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Preface

Preface to the Second German Edition

In addition to the correction of typographical errors, the text has been
materially changed in three places. The derivation of Stirling’s formula in
Chapter 2, §4, now follows the method of Stieltjes in a more systematic
way. The proof of Picard’s little theorem in Chapter 10, §2, is carried out
following an idea of H. Konig. Finally, in Chapter 11, §4, an inaccuracy has
been corrected in the proof of Szegd’s theorem.

Oberwolfach, 3 October 1994 Reinhold Remmert

Preface to the First German Edition

Wer sich mit einer Wissenschaft bekannt machen
will, darf nicht nur nach den reifen Friichten greifen
— er muf} sich darum bekiimmern, wie und wo sie
gewachsen sind. (Whoever wants to get to know a
science shouldn’t just grab the ripe fruit — he must
also pay attention to how and where it grew.)

— J. C. Poggendorf

Presentation of function theory with vigorous connections to historical de-
velopment and related disciplines: This is also the leitmotif of this second
volume. It is intended that the reader experience function theory personally
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and participate in the work of the creative mathematician. Of course, the
scaffolding used to build cathedrals cannot always be erected afterwards;
but a textbook need not follow Gauss, who said that once a good building
is completed its scaffolding should no longer be seen.! Sometimes even the
framework of a smoothly plastered house should be exposed.

The edifice of function theory was built by Abel, Cauchy, Jacobi, Rie-
mann, and Weierstrass. Many others made important and beautiful con-
tributions; not only the work of the kings should be portrayed, but also
the life of the nobles and the citizenry in the kingdoms. For this reason,
the bibliographies became quite extensive. But this seems a small price to
pay. “Man kann der studierenden Jugend keinen gréBeren Dienst erweisen
als wenn man sie zweckméaBig anleitet, sich durch das Studium der Quellen
mit den Fortschritten der Wissenschaft bekannt zu machen.” (One can ren-
der young students no greater service than by suitably directing them to
familiarize themselves with the advances of science through study of the
sources.) (letter from Weierstrass to Casorati, 21 December 1868)

Unlike the first volume, this one contains numerous glimpses of the func-
tion theory of several complex variables. It should be emphasized how in-
dependent this discipline has become of the classical function theory from
which it sprang.

In citing references, I endeavored — as in the first volume — to give
primarily original works. Once again I ask indulgence if this was not always
successful. The search for the first appearance of a new idea that quickly
becomes mathematical folklore is often difficult. The Xenion is well known:

Allegire der Erste nur falsch, da schreiben ihm zwanzig
Immer den Irrthum nach, ohne den Text zu besehn. 2

The selection of material is conservative. The Weierstrass product theo-
rem, Mittag-Leffler’s theorem, the Riemann mapping theorem, and Runge’s
approximation theory are central. In addition to these required topics, the
reader will find

— Eisenstein’s proof of Euler’s product formula for the sine;
— Wielandt’s uniqueness theorem for the gamma function;
— an intensive discussion of Stirling’s formula,;

— Iss’sa’s theorem;

LCf. .W. Sartorius von Waltershausen: Gauf zum Gedichtnis, Hirzel, Leipzig
1856; reprinted by Martin Sdndig oHG, Wiesbaden 1965, p. 82.

2Just let the first one come up with a wrong reference, twenty others will copy
his error without ever consulting the text. [The translator is grateful to Mr. Ingo
Seidler for his help in translating this couplet.]
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— Besse’s proof that all domains in C are domains of holomorphy;

— Wedderburn’s lemma and the ideal theory of rings of holomorphic
functions;

— Estermann’s proofs of the overconvergence theorem and Bloch’s the-
orem;

— a holomorphic imbedding of the unit disc in C?;

— Gauss’s expert opinion of November 1851 on Riemann’s dissertation.

An effort was made to keep the presentation concise. One worries, how-
ever:

WeiB uns der Leser auch fiir unsre Kiirze Dank?
Wohl kaum? Denn Kiirze ward durch Vielheit leider! lang. 3

Oberwolfach, 3 October 1994 Reinhold Remmert

3Is the reader even grateful for our brevity? Hardly? For brevity, through
abundance, alas! turned long.
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Gratias ago

It is impossible here to thank by name all those who gave me valuable ad-
vice. I would like to mention Messrs. R. B. Burckel, J. Elstrodt, D. Gaier,
W. Kaup, M. Koecher, K. Lamotke, K.-J. Ramspott, and P. Ullrich, who
gave their critical opinions. I must also mention the Volkswagen Founda-
tion, which supported the first work on this book through an academic
stipend in the winter semester 1982-83.

Thanks are also due to Mrs. S. Terveer and Mr. K. Schicter. They gave
valuable help in the preparatory work and eliminated many flaws in the
text. They both went through the last version critically and meticulously,
proofread it, and compiled the indices.

Advice to the reader. Parts A, B, and C are to a large extent mutually
independent. A reference 3.4.2 means Subsection 2 in Section 4 of Chapter
3. The chapter number is omitted within a chapter, and the section num-
ber within a section. Cross-references to the volume Funktionentheorie I
refer to the third edition 1992; the Roman numeral I begins the reference,
e.g. 1.3.4.2.% No later use will be made of material in small print; chapters,
sections and subsections marked by * can be skipped on a first reading.
Historical comments are usually given after the actual mathematics. Bibli-
ographies are arranged at the end of each chapter (occasionally at the end
of each section); page numbers, when given, refer to the editions listed.
Readers in search of the older literature may consult A. Gutzmer’s
German-language revision of G. Vivanti’s Theorie der eindeutigen Funk-
tionen, Teubner 1906, in which 672 titles (through 1904) are collected.

4[In this translation, references, still indicated by the Roman numeral I, are
to Theory of Complex Functions (Springer, 1991), the English translation by R.
B. Burckel of the second German edition of Funktionentheorie I. Trans.]
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Infinite Products
and
Partial Fraction Series



1

Infinite Products of Holomorphic
Functions

Allgemeine Satze iiber die Convergenz der unend-
lichen Producte sind zum grossen Theile bekannt.
(General theorems on the convergence of infinite
products are for the most part well known.)

— Weierstrass, 1854

Infinite products first appeared in 1579 in the work of F. Vieta ( Opera, p.
400, Leyden, 1646); he gave the formula

for m (cf. [Z], p. 104 and p. 118). In 1655 J. Wallis discovered the famous
product

T 22 4-4 6-6 2n - 2n

2 133557  (2n-1-2n-1) 7
which appears in “Arithmetica infinitorum,” Opera I, p. 468 (cf. [Z], p. 104
and p. 119). But L. Euler was the first to work systematically with infinite
products and to formulate important product expansions; cf. Chapter 9
of his Introductio. The first convergence criterion is due to Cauchy, Cours
d’analyse, p. 562 ff. Infinite products had found their permanent place in
analysis by 1854 at the latest, through Weierstrass ([Wei], p. 172 f£.).!

Tn 1847 Eisenstein, in his long-forgotten work [Ei], had already systemati-
cally used infinite products. He also uses conditionally convergent products (and



4 1. Infinite Products of Holomorphic Functions

One goal of this chapter is the derivation and discussion of Euler’s prod-
uct

for the sine function; we give two proofs in Section 3.

Since infinite products are only rarely treated in lectures and textbooks
on infinitesimal calculus, we begin by collecting, in Section 1, some ba-
sic facts about infinite products of numbers and of holomorphic functions.
Normally convergent infinite products [] f, of functions are investigated in
Section 2; in particular, the important theorem on logarithmic differentia-
tion of products is proved.

§1. Infinite Products

We first consider infinite products of sequences of complex numbers. In
the second section, the essentials of the theory of compactly convergent
products of functions are stated. A detailed discussion of infinite products
can be found in [Kn].

1. Infinite products of numbers. If (a,),>\ is a sequence of complex
numbers, the sequence ([])_, a.), ., of partial products is called a(n) (in-
finite) product with the factors a,. We write Hf’:k a, or [, av or simply
ITa.; in general, k =0 or k = 1. B

If we now — by analogy with series — were to call a product [] a, conver-
gent whenever the sequence of partial products had a limit a, undesirable
pathologies would result: for one thing, a product would be convergent
with value 0 if just one factor a, were zero; for another, [] a,, could be zero
even if not a single factor were zero (e.g. if |a,| < ¢ < 1 for all v). We will
therefore take precautions against zero factors and convergence to zero. We
introduce the partial products

n
Pmn = GmQm41 ... 0p = H a,, k<m<n,

v=m

and call the product [] a, convergent if there exists an index m such that
the sequence (Pm n)n>m has a limit @, # 0.

series) and carefully discusses the problems, then barely recognized, of condi-
tional and absolute convergence; but he does not deal with questions of compact
convergence. Thus logarithms of infinite products are taken without hesitation,
and infinite series are casually differentiated term by term; this carelessness may
perhaps explain why Weierstrass nowhere cites Eisenstein’s work.
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We then call @ := arag41 .. . @m—18m the value of the product and intro-
duce the suggestive notation

Ha,, = AkAk+1 - - - Am—10m = Q.

The number a is independent of the index m: since @, # 0, we have a,, # 0
for all n > m; hence for each fixed [ > m the sequence (pi,n)n>: also has a
limit @; # 0, and @ = axag+1 - - - a;—1a;. Nonconvergent products are called
divergent. The following result is immediate:

A product []a, is convergent if and only if at most finitely many fac-
tors are zero and the sequence of partial products consisting of the nonzero
elements has a limit # 0.

The restrictions we have found take into account as well as possible the
special role of zero. Just as for finite products, the following holds (by
definition):

A convergent product [[a, is zero if and only if at least one factor is
zero.

We note further:

If TIo2, ay converges, then @, = [[oo,, av exists for all n € N. More-
over, lima, =1 and lima, = 1.

Proof. We may assume that a := [[a, # 0. Then @, = a/pon—1. Since
limpg n—1 = a, it follows that lima, = 1. The equality lima, = 1 holds
because, for all n, @, # 0 and a, = @n/Any1- 0

Ezamples. a) Let ag := 0, a, := 1 for v > 1. Then [Ja., =0.
b) Let ay, :=1— J, v > 2. Then pa.n = 3(1+ 2); hence [],5,a, = 1.
c) Let a, := 1—%, v >2.Thenpy, = %; hence lim p; ,, = 0. The product
[1,>5 av is divergent (since no factor vanishes) although lima, = 1.

In 4.3.2 we will need the following generalization of ¢):

d) Let ag, a1, az,... be a sequence of real numbers with a,, > 0 and
(1 -a,) =+oc. Then lim[]_,a, = 0.

Proof. 0 < po.n =[5 av < exp[—Y_g(1 —a.)], n €N, since ¢ < e*~! for all
t € R. Since Y (1 — a,) = 400, it follows that limpg ,, = 0. O

It is not appropriate to introduce, by analogy with series, the concept
of absolute convergence. If we were to call a product [] a, absolutely con-
vergent whenever [] |a,| converged, then convergence would always imply
absolute convergence — but [[(—1)” would be absolutely convergent with-
out being convergent! The first comprehensive treatment of the convergence
theory of infinite products was given in 1889 by A. Pringsheim [P].
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FExercises. Show:

=3 -1 2 v+ (=1t
D[St -2 e,
Jevi4l 3 L v

i 7r 2
b — = = (Vieta’ duct).
)1,1;[;082" 7r( ieta’s product)

2. Infinite products of functions. Let X denote a locally compact metric
space. It is well known that the concepts of compact convergence and locally
uniform convergence coincide for such spaces; cf. .3.1.3. For a sequence f, €
C(X) of continuous functions on X with values in C, the (infinite) product
I1 /. is called compactly convergent in X if, for every compact set K in X,
there is an index m = m(K) such that the sequence pm n := frfm+1 .- fr,
n > m, converges uniformly on K to a nonvanishing function fm. Then,
for each point z € X,

f@) =][f@ecC

exists (in the sense of Subsection 1); we call the function f : X — C the
limit of the product and write

f=1]#; then,onK, fIK=(folK)-... (fm-1lK)" fm.

The next two statements follow immediately from the continuity theorem
1.3.1.2.

a) If [] f, converges compactly to f in X, then f is continuous in X and
the sequence f, converges compactly in X to 1.
b) If [] f. and [] g. converge compactly in X, then so does [] f.g.:

[Lsa = (I14) (TT=)-

We are primarily interested in the case where X is a domain? in C and all
the functions f, are holomorphic. The following is clear by the Weierstrass
convergence theorem (cf. 1.8.4.1).

c) Let G be a domain in C. Every product [] f, of functions f, holomor-
phic in G that converges compactly in G has a limit f that s holomorphic
in G.

Ezamples. a) The functions f, := (14 5227 )(1+ %)
in the unit disc E. We have

! v > 1, are holomorphic

2 2z \7! . 2
P2 = <1 + gz) (1 + o+ 1) € O(E); hence limpsn,=1+ §z,

%[As defined in Funktionentheorie I, a region (“Bereich” in German) is a
nonempty open subset of C; a domain (“Gebiet” in German) is a connected re-
gion. In consulting Theory of Complez Functions, the reader should be aware that
there “Bereich” was translated as “domain” and “Gebiet” as “region.” Trans.)
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and the product [[°°, f. therefore converges compactly in E to 1 + 2z.
v=1

b) Let f.(z) = z for all v > 0. The product []}2 ; f. does not converge (even
pointwise) in the unit disc E, since the sequence pm,. = 2" ™! converges to
zero for every m.

We note an important sufficient

Convergence criterion. Let f, € C(X), v > 0. Suppose there exists an
m € N such that every function f,, v > m, has a logarithm log f, € C(X).
If >~ log f, converges compactly in X tos € C(X), then [] f, converges
compactly in X to fofi... fm—1€Xps.

Proof. Since the sequlxence Sp 1= ZZ:m log f, converges compactly to s, the
sequence pm.n = [[,_,, fv = exp s, converges compactly in X to exps. As
exp s does not vanish, the assertion follows.? a

§2. Normal Convergence

The convergence criterion 1.2 is hardly suitable for applications, since series
consisting of logarithms are generally hard to handle. Moreover, we need
a criterion — by analogy with infinite series — that ensures the compact
convergence of all partial products and all rearrangements. Here again, as
for series, “normal convergence” proves superior to “compact convergence.”
We recall this concept of convergence for series, again assuming the space
X to be locally compact: then > f,,, f, € C(X), is normally convergent in
X if and only if Y |f,|k < oo for every compact set K C X (cf. .3.3.2).
Normally convergent series are compactly convergent; normal convergence
is preserved under passage to partial sums and arbitrary rearrangements
(cf. 1.3.3.1).

The factors of a product [] f, are often written in the form f, = 1+g,;
by 1.2 a), the sequence g, converges compactly to zero if [] f, converges
compactly.

1. Normal convergence. A product [] f, with f, = 1+ g, € C(X) is
called normally convergent in X if the series ) g, converges normally in
X. It is easy to see that

if Huzo fv converges normally in X, then
— for every bijection T : N — N, the product [[,~ fr(.) converges nor-

mally in X;

3The simple proof that the compact convergence of s, to s implies the compact
convergence of exp s, to exp s can be found in 1.5.4.3 (composition lemma).
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— every subproduct Hj>0 fv; converges normally in X;

— the product converges compactly in X.

We will see that the concept of normal convergence is a good one. At the
moment, however, it is not clear that a normally convergent product even
has a limit. We immediately prove this and more:

Rearrangement theorem. Let Huzo f, be normally convergent in X.
Then there is a function f : X — C such that for every bijection 7 : N — N
the rearrangement Huzo fr) of the product converges compactly to f in X.

_1)"

Proof. For w € E we have log(1 + w) =3 5, ~— —w¥. Tt follows that

[log(14+w)| < |w|(14|w|+|w|*+- - ); hence |log(1+w)| < 2|w] if |w| < 1/2.

Now let K C X be an arbitrary compact set and let g, = f, — 1. There
is an m € N such that |g,|x < % for n > m. For all such n,

-1 v—1
tog fu = 32 T g e c(K),  where [1og fulk < 2lgal

We see that >, |log fulk < > ,5ml9vlk < oo. Hence, by the rear-
rangement theorem for series (cf. 1.0.4.3), for every bijection ¢ of Ny, :=
{n € N: n > m} the series }_ ., log fy(,) converges uniformly in K to
S >m10g fu. By 1.2, it follows that for such o the products [],s,, foq)
and [],>,, fv converge uniformly in K to the same limit function. But an
arbitrary bijection 7 of N (= permutation of N) differs only by finitely many
transpositions (which have no effect on convergence) from a permutation
o' : N = N with ¢/(N,,) = N,;,. Hence there exists a function f : X — C
such that every product [],~ f-() converges compactly in X to f. a

Corollary. Let f =[], f, converge normally in X. Then the following
statements hold. -

1) Ewvery product ﬁl := [1,>n fv converges normally in X, and
f=fofi .. fa-1fn
2) If N= ;" N is a (finite or infinite) partition of N into pair-

wise disjoint subsets N1,..., N, ..., then every product HueNN fu
converges normally in X and

f=ﬁ(Hﬂ)

k=1 \veEN,
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Products can converge compactly without being normally convergent, as is
shown, for example, by [T, (1 + gv), g 1= (—1)*"!/v. It is always true that
(1+g2-1)14+g2)=1; hence p1.» = 1 for even n and p1,, = 1+ L for odd n.
The product [],-,(1 + g.) thus converges compactly in C to 1. In this example
the subproduct [],-,(1 + g2.—1) is not convergent!

All later applications (sine product, Jacobi’s triple product, Weierstrass’s
factorial, general Weierstrass products) will involve normally convergent
products.

Exzercises. 1) Prove that if the products [] f. and [] f. converge normally in X,
then the product []( fuf.) also converges normally in X.

2) Show that the following products converge normally in the unit disc E, and
prove the identities

1

[Ta+) ==, [Jlla+H0-2>"=1
v2>0 v>1

2. Normally convergent products of holomorphic functions. The
zero set Z(f) of any function f # 0 holomorphic in G is locally finite in

G;* hence Z(f) is at most countably infinite (see 1.8.1.3).
For finitely many functions fo, f1,--.,fn € O(G), f. #0,

Z(fofr - ) =\J2(f) and oclfofi...fn) = 0clfs), c€GC,
0 0

where o.(f) denotes the order of the zero of f at ¢ (I1.8.1.4). For infinite
products, we have the following result.

Proposition. Let f =[] f,, f. # 0, be a normally convergent product in
G of functions holomorphic in G. Then

f#0, Z(f)ZUZ(fu), Oc(f)=ZOC(fy) forallceG.

Proof. Let ¢ € G be fixed. Since f(c) = []f.(c) converges, there ex-
ists an index n such that f,(c) # 0 for all v > n. By Corollary 1,1),
f= fofl...fn_lﬁ, where ﬁL = [I,>, fv € O(G) by the Weierstrass
convergence theorem. It follows that

n—1
0c(f) =Y 0c(fo) + 0c(fn), With 0c(fn) =0 (since fn(c) #0).

4Let G be an open subset of C. A subset of G is locally finite in G if it intersects
every compact set in G in only a finite number of points. Equivalently, a subset
of G is locally finite in G if it is discrete and closed in G.



10 1. Infinite Products of Holomorphic Functions

This proves the addition rule for infinite products. In particular, Z(f) =
UZ(f,)- Since each f, # 0, all the sets Z(f,) and hence also their countable
union are countable; it follows that f 5 0. O

Remark. The proposition is true even if the convergence of the product in G is
only compact. The proof remains valid word for word, since it is easy to see that

for every n the tail end ﬁl =11 fu converges compactly in G.

v>n

We will need the following result in the next section.

If f =111, fvo € O(G), is normally convergent in G, then the sequence
fn =115, fv € O(G) converges compactly in G to 1.

Proof. Let fm #0. Then A:=2 (fm) is locally finite in G. All the partial
products pm n—1 € O(G), n > m, are nonvanishing in G \ A and

Fn(2) = fm(2) - (m) forall zeG\A.

Now the sequence 1/py, n—1 converges compactly in G\ A to 1/ fm. Hence,
by the sharpened version of the Weierstrass convergence theorem (see
1.8.5.4), this sequence also converges compactly in G to 1. O

Exzercise. Show that f = []J2, cos(z/2v) converges normally in C. Determine
Z(f). Show that for each k € N\ {0} there exists a zero of order k of f and that

= z T (2v—-1 z
ECOSZ_VH:I( - sm2y_1>.

3. Logarithmic differentiation. The logarithmic derivative of a mero-
morphic function h € M(G), h # 0, is by definition the function k'/h €
M(G) (see also 1.9.3.1, where the case of nonvanishing holomorphic func-
tions is discussed). For finite products h = hihs...hm, h, € M(G), we
have the

WM M
Addition formula: = e + Ty 4+t .

This formula carries over to infinite products of holomorphic functions.
Differentiation theorem. Let f = [][f, be a product of holomorphic

functions that converges normally in G. Then Y, f,/ f. is a series of mero-
morphic functions that converges normally in G, and

f?lzzf—l/’eM(G).
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Proof. 1) For all n € N (by Corollary 1,1)),

. - f/ n—1 f/ Y
f="fofr.. fa-1fn, with fn := J] fv; hence 7= Xy
v>n v=1"Y n

Since the sequence f,, converges compactly in G to 1 (cf. 2), the derivatives
f,’l converge compactly in G to 0 by Weierstrass. For every disc B with
B C G there is thus an m € N such that all f,, n > m, are nonvanishing
in B and the sequence f}/f, € O(B), n > m, converges compactly in B
to zero. This shows that ) f,/f, converges compactly in G to f'/f.

2) We now show that > f!/f, converges normally in G. Let g, := f, —1.
We must assign an index m to every compact set K in G so that every pole
set P(f./f.), v > m, is disjoint from K and

*) 2 2

v>m K v>m

£

fy 9y
fo

7 < oo (cf I.11.1.1).

K

We choose m so large that all the sets Z(f,) N K, v > m, are empty and
min.ek |f,(z)| > § for all v > m (this is possible, since the sequence f, con-
verges compactly to 1). Now, by the Cauchy estimates for derivatives, there
exist a compact set L O K in G and a constant M > 0 such that |g]|x
Mg, |y, for all v (cf. 1.8.3.1). Thus |,/ f.|x < |g.|x - (min,eg | £, (2)]) 7!
2M|g,|r for v > m. Since Y |g, | < oo by hypothesis, (*) follows.

