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Preface to the English
Edition

Und so ist jeder Ubersetzer anzusehen, dass er sich als Vermitt-
ler dieses allgemein-geistigen Handels bemiiht und den Wech-
seltausch zu befordern sich zum Geschaft macht. Denn was
man auch von der Unzulanglichkeit des Ubersetzers sagen mag,
so ist und bleibt es doch eines der wichtigsten und wiirdigsten
Geschifte in dem allgemeinem Weltverkehr. (And that is how
we should see the translator, as one who strives to be a medi-
ator in this universal, intellectual trade and makes it his busi-
ness to promote exchange. For whatever one may say about
the shortcomings of translations, they are and will remain most
important and worthy undertakings in world communications.)
J. W. von GOETHE, vol. VI of Kunst und Alterthum, 1828.

This book is a translation of the second edition of Funktionentheorie I,
Grundwissen Mathematik 5, Springer-Verlag 1989. Professor R. B.
BURCKEL did much more than just produce a translation; he discussed
the text carefully with me and made several valuable suggestions for im-
provement. It is my great pleasure to express to him my sincere thanks.

Mrs. Ch. ABIKOFF prepared this TEX-version with great patience; Prof.
W. ABIKOFF was helpful with comments for improvements. Last but not
least I want to thank the staff of Springer-Verlag, New York. The late
W. KAUFMANN-BUHLER started the project in 1984; U. SCHMICKLER-
HIRZEBRUCH brought it to a conclusion.

Lengerich (Westphalia), June 26, 1989

Reinhold Remmert



Preface to the Second
German Edition

Not only have typographical and other errors been corrected and improve-
ments carried out, but some new supplemental material has been inserted.
Thus, e.g., HURWITZ’s theorem is now derived as early at 8.5.5 by means
of the minimum principle and Weierstrass’s convergence theorem. Newly
added are the long-neglected proof (without use of integrals) of Laurent’s
theorem by SCHEEFFER, via reduction to the Cauchy-Taylor theorem, and
DIxoON’s elegant proof of the homology version of Cauchy’s theorem. In re-
sponse to an oft-expressed wish, each individual section has been enriched
with practice exercises.

I have many readers to thank for critical remarks and valuable sug-
gestions. I would like to mention specifically the following colleagues:
M. BARNER (Freiburg), R. P. Boas (Evanston, Illinois), R. B. BURCKEL
(Kansas State University), K. DIEDERICH (Wuppertal), D. GAIER (Giessen),
ST. HILDEBRANDT (Bonn), and W. PURKERT (Leipzig).

In the preparation of the 2nd edition, I was given outstanding help by
Mr. K. SCHLOTER and special thanks are due him. I thank Mr. W.
HoOMANN for his assistance in the selection of exercises. The publisher has
been magnanimous in accommodating all my wishes for changes.

Lengerich (Westphalia), April 10, 1989

Reinhold Remmert
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Preface to the First
German Edition

Wir méchten gern dem Kritikus gefallen: Nur nicht dem Kri-
tikus vor allen. (We would gladly please the critic: Only not
the critic above all.) G. E. LESSING.

The authors and editors of the textbook series “Grundwissen Mathematik” !
have set themselves the goal of presenting mathematical theories in con-
nection with their historical development. For function theory with its
abundance of classical theorems such a program is especially attractive.
This may, despite the voluminous literature on function theory, justify yet
another textbook on it. For it is still true, as was written in 1900 in the
prospectus for vol. 112 of the well-known series Ostwald’s Klassiker Der
Ezakten Wissenschaften, where the German translation of Cauchy’s classic
“Mémoire sur les intégrales définies prises entre des limites imaginaires”
appears: “Although modern methods are most effective in communicating
the content of science, prominent and far-sighted people have repeatedly
focused attention on a deficiency which all too often afflicts the scientific ed-
ucation of our younger generation. It is this, the lack of a historical sense
and of any knowledge of the great labors on which the edifice of science
rests.”

The present book contains many historical explanations and original
quotations from the classics. These may entice the reader to at least page
through some of the original works. “Notes about personalities” are sprin-
kled in “in order to lend some human and personal dimension to the sci-
ence” (in the words of F. KLEIN on p. 274 of his Vorlesungen tiber die
Entwicklung der Mathematik im 19. Jahrhundert — see [Hg]). But the
book is not a history of function theory; the historical remarks almost
always reflect the contemporary viewpoint.

Mathematics remains the primary concern. What is treated is the ma-
terial of a 4 hour/week, one-semester course of lectures, centering around

1 The original German version of this book was volume 5 in that series (translator’s
note).
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viii PREFACE TO THE FIRST GERMAN EDITION

Cauchy’s integral theorem. Besides the usual themes which no text on
function theory can omit, the reader will find here

- RITT’s theorem on asymptotic power series expansions, which pro-
vides a function-theoretic interpretation of the famous theorem of E.
BoOREL to the effect that any sequence of complex numbers is the
sequence of derivatives at 0 of some infinitely differentiable function
on the line.

- EISENSTEIN’s striking approach to the circular functions via series of
partial fractions.

- MORDELL’s residue-theoretic calculations of certain Gauss sums.

In addition cognoscenti may here or there discover something new or
long forgotten.

To many readers the present exposition may seem too detailed, to others
perhaps too compressed. J. KEPLER agonized over this very point, writing
in his Astronomia Nova in the year 1609: “Durissima est hodie conditio
scribendi libros Mathematicos. Nisi enim servaveris genuinam subtilitatem
propositionum, instructionum, demonstrationum, conclusionum; liber non
erit Mathematicus: sin autem servaveris; lectio efficitur morosissima. (It
is very difficult to write mathematics books nowadays. If one doesn’t take
pains with the fine points of theorems, explanations, proofs and corollaries,
then it won’t be a mathematics book; but if one does these things, then
the reading of it will be extremely boring.)” And in another place it says:
“Et habet ipsa etiam prolixitas phrasium suam obscuritatem, non minorem
quam concisa brevitas (And detailed exposition can obfuscate no less than
the overly terse).”

K. PETERS (Boston) encouraged me to write this book. An academic
stipend from the Volkswagen Foundation during the Winter semesters
1980/81 and 1982/83 substantially furthered the project; for this support
I’d like to offer special thanks. My thanks are also owed the Mathematical
Research Institute at Oberwolfach for oft-extended hospitality. It isn’t pos-
sible to mention here by name all those who gave me valuable advice during
the writing of the book. But I would like to name Messrs. M. KOECHER
and K. LAMOTKE, who checked the text critically and suggested improve-
ments. From Mr. H. GERICKE I learned quite a bit of history. Still I must
ask the reader’s forebearance and enlightenment if my historical notes need
any revision.

My colleagues, particularly Messrs. P. ULLRICH and M. STEINSIEK, have
helped with indefatigable literature searches and have eliminated many de-
ficiencies from the manuscript. Mr. ULLRICH prepared the symbol, name,
and subject indexes; Mrs. E. KLEINHANS made a careful critical pass
through the final version of the manuscript. I thank the publisher for be-
ing so obliging.

Lengerich (Westphalia), June 22, 1983 Reinhold Remmert



PREFACE TO THE FIRST GERMAN EDITION ix

Notes for the Reader. Reading really ought to start with Chapter 1. Chap-
ter 0 is just a short compendium of important concepts and theorems known
to the reader by and large from calculus; only such things as are important
for function theory get mentioned here.

A citation 3.4.2, e.g., means subsection 2 in section 4 of Chapter 3.
Within a given chapter the chapter number is dispensed with and within
a given section the section number is dispensed with, too. Material set in
reduced type will not be used later. The subsections and sections prefaced
with * can be skipped on the first reading. Historical material is as a rule
organized into a special subsection in the same section were the relevant
mathematics was presented.
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Historical Introduction

Wohl dem, der seiner Viater gern gedenkt (Blessings
on him who gladly remembers his forefathers)
- J. W. v. GOETHE

1. ...“Zuvérderst wiirde ich jemand, der eine neue Function in die Analyse
einfithren will, um eine Erklarung bitten, ob er sie schlechterdings bloss auf
reelle Grossen (reelle Werthe des Arguments der Function) angewandt wis-
sen will, und die imaginiren Werthe des Arguments gleichsam nur als ein
Uberbein ansieht — oder ob er meinem Grundsatz beitrete, dass man in dem
Reiche der Grossen die imaginiren a + by/—1 = a + bi als gleiche Rechte
mit den reellen geniessend ansehen miisse. Es ist hier nicht von prakti-
schem Nutzen die Rede, sondern die Analyse ist mir eine selbstindige Wis-
senschaft, die durch Zuriicksetzung jener fingirten Grossen ausserordentlich
an Schonheit und Rundung verlieren und alle Augenblick Wahrheiten, die
sonst allgemein gelten, héchst lastige Beschrankungen beizufiigen gendthigt
sein wiirde ... (At the very beginning I would ask anyone who wants to
introduce a new function into analysis to clarify whether he intends to
confine it to real magnitudes (real values of its argument) and regard the
imaginary values as just vestigial — or whether he subscribes to my fun-
damental proposition that in the realm of magnitudes the imaginary ones
a + bv/—1 = a + bi have to be regarded as enjoying equal rights with the
real ones. We are not talking about practical utility here; rather analy-
sis is, to my mind, a self-sufficient science. It would lose immeasurably
in beauty and symmetry from the rejection of any fictive magnitudes. At
each stage truths, which otherwise are quite generally valid, would have to
be encumbered with all sorts of qualifications. ..).”

C.F. Gauss (1777-1855) wrote these memorable lines on December 18,
1811 to BESSEL; they mark the birth of function theory. This letter of
GAuss’ wasn't published until 1880 ( Werke 8, 90-92); it is probable that
GAuss developed this point of view long before composing this letter. As
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2 HISTORICAL INTRODUCTION

many details of his writing attest, GAUSS knew about the Cauchy integral
theorem by 1811. However, GAUSS did not participate in the actual con-
struction of function theory; in any case, he was familiar with the principles
of the theory. Thus, e.g., he writes elsewhere ( Werke 10, 1, p. 405; no year
is indicated, but sometime after 1831):

Reproduced with the kind permission of the Niedersdchsische Staats- und Universititsbiblio-

thek, Gottingen.

“Complete knowledge of the nature of an analytic function must also in-
clude insight into its behavior for imaginary values of the arguments. Often
the latter is indispensable even for a proper appreciation of the behavior of
the function for real arguments. It is therefore essential that the original
determination of the function concept be broadened to a domain of mag-
nitudes which includes both the real and the imaginary quantities, on an
equal footing, under the single designation complex numbers.”

2. The first stirrings of function theory are to be found in the 18th cen-
tury with L. EULER (1707-1783). He had “eine fiir die meisten seiner
Zeitgenossen unbegreifliche Vorliebe fiir die komplexen Gré8en, mit deren
Hilfe es ihm gelungen war, den Zusammenhang zwischen den Kreisfunk-
tionen und der Exponentialfunktion herzustellen. ... In der Theorie der
elliptischen Integrale entdeckte er das Additionstheorem, machte er auf die
Analogie dieser Integrale mit den Logarithmen und den zyklometrischen
Funktionen aufmerksam. So hatte er alle Fiden in der Hand, daraus spéter
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4 HISTORICAL INTRODUCTION

das wunderbare Gewebe der Funktionentheorie gewirkt wurde (... what
for most of his contemporaries was an incomprehensible preference for the
complex numbers, with the help of which he had succeeded in establishing
a connection between the circular functions and the exponential function.

In the theory of elliptic integrals he discovered the addition theorem
and drew attention to the analogy between these integrals, logarithms and
the cyclometric functions. Thus he had in hand all the threads out of
which the wonderful fabric of function theory would later be woven),” G.
FROBENIUS: Rede auf L. Euler on the occasion of Euler’s 200th birthday
in 1907; Ges. Abhandl. 3, p.733).

Modern function theory was developed in the 19th century. The pioneers
in the formative years were

A.L. CAucHY (1789-1857), B. RIEMANN (1826-1866),
K. WEIERSTRASS (1815-1897).

Each gave the theory a very distinct flavor and we still speak of the
CAUCHY, the RIEMANN, and the WEIERSTRASS points of view.

CAuUCHY wrote his first works on function theory in the years 1814-1825.
The function notion in use was that of his predecessors from the EULER
era and was still quite inexact. To CAUCHY a holomorphic function was
essentially a complex-differentiable function having a continuous derivative.
CaucHy’s function theory is based on his famous integral theorem and on
the residue concept. Ewvery holomorphic function has a natural integral
representation and is thereby accessible to the methods of analysis. The
CAUCHY theory was completed by J. LIOUVILLE (1809-1882), [Liou]. The
book [BB] of CH. BRIOT and J.-C. BOUQUET (1859) conveys a very good
impression of the state of the theory at that time.

Riemann’s epochal Géttingen inaugural dissertation Grundlagen fiir eine
allgemeine Theorie der Functionen einer verdnderlichen complexen Grife
[R] appeared in 1851. To RIEMANN the geometric view was central: holo-
morphic functions are mappings between domains in the number plane
C, or more generally between Riemann surfaces, “entsprechenden klein-
sten Theilen &hnlich sind (correspondingly small parts of each of which are
similar).” RIEMANN drew his ideas from, among other sources, intuition
and experience in mathematical physics: the existence of current flows was
proof enough for him that holomorphic (= conformal) mappings exist. He
sought — with a minimum of calculation — to understand his functions, not
by formulas but by means of the “intrinsic characteristic” properties, from
which the extrinsic representation formulas necessarily arise.

For WEIERSTRASS the point of departure was the power series; holo-
morphic functions are those which locally can be developed into conver-
gent power series. Function theory is the theory of these series and is
simply based in algebra. The beginnings of such a viewpoint go back to
J.L. LAGRANGE. In his 1797 book Théorie des fonctions analytiques (2nd
ed., Courcier, Paris 1813) he wanted to prove the proposition that every
continuous function is developable into a power series. Since LAGRANGE
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we speak of analytic functions; at the same time it was supposed that
these were precisely the functions which are useful in analysis. F. KLEIN
writes “Die grofle Leistung von Weierstrafl ist es, die im Formalen stecken
gebliebene Idee von Lagrange ausgebaut und vergeistigt zu haben (The
great achievement of Weierstrass is to have animated and realized the pro-
gram implicit in Lagrange’s formulas)” (cf. p.254 of the German original
of [Hg]). And CARATHEODORY says in 1950 ([5], p.vii): WEIERSTRASS was
able to “die Funktionentheorie arithmetisieren und ein System entwickeln,
das an Strenge und Schénheit nicht iibertroffen werden kann (arithmetize
function theory and develop a system of unsurpassable beauty and rigor).”

3. The three methodologically quite different yet equivalent avenues to
function theory give the subject special charm. Occasionally the impres-
sion arises that CAUCHY, RIEMANN and WEIERSTRASS were almost “ideo-
logical” proponents of their respective systems. But that was not the case.
As early as 1831 CAUCHY was developing his holomorphic functions into
power series and working with the latter. Any kind of rigid one-sidedness
was alien to RIEMANN: he made use of whatever he found at hand; thus
he too used power series in his function theory. And on the other hand
WEIERSTRASS certainly didn’t reject integrals on principle: as early as
1841 — two years before LAURENT — he developed holomorphic functions
on annular regions into Laurent series via integral formulas [Wy].

In 1898 in his article “L’oeuvre mathématique de Weierstrass”, Acta
Math. 22, 1-18 (see pp. 6,7) H. POINCARE offered this evaluation: “La
théorie de Cauchy contenait en germe & la fois la conception géometrique
de Riemann et la conception arithmétique de Weierstrass, et il est aisé
de comprendre comment elle pouvait, en se développant dans deux sens
différents, donner naissance a l'une et & 'autre. ... La méthode de Rie-
mann est avant tout une méthode de découverte, celle de Weierstrass est
avant tout une méthode de démonstration. (Cauchy’s theory contains at
once a germ of Riemann’s geometric conception and a germ of Weierstrass’
arithmetic one, and it is easy to understand how its development in two
different directions could give rise to the one or the other. ... The method
of Riemann is above all a method of discovery, that of Weierstrass is above
all a method of proof.)”

For a long time now the conceptual worlds of CAUCHY, RIEMANN and
WEIERSTRASS have been inextricably interwoven; this has resulted not only
in many simplifications in the exposition of the subject but has also made
possible the discovery of significant new results.

During the last century function theory enjoyed very great triumphs
in quite a short span of time. In just a few decades a scholarly edifice
was erected which immediately won the highest esteem of the mathemat-
ical world. We might join R. DEDEKIND who wrote (cf. Math. Werke 1,
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pp. 105, 106): “Die erhabenen Schépfungen dieser Theorie haben die Be-
wunderung der Mathematiker vor allem deshalb erregt, weil sie in fast
beispielloser Weise die Wissenschaft mit einer aulerordentlichen Fiille ganz
neuer Gedanken befruchtet und vorher ginzlich unbekannte Felder zum
ersten Male der Forschung erschlossen haben. Mit der Cauchyschen Inte-
gralformel, dem Riemannschen Abbildungssatz und dem Weierstrafischen
Potenzreihenkalkiil wird nicht blo8 der Grund zu einem neuen Teile der
Mathematik gelegt, sondern es wird zugleich auch das erste und bis jetzt
noch immer fruchtbarste Beispiel des innigen Zusammenhangs zwischen
Analysis und Algebra geliefert. Aber es ist nicht blo8 der wunderbare
Reichtum an neuen Ideen und groflen Entdeckungen, welche die neue The-
orie liefert; vollstindig ebenbiirtig stehen dem die Kiihnheit und Tiefe der
Methoden gegeniiber, durch welche die grofiten Schwierigkeiten iiberwunden
und die verborgensten Wahrheiten, die mysteria functiorum, in das hellste
Licht gesetzt werden (The splendid creations of this theory have excited
the admiration of mathematicians mainly because they have enriched our
science in an almost unparalleled way with an abundance of new ideas and
opened up heretofore wholly unknown fields to research. The Cauchy in-
tegral formula, the Riemann mapping theorem and the Weierstrass power
series calculus not only laid the groundwork for a new branch of mathe-
matics but at the same time they furnished the first and till now the most
fruitful example of the intimate connections between analysis and algebra.
But it isn’t just the wealth of novel ideas and discoveries which the new the-
ory furnishes; of equal importance on the other hand are the boldness and
profundity of the methods by which the greatest of difficulties are overcome
and the most recondite of truths, the mysteria functiorum, are exposed to
the brightest light).”

Even from today’s perspective nothing needs to be added to these exu-
berant statements. Function theory with its sheer inexhaustible abundance
of beautiful and deep theorems is, as C.L. SIEGEL occasionally expressed
it in his lectures, a one-of-a-kind gift to the mathematician.



Chapter O

Complex Numbers and
Continuous Functions

Nicht einer mystischen Verwendung von /—1 hat die Analysis
ihre wirklich bedeutenden Erfolge des letzten Jahrhunderts zu
verdanken, sondern dem ganz natiirlichen Umstande, dass man
unendlich viel freier in der mathematischen Bewegung ist, wenn
man die Grdssen in einer Ebene statt nur in einer Linie variiren
1aBt (Analysis does not owe its really significant successes of
the last century to any mysterious use of /—1, but to the quite
natural circumstance that one has infinitely more freedom of
mathematical movement if he lets quantities vary in a plane
instead of only on a line) — (Leopold KRONECKER, in [Kr].)

An exposition of function theory must necessarily begin with a description
of the complex numbers. First we recall their most important properties; a
detailed exposition can be found in the book Numbers [19], where the
historical development is also extensively treated.

Function theory is the theory of complex-differentiable functions. Such
functions are, in particular, continuous. Therefore we also discuss the gen-
eral concept of continuity. Furthermore, we introduce concepts from topol-
ogy which will see repeated use. “Die Grundbegriffe und die einfachsten
Tatsachen aus der mengentheoretischen Topologie braucht man in sehr ver-
schiedenen Gebieten der Mathematik; die Begriffe des topologischen und
des metrischen Raumes, der Kompaktheit, die Eigenschaften stetiger Ab-
bildungen u. dgl. sind oft unentbehrlich... (The basic ideas and simplest
facts of set-theoretic topology are needed in the most diverse areas of math-
ematics; the concepts of topological and metric spaces, of compactness, the

9



10 0. COMPLEX NUMBERS AND CONTINUOUS FUNCTIONS

properties of continuous functions and the like are often indispensable...).”
P. ALEXANDROFF and H. HOPF wrote this sentence in 1935 in their treatise
Topologie I (Julius Springer, Berlin, p.23). It is valid for many mathemat-
ical disciplines, but especially so for function theory.

§1 The field C of complex numbers

The field of real numbers will always be denoted by R and its theory is
supposed to be known by the reader.

1. The field C. In the 2-dimensional R-vector space R? of ordered pairs
z := (z,y) of real numbers a multiplication, denoted as usual by juxtapo-
sition, is introduced by the decree

(z1,y1)(z2,Y2) = (T1T2 — Y12, T1Y2 + T2Y1).

R? thereby becomes a (commutative) field with (1,0) as unit element, the
additive structure being coordinate-wise, and the multiplicative inverse of

2z = (z,y) # 0 being the pair (;rf_?-, oy ), denoted as usual by z71.

This field is called the field C of complex numbers.

The mapping z — (z,0) of R — C is a field embedding (because, e.g.,
(z1,0)(z2,0) = (z122,0)). We identify the real number z with the complex
number (z,0). Via this identification C becomes a field extension of R with
the unit element 1 := (1,0) € C. We further define

i:=(0,1) € C;

this notation was introduced in 1777 by EULER: “... formulam /—1 littera
i in posterum designabo” (Opera Omnia (1) 19, p.130). Evidently we have
i2 = —1. The number i is often called the imaginary unit of C. Every
number z = (x,y) € C admits a unique representation

(z,y) = (z,0) + (0,1)(y,0), thatis, z =z + iy with z,y € R;
this is the usual way to write complex numbers. One sets
Rz =z, Sz:=y

and calls z and y the real part and the imaginary part, respectively, of
z. The number z is called real, respectively, pure(ly) imaginary if Sz =0,
respectively, Rz = 0; the latter meaning that z = iy.

Ever since GAUSS people have visualized complex numbers geometrically
as points in the Gauss(ian) plane with rectangular coordinates, the addition
being then vector addition (cf. the figure on the left).

The multiplication of complex numbers, namely

(@1 + iy1) (@2 + ty2) = (T122 — Y1y2) + UZ1Y2 + Y172),
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is just what one would expect from the distributive law and the fact that
i2 = —1. As to the geometric significance of this multiplication in terms of
polar coordinates, cf. 5.3.1 below and 3.6.2 of the book Numbers.

C is identified with R? since z = z + iy is the row vector (z,y); but it is
sometimes more convenient to make the identification of z to the column

vector (7). The plane C \ {0} punctured at 0 is denoted by C*. With
y

respect to the multiplication in C, C* is a group (the multiplicative group
of the field C).

For each number z = z + iy € C the number Zz := z — iy € C is called
the (complez) conjugate of z. The mapping z — Z is called the reflection
in the real axis (see the right-hand figure above). The following elemental
rules of calculation prevail:

Zt+w=2zZ+wW, zZw=72Zw,

|

(z + 2),

N =

=z Rz=

S‘z:Z(z—?), zeER©2z2=2% 2€iR& 2=-%.
The conjugation operation is a field automorphism of C which leaves R

element-wise fired.

2. R-linear and C-linear mappings of C into C. Because C is an
R-vector space as well as a C-vector space, we have to distinguish between
R-linear and C-linear mappings of C into C. Every C-linear mapping has
the form 2z — Az with A € C and is R-linear. Conjugation z — Z is R-linear
but not C-linear. Generally:

A mapping T : C — C is R-linear if and only if it satisfies

T(z)=T(z+T@Ey=X2+pz ,forallz=z+iy e C
with
1 g 1 g
A= §(T(1) —iT(Q)), p:= E(T(l) +1iT(7)).

An R-linear mapping T : C — C is then C-linear when T(i) = iT(1); in
this case it has the form T(z) = T(1)=.
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Proof. R-linearity means that for z = z + iy, z,y € R, T(2) = zT(1) +
yT'(i). Upon writing 3(z + 2) for z and 5;(z — %) for y, the first assertion
follows; the second assertion is immediate from the first.

If C is identified with R? via z = z+iy = (;) , then every real 2x2 matriz

A= Z Z induces an R-linear right-multiplication mapping T : C — C
defined by

z\  (a b\ (z) _ faz+by

y c d)\y)  \cx+dy)’

It satisfies

(*) T(1) = a +ic, T(3) = b+ id.

Theorems of linear algebra ensure that every R-linear map is realized
this way: The mapping T' and the matrix A determine each other via (*).
We claim

Theorem. The following statements about a real matriz
a b
A= 3

i) The mapping T : C — C induced by A is C-linear.

are equivalent:

ii) The entries ¢ = —b and d = a, that is, A = (Z _;> and T(2) =
(a+ic)z.

Proof. The decisive equation b + id = T'(¢) = iT(1) = i(a + ic) obtains
exactly when ¢ = —b and d = a. o

It is apparent from the preceding discussion that an R-linear mapping
T : C — C can be described in three ways: by means of a real 2x 2 matrix,in
the form T(z) = T(1)z + T'(¢)y, or in the form T'(z) = Az 4+ pz. These
three possibilities will find expression later in the theory of differentiable
functions f = u+iv, where, besides the real partial derivatives uz, uy, vz, vy
(which correspond to the matrix elements a,b, c,d), the complex partial
derivatives f;, fy (which correspond to the numbers T'(1),7T(7)) and f, fz
(which correspond to A, u) will be considered. The conditions a = d,b = —c¢
of the theorem are then a manifestation of the Cauchy-Riemann differential
equations u; = vy, Uy = —Vg; cf. Theorem 1.2.1.
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3. Scalar product and absolute value. For w =u+iv,z2=z+iy e C
the equations

(w, z) == R(wZ) = ux + vy = R(Wz) = (2, w)

codify the euclidean scalar product in the real vector space C = R? with
respect to the basis 1,i. The non-negative real number

2| i== V/(z,2) = +V2Z = +V2* + ¢

measures the euclidean length of z and is called the absolute value, and
sometimes the modulus of z. It and the scalar product satisfy

1
IZ| = |z|, |R2| < |2], |S2z| < |z| and 27* = W? if z#0,

(aw,a2) = |a|* (w,2z) , (W,2) = (w,z) for all w,z € C.
Routine calculations immediately reveal the identity
(w, 2)? + (1w, 2)? = |w|?|2|?, for all w,z € C,

which contains as a special case the

Cauchy-Schwarz Inequality:

(w, )| < |wl|z], for all w,z € C.

Likewise direct calculation yields the

Law of Cosines:
lw+ 2|* = |w|? + |2)? + 2(w, 2) for all w,z € C.

Two vectors w,z are called orthogonal or perpendicular if (w,z) = 0.
Because (z,cz) = R(zZcz) = |2|?Re, z and cz € C* are orthogonal ex-
actly when ¢ is purely imaginary. The following rules are fundamental for
calculating with the absolute value:

1) |z} >0and 2] =0 2=0
2) |wz| = |w| - || (product rule)
3) |w+ 2] < |w| + |2| (triangle inequality).

Here 1) and 2) are direct and 3) is gotten by means of the Law of Cosines
and the Cauchy-Schwarz inequality (cf. also 3.4.2 in Numbers [19]) as follows:

lw+2* = |w]? + |2 +2(w, 2) < |w]*+ |2 +2fwl|2] = (jw]+]2]), o
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The product rule implies the division rule:
|lw/z| = |w|/|z| for allw,z € C,z # 0.
The following variations of the triangle inequality are often useful:
fwl > 2l — fw—2], Jw+2] > llwl = l2ll , [l - l2]| < Jw = 2.

Rules 1)-3) are called evaluation rules. A map |-|: K — R of a
(commutative) field K into R which satisfies these rules is called a valuation
on K; a field together with a valuation in called a valued field. Thus R and
C are valued fields.

From the Cauchy-Schwarz inequality it follows that

(w, 2)

-1< <1 for all w, z € C*.

|w|2|

According to (non-trivial) results of calculus, for each w,z € C* there-
fore a unique real number ¢, with 0 < ¢ < 7, exists satisfying

w+2z

4\x

Because (w,z) = |w||z|cosy and cos¢p = —cos®p (due to ¢ +p =7
— see the accompanying figure), the Law of Cosines can be written in the
form

w + 2[* = Jwl? + |2|* — 2|w||2| cos ¥,

familiar from elementary geometry.

With the help of the absolute value of complex numbers and the fact
that every non-negative real number r has a non-negative square-root /7,
square-roots of any complex number can be exhibited. Direct verification
confirms that

for a,b € R and ¢ := a + ib the number

g:=\/3lcl+a) +iny/3(el—a)
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with i := £1 so chosen that b = n|b|, satisfies £2 = c.

Zeros of arbitrary quadratic polynomials 2% + cz + d € C[z] are now
determined by transforming into a “pure” polynomial (z + 1c)? + d — {c?
(that is, by completing the square). Not until 9.1.1 will we show that
every non-constant complex polynomial has zeros in C (the Fundamental
Theorem of Algebra); for more on the problem of solvability of complex
equations, compare also Chapter 3.3.5 and Chapter 4 of Numbers [19].

4. Angle-preserving mappings. In the function theory of RIEMANN,
angle-preserving mappings play an important role. In preparation for the
considerations of Chapter 2.1, we look at R-linear injective (consequently
also bijective) mappings T : C — C. We write simply T’z instead of T'(z).
We call T angle-preserving if

|w||2|{Tw, Tz) = |Tw||Tz|{w, 2z) for all w,z € C.

The terminology is justified by rephrasing this equality in the previously
introduced language of the angle between two vectors. So translated, it says
that £(Tw,Tz) = £(w,z) for all w,z € C*. Angle-preserving mappings
admit a simple characterization.

Lemma. The following statements about an R-linear map T : C — C are
equivalent:

i) T is angle-preserving.

i) There exists an a € C* such that either Tz = za for all z € C or
Tz=aZ for all z € C.

ili) There exists a number s > 0 such that (Tw,Tz) = s(w, z) for all w,
zeC. :

Proof. i) = ii) Because T is injective,a := T1 € C*. Forb:=a"'Ti € C
it then follows that

0= (i,1) = (Ti,T1) = {(ab,a) = |a|’Rb,
that is, b is purely imaginary: b = ir,r € R. We see that Tz =T1 -z +
Ti-y = a(x+iry) and so (T'1,Tz) = (a,a(z +iry)) = |a|?z. Therefore, on
account of the angle-preserving character of T (take w := 1 in the defining
equation), it follows that for all z € C
&+ iyllaf? = [1]|=|(T1, Tz) = [T1]|T=|(1, 2) = lalla(z + iry)le,

that is, |x + iry| = |z + ty| for all z with x # 0. This implies that »r = +1
and we get Tz = a(x + iy), that is, Tz = az for all z or Tz = aZz for all 2.
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ii) = iii) Because (aw,az) = |a|?(w, 2) and (W,Z) = (w, z), in either
case (Tw,Tz) = s(w, z) holds with s := [a]? > 0.

iii) = i) Because |T'z| = /s|z| for all z, T is injective; furthermore
this equality and that in iii) give

lwl|z|{Tw, Tz) = |w||z|s(w, 2) = |Tw||Tz|(w, 2). O

The lemma just proved will be applied in 2.1.1 to the R-linear differential
of a real-differentiable mapping.

In the theory of the euclidean vector spaces, a linear self-mapping T : V — V
of a vector space V with euclidean scalar product { , ) is called a similarity if there
is a real number » > 0 such that |Tv| = r|v| holds for all v € V; the number r is
called the similarity constant or the dilation factor of T. (In case r = 1, T is called
length-preserving = isometric, or an orthogonal transformation.) Because of the Law of
Cosines, a similarity then also satisfies

(Tv,Tv') = r?(v,v")  for allv,v' € V.

Every similarity is angle-preserving, that is, £(Tv, Tv') = £(v,v'), if one again defines
A (v,v') as the value in [0, 7] of the arccosine of |v|~!|v/|~1(v,v’) (and the latter one
can do because the Cauchy-Schwarz inequality is valid in every euclidean space).

Above we showed that conversely in the special case V = C every angle-preserving
(linear) mapping is a similarity. Actually this converse prevails in every finite-dimensional

euclidean space, a fact usually proved in linear algebra courses.

Exercises

Exzercise 1. Let T(z) := Az + pZ, A\, p € C. Show that

a) T is bijective exactly when A\ # uf. _Hint: You don’t necessarily
have to show that T has determinant A\ — ug.

b) T is isometric, i.e., |[T'(z)| = |z| for all z € C, precisely when Ay = 0
and |A+ p| = 1.

Ezercise 2. Let ay,...,an, b1,...,b, € C and satisfy Y ._ al => " _, b
for all j € N. Show that there is a permutation 7 of {1,2,...,n} such that
ay, = by for all v € {1,2,...,n}.

