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Preface

The guiding principle in this book is to use differential forms as an aid in
exploring some of the less digestible aspects of algebraic topology. Accord-
ingly, we move primarily in the realm of smooth manifolds and use the
de Rham theory as a prototype of all of cohomology. For applications to
homotopy theory we also discuss by way of analogy cohomology with
arbitrary coefficients.

Although we have in mind an audience with prior exposure to algebraic
or differential topology, for the most part a good knowledge of linear
algebra, advanced calculus, and point-set topology should suffice. Some
acquaintance with manifolds, simplicial complexes, singular homology and
cohomology, and homotopy groups is helpful, but not really necessary.
Within the text itself we have stated with care the more advanced results
that are needed, so that a mathematically mature reader who accepts these
background materials on faith should be able to read the entire book with
the minimal prerequisites.

There are more materials here than can be reasonably covered in a
one-semester course. Certain sections may be omitted at first reading with-
out loss of continuity. We have indicated these in the schematic diagram
that follows.

This book is not intended to be foundational; rather, it is only meant to
open some of the doors to the formidable edifice of modern algebraic
topology. We offer it in the hope that such an informal account of the
subject at a semi-introductory level fills a gap in the literature.

It would be impossible to mention all the friends, colleagues, and
students whose ideas have contributed to this book. But the senior
author would like on this occasion to express his deep gratitude, first
of all to his primary topology teachers E. Specker, N. Steenrod, and

vii



viii Preface

K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro,
I. Singer, J.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s.
Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal,
who, mostly in collaboration, have continued this word of mouth education
to the present; the junior author is indebted to Allen Hatcher for having
initiated him into algebraic topology. The reader will find their influence if
not in all, then certainly in the more laudable aspects of this book. We also
owe thanks to the many other people who have helped with our project: to
Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane
Yang for their reading of various portions of the manuscript and for their
critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and
Caroline Underwood for typing services, and to the staff of Springer-Verlag
for its patience, dedication, and skill.

For the Revised Third Printing

While keeping the text essentially the same as in previous printings, we have
made numerous local changes throughout. The more significant revisions
concern the computation of the Euler class in Example 6.44.1 (pp. 75-76), the
proof of Proposition 7.5 (p. 85), the treatment of constant and locally con-
stant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a
local finite hypothesis on the generalized Mayer—Vietoris sequence for com-
pact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the
discussion of classifying spaces for vector bundles (pp. 297-300).

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law,
Peter Landweber, and Michael Maltenfort, whose lists of corrections have
been incorporated into the second and third printings.

RaouL Bott
LorING Tu
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Introduction

The most intuitively evident topological invariant of a space is the number
of connected pieces into which it falls. Over the past one hundred years or
so we have come to realize that this primitive notion admits in some sense
two higher-dimensional analogues. These are the homotopy and cohomology
groups of the space in question.

The evolution of the higher homotopy groups from the component con-
cept is deceptively simple and essentially unique. To describe it, let 7o(X)
denote the set of path components of X and if p is a point of X, let ny(X, p)
denote the set ny(X) with the path component of p singled out. Also, corre-
sponding to such a point p, let Q, X denote the space of maps (continuous
functions) of the unit circle {z € C : | z| = 1} which send 1 to p, made into a
topological space via the compact open topology. The path components of
this so-called loop space Q, X are now taken to be the elements of m,(X, p):

m(X, p) = mo(Q, X, P).

The composition of loops induces a group structure on x;(X, p) in which
the constant map p of the circle to p plays the role of the identity; so
endowed, 7,(X, p) is called the fundamental group or the first homotopy
group of X at p. It is in general not Abelian. For instance, for a Riemann
surface of genus 3, as indicated in the figure below:
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(X, p) is generated by six elements {x,, x5, X3, y1, y2, Y3} subject to the
single relation

3
'Ul[xi’ yl=1

where [x;, y,] denotes the commutator x,y;x; 'y, ! and 1 the identity. The
fundamental group is in fact sufficient to classify the closed oriented
2-dimensional surfaces, but is insufficient in higher dimensions.

To return to the general case, all the higher homotopy groups m(X, p)
for k > 2 can now be defined through the inductive formula:

nk+l(x’ p) = nk(QpX9 p)'

By the way, if p and p’ are two points in X in the same path component,
then

ﬂk(X, P) >~ nk(X7 pl)’

but the correspondence is not necessarily unique. For the Riemann surfaces
such as discussed above, the higher m,’s for k > 2 are all trivial, and it is in
part for this reason that =, is sufficient to classify them. The groups m; for
k > 2 turn out to be Abelian and therefore do not seem to have been taken
seriously until the 1930’s when W. Hurewicz defined them (in the manner
above, among others) and showed that, far from being trivial, they consti-
tuted the basic ingredients needed to describe the homotopy-theoretic
properties of a space.

The great drawback of these easily defined invariants of a space is that
they are very difficult to compute. To this day not all the homotopy groups
of say the 2-sphere, i.., the space x? + y? + z2 = 1 in R, have been com-
puted! Nonetheless, by now much is known concerning the general proper-
ties of the homotopy groups, largely due to the formidable algebraic tech-
niques to which the “cohomological extension” of the component concept
lends itself, and the relations between homotopy and cohomology which
have been discovered over the years.

This cohomological extension starts with the dual point of view in which
a component is characterized by the property that on it every locally con-
stant function is globally constant. Such a component is sometimes called a
connected component, to distinguish it from a path component. Thus, if we
define H°(X) to be the vector space of real-valued locally constant functions
on X, then dim H%X) tells us the number of connected components of X.
Note that on reasonable spaces where path components and connected
components agree, we therefore have the formula

cardinality my(X) = dim H°(X).

Still the two concepts are dual to each other, the first using maps of the unit
interval into X to test for connectedness and the second using maps of X
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into R for the same purpose. One further difference is that the cohomology
group H%(X) has, by fiat, a natural R-module structure.

Now what should the proper higher-dimensional analogue of H%(X) be?
Unfortunately there is no decisive answer here. Many plausible definitions
of H¥(X) for k > 0 have been proposed, all with slightly different properties
but all isomorphic on “reasonable spaces”. Furthermore, in the realm of
differentiable manifolds, all these theories coincide with the de Rham
theory which makes its appearance there and constitutes in some sense the
most perfect example of a cohomology theory. The de Rham theory is also
unique in that it stands at the crossroads of topology, analysis, and physics,
enriching all three disciplines.

The gist of the “de Rham extension” is comprehended most easily when
M is assumed to be an open set in some Euclidean space R", with coordi-
nates x,, ... ,Xx,. Then amongst the C* functions on M the locally constant
ones are precisely those whose gradient

df=Z§£—idx,-

vanishes identically. Thus here H°(M) appears as the space of solutions of
the differential equation df = 0. This suggests that H'(M) should also
appear as the space of solutions of some natural differential equations on
the manifold M. Now consider a 1-form on M:

9=Za,- dxi,

where the a;’s are C® functions on M. Such an expression can be integrated
along a smooth path y, so that we may think of 8 as a function on paths y:

yr—»'[ 0.
Y

It then suggests itself to seek those 6 which give rise to locally constant
functions of y, ie., for which the integral |, 8 is left unaltered under small
variations of y—but keeping the endpoints fixed! (Otherwise, only the zero
1-form would be locally constant.) Stokes’ theorem teaches us that these
line integrals are characterized by the differential equations:

day - 9a, =0 (written d8 = 0).

Ox; Ox;
On the other hand, the fundamental theorem of calculus implies that
|, df =f(Q) — f(P), where P and Q are the endpoints of y, so that the
gradients are trivally locally constant.

One is here irresistibly led to the definition of H'(M) as the vector space
of locally constant line integrals modulo the trivially constant ones. Similarly
the higher cohomology groups H(M) are defined by simply replacing line
integrals with their higher-dimensional analogues, the k-volume integrals.
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The Grassmann calculus of exterior differential forms facilitates these exten-
sions quite magically. Moreover, the differential equations characterizing
the locally constant k-integrals are seen to be C* invariants and so extend
naturally to the class of C® manifolds.

Chapter I starts with a rapid account of this whole development, as-
suming little more than the standard notions of advanced calculus, linear
algebra and general topology. A nodding acquaintance with singular hom-
ology or cohomology helps, but is not necessary. No real familiarity with
differential geometry or manifold theory is required. After all, the concept of
a manifold is really a very natural and simple extension of the calculus of
several variables, as our fathers well knew. Thus for us a manifold is essen-
tially a space constructed from open sets in R" by patching them together in
a smooth way. This point of view goes hand in hand with the “com-
putability” of the de Rham theory. Indeed, the decisive difference between
the m’s and the H"s in this regard is that if a manifold X is the union of
two open submanifolds U and V':

X=Uul,

then the cohomology groups of U, V, U n V, and X are linked by a much
stronger relation than the homotopy groups are. The linkage is expressed
by the exactness of the following sequence of linear maps, the Mayer—
Vietoris sequence:

K+ 10y
C—» H*"Y(X) "

HYX)— HU)@® HV) — H{U n V)—)
- -

— H"YU n VD
0— H(X)— -

starting with k = 0 and extending up indefinitely. In this sequence every
arrow stands for a linear map of the vector spaces and exactness asserts
that the kernel of each map is precisely the image of the preceding one. The
horizontal arrows in our diagram are the more or less obvious ones induced
by restriction of functions, but the coboundary operator d* is more subtle
and uses the existence of a partition of unity subordinate to the cover
{U, V} of X, that is, smooth functions py and p, such that the first has
support in U, the second has support in V, and py + p» =1 on X. The
simplest relation imaginable between the Hs of U, V, and U U V would of
course be that H* behaves additively; the Mayer—Vietoris sequence teaches
us that this is indeed the case if U and V are disjoint. Otherwise, there is a
geometric feedback from H¥U n V) described by d*, and one of the hall-
marks of a topologist is a sound intuition for this d*.

The exactness of the Mayer—Vietoris sequence is our first goal once the
basics of the de Rham theory are developed. Thereafter we establish the
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second essential property for the computability of the theory, namely that
for a smoothly contractible manifold M,

R for k=0,

k, —
H(M)”{o for k> 0.

This homotopy invariance of the de Rham theory can again be thought of as
having evolved from the fundamental theorem of calculus. Indeed, the for-
mula

f(x)dx=d Ixf(u) du
0

shows that every line integral (1-form) on R! is a gradient, whence
H'(R") = 0. The homotopy invariance is thus established for the real line.
This argument also paves the way for the general case.

The two properties that we have just described constitute a verification
of the Eilenberg—Steenrod axioms for the de Rham theory in the present
context. Combined with a little geometry, they can be used in a standard
manner to compute the cohomology of simple manifolds. Thus, for spheres
one finds

R for k=0 or n
0 otherwise,

HK(S") = {

while for a Riemann surface X, with g holes,

R for k=0 or 2
H"(Xg) =< R% for k=1
0 otherwise.

A more systematic treatment in Chapter II leads to the computability
proper of the de Rham theory in the following sense. By a finite good cover
of M we mean a covering ¥ = {U,}"_, of M by a finite number of open sets
such that all intersections U,, n --- n U,, are either vacuous or contract-
ible. The purely combinatorial data that specify for each subset
{og, ... ,oq} of {1,..., N} which of these two alternatives holds are called
the incidence data of the cover. The computability of the theory is the
assertion that it can be computed purely from such incidence data. Along
lines established in a remarkable paper by Andre Weil [1], we show this to
be the case for the de Rham theory. Weil’s point of view constitutes an
alternate approach to the sheaf theory of Leray and was influential in
Cartan’s theorie des carapaces. The beauty of his argument is that it can be
read both ways: either to prove the computability of de Rham or to prove
the topological invariance of the combinatorial prescription.

To digress for a moment, it is difficult not to speculate about what kept
Poincaré from discovering this argument forty years earlier. One has the
feeling that he already knew every step along the way. After all, the homo-
topy invariance of the de Rham theory for R" is known as the Poincaré
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lemma! Nevertheless, he veered sharply from this point of view, thinking
predominantly in terms of triangulations, and so he in fact was never able
to prove either the computability of de Rham or the invariance of the
combinatorial definition. Quite possibly the explanation is that the whole
C® point of view and, in particular, the partitions of unity were alien to him
and his contemporaries, steeped as they were in real or complex analytic
questions.

De Rham was of course the first to prove the topological invariance of
the theory that now bears his name. He showed that it was isomorphic to
the singular cohomology, which is trivially—i.e., by definition—topologically
invariant. On the other hand, André Weil’s approach relates the de Rham
theory to the Cech theory, which is again topologically invariant.

But to return to the plan of our book, the bulk of Chapter I is actually
devoted to explaining the fundamental symmetry in the cohomology of a
compact oriented manifold. In its most primitive form this symmetry asserts
that

dim HYM) = dim H" Y(M).

Poincaré seems to have immediately realized this consequence of the locally
Euclidean nature of a manifold. He saw it in terms of dual subdivisions,
which turn the incidence relations upside down. In the de Rham theory the
duality derives from the intrinsic pairing between differential forms of arbi-
trary and compact support. Indeed consider the de Rham theory of R' with
compactly supported forms. Clearly the only locally constant function with
compact support on R! is the zero function. As for 1-forms, not every
1-form gdx is now a gradient of a compactly supported function f; this
happens if and only if [®_gdx=0. Thus we see that the compactly
supported de Rham theory of R! is given by

0 fork=0
R for k =1,

and is just the de Rham theory “upside down.” This phenomenon now
extends inductively to R" and is finally propagated via the Mayer-Vietoris
sequence to the cohomology of any compact oriented manifold.

One virtue of the de Rham theory is that the essential mechanism of this
duality is via the familiar operation of integration, coupled with the natural
ring structure of the theory: a p-form 6 can be multiplied by a g-form ¢ to

produce a (p + g)-form 6 A ¢. This multiplication is “commutative in the
graded sense”:

H: (R') = {

OAP = (—1)Pp A6.

(By the way, the commutativity of the de Rham theory is another reason
why it is more “perfect” than its other more general brethren, which
become commutative only on the cohomology level.) In particular, if ¢ has
compact support and is of dimension n — p, where n = dim M, then inte-
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gration over M gives rise to a pairing
®, ¢)— _[ 0N,
M

which descends to cohomology and induces a pairing
HYM) ® H!"P’(M)— R.

A more sophisticated version of Poincaré duality is then simply that the
pairing above is dual; that is, it establishes the two spaces as duals of each
other.

Although we return to Poincaré duality over and over again throughout
the book, we have not attempted to give an exhaustive treatment. (There is,
for instance, no mention of Alexander duality or other phenomena dealing
with relative, rather than absolute, theory.) Instead, we chose to spend
much time bringing Poincaré duality to life by explicitly constructing the
Poincaré dual of a submanifold N in M. The problem is the following.
Suppose dim N = k and dim M = n, both being compact oriented. Inte-
gration of a k-form w on M over N then defines a linear functional from
HYM) to R, and so, by Poincaré duality, must be represented by a coho-
mology class in H" %(M). The question is now: how is one to construct a
representative of this Poincaré dual for N, and can such a representative be
made to have support arbitrarily close to N?

When N reduces to a point p in M, this question is easily answered. The
dual of p is represented by any n-form w with support in the component M,
of p and with total mass 1, that is, with

J w=1.
MP

Note also that such an w can be found with support in an arbitrarily small
neighborhood of p, by simply choosing coordinates on M centered at p, say
Xy, ..., X,, and setting

w = Ax)dx, ... dx,

with 1 a bump function of mass 1. (In the limit, thinking of Dirac’s é-func-
tion as the Poincaré dual of p leads us to de Rham’s theory of currents.)

When the point p is replaced by a more general submanifold N, it is easy
to extend this argument, provided N has a product neighborhood D(N) in M
in the sense that D(N) is diffcomorphic to the product N x D"~¥, where
D"~* is a disk of the dimension indicated. However, this need not be the
case! Just think of the center circle in a M6bius band. Its neighborhoods
are at best smaller Mobius bands.

In the process of constructing the Poincaré dual we are thus confronted
by the preliminary question of how to measure the possible twistings of
neighborhoods of N in M and to correct for the twist. This is a subject in its
own right nowadays, but was initiated by H. Whitney and H. Hopf in just
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the present context during the Thirties and Forties. Its trade name is fiber
bundle theory and the cohomological measurements of the global twist in
such “local products” as D(N) are referred to as characteristic classes. In the
last forty years the theory of characteristic classes has grown to such an
extent that we cannot do it justice in our book. Still, we hope to have
covered it sufficiently so that the reader will be able to see its ramifications
in both differential geometry and topology. We also hope that our account
could serve as a good introduction to the connection between characteristic
classes and the global aspects of the gauge theories of modern physics.

That a connection between the equations of mathematical physics and
topology might exist is not too surprising in view of the classical theory of
electricity. Indeed, in a vacuum the electromagnetic field is represented by a
2-form in the (x, y, z, t)-space:

w=(E,dx+E,dy+E,dz)dt + H,dy dz — H,dx dz + H, dx dy,

and the form w is locally constant in our sense, i.e., dw = 0. Relative to the
Lorentz metric in R* the star of w is defined to be

+*w=—(H,dx+ H,dy + H,dz)dt + E, dy dz — E dx dz + E, dx dz,

and Maxwell’s equations simply assert that both w and its star are closed:
dw =0 and d*w = 0. In particular, the cohomology class of *w is a well
defined object and is often of physical interest.

To take the simplest example, consider the Coulomb potential of a point
charge ¢ at rest in the origin of our coordinate system. The field w gener-
ated by this charge then has the description

w= —qd(-};-dt)

with r = (x> + y* + 2%)"2 # 0. Thus  is defined on R* — R,, where R,
denotes the t-axis. The de Rham cohomology of this set is easily computed
to be

R fork=0,2

Hk R4 . =
( R) {0 otherwise.

The form o is manifestly cohomologically uninteresting, since it is d of a
1-form and so is trivially “closed”, i.e., locally constant. On the other hand
the = of w is given by
q xdydz —ydxdz+ zdxdy
0=
4n r ’

which turns out to generate H2. The cohomology class of *w can thus be
interpreted as the charge of our source.

In seeking differential equations for more sophisticated phenomena than
electricity, the modern physicists were led to equations (the Yang-Mills)
which fit perfectly into the framework of characteristic classes as developed
by such masters as Pontrjagin and Chern during the Forties.
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Having sung the praises of the de Rham theory, it is now time to admit
its limitations. The trouble with it, is that it only tells part of the cohomol-
ogy story and from the point of view of the homotopy theorists, only the
simplest part. The de Rham theory ignores torsion phenomena. To explain
this in a little more detail, recall that the homotopy groups do not behave
well under the union operation. However, they behave very well under
Cartesian products. Indeed, as is quite easily shown,

X X Y) = n(X) @ n(Y).

More generally, consider the situation of a fiber bundle (twisted product).
Here we are dealing with a space E mapped onto 'a space X with the
fibers—i.e., the inverse images of points —all homeomorphic in some uni-
form sense to a fixed space Y. For fiber bundles, the additivity of n, is
stretched into an infinite exact sequence of Mayer-Vietoris type, however
now going in the opposite direction:

* 2 1Y) n(E)— 1 (X) - 7wy (V) -

This phenomenon is of course fundamental in studying the twist we talked
about earlier, but it also led the homotopy theorists to the conjecture that
in their much more flexible homotopy category, where objects are con-
sidered equal if they can be deformed into each other, every space factors
into a twisted product of irreducible prime factors. This turns out to be true
and is called the Postnikov decomposition of the space. Furthermore, the
“prime spaces” in this context all have nontrivial homotopy groups in only
one dimension. Now in the homotopy category such a prime space, say with
nontrivial homotopy group = in dimension n, is determined uniquely by n
and n and is denoted K(x, n). These K(r, n)-spaces of Eilenberg and Mac-
Lane therefore play an absolutely fundamental role in homotopy theory.
They behave well under the standard group operations. In particular, corre-
sponding to the usual decomposition of a finitely generated Abelian group:

= (@n(p)) WAl
4

into p-primary parts and a free part (said to correspond to the prime at

infinity), the K(n, n) will factor into a product

K(m, n) = (H K(n'"?, n)) - K(Z, ny'.

It follows that in homotopy theory, just as in many questions of number
theory, one can work one prime at a time. In this framework it is now quite
easy to explain the shortcomings of the de Rham theory: the theory is
sensitive only to the prime at infinity!

After having encountered the Cech theory in Chapter II, we make in
Chapter III the now hopefully easy transition to cohomology with coeffi-
cients in an arbitrary Abelian group. This theory, say with coefficients in the
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integers, is then sensitive to all the p-primary phenomena in homotopy
theory.

The development sketched here is discussed in greater detail in Chapter
I11, where we also apply the ideas to the computation of some relatively
simple homotopy groups. All these computations in the final analysis derive
from Serre’s brilliant idea of applying the spectral sequence of Leray to
homotopy problems and from his coining of a sufficiently general definition
of a twisted product, so that, as the reader will see, the Postnikov decompo-
sition in the form we described it, is a relatively simple matter. It remains
therefore only to say a few words to the uninitiated about what this “spec-
tral sequence” is.

We remarked earlier that homotopy behaves additively under products.
On the other hand, cohomology does not. In fact, neglecting matters of
torsion, i.e., reverting to the de Rham theory, one has the Kiinneth formula:

HX x Y)= Y HA(X) ® HYY).
ptq=k

The next question is of course how cohomology behaves for twisted prod-
ucts. It is here that Leray discovered some a priori bounds on the extent
and manner in which the Kiinneth formula can fail due to a twist. For
instance, one of the corollaries of his spectral sequence is that if X and Y
have vanishing cohomology in positive dimensions less than p and q re-
spectively, then however one twists X with Y, the Kiinneth formula will
hold up to dimension d < min(p, q).

Armed with this sort of information, one can first of all compute the
early part of the cohomology of the K(r, n) inductively, and then deduce
which K(m, n) must occur in a Postnikov decomposition of X by comparing
the cohomology on both sides. This procedure is of course at best ad hoc,
and therefore gives us only fragmentary results. Still, the method points in
the right direction and can be codified to prove the computability (in the
logical sense) of any particular homotopy group, of a sphere, say. This
theorem is due to E. Brown in full generality. Unfortunately, however, it is
not directly applicable to explicit calculations—even with large computing
machines.

So far this introduction has been written with a lay audience in mind.
We hope that what they have read has made sense and has whetted their
appetites. For the more expert, the following summary of the plan of our
book might be helpful.

In Chapter I we bring out from scratch Poincaré duality and its various
extensions, such as the Thom isomorphism, all in the de Rham category.
Along the way all the axioms of a cohomology theory are encountered, but
at first treated only in our restricted context.

In Chapter II we introduce the techniques of spectral sequences as an
extension of the Mayer-Vietoris principle and so are led to A. Weil’s
Cech—de Rham theory. This theory is later used as a bridge to cohomology
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in general and to integer cohomology in particular. We spend considerable
time patching together the Euler class of a sphere bundle and exploring its
relation to Poincaré duality. We also very briefly present the sheaf-theoretic
proof of this duality.

In Chapter III we come to grips with spectral sequences in a more
formal manner and describe some of their applications to homotopy theory,
for example, to the computation of n5(S®). This chapter is less self-contained
than the others and is meant essentially as an introduction to homotopy
theory proper. In the same spirit we close with a short account of Sullivan’s
rational homotopy theory.

Finally, in Chapter IV we use the Grothendieck approach towards char-
acteristic classes to give a more or less self-contained treatment of Chern
and Pontrjagin classes. We then relate them to the cohomology of the
infinite Grassmannian.

Unfortunately there was no time left within the scope of our book to
explain the functorial approach to classifying spaces in general and to make
the connection with the Eilenberg-MacLane spaces. We had to relegate this
material, which is most naturally explained in the framework of semi-
simplicial theory, to a mythical second volume. The novice should also be
warned that there are all too many other topics which we have not men-
tioned. These include generalized cohomology theories, cohomology oper-
ations, and the Adams and Eilenberg-Moore spectral sequences. Alas, there
is also no mention of the truly geometric achievements of modern topology,
that is, handlebody theory, surgery theory, and the structure theory of
differentiable and piecewise linear manifolds. Still, we hope that our volume
serves as an introduction to all this as well as to such topics in analysis as
Hodge theory and the Atiyah—Singer index theorems for elliptic differenital
operators.



CHAPTER I
de Rham Theory

§1 The de Rham Complex on R*

To start things off we define in this section the de Rham cohomology and
compute a few examples. This will turn out to be the most important
diffecomorphism invariant of a manifold. So let x,,..., x, be the linear
coordinates on R". We define Q* to be the algebra over R generated by
dx,, ..., dx, with the relations

{(dxi)z =0
dx,* dx, = —de dx,', i ?é].
As a vector space over R, Q* has basis

1, dx;, dx;dx;, dx;dx;dxy, ..., dx;... dx,.
i<j i<j<k

The C* differential forms on R" are elements of
Q*(R") = {C* functions on R"} ® Q*.
R

Thus, if @ is such a form, then ® can be uniquely written as ) f;, ... i
dx;, ... dx, where the coefficients f;, ..., are C* functions. We also write
0= Z fi dx, The algebra Q*R") = @;-, QYR" is naturally graded,
where QYR") consists of the C® g-forms on R". There is a differential
operator

d: QYR™ — Q1 1(R"),
defined as follows:

i)if f € QOR™, then df = ¥ fjox; dx;
i)ifw =Y f; dx;, thendw =Y. df; dx;.

13
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ExaMPLE 1.1. If = x dy, then dw = dx dy.

This d, called the exterior differentiation, is the ultimate abstract exten-
sion of the usual gradient, curl, and divergence of vector calculus on R?, as
the example below partially illustrates.

ExaMPLE 1.2. On R?, Q°(R®) and Q3(R?) are each 1-dimensional and Q'(R?)
and Q?(R?3) are each 3-dimensional over the C® functions, so the following
identifications are possible:

{functions} =~ {O-forms} =~ {3-forms}
- f — fdxdydz

and
{vector fields} ~ {1-forms} ~ {2-forms}

X=0Upfo,fi)ofidx+frdy+f3dze fy dy dz — f, dx dz + f3 dx dy.
On functions,

fd +a—fdy+g

dfﬁ dy 0z

On 1-forms,
d(fy dx +f; dy + f; dz)

ofs 0fy
<6y 62) dy dz —

d(f, dy dz — f, dx dz + f5 dx dy) = <af‘ 6fy %)dxdydz.

%_%) (% oh
(62 P dx dz + ax oy dx dy.

On 2-forms,

In summary,
d(0-forms) = gradient,
d(1-forms) = curl,
d(2-forms) = divergence.

The wedge product of two differential forms, written tAw or 1 o, is
defined as follows: if t = ). f; dx; and w = Y g, dx;, then

tAw =Y fig, dx; dx;.
Note that T Aw = (— 1)¢8 des0ogy A 7.

Proposition 1.3. d is an antiderivation, i.e.,

dt - @)= (dr) - o + (= 1) 7 - do.
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PRrOOF. By linearity it suffices to check on monomials
T =f;dx;, o =g, dx;.
d(r - w) = d(frg,) dx; dx; = (dfg; dx; dx; + f; dg; dx; dx,
=(d7) o+ (—=1)% 1 - do.

On the level of functions d(fg) = (df)g + f(dg) is simply the ordinary prod-
uct rule. ]

Proposition 1.4, d*> = 0.

Proor. This is basically a consequence of the fact that the mixed partials
are equal. On functions,

o 4 &f

2

d*f = d(Za ) Za aldx,dx,

Here the factors d%f /0x;0x; are symmetric in i, j while dx; dx; are skew-
symmetric in i, j; hence d’f 0. On forms @ = f; dx,,

d*o = d*(f; dx)) = d@df; dx;) =

by the previous computation and the antiderivation property of d. ]

The complex Q*(R") together with the differential operator d is called the
de Rham complex on R". The kernel of d are the closed forms and the image
of d, the exact forms. The de Rham complex may be viewed as a God-given
set of differential equations, whose solutions are the closed forms. For
instance, finding a closed 1-form f dx + g dy on R? is tantamount to solving
the differential equation dg/dx — df/0y = 0. By Proposition 1.4 the exact
forms are automatically closed; these are the trivial or “uninteresting”
solutions. A measure of the size of the space of “interesting” solutions is the
definition of the de Rham cohomology.

Definition. The g-th de Rham cohomology of R" is the vector space
2 x(R") = {closed g-forms}/{exact g-forms}.

We sometimes suppress the subscript DR and write H4R"). If there is a need
to distinguish between a form  and its cohomology class, we denote the
latter by [w].

Note that all the definitions so far work equally well for any open subset
U of R",; for instance,

Q*(U) = {C* functions on U} ® Q*.
R

So we may also speak of the de Rham cohomology H3e(U) of U.
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ExAMPLES 1.5.

(@n=0
R ¢g=0
9=
H {0 q>0.
byn=1
Since (ker d) n Q°(R!) are the constant functions,
H°RY) = R.

On Q'(R!), ker d are all the 1-forms.
If w = g(x)dx is a 1-form, then by taking

f= f " g(w) du,
0

we find that
df = g(x) dx.
Therefore every 1-form on R! is exact and
H'RY) =0.
(c) Let U be a disjoint union of m open intervals on R*.
Then
H(U)=R"™
and
H'U)=0.
(d) In general
R in dimension O,
H¥(®) = {0 otherwise.

I de Rham Theory

This result is called the Poincaré lemma and will be proved in Section 4.

The de Rham complex is an example of a differential complex. For the
convenience of the reader we recall here some basic definitions and results
on differential complexes. A direct sum of vector spaces C = @ ,.z C? in-
dexed by the integers is called a differential complex if there are homomor-

phisms

djcq d ’Cq-f-l

Nl

such that d® = 0. d is the differential operator of the complex C. The coho-
mology of C is the direct sum of vector spaces H(C) = @ ,.z HYC), where

HYC) = (ker d n CY/(im d n C9).
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A map f: A— B between two differential complexes is a chain map if it
commutes with the differential operators of 4 and B : fd, = dg f.
A sequence of vector spaces

Ji-1 Ji
'Vi—l > V; *VYivt >

is said to be exact if for all i the kernel of f; is equal to the image of its
predecessor f;_ ;. An exact sequence of the form

0 »A »B C >0

is called a short exact sequence. Given a short exact sequence of differential
complexes

S g

0 » A > B »C >0

in which the maps f and g are chain maps, there is a long exact sequence of
cohomology groups

C H““(A)————»-“ -

C HY(4) 2 HY(B) - HY(C) D)

In this sequence f* and g* are the naturally induced maps and d*[c],
¢ € CY is obtained as follows:

0 —— A9+? AN Bq:rl ., it
S d g d
00— Al — B —_ (4 —0

|

By the surjectivity of g there is an element b in B? such that g(b) = c.
Because g(db) = d(gh) = dc =0, db = f(a) for some a in A?*'. This a is
easily checked to be closed. d*[c] is defined to be the cohomology class [a]
in H?*!(4). A simple diagram-chasing shows that this definition of d* is
independent of the choices made.

Exercise. Show that the long exact sequence of cohomology groups exists
and is exact. (See, for instance, Munkres [2, §24].)
Compact Supports

A slight modification of the construction of the preceding section will give
us another diffeomorphism invariant of a manifold. For now we again
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restrict our attention to R”. Recall that the support of a continuous
function f on a topological space X is the closure of the set on which f is

not zero, ie., Suppf={p€ X|f(p)#0}. If in the definition of the
de Rham complex we use only the C* functions with compact support, the
resulting complex is called the de Rham complex Q¥(R™) with compact
supports:

Q*(R") = {C® functions on R" with compact support} @ Q*.
R
The cohomology of this complex is denoted by H¥(R").

EXAMPLE 1.6.

in dimension 0,

R
* i =
(a) H¥(point) {o elsewhere.

(b) The compact cohomology of R'. Again the closed O-forms are the
constant functions. Since there are no constant functions on R' with com-
pact support,

HYR') = 0.

To compute H}(R"), consider the integration map

J : QUR!) — R,
R1

This map is clearly surjective. It vanishes on the exact I1-forms df where f
has compact support, for if the support of f lies in the interior of [a,b], then

LA _
lexdx—£ dxdx—f(b)—f(a)—O.

If g(x) dx € Q}(R") is in the kernel of the integration map, then the function

flx) = f " o) du

—

will have compact support and df = g(x) dx. Hence the kernel of [z, are
precisely the exact forms and

_QMRY _

HY{RY) = =R".
R =T

ReEMARK. If g(x) dx € Q!(R!) does not have total integral 0, then
fx) = j g(u) du

— 00

will not have compact support and g(x) dx will not be exact.
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(c) More generally,

R in dimension n
0 otherwise.

HX(R") = {

This result is the Poincaré lemma for cohomology with compact support and
will be proved in Section 4.

Exercise 1.7. Compute H}z(R> — P — Q) where P and Q are two points in
R2. Find the closed forms that represent the cohomology classes.

§2 The Mayer-Vietoris Sequence

In this section we extend the definition of the de Rham cohomology from
R" to any differentiable manifold and introduce a basic technique for com-
puting the de Rham cohomology, the Mayer-Vietoris sequence. But first we
have to discuss the functorial nature of the de Rham complex.

The Functor Q*

Let x,,..., x,, and y;, ..., y, be the standard coordinates on R™ and R"
respectively. A smooth map f: R™ — R" induces a pullback map on C®
functions * : Q%R") — Q°(R™) via

f*@=9g-f
We would like to extend this pullback map to all forms f*: Q¥(R") —

Q*(R™) in such a way that it commutes with d. The commutativity with d
defines f * uniquely:

X g1 dyy, . dy) = 2(g; o f) dfy, ... dfy,,

where f; = y; o f is the i-th component of the function f.

