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Preface to the English 
Edition 

Und so ist jeder Ubersetzer anzusehen, dass er sich als Vermitt­
ler dieses allgemein-geistigen Handels bemiiht und den Wech­
seltausch zu befordern sich zum Geschiift macht. Denn was 
man auch von der Unzuliinglichkeit des Ubersetzers sagen mag, 
so ist und bleibt es doch eines der wichtigsten und wiirdigsten 
Geschiifte in dem allgemeinem Weltverkehr. (And that is how 
we should see the translator, as one who strives to be a medi­
ator in this universal, intellectual trade and makes it his busi­
ness to promote exchange. For whatever one may say about 
the shortcomings of translations, they are and will remain most 
important and worthy undertakings in world communications.) 
J. W. von GOETHE, vol. VI of Kunst und Alterthum, 1828. 

This book is a translation of the second edition of Funktionentheorie I, 
Grundwissen Mathematik 5, Springer-Verlag 1989. Professor R. B. 
BURCKEL did much more than just produce a translation; he discussed 
the text carefully with me and made several valuable suggestions for im­
provement. It is my great pleasure to express to him my sincere thanks. 

Mrs. Ch. ABIKOFF prepared this 'lEX-version with great patience; Prof. 
W. ABIKOFF was helpful with comments for improvements. Last but not 
least I want to thank the staff of Springer-Verlag, New York. The late 
W. KAUFMANN-BuHLER started the project in 1984; U. SCHMICKLER­

HIRZEBRUCH brought it to a conclusion. 

Lengerich (Westphalia), June 26, 1989 

Reinhold Remmert 
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Preface to the Second 
German Edition 

Not only have typographical and other errors been corrected and improve­
ments carried out, but some new supplemental material has been inserted. 
Thus, e.g., HURWITZ'S theorem is now derived as early at 8.5.5 by means 
of the minimum principle and Weierstrass's convergence theorem. Newly 
added are the long-neglected proof (without use of integrals) of Laurent's 
theorem by SCHEEFFER, via reduction to the Cauchy-Taylor theorem, and 
DIXON's elegant proof of the homology version of Cauchy's theorem. In re­
sponse to an oft-expressed wish, each individual section has been enriched 
with practice exercises. 

I have many readers to thank for critical remarks and valuable sug­
gestions. I would like to mention specifically the following colleagues: 
M. BARNER (Freiburg), R. P. BOAS (Evanston, Illinois), R. B. BURCKEL 
(Kansas State University), K. DIEDERICH (Wuppertal), D. GAIER (Giessen), 
ST. HILDEBRANDT (Bonn), and W. PURKERT (Leipzig). 

In the preparation of the 2nd edition, I was given outstanding help by 
Mr. K. SCHLOTER and special thanks are due him. I thank Mr. W. 
HOMANN for his assistance in the selection of exercises. The publisher has 
been magnanimous in accommodating all my wishes for changes. 

Lengerich (Westphalia), April 10, 1989 

Reinhold Remmert 
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Preface to the First 
German Edition 

Wir mochten gem dem Kritikus gefallen: Nur nicht dem Kri­
tikus vor allen. (We would gladly please the critic: Only not 
the critic above all.) G. E. LESSING. 

The authors and editors of the textbook series "Grundwissen Mathematik" 1 

have set themselves the goal of presenting mathematical theories in con­
nection with their historical development. For function theory with its 
abundance of classical theorems such a program is especially attractive. 
This may, despite the voluminous literature on function theory, justify yet 
another textbook on it. For it is still true, as was written in 1900 in the 
prospectus for vol. 112 of the well-known series Ostwald's Klassiker Der 
Exakten Wissenschaften, where the German translation of Cauchy's classic 
"Memo ire sur les integrales definies prises entre des limites imaginaires" 
appears: "Although modern methods are most effective in communicating 
the content of science, prominent and far-sighted people have repeatedly 
focused attention on a deficiency which all too often affiicts the scientific ed­
ucation of our younger generation. It is this, the lack of a historical sense 
and of any knowledge of the great labors on which the edifice of science 
rests." 

The present book contains many historical explanations and original 
quotations from the classics. These may entice the reader to at least page 
through some of the original works. "Notes about personalities" are sprin­
kled in "in order to lend some human and personal dimension to the sci­
ence" (in the words of F. KLEIN on p. 274 of his Vorlesungen uber die 
Entwicklung der Mathematik im 19. Jahrhundert - see [Hs]). But the 
book is not a history of function theory; the historical remarks almost 
always reflect the contemporary viewpoint. 

Mathematics remains the primary concern. What is treated is the ma­
terial of a 4 hour/week, one-semester course of lectures, centering around 

IThe original German version of this book was volume 5 in that series (translator's 
note). 

Vll 



viii PREFACE TO THE FIRST GERMAN EDITION 

Cauchy's integral theorem. Besides the usual themes which no text on 
function theory can omit, the reader will find here 

- RITT'S theorem on asymptotic power series expansions, which pro­
vides a function-theoretic interpretation of the famous theorem of E. 
BOREL to the effect that any sequence of complex numbers is the 
sequence of derivatives at 0 of some infinitely differentiable function 
on the line. 

- EISENSTEIN's striking approach to the circular functions via series of 
partial fractions. 

- MORDELL's residue-theoretic calculations of certain Gauss sums. 

In addition cognoscenti may here or there discover something new or 
long forgotten. 

To many readers the present exposition may seem too detailed, to others 
perhaps too compressed. J. KEPLER agonized over this very point, writing 
in his Astronomia Nova in the year 1609: "Durissima est hodie conditio 
scribendi libros Mathematicos. Nisi enim servaveris genuinam subtilitatem 
propositionum, instructionum, demonstrationum, conclusionum; liber non 
erit Mathematicus: sin autem servaveris; lectio efficitur morosissima. (It 
is very difficult to write mathematics books nowadays. If one doesn't take 
pains with the fine points of theorems, explanations, proofs and corollaries, 
then it won't be a mathematics book; but if one does these things, then 
the reading of it will be extremely boring.)" And in another place it says: 
"Et habet ipsa etiam prolixitas phrasium suam obscuritatem, non minorem 
quam concisa brevitas (And detailed exposition can obfuscate no less than 
the overly terse)." 

K. PETERS (Boston) encouraged me to write this book. An academic 
stipend from the Volkswagen Foundation during the Winter semesters 
1980/81 and 1982/83 substantially furthered the project; for this support 
I'd like to offer special thanks. My thanks are also owed the Mathematical 
Research Institute at Oberwolfach for oft-extended hospitality. It isn't pos­
sible to mention here by name all those who gave me valuable advice during 
the writing of the book. But I would like to name Messrs. M. KOECHER 
and K. LAMOTKE, who checked the text critically and suggested improve­
ments. From Mr. H. GERICKE I learned quite a bit of history. Still I must 
ask the reader's forebearance and enlightenment if my historical notes need 
any revision. 

My colleagues, particularly Messrs. P. ULLRICH and M. STEINSIEK, have 
helped with indefatigable literature searches and have eliminated many de­
ficiencies from the manuscript. Mr. ULLRICH prepared the symbol, name, 
and subject indexes; Mrs. E. KLEINHANS made a careful critical pass 
through the final version of the manuscript. I thank the publisher for be­
ing so obliging. 

Lengerich (Westphalia), June 22, 1983 Reinhold Remmert 



PREFACE TO THE FIRST GERMAN EDITION IX 

Notes for the Reader. Reading really ought to start with Chapter 1. Chap­
ter 0 is just a short compendium of important concepts and theorems known 
to the reader by and large from calculus; only such things as are important 
for function theory get mentioned here. 

A citation 3.4.2, e.g., means subsection 2 in section 4 of Chapter 3. 
Within a given chapter the chapter number is dispensed with and within 
a given section the section number is dispensed with, too. Material set in 
reduced type will not be used later. The subsections and sections prefaced 
with * can be skipped on the first reading. Historical material is as a rule 
organized into a special subsection in the same section were the relevant 
mathematics was presented. 
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Historical Introduction 

Wohl dem, der seiner Viiter gem gedenkt (Blessings 
on him who gladly remembers his forefathers) 
- J. W. v. GOETHE 

1. ... "Zuvorderst wiirde ich jemand, der eine neue Function in die Analyse 
einfiihren will, urn eine Erklarung bitten, ob er sie schlechterdings bloss auf 
reelle Grossen (reelle Werthe des Arguments der Function) angewandt wis­
sen will, und die imaginaren Wert he des Arguments gleichsam nur als ein 
Uberbein ansieht - oder ob er meinem Grundsatz beitrete, dass man in dem 
Reiche der Grossen die imaginaren a + byCI = a + bi als gleiche Rechte 
mit den reellen geniessend ansehen miisse. Es ist hier nicht von prakti­
schem Nutzen die Rede, sondern die Analyse ist mir eine selbstandige Wis­
senschaft, die durch Zuriicksetzung jener fingirten Grossen ausserordentlich 
an Schonheit und Rundung verlieren und alle Augenblick Wahrheiten, die 
sonst allgemein gelten, hochst liiBtige Beschrankungen beizufiigen genothigt 
sein wiirde ... (At the very beginning I would ask anyone who wants to 
introduce a new function into analysis to clarify whether he intends to 
confine it to real magnitudes (real values of its argument) and regard the 
imaginary values as just vestigial - or whether he subscribes to my fun­
damental proposition that in the realm of magnitudes the imaginary ones 
a + byCI = a + bi have to be regarded as enjoying equal rights with the 
real ones. We are not talking about practical utility here; rather analy­
sis is, to my mind, a self-sufficient science. It would lose immeasurably 
in beauty and symmetry from the rejection of any fictive magnitudes. At 
each stage truths, which otherwise are quite generally valid, would have to 
be encumbered with all sorts of qualifications ... )." 

C.F. GAUSS (1777-1855) wrote these memorable lines on December 18, 
1811 to BESSEL; they mark the birth of function theory. This letter of 
GAUSS' wasn't published until 1880 (Werke 8, 90-92); it is probable that 
GAUSS developed this point of view long before composing this letter. As 

1 



2 HISTORICAL INTRODUCTION 

many details of his writing attest, GAUSS knew about the Cauchy integral 
theorem by 1811. However, GAUSS did not participate in the actual con­
struction of function theory; in any case, he was familiar with the principles 
of the theory. Thus, e.g., he writes elsewhere (Werke 10, 1, p. 405; no year 
is indicated, but sometime after 1831): 

Reproduced with the kind permission of the Niedersiichsische Staats- und Universitiitsbiblio­

thek, Gottingen. 

"Complete knowledge of the nature of an analytic function must also in­
clude insight into its behavior for imaginary values of the arguments. Often 
the latter is indispensable even for a proper appreciation of the behavior of 
the function for real aryuments. It is therefore essential that the original 
determination of the function concept be broadened to a domain of mag­
nitudes which includes both the real and the imaginary quantities, on an 
equal footing, under the single designation complex numbers. " 

2. The first stirrings of function theory are to be found in the 18th cen­
tury with L. EULER (1707-1783). He had "eine fur die meisten seiner 
Zeitgenossen unbegreifliche Vorliebe fUr die komplexen GraBen, mit deren 
Hilfe es ihm gelungen war, den Zusammenhang zwischen den Kreisfunk­
tionen und der Exponentialfunktion herzusteIlen. ... In der Theorie der 
elliptischen Integrale entdeckte er das Additionstheorem, machte er auf die 
Analogie dieser Integrale mit den Logarithmen und den zyklometrischen 
Funktionen aufmerksam. So hatte er aIle Faden in der Hand, daraus spater 
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B. RIEMANN 1826-1866 K. WEIERSTRASS 1815-1897 

Line drawings by Martina Koecher 
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das wunder bare Gewebe der Funktionentheorie gewirkt wurde ( ... what 
for most of his contemporaries was an incomprehensible preference for the 
complex numbers, with the help of which he had succeeded in establishing 
a connection between the circular functions and the exponential function. 
... In the theory of elliptic integrals he discovered the addition theorem 
and drew attention to the analogy between these integrals, logarithms and 
the cyclometric functions. Thus he had in hand all the threads out of 
which the wonderful fabric of function theory would later be woven)," G. 
FROBENIUS: Rede auf L. Euler on the occasion of Euler's 200th birthday 
in 1907; Ges. Abhandl. 3, p.733). 

Modern function theory was developed in the 19th century. The pioneers 
in the formative years were 

A.L. CAUCHY (1789-1857), B. RIEMANN (1826-1866), 
K. WEIERSTRASS (1815-1897). 

Each gave the theory a very distinct flavor and we still speak of the 
CAUCHY, the RIEMANN, and the WEIERSTRASS points of view. 

CAUCHY wrote his first works on function theory in the years 1814-1825. 
The function notion in use was that of his predecessors from the EULER 
era and was still quite inexact. To CAUCHY a holomorphic function was 
essentially a complex-differentiable function having a continuous derivative. 
CAUCHY's function theory is based on his famous integral theorem and on 
the residue concept. Every holomorphic function has a natural integral 
representation and is thereby accessible to the methods of analysis. The 
CAUCHY theory was completed by J. LIOUVILLE (1809-1882), [LiouJ. The 
book [BBJ of CH. BRIOT and J.-C. BOUQUET (1859) conveys a very good 
impression of the state of the theory at that time. 

Riemann's epochal Gottingen inaugural dissertation Grundlagen fur eine 
allgemeine Theorie der Functionen einer veriinderlichen complexen Grofie 
[RJ appeared in 1851. To RIEMANN the geometric view was central: holo­
morphic functions are mappings between domains in the number plane 
IC, or more generally between Riemann surfaces, "entsprechenden klein­
sten Theilen ahnlich sind (correspondingly small parts of each of which are 
similar)." RIEMANN drew his ideas from, among other sources, intuition 
and experience in mathematical physics: the existence of current flows was 
proof enough for him that holomorphic (= conformal) mappings exist. He 
sought - with a minimum of calculation - to understand his functions, not 
by formulas but by means of the "intrinsic characteristic" properties, from 
which the extrinsic representation formulas necessarily arise. 

For WEIERSTRASS the point of departure was the power series; holo­
morphic functions are those which locally can be developed into conver­
gent power series. Function theory is the theory of these series and is 
simply based in algebra. The beginnings of such a viewpoint go back to 
J .L. LAGRANGE. In his 1797 book Theorie des fonctions analytiques (2nd 
ed., Courcier, Paris 1813) he wanted to prove the proposition that every 
continuous function is developable into a power series. Since LAGRANGE 
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we speak of analytic functions; at the same time it was supposed that 
these were precisely the functions which are useful in analysis. F. KLEIN 
writes "Die groBe Leistung von WeierstraB ist es, die im Formalen stecken 
gebliebene Idee von Lagrange ausgebaut und vergeistigt zu haben (The 
great achievement of Weierstrass is to have animated and realized the pro­
gram implicit in Lagrange's formulas)" (cf. p.254 of the German original 
of [Rsl). And CARATHEODORY says in 1950 ([5], p.vii): WEIERSTRASS was 
able to "die Funktionentheorie arithmetisieren und ein System entwickeln, 
das an Strenge und Schonheit nicht iibertroffen werden kann (arithmetize 
function theory and develop a system of unsurpassable beauty and rigor}." 

3. The three methodologically quite different yet equivalent avenues to 
function theory give the subject special charm. Occasionally the impres­
sion arises that CAUCHY, RIEMANN and WEIERSTRASS were almost "ideo­
logical" proponents of their respective systems. But that was not the case. 
As early as 1831 CAUCHY was developing his holomorphic functions into 
power series and working with the latter. Any kind of rigid one-sidedness 
was alien to RIEMANN: he made use of whatever he found at hand; thus 
he too used power series in his function theory. And on the other hand 
WEIERSTRASS certainly didn't reject integrals on principle: as early as 
1841 - two years before LAURENT - he developed holomorphic functions 
on annular regions into Laurent series via integral formulas [WI]. 

In 1898 in his article "L'oeuvre mathematique de Weierstrass", Acta 
Math. 22, 1-18 (see pp. 6,7) H. POINCARE offered this evaluation: "La 
tMorie de Cauchy contenait en germe it la fois la conception geometrique 
de Riemann et la conception arithmetique de Weierstrass, et il est aise 
de comprendre comment elle pouvait, en se developpant dans deux sens 
differents, donner naissance it l'une et it l'autre. . .. La methode de Rie­
mann est avant tout une methode de decouverte, celle de Weierstrass est 
avant tout une methode de demonstration. (Cauchy's theory contains at 
once a germ of Riemann's geometric conception and a germ of Weierstrass' 
arithmetic one, and it is easy to understand how its development in two 
different directions could give rise to the one or the other .... The method 
of Riemann is above all a method of discovery, that of Weierstrass is above 
all a method of proof.)" 

For a long time now the conceptual worlds of CAUCHY, RIEMANN and 
WEIERSTRASS have been inextricably interwoven; this has resulted not only 
in many simplifications in the exposition of the subject but has also made 
possible the discovery of significant new results. 

During the last century function theory enjoyed very great triumphs 
in quite a short span of time. In just a few decades a scholarly edifice 
was erected which immediately won the highest esteem of the mathemat­
ical world. We might join R. DEDEKIND who wrote (cf. Math. Werke 1, 
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pp. 105, 106): "Die erhabenen Sch6pfungen dieser Theorie haben die Be­
wunderung der Mathematiker vor allem deshalb erregt, weil sie in fast 
beispielloser Weise die Wissenschaft mit einer auBerordentlichen Fiille ganz 
neuer Gedanken befruchtet und vorher ganzlich unbekannte Felder zum 
erst en Male der Forschung erschlossen haben. Mit der Cauchyschen Inte­
gralformel, dem Riemannschen Abbildungssatz und dem WeierstraBschen 
Potenzreihenkalkiil wird nicht bloB der Grund zu einem neuen Teile der 
Mathematik gelegt, sondern es wird zugleich auch das erste und bis jetzt 
noch immer fruchtbarste Beispiel des innigen Zusammenhangs zwischen 
Analysis und Algebra geliefert. Aber es ist nicht bloB der wunderbare 
Reichtum an neuen Ideen und groBen Entdeckungen, welche die neue The­
orie liefert; vollstandig ebenbiirtig stehen dem die Kiihnheit und Tiefe der 
Methoden gegeniiber, durch welche die gr6Bten Schwierigkeiten iiberwunden 
und die verborgensten Wahrheiten, die mysteria functiorum, in das hellste 
Licht gesetzt werden (The splendid creations of this theory have excited 
the admiration of mathematicians mainly because they have enriched our 
science in an almost unparalleled way with an abundance of new ideas and 
opened up heretofore wholly unknown fields to research. The Cauchy in­
tegral formula, the Riemann mapping theorem and the Weierstrass power 
series calculus not only laid the groundwork for a new branch of mathe­
matics but at the same time they furnished the first and till now the most 
fruitful example of the intimate connections between analysis and algebra. 
But it isn't just the wealth of novel ideas and discoveries which the new the­
ory furnishes; of equal importance on the other hand are the boldness and 
profundity of the methods by which the greatest of difficulties are overcome 
and the most recondite of truths, the mysteria junctiorum, are exposed to 
the brightest light)." 

Even from today's perspective nothing needs to be added to these exu­
berant statements. Function theory with its sheer inexhaustible abundance 
of beautiful and deep theorems is, as C.L. SIEGEL occasionally expressed 
it in his lectures, a one-of-a-kind gift to the mathematician. 



Chapter 0 

Complex Numbers and 
Continuous Functions 

Nicht einer mystischen Verwendung von yCT hat die Analysis 
ihre wirklich bedeutenden Erfolge des letzten Jahrhunderts zu 
verdanken, sondern dem ganz natiirlichen Umstande, dass man 
unendlich viel freier in der mathematischen Bewegung ist, wenn 
man die Grossen in einer Ebene statt nur in einer Linie variiren 
UiBt (Analysis does not owe its really significant successes of 
the last century to any mysterious use of yCT, but to the quite 
natural circumstance that one has infinitely more freedom of 
mathematical movement if he lets quantities vary in a plane 
instead of only on a line) - (Leopold KRONECKER, in [Kr].) 

An exposition of function theory must necessarily begin with a description 
of the complex numbers. First we recall their most important properties; a 
detailed exposition can be found in the book Numbers [19], where the 
historical development is also extensively treated. 

Function theory is the theory of complex-differentiable functions. Such 
functions are, in particular, continuous. Therefore we also discuss the gen­
eral concept of continuity. Furthermore, we introduce concepts from topol­
ogy which will see repeated use. "Die Grundbegriffe und die einfachsten 
Tatsachen aus der mengentheoretischen Topologie braucht man in sehr ver­
schiedenen Gebieten der Mathematik; die Begriffe des topologischen und 
des metrischen Raumes, der Kompaktheit, die Eigenschaften stetiger Ab­
bildungen u. dgl. sind oft unentbehrlich ... (The basic ideas and simplest 
facts of set-theoretic topology are needed in the most diverse areas of math­
ematics; the concepts of topological and metric spaces, of compactness, the 

9 



10 O. COMPLEX NUMBERS AND CONTINUOUS FUNCTIONS 

properties of continuous functions and the like are often indispensable ... )." 
P. ALEXANDROFF and H. HOPF wrote this sentence in 1935 in their treatise 
Topologie I (Julius Springer, Berlin, p.23). It is valid for many mathemat­
ical disciplines, but especially so for function theory. 

§1 The field C of complex numbers 

The field of real numbers will always be denoted by IR and its theory is 
supposed to be known by the reader. 

1. The field C. In the 2-dimensionallR-vector space 1R2 of ordered pairs 
z := (x, y) of real numbers a multiplication, denoted as usual by juxtapo­
sition, is introduced by the decree 

(Xl. yd(X2, Y2) := (XIX2 - YIY2, XIY2 + X2YI). 

1R2 thereby becomes a (commutative) field with (1,0) as unit element, the 
additive structure being coordinate-wise, and the multiplicative inverse of 

z = (x,y) i 0 being the pair ("2~Y2' .,27y2), denoted as usual by Z-l. 

This field is called the field C of complex numbers. 
The mapping x ~ (x,O) of IR ---+ C is a field embedding (because, e.g., 

(Xl, 0)(X2' 0) = (XIX2, 0)). We identify the real number x with the complex 
number (x,O). Via this identification C becomes a field extension of IR with 
the unit element 1 := (1,0) E C. We further define 

i:= (0,1) E Cj 

this notation was introduced in 1777 by EULER: " ... formulam v-llittera 
i in posterum designabo" (Opera Omnia (1) 19, p.130). Evidently we have 
i 2 = -1. The number i is often called the imaginary unit of C. Every 
number z = (x, y) E C admits a unique representation 

(x, y) = (x,O) + (0, l)(y, 0), that is, z = x + iy with x, y E IRj 

this is the usual way to write complex numbers. One sets 

~z := x, 'Sz := y 

and calls x and y the real part and the imaginary part, respectively, of 
z. The number z is called real, respectively, pure(ly) imaginary if 'Sz = 0, 
respectively, ~z = OJ the latter meaning that z = iy. 

Ever since GAUSS people have visualized complex numbers geometrically 
as points in the Gauss(ian) plane with rectangular coordinates, the addition 
being then vector addition (cf. the figure on the left). 

The multiplication of complex numbers, namely 
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iy 

iy 

w+z 

z 
I 
I 

--~----------+-~X 

I 

--~------------~x ~Z 

11 

is just what one would expect from the distributive law and the fact that 
i 2 = -1. As to the geometric significance of this multiplication in terms of 
polar coordinates, cf. 5.3.1 below and 3.6.2 of the book Numbers. 

C is identified with lI~? since z = x+iy is the row vector (x,y); but it is 
sometimes more convenient to make the identification of z to the column 
vector (:). The plane C \ {O} punctured at 0 is denoted by C x . With 

respect to the multiplication in C, C X is a group (the multiplicative group 
of the field C). 

For each number z = x + iy E C the number E := x - iy E C is called 
the (complex) conjugate of z. The mapping z I---> E is called the reflection 
in the real axis (see the right-hand figure above). The following elemental 
rules of calculation prevail: 

z + w = E + ill, zw = Eill, E = z, 

1 
~z = 2i (z - E), z E IR {:} z = E, z E ilR {:} z = -E. 

The conjugation operation is a field automorphism of C which leaves IR 
element-wise fixed. 

2. lR-linear and C-linear mappings of C into C. Because C is an 
lR-vector space as well as a C-vector space, we have to distinguish between 
lR-linear and C-linear mappings of C into C. Every C-linear mapping has 
the form z I---> AZ with A E C and is lR-linear. Conjugation z I---> E is lR-linear 
but not C-linear. Generally: 

A mapping T : C --. C is lR-linear if and only if it satisfies 

T(z) = T(l)x + T(i)y = AZ + j-tE , for all z = x + iy E C 

with 

1 1 
A := 2(T(1) - iT(i)), j-t:= 2(T(1) + iT(i)). 

An lR-linear mapping T : C --. C is then C-linear when T(i) = iT(l); in 
this case it has the form T(z) = T(1)z. 
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Proof JR.-linearity means that for z = x + iy, x, y E JR., T(z) = xT(1) + 
yT(i). Upon writing !(z + z) for x and *(z - z) for y, the first assertion 
follows; the second assertion is immediate from the first. 

IfC is identified with JR.2 via z = x+iy = (:), then every real2x2 matrix 

A -- (ac db) induces an JR.-linear right-multiplication mapping T : C --+ C 

defined by 

It satisfies 

T(1) = a + ic, T(i) = b+ id. 

Theorems of linear algebra ensure that every JR.-linear map is realized 
this way: The mapping T and the matrix A determine each other via (*). 
We claim 

Theorem. The following statements about a real matrix 

A = (~ ~) 
are equivalent: 

i) The mapping T : C --+ C induced by A is C-linear. 

ii) The entries c = -b and d = a, that is, A = (~ -~) and T(z) = 

(a + ic)z. 

Proof The decisive equation b + id = T(i) = iT(1) = i(a + ic) obtains 
exactly when c = -b and d = a. D 

It is apparent from the preceding discussion that an JR.-linear mapping 
T : C --+ C can be described in three ways: by means of a real 2 x 2 matrix,in 
the form T(z) = T(1)x + T(i)y, or in the form T(z) = AZ + f-lz. These 
three possibilities will find expression later in the theory of differentiable 
functions f = u+iv, where, besides the real partial derivatives ux, uY ' vx , Vy 
(which correspond to the matrix elements a, b, c, d), the complex partial 
derivatives fx, fy (which correspond to the numbers T(1), T(i)) and fz, fz 
(which correspond to A, f-l) will be considered. The conditions a = d, b = -c 
of the theorem are then a manifestation of the Cauchy-Riemann differential 
equations U x = vY ' u y = -Vx ; cf. Theorem 1.2.1. 
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3. Scalar product and absolute value. For w = u + iv, z = x + iy E e 
the equations 

(w, z) := ~(wz) = ux + vy = ~(wz) = (z, w) 

codify the euclidean scalar product in the real vector space e = ]R2 with 
respect to the basis 1, i. The non-negative real number 

measures the euclidean length of z and is called the absolute value, and 
sometimes the modulus of z. It and the scalar product satisfy 

(aw, az) = lal 2 (w, z) (w, z) = (w, z) for all w, z E C. 

Routine calculations immediately reveal the identity 

for all w,z E e, 

which contains as a special case the 

Cauchy-Schwarz Inequality: 

l(w,z)1 :::; Iwllzl, for all w, z E C. 

Likewise direct calculation yields the 

Law of Cosines: 

for all w, z E C. 

Two vectors w, z are called orthogonal or perpendicular if (w, z) = o. 
Because (z, cz) = ~(zcz) = IzI2~C, z and cz E ex are orthogonal ex­
actly when c is purely imaginary. The following rules are fundamental for 
calculating with the absolute value: 

1) Izl ~ 0 and Izl = 0 {:} z = 0 

2) Iwzl = Iwl . Izl (product rule) 

3) Iw + zl :::; Iwl + Izl (triangle inequality). 

Here 1) and 2) are direct and 3) is gotten by means of the Law of Cosines 
and the Cauchy-Schwarz inequality (cf. also 3.4.2 in Numbers [19]) as follows: 
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The product rule implies the division rule: 

Iwl zl = Iwl/lzi for all w, z E C, z -=I- o. 

The following variations of the triangle inequality are often useful: 

Iwl ~ Izl-Iw - zl, Iw + zl ~ Ilwl-lzll, Ilwl-lzll::::; Iw - zI. 

Rules 1)-3) are called evaluation rules. A map I . I : K ---> R. of a 
(commutative) field K into R. which satisfies these rules is called a valuation 
on K; a field together with a valuation in called a valued field. Thus R. and 
C are valued fields. 

From the Cauchy-Schwarz inequality it follows that 

(w, z) x 
-1::::; Iwllzl ::::; 1 for all w,z E C . 

According to (non-trivial) results of calculus, for each w, z E ex there­
fore a unique real number cp, with 0 ::::; cp ::::; 7l', exists satisfying 

(w, z) 
coscp = Iwllzl; 

cp is called the angle between wand z, symbolically L( w, z) = cp. 

w+z 

--~~----------~X 

Because (w,z) = Iwllzlcoscp and coscp = -cos'l/J (due to 'l/J + cp = 7l' 

~ see the accompanying figure), the Law of Cosines can be written in the 
form 

familiar from elementary geometry. 
With the help of the absolute value of complex numbers and the fact 

that every non-negative real number r has a non-negative square-root yr, 
square-roots of any complex number can be exhibited. Direct verification 
confirms that 

for a, b E R. and c := a + ib the number 
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with TJ := ±1 so chosen that b = TJlbl, satisfies e = c. 

Zeros of arbitrary quadratic polynomials z2 + cz + d E iC[z] are now 
determined by transforming into a "pure" polynomial (z + ~C)2 + d - tc2 
(that is, by completing the square). Not until 9.1.1 will we show that 
every non-constant complex polynomial has zeros in e (the Fundamental 
Theorem of Algebra); for more on the problem of solvability of complex 
equations, compare also Chapter 3.3.5 and Chapter 4 of Numbers [19]. 

4. Angle-preserving mappings. In the function theory of RIEMANN, 

angle-preserving mappings play an important role. In preparation for the 
considerations of Chapter 2.1, we look at lR-linear injective (consequently 
also bijective) mappings T : e ----> C. We write simply T" instead of T(z). 
We call T angle-preserving if 

Iwllzl(Tw,Tz) = ITwIITzl(w,z) for all w,z E C. 

The terminology is justified by rephrasing this equality in the previously 
introduced language of the angle between two vectors. So translated, it says 
that L(Tw,Tz) = L(w,z) for all w,z E ex. Angle-preserving mappings 
admit a simple characterization. 

Lemma. The following statements about an lR-linear map T : e ----> e are 
equivalent: 

i) T is angle-preserving. 

ii) There exists an a E ex such that either Tz = za for all z E e or 
T z = az for all z E C. 

iii) There exists a number s > 0 such that (Tw, Tz) = s(w, z) for all w, 
z E e. 

Proof i) => ii) Because T is injective, a := Tl E ex. For b:= a-1Ti E e 
it then follows that 

0= (i, 1) = (Ti, Tl) = (ab, a) = laI2~b, 

that is, b is purely imaginary: b = ir, r E lR. We see that Tz = TI . x + 
Ti· Y = a(x + iry) and so (TI, Tz) = (a, a(x + iry)) = lal 2x. Therefore, on 
account of the angle-preserving character of T (take w := I in the defining 
equation), it follows that for all z E e 

Ix + iYllal 2x = IIllzl(TI, Tz) = ITIIITzl(l, z) = lalla(x + iry)lx, 

that is, Ix + iryl = Ix + iyl for all z with x -I- O. This implies that r = ±I 
and we get Tz = a(x ± iy), that is, Tz = az for all z or Tz = az for all z. 
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ii) ::::} iii) Because (aw, az) = laI 2 (w, z) and (w, z) = (w, z), in either 
case (Tw, Tz) = s(w, z) holds with s := lal2 > o. 

iii) ::::} i) Because ITzl = JSlzl for all z, T is injective; furthermore 
this equality and that in iii) give 

Iwllzl(Tw, Tz) = Iwllzls(w, z) = ITwIITzl(w, z). o 

The lemma just proved will be applied in 2.1.1 to the lR-linear differential 
of a real-differentiable mapping. 

In the theory of the euclidean vector spaces, a linear self-mapping T : V --+ V 
of a vector space V with euclidean scalar product ( , ) is called a similarity if there 
is a real number r > 0 such that ITvl = rlvl holds for all v E Vj the number r is 
called the similarity constant or the dilation factor of T. (In case r = 1, T is called 
length-preserving = isometric, or an orthogonal tronsformation.) Because of the Law of 
Cosines, a similarity then also satisfies 

(Tv, Tv') = r2 (v, v') for all v, v' E V. 

Every similarity is angle-preserving, that is, L(Tv, Tv') = L(v, v'), if one again defines 
L(v, v') as the value in [0,1r] of the arccosine of Ivl-1Iv'I-1 (v, v') (and the latter one 
can do because the Cauchy-Schwarz inequality is valid in every euclidean space). 

Above we showed that conversely in the special case V = C every angle-preserving 

(linear) mapping is a similarity. Actually this converse prevails in every finite-dimensional 

euclidean space, a fact usually proved in linear algebra courses. 

Exercises 

Exercise 1. Let T(z) := >.Z + I-"Z, >., I-" E C. Show that 

a) T is bijective exactly when >.X =1= I-"Ji. Hint: You don't necessarily 
have to show that T has determinant >.X - I-"Ji. 

b) T is isometric, i.e., IT(z)1 = Izl for all z E C, precisely when >'1-" = 0 
and I>' + 1-"1 = 1. 

Exercise 2. Let al, ... , an, bl ,.··, bn E C and satisfy E~=l at = E~=l bi 
for all j E N. Show that there is a permutation 7r of {I, 2, ... ,n} such that 
av = b7l"(v) for all v E {I, 2, ... ,n}. 

Exercise 3. For n > 1 consider real numbers Co > CI > ... > Cn > O. 
Prove that the polynomial p(z) := Co + CIZ + ... + cnzn in C has no zero 
whose modulus does not exceed 1. Hint: Consider (1 - z)p(z) and note 
(Le., prove) that for w,z E C with w =1= 0 the equality Iw - zl = Ilwl-lzll 
holds exactly when z = >.w for some>. 2': o. 

Exercise 4. a) Show that from (1 + Ivl 2 )u = (1 + luI 2 )v, u, vEe, it follows 
that either u = v or UV = 1. 



§2. FUNDAMENTAL TOPOLOGICAL CONCEPTS 17 

b) Show that for u, v E C with lui < 1, Ivl < 1 and uv =I- uv, we always 
have 

c) Show that for a, b, e, dEC with lal = Ibl = lei the complex number 

(a - b)(e - d)(a - d)(e - b) + i(ee - dd)SS(eb - ca - ab) 

is real. 

§2 Fundamental topological concepts 

Here we collect the topological language and properties which are indis­
pensable for function theory (e.g., "open", "closed", "compact"). Too much 
topology at the beginning is harmful, but our program would fail without any 
topology at all. There is a quotation from R. DEDEKIND's book Was sind 
und was sollen die Zahlen (Vieweg, Braunschweig, 1887; English trans. 
by W. W. BEMAN, Essays in the Theory of Numbers, Dover, New York, 
1963) which is equally applicable to set-theoretic topology, even though 
the latter had not yet appeared on the scene in Dedekind's time: "Die 
gr6Bten und fruchtbarsten Fortschritte in der Mathematik und anderen 
Wissenschaften sind vorzugsweise durch die Sch6pfung und Einfiihrung 
neuer Begriffe gemacht, nachdem die hiiufige Wiederkehr zusammengesetz­
ter Erscheinungen, welche von den alten Begriffen nur miihselig beherrscht 
werden, dazu gedriingt hat (The greatest and most fruitful progress in 
mathematics and other sciences is made through the creation and intro­
duction of new concepts; those to which we are impelled by the frequent 
recurrence of compound phenomena which are only understood with great 
difficulty in the older view)." Since only metric spaces ever occur in func­
tion theory, we limit ourselves to them. 

1. Metric spaces. The expression 

Iw - zl = J(u - x)2 + (v - y)2 

measures the euclidean distance between the points w = u + iv and z = 
x + iy in the plane C (figure below). 

The function 
CxC-+IR, (w,z)f----+lw-zl 

has, by virtue of the evaluation rules of 1.3, the properties 

Iw - zl ~ 0, Iw - zl = 0 ¢} w = z, Iw - zl = Iz - wi (symmetry) 

Iw - zl ~ Iw - w'l + Iw' - zl (triangle inequality) . 
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iv 
z) 

iy 

If X is any set, a function 

d: X x X -+ JR, (X,y) ~ d(x,y) 

is called a metric on X if it has the three preceding properties; that is, if 
for all x, y, z E X it satisfies 

d(x,y) ;:::: 0, 

d(x,y) = d(y,x), 

d(x,y) = 0 {:} x = y, 

d(x, z) ~ d(x, y) + d(y, Z). 

X together with a metric is called a metric space. In X = C, d(w, Z) .­
Iw - zl is called the euclidean metric of C. 

In a metric space X with metric d the set 

Br(c):= {x EX: d(x, c) < r} 

is called the open ball of radius r > 0 with center c EX; in the case of the 
euclidean metric in C the balls 

Br(c) = {z E C: Iz - cl < r}, r>O 

are called open discs about c, traditionally but less precisely, circles about 
c. 

The unit disc B 1 (0) plays a distinguished role in function theory. Re­
calling that the German word for "unit disc" is Einheitskreisscheibe, we 
will use the notation 

lE := B1 (0) = {z E C : Izl < I}. 

Besides the euclidean metric the set C = JR2 carries a second natural metric. 
By means of the usual metric Ix - x'I, x, x' E JR on JR we define the maximum 
metric on C as 

d(w, z) := max{llRw - lRzl, l;sw - ;szl}, w,z E C. 

It takes only a minute to show that this really is a metric in C. The "open balls" 
in this metric are the open squares [Quadrate in German] Qr(C) of center c and 
side-length 2r. 

In function theory we work primarily with the euclidean metric, whereas in 
the study of functions of two real variables it is often more advantageous to use 
the maximum metric. Analogs of both of these metrics can be introduced into 
any n-dimensional real vector space JRn , 1 ~ n < 00. 
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2. Open and closed sets. A subset U of a metric space X is called open 
(in X), if for every x E U there is an r > 0 such that Br(x) C U. The 
empty set and X itself are open. The union of arbitrarily many and the 
intersection of finitely many open sets are each open (proof!). The "open 
balls" Br ( c) of X are in fact open sets. 

Different metrics can determine the same system of open sets; this hap­
pens, for example, with the euclidean metric and the maximum metric in 
C = ]R2 (more generally in ]Rn). The reason is that every open disc contains 
an open square of the same center and vice-versa. D 

A set C C X is called closed (in X) if its complement X\ C is open. The 
sets 

Br(c) := {x EX: d(x,c) ::; r} 

are closed and consequently we call them closed balls and in the case X = C, 
closed discs. 

Dualizing the statements for open sets, we have that the union of finitely 
many and the intersection of arbitrarily many closed sets are each closed. 
In particular, for every set A C X the intersection A of all the closed 
subsets of X which contain A is itself closed and is therefore the smallest 
closed subset of X which contains A; it is called the closed hull of A or the 
closure of A in X. Notice that A = A. 

A set W C X is called a neighborhood of the set M eX, if there is 
an open set V with MeV c W. The reader should note that according 
to this definition a neighborhood is not necessarily open. But an open 
set is a neighborhood of each of its points and this property characterizes 
"openness" . 

Two different points c, c', E X always have a pair of disjoint neighbor­
hoods: 

B€(c) n B€(c') = 0 for f:= ~d(c,c') > o. 
This is the Hausdorff "separation property" (named for the German math­
ematician and writer Felix HAUSDORFF; born in 1868 in Breslau; from 1902 
professor in Leipzig, Bonn, Greifswald, and then Bonn; his 1914 treatise 
Grundziige der Mengenlehre (Veit & Comp., Leipzig) contains the founda­
tions of set-theoretic topology; died by his own hand in Bonn in 1942 as a 
result of racial persecution; as a writer he published in his youth under the 
pseudonym Paul MONGRE, among other things poems and aphorisms). 

3. Convergent sequences. Cluster points. Following Bourbaki we 
define N := {O, 1,2,3, ... }. Let kEN. A mapping {k, k + 1, k + 2, ... } ~ 
X, n t-+ Cn is called a sequence in X; it is briefly denoted (cn ) and generally 
k = O. A subsequence of (cn ) is a mapping £ t-+ cnl in which nl ::; n2 ::; ... 
is an infinite subset of No A sequence (cn ) is called convergent in X, if 
there is a point c E X such that every neighborhood of c contains almost 
all (that is, all but finitely many) terms Cn of the sequence; such a point C 
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is called a limit of the sequence, in symbols 

C = lim cn or, more succinctly, C = lim Cn . 
n--+oo 

Non-convergent sequences are called divergent. 
The separation property ensures that every convergent sequence has 

exactly one limit, so that the implication C = lim en and c' = lim Cn * C = 
c', to which our notation already commits us, does in fact obtain. Also 

Every subsequence (cne ) of a convergent sequence (cn ) is convergent and 
lim cne = lim cn . 

i---+(X) n-+oo 

If d is a metric on X then c = lim Cn if and only if to every f > 0 there 
corresponds an n€ E N such that d(cn , c) < f for all n ;::: n€; for X = C 
with the euclidean metric this is written in the form 

A set M C X is closed in X exactly when M contains the limit of each 
convergent sequence (cn ) of Cn E M. 

A point p E X is called a cluster point or point of accumulation of the 
set M C X if U n (M \ {p}) -I 0 for every neighborhood U of p. Every 
neighborhood of a cluster point p of M contains infinitely many points of 
M and there is always a sequence (cn ) in M \ {p} with limcn = p. 

A subset A of a metric space X is called dense in X if every non-empty 
open subset of X contains points of A; this occurs exactly when A = X. 
A subset A of X is certainly dense in X if every point of X is a cluster 
point of A and in this case every point x E X is the limit of a sequence in 
A (proof!). 

In C the set Q + iQ of all "rational" complex numbers is dense and 
countable. [Recall that a set is called countable if it is the image of N under 
some map.] 

4. Historical remarks on the convergence concept. Great difficul­
ties attended the precise codification of this concept in the 19th century. 
The limit concept has its origin in the method of exhaustion of antiquity. 
LEIBNIZ, NEWTON, EULER and many others worked with infinite series 
and sequences without having a precise definition of "limit". For example, 
it didn't trouble EULER to write (motivated by 2:~ XV = (1- X)-l) 

1 
1 - 1 + 1 - 1 + - ... = -. 

2 

Even in his Cours d'analyse [C] CAUCHY, in defining limits, still used such 
expressions as "successive values" , or "gets indefinitely close" or "as small 
as one wants". These admittedly suggestive and convenient locutions were 
first rendered precise by WEIERSTRASS, beginning about 1860 in his Berlin 
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lectures, where the f - 8 inequalities, still in use today, were formulated. 
With these the "arithmetization of analysis" began, in this age of rigor. 

The ideas of Weierstrass at first reached the mathematical public only 
through transcriptions and re-copyings of his lectures by his auditors. Only 
gradually did textbooks adopt the ideas, one of the first being Vorlesungen 
tiber Allgemeine Arithmetik. Nach den neueren Ansichten, worked out by 
O. STOLZ in Innsbruck, Teubner-Verlag, Leipzig 1885. 

5. Compact sets. As in calculus, compact sets also playa central role in 
function theory. We will introduce the idea of a compact (metric) space, 
beginning with the classical 

Equivalence Theorem. The following statements concerning a metric 
space X are equivalent: 

i) Every open covering U = {UihEl of X contains a finite sub-covering 
(Heine-Borel property). 

ii) Every sequence (xn) in X contains a convergent subsequence 
(Weierstrass-Bolzano property). 

We will consider the proof already known to the reader from his prior 
study of calculus. By way of clarification let us just remind him that an 
open covering U of X means any family {UihEl of open sets Ui such that 
X = UiEI Ui · In arbitrary topological spaces (which won't come up at 
all in this book) statements i) and ii) remain meaningful but they are not 
always equivalent. 

X is called compact if conditions i) and ii) are fulfilled. A subset K of 
X is called compact or a compactum (in X) if K is a compact metric space 
when the metric of X is restricted to K. The reader should satisfy himself 
that 

Every compactum in X is closed in X and in a compact space X every 
closed subset is compact. 

We also highlight the easily verified 

Exhaustion property of open sets in C: every open set D in C is the 
union of a countably infinite family of compact subsets of D. 

Exercises 

Exercise 1. Let X be the set of all bounded sequences in C. Show that 
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a) d1((an ), (bn )) := SUp{lak - bkl : kEN} and d2 ((an ), (bn )) := 

L~o 2-k lak - bk I define two metrics on X. 

b) Do the open sets defined by these two metrics coincide? 

Exercise 2. Let X := CN be the set of all sequences in C. Show that 

a) d((an ), (bn )) := L~o 2-k l~I~~:kblkl defines a metric on X; 

b) a sequence Xk = (a~k)) in X converges in this metric to x = (an) if 

and only if for each n EN, an = limk a~k). 

§3 Convergent sequences of complex 
numbers 

In the subsections of this section we examine the special metric space 
X = C. Complex sequences can be added, multiplied, divided and conju­
gated. The limit laws which hold for reals carryover verbatim to complexes, 
because the absolute value function I I has the same properties on C as it 
does on R The field C inherits from the field lR the (metric) completeness 
which Cauchy's convergence criterion expresses. 

If there is no possibility of misunderstanding, we will designate a se­
quence (cn ) briefly as Cn. If we have to indicate that the sequence starts 
with the index k, then we write (Cn)n?k. A convergent sequence with limit 
o is called a null sequence. 

1. Rules of calculation. If the sequence Cn converges to C E C then 
almost all terms Cn of the sequence are inside each disc BE (c) around c. For 
every z E C with Izl < 1 the sequence zn of powers converges: lim zn = 0; 
for all z with Izl > 1 the sequence zn diverges. 

A sequence Cn is called bounded if there is a real number M > 0 (called a 
"bound") such that len I ::; M for all n. Just as for real sequences it follows 
that 

Every convergent sequence of complex numbers is bounded. o 

For convergent sequences cn , dn the expected limit laws prevail: 

L.1 For all a, bE C the sequence aCn + bdn converges: 

lim(acn + bdn ) = a lim Cn + blimdn (C-linearity). 
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L.2 The "product sequence" cndn converges: 

L.3 If lim dn -j. 0, then there is a kEN such that dn -j. 0 for all n ~ k, 
and the quotient sequence (cn/dn)n?k converges to (limcn)/(limdn). 

Remark. Rules L.l and L.2 admit a very elegant formulation in the lan­
guage of algebra. For arbitrary sequences cn, dn of complex numbers we 
can define the sum sequence and the product sequence by setting 

The limit laws L.l and L.2 can then be reformulated as: 

The collection of all convergent sequences forms a (commutative) C­
algebra A (more precisely, a C-subalgebra of the C-algebra of all sequences) 
with zero element (O)n and unit element (l)n. The mapping lim: A ----; C, 
(cn ) 1-+ lim Cn is a C- algebra homomorphism. 

[Here perhaps we should recall for the reader's convenience: a C-algebra 
A is a C-vector space between whose elements a multiplication A x A ----; 
A: (a, a') 1-+ aa' is defined which satisfies the two distributive laws (>.a + 
JLb)a' = >.(aa') + JL(ba'),a'(>'a + JLb) = >.(a'a) + JL(a'b). A C-vector-space 
homomorphism f : A ----; B between C-algebras A and B is called a C­
algebra homomorphism if it is multiplicative: f(aa') = f(a)f(a') for all 
a,a' EA.] 

The limit laws L.l - L.3 are supplemented with the following: 

L.4 The sequence Icnl of absolute values of a convergent sequence is con­
vergent and lim len I = I lim Cn I· 

L.5 The sequence cn conjugate to a convergent sequence is convergent and 

lim cn = (lim cn). 

Proofs are immediate from the inequality Ilcnl - Icll ::::: ICn - cl and the 
equality ICn - ci = ICn - cl, respectively, where c:= limcn-

Every sequence Cn determines its sequence of real parts ~cn and its 
sequence of imaginary parts SScn. The question of convergence in C can 
always be reduced to two convergence questions in R 

Theorem. For a sequence Cn of complex numbers the following are equiv­
alent: 
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i) Cn is convergent. 

ii) The real sequences ~cn and 'Scn are each convergent. 

In case of convergence, lim Cn = lim(~cn) + i lim('Scn). 

Proof i) => ii) This is clear from L.1 and L.5 together with the equations 

ii) => i) L.1 yields this as well as the equality relating the three limits. 
D 

2. Cauchy's convergence criterion. Characterization of compact 
sets in C. A sequence Cn is called a Cauchy sequence if to every E > 0 
there corresponds a k. EN such that ICn - cml < E for all n, m ~ k •. As in 
JR we have in C the fundamental 

Convergence criterion of CAUCHY. For any complex sequence (cn ) the 
following are equivalent: 

i) (cn) is convergent. 

ii) (cn) is a Cauchy sequence. 

Proof i) => ii) Given E > 0, choose kEN such that ICn - ci < ~E for all 
n ~ k, where c:= limcn. Then 

ICm - cnl :<:::: ICm - ci + Ic - cnl < E for all m, n ~ k. 

ii) => i) The inequalities 

I~cm - ~cnl :<:::: ICm - cnl , l'Scm - 'Scnl :<:::: ICm - cnl, 

valid for all m and n, show that along with (cn ) the real sequences (~cn) 
and ('Scn) are each Cauchy sequences. Because of the completeness of JR, 
they converge to numbers a and b in R Then by 1.1 the sequence (cn ) in 
C converges to a + bi. D 

The notion of a Cauchy sequence can be defined in every metric space X: A 
sequence (cn ), Cn E X, is called a Cauchy sequence in X if for every E > 0 there 
is a k€ E N such that d( C"" cn ) < E for all m, n ~ k€. Convergent sequences 
are always Cauchy sequences (as the above proof in C essentially demonstrates). 
Those metric spaces in which the converse holds are called complete. Thus C, as 
well as lR, is a complete valued field. 

Compacta in C admit a simple characterization. 

Theorem. The following assertions about a set K c C are equivalent: 
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i) K is compact. 

ii) K is bounded and closed in C. 

We will consider this equivalence to be known to the reader from cal­
culus: he has, of course, to consider C as JR2 • By the same token this 
equivalence, which rests ultimately on the completeness of JR, is valid in 
every JRn, 1 ::; n < 00. It is not, however, valid in every complete metric 
space. 

A special case of the foregoing theorem is 

WEIERSTRASS-BoLZANO Theorem. Every bounded sequence of com­
plex numbers has a convergent subsequence. 

Exercises 

Exercise 1. For which z E C do the following limits exist? 

Exercise 2. Let (cn ) be a bounded sequence of complex numbers. Show 
that this sequence converges to c E C if and only if each of its convergent 
subsequences has limit c. 

Exercise 3. a) Let (an)n>O and (bn)n>o be convergent sequences of complex - -
numbers. Show that 

1· aobn + a1bn- 1 + ... + anbo (1· )(1· b ) 1m = 1m ak 1m m . 
n n+l k m 

b) If the sequence (an)n;:::O converges to a E C, then limn ~ L~':~ ak = a. 
Does the converse of this hold? 

Exercise 4. Show that the metric spaces in Exercises 1 and 2 of §2 are 
complete. 
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§4 Convergent and absolutely convergent 
series 

Convergent series L av in C are defined, just as in JR, via their sequences 
of partial sums. Among the various forms of limit processes the easiest 
to deal with are convergent series: together with the approximants Sn := 
ao+ ... +an a "correction term" which leads from Sn to the next approximant 
Sn+l = Sn + an+l is always given. This makes working with series more 
convenient than working with sequences. In the 19th century people worked 
principally with series and hardly at all with sequences: the insight that 
convergent sequences are really the fundamental cells which generate all 
the limit processes of analysis only took hold at the beginning of the 20th 
century. 

The absolutely convergent series L av, those for which L lav I < 00, are 
especially important in the theory of series. The most important conver­
gence criterion for such series is the majorant criterion or comparison test 
(subsection 2). As with real numbers there is for absolutely convergent 
complex series a rearrangement theorem (subsection 3) and a product the­
orem (subsection 6). 

1. Convergent series of complex numbers. If (av)v~k is a sequence 

of complex numbers, then the sequence (Sn)n~k' Sn := L~=k av of partial 
sums is called an (infinite) series with terms av . One writes L:.:"=k av or 
L: av or Lv~k av or simply L avo Generally k is either 0 or 1. 

A series L av is said to be convergent if the sequence (sn) of partial 
sums converges; otherwise the series is said to be divergent. In the case of 
convergence it is customary to write, suggestively 

As in the case of JR, the symbol L av thus does double duty: it denotes 
both the sequence of partial sums and the limit of this sequence (when it 
exists). 

The standard example of an infinite series, which is used again and again 
to provide majorizations, is the geometric series Lv>o zv. Its partial sums 
(finite geometric series) are -

n 1- zn+l L ZV - -1---z­
o 

for every z =I- 1. 

Because (zn-l) is a null sequence for all z E C with Izl < 1, it follows that 

00 1 
~zv-_ 
L l-z o 

for all z E C with Izl < 1. o 



§4. CONVERGENT AND ABSOLUTELY CONVERGENT SERIES 27 

Because an = Sn - Sn-1, liman = 0 holds for every convergent series 
L:a",. 

The limit laws L.1 and L.5 carryover immediately to series: 

2) aa", + bb",) = a L a", + b L b", , 

a special case of which is: 

The complex series L:",>k a", converges if and only if each of the real 
series L:"'~k ~a", and L:",~~ ~a", converges, and then 

La", = L~a",+iL~a",. 

Moreover, we trivially have for convergent series 

00 i 00 

La", = La", + La", for all e E N with e 2: k. 
k k 

For infinite series there is also a 

CAUCHY convergence criterion. A series L: a", converges precisely 
when to every e > 0 there corresponds an n. E N such that 

for all m, n with n > m 2: n •. 

This is clear because the equality L::'+1 a", = Sn - Sm means that the 
condition in this criterion is exactly that (sn) be a Cauchy sequence. 

2. Absolutely convergent series. The majorant criterion. The 
limit of a convergent series can be changed by a rearrangement which alters 
the positions of infinitely many terms. Manipulations of this kind can be 
routinely carried out only on series which are absolutely convergent. 

A series :E av is called absolutely convergent if the series L: lavl of non­
negative real numbers is convergent. 

The completeness of C makes it possible, as with JR, to infer the conver­
gence of the series :E av from that of the series L: 1 av I· Since 1 L::'+1 av 1 ~ 
L::'+1la",l, it follows immediately from Cauchy's convergence criterion for 
series that 
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Every absolutely convergent series L a" is convergent; and I L a" I < 
Lla"l· 

Furthermore it is clear that 

Every subseries L~o a"i of an absolutely convergent series L:=o a" is 
absolutely convergent. [In fact, it can even be shown that a series converges 
absolutely if and only if everyone of its subseries converges.] 

Quite fundamental is the simple 

Majorant criterion or Comparison test. Let L,,>k t" be a convergent 
series with non-negative real terms t,,; let (a")"~k be a sequence of complex 
numbers which for almost all v ~ k satisfy la,,1 ~ t". Then L,,>k a" is 
absolutely convergent. -

Proof There is an nl ~ k such that for all n > m ~ nl 

n n 

Lla"l~ Lt". 
m+l m+l 

Because L t" converges, the claim follows from the Cauchy criterion. 0 

The series L t" is called a majomnt of L a". The most frequently 
occurring majorants are the geometric series L cq", 0 < q < 1, 0 ~ c E R 

o 

Calculating with absolutely convergent series is significantly simpler 
than calculating with series that are merely convergent, because series 
with positive terms are easier to handle. Because max(l~al, I~al) ~ lal ~ 
I~al + I~al, it further follows (from the majorant criterion) that 

The complex series L a" is absolutely convergent precisely when each of 
the real series L ~a" and L ~a" is absolutely convergent. 

3. The rearrangement theorem. If L,,>o a" is absolutely convergent, 
then every "rearmngement" of this series alSo converges and to the same 
limit: 

for every bijection T of N. 

Proof The proof that most readers have doubtlessly seen for IR works as 
well in C. It runs as follows: Let s := L,,>o a". For each c > 0 let 
Vg E N be such that L">,,.la,,1 < c. Let Fe := T-l{O, 1, ... , vg } and 
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no := maxF",. Then {O,I, ... ,k} ~ F"" so r({O,I, ... ,k}) ~ r(F",) = 
{O, 1, ... , v",} whenever n ~ n",. For such n 

L aT ( ... ) - s + L aT ( ... ) 

... EF. ...E{O,l, ... ,n}\F. 

= L ap' - s + L ap' 
P.ET(F.) p.ET{O,l, ... ,n} \T(F.) 

< Itap. - sl + L lap.1 
p.=o p.ET{O,l, ... ,n}\{O,l, ... , .... } 

< 2 L I a ... I < 26". 0 
11> lie 

In the literature the rearrangement theorem is sometimes also called the 
commutative law for infinite series. Generalizations of this commutative 
law will be found in the classical book Theory and Applications of Infinite 
Series by KNOPP [15]. 

4. Historical remarks on absolute convergence. In 1833 CAUCHY 
observed [(Euvres (2) 10, 68-70] that a convergent real series whose terms 
are not all positive could have a divergent subseries. In a famous 1837 
work on number theory, "Beweis des Satzes, daf3 jede unbegrenzte arith­
metische Progression, deren erstes Glied und Differenz ganze Zahlen ohne 
gemeinschaftlichen Teiler sind, unendlich viele Primzahlen enthaJ.t (Proof 
that every unbounded arithmetic progression whose first term and com­
mon difference are integers without common divisors contains infinitely 
many primes)" (Werke 1, p.319) DIRICHLET presented the (conditionally) 
convergent series 

and 

which are rearrangements of one another and which have different sums, 
namely log 2 and ~ log 2, respectively. In this same work (p.318) DIRICH­
LET proved the rearrangement theorem for series with real terms. In his 
1854 Habilitationsschrift Uber die Darstellbarkeit einer Function durch eine 
trigonometrische Reihe (Concerning the representation of a function by a 
trigonometric series) [Werke, p.235], where among other things he intro­
duced his integral, RIEMANN wrote that by 1829 DIRICHLET knew "daf3 
die unendlichen Reihen in zwei wesentlich verschiedene Klassen zerfallen, 
je nachdem sie, wenn man samtliche Glieder positiv macht, convergent 
bleiben oder nicht. In den ersteren k6nnen die Glieder beliebig versetzt 
werden, der Werth der letzteren dagegen ist von der Ordnung der Glieder 
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abhangig (that infinite series fall into two essentially different classes, ac­
cording to whether they remain convergent or not after all terms have been 
made positive. In series of the first type the terms may be arbitrarily per­
muted; by contrast, the value of a series of the second type depends on 
the order of its terms)". RIEMANN then proves his rearrangement theo­
rem: A convergent series (of real terms) which is not absolutely convergent 
"kann durch geeignete Anordnung der Glieder einen beliebig gegebenen 
(reellen) Werth C erhalten (can converge to an arbitrary given real value C 
after appropriate re-ordering of its terms)". The discovery of this apparent 
paradox contributed essentially to a re-examination and rigorous founding 
(focussing on the sequence of partial sums) of the theory of infinite series. 
On November 15, 1855 RIEMANN [Werke, Nachtrage p. 111) made note of 
the fact that: "Die Erkenntnis des Umstandes, daB die unendlichen Reihen 
in zwei Klassen zerfallen (je nachdem der Grenzwert unabhangig von der 
Anordnung ist oder nicht), bildet einen Wendepunkt in der Auffassung des 
Unendlichen in der Mathematik (The recognition of the fact that infinite 
series fall into two classes (according to whether the limit is independent 
of the ordering of the terms or not) constitutes a turning-point in the con­
ceptualization of the infinite in mathematics)". 

5. Remarks on Riemann's rearrangement theorem. This theorem does 
not carryover from reals to complexes without modification. For example, if 
E av is convergent but not absolutely convergent then of course at least one of 
the real series E Rav, E ~av is not absolutely convergent and by Riemann's 
theorem, given r E JR, there is a bijection T of N such that one of the series 
E Ra'T(v) , E ~a'T(v) converges to rj but prima facie nothing is known about the 
convergence of the other one. 

Let us understand by the phrase rearrangement-induced sums of an infinite 
series E av (av E C) the set L of all c E C to which correspond some bijection 
T of N such that E a'T(v) = c. It can be shown that exactly one of the following 
alternatives always prevails: 

1) L is empty (so-called "proper" divergence). 

2) L is a single point (¢:> E av is absolutely convergent). 

3) L is a stmight line in C. 

4) L coincides with C. 

Each of the four cases can indeed be realized: E.g., L = JR + i for the series 

E~ [( -Y' + V(V~l)] and L = C occurs for all series E av in which a2v E JR and 

a2v+1 E iJR for alII! and each of E a2v, E a2v-l is convergent but not absolutely 
so. 

A generalization of Riemann's rearrangement theorem was formulated in 1905 
by P. LEVY ("Sur les series semi-convergentes", Nouv. Annales (4), 5, p.506) 
and in 1913/14 E. STEINITZ, the founder of abstract field theory, gave a logically 
satisfactory treatment in his paper "Bedingt konvergente Reihen und konvexe 
Systeme", Jour. fUr Reine und Angew. Math. 143, p.128ff and 144, p.1ff. [The 
Steinitz replacement theorem, which is often used in linear algebra to prove the 
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invariance of the cardinality of bases and which is a much-dreaded examination 
question, is to be found on p.133 of the first part of this work.] What STEINITZ 
proved is: 

Ifv., E IRm(1 ::; m < oo} for all v, then the set of rearrangement-induced sums 
of the series ~ v., is either empty or an affine subspace of IRm. 

A very accessible modern account of this will be found in P. ROSENTHAL "The 
remarkable theorem of Levy and Steinitz," Amer. Math. Monthly 94(1987}, pp. 
342-351. 

In this connection the 1917 paper "Bedingt konvergente Reihen" published 
by W. GROSS in the Monatshefte fUr Mathematik 28, pp. 221-237 is also worth 
reading. 0 

In analysis a series ~ a., such that every rearrangement ~ a .. (,,) converges 
and to the same limit is very often called unconditionally convergent. According 
to 2}, in C the unconditionally convergent series coincide with the absolutely 
convergent ones. For arbitrary Banach spaces this is no longer the case; in fact 
we have the following rather surprising characterization: 

Theorem. The following statements about a Banach space V are equivalent: 

i} The class of unconditionally convergent series ~ v'" v" E V, coincides 
with the class of absolutely or normally convergent ones, i.e., those for 
which ~ IIV., II < 00. 

ii} The space V is finite-dimensional. 

This was proved in 1950 by A. DVORETZKY and C.A. ROGERS (Proc. Nat. 
Acad. Sci. USA 36, pp. 192-197). The problem of determining all vector spaces 
for which the two classes of series coincide had been brought up by S. BANACH 

on p. 240 of his classical book Theorie des Operations Lineaires (Monografie 
Matematyczne 1, Warsaw 1932; English translation by F. JELLETT, North­
Holland Publ. Co., Amsterdam, 1987). A. PIETSCH gives a simple proof on 
p. 68 of his book Nuclear Locally Compact Spaces (Springer-Verlag, New York 
& Berlin 1972); he deduces the result from the fact that nuclear mappings are 
necessarily pre-compact (see p. 52). 

6. A theorem on products of series. If ~~ ap" ~~ b" are two series, 
then any series ~~ c,\ in which the terms c,\ run through all possible 
products ap.b" exactly once, is called a product series of L: ap' and L: b". 
The most important product series in the Cauchy product ~p,\ in which 
p,\ := ~p.+,,=,\ ap.b". Such sums are suggested by formally multiplying 

out the power series product (~p.~o ap.Xp.) (~,,~o b"X") and collecting 

together the coefficients of like powers of X. 

A product theorem. Let ~~ ap" ~~ b" be absolutely convergent series. 
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Then every product series L~ c). of the two is absolutely convergent and 

Proof For each e E N there is an mEN such that {Co, ... , cd c {aJLbv : 

o ::; /-l, v ::; m}. It follows that 

Consequently, the series L~ c). is absolutely convergent and to evaluate 
c := L~ c). we can use any ordering of the terms aJLbv which results from 
multiplying out the products (ao + al + ... + an)(bo + b1 + ... + bn) one after 
another (n = 0, 1,2, ... ). This observation means that 

Absolute convergence is essential to the validity of this product theorem: The 
Cauchy product of the convergent (but not absolutely convergent) series 2: ~ 
with itself is divergent. Indeed, because 0 :S (x - y)2 = x 2 - 2xy + y2 for 
real x and y, we have 2v'/L+I JV+T :s J.1 + 1 + v + 1 and so if J.1 + v = A, 
then (-1)>'al-'a" = ~..;v+r 2 >.;2 and (-I)>'p>. = 2:1-'+"=>.(-I)>'al-'a,, 2 
2:1-'+"=>' >.;2 = (A + 1) . >.;2 2 1 for all A E N. 

The above product theorem for complex series occurs on p.237 of Cauchy's 
1821 Cours d'analyse [C]. 

If both 2: aI-" 2: b" are convergent and at least one of them is absolutely con­
vergent, then their Cauchy product converges and has sum equal to (2:: al-') x 

(2:: b,,) - theorem of F. MERTENS, 1875 (see KNOPP [15], §45). In 7.4.4 we will 
become acquainted with the product theorem for convergent power series and 
from it deduce an 1826 product theorem of ABEL, the hypotheses of which are 
quite different from those of the Cauchy product theorem above. 

Exercises 

Exercise 1. Investigate the convergence and absolute convergence of the 
following series: 

a) 2:n~l i: 
b)" (2+ir 

L.m~l (Hi) n 
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Find the limit of the series in C). 

Exercise 2. Let (an) be a sequence of complex numbers with ~an ~ 0 for 
almost all n. Prove that if both the series L: an and L: a; converge, then 
the second one must actually converge absolutely. Does the converse hold? 

Exercise 3. Let (an) be a sequence of complex numbers, non-zero for all n 
beyond some no. Show that if there is a real number A < -1 such that 
the sequence n 2 (I ant 1 I - 1 - A), n > no, is bounded, then the series L: an 

an n 

is absolutely convergent. Hint. Set C := 1 - A, d := 1 + ~, bn := n-d and 

show that lim nWnt1 I - 1) < lim n( I bnbt1 I - 1) [why do these limits exist?] 
an n 

and infer that for an appropriate finite constant C, lanl :::: Cbn for all n. 

Exercise 4. Let (an)n~O and (bn)n~o be sequences of complex numbers and 
suppose that 

i) the sequence of partial sums 8 m := L::=o an is bounded; 

ii) lim bn = 0; 

iii) the sum L:~=l Ibn - bn-11 is finite. 

Show that then the series L: anbn is convergent. Hint. Use "Abel summa­
tion": L:;;'=nakbk = L:;;'=n(8k - 8k-l)bk for n > O. 

Exercise 5. To each (m, n) E N2 associate a complex number am,n. Suppose 
the numbers am,n are "somehow" organized into a sequence Ck. Show that 
the following statements are equivalent: 

i) The series L: Ck is absolutely convergent. 

ii) For each n E N the series L:m am,n converges absolutely and the 
series L:n(L:m lam,nl) converges. 

If i) and ii) are fulfilled then the series L:n am,n is absolutely convergent for 
every mEN and the series L:m (L:n am,n), L:n (L:m am,n) are convergent 
with 

~)L am,n) = L(L am,n) = L Ck· 
m n n m k 
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§5 Continuous functions 

The main business of analysis is the study of functions. The concept of 
function will be taken for granted here and the words function and mapping 
will be used synonymously. Functions with domain X and range in Y are 
indicated by 

f : X ----+ Y, X 1-+ f (x) or f : X ----+ Y or f (x) or just f. 

In what follows X, Y, Z are always metric spaces and dx , dy , dz are their 
metrics. 

1. The continuity concept. A mapping f : X ----+ Y is said to be 
continuous at the point a E X if the f-pre-image (also called the f-inverse­
image) f-l(V) := {x EX: f(x) E V} of every neighborhood V of f(a) in 
Y is a neighborhood of a in X. In terms of the metrics, we have the 

(e,6)-Criterion. f: X ----+ Y is continuous at the point a if and only if 
for every c > 0 there exists a 8 = 8e > 0 such that 

dy(f(x),f(a)) < c whenever x E X satisfies dx(x,a) < 8. 

As in calculus, it is convenient to use the following terminology and na­
tation: the function f : X ----+ Y converges to (approaches) b under approach 
to a, or in symbols: 

lim f(x) = b or f(x) ----+ b as x ----+ a 
x->a 

if, corresponding to each neighborhood V of bin Y, there is a neighborhood 
U of a in X such that f (U \ {a}) C V. It should be noted that it is the 
punctured neighborhood U \ {a} which is involved in X. We now obviously 
have 

f is continuous at a if and only if the limit limx->a f(x) E Y exists and 
coincides with the function value f(a). 

Also useful in practice is the 

Sequence criterion. f : X ----+ Y is continuous at a if and only if lim f (xn ) = 
f(a) for every sequence (xn ) of points Xn E X which converges to a. 

Two mappings f : X ----+ Y and g : Y ----+ Z may be put together to form 
a third go f : X ----+ Z according to the rule (g 0 f)(x) := g(f(x)) for all 
x. This composition of mappings inherits continuity from its component 
functions. 
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If f : X -+ Y is continuous at a E X and 9 : Y -+ Z is continuous at 
I(a) E Y, then 9 0 I: X -+ Z is continuous at a. 

A function I : X -+ Y is simply called continuous if it is continuous 
at each point of X. For example, the identity mapping id: X -+ X is 
continuous, for any metric space X. 

Well known (and essentially trivial) is the 

Continuity criterion. The following statements are equivalent: 

i) f is continuous. 

ii) The inverse-image 1-1 (V) of every open set V in Y is open in X. 

iii) The inverse-image l-l(C) of every closed set C in Y is closed in X. 

In particular every fiber I-l(f(x)), x EX, associated with a continuous 
mapping f : X -+ Y is closed in X. Continuity and compactness relate to 
each other quite well: 

Theorem. Let I : X -+ Y be continuous and K be a compact subset of X. 
Then f (K) is a compact subset of Y. 

Proof. Let (Yn) be any sequence in f(K). Then for every n there exists an Xn E K 
with f(xn) = Yn. Because K is compact, 2.5 ensures that some subsequence (x~) 
of (Xn) converges to some a E K. Because f is continuous, Y~ := f(x~) satisfies 

lim Y~ = lim f(x~) = f(a) E f(K). 

Consequently, (Y~) is a subsequence of (Yn) which converges to a limit in f(K). 
o 

Contained in this theorem is the fact that continuous real-valued func­
tions I : X -+ IR attain maxima and minima on each compactum in X. It 
was WEIERSTRASS (in his Berlin lectures from 1860 on) who first put in 
evidence the fundamental role of this fact (in the case where X = 1R). 

2. The C-algebra C(X). In this section we take Y := C. Complex-valued 
functions I : X -+ C, 9 : X -+ C can be added and multiplied: 

(f + g)(x) := I(x) + g(x), (f. g)(x) := f(x)g(x), x E X. 

Every complex number c determines the corresponding constant function 
X -+ C, X f-+ c. This function is again denoted by c. The function 1 
conjugate to I is defined by 

/(x) := I(x), x E X. 
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The rules of computation for the conjugation mapping C -+ C, Z ~ Z (cf. 
1.1) apply without change to C-valued functions. Thus 

f + 9 = 1 + g, fg = Ig, f = f. 

The real part and the imaginary part of f are defined by 

(?Rf)(x) := ?Rf(x), (SSf)(x):= SSf(x), x E X. 

These are real-valued functions and throughout we will write 

Then we have 

f = u+iv, 

u := ?Rf, v := SSf. 

1 -
u="2U +f), 

The limit laws from 3.1 together with the sequence criterion immediately 
imply: 

If f, 9 : X -+ C are both continuous at a EX, then so are the sum f + g, 
the product f g, and the conjugated function f. 

Contained in this is the fact that: 

A function f is continuous at a if and only if its real part u and its 
imaginary part v are both continuous at a. 

We will designate the set of all continuous C-valued functions on X 
by C(X). Since constant functions are certainly continuous, we have a 
natural inclusion C c C(X). Recalling the concept of a C-algebra from the 
discussion in 3.1, it is clear from all the foregoing that: 

C(X) is a commutative C-algebra with unit. There is an lR-linear, in­
volutory (that is, equal to its own inverse) automorphism C(X) -+ C(X), 
f ~ f. 

The function f is in C(X) if and only if each of?Rf and SSf is in C(X). 

If 9 is zero-free on X, meaning that 0 f/- g(X), then the function X -+ C 
defined by 

x ~ f(x)/g(x) 

is called the quotient function of f by 9 and it is designated simply f / g. 
The limit laws from 3.1 imply that: 

f /g E C(X) for every f E C(X) and every zero-free 9 E C(X). 
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The zero-free functions in C(X) are (in the sense of that word in algebra) 
just the units of the ring C(X), that is, exactly those elements e E C(X) 
for which there exists a (necessarily unique) e E C(X) satisfying ee = 1. 

3. Historical remarks on the concept of function. During the Leib­
niz and Euler period it was predominantly real-valued functions of real 
variables which were studied. From them mathematicians slowly groped 
toward the idea of complex-valued functions of complex variables. Thus in 
1748 EULER intended his famous formula eiz = cosz + isinz ([E],§138) 
only for real values of z. GAUSS was the first to see clearly - as his letter 
to BESSEL shows - that many properties of the classical functions are only 
fully understood when complex arguments are allowed. (Cf. Section 1 of 
the Historical Introduction.) 

The word "function" occurs in 1692 with LEIBNIZ as a designation for 
certain magnitudes (like abscissre, radii of curvature, etc.) which depend 
on the points of a curve, these points thought of as changing or varying. 
As early as 1698 in a letter to LEIBNIZ, Joh. BERNOULLI spoke of "be­
liebigen F'unktionen der Ordinaten (arbitrary functions of the ordinates)" 
and in 1718 he designated as function any "aus einer Veriinderlichen und 
irgendwelchen Konstanten zusammengesetzte Grope (magnitude which is 
built up from a variable and any constants whatsoever)". In his Intro­
ductio [E] EULER called any analytic expression, involving a variable and 
constants, a function. 

Extension of the function concept was made necessary by the investi­
gations of D'ALEMBERT, EULER, Daniel BERNOULLI and LAGRANGE on 
the problem of the vibrating string; thus EULER was led to abandon the 
idea of an a priori analytic expression and to introduce so-called arbi­
trary functions. Nevertheless it was only through the efforts of DIRICHLET 
that the presently accepted definition of function as unambiguous assign­
ment of values or mapping became established. In 1829 in his paper, Sur 
la convergence des series trigonometriques qui servent a representer une 
fonction arbitraire ... (English translation by R. FUJISAWA in Memoirs on 
Infinite Series, Tokio Mathematical and Physical Society (1891), Tokyo) 
he presented a function <p(x) which is "egale it une constante determinee c 
lorsque la variable x obtient une valeur rationelle, et egale it une autre con­
stante d, lorsque cette variable est irrationelle (equal to a certain constant 
c whenever the variable x takes on a rational value and equal to another 
constant d whenever this variable is irrational)" - see his Werke 1, p.132. 
And in his paper of 1837 he wrote, concerning the extent of the function 
concept Uber die Darstellung ganz willkiirlicher F'unktionen durch Sinus­
und Cosinusreihen: "Es ist gar nicht nothig, daB f(x) im ganzen Intervalle 
nach demselben Gesetze von x abhangig sei, ja man braucht nicht einmal 
an eine durch mathematische Operationen ausdriickbare Abhangigkeit zu 
denken. (It is certainly not necessary that the law of dependence of f(x) 
on x be the same throughout the interval; in fact one need not even think 



38 o. COMPLEX NUMBERS AND CONTINUOUS FUNCTIONS 

of the dependence as given by explicit mathematical operations.)" - see his 
Werke 1, p.135. On p.227 ff. of his 1854 Habilitationsschrift cited in 4.4 
RIEMANN gave a detailed discussion of the historical development of the 
function concept up to that time. An interesting survey that updates this 
is Dieter RUTHING'S "Some definitions of the concept offunction from Joh. 
Bernoulli to N. Bourbaki," Math. Intelligencer 6, no. 4 (1984), 72-77. 

4. Historical remarks on the concept of continuity. LEIBNIZ and 
EULER used (intuitively) a very strong notion of continuity: for them con­
tinuous amounted almost to analytic or generated by analytic functions. 
(On this point see, for example, C. TRUESDELL, "The rational mechanics 
of flexible or elastic bodies", in the Comments on Euler's Mechanics, Euler's 
Opera Omnia (2) 11, part 2, especially pp.243-249.) The presently accepted 
definition and its very precise arithmetic formulation had to wait until the 
work of BOLZANO, CAUCHY and WEIERSTRASS in the 19th century. Even 
in 1837 DIRICHLET gave a definition (Werke 1, p.135) which says that "sich 
f(x) mit x ebenfalls allmiihlich veriindert (f(x) changes gradually when x 
does so)." In the 20th century, starting already with HAUSDORFF on p.359 
of his 1914 book Grundziige der Mengenlehre, the idea of continuous map­
pings between topological spaces has become a matter of course. 

LEIBNIZ believed that a continuity principle underlay all the laws of nature. 
The law of continuity "Natura non facit salt us" runs like a red thread through 
all his work in philosophy, physics and mathematics. In the Initia rerum Math­
ematicarum metaphysica (Math. Schriften VII, 17-29) it says: " ... Kontinuitat 
aber kommt der Zeit wie der Ausdehnung, den Qualitaten wie den Bewegungen, 
iiberhaupt aber jedem Ubergange in der Natur zu, da ein solcher niemals sprung­
weise vor sich geht (... Continuity however is attributable to time as much as to 
spatial extension, to qualities just as to motion, actually to every transition in 
nature, since these never proceed by leaps)." LEIBNIZ applied his continuity prin­
ciple also, for example, to biology and in this seems to have anticipated DARWIN 
somewhat; in a letter to VARIGNON he writes: "Die zwingende Kraft des Konti­
nuitatsprinzip steht fUr mich so fest, daB ich nicht im geringsten iiber die Entdeck­
ung von Mittelwesen erstaunt ware, die in manchen Eigenthiimlichkeiten, etwa 
in ihrer Ernahrung und Fortpflanzung, mit ebenso groBem Rechte als Pflanzen 
wie als Tiere gel ten k6nnen .... (The continuity principle carries such conviction 
for·me that I wouldn't in the least be astonished at the discovery of intermedi­
ate life-forms many of whose characteristics, like their methods of feeding and 
reproduction, would give them equal claim to being plants or animals ... )." The 
continuity postulate later became known as Leibniz' dogma. 

Exercises 
Exercise 1. Let X, Y be metric spaces, f : X -+ Y a mapping. 

a) Show that f is continuous exactly when feA) c f(A) for every subset 
A of X. 
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b) f is called a homeomorphism if it is bijective and both f and f- 1 are 
continuous. Show that a bijection f is a homeomorphism if and only 
if J(J1) = f(A) for every subset A of X. 

Exercise 2. Let X be a metric space and f: X -+ JR be a mapping. 
Show that f is continuous exactly when, for every b E JR, the pre-images 
f-l(( -00, b)) and f-1((b, 00)) are open in X. Is there any similar criterion 
for mappings from X into C? 

Exercise 3. Let X, Y be metric spaces with metrics dx , dy and let f : X -+ 

Y be continuous. Show that if X is compact, then f is uniformly continuous, 
that is, for each e > 0 there exists a 8(e) > 0 such that dy(f(u), f(v)) < e 
whenever u, v E X satisfy dx(u, v) < 8(e). 

§6 Connected spaces. Regions in C 

In 1851 RIEMANN introduced the concept of connectedness in his disserta­
tion ([R],p.9) as follows: 

"Wir betrachten zwei Fliichentheile als zusammenhiingend oder Einem 
Stucke angeh6rig, wenn sich von einem Punkt des einen durch das Innere 
der Fliiche eine Linie nach einem Punkte des andern ziehen liisst. (We 
consider two parts of a surface as being connected or as belonging to a 
single piece, if from a point of the one a curve can be drawn in the interior 
of the surface to a point of the other.)" 

In contemporary language this is the concept of path-connectedness. 
Since the evolution of set-theoretic topology at the beginning of the 20th 
century a more general notion of connectedness, which contains Riemann's 
as a special case, has emerged. Both concepts can be used to advantage in 
function theory and will be discussed in this section. 

X and Y will always denote metric spaces. For a, bE JR with a ::; b, [a, b] 
denotes the compact interval {x E JR : a ::; x ::; b} in lR. 

1. Locally constant functions. Connectedness concept. A function 
f : X -+ C is called locally constant in X if every point x E X lies in some 
neighborhood U C X such that flU is constant. Generally locally constant 
functions are not constant. For example, if Bo, Bl are two disjoint open 
balls in some metric space, X := Bo U Bl and f : X -+ C is the function 
which throughout B j has the value j (j = 0,1), then f is locally constant 
in X but not constant. And this example is representative of a general 

Theorem. For any metric space X the following are equivalent: 

i) Every locally constant function f : X -+ C is constant. 

ii) The only non-empty subset of X which is both open and closed is X 
itself. 
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Proof i) '* ii) Suppose A is a non-empty subset of X which is both 
open and closed. (The neologism "clop en" is a popular abbreviation for 
"both closed and open" .) Then its "characteristic" or "indicator" function 
1A : X -+ C defined by 

1A(X):= 1 for x E A, 1A(X):= 0 for x E X\A 

is locally constant, since both A and X \ A are open. Therefore 1A is 
constant. Since A =f: 0, the constant value must be 1, whence X \ A = 
0, A=X. 

ii) '* i) Fix c E X. The fiber A := f-1(f(C)) is non-empty and is 
open in X because f is locally constant. Because locally constant functions 
are trivially continuous, A is also closed in X. It follows that A = X, that 
is, f(x) = f(c) for all x E X. 0 

Mathematical experience has shown that the equivalent properties i) 
and ii) of the preceding theorem optimally capture the intuitively clear yet 
vague conception of a space being connected. So we make these properties 
into the following definition: a metric space X is defined to be connected 
if it has properties i) and ii). A theorem which is immediate from this 
definition is that a continuous mapping f : X -+ Y from a connected space 
X has a connected image set f(X). From calculus we borrow the important 

Theorem. Each closed interval and each open interval in the real number 
line IR is connected. 

2. Paths and path connectedness. Any continuous mapping "I 
[a, b] -+ X of a closed interval in IR into a metric space X is called a 
path in X from the initial point "I(a) to the terminal point "I(b)j we say 
that "I joins the points "I(a) and "I(b) in X. Paths are also called curves. A 
path is called closed if its initial and terminal points coincide. The image 
set 1"11 := "I([a, b]) c X is called the tmjectory or the tmce or the impression 
of the curve. Because "I is continuous, 1"11 is a compact set. A path is more 
than just its trajectory: the latter is traversed according to the law "I(t) [t 
thought of as a time parameter]. Nevertheless it is convenient to allow the 
abuse of language whereby we sometimes write "I for 1"11. 

If"lj: [aj,bj ]-+ X, j = 1,2, are paths in X and if the terminal point 
"11 (bt) of "11 coincides with the initial point "I2(a2) of "12, then the path-sum 
"11 + "12 of "11 and "12 in X is defined as the continuous mapping 

for t E [aI, b1] 
for t E [b1, b2 - a2 + b1]. 

The path-sum "11 + "12 + ... + "In of finitely many paths "11, "12, ... , "In (whose 
initial and terminal points are appropriately related) is defined correspond­
ingly. One verifies immediately that path-addition is associative so that, in 
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fact, no parentheses need be used. Path-addition is naturally not commu­
tative. 

A space X is called path-connected if, for every pair of points p, q EX, 
there is a path, in X with initial point p and terminal point q. This would 
be an infelicitous choice of language were it not for the fact that 

Every path-connected space X is connected. 

Proof Let U -I- 0 be a subset of X which is both open and closed. Fix 
p E U and consider any q E X. Let the path, : [a, b] ----; X join p to q. Since 
, is continuous, ,-l(U) is an open and closed subset of the real interval 
[a, b] and it is non-empty (because it contains a E ,-l(p)). Because [a, b] is 
connected, it follows that ,-l(U) = [a, b] and so q = ,(b) E U. This shows 
that X c U, so U = X. D 

The converse of the fact just proved is not true: As an example, consider the 
space X:= {iy: -1:S; y:S; I}U{z = x+iy: 0 < x:S; ~,y = sin(x- 1 )} with the 
metric induced from C. It is connected but not path-connected, as the reader is 
encouraged to convince himself via a sketch. 

3. Regions in Co The path in C, , : [0,1] ----; C, defined by ,(t) := 

(1 - t)zo + tZl is called the (line) segment from Zo to Zl and is designated 
by [zo, zd. Intervals [a, b] in IR are segments via t f--+ (1 - t)a + tb. A 
polygon or polygonal path from p E C to q E C is a finite sum P = [zo, Zl] + 
[Zl' Z2] + ... + [zn, Zn+l] of segments with Zo = P and Zn+l ,= q. P is called 
axis-parallel if each segment is parallel to one of the two coordinate axes, 
that is, if for every 1I either Rzv = RZv +1 or 'Szv = 'SZv+l. Of course every 
polygon is a path. 

Non-empty open sets in C are called domains and will be denoted by D 
throughout. 

Theorem. The following statements concerning domains DeC are equiv­
alent: 

i) D is connected. 

ii) For every pair of points p, qED there is an axis-parallel polygon 
P C D from p to q. 

iii) D is path-connected. 

Proof i) =} ii) Fix some p E D. We define a function f : D ----; C as 
follows: f(w) := 1 if there exists an axis-parallel polygon in D from p to w 
and otherwise f(w) := o. Now consider any open disc B c:: D. For every 
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pair of points z, wEB there is evidently an axis-parallel polygon Pzw in 
B from z to w. If J(z) = 1 for at least one point z E B, then J(w) = 1 for 
all wEB. From this it is clear that either JIB = lor JIB = O. This shows 
that J is locally-constant and so, by connectedness of D, J is constant. 
Since J(p) = 1, this constant value is 1 : J(w) = 1 for all WED, that is, 
for every point wED there is an axis-parallel polygon in D from p to w. 
As p is arbitrary in D, this establishes the path-connectedness of D. 

ii) '* iii) This is trivial because axis-parallel polygons are paths. 

iii) '* i) Clear from 2. D 

Remark. The openness of Din C was only used in the (non-constructive!) 
proof that i) '* ii) and there only to ensure that every point of D have 
a path-connected neighborhood (namely, a disc, in which in fact any two 
points can even be joined by an axis-parallel polygon). Spaces with this 
property are called locally path-connected. Evidently then our proof of i) 
'* ii) establishes the more general fact that: 

Every connected and locally path-connected space, e.g., every connected 
domain in ]Rn, 1 :::; n < 00, is path-connected. 

Needle spray IZ3 IZ2I 

~ 

G 

Connected domains in C are called regions and are traditionally denoted 
with G (after the corresponding German word Gebiet). Thus in a region 
Gee every pair of points can be joined by an axis-parallel polygon in 
G. However, regions may appear very complicated, containing for example 
many "needle spray" and "spiral" excisions, as in the figure above. Of 
course all discs Br (c), as well as C and ex, are regions. 

Regions play a much more important role in function theory than in 
real analysis. It will later be shown, after we have available the Identity 
Theorem, that the topological property of connectedness of a domain Dee 
is equivalent to the algebraic property that the ring O(D) of holomorphic 
functions on D have no zero-divisors. 

4. Connected components of domains. Two points p, qED are called 
"path-equivalent" if there is a path in D from p to q. In this wayan 
equivalence relation is defined in D. The associated equivalence classes are 
called connected components (or simply components) of D. The terminology 
is justified by the fact that 
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Every component G of D is a region in C and D has at most countably 
many components. 

Proof a) Consider c E G. Since D is open, there is an r > 0 such that 
Br(c) c D. But every point of Br(c) is equivalent to c (!), from which 
Br(c) c G follows. Thus G is open. By definition G is path-connected, 
hence a region. 

b) Every domain D contains a countable dense subset; e.g., the rational 
complex numbers in D constitute such a set. The set of all open discs 
centered at these points and having rational radii is a countable cover 
Uo, Ub ·•· of D by path-connected sets Uj . Thus each U3 lies in a unique 
component G j and every component G of D contains some point of the 
dense set (because G is open) and therefore also contains some Uk. The 
map j I---> G j therefore sends N onto (though not necessarily injectively) 
the set of all components of D. D 

The figure above illustrates a bounded domain with infinitely many com­
ponents: The centers Cn converge to c and the respective radii rn are so 
small that the various discs U( Cj) := Brj (Cj) are disjoint. The components 
of D := U~l U(Cj) are exactly the discs U(Cj). D 

Everything just said about components is equally valid for domains in 
]Rn and even more generally for any locally connected space which has a 
countable dense subset. 

5. Boundaries and distance to the boundary. If D is a domain in C, 
the set 

aD:= D\D 

is called the boundary of D and the points of aD are called boundary points 
of D. The boundary aD is always closed in C. For discs we have aBr(c) = 
{z E C : Iz - ci = r}. A point a E C \ D is a boundary point of D precisely 
if a = limzn for some sequence of Zn E D. Notice that unless D = 0 or 
D = C, the set aD is always non-empty: otherwise we would have D = D, 
so D would be both open and closed in the connected space C. If D is a 
non-void, proper subset of C, then for every point C E D we may define 

dc(D) := inf{lc - zi : Z E aD}. 

This number is positive and is called the boundary-distance of c in D. For 
D = C we set dc(C) := 00 for all c. The (extended) number d := dc(D) 
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is the maximum radius r such that the disc Br(c) lies wholly in D. When 
d < 00 (i.e., D =I- C) there is at least one boundary point p of Don BBd(C) 
(cf. the figure). 

The boundary-distance will play an important role in the development 
of holomorphic functions into power series (Chapter 7.3.2). 

Exercises 

Exercise 1 (distance between sets). For non-empty subsets M, N of C define 

d(M, N) := inf{lz - wi : z E M, wEN}. 

Show that if A is closed, K compact, then there exists z E A, w E K 
such that Iz - wi = dCA, K). In particular, if in addition An K = 0, then 
d(A,K) > O. 

Exercise 2. Let f : D ~ D' be a mapping between domains in C. Show 
that: 

a) If W is a component of D, then feW) is contained in a unique com­
ponent of D'. 

b) If additionally, f is a homeomorphism, then feW) is a component of 
D'. 

Exercise 3. A subset M of C is called convex if for any points w, z E M 
the whole segment [w, z] joining them lies in M. Convex sets are thus 
path-connected. 

a) Show that any intersection of convex subsets of C is a convex set. 

b) Let e be a region in C. Show that G is convex if e is. What about 
the converse? 

c) Let e be a convex region in C and c E Be. Show that there is a 
(real) line L in C with c ELand L n e = 0. 

Exercise 4. Let D be a domain in C and V an open, convex n-gon (n ?: 3) 
which, together with its boundary, lies in D. Show that there exists an 
open convex n-gon V' in C such that V C V' c D. 



Chapter 1 

Complex-Differential 
Calculus 

A cornerstone of our thinking is that in the 
infinitely small every function becomes lin­
ear (from an unknown mathematical physi­
cist, 1915). 

1. The adage leading off this chapter is the kernel of all differential cal­
culi. Notwithstanding that this cornerstone was pulverized by Riemann's 
and Weierstrass' discovery of (real-valued) everywhere continuous nowhere 
differentiable functions on JR, it is still a valuable principle for creative 
mathematicians and physicists. 

The concept of complex-differentiability will be introduced exactly as 
was that of differentiability on R Complex-valued functions which are 
complex-differentiable throughout a domain in C are called holomorphic 
and function theory is usually understood to be the study of such func­
tions. None of the early works on this subject studied holomorphic func­
tions per se but rather the theory was initially fuelled by the rich legacy 
of special functions bequeathed by the Euler era. The first works to treat 
function theory as an independent mathematical discipline originated with 
CAUCHY, although even he had no plan for founding a general theory of 
complex-differentiable functions. The main concern of his first great trea­
tise [C l ] Memoire sur les integrales definies from the year 1814 as well 
as that of his second, considerably shorter paper [C2] Memoire sur les 
integrales definies, prises entre des limites imaginaires from the year 1825, 
is, as these titles indicate, the integral calculus in C; scarcely anything is 
said in them, consciously anyway, about complex differential calculus-it 
is just used, uncritically. With Eulerian prescience CAUCHY differentiates 
functions of a complex variable according to the rules known for functions 

45 



46 1. COMPLEX-DIFFERENTIAL CALCULUS 

on ~; he implicitly makes use of the existence and continuity of the first 
derivative. (We will have more to say on this point in 7.1.3-7.1.5.) 

2. CAUCHY'S Cours d'analyse of 1821 (see [C]) prepared the way for func­
tion theory. Here we recognize very clearly a striving to free the function 
concept from the restrictions of "effective representation." Today we can 
scarcely understand the conceptual difficulties which had to be overcome 
at that time. Even 30 years later in 1851 we find RIEMANN emphasizing re­
peatedly in his dissertation that he is concerned with complex-differentiable 
"Funktionen einer veranderlichen complexen Grosse unabhangig von einem 
Ausdruck fUr dieselben (functions of a complex variable independently of 
any particular expression for them)"; he gives the following definition of 
holomorphic function ([R],p.5): "Eine veranderliche complexe Grosse w 
heiBt eine Function einer anderen veranderlichen complexen Grosse z, wenn 
sie mit ihr sich so andert, dass der Werth des Differentialquotienten ~"; un­
abhangig von dem Werthe des Differentials dz ist. (A variable complex 
quantity w is called a function of another variable complex quantity z if it 
changes with z in such a manner that the value of the differential quotient 
~"; is independent of the value of the differential dz.)" 

For a long time now it has been customary in real and complex analysis 
not to treat differential and integral calculus together and simultaneously 
but rather one after the other and (for reasons of economy or pedagogy (?)) 
to begin with differential calculus. We will also proceed in this way and first 
discuss in some detail the fundamental concept of complex-differentiability. 
At the center of our considerations are the famous CAUCHy-RIEMANN 
differential equations 

&u 

&x 
&v 
&y 

and 
&u 

&y 
&v 
&x 

for complex-differentiable functions f = u + iv, together with the inter­
pretation of these equations as affirming the C-linearity of the differential 
of f. These seem to reduce the theory of complex-differentiable functions 
to being a part of the theory of real partial differential equations. Never­
theless, many complex analysts feel that methods of real analysis should 
be proscribed and in the present volume we will more or less conform to 
this principle of methodological purity; all the more readily since the path 
through the reals is often the more arduous one. (For example, it is very 
tedious to derive the differentiation rules by reduction to the real case.) 

3. In Sections 1, 2 and 3 of this chapter the usual material of complex 
differential calculus will be treated. In doing so emphasis will be laid on 
the fact that the complex-differentiable functions are precisely the real­
differentiable functions which have a C-linear (and not just an ~-linear) 
differential; the Cauchy-Riemann differential equations describe nothing 
more or less than this complex linearity (Theorem 2.1). In Section 4 we 
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define and discuss the partial derivatives with respect to z and z. This 
makes it possible to organize the two Cauchy-Riemann equations into the 
single equation 

oj = o. 
oz ' 

in 4.4 we will go a little deeper into the technique of differentiation with 
respect to z and z. 

§1 Complex-differentiable functions 

Just as in the real case, complex-differentiability will be reduced to a con­
tinuity issue by a linearization condition. But we also want to see that 
complex-differentiability is far more than a mere analog of real-differenti­
ability. A simple discussion of difference quotients will lead immediately to 
the Cauchy-Riemann equations 

U x = Vy and u y = -Vx for J = u + iv 

from which will follow, in particular, that the real and imaginary parts of a 
complex-differentiable function satisfy Laplace's potential-equation ~u = 0 
and are consequently harmonic functions. 

1. Complex-differentiability. A function J : D ---> C is called complex­
differentiable at c E D if there exists a funtion JI : D ---> C which is 
continuous at c and satisfies 

J(z) = J(c) + (z - c)JI(z) for all zED (C-linearization). 

Such a function JI, if it exists at all, is uniquely determined by J: 

JI (z) = J(z) - J(c) for zED \ {c} (difference quotient) 
z-c 

and then, upon setting h := z - c, the continuity of JI at c entails that 

r J(c+h)-J(c) -J () 
h~ h - 1 C 

(differential quotient). 

The number JI (c) E C is called the derivative (with respect to z) oj J at c; 
we write ! (c) := f'(c) := JI(c). 

Complex-differentiability oj J at c implies continuity oj J at c, since J is a 
sum of products of the functions J(c), z - c and JI which are all continuous 
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at c. The fact that formally the definition of differentiability is the same for 
real and complex variables will, in 3.1, immediately produce the expected 
differentiation rules. 

One proves directly that 

If f is complex-differentiable at c, then for every e > 0 there is a 8 > 0 
such that If(c+h) - f(c) - f'(c)hl::; elhl for all h E C satisfying Ihl::; 8. 

Examples. 1) Each power function zn, n EN, is complex-differentiable 
everywhere in C: 

zn = en + (z - c)JI(z) with JI(z) := zn-l + czn- 2 + ... + cn- 2 z + cn- 1 

shows that (zn)' = nzn-l for every z E C. More generally, all polynomials 
p(z) E Clz] are everywhere complex-differentiable and rational functions 
g(z) E C(z) are complex-differentiable at every point where they are de­
fined, i.e., at every point not a zero of the denominator (cf. 3.2). 

2) The conjugation function f(z) := Z, z E C, is not complex-differenti­
able at any point, because the difference quotient 

f(c + h) - f(c) 
h 

h 
h' 

at c E C has the value 1 for hEIR and the value -1 for h E ilR, and 
consequently has no limit. 

3) The functions ~z, 'Jz, Izl are complex-differentiable nowhere in C. 
This is shown by first considering real and then purely imaginary h, as in 
2). 

2. The Cauchy-Riemann differential equations. We write c = a + 
ib = (a, b), z = x + iy = (x, y). If f(z) = u(x, y) + iv(x, y) is complex­
differentiable, then 

f'(c) = lim f(c + h) - f(c) = lim f(c + i~) - f(c). 
h--->O h h--->O zh 

c+ih 

1 
c<-c+h 

Choosing h real, it follows that 

f'(c) 1. u(a + h, b) - u(a, b) . l' v(a + h, b) - v(a, b) 1m + z 1m --'------'----'----'-----'-
h--->O h h--->O h 

1. u(a, b + h) - u(a, b) . l' v(a, b + h) - v(a, b) 
1m +z 1m . 

h--->O ih h--->O ih 
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Thus the partial derivatives with respect to x and y of the real-valued 
functions u and v all exist at the point c; and, using the usual notations 
ux(c),···, vy(c) for these derivatives, the equations 

f'(c) = ux(c) + ivx(c) = ~(Uy(c) + ivy(c)) 
~ 

obtain. 
With this we have proven: 

A necessary condition for the complex-differentiability of f = u + iv at c 
is that the real part u and the imaginary part v of f each be differentiable 
with respect to x and with respect to y and that the "Cauchy-Riemann 
differential equations" 

obtain. When this happens, f'(c) = ux(c) + ivx(c) = vy(c) - iuy(c). 

The equations (*) are just the analytic manifestation of the geometric 
insight that the difference quotient of f has to have the same limiting 
value for approach to c parallel to the real axis and for approach parallel to 
the imaginary axis. Deeper aspects of this naive but mnemonically useful 
approach to the Cauchy-Riemann equations will be examined in 2.1. 

3. Historical remarks on the Cauchy-Riemann differential equa­
tions. CAUCHY [C l ] obtained the equations in 1814 while discussing the 
interchange of the order of integration in a real double integral (on the top 
of p.338 in a more general form, on the bottom of p.339 in the well-known 
form). He emphasizes (p.338) that his differential equations contain the 
whole theory of the passage from reals to complexes: "Ces deux equations 
renferment toute la theorie du passage du reel a l'imaginaire, et il ne nous 
reste plus qu'a indiquer la maniere de s'en servir." Nevertheless, CAUCHY 
did not make these equations the foundation of his function theory. 

RIEMANN put these differential equations at the beginning of his func­
tion theory and consistently built on them. He recognized "in der partiellen 
Differentialgleichung die wesentliche Definition einer [komplex differenzier­
baren] Function von einer complexen Veriinderlichen ... Wahrscheinlich 
sind diese, fur seine ganze spiitere Laufbahn maassgebenden Ideen zuerst 
in den Herbstferien 1847 [als 21-jiihriger] grundlich von ihm verarbeitet 
(in the partial differential equation the essential definition of a [complex­
differentiable] function of a complex variable ... Probably these ideas, 
which were decisive for the course of his whole later life, were first worked 
out by him during the autumn holidays of 1847 [as a 21-year-old])" - quoted 
from R. DEDEKIND: Bernhard Riemann's Lebenslauf (p.544 of Riemann's 
Werke). However, neither CAUCHY nor RIEMANN was the first to discover 
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these equations; they occur previously in 1752 in D' ALEMBERT'S theory of 
fluid flow Essai d'une nouvelle theorie de la resistance des fluides (David, 
Paris); and in the work of EULER and LAGRANGE. 

In 1851 RIEMANN argues succinctly ([RJ, pp.6,7) thus: "Bringt man den 
Differentialquotienten 

(1) 

in die Form 

(2) 

du + dvi 

dx + dyi 

( au + aVi) dx + (av _ aUi) dyi ax ax ay ay 

dx + dyi 

so erhellt, dass er und zwar nur dann fUr je zwei Wert he von dx und dy 
denselben Werth haben wird, wenn 

(3) 
au 
ax 

av 
ay and 

av 
ax 

au 
ay 

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit w = 
u + vi eine Function von z = x + yi sei. Fur die einzelnen Glieder dieser 
Function fliessen aus ihnen die folgenden: 

(4) 

welche fUr die Untersuchung der Eigenschaften, die Einem Gliede einer 
solchen Function einzeln betrachtet zukommen, die Grundlage bilden. (If 
one brings the differential quotient (1) into the form (2), it becomes evident 
that it will have the same value for every two values of dx and dy, if and 
indeed only if the equations (3) hold. These latter conditions are thus 
necessary and sufficient in order that w = u + vi be a function of x + yi. 
Out of them flow equations (4) for the respective terms of the function w. 
These equations form the basis for investigating the properties possessed by 
anyone term of such a function when that term is considered individually.)" 

§2 Complex and real differentiability 

The customary graphic significance of the real derivative of a real function 
as the "slope of the tangent" is not feasible in the realm of the complexes, 
because the graph of a complex function w = f (z) is a "surface" in the 4 
real-dimensional complex (w, z )-space 1(:2. There is nevertheless a geomet­
ric interpretation of the complex differential quotient f' (c). To explicate it 
we need the fundamental concept of the real vector differential calculus: 
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A mapping f : D --> IRn of a domain D c IRm is called real-differentiable 
at the point c E D, if for some lR-linear mapping T : IRm --> IRn 

(1) lim If(c + h) - f(c) - T(h)1 = o. 
h--->O Ihl 

(Here I I represent fixed norms in IRm and IRn.) 

As is well known and elementary, T is then uniquely determined and is 
called the differential T f (c), sometimes also the tangent mapping of f at c. 
It is clear from (1) that real-differentiability at c entails continuity at c. 

If bases are given in IRm and IRn and if the component functions of f in 
these bases are fv(Xl,"', x m ), 1 ::::: l/ ::::: n, then the real-differentiability of 
f at c implies that all the partial derivatives ~ (c) exist, 1 ::::: It ::::: m, 

" 1 ::::: l/ ::::: n and that the differential Tf(c) is implemented by writing 
elements of IRm as column vectors and multiplying them on the left by 
the n x m Jacobian matrix 

(;~: (c)) ~=l, ... ,m 
v=l, ... ,n 

1. Characterization of complex-differentiable functions. We apply 
the theory from the real realm just sketched to complex-valued functions 
(thus m = n = 2 and 1R2 = C). If f : D --> C is complex-differentiable at c, 
then (cf. 1.1) 

r f(c + h) - f(c) - f'(c)h - 0 
h~ h - . 

From this and (1) it follows immediately that complex-differentiable map­
pings are real-differentiable and have C-linear differentials. This ((>linearity 
of the differential is significant for complex-differentiability and is the deeper 
reason why the Cauchy-Riemann differential equations hold; we have namely, 
if we again set z = x + iy, f = u + iv: 

Theorem. The following statements about a function f D --> Care 
equivalent: 

i) f is complex-differentiable at c ED. 

ii) f is real-differentiable at c and the differential Tf(c) : C --> C is 
complex-linear. 

iii) f is real-differentiable at c and the Cauchy-Riemann equations ux(c) = 

vy(c), uy(c) = -vx(c) hold. 
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If i) - iii) prevail, then f'(c) = ux(c) + ivx(c) = vy(c) - iUy(c). 

Proof i) {:} ii) This is clear on the basis of the relevant definitions. 
ii) {:} iii) The differential T f (c) is given by the 2 x 2 matrix 

( ux(c) uy(c)) 
vx(c) Yy(c) 

According to Theorem 0.1.2 the JR-linear mapping C ---; C determined by 
this matrix is C-linear if and only if ux(c) = vy(c) and uy(c) = -vx(c). 

The equation for f'(c) was already proven in 1.2. 0 

In order to be able to apply this theorem, we need a criterion for the 
real-differentiability of f = u + iv at c. We will occupy ourselves with this 
question below. 

2. A sufficiency criterion for complex-differentiability. Together 
with f : D ---; C and 9 : D ---; C, all the mappings af + bg : D ---; C 
(a, b E C) will be real-differentiable at c and from equation (1) in the 
introductory material of this section we infer that 

(T(af + bg)) (c) = a(Tf)(c) + b(Tg)(c). 

Also, together with f, the conjugated function f will be real-differentiable 
at c and, if T f(c)(h) is given by >"h+ /-Lit, then T f(c)(h) is given by "jih +>"h. 
It follows that 

The function f = u + iv : D ---; C is real-differentiable at c E D if and 
only if each of the functions u : D ---; JR, v : D ---; JR is real-differentiable at 
c. 

To prove this we just direct our attention to the equations u = ~ (f + f), 
v = t;,(f - f) and to the fact that a real-valued function D ---; JR is real­
differentiable at c if and only if the corresponding complex-valued function 
D ---; JR <.......t Cis. 0 

A function u : D ---; JR is called continuously (real-) differentiable if the 
partial derivatives u x , u y exist throughout D and are continuous functions 
there. In the real-differential calculus it is shown with the help of the Mean 
Value Theorem that 

Every continuously differentiable function u : D ---; JR is real-differentiable 
at each point of D. 

The continuity requirement on U x and u y is essential here, as the well­
known example u(z) := xylzl-2 for z = (x, y) -1= (0,0) and u(O,O) := 0 
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shows. Here ux and uy exist everywhere with ux(O, 0) = uy(O, 0) = 0, yet 
u is not even continuous at (0,0). 

By means of Theorem 1 we now deduce a criterion which is quite handy 
in applications: 

Sufficiency criterion for complex-differentiability. If u, v are con­
tinuously differentiable real-valued functions in D, then the complex-valued 
function f := u + iv is real-differentiable at every point of D. 

If furthermore U x = Vy and uy = -vx throughout D, then f is complex­
differentiable at every point of D. 

This criterion is almost always called on when one wants to describe 
complex-differentiable functions via statements about their real and imag­
inary parts. 

3. Examples involving the Cauchy-Riemann equations. 
1) The function f(z) := x 3 y2+ix2y3 is, according to 2, real-differentiable 

throughout C. The Cauchy-Riemann equations hold at the point c = (a, b) 
exactly when 3a2b2 = 3a2b2 and 2a3b = -2ab3 , i.e., when ab(a2 + b2) = 0; 
which, since a, b are real, amounts to ab = O. In summary, the points at 
which f is complex-differentiable are the points on the two coordinate axes. 

2) We will assume the reader is acquainted with the real exponential 
function et and the real trigonometric functions, cos t, sin t, t E JR. The 
function 

e(z) := eX cosy + iex sin y 

is real-differentiable at every z = x+iy in C, by 2, and the Cauchy-Riemann 
equations clearly hold at every point. Thus e(z) is complex-differentiable 
in C and e'(z) = ux(z) + ivx(z) = e(z). In 5.1.1 we will see that e(z) is the 
complex exponential function exp z = L~ :; . 

3) This example is for readers acquainted with the real logarithm function 
log t, t > 0, and the real arctangent function arctan t, t E JR; the notation 
refers to the principal branch, that is, the values of arctangent lying between 
-7r /2 and 7r /2. From 2 and the properties of these functions, namely the 
identities log'(t) = t-1 and arctan'(t) = (1 + t2)-1, we see that 

- 1 Y £(z) := "2log(x2 + y2) + i arctan ~ 

is real-differentiable throughout C \ {z E C : ~z = O} and satisfies the 
Cauchy-Riemann equations there as well. Thus i(z) is complex-differenti­
able everywhere to the left and to the right of the imaginary axis. A direct 
calculation shows that 

- 1 
£'(z) = ux(z) + ivx(z) = - , 

z 
z E C with ~z =I O. 
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In 5.4.4 we will see that l(z) coincides in the right half-plane with the 
principal branch of the complex logarithm function and that 

00 ( 1),,-1 
l(z) = log z = L - lJ (z - It 

1 

In the last two examples complex-differentiable functions were fashioned 
out of transcendental real functions with the help of the Cauchy-Riemann 
equations. However, in this book - as in classical function theory generally 
- this mode of constructing complex-differentiable functions will not be 
pursued any further. 

4) If f = u + iv is complex-differentiable in D, then throughout D 

1 l' 12 = det (Ux 
vx 

a fact which follows from 11'12 = l' fl = u~ + v~ on account of U x = vy, 
u y = -vx' II'(z)j2 is thus the value of the Jacobian functional determinant 
of the mapping (x, y) f-+ (u(x, V), v(x, V)); this determinant is never negative 
and in fact is positive at every point zED where I'(z) i- O. In example 
2) we see, e.g., that 

4*. Harmonic functions. Not all real-valued real-differentiable functions 
u(x, y) occur as real parts of complex-differentiable functions. The Cauchy­
Riemann equations lead at once to a quite restrictive necessary condition 
on u for this to happen. To formulate it, recall that the twice continuous 
(real-) differentiability of u in D means that the partial derivatives U x and 
u y are differentiable and the four second-order partial derivatives U xx , u xy , 
u yx , U yy are continuous in D. As a consequence of this continuity u xy = u yx 
in D, another well-known fact from the real differential calculus, often 
proved via the Mean Value Theorem. Now the aforementioned necessary 
condition reads 

Theorem. If f = u + iv is complex-differentiable in D and if u and v are 
twice continuously real-differentiable in D, then 

u xx + U yy = 0 , Vxx + Vyy = 0 in D. 