FEzercise 3. For n > 1 consider real numbers ¢g > ¢; > -+ > ¢, > 0.
Prove that the polynomial p(2) := ¢p + c1z + - -+ + ¢, 2" in C has no zero
whose modulus does not exceed 1. Hint: Consider (1 — 2)p(z) and note
(i-e., prove) that for w,z € C with w # 0 the equality |w — 2| = ||w| — |2||
holds exactly when z = Aw for some A > 0.

Ezercise 4. a) Show that from (1 + |[v|?)u = (1 + |u|?)v, u,v € C, it follows
that either u =v or wv = 1.
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b) Show that for u,v € C with |u| < 1, |v| < 1 and v # uv, we always
have
|1+ |[ul?)v — (1 + |v|*)u| > |uT — ).

¢) Show that for a,b,¢,d € C with ja| = |b] = |c| the complex number
(@ — b)(c — d)(@ — d)(¢ — b) + i(c — dd)I(ch — ca — ab)

is real.

§2 Fundamental topological concepts

Here we collect the topological language and properties which are indis-
pensable for function theory (e.g., “open”, “closed”, “compact”). Too much
topology at the beginning is harmful, but our program would fail without any
topology at all. There is a quotation from R. DEDEKIND’s book Was sind
und was sollen die Zahlen (Vieweg, Braunschweig, 1887; English trans.
by W. W. BEMAN, Essays in the Theory of Numbers, Dover, New York,
1963) which is equally applicable to set-theoretic topology, even though
the latter had not yet appeared on the scene in Dedekind’s time: “Die
grofiten und fruchtbarsten Fortschritte in der Mathematik und anderen
Wissenschaften sind vorzugsweise durch die Schopfung und Einfiihrung
neuer Begriffe gemacht, nachdem die hdufige Wiederkehr zusammengesetz-
ter Erscheinungen, welche von den alten Begriffen nur miihselig beherrscht
werden, dazu gedréngt hat (The greatest and most fruitful progress in
mathematics and other sciences is made through the creation and intro-
duction of new concepts; those to which we are impelled by the frequent
recurrence of compound phenomena which are only understood with great
difficulty in the older view).” Since only metric spaces ever occur in func-
tion theory, we limit ourselves to them.

1. Metric spaces. The expression

w— 2| = V/(u=12)2+ (v —y)?

measures the euclidean distance between the points w = v + v and z =
x + 1y in the plane C (figure below).
The function

CxC—-R, (wz)—|w-—2z|

has, by virtue of the evaluation rules of 1.3, the properties
|lw—z| >0, lw—2zl=0 w=z |w — 2| = |z — w| (symmetry)

|lw—z| < |w—w|+|w -z (triangle inequality) .
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If X is any set, a function
d: X xX —-R, (z,y)—d(z,y)

is called a metric on X if it has the three preceding properties; that is, if
for all z,y, z € X it satisfies

d(z,y) >0, d(z,y)=0&z=y,

d(z,y) =d(y,z), d(z,2) < d(z,y) +d(y, 2)-

X together with a metric is called a metric space. In X = C,d(w, 2) :=
|w — z| is called the euclidean metric of C.
In a metric space X with metric d the set

B.(¢):={z € X :d(z,c) <r}

is called the open ball of radius r > 0 with center ¢ € X; in the case of the
euclidean metric in C the balls

B.(¢c)={z€C:|z—¢| <r}, r>0

are called open discs about c, traditionally but less precisely, circles about
c.

The unit disc B;(0) plays a distinguished role in function theory. Re-
calling that the German word for “unit disc” is Einheitskreisscheibe, we
will use the notation

E:=B(0)={z€C:|z| <1}.

Besides the euclidean metric the set C = R? carries a second natural metric.
By means of the usual metric |z — 2’| , z,2’ € R on R we define the mazimum
metric on C as

d(w, z) := max{|Rw — Rz|, |Sw — Jz|}, w,z € C.

It takes only a minute to show that this really is a metric in C. The “open balls”
in this metric are the open squares [Quadrate in German|] Q- (c) of center ¢ and
side-length 2r.

In function theory we work primarily with the euclidean metric, whereas in
the study of functions of two real variables it is often more advantageous to use
the maximum metric. Analogs of both of these metrics can be introduced into
any n-dimensional real vector space R",1 < n < oo.
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2. Open and closed sets. A subset U of a metric space X is called open
(in X), if for every & € U there is an r > 0 such that B,.(z) C U. The
empty set and X itself are open. The union of arbitrarily many and the
intersection of finitely many open sets are each open (proof!). The “open
balls” B(c) of X are in fact open sets.

Different metrics can determine the same system of open sets; this hap-
pens, for example, with the euclidean metric and the maximum metric in
C = R? (more generally in R"™). The reason is that every open disc contains
an open square of the same center and vice-versa. 0O

A set C C X is called closed (in X) if its complement X \C is open. The
sets
B.(c):={z € X :d(z,c) <r}

are closed and consequently we call them closed balls and in the case X = C,
closed discs.

Dualizing the statements for open sets, we have that the union of finitely
many and the intersection of arbitrarily many closed sets are each closed.
In particular, for every set A C X the intersection A of all the closed
subsets of X which contain A is itself closed and is therefore the smallest
closed subset of X which contains A; it is called the closed hull of A or the
closure of A in X. Notice that 4 = A.

A set W ¢ X is called a neighborhood of the set M C X, if there is
an open set V with M C V C W. The reader should note that according
to this definition a neighborhood is not necessarily open. But an open
set is a neighborhood of each of its points and this property characterizes
“openness”.

Two different points ¢,c¢’, € X always have a pair of disjoint neighbor-
hoods:

B.(c)NB() =0 for e:= id(c,c) > 0.

This is the Hausdorff “separation property” (named for the German math-
ematician and writer Felix HAUSDORFF; born in 1868 in Breslau; from 1902
professor in Leipzig, Bonn, Greifswald, and then Bonn; his 1914 treatise
Grundzige der Mengenlehre (Veit & Comp., Leipzig) contains the founda-
tions of set-theoretic topology; died by his own hand in Bonn in 1942 as a
result of racial persecution; as a writer he published in his youth under the
pseudonym Paul MONGRE, among other things poems and aphorisms).

3. Convergent sequences. Cluster points. Following Bourbaki we
define N := {0,1,2,3,...}. Let ¥k € N. A mapping {k,k+ 1,k +2,..} —
X,n ¢y, is called a sequence in X; it is briefly denoted (¢,,) and generally
k =0. A subsequence of (c,) is a mapping £ — ¢, in whichn; <ny < ...
is an infinite subset of N. A sequence (c,) is called convergent in X, if
there is a point ¢ € X such that every neighborhood of ¢ contains almost
all (that is, all but finitely many) terms c,, of the sequence; such a point ¢
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is called a limit of the sequence, in symbols

c= nli_'n;o ¢p, or, more succinctly, ¢ = lim¢,.
Non-convergent sequences are called divergent.

The separation property ensures that every convergent sequence has
ezactly one limit, so that the implication ¢ = limc, and ¢/ =lime, = ¢ =
¢/, to which our notation already commits us, does in fact obtain. Also

Every subsequence (cy,,) of a convergent sequence (c,,) is convergent and
lim ¢,, = lim c,.
£—00 n—oo

If d is a metric on X then ¢ = limc, if and only if to every € > 0 there
corresponds an ne € N such that d(c,,c) < € for all n > n,; for X = C
with the euclidean metric this is written in the form

len — | <€, ie., ¢, € Be(c), for all n > n,.

A set M C X is closed in X exactly when M contains the limit of each
convergent sequence (c,,) of ¢, € M.

A point p € X is called a cluster point or point of accumulation of the
set M C X if UN (M \ {p}) # 0 for every neighborhood U of p. Every
neighborhood of a cluster point p of M contains infinitely many points of
M and there is always a sequence (c,) in M \ {p} with lime, = p.

A subset A of a metric space X is called dense in X if every non-empty
open subset of X contains points of A; this occurs exactly when A = X.
A subset A of X is certainly dense in X if every point of X is a cluster
point of A and in this case every point z € X is the limit of a sequence in
A (proof!).

In C the set Q + iQ of all “rational” complex numbers is dense and
countable. [Recall that a set is called countable if it is the image of N under
some map.]

4. Historical remarks on the convergence concept. Great difficul-
ties attended the precise codification of this concept in the 19th century.
The limit concept has its origin in the method of ezhaustion of antiquity.
LEIBNIZ, NEWTON, EULER and many others worked with infinite series
and sequences without having a precise definition of “limit”. For example,
it didn’t trouble EULER to write (motivated by Yo" z* = (1 —z)™!)

1

1-141-14—-..=~-.

+ + 5
Even in his Cours d’analyse [C] CAUCHY, in defining limits, still used such
expressions as “successive values”, or “gets indefinitely close” or “as small
as one wants”. These admittedly suggestive and convenient locutions were
first rendered precise by WEIERSTRASS, beginning about 1860 in his Berlin
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lectures, where the € — § inequalities, still in use today, were formulated.
With these the “arithmetization of analysis” began, in this age of rigor.

The ideas of Weierstrass at first reached the mathematical public only
through transcriptions and re-copyings of his lectures by his auditors. Only
gradually did textbooks adopt the ideas, one of the first being Vorlesungen
tiber Allgemeine Arithmetik. Nach den neueren Ansichten, worked out by
O. StoLZ in Innsbruck, Teubner-Verlag, Leipzig 1885.

5. Compact sets. As in calculus, compact sets also play a central role in
function theory. We will introduce the idea of a compact (metric) space,
beginning with the classical

Equivalence Theorem. The following statements concerning a metric
space X are equivalent:

i) Every open coveringU = {U;}icr of X contains a finite sub-covering
(Heine-Borel property).

il) Every sequence (z,) in X contains a convergent subsequence
(Weierstrass-Bolzano property).

We will consider the proof already known to the reader from his prior
study of calculus. By way of clarification let us just remind him that an
open covering U of X means any family {U;}:cr of open sets U; such that
X = U;er Ui- In arbitrary topological spaces (which won’t come up at
all in this book) statements i) and ii) remain meaningful but they are not
always equivalent.

X is called compact if conditions i) and ii) are fulfilled. A subset K of
X is called compact or a compactum (in X) if K is a compact metric space
when the metric of X is restricted to K. The reader should satisfy himself
that

Every compactum in X is closed in X and in a compact space X every
closed subset is compact.

We also highlight the easily verified

Ezhaustion property of open sets in C: every open set D in C is the
union of a countably infinite family of compact subsets of D.

Exercises

Ezercise 1. Let X be the set of all bounded sequences in C. Show that
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a) di((an), (bn)) := sup{|ar — bx| : k € N} and da((a,), (by)) :=
> re02 %|ak — bi| define two metrics on X.

b) Do the open sets defined by these two metrics coincide?

Exzercise 2. Let X := (CN be the set of all sequences in C. Show that

a) d((an), (bn)) ==Y 50y 2_’“% defines a metric on X;

b) a sequence z = (a;k) ) in X converges in this metric to z = (a,) if

and only if for each n € N, a,, = lim,, a;’“’ .

§3 Convergent sequences of complex
numbers

In the subsections of this section we examine the special metric space
X = C. Complex sequences can be added, multiplied, divided and conju-
gated. The limit laws which hold for reals carry over verbatim to complexes,
because the absolute value function | | has the same properties on C as it
does on R. The field C inherits from the field R the (metric) completeness
which Cauchy’s convergence criterion expresses.

If there is no possibility of misunderstanding, we will designate a se-
quence (c,) briefly as ¢,. If we have to indicate that the sequence starts
with the index k, then we write (¢, )n>k. A convergent sequence with limit
0 is called a null sequence.

1. Rules of calculation. If the sequence ¢, converges to ¢ € C then
almost all terms ¢, of the sequence are inside each disc B.(c) around c. For
every z € C with |z] < 1 the sequence 2™ of powers converges: lim z" = 0;
for all z with |2| > 1 the sequence 2™ diverges.

A sequence c, is called bounded if there is a real number M > 0 (called a
“bound”) such that |c,| < M for all n. Just as for real sequences it follows
that

Every convergent sequence of complex numbers is bounded. O

For convergent sequences c,,, d,, the expected limit laws prevail:

L.1 For all a,b € C the sequence ac,, + bd,, converges:

lim(ac, + bd,) = alime, + blimd,, (C-linearity).
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L.2 The “product sequence” c,d, converges:

lim(cnd,) = (lim e, )(limd,,).

L.3 Iflimd, # 0, then there is a k € N such that d,, # 0 for all n > k,
and the quotient sequence (¢n/dy)n>k converges to (lime,)/(limd,).

Remark. Rules L.1 and L.2 admit a very elegant formulation in the lan-
guage of algebra. For arbitrary sequences c,,d, of complex numbers we
can define the sum sequence and the product sequence by setting

a{cp) + b(d,) := (ac, +bd,) for all a,b e C; (cn)(dn) = (cndy).

The limit laws L.1 and L.2 can then be reformulated as:

The collection of all convergent sequences forms a (commutative) C-
algebra A (more precisely, a C-subalgebra of the C-algebra of all sequences)
with zero element (0),, and unit element (1),. The mapping lim : A — C,
(cn) — lime, is a C-algebra homomorphism.

[Here perhaps we should recall for the reader’s convenience: a C-algebra
A is a C-vector space between whose elements a multiplication A x A —
A (a,a’) — aa’ is defined which satisfies the two distributive laws (Aa +
wub)a’ = Aaa') + pu(ba’),a’(Aa + pb) = A(a’a) + u(a’d). A C-vector-space
homomorphism f : A — B between C-algebras A and B is called a C-
algebra homomorphism if it is multiplicative: f(aa’) = f(a)f(a’) for all
a,a’ € A

The limit laws L.1 — L.3 are supplemented with the following:

L.4 The sequence |c,| of absolute values of a convergent sequence is con-
vergent and lim |¢,| = |lime,|.

L.5 The sequence €, conjugate to a convergent sequence is convergent and
lime, = (limey,).

Proofs are immediate from the inequality |lcn| — |c|| < |en — ¢| and the
equality |¢, — €| = |c, — ¢|, respectively, where ¢ := lim¢,,.

Every sequence ¢, determines its sequence of real parts Rec, and its
sequence of imaginary parts Sc,. The question of convergence in C can
always be reduced to two convergence questions in R:

Theorem. For a sequence ¢, of complex numbers the following are equiv-
alent:
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i) ¢, is convergent.
ii) The real sequences Re,, and ¢, are each convergent.

In case of convergence, lim ¢, = lim(Rc,,) + ¢ lim(Sey).

Proof. i) = ii)  This is clear from L.1 and L.5 together with the equations

1 _ 1 _
Ren = §(cn +Cn), Sep, = 2—1(0" —Cn).
ii) = 1) L.1 yields this as well as the equality relating the three limits.

O

2. Cauchy’s convergence criterion. Characterization of compact
sets in C. A sequence ¢, is called a Cauchy sequence if to every € > 0
there corresponds a k. € N such that |¢, — ¢,n| < € for all n,m > k.. Asin
R we have in C the fundamental

Convergence criterion of CAUCHY. For any complex sequence (c,,) the
following are equivalent:

i) (cn) is convergent.
ii) (cpn) is @ Cauchy sequence.

Proof. i) = ii)  Given € > 0, choose k € N such that |c, — c| < 3¢ for all
n > k, where ¢ := lim¢,,. Then

lem = cn| < lem —¢| + Je — ¢n| < € for all m,n > k.
if) = i) The inequalities
|Rem — Ren| < lem — el [Sem — Sen] < lem — ¢nl,
valid for all m and n, show that along with (c,,) the real sequences (Rcy,)
and (Sec,) are each Cauchy sequences. Because of the completeness of R,

they converge to numbers a and b in R. Then by L.1 the sequence (c,) in
C converges to a + bi. a

The notion of a Cauchy sequence can be defined in every metric space X: A
sequence (cn), ¢n € X, is called a Cauchy sequence in X if for every € > 0 there
is a ke € N such that d(cm,cn) < € for all m,n > k.. Convergent sequences
are always Cauchy sequences (as the above proof in C essentially demonstrates).
Those metric spaces in which the converse holds are called complete. Thus C, as
well as R, is a complete valued field.

Compacta in C admit a simple characterization.

Theorem. The following assertions about a set K C C are equivalent:
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i) K is compact.
ii) K is bounded and closed in C.
We will consider this equivalence to be known to the reader from cal-
culus: he has, of course, to consider C as R?. By the same token this
equivalence, which rests ultimately on the completeness of R, is valid in

every R™, 1 < n < oco. It is not, however, valid in every complete metric
space.

A special case of the foregoing theorem is

WEIERSTRASS-BOLZANO Theorem. Every bounded sequence of com-
plex numbers has a convergent subsequence.

Exercises

Ezercise 1. For which 2z € C do the following limits exist?
a) lim, 2_,'1
b) lim, ()"
¢) lim, 2".
FErercise 2. Let (c,) be a bounded sequence of complex numbers. Show

that this sequence converges to ¢ € C if and only if each of its convergent
subsequences has limit c.

Ezxercise 3. a) Let (an)n>o0 and (b, ),>0 be convergent sequences of complex
numbers. Show that

. agbp +aibp_1 4+ -+ anzby
lim
n n+1

= (liin ax)(lim by,).

b) If the sequence (a, ),>0 converges to a € C, then lim, % ;:;é ax = a.

Does the converse of this hold?

Ezercise 4. Show that the metric spaces in Exercises 1 and 2 of §2 are
complete.
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§¢4 Convergent and absolutely convergent
series

Convergent series Y a, in C are defined, just as in R, via their sequences
of partial sums. Among the various forms of limit processes the easiest
to deal with are convergent series: together with the approximants s, :=
agp+...+a, a “correction term” which leads from s,, to the next approximant
Sp+1 = Sn + Gn41 is always given. This makes working with series more
convenient than working with sequences. In the 19th century people worked
principally with series and hardly at all with sequences: the insight that
convergent sequences are really the fundamental cells which generate all
the limit processes of analysis only took hold at the beginning of the 20th
century.

The absolutely convergent series Y a,, those for which Y |a,| < oo, are
especially important in the theory of series. The most important conver-
gence criterion for such series is the majorant criterion or comparison test
(subsection 2). As with real numbers there is for absolutely convergent
complex series a rearrangement theorem (subsection 3) and a product the-
orem (subsection 6).

1. Convergent series of complex numbers. If (a,),>« is a sequence
of complex numbers, then the sequence (8p)n>k, Sn = Y_,_x @ Of partial
sums is called an (infinite) series with terms a,. One writes Y oo, a, or
Y w ay or Y., s, a, or simply > a,. Generally k is either 0 or 1.

A series Y a, is said to be convergent if the sequence (s) of partial
sums converges; otherwise the series is said to be divergent. In the case of
convergence it is customary to write, suggestively

E a, :=lims,.

As in the case of R, the symbol Y a, thus does double duty: it denotes
both the sequence of partial sums and the limit of this sequence (when it
exists).

The standard example of an infinite series, which is used again and again
to provide majorizations, is the geometric series ), - 2*. Its partial sums
(finite geometric series) are

1 - Zn+1

Z z for every z # 1.
T1-2

Because (2"7!) is a null sequence for all z € C with |z| < 1, it follows that

E 2V = L for all z € C with |z| < 1. m|
z
0
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Because a, = 8, — Sp_1, lima, = 0 holds for every convergent series

> a,.

The limit laws L.1 and L.5 carry over immediately to series:

Z(aal,+bb.,)=aZa,,+be,,, Za,,::Za_,,,

v>k v>k v>k v>k vk

a special case of which is:

The complex series Y, a, converges if and only if each of the real
series Y~ Ra, and Y-, Sa, converges, and then

Za,, = Z?Ral,-f-iz:%a,,.
v>k v>k v>k

Moreover, we trivially have for convergent series

[o. o}

4 o0
Za,,=2a,,+2a,, for all £ € N with £ > k.
k k 241

For infinite series there is also a

CAUCHY convergence criterion. A series Y a, converges precisely
when to every € > 0 there corresponds an n. € N such that

n
>

m+1

<eg for all m,n withn > m > n..

This is clear because the equality E; +1Q = Sn — S, means that the
condition in this criterion is exactly that (s,) be a Cauchy sequence.

2. Absolutely convergent series. The majorant criterion. The
limit of a convergent series can be changed by a rearrangement which alters
the positions of infinitely many terms. Manipulations of this kind can be
routinely carried out only on series which are absolutely convergent.

A series 3 a, is called absolutely convergent if the series 3 |a,| of non-
negative real numbers is convergent.

The completeness of C makes it possible, as with R, to infer the conver-
gence of the series 3 a, from that of the series }_ |a,|. Since | Y7 ., a,| <
Y om41 lau], it follows immediately from Cauchy’s convergence criterion for
series that
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Every absolutely convergent series Y a, is convergent; and |3 a,| <

Z lay|.
Furthermore it is clear that

Every subseries Y2 a,, of an absolutely convergent series Y o a, is
absolutely convergent. [In fact, it can even be shown that a series converges
absolutely if and only if every one of its subseries converges.]

Quite fundamental is the simple

Majorant criterion or Comparison test. Let )_ ., t, be a convergent
series with non-negative real terms t,,; let (a, ), >k be a sequence of complex
numbers which for almost all v > k satisfy |a,| < t,. Then Y ., a, is
absolutely convergent.

Proof. There is an n; > k such that for all n > m > n,

n n
dola <>t

m+1 m+1

Because Y t, converges, the claim follows from the Cauchy criterion. O

The series > t, is called a majorant of 3 a,. The most frequently
occurring majorants are the geometric series > . c¢”,0< g¢<1,0<ceR.
0O

Calculating with absolutely convergent series is significantly simpler
than calculating with series that are merely convergent, because series
with positive terms are easier to handle. Because max(|{Ra|, |Sa|) < |a| <
|Ra| + |Sal, it further follows (from the majorant criterion) that

The complex series Y a, is absolutely convergent precisely when each of
the real series > Ra, and Y Ja, is absolutely convergent.

3. The rearrangement theorem. If > . a, is absolutely convergent,
then every “rearrangement” of this series also converges and to the same
limit:

Z Qr(y) = Za,, for every bijection T of N.
v>0 v20

Proof. The proof that most readers have doubtlessly seen for R works as
well in C. It runs as follows: Let s := Zuzo a,. For each € > 0 let
ve € N be such that > la,| < e. Let F. := 771{0,1,...,v.} and

v>ve
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ne = max F,. Then {0,1,...,k} D F,, so 7({0,1,...,k}) D 7(F) =
{0,1,...,v.} whenever n > n.. For such n

Z Arv) =S+ Z Ar(v)

n
Z a.,.(,,) — 8
v=0

veF, ve{0,1,...,n}\ Fe
= Z Qy — 8 + Z a,
HeET(Fe) pET{0,1,...,n]\T(F)
< D) au-s|+ > |a|
p=0 peT{0,1,...,n}\{0,1,...,v¢}
< 2 o <2 O

v>VUe

In the literature the rearrangement theorem is sometimes also called the
commutative law for infinite series. Generalizations of this commutative
law will be found in the classical book Theory and Applications of Infinite
Series by KNOPP [15].

4. Historical remarks on absolute convergence. In 1833 CAuCHY
observed [Buvres (2) 10, 68-70] that a convergent real series whose terms
are not all positive could have a divergent subseries. In a famous 1837
work on number theory, “Beweis des Satzes, dal jede unbegrenzte arith-
metische Progression, deren erstes Glied und Differenz ganze Zahlen ohne
gemeinschaftlichen Teiler sind, unendlich viele Primzahlen enthélt (Proof
that every unbounded arithmetic progression whose first term and com-
mon difference are integers without common divisors contains infinitely
many primes)” (Werke 1, p.319) DIRICHLET presented the (conditionally)
convergent series

1 1 1 1 4 1 11 1 1 1
—§+§—Z+—... an +§—§+5+‘;—Z+—...,
which are rearrangements of one another and which have different sums,
namely log2 and 2 log 2, respectively. In this same work (p.318) DIRICH-
LET proved the rearrangement theorem for series with real terms. In his
1854 Habilitationsschrift Uber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe (Concerning the representation of a function by a
trigonometric series) |Werke, p.235], where among other things he intro-
duced his integral, RIEMANN wrote that by 1829 DIRICHLET knew “daf}
die unendlichen Reihen in zwei wesentlich verschiedene Klassen zerfallen,
je nachdem sie, wenn man sdmtliche Glieder positiv macht, convergent
bleiben oder nicht. In den ersteren kénnen die Glieder beliebig versetzt
werden, der Werth der letzteren dagegen ist von der Ordnung der Glieder
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abhéngig (that infinite series fall into two essentially different classes, ac-
cording to whether they remain convergent or not after all terms have been
made positive. In series of the first type the terms may be arbitrarily per-
muted; by contrast, the value of a series of the second type depends on
the order of its terms)”. RIEMANN then proves his rearrangement theo-
rem: A convergent series (of real terms) which is not absolutely convergent
“kann durch geeignete Anordnung der Glieder einen beliebig gegebenen
(reellen) Werth C erhalten (can converge to an arbitrary given real value C
after appropriate re-ordering of its terms)”. The discovery of this apparent
paradox contributed essentially to a re-examination and rigorous founding
(focussing on the sequence of partial sums) of the theory of infinite series.
On November 15, 1855 RIEMANN | Werke, Nachtrige p. 111] made note of
the fact that: “Die Erkenntnis des Umstandes, dafl die unendlichen Reihen
in zwei Klassen zerfallen (je nachdem der Grenzwert unabhingig von der
Anordnung ist oder nicht), bildet einen Wendepunkt in der Auffassung des
Unendlichen in der Mathematik (The recognition of the fact that infinite
series fall into two classes (according to whether the limit is independent
of the ordering of the terms or not) constitutes a turning-point in the con-
ceptualization of the infinite in mathematics)”.

5. Remarks on Riemann’s rearrangement theorem. This theorem does
not carry over from reals to complexes without modification. For example, if
Za,, is convergent but not absolutely convergent then of course at least one of
the real series Y Ra., Y Sa, is not absolutely convergent and by Riemann’s
theorem, given r € R, there is a bijection 7 of N such that one of the series
> Ra,u), Y. Sa-() converges to ; but prima facie nothing is known about the
convergence of the other one.

Let us understand by the phrase rearrangement-induced sums of an infinite
series Y a, (a, € C) the set L of all ¢ € C to which correspond some bijection
7 of N such that E @-) = ¢. It can be shown that exactly one of the following
alternatives always prevails:

1) L is empty (so-called “proper” divergence).

2) L is a single point (< > a. is absolutely convergent).
3) L is a straight line in C.

4) L coincides with C.

Each of the four cases can indeed be realized: E.g., L = R + i for the series
o [i“—li + m] and L = C occurs for all series Y, a, in which a2, € R and

v
az,+1 € iR for all v and each of Z azy, Z az,—1 is convergent but not absolutely
so.

A generalization of Riemann’s rearrangement theorem was formulated in 1905
by P. LEvY (“Sur les séries semi-convergentes”, Nouv. Annales (4), 5, p.506)
and in 1913/14 E. STEINITZ, the founder of abstract field theory, gave a logically
satisfactory treatment in his paper “Bedingt konvergente Reihen und konvexe
Systeme”, Jour. fiir Reine und Angew. Math. 143, p.128ff and 144, p.1ff. [The
Steinitz replacement theorem, which is often used in linear algebra to prove the
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invariance of the cardinality of bases and which is a much-dreaded examination
question, is to be found on p.133 of the first part of this work.] What STEINITZ
proved is:

Ifv, € R™(1 < m < 00) for all v, then the set of rearrangement-induced sums
of the series Y v, is either empty or an affine subspace of R™

A very accessible modern account of this will be found in P. ROSENTHAL “The
remarkable theorem of Lévy and Steinitz,” Amer. Math. Monthly 94(1987), pp.
342-351.

In this connection the 1917 paper “Bedingt konvergente Reihen” published
by W. GROSs in the Monatshefte fiir Mathematik 28, pp. 221-237 is also worth
reading. O

In analysis a series Ea,, such that every rearrangement EaT(,,) converges
and to the same limit is very often called unconditionally convergent. According
to 2), in C the unconditionally convergent series coincide with the absolutely
convergent ones. For arbitrary Banach spaces this is no longer the case; in fact
we have the following rather surprising characterization:

Theorem. The following statements about a Banach space V are equivalent:

i) The class of unconditionally convergent series > vy, v, € V, coincides
with the class of absolutely or normally convergent ones, i.e., those for
which Y |lv || < oo

ii} The space V 1is finite-dimensional.

This was proved in 1950 by A. DVORETZKY and C.A. ROGERS (Proc. Nat.
Acad. Sci. USA 36, pp. 192-197). The problem of determining all vector spaces
for which the two classes of series coincide had been brought up by S. BANACH
on p. 240 of his classical book Théorie des Opérations Linéaires (Monografie
Matematyczne 1, Warsaw 1932; English translation by F. JELLETT, North-
Holland Publ. Co., Amsterdam, 1987). A. PIETSCH gives a simple proof on
p. 68 of his book Nuclear Locally Compact Spaces (Springer-Verlag, New York
& Berlin 1972); he deduces the result from the fact that nuclear mappings are
necessarily pre-compact (see p. 52).

6. A theorem on products of series. If Y 0" a,, > o b, are two series,
then any series Y o°cx in which the terms ¢, run through all possible
products a,b, exactly once, is called a product series of 3_a, and > b,.

The most important product series in the Cauchy product > p, in which
DA = Y. pt+v=x @uby. Such sums are suggested by formally multiplying

out the power series product (Eu>0 a,X “) (Eu>0 b, X" ) and collecting
together the coefficients of like powers of X.

A product theorem. Let Y ° a,, 28° b, be absolutely convergent series.



32 0. COMPLEX NUMBERS AND CONTINUOUS FUNCTIONS

Then every product series " cx of the two is absolutely convergent and
oo oo o>
() (2n) 3o
0 0 0

Proof. For each £ € N there is an m € N such that {cy,...,c/} C {aub,
0 < p,v < m}. It follows that

XZ:ICAI < (iu) (i‘ u»n) < (i‘u) @"”") oo

Consequently, the series ZSO ¢y is absolutely convergent and to evaluate
c:= .o ¢\ we can use any ordering of the terms a,b, which results from
multiplying out the products (ap +aj + ... +an)(bo + b1 + ... + b,) one after
another (n =0,1,2,...). This observation means that

() ()6

Absolute convergence is essential to the validity of this product theorem: Thue
Cauchy product of the convergent (but not absolutely convergent) series E ﬁ—ﬂ—

with itself is divergent. Indeed, because 0 < (z — y)? = % — 2zy + ¢° for
real z and y, we have 2\/u—+— \/l/-f- <p+l+v+landsoif pu+v = A
then (—1)* a,‘a,, = \/ET\/_ > m and (—1)*py = ZMW (~1aga, >
Z‘H_V:/\ =0+ - >1forallxeN.

The above product theorem for complex series occurs on p.237 of Cauchy’s
1821 Cours d’analyse [C].

If both Z au, Z b, are convergent and at least one of them is absolutely con-
vergent, then their Cauchy product converges and has sum equal to (Zg" a”) X
(3-8 by) — theorem of F. MERTENS, 1875 (see KNOPP [15], §45). In 7.4.4 we will
become acquainted with the product theorem for convergent power series and
from it deduce an 1826 product theorem of ABEL, the hypotheses of which are
quite different from those of the Cauchy product theorem above.

Exercises

Ezercise 1. Investigate the convergence and absolute convergence of the
following series:

n

a) ZnZl %

244)"



§4. CONVERGENT AND ABSOLUTELY CONVERGENT SERIES 33

¢) Ypsi((z—n— -9 zeC\N

Find the limit of the series in c).

Ezercise 2. Let (a,) be a sequence of complex numbers with Ra, > 0 for
almost all n. Prove that if both the series " a, and a2 converge, then
the second one must actually converge absolutely. Does the converse hold?

Ezercise 3. Let (a,) be a sequence of complex numbers, non-zero for all n
beyond some ng. Show that if there is a real number A < —1 such that
the sequence n?(|*22| —1 — 4), n > ny, is bounded, then the series 3 ay,
is absolutely convergent. Hint. Set c:=1—-A,d:=1+ 3, b, == n~¢ and

show that limn(|*2| — 1) < limn(| b'l;:l | — 1) [why do these limits exist?]

and infer that for an appropriate finite constant C, |a,| < Cb,, for all n.

Ezercise 4. Let (an)n>0 and (b,)rn>0 be sequences of complex numbers and
suppose that

i) the sequence of partial sums Sy, := Y., an is bounded;
ii) limb, = 0;
iii) the sum > °7, |bp — bp_1] is finite.

Show that then the series S a,b, is convergent. Hint. Use “Abel summa-
tion”: Y - arbr = Y e, (Sk — Sk—1)bx for n > 0.