O INIA

The differentiation theorem is an important tool for concrete computa-
tions; for example, we use it in the next subsection to derive Euler’s product
for the sine, and we give another application in 2.2.3. The theorem holds
verbatim if the word “normal” is replaced by “compact.” (Prove this.)

The differentiation theorem can be used to prove:

If f is holomorphic at the origin, then f can be represented uniquely in a disc
B about 0 as a product

flz)=b[J(1+0b.2"), bb e€C, keN,

v=1
which converges normally in B to f.

This theorem was proved in 1929 by J. F. Ritt [R]. It is not claimed that
the product converges in the largest disc about 0 in which f is holomorphic.
There seem to be no compelling applications of this product expansion, which is
a multiplicative analogue of the Taylor series.
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§3. The Sine Product sinmz = w2z [0, (1 — 22/1v?)

The product [°2 ; (1—22/v2) is normally convergent in C, since y_>- ;2% /v?

converges normally in C. In 1734 Euler discovered that

00 2
(1) sin7rz=7rzH<1——i-), z€C.

We give two proofs of this formula.

1. Standard proof (using logarithmic differentiation and the partial frac-
tion decomposition for the cotangent). Setting f, := 1 —2?/v? and f(2) :=
nz [, fo gives

fL/f, = —-—2_2—1/2, and thus f'(2)/f(z) = % + Z 222_2”2.
v=1

22

Here the right-hand side is the function 7 cot 7z (cf. 1.11.2.1). As this is also
the logarithmic derivative of sin 7z, we have® f(z) = csinwz with ¢ € C*.

Since lim,_,g Lﬂ%l =1=Ilim,_q Si;:z, it follows that ¢ = 1.

Substituting special values for z in (1) yields interesting (and uninteresting)
formulas. Setting z := % gives the product formula

(Wallis, 1655).

For z := 1, one obtains the trivial equality 3 = [1°2,(1 — &%) (cf. Example 1.1,
b); on the other hand, setting z := ¢ and using the identity sinmi = Z(e” —e™™)
give the bizarre formula

-1

ﬁ 14+ 1y "
v2) 2
v=1
Using the identity sin zcosz = %sin 2z and Corollary 2.1, one obtains
cosmzsinmz = wzﬁ 1-—- 2z i
- v

(- ())0-E)

v=1

5Let f # 0, g # 0 be two meromorphic functions on a domain G which have
the same logarithmic derivative. Then f = cg, with ¢ € C*. To prove this, note
that f/g € M(G) and (f/g) =0.
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and hence Euler’s product representation for the cosine:

had 422
cos7rz=H 1_(2—V—T)2 , z€C.

v=1

In 1734-35, with his sine product, Euler could in principle compute all the num-

bers ((2n) == 3%, v™%", n = 1,2,... (cf. also 1.11.3.2). Thus it follows im-
mediately, for example, that ((2) = "Tf: Since fn(z) = [I0_,(1 — 2*/¥?) =
1-(X0_,v™%)2%+- - - tends compactly to f(z) := (sinmz)/(nz) = 1- —"26—22 +oe
it follows that % f,/(0) = — 3_0_, v™? converges to 3 f”(0) = —in°. O

Wallis’s formula permits an elementary calculation of the Gaussian error inte-
2 2
gral [° e " dz. For I, := [ z"e™" dz, we have

0
21, =(n—1)I,-2, n>2 (integration by parts!).
Since I, = %, an induction argument gives
(0) ®Le=1-3-5-...-(2k —1)Ip, 2Ixy1 =k!, keN
Since Int1+2tIh +t?In1 = [T 2" !z +1)%e*"dz for all t € R, it follows that
I2 < In_1In41; hence 2I2 <nl?_,.
With (o) we now obtain

EN? 2
4(194)-2 - W@kﬂ < I < Ik—1lzk41 =

(k1)?
i

This can also be written

2 _ (k)?
2T 4k ¥ 2

. 1
(1+ex), with 0<€k<ﬂ'

Using (o) to substitute Ip into this yields

[2:4-6-...-(2k))?
[1-3-5-...-(2k—1)]2(2k +1)

213 = (1 + k).

From limex = 0 and Wallis’s formula, it follows that 2I2 = %7!' and hence that
o0 —g2
e % de = /7. O

This derivation was given by T.-J. Stieltjes: Note sur 'intégrale f0°° e'”zdu,
Nouv. Ann. Math. 9, 3rd ser., 479-480 (1890); (Fuvres complétes 2, 2nd ed.,
Springer, 1993, 263-264.

Ezercises. Prove:
: 2:4:6-...2 _ 1 /-
1) lim 3.5»7.4..~(2n11) Vn =3V
1 1 .
2) zm=110L, (1 - (2u+1)?)’

3) % — ebz — ((1 _b>ze%(a+b)z sz-_l(l + (a_b)zzz);

4vém
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4) cos(%wz) - sin(%ﬂ-z) =112, (1 + (—_1&)

2n-1

2. Characterization of the sine by the duplication formula. We
characterize the sine function by properties that are easy to verify for the
product z [J(1 — 2%/v2). The equality sin2z = 2sin zcos z is a

Duplication formula: sin27z = 2sinwzsinn(z + %), ze€C.
In order to use it in characterizing the sine, we first prove a lemma.

Lemma (Herglotz, multiplicative form).6Let G C C be a domain that con-
tains an interval [0,7), r > 1. Suppose that g € O(G) has no zeros in [0,1)
and satisfies a multiplicative duplication formula

(*) 9(22) =cg(2)g(z+3) when =z, z+1%, 22€[0,r) (withceCX).

Then g(z) = ae®® with 1 = ace?®.

Proof. The function h := ¢’'/g € M(G) is holomorphic throughout [0,7),
and 2h(2z) = 2¢'(22)/9(2z) = h(z)+h(z+3) whenever z, 2+ 1, 2z € [0, 7).
By Herglotz’s lemma (additive form), h is constant.b It follows that g’ = bg
with b € C; hence g(z) = aeb?. By (x), ace?® = 1. m]

The next theorem now follows quickly.

Theorem. Let f be an odd entire function that vanishes in [0, 1] only at 0
and 1, and vanishes to first order there. Suppose that it satisfies the

Duplication formula: f(2z) = cf(2)f(z+3), z€C, wherece C*.
Then f(z) = 2c™!sinmz. ‘

Proof. The function g(z) := f(z)/sin7z is holomorphic and nowhere zero
in adomain G O [0,7), 7 > 1; we have g(22) = cg(2)g(z+3). By Herglotz,
f(2) = ae®* sin 7z with ace?® = 2. Since f(—z) = f(z), it also follows that
b=0. O

6We recall the following lemma, discussed in 1.11.2.2:

Herglotz’s lemma (additive form). Let [0,r) C G with r > 1. Let h € O(G)
and assume that the additive duplication formula 2h(22) = h(z) + h(z + }) holds
when z, z + %, 2z € [0,7). Then h is constant.

Proof. Let t € (1,7) and M := max{|h'(2)| : z € [0,t)}. Since 4h'(22) = h'(2) +
R'(z+ 3) and 3z and 3(z + 1) always lie in [0,¢] whenever z does, it follows
that 4M < 2M, and hence that M = 0. By the identity theorem, A’ = 0; thus
h = const. ]
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We also use the duplication formula for the sine to derive an integral that
will be needed in the appendix to 4.3 for the proof of Jensen’s formula:

1
(1) / log sin 7tdt = —log 2.
0

Proof. Assuming for the moment that the integral exists, we have

3 3 3
(o) /02 log sin 2mtdt = 1 log 2 +/O log sin wtdt +/0 logsin(t + 3)dt.

Setting 7 := 2t on the left-hand side and 7 : =t + % in the integral on the
extreme right immediately yields (1). The second integral on the right in
(o) exists whenever the first one does (set t + 2 = 1 — 7). The first integral
exists since g(t) := t~!sint is continuous and nonvanishing in [0, $].”

3. Proof of Euler’s formula using Lemma 2. The function

z)i=z- H(l —22/v?)

is entire and odd and has zeros precisely at the points of Z, and these
are first-order zeros. Since $'(0) = lim, .0 s(z)/z = 1, Theorem 2 implies
that sin mz = ms(z) whenever s satisfies a duplication formula. This can be
verified immediately. Since s converges normally, it follows from Corollary
(oo}
3(2z) 2z - H <

2.1 that
(+) 1 o) (- w5)

()

v=1

A computation (!) gives

(1 N Z%) (1 N (21/4i21)2) D 1122;&:3 (1 - (224;1)2) pvzl

If we take Example a) of 1.2 into account, this yields

I(-a) (@) - o255

v= = v=1

= 2s(z+3).

TLet f(t) =t "g(t), t € N, where g is continuous and nonvanishing in [0, 7],
7> 0. Then [ log f(¢)dt exists. This is clear since ] logtdt exists (zlogz —
is an antiderivative, and lims\ o 6 log § = 0).
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Thus (+) is a duplication formula: s(2z) = 4a~'s(2)s(z + 1), where a :=
[T(1—1/42) #0. O
This multiplicative proof dates back to the American mathematician E.

H. Moore; a number of computations are carried out in his 1894 paper [M].
The reader should note the close relationship with Schottky’s proof of the

equation
/11
+ 3 (53)
v=—0o0

in 1.11.2.1; Moore probably did not know Schottky’s 1892 paper.

4*. Proof of the duplication formula for Euler’s product, following
Eisenstein. Long before Moore, Eisenstein had proved the duplication formula
for s(z) in passing. In 1847 ([Ei], p. 461 ff.), he considered the apparently com-
plicated product

weotmz =

IS

oo

= I, (1 525) = (2 m T (14525)

v=—

of two variables (w,z) € (C\Z) x C; here [, = limn_.oo [],__, denotes the
Eisenstein multiplication (by analogy with the Eisenstein summation )__, which
we introduced in I1.11.2). Moreover, []" indicates that the factor with index 0 is
omitted. The Eisenstein product E(w, z) is normally convergent in the (w, 2)-
space (C\Z) x C, since

iy z i 22 4+ 2wz
H (1+u+w)=H(1~ V2—w2>

v=—n v=1

and 3°2° 1/(w? — v*) converges normally in C\Z (cf. 1.11.1.3). The function
E(z,w) is therefore continuous in (C\Z) x C and, for fixed w, holomorphic in
each z € C. Computations can be carried out elegantly with E(z,w), and the
following is immediate.

Duplication formula. E(2w,2z) = E(w, z)E(w + 3, 2).

Proof.

e 2z 3 2z
E(2w, 22) IL (1 - 2w) . VH‘; (1 o 2w)

Vv=-—00

E(w,2)E(w+ %, 2). O

Eisenstein used the (trivial, but astonishing!) formula
(x) 1+ A (1 + 2 i z> /(1 + E) (Eisenstein’s trick)
v+w v v

to reduce his “double product” to Euler’s product:

s(w+ 2)

E(w,z) = @) where s(z) =z [| (1 - V-j) .
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Proof.
. T w
£ = o o 11 (1+25%) [ 11 (1+2)
w+ z)2 °° w?
:w—i—z)l_‘[l(l— )/(wl:[l(l—ﬁ
_ s(w+2) g
o os(w)
The duplication formula for s(z) is now contained in the equation
s(2w + 22) 1 s(w+2z) s(w+3 +z)
- =F(2w,22)=FE E 5,2) = .
s(2w) (2w, 22) (w,2)B(w+3,2) s(w) s(w+3)
. . . . s(2w) .
Since s is continuous and lim ——= = 2, it follows that
w5 "s(w)
s(2w) s(w+ L4 2) _
s(22) = lim 5(w) s(w+ z)—;@—i%—)— = 2s(3) 7 s(2)s(z + 3). ]

The elegance of Fisenstein’s reasoning is made possible by the second
variable w. Eisenstein also notes (loc. cit.) that F is periodic in w: E(w +
1,2) = E(w, z) (proved by substituting v¥+1 for v); he uses E and s to prove
the quadratic reciprocity law; the duplication formula appears there at the
bottom of p. 462. Eisenstein calls the identity E(w, 2) = s(w+ 2)/s(w) the
fundamental formula and writes it as follows (p. 402; the interpretation is
left to the reader):

H(1— z ):Sim,r(ﬂ—z)/a, a, feC, B/laé¢

ez am+ 3 sinw8/a

5. On the history of the sine product. Euler discovered the cosine
and sine products in 1734-35 and published them in the famous paper “De
Summis Serierum Reciprocarum” ({Eu], I-14, pp. 73-86); the formula

s? N st s +
1-2-3 1-2-3-4-5 1-2-3-4-5-6-7

(D)0 2)0-2) -%)-

(with p := 7) appears on p. 84. As justification Euler asserts that the zeros
of the series are p, —p, 2p, —2p, 3p, —3p, etc., and that the series is therefore
(by analogy with polynomials) divisible by 1 — 2,142, 1— 2, 1+ 5 ete!!

In a letter to Euler dated 2 April 1737, Joh. Bernoulli emphaswes that
this reasoning would be legitimate only if one knew that the function sin z

6

1-—
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had no zeros in C other than nw, n € Z: “demonstrandum esset nullam
contineri radicem impossibilem” ([C], vol. 2, p.16); D. and N. Bernoulli
made further criticisms; cf. [Weil], pp. 264-265. These objections, acknowl-
edged to some extent by Euler, were among the factors giving incentive to
his discovery of the formula €' = cos z + isin z; from this Euler, in 1743,
derived his product formula, which then gives him all the zeros of cos z and
sin z as a byproduct.

Euler argues as follows: since lim(1 + z/n)™ = €* and sinz = (' — e7%%) /24,
iz

sinz = %limpn (;) , where pnp(w):=01+w)" -1 -w)".

For every even index n = 2m, it follows that
(%) pn(w) =2nw(l+w+---+w""?).

The roots w of p, are given by (1+w) = {(1 — w), where ¢ = exp(2v7i/n) is any
nth root of unity; hence pzm, as an odd polynomial of degree n. — 1, has the n — 1
distinct zeros 0, +ws, ..., twm-1, where

L = ﬂm);l. =itanﬂr—, v=1,...,m— 1.
exp(2vmi/n) + 1 n

The factorization

m~1 m—1
Pam (W) = 2nw H (1 - ﬂ) (1 + wﬂ) = 2nw ];[1 (1 + w? cot? %)

w
el v v

then follows from (*). Thus

iy 1 v\ 2
sinz = z lim H (1—z2 (—cot—) )
n—o00 by} n n
Since limy— o0 (% cot %) = ﬁ, interchanging the limits yields the product for-

mula. This last step can, of course, be rigorously justified (cf., for example, [V],
p. 42 and p. 56). An even simpler derivation of the sine product, based on the
same fundamental idea, is given in [Nu], 5.4.3.

§4*. Euler Partition Products

Euler intensively studied the product

Q(zq) =[](1+¢"2) =1+ ¢2)(1+¢*2)(1+¢%2) ...

v>1

as well as the sine product. Q(z, q) converges normally in C for every ¢ € E
since Y |q|¥ < oo; the product is therefore an entire function in z, which



§4*. Euler Partition Products 19

for ¢ # 0 has zeros precisely at the points —g~, —¢2, ..., and these are
first-order zeros. Setting z = 1 and 2z = —1 in Q(z,q) gives, respectively,
the products

Q+q(1+¢*)(1+¢") ... and (1-@(1~¢)(1-¢°) ..., q¢€E,

which are holomorphic in the unit disc. As we will see in Subsection 1, their
power series about 0 play an important role in the theory of partitions of
natural numbers. The expansion of [[(1—¢”) contains only those monomials
g” for which n is a pentagonal number %(31/2 + v): this is contained in the
famous pentagonal number theorem, which we discuss in Subsection 2. In
Subsection 3 we expand Q(z, q) in powers of z.

1. Partitions of natural numbers and Euler products. Every repre-
sentation of a natural number n > 1 as a sum of numbers in N\{0} is called
a partition of n. The number of partitions of n is denoted by p(n) (where
two partitions are considered the same if they differ only in the order of
their summands); for example, p(4) = 5, since 4 has the representations
4=4,4=3+1,4=2+2,4=24+1+1,4=1+1+1+1. Weset p(0) :=1.
The values of p(n) grow astronomically:

n| 70| 30 | s0 | 10 | 200
p(n) | 15 | 42 | 5604 | 204,226 | 190,569,202 | 3,972,000,029,388

In order to study the partition function p, Euler formed the power series
>~ p(v)g”; he discovered the following surprising result.

Theorem ([I], p. 267). For every q € E,
(oo}

(*) [Ma-7"=> rw)e.
v=1

v=1

Sketch of proof. One considers the geometric series (1 —¢*)~! =327, ¢*%,
q € E, and observes that [[,_,(1 —¢")™' = Yo pu(k)q*, g €E, n > 1,
where p,,(0) := 1 and, for n > 1, p,(k) denotes the number of partitions of
k whose summands are all < n. Since p, (k) = p(k) for n > k, the assertion
follows by passing to the limit. A detailed proof can be found in [HW] (p.
275). O

There are many formulas analogous to (*). The following appears in
Euler ({I], pp. 268-269):

Let u(n) (resp., v(n)), denote the number of partitions of n > 1 into odd
(resp., distinct) summands. Then, for every q € E,

[Ta-7 =14 u@)eg’, [J[0+¢) =1+ o).

v>1 v>1 v>1 v>1
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From this, since

1-¢> 1—¢* 1-¢°
l1-q 1—-¢> 1—-¢3" "
1 1 1

1—-q 1-¢3 1—-¢5"""

Q+91+¢)1+¢%)... =

one obtains the surprising and by no means obvious conclusion
u(n) =v(n), n>1 O

Since Euler’s time, every function f : N — C is assigned the formal power series
F(z) =Y f(v)2"; this series converges whenever f(v) does not grow too fast. We
call F the generating function of f; the products [](1 — ¢*)~*, [I(1 — ¢~ )71,
and [](1 + ¢”) are thus the generating functions of the partition functions p(n),
u(n), and v(n), respectively. Generating functions play a major role in number
theory; cf., for instance, [HW] (p. 274 ff.).

2. Pentagonal number theorem. Recursion formulas for p(n) and
o(n). The search for the Taylor series of [[(1 —¢") about 0 occupied Euler
for years. The answer is given by his famous

Pentagonal number theorem. For all ¢ € E,

5 1/2—1/ = V2 14
[Ta-¢) = 14> (~)¥[g2® ) + 2+
v>1 Oouzl
(%) = Y (-1)rgEe )
Vv=—00

= 1—q-@+ P +q —q'2— g5 g2 4 g
S I R

We will derive this theorem in 5.2 from Jacobi’s triple product identity.
The sequence w(v) 1= %(31/2 — v), which begins with 1, 5, 12, 22, 35, 51, was
already known to the Greeks (cf. [D], p. 1). Pythagoras is said to have determined
w(n) by nesting regular pentagons whose edge length increases by 1 at each stage
and counting the number of vertices (see Figure 1.1).
Because of this construction principle, the numbers w(v), v € Z, are called
pentagonal numbers; this characterization gave the identity () its name.

Statements about the partition function p can be obtained by comparing
coefficients in the identity

1= pv)g ) [1+ > (1)) + ¢ )]
v>0 v>1

which is clear by 1(*) and (*). In fact, Euler obtained the following formula
in this way. (Cf. also [HW], pp. 285-286.)
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O

1 1+4=5 1+ 4+7=12 1+ 4+7+10=22

FIGURE 1.1.

Recursion formula for p(n). If we set p(n) := 0 for n <0, then
p(n—1)+p(n—2)—p(n—5)—p(n—7)+---

Y (DR Hp(n — w(k)) + pln — w(=k)))-

k>1

p(n)

I

It was a great surprise for Euler when he recognized — and proved, using
the pentagonal number theorem — that almost the same formula holds for
sums of divisors. Let o(n) := }_,, d denote the sum of all positive divisors
of the natural number n > 1. Then we have the

Recursion formula for o(n). If we set o(v) := 0 for v <0, then

on) = on—1)+on—-2)—c(n—=5—ocn—-7)+---

> (—DFo(n - w(k)) + o(n — w(—k))]

k>1

for every natural number n > 1 that is not a pentagonal number. On the
other hand, for every numbern = 2(3v% £ v), v > 1,

on) = (=) n+on-1)+ocn—-2)—cn->5 —-o(n—7+---
= (=1~ n+Z V¥ o (n — wk)) + o(n — w(=k))).

k>1

Often, in the literature, only the first formula is given for all n > 1, with the
provision that the summand o(n —n), if it occurs, is given the value n. Euler also
stated the formula this way. For 12 = 1(3- 3% — 3), we have

0(12) = (—1)*124+0(11) 4+ 0(10) —o(7) —0(5) + 0(0) = 12+12+ 18— 8 — 6 = 28.
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Proof of the recursion formula for o(n) according to Euler. One takes the
logarithmic derivative of (). A simple transformation gives

(+) > 1'/_‘1(1 3 () = Y () wn)g ™.

v=1 v=—00 V=00

The power series about 0 of the first series on the left-hand side is °72 ; o(k)g™.8
Multiplying the two series gives a double sum with general term (=1)Yo(k)g"“T®).
Grouping together all terms with the same exponent gives

Yo (Do (=Dfo(n—w(k)| g".
n=1 Lke€Z
The assertion follows by comparing coeflicients in (+). o

There appear to be no known elementary proofs of the recursion formula for
o(n). The function o(n) can be expressed recursively by means of the function
p(n). For all n > 1,

o(n) = pn—1)+2p(n—2)->5p(n—>5)— 7p(n — 7)+
+12p(n — 12) + 15p(n — 15) — - - -

S (D) wik)p(n — w(k) + w(—k)p(n — w(=k))]-

k>1

This was observed in 1884 by C. Zeller [Z]. We note another formula that can be
derived by means of the pentagonal number theorem:

n

p(n) = =3 o(w)p(n - v).

n
v=1

3. Series expansion of [[>2 (1 + ¢“z) in powers of z. Although the
power series expansion of this function in powers of ¢ is known only for
special values of z (cf. Subsections 1 and 2), its expansion in powers of z
can be found easily. If we set Q(z,q) := [[,>,(1 4+ ¢”2), it follows at once
that

(1) (14 ¢2)Q(qz,9) = Q(2,9);

8Series of the type Y°°° | avq”/(1 — ¢”) are called Lambert series. Since q” -
1-—q¢) = > oy g™, the following is immediate (cf. also [Kn], p. 450).
If the Lambert series 3 oo, avq” /(1 — q”) converges normally in E, then

Za,,l z”qy _ iA,,qu, g € E, where A, := Zad'

v=1 djv
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for (g,z) € E x C, this functional equation immediately gives

oo oo 00 q%u(u+1) »
2) Vl—[:l(l-kqz)—1+;(1_q)(1_q2)m(1_qu) :

Proof. For fixed ¢ € E, let >~ a,2” be the Taylor series for Q(z, q). Then
ap = 1, and (1) gives the recursion formula

a,q’ +a,_1¢" =a,; e a,= ~a,-1 forv>1

1-g¢

It follows from this (by induction, for example) that a, = q%"("“)[(l —q)-
(=g O

For z := 1, we see that

3
q q
1+49)(1+¢>)(1+¢¥)... = 1+ +
1+ ) ) l—q¢ (1-9@1-¢%
(3) 5
+ 4 -
(1-g)(1-¢*)(1-¢
If we write g2 instead of g in (2) and set z := g™, we obtain
1_12

" 2v—1y\ __ - q
o+ =140 s—an—m o

or, written out,

4

q q
1+ +)1+4¢%) ... = 1+ +
1+¢)(1+¢)(1+¢°) 1-¢2  (1-¢®)(1-¢%
+ qg +...
(1-¢?)(1-g")(1-¢°%
This derivation and more can be found in [I], p. 251 ff. O

The product Q(z,q) is simpler than the sine product. Not only does
normal convergence already follow because of the geometric series, but the
functional equation (1), which replaces the duplication formula for s(z),
follows easily and is also more fruitful.