Proof Because f is complex-differentiable throughout D, U x = Vy and 
u y = -vx in D. More partial differentiation yields U xx = vyx , u xy = Vyy , 
U yy = -vxy , u yx = -vxx' It follows that U xx + U yy = Vyx - vxy and 
Vxx + Vyy = -uyx + u xy in D. Since all the second-order partial derivatives 
of u and v are continuous in D, we have, as noted above, that u xy = u yx 
and vxy = vyx ; and so the claimed equalities follow. 0 
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The supplemental assumption of the twice continuous differentiability of 
U and v in this theorem is actually superfluous, because it turns out that ev­
ery complex-differentiable function is infinitely often complex-differentiable 
(cf. 7.4.1). 

In the literature the differential polynomial 

82 82 

~:= 8x2 + 8y2 

is known as the Laplace operator. For every twice real-differentiable func­
tion u : D ...... IR the function ~ u = U XX + U yy is defined in D. U is called 
a potential-function in D if u satisfies the potential-equation ~u = 0 in D. 
(The language is motivated by considerations from physics, especially elec­
trostatics, because functions with ~u = 0 arise as potentials in physics.) 
Potential-functions are also known as harmonic functions. 

The essence of the theorem is that the real and imaginary parts of 
complex-differentiable functions are potential-functions. Thus simple ex­
amples of potential-functions can be obtained from the examples in the 
preceding section; e.g., 'Sz2 = 2xy, ~z3 = x3 - 3xy2 are harmonic in C. 
Furthermore, the functions 

~e(z) 

~C(z) 
eX cosy, 

log Izl , 
'Se(z) 
'SC(z) 

eX sin y 
arctan 1i 

x 

are harmonic in their domains of definition. The function x 2 + y2 = Izl2 
is not harmonic and so not the real part of any complex-differentiable 
function. (Take a look at x 2 - y2 = ~Z2; alternatively, look at ~(x2 +y2).) 

o 

For every harmonic polynomial u(x, y) E lR[x, yj one can directly write 
down a complex polynomial p(z) E C[zj whose real part is u(x, y); namely, 
p(z) := 2u( ~z,:hz) - u(O, 0). The reader should clarify this for himself with 
a few examples; he might even give a proof of the general assertion. 

Harmonic functions of two variables played a big role in classical mathematics 
and gave essential impulses to it. In this connection let us only recall here the 
famous 

DIRICHLET Boundary-Value Problem. A real-valned continuous 
function g on the boundary 8E = {z E C : Izl = I} of the unit disc is 
given. A continuous function u on E U 8E is sought having the properties 
that ul8E = g and ulE is a potential-function in E. 

It can be shown that there is always exactly one such function u. 0 

The theory of holomorphic (see next section for the definition) functions has 
gotten valuable stimulus from the theory of harmonic functions. Some properties 
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of harmonic functions (integral formulas, maximum principle, convergence theo­
rems, etc.) are shared by holomorphic functions. But nowadays it is customary 
to develop the theory of holomorphic functions completely and then to derive 
from it the fundamental properties of harmonic functions of two variables. 

Exercises 

Exercise 1. Where are the following functions complex-differentiable? 

a) f(x + iy) = x 4 y5 + i xy3 

b) f(x+iy) =y2sinx+iy 

c) f(x + iy) = sin2 (x + y) + i cos2(x + y) 

d) f(x + iy) = -6(cosx + isinx) + (2 - 2i)y3 + 15(y2 + 2y). 

Exercise 2. Let G be a region in e and f = u+iv be complex-differentiable 
in G. Show that a function v : G -+ JR satisfies u+iv complex-differentiable 
in G, if and only if, v - v is constant. 

Exercise 3. For each of the given functions u : e -+ JR find all functions 
v : e -+ JR such that u + iv is complex-differentiable: 

a) u(x + iy) = 2x3 - 6xy2 + x 2 _ y2 - Y 

b) u(x + iy) = x 2 - y2 + c Y sinx - eY cosx. 

Exercise 4. Show that for integer n ~ 1 the function u : ex -+ JR, 
z 1---+ log Iznl is harmonic but is not the real part of any function which 
is complex-differentiable in ex. 

Exercise 5. Show that every harmonic function u : e -+ JR is the real part 
of some complex-differentiable function on C. 

§3 Holomorphic functions 

Now we introduce the fundamental idea of all of function theory. A func­
tion f : D -+ e is called holomorphic in the domain D if f is complex­
differentiable at every point of D; we say f is holomorphic at c E D if there 
is an open neighborhood U of c lying in D such that the restriction flU of 
f to U is holomorphic in U. 

The set of all points at which a function is holomorphic, is always open 
in C. A function which is holomorphic at c is complex-differentiable at c 
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but a function which is complex-differentiable at c need not be holomorphic 
at c. For example, the function 

is, according to 2.3, complex-differentiable at the points of the coordinate 
axes but nowhere else. So this function is not holomorphic at any point of 
C. 

The set of all holomorphic functions in the domain D is always denoted 
by O(D). We naturally have the inclusions 

C C O(D) C C(D); 

the first because constant functions are (complex-) differentiable every­
where in C and the second because complex-differentiability implies conti­
nuity. 

1. Differentiation rules are proved as in the case of real-differentiation; 
doing so provides some evidence that the definition of complex-differenti­
ability in use today offers considerable advantages over Riemann's defini­
tion via his differential equations. 

Sum- and Product-rule. Let f : D ---> C and 9 : D ---> C be holomorphic 
in D. Then for all a, bE C the functions af + bg and f . 9 are holomorphic 
in D, with 

(af + bg)' = aJ' + bg' (sum-rule), 

(f. g)' = J' 9 + fg' (product-rule). 

We will be content to recall how the proof of the product-rule goes. By 
hypothesis, for each c E D there are functions fe, ge : D ---> C which are 
continuous at c and satisfy 

f(z) = f(c) + (z - c)fe(z) , g(z) = g(c) + (z - c)ge{z) , zED. 

Multiplication yields, for all ZED, 

(f. g)(z) = (f. g)(c) + (z - c) [fe(z)g(c) + f(c)ge(z) + (z - c)(fe· ge)(z)J. 

Since the square-bracketed expression is a function of zED which is 
evidently continuous at c, the complex-differentiability at c of the product 
function f . 9 is confirmed, with moreover (f. g)'(c) being the value of that 
function at c, viz., 

(f. g)' (c) = fe(c)g(c) + f(c)ge(c) = J'(c)g(c) + f(c)g'(c). 

From the sum- and product-rules follows, as with real-differentiability: 
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Every complex polynomial p(z) = ao + alZ + ... + anzn E C[z] is holo-
morphic in e and satisfies p'(z) = al + 2a2z + ... + nanzn- 1 E C[z]. 

As in the reals, we also have a 

Quotient rule. Let f, 9 be holomorphic and 9 zero-free in D. Then the 
quotient function ~ : D -+ e is holomorphic in D and 

(f)' I'g - fg' 
g2 ( Quotient-rule). 

Differentiation of the composite function hog is codified in the 

Chain-rule. Let 9 E O(D), h E O(D') be holomorphic functions with 
g(D) cD'. Then the composite function hog: D -+ e is holomorphic in 
D and 

(h 0 g)'(z) = h'(g(z)) . g'(z), zED ( Chain-rule). 

The quotient- and chain-rules are proved just as for real-differentiability. 

On the basis of Theorem 2.1 a function J = u + iv is holomorphic in the 
domain Dee exactly when J is real-differentiable and satisfies the Cauchy­
Riemann equations u", = vy, uy = -v", throughout D. But these differentiability 
hypotheses may be dramatically weakened. For example, we have 

A continuous function J : D -+ e is already holomorphic in D iJ through each 
point c E D there are two distinct stmight lines L, L' along which the limits 

11'm ,,--,J ('----'z )'-------'J:..-'.( c--'-) I' - , 1m 
zEL, z--+c Z - C zEL', z-c 

J(z) - J(c) 
z-c 

exist and are equal. 

This theorem is due to D. MENCHOFF: "Sur la generalisation des conditions 
de Cauchy-Riemann," Fund. Math. 25(1935), 59-97. As a special case, that in 
which every L is parallel to the x-axis and every L' is parallel to the y-axis, we 
have the so-called LOOMAN-MENCHOFF theorem: 

A continuous function J : D -+ e is already holomorphic in D iJ the partial 
derivatives u"" uy , v"" Vy oj the real-valued functions u := rRJ, v := <;SJ exist and 
satisfy the Cauchy-Riemann equations u", = vy , u y = -v", throughout D. 

The hypothesis about the continuity of J, or some weaker surrogate, is needed, 
as the following example shows: 

J(z) := exp(-z-4) for z E ex , J(O) := O. 



§3. HOLOMORPHIC FUNCTIONS 59 

(At the trouble-point z = 0, the two partial derivatives of f exist and are 0 by 
an elementary use of the Mean Value Theorem of real analysis, since ~(x) = 
4x- 5 f(x) [x =I- OJ and U(iy) = 4y-3f(y) [y =I- OJ imply that limx_o~(x) = 
limy_o U(iy) = 0.) On the other hand, if we ask that f be continuous through­
out D but only ask that the Cauchy-Riemann equations hold at one point, then 
complex-differentiability at that point cannot be inferred, as the example 

shows. 

Actually the result which is usually designated as the Looman-Menchoff the­
orem contains even weaker differentiability hypotheses than those stated above: 
the partial derivatives need only exist on a set whose complement in D is count­
able and the Cauchy-Riemann equations need only hold on a set whose com­
plement in D has area o. A very accessible proof of this, together with a full 
history and bibliography of other possible weakenings of the differentiability hy­
potheses will be found in J. D. GRAY and S. A. MORRIS, "When is a function 
that satisfies the Cauchy-Riemann equations analytic?", Amer. Math. Monthly 
85(1978), 246-256. Another elementary account, which deals with Menchoff's 
first theorem as well, is K. MEIER, "Zum Satz von Looman-Menchoff," Comm. 
Math. Helv. 25(1951), 181-195; some simplifications of this paper will be found 
in M. G. ARSOVE, "On the definition of an analytic function," Amer. Math. 
Monthly 62(1955), 22-25. 

2. The C-algebra OeD). The differentiation rules yield directly that: 
For every domain D in C the set OeD) of all functions which are holo­

morphic in D is a C-subalgebra of the C-algebra C(D). The units of OeD) 
are exactly the zero-free functions. 

For the exponential function e(z) and the logarithm function fez) of 
examples 2) and 3), respectively, in 2.3 we have e(z) E O(e) and fez) E 

O(C \ ilR). 
In contrast to C(D), the C-algebra OeD) does not contain the conjugate 

1 of each of its functions f; we saw, e.g., that z E OeD) but z f/- OeD). 
Also in general, if f E OeD) then none of 'iRf, ';sf of If I belongs to OeD); 
for example, each of 'iRz, ';sz and Izl is not complex-differentiable at any 
point of C. 

Every polynomial in z is holomorphic in C; every rational function 
(meaning quotient of polynomials) is holomorphic in the complement of the 
zero-set of its denominator. Further examples of holomorphic functions can 
only be secured via limiting processes and so are no longer considered ele­
mentary functions. In 4.3.2 we will see that power series inside their circles 
of convergence furnish an inexhaustible reservoir of holomorphic functions. 

If f is a holomorphic function in D, then 

1': D --+ C, Z t-+ I'(z) 
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is another function defined on D. It is called the (first) derivative of I in 
D. If one thinks about differentiable functions on R. like xlxl, then there 
is no reason to expect f' to be holomorphic in D. But a fundamental 
theorem of function theory, which we will get from the Cauchy integral 
formula (but not until 7.4.1), says exactly this, that f' is holomorphic in 
D whenever I is. As a consequence, every holomorphic function in D 
turns out to be infinitely often (complex-) differentiable in D, that is, all 
the derivatives f', ... ,/(m), ... exist. Here, as in the reals, we understand 
by the mth derivative I(m) of I (in case it exists) the first derivative of 
I(m-l), m = 1,2,"'j thus 1(0) := I and I(m) := (f(m-l))'. The same proof 
(induction) used for functions on R. will also establish Leibniz' product-rule 
for higher derivatives of holomorphic functions 

(f. g)(m) = "" m! I(k)g(l) 
L....J k!f! . 

k+l=m 

3. Characterization of locally constant functions. The lollowing 
statements about a function I : D -+ C are equivalent: 

i) I is locally constant in D. 
ii) I is holomorphic in D and f'(z) = 0 lor all zED. 

First Proof Only ii) => i) needs to be verified. Let u := 'fRI, v := ~/. 
Since f' = U x + ivx and U x = vy, Vx = -uy, our hypothesis ii) means that 
ux(z) = uy(z) = vx(z) = vy(z) = 0 for all zED. From a well-known 
theorem of real analysis it then follows that each of u and v, and therewith 
also I = u + iv, is locally constant in D. 

The theorem from real analysis used above is proved via the Mean Value Theo­
rem, but its use can easily be circumvented by another elementary (compactness) 
argument: 

Second proof. Consider any B = Br(b) C D and any z E B. Let L denote the 
line segment from b to z and let c > 0 be given. For each c E L there is a disc 
B6(C) C D, 6 = 6(c) > 0, such that (cf. 1.1 and remember that l' == 0): 

If(w) - f(c)1 ::; clw - cl for all w E B6(C). 

Because finitely many of the discs B6(C) suffice to cover the compactum L, 
there is a succession of points Zo = b, Zl, ... ,Zn = Z on L such that 

If(z,,) - j(z,,-l)1 ::; clz" - z,,-ll , 1::; v::; n. 

It follows that 

If(z) - f(b)1 

n 

::; c 2: Iz" - z,,-ll = clz - bl· 
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Here e > 0 is arbitrary, so f{z) = f{b) follows. This is true for each z E B, that 
is, fiB is constant. 

After studying complex integral calculus (cf. 6.3.2), we will give a third 
proof of this theorem, using primitives. On the basis of 0.6 the theorem 
can also be expressed thus: 

For a region G in C, a function f : G -+ C is constant in G if and only 
if it is holomorphic in G and f' vanishes everywhere in G. 

We will illustrate the result of this paragraph by two examples. 

1) Every function f which is holomorphic in D and assumes only real 
values, respectively, only purely imaginary values, is locally constant in D. 

Proof In case u := 'fRf = f, we have v := c.:sf = 0 and so the Cauchy­
Riemann equations give Ux = Vy = 0 = Vx and so f' = Ux + ivx = 0 in D. 
By the theorem f is locally constant in D. If, on the other hand, we have 
f = ic.:sf throughout D, then we apply what we just learned to if in the 
role of f to conclude the local constancy of f. 0 

2) Every holomorphic function which has constant modulus in D is locally 
constant in D. 

Proof Suppose f = u+iv is holomorphic in D and u2 +v2 = c is constant in 
D. Then differentiation of this equation with respect to y gives uuy+vvy = 
o and so, since uy = -vx, uVx = vVy. Since also uUx+vvx = 0 and Ux = vy, 
we get 

o = U· (uux + vVx ) = u 2ux + V· (uvx) = u2ux + V· (vvy) 

(u2 + v2 )ux = cUx · 

Similarly, CVx = o. If c = 0 then, of course, f is constant (equal 0) in D. 
If c i- 0, we now have f' = U x + ivx = 0 in D, so that f is locally constant 
in D by the theorem. 0 

In 8.5.1 we will prove the Open Mapping Theorem for holomorphic func­
tions; this theorem contains both of the above examples as trivial cases. 

4. Historical remarks on notation. The word "holomorphic" was in­
troduced in 1875 by BRIOT and BOUQUET, [BBJ, 2nd ed., p.14. In their 
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1st edition (cf. pp. 3,7 and 11) they used instead of "holomorphic" the 
designation "synectic", which goes back to CAUCHY. Other synonyms in 
the older literature are "monogenic", "monodromic", "analytic" and "reg­
ular". These and other terms originally described various properties, like 
having vanishing integral over every closed curve (cf. Chapter 6) or having 
local power series expansions or satisfying the Cauchy-Riemann equations, 
etc., and so were not at first recognized as synonyms. When the theory of 
functions reached maturity, these properties were all seen to be equivalent 
(and the reader will see this presently); so it is appropriate that most of 
these terms have now faded into oblivion. "Analytic" is still sometimes 
used as a synonym for "holomorphic", but usually it has a more technical 
meaning having to do with the Weierstrass continuation process. 

Actually, as late as 1851 CAUCHY still had no exact definition of the class 
of functions for which his theory was valid· .. "La tMorie des fonctions de 
variables imaginaires presente des questions delicates qu'il importait de 
resoudre ... (The theory of functions of an imaginary variable presents 
delicate questions which it was important to resolve·· .)"; thus begins 
a Comptes Rendus note on February 10, 1851 bearing the title "Sur les 
fonctions de variables imaginaires" ((Euvres (1) 11, pp. 301-304). See pp. 
169, 170 of BOTTAZZINI [H4]. 

The notation O(D) is used - since about 1952 - by the French school around 
Henri CARTAN, especially in the function theory of several variables. It is some­
times said that 0 was chosen to honor the great Japanese mathematician OKA, 

and it is sometimes even maintained that the 0 reflects the French pronuncia­
tion of the word holomorphic. Nevertheless, the choice of the symbol 0 appears 
to have been purely accidental. In a letter of March 22, 1982 to the author 
of this book, H. CARTAN wrote: "Je m'etais simplement inspire d'une notation 
utilisee par van der Waerden dans son classique traite 'Moderne Algebra' (cf. 
par exemple §16 de la 2e edition allemande, p. 52)". [I was simply inspired by a 
notation used by van der Waerden in his classic treatise 'Moderne Algebra' (cf. 
for example, §16 Vol. I of the English translation).] 

Exercises 

Exercise 1. Let G be a region in C. Determine all holomorphic functions 
f on G for which (RJ)2 + i(~J)2 is also holomorphic on G. 

Exercise 2. Suppose that f = u + iv is holomorphic in the region Gee 
and that for some pair of non-zero complex numbers a and b, au + bv is 
constant in G. Show that then f itself is constant in G. 

Exercise 3. Let f = u + iv be holomorphic in the region G and satisfy 
u = h 0 v for some differentiable function h : IR ---. R Show that f is 
constant. 
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Exercise 4. Let D, D' be domains in C, g : D --+ C continuous with 
g(D) c D', and h E OeD'). Show that if h' is zero-free on g(D) and hog 
is holomorphic in D, then g is holomorphic in D. Hint: For fixed c E D 
consider the C-linearization of hog at c and that of hat g(c). 

§4 Partial differentiation with respect to x, y, 
z and z 

If f : D --+ C is real-differentiable at c and T = Tf(c), then the limit 
relation 

lim If(c + h) - f(c) - T(h)1 = 0 
h~O Ihl 

is valid without the absolute value signs. (But in general, for functions into 
IRm , stripping away the absolute values results in a meaningless division by 
the vector h.) Upon setting z = c + h, this observation becomes 

Differentiability criterion. f : D --+ C is real-differentiable at c precisely 
when there exist a (uniquely determined) lR-linear map T : C --+ C and a 
function j : D --+ C, which is continuous at c with j(c) = 0, such that 

fez) = f(c) + T(h) + hj(z). 

If we write the lR-linear differential 

T(h) = (U.,(C) uy(c)) (~h) 
v., (c) vy(c) SSh 

of f = u + iv at c in the form 

(1) T(h) = T(l)~h + T(i)SSh 

or in the form 

(2) T(h) = >"h + J1.k, 

then we are led almost automatically to introduce, besides the partial 
derivatives of u and v with respect to x and y, also the partial deriva­
tives of f itself with respect to x and y and even with respect to z and 
Z (subsection 1 below). Because, thanks to 0.1.2, there are among the 
quantities u.,(c), ... ,vy(c), T(l), T(i), >.., J1. the relations 
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T(l) T(i) 

~(T(l) - iT(i)) , J-L = ~(T(l) + iT(i)), 

certain identities between these formally introduced derivatives and the 
familiar derivatives of u and v are immediately obtained. 

It should be emphasized that this section consists largely of introducing 
some new terminology and re-interpreting preceding results in this lan­
guage. 

1. The partial derivatives lx, I y , Iz, Ii. If f is real-differentiable at c 
and T = T f ( c) is the differential of f at c, then the coefficients defined in 
(1) and (2) are denoted 

fx(c) := ~(c) := T(l) 

fz(c) := M(c) := A 

fy(c) := U(c) := T(i)j 

fz(c) := U(c) := J-L 

and called the partial derivatives of f at c with respect to x, y, z and z, 
respectively. Thus we have 

There is good motivation for having chosen the symbols fx, f y, fz, fz : 

Theorem. The following statements about f : D -> C are equivalent: 

i) f is real-differentiable at c = a + ib. 

ii) There are functions A, i2 : D -> C, each continuous at c, such that 

fez) = f(c) + (z - c)A(z) + (z - C)i2(Z) for all zED. 

iii) There are functions fr, h : D -> C, each continuous at c, such that 

fez) = f(c) + (x - a)fr(z) + (y - b)h(z) for all zED. 

When these conditions are fulfilled, 

fz(C) = A(c), h(c) = i2(C), fx(c) = fr(c), fy(c) = h(c). 
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Proof i) * ii) The equation I(z) = I(e) + T(z - e) + (z - e)](z) which 
features in the differentiability criterion above proves the claim, once we 
write T in the form Th = )"h+ J.lh and define A(z) := ).. + ](z), ]2(Z) := J.l. 

ii) * iii) Set h := ]1 + ]2, h := i(A - ]2) and recall that z - e = 
x - a + i(y - b). 

iii) * i) The mapping T(h) := h(e)1Rh+ h(e)SSh is lR-linear. We define 
] : D ---> C by ](e) := 0 and 

I'(z) .. -_ (x - a)(h(z) - h(e)) + (y - b)(h(z) - h(e)) 
for z #- e. 

z-e 

Since Ix - al ::; Iz - el and Iy - bl ::; Iz - el, it follows that 

1](z)1 ::; Ih(z) - h(e)1 + Ih(z) - h(e)1 for zED \ {e} 

and consequently] is continuous at e. The identity I(z) = I(e)+ 
T(z - e) + (z - e)](z) is immediate from the definitions of ] and T. 

2. Relations among the derivatives u x, u y, vx, v y, lx, I y, Iz, Iz. Here 
we will consider functions I : D ---> C which are real-differentiable in D. For 
such an I = u + iv the eight partial derivatives ux, uy, vx, vy, lx, I y, Iz, Iz 
are all well-defined functions in D. The following four identities are imme­
diate from the equations (*) in the introductory remarks to this section: 

(3) Ix = U x + ivx , Iy = uy + ivy, Iz = ~(fx - ily) , /z = ~(fx + ily)· 

The equations here for Ix and Iy are scarcely surprising, on account of 
1= u + iv. The equations for Iz and /Z, at first so strangely charming, are 
better understood via the following mnemonic device: since x = ~(z + z) 
and y = -~(z - z), think of 1= I(x, y) as a function of z and z and regard 
z, z as though they were independent variables. The differentiation rules 
give, formally 

8x 
8z 

8x 
8z 

1 8y 
2"' 8z 

-i 8y 
2' 8z 

-
2 

and then the chain rule implies that 

(4) 

~8x + ~f!JJ. 8x 8z 8y 8z If i I . '2 x - '2 y, 

I ~ 8x + ~ f!JJ. 1 f if 
E 8x 8E 8y 8E '2 x + '2 y. 

From equations (3) we also obtain "inversion formulas": 

1 -
'2(fy + Iy) 

~(fy -/y) 

Ix Iz + /z i(fz - /z). 

o 
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For more particulars on the differential calculus with respect to z and z 
compare subsection 4. 

3. The Cauchy-Riemann differential equation 8j/8z=O. In 1.2 we 
got the Cauchy-Riemann equations U x = vy , u y = -Vx for the holomorphic 
function f = u + iv from the identity f' = U x + ivx = i-I. (u y + ivy). The 
latter can now also be written as 

f ' - f - '-If - x - Z Y in case f E OeD); 

the condition for holomorphy can be compressed into the single equation 

(Already in 1857 in his work "Theorie der ABELschen Functionen" RIE­
MANN himself combined the two differential equations U x = Vy and u y = 
-Vx into the single equation i ~'::, = ~~, where w = u + iv [cf. Werke, p. 
88J.) If now we utilize the derivatives fz, fz, we see 

Theorem. A real-differentiable function f : D --> C is holomorphic in D 
if and only if 

~; (c) = 0 

for every c ED. In this case ¥z coincides in D with the derivative f' of 

f· 

This is nothing but the equivalence i) {:} iii) of theorem 2.1. Of course 
the claims here follow as well directly from the preceding theorem. 0 

The Cauchy-Riemann equations for the function J = u - iv conjugate 
to fare U x = -vy and u y = vx , and these may be written (proof!) as 
the single equation fz = O. It follows that f' (c) = fz (c) for c E D and so 
under the same hypotheses and with the same proof, mutatis mutandis, as 
the preceding theorem, we get: 

f : D --> C is holomorphic in D if and only if fz == 0 in D; when this 
occurs, fz(c) coincides with the derivative of f at c ED. 

This fact also follows easily from Theorem 1. 

4. Calculus of the differential operators 8 and 8. The theory developed 
above becomes especially elegant if we systematically and consistently utilize par­
tial differentiation with respect to z and with respect to z. The differential calculus 
of these operations, though largely irrelevant for classical function theory, is un­
usually fascinating; it goes back to H. POINCARE and was developed principally 
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by W. WIRTINGER; it is even often called, especially in the German literature, 
the Wirtinger calculus. It is quite indispensable in the function theory of several 
variables. 

Besides the customary "real" differential operators :'" and :y' one is moti­
vated by the formulas 

8f =! (8f _i8f) , 
8z 2 8x 8y 

8f _ ! (8f .8f ) 
8z - 2 8x + t 8y , 

to introduce the "complex" differential operators 

8:= :z := ~ (! -i ~) , 

Then the equations 

8 -
8x=8+8, 

hold. 

- 8 1(8 .8) 8 := 8z := 2 8x + t 8y . 

8 -
- =i(8-8} 
8y 

The differential calculus of 8,8 rests on what at first appears to be a rather 
absurd 

Thesis. In differentiating with respect to the conjugate complex variables z and 
z we can treat them as though they were independent variables. 

The Cauchy-Riemann equation 8f = 0 is, in this view, interpreted as saying 
that 

Holomorphic functions are independent of z and depend only on z. 

As soon as one is convinced of the correctness and the power of this calculus 
and has mastered it, he is apt to be reminded of what Jacobi had to say about the 
significance of algorithms (see A. KNESER, "Euler und die Variationsrechnung", 
Festschrift zur Feier des 200. Geburtstages Leonhard Euler, Teubner Verlag, 
1907, p. 24): "da es namlich in der Mathematik darauf ankommt, Schliisse auf 
Schliisse zu haufen, so wird es gut sein, so viele Schliisse als moglich in ein Zeichen 
zusammenzuhaufen. Denn hat man dann ein fUr aile Mal den Sinn der Operation 
ergriindet, so wird der sinnliche Anblick des Zeichens das ganze Riisonnement 
ersetzen, das man friiher bei jeder Gelegenheit wieder von vorn anfangen muBte 
(because in mathematics we pile inferences upon inferences, it is a good thing 
whenever we can subsume as many of them as possible under one symbol. For 
once we have understood the true significance of an operation, just the sensible 
apprehension of its symbol will suffice to obviate the whole reasoning process 
that earlier we had to engage anew each time the operation was encountered}." 

Formally, differentiation with respect to z and z proceeds according the the 
same rules as ordinary partial differentiation. Designating by f and 9 real­
differentiable functions from D into C, we maintain that 

1) 8 and 8 are C-linear mappings (Sum-rule) for which the Product- and 
Quotient-rule hold. 
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2) 8f = 01 , 81= of· 

3) f E OeD) {=} 8f = 0 and of = l' ; 1 E OeD) {=} of = 0 and l' = 8f· 

Proof ad 1) We confine ourselves to a few words about the product-rules: 
aUg) = of· 9 + f . ag and 8(1g) = 8f . 9 + f ·8g. Consider c E D. Theo­
rem 1 furnishes functions h, h, gl, g2 in D which are continuous at c and satisfy 

fez) fCc) + (z - c)h(z) + (z - c)h(z) 

g(z) g(c) + (z - C)gl(Z) + (z - C)g2(Z). 

Abbreviating h(z) to h, etc., it follows that 

f(z)g(z) = f(c)g(c) + (z - c)[hg(c) + f(C)gl + (z - C)hgl + (z - C)hg2j 

+ (z - c)[hg(c) + f(C)g2 + (z - C)hg2 + (z - C)hglj. 

Since all the functions occurring on the right side are continuous at c, the product­
rules follow at once from the relevant definitions. 

ad 2) From f = f(c)+(z-c)h +(z-c)h follows 1 = j(c)+(z-c)12+(z-c)!I. 
Because the continuity at c of h, h entails that of 12, 11, the claim follows. 

ad 3) The first statement follows from Theorem 4.3, the second then follows 
~m~. 0 

Remark. Naturally the product- and quotient-rules can be deduced from the 
corresponding rules for partial differentiation with respect to x and y by using the 
transformation equations from 2 to express fz, fz and fx, fy in terms of each other. 
However the calculations would be unpleasant; moreover, such a procedure would 
not contribute to understanding why a and 8 behave like partial derivatives. 0 

The chain rules read as follows: 

4) If 9 : D -> C, h : D' -> C are real-differentiable in D and D', respectively 
and g(D) C D', then hog: D -> C is also real-differentiable; writing w for the 
variable in D', we then have, for all c E D 

a(h 0 g) (c) = ah (g(c)). ag (c) + a~ (g(c)). ay (c), 
az ow 8z 8w 8z 

8(h 0 g) (c) = 8h (g(c)) . 8~ (c) + 8~ (g(c)) . 8~ (c). 
8z 8w 8z 8w 8z 

Here too the most convenient proof is an imitation of the proof in the real case, 
using Theorem 1; we will however forego the details. 0 

Naturally we could also consider mixed higher order partial derivatives like 

fxx, fxy,···, fxz, fyz, fzz := 02 f := 8(8!) , fzz := 88f := 8(8!). 

For them we have 
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5) II I : D -- C is twice continuously differentiable with respect to x and y, 
then 

- - 1 aal = aal = 4(1",,,, + Iyy)· 

Proof It suffices to deal with the case of a real-valued function I = u. From 
2uz = u'" - iuy and the known identities like U",y = U Y'" follows 

and 4aau = u"'''' + U yy follows analogously. o 

We will conclude this brief glimpse at the Wirtinger calculus with an amusing 
application to function theory. As a preliminary to that we show 

II I, g are twice complex-differentiable in D, then 

aa(l . g) = I' . if in D. 

Proof Because I,g E O(D), 

a(lg) = al . 9 + I . ag = I'g + lag = I'g. 
Furthermore, !' E O(D) then entails that 

aa(lg) = a(l'g) = al' . 9 + I' . ag = I'ag = I'if· o 

The following not so obvious result can now be derived rather expeditiously: 

II h, h, ... , In are twice complex-differentiable in D and il the function 1 h 12 + 
1 h 12 + ... + 1 In 12 is locally constant in D, then each 01 the functions h, h, ... ,f n 

must be locally constant in D. 

Proof On account of the local constancy, 0 = aa(E; I.Jv) = E; I~/~. Since 
I~/~ ~ 0, it follows that I~ = 0 in D. According to 3.3 each function Iv is then 
locally constant in D. 0 

Exercises 

Exercise 1. Let D be a domain in C and f : D --+ C a real-differentiable 
function. Suppose that for some c E D the limit 

lim If(C+h)-f(c)1 
h ..... O h 

exists. Prove that either f or 1 is complex-differentiable at c. 

Exercise 2. Determine all the points in C at which the following functions 
are complex-differentiable: 
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a) J(z) = Iz12(lz12 - 2) 

b) J(z) = sin(lzI2) 

c) J(z) = z(z + Z2). 

Exercise 3. Let J be real-differentiable in the domain DeC. Show that 
its Jacobian functional determinant satisfies 



Chapter 2 

Holomorphy and 
Conformality. 
Biholomorphic Mappings 

Der Umstand, dass das Verstiindnis mehrerer Arbeiten Rie­
manns anfiinglich nur einem kleinen Leserkreis zugiinglich war, 
findet wohl darin seine Erkliirung, dass RIEMANN es unter­
lassen hat, bei der Veroffentlichung seiner allgemeinen Unter­
suchungen das Eigenthiimliche seiner Betrachtungsweise an der 
vollstiindigen Durchfiihrung specieller Beispiele ausfiihrlich zu 
erliiutern. (That several of Riemann's works were at first com­
prehensible to only a small readership is explained by the fact 
that in the publication of his general investigations RIEMANN 
failed to illustrate his novel ideas thoroughly enough by car­
rying through the complete analysis of special examples.) -
Hermann Amandus SCHWARZ, 1869. 

1. The investigation of length-preserving, respectively, angle-preserving 
mappings between surfaces in ]R3 is one of the interesting problems ad­
dressed in classical differential geometry. This problem is important for 
cartography: every page of an atlas is a mapping of a part of the (spheri­
cal) surface of the earth into a plane. We know that there cannot be any 
length-preserving atlases; but by contrast there are indeed angle-preserving 
atlases (e.g., those based on stereographic projection). The first goal of this 
chapter is to show that for domains in the plane ]R2 = C angle-preserving 
mappings and holomorphic functions are essentially the same thing (Sec-

71 
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tion 1). The interpretation of holomorphic functions as angle-preserving 
(= conformal) mappings was advocated especially by RIEMANN (cf. 1. 5). 
It provides the best way to "intuitively comprehend" such functions. One 
examines in detail how paths behave under such mappings. The invari­
ance, under the mapping, of the angles in which curves intersect each other 
frequently makes possible a good description of the function. "The con­
formal mapping associated with an analytic function affords an excellent 
visualization of the properties of the latter; it can well be compared to the 
visualization of a real function by its graph" (AHLFoRs [1], p. 89). 

2. In Riemann's function theory a central role is played by the biholo­
morphic mappings. Such mappings are angle-preserving in both domain 
and range. The question of whether two domains D, D' in Care biholomor­
phically equivalent, that is, whether a biholomorphic mapping f : D'::" D' 
exists, even though it has been solved in only a few cases, has proved to be 
extremely fruitful. In section 2 we will present some significant examples of 
biholomorphic mappings. Perhaps surprisingly it will turn out that hidden 
among the examples we already have at hand are some extremely inter­
esting biholomorphic mappings. Thus we will show, among other things, 
that as simple a function as Z+-i maps the unbounded upper half-plane 

Z , 

biholomorphically onto the bounded unit disc. 
The biholomorphic mappings of a domain D onto itself constitute a 

group, the so-called automorphism group Aut D of D. The precise deter­
mination of this (generally non-commutative) group is an important and 
fascinating challenge for Riemann's function theory; but only in excep­
tional cases is it possible. In section 3 it will be shown that among the 
fractional linear functions ~:t~ are to be found automorphisms of both the 
upper half-plane and of the unit disc. These automorphisms are so numer­
ous that any two points in the region in question can be carried into one 
another by one of them. This so-called homogeneity will be used later in 
9.2.2 together with SCHWARZ's lemma to show that every automorphism 
of the upper half-plane or of the unit disc is fractional linear. 

§ 1 Holomorphic functions and angle­
preserving mappings 

In 0.1.4 we introduced for JR.-linear mappings T : C -+ C the concept of 
angle preservation. Now a real-differentiable mapping f : D -+ C will be 
called angle-preserving at the point c ED if the differential Tf(c) : C -+ C 
is an angle-preserving JR.-linear mapping. f will be called simply angle­
preserving in D if it is so at every point of D. In subsection 3 we will 
go more deeply into the geometric interpretation of the concept of angle­
preserving, but first we will show that angle-preserving and holomorphic 
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are "almost" the same thing. 

1. Angle-preservation, holomorphy and antiholomorphy. Since 
all mappings of the form h f--+ >"h, >.. E C x, and h f--+ I1h, 11 E C x, are 
angle-preserving, according to Lemma 0.1.4, it follows immediately that 

If f : D ----> C, respectively, J : D ----> C is holomorphic in D and if for 
each c E D, 1'(c) -=I- 0, respectively, J '(c) -=I- 0, then f is angle-preserving 
in D. 

Proof. Because of 1.4.3 and the present hypotheses, Tf(c) : C ----> C, which 
generally is given by h f--+ fz(c)h + fz(c)h, here has either the form h f--+ 

1'(c)h or the form h f--+ J '(c)h. 0 

A function f : D ----> C is called anti-holomorphic (or conjugate-holomor­
phi c) in D if J : D ----> C is holomorphic in D; this occurs exactly if fA c) = 
o for all c E D. Thus the above implies that holomorphic and anti­
holomorphic functions having zero-free derivatives are angle-preserving. 

In order to prove the converse we have to hypothesize the continuity of 
fz and fz in D - a state of affairs that occurs exactly when both fx and 
f y , or equivalently all four of u x , u y , v x , and Vy exist and are continuous 
throughout D, that is, when the real and imaginary parts of f are each 
continuously real-differentiable in D. Such an f is called continuously real­
differentiable and is, in particular, real-differentiable in D (recall 1.2.2). In 
order to make the proof of the converse as simple as possible, we confine 
our attention to regions. 

Theorem. For a region G in C the following assertions about a continu­
ously real-differentiable function f : G ----> C are equivalent: 

i) Either f is holomorphic throughout G and l' is zero-free in G, or f 
is anti-holomorphic throughout G and J' is zero-free in G. 

ii) f is angle-preserving in G. 

Proof. Only ii) =} i) remains to be proved. According to Lemma 0.1.4 the 
differential Tf(c) : C ----> C, 

h f--+ fz(c)h + fz(c)h, c E G, 

is angle-preserving if 

either fz(c) = 0 and fz(c) -=I- 0, or fz(c) = 0 and fz(c) -=I- o. 

The function 
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fz(c) - fz(c) 

fz(c) + fz(c)' 
CEG, 

is consequently well defined, and takes only the values 1 and -1. Since 
this function is continuous by hypothesis, it must map the connected set 
G onto a connected image in {-I, I}, i.e., it must be constant in G. This 
means that either fz vanishes everywhere and fz nowhere in G, or that this 
situation is reversed. 0 

It is clear that holomorphic (or anti-holomorphic) mappings cannot be 
angle-preserving at any zero of their derivatives fz (or fz); thus under the 
mapping z 1--+ zn(n > 1) angles at the origin are increased n-fold. 

2. Angle- and orientation-preservation, holomorphy. In function 
theory anti-holomorphic functions are rather unwelcome and in order to 
effectively legislate them out of statement i) in theorem 1 we introduce 
the concept of orientation-preserving mappings. A real-differentiable func­
tion f = u + iv is called orientation-preserving at c E D if the Jacobian 
determinant 

det (Ux u y) 
vx vy 

is positive at c. (Cf. also M. KOECHER: Lineare Algebra und analyti­
sche Geometrie, Grundwissen Mathematik, Bd. 2, Springer-Verlag (1985), 
Berlin.) As example 4) in 1.2.3 shows, a holomorphic function f is orienta­
tion-preserving at every point c where f'(c) i=- o. The Jacobian determinant 
of an anti-holomorphic function is never positive (proof!); accordingly such 
functions are nowhere orientation-preserving. In the light of this it is clear 
from theorem 1 that 

Theorem. The following assertions about a real-differentiable function 
f : D ....... C are equivalent: 

i) f is holomorphic and f' is zero-free in D. 

ii) f is both angle-preserving and orientation-preserving in D. 

Remarks on terminology. More often in English (and in French) when dis­
cussing holomorphic functions one sees the word "conformal" ("conforme") in­
stead of "angle-preserving". However, the term "conformal" is sometimes also 
used as a synonym for "biholomorphic" (defined in §2 below). As we shall see 
later, a holomorphic mapping is angle-preserving if and only if it is locally bi­
holomorphic, and so the difference between the two usages of "conformal" comes 
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down to local versus global injectivity. When "conformal" is used in the lat­
ter global sense, the term "locally conformal" is then naturally expropriated for 
"angle-preserving". Angle-preserving anti-holomorphic mappings are sometimes 
called indirectly conformal or anti-conformal. As there seems to be no unanimity 
on these usages, the reader has to proceed with caution in the literature. 

3. Geometric significance of angle-preservation. First let's recall 
the geometric significance of the tangent mapping T f (c) at c E D of a 
real-differentiable mapping f : D -+ C. We consider paths I : [a, b] -+ D, 
t I--> I(t) = x(t) + iy(t) which pass through c, say, ,(~) = c for some ~ 
satisfying a < ~ < b. Say that I is differentiable at ~ if the derivatives x' (~) 
and y'(O exist and in that case set I'(~) := x'(O + iy'(~). [Paths with 
these and other differentiability properties will play a central role in our 
later development of the integral calculus of functions in domains in C.] In 
case 1'(0 #- 0, the path has a tangent (line) at c, given by the mapping 

lR -+ C , t I--> C + I'(~)t , t E R 

The mapping 

f 0 ,: [a, b] -+ C , t I--> fb(t)) = u(x(t), y(t)) + iv(x(t), y(t)) 

is called the image path (of I under f = u + iv). Along with I , f 0 I is 
also differentiable at ~ and indeed (the chain rule once again!) 

(JO,)'(~) ux(c)x'(~) + uy(c)y'(O + i(vx(c)x'(~) + Vy(c)y'(~)) 
Tf(c)b'(E,))· 

In case (J 0 ,)'(E,) #- 0, the image path has a tangent at f(c); this "image 
tangent" is then given by 

lR -+ C , t I--> f(c) + Tf(c)b'(E,))t. 

In somewhat simplified language, if we call I' (E,) the tangent direction (of 
the path I at c), then (see the figures on the left on the next page) 

The differential T f (c) maps tangent directions of differentiable paths 
onto tangent directions of the image paths. 

In particular this makes the denomination "tangent mapping" for the 
differential T f (c) understandable. 

After these preparations it is easy to explain, using a somewhat naive 
interpretation of the angle between curves, the significance of the term 
"angle-preserving": If ,1,,2 are two differentiable paths through c with 
tangent directions I~ (c), I~ (c) at c, then L. ( I~ (c), I~ (c)) measures the angle 
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Tangent Image tangent 

Image path 

of intersection rp between these paths at c. The angle-preserving character 
of f at c therefore means that : If two paths /1, /2 intersect at the point c 
in the angle rp, then the image curves f 0 /1, f 0 /2 intersect at the image 
point f( c) in the same angle rp. 

Evidently two cases now have to be distinguished: the angle rp "together 
with its sense, or direction of rotation" is conserved (as in the right-hand 
figures above) or "the sense of rp is reversed", as evidently occurs under 
the conjugation mapping z f---t z. This "reversal of orientation" in fact is 
manifested by all anti-holomorphic mappings and by contrast "conservation 
of orientation" occurs with all holomorphic mappings. In fact (cf. 5): 

Angle- and orientation-preservation together amount to "angle-preserva­
tion with conservation of direction"; this is what Riemann called "Aehn­
lichkeit in den kleinsten Theilen (similarity in the smallest parts)". 

4. Two examples. Under a holomorphic mapping, paths which intersect 
orthogonally have orthogonally intersecting image paths. In particular, 
an "orthogonal net" is mapped onto another such net. We offer here two 
simple but very instructive examples of this highly graphic state of affairs. 

First example. The mapping f : ex ----> eX, z f---t Z2 is holomorphic and 
j'(c) = 2c =I- 0 at every point c E ex. Consequently f is angle-preserving. 
We have 

v = ';sf = 2xy. 

The lines x = a, parallel to the y-axis, and y = b, parallel to the x-axis, are 
thus mapped onto the parabolas v 2 = 4a2 (a2 - u) and v 2 = 4b2 (b2 + u), 
respectively, which all have their foci at the origin. The parabolas of the 
first family open to the left and those of the second family to the right; and 
parabolas from the two families intersect at right angles. The "level-lines" 
u = a and v = b are, on the other hand, hyperbolas in the (x, y)-plane 
which have the diagonals, respectively, the coordinate axes as asymptotes 
and intersect each other orthogonally. 
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Iy 

ib' 
ib 

a a' 
x 

Second example. The mapping q : ex ---+ e, z f--+ ~(z + Z-l) is holomor­
phic. Since q'(z) = ~(1-z2), q is angle-preserving throughout ex \ {-I, I}. 
If we set r := Izl, ~ := x/r and TJ := y/r, then 

From which we infer (because e + TJ2 = 1) that 

These equations show that the q-image of every circle Izl = r < 1 is an 
ellipse in the (u, v)-plane having major diameter r + r- 1 and minor di­
ameter r- 1 - r; and the q-image of every radial segment z = ct, 0 < t < 1, 
c fixed and Icl = 1, is half of a branch of a hyperbola. 

All these ellipses and hyperbolas are confocal (the common foci being 
-1 and 1). Because every circle Izl = r cuts every radial segment z = ct 
orthogonally, every ellipse cuts every hyperbola orthogonally. The map­
ping q will be put to use in 12.1.6 to effect an "integration-free" proof of 
LAURENT's theorem. 
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iy iv 

5. Historical remarks on conformality. In the classical literature 
angle-preserving mappings were designated by the locution "in den klein­
sten Theilen ahnlich (similar in the smallest parts)". The first work to deal 
with such mappings was written in 1825 by GAUSS (Werke 4, 189-216): 
Allgemeine A uftosung der A ufgabe : Die Theile einer gegebenen Fliiche 
auf einer andern gegebenen Fliiche so abzubilden, dass die Abbildung dem 
Abgebildeten in den kleinsten Theilen iihnlich wird (Als Beantwortung der 
von der koniglichen Societiit der Wissenschaften in Copenhagen fur 1822 
aufgegebenen Preisfrage; partial English translation by H. P. EVANS in Vol. 
II of D. E. SMITH, A Source Book in Mathematics, Dover Publications 
Inc., New York (1958); full English translation in Philosophical Magazine 4 
(1828), 104-113 and 206-215.) GAUSS recognized, among other things, that 
angle-preserving mappings between domains in the plane ]R2 = if were just 
those that could be described by holomorphic or anti-holomorphic functions 
(although of course, he did not use the language of function theory). 

With RIEMANN the geometric significance of holomorphic functions as 
angle-preserving mappings is strongly in the foreground: he represents the 
numbers z = x+iy and w = u+iv as points in two planes A and B, respec­
tively, and writes in 1851 ([R], p.5): "Entspricht jedem Werthe von zein 
bestimmter mit z sich stetig andernder Werth von w, mit andern Worten, 
sind u and v stetige Functionen von x, y, so wird jedem Punkt der Ebene A 
ein Punkt der Ebene B, jeder Linie, allgemein zu reden, eine Linie, jedem 
zusammenhangenden Flachenstiicke ein zusammenhangendes Flachenstiick 
entsprechen. Man wird sich also diese Abhangigkeit der GroBe w von z 

vorstellen konnen als eine Abbildung der Ebene A auf der Ebene B. (If 
to every value of z there corresponds a definite value of w which changes 
continuously with z, in other words, if u and v are continuous functions of 
x and y, then to every point in the plane A will correspond a point in the 
plane B, to every line (generally speaking) will correspond a line and to ev­
ery connected piece of area will correspond a connected piece of area. Thus 
one can imagine this dependence of the magnitude w on z as a mapping 
of the plane A on the plane B.)" Thereupon, in half a page, he confirms 
that in the case of holomorphy "zwischen den kleinsten Theilen der Ebene 
A und ihres Bildes auf der Ebene B Aehnlichkeit statt [findet] (similarity 
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obtains between the smallest parts of the plane A and their images on the 
plane B)". 

Angle-preserving mappings play no role at all in the work of CAUCHY 

and WEIERSTRASS. 

Exercises 

In the first two exercises f denotes the holomorphic mapping z 1-+ Z-I 

of ex onto ex. This map is its own inverse and preserves angles and 
orientation. 

Exercise 1. Let L be a circle in e with center M E e and radius R > O. 
Show that: 

a) If M = 0, then f(L) is the circle around 0 ofradius R-I . 

b) If M:f. 0 and R:f. IMI, then f(L) is the circle around M/(IMI2 _R2) 
of radius R/IIMI2 - R21. 

c) If M :f. 0 and R = IMI, then f(L \ {O}) is the straight line through 
(2M)-1 which is perpendicular to the segment joining 0 and (2M)-I, 
that is, f(L \ {O}) = {z E e : (z - (2M)-1 , (2M)-I) = O} = 
{x + iy , x, Y E lR : x~(2M)-1 + y~(2M)-1 = 12MI-2 }. 

d) Let a E ex, H be the (real) line through 0 and a, H' that through 0 
and a-I. Show that f(H \ {O}) = H' \ {O}. 

Since f is self-inverse, the image under f of every straight line and every 
circle in e can be determined with the aid of Exercise 1. 

Exercise 2. Determine the image f(G) of the following regions G: 

a) G:= lE n 1Hl, with IHl the open upper half-plane. 

b) G:= lE n BI(I). 

c) G the open triangle with vertices 0,1 and i. 

d) G the open square with vertices 0,1,1 + i and i. 

Hint. Use Exercise 1 above and Exercise 2 from Chapter 0, §6. 

Exercise 3. Let q : ex --+ e be given by q(z) := ~(z + Z-l). Show that: 

a) q is surjective. 

b) For c E ex, q(c) is real if and only if either c E lR \ {O} or Icl = 1. 

c) q(8lE) = [-1,1]. 
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d) For each point w E e\ {-I, I} the q-preimage q-1({w}) = {z E ex : 
q( z) = w} consists of exactly two points. If wEe \ [-1, 1], then one 
of these points lies in lE x : = lE \ {O}, the other in e \ lE. 

e) q maps lE x bijectively onto e \ [-1, 1]. 

f) q maps the upper half-plane IHI := {z E e : ~z > O} bijectively onto 
e \ {x E IR : Ixl ~ I}. 

Exercise 4. Let q : ex ---> e be as in Exercise 3 and s, R, a real numbers 
satisfying the following relations: 

s> 1 + V2, 1 -1 
R= "2(s-s ), 

Confirm the following inclusions: 

a=R+JR2_l. 

{z E e: 17- 1 < Izl < a} C q-1(BR(0)) C {z E e: S-l < Izl < s}. 

§2 Biholomorphic mappings 

A holomorphic function f E O(D) is called a biholomorphic mapping of D 
onto D' if D' := f(D) is a domain and the mapping f : D ---> D' has an 
inverse mapping f- 1 : D' ---> D which is holomorphic in D'. In such cases 
we write suggestively 

f : D ":: D'. 

The inverse mapping is itself then biholomorphic. Biholomorphic mappings 
are injective. In 9.4.1 we will see that for every holomorphic injection f : 
D ---> e the image f(D) is automatically open in e and the (set-theoretic) 
inverse mapping f- 1 : f(D) ---> D is automatically holomorphic in f(D). 
Trivial but useful is the remark that 

f E O(D) is a biholomorphic mapping of D onto D' precisely when there 
exists agE 0 ( D') such that: 

f(D) C D' , g(D') cD, fog = idD , and go f = idD . 

Proof. Because fog is the identity mapping (on D'), we have f(D) = D' 
and because go f is the identity mapping (on D), we have g(D') = D; but 
then 9 is the inverse mapping f- 1 : D' ---> D of f : D ---> D'. 0 

The reader won't have any trouble proving the 
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Theorem on compositions. II I : D ~ D' and g : D' ~ D" are 
biholomorphic mappings, then the compositie mapping g 0 I : D --+ D" is 
biholomorphic. 

1. Complex 2 x 2 matrices and biholomorphic mappings. To every 

complex matrix A = (: :) with (c, d) =j:. (O,O) is associated the fractional 

linear rational function 

az+b 
hA{Z) := --d E C{z). 

CZ+ 

It satisfies h~ (z) = (c~':!.1J2' where det A := ad - bCj so in case det A = 0, 
hA is constant. 

In what follows only functions hA whose matrices A have det A =j:. 0, i.e., 
are invertible matrices, will be considered. The set of matrices having non­
zero determinants forms a group under matrix multiplication, the general 
linear group, and is denoted by GL{2,C)j the neutral element of this group 

is the identity matrix E := (~ ~) . 
We take note of two fundamental rules of calculation: 

1) hA = id {:} A = aE for some a E ex. 

For all A, B E GL{2, C) a "substitution rule" holds: 

The proofs are just simple calculations. o 

In case A = (~ :), hA E O{C) and the mapping hA : e --+ e is 

biholomorphic. More interesting however is the case c =j:. 0. A direct 
verification shows that: 

In case A = (: :) E GL{2,C) and c =j:. 0, hA E O{e \ {-c-1d})j the 

mapping hA : e \ {-c-1d} ~ e \ {ac-1 } is biholomorphic and hA-l is its 
inverse mapping. 

2. The biholomorphic Cayley mapping IHl ~ E, Z 1-+ Z - ~. The upper 
z+z 

half-plane 
IHl := {z E e : ~Z > O} 

is an unbounded region in C. We will show that nevertheless IHl can be 
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biholomorphically mapped onto the (bounded) unit disc E. To this end we 
introduce the matrices 

G:= G -D, G':= (_~ n E GL(2,C); 

they satisfy 

GG' = G'G = 2iE. 

To G and G' are associated the rational functions 

z - i 
hc(z) = -. E O(C\ {-i}) , 

z+z 
.1 + z 

hc'(z) = zl_ z E O(C \ {I}). 

By virtue of (*) and the rules of calculations from subsection 1, we have: 
hc 0 hc' = hc' 0 hc = id. And direct computation confirms that 

These equations imply that 

4~z 

Iz + il 2 

1-lz12 
11- zl2 

1-lhc(zW > 0 for ~z > 0 ; 

for z -I- -i, 

for z -I- 1. 

~hc'(z) > 0 for Izl < 1 

and consequently hc(IHI) c E and hc' (E) C IHI. Together with the above 
descriptions of the composites of hc, hc' with one another, this says that 
hc maps IHI biholomorphically onto E with he 1 = hc '. This discussion has 
proved the 

z-i 
Theorem. The mapping hc : IHI .::+ E, z t-+ -- is biholomorphic with 

z+i 
. . ~ .1 +z 
mverse mappmg hc' : E ---+ IHI, z t-+ z-l--. 

-z 

For historical reasons the mappings hc, hc' are called the Cayley map­
pings of IHI onto E and lE onto IHI, respectively. 

3. Remarks on the Cayley mapping. A critical reader might ask: "How 
would the function hc(z) = ~+: ever occur to one as a candidate for a biholo­
morphic mapping IHI ~ E?" 

The general question: "Are IHI and E biholomorphically equivalent?" offers 
no hint of the role of this function. But once it is known, the rest is routine 
verifications; the real mathematical contribution consists just in writing down 
this function. 
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With hindsight we can discern certain simple heuristic considerations that 
could have led to the function he. First suppose one already recognizes the 
fractional linear transformations as an interesting class of functions (which itself 
requires some mathematical experience) and is prescient enough to look for a 
biholomorphic mapping IHl -:::. E among them. Then it isn't wild to speculate 
that the sought-for function h will map the boundary of 1Hl, i.e., the real axis, 
into the boundary of E, i.e., into the unit circle. (Or is that plausible?: the circle 
is compact but the line is not!) So we try to map some pre-assigned points of JR. 
to certain points of the circle, say (here we have considerable freedom), 

h(O) := -1 ; h(1) := -i ; h(oo) := 1 , that is, lim h(x) = 1. 
l"'l~oo 

o +00 

~A 
-1~1 

-i 

For a function of the form h(z) = ~:t~ these requirements translate into the 
equations 

b 
-1 = h(O) = d ; _ i = h(1) = a + b . 

c+d' 
1 = h(oo) = a+b/oo =~. 

c+d/oo c 

From which one sees that b = -d, a = c and so (via the second equation) 
a - d = -ia - id, that is, d = ia. With these specifications the function h turns 
out to be the Cayley mapping. 

4*. Bijective holomorphic mappings of IHl and E onto the slit plane. It 
is quite surprising what can be done with just the Cayley mapping he and the 
squaring function Z2. Let C- denote the complex plane slit along the negative 
real axis, i.e., 

C- := C \ {z E C : Rz :S 0 , ~z = O}. 

First we claim that 

The mapping q : IHl --> C-, Z,....., _Z2 is holomorphic and bijective. 

(Were we to have slit C along the positive real axis, then we would consider Z2 

here instead of _Z2. The reason for slitting along the negative real axis has to do 
with the complex logarithm function to be introduced later (in 5.4.4): this can 
only be done in a slit plane and we are reluctant to discard the positive real axis 
where the classical real logarithm has lived all along.) 

Proof. There is no c E IHl such that t := q(c) is real and non-positive, since from 
q(c) = _c2 = t E JR. follows c2 = -t ~ 0 and therewith c E JR., c rf. lHI. It follows 
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that q(lHI) c C-. For c, c' E lHI, q(c) = q(c') occurs if and only if c' = ±c and 
since not both c and -c can lie in lHI, it must be true that c' = c; thus q : lHl ---> C­
is injective. 

Every point w E C- has a q-pre-image in lHI, because the quadratic equation 
Z2 = -w has two distinct roots, one of which lies in lHI - cf. the explicit square­
root formula at the end of 0.1.3. 0 

As a simple consequence we note that 

The mapping p : lE ---> C-, Z r-t (~)2 is holomorphic and bijective. 

Proof Via q 0 hc' the region lE is mapped holomorphically and bijectively onto 
C-, and q(hc'(z)) = - (i~? = (~)2, that is, qohc ' =p. 0 

Scarcely anyone would trust that such a seemingly simple function as p could 
really map the bounded unit disc bijectively and conformally onto the whole plane 
minus its negative real axis (cf. the figure). 

It is appropriate to mention here that the mappings q : lHI ---> C- and p : lE ---> 

C- are even biholomorphic. This is because the inverse mapping q-l : C- ---> lHl 
is automatically holomorphic, as will be proved in 9.4.1. 

Remark. There is no biholomorphic mapping of the unit disc lE onto the whole 
plane C, a fact which follows from LIOUVILLE'S theorem (cf. 8.3.3). However, 
the famous theorem announced by RIEMANN in 1851 ([RJ, p. 40) says that every 
simply connected region other than C can be biholomorphically mapped onto lE. 
But we won't reach this remarkable theorem until the second volume. 

Exercises 

In what follows Ql denotes the first quadrant {z E lHl : 3tz > O} of the 
complex plane. 

Exercise 1. Show that the Cayley transformation he : lHl --+ lE, Z 1--+ ~~!, 
maps Ql biholomorphicallyonto {w E lE : 'Sw < O}. 

Exercise 2. Supply holomorphic, bijective and angle-preserving mappings 
of Ql onto lE \ (-1,0] and of Ql onto lE. 
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Exercise 3. Let fez) := ~:t: with c =I- 0 and ad - be =I- O. Further, let L 
be a circle or a (real) line in e. With the aid of Exercise 1 of §1 determine 
the images f(L), respectively, f(L \ {-die}). (Case distinctions have to be 
made!) Hint. First prove that f can be written as 

bc-ad 1 a 
fez) = 2 (z + dle)- +-. 

c e 

Exercise 4. For M > R > 0 form the punctured upper half-plane lHI \ 
BR(iM). With the aid of a fractional linear transformation map it biholo­
morphically onto an annulus of the form {w E e : p < JwJ < 1}. Hint. 
First look for a c < 0 such that z 1-+ (z - ic) -1 maps the boundary of 
BR(iM) and the real axis onto concentric circles. Use Exercise 1 of §1. 

Exercise 5. Find a map of lE onto {w E e : ~w > (!Rw)2} which is 
holomorphic, bijective and angle-preserving. 

§3 Automorphisms of the upper half-plane 
and the unit disc 

A biholomorphic mapping h : D ~ D of a domain D onto itself is called an 
automorphism of D. The set of all automorphisms of D will be denoted by 
Aut D. Pursuant to the remarks in the introduction of §2, it is clear that 

Aut D is a group with respect to the composition of mappings and the 
identity mapping id is its neutral element. 

The group Aut e contains, for example, all "affine linear" mappings 
z 1-+ az + b, a E ex, bEe and because of this it is not commutative. 
Aut e is actually rather simpte, for these affine linear maps exhaust itj but 
we will only see that via the theorem of CASORATI and WEIERSTRASS in 
10.2.2. 

In this section we will study the groups Aut lHI and Aut lE exclusively. 
First we consider the upper half-plane lHI (in subsection 1) and then (in 
subsection 2) transfer the results about lHI to lE via Cayley mappings. In 
subsection 3 we give a somewhat different representation of the automor­
phisms of lEj finally (subsection 4) we show that lHI and lE are homogeneous 
with respect to their aut0morphisms. 

1. Automorphisms of lHI. The sets GL+(2, R) and 8L(2, R) of all real 2 
x 2 matrices with positive determinant, respectively, with determinant 1, 
are each groups with respect to matrix multiplication (proof!). We write 
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A = (~ ~) for the typical such matrix and designate with hA(Z) = ~~!~, 
as we did in 2.1, the fractional linear transformation associated with A. 
Then 

(1) 'ShA(Z) = detA 'Sz for every A = (~ ~) E GL+(2,1R). 
l'Yz + 81 2 I v 

Proof Because A is real 

hA(Z) - hA(Z) 

o.z + f3 o.z + f3 -------
"(Z + 8 'Yz +' 8 

detA 0< 

2i l'Yz + 81 2 :sz. 

From (1) follows immediately 

0.8 - f3'Y _ 
l'Yz + 812 (z - z) 

Theorem. For every matrix A E GL+(2, 1R) the mapping hA : IHl ~ IHl is 
an automorphism of the upper half-plane and hA-l is its inverse mapping. 

Proof Since A, A-1 E GL+(2, 1R), hA and hA-l are holomorphic in IHl. 
On account of (1), hA(IHl) C IHl and hA-l (IHl) c IHl. Finally, hA 0 hA-l = 
hA-l 0 hA = id puts hA in AutIHl. D 

Furthermore (with the help of the rules in 1.2) we now get: 

The mapping GL+(2,1R) ~ AutIHl given by A ~ hA is a group homo­
morphism whose kernel consists of the matrices >"E, >.. E IR \ {O}. The 
restriction of this homomorphism to the subgroup SL(2, 1R) has the same 
image group and its kernel consists of just the two matrices ±E. 

2. Automorphisms of lEo If f : D 2'. D' is biholomorphic, then the 
mapping h f-+ f 0 ho f- 1 effects a group isomorphism of Aut D onto Aut D' 
(proof!). Thus, knowing f, f- 1 and automorphisms of D, we can construct 
automorphisms of D'. Applying this process to the Cayley mapping hc : 
IHl ~ lE together with its inverse hc' shows, in view of theorem 1, that all 
the functions 

hc 0 hA 0 hc' = hCAC' with A E SL(2, 1R) 

are automorphisms of lE. This observation leads to the following 
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Theorem. The set M := {B := (~ !) : a, bEe, detB = I} is a 

subgroup of SL{2, C) and the mapping from SL{2, 1R) into M defined by 
A t-+ ~GAG' is a group isomorphism. 

The mapping B t-+ hB{z) = '!:.bz ± ~ of Minto AutE is a group homo­
z±a 

morphism whose kernel consists of the two matrices ±E. 

Proof Since det G = det G' = 2i, the multiplicativity of the determinant 
gives det{~GAG') = 1. Therefore the mapping 

cp : SL{2, 1R) - SL{2, C) , A t-+ ~GAG' 
2i 

is well defined and, thanks to the fact GG' = G'G = 2iE, a group 
monomorphism. The first claim in the theorem therefore follows as soon 
as we have shown that the image of cp is M. To this end note that for 

A = (~ ~) 

GAG' = ( 1 -~) (a f3) ( i i) 
1 z 'Y 8 -1 1 

(2) 

Upon setting a := ~[(a ± 8) ± i{f3 - 'Y)] and b:= ~[(a - 8) - i{f3 ± 'Y)], 
it follows that 

B := cp{A) = (~ !) , and so image of cp c M. 

The other inclusion M C image of cp requires that for every B = (~ !) E 

M there be an A = (~ ~) E SL{2,1R) with 2iB = GAG'. To realize such 

an A it suffices to set 

a := !R{a ± b), f3 := CS{a - b), 'Y := -CS{a ± b), 8 := !R{a - b). 

The matrix A so defined is then real and satisfies GAG' = 2iB, thanks to 
(2), which holds for all real 2 x 2 matrices A. Of course, det B = 1 means 
that det A = 1, so A E SL{2, 1R), as desired. 

To verify the second claim, recall that by 2.1(1) hB = hc 0 hA 0 hCI 
whenever B = ~GAG'. Therefore (I) says that for all BE M the functions 
hB are automorphisms of E. The homomorphic property of the mapping 
M - AutE and the assertion about its kernel now follow from 2.1(2) and 
2.1(1). 0 
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The subgroup M of 8L(2, e), which according to our theorem is isomorphic 
to 8L(2, lR), is often designated by 8U(I, 1). 

3. The encryption 'f1 ~z-_W1 for automorphisms of IE. The automor­
phisms of IE furnished by theorem 2 can be written in another way; to do 
it we need a matrix-theoretic 

Lemma. To every matrix W = (~ -~~), TJ E alE, W E lE, corresponds a 

matrix B E M such that W = sB for some sEe x . 

Proof. Since W E IE, 1 -lwl2 > 0 and 1-1;12 E ex. So by 0.1.3 there exists 

an a E ex with a2 = 1-1;12 • For b := -wa, then lal 2 - IW = ITJI = 1, and 

so B := (~ !) EM. If we set s := TJa- 1 = -a(1 -lwI2 ), then so. = -1 

(so s E eX!) and sB = W. 0 

Bearing in mind that the functions hw and hB coincide when W, B are 
related as in the lemma, it follows directly from theorem 2 that 

Theorem. Every function Z ~ TJ~z-_wl with TJ E alE and wE lE, defines 
an automorphism of lE. 

In case w = 0 the automorphism is Z ~ TJZ, a rotation about the origin. 
A special role is played by the automorphisms 

(1) g:lE~lE, 
Z-w 

z~---, wEE. 
illz-l 

For them g(O) = w, g(w) = 0 and gog = id. The latter equality following 
from 2.1(1) and the calculation 

(1 -w) (1 -w) 2 
ill -1 ill -1 = (1-lwl )E. 

Because of the property gog = id, the automorphisms 9 are called involu­
tions of E. 

4. Homogeneity of IE and lHl. A domain D in e is called homogeneous 
with respect to a subgroup L of Aut D, if for every two points z, zED there 
is an automorphism h E L with h(z) = z. It is also said in such cases that 
the group L acts transitively on D. 

Lemma. If there is a point c ED whose orbit {g(c) : gEL} fills D, then 
D is homogeneous with respect to L. 
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Proof Given z,z ED there exist g,g E L such that g(c) = z and g(c) = Z. 
Then h := go g-1 E L satisfies h(z) = Z. 0 

Theorem. The unit disc IE is homogeneous with respect to the group Aut IE. 

Proof The point 0 has full orbit: for each w E IE the function g(z) := ~;~1 
lies in Aut IE (theorem 3) and satisfies g(O) = w. The theorem therefore 
follows from the lemma. 0 

If D is homogeneous with respect to Aut D and if D' is biholomorphi­
cally equivalent to D, then D' is homogeneous with respect to Aut D' (the 
verification of which is entrusted to the reader). From this and the fact 
that the Cayley mapping he' effects a biholomorphic equivalence of IE with 
lHl, it is clear that 

The upper half-plane lHl is homogeneous with respect to the group Aut lHl. 

This also follows directly from the lemma, with c = i. Every w E lHl has 

the form w = p + ia2 with p, a E IR and a i- O. For A := (~ P:~11) E 

8L(2, IR), the associated function hA satisfies hA(i) = w. 0 

A region G in e is generally not homogeneous; in fact Aut G most of 
the time is just {id}. But we won't become acquainted with any examples 
of this until 10.2.4. 

Exercises 

Exercise 1. Show that the unbounded regions e and ex are homogeneous 
with respect to their automorphism groups. 

Exercise 2. Let L be a circle in e, a, b two points in e \ L. Show that there 
is a fractional linear transformation f whose domain includes L U {a} and 
which satisfies f(a) = b, f(L) = L. 

Exercise 3 (cf. also 9.2.3). Let g(z) := TJ~;~1' TJ E alE, w E IE be an 
automorphism of IE. Show that if 9 is not the identity map, then 9 fixes at 
most one point in IE. 



Chapter 3 

Modes of Convergence 
Function Theory 

• In 

Die Annaherung an eine Grenze durch Operationen, 
die nach bestimmten Gesetzen ohne Ende fortgesetzt 
werden - dies ist der eigentliche Boden, auf welchem 
die transscendenten Functionen erzeugt werden. (The 
approach to a limit via operations which proceed ac­
cording to definite laws but without termination -
this is the real ground on which the transcendental 
functions are generated.) - GAUSS 1812. 

1. Outside of the polynomials and rational junctions, which arise from ap­
plying the four basic species of calculation finitely often, there really aren't 
any other interesting holomorphic functions available at first. Further func­
tions have to be generated by (possibly multiple) limit processes; thus, for 
example, the exponential function exp z is the limit of its Taylor polyno­
mials 2:~ Zll /I/! or, as well, the limit of the Euler sequence (1 + z / n) n . 

The technique of getting new functions via limit processes was described 
by GAUSS as follows (Werke 3, p.198): "Die transscendenten Functionen 
haben ihre wahre Quelle allemal, offen liegend oder versteckt, im Un­
endlichen. Die Operationen des Integrirens, der Summationen unendlicher 
Reihen ... oder iiberhaupt die Anniiherung an eine Grenze durch Oper­
ationen, die nach bestimmten Gesetzen ohne Ende fortgesetzt werden -
dies ist der eigentliche Boden, auf welchem die transscendenten Functio­
nen erzeugt werden· .. " (The transcendental functions all have their true 
source, overtly or covertly, in the infinite. The operation of integration, 
the summation of infinite series· .. or generally the approach to a limit via 
operations which proceed according to definite laws but without termina­
tion - this is the real ground on which the transcendental functions are 
generated ... ) 

The point of departure for all limit processes on functions is the concept 

91 
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of pointwise convergence, which is as old as the infinitesimal calculus itself. 
If X is any non-empty set and fn a sequence of complex-valued functions 
fn : X ----> C, then this sequence is said to be convergent at the point a E X 
if the sequence fn(a) of complex numbers converges in C. The sequence 
fn is called pointwise convergent in a subset A c X if it converges at every 
point of A: then via 

f(x) := lim fn(x) , x E A , the limit function f : A ----> C 

of the sequence in A is defined; we write, somewhat sloppily, f := lim fn­
This concept of (pointwise) convergence is the most naive one in analysis, 
and is sometimes also referred to as simple convergence. 

2. Among real-valued functions simple examples show how pointwise 
convergent sequences can have bad properties: the continuous functions xn 
on the interval [0, 1] converge pointwise there to a limit function which is 
discontinuous at the point 1. Such pathologies are eliminated by the in­
troduction of the idea of locally uniform convergence. But it is well known 
that locally uniformly convergent sequences of real-valued functions have 
quirks too when it comes to differentiation: Limits of differentiable func­
tions are not generally differentiable themselves. Thus, e.g., according to 
the Weierstrass approximation theorem every continuous f : I ----> ~ from 
any compact interval I c IR is uniformly approximable on I by polynomials, 
in particular by differentiable functions. A further example of misbehavior 
is furnished by the functions n -1 sine n!x), x E IR; they converge uniformly 
on IR to 0 but their derivatives (n-l)! cos(n!x) don't converge at any point 
ofR 

For function theory the concept of pointwise convergence is likewise un­
suitable. Here however such compelling examples as those above cannot 
be adduced: We don't know any simple sequence of holomorphic functions 
in the unit disc E which is pointwise convergent to a limit function that 
is not holomorphic. Such sequences can be constructed with the help of 
Runge's approximation theorem, but we won't encounter that until the sec­
ond volume. At that point we will also see, however, why explicit examples 
are difficult to come by: pointwise convergence of holomorphic functions is 
necessarily "almost everywhere" locally uniform. In spite of this somewhat 
pedagogically unsatisfactory situation, one is well advised to emphasize 
locally uniform convergence from the very beginning. For example, this 
will allow us later to extend rather effortlessly the various useful theorems 
from the real domain on the interchange of limit operations and orders 
of integration. It is nevertheless surprising how readily mathematicians 
accept this received view; perhaps it's because in our study of the infinites­
imal calculus we became fixated so early on the concept of local uniform 
convergence that we react almost like Pavlov's dogs. 

As soon as one knows the Weierstrass convergence theorem, which among 
other things ensures the unrestricted validity of the relation lim f~ = 
(lim fn)' for local uniform convergence, any residual doubt dissipates: no 
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undesired limit functions intrude; local uniform convergence is the optimal 
convergence mode for sequences of holomorphic functions. 

3. Besides sequences we also have to consider series of holomorphic func­
tions. But in calculating with even locally uniformly convergent series cau­
tion has to be exercised: in general such series need not converge absolutely 
and so cannot, without further justification, be rearranged at will. WEIER­

STRASS confronted these difficulties with his majorant criterion. Later a 
virtue was made of necessity and the series satisfying the majorant crite­
rion were formally recognized with the name normally convergent (cf. 3.3). 
Normally convergent series are in particular locally uniformly and abso­
lutely convergent; every rearrangement of a normally convergent series is 
itself normally convergent. In 4.1.2 we will see that because of the classical 
Abel convergence criterion, power series always converge normally inside 
their discs of convergence. Normal convergence is the optimal convergence 
mode for series of holomorphic functions. 

In this chapter we plan to discuss in some detail the concepts of lo­
cally uniform, compact and normal convergence. X will always designate 
a metric space. 

§ 1 Uniform, locally uniform, and 
compact convergence 

1. Uniform convergence. A sequence of functions In: X --+ C is said 
to be uniformly convergent in A c X to f : A --+ C if every c > 0 has an 
no = no(c) EN such that 

I/n(x) - l(x)1 < c for all n ;::: no and all x E A; 

when this occurs the limit function I is uniquely determined. 
A series L: f v of functions converges uniformly in A if the sequence 

Sn = L:n Iv of partial sums converges uniformly in A; as with numerical 
series, the symbol L: f v is also used to denote the limit function. 

Uniform convergence in A implies ordinary convergence. In uniform 
convergence there is associated with every c > 0 an index no(c) which is 
independent of the location of the point x in A, while in mere pointwise 
convergence in A this index generally also depends (perhaps quite strongly) 
on the individual x. 

The theory of uniform convergence becomes especially transparent upon 
introduction of the supremum semi-norm 

IliA := sup{lf(x)1 : x E A} 

for subsets A c X and functions f : X --+ C. The set V := {f : X --+ C : 
IliA < oo} of all complex-valued functions on X which are bounded on A 
is a C-vector space; the mapping I ....... IflA is a "semi-norm" on V; more 
precisely, 
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IJIA = 0 {=} flA = 0 , 
If + glA ::; IflA + IglA 

leflA = lellflA 
f,g E V , e E Co 

A sequence fn converges uniformly in A to f exactly when 

lim Ifn - flA = O. 

Without any effort at all we prove two important 

o 

Limit rules. Let fn, gn be sequences of functions in X which converge 
uniformly in A. Then 

L1 For all a, bE C the sequence afn + bgn converges uniformly in A and 

lim(afn + bgn ) = alimfn + blimgn (C-linearity). 

L2 If the functions limfn and limgn are both bounded in A, then the 
product sequence fngn also converges uniformly in A and 

Of course there is a corresponding version of L1 for series L f", L g". 
To see that the supplemental hypothesis in L2 is necessary, look at X := 

{x E IR : 0 < x < I}, fn(x) = gn(x) := ~ + ~,f(x) = g(x) := 1. Then 
Ifn-flx = Ign-glx = ~,yet Ifngn-fglx ~ fngn(';2)-fg(';2) =x 2n +';2. 

2. Locally uniform convergence. The sequence of powers zn converges 
in every disc Br(O), r < 1, uniformly to the function 0, because IznIBr(o) = 
rn. Nevertheless the convergence is not uniform in the unit disc lE: for 
every 0 < c < 1 and every n ~ 1 there is a point c E lE, for example, 
e:= \fE, with lenl ~ c. This kind of convergence behavior is symptomatic 
of many sequences and series of functions. It is one of WEIERSTRASS's 
significant contributions to have clearly recognized and high-lighted this 
convergence phenomenon: uniform convergence on the whole space X is 
usually not an issue; what's important is only that uniform convergence 
prevail "in the small" . 

A sequence of functions fn : X --+ C is called locally uniformly convergent 
in X if every point x E X lies in a neighborhood Ux in which the sequence 
f n converges uniformly. 

A series L f" is called locally uniformly convergent in X when its asso­
ciated sequence of partial sums is locally uniformly convergent in X. 
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Uniform convergence naturally implies locally uniform convergence. The 
limit rules stated above carryover at once to locally uniformly convergent 
sequences and series. 

Limit functions of (simply) convergent sequences of continuous functions 
are not in general continuous. From his study of calculus the reader knows 
that under locally uniform convergence the limit function does inherit con­
tinuity. More generally we have 

Continuity theorem. If the sequence fn E C(X) converges locally uni­
formly in X, then the limit function f = lim f n is likewise continuous on 
X, i.e., f E C(X). 

Proof (as for functions on 1R). Let a E X be given. For all x E X and for all 
indices n 

If(x) - f(a)1 '5 If(x) - fn(x)1 + Ifn(x) - fn(a)1 + Ifn(a) - f(a)l· 

By hypothesis a lies in a neighborhood U of uniform convergence, so given c: > 0 
there exists an n such that If - fnlu < c: and the above inequality implies 
that for this n and all x E U, If(x) - f(a)1 '5 21f - fnlu + Ifn(x) - fn(a)1 < 
2c: + Ifn(x) - fn(a)l. Finally, the continuity of fn at a means that there is a 
(j> 0 such that Ifn(x) - fn(a)1 < c: for all x E B6(a). Therefore for all x in the 
neighborhood B6(a) n U of a we have If(x) - f(a)1 < 3c:. 0 

For series, the continuity theorem asserts that the sum of a locally uni­
formly convergent series of continuous functions on X is itself a continuous 
function on X. 

3. Compact convergence. Clearly if the sequence f n : X - C converges 
uniformly in each of finitely many subsets AI"", Ab of X, then it also 
converges uniformly in the union Al U A2 U ... U Ab of these sets. An 
immediate consequence is 

If the sequence f n converges locally uniformly in X, then it converges uni­
formly on each compact subset K of X. 

Proof. Every point x E K has an open neighborhood Ux in which in is 
uniformly convergent. The open cover {Ux : x E K} of the compact set K 
admits a finite subcover, say UXl"'" UXb ' Then fn converges uniformly in 
UX1 U ... U UXb , and all the more so in the subset K of this union. 0 

We will say that a sequence or a series converges compactly in X if it 
converges uniformly on every compact subset of X. Thus we have just seen 
that: 
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Local uniform convergence implies compact convergence. 

This important theorem, which leads from uniform convergence "in the 
small" to uniform convergence "in the large" was originally proved by 
WEIERSTRASS for intervals in JR. WEIERSTRASS gave a direct proof for 
this "local-to-global principle" (you have to bear in mind that at that time 
neither the general concept of compactness nor the HEINE-BoREL theorem 
was available). 0 

In important cases the converse of the above statement is also true. Call 
X locally compact if each of its points has at least one compact neighbor­
hood. Then it is trivial to see that 

If X is locally compact, then every compactly convergent sequence or 
series in X is locally uniformly convergent in X. 

In locally compact spaces the concepts of local uniform convergence and 
compact convergence therefore coincide. Since domains in C are locally 
compact, it is not necessary in any function-theoretic discussion to distin­
guish between these notions. 

We have some preference for the expression "compactly convergent" be­
cause it's shorter than "locally uniformly convergent." In the literature the 
misleading locution "uniformly convergent in the interior of X" is also to 
be found. 

4. On the history of uniform convergence. The history of the concept 
of uniform convergence is a paradigm in the history of ideas in modern 
mathematics. In 1821 CAUCHY maintained in his Gours d'analyse ([Cl, 
p.120) that convergent series of continuous functions fn always have con­
tinuous limit functions f. CAUCHY considers the equation 

n 00 

f(x) - L fv(x) = L fv(x), 
o n+l 

where the finite series on the left is certainly continuous. The error in 
the proof lay in the implicit assumption that, independently of x, n may 
be chosen so large that the infinite series on the right (for all x) becomes 
sufficiently small ("deviendra insensible, si l'on attribue it n une valeur tres 
considerable" ). 

It was ABEL who in 1826 in his paper on the binomial series was the 
first to criticize Cauchy's theorem; he writes ([A], p.316): "Es scheint mir 
aber, daB dieser Lehrsatz Ausnahmen leidet. So ist z. B. die Reihe 

. 1 . 2 1. 3 sm i.p - 2 sm i.p + :3 sm i.p - ••• usw. 
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unstetig fiir jeden Werth (2m + 1)71" von x, wo m eine ganze Zahl ist. 
Bekanntlich giebt es eine Menge von Reihen mit ahnlichen Eigenschaften 
(It appears to me, however, that this theorem suffers exceptions. Thus, 
e.g., the series (*) is discontinuous for every value (2m + 1)71" of x, where 
m is a whole number. As is well known, there is an abundance of series 
with similar properties.)" ABEL is considering here a Fourier series which 
converges throughout IR to a limit function f which is discontinuous at the 
points (2m+ 1)71". [In fact, f(x) = ~x for -71" < X < 71" and f( -71") = f(7I") = 
0.] ABEL discusses this Fourier series in detail on p.337 of his paper and 
also in a letter from Berlin on January 16, 1826 to his teacher and friend 
HOLMBOE ((Buvres 2, pp. 258 ff). We will return to this letter when 
we discuss the problem of term-by-term differentiation of infinite series in 
4.3.3. 

The first mathematician to have used the idea of uniform convergence 
seems to have been Christoph GUDERMANN, WEIERSTRASS' teacher in 
Miinster. (He was born in 1798 in Winneburg near Hildesheim, was a 
secondary school teacher in Cleve and Miinster, published works on elliptic 
functions and integrals in Crelle's Journal between 1838 and 1843, and 
died in Miinster in 1852.) In 1838 in the midst of his investigations of 
modular functions he wrote on pp.251-252, Volume 18 of Jour. fUr Reine 
und Angew. Math.: "Es ist ein bemerkenswerther Umstand, daB ... die so 
eben gefundenen Reihen einen im Ganzen gleichen Grad der Convergenz 
haben. (It is a fact worth noting that ... the series just found have all the 
same convergence rate.)" 

In 1839/40 WEIERSTRASS was the only auditor as GUDERMANN lec­
tured on modular functions. Here he may have encountered the new type 
of convergence for the first time. The designation "uniform convergence" 
originates with WEIERSTRASS, who by 1841 was working routinely with 
uniformly convergent series in the paper "Zur Theorie der Potenzreihen" 
[W 2] which was written that year in Miinster but not published until 1894. 
There one finds the statement (pp.68-69): "Da die betrachtete Potenzreihe 
... gleichmiissig convergirt, so Hisst sich aus ihr nach Annahme einer beliebi­
gen positiven Grosse 8 eine endliche Anzahl von Gliedern so herausheben, 
dass die Summe aller iibrigen Glieder fiir jedes der angegebenen Werth­
systeme ... ihrem absoluten Betrage nach < 8 ist. (Because the power 
series under consideration ... converges uniformly, given an arbitrary pos­
itive quantity 8, a finite number of terms of the series can be discarded so 
that the sum of all the remaining terms is, for every value in the specified 
domain ... in absolute value < 8.)" 

The realization of the central role of the concept of uniform conver­
gence in analysis came about slowly in the last century. The mathemati­
cal world gradually, through WEIERSTRASS' lectures Introduction to Anal­
ysis at Berlin in the winter 1859/60 and in the summer 1860, became 
aware of the incisiveness and indispensability of this concept. Still WEIER­
STRASS wrote on March 6, 1881 to H. A. SCHWARZ: "Bei den Franzosen 
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hat namentlich meine letzte Abhandlung mehr Aufsehen gemacht, als sie 
eigentlich verdient; man scheint endlich einzusehen, welche Bedeutung der 
Begriff der gleichmassigen Convergenz hat. (My latest treatise created 
more of a sensation among the French than it really deserves; people finally 
seem to realize the significance of the concept of uniform convergence.)" 

In 1847, independently of WEIERSTRASS and of each other, PH. L. SEI­
DEL (Miinchen Akad. Wiss. Abh. 7(1848), 379-394) and Sir G. G. STOKES 
(1rans. Camb. Phil. Soc. 8(1847), 533-583) introduced concepts which 
correspond to that of the uniform convergence of a series. But their contri­
butions exercised no further influence on the development of the idea. In 
an article which is well worth reading, entitled "Sir George Stokes and the 
concept of uniform convergence" (Proc. Camb. Phil. Soc. 19(1916-1919), 
148-156), the renowned British analyst G. H. HARDY compares the defini­
tions of these three mathematicians; he says: "Weierstrass's discovery was 
the earliest, and he alone fully realized its far-reaching importance as one 
of the fundamental ideas of analysis." 

5*. Compact and continuous convergence. A sequence of functions 
In: X --+ C is said to be continuously convergent in X, if for every conver­
gent sequence {xn} C X, the limit limn --+co In(xn) exists in C. In particular 
(use constant sequences of x's), the sequence In converges pointwise on X 
to a limit function I : X --+ C. If the two sequences {x~}, {x~} converge 
to the same limit x in X, then the sequences {fn(x~)}, {fn(x~)} have 
the same limit in C. This can be seen by interlacing {x~n} and {x~n+1} 
into a single convergent sequence {xn} and using the hypothesized con­
vergence of {fn(xn)}. Of course the common value is I(x). Notice too 
that limk Ink (Xk) = I(x) for any subsequence {Ink} of {In}. To see this, 
define x~ := Xl for 1 :-:; m :-:; nl and x~ := Xk for nk-l < m :-:; nk 
and all k > 1. Then limm x~ = x, so limm Im(x~) = I(x); hence 
limk Ink (X~J = limk Ink (Xk) = I(x). It is almost immediate that 

II the sequence {In} converges continuously on X to I, then I is con­
tinuous on X (even if the In are not themselves continuous). 

Proof Consider any X E X, any sequence {xn} C X convergent to x 
and any c > O. There is a strictly increasing sequence nk E N such that 
Ifnk(Xk) - l(xk)1 < c/2. Since, as noted above, limk Ink (Xk) = I(x), there 
exists a ke such that link (Xk) - l(x)1 < c/2 for all k ~ ke . The continuity 
of I at x follows: 

We now show that in important cases "continuous" and "compact" con­
vergence are identical: 

Theorem. The following assertions concerning a sequence f n : X --+ C 
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are equivalent: 

i) The sequence fn converges compactly in X to a function f E C(X). 

ii) The sequence f n is continuously convergent in X. 

Proof. i) => ii) Let Xn be a convergent sequence in X and let x = lim Xn. 
The set L := {x, Xl. X2, ••• } is a compact subset of X. Consequently, 
lim If - fnlL = 0 and so in particular f(xn) - fn(xn) is a null sequence 
in C. But f(x) - f(xn) is also a null sequence, since f is continuous at x. 
The sum of these two null sequences, viz., f(x) - fn(xn) is then also a null 
sequence. 

ii) => i) Let f be the limit function. We have seen above that f E C(X). 
Suppose there is a compact K c X such that If - fnlK is not a null 
sequence. This means that there is an c > 0 and a subsequence n' of 
indices such that If - f n' IK > c for all n'. In turn the latter means that 
there are points X n ' E K such that 

for all n'. 

Because K is compact, we may assume, by passing to a further subse­
quence if necessary, that the sequence X n ' converges, say to x. But then 
lim f(xn') = f(x) because of the continuity of f at x and lim fn' (xn,) = 
f(x) by hypothesis ii) and the remarks preceding this theorem. Subtrac­
tion gives that lim(f(xn ,) - fn'(xn,)] = 0, contradicting (*). 0 

As an application of this theorem we get an easy proof of the 

Composition Theorem. Let D, D' be domains in C, fn E C(D), gn E 
C(D') sequences of continuous functions which converge compactly in their 
respective domains to f E C(D), 9 E C(D'). Suppose that fn(D) cD' for 
all nand f (D) c D'. Then the composite sequence gn 0 f n is a well-defined 
sequence in C(D) and it converges compactly in D to go f E C(D). 

Proof For every sequence Xn E D with limxn = xED, we have 
limfn(xn) = f(x) and then limgn(fn(xn)) = g(f(x)), by the preceding 
theorem. But then one more application of the theorem assures us that 
gn 0 f n converges compactly to 9 0 f. 0 

Historical note. In 1929 C. CARATHEODORY made a plea for contin­
uous convergence; in his paper "Stetige Konvergenz und normale Fami­
lien von Funktionen", Math. Annalen 101(1929),515-533 [ = Gesammelte 
Math. Schriften 4, 96-118], on pp. 96-97 he writes: "Mein Vorschlag 
geht dahin, jedesmal, wo es vorteilhaft ist - und es ist, wie ich glaube, 
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mit ganz wenigen Ausnahmen immer vorteilhaft -, den Begriff der [lokal] 
gleichmaBigen Konvergenz in der Funktionentheorie durch den Begriff der 
"stetigen Konvergenz" zu ersetzen ... , dessen Handhabung unvergleichlich 
einfacher ist. 1m allgemeinen ist allerdings die stetige Konvergenz enger als 
die gleichmaBige; fur den in der Funktionentheorie allein in Betracht kom­
menden Fall, in dem die Funktionen der Folge stetig sind, decken sich die 
beiden Begriffe vollkommen. (My suggestion is this: every time it is advan­
tageous, and I believe that with few exceptions it is always so, one should 
replace the concept of [local] uniform convergence in function theory with 
that of "continuous convergence" ... whose manipulation is incomparably 
simpler. Granted that in the framework of general topology continuous 
convergence is more narrow than uniform convergence; but the only case 
which comes up in function theory is that of sequences of continuous func­
tions and for them the two concepts in fact coincide.)" Nevertheless it 
has not become customary to check compact convergence by confirming 
that continuous convergence obtains. The concept of continuous conver­
gence was introduced in 1921 by H. HAHN in his book Theorie der Reellen 
Funktionen, Julius Springer, Berlin; cf. pp. 238 ff. Actually the idea and 
the terminology showed up earlier in R. COURANT, "tiber eine Eigenschaft 
der Abbildungsfunktionen bei konformer Abbildung", Nachrichten Kiinigl. 
Gesell. Wissen. Giittingen, Math.-phys. Kl. (1914), 101-109, esp. p. 106. 

Exercises 

Exercise 1. a) For n E N let In : C \ alE -t C be defined by In(z) := 1+1z n • 

Show that for each 0 < r < 1 the sequence Un} converges uniformly on 
Br(O) U (C \ B1/ r(0)) but not uniformly on C \ alE. 

b) Where does the sequence of functions In: C \ alE -t C defined by 
In(z) := 1';;2n converge uniformly? 

Exercise 2. A sequence of polynomials 

all of degree not exceeding some dEN, is given. Show that the following 
statements are equivalent. 

i) The sequence {Pn} converges compactly in C. 

ii) There exist d + 1 distinct points Co, . .. ,Cd E C such that {Pn} con­
verges on {Co, . .. ,Cd}. 

iii) For each 0 ::::; j ::::; d the sequence of coefficients {an,j} nEll! converges. 

In case of convergence the limit function is the polynomial ao + a1z + ... + 
adzd, where aj := limn --+ oo an,j, 0 ::::; j ::::; d. 
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Exercise 3. A sequence of automorphisms 

Z-Wk 
fk(Z) := TJk , Wk E E, TJk E 8E 

WkZ -1 

of the unit disc is given. Prove the equivalence of the following statements: 

i) The sequence {fk} converges compactly in E to a non-constant func­
tion. 

ii) There exist Co, Cl E E such that lim f n ( Co) and lim f n ( Cl) exist and 
are different. 

iii) Each of the sequences {TJd and {wd converges and lim Wk E E. 

Hint for iii) ::::} i). Show that Uk} converges compactly in E to f(z) := 
TJ~-;~l' where W := lim Wk, TJ := lim TJk. To this end you can use theorem 
5*. 

Exercise 4. Let D be a domain in C and for each n ~ 1 set Kn := {z ED: 
Izi ~ n , dz (8D) ~ n-1}. Each Kn is compact, Kn C Km if n ~ m and 
D = Un~lKn. Show that: 

a) For all f, 9 E C(D) the series d(f, g) .- Ln~l 2-n l~f~~i;'n con­
verges. 

b) A metric is defined in C(D) by d. 

c) A sequence {fd C C(D) converges compactly on D to f E C(D), if 
and only if it converges to f with respect to the metric d, that is, if 
and only if limk d(ik, 1) = O. 

Exercise 5. Let K be a compact metric space, dK its metric, {fn} a uni­
formly convergent sequence of continuous complex-valued functions on K, 
with limit function f. Show that the sequence is (uniformly) equicontin­
uous, meaning that for every c > 0 there exists 8 > 0 such that If n (x) -
fn(y)1 < c for all n E N whenever x, y E K satisfy dK(x, y) < 8. Hint. f 
and each fn is uniformly continuous on K (cf. Exercise 3 of Chapter 0, 
§5). 

§2 Convergence Criteria 

In analogy with the situation for numerical sequences a sequence of func­
tions f n : X ---. C is said to be a Cauchy sequence (with respect to the 
supremum semi-norm) on A eX, if for each c > 0 there exists an no E N 
such that 
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for all m, n ~ nc' 

In subsection 1 below we carryover the Cauchy convergence criterion to 
sequences and series of functions; and in subsection 2 we do the same for 
the majorant criterion 0.4.2. 

1. Cauchy's convergence criterion. The following assertions about a 
sequence fn : X ---> C and a non-empty subset A of X are equivalent: 

i) fn is uniformly convergent in A. 

ii) fn is a Cauchy sequence in A. 

Proof We will check only the non-trivial implication ii) =? i). Since 
Ifm(x) - fn(x)1 ::; Ifm - fnlA for every x E A, each of the numerical 
sequences fn(x), x E A, is a Cauchy sequence. Therefore the sequence fn 
is pointwise convergent in A; let f:= limfn. For all n,m and all x E A we 
have 

If now c > 0 is given, then there is an nc such that Ifn - fmlA < c for all 
n, m ~ nc. For each x E A there further exists an m = m(x) ~ nc such 
that Ifm(x) - f(x)1 < c. It follows that Ifn(x) - f(x)1 < 2c for all n ~ nc 
and this holds at each x E A. That is, Ifn - flA ::; 2c for all n ~ nc. 0 

The re-formulation for series is obvious: 

Cauchy's convergence criterion for series. The following assertions 
concerning an infinite series E fv of functions fv : X ---> C and a non­
empty subset A of X are equivalent: 

i) E fv is uniformly convergent in A. 

ii) For every c > 0 there exists an nc E N such that If m+l (x) + ... + 
fn(x)1 < c for all n > m ~ nc and all x E A. 

CAUCHY introduced this criterion in his 1853 work "Note sur les series 
convergentes dont les divers termes sont des fonctions continues ... " (CEuv­
res (1) 11, 30-36; TMoreme II, p.34). Here for the first time he worked 
with the notion of uniform convergence, without, however, using the word 
"uniforme". Here too (p. 31) he acknowledges that his continuity theorem 
is incorrect but dismisses the matter with "il est facile de voir comment on 
doit modifier l'enonce du tMoreme (it is easy to see how one should modify 
the statement of the theorem)." 
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For continuous convergence of a sequence of functions there is also a Cauchy 
convergence criterion. The reader may check for himself that: A sequence of 
continuous functions f n : X ---> C converges continuously in X if and only if 
f n (Xn) is a numerical Cauchy sequence for every convergent sequence Xn in X. 

2. Weierstrass' majorant criterion. Cauchy's criterion for the uniform 
convergence of a series is seldom used in practice. But particularly easy to 
handle in many applications is the 

Majorant criterion (or M-test) of Weierstrass. Let fll : X -+ C be a 
sequence of functions, A a non-void subset of X and suppose that there is 
a sequence of real numbers Mil ~ 0 such that 

IflllA s:; Mil for all v E Nand L Mil < 00. 

Then the series L fll converges uniformly in A. 

Proof For all n > m and all x E A 

It fll(x) I s:; t Ifll(x)1 s:; t Mil' 
m+l m+l m+l 

Since L Mil < 00, for each c > 0 there is an n", EN such that L:+l Mil < 
c for all n > m ~ n",. This means that Ifm+l(x) + ... + fn(x)1 < c for all 
n > m ~ n", and all x E A. Therefore by Cauchy's criterion L fll converges 
uniformly in A. 0 

WEIERSTRASS consigned his criterion to a footnote (on p. 202) in his 
1880 treatise Zur Functionenlehre [W 4]. 

Exercises 

Exercise 1. Let Pn be a sequence of complex polynomials, Pn(Z) E C[z]. 
Show that {Pn} converges uniformly in C, if and only if for some N E N 
and some convergent sequence {cn } of complex numbers we have Pn = 
P N + Cn for all n > N. In case of convergence the limit function is then the 
polynomial P N + lim en· 

Exercise 2 (cf. also exercise 4 to Chapter 0, §4). Let X be any non-void set, 
fll : X -+ C (v ~ 0) a sequence of functions with the following properties: 

(i) {Iv} converges uniformly in X to the 0 function. 

(ii) The series LII2':1 Ifll - fv-ll converges uniformly on X. 
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a) Show that if an E C and the sequence Sm := L:~=o a v (m E N) is 
bounded, then the series L: avfv converges uniformly in X. 

b) Under what conditions on a second sequence of functions 9v : X --> C 
does the series L: 9vfv converge uniformly on X? 

Exercise 3. Show that the series L:n~l (~:r converges compactly in C \ 
{-I, -2, -3, ... }. 

Exercise 4. Show that the series L:n~l S2~~ converges uniformly in the 
strip S := {z E C : ISSzl ~ 1/2} but is not absolutely convergent at any 
point of S. 

Exercise 5. Show that the metric space C(D) in Exercise 4 of §1 is complete. 

§3 Normal convergence of series 

Although the series L:~ (~~~~' is locally uniformly convergent in lR it is 
possible to create divergent series from it by rearrangement. In order to 
calculate comfortably and without qualms we need (in analogy with series 
of complex numbers) a convergence notion for series L: fv of functions 
which precludes such phenomena and guarantees that every re-arrangement 
of the series and every subseries will converge locally uniformly. These 
desiderata are secured by the concept of normal convergence, which we 
now discuss. 

1. Normal convergence. A series L: fv of functions fv : X --> C is called 
normally convergent in X if each point of x has a neighborhood U which 
satisfies L: Ifvlu < 00. "Normal" here refers to the presence of (semi-) 
norms and has none of the common parlance significance ("expected, av­
erage, representative, according to the rule") of that word. We should 
emphasize that normal convergence is only defined for series and not for 
sequences generally. On the basis of Weierstrass' majorant criterion we see 
that 

Every series which is normally convergent in X is locally uniformly con­
vergent in X. 

From the continuity theorem 1.2 it follows in particular that 
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1111/ E C(X) and I = 'L 11/ converges normally in X, then I is contin­
uous on X. 

Quite trivial is the observation that 

Every subseries of a series which converges normally in X will itself 
converge normally in X. 

But we also have the indispensable 

Rearrangement theorem. If'L";' fl/ converges normally in X to f, then 
for every bijection T : N -+ N the rearranged series 'L";' fr(l/) also converges 
normally in X to f. 

Proof. Each point x E X has a neighborhood U for which 'L Ifl/lu < 00. 

Consequently for every bijection T of N, the rearrangement theorem for 
series of complex numbers (0.4.3) ensures that 'L Ifr(l/) lu < 00. And by 
applying that result to the numerical series 'L fl/(x) we are further assured 
that 'Lfr(I/)(x) = f(x). This is true of every x E X, and so the normal 
convergence in X of 'L fr(l/) to f is proved. 0 

The rearrangement theorem can be sharpened as follows: 

Let N = Uk>oNk be a decomposition of the natuml numbers into mutually 
disjoint non-void subsets and suppose that 'L";' fl/ converges normally in 
X to f. Then for each k the series 'LI/ENk fl/ converges normally in X to 
a function gk : X -+ C and the series 'Lk>o gk converges normally in X to 
f· -

The reader should carry out the proof of this; see Exercise 2 below. 

Along with 'L fl/ and 'L gl/' every series of the form 'L(afl/ + bgl/) will 
also be normally convergent in X (a, b E q. From the product theorem 
0.4.6 there also follows immediately 

Product theorem for normally convergent series. If f = 'L fl1-
and g = 'L gl/ converge normally in X, then every series 'L hI< in which 
ho, h1 , ... run through every product Il1-gl/ exactly once, converges normally 
in X to fg. 

We write Ig = 'L Il1-gl/ and in particular, fg 
LI1-+I/=A Il1-gl/ (the Cauchy product). 

LPA with PA 
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2. Discussion of normal convergence. Normal convergence is by defi­
nition a local property. Nevertheless: 

If L f v is normally convergent in x, then L If v I K < 00 for every com­
pactum K in X. 

And there is a converse in the following sense 

If X is locally compact and L IfvlK < 00 for every compactum K in X, 
then L fv is normally convergent in X. 

The proofs of both these statements are trivial. o 

For discs Bs(c) in C, every compactum K C Bs(c) lies in Br(c) for some 
r < s, so we have as a particular case of the above 

If fv : Bs(c) ----> C is a sequence which satisfies L IfvIBr(c) < 00 for each 
0< r < s, then L fv converges normally in Bs(c). 0 

Normal convergence is more than local uniform convergence, as the series 
00 i..=.!.L. L1 :+v' z E C \ {-I, -2, -3, ... } shows. The reader should corroborate 

this. 

In spite of the last example above, it is always possible to force a locally 
uniformly convergent series to be a normally convergent one by judicious insertion 
of parentheses: 

Suppose that f = L fv is locally uniformly convergent in X. Then every 
point of X has a neighborhood U with this property: there exists a sequence 
o = no < n1 < n2 < ... for which the "re-grouped" series L Fv , where Fv .­
fnv + fnv+1 + ... + fnv+l-1, converges to f and satisfies L IFvlu < 00. 

Proof. Let E1 > E2 > E3 > ... be a sequence of positive real numbers with 
LEv < 00. By definition of local uniform convergence, there is a neighborhood 
U of the given point and indices 0 < n1 < n2 < ... such that 

ltv - flu ~ Ev 

nl.'-l 

for tv:= L fl" , V = 1,2, ... 
o 

Setting Fo := t1,Fv := t v+1 - tv, it is clear that f = LFv. And because 
Fv = (tv+1 - j) - (tv - j) for all v ~ 1, it follows that IFvlu ~ Ev+1 + Ev < 2Ev 
for v ~ 1 and so L IFvlu ~ lFolu + 2 LV21 Ev < 00. 0 

It should be noted that the sequence no, n1, ... gotten here depends on the 

particular neighborhood U. 
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3. Historical remarks on normal convergence. The French math­
ematician Rene BAIRE (1874-1932), known for contributions to measure 
theory [Baire sets] and topology [Baire category theorem]' introduced this 
convergence concept in 1908 in the second volume (pp. 29 ff.) of his 
work Le90ns sur les theories generales de l 'analyse (Gauthier-Villars, Paris 
1908). He was guided by Weierstrass' majorant criterion 2.2 and in the in­
troduction to this volume (p. VII) he says: "Bien qu'a mon avis l'introduc­
tion de termes nouveaux ne doive se faire qu'avec une extreme prudence, 
il m'a paru indispensable de caracteriser par une locution breve Ie cas Ie 
plus simple et de beaucoup Ie plus courant des series uniformement con­
vergentes, celui des series dont les termes sont moindres en module que 
des nombres positifs formant serie convergente (ce qu'on appelle quelque­
fois critere de Weierstrass). J'appelle ces series normalement convergentes, 
et j'espere qu'on voudra bien excuser cette innovation. Un grand nombre 
de demonstrations, soit dans la theorie des series, so it plus loin dans la 
theorie des produits infinis, sont considerablement simplifiees quand on 
met en avant cette notion, beaucoup plus maniable que la propriete de 
convergence uniforme. (Although in my opinion the introduction of new 
terms must only be made with extreme prudence, it appeared indispensable 
to me to characterize by a brief phrase the simplest and by far the most 
prevalent case of uniformly convergent series, that of series whose terms 
are smaller in modulus than the positive numbers forming a convergent 
series (what one sometimes calls the Weierstrass criterion). I call these 
series normally convergent, and I hope that people will be willing to excuse 
this innovation. A great number of demonstrations, be they in the theory 
of series or somewhat further along in the theory of infinite products, are 
considerably simplified when one advances this notion, which is much more 
manageable than that of uniform convergence.)" 

Thus BArRE practically apologized for introducing a new concept into 
mathematics! This convergence is most often encountered and studied in 
the more general context of normed linear spaces - functional analysis -
a framework and direction of analysis which was being founded about the 
time Baire's book appeared. 

Exercises 

2n 
Exercise 1. Show that the series 2::n2':l l~zn is normally convergent in E. 

Exercise 2. a) Formulate and prove for normally convergent series an as­
sertion corresponding to that in Exercise 5 of Chapter 0, §4 for absolutely 
convergent series of complex numbers. 

b) From a) deduce the sharpened form of the rearrangement theorem 
stated in subsection 1. 



Chapter 4 

Power Series 

Die Potenzreihen sind deshalb besonders be­
quem, wei! man mit ihnen fast wie mit 
Polynomen rechnen kann (Power series are 
therefore especially convenient because one 
can compute with them almost as with 
polynomials).-C. CARATHEODORY 

The series of functions which are the most important and fruitful in func­
tion theory are the power series, series which as early as 1797 had been 
considered by LAGRANGE in his Theorie des fonctions analytiques. In this 
chapter the elementary theory of convergent power series will be discussed. 
This theory used to be known also as algebraic analysis (from the subtitle 
Analyse algebrique of Cauchy's Cours d'analyse [C]). Also of interest in this 
connection is the article of the same title by G. FABER and A. PRINGSHEIM 
in the Encyklopiidie der Mathematischen Wissenschaften II, 3.1, pp. 1-46 
(1908). 

In section 1 we first show that every power series has a well-defined 
"radius of convergence" R and that inside its "circle of convergence" BR(C) 
it converges normally. The calculation of R can generally be accomplished 
by means of either the CAUCHy-HADAMARD formula or the quotient rule. 
In section 2 we determine the radii of convergence of various important 
power series like the exponential series exp z, the logarithmic series A (z) 
and the binomial series bu (z). In section 3 we show that a convergent 
power series represents a holomorphic function in its disc of convergence. 
(The all-important converse of this cannot however be proved until 7.3.1.) 
With this the "preliminaries to Weierstrass' function theory" have been 
attended to and there are no further obstacles to our constructing many 
interesting holomorphic functions. In particular, the functions exp z, A (z) 
and bu(z) are holomorphic in their discs of convergence; in the unit disc 

109 
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E the relation b".(z) = exp(a),(z)) holds among them. We will later bring 
this into the suggestive form (1 + zt = e".log(1+z), but the usual proof of 
this for real a and z does not work when they are complex because log z is 
no longer the inverse of the function exp z. 

In section 4 we make an excursion into algebra and study the ring A of 
all convergent power series. This ring proves to be a "discrete valuation 
ring' and consequently is arithmetically simpler than the ring Z of integers 
or the polynomial ring C[zJ. A is a (unique) factorization domain and has 
just one prime element. So the adage of CARATHEODORY at the head of 
the chapter is even an understatement: in many respects calculation with 
power series is actually easier than with polynomials. 

§ 1 Convergence criteria 

Fixing c E C, any function series of the form 

00 

La,,(z - c)" 
o 

with a" E C is called a (Jormal) power series with center c and coefficients 

a". 
The power series form a C-algebra: the number a E C is identified with 

a + L~ O(z - c)" and for f = L~ a,,(z - c)", g = L~ b,,(z - c)" the sum 
and the product are defined by 

00 

f + g:= L(a" + b,,)(z - c)" 
o 
00 

f· g:= LP)'(z - c)A, where p),:= L al"b". 
o 1"+"=), 

This multiplication is just the Cauchy multiplication (cf. 0.4.6). 
To simplify our statements, we frequently assume c = 0 if that involves 

no loss of generality. We abbreviate Br(O) to Br and - following our 
earlier convention - write La"z" throughout instead of L~ a"z". 

1. Abel's convergence lemma. Every power series trivially converges 
at its center. So a power series is only called convergent if there is some 
other point Zl i- c at which it converges. We will show 

Convergence lemma (ABEL). Suppose that for the power series L a"z" 
there are positive real numbers sand M such that la"ls" S M for allll. 
Then this power series is normally convergent in the open disc B s. 
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Proof. Consider an arbitrary r with 0 < r < s and set q := rs-l. Then 
la",z"'IB r = la",lr'" ~ Mq'" for all 1/. Since Lq'" < 00, on account of 
o < q < 1, it follows that L la",z"'IBr ~ M L q'" < 00. As this is the case 
for every r < s, normal convergence in B8 follows (cf. 3.3.2). 0 

Corollary. If the series L a",z'" converges at Zo i- 0, then it converges 
normally in the open disc Bizol' 

For the sequence la",llzol'" is a null sequence and consequently is bounded. 

2. Radius of convergence. The geometric series L z'" converges in the 
unit disc IE and diverges at every point of C \ IE. This convergence behavior 
is representative of what happens in general. 

Convergence theorem for power series. Let L a",z'" be a power series 
and denote by R the supremum of all real numbers t 2: 0 for which la",lt'" 
is a bounded sequence. Then 

1) The series converges normally in the open disc BR. 
2) The series diverges at every point wEe \ B R. 

Proof. We have 0 ~ R ~ 00 and there is nothing to prove if R = O. So 
suppose R > O. The sequence la",ls'" is bounded, for each s with 0 < s < R. 
By the convergence lemma L a",z'" is consequently normally convergent in 
B8 for each such s. Since BR is the union of these open subdiscs, normal 
convergence holds true in B R. 