Ezercise 5. To each (m,n) € N? associate a complex number a,, ,. Suppose
the numbers a, , are “somehow” organized into a sequence cg. Show that
the following statements are equivalent:

i) The series ) ¢k is absolutely convergent.

ii) For each n € N the series ), am converges absolutely and the
series Y. (3", |@m,n|) converges.

If i) and ii) are fulfilled then the series ) . am n is absolutely convergent for
every m € N and the series >, (3", @mn), 2,3 m @m,n) are convergent
with

Z(Z Umn) = Z(Z Umon) = ch.
mon n m k
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§5 Continuous functions

The main business of analysis is the study of functions. The concept of
function will be taken for granted here and the words function and mapping
will be used synonymously. Functions with domain X and range in Y are
indicated by

f:X—=Yz— f(x) orf:X Y orf(z) orjust f.

In what follows X, Y, Z are always metric spaces and dx, dy, dz are their
metrics.

1. The continuity concept. A mapping f : X — Y is said to be
continuous at the point a € X if the f-pre-image (also called the f-inverse-
image) f~1(V):={x € X : f(z) € V} of every neighborhood V of f(a) in
Y is a neighborhood of @ in X. In terms of the metrics, we have the

(e,6)-Criterion. f: X — Y is continuous at the point a if and only if
for every € > 0 there exists a § = 6. > 0 such that

dy (f(x), f(a)) < € whenever z € X satisfies dx(z,a) < 6.

As in calculus, it is convenient to use the following terminology and no-
tation: the function f : X — Y converges to (approaches) b under approach
to a, or in symbols:

;Er}lf(x)zb or f(z) - b asz—a

if, corresponding to each neighborhood V of b in Y, there is a neighborhood
U of a in X such that f(U \ {a}) C V. It should be noted that it is the
punctured neighborhood U \ {a} which is involved in X. We now obviously
have

f is continuous at a if and only if the limit lim,_., f(z) € Y erists and
cotncides with the function value f(a).

Also useful in practice is the

Sequence criterion. f: X — Y is continuous at a if and only if lim f(z,) =
f(a) for every sequence (x,) of points z,, € X which converges to a.

Two mappings f: X — Y and ¢ : Y — Z may be put together to form
a third go f : X — Z according to the rule (g o f)(z) := g(f(z)) for all
z. This composition of mappings inherits continuity from its component
functions.
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Iff: X —Y is continuous ata € X and g : Y — Z 1is continuous at
fla)e Y, thengo f: X — Z is continuous at a.

A function f : X — Y is simply called continuous if it is continuous
at each point of X. For example, the identity mapping id : X — X is
continuous, for any metric space X.

Well known (and essentially trivial) is the

Continuity criterion. The following statements are equivalent:
i) f is continuous.
ii) The inverse-image f~(V) of every open set V inY is open in X.
iti) The inverse-image f~*(C) of every closed set C inY is closed in X.

In particular every fiber f~1(f(z)), z € X, associated with a continuous
mapping f : X — Y is closed in X. Continuity and compactness relate to
each other quite well:

Theorem. Let f : X — Y be continuous and K be a compact subset of X.
Then f(K) is a compact subset of Y.

Proof. Let (yn) be any sequence in f(K'). Then for every n there exists an z, € K
with f(z») = yn. Because K is compact, 2.5 ensures that some subsequence (z7,)
of (z») converges to some a € K. Because f is continuous, y,, := f(z;,) satisfies

limg, = lim f(z4) = £(a) € F(K).

Consequently, (y5,) is a subsequence of (y») which converges to a limit in f(K).
(]

Contained in this theorem is the fact that continuous real-valued func-
tions f : X — R attain maxima and minima on each compactum in X. It
was WEIERSTRASS (in his Berlin lectures from 1860 on) who first put in
evidence the fundamental role of this fact (in the case where X = R).

2. The C-algebra C(X). In this section we take Y := C. Complex-valued
functions f: X — C, g : X — C can be added and multiplied:

(f+9)(2) := f(z) + 9(z), (f- 9)(z):=f(z)9(z), ze€X.

Every complex number ¢ determines the corresponding constant function
X — C, z + c¢. This function is again denoted by c¢. The function f
conjugate to f is defined by

fl@) = f(z), zeX.
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The rules of computation for the conjugation mapping C — C, z — % (cf.
1.1) apply without change to C-valued functions. Thus

ft9=Ff+3 f9=13 f=7.
The real part and the imaginary part of f are defined by
Rf)(z) :=Rf(z), (Sf)(z):=Sf(z), zeX.
These are real-valued functions and throughout we will write
u:=Rf, v:=S3f.
Then we have
1 = 1 - _
f=u+iv, u=§(f+f)7 'U:E(f_f)a ff=u2+v2.

The limit laws from 3.1 together with the sequence criterion immediately
imply:

If f,g : X — C are both continuous at a € X, then so are the sum f +g,
the product fg, and the conjugated function f.

Contained in this is the fact that:

A function f is continuous at a if and only if its real part u and its
imaginary part v are both continuous at a.

We will designate the set of all continuous C-valued functions on X
by C(X). Since constant functions are certainly continuous, we have a
natural inclusion C C C(X). Recalling the concept of a C-algebra from the
discussion in 3.1, it is clear from all the foregoing that:

C(X) is a commutative C-algebra with unit. There is an R-linear, in-
volutory (that is, equal to its own inverse) automorphism C(X) — C(X),

[
The function f is in C(X) if and only if each of Rf and Sf is in C(X).

If g is zero-free on X, meaning that 0 ¢ g(X), then the function X — C

defined by PRy
z— f(x)/g9(z

is called the quotient function of f by g and it is designated simply f/g.
The limit laws from 3.1 imply that:

f/g €C(X) for every f € C(X) and every zero-free g € C(X).
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The zero-free functions in C(X) are (in the sense of that word in algebra)
just the wunits of the ring C(X), that is, exactly those elements e € C{X)
for which there exists a (necessarily unique) é € C(X) satisfying eé = 1.

3. Historical remarks on the concept of function. During the Leib-
niz and Euler period it was predominantly real-valued functions of real
variables which were studied. From them mathematicians slowly groped
toward the idea of complez-valued functions of complex variables. Thus in
1748 EULER intended his famous formula e'* = cosz + isinz ([E],§138)
only for real values of z. GAUSS was the first to see clearly - as his letter
to BESSEL shows - that many properties of the classical functions are only
fully understood when complex arguments are allowed. (Cf. Section 1 of
the Historical Introduction.)

The word “function” occurs in 1692 with LEIBNIZ as a designation for
certain magnitudes (like abscissz, radii of curvature, etc.) which depend
on the points of a curve, these points thought of as changing or varying.
As early as 1698 in a letter to LEIBNiz, Joh. BERNOULLI spoke of “be-
liebigen Funktionen der Ordinaten (arbitrary functions of the ordinates)”
and in 1718 he designated as function any “aus einer Verdnderlichen und
irgendwelchen Konstanten zusammengesetzte Grife (magnitude which is
built up from a variable and any constants whatsoever)”. In his Intro-
ductio [E] EULER called any analytic expression, involving a variable and
constants, a function.

Extension of the function concept was made necessary by the investi-
gations of D’ALEMBERT, EULER, Daniel BERNOULLI and LAGRANGE on
the problem of the vibrating string; thus EULER was led to abandon the
idea of an a priori analytic expression and to introduce so-called arbi-
trary functions. Nevertheless it was only through the efforts of DIRICHLET
that the presently accepted definition of function as unambiguous assign-
ment of values or mapping became established. In 1829 in his paper, Sur
la convergence des séries trigonométriques qui servent a représenter une
fonction arbitraire... (English translation by R. FuJiISAwWA in Memoirs on
Infinite Series, Tokio Mathematical and Physical Society (1891), Tokyo)
he presented a function ¢(z) which is “égale & une constante déterminée c
lorsque la variable z obtient une valeur rationelle, et égale & une autre con-
stante d, lorsque cette variable est irrationelle (equal to a certain constant
¢ whenever the variable x takes on a rational value and equal to another
constant d whenever this variable is irrational)” - see his Werke 1, p.132.
And in his paper of 1837 he wrote, concerning the extent of the function
concept Uber die Darstellung ganz willkiirlicher Funktionen durch Sinus-
und Cosinusrethen: “Es ist gar nicht néthig, da88 f(z) im ganzen Intervalle
nach demselben Gesetze von z abhingig sei, ja man braucht nicht einmal
an eine durch mathematische Operationen ausdriickbare Abhéangigkeit zu
denken. (It is certainly not necessary that the law of dependence of f(z)
on z be the same throughout the interval; in fact one need not even think
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of the dependence as given by explicit mathematical operations.)” - see his
Werke 1, p.135. On p.227 ff. of his 1854 Habilitationsschrift cited in 4.4
RIEMANN gave a detailed discussion of the historical development of the
function concept up to that time. An interesting survey that updates this
is Dieter RUTHING’s “Some definitions of the concept of function from Joh.
Bernoulli to N. Bourbaki,” Math. Intelligencer 6, no. 4 (1984), 72-77.

4. Historical remarks on the concept of continuity. LEIBNIZ and
EULER used (intuitively) a very strong notion of continuity: for them con-
tinuous amounted almost to analytic or generated by analytic functions.
(On this point see, for example, C. TRUESDELL, “The rational mechanics
of flexible or elastic bodies”, in the Comments on Euler’s Mechanics, Euler’s
Opera Omnia (2) 11, part 2, especially pp.243-249.) The presently accepted
definition and its very precise arithmetic formulation had to wait until the
work of BOLZANO, CAUCHY and WEIERSTRASS in the 19th century. Even
in 1837 DIRICHLET gave a definition ( Werke 1, p.135) which says that “sich
f(z) mit = ebenfalls allmahlich verdndert (f(z) changes gradually when z
does 50).” In the 20th century, starting already with HAUSDORFF on p.359
of his 1914 book Grundzige der Mengenlehre, the idea of continuous map-
pings between topological spaces has become a matter of course.

LEIBNIZ believed that a continuity principle underlay all the laws of nature.
The law of continuity “Natura non facit saltus” runs like a red thread through
all his work in philosophy, physics and mathematics. In the Initia rerum Math-
ematicarum metaphysica (Math. Schriften VII, 17-29) it says: “... Kontinuitdt
aber kommt der Zeit wie der Ausdehnung, den Qualitdten wie den Bewegungen,
iiberhaupt aber jedem Ubergange in der Natur zu, da ein solcher niemals sprung-
weise vor sich geht (... Continuity however is attributable to time as much as to
spatial extension, to qualities just as to motion, actually to every transition in
nature, since these never proceed by leaps).” LEIBNIZ applied his continuity prin-
ciple also, for example, to biology and in this seems to have anticipated DARWIN
somewhat; in a letter to VARIGNON he writes: “Die zwingende Kraft des Konti-
nuitatsprinzip steht fiir mich so fest, dafl ich nicht im geringsten tiber die Entdeck-
ung von Mittelwesen erstaunt wire, die in manchen Eigenthiimlichkeiten, etwa
in ihrer Erndhrung und Fortpflanzung, mit ebenso groem Rechte als Pflanzen
wie als Tiere gelten konnen ... . (The continuity principle carries such conviction
for 'me that I wouldn’t in the least be astonished at the discovery of intermedi-
ate life-forms many of whose characteristics, like their methods of feeding and
reproduction, would give them equal claim to being plants or animals ...).” The
continuity postulate later became known as Leibniz’ dogma.

Exercises
Ezercise 1. Let X,Y be metric spaces, f : X — Y a mapping.

a) Show that f is continuous exactly when f(A) C f(A) for every subset
Aof X.
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b) f is called a homeomorphism if it is bijective and both f and f~! are
continuous. Show that a bijection f is a homeomorphism if and only
if f(A) = f(A) for every subset A of X.

Ezercise 2. Let X be a metric space and f: X — R be a mapping.
Show that f is continuous exactly when, for every b € R, the pre-images
fY((—o0,b)) and f~1((b,00)) are open in X. Is there any similar criterion
for mappings from X into C?

Ezercise 3. Let X,Y be metric spaces with metrics dx,dy and let f: X —
Y be continuous. Show that if X is compact, then f is uniformly continuous,
that is, for each £ > 0 there exists a §(¢) > 0 such that dy (f(u), f(v)) <¢e
whenever u,v € X satisfy dx(u,v) < 6(g).

§6 Connected spaces. Regions in C

In 1851 RIEMANN introduced the concept of connectedness in his disserta-
tion ([R],p.9) as follows:

“Wir betrachten zwei Fliachentheile als zusammenhéngend oder Einem
Stiicke angehorig, wenn sich von einem Punkt des einen durch das Innere
der Fliche eine Linie nach einem Punkte des andern ziehen lasst. (We
consider two parts of a surface as being connected or as belonging to a
single piece, if from a point of the one a curve can be drawn in the interior
of the surface to a point of the other.)”

In contemporary language this is the concept of path-connectedness.
Since the evolution of set-theoretic topology at the beginning of the 20th
century a more general notion of connectedness, which contains Riemann’s
as a special case, has emerged. Both concepts can be used to advantage in
function theory and will be discussed in this section.

X and Y will always denote metric spaces. For a,b € R with a < b, [a, b]
denotes the compact interval {z e R:a <z < b} in R.

1. Locally constant functions. Connectedness concept. A function
f X — Cis called locally constant in X if every point € X lies in some
neighborhood U C X such that f|U is constant. Generally locally constant
functions are not constant. For example, if By, B; are two disjoint open
balls in some metric space, X := By U B; and f : X — C is the function
which throughout B; has the value j (j = 0,1), then f is locally constant
in X but not constant. And this example is representative of a general

Theorem. For any metric space X the following are equivalent:

i) Ewvery locally constant function f: X — C is constant.

ii) The only non-empty subset of X which is both open and closed is X
itself.
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Proof. i) = ii)  Suppose A is a non-empty subset of X which is both
open and closed. (The neologism “clopen” is a popular abbreviation for
“both closed and open”.) Then its “characteristic” or “indicator” function
14 : X — C defined by

la(z):=1forz € A, 14(z):=0forze X\ A

is locally constant, since both A and X \ A are open. Therefore 14 is
constant. Since A # (), the constant value must be 1, whence X \ A =
0, A=X.

il) = i) Fix ¢ € X. The fiber A := f~!(f(c)) is non-empty and is
open in X because f is locally constant. Because locally constant functions
are trivially continuous, A is also closed in X. It follows that A = X, that
is, f(z) = f(c) for all x € X. O

Mathematical experience has shown that the equivalent properties i)
and ii) of the preceding theorem optimally capture the intuitively clear yet
vague conception of a space being connected. So we make these properties
into the following definition: a metric space X is defined to be connected
if it has properties i) and ii). A theorem which is immediate from this
definition is that a continuous mapping f : X — Y from a connected space
X has a connected image set f(X). From calculus we borrow the important

Theorem. FEach closed interval and each open interval in the real number
line R is connected.

2. Paths and path connectedness. Any continuous mapping v :
[a,b] — X of a closed interval in R into a metric space X is called a
path in X from the initial point y(a) to the terminal point v(b); we say
that « joins the points v(a) and v(b) in X. Paths are also called curves. A
path is called closed if its initial and terminal points coincide. The image
set |y| := v([a,b]) C X is called the trajectory or the trace or the impression
of the curve. Because ~ is continuous, || is a compact set. A path is more
than just its trajectory: the latter is traversed according to the law ~(¢) [t
thought of as a time parameter]|. Nevertheless it is convenient to allow the
abuse of language whereby we sometimes write v for |v]|.

If v; : [aj,b;] = X, j = 1,2, are paths in X and if the terminal point
~1(b1) of 41 coincides with the initial point v2(az) of 2, then the path-sum
71 + 72 of 71 and 2 in X is defined as the continuous mapping

. _ 7(t) for t € [ay,b1]
v [a17b2 a2+b1] - X’ te { "YQ(t + as — bl) for t (S [bl,bz - as + bl]

The path-sum 41 +72 +- - -+, of finitely many paths v1, 72, ..., n (whose
initial and terminal points are appropriately related) is defined correspond-
ingly. One verifies immediately that path-addition is associative so that, in
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fact, no parentheses need be used. Path-addition is naturally not commu-
tative.

A space X is called path-connected if, for every pair of points p,q € X,
there is a path « in X with initial point p and terminal point q. This would
be an infelicitous choice of language were it not for the fact that

Every path-connected space X is connected.

Proof. Let U # {) be a subset of X which is both open and closed. Fix
p € U and consider any ¢ € X. Let the path v : [a,b] — X join p to q. Since
7 is continuous, v~ 1(U) is an open and closed subset of the real interval
[a,b] and it is non-empty (because it contains a € y~(p)). Because [a, b] is
connected, it follows that y~1(U) = [a, b] and so ¢ = y(b) € U. This shows
that X CU,so U = X. O

The converse of the fact just proved is not true: As an example, consider the
space X :={iy: ~1 <y<1}U{z=z+iy:0<z <1 y=sin(z"')} with the
metric induced from C. It is connected but not path-connected, as the reader is
encouraged to convince himself via a sketch.

3. Regions in C. The path in C, v : [0,1] — C, defined by «(t) :=
(1 —t)zp + tz; is called the (line) segment from zy to z; and is designated
by [20,21]. Intervals [a,b] in R are segments via ¢t — (1 — t)a + tb. A
polygon or polygonal path from p € C to g € C is a finite sum P = (29, 21] +
[21, 22] + - - + |2n, 2n+1] Of segments with zg = p and 2,1, = q. P is called
azis-parallel if each segment is parallel to one of the two coordinate axes,
that is, if for every v either Rz, = Rz,4; or Sz, = $z,41. Of course every
polygon is a path.

Non-empty open sets in C are called domains and will be denoted by D
throughout.

Theorem. The following statements concerning domains D C C are equiv-
alent:
i) D is connected.

ii) For every pair of points p,q € D there is an axis-parallel polygon
P CD fromp toq.

ili) D is path-connected.

Proof. i) = ii) Fix some p € D. We define a function f : D — C as
follows: f(w) := 1 if there exists an axis-parallel polygon in D from p to w
and otherwise f(w) := 0. Now consider any open disc B C D. For every
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pair of points z, w € B there is evidently an axis-parallel polygon P,,, in
B from z to w. If f(z) =1 for at least one point z € B, then f(w) =1 for
all w € B. From this it is clear that either f|B =1 or f|B = 0. This shows
that f is locally-constant and so, by connectedness of D, f is constant.
Since f(p) = 1, this constant value is 1 : f(w) = 1 for all w € D, that is,
for every point w € D there is an axis-parallel polygon in D from p to w.
As p is arbitrary in D, this establishes the path-connectedness of D.

il) = iii)  This is trivial because axis-parallel polygons are paths.

iii) = i) Clear from 2. a

Remark. The openness of D in C was only used in the (non-constructive!)
proof that i) = ii) and there only to ensure that every point of D have
a path-connected neighborhood (namely, a disc, in which in fact any two
points can even be joined by an axis-parallel polygon). Spaces with this
property are called locally path-connected. Evidently then our proof of i)
= ii) establishes the more general fact that:

Every connected and locally path-connected space, e.g., every connected
domain in R™,1 < n < 00, is path-connected.

Needle spray 2
' %

Connected domains in C are called regions and are traditionally denoted
with G (after the corresponding German word Gebiet). Thus in a region
G C C every pair of points can be joined by an axis-parallel polygon in
G. However, regions may appear very complicated, containing for example
many “needle spray” and “spiral” excisions, as in the figure above. Of
course all discs By(c), as well as C and C*, are regions.

Regions play a much more important role in function theory than in
real analysis. It will later be shown, after we have available the Identity
Theorem, that the topological property of connectedness of a domain D C C
is equivalent to the algebraic property that the ring O(D) of holomorphic
functions on D have no zero-divisors.

4. Connected components of domains. Two points p,q € D are called
“path-equivalent” if there is a path in D from p to g¢. In this way an
equivalence relation is defined in D. The associated equivalence classes are
called connected components (or simply components) of D. The terminology
is justified by the fact that
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Every component G of D is a region in C and D has at most countably
many components.

Proof. a) Consider ¢ € G. Since D is open, there is an r > 0 such that
B.(c) € D. But every point of B.(c) is equivalent to ¢ (!), from which
B,.(c) C G follows. Thus G is open. By definition G is path-connected,
hence a region.

b) Every domain D contains a countable dense subset; e.g., the rational
complex numbers in D constitute such a set. The set of all open discs
centered at these points and having rational radii is a countable cover
Up, Uy, -+ - of D by path-connected sets U;. Thus each U, lies in a unique
component G; and every component G of D contains some point of the
dense set (because G is open) and therefore also contains some Uy. The
map j — G; therefore sends N onto (though not necessarily injectively)
the set of all components of D. a

(D@

The figure above illustrates a bounded domain with infinitely many com-
ponents: The centers ¢, converge to ¢ and the respective radii r, are so
small that the various discs U(c;) := B, (c;) are disjoint. The components
of D :=Jj2, U(c;) are exactly the discs U(c;). o

Everything just said about components is equally valid for domains in
R"™ and even more generally for any locally connected space which has a
countable dense subset.

5. Boundaries and distance to the boundary. If D is a domain in C,
the set -
oD :=D\ D

is called the boundary of D and the points of 8D are called boundary points
of D. The boundary 8D is always closed in C. For discs we have 8B,.(c) =
{z€C:|z—¢|/ =r}. Apoint a € C\D is a boundary point of D precisely
if @ = lim z,, for some sequence of 2z, € D. Notice that unless D = @ or
D = C, the set 8D is always non-empty: otherwise we would have D = D,
so D would be both open and closed in the connected space C. If D is a
non-void, proper subset of C, then for every point ¢ € D we may define

d.(D) :=inf{|c — 2| : 2 € OD}.

This number is positive and is called the boundary-distance of ¢ in D. For
D = C we set d.(C) := oo for all ¢. The (extended) number d := d.(D)
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is the maximum radius r such that the disc B,(c) lies wholly in D. When
d < oo (i.e., D # C) there is at least one boundary point p of D on dBy(c)

(cf. the figure).

p

The boundary-distance will play an important role in the development
of holomorphic functions into power series (Chapter 7.3.2).

Exercises

Ezercise 1 (distance between sets). For non-empty subsets M, N of C define
d(M,N):=inf{|z—w|:2€ M, we N}

Show that if A is closed, K compact, then there exists z € A, w € K
such that |z — w| = d(A, K). In particular, if in addition AN K = 0, then
d(A,K) > 0.

Ezercise 2. Let f : D — D’ be a mapping between domains in C. Show

that:

a) If W is a component of D, then f(W) is contained in a unique com-
ponent of D'.

b) If additionally, f is a homeomorphism, then f(W) is a component of
D'

Ezercise 3. A subset M of C is called convez if for any points w,z € M
the whole segment [w, 2] joining them lies in M. Convex sets are thus
path-connected.

a) Show that any intersection of convex subsets of C is a convex set.

b) Let G be a region in C. Show that G is convex if G is. What about
the converse?

¢) Let G be a convex region in C and ¢ € dG. Show that there is a
(real) line L in C withc€ Land LN G = 0.

Ezercise 4. Let D be a domain in C and V an open, convex n-gon (n > 3)
which, together with its boundary, lies in D. Show that there exists an
open convex n-gon V' in C such that V C V' C D.



Chapter 1

Complex-Differential
Calculus

A cornerstone of our thinking is that in the
infinitely small every function becomes lin-
ear (from an unknown mathematical physi-
cist, 1915).

1. The adage leading off this chapter is the kernel of all differential cal-
culi. Notwithstanding that this cornerstone was pulverized by Riemann’s
and Weierstrass’ discovery of (real-valued) everywhere continuous nowhere
differentiable functions on R, it is still a valuable principle for creative
mathematicians and physicists.

The concept of complex-differentiability will be introduced exactly as
was that of differentiability on R. Complex-valued functions which are
complex-differentiable throughout a domain in C are called holomorphic
and function theory is usually understood to be the study of such func-
tions. None of the early works on this subject studied holomorphic func-
tions per se but rather the theory was initially fuelled by the rich legacy
of special functions bequeathed by the Euler era. The first works to treat
function theory as an independent mathematical discipline originated with
CAUCHY, although even he had no plan for founding a general theory of
complex-differentiable functions. The main concern of his first great trea-
tise [C1] Mémoire sur les intégrales définies from the year 1814 as well
as that of his second, considerably shorter paper [Ca] Mémoire sur les
intégrales définies, prises entre des limites imaginaires from the year 1825,
is, as these titles indicate, the integral calculus in C; scarcely anything is
said in them, consciously anyway, about complex differential calculus—it
is just used, uncritically. With Eulerian prescience CAUCHY differentiates
functions of a complex variable according to the rules known for functions

45
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on R; he implicitly makes use of the existence and continuity of the first
derivative. (We will have more to say on this point in 7.1.3-7.1.5.)

2. CaucHY's Cours d’analyse of 1821 (see [C]) prepared the way for func-
tion theory. Here we recognize very clearly a striving to free the function
concept from the restrictions of “effective representation.” Today we can
scarcely understand the conceptual difficulties which had to be overcome
at that time. Even 30 years later in 1851 we find RIEMANN emphasizing re-
peatedly in his dissertation that he is concerned with complex-differentiable
“Funktionen einer verdnderlichen complexen Grosse unabhingig von einem
Ausdruck fiir dieselben (functions of a complex variable independently of
any particular expression for them)”; he gives the following definition of
holomorphic function ([R],p.5): “Eine verdnderliche complexe Grosse w
heift eine Function einer anderen verdnderlichen complexen Grésse z, wenn
sie mit ihr sich so dandert, dass der Werth des Differentialquotienten ‘é—f un-
abhingig von dem Werthe des Differentials dz ist. (A variable complex
quantity w is called a function of another variable complex quantity z if it
changes with z in such a manner that the value of the differential quotient
‘fi—g’ is independent of the value of the differential dz.)”

For a long time now it has been customary in real and complex analysis
not to treat differential and integral calculus together and simultaneously
but rather one after the other and (for reasons of economy or pedagogy (7))
to begin with differential calculus. We will also proceed in this way and first
discuss in some detail the fundamental concept of complex-differentiability.
At the center of our considerations are the famous CAUCHY-RIEMANN

differential equations

ou_dv o ou_ v
dr Oy dy Oz

for complex-differentiable functions f = u + v, together with the inter-
pretation of these equations as affirming the C-linearity of the differential
of f. These seem to reduce the theory of complex-differentiable functions
to being a part of the theory of real partial differential equations. Never-
theless, many complex analysts feel that methods of real analysis should
be proscribed and in the present volume we will more or less conform to
this principle of methodological purity; all the more readily since the path
through the reals is often the more arduous one. (For example, it is very
tedious to derive the differentiation rules by reduction to the real case.)

3. In Sections 1, 2 and 3 of this chapter the usual material of complex
differential calculus will be treated. In doing so emphasis will be laid on
the fact that the complez-differentiable functions are precisely the real-
differentiable functions which have a C-linear (and not just an R-linear)
differential; the Cauchy-Riemann differential equations describe nothing
more or less than this complex linearity (Theorem 2.1). In Section 4 we
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define and discuss the partial derivatives with respect to z and Z. This
makes it possible to organize the two Cauchy-Riemann equations into the
single equation

of _
0z

in 4.4 we will go a little deeper into the technique of differentiation with
respect to z and Zz.

0;

§1 Complex-differentiable functions

Just as in the real case, complex-differentiability will be reduced to a con-
tinuity issue by a linearization condition. But we also want to see that
complex-differentiability is far more than a mere analog of real-differenti-
ability. A simple discussion of difference quotients will lead immediately to
the Cauchy-Riemann equations

Uy = ¥y and u, = ~v; for f=u+iv
y y

from which will follow, in particular, that the real and imaginary parts of a
complex-differentiable function satisfy Laplace’s potential-equation Au = 0
and are consequently harmonic functions.

1. Complex-differentiability. A function f: D — C is called complez-
differentiable at ¢ € D if there exists a funtion f; : D — C which is
continuous at ¢ and satisfies

f(z)=flc)+(z—c)f1(z) forallz€ D (C-linearization).
Such a function f, if it exists at all, is uniquely determined by f:

(2) — f(c)

fi(z) = f P for z € D\ {c¢} (difference quotient)

and then, upon setting k := z — ¢, the continuity of f; at c entails that

L feth) — 1)

lim - = fi(c) (differential quotient).

The number fi(c) € C is called the derivative (with respect to z) of f at c;
we write
af

f(e) = £10) = fa(o)

Complex-differentiability of f at ¢ implies continuity of f atc, since f isa
sum of products of the functions f(c), z —c and f; which are all continuous
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at c. The fact that formally the definition of differentiability is the same for
real and complex variables will, in 3.1, immediately produce the expected
differentiation rules.

One proves directly that

If f is complez-differentiable at c, then for every e > 0 there isa 6 >0
such that |f(c+h) — f(c) — f'(c)h| < g|h| for all h € C satisfying |h| < 6.

Ezamples. 1) Each power function 2",n € N, is complex-differentiable
everywhere in C:

2P =c"+ (z—c)fi(z) with fi(z):=2"" +e2" 24+ M

shows that (z")" = nz"~! for every z € C. More generally, all polynomials
p(z) € C[z] are everywhere complex-differentiable and rational functions
g(z) € C(z) are complex-differentiable at every point where they are de-
fined, i.e., at every point not a zero of the denominator (cf. 3.2).

2) The conjugation function f(z) := Zz, z € C, is not complex-differenti-
able at any point, because the difference quotient

fle+h)—flc) _h
3 =75 h#0

at ¢ € C has the value 1 for h € R and the value —1 for A € iR, and
consequently has no limit.

3) The functions Rz, 3z, |z| are complex-differentiable nowhere in C.
This is shown by first considering real and then purely imaginary h, as in
2).

2. The Cauchy-Riemann differential equations. We write ¢ = a +
ib = (a,b), z = z + iy = (z,y). If f(2) = u(z,y) + iv(z,y) is complex-
differentiable, then

/ . flet+h)—fle) _ . fletih)— fle)
flo=lm ===

c+ih

ce—c+h

Choosing h real, it follows that

lim u(a + h,b) — u(a,b) 4 lim v(a + h,b) —v(a,b)

h—0 h h—0 h

— lim u(a, b+ h) —u(a,b) 4 lim v(a,b+ h) —v(a,b) .
h—0 ih h—0 th

£
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Thus the partial derivatives with respect to z and y of the real-valued
functions u and v all exist at the point ¢; and, using the usual notations
ug(c),- - -, vy(c) for these derivatives, the equations

7€) = uale) + v () = < (uy () + vy ()

obtain.
With this we have proven:

A necessary condition for the complez-differentiability of f = u+iv atc
is that the real part u and the imaginary part v of f each be differentiable
with respect to x and with respect to y and that the “Cauchy-Riemann
differential equations”

(*) ug(c) = vy(c), uy(c) = —vz(c)

obtain. When this happens, f'(c) = uz(c) + ivz(c) = vy(c) — tuy(c).

The equations (*) are just the analytic manifestation of the geometric
insight that the difference quotient of f has to have the same limiting
value for approach to ¢ parallel to the real axis and for approach parallel to
the imaginary axis. Deeper aspects of this naive but mnemonically useful
approach to the Cauchy-Riemann equations will be examined in 2.1.

3. Historical remarks on the Cauchy-Riemann differential equa-
tions. CAUCHY [C,] obtained the equations in 1814 while discussing the
interchange of the order of integration in a real double integral (on the top
of p.338 in a more general form, on the bottom of p.339 in the well-known
form). He emphasizes (p.338) that his differential equations contain the
whole theory of the passage from reals to complexes: “Ces deux équations
renferment toute la théorie du passage du réel a 'imaginaire, et il ne nous
reste plus qu’a indiquer la maniére de s’en servir.” Nevertheless, CAUCHY
did not make these equations the foundation of his function theory.
RIEMANN put these differential equations at the beginning of his func-
tion theory and consistently built on them. He recognized “in der partiellen
Differentialgleichung die wesentliche Definition einer [komplex differenzier-
baren] Function von einer complexen Verinderlichen ... Wahrscheinlich
sind diese, fiir seine ganze spitere Laufbahn maassgebenden Ideen zuerst
in den Herbstferien 1847 [als 21-jdhriger] griindlich von ihm verarbeitet
(in the partial differential equation the essential definition of a [complex-
differentiable] function of a complex variable ... Probably these ideas,
which were decisive for the course of his whole later life, were first worked
out by him during the autumn holidays of 1847 [as a 21-year-old])” — quoted
from R. DEDEKIND: Bernhard Riemann’s Lebenslauf (p.544 of Riemann’s
Werke). However, neither CAUCHY nor RIEMANN was the first to discover



50 1. COMPLEX-DIFFERENTIAL CALCULUS

these equations; they occur previously in 1752 in D’ ALEMBERT’s theory of
fluid flow Essai d’une nouvelle théorie de la résistance des fluides (David,
Paris); and in the work of EULER and LAGRANGE.

