3j-1 for k ::; j ::; n. 

Exercise 111.1.8 (i) Let An be the n x n tridiagonal matrix with entries 
aii = 2cos8 for all i,aij = 1 if Ii - jl = 1, and aij = 0 otherwise. The 
determinant of An is sin( n + 1)e / sin 8. 

(ii) Show that the eigenvalues of An are given by 2( cos 8 + cos J':l)' 
1 ::; j ::; n. 

(iii) The special case when aii = -2 for all i arises in Rayleigh's finite­
dimensional approximation to the differential equation of a vibrating string. 
In this case the eigenvalues of An are 

1 . 2 j7r 
Aj(An) = -4 sm 2(n + 1)' 1::; j::; n. 

(iv) Note that, for each k < n, the matrix An- k is a compression of 
An- This example provides a striking illustration of Cauchy'S interlacing 
theorem. 

It is illuminating to think of the variational characterisation of eigenval­
ues as a solution of a variational problem in analysis. If A is a Hermitian 
operator on IRn , the search for the top eigenvalue of A is just the problem 
of maximising the function F(x) = x* Ax subject to the constraint that the 
function G(x) = x*x has the fixed value 1. The extremum must occur at 
a critical point, and using Lagrange multipliers the condition for a point 
x to be critical is 'VF(x) = A'VG(x), which becomes Ax = Ax. Our ear­
lier arguments got to the extremum problem from the algebraic eigenvalue 
problem, and this argument has gone the other way. 

If additional constraints are imposed, the maximum can only decrease. 
Confining x to an (n - k )-dimensional subspace is equivalent to imposing 
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k linearly independent linear constraints on it. These can be expressed as 
Hj(x) = 0, where Hj(x) = wjx and the vectors Wj, 1 :::; j :::; k are linearly 
independent. Introducing additional Lagrange multipliers J.Lj, the condition 
for a critical point is now "\1 F(x) = A "\1G(x) + .Lj J.Lj "\1 Hj(x); Le., AX-AX is 
no longer required to be 0 but merely to be a linear combination of the Wj. 
Look at this in block-matrix terms. Our space has been decomposed into a 
direct sum of a space N and its orthogonal complement which is spanned 
by {WI, ... , Wk}. Relative to this direct sum decomposition we can write 

Our vector X is now constrained to be in N, and the requirement for it to 
be a critical point is that (A - >.I) (~) lies in N.L. This is exactly requiring 
X to be an eigenvector of the compression B. 

If two interlacing sets of real numbers are given, they can be realised as 
the eigenvalues of a Hermitian matrix and one of its compressions. This is 
a converse to one of the theorems proved above: 

Theorem 111.1.9 Let O'.j, 1:::; j :::; n, and f3i, 1:::; i :::; n-l, be real numbers 
such that 

0'.1 ;::: f31 ;::: 0'.2 ;::: ... ;::: f3n-1 ;::: O'.n· 

Then there exists a compression of the diagonal matrix A = diag(0'.1, ... , O'.n) 
having f3i, 1 ::; i :::; n - 1, as its eigenvalues. 

Proof. Let AUj = O'.jUj; then {Uj} constitute the standard orthonor­
mal basis in en. There is a one-to-one correspondence between (n - 1)­
dimensional orthogonal projection operators and unit vectors given by 
P = 1- zz*. Each unit vector, in turn, is completely characterised by 
its coordinates (j with respect to the basis Uj. We have z = .L (jUj = 
.L(u~z)Uj,.L l(jl2 = 1. We will find conditions on the numbers (j so that, 
for the corresponding orthoprojector P = I - zz* , the compression of A to 
the range of P has eigenvalues f3i' 

Since PAP is a Hermitian operator of rank n - 1, we must have 

n-1 
II (A - f3i) = tr I\n-1 [P(>.I - A)P]. 
i=1 

If E j are the projectors defined as E j = I - Ujuj, then 

n 

I\n-1(>.I - A) = L II (>. - O'.k) I\n-1 Ej . 
j=1 k¥-j 

Using the result of Problem 1.6.9 one sees that 

I\n-1 P .l\n-1 E j .l\n-1 P = l(jl2 I\n-1 p. . 
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Since rank 1\ n-l p = 1, the above three relations give 

n-l n 

II (A - (3i) = L!(j!2[II (A - ak)], (1Il.3) 
i=l j=l k=J.j 

an identity between polynomials of degree n - 1, which the (j must satisfy 
if B has spectrum {(3i}. . 

We will show that the interlacing inequalities between aj and (3i ensure 
n 

that we can find (j satisfying (IlL3) and L!(j!2 = 1. We may assume, 
j=l 

without loss of generality, that the aj are distinct. Put 

1 ::; j ::; n. (1Il.4) 

The interlacing property ensures that all'j are nonnegative. Now choose 
(j to be any complex numbers with !(j!2 = 'j. Then the equation (IlL3) is 
satisfied for the values A = aj, 1 ::; j ::; n, and hence it is satisfied for all A. 
Comparing the leading coefficients of the two sides of (IlL3), we see that 

L!(jj2 = 1. This completes the proof. 
j • 

III.2 Weyl's Inequalities 

Several relations between eigenvalues of Hermitian matrices A, B, and A + B 
can be obtained using the ideas of the previous section. Most of these results 
were first proved by H. Weyl. 

Theorem III.2.1 Let A, B be n x n Hermitian matrices. Then, 

A; (A + B) ::; AI (A) + A;-Hl (B) for i ::; j, 

A;(A + B) 2: AhA) + A;_Hn(B) fori 2: j. 

(111.5 ) 

(III.6) 

Proof. Let Uj, Vj, and Wj denote the eigenvectors of A, B, and A + B 
respectively, corresponding to their eigenvalues in decreasing order. Let 
i ::; j. Consider the three subspaces spanned by {WI, ... , Wj }, { Ui, ... , Un}, 

and {Vj-Hl, ... , vn } respectively. These have dimensions j, n - i + 1, and 
n - j + i, and hence by Exercise 111.1.4 they have a nontrivial intersection. 
Let x be a unit vector in their intersection. Then 

A;(A + B) ::; (x, (A + B)x) = (x, Ax) + (x, Bx) ::; AhA) + A;_i+l(B). 
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This proves (111.5). If A and B in this inequality are replaced by -A and 
-B, we get (111.6). • 

Corollary 11I.2.2 For each j = 1,2, ... , n, 

A;(A) + A;(B) ::; A;(A + B) ::; A; (A) + AhB). (III. 7) 

Proof. Put i = j in the above inequalities. • 
It is customary to state these and related results as perturbation theo­

rems, whereby B is a perturbation of A; that is B = A+H. In many of the 
applications H is small and the object is to give bounds for the distance of 
A(B) from A(A) in terms of H = B - A. 

Corollary 111.2.3 (Weyl's Monotonicity Theorem) If H is positive, then 

A;(A + H) ~ A;(A) for allj. 

Proof. By the preceding corollary, A; (A + H) ~ A; (A) + A~(H), but all 
the eigenvalues of H are nonnegative. Alternately, note that (x, (A+H)x) ~ 
(x, Ax) for all x and use the minimax principal. • 

Exercise 111.2.4 If H is positive and has rank k, then 

A;CA + H) ~ A;CA) ~ A;+kCA + H) for j = 1,2, ... , n - k. 

This is analogous to Cauchy's interlacing theorem. 

Exercise 1II.2.5 Let H be any Hermitian matrix. Then 

A;(A) - IIHII ::; A;(A + H) ::; A;CA) + IIHII· 

This can be restated as: 

Corollary 1II.2.6 (Weyl's Perturbation Theorem) Let A and B be Her­
mitian matrices. Then 

maxIA;CA) - A;(B)I ::; IIA - BII· 
J 

Exercise 111.2.7 For Hermitian matrices A, B, we have 

IIA - BII ::; maxl).;(A) - A}(B)I. 
J . 

It is useful to have another formulation of the above two inequalities, 
which will be in conformity with more general results proved later. 

We will denote by Eig A a diagonal matrix whose diagonal entries are 
the eigenvalues of A. If these are arranged in decreasing order, we write 
this matrix as Eigl (A); if in increasing order as Eigi (A). The results of 
Corollary II1.2.6 and Exercise II1.2.7 can then be stated as 
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Theorem 111.2.8 For any two Hermitian matrices A, B, 

IIEigl(A) - Eig1(B)11 :::; IIA - BII :::; IIEig1(A) - Eigi (B)II· 

Weyl's inequality (IIl.5) is equivalent to an inequality due to Aronszajn 
connecting the eigenvalues of a Hermitian matrix to those of any two com­
plementary principal submatrices. For this let us rewrite (IlI.5) as 

A;+j_l (A + B) :::; AhA) + A; (B), 

for all indices i, j such that i + j - 1 :::; n. 

(IlLS) 

Theorem 111.2.9 (Aronszajn's Inequality) Let C be an n x n Hermitian 
matrix partitioned as 

where A is a k x k matrix. Let the eigenvalues of A, B, and C be al ~ ... 
~ ak, f31 ~ ... ~ f3n-k, and 11 ~ ... ~ In, respectively. Then 

Ii+j-l + In:::; ai + f3j for all i,j with i + j - 1:::; n. (III.9) 

Proof. First assume that In = O. Then C is a positive matrix. Hence 
C = D* D for some matrix D. Partition D as D = (Dl D2), where Dl has 
k columns. Then 

Note that DD* = DIDi + D2D'2. Now the nonzero eigenvalues of the 
matrix C = D* D are the same as those of DD*. The same is true for the 
matrices A = Di Dl and Dl Di, and also for the matrices B = D'2 D2 and 
D2D'2. Hence, using Weyl's inequality (IIl.8) we get (III.9) in this special 
case. 

I[ In I- 0, subtract InI from C. Then all eigenvalues of A, B, and Care 
translated by -In' By the special case considered above we have 

Ii+j-l -In :S (ai -In) + (f3j -In), 

which is the same as (111.9). • 
We have derived Aronszajn's inequality from Weyl's inequality. But the 

argument above can be reversed. Let A, B be n x n Hermitian matrices and 
let C = A + B. Let the eigenvalues of these matrices be a 1 ~ ... ~ an, f31 ~ 
'" ~ f3n, and 11 ~ ... ~ In, respectively. We want to prove that Ii+j-l :S 
ai + f3j. This is the same as li+j-l - (an + f3n) :::; (ai - an) + (f3j - f3n). 
Hence, we can assume, without loss of generality, that both A and Bare 
positive. Then A = Di Dl and B = D'2 D2 for some matrices D1 , D2. Hence, 
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Consider the 2n x 2n matrix 

Then the eigenvalues of E are the eigenvalues of C together with n ze­
roes. Aronszajn's inequality for the partitioned matrix E then gives Weyl's 
inequality (III.8). 

By this procedure, several linear inequalities for the eigenvalues of a sum 
of Hermitian matrices can be transformed to those for the eigenvalues of 
block Hermitian matrices, and vice versa. 

III. 3 Wielandt's Minimax Principle 

The minimax principle (Corollary III.1.2) gives an extremal characterisa­
tion for each eigenvalue aj of a Hermitian matrix A. Ky Fan's maximum 
principle (Problem 1.6.15 and Exercise 11.1.13) provides an extremal char­
acterisation for the sum al + ... + ak of the top k eigenvalues of A. In 
this section we will prove a deeper result due to Wielandt that subsumes 
both these principles by providing an extremal representation of any sum 
ai, + ... + aik. The proof involves a more elaborate dimension-counting for 
intersections of subspaces than was needed earlier. 

We will denote by V + W the vector sum of two vector spaces V and W, by 
V - W any linear complement of a space W in V, and by 
span {Vl, ... , Vk} the linear span of vectors Vl, ... , Vk. 

Lemma III.3.1 Let W l :J W 2 :J ... :J Wk be a decreasing chain of vector 
spaces with dim Wj ~ k - j + 1. Let w j, 1 ::; j ::; k -1, be linearly independent 
vectors such that Wj E W j , and let U be their linear span. Then there exists 
a nonzero vector u in W l - U such that the space U + span {u} has a basis 
Vl, ... ,Vk withvj E W j ,l::;j::; k. 

Proof. This will be proved by induction on k. The statement is easily 
verified when k = 2. Assume that it is true for a chain consisting of k - 1 
spaces. Let Wl, ... , Wk-l be the given vectors and U their linear span. Let 
S be the linear span of W2, ... , Wk-l. Apply the induction hypothesis to the 
chain W 2 :J ... :J W k to pick up a vector v in W 2 - S such that the space 
S + span { v} is equal to span {V2, ... , Vk} for some linearly independent vec­
tors v j E Wj , j = 2, ... , k. This vector v mayor may not be in the space 
U. We will consider the two possibilities. Suppose v E U. Then U = S + 
span{ v} because U is (k-1)-dimensional and Sis (k-2)-dimensional. Since 
dim W l ~ k, there exists a nonzero vector u in W l - U. Then u, V2,···, Vk 

form a basis for U + span { u }. Put u = Vl. All requirements are now met. 
Suppose v rt U. Then Wl rt S + span { v }, for if Wl were a linear com­
bination of W2, ... , Wk-l and v, then v would be a linear combination of 
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WI, W2, ... , Wk-I and hence be an element of U. So, span{ WI, V2,···, vd is 
a k-dimensional space that must, therefore, be U +span{v}. Now WI E WI 
and Vj E W j , j = 2, ... ,k. Again all requirements are met. • 

Theorem 111.3.2 Let VI C V2 C ... C Vk be linear subspaces of an n­
dimensional vector space V, iuith dim Vi = ij, 1 :::; iI < i2 < ... < ik :::; n. 
Let WI :J W 2 :J ... :J W k be subspaces of V, with dim Wj = n - i j + 1 = 
co dim Vi + 1. Then there exist linearly independent vectors Vj E Vi, 1 :::; 
j :::; k, and linearly independent vectors Wj E Wj, 1 :::; j :::; k, such that 

span{vI, ... , vd = span{wI, ... , wd· 

Proof. When k = 1 the statement is obviously true. (We have used this 
repeatedly in the earlier sections.) The general case will be proved by in­
duction on k. So, let us assume that the theorem has been proved for 
k - 1 pairs of subspaces. By the induction hypothesis choose Vj E Vi and 
W j E Wj , 1 :::; j :::; k - 1, two sets of linearly independent vectors having the 
same linear span U. Note that U is a subspace of Vk. 

For j = 1, ... , k, let 8 j = Wj n Vk. Then note that 

Hence, 

n > dim Wj + dim Vk - dim 8 j 

(n - i j + 1) + ik - dim 8j • 

dim 8 j :::: ik - i j + 1 :::: k - j + l. 

Note that 8 1 :J 82 :J ... :J 8k are subspaces of Vk and Wj E 8 j for j = 
1,2, ... ,k-l. Hence, by Lemma III.3.1 there exists a vector u in 8 1 -U such 
that the space U +span{ u} has a basis UI, ... , Uk, where Uj E 8 j c Wj,j = 
1,2, ... , k. But U + span{u} is also the linear span of VI, ... , Vk-I and u. 
Put Vk = u. Then Vj E Vi, j = 1,2, ... ,k, and they span the same space as 
~~. . 
Exercise 111.3.3 If V is a Hilbert space, the vectors Vj and Wj in the 
statement of the above theorem can be chosen to be orthonormal. 

Proposition 111.3.4 Let A be a Hermitian operator on 'H with eigenvec­
tors Uj belonging to eigenvalues A; (A), j = 1,2, ... ,n. 

(i) Let Vj = span{ UI, ... , Uj}, 1 :::; j :::; n. Given indices 1 :::; iI < ... < 
ik :::; n, choose orthonormal vectors Xij from the spaces Vij , j = 1, ... , k. 
Let V be the span of these vectors, and let Av be the compression of A to 
the space V. Then 

(ii) Let Wj = span{ Uj, . .. ,un}, 1 :::; j :::; n. Choose orthonormal vectors 
Xi} from the spaces W ij , j = 1, ... ,k. Let W be the span of these vectors 
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and Aw the compression of A to W. Then 

AJ(Aw )::; At(A) for j = 1, ... ,k. 

Proof. Let Y1, ... ,Yk be the eigenvectors of Av belonging to its eigenval­
ues Ai (Av ), . .. ,AhAv). Fix j, 1 ::; j ::; k, and in the space V consider the 
spaces spanned by {Xi, , ... , Xij } and {Yj, ... , Yk}, respectively. The dimen­
sions of these two spaces add up to k+ 1, while the space V is k-dimensional. 
Hence there exists a unit vector u in the intersection of these two spaces. 
For this vector we have 

This proves (i). The statement (ii) has exactly the same proof. • 
Theorem 111.3.5 (Wielandt's Minimax Principle) Let A be a Hermitian 
operator on an n-dimensional space 1t. Then for any indices 1 ::; i1 < ... < 
ik ::; n we have 

k 

2:);j(A) 
j=l 

max 
.M,C··C.Mk 
dim Mj=ij 

min 
XjEMj 

x j orthonormal 

max 
XjEN'j 

k 

2:(Xj, AXj) 
j=l 

k 

2:(Xj,AXj). min 
N,~···~Nk 

dim Nj=n~ij+l x j orthonormal j=l 

Proof. We will prove the first statement; the second has a similar proof. 
Let Vij = span{ U1, ... ,Uij }, where, as before, the Uj are eigenvectors of A 

corresponding to AJ(A). For any unit vector X in Vij , (x,Ax) ;:::: A;j(A). So, 
if Xj E Vij are orthonormal vectors, then 

k k 

2:(Xj, AXj) ;:::: 2:At(A). 
j=l j=l 

Since Xj were quite arbitrary, we have 

k k 

2:(xj,Axj);:::: 2:A;j(A). 
j=l j=l 

min 
XJEVtj 

x j orthonormal 

Hence the desired result will be achieved if we prove that given any sub-, 
spaces M1 C ... C Mk with dim M j = i j we can find orthonormal vectors 

Xj E M j such that 
k k 

2:(Xj, AXj) ::; 2:A;j (A). 
j=l j=l 



68 III. Variational Principles for Eigenvalues 

Let Nj = Wij = span{vij, ... ,vn},j = 1,2, ... ,k. These spaces were 
considered in Proposition III.3.4(ii). We have Nl ::J N2 ·•• ::J Nk and 
dimNj = n - ij + 1. Hence, by Theorem III.3.2 and Exercise III.3.3 there 
exist orthonormal vectors Xj E M j and orthonormal vectors Yj E Nj such 
that 

span{xl, ... , xd = span{Yl, ... , Yk} = W, say. 

By Proposition III.3.4 (ii), A~(Aw):$ A;)A) for j = 1,2, ... ,k. Hence, 

k k 

~)xj,Axj) ~)xj,Awxj} = tr Aw 
j=l j=l 

k k 

= LA~ (Aw) :$ LAt (A). 
j=l j=l 

This is what we wanted to prove. 

Exercise 111.3.6 Note that 

k k 

LAUA) = L(Uij,Auij}. 
j=l j=l 

• 

We have seen that the maximum in the first assertion of Theorem III.3.5 
is attained when M j = Vij = span{ul, ... ' UiJ,j = 1, ... , k, and with this 
choice the minimum is attained for Xj = Uij' j = 1, ... , k. Are there other 
choices of subspaces and vectors for which these extrema are attained? (See 
Exercise III.l.3.) 

Exercise 111.3.7 Let [a, b] be an interval containing all eigenvalues of A 
and let <1>( tl, ... , tk) be any real valued function on [a, b] x ... x [a, b] that is 
monotone in each variable and permutation-invariant. Show that for each 
choice of indices 1 :S il < ... < ik :$ n, 

max 
MIC···CMk 
dim Mj=i j 

w=spa~!~ ... 'Xk} <I> (Ai(AW ), ... , AhAw)) , 
xjEMj.xj orthonormal 

where Aw is the compression of A to the space W. In Theorem III.3.5 we 
have proved the special case of this with <I>(tl' ... ' tk) = tl + ... + tk. 

I1I.4 Lidskii's Theorems 

One important application of Wielandt's minimax principle is in proving a 
theorem of Lidskii giving a relationship between eigenvalues of Hermitian 
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matrices A, B and A + B. This is quite like our derivation of some of the 
results in Section IIL2 from those in Section IILI. 

Theorem 111.4.1 Let A, B be Hermitian matrices. Then for any choice 
of indices 1 :::; i l < ... < ik :::; n, 

k k k 

L>.t(A+B):::; L>';j(A) + L>.;(B). (III.10) 
j=l j=l j=l 

Proof. By Theorem III.3.5 there exist subspaces MI C ... C Mk, with 
dim M j = i j such that 

k k 

L>';j(A+B) = x~~ L(xj,(A+B)xj). 
j=l Xj orthon~rmalj=l 

By Ky Fan's maximum principle 

k k 

L(Xj, BXj) :::; L>';(B), 
j=l j=l 

for any choice of orthonormal vectors Xl, ... , xk. The above two relations 
imply that 

k 

L>';j(A+B) :::; 
j=l 

Now, using Theorem III.3.5 once again, it can be concluded that the first 
k 

term on the right-hand side of the above inequality is dominated by L>'; (A). 
j=l J. 

Corollary 111.4.2 If A, B are Hermitian matrices, then the eigenvalues 
of A, B, and A + B satisfy the following majorisation relation 

(III. 11 ) 

Exercise 111.4.3 (Lidskii's Theorem) The vector>.l(A+B) is in the con­
vex hull of the vectors >.1 (A) + p>.l(B), where P varies over all permuta­
tion matrices. (This statement and those of Theorem III.4.1 and Corollary 
111.4.2 are, in fact, equivalent to each other.) 

Lidskii's Theorem can be proved without calling upon the more intricate 
Wielandt's principle. We will see several other proofs in this book, each 
highlighting a different viewpoint. The second proof given below is in the 
spirit of other results of this chapter. 
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Lidskii's Theorem (second proof). We will prove Theorem IIL4.1 by 
induction on the dimension n. Its statement is trivial when n = 1. Assume 
it is true up to dimension n -1. When k = n, the inequality (III.10) needs 
no proof. So we may assume that k < n. 

Let Uj, Vj, and Wj be the eigenvectors of A, B, and A + B corresponding 
to their eigenvalues A;(A), A;(B), and A; (A + B). We will consider three 
cases separately. 

Case 1. ik < n. Let M = span{ WI, ... ,Wn -l} and let AM be the compres­
sion of A to the space M. Then, by the induction hypothesis 

k k k 

LAJj(AM +BM ) ~ LAr,(AM ) + LA;(BM ). 
j=l j=l j=l 

The inequality (111.10) follows from this by using the interlacing principle 
(111.2) and Exercise IIL1.7. 

Case 2.1 < i1· Let M = span{u2, ... ,un}. By the induction hypothesis 

k k k 

LAr,-l(AM + B M ) ~ LAr,-l(AM ) + LA;(BM ). 
j=l j=l j=l 

Once again, the inequality (111.10) follows from this by using the interlacing 
principle and Exercise 111.1. 7. 

Case 3. il = 1. Given the indices 1 = il < i2 < ... < ik ~ n, pick up the 
indices 1 ~ £1 < £2 < ... < £n-k < n such that the set {i j : 1 ~ j ~ k} 
is the complement of the set {n - £j + 1 : 1 ~ j ~ n - k} in the set 
{I, 2, ... ,n}. These new indices now come under Case 1. Use (111.10) for 
this set of indices, but for matrices -A and - B in place of A, B. Then note 
that A;( -A) = -A~_j+l (A) for alII ~ j ~ n. This gives 

n-k n-k n-k 

L - A~_tj+1 (A + B) ~ L- - A~_tj+1 (A) + L - A~_j+l (B). 
j=l j=l j=l 

Now add tr(A + B) to both sides of the above inequality to get 

k k k 

LAr,(A + B) ~ LAr,(A) + LA;(B). 
j=l j=l j=l 

This proves the theorem. • 
As in Section 111.2, it is useful to interpret the above results as pertur­

bation theorems. The following statement for Hermitian matrices A, B can 
be derived from (III.11) by changing variables: 

(111.12) 
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This can also be written as 

(III.13) 

In fact, the two right-hand majorisations are consequences of the weaker 
maximum principle of Ky Fan. 

As a consequence of (III.12) we have: 

Theorem 111.4.4 Let A, B be Hermitian matrices and let q, be any sym­
metric gauge function on IRn. Then 

q, (Al(A) - Al(B)) :S q, (A (A - B)) :S q, (Al(A) - Ai (B)) . 

Note that Weyl's perturbation theorem (Corollary III.2.6) and the in­
equality in Exercise III.2.7 are very special cases of this theorem. 

The majorisations in (III.13) are significant generalisations of those in 
(II.35), which follow from these by restricting A, B to be diagonal matrices. 
Such "noncommutative" extensions exist for some other results; they are 
harder to prove. Some are given in this section; many more will occur later. 

It is convenient to adopt the following notational shorthand. If x, y, Z are 
n-vectors with nonnegative coordinates, we will write 

k k 

log x -<w log y if IT x; :S IT YJ, for k = 1, ... , n; (III.14) 
j=l j=l 

n n 

log x -< log y if log x -<w log y and IT x; = ITYJ; (III.15) 
j=l j=l 

k k k 

log x - log Z -<w log y if IT Xij :S IT Yj IT Zi j , (III.16) 
j=l j=l j=l 

for all indices 1 :S i1 < ... < ik :S n. Note that we are allowing the 
possibility of zero coordinates in this notation. 

Theorem 111.4.5 (Gel'Jand-Naimark) Let A, B be any two operators on 
H. Then the singular values of A, Band AB satisfy the majorisation 

log s(AB) - log s(B) -< log s(A). (III. 17) 

Proof. We will use the result of Exercise III.3.7. Fix any index k,1 :S 
k :S n. Choose any k orthonormal vectors Xl, ... ,Xk, and let W be their 
linear span. Let q,(h, ... , tk) = ht2··· tk· Express AB in its polar form 
AB = UP. Then, denoting by Tw the compression of an operator T to the 

subspace W, we have 

q, (Ai(Pw), ... , A%(PW )) 1 det Pwl 2 

1 det( (Xi, PWXj)) 12 

Idet((Xi,PXj))12 

1 det( (A*U Xi, BXj) )1 2 . 



72 III. Variational Principles for Eigenvalues 

Using Exercise 1.5.7 we see that this is dominated by 

det ((A*UXi' A*Uxj)) det ((BXi' BXj)) . 

The second of these determinants is equal to det(B* B)w; the first is equal 
k 

to det(AA*)uw and by Corollary IIL1.5 is dominated by II s;(A). Hence, 
j=l 

we have 
k 

<I> (A~(PW)' ... ' A%(Pw )) ::; det(B* B)w II s;(A) 
j=l 

k 

= <I> (A1(IBI~),· .. , Ak(IBI~)) II s;(A). 
j=l 

Now, using Exercise IIL3.7, we can conclude that 

k k k 
(II A;j (p))2 ::; II At (IBI2) II s;(A), 
j=l j=l j=l 

i.e., 
k k k 
II Sij (AB) ::; II Sij (B) II sj(A), (III.18) 
j=l j=l j=l 

for alII::; i1 < ... < ik ::; n. This, by definition, is what (III.17) says. • 

Remark. The statement 

k k k 
II sj(AB) ::; II sj(A) II Sj(B), (II 1.1 g) 
j=l j=l j=l 

which is a special case of (III.18), is easier to prove. It is just the statement 
Ill\k (AB)II ::; Ill\k Alllll\k BII. If we temporarily introduce the notation 
s.l. (A) and S i (A) for the vectors whose coordinates are the singular values 
of A arranged in decreasing order and in increasing order, respectively, then 
the inequalities (III.18) and (IIl.1g) can be combined to yield 

log s.l.(A) + log si(B) -< log s(AB) -< log s.l.(A) + log s.l.(B) (IIL20) 

for any two matrices A, B. In conformity with our notation this is a sym­
bolic representation of the inequalities 

k k k k k 

II Sij(A)IISn-ij+1(B)::; IISj(AB)::; IISj(A)IISj(B) 
j=l j=l j=l j=l j=l 

for all I ::; i1 < ... < ik ::; n. It is illuminating to compare this with the 
statement (IILI3) for eigenvalues of Hermitian matrices. 
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Corollary 111.4.6 (Lidskii) Let A, B be two positive matrices. Then all 
eigenvalues of AB are nonnegative and 

log ).1 (A) + log ).i(B) --< log )'(AB) --< log ).1 (A) + log ).l(B). (III.21) 

Proof. It is enough to prove this when B is invertible, since every positive 
matrix is a limit of such matrices. For invertible B we can write 

AB = B-1/2(B 1/2 A B1/2)B1/2. 

Now B1/2 A B1/2 is positive; hence the matrix AB, which is similar to it, 
has nonnegative eigenvalues. Now, from (III.20) we obtain 

log ).1 (A 1/2) + log). i (B1/2) 

--< log S(A1/2B1/2) --< log >.1 (A1/2) + log >.1(B1/2). (lII.22) 

But s2(A1/2 B1/2) = >.1 (B1/2 AB1/2) = >.1 (AB). So, the majorisations 
(lII.21) follow from (lII.22). • 

III. 5 Eigenvalues of Real Parts and 
Singular Values 

The Cartesian decomposition A = Re A + i 1m A of a matrix A associates 
with it two Hermitian matrices Re A = A-jzA* and 1m A = A-;r. It is of 
interest to know relationships between the eigenvalues of these matrices, 
those of A, and the singular values of A. 

Weyl's majorant theorem (Theorem II.3.6) provides one such relation­
ship: 

log I>'(A)I --< log seA). 

Some others, whose proofs are in the same spirit as others in this chapter, 
are given below. 

Proposition 111.5.1 (Fan-Hoffman) For every matrix A 

>';(ReA) ::; sj(A) for all j = 1, ... ,n. 

Proof. Let x j be eigenvectors of Re A belonging to its eigenvalues >.; (Re A) 
and Yj eigenvectors of IAI belonging to its eigenvalues sj(A), 1 ::; j ::; n. For 
each j consider the spaces span { Xl, ... , x j} and span {Yj , ... , Yn}. Their di­
mensions add up to n + 1, so they have a nonzero intersection. If x is a unit 

vector in their intersection then 

>.; (Re A) < (x, (Re A)x) = Re(x, Ax) 

< I(x, Ax)1 ::; IIAxl1 

(x, A* AX)1/2 ::; sj(A). • 
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Exercise 111.5.2 (i) Let A be the 2 x 2 matrix (~ ~). Then s2(A) = 0, 
but ReA has two nonzero eigenvalues. Hence the vector IA(Re A)Il is not 
dominated by the vector s(A). 

(ii) However, note that IA(Re A)I -<w s(A) for every matrix A. (Use the 
triangle inequality for Ky Fan norms.) 

Proposition 111.5.3 (Ky Fan) For every matrix A we have 

Re A(A) -< A(Re A). 

Proof. Arrange the eigenvalues Aj(A) in such a way that 

Let Xl, ... ,xn be an orthonormal Schur-basis for A such that Aj(A) 
= (Xj, AXj). Then Aj(A) = (Xj, A*xj). Let W = span{x1,.·., xd. Then 

k 

L(Xj, (Re A)xj) = tr (ReA)w 
j=l 

k k 

LAj((Re A)w) ::; LA;(Re A). 
j=l j=l • 

Exercise 111.5.4 Give another proof of Proposition III.5.3 using Schur's 
theorem (given in Exercise II. 1. 12). 

Exercise 111.5.5 Let X, Y be Hermitian matrices. Suppose that their eigen­
values can be indexed as Aj(X) and Aj(Y), 1 ::; j ::; n, in such a way 
that Aj (X) ::; Aj (Y) for all j. Then there exists a unitary U such that 
X::; U*YU. 

(ii) For every matrix A there exists a unitary matrix U such that 
Re A ::; U* IAIU. 

An interesting consequence of Proposition 111.5.1 is the following version 
of the triangle inequality for the matrix absolute value: 

Theorem 111.5.6 (R. C. Thompson) Let A, B be any two matrices. Then 
there exist unitary matrices U, V such that 

IA + BI ::; UIAIU* + VIBIV*· 

Proof. Let A + B = WIA + BI be a polar decomposition of A + B. Then 
we can write 

IA + BI = W*(A + B) = Re W*(A + B) = Re W* A + Re W* B. 

Now use Exercise 1II.5.5(ii). • 
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Exercise 111.5.7 (i) Find 2 x 2 matrices A, B such that the inequality 
IA + BI :::; IAI + IBI is false for them. 

(ii) Find 2 x 2 matrices A, B for which there does not exist any unitary 
matrix U such that IA + BI :::; U(IAI + IBI)U*. 

III.6 Problems 

Problem 111.6.1. (The minimax principle for singular values) For 
any operator A on 1t we have 

max min IIAxl1 
M:dim M=j xEM,llxll=l 

min max IIAxl1 
N:dim N=n-j+l xEN,llxll=l 

for 1 :::; j :::; n. 

Problem 111.6.2. Let A, B be any two operators. Then 

for 1 ::::; j ::::; n. 

Sj(AB) :::; IIBIIsj(A), 

sj(AB) ::::; IIAIIsj(B) 

Problem 111.6.3. For j = 0,1, ... ,n, let 

lRj = {T E £(H) : rank T ::::; j}. 

Show that for j = 1,2, ... ,n, 

Sj(A) = min IIA - Til· 
TE~j-l 

Problem 111.6.4. Show that if A is any operator and H is any operator 
of rank k, then 

Sj(A) 2: sj+k(A + H), j = 1,2, ... , n - k. 

Problem 111.6.5. For any two operators A, B and any two indices i, j such 

that i + j ::::; n + 1, we have 

Si+j-l(A + B) ::::; siCA) + sj(B) 

Si+j-l(AB) ::::; si(A)sj(B). 
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Problem 111.6.6. Show that for every operator A and for each k 
1,2, ... , n, we have 

k k 

2:>j(A) = max L(Yj,Axj) , 
j=l j=l 

where the maximum is over all choices of orthonormal k-tuples Xl,"" xk 

and Y1,"" Yk. This can also be written as 

k k 

LSj(A) = max L(xj,UAxj) , 
j=l j=l 

where the maximum is taken over all choices of unitary operators U and 
orthonormal k-tuples x!, ... ,Xk. Note that for k = 1 this reduces to the 
statement 

IIAII = I(y, Ax)l· 
iixii=iiyii=l 

For k = 1,2, ... ,n, the above extremal representations can be used to give 
k 

another proof of the fact that the expressions II A II (k) = L S j (A) are norms. 
j=l 

(See Exercise II.1.15.) 

Problem 111.6.7. Let A 
1, ... ,n,let 

(aij) be a Hermitian matrix. For each i 

( )

1/2 

ri = Llaijl2 
#i 

Show that each interval [aii - ri, aii + rd contains at least one eigenvalue 
of A. 

Problem 111.6.8. Let 0:1 2: 0:2 2: ... 2: O:n be the eigenvalues of a Her­
mitian matrix A. We have seen that the n - 1 eigenvalues of any principal 
submatrix of A interlace with these numbers. If (h 2: 02 2: ... 2: On-1 
are the roots of the polynomial that is the derivative of the characteristic 
polynomial of A, then we have by Rolle's Theorem 

Show that for each j there exists a principal submatrix B of A for which 
O:j 2: >-] (B) 2: OJ and another principal submatrix C for which OJ 2: 

>-](C) 2: O:j+1' 

Problem 111.6.9. Most of the results in this chapter gave descriptions 
of eigenvalues of a Hermitian operator in terms of the numbers (x, Ax) 



III.6 Problems 77 

when x varies over unit vectors. Sometimes in computational problems 
an "approximate" eigenvalue A and an "approximate" eigenvector x are 
already known. The number (x, Ax) can then be used to further refine this 
information. 

For a given unit vector x, let p = (x,Ax),1': = II(A - p)xll. 
(i) Let (a, b) be an open interval that contains p but does not contain 

any eigenvalue of A. Show that 

(ii) Show that there exists an eigenvalue a of A such that la - pi :::; 1':. 

Problem 111.6.10. Let p and I': be defined as in the above problem. Let 
(a, b) be an open interval that contains p and only one eigenvalue a of A. 
Then 

1':2 1':2 
p---:::;a:::;p+--. 

p-a b-p 

This is called the Kato-Temple inequality. Note that if p - a and b - p 
are much larger than 1':, then this improves the inequality in part (ii) of 
Problem III.6.9. 

Problem 111.6.11. Show that for every Hermitian matrix A 

k 

LA;(A) 
j=l 

k 

LAJ(A) 
j=l 

max tr UAU*, 
UU*=h 

min tr UAU* 
UU*=Ik 

for 1 :::; k :::; n, where the extrema are taken over k x n matrices U that 
satisfy UU* = h, h being the k x k identity matrix. Show that if A is 
positive, then 

k 

II A; (A) 
j=l 

k 

II AJ (A) 
j=l 

(See Problem 1.6.15.) 

max det U AU* , 
UU*=h 

min det U AU* . 
UU*=h 

Problem 111.6.12. Let A, B be any matrices. Then 

n 

"'s(A)sj(B) = supltr UAVBI = sup Retr UAVB, 
~J UV 
j=l u,v , 
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where U, V vary over all unitary matrices. 

Problem 111.6.13. (Perturbation theorem for singular values) Let 
A, B be any n x n matrices and let <I> be any symmetric gauge function on 
]Rn. Then 

<I> (s(A) - s(B)) -<w <I> (s(A - B)) . 

In particular, 
max ISj(A) - sj(B)1 ::; IIA - BII· 

[Hint: See Theorem 111.4.4 and Exercise 11.1.15.] 

Problem 111.6.14. For positive matrices A, B show that 

>J(A). >.i(B) -< >'(AB) -< >.1 (A) . >.l(B). 

For Hermitian matrices A, B show that 

(>.l(A),>.i(B))::; tr AB::; (>.l(A),>.l(B)). 

(Compare these with (11.36) and (11.37).) 

Problem 111.6.15. Let A, B be Hermitian matrices. Use the second part 
of Problem 111.6.14 to show that 

II Eigl A - Eigl BI12 ::; IIA - BI12 ::; IIEigl A - Eigi B112. 

Note the analogy between this and Theorem 111.2.8. (In Chapter IV we 
will see that both these results are true for a whole family of norms called 
unitarily invariant norms. This more general result is a: consequence of 
Theorem 111.4.4.) 

III. 7 Notes and References 

As pointed out in Exercise 111.1.6, many of the results in Sections 111.1 and 
111.2 could be derived from each other. Hence, it seems fair to say that 
the variational principles for eigenvalues originated with A.L. Cauchy's 
interlacing theorem. A pertinent reference is Sur £ 'equation a £ 'aide de 
laquelle on determine les inegalites seculaires des mouvements des planetes, 
1829, in A.L. Cauchy, Oeuvres Completes (lIe Serie), Volume 9, Gauthier­
Villars. 

The minimax principle was first stated by E. Fischer, Uber Quadratische 
Formen mit reellen Koejfizienten, Monatsh. Math. Phys., 16 (1905) 234-
249. The mono tonicity principle and many of the results of Section 111.2 
were proved by H. Weyl in Das asymptotische Verteilungsgesetz der Eigen­
werte linearer partieller Differentialgleichungen, Math. Ann., 71 (1911)441-
469. In a series of papers beginning with Uber die Eigenwerte bei den Dif­
ferentialgleichungen der mathematischen Physik, Math. Z., 7(1920) 1-57, 
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R. Courant exploited the full power of the minimax principle. Thus the 
principle is often described as the Courant-Fischer-Weyl principle. 

As the titles of these papers suggest, the variational principles for eigen­
values were discovered in connections with problems of physics. One fa­
mous work where many of these were used is The Theory of Sound by Lord 
Rayleigh, reprinted by Dover in 1945. The modern applied mathematics 
classic Methods of Mathematical Physics by R. Courant and D. Hilbert, 
Wiley, 1953, is replete with applications of variational principles. For a still 
more recent source, see M. Reed and B. Simon, Methods of Modern Math­
ematical Physics, Volume 4, Academic Press, 1978. Of course, here most of 
the interest is in infinite-dimensional problems and consequently the results 
are much more complicated. The numerical analyst could turn to B.N. Par­
lett, The Symmetric Eigenvalue Problem, Prentice-Hall, 1980, and to G.W. 
Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990. 

The converse to the interlacing theorem given in Theorem IIL1.9 was 
first proved in L. Mirsky, Matrices with prescribed characteristic roots and 
diagonal elements, J. London Math. Soc., 33 (1958) 14-21. We do not know 
whether the similar question for higher dimensional compressions has been 
answered. More precisely, let a1 ~ ... ~ an, and 131 ~ ... ~ f3n, be 
real numbers such that L:aj = L:f3j. What conditions must these num­
bers satisfy so that there exists an orthogonal projection P of rank k such 
that the matrix A = diag (a1,"" an) when compressed to range P has 
eigenvalues 131, ... ,13k and when compressed to (range P).L has eigenvalues 
f3k+I, ... ,f3n? (Theorem IIl.1.9 is the case k = n - 1.) 

Aronszajn's inequality appeared in N. Aronszajn, Rayleigh-Ritz and 
A. Weinstein methods for approximation of eigenvalues. 1. Operators in 
a Hilbert space, Proc. Nat. Acad. Sci. U.S.A., 34(1948) 474-480. The ele­
gant proof of its equivalence to Weyl's inequality is due to H.W. Wielandt, 
Topics in the Analytic Theory of Matrices, mimeographed lecture notes, 
University of Wisconsin, 1967. 

Theorem IlL3.5 was proved in H.W. Wielandt, An extremum property 
of sums of eigenvalues, Proc. Amer. Math. Soc., 6 (1955) 106-110. The 
motivation for Wielandt was that he "did not succeed in completing the 
interesting sketch of a proof given by Lidskii" of the statement given in 
Exercise 111.4.3. He noted that this is equivalent to what we have stated 
as Theorem III.4.1, and derived it from his new minimax principle. Inter­
estingly, now several different proofs of Lidskii's Theorem are known. The 
second proof given in Section I11.4 is due to M.F. Smiley, Inequalities re­
lated to Lidskii's, Proc. Amer. Math. Soc., 19 (1968) 1029-1034. We will 
see some other proofs later. However, Theorem 111.3.5 is more general, has 
several other applications, and has led to a lot of research. An account 
of the earlier work on these questions may be found in A.R. Amir-Moez, 
Extreme Properties of Linear Transformations and Geometry in Unitary 
Spaces, Texas Tech. University, 1968, from which our treatment of Sec­
tion 111.3 has been adapted. An attempt to extend these ideas to infinite 
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dimensions was made in RC. Riddell, Minimax problems on Grassmann 
manifolds, Advances in Math., 54 (1984) 107-199, where connections with 
differential geometry and some problems in quantum physics are also de­
veloped. The tower of subspaces occurring in Theorem III.3.5 suggests a 
connection with Schubert calculus in algebraic geometry. This connection 
is yet to be fully understood. 

Lidskii's Theorem has an interesting history. It appeared first in V.B. 
Lidskii, On the proper values of a sum and product of symmetric matrices, 
Dokl. Akad. Nauk SSSR, 75 (1950) 769-772. It seems that Lidskii provided 
an elementary (matrix analytic) proof of the result which F. Berezin and 
I.M. Gel'fand had proved by more advanced (Lie theoretic) techniques in 
connection with their work that appeared later in Some remarks on the 
theory of spherical functions on symmetric Riemannian manifolds, Trudi 
Moscow Math. Ob., 5 (1956) 311-351. As mentioned above, difficulties with 
this "elementary" proof led Wielandt to the discovery of his minimax prin­
ciple. 

Among the several directions this work opened up, one led to the follow­
ing question. What relations must three n-tuples of real numbers satisfy in 
order to be the eigenvalues of some Hermitian matrices A, B and A + B? 
Necessary conditions are given by Theorem III.4.1. Many more were discov­
ered by others. A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific 
J. Math., 12(1962) 225-242, derived necessary and sufficient conditions in 
the above problem for the case n = 4, and wrote down a set of conditions 
which he conjectured would be necessary and sufficient for n > 4. In a short 
paper Spectral polyhedron of a sum of two Hermitian matrices, Functional 
Analysis and Appl., 10 (1982) 76-77, B.V. Lidskii has sketched a "proof" 
establishing Horn's conjecture. This proof, however, needs a lot of details 
to be filled in; these have not yet been published by B.V. Lidskii (or anyone 
else ). 

When should a theorem be considered to be proved? For an interesting 
discussion of this question, see S. Smale, The fundamental theorem of al­
gebra and complexity theory, Bull. Amer. Math. Soc. (New Series), 4(1981) 
1-36. 

Theorem III.4.5 was proved in I.M. Gel'fand and M. Naimark, The rela­
tion between the unitary representations of the complex unimodular group 
and its unitary subgroup, Izv Akad. Nauk SSSR Ser. Mat. 14(1950) 239-
260. Many of the questions concerning eigenvalues and singular values of 
sums and products were first framed in this paper. An excellent summary 
of these results can be found in A.S. Markus, The eigen-and singular val­
ues of the sum and product of linear operators, Russian Math. Surveys, 19 
(1964) 92-120. 

The structure of inequalities like (III.10) and (IIUS) was carefully anal­
ysed in several papers by RC. Thompson and his students. The asymmetric 
way in which A and Benter (III. 10) is remedied by one of their inequalities, 
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which says 

k k k 

LA;j+pj_j(A + B) ::s LAt (A) + LA~j (B) 
j=1 j=1 j=1 

for any indices 1 ::s i l < ... < ik ::s n,1 ::s PI < ... < Pk ::s n, such that 
ik + Pk - k ::s n. A similar generalisation of (III.18) has also been proved. 
References to this work may be found in the book by Marshall and Olkin 
cited in Chapter II. 

Proposition I1L5.l is proved in K. Fan and A.J. Hoffman, Some metric 
inequalities in the space of matrices, Proc. Amer. Math. Soc., 6 (1955) 111-
116. 

Results of Proposition I1L5.3, Problems I1L6.5, IIL6.6, III.6. 11 , and 
IIL6.12 were first proved by Ky Fan in several papers. References to these 
may be found in LC. Gohberg and M.G. Krein, Introduction to the Theory 
of Linear Nonselfadjoint operators, American Math. Society, 1969, and in 
the Marshall-Olkin book cited earlier. 

The matrix triangle inequality (Theorem III.5.6) was proved in R.C. 
Thompson, Convex and concave functions of singular values of matrix 
sums, Pacific J. Math., 66 (1976) 285-290. An extension to infinite di­
mensions was attempted in C. Akemann, J. Anderson, and G. Pedersen, 
Triangle inequalities in operator algebras, Linear and Multilinear Algebra, 
11(1982) 167-178. For operators A, B on an infinite-dimensional Hilbert 
space there exist isometries U, V such that 

IA + BI ::s UIAIU* + VIBIV*· 

Also, for each E > 0 there exist unit aries U, V such that 

IA + BI ::s UIAIU* + VIBIV* + d. 

It is not known whether the E part in the last statement is necessary. 
Refinements of the interlacing principle such as the one in Problem IIL6.8 

have been obtained by several authors, including R.C. Thompson. See, for 
example, his paper Principal submatrices II, Linear Algebra Appl., 1(1968) 
211-243. 

One may wonder whether there are interlacing theorem, for singular val­
ues. There are, although they are a little different from the ones for eigen­
values. This is best understood if we extend the definition of singular values 
to rectangular matrices. Let A be an m x n matrix. Let r = min(m, n). The 
r numbers that are the common eigenvalues of (A* A)I/2 and (AA*)1/2 are 
called the singular values of A. (Sometimes a sequence of zeroes is added 
to make max(m, n) singular values in all.) Many of the results for singular 
values that we have proved can be carried over to this setting. See, e.g., 
the books by Horn and Johnson cited in Chapter I. 
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Let A be a rectangular matrix and let B be a matrix obtained by deleting 
any row or any column of A. Then the minimax principle can be used to 
prove that the singular values of A and B interlace. The reader should 
work this out, and see that when A is an n x n matrix and B a principal 
submatrix of order n - 1 then this gives 

sl(A) > sl(B) > s3(A), 
s2(A) > s2(B) > s4(A), 

......... .. ............ 
sn-2(A) > sn-2(B) > sn(A), 
sn-1(A) > sn-1(B) > O. 

For more such results, see R.C. Thompson, Principal submatrices IX, Linear 
Algebra and Appl., 5(1972) 1-12. 

Inequalities like the ones in Problems III.6.9 and III.6.10 are called "resid­
ual bounds" in the numerical analysis literature. For more such results, see 
the book by Parlett cited above, and F. Chatelin, Spectral Approximation 
of Linear Operators, Academic Press, 1983. =Several refinements, exten­
sions, and applications of these results in atomic physics are described in 
the book by Reed and Simon cited above. 

The results of Theorem III.4.4 and Problem III.6.13 were noted by 
L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. 
J. Math., Oxford Ser. (2), 11(1960) 50-59. This paper contains a lucid sur­
vey of several related problems and has stimulated a lot of research. The 
inequalities in Problem III.6.15 were first stated in K. Lowner, Uber mono­
tone Matrix functionen, Math. Z., 38 (1934) 177-216. 

Let A = UP be a polar decomposition of A. Weyl's majorant theorem 
gives a relationship between the eigenvalues of A and those of P (the sin­
gular values of A). A relation between the eigenvalues of A and those oft! 
was proved by A. Horn and R. Steinberg, Eigenvalues of the unitary part 
of a matrix, Pacific J. Math., 9(1959) 541-550. This is in the form of a 
majorisation between the arguments of the eigenvalues: 

arg A(A) -< arg A(U). 

A theorem, very much like Theorems III.4.1 and III.4.5 was proved by 
A. Nudel'man and P. Svarcman, The spectrum of a product of unitary ma­
trices, Uspehi Mat. Nauk, 13 (1958) 111-117. Let A, B be unitary matrices. 
Label the eigenvalues of A, B, and AB as eiC>l, ... ,eiC>n; ei!h, ... ,eifJn , and 
eh1 , ... , ehn , respectively, in such a way that 

2n > 131 ~ ... ~ 13n ~ 0, 

2n > 1'1 ~ ... ~ I'n ~ O. 
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If 0:1 + (31 < 27f, then for any choice of indices 1 ::; i1 < .. , < ik ::; n we 
have 

k k k 

L'Yij ::; LO:ij + L(3j· 
j=l j=l j=l 

These inequalities can also be written in the form of a majorisation between 
n-vectors: 

'Y - 0: -< (3. 

For a generalisation in the same spirit as the one of inequalities (III.lO) 
and (111.18) mentioned earlier, see R.C. Thompson, On the eigenvalues 
of a product of unitary matrices, Linear and Multilinear Algebra, 2(1974) 
13-24. 



IV 
Symmetric Norms 

In this chapter we study norms on the space of matrices that are invariant 
under multiplication by unit aries. Their properties are closely linked to 
those of symmetric gauge functions on ~n. We also study norms that are 
invariant under unitary conjugations. Some of the inequalities proved in 
earlier chapters lead to inequalities involving these norms. 

IV.1 Norms on (Cn 

Let us begin by considering the familiar p-norms frequently used in analysis. 
For a vector x = (Xl' ... ' Xn) we define 

n 

IIxllp = (2: IXiIP)l/p, 1:::; p < 00, (IV.I) 
i=l 

(IV.2) 

For each 1 :::; p :::; 00, Ilxllp defines a norm on en. These are called the 
p-norms or the lp-norms. The notation (IV.2) is justified because of the 
fact that 

lixlloo = lim Ilxllp· 
p--->oo 

(IV.3) 

Some of the pleasant properties of this family of norms are 

Ilxllp = II Ixl lip for all X E en, (IV.4) 
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Ilxllp ~ IIYllp if Ixl ~ IYI, (IV.5) 

Ilxllp = IIPxllp for all x E en, P E Sn. (IV.6) 

(Recall the notations: Ixl = (lxll,···, Ixnl), and Ixl ~ IYI if IXjl ~ IYjl for 
1 ~ j ~ n. Sn is the set of permutation matrices.) A norm on en is called 
gauge invariant or absolute if it satisfies the condition (IVA), mono­
tone if it satisfies (IV.5), and permutation invariant or symmetric if it 
satisfies (IV.6). The first two of these conditions turn out to be equivalent: 

Proposition IV,1.1 A norm on en is gauge invariant if and only if it is 
monotone. 

Proof. Monotonicity clearly implies gauge invariance. Conversely, if a 
norm II . II is gauge invariant, then to show that it is monotone it is 
enough to show that IIxll ~ Ilyll whenever Xj = tjYj for some real numbers 
o ~ tj ~ 1,j = 1,2, ... , n. Further, it suffices to consider the special case 
when all tj except one are equal to 1. But then 

II(Yl, ... , tYk,· .. , Yn)1I 

II( l+t 1-t l+t 1-t l+t 1-t )11 = -2-Yl + -2-Yl , ... , -2-Yk - -2-Yk , ... , -2-Yn + -2-Yn 

l+t 1-t 
~ -2- 11 (Yl, ... ,Yn)1I + -2-II(Yl, ... , -Yk,··· ,Yn)1I 

= II(Yl, ... , Yn)lI· 

Example IV,1.2 Consider the following norms on]R2: 

(i) IIxll = IXll + IX21 + IXl - x21· 

(ii) Ilxll = IXll + IXl - x21· 

(iii) Ilxll = 21xli + IX21· 

• 

The first of these is symmetric but not gauge invariant, the second is neither 
symmetric nor gauge invariant, while the third is not symmetric but is 
gauge invariant. 

Norms that are both symmetric and gauge invariant are especially inter­
esting. Before studying more examples and properties of such norms, let us 
make a few remarks. 

Let T be the circle group; i.e., the multiplicative group of all complex 
numbers of modulus 1. Let SnoT be the semidirect product of Sn and T. 
In other words, this is the group of all n x n matrices that have exactly one 
nonzero entry on each row and each column, and this nonzero entry has 
modulus 1. We will call such matrices complex permutation matrices. 
Then a norm II . lion en is symmetric and gauge invariant if 

Ilxll = IITxl1 for all complex permutations T. (IV.7) 
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In other words, the group of (linear) isometries for 11·11 contains Sno T as a 
subgroup. (Linear isometries for a norm 11·11 are those linear transformations 
on en that preserve II . II.) 
Exercise IV.1.3 For the Euclidean norm IIxl12 = (L: IXiI2)1/2 the group 
of isometries is the group of all unitary matrices, which is much larger than 
the complex permutation group. Show that for each of the norms Ilxlll and 
Ilxll oo the group of isometries is the complex permutation group. 

Note that gauge invariant norms on en are determined by those on 
lRn. Symmetric gauge invariant norms on lRn are called symmetric gauge 
functions. We have come across them earlier (Example II.3.13). To repeat, 
a map <I> : lRn -; lR+ is called a symmetric gauge function if 

(i) <I> is a norm, 

(ii) <I>(Px) = <I>(x) for all x E lRn and P E Sn, 

In addition, we will always assume that <I> is normalised, so that 

(iv) <I> (1 , 0, ... ,0) = 1. 

The conditions (ii) and (iii) can be expressed together by saying that <I> 
is invariant under the group Sno Z2 consisting of permutations and sign 
changes of the coordinates. Notice also that a symmetric gauge function is 
completely determined by its values on lR+.. 

Example IV.1.4 If the coordinates of x are arranged so that IXII 2: IX21 2: 
... 2: IXnl, then for each k = 1,2, ... , n, the function 

k 

<I>Ck)(X) = 2:)xjl 
j=l 

(IV.8) 

is a symmetric gauge function. We will also use the notation IlxllCk) for 
these. The parentheses are used to distinguish these norms from the p_ 
norms defined earlier. Indeed, note that IIxiICl) = Ilxlioo and IlxllCn) = IIxllI. 

We have observed in Problem II.5.11 that these norms playa very distin­
guished role: if <I>Ck) (x) :S <I>Ck)(Y) for all k = 1,2, ... , n, then <I>(x) :S <I>(y) 
for every symmetric gauge function <I>. Thus an infinite family of norm 
inequalities follows from a finite one. 

Proposition IV.1.5 For each k = 1,2, ... ,n, 

(IV.9) 
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Proof. We may assume, without loss of generality, that x E 1R+.. If x = 

U +v, then IP(k)(X) ::; IP(k)(U) + IP(k) (v) ::; IP(n)(u) + kIP(l)(V). If we choose 

then 

( ! !!! !! ) U Xl - Xk 'X2 - Xk ' ••• ,Xk - Xk,O, •.. ,O 

( ! !! !) V Xk' ..• 'Xk'Xk+l' .•. ,Xn, 

U+v 

IP(n)(U) 

IP(l) (v) 

x!, 

IP(k) (X) - kXk, 

! 
X k ' 

and the proposition follows. • 
We now derive some basic inequalities. If f is a convex function on an 

interval I and if ai, i = 1,2, ... , n, are nonnegative real numbers such that 
n 

Lai = 1, then 
i=l 

n n 

f(L aiti) ::; L ad(ti ) for all ti E I. 
i=l i=l 

Applying this to the function f ( t) = - log t on the interval (0, 00), one 
obtains the fundamental inequality 

n n 

II t~i ::; L aiti if ti:2: 0, ai :2: 0, L ai = 1. (IV. 10) 
i=l i=l 

This is called the (weighted) arithmetic-geometric mean 
inequality. The special choice al = a2 = ... = an = ~ gives the usual 
arithmetic - geometric mean inequality 

n 1 n (II t·)l/n < - ~ t· if t· > 0. 1. _ L-,1. 1._ 
n 

i=l i=l 

(IV.H) 

Theorem IV.1.6 Let p, q be real numbers with p > 1 and ~ + * = 1. Let 
x, y E IRn. Then for every symmetric gauge function IP 

(IV.12) 

Proof. From the inequality (IV.lO) one obtains 
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and hence 
(IV.13) 

For t > 0, if we replace x, y by tx and ely, then the left-hand side of 
(IV.13) does not change. Hence, 

[ t P 1 ] <I>(lx . yl) :::; min -<I>(lxIP) + -t <I>(lylq) . 
t>O p q q 

(IV.14) 

But, if 
tP 1 

'P(t) = -a + -b, where t, a, b > 0, 
p qtq 

then plain differentiation shows that 

min'P(t) = al/Pbl /q. 

So, (IV.12) follows from (IV.14). • 
When <I> = <I>(n), (IV.12) reduces to the familiar HOlder inequality 

n n n 
2: IXiYil :::; (2: IX iIP)l/P(2: IYilq)l/q. 
i=l i=l i=l 

We will refer to (IV.12) as the Holder inequality for symmetric gauge 
functions. The special case p = 2 will be called the Cauchy-Schwarz 
inequality for symmetric gauge functions. 

Exercise IV. 1. 7 Let p, q, r be positive real numbers with ~ + i = ~. Show 
that for every symmetric gauge function <I> we have 

(IV.15) 

Theorem IV.1.8 Let <I> be any symmetric gauge function and let p ;::: l. 
Then for all x, y E ]R.n 

(IV.16) 

Proof. When p = 1, the inequality (IV.16) is a consequence of the triangle 
inequalities for the absolute value on ]R.n and for the norm <I>. Let p > l. 
It is enough to consider the case x ;::: 0, y ;::: 0. Make this assumption and 
write 

(x + y)P = X· (x + y)p-l + y. (x + y)p-l. 

Now, using the triangle inequality for <I> and Theorem IV.l.6, one obtains 

<I>((x + y)p) < <I>(x· (x + y)p-l) + <I>(y. (x + y)p-l) 

:::; [<I> (xP)F/p [<I> ( (x + y )q(p-l) )]l/q 

+ [<I>(yP)F/P[<I>((x + y)q(p-l»)]l/q 

{[<I>(xP)F/p + [<I>(yp)]l/p}[<I>((x + y)P)]l/q, 
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since q(p - 1) = p. If we divide both sides of the above inequality by 
[<I?((x + y)P)j1/q, we get (IV.16). • 

Once again, when <I? = <I?(n) the inequality (IV.16) reduces to the familiar 
Minkowski inequality. So, we will call (IV.16) the Minkowski inequality 
for symmetric gauge functions. 

Exercise IV.L9 Let <I? be a symmetric gauge function and let p 2: 1. Let 

<I?(p) (x) = [<I?(lxIP)F/p. 

Show that <I?(p) is also a symmetric gauge function. 
Note that, if <I?p is the family of fp-norms, then 

<I?~2) = <I?PIP2 for all P1,P2 2: 1, 

and, if <I?(k) is the norm defined by (IV.S), then 

k 

<I?i~~(x) = (2:: IXjIP?/p, 
j=1 

where the coordinates of x are arranged as IX11 2: IX21 2: ... 2: IXn I· 

(IV.17) 

(IV.lS) 

(IV.19) 

Just as among the lp-norms, the Euclidean norm has especially interest­
ing properties, the norms <I?(2) where <I? is any symmetric gauge function 
have some special interest. We will give these norms a name: 

Definition IV.LI0 W is called a quadratic symmetric gauge func­
tion, or a Q-norm, if W = <I?(2) for some symmetric gauge function <I? In 
other words, 

(IV.20) 

Exercise IV.Lll (i) Show that an lp-norm is a Q-norm if and only if 
P 2: 2. 

(ii) More generally, show that for each k = 1,2, ... ,n, <I?i~~ is a Q-norm 
if and only if P 2: 2. 

Exercise IV.LI2 We saw earlier that if <I?(k) (x) :S <I?(k)(Y) for all k = 

1,2, ... , n, then <I?(x) :S <I?(y) for all symmetric gauge functions. Show that 

if <I?i~~(x) :S <I?i~~(Y) for all k = 1,2, ... , n, then <I?(2) (x) :S <I?(2)(y) for all 
symmetric gauge functions <I?; i. e., W (x) :S W (y) for all quadratic symmetric 
gauge functions. 

If <I? is a norm on en, the dual of <I? is defined as 

<I?/(X) = sup l(x,y)l· (IV.21) 
<I>(y)=l 

It is easy to see that <I?' is a norm. (In fact, <I? I is a norm even when <I? is 
a function on en that does not necessarily satisfy the triangle inequality 
that but meets the other requirements of a norm.) 
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Exercise IV.1.13 If if> is a symmetric gauge function then so is if>'. 

Exercise IV.1.14 Show that for any norm if> 

!(x, y)! :::; if>(x)if>'(y) for all x, y. (IV.22) 

Exercise IV.1.15 Let if>p be the lp-norm, 1 :::; p :::; 00. Show that 

where 
1 1 
-+-=l. (IV.23) 
p q 

Exercise IV.1.16 Let if> and W be two norms such that 

if>(x) :::; cw(x) for all x and for some c> o. 

Show that 
if>'(x) :::: c-lw'(x) for all x. 

We shall call a symmetric gauge function a Q'-norm if it is the dual of 
a Q-norm. The lp-norms for 1 :::; p :::; 2 are examples of Q'-norms. 

Exercise IV.1.17 (i) Let if> be a norm such that if> = if>'. Then if> must be 
the Euclidean norm. 

(ii) Let if> be both a Q-norm and a Q' -norm. Then if> must be the Eu­
clidean norm. (Use Exercise IV.l.16 and the fact that every symmetric 
gauge function is bounded by the h -norm.) 

Exercise IV.1.1B For each k = 1,2, ... , n, the dual of the norm if>(k) is 
given by 

if>(k) (x) = max { if>(l) (x), ~ if>(n) (x) } . (IV.24) 

Prove this using Proposition IV.l. 5 and Exercise IV.l.16. 

Some ways of generating symmetric gauge functions are described in the 
following exercises. 

Exercise IV.1.19 Let 1 = 01 :::: 02 :::: ... :::: On :::: O. Given a symmetric 
gauge function if> on lRn, define 

Then W is a symmetric gauge function. 