Proposition 2.1. With the above definition of the pullback map f* on forms, f*
commutes with d.

Proor. The proof is essentially an application of the chain rule.
df*(gr dy,, -.- dy,) = d(gr o f) dfy, ... ;) = d(gr o ) dfy, ... ;.

n 9
f*d(g; dy,, ... dy;) = f* ( Y gy, dy, ... dy.-,,)

<1 0y,
= .21 <<%§)!' Of) dﬁ) dﬁl s df;q

=d(g; o ) df;, ... df,,. O
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Let x,, ..., x, be the standard coordinate system and u;, ... u, a new
coordinate system on R, ie., there is a diffcomorphism f : R” —» R" such
that u; = x; o f = f*(x;). By the chain rule, if g is a smooth function on R",
then

6g 6u, 99
d j Zax dxj.

J

5—14—1 Z
So dg is independent of the coordinate system.

Exercise 2.1.1. More generally show that if = Y. g; du;, then dw = Y dg;
du, .

Thus the exterior derivative d is independent of the coordinate system on
R".

Recall that a category consists of a class of objects and for any two
objects 4 and B, a set Hom(4, B) of morphisms from A to B, satisfying the
following properties. If f is a morphism from A4 to B and g a morphism from
B to C, then the composite morphism g o f from A to C is defined; fur-
thermore, the composition operation is required to be associative and to
have an identity 1, in Hom(A4, A) for every object A. The class of all groups
together with the group homomorphisms is an example of a category.

A covariant functor F from a category 4 to a category £ associates to
every object A in X" an object F(A) in %, and every morphism f: A — Bin
X a morphism F(f): F(A) —» F(B) in .Z such that F preserves composition
and the identity:

F(g - f) = F(g) - F(f)
F(l,) = lF(A)-

If F reverses the arrows, ie., F(f) : F(B)— F(A), it is said to be a contra-
variant functor.

In this fancier language the discussion above may be summarized as
follows: Q* is a contravariant functor from the category of Euclidean spaces
{R"},cz and smooth maps: R™ — R" to the category of commutative differ-
ential graded algebras and their homomorphisms. It is the unique such functor
that is the pullback of functions on Q°%R"). Here the commutativity of the
graded algebra refers to the fact that

W = (_ l)degtdegw wT.

The functor Q* may be extended to the category of differentiable mani-
folds. For the fundamentals of manifold theory we recommend de Rham
[1, Chap. I]. Recall that a differentiable structure on a manifold is given by
an atlas, ie., an open cover {U,},., of M in which each open set U, is
homeomorphic to R” via a homeomorphism ¢, : U, % R", and on the
overlaps U, n U, the transition functions

gaﬂ = ¢a ° ¢ﬂ—l : ¢ﬂ(Ua N Uﬂ) i ¢a(U¢ N Uﬂ)
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are difffomorphisms of open subsets of R"; furthermore, the atlas is re-
quired to be maximal with respect to inclusions. All manifolds will be
assumed to be Hausdorff and to have a countable basis. The collection
{(Uy, ®}aca is called a coordinate open cover of M and ¢, is the triv-
ialization of U,. Let u,, ..., u, be the standard coordinates on R". We can
write ¢, = (x4, ..., X,), where x; = u; o ¢, are a coordinate system on U,. A
function f on U, is differentiable if fo ¢ ' is a differentiable function on
R, If f is a differentiable function on U,, the partial derivative df/0x; is
defined to be the i-th partial of the pullback function fo ¢, ! on R":

of . _ S0 6
5 )= 5, (40,

The tangent space to M at p, written T, M, is the vector space over R
spanned by the operators 6/0x,(p), ..., 0/0x,(p), and a smooth vector field
on U, is a linear combination X, = ), f; §/0x; where the f’s are smooth
functions on U,. Relative to another coordinate system (y,, ..., y,), X, =
Y. g; 0/0y; where 0/0x; and 0/dy; satisfy the chain rule:

0 dy; 0
O _vai o
ox; z ox; 0y;

A C* vector field on M may be viewed as a collection of vector fields X, on
U, which agree on the overlaps U, n U,.

A differential form » on M is a collection of forms wy for U in the atlas
defining M, which are compatible in the following sense: if i and j are the

inclusions .

UnV——U

>,
then i*wy = j*wy in Q¥U N V). By the functoriality of Q*, the exterior
derivative and the wedge product extend to differential forms on a mani-
fold. Just as for R" a smooth map of differentiable manifolds f: M — N
induces in a natural way a pullback map on forms f* : Q*(N) —» Q*(M). In
this way Q* becomes a contravariant functor on the category of differ-
entiable manifolds.

A partition of unity on a manifold M is a collection of non-negative C*
functions {p,}, s such that

(a) Every point has a neighborhood in which Zp, is a finite sum.

by Zp, = 1.
The basic technical tool in the theory of differentiable manifolds is the
existence of a partition of unity. This result assumes two forms:

(1) Given an open cover {U,},. of M, there is a partition of unity {p,}sc1
such that the support of p, is contained in U,. We say in this case that
{p.} is a partition of unity subordinate to the open cover {U,}.
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(2) Given an open cover {U,},.; of M, there is a partition of unity {ps}s s
with compact support, but possibly with an index set J different from I,
such that the support of p; is contained in some U, .

For a proof see Warner [1, p. 10] or de Rham [1, p. 3].

Note that in (1) the support of p, is not assumed to be compact and the
index set of {p,} is the same as that of {U,}, while in (2) the reverse is true.
We usually cannot demand simultaneously compact support and the same
index set on a noncompact manifold M. For example, consider the open
cover of R! consisting of precisely one open set, namely R itself. This open
cover clearly does not have a partition of unity with compact support
subordinate to it.

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence allows one to compute the cohomology of the
union of two open sets. Suppose M = U u V with U, V open. Then there is
a sequence of inclusions

3o
M—UllveUunv
01
where U]V is the disjoint union of U and V and 9, and 9, are the
inclusions of U n ¥ in V and in U respectively. Applying the contravariant
functor Q*, we get a sequence of restrictions of forms
33
Q¥M) - QYUY D Q*(V) 3 Q*U n V),
of
where by the restriction of a form to a submanifold we mean its image
under the pullback map induced by the inclusion. By taking the difference
of the last two maps, we obtain the Mayer-Vietoris sequence

(2.2) 0 —Q*M) - Q¥ U) Q*(V) - QXU n V) —0
(w, 7) - T—

Proposition 2.3. The Mayer-Vietoris sequence is exact.

PRrOOF. The exactness is clear except at the last step. We first consider the
case of functions on M = R!. Let f be a C* function on U n V as shown in
Figure 2.1. We must write f as the difference of a function on U and a
function on V. Let {py, py} be a partition of unity subordinate to the open
cover {U, V}. Note that pyf is a function on U—to get a function on an
open set we must multiply by the partition function of the other open set.
Since

(ou ) —(=pv ) =1,
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Figure 2.1

we see that QO%(U) @Q°(V) - Q%R!?) is surjective. For a general mani-
fold M, if w € QYU ~ V), then (— py w, py ) in QYU) @ Q%V) maps onto
w. a
The Mayer-Vietoris sequence
0 QM) - QX U)Q*(V)-»> QXU n V) > 0
induces a long exact sequence in cohomology, also called a Mayer-Vietoris

sequence:

CH'I+1(M)__> Hq+l(U)®Hq+l(V)_’ Hq+l(U A V)J

(2.4) a _)
C—*H"(M) ~»  H(WU)@®H(V) — HWUAV)

We recall again the definition of the coboundary operator d* in this explicit
instance. The short exact sequence gives rise to a diagram with exact rows

1 1 T

0—- QM) - Q' UPH(V) » QTNUAYV) -0
dt dt ar

0 QM) — QUOQY) — QUAV) —0
w w

¢ w do =0

Let w e QYU n V) be a closed form. By the exactness of the rows, there is
a £ e QYU)® QYV) which maps to w, namely, ¢ = (—py o, py w). By the
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commutativity of the diagram and the fact that dw =0, d¢ goes to 0 in
QYU V), ie., —d(py ») and d(py w) agree on the overlap U n V. Hence
d¢ is the image of an element in Q9% '(M). This element is easily seen to be
closed and represents d*[w]. As remarked earlier, it can be shown that
d*[w] is independent of the choices in this construction. Explicitly we see
that the coboundary operator is given by

[—dlpyw)] on U
[dpy@)] on V.

We define the support of a form w on a manifold M to be Suppw

={peM|w(p)+0}. Note that in the Mayer-Vietoris sequence d*w €
H*(M) has support in UN V.

EXAMPLE 2.6 (The cohomology of the circle). Cover the circle with two
open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence
gives

(2.5) d*[w] = {

St ullv unv
H* 0 0 0
cH _ 0 — 0
dt
HO — ROR —— R@R-)

The difference map & sends (w,7) to (t—w,T—w), so imJ is I-
dimensional. It follows that ker J is also 1-dimensional. Therefore,

HSY) =kerd =R
H(S') = coker § = R.

We now find an explicit representative for the generator of H'(S'). If
a e Q%U n V)is a closed 0-form which is not the image under  of a closed
form in Q%(U) @ Q°(V), then d*a will represent a generator of H'(S'). As «
we may take the function which is 1 on the upper piece of U n ¥V and 0 on

Figure 2.2
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Figure 2.3

the lower piece (see Figure 2.3). Now « is the image of (— py a, pya). Since
—d(py o) and dpy o agree on U N V, they represent a global form on S*;
this form is d*a. It is a bump 1-form with supportin U n V.

The Functor QF and the Mayer-Vietoris Sequence for Compact
Supports

Again, before taking up the Mayer-Vietoris sequence for compactly sup-
ported cohomology, we need to discuss the functorial properties of Q*(M),
the algebra of forms with compact support on the manifold M. In general
the pullback by a smooth map of a form with compact support need not
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have compact support; for example, consider the pullback of functions
under the projection M x R— M. So Q is not a functor on the category of
manifolds and smooth maps. However if we consider not all smooth maps,
but only an appropriate subset of smooth maps, then Q¥ can be made into
a functor. There are two ways in which this can be done.

(a) Q* is a contravariant functor under proper maps. (A map is proper if the
inverse image of every compact set is compact.)
(b) Q* is a covariant functor under inclusions of open sets.

If j : U— M is the inclusion of the open subset U in the manifold M, then
Jju 1Q¥U)— QXM) is the map which extends a form on U by zero to a
form on M.

It is the covariant nature of Q* which we shall exploit to prove Poincaré
duality for noncompact manifolds. So from now on we assume that QF
refers to the covariant functor in (b). There is also a Mayer-Vietoris se-
quence for this functor. As before, let M be covered by two open sets U and
V. The sequence of inclusions

M~UlveuUunv

gives rise to a sequence of forms with compact support

Qx(M) QNU) @ QHV) 2 QU N V)

signed
inclusion

sum

(_j*wa ]*(1)) « W

Proposition 2.7. The Mayer-Vietoris sequence of forms with compact support
0 QXM)— QXU) ® QX(V)— QXU A V)«—0
is exact.

Proor. This time exactness is easy to check at every step. We do it for the
last step. Let w be a form in Q¥(M). Then w is the image of (py w, py w) in
QX U)DQX(V). The form pyw has compact support because Supp pyw
< Supp py N Supp w and by a lemma. from general topology, a closed
subset of a compact set in a Hausdorff space is compact. This shows the
surjectivity of the map Q*(U)P Q*(V)— Q*(M). Note that whereas in the
previous Mayer-Vietoris sequence we multiply by p, to get a form on U,
here py w is a form on U. O

Again the Mayer-Vietoris sequence gives rise to a long exact sequence in
cohomology:

Che* (M) — H* ()@ HIT /() — HIY\(U A V)

(2.8) C d,
HiM) «— HIU)®HYV) — H{UANYV) 9
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a-‘\\
U \Y unv

e

Figure 2.4

ExaMpLE 2.9 (The cohomology with compact support of the circle). Of
course since S' is compact, the cohomology with compact support H*(S*)
should be the same as the ordinary de Rham cohomology H*(S!). Nonethe-
less, as an illustration we will compute H*(S') from the Mayer-Vietoris
sequence for compact supports:

st ullv Unv
H? 0 0 —
H C —— ROR —*— ROR —
H? C - 0 —— 0

Here the map & sends @ = (w;, ;) € HX (U N V) to (—(jy),, (jy),w) €
H!(U)® HY(V), where jy and j, are the inclusions of U n ¥V in U and in V
respectively. Since im 6 is 1-dimensional,

HSY) =keré=R
H!(S') = coker 6 = R.

§3 Orientation and Integration

Orientation and the Integral of a Differential Form

Let x;, ..., x, be the standard coordinates on R". Recall that the Riemann
integral of a differentiable function f with compact support is

f fldx; ...dx,| = lim Y fAx, ... Ax,.

R” Axi—~0

We define the integral of an n-form with compact support w = fdx; ... dx,
to be the Riemann integral }'R. fldx, ... dx,|. Note that contrary to the
usual calculus notation we put an absolute value sign in the Riemann
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integral; this is to emphasize the distinction between the Riemann integral
of a function and the integral of a differential form. While the order of
Xy, ..., X, matters in a differential form, it does not in a Riemann integral; if
n is a permutation of {1, ..., n}, then

J‘fdx"(l) e dx,,(,,) =(Sgn 7[) Jf|dx1 ves dx,,l,

but

Jﬂdx,,u) cen dx,,(,,)l = Jf|dx1 e dx,,|.

In a situation where there is no possibility of confusion, we may revert to
the usual calculus notation.

So defined, the integral of an n-form on R" depends on the coordinates
Xy, ..., X,. From our point of view a change of coordinates is given by a
diffeomorphism T : R"— R" with coordinates y,, ..., y, and x,, ..., x, re-
spectively:

Xi = Xj° T(yb [RRX] yn) = Tl'(.Vl’ [ERE] yn)

We now study how the integral o transforms under such diffeomor-
phisms.

Exercise 3.1. Show that dT,...dT,=J(T)dy, ...dy,, where J(T)=
det(dx; /0y;) is the Jacobian determinant of T.

Hence,

j T*w=j (foT)dT,...dT,,:f (f o TV(T)|dy, ... dy,|
R" R" RrR"

relative to the coordinate system y;, ..., y,. On the other hand, by the
change of variables formula,

J w=J f(xl,---,xn)ldxl-.-dx..I=J (f e D)J(T)||dyy ... dy,|
R R" R"

J T*w = if o
R" R

depending on whether the Jacobian determinant is positive or negative. In
general if T is a diffeomorphism of open subsets of R* and if the Jacobian
determinant J(T) is everywhere positive, then T is said to be orientation-
preserving. The integral on R" is not invariant under the whole group of

Thus



§3 Orientation and Integration 29

difftomorphisms of R", but only under the subgroup of orientation-
preserving diffeomorphisms.

Let M be a differentiable manifold with atlas {(U,, ¢,)}. We say that the
atlas is oriented if all the transition functions g,; = ¢, ¢;' are
orientation-preserving, and that the manifold is orientable if it has an orien-
ted atlas.

Proposition 3.2. A4 manifold M of dimension n is orientable if and only if it has
a global nowhere vanishing n-form.

PrOOF. Observe that T: R* — R" is orientation-preserving if and only if
T* dx, ... dx, is a positive multiple of dx, ... dx, at every point.

(<) Suppose M has a global nowhere-vanishing n-form w. Let ¢,: U,
R” be a coordinate map. Then ¢} dx, ... dx, = f,w where f, is a nowhere-
vanishing real-valued function on U,. Thus f, is either everywhere positive
or everywhere negative. In the latter case replace ¢, by ¢, = T o ¢, where
T:R"— R" is the orientation-reversing diffeomorphism T(x,, x,,..., x,)
=(—Xp, X3,..., X,). Since Y*dx,...dx,= ¢ T*dx,...dx, =
—¢Xdx,...dx,=(—f,)w, we may assume f, to be positive for all «a.
Hence, any transition function ¢;¢, ' : ¢ (U, N Up) — @4(U, N Up) will pull
dx, ... dx, to a positive multiple of itself. So {(U,, ¢,)} is an oriented atlas.

(=) Conversely, suppose M has an oriented atlas {(U,, ¢,)}. Then
(Pp b )* (@x, ... dx,) = A dx, ... dx,

for some positive function 4. Thus

@F dx, ... dx, = (pF N7 dx, ... dx,).

Denoting ¢¥ dx, ... dx, by w,, we see that ws = fw, where f=¢¥A =10
¢, is a positive function on U, n Uj.

Let w = ) p, w, where p, is a partition of unity subordinate to the open
cover {U,}. At each point p in M, all the forms w,, if defined, are positive
multiples of one another. Since p, = 0 and not all p, can vanish at a point,
w is nowhere vanishing, (]

Any two global nowhere vanishing n-forms w and w’ on an orientable
manifold M of dimension n differ by a nowhere vanishing function: o = fw'.
If M is connected, then fis either everywhere positive or everywhere nega-
tive. We say that w and o' are equivalent if f is positive. Thus on a connec-
ted orientable manifold M the nowhere vanishing n-forms fall into two
equivalence classes. Either class is called an orientation on M, written [M].
For example, the standard orientation on R” is given by dx, ... dx,.

Now choose an orientation [M] on M. Given a top form 1 in Q}(M), we

define its integral by
[l
M} a JUg
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where fva p,T means j'R,,(cpa_ Y*(p,1) for some orientation-preserving triv-

ialization ¢, : U, > R"; as in Proposition 2.7, p, 7 has compact support.
By the orientability assumption, the integral over a coordinate patch _fulw
is well defined. With a fixed orientation on M understood, we will often
write [, 7 instead of [, 7. Reversing the orientation results in the negative
of the integral.

Proposition 3.3. The definition of the integral er is independent of the
oriented atlas {(U,, ¢,)} and the partition of unity {p,}.

Proor. Let {V;} be another oriented atlas of M, and {y,} a partition of
unity subordinate to {¥;}. Since Y5 x5 = 1,

) LGM =) L‘paxﬂ-

a a, B

Now p, xs 7 has support in U, n V}, so

U, Vs

ZJ‘GP‘J= ) Lﬂpaxpw;fvﬂxﬂr- O

a a, B

Therefore

A manifold M of dimension n with boundary is given by an atlas {(U,, ¢,)}
where U, is homeomorphic to either R" or the upper half space
H" = {(xy, ..., X,)| x, = 0}. The boundary M of M is an (n— 1)-
dimensional manifold. An oriented atlas for M induces in a natural way an
oriented atlas for M. This is a consequence of the following lemma.

Lemma 34. Let T: H" —» H" be a diffeomorphism of the upper half space
with everywhere positive Jacobian determinant. T induces a map T of the
boundary of H" to itself. The induced map T, as a diffeomorphism of R*~ !,
also has positive Jacobian determinant everywhere.

PRrOOF. By the inverse function theorem an interior point of H" must be the
image of an interior point. Hence T maps the boundary to the boundary.
We will check that T has positive Jacobian determinant for n = 2; the
general case is similar.

Let T be given by

xy = Ti(y1, ¥2)

x3 = Ta(y1, ¥2)-
Then T is given by

xy = Ty(yy, 0).
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Figure 3.1
By assumption
— (1,0 =~ 01, 0
3y, Y1, 0) 9, 1, 0
aT. oT, >0
2 2
700 0,0
ayl (yl ayz (.V1 )

Since 0 = Ty (y,, 0) for all y,, 0T,/dy, (y;, 0) = O; since T maps the upper
half plane to itself,

0T,
—(y1,0)> 0.
3y, (1, 0)
Therefore
0T,
ayl (y13 0)>0~ E]

Let the upper half space H"={x,>0} in R" be given the standard
orientation dx, ... dx,. Then the induced orientation on its boundary dH" =
{x,=0} is by definition the equivalence class of (—1)"dx,...dx,_; for
n>2and —1 for n=1; the sign (—1)”" is needed to make Stokes’ theorem
sign-free. In general for M an oriented manifold with boundary, we define
the induced orientation [dM] on dM by the following requirement: if ¢ is
an orientation-preserving diffeomorphism of some open set U in M into
the upper half space H", then

¢*[0H"] = [OM]|ous
where 0U = (0M) n U (see Figure 3.1).

Stokes’ Theorem
A basic result in the theory of integration is

Theorem 3.5 (Stokes’ Theorem). If w is an (n — 1)-form with compact support
on an oriented manifold M of dimension n and if M is given the induced
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de=f w.
M oM

We first examine two special cases.

orientation, then

SpecIAL CasE 1 (R"). By the linearity of the integrand we may take w to be
fdx,...dx,_,. Thendw = + 0f/dx, dx, ... dx,. By Fubini’s theorem,

J‘ do = ij(f af dx,,)dxl ...dx,,-l.
R" - axn

But [®, 8f/0x, dx,=f(x1, ..., Xy—15 ©) = f(X1s ... Xy—1, — 00) =0 be-
cause f has compact support. Since R" has no boundary, this proves Stokes’
theorem for R".

SPECIAL CASE 2 (The upper half plane). In this case (see Figure 3.2)

o =f(x, y) dx + g(x, y) dy
and

Note that

oo [ (] 24 :
Lz axdxdy—fo (.L axdx dy = | g(0, y) — g(— o0, y)dy =0,

since g has compact support. Therefore,

seor==|" ([ 5)
do = — —dxdy = — —dyijd
lez fﬂzay N —o \Jo Oy )&

[ s o0 s 0

fw f(x, 0) dx=J @

Figure 3.2
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where the last equality holds because the restriction of g(x, y)dy to dH? is 0.
So Stokes’ theorem holds for the upper half plane.
The case of the upper half space in R" is entirely analogous.

Exercise 3.6. Prove Stokes’ theorem for the upper half space.

We now consider the general case of a manifold of dimension n. Let {U,}
be an oriented atlas for M and {p,} a partition of unity subordinate to
{U,}. Write o=, p, w. Since Stokes’ theorem [) dw = [o) @ is linear in o,
we need to prove it only for p,w, which has the virtue that its support is
contained entirely in U,. Furthermore, p, ® has compact support because

Supp p,@ < Supp p, N Supp ®

is a closed subset of a compact set. Since U, is diffeomorphic to either R" or
the upper half space H", by the computations above Stokes’ theorem holds
for U,. Consequently

Jdp¢w=f dpaw=j p¢w=_( Pa®.
M Us U, oM

This concludes the proof of Stokes’ theorem in general.

§4 Poincare Lemmas

The Poincaré Lemma for de Rham Cohomology

In this section we compute the ordinary cohomology and the compactly
supported cohomology of R". Let n: R® x R! — R" be the projection on
the first factor and s : R" — R" x R! the zero section.

R" x R? Q*(R" x RY)

-

R" Q¥(R")

- n(x, t)=x

s s(x) = (x, 0)

We will show that these maps induce inverse isomorphisms in cohomology
and therefore H*(R"*!) ~ H¥*(R"). As a matter of convention all maps are
assumed to be C® unless otherwise specified.

Since o s =1, we have trivially s* o n* = 1. However s o n # 1 and
correspondingly n* o s* # 1 on the level of forms. For example, n* o s*
sends the function f(x, t) to f(x, 0), a function which is constant along every
fiber. To show that n* o s* is the identity in cohomology, it is enough to
find a map K on Q¥[R" x R') such that

1 —n*os* = +(dK + Kd),
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for dK + Kd maps closed forms to exact forms and therefore induces zero
in cohomology. Such a K is called a homotopy operator; if it exists, we say
that n* o s* is chain homotopic to the identity. Note that the homotopy
operator K decreases the degree by 1.

Every form on R” x R is uniquely a linear combination of the following
two types of forms:

) (@*$)f(x, 1),

(D (n*¢)f(x, ©) dt,
where ¢ is a form on the base R". We define K : QYR" x R)—
Q" Y(R" x R) by

(D (z*¢)f (x, ) — O,
(1) (T*$)f(x, 1) dt — (n*¢) [6 f.

Let’s check that K is indeed a homotopy operator. We will use the
simplified notation §f/dx dx for Y. df/dx; dx;, and [g for [g(x, t) dt. On forms
of type (I),

o =(n*¢) f(x,1), degw=gq,
(1 —n*s¥o = (%) - f(x, 1) — n*¢ - f(x, 0),

@K — Kd)o = —Kdw = —K<(dn*¢) f+ (= 1)in*g <% dx + ‘;—’: dt))

= (-7 J L o (g ) — 1 O
Thus,
(1 - n*s%w = (—1)"YdK — Kd)o.
On forms of type (II),
o = (n*¢)f dt, deg w = q,

do = (n* dp) f dt + (— 1)1 Y (n*¢) %dx dt.
(1 — n*s*)w = w because s*(dt) = d(s*t) = d(0) = 0.
Kdo = (x* d¢)J}’ (= 1y Ya*) dxf' g,
0 o 0x
t » t of
dKw = (n* dd))f f+(=1) (n*¢)|:dx(J‘ ——) +f dt].
0 o Ox

Thus
dK — Kd)o = (—1)" .
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In either case,
1 —n*os*=(—1)"YdK — Kd) on QIYR" x R).
This proves

Proposition 4.1. The maps H*[R" x R!) sn:f H*(R") are isomorphisms.

By induction, we obtain the cohomology of R".

Corollary 4.1.1 (Poincaré Lemma).

R in dimension 0

H*[R") = H*(point) = {0 elsewhere

Consider more generally

M x R!

i

M

If {U,} is an atlas for M, then {U, x R'} is an atlas for M x R'. Again
every form on M x R is a linear combination of the two types of forms (I)
and (II). We can define the homotopy operator K as before and the proof
carries over word for word to show that H¥(M x R') ~ H*(M) is an iso-
morphism via n* and s*.

Corollary 4.1.2 (Homotopy Axiom for de Rham Cohomology). Homotopic
maps induce the same map in cohomology.

Proor. Recall that a homotopy between two maps fand g from M to N is a
map F: M x R! - N such that

{F(x, )=f(x) for t>1
F(x,t)=¢g(x) for t<0.

Equivalently if s, and s; : M - M x R! are the O-section and 1-section
respectively, i.e., s;(x) = (x, 1), then

f=F°SI’
g=F0s0.

Thus
J*=(Fos))*=stoF¥
g* =(F o 5o)* = s§ o F*.
Since st and s} both invert n*, they are equal. Hence,

f*=g* O
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Two manifolds M and N are said to have the same homotopy type in the
C® sense if there are C® maps f : M — N and g: N > M such that g o f
and fo g are C® homotopic to the identity on M and N respectively.* A
manifold having the homotopy type of a point is said to be contractible.

Corollary 4.1.2.1. Two manifolds with the same homotopy type have the same
de Rham cohomology.

If i: A = M is the inclusion and r : M — A is a map which restricts to
the identity on A, then r is called a retraction of M onto A. Equivalently,
roi: A— A is the identity. If in addition i o r: M — M is homotopic to
the identity on M, then r is said to be a deformation retraction of M onto A.
In this case 4 and M have the same homotopy type.

Corollary 4.1.2.2. If A is a deformation retract of M, then A and M have the
same de Rham cohomology.

Exercise 4.2. Show that r: R — {0} — S given by r(x) = x/ || x || is a defor-
mation retraction.

Exercise 4.3. The cohomology of the n-sphere S". Cover $" by two open sets
U and V where U is slightly larger than the northern hemisphere and V
slightly larger than the southern hemisphere (Figure 4.1). Then U n V is
diffeomorphic to §"~! x R where $"~! is the equator. Using the Mayer-
Vietoris sequence, show that

R in dimensions 0, n
0 otherwise.

H*(S" = {

We saw previously that a generator of H!(S') is a bump 1-form on S*
which gives the isomorphism H!(S') ~ R! under integration (see Figure

N

\
Figure 4.1

* In fact two manifolds have the same homotopy type in the C* sense if and only if they have
the same homotopy type in the usual (continuous) sense. This is because every continuous
map between two manifolds is continuously homotopic to a C® map (see Proposition 17.8).
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Figure 4.2

4.2). This bump 1-form propagates by the boundary map of the Mayer-
Vietoris sequence to a bump 2-form on S, which represents a generator of
H?*(S?). In general a generator of H"(S") can be taken to be a bump n-form
on S".

Exercise 4.3.1 Volume form on a sphere. Let S"(r) be the sphere of radius r
x% + - +x:+1 =r2

in R"*! and let

~ | —

n+1
w==Y(=0)"Vxdx, - dx; - dx, ..
i=1

(a) Write S" for the unit sphere S"(1). Compute the integral [, @ and
conclude that w is not exact.

(b) Regarding r as a function on R"*! — 0, show that (dr): w = dx, - -
dx, .. Thus w is the Euclidean volume form on the sphere S"(r).

From (a) we obtain an explicit formula for the generator of the top
cohomology of S” (although not as a bump form). For example, the gener-
ator of H*(S?) is represented by

o= ﬁ (x4 dx, dx3 — X, dxy dx3 + X3 dx, dx,).

The Poincaré Lemma for Compactly Supported Cohomology

The computation of the compactly supported cohomology H¥(R") is again
by induction; we will show that there is an isomorphism

H**(R" x R!) = H*R").

Note that here, unlike the previous case, the dimension is shifted by one.
More generally consider the projection 7 : M x R' — M. Since the pull-
back of a form on M to a form on M x R' necessarily has noncompact
support, the pullback map n* does not send Q*(M) to Q*(M x R'). How-
ever, there is a push-forward map n, : Q¥(M x R')— Q* (M), called inte-
gration along the fiber, defined as follows. First note that a compactly
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supported form on M x R! is a linear combination of two types of forms:

(1) n*¢ - f(x, 1),
(I) n*¢ - f(x, 1) dt,

where ¢ is a form on the base (not necessarily with compact support), and
f(x, t) is a function with compact support. We define n, by

@ n*¢ - f(x, ) = 0,

4.4) jw
(ID) n*¢ - f(x, t) dt — ¢ Sf(x, t) dt.

Exercise 4.5. Show that drn, = n,d; in other words, n, : Q¥M x R') -
Q*-1(M) is a chain map.

By this exercise 7, induces a map in cohomology n, : H¥ — H¥~1. To
produce a map in the reverse direction, let e = e(t) dt be a compactly sup-
ported 1-form on R! with total integral 1 and define

e, : Q¥M) > Q*+*{(M x RY)
by
o (m*) Ae.

The map e, clearly commutes with d, so it also induces a map in cohomol-
ogy. It follows directly from the definition that n, - e, = 1 on Q¥R"). Al-
though e, o m, # 1 on the level of forms, we shall produce a homotopy
operator K between 1 and e, o 7, ; it will then follow thate, o, =1 in
cohomology.

To streamline the notation, write ¢ - f for n*¢ - f(x, ) and [f for
{f(x, t) dt. The homotopy operator K : QXM x R') —» Q*-1(M x R') is
defined by

@M eé-fr0,

(I ¢ -fdt— ¢ J' f— QA() Jw f  where A(t) = f

— 0

t

®

Proposition 4.6. 1 — e, n, = (—1)*"'(dK — Kd) on Q4(M x R*).
PrOOF. On forms of type (I), assuming deg ¢ = g, we have

1—e, ) f= ¢f'f’
ax kg = <K{ao s+ -9 L+ 1o L)

X

(s [0 = of
=(-=1) 1("’ L o "’A(’)f_w a{)

=(=-10""¢f [Here jw

- ®

Ty, 00) ~ fox, —e0) = 0.]
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So
1 —e,m, =(—1)7"'(dK — Kd).

On forms of type (II), now assuming deg ¢ = g — 1, we have

(1 —e,,‘ﬂ,,‘)qt)fdt=d)fdt—d)(J‘u0 f)/\e,

- o}

axsaran = [ 1+ omto( [ Dacs corera

~apae | r=oafe[" e an( [ D |

(Kd) (¢ f dt) = K((d¢) fdt+(=1)"1¢ ?dx dt)

X

~ao [ s-anao [ s

+ (=1t |:¢<Jt %) dx — (15A(t)<J‘jo %) dx:l.

@K — Kd)pfdt = (—D"“[«ﬁfdt - ¢( f ) f>e]

-

So

and the formula again holds. O

This concludes the proof of the following
Proposition 4.7. The maps

HEM x RY) 2 HE=1()
are isomorphisms.

Corollary 4.7.1 (Poincaré Lemma for Compact Supports).

R in dimension n
0 otherwise.

H(R") = {

Here the isomorphism HJ(R") ~ R is given by iterated =,, ie., by inte-
gration over R".

To determine a generator for HY(R"), we start with the constant function
1 on a point and iterate with e, . This gives e(x,) dx; e(x,) dx, ... e(x,) dx,.
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So a generator for H(R") is a bump n-form a(x) dx, ... dx, with

I ox) dxy ... dx, = 1.
-
The support of « can be made as small as we like.

REMARK. This Poincaré lemma shows that the compactly supported coho-
mology is not invariant under homotopy equivalence, although it is of
course invariant under diffeomorphisms.

Exercise 4.8. Compute the cohomology groups H¥(M) and H¥(M) of the
open Mobius strip M, ie., the Mobius strip without the bounding edge
(Figure 4.3). [Hint: Apply the Mayer-Vietoris sequences.]

The Degree of a Proper Map

As an application of the Poincaré lemma for compact supports we intro-
duce here a C® invariant of a proper map between two Euclidean spaces of
the same dimension. Later, after Poincaré duality, this will be generalized to
a proper map between any two oriented manifolds; for compact manifolds
the properness assumption is of course redundant.