In 1851 RIEMANN argues succinctly ([R], pp.6,7) thus: “Bringt man den
Differentialquotienten

du + dvi

1 cercs
(1) dz + dyi

in die Form

du v v Ou ; .
(% + 5;11) dr + <B_y — 3—yz) dyi
dz + dyi

(2)

?

so erhellt, dass er und zwar nur dann fiir je zwei Werthe von dz und dy
denselben Werth haben wird, wenn

Ou Ov Ov Ou
3 Tz g L%
3) 9z dy % Bz oy
ist. Diese Bedingungen sind also hinreichend und nothwendig, damit w =
u + vi eine Function von z = z + yi sei. Fiir die einzelnen Glieder dieser
Function fliessen aus ihnen die folgenden:

%u  Pu 0% 0%v

@ wop =0 T

welche fiir die Untersuchung der Eigenschaften, die Einem Gliede einer
solchen Function einzeln betrachtet zukommen, die Grundlage bilden. (If
one brings the differential quotient (1) into the form (2), it becomes evident
that it will have the same value for every two values of dz and dy, if and
indeed only if the equations (3) hold. These latter conditions are thus
necessary and sufficient in order that w = u + vi be a function of = + yi.
Out of them flow equations (4) for the respective terms of the function w.
These equations form the basis for investigating the properties possessed by
any one term of such a function when that term is considered individually.)”

§2 Complex and real differentiability

The customary graphic significance of the real derivative of a real function
as the “slope of the tangent” is not feasible in the realm of the complexes,
because the graph of a complex function w = f(z) is a “surface” in the 4
real-dimensional complex (w, z)-space C2. There is nevertheless a geomet-
ric interpretation of the complex differential quotient f’(c). To explicate it
we need the fundamental concept of the real vector differential calculus:
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A mapping f : D — R" of a domain D C R™ is called real-differentiable
at the point ¢ € D, if for some R-linear mapping T : R™ — R"

|f(c+h) = f(c) = T(h)]

li =0.
(1) Jm, Ih] 0
(Here | | represent fized norms in R™ and R™.)

As is well known and elementary, T is then uniquely determined and is
called the differential T f(c), sometimes also the tangent mapping of f at c.
It is clear from (1) that real-differentiability at c entails continuity at c.

If bases are given in R™ and R" and if the component functions of f in
these bases are f,(z1, -+,Zm), 1 < v < n, then the real-differentiability of
f at c implies that all the partial derivatives g%(c) exist, 1 < pu < m,
1 < v £ n and that the differential Tf(c) is implemented by writing
elements of R™ as column vectors and multiplying them on the left by
the n x m Jacobian matrix

0fy
(6.’1:” (C)> pil,...,m

v=1,...,n

1. Characterization of complex-differentiable functions. We apply
the theory from the real realm just sketched to complex-valued functions
(thus m =n =2 and R? = C). If f : D — C is complex-differentiable at c,
then (cf. 1.1)

i FleR) = £(©) = £1()h _

lim 3 0.

From this and (1) it follows immediately that complex-differentiable map-
pings are real-differentiable and have C-linear differentials. This C-linearity
of the differential is significant for complex-differentiability and is the deeper
reason why the Cauchy-Riemann differential equations hold; we have namely,
if we again set z =z + iy, f = u + vt

Theorem. The following statements about a function f : D — C are
equivalent:
i) f is complex-differentiable at c € D.

ii) f is real-differentiable at ¢ and the differential Tf(c) : C — C is
complex-linear.

ili) f is real-differentiable at c and the Cauchy-Riemann equations u,(c) =
vy(e), uy(c) = —vg(c) hold.
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Ifi) — iii) prevail, then f'(c) = ug(c) + ivz(c) = vy(c) — iuy(c).

Proof. i) < ii)  This is clear on the basis of the relevant definitions.
ii) < iii)  The differential Tf(c) is given by the 2 x 2 matrix

(ux(C) uy(C))
vz(c) yy(c)
According to Theorem 0.1.2 the R-linear mapping C — C determined by

this matrix is C-linear if and only if u.(c) = vy(c) and uy(c) = —v,(c).
The equation for f/(c) was already proven in 1.2. i

In order to be able to apply this theorem, we need a criterion for the
real-differentiability of f = u + iv at c. We will occupy ourselves with this
question below.

2. A sufficiency criterion for complex-differentiability. Together
with f : D — C and g : D — C, all the mappings af + bg : D — C
(a,b € C) will be real-differentiable at ¢ and from equation (1) in the
introductory material of this section we infer that

(T(af +b9))(c) = a(Tf)(c) + b(Tg)(c).

Also, together with f, the conjugated function f: will be real-differentiable
at c and, if T f(c)(h) is given by Ah+ ph, then T f(c)(h) is given by mh+ k.
It follows that

The function f = u+iv : D — C is real-differentiable at c € D if and
only if each of the functionsu: D — R, v: D — R is real-differentiable at
c.

To prove this we just direct our attention to the equations u = %( f+5),
v = 2 (f — f) and to the fact that a real-valued function D — R is real-
differentiable at c if and only if the corresponding complex-valued function
D — R < Cis. O

A function v : D — R is called continuously (real-) differentiable if the
partial derivatives u,,u, exist throughout D and are continuous functions
there. In the real-differential calculus it is shown with the help of the Mean
Value Theorem that

Every continuously differentiable functionu : D — R is real-differentiable
at each point of D.

The continuity requirement on u, and u, is essential here, as the well-
known example u(z) := zy|z|~2 for z = (z,y) # (0,0) and u(0,0) := 0
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shows. Here u; and u, exist everywhere with u;(0,0) = u,(0,0) = 0, yet
u is not even continuous at (0, 0).

By means of Theorem 1 we now deduce a criterion which is quite handy
in applications:

Sufficiency criterion for complex-differentiability. If u,v are con-
tinuously differentiable real-valued functions in D, then the complez-valued
function f := u + iv is real-differentiable at every point of D.

If furthermore uz = vy and uy = —v; throughout D, then f is complez-
differentiable at every point of D.

This criterion is almost always called on when one wants to describe
complex-differentiable functions via statements about their real and imag-
inary parts.

3. Examples involving the Cauchy-Riemann equations.

1) The function f(2) := z3y?+iz?y3 is, according to 2, real-differentiable
throughout C. The Cauchy-Riemann equations hold at the point ¢ = (a, b)
exactly when 3a2b? = 3a2b? and 2a%b = —2ab?, i.e., when ab(a? + b?) = 0;
which, since a,b are real, amounts to ab = 0. In summary, the points at
which f is complex-differentiable are the points on the two coordinate axes.

2) We will assume the reader is acquainted with the real exponential
function et and the real trigonometric functions, cost,sint,t € R. The
function

é(z) == e®cosy + ie“siny

is real-differentiable at every z = z+iy in C, by 2, and the Cauchy-Riemann
equations clearly hold at every point. Thus é&(z) is complex-differentiable
in C and €'(z) = ug(z) +ivy(z) = é(2). In 5.1.1 we will see that é(z) is the
complex exponential function exp z = go f,—':

3) This example is for readers acquainted with the real logarithm function
logt,t > 0, and the real arctangent function arctant,t € R; the notation
refers to the principal branch, that is, the values of arctangent lying between
—m/2 and w/2. From 2 and the properties of these functions, namely the

identities log'(t) = t~! and arctan’(t) = (1 +¢2)~!, we see that
] 1 2 2 . y
£(2) := 3 log(z* + y*) + i arctan =
T

is real-differentiable throughout C \ {z € C : ®2 = 0} and satisfies the
Cauchy-Riemann equations there as well. Thus £(z) is complex-differenti-
able everywhere to the left and to the right of the imaginary axis. A direct
calculation shows that

7(2) = ug(2) + vy (2) = % , z € C with Rz # 0.
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In 5.4.4 we will see that £(z) coincides in the right half-plane with the
principal branch of the complex logarithm function and that

{(2) =10gz=z(_l%(z—l)” for z € B;(1).

In the last two examples complex-differentiable functions were fashioned
out of transcendental real functions with the help of the Cauchy-Riemann
equations. However, in this book — as in classical function theory generally
— this mode of constructing complex-differentiable functions will not be
pursued any further.

4) If f = u + v is complez-differentiable in D, then throughout D

If')2 = det (Z: Z;’) =ul +vl =ul +2,
a fact which follows from |f'|> = f'f’ = u2 + v2 on account of u, = vy,
uy = —vg. |f'(2)|? is thus the value of the Jacobian functional determinant
of the mapping (z,y) — (u(z,y), v(z,y)); this determinant is never negative
and in fact is positive at every point z € D where f'(2) # 0. In example
2) we see, e.g., that
I€'(2)|? = e*® cos?y + ¥ sin? y = e2%7,

4*. Harmonic functions. Not all real-valued real-differentiable functions
u(z, y) occur as real parts of complex-differentiable functions. The Cauchy-
Riemann equations lead at once to a quite restrictive necessary condition
on u for this to happen. To formulate it, recall that the twice continuous
(real-) differentiability of u in D means that the partial derivatives u, and
u,y are differentiable and the four second-order partial derivatives uzg, Ugy,
Uyg, Uyy are continuous in D. As a consequence of this continuity Uzy = Uyg
in D, another well-known fact from the real differential calculus, often
proved via the Mean Value Theorem. Now the aforementioned necessary
condition reads

Theorem. If f = u + iv is complex-differentiable in D and if u and v are
twice continuously real-differentiable in D, then

Uge +Uyy = 0, Vg +vyy =0  in D.

Proof. Because f is complex-differentiable throughout D, u, = v, and

Uy = —vz in D. More partial differentiation yields uzz = vVyz, Uzy = Vyy,
Uyy = —Ugy, Uye = —Vze. It follows that uz, + uyy = vy — vgy and
Vgzz +Vyy = —Uyz + Uzy in D. Since all the second-order partial derivatives

of v and v are continuous in D, we have, as noted above, that uzy = Uy,
and vgy = vye; and so the claimed equalities follow. ]
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The supplemental assumption of the twice continuous differentiability of
u and v in this theorem is actually superfluous, because it turns out that ev-
ery complex-differentiable function is infinitely often complex-differentiable
(cf. 7.4.1).

In the literature the differential polynomial

b2 0?
A= g2t oy
is known as the Laplace operator. For every twice real-differentiable func-
tion u : D — R the function Au = 4, + Uy, is defined in D. u is called
a potential-function in D if u satisfies the potential-equation Au =0 in D.
(The language is motivated by considerations from physics, especially elec-
trostatics, because functions with Au = 0 arise as potentials in physics.)
Potential-functions are also known as harmonic functions.

The essence of the theorem is that the real and imaginary parts of
complex-differentiable functions are potential-functions. Thus simple ex-
amples of potential-functions can be obtained from the examples in the
preceding section; e.g., 22 = 2zy, R2® = 2° — 3zy? are harmonic in C.
Furthermore, the functions

Ré(z) = ecosy, Sé(z) = €”siny
Ri(z) = logl#|, Qf(z) = arctan?

are harmonic in their domains of definition. The function z? + y? = |2|?
is mot harmonic and so not the real part of any complex-differentiable
function. (Take a look at z2 — y2 = R2?; alternatively, look at A(z? +y?).)

O

For every harmonic polynomial u(z,y) € Rz, y] one can directly write
down a complex polynomial p(z) € C[z] whose real part is u(z,y); namely,
p(2) = 2u($2,42) —u(0,0). The reader should clarify this for himself with
a few examples; he might even give a proof of the general assertion.

Harmonic functions of two variables played a big role in classical mathematics
and gave essential impulses to it. In this connection let us only recall here the
famous

DIRICHLET Boundary-Value Problem. A real-valued continuous
function g on the boundary OE = {z € C : |z| = 1} of the unit disc is
given. A continuous function u on E U GE is sought having the properties
that u|0E = g and u|E is a potential-function in E.

It can be shown that there is always exactly one such function u. a

The theory of holomorphic (see next section for the definition) functions has
gotten valuable stimulus from the theory of harmonic functions. Some properties
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of harmonic functions (integral formulas, maximum principle, convergence theo-
rems, etc.) are shared by holomorphic functions. But nowadays it is customary
to develop the theory of holomorphic functions completely and then to derive
from it the fundamental properties of harmonic functions of two variables.

Exercises
Ezercise 1. Where are the following functions complex-differentiable?
a) f(z +iy) = z%° +izy?
b) f(z +iy) = y?sinz + iy
¢) f(z +1iy) =sin?(z +y) +icos?(x + y)
d) f(z+iy) = —6(cosz +isinz) + (2 — 24)y® + 15(y2 + 2y).

Ezercise 2. Let G be a region in C and f = u+1v be complex-differentiable
in G. Show that a function ¢ : G — R satisfies u+i9 complex-differentiable
in G, if and only if, v — ¥ is constant.

Ezercise 3. For each of the given functions u : C — R find all functions
v : C — R such that u + iv is complex-differentiable:

a) u(z +iy) =223 —6zy? + 22 —y? —y
b) u(z +iy) =22 —y? + e ¥Ysinx — e¥ cosz.

Ezercise 4. Show that for integer n > 1 the function v : C* — R,
z + log|z™| is harmonic but is not the real part of any function which
is complex-differentiable in C*.

Ezercise 5. Show that every harmonic function u : C — R is the real part
of some complex-differentiable function on C.

§3 Holomorphic functions

Now we introduce the fundamental idea of all of function theory. A func-
tion f : D — C is called holomorphic in the domain D if f is complex-
differentiable at every point of D; we say f is holomorphic at ¢c € D if there
is an open neighborhood U of ¢ lying in D such that the restriction f|U of
f to U is holomorphic in U.

The set of all points at which a function is holomorphic, is always open
in C. A function which is holomorphic at c¢ is complex-differentiable at ¢
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but a function which is complex-differentiable at ¢ need not be holomorphic
at ¢. For example, the function

f(z) == x3y? +iz%y3 , where z =z + iy ; z,y € R,

is, according to 2.3, complex-differentiable at the points of the coordinate
axes but nowhere else. So this function is not holomorphic at any point of
C.

The set of all holomorphic functions in the domain D is always denoted
by O(D). We naturally have the inclusions

C c O(D) c ¢(D);

the first because constant functions are (complex-) differentiable every-
where in C and the second because complex-differentiability implies conti-
nuity.

1. Differentiation rules are proved as in the case of real-differentiation;
doing so provides some evidence that the definition of complex-differenti-
ability in use today offers considerable advantages over Riemann’s defini-
tion via his differential equations.

Sum- and Product-rule. Let f : D — C and g : D — C be holomorphic
in D. Then for all a,b € C the functions af + bg and f - g are holomorphic
in D, with

(af +bg) =af +bg (sum-rule),

(f-9)=Ffg+fd (product-rule).

We will be content to recall how the proof of the product-rule goes. By
hypothesis, for each ¢ € D there are functions f.,g. : D — C which are
continuous at ¢ and satisfy

f(2) = f(o) + (2 = ) fe(2) , 9(2) = g(c) + (z = €)ge(2) , z € D.

Multiplication yields, for all z € D,

(f-9)(2) = (f - 9)(0) + (z = Ofe(2)g(c) + fle)ge(2) + (z — )(fe - gc)(2)]-

Since the square-bracketed expression is a function of z € D which is
evidently continuous at ¢, the complex-differentiability at ¢ of the product
function f - g is confirmed, with moreover (f - g)’(c) being the value of that
function at ¢, viz.,

(f - 9)'(c) = fe(c)g(e) + f(c)ge(c) = f'(c)g(c) + f(c)g'(c).

From the sum- and product-rules follows, as with real-differentiability:
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Every complez polynomial p(z) = ap + a1z + - - - + an2™ € Clz] is holo-
morphic in C and satisfies p'(z) = a1 + 2a2z + - - - + nay,z" " € Clz].

As in the reals, we also have a

Quotient rule. Let f,g be holomorphic and g zero-free in D. Then the
quotient function =g£ : D — C is holomorphic in D and

f ! ! __f / )
(5) = fg?g_ (Quotient-rule).

Differentiation of the composite function h o g is codified in the

Chain-rule. Let g € O(D),h € O(D’) be holomorphic functions with
g(D) C D'. Then the composite function ho g : D — C is holomorphic in
D and

(hog)'(z) =h'(g9(2))-¢'(2), z€D (Chain-rule).

The quotient- and chain-rules are proved just as for real-differentiability.

On the basis of Theorem 2.1 a function f = w + v is holomorphic in the
domain D C C exactly when f is real-differentiable and satisfies the Cauchy-
Riemann equations uz = vy, uy = —v; throughout D. But these differentiability
hypotheses may be dramatically weakened. For example, we have

A continuous function f : D — C is already holomorphic in D if through each
point ¢ € D there are two distinct straight lines L, L' along which the limits
f(2) — f(c) f(z) - f(o)

lim s lim —~~~~ <~
z€L, z—c Zz—C z€EL' z—c zZ—C

exist and are equal.

This theorem is due to D. MENCHOFF: “Sur la généralisation des conditions
de Cauchy-Riemann,” Fund. Math. 25(1935), 59-97. As a special case, that in
which every L is parallel to the z-axis and every L’ is parallel to the y-axis, we
have the so-called LOOMAN-MENCHOFF theorem:

A continuous function f : D — C is already holomorphic in D if the partial
derivatives ug, Uy, Uz, vy of the real-valued functions u := Rf,v := Sf exist and
satisfy the Cauchy-Riemann equations uz = vy, Uy = —Vz throughout D.

The hypothesis about the continuity of f, or some weaker surrogate, is needed,
as the following example shows:

f(z) == exp(—27%) for z € C*, f(0) :=0.
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(At the trouble-point z = 0, the two partial derivatives of f exist and are 0 by
an elementary use of the Mean Value Theorem of real analysis, since g—é(:c) =

4z~ % f(z) [z # 0] and %(iy) = 4y73f(y) [y # 0] imply that lim,_o gﬁ(x) =
limy o —%(iy) = 0.) On the other hand, if we ask that f be continuous through-

out D but only ask that the Cauchy-Riemann equations hold at one point, then
complex-differentiability at that point cannot be inferred, as the example

f(z):=|z|7*2® forzeC*, f(0):=0

shows.

Actually the result which is usually designated as the Looman-Menchoff the-
orem contains even weaker differentiability hypotheses than those stated above:
the partial derivatives need only exist on a set whose complement in D is count-
able and the Cauchy-Riemann equations need only hold on a set whose com-
plement in D has area 0. A very accessible proof of this, together with a full
history and bibliography of other possible weakenings of the differentiability hy-
potheses will be found in J. D. GRAY and S. A. MoRRIS, “When is a function
that satisfies the Cauchy-Riemann equations analytic?”, Amer. Math. Monthly
85(1978), 246-256. Another elementary account, which deals with Menchoff’s
first theorem as well, is K. MEIER, “Zum Satz von Looman-Menchoff,” Comm.
Math. Helv. 25(1951), 181-195; some simplifications of this paper will be found
in M. G. ARSOVE, “On the definition of an analytic function,” Amer. Math.
Monthly 62(1955), 22-25.

2. The C-algebra O(D). The differentiation rules yield directly that:

For every domain D in C the set O(D) of all functions which are holo-
morphic in D is a C-subalgebra of the C-algebra C(D). The units of O(D)
are exactly the zero-free functions.

For the exponential function &(z) and the logarithm function :(z) of
examples 2) and 3), respectively, in 2.3 we have €(z) € O(C) and £(z) €
O(C \ iR).

In contrast to C(D), the C-algebra O(D) does not contain the conjugate
f of each of its functions f; we saw, e.g., that z € O(D) but z ¢ O(D).
Also in general, if f € O(D) then none of Rf, If of |f| belongs to O(D);
for example, each of Rz, 3z and |z| is not complex-differentiable at any
point of C.

Every polynomial in z is holomorphic in C; every rational function
(meaning quotient of polynomials) is holomorphic in the complement of the
zero-set of its denominator. Further examples of holomorphic functions can
only be secured via limiting processes and so are no longer considered ele-
mentary functions. In 4.3.2 we will see that power series inside their circles
of convergence furnish an inexhaustible reservoir of holomorphic functions.

If f is a holomorphic function in D, then

f:D—-C,zm f(2)
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is another function defined on D. It is called the (first) derivative of f in
D. If one thinks about differentiable functions on R like z|z|, then there
is no reason to expect f’ to be holomorphic in D. But a fundamental
theorem of function theory, which we will get from the Cauchy integral
formula (but not until 7.4.1), says exactly this, that f’ is holomorphic in
D whenever f is. As a consequence, every holomorphic function in D
turns out to be infinitely often (complez-) differentiable in D, that is, all
the derivatives f’,---, f(™) ... exist. Here, as in the reals, we understand
by the mth derivative f(™ of f (in case it exists) the first derivative of
Fm=D m =1,2,--; thus f© := f and f(™ := (f(m=1)’_ The same proof
(induction) used for functions on R will also establish Leibniz’ product-rule
for higher derivatives of holomorphic functions

!
(f g)™ = Z %f(mg(ex
k+£=m
3. Characterization of locally constant functions. The following
statements about a function f : D — C are equivalent:
i) f is locally constant in D.
ii) f is holomorphic in D and f'(z) = 0 for all z € D.

First Proof. Only ii) = i) needs to be verified. Let u := Rf, v := §f.
Since f’' = uz + v, and u, = vy, v; = —uy, our hypothesis ii) means that
uz(2) = uy(z) = vz(2) = vy(z) = 0 for all z € D. From a well-known
theorem of real analysis it then follows that each of u and v, and therewith
also f = u + iv, is locally constant in D.

The theorem from real analysis used above is proved via the Mean Value Theo-
rem, but its use can easily be circumvented by another elementary (compactness)
argument:

Second proof. Consider any B = B,.(b) C D and any z € B. Let L denote the
line segment from b to z and let € > 0 be given. For each ¢ € L there is a disc
Bs(c) C D, 6 = 6(c) > 0, such that (cf. 1.1 and remember that f' = 0):

[f(w) = fc)] L elw — ¢ for all w € Bs(c).

Because finitely many of the discs Bs(c) suffice to cover the compactum L,
there is a succession of points zp = b, 21,---, 2, = z on L such that

f(2) = f(mr)| <elzu =z, 1<v<n.

It follows that

17 (2) — £(b)]

D If(z) - fz-1)]

n
sZIz,, - zy-1| =€lz —b].
1

<Y 1) = flam)l

IA
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Here ¢ > 0 is arbitrary, so f(z) = f(b) follows. This is true for each z € B, that
is, f|B is constant.

After studying complex integral calculus (cf. 6.3.2), we will give a third
proof of this theorem, using primitives. On the basis of 0.6 the theorem
can also be expressed thus:

For a region G in C, a function f : G — C is constant in G if and only
if it is holomorphic in G and f' vanishes everywhere in G.

We will illustrate the result of this paragraph by two examples.

1) Every function f which is holomorphic in D and assumes only real
values, respectively, only purely imaginary values, is locally constant in D.

Proof. In case u := Rf = f, we have v := Sf = 0 and so the Cauchy-
Riemann equations give u, = vy = 0= v, and so f' = u, + v, =0in D.
By the theorem f is locally constant in D. If, on the other hand, we have
f = i3 f throughout D, then we apply what we just learned to if in the
role of f to conclude the local constancy of f. O

2) Every holomorphic function which has constant modulus in D is locally
constant in D.

Proof. Suppose f = u+iv is holomorphic in D and 4?42 = ¢ is constant in
D. Then differentiation of this equation with respect to y gives uu, +vv, =
0 and so, since uy = —v,, uv; = vvy. Since also uuz+vv, = 0 and uy = vy,
we get

0 = u-(uug+vvg) = vy +v- (wg) = vlu, + v - (voy)
(u? + v?)ug = cu,.
Similarly, cv, = 0. If ¢ = 0 then, of course, f is constant (equal 0) in D.

If ¢ # 0, we now have f' = u, +iv;, = 0 in D, so that f is locally constant
in D by the theorem. 0O

In 8.5.1 we will prove the Open Mapping Theorem for holomorphic func-
tions; this theorem contains both of the above examples as trivial cases.

4. Historical remarks on notation. The word “holomorphic” was in-
troduced in 1875 by BrioT and BOUQUET, [BBJ, 2nd ed., p.14. In their
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1st edition (cf. pp. 3,7 and 11) they used instead of “holomorphic” the
designation “synectic”, which goes back to CAUCHY. Other synonyms in
the older literature are “monogenic”, “monodromic”, “analytic” and “reg-
ular”. These and other terms originally described various properties, like
having vanishing integral over every closed curve (cf. Chapter 6) or having
local power series expansions or satisfying the Cauchy-Riemann equations,
etc., and so were not at first recognized as synonyms. When the theory of
functions reached maturity, these properties were all seen to be equivalent
(and the reader will see this presently); so it is appropriate that most of
these terms have now faded into oblivion. “Analytic” is still sometimes
used as a synonym for “holomorphic”, but usually it has a more technical
meaning having to do with the Weierstrass continuation process.

Actually, as late as 1851 CAUCHY still had no exact definition of the class
of functions for which his theory was valid - -- “La théorie des fonctions de
variables imaginaires présente des questions délicates qu’il importait de
résoudre --- (The theory of functions of an imaginary variable presents
delicate questions which it was important to resolve ---)”; thus begins
a Comptes Rendus note on February 10, 1851 bearing the title “Sur les
fonctions de variables imaginaires” ((Fuvres (1) 11, pp. 301-304). See pp.
169, 170 of BOTTAZZINI [Hy).

The notation O(D) is used — since about 1952 — by the French school around
Henri CARTAN, especially in the function theory of several variables. It is some-
times said that O was chosen to honor the great Japanese mathematician OKA,
and it is sometimes even maintained that the O reflects the French pronuncia-
tion of the word holomorphic. Nevertheless, the choice of the symbol O appears
to have been purely accidental. In a letter of March 22, 1982 to the author
of this book, H. CARTAN wrote: “Je m’étais simplement inspiré d’une notation
utilisée par van der Waerden dans son classique traité ‘Moderne Algebra’ (cf.
par exemple §16 de la 2° édition allemande, p. 52)”. [I was simply inspired by a
notation used by van der Waerden in his classic treatise ‘Moderne Algebra’ (cf.
for example, §16 Vol. I of the English translation).]

Exercises

Ezercise 1. Let G be a region in C. Determine all holomorphic functions
f on G for which (Rf)? +i(S3f)? is also holomorphic on G.

Ezercise 2. Suppose that f = u + iv is holomorphic in the region G C C
and that for some pair of non-zero complex numbers a and b, au + bv is
constant in G. Show that then f itself is constant in G.

Ezercise 3. Let f = u + iv be holomorphic in the region G and satisfy
u = howv for some differentiable function A~ : R — R. Show that f is
constant.
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Ezercise 4. Let D,D’ be domains in C, g : D — C continuous with
g(D) c D', and h € O(D’). Show that if A’ is zero-free on g(D) and ho g
is holomorphic in D, then g is holomorphic in D. Hint: For fixed ¢ € D
consider the C-linearization of h o g at ¢ and that of h at g(c).

§4 Partial differentiation with respect to z, y,
z and z

If f: D — C is real-differentiable at ¢ and T = T f(c), then the limit
relation

i (et h) = f(e) = T(h) _

h—0 |h| 0

is valid without the absolute value signs. (But in general, for functions into
R™, stripping away the absolute values results in a meaningless division by
the vector h.) Upon setting z = ¢ + h, this observation becomes

Differentiability criterion. f: D — C is real-differentiable at ¢ precisely
when there exist a (uniquely determined) R-linear map T : C — C and a
function f : D — C, which is continuous at ¢ with f(c) = 0, such that

F(2) = f(e) + T(h) + hf(2).
If we write the R-linear differential
_ fug(e) uy(c)\ (Rh
I(h) = (vz(c) vz(c)) (%h)
of f =u+iv at ¢ in the form

(1) T(h) = T(1)Rh + T(i)3h

or in the form

(2) T(h) = A + ph,

then we are led almost automatically to introduce, besides the partial
derivatives of u and v with respect to z and y, also the partial deriva-
tives of f itself with respect to z and y and even with respect to z and
Z (subsection 1 below). Because, thanks to 0.1.2, there are among the
quantities ugz(c),- -, vy(c), T(1),T(z), A, p the relations
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T(1) = wug(e)+ive(c), TG = uy(c) +ivy(c)

A o= NTQ) —iT@E), po= $(TQ)+iT(s)),

certain identities between these formally introduced derivatives and the
familiar derivatives of u and v are immediately obtained.

It should be emphasized that this section consists largely of introducing
some new terminology and re-interpreting preceding results in this lan-
guage.

1. The partial derivatives f., fy, f., fz. If f is real-differentiable at ¢
and T = T f(c) is the differential of f at ¢, then the coefficients defined in
(1) and (2) are denoted

fale) == 3L (c) :=T(1) fye) = 5L(c) :=T(3);
foe) = 3L(c) = fe(e):=%(c) ==

and called the partial derivatives of f at ¢ with respect to x,y,z and Z,
respectively. Thus we have

THO) = R+ f(3h = Lon+ (e = (29 () (5.

There is good motivation for having chosen the symbols f, fy, f-, f :

Theorem. The following statements about f : D — C are equivalent:
i) f is real-differentiable at c = a + ib.

ii) There are functions fl, fg : D — C, each continuous at ¢, such that

f2)=flo)+ (z=)fiz) + (Z—0)fa(z)  forallze D.

iii) There are functions f1, fo : D — C, each continuous at c, such that

f(z) = f(c) + (z — a) fi(2) + (y — b) fa(2) for all z € D.

When these conditions are fulfilled,

fo(0) = file),  fale) = fa0),  fale) = fi(e),  fyle) = falo).
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Proof. i) = ii) The equation f(z) = f(c) + T(z —c) + (2 — ¢)f(z) which
features in the differentiability criterion above proves the claim, once we
write T in the form Th = Ah+ ph and define fi(z) := A+ f(2), fa(2) == p.
ii) = iii) Set f1 := fl + fg,fg = z(fl - fg) and recall that z — ¢ =
z—a-+i(y—b).
ili) = i) The mapping T'(h) := f1(c)Rh + f2(c)Sh is R-linear. We define
f:D — C by f(c) :=0and

f) o @O ~AE) =B A g, 4,

z—c¢
Since |z — a| < |z — ¢| and |y — b| < |z — c|, it follows that

1f(2)] < 1f1(2) = fu(©)| + |fa(2) = fa(e)]  for z € D\ {c}

and consequently f is continuous at c¢. The identity f(2) = f(c)+
T(z —c) + (z — ¢) f(z) is immediate from the definitions of f and T

2. Relations among the derivatives u;, Uy, Vs, Uy, foy fy, £z, fz. Here
we will consider functions f : D — C which are real-differentiable in D. For
such an f = u + iv the eight partial derivatives ugz, Uy, Uz, vy, fo, fy» [z, fz
are all well-defined functions in D. The following four identities are imme-
diate from the equations () in the introductory remarks to this section:

(3) fo =ug + 105, fy = Uy +ivy v o= %(fz _ify) y Jz= %(fz +ify)'

The equations here for f, and f, are scarcely surprising, on account of
f = u+iv. The equations for f, and f;, at first so strangely charming, are
better understood via the following mnemonic device: since z = 1(z + 2)
and y = —£(z — 2), think of f = f(z,y) as a function of z and Z and regard
2,2 as though they were independent variables. The differentiation rules
give, formally

6z 0z 2’ 9z 2 0z 2
and then the chain rule implies that

oz 0Oz 1 @_—i @_i

— Ofox L 8f8y _ lg _igf.
fz - 6z6z+6y62 - 2fa: 2fy’
_ Of oz af o _ 1 i
foo= SEE+EE = ift+ify o

From equations (3) we also obtain “inversion formulas”:
ue = 3(fatfa) uw = 3(fu+f)

(4) v = 5ifa—Ffo) v = 5(f—Ff)
fo = f+ )z fy = if:— f2)
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For more particulars on the differential calculus with respect to z and 2
compare subsection 4.

3. The Cauchy-Riemann differential equation 8f/8z=0. In 1.2 we
got the Cauchy-Riemann equations u, = vy, u, = —v, for the holomorphic
function f = u + iv from the identity f’ = ug +iv, = i1 - (u, +4v,). The
latter can now also be written as

f'=f.=i"'f, incase fe OD);

the condition for holomorphy can be compressed into the single equation

lfz = fy

(Already in 1857 in his work “Theorie der ABELschen Functionen” RIE-
MANN himself combined the two differential equations u, = v, and Uy =
—v, into the single equation ig—’: = 3_1;, where w = u + v [cf. Werke, p.

88].) If now we utilize the derivatives f,, f;, we see

Theorem. A real-differentiable function f : D — C is holomorphic in D
if and only if

of

3z =0

for every ¢ € D. In this case %f coincides in D with the derivative f' of

7.