For each w with Iwl > R the sequence la",llwl'" is unbounded, so the 
series L a",w'" is necessarily divergent. 0 

Power series are the simplest normally convergent series of continuous 
functions. The limit function to which L a",z'" converges is continuous in 
BR (cf. 3.3.1); we will designate this function (as well as the power series 
itself) by f. 

The quantity R E [0,00] determined by the convergence theorem is called 
the radius of convergence, and the set BR is called the disc of convergence 
(sometimes less precisely, the circle of convergence) of the power series. In 
the subsections immediately following we will find some criteria for deter­
mining the radius of convergence. 

3. The CAUCHy-HADAMARD formula. The radius of convergence of 
the power series L a",(z - c)'" is 

R= 1 . 
limyTa;l 
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Here we have to recall that for every sequence of real numbers r" its limit 
superior is defined by limr" := lim"--->oo[sup{r,,,r,,+l, ... }]. We use the 
conventions 1/0 := 00, 1/00 := O. 

For the proof of the Cauchy-Hadamard formula, set L := (lim Vla"l)-l. 
The desired inequalities L ::; Rand R ::; L follow if we can show that: for 
every r with 0 < r < L, r ::; R holds, and for every s with L < s < 00, 
s ~ R holds. 

First consider 0 < r < L, so that r- 1 > lim v'i£l,l. From the definition 
of lim there is then a Va E N such that Via", I < r- 1 for all V ~ Va. The 
sequence la" Ir" is therefore bounded, that is, r ::; R. 

Now consider L < s < 00, so that S-l < lim Vla"l. From the definition 
of lim there is then an infinite subset M of N such that for all m E M, 
s-l < Vlaml, that is, lamlsm > 1. The sequence la"ls" is thus certainly 
not a null sequence and so we must have s ~ R. 0 

By means of the limit superior formula we at once find for the series 

LV"z'" 'Lz" and 

the respective radii of convergence R = 0, R = 1 and R = 00, with re­
spective discs of convergence BR = 0, BR = IE: and BR = C. Nevertheless, 
the Cauchy-Hadamard formula is not always optimally suited to determin­
ing the radius of convergence (a case in point being the exponential series 
L z" Iv!). Frequently very helpful in such cases is the 

4. Ratio criterion. Let L a,,(z - c)" be a power series with radius of 
convergence R and a" -I- 0 for all but finitely many values of v. Then 

lim~ < R < lim~· 
-la",+ll - - la,,+ll' 

In particular R = lim _llavl l whenever this limit exists. 
a v +l 

[Recall the definition 

lim r,,:= lim [inf{r",r,,+l, ... }] 
"--->00 

of the limit inferior of a sequence r" of real numbers, which is analogous to 
that of the limit superior. Always limr", ::; limr", and lim r" exists precisely 
when these are equal, in which case it coincides with their common value.] 

Proof. Set S := lim_llavll' T := lim~1 avl l. Then what we must show is that 
- a v +l a v +l 

S ::; R for every s with 0 < s < Sand t ::; R for every t with T < t < 00. 
First consider 0 < s < S. From the definition of lim there must be an 

£ E N such that 
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la"a~~ll > s, that is, la"+1ls > la,,1 for all v :::::: f. 

Setting A := lallsl , it follows by induction that laHmlsHm ::; A for all 
m :::::: o. The sequence la"ls" is consequently bounded; that is, s ::; R. 

Now consider T < t < 00. According to the definition of lim there is 
then an fEN such that 

for all v :::::: f. 

Setting B := lalltl , it follows by induction that laHmltHm :::::: B for all 
m :::::: O. Since B > 0, this means that la" It" is not a null sequence, that is, 
t:::::: R. 0 

This ratio criterion for power series contains the well-known ratio test for 
convergence of numerical series La", a" E ex: because from la,,+la;ll::; 
q < 1 for almost all v it follows that lim la"a~~ll :::::: q-l, so that the series 
L a"z" has radius of convergence R :::::: q-l > 1 and consequently converges 
absolutely at z = 1. 

Warning. It is possible that infinitely many coefficients in a power series vanish. 
For such "lacunary series" 

in which n>'+1 > n>. + 1 infinitely often, consideration of the sequence Ian", . 

a;;:;+ll does not generally lead to determination of the radius of convergence. For 
I . h .. '" 22v 2v 22v 0 d -I examp e, In t e geometnc senes 6 z, a2v = , a2v+1 = an a2v· a 2v+ 2 = 

1/4, for all v; yet according to CAUCHy-HADAMARD the radius of convergence of 
this series is 1/2. 

5. On the history of convergent power series. EULER calculated 
quite routinely with them; e.g., in [E], §335 ff. he was already implicitly 
using the ratio criterion (cf. also in this connection 7.3.3). LAGRANGE 

wanted to base all of analysis on power series. In 1821 CAUCHY proved the 
first general proposition about them; thus in [C], pp. 239/40 he showed 
that every power series, real or complex, converges in a well-determined 
circular disc Bee and diverges everywhere in e \ B. He also proved the 
formulas 

R= 1 
limY/la,,1 

and R I· la,,1 
= 1m-I -I' a,,+l 

the latter under the explicit assumption that the limit exists ("Scolie" on 
p. 240). The limit superior representation was re-discovered in 1892 by 
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J. S. HADAMARD (French mathematician, co-prover of the prime number 
theorem, 1865-1963), who was apparently unaware of Cauchy's formula; 
his paper is in Jour. Math. Pures et Appl. (4) 8, p. 108. 

ABEL published his basic convergence lemma in 1826 in his landmark 
work [A] concerning binomial series; his formulation was as follows: 

Lehrsatz IV. Wenn die Reihe 1(0.) = Vo + Vlo. + V2o.2 + ... + vmo.m + ... 
fUr einen gewissen Werth 0 von 0. convergirt, so wird sie auch fUr jeden 
kleineren Werth von 0. convergiren, ... 

This is the essence of our corollary to the convergence lemma. It is fur­
ther interesting to read what ABEL had to say about mathematical rigor in 
connection with convergence questions, Cauchy's Cours d'analyse notwith­
standing; thus ABEL begins his exposition with the note-worthy words: 
"Untersucht man das Raisonnement, dessen man sich gewohnlich bedient, 
wo es sich urn unendliche Reihen handelt, genauer, so wird man finden, 
daB es im ganzen wenig befriedigend, und daB also die Zahl derjenigen 
Satze von unendlichen Reihen, die als streng begrundet angesehen werden 
konnen, nur sehr geringe ist. (If one examines more closely the reasoning 
which is usually employed in the treatment of infinite series, he will find 
that by and large it is unsatisfactory and that the number of propositions 
about infinite series which can be regarded as rigorously confirmed is small 
indeed.)" 

Power series were just ancillary with CAUCHY and RIEMANN; they were 
first given primacy by WEIERSTRASS. They were already on center-stage 
in his 1840 work Uber die Entwicklung der Modular-Functionen. [This was 
a written homework assignment in connection with the examination for 
prospective high-school teachers; it is dated "Westernkotten in Westfalen, 
im Sommer 1840." GUDERMANN, WEIERSTRASS's teacher, in his evalu­
ation of it wrote: "Der Kandidat tritt hierdurch ebenburtig in die Reihe 
ruhmgekronter Erfinder. (With this work the candidate enters the ranks 
of famous inventors as a co-equaL)" G UDERMANN urged publication of the 
exam project as soon as possible and that would have happened had the 
philosophy faculty of the royal academy at Munster/Westphalia at that 
time had the authority to grant degrees. "Dann wurden wir die Freude 
haben, Weierstrass zu unsern Doktoren zu zahlen (Then we would have 
the pleasure of counting Weierstrass among our doctoral graduates)", so we 
read in the 1897 rector's address of Weierstrass' former pupil W. KILLING 
(whose name was later immortalized in Lie theory). Not until 1894, fifty­
four years after it was written, did WEIERSTRASS publish his exam work; 
his Mathematische Werke begin with this work.] For WEIERSTRASS func­
tion theory was synonymous with the theory of functions represented by 
power series. 
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Exercises 
Exercise 1. Determine the radius of convergence of each of the following: 

a) zn I oo ( 7n4 + 2n3 )n 
n=1 5n4 + 23n3 

I oo z2n 
b) -, C E ex 

n=1 cn 

'\"' 00 n' 
c) Lm=1 2n(2~)! (z-l)n 

I oo (n!)k n 

e) _ -(k )'z, n-O n. 
kEN, k ~ 1 

Exercise 2. Let R > 0 be the radius of convergence of the power series 
2: anzn. Determine the radius of convergence of the following series: 

Exercise 3. Let Rb R2 > 0 be the radii of convergence of the series 2: anzn 

and 2: bnzn, respectively. Show that 

a) The radius of convergence R of the series 2:(an + bn)zn satisfies 
R ~ min{R1,R2} and that equality holds if R1 =f. R 2· 

b) The radius of convergence R of the series 2: anbnzn satisfies R ~ 
R1R2 · 

c) If an =f. 0 for all n, then the radius of convergence R of the series 
2:(an)-1 zn satisfies R ::; R11. Give an example where this inequality 
is strict. 

Exercise 4. The power series 2::=1 ~ has radius of convergence 1. Show 
that the function it represents is injective in B2/3(O). Hint. For z,w E C 
and integer n ~ 2 

zn _ wn = (z - w)(zn-1 + zn-2w + ... + zwn- 2 + wn- 1). 

(With more refined estimates it can be shown that the function is injective 
in an even larger disc.) 

§2 Examples of convergent power series 

With the aid of the ratio criterion we will determine the radii of convergence 
of some important power series. We also briefly allude to convergence 
behavior on the boundary and discuss the famous Abel limit theorem, 
though in fact it is not particularly relevant to function theory proper. 

1. The exponential and trigonometric series. Euler's formula. 
The most important power series after the geometric one is the exponential 
series 
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zl/ Z2 Z3 
exp z := '"""' - = 1 + z + - + - + ... 

L... I/! 2! 3! 

Its radius of convergence is determined from the ratio criterion (in which 

al/:= ~) to be R = lim ~I a v I = lim(I/+1) = 00; that is, the series converges v. a v +l 
throughout C. On account of the estimate 

'"""' zl/ < Izln (1 + _I_zl_ + Izl2 + ... ) 
L... I/! - n! n+1 (n+1)(n+2) 
1/2n 

we have 

I 
n-l 1/ I 2 

exp z - '"""'.:..- :S -Izln 
L... I/! n! 

o 
for n :::: 1 and 

1 
Izl :S 1 + 2(n - 1). 

Remark. The CAUCHy-HADAMARD formula is not particularly suitable for de­
termining R because it involves the not obviously accessible lim( VIA) -1. How­
ever, now that we know R = 00, that formula tells us that lim( VIA)-1 = o. 

The cosine series and the sine series 

cosz := 

sinz := 

~ Iz12V+l 
likewise converge everywhere in C, because L (~I/)! and L (21/+1)! are sub-

series of the convergent series L l:.J;., for each z E C. 1/. 

We have thus defined in C three complex-valued functions exp z, cos z 
and sin z which coincide on lR with the functions bearing the same names 
from the infinitesimal calculus. We speak of the complex exponential func­
tion and the complex cosine and sine functions. These functions will be 
extensively discussed in Chapter 5. Here we only want to note the famous 

Euler formula: I exp iz = cos z + i sin z for all z E C I 

which EULER announced in 1748 for real arguments ([E], §138). The for­
mula follows from the identity 
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2~1 (iz)" _ ~( )11- Z211- . ~( )11- Z211-+l 

f='o --;T - ~ -1 (2JL)! + z ~ -1 -:-(2-JL-+-1):-:-! 

(which is itself immediate because i2 = -1) by passage to the limit as 
m --400. D 

Because cosine is an even and sine an odd function: 

cos(-z) = cosz, sin(-z) = -sinz, z E te, 

we have exp( -iz) = cos z -i sin z and from this by addition and subtraction 
with the original formula, we get the Euler representations 

cosz = ~[exPiz + exp( -iz)], sinz = ;i [expiz - exp( -iz)]. 

2. The logarithmic and arctangent series. The power series 

00 (_1),,-1 Z2 z3 

>,(z) := L 1/ Z" = Z - "2 + "3 - + ... 
1 

is called the logarithmic series; it has radius of convergence R = 1, since 
~I a v I = ~. (And once again CAUCHy-HADAMARD leads to a non-trivial 
a v +l v 

corollary: 1 ~ lim ytV ~ lim ytV = 1 and so lim ytV exists and equals 1.) 
In 5.4.2 we will see that the function defined in the unit disc lE by this 

series is the principal branch 10g(1 + z) of the logarithm. Nicolaus MER­

CATOR (real name, KAUFMANN; born 1620 in Holstein, lived in London; 
one of the first members of the Royal Society; went to France in 1683 and 
designed the fountains at Versailles; died 1687 in Paris; not to be confused 
with the inventor of the mercator projection 100 years earlier) found the 
logarithmic series in 1668 in the course of his quadrature of the hyperbola, 
thus 

l x dt l x x2 x3 x4 10g(1+x) = -- = (1-t+t2-t3 +_ .. ·)dt = x--+---+··· 
o l+t 0 2 3 4 

The power series 

00 (_1),,-1 3 5 
() "'"' 2,,-1 z z a z := ~ z = z - - + - - + ... 

1 21/ - 1 3 5 

is called the arctangent series; it has radius of convergence R = 1 (why?) 
and in the unit disc it represents the inverse function of the tangent function 
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(cf. 5.2.5). The arctangent series was discovered in 1671 by J. GREGORY 

(1638-1675, Scottish mathematician) but did not come to public attention 
until 1712. 

3. The binomial series. In the year 1669 the 26-year-old Isaac NEWTON 

(1643-1727; 1689 MP for Cambridge University; 1699 superintendent of the 
royal mint; 1703 president of the Royal Society; 1705 knighted) in a work 
entitled "De analysi per aequationes numero terminorum infinitas" (Vol. 
II, pp. 206-247 of The Mathematical Papers of Isaac Newton) wrote that 
for every real number s the binomial series 

Loo (s) v 1 s(s - 1) 2 s(s - 1) ... (s - n + 1) n x = + sx + x + ... + x + ... 
v 2 n' o . 

represents the binomial (l+x)S for all real numbers x satisfying -1 < x < l. 
ABEL [AJ considered this series for arbitrary complex exponents a E C and 
for complex arguments Z; he shows that for all a E C \ N the series has 
radius of convergence 1 and again represents the binomial (1 + z)U in the 
unit disc, provided this power function is "properly" defined. 

For each a E C we define, just as for real numbers, the binomial coeffi­
cients, as 

(~) := 1, (:) 
._ a(a - 1) ... (a -n + 1) 
.- n! ' n = 1,2, ... 

They clearly satisfy 

( a) a -n (a) 
n+1 =n+1 n 

for all a E C, all n E N. 

The binomial series for a E C is given by 

Of course if a is a non-negative integer, then e) = 0 for all v > a and 
then we get (in any field of characteristic 0) the binomial formula 

for all z E C , a E N 

which is just a polynomial of degree a. For all other a however, e) ::f. 0 
for all v. In these cases the binomial series is an infinite power series. For 
example, since c-;:n = (_l)V, we have for a = -1 the alternating geometric 
series 

for all z E lEo 
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Generally 

The binomial series has radius oj convergence 1 Jor every a E C \ N. 

Proof The coefficient av := e) is non-zero for all v and by (*) 

v+1 
a-v 

1 + 1/v 
1- a/v 

which shows that R = lim _llav I I = l. 
a v+l 

for all v ::::: 1, 

And we should take note of a multiplication Jormula 

D 

valid for all z E .IE and all a E C; a formula which should come as no 
surprise since, as noted, bC7 (z) will turn out to be the power (1 + Z)C7. 

Proof The arithmetically confirmed identity 

gives 

Now shift the summation index in the second sum. D 

Since conjugation is a continuous (isometric!) map of C, for every power 
series J(z) = Lavzv we have J(z) = Lavzv , and thus J(z) = J(z) in case 
all the coefficients av are real. In particular, we have 

expz = expz, cosz = cosz, sinz = sinz for all z E C, 

.\(z) = .\(z) for all z E .IE, bC7 (z) = bC7 (z) for all z E .IE, 

the last provided that a E R 

4 * . Convergence behavior on the boundary. The convergence behavior 
of a power series on the periphery of the open disc of convergence can be quite 
different from case to case: convergence (absolute) can occur· everywhere, as for 
example with the series L~ 5-, whose R = 1; convergence can occur nowhere, 
as for example with the series L z", whose R = 1; and points of convergence can 
co-exist with points of divergence, as occurs for example with the "logarithmic" 

series L~ (-It-1 z", whose R = 1 - at z = 1 it is the alternating harmonic 
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series and so converges, but at z = -1 it is the ordinary harmonic series and so 
diverges. Actually it can be shown that this series converges at every point of 
the boundary circle except z = -1. 

There is an extensive literature dealing with convergence behavior on the 
boundary. For example, in 1911 the Russian mathematician N. LUSIN con­
structed a power series L c"z" with radius of convergence 1 which satisfies c" ~ ° 
and diverges at every z E C of modulus 1. And the Polish mathematician W. 
SIERprr~SKI produced in 1912 a power series with radius of convergence 1 which 
converges at the point z = 1 but diverges at every other point on the unit circle. 
The reader interested in such matters will find these last two examples, and more, 
presented in detail in the beautiful booklet [Lan]. 

5*. Abel's continuity theorem. In 1827 ABEL formulated the following 
problem (Jour. for die Reine und Angew. Math., Vol. 2, p. 286; also (Euvres 
Vol. 1, p. 618): "En supposant la serie 

convergente pour toute valeur positive moindre que la quantite positive a, on 
propose de trouver la limite vers laquelle converge la valeur de la fonction fx, en 
faisant converger x vers la limite a. (Supposing the series (*) to be convergent 
for every positive quantity x less than a certain positive quantity a, I propose to 
find the limit to which the values of the function fx converge when x is made 
to converge to the limit a.)" This problem is essentially that of determining 
the behavior under radial approach to the boundary of the convergence disc of 
the limit function of a power series. For the case where the power series itself 
converges at the boundary point being considered, ABEL had already solved his 
problem in his 1826 paper [A]; namely, the complete formulation of his theorem 
which was alluded to in 1.5 runs as follows: 

Lehrsatz IV. If the series f(a) = I/o + I/la + 1/2a2 + ... + I/mam + ... converges 
for a certain value 8 of a, then it also converges for every smaller value of a and 
is of such a nature that f(a - (3) approaches the limit f(a) as (3 decreases to 0, 
provided that a is less than or equal to 8. 

Since a = 8 is explicitly allowed, it is being said here that the function f(a) 
is continuous in the closed interval [0,8], that is, 

lim f(a) = I/o + 1/18 + 1/2 82 + ... 
0:_0-0 

holds. This proposition, which is certainly not trivial and was derived by ABEL 
using an elegant trick, is called the Abel continuity theorem or limit theorem. [The 
theorem had already been stated and used by GAUSS ("Disquisitiones generales 
circa seriem ... ," 1812; Werke III, p. 143) but his proof contained a gap involv­
ing the uncritical interchange of two limit processes.] The applications of this 
theorem in the calculus are well enough known. E.g., once one has that the series 

x 2 x 3 X4 x 3 x 5 x 7 
X - - + - - - + - ... and x - - + - - - + - ... 

234 357 
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converge in the interval (-1,1) and represent the functions log(l+x) and arctan x, 
respectively, then from their convergence at x = 1 and the continuity theorem 
(and the fact that log(1 + x) and arctan x are each continuous at x = 1) he gets 
the equation log 2 = 1 - ~ + ~ - i + - ... and the famous 

Leibniz formula: 

7r 1 1 1 - = arctan 1 = 1 - - + - - - + - ... 
4 3 5 7 

The limit theorem can also be phrased this way: for a boundary point at 
which the series converges, the function defined by the series has a limit under 
radial approach to this point and it is the sum of the series at this point. In 
1875 O. STOLZ proved the following generalization (Zeitschrift Math. Phys. 20, 
369-376): 

Let L a ... (z - c)" be a power series with radius of convergence R; suppose that 
it converges at the point b E BBR(C). Then the series converges uniformly in 
every closed triangle ~ which has one vertex at b and its other two vertices in 
BR(C) (d. the figure). In particular, the function 

is continuous throughout ~ and, consequently, satisfies 

lim f(z) = '"' a ... (b - c)". 
z-b L....J 
zEA 

HARDY and LITTLEWOOD showed in 1912 (in this connection see also L. HOLZER, 
Deutsche Math. 4(1939), 190-193) that for approach to b along a path W which 
lies in no such triangle ~, so-called tangential approach, the function defined by 
the power series need not have a limit at all. D 

There don't seem to be any "natural applications" of this generalized limit 
theorem. The interested reader will find a proof in KNESER [14], pp. 143-144 or 
in KNOPP [15]. In the latter and in [Lan] he will also find material concerning the 
converse of Abel's limit theorem (theorems of TAUBER, HARDY and LITTLEWOOD, 
and others). 
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Exercises 
Exercise 1. The hypergeometric series determined by a, b, c E C, -c f/. N, 
is given by 

F( b ) .-1 ab a(a+l)b(b+l) 2 
a, , c, z .- + -z + 2 ( ) z + ... + 

c c c+ 1 

a(a + 1) ... (a + n - l)b(b + 1) ... (b + n - 1) n + z + ... 
n!c(c + 1) ... (c + n - 1) 

Show that in case -a, -b f/. N : 

a) The hypergeometric series determined by a, b, c has radius of conver­
gence 1. 

b) If ~(a + b - c) < 0, the series converges absolutely for Izl = 1. 

Hint to b): Exercise 3, §4, Chapter O. 

Exercise 2. a) Let an be real and decrease to O. Show that the power series 
E anzn converges compactly in iE \ {I}. Hint: Investigate (1 - z) E anzn. 

b) Show that the logarithmic series >.(z) = EV?:l <-It- 1 
ZV converges 

compactly in iE \ {I}. 

Exercise 3. This exercise is concerned with proving a theorem of TAUBER 
which in a special case furnishes a converse of ABEL'S continuity theorem. 

Let an E C satisfy limn nan = O. Then the power series J(z) := 
E:'=o anzn converges at least in lE. Suppose there is an a E C such that 
limm J(xm ) = a for every sequence {xm } in E which approaches 1 "from 
the left", that is, for every sequence {xm } C (-1, 1) with limm Xm = 1. 
Then E:'=o an = a. 

Carry out a proof via the following steps: 

a) Show that for 0 :::; x < 1 and every integer m > 0 

m 00 

< (1- x) L nlanl + L lanlxn, and 
n=l n=m+l 

00 

L lanlxn ::; 
n=m+l 

1 
( ) max{nlanl : n > m}. 

m I-x 

b) Now consider the special sequence Xm := 1 - ~ and use Exercise 3b) 
of §3, Chapter O. 

Exercise 4. Show that if almost all the an are real and non-negative, then 
the first hypothesis in Tauber's theorem above can be weakened to lim an = 
o and the conclusion still follows. 
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§3 Holomorphy of power series 

Except for the examples in 1.2.3, where transcendental real functions were 
put together to form holomorphic functions, we really don't know any holo­
morphic functions besides polynomials and rational functions. But from 
the differential calculus of real functions we know that convergent real power 
series represent functions which are real-differentiable as often as we please 
and that the summation and differentiation may be interchanged. Analo­
gously, it turns out that in the complex differential calculus every convergent 
complex power series is arbitrarily often complex-differentiable and is con­
sequently holomorphic; and here too the theorem on interchangeability of 
summation and differentiation holds. 

1. Formal term-wise differentiation and integration. If the series 
E av(z - c)V has radius of convergence R, then the series E vav(z - C)v-l 
and E(v + 1)-lav(z - C)"+l arising from it by term-wise differentiation 
and integration, respectively, each also have radius of convergence R. 

Proof a) For the radius of convergence R' of the differentiated series we 
have 

R' = sup{t ~ 0: the sequence vlavltV - 1 is bounded}. 

Since the boundedness of the sequence vlavltV - 1 certainly implies that of 
the sequence lavltV, the inequality R' :::; R is clear. 

In order to conclude that R :::; R', it suffices to show that every r < R 
satisfies r :::; R'. Given such an r, pick s with r < s < R. Then the series 
lavlsv is bounded. Moreover, for q := rls , vlavlrv- 1 = (r-llavlsV)vqv. 
Now for 6 := q-l - 1 > 0 and v ~ 2 the binomial formula gives q-V = 

(1 +6)1' ~ (~) 62 , and so 0 < vqV :::; (v_21)62 . It follows that vqV is a null 

sequence, and so too is its product with the bounded sequence r-1Iavlsv, 
namely the sequence vlavlrv- 1. Then certainly r :::; R'. In summary, 
R'=R. 

b) Let R* denote the radius of convergence of the integrated series. 
According to what was proved in a), R* is then also equal to the radius of 
convergence of the series gotten from E(v + 1)-lav(z - c)"+1 by term-wise 
differentiation, namely the series E av(z - c)v. That is, R* = R. 0 

2. Holomorphy of power series. The interchange theorem. In the 
theorem just proved there is nothing to the effect that the continuous limit 
function f of the power series E av(z - c)V is holomorphic in BR(C), but 
we shall now prove this. We claim 

Theorem (Interchangeability of differentiation and summation in 
power series). If the power series L av(z - c)V has radius of convergence 
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R > 0, then its limit function f is arbitrarily often complex-differentiable, 
and in particular holomorphic, in B R (c) . Moreover, 

f(k)(Z) = L k! (~) (z - c),,-k, Z E BR(C) , kEN 
,,?k 

and in particular, for all kEN, 

f(k)(C) --v- = ak (Taylor-coefficient formulas). 

Proof It suffices to treat the case k = 1; the general result follows by 
iterating this conclusion. Set B := BR(c). First of all, theorem 1 makes 
it clear that g(z) := L">l lJa,,(Z - C),,-l is a well-defined complex-valued 
function on B. Our clailn is that l' = g. We may and do assume that 
c = O. Let bE B be fixed. In order to show that I'(b) = g(b), we set 

( ) ._ ,,-1 + ,,-2b + + ,,-jz.j-1 + + b,,-l q" z .- z z . . . Z if ••. 

z E C , II = 1,2, .... Then z" - b" = (z - b)q,,(z) for all z and so 

Now write h(z) for L,,>l a"q,,(z). It follows, upon noting the fact that 
q,,(b)=lIb,,-l,that -

f(z) = f(b) + (z - b)h(z) , z E B, and h(b) = L lIa"b,,-l = g(b). 
,,?1 

All that remains therefore is to show that h is continuous at b. This 
is accomplished by proving that the defining series L,,>l a"q,,(z) for h is 
normally convergent in B. But this latter fact is clear: for every Ibl < r < R 

by theorem 1. 0 
The above proof is valid (word for word) if instead of C any complete valued 

field, e.g., JR, underlies the series. (Of course for fields of non-zero characteristic 
one writes 11(11 - 1) ... (II - k + 1) instead of k! (~).) 

3. Historical remarks on term-wise differentiation of series. For 
EULER it went without saying that term-wise differentiation of power series 
and function series resulted in the derivative of the limit function. ABEL 
was the first to point out, in the 1826 letter to HOLMBOE already cited in 
3.1.4, that the theorem on interchange of differentiation and summation is 



§3. HOLOMORPHY OF POWER SERIES 125 

not generally valid for convergent series of differentiable functions. ABEL, 
who had just found his way in Berlin from the mathematics of the Euler 
period to the critical logical rigor of the Gauss period, writes with all 
the enthusiasm of a neophyte (loc. cit., p. 258): "La tMorie des series 
infinies en general est jusqu'a present tres mal fondre. On applique aux 
series infinies toutes les operations, comme si elles etaient finies; mais cela 
est-il bien permis? Je crois que non. Ou est-il demontre qu'on obtient la 
differentielle d'une serie infinie en prenant la differentielle de chaque terme? 
Rien n'est plus facile que de donner des exemples ou cela n'est pas juste; 
par exemple 

(1) x. 1'21'3 - = sm x - - sm x + - sm x - etc. 
2 2 3 

En differentiant on obtient 

(2) 
1 "2 = cos x - cos 2x + cos 3x - etc., 

result at tout faux, car cette serie est divergente. (Until now the theory of 
infinite series in general has been very badly grounded. One applies all the 
operations to infinite series as if they were finite; but is that permissible? 
I think not. Where is it demonstrated that one obtains the differential of 
an infinite series by taking the differential of each term? Nothing is easier 
than to give instances where this is not so; for example (1) holds but in 
differentiating it one obtains (2), a result which is wholly false because the 
series there is divergent.)" 

The correct function-theoretic generalization of the theorem on term­
wise differentiation of power series is the famous theorem of WEIERSTRASS 
on the term-wise differentiation of compactly convergent series of holomor­
phic functions. We will prove this theorem in 8.4.2 by means of the Cauchy 
estimates. 

4. Examples of holomorphic functions. 1) From the geometric series 
l~Z = 2:~ Zll, which converges throughout the open unit disc E, after 
k-fold differentiation we get 

1 ~ (v) II-k 
(1 - Z)k+l = L....J k z , 

lI?k 

zEK 

2) The exponential function exp z = 2: :; is holomorphic throughout C: 

exp'(z) = expz , z E C. 

This important differential equation can be made the starting point for the 
theory of the exponential function (cf. 5.1.1). 

3) The cosine function and the sine function 
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cos z = '""' (-1)" Z211 
~ (2v)! ' 

(-1)" 
sin z = '""' z211+1 

~(2v+1)! ' 
zEC 

are holomorphic in C: 

cos'(z) = -sinz, sin'(z) = cosz , z E C. 

These equations also follow immediately if one is willing to use the fact al­
ready established that exp' = exp, together with the Euler representations 

cos z = ~ [exp(iz) + exp( -iz)] , sin z = ;i [exp(iz) - exp( -iz)]. 

4) The logarithmic series ).(z) = z - %22 + z33 
- ••• is holomorphic in lE: 

'( ) 2 1 ). z = 1 - z + z - ... = 1 + z ' z E lE. 

5) The arctangent series a(z) = z- Z; + ~5 - ••• is holomorphic in lE with 
derivative a'(z) = H~z2. The designation "arctangent" will be justified in 
5.2.5 and 5.5.2. 

6) The binomial series bu(z) = L: (~)Z" , CT E C, is holomorphic in lE: 

b~(z) = CTbu- 1 (z) = _CT_bu(z) , z E lE. 
l+z 

To see the first of these equalities, use the fact that v(:) = CT(:=i) to get 

b~(z) = ~ v(:)zll-l = CT ~ (: = ~)Zll-l = CTbu_1(z). 

The second equality is now a consequence of the multiplication formula 2.3. 
o 

The exponential series, the logarithmic series and the binomial series are 
connected by the important equation 

bu(z) = exp(CT).(Z)) , z E lE, 

a special case of which is 

1 + z = exp).(z) for all z E lE. 

Proof. The function I(z):= bu(z)exp(-CT).(z)) is holomorphic in lE and by 
the chain and product rules for differentiation 

I'(z) = [b~(z) - CTbu(z).'(z)] exp( -CT).(Z)) = 0, 

since by 4) and 6) b~ = CTbu)". Consequently, according to 1.3.3 1 is 
constant in lE. That constant is 1(0) = 1, so (*) follows if we anticipate 
5.1.1, according to which exp( -w) = (exp(w))-l for all w. 
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Exercises 

Exercise 1. Show that the hypergeometric function F( a, b, c, z) introduced 
in Exercise 1 of §2 satisfies the differential equation 

z(1 - z)F"(a, b, c, z) + {c - (1 + a + b)z}F'(a, b, c, z) - abF(a, b, c, z) = 0 

for all z E E. 

Exercise 2. Show that for c E ex, dEe \ {c}, kEN 

1 1 (v) (z _ d)V-k 
(C-z)k+l = (c-d)k+1 L k c-d ' 

v?k 

z E B1c-dl(d). 

Exercise 3. (Partial fraction decomposition of rational functions). Let 
J(z) := ~ be a rational function, in which the degree of the polynomial 
p is less than that of q and q has the factorization q(z) = c(z - Cl)Vl (z -
C2)V2 ... (z - em)V", with c E ex and distinct complex numbers Cj. 

a) Show that J (z) has a representation of the form 

J(z)=~+ al2 + ... + alV1 +~+ ... 
z - Cl (z - Cl)2 (z - Cl)Vl Z - C2 

+~+ am 2 + ... + amv", 
Z - Cm (z - cm )2 (z - em)v", 

for certain complex numbers ajk. 

b) Show that the particular coefficients akVk' 1 ::::; k ::::; m, from a) are 
determined by 

Hint to a): Induction on n := degree q = Vl + V2 + ... + Vm . 

Exercises 2 and 3, in connection with the Fundamental Theorem of Al­
gebra (cf. 9.1) insure that any rational function can be developed in a 
power series about each point in its domain of definition. 

Exercise 4. Develop each of the given rational functions into power series 
about each of the given points and specify the radii of convergence of these 
series: 

a) 3 . J . about 0 and about 2. 
Z - ~z - Z + ~ 

b) z4 - z3 - 8z2 + 14z - 3 about 0 and about i. 
z3 - 4z2 + 5z - 2 
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Hint to b): First use long division to get a proper fraction. 

Exercise 5. The sequence defined recursively by Co := Cl := 1, Cn := 
Cn-l + Cn -2 for n ::::: 2 is called the Fibonacci numbers. Determine these 
numbers explicitly. Hint: Consider the power series development about 0 
of the rational function z2+1z _1' 

§4 Structure of the algebra of 
convergent power series 

The set A of all (formal) power series centered at 0 is (with the Cauchy 
mUltiplication) a commutative ((::-algebra with 1. We will denote by A the 
set of all convergent power series centered at O. Then 

A is a C-subalgebra of A which is characterized by 

(1) A {J = L avzV E A : :3 positive real s, M such that lavlsv ::; M 

"Iv EN}. 

This latter is clear by virtue of the convergence lemma 1.1. 
In what follows the structure of the ring A will be exhaustively described; 

in doing so we will consistently use the language of modern algebra. The 
tools are the order function v : A ---+ N U {oo} and theorem 2 on units, 
which is not completely trivial for A. Since these tools are trivially also 
available in A, all propositions of this section hold, mutatis mutandis, for 
the ring of formal power series as well. These results are, moreover, valid 
with any complete valued field k taking over the role of C. 

1. The order function. For every power series f = L: avzv the order 
v(f) of f is defined by 

v(f) := { :in {v EN: av =1= O} 

For example, v(zn) = n. 

, in case f =1= 0, 
, in case f = O. 

Rules of Computation for the order function. The mapping v : A ---+ 

N U { oo} is a non-archimedean valuation of A; that is, for all f, 9 E A 
1) v(fg) = v(f) + v(g) (product rule) 
2) v(f + g) 2: min{v(f),v(g)} (sum rule). 
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The reader can easily carry out the proof, if he recalls the conventions 
n + 00 = n, min {n, oo} = n for n E IR U { 00 }. Because the range N U { 00 } 

of v is "discrete" in IR U {oo}, the valuation v is also called discrete. 

The product rule immediately implies that: 

The algebra .A and so also its subalgebra A is an integral domain, that 
is, it contains no non-zero zero-divisors: from f 9 = 0 follows either f = 0 
or 9 = O. 

The sum rule can be sharpened: in general, for any non-archimedean 
valuation, v(f + g) = min{v(f),v(g)} whenever v(f) =i v(g). 

2. The theorem on units. An element e of a commutative ring R with 
1 is called a unit in R if there exists an e E R with ee = 1. The units 
in R form a multiplicative group, the so-called group of units of R. To 
characterize the units of A we need 

Lemma on units. Every convergent power series e = 1 - bIZ - ~z2 -
b3z3 - ... is a unit in A. 

Proof We will have ee = 1 for e := 1 + k1z + k2Z2 + k3Z3 + ... E .A if we 
define 

It remains then to show that e E A. Because e E A there exists a real 
s > 0 such that Ibnl S; sn for all n ~ 1. From this and induction we get 

n= 1,2, .... 

Indeed, this is clear for n = 1 and the passage from n - 1 to n proceeds via 
( *) as follows: 

Therefore for the positive number t := (2s)-1 we have Iknltn S; 1/2 for all 
n ~ 1 and this means (recall the defining equation (1) in the introduction 
to this section) that e E A. 0 

The preceding proof was given by HURWITZ in [12], pp. 28, 29; it prob­
ably goes back to WEIERSTRASS. In 7.4.1 we will be able to give a, wholly 
different, "two-line proof"; for the polynomial ring C[z] there is however 
no analog of this lemma on units. 0 
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Theorem on units. An element f E A is a unit of A if and only if 
f(O) =I o. 

Proof a) The condition is obviously necessary: if j E A and f j = 1, then 
f(O)j(O) = 1 and so f(O) =I O. 

b) Let f = E avzv E A with ao = f(O) =I O. For the series e := ai)l f = 
1 + ai)lalz + ai) l a2z2 + ... E A the preceding lemma furnishes an e E A 
with ee = 1. It follows that f· (ai)le) = 1. 0 

The theorem on units can also be formulated thus: 

f E A is a unit of A {::} v(f) = o. 

The lemma and the theorem on units both naturally hold as well for 
formal power series; in this case the proof of the lemma just reduces to the 
first two lines of the above proof. 

3. Normal form of a convergent power series. Every f E A \ {O} has 
the form 

(1) for some unit e of A and some n E N. 

The representation (1) is unique and n = v(f). 

Proof a) Let n = v(f), so that f has the form f = anzn + an+1zn+1 + ... 
with an =I O. Then f = ezn, where e := an + an+lz + ... is, by the theorem 
on units, a unit of A. 

b) Let f = ezm be another representation of f with mEN and e a unit 
of A. By the theorem on units, vee) = vee) = O. Therefore from ezn = ezm 

and the product rule for the order function it follows that 

and then e = e also follows. o 

We call (1) the normal form of f. 

An element p of an integral domain R is called a prime element if it is 
not a unit of R and if whenever f, g E Rand p divides the product f g, then 
p divides one of the factors f or g. An integral domain R each of whose 
non-zero elements is a product of finitely many primes is called a unique 
factorization domain (in Bourbaki, simply factorial). 

From the normal form (1) we see immediately that 



§4. STRUCTURE OF THE ALGEBRA OF CONVERGENT POWER SERIES 131 

Corollary. The ring A is factorial and, up to multiplication by units, the 
element z is the only prime in A. 

In contrast to A, its subring C[z], which is itself a unique factorization 
domain, has the continuum-many prime elements z - c, c E C. 

In the foregoing the prime z played a distinguished role. But the theorem 
and its corollary remain valid if instead of z any other fixed element rEA 
with v(r) = 1 is considered. Every such r is a prime element of A, on 
an equal footing with z, and is known in the classical terminology as a 
uniformizer of A. 

Every integral domain R possesses a quotient field Q(R). It is immediate 
from the corollary that: 

The quotient field Q(A) consists of all series of the form E/I>n a/lz/l, 
nEZ, where E~ a/lz/l is a convergent power series. -

Series of this kind are called "Laurent series with finite principal part" 
(cf. 12.1.3). The reader is encouraged to supply a proof for the above 
statement about Q(A), as well as the following easy exercise: 

The function v : A --+ N U { oo} can be extended in exactly one way to a 
non-archimedean valuation v : Q(A) --+ Z U {oo}. This valuation is given 
by 

v(J) = n if f = L a/lz/l with an ¥= O. 
/I~n 

4. Determination of all ideals. A commutative ring R is called a 
principal ideal domain if everyone of its ideals in principal, that is, has the 
form Rf for some fER. 

Theorem. A is a principal ideal domain: the ideals Azn, n EN, comprise 
all the non-zero ideals of A. 

Proof. Let a be any non-zero ideal of A. Choose an element f E a of 
minimal order n E N. According to theorem 3, zn = el, with e E A. 
It follows that Azn C a. If 9 is an arbitrary non-zero element of a, then 
9 = ezm , for some unit e E A and m = v(g). By minimality of n, m ~ n. 
It follows that 9 = (ezm-n)zn E Azn. This shows that conversely a C Azn 
and gives the equality of the two. 0 

An ideal p of a ring R is called a prime ideal if I 9 E P always implies 
that one or the other of the factors I, 9 lies in p. An ideal m ¥= R in R 
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is called maximal if the only ideal which properly contains it is R itself. 
Maximal ideals are prime ideals. 

Theorem. The set m(A) of all non-units of A is a maximal ideal of A. It 
coincides with Az and is the unique non-zero prime ideal of A. 

Proof According to the lemma on units m(A) = {J E A : v(f) 2: I}; 
therefore m(A) is an ideal. From the preceding theorem it follows that 
m(A) = Az. 

If a is an ideal which properly contains m(A), then a contains a unit 
and so necessarily contains 1 and therewith is all of A. Therefore m(A) is 
a maximal ideal, and in particular a prime ideal of A. 

If n 2: 2, z· zn-l E Azn but z fj. Azn and zn-l fj. Azn. Consequently 
Azn is not a prime ideal and we see that Az is the unique non-zero prime 
ideal of A. 0 

In modern algebra an integral domain is called a discrete valuation ring 
if it is a principal ideal domain which possesses a unique non-zero prime 
ideal. Thus we have shown that 

The ring A of convergent power series is a discrete valuation ring. 

A ring is called local if it has exactly one maximal ideal. All discrete 
valuation rings are local, so in particular A is a local ring. 

The reader might check that the ring A of formal power series is also a 
discrete valuation ring and, in particular, a local ring. 



Chapter 5 

Elementary 
Transcendental Functions 

Post quantitates exponentiales considerari debent ar­
cus circulares eorumque sinus et cosinus, quia ex ip­
sis exponentialibus, quando imaginariis quantitatibus 
involuntur, proveniunt. (After exponential quantities 
the circular functions, sine and cosine, should be con­
sidered because they arise when imaginary quantities 
are involved in the exponential.) - L. EULER, Intro­
ductio. 

In this chapter the classical transcendental functions, already treated by 
EULER in his Introductio [E], will be discussed. At the center stands the 
exponential function, which is determined (§1) both by its differential equa­
tion and its addition theorem. In Section 2 we will prove directly, using 
differences and the logarithmic series and without borrowing any facts from 
real analysis, that the exponential function defines a homomorphism of the 
additive group e onto the multiplicative group ex. This epimorphism the­
orem is basic for everything else; for example, it leads immediately to the 
realization that there is a uniquely determined positive real number 7l' such 
that exp z = 1 precisely when z is one of the numbers 2n7l'i, n E Z. This 
famous constant thereby "occurs naturally among the complex numbers" . 

Following Euler's recommendation, all the important properties of the 
trigonometric functions are derived from the exponential function via the 
identities 

1··1· . 
cosz = _(eU + e-lZ ) sinz = _(e'Z _ e-'Z ). 

2 ' 2i 

In particular, we will see that 7l' is the smallest positive zero of the sine 
function and ~ is the smallest positive zero of the cosine function, just as 
we learned in the infinitesimal calculus. In connection with §1-3 compare 

133 
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also the presentation in Numbers [19], where among other things a com­
pletely elementary approach to the equation e2lti = 1 will be found. 

Logarithm functions will be treated in detail in §4 and §5, where the gen­
eral power function and the Riemann zeta function will also be introduced. 

§ 1 The exponential and trigonometric 
functions 

The most important holomorphic function which is not a rational function 
is the one defined by the power series 'E z: and designated exp z. Its v. 
dominant role in the complex theatre is due to the Euler formulas and to 
its invariance under differentiation: exp' = expo This latter property, along 
with expO = 1, characterizes the exponential function; it makes possible a 
very elegant derivation of the basic properties of this function. Decisive in 
many arguments is the elemental fact that a holomorphic function f with 
f' = 0 is necessarily constant. 

1. Characterization of exp z by its differential equation. First let 
us note that 

The exponential function is zero-free in C and 

(expz)-l = exp(-z) for all z E C. 

Proof. The holomorphic function h(z) := exp z . exp( -z) satisfies h' = 
h - h = 0 throughout the connected set C. Consequently (1.3.3) it is 
constant in C. Since h(O) = 1, it follows that exp(z) . exp( -z) = 1 for all 
z E C, an equation which contains both of the claims. 

Theorem. Let G be a region in C. Then the following statements about a 
holomorphic function f in G are equivalent: 

i) fez) = aexp(bz) in G, for constants a,b E C. 

ii) f'(z) = bf(z) in G. 

Proof. The implication i) :::::} ii) is trivial. To prove ii) :::::} i) we consider 
the holomorphic function h(z) := f(z)exp(-bz) in G. It satisfies h' = 
bh - bh = 0 throughout G. Consequently 1.3.3 furnishes an a E C such 
that h(z) = a for all z E G. Because of the product form of h and the 
previously noted form for the reciprocal of an exponential, the equation 
h(z) = a yields fez) = aexp(bz). 0 

Contained in this theorem is the fact that 
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If f is holomorphic in C and satisfies f' = f, f(O) = 1, then 
necessarily f = expo 

It follows in particular that the function e which came up in 1.2.3, 2) is in fact 
exp, and so we obtain 

exp z = eX cos y + ie x sin y for z = x + iy. 

2. The addition theorem of the exponential function. For all z and 
win C 

(expw)· (expz) = exp(w + z). 

Proof Fix w in C. The function f(z) := exp(w + z) is holomorphic in C 
and it satisfies f' = f. So by theorem 1, f(z) = aexpz for an appropriate 
constant a E C. This constant is found, by considering z = 0, to be 
a = f(O) = expw. 0 

A second (less sophisticated) proof of the addition theorem consists of 
just calculating the Cauchy product (cf. 3.3.1) of the power series for exp w 
and exp Z. Since 

we have 

00 00 1 
(expw)(expz) = LP>. = L A! (w + z)>. = exp(w + z). 

o 0 

WEIERSTRASS preferred to put the addition theorem into the form 

1 2 
(expw)(expz) = [exp "2(w + z)] , 

where it reads: the function value at the arithmetric mean of two arguments is 
the geometric mean of the function values at the two respective arguments. 

The addition theorem also characterizes the exponential function. 

Theorem. Let G be a region which contains 0, e : G ---> C a function 
which is complex-differentiable at 0 and satisfies e(O} =I 0 and the functional 
equation 

(*) e(w + z} = e(w}e(z} whenever w, z and w + z all lie in G. 
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Then for b:= e'(O) we have 

e(z) = exp(bz) for all z E G. 

Prooj. Since e(O) =j:. 0 and e(O) = e(O)e(O) by (*), it follows that e(O) = 1. 
Given z E G, equation (*) holds for all sufficiently small w, because G is a 
neighborhood of both 0 and z. For such w then 

e(z + w) - e(z) = e(w) - 1 . e(z) = e(w) - ~(O) . e(z). 
w w w-

The existence of e'(O) therefore implies the existence of e'(z) and the iden­
tity e'(z) = e'(O)e(z) = be(z). As this is the case for each z E G, the 
function e is holomorphic in G and the present theorem is a consequence 
of the preceding one. 0 

3. Remarks on the addition theorem. The addition theorem is really 
a "power rule". In order to see this most clearly and also to clarify the 
term "exponential function", let us write e := exp(l) = 1 + fr + ~ + ... 
and eZ := exp z for complex z just as is usually done for real z. With this 
definition of the symbol "e z " the addition theorem reads like a power rule 
or law of exponents: 

Remark. The symbol "e" was introduced by Euler; in a letter to GOLDBACH 
of November 25, 1731 we read "e denotat hie numerum, cujus logarithmus 
hyperbolicus est = 1 (e denotes here the number whose hyperbolic loga­
rithm is equal to 1)". Cf. the "Correspondence entre Leonhard Euler et 
Chr. Goldbach 1729-1763," in Correspondance mathematique et physique 
de quelques celebres geometres du XVIIIh§me siecle, ed. P. H. Fuss, St. 
Petersbourg 1843, vol. 1, p. 58. 0 

The addition theorem contains the identity (exp z) -1 = exp( - z). Also 
from the addition theorem and the Euler formula we can (without recourse 
to 1.2.3, 2)) get the decomposition of the exponential function into real and 
imaginary parts: 

for z = x + iy. 

As further applications of the addition theorem we note 

(l)expx>O forxEIR; expx=l forxEIR<=;.x=O; 
(2) I expzl = exp(~z) for z E C. 

Prooj. Ignoring non-negative terms in the power series shows that exp x ::::: 
l+x for x::::: 0 and then e- X = (e X )-l gives (1). Now (2) follows from this 
positivity and the calculation 
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(3) 

expz· expz = expz· expz = exp(z + z) 

exp(2~z) = (exp(~z))2. 

We see in particular that 

I expwl = 1 <=> wE lRi. 

As an amusing application of the addition theorem we derive a 

Trigonometric summation formula. For all z E C such that sin ~ z =1= 0 

1 sin(n + '!z) 
-2 + cos z + cos 2z + ... + cos nz = . 1 2 , 

2sm "2z 
n E N. 

Proof. Since cos z/z = ~ (e iVZ + e- ivz ), the addition theorem gives 

n n 2n 

1 L 1 L ivz 1 -inz L ivz -+ cosz/z=- e =-e e. 
2 2 2 

1 0 

D 

Use of the usual formula for the sum of a finite geometric series and another 
application of the addition theorem lead to 

1 Ln 1 -inz e i (2n+l)z - 1 -+ cosz/z=-2 e . 
2 e tz - 1 

1 

ei(n+l/2)z _ e-i (n+l/2)z 

2(eiz/2 _ e- iz / 2 ) 

Since 2i sin w = eiw - e- iw , this is the claimed equality. o 

For z = x E lR equation ( *) is a formula in the real domain. It was derived here 
by a calculation in C. Conclusions of this kind aroused quite a bit of admiration 
in Euler's time; HADAMARD is supposed to have said of this phenomenon: "Le 

plus court chemin entre deux enonces reels passe par Ie complexe (The shortest 
path between two assertions about the reals passes through the complexes)." 

4. Addition theorems for cos z and sin z. For all w, z E C 

cos(w+z) =coswcosz-sinwsinz, sin(w+z) =sinwcosz+coswsinz. 

Proof The point of departure is the identity 

eiw ·eiz = (cosw+isinw)(cosz+isinz) 

( cos w cos z - sin w sin z) + i (sin w cos z + cos w sin z) . 

Replacing w with -w, z with -z yields the companion 
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e-i(w+z) = (COS W cos z - sin w sin z) - i(sin w cos z + cos w sin z) 

Addition and subtraction of these two identities give the claimed addition 
formulas for sine and cosine. 0 

As in the case of the corresponding addition theorems for real arguments, 
innumerable further identities flow from these two. E.g., the useful formulas 

cosw - cosz - 2 sin ~ (w + z) sin ~ (w - z) 

sin w - sinz 
1 1 

2 cos 2 (w + z) sin 2 (w - z) 

follow easily for all complex w, z. From the plethora of other possible 
formulas we note explicitly only that 

1 = cos2 Z + sin2 z , cos 2z = cos2 Z - sin2 z , sin 2z = 2 sin z cos z 

for all z E C. 

5. Historical remarks on cos z and sin z. These functions were dis­
covered by geometers long before the advent of the exponential function; a 
formula closely related to the addition theorem for sin( 0+,8) and sin( 0: - jJ) 
was known already to ARCHIMEDES. In PTOLEMY the addition theorem 
can be found implicitly in the form of a proposition about circularly in­
scribed quadrilaterals (cf. 3.4.5 in the book Numbers [19]). Toward the end 
of the 16th century - before the discovery of logarithms- formulas like 

1 1 
cos x cosy = 2 cos(x + y) + 2 cos(x - y) 

were used (for purposes of astronomy and navigation) to multiply two num­
bers A and B: in a table of sines (which of course is also a table of cosines) 
the angles x and y were found for which cos x = A, cos y = B. Then 
x + y and x - y were formed and the table again consulted for the values 
of cos(x + y) and cos(x - y). Half the sum of the latter then gave AB. 

The power series developments of the functions cos x and sin x were 
known to NEWTON around 1665; e.g., he found the sine series by inversion 
of the series 

. 13 3 5 5 7 arcsm x = x + - x + -x + -x + ... 
6 40 112 

which in turn he had arrived at by geometric considerations. But a system­
atic exposition of the theory is not to be found until the 8th chapter "Von 
den transcendenten Zahlgrossen, welche aus dem Kreise entspringen" of 
Euler's Introductio [E]. Here for the first time the trigonometric functions 
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are defined on the unit circle in the way that has since become standard. 
Besides the addition theorems EULER presents an abundance of formulas, 
in particular in §138 his famous (cf. 4.2.1) 

z E C. 

6. Hyperbolic functions. As is done for real arguments, the hyperbolic 
cosine and hyperbolic sine functions are defined by 

1 1 
coshz '= _(eZ + e- Z ) sinhz'= _(eZ _ e- Z ) . 2 ,. 2 ' z E C. 

These functions are holomorphic in C and 

(cosh)'(z) = sinhz, (sinh)'(z) = coshz; 

coshz cos(iz) , sinhz = -isin(iz) , z E C. 

All the important properties of these function are derivable from these 
equations. Thus we have 

Z2v 

cosh z = L -( )" 2// . 

Z2v+l 

sinh z = L (2 ) , for z E C // + 1 . 

and the addition theorems have the form 

cosh(w + z) 
sinh(w+z) 

cosh w cosh z + sinh w sinh z, 

sinh w cosh z + cosh w sinh z, 

while 1 = cos2 (iz) +sin2(iz) yields 1 = cosh2 Z - sinh2 z, an identity which 
clarifies somewhat the adjective "hyperbolic", if one remembers that x 2 -

y2 = 1 is the equation of a hyperbola in ]R2. 

The hyperbolic functions provide a convenient means for decomposing 
the complex sine and cosine functions into real and imaginary parts: 

cos(x + iy) 

sin(x + iy) 

cos x cosh y - i sin x sinh y, 

sin x cosh y + i cos x sinh y. 
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Exercises 

Exercise 1. Show that for z E C 

sin3z 
sin4z 
cos3z 
cos4z 

3sinz - 4sin3 z 
8 cos3 z sin z - 4 cos z sin z 
4 cos3 Z - 3 cos Z 

8cos4 Z - 8cos2 Z + 1. 

Prove similar formulas for cosh 3z, cosh 4z, sinh 3z, sinh 4z. 

Exercise 2. Let kEN, k ~ 1 and let r denote the boundary of the square 
in C which has the vertices 7rk(±l ± i). Show that I cos zl ~ 1 for all z E r. 

Exercise 3. Let J, g be holomorphic in a region G which contains O. Suppose 
that 

J(w + z) = J(z)J(w) - g(z)g(w) and g(w + z) = g(z)J(w) + g(w)J(z) 

hold whenever w, z and w + z all belong to G. Show that if J(O) = 1 and 
1'(0) = 0, then there is a disc B centered at 0 and lying in G such that 

J(z) = cosbz and g(z) = sinbz for all z E B, 

b being the number g'(O). 

Exercise 4. The power series J(z) := 2:",>0 a",z'" converges in a disc B 
centered at O. For every z E B such that 2z IS also in B, J satisfies J(2z) = 
(J(zW· Show that if J(O) =1= 0, then J(z) = expbz, with b:= 1'(0) = al' 

Exercise 5. Show that the sequence of functions Jk(Z):= F(l,k,l,z/k), 
k ~ 1, z E lE, converges compactly in the unit disc lE to the exponential 
function. (For the definition of F(a, b, c, z) see exercise 1 in Chapter 4, §2.) 

Exercise 6. Show that for every R > 0 there is an N E N such that none of 
2 n 

the polynomials 1 + TI + ~! + ... + ~! with n ~ N has any zeros in BR(O). 
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§2 The epimorphism theorem for exp z and 
its consequences 

Because expz is zero-free, exp is a holomorphic mapping of C into C X • 

The addition theorem can be formulated in this context as 

The mapping exp : C - C x is a group homomorphism of the additive 
group C of all complex numbers into the multiplicative group C X of all 
non-zero complex numbers. 

Whenever mathematicians see group homomorphisms t/J : G - H they 
instinctively inquire about the subgroups kert/J := {g E G : t/J(g) = the 
identity element of H} and t/J(G) of G and H, respectively. For the ex­
ponential homomorphism these groups can be determined explicitly and 
this leads to a simple definition of the circular ratio 7r. Decisive for this 
undertaking is the 

1. Epimorphism theorem. The exponential homomorphism 

exp: C _ C X 

is an epimorphism (that is, it is surjective). 

First we prove a 

Lemma. The subgroup exp(C) ofC x is an open subset ofC x . 

Proof According to 4.3.4, exp A(Z) = 1 + z for all z E E. From this follows 
first of all that B 1(1) c exp(C), because if c E B 1(1), then c - 1 E E, the 
domain of A, so b:= A(C - 1) exists in C and expb = c. 

Now consider an arbitrary a E C X • Evidently aB1(1) = Blal(a). More­
over, by the group property of exp(C) , aexp(C) = exp(C) if a E exp(C). 
Therefore, in general 

Blal(a) = aB1 (1) c aexp(C) = exp(C) for all a E exp(C). 

This says that for each a E exp(C) the whole open disc B1al(a) of radius 
lal > 0 about a lies in exp(C)j that is, exp(C) is open in C X • 0 

The epimorphism theorem follows now from a purely topological argu­
ment. This argument is quite general and establishes the following theorem 
about topological groups: an open subgroup A of a connected topologi­
cal group G must exhaust G. So here we are considering A := exp(C), 
G := C X • Consider also B := ex \ A. Every set bA, bE B, is also open 
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in ex. Therefore UbEB bA is an open subset of ex. But from elementary 
group theory we know, since A is a subgroup, that 

B = U bA = the union of all cosets different from A. 
bEB 

Consequently, ex = A u B displays e x as the disjoint union of open sets 
one of which, A, is not empty (1 = exp(O) E A). Since ex is connected (cf. 
0.6), it follows that B = 0. That is, A = ex. 

2. The equation ker( exp) = 27riZ. The kernel 

K := ker(exp) = {w E e : eW = I} 

is an additive subgroup of C. From the epimorphism theorem we can easily 
infer the following preliminary result: 

(1) K is not the trivial group: K # {O}. 

Proof Since exp(C) = ex there is an a E e with ea = -1 # 1 = eO. Then 
a # 0, so c := 2a # 0, yet eC = (ea )2 = 1. That is, c E K. D 

All the remaining steps in the characterization of K are quite elementary. 
Since, by 1.3(3), lewl = 1 is possible only for wE lR.i, we learn next that 

(2) K c lR.i. 

Thirdly, we will show that 

(3) There is a neighborhood U of 0 E C such that Un K = {O}. 

Proof If this were not the case, then there would be a null sequence h n in 
e, all hn # 0, with exp hn = 1. This would lead to the contradiction 

, exp(hn ) - exp(O) 
1 = exp(O) = exp (0) = lim h = O. 

n---+oo n 
D 

Our goal is now within a few lines' reach: 

Theorem. There is a unique positive real number 1f such that 

(4) ker( exp) = 21fiZ. 

Proof The continuity of exp and (1)-(3) ensure that there is a smallest 
positive real number 1f with 21fi E K (note that -K = K). Since K is a 
group, 21fiZ C K follows. If conversely r E lR. and ri E K, then 1f # 0 means 
that 2n1f :S r < 2(n + 1)1f for an appropriate n E Z. Since ri - 2n1fi E K 
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and 0 ~ r - 2mI' < 271', the minimality of 71' implies that r - 2n7l' = 0, Le., 
r E 271'Z. This proves that K C 271'iZ and completes the proof of (4). The 
uniqueness of 71' is clear. 0 

As far as this book is concerned, the content of the above theorem is the 
definition of 71'. It follows directly that 

(5) 

and from this that ei7r /2 = ±i. With only the results presently at hand the 
minus sign cannot be precluded: that will be accomplished in subsection 6 
with the help of the Intermediate Value Theorem. 

3. Periodicity of exp z. A function I : e -+ e is called periodic if there 
is a complex number w f:. 0 such that I(z + w) = I(z) for all z E C. Such 
a number w is called a period of I. If I is periodic, the set 

perU) := {w E e : w is a period of f} U {O} 

of all periods of I together with 0 constitutes an additive (abelian) subgroup 
ole. 

The Periodicity Theorem. The function exp is periodic and 

per( exp) = ker( exp) = 271'iZ. 

Proof For a number wEe the number exp(z +w) = expzexpw coincides 
with exp z E ex for every z E e exactly when expw = 1; which proves 
that per(exp) = ker(exp). 0 

The equation ker( exp) = per( exp) = 271'iZ describes the essential differ­
ence in the behavior of the e-function on the reals and on the complexes: 
on the real line, because ker(exp) n IR = {O}, it takes on every positive 
real value exactly once; on the complex plane by contrast it has the purely 
imaginary (hence unbeknown to its real restriction) minimal period 271'i and 
it takes on every non-zero complex as well as real value countably infinitely 
often. 

On the basis of this discussion a simple visualization of the exponential 
function is possible: divide the z-plane into the infinitely many contiguous 
strips 

Sn:= {z E e: 2n7l' ~ C;Sz < 2(n+ 1)7I'}, nE Z. 

Every strip Sn is mapped bijectively onto the set ex in the w-plane and in 
the process the "orthogonal cartesian x-y-system of the z-plane" goes over, 
with preservation of angles, into the "orthogonal polar coordinate system 
of the w-plane." 
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----~----~~--------~u 

w~plane 

Remark. The difficulties which the complex exponential function caused math­
ematicians are well illustrated by the following exercise, which TH. CLAUSEN 

(known from the Clausen-von Staudt formula for the Bernoulli numbers) set in 
1827 and which CRELLE saw fit to reproduce in his famous journal (Journal fUr 
die Reine und Angewandte Mathematik Vol. 2, pp. 286/287): "If e denotes the 
base of the hyperbolic logarithms, 71' half the circumference of a unit circle, and 
n a positive or negative whole number, then, as is known, e 2n7ri = 1, e 1+ 2n7ri = e; 

consequently also e = (el+2mri)1+2mri = e = e(1+2mri)2 = el+4mri-4n211"2. Since 

however e1+4n11"i = e, it would follow that e-4n2 11"2 = 1, which is absurd. Find 
the error in the derivation of this result" . 

The reader for his part might give the matter some thought too. 

4. Course of values, zeros, and periodicity of cos z and sin z. 
The exponential function assumes every complex value except zero. The 
trigonometric functions have no exceptional values: 

cos z and sin z assume every value c E C countably often. 

Proof Solving the equations eiz + e-iz = 2c and eiz - e-iz = 2ic for eiz 

leads to eiz = c ± .../c2 - 1, respectively, eiz = ic ± .../1 - c2 • Moreover, 
for no c E C are the numbers c ± .../ c2 - 1 or ic ± .../1 - c2 equal to O. 
Therefore, since exp(C) = C X and ker(exp) = 27l'iZ, there are count ably 
many z satisfying each of the latter two exponential equations, and hence 
satisfying cos z = c, sin z = c, respectively. 0 

Because cos(C) = sin(C) = C, cos and sin are unbounded in the complex 
plane (in contrast to their behavior on the real line, where both are real­
valued and the identity cos2 x + sin2 x = 1 requires that I cos xl ~ 1 and 
I sinxl ~ 1): For example, on the imaginary axis, for y > 0, 

1 
isiniy = -(e-Y - eY ) < -yo 

2 

In contrast to exp z, cos z and sin z have zeros. With 71' denoting the 
constant introduced in subsection 2 we will show 
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The Theorem on Zeros. The zeros of sin z in C are precisely all the 
real numbers mr, n E Z. The zeros in C of cos z are precisely all the real 
numbers ~n + mr, n E Z. 

Proof. Taking note of the fact that ei'll" = -1, we have 

from which we read off that 

sinw = 0 {::} 2iw E ker( exp) = 2niZ 

{::} w = n'iT , n E Z; 

cosw = 0 {::} 2i (w - ~'iT) E 2'iTiZ 
{::} w = ~'iT + n'iT. 

0 

Remark. We see that 11' (respectively, ~11') is indeed the smallest positive zero of 
sin (respectively, cos). Even if all the real zeros of sin and cos are known from the 
real theory, it would still have had to be shown that the extension of the domain 
of these functions to C introduces no new, non-real, complex zeros. 

Next we show that sin and cos are also periodic on C and have the same 
periods there as on JR. 

Periodicity Theorem. per(cos) = per(sin) = 2nZ. 

Proof. Since cos(z + w) - cos z = -2 sin(z + ~w) sin ~w, by 1.4(1), the 
number w is in per (cos) if and only if sin ~w = 0, that is, if and only if 
w E 2nZ. The claim about the sine function follows by the same reasoning 
from the identity sin(z + w) - sin z = 2 cos(z + ~w) sin ~w. 

Remark. Again, even if one knows that cos and sin each have the minimal period 
211' on JR, he would still have had to show that the extensions to C also have 211' 
as a period and that moreover no new non-real periods are introduced. 

5. Cotangent and tangent functions. Arctangent series. By means 
of the equations 

cosz 
z E C \ 'iTZ, cotz .-

sinz 
1 sinz 

z E C \ (~'iT + 'iTZ) tanz .- = 
cotz cosz 
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the known cotangent and tangent functions are extended into the complex 
plane. Their zero-sets are ~7r + 7rZ and 7rZ, respectively. Both functions 
are holomorphic in these new domains: 

-1 
cot'(z) = -.-2- , 

sm z 
tan'(z) = +. 

cos z 

In classical analysis the cotangent seems to enjoy a more important role 
than the tangent (cf. e.g., 11.2). From the Euler formulas for cos and sin 
follow 

cotz z. =Z 1- . . e 2iz + 1 . ( 2) 
e2•z - 1 1 - e2u ' 

tanz 1 - e 2iz ( 1) 
i 1 + e2iz = i 1 - 1 + e-2iz . 

Since the kernel of e 2iz is 7rZ, we see immediately that 

The functions cot z and tan z are periodic, and 

per(cot) = per (tan) = 7rZ. 

We also take note of some computationally verifiable formulas which will 
be used later: 

1 

sinz 
2 cot 2z 

cot z + tan ~z, cot'(z) + (cot Z)2 + 1 = 0, 

cotz + cot(z + ~7r) ( double-angle formula). 

From the addition theorems for cos z and sin z we get addition theorems 
for cot z and tan z. E.g., 

( ) cot w cot z - 1 
cot w + z = ; in particular, cot(z + ~7r) = - tan z. 

cotw + cotz 

There is an especially elegant "cyclic" way to write the addition theorem: 

cot u cot v + cot v cot w + cot w cot u = 1 

in case u + v + w = O. (Proof!) 

In 4.3.4, 5) we introduced the arctangent series, which is defined and 
holomorphic in the unit disc lE: 

Z3 Z5 z2n+l 1 
a(z) = z - - + - _ ... + (_l)n __ + ... ,with a'(z) = -1--2 ' 

3 5 2n + 1 + z 
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Since tan 0 = 0, the function a( tan z) is defined and holomorphic in some 
open disc B centered at o. We claim that 

a(tanz)=z inB. 

Proof The function F(z) := a(tanz) - z satisfies 

'( ) 1 1 F z = ·---1=0 
1 + tan2 z cos2 z 

in B. 

Consequently F is constant in B and since F(O) = 0 that constant is 0 and 
the claim follows. 0 

The identity a( tan z) = z explains the designation "arctangent". It is 
customary to write arctanz for the function a(z)j in 5.2 we will see among 
other things that tan(arctanz) = z holds as well as arctan(tanz) = z. 

6. The equation e i -; = i. From ei1r = -1 it follows that ei1f = ±i. In 
order to determine the sign we will show, with the help of the Intermediate 
Value Theorem that 

(1) sin x > 0 for 0 < x < 7r. 

Proof Doing a little grouping and factoring of terms in the power series 

for sin gives sinz = z (1- ~) + ~~ (1- ~.~) + ... j from which we see 

that sinx is positive for x E (0, y6). Were sin x to be negative anywhere 
in (0, 7r), then by the Intermediate Value Theorem it would have to have a 
zero somewhere in (0, 7r), contrary to the theorem 4 on zeros. 0 

From (1) it follows that sin ~7r = 1, because cos2 x + sin2 x 
cos ~7r = O. Then from eix = cos x + i sin x it is clear that 

(2) (equation of Johann BERNOULLI 1702). 

Because (eit )2 = i and <Jeit = sin i > 0, it further follows that 

.~ 1y'2 
et , ="2 2(1 + i). 

Thus for the functions cos z and sin z we have 

1 and 

7r • 7r 7r 7r y'2 7r 7r 
cos "2 = 0 , sm"2 = 1 j cos "4 = sin "4 = """2 ' whence cot "4 = tan "4 = 1. 

The reader should determine eii . 
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Exercises 

Exercise 1. a) For what z E C is cos z real? 
b) For what z E C does cosz lie in [-1, 1J? 

Exercise 2. For z E C show that 

a) cos z = 1 if and only if z E 27rZj 

b) sin z = 1 if and only if z E ~7r + 27r1~. 

Exercise 3. Show that for z, w E C: 

a) cos z = cos w if and only if either z + w E 27rZ or z - w E 27rZj 

b) sin z = sin w if and only if either z + w E 7r + 27rZ or z - w E 27rZj 

c) tanz = 1 if and only if z E i + 7rZj 

d) tanz = tanw if and only if z - wE 7rZ. 

Exercise 4. Determine the largest possible regions in which each of cos z, 
sin z, tan z is injective. 

§3 Polar coordinates, roots of unity and 
natural boundaries 

In the plane ]R2 = C polar coordinates are introduced by writing every 
point z = x + iy =I 0 in the form 

z = Izl(cos<p + i sin <p) 

where <p measures the angle between the x-axis and the vector z (d. the 
figure). 

iy 

ilzl sin qJ 

To make this intuitively clear idea precise is not so trivialj it will be 
done later. We will discuss roots of unity further and, as a consequence of 
these considerations, present examples of power series which have the unit 
circle as natural boundary. 
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1. Polar coordinates. The circle 8 1 := alE = {z E C : Izl = 1} is a group 
with respect to multiplication and we have 

The Epimorphism Theorem. The mapping p : lR ...... 8 1 , cp t-+ ei'P, is 
an epimorphism of the additive group lR onto the multiplicative group 8 1 

and its kernel is 211"Z. 

This follows immediately from the epimorphism theorem 2.1, since by 
1.3(3), expw E 8 1 {::} wE lRi. 0 

The process of wrapping the number line around the circle of circum­
ference 211" is accomplished analytically by the "polar-coordinate epimor­
phism" p. It now follows easily that 

Every complex number z E C x can be uniquely written in the form 

z = Izlei'P = Izl(coscp+isincp) with cp E [0,211"). 

Proof. Since zlzl-l E 8 1 , the range of p, there is a cp E lR with z = Izlei'P j 

and since kerp = 211"Z there is such a cp E [0,211"). The latter requirement 
uniquely determines cpo If Izlei'P = Izlei1/1 with t/J E [0,211"), then ei(1/1-'P) = 1, 
so t/J - cp E 211"Z. Since ° :::; It/J - cpl < 211", it follows from t/J - cp E 211"Z that 
t/J - cp = 0. 0 

The real numbers Izl, cp are called the polar coordinates of Zj the number 
cp is called an argument of Z. Our normalization of cp to the interval [0,211") 
was arbitmry j in general any half-open interval of length 211" is suitable, 
and in subsequent sections it often proves advantageous to use the interval 
(-11",11"]. 

The multiplication of two complex numbers is especially easy when they 
are given in polar coordinates: for w = Iwlei1/1, z = Izlei'P 

Since (eiy)n = einy this observation contains 

de Moivre's formula. For every number cos cp + i sin cp E C 

( cos cp + i sin cp) n = cos ncp + i sin ncp , nE Z. 

By expanding the left side (binomial expansion) and passing to real and 
imaginary parts we get, for every n ;::: 1, representations of cos ncp and 
sin ncp as polynomials in cos cp and sin cpo For example, 

cos 3cp = cos3 cp - 3 cos cp sin2 cp , sin 3cp = 3 cos2 cp sin cp - sin3 cpo 



150 5. ELEMENTARY TRANSCENDENTAL FUNCTIONS 

The above method of deriving these identities is a further illustration of 
Hadamard's "principle of the shortest path through the complexes" - cf. 
1.3. 

Historical note. In 1707 Abraham DEMOIVRE indicated the discovery of 
his "magic" formula with numerical examples. By 1730 he appears to have 
known the general formula 

cos cp = ~ \I cos ncp + i sin nip + ~ \I cos nip - i sin nip , n > o. 

In 1738 he described a (complicated) process for finding roots of the form 
V' a + ibj his prescription amounts in the end to the formula which is now 
named after him. The present-day point of view first emerged with EULER 
in 1748 (cf. [EJ, Chap. VIII) and the first rigorous proof for all n E Z 
was also given by EULER 1749, with the help of differential calculus. For 
biographical particulars on DEMOIVRE see 12.4.6. 

2. Roots of unity. For every natural number n there are exactly n 
different complex numbers z with zn = 1, namely 

(" := (" , 0 :::; v < n , h ; 27l"i 27l" .. 27l" 
w ere .. := exp - = cos - + z sm -. 

n n n 

Proof C: = 1 for each v by deMoivre's formula. Since (,,(;1 = exp 2:i(v_ 
f..l) and ker(exp) = 27l"iZ, it is clear that (" = (I-' exactly if ~(v-f..l) E Z. And 
since Iv - f..ll < n it follows that (" = (I-' {::} V = f..lj that is, (0, (1, ... ,(n-1 
are all different. Since the nth degree polynomial zn - 1 has at most n 
different zeros, the claim is fully established. 0 

Every number wEe with wn = 1 is called an nth root of unity and the 
specific one ( = exp(27l"i/n) is called a primitive nth root of unity. The set 
Gn of all nth roots of unity is a cyclic subgroup of 8 1 of order n. The sets 

00 00 

G := U Gn and H := U G2n 

n=O n=O 

are also subgroups of 81 , with H c G. We claim (for the concept of a 
dense set, see 0.2.3): 

Density Theorem. The groups Hand G are dense in 8 1 • 

Proof Since G :J H we only need to consider H. The set of all fractions 
having denominators which are powers of 2 is dense in Q hence in lR. Then 
M := {27l"m2-n : m E Z , n E N} is also dense in lR. The polar-coordinate 
epimorphism p maps M onto H. Now generally a continuous map f : X ~ 
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Y sends every dense subset A of X onto a dense subset f(A) of f(X) (since 
f(A) C f(A)). Consequently, H = p(M) is dense in 8 1 = p(R). 0 

In the next subsection we will give an interesting application of this 
density theorem. 

3. Singular points and natural boundaries. If B = BR(C) , 0 < 
R < 00, is the convergence disc of the power series fez) = E av(z - c)V, 
then a boundary point w E aB is called a singular point of f if there 
is no holomorphic function j in any neighborhood U of w which satisfies 
jlu n B = flU n B. The set of singular points of f on aB is always closed 
and can be empty (on this point see however 8.1.5). If every point of aB 
is a singular point of f, aB is called the natural boundary of f and B is 
called the region of holomorphy of f. 

Now let us consider the series g(z) := E Z2v = Z + Z2 + z4 + Z8 + .... It 
has radius of convergence 1 (why?) and for any z E E, n E N 

The latter appraisal of g(z2n
) has the following consequences: 

For every 2n th root of unity (, n E N, we have limmlg(t()1 = 00. 

Proof Since get) > E& t 2V > (q + 1)t2q > ~(q + 1) for all q E N and all t 
satisfying ( 2V2)-1 < t < 1, it follows that limm get) = 00. From this and 
(*) we get, in case (2n = 1, 

hence lim Ig(t()1 = 00. 
ttl 

Using the density theorem 2 there now follows quickly the surprising 

o 

Theorem. The boundary of the unit disc is the natural boundary of g(z). 

Proof Every 2n th root of unity ( E H is a singular point of g because 
limmlg(t(}1 = 00. Since H is dense in aE and the singular points consti­
tute a closed set, the claim follows. 0 



152 5. ELEMENTARY TRANSCENDENTAL FUNCTIONS 

Corollary. The unit disc E is the region of holomorphy of the function 
h(z) := L 2-v Z2" and this function (unlike the earlier g) is continuous on 
iE=EUoE. 

Proof Were oE not the natural boundary of h, that would also be true 
of h' and of Zh'(Z) = g(z) (the function h' being holomorphic wherever h 
is - cf. 7.4.1). Since the series for h is normally convergent in iE, h is 
continuous in E together with its boundary oE. 0 

Likewise it is elementary to show that oE is the natural boundary of 
L zv!. Also the famous theta series 1 + 2 L~ zv2 has oE as a natural 
boundary; the proof of this will be given in volume 2 (cf. also subsection 4 
below). 

We mention here without proof a beautiful, charming and, at first glance para­
doxical, theorem which was conjectured in 1906 by P. FATOU (French mathemati­
cian, 1878-1929) and elegantly proved in 1916 by A. HURWITZ (Swiss-German 
mathematician in Ziirich, 1859-1919) - see his Math. Werke 1, p.733: 

Let E be the convergence disc of the power series L avzv . Then there is a 
sequence CO,Cl,C2, •.. , each being -lor 1, such that the unit disc is the region of 
holomorphy of the function L cvav zv . 

4. Historical remarks about natural boundaries. KRONECKER and 
WEIERSTRASS knew from the theory of the elliptic modular functions that 
oE is the natural boundary of the theta series 1 + 2 L~ zv2 (cf. [Kr], p. 
182, as well as [W4], p. 227). In 1880 WEIERSTRASS showed that the 
boundary of E is the natural boundary of every series 

'"' a" ~bvz , 
3 

a E N odd =F 1 ; b real, ab> 1 + "211" 

([W4], p. 223); he writes there: "Es ist leicht, unziihlige andere Potenz­
reihen von derselben Beschaffenheit ... anzugeben, und selbst fiir einen be­
liebig begrenzten Bereich der Veranderlichen x die Existenz der Functionen 
derselben, die iiber diesen Bereich hinaus nicht fortgesetzt werden k6nnen, 
nachzuweisen." (It is easy to give innumerable other power series of the 
same nature and, even for an arbitrarily bounded domain of the variable x, 
to prove the existence of functions of this kind which cannot be continued 
beyond that domain.) Thus it is already being maintained here that every 
region in C is a region of holomorphy. But this general theorem will not 
be proved until the second volume. 

In 1891 the Swedish mathematician 1. FREDHOLM, known for his contri­
butions to the theory of integral equations, showed that E is the region of 
holomorphy of every power series L aV zv2 

, 0 < lal < 1 and that such func­
tions are even infinitely often differentiable in iE (Acta Math. 15, 279-280). 
Cf. also [G2], vol. II, part 1, §88 of the English translation. 



§3. POLAR COORDINATES, ROOTS OF UNITY AND BOUNDARIES 153 

The phenomenon of the existence of power series with natural boundaries 
was somewhat clarified in 1892 by J. HADAMARD. In the important and oft­
cited work "Essai sur l'etude des fonctions donnees par leur developpement 
de Taylor" (Jour. math. pures et appl. (4) 8(1892), 101-186), where he 
also re-discovered Cauchy's limit-superior formula, he proved (pp. 116ff.) 
the famous 

Gap Theorem. Let the power series f(z) = E~=o bVZA~, 0::; AO < A1 < 
... , have radius of convergence R < 00 and suppose there is a fixed positive 
number 8 such that for almost all v 

(lacunarity condition). 

Then the disc BR(O) of convergence is the region of holomorphy of f· 

The literature on the gap theorem and its generalizations is vast; we 
refer the reader to GAIER'S notes pp. 140-142 of the 3rd edition of [Lan] 
for a guide to it and to pp. 76-86 and 168-174 of that book for proofs of 
one of the deeper generalizations, that of E. FABRY. The simplest proof of 
Hadamard's gap theorem is the one given in 1927 by L. J. MORDELL, "On 
power series with the circle of convergence as a line of essential singulari­
ties," Jour. London Math. Soc. 2 (1927), 146-148. We will return to this 
matter in volume 2; cf. also H. KNESER [14], pp. 152ff. 

Exercises 

Exercise 1. For a, bE JR, b> 0 determine the image under the exponential 
map of the rectangle {x + iy : x, y E JR , Ix - al ::; b , Iyl ::; b}. 

Exercise 2 (CfA.2.5*). Define bn := 3n for odd n and bn := 2·3n for even n. 
The power series f(z) := En>l (_~)n zn then has radius of convergence 1 
and converges at z = 1 (proof!). In this exercise you are asked to construct a 
sequence Zm E IE such that lim Zm = 1 and lim If (zm) I = 00. Hint. Choose 
a strictly increasing sequence of natural numbers k1 < k2 < ... < kn < ... 
such that for all n E N, n ~ 1, we have E~:n ~ > 3 E~:i~. Then set 

(b ) -1. 3-m 
Zm := 2- k m em . 

Exercise 3. Show that if b E JR, dEN and b > 0, d ~ 2, then the unit disc 
is the region of holomorphy of the series E~=l bV zd~ . 

Exercise 4. Show that IE is the region of holomorphy of the series E zv! . 
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§4 Logarithm functions 

Logarithm functions are holomorphic functions f which satisfy the equation 
exp of = id throughout their domains of definition. Characteristic of such 
functions is the differential equation fl (z) = 1/ z. Examples of logarithm 
functions are 

1) in B 1 (1) the power series ~~ <-It- 1 (z -1)", 

2) in the "slit plane" {z = reicp : r > 0, a < cp < a + 21l'}, a E R. fixed, 
the function defined by 

f(z) := logr + icp. 

1. Definition and elementary properties. Just as in the reals, a 
number bEe is called a logarithm of a number a E C, in symbols (fraught 
with danger) b = log a, if eb = a holds. The properties of the e-function at 
once yield: 

The number 0 has no logarithm. Every positive real number r > 0 has 
exactly one real logarithm log r. Every complex number c = reicp E C x has 
as logarithms precisely the countably many numbers 

logr + icp + i21l'n , n E Z , in which logr E R.. 

One is less interested in the logarithms of individual numbers than in 
logarithm functions. The discussion of such functions however demands 
considerable care, owing to the multiplicity of logarithms that each number 
possesses. We formally define 

A holomorphic function f : G - C on a region Gee is called a 
logarithm function on G if exp( f( z)) = z for all z E G. 

If f : G - C is a logarithm function, then certainly G does not contain 
O. If we know at least one logarithm function on G, then all other such 
functions can be written down; specifically, 

Let f : G - C be a logarithm function of G. Then the following asser­
tions about a function i : G - C are equivalent: 

i) i is a logarithm function on G. 

ii) i = f + 21l'in for some n E Z. 

Proof i) => ii) We have exp(f(z)) = exp(f(z)), that is, exp(i(z) -f(z)) = 1, 
for all z E G. This has the consequence thatf(z)-f(z) E 21l'iZ for all z E G. 
In other words 2;"i (i-f) is a continuous, integer-valued function on G. The 
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image of the connected set G is therefore a connected subset of Z, viz., a 
single point, ft, say. So ii) holds. 

ii) =} i) i is holomorphic in G and satisfies 

exp(i(z)) = exp(i(z)) . exp(211"ift) = exp(i(z)) = z 

for all z E G. 

Logarithm functions are characterized by their first derivatives. 

The following assertions about a function f E O( G) are equivalent: 

i) f is a logarithm function on G. 

o 

ii) i' (z) = 1/ z throughout G and exp( i( a)) = a holds for at least one 
aEG. 

Proof. i) =} ii) From exp(i(z)) = z and the chain rule follows 1 = £,(z) . 
exp'(f(z)) = f'(z)exp(i(z)) = i'(z)· z and so f'(z) = l/z. 

ii) =} i) The function g(z) := zexp(-f(z)), z E G, is holomorphic in G 
and satisfies 

g'(z) = exp(-i(z)) - zf'(z)exp(-f(z)) = ° 
for all z E G. Since G is a region it follows (cf. 1.3.3) that g = c E ex; 
thus cexp(f(z)) = z throughout G. Since exp(f(a)) = a, c = 1 follows and 
therewith i). 

2. Existence of logarithm functions. It is easy to write down some 
logarithm functions explicitly. 

Existence Theorem. The function logz := L~ <-It- 1 (z - l)V is a 
logarithm function in Bl(l). 

Proof. By 4.3.4,4) A(Z) = L~ <-It- 1 ZV is holomorphic in the unit disc 
E and satisfies A' (z) = (z + 1) -1 there. Since log z as defined here equals 
A(Z -1), it follows that log E O(Bl(l)) with log'(z) = Z-I. Since 10g(1) = 
0, e10g 1 = 1 holds and so, by the derivative characterization of the preceding 
subsection, log is a logarithm function on Bl(l). 0 

The expression "logarithmic series" used in 4.2.2 for the series A(Z) defin­
ing log( 1 + z) is now justified by the above existence theorem. We also note 
that 

(1) 
1 Iwl 2 

Ilog(l+w)-wl:::; --1-1 
21- w 

for all wEE. 
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Proof Since log(l + w) - w = - ~2 + ~3 - + ... , we have for all w E lE 

o 

Existence is easily transferred from Bl(l) to other discs: 

Let a E ex and bEe be a logarithm of a. Then log(za- 1) + b is a 
logarithm function in B1al(a). 

This is clear because fa(z) := log(za- 1) + b is holomorphic in B1al(a) 
and for z E B1al(a) 

exp(fa(z)) = exp(log(za- 1) + b) exp(log(za-1)) exp(b) 

za-1 expb = za-1a = z. 0 

Now logarithm functions are holomorphic per definition em. But in fact 
holomorphy follows just from continuity! 

Let f : G ---> e be continuous and satisfy exp of = id in G. Then f is 
holomorphic in G and consequently it is a logarithm function in G. 

Proof Fix a E G. Of course a #- O. Let fa denote the holomorphic 
logarithm function log(za- 1) + bin Blal(a), where b is any logarithm of 
a. Then exp(f(z) - fa(z)) = 1, whence f(z) - fa(z) E 27riZ for all z E 
GnBlal (a). The continuous function 2~i (f -fa) is therefore integer-valued, 
hence locally constant. f is therefore holomorphic in a neighborhood of a. 
o 

We emphasize: "continuous" logarithm functions are already holomor­
phic. 

3. The Euler sequence (1 + z/n)n. Motivated by, among other things, 
questions of compound interest, EULER considered in [E] the polynomial 
sequence 

(1 + ~r ,n ~ 1 
and, via the binomial expansion and a passage to the limit which was 
insufficiently justified in view of the subtleties present, he showed 

Theorem. The sequence (1 + z/n)n converges compactly in e to expz. 

We base the proof on the following 
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Composition Lemma. Let X be a metric space, In a sequence in C{X) 
compactly convergent to I E C(X). Then the sequence expoln converges 
compactly in X to exp 0 I. 

Proof. All the functions expoln, expol are continuous on X. Let K be a 
compact subset of X. Since 

expoln - expol = [expo(fn - f) -1]expol 

and I exp w - wi ::; 21wl for Iwl ::; 1/2 (cf. 4.2.1), it follows that 

I exp oln - exp o/iK ::; 21 exp o/lKl/n - 11K 

whenever lIn - 11K::; 1/2. Since lim lIn - 11K = 0, the assertion follows. 
o 

Remark. The assertion of the Composition Lemma also follows directly 
from the Composition Theorem in 3.1.5*. 

We can now proceed with the proof of Euler's convergence theorem. Let 
a compact set K c C be given. There is an mEN such that Iz/nl ::; 1/2 
for all n ~ m and all z E K. Since by 2.(1), Ilog(l + w) - wi ::; Iwl 2 for 
Iwl ::; 1/2, it follows that 

log (1 +~) E C(K) and In log (1 +~) - zl ::; ~Izl~ for n ~ m. 

Consequently, n log(l + #) converges compactly in C to z. Because of the 
identity 

the composition lemma ensures that (1 + #)n converges compactly in C to 
expz. 

4. Principal branch of the logarithm. Next we will introduce a loga­
rithm junction in the "slit plane" C- (cf. 2.2.4). Our point of departure is 
the real function 

log: lR+ --+ lR , r t-+ log r (where lR+ := {x E lR: x > o}). 

We will assume known from the infinitesimal calculus that this function 
is continuous on lR+ (although this is easily inferred from its being the 
inverse of the strictly increasing continuous function x t-+ eX on lR). We 
"continue this function into the complexes": every number z E C- is 
uniquely representable in the form z = Izleirp , where Izl > 0 and -71' < cp < 
71'. We claim that: 
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The function log: C- -+ C, Z = Izlei<p f--+ log Izl + i'P, is a logarithm 
function in C-. In Bl (1) C C- it coincides with the function defined by 

( l)v-l 
the power series L~ --=---v- (z - 1) v . 

Proof First we want to see that the function is continuous. This comes 
down to checking that z f--+ 'P is continuous. Thus suppose Zn = IZnlei<Pn E 

C- and Zn -+ Z = Izlei<p E C-, with 'Pn,'P E (-7T,7T), and yet 'Pn does not 
converge to 'P. We use a compactness argument to reach a contradiction. 
A subsequence 'Pnj converges to some () E [-7T,7T] different from 'P. But 

by continuity of exp, Znj = IZnJ lei<pnj -+ IzleiB , so Z = IzleiB , whence 
ei(<p-B) = 1. Since 0 < I'P - ()I < 27T, this contradicts the periodicity 
theorem 5.3. Next notice that 

exp(logz) = exp(log Izi + i'P) = eloglzl. ei<p = Izlei<p = Z 

for all Z E C-. Therefore, by 2, log z is a logarithm function in C-. By 

the existence theorem 2, the function L~ (-lr- 1 (z - It is a logarithm 

function in Bl (1) C C-, hence it can differ from log z in the connected set 
Bl (1) only by a constant, and that constant is 0 because both functions 
vanish at z = 1. 0 

The logarithm function in the slit plane C- just introduced is called 
the principal branch of the logarithm; for it log i = ~7ri. The infinitely 
many other logarithm functions log z + 27Tin, nEZ, z E C-, are called 
secondary branches or just simply branches; since C- is a region (for each 
point z E C- the line segment [1, z] from 1 to z lies wholly in C-), these 
branches are all the logarithm functions in C- . 

The function i(z) = ~ log(x2 + y2) + i arctan(y/x) considered in 1.2.3, 3), 
coincides in the right half-plane {z E C : ~z > o} with the principal branch 
log z, since x 2 + y2 = Izl2 and arctan(y/x) = 'P if x > O. By contrast, however, 
i is not a logarithm function at all in the left half-plane; since there evidently 
exp(i(z)) = -z. 

From now on log will always mean the principal branch of the logarithm. 
In our definition the plane C was slit along the negative real axis, and a 
certain arbitrariness was involved in this. One could as easily remove any 
other half-line starting at 0 and by procedures analogous to the above define 
a logarithm function in the resulting region. However, there is no logarithm 
function in the whole of ex; for any such function would have to coincide 
in C- with some branch log z + 27Tin and consequently would fail to be 
continuous at each point of the negative real axis. 

5. Historical remarks on logarithm functions in the complex do­
main. The extension of the real logarithm function to complex arguments 
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led at first to a phenomenon in analysis that was unknown in the real do­
main: a function defined by natural properties becomes multiple-valued in 
the complex domain. On the basis of the permanence principle, accord­
ing to which all functional relations that hold in the real domain should 
continue to hold in the complex domain, people believed, as late as the 
beginning of the 18th century, in the existence of a (unique) function log z 
which satisfies the equations 

exp(log z) = z and 
dlogz 1 

dz z 

From 1700 until 1716 LEIBNIZ and Johann BERNOULLI were involved in a 
controversy over the true values of the logarithms of -1 and i; they got 
entangled in irresolvable contradictions. At any rate, in 1702 BERNOULLI 
already knew the remarkable equation (see also 2.6): 

h . '1' 1 ,t at IS, ~ og ~ = -"271' (EULER, 1728). 

EULER was the first to call the permanence principle into question; in 
his 1749 work "De la controverse entre Messrs. Leibniz et Bernoulli sur 
les logarithmes des nombres negatifs et imaginaires" (Opem Omnia (1) 17, 
pp.195-232) he says quite clearly (p. 229) that every number has infinitely 
many logarithms: "Nous voyons donc qu'il est essentiel it la nature des 
logarithmes que chaque nombre ait une infinite de logarithmes, et que tous 
ces logarithmes soient differens [sic] non seulement entr'eux, mais aussi de 
tous les logarithmes de tout autre nombre. (We see therefore that it is 
essential to the nature of logarithms that each number have an infinity 
of logarithms and that all these logarithms be different, not only from one 
another, but also [different] from all the logarithms of every other number.)" 

Exercises 

For n E N, n ~ 2 and a region Gee, a holomorphic function w : G --+ C 
is called a holomorphic nth-root if wn(z) = z for all z E G. 

Exercise 1. Show that if f is a logarithm function in G and w : G --+ C is 
continuous and satisfies wn(z) = z for all z E G, then w(z) = e21riklne~e(z) 
for all z E G and some k E {O, 1, ... , n - I}. 

Exercise 2. There is no holomorphic nth-root in any region G which con­
tains O. 
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§5 Discussion of logarithm functions 

The real logarithm function is frequently introduced as the inverse of the 
(real) exponential function, and so log(expx) = x for x E R.. In the 
complex domain this equation no longer enjoys unrestricted validity, since 
exp : e -+ ex is not injective. The latter fact is also the reason why the 
real addition theorem 

log(xy) = log x + logy for all positive real x and y 

is not unrestrictedly valid in the complex domain. First we will discuss 
how these formulas have to be modified. Then we will study general power 
functions, and finally we will show that 

00 1 
((z):=" -LJ nZ 

1 

is normally convergent in the half-plane {z E e : ~z > I}. 

1. On the identities log(wz) = logw + logz and log(expz) = z. 
For numbers w, z and wz in e-, with w = Iwleitp , z = Izlei 1/>, wz = 
Iwzleix , where cp, 1/J, X E (-7T,7T), there is an 'f/ E {-27T,0,27T} such that 
X = cp + 1/J + 'f/. From this it follows that 

log(wz) 10g(lwllzl) + iX = (log Iwl + icp) + (log Izl + i1/J) + i'f/ 
logw + log z + i'f/. 

We see in particular that 

log(wz) = logw + log z # cp + 1/J E (-7T, 7T). 

Since the condition -7T < cp + 1/J < 7T is met whenever ~w > 0 and ~z > 0, 

a special case of the above is 

log(wz) = logw+logz for all w, z E e with ~w > 0, ~z > O. o 

The number log ( exp z) lacks definition precisely for those z = x + iy for 
which eZ = eX cos y + iex sin y falls into e \ e-. This happens exactly when 
eX cos y ~ 0 and eX sin y = 0, that is, when y = (2n + 1)7T for some nEil. 
Therefore log 0 exp is well-defined in the domain 

B := e \ {z : ~z = (2n + 1)7T, nEil} = U Gn , 

nEZ 

where for each nEil 

Gn := {z E C: (2n - 1)7T < ~z < (2n + 1)7T}, 



§5. DISCUSSION OF LOGARITHM FUNCTIONS 161 

fiy 

a strip of width 271" parallel to the x-axis (cf. the figure above). 
For z = x + iy E Gn we have eZ = e"'ei (y-2mr) and y - 2n7l" E (-71",71"). 

It follows that 

log(expz) = loge'" + i(y - 2n7l") 

and so 

log(expz) = z - 271"in for all z E Gn , n E Z. 

Only in the strip Go does log ( exp z) = z prevail. Since however exp(log z) = 
z always holds, we have 

The strip Go = {z E C : -71" < ~z < 7I"} is mapped biholomorphically 
(and so certainly topologically) onto the slit-plane C- by the exponential 
junction, and the inverse mapping is the principal branch of the logarithm. 

2. Logarithm and arctangent. The arctangent function, defined in the 
unit disc in 2.5 satisfies 

1 1 + iz 
(1) arctanz = -2. log -1-.- , z E lE. 

z - zz 

Proof The function h(z) := ~ E O(C \ {I}) is, to within the factor i, 
the Cayley mapping hel from 2.2.2; therefore h(lE) = {z E C : !Rz > O}. 
Accordingly, the function H(z) := log h(z) is well-defined in lE and lies 

in O(lE). It satisfies H'(z) = ~«(:? = 1!z2. Therefore G(z) := H(iz) -
2 arctan z E O(lE) satisfies 

G'(z) = iH'(iz) - 2i(arctan)'(z) = ~2 - ~2 = 0 
l+z l+z 

for all z E lE. Since G(O) = 0, it follows that G == O. o 

On the basis of the identity arctan(tan z) = z proved in 2.5, equation 
(1) yields 
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1 1 1 + i tanz 
Z=- og----

2i 1 - itanz 
for all z near O. 

We further infer that 

(3) tan( arctan z) = z for z E lEo 

. 2' 1 + iz Proof. w:= arctanz satIsfies e tw = --, on account of (1). Since 
1- iz 

1- e2iw 
tanw = il 2' (cf. 2.5), it follows that tanw = Z. +e tW 

3. Power functions. The NEWTON-ABEL formula. As soon as a 
logarithm function is available, general power functions can be introduced. 
If £ : G -+ C is a logarithm function, we consider the function 

P<7 : G -+ C , Z f--t exp(a-£(z)). 

for each complex number a-. We call P<7 the power function with exponent a­
based on £. This terminology is motivated by the following easily verified 
assertions: 

Every function P<7 is holomorphic in G and satisfies p~ = a-P<7-I. For 
all a-, TEe, P<7Pr = P<7+r and for n E N, Pn(z) = zn throughout G. 

In the slit-plane C- a power function with exponent a- is defined by 
exp(a- log z). Except for a brief interlude in 14.2.2, we reserve the (some­
times dangerously seductive) symbol z<7 for this power function. For whole 
numbers a- E Z this agrees with the usual notation and, as remarked above, 
is consistent with the prior meaning of that notation. We have, for example, 

1 <7 = 1 , ii = e- ~ ~ 0.2078795763 ... 

Remark. That ii is real was remarked by EULER at the end of a letter to 
GOLDBACH of June 14,1746: "Letztens habe gefunden, daB diese expressio 
( A) v'-I einen valorem realem habe, welcher in fractionibus decimalibus 
= 0,2078795763, welches mir merkwiirdig zu seyn scheinet. (Recently I have 
found that this expression (A)v'-I has a real value, which in decimal 
fraction form = 0.2078795763; this seems remarkable to me.)" Cf. p. 383 
of the "Correspondence entre Leonard Euler et Chr. Goldbach" cited in 
1.3. 

The rules already noted above can be suggestively written in the new 
notation thus: 

z E C-. 
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From the defining equation za = ea log z, z E C-, follows: 

For z = rei"" cp E (-11",11"), and (f = S + it, we have Izal = Izl!Ra e-",9a, 
and so Izal ~ Izl!Rae"'19a l . 

o 

The function (1 + z)a is, in particular, well defined in the unit disc E. 
Since (1 + z)a = exp((flog(1 + z)) = ba(z) according to 4.3.4(*), we have 
the following 

NEWTON-ABEL formula: 

for all (f E C , z E E. 

By means of this formula the value of the binomial series can be explicitly 
calculated. Setting (f = S + it and 1 + z = rei"" we have 

If you write z = x + iy, comparison of real and imaginary parts on both 
sides of the equation 1 + x + iy = rei'" yields r = ((1 + x)2 + y2)1/2, 
cp = arctan m, and consequently 

(1 + z)a = ((1 + x)2 + y2)ise-tarctan m x 

x [cos (sarctan I! x + ~tlog((1 + x)2 + y2)) 

+ isin (sarctan I! x + ~tlog((1 + X)2 + y2))] 

for all z E IE. This monstrous formula occurs just like this on p.329 of 
ABEL'S 1826 work [AJ. 

4. The Riemann ,-function. For all n EN, nZ = exp(zlogn) is 
holomorphic in C and In" I = n!Rz, according to the foregoing. 

Theorem. The series E~ n-Z converges uniformly in every half-plane 
{z E C: !Rz ~ 1 + e},e > 0 and converges normally in {z E C: Rz > I}. 

Proof For e > 0, In"l = n!Rz ~ n1+E if Rz ~ 1 +e. It follows from this that 

<XlIII <Xl 1 ~ n Z ~~n1+E for all z with !Rz ~ 1 + e. 
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But it is well known that the series on the right converges whenever e > 0 
(see, e.g., KNOPP [151, p. 115), so the theorem follows from the majorant 
criterion 3.2.2 and the definition of normal convergence. 0 

The function 

00 1 
((z):=" - , 

~nz 
1 

!Rz> 1 

is therefore well defined and at least continuous in its domain of definition. 
In 8.4.2 we will see that ((z) is actually holomorphic. Although EULER had 
already studied this function, today it is called the Riemann zeta-function. 
At this point we cannot go more deeply into this famous function and its 
history, but in 11.3.1 we will determine the values ((2), ((4), ... , ((2n), ... 

Exercises 

In the first three exercises G:= e \ {x E lR : Ixl ? I}. 

Exercise 1. Find a function 1 E O(G) which satisfies 1(0) = i and P(z) = 
z2 - 1 for all z E G. Hints. Set h(z) := exp(~ log(z + 1)) for z E e \ {x E 
lR: x:::; -I} and h(z) := exp(~i(z-I)) for z E e\ {x E lR: x? I}, where 
i is an appropriate branch of the logarithm in e \ {x E lR : x ? OJ. Then 
consider h(z)h(z) for z E G. 

Exercise 2. Show that q : ex -+ ex given by z ~ ~(z + Z-l) maps the 
upper half-plane lHl biholomorphically onto the region G and determine the 
inverse mapping. Hints. In Exercise 3 to Chapter 2, §1 it was shown that 
q maps the upper half-plane bijectively onto G. Letting u : G -+ lHl denote 
the inverse mapping, show that u is related to the function 1 constructed 
in Exercise 1 above by 

(u(z) - z)2 = Z2 - 1 = 12(z) , Z E G. 

Check that u is continuous and then infer from (*) that u(z) = z + I(z). 

Exercise 3. Show that z ~ cos z maps the strip S := {z E e : 0 < !Rz < 11"} 
biholomorphically onto the region G. The inverse mapping arccos: G -+ S 
is given by 

arccos(w) = -ilog(w + "';w2 - 1) 

where ";w2 - 1 suggestively denotes the function I(w) from Exercise 1 
above. 



§5. DISCUSSION OF LOGARITHM FUNCTIONS 165 

Exercise 4. For G' := C \ [-1,0] find a function g E O(G') such that 
g(l) = J2 and g2(z) = z(z + 1) for all z E G'. 

Exercise 5. Determine the image G of G' := {z E C : ~z < ~z < ~z + 211"} 
under the exponential mapping. Show that exp maps G' biholomorphically 
onto G. Finally, determine the values of the inverse mapping f : G -> G' 
on the connected components of G n 1R+ . 



Chapter 6 

Complex Integral 
Calculus 

Du kannst im GroBen nichts verrichten 
U nd fangst es nun im Kleinen an 
(Nothing is brought about large-scale 
But is begun small-scale). 
J. W. GOETHE 

Calculus integralis est methodus, ex data differential­
ium relatione inveniendi relationem ipsarum quantita­
tum (Integral calculus is the method for finding, from a 
given relation of differentials, the relation of the quan­
tities themselves). L. EULER 

1. GAUSS wrote to BESSEL on December 18, 1811: "What should we make 
of J 'fiX . dx for X = a + bi? Obviously, if we're to proceed from clear 
concepts, we have to assume that x passes, via infinitely small increments 
(each of the form Q + i(3), from that value at which the integral is supposed 
to be 0, to x = a + bi and that then all the 'fiX . dx are summed up. In 
this way the meaning is made precise. But the progression of x values can 
take place in infinitely many ways: Just as we think of the realm of all 
real magnitudes as an infinite straight line, so we can envision the realm 
of all magnitudes, real and imaginary, as an infinite plane wherein every 
point which is determined by an abscissa a and an ordinate b represents 
as well the magnitude a + bi. The continuous passage from one value of 
x to another a + bi accordingly occurs along a curve and is consequently 

167 
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possible in infinitely many ways. But I maintain that the integral J <px . dx 
computed via two different such passages always gets the same value as long 
as <px = 00 never occurs in the region of the plane enclosed by the curves 
describing these two passages. This is a very beautiful theorem, whose 
not-so-difficult proof I will give when an appropriate occasion comes up. 
It is closely related to other beautiful truths having to do with developing 
functions in series. The passage from point to point can always be carried 
out without ever touching one where <px = 00. However, I demand that 
those points be avoided lest the original basic conception of J <px . dx lose 
its clarity and lead to contradictions. Moreover it is also clear from this 
how a function generated by J <px . dx could have several values for the 
same values of x, depending on whether a point where <px = 00 is gone 
around not at all, once, or several times. If, for example, we define log x 
via J ~dx starting at x = 1, then arrive at log x having gone around the 
point x = 0 one or more times or not at all, every circuit adding the constant 
+27ri or -27ri; thus the fact that every number has multiple logarithms 
becomes quite clear." (Werke 8, 90-92). 

This famous letter shows that already in 1811 GAUSS knew about con­
tour integrals and the Cauchy integral theorem and had a clear notion of 
periods of integrals. Yet GAUSS did not publish his discoveries before 1831. 

2. In this chapter the foundations of the theory of complex contour­
integration are presented. We reduce such integrals to integrals along real 
intervals; alternatively, one could naturally define them by means of Rie­
mann sums taken along paths. Complex contour integrals are introduced 
in two steps: First we will integrate over continuously differentiable paths, 
then integrals along piecewise continuously differentiable paths will be in­
troduced (Section 1). The latter are adequate to all the needs of classical 
function theory. 

In Section 3 criteria for the path independence of contour integrals will be 
derived; for star-shaped regions a particularly simple integrability criterion 
is found. The primary tool in these investigations is the Fundamental 
Theorem of the Differential and Integral Calculus on real intervals (cf. 
0.2). 

§O Integration over real intervals 

The theory of integration of real-valued continuous functions on real inter­
vals should be known to the reader. We plan to carry this theory over to 
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complex-valued continuous functions, to the extent necessary for the needs 
of function theory. I = [a, b], with a ::; b will designate a compact interval 
in R 

1. The integral concept. Rules of calculation and the standard 
estimate. For every continuous function f : I --+ C the definition 

18 
f(t)dt:= 18 

(1Rf)(t)dt + i 18 
(CZSf)(t)dt E C 

makes sense for any r, s E I because 1Rf and CZSf are real-valued continuous, 
consequently integrable, functions. We have the following simple 

Rules of calculation. For all f, 9 E C(J), all r, s E J and all c E C 

(1) 18 
(f + g)(t)dt = 18 

f(t)dt + 18 
g(t)dt , 18 

cf(t)dt = c 18 
f(t)dt, 

(2) lx 
f(t)dt + 18 

f(t)dt = 18 
f(t)dt for every x E J, 

(3) l r 
f(t)dt = -18 

f(t)dt (reversal rule) 

(4) 1R 18 
f(t)dt = 18 

1Rf(t)dt, CZS 18 
f(t)dt = 18 

CZSf(t)dt. 

The mapping C(J) --+ C, f ~ I: f(t)dt is thus in particular a compleTr 

linear form on the C-vector space C(J). We call I: f(t)dt the integral of f 
along the (real) interval [a, bJ. For real-valued functions f, 9 E C(J) there 
is a 

Monotonicity rule: I: f(t)dt ::; I: g(t)dt in case f(t) ::; g(t) for allt E J. 

For complex-valued functions the appropriate analog of this rule is the 

Standard estimate: II: f(t)dtl ::; I: If(t)ldt for all f E C(J). 

Proof. For real-valued f this follows at once from the monotonicity rule 
and the inequalities -If(t)1 ::; f(t) ::; If(t)l. The general case is reduced 
to this one as follows: There is a complex number c of modulus 1 such 
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that c J: f(t)dt E JR. From linearity and calculation rule 4) it follows that 

c J: f(t)dt = J: 1R(cf(t))dt. Then 11R(cf(t))1 :::; Icllf(t)1 = If(t)1 for all t E I 
and the monotonicity rule finish the proof: 

lib f(t)dtl Ic ib f(t)dtl = lib 1R(Cf (t))dt l 

< ib 11R(cf(t))ldt (the case already discussed) 

< ib If(t)ldt. 

The standard estimate is occasionally also referred to as a "triangle inequal­
ity". This usage is suggested by thinking of the definition of the integral in terms 
of Riemann sums. From that point of view the inequality just established does 
indeed generalize the ~-inequality Iw + zl :::; Iwl + Izl for complex numbers. 

2. The fundamental theorem of the differential and integral cal­
culus. For calculating integrals the Fundamental Theorem of Calculus is 
indispensable. To formulate it, we first consider differentiable functions 
f : I ~ C. A function f E C(I) is called (continuously) differentiable on I, 
if both 1Rf and SSf are (continuously) differentiable on I. We set 

!f(t) := !,(t) := (1Rf)'(t) + i(SSf)'(t) 

(called the first derivative) and verify painlessly that the sum, product and 
quotient rules retain their customary form; the chain rule says (d. the 
figure) among other things that: 

If f is holomorphic in the domain D and if, : I ~ D is differentiable on 
I, then 

(f o,)'(t) = !'b(t)h'(t). 

A function F E C (I) is called a primitive (or an antiderivative) of f E 
C(I) on I, if F is differentiable on I and F' = f. Just as for real-valued 
functions, we have the 
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Fundamental Theorem of the Differential and Integral Calculus 
for Intervals. Let f E C(I). Then (existence theorem) x f--+ J: f(t)dt, 
x E I, is a primitive of f on I. If F E C(I) is any primitive of f on I, 
then 

18 
f(t)dt = F(s) - F(r) for all r, s E I. 

The proof consists in going over to real and imaginary parts, apply­
ing the fundamental theorem of calculus for real-valued functions and re­
assembling the pieces. A direct consequence of the fundamental theorem 
is: 

If F, FE C(I) are primitives of f on I, then F - F is constant on I. 

Here are two other useful applications of the fundamental theorem: 

Substitution rule. If J is an interval in IR and rp : J -> I is continuously 
differentiable, then for every function f E C (1) 

18 1'1'(8) 
f(rp(t))rp'(t)dt = f(t)dt 

r 'P(r) 
for all r, s E J. 

Proof Let F be a primitive of f on I. Then 

1'1'(8) 

f(t)dt = F(rp(s)) - F(rp(r)). 
'P(r) 

Because (F 0 rp)' = (F' 0 rp) . rp' , F 0 rp is a primitive of (J 0 rp) . rp' on J. 
According to the fundamental theorem we then have 

18 
f(rp(t)) . rp'(t)dt = (F 0 rp)(s) - (F 0 rp)(r). 

Integration by parts rule. For all continuously differentiable functions 
f,g E C(1) 

lb f(t)g'(t)dt = f(b)g(b) - f(a)g(a) -lb f'(t)g(t)dt. 

Proof If F is a primitive of I'g, then fg - F is a primitive of fg'. 