Let f: R* — R" be a proper map. Then the pullback f*: HY(R") —
H}(R") is defined. It carries a generator of HYR"), i.e., a compactly sup-
ported closed form with total integral one, to some multiple of the gener-
ator. This multiple is defined to be the degree of f. If « is a generator of
HYR"), then

deg f = f f*a.

A priori the degree of a proper map is a real number; surprisingly, it turns
out to be an integer. To see this, we need Sard’s theorem. Recall that a
critical point of a smooth map f: R™ — R™ is a point p where the differ-
ential (f,), : T,R" — T;,R" is not surjective, and a critical value is the
image of a critical point. A point of R" which is not a critical value is called
a regular value. According to this definition any point of R" which is not in
the image of fis a regular value so that the inverse image of a regular value
may be empty.

Figure 4.3
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Theorem 4.9 (Sard’s Theorem for R"). The set of critical values of a smooth
map f : R™ — R" has measure zero in R" for any integers m and n.

This means that given any ¢ > 0, the set of critical values can be covered
by cubes with total volume less than & Important special cases of this
theorem were first published by A. P. Morse [1]. Sard’s proof of the general
case may be found in Sard [1].

Proposition 4.10 Let f : R" — R" be a proper map. If f is not surjective, then
it has degree 0.

ProoF. Since the image of a proper map is closed (why?), if f misses a point
g, it must miss some neighborhood U of ¢g. Choose a bump n-form « whose
support lies in U. Then f*a = 0 so that deg f = 0. O

Exercise 4.10.1. Prove that the image of a proper map is closed.

So to show that the degree is an integer we only need to look at surjec-
tive proper maps from R” to R". By Sard’s theorem, almost all points in the
image of such a map are regular values. Pick one regular value, say g. By
hypothesis the inverse image of g is nonempty. Since in our case the two
Euclidean spaces have the same dimension, the differential f, is surjective if
and only if it is an isomorphism. So by the inverse function theorem,
around any point in the pre-image of ¢, f is a local diffeomorphism. It
follows that f ~'(g) is a discrete set of points. Since f is proper, f ~(g) is in
fact a finite set of points. Choose a generator o of HX(R") whose support is
localized near q. Then f*« is an n-form whose support is localized near the
points of f “(q) (see Figure 4.4). As noted earlier, a diffeomorphism pre-
serves an integral only up to sign, so the integral of f*« near each point of
fYq)is +1. Thus

Jf*a= Yy £1.
R" S-Uq)

This proves that the degree of a proper map between two Euclidean spaces of
the same dimension is an integer. More precisely, it shows that the number of

—

Figure 4.4
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points, counted with multiplicity + 1, in the inverse image of any regular value
is the same for all regular values and that this number is equal to the degree of
the map.

Sard’s theorem for R", a key ingredient of this discussion, has a natural
extension to manifolds. We take this opportunity to state Sard’s theorem in
general. A subset S of a manifold M is said to have measure zero if it can be
covered by countably many coordinate open sets U; such that ¢(S n U))
has measure zero in R"; here ¢; is the trivialization on U;. A critical point of
a smooth map f : M — N between two manifolds is a point p in M where
the differential (f,), : T, M — T;,N is not surjective, and a critical value is
the image of a critical point.

Theorem 4.11 (Sard’s Theorem). The set of critical values of a smooth map
f : M — N has measure zero.

Exercise 4.11.1. Prove Theorem 4.11 from Sard’s theorem for R".

§5 The Mayer-Vietoris Argument

The Mayer-Vietoris sequence relates the cohomology of a union to those of
the subsets. Together with the Five Lemma, this gives a method of proof
which proceeds by induction on the cardinality of an open cover, called the
Mayer-Vietoris argument. As evidence of its power and versatility, we derive
from it the finite dimensionality of the de Rham cohomology, Poincaré
duality, the Kiinneth formula, the Leray-Hirsch theorem, and the Thom
isomorphism, all for manifolds with finite good covers.

Existence of a Good Cover

Let M be a manifold of dimension n. An open cover U = {U } of M is
called a good cover if all nonempty finite intersections U, N --- NU, are
diffeomorphic to R”. A manifold which has a finite good cover is said to be
of finite type.

Theorem 5.1. Every manifold has a good cover. If the manifold is compact,
then the cover may be chosen to be finite.

To prove this theorem we will need a little differential geometry. A
Riemannian structure on a manifold M is a smoothly varying metric { , )
on the tangent space of M at each point; it is smoothly varying in the
following sense: if X and Y are two smooth vector fields on M, then
(X, Y) is a smooth function on M. Every manifold can be given a
Riemannian structure by the following splicing procedure. Let {U,} be a
coordinate open cover of M, { , >, a Riemannian metric on U,, and {p,} a
partition of unity subordinate to {U,}. Then ( , )= Zpa< sy Va 18
a Riemannian metric on M.
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Proor oF THEOREM 5.1. Endow M with a Riemannian structure. Now we
quote the theorem in differential geometry that every point in a Riemannian
manifold has a geodesically convex neighborhood (Spivak [1, Ex. 32(f), p.
491]). The intersection of any two such neighborhoods is again geodesically
convex. Since a geodesically convex neighborhood in a Riemannian mani-
fold of dimension n is diffeomorphic to R", an open cover consisting of
geodesically convex neighborhoods will be a good cover. O

Given two covers U = {U,},c; and B = {V3}5¢, if every V} is con-
tained in some U,, we say that 8 is a refinement of U and write U <B. To
be more precise we specify a refinement by a map ¢:J— I such that
Vp € Uyp)- By a slight modification of the above proof we can show that
every open cover on a manifold has a refinement which is a good cover: simply
take the geodesically convex neighborhoods around each point to be inside
some open set of the given cover.

A directed set is a set I with a relation < satisfying

(a) (reflexivity) a<a for all a € 1.

(b) (transitivity) if a<b and b <c, then a<c.

(c) (upper bound) for any a, b € I, there is an element ¢ in I such that
a<cand b<ec.

The set of open covers on a manifold is a directed set, since any two open
covers always have a common refinement. A subset J of a directed set I is
cofinal in I if for every i in I there is a j in J such that i <j. It is clear
that J is also a directed set.

Corollary 5.2. The good covers are cofinal in the set of all covers of a
manifold M.

Finite Dimensionality of d¢ Rham Cohomology

Proposition 5.3.1. If the manifold M has a finite good cover, then its cohomol-
ogy is finite dimensional.

Proor. From the Mayer-Vietoris sequence

= H"YU n V)—{.»H"(U v V)5S HWU)@HY(V)— -+
we get
HYU v V) >~ ker rim r >~ im d*@Pim r.
Thus,
(*) if HY(U), HY(V) and H*Y(U V) are finite-dimensional, then so is
HY{(UUYV).

For a manifold which is diffeomorphic to R", the finite dimensionality of
H*(M) follows from the Poincaré lemma (4.1.1). We now proceed by induc-
tion on the cardinality of a good cover. Suppose the cohomology of any
manifold having a good cover with at most p open sets is finite dimensional.
Consider a manifold having a good cover {U,, ..., U,} with p + 1 open
sets. Now (Up v ...u U,_y) n U, has a good cover with p open sets,
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namely {U,,, Uy,, ..., U,_;,,}. By hypothesis, the gth cohomology of
Upv..uU,,U,and (Ugu ...u U, ;) n U, are finite dimensional;
from Remark (*), so is the gth cohomology of Uy u ... U U,. This com-
pletes the induction. O

Similarly,

Proposition 5.3.2. If the manifold M has a finite good cover, then its compact
cohomology is finite dimensional.

Poincaré Duality on an Orientable Manifold

A pairing between two finite-dimensional vector spaces

(LY VW -R
is said to be nondegenerate if {v,w) =0 for all w€ W implies v =0 and
(v,w) =0 for all v€V implies w=0; equivalently, the map v+~ (v, )
should define an injection V<= W * and the map w— ( ,w) also defines an
injection W= ¥V *,
Lemma. Let V and W be finite-dimensional vector spaces. The pairing

(, Y:V® W R is nondegenerate if and only if the map v — (v, ) defines
an isomorphism V = W*.

PROOF. (=) Since V- W* and W= V* are injective,
dimV<dimW*=dimW <dimV* = dimV,
hence, dim V' = dim W * and V' < W* must be an isomorphism.
(=) is left to the reader. O
Because the wedge product is an antiderivation, it descends to cohomol-

ogy; by Stokes’ theorem, integration also descends to cohomology. So for
an oriented manifold M there is a pairing

f . H(M)® H""%(M) — R

given by the integral of the wedge product of two forms. Qur first version
of Poincaré duality asserts that this pairing is nondegenerate whenever M is
orientable and has a finite good cover; equivalently,
(5.4) HY(M)=(H!""(M))".
Note that by (5.3.1) and (5.3.2) both HY(M) and H! 9(M) are finite-
dimensional.

A couple of lemmas will be needed in the proof of Poincaré duality.

Exercise 5.5. Prove the Five Lemma: given a commutative diagram of
Abelian groups and group homomorphisms

. A j’Bh,C h,D fAVE
SR B B
> A - B > C’ D’ E'
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in which the rows are exact, if the maps «, f, § and ¢ are isomorphisms, then
so is the middle one y.

Lemma 5.6. The two Mayer-Vietoris sequences (2.4) and (2.8) may be paired
together to form a sign-commutative diagram

restriction difference

S HY(U U V) S pa Uy @ HU(V) XS B A V) —E s HU O V) —
® ® ® ®
cre— HIPYU O V) 22— HI7YU) @ HY YY) ——H (U V)*—i— HI YU ouy)

L. 0L L.

R R R R

Here sign-commutativity means, for instance, that

j w/\d*t=ij (d*w) A+,
Unv UvuV

for we H(U n V), te H* 9 }U u V). This lemma is equivalent to
saying that the pairing induces a map from the upper exact sequence to the
dual of the lower exact sequence such that the following diagram is sign-
commutative:

~ HYUUV) -  HYU)eHWV) - H(UNV) -

i ! l
- H"™9(UUV)* - H9(U)*eH!"«V)* - HI"(UnV)* —.

PRroor. The first two squares are in fact commutative as is straightforward
to check. We will show the sign-commutativity of the third square.
Recall from (2.5) and (2.7) that d*w is a form in H** (U U V) such that

d*wlu = —d(py )
d*w|y = d(py ),
and d, tis a form in H?"%U n V) such that

(—(extension by 0 of d,, 7 to U), (extension by 0 of d, 7 to V))
= (d(py 1), d(py 7)).
Note that d(py ) = (dpy)t because 1 is closed; similarly, d(py ®) = (dpy)w.

'[ w/\d*t=j w/\(dpy)t=(—1)"°“’J (dpy)o At.
Unv Unv UnVv

Since d*w has supportin U n V,

‘[ d*w/\r:-—f (dpy)w At
vov Uav
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Therefore,
J w/\d*r=(—1)d°""“j d*o A 1. 0
UnV UuV

By the Five Lemma if Poincaré duality holds for U, ¥, and U n V, then
it holds for U u V. We now proceed by induction on the cardinality of a
good cover. For M diffeomorphic to R", Poincaré duality follows from the
two Poincaré lemmas

R in dimension O
0 elsewhere

H*R" = {
and

wom _ JR N dimension n

HAR) = {0 elsewhere.

Next suppose Poincaré duality holds for any manifold having a good cover
with at most p open sets, and consider a manifold having a good cover
{Uo, ..., U,} with p + 1 open sets. Now (Uou --- v U,_;) n U, has a
good cover with p open sets, namely {U,,, Uy,, ..., U,_1, ,}. By hypothesis
Poincaré duality holds for Ug u ... v U,_y, Up,and(Uou...0v U,_)
n U,, so it holds for Uy U ... U U,_; U U, as well. This induction argu-
ment proves Poincaré duality for any orientable manifold having a finite
good cover. O

REMARK 5.7. The finiteness assumption on the good cover is in fact not
necessary. By a closer analysis of the topology of a manifold, the Mayer-
Vietoris argument above can be extended to any orientable manifold
(Greub, Halperin, and Vanstone [1, p. 198 and p. 14]). The statement is as
follows: if M is an orientable manifold of dimension n, whose cohomology is
not necessarily finite dimensional, then

HY(M) ~ (H;"4M))* , for any integer q.

However, the reverse implication H{M) ~ (H""4M))* is not always true.
The asymmetry comes from the fact that the dual of a direct sum is a direct
product, but the dual of a direct product is not a direct sum. For example,
consider the infinite disjoint union

[y

M=

Mi’

1

where the M;’s are all manifolds of finite type of the same dimension n.
Then the de Rham cohomology is a direct product

(5.7.1) H(M) = [T HY(M),

13
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but the compact cohomology is a direct sum
(572) Hi{M) = @ HIM)).

Taking the dual of the compact cohomology HY M) gives a direct product
(57.3) (H(M)* = [] HAM).

So by (5.7.1) and (5.7.3), it follows frorr; Poincaré duality for the manifolds
of finite type M;, that

HY(M) = (H;"(M))*.

Corollary 58. If M is a connected oriented manifold of dimension n, then

HXM)~ R. In particular if M is compact oriented and connected,
H"(M) ~ R.

Let f: M — N be a map between two compact oriented manifolds of
dimension n. Then there is an induced map in cohomology

f*: H(N) - H"(M).

The degree of f is defined to be .‘M S*w, where w is the generator of H"(N).
By the same argument as for the degree of a proper map between two
Euclidean spaces, the degree of a map between two compact oriented mani-
folds is an integer and is equal to the number of points, counted with
multiplicity + 1, in the inverse image of any regular point in N.

The Kiinneth Formula and the Leray-Hirsch Theorem

The Kiinneth formula states that the cohomology of the product of two

manifolds M and F is the tensor product

(5.9) H*M x F) = HXM)® H*(F).

This means

H'(MXxF)= @ HP(M)®HF) forevery nonnegative integer n.
prq=n

More generally we are interested in the cohomology of a fiber bundle.

Definition. Let G be a topological group which acts effectively on a space F
on the left. A surjection 7: E — B between topological spaces is a fiber
bundle with fiber F and structure group G if B has an open cover {U,} such
that there are fiber-preserving homeomorphisms

¢,: Ely, 3U,xF
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and the transitions functions are continuous functions with values in G:

Gup(¥) = o b5 " lwxrF €G.

Sometimes the total space E is referred to as the fiber bundle. A fiber bundle
with structure group G is also called a G-bundle. If x € B, the set
E, = n~(x) is called the fiber at x.

Since we are working with de Rham theory, the spaces E, B, and F will
be assumed to be C* manifolds and the maps C* maps. We may also speak
of a fiber bundle without mentioning its structure group; in that case, the

group is understood to be the group of diffeomorphisms of F, denoted
Diff(F).

REMARK. The action of a group G on a space F is said to be effective if the
only element of G which acts trivially on F is the identity, ie.,ifg-y=y
for all y in F, then g =1 € G. In the C® case, this is equivalent to saying
that the kernel of the natural map G — Diff(F) is the identity or that G is a
subgroup of Diff(F), the group of diffeomorphisms of F. In the definition of
a fiber bundle the action of G on F is required to be effective in order that
the diffeomorphism

¢a ¢El l(x) xF

of F can be identified unambiguously with an element of G.

The transition functions g, : U, n Uy — G satisfy the cocycle condi-
tion:

gaﬂ : gﬂy = gay'

Given a cocycle {g,;} with values in G we can construct a fiber bundle E
having {g,,} as its transition functions by setting

(5.10) E=(1IU,x F)/(x, )~ (x, 6u(x) y)
for (x, y)in Uy x F and (x, g,4(x)y) in U, x F.

The following proof of the Kiinneth formula assumes that M has a finite
good cover. This assumption is necessary for the induction argument.
The two natural projections
MxF—2F
n
M

give rise to a map on forms

0® ¢ oA p*d
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which induces a map in cohomology (exercise)
¥ : H¥M) ® H*(F) —» H*M x F).

We will show that ¢ is an isomorphism.
If M =R"™, this is simply the Poincaré lemma.
In the following we will regard M x F as a product bundle over M. Let

U and V be open sets in M and n a fixed integer. From the Mayer-Vietoris
sequence

«— HXU v V) - H(U)@® H(V) - HY({U n V)---
we get an exact sequence by tensoring with H" ~?(F)
«—= HAU v V)® H""A(F) —» (HAU)® H""*(F)) @ (H*(V) ® H"""(F))
- H U N V)QH" ?’(F)— ---

since tensoring with a vector space preserves exactness. Summing over all
integers p yields the exact sequence

-
4

HYU v V)® H""XF)
0

- é(H’(U)®H"""(F))@(H"(V)®H"_"(F))
p=0
- éH”(U NVH" " PF)—> ---.

p=0
The following diagram is commutative

é HYU U V)® H"(F)— @ (HA(U)® H""?(F)) ® (HAV)® H""*(F))— @ H*(U V) ® H"""(F)

p=0 lw p=0 lw p=0 lw

HWU UV)xF) H(U x F) ® H'(V x F) H((UnV)xF)

The commutativity is clear except possibly for the square

® (HYU V)@ H""(F) —— @ H?*'(U U V)@ H""*(F)

‘) v

HYU A V) x F) « H™ (U U V) x F),

which we now check. Let w ® ¢ be in HYU n V) ® H""?(F). Then
yd* (o ® ¢) = n*(d*w)Ap*d
d*Y(w @ @) = d*(m*w A p*¢).
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Recall from (2.5) that if {py, py} is a partition of unity subordinate to
{U, V} then
—d(pyw) on U
* =
d*o { dpyw) on V.

Since the pullback functions {n*py, n*p,} form a partition of unity on
(U U V) x F subordinate to the cover {U x F, V x F},on(U n V) x F
d*(n*w A p*¢) = d(n*py)r*w A p*9)

= (dn*(pyw)) Ap*¢  since ¢ is closed

= ¥ d*w) A p*¢.
So the diagram is commutative.

By the Five Lemma if the theorem is true for U, V,and U n V, then it is

also true for U u V. The Kiinneth formula now follows by induction on
the cardinality of a good cover, as in the proof of Poincaré duality. O

Let n: E — M be a fiber bundle with fiber F. Suppose there are coho-
mology classes e, ..., ¢, on E which restrict to a basis of the cohomology
of each fiber. Then we can define a map

¥: HYM)® Riey, ..., e,} — H*(E).

The same argument as the Kiinneth formula gives

Theorem 5.11 (Leray-Hirsch). Let E be a fiber bundle over M with fiber F.
Suppose M has a finite good cover. If there are global cohomology classes
ey, ..., e, on E which when restricted to each fiber freely generate the cohomol-
ogy of the fiber, then H*(E) is a free module over H*(M) with basis {e, ..
e}, lie.

o

H*E) ~ H*M)QR{e,, ..., ¢,} ~ H{M)Q H*(F).

Exercise 5.12 Kiinneth formula for compact cohomology. The Kiinneth for-
mula for compact cohomology states that for any manifolds M and N
having a finite good cover.

HXM x N) = H¥M) ® HX(N).

(a) In case M and N are orientable, show that this is a consequence of
Poincaré duality and the Kiinneth formula for d¢ Rham cohomology.

(b) Using the Mayer-Vietoris argument prove the Kiinneth formula for
compact cohomology for any M and N having a finite good cover.

The Poincaré Dual of a Closed Oriented Submanifold

Let M be an oriented manifold of dimension n and S a closed oriented
submanifold of dimension k; here by “closed” we mean as a subspace of M.
Figure 5.1 is a closed submanifold of R* — {0}, but Figure 5-2 is not. To
every closed oriented submanifold i : S ¢, M of dimension k, one can associ-
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ate a unique cohomology class [#s] in H" “¥(M), called its Poincare dual, as
follows. Let w be a closed k-form with compact support on M. Since S is

~N=-

Figure 5.1 Figure 5.2

closed in M, Supp(w]s) is closed not only in S, but also in M. Now because
Supp(w|s) = (Supp w) N S is a closed subset of a compact set, i*w also has
compact support on S, so the integral { i*w is defined. By Stokes’s theorem
integration over § induces a linear functional on HX¥M). It follows by
Poincaré duality: (H{(M))* ~ H""%(M), that integration over S corresponds
to a unique cohomology class [#s] in H"~%(M). We will often call both the
cohomology class [#5] and a form representing it the Poincaré dual of S. By
definition the Poincaré dual ng is the unique cohomology class in H* “¥(M)
satisfying

(5.13) J‘ i*w=‘[ wAng
s M

for any w in HYM).

Now suppose S is a compact oriented submanifold of dimension k in M.
Since a compact subset of a Hausdorff space is closed, S is also a closed
oriented submanifold and hence has a Poincaré dual g € H*“¥(M). This ng
we will call the closed Poincaré dual of S, to distinguish it from the compact
Poincaré dual to be defined below. Because S is compact, one can in fact
integrate over S not only k-forms with compact support on M, but any
k-form on M. In this way S defines a linear functional on H¥M) and so by
Poincaré duality corresponds to a unique cohomology class [n5] in
H" (M), the compact Poincaré dual of S. We must assume here that M has
a finite good cover; otherwise, the duality (H*(M))* ~ H""¥(M) does not
hold. The compact Poincare dual [#5] is uniquely characterized by

(5.14) Ji*‘“j wAns,
S M

for any w € H¥(M). If (5.14) holds for any closed k-form w, then it certainly
holds for any closed k-form @ with compact support. So as a form, ns is also
the closed Poincaré dual of S, ie., the natural map H" (M) — H" M)
sends the compact Poincaré dual to the closed Poincaré dual. Therefore we
can in fact demand the closed Poincaré dual of a compact oriented sub-
manifold to have compact support. However, as cohomology classes, [15] €
H* XM) and [n5] € H" M) could be quite different, as the following
examples demonstrate.
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ExaMpLE 5.15 (The Poincaré duals of a point P on R"). Since H*R") = 0,
the closed Poincaré dual #; is trivial and can be represented by any closed
n-form on R", but the compact Poincaré dual is the nontrivial class in
H"(R" represented by a bump form with total integral 1.

ExAMPLE-EXERCISE 5.16 (The ray and the circle in R? — {0}). Let x, y be the
standard coordinates and r, 8 the polar coordinates on R* — {0}.

(a) Show that the Poincaré dual of the ray {(x, 0)| x > 0} in R? — {0} is
d0/2n in HY(R? — {0}).

(b) Show that the closed Poincaré dual of the unit circle in H'(R? — {0})
is 0, but the compact Poincaré dual is the nontrivial generator p(r)dr in
H!(R? — {0}) where p(r) is a bump function with total integral 1. (By a
bump function we mean a smooth function whose support is contained in
some disc and whose graph looks like a “bump™.)

Thus the generator of H'(R? — {0}) is represented by the ray and the
generator of H!(R? — {0}) by the circle (see Figure 5.3).

REMARK 5.17. The two Poincaré duals of a compact oriented submanifold
correspond to the two homology theories—closed homology and compact
homology. Closed homology has now fallen into disuse, while compact
homology is known these days as the homology of singular chains. In
Example-Exercise 5.16, the generator of H; jo.q (R* — {0}) is the ray, while
the generator of H ;ompaet (R? — {0}) is the circle. (The circle is a boundary
in closed homology since the punctured closed disk is a closed 2-chain in
R? — {0}.) In general Poincaré duality sets up an isomorphism between
closed homology and de Rham cohomology, and between compact homol-
ogy and compact de Rham cohomology.

Let S be a compact oriented submanifold of dimension k in M. If
W < M is an open subset containing S, then the compact Poincaré dual of
S in W, s w € H?~Y(W), extends by 0 to a form #j in H"~(M). 15 is clearly
the compact Poincaré dual of S in M because

f i*w=f w/\n’s,W=I o Ans.
s w M

Figure 5.3
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Thus, the support of the compact Poincaré dual of S in M may be shrunk into
any open neighborhood of S. This is called the localization principle. For a
noncompact closed oriented submanifold S the localization principle also
holds. We will take it up in Proposition 6.25.

In this book we will mean by the Poincaré dual the closed Poincaré dual.
However, as we have seen, if the submanifold is compact, we can demand
that its closed Poincaré dual have compact support, even as a cohomology
class in H""%(M). Of course, on a compact manifold M, there is no dis-
tinction between the closed and the compact Poincaré duals.

§6 The Thom Isomorphism

So far we have encountered two kinds of C® invariants of a manifold, de
Rham cohomology and compactly supported cohomology. For vector bun-
dles there is another invariant, namely, cohomology with compact support
in the vertical direction. The Thom isomorphism is a statement about this
last-named cohomology. In this section we use the Mayer-Vietoris argu-
ment to prove the Thom isomorphism for an orientable vector bundle. We
then explain why the Poincaré dual and the Thom class are in fact one and
the same thing. Using the interpretation of the Poincaré dual of a sub-
manifold as the Thom class of the normal bundle, it is easy to write down
explicitly the Poincaré dual, at least when the normal bundle is trivial. Next
we give an explicit construction of the Thom class for an oriented rank 2
bundle, introducing along the way the global angular form and the Euler
class. The higher-rank analogues will be taken up in Sections 11 and 12. We
conclude this section with a brief discussion of the relative de Rham theory,
citing the Thom class as an example of a relative class.

Vector Bundles and the Reduction of Structure Groups

Let n: E— M be a surjective map of manifolds whose fiber n“‘(x) is a
vector space for every x in M. The map = is a C* real vector bundle of rank
n if there is an open cover {U,} of M and fiber-preserving diffeomorphisms

¢y Ely,=n"'(U) 3 U, x R"
which are linear isomorphisms on each fiber. The maps
baodi' (U, n U x R"— (U, nUp) xR

are vector-space automorphisms of R” in each fiber and hence give rise to
maps
gap: Uy 0 Ug— GL(n, R)

gaﬂ(x) = ¢a ¢ﬁ'1 l(x)XR" .

In the terminology of Section 5 a vector bundle of rank n is a fiber bundle
with fiber R" and structure group GL(n, R). If the fiber is C" and the
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structure group is GL(n, C), the vector bundle is a complex vector bundle.
Unless otherwise stated, by a vector bundle we mean a C* real vector
bundle.

Let U be an open set in M. A map s: U — E is a section of the vector
bundle E over U if o s is the identity on U. The space of all sections over
U is written I(U, E). Note that every vector bundle has a well-defined
global zero section. A collection of sections s, ..., s, over an open set U in
M is a frame on U if for every point x in U, 5,(x), ..., s,(x) form a basis of
the vector space E, = ™ 1(x).

The transition functions {g,;} of a vector bundle satisfy the cocycle
condition

9ap°9py =9ay On U,nUgn U,.

The cocycle {g,5} depends on the choice of the trivialization.

Lemma 6.1. If the cocycle {g,5} comes from another trivialization {¢,}, then
there exist maps A, : U, — GL(n, R) such that

Gup = Aabupdsg ' on U, n Us.
Proor. The two trivializations differ by a nonsingular transformation of R"

at each point:
Go =4 , 41U, > GL(n, R).

Therefore,
Gop = Pa b5 ' = Ay "Ag "t = Aatighp . o

Two cocycles related in this way are said to be equivalent.

Given a cocycle {g,5} with values in GL(n, R) we can construct a vector
bundle E having {g,s} as its cocycle as in (5.10). A homomorphism between
two vector bundles, called a bundle map, is a fiber-preserving smooth map
f : E — E' which is linear on corresponding fibers.

Exercise 6.2. Show that two vector bundles on M are isomorphic if and
only if their cocycles relative to some open cover are equivalent.

Given a vector bundle with cocycle {g,q}, if it is possible to find an
equivalent cocycle with values in a subgroup H of GL(n, R), we say that the
structure group of E may be reduced to H. A vector bundle is orientable if its
structure group may be reduced to GL'(n, R), the linear transformations of
R" with positive determinant. A trivialization {(U,, ¢,)},.; on E is said to
be oriented if for every a and f in I, the transition function g,, has positive
determinant. Two oriented trivializations {(U,, @,)}, {(Vs, ¥;)} are equival-
ent if for every x in U, N Vj, @, ° (¥5) " '(x) : R"— R" has positive determi-
nant. It is easily checked that this is an equivalence relation and that on a
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connected manifold M it partitions all the oriented trivializations of the
vector bundle E into two equivalence classes. Either equivalence class is
called an orientation on the vector bundle E.

ExaMPLE 6.3 (The tangent bundle). By attaching to each point x in a mani-
fold M, the tangent space to M at x, we obtain the tangent bundle of M :
TM = U ’I;M.

xeM

Let {(U,, ¢,)} be an atlas for M. The diffecomorphism

'l,a : UG z R"
induces a map
(v’a)‘ : TU, = TR" ’

which gives a local trivialization of the tangent bundle Ty,. From this we
see that the transition functions of T,, are the Jacobians of the transition
functions of M. Therefore M is orientable as a manifold if and only if its
tangent bundle is orientable as a bundle. (However, the total space of the
tangent bundle is always orientable as a manifold.) If Y, = (x, ..., x,), then
0/0x4, ..., 0/0x, is a frame for Ty, over U,. In the language of bundles a
smooth vector field on U, is a smooth section of the tangent bundle over U,.

We now show that the structure group of every real vector bundle E may
be reduced to the orthogonal group. First, we can endow E with a
Riemannian structure—a smoothly varying positive definite symmetric
bilinear form on each fiber—as follows. Let {U,} be an open cover of M
which trivializes E. On each U,, choose a frame for E|;, and declare it to be
orthonormal. This defines a Riemannian structure on E{,. Let (, ),
denote this inner product on E|;,. Now use a partition of unity {p,} to
splice them together, i.e., form

C=Xp s D

This will be an inner product over all of M.

As trivializations of E, we take only those maps ¢, that send orthonor-
mal frames of E (relative to the global metric ( , )) to orthonormal frames
of R"—such maps exist by the Gram-Schmidt process. Then the transition
functions g.s will preserve orthonormal frames and hence take values in
the orthogonal group O(n). If the determinant of g.s is positive, g,, will
actually be in the special orthogonal group SO(n). Thus

Proposition 6.4. The structure group of a real vector bundle of rank n can
always be reduced to O(n); it can be reduced to SO(n) if and only if the vector
bundle is orientable.
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Exercise 6.5. (a) Show that there is a direct product decomposition
GL(n, R) = O(n) x {positive definite symmetric matrices}.

(b) Use (a) to show that the structure group of any real vector bundle
may be reduced to O(n) by finding the 4,’s of Lemma 6.1.

Operations on Vector Bundles

Apart from introducing the functorial operations on vector bundles, our
main purpose here is to establish the triviality of a vector bundle over a
contractible manifold, a fact needed in the proof of the Thom isomorphism.

Functorial operations on vector spaces carry over to vector bundles. For
instance, if E and E’ are vector bundles over M of rank n and m respect-
ively, their direct sum E@E' is the vector bundle over M whose fiber at the
point x in M is E,@ E.,. The local trivializations {¢,} and {¢,} for E and E'
induce a local trivialization for E® E’:

. @0,  EQFE

v, 3 U, x (R"@ R™,

Hence the transition matrices for E @ E’ are

2
0 gu

Similarly we can define the tensor product E® E’, the dual E*, and
Hom(E, E'). Note that Hom(E, E’) is isomorphic to E* ® E'. The tensor
product E® E’ clearly has transition matrices {g,; ® g,s}, but the tran-
sition matrices for the dual E* are not so immediate. Recall that the dual
V* of a real vector space V is the space of all linear functionals on V, ie.,
V* ~ Hom(V, R), and that a linear map f: V— W induces a map f*:
W* — V* represented by the transpose of the matrix of f. If

¢ Ely, 3 U, x R"

is a trivialization for E, then

(@' E*|y, 3 U, x (R")*
is a trivialization for E*. Therefore the transition functions of E* are
(6.6) ()b = (P05 )) " = (gt~ "

Let M and N be manifolds and = : E — M a vector bundle over M. Any
map f : N — M induces a vector bundle f “'E on N, called the pullback of
E by f. This bundle f ~*E is defined to be the subset of N x E given by

{(n, &) f(n) = n(e)}.
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It is the unique maximal subset of N x E which makes the following di-
agram commutative

cNxE
fT'E

E

n

N — M.
S

The fiber of f~'E over a point y in N is isomorphic to E r- Since a
product bundle pulls back to a product bundle we see that f ~'E is locally

trivial, and is therefore a vector bundle. Furthermore, if we have a com-
position

then
(feg) 'E=g"'(f'E).

Let Vect, (M) be the isomorphism classes of rank k real vector bundles
over M. It is a pointed set with base point the isomorphism class of the
product bundle over M. If f : M — N is a map between two manifolds, let
Vect,(f) =f ! be the pullback map on bundles. In this way, for each
integer k, Vect,( ) becomes a functor from the category of manifolds and
smooth maps to the category of pointed sets and base point preserving
maps.

REMARK 6.7 Let {U,} be a trivializing open cover for E and g,; the tran-
sition functions. Then {f ~'U,} is a trivializing open cover forf “'E over N
and (f 'E)|;-1y, = f “!(E|y,). Therefore the transition functions for f ~'E
are the pullback functions f*g,.

A basic property of the pullback is the following.

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a
compact manifold. If fo and f; are homotopic maps from Y to a manifold X
and E is a vector bundle on X, then f o E is isomorphic to f{‘E,i.e., homo-
topic maps induce isomorphic bundles.

ProoF. The problem of constructing an isomorphism between two vector
bundles V and W of rank k over a space B may be turned into a problem in
cross-sectioning a fiber bundle over B, as follows. Recall that
Hom(V, W) = V*® W is a vector bundle over B whose fiber at each point
p consists of all the linear maps from ¥V, to W,. Define Iso(V, W) to be the
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subset of Hom(V, W) whose fiber at each point consists of all the isomor-
phisms from V, to W,. (This is like looking at the complement of the zero
section of a line bundle.) Iso(V, W) inherits a topology from Hom(V, W),
and is a fiber bundle with fiber GL(n, R). An isomorphism between V and
W is simply a section of Iso(V, W).