This is nothing but the equivalence i) < iii) of theorem 2.1. Of course
the claims here follow as well directly from the preceding theorem. O

The Cauchy-Riemann equations for the function f = u — v conjugate
to f are u, = —v, and uy = v,, and these may be written (proof!) as
the single equation f, = 0. It follows that f’(c) = fz(c) for ¢ € D and so
under the same hypotheses and with the same proof, mutatis mutandis, as
the preceding theorem, we get:

f : D — C is holomorphic in D if and only if f, = 0 in D; when this
occurs, f:(c) coincides with the derivative of f at c € D.
This fact also follows easily from Theorem 1.

4. Calculus of the differential operators § and 5. The theory developed
above becomes especially elegant if we systematically and consistently utilize par-
tial differentiation with respect to z and with respect to 7. The differential calculus
of these operations, though largely irrelevant for classical function theory, is un-
usually fascinating; it goes back to H. POINCARE and was developed principally
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by W. WIRTINGER; it is even often called, especially in the German literature,
the Wirtinger calculus. It is quite indispensable in the function theory of several
variables.

Besides the customary “real” differential operators % and -(%, one is moti-
vated by the formulas

<9_f_=l<ﬂ_£i> Qz=1<_6_f+iﬂ>
8z 2\08z 8y’ 0z 2\o0z oy)/)’

to introduce the “complex” differential operators

8. _1(8 @ ~_ 8 _1(8 .8

Then the equations

o = lé] , =
%—3+6, %-—1(6—6)
hold. _
The differential calculus of 8,0 rests on what at first appears to be a rather
absurd

Thesis. In differentiating with respect to the conjugate complex variables z and
Z we can treat them as though they were independent variables.

The Cauchy-Riemann equation 8f = 0 is, in this view, interpreted as saying
that

Holomorphic functions are independent of Z and depend only on z.

As soon as one is convinced of the correctness and the power of this calculus
and has mastered it, he is apt to be reminded of what Jacobi had to say about the
significance of algorithms (see A. KNESER, “Euler und die Variationsrechnung”,
Festschrift zur Feier des 200. Geburtstages Leonhard Euler, Teubner Verlag,
1907, p. 24): “da es nimlich in der Mathematik darauf ankommt, Schliisse auf
Schliisse zu haufen, so wird es gut sein, so viele Schliisse als moglich in ein Zeichen
zusammenzuhiufen. Denn hat man dann ein fiir alle Mal den Sinn der Operation
ergriindet, so wird der sinnliche Anblick des Zeichens das ganze Résonnement
ersetzen, das man friiher bei jeder Gelegenheit wieder von vorn anfangen mufite
(because in mathematics we pile inferences upon inferences, it is a good thing
whenever we can subsume as many of them as possible under one symbol. For
once we have understood the true significance of an operation, just the sensible
apprehension of its symbol will suffice to obviate the whole reasoning process
that earlier we had to engage anew each time the operation was encountered).”

Formally, differentiation with respect to z and Z proceeds according the the
same rules as ordinary partial differentiation. Designating by f and g real-
differentiable functions from D into C, we maintain that

1) 8 and 8 are C-linear mappings (Sum-rule) for which the Product- and
Quotient-rule hold.
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2) 0f =0f .5 =9F. _
3) feOD) = df=0anddf =f ; fe O(D) © 6f =0 and f' = 3f.

Proof. ad 1) We confine ourselves to a few words about the product-rules:
O(fg) = 0f g+ f-0g and 8(fg) = 8f - g+ f - Bg. Consider ¢ € D. Theo-
rem 1 furnishes functions fi1, f2, g1, g2 in D which are continuous at ¢ and satisfy

f(2)
9(2)

fle) +(z =) fi(2) + (2 — ©) f2(2)
g(c) + (2 — ©)g1(2) + (2 — ©)g2(2).

Abbreviating f1(z) to fi, etc., it follows that

I

f(2)9(z) = f()g(e) + (z—0)fige) + f(c)g1 + (2 ~ ©) frgr + (2 — ©) fig2]
+ (2-9)f29(c) + f(0)g2 + (2 — O 292 + (2 — ¢) fogn].

Since all the functions occurring on the right side are continuous at ¢, the product-
rules follow at once from the relevant definitions.

ad 2) From f = f(c)+(2—c) fi+(2—¢) f2 follows f=f)+Gz—)fe+(z-0)fi.
Because the continuity at c of fi, f2 entails that of fz, f1, the claim follows.

ad 3) The first statement follows from Theorem 4.3, the second then follows
from 2). a

Remark. Naturally the product- and quotient-rules can be deduced from the
corresponding rules for partial differentiation with respect to z and y by using the
transformation equations from 2 to express f., fz and f., f, in terms of each other.
However the calculations would be unpleasant; moreover, such a procedure would
not contribute to understanding why 8 and & behave like partial derivatives. O

The chain rules read as follows:

4) Ifg: D - C, h: D' — C are real-differentiable in D and D', respectively
and g(D) C D', then hog : D — C is also real-differentiable; writing w for the
variable in D', we then have, for allc € D

2029 0= 2 (e L) + gt Lo
d(hog) dg

280 = 2L (g0 Lo+ o)) Be).

Here too the most convenient proof is an imitation of the proof in the real case,
using Theorem 1; we will however forego the details. O

Naturally we could also consider mized higher order partial derivatives like

fzzafzyy o ';f:zz,fyz,fzz = 82f = a(af),fzz = gaf = 5(6/’)

For them we have
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5) If f : D — C is twice continuously differentiable with respect to ¢ and y,
then

80f =B0f = §(fex + fuv):

Proof. 1t suffices to deal with the case of a real-valued function f = uw. From
2u; = uz — iuy and the known identities like uzy = uy, follows

400u = 2uzz — 2iUys = Uz + HUay — i(Uys + iUyy) = Uszz + Uyy

and 400u = sy + uyy follows analogously. D

We will conclude this brief glimpse at the Wirtinger calculus with an amusing
application to function theory. As a preliminary to that we show

If f, g are twice complez-differentiable in D, then
do(f-g)=f-9  inD.
Proof. Because f,g € O(D),
d(fg)=0f-g+f-09=Ffg+fog=fg.
Furthermore, f' € O(D) then entails that
99(fg)=0(f'g)=0f -5+ f -85=fBg={fg =
The following not so obvious result can now be derived rather expeditiously:
If f1, fa, - .., fn are twice complez-differentiable in D and if the function | f1|*+

[f2)? 4+ +|fnl? is locally constant in D, then each of the functions fi, f2,-- -, fn
must be locally constant in D.

Proof. On account of the local constancy, 0 = 88(}_7 fuf.) = 37 f/f.. Since
fLfL >0, it follows that f, = 0 in D. According to 3.3 each function f, is then
locally constant in D. m]

Exercises

Ezercise 1. Let D be a domain in C and f : D — C a real-differentiable
function. Suppose that for some ¢ € D the limit
L | fleth) — £(e)
h—0 h

exists. Prove that either f or f is complex-differentiable at c.

Exzercise 2. Determine all the points in C at which the following functions
are complex-differentiable:
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a) f(z) = 2[*(|2]* - 2)
b) f(z) =sin(|2[*)
c) f(z) = z(z + 22).

Exzercise 3. Let f be real-differentiable in the domain D C C. Show that
its Jacobian functional determinant satisfies

Up U of of
det <Ux v;”) = det (Bf 5}) = fal? = ]2



Chapter 2

Holomorphy and
Conformality.
Biholomorphic Mappings

Der Umstand, dass das Verstindnis mehrerer Arbeiten Rie-
manns anfianglich nur einem kleinen Leserkreis zugénglich war,
findet wohl darin seine Erkldrung, dass RIEMANN es unter-
lassen hat, bei der Verdffentlichung seiner allgemeinen Unter-
suchungen das Eigenthiimliche seiner Betrachtungsweise an der
vollstandigen Durchfiihrung specieller Beispiele ausfiihrlich zu
erldutern. (That several of Riemann’s works were at first com-
prehensible to only a small readership is explained by the fact
that in the publication of his general investigations RIEMANN
failed to illustrate his novel ideas thoroughly enough by car-
rying through the complete analysis of special examples.) -
Hermann Amandus SCHWARZ, 1869.

1. The investigation of length-preserving, respectively, angle-preserving
mappings between surfaces in R® is one of the interesting problems ad-
dressed in classical differential geometry. This problem is important for
cartography: every page of an atlas is a mapping of a part of the (spheri-
cal) surface of the earth into a plane. We know that there cannot be any
length-preserving atlases; but by contrast there are indeed angle-preserving
atlases (e.g., those based on stereographic projection). The first goal of this
chapter is to show that for domains in the plane R? = C angle-preserving
mappings and holomorphic functions are essentially the same thing (Sec-

71
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tion 1). The interpretation of holomorphic functions as angle-preserving
(= conformal) mappings was advocated especially by RIEMANN (cf. 1.5).
It provides the best way to “intuitively comprehend” such functions. One
examines in detail how paths behave under such mappings. The invari-
ance, under the mapping, of the angles in which curves intersect each other
frequently makes possible a good description of the function. “The con-
formal mapping associated with an analytic function affords an excellent
visualization of the properties of the latter; it can well be compared to the
visualization of a real function by its graph” (AHLFORS [1], p. 89).

2. In Riemann’s function theory a central role is played by the biholo-
morphic mappings. Such mappings are angle-preserving in both domain
and range. The question of whether two domains D, D’ in C are biholomor-
phically equivalent, that is, whether a biholomorphic mapping f : D=D’
exists, even though it has been solved in only a few cases, has proved to be
extremely fruitful. In section 2 we will present some significant examples of
biholomorphic mappings. Perhaps surprisingly it will turn out that hidden
among the examples we already have at hand are some extremely inter-
esting biholomorphic mappings. Thus we will show, among other things,
that as simple a function as z—;z maps the unbounded upper half-plane
biholomorphically onto the bounded unit disc.

The biholomorphic mappings of a domain D onto itself constitute a
group, the so-called automorphism group Aut D of D. The precise deter-
mination of this (generally non-commutative) group is an important and
fascinating challenge for Riemann’s function theory; but only in excep-
tional cases is it possible. In section 3 it will be shown that among the
fractional linear functions % are to be found automorphisms of both the
upper half-plane and of the unit disc. These automorphisms are so numer-
ous that any two points in the region in question can be carried into one
another by one of them. This so-called homogeneity will be used later in
9.2.2 together with SCHWARZ’s lemma to show that every automorphism
of the upper half-plane or of the unit disc is fractional linear.

§1 Holomorphic functions and angle-
preserving mappings

In 0.1.4 we introduced for R-linear mappings T : C — C the concept of
angle preservation. Now a real-differentiable mapping f : D — C will be
called angle-preserving at the point ¢ € D if the differential T f(c) : C — C
is an angle-preserving R-linear mapping. f will be called simply angle-
preserving in D if it is so at every point of D. In subsection 3 we will
go more deeply into the geometric interpretation of the concept of angle-
preserving, but first we will show that angle-preserving and holomorphic
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are “almost” the same thing.

1. Angle-preservation, holomorphy and antiholomorphy. Since
all mappings of the form A — Ah, A € C*, and h — ph, p € C*, are
angle-preserving, according to Lemma 0.1.4, it follows immediately that

If f : D — C, respectively, f : D — C is holomorphic in D and if for
each c € D, f'(c) # 0, respectively, f'(c) # 0, then f is angle-preserving
in D.

Proof. Because of 1.4.3 and the present hypotheses, Tf(c) : C — C, which
generally is given by h — f,(c)h + fz(c)h, here has either the form h —

f'(c)h or the form h +— f'(c)h. a

A function f : D — C is called anti-holomorphic (or conjugate-holomor-
phic) in D if f : D — C is holomorphic in D; this occurs exactly if f, (¢) =
0 for all ¢ € D. Thus the above implies that holomorphic and anti-
holomorphic functions having zero-free derivatives are angle-preserving.

In order to prove the converse we have to hypothesize the continuity of
f- and f; in D — a state of affairs that occurs exactly when both f, and
fy, or equivalently all four of ug,uy,v;, and v, exist and are continuous
throughout D, that is, when the real and imaginary parts of f are each
continuously real-differentiable in D. Such an f is called continuously real-
differentiable and is, in particular, real-differentiable in D (recall 1.2.2). In
order to make the proof of the converse as simple as possible, we confine
our attention to regions.

Theorem. For a region G in C the following assertions about a continu-
ously real-differentiable function f : G — C are equivalent:

i) Either f is holomorphic throughout G and f' is zero-free in G, or f
1s anti-holomorphic throughout G and f' is zero-free in G.

ii) f is angle-preserving in G.

Proof. Only ii}) = i) remains to be proved. According to Lemma 0.1.4 the
differential T'f(c) : C — C,

h f.(c)h+ fs(c)h, ceG,
is angle-preserving if
either  f:(c) =0 and f.(c)#0, or f.(c)=0 and fs(c)#0.

The function
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f=(c) = fz(¢)
fz(c) + fz(c)’

is consequently well defined, and takes only the values 1 and —1. Since
this function is continuous by hypothesis, it must map the connected set
G onto a connected image in {—1,1}, i.e., it must be constant in G. This
means that either f; vanishes everywhere and f, nowhere in G, or that this
situation is reversed. O

ceqG,

It is clear that holomorphic (or anti-holomorphic) mappings cannot be
angle-preserving at any zero of their derivatives f, (or fz); thus under the
mapping z — 2"(n > 1) angles at the origin are increased n-fold.

2. Angle- and orientation-preservation, holomorphy. In function
theory anti-holomorphic functions are rather unwelcome and in order to
effectively legislate them out of statement i) in theorem 1 we introduce
the concept of orientation-preserving mappings. A real-differentiable func-
tion f = u + iv is called orientation-preserving at ¢ € D if the Jacobian

determinant
det (u”” u”)
U Uy

is positive at ¢. (Cf. also M. KOECHER: Lineare Algebra und analyti-
sche Geometrie, Grundwissen Mathematik, Bd. 2, Springer-Verlag (1985),
Berlin.) As example 4) in 1.2.3 shows, a holomorphic function f is orienta-
tion-preserving at every point ¢ where f’(c) # 0. The Jacobian determinant
of an anti-holomorphic function is never positive (proof!); accordingly such
functions are nowhere orientation-preserving. In the light of this it is clear
from theorem 1 that

Theorem. The following assertions about a real-differentiable function
f: D — C are equivalent:

i) f is holomorphic and f' is zero-free in D.

ii) f is both angle-preserving and orientation-preserving in D.

Remarks on terminology. More often in English (and in French) when dis-
cussing holomorphic functions one sees the word “conformal” (“conforme”) in-
stead of “angle-preserving”. However, the term “conformal” is sometimes also
used as a synonym for “biholomorphic” (defined in §2 below). As we shall see
later, a holomorphic mapping is angle-preserving if and only if it is locally bi-
holomorphic, and so the difference between the two usages of “conformal” comes
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down to local versus global injectivity. When “conformal” is used in the lat-
ter global sense, the term “locally conformal” is then naturally expropriated for
“angle-preserving”. Angle-preserving anti-holomorphic mappings are sometimes
called indirectly conformal or anti-conformal. As there seems to be no unanimity
on these usages, the reader has to proceed with caution in the literature.

3. Geometric significance of angle-preservation. First let’s recall
the geometric significance of the tangent mapping Tf(c) at c € D of a
real-differentiable mapping f : D — C. We consider paths v : [a,b] — D,
t — y(t) = z(t) + iy(t) which pass through c, say, y(§) = c for some ¢
satisfying a < £ < b. Say that « is differentiable at £ if the derivatives x'(&)
and 7/(¢) exist and in that case set ¥'(£§) = z/(£) + iy'(§). [Paths with
these and other differentiability properties will play a central role in our
later development of the integral calculus of functions in domains in C.] In
case v'(£) # 0, the path has a tangent (line) at c, given by the mapping

R—-C,t—c++(8)t, teR.
The mapping

for:labl = C,te f(y(t) = u(=z(t),y(t) + iv(x(t), y(t))

is called the image path (of v under f = u + iv). Along with v, fo~is
also differentiable at ¢ and indeed (the chain rule once again!)

(Fo)(€) = ua(c)2'(€) +uy(e)y'(6) +i(va(e)z’(§) + vy () ()
Tf(c)(+'(€))-

In case (f o) (€) # 0, the image path has a tangent at f(c); this “image
tangent” is then given by

R—C,t— flc)+Tf(c)(v' ()t

In somewhat simplified language, if we call 7/(£) the tangent direction (of
the path v at ¢), then (see the figures on the left on the next page)

The differential T f(c) maps tangent directions of differentiable paths
onto tangent directions of the image paths.

In particular this makes the denomination “tangent mapping” for the
differential T f(c) understandable.

After these preparations it is easy to explain, using a somewhat naive
interpretation of the angle between curves, the significance of the term
“angle-preserving”: If ~;,7vy2 are two differentiable paths through ¢ with
tangent directions v]{(c), v4(c) at ¢, then £L(vi{c),¥5(c)) measures the angle
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Tangent Image tangent
Path SN
c
f(©)
c=y(¢) Soy
s 7, s ! oy,
f(c)’
Y
Soy
Image path

of intersection ¢ between these paths at ¢. The angle-preserving character
of f at c therefore means that : If two paths 1,72 intersect at the point c
in the angle ¢, then the image curves f o 71, f o v intersect at the image
point f(c) in the same angle .

Evidently two cases now have to be distinguished: the angle ¢ “together
with its sense, or direction of rotation” is conserved (as in the right-hand
figures above) or “the sense of ¢ is reversed”, as evidently occurs under
the conjugation mapping 2 — Zz. This “reversal of orientation” in fact is
manifested by all anti-holomorphic mappings and by contrast “conservation
of orientation” occurs with all holomorphic mappings. In fact (cf. 5):

Angle- and orientation-preservation together amount to “angle-preserva-
tion with conservation of direction”; this is what Riemann called “Aehn-
lichkeit in den kleinsten Theilen (similarity in the smallest parts)”.

4. Two examples. Under a holomorphic mapping, paths which intersect
orthogonally have orthogonally intersecting image paths. In particular,
an “orthogonal net” is mapped onto another such net. We offer here two
simple but very instructive examples of this highly graphic state of affairs.

First example. The mapping f : C* — C* , z — 22 is holomorphic and
f'(c) = 2¢ # 0 at every point c € C*. Consequently f is angle-preserving.
We have

u=Rf=z2-y?, v=Sf = 2zy.

The lines z = a, parallel to the y-axis, and y = b, parallel to the z-axis, are
thus mapped onto the parabolas v2 = 4a?(a? — u) and v? = 4b%(b? + u),
respectively, which all have their foci at the origin. The parabolas of the
first family open to the left and those of the second family to the right; and
parabolas from the two families intersect at right angles. The “level-lines”
u = a and v = b are, on the other hand, hyperbolas in the (z,y)-plane
which have the diagonals, respectively, the coordinate axes as asymptotes
and intersect each other orthogonally.
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Second example. The mapping ¢: C* —» C, z — %(z +271) is holomor-
phic. Since ¢'(z) = 3(1—2%), ¢ is angle-preserving throughout C*\{-1,1}.
If we set r := |z, £ := z/r and  := y/r, then

1 1
U=§Rq=§(7”+7'~1)§, UIQQ=§(T‘T_1)77-
From which we infer (because £2 + n? = 1) that
u? v? u?  2?
+ =1 and 5 ——=1
HOE A R e

These equations show that the g-image of every circle |z| = r < 1 is an
ellipse in the (u,v)-plane having major diameter 7+ r~' and minor di-
ameter r~! —r; and the ¢g-image of every radial segment z = ¢, 0 < t < 1,
c fixed and |c| = 1, is half of a branch of a hyperbola.

All these ellipses and hyperbolas are confocal (the common foci being
—~1 and 1). Because every circle |z| = r cuts every radial segment 2z = ct
orthogonally, every ellipse cuts every hyperbola orthogonally. The map-
ping ¢ will be put to use in 12.1.6 to effect an “integration-free” proof of
LAURENT’s theorem.
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iv

5. Historical remarks on conformality. In the classical literature
angle-preserving mappings were designated by the locution “in den klein-
sten Theilen dhnlich (similar in the smallest parts)”. The first work to deal
with such mappings was written in 1825 by Gauss ( Werke 4, 189-216):
Allgemeine Auflésung der Aufgabe : Die Theile einer gegebenen Fldiche
auf einer andern gegebenen Fldche so abzubilden, dass die Abbildung dem
Abgebildeten in den kleinsten Theilen dhnlich wird (Als Beantwortung der
von der kéniglichen Societdt der Wissenschaften in Copenhagen fir 1822
aufgegebenen Preisfrage; partial English translation by H. P. EVANS in Vol.
II of D. E. SMITH, A Source Book in Mathematics, Dover Publications
Inc., New York (1958); full English translation in Philosophical Magazine 4
(1828), 104-113 and 206-215.) GAUSS recognized, among other things, that
angle-preserving mappings between domains in the plane R? = C were just
those that could be described by holomorphic or anti-holomorphic functions
(although of course, he did not use the language of function theory).
With RIEMANN the geometric significance of holomorphic functions as
angle-preserving mappings is strongly in the foreground: he represents the
numbers z = z+iy and w = u—+4v as points in two planes A and B, respec-
tively, and writes in 1851 ([R], p.5): “Entspricht jedem Werthe von z ein
bestimmter mit z sich stetig &ndernder Werth von w, mit andern Worten,
sind u and v stetige Functionen von z,y, so wird jedem Punkt der Ebene A
ein Punkt der Ebene B, jeder Linie, allgemein zu reden, eine Linie, jedem
zusammenhéangenden Flichenstiicke ein zusammenhangendes Flachenstiick
entsprechen. Man wird sich also diese Abhéngigkeit der Grofle w von z
vorstellen kénnen als eine Abbildung der Ebene A auf der Ebene B. (If
to every value of 2 there corresponds a definite value of w which changes
continuously with z, in other words, if « and v are continuous functions of
z and y, then to every point in the plane A will correspond a point in the
plane B, to every line (generally speaking) will correspond a line and to ev-
ery connected piece of area will correspond a connected piece of area. Thus
one can imagine this dependence of the magnitude w on z as a mapping
of the plane A on the plane B.)” Thereupon, in half a page, he confirms
that in the case of holomorphy “zwischen den kleinsten Theilen der Ebene
A und ihres Bildes auf der Ebene B Aehnlichkeit statt [findet] (similarity
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obtains between the smallest parts of the plane A and their images on the
plane B)”.

Angle-preserving mappings play no role at all in the work of CAUCHY
and WEIERSTRASS.

Exercises

In the first two exercises f denotes the holomorphic mapping z + 27!

of C* onto C*. This map is its own inverse and preserves angles and
orientation.

Ezercise 1. Let L be a circle in C with center M € C and radius R > 0.
Show that:
a) If M =0, then f(L) is the circle around 0 of radius R~*.

b) If M # 0 and R # | M|, then f(L) is the circle around M /(|M|? - R?)
of radius R/||M|? — R?|.

c) If M # 0 and R = |M]|, then f(L \ {0}) is the straight line through
(2M)~! which is perpendicular to the segment joining 0 and (2M)~!,
that is, fF(L\{0}) = {z# € C: (z — 2M)™!, 2M)7) = 0} =
{z+iy, z,y € R: 2R(2M)~! + yS(2M)~! = |2M|2}.

d) Let a € C*, H be the (real) line through 0 and a, H' that through 0
and a~!. Show that f(H \ {0}) = H'\ {0}.

Since f is self-inverse, the image under f of every straight line and every
circle in C can be determined with the aid of Exercise 1.

Ezercise 2. Determine the image f(G) of the following regions G:
a) G:=ENH, with H the open upper half-plane.
b) G:=EnN By(1).
¢) G the open triangle with vertices 0,1 and 1.
d) G the open square with vertices 0,1,1 + 7 and .

Hint. Use Exercise 1 above and Exercise 2 from Chapter 0, §6.

Ezercise 3. Let ¢ : C* — C be given by g(z) := 2(2 4+ 271). Show that:
a) q is surjective.
b) For ¢ € C*, g(c) is real if and only if either ¢ € R\ {0} or |c| = 1.
¢) q(E) = [~1,1].
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d) For each point w € C\ {—1,1} the g-preimage ¢~ ! ({w}) = {z € C* :
q(z) = w} consists of exactly two points. If w € C\ [~1,1], then one
of these points lies in E* := E \ {0}, the other in C \ E.

e) ¢ maps E* bijectively onto C \ [-1,1].

f) g maps the upper half-plane H := {z € C : Sz > 0} bijectively onto
C\{zeR:|z| > 1}.

Ezercise 4. Let g : C* — C be as in Exercise 3 and s, R, o real numbers
satisfying the following relations:

1
s>1+V?2, Rzﬁ(s—s_l), oc=R++VR?-1.

Confirm the following inclusions:

{zeC:o7 ' <|z| <o} Cqg ' (Br(0)) c{ze€C:s7! <|z] < s}.

§2 Biholomorphic mappings

A holomorphic function f € O(D) is called a biholomorphic mapping of D
onto D' if D’ := f(D) is a domain and the mapping f : D — D’ has an
inverse mapping f~! : D’ — D which is holomorphic in D’. In such cases
we write suggestively

f:DXD.

The inverse mapping is itself then biholomorphic. Biholomorphic mappings
are injective. In 9.4.1 we will see that for every holomorphic injection f :
D — C the image f(D) is automatically open in C and the (set-theoretic)
inverse mapping f~! : f(D) — D is automatically holomorphic in f(D).
Trivial but useful is the remark that

f € O(D) is a biholomorphic mapping of D onto D' precisely when there
exists a g € O(D’) such that:

f(D)cD' ,g(D)CD, fog=idp: and gof=idp.
Proof. Because f o g is the identity mapping (on D’), we have f(D) = D’

and because g o f is the identity mapping (on D), we have g(D’) = D; but
then g is the inverse mapping f~!: D' - D of f: D — D'. o

The reader won’t have any trouble proving the
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Theorem on compositions. If f : D 5 D' and g : D' 5 D" are

biholomorphic mappings, then the compositie mapping go f : D — D" is
biholomorphic.

1. Complex 2 x 2 matrices and biholomorphic mappings. To every

complex matrix A = (Z Z) with (c, d) # (0,0) is associated the fractional
linear rational function
az+b
ha(z) = =t d € C(2).

It satisfies h/y(2) = %, where det A := ad — be; so in case det A = 0,
h 4 is constant.

In what follows only functions h 4 whose matrices A have det A # 0, i.e.,
are invertible matrices, will be considered. The set of matrices having non-
zero determinants forms a group under matrix multiplication, the general
linear group, and is denoted by GL(2, C); the neutral element of this group
1 0
0 1)

We take note of two fundamental rules of calculation:

is the identity matrix E :=

1) hy =id <& A = aE for some a € C*.
For all A, B € GL(2,C) a “substitution rule” holds:

2) hAB = hA OhB, i.e., hAB(z) = hA(hB(Z)).

The proofs are just simple calculations. m]
In case 4 = (g Z), ha € O(C) and the mapping hy : C — C is

biholomorphic. More interesting however is the case ¢ # 0. A direct
verification shows that:

a b
Inca..seA-(C d

mapping ha : C\{—c'd} = C\ {ac !} is biholomorphic and h4-1 is its
inverse mapping.

) € GL(2,C) and ¢ # 0, hg € O(C\ {—c~1d}); the

2. The biholomorphic Cayley mapping H > E, z — z_;z The upper
z+1

half-plane
H:={ze€C:32z >0}

is an unbounded region in C. We will show that nevertheless H can be
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biholomorphically mapped onto the (bounded) unit disc E. To this end we
introduce the matrices

1 =i P A A )
cn(t ) om( i)eoreo
they satisfy
(%) CC'=C'C =2E.

To C and C’ are associated the rational functions

Il e 0\ (i), horls) =ip

ho(z) = € O(C\{1}).

1—=2

By virtue of (*) and the rules of calculations from subsection 1, we have:
hc o hgr = her o he = id. And direct computation confirms that

43z
2 _ .
1-|he(z)]* = PR for z # —i,
1— 2
Sher(z) = 1 _5:2 for z # 1.
These equations imply that
1—|he(2)?>0 for §z >0 ; Shei(2) >0 for |z| < 1

and consequently hc(H) C E and hg/(E) C H. Together with the above
descriptions of the composites of h¢, her with one another, this says that
hc maps H biholomorphically onto E with hal = her. This discussion has
proved the

Theorem. The mapping hc : H > E, 2 — 2:—

~ 1
inverse mapping hg: :E - H, z — il + z

: 1s biholomorphic with

For historical reasons the mappings h¢, hos are called the Cayley map-
pings of H onto E and E onto H, respectively.

3. Remarks on the Cayley mapping. A critical reader might ask: “How
would the function hc(z) = z;i ever occur to one as a candidate for a biholo-
morphic mapping H = E?”

The general question: “Are H and E biholomorphically equivalent?” offers
no hint of the role of this function. But once it is known, the rest is routine
verifications; the real mathematical contribution consists just in writing down
this function.
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With hindsight we can discern certain simple heuristic considerations that
could have led to the function h¢. First suppose one already recognizes the
fractional linear transformations as an interesting class of functions (which itself
requires some mathematical experience) and is prescient enough to look for a
biholomorphic mapping H = E among them. Then it isn’t wild to speculate
that the sought-for function h will map the boundary of H, i.e., the real axis,
into the boundary of E, i.e., into the unit circle. (Or is that plausible?: the circle
is compact but the line is not!) So we try to map some pre-assigned points of R
to certain points of the circle, say (here we have considerable freedom),

h(0) := -1 h(1) :== —i; h(o0) :=1, that is,| llim h(z) = 1.

Y
7//%/ o

For a function of the form h(z) = ‘C‘jidb these requirements translate into the
equations
b ) a+b a+b/oo  a
—1=h(0) =~ ; —i=h(l)= = ; 1=nh(o0) = — L2 = =,
©) d : ) c+d (o0) c+dfoc ¢
From which one sees that b = —d, a = ¢ and so (via the second equation)
a —d = —ia — id, that is, d = ia. With these specifications the function A turns

out to be the Cayley mapping.

4*. Bijective holomorphic mappings of H and E onto the slit plane. It
is quite surprising what can be done with just the Cayley mapping hc and the
squaring function z2. Let C~ denote the complez plane slit along the negative
real azxis, i.e.,

C :=C\{zeC:R2<0,Sz=0}

First we claim that
The mapping q : H — C~, z — —2? is holomorphic and bijective.

(Were we to have slit C along the positive real axis, then we would consider 22
here instead of —z2. The reason for slitting along the negative real axis has to do
with the complex logarithm function to be introduced later (in 5.4.4): this can
only be done in a slit plane and we are reluctant to discard the positive real axis
where the classical real logarithm has lived all along.)

Proof. There is no ¢ € H such that t := g(c) is real and non-positive, since from
g(c) = —c? =t € R follows ¢* = —t > 0 and therewith ¢ € R, ¢ ¢ H. It follows
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that ¢(H) C C™. For ¢,c’ € H, g(c) = g(c’) occurs if and only if ¢’ = +c and
since not both ¢ and —c can lie in H, it must be true that ¢’ = ¢; thus ¢ : H — C~
is injective.

Every point w € C™ has a g-pre-image in H, because the quadratic equation
2° = —w has two distinct roots, one of which lies in H — cf. the explicit square-
root formula at the end of 0.1.3. m]

As a simple consequence we note that
z—1

The mappingp:E —-C™, 2 — (ﬂ)2 is holomorphic and bijective.

Proof. Via qo h¢r the region E is mapped holomorphically and bijectively onto

C™, and g(he/(2)) = - (z}—f—i)z = (%)2, that is, go hgr = p. ]

Scarcely anyone would trust that such a seemingly simple function as p could
really map the bounded unit disc bijectively and conformally onto the whole plane
minus its negative real azis (cf. the figure).

N\\

N

It is appropriate to mention here that the mappings g : H - C~ and p: E —
C™ are even biholomorphic. This is because the inverse mapping ¢~ : C~ — H
is automatically holomorphic, as will be proved in 9.4.1.

Remark. There is no biholomorphic mapping of the unit disc E onto the whole
plane C, a fact which follows from LIOUVILLE’s theorem (cf. 8.3.3). However,
the famous theorem announced by RIEMANN in 1851 ([R], p. 40) says that every
simply connected region other than C can be biholomorphically mapped onto E.
But we won'’t reach this remarkable theorem until the second volume.

Exercises

In what follows @)1 denotes the first quadrant {z € H : Rz > 0} of the
complex plane.
Ezercise 1. Show that the Cayley transformation hg : H — E, 2 +— z—:_::,
maps @1 biholomorphically onto {w € E : Sw < 0}.