§ 1 Path integrals in C 

We first define complex contour integrals I, fdz along continuously differ­
entiable paths in <C. But this class of integrals isn't adequate for function 
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theory, where we must often integrate along paths with "corners". In all 
important applications on the other hand, we only need to integrate over 
paths comprised of line segments and circular arcs strung together. If in 
spite of this we consider the broader class of all piecewise continuously dif­
ferentiable paths, the reason is not the all too frequent and pedagogically 
dangerous striving for generality at any price, but rather the realization 
that the formulation in terms of curves built from segments and circular 
arcs is not any simpler and in fact notationally is often more complicated. 

In (older) textbooks on function theory complex integrals along arbitrary 
"rectifiable" curves are frequently considered. There was a time when it 
was fashionable to sacrifice valuable lecture time to developing the most 
general theory of line integrals. Nowadays it is more customary in lectures 
on basic function theory to restrict oneself to integration along piecewise 
continuously differentiable curves and get on with the main business of the 
theory. 

By I we again denote a real interval [a, b], where a ::; b. 

1. Continuous and piecewise continuously differentiable paths. 
According to 0.6.2 every continuous mapping "I : I ---+ C is called a path or 
a curve, with initial point "I(a) and terminal point "I(b). Instead of "I(t) the 
more suggestive notation z(t), or occasionally ((t), is also used. The path is 
called continuously differentiable or smooth if the function "I is continuously 
differentiable on I. 

Examples. 0) A path "I is called a null path if the function "I is constant; 
such paths are of course continuously differentiable. 

1) The segment [zo, Zl] from Zo to Zl is the continuously differentiable 
curve 

z(t) := (1 - t)zo + tZl, t E [0,1]. 

2) Let c E C, r > o. The function 

z(t) := c + reit = ~c + rcost + Wsc + rsint), t E [a,b]' 

where 0 ::; a < b ::; 2rr, is continuously differentiable. The corresponding 
curve "I is called, as intuition dictates, a circular arc on the boundary of 
the disc Br(c). In case a = 0, b = 2rr, "I is the circle of radius r around 
the center c. This curve is closed (meaning that initial point = terminal 
point); we designate this curve by Sr(c) or sometimes simply by Sr and 
it is often convenient to identify Sr with the boundary 8Br(c) of the disc 
Br(c). 0 

If "11, ... , "1m are paths in C and the terminal point of "I I-' coincides with 
the initial point of "11-'+1 for each 1 ::; I-L < m, then the path-sum "I := 
"11 + "12 + ... + "1m was defined in 0.6.2; its initial point is the initial point 
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of '1'1 and its terminal point is the terminal point of 'I'm. A path 'I' is called 
piecewise continuously differentiable (or piecewise smooth) if it has the form 
'I' = '1'1 + ... + 'I'm with each 'l'p. continuously differentiable. The figure shows 
such a path whose components 'l'p. consist of segments and circular arcs. 

Every polygon is piecewise continuously differentiable. 

In the sequel we will be working exclusively with piecewise continuously 
differentiable paths and so we will agree that, from now on, the term "path" 
will be understood to mean piecewise continuously differentiable path. Paths 
are then always piecewise continuously differentiable Junctions 'I' : [a, bj ---> 

C, that is, 'I' is continuous and there are points a1, ... , am+! with a = a1 < 
a2 < ... < am < am+1 = b such that the restrictions 'l'p. := '1'1 [ap., ap.+!], 
1 :::; J-t :::; m are continuously differentiable. 

2. Integration along paths. As is 0.6.2, I'l'l = '1'(1) designates the 
(compact) trace of the path')'. The trace of the circle Sr(c) is, e.g., the 
boundary of the disc Br(c) (cf. 0.6.5); we also write 8Br(c) instead of 
Sr(c). 

If 'I' is continuously differentiable, then J(z(t)) . z'(t) E C(J) for every 
function J E C(I'I'I); therefore according to 0.1 the complex number 

l Jdz:= l J(z)dz:= lb J(z(t))z'(t)dt 

exists. It is called the path integral or the contour integral or the curvilinear 
integral of J E C(I'I'i) along the continuously differentiable path '1'. Instead 
of J1' Jdz we sometimes write J1' Jd( = J1' J(()d(. In the special case where 
'I' is the real interval [a, b], described via z( t) := t, a :::; t :::; b, we obviously 
have 

1 Jdz = lb J(t)dt. 

It follows that the integrals discussed in section 0 are themselves path 
integrals. 

It is now easy to define the path integral J1' J dz for every path 'I' = 

'1'1 + '1'2 + ... + 'I'm for which the 'l'p. are continuously differentiable paths 
and for every function J E C(I'I'I). We simply set 
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1 fdz := f 1 fdz. 
"I 1L=1 "I" 

Note that each summand on the right side is well-defined because each 'IL 
is a continuously differentiable path with I'lL I C 1,1. 

Our contour integral concept is in an obvious sense independent of the par­
ticular way "f is expressed as a sum; but to make this precise we would have to 
introduce some rather unwieldy terminology and talk about refinements of repre­
sentations as sums. We will leave to the interested reader the task of formulating 
the appropriate notion of equivalence among piecewise continuously differentiable 
paths and proving that contour integrals depend only on the equivalence class of 
the paths involved. 

3. The integrals J8B(' - c)nd'. Fundamental to function theory is the 
following 

Theorem. For n E Z and all discs B = Br(c), r > 0, 

{ (( _ c)nd( = { 0 . for n =1= -1, 
J8B 27rt for n = -1. 

Proof Parameterize the boundary BB of B by ((t) .- c + reit, with 
t E [0, 27r]. Then ('(t) = ireit and 

Since n~l ei(n+llt is a primitive of ie i (n+1lt if n =1= -1, the claimed equality 
follows. 0 

Much of function theory depends on the fact that J8B(( - c)-ld( =1= o. 

The theorem shows that integrals along closed curves do not always van­
ish. The calculation involved also shows (mutatis mutandis) that integrals 
along curves which each have the same initial point and each have the 
same terminal point need not be equal. Thus, e.g., (see the left-hand figure 
below) 

1 d( . 
"1+ ( - C = 7rt , 

In 1841 in his proof of LAURENT'S theorem WEIERSTRASS determined the value 
of the integral JaB (-Id( using a "rational parameterization" (cf. [WI], p.52): 
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He describes the boundary 8B of the disc (with c = 0) by means of «(t) := r~, 
-00 < t < +00. Evidently - as everyone used to learn in school - «(t) is the 
second point of intersection of 8B with the half-line starting at -r and having 
slope t := tancp (d. the right-hand figure). Because 

and it follows that 

'( ) 2i 
( t = r (1 _ ti)2 

('(t) 
«(t) 

2i 

1 + t 2 

1 d( =2il°O ~ =4i l°O ~. 
8B ( -00 1 + t2 0 1 + t 2 

WEIERSTRASS now defines (!) (which we proved above) 

7r := 100 l!t t 2 = 411 l!t t 2 ' 
-00 0 

the reduction to a proper integral being accomplished via the substitution t := ~ 
in f1°O 1~~2. WEIERSTRASS remarked that all he really needed to know in his 
further deliberations was that this integral has a finite non-zero value. Cf. also 
5.4.5 of the book Numbers [19]. 

4. On the history of integration in the complex plane. The first in­
tegrations through imaginary regions were published in 1813 by S. D. POISSON 
(French mathematician, professor at the Ecole Poly technique). Nevertheless the 
first systematic investigations of integral calculus in the complex plane were made 
by CAUCHY in the two treatises [Cd and [C2] already cited in the introduction 
to Chapter 1. The work [C1] was presented to the Paris Academy on August 22, 
1814 but only submitted for printing in the "Memoires presentes par divers Sa­
vants it l'Academie royale des Sciences de l'Institut de France" on September 14, 
1825 and published in 1827. The second, essentially shorter work [C2 ] appeared 
as a special document (magistral memoire) in Paris in 1825. This document 
already contains the Cauchy integral theorem and is considered to be the first ex­
position of classical function theory; it is customary and just (GAUSS' letter to 
BESSEL notwithstanding) to begin the history of function theory with CAUCHY'S 
treatise. Repeated reference will be made to it as we progress. CAUCHY was 
only gradually led to study integrals in the complex plane. His works make clear 
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that he thought a long time about this circle of questions: only after he'd solved 
his problems by separation of the functions into real and imaginary parts did he 
recognize that it is better not only not to make such a separation at all, but also 
to combine the two integrals 

!(UdX - vdy) , ! (vdx + udy), 

which come up in mathematical physics in the study of two-dimensional flows of 
incompressible fluids, into a single integral 

! Jdz with J := u + iv , dz := dx + idy. 

A good exposition of the development of the integral calculus in the complex 
plane along with detailed literature references is to be found in P. STACKEL'S 

"Integration durch imaginiires Gebiet. Ein Beitrag zur Geschichte der Funktio­
nentheorie," Biblio. Math. (3) 1(1900), 109-128 and the supplement to it by the 
same author: "Beitrage zur Geschichte der Funktionentheorie im achtzehnten 
Jahrhundert," Biblio. Math. (3) 2(1901), 111-121. 

5. Independence of parameterization. Paths are mappings,,! : I -+ c. 
You can think of "! as a "parameterization" of the trace or impression. 
Then it is clear that this parameterization is somewhat accidental: one 
is inclined to regard as the same curves which are merely traversed in the 
same direction but in a different time interval or with different speeds. This 
can all be made precise rather easily: 

Two continuously differentiable paths,,! : I -+ C, i' : j = [a, b] -+ Care 
called equivalent if there is a continuously differentiable bijection 'P : j -+ I 
with everywhere strictly positive derivative 'P', such that i' = "! 0 'P. 

The mapping 'P is called a "parameter transformation" and is, because 
'P' > 0, a strictly increasing function with a differentiable inverse. It then 
follows that 'P(a) = a, 'P(b) = b. The inequality 'P' > 0 means intuitively 
that in parameter transformations the direction of progression along the 
curve does not change (no time-reversal!). 

We immediately confirm that the equivalence concept thus introduced is 
a genuine equivalence relation in the totality of continuously differentiable 
paths. Equivalent paths have the same tmce. We prove the important 

Independence theorem. If"!, i' are equivalent continuously differentiable 
paths, then 

for every function fEe ( b I) . 
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Proof. In the foregoing notation, i'(t) = 'Y(c,o(t)) and so i"(t) = 'Y'(c,o(t))c,o'(t), 
t E i. It therefore follows that 

h Jdz = 1b J(i'(t))i"(t)dt = 1b J(-Y(c,o(t)))'Y'(c,o(t))c,o'(t)dt. 

According to Substitution Rule 0.2, applied to J(-y(t))'Y'(t), the integral on 

the right coincides with I:(~? J(-y(t))'Y'(t)dt. Because c,o(a) = a, c,o(b) = b, 

we consequently have Ii Jdz = I: J(-y(t))'Y'(t)dt = I-y Jdz. 0 

Thus the value of a path integral does not depend on the accidental 
parameterization of the path; and so, e.g., the Weierstrass parameterization 
(cf. 1.3) and the standard parameterization of 8Br(0) both give the same 
values to integrals. Ideally we should from this point onward consider 
only equivalence classes of parameterized paths, even extending this idea 
in the natural way to piecewise continuously differentiable paths. But then 
every time we make a new definition (like sums of paths, the negative 
of a path, the length of a path) we would be obliged to show that it is 
independent of the class representative used in making it; the exposition 
would be considerably more unwieldy and complicated. For this reason 
we will work throughout with the mappings themselves and not with their 
equivalence classes. 

6. Connection with real curvilinear integrals. As is well known, for a 
continuously differentiable path 'Y presented as z(t) = x(t) + iy(t), a ~ t ~ b, and 
real-valued continuous functions p, q on I'YI, a real path integral is defined by 

(*) 1 (pdx + qdy):= lb p(x(t), y(t))x' (t)dt + lb q(x(t), y(t))y' (t)dt E lR. 

Theorem. Every function I E C(I'YI), with u := !R./, v := <;:Sl, satisfies 

l ldz = 1 (udx - vdy) + i 1 (vdx + udy). 

Proof 1= u + iv and z'(t) = x'(t) + iy'(t), so 

I(z(t))z' (t) = [u(x(t), y(t)) + iv(x(t), y(t))][x' (t) + iy' (t)] 

and the claim follows upon multiplying everything out and integrating. 0 

The formula in the statement of the theorem is gotten by writing dz = dx+idy, 
Idz = (u + iv)(dx + idy) and "formally" multiplying out the terms; cf. also 
subsection 4. 

One could just as easily have begun the complex integral calculus by using (*) 
to define the real integrals 1'1 (pdx + qdy). It is entirely a matter of taste which 
avenue is preferred. 0 
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One can also introduce general complex path integrals of the form J-y fdx, 

J-y fdy, J-y fdz for continuously differentiable paths "y and arbitrary f E C(lrl), 
understanding by them the respective complex numbers 

lb f(z(t))x'(t)dt , lb f(z(t))y'(t)dt , lb f(z(t))z'(t)dt. 

Then the identities 

1 fdx = ~ (1 fdz + 1 f dZ) , 1 fdy = ;i (1 fdz - 1 f dZ ) , 1 fdz = 1 fdz 

are immediate. 

Exercises 

Exercise 1. Consider the rectangle R := {z E C : -r < Rz < r, - s < 
S$z < s}, whose boundary is the polygonal path 

[-r - is, r - is] + [r - is, r + is] + [r + is, -r + is] + [-r + is, -r - is], 

where r > 0 and s > O. Calculate JaR (-Id(. 

Exercise 2. Let,: [0,21l'] -+ C be ,(t) := eit and let 9 ITI -+ C be 
continuous. Show that 

Exercise 3. For a,b E IR define, : [O,21l'] -+ C by,(t) := acost + ibsint 
and compute J-y 1(12d(. 

§2 Properties of complex path integrals 

The calculation rules from 0.1 carryover to path integrals; this will be our 
first order of business. With the help of the notion of the euclidean length 
of a curve we then derive (subsection 2) the standard estimate for path 
integrals, which is indispensable for applications. From it, for example, 
follow immediately (subsection 3) theorems dealing with interchange of 
limit and path integration. 

1. Rules of Calculation. For all J, 9 E C(ITI) , c E C 

1) J-yU + g)dz = J-y Jdz + J-y gdz , J-y cJdz = c J-y Jdz. 
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2) If "1* is a path whose initial point is the terminal point of "I, then 

1 fdz = 1 fdz + 1 fdz ,+,* , ,* 
for all f E C(I"I + "1* I). 

Proof. Because of definition (*) in 1.2 it suffices to verify 1) for continuously 
differentiable paths. In that case however 1) follows immediately from the 
corresponding rule in 0.1; thus, for example, if "I is defined on [a, b] 

i cfdz = lb cfC'Y(t)h'(t)dt = c lb fC'Y(t)h'(t)dt = c i fdz. 

Rule 2) is immediate from definition (*) in 1.2. o 

In order to get an analog of the reversal of limits in 0.1 (Rule 3), we 
assign to every path "I : I --+ C its reversed path -"I defined as "I 0 cp where 
cp : I --+ I is given by cp(t) := a + b - t. Intuitively -"I consists of "running 
over "I in the opposite direction." The sum path "I + ( -"I) is always defined; 
for every sum path "I + "1* we have -C'Y + "1*) = -"1* +( -"I). 

"I and -"I have the same trace and -"I is piecewise continuously differen­
tiable if "I is. Note however that cp does not effect an equivalence between 
the paths "I and -"I because cp' (t) = -1 < o. Integrals along -"I can be 
determined easily by means of the 

Reversal rule. 1-, fdz = - I, fdz for all f E C(I"II)· 

Proof. We need only consider continuously differentiable paths "I. Since 
cp(a) = b, cp(b) = a, application of the substitution rule to fC'Y(t)h'(t) 
gives 

i, fdz = lb fC'Y(cp(t))h'(cp(t))cp'Ct)dt = i a fC'YCt)h'Ct)dt. 

The reversal rule 3) from 0.1 now gives 

1 fdz = -lb fC'YCt)h'(t)dt = -1 fdz. 
-, a , 

o 

Rule 4) from 0.1 does not carryover: in general ~ I, fdz i= I, ~fdz. 
Thus, e.g., I, dz = i for the path "1:= [0, i] and so 0 = ~ I, fdz, but 
I, ~fdz = i for the function f:= 1. 

Important is the 
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Transformation rule. Let 9 : b -+ D be a holomorphic mapping with 
continuous derivative g',. let..y be a path in band 'Y := go..y the image path 
in D. Then 

1 f(z)dz = h f(g(())g'(()d( for all f E C(I'YI). 

Proof We may assume that ..y is continuously differentiable. Then it follows 
that 

1 f(z)dz = lb f(g(..y(t)))g'(..y(t))..y'(t)dt = h f(g(())g'(()d(. 

2. The standard estimate. For every continuously differentiable path 
'Y: [a, bJ -+ C, t 1-+ z(t) = x(t) + iy(t), the (real) integral 

Lb) := lb Iz'(t)ldt = lb y'x'(t)2 + Y'(t)2dt 

is called the (euclidean) length of 'Y. (It can be shown rather easily that 
Lb) is independent of the parameterization of 'Y.) We motivate this choice 
of language by means of two 

Examples. 1) The line segment [zo, ZIJ given by z(t) = (1 - t)zo + tZb 
t E [0,1]' has z'(t) = ZI - Zo and hence has length 

L([zo, ZI]) = 101 IZI - zoldt = IZI - zol, 

as we feel it should. 
2) The circular arc 'Y on the disc Br(c), given by z(t) = c+reit , t E [a, b], 

has length Lb) = r(b - a) since Iz'(t)1 = Irieitl = r. The length of the 
whole circular periphery 8Br (c), corresponding to a := 0, b .- 271", is 
L(8Br(c)) = 2r7l", in accordance with elementary geometry. 0 

If 'Y = 'Yl + 'Y2 + ... + 'Ym is a path with continuously differentiable 
constituent paths 'Y/l-' then we call 

the (euclidean) length of 'Y. We can now prove the fundamental 

Standard estimate for path integrals. For every (piecewise continu­
ously differentiable) path'Y in C and every function f E C(bl) 

Ii fdzl :::; Ifl"lLb) , where Ifl"l := max If(z(t))I· 
tE[a,b] 
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Proof First let I be continuously differentiable. Then the inequality 

II, fdZI = lib f(z(t))Z'(t)dtl :::; ib If(z(t))llz'(t)ldt 

follows from the standard estimate 0.1. Then our claim follows from the 
fact that If(z(t))1 :::; If I, for all t E [a, bJ and the monotonicity of real 
integrals. 

Now let I = II + 12 + .. , + 1m be an arbitrary path. Since I, fdz = 
L~ I,," fdz and If I,," :::; If I, (due to ITI-'I c ITI), it follows from what has 
already been proven that 

In the standard estimate strict inequality prevails whenever there is at 
least one point c E ITI where If(c)1 < If I,. (Why?) This sharper version 
of the result won't really be used in this book, but as an application of it 
we will show now that 

for all z E C with ~z < 0. 

Proof Let I := [0, z], f(() := e'. Then I, fdz = eZ -1 and If(OI = le'l = 

elR( < 1 for all ( E C with ~( < 0, in particular for all ( on I except its 
initial point. Therefore from the sharp form of the standard estimate 

3. Interchange theorems. With the help of the standard estimate it 
follows easily that integration and convergence of functions are interchange­
able. 

Interchange theorem for sequences. Let I be a path and fn E C(ITI) 
a sequence of functions which converges uniformly on I,I to a function 
f: ITI -+ C. Then 

lim!, fndz = !, (limfn)dz = !, fdz. 

Proof According to the continuity theorem 3.1.2, f E C(ITI). Therefore 
I, fdz exists. From the standard estimate and the fact that lim Ifn - fl, = ° we then get 

o 
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Applying this result to partial sums gives us 

Interchange theorem for series. Let, be a path, fv E C(ITI) functions 
for which the series I:: fv converges uniformly on ITI to a function f : 1,1 -­
IC. Then 

The significance of the interchange theorems for function theory will 
only gradually become clear; e.g., from them follows Weierstrass' theorem 
concerning the holomorphy of the limit of a compactly convergent sequence 
of holomorphic functions (cf. 8.4.1). In the next section we give our first 
application; in it (as almost always) the series involved is normally conver­
gent. 

4. The integral 2~i JaB ,~ z· Because the boundary 8B of the disc 

B := Br(c) is given by ((t) = e + reit , t E [0,21l'J, we have 

1 r d( l' r27r eitdt 

21l'i JaB ( - z = 21l' Jo reit + (e - z) 
for all z E C \ 8 B. 

The straight-forward calculation of this integral is difficult if z =j:. e. There­
fore we don't attempt to evaluate it directly, but (by means of a trick) 
reduce to the case z = e. This is done via the geometric series. 

Lemma. The following equations hold: 

() 1 _ 1 ~(z-e)V 
1 (-z - (-c'7 (-e 

1 -1 L:oo ((_e)V (2) --- -
(-z - z-e 0 z-e 

for all (, z with Iz - el < I( - el, 

for all (, z with Iz - el > I( - cI. 

For fixed e, l' and z E C \ 8Br(c) these are normally convergent series in 
the variable ( E 8Br(c). 

For the proof of (1) we set w := (z - c)(( - e)-l and write 

for all w E lEo 
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Correspondingly one verifies (2) by developing (( - Z)-i = -[(z - c)(1 -
w)]-l, with w := (( - c)(z - C)-i, into a geometric series. Actually (2) 
is just (1) with the roles of z and ( interchanged, so it does not require 
separate proof. 

If we set q := Iz - clr- i , then for fixed z E B := Br(c), 0 ::; q < 1 

and max(EaB 1(, = ~) nl = qn, n E N. Therefore the series (1) is normally 

convergent in ( E aB. The normal convergence of the series (2) is treated 
in a similar manner. 

Theorem. ~ JaB (~z = { ~ for z E B 
for z E C \B. 

Proof a) In case z E B, (1) and the interchange theorem for series give 

r ~-~(z-c)'" r d( 
JaB ( - z - ~ JaB (( - c)v+1 . o 

According to 1.3 all the integrals on the right vanish except when v = 0 
and that integral has the value 27ri. 

b) In case z E C \ B, (2) and the interchange theorem for series give 

r ~ = _ ~ 1 r (( _ z)"'d(. 
JaB ( - z ~ (z - c)v+1 JaB o 

Now 1.3 insures that without exception all the integrals on the right vanish. 

o 

The reader will find another proof of a) via the Cauchy Integral Theorem 
in 7.1.2. 

The trick of developing 1/ (( - z) into a geometric series around c used 
above will be exploited again in developing holomorphic functions into 
power series (cf. also 7.3.1). 

In the theory of the index the integral -21 . f #- will be studied for every 
1("1 "'Y ... -z 

closed path , as a function of z E C \ 1,1. Then we will see that the function 
defined by this integral is locally constant, has values only in Z and vanishes for 
all "large values" of z (cf. 9.5.1). 

Exercises 

Exercise 1. Let G := {z E IE : ~z + ~z > 1}. Find a convenient parame­
terization'Y of aG and compute J-y ~(d( as well as J-y ftrd(. 
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Exercise 2. For any polynomial p{z), any c E C, r E 1R+ 

r p(()d( = 27rir2p'(c). 
iaBr(c) 

Exercise 3. Let 'Y : [a, bJ --+ C be a continuously differentiable path with 
'Y'{t) i= 0 for all t E [a, bJ. Then there is a path i' : [a, bJ --+ C which is 
equivalent to 'Y and satisfies 1i"{t)1 = 1 for all t E [a, bJ. 

Exercise 4 (Sharpened standard estimate). Let 'Y be a path in C and 
I E C{bl)· If there exists c E I'YI such that II{c)1 < III'")' := max(Ehlll{()I, 
then 

i~ I{()d(i < III'")' . Lb)· 

Exercise 5. Let tn{z) := 1 + z + ~Z2 + ... + ;hzn be the nth Taylor 
polynomial approximant to e%. Show that le% - tn{z)1 < Izln+l for all 
n E N and all z E C with !Rz < O. 

§3 Path independence of integrals. 
Primitives. 

The path integral J'")' Id( is, for fixed I E C{D), a function 01 the path 'Y in 
D. Two points z/, ZT E D can be joined, if at all, by a multitude of paths 'Y 
in D. We saw in 1.3 that, even in the case of a holomorphic function I in D, 
the integral f Id( in general depends not just on the initial point z/ and 
the terminal Joint ZT but on the whole course of the path 'Y. Here we will 
discuss conditions which guarantee the path independence of the integral 
J'")' Id(, in the sense that its value is determined solely by the initial and 
terminal points of the path. 

1. Primitives. We want to generalize the concept of primitive (function) 
introduced in 0.2. Fundamental here is the following 

Theorem. If I is continuous in D, the following assertions about a func­
tion F : D --+ C are equivalent: 

i) F is holomorphic in D and satisfies F' = I. 

ii) For every pair w, zED and every path 'Y in D with initial point w 
and terminal point z 

~ Id( = F(z) - F(w). 
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Proofi) => ii) If "I: [a, b] -+ D, t 1-+ ((t) is continuously differentiable, then 

i fd( = lb f(((t))('(t)dt = lb F'(((t))('(t)dt. 

By the chain rule (cf. 0.2), F'(((t))('(t) = ftF(((t)). Since w = ((a) and 
Z = ((b), it follows from this and the fundamental theorem of 0.2 that 

i fd( = lb !F(((t))dt = F(((b)) - F(((a)) = F(z) - F(w). 

If more generally "I = "II + ... + "1m is an arbitrary path in D from w to Z 

and zIh .. ), ZT('YI') designate respectively the initial and terminal points of 
"II" 1 :$ J.L :$ m, then w = zIbd, zTbl') = zIbl'+d for J.L = 1,2,·· . , m - 1 
and zTbm) = z. Therefore, according to what has already been proved 

1 fd( = I: 1 fd( = I:(F(ZTbl')) - F(ZIbl')) = F(z) - F(w). 
"( 1'=1 "(I' 1'=1 

ii) => i) We show that at every point e E D, F'(e) exists and equals fee). 
Let BcD be a disc centered at e. By the hypothesis of ii) 

Set 

F(z) = F(e) + [ fd( 
l[c,z] 

for all Z E B. 

Fl(Z) := _1_ [ fd( for Z E B \ {e} and Fl(e) := fee). 
Z - e l[c,z] 

Then F(z) = F(e)+(z-e)Fl(z) holds for all Z E B. If we can show that 
Fl is continuous at e, then F'(e) = Fl(e) = fee) will follow. For Z E B\ {e} 

Fl(z) - Fl(e) = _1_ [ (f(() - f(e))d(, 
Z - e l[c,z] 

due to the fact that ~[ ] d( = Z - e. Because the segment [e, z] has length C,z 

Iz - el, the standard estimate yields 

1 
IFl(z) - Fl(e)1 :$ -I -I ·11 - l(e)l[c,z] 'Iz - el :$ II - l(e)IB, z-e 

for all z E B. The continuity of Fl at e thus follows from the continuity of 
I~~ 0 

From now on a function F : D -+ C will be called a primitive 01 I E 
C(D), if F satisfies i) and ii) of the preceding theorem. 
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2. Remarks about primitives. An integrability criterion. Theorem 
1 furnishes an important method for calculating complex path integrals. 
As soon as we know a primitive F of f, we need never parameterize any 
paths but just determine the difference of two values of F. And primitives 
can often be found directly by using i). Thus, e.g., for every integer n =I- -1 

the function zn in C X (or in C when n 2': 0) has the function ~n;; as a 

primitive; therefore I"/ (nd( = 0 for every closed path I in C X and every 
nEZ, n =I- -1. 

Because I8B (( -c)-Id( = 27ri for every disc B centered at c (by theorem 
2.4), it is now clear that 

For no c E C is there a neighborhood U of c such that the function 
(z - c)-I E O(C \ {c}) has a primitive in U \ {c}. 

For c := 0 this reflects the fact, already realized in 5.4.4, that there is 
no logarithm function in C X • 

Within its disc of convergence every power series f(z) = L av(z-c)" has 
the convergent series F(z) = L -!tr(z - c)v+1 as a primitive; this follows 
immediately from theorem 4.3.2. D 

If F is holomorphic in D and F' = 0 throughout D, then F is locally 
constant in D. 

Proof The hypothesis says that F is a primitive of the constant 0 function. 
Because in every disc BcD each point z E B can be joined radially to 
the center c, it follows that 

F(z) - F(c) = J, Ode = 0, 

that is, F(z) = F(c) for all z E B. D 

As promised in 1.3.3, we have found another proof for the important 
theorem 1.3.3. Another immediate consequence is: 

If both F and F, elements of O(D), are primitives of f, then F - F is 
locally constant in D. D 

Every function f E C(I) has primitives (the existence assertion of the 
fundamental theorem 0.2). If we pass from intervals I to domains D in 
C, this statement is not true without further qualification. Possessing a 
primitive is a special property that a function f E C(D) mayor may not 
have; those that do are called integrable in D. It is clear that, for a function 
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I which is integrable in D, the integral J"Y I d( along any closed path 'Y in 
D must vanish (according to theorem 1). This property is characteristic 
of integrability; we thus get as the appropriate analog of the existence 
assertion in the fundamental theorem 0.2 the 

Integrability Criterion. The following statements about a continuous 
function f in a domain D are equivalent: 

i) f is integrable in D. 

ii) J"Y Id( = 0 for every closed path 'Y in D. 

If ii) holds and if D is a region, then a primitive F of I can be obtained as 
follows: Fix a point Zl E D and to each point zED "somehow" associate 
a path 'Yz in D from Zl to Z; finally set 

F(z) := 1 Id( , 
"Yz 

zED. 

Proof Only the implication ii) => i) needs verification. Because a path 
must remain within a single connected component of D (cf. 0.6.4), we can 
assume that D is a region. In order to show that F is a primitive of f, 
consider an arbitrary path 'Y in D from w to z. Choose paths 'Yw,'Yz in D 
from Zl to w and z, respectively. Then 'Yw + 'Y - 'Yz is a closed path in D 
and therefore 

0=1 fd( = 1 fd( + 1 Id( -1 fd( = F(w) + 1 Id( - F(z). 
"Yw+"Y-"Yz "Yw "Y "Yz "Y 

Consequently F has property ii) in theorem 1. o 

We will see in 8.2.1 that integrable functions are always holomorphic. If 
we write f = u + iv, then on the basis of theorem 1.6 the single complex 
equation J"Y fd( = 0 goes over into the two real equations 

1 (udx - vdy) = 0 

(On this point cf. also 1.4.) 

and 1 (vdx + udy) = o. 

3. Integrability criterion for star-shaped regions. The condition 
that all integrals J"Y fd( along all closed paths 'Y in G vanish is not verifiable 
in practice (it is a so-called academic point); consequently the integrability 
criterion 2 is to a large extent useless in applications. It is of fundamental 
importance for the Cauchy theory that this condition can be significantly 
weakened in certain special regions in C. 

A set M c C is called star-shaped or star-like if there is a point Zl E M 
such that the segment [Zl' z]lies wholly in M whenever Z E M. Any such 
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point is called a (star-) center of M (cf. the left-hand figure below). It is 
clear that every star-shaped domain D in C is a region; such regions will 
be called star regions. 

A set M c C is called convex if the segment [w, z] lies in M whenever 
its endpoints w and z do; such sets were introduced already in antiquity, 
by ARCHIMEDES, occasioned by his investigations of surface area. Every 
convex set is star-shaped and each of its points is a star-center. In particu­
lar, every convex domain, e.g., every open disc, is a star region. The plane 
slit along the negative real axis (cf. 2.2.4) is a star region C- (which is not 
convex), all points x E JR, x > 0 (and only these) being star- centers of C-. 
The punctured plane C is not a star region. 

We want to show that in the study of the integrability problem in star 
regions it suffices to consider, instead of all closed paths, only those which 
are boundaries of triangles. Whenever Zl, Z2, Z3 are three points in C, the 
compact set 

~ = {z E C : Z = Zl + S(Z2 - Zl) + t(Z3 - Zl), s ~ 0, t ~ 0, s + t :::; I} 

is called the (compact) triangle with vertices zI, Z2, Z3 (barycentric repre­
sentation) . 

The closed polygonal path 

is called the boundary of ~ (with initial and terminal point zd; the trace 
18~1 is actually the set-theoretic boundary of ~ (see the right-hand figure 
above). We claim 

Integrability criterion for star regions. Let G be a star region with 
center Zl. Let f E C(G) satisfy faA. fd( = 0 for the boundary 8~ of each 
triangle ~ C G which has Zl as a vertex. 

Then f is integrable in G, and the function 

F(z):= r fd( , 
J[Zl,zj 

Z E G, 
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is a primitive of f in G. In particular, I, fde, = 0 for every closed path 'Y 
in G. 

Proof Because G is star-shaped with star-center ZI, [Zl' z] c G for every 
Z E G, and so F is well defined. Let c E G be fixed. If Z is near enough to 
c, then the triangle .6. with vertices Zl, c, Z lies wholly in G. 

Because, by hypothesis, the integral of f along 8.6. = [Zl' c] + [c, z] + [z, Zl] 

vanishes, we have 

F(z) = F(c) + r fde" 
i[c,z] 

Z E G near c. 

From this it follows literally by the same argument used in the proof of the 
implication ii) =} i) of theorem 1, that F is complex-differentiable at c and 
that F'(c) = f(c). 0 

In the next chapter we will see that the condition Iae. fde, = 0 in the 
integrability criterion just proved (in contrast to the more general condition 
in the criterion 2) is actually verifiable in important and non-trivial cases. 

Exercises 

Exercise 1. Let G := C \ [0,1]' f : G --+ C the function f(z) := z(z ~ 1). 

Show that for every closed path 'Y in G 

j f(e,)de, = 0 

Exercise 2. Let D be a domain in C, fn : D --+ C a sequence of continuous, 
integrable functions which converge compactly to f : D --+ C. Show that f 
is also integrable. 

Exercise 3. Let G I , G2 be regions in C such that G I n G2 is connected. 
Suppose f : G I U G2 --+ C is continuous and I, f(()d( = 0 for every closed 
path 'Y in G I and for every closed path 'Y in G2 . Show that then this 
equality holds for every closed path 'Y in G I U G2 as well. 



Chapter 7 

The Integral Theorem, 
Integral Formula and 
Power Series 
Development 

Integralsatz und Integralformel sind zusammen von solcher 
Tragweite, dass man ohne Uebertreibung sagen kann, in diesen 
beiden Integralen liege die ganze jetzige Functionentheorie 
conzentrirt vor (The integral theorem and the integral formula 
together are of such scope that one can say without exaggera­
tion: the whole of contemporary function theory is concentrated 
in these two integrals) - L. KRONECKER. 

The era of complex integration begins with CAUCHY. It is consequently 
condign that his name is associated with practically every major result of 
this theory. In this chapter the principal Cauchy theorems will be derived 
in their simplest forms and extensively discussed (sections 1 and 2). We 
show in section 3 the most important application which is that holomor­
phic functions may be locally developed into power series. "Ceci marque 
un des plus grands progres qui aient jamais ete realises dans l' Analyse. 
(This marks one of the greatest advances that have ever been realized in 
analysis.)" - [Lin], pp. 9,10. As a consequence of the CAUCHy-TAYLOR 
development of a function we immediately prove (in 3.4) the Riemann 
continuation theorem, which is indispensable in many subsequent consid-

191 
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erations. In section 4 we discuss further consequences of the power series 
theorem. In a closing section we consider the Taylor series of the special 
functions z cot z, tan z and z I sin z around OJ the coefficients of these series 
are determined by the so-called Bernoulli numbers. "Le develloppement de 
Taylor rend d'importants services aux mathematiciens. (The Taylor devel­
opment renders great services to mathematicians.)" - J. HADAMARD, 1892 

§1 The Cauchy Integral Theorem for 
star regions 

The main result of this section is theorem 2. In order to prove it we will 
need in addition to integrability criterion 6.3.3, the 

1. Integral lemma of GOURSAT. Let f be holomorphic in the domain 
D. Then for the boundary 8tl. of every triangle tl. c D we have 

r fd( = O. 
jaD. 

For the proof we require two elementary facts about perimeters of tri­
angles: 

1) maxw,ZED.lw - zl ~ L(8tl.). 

2) L(8tl.') = ~L(8tl.) for each of the four congruent sub-triangles tl.' 
arising from connecting the midpoints of the three sides of tl. (cf. the 
left-hand figure below). 

We now prove the integral lemma. As a handy abbreviation we use 
a(tl.) := faD. fd(. By connecting with straight line segments the midpoints 
of the sides of tl. we divide tl. into four congruent sub-triangles tl.", 1 ~ 
l/ ~ 4j and then 
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because the segments connecting the midpoints of the sides of ~ are each 
traversed twice, in opposite directions (as one sees clearly in the right-hand 
figure above), causing the corresponding integrals to cancel each other (the 
reversal rule), while the union of the remaining sides of the ~" is just {)~. 

From among the four integrals a(~,,) we select one with the largest 
absolute value and label the corresponding triangle ~ 1. Thus 

Apply the same subdivision and selection process to ~ 1 to get a triangle ~ 2 

for which la(~)1 :5 4Ia(~1)1 :5 42Ia(~2)1. Continuation of this procedure 
generates a descending sequence ~ 1 ::> ~ 2 ::> •.. ::> ~ n ::> ••• of compact 
triangles satisfying 

(1) n= 1,2, ... 

From preliminary remark 2) follows moreover that 

(2) n= 1,2, ... 

The intersection nr~" consists of precisely one point c E ~ (nested interval 
principle). Because f lies in O(D), there is a function 9 E C(D) such that 

f(() = f(c) + J'(c)(( - c) + (( - c)g((), ( E D, 

and g(c) = O. Then from the equations (which are valid on trivial grounds 
or can be justified by the evident existence of primitives) 

f f(c)d( = 0 
Jaan. 

it follows that 

and f J'(c)(( - c)d( = 0 for all n 2: 1, 
Jaan. 

n= 1,2, ... 

From the standard estimate for curvilinear integrals together with the first 
preliminary remark, we get the inequality 

la(~n)1 :5 ,~lrn. (I( - cllg(()I)L({)~n) :5 L({)~n)2Iglaan. , 

From (1) and (2) it also follows that 

n= 1,2, ... 
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n = 1,2, ... 

Because g(c) = 0 and g is continuous at c, for every c > 0, there is a b > 0 
such that IgIB6(C) :S c. To this b corresponds an no such that 6.n C B6(C) 
for all n ~ no. Accordingly, IglaAn :S c for n ~ no, and so 

Since L(86.) is a fixed number and arbitrary positive values can be chosen 
for c, a(6.) = O. 0 

It is frequently and correctly maintained that all of Cauchy's theory of 
functions can be developed, by and large without any additional calcula­
tion, from Goursat's integral lemma. 

2. The Cauchy Integral Theorem for star regions. Let G be a star 
region with center c and let f : G ~ C be holomorphic in G. Then f is 
integrable in G and the function F(z) := ~[ 1 fde z E G, is a primitive of c,z 
f in G. In particular, 

j fd( = 0 for every closed path 'Y in G. 

Proof Since f E O(G), we have fM fd( = 0 for the boundary of every 
triangle 6. c G, on the basis of Goursat's integral lemma. The present 
claim therefore follows from the integrability criterion 6.3.3 for star regions. 

o 

Applications. 1) In the star region C- with center 1, !rl,z) !!f is a primitive of 

~. If we next choose as our path, from 1 to z = rei'" E C-, the segment [1, rJ 
followed by the circular arc W from r to z (d. the figure below), then because 
of path independence we get 

1 d( jr dt 1'" ireit . 7" = - + ----;tdt = logr + t<p. 
[l,z) " 1 tore 

The original primitive thus turns out to be the principal branch of the logarithm 
function in C - and we have another proof of the existence of the principal branch. 

2) We give a second, direct proof of theorem 6.2.4 in the case where z E B. 
Let E: > 0 be small enough that Be(z) C B. We introduce two intermediate paths 
defined by (see the left-hand figure below) 
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r 2 := 'Y2 - /3 + 'Y4 - a 

Since the function h(() := ,:% isoholomorphic in the slit plane shown (right-hand 
figure below) and rl is a closed path in this star region, we have Jr l h(()d( = O. 

A similar argument shows that Jr 2 h(()d( = O. It follows (cf. the figures) that 

and so J8B hd( = J 8 B.(%) hd(. This reduces the integral to be determined to one 
in which z is the center of the circular path of integration, a (quite simple) case 
already dealt with. 

3) If R is an open triangle or rectangle in C, then 

f ,.~ =211'i J8 R" z 
for all z E R. 

The proof is carried out just as in the preceding text, with R now replacing B in 
the arguments and the figures. 

3. On the history of the Integral Theorem. CAUCHY stated his 
theorem in 1825 in [C2]. The publication of this classical work occurred 
in a very strange way. It went out of print soon and not until 1874/75 -
long after RIEMANN and WEIERSTRASS had created their own theory of 
functions - was it reprinted as "Melanges" in Bull. Sci. Math. Astron. 
7(1874), 265-304, along with two continuations in Volume 8(1875), 43-55 
and 148-159. P. STACKEL made a German translation "Abhandlung iiber 
bestimmte Integrale zwischen imaginaren Grenzen" in 1900; it is the 65-
page Volume 112 in the well-known series Ostwald's Klassiker der exakten 
Wissenschaften. 

In his book La vie et les tmvaux du baron Cauchy (Paris, 1868 in 2 
volumes; reprint: Paris, Blanchard, 1970) Cauchy'S pupil and biographer 
VALSON enthusiastically praised this work, which indeed by 1868 was al­
ready epochal: "Ce Memoire peut etre considere comme Ie plus important 
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des travaux de Cauchy, et les hommes competents n'Msitent pas it Ie com­
parer it tout ce que l'esprit humain a jamais produit de plus beau dans la 
domaine des sciences. (This memoir may be considered the most important 
work of Cauchy and knowledgeable people don't hesitate to compare it to 
any of the most beautiful achievements of the human mind in the domain 
of science.)" It seems all the more astonishing that in the 27 volumes of 
the (Euvres completes d'Augustin Cauchy which the French Academy of 
Science published between 1882 and 1974 (1st series with 12 volumes, 2nd 
series with 15 volumes) this particular work of Cauchy first showed up in 
a shortened form in 1958 (pp. 57-65, Vol. 2 of 2nd series) and in full only 
in 1974 in the last volume of the 2nd series (pp. 41-89). 

CAUCHY formulated his theorem for the boundaries of rectangles (p. 7 
of STACKEL'S translation): 

"We now think of the function f(x+iy) as finite and continuous as long 
as x remains between the bounds Xo and X and y between the bounds Yo 
and Y. Then one proves easily that the value of the integral 

l X +iY iT f(z)dz = [<p'(t) + ix'(t)Jf[<p(t) + ix(t)]dt 
xo+iyo to 

is independent of the nature of the functions x = <p(t), y = x(t)." 

This is for rectangular regions precisely the independence of the integral 
from the path <p(t) + iX(t), t E [to, T]. One is surprised to read that 
CAUCHY only hypothesizes that the function f be finite and continuous 
but in the proof uses, without further consideration, the existence and 
continuity of f'. This reflects the conviction, going back to the Euler 
tradition and also held by CAUCHY - at least in the early years of his work 
- that continuous functions are perforce given by analytic expressions and 
are therefore differentiable according to the rules of the differential calculus. 

CAUCHY proves the Integral Theorem by methods of the calculus of 
variations: he replaces the functions <p(t), X(t) by "neighboring" functions 
<p(t) + cu(t) , X(t) + cv(t), where u(to) = v(to) = u(T) = v(T) = 0, and 
determines the "variation of the integral" as follows (pp. 7,8 of STACKEL): 
"The integral will experience a corresponding change, which can be devel­
oped into ascending powers of c. In this way one gets a series in which the 
infinitely small term of first order is the product of c with the integral 1 

(*) IT[(U + iv)(x' + iy')f'(x + iy) + (u' + iv')f(x + iy)]dt 
to 

Now by partial integration we find 

1 If we abbreviate ( := 'P + iX, "I := u + iv and put f(( + e'f/) in the form f(() + f'((). 
e'f/ + higher order terms in "I, then the various e-dependent integrands have the form 
f(( + e'f/)((' + e'f/') = f(()(' + ["1(' f'(() + "I' f(()]e + higher order terms in e, and this 
confirms the claim (*). 
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iT (u' + iv')J(x + iy)dt = -iT (u + iv)(x' + iy')f'(x + iy)dt. 
~ ~ 

Consequently the integral (*) reduces to zero." Thus did CAUCHY deter­
mine that the variation of the integral vanishes; which for him established 
the correctness of his theorem. This method of proof can be made rigorous 
but is almost forgotten in modern function theory. 

The sentence "Ich behaupte nun, dass das Integral J '{JX' dx nach zweien 
verschiednen Ubergangen immer einerlei Werth erhalte, ... ", quoted in the 
introduction to Chapter 6, from GAUSS' letter of Dec. 18, 1811 to BESSEL 
shows that GAUSS knew the integral theorem that early. "Aber es ist 
doch ein grosser Unterschied; ob Jemand eine mathematische Wahrheit mit 
vollem Beweise und der Darlegung ihrer ganzen Tragweite veroffentlicht, 
oder ob ein Anderer sie nur so nebenher einem Freund unter Discretion 
mittheilt. Deshalb konnen wir den Satz mit Recht als das Cauchy'sche 
Theorem bezeichnen (But there is nevertheless a big difference between 
someone who publishes a mathematical truth with a full proof and an 
indication of its complete scope, and another who only incidentally com­
municates it privately to a friend. Therefore the theorem can rightly be 
designated as the Cauchy Theorem)" - KRONECKER, on p. 52 of [Krl. 

4. On the history of the integral lemma. Edouard GOURSAT (1858-
1936, French mathematician, member of the Academie des Sciences) com­
municated his proof to HERMITE in an 1883 letter (published as "Demon­
stration du TMoreme de Cauchy," Acta Math. 4(1884), 197-200); he em­
ploys rectangles instead of triangles and explicitly used the continuity of 
the derivative (see the bottom of his page 199). But he must have soon 
become aware of the superfluousness of this continuity hypothesis, as he be­
gins his 1899 work [GIl with the sentence: "J'ai reconnu depuis longtemps 
que la demonstration du tMoreme de Cauchy, que j'ai donnee en 1883, ne 
supposait pas la continuite de la derivee. (I have recognized for a long time 
that the demonstration of Cauchy's theorem which I gave in 1883 didn't 
really presuppose the continuity of the derivative.)" And in the last sen­
tence of this work he says: "On voit qu'en se pla~ant au point de vue de 
Cauchy il suffit, pour edifier la tMorie des fonctions analytiques, de sup­
poser la continuite de J(z) et l' existence de la derivee. (One sees that, from 
Cauchy's point of view, it suffices, for purposes of erecting the theory of 
analytic functions, to hypothesize the continuity of J(z) and the existence 
of the derivative.)" 

GOURSAT considered regions G with quite general boundaries and ap­
plied his bisection method also to rectangles which partly protruded out­
side of G. The technical difficulties which this occasioned were noted as 
early as 1901 by Alfred PRINGSHEIM (1850-1941, German mathematician 
in Munich; doctorate 1872 in Heidelberg; 1877 failed attempt at Habili-
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tation in Bonn "on account of the great ignorance of the candidate" (al­
legedly PRINGSHEIM refused to explain to the august faculty how one solves 
quadratic equations); successful Habilitation in Munich in 1877; by his 
own testimony "one of the most prominent exponents of the specifically 
Weierstrassian 'elementary' function theory"; owner of a coal mine in Sile­
sia; friend of Richard WAGNER; father-in-law of Thomas MANN, who in 
1905 had to withdraw his already published short story Wiilsungenblut 
under pressure from the Pringsheim family) in his paper "Uber den Gour­
satschen Beweis des Cauchyschen Integralsatzes" (Trans. Amer. Math. 
Soc. 2(1901), 413-421). PRINGSHEIM proceeded from triangles, saying 
on p.418: "Der wahre Kern jenes Integralsatzes liegt in seiner Giiltigkeit 
fUr irgend einen Special-Bereich einfachster Art z.B. ein Dreieck ... Die 
Moglichkeit, ihn auf krummlinig begrenzte Bereiche zu iibertragen, beruht 
dagegen lediglich auf Stetigkeits-Eigenschaften, welche den Integralen jeder 
stetigen Function zukommen. (The real kernel of that [Goursat'sj integral 
theorem lies in its validity for any special domain of the simplest kind, 
e.g., a triangle· .. The possibility of extending it to domains with curved 
boundaries rests, by contrast, merely on continuity properties which are to 
be found in the integrals of every continuous function.)" 

By means of his "triangle" proof PRINGSHEIM essentially simplified Gour­
sat's method of proof and gave it the elegant, final form that it has had 
to this day. The triangle variant also has the economic advantage that it 
yields the integral theory for star regions immediately, whereas the rectan­
gle version cannot do this. 

5*. Real analysis proof of the integral lemma. From the point of 
view of real analysis one likes to think of Goursat's lemma as a special case 
of STOKES' formula. For triangles in ]R2 this reads 

Let p, q be real-valued and continuously differentiable functions in a do­
main D C ]R2. Then for the boundary Btl. of every triangle tl. c D we 
have 

where I I· .. dxdy indicates the area integral over tl.. 

From this the integral lemma follows immediately but only under the 
supplemental hypothesis that the derivative f' of f is continuous in D: For 
then u = ~f and v = SSf are continuously real-differentiable, so that there 
follows (cf. 6.1.6) 

r fdz 
JM 

r (udx - vdy) + i r (vdx + udy) 
Ja~ Ja~ 
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-/1 (av + au) dXdY+i/1 (au _ av) dxdy. 
~ ax ay ~ ax ay 

In these double integrals both integrands are 0 by virtue of the Cauchy-
Riemann differential equations; therefore Ja~ Jdz = 0 follows. 0 

The foregoing proof was known to CAUCHY in 1846, as his Comptes 
Rendus note "Sur les integrales qui s'etendent it tous les points d'une courbe 
fermee" ((Euvres (1) 10, pp. 70-74) shows. It is possible that this proof, 
which moreover is supposed to have been known to WEIERSTRASS as early 
as 1842, was suggested to CAUCHY by GREEN'S work from the year 1828. 
In 1851 RIEMANN discussed in detail and utilized Stokes' formula ([RJ, 
article 7 ff.). Cauchy's name is never mentioned in Riemann's work. 0 

We have repeatedly emphasized that for the construction of the Cauchy 
theory of functions - in contrast to real analysis - only the existence oj the 
first derivative, not however its continuity, need be hypothesized. Function 
theorists are occasionally reproached for making too much of an issue of 
this fine point in their theory, all the more because it is meaningless as far 
as applications are concerned. It does seem that for all the holomorphic 
functions J which occur in (mathematical) nature, the continuity of the 
derivative f' is known a priori (and in most cases it is even known in 
advance that J is arbitrarily often complex-differentiable!) Nevertheless, it 
remains a surprising and deep discovery that the continuity of f' does not 
need to be postulated. Moreover, the Goursat proof is less "imposing" than 
the real variable proof based on Stokes' formula, which in the final analysis 
doesn't just fall into our hands from heaven. There is naturally also a 
Goursat lemma for real integrals, where instead of complex-differentiability 
conditions of real-integrability are imposed. 

Discussions about the value of and best proof for a mathematical propo­
sition will (perforce) come up again and again as long as mathematics 
is done by human beings, and yet to many mathematicians the ensuing 
polemics are as hard to understand as the disputations of the Byzantines 
about the genders of angels. 

6*. The Fresnel integrals J cocos Pdt, J cosin t 2 dt have played an im-o 0 
port ant role in the theory of light diffraction since A. J. FRESNEL (1788-
1827, French engineer and physicist). With the help of Cauchy's integral 
theorem we reduce the evaluation of these integrals to the "error integral" 

lim {R e-t2 dt = roo e- t2 dt = ~J?r. 
R-oo io io 2 

(In turn this formula will be derived later in various different ways, among 
others via the residue calculus, and it will be generalized; cf. 12.4.3, 12.4.6, 
as well as 14.3.2 and 14.3.3.) 
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Theorem. For every a E IR with lal ::; 1 

(1) 

Proof The case a = 0 reduces to the error integral, which, as promised will 
be proved later. The case a < 0 reduces to the case a > 0 by conjugating 
both sides of (1). Thus we only have to deal with 0 < a ::; 1. Define 
I(z) := e- z2 • For this function the integral theorem gives 

1 Ide, = 1 Ide, + 1 Ide" 
1'3 1'1 1'2 

since (see the accompanying figure) II + 12 - 13 is a closed path and I is 
holomorphic throughout C. Now 12(t) = r + it, 0::; t ::; ar, so 

ifO::;t::;r 

and from this, the fact that I~(t) = i and a ::; 1, follows 

r(l +ai) 

~--------~--~----~X 

Because 13(t) = (1 + ia)t, 0 ::; t ::; r, and IHt) = 1 + ia, it now follows 
from (*) that 

(l+ia) {'Xl e-(Hia)2t 2 dt = lim 1 Ide, = lim 1 Ide, = ['Xi e- t2 dt = y7r. 
io r->oo 1'3 r->oo 1'1 io 2 

o 
Splitting (1) into real and imaginary parts gives 

-1 ::; a ::; 1, 

(2) 
-1::; a ::; 1. 

Taking a := 1 and using t in the role of V2t, 
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(3) 

FRESNEL knew these formulas in 1819. The equations (2) were familiar to 
EULER by 1781; in his work "De valoribus integralium a termino variabilis 
x = o usque ad x = ooextensorum" (Opem Omnia (1) 19,217-227) he gets, 
with the help of his Gamma function r(z) (whose theory will be developed 
in the second volume of this book) the following (p. 225): 

For p, q E IR with p ~ 0 and f := Jp2 + q2 =I 0 

If we substitute t = v'x and set p := 1 - a2 , q := 2a, then equations (2) 
result. 

The method of computing the Fresnel integrals described above was well 
known in the 19th century, appearing, for example, in H. LAURENT'S 1'raite 
d'analyse, Paris, 1888, Vol. 3, pp. 257-260. 

Exercise 

Exercise. Show that J":'oo e-u2x2 dx = V1i/u for all u E ex with I <:Sui ~ 
~u. (In other words, the evaluation can be achieved by acting as if the 
substitution t := ux were permissible.) 

§2 Cauchy's Integral Formula for discs 

The integral theorem 1.2 is inadequate for deriving the Cauchy integral 
formula. A sharper version, which we discuss next, is needed. Cauchy's 
integral formula itself will then follow in a few lines. 

1. A sharper version of Cauchy's Integral Theorem for star re­
gions. Let G be a star region with star-center c. Let f : G -+ e be 
continuous in G and holomorphic in the punctured region G\ {c}. Then f 
is integmble in G. 

The proof of this is a verbatim transcription of the proof of theorem 1.2 
except that now we invoke the 
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Sharpened version of GOURSAT's integral lemma. Let D be a do­
main, c ED. Let f : D -+ C be continuous in D and holomorphic in 
D \ { c}. Then 18.6. f d( = 0 for every triangle ~ C D which has a vertex at 
c. 

The proof of this sharper version consists of reducing to the original 
version: on the sides of ~ of which c is an endpoint we select any two 
points and consider the sub-triangles ~l (containing c as a vertex), ~2 
and ~3 thereby created. (See the figure below.) 

The integrals over the "interior paths" cancel each other out and, because 
~2 U ~3 C D \ {c} where f is holomorphic, the original Goursat integral 
lemma affirms that the integrals over a~2 and a~3 vanish. It follows that 

r fd( = r fd(, and so I r fd(l::::; Iflt.L(a~t}. 
Jot. Jot. 1 Jot. 

Since L(a~l) can be made arbitrarily small, it follows that 18.6. fd( = O. 

Remark. The propositions of this section are preliminaries to Riemann's 
continuation theorem, which, among other things, asserts that every func­
tion which is continuous in D and holomorphic in D \ {c} is in fact holo­
morphic throughout D (cf. 3.4). The above sharpening of the integral 
theorem is therefore really no sharpening at all; but at this point in the 
development of the theory we are not in any position to see this (cf. also 
3.5). 

2. The Cauchy Integral Formula for discs. Let f be holomorphic in 
the domain D and let B := Br(c), r > 0, be an open disc which together 
with its boundary 8B lies wholly in D. Then for all z E B 

f(z) = ~ r f(() de. 
27r2JaB(-Z 

Proof. Let z E B be given and fixed, and consider the function 

g(() := f((~=;(z) for (E D \ {z}, g(z) := l' (z). 

Since f E O(D), g is holomorphic in D \ {z} and continuous in D. Since 
BCD, there is an s > r close enough to r that B' := Bs(c) cD. Because 
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B' is convex, the sharpened version of the Integral Theorem 1 says that 
glB' is integrable, and so, in particular, J8 B g(()d( = O. By theorem 6.2.4, 
the definition of 9 on 8B gives 

0= [ g(()d( = [ !(() d( - f(z) [ r d( = [ !(() d( - 27rif(z). 
J 8B J 8B '> - z J 8B '> - z J 8B '> - Z 

o 

The enormous significance of Cauchy's Integral Formula for function the­
ory will manifest itself over and over again. What immediately attracts our 
attention is that it allows every value f(z), z E B, to be computed merely 
from knowledge of the values of f on the boundary 8E. There is no analog 
of this in real analysis. It foreshadows the Identity Theorem and is the first 
indication of the (sit venia verbo) "analytic mortar" between the values of 
a holomorphic function. In the integrand of the Cauchy Integral Formula 
z appears explicitly only as a parameter in the denominator, no longer tied 
to the function f! We will be able to glean a lot of information about 
holomorphic functions generally from the simple structure of the special 
function (( - Z)-lj among other things, the power series development of 
f and the Cauchy estimates for the higher derivatives of f. The function 
(( - z)-l is often called the Cauchy kernel (of the integral formula). 

The special instance of the integral formula where z is the center c of 
the disc and 8B is parameterized by c + rei'P, cp E [0,27rJ, is known as the 

Mean value equality. Under the hypotheses of theorem 2 

1 [211: 
f(c) = 27r Jo f(c + rei'P)dcp. 

From which, e.g., immediately follows, using the standard estimate 6.2.2, 
the 

Mean value inequality: 

If(c)1 :::; IfI8B, 

which however is only a special case of the general Cauchy inequalities for 
the Taylor coefficients (cf. 8.3.1). 

Remark. By means of a beautiful trick of LANDAU's (see Acta Math. 40(1916), 
340, footnote 1)) much more than the mean value inequality can be immediately 
inferred from the Cauchy integral formula: 

(#) If(z)1 :::; IfioB for all z E B. 

Proof. First we note that the integral formula and the standard estimate show 
that 
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If(z)1 ::; azlfloB , where az := rI1/(( - Z)IOB for z E B. 

This estimate is of course valid as well for every positive integer power fk of 
f, since fk E OeD). It then gives If(z)1 ::; ~lfloB' for all z E B, and since 
limk~oo ~ = 1, the claim follows. - The inequality (#) is a forerunner of the 
maximum principle for bounded regions; cf. 8.5.2. 

The Cauchy integral formula holds for other configurations besides discs. We 
will be content here to cite two such: 

Let f E OeD) and let R be an (open) triangle or rectangle which together with 
its boundary lies in D. Then 

fez) = ~ 1 f(() d( 
211"t OR (- z 

for all z E R. 

Proof Since there is a convex region G with ReG c D, it follows, as above for 
discs, that 

0=1 f(()d(-f(Z)l ~. 
OR (- Z OR (- z 

D 

According to 1.2 3) the last integral has the value 211"i. 

In 13.1.1 below we will see a considerable generalization of this. 

3. Historical remarks on the Integral Formula. CAUCHY discovered 
his famous formula in 1831 during his exile in Turin. Its first publication 
was in a lithographed treatise Sur la mecanique celeste et sur un nouveau 
calcul appele calcul des limites, lu a l' Academie de Turin Ie 11 octobre 
1831. The integral formula first became generally accessible in 1841, when 
CAUCHY, back in Paris, published it in the 2nd volume of his Exercices 
d'analyse et de physique matMmatique ((Euvres (2), 12, 58-112). CAUCHY 

writes his formula for c = 0 in the following fashion (loc. cit., p.61) 

f(x) = ~ J7r ~J(x) dp, 
211" -7r X - X 

where he is denoting by x the variable of integration (and not the complex 
conjugate of x) and is writing x = XePy'=T (so that X = Ixl). This 
formula coincides, naturally, with ours if the boundary circle is described 
by ( = rei'P, -11" ::s <p ::s 11": 

o 

The mean value equality f(c) = 2~ J027r f(c + rei'P)d<p is to be found 
as early as 1823 in the work of POISSON: in "Suite du memoire sur les 
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integrales definies et sur la sommation des series," Journ. de l'Ecole Poly­
technique, Callier 19, 404-509 (esp. 498). POISSON did not recognize the full 
scope of his formula; it was "von granzenlosen Zauberformeln diinenartig 
zugedeckt" (cf. p.120 of the article "Integration durch imaginares Gebiet" 
by STACKEL; this quotation - "covered by limitless sand dune-like magic 
formulae" -, used in another connection, is from GOETHE Uber Mathematik 
und deren Miflbrauch 2nd Abt., volume 11, p.85 of the Weimar edition of 
1893, Verlag Hermann B6hlau.) 

4 *. The Cauchy integral formula for continuously real-differenti­
able functions. Under the supplemental hypothesis of the continuity of 
f' the Cauchy integral theorem is a special case of the theorem of STOKES 
(cf. 1.5). Therefore it is not surprising that, under the same additional hy­
pothesis, the Cauchy integral formula is a special case of a general integral 
formula for continuously real-differentiable functions. 

Theorem. Let f : D -+ C be continuously real-differentiable in the domain 
D. Let B := Br(c), r > 0, be an open disc which together with its boundary 
8B lies in D. Then for every z E B 

f(z) = ~ [ f(() d(+ ~J [ 8~_1_d( Ad(. 
21l"Z JaB ( - z 21l"Z J B 8( ( - z 

The area integral on the right is the "correction term" which vanishes 
in case f is holomorphic. In the general case part of what has to be proven 
is the existence of this integral. Note that to compute it we must know 
the values of f throughout B. We won't go into these matters any further 
because we don't plan to make any use of this so-called inhomogeneous 
Cauchy integral formula. (For a proof of it, see, e.g., [10].) Anyway, this 
generalized integral formula was unknown in classical function theory; it 
apparently first appeared in 1912 in a work of D. POMPEIU "Sur une classe 
de fonctions d'une variable complexe ... ," Rend. Cire. Mat. Palermo 35 
(1913), 277-281. Not until the 1950's was it put to use in the theory of 
functions of several variables by DOLBEAULT and GROTHENDIECK. 

5*. Schwarz' integral formula. From the Cauchy theorems countless 
other integral formulas can be derived by skillful manipulation; for example: 

If f is holomorphic in a neighborhood of the closure of the disc B = 
Bs(O), then 

(1) /(0) = ~ [ J(() d( 
21l"Z JaB (- z 

for all z E B. 

Proof. For z E B the function h(w):= ;f(w) is holomorphic in a neigh­
s -zw 

borhood of the closure of B. Therefore JaB h(()d( = 0 by the integral 



206 7. INTEGRAL THEOREM, INTEGRAL FORMULA AND SERIES 

theorem. For ( E BB we have 

fee) + h(() = fee) _ ( 
( ( (- z (on account of (( = 82). 

From this and the Cauchy integral formula we get, for Z E B, 

27rif(0) = r f(C) d( = r (f(() + h((») d( = r f(C) _ ( _de. 
JaB ( JaB ( JaB ( (-z 

Because (d( + (d( = 0 for (( = 8 2 , it follows by conjugating the above 
that 

-27rif(0) = r fee) _ ( _de = r j(() -(-de = - r f(C) de. 0 
JaB ( (- z JaB ( (- z JaB ( - z 

The last line of the foregoing proof can also be gotten directly, if less elegantly, 
without recourse to the "differential" equation (d( = -(de, by introducing the 
parameterization ( = sei<p for aB, conjugating the resulting integral f0211" ••• dcp, 
and then reverting to the unparameterized integral. The careful reader should 
carry through the details of this little calculation. 

In his 1870 work "Zur Integration der partiellen Differentialgleichung 
~ + ~ = 0" (Gesammelte mathematische Abhandlungen, 2, 175-210) 
Hermann Amandus SCHWARZ (1843-1921, German mathematician at Halle, 
Zurich and Gottingen and, from 1892 at Berlin as WEIERSTRASS' succes­
sor) presented an integral formula for holomorphic functions in which only 
the real part of f entered into the integrand. He showed (p. 186) 

Schwarz' integral formula for discs centered at O. Iff is holomorphic 
in a neighborhood of the closure of the disc B := Bs(O), then 

fez) = ~ r Rf(() (+ z d( + iSSf(O) 
27rZ JaB ( ( - z 

for all z E B. 

Proof. On account of ~ ~ ~ ~ = (.: z - ~, 2Rf = f + j, and the Cauchy 
integral formula, the integral in the equation to be proved has the value 

r fee) + f(C) d( _ ~ r fCC,) + f(C) dC, = 
JaB c,-z 2 JaB C, 

= 27rif(z) + r !(C,) dC, - 7rif(O} - -21 r j~c,) dC,. 
JaB." - z JaB ." 

According to (1) both integrals on the right here have the value 27rij(0). 
Therefore 
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~ r ~J(() ( + z d( = J(Z) + /(0) - ~ J(O) - ~ /(0) = J(Z) - i~J(O). 
271"l JoB ( ( - z 2 2 

o 
The Schwarz formula shows that every value J(z), z E B, is already 

determined by the values of the real part of Jon 8B and by the number 
~J(O). Upon setting u:= ~J, ( = sei '" we get 

1 12'11" . (+z 
J(z) = -2 u(se'''')-r -d1/; + mJ(O) , 

71" 0 .,,-z zE B. 

Since ~~ = '~r-=-Jit, consideration of real parts gives 

1 r2'11" .'" S2 - Izl2 
u(z) = 271" Jo u(se') I( _ zl2 d1/;. 

This is the famous Poisson integml Jormula Jor harmonic functions: if we 
further set z = reicp , then I( - zl2 = S2 -2rs cos(1/;-<p) +r2 and the formula 
takes its classical form 

. 1 1 2'11". s2 - r2 
u re'CP = - use'''' d1/;. ( ) 271" 0 ( ) s2 - 2r s cos( 1/; - <p) + r2 

Exercises 
Exercise 1. Using the Cauchy integral formula calculate 

1 dz 
c) -2--' 

OB2(-2i)Z +1 

d) dz. 1 eZ 

OB1(O) (z - 2)3 

Exercise 2. Let r > 0, D an open neighborhood of Br(O), J : D -+ C a 
holomorphic function and at, a2 distinct points of Br(O). 

) E r f«(2d(. f r ~ ( . ) a xpress JoBr(O) ((-ad((-a2) III terms 0 JoBr(O) ((-aj) d( J = 1,2 . 

b) Use a) to deduce the "theorem of LIOUVILLE": Every bounded func­
tion in O(C) is constant. (Cf. also 8.3.3.) 

Exercise 3. Let r > 0 and J : Br(O) -+ C be a continuous function which 
is holomorphic in Br(O). Show that 

J(z) = ~ r J(() d( for all z E Br(O). 
271"l iOBr(O) ( - Z 
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§3 The development of holomorphic 
functions into power series 

A function f : D ...... C is said to be developable into a power series around 
c E D, if for some r > 0 with B := Br(c) C D there is a power series 
2: a,,(z - c)" which converges in B to fiB. From the commutativity of 
differentiation and summation in a power series (Theorem 4.3.2) it follows 
at once that: 

If f is developable around c in BcD into a power series 2: a" (z - c)" , 

then f is infinitely often complex-differentiable, and a" = f(~!(c) for all 
vE N. 

A power series development of a function f around c is, whatever the 
radius r of the disc B, uniquely determined by the derivatives of f at c and 
always has the form 

f(z) = L f("\(C) (z - c)". 
v. 

This series is called (as for functions on JR) the Taylor series of f around 
C; it converges compactly in B. 

The most important consequence of the Cauchy integral formula is the 
acquisition for every holomorphic function of a power series development 
about every point in its domain of definition. This development leads 
easily to the Riemann continuation theorem. The point of departure of our 
considerations here is a simple 

1. Lemma on developability. If, is a piecewise continuously differen­
tiable path in C, then to every continuous function f : 1,1 ...... C we associate 
the function 

(1) F(z) := ~ 1 f(() d( , 
27ft I (- Z 

z E C \ hi 

and claim: 

Lemma on developability. The function F is holomorphic in C \ 1,1. 
For each c E C \ 1,1 the power series 

. 1 1 f(() 
wtth a" := 27fi I (( _ C),,+l d( 

converges in every open disc centered at c which does not touch hi and in 
fact converges to F. The function F is infinitely often complex-differentiable 
in C \ hi and it satisfies 
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(2) F(k) (Z) = ~1 f() d( for all Z E C\ ITI and all kEN. 
21ft 'Y ( - z)k+l 

Proof Fix B := Br(c) with r > 0 and B n 1,1 = 0. The series (l_~)k+l = 
I:v>k (~)wv-k, which converges throughout JE, is transformed by w .­

(z ~ c)( - C)-l into 

1 " (v) 1 v-k 
(_z)kH = ~ k (_C)V+l(Z-C) 

v?:k 

which converges for all z E B, ( E 1,1, kEN. 
Set 9v() := f()/( - c)vH for ( E 1,1. It follows that for z E B 

Because I( - cl 2:: r for all ( E 1,1, it follows from the definition of 9v that 
19v1, :s: r-(v+l)lfl, and therefore, with q := Iz - cl/r, 

1 
maxI9v()(z - ct-kl:S: kH Ifl,qV-k. 
(Elil r 

Since 0 :s: q < 1 for every z E B and since I:v?:k (~)qv-k = (l_~)k+l' the se­
ries in (*) converges normally in ( E ITI for each fixed z E B. Consequently, 
according to the interchange theorem for series (6.2.3), 

~ 1 f() - "kl(v) (_ )v-k 21fi ( _ z )kH d( - ~ . k av z c , 
, v?:k 

with a v := 2~i I, (( f~~l+l d(. Thus it has been established that the function 
F defined by (1) is representable in the disc B by the power series I: av (z -
c)V (k = 0) and further, on account of theorem 4.3.2, that F is complex­
differentiable in B and satisfies 

z E B , kEN. 

Since B is an arbitrary open disc in C \ 1,1, (2) is proved and in particular 
FE O(C \ ITI). D 

The trick of developing the kernel 1/( - z )k+l into a power series about 
c, then inverting the order of integration and summation was used in the 
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case k = 0 by CAUCHY as early as 1831 - cf. (Euvres (2) 12, p.61 (pp. 37-40 
of G. BIRKHOFF, A Source Book in Classical Analysis, Harvard University 
Press (1973), for an English translation). 

2. The CAUCHy-TAYLOR representation theorem. For every point 
c in the domain D we will denote by d := dc(D) the distance from c to the 
boundary of D; cf. 0.6.5. Thus Bd(C) is the largest disc centered at c which 
lies wholly in D. 

CAUCHy-TAYLOR Representation Theorem. Every holomorphic func­
tion f in D is developable around each point c E D into a Taylor series 
L ay(z - cy which compactly converges to it in Bd(C). The Taylor coeffi­
cients ay are given by the integrals 

(1) 
- f<Yl(c) _ 1 1 f(()d( 

ay - --- --

II! 27ri aB (( - c )y+l 

whenever B := Br(c) , 0 < r < d. 
In particular, f is infinitely often complex-differentiable in D and in 

every disc B of the above kind the Cauchy integral formulas hold: 

(2) f(kl(Z) = ~ r f(()d( 
27ri JaB (( - z)k+l ' 

z E B , for all kEN. 

Proof Since f E O(D), the Cauchy formula 

f(z) = ~ r f(() d( , 
27rZ JaB (- z 

z E B 

holds for every disc B = Br (c), 0 < r < d. Therefore according to the 
lemma on power series developability (with F := f, I := BB), f has a 
Taylor development around c which converges in Br(c) and whose Taylor 
coefficients are given by (1). As every choice of r < d generates the same 
series, the convergence to f occurs throughout Bd(C). 

Likewise the identities (2) follow directly from the lemma on developa-
bility. 0 

Remark 1. The integral formulas (2) for the derivatives f(kl(z) flow from 
the Cauchy integral formula for f(z) and the trivial identities 

dk ( 1) k! 
dzk (-z = ((_z)k+l ' 

as soon as one knows that this differentiation operation is permutable with 
the integration. In the above proof such a permutation was not used (but 
instead summation was permuted with differentiation and integration.) 
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Remark 2. The lemma on developability describes a simple process for 
passing from certain integrals to power series. What makes this process 
applicable in the above proof is the Cauchy integral formula. 

Because power series are holomorphic, the lemma on developability (with "I := 
8B) leads to a ((>vector space homomorphism C(8B) --> O(B), J 1-+ F. If the 
function J is not, in addition, holomorphic in B and continuous on Ii, then 
in general for approach to points of 8B, F does not realize the values of J as 
boundary values: For B := E and J(() := (-Ion 8E, for example, we have F == 0 
in E because for z E E \ {O} 

F(z) = ~ 1 d( = __ 1. [1 d( -1 ~] = O. 
27!'t BE ((( - z) 27!'tz BE ( BE ( - z 

This example also shows that the homomorphism C(8B) --> O(B) is not injective. 

3. Historical remarks on the representation theorem. In Brook TAYLOR's 
Methodus incrementorum directa et inversa, Londini 1715, on pp. 21 if. we 
find the first formulation and derivation of the theorem in the domain of the 
real numbers. An exhaustive analysis was given by A. PRINGSHEIM in "Zur 
Geschichte des Taylorschen Lehrsatzes," Biblio. Math. (3) 1(1900), 433-479; 
Cauchy's contributions are also gone into in detail there. 

Cauchy immediately recognized that his integral formula implied, via develop­
ment of its kernel (( - Z)-1 into a geometric series, the representation theorem. 
He expressed it thus in 1841 ((Euvres (2) 12, p.61, as well as Theoreme I on 
p.64): 

"La fonction J(x) sera developpable par la formule de Maclaurin en une serie 
convergente ordonnee suivant les puissances ascendantes de x, si Ie module de la 
variable reelle ou imaginaire x conserve une valeur inferieure a celIe pour laquelle 
la fonction (ou sa derivee du premier ordre) cesse d'etre finie et continue. (The 
function will be developable according to the formula of Maclaurin in a series 
of ascending powers of x, if the value of the modulus of this variable x, real or 
imaginary, is kept below that for which the function (or its derivative of the first 
order) ceases to be finite or continuous.)" In order to understand the last line of 
Cauchy's text we have to realize that the only singularities which were accepted 
in Cauchy's time were poles. 

Moreover CAUCHY also gave a representation for the remainder term, following 
the model for functions on JR. And he described just how well the remainder term 
converges to O. CAUCHY called his method the "calcul des limites". KRONECKER 
wrote this about the integral formula ([KrJ, p.176): "in diese[rJ hat man das 
Prius, in ih[rJliegt implicite schon die Reihenentwicklung, wie aIle Eigenschaften 
der Functionen, wohl darum, weil in [ihrerJ Geltung aIle die hochst verwickelten 
Bedingungen, die fUr die Function J(z) bestehen mussen, zusammengefaBt sind 
(in this we have what is absolutely primary; in it lies implicitly the power series 
development and indeed all the properties of functions - probably for the reason 
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that in its validity the most complicated conditions bearing on the function are 
united)" . 

4. The Riemann continuation theorem. It was already emphasized in 
2.1 that the sharpening of the Cauchy integral theorem there is really not a 
genuine sharpening; as a matter of fact, every function which is continuous 
in D and holomorphic everywhere in D with the possible exception of one 
point c ED, is automatically holomorphic throughout D. This statement 
in turn is a special case of a general theorem about extending a holomorphic 
function over a discrete and closed exceptional set. 

If A is a closed set lying in D and f is holomorphic in D \ A, then 
f is said to be continuously, respectively, holomorphically extendable over 
A if f = FI(D \ A) for some function F : D ----+ C which is continuous, 
respectively, holomorphic in D. It is appropriate to introduce here the 
concept of a discrete set. If A is a subset of a metric space X, then a point 
pEA is called an isolated point of A if there is a neighborhood U of p such 
that UnA = {p}. The set A is called discrete in X if each point of A is an 
isolated point of A. The set A is discrete exactly when there is no cluster 
point of A in X which belongs to A. 

The Riemann continuation theorem. If A is discrete and closed in D, 
then the following assertions about a holomorphic function f in D \ A are 
equivalent: 

i) f is holomorphically extendable over A. 

ii) f is continuously extendable over A. 

iii) f is bounded in a neighborhood of each point of A. 

iv) limz~c(z - c)f(z) = 0 for each point c E A. 

Proof We may assume that A consists of just one point, c = o. The chain 
i) =} ii) =} iii) =} iv) is trivial. For proving iv) =} i) we introduce the 
functions 

g(z) := zf(z) for zED \ {O} , g(O) := 0 and h(z) := zg(z). 

By assumption 9 is continuous at o. Therefore the identity h(z) = h(O) + 
zg(z) shows that h is complex-differentiable at the point 0, with h'(O) = 
g(O) = o. Of course f E O(D \ {O}) entails h E O(D \ {O}). In summary, 
his holomorphic throughout D. Therefore according to the representation 
theorem 2, h admits a Taylor development ao+alz+a2z2+a3z3+ ... around 
o. Because h(O) = h'(O) = 0, it follows that h(z) = z2(a2+a3z+ .. . ). Since 
h(z) = z2 f(z) for z -I- 0, we see that F(z) := a2 + a3z + ... is the desired 
holomorphic extension of f to D. 0 
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5. Historical remarks on the Riemann continuation theorem. In 
1851 in his dissertation RIEMANN derived the implication ii) ::::} i), more 
generally for "lines" of exceptional points ([R], Lehrsatz p. 23). There were 
lengthy discussions in the last century concerning correct and incorrect 
proofs of this implication. The American mathematician William Fogg 
OSGOOD (1864-1943, professor at Harvard and Peking; doctorate in 1890 
from Erlangen under Max NOETHER; wrote his well-known textbook [Os] 
in 1906) reported on this in 1896 in an interesting article entitled "Some 
points in the elements of the theory of functions" (Bull. Amer. Math. 
Soc. 2,296-302). In 1905 E. LANDAU joined the discussion with the short 
note "On a familiar theorem of the theory of functions" (Bull. Amer. 
Math. Soc. 12, 155-156; Collected Works 2, pp. 204-5) in which he proved 
the implication iii) ::::} i) by means of Cauchy's integral formula for the 
first derivative. This had already been done in 1841 by WEIERSTRASS 
(cf. [WI], p.63); he also used in addition the theorem about the Laurent 
series development in circular regions, which he proved at that time, before 
LAURENT (cf. in this connection chapter 12.1.4). This work of Weierstrass 
was however not published until 1894. 

By 1916 the situation was completely clear. At that time Friedrich Her­
mann SCHOTTKY (German mathematician, 1851-1935, professor at Mar­
burg and from 1902 in Berlin), in a work still worth reading today entitled 
"Uber das Cauchysche Integral" (cf. [Schj) , sketched the path from the 
(Riemann) definition of holomorphy to the continuation theorem that we 
currently follow. SCHOTTKY emphasized that essentially everything can be 
reduced to the sharpened version of Goursat's integral lemma. 

Exercises 

Exercise 1. Develop each of the following functions into power series 
about 0: 

a) fez) = exp(z + 7!"i), 

b) f(z) = sin2 z, 

c) fez) = COS(Z2 - 1), 

d) fez) = (z2+2i)t':+l)2. 

Exercise 2. For a, bEe, lal < 1 < Ibl, and m, n E N determine the value of 

Exercise 3. Determine all entire functions f which satisfy the differential 
equation f" + f = O. 
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Exercise 4. Let f be holomorphic in Br(O), r > 1. Calculate the integrals 

JalF:,(2 ± ( + (-l))f~()d( in two different ways and thereby deduce that 

Exercise 5. Let r > 0, Br(O) c D open c C and f, 9 E OeD). Suppose 
there is an a E BBr(O) such that g(a) = 0, g'(a) i= 0, f(a) i= 0 and 9 is 
zero-free in Br(O) \ {a}. Let Ln>o anzn be the power series development 
of f / 9 around 0. Show that lim~-->CXJ ~ = a. Hint. Use the geometric 

a n +l 
series. 

Exercise 6. Let D open c C, a E D, f : D \ {a} -> C holomorphic. Show 
that if f' has a holomorphic extension to D, then so does f. 

§4 Discussion of the representation theorem 

We will now draw some immediate conclusions from the power series rep­
resentation theorem; among other things we will discuss the rearrangement 
and product theorems for power series. We will briefly go into the princi­
ple of analytic continuation and also show how to determine the radii of 
convergence of power series "directly". 

1. Holomorphy and complex-differentiability of every order. From 
the representation theorem together with theorem 4.3.2 we immediately get 

Every function which is holomorphic in D is arbitrarily often complex­
differentiable in D. 

This statement demonstrates especially clearly how strong a difference 
there is between real- and complex-differentiability: on the real line the 
derivative of a differentiable function in general need not even be continu­
ous; for example, the function defined by f(x) := x 2 sin(1/x) for x E lR\ {O} 
and f(O) := ° is differentiable on lR but the derivative is discontinuous at 
the origin. 

The representation theorem has no analog on the real line: there are 
infinitely-often-differentiable functions f : lR -> lR, which are not devel­
opable into a power series in any neighborhood of the origin. The standard 
example 
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f(x) := exp(-x-2 ) for x i= 0 , f(O) := 0, 

can be found in CAUCHY'S 1823 Calcul Infinitesimal «(Euvres (2) 4, p. 
230; pp. 7,8 of G. BIRKHOFF, A Source Book in Classical Analysis, Har­
vard University Press (1973) for an English translation). For this function 
f(n) (0) = 0 for all n E N. On the real line it is possible to prescribe arbitrar­
ily the values of all the derivatives at one point. The French mathematician 
Emile BOREL (1871-1956) proved this in his 1895 thesis; he showed (Ann. 
Scient. Ecole Norm. Sup. (3) 12, p. 44; also (Euvres 1, p. 274) that 

For every sequence (rn)n>o of real numbers there is an infinitely-often­
differentiable function f : lR ~ lR having f(n) (0) = rn for every n. 

We will prove this theorem and more in 9.5.5. 

The representation theorem makes possible the "two-line proof" of the lemma 
on units promised in 4.4.2: If e = 1 - b1 Z - b2Z2 - ••• is a convergent power series, 
then e is holomorphic near O. Because e(O) =I- 0, so is lie; consequently lie is 
also given by a convergent power series. 

2. The rearrangement theorem. If fez) = E a,,(z - c)" is a power 
series which converges in BR(c), then f is developable into a power series 
E b,,(z - Zl)" about each point Zl E BR(e); the mdius of convergence of 
this new power series is at least R - IZI - el, and its coefficients are given 
by 

v E N. 

Proof. In the disc about Zl ofradius R-Izl -el the representation theorem 

says that fez) = E f(V~\zll (z - Zl)", while by theorem 4.3.2 f(V~\zll = 

E~" (~)ai(zl - eli-II. 0 

The name "rearrangement theorem" is based on the following: in the 
situation described in the theorem, the equation 

holds. If we uncritically rearrange the double sum on the right as though 
only a finite number of summands were involved, we get the double sum 
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which is precisely the development of f around Zl which the theorem af­
firms. The formal rearrangement process can be rigorously justified with­
out recourse to the Cauchy-Taylor theorem. To see this, recall that an 
absolutely convergent series can be divided up into infinitely many infinite 
subseries, the sum of which coincides with that of the original series. The 
proof thus carried out remains wholly within the Weierstrassian framework 
and is valid as well when the coefficients come from any complete valued 
field of characteristic O. 

3. Analytic continuation. If f is holomorphic in the region G and 
we develop f into a power series around c E G according to theorem 3.2, 
then the radius of convergence R of this series is not less than the distance 
dc(G) of c from the boundary of G. It can actually be greater (cf. the 
left-hand figure). In this case we say that f is "analytically continued" 
beyond G (but it would be more accurate to speak of a "holomorphic" 
continuation). For example, the geometric series E z" E O(JE) has the 
Taylor series E(z-c)" /(I-C),,+l with radius of convergence 11-cl around 
the point c E lEj in case 11 - cl > 1 we have an analytic continuation. (In 
this example the function (1 - Z)-l E O(C \ {I}) is naturally the largest 
possible analytic continuation.) 

The principle of analytic continuation plays a significant role in (Weier­
strassian) function theory. At this point we can't go into analytic contin­
uation any deeperj we wish, nevertheless, to at least bring to the reader's 
attention the problem of multi-valuedness. This can occur if BR(C) n Gis 
disconnectedj in such situations the Taylor series around c doesn't always 
represent the original function f in the connected components of B R (c) n G 
which do not contain c. (The latter are the shaded regions of the left-hand 
figure above.) The holomorphic logarithm logz in the slit plane C- serves 
to illustrate this phenomenon. Around each c E C- this function has the 
Taylor series 
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00 ( 1)v-l 1 
logc+ L - -(z - ct, 

1 11 CV 

whose radius of convergence is Icl. In case !Rc < 0, C- n B1cl(c) consists of 
two connected components Gil G2 (see the right-hand figure above). In G1 

the series represents the principal branch of log, but not in G2 • To see this, 
note that the negative real axis separates G1 from G2 and the principal 
branch "jumps by ±27ri" in passing over this axis, whereas the series is 
continuous at each point of this boundary line. 

4. The product theorem for power series. Let I(z) = L al'zl' and 
g(z) = Lbvzv be convergent in the respective discs Ba. Bt . Then lor 
r := min{ s, t} the product function I· 9 has the power series representation 

(f. g)(z) = LP,\z'\ with P>.:= L al'bv (Cauchy product, cf. 0.4.6) 
I'+V='\ 

in the disc B r • 

Proof As a product of holomorphic functions, I . 9 is holomorphic in Br 
and so according to the representation theorem it is developable in this disc 
into the Taylor series 

~(f.g)('\)(O) ,\ 
L.J A! z . 

Since 1(1')(0) = J.L!al' and g(v)(O) = lI!bv , the Leibniz rule 

for higher derivatives shows that this series is the one described in the 
conclusion of the theorem. 

With the help of Abel's limit theorem there follows immediately the 

Series multiplication theorem of ABEL. If the series L: alJ.' L: bv and L:: P)o., with P)o. := aob)o. + ... + a)o.bo for every A, converge to the respective sums 
a, band p, then ab = p. 

Proof The series fez) := L alJ.z"', g(z) := L bvzv converge in the unit disc Ej 
therefore we also have (f. g)(z) = LP)o.z)o. in E. The convergence of the three 
series La,.., L bv , and LP)o. implies (cf. 4.2.5): 

lim f(x) = a, lim g(x) = b, lim (f. g)(x) = p. 
x--+l-0 x-l-0 x--+l-0 
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Since limx~l_o(f· g)(x) = [limx~l_o f(x)][limx~l_o g(x)J, the claim follows. 0 

The series multiplication theorem of ABEL is to be found in [AJ, p. 318. 
The reader should compare this theorem with the product theorem of CAUCHY 
(0.4.6). The series multiplication theorem of ABEL is susceptible to the following 
direct proof (cf. CESARO, Bull. Sci. Math. (2) 14(1890), p. 114): We set Sn 
:= ao + ... + an, tn := bo + ... + bn , qn := Po + ... + pn and verify that qn = 
aotn + altn-l + ... + anto and that further 

qo + ql + ... + qn = sotn + Sltn-l + ... + sntO· 

On the basis of Exercise 0.3.3 and the preceding equation, it follows that 

r sotn + Sltn-l + ... + sntO = abo 
P= 1m n+l 

5. Determination of radii of convergence. The radius of conver­
gence R of the Taylor series L: a,,(z - c)" is determined by the coefficients 
(via the Cauchy-Hadamard formula 4.1.3 or the ratio criterion 4.1.4). The 
representation theorem frequently allows the number R to be read off at 
a glance from the properties of the holomorphic function so represented, 
without knowledge of the coefficients. Thus, e.g., 

Let f and 9 be holomorphic in e and have no common zero in ex. 
Let c E ex be a "smallest" non-zero zero of 9 (that is, Iwl ;::: lei for 
every zero w =f 0 of g). If the function fig, which is then holomorphic 
in B1cl(0) \ {OJ, is holomorphically continuable over the point 0, then its 
Taylor series around 0 has radius of convergence lei. 

Proof. This is clear from the representation theorem 3.1, since f(c) =f 0 
means that fig tends to 00 as c is approached. 

Examples. 1) The Taylor series around 0 of tan z = sin z I cos z has radius 
of convergence ~11", because ~11" is a "smallest" zero of cosz. 

2) The functions zcotz = zcoszlsinz, zl sin z and zl(eZ -1) are holo­
morphically continuable over zero (each receiving value 1 there, since the 
power series around 0 of each denominator begins with the term z). Since 
11", respectively, 211"i, is a "smallest" zero of sin z, respectively, eZ - 1, it fol­
lows that 11" is the radius of convergence of z cot z and of z I sin z around 0, 
whereas the Taylor series of zl(eZ -1) around 0 has radius of convergence 
211". 0 

The determination of the radii of convergence of these real series by 
means of the Cauchy-Hadamard formula or the ratio criterion is rather te­
dious (cf. 11.3.1). The elegant route through the complexes is especially 
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impressive for the function z / (eZ - 1), because its denominator has no real 
zeros except O. Here we have a beautiful example illustrating GAUSS'S 

prophetic words (cf. the Historical Introduction), according to which com­
plete knowledge of the nature of an analytic function in C is often indis­
pensable for a correct assessment of its behavior on R 

The technique described here for determining radii of convergence can be 
converted into a method of approximating zeros. If, say, 9 is a polynomial with 
only real zeros, all non-zero, we can develop 1/g into its Taylor series L:avzv 

around 0 and consider the sequence av / av + 1: if it has a finite limit r, then either 
r or -r is the smallest zero of g. This technique was developed in 1732 and 
1738 by Daniel BERNOULLI {1700-1782} and is extensively discussed by EULER 
in §335 if. of [E]. Concerning BERNOULLI'S original works, with commentary 
by L. P. BOUCKAERT, see Die Werke von Daniel Bernoulli, vol. 2, Birkhauser 
Verlag, Basel-Boston-Stuttgart, 1982. The BERNOULLI-EuLER method may be 
generalized to polynomials with complex zeros. For this see, e.g., Problem 243 
in Part 3 of the first volume of G. POLYA and G. SZEGO. 

Exercises 

Exercise 1. Develop f into a power series about 0 and determine its radius 
of convergence: 

eZ 

a) fez) = 1 _ tz' t E C, 

• 2 
b) fez) = Sl~ z. 

Exercise 2. Determine all entire functions f which satisfy f(z2) = (I(z))2 
for all z E C. 

Exercise 3. Let R > 0, BR(O) c D open C C, c E BBR(O) and f E 

OeD \ {c}). Let Lakzk be the power series development of f around O. 
k~O 

Show that if f(z)(z - c) is bounded near c, then for all sufficiently small 
r > 0 and all kEN 

1 f«()d( .~ (II) ( ) v-k 
(r _ c)k = 27r~ ~ k av-l - cav c , 

BBr(e) ., v=k 

where a_I := O. 
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§5* Special Taylor series. Bernoulli 
numbers 

The power series developments given in 4.2.1 for exp z, cos z, sin z, 
log(1 + z), etc. are the Taylor series of these functions around the ori­
gin. At the center of this section will be the Taylor series (around 0) of the 
holomorphic (near 0) function 

z 
g(z):= --1 

eZ -

for z =I- 0 , g(O) := 1, 

which plays a significant role in classical analysis. Because of 5.2.5 this 
function is linked with the cotangent and tangent functions through the 
equations 

(1) 

(2) 

cot z = i + z-lg(2iz), 

tanz = cotz - 2cot2z. 

Consequently from the Taylor series of g(z) around 0 we can get those of 
z cot z and tan z. 

The Taylor coefficients of the power series of g(z) around 0 are essen­
tially the so-called Bernoulli numbers, which turn up in many analytic and 
number-theoretic problems. We will encounter them again in 11.2.4. It 
should be emphasized that the considerations of this section are quite ele­
mentary. The representation theorem is not even needed, because for our 
purposes knowledge of the exact radii of convergence of the series concerned 
is not particularly relevant. 

1. The Taylor series of z(eZ - 1)-1. Bernoulli numbers. For 
historical reasons we write the Taylor series of g(z) = z(eZ - 1)-1 around 
o in the form 

00 

z ~Bv v 
eZ _ 1 = L...J ~ z , 

o . 
Bv EC. 

Since cot z is an odd function, z cot z is an even function. Since g( z) + 
~z = ~zcot(~z), from equation (1) above, g(z) + ~z is an even function. 
Consequently, 

Thus 

(1) 

1 
B1 = -- and B 2v+1 = 0 

2 
for all v 2: 1. 
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From 1 = eO;1 . eO~1 = (I:~ z:~l) (I:~ ~z"') we get, by multiplying 

everything out and comparing coefficients (uniqueness of the Taylor series 
(cf. 4.3.2) justifies this) we get the formula 

The B2", are called the Bernoulli numbera2; they can be recursively deter­
mined from this last equation. 

Every Bernoulli number B2", is rational, with 

(2) 
1 5 691 7 

Bs = - 30 ' BlO = 66 ' B12 = - 2730 ' B14 = 6· 
Since the radius of convergence of the series in (1) is finite (and in fact equal to 
211"), we further see that 

The sequence B2" of Bernoulli numbers is unbounded. 

The explicit values of the first few Bernoulli numbers thus conduce to a false 
impression of the behavior of the other terms; thus B26 = 8553103/6 and B122 

has a 107 decimal-place numerator but likewise the denominator 6. 

2. The Taylor series of zcotz, tanz and ~. From equations (1) smz . 
and (2) of the introduction and from identity 1.(1) we immediately get 

(1) 1 ~( )" 4'" B 2,,-1 cotz=-+L...J-1 (2)1 211 Z , 
z 1 V • 

(2) 
tanz = ",,00 (_I)v-l 4"(4"-1) B z2v-l 

L.l (2/1)! 2/1 

= z + .!. z3 + 1. z5 + .!!. Z7 + ... 
3 15 315 

Equation (1) is valid in a punctured disc BR(O) \ {O} (it isn't necessary to 
know that according to 4.5 R = 11"). Later we will see that (_1)V-1 B2v is 
always positive (cf. 11.2.4), and therefore all the series coefficients in (1) 
are negative and in (2) all are positive. 

The series (1) and (2) originate with EULER, and will be found, e.g., in 
chapters 9 and 10 of his Introductio [E). Equation (1) can also be put in 
the graceful form 

2The enumeration of these numbers is not uniform throughout the literature. Fre­
quently the vanishing ones B2,,+1 are not designated at all and instead of B2v the 
notation (-I)V-1Bv is used. 
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(I') 

Because cotz + tan ~z = si~z (cf. 5.2.5), it further follows from (1) and 
(2) that 

(3) z ~ ,,-1 (4" - 2) 2" 
-. - = L.) -1) (2 )' B 2"z . 
SlllZ 0 l/ . 

3. Sums of powers and Bernoulli numbers. For all n, kEN \ {O} 

Proof. Writing S(nk) := L~ l/k and S(nO) := n + 1, it follows that 

En(W) := 1 + eW + ... + enw = f: ~S(nk)wk. 
o 

On the other hand we have 

W enw - 1 
En-l(w) = -- . -- = 

eW -1 w 

And therefore from the product theorem 4.4 and the facts that Bo = 1, Bl = -~ 

and I"!(k~i I")! = ~ C~l) we get for Seen - l)k) the expression 

L: k! B)'+1 _ 1 k+l 1 k L:k 
BI-' ( k ) k+1-" n - --n - -n + - n'-. 

/-t!(>.+I)! I-' k+l 2 11 11-1 
I-'+).=k 1-'=2 

Since S(nk) = Seen - l)k) + n\ this is the claim we were trying to prove. D 

Remark. Jakob BERNOULLI (1665-1705) found the numbers now named after him 
while computing the sums of powers of successive integers. In his Ars Conjectandi, 
published posthumously in 1713, he wrote A, B, C, D for B 2 , B 4 , B6 , Bs and gave 
the sums 2:~ v k explicitly for 1 ~ k ~ 10 but offered no general proof. (Cf. Die 
Werke von Jakob Bernoulli, vol. 3, Birkhiiuser, Basel (1975), pp. 166/167; see 
also W. WALTER: Analysis I, Grundwissen Mathematik, vol. 3, Springer-Verlag, 
Berlin, (1985).) 

If we introduce the rational (k + l)th degree polynomial <I>k(W) := k~l (w -

l)k+l + ~(w - l)k + L~=2 ~ C~l) (w - l)k+l-1" E lQ[w] , k = 1,2",', then 
Bernoulli's theorem says 

1 k + 2k + ... + (n - l)k = <I>k(n) , n = 1,2", . 
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One checks that cpk(W) = k~l Wk+l - ~Wk+ lower degree terms. E.g., 

1 2 () 1 (3 2 ) () 1 (4 3 2) cpI(W) = "2(W -w), cp2 W = 6" 2w -3w +W ,cp3 W = 4 W -2w +w . 

We have further 

cp4(W) = ;0 (6w5 - 15w4 + lOw3 - w) = 110 (w - 1)w(2w - 1)(w2 - W - ~) 

and so from (*) 

14 + 24 + ... + (n - 1)4 = :0 (n - 1)n(2n - 1)(n2 - n - ~) , n = 2,3"" 

which readers who enjoy calculating can also confirm by induction on n. The 
equations (*) actually characterize the sequence of polynomials cpI, cp2, .. '. Namely, 
if cp( w) is any polynomial (over the complex field!) such (*) holds for a fixed k ~ 1 
and all n ~ 1, then the polynomial cp(w) - cpk(W) vanishes for all wEN and 
must accordingly be the 0 polynomial, that is, cp = cpk. 

4. Bernoulli polynomials. For every complex number w the function zewz / 

(eZ - 1) is holomorphic in C \ {±2znri : v = 1, 2, ... }. According to the repre­
sentation theorem we have, for each wEe, a Taylor series development around 
o 

(1) F( )._ zewz 
_ ""' Bk(W) k 

W, Z .- eZ _ 1 - L..J k! z 

for appropriate complex numbers Bk(W). (The series representation is actually 
valid in the disc of radius 211" about 0.) The functions Bk(W) admit explicit 
formulas: 

Theorem. Bk(W) is a monic mtional polynomial in W of degree k. 

kEN. 

In particular, Bk(O) is the kth Bernoulli number. 

Proof Since F(w,z) = eWz • eZ~1 and e/-l = 2: ~zv, (1) gives 

L Bk~!W) zk = (L ~!W~z~) (L ~~ zv) 

for all z near O. From this and the product theorem 4.4 it follows that 

We call Bk(w) the kth Bernoulli polynomial. We note three interesting for­
mulas: 
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(3) B~(w) = kBk_1(W), k~l (derivative formula) 

(4) Bk(W + 1) - Bk(W) = kwk-l, k ~ 1 (difference equation) 

k ~ 1 (complementarity formula). 

Equation (2) yields direct proofs if one is willing to calculate a bit. But it is 
more elegant to consider F(w, z) as a holomorphic function of wand exploit the 
three obvious identities 

{)~ F(w, z) = zF(w, z) , F(w + 1, z) - F(w, z) = zewz , F(I- w, z) = F(w, -z). 

The corresponding power series can be obtained from (1) by differentiation with 
respect to w, since that series converges normally in the variable w E C. Then 
(3) - (5) follow directly by comparing coefficients on the two sides of each of the 
three identities. - From (4) we get immediately 

k k k 1 
1 +2 +···+n =-k-[Bk+ l (n+l)-Bk+ l (I)]. +1 

A simple connection exists between the polynomials 'h (w) introduced in 3. 
and the Bernoulli polynomials. Since 

and 
eWZ _ e Z 1 
-- = -[F(w,z) -F(I,z)), 

ez - 1 z 

it follows upon engaging exercise 2 that 

k = 1,2,···. 

One sees in particular that <I>k(l) = 0 for all kEN. 

The first four Bernoulli polynomials are: 

1 2 1 
Bo(w) = 1 , Bl(W) = W - 2 ' B2(W) = W - W + 6" ' 
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Exercises 

Exercise 1. Derive the Taylor series of tan2 z around 0 from 2.(2) by dif­
ferentiation. 

Exercise 2. Setting ~o(w) := w - 1, show that 

Exercise 3. Show that for k, n E N 



Chapter 8 

Fundamental Theorems 
about Holomorphic 
Functions 

Having led to the Cauchy integral formula and the Cauchy-Taylor rep­
resentation theorem, the theory of integration in the complex plane will 
temporarily pass off of center-stage. The power of the two mentioned re­
sults has already become clear but this chapter will offer further convincing 
examples of this power. First off, in section 1 we prove and discuss the 
Identity Theorem, which makes a statement about the "cohesion among 
the values taken on by a holomorphic function." In the second section we 
illuminate the holomorphy concept from a variety of angles. In the third, 
the Cauchy estimates are discussed. As applications of them we get, among 
other things, LIOUVILLE'S theorem and, in section 4, the convergence the­
orems of WEIERSTRASS. The Open Mapping Theorem and the Maximum 
Principle are proved in section 5. 

§ 1 The Identity Theorem 

A holomorphic function is locally represented by its Taylor series. An iden­
tity theorem is already contained in this observation; namely: 

If f and 9 are holomorphic in D and there is a point c E D together with 
a (possibly quite small) neighborhood U C D of c, such that flU = glU, 
then in fact fIBd(c) = gIBd(C), where d := deeD) is the distance from c to 
the boundary of D. 

This is clear because f and 9 are represented throughout Bd(C) by their 

227 
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Taylor series around c and the coefficients of the one series coincide with 
those of the other due to flU = giU. 

An identity theorem of a different kind is an immediate consequence of 
the integral formula: 

If f and g are holomorphic in a neighborhood of the closed disc Band 
if flaB = gloB, then in fact fiB = giB. 

The identity theorem which we are about to become acquainted with 
contains these two as special cases. As an application of it we will show 
(in section 5) among other things that every power series must have a 
singularity at some point on its circle of convergence. 

1. The Identity Theorem. The following statements about a pair f, g 
of holomorphic functions in a region Gee are equivalent: 

i) f = g. 

ii) The coincidence set {w E G : f(w) = g(w)} has a cluster point in G. 

iii) There is a point c E G such that fCnl(c) = gCnl(c) for all n E N. 

Proof i) '* ii) is trivial. 
ii) '* iii) We set h := f - 9 E O(G). Then the hypothesis says that the 

zero-set M:= {w E G: h(w) = O} of h has a cluster point c E G. If there 
is an mEN with hCml(c) # 0, then we consider the smallest such m. For 
it we have the factorization 

holding for every open disc BeG centered at c, and hm(c) # O. This 
all follows from the representation theorem 7.3.2. Because of its continuity 
hm is then zero-free in some neighborhood U C B of c. It follows from the 
factorization above that M n (U \ {c}) = 0; that is, c is not a cluster point 
of M after all. This contradiction shows that there is no such m, that is, 
hCnl(c) = 0 for all n E N; i.e., fCnl(c) = gCnl(c) for all n E N. 

iii) '* i) Again we set h := f - g. Each set Sk := {w E G : h(kl(w) = O} 
is (relatively) closed in G, on account of the continuity of h(kl E O(G). 
Therefore the intersection S := n~ Sk is also (relatively) closed in G. 
However, this set is also open in G, because if Zl E S, then the Taylor 
series of h around Zl is the zero series in any open disc B centered at Zl 

which lies in G. This implies that MkllB = 0 for every kEN, entailing that 
Be S. Since G is connected and S is not empty (c E S by hypothesis), it 
follows from 0.6.1 that S = G. That is, f = g. D 
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The connectedness of G, used in the proof that iii) :::::} i), is essential 
to the validity of that implication. For example, if D is the union of two 
disjoint open discs Band B' and if we set 

f:= 0 in D ; g:= 0 in B and g:= 1 in B', 

then f and g are holomorphic in D and have properties ii) and iii), yet 
f =f. 9 in D. On the other hand the equivalence of (ii) with (iii) is valid in 
any domain. 

The conditions ii) and iii) of the theorem are fundamentally different in 
nature. The latter demands equality of all derivatives at a single point, 
whereas in the former no derivatives appear. Instead, we demand equality 
of the function values themselves at sufficiently many points. 

The reader should prove the following variant of the implication iii) => i) in 
the Identity Theorem: 

If f and g are holomorphic in the region G and at some point of G all but 
finitely many of the derivatives of f coincide with the corresponding ones of g, 
then there is a polynomial p E iClz] such that f = g + p throughout G. 

The Identity Theorem implies that a function f which is holomorphic in 
a region G is completely determined by its values on "very sparse" subsets 
of G, for example on very short lengths of curves W. Properties of f which 
are expressible as analytic identities therefore need only be verified on W. 
They then automatically "propagate themselves analytically from W to the 
whole of G." We can illustrate this permanence principle with the example 
of the power rule eW +z = eW eZ • If this identity is known for all real values 
of the arguments, then it follows for all complex values as well! First, for 
each real number w := u the holomorphic functions of z expressed by eU +z 

and eUeZ coincide for all z E JR, hence for all z E C. Consequently, for each 
fixed z E C the holomorphic functions of w expressed by eW+z and eWeZ 

coincide for all w E JR, and therefore coincide for all w E C. 0 

We are also now in a position to see that the definition of the functions 
exp, cos and sin via their real power series represents the only possible way 
to extend these functions from the real line to holomorphic functions in the 
complex plane. In general 

If I := {x E JR : a < x < b} is a real interval, f : I -+ JR a function 
defined on I and G is a region in C which contains I, then there is at most 
one holomorphic function F : G -+ C which satisfies FII = f. 0 

An important consequence of the Identity Theorem is a characterization 
of connectedness in terms of the absence of zero-divisors. 
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The following assertions about a non-empty domain D in C are equiva­
lent: 

i) D is connected {and is thus a region}. 

ii) The algebra O(D) is an integral domain {that is, it has no non-zero 
zero-divisors} . 

Proof i) =} ii) Suppose f, 9 E O(D), f is not the function 0 E O(D) 
but f . 9 is, that is, f(z)g(z) = 0 for all zED. There is some c E D 
where f(c) =f 0 and then on continuity grounds a neighborhood U C D of 
c throughout which f is zero-free. Then g(U) = 0 and since D is connected 
this entails g(D) = 0 by the Identity Theorem. That is, 9 = 0, the zero 
element of the algebra O(D). 

ii) =} i) If D were not connected, it would be expressible as the disjoint 
union of two non-empty domains D 1 , D 2 . The functions f, 9 defined in D 
by 

f(z) := { 
0 for z E D 1 , 

1 for z E D 2 , 

g(z) := { 
1 for z E D 1 , 

0 for z E D 2 , 

are then holomorphic in D, neither is the zero function in O(D) and yet 
f . 9 is the zero function. This contradicts the hypothesis ii) that O(D) is 
free of non-zero zero-divisors. 0 

The reader should compare the statement proved above with theorem 
0.6.1. 

In real analysis an important role is played by the functions with compact sup­
port, by which is meant real functions which are infinitely often real-differentiable 
and whose supports are compact, the support of a function being the closure of the 
complement of its zero-set. Such functions are used in a well-known construction 
of infinitely differentiable partitions of unity. But there is no comparable holo­
morphic partition of unity, because the support of a holomorphic function in a 
region G is either void or - by virtue of the Identity Theorem - all of G. 
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2. On the history of the Identity Theorem. On page 286 of the 
second volume of Crelle's Journal, which appeared in 1827, we find 

Aufgaben und Lehrsatze, 
erstere aufzulosen, letztere zu beweisen. 

1. 
(Von Herm N. H • .Abel.) 

49. Theoreme. Si Ia somme de Ia serie infinie 

ao+ a,x + aax· + a3 x 3 + .... + am x'" + .... 
est egale it zero pour to utes les valeurs de x entre deux limites reelles 

" et (3; on aura necessairement 
ao=O' c,=o, cg=O .... c ... =O ..•.• 

en vertu de ce que Ia somme de Ia serie s'evanouira pour una valeur 
quelconque de x. 

This is an embryonic form of the Identity Theorem. Only in the case O! ~ 

o < (3 is the claim immediately evident, the series in that case representing 
the zero function around 0, so that all of its Taylor coefficients consequently 
must vanish. That case had already been treated in 1748 by EULER ([E], 
§214). In an 1840 article entitled "Allgemeine Lehrsatze in Beziehung auf 
die im verkehrten Verh8.ltnisse des Quadrats der Entfernung wirkenden 
Anziehungs- und Abstossungs-Kr8.fte" (Werke 5, pp. 197-242; English 
translation on pp. 153-196, part 10, vol. 3(1843) of Scientific Memoirs, 
edited by Richard TAYLOR, Johnson Reprint Corp. (1966), New York), 
GAUSS enunciated an identity theorem for potentials of masses (p.223), 
which RIEMANN incorporated into function theory in 1851 and expressed as 
follows ([RJ, p. 28): "Eine Function w = u+iv von z kann nicht langs einer 
Linie constant sein, wenn sie nicht iiberall constant ist (A function w = 
u+iv of z cannot be constant along a line unless it is constant everywhere)." 
The proofs of GAUSS and RIEMANN employ integral formulas and are not 
really sound; like it or not, one has to call on continuity arguments and 
facts about series developments. 

An identity theorem by CAUCHY also shows up in 1845. He expresses 
the matter as follows ((Euvres (1) 9, p. 39): "Supposons que deux fonctions 
de x soient toujours egales entre elles pour des valeurs de x tres voisines 
d'une valeur donnee. Si 1'0n vient a faire varier x par degres insensibles, ces 
deux fonctions seront encore egales tant qu'elles resteront l'une etJ'autre 
fonctions continues de x (Suppose that two [holomorphic] functions of x are 
always equal to each other for the values of x very near a given value. If x 
is varied by imperceptible degrees, the two functions will still be equal as 
long as they remain continuous [= holomorphic] functions of x)." CAUCHY 
made no applications of the identity theorem; its significance was first 
recognized by RIEMANN and WEIERSTRASS. 
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From lecture notes transcribed by the Italian mathematician PINCHERLE 
("Saggio di una introduzione alIa teoria delle funzioni analitiche secondo 
i principii del Prof. C. Weierstrass, compilato dal Dott. S. Pincherle," 
Giorn. Mat. 18(1880), 178-254 and 317-357) one can infer (pp. 343/44) 
that in his 1877/78 lectures WEIERSTRASS derived the implication ii) ::::} 
i) for power series using Cauchy's inequalities for the Taylor coefficients. 
One would be inclined to doubt that WEIERSTRASS really argued in as 
roundabout a way as PINCHERLE records. 