FEzercises. Show that the following hold for all (q,2) € E x C:

[o <] v

T 1 q By
HMm ="l agaa T aTe
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=) 2

11 P D e e e (e

b) v=1 1- qu

v=1 v
y z
(1-gz)(1—¢q%2)-...- (1 —¢“2)’
Compare the results for z = 1.
Hint. For a), first consider [])_, Ifsz’ 1 €< n < oo. Find functional equations

in each case and imitate the proof of (2); for a), conclude by letting n — oo.
Equation b) can be found, for example, in the Fundamenta ([Ja1], pp. 232-233).

4. On the history of partitions and the pentagonal number the-
orem. As early as 1699, G. W. Leibniz asked Joh. Bernoulli in a letter
whether he had studied the function p(n); he commented that this prob-
lem was important though not easy (Math. Schriften, ed. Gerhardt, vol.
III-2, p. 601). Euler was asked by P. Naudé, a Berlin mathematician of
French origin, in how many ways a given natural number n could be repre-
sented as a sum of s distinct natural numbers. Euler repeatedly considered
these and related questions and thus became the father of a new area of
analysis, which he called “partitio numerorum.” In April 1741, shortly be-
fore his departure for Berlin, he had already submitted his first results to
the Petersburg Academy ([Eu], I-2, pp. 163-193). At the end of this work
he stated the pentagonal number theorem, after he had determined the
initial terms of the pentagonal number series up to the summand ¢°! by
multiplying out the first 51 factors of J[(1 — ¢¥) (loc. cit., pp. 191-192).
But almost 10 years passed before he could prove the theorem (letter to
Goldbach, 9 June 1750; [C], vol. 1, pp. 522-524). In its introduction, Chap-
ter 16 deals thoroughly “with the decomposition of numbers into parts”;
the pentagonal number theorem is mentioned and applied (p. 269).

The recursion formula for the function p(n) first appears in 1750, in
the treatise De Partitione Numerorum ([Eu], I-2, p. 281). It was used in
1918 by P. A. Macmahon to compute p(n) up to n = 200; he found that
p(200) = 3,972,999, 029, 388 (Proc. London Math. Soc. (2) 17, 1918; pp.
114-115 in particular).

In 1741, Euler had already verified the recursion formula for o(n) nu-
merically for all n < 300 (letter to Goldbach, 1 April 1741; [C], vol. 1, pp.
407-410). In that letter, he called his discovery “a very surprising pattern
in the numbers” and wrote that he “would have [no] rigorous proof. But
even if I had none at all, no one could doubt its truth, since this rule is
always valid up to over 300.” He then informed Goldbach of the deriva-
tion of the recursion formula from the (then still unproved) pentagonal
number theorem. He gave a complete statement with a proof in 1751, in
“Découverte d’une loi tout extraordinaire des nombres par rapport a la
somme de leurs diviseurs” ([Eu], I-2, pp. 241-253). — The reader can find
further historical information and commentary in [Weil], pp. 276-281. Not
until almost eighty years later could Jacobi give the complete explanation
of the Euler identities with his theory of theta functions. We examine this
a bit more closely in the next section.
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§5*.  Jacobi’s Product Representation of the Series
J(Z7 q) = Zzo;—oo qyzzy

The Laurent series Y oo ¢ =1+ > ¢ (2% 4+ z7¥) converges for
every ¢ € E; thus J(z,q) € O(C*) for all g € E. Readers familiar with the
theta function will immediately observe that

Dz, ) = J(e*™*,e7™) (cf. 1.12.4);
this relation, however, plays no role in what follows. It is immediate that

(1) J(i’q) = J(—l,q4), q€E.

Jacobi saw in 1829 that his series J(z, q) coincided with the product

o0
H 1__ q 1 +q2u—1z)(1 _}_quI—].Z—l)]7

which had been studied by Abel. A(z,q) € O(C*) for every ¢q € E, since
the product converges normally in C* for each ¢. The following relation
holds between the Euler product Q(z,q) of 4.3 and A(z, q):

A(Z,q) = H(l - q21/) : Q(q'lzqu) : Q(q_lz_l7q2)'

v=1

The identity J(z,q) = A(z,q), called Jacobi’s triple product identity, is
one of many deep formulas that appear in Jacobi’s Fundamenta Nova. We
obtain it in Subsection 1 with the aid of the functional equations

(2) Alg’z,q) = (g2) *A(z,q), A(z71,q) = A(z,9), (z,q) € C* x EX,

3) A(i,q) = A(-1,¢Y), qE€E,
all of which can easily be deduced from the definition of A; in the proof of
(3), we observe that

o oo

[Ta-¢) =[[la-¢")a=g""2)], Q+¢* 1) (1-¢* 1) = 1+¢* 2.

v=1 v=1

Fascinating identities, some of which go back to Euler, result from con-
sidering special cases of the equation J(z,q) = A(z, q); we give samples in
Subsection 2.

1. Jacobi’s theorem. For all (q,z) € E x C*,

6) 3 ¢ = H[l— Y1+ ¢ )1+ ¢ 12,

v=—00
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Proof (cf. [HW], pp. 282-283). For every g € E, the product A(z,q) has
a Laurent expansion Zcfoo a, 2" about 0 in C*, with coefficients a, that
depend on ¢. Equations (2) of the introduction imply that a_, = a, and
a, = ¢*~la,_; for all v € Z. From this it follows (first inductively for
v > 0 and then in general) that a, = q"2 ag for all v € Z. It is thus already

clear, if we write a(q) for ao, that
A(z,q9) = a(g)J(z,q) with a(0)=1.

A(1,q) and J(1,q) are holomorphic in E as functions of ¢ and J(1,0) = 1;
hence a(q) is holomorphic in a neighborhood of zero. From equations (1)
and (3) of the introduction it follows, because J (i, q) # 0, that

a(q) = a(q4) and hence a(q) = a(q4n), n>1, forallgqeE.

The continuity of a(g) at 0 forces a(q) = lim, o a(¢g*") = a(0) =1 for all
g€k O

The idea of this elegant proof is said to date back to Jacobi (cf. [HW], p.
296). The reader is advised to look at Kronecker’s proof ([Kr], pp. 182-186).
With z := €2*, (J) can be written in the form

00 oo
Z qu2621‘uw — H[(l _ q2u)(1 + 2q2u—1 cos 2w + q4u—2)]'
=1

v=—00

The identity (J) is occasionally also written as

(J') Z (_1)Vqéu(u+1)zu =(1- z-—l) H[(l . qu)(l —¢“2)(1 __quz—l)]'
y=—00 v=1

(J') follows from (J) by substituting —qz for z, rearranging the resulting
product, and finally writing ¢ instead of ¢2.

2. Discussion of Jacobi’s theorem. For z := 1, (J) gives the product
representation of the classical theta series

(1) ¢ =142y ¢ = JlIa+* -,
v=—00 v=1 v=1

which converges in E. We also note:

Suppose that k,l € N\{0} are both even or both odd. Then, for all (z,q) €
C* x E,

oo o0

(2) Zq%u(ku-‘rl)zu - H[(l _ qku)(l + qlw—%(k—l)z)(l + qku—%(k-f-l)z—l)]'

v=1
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Proof. First let 0 < ¢ < 1. Then g3*, ¢3! € (0,1) are uniquely determined,
and substituting ¢%* for ¢ and q2'z for z turns (J) into (2). By the hypoth-
esis on k and [, all the exponents in (2) are integers (!); hence the left- and
right-hand sides of (2) are holomorphic functions in ¢ € E for fixed z. The
assertion follows from the identity theorem. m|

For k=1=1and z =1, (2) becomes

3)  Sogrtth =242 ) =TT - ¢®*) (1 +¢* 7Y
—00 v=1 v=1

this identity, due to Euler, was written by Gauss in 1808 as follows ([Ga],
p. 20):

1-gqqg 1—-¢* 1—¢° 1-¢°

. . . etc.
1—-q 1-¢> 1—-¢° 1-¢7 e

(3) 14+qg+¢*+¢°+q° +etc. =

(to prove this, use Exercise 2) of 2.1). O
For k = 3,1 =1, and z = —1, equation (2) says that

o0 oo

H[(l _ q3l/)(1 _ q3u——1)(1 . q3u—2)] — Z (_1)uq%u(3u+1).

v=1 v=-—00

Since each factor 1 — ¢¥, v > 1, appears here on the left-hand side exactly
once, this yields the pentagonal number theorem

oo o0

@ JJa-¢) =1+ (-1)"[qE® Y + g#®+D) g€,

v=1 v=1
as announced in 4.2. Written out, this becomes

1-¢9(1-¢)1-¢%...
:l“q_q2+q5+q7—q12"q15+"'- [

4)

Now, in principle, the power series about 0 of H(l + ¢”) can also be
computed. Since [](1 - ¢¥) - H(l +¢") =[1(1—¢*), we use (4') to obtain

R R T L
v=1

= 14+q+¢*+2¢° +2¢* +3¢° +4¢° + 5¢" + - -.

The first coefficients on the right-hand side were already given by Euler;
no simple explicit representation of all the coefficients is known. Number-
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theoretic interpretations of the formulas above, as well as further identities,
can be found in [HW]. a

We conclude this discussion by noting Jacobi’s famous formula for the
cube of the Euler product (cf. [Ja], p. 237, and [JF], p. 60):

(5) H(l — q”)3 = Z(_l)u(2y + l)q%u(u-f-l).
v=1 v=0

To prove this, Jacobi differentiates the identity (J') of Section 1 with respect
to z, then sets z := 1 (the reader should carry out the details, grouping
the terms in the series with index v and —v — 1). In 1848, referring to
identity (5), Jacobi wrote ([JF], p. 60): “Dies mag wohl in der Analysis das
einzige Beispiel sein, daf8 eine Potenz einer Reihe, deren Exponenten eine
arithmetische Reihe zweiter Ordnung [= quadratischer Form an? + bn + ¢|
bilden, wieder eine solche Reihe giebt.” (This may well be the only example
in analysis where a power of a series whose exponents form an arithmetic
series of second order [= quadratic form an? + bn + ¢| again gives such a
series.)

3. On the history of Jacobi’s identity. Jacobi proved the triple product
identity in 1829, in his great work Fundamenta Nova Theoriae Functionum
Ellipticarum; at that time he wrote ([Jai], p. 232):

Aequationem identicam, quam antecedentibus comprobatum
ivimus:
(1 —2gcos2z + ¢)(1 — 2¢3 cos 2z + ¢°) (1 — 2¢% cos 2z + ¢19) ...
1 —2qcos 2z + 2¢* cos 4z — 2¢° cos 6z + 2¢*® cos 8z — - - -
- (1-®)(1-g")(1-¢®)(1~¢)... ‘

In a paper published in 1848, Jacobi systematically exploited his equation
and wrote ([Jag], p. 221):

Die sémmtlichen diesen Untersuchungen zum Grunde gelegten
Entwicklungen sind particuldre Falle einer Fundamentalformel
der Theorie der elliptischen Functionen, welche in der Gleichung

1-¢*)1-¢)1-¢*)1-¢%...
x(1-¢2)(1-¢*2)(1 - ¢°2)(1 - ¢"2)...
x(1-gz )1 -2 )1~ N1 -q"27h)...
=1-qlz+2z")+¢*(Z®+272) - @B +273)+-..

enthalten ist. (All the developments that underlie these investi-
gations are special cases of a fundamental formula of the theory
of elliptic functions, which is contained in the equation ....)
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The preliminary work for the Jacobi formula was carried out by Euler
through his pentagonal number theorem. In 1848 Jacobi wrote to the sec-
retary of the Petersburg Academy, P. H. von Fuss (1797-1855) (cf. [JF],
p-60): “Ich mochte mir bei dieser Gelegenheit noch erlauben, Ihnen zu
sagen, warum ich mich so fiir diese Eulersche Entdeckung interessiere. Sie
ist ndmlich der erste Fall gewesen, in welchem Reihen aufgetreten sind,
deren Exponenten eine arithmetische Reihe zweiter Ordnung bilden, und
auf diese Reihen ist durch mich die Theorie der elliptischen Transcenden-
ten gegriindet worden. Die Eulersche Formel ist ein specieller Fall einer
Formel, welche wohl das wichtigste und fruchtbarste ist, was ich in reiner
Mathematik erfunden habe.” (I would also like to take this opportunity to
tell you why I am so interested in Euler’s discovery. It was, you see, the
first case where series appeared whose exponents form an arithmetic series
of second order, and these series, through my work, form the basis of the
theory of elliptic transcendental functions. The Euler formula is a special
case of a formula that is probably the most important and fruitful I have
discovered in pure mathematics.)

Jacobi did not know that, long before Euler, Jacob Bernoulli and Leibniz had
already come across series whose exponents form a series of second order. In 1685
Jacob Bernoulli, in the Journal des Scavans, posed a problem in probability the-
ory whose solution he gave in 1690 in Acta Eruditorum: series appear there whose
exponents are explicitly asserted to be arithmetic series of second order. Shortly
after Bernoulli, Leibniz — in Acta Eruditorum — also solved the problem; he
considered the question especially interesting because it might lead to series that
had not yet been thoroughly studied (ad series tamen non satis adhuc examinatas
ducit). For further details, see the article [En] of G. E. Enestrom.

In his Ars Conjectandi, Bernoulli returned to the problem; the series

0

3 6 1 15 21 28
L—-m+m®>=m® +m"® —m® +m* —m® +m®* —m® ...

appears in [B] (p. 142). Bernoulli says that he cannot sum the series but that
one can easily “compute approximate values to arbitrarily prescribed accuracy”
(from R. Haussner’s German translation of [B], p. 59). Bernoulli gives the ap-
proximation 0.52393, which is accurate up to a unit in the last decimal place.

Gauss informed Jacobi that he had already known this formula by about
1808; cf. the first letter from Jacobi to Legendre ([JL], p. 394). Legendre,
bitter toward Gauss because of the reciprocity law and the method of least
squares, writes to Jacobi on the subject ([JL], p. 398): “Comment se fait-il
que M. Gauss ait 0sé vous faire dire que la plupart de vos théorémes lui était
connus et qu’il en avait fait la découverte des 18087 Cet excés d’impudence
n’est pas croyable de la part d’un homme qui a assez de mérite personnel
pour n’avoir besoin de s’approprier les découvertes des autres ... .” (How
could Mr. Gauss have dared inform you that most of your theorems were
known to him and that he had discovered them as early as 18087 Such
outrageous impudence is incredible in a man with enough ability of his own
that he shouldn’t have to take credit for other people’s discoveries . .. .)
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But Gauss was right: Jacobi’s fundamental formula and more were found
in the papers he left behind. Gauss’s manuscripts were printed in 1876, in
the third volume of his Werke; on page 440 (without any statements about
convergence) is the formula

(1+zy)(1+x3y)(1+x5y)...(1—{—%) (1+§) (1+%5>
= {1+a(y+ 1) +ot (w+ ) +2° (P +3)+},

where [zz] stands for (1 — z?)(1 — z#)(1 — 2°).... This does in fact give
Jacobi’s result (J). Schering, the editor of this volume, declares on page
494 that this research of Gauss probably belongs to the year 1808.

Kronecker, generally sparing of praise, paid tribute to the triple product
identity as follows ([Kr], p. 186): “Hierin besteht die ungeheure Entdeckung
Jacobi’s; die Umwandlung der Reihe in das Produkt war sehr schwierig.
Abel hat auch das Produkt, aber nicht die Reihe. Deshalb wollte Dirichlet
sie auch als Jacobi’sche Reihe bezeichnen.” (Jacobi’s tremendous discovery
consists of this: the transformation of the series into the product was very
difficult. Abel too had the product, but not the series. This is why Dirichlet
also wanted it to be called the Jacobi series.)

The Jacobi formulas are only the tip of an iceberg of fascinating identi-
ties. In 1929, G. N. Watson ([Wa], pp. 44-45) discovered the

Quintuple product identity. For all (g,2z) € E x C*,

(o)

Z q3u2-2u(z3u 473 -2 2-3u+2)
T
- H(l - q2u)(1 _ q2u-1z)(1 _ q2u—lz—1)(1 _ q4u—4z2)(1 _ q4V_4Z_2).
v=1

Many additional formulas come from considering special cases; see also
[Go] and [Ew]. For some years there has been a renaissance of the Jacobi
identities in the theory of affine root systems. As a result, identities have
been discovered that were unknown in the classical theory. E. Neher, in
[N], gives an introduction with many references to the literature.
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The Gamma Function

Also das Product 1-2-3...z ist die Function, die
meiner Meinung nach in der Analyse eingefiihrt wer-
den muss. (Thus the product 1-2-3...z is the func-
tion that, in my opinion, must be introduced into
analysis.)

— C. F. Gauss to F. W. Bessel, 21 November 1811

1. The problem of extending the function n! to real arguments and finding
the simplest possible “factorial function” with value n! at n € N led Euler
in 1729 to the I'-function. He gave the infinite product

1-2% 217232 3l-z42 b 1\* z\ 1
N(z+1):= . . ~...=VI;[1(1+;) (1+;)

T 142z 242 3+ =z

as a solution.! Euler considered only real arguments; Gauss, in 1811, admit-
ted complex numbers as well. On 21 November 1811, he wrote to Bessel
(1784-1846), who was also concerned with the problem of general factorials,
“Will man sich aber nicht ... zahllosen Paralogismen und Paradoxen und
Widerspriichen blossstellen, so muss 1-2-3. .. z nicht als Definition von [] z
gebraucht werden, da eine solche nur, wenn x eine ganze Zahl ist, einen bes-
timmten Sinn hat, sondern man muss von einer héheren allgemein, selbst

! Precise references to Euler can be found in the appropriate sections of this

chapter; we rely to a large extent on the article “Ubersicht iiber die Binde 17,
18, 19 der ersten Serie” of A. Krazer and G. Faber in [Eu], I-19, pp. XLVII-LXV
in particular.
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auf imaginéire Werthe von = anwendbaren, Definition ausgehen, wovon ...
jene als specieller Fall erscheint. Ich habe folgenden gewéhlt

1.2.3...k.k*

Mz =
;r z+lzx+22+3...c+k’

wenn k unendlich wird.” (But if one doesn’t want . .. countless fallacies and
paradoxes and contradictions to be exposed, 1-2-3...x must not be used
as the definition of [] z, since such a definition has a precise meaning only
when z is an integer; rather, one must start with a definition of greater
generality, applicable even to imaginary values of z, of which that one
occurs as a special case. I have chosen the following ... when k£ becomes
infinite.) (Cf. [G1], pp. 362-363.) We will understand in §2.1 why, in fact,
Gauss had no other choice.
The functions of Euler and Gauss are linked by the equations

IN'z+1)=1I(z), T'(n+1)=In)=n! forn=1,2,3,....

The I'-function is meromorphic in C; all its poles are of first order and occur
at the points —n, n € N. This function has the value n! at n+1 (rather than
n) for purely historical reasons. Gauss’s notation Iz did not last. Legendre
introduced the now-standard notation I'(z) in place of II(z — 1) (cf. [Ly],
vol. 2, p. 5); since then, one speaks of the gamma function.

2. In 1854, Weierstrass made the reciprocal

o= gy F1 () (1+3) -5

of the Euler product the starting point for the theory; F¢(z), in contrast
to I'(z), is holomorphic everywhere in C. Weierstrass says of his product
([Weq], p. 161): “Ich mdchte fiir dasselbe die Benennung ‘Factorielle von
u’ und die Bezeichnung Fc(u) vorschlagen, indem die Anwendung dieser
Function in der Theorie der Facultaten dem Gebrauch der I'-Function de-
shalb vorzuziehen sein diirfte, weil sie fr keinen Wert von u eine Unter-
brechung der Stetigkeit erleidet und iiberhaupt ...im Wesentlichen den
Charakter einer rationalen ganzen Function besitzt.” (I would like to pro-
pose the name “Factorielle of v” and the notation Fe(u) for it, since the
application of this function in the theory of factorials is surely preferable
to the use of the I'-function because it suffers no break in continuity for
any value of u and, overall, ...essentially has the character of a rational
entire function.) Moreover, Weierstrass almost apologized for his interest
in the function Fc(u); he writes (p. 158) “dafl die Theorie der analytischen
Facultaten in meinen Augen durchaus nicht die Wichtigkeit hat, die ihr in
fritherer Zeit viele Mathematiker beimassen” (that the theory of analytic
factorials, in my opinion, does not by any means have the importance that
many mathematicians used to attribute to it).
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Weierstrass’s “Factorielle” Fc is now usually written in the form

o0 n
= 1
ze"* H <1 + S) e v, v:= n]Lr& < E o~ logn) = Euler’s constant.
1 1

We set A := Fc and compile a list of the most important properties of A
in Section 1. The I'-function is studied in Section 2. Wieland’s uniqueness
theorem, which, for example, immediately yields Gauss’s multiplication
formula, is central.