Exercise 2. Supply holomorphic, bijective and angle-preserving mappings
of @1 onto E\ (—1,0] and of @; onto E.
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Ezercise 3. Let f(z) := ‘:7”;‘_'72 with ¢ # 0 and ad — bec # 0. Further, let L
be a circle or a (real) line in C. With the aid of Exercise 1 of §1 determine
the images f(L), respectively, f(L\{—d/c}). (Case distinctions have to be

made!) Hint. First prove that f can be written as

be

£e) = 58 e v afe)t + 2.

Ezercise 4. For M > R > 0 form the punctured upper half-plane H \
Bgr(iM). With the aid of a fractional linear transformation map it biholo-
morphically onto an annulus of the form {w € C: p < |w| < 1}. Hint.
First look for a ¢ < 0 such that z — (z — ic)~! maps the boundary of

Bpr(iM) and the real axis onto concentric circles. Use Exercise 1 of §1.

Ezercise 5. Find a map of E onto {w € C : Sw > (Rw)?} which is
holomorphic, bijective and angle-preserving,.

§3 Automorphisms of the upper half-plane
and the unit disc

A biholomorphic mapping h : D = D of a domain D onto itself is called an
automorphism of D. The set of all automorphisms of D will be denoted by
Aut D. Pursuant to the remarks in the introduction of §2, it is clear that

Aut D is a group with respect to the composition of mappings and the
identity mapping id is its neutral element.

The group AutC contains, for example, all “affine linear” mappings
z+ az+b, a € C*, b e C and because of this it is not commutative.
Aut C is actually rather simple, for these affine linear maps exhaust it; but
we will only see that via the theorem of CASORATI and WEIERSTRASS in
10.2.2.

In this section we will study the groups Aut H and AutE exclusively.
First we consider the upper half-plane H (in subsection 1) and then (in
subsection 2) transfer the results about H to E via Cayley mappings. In
subsection 3 we give a somewhat different representation of the automor-
phisms of E; finally (subsection 4) we show that H and E are homogeneous
with respect to their autemorphisms.

1. Automorphisms of H. The sets GLT(2,R) and SL(2,R) of all real 2
X 2 matrices with positive determinant, respectively, with determinant 1,
are each groups with respect to matrix multiplication (proof!). We write
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yz+6

as we did in 2.1, the fractional linear transformation associated with A.
Then

A= : ? for the typical such matrix and designate with h 4 (z) = 2232

det A

Sz for every A = (: ?) € GL*(2,R).

Proof. Because A is real

2i%h,4(z) = hA(Z)—hA(Z)

az+ﬂ_ az+f  ab- By

yz+8  yZ+6  |yz+ 6
detA

= Zmdz.

(2 -2)

From (1) follows immediately

Theorem. For every matric A € GLT(2,R) the mapping hy : H — H is
an automorphism of the upper half-plane and h -1 is its inverse mapping.

Proof. Since A,A™! € GL*(2,R), hy and hy-: are holomorphic in H.
On account of (1), h4a(H) ¢ H and hy-:1(H) C H. Finally, hgohy-1 =
hg-10hyg =id puts hy in AutH. 0O

Furthermore (with the help of the rules in 1.2) we now get:

The mapping GL*(2,R) — AutH given by A — h4 is a group homo-
morphism whose kernel consists of the matrices AE, X € R\ {0}. The
restriction of this homomorphism to the subgroup SL(2,R) has the same
1mage group and its kernel consists of just the two matrices +E.

2. Automorphisms of E. If f : D = D’ is biholomorphic, then the
mapping h — foho f~! effects a group isomorphism of Aut D onto Aut D’
(proof!). Thus, knowing f, f~! and automorphisms of D, we can construct
automorphisms of D’. Applying this process to the Cayley mapping h¢ :
H — E together with its inverse h¢: shows, in view of theorem 1, that all
the functions

hcohgoher = hcac with A € SL(Q, R)

are automorphisms of E. This observation leads to the following
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Theorem. The set M := {B := % g) :a,beC,detB =1} isa
subgroup of SL(2,C) and the mapping from SL(2,R) into M defined by
A %CAC’ s a group isomorphism.

The mapping B — hp(z) = %z__—i-_% of M into AutE is a group homo-

Z +
morphism whose kernel consists of the two matrices +E.

Proof. Since det C = det C’ = 2i, the multiplicativity of the determinant
gives det(3;CAC") = 1. Therefore the mapping

1
¢:SL(2,R) — SL(2,C), A~ ECAC'
is well defined and, thanks to the fact CC’ = C'C = 2{E, a group

monomorphism. The first claim in the theorem therefore follows as soon
as we have shown that the image of ¢ is M. To this end note that for

Y
o= ()5 )

. S a+é+i(B-v) a-6—i(B+7)
(2) Z(a\—6+i(ﬂ+7) a+5—i(6—7))'

Upon setting a := $[(a + 6) + (8 — )] and b := J[(a — 8) — i(B + )],
it follows that

B :=p(A) = (% ;) , and so image of ¢ C M.
The other inclusion M C image of ¢ requires that for every B = (g 2) €
M there be an A = (: ?) € SL(2,R) with 2iB = CAC’. To realize such

an A it suffices to set
a:=Ra+b), B:=[a-b), v:=-a+b), b6:=R(a->).

The matrix A so defined is then real and satisfies CAC’ = 2¢B, thanks to
(2), which holds for all real 2 x 2 matrices A. Of course, det B = 1 means
that det A =1, so A € SL(2,R), as desired.

To verify the second claim, recall that by 2.1(1) hg = hgc o ha o her
whenever B = 3-CAC". Therefore (1) says that for all B € M the functions
hp are automorphisms of E. The homomorphic property of the mapping

M — AutE and the assertion about its kernel now follow from 2.1(2) and
2.1(1). O
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The subgroup M of SL(2,C), which according to our theorem is isomorphic
to SL(2,R), is often designated by SU(1,1).

3. The encryption nﬁz_z:___w_l for automorphisms of E. The automor-

phisms of E furnished by theorem 2 can be written in another way; to do
it we need a matrix-theoretic

Lemma. To every matriz W = (g}_ —_n;u ) ,n € OE,w € E, corresponds a

matriz B € M such that W = sB for some s € C*.

Proof. Since w € E, 1 — [w|* > 0 and 117 € C*. So by 0.1.3 there exists
an a € C* with a? = ;=Iz. For b:= —wa, then [a|* — [b]?> = |n| = 1, and

so B := (% 2_) € M. If we set s :=na~! = —a(l — |w|?), then sa = —1
(so s € C*!) and sB=W. O

Bearing in mind that the functions Ay and hpg coincide when W, B are
related as in the lemma, it follows directly from theorem 2 that

Theorem. Every function z — n&— with n € OE and w € E, defines
an automorphism of E.

In case w = 0 the automorphism is z — 7z, a rotation about the origin.
A special role is played by the automorphisms

(1) g:ESE, Z s — w,we]E.
wz — 1
For them ¢(0) = w, g(w) = 0 and g o g = id. The latter equality following

from 2.1(1) and the calculation

(& DG T1)-a-woe

Because of the property g o g = id, the automorphisms g are called involu-
tions of E.

4. Homogeneity of E and H. A domain D in C is called homogeneous
with respect to a subgroup L of Aut D, if for every two points z, 2 € D there
is an automorphism h € L with h(z) = 2. It is also said in such cases that
the group L acts transitively on D.

Lemma. If there is a point ¢ € D whose orbit {g(c) : g € L} fills D, then
D is homogeneous with respect to L.
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Proof. Given z, 2 € D there exist g, § € L such that g(c) = z and §(c) = 2.
Then h := §o g~! € L satisfies h(z) = 2. m]

Theorem. The unit disc E is homogeneous with respect to the group AutE.

Proof. The point 0 has full orbit: for each w € E the function g(2) := £-4

—1
lies in AutE (theorem 3) and satisfies g(0) = w. The theorem therefore
follows from the lemma. |

If D is homogeneous with respect to Aut D and if D’ is biholomorphi-
cally equivalent to D, then D’ is homogeneous with respect to Aut D’ (the
verification of which is entrusted to the reader). From this and the fact
that the Cayley mapping h¢ effects a biholomorphic equivalence of E with
H, it is clear that

The upper half-plane H is homogeneous with respect to the group Aut H.

This also follows directly from the lemma, with ¢ = i. Every w € H has
-1

the form w = p + i0? with p,0 € R and o # 0. For A := (g p:_l) €

SL(2,R), the associated function h4 satisfies h4 (i) = w. O

A region G in C is generally not homogeneous; in fact Aut G most of
the time is just {id}. But we won’t become acquainted with any examples
of this until 10.2.4.

Exercises

Ezercise 1. Show that the unbounded regions C and C* are homogeneous
with respect to their automorphism groups.

Ezercise 2. Let L be a circle in C, a, b two points in C\ L. Show that there
is a fractional linear transformation f whose domain includes L U {a} and
which satisfies f(a) = b, f(L) = L.

Ezercise 3 (cf. also 9.2.3). Let g(z) := nZ %, n € JE, w € E be an
automorphism of E. Show that if g is not the identity map, then g fixes at
most one point in E.



Chapter 3

Modes of Convergence in
Function Theory

Die Anndherung an eine Grenze durch Operationen,
die nach bestimmten Gesetzen ohne Ende fortgesetzt
werden — dies ist der eigentliche Boden, auf welchem
die transscendenten Functionen erzeugt werden. (The
approach to a limit via operations which proceed ac-
cording to definite laws but without termination —
this is the real ground on which the transcendental
functions are generated.) — GAuUSs 1812.

1. Outside of the polynomials and rational functions, which arise from ap-
plying the four basic species of calculation finitely often, there really aren’t
any other interesting holomorphic functions available at first. Further func-
tions have to be generated by (possibly multiple) limit processes; thus, for
example, the exponential function exp z is the limit of its Taylor polyno-
mials ¥_g 2¥/v! or, as well, the limit of the Euler sequence (1 + z/n)".
The technique of getting new functions via limit processes was described
by GAuss as follows (Werke 3, p.198): “Die transscendenten Functionen
haben ihre wahre Quelle allemal, offen liegend oder versteckt, im Un-
endlichen. Die Operationen des Integrirens, der Summationen unendlicher
Reihen --- oder iiberhaupt die Anndherung an eine Grenze durch Oper-
ationen, die nach bestimmten Gesetzen ohne Ende fortgesetzt werden —
dies ist der eigentliche Boden, auf welchem die transscendenten Functio-
nen erzeugt werden ---” (The transcendental functions all have their true
source, overtly or covertly, in the infinite. The operation of integration,
the summation of infinite series - - - or generally the approach to a limit via
operations which proceed according to definite laws but without termina-
tion — this is the real ground on which the transcendental functions are
generated - - -)

The point of departure for all limit processes on functions is the concept

91
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of pointwise convergence, which is as old as the infinitesimal calculus itself.
If X is any non-empty set and f, a sequence of complex-valued functions
fr : X — C, then this sequence is said to be convergent at the point a € X
if the sequence f,(a) of complex numbers converges in C. The sequence
fn is called pointwise convergent in a subset A C X if it converges at every
point of A: then via

f(z):=lim fp(z) , z € A, the limit function f: A - C

of the sequence in A is defined; we write, somewhat sloppily, f := lim f,,.
This concept of (pointwise) convergence is the most naive one in analysis,
and is sometimes also referred to as simple convergence.

2. Among real-valued functions simple examples show how pointwise
convergent sequences can have bad properties: the continuous functions z™
on the interval [0, 1] converge pointwise there to a limit function which is
discontinuous at the point 1. Such pathologies are eliminated by the in-
troduction of the idea of locally uniform convergence. But it is well known
that locally uniformly convergent sequences of real-valued functions have
quirks too when it comes to differentiation: Limits of differentiable func-
tions are not generally differentiable themselves. Thus, e.g., according to
the Weierstrass approximation theorem every continuous f : I — R from
any compact interval I C R is uniformly approximable on I by polynomials,
in particular by differentiable functions. A further example of misbehavior
is furnished by the functions n~!sin(n!z),z € R; they converge uniformly
on R to 0 but their derivatives (n —1)! cos(n!z) don’t converge at any point
of R.

For function theory the concept of pointwise convergence is likewise un-
suitable. Here however such compelling examples as those above cannot
be adduced: We don’t know any simple sequence of holomorphic functions
in the unit disc E which is pointwise convergent to a limit function that
is not holomorphic. Such sequences can be constructed with the help of
Runge’s approximation theorem, but we won’t encounter that until the sec-
ond volume. At that point we will also see, however, why explicit examples
are difficult to come by: pointwise convergence of holomorphic functions is
necessarily “almost everywhere” locally uniform. In spite of this somewhat
pedagogically unsatisfactory situation, one is well advised to emphasize
locally uniform convergence from the very beginning. For example, this
will allow us later to extend rather effortlessly the various useful theorems
from the real domain on the interchange of limit operations and orders
of integration. It is nevertheless surprising how readily mathematicians
accept this received view; perhaps it’s because in our study of the infinites-
imal calculus we became fixated so early on the concept of local uniform
convergence that we react almost like Pavlov’s dogs.

As soon as one knows the Weierstrass convergence theorem, which among
other things ensures the unrestricted validity of the relation lim f] =
(lim f,)" for local uniform convergence, any residual doubt dissipates: no
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undesired limit functions intrude; local uniform convergence is the optimal
convergence mode for sequences of holomorphic functions.

3. Besides sequences we also have to consider series of holomorphic func-
tions. But in calculating with even locally uniformly convergent series cau-
tion has to be exercised: in general such series need not converge absolutely
and so cannot, without further justification, be rearranged at will. WEIER-
STRASS confronted these difficulties with his majorant criterion. Later a
virtue was made of necessity and the series satisfying the majorant crite-
rion were formally recognized with the name normally convergent (cf. 3.3).
Normally convergent series are in particular locally uniformly and abso-
lutely convergent; every rearrangement of a normally convergent series is
itself normally convergent. In 4.1.2 we will see that because of the classical
Abel convergence criterion, power series always converge normally inside
their discs of convergence. Normal convergence is the optimal convergence
mode for series of holomorphic functions.

In this chapter we plan to discuss in some detail the concepts of lo-
cally uniform, compact and normal convergence. X will always designate
a metric space.

§1 Uniform, locally uniform, and
compact convergence

1. Uniform convergence. A sequence of functions f, : X — C is said
to be uniformly convergent in A C X to f: A — C if every £ > 0 has an
ng = no(e) € N such that

|falz) — f(z)| < € for all n > ng and all z € 4;

when this occurs the limit function f is uniquely determined.

A series Y f, of functions converges uniformly in A if the sequence
sn = Y. f, of partial sums converges uniformly in A; as with numerical
series, the symbol 3 f, is also used to denote the limit function.

Uniform convergence in A implies ordinary convergence. In uniform
convergence there is associated with every € > 0 an index no(¢) which is
independent of the location of the point z in A, while in mere pointwise
convergence in A this index generally also depends (perhaps quite strongly)
on the individual z.

The theory of uniform convergence becomes especially transparent upon
introduction of the supremum semi-norm

|fla :=sup{|f(z)| : z € A}

for subsets A C X and functions f: X — C. Theset V:={f: X — C:
|fla < oo} of all complex-valued functions on X which are bounded on A
is a C-vector space; the mapping f — |f|4 is a “semi-norm” on V; more
precisely,
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|lfla=0« flJA=0, lcfla = lcl|fla
[f+gla<|fla+lgla figeV,ceC.

A sequence f, converges uniformly in A to f exactly when

limlf"—flAZO. 0

Without any effort at all we prove two important

Limit rules. Let f,,g, be sequences of functions in X which converge
uniformly in A. Then

L1 For all a,b € C the sequence af, + bgn converges uniformly in A and

lim(af, + bgn) = alim f, + blim g, (C-linearity).

L2 If the functions lim f, and limg, are both bounded in A, then the
product sequence f,gn also converges uniformly in A and

Of course there is a corresponding version of L1 for series Y. f,, > g
To see that the supplemental hypothesis in L2 is necessary, look at X :=
{xeR:0<z <1}, folx) = gulz) == 2 + L f(z) = g(z) :== 2. Then

r 1
.

\fa—flx = lon—glx = £, yet [fagn—Falx > fagn(x)—fo() = 2n+ 5

2. Locally uniform convergence. The sequence of powers 2™ converges
in every disc B,(0),r < 1, uniformly to the function 0, because |2"|g, (o) =
r™. Nevertheless the convergence is not uniform in the unit disc E: for
every 0 < ¢ < 1 and every n > 1 there is a point ¢ € E, for example,
¢ = ¥/, with |c*| > £. This kind of convergence behavior is symptomatic
of many sequences and series of functions. It is one of WEIERSTRASS’s
significant contributions to have clearly recognized and high-lighted this
convergence phenomenon: uniform convergence on the whole space X is
usually not an issue; what’s important is only that uniform convergence
prevail “in the small”.

A sequence of functions f,, : X — C is called locally uniformly convergent
in X if every point x € X lies in a neighborhood U, in which the sequence
fn converges uniformly.

A series 3 fo, is called locally uniformly convergent in X when its asso-
ciated sequence of partial sums is locally uniformly convergent in X.
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Uniform convergence naturally implies locally uniform convergence. The
limit rules stated above carry over at once to locally uniformly convergent
sequences and series.

Limit functions of (simply) convergent sequences of continuous functions
are not in general continuous. From his study of calculus the reader knows
that under locally uniform convergence the limit function does inherit con-
tinuity. More generally we have

Continuity theorem. If the sequence f, € C(X) converges locally uni-
formly in X, then the limit function f = lim f,, is likewise continuous on

X, ie., f€C(X).

Proof (as for functions on R). Let a € X be given. For all x € X and for all
indices n

1f(z) = f(a)]l < |f(2) = fa(@)| + |fn(z) — fn(a)] + |fn(a) - f(a)]-

By hypothesis a lies in a neighborhood U of uniform convergence, so given £ > 0
there exists an n such that |f — fn|y < € and the above inequality implies
that for this n and all z € U, |f(z) — f(a)| < 2|f — fulu + |fo(z) — fo(a)] <
2¢ + |fa(z) — fn(a)|. Finally, the continuity of f. at a means that there is a
6 > 0 such that |fn(z) — fa(a)| < € for all z € Bs(a). Therefore for all z in the
neighborhood Bs(a) N U of a we have |f(z) — f(a)| < 3e. O

For series, the continuity theorem asserts that the sum of a locally uni-
formly convergent series of continuous functions on X is itself a continuous
function on X.

3. Compact convergence. Clearly if the sequence f,, : X — C converges
uniformly in each of finitely many subsets Aj,..., Ay of X, then it also
converges uniformly in the union A; U A3 U ... U A, of these sets. An
immediate consequence is

If the sequence f, converges locally uniformly in X, then it converges uni-
formly on each compact subset K of X.

Proof. Every point x € K has an open neighborhood U, in which f, is
uniformly convergent. The open cover {U, : ¢ € K} of the compact set K
admits a finite subcover, say Uy,,...,U,. Then f, converges uniformly in
Ug, U...UUg,, and all the more so in the subset K of this union. a

We will say that a sequence or a series converges compactly in X if it
converges uniformly on every compact subset of X. Thus we have just seen
that:
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Local uniform convergence implies compact convergence.

This important theorem, which leads from uniform convergence “in the
small” to uniform convergence “in the large” was originally proved by
WEIERSTRASS for intervals in R. WEIERSTRASS gave a direct proof for
this “local-to-global principle” (you have to bear in mind that at that time
neither the general concept of compactness nor the HEINE-BOREL theorem
was available). a

In important cases the converse of the above statement is also true. Call
X locally compact if each of its points has at least one compact neighbor-
hood. Then it is trivial to see that

If X s locally compact, then every compactly convergent sequence or
series in X is locally uniformly convergent in X.

In locally compact spaces the concepts of local uniform convergence and
compact convergence therefore coincide. Since domains in C are locally
compact, it is not necessary in any function-theoretic discussion to distin-
guish between these notions.

We have some preference for the expression “compactly convergent” be-
cause it’s shorter than “locally uniformly convergent.” In the literature the
misleading locution “uniformly convergent in the interior of X” is also to
be found.

4. On the history of uniform convergence. The history of the concept
of uniform convergence is a paradigm in the history of ideas in modern
mathematics. In 1821 CAUCHY maintained in his Cours d’analyse ([C],
p-120) that convergent series of continuous functions f, always have con-
tinuous limit functions f. CAUCHY considers the equation

@ -3 f@=3 f(),

n+1

where the finite series on the left is certainly continuous. The error in
the proof lay in the implicit assumption that, independently of x, n may
be chosen so large that the infinite series on the right (for all z) becomes
sufficiently small (“deviendra insensible, si ’on attribue & 7 une valeur tres
considérable”).

It was ABEL who in 1826 in his paper on the binomial series was the
first to criticize Cauchy’s theorem; he writes ([A], p.316): “Es scheint mir
aber, daB dieser Lehrsatz Ausnahmen leidet. So ist z. B. die Reihe

1 1
(%) sincp—isin2‘p+ gsin3g0—...usw.
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unstetig fiir jeden Werth (2m + 1)7 von z, wo m eine ganze Zahl ist.
Bekanntlich giebt es eine Menge von Reihen mit dhnlichen Eigenschaften
(It appears to me, however, that this theorem suffers exceptions. Thus,
e.g., the series () is discontinuous for every value (2m + 1)7 of z, where
m is a whole number. As is well known, there is an abundance of series
with similar properties.)” ABEL is considering here a Fourier series which
converges throughout R to a limit function f which is discontinuous at the
points (2m+1)7. [In fact, f(z) = iz for -7 < z < w and f(—n) = f(7) =
0.] ABEL discusses this Fourier series in detail on p.337 of his paper and
also in a letter from Berlin on January 16, 1826 to his teacher and friend
HoLMBOE ((Fuvres 2, pp. 258 ff). We will return to this letter when
we discuss the problem of term-by-term differentiation of infinite series in
4.3.3.

The first mathematician to have used the idea of uniform convergence
seems to have been Christoph GUDERMANN, WEIERSTRASS’ teacher in
Miinster. (He was born in 1798 in Winneburg near Hildesheim, was a
secondary school teacher in Cleve and Miinster, published works on elliptic
functions and integrals in Crelle’s Journal between 1838 and 1843, and
died in Miinster in 1852.) In 1838 in the midst of his investigations of
modular functions he wrote on pp.251-252, Volume 18 of Jour. fiir Reine
und Angew. Math.: “Es ist ein bemerkenswerther Umstand, da8... die so
eben gefundenen Reihen einen im Ganzen gleichen Grad der Convergenz
haben. (It is a fact worth noting that ... the series just found have all the
same convergence rate.)”

In 1839/40 WEIERSTRASS was the only auditor as GUDERMANN lec-
tured on modular functions. Here he may have encountered the new type
of convergence for the first time. The designation “uniform convergence”
originates with WEIERSTRASS, who by 1841 was working routinely with
uniformly convergent series in the paper “Zur Theorie der Potenzreihen”
[W3] which was written that year in Miinster but not published until 1894.
There one finds the statement (pp.68-69): “Da die betrachtete Potenzreihe
... gleichmdssig convergirt, so lasst sich aus ihr nach Annahme einer beliebi-
gen positiven Grosse 6 eine endliche Anzahl von Gliedern so herausheben,
dass die Summe aller {ibrigen Glieder fiir jedes der angegebenen Werth-
systeme ... ihrem absoluten Betrage nach < § ist. (Because the power
series under consideration ... converges uniformly, given an arbitrary pos-
itive quantity &, a finite number of terms of the series can be discarded so
that the sum of all the remaining terms is, for every value in the specified
domain ... in absolute value < 6.)”

The realization of the central role of the concept of uniform conver-
gence in analysis came about slowly in the last century. The mathemati-
cal world gradually, through WEIERSTRASS’ lectures Introduction to Anal-
ysis at Berlin in the winter 1859/60 and in the summer 1860, became
aware of the incisiveness and indispensability of this concept. Still WEIER-
STRASS wrote on March 6, 1881 to H. A. SCHWARZ: “Bei den Franzosen
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hat namentlich meine letzte Abhandlung mehr Aufsehen gemacht, als sie
eigentlich verdient; man scheint endlich einzusehen, welche Bedeutung der
Begriff der gleichmissigen Convergenz hat. (My latest treatise created
more of a sensation among the French than it really deserves; people finally
seem to realize the significance of the concept of uniform convergence.)”

In 1847, independently of WEIERSTRASS and of each other, PH. L. SEI-
DEL (Minchen Akad. Wiss. Abh. 7(1848), 379-394) and Sir G. G. STOKES
(Trans. Camb. Phil. Soc. 8(1847), 533-583) introduced concepts which
correspond to that of the uniform convergence of a series. But their contri-
butions exercised no further influence on the development of the idea. In
an article which is well worth reading, entitled “Sir George Stokes and the
concept of uniform convergence” (Proc. Camb. Phil. Soc. 19(1916-1919),
148-156), the renowned British analyst G. H. HARDY compares the defini-
tions of these three mathematicians; he says: “Weierstrass’s discovery was
the earliest, and he alone fully realized its far-reaching importance as one
of the fundamental ideas of analysis.”

5%, Compact and continuous convergence. A sequence of functions
fn : X — C is said to be continuously convergent in X, if for every conver-
gent sequence {z,} C X, the limit lim,_,o fr(z,) exists in C. In particular
(use constant sequences of z’s), the sequence f,, converges pointwise on X
to a limit function f : X — C. If the two sequences {z}}, {z/} converge
to the same limit z in X, then the sequences {f.(z,)}, {f.(zl)} have
the same limit in C. This can be seen by interlacing {z5,} and {z5,,,}
into a single convergent sequence {z,} and using the hypothesized con-
vergence of {f,(z,)}. Of course the common value is f(z). Notice too
that limy fn, (zx) = f(z) for any subsequence {fn,} of {f,}. To see this,
define =, := z; for 1 < m < ny and @}, = =z for ng_1 < M < Ny
and all k > 1. Then lim,, z,, = =z, so lim,, fm(z,,) = f(z); hence
limg fr, (7, ) = limg fn, (k) = f(z). It is almost immediate that

If the sequence {f,} converges continuously on X to f, then f is con-
tinuous on X (even if the f, are not themselves continuous).

Proof. Consider any * € X, any sequence {z,} C X convergent to x
and any € > 0. There is a strictly increasing sequence n; € N such that
| fni (k) — f(zk)| < /2. Since, as noted above, limy fr, (zx) = f(x), there
exists a ke such that | f,, (zx) — f(z)| < &/2 for all k > k.. The continuity
of f at z follows:

|f(zk) = £(@)] < |f(@k) = far(p)| + | fni(2k) = f(2)| <& forall k > k..

We now show that in important cases “continuous” and “compact” con-
vergence are identical:

Theorem. The following assertions concerning a sequence f, : X — C
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are equivalent:
i) The sequence f, converges compactly in X to a function f € C(X).
ii) The sequence f, is continuously convergent in X.

Proof. i) = ii) Let z, be a convergent sequence in X and let z = lim z,,.
The set L := {z,z1,%2,...} is a compact subset of X. Consequently,
lim|f — falr = 0 and so in particular f(z,) — fn(z,) is a null sequence
in C. But f(z) — f(zn) is also a null sequence, since f is continuous at x.
The sum of these two null sequences, viz., f(z) — fn(z,) is then also a null
sequence.

ii) = i) Let f be the limit function. We have seen above that f € C(X).
Suppose there is a compact K C X such that |f — fu|x is not a null
sequence. This means that there is an € > 0 and a subsequence n' of
indices such that |f — fu/|kg > € for all n’. In turn the latter means that
there are points z,- € K such that

(%) [f(xn) — far(zn)| > € for all n'.

Because K is compact, we may assume, by passing to a further subse-
quence if necessary, that the sequence x, s converges, say to . But then
lim f(zn') = f(z) because of the continuity of f at z and lim f,/ (zn/) =
f(z) by hypothesis ii) and the remarks preceding this theorem. Subtrac-
tion gives that im[f(x,/) — fo(zn')] = 0, contradicting (*). O

As an application of this theorem we get an easy proof of the

Composition Theorem. Let D, D’ be domains in C, f, € C(D), gn €
C(D'") sequences of continuous functions which converge compactly in their
respective domains to f € C(D), g € C(D’). Suppose that fo,(D) C D’ for
alln and f(D) C D'. Then the composite sequence g, o fr 1is a well-defined
sequence in C(D) and it converges compactly in D to go f € C(D).

Proof. For every sequence r, € D with limz,, = =z € D, we have
lim f,(z,) = f(z) and then lim g,(f.(z,)) = g(f(z)), by the preceding
theorem. But then one more application of the theorem assures us that
gn © fn converges compactly to g o f. ]

Historical note. In 1929 C. CARATHEODORY made a plea for contin-
uous convergence; in his paper “Stetige Konvergenz und normale Fami-
lien von Funktionen”, Math. Annalen 101(1929), 515-533 [ = Gesammelte
Math. Schriften 4, 96-118], on pp. 96-97 he writes: “Mein Vorschlag
geht dahin, jedesmal, wo es vorteilhaft ist — und es ist, wie ich glaube,
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mit ganz wenigen Ausnahmen immer vorteilhaft —, den Begriff der [lokal]
gleichméBigen Konvergenz in der Funktionentheorie durch den Begriff der
“stetigen Konvergenz” zu ersetzen ..., dessen Handhabung unvergleichlich
einfacher ist. Im allgemeinen ist allerdings die stetige Konvergenz enger als
die gleichmaBige; fiir den in der Funktionentheorie allein in Betracht kom-
menden Fall, in dem die Funktionen der Folge stetig sind, decken sich die
beiden Begriffe vollkommen. (My suggestion is this: every time it is advan-
tageous, and I believe that with few exceptions it is always so, one should
replace the concept of [local] uniform convergence in function theory with
that of “continuous convergence” ... whose manipulation is incomparably
simpler. Granted that in the framework of general topology continuous
convergence is more narrow than uniform convergence; but the only case
which comes up in function theory is that of sequences of continuous func-
tions and for them the two concepts in fact coincide.)” Nevertheless it
has not become customary to check compact convergence by confirming
that continuous convergence obtains. The concept of continuous conver-
gence was introduced in 1921 by H. HAHN in his book Theorie der Reellen
Funktionen, Julius Springer, Berlin; cf. pp. 238 ff. Actually the idea and
the terminology showed up earlier in R. COURANT, “Uber eine Eigenschaft
der Abbildungsfunktionen bei konformer Abbildung”, Nachrichten Konigl.
Gesell. Wissen. Gottingen, Math.-phys. Kl. (1914), 101-109, esp. p. 106.

Exercises

Ezercise 1. a) For n € N let f,, : C\ OE — C be defined by fn(z) := —1+—lz;
Show that for each 0 < r < 1 the sequence {f,} converges uniformly on
B,(0) U (C\ By/,(0)) but not uniformly on C \ 9E.

b) Where does the sequence of functions f, : C\ dE — C defined by
fo(z) := ﬁ;ﬁ converge uniformly?

Ezercise 2. A sequence of polynomials

2 d
Pn(2) :=Gno+ Gn12+ an22° + -+ ana2® an; €C,

all of degree not exceeding some d € N, is given. Show that the following
statements are equivalent.

i) The sequence {p,} converges compactly in C.

ii) There exist d + 1 distinct points cy,...,cq € C such that {p,} con-
verges on {cop,...,Cd}

iii) For each 0 < j < d the sequence of coeflicients {an ; }nen converges.

In case of convergence the limit function is the polynomial ap +a12+---+
agz®, where a; =1lim,_ o an;, 0 <j < d



§2. CONVERGENCE CRITERIA 101

Ezercise 8. A sequence of automorphisms

2 — Wk
= ———— E JE
fr(2) Mmooy WREE e

of the unit disc is given. Prove the equivalence of the following statements:

i) The sequence {f} converges compactly in E to a non-constant func-
tion.

ii) There exist cp,c; € E such that lim f,(co) and lim fn(c1) exist and
are different.

iii) Each of the sequences {7} and {wx} converges and limwy € E.

Hint for iii) = i). Show that {fi} converges compactly in E to f(z) :=
n=-%, where w := limwg, n := limn,. To this end you can use theorem
5*.

Ezercise 4. Let D be a domain in C and for each n > 1 set K, := {z€eD:
|z| < n,d.(8D) > n~'}. Each K, is compact, K, C K, if n < m and
D = Up>1K,. Show that:

a) For all f,g € C(D) the series d(f,g) := 3,5 2“"%}%— con-
verges.

b) A metric is defined in C(D) by d.

c) A sequence {fx} C C(D) converges compactly on D to f € C(D), if
and only if it converges to f with respect to the metric d, that is, if
and only if limg d(fx, f) = 0.