3. Discreteness and countability of the a-places. Let I : G -+ C be 
holomorphic and not constant. Then lor every number a E C the set 

1-1(a) := {z E G : I(z) = a}, 

comprising the so-called a-places 01 I, is discrete and relatively closed (pos­
sibly empty too) in G. In particular, lor every compact set KeG, each set 
1-1(a) n K, a E C, is finite and consequently 1-1(a) is at most countable; 
that is, I has at most countably many a-places in G. 

Proof. Because I is continuous, each fiber 1-1(a) is relatively closed in G. If 
one of the fibers 1-1(a' ) has a cluster point in G, then it would follow from 
theorem 1 that I(z) = a', which was excluded by hypothesis. If Kn/-1(a) 
were infinite for some a E C and some compact set KeG, then it would 
contain a sequence of pairwise distinct points. Since K n 1-1 (a) is compact 
such a sequence would have to have a cluster point in Kn/- 1(a), which is 
impossible since the points of 1-1(a) are isolated from each other. Every 
domain in C being a countable union of compact sets (cf. 0.2.5), it further 
follows that 1-1(a) is at most countably infinite. 0 

The theorem just proved says in particular that 

The zero-set 01 a function which is holomorphic but does not identically 
vanish in G is a discrete and relatively closed subset 01 G. 

We should recall that the zeros of infinitely often real-differentiable func­
tions needn't have this property. For example, the function defined by 

I(x) := exp( -1/x2 ) sin(l/x) for x E IR \ {O}, 1(0) := 0 

is infinitely often differentiable everywhere in IR (with I(n)(o) = 0 for all 
n EN) and 0 is a cluster point of its other zeros 1/(7rn), n E Z \ {O}. 0 

The zeros of a holomorphic function I E O( G) may very well cluster at 
a boundary point of G. Thus for example the function sin( ~) belongs to 
O(C \ {I}) and its zero-set {:;:!:~ : n E Z} has 1 as a cluster point. 
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4. Order of a zero and multiplicity at a point. If f is holomorphic 
and not identically zero in a neighborhood of c, then from the Identity 
Theorem we know that there is a natural number m such that: f(c) = 
f'(c) = ... = fCm-l)(c) = 0 and fCm)(c) =f. O. (This statement constitutes 
a strong generalization of the theorem that a holomorphic function with 
identically vanishing derivative is locally constant.) We set 

Oc(f) := m = min{v EN: fCII)(C) =f. O}. 

This integer measures the degree to which f vanishes at c and is called the 
order of the zero of f at c or simply the order of f at c. Evidently 

f(c) = 0 {;} oc(f) > O. 

To complete the definition we set oc(f) := 00 for functions f which are 
identically 0 near c. 

Examples. For n E N, oo(zn) = nand oc(zn) = 0 for c =f. O. The function 
sin 7rZ has order 1 at each point of Z. 

With the usual agreement that n + 00 = 00 and min( n, 00) = n we verify 
directly two 

Rules of computation. For all functions f and 9 which are holomorphic 
near c 

1) oc(fg) = oc(f) + oc(g) (the product rule); 

2) oc(f + g) ~ min(oc(f),oc(g)) with equality whenever oc(f) =f. oc(g). 

In 4.4.1 the order function v : A -+ N U {oo} for the algebra A of convergent 
power series was introduced. If f = L a,,(z - c)" is holomorphic near c, then the 
function f 0 Tc = L a"z", where Tc(Z) := z + c, belongs to A and we evidently 
have 

Besides the order we often consider the number 

v(f, c) := oc(f - f(c)). 

We say that f assumes the value f(c) with multiplicity v(f, c) at the point 
c. Of course v(f, c) ~ 1 always. One immediately confirms the equivalence 
of the following statements: 

i) f has multiplicity n < 00 at c. 



234 8. FUNDAMENTAL THEOREMS ABOUT HOLOMORPHIC FUNCTIONS 

ii) f(z) = f(c) + (z - c)n F(z) for some F which is holomorphic near c 
and satisfies F(c) =f. o. 

In particular we see that: 11(1, c) = 1 {::} f'(c) =f. O. 

5. Existence of singular points. On the boundary of the disc of con­
vergence of a power series f(z) = E a,,(z - c)" there is always at least one 
singular point of f. 

Proof (by reductio ad absurdum). Let B := BR(C) be the disc (assumed 
bounded) of convergence of f and suppose the claim is false for this f. Then 
for every w E aB there is a disc Br(w) of positive radius r = r(w) and a 
function 9 E O(Br(w)) such that f and 9 coincide in B n Br(w). Finitely 
many of the discs Br (w), say K 1, ••. ,Kt suffice to cover the compact set 
aBo Let gj E O(Kj) be so chosen that fiB n K j = gjlB n K j , 1 ::; j ::; f. 
There is an R > R such that B:= BR(c) C BUK1 U·· ·UKt . We define a 
function i in B as follows: For z E B, i(z) shall be f(z). If on the other 
hand z lies in B \ B, then we choose one of the discs K j which contains z 
and set i(z) := gj(z). This definition is independent of the choice of the 
disc K j . For if Kk is another one containing z, then Kk n K j n B is not 
empty (shaded region in the figure) 

and in this open set gk and gj each coincide with f; from this and the 
Identity Theorem it follows that gk and gj coincide throughout the (convex) 
region K j n K k and in particular at the point z. 

The function i being well-defined, is evidently holomorphic in B and so 
according to the CAUCHy-TAYLOR theorem it is represented by a power 
series centered at c and convergent throughout B. Since this power series is 
also the power series at c which represents f, the smaller disc B could not 
have been the disc of convergence of f. We have reached a contradiction. 

o 

HURWITZ ([12], p. 51) calls the result just proved a "fundamental the­
orem" and gives a direct proof of it which may well go back to WEIER­
STRASS. His proof does not use the Cauchy-Taylor theorem. Without the 
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use of integrals he gets: 
Suppose that for every W E BR(C) the function f : BR(C) ---- C is devel­

opable into a convergent power series centered at w (i.e., f is an "analytic" 
function in WEIERSTRASS' sense). Then the power series of f at c in fact 
converges throughout BR(C). 

This "global develop ability" theorem allows an integral-free construction 
of the WEIERSTRASS theory of analytic functions; on this point compare 
also SCHEEFFER'S derivation of the Laurent expansion in 12.1.6. 

The geometric series L ZV = (1 - Z)-l has z = 1 as its only singular point. 
A substantial generalization of this example was described by G. VIVANTI in 
1893 ("Sulle serie di potenze," Rivista di Matematica 3, 111-114) and proved by 
PRINGSHEIM in 1894 ("Uber Functionen, welche in gewissen Punkten endliche Dif­
ferentialquotienten jeder endlichen Ordnung, aber keine Taylor'sche Reihenent­
wickelung besitzen," Math. Annalen 44, 41-56): 

Theorem. Let the power series f(z) = Lavzv have positive finite mdius of 
convergence R and suppose that all but finitely many of its coefficients av are real 
and non-negative. Then z := R is a singular point of f. 

Proof. We may suppose that R = 1 and that av ~ 0 for all v. If f were not 
singular at 1, its Taylor series centered at 1/2 would be holomorphic at 1, that 
is, L ~ f(v) (~)(z - ~ t would have radius of convergence r > ~. Since, for every 
( with 1(1 = ~, we have 

due to the fact that av ~ 0 for all v, the Taylor series L ~f(v)«)(z - (t of f 
centered at each ( with 1(1 = 1/2 would have radius of convergence ~ r > ~. As 
a result there would be no singular point of f on alE, contrary to the preceding 
theorem. 0 

On the basis of this theorem, for example, 1 is a singular point of the series 
LV>l v-2 zV, which is normally convergent in the whole closed disc lE u alE. For 
a further extension of this VIVANTI-PRINGSHEIM theorem see §17 of [Lan]. 

Exercises 

Exercise 1. Let G be a region, B a non-empty open disc lying in G. When 
is the algebra homomorphism O(G) ---- O(B) given by f t-+ fiB injective? 
When is it surjective? 

Exercise 2. Show that for a region G in C and an f E O( G) the following 
assertions are equivalent: 
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i) f is a polynomial. 

ii) There is a point c E G such that f(n}(c) = 0 for almost all n E N. 

Exercise 3. Let G be a region in e, f, g E O( G) zero-free. Show that if the 

set M:= {z E G: ~«:l = ~«:?} is not discrete in G, then f = >..g for some 
>.. E ex. 

Exercise 4. Let G be a region in e which is symmetric about JR, that is, 
satisfies G = {i : Z E G}, and let f E O(G). Prove the equivalence of the 
following assertions: 

i) f(G n JR) c JR. 

ii) f(i) = J(z) for all z E G. 

Exercise 5. For each of the following four properties the reader is asked to 
either produce a function f which is holomorphic in a neighborhood of 0 
and enjoys that property or prove that no such function exists: 

i) f(1;) = (-1)n~ for almost all n E N\ {OJ; 

ii) f(~) = (n2 _1)-1 for almost all n E N \ {O, 1}; 

iii) If(n}(O)I::::: (n!)2 for almost all n E N 

iv) If(~)1 ~ e-n for almost all n E N \ {OJ and oo(f) =f. 00. 

§2 The Concept of Holomorphy 

Holomorphy is, according to the definition we have adopted, the same thing 
as complex-differentiability throughout an open set. In this section we de­
scribe other possible ways of introducing the fundamental concept of holo­
morphy. Moreover our list of equivalences could be considerably expanded 
without much trouble. But we will only take up those characterizations of 
holomorphy which are especially important and historically significant and 
which we feel every student of the subject should definitely know. 

1. Holomorphy, local integrability and convergent power series. 
A continuous function f in D is called locally integrable in D if D can be 
covered by open subsets U such that flU is integrable in U. 

Theorem. The following assertions about a continuous function f : D -+ 

e are equivalent: 
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i) I is holomorphic (= complex-differentiable) in D. 

ii) For every (compact) triangle ~ C D, fM I(()d( = O. 

iii) I is locally integmble in D (the MORERA condition). 

iv) For every open disc B with BcD 

I(z) = ~ [ I(() d( 
2n}aB(-Z 

holds lor all z E B. 
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v) I is developable into a convergent power series around each point 
cE D. 

Proof In the following scheme each labelled implication is clear from its 
label, so only iii) =} i) calls for further comment. 

1'1') Integrability ... ) 
-----... III 

GOURSAT / Criterion 6.3.3 ~ 

i)/ i) 

~aUChY Integral formula A 
Lemma on Theorem 4.3.2 

. ) developabllity (term-wise differentiation) 
IV • V) 

To wit, given c E D there is an open disc B such that c E BcD and 
liB has a primitive F in B, i.e., F' = liB. Since according to 7.4.1 F is 
infinitely often complex-differentiable in B, it follows that I is holomorphic 
in B, whence throughout D. 0 

We thus see that the validity of the Cauchy integral formula can serve as 
a characterization of holomorphic functions. Much more important how­
ever is the fact that to date no alternative proof of the implication i) =} 

v) has been found which is convincingly free of the use of integrals (cf. 
however the remarks in 5.1). 

Among the various holomorphy criteria the equivalence of the concepts 
of "complex-differentiability" and "locally developable into power series" 
has played the principal role in the history of function theory. If you start 
from the differentiability concept, you are talking about the Cauchy or the 
Riemann construction, and if you give primacy to convergent power series, 
then you are talking about the Weierstmss construction. Supplemental 
remarks on this point will be found in subsection 4 of this section. 

The implication iii) =} i) in theorem 1 is known in the literature as the 

Theorem of Morera. Every function which is locally integmble in D is 
holomorphic in D. 
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The Italian mathematician Giacinto MORERA (1856-1909, professor of 
analytical mechanics at Genoa and after 1900 at Turin) proved this "con­
verse of the Cauchy integral theorem" in 1886 in a work entitled "Un teo­
rema fondamentale nella teorica delle funzioni di una variabile complessa," 
Rend. Reale Istituto Lombardo di scienze e lettere (2) 19, 304-307. OS­
GOOD, in the 1896 work which was cited in 7.3.4, was probably the first 
to emphasize the equivalence i) ~ iii) and to define holomorphy via local 
integrability; at that time he did not yet know about Morera's work. 

2. The holomorphy of integrals. The holomorphy property 1.ii) is 
frequently simple to verify for functions which are themselves defined by 
integrals. Here is a simple and very useful example. We designate by 
"I : [a, b] ---. C a piecewise continuously differentiable path and claim 

Theorem. If g(w, z) is a continuous function on 1"11 x D and for every 
wE 1"11, g(w, z) is holomorphic in D, then the function 

h(z):= j g(~, z)d~ , zED, 

is holomorphic in D. 

Proof We verify 1.ii) for h. To this end let ~ be a triangle lying in D. 
Then 

because, on account of the continuity of the integrand 9 on 1"11 x~, the order 
of integrations can be reversed. This is the well-known theorem of FUBINI, 
for which the reader can consult any text on the infinitesimal calculus. 
Since for each fixed ~, g(~, () is holomorphic in D, fM g(~, Od( = 0 by 
1.ii). This holds for each ~ E hi, so from (*) follows that fM h(()d( = 0, 
as desired. 0 

An application of this theorem will be made in 9.5.3. 

3. Holomorphy, angle- and orientation-preservation (final for­
mulation). In 2.1.2 holomorphy was characterized by the angle- and 
orientation-preservation properties. But the possible presence of zeros of 
the derivative, at which points angle-preservation is violated, necessitated 
certain precautions. The Identity Theorem and Riemann's continuation 
theorem combine to enable us to bring this result into a form in which the 
condition f' (z) =1= 0 no longer appears. 
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Theorem. The following assertions about a continuously real-differentiable 
function f : D -+ C are equivalent: 

i) f is holomorphic and nowhere locally constant in D. 

ii) There is a relatively closed and discrete subset A of D such that f is 
angle- and orientation-preserving in D \ A. 

Proof i) ::::} ii) Since f' doesn't vanish identically in any open set, its zero­
set A is discrete and relatively closed in D, according to 1.3. Theorem 2.1.2 
insures that f is angle- and orientation-preserving throughout D \ A. 

ii) ::::} i) f is holomorphic in D\A by theorem 2.1.2. But then Riemann's 
continuation theorem 7.3.4 insures that in fact the (continuous) function f 
is holomorphic in all of D. D 

4. The Cauchy, Riemann and Weierstrass points of view. Weier­
strass' creed. CAUCHY took over differentiability from the real domain 
without even commenting on it. For RIEMANN the deeper reason for study­
ing complex-differentiable functions lay in the "Aehnlichkeit in den klein­
sten Theilen," that is, in the angle- and orientation-preserving properties 
of these functions. WEIERSTRASS based everything on convergent power 
series. Operating out of a tradition in which the study of mathematics 
commences with real analysis, the CAUCHy-RIEMANN conception of holo­
morphy as complex-differentiability seems more natural to us than that of 
WEIERSTRASS, even though access to the latter requires only a single limit 
process, local uniform convergence, a fact which gives this theory great 
internal cohesion. A logically unimpeachable development of the CAUCHY­
RIEMANN theory, in which contour integration occupies center-stage, only 
became possible after the infinitesimal calculus had been put on a firm 
foundation (by, among others, WEIERSTRASS himself). 

One shouldn't overlook the fact that from youth WEIERSTRASS was 
thoroughly proficient with integration in the complex plane. He used it 
as early as 1841, long before RIEMANN and independently of CAUCHY, in 
a proof of the LAURENT's theorem (cf. [Wd). The caution with which 
WEIERSTRASS at that time integrated in the complex plane shows that 
he had clearly perceived the difficulties of constructing a complex integral 
calculus; perhaps here lie the roots of his later phobia of the Cauchy theory.! 

Nowadays all these inhibitions have disappeared. The integral concept 
and the relevant theorems about it have been grounded in a simple and 
satisfactory way. Consequently the Cauchy-Riemann point of departure 
seems the more natural. And it is in fact complex integration which has 

1 WEIERSTRASS is supposed to have scarcely cited CAUCHY. We even read in the 
highly interesting article "Elements d'analyse de Karl Weierstrass," Arch. Hist. Exact 
Sci. 10(1976), 41-176 by P. DUGAC that (p.61,) in 1882 WEIERSTRASS did not even 
confirm to the French Academy the receipt of volume 1 of Cauchy's works which they 
had sent him. 
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furnished the most elegant methods and is even indispensable to a simple 
proof of the equivalence of the Cauchy-Riemann and Weierstrass theories. 
On the other hand, the Weierstrass definition is necessary if one wants 
to develop a function theory over more general complete valued fields K 
other than IR or C (so-called p-adic function theory). There is no integral 
calculus over them because the fields K are totally disconnected, so only 
the Weierstrass point of view is fruitful. An Indian mathematician once 
wrote in this connection that WEIERSTRASS, the prince of analysis, was an 
algebraist. 

D. HILBERT occasionally remarked that every mathematical discipline 
goes through three periods of development: the naive, the formal and the 
critical. In function theory the time before EULER was certainly the naive 
period; with EULER the formal period began, while the critical period 
began with CAUCHY, attaining its high point in 1860 with WEIERSTRASS' 
activity in Berlin. 

F. KLEIN [HsJ (p.70 of the German original) said of CAUCHY that 
"mit seinen gUinzenden Leistungen auf allen Gebieten der Mathematik fast 
neb en GauB stellen kann (with his brilliant achievements in all areas of 
mathematics he can almost be put alongside Gauss)". His assessment of 
RIEMANN and WEIERSTRASS is (p. 246): "Riemann ist der Mann der 
glanzenden Intuition. Wo sein Interesse geweckt ist, beginnt er neu, ohne 
sich durch Tradition beirren zu lassen und ohne den Zwang der Systematik 
anzuerkennen. WeierstraB ist in erster Linie Logiker; er geht langsam, sys­
tematisch, schrittweise vor. Wo er arbeitet, erstrebt er die abschlieBende 
Form. (Riemann is the man of brilliant intuition. Where his interest has 
been awakened he starts from scratch, without letting himself be misled 
by tradition and recognizing no compulsion to be systematic. Weierstrass 
is in the first place a logician; he proceeds slowly, systematically and step­
wise. In his work he aims for the conclusive and definitive form.)" The 
reader should compare these sentences with POINCARE's words quoted in 
the Historical Introduction of this book. 

In a letter of October 3, 1875 to SCHWARZ, WEIERSTRASS summa­
rized his "Glaubensbekenntnis, in welchem ich besonders durch eingehendes 
Studium der Theorie der analytischen Functionen mehrerer Veranderlichen 
bekrartigt worden bin (creed in which I have been especially confirmed by 
a thorough study of the theory of analytic functions of several variables)" 
in the following sentences (Mathematische Werke 2, p. 235): 

"Je mehr ich iiber die Principien der Functionen theorie nachdenke -
und ich thue dies unablassig -, urn so fester wird meine Uberzeugung, dass 
diese auf dem Fundamente algebraischer Wahrheiten aufgebaut werden 
muss, und dass es deshalb nicht der richtige Weg ist, wenn umgekehrt zur 
Begriindung einfacher und fundamentaler algebraischer Satze das 'Tran­
scendente', urn mich kurz auszudriicken, in Anspruch genommen wird - so 
bestechend auch auf den erst en Anblick z.B. die Betrachtungen sein mogen, 
durch welche Riemann so viele der wichtigsten Eigenschaften algebraischer 
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Functionen entdeckt hat. [Dass dem Forscher, so lange er sucht, jeder Weg 
gestattet sein muss, versteht sich von selbst, es handelt sich nur urn die 
systematische Begriindung.] (The more I ponder the principles of function 
theory - and I do so unceasingly - the firmer becomes my conviction that 
they have to be built on a foundation of algebraic truths. It is therefore not 
correct to turn around and, expressing myself briefly, use "transcendental" 
notions as the basis of simple and fundamental algebraic propositions -
however brilliant, e.g., the considerations may appear at first glance by 
which Riemann discovered so many of the most important properties of 
algebraic functions. [That every path should be permitted the researcher 
in the course of his investigations goes without saying; what is at issue here 
is merely the question of a systematic theoretical foundation.])" 

Exercises 

Exercise 1. Let D be an open subset of C, L a straight line in C, f : D --> C 
continuous. Show that if f is holomorphic in D \ L, then in fact f is 
holomorphic in D. 

Exercise 2. Let D open c C, , a piecewise continuously differentiable path 
in C, g(w, z) a continuous complex-valued function on 1,1 x D. Suppose 
that for every wEill, z 1-+ g(w, z) is holomorphic in D with derivative 
tzg(w, z). Show that then the function h(z) := I, g((, z)d(, ZED, is also 

holomorphic and that h'(z) = I, tzg((, z)d( for all zED. 

§3 The Cauchy estimates and inequalities 
for Taylor coefficients 

According to 7.2.2 holomorphic functions satisfy the mean value inequality 
If(c)1 :S IflaB. This estimate can be significantly generalized. 

1. The Cauchy estimates for derivatives in discs. Let f be holomor­
phic in a neighborhood of the closed disc B = Br(c). Then for every kEN 
and every z E B, the estimate 

holds. 

Proof The Cauchy integral formula 7.3.2(2) for derivatives says that 
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f(k)(z) = ~ r f(() d( 
21Ti JDB (( - Z)k+l ' 

z E B. 

If we apply to this integral the standard estimate 6.2.2 for contour integrals, 
then the present claim follows from the facts that L(8B) = 21Tr and 

If(()1 < If I ( . I( I) -k-l If I d- k- 1 
max I( Ik+1 - DB mm - z = DB z . 
(EDB - Z (EDB 

Corollary. If f is holomorphic in a neighborhood of B, then for every 
kEN and every positive number d < r, the estimate 

holds for all z E Br-d(C). 

In the limiting case when d converges to r we get 

Cauchy's inequalities for the Taylor coefficients. 
Let f(z) = L av(z-c)V be a power series with radius of convergence greater 
than r, and set M(r) := maxlz-cl=r If(z)l. Then 

lavl ~ M~) , 
r 

for all v E N. o 

A simple covering argument leads at once to 

Cauchy's estimates for derivatives in compact sets. Let D be a 
domain in C, K a compact subset of D, L a compact neighborhood of K 
lying in D. For every kEN there exists a finite constant Mk (which 
depends only on D, K and L) such that 

for all f E O(D). 

We should note that the role of L cannot be taken over by K itself. For 
fn := zn E O(C) and K := E we have, e.g., IfnlK = 1 but If~IK = n for 
each n E N. 

2. The Gutzmer formula and the maximum principle. The in­
equalities for the Taylor coefficeints can be derived directly, without in­
voking the integral formula for derivatives. They can even be refined, by 
observing that on the parameterized circle z(cp) = c + rei'P, 0 ~ cp ~ 21T, 
the power series L av (z - c) v are trigonometric series L av rV eiv'P . Be­
cause L avrvei(v-n)'P converges normally in [0, 21T] to f( c+ rei'P)e-in'P, the 
"orthonormality relations" 
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~ r21f ei(m-n)'Pd = {O for m -=1= n 
2n } 0 <p 1 for m = n 

immediately lead to the following representation of the Taylor coefficients: 

If the series f(z) = L: av(z - c)V has radius of convergence greater than 
r, then 

nE N. 

From this follows immediately 

The Gutzmer formula. Let f(z) = L: av(z - c)'" be a power series with 
radius of convergence greater than r, and set M(r) := maxlz-cl=r If(z)l. 
Then 

Proof Since f(c+rei'P) = L:avrve-iv'P, we have 

with convergence normal on [0, 2n]. Consequently integration passes through 
the sum and (*) yields 

121f If(c + rei'PWd<p = L avrv 121f f(c + rei'P)e-iv'Pd<p = 2n L lav l2r2v. 

On the other hand, the estimate J021f If(c+rei'P)i2d<p::; 2nM(r)2 is trivial. 
D 

The inequalities lavlrv ::; M(r), l/ E N, are naturally contained in the 
Gutzmer formula. Moreover, there follows directly the 

Corollary. If J(z) = L av(z-c)'" in Bs(c) and iJthere is an mEN and an 
r with 0 < r < sand lamlrm = M(r), then necessarily J(z) = am(z - c)m. 

Proof From GUTZMER we have that Lv"om lav l2r2v :s 0, and so av = 0 
for all l/ -=1= m. D 

This corollary together with the identity theorem implies the 
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Maximum principle. Let f be holomorphic in the region G and have a 
local maximum at a point c E G; that is, suppose that If(c)1 = Iflu for 
some neighborhood U of c in G. Then f is constant in G. 

Proof If L: av(z - c)'" is the Taylor series of f about c, then by hypothesis 
laol = Iflu. For all sufficiently small positive r it then follows that laol ~ 
M(r). From the corollary (with m = 0) f is consequently constant in some 
disc centered at c. Then from the identity theorem f is in fact constant 
throughout G. 0 

The maximum principle, which here is a somewhat incidental spin-off, 
will be set in a larger framework in 5.2. 

The set of all power series with center at c and having a radius of convergence 
greater than r forms a complex vector space V. By means of the equation 

1 12
" . (f,g) := 271" a f(c + re'''')g(c + rei"')d'P , f,gE V 

a hermitian bilinear form can be introduced into V. The family en := r-n(z_c)n, 
n EN, forms an orthonormal system in V: 

( \ _ {O for m =1= n 
ern, en! - 1 for m = n. 

Every f = L: a" (z - c)" E V is an orthogonal series with the "Fourier coefficients" 
(f, e,,) = a"r"; Gutzmer's equation is the Parseval completeness relation: 

00 

II f 112:= (f,f) = ~)(f,e,,)12. 
a 

And we have II f 11= 0 {=} (f, e,,) = a"r" = 0 for all v EN{=} f = O. Then with 
respect to the form ( , ), V is a unitary vector space. But V is not complete, 
hence is only a pre-Hilbert not a Hilbert space. To see this (with c := 0, r := 1), 
consider the polynomials Pn := L:~ z:. Due to the equations 

for m < n, 

these polynomials constitute a Cauchy sequence in V with respect to II II. But 
this sequence has no limit in V, because the only limit candidate is the series 
L:~ z: ' which has radius of convergence 1 and consequently does not lie in V. 

3. Entire functions. LIOUVILLE's theorem. Functions which are 
holomorphic everywhere in C were called entire functions by WEIERSTRASS 

([W 3],p. 84). Every polynomial is of course entire; all other entire functions 
are called transcendental. Examples of the latter are exp z, cos z, sin z. 



§3. CAUCHY ESTIMATES, INEQUALITIES FOR TAYLOR COEFFICIENTS 245 

The Cauchy inequalities immediately imply the famous 

Theorem of Liouville. Every bounded entire Junction is constant. 

Proof. The Taylor development J(z) = L avzv of J at 0 converges through­
out C (by the representation theorem 7.3.2); according to subsection 1 

rVlavl ~ max IJ(z)1 
Izl=r 

holds for all r > 0 and all v E N. 

Since J is bounded there is a finite M such that IJ(z)1 ~ M for all z E C. 
It follows that rVlavl ~ M Jor all r > 0 and all v E N. Since rV can be 
made arbitrarily large if v 1:- 0, it follows that for such v we must have 
av = o. Thus J(z) = ao. 0 

Variant oj the proof. Use the Cauchy inequality only for v = 1 but apply 
it at every point c E C, getting 11'(c)1 ~ Mr-l, for all r > 0, and conse­
quently 1'(c) = o. That is, l' == 0 and so J == const. 0 

We can also give a second direct prooJ by means of the Cauchy integral 
formula. Let c E C be arbitrary. For r > lei and S := 8Br(0) we have 

J(c) - J(O) = ~ r (_1 __ ~) J(()d( = ~ r J(()d( . 
27rl J S (- c ( 27rl J S (( - c)( 

If we choose r ;:::: 21cl, then I( - cl ;:::: ~r for ( E S and it follows that 

IJ(c) - J(O)I ~ M max I (/((\( 127rr ~ 2IcIMr-1 , 
27r 1(I=r - c 

where, as before, M is a (finite) bound for f. If we let r increase indefinitely, 
it follows that J(c) = J(O), for each c E C. 0 

LIOUVILLE'S theorem also follows directly from the mean value equality in 
7.2.2. An elegant proof of this kind was given by E. NELSON, "A proof of Liou­
ville's theorem," Proc. Amer. Math. Soc. 12(1961), p. 995. 

We plan to use LIOUVILLE's theorem in 9.1.2 in a proof of the funda­
mental theorem of algebra. But as an immediate application we have 

Every holomorphic mapping J : C ---> lE is constant. In particular, there 
are no biholomorphic mappings oj lE onto C or oj lHl onto C. 

It is however quite possible to map the plane topologically, even real­
analytically, onto the open unit disc. Such a mapping from C to lE is given, 
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e.g., by z f-+ z/ VI + Iz12, with inverse mapping from lE to C given by 

W f-+ w/ VI - Iw12. 

Remark. The algebra O(C) of entire functions contains the algebra C[z] of poly­
nomials. The greater abundance of functions in O(C) compared with C[z] is 
convincingly attested to by two approximation theorems: According to WEIER­
STRASS (Math. Werke 3, p.5), every continuous function f : JR --t C is uniformly 
approximable on each compact interval by polynomials. Uniform approximation 
on all of JR is not generally possible; e.g., sin x is certainly not approximable 
uniformly on JR by polynomials. But with entire functions, anything that's con­
tinuous on JR can be approximated uniformly well on JR. Even more: In his paper 
"Sur un tMoreme de Weierstrass," Ark. Mat. Astron. Fys. 20B, 1-5 (1927) T. 
CARLEMAN showed: 

Let a continuous and strictly positive "error" function 10 : JR --t JR be given. 
Then for every continuous f : JR --t C there exists agE O(C) such that 

If(x) - g(x)1 < E(X) for all x E lR. 

The reader will find a proof in D. GAIER's book Lectures on Complex Approx­
imation, Birkhiiuser, Boston, (1987), p. 149. 

4. Historical remarks on the Cauchy inequalities and the theo­
rem of LIOUVILLE. CAUCHY knew the inequalities for Taylor coefficients 
which bear his name by 1835 (cf. (Euvres (2) 11, p. 434). WEIERSTRASS 
proved these inequalities in 1841 by an elementary method, which involved 
arithmetic means instead of integrals ([W2], 67-74 and [W4], 224-226). 
We will reproduce this beautiful proof in the next subsection. August 
GUTZMER (1860-1925, ordinarius professor at Halle, 1901-1921 sole editor 
of the high-level Jahresberichte der Deutschen Mathematiker- Vereinigung) 
published his formula in 1888 in the paper "Ein Satz iiber Potenzreihen," 
Math. Annalen 32, 596-600. 

Joseph LIOUVILLE (1809-1882, French mathematician and professor at 
the College de France) in 1847 put the theorem "Vne fonction doublement 
periodique qui ne devient jamais infinie est impossible (a doubly periodic 
function which never becomes infinite is impossible)" at the beginning of 
his Ler,;ons sur les fonctions doublement periodiques. Carl Wilhelm BOR­
CHARDT (1817-1880, German mathematician at Berlin, pupil of JACOBI 
and close friend of WEIERSTRASS, from 1855-1880 CRELLE'S successor as 
editor of the Journal fur die Reine und Angewandte Mathematik) heard 
Liouville's lectures in 1847, published them in 1879 in the aforementioned 
journal, vol. 88, 277-310, and named the theorem after LIOUVILLE (cf. the 
footnore on p. 277). But the theorem originates with CAUCHY, who de­
nved it in 1844 in his note "Memoires sur les fonctions complement aires" 
((Euvres (1) 8, pp. 378-385; see theoreme II on page 378), via his residue 
calculus. The direct derivation from the Cauchy inequalities was given in 
1883 by the French mathematician Camille JORDAN (1838-1921, professor 
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at the Ecole Poly technique), in the second volume of his Cours d'analyse, 
tMoreme 312 on p. 312. (In the third edition of the second volume, which 
appeared in 1913 and which was reprinted in 1959 by Gauthier-Villars, this 
would be tMoreme 338 on p. 364.) 

5*. Proof of the Cauchy inequalities following WEIERSTRASS. 
The kernel of the method is found in the proof of the following 

laol ::; M(r):= max Iq()1 
I(-cl=r 

for every r > O. 

Proof We may assume that c = O. Fix r and write simply M for M(r). 
Choose A E 81, the unit circle, so that for all 1/ E Z \ {O}, A" f:. 1. For 
example, A := ei or (more elementarily) A := (2 - i)(2 + i)-l. [For the 
verification in the latter case, suppose that An = 1 for some n E N \ {O}. 
Then (2 - i)n = (2i + 2 - i)n = (2i)n + n(2i)n-l(2 - i) + "', so (2i)n = 
(2 - i)(a + i(3) for certain a, f3 E Z, whence 4n = 5(a2 + (32), which is 
absurd. Of course, instead of this calculation, one could just remark that 
in the unique factorization domain Z[iJ, 2 + i and 2 - i are prime elements 
which are not associates.] Let ~' denote summation over non-zero indices. 
It then follows that 

Now Iq(rAi)1 ::; M, since IrAil = r, and so we get 

Since the value of the sum on the right is independent of k and k may be 
chosen as large as we like, it follows that laol ::; M. 

Theorem. For some mEN let fez) = ~~m a,,(z - c)" be holomorphic 
in the punctured disc B 8 (c) \ {c}. Then for every r with 0 < r < s, setting 
M(r) := maxlz_cl=r If(z)l, we have 

laul ::; Mr~~)' I II .- .- Jor a I-l ~ -m. 

Proof Again we may suppose c = O. First look at I-l = O. Let c > 0 be 
given. Then choose n E N so large that the remainder series g(z) := 

~::"+1 a"z" satisfies maxlzl=r Ig(z)1 ::; c. Then q(z) := fez) - g(z) = 
~~m a"z" satisfies 
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max Iq(z)1 ~ M(r) + c. 
Izl=r 

It then follows from the lemma that I ao I ~ M (r) + c. Since c > 0 is 
arbitrary, we have laol ~ M(r). 

Finally, consider an arbitrary J..t ~ -m. The function z-I-' f(z) 
= ~~(m+l-') al-'+vzv is, like f, holomorphic in Bs(c) \ {c}. Its constant 
term is al-' and its relevant maximum is maxlzl=r Iz-I-' f(z)1 = r-I-' M(r). 
So from what was learned in the first paragraph of the proof, we have 
I a I-' I ~ r-I-'M(r). 

Exercises 

Exercise 1. Generalize the Gutzmer equality to 

for f(z) := ~v>o av(z - c)" and g(z) := ~v>o bv(z - c)" E V. [For the 
definition of V, see subsection 2.] -

Exercise 2. For f E O( C) prove the following sharper versions of Liouville's 
theorem: 

a) If for some n E N and some finite constants Rand M, the function 
f satisfies If(z)1 ~ Mlzln for all Izl ~ R, then f is a polynomial of 
degree no greater than n. 

b) If the function '!Rf is bounded in C, then f is constant. 

Exercise 3. Let f : C -+ C be entire. Show that the Taylor series of f at 0 
converges to f uniformly in C if and only if f is a polynomial. 

Exercise 4. Show that if the entire functions f and 9 satisfy If(z)1 ~ Ig(z)1 
for all z E C, then there is a A E C such that f = Ag. 

§4 Convergence theorems of WEIERSTRASS 

The focal point of this section is the theorem affirming that in function 
theory - as contrasted with real analysis - compact convergence commutes 
with differentiation and the sequence of derivatives converges compactly as 
well. As corollaries we get theorems about differentiating series. 
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1. Weierstrass' convergence theorem. Let In be a sequence 01 holo­
morphic functions in a domain D which converges compactly there to I : 
D --+ C. Then I is holomorphic in D and lor every kEN the sequence 
I~k) 01 kth derivatives converges compactly in D to I(k). 

Proof. a) First of all, the limit function I is continuous in D (by the con­
tinuity theorem 3.1.2). For every triangle 6.. c D the interchange theorem 
for sequences (6.2.3) then ensures that 

f Id( = lim f Ind(. 
} at:. n--+oo } at:. 

Since each In E O(D), each integral on the right side vanishes (GOURSAT)j 

consequently I is holomorphic in D, by the ii) => i) implication in theorem 
2.1. 

b) Evidently it suffices to verify the convergence claim for k = 1. Let K 
be a compact subset of D. Cauchy's estimates for derivatives in compact 
sets furnish a compact LcD and a finite constant M such that I I~ - f' I K ~ 
Mlln - IlL holds for all n. Since lim lIn - IlL = 0 by hypothesis, it follows 
that lim I/~ - f'IK = O. 0 

The holomorphy of the limit function rests, in this proof, on the simple 
fact that a limit function under compact convergence inherits local inte­
grability from the terms of the sequence. The theorem of MORERA then 
concludes the proof. In this kind of reasoning the developability of the 
functions into power series is irrelevant. For functions on the real line the 
convergence theorem is false for a variety of reasons: Limit functions of 
compactly convergent sequences of real-differentiable functions are in gen­
eral not real-differentiable. Cf. paragraph 2. of the introductory material 
to chapter 3. 

2. Differentiation of series. Weierstrass' double series theorem. 
Since the sequence {In} and the series 'LU" - 1,,-1) exhibit the same 
convergence behavior, from theorem 1 there follows at once 

Weierstrass' differentiation theorem for compactly convergent se­
ries. A series'Ll" 01 holomorphic functions in D which converges com­
pactly in D has a holomorphic limit I in D. For every kEN the k-times 
term-wise differentiated series 'L ISk) converges compactly in D to I(k): 

zED. 

This is a generalization of the theorem that convergent power series 
represent holomorphic functions and may be "differentiated term by term" 
(for I" take the monomial a,,(z-c)"). In applications one frequently needs 
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Weierstrass' differentiation theorem for normally convergent se­
ries. II lor Iv E O(D) the series E Iv converyes normally in D to 

I E O(D), then lor each kEN the series E ISk ) converges normally 
in D to I(k). 

Proof. Let KeD be compact. The Cauchy estimates furnish a compact 
set L, K c LCD, and, for each kEN, a finite constant Mk , such 
that Ig(k)IK S MklglL for all 9 E O(D). This implies that E I/Sk)IK S 
Mk E I/vlL < OOj that is, the series of derivatives converge normally in D. 
Since this entails compact convergence, the respective limits are the I(k). 

o 

Example. The Riemann zeta function (z) introduced in 5.5.4 is holomor­
phic in the right half-plane {z E C : !Rz > I} because the (-series En>l n-Z 

converges normally there (theorem 5.5.4). -

An immediate application of the first differentiation theorem is 

Weierstrass' double series theorem. Let Iv(z) = E a1") (z - c)/L be 
power series converyent in a common disc B centered at c, lor v EN. 
Suppose that the series I (z) = E Iv (z) converyes normally in B. Then lor 

each 1-£ E N, b/L := E:'o at) converyes in C, and I is represented in B by 
the converyent power series 

Proof. According to the differentiation theorem for compactly convergent 
series, I E O(B) and I(/L) = E~=o IS/L) for every 1-£ E N. Then the rep­
resentation theorem 7.3.2 says that I is represented in B by the Taylor 
series 

00 I(/L)( ) I(/L)( ) 00 I'/L)( ) 00 

""' __ c_(z _ c)/L where now __ c_ = ""' ~ = ""' a(v) 0 L...J, ' ,L...J , L...J/L. 
o 1-£. 1-£. v=o 1-£. v=o 

The designation "double series theorem" is almost self-explanatory: In 
B, I is given by the double series 

and the theorem affirms that, as with polynomials, the summations may 
be interchanged without altering the convergence in B or the value of the 
limit: 
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Finally, we mention the following corollary to the product theorem for 
convergent series 3.3.1: 

Product theorem for normally convergent series of holomorphic 
functions. If f = 'E f J-I, and 9 = 'E gv are normally convergent series 
of holomorphic functions in D, then every product series 'E h>. in which 
ho, h!, ... run through every product fJ-l,gv exactly once, converges normally 
in D to fg E O(D). In particular, fg = 'EP>. with P>. := 'EJ-I,+v=>, fJ-l,gv 
(Cauchy product). 

This assertion becomes false if only compact convergence of the series 
for f and 9 is hypothesized; under this hypothesis it is even possible that 
'EP>. diverge. This is illustrated by the example of the constant functions 
fv = gv := ~ considered in 0.4.6. 

3. On the history of the convergence theorems. In the 19th cen­
tury series predominated over sequences, because series were thought of 
as "closed analytic expressions," a shibboleth until the function concept 
finally got put on a firm foundation. For WEIERSTRASS the double series 
theorem was the key to convergence theory. In 1841 in a work of his youth 
([W2], pp.70 ff.) he stated and proved this theorem, for power series in 
several complex variables even, knowing nothing about Cauchy's function 
theory. But it should be noted that besides the compact convergence of 
'E f 1'( z), he hypothesized in addition the unconditional (= absolute) con­
vergence of this series at each point of B. His proof is elementary, the 
only tool used being the Cauchy inequalities for Taylor coefficients, which 
he derived directly (as was done in 3.5) without employing integrals. In 
1880 WEIERSTRASS came back once again to his convergence theorem for 
series [W 4]. This time he did not require the supplemental unconditional 
convergence. 

From the double series theorem WEIERSTRASS easily obtained the theo­
rem on differentiating compactly convergent series ([W2], pp. 73/74) simply 
by developing each Iv into its Taylor series around each point c E D and 
noting that, for fixed c, they all converge in some fixed disc B centered at 
c and lying in D. 

In 1886 MORERA deduced the convergence theorem for compactly con­
vergent series from the converse of Cauchy's integral theorem which he had 
discovered; see p. 306 of his work cited in 2.1, and also his "Sulla rappresen­
tazione delle funzioni di una variabile complessa per mezzo di espressioni 
analitiche infinite," Atti R. Accad. Sci. Torino 21(1886), pp. 894-897. It 
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was Morera's technique that we used in part a) of the proof in subsection 1. 
In 1887 P. PAINLEVE (1863-1933, French mathematician; 1908 first airplane 
passenger of W. WRIGHT; 1915/16 minister of war, 1917 and again 1925 
premier of France) proved Weierstrass' convergence theorem with the help 
of the Cauchy integral formula - in "Sur les lignes singulieres des fonctions 
analytiques," Ann. Fac. Sci. Toulouse (I) 2(1887), pp. 11-12. 

In 1896 OSGOOD gave Morera's argument (pp. 297/298 of the work cited 
in 7.3.4), and wrote: "It is to be noticed that this proof belongs to the most 
elementary class of proofs, in that it calls for no explicit representation of 
the functions entering (e.g., by Cauchy's integral or by a power series)." 

4. A convergence theorem for sequences of primitives. In convergence 
theorem 1 we inferred from the compact convergence of a sequence of functions, 
the convergence of the sequence of their derivatives. A supplemental hypothesis 
to control the otherwise arbitrary "constants of integration" enables us to also 
infer the compact convergence of certain sequences of primitives of the original 
functions. 

Theorem. Let G be a region, fo, /1, ... a sequence in O(G) which converges 
compactly to f E O(G). Let Fn E O(G) be a primitive of fn, for each n E N. 
Then the sequence Fo, H,. " will converge compactly in G to a primitive F of f 
if there is a point c E G for which the numerical sequence Fn(c) converges. 

Proof. We may assume that all Fn(c) are 0 - otherwise we just pass over to 
primitives Fn - Fn (c). Let W E G be arbitrary. We have, on the basis of theorem 
6.3.1, 

(1) Fn(W) = j fn«()d( 

for every path "( in G from c to W because F~ = fn and Fn(c) = O. It therefore 
follows from the interchange theorem 6.2.3 that 

(2) limFn(w) exists and F(w) := lim Fn(w) = j f«()d(. 

A function F : G --> C is thereby defined which obviously satisfies condition ii) 
of theorem 6.3.1 and is therefore a primitive of f. Now consider an arbitrary 
compact disc K = Br(a) in G. It follows directly (!) from (1) and (2) that 

F(z) - Fn(z) = [ [f«() - fn«()]d( + F(a) - Fn(a) , for all z E K. 
J[a,z] 

The standard estimate 6.2.2 for path integrals then gives 

IF - FnlK S If - fnlK . r + IF(a) - Fn(a)l· 

Since by (2) lim Fn(a) = F(a), lim IF - FnlK = 0 follows. Therewith the compact 
convergence in G of the sequence Fn to F is demonstrated. 0 
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Although Weierstrass' convergence theorem will be applied again and again 
in the sequel, this last theorem won't play any further role. 

5*. A remark of WEIERSTRASS' on holomorphy. In [W4J WEIER­
STRASS studied the following problem thoroughly: 

Let L fv be a series of rational functions which converges compactly 
to f E OeD) on a domain D which decomposes into disjoint regions 
G1 , G2 , •... What "analytic connections" subsist among the limit functions 
f1G 1 , fIG2 , ... on the various regions? (Naturally WEIERSTRASS was more 
precise in his formulation; he asked whether flG l and flG 2 are "branches" 
of one and the same "monogenic" holomorphic function, that is, whether 
they "arise from one another via analytic continuation.") 

WEIERSTRASS discovered to his surprise (p. 216, op. cit.) that there 
need be no connection between flG l and f1G 2 ; that there even exist disjoint 
regions G1 and G2 in C and a sequence of rational functions fv such that 
the series L fv converges compactly in G1UG2 to +1 in G1 and to -1 in G2 . 

Thus WEIERSTRASS discovered a special case of RUNGE's approximation 
theorem, which is so central to contemporary function theory. First of all 
we want to give a very simple example involving sequences. 

The sequence 1/(1- zn) of rational functions are holomorphic in C \ alE 
and compactly converge there to the function 

h(z) := { 1 for Izl < 1 
o for Izl > 1. 

From which we immediately obtain the following: 

Let f, g E O(e) be given but arbitrary. Then the sequence 

fn(z) := g(z) + fez) - g(z) 
1- zn 

converges compactly in C \ alE to the function 

G(z) .- {f(Z) for Izl < 1 
.- g(z) for Izl > 1. 

Proof This is clear from the preceding, since G = g + (f - g)h. 0 

Simple examples involving series can also be adduced: 

. 1 Z z2 Z4 z8 
The senes ~z + ~1 + -::::r-11 + -:s-11 + ~1 + .. " whose terms 

.l-Z z - Z - Z - z-
are rational functions all of which are holomorphic in C \ alE, converges 
compactly in that domain to the function 
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F(z) := { ~ j~~ 
Proof. This follows from the identities 

Izl < 1 
Izl > 1. 

Examples of series of this type go back to TANNERY, who used the series 

--+--+--+--+--+ ... = 1 + z 2z 2Z2 2Z4 2z8 { 1 
1 - z Z2 - 1 z4 - 1 Z8 - 1 Z16 - 1 -1 

for 
for 

Izl < 1 
Izl > 1. 

o 

The reader is encouraged to provide a proof of this equality. (Compare also 
[W4], 231/232.) WEIERSTRASS gave quite a bit more complicated an example, 
E:'" zn':z-n. For him this convergence phenomenon was an inducement to ex­
press some of his criticisms of the concept of holomorphy. He wrote (loc. cit., p. 
210): 

" ... so ist damit bewiesen, dass der Begriff einer monogenen Function einer 
complexen Veranderlichen mit dem Begriff einer durch (arithmetische) Grossen­
operationen ausdriickbaren Abhangigkeit sich nicht vollstandig deckt. Daraus 
aber folgt dann, dass mehrere der wichtigsten Satze der neueren Functionen­
lehre nicht ohne Weiteres auf Ausdriicke, welche im Sinne der alteren Analysten 
(Euler, Lagrange u.A.) Functionen einer complexen Veranderlichen sind, diirfen 
angewandt werden ( ... is thus proven that the concept of a monogenic function 
of a complex variable is not completely coextensive with that of dependence ex­
pressible by (arithmetic) operations on magnitudes. But from this it then follows 
that several of the most important theorems of contemporary function theory 
may not, without further justification, be applied to expressions which repre­
sent functions of a complex variable in the sense of the older analysts (Euler, 
Lagrange, et al.))." 

WEIERSTRASS thereby represents another viewpoint from that of RIEMANN, 
who on p. 39 at the end of §20 of his dissertation [R] took a contrary position. 

6*. A construction of WEIERSTRASS'. A number a E C is called algebraic 
if pea) = 0 for some non-zero polynomial p in Z[z]. It is shown in algebra that 
the set K of all algebraic numbers is a countable field extension of IQ, and is 
consequently not all of C. In an 1886 letter to L. KOENIGSBERGER (published in 
Acta Math. 39(1923), 238-239) WEIERSTRASS showed that 

There exists a transcendental entire function fez) = E a"z" with a" E IQ for 
all v, such that f(K) C K and f(lQ) C IQ. 

Proof. Due to count ability of Z[zJ, its non-zero elements can be enumerated 
PO,Pl,P2,.... Set qn := POPI .. . pn and let rn denote its degree, n E N. A 
sequence mn E N is inductively defined by 

mO := 0 , ml := mo + ro + 1, ... ,mn+l := mn + rn + 1. 
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For every non-zero rational number kn the polynomial knqn(z)zmn involves only 
powers zi with £ E {mn , ... , mn + rn} and the term zmn+rn is present with a 
non-zero coefficient. Differently indexed polynomials therefore have no powers 
in common, so f(z) := L: knqn(z)zm n is a formal power series with rational 
coefficients in which every summand zmn+rn actually occurs. Now if we choose 
the kn so small that all the coefficients of knqn(z)zmn are smaller than [(mn + 
rn )!]-l, then it will follow that f E O(C) and f rt C[z]. 

Given 0 E K, it is a zero of some p. and so qn(O) = 0 for all n 2 sand 
therefore 

.-1 

f(o) = L knqn(o)omn E K 
o 

with, moreover, f(o) E Q in case 0 E Q. o 

This elegant construction of WEIERSTRASS' caused quite a sensation in its day, 
not the least because of the essential use it made of CANTOR's counting method, 
which at that time was by no means generally accepted. Following WEIERSTRASS, 
P. ST ACKEL wrote a paper in 1895 " Uber arithmetische Eigenschaften analyti­
scher Funktionen," Math. Annalen 46, pp. 513-520, in which he showed that 

If A is a countable and B a dense subset of C, then there exists a transcen­
dental entire function f with f(A) C B. 

In particular, there is a transcendental entire function whose values at every 
algebraic argument are transcendental (:= non-algebraic) numbers. A famous 
theorem of LINDEMANN, GELFOND and SCHNEIDER affirms that the exponential 
function takes transcendental values at every non-zero algebraic argument. In 
1904 in Math. Annalen 58, pp. 545-557 G. FABER constructed a transcendental 
entire function which together with all its derivatives takes algebraic values at 
algebraic arguments. 

Weierstrass' construction laid to rest the idea that an entire function with 
rational coefficients which assumes rational values at every rational argument 
had to be itself rational, that is, a polynomial. Nevertheless under additional 
hypotheses this conclusion does follow. Already in 1892 HILBERT remarked, at 
the end of his paper "Uber die Irreduzibilitiit ganzer rationaler Funktionen mit 
ganzzahligen Koeffizienten" (Jour. fUr die Reine und Angew. Math. 110, pp. 
104-129; also Gesammelte Abhandlungen, vol. II, pp. 264-286), that a power 
series f(z) with positive radius of convergence is necessarily a polynomial if it is 
an algebraic function (meaning that p(f(z), z) == 0 for some non-zero polynomial 
p( w, z) of two variables) and if it assumes rational values for all rational arguments 
from some non-empty interval (however short) in ~. 

Exercises 
Exercise 1. Formulate and prove an inference from the normal convergence 
of a series L: Iv, Iv E O(G), to that of a series L: Fv of its primitives. 
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Exercise 2. Show that the series LV>1 (Z2 n 
- z-2 n )-1 converges compactly 

in ex \ aE and determine the limit function. 

Exercise 3. According to Exercise 3 in §2, Chapter 3, the series Ln::::1 (;:r 
converges compactly in C \ {-I, -2, -3, ... } to a holomorphic function f. 
Find the power series development of j around o. 

Exercise 4. Let j be holomorphic in some neighborhood of O. Show that if 
the series 

converges absolutely at z = 0, then j is an entire function and the series 
( *) converges normally throughout C. 

Exercise 5. Let 0 :::; m1 < m2 < ... be a strictly increasing sequence of 
integers, Pv complex polynomials satisfying degree (zmvpv(z)) < m v+1 for 
all /). Suppose that the series j(z) := Lv>o zmvpv(z) converges compactly 
in IE:. Show that the Taylor series of j around 0 contains just those mono­
mials akzk which occur in the summands zmvpv(z) (theorem on removal 
of parentheses). 

§5 The open mapping theorem and the 
maximum principle 

The fibers j-1(a) of a non-constant holomorphic function j consist of iso­
lated points (cf. 1.3) and are thus very "thin". So j does not collapse 
open sets U too violently and correspondingly the image set j(U) is "fat." 
This heuristic will now be made precise. To this end we introduce some 
convenient terminology. 

A continuous mapping j : X ---+ Y between topological spaces X and Y 
is called open if the image j(U) of every open subset U of X is an open 
subset of Y. (By contrast continuity means that every open subset V of Y 
has an open pre-image j-1(V) in X.) Every topological mapping is open. 
The mapping x f-> x 2 of R into R is not open. But the latter phenomenon 
cannot occur among holomorphic mappings; we even have the 

1. Open Mapping Theorem. Ij j is holomorphic and nowhere locally 
constant in the domain D, then it is an open mapping oj D into C. 

The proof rests on a fact of some interest by itself: 



§5. THE OPEN MAPPING THEOREM AND THE MAXIMUM PRINCIPLE 257 

Existence theorem for zeros. Let V be an open disc centered at c, with 
V c D. Let f be holomorphic in D and satisfy minzE8v If(z)1 > If(c)l. 
Then f has a zero in V. 

Proof. If f were zero-free in V, then it would be zero-free in an open 
neighborhood U of V lying in D. The function 9 : U --+ C, Z f--+ l/f(z) 
would then be holomorphic in U and the mean value inequality would imply 
that 

1 ( )-1 If(c)I-1 = Ig(c)1 :::; max Ig(z)1 = max -If( )1 = min If(z)1 , 
zE8V zE8V Z zE8V 

i.e., If(c)1 2: minzE8v If(z)l, contrary to hypothesis. o 

The existence theorem just proved delivers immediately a 

Quantitative form of the open mapping theorem. Let V be an open 
disc centered at c with V c D and let f be holomorphic in D and satisfy 
20 := minzE8V If(z) - f(c)1 > O. Then f(V) :J Bo(f(c)). 

Proof. For every b with Ib - f(c)1 < 0, 

If(z) - bl 2: If(z) - f(c)I-lb - f(c)1 > 0 for all z E avo 

It follows that minzE8v If(z) - bl > If(c) - bl. The preceding existence 
theorem is therefore applicable to f(z) - b and furnishes a z E V with 
f(z) = b. 0 

By now the proof of the open mapping theorem itself is trivial: let U be 
an open subset of D, c E U. We have to show that f(U) contains a disc 
about f(c). Since f is not constant around c, there is a disc V centered 
at c with V c U and f(c) fj. f(aV) (thanks to the Identity Theorem). 
Therefore the number 20 := minzE8V If(z) - f(c)1 is positive. From this it 
follows that Bo(f(c)) C f(V) c f(U). 0 

The open mapping theorem has important consequences. Thus for ex­
ample it is immediately clear that a holomorphic function with constant 
real part, or constant imaginary part, or constant modulus is itself constant. 
More generally, the reader should satisfy himself that 

If P(X, Y) E JR[X, Y] is a non-constant polynomial, then every function 
f which is holomorphic in a region G and for which P(~f(z), r;sf(z)) is 
constant, is itself constant. 

The open mapping theorem is frequently also formulated as the 
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Theorem on the preservation of regions. If f is holomorphic and 
non-constant in the region C, then f(C) is also a region. 

Proof According to the Identity Theorem f is nowhere locally constant 
in C, so that by the open mapping theorem the set f(C) is open. As f is 
continuous, the image set inherits the connectedness of C as well. 0 

Our proof of the open mapping theorem goes back to CARATHEODORY 
([5], pp. 139/140). The decisive tool is the mean value inequality hence, 
indirectly, the Cauchy integral formula. It is possible, but admittedly quite 
tedious, to carry through an integration-free proof; cf., say, G. T. WHY­
BURN, Topological Analysis, Princeton University Press, 1964, p. 79. The 
fact that holomorphic functions are locally developable into power series 
admits an elementary proof by means of the open mapping theorem (see, 
e.g., P. PORCELLI and E. H. CONNELL, "A proof of the power series ex­
pansion without Cauchy's formula," Bull. Amer. Math. Soc. 67(1961), 
177-181). 

2. The maximum principle. With the help of Gutzmer's formula the 
maximum principle was derived in 3.2 in the formulation: • 

A function f E O( C) whose modulus experiences a local maximum is 
constant in C. 

This assertion is a special case of the open mapping theorem: namely, 
if there is acE C and a neighborhood U of c in C with If(z)1 :::; If(c)1 for 
all z E U, then 

feU) c {w E C : Iwl :::; If(c)I}· 

The set feU) is then certainly not a neighborhood of f(c), that is, f is not 
an open mapping. Consequently, since C is connected, the open mapping 
theorem implies that f is constant. 0 

If we interpret the real number If(z)1 as altitude above the point z 
(measured perpendicularly to the z-plane), then we get a surface in 1R3 over 
C C C = 1R2, which is occasionally designated as the analytic landscape of 
f. In terms of it the maximum principle may be stated in the following 
suggestive fashion: 

In the analytic landscape of a holomorphic function there are no genuine 
peaks. 

The maximum principle is often used in the following variant: 
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Maximum principle for bounded regions. Let G be a bounded region, 
f a function which is holomorphic in G and continuous on G = G u BG. 
Then the maximum of the function If I over G is assumed on the boundary 
BG ofG: 

If(z)l::; IfioG for all z E G. 

The reader should construct a proof for himself. The hypothesis that 
G be bounded is essential: the conclusion fails for the function h(z) := 
exp(expz) in the strip-like region S := {z E C : -~11" < ~z < ~11"}. Indeed 
in this example Ihlos = 1, but h(x) = exp(eX ) --+ 00 for x E JR, x --+ +00. 

o 

Application of the maximum principle to 1/ f leads straightaway to the 

Minimum principle. Let f be holomorphic in G and let there be a point 
c E G at which If I experiences a local minimum, that is, at which If(c)1 = 
infzEU If(z)1 for some neighborhood U of c in G. Then either f(c) = 0 or 
f is constant in G. 

Minimum principle for bounded regions. Let G be a bounded region, 
f continuous in G and holomorphic in G. Then either f has zeros in G or 
else the minimum over G of If I is assumed on BG: 

If(z)1 ~ min If«()1 
(EoG 

for all z E G. 

Evidently the minimum principle is a generalization of the existence 
theorem for zeros proved in subsection 1. 

3. On the history of the maximum principle. RIEMANN wrote in 
1851 (cf. [RJ, p. 22): 

"Eine harmonische Function u kann nicht in einem Punkt im Innern ein 
Minimum oder ein Maximum haben, wenn sie nicht iiberall constant ist. (A 
harmonic function u cannot have either a minimum or a maximum at an 
interior point unless it is constant.)" BURKHARDT formulated this theorem 
for the real and imaginary parts of holomorphic functions on p.126 of his 
1897 textbook [Bu] (p.197 of the English translation). In his 1906 work 
[Os] OSGOOD also treated the maximum and minimum principles only for 
harmonic functions (p. 652 of the 5th edition, 1928). 

It seems to be difficult to find out when and where the theorem was 
first formulated for holomorphic functions and proved for them without a 
reduction to the harmonic case. Even experts in the history of function the­
ory could not tell me whether the maximum principle occurs in Cauchy's 
work or not. In 1892 SCHOTTKY spoke of "a theorem of function theory" 
(the reader will find further details on this in 11.2.2). C. CARATHEODORY 
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(German mathematician of Greek extraction, 1873-1950, originally an en­
gineer, assistant to A. SOMMERFELD; at Munich from 1924 onward) gave 
his simple proof of the Schwarz lemma in 1912 (p. 110 of [Ca]) by means 
of the maximum principle for holomorphic functions (for this see 9.2.5), 
but in the course of doing so he said nothing about this important theo­
rem. HURWITZ discussed the theorem in his Vorlesungen uber allgemeine 
Funktionentheorie und elliptische Funktionen ([12J, p. 107) which was first 
published in 1922 by Julius Springer, Berlin. 

In 1915 L. BIEBERBACH (1886-1982) wrote in his little Goschen volume 
Einfiihrung in die konforme Abbildung ([3], p. 8): "Wenn f(z) im Inneren 
eines Gebietes G reguliir und endlich ist, so besitzt If(z)1 kein Maximum im 
lnneren des Gebietes. Die Behauptung (bekanntlich eine leichte Folgerung 
des Cauchyschen Integralsatzes) kann auch unmittelbar aus der Gebiets­
treue gefolgert werden. (If f(z) is regular and finite in the interior of a 
region G, then If(z)1 has no maximum there. This assertion (known to 
be an easy consequence of Cauchy's integral theorem) can also be imme­
diately deduced from the open mapping theorem.)" In the second volume 
of his work [4], which appeared in 1927, BIEBERBACH spoke (p. 70) of the 
"principle of the maximum." 

4. Sharpening the WEIERSTRASS convergence theorem. Let G be 
a bounded region, f n a sequence of functions which are continuous on G 
and holomorphic in G. If the sequence fnlaG converges uniformly on aG, 
then the sequence fn converges uniformly in G to a limit function which is 
continuous on G and holomorphic in G. 

Proof According to the maximum principle for bounded regions 

Ifm - fnlG = Ifm - fnlaG 

holds for all m and n. Since fnlaG is a Cauchy sequence with respect to 
the supremum semi-norm I laG, this equality shows that fn is a Cauchy 
sequence with respect to I IG. From the Cauchy convergence criterion 
3.2.1, the continuity theorem 3.1.2 and Weierstrass' convergence theorem 
4.1 the assertion follows. 0 

WEIERSTRASS was aware of this phenomenon of the "inward propagation 
of convergence." As simple consequences let us note 

Corollary 1. Let A be discrete in G, fn E O(G) a sequence which con­
verges compactly in G\A. Then in fact the sequence fn converges compactly 
in the whole of G. 

And 
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Corollary 2. Let there be associated with the sequence fn E O(G) a 
compactly convergent sequence gn E O( G) with a limit function which is 
not identically 0, such that the sequence gnfn converges compactly in G. 
Then the original sequence fn converges compactly in G. 

The reader will have no trouble carrying out the proofs of these, and is 
urged to do so. 

5. The theorem of HURWITZ. This concerns the "preservation of zeros" 
under compact convergence. We first show 

Lemma. If the sequence f n E O( G) converges compactly in G to a non­
constant f, then for every c E G there is an index nc E N and a sequence 
en E G, n ~ nc, such that 

limcn = c and fn(en) = fCc) for all n ~ nco 

Proof We may suppose fCc) = O. By hypothesis f "# 0, so there exists (by 
the identity theorem) an open disc B centered at c with BeG, such that f 
is zero-free in B\ {c}. Since fn converges to f uniformly on 8BU{c}, there 
is an nc such that Ifn(c)1 < min{lfn(z)1 : z E 8B} for all n ~ nco According 
to the minimum principle (alternatively, the existence theorem for zeros in 
1.), each fn (n ~ nc) has a zero Cn in B. Necessarily limn en = c. For 
otherwise there would be a subsequence c~ convergent to a c' E B \ { c} and 
then (continuous convergence) 0 = limf~(cnl) = fCc'), which cannot be.D 

This lemma is quantitatively sharpened by 

Theorem of Hurwitz. Suppose the sequence fn E O(G) converges com­
pactly in G to f E O( G). Let U be a bounded open subset of G with U c G 
such that f has no zeros on 8U. Then there is an index nu E N such that 
for each n ~ nu the functions f and fn have the same number of zeros in 
U: 

L ow(f) = L ow(fn) lor all n ~ nu· 
wEU wEU 

Proof Since I "# 0 and U is compact, the number m := EwEU Ow (f) is 
finite (by the identity theorem). We carry out a proof by induction on m. 
In case m = 0, the number E: := min{lf(z)1 : z E U} is positive. Since 
lin - Ilu < E: for almost all n, almost all In are zerrrfree in U. 

Now consider m > 0 and a zero c E U of f. According to the lemma 
there is an nc and a sequence Cn E U for n ~ nc such that fn(cn) = 0 and 
lim Cn = c. Then for these n there exist h, hn E O( G) such that 

In(z) = (z - cn)hn(z), I(z) = (z - c)h(z). 
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Corollary 2 in 4. above and the fact that lim{z - cn) = Z - c insure that 
the sequence hn converges compactly in G to h. But according to (*), h 
has exactly m - 1 zeros in U and none on aU. Therefore the induction 
hypothesis furnishes an nu 2:: nc so that for each n 2:: nu the function 
hn has exactly m - 1 zeros in U. Then from (*) and the fact that Cn E U 
it follows that for each n 2:: nu the function In has exactly m zeros in U. 

In 13.2.3 we will give a second proof of Hurwitz' theorem by means of a 
theorem of ROUCHE. 

Hurwitz' theorem is always applicable if I i= 0. In that case around 
each zero c of I there is a compact disc BeG such that I is zero-free in 
B\ {c}. It is to be noted that there are sequences of zero-free functions, e.g., 
In{z) := z/n in C \ {O}, which converge compactly to the zero function. 

Naturally a version of Hurwitz' theorem holds as well for a-places (con­
sider the sequence In(z) - a). The theorem of HURWITZ (or even the 
lemma) contains as a special case 

II In is a sequence 01 zero-free holomorphic functions in G which con­
verges compactly in G to I E O( G), then I is either identically zero or is 
zero-free in G. 

This observation has the following consequence: 

Let In: G - C be injective holomorphic functions which converge com­
pactly in G to I : G - C. Then I is either constant or injective. 

Proof. Suppose that I is non-constant and consider any point c E G. Each 
function In - In (c) is zero-free in G \ {c} because of the injectivity of In in 
G. The above observation, applied to the sequence In - In (c) in the region 
G\ {c}, says that 1- I(c) is zero-free in G\ {c}; that is, I(z) i= I(c) for all 
z E G \ {c}. Since c is any point whatsoever in G, this is just the assertion 
that I is injective in G. D. 

This assertion will play an important role in the proof, to be given in 
the second volume, of the Riemann mapping theorem. 

Historical note. HURWITZ proved his theorem in 1889 with the aid of 
ROUCHE'S theorem; cf. "Uber die Nullstellen der Bessel'schen Function," 
(Math. Werke 1, p.268). HURWITZ described his result in the following 
suggestive terms (p.269; here we maintain our earlier notation): 

The zeros 01 I in G coincide with those places at which the roots 01 the 
equations h(z) = 0, h(z) = 0, ... , fv{z) = 0, ... "condense" .. 
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Exercises 

Exercise 1. Let R > 0, J : BR(O) --+ C holomorphic. For p E [0, R) define 
M(p) := sup{IJ(z)1 : Izl = pl. Show that the mapping p t-+ M(P) of [0, R) 
into R. is non-decreasing and continuous. Show that this map is strictly 
increasing if J is not constant. 

Exercise 2. Let G be a bounded region, J and 9 continuous and zero-free 
in G and holomorphic in G, with IJ(z)1 = Ig(z)1 for all z E {)G. Show that 
then J(z) = >.g(z) for some>. E {)E and all z E G. 

Exercise 3. Let G be a region in C, J E O(G). Show that if ~J experiences 
a local maximum at some c E G, then J is constant. 



Chapter 9 

Miscellany 

Wer vieles bringt, wird manchem etwas brin­
gen (He who offers much will offer something 
to many).- J. W. von GOETHE 

As soon as Cauchy's integral formula is available a plethora of themes 
from classical function theory can be treated directly and independently 
of each other. This freedom as to choice of themes forces one to impose 
his own limits; in CARATHEODORY ([5], p. viii) we read: "Die groBte 
Schwierigkeit bei der Planung eines Lehrbuches der Funktionentheorie liegt 
in der Auswahl des Stoffes. Man muB sich von vornherein entschlieBen, alle 
Fragen wegzulassen, deren Darstellung zu groBe Vorbereitungen verlangt. 
(The greatest difficulty in planning a textbook on function theory lies in 
the choice of material. You have to decide beforehand to leave aside all 
questions whose treatment requires too much preparatory development.)" 

The themes selected for this chapter, except for the theorem of RITT 
on asymptotic power series developments, belong to the canonical material 
of function theory. The theorem of RITT deserves to be rescued from 
oblivion: its surprising statement generalizes an old theorem of E. BOREL 
about arbitrarily specifying all the derivatives of an infinitely differentiable 
real function at some point. This classical theorem of real analysis thus 
finds a function-theoretic interpretation. 

§1 The fundamental theorem of algebra 

In chapter 4 (written by this author) of the book Numbers [19] we examined 
the fundamental theorem of algebra and its history in some depth, giving 
among others the proofs of ARGAND and LAPLACE. Here in what follows 
we will present four function-theoretic proofs. 

265 
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1. The fundamental theorem of algebra. Every non-constant complex 
polynomial has at least one complex zero. 

This existence theorem was called by GAUSS the Grundlehrsatz of the 
theory of algebraic equations (cf. his Werke 3, p. 73). Since zeros always 
split off as linear factors (on this point cf. Numbers, chap. 4, §3), the 
theorem is equivalent to 

Factorization theorem. Every polynomialp(z) = aO+alz+·· ·+anzn E 

qz] of positive degree n (i.e., an -I- 0) is representable, uniquely up to the 
order of the factors, as a product 

where CI, ... , Cr E C are different, ml, ... , mr E N\ {O} and n = ml + ... + 
m r · 

For real polynomials p(z) E lR[z] ,p(z) = p(z) and so whenever c is a 
zero, c is also a zero. Of course (z - c)(z - c) E lR[z]. Therefore 

Every real polynomial p(z) of degree n ~ 1 is uniquely expressible as a 
product of real linear factors and real quadratic polynomials. 

By making use of the order function Oz we can formulate the fundamental 
theorem of algebra as an equation: 

Every complex polynomial p of degree n satisfies LZEC oz(p) = n. 

For transcendental entire functions there is no corresponding result. For ex­
ample, we have both 

Loz(exp) = 0 and Loz(sin) = 00. 

zEC zEIC 

Almost all proofs of the fundamental theorem use the fact that polyno­
mials of positive degree converge to 00 uniformly as Izl grows. We make 
this property more precise in the 

Growth lemma. Let p(z) = L~ avzv E qz] be an nth degree polynomial. 
Then there exists a real R > 0 such that for all z E C with I z I ~ R 

1 
(1) 21anllzln ~ Ip(z)1 ~ 2lan llzl n , 

so that lim Ilz(lv)1 = 0 for 0 ~ 1I < n. 
z ..... oo p z 
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Proof We may suppose that n 2": 1. Set r(z) := L~-1 la"llzl". Then 
clearly for all z 

If Izl 2": 1 and v < n, then Izl" ~ Izln-1 and so r(z) ~ Mlzln-1, with 
M := L~-1 lalli. It follows that R := max{l, 2Mlan l- 1} has the desired 
property. D 

The proof just given is elementary in that only properties of the absolute 
value are used in it; consequently, the growth lemma is valid as well for 
polynomials over any valued field. 

2. Four proofs of the fundamental theorem. The first three proofs 
involve reductio ad absurdum; so we assume that there is a polynomial 
q(z) = L~ a"z" of degree n 2": 1 which has no complex zeros. 

First proof (after R. P. BOAS: "Yet another proof of the fundamental the­
orem of algebra," Amer. Math. Monthly 71(1964), 180; only the Cauchy 
integral theorem and the complex exponential function are used). 

For q*(z) := L~a"z" E qz], we have q*(c) = q(c) for every c E e. 
Therefore 9 := qq* E qz] is zero-free and satisfies g(x) = Iq(x)12 > 0 for 
all x E JR. Writing ( := ei'P, 0 ~ rp ~ 27[", we have cosrp = ~(( + (-1). It 
follows that 

(#) {27r drp 1 { d( 1 { (2n-1 
0< Jo g(2cosrp) = i JaJE (g(( + (-1) = i JaJE h(() d(, 

with h(z) := z2ng(z + Z-l); notice that h(z) is a polynomial. Since 9 is 
zero-free in e, h has no zeros in ex. An easy calculation reveals that the 
constant term in h is h(O) = lanl2 =1= o. Therefore Ilh E O(C) and, since 
n 2": 1, so does z2n- 1Ih(z). Consequently according to Cauchy'S integral 
theorem the integral on the right end of (# ) vanishes, a contradiction! [In 
the first German edition of this book the integral f~r g1~) was considered 
instead of (#). By means of the growth lemma and the Cauchy integral 
theorem a contradiction in the form 0 = limr ---+ oo I r d(x) was reached. In -r 9 x 
BOAS's proof "there is no need to discuss the asymptotic behavior of any 
integrals." ] 

The remaining proofs all make use of the growth lemma. 

Second proof (via the mean value inequality). Because q is zero-free, the 
function f := l/q is holomorphic in C. Therefore If(O)1 ~ IflaBr for every 
circle {jBr of radius r > 0 centered at 0 (cf. 7.2.2). Since limlzl---+oo If(z)1 = 
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o according to the growth lemma, we get f (0) 
f(O) = q(O)-l =I O. 

0, in contradiction to 

Third proof (via Liouville's theorem) . As in the second proof we use the 
facts that f := l/q E O(C) and limlzl--->oo If(z)1 = o. But the latter fact 
implies that f is bounded in C, hence by LIOUVILLE it is constant; that is, 
q is constant - which cannot be because n ~ 1. 

Fourth proof (directly, from the minimum principle). Let p(z) := L~ avzv 
be a non-constant polynomial of degree n. Since an =I 0, we can find 
an s > 0 so that Ip(O)1 < ~Ianlsn. The growth lemma insures that if 
we increase s enough we can also have Ip(O)1 < minlzl=slp(z)l. Therefore 
the minimum of Ipi over Bs(O) occurs at some point a E Bs(O). From 
the minimum principle it follows that p( a) = 0 (alternatively, we can also 
conclude this directly from the existence theorem for zeros in 8.5.1). 

3. Theorem of GAUSS about the location of the zeros of derivatives. If 
p( z) is a complex nth degree polynomial and Cl, ••. ,Cn E C its (not necessarily 
distinct) zeros, then 

(1) 
p'(z) 1 1 ~ z - Cv 
p(z) = z - Cl + ... + z - Cn = ~ Iz - Cv 12 ' 

1 

This can be proved by induction on n, since from p(z) = (z - cn)q(z) follows 
p'(z) = q(z) + (z - cn)q'(z) and thus p'(z)/p(z) = q'(z)/q(z) + l/(z - Cn). With 
the help of (1) we quickly obtain: 

Theorem (GAUSS, Werke 3, p.112). Ifcl, ... ,Cn are the (not necessarily dis­
tinct) zeros of the polynomial p(z) E C[z], then for every zero c E C of the 
derivative p' (z) there are real numbers )\1, ... ,.An such that 

n 

C = L .Avcv , .AI :2: 0, ... ,.An :2: 0 , L.Av = 1. 

Proof If c is one of the zeros of p, say Cj, then set .Aj := 1 and .AI.' := 0 for v # j. 
On the other hand, if p(c) # 0, then it follows from (1) that 

and so, with mv := Ic - cv l-2 > 0 and m:= L~ m v, 

mc= Lmvcv. 

Consequently the numbers AI.' := m,,/m have the required properties. 0 
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For any set A c C the intersection of all the convex sets which contain A is 
called the convex hull of A and denoted conv A. One checks readily that 

n n 

COnV{Cl, ... ,Cn } = {z E C: z = LAvcv j Al ~ O, ... ,An ~ 0, LAv = 1}. 

Consequently, the theorem of GAUSS may be expressed thus: 

Every zero of p'(z) lies in the convex hull of the set of zeros of p(z). 

Remark. From (1) it follows that all z E C with p'(z) #- 0 satisfy the inequality 

min Iz - cvl ::; nlp(z)jp'(z)l, 
l:<=;v:<=;n 

which says that inside the circle of radius nlp(z)jp'(z)1 centered at z lies at least 
one zero of p. This information is successfully exploited in the numerical search 
for complex zeros of p via NEWTON'S Method. 

Exercises 

Exercise 1. Let p( z ) E C[ Z 1 be a non-constant polynomial. Using the 
growth lemma and the open mapping theorem (but not the fundamental 
theorem of algebra) show that p(C) = C. 

Exercise 2. Let I be an entire function with only finitely many zeros; let 
these be, each repeated as often as its multiplicity requires, Cll ... , Cn. 

a) Show that the equality ~(W = E;=l z!c; for all z E C \ {Cll ... , en} 
holds if and only if I is a polynomial. 

b) Show by means of an example that for an entire function I, the zeros 
of I' are not generally all to be found in the convex hull of those of 

I· 

§2 Schwarz' lemma and the groups Aut E, 
AutlHI 

The goal of this section is to prove that the automorphisms of the unit 
disc IE and of the upper half-plane 1HI described in 2.3.1-3 are all of the 
automorphisms of IE and 1HI, respectively. The tool used is a lemma con­
cerning mappings of the unit disc which fix o. The result goes back to H. 
A. SCHWARZ. 
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1. Schwarz' lemma. Every holomorphic map f : lE -. lE with f(O) = 0 
satisfies 

If(z)1 ::; Izl for all z E lE, and If' (0) I ::; 1. 

If there is at least one point c E lE \ {O} with If(c)1 = Icl, or if 11'(0)1 = 1, 
then f is a rotation about 0, that is, there is an a E 81 such that 

fez) = az 

Proof f(O) = 0 means that 

for all z E lE. 

g(z) := f(z)/z for z E lE \ {O} , g(O) := f' (0) 

defines a holomorphic function 9 in lE. Since If(z)1 < 1 for every z in lE, 

1 
max Ig(z)1 ::; - for every positive r < 1. 
Izl=r r 

From the maximum principle follows then 

Ig(z)1 ::; l/r for z E Br(O) ,0 < r < 1. 

Letting r -. 1, gives Ig(z)1 ::; 1, that is, If(z)1 ::; Izl, for all z E lE and 
11'(0)1 = Ig(O)1 ::; 1. In case either 11'(0)1 = 1 or If(c)1 = Icl for some 
c E lE \ {O}, then Ig(O)1 = 1 or Ig(c)1 = 1; which says that Igl attains a 
maximum in lE. According to the maximum principle, 9 is then a constant, 
of course of modulus 1. 0 

2. Automorphisms of lE fixing o. The groups Aut lE and Aut lHl. 
For every point c of a domain D in C and every subgroup L of Aut D, the 
set of all automorphisms in L which fix c is a subgroup of L. It is called 
the isotropy group of c with respect to L. In case L = Aut D we denote 
this subgroup by AutcD. For the group AutolE of all center-preserving 
automorphisms of lE we have 

Theorem. Every automorphism f : lE -.lE with f(O) = 0 is a rotation: 

AutolE = {f: lE -.lE,z ~ fez) = az: a E 8d· 
Proof Certainly all rotations belong to AutolE. If conversely f E AutolE, 
then also f- 1 E AutolE and from Schwarz' lemma follow 

If(z)1 ::; Izl and Izl = Ir1(f(z))1 ::; If(z)1 for z E lE, 

that is, If(z)/zl = 1 for all z E lE \ {O}, and so f(z)/z = a E 8 1 . 0 

The explicit specification of all automorphisms of lE is now simple. We 
base it on the following elementary 

Lemma. Let J be a subgroup of Aut D with the following properties: 
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1) J acts transitively on D. 

2) J contains, for some c E D, the isotropy group AuteD. 

Then J = Aut D. 

Proof Consider h E Aut D. On account of 1) there is agE J with 
g(h(c)) = c. From 2) it follows that f := go hE J, so h = g-1 0 f E J. 

Theorem. 

AutlE { aZ+b 2 2 } =----:: : a,b E C, lal -Ibl = 1 
bz+a 

{ ei<p ~z-_W1 : w E lE , 0 ~ cp < 27r} . 

Proof The two sets on the right are equal and constitute a .subgroup J 
of Aut lE which acts transitively on lE (cf. 2.3.2-4). On the basis of the 
preceding theorem AutolE = {ei<P z : 0 ~ cp < 27r} C J and so from the 
lemma it follows that J = Aut lE. 0 

According to 2.3.2 the mapping h 1-+ he' 0 h 0 he of Aut lE into Aut 1HI, 
where he, he' designate the Cayley mappings, is a group isomorphism. 
Since we also have 

{ ~: :: : (~ ~) E 8L(2, R) } 

= {he' 0 ~z+~ ohe: a,b E C, lal 2 -lbl2 = 1} 
bz+a 

as a result of 2.3.2, our theorem above has the 

Corollary. AutlHI = { ~~! ~ : (~ ~) E 8L(2,R)}. 

3. Fixed points of automorphisms. Since the equation ~:$~ = z has 
at most two solutions (unless b = c = 0 and a = d), the automorphisms of 
lE and 1HI other than the identity have at most two fixed points in C. Here 
by fixed point of a mapping f : D --+ C is meant any point p E D with 
f(p) = p. 

Theorem. Every automorphism h oflE (respectively, 1HI) with two distinct 
fixed points in lE (respectively, 1HI) is the identity. 

Proof Because the groups Aut lE and Aut 1HI are isomorphic, it suffices to 
prove the result for lE. Since lE is homogeneous, we may assume that one 
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of the fixed points is O. Then already we know that h(z) = az for some 
a E 81 , by Theorem 2. If there is another fixed point p, that is, one in 
lE \ {O}, then h(p) = ap = p, and so a = 1 and h = id. 0 

As in 2.2.1 let hA E Aut JH[ be the automorphism z 1--+ ~:t~ determined 

by the matrix A = (~ ~) E 8L(2, 1R). The number Tr A := a + 8 is 

called the trace of A. A direct verification shows 

Theorem. For A E 8L(2,1R) \ {±E} the automorphism hA E AutJH[ has 
a fixed point in JH[, precisely when ITr AI < 2. 

All automorphisms hA : JH[ --+ JH[ with hA i- id and ITr AI ~ 2 are there­
fore fixed-point-free in JH[, Among such automorphisms are, in particular, 
all translations z 1--+ z + 2r, r E IR \ {O}. To these translations correspond 
the automorphisms 

(l+ir)z-ir 40 
Zl--+ ,rr 

irz+(I-ir) 

of lE (proof!), which are, of course, fixed-point-free in lE. 

4. On the history of Schwarz' lemma. In a work entitled "Zur Theo­
rie der Abbildung" (from the program of the Federal Polytechnical School 
in Ziirich for the school-year 1869-70; vol. II, pp. 108-132 of his Gesam­
melte Mathematische Abhandlungen) Weierstrass' favorite student H. A. 
SCHWARZ stated a theorem, which for a long time attracted no attention, 
and used it, together with a convergence argument, in a proof of the Rie­
mann mapping theorem. SCHWARZ formulated his proposition essentially 
as follows (cf. pp. 109-111): 

Let 1 : lE --+ G be a biholomorphic mapping of the unit disc lE onto 
a region G in C with 1(0) = 0 E G. Let PI denote the least and P2 the 
greatest values of the distance function Izl, z E BG (cf. the figure below). 
Then 

pdzl :5 I/(z)1 :5 P21z1 for all z E lE. 

c!;;9 o Pl 
PI 

SCHWARZ proved this by examining the real part of the function 
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log(J(z)/z]. His upper (respectively, lower) estimate can be gotten more 
simply by an application of the maximum principle to J (z) / z (respectively, 
to z/J(z)). 

In 1912 CARATHEODORY [Cal recognized the importance for function 
theory of the theorem SCHWARZ had used, ·and suggested (p. 110) that a 
particularly important variant of it be called Schwarz' lemma. The ele­
gant proof offered in section 1, the one generally used nowadays, based on 
the maximum principle, is to be found in the work of CARATHEODORY. 
It occurred earlier in his note "Sur quelques applications du theoreme de 
Landau-Picard," C.R. Acad. Sci. Paris 144 (1907), 1203-1206 (Gesam­
melte Math. Schriften 3, 6-9). There in a footnote CARATHEODORY ac­
knowledges his indebtedness for the proof to Erhard SCHMIDT: "Je dois 
cette demonstration si elegante d'un theoreme connu de M. Schwarz (Ges. 
Abh. 2, p. 108) a une communication orale de M. E. Schmidt. (lowe such 
an elegant proof of a known theorem of M. Schwarz to an oral communi­
cation from M. E. Schmidt)." 

A beautiful application of Schwarz' lemma which is not so well known is 

5. Theorem of STUDY. Let f : lE -+ G be biholomorphic and let Gr .­

f(Br(O)) denote the f-image of the open disc Br(O), 0 < r < 1. Then 

a) If G is convex, so is every Gr , 0 < r < l. 
b) IfG is star-shaped with center f(O), so is every Gr , 0 < r < 1. 

Proof We assume f(O) = 0 (otherwise, replace f(z) with f(z) - f(O)). 
(a) Let p, q E G r , p =1= q, be given. We must show that every point v = 

(1 - t)p + tq, 0 ~ t ~ 1, on the line segment joining p and q also belongs to Gr. 
Let a, bE Br(O) be the f-preimages of p, q. We may suppose the notation such 
that lal ~ Ibl, and then b =1= O. Then too zab- 1 E lE for all z E lE, and so the 
function 

g(z) := (1 - t)f(zab- 1 ) + tf(z) , z E lE 

is well-defined. Because G is convex, g(z) lies in G for every z E E. Therefore a 
holomorphic mapping h : lE -+ lE is well-defined by 

h(z) := rl(g(z)) , z E E. 

Since f(O) = 0, we have g(O) = 0, hence h(O) = O. From Schwarz' lemma 
therefore Ih(z)1 ~ Izl for all z E lE, and in particular 

Since g(b) = (1 - t)f(a) + tf(b) = v and Ibl < r, this says that rl(v) E Br(O), 
so v E f(Br(O)) = Gr , as desired. 

(b) Argue as in (a) but only allow p to be the point f(O). 0 
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Historical note: The theorem just presented is due to Eduard STUDY (German 
mathematician, 1862-1930; Professor at Marburg, Greifswald and, after 1903, 
at Bonn; author of important works on coordinate-free and projective geome­
try; with contributions to algebra and philosophy); it is a special case of a more 
general theorem of his about the convexity of image sets under biholomorphic 
mappings. Cf. pp. 110 ff. of E. STUDY: Konforme Abbildungung einfach­
zusammenhiingender Bereiche, Vorlesungen iiber ausgewiihlte Gegenstiinde der 
Geometrie; 2. Heft, published in collaboration with W. BLASCHKE, Teubner 
(1914), Berlin & Leipzig; see also in this connection G. POLYA and G. SZEGO, 
vol. I, part 3, problems 317, 318 and vol. II, part 4, problem 163. 

The "sehr elementarer Beweis dieses schonen Satzes (very elementary proof 
of this beautiful theorem)" reproduced above was given in 1929 by T. RADO: 
"Bemerkung iiber die konformen Abbildungen konvexer Gebiete," Math. Annalen 
102(1930), 428-429. 

Exercises 

Exercise 1. Prove the following sharper version of Schwarz' lemma: If 
f : E ---> E is holomorphic with oo(f) = n E N, n ;::: I, then 

If(z)1 ::::: Izln for all z E E and If(n)(O)I::::: n! 

Moreover, fez) == azn for some a E 8E if (and only if) either If(n)(O)1 = n! 
or If(c)1 = Icl n for some c E E \ {O}. 

Exercise 2. (SCHWARZ-PICK lemma for E) For z, wEE set 

Iz-wl 
.6.(w, z) := I I· wz-I 

Let f : E ---> E be holomorphic. Prove that 

a) For all w, z E E, .6. (f(w) , fez)) ::::: .6.(w, z). 

b) The following assertions are equivalent: 

i) fEAutE. 
ii) For all w, z E E, .6. (f(w) , fez)) = .6.(w, z). 

iii) There exist two distinct points a, bEE such that .6.(f(a), feb)) = 
.6. (a, b). 

Hint. For each wEE let gw denote the involutory automorphism z f-+ ~;~l 

of E and apply Schwarz' lemma to the mapping hw = gf(w) 0 f 0 gw of E 
into E. 

Exercise 3. (SCHWARZ-PICK lemma for lHl) Set 8( w, z) := I ~=:;;; I for z, w E lHl 
and show that all the conclusions formulated in the preceding exercise, with 
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8 in the role of ~, are valid for holomorphic mappings 1 : 1HI - 1HI. Hint. 
Use the Cayley transformation he : 1HI":::' E and apply the SCHWARZ-PICK 
lemma for E to the composite 9 := he 0 9 0 hc/. 
Exercise 4. a) Show that for every holomorphic mapping 1 : E - E 

JI'(z)J < _1.,--:-::-
1 -J/(z)J2 - 1 _JzJ2 

for all z E E 

and if equality holds here for a single z E E, then in fact equality holds for 
all z and 1 E AutE. 

b) Prove for holomorphic 1 : !HI -1HI assertions like those in a) with the 
inequality 

in the role of (*). 

JI'(z)J 1 --<­
~/(z) - ~z 

Exercise 5. Let g be a subgroup of Aut E which contains AutoK Show that 
either g = AutolE or g = Aut K Hint. Let hw ,1/> denote the automorphism 
z 1-+ ei 1/> ~;~1 of K Whenever hw ,1/> E g so does ha,o: for each a E IR and 
each a E C with JaJ = JwJ. Now consider hlwl,o 0 hlwl,o: E g for arbitrary 
a E lR. 

Exercise 6. Let I: E - 1HI be holomorphic, with 1(0) = i. Show that 

a) ~~I:I :::; J/(z)J :::; ~~I:I for all z E E; 

b) JI'(O)J :::; 2. 

Exercise 7. Let 1 : E - E be holomorphic, with 1(0) = O. Let n E N, 
n ~ 1, ( := e27ri / n . Show that 

for all z E K 

Moreover, if there is at least one c E E \ {O} such that equality prevails 
in (*) at z = c, then there exists an a E BE such that I(z) = azn for all 
z E E. Hint. Consider the function h(z) := nz~-l 2:;=1 f((j z). For the 
proof of the implication I((z) + ... + I((nz) = nazn => I(z) = azn, verify 
that the function k(z) := I(z) - azn satisfies 

for every j E {O, 1, ... , n'- 1}, and consequently Jk(z)j2 < n(1-JzJ2n). 
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§3 Holomorphic logarithms and 
holomorphic roots 

In 5.4.1 holomorphic logarithm functions £(z) were introduced via the re­
quirements that they satisfy exp(£(z)) = z. In 7.1.2 we saw that in the slit 
plane C- the principal branch log z of the logarithm possesses the integral 
representation J[l,zj ~. 

If f is any holomorphic function in a domain D, then any holomorphic 
function g in D which satisfies 

exp(g(z)) = f(z) 

will be called a (holomorphic) logarithm of fin D. Of course for f to possess 
a logarithm in D it must be zero-free in D. In the following we will prove 
existence assertions about holomorphic logarithms, using contour integrals. 
To be able to formulate things conveniently, we work in subsection 2 with 
homologically simply-connected domains. 

From the existence of holomorphic logarithms follows at once the exis­
tence of holomorphic roots - cf. subsection 3; a converse of the theorem on 
roots will be found in subsection 5. In subsection 4 among other things we 
will derive the integer-valuedness of all integrals 2;'i J"( ~«(8 d( over closed 
paths /. 

1. Logarithmic derivative. Existence lemma. If g is a logarithm of 
f in D, which means that f = e9 , then 

(1) g' = 1'/ J. 

Generally, for any zero-free holomorphic function f in D, the quotient l' / f 
is called the logarithmic derivative of f. (This terminology is suggested by 
the dangerous notation g = log f, which one is inclined to use when a log­
arithm of f exists, even though it obscures the non-uniqueness issue.) For 
the logarithmic derivative the product rule (fd2)' = fU2 + hf~ becomes 
a 

Sum formula: 

(fd2)' / hiz = fU h + f~/ h 

Existence lemma. The following assertions about a zero-free holomorphic 
function in a domain D are equivalent: 

i) There exists a holomorphic logarithm of f in D. 

ii) The logarithmic derivative f' / f is integrable in D. 
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Proof i) :::} ii) Any holomorphic logarithm of J is, according to (1), a 
primitive of f' / J. 

ii) :::} i) We may assume that D is a region. Let F E O(D) be a primitive 
of f' / J in D. Then h := J. exp( -F) satisfies h' = 0 throughout D, and so 
for some constant a, necessarily non-zero since J is, we have J = aexp(F). 
Being non-zero, a has the form a = eb for some b E C. Then the function 
9 := F + b satisfies expg = J. 0 

2. Homologically simply-connected domains. Existence of holo­
morphic logarithm functions. A domain D in C in which every holo­
morphic function 9 E O(D) is integrable is called homologically simply­
connected. 1 According to the integrability criterion 6.3.2 this property is 
enjoyed by a domain D exactly when: 

i g«()d( = 0 for all 9 E O(D) and all closed paths, in D. 

On the basis of the Cauchy integral theorem 7.1.2 all star-shaped regions 
in C are homologically simply-connected. There are however many other 
kinds of examples. 

As an important immediate consequence of the existence lemma we ob­
tain 

Existence theorem for holomorphic logarithms. In a homologically 
simply-connected domain every zero-free holomorphic function has a holo­
morphic logarithm. 

Thus in a star-shaped region G, like C or the slit plane C-, every zero­
free holomorphic function J has the form J = eO, g E O(G). Here the 
functions 9 can even be written down explicitly: Fix c E G, choose any b 
with eb = J(c) and for each z E G let ,z be any path in G from c to z. 
Then one such 9 is 

(2) 1 f'«() 
g(z):= 'Y. J«() d( + b. 

It follows in particular that 

(3) 1 f'«() 
J(z) = J(c) exp 'Y. J«() d(. 

IThis concept, which describes a function-theoretic property of domains, is conve­
nient and useful in many considerations. But in reality it is a superfluous concept: 
Because sufficiently detailed knowledge of plane topology would reveal that the homo­
logically simply-connected domains in C are precisely the topologically simply-connected 
ones. This equivalence of a function-theoretic and a topological condition is however not 
particularly relevant in what follows and we won't go into it any further until the second 
volume. 
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These are the natural generalizations of the equations 

logz= r d( 
J[l,z] ( 

(where f(z) := z). 

and z = exp(1og z) 

3. Holomorphic root functions. Let n 2: 1 be an integer, D a domain 
in C. A function q E O(D) is called a (holomorphic)nth root of f E O(D) 
if qn = f throughout D. 

If D is a region and q is an nth root of f f:. 0, then, for ( := exp(27l'i/n), 
the functions q, (q, (2q, ... ,(n-lq are all of the nth roots of f. 

Proof Since f f:. 0, there is an open disc BcD in which f, hence also q, 
is zero-free; so l/q E O(B). If now ij E O(D) is any nth root of f, then 
(ij/q)n = 1 in B. That is, in B the continuous function ij/q takes values 
in {I, (, ... ,(n-l}. By virtue of the connectedness of B, ij/q is therefore 
constant in B: ij = (kq in B for some ° :::; k < n. From the identity 
theorem it follows that ij = (kq throughout D. 0 

Theorem on roots. If 9 E O(D) is a logarithm of f in D, then for each 
n = 1,2,3, ... the function exp(~g) is an nth root of f. 

Proof This is immediate from the addition theorem for the exponential, 
which shows that 

o 

From the existence theorem 1 there now follows immediately an 

Existence theorem for holomorphic roots. If D is homologically 
simply-connected and f E O(D) is zero-free, then for every n 2: 1, f has 
an nth root. 

This is not true of an arbitrary domain: The reader should show that the 
function j(z) := z has no square-root in the annulus {z E C : 1 < Izl < 2}. 

4. The equation f(z) = f(c) exp J-y ~&? d(. In homologically simply­

connected domains J-y ~«(8 d( is path-independent. For general domains 
this integral itself is not path-independent but its exponential is. 

Theorem. Let D be an arbitrary domain, and let f be holomorphic and 
zero-free in D. For any path 'Y in D with initial point c and terminal point 
z, we have 
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1 f'(() 
f(z) = f(c) exp , f(() de· 

Proof. Let [a, b] be the parameter interval of I and choose finitely many 
points a =: to < tl < ... < tn := b and discs U1 , .•. , Un in D in such 
a way that the path IV := II[tv -l, tv] has its trajectory wholly in Uv 
(1/ = 1,2, ... ,n). Compactness of I clearly ensures that this can be done. 
Then (cf. 1.(3)) 

1 :::; 1/ :::; n. 

Since I = 11 + 12 + ... + In, it follows (addition theorem) that 

1 f'(() lIn 1 f'(() fh(b)) f(z) 
exp , f(() d( = v=1 exp 'v f(() d( = fh(a)) = f(c)· 

Corollary. Let f be holomorphic and zero-free in the domain D, and let 
I be an arbitrary closed path in D. Then 

1 f'(() . 
, f(() d( E 27rZZ. 

Proof. Here c = z, so the theorem shows that exp I, ~(W d( = 1. Since 
ker( exp) = 27riZ, the stated result follows. 0 

This corollary will be used in 5.1 to show that the index function is 

integer-valued. In 13.3.2 the integral I, ~m d( will be used to count the 
number of zeros and poles of f. 

5. The power of square-roots. With the help of corollary 4 a converse 
to the theorem on roots in subsection 3 can be proved: 

(1) Let M be an infinite subset of N, f E O(D) a function which is 
nowhere locally identically o. If for each mE M, f has a holomorphic mth 
root function in D, then f has a holomorphic logarithm in D. 

Proof. First we note that f must be zero-free in D. If namely, qm E O(D) 
is an mth root of f, then oAf) = moAqm) at each zED. From which 
follows oAf) = 0, for all zED, since otherwise the right side would be 
arbitrarily large, whereas the hypothesis says that f has no zero of order 
00. 

According to the existence lemma 1 it therefore suffices to show that 
f' / f is integrable in D, Le., that I,(f' / f)d( = 0 for every closed path I 
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in D (recall the integrability criterion 6.3.2). Now from q:::; = I follows 
mq:::;-lq:r, = I' and so 

mEM. 

According to corollary 4 both these integrals lie in 27riZ. The right side 
must therefore vanish for some m as m runs through M, for otherwise 
its modulus is at least 27rm, i.e., it is arbitrarily large. It follows that 
J-y (f' I f)d( = 0, as desired. 0 

We may immediately obtain 

Theorem. Suppose that every zero-free holomorphic function in the do­
main D has a holomorphic square-root in D. Then every zero-free function 
in O{D) also has a holomorphic logarithm and holomorphic nth roots in 
D, lor every n E N. 

Proof Choose M := {2k : kEN} in (I). o 

Remark. The power of (iterated) square-root extraction was impressively 
demonstrated by the technique which A. HURWITZ suggested in 1911 for 
introducing the real logarithm function into elementary analysis; cf. "Uber 
die Einfiihrung der elementaren Funktionen in der algebraischen Analysis," 
Math. Annalen 70(1911), 33-47 [Werke 1,706-721]. 

Exercises 
Exercise 1. Determine all pairs of entire functions II, h which satisfy 
Jt+Jl=l. 

Exercise 2. Let D be an open neighborhood of 0, I : D -+ C a holomor­
phic function with I{O) = O. Show that for any mEN there is an open 
neighborhood U C D of 0 and a holomorphic function g : U -+ C satisfying 
g{z)m = I{zm) for all z E U. 

Exercise 3. Let D1 , D2 be homologically simply-connected domains. Show 
that if Dl n D2 is connected, then Dl U D2 is also homologically simply­
connected. 

Exercise 4. Let D be a domain in C, a E D, I: D -+ C holomorphic with 
oa{f) E N. Prove the equivalence of the following statements: 

i) There is a neighborhood U of a in D and a holomorphic square-root 
for IIU. 
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ii) Oa (f) is an even integer. 

§4 Biholomorphic mappings. Local normal 
forms 

The real function JR. -+ JR., x t-+ x3 is infinitely differentiable and has a 
continuous inverse function JR. -+ JR., y t-+ (/ii, but this inverse function is 
not differentiable at O. This phenomenon does not occur in C : holomorphic 
injections are necessarily biholomorphic (subsection 1). As with functions 
on the line, functions 1 in the plane having 1'(c) =f. 0 are injective in a 
neighborhood of c. We will give two proofs of this (subsection 2): one via 
integral calculus (which is also valid for functions on JR.) and one via power 
series. Taken together this means that a holomorphic mapping 1 is locally 
biholomorphic around every point c where l' (c) =f. o. It is further deducible 
from this that in the small (Le., locally) each non-constant holomorphic 
function 1 has a unique normal form 

1(z) = 1(c) + h(z)n 

provided 1'(c) =f. 0 (subsection 3). Mapping-theoretically this means that 
near c, 1 is a covering map which branches nowhere except possibly at c 
(subsection 4). 

1. Biholomorphy criterion. Let 1 : D -+ C be a holomorphic injection. 
Then D' := 1(D) is a domain in C and 1'(z) =f. 0 for all zED. 

The mapping 1: D -+ D' is biholomorphic and the inverse function f- 1 

satisfies 

for all WED'. 

Proof. a) Since f is nowhere locally constant, the open mapping theorem 
affirms that 1 is open, so D' is a domain; but it follows too that the inverse 
map f- 1 : D' -+ D is continuous, because for every open subset U of D, 
its 1-1-preimage (f-1 )-1 (U), being f(U), is open in D'. 

Because 1 is injective the derivative cannot vanish identically in any disc 
lying in D, so according to the identity theorem its zero-set N(f') is discrete 
and closed in D. Since f is an open mapping, the image M := f(N(f'» 
is discrete and closed in D'. 

b) Consider d E D'\M and set c:= 1-1(d). We have 1(z) = 1(c)+(z­
c)h(z), where h : D -+ C is continuous at c and h(c) = 1'(c) =f. O. For 
z = 1-1(w), WED', it follows that W = d + (f-1(W) - C)h(f-1(w». The 
function q := h 0 f- 1 is continuous at d and q(d) = 1'(c) =f. O. Therefore 
we can transform the last equation into 
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for all wED' near d. 

From which we infer that 1-1 is complex-differentiable at d and that 

(f-l)'(d) = 1/ J'(c) = 1/ J'(f-l(d)) for all d E D' \ M. 

c) By now we know that 1-1 is holomorphic in D' \ M and continuous 
throughout D'. It follows from Riemann's continuation theorem 7.3.4 that 
1-1 E O(D'). The equation (f-l)'(W) . f'(f-l(W)) = 1, which holds in 
D' \ M by b) therefore remains valid throughout D' by continuity. In 
particular, f' (z) =I- 0 for all zED. 0 

In the proof just given the open mapping theorem, the identity theorem 
and Riemann's continuation theorem were all used; in this sense the proof 
is "expensive." But part b) of the proof (a variant of the chain rule) is 
completely elementary. 

2. Local injectivity and locally biholomorphic mappings. In order 
to be able to apply the biholomorphy criterion one needs conditions which 
insure the injectivity of holomorphic mappings. Analogous to the situation 
in lR we have the 

Injectivity lemma. Let I : D -+ C be holomorphic, c E D a point at 
which f'(c) =I- O. Then there is a neighborhood U 01 c with the property that 
the restriction IIU : U -+ C is injective. 

First proof. We will use the fact that derivatives are uniformly approx­
imable by difference quotients; more precisely (cf. lemma 5.3): 

Approximation lemma. II B is a disc centered at c and lying in D, and 
I is holomorphic in D, then 

For the proof of this, note that I(() - f'(cK is a primitive of f'(() - I'(c) 
in D, and so 

I(w) - I(z) - I'(c)(w - z) = 1w 
(f'(() - I'(c))d( for all w,z E B, 

the integration being along the segment [z, w] C B. The standard estimate 
for integrals gives 
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11W 
(f'(() - I'(C))d(1 ::; II' - I'(C)IBlw - zl 

and therewith the inequality (*). o 

The proof of local injectivity is now trivial: If namely f'(c) i= 0, then 
continuity of f' means that for appropriate r > 0, B := Br(c) lies in D and 

II' - I'(C)IB < II'(c)l· 

Then for w, z E B with w i= z we necessarily have f(w) i= f(c), since 
otherwise (*) furnishes the contradiction If' ( c) I < If' ( c) I· Consequently 
fiB: B -+ C is injective. 0 

Second prooj. This one uses the following 

Injectivity lemma for power series. Suppose that j(z) = L all(z - C)II 
converges in B := Br(c), r > 0 and that lall > LII>211Ialllrll-1. Then 
j : B -+ C is injective. -

This is verified by calculating. Consider w, z E B with j(z) = j(w). 
Thus for p := w - c and q := z - c we have 0 = L all(pll - qll). Since 

it follows, in case w i= z, that -al = LII>2 all (pll-l + ... + qll-l) and 
this entails, bearing in mind that Ipi < r aiid Iql < r, the contradiction 
lall ::; LII>2Ialllllrll-1. Therefore whenever j(z) = j(w) with z,w E B, it 
must be true that z = w. 0 

The proof of local injectivity is once again trivial: we consider the Taylor 
series Lall(z-ct of j around c. Since al = f'(c) i= 0 and LII>211Iallltll-1 
is continuous near t = 0, there is an r > 0 with LII>211Ialllrll-f < lad and 
consequently fIBr(c) is injective. - 0 

A holomorphic mapping f : D -+ C is called locally biholomorphic around 
c E D if there is an open neighborhood U of c in D such that the restric­
tion flU: U -+ j(U) is biholomorphic. The biholomorphy criterion and 
the injectivity lemma imply the 

Local biholomorphy criterion. A holomorphic mapping j : D --+ C is 
locally biholomorphic around c ED exactly when f'(c) i= o. 
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Proof. In case f'(c) =I- 0, the injectivity lemma furnishes an open neigh­
borhood U of c in D such that IIU : U ---> e is injective. According to 
the biholomorphy criterion, llU : U ---> I(U) is then biholomorphic. The 
converse follows trivially. 

Example. Each function In : ex ---> e, z ~ zn, n = ±1, ±2, ... is every­
where locally biholomorphic but only when n = ±1 is it biholomorphic. 

3. The local normal form. Suppose I E O(D) is not constant in any 
neighborhood 01 the point c ED. Then we have: 

1) Existence assertion: There is a disc BcD centered at c and a 
biholomoryhic mapping h : B ---> h(B) satisfying 

liB = I(c) + hn , 

with n := v(f, c), the multiplicity 01 I at c. 

2) Uniqueness assertion: II E c D is a disc centered at c and h is 
holomoryhic in E, h'(c) =I- 0 and lor some mEN 

then m = n, and there is an nth root 01 unity e such that h = eh in 
B n E, where hand B are as in 1). 

Proof. ad 1) According to 8.1.4 an equation I(z) = I(c) + (z - c)ng(z) 
holds, in which 1 :::; n := v(f, c) < 00 and 9 is holomorphic in D with 
g(c) =I- O. We choose a neighborhood B of c in D so small that 9 is zero­
free therein. The existence theorem 3.3 for holomorphic roots supplies a 
q E O(B) such that qn = giB. Set h := (z - c)q E O(B). Then (*) holds 
and h'(c) = q(c) =I- 0, since qn(c) = g(c) =I- O. Therefore the biholomorphy 
criterion insures that B can be shrunk a little if necessary so as to have 
h: B ---> h(B) biholomorphic. 

ad 2) In BnE, hn = hm, with h(c) = h(c) = O. Since moreover h'(c) =I- 0 
and h' (c) =I- 0, the order of the zero that each of h, h has at c is 1. Therefore 
n = oc(hn) = oc(hm) = m. Consequently hn = hn prevails in B n E. That 
is, h and h are both nth roots of hn. As the latter is not identically the 
zero function, it follows from 3.3 that h = eh in B n E, for some constant 
e with en = 1. 0 

The representation of I I B in (*) is called the local normal lorm of I near 
c. The reader should compare the results of this subsection with those of 
4.4.3. 
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4. Geometric interpretation of the local normal form. The geomet­
ric significance of the multiplicity v(j, c) becomes clear from the following 
mapping-theoretic interpretation of the existence assertion 3.1: 

Theorem. Let f E OeD) be non-constant near c E D. Then there is 
a neighborhood U of c in D, a biholomorphic mapping u : U ~ lE with 
u(c) = 0 and a linear mapping v : lE -+ V onto a disc V with feU) = V 
and v(O) = f(c), such that the induced map flu: U -+ V factors as follows: 

with n := v(j, c). 

Proof Write d := f(c). According to theorem 3 there is a disc B about c 
lying in D and a biholomorphic mapping h : B ~ h(B) such that fiB = 
d + hn. Since h(c) = 0, there is an r > 0 such that Br(O) c h(B). We set 

Then u : U -+ lE is biholomorphic, with u(c) = 0, p: lE -+ lE is holomorphic, 
and flU = v 0 p 0 u. Because V := v(lE) is a disc centered at v(O) = d, the 
theorem is proved. 0 

Non-constant holomorphic mappings thus behave locally as does the map­
ping lE -+ lE, Z 1-+ zn near O. Note that the neighborhood U of c can be 
chosen "arbitrarily small" and, thanks to the theorem, in each such U there 
are n distinct points which f maps to a common value different from f(c). 
It is then natural to declare that the value of f at c is also realized n-fold. 

Setting U· := U \ c and V· := V \ f(c), the mapping flU· : U· -+ V* 
has, in view of the theorem, the following properties: every point in V* has 
an open neighborhood W C V* whose preimage (jIU*)-l(W) consists of 
n open connected components U1 , •.• , Un on which each induced mapping 
flU" : U" -+ W is biholomorphic (1 ::; v ::; n). This state of affairs is 
expressed in topology as follows: 

The mapping flU* : U* -+ V· is a (unlimited, unbranched) holomorphic 
covering of v· by U* having n sheets. 

Intuitively these n sheets "branch out" from the point c. In the case 
n ::::: 2 (that is, when f is not locally biholomorphic in a neighborhood of 
c), c is a branch point and flU: U -+ V is a branched (at c) holomorphic 
covering. Thus locally everything is just exactly as it is for the mapping 
z 1-+ zn of lE onto lE: the point 0 is a branch point and the covering z 1-+ zn 
of lE \ {O} onto lE \ {O} is unlimited and unbranched. 

5. Compositional factorization of holomorphic functions. If g : 
G -+ G' is a holomorphic mapping then, by virtue of the chain rule, for 
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every holomorphic function h in G' the composite h(g( z)) is holomorphic 
in G. Thus a mapping 

g* : O( G') -> O( G) , h 1-+ hog 

is defined which "lifts" holomorphic functions in G' to hoi om orphic func­
tions in G. It is the work of an instant to verify that 

g* : O(G') -> O(G) is a C-algebra homomorphism and is injective if and 
only if 9 is not constant. 