3. A theory of the gamma function is incomplete without classical in-

tegral formulas and Stirling’s formula. Euler was familiar with integral
representations from the outset: the equation

1
n! :/ (—logz)*dz, neN,
0

appears in his first work on the I'-function, in 1729.
For a long time, Euler’s identity

I'(z) :/ t*"le7tdt for 2€C, Rez>0,
0

has played the central role; in Section 3 we derive it and Hankel’s formulas
by using Wielandt’s theorem. In Section 4 Stirling’s formula, with a univer-
sal estimate of the error function, is also derived by means of Wielandt’s
theorem; at the same time, following the example of Stieltjes (1889), the
error function is defined by an improper integral. In Section 5, again using
the uniqueness theorem, we prove that

B(w,z) = /01 1 —t) Nt = I'(w)l'(2)

T(w+2)"

Textbooks on the I'-function:

[A] ARTIN, E.: The Gamma Function, trans. M. BUTLER, Holt, Rinehart
and Winston, New York, 1964.

[Li] LINDELOF, E.: Le calcul des résidus, Paris, 1905; reprinted 1947 by
Chelsea Publ. Co., New York; Chap. IV in particular.

[Ni] NIELSEN, N.: Handbuch der Theorie der Gammafunktion, first print-

ing Leipzig, 1906; reprinted 1965 by Chelsea Publ. Co., New York.

[WW]  WHITTAKER, E. T. and G. N. WATSON: A Course of Modern Anal-

ysis, 4th ed., Cambridge Univ. Press, 1927, Chap. XII in particular.

Another instructive reference is an encyclopedic article by J. L. W. V.
JENSEN: An elementary exposition of the theory of the gamma function,
Ann. Math. 17 (2nd ser.), 1915-16, 124-166. For the reader’s convenience,
these references are listed again in the bibliography at the end of this
chapter.
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§1. The Weierstrass Function
A(z) = ze?* Huzl(l + z/v)e Y

In this section we collect basic properties of the function A, including

AeO(C), A(z)=2zA(z+1), 7A(l—2z)=sinmnz.

1. The auxiliary function H(z) := 2[[°2,(1 + z/v)e™*/*. The next
result is fundamental.

(1) The product [],»,(1 + z/v)e~*!" converges normally in C.
Proof. Let B,, :== B,(0), n € N\{0}. It suffices to show that

Z’l—<1+ ) |

v>1

<oo for all n > 1.

In the identity

1—(1-w)e¥ = w2[<1—§—'>+(21, 31!>w+---
(et ]

all expressions in parentheses on the right-hand side (...) are positive.
Hence

1—(1—we®| < — w2 <1
11— | < |w]? Z (1/' CE ) |w|* whenever |w| <1
For w = —z/v, it follows that |1 — (1 +z/v)e™ /| < |2|?/v? if |2| < v; thus

1
Z|1—(1+z/u)e_z/“|3n§n22—1;5<oo. O

v>n v>2n

Convergence is produced in the preceding expression by inserting the
exponential factor exp(—z/v) into the divergent product [], (1 + 2z/v).
Weierstrass was the first to recognize the importance of this trick. He de-
veloped a general theory from it; see Chapter 3.

Because of (1), H(z) := 2[[(1+2/v)e™*/* is an entire function. By 1.2.2,
H has zeros, each of first order, precisely at the points —n, n € N. The
identity

(2) —H(z)H(— —z2H 22/v?) = n zsinmz

v>1
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follows immediately; it says that H(z) consists essentially of “half the fac-
tors of the sine product.” Furthermore,

1 1
(3) H(1)=e™7, with ~:= lim (1+—+1+---+———logn)€R.
n—oo 2 3 n

Proof. Since [])_, (1+ 1) =n+1, we have

- 1 1 =1
H(1) = nlgl;o H (1 + ;) exp (—;) = nan;o exp (log(n +1)— Z ;) .
v=1 v=1

Clearly H(1) > 0; hence v := —log H(1) = limn—o0 (Y ), £ — log(n + 1))
€ R. Since log(n + 1) — logn = log (1 + 1) and lim,_.. log (1 + 1) =o,
the assertion follows. a

The real number « is called Fuler’s constant; v = 0.5772156. ...

Euler introduced this number in 1734 and computed it to 6 decimal places
([Eu], I-14, p. 94); in 1781 he gave it to 16 decimal places ([Eu], I-15, p. 115),
of which the first 15 are correct. It is not known whether v is rational or irra-
tional, nor has anyone yet succeeded in finding a representation for v with simple
arithmetic formation rules like those known, for example, for e and .

With n? := e?1°8™ we have

v=1

thus H can also be written as follows:

@ H(z) = e lim z2(z+1)...(z+n)

n—o00 nln?

In the next subsection, the annoying factor e~7% is interwoven with the
product.

FEzercise (Pringsheim 1915). Let p, g € N\{0}. Prove that

pn qn .
nanolo [E(I—S)E(l+§) = [exp(zlogf—))]-ﬁl—i—:—z, 2 € C*.

Hint. Prove, among other things, that limp—co Y on, | + = log 2 for ¢ > p.

2. The entire function A(z) := e7?H(z) has zeros, all of first order,
precisely at the points —n, n € N. We have

A(z) = A(Z), A(z)>0 foreveryzeR, z>0.
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It follows from 1(3) and 1(4) that

1) A1) =1, A(z)= lim 2(z+1)...(z+n)

n—oo nln?
From this, since lim(z + n + 1)/n = 1, we immediately obtain the
Functional equation. A(z) = zA(z + 1).

The sine function and the function A are linked by the equation
(2) TA(2)A(1 — 2) = sinwz.

Proof. This is clear by 1(2), since A(2)A(1 ~ 2) = —271A(2)A(-2) =
—2z7YH(2)H(-2). ]

In 2.5 we will need the multiplication formula
1 2 -
(3) (27r)5(’“‘1)A(%> A(E) A(k—-k——l> —VE fork=23,....

Proof. We use the well-known equation

k-1
k—1 K
(%) 2 H sin -7 = k.
r=1
(The quickest way to see this is to observe that sinz = (2i)'e**(1 — e~%**) and
H’:;} e mr/k = gim(k=1)/2 — k=1 write the sine product in (%) in the form
k-1 ,
(27:)1—’62-16—1 H(l _ e—2’L7rrc/k)’
r=1
and use the identity 1+w+---+w*™! = (w* - 1)/(w—1) = [T*Z} (w — e~ 2™/k)

for w:=1.)

Since [T¥Z1 A(k/k) = [15Z1 A(1 — &/k) holds trivially, (2) and (*) yield

k—lA“2 k_lAKAl PR = k
[Ma(7) =I1a(7)a(-7) = 7= g
Since A(z) > 0 for z > 0, the assertion follows by taking roots.

Ezercise (Weierstrass, 1876). Show that

2@ =11 (757) (+3),

v>1
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§2. The Gamma Function
We define
T(z) :=1/A(z)

and translate the results of the preceding section into statements about the
gamma function, thus giving its theory a purely multiplicative foundation.

1. Properties of the I-function. Our first result is immediate.

I'(z) is holomorphic and nonvanishing in C\{0,—1,—-2,...}; every point
—n, n €N, is a first-order pole of I'(z). Moreover,

(F) T(z+1)=20I(2), with T(1)=1 (functional equation).

The functional equation (F) is central to the whole broader theory. For
instance, if I'(2) is known in the strip 0 < Rez < 1, then (F) can immedi-
ately be used to find its values in the adjacent strip 1 < Rez < 2, and so
on. In general, it follows inductively from (F), for n € N\{0}, that

(1) [(z+n)=2(z+1)...2+n—-1I(z), T(n)=(n-1).

We immediately determine the residues of the gamma function:

1"
(2) res_pI' = ( n') , mneEN

Proof. Since —n is a first-order pole of I', we know that res_,I" = lim,_,_,(2+
n)T'(z) (see, for example, 1.13.1.2). By (1),

o I'(z+n+1)
res_,I' = z-llriln z(z+1)---(z+"_ 1)
r(1) _ o

(—n)(-n+1)...(-1)  n!

Remark. Every function h(z) € M(C) that satisfies the equation h(z+1) =
zh(z) with (1) € C* has a first-order pole at each —n, n € N, with residue
(—1)"h(1)(nl) .

The formula 1.2(1) for A(z) becomes Gauss’s product representation:

z

nln
(G) PE) = tm e )

Plausibility argument that (G) is the “only” equation for functions f that satisfy
(F): By (F), for all z, n € N,

fz+n) = (@m-VDnn+1)-...-(n+2-1)

- (n—l)!nz<l+%> <1+%>-...-<1+Z;1).
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Clearly f(z +n) ~ (n — 1)!n* for large n; more precisely, lim,_. f(z + n)/
((n —1)In®) = 1. If one postulates this asymptotic behavior for arbitrary z, then
(1) forces

- 1 f(z+n) o (n—1)n?
f(z)-nll»rr;oz(z+1)...(z+n—1) —nh—vnolo 2(z4+1)...(z+n—-1)’

which, since limn/(z + n) = 1, is just Gauss’s equation (G). See also Subsection
4.

It follows immediately from (1) and (G) that

. T(z+n)
(3) nh—{go F(n)nz -

Formula 1.2(2) can be rewritten as Euler’s supplement:

T

(E) T(2)D(1 - 2) =

sinmz’

It follows immediately from the definition of I'(z) that

I'(z)=T(z) and T'(z)>0forz>0.

Since [n*| = n® and |z + v| > z + v for all z with z = Rez > 0, (G)
implies that

4) IT(z)| <T(z) for all z€ C with x =Rez > 0.

In particular, ['(2) is bounded in every strip {z € C : r < z < s} with
0 < r < s < 00; this is needed in the proof of the uniqueness theorem 2.4.

We note some consequences of (E).

|
nr (—é-) = \/m; more generally, T (n+ %) = (2n)'\/}, neN.

4nn!
NT(L+2)T(L-2)=——, T()(-2)=———0.
2 2 cosmz’ zsinmz
SN2 4l 1 )12 ™
= — (= = .
3) [P(iy)l ysinh 7y’ | (2 + zy) | cosh 7y

1
4) / log I'(t)dt = log v2r (Raabe, 1843, Crelle 25 and 28).
0

Proof. ad 1) and 2). These follow from (E). L

ad 3). This follows from 2) by observing that I'(z) = I'(Z), sinht =
—isint, and cosht = cost.

ad 4). The supplement (E) yields

1 1 1
/ log I'(¢)dt + / log'(1 — t)dt = logw — / log sin w¢dt.
0 0 0

4) follows immediately from this, by using 1.3.2(1) and the footnote there. O
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Ezercises. 1) For all z € C\{1, -2,3,—4,...},

(1—z)(1+§) (1—%) (1+§)"”:F(1+§z\)/1‘7—r(§—%z)'

. = z2(1—2)
2) For all z € C, sinnz = mz(1 — 2) | | <1+ )
e} n(n+ 1)

Hint. Use the factorization n> +n+2(1 — 2) = (n + z)(n + 1 — 2) and (E).

2. Historical notes. Euler had discovered the relation 1(E) by 1749 at
the latest; cf. [Eu], I-15, p. 82. In 1812, Gauss made the product 1(G) the
starting point of the theory ([Gs], p. 145). Gauss seems not to have known
that Euler had already anticipated the formula 1(G) in 1776 ([Eu], I-16, p.
144); Weierstrass too, as late as 1876, gave Gauss credit for the discovery
([Weg], p. 91).

It has become customary (cf., for example, [WW], p. 236) to call

ez/u

(W) (z) =] Tvow

v>1

the “Weierstrass product.” But it does not appear in this form in his work;
in [Weg], p. 91, however, the product [Jo2; {(1 + &) e~=el(®+1/nl} does
appear for the “Factorielle” 1/T'(x). The formula (W) was very much ad-
mired in the last century. Hermite writes on 31 December 1878 to Lipschitz:
“ ..son [Weierstrass’s] théoréme concernant 1/I'(z) aurait di occuper une
place d’honneur qu’il est bien singulier qu’on ne lui ait pas donné” (... his
[Weierstrass’s| theorem about 1/T'(z) should have held a place of honor
that very strangely wasn’t given to it); cf. [Scha], p. 140.2 — The equation
(W) had already appeared in an 1843 paper of O. Schlémilch and an 1848
paper of F. W. Newman (cf. [Schl], p. 171, and [Ne], p. 57).
Since /¥ = (14 1/v)* expz[1/v + logv — log(v + 1)] and

n

1
lim g ~ —log(n+1) ]| =7,
v

n—oo
v>1

it follows immediately from (W) that

v1I=%. (v +1)2 1\* 2\ 1
I'(z) = —_— = 14+ - 14— Euler, 1 .
2I'(z) ,];[1 ST ,,1:[1( +1/> ( +V) (Euler, 1729)

2Letters of praise were hardly unusual at that time; for example, there was the
“Société d’admiration mutuelle,” as the astronomer H. Glydén called the group
consisting of Hermite, Kovalevskaya, Mittag-Lefller, Picard, and Weierstrass.



42 2. The Gamma Function

For Euler, this product was the solution of the problem of interpolating
the sequence of factorials 1, 2, 6, 24, 120, ...; cf. [Eu], I-14, pp. 1-24.
Weierstrass makes no reference to the Euler product.
Writing u/v instead of z in 1(1) gives
L(2+n)

(%)
The finite product on the left-hand side was studied intensively in the first half
of the nineteenth century, under the name “analytic factorial.” This function of

uw(u+v)(u+2v)...(u+ (n—- 1) ="

three variables had even been given a symbol of its own, u™". Gauss opposed
this nonsense in 1812 with the words, “Sed consultius videtur, functionem unius
variabilis in analysin introducere, quam functionem trium variabilium, praeser-
tim quum hanc ad illam reducere liceat.” (It seems, however, more advisable to
introduce a function of one variable into analysis than a function of three vari-
ables, especially since the latter can be reduced to the former.) ([Gz], p. 147)
The theory of analytic factorials continued to flourish despite such criticism, e.g.
in the work of Bessel, Crelle, and Raabe. It was Weierstrass who, with his 1856
paper [Wez], finally brought this activity to an end.

3. The logarithmic derivative ¢ := I /T" € M(C) satisfies the equations
(1) Uz +1) =¢(2) + 271, P(1—2) - 9(2) = meot mz.

These formulas can be read off from the following series expansion.
Proposition (Partial fraction representation of ¢¥(z)).

=115 (5 -).

v=1

where the series converges normally in C.

Proof. Since I' = 1/A, we have ¢y = —A’/A. Hence the assertion follows
from Theorem 1.2.3 by logarithmic differentiation of A(z) = ze"* (1 +
z/v)e #/v. O

Corollary 1. IV(1) = (1) = —y; (k) =1+ 5+ + 25— for k=2,
3,....

Proof. T'(1) = (1) = —y=1-3_ 5, (1/(v + 1) = 1/v) = —y=1+1= —.
The assertion for (k) then follows inductively by (1). O

Corollary 2 (Partial fraction representation of ¥'(z)).

, - 1
w(z):;m»

where the series converges normally in C.
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Proof. This is clear, since (by 1.11.1.2, for instance) normally convergent
series of meromorphic functions can be differentiated term by term. O

Note that the series for 1 and 1’ are essentially “half” the partial fraction
series for 7 cot 7z and 72/ sin? wz, respectively (cf. 1.11.2.1 and 2.3).

The first equation in (1) makes possible an additive approach to the gamma
function. This path was chosen by N. Nielsen in 1906 in his manual [Ni]. One can
also proceed from the functional equation

gz +1) = g(z) - 277,

which is satisfied by v’: for every solution g € M(C) of this equation,
- 1
g(z) ZZm +g(z+n+1)
v=0

(proof by induction); the partial fraction series for 1’ is thus no surprise.
Ezercise. Show that ¢ (1) — (3) = 2log 2.

4. The uniqueness problem. The exponential function is the only func-
tion F : C — C holomorphic at 0 and with F'(0) = 1 that satisfies the
functional equation F(w + 2) = F(w)F(z). Can the I'-function also be
characterized by its functional equation F(z + 1) = 2F(2)? To begin with,
this equation is satisfied by all functions F := gI', where ¢ € M(C) has
period 1. The following theorem was proved by H. Wielandt in 1939.

Uniqueness theorem. Let F' be holomorphic in the right half-plane T :=
{z € C: Rez > 0}. Suppose that F(z+ 1) = 2F(z) and also that F 1is
bounded in the strip S := {z € C:1 < Rez < 2}. Then F = al' in T,
where a := F(1).

Proof (Demonstratio fere pulchrior theoremate). The equation v(z + 1) =
zv(z) also holds for v := F — aI' € O(T). Hence v has a meromorphic
extension to C. Its poles, if any, can occur only at 0, —1, —2, ... Since
v(1) = 0, it follows that lim, ¢ zv(z) = 0; thus v continues holomorphically
to 0. Since v(z + 1) = zv(z), v can also be continued holomorphically to
every point —n, n € N.

Since I'|:S is bounded — see 1(4) — so is v|S. But then v is also bounded
in the strip Sy := {z € C: 0 < Rez < 1} (for z € Sy with [Imz| < 1, this
follows from continuity; for |Im 2| > 1 it follows, since v(z) = v(z + 1)/ 2z,
from the boundedness of v|S). Since v(1 — z) and v(z) assume the same
values in Sy, ¢(2) := v(2)v(1 — z) € O(C) is bounded in Sy. It follows from
Liouville that ¢(z) = ¢(1) = v(1)v(0) = 0. Thus v =0, i.e. F = al". O

We will encounter five compelling applications of the uniqueness theorem.
In the next subsection, it gives Gauss’s multiplication formula in a few lines;
in Section 3 it makes possible short proofs of Euler’s and Hankel’s product
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representations of I'(z); in Section 4 it leads quickly to Stirling’s formula;
and in Section 5 it immediately yields Euler’s identity for the beta, integral.

The following elementary characterization of the real I'-function by means of
the concept of logarithmic convexity — without differentiability conditions — can
be found in E. Artin’s little book [A], which appeared in 1931.

Uniqueness theorem (H. Bohr and J. Mollerup, 1922; cf. [BM], p. 149 ff). Let
F : (0,00) — (0,00) be a function with the following properties:

a) F(x +1) =xF(z) for allz >0 and F(1) = 1.

b) F is logarithmically convez (i.e. log F is convex) in (0, 00).

Then F =T|(0, 00).
I'(z) satisfies property b), since by 2.3

(logD(@))" = ¥/(2) = 3

(—m—::yj>0 for z > 0.

Historical remark. Weierstrass observed in 1854 ([We4], pp. 193-194) that

the I'-function is the only solution of the functional equation F(z + 1) =
zF(z) with the normalization F'(1) = 1 that also satisfies the limit condition

. F(z+n) _
nh—{go n*F(n)

(This is trivial: the first two assertions imply that

(n—1)! F(z+n)

F<z):z(z+1)...(2+n—1)' F(n) ’

with the third condition, this becomes Gauss’s product.)

Hermann Hankel (1839-1873, a student of Riemann), in his 1836 Habil-
itationsdissertation (Leipzig, published by L. Voss), sought tractable con-
ditions “on the behavior of the function for infinite values of z [= 2].”
He was dissatisfied with his result: “Uberhaupt scheint es, als ob die Def-
inition von I'(z) durch ein System von Bedingungen, ohne Voraussetzung
einer explicirten Darstellung derselben, nur in der Weise gegeben werden
kann, dafl man das Verhalten von I'(z) fiir £ = oo in dieselbe aufnimmt. Die
Brauchbarkeit einer solchen Definition ist aber sehr gering, insofern es nur
in den seltensten Féllen moglich ist, ohne grosse Weitlaufigkeiten und selbst
Schwierigkeiten den asymptotischen Werth einer Function zu bestimmen.”
(In fact, it seems as if the definition of I'(z) by a system of conditions,
without assuming an explicit representation for it, could be given only by
including the behavior of I'(z) for £ = oo in the definition. The usefulness
of such a definition is, however, very modest, in that it is possible only in
the rarest cases to determine the asymptotic value of a function without
great tediousness and even difficulties.) ([H], p. 5)

It was not until 1922 that Bohr and Mollerup succeeded in characterizing
the real I'-function by means of logarithmic convexity. But this — despite
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the immediately compelling applications (see [A]) — was not the kind of
characterization that Hankel had had in mind. Such a characterization
was first given in 1939 by H. Wielandt. His theorem can hardly be found
in the literature, although K. Knopp promptly included it in 1941 in his
Funktionentheorie II, Sammlung Gdschen 703, 47-49.

In his paper “Note on the gamma function,” Bull. Amer. Math. Soc. 20,
1-10 (1914), G. D. Birkhoff had already derived Euler’s theorem (p. 51) and
Euler’s identity (p. 68) by using Liouville’s theorem. He first investigates
the quotients of functions in the closed strip {z € C : 1 < Rez < 2},
then shows that they are bounded entire functions and therefore constant
(loc. cit., p. 8 and p. 10). Was he perhaps already thinking of a uniqueness
theorem a la Wielandt?