Let f:YxI— X be a homotopy between f, and f;, and let
n:Y x I — Y be the projection. Suppose for some t, in I, f 5 'E is isomor-
phic to some vector bundle F on Y. We will show that for all ¢t near ¢,,
f.,71E ~ F. By the compactness and connectedness of the unit interval [ it will
then follow that f,"'E ~ F for all ¢ in I.

Over Y x I there are two pullback bundles, f "*E and n~'F. Since
filE~F, Iso(f "'E, n~'F) has a section over Y x to, which a priori is
also a section of Hom(f ~'E, n~'F). Since Y is compact, Y x t, may be
covered with a finite number of trivializing open sets for Hom(f ~'E, n~'F)
(see Figure 6.1). As the fibers of Hom(f ~1E, n~'F) are Euclidean spaces, the
section over Y x t, may be extended to a section of Hom(f ~'E, n~'F)
over the union of these open sets. Now any linear map near an isomor-
phism remains an isomorphism; thus we can extend the given section of
Iso(f “'E, n~'F) to a strip containing Y x t,. This proves thatf,'E ~ F
for t near ty. We now cover Y x I with a finite number of such strips.
Hence fo!E~F ~f['E. O

I t"‘—w(—Y‘ 'Y_‘
= S~ G ~ S

Y
Figure 6.1

ReMARK. If Y is not compact, we may not be able to find a strip of constant
width over which Iso(f ~*E, n~ ' F) has a section; for example the strip may
look like Figure 6.2.

But the same argument can be refined to give the theorem for Y a paracom-
pact space. See, for instance, Husemoller [1, Theorem 4.7, p. 29]. Recall that
Y is said to be paracompact if every open cover U of Y has a locally finite
open refinement W, that is, every point in Y has a neighborhood which
meets only finitely many open sets in U'. A compact space or a discrete
space are clearly paracompact. By a theorem of A. H. Stone, so is every
metric space (Dugundji [1, p. 186]). More importantly for us, every mani-
fold is paracompact (Spivak [1, Ch. 2, Th. 13, p. 66]). Thus the homotopy
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Y
Figure 6.2

property of vector bundles (Theorem 6.8) actually holds over any manifold
Y, compact or not.
Corollary 6.9. A vector bundle over a contractible manifold is trivial.

PRroOF. Let E be a vector bundle over M and let fand g be maps
f .
M 2 point
g

such that g o fis homotopic to the identity 1,,. By the homotopy property
of vector bundles

Ex(gof) 'Exf"Yg 'E).
Since g~ 'E is a vector bundle on a point, it is trivial, hence so is f ~ (g~ !E).

a

So for a contractible manifold M, Vect,(M) is a single point.

REMARK. Although all the results in this subsection are stated in the differ-
entiable category of manifolds and smooth maps, the corresponding state-
ments with “manifold” replaced by “space” also hold in the continuous
category of topological spaces and continuous maps, the only exception
being Corollary 6.9, in which the space should be assumed paracompact.

Exercise 6.10. Compute Vect,(S*).

Compact Cohomology of a Vector Bundle

The Poincaré lemmas
H*(M x R") = H*(M)
H¥M x R") = H} ""(M)
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may be viewed as results on the cohomology of the trivial bundle M x R"
over M. More generally let E be a vector bundle of rank n over M. The zero
section of E, s : x+—(x, 0), embeds M diffeomorphically in E. Since M x {0}
is a deformation retract of E, it follows from the homotopy axiom for de
Rham cohomology (Corollary 4.1.2.2) that

H*(E) ~ H*(M).
For cohomology with compact support one may suspect that
(6.11) HXE) ~ H* " "(M).

This is in general not true; the open Mobius strip, considered as a vector
bundle over S, provides a counterexample, since the compact cohomology
of the Mobius strip is identically zero (Exercise 4.8). However, if E and M
are orientable manifolds of finite type, then formula (6.11) holds. The proof
is based on Poincaré duality, as follows. Let m be the dimension of M. Then

H*E) ~ (H™*""*E))* by Poincaré duality on E
~ (H™*"~*(M))* by the homotopy axiom for de Rham cohomology
~ H*“"M) by Poincaré duality on M.

Lemma 6.12. An orientable vector bundle E over an orientable manifold M is
an orientable manifold.

Proor. This follows from the fact that if {(U,, ¥,)} is an oriented atlas for
M with transition functions h,s = ¥, o Y5 ! and

¢.: E

is a local trivialization for E with transition functions g,5, then the com-
position

v, 3 U, xR"

Ely, 3 U, x R" 3 R" x R"
gives an atlas for E. The typical transition function of this atlas,
WX 1) o dudgto(Wi! x 1): R™ x R" > R™ x R"
sends (x, ) to (h,g(x), g.s(¥5 *(x))y) and has Jacobian matrix
D(hyp) * )
6.12.1 ( * _ ,
(@ 12) 0 gl ')

where D(h,g) is the Jacobian matrix of h,z. The determinant of the matrix
(6.12.1) is clearly positive. O

Thus,

Proposition 6.13. If n: E — M is an orientable vector bundle and M is
orientable of finite type, then HXE) ~ H*~"(M).
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REMARK 6.13.1. Actually the orientability assumption on M is superfluous.
See Exercise 6.20.

REMARK 6.13.2. Let M be an oriented manifold with oriented atlas {(U,,
Vo} and n: E - M an oriented vector bundle over M with an oriented
trivialization {(U,, ¢,)} determining the orientation on the vector bundle
(terminology on pp. 54-55). Then E can be made into an oriented manifold
with orientation given by the oriented atlas

{7 (U, W x 1) o ¢, : 27 (Uy) - U, x R" > R™ x R"}.
This is called the local product orientation on E.

Compact Vertical Cohomology and Integration along the Fiber

As mentioned earlier, for vector bundles there is a third kind of cohomol-
ogy. Instead of QX(E), the complex of forms with compact support, we
consider QX (E), the complex of forms with compact support in the vertical
direction, defined as follows: a smooth n-form w on E is in Q" (E) if and
only if for every compact set K in M, n~}(K) Supp w is compact. If
w € Q),(E), then since Supp(®|,-1y) = 7 '(x) " Supp w is a closed subset
of a compact set, Supp(w|,-1)) is compact. Thus, although a form in
Q*(E) need not have compact support in E, its restriction to each fiber
has compact support. The cohomology of this complex, denoted H*(E), is
called the cohomology of E with compact support in the vertical direction, or
compact vertical cohomology.

Let E be oriented as a rank n vector bundle. The formulas in (4.4) extend
to this situation to give integration along the fiber, n, : Q4(E) —» Q* ""(M),
as follows. First consider the case of a trivial bundle E =M x R". Let
ty, ..., t, be the coordinates on the fiber R". A form on E is a real linear
combination of two types of forms: the type (I) forms are those which do
not contain as a factor the n-form dt, ... dt, and the type (II) forms are
those which do. The map =, is defined by

D (n*P)f(x, ty, ..., t)dt;, ...dt;, —»0 r<n
(A (*P)f(X, ty, ..., t) dty ... dt, = @ [ fix, by, ..., t,) dty ... dt,,

where f has compact support for each fixed x in M and ¢ is a form on M.
Next suppose E is an arbitrary oriented vector bundle, with oriented triv-
ialization {(U,, ¢J)}sc1. Let xy, ..., x,, and y,, ..., y,, be the coordinate
functions on U, and Uy, and ¢4, ..., t,, Uy, ..., u, the fiber coordinates on
E|y, and E|y, given by ¢, and ¢, respectively. Because {(U,, ¢,)} is an
oriented trivialization for E, the two sets of fiber coordinatest,, ..., t, and
u, ..., u, are related by an element of GL'(n, R) at each point of U, N Uy.
Again a form w in Q%(E) is locally of type (I) or (I). The map =, is defined
to be zero on type (I) forms. To define =, on type (II) forms, write w, for
© |-, - Then

W, = (T*@)f (X1, oy Xy tyy -0y L) dty ... dE,

wp = (M*DGYV1s - +» Yms> Uty oo Uy) AUy ... du,.

and
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Define
T,0,=¢ J f(x, t)dty ... dt,.
Rn

Exercise 6.14. Show that if E is an oriented vector bundle, then n, @, =
n,wg. Hence {n,w,},.1 piece together to give a global form n,w on M.
Furthermore, this definition is independent of the choice of the oriented
trivialization for E.

Proposition 6.14.1. Integration along the fiber m, commutes with exterior
differentiation d.

Proor. Let {(U,, ¢,)} be a trivialization for E, {p,} a partition of unity
subordinate to {U,}, and  a form in Q¥(E). Since v = ), p, w, and bothr,,
and d are linear, it suffices to prove the proposition for p,w, that is,
n, d(p, ) = dn(p, w). Thus from the outset we may assume E to be the
product bundie M x R" If = (n*@)f(x, t) dt, ... dt, is a type (II) form,

dn,0 = d(¢ Jf(x, t)de, ... dt,)

= (d¢) ff(x, tydty ...dt, + (=1 ¢ Y dx; f%(x, t)dt, ...dt,
i i

and

n,do = n(n*d) fdt, ... dt, + (—1)%5% 7%¢ ¥ %f— dx; dty ... dt,)

= (d¢) det1 oo dty + (—1)des? Z ¢ dx; j:—){ dt, ...dt,.

So dn, w = n, dw for a type (II) form. Next let w = (n*¢)f(x, t) dt;, ... dt; ,
r < n, be a type (I) form. Then

dn,o =0
and
deg ¢ af
nedo = (=13 . ((n*¢) P (x, ty dt; dt;, ... dt;)
i i

=0 if dti dt,‘l...dt,'r# idtl...dtn.
If dt; dt;, ... dt, = +dt, ... dt,, then [ 3f/Ot(x, t) dt; dt;, ... dt, is again O:
because f has compact support,

f_ %(x,t)dti=f(...,oo,...)—f(...,—oo,...)=0. O

Note that integration along the fiber, =, : QX(E) » Q* ~"(M) lowers the
degree of a form by the fiber dimension.
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Proposition 6.15 (Projection Formula). (a) Let n: E > M be an oriented
rank n vector bundle, T a form on M and w a form on E with compact support
along the fiber. Then

n(n*1) w) =1 1,0

(b) Suppose in addition that M is oriented of dimension m, w € Q2 (E), and
T € Q""" M). Then with the local product orientation on E

j *D)Ahow = I TAn, o
E M

PROCF. (a) Since two forms are the same if and only if they are the same
locally, we may assume that E is the product bundle M x R". If @ is a form
of type (I), say w = n*¢ - f(x, t) dt; ... dt; , where r < n, then

T (T*1) - w) = n (n¥(t @) - f(x, D) dt;, ... dt;))) =0 =1 - T 0.

If w is a form of type (II), say w = n*¢ - f(x, t) dt, ... dt,, then
T, (n*7) - w)=1 ¢ j fix,tydty ... dt, =7 n, 0.
R

(b) Let {(U,, @.)}.cs be an oriented trivialization for E and {p,},.; a
partition of unity subordinate to {U,}. Writing w = Y p, w, where p, » has
support in U,, we have

J (M*)Ao =} j (m*1) A(p, )
E El,,

and

j tAn, @ =ZJ tAn(p, ).
M a

Ua
Here t A n,(p, w) has compact support because its support is a closed subset
of the compact set Supp t; similarly, (z*7) A(p,w) also has compact sup-
port. Therefore, it is enough to prove the proposition for M = U, and E
trivial. The rest of the proof proceeds as in (a). O

The proof of the Poincaré lemma for compact supports (4.7) carries over
verbatim to give

Proposition 6.16 (Poincaré Lemma for Compact Vertical Supports). Inte-
gration along the fiber defines an isomorphism
n, : HY(M x R") - H*""(M).
This is a special case of

Theorem 6.17 (Thom Isomorphism). If the vector bundle n: E — M over a
manifold M of finite type is orientable, then

H*(E) ~ H* "(M)
where n is the rank of E.
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Proor. Let U and V be open subsets of M. Using a partition of unity from
the base M we see that

0 —QAElyyv) = QUEl) @ Q4Ely) — Q4(Ely Av) —0

is exact, as in (2.3). So we have the diagram of Mayer-Vietoris sequences

cor—— HA(Ely,y) —HYE|) ® HA(El) — HAEly .y) —S—HL Y(Ely, y)—

v

T, T, T, Ty

vo——sH*-n(U u V)—H*-n(U)® H* - n(V)—H* - n(U n V)TH‘*'l—"(U U V)—--

The commutativity of this diagram is trivial for the first two squares; we
will check that of the third. Recalling from (2.5) the explicit formula for the
coboundary operator d*, we have by the projection formula (6.15)

n, d*w = 1 (7* dpy) - @) = (dpy) - n, 0 = d*n, .

So the diagram in question is commutative.

By (6.9) if U is diffeomorphic to R", then E |, is trivial, so that in this case
the Thom isomorphism reduces to the Poincaré lemma for compact vertical
supports (6.16). Hence in the diagram above, n, is an isomorphism for
contractible open sets. By the Five Lemma if the Thom isomorphism holds
for U, V,and U n V, then it holds for U u V. The proof now proceeds by
induction on the cardinality of a good cover for the base, as in the proof of
Poincaré duality. This gives the Thom isomorphism for any manifold M
having a finite good cover. O

REMARK 6.17.1. Although the proof above works only for a manifold of
finite type, the theorem is actually true for any base space. We will reprove
the theorem for an arbitrary manifold in (12.2.2).

Under the Thom isomorphism J : H*(M) = H**"(E), the image of 1 in
H°(M) determines a cohomology class ® in H”,(E), called the Thom class of
the oriented vector bundle E. Because 7, ® = 1, by the projection formula
(6.15)

T(T*0AD) = wA7n, P = w.
So the Thom isomorphism, which is inverse to =, , is given by
T( )y=n% )NOD.

Proposition 6.18. The Thom class ® on a rank n oriented vector bundle E can
be uniquely characterized as the cohomology class in H?,(E) which restricts to
the generator of HX(F) on each fiber F.

Proor. Since 7, ® = 1, @, is a bump form on the fiber with total in-
tegral 1. Conversely if ® in H,(E) restricts to a generator on each fiber,
then

T (t*0) A D) = 0 A, P = .
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Hence n*( )A® must be the Thom isomorphism J and @ = 7(1) is the
Thom class. |

Proposition 6.19. If E and F are two oriented vector bundles over a manifold
M, and n, and n, are the projections

E®F
my 2
A
then the Thom class of E® F is ®(E @ F) = nf®(E) A n3®(F).

PRrOOF. Let m = rank E and n = rank F. Then n{®(E) A n§®(F) is a class in
H™*"E @ F) whose restriction to each fiber is a generator of the compact
cohomology of the fiber, since the isomorphism

H?*™(R™ x R") ~ H(R™) ® HY(R")
is given by the wedge product of the generators. |

Exercise 6.20. Using a Mayer-Vietoris argument as in the proof of the
Thom isomorphism (Theorem 6.17), show that if n: E — M is an orient-
able rank n bundle over a manifold M of finite type, then

H*E) ~ H* " "(M).

Note that this is Proposition 6.13 with the orientability assumption on M
removed.

Poincaré Duality and the Thom Class

Let S be a closed oriented submanifold of dimension k in an oriented
manifold M of dimension n. Recall from (5.13) that the Poincaré dual of S is
the cohomology class of the closed (n — k)-form 5g characterized by the
property

6.21) J w=f wAng
S M

for any closed k-form with compact support on M. In this section we will
explain how the Poincaré dual of a submanifold relates to the Thom class
of a bundle (Proposition 6.24). To this end we first introduce the notion of a
tubular neighborhood of S in M ; this is by definition an open neighborhood
of S in M diffeomorphic to a vector bundle of rank n-k over S such that S
is diffeomorphic to the zero section. Now a sequence of vector bundles
over M,
0—-E—E —E" —0,

is said to be exact if at each point p in M, the sequence of vector spaces
0—E,—E,—E,—0
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is exact, where E, is the fiber of E at p. If S is a submanifold in M, the
normal bundle N = Ng; of S in M is the vector bundle on § defined by the
exact sequence

(6.22) 0 — Ty — Ty |s — N —0,

where Ty s is the restriction of the tangent bundie of M to S. The tubular
neighborhood theorem states that every submanifold S in M has a tubular
neighborhood T, and that in fact T is diffeomorphic to the normal bundle
of S in M (see Spivak [1, p. 465] or Guillemin and Pollack [1, p. 76]). For
example, if S is a curve in R®, then a tubular neighborhood of S may be
constructed using the metric in R® by attaching to each point of S an open
disc of sufficiently small radius ¢ > 0 perpendicular to S at the center. The
union of all these discs is a tubular neighborhood of S (Figure 6.3(a)).

M

(@) (b)
Figure 6.3

In general if A and B are two oriented vector bundles with oriented
trivializations {(U,, ¢,)} and {(U,, ¥,)}, respectively, then the direct sum
orientation on A @ B is given by the oriented trivialization {(U,, ¢, ® ¥,)}.
Returning to our submanifold S in M, we letj: T ¢, M be the inclusion of a
tubular neighborhood T of S in M (see Figure 6.3(b)). Since S and M are
orientable, the normal bundle Ny, being the quotient of Ty, |s by Ty, is also
orientable. By convention it is oriented in such a way that

Ns@Ts"—’ TMIS

has the direct sum orientation. So the Thom isomorphism theorem applies
to the normal bundle T = Ny over S and we have the sequence of maps

HYS) 5 H&*"~X(T) —*— H**n=¥(M)

where ® is the Thom class of the tube T and j, is extension by 0; here j, is
defined because we are only concerned with forms on the tubular neighbor-
hood T which vanish near the boundary of T. We claim that the Poincaré
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dual of S is the Thom class of the normal bundle of S; more precisely
(6.23) s =j (@A) =j, ® in H" ¥ M)

To prove this we merely have to show that j, ® satisfies the defining prop-
erty (5.13) of the Poincaré dual ng. Let @ be any closed k-form with
compact support on M, and i: S — T the inclusion, regarded as the zero
section of the bundle n: T — S. Since = is a deformation retraction of T
onto S, n* and i* are inverse isomorphisms in cohomology. Therefore on
the level of forms, w and n*i*w differ by an exact form: w = n*i*w + dr.

j oAj, ©
M ~
=| oA® because j, ® has support in T
JT
= | (t*i*o + d79)A D
I
= | ("*o)AND since j d)AD = J d(t A®) = 0 by Stokes’
Jr T T
theorem
(‘
= | *oArd by the projection formula (6.15)
"
= | i*w because 7, = 1.
J§

This concludes the proof of the claim. Note that if S is compact, then its
Poincaré dual 55 = j, ® has compact support.

Conversely, suppose E is an oriented vector bundle over an oriented
manifold M. Then M is diffeomorphically embedded as the zero section in
E and there is an exact sequence

0— Ty — (T))ly > E— O,

i.e., the normal bundle of M in E is E itself. By (6.23), the Poincaré¢ dual of M
in E is the Thom class of E. In summary,

Proposition 6.24. (a) The Poincaré dual of a closed oriented submanifold S in
an oriented manifold M and the Thom class of the normal bundle of S can be
represented by the same forms.

(b) The Thom class of an oriented vector bundle n: E — M over an
oriented manifold M and the Poincaré dual of the zero section of E can be
represented by the same form.

Because the normal bundle of the submanifold S in M is diffeomorphic
to any tubular neighborhood of S, we have the following proposition.

Proposition 6.25 (Localization Principle). The support of the Poincaré dual of
a submanifold S can be shrunk into any given tubular neighborhood of S.
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Figure 6.4

ExAMPLE 6.26.

(a) The Poincaré dual of a point p in M.
A tubular neighborhood T of p is simply an open ball around p (Figure 6.4).
A generator of H'(T) is a bump n-form with total integral 1. So the
Poincaré dual of a point is a bump n-form on M. The form need not have
support at p since all bump n-forms on a connected manifold are cohomol-
ogous. Here the dual of p is taken in H}(M), and not in H"(M).

(b) The Poincaré dual of M.
Here the tubular neighborhood T is M itself, and H*(T) = H*(M). So the
Poincaré dual of M is the constant function 1.

(c) The Poincaré dual of a circle on a torus.

Figure 6.5

The Poincaré dual is a bump 1-form with support in a tubular neighbor-
hood of the circle and with total integral 1 on each fiber of the tubular
neighborhood (Figure 6.5). In the usual representation of the torus as a
square, if the circle is a vertical segment, then its Poincaré dual is p(x) dx
where p is a bump function with total integral 1 (Figure 6.6).

Using the explicit construction of the Poincaré dual ns =j,® as the
Thom class of the normal bundle, we now prove two basic properties of
Poincaré duality. Two submanifolds R and S in M are said to intersect
transversally if and only if

(6.27) T.R+T,S=T,M

at all points x in the intersection R n S (Guillemin and Pollack [1, pp.
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.

Figure 6.6

27-32]). For such a transversal intersection the codimension in M is addi-
tive:

(6.28) codim R n § = codim R + codim S.
This implies that the normal bundle of R ~ Sin M is
(6.29) Ng~s = Ng® Ns.

Assume M to be an oriented manifold, and R and S to be closed oriented
submanifolds. Denoting the Thom class of an oriented vector bundle E by
®(E), we have by (6.19)

(6.30) O(Nrns) = ®(Ng @ Ns) = ®(Ng) A ®(Ns).
Therefore,
(6.31) NrRas = MR N 15

i.e., under Poincaré duality the transversal intersection of closed oriented
submanifolds corresponds to the wedge product of forms.

More generally, a smooth map f: M’ — M is said to be transversal to
a submanifold § = M if for every x € f1(S), fUT,M) + T;yS = Ty M. If
f:M'—> M is an orientation-preserving map of oriented manifolds, T is a
sufficiently small tubular neighborhood of the closed oriented submanifold S
in M, and f is transversal to S and T, then f ~!T is a tubular neighborhood
of f71S in M'. From the commutative diagram

o(T) I
H¥S) —— HYNT) —— H*M)

f*{ f*J f*}

77 Ju
H¥(f™'S) —— HL'™Nf™'T) —— H*M),

we see that if w is the cohomology class on M representing the submanifold
S in M, then f*w is the cohomology class on M’ representing f ~'(S), i.e.,
under Poincaré duality the induced map on cohomology corresponds to the
pre-image in geometry, i.e., -1 = f*ns. By the Transversality Homotopy
Theorem, the transversality hypothesis on f is in fact not necessary (Guillemin
and Pollack [1, p. 70]).
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The Global Angular Form, the Euler Class, and the Thom Class

In this subsection we will construct explicitly the Thom class of an oriented
rank 2 vector bundle n : E — M, using such data as a partition of unity on
M and the transition functions of E. The higher-rank case is similar but
more involved, and will be taken up in (11.11) and (12.3). The construction
is best understood as the vector-bundle analogue of the procedure for going
from a generator of H" (8"~ ') = H" }(R" — {0}) to a generator of HXR").
So let us first try to understand the situation in R".

We will call a top form on an oriented manifold M positive if it is in the
orientation class of M. The standard orientation on the unit sphere $"~! in
R" is by convention the following one: if ¢ is a generator of H"~*(S"~!) and
n:R"— {0} — $"! is a deformation retraction, then ¢ is positive on S"~*
if and only if dr - n*s is positive on R" — {0}.

Exercise 6.32. (a) Show that if @ is the standard angle function on R?
measured in the counterclockwise direction, then d6 is positive on the circle
st

(b) Show that if ¢ and 0 are the spherical coordinates on R* as in Figure
6.7, then d¢ A d8 is positive on the 2-sphere S2.

Figure 6.7

Let ¢ be the positive generator of H* (S"~!) and ¥ = n*¢ the corre-
sponding generator of H" }(R" — {0}); ¢ is called the angular form on
R" — {0}. If p(r) is the function of the radius shown in Figure 6.8, then
dp = p'(r)dr is a bump form on R! with total integral 1 (Figure 6.9). There-
fore (dp) - ¥ is a compactly supported form on R" with total integral 1, i.e.,
(dp) - ¥ is the generator of HY(R"). Note that because ¥ is closed, we can
write

(6.33) dp) - ¥ =d(p - ¥).
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p(r)

Figure 6.8

Now let E be an oriented rank n vector bundle over M, and E° the
complement of the zero section in E. Endow E with a Riemannian structure
as in (6.4) so that the radius function r makes sense on E. We begin our
construction of the Thom class by finding a global form ¥ on E° whose
restriction to each fiber is the angular form on R" — {0}. ¢ is called the
global angular form. Once we have the angular form , it is then easy to
check that ® = d(p - ) is the Thom class.

Now suppose the rank of E is 2, and {U,} is a coordinate open cover of M
that trivializes E. Since E has a Riemannian structure, over each U, we can
choose an orthonormal frame. This defines on E°|y,_ polar coordinates r, and
0,;if x4, ..., x, are coordinates on U,, then n*x,, ..., n*x,, r,, 0, are coordinates
on E°|U,. On the overlap U, n Uj, the radii r, and r, are equal but the angular
coordinates 6, and 6, differ by a rotation. By the orientability of E, it makes
sense to speak of the “counterclockwise direction” in each fiber. This allows

p'(r)

Figure 6.9
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us to define unambiguously ¢,z (up to a constant multiple of 27) as the
angle of rotation in the counterclockwise direction from the a-coordinate
system to the B-coordinate system:

(6.34) 0B=0a+7r*(paﬁ, qoaBIUaﬂ UB-’R

Although rotating from o to f and then from f to y is the same as

rotating from « to y, it is not true that @5 + @5, — @,, = 0; indeed all that
one can say is

Pap + Qg — P4y € 20Z.
AsIDE. To each triple intersection we can associate an integer
1
(635) saﬁy = 5—7; ((paﬁ - (Pay + (pﬂy )
The collection of integers {¢,5, } measures the extent to which {¢,,} fails to
be a cocyle. We will give another interpretation of {¢,, } in Section 11.

Unlike the functions {¢,4}, the 1-forms {dg,,} satisfy the cocycle condi-
tion.

Exercise 6.36. There exist 1-forms &, on U, such that
1
E;d(paﬂ.:éﬂ—ca'

[Hint: Take £,=(1/27m))., p,do,,, where {p,} is a partition of unity
subordinate to {U, }]

It follows from Exercise 6.36 that d¢, = d¢s on U, n Uy. Hence the d¢,
piece together to give a global 2-form e on M. This global form e is clearly
closed. It is not necessarily exact since the £, do not usually piece together
to give a global 1-form. The cohomology class of e in H*(M) is called the

Euler class of the oriented vector bundle E. We sometimes write e(E) instead
of e.

Claim. The cohomology class of e is independent of the choice of & in our
construction.

ProOF OF CLAIM. If {&,} is a different choice of 1-forms such that

oy =F-t=& &,
then
Ep—&p=C8—&=¢
is a global form. So d&, and d¢, differ by an exact global form. O
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By (6.34) and (6.36), on E°

Uy~ Up>

de, d6,
(6.36.1) e

_—
2n 21z s -

These forms then piece together to give a global 1-form ¥ on E°, the global
angular form, whose restriction to each fiber is the angular form (1/2n) d6,
ie. if 1, : R? — E is the orthogonal inclusion of a fiber over p, then1,*y =
(1/2n) d6. The global angular form is not closed:

dy = d(ﬁ - n*éa) = —m*dE, = —n*de, .

Therefore,
(6.37) dy = — n*e.

When E is a product, ¥ could be taken to be the pullback of (1/27) d6
under the projection E® = M x (R? — 0) - R? — 0. In this case y is closed
and e is 0. The Euler class is in this sense a measure of the twisting of the
oriented vector bundle E.

The Euler class of an oriented rank 2 vector bundle may be given in
terms of the transition functions, as follows. Let g,5: U, n Ug — SO(2) be
the transition functions of E. By identifying SO(2) with the unit circle in the
complex plane via (¢3¢ —5nf) = ¢ g,; may be thought of as complex-
valued functions. In this context the angle from the f-coordinate system to
the a-coordinate system is (1/i)log g,5. Thus

Ba - 06 = n*(l/l)log 9ap»
and
T*pap= —7*(1/i)l0g g,p.
Since the projection 7 has maximal rank (i.e., m, is onto), 7* is injective, so
that _
pap= —(1/i)log gap-

Let {p,} be a partition of unity subordinate to {U,}. Then

d(paB 6[3 éaa
where
1 1
(6.37.1) & = o Ey: p,de,, = — py % p,dlogg,,.
Therefore,

(6.38) eE)= — —1— Y d(p,dlogg,) onU,.
2ni 5
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Proposition 6.39. The Euler class is functorial, i.e., if f: N — M is aC* map
and E is a rank 2 oriented vector bundle over M, then

ef 'E)=f*e(E).

PROOF. Since the transition functions of f “'E are f*g,4, the proposition is
an immediate consequence of (6.38). a

We claim that just as in the untwisted case (6.33), the Thom class is the
cohomology class of

(6.40) D =d(p(r) - ¥) = dp(r) - ¥ — p(r)n*e .

In this formula although p(r) - ¢ is defined only outside the zero section of
E, the form @ is a global form on E since dp =0 near the zero section.
® has the following properties:

(a) compact support in the vertical direction;
(b) closed: d® = — dp(r) - dfy — dp(r)n*e = 0;
(c) restriction to each fiber has total integral 1:

2n

i do
Ty @ = f _fdp(r)~51-t=p(oo)—p(0)= L,
(V]

0

where 1,: E,— E is the inclusion of the fiber E, into E;
(d) the cohomology class of @ is independent of the choice of p(r). Sup-

pose p(r) is another function of r which is — 1 near 0 and 0 near infinity, and
which defines ®. Then

® — @ = d((p(r) — p(r)) - ¥)

where (p(r) — p(r)) - ¥ is a global form on E because p(r) — p(r) vanishes
near the zero section.

Therefore ® indeed defines the Thom class. Furthermore, if s : M— E is
the zero section of E, then

s*® = d(p(0)) - s*y — p(0)s* n*e=¢.
This proves

Proposition 6.41. The pullback of the Thom class to M by the zero section is
the Euler class.

Let {U,} be a trivializing cover for E, {p,} a partition of unity subordi-
nate to {U,}, and g,, the transition functions for E. Since
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de,
BT
dé 1

=37 tam Tt Le dloggy,
Y

(cf. (6.36.1) and (6.37.1)), we have by (6.40),

(6.42) <I>=d(p(r)£12%)+%d(p(r)w*zy:pydloggyﬂ).

This is the explicit formula for the Thom class.

Exercise 6.43. Let n : E— M be an oriented rank 2 bundle. As we saw in
the proof of the Thom isomorphism, wedging with the Thom class is an
isomorphism A® : H*(M) = H%*?(E). Therefore every cohomology class
on E is the wedge product of ® with the pullback of a cohomology class on
M. Find the class u on M such that

®? = ®An*u in H (E) .

Exercise 6.44. The complex projective space CP" is the space of all lines
through the origin in C"*!, topologized as the quotient of C"*! by the
equivalence relation

z~2z for zeC""!, 1 anonzero complex number.

Let zo, ..., z, be the complex coordinates on C"*!. These give a set of
homogeneous coordinates [z, ..., z,] on CP", determined up to multi-
plication by a nonzero complex number A. Define U, to be the open subset
of CP" given by z; # 0. {U,, ..., U,} is called the standard open cover of
CcP".

(a) Show that CP" is a manifold.
(b) Find the transition functions of the normal bundle N¢p,cp. relative
to the standard open cover of CP'.

ExAMPLE 6.44.1. (The Euler class of the normal bundle of CP! in CP?). Let
N = Ngpi,cp2 be the normal bundle of CP* in CP2. Since CP! is a compact
oriented manifold of real dimension 2, its top-dimensional cohomology is
H*CP') = R. We will find the Euler class e(N) as a multiple of the gener-
ator in H¥CP").

By Exercise 6.44 the transition function of N relative to the standard
open cover is gy, = 2,/2, at the point [z,, z,]. Let z = z,/z, be the coordi-
nate of U,, which we identify with the complex plane C. Let w = z,/z;, = 1/z
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be the coordinate on U, ~ C. Then gy, = z = 1/w on Uy n U,. The Euler
class of N is given by

1 1
e(N) = —5 d <p0d log W) onU; (by(6.38))

1

where p, is 1 in a neighborhood of the origin, and 0 in a neighborhood of
infinity in the complex z-plane U, =~ C.

Fix a circle C in the complex plane with so large a radius that Supp p, is
contained inside C. Let 4, be the annulus centered at the origin whose
outer circle is C and whose inner circle B, has radius r (Figure 6.10). Note
that as the boundary of 4,, the circle C is oriented counterclockwise while

2
%

Figure 6.10

Now

1
N)= — —
Lme( ) 2mi J;: dpo d log z,
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and

J. d(po dz/z) = lim | d(po dz/z)

[ r—0 J4,

= lim | po dz/z + J po dz/z by Stokes’ theorem
r—0 JC B,

=lim | dz/z
r—0 JB,

= —2ni,

where the minus sign is due to the clockwise orientation on B,. Therefore,
f e(N) = —1-( 2mi) =1
cPL - 2ni o

Exercise 6.45. On the complex projective space CP" there is a tautological
line bundle S, called the universal subbundle; it is the subbundle of the
product bundle CP" x C"*! given by

S={( 2)|zet}

Above each point ¢ in CP", the fiber of § is the line represented by ¢. Find
the transition functions of the universal subbundle S of CP! relative to the
standard open cover and compute its Euler class.