Exercise IV.1.20 (i) Let if> be a symmetric gauge function on lRn. Let 
m < n. Ifx E lRm , let x = (Xl, ... ,Xm,O,O, ... ,0) and define w(x) = if>(x). 
Then W is a symmetric gauge function on lRm. 

(ii) Conversely, given any symmetric gauge function W on lRm, if for 

n > m we define if>(Xl' ... ' xn ) = w(!x!L ... , !x!;,,), then if> is a symmetric 
gauge function on lRn. 
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IV.2 Unitarily Invariant Norms on Operators 
on en 

In this section, en will always stand for the Hilbert space en with inner 
product (".) and the associated norm 11·11. (No subscript will be attached to 
this "standard" norm as was done in the previous Section.) If A is a linear 
operator on en, we will denote by IIAII the operator (bound) norm of 
A defined as 

IIAII = sup IIAxll· (IV.25) 
Ilxll=l 

As before, we denote by IAI the positive operator (A* A)1/2 and by s(A) 
the vector whose coordinates are the singular values of A, arranged as 
sl(A) ::::: s2(A) ::::: ... ::::: sn(A). We have 

IIAII = II IAI II = sl(A). (IV.26) 

Now, if U, V are unitary operators on en, then IU AVI = V*IAIV and hence 

IIAII = IIUAVII (IV.27) 

for all unitary operators U, V. This last property is called unitary invari­
anee. Several other norms have this property. These are frequently useful 
in analysis, and we will study them in some detail. 

We will use the symbol III . III to mean a norm on n x n matrices that 
satisfies 

IIIUAVIII = IIIAIII (IV.28) 

for all A and for unitary U, V. We will call such a norm a unitarily in­
variant norm on the space M(n) of n x n matrices. We will normalise 
such norms so that they all take the value 1 on the matrix diag(l,O, ... ,0). 

There is an intimate connection between these norms and symmetric 
gauge functions on ]Rn; the link is provided by singular values. 

Theorem IV.2.1 Given a symmetric gauge function <P on ]Rn, define a 
function on M(n) as 

IIIAIII", = <p(s(A)). (IV.29) 

Then this defines a unitarily invariant norm on M(n). Conversely, given 
any unitarily invariant norm III . Ilion M(n), define a function on]Rn by 

<P111'III(x) = Illdiag(x)lll, (IV.30) 

where diag (x) is the diagonal matrix with entries Xl, ... ,Xn on its diagonal. 
Then this defines a symmetric gauge function on ]Rn. 

Proof. Since s(U AV) = s(A) for all unitary U, V, III . III", is unitarily 
invariant. We will prove that it obeys the triangle inequality - the other 
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conditions for it to be a norm are easy to verify. For this, recall the majori­
sation (11.18) 

s(A + B) -<w s(A) + s(B) for all A, B E M(n), 

and then use the fact that <I> is strongly isotone and monotone. (See Ex­
ample II.3.13 and Problem 11.5.11.) To prove the converse, note that (IV.30) 
clearly gives a norm on jRn. Since diagonal matrices of the form 
diag( eilh , ... , ei8n ) and permutation matrices are all unitary, this norm 
is absolute and permutation invariant, and hence it is a symmetric gauge 
function. • 

Symmetric gauge functions on jRn constructed in the preceding section 
thus lead to several examples of unitarily invariant norms on M(n). Two 
classes of such norms are specially important. The first is the class of 
Schatten p-norms defined as 

n 

IIAllp = <I>p(s(A» = [~)Sj(A))P]1/P, 1::; p < 00, 
j=1 

The second is the class of Ky Fan k-norms defined as 

k 

IIAII(k) = L: sj(A), 1::; k ::; n. 
j=1 

(IV.31) 

(IV.32) 

(IV.33) 

Among the p-norms, the ones for the values p = 1,2,00, are used most often. 
As we have noted, IIAllexo is the same as the operator norm IIAII and the Ky 
Fan norm IIAII(1)· The norm IIAliI is the same as IIAII(n). This is equal to 
tr(IAI) and hence is called the trace norm, and is sometimes written as 
IIAlitr. The norm 

n 

IIAI12 = [L:(Sj(A))2]1/2 (IV.34) 
j=1 

is also called the Hilbert-Schmidt norm or the Frobenius norm (and 
is sometimes written as IIAllp for that reason). It will playa basic role in 
our analysis. For A, B E M(n) let 

(A, B) = trA* B. (IV.35) 

This defines an inner product on M(n) and the norm associated with this 
inner product is IIAlb i.e. , 

(IV.36) 
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If the matrix A has entries aij, then 

IIAI12 = (2: laijI2)1/2. 
i,j 

(IV.37) 

Thus the norm IIAI12 is the Euclidean norm of the matrix A when it is 
2 

thought of as an element of (Cn . This fact makes this norm easily com-
putable and geometrically tractable. 

The main importance of the Ky Fan norms lies in the following: 

Theorem IV.2.2 (Fan Dominance Theorem) Let A, B be two n x n ma­
trices. If 

IIAII(k) ::; IIBII(k) for k = 1,2, ... , n, 

then 
IIIAIII ::; IIIBIII for all unitarily invariant norms. 

Proof. This is a consequence of the corresponding assertion about sym­
metric gauge functions. (See Example IV.1.4.) • 

Since <I>(l)(X) ::; <I>(x) ::; <I>(n)(x) for all x E ]Rn and for all symmetric 
gauge functions <I> , we have 

IIAII ::; IIIAIII ::; IIAII(n) = IIAlll 

for all A E M( n) and for all unitarily invariant norms III . III· 
Analogous to Proposition IV.1.5 we have 

Proposition IV.2.3 For each k = 1,2, ... , n, 

IIAII(k) = min{IIBII(n) + k11C11 : A = B + C}. 

(IV.38) 

(IV.39) 

Proof. If A = B + C, then IIAII(k) ::; IIBII(k) + IICII(k) ::; IIBII(n) + kiIClI· 
Now let seA) = (Sl' ... ,sn) and choose unitary U, V so that 

Let 

Then 

A = U[(diag(sl,"" sn)]V. 

B U[diag(sl - Sk, S2 - Sk,'" ,Sk - Sk, 0, ... , O)]V, 

C U[diag(sk' Sk,'" ,Sk, Sk+l,'" ,sn)]V, 

A=B+C, 

k 

IIBII(n) = 2: Sj - kSk = IIAII(k) - ksk, 
j=l 
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and 
IIAII(k) = IIBII(n) + kiICII· • 

A norm II on M(n) is called symmetric iffor A, B, C in M(n) 

II(BAC) :::; IIBIIII(A) IICII· (IV.40) 

Proposition IV.2.4 A norm on M(n) is symmetric if and only if it is 
unitarily invariant. 

Proof. If II is a symmetric norm, then for unitary U, V we have II(U AV) :::; 
II(A) and II(A) = II(U-1UAVV-1):::; II(UAV). So, II is unitarily invariant. 
Conversely, by Problem III.6.2, sj(BAC) :::; IIBII IICllsj(A) for all j = 
1,2, ... , n. So, if <I> is any symmetric gauge function, then <I>(s(BAC)) :::; 
IIBII IICII<I>(s(A)) and hence the norm associated with <I> is symmetric. • 

In particular, this implies that every unitarily invariant norm is sub­
multiplicative: 

IIIABIII:::; IIIAIIIIIIBIII for all A,B. 

Inequalities for sums and products of singular values of matrices, when 
combined with inequalities for symmetric gauge functions proved in Section 
IV.l, lead to interesting statements about unitarily invariant norms. This 
is illustrated below. 

Theorem IV.2.5 If A, Bare n x n matrices, then 

(IV.41 ) 

Proof. If /\ k A is the kth antisymmetric tensor product of A, then 

k 

II /\k All = S1(/\k A) = II sj(A), 1:::; k :::; n. 
j=1 

Hence, 

k 

II sj(AB) 
j=1 

k 

II sj(A)sj(B), 1:::; k :::; n. 
j=1 

Now use the statement II.3.5(vii). • 
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Corollary IV.2.6 (Holder's Inequality for Unitarily Invariant Norms) For 
every unitarily invariant norm and for all A, BE M(n) 

(IV.42) 

for all p > 1 and .! + .! = l. 
P q 

Proof. Use the special case of (IV.41) for r = 1 to get 

<I> (s(AB)) :::; <I> (s(A)s(B)) 

for every symmetric gauge function. Now use Theorem IV.l.6 and the fact 
that (s(A))P = s(IAIP). • 

Exercise IV .2. 7 Let p, q, r be positive real numbers with.! +.! = .!. Then 
for every unitarily invariant norm P q r 

(IV.43) 

Choosing p = q = 1, one gets from this 

(IV.44) 

This is the Cauchy-Schwarz inequality for unitarily invariant norms. 

Exercise IV.2.8 Given a unitarily invariant norm 111·111 on M(n), define 

(IV.45) 

Show that this is a unitarily invariant norm. Note that 

(IV.46) 

and 
k 

IIAlli~~ = (2:: S;(A))1/P for p:::: 1,1 :::; k :::; n. (IV.47) 

j=1 

Definition IV.2.9 A unitarily invariant norm on M(n) is called a Q­
norm if it corresponds to a quadratic symmetric gauge function; i. e., III· III 
is a Q-norm if and only if there exists a unitarily invariant norm III . 1111\ 
such that 

IIIAIW = IIIA* AIIII\· (IV.48) 

Note that the norm II lip is a Q-norm if and only if p :::: 2 because 

IIAII~ = IIA* All p /2' (IV.49) 

The norms defined in (IV.47) are Q-norms if and only if p :::: 2. 
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Exercise IV.2.1O Let II·IIQ denote a Q-norm. Observe that the following 
conditions are equivalent: 

(i) IIAIIQ ::; IIBIIQ, for all Q-norms. 

(ii) IIIA* Alii::; IIIB* Bill for all unitarily invariant norms. 

(iii) IIAII~~~ ::; IIBII~~~ for k = 1,2, ... ,no 

(iv) (S(A))2 -<w (S(B))2. 

Duality in the space of unitarily invariant norms is defined via the inner 
product (IV.35). If 111·111 is a unitarily invariant norm, define 111·111' as 

IIIAIII' = sup I(A,B)I = sup ItrA*BI· (IV.50) 
IIIBIII=l IIIBIII=l 

It is easy to see that this defines a norm that is unitarily invariant. 

Proposition IV.2.11 Let <I> be a symmetric gauge function on ]Rn and 
let II . 11<1> be the corresponding unitarily invariant norm on M(n). Then 
II·II~ = 11·11<1>/. 

Proof. We have from (H.40) and (IV.41) 

n n 

ItrA* BI ::; trlA* BI = L sj(A* B) ::; L sj(A)sj(B). 
j=l j=l 

It follows that 

IIAII~ ::; <I>'(s(A)) = IIAII<1>/. 

Conversely, 

IIAII<1>' <I>'(s(A)) 

'up {t, ';(A)y; , y E JR",.!>(y) ~ 1 } 

sup {tr[diag(s(A))diag(y)] : Ildiag(y)ll<1> = I} 
< Ildiag(s(A))II~ = IIAII~. 

• 
Exercise IV.2.12 From statements about duals proved in Section IV.l, 
we can now conclude that 

(i) Itr A* BI ::; IIIAIII·IIIBIII' for every unitarily invariant norm. 

(ii) IIAII~ = IIAllq for 1 ::; p ::; 00, i + i =. l. 

(iii) IIAII(k) = max{IIAII(1), iIlAII(n)}, 1 ::; k ::; n. 
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(iv) The only unitarily invariant norm that is its own dual is the Hilbert­
Schmidt norm II . 112. 

(v) The only norm that is a Q-norm and is also the dual of a Q-norm is 
the norm II . 112. 

Duals of Q-norms will be called Q'-norms. These include the norms 
II . lip, 1 ~ p ~ 2. 

An important property of all unitarily invariant norms is that they are all 
reduced by pinchings. If PI,"" Pk are mutually orthogonal projections 
such that PI EB P2 EB ... EB Pk = J, then the operator on M(n) defined as 

k 

C(A) = LPjAPj (IV.51) 
j=1 

is called a pinching operator. It is easy to see that 

IIIC(A)III ~ IIIAIII (IV. 52) 

for every unitarily invariant norm. (See Problem II.5.5.) We will call this 
the pinching inequality. 

Let us illustrate one use of this inequality. 

Theorem IV.2.13 Let A, B E M(n). Then for every unitarily invariant 
norm on M(2n) 

~ ] III· 
(IV.53) 

Proof. The first inequality follows easily from the observation that 

[~ ~] and [~ ~] are unitarily equivalent. 

If we prove the second inequality in the special case when A, B are pos­
itive, the general case follows easily. So, assume A, B are positive. Then 

where A 1/2, BI/2 are the positive square roots of A, B. Since T*T and TT* 

. [A + B 0]. . '1 are unitarily equivalent for every T, the matnx 0 0 IS umtan y 

equivalent to 

~ ] [ ] [ A 
BI/2 AI/2 
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But [~ ~] is a pinching of this last matrix. • 
As a corollary we have: 

Theorem IV.2.14 (RotJel'd) Let J : ffi.+ -+ ffi.+ be a concave Junction with 
J(O) = O. Then the Junction F on M(n) defined by 

n 

F(A) = LJ(sj(A)) (IV. 54) 
j=l 

is subadditive. 

Proof. The second inequality in (IV. 53) can be written as a majorisation 

(s(A),s(B)) -<w (s(IAI + IBI),O) 
for all A, B E M(n). We also know that s(IAI + IBI) -< s(A) + s(B). Hence 

(s(A), s(B)) -< (s(A) + s(B), 0). 

Now proceed as in Problem 11.5.12. • 
Exercise IV.2.15 Let 111·111 be a unitarily invariant norm on M(n). For 
m < n and A E M(m), define 

IllAlllt = III [~ ~] III· 
Show that III· IW defines a unitarily invariant norm on M(m). 

We will use this idea of "dilating" A and of going from M(n) to M(2n) 
in later chapters. Procedures given in Exercises IV.l.19 and IV.l.20 can be 
adapted to matrices to generate unitarily invariant norms. 

IV.3 Lidskii's Theorem (Third Proof) 

Let .A1 (A) denote the n-vector whose coordinates are the eigenvalues of a 
Hermitian matrix A arranged in decreasing order. Lidskii's Theorem, for 
which we gave two proofs in Section 111.4, says that if A, B are Hermitian 
matrices, then we have the majorisation 

(IV.55) 

We will give another proof of this theorem now, using the easier ideas of 
Sections III.l and III.2. 
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Exercise IV.3.1 One corollary of Lidskii's Theorem is that, if A and B 
are any two matrices, then 

Is(A) - s(B)1 -<w s(A - B). (IV.56) 

See Problem III.6.13. Conversely, show that if (IV.56) is known to be true 
for all matrices A, B, then we can derive from it the statement (IV. 55). 
{Hint: Choose real numbers 0:, {3 such that A + 0:1 2: B + (31 2: 0.] 

We will prove (IV.56) by a different argument. To prove this we need to 
prove that for each of the Ky Fan symmetric gauge functions <P(k), 1 ~ k ~ 
n, we have the inequality 

<P(k) (s(A) - s(B)) ~ <I>(k) (s(A - B)). (IV.57) 

We will prove this for <p(1) and <p(n)' and then use the interpolation formulas 
(IV.9) and (IV.39). 

For <P(l) this is easy. By Weyl's perturbation theorem (Corollary III.2.6) 
we have 

maxIA;(A) - A;(B)I ~ IIA - BII· 
1 

This can be proved easily by another argument also. For any j consider 
the subs paces spanned by {Ul, ... , Uj} and {Vj, ... , vn }, where Ui, Vi, 1 ~ 
i ~ n are eigenvectors of A and B corresponding to their eigenvalues A;(A) 

and A;(B), respectively. Since the dimensions of these two spaces add up 
to n + 1, they have a nonzero intersection. For a unit vector x in this 
intersection we have (x, Ax) 2: A; (A) and (x, Bx) ~ A; (B). Hence, we 
have 

IIA - BII 2: I(x, (A - B)x)1 2: A;(A) - A;(B). 

So, by symmetry 

IA;(A) - A;(B)I ~ IIA - BII, 1 ~ j ~ n. 

From this, as before, we can get 

for any two matrices A and B. This is the same as saying 

<P(1) (s(A) - s(B)) ~ <P(l) (s(A - B)). (IV.58) 

Let T be a Hermitian matrix with eigenvalues Al 2: A2 > ... 2: Ap > 
Ap+l 2: ... 2: An, where Ap 2: ° > Ap+l. Choose a unitary matrix U such 
that T = UDU*, where D is the diagonal matrix D = diag(Al, .. ·,An ). 

Let D+ = (Al, ... ,Ap,O,···,O) and D- = (O,···,O,-Ap+l, ... ,-An ). Let 
T+ = U D+ U*, T- = U D- U*. Then both T+ and T- are positive matri-

ces and 
T=T+ -T-. (IV.59) 

This is called the Jordan decomposition of T. 
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Lemma IV.3.2 If A, Bare n x n Hermitian matrices, then 

n 

LI>';(A) - >';(B)I :::; IIA - BII(n)· (IV.50) 
j=l 

Proof. Using the Jordan decomposition of A - B we can write 

IIA - BII(n) = tr(A - B)+ + tr(A - B)-. 

If we put 
o = A + (A - B)- = B + (A - B)+, 

then 0:::: A and 0:::: B. Hence, by Weyl's monotonicity principle, >';(0) :::: 

>';(A) and >';(0) :::: >';(B) for all j. From these inequalities it follows that 

I>'; (A) - >';(B)I :::; >';(20) - >';(A) - >';(B). 

Hence, 

n 

LI>';(A) - >';(B)I :::; tr(20 - A - B) = IIA - BII(n). 
j=l 

• 
Corollary IV.3.3 For any two n x n matrices A, B we have 

n 

<p(n) (s(A) - s(B)) = Llsj(A) - sj(B)1 :::; IIA - BII(n). (IV.51) 
j=l 

Theorem IV.3.4 For n x n matrices A, B we have the majorisation 

Is(A) - s(B)1 '-<w s(A - B). 

Proof. Choose any index k = 1,2, ... ,n and fix it. By Proposition IV.2.3, 
there exist X, Y E M(n) such that 

A-B=X+Y 

and 

IIA - BII(k) = IIXII(n) + klWII. 
Define vectors Q, (3 as 

Q s(X + B) - s(B), 

(3 s(A) - s(X + B). 

Then 
s(A) - s(B) = Q + (3. 
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Hence, by Proposition IV.1.5 (or Proposition IV.2.3 restricted to diagonal 
matrices) and by (IV.58) and (IV.61), we have 

<PCk) (s(A) - s(B)) < <PCn) (a) + k<p(1)(fJ) 

<PCn) (s(X + B) - s(B)) + k <PCI) (s(A) - s(X + B)) 

< IIXIICn) + kiiA - (X + B)II 

IIXIICn) + klWIl 
IIA - BliCk). 

This proves the theorem. • 
As we observed in Exercise IV.3.1, this theorem is equivalent to Lidskii's 

Theorem. 
In Section 111.2 we introduced the notation Eig A for a diagonal matrix 

whose diagonal entries are the eigenvalues of a matrix A. The majorisations 

for the eigenvalues of Hermitian matrices lead to norm inequalities 

IIIEigl(A) - Eigl(B)1I1 ::; lilA - Bill::; IIIEigl(A) - Eigi(B)III, (IV.62) 

for all unitarily invariant norms. This is just another way of expressing 
Theorem 111.4.4. The inequalities of Theorem 111.2.8 and Problem 111.6.15 
are special cases of this. 

We will see several generalisations of this inequality and still other proofs 
of it. 

Exercise IV.3.5 If Sing1 (A) denotes the diagonal matrix whose diagonal 
entries are sl(A), ... , sn(A), then it follows from Theorem IV.3.4 that for 
any two matrices A, B 

IIISingl(A) - Sing1(B)II I ::; lilA - Bill 

for every unitarily invariant norm. Show that in this case the "opposite 

inequality" 
lilA - Bill::; 1.IISingl(A) - Sing l (B)III 

is not always true. 

IV.4 Weakly Unitarily Invariant Norms 

Consider the following numbers associated with an n x n matrix: 
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(ii) spr A = max IAj(A)I, the spectral radius of A; 
l::;J::;n 

(iii) w(A) = max I (x, Ax) I, the numerical radius of A. 
Ilxll=l 

Of these, the first one is a seminorm but not a norm on M(n), the second 
one is not a seminorm, and the third one is a norm. (See Exercise 1.2.10.) 

All three functions of a matrix described above have an important in­
variance property: they do not change under unitary conjugations; i.e., 
the transformations A --+ U AU* , U unitary, do not change these functions. 
Indeed, the first two are invariant under the larger class of similarity 
transformations A --+ SAS- 1 , S invertible. The third one is not invari­
ant under all such transformations. 

Exercise IV.4.1 Show that no norm on M(n) can be invariant under all 
similarity tmnsformations. 

Unlike the norms that were studied in Section 2, none of the three func­
tions mentioned above is invariant under all transformations A --+ U AV, 
where U, V vary over the unitary group U(n). 

We will call a norm T on M(n) weakly unitarily invariant (wui, for 
short) if 

T(A) = T(U AU*) for all A E M(n), U E U(n). (IV.63) 

Examples of such norms include the unitarily invariant norms and the 
numerical radius. Some more will be constructed now. 

Exercise IV.4.2 Let E11 be the diagonal matrix with its top left entry 1 
and all other entries zero. Then 

w(A) = max Itr E11UAU*I. 
UEU(n) 

(IV.64) 

Equivalently, 

w(A) = max{ltr API: P is an orthogonal projection of mnk 1}. 

Given a matrix C, let 

wc(A) = max Itr CUAU*I, A E M(n). 
UEU(n) 

(IV.65) 

This is called the C-numerical radius of A. 

Exercise IV.4.3 For every C E M(n), the C-numerical mdius We is a 
wui seminorm on M(n). 

Proposition IV.4.4 The C-numerical mdius We is a norm on M(n) if 
and only if 

(i) C is not a scalar multiple of I, and 
(ii) tr C =f. o. 
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Proof. If C = >..I for any), E C, then wc(A) = 1)'lltr AI, and this is zero 
if tr A = o. So We cannot be a norm. If tr C = 0, then we(I) = Itr CI = o. 
Again We is not a norm. Thus (i) and (ii) are necessary conditions for We 
to be a norm. 

Conversely, suppose wc(A) = O. If A were a scalar multiple of I, this 
would mean that tr C = o. So, if tr C i- 0, then A is not a scalar multiple 
of I. Hence A has an eigenspace M of dimension m, for some 0 < m < n. 
Since etK is a unitary matrix for all real t and skew-Hermitian K, the 
condition wc(A) = 0 implies in particular that 

tr CetKAe-tK = 0 if t E lR,K = -K*. 

Differentiating this relation at t = 0, one gets 

tr(AC-CA)K=O if K=-K*. 

Hence, we also have 

tr (AC - CA)X = 0 for all X E M(n). 

Hence AC = CA. (Recall that (8, T) = tr8*T is an inner product on 
M(n).) Since C commutes with A, it leaves invariant the m-dimensional 
eigenspace M of A we mentioned earlier. Now, note that since we(A) = 
we(U AU*), C also commutes with U AU* for every U E U(n). But U AU* 
has the space U M as an eigenspace. So, C also leaves U M invariant for all 
U E U(n). But this would mean that C leaves all m-dimensional subspaces 
invariant, which in turn would mean C leaves all one-dimensional subs paces 
invariant, which is possible only if C is a scalar multiple of I. • 

More examples of wui norms are given in the following exercise. 

Exercise IVA.5 (i) T(A) = IIAII+ltr AI is a wui norm. More generally, 
the sum of any wui norm and a wui seminorm is a wui norm. 

(ii) T(A) = max(IIAII, Itr AI) is a wui norm. More generally, the maxi­
mum of any wui norm and a wui seminorm is a wui norm. 

(iii) Let W(A) be the numerical range of A. Then its diameterdiam W(A) 
is a wui seminorm on M(n). It can be used to generate wui norms 
as in (i) and (ii). Of particular interest would be the norm T(A) = 
w(A) + diam W(A). 

(iv) Let m(A) be any norm on M(n). Then 

is a wui norm. 

T(A) = max m(U AU*) 
UEU(n) 
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(v) Let m(A) be any norm on M(n). Then 

T(A) = ( m(U AU*)dU, 
JUcn) 

where the integral is with respect to the (normalised) Haar measure 
on U(n) is a wui norm. 

(vi) Let 
T(A) = max maxl(ei,Aej)l, 

el,···,en 2,J 

where el, ... ,en varies over all orthonormal bases. Then T is a wui 
norm. How is this related to (ii) and (iv) above? 

Let S be the unit sphere in en, 

S = {x E en : Ilxll = I}, 

and let C(S) be the space of all complex valued continuous functions on 
S. Let dx denote the normalised Lebesgue measure on S. Consider the 
familiar Lp-norms on C(S) defined as 

1IIIIp = (lll(x)IPdx)l/P, 1:::; p < 00, 

1111100 = maxll(x)l· 
xES 

(IV.66) 

Since the measure dx is invariant under rotations, the above norms satisfy 
the invariance property 

Np(f 0 U) = Np(f) for all 1 E C(S), U E U(n). 

We will call a norm N on C(S) a unitarily invariant function norm if 

N(f 0 U) = N(f) for all 1 E C(S), U E U(n). (IV.67) 

The Lp-norms are important examples of such norms. 
Now, every A E M(n) induces, naturally, a function 1 A on S by its 

quadratic form: 
IA(X) = (x, Ax). (IV.68) 

The correspondence A ---> IA is a linear map from M(n) into C(S), which 
is one-to-one. So, given a norm N on C(S), if we define a function N' on 
M(n) as 

N'(A) = N(fA), 

then N' is a norm on M(n). Further, 

N'(U AU*) = N(fUAU*) = N(fA 0 U*). 

(IV.69) 

So, if N is a unitarily invariant function norm on C(S) then N' is a wui 
norm on M(n). The next theorem says that all wui norms arise in this way: 
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Theorem IV.4.6 A norm T on M(n) is weakly unitarily invariant if and 
only if tJiere exists a unitarily invariant function norm N on C(8) such 
that T = N', where the map N ---+ N' is defined by relations (IV. 68) and 
(IV. 69). 

Proof. We need to prove that every wui norm T on M(n) is of the form 
N' for some unitarily invariant function norm N. 

Let F = {fA : A E M(n)}. This is a finite-dimensional linear subspace 
of C(8). Given a wui norm T, define No on F by 

(IV.70) 

Then No defines a norm on F, and further, No(f 0 U) No(f) for all 
f E F. We will extend No from F to all of C(8) to obtain a norm N that 
is unitarily invariant. Clearly, then T = N'. 

This extension is obtained by an application of the Hahn-Banach Theo­
rem. The space C(8) is a Banach space with the supremum norm 1111100' 
The finite-dimensional subspace F has two norms No and II . 1100' These 
must be equivalent: there exist constants 0 < a ::::: /3 < 00 such that 
allllloo ::::: No(f) ::::: /31111100 for all f E F. Let G be the set of all linear 
functionals on F that have norm less than or equal to 1 with respect to the 
norm No; i.e., the linear functional 9 is in G if and only if Ig(f)1 ::::: No(f) 
for all 1 E F. By duality then No(f) = suplg(f)I, for every f E F. Now 

gEG 

Ig(f)1 ::::: /31111100 for 9 E G and 1 E F. Hence, by the Hahn-Banach The­
orem, each 9 can be extended to a linear functional [; on C(8) such that 
1[;(f)1 ::::: /31111100 for all 1 E C(8). Now define 

()(f) = supl[;(f) I , for all f E C(8). 
gEG 

Then () is a seminorm on C(8) that coincides with No on F. Let 

JL(f) = max {()(f), allllloo}, 1 E C(8). 

Then JL is a norm on C(8), and JL coincides with No on F. Now define 

N(f) = sup JL(f 0 U), f E C(8). 
UEU(n) 

Then N is a unitarily invariant function norm on C(8) that coincides with 
No on F. The proof is complete. • 

When N = 11·1100 the norm N' induced by the above procedure is the 
numerical radius w. Another example is discussed in the Notes. 

The C-numerical radii playa useful role in proving inequalities for wui 

norms: 
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Theorem IV.4.7 For A,B E M(n) the following statements are equiva­

lent: 

(i) T(A) :::; T(B) for all wui norms T. 

(ii) wc(A) :::; we(B) for all upper triangular matrices C that are not 
scalars and have nonzero trace. 

(iii) wc(A) :::; wc(B) for all C E M(n). 

(iv) A can be expressed as a finite sum A = 'L- ZkUkBUk where Uk E U(n) 
and Zk are complex numbers with 'L-IZkl :::; 1. 

Proof. By Proposition IV.4.4, when C is not a scalar and tr C =f. 0, each 
We is a wui norm. So (i) =} (ii). 

Note that wc(A) = WA(C) for all pairs of matrices A, C. So, if (ii) is true, 
then WA (C) :::; w B (C) for all upper triangular nonscalar matrices C with 
nonzero trace. Since WA and WB are wui, and since every matrix is unitarily 
equivalent to an upper triangular matrix, this implies that W A (C) :::; W B (C) 
for all nonscalar matrices C with nonzero trace. But such C are dense in 
the space M(n). So WA(C) :::; WB(C) for all C E M(n). Hence (iii) is true. 

Let K be the convex hull of all matrices eiOU BU*, () E JR, U E U(n). Then 
K is a compact convex set in M(n). The statement (iv) is equivalent to 
saying that A E K. If A tJ. K, then by the Separating Hyperplane Theorem 
there exists a linear functional f on M(n) such that Re f(A) > Re f(X) 
for all X E K. For this linear functional f there exists a matrix C such 
that f(Y) = tr CY for all Y E M(n). (Problem IV.5.S) For these f and C 
we have 

we(A) max Itr CU AU*I ;:::: Itr CAl = If(A)1 ;:::: Re f(A) 
UEU(n) 

> max Re f(X) 
XEIC 

max Re tr CeiOU BU* 
O,U 

maxltr CU BU* I 
U 

wc(B). 

So, if (iii) were true, then (iv) cannot be false. 
Clearly (iv) =} (i). • 
The family We of C-numerical radii, where C is not a scalar and has 

nonzero trace, thus plays a role analogous to that of the Ky Fan norms in 
the family of unitarily invariant norms. However, unlike the Ky Fan family 
on M(n), this family is infinite. It turns out that no finite subfamily of wui 
norms can play this role. 
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More precisely, there does not exist any finite family T1, ... , T m of wui 
norms on M(n) that would lead to the inequalities T(A) :::; T(B) for all wui 
norms whenever Tj(A) :::; Tj(B), 1 :::; j :::; m. For if such a family existed, 
then we would have 

m 

{X: T(X):::; T(I) for all wui norms T} = n{X: Tj(X) :::; Tj(I)}. 
j=l 

(IV.71) 
Now each of the sets in this intersection contains 0 as an interior point 
(with respect to some fixed topology on M(n)). Hence the intersection also 
contains 0 as an interior point. However, by Theorem IV.4.7, the set on the 
left-hand side of (IV.71) reduces to the set {zI : z E e, Izl :::; I}, and this 
set has an empty interior in M(n). 

Finally, note an important property of all wui norms: 

T(C(A)) :::; T(A) (IV.72) 

for all A E M(n) and all pinchings Con M(n). 
In Chapter 6 we will prove a generalisation of Lidskii's inequality (IV.62) 

extending it to all wui norms. 

IV.5 Problems 

Problem IV.5.l. When 0 < p < 1, the function <I>p(x) = (2: IXiIP)l/P 
does not define a norm. Show that in lieu of the triangle inequality we have 

(Use the fact that f(t) = tP on IR.+ is subadditive when 0 < p :::; 1 and 
convex when p ~ 1.) 

Positive homogeneous functions that do not satisfy the triangle inequality 
but a weaker inequality <p(x + y) :::; c[<p(x) + <p(y)] for some constant c> 1 
are sometimes called quasi-norms. 

Problem IV.5.2. More generally, show that for any symmetric gauge 
function <I> and 0 < p < 1, if we define <I>(p) as in (IV.17), then 

Problem IV.5.3. All norms on en are equivalent in the sense that if <I> and 
Ware two norms, then there exists a constant K such that <I>(x) :::; Kw(x) 
for all x E en. Let 

Kcp,lJI = inf{K : <I>(x) :::; KW(x) for all x}. 
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Find the constants Kcp,w when <P, \II are both members of the family <Pp­

Problem IV.5.4. Show that for every norm <P on en we have <P" = <P; 
i.e., the dual of the dual of a norm is the norm itself. 

Problem IV.5.5. Find the duals of the norms <pi~~ defined by (IV.19). 

(These are somewhat complicated.) 

Problem IV.5.6. For 0 < p < I and a unitarily invariant norm III· Ilion 
M(n), let 

Show that 

Problem IV.5.7. Choosing p = q = 2 in (IV.43) or (IV.42), one obtains 

IIIABIII ::; IIIA* AIW/2 IIIB* BIII1/2. 

This, like the inequality (IV.44), is also a form of the Cauchy-Schwarz in­
equality, for unitarily invariant norms. Show that this is just the inequality 
(IV.44) restricted to Q-norms. 

Problem IV.5.8. Let f be any linear functional on M(n). Show that there 
exists a unique matrix X such that f(A) = tr XA for all A E M(n). 

Problem IV.5.9. Use Theorem IV.2.I4 to show that for all A, BE M(n) 

det(l + IA + BI) ::; det(1 + IAI) det(1 + IBI). 

Problem IV.5.10. More generally, show that for 0 < p ::; I and J-l ~ 0 

Problem IV.5.11. Let Cp denote the space en with the p-norm defined 
in (IV.I) and (IV.2), I ::; P ::; 00. For a matrix A let IIAllp->p' denote the 
norm of A as a linear operator from Cp to Cp'; i.e., 

Show that 

IIAlloo->oo 
J 

maXlaijl· 
2,J 
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None of these norms is weakly unitarily invariant. 

Problem IV.5.12. Show that there exists a weakly unitarily invariant 
norm T such that T(A) =I- T(A*) for some A E M(n). 

Problem IV.5.l3. Show that there exists a weakly unitarily invariant 
norm T such that T(A) > T(B) for some positive matrices A, B with A:::; B. 

Problem IV.5.l4. Let T be a wui norm on M(n). Define v on M(n) as 
v(A) = T(IA\). Then v is a unitarily invariant norm if and only if T(A) :::; 
T(B) whenever 0 :::; A :::; B. 

Problem IV.5.l5. Show that for every wui norm T 

T(Eig A) = inf{T(SAS- 1 ) : S E GL(n)}. 

When is the infimum attained? 

Problem IV.5.l6. Let T be a wui norm on M(n). Show that for every A 

T(A) 2:: Itr AI T(I). 
n 

Use this to show that 

min{ T(A - B) : tr B = O} = Itr AI T(I). 
n 
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v 
Operator Monotone and Operator 
Convex Functions 

In this chapter we study an important and useful class of functions called 
operator monotone functions. These are real functions whose extensions 
to Hermitian matrices preserve order. Such functions have several special 
properties, some of which are studied in this chapter. They are closely 
related to properties of operator convex functions. We shall study both of 
these together. 

V.I Definitions and Simple Examples 

Let f be a real function defined on an interval I. If D = diag()'1, ... , An) 
is a diagonal matrix whose diagonal entries Aj are in I, we define f(D) = 
diag(f(Ad,···, f(An)). If A is a Hermitian matrix whose eigenvalues Aj are 
in I, we choose a unitary U such that A = U DU*, where D is diagonal, 
and then define f(A) = U f(D)U*. In this way we can define f(A) for all 
Hermitian matrices (of any order) whose eigenvalues are in I. In the rest of 
this chapter, it will always be assumed that our functions are real functions 
defined on an interval (finite or infinite, closed or open) and are extended 
to Hermitian matrices in this way. 

We will use the notation A :s: B to mean A and B are Hermitian and 
B - A is positive. The relation :s: is a partial order on Hermitian matrices. 

A function f is said to be matrix monotone of order n if it is mono­
tone with respect to this order on n x n Hermitian matrices, i.e., if A :s: B 
implies f(A) :s: f(B). If f is matrix monotone of order n for all n we say f 
is matrix monotone or operator monotone. 
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A function f is said to be matrix convex of order n if for all n x n 
Hermitian matrices A and B and for all real numbers 0 :::: >. :::: 1, 

f((l - >')A + >.B) :::: (1 - >.)f(A) + V(B). (V.1) 

If f is matrix convex of all orders, we say that f is matrix convex or 
operator convex. 

(Note that if the eigenvalues of A and B are all in an interval I, then 
the eigenvalues of any convex combination of A, B are also in I. This is an 
easy consequence of results in Chapter III.) 

We will consider continuous functions only. In this case, the condition 
(V.1) can be replaced by the more special condition 

f ( A; B) :::: f(A) ; f(B). (V.2) 

(Functions satisfying (V.2) are called mid-point operator convex, and 
if they are continuous, then they are convex.) 

A function f is called operator concave if the function - f is operator 
convex. 

It is clear that the set of operator monotone functions and the set of 
operator convex functions are both closed under positive linear combina­
tions and also under (pointwise) limits. In other words, if f, 9 are operator 
monotone, and if a, {3 are positive real numbers, then af + (3g is also oper­
ator monotone. If fn are operator monotone, and if fn(x) -+ f(x), then f 
is also operator monotone. The same is true for operator convex functions. 

Example V.1.1 The function f(t) = a + {3t is operator monotone (on 
every interval) for every a E JR. and {3 2:: O. It is operator convex for all 
a, (3 E R 

The first surprise is in the following example. 

Example V.1.2 The function f(t) = t2 on [0,00) is not operator mono­
tone. In other words, there exist positive matrices A, B such that B - A is 
positive but B2 - A2 is not. To see this, take 

A=(~ ~), B=(~ ~). 
Example V.1.3 The function f(t) = t 2 is operator convex on every in­
terval. To see this, note that for any Hermitian matrices A, B, 

This shows that the function f(t) = a + {3t + "(t2 is operator convex for all 

a, {3 E JR., "( 2:: O. 
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Example V.1.4 The function f(t) = t3 on [0,00) is not operator convex. 
To see this, let 

A=(~ 
Then, 

A 3 
; B3 _ ( A ; B r (~~) , 

and this is not positive. 

Examples V.1.2 and V.1.4 show that very simple functions which are 
monotone (convex) as real functions need not be operator monotone (op­
erator convex). A complete description of operator monotone and operator 
convex functions will be given in later sections. It is instructive to study a 
few more examples first. The operator monotonicity or convexity of some 
functions can be proved by special arguments that are useful in other con­
texts as well. 

We will repeatedly use two simple facts. If A is positive, then A ::::: I if 
and only if spr(A) ::::: 1. An operator A is a contraction (IIAII ::::: 1) if and 
only if A* A::::: I. This is also equivalent to the condition AA* ::::: I. 

The following elementary lemma is also used often. 

Lemma V.1.5 If B :2: A, then for every operator X we have X* BX > 
X*AX. 

Proof. For every vector u we have, 

(u, X* BXu) = (Xu, BXu) :2: (Xu, AXu) = (u, X* AXu). 

This proves the lemma. 
An equally brief proof goes as follows. Let C be the positive square root 

of the positive operator B - A. Then 

X*(B - A)X = X*CCX = (CX)*CX :2: o. 
• 

Proposition V.1.6 The function f(t) = -i is operator monotone on 
(0,00). 

Proof. Let B :2: A > O. Then, by Lemma V.1.5, I :2: B- 1/ 2 AB- 1/ 2. Since 
the map T ---> T- 1 is order-reversing on commuting positive operators, 
we have I ::::: B 1/ 2 A-I Bl/2. Again, using Lemma V.1.5 we get from this 
B-1::::: A-I. • 

Lemma V.1.7 If B:2: A:2: 0 and B is invertible, then IIA1/ 2B- 1/211 ::::: 1. 

Proof. If B :2: A :2: 0, then 1:2: B- 1/2 AB- 1/ 2 = (Al/2 B- 1/ 2)* Al/2 B- 1/ 2, 
and hence IIA 1/ 2B- 1/ 2 11 ::::: 1. • 
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Proposition V.1.8 The function f(t) = t l /2 is operator monotone on 
[0,00). 

Proof. Let B ;::: A ;::: 0. Suppose B is invertible. Then, by Lemma V.1.7, 

Since B-l /4 AB-l /4 is positive, this implies that I ;::: B- l / 4 Al/2B- l /4 . 

Hence, by Lemma V.1.5, Bl/2 ;::: Al/2. This proves the proposition under 
the assumption that B is invertible. If B is not strictly positive, then for 
every c > 0, B + cI is strictly positive. So, (B + cI)I/2 ;::: A 1/2. Let c --+ 0. 
This shows that Bl/2 ;::: A 1/2. • 

Theorem V.1.9 The function f(t) = tT is operator monotone on [0,00) 
for 0:::; r :::; 1. 

Proof. Let r be a dyadic rational, i.e., a number of the form r = :;, 
where n is any positive integer and 1 :::; m :::; 2n. We will first prove the 
assertion for such r. This is done by induction on n. 

Proposition V.1.8 shows that the assertion of the theorem is true when 
n = 1. Suppose it is also true for all dyadic rationals rH, in which 1 :::; 
j :::; n - 1. Let B ;::: A and let r = :;. Suppose m :::; 2n-l. Then, by the 

induction hypothesis, Bm/2n- 1 
;::: Am/2n- 1

• Hence, by Proposition V.1.8, 
Bm/2n ;::: Am/2n. Suppose m > 2n-l. If B ;::: A > 0, then A-I;::: B- 1 . 

Using Lemma V.1.5, we have Bm/2n A- l Bm/2n > Bm/2n B- IB m/2n = 

B(m/2n- 1 -l). By the same argument, 

A-l/2 Bm/2n A-I B m/ 2n A- l /2 > A- l / 2 B(m/2n- 1 -l) A- 1/ 2 

> A-l/2 A(m/2n - 1 -l) A- l /2 

(by the induction hypothesis). This can be written also as 

So, by the operator monotonicity of the square root, 

Hence, B m/2n ;::: Am/2n. 
We have shown that B ;::: A > ° implies BT ;::: AT for all dyadic rationals 

r in [0,1]. Such r are dense in [0,1]. So we have BT ;::: AT for all r in [0,1]. 
By continuity this is true even when A is positive semidefinite. • 

Exercise V.1.ID Another proof of Theorem V.l.9 is outlined below. Fill 

in the details. 
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(i) The composition of two operator monotone functions is operator mono­
tone. Use this and Proposition V.l.6 to prove that the function f(t) = 
l~t is operator monotone on (0,00). 

(ii) For each), > 0, the function f(t) = A~t is operator monotone on 
(0,00). 

(iii) One of the integrals calculated by contour integration in Complex 
Analysis is 

JOO >-T-l 
--d)' = 7f cosec r7f, 
1+>-

o 

O<r<1. 

By a change of variables, obtain from this the formula 

valid for all t > 0 and 0 < r < 1. 

(iv) Thus, we can write 

00 

tT = J >-: t dj.L().), 0 < r < 1, 
o 

(V.3) 

(V.4) 

(V.5) 

where j.L is a positive measure on (0, 00 ). Now use (ii) to conclude that 
the function f(t) = t T is operator monotone on (0, (0) for 0:::; r :::; 1. 

Example V.1.11 The function f(t) = It I is not operator convex on any 
interval that contains O. To see this, take 

A=( 
-1 1 ), B=(~ ~ ). 1 -1 

Then 

IAI = ( 
1 -1 ), IAI + IBI = ( _~ -1 ) 

-1 1 1 . 

But IA+BI = J2 I. So IAI+IBI-IA+BI is not positive. (See also Exercise 
III. 5. 7.) 

Example V.1.12 The function f(t) = tv 0 is not operator convex on 
any interval that contains O. To see this, take A, B as in Example V.l.ll. 
Since the eigenvalues of A are -2 and 0, f(A) = O. So ~(f(A) + f(B)) = 

(~ ~). Any positive matrix dominated by this must have ( ~ ) as an 

eigenvector with 0 as the corresponding eigenvalue. Since ~ (A + B) does 

not have ( ~ ) as an eigenvector, neither does f( AtB). 
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Exercise V.1.I3 Let I be any interval. For a E I, let J(t) = (t - a) VO. 
Then J is called an "angle function" angled at a. If I is a finite interval, 
then every convex function on I is a limit of positive linear combinations of 
linear functions and angle functions. Use this to show that angle functions 
are not operator convex. 

Exercise V.1.I4 Show that the function J(t) = tvO is not operator mono­
tone on any interval that contains O. 

Exercise V.1.I5 Let A, B be positive. Show that 

(A-1 _ B-1)(A-1 + B-1)-1(A-1 _ B-1) 

2 

Therefore, the function f(t) = t is operator convex on (0, (0). 

V.2 Some Characterisations 

There are several different notions of averaging in the space of operators. In 
this section we study the relationship between some of these operations and 
operator convex functions. This leads to some characterisations of operator 
convex and operator monotone functions and to the interrelations between 
them. 

In the proofs that are to follow, we will frequently use properties of 
operators on the direct sum 11 EB 11 to draw conclusions about operators on 
11. This technique was outlined briefly in Section 1.3. 

Let K be a contraction on 11. Let L = (I _KK*)1/2, M = (I -K* K)1/2. 

Then the operators U, V defined as 

U- ( K - M L ) (K -L) 
-K* , V= M K* (V.6) 

are unitary operators on 11 EB 11. (See Exercise 1.3.6.) More specially, for 
each 0 ::; A ::; 1, the operator 

(
A1/2I _(1_A)1/2I) 

W = (1 _ A)1/2 I A1/2 I (V.7) 

is a unitary operator on 11 EB 11. 

Theorem V.2.I Let J be a real function on an interval I. Then the fol­
lowing two statements are equivalent: 

(i) f is operator convex on I. 

(ii) J(C(A)) ::; C(f(A)) for every Hermitian operator A (on a Hilbert 
space 11) whose spectrum is contained in I and for every pinching C 
(in the space 11). 
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Proof. (i) =}(ii): Every pinching is a product of pinchings by two comple­
mentary projections. (See Problems 11.5.4 and 11.5.5.) So we need to prove 
this implication only for pinchings C of the form 

C(X) -_ X + ~* XU, h U (I 0 ) were = 0 -I . 

For such a C 

f(C(A)) f ( A + ~* AU) ~ f(A) + ~(U* AU) 

f(A) + U* f(A)U = C(f(A)). 
2 

(ii) =} (i): Let A, B be Hermitian operators on H, both having their 

spectrum in I. Consider the operator T = (~ ~) on H EB H. If W is 

the unitary operator defined in (V.7), then the diagonal entries of W*TW 
are >'A + (1 - >')B and (1 - >')A + >'B. So if C is the pinching on H EB H 
induced by the projections onto the two summands, then 

C(W*TW) = ( >.A + (01 - >.)B 0 ) 
(1- >')A + >'B . 

By the same argument, 

C(f(W*TW)) C(W* f(T)W) 

( Af(A) + (01 - >.)f(B) 0 ) 
(1 - >.)f(A) + >.f(B) . 

So the condition f(C(W*TW)) ~ C(f(W*TW)) implies that 

f(>.A + (1 - >.)B) ~ Af(A) + (1 - >.)f(B). 

• 
Exercise V.2.2 The following conditions are equivalent: 

(i) f is operator convex on I. 

(ii) f(AM) ~ (f(A))M for every Hermitian operator A with its spectrum 
in I, and for every compression T -+ T M . 

(iii) f(V* AV) ::; V* f(A)V for every Hermitian operator A (on H) with 
its spectrum in I, and for every isometry from any Hilbert space 
into H. 

(See Section III.l for the definition of a compression.) 
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Theorem V.2.3 Let I be an interval containing 0 and let f be a real 
function on I. Then the following conditions are equivalent: 

(i) f is operator convex on I and f(O) ::; o. 
(ii) f(K* AK) ::; K* f(A)K for every contraction K and every Hermitian 

operator A with spectrum in I. 

(iii) f(Ki AKI + K2 BK2) ::; Ki f(A)Kl + K2f(B)K2 for all operators 
K 1, K 2 such that Ki K 1 + K2 K 2 ::; I and for all Hermitian A, B with 
spectrum in I. 

(iv) f(PAP) ::; P f(A)P for all projections P and Hermitian operators A 
with spectrum in I. 

Proof. (i) * (ii): Let T = (~ ~) and let U, V be the unitary operators 
defined in (V.6). Then 

U*TU = ( K* AK K* AL) V*TV = ( K* AK -K* AL ) 
LAK LAL ' - LAK LAL . 

So, 

( K*oAK 0 ) = U*TU + V*TV 
LAL 2· 

Hence, 

( f(K*AK) 0 ) 
o f(LAL) 

f (U*TU; V*TV) 

< f(U*TU) + f(V*TV) 
2 

U* f(T)U + V* f(T)V 
2 

~ { U* (f~A) f~O)) U + V* (f~A) f~O)) V} 

< ~ { U* (f~A) ~) U + V* (f~A) ~) V } 

( K* f(A)K 0 ) 
o Lf(A)L· 

Hence, f(K* AK) ::; K* f(A)K. 

(ii) * (iii): Let T = (~ ~), K = (~~ ~). Then K is a con-

traction. Note that 

K*TK = ( KiAKl ~ K2BK2 ~). 
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Hence, 

f(K*TK) ~ K* f(T)K 

( KU(A)Kl 6 Kif(B)K2 ~). 

(iii) ::::} (iv) obviously. 
(iv) ::::}(i): Let A, B be Hermitian operators with spectrum in I and let 

o ~ A ~ 1. Let T = (~ ~), P = (~ ~) and let W be the unitary 

operator defined by (V.7). Then 

PW*TW P = ( AA + (~ - A)B ~). 

So, 

( f(AA + (01 - A) B) 0 ) 
f(O) 

f(PW*TWP) 

< Pf(W*TW)P = PW* f(T)WP 

( Af(A) + (1 - A)f(B) 0) 
o 0 . 

Hence, f is operator convex and f(O) ~ o. • 
Exercise V.2.4 (i) Let AI, A2 be positive real numbers such that AIA2 ~ 

C*C. Then (A~I ~~) is positive. (Use Proposition 1.3.5.) 

(ii) Let (~ C;;) be a Hermitian operator. Then for every IS > 0, 

there exists A > 0 such that 

( A C*)«A+c:I 0) 
C B - 0 AI· 

The next two theorems are among the several results that describe the 
connections between operator convexity and operator monotonicity. 

Theorem V.2.5 Let f be a (continuous) function mapping the positive 
half-line [0,00) into itself. Then f is operator monotone if and only if it is 
operator concave. 

Proof. Suppose f is operator monotone. If we show that f(K* AK) ~ 
K* f(A)K for every positive operator A and contraction K, then it would 
follow from Theorem V.2.3 that f is operator concave. Let T = (~ g) and 

let U be the unitary operator defined in (V.6). Then U*TU = (~'AA: ~~Af:). 
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By the assertion in Exercise V.2.4(ii), given any c > 0, there exists>.. > 0 
such that 

U*TU < ( K* AK + cO) 
- 0 >..I. 

Replacing T by f(T), we get 

( K* f(A)K K* f(A)L ) U* f(T)U = f(U*TU) 
Lf(A)K Lf(A)L 

< (f(K*AK +c) 0 ) 
o f(>..)I 

by the operator monotonicity of f. In particular, this shows K* f(A)K ::; 
f(K* AK + c) for every c > O. Hence K* f(A)K ::; f(K* AK). 

Conversely, suppose f is operator concave. Let 0 ::; A ::; B. Then for any 
o < >.. < 1 we can write 

>.. 
>"B = >"A + (1 - >..) 1 _ >.. (B - A). 

Since f is operator concave, this gives 

f(>..B) ~ >..f(A) + (1- >..)f (1 ~ >.. (B - A)). 

Since f(X) is positive for every positive X, it follows that f(>..B) ~ >..f(A). 
Now let>.. ---- 1. This shows f(B) ~ f(A). So f is operator monotone. • 

Corollary V.2.6 Let f be a continuous function from (0,00) into itself. 
If f is operator monotone then the function g(t) = At) is operator convex. 

Proof. Let A, B be positive operators. Since f is operator concave, 
f (AtB) ~ f(A)!f(B). Since the map X ____ X-I is order-reversing and 
convex on positive operators (see Proposition V.1.6 and Exercise V.1.15), 
this gives 

[f ( A; B) ] -1 ::; [f(A); f(B)] -1 ::; f(A)-1 ; f(B)-1 

This is the same as saying g is operator convex. • 
Exercise V.2.7 Let I be an interval containing 0, and let f be a real 
function on I with f(O) ::; o. Show that for every Hermitian operator A 
with spectrum in I and for every projection P 

f(PAP) ::; Pf(PAP) = Pf(PAP)P. 



122 V. Operator Monotone and Operator Convex Functions 

Exercise V.2.8 Let f be a continuous real function on [0,00). Then for 
all positive opemtors A and projections P 

f(A 1/2 PA1/2)A1/2 P = A 1/2 Pf(PAP). 

(Prove this first, by induction, for f(t) = tn. Then use the Weierstrass 
approximation theorem to show that this is true for all f·) 

Theorem V.2.9 Let f be a (continuous) real function on the interval 
[0, a). Then the following two conditions are equivalent: 

(i) f is opemtor convex and f(O) ~ O. 
(ii) The function g(t) = f(t)/t is operator monotone on (0, a). 

Proof. (i):::} (ii): Let 0 < A ~ B. Then 0 < A 1/2 ~ B1/2. Hence, 
B-1/2 A1/2 is a contraction by Lemma V.1.7. Therefore, using Theorem 
V.2.3 we see that 

f(A) = f(A 1/2 B-1/2BB-1/2 A 1/2) ~ A1/2 B-1/2 f(B)B- 1/2 A1/2. 

From this, one obtains, using Lemma V.lo5, 

Since all functions of an operator commute with each other, this shows that 
A-1 f(A) ~ B-1 f(B). Thus, 9 is operator monotone. 

(ii) :::}(i): If f(t)/t is monotone on (0, a) we must have f(O) ~ O. We 
will show that f satisfies the condition (iv) of Theorem V.2.3. Let P be 
any projection and let A be any positive operator with spectrum in (0, a). 
Then there exists an c: > 0 such that (1 + c:)A has its spectrum in (0, a). 
Since P + cI ~ (1 + c:)I, we have A1/2(P + cI)A1/2 ~ (1 + c:)A. So, by the 
operator monotonicity of g, we have 

A-1/2(p + cI)-l A-1/2 f(A 1/2(p + cI)A1/2) ~ (1 + c:)-1 A-1 f((l + c:)A). 

Multiply both sides on the right by A1/2(p + cI) and on the left by its 
conjugate (P + cI)A1/2. This gives 

A-1/2 f(A1/2(p+cI)A1/2)A1/2(p+c:I) ~ (l+c:)-l(p+c:I)f((l+c:)A)(P+cI). 

Let c: -+ O. This gives 

Use the identity in Exercise V.2.8 to reduce this to Pf(PAP) ~ Pf(A)P, 
and then use the inequality in Exercise V.2.7 to conclude that f(PAP) ~ 
Pf(A)P, as desired. • 

As corollaries to the above results, we deduce the following statements 
about the power functions . 
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Theorem V.2.10 On the positive half-line (0, (0) the functions f(t) = r, 
where r is a real number, are operator monotone if and only if ° ::::: r ::::: 1. 

Proof. If ° ::::: r ::::: 1, we know that f (t) = tT is operator monotone by 
Theorem V.lo9. If r is not in [0,1]' then the function f(t) = r is not 
concave on (0, (0). Therefore, it cannot be operator monotone by Theorem 
V.2.5. • 

Exercise V.2.11 Consider the functions f(t) = t T on (0,00). Use Theo­
rems V.2.9 and V.2.10 to show that ifr:::: 0, then f(t) is operator convex 
if and only if 1 ::::: r ::::: 2. Use Corollary V.2.6 to show that f(t), is operator 
convex if -1 ::::: r ::::: 0. (We will see later that f (t) is not operator convex 
for any other value of r.) 

Exercise V.2.12 A function f from (0, (0) into itself is both operator 
monotone and operator convex if and only if it is of the form f(t) = 
a + f3t, a, f3 :::: o. 

Exercise V.2.13 Show that the function f(t) = -t log t is operator con­
cave on (0,00). 

V.3 Smoothness Properties 

Let I be the open interval (-1, 1). Let f be a continuously differentiable 
function on I. Then we denote by f[lJ the function on I x I defined as 

f[l J (A, p,) 

Jl1J (A, A) 

f(A) - f(p,) 
A-p, 

l' (A). 

The expression f[l J (A,p,) is called the first divided difference of f at 
(A, p,). 

If A is a diagonal matrix with diagonal entries AI, ... , An, all of which are 
in I, we denote by f[lj"(A) the n x n symmetric matrix whose (i,j)-entry is 
f[l!(Ai,Aj). If A is Hermitian and A = UAU*, let f[l!(A) = Uf[l!(A)U*. 

Now consider the induced map f on the set of Hermitian matrices with 
eigenvalues in I. Such matrices form an open set in the real vector space 
of all Hermitian matrices. The map f is called (Frechet) differentiable at 
A if there exists a linear transformation D f(A) on the space of Hermitian 
matrices such that for all H 

Ilf(A + H) - f(A) - Df(A)(H)11 = o(IIHID. (V.8) 

The linear operator D f (A) is then called the derivative of f at A. Basic 
rules of the Frechet differential calculus are summarised in Chapter 10. If 
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f is differentiable at A, then 

D f(A)(H) =!!.-I f(A + tH). 
dt t=O 

(V.g) 

There is an interesting relationship between the derivative D f(A) and 
the matrix f[ll (A). This is explored in the next few paragraphs. 

Lemma V.3.1 Let f be a polynomial function. Then for every diagonal 
matrix A and for every Hermitian matrix H, 

Df(A)(H) = f[ll(A) 0 H, (V.10) 

where 0 stands for the Schur-product of two matrices. 

Proof. Both sides of (V.lO) are linear in f. Therefore, it suffices to prove 
this for the powers f(t) = tP,p = 1,2,3, ... For such f, using (V.g) one 
gets 

P 

Df(A)(H) = LAk- 1HAP-k. 

k=l 
P 

This is a matrix whose (i,j)-entry is L )'7-1 ),~-khij. On the other hand, 
k=l 

P 

the (i,j)-entry of f[ll(A) is L )'7- 1 ),~-k. 
k=l • 

Corollary V.3.2 If A = U AU* and f is a polynomial function, then 

Df(A)(H) = U[f[ll(A) 0 (U* HU)]U*. 

Proof. Note that 

! It=o f(U AU* + tH) = U [:t It=o f(A + tU* HU)] U*, 

and use (V.IO). 

(v.n) 

• 
Theorem V.3.3 Let f E C 1(I) and let A be a Hermitian matrix with all 
its eigenvalues in I. Then 

Df(A)(H) = f[ll(A) 0 H, (V.12) 

where 0 denotes the Schur-product in a basis in which A is diagonal. 

Proof. Let A = U AU*, where A is diagonal. We want to prove that 

D f(A)(H) = U[J[ll (A) 0 (U* HU)]U*. (V.13) 
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This has been proved for all polynomials f. We will extend its validity to 
all fECi by a continuity argument. 

Denote the right-hand side of (V.13) byVf(A)(H). For each f in C\ 
D f(A) is a linear map on Hermitian matrices. We have 

IIDf(A)(H)112 = Ilf[11(A) 0 (U* HU)112. 

All entries of the matrix f[11(A) are bounded by max 1i'(t)l. (Use the 
Itl:S:IIAII 

mean value theorem.) Hence 

IIDf(A)(H)112::; max 11'(t)IIIHI12. 
Itl:S:IIAII 

(V.14) 

Let H be a Hermitian matrix with norm so small that the eigenvalues of 
A+H are in I. Let [a, b] be a closed interval in I containing the eigenvalues 
of both A and A + H. Choose a sequence of polynomials f n such that f n -+ f 
and f~ -+ l' uniformly on [a, b]. Let .c be the line segment joining A and 
A + H in the space of Hermitian matrices. Then, by the mean value theorem 
(for Frechet derivatives), we have 

Ilfrn(A + H) - fn(A + H) - (frn(A) - fn(A))11 

< IIHII sup IIDfrn(X) - Dfn(X)11 
XE£' 

IIHII sup IIDfrn(X) - Dfn(X)II· 
XE£' 

(V.15) 

This is so because we have already shown that D f n = D f n for the polyno­
mial functions f no 

Let E: be any positive real number. The inequality (V.14) ensures that 
there exists a positive integer no such that for m, n 2': no we have 

E: 
supIIDfrn(X) -Dfn(X)II::;-3 
XE£' 

and 
IIDfn(A) - Df(A)11 ::; ~. 

Let m -+ = and use (V.15) and (V.16) to conclude that 
E: 

Ilf(A + H) - f(A) - (fn(A + H) - fn(A))11 ::; 311H11. 

(V.16) 

(V.17) 

(V.IS) 

If IIHII is sufficiently small, then by the definition of the Frechet derivative, 

we have 

Now we can write, using the triangle inequality, 

Ilf(A + H) - f(A) - Df(A)(H)11 
< Ilf(A + H) - f(A) - (fn(A + H) - fn(A))11 

+ Ilfn(A + H) - fn(A) - Dfn(A)(H)11 

+ II(Df(A) - Dfn(A))(H)II, 

(V.19) 
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and then use (V.I7), (V.I8), and (V.I9) to conclude that, for IIHII suffi­
ciently small, we have 

IIf(A + H) - f(A) - V f(A)(H)1I ::; cllHII· 

But this says that Df(A) = Vf(A). • 
Let t ---+ A(t) be a C l map from the interval [0,1] into the space of 

Hermitian matrices that have all their eigenvalues in I. Let f E Cl(I), and 
let F(t) = f(A(t)). Then, by the chain rule, Df(t) = DF(A(t))(A'(t)). 
Therefore, by the theorem above, we have 

1 

F(I) - F(O) = f f[ll(A(t)) 0 A'(t)dt, (V.20) 

o 

where for each t the Schur-product is taken in a basis that diagonalises 
A(t). 

Theorem V.3.4 Let f E Cl(I). Then f is operator monotone on I if 
and only if, for every Hermitian matrix A whose eigenvalues are in I, the 
matrix f[ll (A) is positive. 

Proof. Let f be operator monotone, and let A be a Hermitian matrix 
whose eigenvalues are in I. Let H be the matrix all whose entries are 1. 
Then H is positive. So, A + tH :::=: A if t :::=: O. Hence, f(A + tH) - f(A) 
is positive for small positive t. This implies that Df(A)(H) :::=: O. So, by 
Theorem V.3.3, f[ll(A) 0 H:::=: O. But, for this special choice of H, this just 
says that f[ll(A) :::=: O. 

To prove the converse, let A, B be Hermitian matrices whose eigenvalues 
are in I, and let B :::=: A. Let A(t) = (1 - t)A + tB, 0 :::; t :::; 1. Then A(t) 
also has all its eigenvalues in I. So, by the hypothesis, f[ll(A(t)) :::=: 0 for 
all t. Note that A'(t) = B - A :::=: 0, for all t. Since the Schur-product of 
two positive matrices is positive, f[ll(A(t)) 0 A'(t) is positive for all t. So, 
by (V.20), feB) - f(A) :::=: o. • 

Lemma V.3.5 Iff is continuous and operator monotone on (-1,1), then 
for each -1 :::; A :::; 1 the function g),(t) = (t + A)f(t) is operator convex. 