Ezercise 5. Let K be a compact metric space, dx its metric, {f,} a uni-
formly convergent sequence of continuous complex-valued functions on K,
with limit function f. Show that the sequence is (uniformly) equicontin-
uous, meaning that for every ¢ > 0 there exists § > 0 such that |f,(z) —
fa(y)| < € for all n € N whenever z,y € K satisfy dg(z,y) < 6. Hint. f
and each f, is uniformly continuous on K (cf. Exercise 3 of Chapter 0,

§5).

§2 Convergence Criteria

In analogy with the situation for numerical sequences a sequence of func-
tions f, : X — C is said to be a Cauchy sequence (with respect to the
supremum semi-norm) on A C X, if for each € > 0 there exists an n. € N
such that
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|fm — fala<e for all m,n > n,.

In subsection 1 below we carry over the Cauchy convergence criterion to
sequences and series of functions; and in subsection 2 we do the same for
the majorant criterion 0.4.2.

1. Cauchy’s convergence criterion. The following assertions about a
sequence fn, : X — C and a non-empty subset A of X are equivalent:

i) fn is uniformly convergent in A.
ii) fn is a Cauchy sequence in A.

Proof. We will check only the non-trivial implication ii) = i). Since
|[fm(z) = fr(z)| < |fm — fnula for every z € A, each of the numerical
sequences fn(z), ¢ € A, is a Cauchy sequence. Therefore the sequence f,
is pointwise convergent in A; let f := lim f,,. For all n,m and all z € A we
have

|fn(2)=f(@)] < |fn (@)~ fm (@) +] frm(2) = £ (2)] < | fr=Fm| a+] Frn (@)~ f (2)].

If now € > 0 is given, then there is an n. such that |f, — fi|a < € for all
n,m > ne. For each £ € A there further exists an m = m(z) > n, such
that |fm(x) — f(z)| < e. It follows that |f,(z) — f(z)| < 2¢ for all n > n,
and this holds at each z € A. That is, |f, — fla< 2 foralln>n,. 0O

The re-formulation for series is obvious:

Cauchy’s convergence criterion for series. The following assertions
concerning an infinite series > f, of functions f, : X — C and a non-
empty subset A of X are equivalent:

i) Y f. is uniformly convergent in A.

ii) For every e > 0 there exists an n. € N such that |fy1(x) + - +
fa(z)] <€ for alln > m > n, and all z € A.

CAUCHY introduced this criterion in his 1853 work “Note sur les séries
convergentes dont les divers termes sont des fonctions continues ...” (Euv-
res (1) 11, 30-36; Théoréme II, p.34). Here for the first time he worked
with the notion of uniform convergence, without, however, using the word
“uniforme”. Here too (p. 31) he acknowledges that his continuity theorem
is incorrect but dismisses the matter with “il est facile de voir comment on
doit modifier I’énoncé du théoréme (it is easy to see how one should modify
the statement of the theorem).”
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For continuous convergence of a sequence of functions there is also a Cauchy
convergence criterion. The reader may check for himself that: A sequence of
continuous functions fn : X — C converges continuously in X if and only if
fn(zr) is a numerical Cauchy sequence for every convergent sequence Tn in X.

2. Weierstrass’ majorant criterion. Cauchy’s criterion for the uniform
convergence of a series is seldom used in practice. But particularly easy to
handle in many applications is the

Majorant criterion (or M-test) of Weierstrass. Let f, : X - C be a
sequence of functions, A a non-void subset of X and suppose that there is
a sequence of real numbers M, > 0 such that

Ifla <M, forallveNand » M, <.

Then the series Y f, converges uniformly in A.

Proof. Foralln >m and allz € A

> ful=)

m+1

n

<Y @< M

m+1 m+1

Since 3" M, < oo, for each & > 0 there is an n. € N such that Y. ., M, <
¢ for all n > m > n.. This means that |f,+1(z) + -+ + fo(z)| < € for all
n > m > n. and all ¢ € A. Therefore by Cauchy’s criterion Y f, converges
uniformly in A. a

WEIERSTRASS consigned his criterion to a footnote (on p. 202) in his
1880 treatise Zur Functionenlehre [W4).

Exercises

Ezercise 1. Let p, be a sequence of complex polynomials, p,(z) € C[z].
Show that {p,} converges uniformly in C, if and only if for some N € N
and some convergent sequence {c,} of complex numbers we have p, =
pn + ¢, for all n > N. In case of convergence the limit function is then the
polynomial py + limc,.

Ezercise 2 (cf. also exercise 4 to Chapter 0, §4). Let X be any non-void set,
fo: X — C (v > 0) a sequence of functions with the following properties:
(1) {f.} converges uniformly in X to the 0 function.

(ii) The series }_ -, |f, — fu—1| converges uniformly on X.
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a) Show that if a,, € C and the sequence s, :== Y v ja, (m € N) is
bounded, then the series 3" a, f, converges uniformly in X.

b) Under what conditions on a second sequence of functions g, : X — C
does the series ) _ g, f, converge uniformly on X?

Ezercise 3. Show that the series ) ., %_Ilnz converges compactly in C \
{-1,-2,-3,...}. -

Ezercise 4. Show that the series an1 % converges uniformly in the
strip § := {z € C : |Qz| < 1/2} but is not absolutely convergent at any
point of S.

Ezercise 5. Show that the metric space C(D) in Exercise 4 of §1 is complete.

§3 Normal convergence of series

Although the series ) {° %{Tl is locally uniformly convergent in R it is
possible to create divergent series from it by rearrangement. In order to
calculate comfortably and without qualms we need (in analogy with series
of complex numbers) a convergence notion for series 3 f, of functions
which precludes such phenomena and guarantees that every re-arrangement
of the series and every subseries will converge locally uniformly. These
desiderata are secured by the concept of normal convergence, which we
now discuss.

1. Normal convergence. A series Y f, of functions f, : X — Cis called
normally convergent in X if each point of z has a neighborhood U which
satisfies )~ |f,|lv < o0. “Normal” here refers to the presence of (semi-)
norms and has none of the common parlance significance (“expected, av-
erage, representative, according to the rule”) of that word. We should
emphasize that normal convergence is only defined for series and not for
sequences generally. On the basis of Weierstrass’ majorant criterion we see
that

Every series which is normally convergent in X is locally uniformly con-
vergent in X.

From the continuity theorem 1.2 it follows in particular that



§3. NORMAL CONVERGENCE OF SERIES 105

If f, € C(X) and f =) f, converges normally in X, then f is contin-
uous on X.

Quite trivial is the observation that

Every subseries of a series which converges normally in X will itself
converge normally in X.

But we also have the indispensable

Rearrangement theorem. If Y ° f, converges normally in X to f, then
for every bijection T : N — N the rearranged series Y fr) also converges
normally in X to f.

Proof. Each point € X has a neighborhood U for which }” |f,|v < oo.
Consequently for every bijection 7 of N, the rearrangement theorem for
series of complex numbers (0.4.3) ensures that > |f;)|lu < oo. And by
applying that result to the numerical series Y f,(z) we are further assured
that 3 f-)(z) = f(z). This is true of every z € X, and so the normal
convergence in X of 3 f;,) to f is proved. m]

The rearrangement theorem can be sharpened as follows:

Let N = Ug 0Ny be a decomposition of the natural numbers into mutually
disjoint non-void subsets and suppose that Y ;" f, converges normally in
X to f. Then for each k the series EueNk fv converges normally in X to
a function g : X — C and the series 3, ., gr converges normally in X to

7
The reader should carry out the proof of this; see Exercise 2 below.

Along with }° f, and )" g, every series of the form Y (af, + bg,) will
also be normally convergent in X (a,b € C). From the product theorem
0.4.6 there also follows immediately

Product theorem for normally convergent series. If f = > f,
and g = Y. g, converge normally in X, then every series >~ hy in which

ho, h1, ... run through every product f,g, ezactly once, converges normally
in X to fg.

We write fg = > fug, and in particular, fg = Y py with py :=
> ptv=n fugy (the Cauchy product).
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2. Discussion of normal convergence. Normal convergence is by defi-
nition a local property. Nevertheless:

If 3" f. is normally convergent in X, then ) |f,|k < oo for every com-
pactum K in X.

And there is a converse in the following sense

If X is locally compact and Y. |f, |k < oo for every compactum K in X,
then > f, is normally convergent in X.

The proofs of both these statements are trivial. O

For discs B,(c) in C, every compactum K C By(c) lies in B, (c) for some
r < s, so we have as a particular case of the above

If f, : Bs(c) — C is a sequence which satisfies Y |f,|B,(c) < 00 for each
0 <r<s, then Y f, converges normally in B(c). ]

Normal convergence is more than local uniform convergence, as the series

b (;_B:, z€ C\{-1,-2,-3,---} shows. The reader should corroborate

this.

In spite of the last example above, it is always possible to force a locally
uniformly convergent series to be a normally convergent one by judicious insertion
of parentheses:

Suppose that f = > f, is locally uniformly convergent in X. Then every
point of X has a neighborhood U with this property: there exists a sequence
0=rng < ni < ng <--- for which the “re-grouped” series »  F,, where F, :=
fru + fru+1+ -+ fn 11, converges to f and satisfies SR v < oo.

Proof. Let &1 > €2 > €3 > --- be a sequence of positive real numbers with
3”&, < 0. By definition of local uniform convergence, there is a neighborhood
U of the given point and indices 0 < n; < n2 < --- such that

n,—1

[tv — flv < e for t,,::Zf,,,uzl,Q,...
0

Setting Fp := t1,F, = tu41 — tu, it is clear that f = > F,. And because
F, = (tus1 — f) — (to — f) for all v > 1, it follows that |F|u < gvt1 + &0 < 260
forv>1andso Y. |F.|v < |[Folu +2),., &0 < 0o O

It should be noted that the sequence ng,n1,--- gotten here depends on the
particular neighborhood U.
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3. Historical remarks on normal convergence. The French math-
ematician René BAIRE (1874-1932), known for contributions to measure
theory [Baire sets] and topology [Baire category theorem], introduced this
convergence concept in 1908 in the second volume (pp. 29 ff.) of his
work Lecons sur les théories générales de l’analyse (Gauthier-Villars, Paris
1908). He was guided by Weierstrass’ majorant criterion 2.2 and in the in-
troduction to this volume (p. VII) he says: “Bien qu’a mon avis 'introduc-
tion de termes nouveaux ne doive se faire qu’avec une extréme prudence,
il m’a paru indispensable de caractériser par une locution bréve le cas le
plus simple et de beaucoup le plus courant des séries uniformément con-
vergentes, celui des séries dont les termes sont moindres en module que
des nombres positifs formant série convergente (ce qu’on appelle quelque-
fois critére de Weierstrass). J’appelle ces séries normalement convergentes,
et jespére qu’on voudra bien excuser cette innovation. Un grand nombre
de démonstrations, soit dans la théorie des séries, soit plus loin dans la
théorie des produits infinis, sont considérablement simplifiées quand on
met en avant cette notion, beaucoup plus maniable que la propriété de
convergence uniforme. (Although in my opinion the introduction of new
terms must only be made with extreme prudence, it appeared indispensable
to me to characterize by a brief phrase the simplest and by far the most
prevalent case of uniformly convergent series, that of series whose terms
are smaller in modulus than the positive numbers forming a convergent
series (what one sometimes calls the Weierstrass criterion). I call these
series normally convergent, and I hope that people will be willing to excuse
this innovation. A great number of demonstrations, be they in the theory
of series or somewhat further along in the theory of infinite products, are
considerably simplified when one advances this notion, which is much more
manageable than that of uniform convergence.)”

Thus BAIRE practically apologized for introducing a new concept into
mathematics! This convergence is most often encountered and studied in
the more general context of normed linear spaces — functional analysis —
a framework and direction of analysis which was being founded about the
time Baire’s book appeared.

Exercises

Ezercise 1. Show that the series anl % is normally convergent in E.
Exercise 2. a) Formulate and prove for normally convergent series an as-
sertion corresponding to that in Exercise 5 of Chapter 0, §4 for absolutely
convergent series of complex numbers.

b) From a) deduce the sharpened form of the rearrangement theorem
stated in subsection 1.



Chapter 4

Power Series

Die Potenzreihen sind deshalb besonders be-
quem, weil man mit ihnen fast wie mit
Polynomen rechnen kann (Power series are
therefore especially convenient because one
can compute with them almost as with
polynomials).—C. CARATHEODORY

The series of functions which are the most important and fruitful in func-
tion theory are the power series, series which as early as 1797 had been
considered by LAGRANGE in his Théorie des fonctions analytiques. In this
chapter the elementary theory of convergent power series will be discussed.
This theory used to be known also as algebraic analysis (from the subtitle
Analyse algébrique of Cauchy’s Cours d’analyse [C]). Also of interest in this
connection is the article of the same title by G. FABER and A. PRINGSHEIM
in the Encyklopdidie der Mathematischen Wissenschaften 11, 3.1, pp. 1-46
(1908).

In section 1 we first show that every power series has a well-defined
“radius of convergence” R and that inside its “circle of convergence” Bg(c)
it converges normally. The calculation of R can generally be accomplished
by means of either the CAUCHY-HADAMARD formula or the quotient rule.
In section 2 we determine the radii of convergence of various important
power series like the ezponential series exp z, the logarithmic series \(z)
and the binomial series by(z). In section 3 we show that a convergent
power series represents a holomorphic function in its disc of convergence.
(The all-important converse of this cannot however be proved until 7.3.1.)
With this the “preliminaries to Weierstrass’ function theory” have been
attended to and there are no further obstacles to our constructing many
interesting holomorphic functions. In particular, the functions exp z, A(z)
and b, (z) are holomorphic in their discs of convergence; in the unit disc

109
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E the relation b,(z) = exp(cA(2)) holds among them. We will later bring
this into the suggestive form (1 + 2)? = e?196(1+2) but the usual proof of
this for real o and z does not work when they are complex because log z is
no longer the inverse of the function exp z.

In section 4 we make an excursion into algebra and study the ring A of
all convergent power series. This ring proves to be a “discrete valuation
ring’ and consequently is arithmetically simpler than the ring Z of integers
or the polynomial ring C[z]. A is a (unique) factorization domain and has
just one prime element. So the adage of CARATHEODORY at the head of
the chapter is even an understatement: in many respects calculation with
power series is actually easier than with polynomials.

§1 Convergence criteria

Fixing ¢ € C, any function series of the form

Za,,(z —c)
0

with a, € C is called a (formal) power series with center c and coefficients
ay.

The power series form a C-algebra: the number a € C is identified with
a+3°0(z—c)” and for f =Y a,(z—0)*, g=20 bu(z~c)” the sum
and the product are defined by

f+g:= Z(a,, +b,)(z—¢)"
0

f-g:= Zp)\(z—c)A, where p) = Z auby.
0

ptr=>XA

This multiplication is just the Cauchy multiplication (cf. 0.4.6).

To simplify our statements, we frequently assume ¢ = 0 if that involves
no loss of generality. We abbreviate B.(0) to B, and — following our
earlier convention — write 3 a, 2 throughout instead of Y ¢ a,2”.

1. Abel’s convergence lemma. Every power series trivially converges
at its center. So a power series is only called convergent if there is some
other point z; # ¢ at which it converges. We will show

Convergence lemma (ABEL). Suppose that for the power series Y a, 2"
there are positive real numbers s and M such that |a,|s” < M for all v.
Then this power series is normally convergent in the open disc Bs.
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Proof. Consider an arbitrary r with 0 < r < s and set ¢ := rs~1. Then
la,2*|B, = |ay|r¥ < Mg¥ for all v. Since ) ¢” < oo, on account of
0 < g < 1, it follows that 3 |a,2”|g, < MY q” < co. As this is the case
for every r < s, normal convergence in B, follows (cf. 3.3.2). O

Corollary. If the series Y a,z” converges at zg # 0, then it converges
normally in the open disc B,

For the sequence |a, ||zo|” is a null sequence and consequently is bounded.

2. Radius of convergence. The geometric series ) z” converges in the
unit disc E and diverges at every point of C\ E. This convergence behavior
is representative of what happens in general.

Convergence theorem for power series. Let Y a,z" be a power series
and denote by R the supremum of all real numbers t > 0 for which |a,|t”
is a bounded sequence. Then

1) The series converges normally in the open disc Bpg.

2) The series diverges at every point w € C\ Bg.

Proof. We have 0 < R < oo and there is nothing to prove if B = 0. So
suppose R > 0. The sequence |a, |s” is bounded, for each s with 0 < s < R.
By the convergence lemma ) a, 2" is consequently normally convergent in
B, for each such s. Since By is the union of these open subdiscs, normal
convergence holds true in Bp.

For each w with |w| > R the sequence |a,||w|” is unbounded, so the
series > a,w” is necessarily divergent. a

Power series are the simplest normally convergent series of continuous
functions. The limit function to which Y a,2" converges is continuous in
Bpr (cf. 3.3.1); we will designate this function (as well as the power series
itself) by f.

The quantity R € [0, o] determined by the convergence theorem is called
the radius of convergence, and the set Bp is called the disc of convergence
(sometimes less precisely, the circle of convergence) of the power series. In
the subsections immediately following we will find some criteria for deter-
mining the radius of convergence.

3. The CAUCHY-HADAMARD formula. The radius of convergence of
the power series Y a,(z —c)” is

1
R=——F—.
lim {/la, |
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Here we have to recall that for every sequence of real numbers r, its limit
superior is defined by limr, := lim, oo [sup{r,,rp41,...}]. We use the
conventions 1/0 := 00,1/00 := 0.

For the proof of the Cauchy-Hadamard formula, set L := (lim {/lay])~?
The desired inequalities L < R and R < L follow if we can show that: for
every r with 0 < r < L, r < R holds, and for every s with L < s < 0,
s > R holds.

First consider 0 < r < L, so that r~! > lim {/[a,|. From the definition
of lim there is then a vy € N such that {/[a,| < r~! for all v > vy. The
sequence |a,|r” is therefore bounded, that is, r < R.

Now consider L < s < 00, so that s~ < lim {/]a,|. From the definition
of lim there is then an mﬁmte subset M of N such that for all m € M,

571 < %/laml, that is, |am|s™ > 1. The sequence |a,|s” is thus certainly
not a null sequence and so we must have s > R. O

By means of the limit superior formula we at once find for the series

Zu”z" , Zz” and Zz”/u"

the respective radii of convergence R = 0, R = 1 and R = oo, with re-
spective discs of convergence B = @), Bg = E and B = C. Nevertheless,
the Cauchy-Hadamard formula is not always optimally suited to determin-
ing the radius of convergence (a case in point being the exponential series
> 2¥/v!). Frequently very helpful in such cases is the

4. Ratio criterion. Let Y a,(z — ¢)” be a power series with radius of
convergence R and a, # 0 for all but finitely many values of v. Then

lim o | < R <lim lau‘,
lay 1] lay+1]

In particular R = lim |a|‘j:I1| whenever this limit exists.
[Recall the definition

lim r, := lim [inf{r,,r,41,...}]
Vv—00
of the limit inferior of a sequence r, of real | numbers, which is analogous to
that of the limit superior. Always limr, < limr, and limr, exists precisely
when these are equal, in which case it coincides with their common value.]

Proof. Set S := h—mlzlljilll , T = m'—al‘:—:iﬂ Then what we must show is that
s < R for every s with 0 < s < S and t < R for every t with T < ¢ < oo.

First consider 0 < s < S. From the definition of lim there must be an
£ € N such that
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lavay | > s, that is, |a,41]s > |a,| for all v > £.

Setting A := |ag|s?, it follows by induction that |agsm|s®T™ < A for all
m > 0. The sequence |a,|s” is consequently bounded; that is, s < R.

Now consider T < t < oo. According to the definition of lim there is
then an £ € N such that

a, #0 and |aya; )| <t, that is, |a,41]t > |a,| for all v > £.

Setting B := |a,|tt, it follows by induction that |agsm,[tET™ > B for all
m > 0. Since B > 0, this means that |a,|t” is not a null sequence, that is,
t> R. a

This ratio criterion for power series contains the well-known ratio test for
convergence of numerical series Y a,, a, € C*: because from |a,41a,}| <
g < 1 for almost all v it follows that lim |a,,a;i1| > ¢~L, so that the series
3" a,2¥ has radius of convergence R > q~! > 1 and consequently converges
absolutely at z = 1.

‘Warning. It is possible that infinitely many coefficients in a power series vanish.
For such “lacunary series”

o0

x
E an,\z"*, anAE(C y Mo <Ny <ng < -+
A=0

in which nx+1 > nx + 1 infinitely often, consideration of the sequence |an, -
an ; 1 | does not generally lead to determination of the radius of convergence. For
example, in the geometric series ) 2% 2% a9, = 2% ag,41 = 0 and az, -a;,,1+2 =
1/4, for all v; yet according to CAUCHY-HADAMARD the radius of convergence of
this series is 1/2.

5. On the history of convergent power series. EULER calculated
quite routinely with them; e.g., in [E], §335 ff. he was already implicitly
using the ratio criterion (cf. also in this connection 7.3.3). LAGRANGE
wanted to base all of analysis on power series. In 1821 CAUCHY proved the
first general proposition about them; thus in [C], pp. 239/40 he showed
that every power series, real or complex, converges in a well-determined
circular disc B C C and diverges everywhere in C \ B. He also proved the
formulas

and R =lim %!

R— 1
Tim ¢/[a. | lav1]’

the latter under the explicit assumption that the limit exists (“Scolie” on
p. 240). The limit superior representation was re-discovered in 1892 by
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J. S. HADAMARD (French mathematician, co-prover of the prime number
theorem, 1865-1963), who was apparently unaware of Cauchy’s formula;
his paper is in Jour. Math. Pures et Appl. (4) 8, p. 108.

ABEL published his basic convergence lemma in 1826 in his landmark
work [A] concerning binomial series; his formulation was as follows:

Lehrsatz IV. Wenn die Reihe f(a) = vg +via+12a? + -+ vpa™ + - -
fiir einen gewissen Werth § von a convergirt, so wird sie auch fir jeden
kleineren Werth von o convergiren, ...

This is the essence of our corollary to the convergence lemma. It is fur-
ther interesting to read what ABEL had to say about mathematical rigor in
connection with convergence questions, Cauchy’s Cours d’analyse notwith-
standing; thus ABEL begins his exposition with the note-worthy words:
“Untersucht man das Raisonnement, dessen man sich gewohnlich bedient,
wo es sich um unendliche Reihen handelt, genauer, so wird man finden,
dal es im ganzen wenig befriedigend, und daB8 also die Zahl derjenigen
Sitze von unendlichen Reihen, die als streng begriindet angesehen werden
kénnen, nur sehr geringe ist. (If one examines more closely the reasoning
which is usually employed in the treatment of infinite series, he will find
that by and large it is unsatisfactory and that the number of propositions
about infinite series which can be regarded as rigorously confirmed is small
indeed.)”

Power series were just ancillary with CAUCHY and RIEMANN; they were
first given primacy by WEIERSTRASS. They were already on center-stage
in his 1840 work Uber die Entwicklung der Modular-Functionen. [This was
a written homework assignment in connection with the examination for
prospective high-school teachers; it is dated “Westernkotten in Westfalen,
im Sommer 1840.” GUDERMANN, WEIERSTRASS’s teacher, in his evalu-
ation of it wrote: “Der Kandidat tritt hierdurch ebenbiirtig in die Reihe
ruhmgekronter Erfinder. (With this work the candidate enters the ranks
of famous inventors as a co-equal.)” GUDERMANN urged publication of the
exam project as soon as possible and that would have happened had the
philosophy faculty of the royal academy at Miinster/Westphalia at that
time had the authority to grant degrees. “Dann wiirden wir die Freude
haben, Weierstrass zu unsern Doktoren zu zdhlen (Then we would have
the pleasure of counting Weierstrass among our doctoral graduates)”, so we
read in the 1897 rector’s address of Weierstrass’ former pupil W. KILLING
(whose name was later immortalized in Lie theory). Not until 1894, fifty-
four years after it was written, did WEIERSTRASS publish his exam work;
his Mathematische Werke begin with this work.] For WEIERSTRASS func-
tion theory was synonymous with the theory of functions represented by
power series.
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Exercises
Ezercise 1. Determine the radius of convergence of each of the following:
4 3 \n o L2n
a)zw n”+ 2n° o b)z Z_’ ce Cx
n=l | 5n* + 23n3 n=l "
Zoo n! (z=1)" d o 2 o C
c) nel 27(2m)! z )Zn=0 (n* + a")2", ae€
e) Zw (nt)? 2, ke N k>1 f) 2 e (sin n)2".
n=0 (kn)' ’ = =

Ezercise 2. Let R > 0 be the radius of convergence of the power series
S~ anz™. Determine the radius of convergence of the following series:

an
E an2?", E azz", E atz?", E —'z”.
n!

Ezercise 3. Let Ry, Ry > 0 be the radii of convergence of the series Y a, 2"
and ) b, 2", respectively. Show that

a) The radius of convergence R of the series Y (an + bp)2z" satisfies
R > min{R;, Rz} and that equality holds if R; # R;.

b) The radius of convergence R of the series S anbn2™ satisfies R >
RiR;,.

¢) If a, # 0 for all n, then the radius of convergence R of the series
3 (a,) 12" satisfies R < Ry''. Give an example where this inequality
is strict.

Ezercise 4. The power series Y o, ";; has radius of convergence 1. Show
that the function it represents is injective in By/3(0). Hint. For z,w € C
and integer n > 2

- = (z—w) (2" 2" w4 4z 4w,

(With more refined estimates it can be shown that the function is injective
in an even larger disc.)

§2 Examples of convergent power series

With the aid of the ratio criterion we will determine the radii of convergence
of some important power series. We also briefly allude to convergence
behavior on the boundary and discuss the famous Abel limit theorem,
though in fact it is not particularly relevant to function theory proper.

1. The exponential and trigonometric series. Euler’s formula.
The most important power series after the geometric one is the exponential
series
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22 23
PTIREET]

v

2
expz:227=1+z+ +---

Its radius of convergence is determined from the ratio criterion (in which
ay:= ) tobe R = lim IJG%:—'J = lim(v+1) = oo; that is, the series converges
throughout C. On account of the estimate

2 _ 2" || 2>
2 o< Sr <1+n+1+ (n+ D)(n+2) +>

v>n

we have

n-1

z 2 1
expz—zo:ﬁ §a|z|n forn>1 and |z|§1+§(n~1).

Remark. The CAUCHY-HADAMARD formula is not particularly suitable for de-

termining R because it involves the not obviously accessible lim( {/2!)~!. How-

ever, now that we know R = oo, that formula tells us that im({/21)~! = 0.
The cosine series and the sine series

[e @]
. (_l)u 2w z2 24 ZG
cosz = ;(21/)'2 1 E_’_I a%—— ,
R N e VLT e R S A
Sz = 20:(2u+1)!z Pty Tty owt

likewise converge everywhere in C, because J(%J;% and Y (l—;f;—:)l, are sub-

series of the convergent series 3 J—f—J!—, for each z € C.

We have thus defined in C three complex-valued functions exp z, cos z
and sin z which coincide on R with the functions bearing the same names
from the infinitesimal calculus. We speak of the complez exponential func-
tion and the complex cosine and sine functions. These functions will be
extensively discussed in Chapter 5. Here we only want to note the famous

Euler formula: |expiz =cosz+isinz forallz € C]

which EULER announced in 1748 for real arguments ([E], §138). The for-
mula follows from the identity
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2m+1 .\ m 20 m 2u+1
iz z . z
> S =S+ W
v=0 ’ u=0 2 u=0 K .
(which is itself immediate because 2 = —1) by passage to the limit as
m — oQ. ()
Because cosine is an even and sine an odd function:
cos(—z) =cosz, sin(—z)=—sinz, z€C,

we have exp(—iz) = cos z—isin z and from this by addition and subtraction
with the original formula, we get the Euler representations

1 1
cosz = §[exp iz +exp(—iz)], sinz= Z[exp iz — exp(—iz)].

2. The logarithmic and arctangent series. The power series

2 3

o —1)-1
)\(z)::ZL-—l)/——z”zz_%+%_+...
1

is called the logarithmic series; it has radius of convergence R = 1, since
A2l — 41 (And once again CAUCHY-HADAMARD leads to a non-trivial

lay+1]
corollary: 1 < lim¢/v < lim{/v = 1 and so lim {/¥ exists and equals 1.)

In 5.4.2 we will see that the function defined in the unit disc E by this
series is the principal branch log(1l + 2) of the logarithm. Nicolaus MER-
CATOR (real name, KAUFMANN; born 1620 in Holstein, lived in London;
one of the first members of the Royal Society; went to France in 1683 and
designed the fountains at Versailles; died 1687 in Paris; not to be confused
with the inventor of the mercator projection 100 years earlier) found the
logarithmic series in 1668 in the course of his quadrature of the hyperbola,
thus

T odt z z? ¢ ozt
log(14+z) = ———=/ 1—t4t2 34— dt=z—— 4+ — ...
( o 1+t Jo ( ) 2 3 4

The power series

is called the arctangent series; it has radius of convergence R = 1 (why?)
and in the unit disc it represents the inverse function of the tangent function
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(cf. 5.2.5). The arctangent series was discovered in 1671 by J. GREGORY
(1638-1675, Scottish mathematician) but did not come to public attention
until 1712.

3. The binomial series. In the year 1669 the 26-year-old Isaac NEWTON
(1643-1727; 1689 MP for Cambridge University; 1699 superintendent of the
royal mint; 1703 president of the Royal Society; 1705 knighted) in a work
entitled “De analysi per aequationes numero terminorum infinitas” (Vol.
II, pp. 206-247 of The Mathematical Papers of Isaac Newton) wrote that
for every real number s the binomial series

oo

-1 — 1 (s— 1
Z(s)m":1+sz+ﬂ§___)m2+'”+s(s )o(s—nt ):1:"+
0 v 2 n!

represents the binomial (1+z)° for all real numbers z satisfying -1 < z < 1.
ABEL [A] considered this series for arbitrary complex exponents o € C and
for complex arguments z; he shows that for all ¢ € C\ N the series has
radius of convergence 1 and again represents the binomial (1 + 2)° in the
unit disc, provided this power function is “properly” defined.

For each o € C we define, just as for real numbers, the binomial coeffi-
cients, as

(a) =1, (U) _ole-)lo—ntl) g,

0 n n!

They clearly satisfy
(+) 7 ) =2=2(7 forallo € C, alln € N.
n+1 n+1\n

The binomial series for o € C is given by
(o o o
[p— v _— 2 PRI n ...
bo(2) := EO (V>z =1l+o0z+ (2)z +- (n)z +oee

Of course if ¢ is a non-negative integer, then (‘;) = 0 for all v > o and
then we get (in any field of characteristic 0) the binomial formula

(1+z)":z<0)z" forallzeC,oc€eN

14

which is just a polynomial of degree o. For all other ¢ however, (Z) #0
for all v. In these cases the binomial series is an infinite power series. For
example, since ("Vl) = (—1)¥, we have for o = —1 the alternating geometric
series

boy(z) =) (_Vl)z = (-2)" = ﬁ—z for all z € E.
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Generally
The binomial series has radius of convergence 1 for every o € C\ N.
Proof. The coefficient a, := (¢) is non-zero for all v and by (*)

a, v+1 1+1/v

=— forall v > 1,
Ayy1 O —V 1-o/v

which shows that R = lim lal—‘:ﬁ =1. m|
And we should take note of a multiplication formula

(14 2)by—1(2) = bs(2),

valid for all z € E and all ¢ € C; a formula which should come as no
surprise since, as noted, b, (z) will turn out to be the power (1 + 2)°.

Proof. The arithmetically confirmed identity

)+ C2)= () w2

gives
> (o—1 > (o—1 > (o
v v o__ v
S+ () =2 ()
0 1 0
Now shift the summation index in the second sum. d

Since conjugation is a continuous (isometric!) map of C, for every power
series f(2) = Y_ a,z¥ we have f(2) = )_a,z", and thus f(z) = f(Z) in case
all the coefficients a, are real. In particular, we have

eXpz = expz, Cosz=cosZ, sinz=sinz forallzeC,

Mz)=Az) forallzeE, by(2)=0b,(Z) forallzekE,

the last provided that o € R.

4*. Convergence behavior on the boundary. The convergence behavior
of a power series on the periphery of the open disc of convergence can be quite
different from case to case: convergence (absolute) can occur everywhere, as for
example with the series Z;’o %;, whose R = 1; convergence can occur nowhere,
as for example with the series Y 2”, whose R = 1; and points of convergence can
co-exist with points of divergence, as occurs for example with the “logarithmic”

v—1
series E;x’ LIVL—z", whose R = 1 — at z = 1 it is the alternating harmonic
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series and so converges, but at z = —1 it is the ordinary harmonic series and so
diverges. Actually it can be shown that this series converges at every point of
the boundary circle except z = —1.