Exercise 6.46. Let S" be the unit sphere in R"*! and i the antipodal map on
A

i (xl9 cees Xpt 1)—’(—‘X1, [ERT) —xn+1)'

The real projective space RP" is the quotient of S* by the equivalence
relation

x~i(x), for xeR".

(@) An invariant form on §" is a form @ such that i*@ = w. The vector
space of invariant forms on S", denoted Q*(S")’, is a differential complex,
and so the invariant cohomology H*(S") of S" is defined. Show that
H*RP") ~ H*S™'.

(b) Show that the natural map H*(S")' — H*(S") is injective. [Hint : If
is an invariant form and o = dr for some form 7t on S" then w=
d(t + i*7)/2.]

(c) Give §" its standard orientation (p. 70). Show that the antipodal map
i: §"— S" is orientation-preserving for n odd and orientation-reversing for
n even. Hence, if [0] is a generator of H"(S"), then [o] is a nontrivial
invariant cohomology class if and only if n is odd.
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(d) Show that the de Rham cohomology of RP" is
R forq=0,

for0<g<n,
HYRP") =

=

for ¢ = n odd,

(=4

for g = n even.

Relative de Rham Theory

The Thom class of an oriented vector bundle may be viewed as a relative
cohomology class, which we now define. Let f : S— M be a map between
two manifolds. Define a complex Q*(f) = @, Q% f) by
Q(f) = QM) @ Q*(S),
d(w, 0) = (dw, f*w — d6).
It is easily verified that d*> = 0. Note that a cohomology class in Q*(f) is

represented by a closed form w on M which becomes exact when pulled
back to S.

By definition we have the exact sequence

0 — Q17 (5) 5 Q1(f) L QM) —0

with the obvious maps « and #: a(6) = (0, 6) and f(w, 8) = w. Clearly fis a
chain map but a is not quite a chain map; in fact it anticommutes with d,

ad = —da. In any case there is still a long exact sequence in cohomology
(6.47) e HYS)S HU() S HM) S HY(S)— - -

Claim 6.48. o* =f*.

Proor OF CLAIM. Consider the diagram

0— QYS) - (f)-> QI (M) 0
dl dl d?

0- Q" 1(S)—» Q(f) —» QM) -0
w w
(w, 0) w

Let w € Q9(M) be a closed form and (w, 8) any element of 29( f) which
maps to w. Then d(w, 8)= (0, f *& — df). So 8*[w] =[f*w — db] = f*w].
d
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Combining (6.47) and (6.48) we have

Proposition 6.49. Let f: S — M be a differentiable map between two manifolds.
Then there is an exact sequence

= H() L B S HS) S HE ()

Exercise 6.50. If f, g: S— M are homotopic maps, show that H*(f) and
H*(g) are isomorphic algebras.

If S is a submanifold of M and i: S— M is the inclusion map, we define
the relative de Rham cohomology H4M, S) to be H().

We now turn to the Thom class. Recall that if #: E— M is a rank 2
oriented vector bundle and E° is the complement of the zero section, then
there is a global angular form ¥ on E° such that dyy = —n*e, where e
represents the Euler class of E (6.37). Furthermore, if s : M — E is the zero
section, then e = s*® (Proposition 6.41). Hence, (s o n)*® = —d\, where
s o m: E®— E. This shows that (®, —) is closed in the complex Q*(s o 7)
and so represents a class in H%(s o m). Since the map s o n: E® — E is clearly
homotopic to the inclusion i: E® —» E, by Exercise 6.50, H*(s o m) = H(i).
Hence, (®, — ) represents a class in the relative cohomology H%(E, E°). The
rank n case is entirely analogous and will be taken up in Section 12.

§7 The Nonorientable Case

Since the integral of a differential form on R" is not invariant under the
whole group of diffeomorphisms of R”, but only under the subgroup of
orientation-preserving diffeomorphisms, a differential form cannot be inte-
grated over a nonorientable manifold. However, by modifying a differential
form we obtain something called a density, which can be integrated over
any manifold, orientable or not. This will give us a version of Poincaré
duality for nonorientable manifolds and of the Thom isomorphism for non-
orientable vector bundles.

The Twisted de Rham Complex

Let M be a manifold and E a vector space. The space of differential forms on
M with values in E, denoted Q*(M, E), is by definition the vector space
spanned by w ® v, where w € Q*(M), v € E, and the tensor product is over
R. This space can be made naturally into a differential complex if we let the
differential be

d(ow ® v) = (dw) ® v.

So the cohomology H*(M, E) is defined. Indeed, if E is a vector space of
dimension n, then H*(M, E) is isomorphic to n copies of Hjg(M).
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Now let E be a vector bundle. We define the space of E-valued g-forms,
QiM, E), to be the global sections of the vector bundle (A‘T3) ® E. Lo-
cally such a g-form can be written as Z w; ® e;, where w; are g-forms and ¢;
are sections of E over some open set U in M, and the tensor product is over
the C* functions on U. For these vector-valued differential forms, no na-
tural extension of the de Rham complex is possible, unless one is first given
a way of differentiating the sections of E.

Suppose the vector bundle E has a trivialization {(U,, ¢,)} relative to
which the transition functions are locally constant. Such a vector bundle is
called a flat vector bundle and the trivialization a locally constant triv-
ialization. For a flat vector bundle E a differential operator on Q*(M, E)
may be defined as follows. Let e, ..., " be the sections of E over U,
corresponding to the standard basis under the trivialization ¢,: E|jy,
U, x R". We declare these to be the standard locally constant sections, i.e.,
del = 0. Over U, an E-valued g-form s in Q%M, E) can be written as
Y o; ® e, where the w; are g-forms over U,. We define the exterior deriva-
tive ds over U, by linearity and the Leibnitz rule:

A} 0,;®e) =Y (do) .

It is easy to show that, because the transition functions of E relative to
{(U,, ¢,)} are locally constant, this definition of exterior differentiation is
independent of the open sets U,. More precisely, on the overlap U, n Uy,
if

s=Y o;@e=) 1;,Qe}
and ¢} = Y. c;jej, where the c;; are locally constant functions, then
=Y ¢
and
A} 1;®@ef) =Y (dr) @ e}

=y (cij dw) ® ef;

= 2 (do) @ e

=d} w;® )

Hence ds is globally defined and is an element of Q?* (M, E). Because d° is
clearly zero, Q*(M, E) is a differential complex and the cohomology
H*(M, E) makes sense. As defined, d very definitely depends on the triv-
ialization {(U,, ¢,)}, for it is through the trivialization that the locally
constant sections are given. Hence, d, Q*(M, E), and H*(M, E) are more
properly denoted as d,, Q¥(M, E), and H}(M, E).

ExampLE 7.1 (Two trivializations of a vector bundle E which give rise to
distinct cohomology groups H*(M, E)).
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Let M be the circle S! and E the trivial line bundle S x R! over the
circle. If E is given the usual constant trivialization ¢:

¢x,r)=r for xeS' and reR!

then the cohomology H3(S', E) = R.
However, we can define another locally constant trivialization y for E as
follows. Cover S* with two open sets U and V as indicated in Figure 7.1.

U 4

T

Figure 7.1

Let p(x) be the real-valued function on V whose graph is as in Figure 7.2.
The trivialization y is given by

r forxe U, re R,
px)r forxeV,reR.

'ﬁ(x, r) ={

The standard locally constant sections over U and V are ey(x) = (x, 1) and
ey(x) = (x, 1/p(x)) respectively. Relative to the trivialization ¥, the cohomol-
ogy HYS!, E) = 0, since the locally constant sections over U and V do not
piece together to form a global section (except for the zero section).

It is natural to ask: to what extent is the twisted cohomology H$(M, E)
independent of the trivialization ¢ for E?
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Figure 7.2

Proposition 7.2. The twisted cohomology is invariant under the refinement of
open covers. More precisely, let {(U,, ¢)}sc1 be a locally constant triv-
ialization for E. Suppose {Vs}4., is a refinement of {U,},cand the coordi-
nates maps Y on Vy < U, are the restrictions of ¢,. Then the two twisted
complexes Q}(M, E) and Q}(M, E) are identical and so are their cohomology :

H¥(M, E) = HiM, E).

Proor. Since the definition of the differential operator on a twisted complex
is local, and ¢ and y agree on the open cover {V;}, we have d, = d,.
Therefore the two complexes Q¥(M, E) and Qf(M, E) are identical. ]

Still assuming E to be a flat vector bundle, suppose {(U,, ¢,)} and
{(U,, ¥,)} are two locally constant trivializations which differ by a locally
constant comparison 0-cochain, ie., if ¢, and f/ are the standard locally
constant sections over U, relative to the trivializations ¢ and y respectively,
then

=D af}
for some locally constant function !
a, = (a¥): U,— GL(n, R).
In this case there is an obvious isomorphism
F: QiM, E)— Qi(M, E)
given by
e Z alfi.
It is easily checked that the diagram l
Q¥(M, E) —- Q3 *Y(M, E)
; Ie
Q}(M, E) —— Q3" (M, E)
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commutes. Hence F induces an isomorphism in cohomology. Next, suppose
we are given two locally constant trivializations {(U,, ¢,)} and {(V;, ¥;)}
for E, with possibly different open covers. By taking a common refinement,
which does not affect the twisted cohomology (Proposition 7.2), we may
assume that the two open covers are identical. The discussion above there-
fore proves the following.

Proposition 7.3. (a) Let E be a flat vector bundle over M, and {(U,, ¢,)} and
{(Vs, ¥p)} two locally constant trivializations for E. Suppose after a common
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms

QM, E) ~ Q}M, E)
and
H¥M, E) ~ H}(M, E).

This proposition may also be stated in terms of the transition functions
for E.

Proposition 7.3. (b) Let E be a flat vector bundle of rank n and {g,,} and {h,z}
the transition functions for E relative to two locally constant trivializations ¢
and  with the same open cover. If there exist locally constant functions

Ayt Uy— GL(n, R)
such that
gaﬂ = A’a haﬁ )‘ﬁ_ 19

then there are isomorphisms as in 7.3(a).

Proposition 74. If E is a trivial rank n vector bundle over a manifold M, with
¢ a trivialization of E given by n global sections, then

H}M, E) = HX(M, R") = @ H¥M).
i=1
PrOOF. Let ey, ..., e, be the n global sections corresponding to the standard
basis of R". Then every element in Q*(M, E) can be written uniquely as
Y. @; ® e;, where w; € Q*(M) and the tensor product is over the C* func-
tions on M. The map

Z wi®eiH(w19 ey (J),,)

gives an isomorphism of the complexes Q¥(M, E) and Q*(M, R"). O

Now let {(U,, ¢,)} be a coordinate open cover for the manifold M, with
transition functions g,5 = @, o ¢; '. Define the sign function on R' to be
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+1 for x positive
sgn(x) = 0 forx=0

-1 for x negative.

The orientation bundle of M is the line bundle L on M given by transition
functions sgn J(g,5), Where J(g,g) is the Jacobian determinant of the matrix
of partial derivatives of g,z. It follows directly from the definition that M is
orientable if and only if its orientation bundle is trivial.

Relative to the atlas {(U,, ¢,)} for M with transition functions g,s, the
orientation bundle is by definition the quotient

(Ug x RY/(x, ) ~ (x, sgn J(gap(x))0),

where (x, v) € U, x R and (x, sgn J(g,s(x))v) € U x R'. By construction
there is a natural trivialization ¢’ on L,

¢,: Ly, 3 U, x RY,

which we call the trivialization induced from the atlas {(U,, ¢,)} on M.
Because sgn J(g,p) are locally constant functions on M, the locally constant
sections of L relative to this trivialization are the equivalence classes of
{(x, v)| x € U,} for v fixed in R'.

Proposition 7.5. If ¢’ and Y’ are two trivializations for L induced from two
atlases ¢ and y on M, then the two twisted complexes Q3(M, L) and Q} (M,
L) are isomorphic and so are their cohomology H}(M, L) and H}(M, L).

Proor. By going to a common refinement we may assume that the two
atlases ¢ and Y have the same open cover. Thus on each U, there are two
sets of coordinate functions, ¢, and ¥, (Figure 7.3.).

128

Figure 7.3
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The transition functions g,; and h,; for the two atlases ¢ and ¥ respectively
are related by

gaﬂ=¢a°¢ﬂ_1
= @0y, oY oystoygogyt
= He0 hogopgt,

where u, := @, o Y71 : Y (U,) = ¢,(U,). It follows that
sgn J(g.p) = sgn J(1,) - sgn J(hy)- sgn J(up) ™.

Define a 0-chain 4,: U, - GL(1, R) by A,(x) = sgn J(u)(Y(x)) for x e U,.
Since 4,(x) = + 1, by Proposition 7.3(b)

Q5(M, L) ~ Qi(M, L). O

We define the twisted de Rham complex Q*(M, L) and the twisted de
Rham cohomology H¥(M, L) to be Q}(M, L) and H%(M, L) for any triv-
ialization ¢’ on L which is induced from M. Similarly one also has the
twisted de Rham cohomology with compact support, H¥(M, L).

REMARK. If a trivialization ¥ on L is not induced from M, then H}(M, L)
may not be equal to the twisted de Rham cohomology H*(M, L).

The following statement is an immediate consequence of Proposition 7.4
and the triviality of L on an orientable manifold.

Proposition 7.6. On an orientable manifold M the twisted de Rham cohomol-
ogy H*(M, L) is the same as the ordinary de Rham cohomology.

Integration of Densities, Poincaré Duality, and the
Thom Isomorphism

Let M be a manifold of dimension n with coordinate open cover {(U,, ¢,)}
and transition functions g,z. A density on M is an element of Q(M, L), or
equivalently, a section of the density bundle (A"T%)® L. One may think of a
density as a top-dimensional differential form twisted by the orientation
bundle. Since the transition function for the exterior power A"T% is 1/J(g,p),
the transition function for the density bundle is

1
| J(ga) |

Tig 070 =
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Let e, be the section of L |, corresponding to 1 under the trivialization
of L induced from the atlas {(U,, ¢,)}. If ¢, = (x4, ..., x,) are the coordi-
nates on U,, we define the density |dx, --- dx,| in T(U,, (A"T#)®L)) to be

|dxy - dx,| = e, dx, -+ dx,.

Locally we may then write a density as g(x,, ..., x,)|dx; - - dx,| for some
smooth function g.

Let T: R" — R" be a diffeomorphism of R" with coordinates x, ..., x,
and yy, ..., y, respectively. If w =g|dy, ... dy,| is a density on R", the
pullback of w by T is

T*o=(goT)|dy,°T)...d(y,~ T)|
=(g T|JT)||dx, ... dx,|.
The density g|dy, ... dy, | is said to have compact support on R" if g has

compact support, and the integral of such a density over R" is defined to be
the corresponding Riemann integral. Then

fT*w= (g > T)J(T)||dx, ... dx, |
R" JR"

= | gldy,...dy,| Dby the change of variable formula

»

= w.
v Rn

Thus the integration of a density is invariant under the group of all diffeo-
morphisms on R". This means we can globalize the integration of a density
to a manifold. If {p,} is a partition of unity subordinate to the open cover
{(U,, ¢,)} and w € Q%(M, L), define

f 0=y f (¢ * (p ).
M a R"

It is easy to check that this definition is independent of the choices involved.
Just as for differential forms there is a Stokes’ theorem for densities. We
state below only the weak version that we need.

Theorem 7.7 (Stokes’ Theorem for Densities). On any manifold M of dimen-
sion n, orientable or not, if € Q"~(M, L), then

f do = 0.
M

The proof is essentially the same as (3.5).
It follows from this Stokes’ theorem that the pairings

PM) ™M, L)~ R
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and
QAMRQ" M, L)~ R
given by

w/\r»—»j oAt
M

descend to cohomology.

Theorem 7.8 (Poincaré Duality). On a manifold M of dimension n with a finite
good cover, there are nondegenerate pairings

HM) @ HI"9YM,L)—> R
R
and

HYM) ® H" %M, L) > R.
R

Proor. By tensoring the Mayer-Vietoris sequences (2.2) and (2.7) with
(M, L) we obtain the corresponding Mayer-Vietoris sequences for twisted
cohomology. The Mayer-Vietoris argument for Poincaré duality on an
orientable manifold then carries over word for word. O

Corollary 7.8.1. Let M be a connected manifold of dimension n having a finite
good cover. Then
HY (M) = {R ifM ls.compact orientable
0 otherwise.
Proor. By Poincaré duality, H'(M) = H’(M, L). Let {U,} be a coordinate
open cover for M. An element of H)(M, L) is given by a collection of
constants f, on U, satisfying

Jo = (sgn J(gup)) fg.-

If f, = 0 for some o, then by the connectedness of M, we havef, = 0 for all
a. It follows that a nonzero element of H(M, L) is nowhere vanishing.
Thus, HY(M, L) # 0 if and only if M is compact and L has a nowhere-
vanishing section, i.e., M is compact orientable. In that case,

H(M, L) = H(M) = R. ]

Exercise 7.9. Let M be a manifold of dimension n. Compute the cohomol-
ogy groups H"(M), H'(M, L), and HXM, L) for each of the following four
cases: M compact orientable, noncompact orientable, compact nonorient-
able, noncompact nonorientable.

Finally, we state but do not prove the Thom isomorphism theorem in all
orientational generality. Let E be a rank n vector bundle over a manifold
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M, and let {(U,, ¢,)} and g, be a trivialization and transition functions for
E. Neither E nor M is assumed to be orientable. The orientation bundle of
E, denoted ofE), is the line bundle over M with transition functions
sgn J(g,p). With this terminology, the orientation bundle of M is simply the
orientation bundle of its tangent bundle T),. It is easy to see that when E is
not orientable, integration along the fiber of a form in Q¥%(E) does not yield
a global form on M, but an element of the twisted complex Q*(M, o(E)).

Theorem 7.10 (Nonorientable Thom Isomorphism). Under the hypothesis
above, integration along the fiber gives an isomorphism

n, s HY*(E) 3 H*M, o(E)).

Exercise 7.11. Compute the twisted de Rham cohomology H*(RP", L).



CHAPTER II
The Cech-de Rham Complex

§8 The Generalized Mayer—Vietoris Principle

Reformulation of the Mayer—Vietoris Sequence
Let U and V be open sets on a manifold. In Section 2, we saw that the
sequence of inclusions
UuvVe«U][VEUNY
gives rise to an exact sequence of differential complexes
0 QXU U V)- QYUY Q*(V) - QU N V) > 0

called the Mayer—Vietoris sequence. The associated long exact sequence
o> HYU U V)% HYU) @ HY(V) % HYU n MNEH U LY -

allows one to compute in many cases the cohomology of the union U u V
from the cohomology of the open subsets U and V. In this section, the
Mayer-Vietoris sequence will be generalized from two open sets to count-
ably many open sets. The main ideas here are due to Weil [1].

To make this generalization more transparent, we first reformulate the
Mayer-Vietoris sequence for two open sets as follows. Let U be the open
cover {U, V}. Consider the double complex C*QU, Q*) = @ KP?=
@ CP(U, Q%) where

K%1=CoU, Q) = Q(U) ® QY(V),
K1 =C'U, Q)=QU n V),
Kp' a = 0’ p 2 2‘

89
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a1 equyea(v) | Q\U ~ 1)
QUU)@® Q°(V) | Q%U n V)

0 1

q

3 . .

2| QQUYD QX(V) | QXU n V)
1

0

3

—

This double complex is equipped with two differential operators, the
exterior derivative d in the vertical direction and the difference operator ¢ in
the horizontal direction. Of course, J is 0 after the first column. Because d
and ¢ are independent operators, they commute.

In general given a doubly graded complex K* * with commuting differ-
entials d and d, one can form a singly graded complex K* by summing
along the antidiagonal lines

q1

2
K'= @ Kr¢ 1

AN
ptq=na 0 \
0

L1
1 23 p

and defining the differential operator to be
D =D+ D" with D’ =6, D" = (—1)°d on K*4,

REMARK ON THE DEFINITION OF D.

‘]

If D were naively defined as D =d + ¢, it would not be a differential oper-
ator since D? = 2d6 # 0. However, if we alternate the sign of d from one
column to the next, then as is apparent from the diagram above,
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D*=d*+6d—dé +6*=0.

In the sequel we will use the same symbol C*(U, Q*) to denote the
double complex and its associated single complex. In this setup, the Mayer-
Vietoris principle assumes the following form.

Theorem 8.1. The double complex C*(U, *) computes the de Rham cohomol-
ogyof M:
Hp{C*U, Q*)} ~ Hpx(M).
PROOF. In one direction there is the natural map
r: Q¥M) - Q¥U) D Q¥ (V) = C*Y, Q%)

given by the restriction of forms. Our first observation is that r is a chain
map, i.e., that the following diagram is commutative:

Q*(M) - C*(U, Q%)
d| [D
QM) — C*(U, Q).
This is because
Dr = (6 +(—1)" d)r [here p=10]
=dr
=rd.
Consequently r induces a map in cohomology
r* : Hyx(M)— Hp{(C*U, Q¥)}.
q

®o

p

A g-cochain o in the double complex C*(U, Q*) has two components
a=ao+a1, aOEKO’q, oy EKl’q—l.

By the exactness of the Mayer—Vietoris sequence there exists a g such that
8p = ;. With this choice of B, « — DB has only the (0, g)-component. Thus,
every cochain in C*U, Q*) is D-cohomologous to a cochain with only the top
component.
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We now show r* to be an isomorphism.

Step 1. r* is surjective.

By the remark above we may assume that a given cohomology class in
Hp{C*(U, Q*)} is represented by a cocycle ¢ with only the top component.
In this case

D=0 ifand only if d¢=0d¢=0.
So ¢ is a global closed form.
Step 2. r* is injective.
Suppose r(w) = D¢ for some cochain ¢ in C*U, Q*). Again by the

remark above we may write ¢ = ¢’ + D¢”, where ¢’ has only the top
component. Then

Hw) = D¢’ = d¢', 8¢’ = 0.

So w is the exterior derivative of a global form on M.

Generalization to Countably Many Open Sets and Applications

Instead of a cover with two open sets as in the usual Mayer-Vietoris se-
quence, consider the open cover U = {U,},., of M, where the index set J is
a countable ordered set. Of course J may be finite. Denote the pairwise
intersections U, n Uy by U,,, triple intersections U, N Ug N U, by U,,,,
etc. There is a sequence of inclusions of open sets

0 %o

«— —
« 2 ...
M*_I_[ Uso 8 [_[ Usgoar & I_I Usoaraz —

«— ag<a) 8, a0<ai<az
—

where 0; is the inclusion which “ignores” the ith open set; for example,
00:U,

This sequence of inclusions of open sets induces a sequence of re-
strictions of forms

%122 Ualdz

do
3o -

QM) S T[0U) %, [[9Uan)p 1 W) 3

—> ag<a ag<a;<a
0<ay 5 %0<e1<a
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where §,, for instance, is induced from the inclusion

a0 : ]_I Uaﬂy i Uﬂv
and therefore is the restriction
0o : Q¥(Up,) —» ﬂ Q*(U,g,)-

We define the difference operator é : [ [Q*(U,,4,) = [IQ*(Uyq oy 4,) to be the
alternating difference 65 — 6; + J,. Thus

(9 Caras — Sapar + Gup er-

More generally the difference operator is defined as follows.

Definition 8.2. If o e [[QY(U,,,.,,), then ® has “components” w,, , €
Qq(Uuo...a,) and

p+1
(5w)ao...a,+1 =iz:o(_ l)‘wao...m...a,+ 12

where on the right-hand side the restriction operation to U
suppressed and the caret denotes omission.

ao...ap+ DAS been

Proposition 8.3. 62 = 0.

PRrOOF. Basically this is true because in (52(1))‘,,0.“,,‘”2 we omit two indices
a;, o; twice with opposite signs. To be precise,

(62w)ao..,ap+z = z (— 1)'(5(0)10...04..4,4.2

= Z(— l)i(_ l)jwao...dj...dg...a,+z

Jj<i
+ .Zi('—l)l(_l)j-lwao...di...dj...a,wz
Jj>
=0.
O

Convention. Up until now the indices in w,,,_,, are all in increasing order
oo < ... <a,. More generally we will allow indices in any order, even with
repetitions, subject to the convention that when two indices are inter-
changed, the form becomes its negative:

w...a...ﬂ... = - w...ﬂ...a

In particular a form with repeated indices is 0. In the following exercise the
reader is asked to check that this convention is consistent with the defini-
tion of the difference operator é above.

Exercise 8.4. Suppose a < . Then (éw) 4. ,. may be defined either as
—(0w).. ,...p5... or by the difference operator formula (8.2). Show that these

two definitions agree.



94 Il The Cech—de Rham Complex

Proposition 8.5. (The Generalized Mayer—Vietoris Sequence). The sequence
0 — Q*(M) 5 [JO*(U,) 5 1O (Ueous) 2 [T Usguier) > -

is exact; in other words, the 6-cohomology of this complex vanishes ident-
ically.

ProoF. Clearly QM) is the kernel of the first § since an element of
[19*(U,,) is a global form on M if and only if its components agree on the
overlaps.

Now let {p,} be a partition of unity subordinate to the open cover
U ={U,}. Suppose o e [[Q*(U,,. ) is a p-cocycle. Define a (p — 1)-
cochain 7 by

Tao...a,,_x = Z Pa waao...a,-r
a

Then
(51)«10..4, = Z (— l)irao...ﬁl...a,,

i
= 2(_ 1) PaWaqg...4...ap"
i,a
Because wis a COCYC]C,

(6w)aao...a, = wao...a, + ; ('— 1)i+1wuo...&x...z, =0.

So
(51)10..4, = Z Pe ; (_ l)iwaao...ﬁ;...a,

= Z pawao...ap
a

= wao..‘a,'

This shows that every cocycle is a coboundary. The exactness now follows
from Proposition 8.3. O

In fact, the definition of 7 in this proof gives a homotopy operator on the
complex. Write Ko for t:
(86) (Kw)ao...ap-l = Z Pe waao...a,-x'
Then ‘
(5Kw)ao...¢, = Z (_ l)i(Kw)ao...d.‘...a,
= Z (= l)ipa Wyaq...4...ap
(Kéw)ao...ap = Z pa(éw)aao...ap
= (Z pa)wao...a, + Z (_ 1)i+lpawaao...di...ap

= wao...a, - (5Kw)ao...ap'
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Therefore, K is an operator from HQ*(U ao...a,) 1O HQ*(U,O.__,‘,_I) such that
8.7) 0K + Ké = 1.

As in the proof of the Poincaré lemma, the existence of a homotopy oper-
ator on a differential complex implies that the cohomology of the complex
vanishes.

For future reference we note here that if ¢ is a cocycle, then by (8.7),
0K ¢ = ¢. So on cocycles K is a right inverse to 6. Given such ¢, the set of all
solutions ¢ of 8¢ = ¢ consists of K¢ + d-coboundaries.

The Mayer-Vietoris sequence may be arranged as an augmented double
complex

'

0__’92(M)__r_’ KO,Z K1,2
0 QM) | K*' | K"!
0 —Q°(M)— | K*° | K!.°

where K?? = CP(U, Q) = [-[Q"(Uao_“,p) consists of the “p-cochains of the
cover U with values in the g-forms.” The horizontal maps of the double
complex are the difference operators & and the vertical ones the exterior
derivatives d. As before, the double complex may be made into a single
complex with the differential operator given by

D=D +D"=6+(-17d
A D-cocycle is a string such as ¢ = a + b + ¢ with

q
da=0, 0
1
éa= +db ap
b= +dc En
dc = 0, b0
p

(To be precise we should write da = —D"b, 6b = — D’c) So a D-cocycle
may be pictured as a “zig-zag.”
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A D-coboundary is a string such as ¢ =a + b + c in the figure below,
where a = da; + D"a,, etc.

ql
0
+
a,r a
+
a+ b
+
aypc
+
a4‘*f"0
p
The double complex

C*U, Q%= @ CU, Q9
p.q20
is called the éech—dg Rham complex, and an element of the Cech—dg Rham
complex is called a Cech—de Rham cochain. We sometimes refer to a Cech—de
Rham cochain more simply as a D-cochain.

The fact that all the rows of the augmented complex are exact is the key
ingredient in the proof of the following.

Proposition 8.8 (Generalized Mayer—Vietoris Principle). The double com-
plex C*(U, Q*) computes the de Rham cohomology of M ; more precisely, the
restriction map r : Q*(M) — C*U, Q*) induces an isomorphism in cohomol-
ogy:

r* : Hja(M) — Hp{C*U, Q*)}.

PRrOOF. Since Dr = (8 + d) r = dr = rd, r is a chain map, and so it induces a
map r* in cohomology.

Step 1. r* is surjective.

* * 0

sor ething+—* —— 0 0

p p

Let ¢ be a cocycle relative to D. By d-exactness the lowest component of
¢ is 0 of something. By subtracting D(something) from ¢, we can remove
the lowest component of ¢ and still stay in the same cohomology class as ¢.
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After iterating this procedure enough times we can move ¢ in its cohomol-
ogy class to a cocycle ¢’ with only the top component. ¢’ is a closed global
form because d¢’' = 0 and d¢’ = 0.

Step 2. r* is injective.

q q
0— QM) 0— QM) >
00— QM)— | = 0—- QM) — | ¢

p p

If Hw) = D¢, we can shorten ¢ as before by subtracting boundaries until
it consists of only the top component. Then because d¢ is 0, it is actually a
global form on M. So w is exact. O

The proof of this proposition is a very general argument from which we
may conclude: if all the rows of an augmented double complex are exact, then
the D-cohomology of the complex is isomorphic to the cohomology of the
initial column.

It is natural to augment each column by the kernel of the bottom d,
denoted C*(U, R). The vector space CP(U, R) consists of the locally constant
functions on the (p + 1)-fold intersections U

@o...ap*

0— QZ(M)—'»q [1exw,,)
0— QM) — | [[Q'(U,)
0— QM) - | [0 |TI9Wapey) | TIRW g1 )
T T
C°(1TI, R) — C‘(LT[, R) — CZ(LT[, R) —

0 0 0
The bottom row
', R) > iy, R) 5 cXU, R) S

is a differential complex, and the homology of this complex, H*(U, R), is
called the Cech cohomology of the cover U. This is a purely combinatorial
object. Note that the argument for the exactness of the generalized Mayer-
Vietoris sequence breaks down for the complex C*(U, R), because here the
cochains are locally constant functions so that partitions of unity are not
applicable.

If the augmented columns of the complex C*(U, Q*) are exact, then the
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same argument as in (8.8) will yield an isomorphism between the Cech
cohomology and the cohomology of the double complex

H*U, R) > Hy{C*U, Q%)},

and consequently an isomorphism between de Rham cohomology and Cech
cohomology

H3:(M) ~ H*(U, R).

Now the failure of the p™ column to be exact is measured by the coho-
mology groups
Il HWU,,...)
q21
20 <***<ap
So if the cover is such that all finite nonempty intersections are contractible,

e.g., a good cover, then all augmented columns will be exact. We have
proven

Theorem 8.9. If W is a good cover of the manifold M, then the de Rham
cohomology of M is isomorphic to the Cech cohomology of the good cover

HE.(M) = H¥L, R).

Let us recapitulate here what has transpired so far. First, the basic
sequence of inclusions

P
M~U€EUy,E Ugy &
gives rise to the diagram
differential
geometry of 0 — Q*(M) - C*U, Q%)
forms
T
U, R)
T
0
combinatorics

of the cover

Along the left-hand side is the differential geometry of forms on M, along
the bottom is the combinatorics of the cover U = {U,}, and in the double
complex itself the two are mixed. As the complex is the generalized Mayer—
Vietoris sequence, the augmented rows are exact, for any cover. It follows
that the de Rham cohomology of M is always isomorphic to the cohomol-
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ogy of the double complex:
H3g(M) ~ Hp {C*U, Q%)}.

If in addition U is a good cover, then by the Poincare lemma the
augmented columns are exact. In that case the Cech cohomology of the
cover is also isomorphic to the cohomology of the double complex:

H*QI, R) ~ Hy {C*U, Q%)}.

Hence there is an isomorphism between de Rham and Cech. This result
provides us with a way of computing the de Rham cohomology by means
of combinatorics, since from Section 5 we know that every manifold has a
good cover. All three complexes here can be given product structures, in
which case the isomorphisms between them are actually isomorphisms of
algebras, as will be shown in (14.28).

A priori there is no reason why different covers of M should have the
same Cech cohomology. However, it follows from Theorem 8.9 that

Corollary 8.9.1. The Cech cohomology H*(U, R) is the same for all good
covers W of M.

If a manifold is compact, then it has a finite good cover. For such a cover
the Cech cohomology H*(!, R) is clearly finite-dimensional. Thus,

Corollary 8.9.2. The de Rham cohomology H¥x(M) of a compact manifold is
finite-dimensional.

In fact,

Corollary 8.9.3. Whenever M has a finite good cover, its de Rham cohomology
H¥gr(M) is finite-dimensional.

Both the proof here and the induction argument in Section 5 of the finite
dimensionality of the de Rham cohomology rest on the Mayer-Vietoris
sequence, but they are otherwise independent of each other.

§9 More Examples and Applications of the
Mayer-Vietoris Principle

In the previous section we used the Mayer-Vietoris principle to show the
isomorphism of the de Rham cohomology of a manifold and the Cech
cohomology of a good cover; from this, various corollaries follow. In this
section, after some examples in which the combinatorics of a good cover is
used to compute the de Rham cohomology, we give an explicit isomor-
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phism from Cech to de Rham: given a Cech cocycle, we construct the
corresponding global closed differential form by means of a collating for-
mula (9.5) based on the homotopy operator K of (8.6). To conclude the
section, we give as another application of the Mayer—Vietoris principle a
proof of the Kiinneth formula valid under the hypothesis that one of the
factors has finite-dimensional cohomology.