Proof. We will prove this using Theorem V.2.9. First assume that f is 
continuous and operator monotone on [-1,1]. Then the function f(t - 1) 
is operator monotone on [0,2). Let get) = tf(t - 1). Then g(O) = 0 and the 
function g(t)jt is operator monotone on (0,2). Hence, by Theorem V.2.9, 
get) is operator convex on [0,2). This implies that the function hl(t) = 
get + 1) = (t + I)f(t) is operator convex on [-1,1). Instead of f(t), if the 
same argument is applied to the function - f( -t), which is also operator 
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monotone on [-1,1]' we see that the function h2(t) = -(t + l)f( -t) is 
operator convex on [-1,1). Changing t to -t preserves convexity. So the 
function h3(t) = h2( -t) = (t - l)f(t) is also operator convex. But for 
1).1 ::::; 1, g)..(t) = It)..h1(t) + 1;)..h3 (t) is a convex combination of hI and 
h3 . So g).. is also operator convex. 

Now, given f continuous and operator monotone on (-1,1), the function 
f((l- c)t) is continuous and operator monotone on [-1,1] for each c > o. 
Hence, by the special case considered above, the function (t + ).)f((l- c)t) 
is operator convex. Let c ....... 0, and conclude that the function (t + ).)f(t) 
is operator convex. • 

The next theorem says that every operator monotone function on I is 
in the class C 1 . Later on, we will see that it is actually in the class Coo. 
(This is so even if we do not assume that it is continuous to begin with.) 
In the proof we make use of some differentiability properties of convex 
functions and smoothing techniques. For the reader's convenience, these 
are summarised in Appendices 1 and 2 at the end of the chapter. 

Theorem V.3.6 Every operator monotone function f on I is continuously 
differentiable. 

Proof. Let 0 < c < 1, and let fE be a regularisation of f of order c. (See 
Appendix 2.) Then fE is a Coo function on ( -1 + c, 1- c). It is also operator 
monotone. Let J(t) = lim fE(t). Then J(t) = ~[J(t+) + f(t-)]. 

E--+O 

Let gE(t) = (t+1)fE(t). Then, by Lemma V.3.5, gE is operator convex. Let 
g(t) = lim gE(t). Then g(t) is operator convex. But every convex function 

E--+O 

(on an open interval) is continuous. So g(t) is continuous. Since g(t) = 
(t + l)J(t) and t + 1 > 0 on I, this means that ](t) is continuous. Hence 
J(t) = f(t). We thus have shown that f is continuous. 

Let g(t) = (t + l)f(t). Then 9 is a convex function on I. So 9 is left and 
right differentiable and the one-sided derivatives satisfy the properties 

g'--(t) ::::; g~(t), lim g~(s) = g~(t), lim g~(s) = g'--(t). (V.21) 
slt sit 

But g,±(t) = f(t) + (t + l)f±(t). Since t + 1> 0, the derivatives f±(t) also 
satisfy relations like (V.21). 

Now let A = (~ ~), s,t E (-1,1). If c is sufficiently small, s,t are in 
( -1 + c, 1 - c). Since fE is operator monotone on this interval, by Theorem 

V.3.4, the matrix fPJ (A) is positive. This implies that 

(fE(S~ = [E(t)) 2 ::::; f~(s)f~(t). 

Let c ....... O. Since fE ....... f uniformly on compact sets, fE(S) - fE(t) converges 
to f(s) - f(t). Also, f;(t) converges to ~[J~(t) + f~(t)]. Therefore, the 
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above inequality gives, in the limit, the inequality 

(f(S~ = {(t)) 2 ::; ~[J~(s) + f~(s)][f~(t) + f~(t)l. 
Now let s ! t, and use the fact that the derivatives of f satisfy relations 
like (V.21). This gives 

[J~(t)l2 ::; ~[J~(t) + f~(t)][f~(t) + f~(t)], 
which implies that f~(t) = f:"'(t). Hence f is differentiable. The relations 
(V.21), which are satisfied by f too, show that f' is continuous. • 

Just as monotonicity of functions can be studied via first divided differ­
ences, convexity requires second divided differences. These are defined 
as follows. Let f be twice continuously differentiable on the interval I. Then 
f[2] is a function defined on I x I x I as follows. If AI, A2, A3 are distinct 

f [2] (A A A) = f[l] (AI, A2) - f[l] (AI, A3) 
1, 2, 3 \ \ . 

/\2 - /\3 

For other values of AI, A2, A3, f[2] is defined by continuity; e.g., 

f[2](A, A, A) = ~f"(A). 

Exercise V .3.7 Show that if AI, A2, A3 are distinct, then f[2] (AI, A2, A3) is 
the quotient of the two determinants 

f(A1) f(A2) 
Al A2 and 
1 1 

Hence the function f[2] is symmetric in its three arguments. 

Exercise V.3.8 If f(t) = tm, m = 2,3, ... , show that 

f[2](A1, A2, A3) = L AP~A~. 
O$p,q,T 

p+q+r=m-2 

Exercise V.3.9 (i) Let f(t) = t'm,m :::: 2. Let A be an n x n diagonal 
n 

matrix; A = LAiPi, where Pi are the projections onto the coordinate 
i=l 

axes. Show that for every H 

d
2

\ dt2 t=O f(A + tH) 2 L APHAqHAr 

p+q+r=m-2 

2 L L AfAP~PiHPjHPk, 
p+q+r=m-2 150i,j,k50n 
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and 

(V.22) 

(ii) Use a continuity argument, like the one used in the proof of Theorem 
V.3.3, to show that this last formula is valid for all C2 functions f. 

Theorem V.3.1D If f E C2 (1) and f is operator convex, then for each 
/-L E I the function g(A) = f[l] (/-L, A) is operator monotone. 

Proof. Since f is in the class C2 , 9 is in the class C 1 • So, by Theorem 
V.3.4, it suffices to prove that, for each n, the n x n matrix with entries 
g[l](Ai, Aj) is positive for all AI, ... , An in I. 

Fix n and choose any AI, ... ,An+1 in I. Let A be the diagonal matrix 
with entries AI,'" An+1' Since f is operator convex and is twice differen-

tiable, for every Hermitian matrix H, the matrix .fG, It=o f(A + tH) must 

be positive. If we write PI, ... ,Pn+l for the projections onto the coordinate 
axes, we have an explicit expression for this second derivative in (V.22). 
Choose H to be of the form 

~~ ) , 
~n 0 

where 6, ... , ~n are any complex numbers. Let x be the (n + I)-vector 
(1,1, ... , 1,0). Then 

(V.23) 

for 1 ~ i, j, k ~ n + 1, where Dj,n+1 is equal to 1 if j = n + 1, and is equal to 
o otherwise. So, using the positivity of the matrix (V.22) and then (V.23), 
we have 

o < 
lSi,j,kSn+1 

But, 

f[1](An+1,Ai) - f[1](An+1,Ak) 

Ai - Ak 

g[l] (Ai, Ak) 
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(putting >'n+1 = J.L in the definition of g). So we have 

O~ L g[11(>'i'>'k)ek~i. 
l::;i,k::;n 

Since ei are arbitrary complex numbers, this is equivalent to saying that 
the n x n matrix [g[11 (>'i, >'k)] is positive. • 

Corollary V.3.11 If f E C 2(I), f(O) = 0, and f is operator convex, then 

the function g(t) = f~t) is operator monotone. 

Proof. By the theorem above, the function f[11 (0, t) is operator mono­
tone. But this is just the function f(t)/t in this case. • 

Corollary V.3.12 If f is operator monotone on I and f(O) = 0, then the 
function g(t) = t~>' f(t) is operator monotone for 1>'1 ~ 1. 

Proof. First assume that f E C 2 (1). By Lemma V.3.5, the function 
g>.(t) = (t + >.)f(t) is operator convex. By Corollary V.3.11, therefore, 
g(t) is operator monotone. 

If f is not in the class C2 , consider its regularisations fe:. These are in C2 . 

Apply the special case of the above paragraph to the functions fe:(t) - fe:(O) , 
and then let c -+ O. • 

Corollary V.3.I3 If f is operator monotone on I and f(O) = 0, then f 
is twice differentiable at o. 

Proof. By Corollary V.3.12, the function g(t) = (1 + i )f(t) is operator 
monotone, and by Theorem V.3.6, it is continuously differentiable. So the 
function h defined as h(t) = if(t), h(O) = 1'(0) is continuously differen­
tiable. This implies that f is twice differentiable at O. • 

Exercise V.3.I4 Let f be a continuous operator monotone function on I. 
Then the function F(t) = J~ f(s)ds is operator convex. 

Exercise V.3.I5 Let f E C 1(1). Then f is operator convex if and only if 
for all Hermitian matrices A, B with eigenvalues in I we have 

f(A) - f(B) ~ f[11(B) 0 (A - B), 

where 0 denotes the Schur-product in a basis in which B is diagonal. 
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V.4 Loewner's Theorems 

Consider all functions f on the interval I = (-1, 1) that are operator 
monotone and satisfy the conditions 

f(O) = 0, 1'(0) = 1. (V.24) 

Let K be the collection of all such functions. Clearly, K is a convex set. We 
will show that this set is compact in the topology of pointwise convergence 
and will find its extreme points. This will enable us to write an integral 
representation for functions in K. 

Lemma V.4.1 If f E K, then 

f(t) 
t 

for < o ~ t < 1, 
1-t 

f(t) 
t 

for- 1 < t < 0, > 
l+t 

11"(0)1 < 2. 

Proof. Let A = (~ ~). By Theorem V.3.4, the matrix 

f[ll(A) = (1'(t) f(t1)/t) 
f(t)/t 

is positive. Hence, 

f~~2 ~ 1'(t). (V.25) 

Let g±(t) = (t ± l)f(t). By Lemma V.3.5, both functions g± are con­
vex. Hence their derivatives are monotonically increasing functions. Since 
g,±(t) = f(t) + (t ± l)1'(t) and g,±(O) = ±1, this implies that 

f(t) + (t - l)1'(t) 2': -1 for t>O (V.26) 

and 
f(t) + (t + l)1'(t) ~ 1 for t < o. (V.27) 

From (V.25) and (V.26) we obtain 

f(t) + 12': (1 - :~f(t)2 for t> o. (V.28) 

Now suppose that for some 0 < t < 1 we have f(t) > l~t. Then f(t)2 > 

l~J(t). So, from (V.28), we get f(t)+l > f~t). But this gives the inequality 

f(t) < l~t' which contradicts our assumption. This shows that f(t) ~ l~t 
for 0 ~ t < 1. The second inequality of the lemma is obtained by the same 
argument using (V.27) instead of (V.26). 
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We have seen in the proof of Corollary V.3.13 that 

1'(0) + ! 1"(0) = lim (1 + rl )f(t) - 1'(0). 
2 t-+O t 

Let t ! 0 and use the first inequality of the lemma to conclude that this 
limit is smaller than 2. Let t i 0, and use the second inequality to conclude 
that it is bigger than O. Together, these two imply that 11"(0)1 :s; 2. • 

Proposition V.4.2 The set K is compact in the topology of pointwise 
convergence. 

Proof. Let {Ii} be any net in K. By the lemma above, the set {Ii(t)} 
is bounded for each t. So, by Tychonoff's Theorem, there exists a subnet 
{Ii} that converges pointwise to a bounded function f. The limit function 
f is operator monotone, and f(O) = O. If we show that 1'(0) = 1, we would 
have shown that f E K, and hence that K is compact. 

By Corollary V.3.12, each of the functions (1 + t )fi(t) is monotone 

on (-1,1). Since for all i, lim(1 + !)fi(t) = f:(O) = 1, we see that 
t-+O t 

(1 + 1. )fi(t) ~ 1 if t ~ 0 and is :s; 1 if t :s; O. Hence, if t > 0, we have 
(1 + {)f(t) ~ 1; and if t < 0, we have the opposite inequality. Since f is 
continuously differentiable, this shows that I' (0) = 1. • 

Proposition V.4.3 All extreme points of the set K have the form 

f(t) = _t_, where a = -211"(0). 
1- at 

Proof. Let f E K. For each A, -1 < A < 1, let 

A 
g)..(t) = (1 + t )f(t) - A. 

By Corollary V.3.12, g).. is operator monotone. Note that g)..(O) = 0, since 
f(O) = 0 and 1'(0) = 1. Also, g~(O) = 1 + ~Af"(O). So the function h).. 
defined as 

1 A 
h)..(t) = 1 + ~Af"(O) [(1 + t )f(t) - A] 

is in K. Since 11"(0)1 :s; 2, we see that I~Af"(O)1 < 1. We can write 

f = ~(1 + ~AI"(O))h).. + ~(1 - ~Af"(O))h_)... 

So, if f is an extreme point of K, we must have f = h)... This says that 

1 A 
(1 + 2AI"(0))f(t) = (1 + t )f(t) - A, 
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from which we can conclude that 

t 
f(t) = 1 - ~f"(O)t' • 

Theorem VAA For each fin K there exists a unique probability measure 
/-L on [-1,1] such that 

1 

f(t) = J 1 ~ Atd/-L(A). (V.29) 

-1 

Proof. For -1 ::; A ::; 1, consider the functions h;..(t) = l~;"t' By Propo­
sition V.4.3, the extreme points of K are included in the family {h;..}. 
Since K is compact and convex, it must be the closed convex hull of its 
extreme points. (This is the Krein-Milman Theorem.) Finite convex com­
binations of elements of the family {h;.. : -1 ::; A ::; I} can also be writ­
ten as J h;..dv(A) , where v is a probability measure on [-1,1] with finite 
support. Since f is in the closure of these combinations, there exists a 
net {vJ of finitely supported probability measures on [-1,1] such that 
the net fi(t) = J h;..(t)dvi(A) converges to f(t). Since the space of the 
probability measures is weak* compact, the net Vi has an accumulation 
point /-L. In other words, a subnet of J h;..dvi(A) converges to J h;..d/-L(A). So 
f(t) = J h;..(t)d/-L(A) = J l~;"td/-L(A). 

Now suppose that there are two measures /-L1 and /-L2 for which the 
representation (V.29) is valid. Expand the integrand as a power series 

00 

l~;"t = ~tn+1 An convergent uniformly in IAI ::; 1 for every fixed t with 
n=O 

It I < 1. This shows that 

100 1 

f)n+1 J An d/-L 1 (A) = ~tn+l J And/-L2(A) 
n=O -1 n=O_l 

for all It I < 1. The identity theorem for power series now shows that 

1 1 J And/-L1(A) = J And/-L2(A) , n = 0,1,2, ... 

-1 -1 

But this is possible if and only if /-L1 = /-L2' • 

One consequence of the uniqueness of the measure /-L in the representation 
(V.29) is that every function h;"D is an extreme point of K (because it can 
be represented as an integral like this with /-L concentrated at AO)' 

The normalisations (V.24) were required to make the set K compact. 
They can now be removed. We have the following result. 
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Corollary V.4.5 Let J be a nonconstant operator monotone Junction on 
( -1, 1). Then there exists a unique probability measure J..l on [-1, 1] such 

that 
1 

J(t) = J(O) + j' (0) J 1 ~ )..t dJ..l()"). (V.30) 

-1 

Proof. Since J is monotone and is not a constant, J'(O) =j=. O. Now note 

that the function f(tJ,-ct)(O) is in K. • 

It is clear from the representation (V.30) that every operator monotone 
function on (-1,1) is infinitely differentiable. Hence, by the results of earlier 
sections, every operator convex function is also infinitely differentiable. 

Theorem V.4.6 Let J be a nonlinear operator convex Junction on ( -1, 1). 
Then there exists a unique probability measure J..l on [-1, 1] such that 

1 

1 J t 2 
J(t) = J(O) + j'(O)t + "2J"(0) 1- )"tdJ..l()..). (V.31) 

-1 

Proof. Assume, without loss of generality, that J(O) = 0 and f'(0) = O. 
Let g(t) = J(t)/t. Then 9 is operator monotone by Corollary V.3.11, g(O) = 
0, and g'(O) = ~J"(O). So 9 has a representation like (V.30), from which 
the representation (V.31) for J follows. • 

We have noted that the integral representation (V.30) implies that every 
operator monotone function on (-1,1) is infinitely differentiable. In fact, 
we can conclude more. This representation shows that J has an analytic 
continuation 

1 

J(z) = J(O) + f'(0) J 1 _z AZ dJ..l()") (V.32) 

-1 

defined everywhere on the complex plane except on ( - =, -1] U [1, = ) . Note 
that 

1m __ z_ = 1m z 
1-Az 11-)..zI2· 

So J defined above maps the upper half-plane H+ = {z : 1m z > O} into 
itself. It also maps the lower half-plane H_ into itself. Further, J(z) = j(2). 
In other words, the function j on H _ is an analytic continuation of j on 
H + across the interval (-1, 1) obtained by reflection. 

This is a very important observation, because there is a very rich theory 
of analytic functions in a half-plane that we can exploit now. Before doing 
so, let us now do away with the special interval ( -1, 1). Note that a function 
j is operator monotone on an interval (a, b) if and only if the function 
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J((b7)t + bta ) is operator monotone on (-1,1). So, all results obtained 
for operator monotone functions on (-1, 1) can be extended to functions 
on (a, b). We have proved the following. 

Theorem V.4. 7 IJ J is an operator monotone Junction on (a, b), then J 
has an analytic continuation to the upper halJ-plane H + that maps H + 
into itself. It also has an analytic continuation to the lower-halJ plane H _, 
obtained by reflection across ( a, b). 

The converse of this is also true: if a real function J on (a, b) has an 
analytic continuation to H+ mapping H+ into itself, then J is operator 
monotone on (a, b). This is proved below. 

Let P be the class of all complex analytic functions defined on H+ with 
their ranges in the closed upper half-plane {z : 1m z 2: O}. This is called 
the class of Pick functions. Since every nonconstant analytic function is 
an open map, if J is a nonconstant Pick function, then the range of J is 
contained in H+. It is obvious that P is a convex cone, and the composition 
of two nonconstant functions in P is again in P. 

Exercise V.4.8 (i) For 0 :s; r :s; 1, the Junction J(z) = z7" is in P. 

(ii) The Junction J(z) = log z is in P. 

(iii) The Junction J(z) = tan z is in P. 

(iv) The Junction J(z) = -~ is in P. 

(v) If J is in P, then so is the function -/. 

Given any open interval (a, b), let P(a, b) be the class of Pick functions 
that admit an analytic continuation across (a, b) into the lower half-plane 
and the continuation is by reflection. In particular, such functions take only 
real values on (a, b), and if they are nonconstant, they assume real values 
only on (a, b). The set P(a, b) is a convex cone. 

Let J E P(a, b) and write f(z) = u(z) + iv(z), where as usual u(z) and 
v(z) denote the real and imaginary parts of J. Since v(x) = 0 for a < x < b, 
we have v(x+iy) -v(x) 2: 0 if y > O. This implies that the partial derivative 
vy(x) 2: 0 and hence, by the Cauchy-Riemann equations, ux(x) 2: O. Thus, 
on the interval (a,b),J(x) = u(x) is monotone. In fact, we will soon see 
that J is operator monotone on (a, b). This is a consequence of a theorem 
of Nevanlinna that gives an integral representation of Pick functions. We 
will give a proof of this now using some elementary results from Fourier 
analysis. The idea is to use the conformal equivalence between H + and the 
unit disk D to transfer the problem to D, and then study the real part u 
of J. This is a harmonic function on D, so we can use standard facts from 

Fourier analysis. 

Theorem V.4.9 Let u be a nonnegative harmonic function on the unit 
disk D = {z : Izl < 1}. Then there exists a finite measure m on [0, 27f] such 
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that 

u(reiO ) = /271" 1 - r2 dm(t). (V.33) 
1 + r2 - 2r cos(O - t) 

o 
Conversely, any function of this form is positive and harmonic on the unit 

disk D. 

Proof. Let u be any continuous real function defined on the closed unit 
disk that is harmonic in D. Then, by a well-known and elementary theorem 
in analysis, 

271" 
1 / 1 - r2 u( eit)dt 

27f 1 + r2 - 2r cos(O - t) 
0 

271" 
1 

/ P,.(O - t)u(eit)dt, (V.34) 
27f 

0 

where P,.(O) is the Poisson kernel (defined by the above equation) for 0 ::; 
r < 1, 0 ::; 0 ::; 27f. If u is nonnegative, put dm(t) = 2~ u(eit)dt. Then m 
is a positive measure on [0, 27f]. By the mean value property of harmonic 
functions, the total mass of this measure is 

271" 

~ /u(eit)dt = u(o). 
27f 

o 

(V.35) 

So we do have a representation of the form (V.33) under the additional 
hypothesis that u is continuous on the closed unit disk. 

The general case is a consequence of this. Let u be positive and harmonic 
in D. Then, for E > 0, the function U c (z) = u( l~c) is positive and harmonic 
in the disk Izl < 1 + E. Therefore, it can be represented in the form (V.33) 
with a measure mc(t) of finite total mass uc(O) = u(O). As E --+ 0, U c 
converges to u uniformly on compact subsets of D. Since the measures 
mc all have the same mass, using the weak* compactness of the space of 
probability measures, we conclude that there exists a positive measure m 
such that 

271" 

u(reiO ) = lim uc(reiO ) = / 
c""'O 

o 

1 - r2 
----,,------,----c- dm( t). 
1+r2-2r cos(O-t) 

Conversely, since the Poisson kernel P,. is nonnegative any function repre­
sented by (V.33) is nonnegative. • 

Theorem V.4.9 is often called the Herglotz Theorem. It says that every 
nonnegative harmonic function on the unit disk is the Poisson integral of 
a positive measure. 
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Recall that two harmonic functions u, v are called harmonic conju­
gates if the function f(z) = u(z) + iv(z) is analytic. Every harmonic 
function u has a harmonic conjugate that is uniquely determined up to 
an additive constant. 

Theorem V.4.10 Let f (z) = u( z) + iv( z) be analytic on the unit disk D. 
If u(z) :::: 0, then there exists a finite positive measure m on [0,27r] such 
that 

271" J eit + z 
f(Z) = -·t- dm(t) + iv(O). 

e' - z 
o 

(V.36) 

Conversely, every function of this form is analytic on D and has a positive 
real part. 

Proof. By Theorem V.4.9, the function u can be written as in (V.33). 
The Poisson kernel Pr , 0 :s: r < 1, can be written as 

Hence, 

and 

1 - 2 00 1 + reiO 
Pr(e) = r = ~ rlnleinO = Re 

1 + r2 - 2r cos e L.,; 1 - reiO . 
-00 

1 + rei(O-t) eit + reiO 
·(0 ) = Re·t ·0 ' 1 - re' -t e' - re' 

271" J eit + z 
u(z) = Re -.-t - dm(t). 

e' - z 
o 

So, f(z) differs from this last integral only by an imaginary constant. 
Putting z = 0, one sees that this constant is iv(O). 

The converse statement is easy to prove. • 

Next, note that the disk D and the half-plane H+ are conformally equiv­
alent" i.e., there exists an analytic isomorphism between these two spaces. 
For zED, let 

1 z + 1 
((z) = -:--. 

1 z - 1 

Then ( E H+. The inverse of this map is given by 

(- i 
z(() = ---.' 

(+1 

(V.37) 

(V.38) 

Using these transformations, we can establish an equivalence between the 
class P and the class of analytic functions on D with positive real part. If 
f is a function in the latter class, let 

cp(() = if(z(()). (V.39) 



138 V. Operator Monotone and Operator Convex Functions 

Then cp E P. The inverse of this transformation is 

J(z) = -icp(((z)). (V.40) 

Using these ideas we can prove the following theorem, called Nevan­
linna's Theorem. 

Theorem V.4.11 A Junction cp is in the Pick class iJ and only iJ it has a 

representation 
00 J 1+..\( 

cp(() = a +,B( + ..\ _ ( dv(..\) , (V.41) 

-00 

where a is a real number, ,B ::::: 0, and v is a positive finite measure on the 
real line. 

Proof. Let J be the function on D associated with cp via the transforma­
tion (V.40). By Theorem V.4.lO, there exists a finite positive measure m 
on [0,27rJ such that 

2". J eit + z 
J(z) = -·-t -dm(t) - ia. 

e' - z 
o 

If J(z) = u(z) + iv(z), then a = -v(O), and the total mass of m is u(O). If 
the measure m has a positive mass at the singleton {O}, let this mass be 
,B. Then the expression above reduces to 

J(z) = J eit + z 1 + Z 
-i-t - dm(t) + ,B -- - ia. 
e -z 1-z 

(0,27r) 

Using the transformations (V.38) and (V.39), we get from this 

cp( () = a + ,B( + i J 
(0,2".) 

eit + (-i 
(+ 

it (_~ dm(t). 
e - (+i 

The last term above is equal to 

J 
(0,2".) 

( cos 1 - sin 1 
2 2 dm(t) 

r sin 1 + cos 1 . 
C, 2 2 

Now, introduce a change of variables ..\ = -cot~. This maps (0,27r) onto 
(-00,00). The measure m is transformed by the above map to a finite 
measure v on (-00,00) and the above integral is transformed to 

00 J 1+..\( 
..\ _ ( dv(..\). 

-00 
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This shows that cp can be represented in the form (V.41). 
It is easy to see that every function of this form is a Pick function. • 

There is another form in which it is convenient to represent Pick func­
tions. Note that 

1 + >.( 1 >. 2 
>. _ ( = (>. _ ( - >.2 + 1 )(>. + 1). 

So, if we write dp,(>.) = (>.2 + l)dv(>.), then we obtain from (V.41) the 
representation 

00 

cp(()=a+~(+ J [>.~(- >'2~1]dP,(>'), (V.42) 

-00 

where p, is a positive Borel measure on JR, for which J .>it-! dp,(>.) is finite. 
(A Borel measure on JR is a measure defined on Borel sets that puts finite 
mass on bounded sets.) 

Now we turn to the question of uniqueness of the above representations. 
It is easy to see from (V.41) that 

a = Re cp(i). (V.43) 

Therefore, a is uniquely determined by cpo Now let TJ be any positive real 
number. From (V.41) we see that 

00 

cp~iTJ) = ~ + ~ + J 1 + >.2 + i>'(TJ - TJ-l) dv(>.). 
~TJ ~TJ >.2 + TJ2 

-00 

As TJ -+ 00, the integrand converges to 0 for each >.. The real and imaginary 
parts of the integrand are uniformly bounded by 1 when TJ > 1. So by the 
Lebesgue Dominated Convergence Theorem, the integral converges to 0 as 
TJ -+ 00. Thus, 

~ = lim cp(iTJ)/iTJ, (V.44) 
T/-+OO 

and thus ~ is uniquely determined by cpo 
Now we will prove that the measure dp, in (V.42), is uniquely determined 

by cpo Denote by p, the unique right continuous monotonically increasing 
function on JR satisfying p,(O) = 0 and p,((a, b]) = p,(b) - p,(a) for every 
interval (a, b]. (This is called the distribution function associated with 
dp,.) We will prove the following result, called the Stieltjes inversion 
formula, from which it follows that p, is unique. 

Theorem V.4.12 If the Pick function cp is TepTesented by (V.42), then 
fOT any a, b that aTe points of continuity of the distribution function p, we 

have 
b 

p,(b) - p,(a) = lim ~ J 1m cp(x + iTJ)dx. 
T/-+O 7r 

(V.45) 

a 
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Proof. From (V.42) we see that 

b 

~ J 1m cp(x + iTJ)dx 
a 

~! r"+l (A -x~' +'1'd~('+X 
~ r"(b- a) +1 ! (x _ ~~ +",d~(+ 

the interchange of integrals being permissible by Fubini's Theorem. As 
TJ -> 0, the first term in the square brackets above goes to O. The inner 
integral can be calculated by the change of variables u = X~A. This gives 

b 

J TJdx 
(X - A)2 + TJ2 

a 

b-A 

] u2d: 1 
a-A 

'7 

arctan (b ~ A ) _ arctan 

So to prove (V.45), we have to show that 

00 

(a~A) . 

lL(b) -1L(a) = ~~ ~ J [arctan C ~ A) - arctan (a ~ A)] dlL(A). 
-00 

We will use the following properties of the function arctan. This is a mono­
tonically increasing odd function on (-00,00) whose range is (- ~, ~). 

So, 

( b-A) (a-A) o :s: arctan -TJ- - arctan -TJ- :s: 7l". 

If (b - A) and (a - A) have the same sign, then by the addition law for 
arctan we have, 

arctan (b ~ A ) _ arctan 

If x is positive, then 

( a - A) TJ(b - a) 
-TJ- = arctan TJ2 + (b - A)(a - A)· 

x 

arctan x = J 
o 

Now, let s be any given positive number. Since a and b are points of con­
tinuity of IL, we can choose 8 such that 

lL(a + 8) - lL(a - 8) < s/5, 

lL(b + 8) -1L(b - 8) < s/5. 
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We then have, 

00 

1 j (b-A) (a-A) J.L(b) - J.L(a) - ;: [arctan -".,- - arctan -".,- ]dJ.L(A) 
-00 

00 

< ~ j[arctan C ~ A) - arctan (a ~ A )]dJ.L(A) 
b 

b 

+~ j [7r - arctan C ~ A) + arctan ( a ~ A )l dJ.L (A) 
a 

a 

1 j (b-A) (a-A) +;: [arctan -".,- - arctan -".,- ]dJ.L(A) 
-00 

00 

< 2c: 1 J ( ".,(b - a) ) 5 + ;: arctan".,2 + (b _ A)(a _ A) dJ.L(A) 
b+6 

b-6 

+~ J [7r - arctan C ~ A) + arctan ( a ~ A) ]dJ.L(A) 
a+6 

a-6 

+~ J arctan (".,2 + (:(~ ~)~~ _ A)) dJ.L(A). 
-00 

Note that in the two integrals with infinite limits, the arguments of arctan 
are positive. In the middle integral the variable A runs between a + 8 and 
b - 8. For such A, b~)" 2: ~ and a~).. ::; -~. So the right-hand side of the 
above inequality is dominated by 

2c: 

5 

00 "., j b-a 
+;: ".,2 + (b _ A)(a _ A) dJ.L(A) 

b+6 
a-6 

'!J. j b-a dJ.L(A) 
+ 7r ".,2 + (b - A)( a - A) 

-00 

b-6 

+ .!. j [7r - 2 arctan ~ ]dJ.L(A). 
7r "., 

a+6 

The first two integrals are finite (because of the properties of dJ.L). The third 
one is dominated by 2 ( ~ - arctan ~) [J.L( b) - J.L (a)]. So we can choose"., small 
enough to make each of the last three terms smaller than c:/5. This proves 

the theorem. • 
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We have shown above that all the terms occurring in the representation 
(V.42) are uniquely determined by the relations (V.43), (V.44), and (V.45). 

Exercise V.4.13 We have proved the relations (V.33), (V.36), (V.41) and 
(V.42) in that order. Show that all these are, in fact, equivalent. Hence, 
each of these representations is unique. 

Proposition V.4.14 A Pick function <p is in the class P(a, b) if and only 
if the measure J-l associated with it in the representation (V.42) has zero 
mass on (a, b). 

Proof. Let <p(x + iTJ) = u(x + iTJ) + iv(x + iTJ), where u, v are the real 
and imaginary parts of <po If <p can be continued across (a, b), then as TJ 1 0, 
on any closed subinterval [c, dj of (a, b), v(x + iTJ) converges uniformly to a 
bounded continuous function v(x) on [c, dj. Hence, 

d 

J-l(d) - J-l(c) = ~ J v(x)dx, 
c 

i.e., dJ-l(x) = ~v(x)dx. If the analytic continuation to the lower half-plane 
is by reflection across (a, b), then v is identically zero on [c, dj and hence so 
is J-l. 

Conversely, if J-l has no mass on (a, b), then for ( in (a, b) the integral 
in (V.42) is convergent, and is real valued. This shows that the function <p 
can be continued from H+ to H_ across (a, b) by reflection. • 

The reader should note that the above proposition shows that the con­
verse of Theorem V.4.7 is also true. 

It should be pointed out that the formula (V.42) defines two analytic 
functions, one on H+ and the other on H_. If these are denoted by <p and 

'ljJ, then <p(() = 'ljJ((). So <p and 'ljJ are reflections of each other. But they 
need not be analytic continuations of each other. For this to be the case, 
the measure J-l should be zero on an interval (a, b) across which the function 
can be continued analytically. 

Exercise V.4.15 If a function f is operator monotone on the whole real 
line, then f must be of the form f(t) = a + f3t, a E lR, f3 ~ o. 

Let us now look at a few simple examples. 

Example V.4.16 The function <p( () = - ~ is a Pick function. For this 
function, we see from (V.43) and (V.44) that a = f3 = O. Since <p is 
analytic everywhere in the plane except at 0, Proposition V.4.14 tells us 
that the measure J-l is concentrated at the single point O. 
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Example V.4.17 Let <p(() = (1/2 be the principal branch of the square 
root function. This is a Pick function. Prom (V.43) we see that 

Q = Re <p(i) = Re ei1f / 4 = ~. 

Prom (V.44) we see that f3 = o. If ( = A + i'r/ is any complex number, then 

( 1(I+A)1/2. (1(I-A)1/2 
(1/2 = -2- +~sgn'r/ -2- , 

where sgn 'r/ is the sign of'r/, defined to be 1 if 'r/ ~ 0 and -1 if'r/ < o. 
So if 'r/ ~ 0, we have 1m <p( () = ('(I;>' r/2. As 'r/ 1 0, 1(1 comes closer to 

IAI. SO, 1m <p(A + i'r/) converges to 0 if A> 0 and to IA11/2 if A < O. Since 
<p is positive on the right half-axis, the measure J.L has no mass at o. The 
measure can now be determined from (V.45). We have, then 

o 
(1/2 = _1 + J (_1 __ _ A_) IA11/2 dA. 

y'2 A - ( A2 + 1 IT 
(V.46) 

-00 

Example V.4.IS Let <p(() = Log (, where Log is the principal branch 
of the logarithm, defined everywhere except on (-00,0] by the formula 
Log ( = lnl(1 + i Arg (. The function Arg ( is the principal branch of 
the argument, taking values in (-IT, IT]. We then have 

Q Re(Logi) = 0 

f3 lim Lo~(i'r/) = O. 
'1---+00 ~'r/ 

As 'r/ 1 O,lm (Log(A + i'r/)) converges to IT if A < 0 and to 0 if A > O. 
So from (V.45) we see that, the measure J.L is just the restriction of the 
Lebesgue measure to (-00,0]. Thus, 

o 
Log (= J (_1_ -_A_) dA. .x - ( .x2 + 1 

(V.47) 

-00 

Exercise V.4.I9 For 0 < r < 1, let (T denote the principal branch of the 
function <p( () = (T. Show that 

o 
T _ rIT sin rIT f (_1 ___ .x_) 1.xITdA. 

( - cos 2 + IT .x - ( .x2 + 1 
(V.48) 

-00 

This includes (V.46) as a special case. 
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Let now 1 be any operator monotone function on (0,00). We have seen 
above that 1 must have the form 

o 

l(t)=a+f3t+ J (A~t - A2~1)dJL(A). 
-00 

By a change of variables we can write this as 

00 

l(t)=a+f3t+ J(A2~1- A~t)dJL(A)' (VA9) 

o 

where a E JR., f3 2:: 0 and JL is a positive measure on (0,00) such that 

Suppose f is such that 

00 

J A2 ~ 1 dJL(A) < 00. 
o 

f(O) := lim f(t) > -00. 
t--+O 

Then, it follows from (VA9) that JL must also satisfy the condition 

We have from (VA9) 

f(t) - f(O) 

Hence, we can write f in the form 

100 At 
f(t) = 'Y + f3t + -\ -dW(A), 

o /\ + t 

(V. 50) 

(V.51) 

(V.52) 

(V.53) 

where'Y = 1(0) and dW(A) = {2dJL(A). From (V.50) and (V.52), we see 
that the measure W satisfies the conditions 

00 1 

J A2A: 1 dW(A) < 00 and J Adw(A) < 00. (V. 54) 
o 0 
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These two conditions can, equivalently, be expressed as a single condition 

00 

J 1 ~ ,\ dw('\) < 00. (V. 55) 

o 

We have thus shown that an operator monotone function on (0,00) sat­
isfying the condition (V.51) has a canonical representation (V.53), where 
I E JR, f3 ~ 0 and w is a positive measure satisfying (V.55). 

The representation (V.53) is often useful for studying operator monotone 
functions on the positive half-line [0,00). 

Suppose that we are given a function f as in (V.53). If fJ satisfies the 
conditions (V.54) then 

and we can write 

00 

J (-,\- -~) ,\2dw('\) > -00 
,\2 + 1 ,\ , 

o 

So, if we put the number in braces above equal to a and dfJ()...) = )...2dw()"'), 
then we have a representation of f in the form (V.49). 

Exercise V.4.20 Use the considerations in the preceding paragraphs to 
show that, for 0 < r ::; 1 and t > 0, we have 

r sin nr 
t =--

7r 

(See Exercise V.l.10 also.) 

o 

Exercise V.4.21 For t > 0, show that 

00 J )"'t 2 
10g(1 + t) = -- )...- d).... 

)...+t 
1 

Appendix 1. Differentiability of Convex Functions 

(V. 56) 

(V.57) 

Let f be a real valued convex function defined on an interval I. Then f 
has some smoothness properties, which are listed below. 

The function f is Lipschitz on any closed interval [a, b] contained in 10 , 

the interior of I. So f is continuous on 10 . 
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At every point x in IO, the right and left derivatives of f exist. These 
are defined, respectively, as 

f' (x) := lim f(y) - f(x) , 
+ y!x Y - x 

f'--(x) := lim f(y) - f(x). 
yjx y - x 

Both these functions are monotonically increasing on JO. Further, 

lim f~(x) 
x!w 

lim f~(x) 
xjw 

f~(w), 

f'--(w). 

The function f is differentiable except on a countable set E in IO, i.e., at 
every point x in IO\E the left and right derivatives of f are equal. Further, 
the derivative f' is continuous on IO\E. 

If a sequence of convex functions converges at every point of I, then the 
limit function is convex. The convergence is uniform on any closed interval 
[a, b] contained in IO. 

Appendix 2. Regularisation of Functions 

The convolution of two functions leads to a new function that inherits 
the stronger of the smoothness properties of the two original functions. 
This is the idea behind "regularisation" of functions. 

Let 'P be a real function of class Coo with the following properties: 'P :::: 
0, 'P is even, the support supp 'P = [-1, 1], and J 'P = 1. For each c > 
0, let 'Pe(x) = ~'P(~). Then supp 'Pe = [-c,c] and 'Pe has all the other 
properties of 'P listed above. The functions 'Pe are called mollifiers or 
smooth approximate identities. 

If f is a locally integrable function, we define its regularisation of 
order c as the function 

J f(x - Y)'Pe(y)dy 

J f(x - ct)'P(t)dt. 

The family fe has the following properties. 

1. Each fe is a Coo function. 

2. If the support of f is contained in a compact set K, then the support 
of fe is contained in an c-neighbourhood of K. 
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3. If f is continuous at Xo, then lim fe(xo) = f(xo). 
1010 

4. If f has a discontinuity of the first kind at Xo, then lim fe(xo) 
dO 

1/2 [J(xo+) + f(xo- )]. (A point Xo is a point of discontinuity of the 
first kind if the left and right limits of f at Xo exist; these limits are 
denoted as f(xo-) and f(xo+), respectively.) 

5. If f is continuous, then fe(x) converges to f(x) as c --> 0. The con­
vergence is uniform on every compact set. 

6. If f is differentiable, then, for every c > 0, (flO)' = (f'k 

7. If f is monotone, then, as c --> 0, f~(x) converges to f'(x) at all 
points x where f'(x) exists. (Recall that a monotone function can 
have discontinuities of the first kind only and is differentiable almost 
everywhere. ) 

V.5 Problems 

Problem V.5.l. Show that the function f(t) = exp t is neither operator 
monotone nor operator convex on any interval. 

Problem V.5.2. Let f(t) = ~:t~, where a, b, c, d are real numbers such 
that ad - bc > 0. Show that f is operator monotone on every interval that 
does not contain the point -cd. 

Problem V.5.3. Show that the derivative of an operator convex function 
need not be operator monotone. 

Problem V.5.4. Show that for r < -1, the function f(t) = tT on (0,00) 
is not operator convex. (Hint: The function f[l] (1, t) cannot be continued 
analytically to a Pick function.) Together with the assertion in Exercise 
V. 2.11, this shows that on the half-line (0, 00) the function f (t) = r is 
operator convex if -1 ::; r ::; ° or if 1 ::; r ::; 2; and it is not operator 
convex for any other real r. 

Problem V.5.5. A function 9 on [0,00) is operator convex if and only if 

it is of the form 

00 J )..t2 

g(t) = a + (3t + ,",(e + ).. + t df.L()..) , 
o 

where a, {3 are real numbers, '"'( ~ 0, and f.L is a positive finite measure. 
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Problem V.5.6. Let 1 be an operator monotone function on (0,00). Then 
(_1)n- 1/(n)(t) ~ ° for n = 1,2, .... [A function 9 on (0,00) is said to 
be completely monotone if for all n ~ 0, (_l)ng(n)(t) ~ 0. There 
is a theorem of S.N. Bernstein that says that a function 9 is completely 
monotone if and only if there exists a positive measure f-L such that g(t) = 
DO 

J e->.tdf-L('\).] The result of this problem says that the derivative of an 
o 
operator monotone function on (0,00) is completely monotone. Thus, 1 

DO 

has a Taylor expansion I(t) = Lan(t - l)n, in which the coefficients an 
n=D 

are positive for all odd n and negative for all even n. 

Problem V.5.7. Let 1 be a function mapping (0,00) into itself. Let g(t) = 
[J(t-1 )]-1. Show that if 1 is operator monotone, then 9 is also operator 
monotone. If 1 is operator convex and 1(0) = 0, then 9 is operator convex. 

Problem V.5.8. Show that the function l(() = -cot ( is a Pick function. 
Show that in its canonical representation (V.42), 0: = /3 = ° and the 
measure f-L is atomic with mass 1 at the points mr for every integer n. 
Thus, we have the familiar series expansion 

-cot ( = --- - ~~-LDO
[ 1 mr] 

n=-DO mr - ( n 27r2 + 1 . 

Problem V.5.9. The aim of this problem is to show that if a Pick function 
cP satisfies the growth restriction 

sup l1]cp(i1])I < 00, 
1)~DO 

(V. 58) 

then its representation (V.42) takes the simple form 

1DO 1 
cp(() = -DO ,\ _ (df-L(,\), (V.59) 

where f-L is a finite measure. 
To see this, start with the representation (V.41). The condition (V.58) 

implies the existence of a constant M that bounds, for all 1] > 0, the 
quantity 1]CP( i1]), and hence also its real and imaginary parts. This gives 
two inequalities: 

-DO 
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From the first, conclude that 

-<Xl -00 

From the second, conclude that f3 = 0 and 

-<Xl 

Taking limits as TJ -+ 00, this gives 

00 J (1 + A2)dl/(A) = I: dJ.L(A) ~ M. 
-00 

Thus, J.L is a finite measure. From (V.41), we get 

00 00 

J J 1 +A( 
'P(() = A dl/(A) + A _ ( dl/(A). 

-00 -00 

This is the same as (V.59). 
Conversely, observe that if 'P has a representation like (V.59), then it 

must satisfy the condition (V.58). 

Problem V.5.l0. Let! be a function on (0, (0) such that 

00 

!(t)=a+f3t- J A~tdJ.L(A), 
o 

where a E JR, f3 ::::: 0 and J.L is a positive measure such that J ~dJ.L(A) < 00. 

Then! is operator monotone. Find operator monotone functions that can 
not be expressed in this form. 

v. 6 Notes and References 

Operator monotone functions were first studied in detail by K.Lowner 
(C. Loewner) in a seminal paper Uber monotone MatrixJunktionen, Math. 
Z., 38 (1934) 177-216. In this paper, he established the connection between 
operator monotonicity, the positivity of the matrix of divided differences 
(Theorem V.3.4), and Pick functions. He also noted that the functions 
J(t) = tT, 0:::; r:::; I, and J(t) = log t are operator monotone on (0,00). 
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Operator convex functions were studied, soon afterwards, by F. Kraus, Uber 
konvexe Matrixfunktionen, Math. Z., 41(1936) 18-42. 

In another well-known paper, Beitriige zur Storungstheorie der Spectralz­
erlegung, Math. Ann., 123 (1951) 415-438, E. Heinz used the theory of 
operator monotone functions to study several problems of perturbation 
theory for bounded and unbounded operators. The integral representation 
(VAl) in this context seems to have been first used by him. The operator 
monotonicity of the map A ~ AT for 0 ::; r ::; 1 is sometimes called the 
"Loewner-Heinz inequality", although it was discovered by Loewner. 

J. Bendat and S. Sherman, Monotone and convex operator functions, 
Trans. Amer. Math. Soc., 79(1955) 58-71, provided a new perspective on 
the theorems of Loewner and Kraus. Theorem VA.4 was first proved by 
them, and used to give a proof of Loewner's theorems. 

A completely different and extremely elegant proof of Loewner's Theo­
rem, based on the spectral theorem for (unbounded) selfadjoint operators 
was given by A. Koninyi, On a theorem of Lowner and its connections with 
resolvents of selfadjoint transformations, Acta Sci. Math. Szeged, 17 (1956) 
63-70. 

Formulas like (V.13) and (V.22) were proved by Ju. L. Daleckii and S.G. 
Krein, Formulas of differentiation according to a parameter of functions 
of Hermitian operators, Dokl. Akad. Nauk SSSR, 76 (1951) 13-16. It was 
pointed out by M.G. Krein that the resulting Taylor formula could be used 
to derive conditions for operator monotonicity. 

A concise presentation of the main ideas of operator monotonicity and 
convexity, including the approach of Daleckii and Krein, was given by 
c. Davis, Notions generalizing convexity for functions defined on spaces 
of matrices, in Convexity: Proceedings of Symposia in Pure Mathematics, 
American Mathematical Society, 1963, pp. 187-201. This paper also dis­
cussed other notions of convexity, examples and counterexamples, and was 
very influential. 

A full book devoted to this topic is Monotone Matrix Functions and 
Analytic Continuation, by W.F. Donoghue, Springer-Verlag, 1974. Several 
ramifications of the theory and its connections with classical real and com­
plex analysis are discussed here. 

In a set of mimeographed lecture notes, Topics on Operator Inequalities, 
Hokkaido University, Sapporo, 1978, T. Ando provided a very concise mod­
ern survey of operator monotone and operator convex functions. Anyone 
who wishes to learn the Koninyi method mentioned above should certainly 
read these notes. 

A short proof of Lowner's Theorem appeared in G. Sparr, A new proof of 
Lowner's theorem on monotone matrix functions, Math. Scand., 47 (1980) 
266-274. 

In another brief and attractive paper, Jensen's inequality for operators 
and Lowner's theorem, Math. Ann., 258 (1982) 229-241, F. Hansen and 
G.K. Pedersen provided another approach. 
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Much of Sections 2, 3, and 4 are based on this paper of Hansen and 
Pedersen. For the latter parts of Section 4 we have followed Donoghue. We 
have also borrowed freely from Ando and from Davis. Our proof of The­
orem V.l.9 is taken from M. Fujii and T. Furuta, Lowner-Heinz, Cordes 
and Heinz-Kato inequalities, Math. Japonica, 38 (1993) 73-78. Characteri­
sations of operator convexity like the one in Exercise V.3.15 may be found 
in J.S. Aujla and H.L. Vasudeva, Convex and monotone operator functions, 
Ann. Polonici Math., 62 (1995) 1-1l. 

Operator monotone and operator convex functions are studied in R.A. 
Horn and C.R. Johnson, Topics in Matrix Analysis, Chapter 6. See also the 
interesting paper R.A. Horn, The Hadamard product, in C.R. Johnson, ed. 
Matrix Theory and Applications, American Mathematical Society, 1990. 

A short, but interesting, section of the Marshall-Olkin book (cited in 
Chapter 2) is devoted to this topic. Especially interesting are some of the 
examples and connections with statistics that they give. 

Among several applications of these ideas, there are two that we should 
mention here. Operator monotone functions arise often in the study of 
electrical networks. See, e.g., W.N. Anderson and G.E. Trapp, A class of 
monotone operator functions related to electrical network theory, Linear 
Algebra Appl., 15(1975) 53-67. They also occur in problems related to 
elementary particles. See, e.g., E. Wigner and J. von Neumann, Significance 
of Lowner's theorem in the quantum theory of collisions, Ann. of Math., 59 
(1954) 418-433. 

There are important notions of means of operators that are useful in 
the analysis of electrical networks and in quantum physics. An axiomatic 
approach to the study of these means was introduced by F. Kubo and 
T. Ando, Means of positive linear operators, Math. Ann., 249 (1980) 205-
224. They establish a one-to-one correspondence between the class of oper­
ator monotone functions f on [0,00) with f(l) = 1 and the class of operator 
means. 



VI 
Spectral Variation of Normal 
Matrices 

Let A be an n x n Hermitian matrix, and let AreA) :::: A~(A) :::: ... :::: A~(A) 
be the eigenvalues of A arranged in decreasing order. In Chapter III we 
saw that A;(A), 1 :::; j :::; n, are continuous functions on the space of Her­
mitian matrices. This is a very special consequence of Weyl's Perturbation 
Theorem: if A, B are two Hermitian matrices, then 

maxIA;(A) - A;(B)I :::; IIA - BII· 
J 

In turn, this inequality is a special case of the inequality (IV.62), which 
says that if Eigl(A) denotes the diagonal matrix with entries A;(A) down 
its diagonal, then we have 

IIIEigl(A) - Eigl(B)111 :::; IliA - Bill 

for all Hermitian matrices A, B and for all unitarily invariant norms. 
In this chapter we explore how far these results can be carried over to 

normal matrices. The first difficulty we face is that, if the matrices are 
not Hermitian, there is no natural way to order their eigenvalues. So, the 
problem has to be formulated in terms of optimal matchings. Even after 
this has been done, analogues of the inequalities above turn out to be 
a little more complicated. Though several good results are known, many 
await discovery. 
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VI. 1 Continuity of Roots of Polynomials 

Every polynomial of degree n with complex coefficients has n complex roots. 
These are unique, except for an ordering. It is thus natural to think of them 
as an unordered n-tuple of complex numbers. The space of such n-tuples is 
denoted by e~ym' This is the quotient space obtained from the space en 
via the equivalence relation that identifies two n-tuples if their coordinates 
are permutations of each other. The space e~ym thus inherits a natural 
quotient topology from en. It also has a natural metric: if A = {AI, ... , An} 
and J.L = {J.L1, ... ,J.Ln} are two points in e~ym' then 

where the minimum is taken over all permutations. See Problem II.5.9. 
This metric is called the optimal matching distance between A and J.L. 

Exercise VL1.1 Show that the quotient topology on e~ym and the metric 
topology generated by the optimal matching distance are identical. 

Recall that, if 

f() n n-1 + n-2 ( l)n z = z - a1z a2Z + ... + - an (VI.1) 

is a monic polynomial with roots a1,"" an, then the coefficients aj are 
elementary symmetric polynomials in the variables a1,"" an, i.e., 

aj = L ai, ai2 ... aij . 

l:5i ,<.··<ij :5n 

(VI.2) 

By the Fundamental Theorem of Algebra, we have a bijection S : e~ym -> 

en defined as 
(VI.3) 

Clearly S is continuous, by the definition of the quotient topology. We will 
show that S-l is also continuous. For this we have to show that for every 
E: > 0, there exists 8 > 0 such that if laj - bj I < 8 for all j, then the optimal 
matching distance between the roots of the monic polynomials that have aj 
and bj as their coefficients is smaller than E:. Let 6, ... ,~k be the distinct 
roots of the monic polynomial f that has coefficients aj. Given E: > 0, we 
can choose circles r j , 1 :::; j :::; k, centred at ~j, each having radius smaller 
than E: and such that none of them intersects any other. Let r be the union 
of the boundaries of all these circles. Let T) = inf If(z)l· Then T) > O. Since 

zET 

r is a compact set, there exists a positive number 8 such that if g is any 
monic polynomial with coefficients bj , and I aj - bj I < 8 for all j, then 
If(z) - g(z)1 < T) for all z E r. So, by Rouche's Theorem f and g have 
the same number of zeroes inside each r j, where the zeroes are counted 
with multiplicities. Thus we can pair each root of f with a root of g in 
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such a way that the distance between any two pairs is smaller than E. In 
other words, the optimal matching distance between the roots of f and g 
is smaller than E. We have thus proved the following. 

Theorem VI.1.2 The map S is a homeomorphism between e~ym and en. 

The continuity of S-l means that the roots of a polynomial vary contin­
uously with the coefficients. Since the coefficients of its characteristic poly­
nomial change continuously with a matrix, it follows that the eigenvalues 
of a matrix also vary continuously. More precisely, the map M(n) ---t e~ym 
that takes a matrix to the unordered tuple of its eigenvalues is continu-

ous. 
A different kind of continuity question is the following. If z ---t A(z) is a 

continuous map from a domain G in the complex plane into M(n), then 
do there exist n continuous functions Al (z), ... , An (z) on G such that for 
each z they are the eigenvalues of the matrix A(z)? The example below 
shows that this is not always the case. 

Example VI.1.3 Let A(z) = (~ ~). The eigenvalues of A(z) are 

± Zl/2. These cannot be represented by two single valued continuous func­
tions on any domain G that contains zero. 

In two special situations, the answer to the question raised above is in 
the affirmative. If either the eigenvalues of A(z) are all real, or if G is an 
interval on the real line, a continuous parametrisation of the eigenvalues of 
A(z) is possible. This is shown below. 

Consider the map from lR~ym to lRn that rearranges an unordered n-tuple 

{A1, ... ,An} in decreasing order as (AL ... ,A~). From the majorisation 
relation (II.35) it follows that this map reduces distances, i.e., 

Hence, in particular, this is a continuous map. So, if all the eigenvalues of 
A(z) are real, enumerating them as Ai(z) 2:: ... 2:: A~(Z) gives a continuous 
parametrisation for them. We should remark that while this is the most 
natural way of ordering real n-tuples, it is not always the most convenient. 
It could destroy the differentiability of these functions, which some other 
ordering might confer on them. For example, on any interval containing 
o the two functions ±t are differentiable. But rearrangement in the way 
above leads to the functions ±Itl, which are not differentiable at O. 

For maps from an interval we have the following. 

Theorem VI.1.4 Let A be a continuous map from an interval I into the 
space e~ym' Then there exist n continuous complex functions Aj (t) on I 
such that A(t) = {>'l (t), ... , An(t)} for each tEl. 
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Proof. For brevity we will call n functions whose existence is asserted by 
the theorem a continuous selection for A. Suppose a continuous selection 
A)l) (t) exists on a subinterval h and another continuous selection A)2) (t) 
exists on a subinterval 12. If hand 12 have a common point to, then 
{A)l) (to)} and {A)2) (to)} are identical up to a permutation. So a continuous 
selection exists on h U 12 . 

It follows that, if J is a subinterval of I such that each point of J has 
a neighbourhood on which a continuous selection exists, then a continuous 
selection exists on the entire interval J. 

N ow we can prove the theorem by induction on n. The statement is 
obviously true for n = 1. Suppose it is true for dimensions smaller than 
n. Let K be the set of all tEl for which all the n elements of A(t) are 
equal. Then K is a closed subset of I. Let L = I\K. Let to E L. Then 
A(to) has at least two distinct elements. Collect all the copies of one of 
these elements. If these are k in number (i.e., k is the multiplicity of the 
chosen element), then the n elements of A(to) are now divided into two 
groups with k and n - k elements, respectively. These two groups have no 
element in common. Since A(t) is continuous, for t sufficiently close to to 
the elements of A(t) also split into two groups of k and n - k elements, 
each of which is continuous in t. By the induction hypothesis, each of these 
groups has a continuous selection in a neighbourhood of to. Taken together, 
they provide a continuous selection for A in this neighbourhood. 

So, a continuous selection exists on each component of L. On its comple­
ment K, A(t) consists of just one element A(t) repeated n times. Putting 
these together we obtain a continuous selection for A(t) on all of I. • 

Corollary VI.1.5 Let aj(t), 1 ::; j ::; n, be continuous complex valued 
functions defined on an inte'T'IJal 1. Then there exist continuous functions 
III (t), . .. , Iln(t) that, for each tEl, constitute the roots of the monic poly­
nomial zn - a1(t)zn-1 + ... + (-l)nan(t). 

Corollary VI.1.6 Let t -+ A(t) be a continuous map from an inte'T'IJal I 
into the space of n x n matrices. Then there exist continuous functions 
Al (t), ... , An (t) that, for each tEl, are the eigenvalues of A( t). 

VI. 2 Hermitian and Skew-Hermitian Matrices 

In this section we derive some bounds for the distance between the eigen­
values of a Hermitian matrix A and those of a skew-Hermitian matrix B. 
This will reveal several new facets of the general problem that are quite 
different from the case when both A, B are Hermitian. 

Let us recall here, once again, the theorem that is the prototype of the 

results we seek. 
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Theorem VI.2.1 (Weyl's Perturbation Theorem) Let A, B be Hermitian 
matrices with eigenvalues Ai(A) ::::: ... ::::: A~(A) and Ai(B) ::::: ... ::::: A~(B), 
respectively. Then 

maxIAj(A) - Aj(B)1 :::; IIA - BII· 
1 

(VI.4) 

We have seen two different proofs of this, one in Section III.2 and the 
other in Section IV.3. It is the latter idea which, in modified forms, will be 
used often in the following paragraphs. 

Theorem VI.2.2 Let A be a Hermitian and B a skew-Hermitian matrix. 
Let their eigenvalues a 1, ... ,an and (31, ... ,(3n be arranged in such a way 
that 

(VI.5) 

Then 
maxlaj - (3n-j+ll :::; IIA - BII· (VI.6) 

1 

Proof. For a fixed index j, consider the eigenspaces of A and B corre­
sponding to their eigenvalues {al,'" ,aj} and {(3l,'" ,(3n-j+d, respec­
tively. Let x be a unit vector in their intersection. Then 

IIA - BI12 ~(IIA - BI12 + IIA + B112) 

> ~(II(A - B)x112 + II(A + B)xI1 2) 

IIAxl12 + IIBxl12 

> laj 12 + l(3n-j+l12 = laj - (3n_j+112. 

At the first step above, we used the equality IITII = IIT* II valid for all T; at 
the third step we used the parallelogram law, and at the last step the fact 
that aj is real and (3n-j+l is imaginary. • 

For Hermitian pairs A, B we have seen analogues of the inequality (VI.4) 
for other unitarily invariant norms. It is, therefore, natural to ask for similar 
kinds of results when A is Hermitian and B skew-Hermitian. 

It is convenient to do this in the following setup. Let T be any matrix 
and let T = A + iB be its Cartesian decomposition into real and imaginary 
parts, A = TiT' and B = T2r. The theorem below gives majorisation 
relations between the eigenvalues of A and B, and the singular values of 
T. From these several inequalities can be obtained. 

We will use the notation {Xj}j to mean an n-vector whose jth coordinate 
is Xj' 

Theorem VI.2.3 Let A, B be Hermitian matrices with eigenvalues aj and 
(3j, respectively, ordered so that 
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Let T = A + iB, and let Sj be the singular values of T. Then the following 
majorisation relations are satisfied: 

{Iaj + i,Bn_j+112h -< {s~h, 

{1/2 (s~ + s~-j+1)h -< {Iaj +i,BjI2}j. 

(VI. 7) 

(VI.8) 

Proof. For any two Hermitian matrices X, Y we have the majorisations 
(IILl3): 

A!(X) + Al(y) -< A(X + Y) -< Al(X) + A!(Y). 

Choosing X = A 2 , Y = B2, this gives 

(VI.9) 

Now note that 
A2 + B2 = 1/2 (T*T + TT*) 

and 
Sj(T*T) = sj(TT*) = s~. 

So, choosing X = r;r and Y = rr" in the first majorisation above gives 

(VLlO) 

Since majorisation is a transitive relation, the two assertions (VI. 7) and 
(VI.8) follow from (VI.9) and (VLlO). • 

For each p ~ 2, the function cp(t) = tp / 2 is convex on [0,(0). So, by 
Corollary 11.3.4, we obtain from (VI.7) and (VI.8) the weak majorisations 

{Iaj + i,Bn-j+1IPh -<w {s~h, (VI. 11) 

2:/2 {(s~ + S~_j+1)P/2}j -<w {Iaj + i,BjIP}j. (VLl2) 

These two relations include the inequalities 

n n 

2)aj + i,Bn-j+1IP :::; L s~, (VLl3) 
j=l j=l 

n n 

1 ""( 2 2 )p/2""1 .f-I IP 2P/2 ~ Sj + Sn-j+1 :::; ~ aj + ZfJj 
J=l J=l 

(VLl4) 

for p ~ 2. 
If al and a2 are any two nonnegative real numbers, then the function 

g(t) = (ai + a~)l/t is monotonically decreasing on 0 < t < 00. So if p ~ 2, 
then 

(VI.15) 
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Using this we get from (VI.l4) the inequality 
n n 

21- p / 2 2: sj ::; 2:laj + i,BjlP (VI.l6) 
j=l j=l 

for p 2: 2. 

Exercise VI.2.4 For 0 < p ::; 2, the junction cp(t) = t p / 2 is concave on 
[0,(0). Use this to show that jor these values oj p, the weak majorisations 
(VI. 11 ) and (VI.12) are valid with -<w replaced by -<w. All the jour in­
equalities (VI.13)-(VI.16) now go in the opposite direction. 

Let A be any matrix with eigenvalues a1,"" an, counted in any order. 
We have used the notation EigA to mean a diagonal matrix that has entries 
aj down its diagonal. If (J is a permutation, we will use the notation Eiga(A) 
for the diagonal matrix with entries aa(l)' ... ,aa(n) down its diagonal. The 
symbol Eiglll (A) will mean the diagonal matrix whose diagonal entries 
are the eigenvalues of A in decreasing order of magnitude, i.e., the aj 

arranged so that la11 2: ... 2: lanl. In the same way, Eiglil(A) will stand 
for the diagonal matrix whose diagonal entries are the eigenvalues of A 
arranged in increasing order of magnitude, i.e., the aj rearranged so that 
la11 ::; la21 ::; ... ::; lanl· 

With these notations, we have the following theorem for the distance 
between the eigenvalues of a Hermitian and a skew-Hermitian matrix, in 
the Schatten p-norms. 

Theorem VI.2.5 Let A be a Hermitian and B a skew-Hermitian matrix. 
Then, 

(i) jor 2 ::; p ::; 00, we have 

IIEiglll(A) - Eiglil(B)llp ::; IIA - Blip, 

IIA - Blip ::; 2~-~ IIEiglll(A) - Eiglll(B)llp; 

(ii) jor 1 ::; p ::; 2, we have 

IIEiglll(A) - Eiglll(B)llp::; 2~-~ IIA - Blip, 

IIA - Blip::; IIEiglll(A) - Eig1il(B)llp. 

All the inequalities above are sharp. Further, 
(iii) jor 2 ::; p ::; 00, we have 

(VI. 17) 

(VI.l8) 

(VI.l9) 

(VI.20) 

IIEiglll (A) - Eiglil (B) lip::; IIEig(A) - Eiga (B) lip::; IIEig lll (A) - Eiglll (B) lip 
(VI.21 ) 

jor all permutations (J; 

(iv) jor 1 ::; P ::; 2, we have 

IIEiglll (A) - Eiglll (B) lip::; IIEig(A) - Eiga(B) lip::; IIEiglll (A) - Eiglil (B) lip 
(VI.22) 

jor all permutations (J. 
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Proof. For p ~ 2, the inequalities (VI.17) and (VI.18) follow immediately 
from (VI.13) and (VI.16). For p = 00, the same inequalities remain valid by 
a limiting argument. The next two inequalities of the theorem follow from 
the fact that, for 1 :::; p :::; 2, both of the inequalities (VI.13) and (VI.16) 
are reversed. 