Every lifted function f = g*(h) is constant on the fibers of g. This 
necessary condition for f to lie in the image set of g* is also sufficient in 
certain important cases. 

Factorization theorem. Let 9 : G -> G' be a holomorphic mapping 
of a region G onto a region G'. Let f be a holomorphic function on G 
which is constant on each g-fiber g-l(W), w E G'. Then there is a (unique) 
holomorphic function h in G' such that g*(h) = f, i.e., h(g(z)) = f(z) for 
all z E G. 

Proof For each w E G', g-l(W) is non-empty and f(g-l(w)) is a single 
point. Denoting this point by h(w), a function h: G' -> G is well defined 
and it satisfies f = hog. We have to show that hE O(G'). 

Being non-constant, 9 is an open mapping (cf. 8.5.1). Consequently 
h-1(V) = g(j-l(V)) is open in G' for every open V C C, proving that h 
is continuous in G'. 

The zero-set N(g') of the derivative of 9 is discrete and closed in G. The 
fact that 9 is an open mapping then entails that the set 

M := {b E G' : g-l(b) C N(g')} 

is discrete and closed in G'. (The reader should check the simple topologi­
cal argument confirming this.) Therefore to prove h is holomorphic in G', 
it suffices, by Riemann's continuation theorem 7.3.4, to prove h is holomor­
phic in G' \ M. Every point v E G' \ M has at least one g-preimage c E G 
at which g'(c) -=I- O. According to the local biholomorphy criterion 2, 9 is 
therefore locally biholomorphic near c, so there is an open neighborhood V 
of v in G' and a holomorphic function g : V -> G such that gog = id on 
V. It follows that hlV = hog 0 g = fog, that is, hE O(V). This shows 
that h is holomorphic in G' \ M and, as noted earlier, completes the proof 
of the theorem. 
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Exercises 
Exercise 1. Let g : D ---> C, h : D' ---> C be continuous, with g(D) cD'. 
Suppose h and hog are holomorphic and h is nowhere locally constant in D. 
Without using exercise 4 of chapter 1, §3, show that g is also holomorphic. 

Exercise 2. The tangent function tan z = ~~~: is holomorphic in the disc 
of radius ~ centered at O. Show that it is locally biholomorphic in this disc 
and write down the power series of the inverse function at O. 

Exercise 3. Show by means of an example that the condition lall > 
2:,,>2 vla"lrv - 1 featuring in the injectivity lemma for power series is not 

ne~;ssary for the injectivity of f(z) := 2:~=1 a"z". 

Exercise 4. For regions G, G in C let h : G ---> G be holomorphic and 
denote by O'(G) the C-vector space {f' : f E O(G)}. Show that: 

a) The C-algebm homomorphism f 1--4 f oh of O(G) into O(G) generally 
does not map the subspace O'(G) into the subspace O'(G). 

b) But the C-vector space homomorphism cp : O(G) ---> O(G) given by 
f 1--4 (f 0 h) . h' does map O'(G) into O'(G). 

c) If h is biholomorphic and surjective, then cp is an isomorphism and 
maps O'(G) bijectively onto O'(G). 

§5 General Cauchy theory 

The integral theorem and the integral formula were proved in 7.1 and 7.2 
only for star-shaped and circular regions, respectively. That's adequate 
for deriving many important results of function theory. But mathematical 
curiosity impels us to find the limits of validity of these two key results. 
Two questions suggest themselves: 

For a domain D given in advance, how can we describe the closed paths 
"( in D for which the Cauchy theorems are valid? 

For what kind of domains D are the integml theorem and/or the integml 
formula valid for all closed paths in D? 

In this section both questions will be treated. The first is satisfactorily 
answered by the so-called principal theorem of the Cauchy theory (subsec­
tions 3 and 4): the necessary and sufficient condition is that the inside of 
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"Y lies in D. Our answer to the second question is only a formal one: the 
theorem saying that such D are just the (homotopically) simply-connected 
domains must await the second volume for its full elucidation. 

We remind the reader of the agreement made at the end of 6.1.1: 

All paths to be considered are piecewise continuously differentiable. 

1. The index function ind-y(z). If "Y is a closed path in C and Z a point 
in C not lying on "Y, we are looking for a measure of how often the path "Y 
winds around the point z. We will show that 

ind-y(z) := -21 .1,. d( E C 
7ft -y." - Z 

is an integer and that it measures this "winding" very well. We already 
know, from theorem 6.2.4, that for every disc B 

ind8B{Z) = { ~ for 
for 

Z EB 
z E C \ B, 

which corresponds to the following intuitive state of affairs: all points on 
the "inside of a circle" are wound around exactly once in the course of a 
(counterclockwise) traversal of the circle, while no point on the "outside of 
a circle" is wound around at all during such a circuit. 

The number ind-y (z) defined by (I) will be called the index (or also the 
winding number) of"Y with respect to z E C \ "Y. Exercise 2 below explains 
the latter terminology. The considerations of this section are based on 
corollary 3.4. 

Properties of the index function. Let "Y be a given, fixed closed path in 
C. Then the following hold: 

1) For every z E C \ "Y, ind-y(z) E Z. 

2) The function ind-y(z), Z E C \ "Y, is locally constant in C \ "Y. 

3) For any closed path "Y. in C having the same initial point as "Y 

in particular, we have for every Z E C \ "Y the rule 
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Proof The first claim follows from corollary 3.4, applied to f(() := (- z. 
The second claim follows from the integer-valuedness and the continuity 
(proof!) of the index function in C \ I. The claims in 3) are trivial to 
verify. 0 

If 1 is a closed path in C, the sets Int 1 := {z E C \ 1 : ind'""l(z) "# O} 
and Ext 1 : = {z E C \ 1 : ind'""l ( z) = O} are called the inside (interior) and 
the outside (exterior) of I, respectively. Because of the different meanings 
the parenthetic terms have in topology we will not use them in the present 
context. 

We have 

(*) C = Int 1 U 1 U Ext I, 

a (disjoint) decomposition of C. Since 1 is locally constant it follows that 

The sets Int 1 and Ext 1 are open in C and their topological boundaries 
satisfy: 8Int 1 C I, 8Ext 1 C I· 

For every open disc B, InWB = B, Ext8B = C \ B and 8Ext8B = 
8Int 8B = 8B. Analogous equalities hold for triangles, rectangles, etc. We 
show more generally that 

The set Int 1 is bounded; the set Ext 1 is never empty and always un­
bounded; more precisely, 

whenever 1 C Br ( c ) . 

Proof The set V := C \ Br(c) is non-empty, connected and disjoint 
from the trace of I, so the index function for 1 is constant in V. Since 
limz ---+oo J'""I tb = 0, it follows that this constant value is 0, that is, V c 
Ext I. The inclusion Int 1 C Br (c) now follows from (*). 0 

For constant paths the inside is empty. 

2. The principal theorem of the Cauchy theory. The following 
assertions about a closed path 1 in a domain D are equivalent: 

i) For all f E O(D) the integral theorem is valid, that is, 

1 f(()d( = o. 
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ii) For all f E OeD) the integral formula 

(1) ind')'(z)f(z) = -21 .1 (f(Z) d(, zED \, 
7rt I' - Z 

is valid. 

iii) The inside Int, of, lies wholly in D. 

The equivalence of i) and ii) is quickly seen: i) '* ii) Introduce, as 
was done in 7.2.2, for fixed zED the holomorphic difference quotient 
gee) := [fee) - f(z)](( - z)-l, (E D \ {z}, whose value at z is defined to 
be g(z) := J'(z). By i), I')' g(()d( = 0 and this yields 

~ 1 fee) d( = fez: 1 ~ = ind (z)f(z) if zED \ ,. 
2m ')'(-z 2m ')'(-z I' 

ii) '* i) Apply the integral formula, for any fixed zED \ , whatsoever, to 
the function h(() := (( - z)f(() E OeD). Since h(z) = 0, it follows that 
I,), f(()d( = o. 

Also the proof of i) '* iii) is very easy: Since (( - W)-l E OeD) as a 
function of ( for each point wEe \ D, it follows that 

ind')'(w) = -21 .1 (d( = 0 
7rt I' - W 

for all wEe \ D, 

that is, Int, c D. 

But the implication iii) '* ii) is not so simple to verify. Here lies the real 
"burden of proof". For a long time people had been searching for a simple 
argument that the inclusion Int, c D has as a consequence the validity of 
Cauchy's integral formula for ,. In 1971 J. D. DIXON in the paper "A brief 
proof of Cauchy's integral theorem," Proc. Amer. Math. Soc. 29(1971), 
625-626 gave a surprisingly simple such proof, which illustrates once again 
the power of Liouville's theorem. Dixon writes: "[We] present a very short 
and transparent proof of Cauchy's theorem. . .. The proof is based on 
simple 'local properties' of analytic functions that can be derived from 
Cauchy's theorem for analytic functions on a disc. . .. We ... emphasize 
the elementary nature of the proof." It is this proof which we now give. 

3. Proof of iii) '* ii) after DIXON. Let f E OeD) and consider the 
difference quotients 

(1) g(w, z) .. = ,-f(,--w,--) -_f--,(--,-z) ..J- () f'() D 
- , W I Z ; 9 z, z:= z, W, z E . 

w-z 
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Because of the (definitional) equation indl'(z) = 2~i I,), f-z, the integral 
formula 2.(1) is equivalent to the formula 

(2) 1 g( (, z )d( = 0 , zED \ 'Y. 

Lemma. The difference quotient 9 formed from any fixed f E OeD) is 
continuous on D x D. The integrated function h(z) := I,), g((, z)d(, ZED, 
is holomorphic in D. 

Proof (1) shows that for each fixed wED, Z f-+ g(w, z) is holomorphic in 
D. Therefore only the continuity of 9 in D x D needs to be proved and 
theorem 8.2.2 does the rest. This continuity is immediate and trivial, from 
the quotient recipe in (1), at each point (a, b) E D x D with a =f:. b. So 
consider a point (c, c) E D x D. Let B be an open disc centered at c and 
lying wholly in D, L al/(z - c)" the Taylor series of f in B. One checks 
easily that for all w, Z E B 

g(W,z) =g(c,c)+ Lal/ql/(w,z), where 
1/;:::2 

1/ 

ql/(w, z) := L(w - c)"-j(z - C)j-1. 
j=1 

Since Iql/(w,z)1 ~ vtl/- 1 whenever Iw-cl < t and Iz-cl < t, it follows that 
for sufficiently small t 

whenever w, z E Bt(c) C B. Since the power series on the right side of this 
inequality is continuous at t = 0, we see that lim(w,z)--+(c,c) g(w, z) = g(c, c). 

D 

Equation (2) will now be proved from Liouville's theorem by demonstrat­
ing that the function h E OeD) admits an extension to an entire function 
ii E O(q which satisfies limz --+ oo h(z) = O. In the outside Ext'Y of'Y we 
consider the function (so-called Cauchy-transform) 

h*(z):= 1 {~~ d( , 

According to 8.2.2, h* E O(Ext'Y) and limz --+ oo h*(z) = O. Since (by defi­
nition of Ext 'Y) I')' ~ = 0 for z E Ext 'Y, it follows that 

h(z) = h*(z) for all zED n Ext'Y. 
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Now the hypothesis Int, c D and the identity C = Int, U, U Ext, have 
as a consequence the identity C = D U Ext,. Consequently the decree 

h z ._ { h(z) for zED 
( ) .- h*(z) for z E Ext, 

well defines an entire function h which is an extension of h. Since the 
inclusion Int, c Br(O) prevails for all sufficiently large r > 0, h and h* 
coincide outside Br(O), for such r, and so like h*, the function h satisfies 
limz -+oo h(z) = O. 0 

Remark. In the second volume we will give a quite short proof of the 
implication iii) ~ i) using Runge's approximation theorem and the residue 
calculus. 

4. Nullhomology. Characterization of homologically simply-con­
nected domains. Closed paths in D enjoying the equivalent properties 
i), ii) and iii) of theorem 2, playa key role in function theory. They are 
said to be nullhomologous in D. This terminology comes from algebraic 
topology and signifies that the path "bounds a piece of area inside D". In 
C X the circular paths, := 8Br (0), r > 0, are not nullhomologous, because 
f.., f(()d( '" 0 for f(z) := liz E O(C X ). 

The Cauchy function theory of a domain D is simplest when every closed 
path in D is nullhomologous in D. Theorem 2 and the results of §3 combine 
to give the following characterization of such domains. 

Theorem. The following assertions about a domain D are equivalent: 

i) D is homologically simply-connected. 

ii) Every holomorphic function in D is integmble in D. 

iii) For every f E O(D) and every closed path, in D 

. I 1 f(() md..,(z)f(z) = -2' -r -de 
7l'Z ..,,,-z zED \ 1,1. 

iv) The inside Int, of each closed path, in D lies wholly in D. 

v) Every unit in O(D) has a holomorphic logarithm in D. 

vi) Every unit in O(D) has a holomorphic square-root in D. 

Proof The assertions i) through iv) are equivalent by theorem 2 and the­
orem 3.2. The equivalence of v) and vi) follows from the theorem on roots 
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3.3 and theorem 3.5. One gets the implicSI.tion ii) =} v) from the existence 
lemma 3.1. 

For the proof of v) =} iv), consider a E C \ D and a closed path 'Y in 
D. The unit I(z) := z - a E OeD) has a holomorphic logarithm in D. 
Consequently, f' (z ) / I (z) = 1/ (z - a) is integrable in D (existence lemma 
3.1). It follows that ind"((a) = 0, and this for every a E C \ D. And that 
says that the inside of 'Y lies in D. 0 

In the second volume we will see, among other things, that D is ho­
mologically simply-connected just when D has no "holes", and that every 
homologically simply-connected proper subset of C is biholomorphic with 
lE (the Riemann mapping theorem). 

Exercises 

Exercise 1. Show with appropriate examples that in general neither Int 'Y 
nor Ext'Y need be connected. 

Exercise 2. Let a, b E JR, a < b, w : [a, b] --+ JR and r : [a, b] --+ JR+ be 
continuously differentiable functions. Set 'Y := re21riw • Show that 

1 1 d( 1 reb) 
-2' -;;- = -2 . log -( ) + web) - w(a) 

1TZ "( ." 1TZ r a 

and use this observation to give a geometric interpretation of the index 
function. 

Exercise 3. a) Let 'Y be a closed path in C \ {O}, n E N and g(z) := zn. 
Show that indgo"((O) = n . ind"((O). 

b) Let D be a domain in C, I: D --+ I(D) a biholomorphic map, c ED, 
'Y a closed path in D \ {c} such that Int 'Y cD. Show that ind,,( ( c) = 
indfo,,((f(c)). Hint. For b): The function 

{
I, z=c 

h(z) := f'(z) . z - c ,z E D \ {c} 
I{z) - I(c) 

is holomorphic in D. 
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§6* Asymptotic power series developments 

In this section G will always denote a region which contains 0 as a boundary 
point. We will show that certain holomorphic functions in G, even though 
in general not even defined at 0 E 8G, can nevertheless be "developed into 
power series" at O. A special role is played by circular sectors at O. These 
are regions of the form 

S = S(r,ex,/3) := {z = Izlei'l' : 0 < Izl < r ,ex < r.p < /3} ,0 < r::::; 00. 

Circular sectors of radius 00 are also called angular sectors. Our principal 
result is a theorem of RITT about the asymptotic behavior of holomorphic 
functions at the apex 0 of such circular sectors (subsection 4). This theorem 
of RITT contains as a special case (subsection 5) the theorem of E. BOREL 

stated in 7.4.1. For the proof of Ritt's theorem the Weierstrass convergence 
theorem is the primary tool; for the derivation of Borel's theorem we will 
need in addition to that the Cauchy estimates for derivatives (cf. subsection 
3). 

As follow-up literature for the themes of this section we mention W. 
WASOW, Asymptotic Expansions for Ordinary Differential Equations, In­
terscience Publishers, New York (1965), esp. chapter III, (reprinted by R. 
E. Krieger, Huntington, New York, 1976). 

As in Chapter 4.4 we use A to designate the IC-algebra of formal power 
series centered at O. 

1. Definition and elementary properties. A formal power series 
L a"z" is called an asymptotic development or representation of f E O(G) 
at 0 E 8G if 

(1) for every n E N. 

A function f E O( G) has at most one asymptotic development at 0, 
since from (1) we get at once the recursion formulas 

[ 
n-l 1 

ao = lim f(z) , an = lim z-n f(z) - L a"z" 
z-+o z-+O 

o 
for n > O. 

We will write f "'G L a"z" when the series is the asymptotic develop­
ment of f at O. Condition (1) for this to happen can be rephrased as 

{
For each n En N there exists f n E O( G), such that 

f(z) = La"z" + fn(z)zn and lim fn(z) = o. 
o z~o 

(1') 
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The existence of asymptotic developments depends essentially on the 
region G. Thus, e.g., the function exp(l/z) E O(C X ) has no asymptotic 
development at OJ but by contrast in every angular sector W := 8(00, !7r+ 
'fI, ~7r - 'fI), 0 < 'fI < !7r, lying in the left half-plane (with aperture less than 
71') we have 

exp(l/z) ""w La"z", in which all a" = O. 

The reader should confirm all this, and also show that (*) is false if 'fI = 0 
is allowed in the definition of W. 

If I E O( G) has a holomorphic extension j in a region G c G with 
o E G, then the Taylor development of j in a neighborhood of 0 is the 
asymptotic development of I at O. By means of the Riemann continuation 
theorem and the equality ao = limz-+o I(z) it follows immediately that: 

110 is an isolated boundary point olG, then IE O(G) has an asymptotic 
development L a"z" at 0 il and only il I is bounded near 0; in that case, 
L a"z" is the Taylor series 01 I around O. 

We will denote by B the set of functions in O( G) which possess asymp­
totic developments at O. 

Theorem. B is a C-subalgebra 01 O( G) and the mapping 

cp : B -+ A , I ~ L a"z", 

where I ""G L a"z", is a C-algebra homomorphism. 

The proof is canonical. To see, e.g., that cp(fg) = cp(f)cp(g), write 
I(z) = L~ a"z" + In(z)zn, g(z) = L~ b"z" +gn(z)zn, where for each n E N, 
limz-+o In(z) = limz-+o gn(Z) = O. For the numbers C" := LI<+A=" altbA 
then, we have 

n 

I(z)g(z) = LC"z" + hn(z)zn, with 
o 

hn(z) := L~~l c"z,,-n + In(z) L~ a"z" + gn(Z) L~ b"z" + zn In (z)gn(z) E 
O(G)j whence clearly limz-+o hn(z) = 0 for each n E N. It follows that 
I 9 E B and I 9 ""G L c"z". Since the series L c"z" with C" thus defined is 
by definition the product of the series L a"z" and L b"z" in the ring A, 
it further follows that cp(fg) = cp(f)cp(g). 0 

The homomorphism cp is generally not injective, as the example exp(l/z) 
"" L L Oz" above demonstrates. In case G := C x, cp is injective but not 
surjective. Cf. also subsection 4. 



296 9. MISCELLANY 

2. A sufficient condition for the existence of asymptotic devel­
opments. Let G be a region with 0 E 8G and the jollowing property: to 
every point z EGis associated a null sequence Ck such that each segment 
[Ck' z] lies wholly in G. Ij then j E O(G) is a function jor which all the 
limits j(I/)(O) := limz-+oj(I/)(z), v E N, exist, the asymptotic development 

f(~) (0) E I zl/ is valid jor j at o. 
1/. 

Proof Choose and fix n (arbitrary) in N. Since limz-+o j(n+l)(z) exists, 
there is a disc B centered at 0 such that Ij(n+l) IBnG :::; M for some finite 
M. Consider any pair c, z with [c, z] c B n G. As in the case of functions 
on intervals in JR, there is for each mEN a Taylor formula 

m j(l/) (c) 
j(z) = L -,-(z - C)" + rm+l(z) 

o v. 

with remainder rm+l(z) given by 

(Integration by parts here will drive an inductive proof on m.) For rm+l 
the standard estimate gives 

If we take m = n and a null sequence of Ck with [Ck, z] c G, these consid­
erations yield in the limit 

I n j(l/) (0) I M 
j(z) - L --, _zn :::; ,Izln+l , valid for all z E B n G. 

o v. n. 

Since M depends on n but not on z, it follows that limz-+o z-n[J(z) -
n f(~) (0) 

Eo I/! zl/] = 0, for each n E N. D 

The hypotheses concerning the limits of the derivatives of j are sug­
gested by the form of Taylor's formula - which leads us to expect that, 
in case j(z) does have the asymptotic development E al/zl/, then v!al/ = 
limz-+o j(I/)(z). The notation j(I/)(O) which we chose for limz-+o j(I/)(z) is 
(merely) suggestive - naturally j(v)(O) is not a derivative. 

The hypothesis imposed on G is fulfilled by every circular sector at O. 

3. Asymptotic developments and differentiation. We consider two 
circular sectors at 0 which have the same radius, S = S(r, Q, (3) and T = 
S(r, ,,(,8). We suppose that S 1= Br(O) \ {O}, i.e., that (3 - Q :::; 211". We 
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will say that T is enveloped by 8, and note this by T c:: 8, if the inclusion 
{z = Izlei'P: 0 < Izl < r,,:::; 'P:::; b} c 8 holds (cf. the figure below). 

Lemma. Let 8, T be circular sectors at 0 with T c:: 8. 8uppose that 9 E 
0(8) satisfies limzE8,z--+o g(z) = O. Then it follows that limzET,z--+o zg'(z) 
=0. 

Proof. There is evidently an a > 0 such that for every point z E T with 
Izl < ~r the compact disc Balzl(z) lies wholly in 8 (e.g., a:= sin'l/l in the 
figure). The Cauchy estimates 8.3.1 yield 

i.e., alzg'(z)l:::; Igl-a-( )' 
aizi z 

for all z E T with Izl < ~r. Since a is constant and by hypothesis the right 
side of the last inequality converges to 0 as z does, the claim follows. D 

Theorem. Let f be holomorphic in the circular sector 8 i- Br(O) \ {O} 
at O. Suppose that f "'8 L a"z". Then l' "'T L,,>1 va"z,,-1 for every 
circular sector T c:: 8. -

Proof. For each n E N there is an fn E O(S) satisfying limzE8,z--+o fn(z) = 0 
and f(z) = L~ a"z" + fn(z)zn. It follows that 

n 

f'(z) = L va"z,,-1 + gn(z)zn-1 , with gn(z) := zf~(z) + nfn(z) E O(S). 
1 

According to the lemma each gn has the requisite limiting behavior, i.e., 
limZET,z--+ogn(z) = O. D 

It now follows quickly that for circular sectors the limit conditions on 
the f(n) in subsection 2 are also necessary. More precisely, we have 

Corollary. If f is holomorphic in the circular sector S at 0 and f "'8 

L a"z", then limzET,z--+O f(n) (z) = n!an for every n E N and every circular 
sector T c:: S. 
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Proof From n successive applications of the theorem we get 

J(n)(z) "'T L v(v- 1)··· (v - n + l)avz v- n . 
v?n 

According to definition 1.(1) this implies that limzET,z--->o J(n)(z) = n!an . 
o 

The corollary just proved is essential to the arguments presented in 
subsection 5. 

4. The theorem of RITT. The question of what conditions a power 
series must satisfy in order to occur as an asymptotic development has a 
surprisingly simple answer for circular sectors S at 0: there are no such 
conditions. For every formal power series L avzv (thus even for such mon­
sters as LVI.' ZV) we will construct a holomorphic function J in S which 
satisfies J '" S L avzv. The idea of the construction is simple: Replace the 
given series by a function series of the type 

00 

J(z) := L avJv(z)zV 
o 

in which the "convergence factors" Jv(z) are to be chosen as follows: 

1) The series should converge normally in S; this requires that Jv(z) 
become small very quickly as v grows. 

2) J "'S Lavzv should hold; this requires that for each fixed v, Jv(z) 
converge rapidly to 1 as z approaches O. 

We will see that functions of the form 

Jv(z) := 1 - exp( -bv/VZ) , with VZ := e~ logz E O(C-), 

have the desired properties if the bv > 0 are properly chosen. To this end 
we need the following 

Lemma. Let S := S(r, -71" + 'l/J, 71" - 'l/J), 0 < 'l/J < 71" be a circular sector at 
o in the slit plane C-. Then the Junction h(z) := 1 - exp( -b/ v'z), bE lR, 
b > 0 is holomorphic in C- and has the Jolla wing properties: 

1) Ih(z)1 ::; b/lv'zl Jar z E S. 

2) limzEs,z--->o z-m(1- h(z)) = 0 Jar every mEN. 

Proof 1) Every z E S has the form z = Izlei'P E C X with 1<p1 < 71" - 'l/J. 
Since 1~<p1 < ~71" and cos x is positive in the interval (-~71", ~71"), and b > 0, 
it follows that w := b/v'z satisfies ~w = be-~ logizi cos ~<P > O. Therefore 
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Ih(z)1 = 11 - exp(-b/JZ)I ::; b/IJZI for z E S, upon recalling (cf. 6.2.2) 
that generally 11 - e-wl ::; Iwl whenever )Rw > O. 

2) We have z-m(1- h(z)) = z-mexp(-b/JZ) and so 

For z E S, I'PI < 1r - 'l/J, so cos ~'P > cos ~(1r - 'l/J) = sin ~'l/J. Since b> 0, it 
follows that 

for z E S. 

Set t := b/ vfzT and note that sin ~'l/J > O. We then obtain 

lim Iz-m(1 - h(z))1 ::; b-2m lim t2me-tsin!-,p = 0 , for every mEN, 
zES,z--->D t--->+oo 

since for q > 0, e- tq decays more rapidly than any power of t as t approaches 
O. 0 

A circular sector S = S(r, a, (3) is called proper if Br(O) \ S has interior 
points, i.e., if (3-a < 21r. [Generally a point x in a subset A of a topological 
space X is called an interior point of A if there is a neighborhood of x in 
X which is wholly contained in A.] We now maintain that 

Theorem of RITT. If S is a proper circular sector at 0, then to every 
formal power series E avzv there corresponds a holomorphic function f in 
S such that f '" S E avzv. 

Proof. If z f---7 eh z rotates S into the circular sector S* and if J* E O(S*) 
satisfies J*(z) "'S' Eavehvzv , then f(z) := J*(e-hz) E O(S) satisfies 
f (z) '" S E av zV. Since S is a proper sector, after such a rotation we may 
assume that S has the form S(r, -1r+'l/J, 1r-'l/J), with 0 < 'l/J < 1r. Obviously 
we need only consider angular sectors, that is, the case r = 00. We set 

bv := (lavlll!)-l if av i= 0, bv := 0 otherwise, II E N. 

Then define fv(z) := 1 - exp(-bv/JZ) and f(z) := E~ avfv(z)zv. Ac­
cording to assertion 1) of the lemma 

for z E S. 

Since E~ ~ ZV converges normally in C, the series defining f converges 
normally in S. It follows from Weierstrass' convergence theorem (cf. 8.4.2) 
that f E O(S). The first sum on the right side of the equation z-n(J(z) -
E~ avzV ) = - E~ av(1- fv(z))z-(n-v) + E~+l avfv(z)zv-n converges to 
o as z converges to 0 through S, because each summand has this property, 
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according to statement 2) of the lemma. For the second sum on the right 
with z E Sand Izl < 1 we have the estimate 

If aIJv(z)ZV-nl :s f lavfv(z)zV-nl :s f Izlv-!-n = 1~ , 
n+l n+l n+l I I 

and therefore this sum also converges to 0 when z converges to 0 through 
S. 0 

Since every convex region G in C with 0 E {)G lies in some proper angular 
sector with vertex 0 (proof!), it follows in particular that RITT's theorem 
remains valid if the S there is replaced by any convex region G having 0 as 
a boundary point. 

In the terminology of subsection 1 we have shown that 

For every proper circular sector at 0 the homomorphism cp : B --t .A is 
surjective. 

Special cases of the theorem proved here were proved by the Ameri­
can mathematician J. F. RITT in "On the derivatives of a function at a 
point," Annals of Math. (2) 18(1916), 18-23. He used somewhat different 
convergence factors fv(z) but indicated (p. 21) that the factors we have 
used, involving Vz in the denominator of the argument of the exponential 
function, were probably the best suited for the construction. On this point 
compare also pp. 41, 42 of WASOW's book. 

From this theorem of RITT we immediately get 

5. Theorem of E. BOREL. Let qQ, ql, q2 .... be any sequence of real 
numbers, 1:= (-r,r), 0 < r < 00 an interval in JR. Then there exists a 
function 9 : I --t JR with the following properties: 

1) 9 is real-analytic in 1\ {O}, that is, 9 is representable by a convergent 
power series in a neighborhood of each point of 1\ {O}. 

2) 9 is infinitely often real-differentiable in I and g(n) (0) = qn for every 
n E N. 

Proof Choose a proper circular sector S at 0 of radius r which contains 
1\ {O}. Theorem 4 furnishes an f E O(S) with f "'8 L ~zv. If we set 
g(x) := rRf(x) for x E 1\ {O}, then 9 : 1\ {O} --t JR is real-analytic and so, 
in particular all the derivatives g(n) : 1\ {O} --t JR exist. Since qn is real, 

lim gCn)(x) = lim fCn)(x) = n!qn = qn for each n E N 
x~Q x~Q n! 

(cf. subsection 3). This shows that gCn) can be extended to a continuous 
function I --t lR by assigning it the value qn at O. Now if u, v : I --t JR are 



§6*. ASYMPTOTIC POWER SERIES DEVELOPMENTS 301 

continuous, u is differentiable in 1\ {O} with u' = v there, then u is also 
differentiable at 0 and u'(O) = v(O). This is an easy consequence of the 
mean value theorem of the differential calculus. Since g(n) is the derivative 
of g(n-l) in 1\ {O}, it follows from the fact just described that this equality 
prevails at 0 too. Consequently, g(n) : I ....... IR is the nth derivative of 
9 = g(O) throughout I. Since g(n) (0) = qn, the theorem is proven. 0 

RITT actually re-discovered the Borel theorem; not until after writing 
his paper (cf. the introduction thereof) did he learn of Borel's dissertation, 
in which in fact only the existence of an infinitely differentiable function 9 
in I with prescribed derivatives at 0 was proven. 

It is hard to understand why, but textbooks on real analysis have scarcely 
picked up on Borel's theorem. You find it in, say, the book of R. NARASIM­
HAN: Analysis on Real and Complex Manifolds, North-Holland (1968), Am­
sterdam, on pp. 28-31 for the case IRn; and set as a problem for infinitely 
differentiable mappings between Banach spaces on p. 192 of J. DIEUDONNE: 
Foundations of Modem Analysis, vol. I, Academic Press (1969), New York 
& London. 

There are as well some quite short real proofs (which however do not 
show that 9 can even be chosen to be real-analytic in I \ {O}). One can, 
e.g., proceed as follows [after H. MIRKIL: "Differentiable functions, formal 
power series and moments," Pmc. Amer. Math. Soc. 7(1956), 650-652]: 
First manufacture - say, via Cauchy's famous exp( -1/x2 ) example - an 
infinitely differentiable function t.p : 1R ....... IR which satisfies t.p = 1 in [-1,1]' 
t.p = 0 in IR \ (-2,2). Then set 

gv(x) := q~ xl.' t.p(rvx) , 
v. 

with positive numbers ro, rl, r2, ... so chosen as to make 

for n = 0, 1, ... , v-I 

and for all v E N. Because t.p has compact support, such choices are possi­
ble. Standard elementary convergence theorems of real analysis show that 
g(x) := Lgv(X) is infinitely differentiable in lR. Since t.p is constant in 
[-1,1]' it follows that for x E [_r~l, r~l] 

g~n)(x) 

g~n)(x) 

qv v-n ( ) 
(v _ n)'x t.p rvx for n = 0,1, ... , v ; and 

o for n > v. 

We see therefore that g~n) (0) = 0 for v i= n and g~n) (0) 
g(n) (0) = qn, for all n E N. 

qn; whence 



Chapter 10 

Isolated Singularities. 
Meromorphic Functions 

Functions with singularities are well known from calculus; e.g., the func­
tions 

~ , x sin ~ , exp ( - :2) ,x E JR \ {O} 

are singular at the origin. Although the problem of classifying isolated 
singularities cannot be satisfactorily solved for functions defined only on 
JR, the situation is quite different in the complex domain. In section 1 we 
show that isolated singularities of holomorphic functions can be described 
in a simple way. In section 2, as an application of the classification we study 
the automorphisms of punctured domains, showing among other things that 
every automorphism of C is linear. 

In section 3 the concept of holomorphic function will be considerably 
broadened - meromorphic functions will be introduced. In this larger func­
tion algebra it is also possible to perform division. Just as for holomorphic 
functions, there is an identity theorem. 

§ 1 Isolated singularities 

If f is holomorphic in a domain D with the exception of a point e ED, i.e., 
holomorphic in D \ {e}, then e is called an isolated singularity of f. Our 
goal in this section is to show that for holomorphic functions there are just 
three kinds of isolated singularities: 

1) removable singularities, which upon closer examination turn out not 
to be singularities at all; 

303 
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2) poles, which arise from reciprocals of holomorphic functions with ze­
ros. In every neighborhood of a pole the function uniformly exceeds every 
bound; 

3) essential singularities, in every neighborhood of which the function 
behaves so erratically that its values come arbitrarily close to every complex 
number. 

Singularities such as the real functions Ixl or x sin ~ have at the origin 
are not to be found in complex function theory. 

In the sequel we will always write simply D \ c instead of D \ {c}. 

1. Removable singularities. Poles. An isolated singularity c of a 
function f E 0 ( D \ c) is called removable if f is holomorphically extendable 
over c (cf. 7.3.4). 

E l Th f . Z2 - 1 z h bl . I·· 1 xamp es. e unctiOns --, -- ave remova e smgu arltIeS at 
z-l eZ-l 

and 0, respectively. 

From Riemann's continuation theorem 7.3.4 follows directly the 

Removability theorem. The point c is a removable singularity of f E 
O(D \ c) if f is bounded in U \ c for some neighborhood U C D of c. 

Thus if c is not a removable singularity of f E O(D \ c), then f is not 
bounded near c. We might then ask whether (z - c)n f is bounded near c 
for a sufficiently large power n EN. If this occurs, then c is called a pole 
of f and the natural number 

m : = min {l/ EN: (z - iff is bounded near c} ~ 1 

is called the order of the pole c of f. The order of a pole is thus always 
positive. Poles of the first order are called simple. For m ~ 1, the function 
(z - c)-m has a pole of order m at c. 

Theorem. For mEN, m ~ 1 the following assertions concerning f E 
O(D \ c) are equivalent: 

i) f has a pole of order m at c. 

ii) There is a function g E O(D) with g(c) =! 0 such that 

f(z) = g(z) 
(z - c)m 

for zED \ c. 
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iii) There is an open neighborhood U 01 c lying in D and an h E O(U) 
which is zero-free in U \ c and has a zero 01 order m at c, such that 
1= l/h in U\c. 

iv) There is a neighborhood U 01 c lying in D and positive finite constants 
M., M· such that lor all z E U \ c 

Prool. i) => ii) Since (z-c)m IE O(D\c) is bounded near c, the removabil­
ity theorem furnishes agE O(D) with 9 = (z - c)m I in D \ c. If g(c) were 
0, then it would follow that 9 has the form (z - c)g, with 9 E O(D) and 
consequently 9 = (z - c)m-l I in D \ c. This would imply that (z - c)m-l I 
is bounded near c and since m - 1 EN, that would violate the minimality 
ofm. 

ii) => iii) Since g(c) =f. 0, 9 is zero-free in some open neighborhood U C D 
of c. Then (z - c)m /g(z) E O(U) furnishes the desired function h. 
_ iii) => iv) If U is chosen smal~ enough, then h has the form (z-crh for an 
hE O(U) with M. := infzEu{lh(z)I-1 } > 0 and M· := sUPzEu{lh(z)I-1} < 
00. Since I/(z)1 = Iz - cl-mlh(z)I-I, the claim follows. 

iv) => i) The inequality I(z - c)m l(z)1 ~ M· for z E U \ c shows that 
(z - c)m J is bounded near c, whereas the inequality I(z - c)m-l/(z)1 :? 
M.lz - cl- l shows that (z - c)m-l I is not bounded near c. Consequently, 
c is a pole of I of order m. 0 

Because of the equivalence between i) and iii) poles arise basically via 
the lormation 01 reciprocals. The equivalence of i) and iv) characterizes 
poles via the behavior 01 the values of I near c. We say that I increases 
unilormly to 00 around c, written limz-+c I(z) = 00, if for every finite M 
there is a neighborhood U of c in D such that infzEU\c I/(z)1 :? M. (The 
reader should satisfy himself that limz-+c I(z) = 00 obtains precisely when 
limn-+oo I/(zn)1 = 00 for every sequence Zn E D \ c with limn-+oo Zn = 
c.) Another equivalent statement is: limz-+c 1/ J(z) = O. Therefore the 
following less precise version ofiv) is a direct consequence of the equivalence 
i) {::> iii): 

Corollary. The function I E O(D \ c) has a pole at c iJ and only il 
limz-+c J(z) = 00. 

2. Development of functions about poles. Let J be holomorphic in 
D \ c and let c be a pole oj I oj order m. Then there exist complex numbers 
bb ... ,bm, with bm =f. 0, and a holomorphic function j in D such that 

(1) I( ) bm bm - l bl 1-( ) \ z = ( )m + ( )m-l + ... + -- + z, zED c. z-c z-c z-c 
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The numbers bi , ... ,bm and the function j are uniquely determined by f. 
Conversely, every function f E O(D \ c) which satisfies equation (1) has 

a pole of order m at c. 

Proof According to theorem 1 there is a holomorphic function 9 in D 
with g(c) =I- 0 and f(z) = (z - c)-mg(z) for all zED \ c. 9 is uniquely 
determined in D\c by f and this equation; hence by continuity it is uniquely 
determined throughout D by f. The Taylor series of gat c can be written 
in the form 

with bm = g(c) =I- 0 and j holomorphic in a disc BcD centered at c. 
Inserting this representation of 9 into the equation f(z) = (z - c)-mg1z ), 
gives (1) in the punctured disc B \ c. We simply use (1) to define f in 
D \ B. The uniqueness claims are clear from the uniqueness of g. Just as 
clear is the converse assertion in the theorem. 0 

The series (1) is a "Laurent series with finite principal part"; such series 
and generalizations of them will be intensively studied in chapter 12. From 
(1) follows 

(2) 
-mb -bi -

J'(z) = ( ):+1 + ... + ( )2 + J'(z). z-c z-c 

Since mbm =I- 0, it is therefore clear that 

If c is a pole of order m ~ 1 of f E O(D \ c), then f' E O(D \ c) has a 
pole of order m + 1 at c; in the development of f' about c no term a/(z - c) 
occurs. 

The number 1 is thus never the order of a pole of the derivative of a holomor­
phic function whose only isolated singularities are poles. We can show a little 
more: there is no holomorphic function with isolated singularities of any kind 
whose derivative has a pole anywhere of first order: 

If f is holomorphic in D \ c and f' has a pole of order k at c, then k ~ 2 and 
f has a pole of order k - 1 at c. 

Proof. We may assume that c = o. From the development theorem we have for 
appropriate h E OeD) and d1 , ... ,dk E C with dk =f. 0 

For every disc B centered at 0 with Ii c D, the fact that f is a primitive of f' 
in D \ 0 yields 
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o = 1 1'd( = 27l"d1 + 1 hd( 
aB aB 

since JaB C" d( = 0 for l/ > 1. But by the Cauchy integral theorem JaB hd( = 0, 
and so it follows that dl = O. Since dk =I- 0, it must be that k > 1. Let H E O(B) 
be a primitive of hlB and define 

F(z) := __ l_dkZ-(k-l) - ... - d2Z- 1 + H(z) 
k-l 

for z E B \ O. Then f' = F', and f = F+ const., in B \ O. Therefore, along with 
F, the function f has a pole at 0, of order k - 1. 

3. Essential singularities. Theorem of CASORATI and WEIER­
STRASS. An isolated singularity c of f E O(D \ c) is called essential if cis 
neither a removable singularity nor a pole of f. For example, the origin is 
an essential singularity of exp(z-l) (cf. exercise 2). 

If f has an essential singularity at c then, on the one hand each product 
( z - c) n f (z ), n EN, is unbounded near c and on the other hand there exist 
sequences Zn E D \ c with lim Zn = c, such that lim f(zn) exists and is 
finite. Using the idea of a dense set introduced in 0.2.3, we can show more: 

Theorem (CASORATI, WEIERSTRASS). The following assertions about a 
function f which is holomorphic in D \ c are equivalent: 

i) The point c is an essential singularity of f. 

ii) For every neighborhood U C D of c, the image set f(U \ c) is dense 
in C. 

iii) There exists a sequence Zn in D \ c with lim Zn = c, such that the 
image sequence f (zn) has no limit in C U { 00 }. 

Proof i) =* ii) by reductio ad absurdum. Assume that there is a neighbor­
hood U C D of c such that f(U\c) is not dense in C. This means that there 
is some Br(a) with r > 0 and Br(a) n f(U \ c) = 0, that is, If(z) - al ~ r 
for all Z E U \ c. The function g(z) := l/(f(z) - a) is thus holomorphic in 
U \ c and bounded there by r- 1 , and so has c as a removable singularity. 
It follows that f(z) = a + l/g(z) has a removable singularity at c in case 
limz -+c g( z) =I 0 and a pole at c in case limz -+c g( z) = o. Thus in either 
case there is no essential singularity at c, contrary to the hypothesis i). 

The implications ii) =* iii) =* i) are trivial. 0 



308 10. ISOLATED SINGULARITIES. MEROMORPHIC FUNCTIONS 

Since non-constant holomorphic functions are open mappings, in the situation 
of the CASORATI-WEIERSTRASS theorem every set I(U \ c) is (in case U is open) 
even open and dense in C. Far more can actually be shown: I(U \ c) is always 
either the whole of C (as in the case f(z) = sin(z-l)) or C with just one point 
deleted (as in the case I(z) = exp(z-l), in which 0 is the one point never taken as 
an I-value). This is the famous great theorem of PICARD, which we can't derive 
here. 

As a simple consequence of the Casorati-Weierstrass theorem we record 
the 

Theorem of CASORATI-WEIERSTRASS for entire functions. If f 
is a transcendental entire function, then for every a E C there exists a 
sequence Zn in C with lim IZnl = 00 and limf(zn) = a. 

This is obviously a consequence of the general theorem and the following 

Lemma. The entire function f E O(q is transcendental if and only if 
the function r E O(C X) defined by r (z) := f(Z-l) has an essential 
singularity at O. 

Proof Let f (z) = E avzv be entire and suppose that 0 is not an essen­
tial singularity of fX. Then for all sufficiently large n E N, zn r (z) = 
Eo avzn- v E O(C X) is holomorphically continuable over O. For these n 
the Cauchy integral theorem yields 

o = { (n r (()d( = L av { C-v d( = 27rian +b 
JaJE 0 JaJE 

which means that f is a polynomial - of degree at most n. 
Conversely, suppose f is not transcendental, that is, f is a polynomial 

ao + a1Z + ... + anzn. Then 

and according to theorem 2 the origin is either a pole (if n > 0) of fX or a 
removable singularity of fX (if n = 0); so in either case 0 is not an essential 
singularity of r . 0 

The lemma is also a direct consequence of theorem 12.2.3, which we will 
prove later. 

4. Historical remarks on the characterization of isolated singu­
larities. The description of poles in terms of growth behavior as well as 
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the series development theorem 2 are to be found as early as 1851 in RIE­
MANN ([R], Art. 13). The word "pole" was introduced in 1875 by BRIOT 
and BOUQUET ([BB], 2nd ed., p. 15). WEIERSTRASS used the phrase 
"auBerwesentliche singuliire Stelle (inessential singular point)" for the oppo­
site of the "wesentlich singuliiren Stellen (essential singular points)" ([W 3], 
p.78). 

It is customary to designate the implication i) * ii) in theorem 3 as 
the CASORATI-WEIERSTRASS theorem. It was discovered in 1868 by the 
Italian mathematician Felice CASORATI (1835-1890, Professor at Padua). 
The proof reproduced here goes back to him ("Un teorema fondamentale 
nella teorica delle discontinuita. delle funzioni," Opere 1, 279-281). WEIER­
STRASS presented the result in 1876, independently of CASORATI. He for­
mulated it thus ([W3], p. 124): 

"Hiernach andert sich die Function f (x) in einer unendlich kleinen Umge­
bung der Stelle c in der Art discontinuirlich, dass sie jedem willkiirlich 
angenommenen Werthe beliebig nahe kommen kann, fUr x = c also einen 
bestimmten Werthe nicht besitzt. (Accordingly the function f(x) varies so 
discontinuously in an infinitely small neighborhood of the point c that it 
can come as close as desired to any prescribed value. So it cannot possess 
a determinate value at x = c.)" 

The CASORATI-WEIERSTRASS theorem for entire functions was known 
to BruOT and BOUQUET by 1859, although their formulation of it ([BB], 
1st ed., §38) is incorrect. The state of the theory around 1882 is beautifully 
reviewed in O. HOLDER'S article "Beweis des Satzes, dass eine eindeutige 
analytische Function in unendlicher Niihe einer wesentlich singuliiren Stelle 
jedem Werth beliebig nahe kommt," Math. Annalen 20(1882), 138-143. 
For a detailed history of the Casorati-Weierstrass theorem and a discus­
sion of priorities, see E. NEUENSCHWANDER, "The Casorati-Weierstrass 
theorem (studies in the history of complex function theory I)," Historia 
Math. 5(1978), 139-166. 

Exercises 

Exercise 1. Classify the isolated singularities of each of the following func­
tions and in case of poles specify the order: 

Z4 

a) (z4 + 16)2' 

1- cosz 
b) sin z 

z 
c) , 

eZ - z + 1 

Z2 - 7r2 

d) . 2 ' SIn z 

1 1 
e) ------

eZ - 1 z - 27ri ' 

f) 1 
cos{l/z)' 
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Exercise 2. Show that the function exp(l/z) E O(C X ) has neither a re­
movable singularity nor a pole at o. 

Exercise 3. Show that a non-removable singularity c of I E O(D \ c) is 
always an essential singularity of exp 0 I. 

Exercise 4. Let c E D open c C, I E O(D \ c), P a non-constant poly­
nomial. Show that c is a removable singularity or a pole or an essential 
singularity of I if and only if it is a removable singularity or a pole or an 
essential singularity, respectively, of Pol. 

§2* Automorphisms of punctured domains 

The results of section 1 permit us to extend automorphisms of D \ c to 
automorphisms of D. It thereby becomes possible to determine the groups 
Aut C and Aut C X explicitly. Furthermore, we can exhibit bounded regions 
which have no automorphisms at all except the identity map (conformal 
rigidity). 

1. Isolated singularities of holomorphic injections. Let A be a dis­
crete and relatively closed subset 01 D and let I : D \ A -+ C be holomorphic 
and injective. Then: 

a) no point c E A is an essential singularity ollj 

b) il c E A is a pole 01 I, then c has order 1 j 

c) il every point 01 A is a removable singularity 01 I, then the holomor­
phic continuation j : D -+ C is injective. 

Proof a) Let B be an open disc containing c and satisfying B n A = {c} 
and D' := D \ (A U B) ¥= 0. Then I(D') is non-empty and open (Open 
Mapping Theorem). Because of injectivity I(B \ c) does not meet the set 
I(D'), consequently is not dense in C. By the CASORATI-WEIERSTRASS 

theorem c is therefore not an essential singularity of I. 
b) Consider a pole c E A of order m 2: 1. There is a neighborhood 

U C D of c with UnA = {c} such that 9 := (1/1)IU is holomorphic and 
has a zero of order m at c (cf. Theorem 1.1). Because I is injective so is 
the function 9 : U \ {c} -+ C \ {O}. Consequently, 9 : U -+ C is injective. 
According to theorem 9.4.1 then g'(c) ¥= OJ that is, m = 1. 

c) Suppose there are two different points a, a' E D with p := j(a) = 
j( a'). Choose disjoint open discs B, B' containing a, a', respectively, and 
satisfying B \ a C D \ A, B' \ a' c D \ A. Then j(B) n j(B') is a 
neighborhood of p and accordingly there exist points b E B \ a, b' E B' \ a' 
with I(b) = I(b'). Since b, b' both lie in D \ A and are unequal, the 
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injectivity of J is compromised. This contradiction proves that no such 
a, a' exist. 0 

2. The groups Aut C and Aut C x • Every mapping C --+ C, Z 1---+ az + b, 
a E C x , b E C is biholomorphic, and in particular a holomorphic injection. 
We show that conversely 

Theorem. Every injective holomorphic mapping J : C --+ C is linear, that 
is, oj the Jorm 

J(z) = az + b, a E C X , bE C. 

ProoJ. Along with J the function r : C X --+ C defined by r (z) := J(Z-l) 
is also injective. Taking D := C, A := {O} in theorem 1a), we learn that 0 
is an inessential singularity of JX E O(CX). According to lemma 1.3 J is 
then a polynomial, and so f' is too. But the injectivity of J forces J' to be 
zero-free, which by the Fundamental Theorem of Algebra means that f' is 
constant, J therefore linear. 0 

Holomorphic injections C --+ C thus always map C biholomorphically 
onto C. It follows in particular that 

Aut C = {f : C --+ C, Z 1---+ az + b : a E C X ,b E C}. 

This so-called affine group of C is non-abelian. The set 

T:= {J E AutC: J(z) = z+b,b E C} 

of translations is an abelian normal subgroup of Aut C. The plane C is 
homogeneous with respect to T. 

The group Aut C being considered here is not to be confused with the 
group of field automorphisms of C. 0 

The mappings z 1---+ az and z 1---+ az- 1 , a E C X , are automorphisms of 
C x. The converse of this observation is contained in the following 

Theorem. Every injective holomorphic mapping J : C x --+ C x has either 
the form 

J(z) = az or J(z) = az- 1 , 

Proof. According to theorem 1, with D := C, A := {O} there are two 
possible cases: 

a) The origin is a removable singularity of J. The holomorphic contin­
uation J : C --+ C is then injective. It follows from the preceding theorem 
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that f has the form fez) = az + b for appropriate a E ex, bEe. Since 
f(e X ) c ex while f( -ba- 1 ) = 0, it follows that b = o. 

b) The origin is a pole (of order 1) of f. Since w I--> w- 1 is an automor­
phism of ex, z I--> g(z) := 1/ fez) is another injective holomorphic mapping 
of ex into itself. Since 0 is a zero of 9 by theorem 1.1, it follows from a) 
that 9 has the form g(z) = dz, dE ex, and so fez) = az- 1 for a := d-1 . 

o 

Holomorphic injections ex --->.e x thus always map ex biholomorphi­
cally onto ex. It follows in particular that 

Aute X { f : ex ---> ex, z I--> az ; a E eX} u 
{ f : ex ---> ex , z I--> az- 1 ; a E eX}. 

This group is non-abelian. It decomposes into two "connected components 
each isomorphic to ex." The component L := {f : ex ---> ex , z I--> 

az ; a E eX} is an abelian normal subgroup of Aut ex and the punctured 
plane ex is homogeneous with respect to L. 

3. Automorphisms of punctured bounded domains. For every sub­
set M of D the set 

AutMD:= {f E AutD: f(M) = M} 

of all automorphisms of D which map M (bijectively) onto itself, consti­
tutes a subgroup of Aut D. If M consists of a single point c, then this is 
none other than the isotropy group of c with respect to Aut D introduced 
in 9.2.2. If D \ M is again a domain, then via restriction to D \ M every 
f E AutMD determines an automorphism of D \ M. A group homomor­
phism from AutMD into Aut(D \ M) is thereby defined. If D \ M has 
interior points in each connected component of D, then this (restriction) 
mapping is injective - for in this case any 9 E AutMD which is the identity 
map on D \ M is necessarily the identity map on D, on account of the 
identity theorem. In particular we have 

If M is relatively closed in D and has no interior, then AutM D is iso­
morphic in a natural way to a subgroup of Aut(D \ M). 

In interesting cases AutMD is in fact the whole group Aut(D \ M). 

Theorem. If D is bounded and has no isolated boundary points, then 
for every discrete and relatively closed subset A of D, the homomorphism 
AutAD ---> Aut(D \ A) is bijective. 

Proof. All that needs to be shown is that for each f E Aut (D \ A) there 
exists an J E Aut AD with f = JI(D\A). Since f and 9 := f- 1 map D\A 
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into D \ A, a subset of the bounded set D, these functions are bounded. 
Since A is discrete and relatively closed in D, f and 9 are bounded and 
holomorphic in a punctured neighborhood of each point of A. By Riemann's 
continuation theorem they extend to holomorphic functions j : D - C, 
9 : D - C. According to theorem I.c) both j and 9 are injective. 

Next we show that j{D) c D. Since j is continuous, j{D) at least lies 
in the closure D of D. Suppose there were a point p E D with j(p) E aD. 
Then p would necessarily lie in A and there would be a disc B around p 
with (B \ p) c (D \ A) because A is discrete. Since j is an open mapping, 
j{B) would be a neighborhood of j{p). Then since j is injective, it would 
follow that 

j{B) \ j{p) = j{B \p) = f{B \ p) CD, 

which says that j(p) is an isolated boundary point of D, contrary to the 
hypothesis that D has no such points. Therefore no such p exists and 
j{D) C D is confirmed. In exactly the same way we show that g(D) cD. 
This established, the composites jog : D - C and 9 0 j : D - C are 
well defined. Since these maps agree with fog = 9 0 f = id on the sense 
subset D\A of D, we have jog = goj = id on D, that is, j E AutD. 
Finally, because j(D \ A) = D \ A, it follows that j{A) = A, meaning that 
j E AutAD. 0 

Example. The group AutlEx of the punctured open unit disc lEx := lE \ 0 
is isomorphic to the circle group 8 1 : 

Proof. As a result of our theorem, Aut lEx = AutolE. Therefore the claim 
follows from theorem 9.2.2. 0 

The theorem proved in this subsection is a continuation theorem for 
automorphisms of D \ A to automorphisms of D, and the boundedness of 
D is essential, as the example D := C, A := {O}, f{z) := liz shows. The 
theorem is likewise false for bounded domains which have isolated boundary 
points: Take, for example, D = lE x (of which 0 is an isolated boundary 
point) and A := {e}, where e E lEx. We then have AutclEx = {id}, by 
virtue of the preceding example; while the automorphism 

z-e 
Zl-> -­

CZ -1 

of lE which interchanges 0 and e restricts to an automorphism of lE x \ {e} 
different from the identity. Cf. also corollary 1 in the next subsection. 

4. Conformally rigid regions. A domain D is called (conformally) rigid if 
its only automorphism is the identity map. We want to construct some bounded 
rigid regions and by way of preparation prove 



314 10. ISOLATED SINGULARITIES. MEROMORPHIC FUNCTIONS 

Theorem. Let A be a finite non-empty subset of EX. Then there is a natuml 

group monomorphism 11" : Aut (JEx \ A) ~ Perm (A U to}) into the permutation 
group of the set A U {OJ. (This permutation group is of course isomorphic to a 
symmetric group @in.) 

Proof Since EX \ A = E \ (A U {O}), we have Aut (lEx \ A) = Aut AU{O}lE from 
theorem 3. Every automorphism f of EX \ A thus maps Au {a} bijectively 
onto itself, that is, induces a permutation 1I"(f) of A U {O}. It is clear that 
the correspondence f >---> 1I"(f) is a group homomorphism 11" : Aut (lEx \ A) -> 

Perm (A U {O}). Because a non-identity automorphism of E can fix at most one 
point (theorem 9.2.3) and A t=- 0, 11" is injective. 

Corollary 1. Each group Aut (EX \ c), c E EX, is isomorphic to the cyclic 
group ®2; the mapping g(z) : = CZz~cl is the only non-identity automorphism 

ofW \ c. 

Proof According to the theorem Aut (EX \ c) is isomorphic to a subgroup of 
Perm {O, c} ;:;;; ®2; on the other hand, 9 does belong to Aut (lEx \ e), by theorem 
2.3.3. 

Corollary 2. Suppose a, bE EX, at=- b. Then Aut (EX \ {a, b}) t=- {id} if and 
only if at least one of the following four relations obtains between a and b: 

a = -b or 2b = a + ab2 - 2 
or 2a = b + ba 

lal = Ibl and a2 + b2 = abel + IbI 2). 

or 

Proof. Because Aut(JEx \ {a,b}) = Aut{O,a,bllE (theorem 3), theorem 9.2.2 insures 

that every f E Aut(JEx \ {a,b}) has the form fez) = ei~ ~;_wl' for appropriate 

r.p E JR, wEE. Now f t=- id is the case precisely when f : {O,a,b} -> {O,a,b} 
is not the identity permutation. Five cases are possible, of which we will discuss 
two: 

f(O) = 0, f(a) = b, feb) = a ¢} fez) = ei'P z , with both ei'Pa = b , ei'Pb = a. 

That occurs exactly when ei2'P = 1, that is, when ei'P = ±l, or equivalently, 
since a t=- b by hypothesis, when a = -b. The second case we consider is: 

. z - b 
f(O) = a, f(a) = b , feb) = 0 ¢} fez) = e''P __ -, 

bz - 1 

with both a = ei'Pb and b(ba - 1) = ei'P(a - b). 

This leads to the case lal = Ibl and a2 + b2 = abel + IW). The remaining three 
cases are treated analogous~y. 

Consequence. The region lE \ {a, ~, n is rigid. 
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Exercises 

Exercise 1. Show that if ! : C x -+ C is holomorphic and injective, then for some 
c E C !(C X ) = C \ c. 

Exercise 2. Show that Aut (C \ {O, I}) is comprised of exactly the following six 
functions: Z f--> Z, Z f--> Z-l, Z f--> 1 - z, Z f--> (1 - Z)-l, Z f--> z(z - 1)-1 and 
Z f--> (z - l)Z-l. 

Exercise 3. Investigate for which Z E IHI the region IHI \ {i, 2i, z} is rigid. 

§3 Meromorphic functions 

Holomorphic functions with poles have played such a prominent role in 
function theory from the beginning that very early a special name was in­
troduced for them. As early as 1875 BRIOT and BOUQUET called such 
functions merom orphic ([BBJ, 2nd ed., p.15): "Lorsqu'une fonction est 
holomorphe dans une partie du plan, excepte en certains poles, nous dirons 
qu'elle est meromorphe dans cette partie du plan, c'est-a-dire semblable 
aux fractions rationnelles. (When a function is holomorphic in part of the 
plane except for certain poles, we say that it is meromorphic in that part 
of the plane; that is to say, it resembles the rational fractions.)" 

Meromorphic functions may not only be added, subtracted and multi­
plies but even - and therein lies their great advantage over holomorphic 
functions - divided by one another. This makes their algebraic structure 
simpler in comparison to that of the holomorphic functions. In particular, 
the meromorphic functions in a region form a field. 

In subsections 1 through 3 the algebraic foundations of the theory of 
meromorphic functions will be discussed; in subsection 4 the order function 
oc will be extended to meromorphic functions. 

1. Definition of meromorphy. A function f is called meromorphic in 
D, if there is a discrete subset P(f) of D (dependent of course on J) such 
that f is holomorphic in D\P(f) and has a pole at each point of P(f). The 
set P(f) is called the pole-set of f; obviously this set is always relatively 
closed in D. 

We remark explicitly that the case of an empty pole-set is allowed: 

The holomorphic functions in D are also meromorphic in D. 

Since P(f) is discrete and relatively closed in D it follows, just as for 
a-places (cf. 8.1.3), that 
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The pole-set 01 each function meromorphic in D is either empty, finite, 
or countably infinite. 

A meromorphic function 1 in D having a non-empty pole-set can't map 
the whole of D into Co In view of corollary 1.1 it is natural and convenient 
to choose the element 00 as the function value at each pole: 

I{z) := 00 for z E P(f). 

Meromorphic functions in D are thus special mappings D ~ C U { 00 }. 

Examples. 1) Every rational function 

h{z):= ao + alZ + ... + amZm , bn =f 0, m,n E N, 
bo + bIZ + ... + bnzn 

is meromorphic in C, the pole-set is finite and is contained in the zero-set 
of the denominator polynomial. 

2) The cotangent function cot rrz = cosrrz/ sin rrz is meromorphic, but 
not rational; its pole-set is countably infinite: 

P{cotrrz) = Z{sinrrz) = Z. 

A function is called meromorphic at c if it is meromorphic in a neighbor­
hood of c. According to the development theorem 1.2 every such function 
1 which is non-zero has a representation 

00 

I{z) = L av{z - ct 
v=m 

around c, with uniquelf determined numbers av E C and m E Z such that 
am =f o. If m < 0, L~ av{z - c)V is called the principal part of 1 at c. In 
case m :::; 0 the principal part of 1 is defined to be o. 

From the expansions sin rrz = (_1)n rr{z - n)+ higher powers of (z - n) 
and cosrrz = {_l)n + {_l)n+l rr{z - n)2/2 + higher powers of (z - n) it 
follows that 

(I) 
1 

rrcotrrz = -- + power series in (z - n), 
z-n 

for every n E Z. 

This equation will be used to obtain the partial fraction series of the cotan­
gent in 11.2.1. 

2. The C-algebra M{D) of the meromorphic functions in D. For 
the totality of meromorphic functions in D there is no generally accepted 
symbol. But recently, especially in the theory of functions of several com­
plex variables, the notation, which we will use, 
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M(D) := {h : h meromorphic in D} 

has gained the ascendancy. Clearly O(D)SM(D). 

317 

Meromorphic functions may be added, subtracted and mUltiplied. If, 
say, f,g E M(D) with pole-sets P(f), peg) are given, then P(f) U peg) is 
also discrete and relatively closed in D and in D \ (P(f) U peg)) each of f 
and g, hence also f ±g and f· g, are holomorphic. For each c E P(f) UP(g) 
there are natural numbers m, n and a neighborhood U of c lying in D with 
un (P(f) U P(g)) = {c}, such that (z - c)m fez) and (z - c)ng(z) are each 
bounded in U \ c. (Cf. theorem 1.1; m = 0 in case c ¢ P(f) and n = 0 in 
case c ¢ P(g).) Then each of the three functions 

(z - c)m+n . [J(z)=!=g(z)] 

is bounded in U \ c. The point c is then either a removable singularity or 
a pole of the various functions f=!=g. Thus the pole-sets of these functions 
are subsets of P(f) U P(g) and as such are discrete and relatively closed in 
D. From this it follows that f=!=g E M(D). The rules of calculating with 
holomorphic functions imply that 

M(D) is a (>algebra (with respect to pointwise addition, subtraction and 
multiplication). The C-algebra OeD) is a C-subalgebra of M(D). For all 
f, 9 E M(D) the pole-sets satisfy 

P( -!) = P(f) , P(f=!=g) c P(f) U peg)· 

P(f=!=g) is generally a proper subset of P(f) U peg). For example, with 
D := C, fez) := liz, g(z) := z - liz we have P(f) = peg) = {O}, but 
P(f + g) = 0 =f:. P(f) U peg); while for fez) := liz and g(z) := z we have 
P(f) = {O}, peg) = 0 and P(fg) = 0 =f:. P(f) U peg). 0 

Like OeD), the C-algebra M(D) is closed under differentiation; more 
precisely (on the basis of results from 1.2): 

Along with f, its derivative l' is also meromorphic in D. These two 
functions have the same pole-set: P(f) = P(f'); and if q is the principal 
part of f at a pole, then q' is the principal part of l' there. 

3. Division of meromorphic functions. In the ring OeD) of holomor­
phic functions in D, division by an element 9 is possible just when 9 is 
zero-free in D. But in the ring M(D) we can - and this is of great advan­
tage - also divide by functions which have zeros. By the zero-set Z(f) of a 
meromorphic function f E M(D) we understand the zero-set of the holo­
morphic function fl(D \ P(f)) E OeD \ P(f)). Clearly Z(f) is relatively 
closed in D and Z(f) n P(!) = 0. 
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Theorem on units. The following assertions about a meromorphic func­
tion u E M(D) are equivalent: 

i) u is a unit in M(D), that is, uu = 1 for some u E M(D). 

ii) The zero-set Z ( u) is discrete in D. 

When i) holds, P(U) = Z(u) and Z(u) = P(u). 

Proof i) ==> ii) The equation uu = 1 immediately implies for c E D 

u(c) = 0 ¢:} u(c) = 00 and u(c) = 00 ¢:} u(c) = 0, 

which means that Z(u) = P(u) and P(u) = Z(U). In particular, being the 
pole-set of a meromorphic function in D, Z ( u) is discrete in D. 

ii) ==> i) The set A := Z(u) U P(u) is discrete and relatively closed in D. 
In D \ A, u := 1/u is holomorphic. Every point of Z(u) is a pole of u (cf. 
theorem 1.1) and every point c E P(u) is a removable singularity (and a 
zero) of u because limz--->c 1/u(z) = O. This means that u E M(D). 0 

On the basis of this theorem the quotient of two elements f, g E M(D) 
exists in the ring M(D) exactly when Z(g) is discrete in D. In particular, 
fig E M(D) for any f,g E O(D) when Z(g) is discrete in D. 

An important consequence of the theorem on units is the 

Corollary. The C-algebra of all meromorphic functions in a region is a 
field. 

Proof If f E M(G) is not the zero element and G is a region, then G\P(f) 
is a region (proof!) and fl(G \ P(f)) is a holomorphic function which is 
not the zero element of O(G \ P(f)). Therefore Z(f) is discrete in G (cf. 
8.1.3) and so by the theorem on units, f is a unit in M(G). That is, every 
element of M(G) \ {O} is a unit. 0 

The field M (q contains the field C( z) of rational functions as a proper 
subfield, since, e.g., exp(z), cot(z) ¢ C(z). 

Every integral domain lies in a smallest field, its so-called quotient field. The 
quotient field of O(G), which consists of all quotients f /9 with f, 9 E O(G) and 
9 =I- 0, consequently lies in the field M(G). A fact which even for G = C is 
not trivial and which we will only be able to prove in the second volume (via 
Weierstrass' product theorem) is: 

The field M (G) is the quotient field of O( G). 

In 9.4.5 we associated to every non-constant holomorphic mapping 9 : G -> G' 
a monomorphic lifting g* : O(G') -> O(G), h t--> hog. We now show that 
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The mappmg g* : O( G') -> O( G) extends to a C.-algebra monomorphism 
g* : M(G') -> M(G) of the field of meromorphic functions in G' into the field 
of meromorphic functions in G. For every h E M(G'), we have P(g*(h)) = 
g-1(P(h)). 

Proof Since 9 is not constant and each set P(h), h E M(G'), is discrete and 
relatively closed in G', the set 9 -1 (P( h)) is always discrete and relatively closed 
in G (see 8.1.3). hog is holomorphic in G \ g-1(P(h)). Since in addition 

lim(h 0 g)(z) = lim h(w) = 00 
%_c w--+g(c) 

for every c E g-1(P(h)), 

we infer that g*(h) := hog is a meromorphic function in G with pole-set 
g-1(P(h)). Evidently the mapping g* so-defined is a C.-algebra monomorphism 
of M(G') into M(G). 0 

Next the Identity Theorem 8.1.1 will be generalized to 

The Identity Theorem for Meromorphic Functions. The following state­
ments about a pair of meromorphic functions f, 9 in a region G are equivalent: 

i) f = g. 

ii) The set {w E G \ P(f) U P(g)) : f(w) = g(w)} has a cluster point in 
G \ (P(f) U P(g)). 

iii) There is a point c E G \ (P(f) U P(g)) such that f(nl(c) = g(nl(c) for all 
nE N. 

Proof If G is a region, G \ (P(f) U P(g)) is also a region. Also f and 9 are each 
holomorphic in the latter region. Therefore the asserted equivalences follow from 
8.1.1. 0 

4. The order function Oc. If J -I- 0 is meromorphic at c, then J has a 
unique development 

00 

J(z) = L av(z - ct with av E C. , m E Z and am -I- 0 
m 

(cf. subsection 1). The integer m which is uniquely determined by this 
equation is called the order of f at c and denoted oc(f). If J is in fact 
holomorphic at c, then this is the order already introduced in 8.1.4. From 
the definition it is immediate that 

For an f which is meromorphic at c: 

1) J is holomorphic at c {:} oc(f) ~ o. 

2) In case m = oc(f) < 0, c is a pole oj f of order -m. 
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The poles of f are therefore just those points where the order of f is 
negative. It is unfortunate that the word "order" has acquired a double 
meaning in connection with meromorphic functions: at a point c, f al­
ways has an order, possibly negative, and it may have a pole, the latter 
being necessarily of positive order. Thus forewarned, the reader will not 
be confused about this in the future. 

As in 8.1.4 we now again have the 

Rules of computation for the order function. For all functions f, 9 
which are meromorphic at c 

1) oc(fg) = oc(f) + oc{g) (product rule); 

2) oc(f + g) ~ min{oc(f), oc{g)}, with equality whenever oc(f) :f oc{g). 

The proof is remanded to the reader. 

Let Me, Oe denote the set of all functions which are meromorphic or holo­
morphic, respectively, at c. Consider two such functions equal if they coincide in 
some (perhaps smaller than the domain of either) neighborhood of c. Oe is an 
integral domain and Me is in a natural way its quotient field. The order function 
introduced above is nothing but the natural extension of the order function of 
Oe to a non-archimedean valuation of Me; on this point cf. 4.4.3. 

Exercises 

Exercise 1. Show that if f is meromorphic in D and has a finite set of poles, 
then there is a rational function h with P{h) = P(f) and (f-h)ID E O{D). 

Exercise 2. a) Prove the equivalence of the following statements about a 
pair of functions f and 9 which are meromorphic in a region G: 

i) f = g. 

ii) The set {w E G \ (P(f) U P{g)) : f{w) = g{w)} has a cluster point 
in G. 

b) Find an example of an f E O{C X ) which is not the function 0 but 
satisfies f{~;) = 0 for all non-zero integers n. 

Exercise 3. Let f E M{C) satisfy If{z)1 $ Mlzln for all z E C \ P(f) with 
IzJ > r, for some finite constants M, r and some n E N. Show that f is a 
rational function. 



Chapter 11 

Convergent Series of 
Meromorphic Functions 

In 1847 the Berlin mathematician Gotthold EISENSTEIN (known to students 
of algebra from his irreducibility criterion) introduced into the theory of 
the trigonometric functions the series 

00 1 

L (z + I))k ' 
k = 1,2, ... 

v=-oo 

which nowadays are frequently named after him. These Eisenstein series 
are the simplest examples of normally convergent series of meromorphic 
functions in C. In this chapter we will first introduce in section 1 the 
general concepts of compact and normally convergent series of meromorphic 
functions. In section 2 the partial fraction decomposition 

1 00 2z 1 00 (1 1) 
7I"cot7l"Z = - + '"' = - + '"' --+--2 ~ z2 - 1)2 Z ~ Z + I) Z - I) 

1 1 

of the cotangent function will be studied; it is one of the most fruitful series 
developments in classical analysis. In section 3 by comparing coefficients 
from the Taylor series of ~~ 2 2z 2 and 71" cot 7I"Z - ! around 0 we secure 

Z - I) 

the famous Euler identities 

00 1 (271" )2n L 1)2n = (_l)n-l 2(2n)! B2n , 
1 

n = 1,2, .... 

In section 4 we sketch Eisenstein's approach to the trigonometric functions. 

§ 1 General convergence theory 

In the definition of convergence of series of meromorphic functions the 
poles of the summands not unexpectedly cause difficulties. Since we want 

321 
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the limit function in any case to be itself meromorphic in D, it is not 
unreasonable to demand that in every compact subset of D only finitely 
many of the summands really have any poles. This "dispersion of poles," 
which will be found to prevail in all later applications, is really the only 
new feature here; everything else proceeds just as in the convergence theory 
of holomorphic functions. 

1. Compact and normal convergence. A series L Iv of functions Iv 
each of which is meromorphic in D is called compactly convergent in D, if 
to each compact KeD there corresponds an index m = m(K) EN such 
that: 

1) For each v ;::: m the pole-set P(Jv) is disjoint from K, and 

2) The series Lv~m IvlK converges uniformly on K. 

The series L Iv is called normally convergent in D if 1) holds but in place 
of 2) the stronger 

prevails. 
Conditions 2) and 2') make sense because, thanks to the "pole-dispersion 

condition" 1), the functions Iv with v ;::: m are all pole-free, hence continu­
ous, in K. Another consequence of this condition is that the set U~ P(J v) 
is discrete and relatively closed in D. It is clear that 1) and 2), or 1) and 
2'), hold for all compact subsets of D if they hold for all closed discs lying 
in D. 

As before, normal convergence implies compact convergence. If all the 
functions I v are actually holomorphic in D, then requirement 1) is vacuous 
and we are back to talking about compact or normal convergence of series 
of holomorphic functions. 

Compactly convergent series of meromorphic functions have meromor­
phic limit functions. More precisely, 

Convergence theorem. Let Iv E M(D) and L Iv be compactly (respec­
tively, normally) convergent in D. Then there is precisely one meromorphic 
function I in D with the following property: 

If U is an open subset 01 D and for some mEN none of the functions Iv 
with v ;::: m has any poles in U, then the series Lv>m IvlU of holomorphic 
functions converges compactly (respectively, normally) in U to an F E 

O(U) such that 

(1) flU = folU +!l/U + ... + fm-llU + F. 

In particular, f is holomorphic in D \ U~ P(Jv), i.e., P(J) c U~ P(Jv). 
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The proof is a simple exercise. Naturally we call the function I the sum 
of the series L: I" and write I = L: I". It should be noted that due to the 
pole-dispersion condition, for every relatively compact subdomain U c D 
equation (1) holds for appropriate m and F E O(U). [Recall that a subset 
M of a metric space X is called relatively compact in X if its closure M 
in X is compact.] You can quickly develop a sound sense for calculating 
with series of meromorphic functions by just keeping in mind the following 
simplifying rule of thumb: 

In every relatively compact subdomain U 01 D, after subtraction 01 finitely 
many initial terms what remains is a series 01 functions which are holo­
morphic in U and this series converges compactly (respectively, normally) 
to a holomorphic function in U. 

2. Rules of calculation. One confirms in a microsecond that: 

II 1= L: I", 9 = L: g" are compactly (respectively, normally) convergent 
series 01 meromorphic functions in D, then lor every a, bEe the series 
L: (al" + bg,,) converges compactly (respectively, normally) in D to al + bg. 

If I" E M(D), and the series L: I" converges normally in D, then so 
does everyone of its subseries; likewise we have (cf. 3.3.1): 

Rearrangement theorem. II I" E M(D) and L:~ I" converges nor­
mally in D to I, then lor every bijection T : N --+ N the rearranged series 
L:~ ITC") converges normally in D to I. 

Also valid is the 

Differentiation theorem. II I" E M(D) and L: I" = I converges com­
pactly (respectively, normally) in D, then lor every k ;:::: 1 the k-times 
term-wise differentiated series L: I~k) converges compactly (respectively, 
normally) in D to ICk). 

Proof It suffices to consider the case k = 1. Given an open and relatively 
compact set U CD, choose m so large that I" is holomorphic in U for every 
v ;:::: m. Then L:,,>m I"IU converges compactly (respectively, normally) 
in U to a function -F E O(U) for which 1.(1) holds. We have I~IU = 
(f"IU)' E O(U) and by 8.4.2 the series L:,,>m I~IU converges compactly 
(respectively, normally) in U to F' E O(Ur: This establishes that L: I~ 
converges compactly (respectively, normally) throughout D. Due to 1.(1), 
its sum 9 E M(D) satisfies 

glU = I~IU + ... + 1:n-lIU + F' = (folU + ... + Im-li U + F)' = (flU)'. 
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This proves that 9 = f'. o 

There is no direct analog of the theorem in 8.4.2 on products of series. To see 
this, assume flJ.,9v E M(D), f = 'LJIJ. and 9 = E9 ... are normally convergent 
in D and form a product series E h>., in which the h>. run through all the 
products f1J.9 ... exactly once. In general there is no guarantee that the sequence h>. 
satisfies the "pole-dispersion condition." However E h>. does converge normally 

in D \ UIJ. • .,(P(fIJ.) U P(9 ... ». 
3. Examples. For any r > 0 the inequalities 

for k ? 1 , n EN, Izl :::; r < n 

hold. From them we infer for K := Br(O) the estimates 

Iz~n - ~IK:::; n(nr_r) 

I (z ~ n)k IK :::; (n ~ r)k 

for Inl > r ; 

for k ? 1 , n > r. 

Since the series E n-k (k > 1) and E(n(n - r»-1 converge, and since 
every compactum in C lies in some disc Br(O), we see that (cf. 3.3.2): 

The four series 

00 (1 1) 00 (1 1) I: z+v--;:; ,I: z-v+-;:; 
1 1 

00 1 00 1 

, I: (z + v)k ' I: (z - v)k o 0 

(where k ? 2) are normally convergent in C to meromorphic Junctions. 

Addition of the first two of these series shows that f: 2 2z 2 is also 
1 z - v 

normally convergent in C. 

Besides the series E;;" J v, one has to consider more general series of the 
form 

00 -1 00 -1 -1 

I:Jv:= I:fv+ L:Jv, where'"' Jv means lim '"' Jv. L..J n-+oo L..J 
-00 -00 o -00 -n 

Such a series of functions is said to converge (absolutely) at c E C if both 
the series E:::!o Jv(c) and E;;" Iv (c) converge (absolutely). Compact or 
normal convergence of E~oo Iv means compact or normal convergence of 

both of E:::!o Iv and E;;" Iv. Such generalized series will playa significant 
role later (cf. 12.3.1) in the theory of Laurent series. 
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From the preceding it is now clear that 

The series of meromorphic functions in C given by 

and 
00 1 
~ k,k~2 
L.J (z + v) 
-00 

00 

are each narmally convergent in C. (The standard abbreviation L' : = 
-1 00 

L + L is being used here.) 
-00 0 

Exercises 

Exercise 1. Show that the series L:,,?:1 <-zlf,,-l converges compactly in C 
but not normally. 

Exercise 2. Show that the following series are normally convergent in C: 

a) L:::o (z~~n + 1) 
b) L:~=1 CZ~:)2 -1- ~). 

Exercise 3. Set an := n~1 for n ~ 2. Show that: 

a 00 _1_ +...!... n L { ( )k} 
) L:n=2 z-an an L:k=O an 

is normally convergent in E and diverges at every point of C \ E; 

b) L:~=2{z_lan +L:~=o(~)k(I~Z)k+l} 
is normally convergent in C \ {I}. 

§2 The partial fraction development of 
1T cot 1TZ 

On the basis of 1.3 the equations 

. nil 00 (1 1) 1 00 2z 
Cl Z := hm -- = - + -- + -- = - + 

() n--+oo L Z + v z L z + v z - v z L Z2 - v2 
-n 1 1 

involve series of meromorphic functions which converge normally in C and 
so by the convergence theorem 1.1 the function Cl thus defined is mero­
morphic in C. For its esthetic and suggestive value we write 
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00 n 

'" e:= lim "'; ~ n--+oo~ 
-00 -n 

this is the so-called "Eisenstein summation." Thus 

00 1 
cl(Z) = '" e-' LJ z+v 

-00 

(One should note that E~oo z!" does not exist according to the conven­
tions established in 1.2.) Also we have 

Cl(Z)=-+'" ---1 00 (1 1) 
Z ~ z+v v 

-00 

The study of this function is the central concern of this section. We begin 
by characterizing the cotangent function. 

1. The cotangent and its double-angle formula. The identity 
7rcot 7rz=el(z). The function 1Tcot1T Z is holomorphic in C \ IE and every 
point me IE is a first-order pole at which the principal part is (z - m)-l; 
see 10.3.1(1). Furthermore this is an odd function and it satisfies (see 5.2.5) 
the 

Double-angle formula 

21T cot 21TZ = 1T cot 1TZ + 1T cot 1T(Z + 1), 

We will show that these properties characterize the cotangent. 

Lemma. Let the function 9 be holomorphic in C \ IE and have principal 
part (z - m)-l at each mE IE. Suppose further that 9 is an odd function 
and satisfies the duplication formula 

2g(2z) = g(z) + g(z + 1). 

Then g(z) = 1T cot 1TZ for all Z E C \ IE. 

Proof The function h(z) := g(z) -1Tcot1TZ is entire and odd and satisfies 

(*) 2h(2z) = h(z) + h(z + 1) , h(O) = O. 

Were h not identically 0, the maximum principle 8.5.2 would furnish a 
c E B2(0) such that Ih(z)1 < Ih(c)1 for all z E B2(0). Since both 1c and 
1(c + 1) lie in B2 (0), it would follow that 
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Ih(~ c) + h(~ c+~) 1 ::; Ih(~ c) 1 + Ih(~(c+ 1)) 1 < 2Ih(c) I, 

in contradiction with (*). Therefore h must indeed be the function O. 0 

Now follows quickly the 

Theorem. The cotangent function has in C \ Z the series representations 

(1) 
00 1 

rrcotrrz = cl(Z) = Le-­
z+v 

-00 

1 00 (1 1) ~+L' z+v-~ 
-00 

1 00 2z 
= ~ + L Z2 -v2 ' 

1 

Proof From the definition of Cl we immediately infer that it is holomorphic 
in C \ Z and has principal part (z - m)-1 at each m E Z. It also follows 
directly from that definition that Cl (-z) = -Cl (z). And we verify by 

routine algebra that the partial sums sn(z) = ~ + L~ {z!v + z~v } satisfy 

sn(z) +sn(z+~) = 2s2n (z) + 2z + ~n + l' 

from which, after passage to the limit on n, we acquire the duplication 
formula 2Cl(2z) = cl(Z) +cl(Z+ ~). The preceding lemma thus guarantees 
that cl(Z) = rrcotrrz. 0 

The equation (1) is called the partial fraction representation of rr cot rrz. 
A second, quite different proof of it, which goes back to EISENSTEIN, will 
be given in 4.2. 

2. Historical remarks on the cotangent series and its proof. The 
partial fraction series for rr cot rrz was quite familiar to EULER; by 1740 he 
knew the more general formula ("De seriebus quibusdam considerationes," 
Opera Omnia (1) 14, 407-462) 

rr cos[rr(w - z)/2n] 
:;:;: sin[rr(w + z)/2n]- sin[rr(w - z)/2n] 

1 ~ [2W 2Z] 
~ + ~ (2v - 1)2n2 - w 2 - (2v)2n2 - z2 ' 

which for n := 1, w := -z becomes the cotangent series. In 1748 he 
incorporated the cotangent series into his Introductio (cf. [E], § 178 bottom). 



328 11. CONVERGENT SERIES OF MEROM ORPHIC FUNCTIONS 

The double angle formula for the cotangent was used as early as 1868 
by H. SCHROTER to get the partial fraction series "in the most elemen­
tary way"; cf. "Ableitung der Partialbruch- und Produkt-Entwickelungen 
fUr die trigonometrischen Funktionen," Zeitschr. Math. u. Physik 13, 254-
259. The elegant proof of the equality 7rcot7rZ = cl(Z) reproduced in sub­
section 1 was published in 1892 by Friedrich Hermann SCHOTTKY in a now 
forgotten paper "Uber das Additionstheorem der Cotangente ... ," Jour. 
fUr Reine u. Angew. Math. 110,324-337; cf. in particular p. 325. Gustav 
HERGLOTZ (German mathematician, 1881-1953; from 1909-1925 Professor 
at Leipzig, thereafter at Gottingen; teacher of Emil ARTIN) observed that 
in Schottky's proof one doesn't need the maximum principle at all. Because 
it is elementary to prove the 

Lemma (HERGLOTZ). Every function h which is holomorphic in a disc 
Br(O), r> 1, and satisfies the duplication formula 

(*) 2h(2z) = h(z) + h(z + ~), whenever z, Z + ~,2z all lie in Br(O), 

is constant. 

Proof. From (*) follows 4h'(2z) = h'(z) + h'(z + ~). Choose 1 < t < rand 
let M denote the maximum of Ih'I in the compact disc Bt(O). We notice 
that ~z and ~z + ~ lie in Bt(O) whenever z does and we apply the above 
identity involving h' with ~z in the role of Z; it yields, for all z E Bt(O) 

4Ih'(z)1 ~ Ih'(~z) I + Ih'(~z + ~) I ~ M + M. 

Therefore 4M ~ M + M, M = O. That is, h' = 0; so h is constant, in 
Bt(O) hence throughout Br(O). 0 

This proof, which makes a factor of 4 out of the 2, is called the HER­
GLOTZ trick; it furnishes particularly easy access to the partial fraction 
representation of the cotangent in C. HERGLOTZ used this trick in his lec­
tures but never published it. The first explicit appearance of it in print was 
in the 1950 original German edition of CARATHEODORY [5], pp. 268-271; 
besides this it has occurred in some 1936 mimeographed lecture notes of 
S. BOCHNER at Princeton on functions of several complex variables. And 
ARTIN had used the Herglotz trick in connection with the gamma function 
in his little monograph The Gamma Function, Holt, Rinehart and Winston 
(1964), New York (see p. 26), whose German original appeared in 1931. 

It may be noted that equation 1(1) can be secured for real z somewhat more 
immediately: The function h satisfying the duplication formula (*) is real-valued 
and continuous on R. and, as the difference of two odd functions, it is odd. Given 
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r 2: 1, let M denote the maximum of \h\ over the interval [-r, r]. If M were 
positive, then h(O) = 0 and h( -x) = -h(x) for all x would insure the existence 
of a smallest positive real number 2t ~ r with \h(2t)\ = M. The identity (*) 
would yield 2M ~ \h(t)\ + \h(t + ~)\ and the fact that t, t + ~ E [-r, r] would 
give \h(t)\ ~ M and \h(t + ~)\ ~ M as well; from which \f(t)\ = M would follow, 
in violation of the minimality of t. Therefore it must be that M = 0, and since 
r 2: 1 is arbitrary, this says that h = 0 throughout R This verifies 1(1) for real 
z. But to get the formula for all complex z from this we would have to invoke 
the Identity Theorem. 

3. Partial fraction series for . ~2 and~. Noting the iden-sIn 1rZ Sln1rZ 
tity (cot Z)' = -(sin z)-2 and applying the differentiation theorem 1.2 to 

the normally convergent series'; + I' ( Z~1I -~), we deduce from the 
-00 

equation c 1 (z) = 7r cot 7r Z the classical partial fraction development 

(1) 
7r2 00 1 

sin2 7rz = L (z + 11)2· 
-00 

Another differentiation yields 

(2) 
00 

3 cot 7rZ '"' 1 
7r sin27rz = ~ (z + 11)3· 

-00 

From the identities 7rtan ~7rZ = 7rcot ~7rZ - 27rcot7rz (cf. 5.2.5), and 
7r cot 7rZ = cl(Z) it follows that 

(3) 1 ~ 4z 
7rtan 27rZ = ~ (2 )2 2· o 11+1 -z 

The formula sin1r1rz = 7rcot7rZ + 7rtan~7rz (cf. 5.2.5) further supplies us 
with the equation 

(4) _7r __ ~ + ~(-lt 2z 
sin7rz - Z ~ Z2 -112 . 

1 

From (4) and the obvious relation ~ = _+1 + _1_ we obtain the classical z -v z" z-v 
partial fraction development 

(5) 
_7r __ 00 (-1)" 
sin 7r Z - L Z + II . 

-00 

In (5) we may group the summands corresponding to indices II and 
- (II + 1), for II EN, and apply the identity cos 7r Z = sin 7r( Z + ~) to verify 
that 



330 11. CONVERGENT SERIES OF MEROMORPHIC FUNCTIONS 

(6) _71" __ 2~(-1)" (v+ ~) 
cos 71" Z - 7 (V + ~)2 - Z2 • 

When z = 0 ~e have the Leibniz series i = 1 - ~ + ~ - + .. '. Amusing 
series for 71"/'12 arise from (4) and (6) with the choice z = 1/4. 

4 * . Characterizations of the cotangent by its addition theorem 
and by its differential equation. According to 5.2.5 

e2iz + 1 cot w cot z - 1 
cotz=i 2' l' cot(w+z) = ,(cotz)'+(cotz)2+1=0. 

e zz - cotw+cotz 

We will show that the second of these identities, the addition theorem, and 
the third, the differential equation, each characterize cot z. To this end we 
need the following 

Lemma. Let 9 be meromorphic in the region G. Then the differential 
equation g' + g2 + 1 = 0 holds only for the family of functions 

g(z) == i, 
.ae2iz + 1 

g(z)=t 2' l' ae zz_ 
a arbitrary in C. 

Proof. That the functions listed do satisfy the differential equation is a 
direct and routine calculation. Conversely, consider 9 E M(G) which sat­
isfies the differential equation but is not the constant function i. Then 
the "Cayley transform" f := (g + i)/(g - i) also belongs to M(G) and it 
satisfies the differential equation f' = 2if. From theorem 5.1.1 it follows 
that fez) = a exp(2iz). At first this is valid only in the region G \ P(I) 
but, after appeal to the Identity Theorem 10.3.4, it holds throughout G. 
Since 9 = i(l + 1)/(1 - 1), the claim about the form of 9 follows. 

Remark. The trick in the foregoing proof is the passage to the "Cayley 
transform" of g. This is the device that linearizes the "Riccati" differential 
equation y' + y2 = 1 = O. 

Theorem. The following statements concerning a function 9 which is 
meromorphic in a neighborhood U of 0 are equivalent: 

i) The principal part of 9 at 0 is ~ and for all w, z E U \ peg) such that 
w+z E U\P(g) 

( ) g(w)g(z) - 1 
9 w + z = g(w) + g(z) (Addition Theorem) . 

ii) 9 has a pole at 0 and satisfies g' + g2 + 1 = O. 
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iii) g(Z) = cot z. 

Proof. i) => ii) From the addition theorem it follows that 

'(z) = lim g(z + h) - g(z) = _ lim g(Z)2 + 1 = _ (z)2 _ 1 
9 h-+O h h-+O hg(z) + hg(h) 9 , 

because limh-+o hg(h) = 1 and limh-+o hg(z) = 0 for all z E U \ P(g). 
ae2iz + 1 ii) => iii) Since g(z) t= i, it has the form i 21% 1 for some a E C, 
ae -

according to the preceding lemma. Since 9 has a pole at 0, the denominator 
must vanish at 0, which means that a = 1 and consequently g(z) = cotz. 

iii) => i) Clear. 

Exercises 

Exercise 1. From the formulas of subsection 3 derive, by means of differenti­
ation or of simple identities between trigonometric functions, the following 
partial fraction developments: 

2 sin7rz ~ (-I)" 
7r COS27rZ = ~ (z + v _ !)2 

-exl 2 

cos ~ (w - z) 1 ~ [2W 2Z] 
7r sin ~(w + z) - sin ~(w - z) = ~ + ~ (2v - 1)2 - w2 - (2v)2 - z2 ' 

due to EULER, 1740. 

Exercise 2. Give the partial fraction developments for the following func­
tions: 

a) J(z) = (e Z - 1)-1, 

b) J(z) = 7r(COS7rZ - sin7rz)-l. 

Hints. For a) use the partial fraction development of cot7rZ. For b) re­
member that cos ~ = sin ~ = ..i2. 

§3 The Euler formulas for LV~1 v-2n 

The first order of business in this section is to determine the numbers ( 2n ) 
for all n 2:: 1. We also derive an interesting identity between Bernoulli 
numbers, and finally we briefly discuss the Eisenstein series ek(Z), k ~ 2. 
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1. Development of €1(Z) around 0 and Euler's formula for C(2n). 
The function el (z) - Z-l is holomorphic in the unit disc E and has poles 
at ±1. Its Taylor series at 0, which thus has radius of convergence exactly 
1, can be explicitly written: 

(1) el(Z) = ~ - f q2n z2n- l , Z E EX, where q2n := 2«(2n) = 2 L v!n· 
1 v~l 

Proof -vin is the (2n - 2)th Taylor coefficient of 2(z2 - V2)-l, as one 

sees from the geometric series expansion Z2~V2 = ~ L;:"=o (~)21.1. Since 
the series LV>l2(Z2 - V2)-l converges compactly in E, it follows from 
Weierstrass's double series theorem 8.4.2 that its (2n - 2)th Taylor coeffi­
cient is LV>l &n-, that is, -q2n. But LV>l2(Z2 - v2)-l is an even func­
tion, so all Taylor coefficients of odd index vanish, and so this series has 
L~ -Q2nz2n- 2 as Taylor series about O. Since el(Z) = Z-l + Z L~ 2(Z2-
v2)-l for all Z E EX, the claim (1) follows. 0 

The Bernoulli numbers B2n were introduced in 7.5.1. In a few lines we 
can now acquire the famous 

Formulas of EULER: 

n = 1,2, ... 

Proof From (1) and 7.5.2(1) we have in a neighborhood of 0 

Since Q2n = 2«(2n), comparison of coefficients here leads to the desired 
conclusion. 0 

From the formulas of EULER we can infer incidentally that the Bernoulli num­
bers B 2, B 4 , ••• , B2n, ... have alternating signs (as was already hinted at in the 
equations (2) in 7.5.1). Moreover, the unboundedness assertion concerning the 
sequence B2n in 7.5.1 can now be made more precise: since 1 < L v-2n < 2 for 
every n 2': 1, it follows that 

(2n)! (2n)! 
2 (211")2n < IB2nl < 4 (211")2n; 

. t· 1 1· i B2n+2i m par ICU ar, 1m B2n = 00. 

It further follows from 1 < «(2n) < 2, the identity I(~!)!I = ~;;'~22 and the 
Cauchy-Hadamard formula that the Taylor series of z/(eZ - 1) about 0 has ra­
dius of convergence 211"; this is the "rather tedious" determination of this radius 



§3. THE EULER FORMULAS FOR L:v~11l-2n 333 

of convergence without examining the zeros of the denominator, which was men­
tioned in 7.4.5. 

The Euler formulas will be generalized in 14.3.4. 

2. Historical remarks on the Euler ((2n)-formulas. As early as 
1673 during LEIBNIZ'S first visit to London J. PELL, an expert in series 
summation, had posed to him the problem of summing the reciprocals of 
the squares. LEIBNIZ had maintained in youthful exuberance that he could 
sum any series, but Pell's query made clear to him his limitations. The 
brothers Jakob and Johann BERNOULLI (the latter was EULER's teacher) 
also expended quite a lot of effort in vain trying to find the value of the 
sum 1 + i + ~ + l~ + .... 

Finally, in the year 1734, using the product formula he had discovered 
for the sine, EULER in his work "De summis serierum reciprocarum" (Opera 
Omnia (1) 14, 73-86) proved his famous identities 

It is often said of the first of these identities that it is among the most 
beautiful of all Euler's formulas. 

Euler's problems in summing the series L: 11-2n were described in detail 
by P. STACKEL in a note entitled "Eine vergessene Abhandlung Leonhard 
Eulers iiber die Summe der reziproken Quadrate der natiirlichen Zahlen," 
Biblio. Math.(3) 8(1907/08), 37-54 (also included in Euler's Opera Omnia 
(1) 14, 156-176). Also interesting is the article "Die Summe der reziproken 
Quadratzahlen," by O. SPIESS in the Festschrift to the 60th birthday of 
Prof. Andreas Speiser, Orell Fiissli Verlag, Ziirich 1945, pp. 66-86; and the 
paper by R. AYOUB entitled "Euler and the Zeta function," Amer. Math. 
Monthly 81(1974), 1067-1086. 

3. The differential equation for e 1 and an identity for the Bernoulli 
numbers. Because (cotz)' = -1- (cotz)2 (cf. 5.2.5), it follows that 

(1) 

the function Cl thus solves the differential equation y' = _y2 - 11"2. With 
the help of (1) we get an elegant but not very well known recursion formula 
for the numbers ((2n), namely 

(2) (n + !)((2n) = L t(2k)t(2Q) 
k+l=n 
k~l,l~l 

for n > 1, 

Proof. Using the differentiation theorem 1.2 and 1(1), we get 
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From 1(1) it follows, on the basis of the differentiation theorem 1.2 and the 
product theorem 8.4.2, that 

1 00 00 

d(z) = z2 - 4 L «2n)z2n-2 + 4 L L «2k)«2l)z2n-2, z E lEx. 
1 n=2 k+t=n 

k~l,l~l 

Substituting these into (1) and comparing coefficients of like powers of z 
yields (2). 0 

If we use the Euler formulas for «2n), then we get from (2) 

(3) n 2: 2. 

Equations (2) and (3) and their derivation from the differential equation 
of the cotangent function were brought to my attention by Professor M. 
KOECHER. 

4. The Eisenstein series ek(z) := LX> 1 "are, according to 
-00 (z + II) 

1.3, normally convergent in C for all integers k 2: 2 and consequently, by 
the convergence theorem 1.1, they represent meromorphic functions in C. 
It is immediate from the definition that Ck is holomorphic in C \ Z and 
that at each n E Z it has a pole of order k and principal part 1/(z - n)k. 
The functions c2t are even and the functions C2l+! are odd. The series for 
Cl (z) is unexceptional and has this same general form if we agree to use 
the Eisenstein summation convention Le for it. In 2.3 we saw that 

3 cot 1rZ 
C3(Z) = 1r -.-2-' 

sm 1rZ 

Thus we have C3 = C2Cl, an identity that certainly cannot be perceived 
directly from the series representations (on this point see also 4.3). 

The periodicity theorem. Let k 2: 1 be an integer, W E C. Then 

Proof. If ck(Z + w) = ck(Z), then along with 0, W is also a pole of Ck, so 
that w E Z. Since the series may be rearranged at will due to the fact of 
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their normal convergence, we get for every k, ck(Z + 1) = ck(Z). From this 
it follows that ck(Z + n) = ck(Z) for all n E Z. 0 

From the differentiation theorem 1.2 it follows that 

(1) for k 2: 1. 
00 

(For 81 use the normally convergent series l + L' C!" - ~ ) .) From this 

via induction on k we get 

(2) 
(_I)k-1 (k-1) 

Ck = (k _ I)! cl for k 2: 2. 

From the development 1.(1) of C1 it follows (again inductively) that 

(3) 1 k '"' (2n -1) 2n k ck(Z) = zk + (-1) ~ k -1 q2nZ -
2n:2:k 

and in particular 

(4) 

§4 *. The EISENSTEIN theory of the 
trigonometric functions 

for k 2: 2 

The theory of the trigonometric functions, which nowadays is almost always 
based on that of the complex exponential function, can also be developed 
ab ovo from the Eisenstein functions Ck and simple non-linear relations be­
tween them. This construction of the theory of the circular functions was 
sketched in passing by EISENSTEIN in 1847 in a work [Ei] that today is fa­
mous and in which, for example, Weierstrass' p-function and its differential 
equation also feature. EISENSTEIN writes (p.396): 

"Die Fundamental-Eigenschaften dieser einfach-periodischen Functionen 
ergeben sich aus der Betrachtung einer einzigen identischen Gleichung, 
namlich der folgenden (The fundamental properties of these simply-periodic 
functions reveal themselves through consideration of a single identity, namely 
the following): 

(a) 1 1 ( 1 1 ) 2 (1 1)" 
p2q2 = (p + q)2 p2 + q2 + (p + q)3 P + q . 

The p and q here are indeterminates and one confirms (a) by direct cal­
culation or (more simply) by differentiating the obvious identity p-1q-l = 



336 11. CONVERGENT SERIES OF MEROMORPHIC FUNCTIONS 

(p + q)-l(p-l + q-l) with respect to p and with respect to q. EISENSTEIN 
gets all the important propositions about his series by virtuoso manipula­
tions with the identity (a). 

EISENSTEIN was a pupil of Karl Heinrich SCHELLBACH (German mathe­
matician, 1805-1892, professor of mathematics and physics at the Friedrich­
Wilhelm Gymnasium in Berlin and from 1843 onward concurrently teacher 
of mathematics at the general military school in Berlin). In 1845 SCHELL­
BACH published, in the school-program of his Gymnasium, a treatise en­
titled Die einfachsten periodischen Jilunctionen, in which for the first time 
functions like 

00 00 

L:f(x+s) and II f(x + A) 
-00 -00 

were employed in the construction of periodic functions. This treatise of 
Schellbach's had a big influence on EISENSTEIN (cf. [Ei], p.401). 

In 1976 in the second chapter of his Ergebnisse monograph [We] Andre 
WElL gave a concise presentation of Eisenstein's theory, at the same time 
expanding the calculations involved. "Man wird bei diesen Ausfiihrungen 
an ein musikalisches Analogon, die Diabelli-Variationen von Beethoven 
erinnert (This presentation brings to mind a musical analog, the Diabelli 
variations of Beethoven)." - E. HLAWKA in the Monatshefte fUr Math. 
83(1977), p. 225. WElL chose the notation Ck in honor of EISENSTEIN, 
who himself wrote (k, z) instead of ck(Z) ([Ei], p. 395). 

In what follows we present the beginnings of Eisenstein's theory, after 
[We]. We will only work with the first four functions CI, C2, C3, C4. The 
identity Cl (z) = 11" cot 11" Z will be proven anew, independently of the con­
siderations of the preceding sections, save for using theorem 2.4 on the 
solutions of the differential equation g' + g2 + 1 = O. 

1. The addition theorem. 

C2(W)C2(Z) - c2(W)c2(W + z) - c2(Z)c2(W + z) = 2c3(W + Z)[Cl(W) + Cl(Z)]. 

Proof (following [We], p.8). We set p := Z + /-l, q := W + v - /-l in (a) and 
get 

2 (1 1) 
= (w+z+v)3 z+/-l + w+v-/-l . 

Eisenstein summation over /-l with v fixed gives 
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2 = ( p[Cl{Z)+Cl{W+V)]. w+z+v 
Since v is a period of Ck (cf. the periodicity theorem 3.4), we may write 
c2{W) instead of c2{W + v) and Cl{W) instead of Cl{W + v). Moreover, 
because it converges normally, the first sum on the left coincides with the 
ordinary sum E~oo. After we make all these simplifications and sum over 
v, we obtain 

= 2c3{W + Z)[cl{Z) + cl{W)]. 

Because of normal convergence it is legitimate to interchange the two sum­
mation processes on the left. After doing so, we recall that c2{w - 11) = 
c2{w). The double sum then becomes 

~ 1 ~ 1 ~ c2{W - 11) 
~ {z + 11)2 ~ ({W - 11) + v)2 = ~ (Z + 11)2 = c2{W)c2{Z), 

~=-oo v=-oo ~=-oo 

which proves the addition theorem. 

2. Eisenstein's basic formulas. The addition theorem 1 was not expli­
citly formulated by EISENSTEIN. Rather he derives the identities 

(I) 

(2) 

directly from (a) ([Ei], 396-398). We now get these basic formulas of Eisen­
stein from the addition theorem ([We], p.8). To this end we need the 
following easily verified statements (to derive (+) use 3.4( 1)): 

For every Z E C \ Z and every integer k ~ 1 there is a neighborhood of 
W = 0 in which 

in particular, 

(+) 
Cl(Z) - c2{Z)W + c3(Z)W2 - c4{Z)W3 + - ... 
c2(Z) - 2C3(Z)W + 3c4(Z)W2 - + ... 
C3(Z) - 3C4(Z)W + 6C5(Z)W2 - +. . . 0 
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We now prove equation (1): For fixed Z E C \Z the functions appearing 
in the addition theorem are meromorphic functions of w. Develop each 
around w = 0 and compare the constant (as far as w is concerned) terms. 
The development 3.4(4) for C2 together with the equation (+) above for 
c2(w+z) yield for the function on the left side ofthe identity in the addition 
theorem, bearing in mind that e2(W)c2(Z) cancels and e2(Z)e2(W + z) has 
"constant" term e~(Z), 

- (~2 + q2 + .. -) (-2e3(Z)W + 3c4(Z)W2 + ... ) - e~(Z) + ... 

= -3c4(Z) - e~(Z) + ... ; 
here the latter ellipsis indicates terms in w-I, w, w2, .. . For the function on 
the right side of the identity in the addition theorem we use the development 
3.1(1) for el and the equation (+) for e3(W + z) to obtain 

2(e3(Z) - 3e4(Z)W + ... ) (~ - q2W + .. -) + 2e3(Z)el(Z) + ... 

= -6e4(Z) + 2e3(Z)el(Z) + .... 
From which follows -3c4(Z)-e~(Z) = -6e4(Z)+2c3(Z)el(Z), are-statement 
of (1). 

The proof of (2) is carried out similarly. We again fix Z E C \ Z, but 
this time consider ( := w + Z as the variable in the addition theorem. We 
carry out the development around ( = 0, set w = ( - Z and compare the 
constant (as far as ( is concerned) terms. Using the development 3.4(4) for 
e2 (z) as well as the equation (+) for e2 «( - z) [realize that e2l is an even 
and e2Hl is an odd functionj, we see that the "constant" term on the left 
in the addition theorem is e~(Z) - 2q2e2(Z) - 3e4(Z). On the basis of 3.4(4) 
and (+), e3«()el«( - z) has constant term -e4(Z). Also e3«()el(Z) is an 
odd function of ( and consequently has no constant term. Therefore the 
constant term on the right in the addition theorem is -2e4(Z). (2) then 
follows immediately. 

3. More Eisenstein formulas and the identity E, (Z) 
Eliminating e4(Z) between 2(1) and (2) yields 

(1) 

7rcot7rZ. 

If we differentiate (1), and take into account 3.4(1), we obtain e2e3 = 
ele4 + 2q2e3· Use 2(2) to eliminate e4 here, and, after division by e2 - 2q2, 
get 

(2) 
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Insert this into (1) and divide by e2, and it follows that 

(3) 

From the relations already garnered the reader can draw the 

Conclusion ([Ei], p.400) Each function ek is a real polynomial in el. 

On account of e2 = -e~, equation (3) may also be viewed as the differ­
ential equation 

(4) e~(Z) = -e~(Z) - 3q2 

for the function el. From (4) alone we now obtain (anew) 

Proof Let a be the positive square-root of 3q2 = 6 LV>l v-2. For g(z) := 
a-lel(a-l z) E M(C), the differential equation g' + g2 +" 1 = 0 holds. Since 
9 has a pole at the origin, it follows from theorem 2.4 that g(z) = cot z, 
and so el(Z) = acotaz. Since Z is the set of periods of el(Z), while 71'a- l Z 
is the set of periods of cot az (note that per(cot) = 71'Z by 5.2.5), it follows 
that Z = 71'a- l Z, and so a = 71' since a is positive. 0 

The addition formula for the cotangent says (cf. 5.2.5) 

EISENSTEIN also proves this formula by direct manipulation of series ([Ei] , pp. 
408,409); interested readers are referred to [We], pp. 8,9. 

4. Sketch of the theory of the circular functions according to 
EISENSTEIN. The foregoing considerations show that basically the theory 
of the trigonometric functions can be developed from Eisenstein's function 
el alone. One first defines 71' as v'3Q2 and makes the equation 71' cot 71'Z = 
el(Z) the definition of the cotangent. All the other circular functions can 
now be reduced to el' If we recall the formula 

_1_ = ~ (cot:: _ cot z + 71') 
sinz 2 2 2 

(which is mentioned in passing on p.409 of [Ei]), then it is clear that in the 
putative Eisenstein theory the equation 
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~ = ~ [C1 (~) -c1 (~)] Slll7rZ 2 2 2 

should be elevated to the status of definition of the sine. The partial 
fraction development 

7r 1 DO 2 1 DO 2 DO (-I)" 
sin 7rZ = "2 L e Z + 211 - "2 L e Z + 1 + 211 = L Z + II 

-00 -CX) -00 

is an incidental bonus. Because cos 7r Z = sin 7r( Z + ~), we can regard 

_7r =~[c1(2Z+1)_c1(2Z+3)] 
COS7rZ 2 4 4 

as the definition of the cosine. 
Also the exponential function can be defined by means of C1 alone: For 

the function 

e(z) := C1(Z) + 7r~ = 1 + 7r~Z + ... E M(C) 
c1(z)-n 1-7rzz+··· 

it follows at once, recalling -c~ = c~ + 7r2 , that 

, . c~(z) . c~(z) + 7r2 . ( 
e (z) = -27rZ ( () .)2 = 27rZ ( () .)2 = 2ne z). c1 Z - 7rZ c1 Z - 7rZ 

Since e(O) = 1, theorem 5.1.1 and the Identity Theorem tell us that the 
function e(z) just introduced is in fact exp(27riz). 

It seems that the construction of the theory of the circular functions 
sketched here has never been consistently carried out in all detail this way. 
Even so, due to lack of space, we shall have to forego doing it here. One 
advantage of the Eisenstein approach is that the periodicity of the circular 
functions is evident on the basis of the explicit form of the series for C1. 

Exercise 

Exercise. Using the duplication formula 2cl(2z) = cl(Z) + cl(Z + ~), show that 

What does this formula say about the classical trigonometric functions? 
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Chapter 12 

Laurent Series and 
Fourier Series 

At quantopere doctrina de seriebus infinitis Analysin sublim­
iorem amplificaveret, nemo est, qui ignoret (There is nobody 
who does not know the extent to which the theory of infinite 
series has enriched higher analysis). - L. EULER 1748, Intro­
ductio. 

In this chapter we discuss two types of series which, after power series, 
are among the most important series in function theory: Laurent series 
l:~oo alJ(z - c)1J and Fourier series l:~oo clJe27rilJz. The theory of Laurent 
series is a theory of power series in annuli; WEIERSTRASS even called Lau­
rent series power series too (cf. [W2] , p.67). Fourier series are Laurent 
series around c = 0 with e27riz taking over the role of z; their great impor­
tance lies in the fact that periodic holomorphic functions can be developed 
in such series. A particularly important Fourier series is the theta series 
l:~oo e- 1J27rT e27rilJz, which gave quite a decisive impulse to 19th-century 
mathematics. 

§1 Holomorphic functions in annuli and 
Laurent series 

Let r, s E IR U {oo} with 0 ~ r < s. The open subset 

Ar,s(c) := {z E C : r < Iz - cl < s} 

of C is called the annulus or circular ring around c with inner radius r 
and outer radius s. When s < 00, Ao,s(c) = Bs(c) \ c, a punctured disc, 

343 
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and Ao,oo(O) is the punctured plane ex. In contexts where there is no 
possibility of misunderstanding the notation Ar.s{c) is shortened to just A. 

The annulus A with radii sand r is naturally the intersection 

A = A+ n A- with A+ := Bs(c) and A- := {z E e : Iz - cl > r}. 