Examples: Computing the de Rham Cohomology from the
Combinatorics of a Good Cover

Let W ={U,} be an open cover of a manifold M. The nerve of U is a
simplicial complex constructed as follows. To every open set U,, we associ-
ate a vertex a. If U, n U, is nonempty, we connect the vertices o and f
with an edge. If U, n Uy n U, is nonempty, we fill in the face of the
triangle afiy. Repeating this procedure for all finite intersections gives the
nerve of U, denoted N(M). For the basics of simplicial complexes, see Croom

[1].

ExaMpLE 9.1 (The circle). Let U = {U,, U, U,} be the good cover of the

circle as shown in Figure 9.1. The Cech complex has two terms:
CCU,R=RDPRD R={(wo, w;, )| @, is a constant on U,},
C'U,R) =R @D R @D R={(o1, Moz, N12) | s is a constant on U,g}.

U,

U,

U,
Figure 9.1

The coboundary 6 : C° — C' is given by (§w),; = w; — @,. Therefore,
ker 6 = {(@wo, ;, 0;)|wo = w; = w,} =R
and
H°(SY) = R.
Since im § = R?, H'(S') = R3/im 6 = R.
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ExaMPLE 9.2 (A nontrivial 1-cocycle on the circle). If a 1-cocycle = (104,

Moz, Ni2) is a coboundary, then #7o; — 792 + 712 =0. Son=(1,0,0) is a
nontrivial 1-cocycle on the circle.

ExAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2 with
three open sets as in Figure 9.3. Together with the upper hemisphere Uy,
this gives a good cover of the entire sphere. The nerve of the cover is the
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has

%

Figure 9.2

@c
&

3
Figure 9.3

VAN

Figure 9.4
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three terms:

o, R) S caRr S CULR)
I I |

R@R@R@‘R RORDRORGRER RORDOROR

1 2 o1 02 03 12 13 23 012 013 023 123
ker 8o = {(wo, Wy, W2, ¥3)|Wo =Wy =W, = w3} =R
So im 8, = R® and H%S?) =R. If 5 is in ker d,, then n is completely
determined by 741, 702, and 103 . Therefore ker 6, = R® and
HY(S? = ker §,/im 8, = 0.
Since im 8, = C'/ker 6, = R3,
H*(S?) = R%/im &, = R.

Explicit Isomorphisms between the Double Complex and de Rham
and Cech

We saw in Proposition 8.8 that the Cech-de Rham complex C*(U, Q¥)
and the de Rham complex Q*(M) have the same cohomology. Actually,
what is true is that these two complexes are chain homotopic. To be more
precise, there is a chain map

(9.4) [ C*U, Q%) — Q*(M)
such that

(@) for=1,and
(b) r o fis chain homotopic to the identity.

We may think of f as a recipe for collating together the components of a
Cech—-de Rham cochain into a global form. The not very intuitive formulas
below were obtained, after repeated tries, by a careful bookkeeping of the
inductive steps in the proof of Proposition 8.8.

Proposition 9.5 (The Collating Formula). Let K be the homotopy operator
defined in (8.6). If a = ZLO o; is an n-cochain and Do = § = Z’i':é i, then

n n+1
f@= 3 (—=D"Kya;— ) K(—D"K)~'Be C°,Q"
i=o i=1
is a global form satisfying the properties above. The homotopy operator
L: CYU, Q%) — C*U, Q¥)
suchthat 1 —r o f= DL + LD is given by
Lo = Z (Lac)p,

p=0
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where

(La),= Y K(=D"K)~*Vg e CPU, Q"7 177,

i=p+1

Bo
% | By
a | B2
oz | B3

a, ﬂn+l

REMARK. To strip away some of the mysteries in the expression for f(a), it
may be helpful to observe that the operator D"K sends an element of
cr, Q9 into CP~ U, Q1*Y), so that (D"K)'«; and K(D"K)'~ !B, are col-
lections of n-forms on the open sets U,. The collating formula says that a
suitable linear combination of these local n-forms, with +1 as coefficients,
is the restriction of a global form.

The proof of Proposition 9.5 requires the following technical lemma.

Lemma 9.6. Fori> 1,
5(D//K)i = (D//K)i 5 . (D//K)i—— lD".

ProOF OF LEmMMA 9.6. Since & anticommutes with D” and since
0K + Ké =1,

S(D"KXD'K) ™! = —D"SK(D"K) ™!
—D"(1 — K8)(D"K) ™!
(D"K)8(D"K)' 1.
So we can commute D”K and 8 until we reach (D"K)'~'8(D"K). Then,
8(D"K)' = (D"K)' ~'6(D"K)
= —(D"K)"~'D"(1 - K9)
= —(DKY~'D" + (D'K)S. O

PROOF OF PROPOSITION 9.5. To show that f() is a global form, we compute
df («). Using the lemma above and the fact that do; + Doy = Bi+1, this is
a straightforward exercise which we leave to the reader.
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Exercise 9.7. Show that 6f (x) = 0.
Next we check that fis a chain map.
nt+1l

f(Dw) =f(B) = ;0(— 1Y(D"K)B.

n+1

df (@) = D"f (o) = o + _;(— 1)(D"K)'B;.
So
f (Do) = df ().

The verification of Property (a) is easy, since if « is a global form, then
o = oy and

fer@=f@)=0a=a
Property (b) follows from the fact that
l—rof=DL+ LD.

As its verification is straightforward and not very illuminating, we shall
omit it. The skeptical reader may wish to carry it out for himself. Apart
from the definitions, the only facts needed are Lemma 9.6 and the chain-
homotopy formula (8.7). d

REMARK. Actually the existence of the chain-homotopy inverse f and the
homotopy operator L is guaranteed by a general principle in the theory of
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. 11,
p. 167]).

We can now give an explicit description of the various isomorphisms
that follow from the generalized Mayer-Vietoris principle. For example, by
applying the collating formula (9.5), we get

Proposition 9.§ (Explicit Isomorphism between de Rham and Cech). Ify €
C"(U, R) is a Cech cocycle, then the global closed form corresponding to it is
given by f(n) = (—1)"(D"K)" .

ExaMPLE 9.9. Let U be a good cover of the circle S'. We shall construct
from a generator of the Cech cohomology H'(Y, R) a differential form
representing a generator of the de Rham cohomology H5x(S).

As we saw in Example 9.2, a nontrivial 1-cocycle on S* is

1= (Mo1> Noz> N12) = (1, 0, 0).
If {p, } is a partition of unity, then

Kn=(—p1; po, 0).
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So the generator —D”Kn of Hpg (S') is represented by —d(—p,), a bump
form on U, n U, with total integral 1.

Exercise 9.10. The real projective plane RP? is obtained by identifying the
boundary of a disc as shown in Figure 9.5. Find a good cover for RP? and

Figure 9.5

compute its de Rham cohomology from the combinatorics of the cover.
One possible good cover has the nerve depicted in Figure 9.6.

Figure 9.6

Exercise 9.11. Let Figure 9.7 be the nerve of a good cover U on the torus,
where the arrows indicate how the vertices are ordered. Write down a
nontrivial 1-cocycle in C*(U, R).

The Tic-Tac-Toe Proof of the Kiinneth Formula

We now apply the main theorems of the preceding section to give another
proof of the Kiinneth formula. This proof, admittedly more involved in its
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A
Y
\

/
Y
[

> Lag

Figure 9.7

Y

construction than the Mayer-Vietoris argument of Section 5, is a prototype
for the spectral sequence argument of Chapter III. It will also allow us to
replace the requirement that M has a finite good cover by the slightly
weaker hypothesis that F has finite-dimensional cohomology.

Before commencing the proof we make some general remarks about a
technique for studying maps. Let #:E — M be a map of manifolds. A
cover U on M induces a cover 7~ '/ on E, and we have the inclusions

Eelln'V, el Uy E

71.'

M(_]__[Ua tuUaﬂ E

In general U, n Uy # ¢ is not equivalent to U, n n~'Uy # ¢. How-
ever, if # is surjective, then the two statements are equivalent, so that in this
case the combinatorics of the covers U and n~'U are the same. The double
complex of the inverse cover computes the cohomology of E, which can
then be related to the cohomology of M, because the inverse cover comes
from a cover on M. This idea will be systematically exploited throughout
this chapter and the next.

A quick example of how the inverse cover ™ 'U may be used to study
maps is the following. Note that although the inverse image of a good cover
is usually not a good cover, for a vector bundle n : E— M the “goodness”
of the cover is preserved. Since the de Rham cohomology is determined by
the combinatorics of a good cover, this implies that

H}R(E) ~ Hpg(M).
Of course, this also follows from the homotopy axiom for the de Rham
cohomology (Corollary 4.1.2.2).

Proposition 9.12 (Kiinneth Formula). If M and F are two manifolds and F

has finite-dimensional cohomology, then the de Rham cohomology of the prod-
uct M x Fis

H*(M x F) = H¥M) ® H*(F).
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ProoOF. Let U = {U,} be a good cover for M and n: M x F— M the pro-
jection onto the first factor. Then n™ U = {n~'U,} is some sort of a cover
for E = M x F, though in general not a good cover. There is a natural map

C*(n ™', Q%)
ﬂ*

CHU, Q%)

which pulls back differential forms on open sets. Choose a basis for H*(F),
say {[w,]}, and choose differential forms w, representing them. These may
be used to define a map of double complexes

CHn~ ', Q%)

H*(F) ® C*U, Q%)
by
(o] ® ¢) = p*w,An*¢
where p is the projection on the fiber

E-P .F

T
M.

Since H*(F) is a vector space, H*(F) ® C*{, Q*) is a number of copies of
C*(U, Q*) and the differential operator D on the double complex C*(, Q%)
induces an operator on H*(F) ® C*U, Q*) whose cohomology is

H%F) ® Hp{C*(¥, Q%)} = H¥(F) ® H*(M).
Since the D-cohomology of C*(n ™ 'U, Q*) is H*(E), if we can show that
C*(n™'U, Q*)

i

H*(F) ® C*(U, Q%)

induces an isomorphism in D-cohomology, the Kiinneth formula will
follow.
The proof now divides into two steps:

Step 1.
For a good cover U, the map ny induces an isomorphism in H, of these
complexes.
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Step 2.

Whenever a homomorphism f:K— K' of double complexes induces
H sisomorphism, it also induces Hp-isomorphism. (By a homomorphism of
double complexes, we mean a vector-space homomorphism which preserves
bidegrees and commutes with d and é.)

PROOF OF STEP 1. The p'* column CP(n~'U, Q¥*) consists of forms on the
(p + 1)-fold intersections Lin~'U,, . and CP(U, Q*) consists of forms on
1U,, ..,,. The d-cohomology of C?(z " ', Q) s

9.121)  [[H¥®n 'U,,...) > H* (AQ[] H*U,..q),

the isomorphism being given by the wedge product of pullbacks. So =
induces an isomorphism of the d-cohomology of C*(n™'U, Q¥ and
H*(F) ® C*U,Q*). 0

Exercise 9.13. Give a proof of Step 2.

REMARK. This argument for the Kiinneth formula also proves the Leray-
Hirsch theorem (5.11), but again instead of assuming that M has a finite
good cover, we require the cohomology of F to be finite-dimensional. If
both M and F have infinite-dimensional cohomology, the isomorphism in
(9.12.1) may not be valid.

The following example shows that some sort of finiteness hypothesis is
necessary for the Kiinneth formula or the Leray-Hirsch theorem to hold.

ExaMPLE 9.14 (Counterexample to the Kiinneth formula when both M and
F have infinite-dimensional cohomology). Let M and F each be the set Z*
of all positive integers. Then

H°M x F) = {square matrices of real numbers (), i, j € Z*}.

But H°(M) ® H'(F) consists of finite sums of matrices (a;;) of rank 1. These
two vector spaces are not equal, since a finite sum of matrices of rank 1 has
finite rank, but H°(M x F) contains matrices of infinite rank.

§10 Presheaves and Cech Cohomology

Presheaves

The functor Q*( ) which assigns to every open set U on a manifold the
differential forms on U is an example of a presheaf. By definition a presheaf
& on a topological space X is a function that assigns to every open set U in
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X an abelian group #(U) and to every inclusion of open sets
iv:V-oU
a group homomorphism, called the restriction,
Fliv) : F(U) - F(V)
satisfying the following properties:

(a) #(iy) = identity map
(b) transitivity: Z(i))) F(i}) = F(i¥).

The restriction #(i}) : #(U) — F(V) is often denoted py. A homomorphism
of two presheaves, f: F — ¥, is a collection of maps f, : F(U) —» 4(U)
which commute with the restrictions:

v
F(U) — 9(U)

Py | Loy

F(V) —9V)
Sv

Let Open(X) be the category whose objects are the open sets in X and
whose morphisms are inclusions of open sets. In functorial language, a
presheaf is simply a contravariant functor from the category Open(X) to the
category of Abelian groups, and a homomorphism of two presheaves,
f:F — %,is a natural transformation from the functor & to the functor 4.

We define the constant presheaf with group G to be the presheaf # which
associates to every open set U the locally constant functions: U — G, and to
every inclusion of open sets ¥V < U the restriction of functions: #(U) - (V).

ExaMPLE. By abuse of notation, the constant presheaf with group R will also
be denoted by R.

ExaMPLE 10.1. Let n : E — M be a fiber bundle with fiber F. Define a presheaf
H?on M by #%U) = HYn"'U), and if ¥V < U is an inclusion, let

p¥: Hi(n~'U) » Hi(n V)

be the natural restriction map. For U contractible, z7*U ~ U x F, so by the
Kiinneth formula

HYU) ~ HY(U x F) ~ H4F).
Moreover, if ¥V < U is an inclusion of contractible open sets, then

pY: Hin~'U) -» Hn~'V) is an isomorphism. The presheaf #" is an example
of a locally constant presheaf on a good cover, to be defined in Section 13.
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Cech Cohomology

Let ¥ ={U,},.; be an open cover of the topological space X. The 0-
cochains on U with values in the presheaf & are functions which assign to
each open set U, an element of #(U)), ie., C°U, F)=11,.; #(U,). Sim-
ilarly the 1-cochains are elements of

', #) = [| #U, n Up)
a<p

and so on.
The sequence of inclusions

%0 «—
Ua 1{_- Uaﬂ :: e
gives rise to a sequence of group homomorphisms
—3
[#FW) 3 [FULH 3.
We define 8: C?(U, %) - CP*}{(U, &) to be the alternating difference of
the #(9d,)’s; for example,

8 :C°U, F) — C'U, F)

is given by
0 = F(0o) — F(0,).
In general
5:CPU, F) — CP* YU, F)
is given by

8=F(0o)— F @)+ + (=1 F(0,4+.)
Explicitly, if we CP(U, F), then

pt+1 .
(10.2) (5(0)‘:0,4.%“ = i=20 (_ l)lwao...d‘...apﬂi

where on the right-hand side the restriction of w,, . 4.4y, O Usg .. 0., i8
suppressed. It follows from the transitivity of the restriction homomorphism
that 62 = 0 (proof as in Proposition 8.3). Thus C*(Ul, &%) is a differential
complex with differential operator 6. The cohomology of this complex,
denoted by H, C*U, &) or H*U, &), is called the Cech cohomology of the
cover U with values in #.

REMARK 10.3. If & is a covariant functor from the category Open(X) to the
category of Abelian groups, and U is an open cover of X, one can define
analogously a chain complex C (U, %) and its homology H (!, &). Apart
from the direction of the arrows, the only difference from the case of a
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presheaf is in the definition of the coboundary operator 6 : C, (1, #) —
C,- (11, #), which is now given by

(Sw)a()"'up-l = Zwuao‘..al,_l E?(Uao'”%_l).

One verifies easily that this § also satisfies 62 = 0. The functor #? which

associates to every open set U on a manifold the compact cohomology
H4U) is covariant.

Because of the antisymmetry convention on the subscripts, in this for-
mula there is no sign in the sum. Of course, if we had written each term
Way ...a,, With the subscript o inserted in the i-th place, then there would be
a Sigﬂ: Zl’ (_ l)lwao @ Bp—-1°

Returning to the discussion of the Cech cohomology of a presheaf %,
recall that the cover B = (V)5 ; is a refinement of the cover U = (U, }, <,
written W< @B, if there is a map ¢:J — I such that V,C U, 4, The
refinement ¢ induces a map

¢*: CUU, F) — CYB, F)
in the obvious manner:

(6%0)(Vo...8,) = ©(Upcp...ocp)-

Lemma 10.4.1. ¢* is a chain map, i.e., it commutes with 6.

PrOOF.  (8(@* ) (Vp,...p,.0) = 2= V(@ 0NV}, 5,.5,.)

= Y=V Ugg,..d5)..46,.)
(@ * 50))(V;:0 e Bo+ 1) = (560)(U¢(ﬁo) v &(Bg+ n)

= Z( - l)i‘“(Uwo) o $TBD .. BBgs 1)
O
Lemma 10.4.2. Given U = {U,},.; an open cover and B = {Vy}z., a re-
finement, if ¢ and \y are two refinement maps: J — I, then there is a homotopy
operator between ¢* and y*.
PRrOOF. Define K : CY(Ul, #) —» C1~ (B, F) by
(Ko)(Vy, .. Ba- J= Z( - l)i“’(Umpo) e GBI .. W(Bq- W
Exercise 10.5. Show that

v* — ¢* = 0K + K6.
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A direct system of groups is a collection of groups {G,},, indexed by a
directed set I such that for any pair a < b there is a group homomorphism
f&:G,— G, satisfying

(1) f2=identity,
Q) fe=fbefpifa<b<e

On the disjoint union 1IG; we introduce an equivalence relation ~ by
decreeing two elements g, in G, and g, in G, to be equivalent if for some
upper bound ¢ of a and b, we have f(g,) =fb(g,) in G.. The direct limit
of the direct system, denoted by lim,; G,, is the quotient of LIG; by the
equivalence relation ~ ; in other words, two elements of L1G; represent the
same element in the direct limit if they are “eventually equal”’. We make
the direct limit into a group by defining [g,] + [g,] = [f(9.) + f2(g,)],
where [g,] is the equivalence class of g,,.

It follows from the two lemmas above that if U< B, then there is a
well-defined map in cohomology

H*(u, F)> H*B, %),

making { H*(U, #)}, into a direct system of groups. The direct limit of
this direct system

H*X, F) = lim H*U, %)
u
is the Cech cohomology of X with values in the presheaf % .

Proposition 10.6. Let R be the constant presheaf on a manifold M. Then the

Cech cohomology of M with values in R is isomorphic to the de Rham
cohomology.

ProOF. Since the good covers are cofinal in the set of all covers of M
(Corollary 5.2), we can use only good covers in the direct limit
H*(M, R) = lim H*(U, R).
u
By Theorem 8.9,
H*U, R) >~ Hpp(M)

for any good cover of M. Moreover, it is easily seen that this isomorphism is
compatible with refinement of good covers. Therefore, there is an isomorphism

H*M, R) >~ H}p(M).
J

Exercise 10.7 (Cohomology with Twisted Coefficients). Let # be the presheaf
on S' which associates to every open set the group Z. We define the
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restriction homomorphism on the good cover U = {U,, U,, U,} (Figure
10.1) by

where p; is the restriction from U; to U;N U. Compute H*(U,F).
(Cf. presheaf on an open cover, p. 142.)

Uy

U,

U,
Figure 10.1

§11 Sphere Bundles

Let n: E—~ M be a fiber bundle with fiber the sphere S", n > 1. As the
structure group we normally take the largest group possible, namely the
diffeomorphism group Diff(S"), but sometimes we also consider sphere bun-
dles with structure group O(n + 1). These two notions are not equivalent;
there are examples of sphere bundles whose structure groups cannot be
reduced to the orthogonal group. Thus, every vector bundle defines a
sphere bundle, but not conversely. By the Leray-Hirsch theorem if there is a
closed global n-form on E whose restriction to each fiber generates the
cohomology of the fiber, then the cohomology of E is

H*(E) = H¥(M) ® H*(S").

It is therefore of interest to know when such a global form exists.

In Section 6 we constructed the global angular form ¢ on a rank 2
vector bundle with structure group SO(2). This form Y was seen to have the
following two properties:

(a) V¥ restricts to the volume form on each fiber, i.e., a generator of H(fiber)
(b) dy = —n*e

where e is the Euler class. Exactly the same procedure defines the angular
form and the Euler class of a circle bundle with structure group SO(2).
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Consequently, for such a bundle also, if the Euler class vanishes, then ¥ is
closed and satisfies the condition of the Leray—Hirsch theorem.

We now consider more generally a sphere bundle with structure group
Diff(S") or O(n + 1). We will see that the existence of a global form as above
entails overcoming two obstructions: orientability and the Euler class.

Orientability

In this section the base space of the bundle is assumed to be connected. A
sphere bundle with fiber $”, n > 1, is said to be orientable if for each fiber F,
it is possible to choose a generator [o,] of H"(F,)satisfying the local com-
patibility condition: around any point there is a neighborhood U and a
generator [oy] of HYE |y) such that for any x in U, [oy/] restricted to the
fiber F. is the chosen generator [o,]; equivalently, there is an open
cover {U,} of M and generators [a,] of H'(E|y) so that [¢,] = [64] in
HYE |y, ~ u,)-

Since a generator of the top cohomology of a fiber is an n-form with
total integral 1, there are two possible generators, depending on the orienta-
tion of the fiber. A priori all that one could say is that [¢,] = +[04] on
U, n Ug. For an orientable sphere bundle either choice of a consistent
system of generators is called an orientation of the sphere bundle. A bundle
with a given orientation is said to be oriented. An S°-bundle over a mani-
fold M is a double cover of M; such a bundle over a connected base space

is said to be orientable if and only if the total space has two connected
components.

CAVEAT. The fact that the cohomology classes {[4,]} agree on overlaps
does not mean that they piece together to form a global cohomology class.
A global cohomology class must be represented by a global form; the
equality of cohomology classes [o,] = [d,] implies only that the forms o,
and oy differ by an exact form.

Recall that in Section 7 we called a vector bundle of rank n + 1 orient-
able if and only if it can be given by transition functions with values in
SO(n + 1). We now study the relation between the orientability of a sphere
bundle and the orientability of a vector bundle.

Let E be a vector bundle of rank n + 1 endowed with a Riemannian
metric so that its structure group is reduced to O(n + 1). Its unit sphere
bundle S(E) is the fiber bundle whose fiber at x consists of all the unit
vectors in E, and whose transition functions are the same as those of E.
S(E) is an S"-bundle with structure group O(n + 1).

REMARK 11.1. Fix an orientation on the sphere S". If the linear trans-
formation g is in the special orthogonal group SO(n + 1) and [g] is a
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generator of H"(S") with [5, ¢ = 1, then the image g(S") is the sphere S" with
the same orientation, so that

J g*a=j 0=J. o=1.
s" g(s") sn

Thus for an orthogonal transformation g, g*c and o represent the same
cohomology class if and only if g has positive determinant.

Proposition 11.2. A vector bundle E is orientable if and only if its sphere
bundle S(E) is orientable.

PROOF. (=) Fix a generator ¢ on S" and fix a trivialization {(U,, ¢,)} for E
so that the transition functions g, assume values in SO(n + 1). Let
PiU,x S"— 8"

be the projection and let m~!(x) be the fiber of the sphere bundle
n :S(E)— M at x. Define [o,] in H'(S(E)|y,) by

lo.] = 7 pilo].

To avoid cumbersome notations we will write [¢,]], and ¢,]|, for the re-
strictions [6,] |- 1 and @, |- respectively. Then for every x in U,,

(o2 |x = (¢u|*[0].

For x e U, n Uy,
[ogllx = Lo,
iff  (dpl)*[0] = ($al)* 0]
iff  [0] = (41*) " (¢al)*Lo]
iff [o] = gop(x)*[0].

Since g,4(x) has positive determinant, [6] = g,4(x)*[c] by (11.1). Therefore,
[o4] = [0,] on U, n Uy and the sphere bundle S(E) is orientable.

(<) Conversely, let {U,, [0,]} be an orientation on the sphere bundle S(E)
and let (S", o) be an oriented sphere in R"*!, where o is a nontrivial top
form on S". Choose the trivializations for S(E)

¢ S(E)|y, > U, x §"

in such a way that ¢, preserves the metric and ¢} p¥[¢]=[0,]. Then at any
point x in U, n Uy, the transition function g,s(x) pulls [¢] to itself and so
g.p(x) must be in SO(n + 1). O

REMARK 11.3. Since SO(1) = {1}, a line bundle L over a connected base
space is orientable if and only if it is trivial. In this case the sphere bundle
S(L) consists of two connected components.
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Proposition 11.4. A vector bundle E is orientable if and only if its determinant
bundle det E is orientable.

PrOOF. Let {g,5} be the transition functions of E. Then the transition func-
tions of det E are {det g,5}. An orthogonal matrix g,; assumes values in
SO(n + 1) if and only if det g, is positive, so the proposition follows.

a

Whether E is orientable or not, the O-sphere bundle S(det E) is always a
2-sheeted covering of M. Combining Corollary 11.3 and Proposition 11.4,
we see that over a connected base space a vector bundle E is orientable if
and only if S(det E) is disconnected. Since a simply connected base space
cannot have any connected covering space of more than one sheet, we have
proven the following.

Proposition 11.5. Every vector bundle over a simply connected base space is
orientable.

In particular, the tangent bundle of a simply connected manifold is
orientable. Since a manifold is orientable if and only if its tangent bundle is
(Example 6.3), this gives

Corollary 11.6. Every simply connected manifold is orientable.

The Euler Class of an Oriented Sphere Bundle

We first consider the case of a circle bundle n : E — M with structure group
Diff(S!). As stated in the introduction to this section, our problem is to find
a closed global 1-form on E which restricts to a generator of the cohomol-
ogy on each fiber. As a first approximation, in each U, of a good cover {U,}
of M we choose a generator [6,] of H'(E|y). The collection {g,} is an
element ¢%! in the double complex C*(n ™', Q*):

00,1_.__

|
e
From the isomorphism between the cohomology of E and the cohomology
of this double complex,
H}r(E) >~ Hp {C*n™'U, Q%)},

we see that to find a global form which restricts to the d-cohomology class
of 6™ it suffices to extend ¢! to a D-cocycle. The first step of the exten-
sion requires that (66%'),; = 0, — g, be exact, ie., [a,] = [a4] for all a, B.
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This is precisely the orientability condition. Assume the bundle E to be
oriented with orientation ¢%!, so that 8¢%! = do'® for some ¢'® in
Cl(n~ ', Q°%. Then 6! + 6 is a D-cocycle if and only if 66 = 0. Since

d(d0*°) = 8(da"°) = 550" = 0,

d¢'® actually comes from an element —¢ of the cochain group C*(n~'U,
R). Now since the open covers U and n~'U have the same combinatorics,
ie,n” 1U,0_“,p is nonempty if and only if U,,_.,, is, C*(n~ W, R) = C*, R)
and we may regard ¢ as an element of C2(U, R). In fact, because de = 0, ¢
defines a Cech cohomology class in H*(M, R). By the isomorphism between
the Cech cohomology of a good cover and de Rham cohomology, & corre-
sponds to a cohomology class e(E) in H*(M). For a circle bundle with
structure group SO(2), this class turns out to be the Euler class of Section 6,
as will be shown later. So for an oriented circle bundle E with structure
group Diff(S!) we also call e(E) the Euler class.

The discussion above generalizes immediately to any sphere bundie with
fiber S", n > 1. Such a sphere bundle is orientable if and only if it is possible
to find an element ¢%" in C°%(n~'U, Q") which extends one step down
toward being a D-cocycle:

66%"=de""" ! = —p"gt'"!

A
i
—n*e
There is no obstruction to extending ¢''"~! one step further, since every
closed (n — 1)-form on Ely,, ,, ,, is exact. In general, extension is possible
until we hit a nontrivial cohomology of the fiber. Thus for an oriented

sphere bundle E we can extend all the way down to 6™° in such a manner
that if

o= a.O.n + a.l.n-l 4o 0'"'0,
then

Do = d0™°.
Since d(do™ ®) = 8(do™ ) = +6(6a" ) = 0,
Do = 66™° = i(—¢)
for some ¢ in C"*!(n 'Y, R)~C"*'(U, R), where i is the inclusion

C**(n U, R) » C"*(n~'U, Q). Clearly d¢ = 0, so ¢ defines a cohomology
class e(E) in H*** (U, R) ~ H"*'(M), the Euler class of the oriented S"-bundle E
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with orientation ¢ . The Euler class of an oriented S°-bundle is defined to
be 0. Note that the Euler class depends on the orientation {[c,]} of E; the
opposite orientation would give — e(E) instead.

If E is an oriented vector bundle, the complement E° of its zero section
has the homotopy type of an oriented sphere bundle. The Euler class of E is
defined to be that of E°. Equivalently, if E is endowed with a Riemannian
metric, then the unit sphere bundle S(E) of E makes sense and we may
define the Euler class of E to be that of its unit sphere bundle. This latter
definition is independent of the metric and in fact agrees with the definition
in terms of E°, since for any metric on E, the unit sphere bundle S(E) has
the homotopy type of E°.

In the next two propositions we show that the Euler class is well defined.

Proposition 11.7. For a given orientation {[s,]} the Euler class is independent
of the choice of 6", j =0, ..., n.

PROOF.

!
]

TO

|
|i i
T —&

Let " be another cochain in C%(n~ !, Q") which represents the orien-
tation {[o,]}. Then %" — %" = dt"~! for some t"~! in Co%(n~ 'Y, Q" 1),
Since d(6t"" ') and d(6"' "' — 6"~ !) are equal, 67" ! and 1" ! — gl " !
differ by dt"~ 2 for some 1"~ ? in C'(n~'U, Q"~2). Again,

Aot = —d(G> "% — g> "2,
$0
(61" — (622 — g> ") = g3
for some 1"~ ? in C*(n~'U, Q" 3). Eventually we get
0% — (@ °— "% =ir,7e C(n U, R).
Taking d of both sides, we have
E—e¢&=201

So £ and ¢ define the same Cech cohomology class.
O

Proposition 11.8. The Euler class e(E) is independent of the choice of the good
cover.
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PRrOOF. Write &, for the cocycle in H** (U, R) which defines the Euler class
in terms of the good cover U. If a good cover B is a refinement of U, then
there is a commutative diagram

Hn + l(u’ R)

Hn+ 1(%’ R)

~ ~

HpR'(M)
ey and eq give the same element in Hb%'(M), because if we choose the ¢ "
on n” !B to be the restriction of the ¢ " on =~ ', the cocycle &g in C"* (B,
R) will be the restriction of the cocycle ey in C"*}(U, R), so that as elements
of the Cech cohomology H"*!(M, R) they are equal. Given two arbitrary

good covers U and B, we can take a common refinement 2W; then ¢, =
g = &g in H" (M, R). So the Euler class is independent of the cover.

a

If the Euler class e(E) € H"* (M) vanishes, its representative ¢ € C"*!(U, R)
is a d-coboundary; this permits one to alter ¢™° so that Do = 0. The
D-cocycle o then corresponds to a global form which restricts to the d-
cohomology class of ¢%". In sum, then, there is a global form that restricts to
a generator on each fiber if and only if

(a) E is orientable, and
(b) the Euler class e(E) vanishes.

For E a product bundle, the extension stops at the %" stage so that
¢ =0. In this sense the Euler class is a measure of the twisting of an
oriented sphere bundle. However, as we will see in the proposition below, E
need not be a product bundle for its Euler class to vanish.

Proposition 11.9. If the oriented sphere bundle E has a section, then its Euler
class vanishes.

PrOOF. Let s be a section of E. It follows from = o s = 1 that s*n* = 1. We
saw in the construction of the Euler class that

—n*e = Do
for some D-cochain o. Applying s* to both sides gives
—¢ = Ds*o,

s0 e is a coboundary in H*(M). 0

The converse of this proposition is not true. In general a cohomology
class is too “coarse” an invariant to yield information on the existence of
geometrical constructs. In (23.16) we will show the existence of a sphere
bundle whose Euler class vanishes, but which does not admit any section.
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We now show that for a circle bundle n : E — M with structure group
SO(2) the definitions of the Euler class in Section 6 and in this section agree.
We briefly recall here the earlier construction. If 6, is the angular coordi-
nate over U,, then [d6,/2n] is a generator of H'(E |y ). Furthermore,

49 _ d% =n* Ay = n*¢y — n*¢, for some 1-form £, over U,.
2r  2=n 2n
The Euler class of the circle bundle E was defined to be the cohomology
class of the global form {d¢&,}.
In the present context these cochains fit into the double complex
C*(n~ U, Q*) of E as shown in the diagram below.

QX(E) @ E.‘l?.ﬁﬂ C*n~ U, Q%)

2r 2n

k] —m*e

~
|

—n*e
C*xn ‘U, R)
By the explicit isomorphism between de Rham and Cech (Proposition
9.8), the differential form on M corresponding to the Cech cocycle ¢ is

(—D"K)%. Since &g — &, = (1/2n) d¢4, 6¢ = (1/27) d¢, so by (8.7), we may
take ¢ to be (1/2n) Kd¢. Also note that since 6(¢p/2n) = —¢,

—Ke = ¢/2n (modulo a é-coboundary).

Hence
(—D"K)% = —dKdKe
= dKd((¢/2n) + 1) for some
= dKd(¢/2n) + dKdér
= d¢ + dKdér.
Here
dKdét = dKddr because d commutes with &
=d(1 — 6K)dt by (8.7)
= —ddKdrz.