The special case of statements (i) and (ii) in which A and B commute is 
adequate for proving (iii) and (iv). 

The sharpness of all the inequalities can be seen from the 2 x 2 example: 

A = (~ ~), B = (~1 ~). (VI.23) 

Here IIA - Blip = 2 for all 1 :::; p :::; 00. The eigenvalues of A are ±1, those 
of Bare ±i. Hence, for every permutation a 

IIEig(A) - Eig,.{B) lip .1-1-

IIA _ Blip = 2p 2 

for all 1 :::; p :::; 00. • 
Note that the inequality (VI.6) is included in (VI.17). 
There are several features of these inequalities that are different from 

the corresponding inequality (IV.62) for a pair of Hermitian matrices A, B. 
First, the inequalities (VI.18) and (VI.19) involve a constant term on the 
right that is bigger than 1. Second, the best choice of this term depends 
on the norm II . lip" Third, the optimal matching of the eigenvalues of A 
with those of B - the one that will minimise the distance between them -
changes with the norm. In fact, the best pairing for the norms 2 :::; p :::; 00 

is the worst one for the norms 1 :::; p :::; 2, and vice versa. 
All these new features reveal that the spectral variation problem for pairs 

of normal matrices A, B is far more intricate than the one for Hermitian 
pairs. 

Exercise VI.2.6 Let A be a Hermitian and B a skew-Hermitian matrix. 
Show that for every unitarily invariant norm we have 

IIIEiglll(A) - Eiglll(B)111 :::; 2111A - Bill, 

IliA - Bill:::; V2IIIEiglll(A) - EigI11(B)III· 

(VI. 24) 

(VI.25) 

The term v'2 in the second inequality cannot be replaced by anything smaller. 

VI. 3 Estimates in the Operator Norm 

In this section we will obtain estimates of the distance between the eigen­
values of two normal matrices A and B in terms of IIA - BII· Apart from 
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the optimal matching distance, which has already been introduced, we will 

consider other distances. 
If L, M are two closed subsets of the complex plane C, let 

s(L, M) = sup dist(A, M) = sup inf IA - ILl· 
AEL AEL /1-EM 

(VI.26) 

The Hausdorff distance between Land M is defined as 

h(L,M) = max(s(L,M), s(M,L)). (VI.27) 

Exercise V1.3.1 Show that s(L, M) = 0 if and only if L is a subset of M. 
Show that the Hausdorff distance defines a metric on the collection of all 
closed subsets of C. 

Note that s(L, M) is the smallest number 8 such that every element of 
L is within a distance 8 of some element of M; and h(L, M) is the smallest 
number 8 for which this, as well as the symmetric assertion with Land M 
interchanged, is true. 

Let {AI, ... ,An} and {ILl, ... ,lLn} be two unordered n-tuples of complex 
numbers. Let Land M be the subsets of C whose elements are the entries of 
these two tuples. If some entry among {Aj} or {lLj} has multiplicity bigger 
than 1, then the cardinality of L or M is smaller than n. 

Exercise V1.3.2 (i) The Hausdorff distance h(L, M) is always less than 
or equal to the optimal matching distance d( {AI, ... , An}, {ILl, ... , ILn} ). 

(ii) When n = 2, the two distances are equal. 

(iii) The triples {O, m - 10, m + c} and {m, 10, -c} provide an example in 
which h(L, M) = 10 and the optimal matching distance is m - 210. Thus, for 
n :::: 3, the second distance can be arbitrarily larger than the first. 

If A is an n x n matrix, we will use the notation o-(A) for both the subset 
of the complex plane that consists of all the eigenvalues of A, and for the un­
ordered n-tuple whose entries are the eigenvalues of A counted with multi­
plicity. Since we will be talking of the distances s(o-(A), o-(B)), h(o-(A), o-(B)), 
and d(o-(A),o-(B)), it will be clear which of the two objects is being repre­
sented by o-(A). 

Note that the inequalities (VI.4) and (VI.6) say that 

d(o-(A),o-(B)) :s; IIA - BII, (VI.2S) 

if either A and B are both Hermitian, or one is Hermitian and the other 
skew-Hermitian. 

Theorem V1.3.3 Let A be a normal and B an arbitrary matrix. Then 

s(o-(B),o-(A)) :s; IIA - BII· (VI.29) 



VI.3 Estimates in the Operator Norm 161 

Proof. Let c = IIA - BII. We have to show that if (3 is any eigenvalue of 
B, then (3 is within a distance c of some eigenvalue aj of A. 

By applying a translation, we may assume that (3 = O. If none of the aj 
is within a distance c of this, then A is invertible. Since A is normal we 

II -111 1 1 ' have A = min IOj I < E;. Hence, 

Since B = A(I + A-I(B - A)), this shows that B is invertible. But then 
B could not have had a zero eigenvalue. • 

Another proof of this theorem goes as follows. Let A have the spectral 
resolution A = r.ajujuj, and let v be a unit vector such that Bv = (3v. 
Then 

j 

2)aj - (31 2 Iu j v I2 . 

j 

j 

Since the Uj form an orthonormal basis, 2:lujvl2 = 1. Hence, the above 
j 

inequality can be satisfied only if laj - (31 2 ::; IIA - BII2 for at least one 
index j. 

Corollary VI.3.4 If A and Bare n x n normal matrices, then 

h(O"(A),O"(B)) ::; IIA - BII· (VI.30) 

For n = 2, we have 
d(O"(A),O"(B)) ::; IIA - BII· (VI.31) 

This corollary also follows from the proposition below. 
We will use the notation D(a, p) for the open disk of radius p centred at 

a, and D( a, p) for the closure of this disk. 

Proposition VI.3.5 Let A and B be normal matrices, and let c = 
IIA - BII. If any disk D(a, p) contains k eigenvalues of A, then the disk 
D( a, p + c) contains at least k eigenvalues of B. 

Proof. Without loss of generality, we may assume that a = O. Suppose 
D(O, p) contains k eigenvalues of A but D(O, p + c) contains less than k 
eigenvalues of B. Choose a unit vector x in the intersection of the eigenspace 
of A corresponding to its eigenvalues lying inside D(O, p) and the eigenspace 
of B corresponding to its eigenvalues lying outside D(O, p+c). We then have 
II Ax II ::; p and IIBxll > p + c. We also have IIBxll - II Ax II ::; II(B - A)xll ::; 
liB - All = c. This is a contradiction. • 
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Exercise VI.3.6 Use the special case p = 0 of Proposition VI.3.5 to prove 
Corollary VI. 3.4. 

Given a subset X of the complex plane and a matrix A, let mA(X) 
denote the number of eigenvalues of A inside X. 

Exercise VI.3.7 Let A, B be two n x n normal matrices. Let K 1, K 2 be 
two convex sets such that mA(Kl ) :::; k and mB(K2 ) 2: n - k + 1. Then 
dist(Kl ,K2 ):::; IIA - BII· [Hint: Let p --+ 00 in Proposition VI.3.5.j 

Exercise VI.3.8 Use this to give another proof of Theorem VI. 2. 1. 

Exercise VI.3.9 Let A, B be two nxn unitary matrices whose eigenvalues 
lie in a semicircle of the unit circle. Label both the sets of eigenvalues in 
the counterclockwise order. Then 

Hence, 
d(a(A), a(B)) :::; IIA - BII. 

Exercise VI.3.10 Let T be the unit circle, I any closed arc in T, and for 
c > 0 let Ie be the arc {z E T : Iz - wi :::; c for some WEI}. Let A, B be 
unitary matrices with IIA - BII = c. Show that mA(I) :::; mB(Ie). 

Theorem VI.3.11 For any two unitary matrices, 

d(a(A), a(B)) :::; IIA - BII. 

Proof. The proof will use the Marriage Theorem (Theorem II.2.1) and 
the exercise above. 

Let {AI, ... , An} and {ILl, ... , ILn} be the eigenvalues of A and B, respec­
tively. Let A be any subset of {AI, ... , An}. Let IL(A) = {ILj : IILj - Ail:::; c 
for some Ai E A}. By the Marriage Theorem, the assertion would be proved 
if we show that IIL(A)I 2: IAI. 

Let I(A) be the set of all points on the unit circle T that are within 
distance c of some point of A. Then IL(A) contains exactly those ILj that 
lie in I(A). Let I(A) be written as a disjoint union of arcs 11, ... , Ir . For 
each 1 :::; k :::; r, let Jk be the arc contained in h all whose points are at 
distance 2: c from the boundary of Ik. Then Ik = (Jk)e. 

From Exercise VI.3.1O we have 
r r 

LmA(Jk ) :::; LmB(h) = mB(I(A)). 
k=l k=l 

But, all the elements of A are in some Jk . This shows that IAI :::; If1.(A)I. • 

There is one difference between Theorem VI.3.11 and most of our earlier 
results of this type. Now nothing is said about the order in which the 



VI.3 Estimates in the Operator Norm 163 

eigenvalues of A and B are arranged for the optimal matching. No canonical 
order can be prescribed in general. In Problem VI.8.3, we outline another 
proof of Theorem VI.3.11 which says, in effect, that for optimal matching 
the eigenvalues of A and B can be counted in the cyclic order on the circle 
provided the initial point is chosen properly. The catch is that this initial 
point depends on A and B and we do not know how to find it. 

Exercise VI.3.12 Let A = C1U1, B = C2U2, where U1, U2 are unitary ma­
trices and C1,C2 are complex numbers. Show that d(lT(A),lT(B)) 
::; IIA - BII· 

By now we have seen that the inequality (VI.28) is valid in the following 
situations: 

(i) A and B both Hermitian 

(ii) A Hermitian and B skew-Hermitian 

(iii) A and B both unitary (or both scalar multiples of unitaries) 

(iv) A and B both 2 x 2 normal matrices. 

The example below shows that this inequality breaks down for arbitrary 
normal matrices A, B when n ~ 3. 

Example VI.3.13 Let A be the 3 x 3 diagonal matrix with diagonal entries 
\ - 1 A - 4+5,,/3 i A = -1+2,,/3 i Let vT = ( I§. 1 fl) and let 
/'1-, 2- 13 ,3 13· VS'2'VS 
U = 1- 2vvT . Then U is a unitary matrix. Let B = -U* AU. Then B is a 
normal matrix with eigenvalues J-Lj = -Aj, j = 1,2,3. One can check that 

d(lT(A), IT(B)) = ~, IIA - BII = -[!d. 
So, 

d(a-(A),lT(B)) = 1.0183+. 
IIA-BII 

In the next chapter we will show that ther~ exists a constant c < 2.91 
such that for any two n x n normal matrices A, B 

d(lT(A), IT(B)) ::; ciiA - BII· 

For Hermitian matrices A, B we have a reverse inequality: 

IIA - BII ::; max IA;(A) - A}(B)I. 
l<;)<;n 

The quantity on the right is the distance between the eigenvalues of A 
and those of B when the "worst" pairing is made. An analogous result for 

normal matrices is proved below. 
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Theorem VI.3.14 Let A and B be normal matrices with eigenvalues 
{AI, ... , An} and {Ill, ... , I1n}, respectively. Then, there exists a permu­
tation ()" such that 

IIA - BII :S V2 max IAj - l1a(j) I· 
I:5J:5n 

(VI.32) 

Proof. The matrices A ® I and I ® B are both normal and commute with 
each other. Hence A ® I - I ® B is normal. The eigenvalues of this matrix 
are all the differences Ai - I1j, 1 :S i, j :S n. Hence 

IIA ® I - I ® BII = maxlAi -l1jl· 
2,J 

So, the inequality (VI.32) is equivalent to 

IIA - BII :S V2IIA® I - I® BTII· 

This is, in fact, true for all A, B and is proved below. 

Theorem VI.3.15 For all matrices A, B 

IIA-BII:S V2IIA®I-I®BT II· 

Proof. We have to prove that for all x, yin Cn 

We have 

I(x, (A - B)y)1 :S V2IIA ® I - I ® BTllllxl1 lIyll· 

I(x, (A - B)y)1 = Ix* Ay - x* Byl = Itr(Ayx* - yx* B)I 

:S IIAyx* - yx* Bill. 
The matrix Ayx* - yx* B has rank at most 2. So, 

IIAyx* - yx* BI\r :S V2I1AYx* - yx* B112. 

• 

(VI.33) 

Let x be the vector whose components are the complex conjugates of the 
components of x. Then with respect to the standard basis ei®ej ofcn®cn, 

the (i,j)-coordinate of the vector (A®I)(y®x) is 2:= aikYkXj. This is also 
k 

the (i, j)-entry of the matrix Ayx*. In the same way, the (i, j)-entry of 
yx* B is the (i,j)-coordinate of the vector (I ® BT)(y ® x). Thus, we have 

IIAyx* - yx* BI12 II(A ® I - I ® BT)(y ® x)11 

This proves the theorem. 

< IIA ® I - I ® BTII Ily ® xii 
IIA ® I -- I ® BTl! Ilxll Ilyll· 

• 
The example (VI.23) shows that the inequality (VI.32) is sharp. Note 

that in this example A and B are both unitary. Also, A is Hermitian and 
B is skew-Hermitian. In contrast, the factor J2 in (VI.32) can be replaced 
by 1 if A, B are both Hermitian. 
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VI.4 Estimates in the Frobenius Norm 

We will use the symbol Sn to mean the set of permutations on n symbols, 
as well as the set of n x n permutation matrices. (To every permutation a 
there corresponds a unique matrix P that has entries 1 in the (i,j) place if 
and only if j = a(i), and all whose remaining entries are zero.) Let On be 
the set of all n x n doubly stochastic matrices. This is a convex polytope and 
by Birkhoff's Theorem (Theorem 11.2.3) its extreme points are permutation 
matrices. 

Theorem VI.4.1 {Hoffman- Wielandtj Let A and B be normal matrices 
with eigenvalues {AI, ... , An} and {!-LI, ... , !-Ln}, respectively. Then 

Proof. Choose unitary matrices U, V such that U AU* = D I , V BV* = 
D2, where DI = diag(AI, ... , An) and D2 = diag(!-LI, ... , !-Ln). Then, by uni­
tary invariance of the Frobenius norm, IIA - BII~ = IIU* DI U - V* D2 VII~ = 
IIDI W - W D2112, where W = UV*, another unitary matrix. If the matrix 
W has entries Wij, this can be written as 

IIA - BII~ = 2:IAi - !-LjI2Iw ijI2. 
i,j 

The matrix (IWijI2) is doubly stochastic. The map (Xij) ---7 2:IAi - !-Ljl2Xij 
i,j 

is an affine function on the set On of doubly stochastic matrices. So it 
attains its minimum at one of the extreme points of On. Thus, there exists 
a permutation matrix (Pij) such that 

IIA - BII~ ::::: 2:IAi - !-LjI2pij . 
i,j 

If this matrix corresponds to the permutation a, this says that 

This proves the first inequality in (V1.34). The same argument for the 
maximum instead of the minimum gives the other inequality. • 

Note that for Hermitian matrices, the inequality (V1.34) was proved ear­
lier in Problem III.6.15. In this case, we also proved that the same inequality 
is true for all unitarily invariant norms. 
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In general, there is no prescription for finding the permutation (J' that 
minimises the Euclidean distance between the eigenvalues of A and those 
of B. However, if A is Hermitian with eigenvalues enumerated as A1 2: 
A2 2: ... 2: An, then an enumeration of J.Lj in which Re J.L1 2: Re J.L2 2: 
... 2: Re J.Ln is the best one. To see this, just note that if Al 2: A2 and Re 

J.Ll 2: Re J.L2, then 

IAI - J.L112 + IA2 - J.L212 ~ IAI - J.L212 + IA2 - J.L112. 

The same argument shows that an enumeration for which the maximum 
distance is attained is one for which Re J.Ll ~ Re J.L2 ~ .•. ~ Re J.Ln· (What 
does this say when B is skew-Hermitian?) 

Using the notations introduced in Section VI.2, the inequality (VI.34) 
can be rewritten as 

minIlEig(A)-Eiga(B)112 ~ IIA-BI12 :S maxIIEig(A)-Eiga(B) 112. (VI.35) 
a a 

There is another way of looking at this. Since the eigenvalues of a normal 
matrix completely determine the matrix up to a unitary conjugation, the 
inequality (VI.35) is equivalent to saying that for any two diagonal matrices 
A,B 

minllA - PBP*1I2 < IIA - UBU*1I2 < maxllA - PBP*112, P - - p 
(VI.36) 

where U is any unitary matrix and P varies over all permutation matrices. 
Given any matrix B, let UB be the set 

UB = {UBU* : U E U(n)}, 

where U(n) is the group consisting of unitary matrices. Then UB is a 
compact set called the unitary orbit of B. For a fixed diagonal matrix A, 
consider the function f(X) = IIA - X112. The inequality (VI.36) then says 
that if B is another diagonal matrix, then on the compact set UB both the 
minimum and the maximum of f are attained at diagonal matrices (just 
some permutations of B). In other words, the minimum and the maximum 
on the unitary orbit are both contained in the permutation orbit. 

This is an interesting fact from the point of view of calculus and geom­
etry. We will see below that if A, B are real diagonal matrices, a stronger 
statement can be proved using calculus. This will also serve to introduce 
some elementary ideas of differential geometry used in later sections. 

A differentiable function U(t), where t is real and U(t) is unitary, is called 
a differentiable curve through I if U(O) = I. Differentiating the equation 
U(t)U(t)* = I at t = 0 shows that for such a curve U'(O) is skew-Hermitian. 
The matrix U'(O) is called the tangent vector to U(t) at I. If K = U'(O), 
then etK is another differentiable curve through I with tangent vector K 
at I. Thus, the curves U (t) and etK have the same tangent vector and so 



VI.4 Estimates in the Frobenius Norm 167 

represent the same curve locally, Le., they are equal to the first degree of 
approximation. The tangent space to the manifold U(n) at the point I is 
the linear space that consists of all these tangent vectors. We have seen that 
this is the real vector space K(n) consisting of all skew-Hermitian matrices. 

If UA is the unitary orbit of a matrix A, then every differentiable curve 
through A can be represented locally as etK Ae-tK for some skew-Hermitian 
K. The derivative of this curve at t = 0 is K A - AK. This is usually written 
as [K, A] and called a Lie bracket or a commutator. Thus the tangent 
space to the manifold UA at the point A is the space 

(VI.37) 

Note that this implies that TAUA is contained in K:(n) if A E K(n). 
The sesquilinear form (A, B) = tr A* B is an inner product on the space 

M(n). The symbol S1. will mean the orthogonal complement of a space S 
with respect to this inner product. 

Lemma VI.4.2 For every A E K(n), the orthogonal complement ofTAUA 
in K(n) is the set of all Y that commute with A. 

Proof. Let Y E K(n). Then Y E (TAUA)1. if and only if for every K in 
K:( n) we have 

o (Y, [A, K]) = tr Y*(AK - KA) 

-tr(YAK - YKA) = tr[A, Y]K. 

This is possible if and only if [A, Y] = O. • 
The set of all matrices Y that commute with A is called the commutant 

or the centraliser of A, and is denoted as Z(A). The lemma above says 
that in the space K:(n), (TAUA)1. = Z(A) for every A. 

Theorem VI.4.3 Let A E K:(n) and let f(X) = IIA - X112. Let B be any 
other element of K(n). Then Bo is an extreme point for the function f on 
the unitary orbit UB if and only if Bo commutes with A. 

Proof. A point Bo is an extreme point if and only if the straight line 
joining A and Bo is perpendicular to UB at Bo. By Lemma VI.4.2 this is 
so if and only if A - Bo commutes with Bo, Le., if and only if A commutes 

w~~. • 

For skew-Hermitian (or Hermitian) matrices A, B, this gives another 
proof of Theorem VI.4.L However, in this case Theorem VI.4.3 says much 
more. From the first theorem we can conclude that if A and B are normal, 
then the global minimum and maximum of the (Frobenius) distance from 
A to UB are attained among matrices that commute with A. The second 
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theorem says that when A and B are both Hermitian this is true for all 
local extrema as well. 

This last statement is not true when A is Hermitian and B is skew-
Hermitian. For in this case, 

IIA - UBU*II~ = IIAII~ + IIUBU*II~ = IIAII~ + IIBII~ 

for all U. Thus the entire orbit UB is at a constant distance from A. Hence, 
every point on UB is an extremal point. However, not every point on UB 

need commute with A. 

VI. 5 Geometry and Spectral Variation: the 
Operator Norm 

The first theorem below says that if A is a normal matrix and B is any 
matrix close to A, then the optimal matching distance d(a(A),a(B)) is 
bounded by IIA - BII. This is a local phenomenon; global versions of this 
are what we seek in the next paragraphs. 

Theorem VI.5.1 Let A be a normal matrix, and let B be any matrix such 
that IIA - BII is smaller than half the distance between any two distinct 
eigenvalues of A. Then d(a(A),a(B))::; IIA - BII. 

Proof. Let 0:1, ... , O:k be all the distinct eigenvalues of A. Let E = 
IIA - BII· By Theorem VI.3.3, all the eigenvalues of B lie in the union of 
the disks D(O:j,E). By the hypothesis, these disks are mutually disjoint. We 
claim that if the eigenvalue O:j has multiplicity mj, then the disk D( O:j, E) 
contains exactly mj eigenvalues of B, counted with their respective multi­
plicities. Once this is established, the statement of the theorem is seen to 
follow easily. 

Let A(t) = (1 - t)A + tB, 0 ::; t ::; 1. This is a continuous map from 
[0,1] into the space of matrices; and we have A(O) = A, A(1) = B. Note 
that IIA - A(t) II = tE, and so all the eigenvalues of A(t) also lie in the disks 
D(O:j,E) for each 0::; t ::; 1. By Corollary VI.1.6, as t moves from 0 to 1, 
the eigenvalues of A(t) trace continuous curves that join the eigenvalues 
of A to those of B. None of these curves can jump from one of the disks 
D( O:j, E) to another. So, if we start off with mj such curves in the disk 
D(O:j,E), we must end up with exactly as many. • 

Example VI.3.13 shows that if no condition is imposed on B, then the 
conclusion of the theorem above is no longer valid, even when B is normal. 
However, this does suggest a new approach to the problem. Let A, B be 
normal matrices, and let 'Y(t) be a curve joining A and B, such that each 
'Y(t) is a normal matrix. Then in a small neighbourhood of 'Y(t) the spectral 
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variation inequality of Theorem Vl,5.1 holds. So, the (total) spectral vari­
ation between the endpoints of the curve must be bounded by the length 
of this curve. This idea is made precise below. 

Let N denote the set of normal matrices of a fixed size n. If A is an 
element of N, then so is tA for all real t. Thus the set N is path connected. 
However, N is not an affine set. 

A continuous map "( from any interval [a, b] into N will be called a 
normal path or a normal curve. If "((a) = A and "((b) = B, we say 
that "( is a path joining A and Bj A and B are then the endpoints of "(. 
The length of ,,(, with respect to the norm 11·11, is defined as 

m-l 

£11'11 b) = sup L lI'Y(tk+1) - "((tk)ll, (Vl,38) 
k=O 

where the supremum is taken over all partitions of [a, b] as a = to < tl < 
... < tm = b. If this length is finite, the path "( is said to be rectifiable. If 
the function "( is a piecewise C 1 function, then 

b 

£II'II("() = ! 1I'Y'(t)lldt. (Vl,39) 

a 

Theorem VI.5.2 Let A and B be normal matrices, and let "( be a rectifi­
able normal path joining them. Then 

d(O"(A), O"(B)) :::; £11'11 b)· (Vl,40) 

Proof. For convenience, let us choose the parameter t to vary in [0,1]. 
For ° :::; r :::; 1, let "(r be that part of the curve which is parametrised by 
[0, r]. Let 

G = {r E [0,1] : d(O"(A), O"("((r))) :::; £1I'lIbr)}' 

The theorem will be proved if we show that the point 1 is in G. 
Since the function ,,(, the arclength, and the distance d are all continuous 

in their arguments, the set G is closed. So it contains the point 9 = sup G. 
We have to show that 9 = 1. 

Suppose 9 < 1. Let S = "((g). Using Theorem Vl,5.1, we can find a point 
tin (g,l] such that, if T = "((t), then d(O"(S), O"(T)) :::; liS - Til· But then 

d(O"(A), O"b(t))) < d(O"(A), O"(S)) + d(O"(S) , O"(T)) 

< £11.11 bg) + liS - Til 
< £1I·lIbd· 

By the definition of g, this is not possible. • 
An effective estimate of d(O"(A), O"(B)) can thus be obtained if one could 

find the length of the shortest normal path joining A and B. This is a 
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difficult problem since the geometry of the set N is poorly understood. 
However, the theorem above does have several interesting consequences. 

Exercise VI.5.3 Let A, BEN. Then the line segment joining A and B 
lies in N if and only if A - B is in N. 

Theorem VI.5.4 If A, B are normal matrices such that A - B is also 

normal, then d(a(A),a(B)) $ IIA - BII· 

Proof. The path I consisting of the line segment joining A, B is a normal 
path by Exercise VI.5.3. Its length is IIA - BII· • 

For Hermitian matrices A, B, the condition of the theorem above is sat­
isfied. So this theorem includes Weyl's perturbation theorem as a special 
case. 

A more substantial application of Theorem VI.5.2 is obtained as follows. 
It turns out that there exist normal matrices A, B for which A - B is not 
normal, but there exists a normal path that joins them and has length 
IIA - BII· Note that this path cannot be the line segment joining A and 
B; however, it has the same length as the line segment. What makes this 
possible is the fact that the metric under consideration is not Euclidean, and 
so geodesics need not always be straight lines. (Of course, by the definition 
of the arclength and the triangle inequality no path joining A, B could have 
length smaller than IIA - BII.) 

Let S be any subset of M(n). We will say that S is metrically flat in 
the metric induced by the norm II . II if any two points A, B of S can be 
joined by a path that lies entirely within S and has length IIA - BII. To 
emphasize the dependence on the norm II . II, we will also call such a set 
II . II-flat. 

Of course, every affine set is metrically flat. A nontrivial example of a 
II· II-flat set is given by the theorem below. Let U be the set of n x n unitary 
matrices and C . U the set of all constant multiples of unitary matrices. 

Theorem VI.5.5 The set C . U is II . II-fiat. 

Proof. First note that C . U consists of just nonnegative real multiples 
of unitary matrices. Let Ao = roUo and Al = rl U1 be any two elements 
of this set, where rO,rl ?: O. Choose an orthonormal basis in which the 
unitary matrix U1 Ur; 1 is diagonal: 

U U-l - d' (ie, ien ) 10 -mge , ... ,e , 

where 

Reduction to such a form can be achieved by a unitary conjugation. Such 
a process changes neither eigenvalues nor norms. So, we may assume that 



VI.5 Geometry and Spectral Variation: the Operator Norm 171 

all matrices are written with respect to the above orthonormal basis. Let 

Then, K is a skew-Hermitian matrix whose eigenvalues are in the interval 
( -i7r, i7r]. We have 

Iro - r1 exp(ilIdl· 

This last quantity is the length of the straight line joining the points ro 
and r1 exp(ifh) in the complex plane. Parametrise this line segment as 
r(t)exp(it01),O :::; t :::; 1. This can be done except when 1011 = 7r, an 
exceptional case to which we will return later. The equation above can 
then be written as 

IIAo - Alii 

1 J I [r(t) exp(itll1)]' Idt 

o 
1 

J Ir'(t) + r(t)i01 Idt. 
o 

Now let A(t) = r(t) exp(tK)Uo, 0 :::; t :::; 1. This is a smooth curve in 
C . U with endpoints Ao and AI. The length of this curve is 

1 

J IIA'(t)lldt 
o 

1 J IIr' (t) exp(tK)Uo + r(t)K exp(tK)Uo Iidt 

o 
1 

J Ilr'(t)I + r(t)Klldt, 
o 

since exp(tK)Uo is a unitary matrix. But 

IIr'(t)I + r(t)KII = maxlr'(t) + ir(t)Ojl = Ir'(t) + ir(t}llll· 
J 

Putting the last three equations together, we see that the path A(t) joining 
Ao and Al has length IIAo - AI\\. 

The exceptional case 1011 = 7r is much simpler. The piecewise linear path 
that joins AD to 0 and then to Al has length ro + rl· This is equal to 
Iro - r1 exp( iOl) I and hence to IIAo - Alii· • 

Using Theorems VI.5.2 and VI.5.5, we obtain another proof of the result 

of Exercise VI.3.12. 
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Exercise VI.5.6 Let A, B be normal matrices whose eigenvalues lie on 
concentric circles G(A) and G(B), respectively. Show that d(a(A), a(B)) ::; 
IIA-BII· 

Theorem VI.5.7 The set N consisting of n x n normal matrices is II· II-fiat 
if and only if n ::; 2. 

Proof. Let A, B be 2 x 2 normal matrices. If the eigenvalues of A and 
those of B lie on two parallel lines, we may assume that these lines are 
parallel to the real axis. Then the skew-Hermitian part of A - B is a scalar, 
and hence A - B is normal. The straight line joining A and B, then lies 
in N. If the eigenvalues do not lie on parallel lines, then they lie on two 
concentric circles. If Q is the common centre of these circles, then A and B 
are in the set Q + C· U. This set is II· II-flat. Thus, in either case, A and B 
can be joined by a normal path of length IIA - BII. 

If n ~ 3, then N cannot be II . II-flat because of Theorem VI.5.2 and 
Example VI.3.13. • 

Example VI.5.S Here is an example of a Hermitian matrix A and a skew­
Hermitian matrix B that cannot be joined by a normal path of length IIA­
BII. Let 

1 0) 
01. 
-1 0 

Then IIA-BII = 2. If there were a normal path of length 2 joining A, B, then 
the midpoint of this path would be a normal matrix G such that IIA - Gil = 
liB - Gil = 1. Since each entry of a matrix is dominated by its norm, this 
implies that IC21 - 11 ::; 1 and IC21 + 11 ::; 1. Hence C21 = O. By the same 
argument, C32 = O. So 

A-G=(~ : :), 
* 1 * 

where * represents an entry whose value is not yet known. But if IIA-GII = 
1, we must have 

( 0 0 *) A-G= 1 0 0 . 
010 

Hence 

( 
0 1 

G= 0 0 
o 0 

But then G could not have been normal. 
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VI.6 Geometry and Spectral Variation: WUI 

Norms 

In this section we consider the possibility of extending to all (weakly) uni­
tarily invariant norms, results obtained in the previous section for the op­
erator norm. Given a wui nOrm r, the r-optimal matching distance 
between the eigenvalues of two (normal) matrices A, B is defined as 

dr(u(A), u(B)) = min r(EigA - P(EigB)P-l), 
P 

(VI.4l) 

where, as before, Eig A is a diagonal matrix with eigenvalues of A down its 
diagonal (in any order) and where P varies over all permutation matrices. 
We want to compare this with the distance r(A - B). The main result in 
this section is an extension of the path inequality in Theorem V1.5.2 to all 
wui nOrms. From this several interesting conclusions can be drawn. 

Let us begin by an example that illustrates that not all results for the 
operator norm have straightforward extensions. 

Example VI.6.1 For 0::::; t ::::; 7r, let U(t) = (e~t ~). Then, 

IIIU(t) - U(O) III = 11- eitl = 2 sin ~, 

for every unitarily invariant norm. In the trace norm (the Schatten 1-
norm), we have 

dl(u(U(t)), u(U(O))) = 211 - eit/21 = 4 sin ~. 

So, 
dl(u(U(t)),u(U(O))) =sec! 1 for t#O. 

IIU(t) - U(O)lll 4 > , 
Thus, we might have d1(u(A),u(B)) > IIA-Blll' even for arbitrarily close 
normal matrices A, B. Compare this with Theorems VI.S.1 and VI.4·1. 

The Q-norms are special in this respect, as we will see below. 
Let <I> be any finite subset of C. A map F : C ----> <I> is called a retraction 

onto <I> if Iz - F( z) I = dist( z, <1», i.e., F maps every point in C to one of the 
points in <I> that is at the least distance from it. Such an F is not unique if 
<I> has more than one element. 

Let <I> be a subset of C that has at most n elements, and let N( <1» be the 
set of all n x n normal matrices A such that u(A) C <1>. If F is a retraction 
onto <1>, then for every normal matrix B with eigenvalues {f3l, ... , f3n} and 
for every A in N ( <1» we have 

liB - F(B)II max If3j - F(f3j) I = max dist(f3j, <1» 
lSjSn ) 

s(u(B), u(A)) ::::; liB - All 
(VI.42) 
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by Theorem VI.3.3. Note that the normality of B was required at the first 
step and that of A at the last. This inequality has a generalisation. 

Theorem VI.6.2 Let cI> be a finite set of cardinality at most n. Let F be a 
retraction onto cI>. Then for every normal matrix B and for every A E N ( cI> ) 

we have 
liB - F(B)IIQ :::; liB - AIIQ (VI.43) 

for every Q-norm. 

Proof. By Exercise IV.2.10, the inequality (VI.43) is equivalent to the 
weak majorisation 

[s(B - F(B))f -<w [s(A - BW· 

If (31, ... ,(3n are the eigenvalues of B, this is equivalent to saying that for 
all 1 :::; k :::; n we have 

k k 

LI(3ij - F((3i j W :::; Ls;(A - B) 
j=l j=l 

for every choice of indices i 1, ... ,ik · 

By Ky Fan's maximum principle (Exercise II.1.13) 

k k 

Ls;(A - B) = max LII(A - B)vjIl2, 
j=l j=l 

where the maximum is taken over all orthonormal k-tuples V1, ... ,Vk. In 
particular, if ej are unit vectors such that Bej = (3jej, then 

k k 

Ls;(A - B) ~ LII(A - (3iJei;ll2. 
j=l j=l 

But if (3 is any complex number and e any unit vector, then II (A - (3)ell ~ 
dist((3,cr(A)). (See the second proof of Theorem VI.3.3.) Hence, we have 

k k 

Ls;(A - B) ~ LI(3ij - F((3ij)12, 
j=l j=l 

and this completes the proof. • 
Exercise VI.6.3 Show that the assertion of Theorem VI.6.2 is not true 
for the Schatten p-norms, 1 ::; p < 2. (See the example in (VI.23).) 
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Corollary VI.6.4 Let A be a normal matrix, and let B be another normal 
matrix such that IIA - BII is smaller than half the distance between the 
distinct eigenvalues of A. Then 

for every Q-norm. (The quantity on the left is the Q-norm optimal match­
ing distance.) 

Proof. Let c = IIA - BII. In the proof of Theorem VI.S.l we saw that 
all the eigenvalues of B lie within the region comprising of disks of radius 
c around the eigenvalues of A. Further, each such disk contains as many 
eigenvalues of A as of B (multiplicities counted). The retraction F of The­
orem VI.6.2 then achieves a one-to-one pairing of the eigenvalues of A and 
those of B. • 

Replacing the operator norm by any other norm T in (VI.38), we can, 
define the T-Iength of a path 'Y by the same formula. Denote this by iTCr). 

Exercise VI.6.5 Let A and B be normal matrices, and let 'Y be a normal 
path joining them. Then for every Q-norm we have 

This includes Theorem VJ.5.2 as a special case. 

We will now extend this inequality to its broadest context. 

Proposition VI.6.6 Let A be a normal matrix and let 8 be half the min­
imum distance between distinct eigenvalues of A. Then there exists a posi­
tive number M (depending on 8 and the dimension n) such that any normal 
matrix B with IIA - BII :::; 8 has a representation B = U B'U*, where B' 
commutes with A and U is a unitary matrix with III - UII :::; MilA - BII· 

Proof. Let aj, 1:::; j :::; r, be the distinct eigenvalues of A, and let mj be 
the multiplicity of aj. Choose an orthonormal basis in which A = ffijajlj, 
where I j , 1 :::; j :::; r, are identity submatrices of dimensions mj. By the 
argument used in the proof of Theorem VI.5.1, the eigenvalues of B can be 
grouped into diagonal blocks Dj , where Dj has dimension mj and every 
eigenvalue of Dj is within distance 8 of aj. This implies that 

if j i= k. 

If D = ffi j D j, then there exists a unitary matrix W such that B = W D W* . 
With respect to the above splitting, let W have the block decomposition 

W = [Wjk ], 1 :::; j, k :::; r. Then 

IIA - BII IIA - WDW*II = IIAW - WDII 
II [Wjk(ajh - Dk)lll· 
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Hence, for j =I- k, 

Hence, there exists a constant K that depends only on 8 and n such that 

Let X = ffij Wjj . This is the diagonal part in the block decomposition of 
W. Hence, IIXII ::; 1 by the pinching inequality. Let Wjj = V:iPj be the 
polar decomposition of Wjj with V:i unitary and Pj positive. Then 

since Pj is a contraction. Let V = ffij V:i, Then V is unitary and from the 
above inequality, we see that 

IIX - VII::; IIX* X - III = IIX* X - W*WII· 

Hence, 

IIW - VII < IIW - XII + IIX - VII::; IIW - XII + IIX* X - W*WII 

< IIW - XII + II(X* - W*)XII + IIW*(X - W)II 

::; 311W - XII::; 3KIIA - BII· 

If we put U = WV* and M = 3K, we have III - UII ::; MilA - BII and 
B = WDW* = UVDV*U* = UB'U*, where B' = VDV*. Since B' is 
block-diagonal with diagonal blocks of size mj, it commutes with A. This 
completes the proof. • 

Proposition VI.6.7 Given a normal matrix A, a wui norm T and an 
c > 0, there exists a small neighbourhood of A such that for any normal 
matrix B in this neighbourhood we have 

dT(a(A), a(B)) ::; (1 + c)T(A - B). 

Proof. Choose B so close to A that the conditions of Proposition VI.6.6 
are satisfied. Let U, B', M be as in that proposition. 

Let S = U - I, so that U = 1+ Sand U* = 1- S + S2U*. Then 

A - B = A - B' + [B',S] + UB'SU* - B'S. 

Hence, 

T(A - B' + [B', S]) ::; T(A - B) + T(U B' SU* - B'S). 
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Since A and B' are commuting normal matrices, they can be diagonalised 
simultaneously by a unitary conjugation. In this basis the diagonal of [B', S] 
will be zero. So, by the pinching inequality 

T(A - B') :::; T(A - B' + [B', S]). 

The two inequalities above give 

dr(u(A), u(B)) :::; T(A - B) + T(U B' SU* - B'S). 

Now choose k such that 

1 T(X) 
k :::; N :::; k for all X. 

Then, using Proposition VI.6.6, we get 

T(U B' SU* - B'S) :::; 2T(B'S):::; 2kMilBII IIA - BII 
:::; 2k2 MIIBIIT(A - B). 

Now, if B is so close to A that we have 2k2 MIIBII :::; c, then the inequality 
of the proposition is valid. • 

Theorem VI.6.B Let A, B be normal matrices, and let, be any normal 
path joining them. Then there exists a permutation matrix P such that for 
every wui norm T we have 

(VI.44) 

Proof. For convenience, let ,(t) be parametrised on the interval [0,1]. Let 
,(0) = A, ,(1) = B. By Theorem VI.1.4, there exist continuous functions 
Al (t), . .. ,An(t) that represent the eigenvalues of the matrix ,(t) for each t. 
Let D(t) be the diagonal matrix with diagonal entries Aj(t). We will show 
that 

(VI.45) 

Let T be any wui norm, and let c be any positive number. Let ,[s, t] 
denote the part of the path ,0 that is defined on [s, t]. Let 

G = {t: T(D(O) - D(t)):::; (1 +c)£r(![O,t])}. (VI.46) 

Because of continuity, G is a closed set and hence it includes its supremum 
g. We will show that 9 = 1. If this is not the case, then we can choose 
g' > 9 so close to 9 that Proposition VI.6.7 guarantees 

T(D(g) - PD(g')P- 1 ) :::; (1 + c)T(!(g) -,(g')), (VI.47) 

for some permutation matrix P. Now note that 

T(D(g) - P-ID(g)P):::; T(D(g') - D(g)) +T(D(g) - PD(g')P- I ), 
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and hence if g' is sufficiently close to g, we will have T(D(g) - p- 1 D(g)P) 
small relative to the minimum distance between the distinct eigenvalues of 
D(g). We thus have D(g) = p-1 D(g)P. Hence 

T(D(g) - D(g')) = T(P-ID(g)P - D(g')) = T(D(g) - PD(g')P- 1 ). 

So, from (VI.47), 

T(D(g) - D(g')) :::; (1 + c)T(--y(g) - ,,((g')). 

From the definition of 9 as the supremum of the set G in (VI.46), we have 

T(D(O) - D(g)):::; (1 +C)£T(--y[O,gl). 

Combining the two inequalities above, we get 

T(D(O) - D(g')) :::; (1 + C)£T(--y[O, g'l). 

This contradicts the definition of g. So 9 = 1. • 
The inequality (VI.45) tells us not only that for all normal A, B and for 

all wui norms T we have 

(VI.48) 

but also that a matching of O"(A) with O"(B) can be chosen which makes 
this work simultaneously for all T. Further, this matching is the natural 
one obtained by following the curves Aj (t) that describe the eigenvalues of 
the family "((t). 

Several corollaries can be obtained now. 

Theorem VI.6.9 Let A, B be unitary matrices, and let K be any skew­
Hermitian matrix such that BA- 1 = expK. Then, for every unitarily in­
variant norm III . III, we have, 

dlll ·III (O"(A),O"(B)):::; IIIKIII· (VI.49) 

Proof. Let "((t) = (exptK)A, 0 :::; t ::; 1. Then "((t) is unitary for all 
t,,,((O) = A,"((l) = B. So, by Theorem VI.6.8, 

1 

dlll'III(u(A),O"(B)) :::; J 11I'Y'(t)llldt. 
o 

But ,,('(t) = K(exptK)A. So 11I'Y'(t) III = IIIKIII. • 
Theorem VI.6.10 Let A, B be unitary matrices. Then for every unitarily 
invariant norm 

dllllll(dA),O"(B)) :::; ~IIIA - Bill. (VI.50) 
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Proof. In view of Theorem VI.6.9, we need to show that 

inf{IIIKIII : BA- l = expK} ::; ~IIIA - Bill. 

Choose a K whose eigenvalues are contained in the interval (-i7f,i'rrj. By 
applying a unitary conjugation, we may assume that K = diag(iBl , ... , ien ). 

Then 

IliA - Bill = III! - BA-llll = Illdiag(l - ei1h , •.. , 1 - eiIJn )111. 

But if -7f < e ::; 7f, then lei ::; ~Il - eiIJl. Hence, IIIKIII ::; ~IIIA - Bill for 
every unitarily invariant norm. • 

We now give an example to show that the factor 7f /2 in the inequality 
(VI.50) cannot be reduced if the inequality is to hold for all unitarily in­
variant norms and all dimensions. Recall that for the operator norm and 
for the Frobenius norm we have the stronger inequality with 1 instead of 
7f /2 (Theorem VI.3.11 and Theorem VI.4.l). 

Example VI.6.11 Let A+ and A_ be the unitary matrices obtained by 
adding an entry ±l in the bottom left corner to an upper Jordan matrix, 
i.e., 

1 0 
o 1 

o 0 
o 0 

Then for the trace norm we have IIA+ - A-Ill = 2. The eigenvalues of A± 
are the n roots of ±l. One can see that the 11·111 -optimal matching distance 
between these two n-tuples approaches 7f as n -+ 00. 

The next theorem is a generalisation of, and can be proved using the 
same idea as, Theorem VI.5.4. 

Theorem VI.6.12 If A, B are normal matrices such that A - B is also 
normal, then for every wui norm T 

dr((J(A),u(B)) ::; T(A - B). (V1.51 ) 

This inequality, or rather just its special case when T is restricted to 
unitarily invariant norms and A, B are Hermitian, can be used to get yet 
another proof of Lidskii's Theorem. We have seen this argument earlier 
in Chapter IV. The stronger result we now have at our disposal gives a 
stronger version of Lidskii's Theorem. This is shown below. 

Let x, y be elements of en. We will say that x is majorised by y, in 
symbols x --< y, if x is a convex combination of vectors obtained from y by 
permuting its coordinates, i.e., x = L,a(JY(n a finite sum in which each YeT is 
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a vector whose coordinates are obtained by applying the permutation a to 
the coordinates of y and a(7 are positive numbers with ~a(7 = 1. When x, y 
are real vectors, this is already familiar. We will say x is softly majorised 
by y, in symbols x -<8 y, if we can write x as a finite sum x = ~Z(7y(7 in 
which Z(7 are complex numbers such that ~lz(71 :::; 1. 

n n 

Exercise VI.6.13 Let x, y be two vectors in en such that LXj and LYj 
j=l j=l 

n n 

are not zero. Ifx -<8 Y and LXj = LYj, then x -< y. 
j=l j=l 

Proposition VI.6.14 Let A,B be n x n normal matrices and let A(A), 
A(B) be two n-vectors whose coordinates are the eigenvalues of A, B, respec­
tively. Then T(A) :::; T(B) for all wui norms T if and only if A(A) -<8 A(B). 

Proof. Suppose T(A) :::; T(B) for all wui norms T. Then, using The­
orem IV.4.7, we can write the diagonal matrix Eig(A) as a finite sum 
Eig(A) = 'L.zkUkEig(B)U;;', in which Uk are unitary matrices and 'L.lzkl :::; 1. 
This shows that A(A) = ~ZkSk(A(B)), where each Sk is an orthostochas­
tic matrix. (An orthostochastic matrix S is a doubly stochastic matrix 
such that Sij = IUij 12 , where Uij are the entries of a unitary matrix.) By 
Birkhoff's Theorem each Sk is a convex combination of permutation ma­
trices. Hence, A(A) -<8 A(B). The converse follows by the same argument 
without recourse to Birkhoff's Theorem. • 

Theorem VI.6.15 Let A, B be normal matrices such that A - B is also 
normal. Then the eigenvalues of A and B can be arranged in such a way 
that if A(A) and A(B) are the n-vectors with these eigenvalues as their 
coordinates, then 

A(A) - A(B) -< A(A - B). (VI.52) 

Proof. Use Theorem VI.6.8 and the observation in Theorem VI.6.12 to 
conclude that we can arrange the eigenvalues in such a way that 

T(Eig A - Eig B) :::; T(A - B) 

for every wui norm T. By Proposition VI.6.14, this is equivalent to saying 

A(A) - A(B) -<8 A(A - B), 

where A(A) is the vector whose entries are the diagonal entries of the diag­
onal matrix Eig A. By a small perturbation, if necessary, we may assume 
that trA i- tr B. Since the components of the vectors A(A) - A(B) and 
A(A - B) must have the same (nonzero) sum, we have in fact majorisation 
rather than just the soft majorisation proved above. • 
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We can call this the Lidskii Theorem for normal matrices. It in­
cludes the classical Lidskii Theorem as a special case. 

Exercise VI.6.16 Let A, B be normal matrices such that A - B is also 
normal. Let r be any wui norm. Show that there exists a permutation matrix 
P such that 

r(A - B):::; r(EigA - P(EigB)P-l). (VI.53) 

VI. 7 Some Inequalities for the Determinant 

The determinant of the sum A + B of two matrices has no simple relation 
with the determinants of A and B. Some interesting inequalities can be 
derived using ideas introduced in this chapter. These are proved below. 

Theorem VI.7.1 Let A and B be Hermitian matrices with eigenvalues 
0!1, ... ,O!n and (31, ... ,(3n, respectively. Then 

n n 

min II (O!i + (3u(i») :::; det(A + B) :::; max II (O!i + (3u(i»), 
u u 

(VI. 54) 
i=1 i=1 

where (T varies over all permutations. 

Proof. If A and B commute, they can be diagonalised simultaneously, 
n 

and hence det(A + B) = II (O!i + (3u(i») for some (T. So, the inequality 
i=1 

(VI.54) is trivial in this case. Next note that the two extreme sides of (VI.54) 
are invariant under the transformation B -t U BU* for every unitary U. 
Hence, it suffices to prove that for a fixed Hermitian matrix A the function 
f(H) = det(A + H) on the unitary orbit UB of another Hermitian matrix 
B attains its minimum and maximum at points that commute with A. 

Let Bo be any extreme point of f on UB. Then, we must have 

~ I det(A + etK Boe-tK ) = 0, 
dt t=O 

for every skew-Hermitian K. Now, 

det(A + etK Boe-tK ) = det(A + Bo + t[K, Bo)) + O(t2 ). 

Note that, if X, Yare any two matrices and X is invertible, then 

det(X + tY) = det X(l + t tr Y x-I) + O(t2 ). 

So, if A + Bo is invertible, the condition (VI.55) reduces to 

tr[K, Bol(A + BO)-I = o. 

(VI.55) 
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This is equivalent to saying 

tr K(Bo(A + BO)-l - (A + BO)-l Bo) = O. 

If this is to be true for all skew-Hermitian K, we must have 

Thus Bo commutes with (A + BO)-l, hence with A + Bo, and hence with 
A. 

This proves the theorem under the assumption that A + Bo is invertible. 
The general case follows from this by a limiting argument. • 

Exercise VI.7.2 LetA andB be Hermitian matrices. If)";(A)+)";(B);::: 
0, then 

n n 

II()";(A)+)";(B)) ::;det(A+B)::; II()";(A)+)..J(B)). (VI.56) 
j=l j=l 

This is true, in particular, when A and B are positive matrices. 

Theorem VI. 7.3 Let A, B be Hermitian matrices with eigenvalues aj and 
(3j, respectively, ordered so that 

la11 ;::: ... ;::: lanl and 1(311;::: .. ·;::: l(3nl. 

Let T = A + iB. Then 

n 

IdetTI::; II laj +i(3n-j+1l· (VI.57) 
j=l 

Proof. The function f (t) = ~ log t is concave on the positive half-line. 
Hence, using the majorisation (VI. 7) and Corollary II.3.4, we have 

n n 

L log laj + i(3n-i+11 2: L log Sj. 
j=l j=l 

Hence, 
n n 

II laj + i(3n-j+11 ;::: II Sj = I det TI· 
j=l j=l • 

Proposition VI.7.4 Let T = A + iB, where A is positive and B Hermi­
tian. Then 

n 

I det TI = det A II[l + Sj(A- 1/2 BA- 1/2)2P/2. 
j=l 

(VI.58) 
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Proof. Since T = A1/2(I + iA-1/2 BA- 1/2)A1/2, we have 

det T = det A· det(I + iA- 1/ 2 BA- 1/2). 

Note that 

I det(I + iA- 1/2 BA-1/2W 
det[(I + iA- 1/ 2 BA-1/2)(I - iA- 1/2 BA- 1/ 2)] 

det[I + (A- 1/2 BA-1/2)2] 
n 

II [1 + Sj(A- 1/2 BA- 1/ 2)2]. 
j=1 

So, (VI.58) follows from (VI.59) and (VI.60). 

(VI.59) 

(VI.60) 

• 
Corollary VI. 7.5 If the matrix A in the Cartesian decomposition T = 
A + iB is positive, then I det TI 2: det A. 

Theorem VI. 7.6 Let T = A + iB, where A and B are positive matrices 
with eigenvalues a1 2: ... 2: an and fJ1 2: ... 2: fJn, respectively. Then, 

n 

IdetTI2: Illaj +ifJjl· 
j=1 

(VI.61) 

Proof. We may assume, without loss of generality, that both A, Bare 
positive definite. Because of relations (VI.59) and (VI.60), the theorem will 
be proved if we show 

n n 

Il[1 + Sj(A- 1/2 BA- 1/2)2] 2: II (1 + aj2fJJ). 
j=1 j=1 

Note that 
Sj(A- 1/2 BA- 1/2) = Sj(A-1/2 B1/2)2. 

From (III.20) we have 

{log Sn-j+1 (A -1/2) + log Sj (B 1/2) L -< {log Sj (A -1/2 B 1/2)}j. 

This is the same as saying 

{loge a.11/2 fJ~/2)}j -< {log Sj (A -1/2 B 1/2) k 
Since the function 10g(1 + e4t ) is convex in t, using Corollary II.3.4 we 
obtain from the last majorisation 

n n 

L 10g(1 + aj2 fJ]) 
j=1 

< L log (1 + Sj(A- 1/ 2 B 1/ 2)4) 
j=1 

n L 10g(1 + Sj(A- 1/2 BA- 1/2)2). 

j=1 

This gives the desired inequality. • 
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Exercise VI. 7. 7 Show that if only one of the two matrices A and B is 
positive, then the inequality (VI.61) is not necessarily true. 

A very natural generalisation of Theorem VI.7.1 would be the following 
statement. If A and B are normal then det(A + B) lies in the convex hull 

n 

of the products II (ai + (3u(i))' This is called the Marcus-de Oliviera 
i=1 

Conjecture and is a well-known open problem in matrix theory. 

VI. 8 Problems 

Problem VI.8.1. Let A be a Hermitian and B a skew-Hermitian matrix. 
Show that 

for every Q-norm. 

Problem VI.8.2. Let T = A + iB, where A and B are Hermitian. Show 
that, for 2 :::; p :::; 00, 

maxliEigA + Eigu(iB) II :::; 21/ 2 - 1/ P IITllp, 
u 

and that for 1 :::; p:::; 2, 

IITllp:::; 21/ p- 1/ 2 minllEigA + Eigu(iB)llp, 
u 

Problem VI.8.3. A different proof of Theorem VI.3.11 is outlined below. 
Fill in the details. 

Let n ~ 3 and let A, B be n x n unitary matrices. Assume that the 
eigenvalues aj and (3j are distinct and the distances lai - (3j I are also 
distinct. If 1'1,1'2 are two points on the unit circle, we write 1'1 < 1'2 if the 
minor arc from 1'1 to 1'2 goes counterclockwise. We write (a(31') if the points 
a, (3, l' on the unit circle are in counterclockwise cyclic order. Number the 
indices modulo n, e.g., an+! = al. 

Label the eigenvalues of A so as to have the order (ala2'" an). Let 
o = d(a(A),a(B)). Assume that 0 < 2; otherwise, there is nothing to 
prove. Label the eigenvalues of B as (31, ... , (3n in such a way that for any 
subset J of {I, 2, ... , n} and for any permutation a 

maxla- - (3-1 < maxla- - (3 (-)1 
iEJ' • - iEJ' u.· 



VI.8 Problems 185 

Then 8 = max lQ:i - {3i I. Assume, without loss of generality, that this 
l:::;,:::;n 

maximum is attained at i = 1 and that Q:1 < {31. Check the following. 

(i) If {3i < Q:i, then neither (Q:1{3i{31) nor (Q:1Q:i{31) is possible. 

(ii) There exists j such that 1Q:j+1 - {3jl > 8. Choose and fix one such j. 

(ii) We have (Q:1{31{3jQ:j+l)' 

(iv) For 1 < i < j we have ({31{3i{3j). 

Let KA be the arc from Q:j+1 positively to Q:1 and KB the arc from {31 

positively to {3j. Then there are n - j + 1 of the Q:i in KA and j of the {3i 

in K B . Use Proposition VI.3.5 now. 

Problem VI.8.4. Let Q:1, ... ,Q:n and {31, ... ,{3n be any complex numbers. 
Show that there is a number I such that 

(The proof might be long but is not too difficult.) Use this to get another 
proof of Theorem VI.3.14. 

Problem VI.8.5. Let A be a Hermitian and B a normal matrix. If the 
eigenvalues Q:j of A are enumerated as Q:1 2: ... 2: Q:n and if the eigenvalues 
{3j of B are enumerated so that Re {31 2: ... 2: Re (3n then 

Problem VI.8.6. Let A be a normal matrix with eigenvalues Q:1, ... ,Q:n' 

Let B be any other matrix and let c = IIA - BII. By Theorem VI.3.3, 
all the eigenvalues of B are contained in the set D = U D(Q:j,c). Use 

j 

the argument in the proof of Theorem VI.5.1 to show that each connected 
component of D contains as many eigenvalues of B as of A. Use this and 
the Matching Theorem (Theorem II.2.1) to show that 

d(O'(A), O'(B)) ::; (2n - l)IIA - BII· 

[If A and B are both normal, this argument together with the result ofProb­
lem 11.5.10 shows that d(O'(A), O'(B)) ::; niiA - BII· However, in this case, 
the Hoffman-Wielandt inequality gives a stronger result: d(O'(A), O'(B)) ::; 
y1i IIA-BII. We will see in the next chapter that, in fact, d(O'(A),O'(B))::; 
311A - BII in this case.] 

Problem VI.8.7. Let A be a Hermitian matrix with eigenvalues Q:1 2: 
.. , 2: Q:n, and let B be any matrix with eigenvalues {3j arranged so that 
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Relh ~ ... ~ Re,Bn. Let Re,Bj = JLj and Im,Bj = Vj' Choose an orthonormal 
basis in which B is upper triangular and 

B = M +iN +iR, 

where M = diag(JLI, ... , JLn), N = diag(vl, ... , vn) and R is strictly upper 
triangular. Show that 

IIIm(A - B)II~ = IINII~ + 1/21IRII~· 

Hence, 

Show that 

Combine the inequalities above to obtain 

Compare this with the result of Problem VI.8.5; note that there B was 
assumed to be normal. 

Problem VI.8.8. It follows from the result of the above problem that if 
A is Hermitian and B an arbitrary matrix, then 

d(u(A), u(B» :::; 5n IIA - BII· 

The factor ffn here can be replaced by another that grows only like log n. 
For this one needs the following fact, which we state without proof. (See 
the discussion in the Notes at the end of the chapter.) 

Let Z be an n x n matrix whose eigenvalues are all real. Then 

liZ - Z*II :::; TnllZ + Z*II, 
where 

2 [n/2] 2j - 1 
Tn = - '"' cot -- 71". n ~ 2n 

j=l 

The constant Tn is the smallest one for which the above norm inequality 
is true. Approximating the sum by integrals, it is easy to see that Tn/ log n 
approaches 2/ 7r as n ~ 00. 

Using the notations of Problem 7, show that 

maxlVjl:::; IIImBl1 = IIIm(A-B)II, 
1 

maxlc~j - J1jl :::; IIA - Mil = IIRe(A - B)II + "2IIR - R*II· 
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Let Z = N + R. Then Z has only real eigenvalues, Z - Z* = R - R*, and 
Z + Z* = 2 Im(A - B). Hence, 

max 1c1Oj - ,ajl ::; IIRe(A - B)II + bn + l)IIIm(A - B)II· 

This shows that 

d(u(A), u(B)) ::; bn + 2)IIA - BII· 

Problem VI.8.9. Let A be the Hermitian matrix with entries 

1 
li-jl 
o 

if 

for all 
i =J j, 
i. 

Let B = A + C where C is the skew-Hermitian matrix with entries 

_1_ 
i-j 

o 
if 
for all 

i=Jj 
i. 

Then B is strictly lower triangular, hence all its eigenvalues are o. 
Show that IIA - BII ::; 7r for all n, and IIAII = O(log n). (This needs some 

work.) Since A is Hermitian, this means that its spectral radius is O(log n). 
Thus, in this example, d(u(A), u(B)) = O(log n) and IIA - BII ::; 7r. So, 
the bound obtained in Problem 8 is not too loose. 

Problem VI.8.10. For any matrix A, let AD denote its diagonal part and 
AL, Au its parts below and above the diagonal. Thus A = AL + AD + Au· 
Show that if A is an n x n normal matrix, then 

The example in VI.6.11 shows that this inequality is sharp. 

Problem VI.8.11. Let A be a normal and B an arbitrary n x n matrix. 
Choose an orthonormal basis in which B is upper triangular. In this basis 
write A = AL + AD + Au, B = BD + Bu· By the Hoffman-Wielandt 
Theorem 

Note that 
A - B + Bu = (A - B)L + (A - B)D + Au· 

Use the result of Problem V1.8.10 to show that 

Hence, we have, for A normal and B arbitrary, 
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From this, we get for the Schatten p-norms 

dp(a(A) , a(B)) 
dp(a(A),a(B)) 

:::; n1/ p IIA - Blip, 1 :::; p :::; 2 
:::; n1- 1/ p IIA - Blip, 2:::; p :::; 00. 

Show that for 1 :::; p :::; 2 these inequalities are sharp. (See Example VI.6.l1.) 

For p = 00, this gives 

d(a(A), a(B)) :::; niiA - BII, 

which is an improvement on the result of Problem 6 above. 
If A is Hermitian, then IIAul12 = IIALI12. Using this one obtains a slightly 

different proof of the last inequality in Problem VI.8.7. 

Problem VI.B.12. Let A be an n x n Hermitian matrix partitioned as 
A = (~ ~), where M is a k x k matrix. Let the eigenvalues of A be 
>'1 2:: ... 2:: An, those of M be Ml 2:: ... 2:: Mk, and let the singular values of 
R be PI 2:: P2 2:: . .. . Show that there exist indices 1 :::; il < ... < ik :::; n 
such that for every symmetric gauge function <I> we have 

In other words, for every unitarily invariant norm we have 

IIldiag(Ml - Ai" ... ,Mk - Aik) III :::; IIIR EB Rill· 

In particular, we have 

and 

Use an argument similar to the one in the proof of Theorem VI.4.1 to 
show that the factor J2 in the last inequality can be replaced by 1. This 
raises the question whether we have 

for all unitarily invariant norms. This is not so, as can be seen from the 
example 

A=( ~ ~ V;). 
J3 0 0 

Problem VI.B.13. Let <I> be a closed subset of C, and let F be a retraction 
onto <I>. Let N (<I» be the set of all normal matrices whose spectrum is 
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contained in <I>. Show that if <I> is a convex set, then for every unitarily 
invariant norm 

IIIB - F(B)III ~ IIIB - Alii, 
whenever B is a normal matrix and A E N(<I». If <I> is any closed set, then 
the above inequality is true for all Q-norms. 

Problem VI.8.14. The aim of this problem and the next, is to outline 
an alternative approach to the normal path inequality (VI.44). This uses 
slightly more sophisticated notions of differential geometry. 

Let A be any n x n matrix, and let 0 A be the orbit of A under the action 
of the group GL(n), i.e., 

OA = {gAg-I: g E GL(n)}. 

This is called the similarity orbit of Ai it is the set of all matrices 
similar to A. Every differentiable curve in 0 A passing through A can be 
parametrised locally as etX Ae-tX , X E M(n). By the same argument as in 
Section VI.4, the tangent space to 0 A at the point A can be characterised 
as 

The orthogonal complement of this space in M(n) can be calculated as in 
Lemma VI.4.2. Show that 

Now, a matrix A is normal if and only if Z(A*) = Z(A). So, for a normal 
matrix we have a direct sum decomposition 

Now, if BE OA, then B and A have the same set of eigenvalues and hence 

If BE Z(A), then there is an orthonormal basis in which A and B are both 
upper triangular. Hence, for such a B, 

Now, let ,(t), 0 ~ t ~ 1 be a C 1 curve in the space of normal matrices. 
Let ,(0) = Ao,,(l) = AI. Let cp(A) = d2 (o-(Ao),(j(A)). At each point ,(t) 
consider the decomposition 

M(n) = T-y(tp-y(t) EB Z(,(t)) 

obtained above. Then, as we move along ,(t), the rate of change of the 
function cp is zero in the first direction in this decomposition, and in the 
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second, it is bounded by the rate of change of the argument. Hence we 

should have 

Prove this. Note that this says that 

if'"Y is a C 1 curve passing through normal matrices and joining Ao to AI. 

Problem VI.8.15. The two crucial properties of the Frobenius norm used 
above were its invariance under the conjugations A ~ U AU* and the 
pinching inequality. The first made it possible to change to any orthonormal 
basis, and the second was used to conclude that the diagonal of a matrix 
has norm smaller than the whole matrix. Both these properties are enjoyed 
by all wui norms. So, the method outlined above can be adopted to work 
for all wui norms to give the same result. (Some conditions on the path are 
necessary to ensure differentiability of the functions involved.) 