5. Multiplication formulas. The gamma function satisfies the equations

1 2 k-1
1) P(Z)F(Z%-TC-)F(Z—%;)...P(Z+T>
= (2m)z(:-DE2-FD(kz), k=2,3,....
Proof. Set F(z) := T (§)T (3)...T (245=1) /(2m)¥*~Dki ==, Then
F(z) e O(C), Where C™ =C\(—o0, 0] We have

SRR CRCRIC SRS

moreover, it follows immediately from 1.2(3) that F(1) = 1. Since |k?*| = k*
and |I'(z)| < I'(z) whenever z = Rez > 0 (cf. 1(4)), F is bounded in
{z € C:1 < Rez < 2}. By the uniqueness theorem of the preceding sub-
section, it follows that F' = I'; hence F(kz) = I'(kz), i.e. (1). O

Historical note. By about 1776, Euler already knew the formulas

(1) VT (%) r (%) ...T (%—1) — (2m) 3D

([Eu], I-19, p. 483); they generalize the equation I'(}) = /7. The equations
(1) were proved by Gauss in 1812 ([Gs], p. 150); E. E Kummer gave another
proof in 1847 [Ku]. O

Logarithmic differentiation turns (1) into the convenient
Summation formula: (kz) =logk + % Z:;(l) ;b(z + %), k=2,3,....
For k = 2, (1) becomes the
Duplication formula: /7T'(2z) = 2%7'T(2)T(z + 1),
which was already stated by Legendre in 1811 ([L;], vol. 1, p. 284).
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The identities (1) contain

Multiplication formulas for sinnz. Forallk € N, k > 2,

sinkrz = 2 lsinmzsin® (z+ %) sinm (z+ %) ...sinm (z + k—;—l) .

Proof. Since 1 — kz = k(—z + 1/k), Euler’s formulas 1(E) and (1) yield

m(sinkmz) " =T'(k2)T'(k(—z + 1/k))

carr [ (o ) (o 125

k=0

It is clear that [I*22T (—z + 32) = [*21T (1 — 2 — £); hence

W(sinsz) = (2m)'~ kr (21 -z ]i[ [ ( ) (1 - ( + %))]

= (2m)* *r(sinmz)” H[ s1n7r ))_1]. (]

The duplication formula leads to another

Uniqueness theorem. Suppose that F' € M(C) is positive in (0,00) and satis-
fies
F(z+1)=2F(z) and aF(2z)=2"""F(2)F(z+3).

Then F =T.

Proof. For g := F/T' € M(C), we have g(2z) = g(2)g(z + 3) and g(z+ 1) = g(2).
Therefore g(z) > 0 for all z € R. Hence, by Lemma 1.3.2, g(z) = ae®®, where
b is now real. Since g has period 1, it follows that b = 0; hence g(z) = 1,i.e. F =T.

Ezercises. Prove the following:

1
1) / log I'(t)dt = log V27 directly, using the duplication formula (cf. 1.4).
0

1
2) / log I'(¢ + z)d¢ = log V2 + zlog z — z for z € C\(—o0, 0) (Raabe’s func-
0

tion).

11 1 1 K
—_— —_ e —_— = - 1 - :2 e
Jltgtgtty—7-7 knzzow(+k)’k 3y

6*. Holder’s theorem. One can ask whether the I'-function — by analogy
with the functions expz and cos z, sinz — satisfies a simple differential
equation. O. Holder proved that this is not the case ([Ho], 1886).
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Holder’s theorem. The I'-function does not satisfy any algebraic differen-
tial equation. In other words, there is no polynomial F (X, Xo, X1,...,Xn)
# 0 in finitely many indeterminates over C such that

F(z,0(2),T'(2),...,T™(2)) = 0.

Weierstrass assigned the proof of this theorem as an exercise. There is
a series of proofs, for example those of Moore (1897), F. Hausdorff (1925),
and A. Ostrowski (1919 and 1925) (cf. [M], [Ha], and [O]). Ostrowski’s 1925
proof is considered especially simple; it can be found, among other places,
in [Bi], pp. 356-359. All the proofs construct a contradiction between the
functional equation I'(z + 1) = 2I'(z) and the hypothesized differential
equation.

7*. The logarithm of the I'-function. Since I'(z) has no zeros in the
star-shaped domain C~, the function ¥(z) = I''(2)/I'(z) is holomorphic
there and

(1) I(z) := /[1 ]1/;(0 d¢, zeC,withl(1)=0,

as an antiderivative of the logarithmic derivative of I'(2), is a logarithm
of I'(2) (that is, e!®) = I'(2); cf. 1.9.3). We write log'(z) for the function
l(2); this notation, however, does not mean that [(z) is obtained in C~
by substituting I'(z) into the function log z. It follows easily from (1) and
Proposition 3 that

(1) logI‘(z):-vz-logz+i[§—log(l+§>], zeC .

v=1

Proof. Since the partial fraction series —y —1/¢ —>°2  [1/({ +v) — 1/v]
converges normally in C™, it can be integrated term by term; cf. 1.8.4.4.
For 2 € C” and v > 1, 1 4+ z/v € C™ and hence log(z + v) — log(1 + v) =
log (1 + z/v) —log(1 + 1/v) (!). Thus

logl'(z) = —yz+vy—logz— Z [log(z +v)—log(l+v)— S + %}
v=1

—’yz+’7+§[S—log<1+§)+log<1+%) —i—}

Since Y 7_, [1/v —log(1+1/v)] =3 _, 1/v —log(n + 1) tends to v, (1')
follows. a
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We now consider the function logI'(z + 1) in E. Its Taylor series about
0 has radius of convergence 1; we claim that

(2) logI'(z+1) ——'yz+z ¢(n)z", where ((n):= Z—l;;

Proof. Since

’ﬂ,

1 _1_1 _i
z+v v 1+z/1/ -

n=1

(-) if |2] < v,

it follows from 3(1) and Proposition 3 that

P(z+1)=—y - Z(Z Vn+1z>——'y+z "¢(n)z""", z€E

But (logT'(z 4+ 1)) = ¢¥(2+ 1) and logI'(1) = 0; this gives (2). O

For z = 1, the series (2) gives the formula

(3) 7=Z(_

n

) ¢(n) (Euler, 1769).

Proof. Since {(n+1) < ¢(n), the terms of the alternating series on the right-hand
side tend monotonically to 0; hence the series is convergent. Abel’s limit theorem
can be applied to (2):

i D",

n=2

n

((n)z™ =~y +1og'(2) =

Historical note. Rapidly convergent series for log I'(z + 1) can be obtained
from the series (2); cf., for example, [Ni], p. 38. These give enough infor-
mation to tabulate the initial values {(n) of the logarithm of the gamma
function. Legendre established the first such table: it contains the values
of log'(z + 1) from z = 0 to x = 0.5, with increment 0.005, up to seven
decimal places. Legendre later published tables from z = 0 to z = 1 with
increment 0.001, correct to seven decimal places ([L1], vol. 1, pp. 302-306);
in 1817 he improved these tables to twelve decimal places ([L1], vol. 2,
pp- 85-95). Gauss, in 1812, gave the functional values of ¢¥(1 + z) and
logT'(1 4+ z) from z = 0 to x = 1, with increment 0.01, up to twenty deci-
mal places ([Gz], pp. 161-162). Euler announced equation (3) in 1769 ([Eu],
I-15, p. 119).
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§3. FEuler’s and Hankel’s Integral Representations
of I'(2)

Euler observed as early as 1729 — in his first work ([Eu], I-14, pp. 1-24)
on the gamma function — that the sequence of factorials 1, 2, 6, 24, ... is
given by the integral

1
n! =/ (—log7T)*dr, neN
0
(loc. cit., p. 12). In general,
1
Nz+1)= / (—log7)?*dr whenever Rez > —1;
0
with z instead of 2 + 1 and ¢ := —log 7, this yields the equation

(1) I(z)= / t*le7'dt, z€T:={z€C:Rez>0}.
0

The improper integral on the right-hand side of (1) was called Euler’s
integral of the second kind by Legendre in 1811 ([L,], vol. 1, p. 221). Its
existence is not obvious; we prove in Subsection 1 that it converges and is
holomorphic. The identity (1) is a cornerstone of the theory of the gamma
function; we prove it in Subsection 2, using the uniqueness theorem 2.4. In
Subsection 4 we use the uniqueness theorem to obtain Hankel’s formulas
for T'(2).

Integral representations of the I'-function have repeatedly attracted the
interest of mathematicians since Euler. R. Dedekind obtained his doctorate
in 1852 with a paper entitled “Uber die Elemente der Theorie der Euler-
schen Integrale” (cf. his Ges. Math. Werke 1, pp. 1-31), and H. Hankel
qualified as a university lecturer in 1863 in Leipzig with a paper called “Die
Eulerschen Integrale bei unbeschrénkter Variabilitit des Argumentes”; cf.

1. Convergence of Euler’s integral. We recall the following result.
Majorant criterion. Let g : D x [a,00) — C be continuous, where D C C
is a region and a € R. Suppose there exists a function M(t) on [a,00) such

that

lg(z,t)] < M(t) forallz€e D, t >a, and / M(t)dt € R exists.

Then faoo g(z,t)dt converges uniformly and absolutely in D. If g(z,t) €
O(D) for every t > a, then[ g(z,t)dt is holomorphic in D.
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Proof. Let € > 0. Choose b > a such that fboo M(t)dt < e. Then

/ g(z,t)dt‘ < / lg(z, t)|dt < / M(t)dt <e forallz€ D and c>b.
b b b

The uniform and absolute convergence of the integral in D follows from
Cauchy’s convergence criterion. If g is always holomorphic in D for fixed
t, then [ g(z,t)dt € O(D) for all 7 and s such that a <1 < s < oo (cf.
1.8.2.2). Then we also have faoo g(z,t)dt € O(D). (Incidentally, it is eas-
ier to show that this integral is holomorphic by using Vitali’s theorem; cf.
7.4.2.) m|

For r € R, let S;* (resp., S;) denote the right half-plane Re z > r (resp.,
the left half-plane Re z < r). For brevity, we set

1 e
u(z) ::/ t*~le~tdt, w(z) ::/ t*le tdt.
0 1

Convergence theorem The integral v(z) converges uniformly and abso-
lutely in S, for every r € R; moreover, v(z) € O(C).

The integral u(z) converges uniformly and absolutely in S}t for every
r > 0. Moreover, u(z) € O(T) and

(1) u(z) = i (=7 _1 for every z € T.

Proof. a) For all z € S, we have [t*~!| < ¢"~1. Since lim;_, o0 tr—le=3t =,
there exists an M > 0 such that |t*~le™| < Me~3! for all z € S;, t > 1.
Since [;* e"ztdt = 2//e and t*~tet € O(C) for all ¢t > 1, the claims
about v follow from the majorant criterion.

b) Set s := 1/t; then u(2) = [~ e~V/*s7*~1ds. If r > 0, then le=1/ss—=71
< 5771 for all z € S;f, and moreover [~ s~""'ds = r~'. The majorant
criterion now gives all the claims about u except for equation (1). This
follows from the identity

—1)V /1 tZ+V—1 dt
v! s

1
/ letdt =
&

WK

v=0

(=1 1 = (=17 &
Ve S o

—= v 24V 5 vl o z4v

which holds for all § € (0,1) (theorem on interchanging the order of inte-
gration and summation; cf. 1.6.2.3), since Rez > 0 and the last summand
therefore tends to 0 as 6 — 0. i



§3.. Euler’s and Hankel’s Integral Representations of I'(z) 51
The integrals u(r), r < 0, diverge. Since " ‘e™* > e~ 1t""1 in (0, 1),

1 1 1
/ " et > e—l/ "t =e'r"'(1—67); thus lim/ t"leTidt = co.
§ s §—0 s

2. Euler’s theorem. The integral [;°t*~'e~'dt converges uniformly and
absolutely to I'(z) in every strip {z€ C:a < Rez <b},0<a <b< oco:

[(z) = / t*~le~tdt for z € T.
0

Proof. Convergence follows from the convergence theorem 1, since the in-
tegral coincides with F' := w4+ v in T. For F € O(T), it is immediate
that

F(z+1)=2F(z), F(1)=1, |F(2)|<|F(Rez)|, forallzecT.

In particular, F' is bounded if 1 < Rez < 2. That F = T follows from
Theorem 2.4. O

Of course, there are also direct proofs of the equation F' = TI'. The reader may
consult, for instance, [A], where the logarithmic convexity of F(z), z > 0, is
proved, or [WW], where Gauss’s proof is given. One verifies the equations

nin®
z(z+1)...

by induction, then proves that the sequence on the right-hand side converges to
F(z). O

nz—l
= 1—-t/n)d T, n=1,2,...
s [ T yma sem n=12

The I'-integral can be used to determine a number of integrals. The
Gaussian error integral, discussed at length in Volume I, is a special I'-
value:

o0 o0
P 1
/ e dr=a 'T'(a™!) for a >0; in particular, / e dy = -2-\/7_7'
0 0

Proof. For t := x%, we have o7 =1 = gl-a and gt = ax® tdx; thus

Ta™h) = / t* TleTidt = / '™ arldy = a/ e dx.

0 0 0

The last equality is clear, since I'(3) = /7 by 2.1.1). O

An inductive argument using integration by parts yields

el 2
/ e " dz = LT (n + 1), neN
0

(Cf. also 1.12.4.6(3).)
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The Fresnel integrals, already determined in 1.7.1.6*, can also be derived
from the I'-integral; for more on this, see Subsection 3.

We mention in addition the representation given by F. E. Prym ([Pr], 1876).
Partial fraction representation of the I'-function. The identity

F(Z) :iﬂ_l_ +\/1°° tz_le—tdt

vl z4v
holds for all z € C\{0, —1,-2...}.

Proof. The assertion is true for z € T. Since the functions that appear are holo-
morphic in C\{0, —1,—2,...}, the general case follows from the identity theorem.
]

3*. The equation [;°t*"'e™*dt = e"™*/?I'(2), 0 < Rez < 1. To prove this,
let

a) g(¢) = ¢*7'e™¢; then |g(¢)] <

e"‘ylrzfle‘rc°s‘°, where z = z + iy € C,
¢ =re*¥ € C™. Since g € O(C™), we have
by Cauchy (see Figure 2.1):
¥ YR

b) fw’+'m gd¢ = fva-&-v gdg. J\
If we show that, for 0 < Rez < 1, Jr

Ys
c) lim/ gd¢ = lim / gd¢ =0,

620 Jys R—o0 Jyp

8 r R
the assertion will follow from b) by taking e L
limits, since v is the path ((¢) := i, § <
t < R. By a), FIGURE 2.1.

/2 . .
/ gd¢ = / o(re*Yire dp;
Ir 0

thus
/2
/ gdC’ Se‘rrly|rm/ e—rcosupd@
Yr 0

for all r € (0,00). To verify the second equality in c), we observe that cos¢ >
1— 2y for all € [0, 3] (concavity of the cosine). Hence

d)

/2 —Rcoscpd < /2 2R -1 R)d —R T 2Rx 'y %"< ™
/0 e <p_/0 exp(2Rm™ "¢ Vdp = e 2R . R

By d),

/gd{lglwe"llex_l; thus lim/ gd¢(=0 ifzr<l. O
YR 2 R0 Jyr
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For z := z € (0, 1), splitting into real and imaginary parts gives
(1) / t*" ! costdt = cos(3mz)I'(z), / t*"'sintdt = sin(37z)(z).
0 0

For z := ; and 72 := ¢, these are the Fresnel formulas (cf. 1.7.1.6*):

2
/ cos® rdr = / sin® rdr = 1” l7r.
0 0 2V 2

The equations (1), combined with Euler’s summation formula, give an ex-
tremely simple proof of the functional equation for the Riemann (-function; cf.
[T], p. 15.

Ezercises. 1) Argue as above to prove that
o0
/ t*lem¥idt = w°T'(z) forw, z€T.
0

(We had w = i above. The concavity of cos ¢ is no longer needed.)
2) Prove that the following holds for the {-function {(2) :=3> .  n™%:
] tz—l

C()T(2) = / L —dt foralzeT

0

(This formula can be used to obtain the functional equation

¢(1 - z) = 2(2m) *cos 272T'(2)¢(2).)

Historical note. Euler knew the formulas (1) in 1781. In [Eu] (I-19, p. 225), by
taking real and imaginary parts of w® f0°° t* e ¥'dt = I'(z), with w = p + 4q,
he obtained the equations

/ t* e P'cosqtdt = T(z)-f “coszf and

0
t* le P'singt dt = T(x)-f “sinzb,
0
where 6 := arctan(g/p) and f := |[w| = 1/p? + ¢2. Euler did not worry about the
region in which his identities were valid; (1) follows from setting p = 0, ¢ = 1 (cf.
also 1.7.1.6").

4*. Hankel’s loop integral. Euler’s integral represents I'(z) only in the
right half-plane. We now introduce an integral, with integrand w™%e¥,
which represents I'(z) in all of C\(—N); we will “make a detour” around
the annoying singularity of w™?e" at 0. Clearly

(%) lw*e?| < e™¥w| %R for 2=z +iyeC, weC.

Now let s € (0,00) and ¢ € 9B;s(0), ¢ # +s, be chosen and fixed. We
denote by v the “improper loop path” v + 6 + 2 (Figure 2.2) and by
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FIGURE 2.2.

S a strip [a,b] x iR, a < b. The next statement follows from (x), since

lim¢ o0 |t — c|qe”%t =0 for every q € R.

(1) There exists a to such that max,eg |[w™?e*| < emlvle—3t forw =y(t) =
c—t, t>to

We claim that the following holds.

Lemma. The “loop integral” 5%5 f7 w—*e¥dw converges compactly and ab-
solutely in C to an entire function h satisfying h(1) = 1 and h(—n) = 0,
n € N. Moreover, h(z)e~"¥! is bounded in every strip S.

Proof. Since e™¥! is bounded on every compact set K C C, the integral
converges, by (1), uniformly and absolutely along 72 (majorant criterion).
As the same holds for the integral along ~;, the claim about convergence
follows.

For every m € Z, we have lim,_,, fa w™™e?dw = 0 (Figure 2.2). Hence
h(m) = reso(w™™e") for m € Z. It follows that h(1) =1 and h(—N) = 0.
(1) also shows that h(z)e~™¥! is bounded in S. O

Hankel’s formulas now follow quickly:

1 1 —rw ]
r—(;*%/f” ¢fdw, z€GC
1 z—1 _w
I'(z) = 2isinszw e?dw, ze C\(-N).

Proof. We denote the functions on the right-hand side by h and F', respec-
tively. Then

h(1 —
(%) F(z) = =) Z), z € C\Z.

sinmz
Since h(—N) = 0 (by the lemma), it follows that F' € O(T). Integration by
parts in the integral for h gives h(z) = zh(z+1), whence F(z+1) = zF(z).
Since |2sin z| > el¥! — e~1¥l_ it follows from the lemma that

_ (1= 2)| A
|F(z)| == szl < = for 1 <Rez<2, y#0,



§4. Stirling’s Formula and Gudermann’s Series 55

with a constant A > 0. Thus F is bounded for 1 < Rez < 2. Hence, by
the uniqueness theorem 2.4, F = al', a € C. The supplement I'(z)I'(1 —
z)sinmz = m and () then give h = a/T. Since a = h(1) = 1 (by the
lemma), Hankel’s formulas are proved. ]

Historical note. Hankel discovered his formulas in 1863; cf. [H], p. 7. The
proof presented here follows an idea of H. Wielandt.

“By varying the path of integration in [his] generally valid integral,”
Hinkel “easily” obtains “the forms of the integral I'(z) or the quotient
1 : I'(z) that have been familiar so far”; thus, for example, the equations
3*(1) (cf. [H], top of p.10). The reader may also consult [WW], p. 246.

Hankel’s formulas remain valid for ¢ = —s if in the integrals along ~y;
(from —o0 to —s), resp. 72 (from —s to —oo), we substitute for the in-
tegrands the limiting values of w=*e¥, resp. w*~le¥, as (—oo, —s) is ap-
proached from the lower, resp. upper half-plane. Thus we have
eFim(z=Det|t|*~1 —0co < t < —s, in the second formula. If we now assume
in addition that z € T, we may also let s approach 0. Thus integrating
along the degenerate loop path (from —oo to 0 and back) gives, for all
z €T,

0 -0
2iT'(2)sinmz = e'i"(z_l)/ [t]*tetdt + "=~ / |t|*~etdt
0

—0oQ

0
= 2isin7rz/ |t]>~tetdt.

— o0

Here the final integral on the right-hand side is f;~t*~e'dt. We have
proved that

Euler’s formula for I'(z), z € T, follows from Hankel’s second formula.

Euler’s formula is thus a degenerate case of Hankel’s. Conversely, Han-
kel’s formulas can be recovered from this degenerate case (cf., for example,
[H], pp. 6-8; [K], pp. 198-199; or [WW], pp. 244-245).

§4. Stirling’s Formula and Gudermann’s Series

Invenire summam quotcunque Logarithmorum, quo-
rum numeri sint in progressione Arithmetica.

— J. Stirling, 1730, Methodus Differentialis

For applications — not just numerical applications — the growth of the
function I'(z) must be known: For large z, we would like to approximate
['(z) in the slit plane C~ := C\(—00,0] by “simpler” functions (we omit
the half-line (—oo, 0] since I'(z) has poles at —N). We are guided in this
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search by the growth of the sequence n!, which is described by Stirling’s
classical formula

(ST) n! = V2rn"tie e, with lima, = 0;

cf. [W], pp. 351-353. This formula suggests looking for an “error function”
1 € O(C) for the I-function such that an equation

I'(z) = vV2nz? ~31e%et®) | with lim, o p(2) =0,

holds in all of C~, where z*~2 = exp[(z — 3)log(2)]; (ST) would be con-
tained in this since nI'(n) = nl. We will see that

p(z) =1logI(z) — (z — 3)log z+ z — L log 27

is an ideal error function. It even tends to zero like 1/z as the distance
from z to the negative real azis tends to infinity. Thus 2mzi"%e~% is a
“simpler” function that approximates I'(z) in C™.

The equation given for u(z) is hardly suitable as a definition. We define
u(2) in Subsection 1 by an improper integral that makes the main properties
of this function obvious and leads immediately, in Subsection 2, to Stirling’s
formula with solid estimates for p(z). These estimates are further improved
in Subsection 4. In Subsections 5 and 6, Stirling’s formula is generalized to
Stirling’s series with estimates for the remainder.

To estimate integrands with powers of 2+t in the denominator, we always
use the following inequality:

(%) |z+t] > (|z| + t)cos f¢ for z = |z|e** and t > 0.