Since Kdt € Q'(M), dKdzt is a global exact form, so édKdt = 0. Hence
(—D"K)*e = d¢, showing that the two definitions of the Euler class could be
made to agree on the level of forms.
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The Global Angular Form

In Section 6 we exhibited on an oriented circle bundle the global angular
form  which has the following properties:

(a) its restriction to each fiber is a generator of the cohomology of the
fiber;

(b) dyy = —n*e, where e represents the Euler class of the circle bundle.

Using the collating formula (9.5) we will now construct such a form on any
oriented S"-bundle.

Let U = {U,} be an open cover of M. Recall that the Euler class of E is
defined by the following diagram:

20
&

7]

o, | —n*e

where a € CO(n~1U, Q") is the orientation of E,

by = —D'oypq, i=0,...,n—1,
and
oo, = —m*e.
Hence
Dioy + -+ + a,) = —m*e.

Here o; is what we formerly wrote as """,

If {p,} is a partition of unity subordinate to the open cover U = {U,},
then {n*p,} is a partition of unity subordinate to the inverse cover n~'U =
{n~'U,}. Using these data we can define a homotopy operator K on the
double complex C*, Q*) and also one on C*(r~'U, Q*) as in (8.6). We
denote both operators by K. Both K satisfy

0K + Ké =1.
Since
(KT*0)yy. . gy = 2AT*PHT* O .. a1
=% Y Py ..y
="Ky .. ap1

K commutes with ©*.
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Exercise 11.10. If s : M — E is a section, show that Ks* = s*K.
By the collating formula (9.5),
(11.11) Y= Z(—D(D"K)a; + (=1 K(D"K)"(—n*e)
i=0

is a global form on E. Furthermore,
dy = (—1)"*{dK(D"K)"(— n*e)

—a*(—1)"*Y(D"K)"*'e since n* commutes with D"K

[l

(11.12)

— n*e by Proposition 9.8.

In formula (11.11) since the restriction of #*((—1)"*'K(D”K )"e) to a fiber
is 0, the restriction of the global form y to each fiber is d-cohomologous to
aolavers hence is a generator of the cohomology of the fiber. The global
n-form ¢ on the sphere bundle E satisfies the properties (a) and (b) stated
earlier. We call it the global angular form on the sphere bundle.

REMARK 11.12.1. Let {U,},; be an open cover of M which trivializes the
n-sphere bundle E and let ¥ and e be defined by (11.11) and (11.12). Then
Suppdy c Ur~Y(U,, , ) and Suppe is contained in the union UU, .,
of the (n + 1)-fold intersections.

cay, © Yo SUPP W a0, € U U

ProOF. By (8.6), Supp(K W), o Usay... 0,
Since Suppe C VU, ., the remark follows from (11. 11) and (11. 12) a

Exercise 11.13. Use the existence of the global angular form y to prove
Proposition 11.9.

Euler Number and the Isolated Singularities of a Section

Let n : E — M be an oriented (k — 1)-sphere bundle over a compact orien-
ted manifold of dimension k. Since H¥(M) ~ R, the Euler class of E may be
identified with the number {,, e(E), which is by definition the Euler number
of E. The Euler number of the manifold M is defined to be that of its unit
tangent bundle S(T,) relative to some Riemannian structure on M. While
the Euler number of an orientable sphere bundle is defined only up to sign,
depending on the orientations of both E and M, the Euler number of the
orientable manifold M is unambiguous, since reversing the orientation of M
also reverses that of the tangent bundle.

In general the sphere bundle E will not have a global section; however,
there may be a section s over the complement of a finite number of points
Xy, ..., X, in M. In fact, as we will show in Proposition 11.14, if the sphere
bundle has structure group O(k), then such a “partial” section s always
exists. In this section we will explain how one may compute the Euler class
of E in terms of the behavior of the section s near the singularities

Xiseees Xg.
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Proposition 11.14. Let n: E— M be a (k — 1)-sphere bundle over a compact
manifold of dimension k. Suppose the structure group of E can be reduced to
O(k). Then E has a section over M ~ {xy, ..., x,} for some finite number of
points in M.

Proor. Since the structure group of E is O(k), we can form a Riemannian
vector bundle E’ of rank k whose unit sphere bundle is E. A section s’ of E’
over M gives rise to a partial section s of E : s(x) = s'(x)/ || s'(x) ||, where || ||
denotes the length of a vector in E'. Let Z be the zero locus of s'; s is only a
partial section in the sense that it is not defined over Z. Thus to prove the
proposition, we only have to show that the vector bundle E’ has a section
that vanishes over a finite number of points.

This is an easy consequence of the transversality theorem which states
that given a submanifold Z in a manifold Y, every map f: X — Y becomes
transversal to Z under a slight perturbation (Guillemin and Pollack [1, p.
68]). Furthermore, we may assume that a small perturbation of a section ¢ of
E' is again a section, as follows. Suppose f is a perturbation of ¢t and f is
transversal to the zero section. Then g = mo f is a perturbation of mo ¢,
which is the identity. Thus, for a sufficiently small perturbation, g will be close
to the identity and so must be a diffeomorphism. For such an f, define s'(x) =
f(g7(x)). Then mos'=1and s’ is transversal to so(M), i.e., S =s'(M) intersects
Sy = so(M) transversally. Applying this procedure to the zero section of E’,
i.e., choosing t = s,, will yield the desired transversal section s’ for E'. Since

dim § + dim S, = dim E,

S N S, consists of a discrete set of points. By the compactness of S, it must
be a finite set of points. O

REMARK 11.15. It follows from the rudiments of obstruction theory that this
proposition is true even if the structure group of the sphere bundle cannot
be reduced to an orthogonal group. For a beautiful account of obstruction
theory, see Steenrod [1, Part I1I].

Suppose s is a section over a punctured neighborhood of a point x in M.
Choose this neighborhood sufficiently small so that it is diffeomorphic to a
punctured disc in R* and E is trivial over it. Let D, be the open neighbor-
hood of x corresponding to the ball of radius r in R* under the diffeomor-
phism above. As an open subset of the oriented manifold M, D, is also
oriented. Choose the orientation on the sphere $*~! in such a way that the
isomorphism E|, ~ D, x §*! is orientation-preserving, where D, x $*~!
is given the product orientation. (If A and B are two oriented manifolds
with orientation forms w, and wg, then the product orientation on A x B is
given by (p¥w,) A (p¥ wg), where p, and p, are the projections of 4 x B
onto A and B respectively.) The local degree of the section s at x is defined
to be the degree of the composite map

9D, > E|p = D,x §k~1 5 k-1

where p is the projection and D, is the closure of D,.
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Theorem 11.16. Let n: E— M be an oriented (k — 1)-sphere bundle over
a compact oriented manifold of dimension k. If E has a section over M — {x1,

X,}, then the Euler number of E is the sum of the local degrees of s at
Xgyeees Xgq-

PrOOF. We first show that it is possible to move the support of the Euler
class away from finitely many points.

Lemma. Let M be a manifold and {U,}, < ; an open cover of M. Given finitely
many points x,,..., x, on M, there is a refinement (V,},c 1 of {U,}ae s such
that V,,C U, and each x; has a neighborhood W, which is disjoint from all but
one of the V’s.

PROOF OF LEMMA. Suppose x; € U,. Let W, be an open neighborhood of x,
such that x, € W, c W, c U,. We define a new open cover {U Yaer bY
setting U/ = U; and U} = U, — W, for a # 1. (Check that this is indeed an
open cover of M.) The nelghborhood W, of x, is contained in U/ but

disjoint from all U}, a # 1.
Next suppose x, € Uy. Let W, be an open neighborhood of x, such that
x, € W, C W, c Uj. As before define a new open cover {U,’}, <, by setting
Uy’ = Uy and U}’ = U/ — W, for a # 2. Since U,;” C U,, the open neighbor-
hood W, of x, is diSJomt from all U/, a# 1 By definition, the open
neighborhood W, of x, is disjoint from all U}, a # 2. Repeating this
Process to xs,..., x, in succession yields the open cover {¥,} of the lemma.
O

Now let {U,},c; be an open cover of M which trivializes E. By the
lemma we may assume that each x; has a neighborhood W, which is
contained in exactly one U,. Construct the global angular form ¢ and the
form e relative to {U,},.;. By Remark 11.12.1, since Suppe c U U, .
the form e must vanish on W, for all i=1,..., 4. So e is supported away
from the points x;,..., x,.

For each i choose an open ball D, around the point x; so that D,c W,
Then

(11.16.1) f e= f e= s*m*e  since s is a global section
M M-uUD, M-uUD,

over M — U D,
= - s*dy because 7*e = —dy
M—-uUD,
=X / _s%Y by Stokes’ theorem and
oD,

i "ob the fact that dD, has the
opposite orientation as
d(M—uUD,).

Although the global angular form is not closed, by our construction
d\[/ 0 on E|y,, so  defines a cohomology class in H =1(E |w,)» Which is
in fact the generator. Let ¢ be the generator of S¥~1. Then p*o restricts to
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the generator on each fiber of E|,,. So p*s and the angular form y define
the same cohomology class in H*"'(E|,), ie.,

Y —p*o=dr
for some (k — 2)-form 7 on E|,,. Thus on 5,.,
s —s**e =s*dr
and
f_s* Y- f_s*p*o = f_ ds*r=0 by Stokes’ theorem.

D, D, D,

Therefore,
f _s*y =local degree of the section s at x;.
aD,

Together with (11.16.1), this gives

f e= (local degree of s at x;). i
M i

This theorem can also be phrased in terms of vector bundles. Let
n : E — M be an oriented rank k vector bundle over a manifold of dimen-
sion k and s a section of E with a finite number of zeros. The multiplicity of
a zero x of s is defined to be the local degree of x as a singularity of the
section s/|| s | of the unit sphere bundle of E relative to some Riemannian
structure on E. (This definition of the index is independent of the Rieman-
nian structure because the local degree is a homotopy invariant.) Since the
Euler class ¢(E) of E is a k-form on M, it is Poincaré dual to nP, where
n = [y e(E) and P is a point on M. Thus we have the following.

Theorem 11.17. Let n: E— M be an oriented rank k vector bundle over a
compact oriented manifold of dimension k. Let s be a section of E with a finite
number of zeros. The Euler class of E is Poincaré dual to the zeros of s,
counted with the appropriate multiplicities.

ExaMPLE 11.18 (The Euler class of the unit tangent bundle to S2). Let S(T;.)
be the unit tangent bundle to S2. It is a circle bundle over §%:

§' — S(Ts2)

SZ
Fix a unit tangent vector v at the north pole. We can define a smooth
vector field on S*-{south pole} by parallel translating v along the great
circles from the north pole to the south pole (see Figure 11.1). (Parallel

translation along a great circle on S* is prescribed by the following two
conditions:

(a) the tangent field to the great circle is parallel;
(b) the angles are preserved under parallel translation.)
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Figure 11.1 Figure 11.2

This gives a section s of S(Ty;) over S%-{south pole}. On a small circle
around the south pole, the vector field looks like Figure 11.2, ie,, as we go
around the circle 90°, the vectors rotate through 180°; therefore, the local
degree of s at the south pole is 2. By Theorem 11.16, the Euler number of
the unit tangent bundle to S? is 2.

Exercise 11.19. Show that the Euler class of an oriented sphere bundle with
even-dimensional fibers is zero, at least when the sphere bundle comes from
a vector bundle.

Since the Euler class is the obstruction to finding a closed global angular
form on an oriented sphere bundle, by the Leray-Hirsch theorem we have
the following corollary of Exercise 11.19.

Proposition 11.20. If o : E— M is an orientable S*"-bundle, then
H*E) = H*(M) ® H*(S™").

Exercise 11.21. Compute the Euler class of the unit tangent bundle of the
sphere S* by finding a vector field on S* and computing its local degrees.

Euler Characteristic and the Hopf Index Theorem

In this section we show that the Euler number jM e(Ty) is the same as the
Euler characteristic y(M) = Z(—l)"dim H%M) and deduce as a corollary
the Hopf index theorem. The manifold M is assumed to be compact and
oriented.

Let {w;} be a basis of the vector space H*(M), {r;} be the dual basis
under Poincaré duality, i.e., _fM w; A 1;=0;;, and let = and p be the two
projections of M x M to M:

Mx M
1:/ \)
M M.
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By the Kiinneth formula, H*(M x M) = H¥M) ® H*(M) with {n*w; A
p*t;} as an additive basis. So the Poincaré dual n, of the diagonal A in
M x M is some linear combination n, = Y. ¢;;n*w; A p*1;.

Lemma 11.22. Na = Z(-" l)de' “"n‘wi A p‘Ti .

PrROOF. We compute [, n*7, A p*w, in two ways. On the one hand, we can
pull this integral back to M via the diagonal map:1: M - Ac M x M:

J T* 1 A p*wy = J *n*t, A 1*p*w, = j. T Awy = (—1)dswlesad g
A M M

On the other hand, by the definition of the Poincaré dual of a closed
oriented submanifold (5.13),

J n*u A p*rw, = j ¥t A p*w Ay
A M x M

= ci,-j n*t A p*aoy A nto; A p¥e;
= Z ciy(— 1)(des tx+deg wi(deg wi) f *w; At )p*( Aty)
i M x M

Therefore

_fo ifk#!
WEU-1ts = k=1

O

Lemma 11.23. The normal bundle N, of the diagonal A in M x M is isomor-
phic to the tangent bundle T, .

PROOF. Since the diagonal map ¢: M - M X M sends M diffeomorphically
onto A, «*T, = T,. It follows from the commutative diagram
(v,v) = (v,v)
0> T, — TM,M‘A — N,— 0
1 R
0Ty > Ty®Ty—> THy—0
v+ (v,0)

that NA jaq TM X~ TA'
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Recall that the Poincaré dual of a closed oriented submanifold S is
represented by the same form as the Thom class of a tubular neighborhood
of S (see (6.23)). Thus

j na= | ®(N,) where ®(N,)is the Thom class of the normal

4 A bundle N, regarded as a tubular neighborhood
of AinM x M

= | ¢(N,) since the Thom class restricted to the zero

vA section of the bundle is the Euler class (proved for

rank 2 bundles in Prop. 6.41 on p. 74; the general

case will be shown later, in Prop. 12.4 on p. 128)

)

= | e(Ty)

=1 eTy .
M

v

So the self-intersection number of the diagonal A in M x M is the Euler
number of M. (By Poincaré duality, [o 74 = [sxmfaAns is the self-
intersection number of Ain M x M.)

Now the right-hand side of Lemma 11.22 evaluated on the diagonal A is

r

J Ha = Z(— l)deg | m*w A pt
A i

JA

r‘
= Z(— 1)des @ B o A i*p*r;
13 LY

~

=Z(—1)deg ) oA
i

JM

— Z(___ l)degwi

=Y (~ 1) dim HY(M)

= x(M).
Therefore,

Proposition 11.24. The Euler number of a compact oriented manifold (s e(Ty,)
is equal to its Euler characteristic y(M) = Y (—1)* dim H¢.

It is now a simple matter to derive the Hopf index theorem. Let ¥ be a
vector field with isolated zeros on M. The index of V at a zero u is defined
to be the local degree at u of V/ || V | as a section of the unit tangent bundle
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of M relative to some Riemannian metric on M. By Theorem 11.16 the sum
of the indices of V is the Euler number of M. The equality of the Euler
number and the Euler characteristic then yields the following.

Theorem 11.25 (Hopf Index Theorem). The sum of the indices of a vector
field on a compact oriented manifold M is the Euler characteristic of M.

Exercise 11.26 (Lefschetz fixed-point formula). Let f: M — M be a smooth
map of a compact oriented manifold into itself. Denote by H%(f) the in-

duced map on the cohomology H{M). The Lefschetz number of f is defined
to be

L(f) =Y, (—1)? trace HY(f).
q
Let I' be the graph of fin M x M.

(a) Show that

J;ﬂr = L(f).

(b) Show that if f has no fixed points, then L(f) is zero.
(c) At a fixed point P of f the derivative (Df); is an endomorphism of the
tangent space T, M. We define the multiplicity of the fixed point P to be

op = sgn det((Df)p — I).
Show that if the graph I' is transversal to the diagonal A in M x M, then
L(f ) = ; Op,

where P ranges over the fixed points of f (For an explanation of the
meaning of the multiplicity op, see Guillemin and Pollack [1, p. 121].)

§12 Thom Isomorphism and Poincaré Duality
Revisited

In this section we study the Thom isomorphism and Poincaré duality from
the tic-tac-toe point of view. The results obtained here are more general
than those of Sections 5 and 6 in two ways:

(a) M need not have a finite good cover,
and

(b) the orientability assumption on the vector bundle E has been
dropped.
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The Thom Isomorphism

Let 7 : E — M be a rank n vector bundle. E is not assumed to be orient-
able. We are interested in the cohomology of E with compact support in the
vertical direction, H*(E) = H*{QX(E)}. Recall that

R in dimension n
0 otherwise,

(@) HX(R") = {
(b) (Poincaré lemma) H*(M x R") = H*""(M).

Let U be a good cover of the base manifold M. We augment the double
complex C*(n™'U, Q*) by adding a column consisting of the kernels of the
first §:

0 — Q%(E) -
0 — QL(E) -
0— Q%(E) - |

Using a partition of unity from the base, it can be shown that all the rows
of this agumented double complex are exact. The proof is identical to that
of the generalized Mayer-Vietoris sequence in (8.5) and will not be repeated
here. From the exactness of the rows of the augmented complex, it follows
as in (8.8) that the cohomology of the initial column is the total cohomol-
ogy of the double complex, i.e.,

H*(E) ~ Hp {C*n~'U, Q*)}.
On the other hand,
HE 4{C*n ™', Q})} = H&(Un™ Uy
=1 H4(n"'Uy..)
= CA(YU, #73,),
where %, is the presheaf given by
#4,(U) = Hi,(n™'U).

By the Poincaré lemma for compactly supported cohomology, if U is con-
tractible, then

R ifg=n

0 otherwise.

H(U) = {

Therefore H,; and also HY *H,; = H}{C*U, #%,))} = H?(!, #%,) have entries
only in the nth row.

Proposition 12.1. Given any double complex K, if Hy HK) has entries only in
one row, then Hy H, is isomorphic to Hy,.
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This proposition will be substantially generalized in Section 14, for it is
simply an example of a degenerate spectral sequence. Its proof is a technical
exercise which we defer to the end of this section. Combined with the
preceding discussion, it gives

H¥E)y=Hp)= @ HAU, #?)=H*""U, 7).

pta=x%

This is the Thom isomorphism for a not necessarily orientable vector
bundle.

Theorem 12.2 (Thom Isomorphism). For n: E— M any vector bundle of
rank n over M and U a good cover of M,

HX*(E) ~ H*™"(U, 7)),
where A", is the presheaf #",(U) = H" (" 'U).

We now deduce the orientable version of the Thom isomorphism from
this. So suppose n : E — M is an orientable vector bundle of rank n over M.
This means there exist forms g, on the sphere bundles S(E)]U. which restrict
to a generator on each fiber and such that on overlaps U, n U, their
cohomology classes agree: [o,] = [05]. Now choose a Riemannian metric
on E so that the “radius” r is well-defined on each fiber and any function of
the radius r is a global function on E. Let p(r) be the function shown in
Figure 12.1. Then (dp)o, is a form on E lu, , where we regard o, as a form on
the complement of the zero section. Furthermore, [(dp)o,] € H,,(E|y,) res-
tricts to a generator of the compactly supported cohomology of the fiber
and [(dp)o,] = [(dp)ss] on U, n U,. Since the fiber has no cohomology in
dimensions less than n, ¢%" = {(dp) 0,} can be extended to a D-cocycle.
This D-cocycle corresponds to a global closed form ® on E, the Thom class
of E, which restricts to a generator on each fiber. Now (U is generated
by ®|, and for ¥ C U the restriction map from #,;(U) to #,;(V') sends

A

p(r)

Figure 12.1
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®|, to ®|,. Hence, via the map which sends ®|,, for every open set U, to
the generator 1 of the constant presheaf R, the presheaf 5} is isomorphic to
R. The Thom isomorphism theorem then assumes the form

(12.2.1) H;‘:,(E)vz H*~"(U, #7,) = H* (U, R) = H*""(M),

for an orientable rank n vector bundle E. This agrees with Proposition 6.17.
It holds in particular when M is simply connected, since by (11.5), every
vector bundle over a simply connected manifold is orientable.

From the explicit formula (11.11) for the global angular form on an
oriented sphere bundle, we can derive a formula for the Thom class of an
oriented vector bundle. Let f : E° — S(E) be a deformation retraction of the
complement of the zero section in E onto the unit sphere bundle. Ify; is the
global angular form on S(E), then y = f*s € H"~Y(E®) is the global angu-
lar form on E°. It has the property that

dy = —n*e,

where e represents the Euler class of the bundle E.

Proposition 12.3. The cohomology class of

® = d(p(r) - ¥) € Q,(E)

is the Thom class of the oriented vector bundle E.

ProoF. Note that

(12.3.1) ® =dp(r) - ¥ — p(r)n*e.

For the same reasons as in the discussion following (6.40), ® is a closed
global form on E with compact support in the vertical direction. Its re-

striction to the fiber at p is dp(r) - 1} ¢, where 1,: E,— E is the inclusion
and 1*y gives a generator of H" ™! (R" — {0}) = H"~*(S"~!). Since

j"dp(r)'t:¢=J‘ldp(r)I Y =1,
R R 5"t

by (6.18), @ is the Thom class of E. |
If s is the zero section of E, then s*dp = 0 and s*p = —1. By (12.3.1),
s*® = —(s*p)s*n*e = e.
Thus,

Proposition 12.4. The pullback of the Thom class of an oriented rank n vector
bundle via the zero section to the base manifold is the Euler class.
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REMARK 12.4.1. From the formula for the Thom class (12.3), it is clear that
by making the support of p(r) sufficiently close to 0, the Thom class ® can

be made to have support arbitrarily close to the zero section of the vector
bundle.

REMARK 12.4.2, In fact, in Proposition 12.4 any section will pull the Thom
class back to the Euler class. Let s be a section of the oriented vector bundle
E and s* : H*(E)— H*(M) the induced map in cohomology. Note that s*
can be written as the composition of the natural maps i : H*(E)— H*(E)
and §* : H*(E)— H*(M). As a map from M into E, the section s is homo-
topic to the zero section s, . By the homotopy axiom for de Rham cohomol-
ogy (Cor. 4.1.2), §* = 5§ . Hence, s* = s§.

Using the description of the Euler class as the pullback of the Thom
class, it is easy to prove the Whitney product formula.

Theorem 12.5 (Whitney Product Formula for the Euler Class). If E and F
are two oriented vector bundles, then e(E @ F) = e(E)e(F).

PRrooF. By Proposition 6.19, the Thom class of E @ F is
®E @ F) = n,*O(E) A n¥®(F)

where n, and =, are the projections of E @ F onto E and F respectively.
Let s be the zero section of E @ F. Then n; o s and =, o s are the zero
sections of E and F. By Proposition 12.4,

eE @ F)=s*DE @ F) = s*nt (E) A s*n30(F) = e(E)e(F).
O

Exercise 12.6. Let n : E— M be an oriented vector bundle.

(a) Show that n*e = ® as cohomology classes in H*(E), but not in
HZ(E).

(b) Prove that DA D = ® An*e in HL(E).

Euler Class and the Zero Locus of a Section

Let n : E — M be a vector bundle and S, the image of the zero section in E.
A section s of E is transversal if its image S = s(M) intersects S, trans-
versally. The purpose of this section is to derive an interpretation of the
Euler class of an oriented vector bundle as the Poincaré dual of the zero
locus of a transversal section. This is an analogue of Theorem 11.17, but it
differs from Theorem 11.17 in two ways: (1) there is no hypothesis on the
rank of E; (2) the section is now assumed to be transversal.

Proposition 12.7. Let n : E— M be any vector bundle and Z the zero locus of
a transversal section. Then Z is a submanifold of M and its normal bundle in
M iSNz/M x>~ E‘z.
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Ely

a .

Figure 12.2

Proor. Write S = s(M) for the image of the section s (see Figure 12.2).
Because S intersects S, transversally, S N S, is a submanifold of S by the
transversality theorem (Guillemin and Pollack [1, p. 28]). Under the
diffeomorphism s : M — S, Z is mapped homeomorphically to S n S,. So
Z can be made into a submanifold of M.

To compute the normal bundle of Z, we first note that because E is
locally trivial, its tangent bundle on S, has the following canonical de-
composition

TElSo=E|So®7:S'o’
By the transversality of S n Sg,
7:§+R0=TE=E®’I:goonSﬁS0.

Hence the projection Ty— E over S N S, is surjective with kernel Ty N T, .
Again by the transversality of S N Sy, Ts N T, = Ts »5,- SO we have an
exact sequence over Z ~ S N S;:

0> Ty > Tgl;— E|;— 0.
Hence Ny ~ E|;. O

In the proposition above, if E and M are both oriented, then the zero
locus Z of a transversal section is naturally an oriented manifold, oriented
in such a way that

El; ® Ty = Ty,
has the direct sum orientation.

Proposition 12.8. Let n : E— M be an oriented vector bundle over an oriented
manifold M. Then the Euler class e(E) is Poincaré dual to the zero locus of a
transversal section.
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Supp ¢

Figure 12.3

Proor. We will identify M with the image S, of the zero section. If S is the
image in E of the transversal section s : M — E, then the zero locus of s is
Z=8nS,.Zis a closed oriented submanifold of M and by Proposition
12.7, its normal bundle in M is Ny = E Iz- Since S is diffeomorphic to M,
the normal bundle N5 of Z in § is also E ] z- The normal bundles Nz, and
Nys will be identified with the tubular neighborhoods of Z in M and in §
respectivély, as in Figure 12.3.

Choose the Thom class ® of E to have support so close to the zero
section (Remark 12.4.1) that ® restricted to the tubular neighborhood N
in S has compact support in the vertical direction. In Figure 12.3 the
support of @ is in the shaded region. We will now show that s*® is the
Thom class of the tubular neighborhood Nz, in M.

Let E,, S,, and M, be the fibers of E |Z =~ Nz > Nz respectively above
the point z in Z. Because ® has compact support in S,, s*® has compact
support in M, . Furthermore,

j s*@ = J @ by the invariance of the integral under the
M. Sz orientation-preserving diffeomorphism s : M, — §,

= j ® because E, is homotopic to S, modulo the region
E. in E where @ is zero

=1 by the definition of the Thom class.

So s*® is the Thom class of N . By Proposition 12.4, s*® = e(E). Since
by (6.24) the Thom class of N, is Poincaré dual to Z in M, the Euler class
e(E) is Poincaré dual to Z in M. -

A Tic-Tac-Toe Lemma

In this section we will prove the technical lemma (Proposition 12.1) that if
H;H, of a double complex K has entries in only one row, then H, H, is
isomorphic to the total cohomology Hy(K). With this tic-tac-toe lemma we
will re-examine the Mayer—Vietoris principle of Section 8.
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PROOF OF PROPOSITION 12.1.

P

We first define a map h: HyH,— Hj,. Recall that D=D'+D" =58+
(—1)?d. An element [¢] in H'9H, may be represented by a D-cochain ¢
of degree ( p, q) such that

DH¢ = 0
0¢p = —D"¢, for some ¢,.

This is summarized by the diagram

0
D't
d> 8¢+ D¢, =0
t D"
R

Since H{**97'H,; =0, ¢, = —D"¢, for some ¢,. Continuing in this
manner, we see that ¢ can be extended downward to a D-cocycle ¢ +
¢, + - + ¢,. The map h is defined by sending [¢] to [¢+ ¢, +- -+ ¢,}.
Next we define the inverse map g : Hp — H;H,. Let @ be a cocycle in
Hp. As the image of w we cannot simply take the component of @ in the

nonzero row because 4 of it may not be zero. Suppose w =a+b+c+ -
as shown.

a

b,
s

*

We will move w in its D-cohomology class so that it has nothing above the
nonzero row. Since da = 0 and da = — D"b, a represents a cocycle in Hy H,.
But H;H,; =0 at the position of a, so a is 0 in H;H,; this implies that
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a=D"a, for some a,. Then w— Da; has no components in the first
column. Thus we may assume w=b+c+ ---. Again b is 0 in H;H,, so
that b=28b, + D”b,, where D”’b; =0. Then w— D(b,+ b,)=(c — 8b,)
+ -+ starts at the nonzero row.

0
1
b;—b
1
b, —» ¢

Thus given [w] € Hp, we may pick w to have no components above the
nonzero row of HyH;, say w =c + ---. Then dc = 0 and the mapg : Hp—
HjH, is defined by sending [«] to [c].

Provided they are well-defined, h and g are clearly inverse to each other.

Exercise 12.9. Show that h and g are well-defined.
O

Using Proposition 12.1 we can give more succinct proofs of the main
results of Section 8. Let W = {U,} be an open cover of the manifold M and
AU, Q%) = MQY(U,,..,,)- By the exactness of the Mayer-Vietoris sequence,
H; of the Cech—de Rham complex C*(U, Q*) is

QM)
Q'(M)
QM)

0 1 2 P
so that H, H, is

a |
H(M)

H'(M)
H°(M)
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Since H,H, has only one nonzero column, we conclude from Proposition
12.1 that

H3{C*U, Q*)} ~ H3x(M)

for any cover . This is the generalized Mayer-Vietoris principle (Prop-
osition 8.8).

Now if U is a good cover, H, of the Cech-de Rham complex is

q 1

C°U, R) | C'(U, R) | C¥(YU, R)

0 1 2 P
and H;H, is

HM, R)| H'(UW, R)| HX(U, R)

Again because H; H, has only one nonzero row,

HE{C*U, Q%)} ~ H*(U, R).
This gives the isomorphism between de Rham cohomology and the Cech
cohomology of a good cover with coefficients in the constant presheaf R.

Exercise 12.10. Let CP" have homogeneous coordinates z,, ..., z,. Define
U; = {z; # 0}. Then U = {U,, ..., U,} is an open cover of CP", although
not a good cover. Compute H*(CP") from the double complex C*(U, Q¥*).
Find elements in C*(U, Q*) which represent the generators of H*(CP").

Exercise 12.11. Apply the Thom isomorphism (12.2) to compute the coho-
mology with compact support of the open Mdbius strip (cf. Exercise 4.8).

Poincaré Duality

In the same spirit as above, we now give a version of Poincaré¢ duality, in
terms of the Cech-de Rham complex, for a not necessarily orientable mani-
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fold. Let M be a manifold of dimension n and W = {U,} any open cover of
M. Define the coboundary operator

0: @ QUsg..a) > @ QUqy .0, )
by the formula

(50)),0 e p—t = Z waao e lp—1
a

where on the right-hand side we mean the extension by zero of w,,..q,_, t0
a form on U,, ,,_,- To ensure that each component of dw has compact
support, the groups here are direct sums rather than direct products, so that

we @ QU,..,,) by definition has only a finite number of nonzero com-
ponents.

Proposition 12.12 (Generalized Mayer—Vietoris Sequence for Compact Sup-

ports). Suppose the open cover W = {U,} of the manifold M satisfies the local
finite condition:

™) each open set U, intersects only finitely many Up’s.
Then the sequence

0—QXM) &= @ QXU,)— @ Q¥(U,,.,)

e @Q:(Uao...ap D
is exact.

ProOF. We first show 6% = 0. Let w be in @ QX(U,, . ,,). Then
(52w)uo g2 Z(éw)aao ve@p—2 = Z ; Wpag ... ap-2

=0, since w5, = —wp, ..

Now suppose dw = 0. We will show that w is a 5-coboundary. Let {p,} be a
partition of unity subordinate to the cover U. Define
p+1
Tap ... apt1 ‘_ZO('_ l)ipau WOgg ... bi.apsr®

Note that 1,,_, ,, has compact support. Moreover, there are only finitely
many (B, &, ..., a,) for which pyo,, . #0, since @,,. ., #0 for finitely
many (%y,...,a,) and by (*) each U, , < U, intersects only finite-

ly many U, Therefore, v has finitely many nonzero components, and
1€ @OXU,,..,,,) Then

(5T)ao e ®p = z Tang ... ap
3

= Z(IJawao S Z('- 1)i+1pai Wegp ... & ...u,,>

= wao ..ap + Z(_ 1)i+ lpai(aw)ao o BiLap

= Wy ... ap- O
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Exercise 12.12.1. Show that the definition of 7 in the proof above provides a
homotopy operator for the compact Mayer—Vietoris sequence (12.12). More
precisely, if w is in ®Q¥(U,,. ,,) and

p+1 .
(Kw)ao...apH = ‘ZO (— l)lpa,wao...ﬁ‘...apﬂa

then

0K + Ké = 1.

Consider the double complex CP(U, QF), where U satisfies the local finite
condition (*):

q
2
1
01 ® QUs) 1@ N(Usyay)

0 1 2 p

In this double complex the d-operator goes in the wrong direction, so we
define a new complex

K~P4 = CP(U, Q).

q

D UUsaw) p © WUsa) D ¥(Us)

-2 -1 0 P
By the exactness of the rows, Hy(K) is

q]
Q4M)
Q:(M)
QM)

-2 -1 0 p
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Since H,; H; has only one nonzero column, it follows from Proposition
12.1 that

(12.13) Hp(K)= H,H;(K) = H,(M).
On the other hand, if U is a good cover, then H,;(K) is

q
- d® R AR ER
ap<...<ap oo <ay a0
-1 0 p

Hy?4(K) = CP(U, 7))

where #°? is the covariant functor which associates to every open set U the

compact cohomology H¥U) and to every inclusion i, the extension by zero,
i, ; moreover,

H;i»%K)=0 for q#n.
Again by Proposition 12.1,
(12.14) BK)=H3 ""H,=H,_.(1, 7).