Problem VI.8.16. Fill in the details in the following outline of a proof of 
the statement: every complex matrix with trace 0 is a commutator of two 
matrices. 

Let A be a matrix such that trA = o. Assume that A is upper triangular. 
Let B be the nilpotent upper Jordan matrix (i.e., B has all entries 0 except 
the ones on the first superdiagonal, which are all 1). Then Z(B*) contains 
only polynomials in B*. (This is a general fact: Z(X) contains only polyno­
mials in X if and only if in the Jordan form of X there is just one block for 
each different eigenvalue.) Thus Z(B*) consists of lower triangular matrices 
with constant diagonals. Show that A is orthogonal to all such matrices. 
Hence A is in the space TsOs, and so A = [B, CJ for some C. 

VI. 9 Notes and References 

Perturbation theory for eigenvalues is of interest to mathematicians, physi­
cists, engineers, and numerical analysts. Among the several books that deal 
with this topic are the venerable classics, T. Kato, Perturbation Theory for 
Linear Operators, Springer-Verlag, 1966, and J .H. Wilkinson, The Algebraic 
Eigenvalue Problem, Oxford University Press, 1965. The first is addressed 
to the problems of quantum physics, the second to those of numerical anal­
ysis. Matrix Computations by G.H. Golub and C.F. Van Loan, The Johns 
Hopkins University Press, 1983, has enough of interest for the theorist and 
for the designer of algorithms. Much closer to the spirit of our book (but a 
lot more appealing to the numerical analyst) is Matrix Perturbation Theory 
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by G.W. Stewart and J.-G. Sun, Academic Press, 1990. Much of the mate­
rial in this chapter has appeared before in R. Bhatia, Perturbation Bounds 
for Matrix Eigenvalues, Longman, 1987. 

In Section VI.1, we have done the bare minimum of qualitative analysis 
required for the latter sections. The questions of differentiability and an­
alyticity of eigenvalues and eigenvectors, asymptotic expansions and their 
convergence, and other related matters are discussed at great length by T. 
Kato, and by H. Baumgartel, Analytic Perturbation Theory for Matrices 
and Operators, Birkhauser, 1984. See also M. Reed and B. Simon, Analysis 
of Operators, Academic Press, 1978. 

The proof of Theorem VI.1.2 given here is adopted from H. Whitney, 
Complex Analytic Varieties, Addison Wesley, 1972. Other proofs may be 
found in R. Bhatia and K.K. Mukherjea, The space of unordered tuples of 
complex numbers, Linear Algebra Appl., 52/53 (1983) 765-768. The proof 
of Theorem VI.1.4 is taken from T. Kato. 

Theorem VI.4.1 was proved in A.J. Hoffman and H.W. Wielandt, The 
variation of the spectrum of a normal matrix, Duke Math J., 20 (1953) 
37-39. This was believed to be the next best thing to having an analogue of 
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VII 
Perturbation of Spectral Subspaces 
of Normal Matrices 

In Chapter 6 we saw that the eigenvalues of a (normal) matrix change 
continuously with the matrix. The behaviour of eigenvectors is more com­
plicated. The following simple example is instructive. Let A = (l"6E l~E) EEl 

H, B = (! ~) EEl H, where H is Hermitian. The eigenvalues of the first 2 x 2 
block of A are 1 + c, 1 - c. The same is true for B. The corresponding nor­
malised eigenvectors are (1,0) and (0,1) for A, and jz(l, 1) and jz(l, -1) 
for B. As E ----7 0, B and A approach each other, but their eigenvectors re­
main stubbornly apart. Note, however, that the eigenspaces that these two 
eigenvectors of A and B span are identical. In this chapter we will see that 
interesting and useful perturbation bounds may be obtained for eigenspaces 
corresponding to closely bunched eigenvalues of normal matrices. 

Before we do this, it is necessary to introduce notions of distance between 
two subs paces. Also, it turns out that this perturbation problem is closely 
related to the solution of the matrix equation AX - X B = Y. This equation 
called the Sylvester Equation, arises in several other contexts. So, we 
will study it in some detail before applying the results to the perturbation 
problem at hand. 
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VII.1 Pairs of Subspaces 

We will be dealing with block decompositions of matrices. To keep track of 
dimensions, we will find it convenient to write 

k e 
A= 

for a block-matrix in which k and e are the number of columns, and m and 
p are the number of rows in the blocks indicated. 

Theorem VII.I.1 (The QR Decomposition) Let A be an m x n matrix, 
m :::: n. Then there is an m x m unitary matrix Q such that 

n 

Q*A= (R) n o m-n' 
(VII. 1) 

where R is upper triangular with nonnegative real diagonal entries. 

Proof. For a square matrix A, this was proved in Chapter 1. The same 
proof also works here. (In essence this is just the Gram-Schmidt pro­
cess.) • 

The matrix R above is called the R factor of A. 

Exercise VII.1.2 Let A be an m x n matrix with rank A = n. Then the 
R factor in the QR decomposition of A has positive diagonal elements and 
is uniquely determined. (See Exercise 1.2.2.) If we write 

n m-n 

then we have 
A = Q1R, Ql = AR-1. 

Thus Ql is uniquely determined by A. However, Q2 need not be unique. 
Note the range of A is the range of Ql, and its orthogonal complement is 
the range of Q2. 

Exercise VII.I.3 Let A be an m x n matrix with m ~ n. Then there exists 
an n x n unitary matrix W such that 

m n-m 

AW= (L o )m, 

where L is lower triangular and has nonnegative real diagonal entries. 
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We remark here that it is only for convenience that we choose R (and 
L) to have nonnegative diagonal entries. By modifying Q (and W), we can 
also make R (and L) have nonpositive real diagonal entries. 

Exercise VII.lo4 Let A be an m x n matrix with rank A = r. Then there 
exists an n x n permutation matrix P and an m x m unitary matrix Q such 
that 

Q*AP= ( ~1 

where Rn is an r x r upper triangular matrix with positive diagonal entries. 
This is called a rank revealing QR decomposition. 

Exercise VII.lo5 Let A be an m x n matrix with rank A = r. Then there 
exists an m x m unitary matrix Q and an n x n unitary matrix W such 
that 

Q*AW = (~ ~), 
where T is an r x r triangular matrix with positive diagonal entries. 

Theorem VII.lo6 (The CS Decomposition) Let W be an n x n unitary 
matrix partitioned as 

£ m 

W= )! (VII.2) 

where £ ::; m. Then there exist unitary matrices U = diag(Un , U22 ) and 
V = diag(Vn, V22 ), where Un, Vn are £ x £ matrices, such that 

£ 

U*WV= (~ 
£ 

-8 
C 
o 

m-£ 

o 
o 
I 
) ~ 

m-£ 
(VII.3) 

where C and 8 are nonnegative diagonal matrices, with diagonal entries 
o ::; C1 ::; ... ::; c£ ::; 1 and 1 ~ Sl ~ ... ~ Se ~ 0, respectively, and 

Proof. For the sake of brevity, let us call a map X ---+ U* XV on the 
space of n x n matrices a U-transform, if U, V are block diagonal unitary 
matrices with top left blocks of size £ x £. The product of two U-transforms 
is again a U-transform. We will prove the theorem by showing that one 
can change the matrix W in (VII.2) to the form (VII.3) by a succession of 
U -transforms. 
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Let Ull , Vll be £ x £ unitary matrices such that 

k 

U~1 W ll Vll = (~1 
£-k 

~ ), 
where C1 is a diagonal matrix with diagonal entries 0 :S C1 :S C2 :S ... :S 
Ck < 1. This is just the singular value decomposition: since W is unitary, all 
singular values of W ll are bounded by 1. Then the U-transform in which 
U = diag (Ull , I) and V = diag (Vll' f) reduces W to the form 

k £-k m 

k C' 0 

~:-} £ - k _O_ f 
(VIl.4) 

m ? ? 

where the structures of the three blocks whose entries are indicated by ? 
are yet to be determined. Let W 21 denote now the bottom left corner of the 
matrix (VIl.4). By the QR Decomposition Theorem we can find an m x m 
unitary matrix Q22 such that 

£ 
m-£ ' (VIl.5) 

where R is upper triangular with nonnegative diagonal entries. The U­
transform in which U = diag (1, Q22) and V = diag (1, f) leaves the top 
left corner of (VIl.4) unchanged and changes the bottom left corner to the 
form (VIl.5). Assume that this transform has been carried out. Using the 
fact that the columns of a unitary matrix are orthonormal, one sees that 
the last £ - k columns of R must be zero. Now examine the remaining 
columns, proceeding from left to right. Since C1 is diagonal with nonnega­
tive diagonal entries, all of which are strictly smaller than 1, one sees that 
R is also diagonal. Thus the matrix W is now reduced to the form 

k £-k m 

k C1 0 ? 
£-k 0 f ? 

k 51 0 ? 
(VIl.6) 

£-k 0 0 ? 
m-£ 0 0 ? 

in which 51 is diagonal with Cr + 5r = f, and hence 0 :S 51 :S f. The 
structures of the two blocks on the right are yet to be determined. Now, by 
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Exercise VII. 1.3 and the remark following it, we can find an m x m unitary 
matrix V22 which on right multiplication converts the top right block of 
(VII.6) to the form 

£ 
£ (L 

m-£ 
o ), (VII. 7) 

in which L is lower triangular with nonpositive diagonal entries. The U­
transform in which U = diag (1,1) and V = diag (1, V22 ) leaves the two 
left blocks in (VII.6) unchanged and converts the top right block to the 
form (VII.7). Again, orthonormality of the rows of a unitary matrix and 
a repetition of the argument in the preceding step show that after this 
U-transform the matrix W is reduced to the form 

k £-k k £-k m-£ 
k C1 0 -Sl 0 0 
£-k 0 I 0 0 0 

k Sl 0 X33 X 34 X35 
(VII.8) 

£-k 0 0 X 43 X 44 X 45 
m-£ 0 0 X53 X 54 X55 

Now, we determine the form of the bottom right corner. Since the rows of 
a unitary matrix are mutually orthogonal, we must have C1 S 1 = Sl X 33. 

But C1 and Sl are diagonal and Sl is invertible. Hence, we must have 
X33 = C1 . But then the blocks X 34 , X 35 , X 43 , X53 must all be 0, since the 
matrix (VII.8) is unitary. So, this matrix has the form 

k £-k k £-k m-£ 
k C1 0 -Sl 0 0 
£-k 0 I 0 0 0 

k Sl 0 C1 0 0 (VII.9) 

£-k 0 0 0 X 44 X 45 
m-£ 0 0 0 X 54 X55 

Let X = (;:: ;::). Then X is a unitary matrix of size m - k. Let 

U = diag (Ie, h, X), where It and h are the identity operators of sizes £ 
and k, respectively. Then, multiplying (VII.9) on the left by U*- another 
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U-transform - we reduce it to the form 

k £-k k £-k m-£ 
k C1 0 -81 0 0 
£-k 0 I 0 0 0 

k 81 0 C1 0 0 (VII. 10) 
£ - k 0 0 0 I 0 

m - £ 0 0 0 0 I 

If we now put 

k £-k 

C= (~1 0 ) k 
I £-k 

and 

k £-k 

8= ( ~1 0 ) k 
0 £-k' 

then the matrix (VII.IO) is in the desired form (VIL3). • 
Exercise VII.1.7 Let W be as in (VII.2) but with £ 2': m. 8how that there 
exist unitary matrices U = diag (Ull , U22 ) and V = diag (Vll' V22 ), where 
Ull, Vll are £ x £ matrices, such that 

U*WV= 

n - £ 2£ - n n - £ 

( ~ o 
I 
o 1) n-£ 

2£-n 
n-£ 

(VILl1) 

where C and 8 are nonnegative diagonal matrices with diagonal entries 
o :::; Cl :::; ... :::; Cn-f :::; 1 and 1 2': SI 2': ... 2': Sn-f 2': 0, respectively, and 
C2 + 82 = I. 

The form of the matrices C and 8 in the above decompositions suggests 
an obvious interpretation in terms of angles. There exist (acute) angles 
()j, ~ 2': ()1 2': ()2 2': ... 2': 0, such that Cj = cos ()j and Sj = sin ()j. 

One of the major applications of the CS decomposition is the facility it 
provides for analysing the relative position of two subspaces of en. 
Theorem VII.1.8 Let X j ,Yj be n x £ matrices with orthonormal 
columns. Then there exist f! x f! unitary matrices U j and VI and an n x n 
unitary matrix Q with the following properties. 
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(i) If 2£ ::; n, then 

£ 

m £ 
QX1U1 = £ 

n-2f 
(VII.12) 

£ 

(D £ 
QY1V1 = £ 

n-2f 
(VII.13) 

where C,8 are diagonal matrices with diagonal entries 0 ::; C1 ::; •.• ::; Cl ::; 

1 and 1 2: Sl 2: ... 2: Sl 2: 0, respectively, and C 2 + 8 2 = I. 
(ii) If 2f > n, then 

n-£ 2f-n 

( I 0 ) n-£ 
QX1U1 = 0 I 2f-n (VII.14) 

0 0 n-£ 

n-£ 2f-n 

( C 0 ) n-£ 
QY1V1 = 0 I 2f-n (VII. 15) 

8 0 n-£ 

where C,8 are diagonal matrices with diagonal entries 0 ::; C1 < ... < 
Cn-l ::; 1 and 1 2: Sl 2: ... 2: Sn-l 2: 0, respectively, and C2 + 8 2 = I. 

Proof. Let 2£ ::; n. Choose n x (n - £) matrices X 2 and Y2 such that 
X = (Xl X 2 ) and Y = (YI Y2 ) are unitary. Let 

By Theorem VII.1.6 we can find block diagonal unitary matrices U 
diag(UI , U2 ) and V = diag(Vl' V2 ), in which UI and VI are £ x £ unitaries, 
such that 

Let Q = (XU)* = (XIUI X 2U2 )*. Then from the first columns of the two 
sides of the above equation we obtain the equation (VII.13). For this Q the 
equation (VII.12) is also true. 
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When 2£ > n, the assertion of the theorem follows, in the same manner, 
from the decomposition (VII.l1). • 

This theorem can be interpreted as follows. Let [; and F be £-dimensional 
subspaces of en. Choose orthonormal bases Xl, ... , Xc and Yl, ... , Yc for 
these spaces. Let Xl = (Xl X2 ... Xc), Yl = (Yl Y2 ... Yc). Premultiply­
ing Xl, Yl by Q corresponds to a unitary transformation of the whole space 
en, while post multiplying Xl by Ul and Yl by VI corresponds to a change 
of bases within the spaces [; and F, respectively. Thus, the theorem says 
that, if 2£ :::; n, then there exists a unitary transformation Q of en such 
that the columns of the matrices on the right-hand sides in (VII.12) and 
(VII.13) form orthonormal bases for Q[; and QF, respectively. The span 
of those columns in the second matrix, for which Sj = 1, is the orthogonal 
complement of Q[; in QF. When 2£ > n, the columns of the matrices on 
the right-hand sides of (VII.14) and (VII.15) form orthonormal bases for 
Q[; and QF, respectively. The last 2£ - n columns are orthonormal vectors 
in the intersection of these two spaces. The space spanned by those columns 
of the second matrix, in which Sj = 1, is the orthogonal complement of Q[; 
in QF. 

The reader might find it helpful to see what the above theorem says when 
[; and F are lines or planes in ]R3. 

Using the notation above, we set 

8([;, F) = arcsin S. 

This is called the angle operator between the subspaces [; and F. It is a 
diagonal matrix, and its diagonal entries are called the canonical angles 
between the subspaces [; and F. 

If the columns of a matrix X are orthonormal and span the subspace [;, 
then the orthogonal projection onto [; is given by the matrix E = X X*. 
This fact is used repeatedly below. 

Exercise VII.1.9 Let [; and F be subspaces of en. Let X and Y be ma­
trices with orthonormal columns that span [; and F, respectively. Let E, F 
be the orthogonal projections with ranges [;, F. Then the nonzero singular 
values of EF are the same as the nonzero singular values of X*Y. 

Exercise VII.1.lD Let [;, F be subspaces of en of the same dimension, 
and let E, F be the orthogonal projections with ranges [;, F. Then the sin­
gular values of EF are the cosines of the canonical angles between [; and 
F, and the nonzero singular values of El. F are the sines of the nonzero 
canonical angles between [; and F. 

Exercise VII.1.ll Let [;, F and E, F be as above. Then the nonzero sin­
gular values of E - F are the nonzero singular values of El. F, each counted 
twice; i. e., these are the numbers Sl, Sl, S2, S2, .... 
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Note that by Exercise VII.1.I0, the angle operator 8(c, F) does not 
depend on the choice of any particular bases in c and F. Further, 8(c, F) = 
8(F,c). 

It is natural to define the distance between the spaces c and F as 
IIE-FII. In view of Exercise VII. 1. 11, this is also the number IIE~ FII. More 
generally, we might consider IIIE~FIII, for every unitarily invariant norm, 
to define a distance between the spaces c and F. In this case, IIIE - Fill = 

IIIE~ F EB EF~III· 
We could use the numbers IIIE~ Fill to measure the separation of c and 

F, even when they have different dimensions. Even the principal angles can 
be defined in this case: 

Exercise VII.1.12 Let x, y be any two vectors in en. The angle between 
x and y is defined to be a number L(x,y) in [0,71'/2] such that 

-1 Iy*xl 
L(x, y) = cos Ilxll Ilyll 

Let C and F be subspaces of en, and let dim c > dim F = m. Define 
(h, ... ,em recursively as 

max 
xEE: 

xJ...[Xl'···,Xk_l] 

min 
yEF 

y-L[Yl,···,Yk-ll 

Then ~ :::: e1 :::: ,., :::: em :::: 0. The numbers ek are called the principal 
angles between c and F. Show that when dim c = dim F, this coincides 
with the earlier definition of principal angles. 

Exercise VII.1.13 Show that for any two orthogonal projections E, F we 
have liE - FII ::; 1. 

Proposition VII.1.14 Let E, F be two orthogonal projections such that 
liE - FII < 1. Then the ranges of E and F have the same dimensions. 

Proof. Let C, F be the ranges of E and F. Suppose dim C > dim F. 
We will show that c n F~ contains a nonzero vector. This will show that 
liE - FII = 1. 

Let g = EF. Then g C C, and dim g ::; dim F < dim c. Hence c n g~ 
contains a nonzero vector x. It is easy to see that c n g~ c F ~. Hence, 
x EF~. • 

In most situations in perturbation theory we will be interested in compar­
ing two projections E, F such that liE - FII is small. The above proposition 
shows that in this case dim E = dim F. 
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Example VII.1.15 Let 

The columns of Xl and ofYl are orthonormal vectors. If we choose unitary 
matrices 

1(11) 1( 1 Ul = v'2 1 -1 ,Vi = v'2 -1 

and 

~ -~ -~) 
-1 1 -1 ' 
-1 -1 1 

then we see that 

Thus in the space ]R4 (or ( 4 ), the canonical angles between the 2-dimensional 
subspaces spanned by the columns of Xl and Y l , respectively, are ~, ~. 

VII.2 The Equation AX - XB = Y 

We study in some detail the Sylvester equation, 

AX-XB=Y. (VII. 16) 

Here A is an operator on a Hilbert space 1-£, B is an operator on a Hilbert 
space K, and X, Yare operators from K into 1-£. Most of the time we are 
interested in the situation when K = 1-£ = en, and we will state and prove 
our results for this special case. The extension to the more general situation 
is straightforward. 

We are given A and B, and we ask the following questions about the 
above equation. When is there a unique solution X for every Y? What is 
the form of the solution? Can we estimate IIXII in terms of IIYII? 

Theorem VII.2.1 Let A, B be operators with spectra a(A) and a(B), re­
spectively. If a(A) and a(B) are disjoint, then the equation (VII.16) has a 
unique solution X for every Y. 
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Proof. Let T be the linear operator on the space of operators, defined by 
T (X) = AX - X B. The conclusion of the theorem can be rephrased as: T 
is invertible if u(A) and u(B) are disjoint. 

Let A(X) = AX and B(X) = XB. Then T = A - B and A and B 
commute (regardless of whether A and B do). Hence, u(T) c u(A) -u(B). 
If x is an eigenvector of A with eigenvalue Q, then the matrix X, one of 
whose columns is x and the rest of whose columns are zero, is an eigenvector 
of A with eigenvalue Q. Thus the eigenvalues of A are just the eigenvalues 
of A, each counted n times as often. So u(A) = u(A). In the same way, 
u(B) = u(B). Hence u(T) c u(A)-u(B). So, if u(A) and u(B) are disjoint, 
then 0 ~ u(T). Thus, T is invertible. • 

It is instructive to note that the scalar equation ax - xb = y has a unique 
solution x for every y if a - b =f. o. The condition 0 ~ u(A) - u(B) can be 
interpreted to be a generalisation of this to the matrix case. This analogy 
will be helpful in the discussion that follows. 

Consider the scalar equation ax - xb = y. Exclude the trivial cases in 
which a = b and in which either a or b is zero. The solution to this equation 
can be written as 

( b)-I 
X = a-I 1- ~ y. 

If Ibl < lal, the middle factor on the right can be expanded as a convergent 
power series, and we can write 

00 (b)n x = a-I L ~ y 
n=O 

00 

= L a-n-Iybn. 
n=O 

This is surely a complicated way of writing x = y/(a - b). However, it 
suggests, in the operator case, the form of the solution given in the theorem 
below. For the proof of the theorem we will need the spectral radius 
formula. This says that the spectral radius of any operator A is given by 
the formula 

spr(A) = lim IIAnIII/n. 
n-+oo 

Theorem VII.2.2 Let A, B be operators such that u(B) c {z : Izl < p} 
and u(A) c {z : Izl > p} for some P > o. Then the solution of the equation 
AX-XB=Y is 

00 

X = L A-n- I YBn. (VII. 17) 
n=O 

Proof. We will prove that the series converges. It is then easy to see that 
X so defined is a solution of the equation. 

Choose PI < P < P2 such that u(B) is contained in the disk {z : Izl < PI} 
and u(A) is outside the disk {z: Izl < P2}. Then u(A-I) is inside the disk 
{z : Izl < P21}. By the spectral radius formula, there exists a positive 
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integer N such that for n ~ N, IIBnll :::; Pl and IIA-nll < p"2n. Hence, for 
n ~ N, IIA-n-1YBnll :::; (pI/P2)nIlA-1YII. Thus the series in (VII.17) is 
convergent. ' • 

Another solution to (VII.16) is obtained from the following considera-
00 

tions. If Re(b - a) < 0, the integral J et(b-a)dt is convergent and has the 
o 

value a~b' Thus, in this case, the solution of the equation ax - xb = y can 
00 

be expressed as x = J et(b-a)y dt. This is the motivation for the following 
o 

theorem. 

Theorem VII.2.3 Let A and B be operators whose spectra are contained 
in the open right half-plane and the open left half-plane, respectively. Then 
the solution of the equation AX - X B = Y can be expressed as 

00 

X = j e-tAYetB dt. 

o 
(VII. 18) 

Proof. It is easy to see that the hypotheses ensure that the integral given 
above is convergent. If X is the operator defined by this integral, then 

00 

AX - XB = j(Ae-tAYetB - e-tAYetB B)dt 

o 
_e-tAYetBI: = Y. 

So X is indeed the solution of the equation. • 
Notice that in both the theorems above we made a special assumption 

about the way u(A) and u(B) are separated. No such assumption is made 
in the theorem below. Once again, it is helpful to consider the scalar case 
first. Note that 

1 (1 1) 1 
(a - ()(b - () = a - ( - b - ( b - a' 

So, if r is any closed contour in the complex plane with winding numbers 
1 around a and 0 around b, then by Cauchy's integral formula we have 

j 1 271" i 
(a_()(b_()d(= a-b' 

r 

Thus the solution of the equation ax - xb = y can be expressed as 

Y d(. 
(a-()(b-() 
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The appropriate generalisation for operators is the following. 

Theorem VII.2.4 Let A and B be operators whose spectra are disjoint 
from each other. Let r be any closed contour in the complex plane with 
winding numbers 1 around 0"( A) and 0 around 0"( B). Then the solution of 
the equation AX - X B = Y can be expressed as 

(VII.19) 

Proof. If AX - X BY, then for every complex number (, 
(A - ()X - X(B - () = Y. If A - ( and B - ( are invertible, this gives 

X(B - C)-I - (A - ()-I X = (A _ ()-IY(B _ ()-I. 

Integrate both sides over the given contour r and note that J(B-()-Id( = 
r 

o and - J(A - ()-Id( = 27riI. This proves the theorem. 
r • 

Our principal interest is in the case when A and B in the equation 
(VII.16) are both normal or, even more specially, Hermitian or unitary. In 
these cases more special forms of the solution can be obtained. 

Let A and B be both Hermitian. Then iA and iB are skew-Hermitian, 
and hence their spectra lie on the imaginary line. This is just the opposite of 
the situation that Theorem VII.2.3 was addressed to. If we were to imitate 

00 

that solution, we would tryout the integral J e-itA YeitB dt. This, however, 
o 

does not converge. This can be remedied by inserting a convergence factor: 
a function f in L 1 (IR). If we set 

00 

X = f e-itAy eitB f( t)dt, 

-00 

then this is a well-defined operator for each f EL I (IR), since for each t the 
exponentials occurring above are unitary operators. Of course, such an X 
need not be a solution of the equation (VII.16). Can a special choice of f 
make it so? Once again, it is instructive to first examine the scalar case. In 
this case, the above expression reduces to 

x=yj(a-b), 

where j is the Fourier transform of f, defined as 

00 

j(s) = fe-its f(t)dt. (VII.20) 
-00 
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So, if we choose an f such that j(a - b) = a~b' we do have ax - xb = y. 
The following theorem generalises this to operators. 

Theorem VII.2.5 Let A, B be Hermitian opemtors whose spectm are dis­
joint from each other. Let f be any function in Ll(JR.) such that j(8) = i 
whenever 8 E a(A)-a(B). Then the solution of the equation AX -XB = Y 
can be expressed as 

00 

X = J e-itAYeitB f(t)dt. (VII.21) 
-00 

Proof. Let a and 13 be eigenvalues of A and B with eigenvectors u and 
v, respectively. Then, using the fact that eitA is unitary and its adjoint is 
e-itA , we see that 

(u, Ae-itAYeitBv) = (eitA Au, YeitBv) 

eit(.B-<»a(u, Yv). 

A similar consideration shows that 

(u, e-itAYeitB Bv) = eit(.B-<» f3(u, Yv). 

Hence, if X is given by (VII.21), we have 

00 

(u, (AX - XB)v) = (a - f3)(u, Yv) J eit(.B-<» f(t)dt 

-00 

(a - f3)(u, Yv)j(a - 13) 
(u, Yv). 

Since eigenvectors of A and B both span the whole space, this shows that 
AX-XB=Y. • 

The two theorems below can be proved using the same argument as 
above. For a function f in Ll (JR.2 ) we will use the notation j for its Fourier 
transform, defined as 

00 00 

j(81,82) = J J e-i(tlsl+t2s2)f(tl,t2)dtldt2. 

-00 -00 

Theorem VII.2.6 Let A and B be normal opemtors whose spectm are 
disjoint from each other. Let A = Al + iA2, B = Bl + iB2, where Al and 
A2 are commuting Hermitian opemtors and so are Bl and B 2· Let f be 
any function in Ll(I~.2) such that j(81,82) = Sl~iS2 whenever 81 + i82 E 
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(T(A) - (T(B). Then the solution of the equation AX - XB = Y can be 

expressed as 
00 00 

X = J J e-i(tlAl+t2A2)Yei(tlBl+t2B2) f(tl, t2)dt1dt2' (VII.22) 

-(Xl -00 

Theorem VII.2.7 Let A and B be unitary operators whose spectra are 
disjoint from each other. Let {an}~oo be any sequence in £1 such that 

00 1 
'""' a ein8 = --. whenever ei8 E ((T(A))-l . (T(B). L...J n 1 _ e,8 

n=-oo 

Then the solution of the equation AX - X B = Y can be expressed as 

00 

x = L anA-n- 1YBn. (VII.23) 
n=-oo 

The different formulae obtained above lead to estimates for IIIXIII when 
A and B are normal. These estimates involve IIIYIII and the separation 8 
between (T(A) and (T(B), where 

8 = dist((T(A) , (T(B)) = min{IA - fl.1 : A E (T(A), fl. E (T(B)}. 

The special case of the Frobenius norm is the simplest. 

Theorem VII.2.8 Let A and B be normal matrices, and let 8 
= dist((T(A), (T(B)) > O. Then the solution X of the equation AX - XB = 
Y satisfies the inequality 

(VII. 24) 

Proof. If A and B are both diagonal with diagonal entries A1,"" An 
and fl.1, ... ,fl.n, respectively, then the entries of X and Yare related by the 
equation Xij = Yij / ()'i - fl.j). From this (VII. 24) follows immediately. 

If A, B are any normal matrices, we can find unitary matrices U, V and 
diagonal matrices A', B' such that A = U A' U* and B = V B'V*. The 
equation AX - X B = Y can be rewritten as 

UA'U*X -XVB'V* = Y 

and then as 
A'(U* XV) - (U* XV)B' = U*YV. 

So, we now have the same type of equation but with diagonal A', B'. Hence, 

By the unitary invariance of the Frobenius norm this is the same as the 
inequality (VII.24). • 
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Example VII.2.9 If A or B is not normal, no inequality like (VII.24) 
is true in general. For example, if A = Y = I and B = (g ~), then the 
equation AX - XB = Y has the solution X = (~ i). Here 8 = 1, 11Y112 = 
../2, but IIXI12 can be made arbitrarily large by choosing t large. Thus we 
cannot even have a bound like IIXI12 ~ ~11Y112 for any constant c in this 
case. 

Example VII.2.10 In this example all matrices involved are Hermitian: 

( -3 0) 
B = 0 1 ' 

( '1 v'I5) X= v'I5 3 ' ( 6 2v'I5 ) 
Y = 2v'I5 -6 . 

Then AX - XB = Y. Here 8 = 2. But, for the operator norm, IIXII > 
~IIYII· Thus, the inequality IIXII ~ illYll need not hold even for Hermitian 
A,B. 

In the next theorems we will see that we do have IIIXIII ~ ~ 111Y11i for a 
small constant c when A and B are normal. When the spectra of A and B 
are separated in a special way, we can choose c = 1. 

Theorem VII.2.11 Let A and B be normal operators such that the spec­
trum of B is contained in a disk D( a, p) and the spectrum of A lies outside 
a concentric disk D( a, p+8). Then, the solution of the equation AX - X B = 
Y satisfies the inequality 

IIIXIII ~ ~IIIYIII (VII.25) 

for every unitarily invariant norm. 

Proof. Applying a translation, we can assume that a = O. Then the 
solution X can be expressed as the infinite series (VII. 17) . From this we 
get 

(Xl 

IIIXIII < LIIA-11In+lIIIYIIIIIBlln 
n=O 

(Xl 

< IllY III L(p + 8)-n-l pn 
n=O 

~IIIYIII. • 
Either by taking a limit p -t 00 in the above argument or by using the 

form of the solution (VII.I8), we can prove the following. 
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Theorem VII.2.12 Let A and B be normal operators with a(A) and a(B) 
lying in half-planes separated by a strip of width 8. Then the solution of the 
equation AX - X B = Y satisfies the inequality (VII. 25). 

Exercise VII.2.13 Here is an alternate proof of Theorem VII. 2. 11. As­
sume, without loss of generality, that a = O. Then A is invertible. Write 
X = A-1(y + XB) and obtain the inequality (VII.25) directly from this. 

Exercise VII.2.14 Choose unit vectors u and v such that Xv = IIXllu 
and X*u = IIXllv; i.e., u and v are left and right singular vectors of 
X corresponding to its largest singular value. Then (u, (AX - XB)v) = 

IIXII((u,Au) - (v,Bv)). Use this to prove Theorem VII.2.11 in the special 
case of the operator norm. 

Theorem VII.2.15 Let A and B be Hermitian operators 
with dist (a(A), a(B)) = 8 > O. Then, the solution of the equation 
AX - X B = Y satisfies the inequality 

IIIXIII :::; c; IllY III (VII.26) 

for every unitarily invariant norm, where Cl is a positive real number de­
fined as 

1 • 1 
Cl = inf{llfll£l : f E L (~), f(s) = - when lsi:::: I}. 

s 
(VII.27) 

Proof. Let f6 be any function in Ll(~) such that j6(S) = ~ whenever 
lsi:::: 8. By Theorem VII.2.5 we have 

00 

X = J e-itAYeitB Jti(t)dt. 

-00 

Hence, 
00 00 

IIIXIII:::; IllY III J If6(t)ldt = ~IIIYIII J If(t)ldt, 
-00 -00 

where f(t) = Jti(t/8). Note that j(s) = ~ whenever lsi:::: 1. Any f with 
this property satisfies the above inequality. • 

Exactly the same argument, using Theorem VII.2.6 now leads to the 
following. 

Theorem VII.2.16 Let A and B be normal operators with 
dist (a(A), a(B)) = 8 > O. Then the solution of the equation AX - XB = 
Y satisfies the inequality 

IIIXIII :::; c; IllY III (VII.28) 
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for every unitarily invariant norm, where 

1 2 A 1 
C2 = inf{llfll£l : f E L (JR ), f(81' 82) = . when 8i + 8~ ::::: I}. 

81 + Z82 
(VII.29) 

The exact evaluation of the constants C1 and C2 is an intricate problem 
in Fourier analysis. This is discussed in the Appendix at the end of this 
chapter. It is known that 

and 
7r 

7r J sin t 
C2 ::; "2 -t-dt < 2.9l. 

o 

Further, with this value of C1, the inequality (VII.26) is sharp. 

VII.3 Perturbation of Eigenspaces 

Given a normal operator A and a subset S of te, we will write PA(S) for 
the orthogonal projection onto the subspace spanned by the eigenvectors 
of A corresponding to those of its eigenvalues that lie in S. 

If Sl and S2 are two disjoint sets, and if E = PA(Sd and F = PA(S2), 
then E and F are mutually orthogonal. If A and B are two normal opera­
tors, and if E = PA(Sl) and F = PB (S2), then we might expect that if B 
is close to A and Sl and S2 are far apart, then E is nearly orthogonal to 
F. This is made precise in the theorems below. 

Theorem VII.3.1 Let A, B be normal operators. Let Sl and S2 be two 
subsets of the complex plane that are separated by either an annulus of 
width 8 or a strip of width 8. Let E = PA(Sl), F = PB (S2). Then, for 
every unitarily invariant norm, 

IIIEFIII ::; ~IIIE(A - B) Fill ::; ~IIIA - Bill· (VII.30) 

Proof. Since E commutes with A and F with B, the first inequality in 
(VII.30) can be written as 

IIIEFIII ::; ~IIIAEF - EFBIII· 

Now let EF = X. This is an operator from the space ranF to the space 
ran E. Restricted to these spaces, the operators B and A have their spec­
tra inside S2 and Sl, respectively. Thus the above inequality follows from 
Theorem VII.2.11 when Sl and S2 are separated by an annulus, and from 
Theorem VII.2.12 when they are separated by a strip. 
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The second inequality in (VII.30) is true because IIEII = IIFII = 1. • 

The special case of this theorem when A and B are Hermitian, 51 is an 
interval [a, b] and 52 the complement in lR of the interval (a - 8, b + 8), is 
known as the Davis-Kahan sinG Theorem. (We saw in Section 1 that 
IIEFII is the sine of the angle between ranE and ran Fl... ) 

With no special assumption on the way 51 and 52 are separated, we can 
derive the following two theorems from Theorems VII.2.15 and VII.2.16 by 
the argument used above. 

Theorem VII.3.2 Let A and B be Hermitian operators, and let 5 1 ,52 be 
any two subsets of lR such that dist (51 ,52 ) = 8 > O. Let E = PA(51 ), 

F = PB(52 ). Then, for every unitarily invariant norm, 

IIIEFIlI :::; c; IIIE(A - B)FIII :::; c; IliA - Bill, (VII.31) 

where C1 is the constant defined by (VII. 27). (We know that C1 = ~.) 

Theorem VII.3.3 Let A and B be normal operators, and let 5 1,52 be 
any two subsets of the complex plane such that dist (51 ,52) = 8 > O. Let 
E = PA(51 ), F = PB(52 ). Then, for every unitarily invariant norm, 

IIIEFIII :::; c; IIIE(A - B)FIII :::; ~ IliA - Bill, (VII.32) 

where C2 is the constant defined by (VII. 29). (We know that C2 < 2.91.) 

Finally, note that for the Frobenius norm alone, we have a stronger result 
as a consequence of Theorem VII.2.S. 

Theorem VII.3.4 Let A and B be normal operators and let 5 1 ,52 be 
any two subsets of the complex plane such that dist (51 ,52) = 8 > O. Let 
E = PA (51 ), F = PB (52 ). Then 

1 1 
IIEFI12 :::; 811E(A - B)Flb :::; 811A - B112. 

VII.4 A Perturbation Bound for Eigenvalues 

An important corollary of Theorem VI1.3.3 is the following bound for the 
distance between the eigenvalues of two normal matrices. 

Theorem VII.4.1 There exists a constant c, 1 < c < 3, such that the 
optimal matching distance d(u(A), a(B)) between the eigenvalues of any 
two normal matrices A and B is bounded as 

d(a(A), a(B)) :::; ciiA - BII. (VII.33) 
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Proof. We will show that the inequality (VII.33) is true if c = C2, the 
constant in the inequality (VII.32). 

Let TJ = c211A - BII and suppose d(u(A), u(B)) > TJ. Then we can find a 
/5 > TJ such that d(u(A), u(B)) > 8. By the Marriage Theorem, this is 
possible if and only if there exists a set Sl consisting of k eigenvalues of 
A,l ::; k ::; n, such that the 8-neighbourhood {z : dist(z, Sd ::; 8} contains 
less than k eigenvalues of B. Let S2 be the set of all eigenvalues of B outside 
this neighbourhood. Then dist(Sl, S2) :::: 8. Let E = PA(Sd, F = PB (S2). 
Then the dimension of the range of E is k, and that of the range of F is 
at least n - k + 1. Hence IIEFII = 1. On the other hand, the inequality 
(VII.32) implies that 

IIEFII ::; c; IIA - BII = ~ < 1. 

This is a contradiction. So the inequality (VII.33) is valid if we choose 
c = C2( < 2.91). 

Example V1.3.13 shows that any constant c for which the inequality 
(VII.33) is valid for all normal matrices A, B must be larger than 1.018. • 

We should remark that, for Hermitian matrices, this reasoning using 
Theorem VII.3.2 will give the inequality d(u(A), u(B)) ::; ~ IIA - BII. 
However, in this case, we have the stronger inequality d(u(A), u(B)) ::; 
IIA - B II. SO, this may not be the best method of deriving spectral variation 
bounds. However, for normal matrices, nothing more effective has been 
found yet. 

VII.5 Perturbation of the Polar Factors 

Let A = UP be the polar decomposition of A. The positive part P in this 
decomposition is P = IAI = (A* A)1/2 and is always unique. The unitary 
part U is unique if A is invertible. Then U = AP-1. 

It is of interest to know how a change in A affects its polar factors U and 
P. Some results on this are proved below. 

Let A and B be invertible operators with polar decompositions A = UP 
and B = VQ, respectively, where U and V are unitary, and P and Q are 
positive. Then, 

IliA - Bill = IIIU P - VQIII = IIIP - U*VQIII 

for every unitarily invariant norm. By symmetry, 

IliA - Bill = IIIQ - V*UPIII· 

Let 
y = P - U*VQ, Z = Q - V*UP. 
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Then 
Y + Z* = P(I - U*V) + (I - U*V)Q. (VII.34) 

This equation is of the form studied in Section VII.2. Note that (J(P) is 
a subset of the real line bounded below by sn(A) = IIA-111- 1 and (J(Q) 
is a subset of the real line bounded below by Sn (B) = II B-111- 1. Hence, 
dist «(J(P), (J( -Q)) = sn(A) + sn(B). Hence, by Theorem VII.2.1l, 

1111 - U*VIII :::; sn(A) ~ sn(B) IllY + Z*III· 

Since IllY III = IIIZIII = IliA - Bill and 1111 - U*VIII = IIIU - VIII, this gives the 
following theorem. 

Theorem VII.5.1 Let A and B be invertible operators, and let U, V be 
the unitary factors in their polar decompositions. Then 

2 
IIIU - VIII :::; IIA-11I-l + IIB-111-l IliA - Bill (VII.35) 

for every unitarily invariant norm III . III· 

Exercise VII.5.2 Find matrices A, B for which (VIJ.35) is an equality. 

Exercise VII.5.3 Let A, B be invertible operators. Show that 

IIIIAI-IBIIII:::; (1 + IIA- 111-12:IIB-11I-1) IliA - Bill, 

where m = min(IIAII, IIBII). 

(VII.36) 

For the Frobenius norm alone, a simpler inequality can be obtained as 
shown below. 

Lemma VII.5.4 Let f be a Lipschitz continuous function on C satisfying 
the inequality 

If(z) - f(w)1 :::; klz - wi, for all z, wE C. 

Then, for all matrices X and all normal matrices A, we have 

Ilf(A)X - Xf(A)112 :::; kllAX - XA112. 

Proof. Assume, without loss of generality, that A = diag (>'1,"" An). 
Then, if X is any matrix with entries Xij, we have 

Ilf(A)X - Xf(A)II~ 
i,j 

i,j 

• 
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Lemma VII.5.5 Let f be a function satisfying the conditions of Lemma 
VII. 5.4. Let A, B be any two normal matrices. Then, for every matrix X, 

Ilf(A)X - Xf(B) 112 :::; kliAX - XBII2. 

Proof. Let T = (~ ~), y = (g ~). Replace A and X in Lemma VII.5A 
by T and Y, respectively. • 

Corollary VII.5.6 If A and B are normal matrices, then 

(VII.37) 

Theorem VII.5.7 Let A, B be any two matrices. Then 

IIIAI-IBIII~ + IIIA*I-IB*III~ :::; 211A - BII~. (VII.38) 

Proof. Let T = (1. ~), 8 = (~. ~). Then T and 8 are Hermitian. Note 
that ITI = (I~·I I~I). So, the inequality (VII.38) follows from (VII.37). • 

It follows from (VII.38) that 

(VII.39) 

The next example shows that the Lipschitz constant .;2 in the above in­
equality cannot be replaced by a smaller number. 

Example VII.5.B Let 

Then IAI = A and 

IBI- 1 (1 c;) - VI + C;2 c; C;2 • 

As c; --+ 0 the mtio IIIAI-IBI1I2 approaches.;2. , IIA-BII2 

We will continue the study of perturbation of the function IAI in later 
chapters. 

A useful consequence of Theorem VII.5.7 is the following perturbation 
bound for singular vectors. 

Theorem VII.5.9 Let 81 ,82 be two subsets of the positive half-line such 
that dist(81 , 82 ) = 8 > O. Let A and B be any two matrices. Let E and 
E' be the orthogonal projections onto the subspaces spanned by the right 
and the left singular vectors of A corresponding to its singular values in 
8 1 • Let F and F' be the projections associated with B in the same way, 
corresponding to its singular values in 82 • Then 

(IIEFII~ + liE' F'II~)1/2 :::; V; IIA - B1I2. (VII.40) 
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Proof. By Theorem VII.3.4 we have 

IIE'F'I12 < 

1 
fjlIIAI-IBllb 

~IIIA*I-IB*1112. 
8 

These inequalities, together with (VII.38), lead to the inequality (VII.40) .• 

VII.6 Appendix: Evaluating the (Fourier) 
constants 

The analysis in Section VII.2 has led to some extremal problems in Fourier 
analysis. Here we indicate how the constants C1 and C2 defined by (VII.27) 
and (VII.29) may be evaluated. 

The symbol 11f111 will denote the norm in the space U for functions 
defined on lR or on lR2. 

We are required to find a function f in L1, with minimal norm, such 
that ](s) = i when lsi;:::: 1. Since] must be continuous, we might begin 
by taking a continuous function that coincides with i for lsi ;:::: 1 and 
then taking f to be its inverse Fourier transform. The difficulty is that the 
function i is not in L1, and hence its inverse Fourier transform may not 
be defined. Note, however, that the function i is square integrable at 00. 

So it is the Fourier transform of an L2 function. We will show that under 
suitable conditions its inverse Fourier transform is in L1, and find one that 
has the least norm. 

Since the function i is an odd function, it would seem economical to 
extend it inside the domain (-1, 1), so that the extended function is an 
odd function on R This is indeed so. Let f E L1(lR) and suppose ](s) = i 
when lsi;:::: 1. Let fodd be the odd part of f, fodd(t) = f(t)~!(~t). Then 
, 1 
fOdd(S) = s when lsi;:::: 1 and Ilfoddill :S Ilflll. Thus the constant C1 is also 
the infimum of Ilflll over all odd functions in L1 for which ](s) = i when 
lsi;:::: 1. 

Now note that if f is odd, then 

CX) CX) 

](s) J f(t)e~itsdt = -i J f(t) sin ts dt 
-CX) -CX) 

00 00 

-i J Re f(t) sints dt + J 1m f(t) sints dt. 
-00 ~OO 

If this is to be equal to ~ when I s I ;:::: 1, the Fourier transform of Ref should 
have its support in ( -1, 1). Thus, it is enough to consider purely imaginary 
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functions f in our extremal problem. Equivalently, let C be the class of all 
odd real functions in £l(JR) such that j(s) = fs when lsi;::: 1. Then 

Cl = inf{llflh : f E C}. (VIl.41) 

Now, let 9 be any bounded function with period 27r having a Fourier 

series expansion L::>~neint. This last condition means that 
n#O 

Then, for any f in C, 
CX) 

J f(t)g(x - t)dt = L ~n einx. 
zn 

-CX) n#O 

27r 

J g(t)dt = O. 
o 

(VII.42) 

Note that this expression does not depend on the choice of f. 
For a real number x, let sgnx be defined as -1 if x is negative and 1 if x 

is nonnegative. Let fo be an element of C such that 

sgn fo(t) = sgn sin t. (VIl.43) 

Note that the function sgn fo then satisfies the requirements made on 9 in 
the preceding paragraph. Hence, we have 

CX) CX) CX) 

J Ifo(t)ldt J fo(t)sgn fo(t)dt = - J fo(t)sgn fo( -t)dt 
-CX) -CX) -CX) 

CX) CX) 

-J f(t)sgn fo( -t)dt S J If(t)ldt 
-CX) -CX) 

for every f E C. (Use (VIl.42) with x = 0 and see the remark following it.) 
Thus Cl = Ilfolll' where fo is any function in C satisfying (VII.43). We will 
now exhibit such a function. 

We have remarked earlier that it is natural to obtain fo as the inverse 
Fourier transform of a continuous odd function rp such that rp( s) = ~ for 
lsi ;::: 1. First we must find a good sufficient condition on rp so that its 
inverse Fourier transform 

CX) 

ljJ(t) = 2~ J rp(s) sints ds 
-CX) 

(which, by definition, is in £2) is in £1. Suppose rp is differentiable on 
the whole real line and its derivative rp' is of bounded variation. Then, an 
integration by parts shows 

00 00 J rp(s) sints ds = ~ J costs rp'(s)ds. 

-00 -C)() 
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Another integration by parts, this time for Riemann-Stieltjes integrals, 
shows that 

00 00 J cp(s) sints ds = t~ J sints dcp'(s). 
-00 -00 

As t -+ 00 this decays as -b. So cp(t) is integrable at 00. Since cp is in L2, it 
is integrable over any bounded interval. Hence, cp is in £1. 

We will now find a function CPo that satisfies the conditions of the above 
paragraph, and show that if fo = CPo, then fo satisfies the condition (VII.43). 
One such function is 

{ 
l/s 

CPo(s) = 6 - ~ cot ~s 

From the familiar series expansion 

for lsi;::: 1 
for 0 < I s I ::; 1 
for s = o. 

2z 7r 7r 1 l:oo 
- cot - z = - + ---
2 2 Z z2 - 4n2 

n=l 

(VII.44) 

(see L.V. Ahlfors, Complex Analysis, 2nd ed., p. 188) one sees that 

00 2s 
CPo ( s) = l: 4 2 2 for 0 < s < l. 

n=l 
n - S 

This shows that CPo is a convex function in 0 < s < 1, and hence CPo is 
of bounded variation in this domain. On the rest of the positive half-line 
too CPo is of bounded variation. So CPo does meet the conditions that are 
sufficient to ensure that fo = CPo is in C. 

Using the definition of CPo, it is straightforward to verify that for t > 0, 

2fo(t) 

2fo(t) - 2fo(t + 7r) 

fo(t) - fo(t + 27r) 

1 

1 - J cot ~s sin ts ds, 
o 

sint sin(t+7r) 
-t- + t +7r ' 

[;t - t~7r + 2(t~27r)] sint. 

The quantity inside the brackets is positive for all t. Since fo(t) -+ 0 as 
t -+ 00, we can write 

DO 

fo(t) l:[Jo(t + 2n7r) - fo(t + (2n + 1)7r)] sint 
n=O 

h(t) sint, 
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where h(t) > O. This shows that fo satisfies the condition (VII.43). 
Finally, Ilfoll1 can be evaluated from the available data. We can easily 

see that 

sgn sin t 4. 1. 1. 
-(smt + - sm3t + - sm5t + ... ) 
7r 3 5 

~ L ~ eint . 
7r~ n 

nodd 

Hence, using (VII.42) we obtain 

00 J Ifo(t)ldt 
-00 

00 -J fo(t) sgn fo( -t)dt 
-00 

2 '" 1 
;. L n2 

n odd 

7r 

2 

We have shown that C1 = ~. This result, and its proof given above, are 
due to B. Sz.-Nagy. 

The two-variable problem, through which C2 is defined, is more com­
plicated. The exact value of C2 is not known. We will show that C2 is fi­
nite by showing that there does exist a function f in £1(~2) such that 
, 1 
f(Sl, S2) = s,+is2 when sI + s~ 2': 1. We will then sketch an argument that 
leads to an estimate of C2, skipping the technical details. 

It is convenient to identify a point (x, y) in ~2 with the complex variable 

z = x + iy. The differential operator ddz = ~ (tx + i ty ) annihilates every 

complex holomorphic function. It is a well-known fact (see, e.g., W. Rudin, 
Functional Analysis, p. 205) that the Fourier transform of the tempered 
distribution ~ is - 2;i. (The normalisations we have chosen are different 
from those of Rudin.) 

Let cp be a Coo function on ~2 that vanishes in a neighbourhood of the 
origin, and is 1 outside another neighbourhood of the origin. Let 'Ij;(z) = 
cp(z) . We will show that the inverse Fourier transform ?j; is in £1. Note that 

z 

T](z):= d_ 'Ij;(z) = ~ dcp~z). 
dz z dz 

This is a Coo function with compact support. Hence, T] is in the Schwartz 
space S. Let iJ E S be its inverse Fourier transform. Then (ignoring constant 
factors) ?j;(z) = iJ(z)jz. Since iJ is integrable at 00, so is ?j;. At the origin, 
1 is integrable and iJ(z) bounded. Hence ?j; is integrable at the origin. 
z 

This shows that C2 < 00. 

Consider the tempered distribution fo(z) = 2-;;';z· We know that 10(0 = *. However, fo rf. £1. To fix it up we seek an element p in the space of 

tempered distributions S' such that 



220 VII. Perturbation of Spectral Subspaces of Normal Matrices 

(i) P E L1 and supp p is contained in the unit disk D, 

(ii) if f = fo + p, then f is in L1 . 

Note that C2 = inf IIfl11 over such p. 
Writing z = reiO , one sees that 

00 7r 

Ilflh = 2~ j rdr j I~ - ieiIl 27rp(z)ldlJ. 
o -7r 

Let 
7r 

F(r) = j ieillp(z)dlJ. 

-7r 

Then 

j7r 1 'II 1 
1- - ie' 27rp(z)ldlJ 2: 27r1- - F(r)I, 
r r 

-7r 

(VII.45) 

and there is equality here if eillp(reill ) is independent of O. Hence, we can 
restrict attention to only those p that satisfy the additional condition 

(iii) zp(z) is a radial function. 

Putting 

we see that 

G(r) = 1 - rF(r), 

00 

C2 = inf j IG(r)ldr, 
o 

(VIl.46) 

(VII.47) 

where G is defined via (VIl.45) and (VIl.46) for all p that satisfy the 
conditions (i), (ii), and (iii) above. The two-variable minimisation problem 
is thus reduced to a one-variable problem. 

Using the conditions on p, one can characterise the functions G that 
enter here. This involves a little more intricate analysis, which we will 
skip. The conclusion is that the functions G that enter in (VIl.47) are all 
L1 functions of the form G = [;, where 9 is a continuous even function 

1 

supported in [-1,1] such that J g(t)dt = 1. In other words, 
-1 

00 

C2 = inf{j 1[;(t)ldt: 9 even, supp 9 = [-1,1], J 9 = 1,[; E L1}. (VIl.4S) 

o 

If we choose 9 to be the function g(t) = l-Itl, then g(t) = sin2(~)(~)2. 
This gives the estimate C2 :::; 7r. 
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A better estimate is obtained from the function 

7r 7r 
g(t) = 4" cos"2 t for It I ::; 1. 

Then 
"(t) = 2 cost 
9 7r 7r2 _ 4t2 • 

A little computation shows that 

00 7r 

J 7r J sint Ig(t)ldt = "2 -t- dt < 2.90901. 
o 0 

Thus C2 < 2.91. 
The interested reader may find the details in the paper An extremal 

problem in Fourier analysis with applications to opemtor theory, by R. 
Bhatia, C. Davis, and P. Koosis, J. Functional Analysis, 82 (1989) 138-150. 

VII. 7 Problems 

Problem VII.6.I. Let £ be any subspace of en. For any vector x let 

c5(x,£) = min IIx - yll. 
yE£ 

Then c5(x, £) is equal to II (I - E)xll. If £, F are two subspaces of en, let 

p(£,F) =max{max c5(x,F), max c5(y,F)}. 
xEe yEF 

IIxll=l lIyll=l 

Let dim £ = dim F, and let e be the angle operator between £ and F. 
Show that 

p(£, F) = II sin ell = liE - FII, 

where E and F are the orthogonal projections onto the spaces £ and F. 

Problem VII.6.2. Let A, B be operators whose spectra are disjoint from 
each other. Show that the operator (~ ~) is similar to (~ ~) for every C. 

Problem VII.6.3. Let A, B be operators whose spectra are disjoint from 
each other. Show that if C commutes with A + B and with AB, then C 
commutes with both A and B. 

Problem VII.6.4. The equation AX +XA* = -J is called the Lyapunov 
equation. Show that if o-(A) is contained in the open left half-plane, then 
the Lyapunov equation has a unique solution X, and this solution is positive 
and invertible. 
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Problem VII.6.5. Let A and B be any two matrices. Suppose that all 
singular values of A are at a distance greater than 8 from any singular value 
of B. Show that for every X, 

1 (IIAX - XBII~ + IIA* X - XB*II~)1/2 
IIXI12:::; 8 2 

Problem VII.6.6. Let A, B be normal operators. Let 51 and 52 be two 
subsets of the complex plane separated by a strip of width 8. Let E = 
PA(51), F = PB (52). Suppose E(A - B)E = o. If T(t) is the function 
T(t) = t/,;r=?i, show that 

IIT(IEFI)II :::; ~IIE(A - B)II· 

Prove that this inequality is also valid for all unitarily invariant norms. 
This is called the tanG theorem. 

Problem VII.6.7. Show that the inequality (VI1.28) cannot be true if 
C2 < ~. (Hint: Choose the trace norm and find suitable unitary matrices 
A,B.) 

Problem VII.6.8. Show that the conclusion of Theorem VI1.2.8 cannot 
be true for any Schatten p-norm if p =f. 2. 

Problem VII.6.9. Let A, B be unitary matrices, and let dist (o-(A), o-(B)) 
= 8 = J2. If some eigenvalue of A is at distance greater than J2 from o-(B), 
then o-(A) and o-(B) can be separated by a strip of width J2. In this case, 
the solution of AX - X B = Y can be obtained from Theorem VII.2.3. 
Assume that all points of o-(A) are at distance J2 from all points of o-(B). 
Show that the solution one obtains using Theorem VII.2.7 in this case is 

X = 1/2 A- 1y -1/4 YB + 1/4 A-2YB- 1 . 

If o-(A) = {I, -I} and o-(B) = {i, -i}, this reduces to 

X = 1/2 (AY - YB). 

Problem VII.6.l0. A reformulation of the Sylvester equation in terms 
of tensor products is outlined below. Let cp be the natural isomorphism 
between the Hilbert spaces H@H* and £(H) constructed in Exercise 1.4.4. 
Show that for every operator A and for each Eij , 

cp(A @ I)cp-l(Eij) 

cp(I @ A)cp-l(Eij) 

AEij , 

EijAT, 
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where AT is the transpose of A. 
Thus the multiplication operator A(X) = AX on £(1t) can be identified 

with the operator A 18) I on 1t 18) 1t*, and the operator B(X) = X B can 
be identified with I 18) BT. The operator T = A - B then corresponds to 
AI8)I -II8)BT . 

Use this to give another proof of Theorem VII.2.1. 
Sometimes it is more convenient to identify £(1t) with 1t 18)1t instead of 

1t 18)1t*. In this case, we have a bijection 'P from 1t 18)1t onto £(1t), that 
is linear in the first variable and conjugate-linear in the second. With this 
identification, the operator A on £(1t) corresponds to the operator A 18) I, 
while the operator B corresponds to I 18) B*. 
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103-174. These ideas were reinvented, developed, and used by several math­
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tion with perturbation of eigenvectors was recognised and emphasized by 
Davis and Kahan, and in the subsequent paper, G.W. Stewart, Error and 
perturbation bounds for subspaces associated with certain eigenvalue prob­
lems, SIAM Rev., 15 (1973) 727-764. Almost all results we have derived for 
this equation are true also in infinite-dimensional Hilbert spaces. More on 
this equation and its applications, and an extensive bibliography, may be 
found in R. Bhatia and P. Rosenthal, How and why to solve the equation 
AX - XB = Y , Bull. London Math. Soc., 29(1997) to appear. 
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52/53 (1983) 45-67. 
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the paper by Bhatia, Davis, and McIntosh cited above, as is Section VII.4. 
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for the Fourier transform. See H.S. Shapiro, Topics in Approximation The­
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In Theorem VII.2.5, all that is required of f is that 1(8) = 1 when 
A 8 

8 E a(A) - a(B). This fixes the value of f only at n2 points if we are 
dealing with n x n matrices. For each n, let ben) be the smallest constant, 
for which we have 

IIXII :::; b~n) IIAX - XBII, 

whenever A, Bare n x n Hermitian matrices such that dist (a(A), a(B)) = 
6. R. McEachin has shown that 

b(2) = J6 2 ;:::j 1.22474 (see Example VII.2.1O) 



b(3) 

and that 
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8 + 5y'I6 ~ 1.32285 
18 

• 7r 
b = hm ben) = -. 

n---+oo 2 

Thus the inequality (VII.26) is sharp with Cl = ~. See, R. McEachin, 
A sharp estimate in an operator inequality, Proc. Amer. Math. Soc., 115 
(1992) 161-165 and Analyzing specific cases of an operator inequality, Linear 
Algebra Appl., 208/209 (1994) 343-365. 

The quantity p( £, F) defined in Problem VII.6.1 is sometimes called the 
gap between £ and F. This and related measures of the distance between 
two subspaces of a Banach space are used extensively by T. Kato, Pertur­
bation Theory for Linear Operators, Chapter 4. 



VIII 
Spectral Variation of Nonnormal 
Matrices 

In Chapter 6 we saw that if A and B are both Hermitian or both unitary, 
then the optimal matching distance d(cr(A), cr(B)) is bounded by IIA-BII· 
We also saw that for arbitrary normal matrices A, B this need not always 
be true (Example VI.3.13). However, in this case, we do have a slightly 
weaker inequality d(cr(A), cr(B)) ~ 311A - BII (Theorem VII.4.1). If one of 
the matrices A, B is Hermitian and the other is arbitrary, then we can only 
have an inequality of the form d(cr(A), cr(B)) ~ c(n)IIA - BII, where c(n) 
is a constant that grows like logn (Problems VI.8.8 and VI.8.9). 

A more striking change of behaviour takes place if no restriction is placed 
on either A or B. Let A be the nxn nilpotent upper Jordan matrix; i.e., the 
matrix that has all entries 1 on its first diagonal above the main diagonal 
and all other entries O. Let B be the matrix obtained from A by adding 
an entry c in the bottom left corner. Then the eigenvalues of B are the 
nth roots of c. So d(cr(A), cr(B)) = c1/ n , whereas IIA - BII = c. When c is 
small, the quantity c1/ n is much larger. No inequality like d(cr(A), cr(B)) ~ 
c(n)IIA - BII can be true in this case. 

In this chapter we will obtain bounds for d(cr(A), cr(B)), where A,B 
are arbitrary matrices. These bounds are much weaker than the ones for 
normal matrices. We will also obtain stronger results for matrices that are 
not normal but have some other special properties. 
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VIlLI General Spectral Variation Bounds 

Throughout this section, A and B will be two n x n matrices with eigenval­
ues al, ... ,an, and {3l,' .. ,(3n, respectively. In Section VL3, we introduced 
the notation 

s(a(B), a(A)) = max minlai - (3jl. 
J , 

A bound for this number is given in the following theorem. 

Theorem VIII. 1. 1 Let A, B be n x n matrices. Then 

s(a(B), a(A)) ::; (IIAII + IIBII)l-l/nIIA - BI11/n. 

(VIlLI) 

(VIII.2) 

Proof. Let j be the index for which the maximum in the definition 
(VIII. 1 ) is attained. Choose an orthonormal basis el,"" en such that 
Bel = (3jel. Then 

[s(a(B), a(A))]n 

n 

< II lai - {3jl = Idet(A - {3jI)1 
i=l 

by Hadamard's inequality (Exercise 1.1.3). The first factor on the right­
hand side of the above inequality can be written as II (A - B)elll and is, 
therefore, bounded by II A - B II. The remaining n -1 factors can be bounded 
as 

This is adequate to derive (VIII.2). • 
Example VIII.1.2 Let A = -B = I. Then the two sides of (VIII.2) are 
equal. 

Compare this theorem with Theorem VL3.3. 
Since the right-hand side of (VIII.2) is symmetric in A and B, we have 

a bound for the Hausdorff distance as well: 

h(a(A), a(B) ::; (IIAII + IIBID1-1/nIIA - Blil/n. (VIII.3) 

Exercise VIII.1.3 A bound for the optimal matching distance 
d(a(A), a(B» can be derived from Theorem VII!. 1. 1. The argument is 
similar to the one used in Problem V!.B.6 and is outlined below. 

(i) Fix A, and for any B let 

c(B) = (2M)1-1/nIIA - BI1 1/n, 
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where M = max(IIAIJ, IIBII). Let al, ... , an be the eigenvalues of A. Let 
D(ai, E:(B)) be the closed disk with radius dB) and centre ai. Then, The­
orem VIII.l.l says that a(B) is contained in the set D obtained by taking 
the union of these disks. 

(ii) Let A(t) = (l-t)A+tB, 0:::; t :::; 1. Then A(O) = A, A(l) = B, and 
E:(A(t)) :::; E:(B) for all t. Thus, for each 0:::; t:::; 1, a(A(t)) is contained in 
D. 

(iii) Since the n eigenvalues of A(t) are continuous functions of t, each 
connected component of D contains as many eigenvalues of B as of A. 