Proof. Let r := |z|. Since cos p = 1 —2sin® 2 and (r+t)? > 4rt, it follows
that

lz+t> =r*+2rtcosp+t2 = (r+t)® —drtsin® Lo > (r+t)%cos? 3p. O

One consequence of this is a “uniform” estimate in angular sectors.

(+*) Let 0 < 6 < 7 and t > 0. Then (since cos 2 > sin 6)

lz+¢t| > (J2| +t)sin 36 for all z = |z|e"® with |o| <7 — 6.

1. Stieltjes’s definition of the function p(2). The real functions

(1) Pi(t):=t—[t] -3 and Q(t):=3(t~I[t] - (t-[t)?),

where [t] denotes the greatest integer < ¢, are continuous in R\Z and have
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P, o

FIGURE 2.3.

period 1 (see Figure 2.3); Py(¢) is the “sawtooth function.” The function
Q(t) is an antiderivative of — P; (t) in R\Z; we have 0 < Q(t) < §. Moreover,
@ is continuous on all of R. The starting point for all further considerations
is the following definition:

(2) wu(z) = — /000 —?_}E—tzdt = /000 (zQ—itt))z dt € O(C™).

This definition is certainly legitimate once we prove that the integrals in
(2) converge locally uniformly in C~ to the same function. Let § € (0, 7]
and ¢ > 0. For all ¢ > 0, we then have (by (*x) of the introduction)

Q)
(z +1)2

< 1 1 1
= 8sin2'%6 (e +1)2’

if z = |z]e*¥ with |z| > € and |p| < 7—8. The second integral thus converges
locally uniformly in €~ by the majorant criterion 3.1. The first integral also
converges locally uniformly in C~ to the same limit function since

- swdt Q(t)s—f—/s QW) dt for0<r<s<oo.

. 2+t Tzt (z+1t)?

T

(Integration by parts is permissible because @ is continuous.)
We immediately obtain a functional equation for the p-function:

(3) ,u(z)-,u(z-i—l)z/o z_'_tdt:(z-l-%)log(l—i-%)—-l, ze€C.

Proof. Observe that Py(t + 1) = P;(t) and write

* Pi(t+1) /°° Pi(t) /1%—t
1) =— —_— = —~ —=dt = — £ dt.
uiz+1) /0 Z+t+1 el LN M

The integrand on the right-hand side has (z + 1)log(z + t) — t as an an-
tiderivative; (3) follows since log(z + 1) —logz = log(1 + 1) in all of C~.
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2. Stirling’s formula. For each § € (0, 7], we denote by W; the angular
sector {|z|e*¥ € C* : |p| < 7 — &}, which omits the negative real axis. The
following theorem describes the relationship between the functions I'(z)
and p(z), as well as the growth of u(z).

Theorem (Stirling’s formulas).

I'(z) = V2n2® Tem2et(3), zeC,
1 1 1 )
< ST = |zle"v € C7,

s | S Gomm 2=l

bl S 3arr e Ws, 0<6<

, <.

# = 8sin? 6 |2’ 6

Proof. Since Q(t) < § and |z+1t| > |z| cos 3¢ > |2|sin 36 (see the introduc-

tion to this section), the inequalities follow from 1(2). We show, moreover,
that F(z) := 272 %e#*) € O(C™) satisfies the hypotheses of the unique-
ness theorem 2.4. The functional equation 1(3) for u(z) immediately gives

Fz41) = (24 3)7t3em 7 1leme)=(z+3) 10814 D)+ = potie—2eh(s) = 2 (2).

Furthermore, F is bounded in the strip S = {z € C : 1 < Rez < 2}
Certainly e#(*) is bounded there. For all z = z +1iy = |z|e“" € C~, we have
|z~ %e~%| = |2|""2e~¥¢. If z € S and [y| > 2, then z—1 <2, |z| <2y, and
—yp < —inlyl; for such z, it follows that |*~3e~7| g 4y2e~ 3™, Since
lim o0 y?e~ 2™l = 0, F is bounded in S.

That I'(z) = az""2e~%eM?) now follows from Theorem 2.4. In order to
show that a = V27, we substitute the right-hand side into the Legendre
duplication formula of 2.5. After simplifying, we obtain

Vore et —p@)—pz+3) = a(l+ )=

Since limg 0o p(z) = 0 and limg_,oo(1 + ﬁ)z = /e, it follows that a =

V2. O

The equation (ST) shows — as claimed in the introduction — that the
following holds:

(ST) logT(2) = 2 log 27 + (2 — 3)logz — 2 + p(z).

For real numbers, (ST) can be written as

(ST*) T(z+1) = V2rz 2% =@/ 250, 0<0<1;
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for z := n, this is a more precise version of the equation (ST) of the
introduction.

The great power of this theorem lies in the estimates for u(z). They are
actually seldom used with this precision. Usually it suffices to know that,
in every angular sector Ws, uu(z) tends uniformly to zero like 1/z as z tends
to oo.

The statements of (ST) are easily summarized in the “asymptotic equa-
tion”

I(z) ~ V212" 3¢7%, or T(z+1)~V2n2z (E>z,

[

where the symbol ~ means that the quotient of the left- and right-hand
sides converges uniformly to 1 as z — oo in every angular sector W5 punc-
tured at 0. One consequence is that

I'(z+a) ~ 2°T'(2) for fixed a € C\{-1,-2,-3,...}.

The inequalities in (ST) can immediately be sharpened through better esti-
mates for the integral defining p(z). We first note that

T LR
8Jo |z+t? 8lz]Jy (s+cosp)?+sin?p

If we now observe that arctanz = x —arccot z is an antiderivative of (z+1)7",
it follows immediately (with ¢/sing := 1 for ¢ = 0) that

1 .
P - forz= |z|e*? € C.
sin |2|

m u)l < g

Since ¢/ sin ¢ is monotone increasing in [0, 7), this contains the inequality

ln—-61
(2) |H(Z)]§§-7;l—n§—m, ze€Ws, 0<é6<m.

The bounds in (1) and (2) are better than the old ones in (ST) when ¢ # 0 or
& # m; for then |p| < 2tan %lgol, orm—6 < 2cot %5, whence it follows immediately
that ¢/sin¢ < (cos 3¢) ™2 (resp. (r — §)/siné < (sin 16)7?).

Historical note. For the slit plane C™, Stirling’s formula was first proved in
1889 by T.-J. Stieltjes; cf. [St]. Until then, the formula had been known to
hold only in the right half-plane. Stieltjes systematically used the definition
of the y-function by means of P, (t) given in Subsection 1 ([St], p. 428 fI.).
It has the advantage over older formulas of Binet and Gauss of holding
in all of C™, not just in the right half-plane T. This formula for u(z) was
published in 1875 by P. Gilbert in “Recherches sur le développement de
la fonction I' et sur certaines intégrales définies qui en dépendent,” Mém.
de I’Acad. de Belgique 41, 1-60, especially p. 12. However, I know of no
compelling applications for large angular sectors.

3. Growth of [I'(x + iy)| for |y| — oo. An elementary consequence
of Stirling’s formulas is that |T'(z + iy)| tends ezponentially to zero as y
increases. As early as 1889, S. Pincherle observed ([Pi], p. 234):
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(1) The following holds uniformly as |y| — oo, for x in a compact subset
of R:
ID(x +iy)| ~ Vorly|"~2e~3ml,

Proof. T(z)| ~ v/2r|2|*~%|e~*| by 2(ST). Since [2*~3| = |2|*~#e7¥% for
z=2x+1iy = |z|e"?, p € (—m, ), it follows that

(%) |T(z + iy)| ~ \/2—7r|z|‘”_%e_“”’w uniformly as |y| — oo,

for z in a compact subset of R. Since |z| ~ |y| as |y| — oo,

(*%) |z|”’_% ~ lylm‘% uniformly as |y| — oo,

for z in a compact subset of R. To deal with exp(—z — yy) asymptotically,

we may restrict to the case y — +oo (because I'(z) = I'(2)). Since tan(37 —

@) =zyt,

1

1
¢ = gm—arctanzy ™, where arctanw = w — jw® + tw’ — 4+, Jw| < 1.

Since limy o y arctan zy~! = z uniformly for z in a compact subset of R,

we see that e~%Y ~ e~ 3™ as y — co. (1) now follows from (x) and (x). O
4*. Gudermann’s series. Equation 1(3) yields

S (s Dton (14 12) 1] = [ B0

v=0

This and 1(2) give Gudermann’s series representation:
1 = =1 1+ —— ) - in C~.
(1) u(2) VEZO[(2+V+2) og( +z+1/> 1] inC

The series (1) can be used to improve the factor 1/8 in 2(ST) to 1/12. We
write (z + §)log(1 + %) — 1 as A(z) for brevity, and begin by proving the
following:

_1t-t [ Gt -
(0) ’\(z)_'é/(, (z+t)2dt—2/0 CroGricp™ €05

1 1 1 1
(00) [A(z)] < 2 cos? Ly (l‘z'l e 1|> '

Proof. (o) Integration by parts in 1(3) gives the first integral for A(z). The
second integral results from integrating from 0 to 1/2 and 1/2 to 1 in 1(3),
then substituting 1 — ¢ for ¢ in the second integrand.
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(0o0) Since t(1 —t) > 0 in [0,1], (*) of the introduction and (o) give

1 _ -2
sy [ das (cosge) A

Since (r +t)(r +1—1t) > r(r+ 1) for t € [0,1], the second integral in (o)
gives

1 2
2 /1 1 /1 1
<2 _[T(i ¢} a=2(1- forall 7 >0. O
A”)~r@+1yé (2 ) ]2<r r+1) oratr>

One can also estimate A(r) by means of the power series for log }J_% (cf.

[A], p. 21).

The following theorem is now immediate.

Theorem. Gudermann’s series converges normally in C™, and

) < = — 1

SIS = |zlei® € C~.
12 cos? 2 |2] for z = |zle

Proof. By (1) and (0o0),

1 1\ 1 1
< — — .0
2)l < Z(’\<Z+V 2<COS2¢> uz=;]<|z+v| |z+1/+1|)

2(ST*) now holds with 1/12 instead of 1/8 in the exponent. Moreover,
it follows at once that

11

= fory e R.
6yl

1
|u(z)| < -1—2—§—— when Rez >0 and |u(iy)| <
The bounds for u(z) are better than the bounds in 2(1) and 2(2) when-
ever tan o < 2p and cot 16 > 3 (7r 6) i.e. for ¢ < 110.8° and § > 69.2°.
We will see in §5 3 that |,u( )| < < Z|2|7! in the angular sector |p| < .

Historical note. C. Gudermann discovered the series p(z) in 1845 [G]; it
has sinced been named after him. The inequality with the classical initial
factor & instead of § is due to Stieltjes ([St], p. 443).

. Stlrlmg s series. We seek an asymptotic expansion of the function
u(z) in powers of 27!. We work with the Bernoulli polynomials

k
1
By(w) = Z (k)B’;—“ =wk - Ekw"‘l 4+ 4By, k21,

k=0 K
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where B, := B,(0) is the xth Bernoulli number. The following identities
hold (cf. 1.7.5.4):

(*) Bppi(w) =(k+1)Bg(w), k€N, and By(0)= Bi(1) for k > 2.

To every polynomial B,(t), we assign a periodic function P, : R — R
defined by

(1) P,(t) :== Bp(t) for 0 <t <1, P,(t) has period 1.
Then P; (t) is the sawtooth function. We now set

> me =t T

dt, k>1.

All the functions py are holomorphic in C~; furthermore,

p1(2) = 1), (o) = Tt T+ e (e)s an(2) = i ()

(3) En: BQV 1 + (z)
(2v — 1)2p 22v-1 Hant182)-

1/:1

Proof of (3). The recursion formulas follow from integrating by parts in (2);
the equations o, = pton+1 hold because B3 = Bs = --- = 0. O

The series in (3) is called Stirling’s series with remainder term pon1.
Forn =1,

1 1 1 [~ P

= — .- - = —_ h
3 uiz) 12 z 3J), (2413 where
3 1
Py(t) = t3—§t2+§t for t € [0, 1].

Since |Ps(t)| < 1/20 (the maximum occurs at 1/2 4 v/3/6) and fooo |z +
t|73dt = |z|7'(]z] +Re 2) ! (because a2z (x? +a?)"1/? is an antiderivative
of (22 + a?)~3/2), it follows that

11
12 2

11 1

60 |z| |z| + Rez’ zeC

(3) ]u<z> -

Stirling’s series (3) does not give a Laurent expansion for u as n — oo
(since p does not have an isolated singularity at 0). In fact:

Bsy, 1
(2v—1)2v -1

This follows since | Ba, | > 2(2v)!/(2m)?" (cf. 1.11.3.2) and limn!/r™ = co
for r > 0. O

For every z € C*, the sequence is unbounded.
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The full significance of Stirling’s series is realized only through useful
estimates for the complicated remainder term. By (3),

1 [ By — Pan(t)
Han-1(2) :zn/o (z+t)2n

4
W note that li—/oo——ﬂ—-
© kzk  Jo (z+t)k1)°

For n > 1, we set My, := sup;>, |Ban — Pan(t)] € Rand z = [z[e¥ € CT. Tt
follows immediately that

M, 1 1
2n —1)2n cos?™ 2 |z|?n—1’

(5) lpon-1(2)] < ( a

A direct estimate for po,—1(2) without the detour via (4) would have
given, instead of (5), only the power |z|2*~? in the denominator. (2) and
(5) immediately give

By
li 2n—1 _ — n .
ceWsrooo o H2m 1(2) (2n —1)2n

From (3) and (5) we obtain the following limit equation for every angular
sector Wj:

. : - Bsy 1 n
(6) lim  |u(z) — Z o _21)21/ i |z]*" =0, n>1.

2eWs,z—00 =
Stirling’s series is thus an asymptotic expansion of u(z) (at oo — see 1.9.6.1).
If z is large compared to n, this gives a very good approximation for u(z),
but making the index n large for fixed z yields nothing. For n = 3, for
example,

11 1 1 1

1
logI'(z) = (2—5)10g2—2+10g\/27r+———————+

— term.
122 3602% 126025 or e

6*. Delicate estimates for the remainder term. Whoever is ambitious
looks for good numerical values for the bounds M, in 5(5). Stieltjes already
proved ([St], pp. 434-436):

2n—1)2n cos?" 2o |[z[2n1
z=|zle¥ €C, n>1.

|an-1(2)] < (

(1)

For n = 1, this is the inequality of Theorem 4. The proof of (1) uses the
following unobvious property of the sign of the function Py, (t), t > 0:

(S) Ban, — Pan(t) always has the sign (—=1)"~!, n > 1.
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(1) follows quickly from (8): Since Bj, — Pe,(t) never changes sign, 5(4)
(with z = re'?) immediately gives

i o0 |B2n e PZn(t)]
2n Jo (r+t)m

1 /°° Bon — Pa,(t)
2n | Jo (r+t)2n

AN

1
cos®™ 580|M2n—1(z)| dt

dt = Iﬂzn_l(T)I.

To estimate pgn,—1(r), we use 5(3). We have

B,, 1
2n — 1)2n r2n-1°

pan—1(r) = pant1(r) = (
Since, by 5(4) and (S), p2n—1(r) and —pugn+1(r) have the same sign for
all r > 0, it follows that

| Ban| 1
n~1)2nr2n-1’

[pon-1(r)| < |[p2n-1(r) = pant1(r)] < @

(1) is then proved by applying (S). To prove (S), we exploit the Fourier
series of Py, (t) (cf. 1.14.3.4):

PZn(t) = (_1)n—1

1 oo
2(2n)! Z cos27wt’ 150 n>1.

(271-)277, 1/2”

v=1

Since Py, (0) = Bay, (Euler’s formula),

By — Pop(t) = (=1)"7!

2(2n)! i 1~ cos 2wt

(271-)271. 1/2"

v=1

Since no summand on the right-hand side is negative, it is clear that (S)
holds.

7*. Binet’s integral. There are other interesting representations of the u-
function besides the Stieltjes integral formula and Gudermann’s series, but these
are valid only in the right half-plane. J. M. Binet proved in 1839 that

e2rt _ 1

1) u(z)=2/0°° arctan(t/2) it Res >0

([B], p. 243). The following formula is convenient for the proof.

Plana’s summation formula. Let f be holomorphic in a neighborhood of the
closed half-plane {z € C: Rez > 0} and have the following properties:

1. Y50 f(v) and [[° f(z)dz exist;
2. limyp oo fz + it)e™ 2™t = 0 uniformly for = € [0,s], s > 0 arbitrary;
3. limeoo 2 |f(s + iy)le™*"¥ldy = 0.
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Then

S50 =350 + [ s vi [T LI,

v=0

A proof of this formula can be found in [SG], pp. 438-440. Plana gave his formula
(which he described as “remarquable”) in 1820 in [Pl]. Abel arrived at this formula
three years later. Cauchy, in 1826, gave one of the first correct proofs; Kronecker
treated this and related questions in 1889. For further details, see [Li], pp. 68-69.

Clearly the function h{w) := (z + w)™? satisfies the hypotheses of Plana’s
summation formula for every fixed number z € T. We have (cf. Corollary 2.3)

- . " _ 1 o _ 1 . N —4dizt
;}h(u) = (logI')"(2), h(0) = ot /0 h(z)dz = g h(it)—h(—it) = R
It follows that

w11 [P 4z dt
(2) (logT)'(2) = 5,2 + p, +/0 FroE e -1 Rez > 0.

Integrating under the integral sign in this equation yields

') = _/°° 2t dt
3) A At
, Rez .
*° 2arctant/z
0

Proof. Integrating (2) once gives

, 1 <2 dt
(o) (log) (2) =c1 — % +log z — Baipan_1 9F constant.
o _

Since [(z — 3)log z — 2]’ = log z — 1/2z, integrating again gives

1 2
(00) logl'(z) =co+ c1z + (z - 5) logz — 2 +/ —%rttintlﬁdt.
0 —

Comparing (0o) with 4.2(ST") leads to the equation

1 °° 2arctant/z
=cp— = log2 ———at.
u(z) =co 5 log 7r+C1z+/0 T dt

For the integral I(z) on the right-hand side, since 0 < arctant/z < t/z for £ > 0,

2 [ t .

Since limg o0 () = 0 as well, it follows that co = 3 log 27 and ¢; = 0. a
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The equations (3) are called Binet’s integrals for i/ and p. There are other
integral representations for u(z); for example,

z > log(l — e™2™)

(Integration by parts gives (3).) All these formulas — except for the Stieltjes
formula — are valid only in the right half-plane.

8. Lindeldf’s estimate. A series expansion of 2¢/(2% + t2) in Binet’s inte-
gral formula yields formulas for the Bernoulli numbers Bz, and the functions

/‘L/2n—-1 (Z)

oo t2n—1 (_1)71.—1
= - 9 >
/ ez"t—ldt an B, n>1

(1)

, _ (_l)n—l =) t2n—1 dt
Won_1(z) =2 poTom /0 Srpan_17 " >1and Re z > 0.

Proof. Since 1/(1 +¢) = 7171 (=1)"1¢"1 + (—¢)""!/(1 + g), we have (with
g:=1t?/2%)

n—1 2v—-1 2n-—1
2t u—lt n—1 t 1
- =9 -1 2(—-1
N e

22 + 2 p2n-2°

Hence, for Re z > 0, 7(3) gives the series

, n—1 1 1 o0 t2u—1
W) == 2-1)"" 5 | o
(0) v=1

2(—1 n—1 [e 5] t2n—1 dt
oy

22n—2 22 + t2 e27t — ] :

On the other hand, differentiating the series in 4.5(3) gives
S Ba 1
2v
(00) p(z) =~ 20 220 + pon—1(2).

v=

For fixed n and large z, the last terms in (o) and (00) tend to zero like z72™:

In (o) this follows directly; in (0o0) one estimates the equation

et B2n - PZn(t)

A W‘*’—ldt, Rez > 0,

ﬂl2n—1(z) =
which comes from differentiating under the integral sign in 5(4). Thus (o) and
(00) are “asymptotic Laurent expansions” for y(z). The uniqueness of such ex-
pansions follows as for power series (cf. 1.9.6.1, p. 294). Comparison of coefficients
gives (1). O
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We now estimate pt5,_1(2). For the function defined in the interval (-, 1)
by
c(p):=1for |p| < ir and c(p):=|sin2¢| " for in < |g| < i,

we have |22 + 2| > |2|®/e(yp) if z = |z|e** and |p| < im. It follows by (1) that
2

Ban| c(p) .
/ < | 2 ]
(2) |ton—1(2)| < o 2P if Rez >0

Since lim;—, 0 pt'(2t) = 0 for z € C™, integration along ((t) = zt, t > 1, gives

H2n—1(z) = _/ z.u‘/2n—1(2t)dt
1

Thus, for all z with Re z > 0,

- [Banl clp) [ di
o @ < el [ sl < 150 S [T

An immediate result of this is Lindeldf’s estimates ([Li], p. 99):

|Ban|  c(p)

(2n — 1)2n |z|2m-1° for z = [2]e*, |p| < 3 n > 1.

(L) lu2n—1(2)] <

In the angular sector || < im, these inequalities are better than 4.6(1); for

4
example, it follows that
1

o forall z = Jzle with lg] < 4

lu(z)] <

ol =

Lindeléf’s bound ¢(g) = 1 cannot be improved for || < i because of 4.5(6).
For |¢| > 37, (L) is better than 4.6(1) as long as |sin2¢| > cos®™*? ¢

Interest in delicate estimates like (L) is still alive today. In their recent article
[Sch F] in the venerable Crelle’s Journal, W. Schifke and A. Finsterer showed
that |sin2p| ", in the angular sector 17 < || < L, is the best of n independent
bounds for which (L) holds. For each individual n, however, there exists a better

bound ¢, (p) < c(p) (cf. [Sch S]).

§5. The Beta Function

The improper integral

) B(w, z) i= /0 =11 — 1)1t

converges compactly and absolutely in the quadrant T x T = {(w, 2) € C? :
Rez > 0,Rew > 0}, and is therefore holomorphic in z € T (resp., w € T)
for fixed w € T (resp. z € T); the proof, like that for the I'-integral, uses
a majorant test (cf. also 7.4.2). The function B(w, z) is called the (Euler)
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beta function; Legendre referred in 1811 to Fuler’s integral of the first kind
([L4], vol. 1, p. 221). The main result of the theory of the beta function is

-5

It will be derived in Subsection 1 by means of the uniqueness theorem 2.4.