This notation will be used extensively in the sequel. As in earlier chapters, 
the boundary 8Bp(c) of the disc will be denoted by Bpo 

1. Cauchy theory for annuli. The point of departure for the theory of 
holomorphic functions in circular rings is the 

Cauchy integral theorem for annuli. Let i be holomorphic in the 
annulus A around c with radii rand s. Then 

(I) f fd( = f fd( for all p,O" E lR with r < p 5: 0" < s. 
lsp is" 

We intend to give three proofs of this basic theorem. In all of them we 
may take c = o. 

First proof (by reduction to theorem 7.1.2 via decomposition into convex 
regions). Let p be given. We choose a p' with r < p' < p and determine 
on BpI the vertices of a regular n-gon which lies wholly in the annulus with 
radii r and p'. This inclusion occurs for all sufficiently large n. In the figure 
n=6. 

.".., ----
" )12 _ t- -,., 

s 

As this figure shows, 'h := 1'1 +1'2 +1'3 +1'4 is a closed path in the truncated 
circular sector G, a convex region lying in the domain of holomorphy of 
i, for any 0" with p 5: 0" < s. Consequently i'Yl id( = o. Analogously, 
f_ id( = 0 for the path i2 (partly shown in the figure) which begins with 

J'y2 
the piece -1'3. Continuing, we define closed paths iv, v = 1,2, ... ,n, with 
-1'1 featuring as a piece of in. It then follows that 

0= t 1 id( = 1 id( -1 ide, 
v=1 ')'u S" Sp 
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since the integrals over the various radial components of the paths ill cancel 
out. 

Second proo/(by reduction to theorem 7.1.2 via the exponential mapping). 
We assume that 0 < r < s < 00 and pick a, 0, /3, bE lR with ea = r, eO = p, 
ef3 = u, eb = s. By means of z f-+ expz the boundary 8R of the rectangle 
R := {z E C : 0 < lRz < /3 , I~zl < 7r} is mapped onto the (closed) path 
r := L~ expbll) = Su + 'Y + Sp - 'Y (cf. the figure below and 5.2.3). 

«+inCJl'2 fJ+in 
expz 1 

13 l'1. -(1 -p 

«-in fJ-in 
14 

s. 
From the transformation rule 6.2.1 it follows that 

r I«)d( = r I(expz)expzdz. Jr JaR 
Since the convex region G := {z E C : a < lRz < b} which contains 8R 
is mapped into A by exp z, the integrand on the right is holomorphic in 
G and the integral is consequently 0 by theorem 7.1.2. The claim follows 
from this. 

Third prool (by interchanging integration and differentiation). Since each 
I E O(A) can be written in the form I(z) = z-lg(z) with 9 E O(A), it 
suffices to show that for each 9 E O(A) the function 

J(t):= Is. g~() d( = i 127r g(tei'P)dcp , tE(r,s) 

is constant. According to well-known theorems of real analysis, J(t) is 
differentiable and 

J'(t) 

The last integral is 0 because g' has a primitive. Thus J'(t) == 0, so J is 
constant. 0 

Remark. From a "higher point of view" the integrals over Su and Sp are 
equal because these paths can be deformed into one another while staying 
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in A. But we won't go into the general theory of integration for such 
"homotopic" paths until the second volume. 0 

From the integral theorem follows (as did the analogous fact for discs in 
7.2.2) 

The Cauchy integral formula for annuli. Let J be holomorphic in the 
domain D. Suppose that the annulus A = A + n A - about c E D lies, along 
with its boundary, in D. Then 

J(z) = _1 ( J(() d( 
21Ti laA (- z 

= _1 ( J(() d( __ 1 ( J(() d( 
21Ti laA+ ( - z 21Ti laA- (- Z 

Proof. For fixed z E A the function 

{ 
J(~ - J(z) 

g(():= - z 
f'(z) 

for (E D \ z 

for (=z 

Jor all z E A. 

is continuous in D and holomorphic in D \ z. From theorem 7.3.4 it follows 
that in fact g E O(D). Therefore the integral theorem for annuli insures 
that JaA+ gd( = JaA- gd(j that is, 

( J(() d( _ J(z) { ~ = ( J(() d( - J(z) ( ~. 
kA-(-Z kA-(-Z kA+(-z kA+(-Z 

The second integral in this equation vanishes because Izl > r and the fourth 
integral has the value 21Ti because Izl < s. 0 

The integral formula is the key to the 

2. Laurent representation in annuli. First we introduce a convenient 
locution: if h is a complex-valued function in an unbounded domain W, 
then we write limz->oo h(z) = bEe, if for every neighborhood V of b there 
is a finite R such that h(z) E V for all z E W with Izl ~ R. Of course it 
should be noted that this definition depends on W. In what follows W will 
be the exterior of a disc, that is, a set A - . 

Theorem. Let J be holomorphic in the annulus A = A + n A-with center c 
and mdii r, s. Then there are two junctions, J+ E O(A+) and J- E O(A-) 
such that 

in A and 
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These conditions uniquely determine the functions 1+ and 1- as lollows: 
For every p E (r, s) 

I+(z) = _1 r fee) d( z E B (c), 
27ri1s (-z' p, 

p 

I-(z) = -1 r fee) d( z E C \ Bp(c). 
27ri 1s (- z ' 

p 

Proof. a) Existence: the function 

is holomorphic in Bp(e). For u E (p, s) we have t: = 1:IBp(e), thanks 
to the integral theorem. Hence there is a function 1+ E O(A+) which in 
each Bp(e) coincides with It. In the same way a function 1- E O(A-) is 
defined by the prescription 

I-(z) := I;(z) := 2-1. r f«() d( , whenever r < u < min{s, Iz - el}· 
7rZ 1s" ." - Z 

Application of the integral formula to all the different annuli A' centered 
at e with A' c A confirms that the representation I = 1+ + 1- holds 
throughout A. The standard estimate for integrals gives, for z E A - , 

whence limz -+oo I-(z) = O. 
b) Uniqueness: Let g+ E O(A+), g- E O(A-) be other functions satis­

fying I = g+ + g- in A and limz-+oog-(z) = O. Then 1+ - g+ = g- - l­
in A and consequently the recipe 

well defines an entire function h which satisfies limz -+oo h(z) = O. It follows 
from Liouville's theorem that h == 0, and so 1+ = g+ and 1- = g- . 0 

The representation of I as the sum 1+ + 1- is known as the Laurent 
representation (or the Laurent separation) of I in A. The function 1- is 
called the principal part, the function 1+ the regular part of I. 

If I is meromorphic in D\e, then the representation of I described in the 
development theorem 10.1.2 is nothing but the Laurent representation of 
I in B \ e (where BcD and r = 0). In particular, the notion of principal 
part introduced here for Laurent developments generalizes the notion of 
the principal part of a meromorphic function at a pole. 
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3. Laurent expansions. Expressions of the form E~oo av(z - c)V are 
called Laurent series around c. The series 

I 00 00 

L av(z - ct = L a_v(z - c)-V, respectively, L av(z - ct 
-00 I 0 

are called its principal part, respectively, its regular part. Laurent series 
are thus special examples of the series of functions E~oo fv(z) introduced 
in 11.1.3. Therefore in particular, the concepts of absolute, compact and 
normal convergence are available for Laurent series in annuli. 

Laurent series are generalized power series. The corresponding general­
ization of the CAUCHy-TAYLOR representation theorem is the 

LAURENT expansion theorem. Every function f which is holomorphic 
in the annulus A of center c and radii r, s is developable in A into a unique 
Laurent series, 

00 

(1) f(z) = Lav(z - ct, 
-00 

which converges normally in A to f. Furthermore, we have 

(2) av = _1 [ f«() d( 
211'i 1s «( - c)v+l 

p 

for all r < p < s , v E Z. 

Proof. Let f = f+ + f- be the Laurent separation of f in A = A + n A - , 
as provided by theorem 2. The regular part f+ E O(A+) of f has a Taylor 
development E av(z-c)V in A+ = Bs(c), by the CAUCHy-TAYLOR theorem 
of 7.3.1. Observe that the principal part f- E O(A-) of f also admits a 
simple series development in A- = {z E C : Iz - cl > r}. We see this as 
follows. The mapping 

W f--+ Z := c + w-I of Br-l (0) \ 0 onto A­

is biholomorphic with inverse z f--+ w = (z - C)-I and 

g(w) := f-(c + w- I ) defines an element of O(Br(O) \ 0). 

We have limw--+og(w) = 0 on account of limz--+oo f-(z) = 0, and so, 
by the Riemann continuation theorem, g(O) := 0 extends 9 holomorphi­
cally over O. This extended 9 therefore has a Taylor development g( w) = 
Ev>1 bvwv E O(Br-l (0)), which in fact converges normally in Br-l (0). 
Sin~e f-(z) = g«z - c)-I) for z E A-, we obtain from this the repre­
sentation f-(z) = EV~I bv(z - c)-V, which converges normally to f- in 
A-. With the notation a-v := by, v ~ 1, this series can be written as 
f-(z) = E::::~ av(z - c)v. In summary, we have thus found a Laurent se­
ries E~oo av(z - c)V which converges normally in A to f. The uniqueness 



§ 1. HOLOMORPHIC FUNCTIONS IN ANNULI AND LAURENT SERIES 349 

follows as soon as the equations (2) are verified. To this end, consider any 
series satisfying (1) and for each n E Z the equation 

-1 00 

(z - e)-n-1 J(z) = L av+n+l(z - e)'" + L av+n+1(z - e)'" 
v=-oo 

which, thanks to the convergence being normal, may be integrated term­
wise. After this is done over the circle Sp, only the summand corresponding 
to 1/ = -1 survives: 

{ (z - e)-n-1 J(z)dz = an { (z - e)-ldz = 27rian , n E Z. 0 
Jsp Jsp 

We call (1) the Laurent expansion (or development) oj J about e in A. 

4. Examples. The determination of Laurent coefficients by means of the 
integral formulas 3(2) is only possible in rare cases. More often, known 
Taylor series are exploited to develop J into a Laurent series. One that 
proves adequate for most examination questions is the geometric series. 

1) The function J(z) = 1/(1 + Z2) is holomorphic in C \ {i, -i}. Let 
e be any point in the upper half-plane lHI. Then (see the figure below) 
Ie - i I < Ie + ii, since 'Se > 0, and in the annulus A centered at e with inner 
radius r := le-il, outer radius s := le+il, J has a Laurent expansion, which 
can be quickly found with the aid of the partial fraction decomposition 

If we set 

1 1 1 (-1) 1 
--=---+----
1 + Z2 2i z - i 2i z + i ' 

ZEC\{i,-i}. 

iy 

-1 1 
J+(z)·- --­.- 2· +., 

~ z ~ 

1 1 
r(z):= -2.-.' 

~ z - ~ 

then evidently J = J+ IA + J-IA is the Laurent separation of J in A. The 
associated series are 



350 12. LAURENT SERIES AND FOURIER SERIES 

_ 1 1 -1 1 1 v 

J (z) = 2i(z _ c) 1 _ -2;; = ~ 2i (i _ c)V+1 (z - c), Iz - cl > r. 

It is to be noted that the case c = i is allowed. What form do J+ (z) and 
J-(z) then assume? We should note further that (1 + Z2)-1 also has a 
Laurent expansion in the exterior {z E C : I z - cl > s} of the larger disc. 
What does it look like? 

2) The function J(z) = 6/[z(z+ l)(z- 2)] is holomorphic in C\ {O, -1, 2} 
and consequently has three Laurent developments around 0: one in the 
punctured unit disc lEx, one in the annulus {z E C : 1 < Izl < 2} and one 
in the exterior {z E C : I z I > 2} of the disc B2 (0). Using the partial fraction 
decomposition of J, determine the corresponding Laurent developments. 

3) The function exp(z-k) E O(C X ) has the Laurent development around 
o given by 

exp(z-k) = 1 + ~~ + ~_1_ + ... + ~_1_ + ... 
l!zk 2!z2k n!znk ' k = 1,2, ... 

5. Historical remarks on the theorem of LAURENT. In the year 1843 
CAUCHY reported to the French Academy (C. R. Acad. Sci. Paris 17, 
p. 938; also in his (Euvres (1) 8, 115-117) about a work of P. A. LAURENT 
(1813-1854, engineer in the army and active in the construction of the 
port of Le Havre) entitled "Extension du theoreme de M. Cauchy relatif 
it la convergence du developpement d'une fonction suivant les puissances 
ascendantes de la variable." Here LAURENT shows that Cauchy's theorem 
on the represent ability via power series of holomorphic functions in discs 
is even valid in annuli, if series in which negative powers of z - c occur, 
are allowed. The original work of LAURENT was never published. Only 
in 1863, thanks to the dedication of his widow, did his "Memoire sur la 
theorie des imaginaires, sur l'equilibre des temperatures et sur l'equilibre 
d'elasticite" appear in Jour. de l'Jj;cole Poly tech. 23, 75-204; it contains 
his proof, the exposition of which is unfortunately very cumbersome (esp. 
pp. 106, 145). 

In his 1843 report CAUCHY talks more about himself than about LAU­
RENT's result. He emphasizes that LAURENT arrived at his theorem by a 
meticulous analysis of his own proof of power series developability. Never­
theless he does declare that "L'extension donnee par M. Laurent " . nous 
parait digne de remarque (the extension given by M. Laurent··· seems to 
us worthy of note)." LAURENT proves his theorem by using, as we did in 
the text, the Cauchy integral method, which he generalized. To this day 
there is no proof which does not, however cryptically, use complex integrals. 
(Cf. in this connection also the next section.) 

The integral theorem for annuli is to be found in CAUCHY'S 1840 Exer­
cices D'Analyse ((Euvres (2) 11, p.337); he formulated it however without 
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integrals and in terms of mean values. In his report on Laurent's work he 
says that the latter's theorem follows immediately from this ("Le theoreme 
de M. Laurent peut se deduire immediatement ... ", p.116). 

The theorem under discussion had already been proved by WEIER­
STRASS [W 1] in 1841, a work which was not published until 1894. Many 
authors consequently call the theorem the LAURENT-WEIERSTRASS theo­
rem. On this issue of the name, KRONECKER bitingly says (cf. [Kr], p.177): 
"Diese Entwicklung wird manchmals Laurent'scher Satz bezeichnet; aber 
da sie eine unmittelbare Folge des Cauchy'schen Integrals ist, so ist es 
unniitz, einen besonderen Urheber zu nennen (This development is some­
times designated as Laurent's theorem, but since it is an immediate conse­
quence of Cauchy's integral, it is useless to name one particular author)." 
KRONECKER doesn't vouchsafe a word about his colleague WEIERSTRASS. 

The independence of the integral 1 (1) from the radius is the heart of 
Weierstrass' work [W1]; it says there (p.57): " ... , d.h. der Werth des 
Integrals ist fiir alle Werthe von xo, deren absoluter Betrag zwischen den 
Grenzen A, B enthalten ist, derselbe ( ... , i.e., the value of the integral is 
the same for all values of Xo whose modulus is contained between the limits 
A, B[= r, s])." 

Throughout his life WEIERSTRASS never gave much prominence to this 
result, possibly due to the integrals in his proof (on which point cf. also 
6.1.3 and 8.2.4). For example, in 1896 PRINGSHEIM in his paper "Ueber 
Vereinfachungen in der elementaren Theorie der analytischen Functionen," 
Math. Annalen 47, 121-154 expressed surprise that in his lectures WEIER­
STRASS "weder explicite bewiesen noch direct angewendet (neither explic­
itly proved nor directly applied)" the theorem. 1 PRINGSHEIM laments that 
this theorem had not yet "den ihm eigentlich zukommenden Platz erhalten 
hat (secured the place it really deserves)" in elementary function theory 
- by which he understood that part of the theory of holomorphic func­
tions which is based solely on power series without any use of integrals. 
He rightly points out that it seems that "die element are Functionentheorie 
ohne den Laurent'schen Satz keinerlei Hiilfsmittel zu besitzen (elementary 
function theory without Laurent's theorem possesses no means whatso­
ever)" of inferring, e.g., Riemann's continuation theorem, even when the 
function has already been continuously extended over the isolated singu­
larity c and moreover all the power series which represent f in a punctured 
neighborhood of c converge absolutely at c. (Cf. also 2.2.) 

In 1896 PRINGSHEIM considered it "dringend wiinschenswerth (urgently 
desirable)" to ground the theorem of LAURENT in the "moglichst ele­
mentaren Weg (most elementary possible way)." He believed this goal 
could be achieved through the "Einfiihrung gewisser Mittelwerthe an Stelle 
der sonst benutzten Integrale (introduction of certain mean values in place 
of the otherwise-used integrals)." His elementary direct proof of Laurent's 

1 PRINGSHEIM seems to have learned about this youthful work of Weierstrass only as 
his own paper was in press (cf. footnote p. 123). 
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theorem works in a very contrived way however. As he himself says (p.125) 
- his mean values may "stets als Specialfiille bestimmter Integrale ansehen 
(always be viewed as special cases of definite integrals}". For this reason 
his proof, which is only integral-free insofar as its inner workings aren't ex­
amined, has not caught on. PRINGSHEIM set out his "pure methodology" 
in the 1223-page long work [Pl. To which treatise might be applied the 
very words (p.124) with which PRINGSHEIM appraised a so-called elemen­
tary proof of Laurent's theorem by MITTAG-LEFFLER: "Die Consequenz 
der Methode [wirdl auf Kosten der Einfachheit allzu theuer erkauft (the 
consequences of the method are bought all too dearly at the expense of 
simplicity}." 

6*. Deviation of LAURENT'S theorem from the CAUCHy-TAYLOR 

theorem. The existence proof carried out in section 3 rests on the Laurent 
representation of theorem 2 and thereby on the Cauchy integral formula for annuli. 
The view is sometimes maintained that in fact Cauchy's theory for annuli is essential 
to proving Laurent's theorem. But this is not so. As early as 1884 L. SCHEEF­
FER (1859-1885) had reduced the theorem to the Cauchy-Taylor theorem in a 
short paper "Beweis des Laurent'schen Satzes", in Acta Math. 4, 375-380. In 
what follows we are going to reproduce this forgotten proof. We use the notation 
of section 3 and suppose c = OJ thus A = Ar,.(O). First we show that 

Lemma. Let f E O(A) and suppose there is an annulus A' C A centered at 0 
such that f has a Laurent development around 0 in A': 

zE A'. 
-00 

Then this Laurent series is in fact normally convergent throughout A to f. 

Proof Because of the identity theorem the only issue is the normal convergence 
throughout A of the given Laurent series. Let A' = Ap,,,(O). It suffices to 
consider each of the two special cases p = r and (7 = s. By considering f (z -1) E 
O(A.-l,r-1) instead of fez) E O(Ar,.), the second of these cases is reduced to 
the first, which we now treat. 

The series r:::::!o a"z" and r:: a"z" converge normally in Ar,oo(O) and B,,(O), 
respectively. (Recall the definitions in 11.1.3.) Therefore the function 

zE A 

z E B,,(O} 

is well defined and holomorphic in B.(O). Since r:: a"z" is the Taylor series of b 
at 0, this series converges normally throughout B.(O) according to the CAUCHY­
TAYLOR representation theorem 7.3.2. Therefore r:~oo a"z" converges normally 
in A. 0 

Let us further remark that it suffices to prove the existence of Laurent develop­
ments for odd functions in O(A). This is because an arbitrary function f E O(A) 
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can always be realized as a sum h (z) + z h (z) with odd functions 

l1(z):= ~ (J(z) - J(-z» ,h(z) := ~z-l(J(z) + J(-z» , Z E A. 

From Laurent developments of h and h we immediately get one for / at 0 in A. 
We now begin the proof proper. Thus we are given an odd function / holo­

morphic in the annulus A = Ar,s(O). Because of what was proved in the lemma, 
we can shrink s and expand r if necessary and thereby assume without loss of 
generality that 0 < r < s < 00. By introducing the new variable v := (Fs}-1 z 
and working with it, we find we may further assume without loss of generality 
that rs = 1. Then necessarily s > 1. We conscript the function q : ex --.. e, 
z ~ ~(z + Z-I) and use the following property of it, established by the reader in 
Exercises 3 and 4, §1 of Chapter 2: 

Every q-fiber q-l(b), b =1= ±1, consists oj two distinct points a,a-1 E ex. 
Suppose that s > 1 + V2, and set R := ~(s - S-I) > 1, u := R + JR2 -1, 
p := u-1 . Then on the one hand the q-preimage 0/ the disc B := BR(O) is 
contained in A and on the other hand q-l(B) completely contains the annulus 
A' := Ap,O' C A. 

We first suppose that s > 1 + V2, so that the properties just recorded be­
come available. Since q-l(B) C A, J(z) + /(Z-I) is holomorphic in q-l(B) and 
evidently constant on each q-fiber. Since moreover q maps q-l(B) onto B, the 
factorization theorem 9.4.5 is applicable. It furnishes agE O(B) for which 

J(z) + J(Z-I) = g(q(z» for all z E q-l(B). 

Let E~ a"w" = g(w) be the Taylor series of gin B. It follows that for 
zEA' c q-l(B) 

J(z) + J(Z-I) = ~a"'2-"'(Z + Z-I)" = ~1; a,..2-'" (:)%,..-2". 
We will show that for every compact K C A' 

ft I a,.. 2-'" (:)z,..-2"1 < 00. 
,..=0,,=0 K 

With this result in hand, the summands in the preceding double sum can be 
ordered according to powers of z and we get, from the sharpened form of the 
rearrangement theorem 3.3.1, a Laurent development 

00 

J(z) + J(%-I) = L b"z" 
-00 

which is normally convergent throughout A'. Thanks to the foregoing lemma, this 
Laurent development is actually valid throughout A. Analogous considerations 
involving the mapping ij: ex -+ e given by ij(z) := -iq(iz) = ~(Z_Z-l) furnish 
a Laurent development 
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00 

J(z) + J( _Z-l) = L: b"z" 
-00 

which converges normally throughout A. Since J is odd, addition gives us 

z E A. 
-00 

In proving (*) it suffices to look at K of the form K = A",.." where p < u < 
v < u and uv = 1. Now for all /J,V E N, IZI'-2"IK = V II'-2"1. Using the trivial 
identity C~J = (~) , it follows easily that 

Since q( v) lies in the disc B of convergence of L: al' wI', we get 

~~ laI'TI'(~)zl'-2"L ~ 2 ~ lal'q(vtl < 00 

and therewith (*). 

Now let us take up the case of arbitrary s > 1. There is a (smallest) natural 
number n for which s2n > 1 + '-"2. By what was proved above, every function 
which is holomorphic in Ar2n ,s2n has a Laurent development in that annulus. 
Consequently our work is completed by n applications of the following fact: 

IJ every function in O(Ar2,s2) has a Laurent development around 0 in Ar2,s2, 
then every function in O(A) has a Laurent development around 0 in A := Ar,s' 

We now prove the preceding statement. As we have noted, it suffices to prove 
the conclusion for every odd function J E O(A). The image of A under the 
square map z r-+ z2 is Ar2,s2 and every point in Ar2,s2 has exactly two distinct 
pre-images, which are negatives of one another, in A. Since zJ(z) is an even 
function, 9.4.5 furnishes an h E O(Ar2,s2) such that zJ(z) = h(Z2) for all z E A. 
By assumption h has a Laurent development h( w) = L:~oo a"w" in Ar2 ,s2. Then 
L:~oo a"z2,,-1 is evidently a Laurent development of J around 0 in A. 0 

Remarks on the SCHEEFFER proof. In the proof of the lemma as well as in 
the proof proper the global aspect of the power series development of a holomor­
phic function (namely, that the Taylor series at a point represents the function 
in as large a disc about the point as lies in the domain) was used decisively. 
[By contrast, it was only for convenience that the factorization lemma 9.4.5 was 
invoked; at the appropriate points ab initio arguments could have been given, 
as e.g., SCHEEFFER did.] The representation theorem 7.3.2 which affirms this 
is derived from the Cauchy integral formula 7.2.2. In this sense SCHEEFFER's 
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proof is therefore not integration-free. But it does yield the Cauchy theory in 
annuli as a corollary: Because for every I E O(A), as soon as we have a Laurent 
development 1:~oo a ... z'" for it, there follows at once the fundamental equation 
1.1(1) 

rIde; = 27ria_l = r Id( 
.Isp .Is~ 

for all p, u E IR with T < P ~ u < s . 

Nevertheless, Cauchy's integral formula for an annulus constitutes the natural 
approach to the Laurent expansion theorem. SCHEEFFER's baroque route is not 
recommended for lectures. 

Exercises 
Exercise 1. Develop the following functions into their Laurent series in the 
indicated annuli: 

a) I(z) = (Z2~~)(z2+1) in A1,2(O), A2,00(O), AO,l(-I), 

b) I(z) = (z!c)n, (n E N, n ~ 1, C E CX) in A\c\,oo(O), Ao,oo(c), 

c) I(z) = (z+2i<zL 9) in A2,3(O), A3,00(O), AO,l( -2), 

d) I( z) = sin C~l) in Ao.oo (1), 

e) I(z) =sin(Z;l) inCx , 

f) I(z) = (exp(z-l))-l in C X • 

Exercise 2. Let I, 9 be holomorphic in A = Ar,s(c), 0 :::; r < s :::; 00 and 
have in A Laurent representations 

00 
and L b,..(z - c)"', 

v=-oo ,..=-00 
respectively. Show that the series Ck := 1::'-00 avbk-v converges in C for 
each k E Z and that 1:;:'=-00 Ck(Z-c)k is the Laurent representation in A of 

Ig· Hint. The kth Laurent coefficient of Ig is given by 2;i fsp(c) &(C~r~~A de 
for any r < p < s. 

Exercise 3. Let A be a non-empty open annulus centered at 0, IE O(A) 
and 1:::-00 avzv the Laurent representation of I(z) in A. Prove that I is 
even (that is, I (z) = I ( - z) for all z E A) if and only if av = 0 for all odd 
II and I is odd (that is, I(z) = - I(z) for all z E A) if and only if av = 0 
for all even II. 

Exercise 4. Let A be a non-empty open annulus centered at 0, I E O(A) a 
unit. 
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a) Show that if I:~-oo avzv is the Laurent development of f' / J in A, 
then n := a-1 is an integer and J has a holomorphic logarithm in A 
exactly when this integer is O. 

b) Prove the lemma on units for O(A): In the notation of a), there exists 
9 E O(A) such that J(z) = zneg(z) for all z E A; and if J(z) = zmeh(z) 
for all z E A and some m E Z, hE O(A), then m = n. 

Hint. For a) utilize corollary 9.3.4. 

Exercise 5. (Bessel functions) For v E Z, W E C let J 1'( w) designate the 
coefficient of ZV in the Laurent series of the function exp[~ (z - z-1 )w] E 

O(C X ); thus exp[~(z - Z-1)W] = I:~=-oo Jv(w)zl/. Show that 

a) Lv(w) = JI/(w) for all v E Z, wE C. 

b) JI/(w) = 2~ f0211: cos (Vip - w sin ip)dip. 

c) Each function Jv : C ----> C is holomorphic. Its power series at 0 is 
(for each v ~ 0) 

_ 00 (-ll (~w)2k+v 
Jv(w) - L k! (v + k)! 

k=O 

The functions Jv, v ~ 0, are called Bessel Junctions (oj the first kind). Jv 
satisfies the Bessel differential equation z2 J"(z)+zJ'(z)+(z2 -v2)J(z) = O. 

§2 Properties of Laurent series 

In this section many elementary assertions about power series are extended 
to cover Laurent series. In addition, we show how the Laurent development 
of a holomorphic function at an isolated singularity leads to a simple char­
acterization of the singularity type in terms of the Laurent coefficients. 

1. Convergence and identity theorems. On the basis of theorem 1.3, 
every function J which is holomorphic in an annulus A centered at c is 
developable into a Laurent series which converges normally in A to J. In 
order to get a converse to this statement, we associate to every Laurent 
series I:~oo av(z-c)" the radius of convergence s of its regular part and the 
radius of convergence'" of the power series LV>1 a_vwl/. We set r := ".-1, 
meaning r = 0 if r = 00 and r = 00 if r = 0, and we demonstrate the 
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Convergence theorem for Laurent series. Ifr < s, the Laurent series 
~~oo av(z - c)V converges normally in the open annulus A := Ar,s(c) to 
a function which is holomorphic in A; the Laurent series converges at no 
point of C \ A. 

If r ::::: s, the Laurent series converges in no open subset of c. 

Proof We set 
00 00 

f+(z) := Lav(z - ct E O(Bs(c)) ,g(w) := La_vwv E O(Br(O)). 
o I 

Then ~=~ av(z - c)V converges normally in C \ Br(c) to the function 
f-(z) := g«z - c)-I) E O(C \ Br(c)). Therefore if r < s, the Laurent 
series converges normally in Bs(c) n (C \ Br(c)) = A to f+ + f- E O(A). 

The remaining statements of the theorem follow from the convergence 
behavior of the power series f+, 9 in their respective discs of convergence. 
(Use theorem 4.1.2.) 0 

In function theory we are only concerned with Laurent series having 
r < s. Laurent series with r ::::: s are uninteresting, since there is no 
meaningful calculus for them: For L := ~~oo ZV with r = s = 1, formal 
calculation leads to z· L = ~~oo zV+I, that is, back to L, so that one gets 
(z - I)L = 0 which can't happen in function theory. 

For Laurent series we have a simple 

Identity theorem. If ~~oo av(z - c)V and ~~oo bv(z - c)V are Laurent 
series which each converge uniformly on a circle Sp, p > 0, to the same 
limit function f, then 

(1) 1 1211" " av = bv = -2 II f(c + pe''P)e-ov'Pdcp , 
7rp 0 

v E Z. 

Proof. First note that these integrals exist, because f is necessarily con­
tinuous on Sp. The uniformity of the convergence is the reason for this 
continuity and it also justifies interchanging the integration with the limit 
process which determines f. Then equation (1) emerges from the "orthog­
onality relations" among the exponentials (on which point cf. also 8.3.2). 

o 

Naturally the equations (1) are nothing other than the formulas (2) from 
1.3. The assumption that a Laurent series about c converge compactly on 
a circle Sp centered at c is fulfilled in all cases where the series actually 
converges in an annulus around c which contains Sp. If we let L(A) be the 
set of Laurent series which (normally) converge in the annulus A, then the 
identity theorem and the theorem of Laurent together prove that 
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The mapping O(A) ~ L(A) which assigns to every holomorphic function 
in A its Laurent series around c is bijective. 

The holomorphic functions in A and the convergent Laurent series in A 
thus correspond biuniquely. 

Historical remark. CAUCHY proved the above identity theorem for Lau­
rent series in 1841 ((Euvres (1) 6, p.361). He hypothesized merely the 
pointwise convergence of the two series to the same limit function on Sp 
and then blithely integrated term-wise (which is inadmissible). Thereupon 
LAURENT communicated his investigations to the Paris Academy and 
in an accompanying letter remarked (C. R. A cad. Sci. Paris 17(1843), 
p. 348) that he was in possession of convergence conditions "for all the 
series developments heretofore used by mathematicians." 

2. The Gutzmer formula and Cauchy inequalities. If the Laurent 
series L:~oo av(z - c)V converges uniformly on the circle Sp centered at c 
to f : Sp - C, then the Gutzmer formula holds: 

In particular, the Cauchy inequalities 

(2) prevail for all v E Z. 

The proof is analogous to that of 8.3.2. o 

If the Laurent series is holomorphic in some annulus Ar.s(c) with r < 
p < s, then one can naturally get the inequalities (2) directly and imme­
diately from 1.3(2). WEIERSTRASS' proof in (W2], pp. 68, 69, which was 
reproduced in 8.3.5, was actually carried out by him for Laurent series. 

With the help of the inequalities (2) we can understand at a glance and bet­
ter than before why the Riemann continuation theorem is valid. Namely, if 
L::'oo a,,(z - c)" is the Laurent development of f in a neighborhood of the iso­
lated singularity c and if M < 00 is a bound for f near c, then for all sufficiently 
small radii p the estimates p"la,,1 ~ M hold for all v E Z. Since limp ..... o p" = 00 

for every v ~ -1, the only way out is for a" to be 0 for every such v. That 
is, the Laurent series is really a power series and consequently via f(c) := ao, f 
is holomorphically extended over c. It was in just this way that WEIERSTRASS 
proved the continuation theorem in 1841 ((Wl], p.63). 

3. Characterization of isolated singularities. The theorem of Laurent 
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makes possible a new approach to the classification of isolated singularities 
of holomorphic functions. If f is holomorphic in D \ c, where c ED, 
then there is a uniquely determined Laurent series L~oo av(z - c)V which 
represents f in every punctured disc Br(c) \ c lying in D \ c. We call this 
series the Laurent development of f at (or around) c and show 

Theorem (Classification of isolated singularities). Suppose c E D is 
an isolated singularity of f E O(D \ c) and that 

00 

f(z) = L av(z - ct 
-00 

is the Laurent development of f at c. Then c is 

1) a removable singularity {:} av = 0 for all v < 0, 

2) a pole of order m 2: 1 {:} av = 0 for all v < -m and a_m i= 0, 

3) an essential singularity {:} av i= 0 for infinitely many v < O. 

Proof ad 1) The singularity c is removable exactly when there is a Taylor 
series at c which represents f near c. Because of the uniqueness of the 
Laurent development, this occurs just when the Laurent series is already a 
Taylor series, i.e., av = 0 for all v < O. 

ad 2) On the basis of theorem 10.1.2 we know that c is a pole of order 
m exactly when an equation 

bm b1 -
f(z) = +"'+-+f(z) with bm i= 0 

(z - c)m Z - C 

holds in a punctured neighborhood of c, j being given by a power series 
convergent in that whole neighborhood. Again due to the uniqueness of 
the Laurent development, this occurs just if av = 0 for all v < -m and 
a_m = bm i= o. 

ad 3) An essential singularity occurs at c exactly when neither case 1) 
nor case 2) prevails, that is, when av is non-zero for infinitely many v < O. 

o 

It now follows trivially that exp Z-l and cos Z-l have essential singular­
ities at the origin, since their Laurent series 

00 1 1 

LVlzv o . 
and 

00 (-l)V 1 

~ (2v)! z2v 

each have principal parts containing infinitely many non-zero terms. Fur­
thermore, lemma 10.1.3 also follows directly. 0 
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We want to emphasize again that 

If c is an isolated singularity of f, the principal part ,,; the Laurent 
development of f at c is holomorphic in C \ c. 

This follows from theorem 1.2 because in this case A - = C \ c. 0 

A Laurent series at the point c in the punctured disc B\c, when regarded 
as the sum of the series of meromorphic functions f v ( z) : = av ( z - c) v in B, 
converges normally in B in the sense of 11.1.1 exactly when its principal 
part is finite (for only then is the pole-dispersion condition met). 

Exercises 

Exercise 1. Determine the region of convergence of each of the following 
Laurent series: 

) ",,00 ZV 
a wv=-oo TVTf' 

00 (z - 1)2V 
b) Ev=-oo v 2 + 1 ' 

c) E:=_oocV(z-d)V, cECx,dEC, 

00 (z - 3)2v 
d) Ev=-oo (v2 + I)V 

Exercise 2. Let fez) = E:=o avzv be a power series with positive radius 
of convergence. Determine the region of convergence of the Laurent series 
E:=-oo alvlzv and identify the function which it represents there. 

Exercise 3. Let 0 < r < s < 00, A = Ar,s(O) and f E O(A). Suppose that 
limn-+oo f(zn) = 0 either for every sequence {zn} C A with IZnl -+ r or for 
every sequence {zn} C A with IZnl -+ s. Show that then fez) = 0 for all 
z E A. Investigate whether this conclusion remains valid in either limiting 
case r = 0 or s = 00. 

Exercise 4. For each of the following functions classify the isolated sin­
gularity at 0 and specify the principal part of the Laurent development 
there: 

a) sinz n E N; ---:z'l ' 

b) z nE N; (z + 1) sin(zn) ' 

c) COS(z-l) sin(z-l); 
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§3 Periodic holomorphic functions and 
Fourier series 

The simplest holomorphic functions with complex period w t= 0 are the 
entire functions cos(::r z), sine: z) and exp(2:i z). Series of the form 

(1) Cv E C 

are called Fourier series of period w. The goal of this section is to show 
that every holomorphic function with period w admits development into 
a normally convergent Fourier series (1). The proof is accomplished by 
representing every such function J in the form J(z) = F(expe:i z)), where 
F is holomorphic in an annulus (cf. subsection 2); the Laurent development 
of F then automatically furnishes the Fourier development of J. 

1. Strips and annuli. In what follows w will always designate a non-zero 
complex number. A region G is called w-invariant if z ± w E G for every 
z E G. This evidently occurs just when every translation z ~ z + nw 
(n E Z) induces an automorphism of G. For every pair a, bE JR with a < b 
the set 

Tw:= Tw(a, b) := {z E C: a < ~ (~ z) < b} 

will be called the strip determined by w, a and b. The argument of w deter­
mines the "direction" of the strip, as the example in the figure illustrates. 

Strips Tw are w-invariant and in fact convex, so if dE Tw then the whole 
interval [d, d+w] and indeed the whole line d+wJR lies in Tw. We also want 
to admit a = -00 and b = 00. Evidently Tw( -00, b), with b E JR, is an 
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open half-plane, while Tw( -00,00) is all of C. The figure shows T1+i(O, 2); 
7r / 4 is the argument of w = 1 + i. 

By means of z 1-+ z/w the strip Tw(a, b) is mapped biholomorphically 
onto T1(a, b). Therefore most problems reduce to the case w = 1. On the 
other hand, z 1-+ w := exp(27riz) maps the straight line Ls := {z E C : 
~(27rz) = s} onto the circle {w E C : Iwl = e- S }, for each s E lR. From 
this observation it follows immediately that 

The strip Tl ( a, b) is mapped by 

h: T1(a, b) --+ Ae-b,e-a(O) , Z 1-+ w:= exp(27riz) 

holomorphically onto the annulus Ae-b ,e-a (0) centered at 0 and having in­
ner radius e-b , outer radius e-a • 

As special cases of this, h(Tl(a, 00)) is the punctured disc {w E C : 0 < 
Iwl < e-a } and h(C) = C X • 

In the sequel we will write just A for Ae-b,e-a(O). 

2. Periodic holomorphic functions in strips. If J is holomorphic in 
an w-invariant region G, then for every z E G and n E oZ, the number 
J(z+nw) is well defined. The function J is called periodic in G with period 
w, or simply w-periodic in G, if 

J(z + w) = J(z) holds for all z E G. 

The ostensibly more general identities J(z + nw) = J(z) for all z E G, 
n E oZ, follow trivially. 

The set Ow (G) of all w-periodic holomorphic functions in the w-invariant 
region G is evidently a C-subalgebra of O( G) which is closed in O( G) with 
respect to compact convergence. 

Now again let w = 1 and G be the strip T1 . The holomorphic mapping 
h : G --+ A of G onto the annulus A, considered in subsection 1, induces an 
algebra monomorphism h* : O(A) --+ O(G) via F 1-+ J := Foh which "lifts" 
every holomorphic function F on A to a holomorphic function J(z) := 
F(exp(27riz)) on G with period 1. The image algebra h*(O(A)) is thus 
contained in the algebra Ol(G). In fact, Ol(G) is precisely the range of 
h*. We have namely, as an immediate consequence of the factorization 
theorem 9.4.5, 

Theorem. For every I-periodic holomorphic function f on G there is 
exactly one holomorphic function F on A such that J(z) = F(exp(27riz)) 
for all Z E G. 

So, in summary, the mapping h* : O(A) --+ Ol(G) is a C-algebra iso­
morphism. 
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3. The Fourier development in strips. In any strip Tw all the (com­
plex) Fourier series L~ooc"exp{2;ivz), c" E C, which are normally con­
vergent there define w-periodic holomorphic functions. The fundamental 
insight here is that all w-periodic I E O(Tw) are thereby accounted for. 

Theorem. Let I be holomorphic and w-periodic in the strip G = Tw. Then 
I can be expanded into a unique Fourier series 

(1) 00 (2.) 
I{z) = Lc"exp :"'vz 

-00 

which is normally convergent to I in G. (The convergence is unilorm in 
every substrip Tw (a', b') 01 Tw, where a < a' < b' < b.) 

For every point d E G we have 

(2) 11, ( 211"i ) c" = - I«() exp --1/( d(, 
w [d,d+w] w 

1/ E Z. 

Proof We again restrict ourselves to the case w = 1. According to theorem 
2 there is a unique holomorphic function F in the annulus A := {w E C : 
e-b < \w\ < e-a } such that I(z) = F(exp(211"iz)). The function F has a 
unique Laurent development in A: 

00 

F(w) = LC"w" 
-00 

and S any circle with center 0 which lies in A. This settles the question 
of the existence of the representation (1). The uniqueness and convergence 
assertions here follow from the corresponding ones for Laurent series. 

The interva1[d,d+ 1] is parametrized by (t):= d+ 2~t and the circle 
S by ~(t):= qe't, t E [0,211"]. Here q:= exp(211"id) E A. It follows that 

1 r21r 
211" io I«((t))(qeit)-"dt 

r I «() exp( - 27ril/()d(, 
i[d,d+1] 

that is, (2) is valid for the coefficients Cv , in view of 1.3(2). o 

In simple cases, as with Laurent series, the Fourier series of a function 
can be exhibited directly without recourse to the integral formulas (2) for 
the coefficients. We discuss some. 

4. Examples. 1) The Euler formulas 
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1 . 1. 
cos z = _e-IZ + _elZ 

2 2 
1 . 1· sinz = __ e-IZ + _elZ 
2i 2i 

are the complex Fourier series of cos z and sin z in C. 
2) The function co; z is holomorphic in the open upper nalf-plane and 

in the open lower half-plane and it has period w .- 27r. Since co; z = 
2 iz 1 h e 1 + e21Z ,we ave 

-i - I~ 2ie2illz if {Yz> 0, 

i + I~ 2ie2illz if {Yz < 0. 

as the corresponding Fourier developments. 
3) The function cot z is holomorphic in the open upper half-plane and in 

the open lower-half plane and it has period 7r. From cotz =i (1-~) 
l-e 

we get the respective Fourier developments 

(k-l! L...l II e if ~z > 0, 
cotz = { 

(-2 ... i( ~oo k-l 2 ... i" 

_ (C2 ... it ~-l k-l 2 ... i"z 
k-l)! L...-oo II e if ~z < 0. 

4) Since Cl (z) = 7r cot 7rZ and (k -1)!ck = (_I)k-lc ik- 1) (see 11.3.4(2)), 

from differentiation of (3) we get the Fourier developments of all the Eisen­
stein functions for k ~ 2, namely 

{ 
(-2 ... it ~oo k-l 2 ... i" 
(k-l)! L...l II e 

ck(Z) = . k 
_ (-2 .... ) ~-l k-l 2 ... i"z 

(k-l)! L...-oo II e 

if ~z > 0, 

if ~z < 0. 

The reader should derive the Fourier series of tan z, (sin Z)-l and (cos z)-2. 

5. Historical remarks on Fourier series. As early as 1753 D. 
BERNOULLI and L. EULER used trigonometric series 

1 00 

-aD + ~)a" cos !IX + b" sin !Ix) , 
2 1 

2 2 

in solving the differential equation a ~ = (ia ~ of a vibrating string. The 
at ax 

real creator of the theory of trigonometric series is however Jean Bap-
tiste Joseph de FOURIER (born 1768, took part in Napoleon's Egyptian 
campaign; later a politician by profession, close collaborator of Napoleon's 
for years, among other capacities as prefect of the Isere departement; did 



§4. THE THETA FUNCTION 365 

physics and mathematics in his scant spare time, died in Paris 1830). It is 
to honor him that such series are called Fourier series. FOURIER developed 
the theory of his series starting in 1807. The point of departure was the 
problem of heat conduction in a solid body, which leads to the "heat equa­
tion" (cf. 4.1). Although the physical applications were more important for 
FOURIER than the new mathematical insights being uncovered (cf. the fa­
mous statement of JACOBI in 4.5 contrasting his and FOURIER's attitudes), 
he nevertheless perceived at once the great significance of trigonometric se­
ries within the so-called pure mathematics and occupied himself intensively 
with it. He published his investigations in Paris in 1822; this fundamental 
book, which is exciting to read even today, was entitled La Theorie An­
alytique de la Chaleur (see also vol. I of his (Euvres, or the 1878 English 
translation by A. FREEMAN, published by Cambridge University Press and 
reprinted by Dover Publ. Co., Inc. (1955), New York). A very good his­
torical presentation of the development of the theory in the first half of 
the 19th century was given in 1854 by RIEMANN in his Gottingen Habili­
tationsschrift entitled Ueber die Darstellbarkeit einer Function durch eine 
trigonometrische Reihe (Werke, 227-264). 

§4 The theta function 

The focus of this section is the theta function 

00 

O(z, 7") := L e-V2 71"T e271"ivz, 

-00 

which by its very form is a Fourier series (in z). "Die Eigenschaften dieser 
Transcendenten lassen sich durch Rechnung leicht erhalten, weil sie durch 
unendliche Reihen mit einem Bildungsgesetz von elementarer Einfachheit 
dargestellt werden konnen (The properties of these transcendental func­
tions are easily obtained via calculation because they can be represented by 
infinite series whose formation law is of elemental simplicity)." Thus spoke 
FROBENIUS in 1893 in his induction speech before the Berlin Academy 
(Gesammelte Abhand. 2, p. 575). 

After the necessary convergence proof (subsection 1) our first business 
will be the construction (subsection 2) of doubly periodic meromorphic func­
tions by means of the theta function. In subsection 4 from the Fourier 
development of e-Z2 71"T O(irz, r) we will get the classical 
Transformation formula 

1 2 
O(z, -) = v'Te-Z 7I"7"O(irz, r), 

r 

in the course of which the famous equation 
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100 e-x2 dx = .j7r 
-00 

for the error integral drops out as a by-product, though to be sure we have 
first to derive (in subsection 3 via Cauchy's integral formula) a certain 
"translation-invariance" of this integral. 

Historical remarks on the theta function and the error integral will be 
found in subsections 5 and 6. 

1. The convergence theorem. The theta series 

00 

O(z, T) = L e-,,211'T e211'i"z 
-00 

is normally convergent in the region {(z, T) E 1(:2 : iRT > o}. 

Proof In the product region I(: x x lE the Laurent series 

00 

J(w,q):= Lq,,2 w" 
-00 

is normally convergent (by the ratio criterion 4.1.4). Since J(e211'iz, e-1I'T) = 
O(z, T) and since le-1I'T1 < 1 for all T with iRT > 0, the claim follows. 0 

We designate by 'll' the open right half-plane {T E I(: : iRT > o}. (The 
capital "t" should remind us that this set involves the variable "T".) From 
the preceding theorem and general theory, O(z, T) is continuous in I(: x 'll' 
and for each fixed value of one of the variables it is a holomorphic function 
of the other. We think of T principally as a parameter; then O(z, T) is a 
non-constant entire function of z. We also have 

00 

O(z, T) = 1 + 2 L e-,,211'T cos(211'IIz) , 
1 

(z, T) E I(: x 'll'. 

Because of the normal convergence, the theta series may be differentiated 
term-wise arbitrarily often with respect to either variable. Calculating in 
this way one easily confirms that 

820 = 411' 8fJ 
8z2 8T 

in I(: x 'll'. 

The theta function therefore satisfies the partial differential equation ~ = 
411'~, which is central in the theory of heat conduction (T being regarded 
as a time parameter). 
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2. Construction of doubly periodic functions. We first notice the 
trivial identity 

(1) O(z + 1, T) = O(z, T). 

Furthermore 
00 00 

O(z + iT, T) = L e-v2 ... .,.-2 ... v.,. e2 ... ivz = e ... .,.-2 ... iz L e-(v+l)2 ... .,. e 2 ... i (v+l)z, 

-00 -00 

that is, upon rephrasing the latter sum in terms of v instead of v + 1, 

(2) O(z + iT, T) = e ... .,. e-2 ... izO(Z, T). 

The theta function consequently has period 1 in z and the "quasi-period iT 
with periodicity factor e ... .,. e-2 ... iz ". This behavior enables us to construct 
doubly periodic functions. 

Theorem. For each T E T the junction 

E ( ) .= O(z + ~,T) 
.,. z. O(z, T) 

is merom orphic and non-constant in C. It satisfies 

(3) E.,.(z + 1) = E.,.(z) and E.,.(z + iT) = -E.,.(z). 

Proof Obviously E.,.(z) is meromorphic in C and on account of (1) and (2), 
equations (3) hold. If there were a a E T for which E".(z) were constant, 
equal to a E C, say, then O(z + ~,a) = aO(z, a) would hold for all z E C. 
Now 

00 

O(z + ~,a) = L(-lte-v2"''''e2 ... ivz 
-00 

is the Fourier development of O(z + ~,a). The preceding identity and 
uniqueness of Fourier developments would then lead to the contradiction 
that a = (_1)1' for all v E Z. 0 

A meromorphic function in C is called doubly periodic or elliptic provided 
it has two real-linearly independent periods. On the basis of the foregoing 
theorem it is clear, since ~T "I- 0, that 

The junctions E.,.(z) and E.,.(z)2, for each T E T, are non-constant dou­
bly periodic junctions having the two periods 1 and 2iT, and 1 and iT, 
respectively. 
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2 
3. The Fourier series of e-z 7rT(J(i7"z, 7"). For our discussion of this 
function we will need the following "translation-invariance" of the error 
integral: 

for all a E C , b E 1R+. 

(The meaning and criteria for the existence of improper integrals are briefly 
reviewed in 14.1.0 and in what follows we will use 1R+, as was frequently 
done in 5.4.4, to designate the set of positive real numbers.) 

~~----~~.~s+iq 
72 a=p+lq 

71 

-r 0 s 

Proof From the power series representation we obtain ebx2 > (b~7 for 
all x E IR and all b > O. Therefore x 2e-bx2 < 2b-2x-2 -+ 0 as Ixl -+ 00 

and consequently the integral J~oo e-bx2 dx exists. We consider the entire 

function g(z) := e-bz2 • According to the Cauchy integral theorem we have 
for all finite r, S > 0 (see the above figure) 

r gdx + 1 gd( = 1 gd(. J -r 1'1 +1'3 1'2 

Using 'Yl(t) := s + it, 0 :5 t :5 q and the standard estimate 6.2.2, it follows 
that 

where the constant M := qebq2 is independent of s. Since b> 0, it follows 
that 

lim 1 gd( = 0, 
8-+00 

1'1 

and analogously lim 1 gd( = O. 
r--+oo ")'3 

Because 'Y2(t) = Ha, t E [-r-p, s-p] , we have J1'2 gd( = J~;~p e-b(Ha)2 dt. 

From what has been noted so far, the left side of (*) has a limit in C as 
r, s -+ 00. Therefore the existence of the improper integral of e-b(Ha)2 as 
well as the equality 
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follows from (*). Substitution of x := Jbt on the right side of this gives us 
(1). 0 

Anyone who has no anxiety about permuting the order of differentiation 
and improper integration, can derive (1) as follows: The function h(a) := 
J~oo e-b(x+a)2 dx has throughout C the (complex) derivative 

100 2 21 00 h'(a) = - 2b(x + a)e-b(x+a) dx = e-b(x+a) _ = O. 
-00 00 

Therefore h is constant: h(a) = h(O). To adequately justify this argument 
requires however a bit of work. 0 

Now denote by .,fi the holomorphic square-root function in T which is 
uniquely determined according to 9.3.2 by the specification v'I = 1. Then 
with the help of equation (1) we can show 

Theorem. For each T E T, e-Z21fT 9(iTZ, z) is an entire function of Z 
having period 1 and Fourier expansion 

00 

(2) e-Z21fT9(iTZ, z) = (v'T)-1 L e-n21f /T e21finz 
-00 

Proof The series definition of 9(z, T) gives 

(3) 
00 

e-Z21fT9(iTZ, z) = L e-(z+v)21fT , 
-00 

(Z,T) E exT. 

For each T E T this is an entire function of Z which visibly has period 1 
(shift of summation index). Consequently according to theorem 3.4 there 
is valid for it the equation 

00 

e-Z21fT 9(iTZ,Z) = L Cn(T)e21finz for all (Z,T) E exT, 
n=-oo 

where 

Cn(T) := 11 e-t21fT9(iTt,T)e-21fintdt. 

Due to the identity (t + v)2 + 2itn/T = (t + v + in/T)2 - 2vin/T + n2/r2 
and the normal convergence of the theta function, it follows from (3) that 

Since J; e-1fT(t+v+in/T)2 dt = J:+ 1 e-1fT(t+in/T)2 dt, equation (1) converts 
the last expression for Cn ( r) into 
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provided r is not just in 'r but r E R.+. Assembling the pieces, 

for all (z,r) E C x R.+. Taking z:= 0, r:= 1, this yields 

Since 0(0,1) = E~oo e-v2 11" > 0, it follows that J:O e-t2 dt = ..(ii. (*) then 
becomes the equation (2), for the points (z,r) E C x R.+. For fixed z E C, 
both sides of (2) are holomorphic functions of r E 'r, so we can now cite 
the identity theorem 8.1.1 to affirm the validity of (2) for all (z, r) E ex 'r. 

o 

4. Transformation formulas of the theta function. From the Fourier 
expansion 3.(2) we immediately deduce the 

Transformation formula: 

1 2. 
O(z, -) = ,;re-Z 1I"TO(zrz, r) , 

r 
(z,r) E C x 'r; 

an equation which can also be written in the "real" form 

f e-n211"T-2n1l"TZ = eZ2 11"T (1 + 2 f e-n2 11"/T COS(2n7rZ)) . 
-00 yT 1 

The function 
00 

O(r):= O(O,r) = ~::>_V211"T, r E 'r, 
-00 

is the classical theta function (the "theta-null-value"); for it there is the 

Transformation formula: 

o (~) = ,;rO(r). 

Considerable numerical power is concealed in this identity. For example, if 
we set q := e-1I"T and r := e-1I"/T, then it says that 
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If q is only a little smaller than 1 (that is, if the positive number r is very 
small), then the series on the left converges very slowly; but in this case r 
is very small and a few summands from the right side suffice to calculate 
the value of the sum with high precision. 

The transformation formula for O(z, r) is only the tip of an iceberg of in­
teresting equations involving the theta function. In 1893 FROBENIUS (loc. 
cit., pp. 575,6) said: "In der Theorie der Thetafunctionen ist es leicht, eine 
beliebig grosse Menge von Relationen aufzustellen, aber die Schwierigkeit 
beginnt da, wo es sich darum handelt, aus diesem Labyrinth von Formeln 
einen Ausweg zu finden. Die Beschaftigung mit jenen Formelmassen scheint 
auf die mathematische Phantasie eine verdorrende Wirkung auszuiiben (In 
the theory of the theta functions it is easy to assemble arbitrarily large 
collections of relations; but the difficulty begins when it becomes a ques­
tion of finding one's way out of this Labyrinth. Preoccupation with such 
masses of formulas seems to have a dessicating effect on the mathematical 
imagination) ." 

5. Historical remarks on the theta function. In the year 1823 
POISSON considered the theta function O( r) for positive real arguments 
r and derived the transformation formula O(r-l) = ..jTO(r) (Jour. de 
l'Ecole Polytechn. 12 Cahier 19, p. 420). RIEMANN used this formula in 
1859 in his revolutionary, short paper "Uber die Anzahl der Primzahlen 
unter einer gegebenen Grosse" (Werke, 145-153) when studying the func­
tion 1/J(r) := E~ e-V21T7' = !(O(r) - 1), in order to get "einen sehr be­
quemen Ausdruck der Function ((8) (a very convenient expression of the 
function ((8))" - p.147. 

Carl Gustav Jacob JACOBI (born 1804 in Potsdam, 1826-1844 professor 
at Konigsberg and founder of the Konigsberg school, from 1844 academi­
cian at the Prussian Academy of Science in Berlin; died 1851 of smallpox; 
one of the most important mathematicians of the 19th century; the JA­
COBI biography by L. KOENIGSBERGER, Teubner-Verlag (1904), Leipzig is 
very informative) studied O-series systematically from 1825 on and founded 
his theory of elliptic functions with them. This was in his Fundamenta 
Nova Theoriae Functionum Ellipticarum published in Konigsberg in 1829 
(Gesammelte Werke 1, 49-239), a work of extraordinary richness. It closes 
with an analytic proof of LAGRANGE's theorem that every natural number 
is a sum of four squares. Our transformation formula is but a special case 
of more general transformation equations in JACOBI (cf., say, p. 235 loco 
cit.). 

JACOBI secured the properties of the O-functions purely algebraically. 
Since the time of LIOUVILLE'S lectures, methods from Cauchy's function 
theory have predominated, as is, e.g., already the case in the book [BBl. 
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We speak of the theta function because JACOBI himself happened to 
designate the function 8(z, r) that way (using e instead of 8). In his 
memorial address on JACOBI, DIRICHLET (Werke 2, p.239) says: " ... die 
Mathematiker wiirden nur eine PHicht der Dankbarkeit erfiillen, wenn sie 
sich vereinigten, [dieser Funktion] JACOBI'S Namen beizulegen, um das 
Andenken des Mannes zu ehren, zu dessen schonsten Entdeckungen es 
gehort, die innere Natur und die hohe Bedeutung dieser Transcendente 
zuerst erkannt zu haben ( ... mathematicians would simply be fulfilling an 
obligation of gratitude if they were to unite in bestowing JACOBI'S name 
on this function, thus honoring the memory of the man among whose most 
beautiful discoveries was to have first discerned the inner nature and enor­
mous significance of this transcendent)." 

As shown in subsection 1, the function 8(z, r) satisfies the heat equation. 
So it is not surprising that as early as 1822 - seven years before the appear­
ance of Jacobi's Fundamenta Nova - theta functions show up in Fourier's 
La Theorie Analytique de la Chaleur (cf., e.g., (Euvres 1, p. 295 and 298); 
however FOURIER did not perceive the great mathematical significance of 
these functions2 To him the value of mathematics generally lay in its ap­
plications, but JACOBI did not recognize such criteria. His point of view is 
wonderfully expressed in his letter of July 2, 1830 to LEGENDRE (Gesam­
melte Werke 1, p.454/5): "II est vrai que M. Fourier avait l'opinion que 
Ie but principal des mathematiques etait l'utilite publique et l'explication 
des phenomenes naturels; mais un philosophe comme lui aurait dli savoir 
que Ie but unique de la science, c'est l'honneur de l'esprit humain ... (It is 
true that M. Fourier had the opinion that the principal aim of mathemat­
ics was public usefulness and the explanation of natural phenomena; but a 
philosopher like him should have known that the unique aim of science is 
the honor of the human mind ... )." 

6. Concerning the error integral. In the proof of theorem 3 the equality 

(1) 

was an incidental by-product. This integral is frequently called the Gauss 
error integral. It already occurs implicitly in the famous work on the cal­
culus of probability by DE MOIVRE entitled The Doctrine of Chances (first 
edition 1718); the reprint of the third edition 1967 by Chelsea Publ. Co. 
contains a biography of DE MOIVRE on pp. 243-259. (Abraham DE 
MOIVRE, 1667-1754, Huguenot; emigrated to London after the repeal of 
the Edict of Nantes in 1685; 1697 member of the Royal Society and later 

2In 1857 in his first lectures on the theory of elliptic functions WEIERSTRASS said 
of the heat equation (cf. L. KOENIGSBERGER, Jahresber. DMV 25(1917), 394-424, esp. 
p. 400): " ... , die schon Fourier fUr die Temperatur eines Drahtes aufgestellt, in der er 
jedoch diese wichtige Transzendente nicht erkannt hat ( ... , which Fourier had already 
proposed for the temperature of a wire, but in which he did not perceive these important 
transcendents). " 
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of the academies in Paris and Berlin; discovered the "Stirling formula" 
n! ~ J27rn(n/e)n before STIRLING; served on a committee of the Royal 
Society adjudicating the priority dispute between NEWTON and LEIBNIZ 
over the discovery of the infinitesimal calculus; in his old age NEWTON is 
said to have replied when someone asked him a mathematical question: 
"Go to Mr. DE MOIVRE; he knows these things better than I do.") GAUSS 
never laid any claim to the integral and in fact in 1809 in his "Theoria Mo­
tus Corporum Coelestium" (Werke 7, p.244; English translation by Charles 
H. Davis, Dover Publ. Co., Inc. (1963), New York) he indicated LAPLACE 
as the inventor; later he corrected himself and said (Werke 7, p. 302) that 
(1) in the form 

[1 1 
Jo y'ln(1/x)dx = 2y'7r 

was already in a 1771 work of EULER ("Evolutio formulae integralis I x I - 1 

dx(.ex)~ integratione a valore x = 0 ad x = 1 extensa," Opem Omnia (1) 
17,316-357). In Euler (p.333) even the more general formula 

(2) 11 2n-l 1 3 5 2n - 1 
(In(1/x))-2-dx = - . - . - ... --y'7r 

o 2 2 2 2 ' 
n = 1,2, ... 

is to be found; via the substitution x := e- t2 , that is, t = y'ln(1/x), this 
goes over directly into the formula 

(3) 100 2n -x2d (2n)! l-
x e x = --'--4n y7r , 

-00 n. 
n E N, 

which may also be found on p. 269 of LAPLACE'S "Memoire sur les approx­
imations des formules qui sont fonctions de tres grands nombres" «(Euvres 
10, 209-291). However, the equations (3) follow immediately by induction 
from the more basic (1), using integration by parts U'(x) := x2n , g(x) := 

e-X2 ) and the fact that limlxl-+oo x 2n+1 e-x2 = O. 
EULER knew the special cases n = 1,2 of formula (2) as early as 1729 

(Opem Omnia (1) 14, 1-24, esp. pp. 10,11) but the equality (1) seems not 
to have come up explicitly with EULER. 

In the theory of the gamma function r(z) = Iooo t Z - 1e-t dt (which will 
be taken up in the second volume) equation (1) is just a trivial case of Eu­
LER'S functional equation r(z)r(1- z) = si:7rz' since r(~) = Iooo e;;dt = 
2 It e-x2 dx (x := 0). EULER knew the equality r(~) = .,fir, but nowhere 
does he mention the simple proof that via substitution as above one thereby 
gets the equality r(~) = 2Iooo e-x2 dx (cf. Opem Omnia (1) 19, p. LXI). 
In chapter 14 using the residue calculus we will give further proofs of the 
formula I~oo e-x2 dx = .,fir. 
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One gets the value I of the error integral most quickly by reduction to 
a certain double integral which arises from iterated integrals (EULER had 
evaluated other integrals this way; cf. Opera Omnia (1) 18, pp. 70,71). 
Using the polar coordinates x = r cos cp, y = r sin cp, the double integral is 
evaluated thus: 

This proof is due to POISSON and was used in 1891 by E. PICARD in his 
T'raite d'analyse, vol. I, pp. 102-104. 

There is yet another quite elementary way to determine the value of 1. Fol­
lowing J. VAN YZEREN, "Moivre's and Fresnel's integrals by simple integration," 
A mer. Math. Monthly 86(1979), 691-693, we set 

100 _t(l+,,2) 

e(t) := e 1 2 dx, 
-00 +x 

t ~ O. 

Then 
-t J e-t ,,2 -t J 1 -t 

e(t) = e 1 + x 2 dx :::; e 1 + x 2 dx = 1I"e , 

whence limt_oo e(t) = O. Differentiating under the integral sign gives 

(*) '(t) 100 -t(l+,,2)d -t 100 -t,,2 d 1( /;t)-l -t e = - e x = -e e x = - y ~ e j 

-00 -~ 

which together with limt_oo e(t) = 0 yields 

J OO JOO -u Joo , e ",2 
e(t) = - e (u)du = 1 r,;;du = 21 e- dx. 

t t yU Vi 

Set t = 0 to obtain 12 = 11" = e(O). The perilous appearing interchange of 
differentiation and integration which is involved in (*) is readily and rigorously 
justified: For p > 0, hEIR \ 0 we have ph < ePh - 1 < phePh , from which follows 

foralltER 

Suppose now that t > 0, t + h > 0 and p := 1 + x 2 • Integration with respect to x 
from -00 to 00 gives h( vt + h)-le-(t+h) 1:::; e(t) - e(t + h) :::; h( y't)-le- t 1, and 
so upon dividing by h and letting h ~ 0, we see that e'(t) = _I(y't)-le- t . 

In closing let us note that the translation-invariance formula 3.(1) holds 
also in the more general form 
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for all a E C , u E ']['. 

The proof from subsection 3 for u = b > 0 carries over almost verbatim 
to the present context where only lRu > O. From this and either theorem 
7.1.6* or the Exercise in §1 of Chapter 7 follows: 

For all (u,v,w) E '][' x C x C 

100 e-(ux2+2VX+W)dx = y'1i e(v2/u)-w, 

-00 .;u 

where .;u = v'jU'jei'P with 14'1 < t7r • 

In turn we immediately get from this 

(#) 

For real values of the parameters u and v this last formula is to be found 
in the book Theone analytique des probabilites of LAPLACE, on page 96 of 
the 3rd edition, 1820 (1st ed. was 1812, Paris). By decomposing into real 
and imaginary parts the reader can derive two real integral formulas from 
(#). 



Chapter 13 

The Residue Calculus 

As early as the 18th century many real integrals were evaluated by passing 
up from the real domain to the complex (passage du reel Ii l'imaginaire). Es­
pecially EULER (Calcul integral), LEGENDRE (Exercices de Calcul Integral) 
and LAPLACE made use of this method at a time when the theory of the 
complex numbers had not yet been rigorously grounded and "all conver­
gence questions still lay under a thick fog." The attempt to put this pro­
cedure on a secure foundation lead CAUCHY to the residue calculus. 

In this chapter we will develop the theoretical foundations of this calculus 
and in the next chapter use it to evaluate classical real integrals. In order 
to be able to formulate things with ease and in the requisite degree of 
generality, we work with winding numbers and nullhomologous paths. The 
Residue Theorem 1.4 is a natural generalization of the Cauchy integral 
formula. The classical literature on the residue calculus is quite extensive. 
Especially deserving of mention is the 1904 booklet [Lin] by the Finnish 
mathematician Ernst LINDELOF (1870-1946); it is still quite readable today 
and contains many historical remarks. The monograph by MITRINOVIC and 
KECKIC is a modern descendant of it which is somewhat broader in scope 
and contains a short biography of Cauchy. 

§1 The residue theorem 

At the center of this section stands the concept of the residue, which is dis­
cussed in considerable detail and illustrated with examples (subsections 2 
and 3). The residue theorem itself is the natural generalization of Cauchy's 
integral theorem to holomorphic functions which have isolated singularities. 
Its proof is reduced to the integral theorem by means of Laurent's expan­
sion theorem. 

In order to be able to formulate the residue theorem in sufficient gener-

377 
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ality we call on the index function ind,(z) which was introduced in 9.5.I. 
The special situation in which this number equals 1 will be considered first, 
in subsection 1. 

1. Simply closed paths. A closed path, is called simply closed if 

Int, -I- 0 and ind,(z) = 1 for all Z E Int ,. 

Here we are using the notation introduced in 9.5.1: 

. 1 1 d( md,(z) = ~ -(- E Z, 
7ft , - Z 

Z E C\, 

and 
Int, = {z E C \, : ind,(z) -I- O}. 

Simply closed paths are particularly amenable. According to theorem 6.2.4 
every circle is simply closed. In what follows we offer further examples, 
sufficient for the applications of the residue calculus to be made in the next 
chapter. 

0) The boundaries of circular segments and of triangles and rectangles 
are simply closed. 

Proof Let A be an open circular segment; this expression is used faute 
de mieux to designate a chord-arc region of the kind shown shaded in the 
figure below, viz., the intersection of an open disc and an open half-plane. 
We have BA = BE - BA', with BE =, + ," a circle and BA' = ," - " the 
boundary of the circular segment A' complementary to A (cf. the figure). 

y" 

It follows that indaA(z) = 1- indaA' (z) for Z E 4. Points Z in A lie in the 
outside of the curve BA', as we see by joining Z to 00 by a ray which is 
disjoint from A'. Constancy of the index on this line and its vanishing at 
00 then give indaA'(z) = O. Thus indaA(z) = 1 and BA is simply closed. 

This proof can be repeated if more of A is excised by chords of the 
containing circle. Since every triangle and every rectangle arises from such 
excisions on a containing circle, each has a simply closed boundary. (Cf. 
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the assertion that indaR{z) = 1 for Z E R, about the rectangular boundary 
8R, with Exercise 1 in §1 of Chapter 6. ) 

1) The boundary of every open circular sector A (left-hand figure below) 
is simply closed. 

Proof We have 8A = 7+71 +72 and 8A = 8B -8A', with A' denoting the 
sector complementary to A in the whole disc B. It follows that indaA{z) = 
1 - indaA' (z) for Z E A. As before, indaA' is constant on a radial path from 
Z to 00 which lies outside A', so indaAI{z) = O. 

d 

a 

2) The boundary of every open convex n-gon V is simply closed. 

Proof. Convex n-gons are decomposable into triangles. For example, in the 
right-hand figure above 8V = 86.1 + 86.2 , For Z E 6.1 , inda~l (z) = 1 by 
0), and inda~2 (z) = 0 because Z lies outside 6.2 • Thus indav (z) = 1. Since 
V is a region and the index is locally constant, it follows that indav (z) = 1 
for all z E V. 

3) The boundary of every circularly indented quadrilateral if of the kind 
shown in the left-hand figure below, in which 7' is a circular arc, is simply 
closed. 

~ 

Proof The quadrilateral V = abcd is convex and 8V= 8V - 8A, where A 
~ 

is the circular segment being excised. Since each z E V lies outside A the 
claim ind ~(z) = 1 follows from the preceding example. av 

L 

4) The boundary of every open circular horseshoe H is simply closed. 
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Proof We have (cf. the right-hand figure above) 

&H = 11 + 12 + 13 + 14 = 11 + S+ - I + 13 - S- - 8, 

where S-, S+ are the inner and outer circles, respectively. Now inds+ (z) = 
1 for z E H. And every z E H lies outside of S- and outside of the circular 
quadrangle L bounded by 1- 11 + 8 - 13. It follows that indim(z) = 1 for 
zE H. 

The preceding examples can be multiplied at will. They are all special in­
stances of the following theorem, the usual proof of which rests on the integral 
theorem of STOKES: 

A closed path "( : [a, bJ ~ C is simply closed under the following circumstances: 

1) "( is homeomorphic to the circle 81 (that is, "(: [a, b) - IC is injective). 

2) Int"( t ~ and lies "to the left of "(" (that is, if the tangent line "(( u) + "(' (u)t, 
t E R, to "( at any point of"( where "('( u) t 0, is "rotated by ~7r," the resulting 
line "((u) +h'(u)t has points lying in Int"( for which t is positive and arbi­
trarily small.) 

According to 9.5.2-3 for every path I which is nullhomologous in a 
domain D the general Cauchy integral formula 

ind,(z)J(z) = -21 .1 !(e,) de, 
7ft ,,>-z 

for all J E O(D) , zED \ I 

is valid. In particular then, for a simply closed path I which is nullhomol­
ogous in D we always have 

J(z) = ~ 1 J(e,) de, 
27ft , e, - z 

for all J E O(D) , z E Inti' 

We want to explicitly emphasize 

Cauchy's integral formula for convex n-gons. Let V be an open, 
convex n-gon with V c D and n :::: 3. Then every function f E O(D) 
satisfies the equation 

_1 r J(() de, = { f(z), 
27filav e,-z 0, 

for z E V 
for zED \ V. 

For the simply closed path &V is nullhomologous in D: There is an open 
n-gon V' (obtained by dilating V by a similarity transformation) with 
V c V' c D, and so by Cauchy's integral theorem for star-shaped regions 
we even have 

r gde, = 0 
lav 

for all g E O(V'). 
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2. The residue. If f is holomorphic in D \ c and '2:~oo a",(z - c)'" is its 
Laurent development in a punctured disc B x centered at c, then according 
to 12.1.3(2) 

a_1 = -21 . r f(()d( 
'Tn is 

for every circle S centered at c and lying in B. Thus of all the Laurent 
coefficients only a_1 remains after integration of f. For this reason it is 
called the residue of f at c and we write 

The residue of f is defined at every isolated singularity of f. 

Theorem. The residue at c of f E OeD \ c) is the unique complex number 
a such that the function fez) - a(z - c)-1 has a primitive in a punctured 
neighborhood of c. 

Proof If '2:~oo a",(z - c)'" is the Laurent series of f in BX := Br(c) \ c, 
then the function F(z) := '2:",#-1 "'~1 a",(z - C)"'+1 E O(BX) has derivative 
F' = f -a_l (z-c)-1. Therefore a function H is a primitive of f -a(z-c)-1 
in some punctured neighborhood of c if and only if (F - H)' = (a - a-d' 
(z - c)-1 there. Since according to 6.3.2 (z - c)-1 has no primitive around 
c, an H with H = F+ const. exists if and only if a = a-I. 0 

If f is holomorphic at c, then resef = O. However, this last equation can 
hold for other reasons too. For example, 

for n 22. 

For every f E OeD \ c) we always have rescJ' = 0, because the Laurent 
development of f' around c has the form :E~ va",(z - ct- 1 and conse­
quently contains no term a( z - c) -1. 0 

We discuss next some rules for calculating with residues. Immediately 
clear is the C.-linearity 

rese(af + bg) = a rescJ + b reseg for f, 9 E OeD \ c) , a, bE C. 

Decisive for many applications is the fact that residues, though defined 
as integrals, can often be calculated algebraically. The matter is especially 
simple at a first order pole: 

Rule 1). If c is a simple pole of f, then 
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resc! = lim(z - c)f(z). 
z->c 

Proof This is trivial, because f = a-l(z - C)-l + h, with h holomorphic 
in a neighborhood of c. 0 

From this rule we obtain a result which is extremely useful in practice: 

Lemma. Suppose 9 and hare holomorphic in a neighborhood ofc, g(c) =I- 0, 
h(c) = 0 and h'(c) =I- O. Then f := gjh has a simple pole at c and 

g(c) 
rescf = h'(c)" 

Proof Since h has the Taylor development h(z) = h'(c)(z - c) + ... about 
c, it follows that 

. . g(z) g(c) 
hm(z - c)f(z) = hm(z - c)h( ) = h'( ) =I- O. 
%--+c z-+c Z C 

Consequently, c is a pole of f of the first order with residue g(c)jh'(c). 0 

There is no comparably handy criterion for the determination of residues 
at poles of higher order: 

Rule 2). If f E M(D) has a pole at c of order at most m and if 9 is 
the holomorphic continuation of (z - c)m f(z) over c, then 

1 resc! = g(m-l)(c). 
(m - I)! 

Proof Near c we have f = (z ~~)m + ... + z ~ c + h, with h holomorphic 

at c as well. Then g(z) = bm + bm-1(z - c) + ... + b1(z - c)m-l + ... is the 
Taylor series of gat c, so that resc! = b1 = (m:l)!g(m-l)(c) follows. 0 

There is no simple procedure for calculating residues at essential singu­
larities. 

Z2 . 
3. Examples. 1) For the function f(z) = ~, the point c:= exp(~') = 

+z 
~(1 + i) is a simple pole. Since c- 1 = c, it follows from lemma 1 that 

c2 1 1 
resc! = 4c3 = 4c = 4y'2(1 - i). 
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The points ie, -e and -ie are likewise first order poles of fi for them one 
finds 

2) Let n E N \ {a}, 9 E 0(<::) be such that g(e) I- a for any e E C 

satisfying en = -1. Then the function f(z) := IglZln has a simple pole at 
each such e, with 

g(e) e 
resef = --1 = --g(e). 

nen- n 

3) Suppose p E IR and p > 1. Then the rational function R(z) = 

(2 24z 1)2 has poles of order two at each of the points e := -p + 
z + pz+ 

y'p2 - 1 E lE and d := -p - y'p2 - 1 E C \ lE. Since z2 + 2pz + 1 = 
(z - e)(z - d), g(z) := 4z(z - d)-2 is the holomorphic continuation of 
(z - e)2 R(z) over e. We have g'(e) = -4(e + d)(e - d)-3, and so from Rule 
2,2) 

4) Let g, h be holomorphic near e and e be an a-point of 9 of multiplicity 
v(g,e). Then 

( g'(z)) 
rese h(z) g(z) _ a = h(c)v(g, e). 

Proof Setting n := v(g, e), we have g(z) = a + (z - c)ng(z) near e, with 9 
holomorphic near e and g'(e) I- a (cf. 8.1.4). It follows that near c 

g'(z) 

g(z) - a 
= 

n(z - e)n-1g(z) + (z - c)ng,(z) 

(z - e)ng(z) 
n 

= -- + holomorphic function . 
z-c 

From this the claim follows. 

We emphasize the special case: 

If 9 has a zero at c of order oc(g) < 00, then 

A proof analogous to that of 4) establishes: 

o 
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5) If 9 has a pole at c and h is holomorphic at c, then 

for all a E C. 

Application of 4) yields a 

Transformation rule for residues. Let 9 b ..... D, r 1--+ z .- g(r) be 
holomorphic, with g(c) = c, g'(c) 1= O. Then 

resd = resc«(f 0 g)g') Jor all J E M(D). 

Proof. Set a := resd. According to theorem 1 there is a punctured neighborhood 
V X of c and an F E O(VX) such that F'(z) = J(z) - z ~ c. Then g-l(VX) is a 
punctured neighborhood of c and for r in that neighborhood 

(F 0 g)'(r) = F'(g(r»g'(r) = J(g(r))g'(r) - a t~r) . 
9 r - c 

Since derivatives always have residue 0 (subsection 1), it follows that 

, ( g'(r) ) resc«(f 0 g)g ) = a resc g(r) _ c . 

Since, due to g' (c) 1= 0, 9 has at cae-point of multiplicity 1, the present claim 
follows from 4). 0 

The transformation rule says that the residue concept becomes invariant if it 
is applied to differential forms instead of functions. 

4. The residue theorem. Let 'Y be a nullhomologous path in the domain 
D, A a finite subset of D \ 'Y. Then 

(1) ~ J-y hd( = I ind-y(c)· resch 
ceint')' 

for every holomorphic function h in D \ A. 

Remark. Since reszh = 0 in case z ¢ A, the sum on the right side of (1) 
is really only extended over c E A n Int 'Y, and so there is no convergence 
question. 

Proof. Let A = {Cl, ... ,cn }. We consider the principal part h", = b",(z -
C",) -1 + ii", of the Laurent development of h at c"" where ii", contains all the 
summands featuring powers (z - c",)k with k ~ -2. According to 12.2.3, 
h", is holomorphic in C \ C"'. Since iiI.' has a primitive in C \ Cv and Cv ¢ 'Y, 
it follows from the very definition of the index that 
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1 :::; lJ :::; n. 

Since h - (h1 + ... + hn ) is holomorphic in D and'Y is nullhomologous in 
D, J,/h - h1 - ... - hn )d( = 0 by the integral theorem. Because of (*) and 
the fact that bv = rescv h, it follows that 

Since ind')'(cv ) = 0 whenever Cv E Ext'Y, this is just equation (1). 0 

On the right side of equation (1) we find residues, which depend on the 
function hE O(D\A) and are analytically determinable, as well as winding 
numbers, which depend on the path and are generally not susceptible to 
direct calculation. Thus the residue theorem becomes especially elegant for 
simply closed paths: 

If 'Y C D is simply closed and nullhomologous in D, then under the 
hypotheses of the residue theorem we have the 

Residue formula: ~ 1 hd( = L resch. 
27rZ 

')' cEInt ')' 

o 

In later applications D will always be a star-shaped region; the hypoth­
esis that 'Y be nullhomologous in D is then automatically fulfilled by every 
'Y C D. 

The general Cauchy integral formula is a special case of the residue 
theorem. For if f is holomorphic in D and z is a point in D, then 
( !----. f(()(( - z)-l is holomorphic in D \ z and has the residue J(z) at 
z. Therefore for every path 'Y which is nullhomologous in D the equation 

~ 1 (J(() d( = ind,),(z)f(z) 
27rZ ')' - Z 

for zED \ 'Y 

holds. 

5. Historical remarks on the residue theorem. Cauchy's first in­
vestigations in function theory were the beginnings of the residue calculus 
as well. The memoir [C1] from the year 1814, which we have repeatedly 
cited, had as its primary goal the development of general methods for cal­
culating definite integrals by passing from the reals to the complexes. The 
"singular integrals" introduced by CAUCHY at that time ([C1], p.394) are 
in the final analysis the first residue integrals. "Der Sache nach kommt das 
Residuum bereits in der Jacobi'schen Doctor-Dissertation [aus dem Jahre 
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1825] vor (In essence the residue already occurs in Jacobi's doctoral dis­
sertation [from the year 1825])" - quoted from p.170 of [Kr]. The word 
"residue" was first used by CAUCHY in 1826 ((Euvres (2) 6, p. 23), but 
to be sure the definition there is quite complicated. For details of these 
matters we refer to LINDELOF'S book [Lin], especially pp. 12 fl. 

As applications of his theory CAUCHY derived anew virtually all the then 
known integral formulas; for example, "la belle formule d'Euler, relative a 
l'integrale" 

([Cd, p.432); 

and in addition he discovered many new integral formulas (also see the next 
chapter). 

Nevertheless POISSON was not particularly impressed with the treatise 
[CI ], for he wrote (cf. CAUCHY's (Euvres (2) 2, 194-198): " ... je n'ai 
remarque aucune integrale qui ne flit pas deja connue··· (I have not 
noticed any integral which was not already known·· .)". 

Naturally nullhomologous paths aren't to be found in CAUCHY'S writing. 
Moreover, because he was unaware of essential singularities, he worked 
exclusively with functions having at worst polar singularities. 

Exercises 

Exercise 1. Determine reseJ for all isolated singularities c E C of the 
following: 

a) J(z) = z2 t zt5 
z(z t 1)2 

b) J(z) = (Z4 t a4)-2 

(z - 1)2 
c) J(z) = (eZ _1)3 

2 

d) J(z) = (z _ 2?(~osz _ 1)3 

e) J(z) = cos e:; z) 

f) J(z) = tan3 z 

g) J(z) = cos (1': z) 
h) J(z) = sin(1 t Z-l) cos(l t z-2). 
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Exercise 2. Show that reso exp(z + z-l) = 2::=0 n!(n\l)!' 

Exercise 3. Let f,g be holomorphic around c with g(c) = g'(c) = 0 and 
g"(c) f. O. Show that 

resc(f /g) = [6J'(c)g"(c) - 2f(c)g"'(c)lf(3g"(c)2). 

Exercise 4. With the help of the residue theorem show that 

a) r 2 1 dz = 0 l aB2(0) sin zcosz 

fa sinz 2 . 
b) 4( 2 2) dz = -311"~ 

alE z z + 

c) i (z:: 1) dz = -11", where'Y is the boundary of B2 (O) n E. 

Exercise 5. Let q(z) be a rational function having denominator of degree 
at least 2 more than the degree of its numerator. Show that 

Lrescq = O. 
cEIC 

Exercise 6. a) Let f be holomorphic in C with the exception of finitely many 
(isolated) singularities. Then z-2 f(Z-l) is holomorphic in a punctured 
neighborhood of O. Show that 

reso(z-2 f(Z-l)) = L resel· 
cEIC 

fa 5Z6 + 4 . 
b) Show that 2 7 1 dz = 511"~. 

alE z + 
c) With the help of a) give new solutions to exercise 1 g) and h). 

§2 Consequences of the residue theorem 

Probably the most famous application of the residue theorem is its use in 
generating a formula for the number of zeros and poles of a meromorphic 
function. We will derive this formula from a more general one. As a special 
application we discuss the theorem of ROUCHE. 

1. The integral --...!..... f F(,) I(~')(') ~. Let f be meromorphic in D 
21ft "I .. - a 

and have only finitely many poles. Suppose 'Y is a nullhomologous path in 
D which avoids all the poles of f. For any complex number a such that the 
fiber f-l(a) is finite and disjoint from 'Y, and for any F E O(D), we then 
have 
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1 1 f'(() 
27ri -y F(() f(() _ a d( = I: ind-y(c)· v(f, c) . F(c) 

cEf-l(a) 

+ I: ind-y(d)· Od(f) . F(d). 
dEP(f) 

Remark. Only finitely many summands are involved here and only the 
a-points and poles which lie inside of'Y playa role. 

Proof According to the residue theorem 1.4 

1 1 f'(() '" . (f'(() ) 27ri F(() f(() _ a d( = L...J md-y(z)resz F(() f(() - a 
-y zED\-y 

The only possible points at which the function F(Z)~ff' z can have a 1[Z)=a 
non-zero residue are the points of the pole-set P(f) or the fiber f-l(a). If 
f is holomorphic at c E D and has an a-point at c of multiplicity v(f, c), 
then by 1.3,4) 

( f'(z)) 
resc F(z) fez) _ a = F(c)v(f, c). 

If on the other hand c is a pole of f of order oc(f), then by 1.3,5) 

( f'(z)) 
resc F(z) fez) _ a = F(c)oc(f). 

The claim follows from these three equations. o 

In most applications we find 'Y is simply closed. Then (under the hy­
potheses of the theorem) we have, for example 

where the sum extends over all zeros and poles of f inside 'Y. 

The theorems just proved make possible explicit local descriptions via integrals 
of the inverses of biholomorphic mappings. 

Let f : D -.:::. D*, Z f-+ W := f(z) be biholomorphic with inverse function 
f- 1 : D* -.:::. D given by w f-+ z:= f-l(W). I{Ii is any compact disc contained in 
D, then the mapping f- 1 If(B) is given by the formula 

rl(W) = ~ { ( !'(() d(, 
27rl JaB f(() - w 

wE f(B). 
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Proof. Since 8B is simply closed and nullhomologous in D and the pole-set 
P(f) = 0, the integral on the right has the value 

_1 1 ( /;«) d( = " v(f, c)c. 
211"i BB I ( -w ~ 

eE/-l(w) 

Because I is biholomorphic, each fiber l-l(W) consists of exactly one point and 
v(f, l-l(W)) = 1. Therefore the sum on the right is just the number l-l(W). 

2. A counting formula for the zeros and poles. If f is meromorphic 
in D and M is a subset of D in which there are only finitely many a-points 
and poles of f, then the numbers 

Anz/(a, M) := v(f,c) , aEC; 
cE/-l(a)nM 

Anz/(oo,M):= L IOc(f)1 
cEP(f)nM 

are finite; we call them the number (= Anzahl in German, hence the nota­
tion), counted according to multiplicity, of a-points, respectively, poles of f 
in M. Immediately from theorem 1 follows 

Theorem. Let f be meromorphic and have only finitely many poles in D; 
let, c D \ P(f) be a simply closed path which is nullhomologous in D. If 
a E C is any number whose fiber f-l(a) is finite and disjoint from" then 

1 1 f'«() (1) 27ri 'Y f«() _ a d( = Anz/(a,Int,) - Anz/(oo,Int,). 

A special case of equation (1) is the famous 

A counting formula for zeros and poles. Let f be meromorphic in D 
and have only finitely many zeros and poles. Let, be a simply closed path 
in D such that no zeros or poles of f lie on ,. Then 

(1') 1 1 f'«() 
27ri 'Y f(') d( = N - P, 

where N:= Anz/(O,Int,) and P:= Anz/(oo,Int,). 

Formula (1') yields incidentally yet another proof of the Fundamental Theorem 
of Algebra. Namely, if p(z) = zn + alZn - l + ... + an E C[z], n ~ 1 and r is 
chosen large enough that Ip(z)1 ~ 1 for all Izl ~ r, then for such z 

p'(z) 
p(z) 

nzn-l +... n . 1 
---'-- = - + terms In - , zn +... z Zv 

v ~ 2. 
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If we now integrate over BBr(O), it follows from (I') that N = n, since p has no 
poles in C. The claim follows because n ~ 1. 

3. ROUCHE's theorem. Let I and 9 be holomorphic in D and let 'Y be 
a simply closed path which is nullhomologous in D and which satisfies 

I/«) - g«)1 < Ig«)1 lor all ( E 'Y. 

Then I and 9 have the same number 01 zeros inside 'Y: 

Anz/(O, Int 'Y) = Anzg(O, Int 'Y)' 

Proof. We can assume without loss of generality that I and 9 each have 
only finitely many zeros in D. The function h := I/g is meromorphic in D 
and (*) insures that there is a neighborhood U of 'Y, U cD, in which h is 
actually holomorphic, with 

Ih(z) -11 < 1 for z E U, i.e., h(U) C B l (l) c C-. 

Consequently, log h is well defined in U and furnishes a primitive for h' / h 
in U. Since I and 9 are both zero-free on 'Y by (*), and h' /h = 1'/1 - g' /g 
there, it follows that 

0= _1 1 I'«) d( - _1 1 g'«) de. 
21ri .., I«) 21ri.., g«) 

The theorem then follows from formula (1') of the preceding subsection. 0 

Here is a second proof: The functions ht := 9 + t(f - g), 0:::; t :::; 1, are 
holomorphic in D. Because of (*) they satisfy Iht«)1 ~ Ig«)1 - I/«) -
g«)1 > 0 for all ( E 'Y. All the functions ht are thus zero-free on 'Y and so 
by theorem 2 

0:::; t :::; 1. 

The right side of this equation depends continuously on t and according 
to 9.3.4 it is integer-valued. Hence it must be constant. In particular, 
Anzho(O,Int'Y) = Anzhl(O,Int'Y). Since ho = 9 and hl = I, the claim 
follows. 0 

Remark. The conclusion of ROUCHE's theorem remains valid if instead of 
the inequality (*) we only demand 

If«() - g«()1 < If«()1 + Ig«()1 for all ( E "/. 

Since once again this condition entails that g is zero-free on ,,/, we form h := f / g. 
This function assumes no non-positive real value on "/; for if h(a) = r S 0 with 
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a E 'Y, then (**) would imply the contradiction Ir - 11 < Irl + 1. Consequently, 
we can choose U, as in the first proof, so that hE CJ(U) and h(U) C C-

The second proof can also be carried through, because each ht is again zero­
free on 'Y. Indeed, ho = 9 and for 1 ~ t > 0 from ht(a) = 0, a E 'Y, the equation 
h(a) = 1 - lit::; 0 would follow. 0 

We will give five typical applications of Rouche's theorem. In each one 
must find, for the given I, an appropriate comparison function 9 whose 
zeros are known and which satisfies the inequality (*). 

1) Yet another prool 01 the Fundamental Theorem 01 Algebra: Given 
I(z) = zn + an_lzn-1 + ... + ao, with n ~ 1, we set g(z) := zn. Then for 
sufficiently large r and all 1(1 = r, I/«() - g«()1 < Ig«()1 (by the growth 
lemma), whence follows AnzJ(O, Br(O)) = Anzg(O, Br(O» = n. 

2) One can wring information about the zeros of a function from knowl­
edge of the zeros of its Taylor polynomials. More precisely: 

II 9 is a polynomial 01 degree less than n, I(z) = g(z) + znh(z) is 
the Taylor development 01 I in a neighborhood 01 B, where B := Br(O), 
and il rnlh«()1 < Ig«()1 lor all ( E oB, then I and 9 have equally many 
zeros in B. - This is clear from ROUCHE. For example, the polynomial 
I(z) = 3 + az + 2z4 , where a E IR and a > 5, has exactly one zero in lE 
because 3 + az does and 2 < 13 + a(1 for all ( E alE. 

3) II h is holomorphic in a neighborhood 01 iE and h(olE) c lE, then h 
has exactly one fixed point in lE. - If I(z) := h(z) - z, and g(z) := -z we 
have 

I/«() - g«()1 = Ih«()1 < 1 = Ig«()1 for all ( E alE; 

therefore h(z) - z and -z have the same number of zeros in lE, that is, 
there is exactly one c E lE with h(c) = c. 

4) For every real number>' > 1 the /unction I(z) := zeA- Z - 1 has 
exactly one zero in lE and it is real and positive. - Setting g(z) := ze>'-z, 
1 = I/«() - g«()1 < Ig«()1 prevails for all ( E alE, because>. > 1; therefore 
I and 9 have the same number of zeros in lE, viz., exactly one. It is real 
and positive because, thanks to 1(0) = -1, 1(1) = eA- 1 - 1 > 0 and the 
intermediate value theorem, the real-valued function II[o.IJ has at least one 
zero in the interval (0,1). 

5) Prool 01 the theorem 01 HURWITZ. We use the notation employed in 
8.5.5. First consider the case that U is a disc. We have c := min{I/«()1 : 
( E aU} > O. So we can choose nu large enough that lin - Ilau < c for 
all n ~ nu. Then I/n«() - I«()I < I/«()I for all ( E au and all such n. 
Our assertion therefore follows from Rouche's theorem (with I in the role 
of 9 and In in the role of I). Now for an arbitrary U, I has only finitely 
many zeros in the compactum U (by the identity theorem). Consequently 
there exist pairwise disjoint discs Ul>' .. ,Uk (k E N) such that I is zero-

- k 
free in the compactum K := U \ Ul U". Then almost all the In are also 
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zero-free in K. Therefore the conclusion of the theorem is reduced to the 
case already settled of discs. 0 

Historical note. The French mathematician Eugene ROUCHE (1832-
1910) proved his theorem in 1862 in the "Memoire sur la serie de Lagrange" 
(Jour. l'Ecole Imp. Polytechn. 22 (no. 39), 193-224). He formulated it as 
follows (pp. 217/218, but we use our notation) 

Let a be a constant such that on the boundary aB of B := Br(O) 

laf(z) I < 1 
g(z) 

holds for a pair of functions f and 9 which are holomorphic in a neighbor­
hood of B. Then the equations g(z) - a . f(z) = 0 and g(z) = 0 have an 
equal number of roots in B. 

ROUCHE used logarithm functions in his proof. In 1889 HURWITZ for­
mulated ROUCHE'S theorem as a lemma and proved his theorem (as in 5) 
above) with it. Cf. the citations in 8.5.5. ROUCHE'S name is not mentioned 
by HURWITZ. 

The sharper version of ROUCHE'S theorem based on the inequality (**) 
is to be found on p.156 of the 1962 textbook of T. ESTERMANN: Complex 
Numbers and FUnctions, Athlone Press, London. 

Exercises 

Exercise 1. Determine the number (counted according to mUltiplicity) of 
zeros of the following functions in the indicated domains: 

a) z5 + lz3 + ~Z2 + l in lE and in Bl/2(O). 

b) z5 + 3z4 + 9z3 + 10 in lE and in B2(O). 

c) 9z5 + 5z - 3 in {z E C : ~ < Izl < 5}. 

d) z8 + Z7 + 4Z2 - 1 in lE and in B2(O). 

Exercise 2. Let p(z) = zn+an_lzn-l + .. ·+ao be a normalized polynomial 
with coefficients aj E C and n ~ 1. Show that there is a point c E alE where 
Ip(c) I ~ 1. 

Exercise 3. Show that if A E JR, A > 1, then the function f(z) := A-z-e- Z 

has exactly one zero in the closed right half-plane, that it is real and that 
it lies in Bl(A). Hint. In ROUCHE'S theorem set g(z) := A - z and 
'Y := aB l (A). 
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Exercise 4. Let {en} be a strictly decreasing sequence of positive real 
numbers. Then J(z) := ~:=o enzn defines a holomorphic function in lE. 
Show that J has no zeros in E. Hint. Show that the partial sums of J have 
no zeros in E and deduce from this that J has no zeros in Br(O) for every 
0< r < 1. (Cf. also Exercise 3 in §1, Chapter 0.) 



Chapter 14 

Definite Integrals and the 
Residue Calculus 

Le eaIeul des residus eonstitue Ia source naturelle des 
integrales definies (E. LINDELOF) 

The residue calculus is eminently suited to evaluating real integrals whose 
integrands have no known explicit antiderivatives. The basic idea is sim­
ple: The real interval of integration is incorporated into a closed path 'Y 
in the complex plane and the integrand is then extended into the region 
bounded by 'Y. The extension is required to be holomorphic there except 
for isolated singularities. The integral over 'Y is then determined from the 
residue theorem, and the needed residues are computed algebraically. Eu­
LER, LAPLACE and POISSON needed considerable analytic inventiveness to 
find their integrals. But today it would be more a question of proficiency in 
the use of the Cauchy formulas. Nevertheless there is no canonical method 
of finding, for a given integrand and interval of integration, the best path 
'Y in C to use. 

We will illustrate the techniques with a selection of typical examples in 
sections 1 and 2, "but even complete mastery does not guarantee success" 
(AHLFORS [1], p.154). In each case it is left to the reader to satisfy himself 
that the path of integration being employed is simply closed. In section 3 
the Gauss sums will be evaluated residue-theoretically. 

§ 1 Calculation of integrals 

The examples assembled in this section are very simple. But everyone 
studying the subject should master the techniques of dealing with these 

395 
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types of integrals - this circle of ideas is a popular source of examination 
questions. First we are going to recall some simple facts from the theory of 
improper integrals. For details we refer the reader to Edmund LANDAU's 
book Differential and Integral Calculus, Chelsea Publ. Co. (1950), New 
York (especially Chapter 28). 

o. Improper integrals. If f : [a, 00) -+ C is continuous, then, as all 
readers know, we set 

100 f(x)dx:= lim 18 
f(x)dx 

a 8-+00 a 

whenever the limit on the right exists; Jaoo f(x)dx is called an improper 
integral. Calculations with such integrals obey some rather obvious rules, 
e.g., 

100 
f(x)dx = lb f(x)dx + 100 

f(x)dx for all b > a. 

Improper integrals of the form J~oo f(x)dx are defined in a similar way. 
Finally we set 

whenever f : lR -+ C is continuous and the two limits involved both exist. 
It is to be emphasized that rand s have to be allowed to run to 00 inde­
pendently of each other; that is, the existence of limr -+oo J~r f(x)dx does 

not imply the existence of J~oo f(x)dx as we are defining the latter. The 
function f (x) == x demonstrates this convincingly. 

Basic to the theory of improper integrals is the following 

Existence criterion. If f : [a, 00) -+ C is continuous and there is a k > 1 
such that xk f(x) is bounded then Ja

oo f(x)dx exists. 

This follows rather easily from the Cauchy convergence criterion. The 

hypothesis k > 1 is essential, since, for example, J200 x ~~ x does not exist 

even though x(xlogX)-l -+ 0 as x -+ 00. Also, though the handy word 
"criterion" was used, the boundedness of xk f(x) for some k > 1 is only 
a sufficient and certainly not a necessary condition for the existence of 
Jaoo f(x)dx. For example, both improper integrals 

--dx , sin(x2 )dx 100 sinx 100 

o x 0 

exist, although there is no k > 1 such that either xk si~ x or xk sin(x2 ) 

is bounded. In the second of these two examples the integrand does not 
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even tend to 0 as x -+ 00; a phenomenon probably first pointed out by 
DIRICHLET in 1837 (Jour. fUr die Reine und Angew. Math. 17, p.60; Werke 
I, p.263). 

The existence criterion applies mutatis mutandis to integrals of the form 
J~oo f(x)dx as well. Almost all the improper integrals known in 1825 are 
to be found in CAUCHY [C2j. From the extensive further classical litera­
ture on (improper) integrals we mention Dirichlet's Vorlesungen ii.ber die 
Lehre von den einfachen und mehrfachen bestimmten Integralen (held in the 
summer of 1854; published in 1904 by Vieweg Verlag in Braunschweig) and 
Kronecker's Vorlesungen ii.ber die Theone der einfachen und der vielfachen 
Integrale (held in the winter 1883/84 and in the summers 1885, 1887, 1889 
and 1891 and then finally as a six-hour course; cf. [Kr]). 

1. Trigonometric integrals J021r R(coscp, sincp)~. Let R(x, y) be a 
complex-valued rational function of (x, y) E R? which is finite on the circle 
8E. Thenfor 

we have 

r21r 10 R(coscp,sincp)dcp = 271" L reswR. 
o wEE 

(1) 

Proof For 0 $ cp $ 271" and ( := ei<p, we have coscp = H( + (-I), sincp = 
~( - (-1) and so 

r21r 
R(coscp,sincp)dcp = ~ r R(~( + C 1), ~( _ C 1)) . C 1d( 10 t 18E 

The equality (1) follows from this and the residue theorem. o 

121r d 
Examples. 1) To evaluate 1 cp r' pEe \ 8E, use R(x, y) = 

o - 2pcoscp + 
(1 - 2px + p2)-1 and 

- 1 1 
R( z) = ~ 1 _ pz _ pZ-l + p2 

1 
(z - p)(1 - pz)· 

R has exactly one pole in E, and it has order 1; namely at p if ipi < 1 and 
at p-l if ipi > 1. Therefore from the preceding theorem it follows that 

r21r dcp { 10 1-2pcoscp+p2 = 

1:;2 ,if 

i~l ,if 

ipi < 1 

ipi > 1. 
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1271" dcp 
2) To determine (p )2' P E lR. and p > 1, use R(x, y) = 

o +coscp 
(p + X)-2 and, accordingly, 

- () 1 (p 1 -1 -2 4z 
R z = - + 2(Z + z )) = (2 2 1)2' 

Z Z + pz+ 

According to 13.1.3,3) this function has precisely one pole in E, at c := -p+ 
J p2 - 1; this is a second order pole and the residue there is p( J p2 - 1) -3. 

The theorem consequently gives us 

[271" dcp = 271-P 

Jo (p + coscp)2 (Jp2 - 1)3 
for p > 1. 

Remark. The method of the theorem can also be applied to integrals of the form 

12,.-

o R( cos cp, sin cp) . cos mcp . sin ncpdcp 

2. Improper integrals J~oo f(x)dx. D will denote a domain which 
contains the closed upper half-plane lHl = lHl u lR. and r(r) : [0,7r] -+ lHl the 
map cp r-+ rei"" the part of the perimeter of the disc Br(O) which lies in lHl 
(cf. the figure). 

Theorem. Let f be holomorphic in D, except possibly at finitely many 
points none of which is real. Suppose that J::a f(x)dx exists and that 
limz -+oo zf(z) = O. Then 

(1) Joo f(x)dx = 27ri L reswf· 
-00 wEB 

Proof. All the singularities of f lie in Br(O) if r is large enough. For such 
r it follows from the residue theorem that 

Jr f(x)dx + [ f()d( = 27ri L reswf· 
-r Jr(r) wEB 



§1. CALCULATION OF INTEGRALS 399 

The standard estimate for integrals gives I fr(r) f(()d(1 ~ 7l"rlflr(r). Since 
limr ..... oo rlflr(r) = 0 by the very meaning of the hypothesis limz ..... oo zf(z) = 
0, (1) follows from (*). 0 

It is easy to generate functions f which fulfill the hypotheses of this 
theorem. To this end we use the 

Growth lemma for rational functions. Let p, q E Clz] be polynomials 
of degree m and n, respectively. Then positive real numbers K, L, R exist 
such that 

for all z E C with Izl ?: R. 

Proof According to 9.1.1 there is an R > 0 and positive numbers K 1, K 2, 
L 1, L2 such that Kllzlm ~ Ip(z)1 ~ Lllzlm and K 21zln ~ IQ(z)1 ~ L21zln 

for all Izl ?: R. Therefore the numbers K := KIL:;1 and L := LIK:;1 do 
the required job. 

Corollary. If f(z) = :~;~ E C(z) and the degree of the denominator 

exceeds that of the numerator by l, then limz ..... oo zk f(z) = 0 for every 
kEN satisfying 0 ~ k < i. 

In particular, the hypotheses of the theorem are fulfilled by f = p/q if q 
has no zeros in 1R and its degree exceeds that of p by 2 or more. 

For the proof use the existence criterion for improper integrals from 
section O. 

2 
Example. Consider f(z) := ~z . This rational function has exactly two 

+z 
poles in lHl, each of order 1, namely c := exp(ii7l") and ic. From 13.1.3,1) 
we have that resel = ie, resiel = -~e. Since e - ie = (1 - i)e and 
e = ~(1 - i), we see that 

100 ~ _ .(1-i)2 7l" 
1 4 dx - 27l"Z 10 102 . 

-00 +x 4v2 v~ 

Innumerable integrals (a few of which are presented in the exercises at 
the end of this section) can be evaluated with the aid of (1). 

ex> ::z:m-l 
3. The integral fo 1 + a:" da: for m, n E N, 0 < m < n. The 

m-l 
integrand f(z) := (+ zn has, according to 13.1.3,2), a first order pole at 

c := exp(~i7l") with resef = _~cm. To evaluate the integral we will not 
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.&3 Sc2r 

Y2 
.K . .-o c=e ~ 

Yl r 

use a semi-circle as auxiliary path but rather integrate along the boundary 
1'1 + 1'2 + 1'3 of a circular sector S of radius r > 1 (cf. the figure above). 
Since f is holomorphic in S \ e (!), it follows (the residue theorem!) that 

lor 1 1 211"i f(x)dx + f(()d( + f(()d( = __ em. 
o 1'2 1'3 n 

The path -1'3 is given by ((t) = te2, t E [O,r]; therefore, taking account of 
the fact that e2n = 1, 

1 lr tm-le2m-2 lr tm- 1 lr 
f(()d( = - 1 n 2n e2dt = _e2m -1 n dt = _e2m f(x)dx. 

1'3 0 + teo + t 0 

Because 111'2 f(()d(1 ~ Ifl1'2 2: rand limr->oo Ifl1'2 2: r = 0 (due to m < n), 
passage to the limit converts (*) into 

(e2m _ 1) f(x)dx = _em. 100 211"i 

o n 

Now em(e2m - Itl = (em - e-mt1 = (2isin m 11"t1, since e = eirr/ n • It follows 
n 

that 

(1) --dx = -(sin _11")-1 100 xm-l 11" m 

o 1 + xn n n 
for all m, n E N with 0 < m < n. 

This formula was known to EULER in 1743 (Opera Omnia (1) 17, p.54). 

roo m-l 1 fOO m-l 
In case m is odd and n = 2q is even, we have Jo ~+xn dx = '2 -<Xl ~+xn dx. 

The second integral here can also be evaluated with the help of theorem 2, thus: 
the points CII := C211+1 , 0 :S v :S q - 1 constitute the totality of the poles of f in 
IHI, each being of the first order and giving f respective residues -n-1c;;'. Since 

q-l q-l 

L m m L 2mll mcmn -1 (_l)m - 1 
c = c c = c = -'-----'----

II c2m _ 1 cm - c-m 
o 0 

and cm - c-m = 2isin "i:7r, it follows in this case from theorem 2 that 

1100 x m - 1 11"i q-l 11" m-1 
- --dx = 11"i '""' reswf = -- '""' em = - (Sin -11") 
2 1 + xn ~ n ~" n n 

-00 wEE 0 
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Exercises 
Exercise 1. For a > 1 show that 

1211" drp 271" 
a) 0 a+sinrp = ~ 

b 1211" sin(2rp)drp = -471" (1 _ 2av'a2 - 1) 
) 0 (a + cosrp)(a - sinrp) 2a2 - 1 . 

Hint. For b) use the abbreviation w := v' a2 - 1 and in calculating the 
residues refrain from multiplying out the products that intervene. 

Exercise 2. Verify that for n 21 

r11" (1 - 4sin2 rp)n cos(2rp) drp = 271"(91 - 52V3) . 
Jo 2 - cosrp V3 

Exercise 3. Prove the identities 

a) roo 2x2 + X + 1 dx = ~71" 
J -00 X4 + 5x2 + 4 6 

roo dx 71" (2n)! 
b) Loo (1 + x2)n+1 = 22n (n!)2' n E N 

100 dx 3 v'2 
c) (4 4 )2 = -8 -7 71" for a > O. 

-00 x + a a 

§2 Further evaluations of integrals 

In this section we will discuss improper integrals which are more compli­
cated than those considered so far. With the example Jooo si~xdx we will 
illustrate that the method of residues is not always the most advantageous 
approach. 

1. Improper integrals J~oo g(::c)eiaxd::c. When fez) has the form 
g(z)eiaz for a E lR and certain g, the hypotheses of theorem 1.2 can be 
weakened. As path of integration we will use, in place of the semi-circle 
r(r), the upper part 1'1 +1'2 +1'3 of the boundary of a square Q in 1Hl having 
vertices -r, s, s + iq, -r + iq, where rand s are positive and q := r + s. See 
the figure below. 

Theorem. Let 9 be holomorphic in C except possibly at finitely many 
places, none real, and suppose that limz --+oo g(z) = o. Then 

roo . {271"i EWEH resw(g(z)eiaz ) in case a> 0 
(1) J- g(x)eZaXdx = 

-00 -271"i E-wEH resw(g(z)eiaz ) in case a < O. 
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J 

-r+iq J )'2 s+iq 
Jiq 
J 

J 

J Q 
)'1 

)'3 

X 
-r 0 s 

Proof. First consider a > O. Choose r, s large enough that all the singular­
ities of 9 in lHllie in the square Q. We maintain that 

(*) Iv:= 1 g(()eia(d( (v = 1,2,3) satisfy lim I" = 0 as r,s -> 00. 

"Iv 

The first part of (1) will then follow from the residue theorem. 
Since (-1'2)(t) = t + iq, t E [-r, s], and leia(1 = e-a"'(, we have 

1121 ~ Ig(()eia(I"I2 . (r + s) ~ Igl"l2 . e-aq . q ~ Igl"l2 as soon as eaq > q. 

Since 1'1 (t) = S + it, t E [0, q], it further follows that 

Similarly one sees that 1131 ~ Igl"l3a-1. But because of the hypothesis 
limz --+oo g(z) = 0, we have limr,s--+oo Igl"lv = 0 for each v = 1,2,3. Therefore 
(*) follows from the preceding estimates of the IIvl. 

As to the case a < 0, one simply considers squares in the lower half­
plane and estimates the integrals analogously, being careful to note that 
once again aq > 0, since now q < O. 0 

Remarks. Integrals of the type (1) are called FOURIER transforms (when 
viewed as functions of a). The reader will have noticed that the inequality 
for Ih I involved a trivial but useful sharper version of the standard estimate. 
Specifically, for non-negative continuous functions u, v on the interval I = 

[a, b] C JR, J: u(t)v(t)dt ~ lull J: v(t)dt. Finally, notice that it would not 
have been expedient in the above proof to have used semi-circular paths 
of integration as in 1.2: The estimation process would have been more 
troublesome and, worse, only the existence of limr--+ oo J~r g(x )eiax dx would 
have been secured and this does not imply the existence of J~oo g(x)eiaxdx. 

o 

The limit condition limz --+ oo g(z) = 0 of the theorem is fulfilled by any 
rational function 9 in which the degree of the denominator exceeds that of 
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the numerator (cf. Corollary 1.2). Thus, for example, for all positive real 
numbers a and complex b with !Rb > 0 

(2) 100 eiax 100 eiax 
--.bdx = 271"ie-ab , --dx = o. 