(iv) Use the Matching Theorem to show that this implies 

d(a(A), a(B)) :::; (2n - 1)(2M)l-l/nIIA - Blll/n. (VIll.4) 

(v) Interchange the roles of A and B and use the result of Problem II.5.10 
to obtain the stronger inequality 

d(a(A), a(B)) :=:; n(2M)l-l/nIIA _ Blll/n. (VIll.5) 

The example given in the introduction shows that the exponent lin oc­
curring on the right-hand side of (VIll.5) is necessary. But then homogene­
ity considerations require the insertion of another factor like (2M)l-l/n. 
However, the first factor n on the right-hand side of (VllI.5) can be replaced 
by a much smaller constant factor. This is shown in the next theorem. We 
will use a classical result of Chebyshev used frequently in approximation 
theory: if p is any monic polynomial of degree n, then 

1 
max Ip(t)1 > --. 

O$t$l - 22n- l 
(VIII.6) 

(This can be found in standard texts such as P. Henrici, Elements of Nu­
merical Analysis, Wiley, 1964, p. 194; T.J. Rivlin, An Introduction to the 
Approximation of Functions, Dover, 1981, p. 31.) The following lemma is 
a generalisation of this inequality. 

Lemma VIII.1.4 Let r be a continuous curve in the complex plane with 
endpoints a and b. If p is any monic polynomial of degree n, then 

Ib aln 
max Ip(>,) I > -
AEr - 22n- l (VllI.7) 

Proof. Let L be the straight line through a and band S the segment of 
L between a and b: 

L {z: z = a + t(b - a), t E ~} 

S {z:z=a+t(b-a),O:::;t:=:;l}. 

For every point z in C, let z' denote its orthogonal projection onto L. Then 
Iz - wi ~ Iz' - w'l for all z and w. 
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Let Ai, i = 1, ... , n, be the roots of p. Let A~ = a + ti(b - a), where 
ti E JR, and let z = a + t(b - a) be any point on L. Then 

n n n 

IIlz - A~I = III(t - ti)(b - a)1 = Ib - aln IIlt - til. 
i=l i=l i=l 

n 

From this and the inequality (VIII.6) applied to the polynomial II (t - ti), 
i=l 

we can conclude that there exists a point zo on S for which 

Since r is a continuous curve joining a and b, Zo = A~ for some Ao E r. 
Since lAo - Ail ~ IA~ - A~I, we have shown that there exists a point AO on 

n Ib In 
r such that Ip(Ao)1 = illAo - Ail ~ 2~~1 

i=l • 
Theorem VIII.1.5 Let A and B be two n x n matrices. Then 

d(u(A), u(B)) ~ 4(IIAII + IIBIDl-l/nIiA - Bill/n. (VIII.8) 

Proof. Let A(t) = (1 - t)A + tB, 0 ~ t ~ 1. The eigenvalues of A(t) 
trace n continuous curves in the plane as t changes from 0 to 1. The initial 
points of these curves are the eigenvalues of A, and their final points are 
those of B. So, to prove (VIII.8) it suffices to show that if r is one of these 
curves and a and b are the endpoints of r, then la - bl is bounded by the 
right-hand side of (VIII.8). 

Assume that IIAII ~ IIBII without any loss of generality. By Lemma 
VIII.1.4, there exists a point AO on r such that 

I det(A - Aol)1 ~ I~~~r 
Choose 0 ~ to ~ 1 such that Ao is an eigenvalue of (1 - to)A + toB. In 
the proof of Theorem VIII. 1. 1 we have seen that if X, Yare any two n x n 
matrices and if A is an eigenvalue of Y, then 

I det(X - A1)1 ~ IIX - YII(IIXII + 11Y11)n-l. 

Choose X = A and Y = (1 - to)A + toB. This gives I~~,:!; ~ I det(A -
Ao1)1 ~ IIA - BII(IIAII + IIBII)n-l. Taking nth roots, we obtain the desired 

conclusion. • 

Note that we have, in fact, shown that the factor 4 in the inequality 
(VIII.8) can be replaced by the smaller number 4 x 2-1/ n. A further im­
provement is possible; see the Notes at the end of the chapter. However, 
the best possible inequality of this type is not yet known. 
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VIII. 2 Perturbation of Roots of Polynomials 

The ideas used above also lead to bounds for the distance between the roots 
of two polynomials. This is discussed below. 

Lemma VIII.2.1 Let J(z) = zn + alzn- l + ... + an be any monic poly-

nomial. Let 
(VIII.9) 

Then all the roots oj J are bounded (in absolute value) by fl· 

Proof. If izi > fl, then 

I J;:) I 1+-+···+-I al an I 
z zn 

> 1 _I a; I-I :~ 1- ... -I :~ I 
1 1 1 > 1-----···--
2 22 2n 

> O. 

Such z cannot, therefore, be a root of J. • 
Let al, ... ,an be the roots of a monic polynomial J. We will denote by 

Root J the unordered n-tuple {aI, ... ,an} as well as the subset of the plane 
whose elements are the roots of J. We wish to find bounds for the optimal 
matching distance d (Root J, Root g) in terms of the distance between the 
coefficients of two monic polynomials J and g. Let 

f(z) 
g(z) 

be two polynomials. Let 

zn + alzn- l + ... + an, 
= zn + blzn- l + ... + bn 

8(J,g) ~ {t,la, -b,l,n-' } 'in 

The bounds given below are in terms of these quantities. 

(VULlO) 

(VULl1) 

(VIII. 12) 

Theorem VIII.2.2 Let f,g be two monic polynomials as in (VII/.1O). 
Then 

n 

s(Root J, Root g) :s: i)ak - bkifln-k, (VIII.13) 
k=l 

where fl is given by (VIII. 9). 
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Proof. We have 
n 

f(z) - g(z) = ~)ak - bk)zn-k. 
k=l 

So, if a: is any root of f, then, by Lemma VIII.2.1, 

n 

Ig(a:)1 :::; :Llak - bkl Ia:ln-k 
k=l 

n 

< :Llak - bkl J.ln-k. 
k=l 

If the roots of g are f31, ... ,f3n, this says that 

n n 

ilia: - f3jl :::; :Llak - bklJ.ln- k. 
j=l k=l 

So, 

This proves the theorem. • 
Corollary VIII.2.3 The Hausdorff distance between the roots of f and g 
is bounded as 

h(Rootf, Rootg) :::; 8(f, g). (VIII.14) 

Theorem VIII.2.4 The optimal matching distance between the roots of f 
and g is bounded as 

d(Root f, Root g) ::; 48(f,g). (VIII.15) 

Proof. The argument is similar to that used in proving Theorem VIII. 1.5. 
Let ft = (I-t)f +tg, 0 ::; t :::; 1. If ). is a root of It, then by Lemma VIII.2.1, 
1).1 :::; "'I and we have 

If().)1 It(f().) - g().))1 :::; If().) - g().)1 
n 

< :Llak - bkll).ln-k :::; [8(f,g)t· 
k=l 

The roots of ft trace n continuous curves as t changes from 0 to 1. The 
initial points of these curves are the roots of f, and the final points are the 
roots of g. Let r be anyone of these curves, and let a, b be its endpoints. 
Then, by Lemma VIII.1.4, there exists a point). on r such that 

If().)I> la - bin 
- 22n- 1 
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This shows that 
la - bl::; 4 x T1/n 8(j,g), 

and that is enough for proving the theorem. • 
Exercise VIII.2.5 Let h = (j + g)/2. Then any convex combination of f 
and 9 can also be expressed as h + t(j - g) for some t with It I ::; ~. Use 
this to show that 

d(Root f, Root g) ::; 41- 1/ n 8(j, g). (VIII. 16) 

The first factor in the above inequality can be reduced further; see the 
Notes at the end of the chapter. However, it is not known what the optimal 
value of this factor is. It is known that no constant smaller than 2 can 
replace this factor if the inequality is to be valid for all degrees n. 

Note that the only property of I used in the proof is that it is an upper 
bound for all the roots of the polynomial (1 - t)f + tg. Any other constant 
with this property could be used instead. 

Exercise VIII.2.6 In Problem 1.6.11, a bound for the distance between 
the coefficients of the characteristic polynomials of two matrices was ob­
tained. Use that and the combinatorial identity 

i)G) = n2n - 1 

k=O 

to show that for any two n x n matrices A, B 

d(O"(A) , O"(B)) ::; n1/n(SM)1-1/nIIA _ BIl 1/n, (VIII. 17) 

where M = max(IIAII, IIBII). This is weaker than the bound obtained in 
Theorem VIII. 1.5. 

VIII.3 Diagonalisable Matrices 

A matrix A is said to be diagonalisable if it is similar to a diagonal 
matrix; i.e., if there exists an invertible matrix S and a diagonal matrix D 
such that A = SDS- 1 . This is equivalent to saying that there are n linearly 
independent vectors in en that are eigenvectors for A. If S is unitary (or the 
eigenvectors of A orthonormal), A is normal. In this section we will derive 
some perturbation bounds for diagonalisable matrices. These are natural 
generalisations of some results obtained for normal matrices in Chapter 6. 

The condition number of an invertible matrix S is defined as 

cond(S) = IISIlIIS-1 11. 
Note that cond(S) ;:::: 1, and cond(S) = 1 if and only if S is a scalar multiple 
of a unitary matrix. 

Our first theorem is a generalisation of Theorem VI.3.3. 
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Theorem VIII.3.1 Let A = SDS- l , where D is a diagonal matrix and 
S an invertible matrix. Then, for any matrix B, 

s(a(B),a(A)) :::; cond(S)IIA - BII. (VIII.18) 

Proof. The proof of Theorem VI.3.3 can be modified to give a proof of 
this. Let c = cond(S)IIA - BII. We want to show that if f3 is any eigenvalue 
of B, then f3 is within a distance c of some eigenvalue aj of A. By applying 
a translation, we may assume that f3 = O. If none of the aj is within a 
distance c of this, then A is invertible and 

So, 

IIA-lil = IISD-lS-lll < cond(S)IID-lll < cond(S) 
c 

1 
IIA-BII· 

IIA-l(B - A) II :::; IIA-lIIIIB - All < l. 

Hence, 1+ A-l(B - A) is invertible, and so is B = A(I + A-l(B - A)). 
But then B could not have had a zero eigenvalue. • 

Note that the properties ofthe operator norm used above are (i) I + A is 
invertible if IIAII < 1; (ii) IIABII :::; IIAIIIIBIl for all A, B; (iii) IIDII = max Idil 
if D = diag(dl, ... ,dn ). There are several other norms that satisfy these 
properties. For example, norms induced by the p-norms on en, 1 :::; p :::; 00, 

all have these three properties. So, the inequality (VIII.18) is true for a 
large class of norms. 

Exercise VIII.3.2 Using continuity arguments and the Matching Theo­
rem show that if A and B are as in Theorem VIII. 3.1, then 

d(a(A),a(B)) :::; (2n -1)cond(S)IIA - BII· 

If B is also diagonalisable and B = TD'T-l, then 

d(a(A), a(B)) :::; ncond(S)cond(T)IIA - BII· 

An inequality stronger than this will be proved below by other means. 

Theorem VIII.3.1 also follows from the following theorem. Both of these 
are called the Bauer-Fike Theorems. 

Theorem VIII.3.3 Let S be an invertible matrix. If f3 is an eigenvalue 
of B but not of A, then 

(VIII.19) 
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Proof. We can write 

S(B - (31)S-1 S[(A - (31) + B - A]S-1 

SeA - (31)S-1{I + SeA - (31)-1S-1 . S(B - A)S-1}. 

Note that the matrix on the left-hand side of this equation is not invertible. 
Since A - (31 is invertible, the matrix inside the braces on the right-hand 
side is not invertible. Hence, 

1 < IIS(A - (31)-1 s-1 . S(B - A)S-111 
< IIS(A - (31)-1S-111 IIS(B - A)S-111· 

This proves the theorem. • 
We now obtain, for diagonalisable matrices, analogues of some of the 

major perturbation bounds derived in earlier chapters for Hermitian ma­
trices and for normal matrices. Some auxiliary theorems about norms of 
commutators are proved first. 

Theorem VIII.3.4 Let A, B be Hermitian operators, and let f be a pos­
itive operator whose smallest eigenvalue is "( (i.e., f ::::: "(1 ::::: 0). Then 

IllAf - f Bill::::: "(IliA - Bill (VIII.20) 

for every unitarily invariant norm. 

Proof. Let T = Af - fB, and let Y = T + T*. Then 

Y = (A - B)f + f(A - B). 

This is the Sylvester equation that we studied in Chapter 7. From Theorem 
VII.2.12, we get 

2"(IIIA - Bill::; IllY III ::; 2111TIII = 2111Af - f Bill· 

This proves the theorem. • 
Corollary VIII.3.5 Let A, B be any two operators, and let f be a positive 
operator, f ::::: "(1 ::::: O. Then 

111(Af - fB) ffi (A*f - fB*)111 ::::: "(III(A - B) ffi (A - B)III (VIII.21) 

for every unitarily invariant norm. 

Proof. This follows from (VIII.20) applied to the Hermitian operators 
(1. ~) and (~. ~), and the positive operator (~ ~). • 
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Corollary VIII.3.6 Let A and B be unitary operators, and let r be a 
positive operator, r ~ "II ~ O. Then, for every unitarily invariant norm, 

IllAr - r Bill ~ 'YIIIA - Bill· (VIII. 22) 

Proof. If A and B are unitary, then 

Thus the operator (Ar - r B) EB (A*r - r B*) has the same singular values 
as those of Ar - r B, each counted twice. From this we see that (VIII.21) 
implies (VIII.22) for all Ky Fan norms, and hence for all unitarily invariant 
norms. • 

Corollary VIII.3.T Let A, B be normal operators, and let r be a positive 
operator, r ~ "I I ~ O. Then 

(VIII. 23) 

Proof. Suppose that A is normal and its eigenvalues are al, ... , an. Then 
(choosing an orthonormal basis in which A is diagonal) one sees that for 
every X 

IIAX - XAII~ = ~)ai - ajl21xijl2 = IIA* X - XA*II~· 
i,j 

If A, B are normal, then, applying this to (~ ~) in place of A and (~ ~) 
in place of X, one obtains 

IIAX - XBII2 = IIA* X - XB*1I2. (VIII.24) 

Using this, the inequality (VIII.23) can be derived from (VIII.21). • 

A famous theorem (called the Fuglede-Putnam Theorem, valid in 
Hilbert spaces of finite or infinite dimensions) says that if A and Bare 
normal, then for any operator X, AX = X B if and only if A * X = X B* . 
The equality (VIII.24) says much more than this. 

Example VIII.3.S For normal A, B, the inequality (VIII.23) is not al­
ways true if the Hilbert-Schmidt norm is replaced by the operator norm. A 
numerical example illustrating this is given below. Let 

r = diag(0.6384, 0.6384, 1.0000), 

-0.5205 - 0.1642i 
-0.1299 + 0.1709i 

0.2850 - 0.1808i 

0.1042 - 0.3618i -0.1326 - 0.0260i ) 
0.4218 + 0.4685i -0.5692 - 0.3178i , 

-0.3850 - 0.4257i -0.2973 - 0.1715i 
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( 
-0.6040 + 0.1760i 0.5128 - 0.2865i 0.1306 + 0.0154~ ) 

B = 0.0582 + 0.2850i 0.0154 + 0.4497i -0.5001 - 0.2833~ . 
0.4081 - 0.3333i -0.0721 - 0.2545i -0.2686 + 0.0247i 

Then 
liAr - r BII = 0.8763. 
,IIA-BII 

Theorem VIII.3.4 and Corollary VIII. 3. 7 are used in the proofs below. 
Alternate proofs of both these results are sketched in the problems. These 
proofs do not draw on the results in Chapter 7. 

Theorem VIII.3.9 Let A, B be any two matrices such that A = S DI S- l , 

B = T D 2T- 1, where S, T are invertible matrices and D 1 , D2 are real diag­
onal matrices. Then 

IIIEigl(A) - Eigl(B)111 ~ [cond(S)cond(T)F/211IA - Bill (VIII.25) 

for every unitarily invariant norm. 

Proof. When A, B are Hermitian, this has already been proved; see (IV.62). 
This special case will be used to prove the general result. 

We can write 

Hence, 

We could also write 

and get 

IIIT-1SD1 - D2T-1SIII ~ liT-III IliA - BIIIIISII. 

Let S-lT have the singular value decomposition S-lT = urv. Then 

IIID1S-1T - S-lTD2111 = IIID1UrV - urvD2111 

= IIIU* DIUr - rVD2V*111 = IIIA'r - rB'III, 

where A' = U* D1 U and B' = V D2 V* are Hermitian matrices. Note that 
T-1S = v*r-1u*. So, by the same argument, 

We have, thus, two inequalities 

ailiA - Bill ~ IIIA'r - rB'III, 
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and 

,6IIIA - Bill;::: IIIA'r- l - r- l B'III, 
where a = liS-III IITII, ,6 = IIT-lIIIISII. Combining these two inequalities 
and using the triangle inequality, we have 

2111A - Bill;::: IliA' (~+ r;l) _ (~+ r;l) B'III. 

[ 1/2 (-1) 1/2] 2 1 The operator inequality ( £) -;- ;::: 0 implies that £ + r~ ;::: 

(Q,6~1/2 I. Hence, by Theorem VIII.3.4, 

2111A - Bill ;::: (a~1/211IA' - B'III· 

But A' and B' are Hermitian matrices with the same eigenvalues as those 
of A and B, respectively. Hence, by the result for Hermitian matrices that 
was mentioned at the beginning, 

IliA' - B'III ;::: IIIEig1(A) - Eig1(B)III· 

Combining the three inequalities above leads to (VIII.25). • 
Theorem VIII.3.10 Let A, B be any two matrices such that 
A = SDIS-l, B = T D2T-l, where S, T are invertible matrices and D l , D2 
are diagonal matrices. Then 

d2(u(A), u(B)) :::; [cond(S)cond(T)]1/21IA - B112. (VIII.26) 

Proof. When A, B are normal, this is just the Hoffman-Wielandt in­
equality; see (VI.34). The general case can be obtained from this using 
the inequality (VIII.23). The argument is the same as in the proof of the 
preceding theorem. • 

Theorems VIII.3.9 and VIII.3.10 do reduce to the ones proved earlier 
for Hermitian and normal matrices. However, neither of them gives tight 
bounds. Even in the favourable case when A and B commute, the left-hand 
side of (VIIL24) is generally smaller than IliA - Bill, and this is aggravated 
further by introducing the condition number coefficients. 

Exercise VIII.3.11 Let A and B be as in Theorem VIII. 3. 10. Suppose 
that all eigenvalues of A and B have modulus 1. Show that 

d lll 'lIl(u(A),u(B)) :::; ~[cond(S)cond(TW/211IA - Bill (VIII.27) 

for all unitarily invariant norms. For the special case of the operator norm, 
the factor ~ above can be replaced by 1. 

(Hint: Use Corollary VIII. 3. 6 and the theorems on unitary matrices in 
Chapter 6.) 
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VIll.4 Matrices with Real Eigenvalues 

In this section we will consider a collection R of matrices that has two 
special properties: R is a real vector space and every element of R has only 
real eigenvalues. The set of all Hermitian matrices is an example of such a 
collection. Another example is given below. Such families of matrices arise 
in the study of vectorial hyperbolic differential equations. The behaviour of 
the eigenvalues of such a family has some similarities to that of Hermitian 
matrices. This is studied below. 

Example VIII.4.1 Fix a block decomposition of matrices in which all di­
agonal blocks are square. Let R be the set of all matrices that are block 
upper triangular in this decomposition and whose diagonal blocks are Her­
mitian. Then R is a real vector space (of real dimension n 2 ) and every 
element of R has real eigenvalues. 

In this book we have called a matrix positive if it is Hermitian and all 
its eigenvalues are nonnegative. A matrix A will be called laxly positive 
if all eigenvalues of A are nonnegative. This will be written symbolically as 
o :::; L A. If all eigenvalues of A are positive, we will say A is strictly laxly 
positive. We say A :::; L B if B - A is laxly positive. 

We will see below that if R is a real vector space of matrices each of 
which has only real eigenvalues, then the laxly positive elements form a 
convex cone in R. So, the order:::; L defines a partial order on R. 

Given two matrices A and B, we say that A is an eigenvalue of A with 
respect to B if there exists a nonzero vector x such that Ax = ABx. 
Thus, eigenvalues of A with respect to B are the n roots of the equation 
det(A - AB) = O. These are also called generalised eigenvalues. 

Lemma VIII.4.2 Let A, B be two matrices such that every real linear 
combination of A and B has real eigenvalues. Suppose B is strictly laxly 
positive. Then for every real A, - A + AI has real eigenvalues with respect 
to B. 

Proof. We have to show that for any real A the equation 

det( -A + AI - p,B) = 0 (VIII.28) 

is satisfied by n real p,. 
Let p, be any given real number. Then, by hypothesis, there exist n real 

A that satisfy (VIII.28), namely the eigenvalues of A + p,B. Denote these A 
as IPj(p,) and arrange them so that IPl(p,) ::::: IP2(p,) ::::: ... ::::: IPn(P,). We have 

n 

det( -A + AI - p,B) = II (A - IPk(p,)). (VIII.29) 
k=l 

By the results of Section VI.l, each IPk(P,) is continuous as a function of 
p,. For large p" t(A + p,B) is close to B. So, t'Pk(p,) approaches Ai(B) as 
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J-L ---. 00, and AL(B) as J-L ---. -00. Since B is strictly laxly positive, this 
implies that 'Pk (J-L) ---. ±oo as J-L ---. ±oo. 

So, every A in ffi. is in the range of 'Pk for each k = 1,2, ... ,n. Thus, for 
each A, there exist n real J-L that satisfy (VIII.28). • 

Proposition VIII.4.3 Let A, B be two matrices such that every real linear 
combination of A and B has real eigenvalues. Suppose A is (strictly) laxly 
negative. Then every eigenvalue of A + iB has (strictly) negative real part. 

Proof. Let J-L = J-LI + iJ-L2 be an eigenvalue of A + iB. Then det (A + iB­
J-LII - iJ-L2I) = O. Multiply this by in to get 

det[( -B + J-L2I) + i(A - J-LII)] = O. 

So the matrix -B + J-L21 has an eigenvalue -i with respect to the matrix 
A - J-LII, and it has an eigenvalue i with respect to the matrix -(A - J-LII). 

By hypothesis, every real linear combination of A - J-LII and B has real 
eigenvalues. Hence, by Lemma VIII.4.2, A - J-LII cannot be either strictly 
laxly positive or strictly laxly negative. In other words, 

A~(A) ::; J-Ll ::; AiCA). 

This proves the proposition. 

Exercise VIII.4.4 With notations as in the above proof, show that 

A~(B) ::; J-L2 ::; Ai(B). 

• 

Theorem VIII.4.5 Let R be a real vector space whose elements are ma­
trices with real eigenvalues. Let A, BE R and let A ::;L B. Then Ai (A) ::; 

Ai(B) for k = 1,2, ... , n. 

Proof. We will prove a more general statement: if A, BE Rand 0 ::;L B, 
then Ai(A + J-LB) is a monotonically increasing function of the real variable 
J-L. It is enough to prove this when 0 <L B; the general case follows by con­
tinuity. In the notation of Lemma VIII.4.2, Ai(A + J-LB) = 'Pk(J-L). Suppose 
'Pk(J-L) decreases in some interval. Then we can choose a real number A such 
that A - 'Pk(J-L) increases from a negative to a positive value in this interval. 
Since 'Pk(J-L) ~ ±oo as J-L ~ ±oo, for this value of A, A - 'Pk(J-L) vanishes 
for at least three values of J-L. So, in the representation (VIII.29) this factor 
contributes at least three zeroes. The remaining factors contribute at least 
one zero each. So, for this A, the equation (VIII.28) has at least n + 2 roots 

J-L. This is impossible. • 

Theorem VIII.4.6 Let R be a real vector space whose elements are ma­
trices with real eigenvalues. Let A, B E R. Then 

(VIII.30) 
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for k = 1,2, ... ,n. 

Proof. The matrix B - )..;'(B)I is laxly positive. So, by the argument in 

the proof of the preceding theorem, )..i(A + J.LB) - J.L)..;'(B) is a monotoni­
cally increasing function of J.L. Choose J.L = 0,1 to get the first inequality in 
(VIII.30). The same argument shows that )..i(A+ J.LB) - J.L)..i(B) is a mono­
tonically decreasing function of J.L. This leads to the second inequality. • 

Corollary VIII.4.7 On the vector space R, the function )..hA) is convex 
and the function )..;'(A) is concave in the argument A. 

Theorem VIII.4.8 Let A and B be two matrices such that all real linear 
combinations of A and B have real eigenvalues. Then 

max l)..i(A) - )..i(B) I :::; spr(A - B) :::; IIA - BII. 
l~k~n 

(VIII.31) 

Proof. Let R be the real vector space generated by A and B. By Theorem 
VIII.4.6, 

So, 

1)..k(B) - )..i(A) I < max(I)..i(B - A)I, I)"~(B - A)I) 

spr(A - B) :::; IIA - BII. 

• 
Note that Weyl's Perturbation Theorem is included in this as a special 

case. 

Exercise VIII.4.9 Show that if only A, B and A + B are assumed to have 
real eigenvalues, then the inequality (VIII.31) might not be true. 

VIII.5 Eigenvalues with Symmetries 

We have remarked earlier that the exponent lin occurring in the bound 
(VIII.8) is unavoidable. However, if A and B are restricted to some special 
classes, this can be improved. In this section we identify some useful classes 
of matrices where this exponent can be improved (though not eliminated 
altogether). These are matrices whose eigenvalues appear as pairs ±).. or, 
more generally, as tuples {)..,w).., ... ,wp - 1 )..}, where w is a pth root of unity. 
We will give interesting examples of large classes of such matrices, and then 
show how this symmetric distribution of their eigenvalues can be exploited 
to get better bounds. 
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Example VIII.5.1 Let AT denote the transpose of a matrix. A complex 
matrix is called symmetric if AT = A and skew-symmetric if AT = -A. 
If A is a skew-symmetric matrix, then A is an eigenvalue of A if and only 
if -A is. The class of all such matrices forms a Lie algebra. This is the Lie 
algebra associated with the complex orthogonal group. 

Example VIII.5.2 If AT is similar to -A, then, clearly, A is an eigen­
value of A if and only if -A is. The Lie algebra corresponding to the sym­
plectic Lie group contains matrices that have this property. Let n be an even 
number n = 2r. Let J = (~ ~), where I is the identity matrix of order r. 
Let A be an n x n matrix such that AT = -J AJ-I . It is easy to see that 
we can then write 

A = (AI A2 ) 
A3 -AT 

where AI, A2, A3 are r x r matrices of which A2 and A3 are skew-symmetric. 
The collection of all such matrices is the Lie algebra associated with the 
symplectic group. 

Example VIII.5.3 Let X be a matrix of order n = pr having a special 
form 

0 Al 0 0 0 
0 0 A2 0 0 

X= 

0 0 0 0 A p- I 
Ap 0 0 0 0 

where AI, ... ,Ap are matrices of order r. Let Y = diag(IT! wIT! ... ,wp- I Ir ), 

where w is the primitive pth root of unity. Then y-I Xy = wX. So, if A is 
an eigenvalue of X, then so are WA, w2 A, ... ,wp- I A. 

Exercise VIII.5A Let Z = C~ ~1), and suppose R commutes with AI. 
Show that tr Zk = 0 if k is odd. Use this to show that A is an eigenvalue of 
Z if and only if - A is. 

Exercise VIII.5.5 Let w be the primitive pth root of unity. If X, Y are 
two matrices such that XY = w Y X, then (X + y)P = XP + yp. 

Exercise VIII.5.6 Let Z be a matrix of order n = pr having a special 
form 

o o 

o 
o L), 

wp-IR 

where R commutes with Ab A2, ... ,Ap. Use the result of the preceding ex­
ercise to show .that tr Zk = 0 if k is not an integral multiple of p. Use this 
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to show that if A is an eigenvalue of Z, then so are WA, w2 A, ... ,wp- 1 A. 
(This is true even when R commutes with A 1,· .. , Ap-d 

For brevity, an n-tuple will be called p-Carrollian if n = pr and the 
elements of the tuple can be enumerated as 

(VIII.32) 

where W is the primitive pth root of unity. We have seen above several 
examples of matrices whose eigenvalues are p-Carrollian. 

Exercise VIII.5.7 Let Sk, 1 :$ k :$ n denote the elementary symmetric 
polynomials in n variables. If (a!, .. . ,an) is a Carrollian n-tuple written 
in the form (VIII.32), show that modulo a sign factor, we have 

if k = jp 
if k I: jp. 

Use this to show that if a1, ... , an are roots of the polynomial 

then af, ... ,a~ are roots of the polynomial 

F() r + r-1 + r-2 Z = Z apz a2pz + ... + arp . 

Proposition VIII.5.8 Let f, g be monic polynomials of degree n as in 
(VIII. 10). Suppose n = pr and the roots of f and g both are p-Carrollian. 
Let 'Y be as in (VIII. 11). Then the roots of f and g can be labelled as 
a1, ... ,an and /31, ... ,/3n in such a way that 

(VIII.33) 

Proof. Use Theorem VIII.2.4 and Exercise VIII. 5. 7. • 
Theorem VIII.5.9 Let n = pr and let A, B be two n x n matrices whose 
eigenvalues are p-Carrollian. Then 

d(O'(AP) , O'(BP)) :$ 4 cr,p MP-1/rIIA _ BI1 1/r, 

where M = max(IIAII, IIBII) and 

(VIII.34) 

(VIII.35) 
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Proof. See Exercise VII1.2.6 and use the preceding proposition. • 

The two results above give bounds not on the distance between the roots 
themselves but on that between their pth powers. If all of them are outside 
a neighbourhood of zero, a bound on the distance between the roots can 
be obtained from this. This needs the following lemma. 

Lemma VIII.S.lO Let x, y be complex numbers such that Ixl ~ p, Iyl ~ p 
and IxP - yPI ::; C. Then, for some k, 0 ::; k ::; p - 1, 

k C Ix-w yl <­- pp-1' 

where w is the primitive pth root of unity. 

Proof. Compare the coefficients of t in the identity 

p-1 
II [t - (x - wky)] = (-l)P[(x - t)p - yP] 
k=O 

to see that 

( p-1 ) _ ( 1)p-1 p-1 Sp-1 X - y, x - wy, ... ,x - w y - - px . 

(VIII.36) 

The right-hand side has modulus larger than ppp-1 and the left-hand side 
is a sum of p terms. Hence, at least one of them should have modulus larger 
than pp-1. So, there exists k, 0 ::; k ::; p - 1, such that 

p-1 

p-1 
IIlx - wjyl ~ pp-1. 
ji'k 
j=O 

But IIlx - wjyl = IxP - yPI ::; C. This proves the lemma. 
j=O • 

When p = 2, the inequality (VIII.36) can be strengthened. To see this 
note that 

Ix - Yl2 + Ix + Yl2 = 2(lx12 + IYI2) ~ 4p2. 

So, either Ix - yl or Ix + yl must be larger than 21/2 p. Consequently, one 
of them must be smaller than C /21/2 p. 

Thus if the eigenvalues of A and Bare p-Carrollian and all have modulus 
larger than p, then d(a(A), a(B)) is bounded by C/pp-1, where C is the 
quantity on the right-hand side of (VIII.34). When p = 2, this bound 
can be improved further to C / V2p. The major improvement over bounds 
obtained in Section 2 is that now the bounds involve IIA - B11 1/r instead of 
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IIA - Blll/n. For low values of p, the factors cr,p can be evaluated explicitly. 
For example, we have the combinatorial identity 

t2k(~) = n2n - 2 ifn = 2r. 
k=O 

VIII. 6 Problems 

Problem VIII.6.1. Let J(z) = zn + alzn- 1 + ... + an be a monic poly­
nomial. Let J-ll, ... , J-ln be the numbers lakI 1/k, 1 ~ k ~ n, rearranged 
in decreasing order. Show that all the roots of J are bounded (in absolute 
value) by J-ll +J-l2. This is an improvement on the result of Lemma VII1.2.1. 

Problem VIII.6.2. Fill in the details in the following alternate proof of 
Theorem VII1.3.1. 

Let f3 be an eigenvalue of B but not of A. If Bx = f3x, then 

Hence, 
Ilxll ~ cond(S)IIB - All 11(f31 - D)-III Ilxll· 

From this it follows that 

minlf3 - ajl ~ cond(S)IIB - All. 
J 

Notice that this proof too relies only on those properties of II . II that are 
shared by many other norms (like the ones induced by the p-norms on en). 
See the remark following Theorem VIII.3.1. 

Problem VIII.6.3. Let B be any matrix with entries bij . The disks 

Di = {z : Iz - biil ~ 2)bij l}, 1 ~ i ~ n, 
#i 

are called the Gersgorin disks of B. The Gersgorin Disk Theorem 
says that 

n 

u(B) C UDi' 
i=l 

and that any connected component of the set UDi contains as many eigen­
i 

values of B as the number of disks that form this component. 
The proof of this is outlined below. 
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Consider the vector norm Ilxll oo = max IXil on en. The norm it induces 
l::;.::;n 

on operators is 
n 

IIAlloo--+oo = max '"' laijl· l<.<n L - - j=l 

Let D be the diagonal of B, and let H = B - D. Let {3 be an eigenvalue 
of B but not of D. Then 

{31 - B = {31 - H - D = ({31 - D)[I - ({31 - D)-l H]. 

Since (31 - B is not invertible, neither is the matrix in the square brackets. 
Hence, 

l::; 11({31 - D)-lHlloo--+oo. 

From this, the first part of the theorem follows. The second part follows 
from the continuity argument we have used often. Let B(t) = D+tH, 0::; 
t::; 1. Then B(O) = D, B(l) = B; the eigenvalues of B(t) trace continuous 
curves that join the eigenvalues of D to those of B. 

Note that the proof of the first part is very similar to that of Theorem 
VIII.3.3; in fact, it is a special case of the earlier one. 

Problem VIII.6.4. Given any matrix A, we can find a unitary U such 
that 

U* AU = T = D + N, 

where T is upper triangular, D is diagonal, and N is strictly upper trian­
gular and, hence, nilpotent. Such a reduction is not unique. The measure 
of nonnormality of A is defined as 

~(A) = inf IINII, 

where the infimum is taken over all N that occur in the possible triangular 
forms of A given above. 

Now let B be any other matrix, and let {3 be an eigenvalue of B but not 
of A. From (VIII.19) we have 

II(D - {31 + N)-lll-l ::; IIA - BII· 

Show that 

(D - {31 + N)-l [I + (D - {3I)-1 Ntl(D - {3I)-1 

[I - (D - {3I)-1 N + {(D - {3I)-1 N}2 

+ ... + (_l)n-l{(D - {3I)-lN}n-l](D - {3I)-1. 

Let 8 = dist({3, (T(A)). From this equation and the inequality before it 

conclude that 

IIA - Ell' ~ ~ {1+ Ll~A) + (Ll~A))' + + (Ll~A) f'}. 
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Now show that 

(~r IIA-BII 
( )

n I::; ~(A) . 
1 + ~tA) + ... + ~tA) 

This is Henrici's Theorem. 
Let f(t) = tn /(l+t+·· ·+tn - I ). Then f(t) is close to tn for small values 

of t, and to t for large values of t. Thus, when ~(A) is close to 0, i.e., 
when A is close to being normal, the above bound leads to the asymptotic 
inequality 

s(u(B), u(A));S IIA - BII· 

In Theorem VI.3.3 we saw that if A is normal, then s(u(B), u(A)) < 
IIA-BII· 

Problem VIII.6.5. Let v be any norm on the space of matrices. The 
v-measure of nonnormality of A is defined as 

~v(A) = inf v(N), 

where N is as in Problem VIII.6.4. Suppose that the norm v is such that 
IIAII ::; v(A) for all A. Show that ~(A) in Henrici's Theorem can be replaced 
by ~v(A). 

Problem VIII.6.6. For the Hilbert-Schmidt norm II . 112, the measure of 
nonnormality satisfies the inequality 

IIA* A - AA*II~/2 

for every n x n matrix A. (The proof is a little intricate.) 

Problem VIII.6.7. Let A have the Jordan canonical form J = SAS-I. 
Let m be the size of the largest Jordan block in J. Let B be any other 
matrix. Show that for every eigenvalue (3 of B there is an eigenvalue a of 
A such that 

1(3 - aim -1 

(1 + 1(3 _ al)m-I ::; IIS(A - B)S II· 

Problem VIII.6.8. Let A, B, r be as in Theorem VIII.3.4. 
Let (A - B)xj = AjXj, where the vectors Xj are orthonormal and the 
eigenvalues Aj are indexed in such a way that Sj := sj(A - B) = IAjl. Let 
Yj be the orthonormal vectors that satisfy the relations (A - B)xj = SjYj. 
Note that Yj = ±Xj. Note also that the difference of Ar - r B and (A - B)r 
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is skew-Hermitian. Use this to show that, for 1 :$ k :$ n, 

k k 

Re :L(Xj, (Ar - rB)Yj) 
j=1 

Re :L(Xj, (A - B)rYj) 
j=1 

k k 

= :LSj(Yj,rYj) 2: 'Y:LSj. 
j=1 j=l 

Use this to give an alternate proof of Theorem VIII.3.4. ( See Problem 
III.6.6.) 

Problem VIII.6.9. Fill in the details in the following proof of Corollary 
VIII.3.7. Let D = r - 'YI. Then 

liAr - r BII~ = II (AD - DB) + 'Y(A - B) II~ 
= IIAD - DBII~ + 'Y211A - BII~ 

+2'Y Re tr (AD - DB)*(A - B). 

So, it suffices to show that the last term is positive. This can be seen by 
writing 

2 Re tr (AD-DB)*(A-B) = tr {(AD-DB)*(A-B)+(A-B)*(AD-DB)} 

and then using cyclicity of the trace to reduce this to 

tr D[(A - B)*(A - B) + (A - B)(A - B)*]. 

Problem VIII.6.lO. (i) Let X be a contractive matrix; i.e., let IIXII :$ 1. 
Show that there exist unit aries U and V such that X = ~(U + V). Use this 
to show that if D1 and D2 are real diagonal matrices, then 

for every unitarily invariant norm. [(See (IV.62).] 
(ii) Let A = SD1S-l, B = T D2T- 1 , where Sand T are invertible 

matrices and D 1 , D2 are real diagonal matrices. Show that 

IliA - Bill :$ cond(S)cond(T) IIIEig1 (A) - Eigi(B)III· 

Problem VIII.6.11. Let A and B be any two diagonalisable matrices with 
eigenvalues AI,"" An and J.L1, ... , J.Ln, respectively. Let A = SD1S- 1, B = 
T D2T- 1, where Sand T are invertible matrices and D1, D2 are diagonal 
matrices. Show that 

)

1/2 

IIA - BI12 :$ cond(S)cond(T)m:x ( ~IAi - J.L1C(i) 12 , 
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where 1f varies over all permutations on n symbols. [See Theorem VI.4.1.] 

Problem VIII.6.12. Let A be a Hermitian matrix with eigenvalues 
aI, ... , an. Let B be any other matrix. For 1 :::; j :::; n, let 

D j = {z : Iz - ajl :::; IIA - BII, 11m zl :::; IIIm(A - B)II}· 

The regions D j are disks flattened on the top and bottom by horizontal 

lines. Show that the eigenvalues of B are contained in UD j , and that each 
j 

connected component of this set contains as many eigenvalues of A as of B. 

Problem VIII.6.13. Let n be a real vector space whose elements are 
k 

matrices with real eigenvalues. Show that the function LA; (A) is a convex 
j=l 

k 

function of A on this space for 1 :::; k :::; n. Show that the function LA; (A) 
j=l 

is concave on n. 

Problem VIII.6.14. If Rl is invertible, then 

) ( 
Use this to show that if 

Z= ( R 
A2 

Al ) 
-R 

and R commutes with AI, then Z and -Z have the same eigenvalues. (Show 
that they have the same characteristic polynomials.) This gives another 
proof of the statement at the end of Exercise VIII.5.6, for p = 2. The same 
method works for p > 2. For instance, the case p = 3 is dealt with as 
follows. If Rl , R2 are invertible, then 

( Rl Al 1, ) 0 R2 
A3 0 R3 

( ~' 0 0 )( ~ R,t 0 ) R2 0 R;-lA2 
A3 -A3RII Al R3 + A3Rll AlR;-l A2 I 

Derive similar factorisations for p > 3, and use this to prove the statement 
at the end of Exercise VIII.5.6. 
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VIII. 7 Notes and References 

Many of the topics in this chapter have been presented earlier in R. Bhatia, 
Perturbation Bounds for Matrix Eigenvalues, Longman, 1987, and in G.W. 
Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990. 
Some results that were proved after the publication of these books have, of 
course, been included here. 

The first major results on perturbation of roots of polynomials were 
proved by A. Ostrowski, Recherches sur fa methode de Graffe et fes zeros 
des polyn6mes et des series de Laurent, Acta Math., 72 (1940),99-257. See 
also Appendices A and B of his book Solution of Equations and Systems of 
Equations, Academic Press, 1960. Theorem VIII.2.2 is due to Ostrowski. 
Using this he proved an inequality weaker than (VIII.15); this had a factor 
(2n - 1) instead of 4. The argument used by him is the one followed in 
Exercise VIII.l.3. 

Ostrowski was also the first to derive perturbation bounds for eigenvalues 
of arbitrary matrices in his paper Uber die Stetigkeit von charakteristischen 
Wurzeln in Abhangigkeit von den Matrizenelementen, Jber. Deut. Mat. -
Verein, 60 (1957) 40-42. See also Appendix K of his book cited above. 

The inequality he proved involved the matrix norm IIAIIL = ~ 2)aijl, 
i,j 

which is easy to compute but is not unitarily invariant. With this norm, 
his inequality is like the one in (VIllA). 

An inequality for d(u(A), u(B)) in terms of the unitarily invariant 
Hilbert-Schmidt norm was proved by R. Bhatia and KK Mukherjea, On 
the rate of change of spectra of operators, Linear Algebra Appl., 27 (1979) 
147-157. They followed the approach in Exercise VIII.2.6 and, after a little 
tidying up, their result looks like (VIllA) but with the larger norm II . 112 
instead of 11·11. This approach was followed, to a greater success, in R. Bha­
tia and S. Friedland, Variation of Grassmann powers and spectra, Linear 
Algebra Appl., 40 (1981) 1-18. In this paper, the norm II· II was used and 
an inequality slightly weaker than (VIllA) was proved. 

An improvement of these inequalities in which (2n - 1) is replaced by 
n was made by L. Elsner, On the variation of the spectra of matrices, 
Linear Algebra Appl., 47 (1982) 127-138. The major insightful observation 
was that the Matching Theorem does not exploit the symmetry between 
the polynomials f and g, nor the matrices A and B, under consideration. 
Theorem VIII. l. 1 is also due to L. Elsner, An optimal bound for the spectral 
variation of two matrices, Linear Algebra Appl., 71 (1985) 77-80. 

The argument using Chebyshev polynomials, that we have employed in 
Sections VIII.1 and VIII.2, seems to have been first used by A. Schonhage, 
Quasi-GCD computations, J. Complexity, 1(1985) 118-137. (See Theorem 
2.7 of this paper.) It was discovered independently by D. Phillips, Improv­
ing spectral variation bounds with Chebyshev polynomials, Linear Algebra 
Appl., 133 (1990) 165-173. Phillips proved a weaker inequality than (VIII.8) 
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with a factor 8 instead of 4. 
This argument was somewhat simplified and used again by R. Bhatia, 

L. Elsner, and G. Krause, Bounds for the variation of the roots of a poly­
nomial and the eigenvalues of a matrix, Linear Algebra Appl., 142 (1990) 
195-209. Theorems VIII.1.5 and VIII.2.4 (and their proofs) have been 
taken from this paper. Using finer results from Chebyshev approximation, 
G. Krause has shown that the factor 4 occurring in these inequalities can 
be replaced by 3.08. See his paper Bounds for the variation of matrix eigen­
values and polynomial roots, Linear Algebra Appl., 208/209 (1994) 73-82. 
It was shown by Bhatia, Elsner, and Krause in the paper cited above that, 
in the inequality (VIII.15), the factor 4 cannot be replaced by anything 
smaller than 2. 

Theorems VIII.3.1 and VIII.3.3 were proved in the very influential paper, 
F.L. Bauer and C.T. Fike, Norms and exclusion theorems, Numer. Math., 
2 (1960) 137-141. See the discussion in Stewart and Sun, p. 177. 

The basic idea behind results in Section VIII.3 from Theorem VIII.3.4 
onwards is due to W. Kahan, Inclusion theorems for clusters of eigenvalues 
of Hermitian matrices, Technical Report, Computer Science Department, 
University of Toronto, 1967. Theorem VII1.3.4 for the special case of the 
operator norm is proved in this report. The inequality (VIII.23) is due 
to J.-G. Sun, On the perturbation of the eigenvalues of a normal matrix, 
Math. Numer. Sinica, 6(1984) 334-336. The ideas of Kahan's and Sun's 
proofs are outlined in Problems VII1.6.8 and VIII.6.9. Theorem VIII.3.4, 
in its generality, was proved in R. Bhatia, C. Davis, and F. Kittaneh, 
Some inequalities for commutators and an application to spectral variation, 
Aequationes Math., 41(1991) 70-78. The three corollaries were also proved 
there. These authors then used their commutator inequalities to derive 
weaker versions of Theorems VIII.3.9 and VII1.3.lOj in all these, the square 
root in the inequalities (VIII.25) and (VIII.26) is missing. For the operator 
norm alone, the inequality (VIII.25) was proved by T.-X. Lu, Perturbation 
bounds for eigenvalues of symmetrizable matrices, Numerical Mathemat­
ics: a Journal of Chinese Universities, 16(1994) 177-185 (in Chinese). The 
inequalities (VIII.25)-(VIII.27) have been proved recently by R Bhatia, 
F. Kittaneh and R-C. Li, Some inequalities for commutators and an appli­
cation to spectral variation II, Linear and Multilinear Algebra, to appear. 

The inequality in Problem VII1.6.10 was proved in R Bhatia, 
L. Elsner, and G. Krause, Spectral variation bounds for diagonalisable ma­
trices, Preprint 94-098, SFB 343, University of Bielefeld. Example VII1.3.8 
(and another example illustrating the same phenomenon for the trace 
norm) was constructed in this paper. The inequality in Problem VIII. 6. 11 
was found by L. Elsner and S. Friedland, Singular values, doubly stochastic 
matrices and applications, Linear Algebra Appl., 220(1995) 161-169. 

The results of Section VIII.4 were discovered by P. D. Lax, Differen­
tial equations, difference equations and matrix theory, Comm. Pure Appl. 
Math., 11(1958) 175-194. Lax was motivated by the theory of linear partial 
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differential equations of hyperbolic type, and his proofs used techniques 
from this theory. The paper of Lax was followed by one by H.F. Wein­
berger, Remarks on the preceding paper of Lax, Comm. Pure Appl. Math., 
11 (1958) 195-196. He gave simple matrix theoretic proofs of these theo­
rems, which we have reproduced here. L. Garding later pointed out that 
these are special cases of his results for hyperbolic polynomials that ap­
peared in his papers Linear hyperbolic partial differential equations with 
constant coefficients, Acta Math., 84(1951) 1-62, and An inequality for hy­
perbolic polynomials, J. Math. Mech., 8(1959) 957-966. A characterisation of 
the kind of spaces R discussed in Section VIII.4 was given by H. Wielandt, 
Lineare Scharen von Matrizen mit reellen Eigenwerten, Math. Z., 53(1950) 
219-225. 

It was observed by R. Bhatia, On the mte of change of spectm of oper­
ators II, Linear Algebra Appl., 36 (1981) 25-32, that better perturbation 
bounds can be obtained for matrices whose eigenvalues occur in pairs ±>.. 
This was carried further in the paper Symmetries and variation of spectm, 
Canadian J. Math., 44 (1992) 1155-1166, by R. Bhatia and L. Elsner, who 
considered matrices whose eigenvalues are p-Carrollian. See also the paper 
by R. Bhatia and L. Elsner, The q-binomial theorem and spectml symmetry, 
Indag. Math., N.S., 4(1993) 11-16. The material in Section VIII.5 is taken 
from these three papers. 

The bound in Problem VII1.6.1 is due to Lagrange. There are several 
interesting and useful bounds known for the roots of a polynomial. Since 
the roots of a polynomial are the eigenvalues of its companion matrix, 
some of these bounds can be proved by using bounds for eigenvalues. An 
interesting discussion may be found in Horn and Johnson, Matrix Analysis, 
pages 316-319. 

The Gersgorin Disk Theorem was proved in S.A. Gersgorin, Uber die 
Abrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Ser. Fiz. -
Mat., 6(1931) 749-754. A matrix is called diagonally dominant if !aii! > 
z)aij!, 1:::; i :::; n. Every diagonally dominant matrix is nonsingular. 
j#i 
Gersgorin's Theorem is a corollary. This theorem is applied to the study of 
several perturbation problems in J.H. Wilkinson, The Algebmic Eigenvalue 
Problem. A comprehensive discussion is also given in Horn and Johnson, 
Matrix Analysis. 

The results of Problems VIII.6.4, VIII.6.5, and VII1.6.6 are due to 
P. Henrici, Bounds for itemtes, inverses, spectml variation and fields of 
values of nonnormal matrices, Numer. Math., 4 (1962) 24-39. Several other 
very interesting results that involve the measure of nonnormality are proved 
in this paper. For example, we know that the numerical range W(A) of a 
matrix A contains the convex hull H(A) of the eigenvalues of A, and that 
the two sets are equal if A is normal. Henrici gives a bound for the distance 
between the boundaries of H(A) and W(A) in terms of the measure of 

nonnormality of A. 
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There are several different ways to measure the nonnormality of a ma­
trix. Problem VIII.6.6 relates two such measures by an inequality. The re­
lations between several different measures of nonnormality are discussed in 
L. Elsner and M.H.C. Paardekooper, On measures of nonnormality of ma­
trices, Linear Algebra Appl., 92(1987) 107-124. 

Is a nearly normal matrix near to an (exactly) normal matrix? More pre­
cisely, for every c > 0, does there exist a {j > 0 such that if IIA * A - AA * II < {j 

then there exists a normal B such that IIA - BII < c? The existence of such 
a (j for each fixed dimension n was shown by C. Pearcy and A. Shields, Al­
most commuting matrices, J. Funet. Anal., 33(1979) 332-338. The problem 
of finding a {j depending only on c but not on the dimension n is linked 
to several important questions in the theory of operator algebras. This 
has been shown to have an affirmative solution in a recent paper: H. Lin, 
Almost commuting selfadjoint matrices and applications, preprint, 1995. 
No explicit formula for (j is given in this paper. In an infinite-dimensional 
Hilbert space, the answer to this question is in the negative because of 
index obstructions. 

The inequality in Problem VIII.6.7 was proved in W. Kahan, B.N. Par­
lett, and E. Jiang, Residual bounds on approximate eigensystems of non­
normal matrices, SIAM J. Numer. Anal. 19(1982) 470-484. 

The inequality in Problem VIII.6.12 was proved by W. Kahan, Spectra 
of nearly Hermitian matrices, Proc. Amer. Math. Soc., 48(1975) 11-17. 

For 2 x 2 block-matrices, the idea of the argument in Problem VIII.6.14 
is due to M.D. Choi, Almost commuting matrices need not be nearly com­
muting, Proc. Amer. Math. Soc. 102(1988) 529-533. This was extended to 
higher order block-matrices by R. Bhatia and L. Elsner, Symmetries and 
variation of spectra, cited above. 



IX 
A Selection of Matrix Inequalities 

In this chapter we will prove several inequalities for matrices. From the 
vast collection of such inequalities, we have selected a few that are simple 
and widely useful. Though they are of different kinds, their proofs have 
common ingredients already familiar to us from earlier chapters. 

IX.1 Some Basic Lemmas 

If A and B are any two matrices, then AB and BA have the same eigen­
values. (See Exercise 1.3.7.) Hence, if f(A) is any function on the space of 
matrices that depends only on the eigenvalues of A, then f(AB) = f(BA). 
Examples of such functions are the spectral radius, the trace, and the de­
terminant. If A is normal, then the spectral radius spr(A) is equal to IIAII. 
Using this, we can prove the following two useful propositions. 

Proposition IX.I.1 Let A, B be any two matrices such that the product 
AB is normal. Then, for every unitarily invariant norm, we have 

IIIABIII :S IIIBAIII· (IX.I) 

Proof. For the operator norm this is an easy consequence of the two facts 
mentioned above; we have 

IIABII = spr(AB) = spr(BA) :S IIBAII· 

The general case needs more argument. Since AB is normal, sj(AB) 
IAj(AB)I, where IA1(AB)1 ~ ... ~ IAn(AB)1 are the eigenvalues of AB 
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arranged in decreasing order of magnitude. But l>.j(AB)1 = l>'j(BA)I. By 
Weyl's Majorant Theorem (Theorem 11.3.6), the vector I>'(BA)I is weakly 
majorised by the vector s(BA). Hence we have the weak majorisation 
s(AB) -<w s(BA). From this the inequality (IX.I) follows. • 

Proposition IX.1.2 Let A, B be any two matrices such that the product 
AB is Hermitian. Then, for every unitarily invariant norm, we have 

IIIABIII :S IIIRe(BA)III· (IX.2) 

Proof. The eigenvalues of BA, being the same as the eigenvalues of the 
Hermitian matrix AB, are all real. So, by Proposition III.5.3, we have the 
majorisation >.(BA) -< >.(Re BA). From this we have the weak majorisation 
I>'(BA)I -<w 1>.(Re BA)I· (See Examples II.3.5.) The rest of the argument 
is the same as in the proof of the preceding proposition. • 

Some of the inequalities proved in this chapter involve the matrix expo­
nential. An extremely useful device in proving such results is the following 
theorem. 

Theorem IX.1.3 (The Lie Product Formula) For any two matrices A, B, 

( A B)m lim exp - exp - = exp(A + B). 
m-+oo m m (IX.3) 

Proof. For any two matrices X, Y, and for m = 1,2, ... , we have 

m-l 

Xm - ym = L xm-1-j (X - y)yj. 
j=O 

Using this we obtain 

(IX.4) 

where M = max(!lXII, IIYII). 
Now let Xm = exp(A~B), Ym = exp ~ exp -!!;, m = 1,2, .... Then 

IIXml1 an~ IlYmll b~th are bounded above by exp eAII~IIBII). From the 
power senes expansIOn for the exponential function, we see that 
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Hence, using the inequality (IX.4), we see that 

IIX;;: - Y=II :::; m exp(IIAII + liBIDO (~2) . 
This goes to zero as m -; 00. But X;;: = exp(A + B) for all m. Hence, 
lim Y= = exp(A + B). This proves the theorem. • 

m_oo 

The reader should compare the inequality (IX.4) with the inequality in 
Problem 1.6.11. 

Exercise IX.lo4 Show that for any two matrices A, B 

( B A B)m lim exp - exp - exp - = exp(A + B). 
m-oo 2m m 2m 

Exercise IX.lo5 Show that for any two matrices A, B 

( tB tB)l/t 
lim exp - exp tA exp -2 = exp(A + B). 
t_O 2 

IX.2 Products of Positive Matrices 

In this section we prove some inequalities for the norm, the spectral radius, 
and the eigenvalues of the product of two positive matrices. 

Theorem IX.2.1 Let A, B be positive matrices. Then 

(IX.5) 

Proof. Let 

Then D is a closed subset of [0,1] and contains the points 0 and 1. So, to 
prove the theorem, it suffices to prove that if sand t are in D then so is 
stt. We have 

s+t s+t s+t +t s+' 
IIB'"2 As+t B'"211 = spr(B'"2 AS B'"2) 

spr(BS AsH Bt) :::; IIBs AsH Btll 

< IIBs ASII IIAt Btll = liAs BSII IIAt Btll· 

At the first step we used the relation II TIl 2 = IIT*TII, and at the last step 
the relation IIT* II = IITII for all T. If s, t are in D, this shows that 

IIA st' B sr II :::; IIABII(s+t)/2, 
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and this proves the theorem. • 
An equivalent formulation of the above theorem is given below, with 

another proof that is illuminating. 

Theorem IX.2.2 If A, B are positive matrices with IIABII S; 1, then liAs BSII : 
1 for 0 S; s S; 1. 

Proof. We can assume that A > O. The general case follows from this by 
a continuity argument. We then have the chain of implications 

IIABII S; 1 '* IIAB2 All S; 1 '* AB2 A S; I 
'* B2 S; A-2 (by Lemma V.1.5) 

'* B 2s S; A-2s (by Theorem V.1.9) 

'* N B2s AS S; I (by Lemma V.1.5) 

'* liAs B2s Nil S; 1 '* liAs BBII S; 1. 

Another equivalent formulation is the following theorem. 

Theorem IX.2.3 Let A, B be positive matrices. Then 

• 

(IX.6) 

Proof. From Theorem IX.2.1, we have IIAI/t Bl/tll S; IIABll l/t for t ?: 1. 
Replace A, B by At, Bt, respectively. • 

Exercise IX.2.4 Let A, B be positive matrices. Then 

(i) IIAI/t Bl/tllt is a monotonically decreasing function oft on (0,00). 

(ii) IIAt Bt 111 f t is a monotonically increasing function of t on (0,00). 

In Section 5 we will see that the inequalities (IX.5) and (IX.6) are, in 
fact, valid for all unitarily invariant norms. 

Results akin to the ones above can be proved for the spectral radius in 
place of the norm. This is done below. 

If A and B are positive, the eigenvalues of AB are positive. (They are 
the same as the eigenvalues of the positive matrix A 1/2 BA 1/2.) If T is 
any matrix with positive eigenvalues, we will enumerate its eigenvalues as 
>'1 (T) ?: A2 (T) ?: ... ?: An (T) ?: O. Thus Al (T) is equal to the spectral 
radius spr (T). 

Theorem IX.2.5 If A, B are positive matrices with Al(AB) S; 1, then 
Al(AS BB) S; 1 for 0 S; s S; 1. 
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Proof. As in the proof of Theorem IX.2.2, we can assume that A > 0. 
We then have the chain of implications 

Al(AB) :::; 1 =;. Al(A1/ 2 BA1/ 2) :::; 1 =;. A 1/ 2 BAI/2 :::; I 

=;. B:::; A-I =;. B S :::; A-s =;. As/2BsAs/2:::; I 

=;. Al(As/2 B S As/2) :::; 1 =;. Al(AS B S ) :::; 1. 

This proves the theorem. • 
It should be noted that all implications in this proof and that of Theorem 

IX.2.2 are reversible with one exception: if A :::: B :::: 0, then AS :::: BS for ° :::; s :::; 1, but the converse is not true. 

Theorem IX.2.6 Let A, B be positive matrices. Then 

(IX.7) 

Proof. Let Al (AB) = 0:2. If 0: i- 0, we have Al (~ ~) = 1. So, by Theorem 
IX.2.5, Al(AS BS) :::; 0:2s = Af(AB). 

If 0: = 0, we have Al(A1/ 2 BAI/2) = 0, and hence Al/2 BA1/ 2 = 0. From 
this it follows that the range of A is contained in the kernel of B. But then 
As/2 BS As/2 = 0, and hence, Al(AS BS) = 0. • 

Exercise IX.2.7 Let A, B be positive matrices. Show that 

(IX.8) 

Exercise IX.2.8 Let A, B be positive matrices. Show that 

(i) [Al(A 1/ tB 1/ tW is a monotonically decreasing function oft on (0,00). 

(ii) [AI (At Bt)]I/t is a monotonically increasing function of t on (0,00). 

Using familiar arguments involving antisymmetric tensor products, we 
can now obtain stronger results. 

Theorem IX.2.9 Let A, B be positive matrices. Then, for 0< t :::; u < 00, 
we have the weak majorisation 

(IX.9) 

Proof. For k = 1,2, ... , n, consider the operators I\k A and I\k B. The 
result of Exercise IX.2.8(ii) applied to these operators in place of A, B 
yields the inequalities 

k k 

II At(At Bt) :::; II A~/U(AU BU) (IX. 10) 

j=1 j=1 

for k = 1,2, ... ,n. The assertion of II.3.5(vii) now leads to the majorisation 

(IX.9). • 
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Theorem IX.2.10 Let A, B be positive matrices. Then for every unitarily 

invariant norm we have 

IllBtAtBtll1 < 111(BAB)tlll, forO ~ t ~ 1, 

111(BAB)tlll < IIIBtAtBtlll, fort "2 1. 

Proof. We have 

for 0 ~ t ~ 1, by Theorem IX.2.1. So 

This is the same as saying that 

(IX. 11) 

(IX.12) 

Replacing A and B by their antisymmetric tensor powers, we obtain, for 
1:::; k:::; n, 

k k 

IISj(BtAtBt):::; IIsj(BAB). 
j=l j=l 

By the argument used in the preceding theorem, this gives the majorisation 

which gives the inequality (IX.ll). 
The inequality (IX.12) is proved in exactly the same way. • 

Exercise IX.2.11 Derive (as a special case of the above theorem) the fol­
lowing inequality of Araki-Lieb- Thirring. Let A, B be positive matrices, and 
let s, t be positive real numbers with t "2 1. Then 

(IX.13) 

IX.3 Inequalities for the Exponential Function 

For every complex number z, we have I eZ 1 = 1 eRe Z I. Our first theorem is a 
matrix version of this. 

Theorem IX.3.1 Let A be any matrix. Then 

(IX.14) 

for every unitarily invariant norm. 
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Proof. For each positive integer m, we have IIAml1 ::; IIAllm. This is the 
same as saying that s~(Am) ::; s~m(A) or sl(A*mAm) ::; si(A* A). Replac­
ing A by I\k A, we obtain for 1 ::; k ::; n 

k k 

IT Sj(A*m Am) ::; IT Sj([A* A]m). 
j=l j=l 

Now, if we replace A by eA/m, we obtain 

k k 

IT sj(eA* eA) ~ IT sj([eA* /meA/m]m). 
j=l j=l 

Letting m -+ 00, and using the Lie Product Formula, we obtain 

k k 

IT sj(eA* eA) ::; IT sj(eA*+A). 
j=l j=l 

Taking square roots, we get 

k k 

IT sj(eA) ::; IT sj(eReA ). 
j=l j=l 

This gives the majorisation 

(see II.3.5(vii)), and hence the inequality (IX.14). • 
It is easy to construct an example of a 2 x 2 matrix A, for which IlleAli1 

and IlleReAll1 are not equal. 
Our next theorem is valid for a large class of functions. It will be conve­

nient to give this class a name. 

Definition IX.3.2 A continuous complex-valued function f on the space 
of matrices will be said to belong to the class T if it satisfies the following 
two properties: 

(i) f(XY) = f(Y X) for all X, Y. 

(ii) If(x2m)1 ::; f([xx*]m) for all X, and for m = 1,2, ... 

Exercise IX.3.3 (i) The functions tmce and determinant are in T. 

(ii) For every k, 1 ::; k ::; n, the function CPk(X) = tr I\k X is in T. 
(These are the coefficients in the chamcteristic polynomial of X.) 
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(iii) Let .Aj(X) denote the eigenvalues of X arranged so that l.Al(X)1 2: 
1.A2(X)1 2: ... 2: l.An(X)I· Then, for 1::; k ::; n, the function h(X) = 

k II .Aj(X) is in T, and so is the function Ih(X)I· (Hint: Use Theorem 

j=l 

Il.3.6.} 

k 

(iv) For 1::; k ::; n, the function gk(X) = 2:).Aj(X)1 is in T. 
j=l 

(v) Every symmetric gauge function of the numbers l.Al(X)I,···, l.An(X)1 
is in T. 