Here H,_ (U, #7) is the (n — *)-th Cech homology of the cover U with
coefficients in the covariant functor 7 (cf. Remark 10.3). Comparing
(12.13) and (12.14) gives

Theorem 12.15 (Poincaré Duality). Let M be a manifold of dimension n and U
any good cover of M satisfying the local finite condition (*) of Proposition
12.12. Here M is not assumed to be orientable. Then

H¥M) ~ H,_,(U, #7),
where " is the covariant functor #U) = Hy(U).

Exercise 12.16. By applying Poincaré duality (12.15), compute the compact
cohomology of the open Mobius strip (cf. Exercise 4.8).

§13 Monodromy

When Is a Locally Constant Presheaf Constant?

In the preceding section we saw that the compact vertical cohomology
H*(E) of a vector bundle E may be computed as the cohomology of the
base with coefficients in the presheaf . When the presheaf £ is the
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constant presheaf R", H*(E) is expressible in terms of the de Rham coho-
mology of the base manifold (Proposition 10.6). In this case the problem of
computing H*(E) is greatly simplified. It is therefore important to determine
the conditions under which a presheaf such as £, is constant.

First we need to review some basic definitions from the theory of sim-
plicial complexes (see, for instance, Munkres [2]). Recall that if an n-simplex
in an Euclidean space has vertices vy, ..., v,, then its barycenter is the point
(vo + * -+ + v,)/(n + 1). For example, the barycenter of an edge is its mid-
point and the barycenter of a triangle (a 2-simplex) is its center. The first
barycentric subdivision of a simplex ¢ is the simplicial complex having all
the barycenters of g as vertices. By applying the barycentric subdivision to
each simplex of a simplical complex K, we obtain a new simplicial complex
K’, called the first barycentric subdivision of K. The support of K, denoted
| K|, is the underlying topological space of K, and the k-skeleton of K is the
subcomplex consisting of all the simplices of dimension less than or equal to
k. The complex K and its barycentric subdivision K’ have the same support.
The star of a vertex v in K, denoted st(v), is the union of all the closed
simplices in K having v as a vertex.

Next we introduce the notion of a presheaf on a good cover. Let X be a
topological space and ¥ = {U,} a good cover of X. The presheaf F on U
is defined to be a functor # on the subcategory of Open(X) consisting of all
finite intersections U,, _,, of open sets in U. Equivalently, if N(U) is the
nerve of U, the presheaf # on U is the assignment of an appropriate group
to the barycenter of each simplex in N(U); for example, the group attached
to the barycenter of the 2-simplex representing UnV n'W is
F (U n V ~n W). Each inclusion, say U n ¥V — U, becomes an arrow in the
picture, F(U)— F(U n V), and the transitivity of the arrows says that
Figure 13.1 is a commutative diagram.

F(U)
FUNYV)

F (V)

F(W)

Figure 13.1
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Two presheaves & and ¥ are isomorphic relative to a good cover U =
{U,} if foreach W = U, _,, there is an isomorphism

hy : F(W) — G(W)

compatible with all arrows. In other words, there is a natural equivalence of
functors & — % where & and ¥ are regarded as functors on the subcate-
gory of Open(X) consisting of all finite intersections U,, _, of open sets in
U. The constant presheaf with group G on a good cover U is defined as
in Section 10; it associates to every open set Us...a, the group of locally
constant and hence constant functions: U, , — G. Thus, for a constant
presheaf on a good cover, all the groups are G and all the arrows are
the identity map. We say that a presheaf & is locally constant on a
good cover U if all the groups are isomorphic and all the arrows are
isomorphisms.

Of course, if two presheaves # and # are isomorphic on a good cover
U, then the cohomology groups H*(U, #) and H*(U, ¥) are isomorphic.

Uo

U,
Figure 13.2

ExaMPLE 13.1 (A locally constant presheaf on U which is not constant). Let
U = {U,, U,, U,} be a good cover of the circle S* (see Figure 13.2). Define
a presheaf # by

F(U) = Z for all open sets U,
Po1 = Po1 = piz = piz =1,
po: = —1, P2 = 1.

F is locally constant but not constant on U because p3, is not the identity.

Let # be a locally constant presheaf with group G on a good cover
U = {U,}. Fix isomorphisms

¢, : F(U,) = G.
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If U, and Uy intersect, then from the diagram

.
FU) -

Pas l

G
I
|
FU, AUy |
I
!
G

Pl I o5
FUy S

we obtain an automorphism of G, namely ¢,(p%) 'p%0, ' Write pj :
F(U,)— F(Uy) for the isomorphism (pf5) ' o pZ;. Choose some vertex U,
as the base point of the nerve N(U). For Uy U, ... U, U, a loop based at U,
we get an automorphism of G by following along the edges

W
)
<
L&

L

¥
e QT TQ

|
FUy) - G.
This gives a map from {loops at Uy} to Aut G. We claim that if a loop

bounds a 2-chain, then the associated automorphism of G is the identity.
Consider the example of the 2-simplex as shown in Figure 13.3.

U,

U
Pgl
pll)l Ul
Figure 13.3



§13 Monodromy 145
U, U,
U, U
U, U,
pirind PEP3(Pb12) " pYl20%:
(@) (b)
U, U,
Up U
U, ‘ U,
p3(p1) " (pdh2) " 08208, P3(p312) 081208
(c) (d)
U, U,
UO Uo
Ul Ul

(082) 1 (0832)7! 81203

(e)

Figure 134

(0812)" " 081208, = 1

)]

The associated automorphism of the loop U, U, U, is ¢o(pdpipd)de ! so it
is a matter of showing that p3p}p? is the identity. This is clear from the
sequence of pictures in Figure 13.4, where we use heavy solid lines to
indicate maps which, by the commutativity of the arrows, are all equal to

pop3Ps.
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More generally, the same procedure shows that the map pj...p5 around
any bounding loop is the identity. Hence there is a homomorphism

{loops}
{bounding loops}

p m(NQU)) = — Aut G,
called the monodromy representation of the presheaf &#. Here n,(N(U)) de-
notes the edge path group of the nerve N() as a simplicial complex.

Theorem 13.2. Let U be a good cover on a connected topological space X
and N(Y) its nerve. If ny(N(U0)) = 0, then every locally constant presheaf on U
is constant.

PROOF. Suppose n,;(NQU)) =0, i.e., every loop bounds some 2-chain. For
each open set U,, choose a path from U, to U,, say U, U,, ... U, U,, and
define Y, = o (o2 ... pip%) ' 1 F(U) — G.

bo
FU)S> G
|
F(U,)

¥, is well-defined independent of the chosen path, because as we have seen,
around a bounding loop the map p§ ... p,? is the identity.

Now carry out the barycentric subdivision of the nerve N(U) to get a
new simplicial complex K so that every open set U,, . ,, corresponds to a
vertex of K. Clearly n,(N(U)) = n,;(K). By the same procedure as in the
preceding paragraph we can define isomorphisms

Vao..ap ' F(Ugg...a) = G
for all nonempty U,, . ,,. The maps ¢,, . ,, give an isomorphism of the

presheaf & to the constant presheaf G on the cover M. Od

REMARK 13.2.1. If the group G of a locally constant presheaf has no auto-
morphisms except the identity, then there is no monodromy. In particular,
every locally constant presheaf with group Z, is constant.

ReMARK 13.3. Recall that a simplicial map between two simplicial complexes
K and L is a map f from the vertices of K to the vertices of L such that if
Vo, ..., U, span a simplex in K, then f(vy), ..., f(v,) span a simplex in L. A
simplicial map ffrom K to L induces a map f: | K|— | L| by linearity:

f(Z )“ivi) = Z A fi(v).

By abuse of language we refer to either of these maps as a simplicial map.
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For the proof of the next theorem we assemble here some standard facts
from the theory of simplicial complexes.

(a) The edge path group of a simplicial complex is the same as that of its
2-skeleton (Seifert and Threlfall [1, §44, p. 167]).

(b) The edge path group of a simplicial complex is the same as the
topological fundamental group of its support (Seifert and Threlfall [1, §44,
p. 165])).

(c) (The Simplicial Approximation Theorem). Let K and L be two sim-
plicial complexes. Then every map f:|K{— |L| is homotopic to a sim-
plicial map g:| K®|— | L| for some integer k, where K® is the k-th bary-
centric subdivision of K(Croom [1, p. 49]).

Because of (b) we also refer to the edge path group of a simplicial complex
as its fundamental group.

None of these facts are difficult to prove. They all depend on the follow-
ing very intuitive principle from obstruction theory.

The Extension Principle. A map from the union of all the faces of a cube into a
contractible space can be extended to the entire cube.

AsIDE. With a little homotopy theory the extension principle can be refined
as follows. Let X be a topological space and I* the unit k-dimensional cube.
If n,(X) = 0 for all g < k — 1, then any maps from the boundary of I* into
X can be extended to the entire cube I*.

In section S we defined a good cover on a manifold to be an open cover
{U,} for which all finite intersections U,, n - -+ n U, are diffeomorphic to
a Euclidean space. By a good cover on a topological space we shall mean an
open cover for which all finite intersections are contractible.

REMARK. Thus, on a manifold there are two notions of a good cover. These
two notions are not equivalent. Let us call a noncompact boundaryless
manifold an open manifold. Then there are contractible open 3-manifolds
not homeomorphic to R3. In 1935 J. H. C. Whitehead found the first
example of such a manifold [J. H. C. Whitehead, A certain n-manifold
whose group is unity, Quart. J. Math. Oxford 6 (1935), 268-279]. D. R.
McMillan, Jr. constructed infinitely many more in [D. R. McMillan, Jr.,
Some contractible open 3-manifolds, Transactions of the A. M. S. 102
(1962), 372-382]. For an open cover on a manifold to be a good cover we
will always require the more restrictive hypothesis that the finite nonempty
intersections be diffeomorphic to R”. This is because in order to prove
Poincaré duality, whether by the Mayer—Vietoris argument of Section 5 or
by the tic-tac-toe game of Section 12, we need the compact Poincaré lemma
(Corollary 4.7), which is not always true for an open set with merely the
homotopy type of R”.
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Theorem 13.4. Suppose the topological space X has a good cover W. Then the
fundamental group of X is isomorphic to the fundamental group n,(N(M)) of
the nerve of the good cover.

ProoF. Write N, () for the 2-skeleton of the nerve N(U). Let U;, U;, and
Ui be the barycenters of the vertices, edges, and faces of N, (U) and let

»(N) be its barycentric subdivision. As the first step in the proof of the
theorem we will define a map f from | N5(U)| to X. We will then show that
this map induces an isomorphism of fundamental groups.

To this end choose a point p; in each open set U, in U, a point p;; in each
nonempty pairwise intersection Uj;, and a point p;; in each nonempty
triple intersection U, . Also, fix a contraction ¢; of U; to p; and a contrac-
tion c;; of U;; to p;;. These contractions exist because U is a good cover. By
decree the map f'sends U;, Uj;, and Uy to p;, p;, and p;y respectively.

A

Figure 13.5

Next we define f on the edges of | N3(U)|. The contraction c; takes p;; to
p: and gives a well-defined path between p; and p;;. Similarly, the contrac-
tion c¢; gives a well-defined path between p; and p; (see Figure 13.5).
Furthermore, for each point p;; the six contractions c;, c;, ¢, ¢;j, ¢y, and
¢jx produce six paths in X joining p; to pi, pj, P«, Pij» Pix» and pj, respect-
ively (see Figure 13.6).

Pik
Figure 13.6
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The map f shall send the edges of | N3(U)| to the paths just defined; for
example, the edge U; U,y is sent to the path joining p; and p;; .

Finally we define f on the faces of | N%()|. Since each “triangle” p; p;; pix
lies entirely inside the open set U, (such a triangle may be degenerate; ie., it
may only be a point or a segment), the triangle may be “filled in” in a
well-defined manner: to fill in the triangle p; p;; pi; , use the contraction ¢, to
contract the edge p;; p to p; (see Figure 13.6). This “filled-in” triangle will
be the image of the triangle U; U; U}, under f. In summary, with the choice
of the points p;, p;;, pix and the contractions c;, c;; fixed, we have defined a
map f: | NU)|— X. We will now show that the induced map of funda-
mental groups, f,: 7;(| N5U)|)— 7,(X) is an isomorphism.

SteP 1 (Surjectivity of f,). Take py in U, to be the base point of X. Let
7: S'— X be a loop in X based at p,. We would like to deform y to a map
of the form f,(y), where 7: S* 5 |N, (W)} is a loop in | N, ()| based at U,.

Regard S' as the unit interval I with its endpoints identified. To define 7,
we first subdivide the unit interval into equal pieces, so that it becomes a
simplicial complex K with vertices ¢y, ..., 4, (Figure 13.7).

9 qvo1 QG 92 @ a5
Figure 13.7

By making the pieces sufficiently small, we can ensure that the star of ¢; in
the barycentric subdivision K' of K is mapped entirely into an open set
Uiy

Yst(q)) = Uy

To simplify the notation, write j instead of i + 1, so that ¢;q; is a 1-
simplex in K. Let g;; be the midpoint of ¢;q;. Define 7: S' —|N, ()| by
sending the segment g;q; to the segment U, U,(,; it follows that f{g;) =

U, and f,(7)4:) = Paii)-
Next define a map F on the sides of the square I by (see Figure 13.8)

F | vovom sige = F(x, 0) = y(x),
F |topsice = F(x, 1) = f,7(x),
and
F|verticatsices = F(0, t) = F(1, ) = po.

The problem now is to extend F: dI*— X to the entire square. Subdivide
the square by joining with vertical segments the vertices (g;, 0), (¢;;, 0) on
the bottom edge to the corresponding vertices on the top edge. Since
F(g;, 0) = (g) and F(g;, 1) =£,7(@) = Py, they both lie in U,q. Since
U, is contractible, by the extension principle F can be extended to the
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1%

Po Po

v
Figure 13.8

vertical segment {q;} x I. Similarly, F can be extended to the vertical seg-
ment {g;;} x I. Thus in Figure 13.8, F is defined on the boundary of each
rectangle and maps that boundary entirely into a contractible open set U,,.
By the extension principle again, F can be extended over each rectangle. In
this way F is extended to the entire square I2.

STEP 2 (Injectivity of f,). Suppose y: I — | N, ()| is a loop such that f,(y) is
null-homotopic in X. This means there is a map H from the square I> to X
as in Figure 13.9.

fsY

Po H Po

Po
Figure 13.9

By the simplicial approximation theorem we may assume that y is a
simplicial map from some subdivision L of the top edge of the square to
| N, (U)]. Now subdivide the square I repeatedly to get a triangulation K
with the property that if g; is a vertex of K and st(g;) is the star of g; in the
barycentric subdivision K’, then

H(st(q)) = U,

for some open set U, in U. In the process of the subdivision new vertices
are introduced on the top edge only by repeated bisection of the edge;
furthermore, the function « on the vertices of the top edge may be chosen as
follows. Consider for example the 1-simplex q,q,. If g, is a new vertex
to the left of the midpoint gq,,, choose a(k) = a(l); otherwise, choose
a(k) = o(2).
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Define
H: I’ = |K| > |N; ()|
to be the simplicial map with
H(g) = Uay-

The restriction B of H to the top edge of the square agrees with y on the
vertices of L. Furthermore, by construction f is homotopic to y in | N, ()|,
and H is a null-homotopy for B. Therefore, f,: n,(| N, (U)|)— n,(X) is in-
jective. Since the nerve N(U) and its 2-skeleton N, (U) have the same funda-
mental group (Remark 13.3 (a)), the theorem is proved. 0O

Examples of Monodromy

ExaMPLE 13.5. Let S' be the unit circle in the complex plane with good
cover U = {U,, U,, U,} as in Figure 13.10. The map n : z — z* defines a
fiber bundle n : S* — S! each of whose fibers consists of two distinct points.
Let F = {4, B} be the fiber above the point 1. The cohomology H*(F)
consists of all functions on {4, B}, i.e.,, H*(F) = {(a, b) € R?}.
Fix an isomorphism H*(n " 'U,) 5 H*(F). We have the diagram
H*n 'Uy) > H*(F)
!
H*(n ™ 'Ug,)
T
H*(n 'U))
!

|
|
}
|
l
|
:
|
{
:
|
H*n 'Uy,)
|
|
|
|
|
|
|
|
|
|
!
|
{

H*(n"'Ug) 3 H*(F).

If we start with a generator, say (1, 0), of H*(F) and follow it around the
diagram, we do not end up with the same generator; in fact, we get (0, 1). In
general (a, b) goes to (b, a). Therefore the presheaf #*(U) = H*(n~'U) is
not a constant presheaf.
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[ ]
L
>

[ ]
[ ]
-]

U, l
T
U
1

| Uy | ,
0 7 \

v © ( Uz()Ul )

Figure 13.10

Exercise 13.6. Since H, of the double complex C*(n~'U, Q*) in Example
13.5 has only one nonzero row, we see by the generalized Mayer-Vietoris
principle and Proposition 12.1 that

H*S") = HY{C*n~'W, Q*)} = H, H, = H*, #°).
Compute the Cech cohomology H*( U, #°) directly.

ExAMPLE 13.7. The universal covering 7 : R' — S* given by n(x) = e2** is a
fiber bundle with fiber a countable set of points. The action of the loop
downstairs on the homology H(fiber) is translation by 1: x+—»x + 1. In
cohomology a loop downstairs sends the function on the fiber with support
at x to the function with support at x + 1. (See Figure 13.11.)

X+ 1

IRy

Figure 13.11

Exercise 13.8. As in Example 13.5, with U being the usual good cover of S*,
H*R') = H}{C*(»~'U, Q*)} = H, H, = H*W, #°).
Compute H*(U, 5#°) directly.
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ExampPLE 13.9. In the previous two examples, the fundamental group of the
base acts on H, of the fiber. We now give an example in which it acts on
H,.

The wedge S™ V §" of two spheres S™ and §" is the union of S™ and S”
with one point identified. Let X be S V S? as shown in Figure 13.12 and
let X be the universal covering of X. Note that although H*(X) is finite,
H*(X) is infinite. We define a fiber bundle over the circle S* with fiber X by
setting.

E=X x1/(x,0)~ (s(x), 1)

where s is the deck transformation of the universal cover X which shifts
everything one unit up. The projection n: E — S' is given by n(X, ¢) =t.
The fundamental group of the base m,(S*) acts on H,(fiber) by shifting each
sphere one up.

Exercise 13.10. Find the homotopy type of the space E.

Figure 13.12



CHAPTER III

Spectral Sequences and Applications

This chapter begins with the abstract properties of spectral sequences and
their relation to the double complexes encountered earlier. Then in Section
15 comes the crucial transition to integer coefficients. Many, but not all, of
the constructions for the de Rham theory carry over to the singular theory.
We point out the similarities and the differences whenever appropriate. In
particular, there is a very brief discussion of the Kiinneth formula and the
universal coefficient theorems in this new setting. Thereafter we apply the
spectral sequences to the path fibration of Serre and compute the cohomol-
ogy of the loop space of a sphere. The short review of homotopy theory
that follows includes a digression into Morse theory, where we sketch a
proof that compact manifolds are CW complexes. In connection with the
computation of 75(S%), we also discuss the Hopf invariant and the linking
number and explore the rather subtle aspects of Poincaré duality concerned
with the boundary of a submanifold. Returning to the spectral sequences,
we compute the cohomology of certain Eilenberg-MacLane spaces. The
Eilenberg-MacLane spaces may be pieced together into a twisted product
that approximates a given space. They are in this sense the basic building
blocks of homotopy theory. As an application, we show that n5(S?) = Z,.
We conclude with a very brief introduction to the rational homotopy
theory of Dennis Sullivan. A more detailed overview of this chapter may be
obtained by reading the introductions to the various sections. One word
about the notation: for simplicity we often omit the coefficients from the
cohomology groups. This should not cause any confusion, as H*(X) always
denotes the de Rham cohomology except in Sections 15 through 18, where
in the context of the singular theory it stands for the singular cohomology.

154
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§14 The Spectral Sequence of a Filtered Complex

By considering the double complex C*(U, Q*) of differential forms on an
open cover, we generalized in Chapter II the key theorems of Chapter 1.
This double complex is a very degenerate case of an algebraic construction
called the spectral sequence, a powerful tool in the computation of homol-
ogy, cohomology and even homotopy groups. In this chapter we construct
the spectral sequence of a filtered complex and apply it to a variety of
situations, generalizing and reproving many previous results. Among the
various approaches to the construction of a spectral sequence, perhaps the
simplest is through exact couples, due to Massey [1].

Exact Couples
An exact couple is an exact sequence of Abelian groups of the form

K/

where i, j, and k are group homomorphisms. Defined :B— Bbyd =j o k.
Then d? = j(kj)k = 0, so the homology group H(B) = (ker d)/(im d) is de-
fined. Here 4 and B are assumed to be Abelian so that the quotient H(B) is
a group.

Out of a given exact couple we can construct a new exact couple, called
the derived couple,

A—u
(14.1) \ '/

by making the following definitions.
(a) A’ = i(A); B’ = H(B).
(b) i’ is induced from i; to be precise,
i'(ia) = i(ia).
(¢ If a’ =iaisin A, with a in A, then j'a’ = [ ja], where [ ] denotes the

homology class in H(B). To show that j' is well-defined we have to check
two things:

(i) ja is a cycle. This follows from d(ja) = j(kj)a = 0.
(ii) The homology class [ ja] is independent of the choice of a.
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Suppose a’ = id for some other d in A. Then because 0 = i(a — d), we have
a — a = kb for some b in B. Thus
ja — ja = jkb = db,
so
Ljal = Ljal.
(d) k' is induced from k. Let [b] be a homology class in H(B). Then
jkb = 0 so that kb = ia for some a in A. Define

K'[b] = kb € i(A).

It is straightforward to check that with these definitions, (14.1) is an
exact couple. We will check the exactness at B’ and leave the other steps to
the reader.

(i) imj' < ker k':
kj(a) = kj'(ia) = Kjj(a) = kj(a) = 0.
(ii) ker k' < imj":
Since k'(b) = k(b) = 0, it follows that b = j(a) = j'(ia) € im j.

The Spectral Sequence of a Filtered Complex

Let K be a differential complex with differential operator D; ie., K is an
Abelian group and D: K — K is a group homomorphism such that D* = 0.
Usually K comes with a grading K = @, .z C* and D: C*— C**" increases
the degree by 1, but the grading is not absolutely indispensable. A subcom-
plex K’ of K is a subgroup such that DK’ C K’. A sequence of subcom-
plexes

K=K03K13K23K33"'

is called a filtration on K. This makes K into a filtered complex, with
associated graded complex

GK = @K, /K,+1.

p=0

For notational reasons we usually extend the filtration to negative indices
by defining K, = K for p < 0.

ExamrLE 14.2. If K = @ K™ ?is a double complex with horizontal oper-
ator J and vertical operator d, we can form a single complex out of it in the
usual way, by letting K = @ C*, where C* = @ ,.,-« K and defining
the differential operator D: C*— C**! to be D = 6 + (—1)? d. Then the
sequence of subcomplexes indicated below is a filtration on K:

K, =@ @ K

i2p ¢g=20
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Returning to the general filtered complex K, let A be the group
A= @ K,.

pel

A is again a differential complex with operator D. Define i: A— A to be the
inclusion K, ., < K, and define B to be the quotient

(14.3) 0— A5 45 B0,

Then B is the associated graded complex GK of K. In the short exact
sequence (14.3) each group is a complex with operator induced from D. In
the graded case we get from this short exact sequence a long exact sequence
of cohomology groups

oo HYA) S HY )2 HYB) S H**Y(4)— -

which we may write as

iy

H(A) — H(A) Ay —— 4,
WAER VA
H(B)

where the map i need no longer be an inclusion. We suppress the subscript of
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i, to avoid cumbersome notation later. It is not difficult to see that the same
diagram exists in the ungraded case. Since this diagram is an exact couple, it
gives rise as in (14.1) to a sequence of exact couples:

A, — 4,
N/
B, ,
each being the derived couple of its predecessor.

For the sake of the exposition consider now the case where the filtered
complex terminates after K 5:

=K_=K;goK;2K;2K;o0.

Then A, is the direct sum of all the terms in the following sequence

- & H(K) & H(K) < H(K,) & H(K,) < H(K;) « 0.

This is of course not an exact sequence. Next, A, by definition is the image
of A, under i in A and so is the direct sum of the groups in the sequence

. & H(K) & H(K) o iH(K,) « iH(K,) « iH(K3) < O.

Note that here the map iH(K ) « H(K) is an inclusion. Similarly 4, is the
sum of

- & H(K) & H(K)> iH(K,) o iiH(K,) « iiH(K;3) « 0
and A, is the sum of
& H(K) & H(K) > iH(K,) o iiH(K,) 2 iiiH(K3) = 0.

Since all the maps become inclusions in A,, all the A’s are stationary after
the fourth derived couple and we define A to be the stationary value:

A4=A5=A6=”.=Aoo'
Furthermore, since

A, A,
k

N/

is exact and i : 4, — A, is the inclusion, the map k, : B, — A, must be the
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zero map. Therefore, after the fourth stage all the differentials of the exact
couples are zero and the B’s also become stationary,
B4=BS=B6="'=B°°.
In the exact couple

inclusion iy

Ay —— A
km:o\ /
Bw

A, is the direct sum of the groups
(14.9) -+ = H(K) = H(K) > iH(K ;) > iiH(K,;) 2 iiiH(K3) > 0
and the inclusion i, is as in (14.4). Since B, is the quotient of i, it is the

direct sum of the successive quotients in i . If we let (14.4) be the filtration

on H(K), then B is the associated graded complex of the filtered complex
H(K).

We now return to the general case. The sequence of subcomplexes
: =K=K3KIDK2:3K3:)“'

induces a sequence in cohomology

- 2H(K) &H(K) < HK,) < H(K,) < HKK3) < -,
where the maps i are of course no longer inclusions. Let F,, be the image of
H(K,) in H(K). Then there is a sequence of inclusions

(14.5) HK)=Fy>F, oFy>F3o -

s

making H(K) into a filtered complex; this filtration is called the induced
filtration on H(K). .

A filtration K, on the filtered complex K is said to have lengrh ¢ if
K,#0 and K,=0 for p>¢. By the same argument as the special case
above, we see that whenever the filtration on K has finite length, then 4,
and B, are eventually stationary and the stationary value B, is the
associated graded complex & F,/F, ., of the filtered complex H(K) with
filtration given by (14.5).

It is customary to write E, for B,. Hence,

E, = H(B) with differential d, =j; ° k,,
E, = H(E,) with differential d, = j, © k,,
E,=H(E,), etc.

A sequence of differential groups {E,, d,} in which each E, is the homology
of its predecessor E,_, is called a spectral sequence. If E, eventually be-
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comes stationary, we denote the stationary value by E_, and if E, is equal
to the associated graded group of some filtered group H, then we say that
the spectral sequence converges to H.

Now suppose the filtered complex K comes with a grading: K =
@ ..z K" To distinguish the grading degree n from the filtration degree p,
we will often call n the dimension. The filtration {K,} on K induces a
filtration in each dimension: if K’ = K" n K, then {K}} is a filtration on
K",

For the applications we have in mind, the filtration on K need not have
finite length, However, we can prove the following.

Theorem 14.6. Let K = @, ., K" be a graded filtered complex with filtration
{K,} and let H}K) be the cohomology of K with filtration given by (14.5).
Suppose for each dimension n the filtration {K}} has finite length. Then the
short exact sequence

0— @Kp+l—’ @Kp_’ @Kp/Kp+l~’ 0
induces a spectral sequence which converges to H¥(K).
ProoF. By treating the convergence question one dimension at a time, this

proof reduces to the ungraded situation. To be absolutely sure, we will write
out the details. As before,

A, =@ I HK));

pel
ifr 2 p+ 1, theni"H(K,) = F, and

it i"H(K 4 )— i"H(K )

is an inclusion. With a grading on each derived couple, i and j preserve the
dimension, but k increases the dimension by 1. Given n, let £(n) be the
length of {K}} ,.zand let r > #(n + 1) + 1. Then for any integer p,

i"H™ (K1) = Fytd
and
i ian+ I(Kp*’ 1)_> ian+ I(Kp)
is an inclusion. It follows that
R AL AL
is an inclusion and
k,: B'— A"*!

is the zero map. Therefore, as r— oo, the group B? becomes stationary and
we can define B” to be this stationary value. Note that

A =@ F
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and that i, sends Fj,., into F}, for every n. Becausei,: @ F,,,— @DF, is
an inclusion, B, is the associated graded complex @ F/F ., of H§K). O

The Spectral Sequence of a Double Complex

Now let K = @ K? 7 be a double complex with the filtration of Example
14.2. We will obtain a refinement of Theorem 14.6 for this special case by
taking into account not only the particular filtration in question but also
the bigrading and the presence of the two differential operators 6 and d.
The direct sum A = @K, is also a double complex. Here, as always, we
form a single complex 4 = @A4* out of this double complex by summing
the bidegrees: A* consists of all elements in 4 whose total degree is k. There
is an inclusion i : 4*— A4* given by

itA* K,y > A NnK,.

The single complex A inherits the differential operator D = 6 + (—1)°d
from K.

Similarly, B= @K ,/K,+ can be made into a single complex with oper-
ator D. Note that the differential operator D on B is (— 1)?d; therefore,

(14.7) E, = Hp(B) = H;(K).

Recall that the coboundary operator k, : H(B) — H(A) is the coboun-
dary operator of the short exact sequence (14.3) and hence is defined by the
following diagram:

I T I

3)
0— A" N K.y — AN K,— BT A KK, — 0

(14.8) ]D @ [ ]D

0—A4*nK,,y, —> A*nK, — B'nK,/K,,;—>0
(1)

I I I

Let b in A* n K, represent a cocycle [b] in B* n K,/K,+,. This corre-
sponds to Step (1) in the diagram. To get k,([b]), we

(2) compute Db and
(3) take its inverse under i.

Since b represents an element of E, = Hp(B)= H;(K), db=0 and
Db = 6b + (—1)Pdb = 6b. Thus k,[b] = [6b]; so the differential d, = j,k,
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on E, is given by & (in fact by D, but D = § on E,). Consequently
(149) E2 = HaHd(K).

We now compute the differential d, on E,. As noted in the proof of
Proposition 12.1, an element of E, = H; H,;(K) is represented by an element
b in K such that

S—r O

db=0 [

ob = —D"c for some ¢ in K,

where D" = (—1)Pd. We will denote the class of b in E,, if it is defined, by
[b],. From the definition of the derived couple (14.1),

d,[b]; =j2 k; [b]; = j, ky[b];.
To compute j, ki[b],, we must find an a such that k,[b]; = i[a],. Then
jzkz [b]2 = [ila]z. SinCC klb iS in 1‘1’(.’.1 N Kp+1’ a iS in Ak+1 N Kp+2. TO
find a we use not b but b + ¢ in A* N K, to represent [b], in Step (1); this
is possible since b and b + ¢ have the same image under the projection
K, — K, /K, Then

ki + ¢) = D(b + ¢) = dc.

So
(14.10) d,[b]; = [dc],.

Thus the differential d, is given by the § of the tail of the zig-zag which
extends b. It is easy to show that dc represents an element of H; H,;(K) and
that the definition of d, [b], is independent of the choice of c.

—t
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Exercise 14.11. Show that if d, [b], = 0, then there exist ¢, and ¢, so that b
can be extended to a zig-zag as shown:

0
t
J
b——
Dnb _ 0 {
14—
8b= —D'c, i
()
561 = —D’,Cz.

We say that an element b in K lives to E, if it represents a cohomology
class in E,; equivalently, b is a cocycle in E;, E,, ..., E,_;. From the
discussion above we see that b lives to E, if it can be extended to a zig-zag
of length 2, the length of a zig-zag being the number of terms in it,

0
db=0
!
b= —D'c b“’I
c
and d,[b], = [6c],; it lives to E, if it can be extended to a zig-zag of
length 3:
0
db=0 T
b
6b= —D"¢c, T
Ci——s
dcy = —D'c,. I
€2
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To compute d4[b]s, we use b+c¢; + ¢, in A* N K, to represent [b] €
B*n(K,/K,+,) in Step (1) of (14.8), so that ks [b]; is given by Db +
¢y + ¢;) = 6c, and dy [b]3 = [6c,]5. In general, parallel to the discussion
above, an element b in K? 7 lives to E, if it can be extended to a zig-zag of
length r:

o—

Ci—4—>

and the differential d, on E, is given by ¢ of the tail of the zig-zag:
(14'12) dr [b]r = [5cr—1]r'

Thus the bidegrees (p, g) of the double complex K = @ K? ? persist in the
spectral sequence

E=@ E,

P4
and d, shifts the bidegrees by (r, —r + 1):
d,: Er9— EP*rartl
The filtration on H(K) = @ H(K):
H(K)=F0:3F1 :)Fz:) e

induces a filtration on each component H(K), the successive quotients of
the filtration being E% ", EL "1, ..., E%°:

(14.13) H"K) = (FonH") > (Fy, nH") > (F;nHY) > ... > (F,nH") 50
N N - (e

Ego.n E:(;"—l E;;O

This is best seen pictorially
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EO. n

El.u—l

r F,
F———— F,

In summary, we have proved the following refinement of Theorem 14.6.

Theorem 14.14. Given a double complex K = @, ,, , K> there is a spectral
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