-00 x - l -00 X + ib 

Since x cos ax and sinax are odd functions and limr -+oo J~r f(x)dx = 0 
for every odd continuous function f : JR -+ C, from addition and subtraction 
in (2) we get the formulas (due to LAPLACE (1810)) 

100 (3 100 • cos ax _ xsmax _ 1 -01/3 •. 
(3) 2 (32 dx - 2 (32 dx - "271"e a, (3 real and posItive. 

o x+ 0 x+ 

By using this formula at the forbidden value (3 = 0, CAUCHY uncritically 
inferred that 

100 sin x dx = ~71" 
o x 2 

(see p.60 of the Ostwald's Klassiker version of [C2]); this formula is never­
theless correct and we will derive it in section 3. 

In the theorem we may subject 9 to the additional hypothesis that it be 
real-valued on JR. Then, since cos ax = !Reiax and sin ax = ~eiax for x E JR, 
it follows from (1) that 

(4) f: g(x)eosax'" ~ -2~(l (~"",,(g(z)e'.'») , a> 0; 

(5) f: g(x).inax'" ~ 2~R (~"",,(g(z)e'.'») , a> 0; 

with corresponding equations for the case a < O. 

The reader should try to derive formulas (3) directly from (4) and (5). 

2. Improper integrals ;: q(:z:):z:a-1d:z:. For a E C and z = JzJeicp E I(?, 
o :::; cp < 271", we set 

lnz := log JzJ + icp, za:= exp(alnz). 

These functions are holomorphic in the plane slit along the positive real 
axis; i.e., in the set 

C := C \ {t E JR : t ~ O}. 
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It should be noted that Inz is not the principal branch of the logarithm 
and that correspondingly za is not the usual power function. Nevertheless, 
xa = ea log x for z = x real and positive. We need the following proposition: 

If I is a compact interval on the positive real axis and c > 0, then 

lim (x + ic)a = xa , lim (x - ic)a = x ae211"ia for all a E C 
e-O e_O 

and the convergence is uniform for x E I. 

This is clear, on account of lime_o In( x + ic) = log x and lime_o In( x -
ic) = log x + 2rri. 

Theorem. Let q E M(C) have only finitely many poles, all lying in C and 
suppose an a E C \ Z is given which satisfies 

(L) lim q(z)za = 0 z_o and lim q(z)za = o. 
z_oo 

Then it follows that 

(1) 

Proof. Let c, r, s be positive. We consider the path '1 := '11 +'12 +'13 +'14, in 
which '11 and '13 are intervals on the lines ~z = c and ~z = -c, respectively, 
and '12 and '14 are arcs of circles centered at 0 and of radius s and r, 
respectively. We make c and r so small and s so large that the region G 
(in the figure) bounded by '1 contains all the poles of q. 

Since '1 is simply closed, according to 13.1.1,4), the residue theorem asserts 
that 

1 q(()(a-1d( = 2rri L resw (q(z)za-1), 
~ wEt 
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independent of c, r, s. We consider the separate integrals over the compo­
nent curves '/'1, ... ,'/'4' Since s = 1(1 for (E '/'2, we have 

An analogous estimate holds for the path '/'4. Therefore, due to (L) 

Since '/'1 and -'/'3 are given by x f-+ X + ic and x f-+ x - ie, respectively, 
with the same parameter interval I c JR, it follows from (*) that 

Putting everything together, we see finally that J'"( q«()(a-1d( converges to 
(1 - e2'11"ia) Jooo q(x)xa- 1dx as c _ 0, r _ 0 and s _ +00. 0 

Integrals of the type (1) are called MELLIN transforms (as functions of 
a). By taking note of the fact that 271"i(1 - e2'11"ia)-1 = -7I"e-'II"ia(sin 7I"a)-l, 
we get the 

Corollary. Let q be a rational function which has no poles on the positive 
real axis (including 0); suppose that the degree of the denominator of q 
exceeds that of its numerator. Then 

(2) 100 7re-'II"ia 
q(x)xa- 1dx = --.-- '" resw (q(z)za-l) 

o sm 7I"a L..J.. 
wEIC 

for all a E C with 0 < !Ra < 1. 

Proof. We have Izaq(z)1 ~ e2'11"I\l'a'lzl!Ralq(z)l. Since q is holomorphic at 0 
and !Ra > 0, the first of the limit equations (L) evidently holds. Since we 
have the estimate Iq(z)1 ~ Mlzl-1 for some 0 < M < 00 and all large z, 
the second limit equation in (L) follows from the fact that !Ra < 1. 0 

Example. We will determine x. dx, where a E JR, 0 < a < 1 and 100 a-I 

o x + eOCP 

-71" < cp < 71". The function q(z) := z+~ • ., has a pole of the first order at 
-eicp (and no other poles). Since _eicp = ei(cp+'II"), we have 
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and so from (2) 

100 xa-l 7r. 
(3) . dx = -.-- . et(a-l)'P, a E JR, 0 < a < 1, -7r < t.p < 7r. 

o X + e''P SID 7ra 

The integral (3) with t.p = 0 plays a role in the theory of the gamma and 
beta functions. It reflects the equation 

100 xa-l 7r 
B(a,1 - a) = --dx = r(a)r(1 - a) = -.-. 

o 1 + x SID7ra 

With the help of (3) the integrals x. dx, m, n E rII, -7r < t.p < 7r, 100 m-l 

o xn + et'P 
can be elegantly determined. We substitute t := xn and find 

(4) ---:.-dx = - --.-dt = - sin -7r e,(m/n-l)'P 100 xm-l 1 100 tm/n- 1 7r ( m) -1 . 

o xn + et'P not + et'P n n ' 

o < m < n , -7r < t.p < 7r, 

a special case of which (when t.p = 0) is 1.3(1). Multiply numerator and 
denominator on the left by the conjugate xn+e-i'P of the denominator and 
then equate the imaginary parts of both sides of (4) to get 

(5) 
roo x m- 1 d 7r sin(1 - m/n)t.p 

10 x2n + 2xn cos t.p + 1 x = ;; sin ~7r • sin t.p , 

for 0 < m < n, - 7r < t.p < 7r. This formula is to be found in EULER, 1785 
(Opera Omnia (1) 18, p.202). 

• n 
3. The integrals Jooo Sl~n:Z; th. By no later than 1781 EULER knew the 

equation Jooo si~xdx = ~7r (ef. Opera Omnia (1) 19, pp. 226,227). The 
attempt to derive this from theorem 1 on the basis of the evident relation 

Jooo si~ x dx = ~ Jooo e~'" dx won't succeed without further effort because 
Z-l eiz has a pole at 0, while Z-1 sin z is holomorphic throughout C. Here 
the limitations of the residue calculus become clear. To be sure one can 
extend theorem 1 to cover such situations and then determine this integral 
(for that see, e.g., [7], chapter V, example 2.7 or [10], pp. 155-156.) But 
the following procedure, which is less well known in the literature, is much 
more convenient. First, with the help of the partial fraction development 

7r2 00 1 
-- - "" [ef. 11.2.3(1)] we can, in an amusing way, get the 
sin2 7rz - L....J (z + v)2 

-00 

formula 



(1) 

§2. FURTHER EVALUATIONS OF INTEGRALS 

100 sin2 x _ ~ 
2 dx - 211". 

o x 

407 

Proof. Cauchy's criterion for improper integrals settles the question of the 
existence of this integral at a glance. In the partial fraction development 
replace z by 11"-1 Z and use the fact that sin2(z + V1I") = sin2 z to re-write 
that development as 

Here we may integrate over [0,11"] term-wise (why?), to get 

00 111" sin2(x + V1I") 00 1(V+1)1I" sin2 x 100 sin2 x 
11" = L ( )2 dx = L -2-dx = -2-dx. 0 

-00 0 x + V1I" -00 V1r X -00 X 

Now for 0 < s < 00 integration by parts yields 

l
ssin2xd sin2xls lssin2xd _ sin2s 128sinxd 
-- x = --- + -- x - --- + -- x. 

o x 2 X 0 0 x Sox 

• 2 
From (1) and the triviality lims-+oo Sl~ s = 0 follows the existence of 

1000 si~ x dx as well as the evaluation 

(2) roo sin x dx = ~11". 
10 x 2 

The derivation of equations (1) and (2) shows that in calculating im­
proper integrals the path through the complexes is not always to be 
recommended. (In this connection it ought to be noted that the formula 
e2(X) = 1I"2(sin1l"x)-2 which we employed above can also be gotten by real 
analysis methods; cf. 11.2.2.) In a similar situatlOn KRONECKER wrote 
somewhat sarcastically (cf. [KrJ, p.84): "Wir brauchen hier iibrigens zum 
Zwecke dieser Beweise das Gebiet der reellen GraBen nicht zu verlassen. 
Der Glaube an die Unwirksamkeit des Imaginiiren tragt auch hier wie an­
derweitig gute Friichte (here moreover, for the purposes of these proofs, 
we do not need to leave the realm of real magnitudes. The belief in the 
inefficacy of the imaginaries bears good fruit here too in another way)." 

Other proofs of (2) may be found in G. H. HARDY, "The integral 
1000 si~ x dx", Math. Gazette 5(1909-11), 98-103 and "Further remarks on 

the integral 1000 si~ x dx," ibid. 8(1915-16), 301-303 (= Collected Papers V, 
528-533 and 615-618). 

The integral (1) occurs at prominent points in the literature. It is 
needed, e.g., in the proof of the theorem of WIENER and IKEHARA which 
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forms the basis of what is probably the shortest proof of the prime num­
ber theorem; see K. CHANDRASEKHARAN, Introduction to Analytic Num­
ber Theory, Grundlagen der math. Wissenschaften 148, Springer-Verlag 
(1968), pp. 124 and 126. 

Let us write 2x instead of x and recall the identity sin2 2x = 4(sin2 x - sin4 x). 
It then follows from (1) that 

100 sin2 x - sin4 xd 1 
2 x = 4- 7r , 

o X 
100 sin4 x 1 

whence 0 ~dx = 47r · 

From this (via integration by parts) you can derive 

100 sin4 x dx = !7r. 
o X4 3 

. n 
For every natural number n 2 4 the integral In := 1000 Sl~n X dx exists. All the 
numbers In are rational multiples of 7rj e.g., 

3 
13 = -7r 

8 ' 

and in general we have 

115 
Is = 384 7r , 

11 
h = 407r 

an elegant derivation of which is given by T. M. ApOSTOL in Math. Magazine 
53(1980), 183. 

Exercises 

Exercise 1. Show that 

a) 100 ~e2iXdx = i7re-2 
-00 1 + x 

b) roo cosx d 77r 
10 (1 + x 2 )3 x = 16e 

100 e2ix 
c) -00 X4 + lOx2 + gdx = He- 2 -1e-6 ) 

100 cos x 7r(1 + a) 
d) (2 2)2 dx = 2 3 a ,a > 0 

-00 x + a a e 

e) 100 sin2 x dx = 11[(1 _ e-2a ). 
-00 x2 + a2 2 a 

Exercise 2. Prove that 

a) roo 20i 2 dx = ~, a> 0 10 x + a v2a 
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100 Vx 1 
b) 0 (x2 +4)2 dx =32 7r • 

Exercise 3. Let q be a rational function with no poles in [0,00). Suppose 
that the degree of its denominator exceeds that of its numerator by at least 
2. Show by a modification of the proof of theorem 2 that 

100 
q(z)dz = - ~ resw(q(z)lnz). 

wEI(; 

(Here t and lnz are as defined at the beginning of subsection 2.) 

Exercise 4. Calculate the following integrals with the aid of exercise 3: 

a) 100 

x3 + x:: x + 1 

b) 17 x4 _ x3 _ d:X2 - x + 3 . 

§3 Gauss sums 

In mid-May of 1801 GAUSS recorded in his diary (note 118) the formulas 
which nowadays are written together as the single sum formula 

(1) 
n-l 1 ( ')n L ativ2 + -z . r.:: en = yn 

1- i o 

and designated as Gauss sums. With the help of his summation formulas 
GAUSS also derived that year in his Disquisitiones Arithmeticae (Werke 1, 
pp. 442, 443; English translation by Arthur A. CLARKE, revised edition 
(1986), Springer-Verlag) the law of quadratic reciprocity, without however 
determining exactly the sign of the square-root that intervenes in it. The 
determination of this sign proved to be extremely difficult and only after 
several years of effort did GAUSS finally succeed, on August 30, 1805. Quite 
agitated, in a letter of September 3, 1805 to OLBERS (Werke 10, part 1, 
p.24/25) he sketched how he had wrestled with the problem: "Die Bestim­
mung des Wurzelzeichens ist es gerade, was mich immer gequaJ.t hat. Dieser 
Mangel hat mir alles Ubrige, was ich fand, verleidet; und seit 4 Jahren wird 
selten eine Woche hingegangen sein, wo ich nicht einen oder den andern 
vergeblichen Versuch, diesen Knoten zu losen, gemacht hatte ... Endlich 
vor ein paar Tagen ist's gelungen - aber nicht meinem miihsamen Suchen, 
sondern bloss durch die Gnade Gottes mochte ich sagen. Wie der Blitz 
einschlagt, hat sich das Riithsel gelost. (The determination of the sign of 
the square-root is exactly what had always tormented me. This deficiency 



410 14. DEFINITE INTEGRALS AND THE RESIDUE CALCULUS 

ruined for me all the other things I had found. For 4 years a week seldom 
passed without my making one or another futile attempt to loosen this 
knot ... Finally a few days ago I succeeded - not through my laborious 
searching but merely by the grace of God I might say. Just like lightning 
striking, the puzzle resolved itself.)" 

In subsection 2 we will give a proof of (1) by means of the residue calcu­
lus and as a by-product find once again the value of the error integral. This 
"diabolic proof" is due to L. J. MORDELL, "On a simple summation of the 
series r;;,:-g e2S27ri/n," Messenger of Math. 48(1918), 54-56. The first cal­
culation of the Gauss sums (1) by application of the residue theorem to the 
integral f e27riz2/n(e27riZ -1)-ldz was by L. KRONECKER, "Summirung der 

Gauss'schen Reihen r;~:~-1 e 2h!";," Jour. fUr Reine und Angew. Math. 
105(1889), 267-268 (and also in Werke 4, 295-300). 

For the determination of the Gauss sums (1) we need a boundedness 
assertion about the function eUZ(eZ - 1)-1, 0 ~ U ~ 1, which we will de­
rive beforehand in subsection 1. This estimate also makes possible a simple 
determination (subsection 4) of the real Fourier series of the Bernoulli poly­
nomials, which will contain the Euler formulas from 11.3.1 as a special case. 

1. Estimation of eze: 1 for 0:5 u :5 1. The function cp(z) := (ez -l)-1 

has a first-order pole at 27riv for each v E IE and no other singularities. 
About each of these poles we place a closed disc Bv of positive radius r < 1. 
Letting Z := C \ UVEZ Bv denote the plane thus infinitely perforated, we 
have 

Lemma. The function eUzcp(z) is bounded in the set 

{(u, z) E IR xC: 0 ~ u ~ 1 , z E Z}. 

Proof Since u is real, the function !euzcp(z)! = eulRZ!cp(z)! has period 27ri 
in z. It therefore suffices to establish its boundedness in [0,1] x S, with S 
the perforated strip {z E C : !~z! ~ 7r , !z! ~ r} shown in the figure. 
In the compact subset [0,1] x {z E S : !~z! ~ I} the function is continuous 
and consequently bounded. Let z := x + iy. In case x ~ 1, we have 

1 1 _ 
Icp(z)l:::; !ez !-1 = eX -l :::;2e x, 

while if x ~ -1, it follows quite trivially that !cp(z)! ~ 1 _Ie l' We see 

therefore that 

for x ~ 1 
for x:::;-1. 

Since 0 :::; u :::; 1, e(u-l)x :::; 1 for x ~ 1 and eUx < 1 for x ~ -1. The 
boundedness of eUzcp(z) in [0,1] x S is thus proven. 
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s 

,,"",n-1 211"i 1/2 

2. Calculation of the Gauss sums Gn := L...,.;o e1t ,n ~ 1. One 

verifies by direct calculation from the defining sum that 

G G 2.,..i 21ti 4 . Tn 
G1 = 1 , 2 = 0 and 3 = 1 + e""3 + e""3' = tv3. 

In order to determine Gn generally, we introduce the entire function 

n-l 2' 
Gn(z) := L exp ~(z + 1/)2 , 

o n 
n ~ 1, 

whose values at Z = 0 are the Gauss sums. In order to be able to apply 
the residue theorem we give up a little holomorphy and consider, as did 

MORDELL, the functions Mn(z):= £~}z) l' which are meromorphic in 
e -

C. We choose r > 0 large and discuss Mn in the parallelogram P having 
vertices -~ - cr, ~ - cr, ~ + cr and -~ + cr, where c:= ei7r / 4 = ~(1 + i) 
(thus c2 = i). 

'_+--__ !+cr 

-!-cr Y1 

Mn has only one pole in P; it is at 0, is of the first order and the residue 
there is (27ri)-lGn (O). Therefore the residue theorem says that 
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(a) [ Mn«()d( = Gn(O) , with (cf. figure) OP = 1'1 + 1'2 + 1'3 - 1'4. 
llJP 

Let us set for short l(r) := f Mn«()d( - f Mn«()d( and first show that 
'Y2 'Y4 

(b) lim l(r) = (1 + (-i)n)c 1I2n 100 e-t2 dt. 
r-+oo V 27r 

-00 

.au 2 . 
Proof. One checks easily that Gn(z + 1) - Gn(z) = e n Z (e4,..u - 1), and 
as a result 

Since f Mn«()d( = f Mn«( + 1)d(, it follows that 
'Y2 'Y4 

l(r) = 1 e 2:,(2(e2,..i( + l)d(. 
'Y4 

Because of the identities 2:i (2 + 271"i( = 2:i «( + !n)2 - ~7I"in and e- !,..in = 
( -i)n, it further follows that 

Since 1'4 is parameterized as (t) = -! +ct, t E [-r,r], and r? = i, the last 
equality reads 

l(r) = c J:r e- 2:' (t-tY dt + (-i)nc J:r e- 2:' (t+icCn-1))2 dt. 

From this follows the equation (b), because the two integrals on the right 
side have the same limit (by translation-invariance of the error integral 
proved in 12.4.3(1)). 0 

We next show that 

(c) lim 1 Mn«()d( = lim 1 Mn«()d( = o. 
r--+oo r--+oo 

'Yl 'Y3 

Proof. Since 1'1 and -1'3 are given by t ~ t - cr and t ~ t + cr, tEl:= 
[-!, ~], respectively, it suffices to show that limr --+oo IMn(t ± cr)II = o. 
On the basis of lemma 1, <p(271"iz) := (e2,..iz - 1)-1 is bounded on 1'1 and 
1'3 independent of r ~ 1. Since Mn(z) is comprised of a fixed number of 
summands exp(ai(z + 11)2) . <p(271"iz), 0 ~ II < n, (where a := 2,;,") and 
!R[ai(t ± cr + 11)2] = -ar2 =F v'2(t + lI)ar, we only have to show that 
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tends to 0 as r --. 00. However, since a> 0 and the exponent in the second 
factor on the right is only linear, this is clear. 0 

From the equations (a), (b), (c) now follows directly that 

Gn(O) = (1 + (-i)n) . 1_ t i .. ~ 100 e-t2 dt. 
-y21T 'V2; -00 

As we already know that G l (0) = 1, the identity J~oo e-t2 dt 
confirmed anew and therewith equation (1) of the introduction: 

n-l 1 + ( ')n " 211"i1l2 /n _ -'/, r.:; 
L.Je - l-i yn 
o 

a special case of which is 

n-l 
~:::>2;::i1l2 = V(-l)!(n-l)n for odd integers n. 
o 

y'7r is 

Gauss' sum formula can be generalized, in the form of a "reciprocity 
formula" valid for all natural numbers m, n ~ 1: 

which reduces to (1) when m = 2. On this matter the reader should 
compare [Linh p.75. 

3. Direct residue-theoretic proof of the formula .r: e-t2 dt=';;. It 
is intriguing to determine the value of the error integral in as simple a way 

2 
as possible using the residue theorem. Frontal attack using e- Z alone 
leads nowhere because e-z2 has no non-zero residues. Instead of Mordell's 
auxiliary function Ml we will consider the function 

g(z) := e-%2/(1 + exp( -2az)) E M(C) , with a:= (1 + i) F7i 
Since a2 = i1r, a is a period of exp( - 2az); it follows from this that 

g(z) - g(z + a) = e-%2. 

9 has poles precisely at the points -~a + na, nEZ, and each is simple. Of 
these only the point - ~ a lies in the strip determined by the real axis and the 
horizontal line through a (see the figure below). We have 
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r s 

exp(-ia2 ) 

res!ag = -2aexp(-a2) - 2-.fii· 

It now follows from the residue theorem, on taking account of (*), that 

f8 e-",2 dx + 1 g(()d( + 1 g(()d( = 27ri reS!ag = -.fii. 
J -r 1'1 1'2 

The integrals along /'1 and /'2 converge to 0 with increasing sand r (proof!), so 
that the value of the desired improper integral follows. 

The proof reproduced here is from H. KNESER [14], p. 121. In the older liter­
ature it was occasionally maintained that the error integral was not susceptible 
to evaluation via the residue calculus; see, for example, G. N. WATSON, Com­
plex Integration and Cauchy's Theorem, Cambridge Tracts in Mathematics and 
Mathematical Physics 15, London 1914 (reprinted by Hafner Publishing Co., New 
York 1960), p.79; also E. T. COPSON An Introduction to the Theory of Functions 
of a Complex Variable, Oxford, At the Clarendon Press 1935 (reprinted 1944 and 
1946), p.125. 

An interesting presentation of this and related problems was given in 1945 
by G. POLYA in "Remarks on computing the probability integral in one and 
two dimensions," pp. 63-78 of Proceedings Berkeley Symposium on Mathematical 
Statistics and Probability, Berkeley and Los Angeles 1949; and pp. 209-224, 
vol. 4 of his Collected Papers. POLYA integrates J e1ri(2 tan(7r()d( along the 
parallelogram with vertices R + iR, - R - iR, - R + 1 - iR, R + 1 + iR. 

4. Fourier series of the Bernoulli polynomials. Let Wo, WI, W2, ... be a 
sequence in C having no accumulation point in C, let f be holomorphic in C \ 
{ Wo, WI , W2, ..• }, /'n a sequence of simply closed paths, {kn } a strictly monotone 
sequence in N with the property that of the W II precisely wo, WI, ••• ,Wkn lie in 
Int/'n, for each n E N. If in fact each /'n avoids all the W II , then it is immediate 
from the residue theorem that 

k
n 1 lim '"' resw~f = -21 . lim f(()d(, 

n-oo L.J 1rZ n--+(X) 
o 1'n 

whenever the limit on either side exists. o 

We will apply formula (*) to the following family of functions which are all 
meromorphic in C: 
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For now wEe is arbitrary. hk is holomorphic in C \ 27riZ and every point 27riv, 
v::J 0, is a simple pole, the residue of hk there being (27riv)-ke21riIlW. Since for z 
near 0 we have (cf. 7.5.4) 

F(w,z) = ~ BI-'(w) zl-', 
L..t f-t! 

o 

the point 0 E C is a pole of hk of order k + 1 and resOhk = Bk~W), B,..(w) 
designating the f-tth Bernoulli polynomial. The poles which lie in the disc of 
radius (2n + 1)7r centered at 0 are just 0, ±27ri, ... , ±27rin. Consequently, for 
"In := 8B(2n+1)1r(0) , we have according to (*) 

provided the limit on the right exists. Now 

11n hk«()d(1 ~ JhkJ1'nLbn) 

~ Jz -k J1'n Jewz cp(z)J1'nL('Yn) = «2n +2~)7r)k_1 Jewz cp(z)J1'n' 

Since "In lies in the perforated plane Z, the sequence Jewz cp(z)J1'n is bounded, 
according to lemma 1, for every real number w = u with 0 ~ u ~ 1. For such u 
and each k > 1 the integrals therefore converge to 0 as n -+ 00. Upon writing x 
instead of w, we find we have proved 

For all real x with 0 ~ x ~ 1 and all k ~ 2 

Bk(X) = (;:'~~k f: :k [e21rill:J: + (_1)ke-21rill:J:]. 
1 

Passing over to cos and sin, we get for even and odd indices the real Fourier 
series for the Bernoulli polynomials: 

B ( ) = (_1)k-l 2(2k)! ~ cos 27rvX 
2k X (27r)2k L..t v2k 

11=1 

for 0 ~ x ~ 1 , k ~ 1 

B ()=(_1)k_12(2k+1)!~sin27rVX 
2k+1 x (27r)2k+1 L..t v2k+1 

1.1=1 

for 0 ~ x ~ 1 , k ~ 1. 

One can show (e.g., via finer appraisals of eUzcp(z» that the latter formula remains 
valid for k = 0 as well, that is, gives the Fourier sine series of B 1 (x) = x - 1/2, 
but only for 0 < x < 1. On this point compare also [14], p.122. 

Recall that Bn(O) is the nth Bernoulli number. Since for odd n the above 
Fourier (sine) series vanishes at 0, we recover the known fact that the Bernoulli 
numbers with odd subscript are all O. But for even n by contrast the Fourier 
(cosine) series yields anew the Euler formulas from 11.3.1. 



Short Biographies of ABEL, 
CAUCHY, EISENSTEIN, 

EULER, RIEMANN, and 
WEIERSTRASS 

Niels Henrik ABEL, Norwegian mathematician: born 1802 on the 
island of Finnoy near Stavanger; entered Christiania University as a com­
pletely self-taught student in 1822; in 1824 published as a pamphlet at his 
own expense a proof of the insolubility by radicals of algebraic equations of 
degree five or greater; 1825/26 acquaintanceship with CRELLE1 in Berlin; 
1826/27 disappointing sojourn in Paris; 1827 world famous, but without a 
position, return to Christiania as "studiosus Abel"; 1829 died in poverty 
of tuberculosis in Froland near Arendahl just two days before the arrival 
of a letter from CRELLE announcing a position for him at Berlin; first 
obituary 1829 by CRELLE in volume 4 of his journal; 1830 awarded posthu­
mously (and shared with JACOBI) the great prize of the Paris Academy. 
In 1922 MITTAG-LEFFLER wrote: Viele grope Manner sind einmal Stu­
denten gewesen. Keiner ist mehr als Abel schon als Student in die Un­
sterblichkeit eingegangen. (Many great men were once students. But none 
more than Abel attained immortality as a student.) The book Niels Henrik 
Abel: Mathematician Extraordinary, Chelsea Publ. Company (1974), New 
York, by O. ORE is worth reading. 

Baron Augustin-Louis CAUCHY, French mathematician born 1789 
in Paris; 1810 at the age of 21 Ingenieur des Ponts et Chaussees in Cher­
bourg under Napoleon I; after 1813 again in Paris; 1816 at the age of 
27, member of the Academy of Sciences and soon thereafter professor at 

lAugust Leopold CRELLE, 1780-1855; highway engineer and amateur mathematician, 
important participant in the 1838 construction of the first Prussian rail line (Berlin­
Potsdam), promoter of promising young mathematicians and in particular patron of 
ABEL'S; encouraged by ABEL and the geometer Jakob STEINER he founded the first 
German mathematics periodical which lasted, Journal fiir die Reine und Angewandte 
Mathematik; also founded the architecture periodical Journal fiir Baukunst. 

417 
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the Ecole Polytechnique, later also at the Sorbonne and at the College de 
France; Chevalier de la Legion d'honneur. As a Catholic and adherent of 
the Bourbons CAUCHY refused to take the oath to the new government in 
1830; he emigrated first to Freiburg (Switzerland), was for a time profes­
sor of mathematical physics at Thrin and from 1833-38 tutor to the son 
of Charles X in Prague; 1838 return to Paris with the title of Baron and 
once again active in the Academy; from 1848 after the abolition of the 
loyalty oath again professor (of astronomy) at the Sorbonne; 1849 Knight 
of the Order "Pour Ie merite dans les sciences et dans les arts"; died 1857 
in Sceaux. - As early as 1868 a (rather hagiographic) two-volume Cauchy 
biography by C.-A. VALSON appeared, entitled La vie et les travaux du 
baron Cauchy with a foreword by C. HERMITE (reprint by Albert Blanchard 
(1970), Paris); for a recent biography see [H2]. 

Ferdinand Gotthold Max EISENSTEIN, German mathematician: 
born 1823 in Berlin; 1843 matriculated at Berlin University; 1844 publica­
tion of 25 works in volumes 27, 28 of Crelle's journal; 1845 as a 3rd semester 
student awarded an honorary doctorate by Breslau University at Kummer's 
suggestion, and nearly recommended by GAUSS for the non-military cat­
egory of the order "Pour Ie merite"; 1846 priority dispute with JACOBI; 
1847 privatdozent at Berlin - RIEMANN heard his lectures on elliptic func­
tions; 1848 imprisoned in Spandau; 1849 curtailment of his "allowance" 
from 500 to 300 Taler per year "in consequence of his calumniations as 
a republican"; 1850 labelled "very red", DIRICHLET, JACOBI and A. VON 
HUMBOLDT propose him for a university professorship (without success); 
1851 simultaneously with KUMMER, EISENSTEIN becomes a correspond­
ing member of the G6ttingen Society; 1852 ordinary member of the Berlin 
Academy of Science; died 1852 of tuberculosis, the 83 year-old A. VON 
HUMBOLDT paying him the last honors. 

As early as 1847 a collection of mathematical papers of EISENSTEIN's 
with a flattering foreword by GAUSS was published (reprinted 1967 by 
Georg alms Verlagsbuchhandlung, Hildesheim). The complete Mathema­
tische Werke of EISENSTEIN weren't however published until 1975, in two 
volumes by Chelsea Publ. Comp., New York (2nd ed., 1989). A. WElL'S 
review of this in Bull. Amer. Math. Soc. 82(1976), 658-663 is very worth 
reading: He has good and bad fairies at the child's cradle prophesying 
the heights and depths of EISENSTEIN'S life and mathematical accomplish­
ments. 

In 1895 there appeared Eine Autobiographie von Gotthold Eisenstein 
edited by F. RUDIO in the Zeitschr. Math. Phys. 40, suppl. 143-168 (also 
in vol. 2 of the Math. Werke, 879-904). Also very informative is the article 
by Kurt-R. BIERMANN, "Gotthold Eisenstein. Die wichtigsten Baten seines 
Lebens und Wirkens," Jour. fur Reine und Angew. Math. 214(1964), 19-30 
(reproduced in vol. 2 of the Math. Werke, 919-929). 
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Leonhard EULER, Swiss mathematician: born 1707 in Basel; 1720 
student at Basel; 1727 emigration to St. Petersburg where Czar Peter I had 
founded an academy in 1724; 1730 Professor of Physics, from 1733 Professor 
of Mathematics at St. Petersburg as successor of Daniel BERNOULLI; 1735 
loss of sight in his right eye; 1741 emigration to Berlin; 1744 Director of 
the mathematical section of the Prussian Academy of Science; 1766 return 
to St. Petersburg, among other reasons because of strained relations with 
the Prussian king, who had little understanding for EULER'S mathematical 
activity; 1771 blindness; died 1783 in St. Petersburg. 

Nikolaus Fuss, a student who was married to one of Euler's granddaugh­
ters published his Lobrede auf Herro Leonhard Euler in 1786 (reproduced 
in Euler's Opem Omnia 1st set., vol. 1, p. XLIII); recommended reading is 
chapter 8, "Analysis Incarnate", in E. T. BELL, (H3]; also of interest is the 
short biography Leonhard Euler by R. FUETER in Supplement Nr. 3 of the 
periodical Elemente der Mathematik, Basel 1948. A detailed evaluation of 
Euler is offered by the memorial volume of the canton of Basel: Leonhard 
Euler 1707-1783, Beitriige zu Leben und Werk, Birkhauser Verlag (1983), 
Basel. In the Eloge de M. Euler par le Marquis de Condorcet (in the Opem 
Omnia 3rd ser., vol. 12, 287-310) Euler's death is described thus (p.309): 
"la pipe qu'il tenoit a la main lui echappa, et il cessa de calculer et de 
vivre (the pipe that he held in his hand slipped from him, and he ceased 
calculating and living)." 

Georg Friedrich Bernhard RIEMANN, German mathematician: born 
1826 in Breselenz, in the Liichow-Dannenberg district; 1846 student at 
Gottingen, at first in theology; 1847-1849 student at Berlin, auditor of 
DIRICHLET and JACOBI, acquaintanceship with EISENSTEIN; 1849 return 
to Gottingen; 1850 assistant to W:> WEBER in physics; 1851 doctoral degree 
with epoch-making dissertation Grundlagen fUr eine allgemeine Theorie 
der Functionen einer veriinderlichen complexen Grosse; 1853 Habilitations­
schrift Uber die Darstellbarkeit einer Function durch eine trigonometrische 
Reihe, where among other things the RIEMANN-integral is to be found; 
1854 Habilitation's lecture Uber die Hypothesen, welche der Geometrie zu 
Grunde liegen (English translation by H. S. WHITE in vol. II of D. E. 
SMITH'S A Source Book in Mathematics, Dover Publ., Inc. (1958), New 
York), in which modern differential geometry was born; Privatdozent in 
Gottingen without salary; 1855 annual remuneration of 200 Taler; 1857 
Extraordinarius in Gottingen with 300 Taler annual salary; 1859 DIRICH­
LET's successor in the Gauss chair, member of the Gottingen Society of 
Science and corresponding member of the Berlin Academy, publication of 
the work Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse 
containing the still unproven conjecture about the zeros of the Riemann (­
function; died 1866 of tuberculosis in Selasca, Italy; his tombstone, which is 
still intact in the cemetery at Biganzolo (Lago Maggiore) bears the inscrip­
tion "Denen, die Gott lieben, miissen alle Dinge zum Besten dienen ( ... 
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for those who love God all things must serve for the best)" - Romans 8,28. 
Bernhard Riemann's Lebenslauf, written by his friend Richard DEDEKIND 
and reproduced in his Werke, 539-558, is worth reading, as is Felix KLEIN's 
assessment in "Riemann and his significance for the development of modern 
mathematics," Bull. Amer. Math. Soc. 1(1895), 165-180. 

Karl Theodor Wilhelm WEIERSTRASS, German mathematician: 
born 1815 in Ostenfelde in the Warendorf district, Westphalia; 1834-38 du­
tiful son reluctantly studying for the civil service (and fencing and drinking) 
in Bonn; 1839-40 study of mathematics at the Munster academy, state ex­
amination under GUDERMANN; 1842-1848 teacher at the Progymnasium in 
Deutsch-Krone, West Prussia, of mathematics, penmanship and gymnas­
tics; 1848-1855 teacher at the Gymnasium in Braunsberg, East Prussia; 
1854 publication of trail-blazing results (gotten already in 1849) in the 
work "Zur Theorie de Abelschen Functionen," in vol. 47 of Jour. fUr 
Reine und Angew. Math., thereupon honorary doctorate from the Uni­
versity of Konigsberg and promotion to assistant headmaster; 1856 at the 
instigation of A. VON HUMBOLDT and L. CRELLE appointment as profes­
sor at the Industrial Institute (later Technical University) in Berlin; 1857 
adjunct professor at the University of Berlin; after 1860 lectures often with 
more than 200 auditors; 1861 breakdown from over-work; 1864 at the age 
of almost fifty appointment to an ordinary professorship, created for him, 
at the University of Berlin; 1873/74 rector magnificus there, member of 
numerous academies at home and abroad, 1875 Knight of the German Na­
tion of the Order "Pour Ie merite dans les sciences et dans les arts"; 1885 
stamping of a Weierstrass medal (for his 70th birthday); 1890 teaching ac­
tivity halted by serious illness, confinement to a wheelchair; 1895 festive 
unveilling of his image in the national gallery (80th birthday); 1897 died in 
Berlin. -

As yet there is no exhaustive biography of WEIERSTRASS. But thor­
oughly worth reading are the article by P. DUGAC, "Elements d'analyse de 
Karl Weierstrass", Archive for History of the Exact Sciences 10(1973), 41-
176 and the lecture "Karl Weierstrass: Ausgewahlte Aspekte seiner Biogra­
phie" by K. BIERMANN which is reprinted in Jour. fUr Reine und Angew. 
Math. 223(1966), 191-220. The personal remarks which A. KNESER makes 
in his article "Leopold Kronecker" (Jahresber. DMV 33(1925), 210-288) are 
very revealing; on pp. 211, 212 he describes the mathematical life at Berlin 
in the 1880's thus: "Der unbestrittene Beherrscher des ganzen Betriebs war 
zweifellos Weierstrafi, eine konigliche, in jeder Weise imponierende Gestalt. 
Man kennt den prachtvollen, weifi umlockten Schadel, das leuchtend blaue, 
etwas schief verhangte Auge des reinrassigen westfaJ.ischen Landkindes. 
Seine Vorlesungen hatten sich damals zu hoher auch aufierer Vollendung 
entwickelt, und nur selten kamen jene aufregenden Minuten, wo der grofie 
Mann stockte, auch der Zuspruch des treuen Gehilfen an der Tafel, etwa 
meines Freundes Richard Muller, ihm nicht auf den Weg helfen konnte, und 
nun versank er fUr einige Minuten in ein majestatisches Schweigen; zwei-
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hundert junge Augenpaare ruhten auf dem prachtvollen Schadelrund mit 
der and8.chtigen Vorstellung, daB hinter dieser glanzenden Riille die h6chste 
Wissenschaft arbeitete. Zweihundert Jiinglinge waren es in der Tat, die bei 
WeierstraB die elliptischen Funktionen horten und durchhorten mit dem 
vollen Bewufitsein, daB diese Dinge damals in keinem Staatsexamen vorka­
men, ein glanzendes Zeugnis fUr den wissenschaftlichen Geist jener Zeit. Ja 
auch von den Anwendungen dieser Dinge wufite man wenig, obwohl deren 
schon sehr schone vorlagenj die Lehre vom Primat der angewandten Mathe­
matik, von der hoheren Wiirdigkeit der Anwendungen gegeniiber der reinen 
Mathematik, war damals noch nicht entdeckt. Auch an diesem groBen 
Manne iibte sich der Humor der Jugendj er galt als guter Weinkenner, 
und die Berliner, die iiber die hart westfaJ.ische Sprechweise des Meisters 
lasterten, zitierten als Musterauspruch, den man gehort haben wollte: Ein 
chutes Chlas Burchunder trink ich chanz chern. (The undisputed master 
of the whole operation was without doubt Weierstrass, a regal and in every 
way imposing figure. All knew the magnificent white-locked head, the shin­
ing blue eyes slightly drooping at the corners which belonged to the country 
boy of pure Westphalian stock. By this time his lectures had evolved to a 
high level of perfection in presentation as well as content and only seldom 
were those tense minutes experienced where the great man faltered and 
even the promptings of his faithful assistant at the blackboard, perhaps 
my friend Richard Miiller, couldn't get him back on trackj then he would 
sink into majestic silence for a few minutes; two hundred pairs of young 
eyes were riveted on the splendid brow with the devout conviction that 
behind that shining facade the greatest intellect was at work. There were 
in fact two hundred youths who attended and listened intently to Weier­
strass's lectures on elliptic functions, fully aware that at that time such 
things never came up on any state examination, a dazzling testimonial to 
the intellectual spirit of the times. People even knew very little about the 
applications of these things, although there were already available some 
very beautiful ones. The doctrine of the primacy of applied mathematics, 
of the greater worth of applications as against pure mathematics, had not 
yet been discovered. The humor of the young was unleashed even on this 
great man: He was considered a connoisseur of wine and the Berliners, 
who mocked his westphalian pronunciation, claimed to have actually heard 
from him the following quintessential example: I'd kladly kulp a kood klass 
of Burkundy.)" - the k's here should be read as g's. 

WEIERSTRASS, by his lectures in Berlin, influenced mathematics in Ger­
many like no one else. The assistant headmaster from East Prussia became 
the "praeceptor mathematicus Germaniae." 
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Photo: H. G6tze. 

DEDEKIND says in Bernhard RIEMANN's Lebenslauf that the headstone 
was removed during a relocating of the cemetary. The panel carrying the 
inscription was, however, not lost; visitors will find it at the entrance to 
the Selasca cemetary as a remembrance of RIEMANN beyond the tomb and 
through time. 

Translation of the text on the gravestone: "Here rests in God, GEORG 
FRIEDRICH BERNHARD RIEMANN, Professor at G6ttingen. Born in 
Breselenz on September 17, 1826. Died in Selasca on July 20, 1866. For 
those who love God, all things must serve for the best." 



Literature 

Ecclesiastes XII, 12 

Classical Literature on Function Theory 

The textbook literature on function theory is inexhaustible and in the last 
few decades has become almost too vast even to survey. In Euler's time 
there was still no marked feeling for what later became known as "mathe­
matical rigor". At that time the authors most read were BERNOULLI(S), DE 
L'HOSPITAL, MACLAURIN, LAGRANGE, inter alii. Today their books are 
only of historical interest; "these authors to a greater or lesser extent fall 
into the error of implicitly assuming unrestricted validity for their algebraic 
formulas and then drawing unwarranted conclusions from them." 

In what follows, without any claim to completeness, some especially 
important classical treatises and textbooks are mentioned in alphabetical 
order; even though today many of them are forgotten. Particulars on quite 
a few other historically significant works will be found in the body of the 
text. 

[A] ABEL, N.H., "Untersuchungen tiber die Reihe 1 + TX + m(~;1)x2 + 
m(m~V1m-2) x3 + ... usw", Jour. fUr Reine und Angew. Math. 1 
(1826), 311-339; also in his (Euvres 1, 219-250 (in French) and in 
Ostwald's Klassiker der Exakten Wissenschaften, Nr. 71; English 
translation by K. MIWA in Memoirs on Infinite Series, Tokyo Math­
ematical and Physical Society (1891), Tokyo. 

[BB] BRIOT, CH. and J.-C. BOUQUET, Theorie des fonctions double­
ment periodiques et, en particulier, des fonctions elliptiques, Mallet­
Bachelier (1859), Paris; 2nd ed. 1875. 

[Bu] BURKHARDT, H., EinfUhrung in die Theorie der analytischen Func­
tionen einer complexen Veriinderlichen, Verlag von Veit & Comp., 

423 



424 LITERATURE 

(1897), Leipzig; 3rd ed. 1908. English translation by S. E. RA­
SOR, Theory of Functions of a Complex Variable, D. C. Heath & Co. 
(1913), Boston. 

[Cal CARATHEODORY, C., "Untersuchungen iiber die konformen Abbil­
dungen von festen und veranderlichen Gebieten," Math. Annalen 12 
(1912), 107-144. 

[C] CAUCHY, A. L., Cours d'analyse de l'lEcole Royale Poly technique 
(Analyse algebrique). Paris, 1821. Reprinted by Wissenschaftliche 
Buchgesellschaft (1968), Darmstadt; also in his (Euvres (2) 3, 1-331. 

[C I ] CAUCHY, A. L., Memoire sur les integrales definies, 1814 (but not 
published until 1827); (Euvres (1) 1, 319-506. 

[C2] CAUCHY, A. L., Memoire sur les integrales definies, prises entre des 
limites imaginaires, 1825; (Euvres (2) 15, 41-89 (this volume wasn't 
published until 1974!); also reprinted in Bull. Sci. Math. (1) 1(1874), 
265-304 + 8(1875), 43-55 & 148-159. 

[E] EULER, L., Introductio in Analysin Infinitorum 1st volume, M. M. 
Bousquet (1748), Lausanne; also in his Opera Omnia (1) 8. Ger­
man translations by A. C. MICHELSEN 1788, Berlin and H. MASER 
1885 published by Julius Springer under the title Einleitung in die 
Analysis des Unendlichen and reprinted in 1983 with a new introduc­
tion by Wolfgang WALTER. French translation by J. B. LABEY Chez 
Barrois (1796-97), Paris and reprinted in 1967 by Culture et Civili­
sation, Bruxelles. English translation (in two volumes) by John D. 
BLANTON, Springer-Verlag (1988 and 1989), Berlin and New York. 

[Ei] EISENSTEIN, F. G. M., "Genaue Untersuchung der unendlichen Dop­
pelproducte, aus welchen die elliptischen Functionen als Quotienten 
zusammengesetzt sind, und der mit ihnen zusammenhangenden Dop­
pelreihen (als eine neue Begriindungsweise der Theorie der ellipti­
schen Functionen, mit besonderer Beriicksichtigung ihrer Analogie zu 
den Kreisfunctionen)," Jour. fUr Reine und Angew. Math. 35(1847), 
153-274; also in his Math. Werke 1, 357-478. 

[GIl GOURSAT, E., "Sur la definition generale des fonctions analytiques, 
d'apres Cauchy," Trans. Amer. Math. Soc. 1(1900), 14-16. 

[G2] GOURSAT, E., Cours d'analyse mathematique, Vol. 2, Gauthier­
Villars (1905), Paris; 7th ed. 1949. English translation by E. R. 
HEDRICK and O. DUNKEL, A Course in Mathematical Analysis, Ginn 
& Co. (1916) Boston & New York; Reprinted by Dover Publ. Co. 
(1959), New York. 

[Kr] KRONECKER, L., Theorie der einfachen und der vielfachen Integrale, 
E. NETTO, editor. B. G. Teubner (1894), Leipzig. 
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[Lan] LANDAU, E., Darstellung und Begriindung einiger neuerer Ergebnisse 
der Funktionentheorie, Springer Verlag (1916), Berlin; 2nd ed. 1929; 
3rd edition with supplements by D. GAIER, 1986. 

[Lau] LAURENT, P. A., "Extension du tMoreme de M. Cauchy relatif it 
la convergence du developpement d'une fonction suivant les puis­
sances ascendantes de la variable," Comptes Rendus Acad. Sci. Paris 
17(1843), 348-349 (an announcement only). Cf. also pp. 938-940. 

[Lin] LINDELOF, E., Le calcul des residus et ses applications d la theorie 
des fonctions, Gauthier-Villars (1905), Paris. Reprinted by Chelsea 
Publ. Co. (1947), New York. 

[Liou] LIOUVILLE, J., "Le<;ons sur les fonctions doublement periodiques," 
1847; published in Jour. fUr Reine und Angew. Math. 88(1879), 277-
3lO. 

[M] MORERA, G., "Un teorema fondamentale nella teorica delle funzioni 
di una variabile complessa," Rend. Reale 1st. Lomb. di scienze e let­
tere (2) 19(1886), 304-307. 

[Os] OSGOOD, W. F., Lehrbuch der Funktionentheorie I, II, B. G. Teubner 
(1906), Leipzig; 5th ed. of vol. I, 1928. Reprinted by Chelsea Publ. 
Co. (1965), New York. 

[P] PRINGSHEIM, A., Vorlesungen uber Funktionenlehre. Part I: Grund­
lagen der Theorie der analytischen Funktionen einer komplexen Ver­
iinderlichen, 624 pp. (1925). Part II: Eindeutige analytische Funktio­
nen, 600 pp. (1932). B. G. Teubner, Leipzig. Reprinted by Johnson 
Reprint Corp. (1968), New York. 

[R] RIEMANN, B., "Grundlagen fUr eine allgemeine Theorie der Functio­
nen einer veranderlichen complexen Grosse," Inaugural Dissertation 
(1851), Gottingen; Werke, 5-43. 

[Sch] SCHOTTKY, F., "Uber das Cauchysche Integral," Jour. fur Reine und 
Angew. Math. 146(1916), 234-244. 

[W 1] WEIERSTRASS, K., "Darstellung einer analytischen Function einer 
complexen Veranderlichen, deren absoluter Betrag zwischen zwei gege­
benen Grenzen liegt," Munster 1841; first published 1894 in the Math. 
Werke 1, 51-66. 

[W2 ] WEIERSTRASS, K., "Zur Theorie der Potenzreihen," Munster 1841; 
first published 1894 in the Math. Werke 1, 67-74. 

[W3J WEIERSTRASS, K., "Zur Theorie der eindeutigen analytischen Func­
tionen," Abhandlungen der Konigl. Preufi. Akademie der Wissen­
schaften zu Berlin (1876), 11-60; Math. Werke 2, 77-124. 
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[W4 ] WEIERSTRASS, K, "Zur Functionenlehre," Monatsber. Konigl. PreuJl. 
Akademie der Wissenschaften zu Berlin (1880), 719-743, Nachtrag 
(1881), 228-230; Math. Werke 2, 201-233. 

[W 5] WEIERSTRASS, K, Einfiihrung in die Theorie der analytischen Funk­
tionen, Schriftenreihe des Mathematischen Instituts Universitat Mun­
ster, second series, vol. 38(1986). 

[W 6] WEIERSTRASS, K, Einleitung in die Theorie der analytischen F'unk­
tionen, Vorlesung Berlin 1878 in einer Mitschrift von Adolf HURWITZ. 
Bearb. von Peter ULLRICH (Dokumente zur Geschichte der Mathe­
matik. 1m Auf trag der Deutschen Mathematiker-Vereinigung, hrsg. 
von Winfried SCHARLAU; Band 4, Vieweg Verlag, Braunschweig Wies­
baden, 1988). 

[We] WElL, A., Elliptic functions according to Eisenstein and Kronecker, 
Ergebnisse der Mathematik 88, Springer-Verlag (1976), Heidelberg. 

[WW] WHITTAKER, E. T. and G. N. WATSON, A Course of Modern Anal­
ysis, Cambridge at the University Press, 1st ed. 1902; 4th ed. 1927. 

We will close by commenting on some of these works in chronological 
order. 

[E] Euler 1784: This is the first textbook on analysis and it can be read 
by students even today without great strain. The style of language and 
notations are nearly "modern", a considerable amount of our contempo­
rary terminology having been first introduced here by EULER. Complex 
numbers are on the same footing as real numbers. Functions are analytic 
expressions (§4), hence holomorphic. In §28 the Fundamental Theorem of 
Algebra will be found (without proof). The binomial series is mentioned 
in §71 without further clarification as a "Theorema universale" and is ex­
tensively employed thereafter; oddly enough, EULER says nothing about a 
proof. The exponential function, logarithms and the circular functions are 
systematically treated for the first time in the Introductio and, via calcula­
tions with infinitely small numbers (§115 ff), they are developed into power 
series. 'The Euler formula eix = cos x + i sin x occurs in §138; he derives his 
infinite product for the sine in §158 and the partial fraction representation 
for 7rcot7rZ in §178. 

For EULER power series are just non-terminating polynomials. It is 
in the introduction to this book that he wrote the words with which our 
chapter 12 opens. EULER had such a mastery of the calculus of the infinitely 
small and the infinitely large that he is still envied for this skill today. "He 
is the great manipulator and pointed the way to thousands of results later 
established rigorously" (M. KLINE, [HgJ, p.453). 
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The Introductio experienced many editions and was issued anew in 1922 
as part of Euler's Opera Omnia by A. KRAZER and F. RUDIO. In their 
foreword these editors write: " ... (ein) Werk, das auch heute noch ver­
dient, nicht nur gelesen, sondern mit Andacht studiert zu werden. Kein 
Mathematiker wird es ohne reichen Gewinn aus der Hand legen. Dieses 
Werk ist nicht nur durch seinen Inhalt, sondern auch durch seine Sprache 
maBgebend geworden fur die ganze Entwicklung der mathematischen Wis­
senschaft. ( ... a work which still deserves not only to be read but to be 
studied with assiduousness. No mathematician will put it down without 
having greatly benefitted. This work has become a landmark in the whole 
development of mathematical science, not only by virtue of its content but 
also by virtue of its language.)" 

[C] Cauchy 1821: At the urging of LAPLACE and POISSON, CAUCHY 
wrote out his lecture course "pour la plus grande utilite des eleves (for the 
greater utility of the students)"; it may have been the first example of offi­
ciallecture notes for students. The material is somewhat the same as in [E] 
but actual comparison reveals the new critical attitudes at work. Analy­
sis is developed consistently ab ovo and, in principle, unimpeachably. This 
work exerted a guiding and lasting influence on the development of analysis 
and especially function theory throughout the 19th century. On account of 
its excellence it was very soon introduced into almost all the educational in­
stitutions of France and also became generally known in Germany; thus as 
early as 1828 the German translation by HUZLER (co-rector of the city high 
school in Konigsberg) appeared. In his introduction (pp. i/ij) CAUCHY de­
scribes his program with these sentences: "Je traite successivement des 
diverses especes de fonctions reelles ou imaginaires, des series convergentes 
ou divergentes, de la resolution des equations, et de la decomposition des 
fractions rationnelles. (I treat successively various kinds of real or complex 
functions, convergent or divergent series, the resolution of equations and 
the decomposition of rational fractions.)" Thus the Cauchy convergence 
criterion for series is found in chapter VI; in chapters VII-X functions of 
a complex argument are introduced for the first time with, as a matter 
of principle, precise specification of their domains. To be sure, complex 
valued functions were not consciously introduced: the dominant role is al­
ways played by the two real functions u and v, not by the single complex 
function u + Av. The concept of continuity is carefully set out. The 
convergence of a series with complex terms is reduced to that of the series 
of corresponding absolute values (on p.240, e.g., it says that every com­
plex power series has a circle of convergence whose radius is given by the 
familiar limit superior formula). In chapter X the Fundamental Theorem 
of Algebra is derived: the existence of zeros of a polynomial p(z) is proved 
by considering the minima of the real function Ip( z W . 

With the Cours d'analyse the age of rigor and the arithmetization of 
analysis begins. Only the important idea of (local) uniform convergence was 
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missing, to give the work the finishing touch; in ignorance of this concept 
CAUCHY enunciates the incorrect theorem that convergent sequences of 
continuous functions always have continuous limit functions. Regarding 
the methods used in his book CAUCHY says (p.ij of the introduction): 
"Quant aux methodes, j'ai cherche a leur donner toute la rigueur q'on 
exige en geometrie, de maniere a ne jamais recourir aux raisons tirees de la 
generalite de l'algebre. (I have sought to give them all the rigor that one 
demands in geometry, in such a way as to never have recourse to reasons 
drawn from the generality of algebra.)" 

[AJ Abel 1826: This work was written in Berlin, where in Crelle's library 
ABEL had become acquainted with Cauchy's Cours d'analyse. The latter 
work was his model; he writes: "Die vortrefHiche Schrift von Cauchy, we1che 
von jedem Analysten gelesen werden sollte, der die Strenge bei mathema­
tischen Untersuchungen liebt, wird uns dabei zum Leitfaden dienen. (The 
splendid writing of Cauchy, which should be read by every analyst who 
loves rigor in mathematical investigations, will serve as our guide.)" Abel's 
work is itself a model of exact reasoning. It contains, among other things 
the Abel Lemma and the Abel Limit Theorem - and even some critical 
remarks about the Cours d'analyse. 

[W1-W6J Weierstrass 1841 to 1880: His early publications did not 
become generally known to mathematicians until the appearance of his 
Mathematische Werke, beginning in 1894. From the decade of the 60's 
(last century) on WEIERSTRASS gave lecture courses in Berlin in the style 
that is prevalent today. He first gave his lectures on Allgemeine Theorie 
del" analytischen Functionen during the 1863/64 winter - and indeed six 
hours per week (cf. Math. Werke 3, pp. 355-60). Unfortunately, unlike 
CAUCHY, WEIERSTRASS never wrote his lectures out in book form, but 
there are transcriptions by his various pupils. Thus, for example, from 
H. A. SCHWARZ'S hand we have an elaboration of his lectures on Differ­
entialrechnung held at the Royal Industrial Institute in the 1861 summer 
semester. There is further a transcription by A. HURWITZ of his summer 
semester 1878 lectures Einleitung in die Theorie der analytischen Funktio­
nen [W6] and another by W. KILLING from a decade earlier [W5]. 

Weierstrass's lectures soon became world-famous; when in 1873 - two 
years after the Franco-Prussian War - MITTAG-LEFFLER came to Paris to 
study, HERMITE said to him: "Vous avez fait erreur, Monsieur, vous auriez 
du suivre les cours de Weierstrass a Berlin. C'est notre maitre a tous. (You 
have made a mistake, sir; you should have attended Weierstrass' course in 
Berlin. He is the master of us all.)" 

Weierstrass' name was misappropriated as a hallmark by several second-rate 
mathematicians. Thus in 1887 a book entitled Theorie der analytischen Funk­
tionen by one Dr. O. BIERMANN appeared in the Teubner press; its foreword 
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contained the passage "Der Plan dieses Werkes ist Herrn Weierstrass bekannt. 
(The plan of this work is known to Mr. Weierstrass.)" ITZIGSOHN (the German 
translator of Cauchy's Cours d'analyse), outraged at this, wrote to BURKHARDT 
in 1888: "Herr(n} Biermann (soll) in nii.chster Zeit griindlich heimgeleuchtet wer­
den, weil er den Glauben erwecken wollte, er habe im Einverstiindnis mit Herrn 
Professor Weierstrass dessen Funktion-Theorie veroifentlicht. Herr Prof. (so!) 
Biermann hat niemals Funktionentheorie bei Herrn Prof. Weierstrass gehort. 
Das Werk ist alles, nur nicht die Weierstrass'sche Funktionentheorie. (Mr. Bier­
mann should be roundly taken to task as soon as possible because he's trying to 
create the belief that he had an understanding with Weierstrass about publish­
ing the latter's function theory. Herr Prof. (indeed!) Biermann never attended 
Prof. Weierstrass' lectures on function theory. This work is anything but Weier­
strassian function theory.)" WEIERSTRASS expressed himself on the matter in 
1888 in a letter to SCHWARZ as follows: "Dr. Biermann, Privatdocent in Prag, 
besuchte mich am Tage vor oder nach meinem 70sten Geburtstag. Er theilte 
mir mit, daB er die Absicht habe, eine 'allgemeine Funktionentheorie' auf der in 
meinen Vorlesungen gegebenen Grundlage zu schreiben und fragte mich, ob ich 
ihm die Benutzung meiner Vorlesungen fiir diesen Zweck gestatte. Ich antwortete 
ihm, daB er sich wohl eine zu schwierige Aufgabe gestellt habe, die ich selbst zur 
Zeit noch nicht zu losen getraute. Da er aber ... die angegebene Frage wieder­
holte, sagte ich ihm zum Abschiede: 'Wenn Sie aus meinen Vorlesungen etwas 
gelernt haben, so kann ich Ihnen nicht verbieten, davon in angemessener Weise 
Gebrauch zu machen.' Er hatte sich mir als friiherer Zuhorer vorgestellt und ich 
nahm selbstverstiindlich an, daB er meine Vorlesung iiber Funktionenlehre gehort 
habe. Dies ist aber nicht der Fall ... Er hat also sein Buch nach dem Hefte eines 
anderen gearbeitet. Eine derartige Buchmacherei kann nicht geduldet werden. 
(Dr. Biermann, lecturer in Prague, paid me a visit the day before, or maybe it 
was the day after, my 70th birthday. He let me know that he had in mind writ­
ing a 'general function theory' based on the foundations given in my lectures and 
asked me if I would permit him to use my lectures for this purpose. I answered 
him that he'd really set himself too difficult a task, one that I didn't even trust 
myself to resolve at that time. But because he repeated the proferred question, 
I told him in parting: 'If you've learned something from my lectures, I can't 
forbid you to make appropriate use of it.' He'd represented himself as having 
earlier been an auditor of my lectures and I naturally assumed he'd attended my 
lectures on function theory. But such is not the case ... He'd done his book in 
other words from the class-notes of others. Generating books this way can't be 
abided.)" 

[RJ Riemann 1851: The ideas in this trail-blazing but tightly written 
work had already been developed by RIEMANN during the 1847 Fall re­
cess. Judging by reactions, it had no effect at first; its new ideas spread 
only slowly and quite gradually. The dissertation got a very knowledgeable 
evaluation from GAUSS, who, when RIEMANN visited him, even indicated 
that for some years he had been preparing a paper which treated the same 
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material without in fact being quite as restricted. Characteristic of the 
reception which Riemann's work initially found is the following incident, 
which is related by Arnold SOMMERFELD in his Vorlesungen iiber theoreti­
sche Physik (vol. 2: Mechanik der deformierbaren Medien, reprinting of the 
6th edition, 1978 Verlag Harri Deutsch, Thun & Frankfurt-am-Main; see 
§19.7, p.124): "Adolf WULLNER, der langjiihrige verdiente Vertreter der 
Experimentalphysik an der Technischen Hochschule in Aachen traf in den 
siebziger Jahren auf dem Rigi mit WEIERSTRASS and HELMHOLTZ zusam­
men. WEIERSTRASS hatte die RIEMANNsche Dissertation zum Ferien­
studium mitgenommen und klagte, daB ihm, dem Funktiontheoretiker, die 
RIEMANNschen Methoden schwer verstiindlich seien. HELMHOLTZ bat sich 
die Schrift aus und sagte beim niichsten Zusammentreffen, ihm schienen die 
RIEMANNschen Gedankengiinge vollig naturgemiifi und selbstverstiindlich 
zu sein. (Adolf WULLNER, the venerable representative of experimental 
physics at the Technical University of Aachen, met WEIERSTRASS and 
HELMHOLTZ on Mt. Rigi sometime in the 1870's. WEIERSTRASS had 
brought along RIEMANN'S dissertation for vacation study and complained 
that for him as a function theorist RIEMANN'S methods were difficult to un­
derstand. HELMHOLTZ asked to be allowed to take the manuscript and at 
their next meeting he exclaimed that RIEMANN'S thought processes seemed 
completely natural and self-evident to him.)" 

[BB] Briot and Bouquet 1859: In the first 40 pages general function 
theory is developed, relying heavily on the works of CAUCHY. Holomorphic 
functions are still called "synectic", as they had been by CAUCHY. In the 
2nd edition, which appeared in 1875 under the shorter title Theorie des 
fonctions elliptiques, the authors replace the word "synectic" with "holo­
morphic". This is the first textbook on function theory. HERMITE in 1885 
considered it to be one of the most significant "publications analytiques de 
notre epoque." This work of BRIOT and BOUQUET was, as the authors say 
in their foreword, strongly inspried by the classical lectures [Liou] of LI­
OUVILLE on elliptic functions, WEIERSTRASS was even of the opinion that 
everything essential was the work of LIOUVILLE. 

[Os] Osgood 1906: This is the first textbook on function theory in 
German which experienced wide circulation (Burkhardt's book [Bu] having 
had little success); in spite of its over 600-page length, it enjoyed 5 editions. 
The foreword to the first edition begins with the ambitious statement: 
"Der erste Band dieses Werkes will eine systematische Entwicklung der 
Funktionentheorie auf Grundlage der Infinitesimalrechnung und in engster 
Fiihlung mit der Geometrie und der mathematischen Physik geben. (The 
first volume of this work wants to give a systematic development of function 
theory based on the infinitesimal calculus in the closest possible contact 
with geometry and mathematical physics.)" 
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Incidentally, the second volume of this work (in two parts, 1929 and 
1932) was the first textbook on functions of several complex variables. 

[PI Pringsheim 1925/1932: As a convinced advocate of the Weierstrass 
power series calculus, PRINGSHEIM built the theory methodically on the 
Weierstrass definition of a holomorphic function as a system of overlapping 
power series. Complex contour integration is not developed until page 1108; 
as a substitute up to that point a method of means is used, which had its 
origin in the arithmetic averaging technique that WEIERSTRASS had used 
to prove the Cauchy inequalities (cf. 8.3.5) and that in fact CAUCHY himself 
had used. With the help of these means PRINGSHEIM proves (cf. pp. 386 ff) 
that complex-differentiable functions (with derivative hypothesized to be 
continuous!) can be developed into power series. He sees the advantage of 
his integration-free treatment as being "dafi grundlegende Erkenntnisse, die 
dort als sensationelle Ergebnisse eines geheimnisvollen, gleichsam Wunder 
wirkenden Mechanismus erscheinen, hier ihre natiirliche Erklarung durch 
Zuriickfiihrung auf die bescheidenere Wirksamkeit der vier Spezies finden 
(that basic insights which there seem like sensational results of a mysterious 
and, as it were, miraculous mechanism, here find their natural explanation 
by being brought within the more modest scope of the four species [of 
operations, viz., addition, subtraction, multiplication and division])" -from 
the foreword to volume 1. But PRINGSHEIM's program never managed to 
carry the day; on this point compare §12.1.5 of the present book. 
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121, 153, 203, 213, 235, 396, 
425 
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Laplace, Pierre Simon de (1749-1827) 
265,373,375,377,395,403, 
427 

Laurent, Hermann (1841-1908) 201 
Laurent, Pierre Alphonse (1813-1854) 

5,213,350,358,425 
Legendre, Adrien-Marie (1752-1833) 

372,379 
Leibniz, Gottfried Wilhelm (1646-

1716) 20, 37, 38, 60, 159, 
217,333,373 

Lessing, Gotthold Ephraim (1729-
1781) vii 

Levy, Paul Pierre (1886-1971) 30, 31 
LindelOf, Ernst Leonard (1870-1946) 

191,377,386,395,413,425 
Lindemann, Carl Louis Ferdinand 

von (1852-1939) 255 
Liouville, Joseph (1809-1882) 4, 239, 

244,246,341,371,425,430 
Littlewood, John Edensor (1885-

1977) 121 
Looman, Herman (1923- ) 58 
Lusin, Nikolai Nikolaijewitsch (1883-

1950) 120 

MacLaurin, Colin (1698-1746) 211, 
423 

Mann, Thomas (1875-1955) 198 
Markuschewitz, Aleksei Ivanovich 

(1908-1979) 434 
Maser, H. 424 
Meier, Kurt (1924- ) 59 
Mellin, Robert Hjalmar (1854-1933) 

405 
Menchoff, Dmitrii Efgenewitsch 

(1892-1988) 58 
Mercator, Nicolaus (really Kauf­

mann) (1620-1687) 117 
Mertens, Franz Carl Joseph (1840-

1927) 32 
Mirkil, Hazelton 301 
Mitrinovic, Dragoslav S. 377 
Mittag-LeIDer, Magnus GOsta (1846-

1927) 352,417,428 
de Moivre, Abraham (1667-1754) 

150,372 
Mongre, Paul 19 

Montel, Paul (1876-1976) 6 
Mordell, Louis Joel (1888-1972) viii, 

153, 410, 411, 413 
Morera, Giacinto (1856-1909) 238, 

249, 251,425 
Morris, Sidney A. 59 
Milller, Gottfried Karl Richard 

(1862-1927?) 421 

Napoleon Bonaparte (1769-1821) 
364,417 

Narasimhan, Raghavan (1937-
301 

Nelson, Edward (1932- ) 245 
Neuenschwander, Erwin (1942-

309,434 
Nevanlinna, Rolf Herman (1895-

1980) 432 
Newton, Isaac (1643-1727) 20, 118, 

138,373 
Noether, Max (1844-1921) 213 

Oka, Kiyoshi (1901-1978) 62 
Olbers, Heinrich Wilhelm Matthias 

(1758-1840) 409 
Ore, Oystein (1899-1968) 417 
Osgood, William Fogg (1864-1943) 

213,238,251,259,425,430 

Painleve, Paul (1863-1933) 252 
Parseval Des Chenes, Marc-Antoine 

(1755-1836) 244 
Pell, John (1610-1685) 333 
Peter I of Russia (1672-1725) 419 
Peters, Klaus (1937- ) viii 
Picard, Charles Emile (1856-1941) 

308, 374 
Pick, Georg (1859-1942) 274 
Pietsch, Albrecht (1934- ) 31 
Pincherle, Salvatore (1853-1936) 231, 

232 
Poincare, Jules Henri (1854-1912) 5, 

66,240 
Poisson, Simeon Denis (1781-1840) 

175,204,205,371,374,386, 
395,427 
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P6lya, Georg{e) (1887-1985) 219, 
274,414,433 

Pompeiu, Dimitri (1873-1954) 205 
Porcelli, Pasquale (1926-1972) 258 
Pringsheim, Alfred (1850-1941) 109, 

197,198,211,235,351,352, 
425,431 

Ptolemy, Claudius (A.D. 100-170) 
138 

Purkert, Walter (1944- ) vi 

Raci6, Tibor (1895-1965) 274 
Riccati, Jacopo Francesco Count 

(1676-1754) 330 
Riemann, Georg Friedrich Bernhard 

(1826-1866) 3, 4, 5, 29, 30, 
~,~,G,W,OO,TI,n,~, 

84, 114, 195, 199, 213, 231, 
239,240,254,259,309,365, 
371,418,419,420,422,425, 
429,430 

Ritt, Joseph Fels (1893-1951) viii, 
265, 294, 299, 300, 301 

Rogers, Claude Ambrose (1920-
31 

Rosenthal, Peter Michael {1941-
31 

Rouche, Eugene (1832-1910) 262, 
390, 391, 392 

Rudio, Ferdinand (1856-1929) 418, 
427 

Runge, Carl (1856-1927) 253 
Riithing, Dieter (1944- ) 38 

Scheeffer, Ludwig (1859-1885) vi, 
235,352,354,355 

Schellbach, Karl Heinrich (1805-
1892) 336 

SchUlter, K. vi 
Schmickler-Hirzebruch, Ulrike 

(1953- ) v 
Schmidt, Erhard (1876-1959) 273 
Schneider, Theodor (1911- ) 255 
Schottky, Friedrich Hermann (1851-

1935) 213, 259, 328, 425 
Schroter, Heinrich Eduard (1829-

1892) 327 

Schwarz, Hermann Amandus (1843-
1921) TI, 97, 206, 240, 269, 
272,274,341,429 

Seidel, Philipp Ludwig von (1821-
1896) 98 

Siegel, Carl Ludwig (1896-1981) 7 
Sierpitiski, Waclaw (1882-1969) 120 
Smith, David Eugene (1860-1944) 78, 

419 
Sommerfeld, Arnold Johannes Wil-

helm (1868-1951) 260, 430 
Speiser, Andreas (1885-1970) 333 
Spiess, Ludwig Otto 333 
Stlickel, Paul Gustav (1862-1919) 

176,195,196,205,255, 
332 

Staudt, Christian Karl Georg Chris-
tian von (1798-1867) 144 

Steiner, Jakob (1796-1863) 417 
Steinitz, Ernst (18TI-1928) 30, 31 
Steinsiek, M. viii 
Stirling, James (1692-1770) 373 
Stokes, George Gabriel (1819-1903) 

98, 198, 199, 205, 380 
Stolz, Otto (1842-1905) 21, 121 
Study, Eduard (1862-1930) 273, 274 
Szego, Gabor (1895-1985) 219, 274, 

433 

Tannery, Jules (1848-191O) 254 
Tauber, Alfred (1866-1942) 121 
Taylor, Brook (1685-1731) 211 
Taylor, Richard 231 

Ullrich, Peter (1957- ) viii 

Valson, Claude Alphons (1826-1901) 
195,418 

van der Waerden, Bartel Leendert 
(1903- ) 62 

van Yzeren, Jan (1914- ) 374 
Varignon, Pierre (1654-1722) 38 
Vivanti, Giulio (1859-1949) 235 

Wagner, Richard (1813-1883) 198 
Walter, Wolfgang (1927- ) 222 
Wasow, Wolfgang Richard (1909-

1993) 294, 300 
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Watson, George Neville (1886-1965) 
414,426 

Weber, Wilhelm Eduard (1804-1891) 
419 

Weierstrass, Karl Theodor Wilhelm 
(1815-1897) 3, 4, 5, 21, 35, 
38, 79, 85, 93, 94, 96, 97, 98, 
103, 114, 125, 129, 135, 152, 
174,175,195,199,206,213, 
231, 234, 239, 240, 244, 246, 
251, 253, 254, 255, 272, 307, 
309,343,351,358,372,420, 
421,426,427,428,429 

Weil, Andre (1906- ) 334, 336, 339, 
418, 426 

White, Henry Seeley (1861-1943) 
419 

Whittaker, Edmund Taylor (1873-
1956) 426 

Whyburn, Gordon Thomas (1904-
1969) 258 

Wiener, Norbert (1894-1964) 407 
Wirtinger, Wilhelm (1865-1945) 67 
Wright, Wilbur (1867-1912) 252 
Wiillner, Friedrich Hugo Anton 

Adolph (1835-1908) 430 
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Abel continuity theorem 120 
Abel Lemma 428 
Abel Limit Theorem 217, 428 
Abel summation 33 
Abel's convergence criterion 93 
Abel's convergence lemma 110 
Abel's criticism of Cauchy 96, 428 
Abel's letter to Holmboe 97, 124 
Abel's product theorem 32 
abelian normal subgroup 311, 312 
absolute value 13 
absolutely convergent 27 
absolutely convergent series 26 
acts transitively 88, 271 
addition formula for the cotangent 

339 
addition theorem 135, 138, 139, 160, 

330, 336 
of the exponential function 135 

affine 311 
affine linear 85 
age of rigor 427 
algebraic foundation 241, 428 
algebraic function 255 
algebraic number 254 
algebraic values at algebraic argu-

ments 255 
almost all 19 
analytic 62 
analytic continuation 62, 216, 253 
analytic expressions 426 
analytic function 5, 235 
analytic landscape 258 
angles 14, 199 
angle of intersection 76 
angle-preserving 15, 72, 75 
angular sectors 294 
annulus 343, 352 
anti-conformal 75 
anti-holomorphic 73, 75 
anti derivative 170 
Anzahl389 
approximating zeros 219 

443 

approximating by entire functions 
246 

arccos 164 
arctangent function 161 
arctangent series 117, 126, 146 
area zero 59 
area integral 198, 205 
argument 149 
arithmetic averaging 431 
arithmetic means 246 
arithmetization of analysis 21, 427 
arithmetize function theory 5 
asymptotic behavior 294 
asymptotic development 294 

and differentiation 297 
automorphism 85, 310-314 

of lE 270, 271 
of IC and IC" 311 
oflC\{O,l} 315 
of lEx 313 
of lHl 271, 272 

Baire category theorem 107 
barycentric representation 188 
basic formulas of Eisenstein 337 
Bernoulli numbers 144, 192, 221, 223, 

331-333, 415 
unboundedness of 332 

Bernoulli polynomial 223, 224, 410, 
414,415 

Bessel differential equation 356 
Bessel functions 356 
beta functions 406 
biholomorphic 74 
biholomorphic mapping 80 
biholomorphically equivalent 72 
biholomorphy criterion 281 
binomial coefficients 118 
binomial expansion 149 
binomial formula 118 
binomial series 118, 126, 163, 426 
Borel's dissertation 301 
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Borel's theorem viii, 294, 301 
boundary 43 
boundary points 43 
boundary-distance 43 
bounded sequence 22 
Bourbaki 19, 38, 130 
branch point 285 
branched covering 285 
branches 158, 253 
Byzantines 199 

<:>algebra 23 
C-algebra homomorphism 23 
C-linearization 47, 63 
calculus of variations 196 
Cantor's counting method 255 
Casorati-Weierstrass theorem for en-

tire functions 308, 309 
Casorati-Weierstrass theorem 85, 307, 

308,309 
Cauchy continuous convergence cri­

terion 103 
Cauchy convergence criterion 27, 102, 

427 
Cauchy estimates 125, 241, 242, 250 

following Weierstrass 247 
Cauchy integral formula 252, 290 

for annuli 346 
for convex n-gons 380 
for discs 202 

Cauchy integral theorem 194, 267, 
368 

for annuli 344 
converse of 237, 249 

Cauchy kernel 203 
Cauchy multiplication 110 
Cauchy product 31,105,135,217, 

251 
Cauchy sequence 24, 101 
Cauchy's convergence criterion 24 
Cauchy's error 96 
Cauchy's example 301 
Cauchy's inequalities 203, 232, 242, 

358 
Cauchy's Paris lectures 427 
Cauchy's product theorem 31,32 
Cauchy-Hadamard formula 109, 112, 

218,332,427 

Cauchy-Riemann equation 12, 46, 47, 
49, 51, 58, 59, 61, 66, 67, 
199 

Cauchy-Riemann theory 239 
Cauchy-Schwarz Inequality 13, 14, 16 
Cauchy-Taylor representation 

theorem 191, 210, 227, 348 
Cauchy-transform 291 
Cayley mapping 82, 83, 161, 271 
Cayley transform 330 
Cayley transformation 275 
center 18 
center-preserving automorphisms 270 
chain rules 58, 68 
characteristic zero 216 
characteristic or indicator function 40 
characterization of the cotangent 326 
characterization of the exponential 

function 134, 135 
circle of convergence 111 
circles 18 
circular arc 172 
circular functions 426 

from Cl 339 
circular ring 343 
circular sector 294, 379, 400 
circular segment 378 
circularly indented quadrilateral 379 
classification of isolated singularities 

359 
Clausen-von Staudt formula 144 
clopen 40 
closed balls 19 
closed curve 172 
closed discs 19 
closed hull 19 
closed path 40 
closed set 19, 20 
closure 19 
cluster at boundary 232 
cluster point 20 
coincidence set 228 
commutative law for infinite series 29 
compact 21 
compactly convergent 322 
com pactum 21 
comparison function 391 
complementarity formula 224 
complete metric space 24 
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complete valued field 124, 128, 216, 
240 

complex conjugate 11 
complex differentiability 47 
complex logarithm function 54 
complex partial derivatives lx, Iy 12 
components 42 
composition lemma 157 
composition of mappings 34 
compound interest 156 
condensation of zeros 262 
conformal 74 
conformal rigidity 310, 313 
conjugate 59, 66 
conjugate to 35 
conjugate-holomorphic 73 
conjugated function 52 
conjugation 119 
conjugation function 48 
conjugation mapping 76 
connected 40 
connected components 42 
constant on the fibers 286 
continuation theorem for automor-

phisms 313 
continuity principle 38 
continuous at a point 34 
continuously convergent 98 
continuously differentiable 52, 172 
continuously extendable 212 
continuously real-differentiable 73 
contour integral 173 
contour integration 175, 197, 239 
converge (absolutely) at c 324 
convergence behavior on the bound-

ary 120 
convergence commutes with differenti-

ation 248 
convergence factors 298, 300 
convergence, propagation of 260 
convergence theorem 322, 366 

for Laurent series 357 
convergent 19 
convergent power series 128 
convergent series 26 
converges compactly 95 
converges to 34 
converse of Abel's continuity theorem 

122 

converse of Cauchy's integral theo-
rem 238, 251 

converse to the theorem on roots 279 
convex n-gons 379 
convex 44, 188, 273 
convex hull 269 
convex region 300, 344 
convex sets 269 
correction term 205 
cosine function 116, 125, 340 
cosine series 116 
cotangent 339 
countable 20, 255 
countably infinite 316 
counted according to multiplicity 389 
counting formula for the zeros and 

poles 389 
covering 285 
curve 172 
curvilinear integral 173 
cyclic group 314 

de Moivre's formula 149 
definition of 11" 143 
dense 20, 255 
dense set 150, 307 
development theorem 306, 316 
Diabelli variations 336 
difference quotient 47 

joint continuity of 291 
differentiable at a point 75 
differential equation 134 

for 101333 
differential 51 
differential forms 384 
differentiated term by term 249 
differentiation 211 
differentiation theorem 323 
dilation factor 16 
Dirichlet problem 55 
disc of convergence 111 
discrete 129, 232, 260 
discrete set 212, 239 
discrete valuation ring 110, 129, 132 
dispersion of poles 322 
distance 17 
distributive laws 23 
divergent 20 
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divergent series 26 
division rule 14 
domains 41 
double integral 199, 373 
double series theorem 250, 332 
double-angle formula 146, 326 
doubly periodic 367 
doubly periodic functions 366 
doubly periodic meromorphic func-

tions 365 
duplication formula 326, 328, 340 

Einheitskreisscheibe 18 
Eisenstein series 321, 334 
Eisenstein summation 326 
elementary function theory 351 
elementary proof of Laurent's theo-

rem 352 
elliptic 367 
elliptic functions 430 
elliptic integrals 4 
elliptic modular functions 152 
entire functions 244 
enveloped by 297 
epimorphism theorem 141, 149 
(c, h)-criterion 34 
equicontinuous 101 
equivalence class of paths 174 
equivalent paths 176 
error function 246 
error integral 199, 200, 366, 368, 372-

374,410 
essential 307 
essential singularities 304 
euclidean distance 17 
(euclidean) length of'Y 180 
euclidean length of z 13 
euclidean metric 18 
euclidean scalar product 13 
Euler formula 116, 332,415,426 
Euler identities 321 
Euler's death 419 
Euler's functional equation 373 
even function 355 
exhaustion property 21 
existence criterion 396 
existence lemma 276 

existence of asymptotic developments 
295 

existence theorem 155 
for holomorphic logarithms 277 
for holomorphic roots 278 
for singularities 234 
for zeros 257 

exponential function 125 
exponential series 115 
extending automorphisms 310 

factorial 130, 131 
factorization theorem 286, 353, 362 
fiber 232 
Fibonacci numbers 128 
field C of complex numbers 10 
field 318 

of automorphisms 311 
of real numbers R 10 

fixed point 271 
fixed-point-free 272 
formal power series 110, 128, 294, 298 
formulas of Euler 332 
four species 431 
Fourier coefficients 244 
Fourier developments of the Eisen­

stein functions 364 
Fourier series 97, 343, 361, 365, 414 

for the Bernoulli polynomials 415 
Fourier transforms 402 
Fourier's view of mathematics 365, 

372 
fractional linear 81 
Fresnel integrals 199, 374 
function 34, 35, 37, 38 
functional analysis 107 
functions of several complex variables 

328 
functions with compact support 230 
fundamental theorem of algebra 15, 

127, 266, 311, 389, 391, 426, 
427 

fundamental theorem of calculus 171 

gamma function 201, 373, 406 
gap theorem 153 
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Gauss' evaluation of Riemann 429 
Gauss' letter to Bessell, 37, 167, 

175, 197 
Gauss(ian) plane 10 
Gauss error integral 372 
Gauss sums 409-413 
Gebiet 42 
general linear group 81 
generalization of Riemann's rearrange­

ment theorem 30 
generalization of the Cauchy integral 

formula 377 
generalized Gutzmer equality 248 
generalized power series 348 
generalized series 324 
geometric interpretation of the index 

293 
geometric rigor 428 
geometric series 26, 125, 182, 214, 

216, 235 
geometric significance of the multiplic-

ity 285 
global developability theorem 235 
Goursat lemma 192, 199 
group of units 129 
growth lemma 266,267,268,391 

for rational functions 399 
Gutzmer formula 243, 358 

Hadamard's principle 137, 150 
Hadamard's principle in Kronecker's 

hands 407 
harmonic function 55, 259 
Hausdorff "separation property" 19 
heat equation 365, 366, 372 
Heine-Borel property 21 
Heine-Borel theorem 96 
Herglotz trick 328 
hermitian bilinear form 244 
Hilbert space 244 
holes 293 
holomorphic n-root 159,278 
holomorphic 56, 61, 430 
holomorphic continuation 216 
holomorphically extendable 212 
holomorphy as complex-differentiabil-

ity 239 

holomorphy criteria 237 
holomorphy from continuity 156 
holomorphy of integrals 238 
homeomorphism 39 
homogeneous 88, 312 
homologically simply-connected 276, 

277 
homotopic paths 346 
horseshoe 379 
Hurwitz' theorem 261, 262, 391 
hyperbolic cosine 139 
hyperbolic sine 139 
hypergeometric function 127 
hypergeometric series 122 

Identity theorem 227, 228, 230, 231, 
234, 238, 243, 261, 278, 312, 
329,330,340,352,370,391 

for Laurent series 358 
for meromorphic functions 319 

image path 75 
imaginary part 10,36 
imaginary unit 10 
impression of a curve 40 
improper integrals 396, 398 
increases uniformly to 00 305 
independence theorem 176 
index of a curve 288 
index function 279, 288 
indicator function 40 
indirectly conformal 75 
infinite product 426 
infinite series 26 
inhomogeneous Cauchy integral for-

mula 205 
initial point 40, 172 
injectivity lemma 282 
inner radius 343 
insertion of parentheses 106 
inside (interior) 289 
integrability criterion 187, 188 
integrable 186 
integral domain 129, 230, 318, 320 
integral formula 228 
integral theorem of Stokes 380 
integration by parts 171 
integration in the plane 175, 197,239 
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integration-free proofs 247, 258, 351, 
352 

interchange of differentiation and inte­
gration 210, 345, 369, 374 

interchange of differentiation and 
summation 123, 124, 210 

interchange theorem 181, 250 
interior point 299 
invariance of residue 384 
inverse-image 34 
inverse of biholomorphic mappings 

388 
involutions 88 
involutory automorphism 36, 274 
irreducibility criterion 321 
isolated point 212 
isolated singularities of injections 310 
isolated singularity 303 
isometric 16 
isotropy group 270, 271 
(iterated) square-root 280 

Jacobi's attitude toward mathematics 
372 

Jacobi's dissertation 386 
Jacobian (functional) determinant 54, 

70,74 
Jacobian matrix 51 

lacunarity condition 153 
lacunary series 113 
Lagrange's theorem 371 
Landau's trick 203 
Laplace operator 55 
Laplace's equation 47 
Laurent expansion (or development) 

349, 359, 363 
Laurent expansion theorem 348 

relation to Fourier series 363 
Laurent representation 346,347 
Laurent separation 347 
Laurent series 131, 213, 306, 324, 

343,348 
Laurent's theorem 77,174,239 

without integration 352 
Law of Cosines 13, 14 
law of exponents 136 

law of quadratic reciprocity 409 
Leibniz' differentiation rule 217 
Leibniz' dispute with Newton 373 
Leibniz' dogma 38 
Leibniz formula 121 
Leibniz series 330 
Leibniz' product-rule 60 
lemma on developability 208 
lemma on units 215 
length-preserving 16 
letter to Bessell, 37, 167, 175, 197 
lifted function 286 
lifting 318, 362 
limit inferior 112 
limit laws 22 
limit of injective functions 262 
limit of a sequence 20 
limit superior 112 
limit superior formula 427 
limitations of the residue calculus 406 
line segment 41 
Liouville's theorem 84, 207, 244, 245, 

268, 291, 347 
local biholomorphy criterion 283 
local injectivity 283 
local normal form 284 
local ring 132 
locally biholomorphic 283 
locally compact 96 
locally constant 39, 186, 233, 239 
locally integrable 236 
locally path-connected 42 
locally uniformly convergent 94, 104 
logarithm 154, 194 

characterized by derivatives 155 
of f 154 

logarithm function 154 
in C- 158 

logarithmic derivative 276 
logarithmic series 117, 126, 155 
logical rigor 114, 125, 427 
Looman-Menchoff theorem 58, 59 

majorant 28 
majorant criterion (M-test) of Weier­

strass 103 
majorant criterion or comparison test 

28 
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mapping 34 
Mathematical Research Institute at 

Oberwolfach viii 
mathematical rigor 114, 125, 427, 

428 
matrix 81,87 
maximal ideal 132 
maximum metric 18 
maximum principle 204, 244, 258, 

270, 273, 326 
for bounded regions 259 

mean value equality 203, 245 
mean value inequality 203, 241, 257, 

258, 267 
mean value theorem of the differen­

tial calculus 301 
mean values instead of integrals 351, 

431 
Mellin transforms 405 
meromorphic function 315 

equality of 319 
meromorphic at a point 316 
meromorphic limit functions 322 
method of discovery 5 
method of exhaustion 20 
method of means 431 
method of proof 5 
metric 18 
metric space 18 
minimum principle 259, 268 

for harmonic functions 259 
misappropriation of Weierstrass' 

name 428 
modulus 13 
monodromic 62 
monogenic 62, 253, 254 
monotonicity rule 169 
Morera condition 237 
multi-valuedness 216 
multiple-valued 159 
multiplicative map 23 
multiplicity 233 

n sheets 285 
natural boundary 151 
neighborhood 19 
nested interval principle 193 
Newton's method 269 

Newton-Abel formula 163 
non-archimedean valuation 128, 129, 

131, 320 
normal convergence 107, 322 
normal form 130, 284 
normally convergent 31, 93, 104, 110, 

124, 322 
normed linear space 107 
nuclear mapping 31 
null path 172 
null sequence 22 
nullhomologous 292, 384, 390 
number of a-points 389 

Oberwolfach viii 
odd Bernoulli numbers 415 
odd function 355 
w-invariant 361 
w-periodic 362 
open ball 18 
open discs 18 
open mapping 256 
open mapping theorem 256, 269, 281, 

310 
open set 19 
order 128 

of f at c 233, 319 
of the pole 304 
of the zero 233 

order function 233, 266, 319 
"order" has double meaning 320 
orientation-preserving 74, 239 
orthogonal transformation 16 
orthogonal vectors 13 
orthogonality relations 357 
orthonormal system 244 
orthonormality relations 242 
outer radius 343 
outside (exterior) 289 
overlapping power series 431 

p-adic function theory 240 
parameter transformation 176 
Parseval completeness relation 244 
partial fraction 426 
partial fraction decomposition 127, 

321 
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partial fraction development 329,331, 
406 

partial fraction representation of cot 
z 327 

partial sums 26 
partition of unity 230 
path 40, 172, 173 
path bounds an area 292 
path independence 184, 278 
path integral 173 
path through the complexes 137, 150, 

407 
path-connected 41 
path-connectedness 39 
path-equivalent 42 
path-sum 40, 172 
Pavlov's dogs 92 
peaks 258 
period 143 
periodic 143, 362 
periodic holomorphic functions 343 
periodicity factor 367 
periodicity theorem 145, 334 
permanence principle 159, 229 
permutation group 314 
permuting the order of differentiation 

and integration 210, 345, 
369,374 

perpendicular 13 
phobia of the Cauchy theory 239 
piecewise continuously differentiable 

173 
piecewise smooth 173 
point of accumulation 20 
pointwise convergence 92 
Poisson integral formula 207 
polar coordinate epimorphism 149 
polar coordinates 148, 149, 373 
pole 304,309 

of the derivative 306 
pole-dispersion 360 
pole-dispersion condition 322, 324 
pole-set 315, 316, 322 
polygon 41, 173 
polygonal path 41 
potential function 55 
potential-equation 55 
power function 162 
power rule 136, 229 

power series trick 210 
pre-image 34 
preservation of regions 258 
preservation of zeros 261 
prime element 130 
prime ideal 131 
prime number theorem 114, 408 
primitive of a function 170, 185, 186 
primitive root of unity 150 
principal branch 53, 161, 194, 217, 

276 
of the logarithm 158, 404 

principal ideal domain 131 
principal part 306, 316, 347, 348 

of f' 317 
principal theorem of the Cauchy 

theory 289 
Privatdozent 418, 419, 429 
product rule 13, 128, 233 
product sequence 23 
product of series 31, 110, 295, 324 
product theorem 105 

of Abel 32 
for complex series 32 
for power series 217 

propagation of convergence 260 
proper divergence 30 
proper sector 299 
punctured disc 362 
punctured neighborhood 34 
pure methodology 352 

Quadrate 18 
quasi-period 367 
quotient field 131, 318, 320 

of O(G) 318 
quotient function 36 

radial approach 121 
radius of convergence 111 

formula 112, 113, 332, 427 
ratio criterion 112, 113, 218 
ratio test 113 
rational function 59, 316, 318, 320, 

427 
rational parameterization 174 
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re-grouped series 106 
real arctangent function 53 
real exponential function 53 
real logarithm function 53 
real part 10, 36 
real partial derivatives Ux, tty, Vx, Vy 

12 
real trigonometric function 53 
real-analytic 300 
real-differentiable 51 
rearrangement theorem 28, 105, 215, 

323 
rearrangement-induced sums 30 
reciprocity formula 413 
rectifiable curves 172 
recursion formula for (333 
reduction to the harmonic case 259 
reflection in real axis 11 
region of holomorphy 151, 152, 153 
region 42 
regular function 62 
regular part 347, 348 
relatively closed 232 
relatively compact 323 
remainder term 212 
removability theorem 304, 305 
removable singularities 303 
removal of parentheses 256 
residue 381, 386 
residue concept invariant for forms 

384 
residue theorem 384, 397, 398, 400, 

404, 411, 414 
residues calculated algebraically 381 
reversal rule 169, 179 
reversed path 179 
Riccati differential equation 330 
Riemann (-function 134, 163, 164, 

250,331 ff. 
Riemann continuation theorem 212, 

238,282,286,295,304,313, 
348, 351, 358 

Riemann, man of intuition 240 
Riemann mapping theorem 7, 84, 

262, 272, 293 
Riemann surfaces 4 
Riemann's dissertation 4, 39, 46, 254, 

429,430 
Riemann's gravestone 422 

Riemann's Habilitationsschrift 29, 
38,365,419 

Riemann's rearrangement theorem 30 
Ritt's theorem viii, 300 
root of unity 150 
Rouche's theorem 262,390,391,392 
Runge's approximation theorem 92, 

253,292 

Schwarz' integral formula 205, 206 
Schwarz' lemma 72,260,270,273 
Schwarz-Pick lemma 274,275 
segment [zo, Zl] 41, 172 
semi-norm 93 
sequence 19 
sequence criterion 34 
series multiplication theorem of Abel 

217 
several complex variables 431 
sharpened form of the rearrangement 

theorem 105, 107, 353 
sharpened standard estimate 184 
sharpened sum rule 129 
sharpened version of Goursat's inte­

gral lemma 202 
sharpening of the Weierstrass conver­

gence theorem 260 
sharper version 

of Cauchy's integral theorem 201 
of Liouville's theorem 248 
of Rouche's theorem 392 
of Schwarz' lemma 274 
of the standard estimate 402 

similarity 16 
similarity constant 16 
simple convergence 92 
simple pole 304 
simply closed path 378, 390 
sine function 116, 125, 340 
sine series 116 
singular integrals 385 
singular point 151,234,235 

on the boundary 234 
slit plane 83, 154, 157, 217, 276, 277 
smooth 172 
Spandau 418 
square-roots of any complex number 

14 



452 SUBJECT INDEX 

square-roots in annuli 278 
standard estimate 169, 180, 296, 347, 

368, 399 
{star-) center 188 
star-like 187 
star regions 188 
star-shaped 187, 273 
Steinitz replacement theorem 30 
stereographic projection 71 
Stirling formula 373 
Stokes' formula 198, 199 
Stokes' theorem 205, 380 
strip 361 
subsequence 19 
subseries 28, 323 
substitution rule 171 
sum of four squares 371 
sum rule 128 
sum sequence 23 
summation 211,250 
sums of powers 222 
support of a function 230 
supremum semi-norm 93 
symmetric about lR 236 
symmetric group 314 
symmetry 17 
synectic 62, 430 

tangent function 287 
tangent mapping 51, 75 
tangential approach 121 
Tauber's theorem 122 
Taylor coefficient formulas 124 
Taylor formula 296 
Taylor polynomial 91 
Taylor series 208, 212, 250 
term-wise differentiation and integra­

tion 123 
term-wise differentiation of compactly 

convergent series 125 
terminal point 40, 172 
terms of a series 26 
theorem of Bolzano and Weierstrass 

25 
theorem of E. Borel viii, 294, 300 
theorem of Carleman 246 
theorem of Casorati and Weierstrass 

307, 308, 309 

theorem of Fubini 238 
theorem of Hurwitz 261, 262, 391 
theorem of Laurent-Weierstrass 351 
theorem of Levy and Steinitz 31 
theorem of Lindemann, Gelfond and 

Schneider 255 
theorem of Liouville 84, 207, 244, 

245, 268, 291, 347 
theorem of Looman and Menchoff 58, 

59 
theorem of Morera 237, 249 
theorem of Picard 308 
theorem of Ritt viii, 299 
theorem of Stokes 205 
theorem of Study 273 
theorem of Tauber 122 
theorem on roots 278 
theorem on units 130, 318 
theta function 365 
theta series 152, 343, 366 
theta-null-value 370 
topological group 141 
topologically simply-connected 277 
totally disconnected 240 
trace 40, 173, 289 
trajectory 40 
transcendental 244, 308 
transcendental entire function, 254, 

255, 266 
transcendental numbers 255 
transformation formula 365, 370 
transformation rule 180 

for residues 384 
translation-in variance 367 

of the error integral 368, 374, 412 
translations 272, 311, 361 
translator's role v 
triangle 188 
triangle inequality 13, 17, 170 
trick of Landau's 203 

of Herglotz' 328 
trigonometric integrals 397, 403, 407, 

408 

unbranched covering 285 
unconditionally convergent 31 
uniform convergence 96, 97, 98, 102, 

427 



SUBJECT INDEX 453 

uniformizer 131 
uniformly convergent 93 
unique aim of science 372 
unique factorization domain 130, 247 
uniqueness of Fourier development 

367 
unitary vector space 244 
units 37, 59, 129 
unlimited covering 285 
upper half-plane 81, 82, 83, 271, 272 

valuation 14, 128, 129, 320 
valued field 14, 128, 240, 267 
vertices 188 
vibrating string 364 
Vivanti-Pringsheim theorem 235 
Volkswagen Foundation viii 

Weierstrass on Riemann 430 
Weierstrass the logician 240 
Weierstrass approximation theorem 

92, 246 

Weierstrass-Bolzano property 21 
Weierstrass-Bolzano Theorem 25 
Weierstrass definition 431 
Weierstrass' .f.>-function 335 
Weierstrass' Berlin lectures 420, 421, 

428 
Weierstrass' convergence theorem 

182, 249, 299 
Weierstrass' creed 239, 240 
Weierstrass' integral phobia 239, 

351 
Weierstrass' letter to L. Koenigs-

berger 254 
Weierstrass' product theorem 318 
winding number 288 
Wirtinger calculus 67 

zero-divisors 129 
zero-set 317 
zeros of sin z 145 
zeros of derivatives 268 
zeta-function 134, 163, 164, 250, 

331 ff. 



Graduate Texts in Mathematics 

T AKEunlZARING. Introduction to 33 HIRscH. Differential Topology. 
Axiomatic Set Theory. 2nd ed. 34 SPITZER. Principles of Random Walk. 

2 OXTOBY. Measure and Category. 2nd ed. 2nd ed. 
3 SCHAEFER. Topological Vector Spaces. 35 ALEXANDERIWERMER. Several Complex 
4 Hn.TON/STAMMBACH. A Course in Variables and Banach Algebras. 3rd ed. 

Homological Algebra. 2nd ed. 36 KELLEy/NAMIOKA et al. Linear 
5 MAC LANE. Categories for the Working Topological Spaces. 

Mathematician. 2nd ed. 37 MONK. Mathematical Logic. 
6 HUGHES/PIPER. Projective Planes. 38 GRAUERT/FluTzsCHE. Several Complex 
7 SERRE. A Course in Arithmetic. Variables. 
8 TAKEunlZARING. Axiomatic Set Theory. 39 ARVESON. An Invitation to C"'-Algebras. 
9 HUMPHREYS. Introduction to Lie Algebras 40 KEMENy/SNELLlKNAPP. Denumerable 

and Representation Theory. Markov Chains. 2nd ed. 
10 COHEN. A Course in Simple Homotopy 41 APOSTOL. Modular Functions and 

Theory. Dirichlet Series in Number Theory. 
11 CONWAY. Functions of One Complex 2nd ed. 

Variable I. 2nd ed. 42 SERRE. Linear Representations of Finite 
12 BEALS. Advanced Mathematical Analysis. Groups. 
13 ANoERSONIFuLLER. Rings and Categories 43 Gn.LMAN/JERISON. Rings of Continuous 

of Modules. 2nd ed. Functions. 
14 GOLUBITSKy/Gun.LEMIN. Stable Mappings 44 KENDIG. Elementary Algebraic Geometry. 

and Their Singularities. 45 LOEVE. Probability Theory I. 4th ed. 
15 BERBERIAN. Lectures in Functional 46 LOEVE. Probability Theory 11. 4th ed. 

Analysis and Operator Theory. 47 MOISE. Geometric Topology in 
16 WINTER. The Structure of Fields. Dimensions 2 and 3. 
17 ROSENBLATT. Random Processes. 2nd ed. 48 SACHslWu. General Relativity for 
18 HALMOS. Measure Theory. Mathematicians. 
19 HALMOS. A Hilbert Space Problem Book. 49 GRUENBERo/WEIR. Linear Geometry. 

2nd ed. 2nd ed. 
20 HUSEMOLLER. Fibre Bundles. 3rd ed. 50 EDWARDS. Fermat's Last Theorem. 
21 HUMPHREYS. Linear Algebraic Groups. 51 KLINGENBERG. A Course in Differential 
22 BARNEslMACK. An Algebraic Introduction Geometry. 

to Mathematical Logic. 52 HARTSHORNE. Algebraic Geometry. 
23 GREUB. Linear Algebra. 4th ed. 53 MANIN. A Course in Mathematical Logic. 
24 HOLMES. Geometric Functional Analysis 54 GRA VERIW ATKINS. Combinatorics with 

and Its Applications. Emphasis on the Theory of Graphs. 
25 HEWITT/STROMBERG. Real and Abstract 55 BROWN/PEARcy. Introduction to Operator 

Analysis. Theory I: Elements of Functional 
26 MANES. Algebraic Theories. Analysis. 
27 KELLEY. General Topology. 56 MASSEY. Algebraic Topology: An 
28 ZARlSKIlSAMUEL. Commutative Algebra. Introduction. 

Vol.I. 57 CROWELLlFox. Introduction to Knot 
29 ZARlSKIlSAMUEL. Commutative Algebra. Theory. 

VoI.II. 58 KOBLITZ. p-adic Numbers. p-adic 
30 JACOBSON. Lectures in Abstract Algebra I. Analysis. and Zeta-Functions. 2nd ed. 

Basic Concepts. 59 LANG. Cyclotomic Fields. 
31 JACOBSON. Lectures in Abstract Algebra 60 ARNOLD. Mathematical Methods in 

II. Linear Algebra. Cla~sical Mechanics. 2nd ed. 
32 JACOBSON. Lectures in Abstract Algebra 61 WHITEHEAD. Elements of Homotopy 

III. Theory of Fields and Galois Theory. Theory. 



62 KARGAPOLOVIMERLZJAKOV. Fundamentals 93 DUBROVIN/FoMENKO/NoVIKOV. Modern 
of the Theory of Groups. Geometry-Methods and Applications. 

63 BOLLOBAS. Graph Theory. Part l. 2nd ed. 
64 EDWARDS. Fourier Series. Vol. I 2nd ed. 94 WARNER. Foundations of Differentiable 
65 WELLS. Differential Analysis on Complex Manifolds and Lie Groups. 

Manifolds. 2nd ed. 95 SHIRYAEV. Probability. 2nd ed. 
66 WATERHOUSE. Introduction to Affine 96 CONWAY. A Course in Functional 

Group Schemes. Analysis. 2nd ed. 
67 SERRE. Local Fields. 97 KOBLITZ. Introduction to Elliptic Curves 
68 WEIDMANN. Linear Operators in Hilbert and Modular Forms. 2nd ed. 

Spaces. 98 BROcKERlToM DIECK. Representations of 
69 LANG. Cyclotomic Fields II. Compact Lie Groups. 
70 MASSEY. Singular Homology Theory. 99 GRovE/BENSON. Finite Reflection Groups. 
71 FARKAS/KRA. Riemann Surfaces. 2nd ed. 2nd ed. 
72 STILLWELL. Classical Topology and 100 BERG/CHRISTENSEN/RESSEL. Harmonic 

Combinatorial Group Theory. 2nd ed. Analysis on Semigroups: Theory of 
73 HUNGERFORD. Algebra. Positive Definite and Related Functions. 
74 DAVENPORT. Multiplicative Number 10l EDWARDS. Galois Theory. 

Theory. 2nd ed. 102 V ARADARAJAN. Lie Groups, Lie Algebra~ 
75 HOCHSCHILD. Basic Theory of Algebraic and Their Representations. 

Groups and Lie Algebra~. 103 LANG. Complex Analysis. 3rd ed. 
76 IITAKA. Algebraic Geometry. 104 DUBROVINlFoMENKoINoVIKOV. Modern 
77 HEeKE. Lectures on the Theory of Geometry-Methods and Applications. 

Algebraic Numbers. Part II. 
78 BURRIS/SANKAPPANAVAR. A Course in 105 LANG. SL2(R). 

Universal Algebra. 106 SILVERMAN. The Arithmetic of Elliptic 
79 WALTERS. An Introduction to Ergodic Curves. 

Theory. 107 OLVER. Applications of Lie Groups to 
80 ROBINSON. A Course in the Theory of Differential Equations. 2nd ed. 

Groups. 2nd ed. 108 RANGE. Holomorphic Functions and 
81 FORSTER. Lectures on Riemann Surfaces. Integral Representations in Several 
82 BOTTlTu. Differential Forms in Algebraic Complex Variables. 

Topology. 109 LEHTO. Univalent Functions and 
83 WASHINGTON. Introduction to Cyclotomic Teichmiiller Spaces. 

Fields. 2nd ed. 110 LANG. Algebraic Number Theory. 
84 IRELAND/ROSEN. A Classical Introduction 111 HUSEM()LLER. Elliptic Curves. 

to Modern Number Theory. 2nd ed. 112 LANG. Elliptic Functions. 
85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 113 KARATZAslSHREVE. Brownian Motion and 
86 VAN LINT. Introduction to Coding Theory. Stochastic Calculus. 2nd ed. 

2nd ed. 114 KOBLITZ. A Course in Number Theory 
87 BROWN. Cohomology of Groups. and Cryptography. 2nd ed. 
88 PIERCE. Associative Algebras. 115 BERGERlGoSTIAux. Differential Geometry: 
89 LANG. Introduction to Algebraic and Manifolds, Curves, and Surfaces. 

Abelian Functions. 2nd ed. 116 KELLEy/SRINNASAN. Measure and 
90 BR0NDSTED. An Introduction to Convex Integral. Vol. I. 

Polytopes. 117 SERRE. Algebraic Groups and Cla~s 
91 BEARDON. On the Geometry of Discrete Fields. 

Groups. 118 PEDERSEN. Analysis Now. 
92 DIESTEL. Sequences and Series in Banach 119 ROTMAN. An Introduction to Algebraic 

Spaces. Topology. 



120 ZIEMER. Weakly Differentiable Functions: 149 RATCLll¥E. Foundations of 
Sobolev Spaces and Functions of Hyperbolic Manifolds. 
Bounded Variation. 150 EISENBUD. Commutative Algebra 

121 LANG. Cyclotomic Fields I and II. with a View Toward Algebraic 
Combined 2nd ed. Geometry. 

122 REMMERT. Theory of Complex Functions. 151 SILVERMAN. Advanced Topics in 
Readings in Mathematics the Arithmetic of Elliptic Curves. 

123 EBBINGHAUslHERMES et a!. Numbers. 152 ZIEGLER. Lectures on Polytopes. 
Readings in Mathematics 153 FULTON. Algebraic Topology: A 

124 DUBROVINlFoMENKoINoVIKOV. Modem First Course. 
Geometry-Methods and Applications. 154 BROWN/PEARCY. An Introduction to 
Part III. Analysis. 

125 BERENSTEIN/GAY. Complex Variables: An 155 KASSEL. Quantum Groups. 
Introduction. 156 KECHRIS. Classical Descriptive Set 

126 BOREL. Linear Algebraic Groups. 2nd ed. Theory. 
127 MASSEY. A Basic Course in Algebraic 157 MALLIAVIN. Integration and 

Topology. Probability. 
128 RAUCH. Partial Differential Equations. 158 ROMAN. Field Theory. 
129 FULTON/HARRIS. Representation Theory: 159 CONWAY. Functions of One 

A First Course. Complex Variable II. 
Readings in Mathematics 160 LANG. Differential and Riemannian 

130 DODSONfPOSTON. Tensor Geometry. Manifolds. 
131 LAM. A First Course in Noncommutative 161 BORWEIN/ERDEr.. YI. Polynomials and 

Rings. Polynomial Inequalities. 
132 BEARDON. Iteration of Rational Functions. 162 ALPERIN/BELL. Groups and 
133 HARRIS. Algebraic Geometry: A First Representations. 

Course. 163 DIXON/MoRTIMER. Permutation 
134 ROMAN. Coding and Information Theory. Groups. 
135 ROMAN. Advanced Linear Algebra. 164 NATIIANSON. Additive Number Theory: 
136 ADKINsfWEINTRAUB. Algebra: An The Classical Bases. 

Approach via Module Theory. 165 NATIIANSON. Additive Number Theory: 
137 AXLER!BOURDONfRAMEY. Harmonic Inverse Problems and the Geometry of 

Function Theory. Sumsets. 
138 COHEN. A Course in Computational 166 SHARPE. Differential Geometry: Cartan's 

Algebraic Number Theory. Generalization of Klein's ErIangen 
139 BREDON. Topology and Geometry. Program. 
140 AUBIN. Optima and Equilibria. An 167 MORANDI. Field and Galois Theory. 

Introduction to Nonlinear Analysis. 168 EWALD. Combinatorial Convexity and 
141 BocKERfWEISPFENNlNG/KREoEL. Grobner Algebraic Geometry. 

Bases. A Computational Approach to 169 BHATIA. Matrix Analysis. 
Commutative Algebra. 170 BREDON. Sheaf Theory. 2nd ed. 

142 LANG. Real and Functional Analysis. 171 PETERSEN. Riemannian Geometry. 
3rd ed. 172 REMMERT. Classical Topics in Complex 

143 DoOB. Measure Theory. Function Theory. 
144 DENNIstFARB. Noncommutative 173 DIESTEL. Graph Theory. 

Algebra. 174 BRIDGES. Foundations of Real and 
145 VICK. Homology Theory. An Abstract Analysis. 

Introduction to Algebraic Topology. 175 LICKORISH. An Introduction to Knot 
2nd ed. Theory. 

146 BRIDGES. Computability: A 176 LEE. Riemannian Manifolds. 
Mathematical Sketchbook. 177 NEWMAN. Analytic Number Theory. 

147 ROSENBERG. Algebraic K-Theory 178 CLARKEfLEDY AEV/STERNfWoLENSKI. 
and Its Applications. Nonsmooth Analysis and Control 

148 ROTMAN. An Introduction to the Theory.l79 
Theory of Groups. 4th ed. DOUGLAS. Banach Algebra Techniques in 

Operator Theory. 2nd ed. 



180 SRIVASTAVA. A Course on Borel Sets. 186 RAMAKRISHNAN/V ALENZA. Fourier 
181 KRESS. Numerical Analysis. Analysis on Number Fields. 
182 WALTER. Ordinary Differential 187 HARRIS/MORRISON. Moduli of Curves. 

Equations. 188 GOLDBLATT. Lectures on the Hyperreals: 
183 MEGGINSON. An Introduction to Banach An Introduction to Nonstandard Analysis. 

Space Theory. 189 LAM. Lectures on Modules and Rings. 
184 BOLLOBAS. Modem Graph Theory. 190 EsMONDFiMuRTY. Problems in Algebraic 
185 COxILITTLElO·SHEA. Using Algebraic Number Theory. 

Geometry. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>


    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>

    /RUS <>
    /SKY <>

    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