Exercise IX.3.4 (i) If f is any complex valued function on the space of 
matrices that satisfies the condition (ii) in Definition IX.3.2, then f(A) 2: 0 
if A 2: O. In particular, f(e A) 2: 0 for every Hermitian matrix A. 

(ii) If f satisfies both conditions (i) and (ii) in Definition IX.3.2, then 
f(AB) 2: 0 if A and B are both positive. In particular, f(eAe B) 2: 0 if A 
and B are Hermitian. 

The principal result about the class T is the following. 

Theorem IX.3.5 Let f be a function in the class T. Then for all matrices 
A,B, we have 

Proof. For each positive integer m, we have for all X, Y 

If([XYj2m )1 < f([(XY)(XY)*j2 m
-

1
) 

f([XYY* X*j2m- 1
) 

f([X* XYY*fm- 1
). 

(IX.15) 

Here, the inequality at the first step is a consequence of the property (ii), 
and the equality at the last step is a consequence of the property (i) of 
functions in T. Repeat this argument to obtain 

If([XYj2m )1 ::; f([(X*X)2(yy*)2j2 m -2) 

:S f([X* Xfn-l [YY*j2m- 1
). 

Now let A, B be any two matrices. Put X = eAj2m and Y = eB/2m in 
the above inequality to obtain 

If([eA/2m eB/2mj2m)1 ::; f([eA" /2 m eA/2mj2m-l [e B/2m eB" / 2mrm- 1 ). 

Now let m ---+ 00. Then, by the continuity of f and the Lie Product 
Formula, we can conclude from the above inequality that 

If(eA+B)1 ::; f(e(A+A*)/2 e(B+B*)/2) = f(eRe AeRe B). 
• 
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Corollary IX.3.6 Let f be a function in the class T. Then 

(IX.16) 

and 

(IX.17) 

Particularly noteworthy is the following special consequence. 

Theorem IX.3.7 Let A, B be any two Hermitian matrices. Then 

(IX.18) 

for every unitarily invariant norm. 

Proof. Use (IX.17) for the special functions in Exercise IX.3.3(iv). This 
gives the majorisation 

This proves the theorem. • 
Choosing f (X) = tr X, we get from (IX.17) the famous Golden­

Thompson inequality: for Hermitian A, B we have 

(IX.19) 

Exercise IX.3.B Let A, B be Hermitian matrices. Show that for every uni­
tarily invariant norm 

III tB tBllll/t exp 2 exp tA exp 2 

decreases to III exp(A + B)III as t 1 o. As a special consequence of this we 
have a stronger version of the Golden- Thompson inequality: 

tr exp(A + B) :S tr (exp t: exptA exp t:) for all t> o. 

[Use Theorem IX. 2. 10 and Exercise IX.l.5.} 
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IX.4 Arithmetic-Geometric Mean Inequalities 

The classical arithmetic-geometric mean inequality for numbers says that 
..JQjj ::; ~ (a + b) for all positive numbers a, b. From this we see that for 
complex numbers a, b we have labl ::; ~(laI2 + IW). In this section we 
obtain some matrix versions of this inequality. Several corollaries of these 
inequalities are derived in this and later sections. 

Lemma IX.4.1 Let Y1 , Y2 be any two positive matrices, and let Y = Y1 -

Y2 · Let Y = y+ - Y- be the Jordan decomposition of the Hermitian matrix 
Y. Then, for j = 1,2, ... ,n, 

(See Section IV.3 for the definition of the Jordan decomposition.) 

Proof. Suppose Aj (Y) is nonnegative for j = 1, ... , p and negative for 
j = p + 1, ... ,n. Then Aj(Y+) is equal to Aj(Y) if j = 1, ... ,p, and is zero 
for j = p + 1, ... , n. 

Since Y1 = Y + Y2 :::: Y, we have Aj(Yr) :::: Aj(Y) for all j, by Weyl's 
Monotonicity Principle. Hence, Aj(Yr) :::: Aj(Y+) for all j. 

Since Y2 = Y1 - Y :::: -Y, we have Aj(Y2 ) :::: Aj(-Y) for all j. But 
Aj( -Y) = Aj(Y-) for j = 1, ... , n - p and Aj( -Y) = 0 for j > n - p. 
Hence, Aj(Y2 ) :::: Aj(Y-) for all j. • 

Theorem IX.4.2 Let A, B be any two matrices. Then 

(IX.20) 

for 1 ::; j ::; n. 

Proof. Let X be the 2n x 2n matrix X = (~ ~). Then 

XX* = ( AA* +0 BB* 0) ( A* A A* B ) o ,X* X = B* A B* B . 

The off-diagonal part of X* X can be written as 

_ ( 0 A* B) 1 * * * Y - B* A 0 = 2{X X - U(X X)U }, 

where U is the unitary matrix (~ '::1)' Note that both of the matrices in 
the braces above are positive. Hence, by the preceding lemma, 
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But X* X and XX* have the same eigenvalues. Hence, both Aj(Y+) and 
Aj(Y-) are bounded above by ~Aj(AA*+BB*). Now note that, by Exercise 
II.l.15, the eigenvalues of Yare the singular values of A* B together with 
their negatives. Hence we have 

• 
Corollary IX.4.3 Let A, B be any two matrices. Then there exists a uni­
tary matrix U such that 

IA* BI :::; ~U(AA* + BB*)U*. (IX.21) 

Corollary IX.4.4 Let A, B be any two matrices. Then 

IIIA* Bill :::; ~IIIAA* + BB*III (IX.22) 

for every unitarily invariant norm. 

The particular position of the stars in (IX.20), (IX.21), and (IX.22) is 
not an accident. If we have 

A=(~ ~), B=(~ ~), 
then sl(AB) = \;"2, but ~sl(AA* + BB*) = l. 

The presence of the unitary U in (IX.21) is also essential: it cannot be 
replaced by the identity matrix even when A, B are Hermitian. This is 
illustrated by the example 

A considerable strengthening of the inequality (IX.22) is given in the 
theorem below. 

Theorem IX.4.5 For any three matrices A, B, X) we have 

IIIA*XBIII:::; ~IIIAA*X +XBB*III (IX.23) 

for every unitarily invariant norm. 

Proof. First consider the special case when A, B, X are Hermitian and 
A = B. Then AXA is also Hermitian. So, by Proposition IX.1.2, 

(IX.24) 
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which is just the desired inequality in this special case. . . 
Next consider the more general situation, when A and B are HermItian 

and X is any matrix. Let 

T = (~ ~), Y = (~* ~). 
Then, by the special case considered above, 

IIITYTIII ::; ~IIIT2y + YT2111· (IX.25) 

Multiplying out the block-matrices, one sees that 

TYT ( 0 AXB) 
BX*A 0 ' 

( 0 A2X +XB2 ) 
B 2X* +X*A2 0 . 

Hence, we obtain from (IX.25) the inequality 

(IX.26) 

Finally, let A, B, X be any matrices. Let A = Al U, B = BI V be polar 
decompositions of A and B. Then 

AA*X +XBB* = A~X +xBL 

while 
IIIA* XBIII = IIlUA1XB1 VIII = IIIA1XBIilI· 

So, the theorem follows from the inequality (IX.26). • 
Exercise IX.4.6 Another proof of the theorem can be obtained as follows. 
First prove the inequality (IX.24) for Hermitian A and X. Then, for arbi­
trary A, B and X, let T and Y be the matrices 

o 
o 
o i i), 

B* 0 0 

and apply the special case to them. 

~ ~ ~) 
o 0 0 ' 
o 0 0 

Exercise IX.4.7 Construct an example to show that the inequality (IX.20) 
cannot be strengthened in the way that (IX.23) strengthens (IX. 22). 

When A, B are both positive, we can prove a result stronger than (IX.26). 
This is the next theorem. 
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Theorem IX.4.8 Let A, B be positive matrices and let X be any matrix. 
Then, for each unitarily invariant norm, the function 

(IX.27) 

is convex on the interval [-1,1] and attains its minimum at t = O. 

Proof. Without loss of generality, we may assume that A > 0 and B > O. 
Since f is continuous and f(t) = f( -t), both conclusions will follow if we 
show that f(t) ::::; ~[f(t + s) + f(t - s)], whenever t ± s are in [-1,1]. 

For each t, let M t be the mapping 

Mt(Y) = ~(AtYB-t +A-tYBt). 

For each Y, we have 

IllY III = IIIAt(A-tYB-t)Btlll::::; ~IIIAtYB-t +A-tYBtlll 

by Theorem IX.4.5. Thus IIIYIII ::::; IIIMt(Y)III. From this it follows that 

IIIMt(AXB)III::::; IIIMsMt(AXB)III, for all s,t. 

But, 

So we have 

IIIMt(AXB)111 ::::; ~{IIIMt+s(AXB)111 + IIIMt-s(AXB)III}. 

Since IIIMt(AXB)111 = ~f(t), this shows that 

1 
f(t) ::::; 2[f(t + s) + f(t - s)]. 

This proves the theorem. • 
Corollary IX.4.9 Let A, B be positive matrices and X any matrix. Then, 
for each unitarily invariant norm, the function 

(IX.28) 

is convex on [0,1]. 

Proof. Replace A, B by A 1/2, B1/2 in (IX.27). Then put v = l~t. • 

Corollary IX.4.10 Let A, B be positive matrices and let X be any matrix. 
Then, for 0 ::::; v ::::; 1 and for every unitarily invariant norm, 

(IX.29) 

Proof. Let g(v) be the function defined in (IX.28). Note that g(l) = g(O). 
So the assertion follows from the convexity of g. • 
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IX.5 Schwarz Inequalities 

In this section we shall prove some inequalities that can be considered to 
be matrix versions of the Cauchy-Schwarz inequality. 

Some inequalities of this kind have already been proved in Chapter 4. 
Let A, B be any two matrices and r any positive real number. Then, we 

saw that 
IIIIA* BITII12 :::; 111(AA*rIll 111(BB*rIll (IX.30) 

for every unitarily invariant norm. The choice r = ~ gives the inequality 

IIIIA* Bll/21112 :::; IIIAIII IIIBIII, (IX.31) 

while the choice r = 1 gives 

IIIA* BII12 :::; IIIAA*III IIIBB*III· (IX.32) 

See Exercise IV.2.7 and Problem IV.5.7. It was noted there that the in­
equality (IX.32) is included in (IX.31). 

We will now obtain more general versions of these in the same spirit as of 
Theorem IX.4.5. The generalisation of (IX.32) is proved easily and is given 
first, even though this is subsumed in the theorem that follows it. 

Theorem IX.5.l Let A, B, X be any three matrices. Then, for every uni­
tarily invariant norm, 

IIIA* XBII12 :::; IIIAA* XIII IIIXBB*III· (IX.33) 

Proof. First assume that X is a positive matrix. Then 

IIIA* XBII12 IIIA* X1/ 2 Xl/2 BII12 = 111(X I / 2 A)* (Xl/2 B)1112 

< IIIX I / 2 AA* X1 / 2111 IIIX I / 2 BB* X1/ 2111, 
using the inequality (IX.32). Now use Proposition IX.1.1 to conclude that 

IIIA* XBII12 ::::; IIIAA* XIII IIIXBB*III· 

This proves the theorem in this special case. Now let X be any matrix, and 
let X = UP be its polar decomposition. Then, by unitary invariance, 

IIIA*XBIII 
IIIAA*XIII 
IIIXBB*III 

IIIA*UPBIiI = IIIU* A*UPBIII, 
IIIAA*UPIII = IIIU* AA*UPIII, 
IIIUPBB*III = IIIPBB*III· 

So, the general theorem follows by applying the special case to the triple 
U*AU,B,P. • 

The corresponding generalisation of the inequality (IX.30) is proved in 
the next theorem. 
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Theorem IX.5.2 Let A, B, X be any three matrices. Then, for every pos­
itive real number r, and for every unitarily invariant norm, we have 

(IX.34) 

Proof. Let X = UP be the polar decomposition of X. Then A * X B = 

A*UPB = (Pl/2U*A)*p1/ 2B. So, from the inequality (IX.30), we have 

IIIIA* xBnf :::; 111(pl/2U* AA*U p 1/ 2r1IIIII(p1/ 2 BB* p 1/ 2r111. (IX.35) 

N ow note that 

Using Theorem IX.2.9, we have 

But (UPU*)2 = Up2U* = XX*. Hence, 

).T/2([AA*]2[U PU*]2) = sT(AA* X). 

Thus, 

and hence 

In the same way, we have 

Hence 

).T(PBB*) -<w ).T/2(P2[BB*]2) 

sT(PBB*) = sT(XBB*). 

(IX.36) 

(IX.37) 

Combining the inequalities (IX.35), (IX.36), and (IX.37) we get (IX.34). • 

The following corollary of Theorem IX.5.1 should be compared with 
(IX.29). 

Corollary IX.5.3 Let A, B be positive matrices and let X be any matrix. 
Then, for 0 :::; v :::; 1, and for every unitarily invariant norm 

(IX.38) 

Proof. For v = 0,1, the inequality (IX.38) is a trivial statement. For 
v = ~, it reduces to the inequality (IX.33). We will prove it, by induction, 
for all indices v = k / 2n , k = 0, 1, ... , 2n. The general case then follows by 
continuity. 
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Let v = 2~-;t1 be any dyadic rational. Then v = J-t + p, where J-t = 
_k_ P =...!.. Suppose that the inequality (IX.38) is valid for all dyadic 
2n-1, 2n • 

rationals with denominator 2n - 1 . Two such rationals are J-t and A = J-t+2p = 
v + p. Then, using the inequality (IX.33) and this induction hypothesis, we 
have 

IIIAV X B1-v III IIIAIL+P X B1- A+PIII 
IIIAP(AIL XB1-A)BPIII 

< IIIA2p AIL XB1-AII11/211IAIL XB1-AB2PII11/2 
IIIAAX B1-AII11/211IAIL XB1-1L111 1/2 

::; IIIAX IIIA/211IX Bill (1-A)/211IAXIIIIL/211IX BIII(1-1L)/2 
IIIAX III (A+IL)/211IX BII11-(>'+IL)/2 
IIIAXlllvIIIXBII11-V. 

This proves that the desired inequality holds for all dyadic rationals. • 

Corollary IX.5.4 Let A, B be positive matrices and let X be any matrix. 
Then, for 0 ::; v::; 1, and for every unitarily invariant norm 

(IX.39) 

Proof. Assume without loss of generality that A is invertible; the general 
case follows from this by continuity. We have, using (IX.38), 

IIIAV XBvll1 111(A-1)1-v AXB1-(1-V)111 
< IIIA-1 AXI1I1-vIIIAXBlr 

IIIXII11-vIIIAXBlllv. 

Note that the inequality (IX.5) is a very special case of (IX.39). 

• 

Exercise IX.5.5 Since IIIAA*III = IIIA* Alii, the stars in the inequality 
(JX.32) could have been placed differently. Much less freedom is allowed for 
the genemlisation (JX.33). Find a 2 x 2 example in which IIIA* XBII12 is 
larger than IIIA* AXIIIIIIXBB*III· 

Apart from norms, there are other interesting functions for which Schwarz­
like inequalities can be obtained. This is done below. It is convenient to have 
a name for the class of functions we shall study. 

Definition IX.5.6 A continuous complex-valued function f on the space 
of matrices will be said to belong to the class C if it satisfies the following 
two conditions: 

(i) f(B) ~ f(A) ~ 0 if B ~ A ~ o. 
(ii) If(A* B)12 ::; f(A* A)f(B* B) for all A, B. 
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We have seen above that every unitarily invariant norm is a function in 
the class C. Other examples are given below. 

Exercise IX.5.7 (i) The functions trace and determinant are in C. 

(ii) The function spectral radius is in C. 

(iii) If f is a function defined on matrices of order G) and is in C, then 
the function g(A) = f(l\k A) defined on matrices of order n is also in 
C. 

(iv) The functions 'PdA) = tr I\k A, 1 :::; k :::; n, are in C. (These are the 
coefficients in the characteristic polynomial of A.) 

(v) If sj(A), 1 :::; j :::; n, are the singular values of A, then for each 
k 

1:::; k :::; n the function h(A) = II sj(A) is in C. 
j=l 

(vi) If Aj(A) denote the eigenvalues of A arranged as IA1(A)1 2': ... 2': 
k 

IAn(A)I, then for 1:::; k :::; n the function fk(A) = II Aj(A) is in C. 
j=l 

Exercise IX.5.S Another class of functions T was introduced in IX. 3.2. 
The two classes T and C have several elements in common. Find examples 
to show that neither of them is contained in the other. 

A different characterisation of the class C is obtained below. For this we 
need the following theorem, which is also useful in other contexts. 

Theorem IX.5.9 Let A, B be positive operators on H, and let C be any 
operator on H. Then the operator (~ C;;) on H EB 11 is positive if and only 
if there exists a contraction K on 11 such that C = B 1/2 K A 1/2. 

Proof. By Proposition 1.3.5, K is a contraction if and only if (~ ~') is 
positive. The positivity of this matrix implies the positivity of the matrix 

A 1/2 K* B 1/ 2 ) 
B . 

(See Lemma V.1.5.) This proves one of the asserted implications. To prove 
the converse, first note that if A' and B are invertible, then the argument 
can be reversed; and then note that the general case can be obtained from 

this by continuity. • 
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Theorem IX.5.10 A (continuous) function f is in the class.c if and only 
if it satisfies the following two conditions: 

(a) f(A) :2: 0 for all A :2: o. 

(b) If(C)1 2 ::; f(A)f(B) for all A, B, C such that (~ C;) is positive. 

Proof. If f satisfies condition (i) in Definition IX.5.6, then it certainly 
satisfies the condition (a) above. Further, if (~ C;) is positive, then, by 
the preceding theorem, C = B l / 2 K A 1/2, where K is a contraction. So, if 
f satisfies condition (ii) in IX.5.6, then 

Since Al/2K*KAI/2::; A, we also have f(A l /2K*KAl/2)::; f(A) from the 
condition (i) in IX.5.6. 

Now suppose f satisfies conditions (a) and (b). Let B :2: A :2: O. Write 

( B A) (B-A 0 ) (A A) 
A B = 0 B-A + A A . 

The first matrix in this sum is obviously positive; the second is also positive 
by Corollary 1.3.3. Thus the sum is also positive. So it follows from (a) and 
(b) that f(A) ::; f(B). Next note that we can write, for any A and B, 

( A*A A*B) (A* O)(A B) 
B* A B* B - B* 0 0 0 . 

Since the two matrices on the right-hand side are adjoints of each other, 
their product is positive. Hence we have 

If(A* BW ::; f(A* A)f(B* B). 

This shows that f is in .c. • 
This characterisation leads to an easy proof of the following theorem of 

E.H. Lieb. 

Theorem IX.5.11 Let AI' ... ' Am and B l , ... , Bm be any matrices. Then, 
for every function f in the class .c, 

If (~A;B,) I' 
If (~Ai) I' 

< 

< 

f (~A7Ai) f (~B: Bi) . (IX.40) 

f (~IAil) f (~IA71) . (IX.41) 
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P f D h' 1 th t' (A: Ai A: Bi) . 't' b roo. L'or eac 2 = , ... ,m, e rna nx B* Ai B* Bi IS POSI Ive, e-

ing the product of (~~ ~) and its adjoint. Th: sum ~f these matrices is, 

therefore, also positiv~. So the inequality (IX.40) follows from Theorem 
IX.5.1O. 

Each of the matrices (I~:I ,~f,) is also positive; see Corollary 1.3.4. So 

the inequality (IX.41) follows by the same argument. • 

Exercise IX.5.12 For any two matrices A, B, we have tr(IA + BI) < 
tr(IAI + IBI)· Show by an example that this inequality is not true if tr 
is replaced by det. Show that we have 

[det(IA + BIW ::; det(IAI + IBI) det(IA*1 + IB*I)· (IX.42) 

A similar inequality holds for every function in .c. 

IX.6 The Lieb Concavity Theorem 

Let f(A, B) be a real valued function of two matrix variables. Then, f is 
called jointly concave, if for all 0 ::; a ::; 1, 

for all A l ,A2 ,Bl ,B2 · 

In this section we will prove the following theorem due to E.H. Lieb. The 
importance of the theorem, and its consequences, are explained later. 

Theorem IX.6.1 (Lieb) For each matrix X and each real number 0 < 
t ::; 1, the function 

f(A, B) = tr X* At X B l - t 

is jointly concave on pairs of positive matrices. 

Note that f(A, B) is positive if A, B are positive. 
To prove this theorem we need the following lemma. 

Lemma IX.6.2 Let R l , R 2, Sl, S2, T l , T2 be positive operators on a 
Hilbert space. Suppose Rl commutes with R 2, SI commutes with S2, and 

Tl commutes with T2 , and 

(IX.43) 

Then, for 0 ::; t ::; 1, 

RtRl-t > StSl-t + Ttr,l-t 
12 -12 12' 

(IX.44) 
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Proof. Let E be the set of all t in [0,1] for which the inequality (IX.44) 
is true. It is clear that E is a closed set and it contains 0 and 1. We will 
first show that E contains the point ~, then use this to show that E is a 
convex set. This would prove the lemma. 

Let x, y be any two vectors. Then 

I (x, (Si/2 S~/2 + T;/2Ti/2)y) I 

< I (x, Si/2 S~/2y) I + I (x, Tll/2Ti/2y) I 

< IISi/2xll IIS~/2yll + IITll/2XIIIITi/2YII 

< [IISi/2xI1 2 + IIT;/2xI12]1/2[1IS~/2YI12 + IITi/2YI12F/2 

by the Cauchy-Schwarz inequality. This last expression can be rewritten as 

Hence, by the hypothesis, we have 

I ( ( 1/2 1/2 1/2 1/2 1/2 x, SI S2 + Tl T2 )y) I ::; [(x, RIX) (y, R2y)] . 

Using this, we see that, for all unit vectors u and v, 

I(u, R~I/2(Si/2 S~/2 + T;/2Ti/2)R;-I/2V) I 
I (R~I/2U, (Si/2 S~/2 + Tll/2Ti/2)R;-I/2V) I 

< [(R~I/2u, R~/2u)(R;-I/2v, R~/2v)11/2 
1. 

This shows that 

Using Proposition IX.I.1, the commutativity of Rl and R2, and the in­
equality above, we see that 

This is equivalent to the operator inequality 

R- 1/4R-1/4(SI/2 SI/2 + Tl/2T.l/2)R-l/4R-l/4 I 2 1 1 2 1 2 2 1 ::;. 

From this, it follows that 

SI/2 SI/2 + Tl/2T.1/2 < Rl/2Rl/2 1212-12· 

(See Lemma V.I.5.) This shows that the set E contains the point 1/2. 



IX.6 The Lieb Concavity Theorem 273 

Now suppose that J.l and 1/ are in E. Then 

These two inequalities are exactly of the form (IX.43). Hence, using the 
special case of the lemma that has been proved above, we have, 

(Rt R~-~)1/2(Rr R~-V)1/2 

> (st S~-~)1/2 (Sf S~-V)1/2 + (TiTi-~)1/2 (TtTi-V)1/2. 

Using the hypothesis about commutativity, we see from this inequality that 
~(J.l + 1/) is in E. This shows that E is convex. • 

Proof of Theorem IX.6.1: Let A, B be positive operators on r£. Let A 
and B be the left and right multiplication operators on the space £(r£) 
induced by A and B; i.e., A(X) = AX and B(X) = XB. Using the results 
of Exercise 1.4.4 and Problem VI1.6.1O, one sees that A and B are positive 
operators on (the Hilbert space) £(r£). 

Now, suppose A1,A2,B1,B2 are positive operators on r£. Let A = A1 + 
A2, B = B1 + B2. Let A 1, A 2,A denote the left multiplication operators 
on £(r£) induced by A 1, A2, and A, respectively, and B1, B2, B the right 
multiplication operators induced by B 1, B 2, and B, respectively. Then A = 
A1 + A 2, B = B1 + B2. Hence, by Lemma IX.6.2., 

A tB1- t 2 AiBi-t +A~B~-t, 

for 0 :s t :s 1. This is the same as saying that for every X in £(r£) 

or that 

From this, it follows that 

f( A1 + A2 B1 + B2) > ~f(A B) + ~f(A B). 
2 ' 2 - 2 1, 1 2 2, 2 

This shows that f is concave. • 
Another proof of this theorem is outlined in Problem IX.8.17. 
Using the identification of £(r£) with r£&Jr£, Lieb's Theorem can be seen 

to be equivalent to the following theorem. 

Theorem IX.6.3 (T. Ando) For each 0 :s t :s 1, the map (A,B) ~ 
At &J B 1- t is jointly concave on pairs of positive operators on ?t. 
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Exercise IX.6.4 Let h, b be two positive numbers such that h + t2 ::::; 1. 
Show that the map (A, B) ....... At, ®Bt2 is jointly concave on pairs of positive 
operators on 1t. [Hint: The map A ....... AS is monotone and concave on 
positive operators for 0 ::::; s ::::; 1. See Chapter 5.} 

Lieb proved his theorem in connection with problems connected with 
entropy in quantum mechanics. This is explained below (with some simpli­

fications) . 
The function S(A) = -tr A log A, where A is a positive matrix, is called 

the entropy function. This is a concave function on the set of positive 
operators. In fact, we have seen that the function f(t) = -t logt is operator 
concave on (0,00). 

Let K be a given Hermitian operator. The entropy of A relative to K 
is defined as 

S(A,K) = ~ tr [Al/2,K]2, 

where [X, Y] stands for the Lie bracket (or the commutator) XY -Y X. This 
concept was introduced by Wigner and Yanase, and extended by Dyson, 
who considered the functions 

(IX.45) 

o<t<1. 
The Wigner-Yanase-Dyson conjecture said that St(A, K) is concave in 

A on the set of positive matrices. Lieb's Theorem implies that this is true. 
To see this note that 

(IX.46) 

Since the function g(A) = -tr K2 A is linear in A, it is also concave. 
Hence, concavity of St(A,K) follows from that oftr KAtKAl-t. But that 
is a special case of Lieb's Theorem. 

Given any operator X, define 

It(A, X) = tr(X* At XA 1- t - X* XA), (IX.47) 

o :s: t < 1. Note that Io(A, X) = o. When X is Hermitian, this reduces to 
the function St, defined earlier. Lieb's Theorem implies that It (A, X) is a 
concave function of A. Hence, the function I(A, X) defined as 

I(A,X) = :t\t=o It(A,X) = tr(X*(log A)XA-X*X(log A)A) (IX.48) 

is also concave. 
Let A, B be positive matrices. The relative entropy of A and B is 

defined as 
S(AIB) = tr(A(log A - log B)). (IX.49) 

This notion was introduced by Umegaki, and generalised by Araki to the 
von Neumann algebra setting. 
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Theorem IX.6.5 (Lindblad) The function S(AIB) defined above is jointly 
convex in A, B. 

Proof. Consider the block-matrices 

Then note that 
S(AIB) = -J(T, X). 

We noted earlier that J(T, X) is concave in the argument T. • 
Exercise IX.6.6 (i) Show that for every pinching C, S(C(A)IC(B)) < 
S(AIB). 

(ii) Let T be the normalised trace function on n x n matrices; i.e., T(A) = 
~ tr A. Show that for all positive matrices A, B 

T(A)(log T(A) -log T(B)) ::; T(A(log A -log B)). (IX.50) 

This is called the Peierls-Bogoliubov Inequality. (There are other in­
equalities that go by the same name.) 

IX.7 Operator Approximation 

An operator approximation problem consists of finding, for a given oper­
ator A, the element nearest to it from a special class. Some problems of 
this type are studied in this section. In formulating and interpreting these 
results, it is helpful to have an analogy: if arbitrary operators are thought 
of as complex numbers, then Hermitian operators should be thought of as 
real numbers, unitary operators as complex numbers of modulus one and 
positive operators as positive real numbers. Of course, this analogy has its 
limitations, since multiplication of complex numbers is commutative and 
that of operators is not. 

The first theorem below is easy to prove and sets the stage for later 
results. 

Theorem IX. 7.1 Let A be any operator and let Re A = ~ (A + A *). Then, 
for every Hermitian operator H and for every unitarily invariant norm, 

IliA - Re Alii::; IliA - Hili· (IX.51) 

Proof. Recall that IIITIII = IIIT* III for every T. Using this fact and the 
triangle inequality, we have 

IliA - 1/2 (A + A*)III 1/2 IliA - A*III = 1/2 IliA - H + H - A*III 

< 1/2 (IliA - Hili + III(A - H)*III) = IliA - Hili· 
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This proves the theorem. • 
The inequality (IX.51) is sometimes stated in words as: in every unitarily 

invariant norm Re A is a Hermitian approximant to A. 
The next theorem says that a unitary approximant to A is any unitary 

that occurs in its polar decomposition. 

Theorem IX.7.2 If A = UP, where U is unitary and P positive, then 

IliA - UIII ::; IliA - Will::; IliA + UIII (IX.52) 

for every unitary Wand for every unitarily invariant norm. 

Proof. By unitary invariance, the inequality (IX. 52) is equivalent to 

IIIP - 1111::; IIIP - U*WIII ::; IIIP + 1111· 

So the assertion of the theorem is equivalent to the following: for every 
positive operator P and unitary operator V, 

IIIP - 1111 ::; IIIP - VIII::; IIIP + 1111· (IX.53) 

This will be proved using the spectral perturbation inequality (IV.62). Let 

- (0 P) 
P= PO' 

- (0 
V= V* 

Then P and V are Hermitian. The eigenvalues of P are the singular values 
of P together with their negatives. (See Exercise 11.1.15.) The same is true 
for V, which means that it has eigenvalues 1 and -I, each with multiplicity 
n. We thus have 

Eig1(P) - Eigl(if) = [Eig1(P) - I] EB [-Eigi (P) + IJ, 

Eigl (P) - Eig i (if) = [Eig1 (P) + I] EB [-Eig i (P) - I]. 

So, from (IV.62), we have 

111[Eig1(P) - I] EB [Eig1(P) - 1]111 < III(P - V) EB (P - V)*III 

< III [Eig1 (P) + I] EB [Eig1 (P) + 1]111. 

This is equivalent to the pair of inequalities (IX.53). • 
The two approximation problems solved above are subsumed in a more 

general question. Let «P be a closed subset of the complex plane, and let 
N (cI» be the collection of all normal operators whose spectrum is contained 
in «P. Given any operator A, what operator in N(cI» is closest to A? The 
two theorems proved above answer this when «P is the real line or the unit 
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circle. When <P is the whole plane or the positive half-line, the problem 
becomes much harder, and the full solution is not known. Note that in the 
first case (<p = C) we are asking for a normal approximant to A, and in 
the second case (<p = lR.+) for a positive approximant to A. Some results 
on this problem, which are easy to describe and also are directly related to 
other parts of this book, are given below. 

We have already come across a special case of this problem in Chapter 
6. Let F be a retraction of the plane onto the subset <P; i.e., F is a map of 
C onto <P such that Iz - F(z)1 S Iz - wi for all z E C and w E <P. Such a 
map always exists; it is unique if (and only if) <P is convex. We have the 
following theorem. 

Theorem IX.7.3 Let F be a retraction of the plane onto the closed set <P. 
Suppose <P is convex. Then, for every normal operator A, we have 

IliA - F(A)III S IliA - NIII (IX.54) 

for all N E N(4)) and for all unitarily invariant norms. If the set <P is not 
convex, the inequality (IX.54) may not be true for all unitarily invariant 
norms, but is still true for all Q-norms. (See Theorem VJ.6.2 and Problem 
VI.B.l3.) 

Exercise IX. 7.4 Let A be a Hermitian operator, and let A = A + - A-be 
its Jordan decomposition. (Both A+ and A- are positive operators.) Use 
the above theorem to show that, if P is any positive operator, then 

IliA - A+III S IliA - Pili (IX.55) 

for every unitarily invariant norm. If A is normal, then for every positive 
operator P 

IliA - (ReA)+111 S IliA - Pili· (IX. 56) 

Theorem IX.7.5 Let A be any operator. Then for every positive operator 
P 

IIA - (ReA)+112 S IIA - P112. (IX.57) 

Proof. Recall that IIAII~ = IIReAII~ + IIImAII~· Hence, 

IIA - (ReA)+II~ = IIReA - (ReA)+II~ + IIImAII~· 

From (IX.55), we see that liRe A - (Re A)+II~ is bounded by IIReA - PII~· 
This leads to the inequality (IX.57). • 

The problem of finding positive approximants to an arbitrary operator 
A is much more complex for other norms. See the Notes at the end of the 
chapter. 

For normal approximants, we have a solution in all unitarily invariant 
norms only in the 2 x 2 case. 
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Theorem IX.7.6 Let A be an upper triangular matrix 

(IX.58) 

Let () = arg(>'l - >'2), and let 

No = ( (IX.59) 

Then No is normal, and for any normal matrix N we have 

IliA - Nolll :::; IliA - NIII (IX.60) 

for every unitarily invariant norm. 

. . (Xl X2) b Proof. It IS easy to check that No IS normal. Let N = e 
X3 X4 

any normal matrix. We must have IX21 = IX31 in that case. 

Now note that, if T = (!~ !:) is any matrix, we can write its off-

diagonal part (~ t~) as ~(T-UTU*), where U is the diagonal matrix 

with diagonal entries 1 and -1. Hence, for every unitarily invariant norm, 
we have 

IIITIII ~ \ \ \ (~ t~) \ \ \ = \ \ \ (t~ ~) \ \ \ . 
Using this, we see that IliA - NIII ~ III diag (b - X2, -x3)111. But, 

b:::; Ib - x21 + IX21 = Ib - x21 + IX31 :::; 2 max(lb - x21, IX31)· 

Thus the vector ~(b,b) is weakly majorised by the vector (Ib - x21, IX31), 
which, in turn, is weakly majorised by the vector (sl(A - N), s2(A - N» 
as seen above. Since A - No has singular values (~b, ~b), this proves the 
inequality (IX.60). • 

Since every 2 x 2 matrix is unitarily equivalent to an upper triangular 
matrix of the form (IX.58), this theorem tells us how to find a normal 
matrix closest to it. 

Exercise IX.7.7 The measure of non normality of a matrix, with respect to 
any norm, was defined in Problems VIII.6.4 and VIII. 6.5. Theorem IX. 7.6, 
on the other hand, gives for 2 x 2 matrices a formula for the distance to the 
set of all normal matrices. What is the relation between these two numbers 
for a given unitarily invariant norm? 
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IX.8 Problems 

Problem IX.8.l. Let A, B be positive matrices, and let m, k be positive 
integers with m ?: k. Use the inequality (IX.13) to show that 

The special case, 
tr(AB)m ::; tr Am B m , 

is called the Lieb-Thirring inequality. 

(IX.61) 

(IX.62) 

Problem IX.8.2. Let A, B be Hermitian matrices. Show that for every 
positive integer m 

(i) Itr(AB)2ml::; tr A2m B 2m, 

(ii) Itr(AmBm)21::; tr A 2mB2m, 

(iii) Itr(AB)4m l ::; tr(A2mB2m)2. 

(Hint: By the Weyl Majorant Theorem Itr Xml ::; trlXlm, for every matrix 
X.) Note that if 

A = (~ ~1)' B = (~1 ~), 
then Itr(AB)31 = 5,ltr A 3 B31 = 4, tr(AB)6 = 9, and tr(A3 B 3)2 = O. 
This shows the failure of possible extensions of the inequalities (i) and (iii) 
above. 

Problem IX.8.3. Are there any natural generalisations of the above in­
equalities when three matrices A, B, C are involved? Take, for instance, the 
inequality (IX.62). A product of three positive matrices need not have posi­
tive eigenvalues. One still might wonder whether Itr(ABC)21 < 
Itr A2B2C 21. Construct an example to show that this need not be true. 

Problem IX.8.4. A possible generalisation of the Golden-Thompson in­
equality (IX.19) would have been tr(eA+B+C) ::; Itr(eAeBeC)1 for any three 
Hermitian matrices A,B,C. This is false. To see this, let Sl,S2,S3 be the 
Pauli spin matrices 

( 0 1) (0 -i) 
Sl = 1 0 ' S2 = 0' 

If a1, a2, a3 are any real numbers and a = (ai + a~ + a~) 1/2, show that 

sinh a 
exp(~ajSj) = (cosh a)J + -- ~ajSJ' 

a 
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Let 

Show that 

tr(eA+B+C) 

Itr(eAeBeC)1 

2 cosh t, 
t4 

2 cosh t[l- 12 + O(t6 )]. 

For small t, the first quantity is bigger than the second. 

Problem IX.B.5. Show that the Lie Product Formula has a generalisation: 
for any k matrices AI, A2, ... , A k, 

( AI A2 Ak)m A ) lim exp- exp -., ·exp- = exp(AI +A2 + ... + k· 
m->oo m m m 

Problem IX.B.6. Show that for any two matrices A, B we have 

IIIA* B + B* Alii::; IIIAA* + BB*III 

and 
IIIA* B + B* Alii::; IIIA* A + B* Bill 

for every unitarily invariant norm. 

Problem IX.B.7. Let X, Y be positive. Show that for every unitarily in-
variant norm 

From this, it follows that, for every A, 

and 

Problem IX.B.B. Let A, B be positive matrices and let X be any matrix. 
Show that for all unitarily invariant norms, and for 0 ::; ZI ::; 1, 

Problem IX.B.9. Let A, B be positive operators and let T be any operator 
such that IIT*xll ::; IIAxll and IITxl1 ::; IIBxll for all x. Show that, for all 
x, y and for 0 ::; ZI ::; 1, 
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[Hint: From the hypotheses, it follows that A -IT and T B- 1 are contrac­
tions. The inequality (IX.38) then implies that (A-l)l-VT(B-l)v is a con­
traction.] 

Problem IX.8.10. Use the result of the above problem to prove the fol­
lowing. For all operators T, vectors x, y, and for 0 ::; v ::; 1, 

This inequality is called the Mixed Schwarz Inequality. 

Problem IX.8.ll. Show that if A, B are positive matrices, then we have 

det(I + A + B) ::; det(I + A)det(I + B). 

Then use this and Theorem IX.5.11 to show that, for any two matrices 
A,B, 

Idet(I + A + B)I ::; det(I + IAI)det(I + IBI)· 

(See Problem IV.5.9 for another proof of this.) 

Problem IX.8.12. Show that for all positive matrices A, B 

tr(A(log A - log B)) 2': tr(A - B). (IX.63) 

The example A = (~ ~), B = (! ~) shows that we may not have 

the operator inequality A (log A - log B) 2': (A - B). 

Problem IX.8.13. Let f be a convex function on an interval I. Let A, B 
be two Hermitian matrices whose spectra are contained in I. Show that 

tr[f(A) - f(B)] 2': tr[(A - B)f'(B)]. (IX.64) 

The special choice f(t) = tlogt gives the inequality (IX.63). 

Problem IX.8.14. Let A be a Hermitian matrix and f any convex func­
tion. Then for every unit vector x 

f( (x, Ax)) ::; (x, f(A)x). 

This implies that, for any orthonormal basis Xl, ... , x n , 

n 

'Lf((Xj, AXj)) ::; tr f(A). 
j=l 

The name Peierls-Bogoliubov inequality is sometimes used for this inequal­
ity, or for its special cases f(t) = et , f(t) = e-t , etc. 
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Problem IX.8.15. The concavity assertion in Exercise IX.6.4. can be gen­
eralised to several variables. Let iI, t2 , h be positive numbers such that 
iI + t2 + h ::; 1. Let AI, A2, A3 be positive operators. Note that 

Ai' ® A~2 ® A~3 = (Ai' ® A~2 ® I) (I ® I ® A~3). 

Use the concavity of the first factor above (which has been proved in Exer­
cise IX.6.4) and the integral representation (V.4) for the second factor to 
prove that the map (AI, A2, A3) --+ Ai' ® A~2 ® A~3 is jointly concave on 
triples of positive operators. More generally, prove that for positive num­
bers iI, ... , tk with tl + .. ·+tk ::; 1, the map that takes a k-tuple of positive 
operators (AI' ... ' Ak) to the operator Ai' ® ... ® A~k is jointly concave. 

Problem IX.8.16. A special consequence of the above is that the map 
A --+ ®k Al/k is concave on positive operators for all k = 1,2, ... Use this 
to prove the following inequalities for n x n positive matrices A, B: 

(i) ®k(A + B)l/k > ®k Al/k + ®k Bl/k, 
(ii) Ak(A + B)l/k > Ak A l/ k + Ak Bl/k, 
(iii) vk(A + B)l/k > V k Al/k + V k Bl/k, 
(iv) det(A + B)l/n > det Al/n + det Bl/n, 
(v) per(A + B)l/n > per Al/n + per Bl/n, 
(vi) ck((A + B)l/k) > ck(Al/k) + ck(Bl/k), 

where ck(A) = tr Ak (A) for 1 ::; k ::; n. 

The inequality (iv) above is called the Minkowski Determinant Theorem 
and has been proved earlier (Corollary II.3.21). 

Problem IX.8.17. Outlined below is another proof of the Lieb Concav­
ity Theorem which uses results on operator concave functions proved in 
Chapter 5. 

(i) Consider the space £(Jt) EB £(Jt) with the inner product 

(ii) Let AI, A2 be invertible positive operators on Jt and let A 
1/2 (AI + A2). Let 

6.(R) 

6. 12 (R, S) 

ARA- l , 

(AlRAl\ A2RA;-1). 

Then 6. is a positive operator on the Hilbert space £(Jt) and 6. 12 is 
a positive operator on the Hilbert space £(Jt) EB £(Jt) 

(iii) Note that for any X in £(Jt) 

tr X* AtXAl- t = (XAI/2, 6.t (XAl/2)) 



IX.8 Problems 283 

and 

tr(X* AixAi-t + X* A~XA~-t) 

(( XAI/2 XAI/2) At (XAI/2 XAl/2)) 
l' 2 '12 l' 2 . 

(iv) Let V be the map from £(H) into £(H) E8 £(H) defined as 

V(XAI/2) = ~(XAI/2 XAI/2) V2 l' 2· 

Show that V is an isometry. Show that 

(v) Since the function f(t) on [0, (0) is operator concave for 0 < t < 1, 
using Exercise V.2.4, we obtain 

(vi) This shows that 

tr X* At X A I-t ;::: 1/2 tr(X* Ai X Ai-t + X* A~X A~-t) 

when Al and A2 are invertible. By continuity, this is true for all 
positive operators Al and A 2 . In other words, for all 0 < t < 1, the 
function 

is concave. 

(vii) Use 2 x 2 operator matrices (~ ~) and (1 g) to complete the proof 
of Lieb's concavity theorem. 

Problem IX.S.IS. Theorem IX.7.1 can be generalised as follows. Let cp 
be a mapping of the space of n x n matrices into itself that satisfies three 
conditions: 

(i) cp2 is the identity map; i.e., cp(cp(A)) = A for all A. 

(ii) cp is real linear; i.e., cp(aA + (3B) = acp(A) + (3cp(B) for all A, Band 
all real a, (3. 

(iii) A and cp(A) have the same singular values for all A. 

Then the set I(cp) = {A : cp(A) = A} is a real linear subspace of the 
space of matrices. For each A, the matrix ~(A + cp(A)) is in I(cp), and 
for all unitarily invariant norms IliA - ~(A + cp(A))111 :S IliA - Bill for all 
BE I(cp). 
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Examples of such maps are 'P(A) = ±A*, 'P(A) = ±AT , and 'P(A) = ±A, 
where AT denotes the transpose of A and A denotes the matrix obtained 
by taking the complex conjugate of each entry of A. 

Problem IX.8.19. The Cayley transform of a Hermitian matrix A is 
the unitary matrix G(A) defined as 

G(A) = (A - iI)(A + iI)-I. 

If A, B are two Hermitian matrices, we have 

;i [G(A) - G(B)] = (B + iI)-I(A - B)(A + iI)-I. 

Use this to show that for all j, 

1/2 sj(G(A) - G(B)) :::; sj(A - B). 

[Note that II(A+iI)-111 :::; 1 and II(B+iI)-111 :::; 1.] In particular, this gives 

1/2 IIIG(A) - G(B)III :::; IliA - Bill 

for every unitarily invariant norm. 

Problem IX.8.20. A 2 x 2 block matrix A = (1~~ 1~~), in which the four 
matrices Aij are normal and commute with each other, is called binormal. 
Show that such a matrix is unitarily equivalent to a matrix A = (~l ::2)' 
in which AI, A2, B are diagonal matrices and B is positive. Let 

No = ( ~~~ B ~~), 
where U is the unitary operator such that Al - A2 = UIAI - A21. Show 
that in every unitarily invariant norm we have 

IliA - Nolll :::; IliA - NIII 

for all 2n x 2n normal matrices N. 

Problem IX.8.21. An alternate proof of the inequality (IX.55) is out­
lined below. Choose an orthonormal basis in which A is diagonal and A = 
(AO+ _~ _.). I~ th~s basis .let P have the block decomposition P = (~~: ~~~). 
By the pmchmg mequahty, 

Since both A- and P22 are positive, IliA-III:::; IIIA- + P 22 111. Use this to 
prove the inequality (IX.55). 

This argument can be modified to give another proof of (IX.56) also. 
For this we need the following fact. Let T and S be operators such that 
o :::; ReT:::; ReS, and ImT = ImS. If T is normal, then IIITIII :::; IIISIII, 
for every unitarily invariant norm. Prove this using the Fan Dominance 
Theorem (Theorem IV.2.2) and the result of Problem III.6.6. 
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IX.9 Notes and References 

Matrix inequalities of the kind studied in this chapter can be found in 
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Johnson, Marshall and Olkin, Marcus and Mine, mentioned in Chapters 
1 and 2; and, in addition, M.L. Mehta, Matrix Theory, second edition, 
Hindustan Publishing Co., 1989, and B. Simon, Trace Ideals and Their 
Applications, Cambridge University Press, 1979. 

Proposition IX.I.1 is proved in B. Simon, Trace Ideals, p. 95. Proposition 
IX.I.2, for the operator norm, is proved in A. McIntosh, Heinz inequalities 
and perturbation of spectral families, Macquarie Math. Reports, 1979; and 
for all unitarily invariant norms in F. Kittaneh, A note on the arithmetic­
geometric mean inequality for matrices, Linear Algebra Appl., 171 (1992) 
1-8. The Lie product formula has been extended to semigroups of operators 
in Banach spaces by H.F. Trotter. 

Our treatment of the material between Theorem IX.2.1 and Exercise 
IX.2.8 is based on T. Furuta, Norm inequalities equivalent to Lowner-Heinz 
theorem, Reviews in Math. Phys., 1(1989) 135-137. The inequality (IX.5) 
can also be found in H.O. Cordes, Spectral Theory of Linear Differential 
Operators and Comparison Algebras, Cambridge University Press, 1987. 
Theorem IX.2.9 is taken from B. Wang and M. Gong, Some eigenvalue 
inequalities for positive semidefinite matrix power products, Linear Algebra 
Appl., 184(1993) 249-260. The inequality (IX.13) was proved by H. Araki, 
On an inequality of Lieb and Thirring, Letters in Math. Phys., 19(1990) 
167-170. Theorem IX.2.1O is a rephrasing of some other results proved in 
this paper. 

The Golden-Thompson inequality is important in statistical mechanics. 
See S. Golden, Lower bounds for the Helmholtz function, Phys. Rev. B, 137 
(1965) 1127-1128, and C.J. Thompson, Inequality with applications in sta­
tistical mechanics, J. Math. Phys., 6(1965) 1812-1813. It was generalised 
by A. Lenard, Generalization of the Golden- Thompson inequality, Indiana 
Univ. Math. J. 21(1971) 457-468, and further by C.J. Thompson, Inequali­
ties and partial orders on matrix spaces, Indiana Univ. Math. J. 21 (1971) 
469-480. These ideas have been developed further in the much more gen­
eral setting of Lie groups by B. Kostant, On convexity, the Weyl group and 
the Iwasawa decomposition, Ann. Sci. E.N.S., 6(1973) 413-455, and sub­
sequently by others. Inequalities complementary to the Golden-Thompson 
inequality and its stronger version in Exercise IX.3.8 have been proved 
by F. Hiai and D. Petz, The Golden-Thompson trace inequality is com­
plemented, Linear Algebra Appl., 181(1993) 153-185, and by T. Ando and 
F. Hiai, Log majorization and complementary Golden-Thompson type in­
equalities, Linear Algebra Appl., 197/198(1994) 113-131. Theorem IX.3.1 
is a rephrasing of some results in J.E. Cohen, Inequalities for matrix ex­
ponentials, Linear Algebra Appl., 111(1988) 25-28. Further results on such 
inequalities may be found in J.E. Cohen, S. Friedland, T. Kato, and F.P. 
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Kelly, Eigenvalue inequalities for products of matrix exponentials, Linear 
Algebra Appl., 45(1982) 55-95, in D. Petz, A survey of certain trace in­
equalities, Banach Centre Publications 30(1994) 287-298, and in Chapter 6 
of Horn and Johnson, Topics in Matrix Analysis. 

Theorem IX.4.2 was proved in R. Bhatia and F. Kittaneh, On the 
singular values of a product of operators, SIAM J. Matrix Analysis, 11(1990) 
272-277. The generalisation given in Theorem IX.4.5 is due to R. Bhatia 
and C. Davis, More matrix forms of the arithmetic-geometric mean in­
equality, SIAM J. Matrix Analysis, 14(1993) 132-136. Many of the other 
results in Section IX.4 are from these two papers. The proof outlined in 
Exercise IX.4.6 is due to F. Kittaneh, A note on the arithmetic-geometric 
mean inequality for matrices, Linear Algbera Appl., 171(1992) 1-8. A gen­
eralisation of the inequality (IX.21) has been proved by T. Ando, Matrix 
Young inequalities, Operator Theory: Advances and Applications, 75(1995) 
33-38. If p, q > 1 and i + % = 1, then the operator inequality jAB* j :s; 
U(.! jAjP + % jBjq)U* is valid for some unitary U. 

r:theorems IX.5.1 and IX.5.2 were proved in R. Bhatia and C. Davis, 
A Cauchy-Schwarz inequality for operators with applications, Linear Al­
gebra Appl., 223(1995) 119-129. For the case of the operator norm, the 
inequality (IX.38) is due to E. Heinz, as are the inequality (IX.29) and 
the one in Problem IX.8.8. See E. Heinz, Beitriige zur Storungstheorie der 
Spektralzerlegung, Math. Ann., 123(1951) 415-438. Our approach to these 
inequalities follows the one in the paper by A. McIntosh cited above. The 
inequality in Problem IX.8.9 is also due to E. Heinz. The Mixed Schwarz 
inequality in Problem IX.8.lO was proved by T. Kato, Notes on some in­
equalities for linear operators, Math. Ann., 125(1952) 208-212. (The papers 
by Heinz, Kato, and McIntosh do much of this for unbounded operators 
in infinite-dimensional spaces.) The class I:- in Definition IX.5.6 was in­
troduced by E.H. Lieb, Inequalities for some operator and matrix func­
tions, Advances in Math., 20(1976) 174-178. Theorem IX.5.11 was proved 
in this paper. These functions are also studied in R. Merris and J.A. 
Dias da Silva, Generalized Schur functions, J. Algebra, 35(1975) 442-448. 
B. Simon (Trace Ideals, p. 99) calls them Liebian functions. The character­
isation in Theorem IX.5.lO has not appeared before; it simplifies the proof 
of Theorem IX.5.11 considerably. 

The Lieb Concavity Theorem was proved by E.H. Lieb, Convex trace 
functions and the Wigner- Yanase-Dyson conjecture, Advances in Math., 
11(1973) 267-288. The proof given here is taken from B. Simon, Trace Ide­
als. T. Ando, Concavity of certain maps on positive definite matrices and 
applications to Hadamard products, Linear Algebra Appl., 26(1979) 203-
241, takes a different approach. Using the concept of operator means, he 
first proves Theorem IX.6.3 (and its generalisation in Problem IX.8.15) and 
then deduces Lieb's Theorem from it. The proof given in Problem IX.8.17 
is taken from D. Petz, Quasi-entropies for finite quantum systems, Rep. 
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Math. Phys., 21(1986) 57-65. Theorem IX.6.5 was proved by G. Lindblad, 
Entropy, information and quantum measurements, Commun. Math. Phys., 
33(1973) 305-322. Our proof is taken from A. Connes and E. St¢rmer, 
Entropy for automorphisms of Ih von Neumann algebras, Acta Math., 
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D. Ruelle, Statistical Mechanics, Benjamin, 1969. The inequalities in Prob­
lem IX.8.16 are taken from T. Ando, Inequalities for permanents, Hokkaido 
Math. J., 10(1981) 18-36, and R. Bhatia and C. Davis, Concavity of certain 
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951-960, and Spectral approximants of normal operators, Proc. Edinburgh 
Math. Soc., 19 (1974) 51-58, made the problem of operator approximation 
popular among operator theorists. The results in Theorem IX.7.3, Exer­
cise IX.7.4, and in Problem IX.8.21, were proved in these papers for the 
special case of the operator norm (but more generally for Hilbert space 
operators). The first paper of Halmos also tackles the problem of finding a 
positive approximant to an arbitrary operator, in the operator norm. The 
solution is different from the one for the Hilbert-Schmidt norm given in 
Theorem IX.7.5, and the problem is much more complicated. The problem 
of finding the closest normal matrix has been solved completely only in 
the 2 x 2 case. Some properties of the normal approximant and algorithms 
for finding it are given in A. Ruhe, Closest normal matrix finally found! 
BIT, 27 (1987) 585-598. The result in Problem IX.8.20 was proved, in the 
special case of the operator norm, by J. Phillips, Nearest normal approx­
imation for certain normal operators, Proc. Amer. Math. Soc., 67 (1977) 
236-240. The general result was proved in R. Bhatia, R. Horn, and F. Kit­
taneh, Normal approximants to binormal operators, Linear Algebra Appl., 
147(1991) 169-179. An excellent survey of matrix approximation problems, 
with many references and applications, can be found in N.J. Higham, Ma­
trix nearness problems and applications, in the collection Applications of 
Matrix Theory, Oxford University Press, 1989. A particularly striking ap­
plication of Theorem IX.7.2 has been found in quantum chemistry. Given 
n linearly independent unit vectors el, ... ,en in an n-dimensional Hilbert 
space, what is the orthonormal basis h, ... , f n that is closest to the ej, in 
the sense that L;llej - fjl12 is minimal? The Gram-Schmidt procedure does 
not lead to such an orthonormal basis. The chemist P.O. Lowdin, On the 
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non-orthogonality problem connected with the use of atomic wave functions 
in the theory of molecules and crystals, J. Chern. Phys., 18(1950) 365-374, 
found a procedure to obtain such a basis. The problem is clearly equivalent 
to that of finding a unitary matrix closest to an invertible matrix, in the 
Hilbert-Schmidt norm. Theorem IX.7.2 solves the problem for all unitar­
ily invariant norms. The importance of such results is explained in J.A. 
Goldstein and M. Levy, Linear algebra and quantum chemistry, American 
Math. Monthly, 78 (1991) 710-718. 



x 
Perturbation of Matrix Functions 

In earlier chapters we derived several inequalities that describe the variation 
of eigenvalues, eigenvectors, determinants, permanents, and tensor powers 
of a matrix. Similar problems for some other matrix functions are studied 
in this chapter. 

X.I Operator Monotone Functions 

If a, b are positive real numbers, then it is easy to see that laT -bTl ~ la-biT 
if r ~ 1, and laT - bTl::; la - W if ° ::; r ::; 1. The inequalities in this section 
are extensions of these elementary inequalities to positive operators A, B. 
Instead of the power functions J ( t) = tT , ° ::; r ::; 1, we shall consider the 
more general class of operator monotone functions. 

Theorem X.I.1 Let J be an operator monotone Junction on [0,00) such 
that J(O) = 0. Then Jor all positive operators A, B, 

IIJ(A) - J(B)II ::; J(IIA - BII)· (X.l) 

Proof. Since J is concave (Theorem V.2.5) and J(O) = 0, we have 
J(a + b) ::; J(a) + J(b) for all nonnegative numbers a, b. 

Let a = IIA - BII. Then A - B ::; aI. Hence, A ::; B + aI and J(A) ::; 
J(B + aI). By the subadditivity property of J mentioned above, therefore, 
J(A) ::; J(B) + J(a)I. Thus J(A) - J(B) ::; J(a)I and, by symmetry, 
J(B) - J(A) ::; J(a)I. This implies that IJ(A) - J(B)I ::; J(a)I. Hence, 

IIJ(A) - J(B)II ::; J(a) = J(IIA - BII)· • 
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Note the special consequence of the above theorem: 

(X.2) 

for any two positive operators A, B. Note also that the argument in the 
above proof shows that 

Illf(A) - f(B)111 ~ f(IIA - BII)IIIIIII 

for every unitarily invariant norm. 

Exercise X.1.2 Show that for 2 x 2 positive matrices, the inequality 

IIA1/2 - B1/2112 ~ IIA - BII~/2 is not always valid. (It is false even when 
B = 0.) 

The inequality (X.2) can be rewritten in another form: 

(X.3) 

This has a generalisation to all unitarily invariant norms. Once again, for 
this generalisation, it is convenient to consider the more general class of 
operator monotone functions. 

Recall that every operator monotone function f on [0,00) has an integral 
representation 

00 J )..t 
f(t) = ')' +,6t + ).. + tdw()..), (X.4) 

o 

where,), = f(O), ,6 :::: 0 and w is a positive measure such that Iooo 1~'\ dw()..) 
< 00. (See (V.53).) 

Theorem X.1.3 Let f be an operator monotone function on [0,00) such 
that f(O) = O. Then for all positive operators A, B and for all unitarily 
invariant norms 

Illf(A) - f(B)111 ~ Illf(IA - BI)III· 

In the proof of the theorem, we will use the following lemma. 

Lemma X.1.4 Let X, Y be positive operators. Then 

III(X + I)-1 - (X + Y + I)-1111 ~ 1111 - (Y + I)-1111 

for every unitarily invariant norm. 

(X.5) 

Proof. Since (X +I)-1 ~ I, by Lemma V.1.5 we have Y 1/2(X +I)- l y 1/ 2 

~ Y. Hence, 
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Therefore, by the Weyl Monotonicity Principle, 

for all j. Note that yl/2(X + I)-lyl/2 has the same eigenvalues as those 

of (X + I)-~Y(X + I)-~. So, the above inequality can also be written as 

From the identity 

(X + I)-I - (X + Y + I)-I 
1 1 1 1 

= (X + I)-2 {I - [(X + I)-2Y(X + I)-2 + I]-I}(X + I)-2 

and the fact that II(X + I)-~ II ::; 1, we see that 

A;([X + Ir 1 - [X + Y + 1]-1) 

::; A; (I - [(X +I)-~Y(X +I)-~ +Ir1 ). 

Thus, 

for all j. This is more than what we need to prove the lemma. • 

Proof of Theorem X.1.3: By the Fan Dominance Property (Theorem 
IV.2.2) it is sufficient to prove the inequality (X.5) for the special class of 
norms 11'II(k), k = 1,2, ... ,n. 

We will first consider the case when A - B is positive. Let C = A - B. 
We want to prove that 

Ilf(B + C) - f(B)II(k) ::; Ilf(C)II(k)' (X.6) 

Let Uj = Sj (C), j = 1,2, ... , n. Since Uj are the eigenvalues of the positive 
operator C, we have 

Sj(h(C)) = h(uj), j = 1, ... , n, 

for every monotonically increasing nonnegative function h(t) on [0,00). 
Thus 

k 

Ilh(C)II(k) = Lh(uj), k = 1, ... , n, 
j=1 

for all such functions h. 
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Now, f has the representation (X.4) with 'Y = O. The functions (3t and 
...M.- are nonnegative monotonically increasing functions of t. Hence, 
A+t ' 

k 

Ilf(C)II(k) 2:f(O'j) 
j=l 

f3 ~ O'j + /00 ~ >"O'j dw(>..) 
~ ~ >..+0" 
j=l 0 j=l J 

00 
f3IICII(k) + / >"IIC(C + >..I)-l II (k)dw(>..). 

o 

In the same way, we can obtain from the integral representation of f 

Ilf(B + C) - f(B)II(k) 
00 

:s:; f311C1I(k) + / >"II(B + C)(B + C + >"I)-l - B(B + >"I)-lll(k)dw(>..). 

o 

Thus, our assertion (X.6) will be proved if we show that for each>" > 0 

II(B + C)(B + C + >"I)-l - B(B + >"I)-lll(k) :s:; IIC(C + >"I)-lll(k)' 

Now note that we can write 

( X )-1 
X (X + >..I) -1 = I - ~ + I 

So, the above inequality follows from Lemma X.1.4. This proves the theo­
rem in the special case when A - B is positive. 

To prove the general case we will use the special case proved above and 
two simple facts. First, if X, Yare Hermitian with positive parts X+, y+ 
in their respective Jordan decompositions, then the inequality X :s:; Y 
implies that IIX+II(k) :s:; 11Y+II(k) for all k. This is an immediate conse­
quence of Weyl's Monotonicity Principle. Second, if Xl, X 2 , Yl , Y2 are pos­
itive operators such that X lX 2 = 0, Yl Y2 = 0, IIXIiI(k) :s:; IIYIiI(k), and 
IIX211(k) :s:; 11Y211(k) for all k, then we have IIXI + X211(k) :s:; IIYl + Y211(k) for 
all k. This can be easily seen using the fact that since Xl and X 2 commute 
they can be simultaneously diagonalised, and so can Yl , Y2 . 

Now let A, B be any two positive operators. Since A - B :s:; (A - B)+, 
we have A :s:; B + (A - B)+, and hence f(A) :s:; f(B + (A - B)+). From 
this we have 

f(A) - f(B) :s:; f(B + (A - B)+) - f(B), 

and, therefore, by the first observation above, 

II[f(A) - f(B)]+II(k) :s:; Ilf(B + (A - B)+) - f(B)II(k) 
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for all k. Then, using the special case of the theorem proved above we can 
conclude that 

for all k. Interchanging A and B, we have 

for all k. Now note that 

f([A - B]+)f([B - A]+) 

f([A - B]+) + f([B :;- A]+) 
[f(A) - f(B)]+ [feB) - fCA)]+ 

[f(A) - fCB)]+ + [feB) - f(A)]+ 

Thus, the two inequalities above imply that 

0, 

fCIA - BI), 
0, 

If(A) - f(B)I· 

IlfCA) - f(B)II(k) ~ IIf(IA - BI)II(k) 

for all k. This proves the theorem. • 
Exercise X.1.5 Show that the conclusion of Theorem X.l.3 is valid for 
all nonnegative operator monotone functions on [0, (0); i.e., we can replace 
the condition f(O) = 0 by the condition f(O) :::: O. 

One should note two special corollaries of the theorem: we have for all 
positive operators A, B and for all unitarily invariant norms 

(X.7) 

III log (I + A) - log(J + B)III ~ Illlog(I + IA - BDIII· (X.8) 

Theorem X.lo6 Let g be a continuous strictly increasing map of [0, (0) 
onto itself. Suppose that the inverse map g-l is operator monotone. Then 
for all positive operators A, B and for all unitarily invariant norms, we 
have 

Illg(A) - g(B)111 :::: Illg(IA - BDIII· (X. g) 

Proof. Let f = g-l. Since f is operator monotone, it is concave by 
Theorem V.2.5. Hence g is convex. From Theorem X.l.3, with g(A) and 
g(B) in place of A and B, we have 

IliA - Bill ~ Illf(lg(A) - g(B)!)III· 

This is equivalent to the weak majorisation 
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Since f is monotone, 

Sj(f(lg(A) - g(B)I)) = f(sj(g(A) - g(B))) 

for each j. So, we have 

{Sj(A - B)} -<w {f(sj(g(A) - g(B)))}. 