Euler’s identity: forallw, z€T.

1. Proof of Euler’s identity. We need the following results:
a) Bw,1) =w™!, B(w,z+1)= B(w, 2),
b) |B(w, 2)] < B(Rew, Re z).

w+z

Proof. a) The first formula is trivial; the second is proved as follows:

(w+2)B(w,z + 1) — 2B(w, 2)

1 1
— w=1r1 __ 4\Z 44 __ w—=171 _ 1\2-1
_(wl-l-z)/o (1~ t)%dt z/o =11 — )=~ 14t
=/ (Wt (1 = £)* — t¥2(1 — )" }dt
0

= [t“(1 - ¢)*]; = 0.
b) This is clear, since |(1 — t)¥~}*7}| < (1 — t)Rew—1gRez—1 o

To prove Euler’s identity, we now fix w € T and set F(z) := B(w, z)['(w+
2) € O(T). By a), F(1) = '(w) and F(z + 1) = zF'(z). Since [I'(w + 2)| <
I'(Re(w + z)), b) shows that F is bounded in the strip {1 < Rez < 2}. By

the uniqueness theorem 2.4, F(z) = I'(w)['(2).

A proof of Euler’s identity for real arguments, using the logarithmic convexity
of the product B(z,y)['(z + y), can be found in Artin’s book ([A], pp. 18-19).

Because of the formula B(w, z) = I'(w)I'(z) /T'(w + z), the beta function
is not interesting in its own right. Despite this, it survived for quite a
while alongside the gamma function as a separate function: a profusion
of relations between beta functions was derived, especially by means of
the identities a); these often reduce to trivialities as soon as the Euler
identities are applied. See, for example, the classical works of Legendre
([L1,2], passim) and Binet [Bin], or even those of Euler himself (and also
[Ni], p. 15).

The following integral formulas, valid for all w, z € T, are useful:

in w—1

(1) B(w,2z)= 2/0E (sin ) 2¥ 1 (cos ) 2"~ dp = /Ooo ﬁwds

Proof. In (1) of the introduction, substitute ¢ = sin? ¢ (resp., s = tan? p);
thus (14 s)~! = cos? p and ds = 2tan p(cos p)~2dp. m]
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Historical note. Euler, in 1766, systematically studied the integral

! zP~ldg

(+) | eta—attae s [ e

([Eu], I-17, pp. 268-287); he writes <§) for his integral. Substituting y :=
" yields

p 1 [ ey 21 1./p g
Py_ 2 Bl _ o) Ei-1gy = =B (2. 1) .
(q) n/oy (1-y) Y= (n’n)

Integrals of the type () already occur in Euler’s “De productis ex infinitis
factoribus ortis,” which was submitted to the Petersburg Academy on 12
January 1739 but not published until 1750 ([Eu], I-14, pp. 260-290).

Euler knew by 1771 at the latest that the beta function could be reduced
to the gamma function (cf. [Eu], I-17, p. 355).

2. Classical proofs of Euler’s identity. Because B is holomorphic in T,
it suffices to verify the formula for real numbers w > 0, z > 0 (identity
theorem).

Dirichlet’s proof (1839, [D], p. 398). First, we have

(1+5)"%T(2) = / t*7le=(1+9tdt Res> -1, z>0 (evenzeT).
0

Substituting w + z for z and using 1(1), we find that
o0 e @)
L(w + 2)B(w, z) = / svt [/ t“’*’z_le"(l“)tdt] ds, w>0, z>0.
0 0

By theorems of real analysis, reversing the order of integration is legitimate
here for all real w > 0, z > 0 (!); thus

D(w + 2)B(w, 2) = / [/ sw‘le'tsds] pobltgy,
0 0

The inner integral equals I'(w)t~*. Hence
T(w + 2)B(w, 2) = T(w) / #=Le=tdt = D(w)(z). o
0

Dirichlet carefully examined the theorem used to reverse the order of inte-
gration. Jacobi, in 1833, argued concisely as follows [J]:
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Demonstratio formulae

[Ceaton. [Terator  rary
ﬁ“e_xx.»,b_. o — Ta+5)’

(Auct. Dr. C. G. /. Jacobi, prof. math. Regiom.)

‘/; et (—w)-1dw = =

uotics variabilibus x, y valores omnes positivi fribuuntur inde a O us~
que ad -0, posito
zty=r, r=ruw,
variabili novac = valores conveniunt omncs positivi a O usque ad - o,
variabili 2 valores omnes positivi a 0 usque ad 41, Fit simul
dxdy = rdrdw,
Sit iam ¢ notatione nota:

T(a) = ﬁm e~*z*1dx,
T(a)T'(0) -_—./fe-«—w—lyb-laxay,

variabilibus a, ¥ tributis valoribus omnibus positivis a O usque ad - oo,
Posito autem:

habetur

xty=r, z=ruw,
integrale duplex propositum cx antecedentibus altcro quoque modo in
duos factores discerpitur:

r(“) r(b) =\/;wc_vrﬂ+b-lar o lw“—l (l— w)b—’ a w!
unde

_/:w ‘(l—w)"“aw = -i;-(a—_*_—l;j--

Quod est thcorema fundamentale, quo integraliun Eulerianorum, quae ill.
Legendre vocavit, altera species per alteram exhibetur,
23. Aug. 1833.

Exercises. Prove the following identities.

1) J7/*(cos )™ (sin)*"Hdp = 3 TG for m, € N\{0}.

1

- oo z—1 0 z— 00 g*—
) stm =l aordt=2J, (tan)**~ldp = [ So-ds for 0 <Rez < L.
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Entire Functions with Prescribed Zeros

Es ist also stets moglich, eine ganze eindeutige Func-
tion G(z) mit vorgeschriebenen Null-Stellen a1, a2,
a3, ... zu bilden, wofern nur die nothwendige Bedin-
gung Limn=oo|an| = oo erfiillt ist. (It is therefore
always possible to construct a single-valued entire
function G(z) with prescribed zeros a1, a2, as, ...,
provided only that the necessary condition Limn=oo
|an| = 00 is satisfied.)

— Weierstrass, Math. Werke 2, p. 97

If f # 0 is a holomorphic function on a domain G, its zero set Z(f) is
locally finite in G by the identity theorem (cf. 1.8.1.3). It is natural to pose
the following problem:

Let T be any locally finite subset of G, and let every point d € T be
assigned a natural number d(d) > 1 in some way. Construct functions
holomorphic in G which each have zero set T and, moreover, whose zeros
at each point d € T have order d(d).

It is not at all clear that such functions exist. Of course, if T' is finite,
the polynomials

H(z—d)b(d) or 22O H (1—E)a(d)
deT deT\{0} d

give the desired result (the initial factor z°(®) appears only if 0 € T).
In 1876, Weierstrass extended this product construction to transcendental



74 3. Entire Functions with Prescribed Zeros

entire functions: for a prescribed sequence d, € C* with limd, = oo, he
constructs products of the form

2 (COREEORREOY)]

and forces their normal convergence in C by an appropriate choice of natu-
ral numbers k,. The novelty of this construction is the use of nonvanishing
convergence-producing factors (for historical details, see 1.6).

We study Weierstrass’s construction in detail in Section 1 and discuss its
applications in Section 2.

§1. The Weierstrass Product Theorem for C

The goal of this section is the proof of the Weierstrass product theorem for
the plane. To formulate it properly, we make use of the concept of divisors.
In Subsection 1, with a view toward later generalizations, we define divisors
for arbitrary regions D in C. Theorem 2 describes the simple principle
by which Weierstrass products are used to obtain holomorphic functions
with prescribed divisors. In order to apply this theorem, we introduce the
Weierstrass factors E,(z) in Subsection 3. They are used in Subsection 4 to
construct the classical Weierstrass products for the case D = C. Subsection
5 contains elementary but important consequences of the product theorem.

1. Divisors and principal divisors. A map 0 : D — Z whose support
S:={z € D:0# 0} is locally finite in D is called a divisor on D. Every
function h meromorphic in D whose zero set Z(h) and pole set P(h) are
discrete in D determines, by z — o0,(h), a divisor (k) on D with support
Z(h) U P(h); such divisors are called principal divisors on D. The problem
posed in the introduction to this chapter is now contained in the following
problem:

Prove that every divisor is a principal divisor.

We begin by making a few general observations. Divisors 9, d (as maps
into Z) can be added in a natural way; the sum 0 + 0 is again a divisor
(why?). Tt follows easily:

The set Div(D) of all the divisors on D is an abelian group, with addition
as group operation.

A divisor 0 is called positive and written © > 0 if 9(2) > 0 for all z € D;
for obvious reasons, positive divisors are also called distributions of zeros.
Holomorphic functions f have positive divisors (f). The set M(D)* of all
functions meromorphic in D that have discrete zero sets is a multiplicative
abelian group; more precisely, M(D)> is the group of units of the ring
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M(D). If D = G is a domain, then M(G) is a field; thus M(G)* =
M(G)\{0} (cf. 1.10.3.3).

The following is immediate.

The map M(D)* — Div(D), h — (h), is a group homomorphism. More-
over,

1) f € M(D)* is holomorphic in D < (f)>0;

2) f e M(D)* is a unit in O(D) & (f)=0.

Every divisor 0 is the difference of two positive divisors:
0 =20" — 07, where 0% (2) :=max(0,0(2)), 07 (z) :=max(0, —0(z)), z € D.
It follows immediately from this that

0 is a principal divisor on D if 0T and 9~ are principal divisors on D.

Proof. Let ot = (f), 9= = (g), with f,g € O(D). Then, for h := f/g €
M(D)*, we have (k) = (f/g) = (f) — (g) =2t —0o~ =0. 5

The problem stated above is thus reduced to the following:

For every positive divisor 0 on D, construct a function f € O(D) with
(f)=o.

Such functions can be constructed with the aid of special products, which
we now introduce.

2. Weierstrass products. Let 0 # 0 be a positive divisor on D. The
support T # @ of 0 is at most countable (since T is locally finite in D).
From the points of T\{0} we form, in some fashion, a finite or infinite
sequence di, da, ... such that every point d € T\{0} appears exactly d(d)

times in this sequence. We call dy, da, ... a sequence corresponding to 0. A
product
(*) f:zb(O)Hfuy fv EO(D),

v>1

is called a Weierstrass product for the divisor © > 0 in D if the following
conditions hold.

1) f, has no zeros in D\{d,} and 04,(f.,) =1, v > 1.

2) The product HI/ZI fu converges normally in D.

This terminology will turn out to be especially convenient; the next result
is immediate.

Proposition. If f is a Weierstrass product for 8 > 0, then (f) = 0; that
is, the zero set of f € O(D) is the support T of 0, and every pointd € T
is a zero of f of order 0(d).
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Proof. By 2), f € O(D). Every point d € T, d # 0, occurs exactly 0(d)
times in the sequence d, ; hence 1) and Theorem 1.2.2 (applied to the con-
nected components of D) imply that o,(f) = 9(z) for all z € D. Therefore

(f) =0 0

The next statement follows immediately from the definition.

If 2200 I1f. and 2000 I1 f,, are Weierstrass products ford > 0 and?d >0,
respectively, then z°(0)+i(0) 119, is a Weierstrass product for o + 2, where
g2v—1 = fu, and gy, = f,.

We will construct Weierstrass products for every positive divisor 0. (This
involves more than finding functions f € O(D) with (f) = 9.) In the
construction, the “only” thing that matters is choosing the factors f, €

O(D) in such a way that 1) and 2) hold. When D = C, such factors can
be specified explicitly.

3. Weierstrass factors. The entire functions

22 23 P
Eo(z) :=1—2, En(z):=(1—2)exp z+?+§+--'+—h— , n>1,

are called Weierstrass factors. We observe immediately that
n

(1) E/(2) = —2"exp (z+—22—+-~+%) forn > 1,

(2) En(z) =1+ Z a,z”, where Z lay| =1, for n > 0.

v>n v>n

Proof. Let t,(2) :== 2+ 22/2 4 --- + 2™/n; then (1 — 2)t, (2) = 1 — 2".
ad (1): Write E/,(2) = — exptn(2)+(1—2)t,(z) exptn(2z) = —2" exptn(2).
ad (2): Let 3 a,z" be the Taylor series for E, about 0. The case n =0
is trivial. For n > 1, we have > va,z""1 = —z"expt,(z) by (1). Since
the function on the right-hand side has an nth-order zero at 0 and all the
Taylor coefficients of expt,(z) about 0 are positive, we see that

g1 = -=a,=0and a, <0; thusla,|=—a, for v>n.
(2) follows because ap = En(0) =land 0= E,(1) =1+> ., a0. O
From (2), we immediately obtain

(3) |En(2) = 1] < |2|™*t, n=0,1, 2,..., for all z € C with |z| < 1.

A second proof of (3), using only (1). Since |e*| < e, w € C, it follows
immediately that .

|EL(t2)] < —|2|"En(t) for all (t,2) € [0,00) x E.
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Since f(z) — f(0) = zfol f'(t2)dt for all f € O(C) and all z € C,

|En(2) — 1] < IZI/O1 |En(t2)|dt < |2 /01 E,(t)dt, z € E.

The integral on the right-hand side is equal to —1. O

In the next subsection, Weierstrass products will be formed from Weier-
strass factors; the estimate (3) will be crucial for the proof of convergence.

Historical note. The sequence F,, appears in [W;] (p. 94). From the equa-
tion
1 —z = exp(log(l — 2)) = exp —Zi— , z€E,

14
v>1

he obtains the formula E,(z) = exp (= ,.,2"/v), z € E, which plays
the role of the estimate (3) in his reasoning. — The first proof of (3) given
above is attributed to L. Fejér; cf. [Hi], vol. 1, p. 227, as well as [F], vol. 2,
pp. 849-850. But the argument appears as early as 1903, in a paper of L.
Orlando; cf. [O].

4. The Weierstrass product theorem. In this subsection, 9 # 0 denotes
a positive divisor on C and (d,),>1 a sequence corresponding to 0.

Lemma. If (k,),>1 is any sequence of natural numbers such that
o0

(1) Z |r/d,|** Tt < 0o for every real T > 0,
1

then 2°(°) [I,>1 Bk, (2/d,) is a Weierstrass product for 9.

Proof. We may assume that 0 is not finite. By 3(3),
|Ey, (2/d,) — 1| < |r/d,|F»*! for all z € B,(0) and all v with |d,| > 7.

Since lim |d, | = oo, for every 7 > 0 there exists an n(r) such that |d,| >
for v > n(r). Hence

Z |Ex, (2/dy) = 1B, (0) < Z |r/d,|**** < 0o for every r >0,

v>n(r) v>n(r)

proving the normal convergence of the product. Since the factor E, (z/d,) €
O(C) has no zeros in C\{d, } and has a first-order zero at d,, we have a
Weierstrass product for 0. O

Product theorem. For every divisor © > 0 on C, there exist Weierstrass
products, e.g.
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2200 H E,_1(z/d,)

v>1

2 v—1
— 20 -2 2 (=2, 1 (=
= g[( )eXp<d,,+2<d,, Tt TI\G '

Proof. Given r > 0, choose m € N such that |d,| > 2r for v > m. It follows
that 3 . Ir/du|” < 3,5, 27" < oco. Thus (1) holds for k, :=v—1. O

The choice k., := v — 1 is not optimal. It suffices, for example, just to require
that k, > alogv with o > 1: since |d,| > e - r for all but finitely many v, we
have |r/dy,|***! < v™%, so that (1) holds.

5. Consequences. The product theorem 4 has important corollaries.

Existence theorem. Every divisor on C is a principal divisor.

Factorization theorem. Every entire function f # 0 can be written in
the form

f(z -—eg(z mHl(l——)eXp<i+l<i>2+"'+i(i>ku>},
et d  2\d, k, \d,

where g € O(C) and and 2™ ][], ... s a (possibly empty) Weierstrass
product for the divisor (f).

Only the factorization theorem needs justification. By the product the-
orem, there exists a Weierstrass product f for the divisor (f). Then f/ f
is a function without zeros, and thus of the form exp g with g € O(C) (cf.
1.9.3.2). O

The next result is a simple consequence of the existence theorem.

Theorem (Quotient representation of meromorphic functions). For every
function h meromorphic in C, there exist two entire functions f and g,
without common zeros in C, such that h = f/g.

Proof. Let h # 0. Positive divisors on C with disjoint supports are de-
fined by 0 (z) := max{0, 0,(h)} and 97 (2) := max{0, —o,(h)}; they satisfy
(h) =0t —27. Let g € O(C) be chosen with (9) = 9. Then g # 0. For
f := gh, it follows that (f) = (g9) + (h) =0+ > 0, whence f is holomorphic
in C. By construction, Z(f) N Z(g) is empty. O

In particular, we have proved the following;:

The field M(C) of functions meromorphic in C is the quotient field of
the integral domain O(C) of functions holomorphic in C.
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The theorem contains more than this last statement: for an arbitrary quotient
f/g, the numerator and denominator may have infinitely many common zeros;
without the existence theorem, it is not clear that these zeros all cancel out.

We conclude by noting a

Root criterion. The following statements about an entire function f # 0
and a natural number n > 1 are equivalent:

i) There exists a holomorphic nth root of f; that is, there ezists a
g € O(C) with g" = f.
ii) Every natural number o,(f), z € C, is divisible by n.

Proof. Only the implication ii) = i) must be proved. By hypothesis, there
exists a positive divisor ? on C with nd = (f). Let § € O(C) be chosen such
that (g) = 9. Then u := f/g™ is holomorphic and nonvanishing in C; hence
there exists u € O(C) with & = u" (existence theorem for holomorphic
roots; cf. 1.9.3.3). The function g := ug is an nth root of f. a

The existence theorem allows us to prescribe the location and order of
the poles of meromorphic functions. We will see in Chapter 6 that, in doing
so, we can also arbitrarily prescribe all principal parts. But the following
is immediate from the product theorem 4, by logarithmic differentiation of
Weierstrass products.

(1) Let O, dy, da,... be a sequence of pairwise distinct points in C that
have no accumulation point in C. Then the function

v—2

1 1 1 z z
N AT A=)

v

is meromorphic in C and holomorphic in C\{0, d1, da, .. .}; it has principal
part (z—d,)" atd,, v>1.

6. On the history of the product theorem. Weierstrass developed his
theory in 1876 ([W;], pp. 77—124). His main objective was to establish the
“general expression” for all functions meromorphic in C except at finitely
many points. “[Dazu] hatte ich jedoch ... zuvor eine in der Theorie der
transcendenten ganzen Functionen bestehende ... Liicke auszufiillen, was
mir erst nach manchen vergeblichen Versuchen vor nicht langer Zeit in be-
friedigender Weise gelungen ist.” (To do this, however, I ... first needed
to fill in a gap ... in the theory of transcendental entire functions, which,
after a number of futile attempts, I succeeded only recently in doing in a
satisfactory way.) ([W1], p. 85) The gap he mentioned was closed by the
product theorem ([W;], pp. 92-97). What was new and, for his contem-
poraries, sensational in Weierstrass’s construction was the application of
convergence-producing factors that have no influence on the behavior of
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the zeros. Incidentally, according to Weierstrass ([W;], p. 91), the idea of
forcing convergence by adjoining exponential factors came to him by way
of the product formula

ma=< {9 ()} {0
v>1

v>1

which he attributes to Gauss rather than Euler; cf. 2.2.2. In 1898 H.
Poincaré, in his obituary for Weierstrass, assessed the discovery of the fac-
tors E,(z) as follows ([P2], p. 8): “La principale contribution de Weierstraf
aux progrés de la théorie des fonctions est la découverte des facteurs pri-
maires.” (Weierstra’s major contribution to the development of function
theory is the discovery of primary factors.) Special cases of the product
theorem had already appeared in the literature before 1876, for example in
the work of E. Betti (cf. 2.1).

The awareness that there exist entire functions with “arbitrarily” pre-
scribed zeros revolutionized the thinking of function theorists. Suddenly
one could “construct” holomorphic functions that were not even hinted at
in the classical arsenal. Of course, this freedom does not contradict the sol-
idarity of value behavior of holomorphic functions required by the identity
theorem: the “analytic cement” turns out to be pliable enough to globally
bind locally prescribed data in an analytic way.

From his product theorem, Weierstrass immediately deduced the theo-
rem on quotient representation of meromorphic functions ([Wy], p. 102).
He attracted attention by this alone. No less a figure than H. Poincaré
seized this observation of the “célébre géometre de Berlin” and carried it
over to meromorphic functions of two variables [P;]. With his theorem on
the representability of every function meromorphic in C? as the quotient
f(w, z)/g(w, z) of two entire functions in C? (locally relatively prime ev-
erywhere), Poincaré initiated a theory that, through the work of P. Cousin,
H. Cartan, K. Oka, J-P. Serre, and H. Grauert, is still alive today; see the
glimpses in 4.2.5, 5.2.6, and 6.2.5.

§2. Discussion of the Product Theorem

When we apply the product lemma 1.4, we will choose the numbers k, as
small as possible, in accordance with the idea that the smaller k, is, the
simpler the factor Ey,(z/d,). Situations in which all the k, can be chosen
to be equal are especially nice; they lead to the concept of the canonical
product (Subsection 1). In Subsection 2 we show that not only the Euler
products of Chapter 1.4 but also the sine product and the product H(z), so
important for the theory of the gamma function, are canonical Weierstrass
products.
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In Subsections 3 and 4 we discuss the o-product and the p-function. We
prove that o(z;w;,ws) and p(z;w;,ws) are holomorphic and meromorphic,
respectively, in all three variables. Since the time of Eisenstein and Weier-
strass, these functions have been central to the theory of elliptic functions.
Subsection 5 contains an amusing observation of Hurwitz.

1. Canonical products. Let ? again denote a positive divisor on C and
dy, da, ... a corresponding sequence. We first make a few observations.

(1) If f(2z) = [1(1 — z/d, )eP**) converges normally in C and every func-
tion p, is a polynomial of degree < k, then Y |1/d,|**! converges.