Since 9 is convex and monotone, by Corollary II.3.4, we have from this 

Since 9 is monotone, this is the same as saying that 

and this, in turn, implies the inequality (X.g). • 
Two special corollaries that complement the inequalities (X.7) and (X.8) 

are worthy of note. For all positive operators A, B and for all unitarily 
invariant norms, 

IIIAT - BTIII :::: IIIIA - Bnll, if r:::: 1, 

III exp A - exp Bill:::: III exp(IA - BD - 1111· 

(X.lO) 

(X.11) 

Exercise X.I.7 Derive the inequality (X.lO) from (X. 7) using Exercise 
IV.2.B. 

Is there an inequality like (X.lO) for Hermitian operators A, B? First note 
that if A is Hermitian, only positive integral powers of A are meaningfully 
defined. So, the question is whether III(A - B)mlll can be bounded above 
by IllAm - Bmili. No such bound is possible if m is an even integer; for the 
choice B = -A, we have Am - Bm = O. For odd integers m, we do have a 
satisfactory answer. 

Theorem X.I.B Let A, B be Hermitian operators. Then for all unitarily 
invariant norms, and for m = 1,2, ... , 

(X.12) 

For the proof we need the following lemma. 

Lemma X.I.g Let A, B be Hermitian operators, let X be any operator, 
and let m be any positive integer. Then, for j = 1,2, ... , m, 

IIIAm+j XBm-j+l - Am-j+l XBm+jlll 

:s: IIIAm+j+1XBm-j _Am-jXBm+j+llll· (X.13) 
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Proof. By the arithmetic-geometric mean inequality proved in Theorem 
IX.4.5, we have 

\IIAXBIII S 1/2111A2X +XB2111 

for all operators X and Hermitian A, B. We will use this to prove the 
inequality (X.13). First consider the case j = 1. We have 

Hence 

IIIAm+1XBm - AmXBm+llll 

IIIA(AmXBm- l - Am-lXBm)BIII 

< 1/211IA2(AmXBm- l - Am-lXBm) 

+ (AmXBm- l _ Am- l XBm)B2111 
S 1/211IAm+2XBm-l-Am-lXBm+2111 

+ 1/211IAm+lXBm - AmXBm+llll· 

This shows that the inequality (X.13) is true for j = 1. The general case 
is proved by induction. Suppose that the inequality (X.13) has been proved 
for j -1 in place of j. Then using the arithmetic-geometric mean inequality, 
the triangle inequality, and this induction hypothesis, we have 

IIIAm+j XBm-j+1 - Am-j+l XBm+jlll 
IIIA(Am+j-lXBm-j - Am-jXBm+j-l)BIII 

< 1/2 IIIA2(Am+j-l XBm-j - Am-j XBm+j-l) 
+ (Am+j-l XBm-j _ Am-j XBm+j-l)B2111 

< 1/211IAm+j+1XBm-j _Am-jXBm+j+1111 
+ 1/2 IIIAm+(j-l) XBm-(j-l)+1 - Am-(j-l)+l XBm+(j-l) III 

< 1/211IAm+j+1XBm-j - Am-jXBm+j+llll 
+ 1/211IAm+jXBm-(j-l) - Am-(j-l)XBm+jlll· 

This proves the desired inequality. • 
Proof of Theorem X.1.8: Using the triangle inequality and a very special 
case of Lemma X.1.9, we have 

IIIA2m(A - B) + (A - B)B2mlll 

S IIIA2m+1 - B2m+1 111 + IIIA2m B - AB2m lii 

S 2111 A2m+1 - B2m+l lll· (X.14) 

Let C = A - B and choose an orthonormal basis Xj such that CXj = AjXj, 
where IAj I = Sj(C) for j = 1,2, ... , n. Then, by the extremal representation 
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of the Ky Fan norms given in Problem III.6.6, 

k 

IIA2mC + CB2m ll(k) ~ LI(xj, (A2mC + CB2m)Xj} I 
j=l 

k 

LIAjl{ (Xj, A2mxj) + (Xj, B2mxj)}. 
j=l 

Now use the observation in Problem IX.8.14 and the convexity of the func­
tion f ( t) = t2m to see that 

(Xj, A2mXj) + (Xj, B2mxj) > IIAxjll2m + II Bxjll2m 

We thus have 

> 21- 2m(IIAxjll + II Bxjll)2m 
> 21- 2m 1lAxj _ BXjll2m 

21- 2m IAjI2m. 

k 

IIA2mC + CB2mll(k) > L21- 2m IAjI2m+l 
j=l 
21- 2m ll(A _ B)2m+1l1(k). 

Since this is true for all k, we have 

for all unitarily invariant norms. Combining this with (X.14) we obtain the 
inequality (X.12). • 

Observe that when B = -A, the two sides of (X.12) are equal. 

X.2 The Absolute Value 

In Section VII.5 we obtained bounds for III IAI - IBI III in terms of 
lilA - Bill· More such bounds are obtained in this section. Since IAI = 
(A* A)1/2, results for the square root function obtained in the preceding 
section are useful here. 

Theorem X.2.1 Let A, B be any two operators. Then, for every unitarily 
invariant norm, 

III IAI-IBI III S; v'2(IIIA + Bill IliA - BIII)1/2. (X.15) 

Proof. From the inequality (X.7) we have 

III IAI-IBI III S; IIIIA* A - B* BI1/2111· (X.16) 
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Note that 

A* A - B* B = 1/2 {(A + B)*(A - B) + (A - B)*(A + Bn. (X.17) 

Hence, by Theorem 111.5.6, we can find unitaries U and V such that 

IA* A - B* BI :::::; 1/2 {UI(A + B)*(A - B)IU* + VI(A - B)*(A + B)IV*}· 

Since the square root function is operator monotone, this operator inequal­
ity is preserved if we take square roots on both sides. Since every unitarily 
invariant norm is monotone, this shows that 

IIIIA* A - B* Bll/21112 :::::; 1/2 III[UI(A + B)*(A - B)IU* 

+ VI(A - B)*(A + B)IV*]1/21112. 

By the result of Problem IV.5.6, we have 

for all X, Y. Hence, 

IIIIA* A - B* Bll/21112 :::::; IIII(A + B)*(A - B)ll/21112 
+ IIII(A - B)*(A + B)ll/21112. 

By the Cauchy-Schwarz inequality (IV.44), the right-hand side is bounded 
above by 2111A + Bill IliA - Bill. Thus the inequality (X.15) now follows from 
(X.16). • 

Example X.2.2 Let 

Then 
IIIAI-IBllll = 2, IIA + Bitt = IIA - Bill = h. 

So, for the trace norm the inequality (X.i5) is sharp. 

An improvement of this inequality is possible for special norms. 

Theorem X.2.3 Let A, B be any two operators. Then for every Q-norm 
(and thus, in particular, for every Schatten p-norm with p 2: 2) we have 

(X. IS) 

Proof. By the definition of Q-norms, the inequality (X. IS) is equivalent 
to the assertion that 

(X.19) 
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for all unitarily invariant norms. From the inequality (X.lO) we have 

Using the identity (X.17), we see that 

IIIA* A - B* Bill::; 1/2 {III(A + B)*(A - B)III + III(A - B)*(A + B)III}· 

Now, using the Cauchy-Schwarz inequality given in Problem IV.5.7, we see 
that each of the two terms in the brackets above is dominated by 

This proves the inequality (X.19). • 
Theorem X.2.4 Let A, B be any two operators. Then, for all Schatten 
p-norms with 1 ::; P ::; 2, 

(X.20) 

Proof. Let 
IIXllp := (~ s~(X)) l/P, for all p > O. 

When p ~ 1, these are the Schatten p-norms. When 0 < p < 1, this defines 
a quasi-norm. Instead of the triangle inequality, we have 

(X.21) 

(See Problems IV.5.1 and IV.5.6.) Note that for all positive real numbers 
rand p, we have 

(X.22) 

Thus, the inequality (X. 7), restricted to the p-norms, gives for all positive 
operators A, B 

(X.23) 

Hence, for any two operators A, B, 

II IAI-IBI lip ::; IIA* A - B* BII~~~, 1::; p::; 00. 

Now use the identity (X.17) and the property (X.21) to see that, for 
1 ::; p ::; 2, 

IIA* A- B* Bllp/2 ::; 22/P- 2{II(A+B)*(A_ B)llp/2 + II(A- B)*(A+B)llp/2}. 

From the relation (X.22) and the Cauchy-Schwarz inequality (IV.44), it fol­
lows that each of the two terms in the brackets is dominated by 
IIA + BllpllA - Blip. Hence 

IIA* A - B* Bllp/2 ::; 22 / P- l IIA + BllpllA - Blip 



X.2 The Absolute Value 299 

for 1 S; p S; 2. This proves the theorem. • 

The example given in X.2.2 shows that, for each 1 S; P S; 2, the inequality 
(X.20) is sharp. 

In Section VII.5 we saw that 

(X.24) 

for any two operators A, B. Further, if both A and B are normal, the factor 
J2 can be replaced by 1. Can one prove a similar inequality for the operator 
norm instead of the Hilbert-Schmidt norm? Of course, we have from (X.24) 

II IAI - IBI II S; En IIA - BII (X.25) 

for all operators A, B on an n-dimensional Hilbert space 7-{. It is known 
that the factor .j2ri in the above inequality can be replaced by a factor 
en = O(log n); and even when both A, B are Hermitian, such a factor is 
necessary. (See the Notes at the end of the chapter.) 

In a slightly different vein, we have the following theorem. 

Theorem X.2.5 (T. Kato) For any two operators A, B we have 

IIIAI - IBIII S; ~ IIA - BII (2 + log IIAII + IIBII) . 
7r IIA - BII 

(X.26) 

Proof. The square root function has an integral representation (V.4); this 
says that 

00 

t1/2 = ~ j _t_ )..,-1/2d)..,. 
" )"'+t 

o 

We can rewrite this as 

00 

t1/2 = ~ j[)..,-1/2 _ )..,1/2().., + t)-lJd)..,. 

o 

Using this, we have 

00 

IAI-IBI = ~ j )..,1/2[(IBI2 + )..,)-1 - (IAI2 + )..,)-l]d)..,. (X.27) 

o 

We will estimate the norm of this integral by splitting it into three parts. 

Let 
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Now note that if X, Yare two positive operators, then -Y ::s; X - Y ::s; X, 
and hence IIX - YII ::s; max(IIXII, IWII)· Using this we see that 

'" 
II J Al/2[(IBI2 + A)-1 - (IAI2 + A)-ljdAII 

o 

'" 
< J A-1/2dA = 20:1/ 2 = 211A - BII· (X.28) 

o 

From the identity 

and the identity (X.17), we see that 

Hence, 

11(IB1 2 + A)-1 - (IAI2 + A)-III ::; r211A + BIIIIA - BII 

< r 2,Bl/21IA - BII· 

00 

II J A1/2[(IBI 2 + A)-1 - (IAI2 + A)-ljdAII ::; 211A - BII. (X.30) 
(3 

Since A* A - B* B = B*(A - B) + (A* - B*)A, from (X.29) we have 

(IBI2 + A)-1 _ (IAI2 + A)-1 

(IBI 2 + A)-1 B*(A - B)(IAI2 + A)-1 

+ (IBI2 + A)-I(A* - B*)A(IAI2 + A)-I. (X.31) 

Note that 

IIB(IBI2 + A)-III 

IIIBI(IBI 2 + A)-III::; 2A~/2' 

since the maximum value of the function f(t) = t2~,\ is 2'\~/2' By the same 
argument, 

So, from (X.31) we obtain 
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Hence 

~ ~ 

II J Al/2[(IBI2 + A)-1 - (IAI2 + A)-I]dAII :s:; IIA - BII J A-IdA 

a a 

IIA - BII log !i = 211A _ Billog IIAII + IIBII. (X.32) 
0: IIA - BII 

Combining (X.27), (X.28), (X.30), and (X.32), we obtain the inequality 
(X.26). • 

X.3 Local Perturbation Bounds 

Inequalities obtained above are global, in the sense that they are valid 
for all pairs of operators A, B. Some special results can be obtained if B is 
restricted to be close to A, or when both are restricted to be away from O. It 
is possible to derive many interesting inequalities by using only elementary 
calculus on normed spaces. A quick review of the basic concepts of the 
Frechet differential calculus that are used below is given in the Appendix. 

Let f be any continuously differentiable map on an open interval I. Then 
the map that f induces on the set of Hermitian matrices whose spectrum is 
contained in I is Frechet differentiable. This has been proved in Theorem 
V.3.3, and an explicit formula for the derivative is also given there. For each 
A, the derivative D f(A) is a linear operator on the space of all Hermitian 
matrices. The norm of this operator is defined as 

IIDf(A)11 = sup IIDf(A)(B)II· 
IIBII=1 

(X.33) 

More generally, any unitarily invariant norm on Hermitian matrices leads 
to a corresponding norm for the linear operator D f (A); we denote this as 

IIIDf(A)111 = sup IIIDf(A)(B)III· 
IIIBIII=1 

(X.34) 

For some special functions f, we will find upper bounds for these quanti­
ties. Among the functions we consider are operator monotone functions on 
(0,00). The square root function f(t) = t 1/ 2 is easier to handle, and since 
it is especially important, it is worthwhile to deal with it separately. 

Theorem X.3.1 Let f(t) = t 1/ 2 , 0 < t < 00. Then for every positive 
operator A, and for every unitarily invariant norm, 

(X.35) 

Proof. The function g( t) = t 2 ! 0 < t < 00 is the inverse of f. So, by 
the chain rule of differentiation, Df(A) = [Dg(f(A))]-1 for every positive 
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operator A. Note that Dg(A)(X) = AX + XA, for every X. So 

[Dg(f(A))](X) = A 1/2 X + XA1/2. 

If A has eigenvalues a1 ~ ... ~ an > 0, then dist(0"(A1/2), 0"( _A1/ 2 )) 

= 2a;!2 = 21IA-11I-1/2. Hence, by Theorem VII.2.l2, 

III [Dg(f(A))t 1 III S; 1/2 IIA- 1 11 1/2. 

This proves the theorem. • 
Exercise X.3.2 Let f E C1(I) and let f' be the derivative of f· Show that 

11f'(A)11 = IIDf(A)(I)11 S; IIDf(A)II· (X.36) 

Thus, for the function f(t) = t 1/2 on (0,00), 

IIDf(A)11 = Ilf'(A)11 (X.37) 

for all positive operators A. 

Theorem X.3.3 Let cp be the map that takes an invertible operator A to 
its absolute value IAI. Then, for every unitarily invariant norm, 

IIIDcp(A)111 S; cond(A) = IIA-1111IAII· (X.38) 

Proof. Let g(A) = A* A. Then Dg(A)(B) = A* B + B* A. Hence 
IIIDg(A)111 S; 211AII· The map cp is the composite fg, where f(A) = A1/2. 
So, by the chain rule, Dcp(A) = Df(g(A))Dg(A) = Df(A* A)Dg(A). Hence 

IIIDcp(A)111 S; IIIDf(A* A)IIIIIIDg(A)III· 

The first term on the right is bounded by ~IIA-11I by Theorem X.3.l, and 
the second by 211AII. This proves the theorem. • 

The following theorem generalises Theorem X.3.l. 

Theorem X.3.4 Let f be an operator monotone function on (0, 00). Then, 
for every unitarily invariant norm, 

IIIDf(A)111 S; 11f'(A)1I (X.39) 

for all positive operators A. 

Proof. Use the integral representation (V.49) to write 

00 

f(t)=a+{3t+ J(>'2~1- >'~t)dlL(>')' 
o 
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where a,f3 are real numbers, 13 2 0, and J.L is a positive measure. Thus 

00 

f(A) = a1 + f3A + f [A2 ~ 11 - (A + A)-I] dJ.L(A). 
o 

Using the fact that, for the function g(A) = A-I we have Dg(A)(B) = 
-A-I BA- I , we obtain from the above expression 

00 

Df(A)(B) = f3B + J (A + A)-I B(A + A)-ldJ.L(A). 
o 

Hence 
00 

IIIDf(A)111 <s: 13 + J II(A + A)-1112dJ.L(A). (X.40) 

o 

From the integral representation we also have 

00 

f'(t) =13+ J (A~t)2dJ.L(A). 
o 

Hence 
00 

11f'(A)11 = 11131 + J (A + A)-2dJ.L(A)II· (X.41) 

o 

If A has eigenvalues al 2 ... 2 an, then since 13 2 0, the right-hand sides 
of both (X.40) and (X.41) are equal to 

00 

13 + J (A + an )-2dJ.L(A). 
o 

This proves the theorem. • 
Exercise X.3.5 Let f be an operator monotone function on (0,00). Show 

that 
IIDf(A)11 = IIDf(A)(I)11 = 11f'(A)II· 

Once we have estimates for the derivative D f(A), we can obtain bounds 
for Illf(A) - f(B)111 when B is close to A. These bounds are obtained using 
Taylor'S Theorem and the mean value theorem. 

Using Taylor's Theorem, we obtain from Theorems X.3.3 and X.3.4 above 

the following. 
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Theorem X.3.6 Let A be an invertible operator. Then for every unitarily 

invariant norm 

III IAI-IBI III ::; cond(A) IliA - Bill + O(IIIA - B1112) (X.42) 

for all B close to A. 

Theorem X.3.7 Let f be an operator monotone function on (0,00). Let 
A be any positive operator. Then for every unitarily invariant norm 

Illf(A) - f(B)111 ::; 11f'(A)IIIIIA - Bill + O(IIIA - B1112) (X.43) 

for all positive operators B close to A. 

For the functions f (t) = tr, 0 < r < 1, we have from this 

(X.44) 

The use of the mean value theorem is illustrated in the proof of the 
following theorem. 

Theorem X.3.8 Let f be an operator monotone function on (0,00) and 
let A, B be two positive operators that are bounded below by a; i.e., A 2:: a1 
and B 2:: a1 for the positive number a. Then for every unitarily invariant 
norm 

Illf(A) - f(B)111 ::; f'(a)IIIA - Bill· (X.45) 

Proof. Use the integral representation of f as in the proof of Theorem 
X.3.4. We have 

00 

f'(A) = (31 + J (A + A)-2dlL(A). 

o 
If A 2:: aI, then 

00 

f'(A) ::; (31 + [J(A + a)-2dlL(A)]1 = f'(a)l. 

o 

Let A(t) = (1- t)A + tB, 0 ::; t ::; 1. If A and B are bounded below by 
a, then so is A(t). Hence, using the mean value theorem, the inequality 
(X.39), and the above observation, we have 

Illf(A) - f(B)111 < sup IIIDf(A(t))(A'(t))111 
O'S:t-:;I 

< sup 11f' (A( t)) II IliA' (t) III 
09'S:1 

< f'(a)IIIA - Bill. 

• 
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A special corollary is the inequality 

(X.46) 

valid for operators A, B such that A ::::: aI and B ::::: aI for some positive 
number a. 

Other inequalities of this type are discussed in the Problems section. 
Let A = UP be the polar decomposition of an invertible matrix A. Then 

P = IAI and U = AP-l. Using standard rules of differentiation, one can 
obtain from this, expressions for the derivative of the map A --+ U, and 
then obtain perturbation bounds for this map in the same way as was done 
for the map A --+ IAI. There is, however, a more effective and simpler way 
of doing this. 

The advantage of this new method, explained below, is that it also works 
for other decompositions like the QR decomposition, where explicit formu­
lae for the two factors are not known. For this added power there is a small 
cost to be paid. The slightly more sophisticated notion of differentiation on 
a manifold of matrices has to be used. We have already used similar ideas 
in Chapter 6. 

In the space M(n) of n x n matrices, let GL(n) be the set of all invertible 
matrices, U(n) the set of all unitary matrices, and P(n) the set of all 
positive (definite) matrices. All three are differentiable manifolds. The set 
GL(n) is an open subset of M(n), and hence the tangent space to GL(n) 
at each of its points is the space M(n). The tangent space to U(n) at 
the point I, written as TJ U(n), is the space lC(n) of all skew-Hermitian 
matrices. This has been explained in Section VI.4. The tangent space at 
any other point U of U(n) is TuU(n) = U· JC(n) = {US: S E lC(n)}. Let 
7-{(n) be the space of all Hermitian matrices. Both 7-{(n) and lC(n) are real 
vector spaces and 7-{(n) = ilC(n). The set P(n) is an open subset of 7-{(n) , 
and hence, the tangent space to P(n) at each of its points is 7-{(n). 

The polar decomposition gives a differentiable map <I> from GL(n) onto 
U(n) x P(n). This is the map <I>(A) = (<I>I(A), <I>2(A)) = (U, P), where 
the invertible matrix A has the polar decomposition A = UP. Earlier in 
this section we called <I>2(A) just <p(A) and evaluated its Frechet derivative. 
An explicit formula for the derivative D<I>1 (A) is obtained below. This map 
is a linear map from M(n), the tangent space to GL(n), into the space 
U . lC(n), the tangent space to U(n) at the point U. 

The main idea of the proof below is simple. Let II' be the map from 
U(n) x P(n) to GL(n) that is the inverse to <I>; i.e., II'(U, P) = UP. This 
is a much simpler object to handle, since it is just a product map. We 
can calculate the derivative of this map and then use the inverse function 
theorem to get the derivative of the map <1>. 

Theorem X.3.9 Let <1>1 be the map from GL(n) into U(n) that takes an 
invertible matrix to the unitary part in its polar decomposition, <1>1 (U P) = 
U. Then for each X E M( n), the value of the derivative D<1>1 (U P) at the 
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point U X is given by the formula 

00 

[D<I>I(UP)](UX) = 2U J e-tP(ilmX)e-tPdt. 

o 

(X.47) 

Proof. The domain of the linear map D'If(U, P) is the tangent space to 
the manifold U(n) xP(n) at the point (U, P). This space is (U.JC.(n), 1i(n)). 
The range of D'If(U, P) is the tangent space to GL(n) at UP. This space 
is M(n). We will use the decomposition M(n) = U ·1C(n) + U . 1i(n) that 
arises from the Cartesian decomposition. By the definition of the derivative, 
we have 

[D'If(U, P)](US, H) 

for all S E lC(n) and H E 1i(n). 

~I 'If(UetS,p + tH) 
dt t=O 

~I Uets(p + tH) 
dt t=o 

USP+UH 

The derivative D<I>(UP) is a linear map from M(n) onto (U·IC(n), 1i(n)). 
Suppose 

[D<I>(UP)](UX) = (UM,N). 

Since <I> = 'If-I, from the two equations above we see that 

UX = [D<I>(UP)rI(UM,N) = [D'If(U,P)](UM,N) = UMP+ UN. 

Hence, 

X=MP+N. 

Our task now is to find M from this equation. Note that M is skew­
Hermitian and N Hermitian. Hence, from the above equation, we obtain 

MP+PM = X -X* = 2ilmX. 

This equation was studied in Chapter 7. From Theorem VII.2.3 we have 
its solution 

00 

M = 2 J e-tP(ilmX)e-tP dt. 

o 

This gives us the expression (X.4 7). 

Corollary X.3.10 For every unitarily invariant norm we have 

• 

(X.48) 
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Proof. Using (X.47) and properties of unitarily invariant norms, we see 
that 

00 

IIID<I>l(UP)(UX)111 s 2 J Ile-tPIIIIIXllllle-tPlldt. 

° 
If P has eigenvalues al :::: ... :::: an, then Ile-tP II = e- tan . So, 

Hence, 

00 

IIID<I>l(UP)(UX)11I < 2 J e-2tan lllXllldt 
o 

a;:;-llllXIII = IIp-lIIIIIXIII· 

IIID<I>l(UP) III = sup IIID<I>l(UP)(X)111 SliP-III· 
IIlxlll=l 

The choice X = ivv* 1IIIvv*lll, where v is an eigenvector of P belonging to 
the eigenvalue an, shows that the last inequality is in fact an equality. • 

Two corollaries follow; the first one is obtained using the mean value 
theorem and the second one using Taylor's Theorem. 

Corollary X.3.ll Let A o, Al be two elements of GL(n), and let Uo, Ul 
be the unitary factors in their polar decompositions. Suppose that the line 
segment A(t) = (1 - t)Ao + tAl, 0 S t S 1, lies inside GL(n). Then, for 
every unitarily invariant norm 

(X.49) 

Corollary X.3.l2 Let Ao be an invertible matrix with polar decomposition 
Ao = UoPo. Then, for a matrix A = UP in a neighbourhood of A o, we have 

IlIUo - UIII S IIAollllllAo - Alii + O(IIIAo - AII12). (X. 50) 

Exercise X.3.l3 Prom the proof of Theorem X.3.9 one can also extract a 
bound for the derivative of the map A --+ IAI. What does this give? Compare 
it with the result of Theorem X.3.3. 

Let us see now how this method works for a perturbation analysis of the 
QR decomposition. 

Let ~+(n) be the set of all upper triangular matrices with positive di­
agonal entries. Each element A of GL(n) has a unique factoring A = QR, 
where Q E U(n) and R E ~+(n). Thus the QR decomposition gives rise 
to an invertible map <I> from GL(n) onto U(n) x ~+(n). Let ~re(n) be 
the set of all upper triangular matrices with real diagonal entries. This is a 
real vector space, and ~+(n) is an open set in it. Thus the tangent space 
to ~+(n), at any of its points, is ~re(n). For each A = QR in GL(n) 
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the derivative D<I>(A) is a linear map from the vector space M(n) onto the 
vector space (Q . K(n), Are(n)). We want to calculate the norm of this. 

First note that the spaces K(n) and Are(n) are complementary to each 
other in M(n). We have a vector space decomposition 

M(n) = K:(n) + Are(n). (X.51) 

Every matrix X splits as X = K + T in this decomposition; the entries of 
X, K and T are related as follows: 

kjj i 1m Xjj for all j, 
kij -Xji for j > i, 
kij Xij for i > j, 

(X. 52) 
tjj Re Xjj for all j, 
tij Xij + Xji for j > i, 
tij 0 for i > j. 

Exercise X.3.14 Let PI and P2 be the complementary projection opera­
tors in M(n) corresponding to the decomposition (X.Sl). Show that 

where IIPj 112 = sup IIPj XI12, and 11·112 stands for the Probenius (Hilbert­
Ilx11 2 =1 

Schmidt) norm. 

Now let \II be the map from U(n) x A+(n) onto M(n) defined as 
\II(Q, R) = QR. Then \II and <I> are inverse to each other. The derivative 
D\II(Q, R) is a linear map whose domain is the tangent space to the mani­
fold U(n) x A+(n) at the point (Q, R). This space is (Q. K:(n), Are(n)). 
Its range is the space M(n) = Q . K(n) + Q . Are(n). By the definition of 
the derivative, we have 

[D\II(Q, R)](QK, T) 

for all K E K:(n) and T E Are(n). 

dd I \II (QetK , R + tT) 
t t=O 

! It=o QetK (R + tT) 

QKR+QT 

The derivative D<I>(QR) is a linear map from M(n) onto Q . K:(n) + 
Are(n). Suppose 

[D<I>(QR)](QX) = (QM, N), 

where M E K(n) and N E Are(n). Then we must have 

QX = [D<I>(QR)]-I(QM, N) = [D\II(Q, R)](QM, N) = QMR + QN. 
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Hence 
X=MR+N. 

So, we have the same kind of equation as we had in the analysis of the polar 
decomposition. There is one vital difference, however. There, the matrices 
M, N were skew-Hermitian and Hermitian, respectively, and instead of the 
upper triangular factor R we had the positive factor P. So, taking adjoints, 
we could eliminate N and get another equation that we could solve explic­
itly. We cannot do that here. But there is another way out. We have from 
the above equation 

(X.53) 

Here M E JC(n); and both Nand R- l are in ..::lre(n), and hence so is their 
product N R- l . Thus the equation (X.53) is nothing but the decomposition 
of X R- l with respect to the vector space decomposition (X.51). In this way, 
we now know M and N explicitly. We thus have the following theorem. 

Theorem X.3.I5 Let q,l, q,2 be the maps from GL(n) into U(n) and 
..::l+(n) that take an invertible matrix to the unitary and the upper tri­
angular factors in its QR decomposition. Then fnr each X E M(n), the 
derivatives Dq,l (Q R) and Dq,2 (Q R) evaluated at the point Q X are given 
by the formulae 

[Dq,l(QR)](QX) = QPl(XR- l ), 

[Dq,2(QR)](QX) = P2(XR- l )R, 

where PI and P2 are the complementary projection operators in M(n) cor­
responding to the decomposition (X. 51). 

Using the result of Exercise X.3.14, we obtain the first corollary below. 
Then the next two corollaries are obtained using the mean value theorem 
and Taylor's Theorem. 

Corollary X.3.I6 Let q,l, q,2 be the maps that take an invertible matrix 
A to the Q and R factors in its QR decomposition. Then 

IIDq,1(A)112 < J2IIA- l ll, 
IIDq,2(A)112 < J2 cond(A) = J2II A IIIIA- l ll· 

Corollary X.3.I7 Let Ao,Al be two elements ofGL(n) with theirrespec­
tive QR decompositions Ao = QoRo and Al = QlRl · Suppose that the line 
segment A(t) = (1 - t)Ao + tAl, 0 ~ t ~ 1, lies in GL(n). Then 

IIRo - RI!I2 ~ J2 max cond(A(t))IIAo - AI!I2. 
O:'St:S;1 
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Corollary X.3.18 Let Ao = QoRo be an invertible matrix. Then for every 

matrix A = QR close to A o, 

IIQo - QI12 ::; h IIAoIl1 IIAo - AII2 + O(IIAo - AII~), 

IIRo - RII2 ::; h cond(Ao)IIAo - AI12 + O(IIAo - AII~)· 

For most other unitarily invariant norms, the norms of projections PI 
and P2 onto the two summands in (X.51) are not as easy to calculate. Thus 
this method does not lead to attractive bounds for these norms in the case 
of the QR decomposition. 

X.4 Appendix: Differential Calculus 

We will review very quickly some basic concepts of the Fn§chet differential 
calculus, with special emphasis on matrix analysis. No proofs are given. 

Let X, Y be real Banach spaces, and let .c(X, Y) be the space of bounded 
linear operators from X to Y. Let U be an open subset of X. A continuous 
map f from U to Y is said to be differentiable at a point u of U if there 
exists T E .c(X, Y) such that 

lim Ilf(u + v) - feu) - Tvll = o. 
v-->o Ilvll 

(X. 54) 

It is easy to see that such a T, if it exists, is unique. 
If f is differentiable at u, the operator T above is called the derivative 

of f at u. We will use for it the notation D f (u). This is sometimes called 
the Frechet derivative. If f is differentiable at every point of U, we say 
that it is differentiable on U. 

One can see that, if f is differentiable at u, then for every v EX, 

D f ( u ) ( v) = dd I f ( u + tv). 
t t=O 

(X.55) 

This is also called the directional derivative of f at u in the direction v. 
The reader will recall from elementary calculus of functions of two vari­

ables that the existence of directional derivatives in all directions does not 
ensure differentiability. 

Some illustrative examples are given below. 

Example X.4.1 (i) The constant function f(x) = c is differentiable at all 
points, and Df(x) = 0 for all x. 

(ii) Every linear operator T is differentiable at all points, and is its own 
derivative; i.e., DT(u)(v) = Tv, for all u,v in X. 

(iii) Let X, Y, Z be real Banach spaces and let B : X x Y --+ Z be 
a bounded bilinear map. Then B is differentiable at every point, and its 
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derivative DB(u,v) is given as 

DB(u, v)(x, y) = B(x, v) + B(u, y). 

(iv) Let X be a real Hilbert space with inner product (', .), and let f (u) = 
Ilul1 2 = (u,u). Then f is differentiable at every point and Df(u)(v) 
2(u,v). 

The next set of examples is especially important for us. 

Example X.4.2 In these examples X = Y = £(H). 
(i) Let f(A) = A2. Then 

Df(A)(B) = AB + BA. 

(ii) More generally, let f(A) = An, n ~ 2. From the binomial expansion 
for (A + B)n one can see that 

j+k=n-l 
j,k~O 

(iii) Let f(A) = A-1 for each invertible A. Then 

Df(A)(B) = -A-1BA-1. 

(iv) Let f(A) = A* A. Then 

D f(A)(B) = A* B + B* A. 

(v) Let f(A) = eA. Use the formula 

1 

eA+B - eA = J e(1-t)AB et(A+B)dt 

D 

(called Dyson's expansion) to show that 

1 

Df(A)(B) = J e(1-t)A BetA dt. 

D 

The usual rules of differentiation are valid: 
If h, h are two differentiable maps, then h + h is differentiable and 

D(h + h)(u) = Dh(u) + Dh(u). 

The composite of two differentiable maps f and g is differentiable and we 

have the chain rule 

D(g· f)(u) = Dg(f(u)) . Df(u). 
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In the special situation when 9 is linear, this reduces to 

D(g· f)(u) = g. Df(u). 

One important rule of differentiation for real functions is the product 
rule: (fg)' = I'g + gl'. If f and 9 are two maps with values in a Banach 
space, their product is not defined - unless the range is an algebra as well. 
Still, a general product rule can be established. Let f, 9 be two differentiable 
maps from X into YI , Y2 , respectively. Let B be a continuous bilinear map 
from YI x Y2 into Z. Let rp be the map from X to Z defined as rp(x) = 
B(f(x), g(x)). Then for all u, v in X 

Drp(u)(v) = B(Df(u)(v), g(u)) + B(f(u), Dg(u)(v)). 

This is the product rule for differentiation. A special case of this arises 
when YI = Y2 = .L(Y), the algebra of bounded operators in a Banach 
space Y. Now rp(x) = f(x)g(x) is the usual product of two operators. The 
product rule then is 

Drp(u)(v) = [Df(u)(v)]· g(u) + f(u)· [Dg(u)(v)]. 

Exercise X.4.3 (i) Let f be the map A --+ A-Ion GL(n). Use the product 
rule to show that 

Df(A)(B) = -A-IBA- I . 

This can also be proved directly. 
(ii) Let f(A) = A-2. Show that 

Df(A)(B) = _A- I BA-2 - A-2 BA- I . 

(iii) Obtain a formula for the derivative of the map f(A) = A -n, n = 
3,4, .... 

Perhaps, the most useful theorem of calculus is the Mean Value Theorem. 

Theorem X.4.4 (The Mean Value Theorem) Let f be a differentiable map 
from an interval I of the real line into a Banach space X. Then for each 
closed interval [a, b] contained in I, 

IIf(b) - f(a)11 ::; Ib - al sup IIDf(t)ll. 
a:St:Sb 

This is the version we have used often in the book, with [a, b] = [0,1]. 
There is a more general statement: 

Theorem X.4.5 (The Mean Value Theorem) Let f be a differentiable map 
from a convex subset U of a Banach space X into the Banach space Y. Let 
a, b E U and let L be the line segment joining them. Then 

Ilf(b) - f(a)11 ::; lib - all sup IIDf(u)ll. 
uEL 
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(Note that there are three different norms that occur in the above inequal­
ity. These are the norms of the spaces Y, X, and LeX, Y), respectively.) 

Higher order Frechet derivatives can be identified with multilinear maps. 
This is explained below. 

Let f be a differentiable map from X to Y. At each point u, the deriva­
tive D feu) is an element of the Banach space LeX, Y). Thus we have a 
map Df from X into LeX, Y), defined as Df : u ---t Df(u). If this map 
is differentiable at a point u, we say that f is twice differentiable at u. 
The derivative of the map D f at the point u is called the second deriva­
tive of f at u. It is denoted as D2 feu). This is an element of the space 
LeX, LeX, Y)). This space is isomorphic to another Banach space, which 
is easier to handle. 

Let £2(X, Y) be the space of bounded bilinear maps from X x X into Y. 
The elements of this space are maps f from X x X into Y that are linear 
in both variables, and for whom there exists a constant c such that 

for all Xl,X2 EX. The infimum of all such c is called Ilfll. This is a norm 
on the space £2(X, Y), and the space is a Banach space with this norm. 

If cp is an element of LeX, LeX, Y)), let 

<P(Xl,X2) = [cp(Xl)](X2) forXl,x2 EX. 

Then <p E £2(X, Y). It is easy to see that the map cp ---t <p is an isometric 
isomorphism. 

Thus the second derivative of a twice differentiable map f from X to Y 
can be thought of as a bilinear map from X x X to Y. It is easy to see that 
this map is symmetric in the two variables; i.e., 

for all u, Vl, V2. (This symmetry property is extremely helpful in guessing 
the expression for the second derivative of a given map.) 

Some examples on the space of matrices are given below. 

Example XA.6 Let X = M(n) and let f(A) = A 2, A E M(n). We have 
seen that Df(A)(B) = AB+BA for all A, B. Note that Df(A) = LA +RA, 
where LA and RA are linear operators on M(n), the first one is the left 
multiplication by A and the second one is right multiplication by A. The 
map Df : A ---t Df(A) is a linear map from M(n) into £(M(n)). So 
the derivative of this map, at each point, is the map itself· Thus for each 

A,D2f(A) = Df. In other words, 

[D2 f(A)](B) = Df(B) = LB + RB· 

If we think of D2 f(A) as a linear map from M(n) into £(M(n)), we have 

[D2 f(A)(Bd](B2) = (LB, + R B,)(B2) = B1B2 + B2Bl 
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for all B I , B2. If we think of it as a bilinear map, we have 

Note that the right-hand side is independent of A. So the map A -+ D2 f(A) 
is a constant map. These are noncommutative analogues of the facts that 
if f(x) = x 2, then f'(x) = 2x and f"(x) = 2. 

Example X.4.7 Let f(A) = A3. We have seen that 

This is the noncommutative analogue of the fact that if f(x) = x 3, then 
f' (x) = 3x2. What is the second derivative? From the formula f" (x) = 6x, 
and the fact that D2 f(A) is a symmetric bilinear map, we can guess that 

Prove that this indeed is the right formula for D2 f(A). Note that the map 
A -+ D2 f(A) is linear. 

Example X.4.8 More generally, let f(A) = An. From the binominal the­
orem one can see that 

L [Aj BIAk B 2Ac + Aj B2AkBIAc]. 
j+k+£=n-2 

j,k,I!,?:O 

Example X.4.9 Let f(A) = A-I, A E GL(n). We know that D f(A)(B) = 
-A-IBA- I , for all B E M(n). This is the noncommutative analogue of 
the formula (X-I), = _x-2. The analogue of the formula (X-I)" = 2x-3 

is the following: 

This can be guessed from the bilinearity and symmetry properties that 
D2 f(A) must have. It can be proved formally by the rules of differentia­
tion. 

Example X.4.10 Let f(A)=A-2,A E GL(n). We know that Df(A)(B)= 
-A- IBA-2 - A-2BA- I . Show that 

[D2 f(A)](B I , B 2) = A-2 B1A- I B2A- I + A-2 B2A-1B1A-I 

+ A-IBIA-2B2A-I +A-IB2A-2BIA-I 

+ A-I BIA- I B 2A-2 + A- IB 2A- I B IA-2 . 

This is the analogue of the formula (x- 2)" = 6x- 4 . 
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Example X.4.11 Let f(A) = A* A. We have seen that D f(A)(B) = 
A* B + B* A. Show that D2 f(A)(B l , B 2) = BiB2 + B2B l . Note that this 
expression does not involve A. So the map A ----+ D2 f(A) is a constant map. 

Derivatives of higher order can be defined by repeating the above proce­
dure. The pth derivative of a map f from X to Y can be identified with a 
p-linear map from the space X x X x ... x X (p copies) into Y. A convenient 
method of calculating the pth derivative of f is provided by the formula 

Compare this with the formula (X. 55) for the first derivative. 

Example X.4.12 Let f(A) = An, A E .c(H). Then for p = 1,2, ... , n, 

[DP f(A)](B l , ... , Bp) 

L L 
aESp ji~O' 

]1 + ··+jp+l =n-p 

where Sp is the set of all permutations on p symbols. There are (nr:.!p)! terms 
in the above double sum. These are all words of length n in which n - p of 
the letters are A and the remaining letters are B l , ... , B p, each occurring 
exactly once. Notice that this expression is linear and symmetric in each of 
the variables B l , ... , Bp. When dim H = 1, this reduces to the formula for 
the pth derivative of the function f(x) = xn: 

jCp)(x) = n(n - 1)··· (n _ p + l)xn- p = n! x n- p. 
(n - p)! 

The reader should work out some more simple examples to see the ex­
pressions for higher derivatives. 

Another important theorem of calculus, Taylor's Theorem, has an 
analogue in the Frechet calculus. Of the different versions possible, the one 
that is most useful for us is given below. 

Let f be a (p+ I)-times differentiable map from a Banach space X into a 
Banach space Y. For hEX, write [h]m to mean the m-tuple (h, h, ... ,h). 
Then, for all x E X and for small h, 

p 1 
Ilf(x + h) - f(x) - L I Dmf(x)([h]m)11 = O(llhIIP+l). 

m. 
m=l 

From this we get 
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Finally, let us write down formulae for higher order derivatives o~ the 
composite of two maps. These are already quite intricate for real functIOns. 

If we have r.p = f(g(x)), then we have 

r.p(1)(x) 

r.p(2) (x) 

r.p(3) (x) 

f(1) (g(x ))g(1) (x), 

f(2)(g(X))[g(1)(xW + f(1)(g(x))g(2)(X), 

f(3)(g(x))[g(1)(xW + 3f(2) (g(x))g(1) (X)g(2) (x) 

+ f(1)(g(x))i3)(x). 

If X Y Z are Banach spaces and if f is a map from X to Y, and 9 a map , , 
from Y to Z, then for the derivatives of the composite map r.p = fog, we 
have the following formulae. By the chain rule, 

Dr.p(x) = Df(g(x))Dg(x). 

The second and the third derivatives are bilinear and trilinear maps, re­
spectively. For them we have the formulae: 

[D2r.p(X)](Xl, X2) = [D2 f(g(x))](Dg(x)(Xl), Dg(X)(X2)) 

+ Df(g(x))([D2g(x)](Xl, X2)), 

[D3 f(g(x))](Dg(x)(xd, Dg(X)(X2), Dg(X)(X3)) 

+ [D2 f(g(x))](Dg(x)(Xl), [D2g(x)](X2, X3)) 

+ [D2 f(g(x))](Dg(x)(X2)' [D2g(x)](Xl,X3)) 

+ [D2 f(g(x))](Dg(x)(X3), [D2g(X)](Xl,X2)) 

+ D f(g(x))[D3g(x)](Xl, X2, X3). 

The reader should convince himself that considerations of domains and 
ranges of the maps involved, symmetry in the variables, and the demand 
that in the case of real functions we should recover the old formulae lead 
to these general formulae. He can then try proving them. 

We have also used the notion of the derivative of a map between mani­
folds. If X and Yare differentiable manifolds in finite-dimensional vector 
spaces, and f is a differentiable map from X to Y, then at a point u of X 
the derivative D f(x) is a linear map from the linear space TuX into the lin­
ear space Tf(u)Y. These are the tangent spaces to X and Y at u and feu), 
respectively. All manifolds we considered are subsets of M(n). Of these, 
GL(n), Pen), and A+(n) are open subsets of vector subs paces of M(n). 
So these vector spaces are the tangent spaces for the manifolds. The only 
closed manifold we considered is U(n). It is easy to find the tangent space 
at any point of this manifold. This was done in Chapter 6. Most of the 
results of Fn§chet calculus can be restated in this setup with appropriate 
modifications. 
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X.5 Problems 

Problem X.5.l. Let f be a nonnegative operator monotone function on 
(0,00). 

(i) Show that if A is positive and U unitary, then 

Illf(A)U - Uf(A)III:::; Illf(IAU - UAI)III· 

(ii) Let A be positive and X Hermitian. Let U be the Cayley transform 
of X. We have 

U (X - i)(X +i)-l, 

X i(1 + U)(1 - U)-l = 2i(f - U)-l - if. 

Show that 

Illf(A)X - Xf(A)111 :::; 211(1 - U)-11l211If(IAU - UAI)III· 

Use the relation between U and X again to estimate the last factor, and 
show that 

Illf(A)X - Xf(A)111 :::; 1 + s}(X) Illf (1 + s~(X) lAX - XAI) III. 

(iii) Let A, B be positive and X arbitrary. Use the above inequality to 
show that 

Illf(A)X - Xf(B)111 :::; 1 + sPX) Illf (1 + s2~(X) lAX - XBI) III 

[Hint: Use 2 x 2 block matrices.] 
When X = f, this reduces to the inequality (X.5). 

Problem X.5.2. Let f be a nonnegative operator monotone function. Let 
A, B be positive matrices and let X be any contraction. Show that 

Illf(A)X - Xf(B)111 :::; 5/4111(IAX - XBI)III· 

[Hint: Use the result of the preceding problem, replacing X there by ~X.] 

Problem X.5.3. From the above inequality it follows that if A, Bare 
positive and X is any matrix, then for 0 :::; r :::; 1, 

Show that we have under these conditions 
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[Hint: Reduce the general case to the special case A = B. Use Holder's 

inequality.] 

Problem X.5.4. Let A, B be any two operators. Show that 

111(IAI-IBI)2111 ::; IIA + BIIIIIA - Bill· 

Problem X.5.5. Let A be a positive operator such that A ::::: aI ::::: 0. Show 

that for every X 
2alllXIII ::; IIIAX + XAIII· 

[Use the results in Section VII.2.] 
Use this to show that if A, B are positive operators such that 

A 1/2 + B l / 2 ::::: aI ::::: 0, then 

[Hint: Consider the operators Al/2 + Bl /2 and Al /2 - Bl/2.] 

Problem X.5.6. Let A and B be positive operators such that A ::::: aI ::::: ° 
and B ::::: bI ::::: 0. Show that for every nonnegative operator monotone 
function f on (0,00) 

Illf(A) - f(B)111 ::; C(a, b)IIIA - Bill, 

where C(a, b) = f(al={(b) if a i= b, and C(a, b) = f'(a) if a = b. 

Problem X.5.7. Let f be a real function on (0,00), and let f(n) be its nth 
derivative. Let f also denote the map induced by f on positive operators. 
Let Dn f(A) be the nth order Frechet derivative of this map at the point 
A. Let 

v(n) = {f: IIDn f(A)11 = Ilf(n)(A)11 for all positive A}. 

We have seen that every operator monotone function is in the class V(1). 

Show that it is in v(n) for all n = 1,2, .... 

Problem· X.5.B. Several examples of functions that are not operator 
monotone but are in V(1) are given below. 

(i) Show that for each integer n, the function f(t) = tn on (0,00) is in 
the class V(l). 

(ii) Show that the function f(t) = ao + alt + ... + antn on (0,00), where 
n is any positive integer and the coefficients aJ are nonnegative, is in 
the class V(1). 
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(iii) Any function on (0,00) that has a power series expansion with non­
negative coefficients is in the class V Cl ). 

(iv) Use the Dyson expansion to show that the exponential function is in 
the class V Cl). 

00 

(v) Let f(t) = J e->-.tdJl.()..) , where Jl. is a positive measure on (0,00). 
o 

Show that f E V Cl). [Use part (iv).] 

(vi) From the Euler's integral for the gamma function, we can write, for 
r > 0, 

Use this to show that for each r > 0, the function f(t) 
(0,00) is in VCl). 

Problem X.5.9. The Cholesky decomposition of a positive definite matrix 
A is the (unique) factoring A = R* R, where R is an upper triangular 
matrix with positive diagonal entries. This gives an invertible map <P from 
the space P(n) onto the space ~+(n). Show that 

for every A. Use this to write local perturbation bounds for the map <P. 

Problem X.5.10. A matrix is called strongly nonsingular if all of its 
leading principal minors are nonzero. Such matrices form a dense open set 
in the space M(n). Every strongly nonsingular matrix A can be factored 
a.s A = LR, where L is a lower triangular matrix and R an upper trian­
gular matrix. Further, L can be chosen to have all of its diagonal entries 
equal to 1. With this restriction the factoring is unique. This is the LR 
decomposition familiar in linear algebra and numerical analysis. 

Let S be the set of strongly nonsingular matrices, ~i the set of lower 
triangular matrices with unit diagonal, and ~ns the set of nonsingular 
upper triangular matrices. Let <PI, <P2 be the maps from S into ~i and ~ns 
given by the LR decomposition. 

The set S is an open set in M(n). So the tangent space to it at any point 
is M(n). The set ~ns is an open subset of the vector space ~ consisting 
of all upper triangular matrices. So the tangent space to ~ns at any point 
is ~. The set ~i is a differentiable manifold (a Lie group, in fact). The 
tangent space at I to this manifold is the space ~o, consisting of lower 
triangular matrices with zero diagonal. 
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Follow the approach in Section X.3 to obtain the bounds: 

IID<I>1(A)112 ::; cond(L)IIR-111, 

IID<I>2(A)112 ::; cond(R)IIL-111· 

Use these to obtain local perturbation bounds for the LR decomposition. 

X.6 Notes and References 

Most of the results in this chapter can be proved for infinite dimensional 
Hilbert space operators. Many of them are valid for operator algebras as 
well. 

Let f be a continuous real function on an interval that contains the spec­
tra of two Hermitian operators A, B (on a Hilbert space H). The problem 
of finding bounds for Ilf(A) - f(B)11 in terms of IIA - BII has been inves­
tigated in great detail by many authors. Many deep results on this were 
obtained by the Russian school of Birman, which includes Farforovskaya, 
N aboko, Solomyak, and others. 

When f is differentiable and l' is bounded, one would expect to find 
inequalities of the form 

Ilf(A) - f(B)11 ::; c 111'1100 IIA - BII· 

Counterexamples to show that such inequalities are not true, in general, 
were constructed by Yu.B. Farforovskaya, An estimate of the norm 
IIf(B) - f(A)11 for self-adjoint operators A and B, Zap. Nauch. Sem LOMI, 
56(1976) 143-162. (English translation: J. Soviet Math. 14, No. 2(1980).) It 
was shown by M. Sh. Birman and M.Z. Solomyak that such inequalities can 
be found under stronger smoothness assumptions. The reader should see 
their paper titled Double Stieltjes operator integrals, English translation, in 
Topics in Mathematical Physics, Volume 1, Consultant Bureau, New York, 
1967. 

Theorem X.I.l is taken from F. Kittaneh and H. Kosaki, Inequalities 
for the Schatten p-norm V, Publ. Res. lnst. Math. Sci., 23(1987) 433-443. 
The inequality (X.3) was proved by M.Sh. Birman, L.S. Koplienko, and 
M.Z. Solomyak, Estimates of the spectrum of the difference between frac­
tional powers of self-adjoint operators, lzvestiya Vysshikh Uchebnykh Zave­
denni. Mat, 19 (1975) 3-10. Its generalisation in Theorem X.I.3 is due to 
T. Ando, Comparison of norms Illf(A) - f(B)111 and Illf(IA-BI)III, Math. 
Z., 197(1988) 403-409. Our discussion of the material between Theorem 
X.I.3 and Exercise X.I.7 is taken from this paper. For p-norms, the in­
equality (X.lO) has another formulation: if A,B are positive 
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The special case t = 2 of this was proved by R.T. Powers and E. St<1>rmer, 
Free states of the canonical anticommutation relations, Commun. Math. 
Phys., 16 (1970) 1-33. The point of this formulation is that if A, Bare 
positive Hilbert space operators and their difference A-B is in the Schatten 
class Lp, then Alit - Bl/t is in the class Ltp, and the above inequality is 
valid. 

Theorem X.1.8. is due to D. Jocic and F. Kittaneh, Some perturbation 
inequalities for self-adjoint operators, J. Operator Theory, 31(1994) 3-10. 
The proof of Lemma X.1.9 given here is due to R. Bhatia, A simple proof 
of an operator inequality of Jocic and Kittaneh, J. Operator Theory, 31 
(1994) 21-22. As in the preceding paragraph, for the Schatten p-norms, the 
inequality (X.12) can be written as 

IlA - BIl(2m+l)p :s; 22m/2m+lIIA2m+l - B2m+lll~/2m+l, 

for m = 1,2, ... ,p ;::: 1 and Hermitian A, B. The result is valid in infinite­
dimensional Hilbert spaces. A corollary of this is the statement that if the 
difference A2m+l - B 2m+l is in the Schatten class Lp, then A - B is in the 
class L(2m+l)p. 

The first inequality in Problem X.5.3 was proved by G.K. Pedersen, 
A commutator inequality (unpublished note). The generalisation in Prob­
lem X.5.2, the inequalities in Problem X.5.1, and the second inequality in 
Problem X.5.3 are due to R. Bhatia and F. Kittaneh, Some inequalities for 
norms of commutators, SIAM J. Matrix Anal., 18(1997) to appear. The 
motivation for Pedersen was a result of W.B. Arveson, Notes on extensions 
of C*-algebras, Duke Math. J., 44 (1977)329-355. Let f be a continuous 
function on [0,1] with f(O) = 0, and let E > o. Arveson showed that there 
exists a 8 > 0 such that if A and X are elements in the unit ball of a C*­
algebra and A ;::: 0, then IlAX - XAII < 8 implies Ilf(A)X - Xf(A)11 < E. 

The inequality in Problem X.5.3 is a quantitative version of this for the 
special class of functions f( t) = t T , 0 :s; r :s; 1. Weaker results proved 
earlier and their applications may be found in C.L. Olsen and G.K. Peder­
sen, Corona C* - algebras and their applications to lifting problems, Math. 
Scand., 64(1989) 63-86. It is conjectured that the factor 5/4 occurring in 
these inequalities can be replaced by 1. 

The inequality (X.20) for p = 1 was proved by H. Kosaki, On the conti­
nuity of the map 'P ---> I'PI from the predual of a W* -algebra, J. Funct. Anal., 
59(1984) 123-131. For the Schatten p-norms, p ;::: 2, the inequality (X.18) 
was proved by F. Kittaneh and H. Kosaki in their paper cited above. The 
other parts of Theorems X.2.3 and X.2.4, and Theorem X.2.1 were proved 
by R. Bhatia, Perturbation inequalities for the absolute value map in norm 
ideals of operators, J. Operator Theory, 19(1988) 129-136. 

The constant J2n in (X.25) can be replaced by a factor en:::::: logn. This 
has been known for some time and is related to other important problems 
in operator theory. See two papers by A. Mcintosh, Counterexample to a 
q71estion on commutators, Proc, Amer. Math. Soc., 29(1971) 337-340, and 
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Functions and derivations ofC*-algebras, J. Funct. Anal., 30(1978)264-275. 
It is also known that such a factor is indeed necessary, both for the operator 
norm and for the corresponding inequality for the trace norm 11·111. This 
implies that, if 1t is infinite-dimensional, then the map A f--+ IAI on £(1t) 
is not Lipschitz continuous. Nor is it Lipschitz continuous on the Schat­
ten ideal II. The inequality (X.24) due to Araki and Yamagami, on the 
other hand, shows that on the Hilbert-Schmidt ideal I2 this map is contin­
uous. For other values of p, 1 < p < 00, E.B. Davies, Lipschitz continuity 
of functions of operators in the Schatten classes, J. London Math. Soc., 
37(1988)148-157, showed that there exists a constant IP that depends on 
p, but not on the dimension n, such that 

IIIAI- IBlllp :::; Ip IIA - BII, 
for all A, B. Theorem X.2.5 was proved in T. Kato, Continuity of the map 
S ---> 181 for linear operators, Proc. Japan Acad. 49 (1973) 157-160, and 
interpreted to mean that the map A f--+ IAI is "almost Lipschitz". Results 
close to this were obtained by Yu.B. Farforovskaya in the papers cited 
above. 

Bounds like the ones in Section X.3 have been of interest to numerical 
analysts and physicists. References to much of this work may be found 
in R. Bhatia, Matrix factorizations and their perturbations, Linear Alge­
bra Appl., 197/198 (1994) 245-276. Theorem X.3.l, and the proof given 
here, are due to C.J. Kenney and A.J. Laub, Condition estimates for ma­
trix functions, SIAM J. Matrix Analysis, 10(1989) 191-209. Theorem X.3.4 
was proved in R. Bhatia, First and second order perturbation bounds for 
the operator absolute value, Linear Algebra Appl., 208/209 (1994) 367-376. 
Theorems X.3.3, X.3.6, X.3.7, and X.3.8 are also proved in this paper. The 
inequality in Problem X.5.5 is taken from J.L. van Hemmen and T. Ando, 
An inequality for trace ideals, Commun. Math. Phys., 76(1980) 143-148. 
This paper has references to physics literature, where such inequalities are 
used. The inequality in Problem X.5.6 is proved in the paper by F. Kit­
taneh and H. Kosaki cited earlier. Most of the results after Theorem X.3.9 
in Section X.3 were proved by R. Bhatia and K. Mukherjea, Variation of 
the unitary part of a matrix, SIAM J. Matrix Analysis, 15(1994) 1007-1014. 
The full potential of this method was exploited in the paper cited at the 
beginning of this paragraph, where several other matrix decompositions of 
interest in numerical analysis are studied. The results of Problem X.5.9 and 
X.5.1O are obtained in this paper. (Some of these were proved earlier using 
different methods by A. Barrlund, R. Mathias, G.W. Stewart, and J. G. 
Sun.) 

Bounds for the second derivative of the map A ---> IAI are obtained in R. 
Bhatia, First and second order perturbation bounds for the operator absolute 
value, Linear Algebra Appl., 208/209 (1994) 367-376; and for derivatives of 
higher orders in R. Bhatia, Perturbation bounds for the operator absolute 
value, Linear Algebra Appl., 226(1995) 639-645. The reader may try to 
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prove such inequalities using the methods explained in Section XA. Since 
this map is the composite of two maps, A -f A* A -f (A* A)1/2, its analysis 
can be broken into two parts. No good bounds of higher order are known 
for other matrix decompositions. 

Results in Parts (v) and (vi) of Problem X.5.8 are taken from R. Bhatia 
and K.B. Sinha, Variation of real powers of positive operators, Indiana 
Univ. Math. J., 43(1994)913-925. In this paper it is also shown that the 
functions f(t) = t r on (0,00) belong to the class Vel) if r ::::: 2, but not if 
1 < r < ...;2. We have already seen that these functions are in vel) for all 
real numbers r ::; l. 

In Section XA we have given a bare outline of differential calculus. More 
on this may be found in J. Dieudonne, Foundations of Modern Analy­
sis, Academic Press, 1960, and in A. Ambrosetti and G. Prodi, A Primer 
of Nonlinear Analysis, Cambridge University Press, 1993. For calculus on 
manifolds, the reader could see S. Lang, Introduction to Differentiable Man­
ifolds, John Wiley, 1962. In our exposition we have included several exam­
ples of matrix functions and formulae for higher derivatives of composite 
maps that are not easily found in other sources. 
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trace inequality, 258, 261, 279, 
281 

trace norm, 92, 173 
trace-preserving, 32 
triangle inequality for the matrix 

absolute value, 74 
tridiagonal matrix, 60 
twice differentiable map, 313 
Tychonoff's Theorem, 132 
T-length of a path, 175 
T -optimal matching distance, 173 

unital, 32 
unitary approximant, 276 
unitary conjugation, 102, 166 
unitary factors, 307 
unitary group, 7 
unitary invariance, 7 
unitary matrix, 4, 162, 178 
unitary orbit, 166 
unitary part, 6, 82, 213, 305 
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unitary-stochastic, 35 
unitarily equivalent, 5 
unitarily invariant function 

norm, 104 
unitarily invariant norm, 91, 93 
unitarily similar, 5 
unordered n-tuples, 153 

metric on, 153 
quotient topology on, 153 

van der Waerden conjecture, 27 
variance, 44 

weak submajorisation, 30 
weak supermajorisation, 30 
weakly unitarily invariant norm, 

102, 109 
Weyl's inequalities, 62, 64 
Weyl's Majorant Theorem, 42, 

73, 254, 279 
converse of, 55 

Weyl's Monotonicity Theorem, 
63 

Weyl's Monotonicity Principle, 
100, 291, 292 

Weyl's Perturbation Theorem, 
63, 71, 99, 152, 240 

Wielandt's Minimax Principle, 
67 

Wigner-Yanase-Dyson conjec­
ture, 274 

wui norm, 102, 173, 177, 190 
wui seminorm, 102 

a V b, 30 
a 1\ b, 30 
A*,4 
A 2': 0, 4 
A 2': B, 4 
A1/ 2 , 5 
A® B, 14 
A[k],19 
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A 0 B, 23 
A::; B, 112 
A::;L B, 238 
AT, 241 
A,204 
B,204 
C(A), 50 
C(8), 104 
C~ym' 52 
C - U, 170 
cond (8), 232 
det A, 3 
d(>., fl), 52 
Df(A),124 
D,135 
d(cr(A), cr(B)), 160 
dr (cr(A),cr(B)),173 
d(Root f, Root g), 230 
~(A), 245 
~l/(A), 246 
Df(A),301 
IIDf(A)II,301 
IIIDf(A)III,301 
d+(n),307 
dre(n), 307 
Df(u),310 
D2 feu), 313 
diag(A), 35 
Ca, 16 
e, 29 
el,29 
Eig A, 63 
Eig1(A),63 
Eigi(A),63 
Eiga(A), 158 
Eiglll (A), 158 
Eiglil(A),158 
f(x), 40 
f[l), 123 
f[2), 128 
j,206 
<1>,44 
<l>p(x), 44 
<I> CXJ ( x ), 44 
<I>(k)(x),45 

<I>(p)(x),89 
<I>(P2) 89 

PI , 

<l>i~~, 89 
<I>'(x),89 
<l>111-III(x),91 
cp(t), 217 
GL(n),7 
H+,134 
H_, 134 
H ffi K, 9 
H®K,13 
h(L,M),160 
h(cr(A), cr(B)), 160 
h(Rootf, Rootg) , 231 
1m A, 6 
K*,14 
K(n), 167 
£,269 
LeV, W), 3 
£(H),4 
£2(X, y), 313 
>'(A),50 
>.1(A),57 

>'~(A), 58 
>. i (A), 58 
>.} (A), 58 
>'1(T),256 
Cr h),175 
mA(X),162 
M(n),91 
N,169 
N(<I», 173 
Dn , 165 
GA,189 
per A, 17 
P,135 
pea, b), 135 
P(n),305 
R,238 
Re A, 6 
lR~ym' 30 
seA), 50 
s](A),5 
spr(A), 9 
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a, 16 x --<8 y, 180 
span {vl, ... ,vd, 65 x Vy, 30 
s(L, M), 160 x 1\ y, 30 
a(A), 160 x+,30 
s(a(A), a(B)), 160 Z(A), 167 
sgnx, 217 
Sn, 165 (u,v), 1 
S.l..,167 [K,A], 167 
T+,99 ffijHj, 11 
T-,99 ®kH,14 
T(A), 102 ®k A, 15 
TAUA,167 I\kH, 16 
TAGA,189 VkH, 16 
8(£,F),201 I\k A, 18 
8(j, g), 230 vk A, 18 
Tu U (n),305 IAI,5 
T,259 111,29 
tr,29 Ixl,30 
u*v, 2 Ilxllp,84 
U(n),7 Ilxll oo ,84 
UB , 166 Ilxlll,86 
V + W, 65 Il xll(k),86 
V - W, 65 IIAII,6 
w(A), 8 IIA112,7 
W(A),8 IIIAIII,91 
x ® y, 12 IIIAIIIq,,91 
Xl 1\ ... 1\ Xb 16 IIAII(k),35 
Xl V···VXk, 16 IIAllp,92 
xl, 28 IIAlloo, 92 
xi, 28 IIA111,92 
x --< y, 28 111·111,\ 95 
x --<w y, 30 111·111',96 
x --<w y, 30 
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