Proof. Differentiating f'(z)/f(z) = Y. [1/(z = d,) + p, ()] k times yields
the series >_(—1)*k!/(z — d,)**!, which converges absolutely at 0 € C. O

We now ask when, for a given 0, there exist Weierstrass products of the
particularly simple form 2°® [] ., Ex(z/d,) with fixed k € N.

(2) 22 [1.>1 Ex(2/d.) is a Weierstrass product for the divisor d if and
only if S°|1/d, [ < o0.

Proof. If the product in question is a Weierstrass product for 9, then
S 1/d,|Ft! < oo by (1), since Ex(z/d) = (1 — z/d)eP*) with a poly-
nomial of degree k. Conversely, if 3 |1/d,|**! < oo, then the product is a
Weierstrass product for 9 by Lemma 1.4. m|

If there exist Weierstrass products for ? as in (2), we can choose k to
be minimal; in this case 2> [], -, Ex(z/d,) is called the canonical Weier-
strass product for 0. -

The following is clear by (2).

Proposition. 2> [] ., Ex(z/d,) is the canonical product for d if and
only if -
Z [1/d,|F = c0 and Z [1/d, ¥+ < o0.

Examples of canonical products are given in the next two subsections.
Such products depend only on the divisor 0; the incidental choice of the
sequence d, — in contrast to the general situation — plays no role. If the
sequence d,, grows too slowly, there is no canonical product: there is none,
for example, if log(1 + v) is a subsequence of the sequence d,. (Prove this.)
It is thus easy to see that the function 1 — exp{exp z) has no canonical
product. — We also note, without proof:

(3) If m > 0 is such that |d,—d,| > m forallp # v, then 3 [1/d,|* < 00
for a > 2. In this case, there ezists a canonical product for 0 with k < 2.
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Historical note. E. Betti, in 1859-60, proved (3) in order to write elliptic
functions as quotients of theta series; cf. the article by P. Ullrich ([U], p.
166).

2. Three classical canonical products. 1) The product

H1+qz HEO —q"z), where 0<]q| <1,
v>1 v>1
discussed in 1.4.3, is the canonical product for the divisor on C given by

o(—-gV):=1forv=1,2,...; 0:=0 otherwise.

(Proposition 1 holds with k :=0.)
2) The function

H(z) = ¢ 7 /T(z) = 2 [[( 1+ _z/":zHEl(—g),

v>1 v>1

considered in 2.1.1, is the canonical product for the divisor on C defined
by
o0(-v):=1forveN, 0(z):=0 otherwise.

(Proposition 1 holds with k := 1 but not with &k :=0.)
3) The sine product

2
T0-2) = =[L0 - Dera+ D
v>1 v v>1
z z
= Zul;[lEl(;)El(_;)

is the canonical product for the divisor on C defined by
dv):=1forveZ 9(z)=0otherwise.

(Proposition 1 holds with k := 1 but not with k := 0; a corresponding
sequence d, is 1, =1, 2, —2,....)

In lectures and textbooks, these examples are sometimes given as exam-
ples of applications of the Weierstrass product theorem. This is misleading.
These products were known long before Weierstrass. Of course, his theorem
shows that the same construction principle underlies them all.

Ezercises. Determine the canonical product for @ > 0 in C corresponding to each
of the following sequences:

a)d, = (-1)"¥v,v>1;
b) do, := ui”, where p € N with 4 — 3 < v < 4p for v > 1.
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3. The o-function. If w,, wy € C are linearly independent over R, the set
Q= Zw;y + Zwy = {w = mw;y +nwy : m,n € Z}
is called a lattice in C. Q1 is locally finite in C and

1 ifzeq,

6:C— N, zt—»&(z):z{ 0 if2¢Q

is a positive divisor on C with support 2.

Proposition. The entire function

1) o) =0z =z J] (1-2)es+# & =2 I B (2)
0#weN 0#wen

is the canonical Weierstrass product for the lattice divisor 6.

The proposition is contained in Betti’s result 1(3). We give a direct proof,
which even yields the normal convergence of the g-product (1) in all three
variables z, wy, and we. The set U := {(u,v) € C? : u/v € H} is a domain
in C2. For every point (w;,ws) € U, the set Q(wy,ws) := Zwy + Zus is a
lattice in C; conversely, every lattice 2 C C has a basis in U. The following
lemma is now crucial.

Convergence lemma. Let K C U be compact and let o > 2. Then there
erists a bound M > 0 such that

Z w|™* < M for all (wy,ws) € K; Z lw| =2 = 0.
0F#weQ(wr,w2) 0#weN(w1,w2)

Proof. The function

q: (Rz\{(070)}) xU - R, (I)y7wl’w2> — Imwl + yw?l/ \% z2 + y2

is homogeneous in z, y; hence ¢(R?\{(0,0)} x U) = q(S' x U). Since q
is continuous, it has a maximum 7T and a minimum ¢ on the compact
set S x K. The R-linear independence of w;, wo implies that g is always
positive; hence ¢ > 0. Since

tvm? + n? < |mwy + nws| < TV/m?2 + n?

for all (w1,ws) € K and all (m,n) € Z2, the convergence of Y |w|™ is
equivalent to the convergence of

o0 oo
1 1
E (m?+n?)~P =4 g — +4 E —5——5, Where §:= La.
«a B’ 2
0#(m,n)€Z2? m=1 m m,n=1 (m +n )
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Since m? + n? > 2mn > mn > 0 for all m, n > 1, it follows for & > 2 that

—_— — e — — . 1
S wrtap< > e (E3) (D) <=
m,n=1 m,n=1 n=1 m=1
Divergence follows for 8 := 1, since the inequality m? + n2 < 2n? for
1 <m < n implies that
o0 oo n o0
1 1 1 1
Zm2+n2 sz2+n 2322 =32 == O
m,n=1 n=1m=1 n=1m=1 n=1

Since |E(z/w) — 1] < |z/w]? for |z| < |w]|, the lemma immediately yields
not only the proposition but also:

(2) InCx U, the o-product o(z;w1,ws) := o(z, (21, 22)) converges nor-
mally to a function holomorphic in z, wy, and ws.

Historical remark. The trick of trivializing the proof by means of the in-
equality m? + n?2 > mn is due to Weierstrass; he “dictated it to Herr F.
Mertens in 1863” ([W2] Foreword and p. 117). The arithmetic-geometric

inequality nf +---+ nd >d(ng- ... .nd)ﬁ/d even gives
1
(n1,...,nq)#0 (nf + ng + 4 ng)a

< 0

ifd € N\{0}, « > 0, 8 > 0, o8 > d. Such series (with 8 = 2) were
considered by Eisenstein in 1847 ( Werke, pp. 361-363).

A wvariant of the proof was given in 1958 by H. Kneser ([Kn], pp. 201-202). He
replaces g by the function |zw; +ywa|/ max(|z|, |y|). As above, there exist numbers
S > s > 0 such that s < |mw; + nwz|/ max(|m|,|n|) < S. The convergence of
ST |w|™® is now equivalent to that of

> [max(iml, |n])]™* =4 Z — +4 Z [max(m, n)]

0%(m,n)€Z? m,n=1

But the series on the right-hand side can be written as follows (!):

i <nn"°‘ + 5": m_a> = inl—a + i -1k~ i(?nl_a -n"%);
= m=n+1 n=1 k=1 n=1

this converges for @ > 2 and diverges for o = 2.

.
!For vy > 0, noting that -2 < (;’_1—1) — 1, we have

oo

;nwﬁgmﬁﬂm'n—v)‘l
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4. The g-function. Since the product o(z;w;,w2) € O(C x U) converges
normally by 3(2), it can be differentiated logarithmically with respect to z
(Theorem 1.2.3):

o'(z;w1,ws)
Zyw,Wwy) 1= ————1—=2
C( s Wi, 2) O'(Z;(.Ul,WQ)

1
W :%+ 3 (ziw+%+§>e/\4(mv).
)

0F#weN(wy, w2

This series (of meromorphic functions), which converges normally in Cx U,
is called the Eisenstein-Weierstrass (-function. Ordinary differentiation of
(1) gives

p(z; w1, we) == —('(2; wy,wa)

@ 1 11
=5+ > )<(z_w)2 wQ)eM(CxU).

0AweEN (w1, w2

This series also converges normally in C x U. Both the (-function and the
go-function are holomorphic in C\Q(w;,ws) for fixed wy, wo and have poles
of first and second order, respectively, at each lattice point. The p-function
is doubly periodic (= elliptic), with Q(w1,ws) as period lattice. In the theory
of elliptic functions, it is fundamental that the p-function is meromorphic
in all three variables z, w1, and wy; this is often not sufficiently emphasized
in the literature.

In the case wy := oo, the functions o, {, and g become trigonometric
functions: Writing w for wy € C*, we have

22 [ 2 \2 2 2
o(z;w,00) := Yew(2) sinﬂi, (7w, 00) = T ( ) + T cotnl
b w w w

z
3 \w
1 /m\2 z
o) =5 (5) +(5) (n (=)™
o(z;00,00) 1=z, ((z;00,00) := l, p(2;00,00) 1= —.
z z

Here we continue to use the notation ¢ = ¢'/o and p = —¢’. With some
effort, it can be shown that lim,, .o 0(2z;w1,w2) = o(2;w;,00), where
the convergence is compact; the same holds for ¢ and p. Thus the theory
of elliptic functions contains the theory of trigonometric functions as a
degenerate case.

5%. An observation of Hurwitz. Every positive divisor ® on C is the divisor
of an entire function Y a,z” whose coefficients all lie in the field Q(i) of rational
complez numbers. In particular, if 9(Z) = 0(2) for all z € C, then all the numbers
a, can be chosen to lie in Q.

The following lemma is necessary for the proof.
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Lemma. Let f be holomorphic at 0 € C. Then there exists an entire function
g such that all the coefficients a, of the Taylor series of fexpg about 0 belong
to Q7). In particular, if all the coefficients of the Taylor series of f about 0 are
real, then g can be chosen in such a way that all the a, lie in Q.

Proof. Let f # 0. Then f(z) = z°¢™), s € N, where h(z) = by + b1 + --- +
bnz™ + - - - is holomorphic in a neighborhood of 0. (Write f(z) = zsf(z), where f
is holomorphic and nonvanishing in a neighborhood of 0; then fca,n be put in the
form e™.) Since the field Q(:) is dense in C, there exist numbers g1, g, . .. € Q(%)
such that g(z) := —bo +>_,.,(g — b.)z" is an entire function. We have

z 8 z 22 8 1 v
fz)e?®) = penatast — 1+ZJ(Q1Z+<}222+-")

v>1

Expanding the right-hand side in powers of z gives Taylor coeflicients a, that in-
deed lie in Q(2), since each a, is a polynomial with rational coeflicients in finitely
many of the g1, ¢z,... € Q(¢). If the power series of f about 0 has only real co-
efficients, then all the b, with v > 1 are real. In this case, one can always choose
q, € Q and hence a, € Q. 0

At this point, Hurwitz’s observation is quickly proved. We choose f € O(C)
with (f) = 0. Then 0 is also the divisor of every function g := fexpg, g € O(C).
By the lemma, g can be chosen in such a way that all the Taylor coefficients a.
of g belong to Q(2).

If it always holds that 3(Z) = ?(z), then 0 is also the divisor of the entire func-
tion ¢ whose Taylor coefficients are the numbers @.. Then 20 is the divisor of ¢g;
by the root criterion, there exists § € O(C) with §* = q§. Moreover, (§) = 0. Since
all the Taylor coeflicients of ¢q are rational real numbers and the first nonzero
coefficient is positive, all the Taylor coefficients of § are rational real numbers. O

Hurwitz proved the preceding assertion in 1889. As an amusing corollary, he
also noted the following;:

Every (real or complex) number a (thus, for instance, e or ) is the root of an
equation 0 = ro + 712 + 7222 + - whose right-hand side is an entire function
with rational coefficients (real or complex, respectively), which has no roots other
than a.
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Holomorphic Functions
with Prescribed Zeros

We extend the results obtained in Chapter 3 for entire functions to func-
tions holomorphic in arbitrary regions D in C. Our goal is to prove that
every divisor on D is a principal divisor (existence theorem 1.5). For this
purpose we first construct, in Section 1, Weierstrass products for every pos-
itive divisor. As before, they are built up from Weierstrass factors E,, and
converge normally in regions that contain C\0D (product theorem 1.3).
In Section 2 we develop, among other things, the theory of the greatest
common divisor for integral domains O(G).

Blaschke products are a special class of Weierstrass products in E; they
are studied in Section 3 and serve in the construction of bounded functions
in O(E) for prescribed positive divisors. In an appendix to Section 3 we
prove Jensen’s formula.

§1. The Product Theorem for Arbitrary Regions

A convergence lemma is proved in Subsection 1. In Subsection 2, Weier-
strass products are constructed for some special divisors; the factors E,, (z/d)
are now replaced by factors of the form

(d——c) (z—d> [d—c 1(d—c>2 1 (d—c)"]
E, = -exp + = + 4= )
z—c z—c z—c 2\z-c n\z-c

¢ # d, which also vanish to first order at the point d. The general product
theorem is derived in Subsection 3.
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1. Convergence lemma. Let ? be a positive divisor on D with support 7.
From the points of the countable set T, we somehow construct a sequence
(dy) in which every point d € T occurs exactly 9(d) times. (In contrast to
our earlier discussion — in 3.1.2 — the origin, if it lies in 7', is not excluded
from the sequence.) The following is a substitute for Lemma 3.1.4.

Lemma. Let (¢,),>1 be a sequence in C\D and (k,),>1 a sequence of
natural numbers such that

1) Z [r(dy, — ¢,)|"*! < oo forallrT > 0.

v=1

Then the product
d, —c, z—d, d, —c, 1/d,—c, 2
HEk”(z—c,,)_H(z—cu)'exp{(z—c,,>+§<z—cu)
v>1 v2>1
+ - .+i dy — ¢y b
k, \ z—c,

converges normally in C\{c1, ca,...} D D; it is a Weierstrass product in D
for the divisor 9.

Proof. We set S := {c1,c¢qa,...}. For f,(2) := Ey, [(dy — ¢,)/(z — ¢,)], we

have

(%) f,€0@\S), f.(2)#0ifz#d,, and og (f,)=1.

Let K be a compact set in the region C\S. For all z € K, |z —¢,| >
d(K,c,) > d(K,S) > 0; hence |(d, — ¢,)/(z — ¢.)|k < r|dy — ¢,|, where
r:= d(K,S)!. Since lim|d, — c,| = 0 by (1), there exists n(K) € N such
that r|d, — ¢,| < 1 for v > n(K). Since |E,(w) — 1] < |w|**! for w € E by
3.1.3(3), it follows that

Yo -tk < Y Ird - )t < .

v>n(K) v>n(K)
This proves the normal convergence of [] f, in C\S. By (x), this product

is a Weierstrass product for 9 in D. m]

Corollary to the lemma. If Y |d, — ¢, |*t! < 0o for some k € N, the
product [],~; Ex[(dy — ¢,)/(z — ¢,)] is a Weierstrass product for d in D.

Proof. (1) holds with k, := k. 0
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2. The product theorem for special divisors. In general, the region
of convergence of the product constructed in Lemma 1 is larger than D.
As the zero set of the product, T is closed in this larger region. We make
a general observation, leaving the proof to the reader:

(1) If T is a discrete set in C, then the set T' := T\T of all the accu-
mulation points' of T in C is closed in C. The region C\T" is the largest
subset of C in which T is closed.

By (1), every positive divisor ® on D with support T can be viewed as
a positive divisor on C\T' D D with the same support (set 9(z) := 0 for
z € (C\T")\D). Clearly T' D dD. The next theorem now follows quickly
from Lemma 1.

Product theorem. Let 0 be a positive divisor on D with corresponding
sequence (d,),>1. Let a sequence (¢,)u>1 in T' be given such that lim|d, —
¢,| = 0. Then the product []Ev-1[(d, — ¢.)/(z — ¢v)] is a Weierstrass
product for o in C\T'.

Proof. Since lim |d, — ¢,| = 0, it follows that Y |r(d, —¢,)]” < oo for every
r > 0. Hence 1(1) is satisfied with &, := v—1. Now we have {¢1,c¢o,...} C T’
(in fact, the two sets are equal!). Thus the claim follows from Lemma 1.0

Remark. In C*, every divisor 0 with limd, = 0 has the “satellite se-
quence” ¢, := 0. For such divisors on C*, the product theorem holds
with []E,_1(d,/z). If we set w := 27!, this is the Weierstrass product
[T1E.,-1(w/d;") for the divisor ® on C with the sequence (d;'),>1. The
product theorem 3.1.4 is thus contained in the product theorem above. O

“Satellite sequences” (c,)u>1 with ¢, € T” or just ¢, € C\D do not exist
in general; for example, they do not exist for divisors on D := H with
support T := {4, 24, 37, ...}. However, the following does hold.

(2) If T' is nonempty and every set T(e) :={z € T : d(T',2) > €}, e > 0,
is finite, then there exists a sequence (¢, )y>1 in T’ with lim |d, — ¢,| = 0.

Proof. Since T’ is closed in C, for every d, there exists ¢, € T" such that
|d, — e} =d(T’,d,). If d, — ¢, did not converge to zero, there would exist
€0 > 0 such that |d, —c,| > o for infinitely many v. But then the set T'(gg)
would be infinite. O

If T is bounded and infinite, then T" is nonempty and every set T'(¢), ¢ >
0, is finite. (Otherwise some set T'(gg), €9 > 0, would have an accumulation
point d* € T', which cannot occur since |d* — w| > d(T",w) > ¢q for all
w € T(gp).) Hence:

Following G. Cantor, we call T’ the derived set of T in C.
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(3) For every positive divisor 0 on D with bounded infinite support, there
exists a sequence (¢y)y>1 in T with lim|d, — ¢, | = 0.

In particular, it is thus clear that on bounded regions every divisor is a
principal divisor (special case of the existence theorem 5).

3. The general product theorem. Let D be an arbitrary region in C.
Then, for every positive divisor 0 on D with support T, there exist Weier-
strass products in C\T".

The idea of the proof is to write the divisor 0 as a sum of two divisors
for which there exist Weierstrass products in C\T". To do this, we need
a lemma from set-theoretic topology, which will also be used in 6.2.2 in
solving the analogous problem for principal part distributions.

Lemma. Let A be a discrete set in C such that A’ = A\A # . Let
Ay ={z€A:|z|ld(A,2) > 1}, As:={z€ A:|z|d(A,2) < 1}.

Then A; is closed in C. Every set As(e) :={z € Az : d(A’',2) > €}, e >0,
is finite.

Proof. 1) If A; had an accumulation point a € C, it would follow that
a € A’ and there would exist a sequence a,, € A; with lima,, = a. Since
d(A',a,) < |a — apl, the sequence |a,|d(A’,a,) would converge to zero,
contradicting the definition of A;. Thus 4; = 4,.

2) |z] < e~ for every z € Aa(e). If there were an € with Az(gg) infinite,
then As(g9) would have an accumulation point a € A’; but this is impossi-
ble since |a — z| > d(A’, z) > ¢¢ for all z € Aa(ep). O

Proof of the general product theorem. We take 9 to be a positive divisor on
C\T'. We may assume that T # (. Let the sets 71, T2 be defined as in
the lemma (with A := T). Then T{ = 0 and T = T". Since T} and T; are
locally finite in C and C\T”, respectively, setting

0;(2) :=0(2) for z € T, 0;(2) := 0 otherwise, j=1,2,

gives positive divisors 9; on C with support 77 and 93 on C\T' with sup-
port T5. Moreover, 0 = 01 + 02 in C\7” since T} N Ty = (. By the product
theorem 3.1.4 there exists a Weierstrass product for 9; in C. Since all the
sets Ty (e) are finite, 2(2) and the product theorem 2 imply that there exists
a Weierstrass product for 93 in C\T". Hence, by 3.1.2(1), there also exists
a Weierstrass product for @ = 0; + 05 in C\7”. a

4. Second proof of the general product theorem. Using a biholo-
morphic map v, we will first transport the divisor ? to a divisor 9 o v~ ! on
another region in such a way that a Weierstrass product f exists there for
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Do v:l; we will then transport this product back to a Weierstrass prod-
uct f ov for 0. We assume that T is infinite, take 0 to be a divisor on
C\T’, fix a € C\T, and map C\{a} biholomorphically onto C* by means
of v(z) := (z —a)~!. Then 0 ¢ v(T) and v(T)’ = v(T"). A positive divisor
9 in C\v(T)" with support v(T) is defined by

d(w) ==0(w " (w)), weC\(T"), 3(0):=0.

If (d,),>1 is a sequence for 9, then (c’i\,,),,zl, with Ei:, :=v(d,), is a sequence
for d (transporting the divisor by v). Since v(T) is infinite and bounded
(because a ¢ T), 2(3) and the product theorem 2 imply that

17, where f,(w) := Eu_l[(gy —c¢)/(w—¢)] and ¢, € v(T"),

is a Weierstrass product for 3 in C\v(T”). We now set f,(z) := f, (v(z)) for
z € C\(T" U{a}) and set f,(a) := 1. Then f, is holomorphic in C\T” since
lim, ., fu(2) = limy, 00 ﬁ,(w) = E,_1(0) = 1. The normal convergence of
I1 f, in C\v(T") implies the normal convergence of 1/, in C\(T" U {a}).
Since a is isolated in C\T”, the product converges normally throughout
C\T" (inward extension of convergence; cf. 1.8.5.4). Since f, vanishes only
at d, = v_l((i,), and vanishes there to first order, [] f, is a Weierstrass
product for d in C\T".

5. Consequences. The product theorem 3 has important consequences
for arbitrary regions — as we saw in 3.1.5 for C; the proofs are similar to
those of 3.1.5.

Existence theorem. On every region D C C, every divisor is a principal
divisor.

Factorization theorem. Every function f # 0 that is holomorphic in an
arbitrary domain G can be written in the form

f:quVa

v>1

where u is a unit in the ring O(G) and [],5, f, is a (possibly empty)
Weierstrass product for the divisor (f) in G.

In general, the unit u is no longer an exponential function (although it
is for (homologically) simply connected domains; cf. 1.9.3.2).

Proposition. (Quotient representation of meromorphic functions). For ev-
ery function h merom