There is an extensive literature dealing with convergence behavior on the
boundary. For example, in 1911 the Russian mathematician N. LUSIN con-
structed a power series Y ¢, z¥ with radius of convergence 1 which satisfies ¢, — 0
and diverges at every z € C of modulus 1. And the Polish mathematician W.
SIERPINSKI produced in 1912 a power series with radius of convergence 1 which
converges at the point z = 1 but diverges at every other point on the unit circle.
The reader interested in such matters will find these last two examples, and more,
presented in detail in the beautiful booklet [Lan].

5*. Abel’s continuity theorem. In 1827 ABEL formulated the following
problem (Jour. fir die Reine und Angew. Math., Vol. 2, p. 286; also (Buvres
Vol. 1, p. 618): “En supposant la série

(*) fe=ao+ a1z + a2z’ +- -

convergente pour toute valeur positive moindre que la quantité positive a, on
propose de trouver la limite vers laquelle converge la valeur de la fonction fz, en
faisant converger x vers la limite a. (Supposing the series (%) to be convergent
for every positive quantity x less than a certain positive quantity «, I propose to
find the limit to which the values of the function fr converge when z is made
to converge to the limit a.)” This problem is essentially that of determining
the behavior under radial approach to the boundary of the convergence disc of
the limit function of a power series. For the case where the power series itself
converges at the boundary point being considered, ABEL had already solved his
problem in his 1826 paper [A]; namely, the complete formulation of his theorem
which was alluded to in 1.5 runs as follows:

Lehrsatz IV. If the series f(a) = vo + via+ 1202 + - -+ vma™ + - - - converges
for a certain value 6 of o, then it also converges for every smaller value of o and
is of such a nature that f(a — B) approaches the limit f(a) as B decreases to 0,
provided that « is less than or equal to 6.

Since o = 6 is explicitly allowed, it is being said here that the function f(a)
is continuous in the closed interval [0, §], that is,

lim f(a) =vo+ 116 +128% + - -
a—6-0

holds. This proposition, which is certainly not trivial and was derived by ABEL
using an elegant trick, is called the Abel continuity theorem or limit theorem. [The
theorem had already been stated and used by GAuss (“Disquisitiones generales
circa seriem ...,” 1812; Werke III, p. 143) but his proof contained a gap involv-
ing the uncritical interchange of two limit processes.] The applications of this
theorem in the calculus are well enough known. E.g., once one has that the series

1172 .’I}S 1_4 3 .’I]5 .’E7

— + _+_...andx_z_+_..__+_...
2 3 4 3 5 7

T —
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converge in the interval (—1, 1) and represent the functions log(1+z) and arctan z,
respectively, then from their convergence at £ = 1 and the continuity theorem
(and the fact that log(1 + z) and arctanz are each continuous at z = 1) he gets
the equation log2 =1— 3 + 3 — ; + —--- and the famous

Leibniz formula:

T 1 1 1
Z—arctanl—l—g%—g—?-i-—-“

The limit theorem can also be phrased this way: for a boundary point at
which the series converges, the function defined by the series has a limit under
radial approach to this point and it is the sum of the series at this point. In
1875 O. StoLz proved the following generalization ( Zeitschrift Math. Phys. 20,
369-376):

Let 3" ay(z—c)” be a power series with radius of convergence R; suppose that
it converges at the point b € OBr(c). Then the series converges uniformly in
every closed triangle A which has one vertez at b and its other two vertices in
Bgr(c) (cf. the figure). In particular, the function

fiASC, (=) a -0

is continuous throughout A and, consequently, satisfies

li_xg flz) = Za,,(b— c)”.

zEA

HARDY and LITTLEWOOD showed in 1912 (in this connection see also L. HOLZER,
Deutsche Math. 4(1939), 190-193) that for approach to b along a path W which
lies in no such triangle A, so-called tangential approach, the function defined by
the power series need not have a limit at all. m)

There don’t seem to be any “natural applications” of this generalized limit
theorem. The interested reader will find a proof in KNESER [14], pp. 143-144 or
in KNOPP [15]. In the latter and in [Lan] he will also find material concerning the
converse of Abel’s limit theorem (theorems of TAUBER, HARDY and LITTLEWOOD,
and others).
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Exercises
Exercise 1. The hypergeometric series determined by a,b,c € C, —c € N,
is given by
ab ala+1)bb+1) ,
F(a,b =1+ —24+—-—7
(aa ,C,Z) + CZ+ 2C(C+1)
+a(a+1)---(a+n— Dbb+1)---(b+n— 1)z" +
nle(e+1)---(c+n—-1)
Show that in case —a,—b ¢ N :

a) The hypergeometric series determined by a, b, ¢ has radius of conver-
gence 1.

b) If R(a + b — ¢) < 0, the series converges absolutely for |z| = 1.
Hint to b): Exercise 3, §4, Chapter 0.

Ezercise 2. a) Let a,, be real and decrease to 0. Show that the power series

3" an2™ converges compactly in E\ {1}. Hint: Investigate (1 —2)>_ a,2".
b) Show that the logarithmic series A(z) = )_ - (_11)/,,_1

compactly in E \ {1}. -

z¥ converges

Ezercise 3. This exercise is concerned with proving a theorem of TAUBER
which in a special case furnishes a converse of ABEL’s continuity theorem.

Let a, € C satisfy lim, na, = 0. Then the power series f(z) :=
Yoo panz™ converges at least in E. Suppose there is an a € C such that
lim,, f(zm) = a for every sequence {z,,} in E which approaches 1 “from
the left”, that is, for every sequence {z,,} C (—1,1) with lim,, z,, = 1.
Then Y07 s a, = a.

Carry out a proof via the following steps:

a) Show that for 0 < z < 1 and every integer m > 0

Zan - fl@)| < (1-2) anan| + Z lan|z™, and
n=0 n=1 n=m+1
i lan|z™ < _ max{n|a,|: n > m}.
n=m+1 a m<1 - :17)

b) Now consider the special sequence z,, :=1— # and use Exercise 3b)
of §3, Chapter 0.

Exercise 4. Show that if almost all the a,, are real and non-negative, then
the first hypothesis in Tauber’s theorem above can be weakened to lima,, =
0 and the conclusion still follows.
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§3 Holomorphy of power series

Except for the examples in 1.2.3, where transcendental real functions were
put together to form holomorphic functions, we really don’t know any holo-
morphic functions besides polynomials and rational functions. But from
the differential calculus of real functions we know that convergent real power
series represent functions which are real-differentiable as often as we please
and that the summation and differentiation may be interchanged. Analo-
gously, it turns out that in the complex differential calculus every convergent
complex power series is arbitrarily often complezr-differentiable and is con-
sequently holomorphic; and here too the theorem on interchangeability of
summation and differentiation holds.

1. Formal term-wise differentiation and integration. If the series
3" au(z ~c)¥ has radius of convergence R, then the series 3 va,(z —c)¥ !
and (v + 1) ta, (2 — c)**! arising from it by term-wise differentiation
and integration, respectively, each also have radius of convergence R.

Proof. a) For the radius of convergence R’ of the differentiated series we
have

R’ =sup{t > 0: the sequence v|a,|t* ! is bounded}.

Since the boundedness of the sequence vla,|t¥~! certainly implies that of
the sequence |a,|t”, the inequality R’ < R is clear.

In order to conclude that R < R', it suffices to show that every r < R
satisfies 7 < R’. Given such an r, pick s with 7 < s < R. Then the series
|ay|s¥ is bounded. Moreover, for q := r/s , vla,|r*~! = (r~!a,|s")vg”.
Now for § := ¢! — 1 > 0 and v > 2 the binomial formula gives ¢7% =
(1+6) > (;) 6%, and s0 0 < vg” < @—21755 It follows that v¢” is a null
sequence, and so too is its product with the bounded sequence r~!|a,|s",
namely the sequence vla,|r*~!. Then certainly r < R’. In summary,
R' =R.

b) Let R* denote the radius of convergence of the integrated series.
According to what was proved in a), R* is then also equal to the radius of
convergence of the series gotten from Y (v +1)~1a,(z —c)”*! by term-wise
differentiation, namely the series Y a,(z — ¢)*. That is, R* = R. O

2. Holomorphy of power series. The interchange theorem. In the
theorem just proved there is nothing to the effect that the continuous limit
function f of the power series )" a,(z — ¢)” is holomorphic in Bg(c), but
we shall now prove this. We claim

Theorem (Interchangeability of differentiation and summation in
power series). If the power series > a,(z — ¢)” has radius of convergence
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R > 0, then its limit function f is arbitrarily often complez-differentiable,
and in particular holomorphic, in Bgr(c). Moreover,

f(k)(z Zkl() (z—c)**, z€Bgr(c),keN

v>k

and in particular, for all k € N,

¥ ()
k!

Proof. 1t suffices to treat the case k = 1; the general result follows by
iterating this conclusion. Set B := Bg(c). First of all, theorem 1 makes
it clear that g(z) := Y -, va,(z — ¢)~! is a well-defined complex-valued
function on B. Our claim is that f’ = g. We may and do assume that
¢ =0. Let b € B be fixed. In order to show that f’(b) = g(b), we set

=ar (Taylor-coefficient formulas).

q(2) == 2"+ 2724 2T

z2€C,v=12,.... Then z¥ — b = (2 — b)q,(z) for all z and so

F@ = F0) = Y a(z —¥) = (: =) Y avale) , z € B.

v>1 v>1

Now write fi(z) for 3,5, avg,(2). It follows, upon noting the fact that
qv(b) = vb*~ 1, that

f(2)=f®)+(z=b)fi(z) ,z€ B, and fi()) =) va, b~ = g(b).

v>1

All that remains therefore is to show that f; is continuous at b. This
is accomplished by proving that the defining series Y -, a,q.(2) for f; is
normally convergent in B. But this latter fact is clear: for every |b| <r < R

|aqu|Br < [a,,|1/7"’“1, SOZ Ial’ql’lBr < ZVIaulTV_-l < 00,
v21 v>1

by theorem 1. O

The above proof is valid (word for word) if instead of C any complete valued
field, e.g., R, underlies the series. (Of course for fields of non-zero characteristic
one writes v(v —1)--- (v — k + 1) instead of k'(;))

3. Historical remarks on term-wise differentiation of series. For
EULER it went without saying that term-wise differentiation of power series
and function series resulted in the derivative of the limit function. ABEL
was the first to point out, in the 1826 letter to HOLMBOE already cited in
3.1.4, that the theorem on interchange of differentiation and summation is
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not generally valid for convergent series of differentiable functions. ABEL,
who had just found his way in Berlin from the mathematics of the Euler
period to the critical logical rigor of the Gauss period, writes with all
the enthusiasm of a neophyte (loc. cit., p. 258): “La théorie des séries
infinies en général est jusqu'a présent trés mal fondée. On applique aux
séries infinies toutes les opérations, comme si elles étaient finies; mais cela
est-il bien permis? Je crois que non. Ou est-il démontré qu’on obtient la
différentielle d’une série infinie en prenant la différentielle de chaque terme?
Rien n’est plus facile que de donner des exemples ou cela n’est pas juste;
par exemple

1
(1) g =sinz — %sin2x+ gsin3m — etc.

En différentiant on obtient

1
(2) 5 =c0sZ —cos 2z 4 cos 3z — etc.,

résultat tout faux, car cette série est divergente. (Until now the theory of
infinite series in general has been very badly grounded. One applies all the
operations to infinite series as if they were finite; but is that permissible?
I think not. Where is it demonstrated that one obtains the differential of
an infinite series by taking the differential of each term? Nothing is easier
than to give instances where this is not so; for example (1) holds but in
differentiating it one obtains (2), a result which is wholly false because the
series there is divergent.)”

The correct function-theoretic generalization of the theorem on term-
wise differentiation of power series is the famous theorem of WEIERSTRASS
on the term-wise differentiation of compactly convergent series of holomor-
phic functions. We will prove this theorem in 8.4.2 by means of the Cauchy
estimates.

4. Examples of holomorphic functions. 1) From the geometric series

= = 37" 2", which converges throughout the open unit disc E, after

f Id differentiation we get
zl—_—lz?+—1=2<2)z”_k, ze€E.
vk
2) The exponential functionexpz =3 f}—u, is holomorphic throughout C:
exp'(z) = expz , zeC.

This important differential equation can be made the starting point for the
theory of the exponential function (cf. 5.1.1).
3) The cosine function and the sine function
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_1 v . 14
cosz——:z( ) 2% sinzzz(—l)——zz"‘H , zeC

(2v)! (2v + 1)!
are holomorphic in C:
cos’(z) = —sinz , sin’(z) = cosz , z € C.

These equations also follow immediately if one is willing to use the fact al-
ready established that exp’ = exp, together with the Euler representations

1 1
cos z = §[exp(iz) + exp(—i2)] , sinz = Z[exp(iz) — exp(—iz)].
2 3

4) The logarithmic series A(z) = z — % + % — - -+ is holomorphic in E:
1
N(z)=1- o= E.
(2) z2+z T z €
5) The arctangent series a(z) = z— z3—3 + 155- — - - is holomorphic in E with

derivative a/(z) = 1—4};5 The designation “arctangent” will be justified in

5.2.5 and 5.5.2.
6) The binomial series b,(2) =3 (7)2” , o € C, is holomorphic in E:

o
T 142z

To see the first of these equalities, use the fact that v() = o(7]) to get

by (2) = 0by_1(2)

bs(2) , z € E.

o0

b (2) = ZV(Z)ZH = oi (‘Z B i)z”'l = oby_1(2).

1

The second equality is now a consequence of the multiplication formula 2.3.

]

The exponential series, the logarithmic series and the binomial series are
connected by the important equation

(%) bs(2) = exp(oA(2)) , z€E,
a special case of which is

14 z = exp A(2) for all z € E.

Proof. The function f(z) := b,(2) exp(—cA(z)) is holomorphic in E and by
the chain and product rules for differentiation

F1(2) = [b5(2) — obo (2)X(2)] exp(—oA(2)) = 0,

since by 4) and 6) b, = ob,)\. Consequently, according to 1.3.3 f is
constant in E. That constant is f(0) = 1, so (x) follows if we anticipate
5.1.1, according to which exp(—w) = (exp(w))~! for all w.
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Exercises

Egzercise 1. Show that the hypergeometric function F(a,b,c, z) introduced
in Exercise 1 of §2 satisfies the differential equation

2(1 - 2)F"(a,b,c,z) + {c — (1 + a + b)z}F'(a,b,¢, z) — abF(a,b,c,z) =0
for all z € E.

Ezercise 2. Show that for ce C*,d € C\ {c}, k€N

(c—i)k“ - (c—}mﬂ z% (k) (i:

Ezercise 3. (Partial fraction decomposition of rational functions). Let
f(z):= %%% be a rational function, in which the degree of the polynomial
p is less than that of ¢ and ¢ has the factorization ¢(z) = c(z — ¢1)"* (2 —
c2)¥2 -+ (2 — ¢ )¥™ with ¢ € C* and distinct complex numbers c;.

a) Show that f(z) has a representation of the form

d v—k
d) , RE€ B|C_d|(d).

a1 aig a1, a21
zZ)= + + .- +
1) z—c  (z—c1)? (z—c)r  z—co
am1i am?2 Amu
z2—¢m  (z—cm)? (z — cm)¥m

for certain complex numbers a;y.
b) Show that the particular coefficients ag,,, 1 < k < m, from a) are
determined by

p(ck)

C(Ck —_ cl)Vl . (Ck — Ck_l)Vk—l(ck — ck+1)Vk+1 - (ck —_ cm)Vm

Ak, =
Hint to a): Induction on n := degree q = vy + va + + -+ + vp,.

Exercises 2 and 3, in connection with the Fundamental Theorem of Al-
gebra (cf. 9.1) insure that any rational function can be developed in a
power series about each point in its domain of definition.

Exzercise 4. Develop each of the given rational functions into power series
about each of the given points and specify the radii of convergence of these
series:

a) —5—21—— about 0 and about 2.
zZ° =1zt —z+1

b) 24— 23— 8224143

3 422155 -2 about 0 and about 7.
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Hint to b): First use long division to get a proper fraction.

Ezercise 5. The sequence defined recursively by ¢ 1= ¢; := 1, ¢, =
Cpn_1 + Cn—2 for n > 2 is called the Fibonacci numbers. Determine these
numbers explicitly. Hint: Consider the power series development about 0

of the rational function ?ﬁ

§4 Structure of the algebra of
convergent power series

The set A of all (formal) power series centered at 0 is (with the Cauchy
multiplication) a commutative C-algebra with 1. We will denote by A the
set of all convergent power series centered at 0. Then

A isa C-subalgebra of A which is characterized by

1 A = {f= Za,,z" € A : 3 positive real s, M such that |a,|s* <M
Vv € N}

This latter is clear by virtue of the convergence lemma 1.1.

In what follows the structure of the ring 4 will be exhaustively described;
in doing so we will consistently use the language of modern algebra. The
tools are the order function v : A — N U {oco} and theorem 2 on units,
which is not completely trivial for .A. Since these tools are trivially also
available in A, all propositions of this section hold, mutatis mutandis, for
the ring of formal power series as well. These results are, moreover, valid
with any complete valued field k taking over the role of C.

1. The order function. For every power series f = Y a,2z" the order
v(f) of f is defined by

[ min{reN:a, #0} ,incase f#0,
v(f)'—{oo ,in case f = 0.

For example, v(2") = n.

Rules of Computation for the order function. The mapping v : A—
NU {00} is a non-archimedean valuation of A; that is, for all f,g € A

1) v(fg) =v(f) +v(g) (product rule)

2) v(f + g) > min{v(f),v(9)} (sum rule).
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The reader can easily carry out the proof, if he recalls the conventions
n 4 0o =n, min{n,oc} = n for n € RU {c0}. Because the range NU {oco}
of v is “discrete” in R U {oo}, the valuation v is also called discrete.

The product rule immediately implies that:

The algebra A and so also its subalgebra A is an integral domain, that
is, it contains no non-zero zero-divisors: from fg = 0 follows either f =0
org=20.

The sum rule can be sharpened: in general, for any non-archimedean
valuation, v(f + g) = min{v(f),v(g)} whenever v(f) # v(g).

2. The theorem on units. An element e of a commutative ring R with
1 is called a unit in R if there exists an é € R with eé = 1. The units
in R form a multiplicative group, the so-called group of units of R. To
characterize the units of A we need

Lemma on units. Every convergent power series e = 1 — byz — bg2? —
b3z3 — .- is a unit in A.

Proof. We will have eé = 1 for é := 14+ kyjz + ko224 k32® +--- € A if we
define

(%) k1:=by , kp :=brkp_1 +bokpn_2+---+by_1ky +b, foralln>2.

It remains then to show that é € 4. Because e € 4 there exists a real
s > 0 such that |b,| < s™ for all n > 1. From this and induction we get

1
|kn| < 5(28)" , n=12....

Indeed, this is clear for n = 1 and the passage from n — 1 to n proceeds via
(%) as follows:

n—1 n—-1
1 v n—v n __ 1 n
|knl| < ; BullKn—s | + Ba] < zljs (26)"7" + s = 5(29)".

Therefore for the positive number ¢ := (2s)~! we have |k, |t < 1/2 for all
n > 1 and this means (recall the defining equation (1) in the introduction
to this section) that é € A. O

The preceding proof was given by HURWITZ in [12], pp. 28, 29; it prob-
ably goes back to WEIERSTRASS. In 7.4.1 we will be able to give a, wholly
different, “two-line proof”; for the polynomial ring C[z] there is however
no analog of this lemma on units. 0



130 4. POWER SERIES

Theorem on units. An element f € A is a unit of A if and only if

f(0) #0.

Proof. a) The condition is obviously necessary: if f € A and ff = 1, then
f(0)£(0) =1 and so f(0) # 0.

b) Let f =3 a,2” € A with ag = f(0) # 0. For the series e := a3 ' f =
1+ ag'a1z +aglazz? + - -+ € A the preceding lemma furnishes an é € A
with eé = 1. It follows that f - (a5 'é) = 1. O

The theorem on units can also be formulated thus:
f€Aisaunit of A v(f)=0.

The lemma and the theorem on units both naturally hold as well for
formal power series; in this case the proof of the lemma just reduces to the
first two lines of the above proof.

3. Normal form of a convergent power series. Every f € A\ {0} has
the form

(1) f=e" for some unit e of A and somen € N.

The representation (1) is unique and n = v(f).

Proof. a) Let n = v(f), so that f has the form f = ap2™ +apy 12"t +---
with a,, # 0. Then f = ez", where e := a,, + a,+12+- - is, by the theorem
on units, a unit of A.

b) Let f = 2™ be another representation of f with m € N and € a unit
of A. By the theorem on units, v(e) = v(€) = 0. Therefore from ez™ = éz™
and the product rule for the order function it follows that

n=uv(e) +v(z") =v(e™) = v(éz™) =m
and then e = € also follows. |

We call (1) the normal form of f.

An element p of an integral domain R is called a prime element if it is
not a unit of R and if whenever f,g € R and p divides the product fg, then
p divides one of the factors f or g. An integral domain R each of whose
non-zero elements is a product of finitely many primes is called a unique
factorization domain (in Bourbaki, simply factorial).

From the normal form (1) we see immediately that
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Corollary. The ring A is factorial and, up to multiplication by units, the
element z is the only prime in A.

In contrast to A, its subring C[2], which is itself a unique factorization
domain, has the continuum-many prime elements z — ¢, ¢ € C.

In the foregoing the prime z played a distinguished role. But the theorem
and its corollary remain valid if instead of z any other fixed element 7 € A
with v(7) = 1 is considered. Every such 7 is a prime element of A, on
an equal footing with z, and is known in the classical terminology as a
uniformizer of A.

Every integral domain R possesses a quotient field Q(R). It is immediate
from the corollary that:

The quotient field Q(A) consists of all series of the form Y
n € Z, where Y 5" a,z” is a convergent power series.

v
v>n avz-,

Series of this kind are called “Laurent series with finite principal part”
(cf. 12.1.3). The reader is encouraged to supply a proof for the above
statement about Q(A), as well as the following easy exercise:

The function v : A — NU {co} can be extended in ezactly one way to a
non-archimedean valuation v : Q(A) — Z U {oo}. This valuation is given

by

o(f)=n if f=Za,,z" with a, # 0.

v>n

4. Determination of all ideals. A commutative ring R is called a
principal ideal domain if every one of its ideals in principal, that is, has the
form Rf for some f € R.

Theorem. A is a principal ideal domain: the ideals Az"™, n € N, comprise
all the non-zero ideals of A.

Proof. Let a be any non-zero ideal of A. Choose an element f € a of
minimal order n € N. According to theorem 3, 2™ = é&f, with é ¢ A.
It follows that A2™ C a. If g is an arbitrary non-zero element of a, then
g = €z™, for some unit € € 4 and m = v(g). By minimality of n, m > n.
It follows that g = (é2™~™)z™ € Az™. This shows that conversely a C A2"
and gives the equality of the two. 0

An ideal p of a ring R is called a prime ideal if fg € p always implies
that one or the other of the factors f,g lies in p. An ideal m # R in R
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is called mazimal if the only ideal which properly contains it is R itself.
Mazimal ideals are prime ideals.

Theorem. The set m(.A) of all non-units of A is a mazimal ideal of A. It
coincides with Az and is the unique non-zero prime ideal of A.

Proof. According to the lemma on units m(A) = {f € A : v(f) > 1};
therefore m(A) is an ideal. From the preceding theorem it follows that
m(A) = Az.

If a is an ideal which properly contains m(.4), then a contains a unit
and so necessarily contains 1 and therewith is all of A. Therefore m(.A) is
a maximal ideal, and in particular a prime ideal of A.

Ifn>2 2-2"1 € A" but z ¢ A2" and 2"~ ¢ Az". Consequently
Az™ is not a prime ideal and we see that Az is the unique non-zero prime
ideal of A. O

In modern algebra an integral domain is called a discrete valuation ring
if it is a principal ideal domain which possesses a unique non-zero prime
ideal. Thus we have shown that

The ring A of convergent power series is a discrete valuation ring.

A ring is called local if it has exactly one maximal ideal. All discrete
valuation rings are local, so in particular A is a local ring.

The reader might check that the ring A of formal power series is also a
discrete valuation ring and, in particular, a local ring.



Chapter 5

Elementary
Transcendental Functions

Post quantitates exponentiales considerari debent ar-
cus circulares eorumque sinus et cosinus, quia ex ip-
sis exponentialibus, quando imaginariis quantitatibus
involuntur, proveniunt. (After exponential quantities
the circular functions, sine and cosine, should be con-
sidered because they arise when imaginary quantities
are involved in the exponential.) - L. EULER, Intro-
ductio.

In this chapter the classical transcendental functions, already treated by
EULER in his Introductio [E], will be discussed. At the center stands the
exponential function, which is determined (§1) both by its differential equa-
tion and its addition theorem. In Section 2 we will prove directly, using
differences and the logarithmic series and without borrowing any facts from
real analysis, that the exponential function defines a homomorphism of the
additive group C onto the multiplicative group C*. This epimorphism the-
orem is basic for everything else; for example, it leads immediately to the
realization that there is a unigquely determined positive real number 7 such
that exp z = 1 precisely when 2z is one of the numbers 2nwi, n € Z. This
famous constant thereby “occurs naturally among the complex numbers”.

Following Euler’s recommendation, all the important properties of the
trigonometric functions are derived from the exponential function via the
identities

1, ., : 1, . A
cosz = 5(6” +e7 %), sinz = Z—i(e“‘ —e ).

In particular, we will see that « is the smallest positive zero of the sine
function and % is the smallest positive zero of the cosine function, just as
we learned in the infinitesimal calculus. In connection with §1-3 compare

133
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also the presentation in Numbers [19], where among other things a com-

pletely elementary approach to the equation e = 1 will be found.
Logarithm functions will be treated in detail in §4 and §5, where the gen-

eral power function and the Riemann zeta function will also be introduced.

§1 The exponential and trigonometric
functions

The most important holomorphic function which is not a rational function
is the one defined by the power series Y z, and designated expz. Its
dominant role in the complex theatre is due to the Euler formulas and to
its invariance under differentiation: exp’ = exp. This latter property, along
with exp 0 = 1, characterizes the exponential function; it makes possible a
very elegant derivation of the basic properties of this function. Decisive in
many arguments is the elemental fact that a holomorphic function f with
f' = 0 is necessarily constant.

1. Characterization of exp z by its differential equation. First let
us note that
The exponential function is zero-free in C and

(expz)™! = exp(—2) for all z € C.

Proof. The holomorphic function h(z) := expz - exp(—z) satisfies h' =
h — h = 0 throughout the connected set C. Consequently (1.3.3) it is
constant in C. Since h(0) = 1, it follows that exp(z) - exp(—z) = 1 for all
z € C, an equation which contains both of the claims.

Theorem. Let G be a region in C. Then the following statements about a
holomorphic function f in G are equivalent:

i) f(2) = aexp(bz) in G, for constants a,b € C.
ii) f'(z) =bf(z) inG.

Proof. The implication i) => ii) is trivial. To prove ii) = i) we consider
the holomorphic function h(2) := f(z)exp(—bz) in G. It satisfies b’ =

bh — bh = 0 throughout G. Consequently 1.3.3 furnishes an a € C such
that h(z) = a for all z € G. Because of the product form of h and the
previously noted form for the reciprocal of an exponential, the equation
h(z) = a yields f(z) = aexp(bz). a

Contained in this theorem is the fact that
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If f is holomorphic in C and satisfies f' = f, f(0) = 1, then
necessarily f = exp.

It follows in particular that the function & which came up in 1.2.3, 2) is in fact
exp, and so we obtain

expz = €” cosy + ie” siny for z = z + iy.

2. The addition theorem of the exponential function. For all z and
win C

(expw) - (exp z) = exp(w + 2).

Proof. Fix w in C. The function f(z) := exp(w + 2) is holomorphic in C
and it satisfies f' = f. So by theorem 1, f(z) = aexp z for an appropriate
constant @ € C. This constant is found, by considering z = 0, to be
a= f(0) =expw. a

A second (less sophisticated) proof of the addition theorem consists of

just calculating the Cauchy product (cf. 3.3.1) of the power series for exp w
and exp z. Since

A
1 1 1 A 1
_ Skt g = — A—v v _ = A
PA = Z H' 17 —)\!Z%(V)w z —M(w+z) ,
we have
o0 o
(exp w)(exp 2) Z =Z (w+ 2)* = exp(w + 2).
0 0

WEIERSTRASS preferred to put the addition theorem into the form

(expw)(exp 2) = fexp 5 (w + 2)1%,

where it reads: the function value at the arithmetric mean of two arguments is
the geometric mean of the function values at the two respective arguments.

The addition theorem also characterizes the exponential function.

Theorem. Let G be a region which contains 0, e : G — C a function
which is complez-differentiable at 0 and satisfies e(0) # 0 and the functional
equation

(%) e(w+ 2) = e(w)e(z) whenever w,z and w+ z all lie in G.
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Then for b := €'(0) we have

e(z) = exp(bz) for all z € G.

Proof. Since e(0) # 0 and e(0) = ¢(0)e(0) by (), it follows that e(0) = 1.
Given z € G, equation (*) holds for all sufficiently small w, because G is a
neighborhood of both 0 and 2. For such w then

e(z 4+ w) — e(2) _ e(w)—1 e(2) = e(w) — €(0)
w w w—0

-e(2).

The existence of €’(0) therefore implies the existence of €’(z) and the iden-
tity €'(z) = €/(0)e(z) = be(z). As this is the case for each z € G, the
function e is holomorphic in G and the present theorem is a consequence
of the preceding one. ]

3. Remarks on the addition theorem. The addition theorem is really
a “power rule”. In order to see this most clearly and also to clarify the
term “exponential function”, let us write e ;= exp(1) = 1+ & + 4 + .-
and e* := exp z for complex z just as is usually done for real z. With this
definition of the symbol “e*” the addition theorem reads like a power rule
or law of exponents:

Remark. The symbol “e” was introduced by Euler; in a letter to GOLDBACH
of November 25, 1731 we read “e denotat hic numerum, cujus logarithmus
hyperbolicus est = 1 (e denotes here the number whose hyperbolic loga-
rithm is equal to 1)”. Cf. the “Correspondence entre Leonhard Euler et
Chr. Goldbach 1729-1763,” in Corresponc?ance mathématique et physique
de quelques célébres géométres du XVIII'®™ME siécle, ed. P. H. Fuss, St.
Pétersbourg 1843, vol. 1, p. 58. |

The addition theorem contains the identity (expz)~! = exp(—z). Also
from the addition theorem and the Euler formula we can (without recourse
to 1.2.3, 2)) get the decomposition of the exponential function into real and
imaginary parts:

expz = e"e"¥ = e®cosy + ie®siny for z =z + dy.
As further applications of the addition theorem we note

(1) expz >0 forzeR; expr=1 forzrecRez=0;
(2) |expz| = exp(Rz) for z € C.

Proof. Ignoring non-negative terms in the power series shows that expz >
14z for z > 0 and then e™% = (e®) ! gives (1). Now (2) follows from this
positivity and the calculation
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lexpz|? = expz-eXpz =expz-expZ = exp(z+7%)
= exp(2Rz) = (exp(Rz))%. O

We see in particular that

3) lexpw| =1 & w € Ri.

As an amusing application of the addition theorem we derive a
Trigonometric summation formula. For all z € C such that sin %z #0

, neN.

1 sin(n + 1z
(%) —+cosz+cos2z+~~+cosnz=—¥
2 2sin 52

Proof. Since cosvz = £ (eV* + e~**%), the addition theorem gives
2 g

n 2n

%-I-Xn:cosuz = %Zei"‘ = %e_i"zze“’z,
1

—-n 0

Use of the usual formula for the sum of a finite geometric series and another
application of the addition theorem lead to

1 1 —inz et(2n+1)z -1 ez(n+1/2)z _ e—t(n+1/2)z
= cosvz = —e - = - .
2 + zl: 2 etz — 1 2(6”/2 —_ 6_”/2)
Since 2isinw = ¥ — e~*, this is the claimed equality. |

For z = z € R equation () is a formula in the real domain. It was derived here
by a calculation in C. Conclusions of this kind aroused quite a bit of admiration
in Euler’s time; HADAMARD is supposed to have said of this phenomenon: “Le
plus court chemin entre deux énoncés réels passe par le compleze (The shortest
path between two assertions about the reals passes through the complexes).”

4. Addition theorems for cos z and sin z. For allw,z € C
cos(w + z) = coswcos z —sinwsin z , sin(w+ z) = sin w cos z + cos wsin 2.
Proof. The point of departure is the identity

Wtz = W . e = (cosw + 4 sinw)(cos z + isin z)

= (coswcosz — sinwsin z) + ¢(sin w cos z + cos w sin z).

Replacing w with —w, z with —z yields the companion
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e {w+2) = (cosw cos z — sin wsin z) — 4(sin w cos z + cos w sin z)

Addition and subtraction of these two identities give the claimed addition
formulas for sine and cosine. O

As in the case of the corresponding addition theorems for real arguments,
innumerable further identities flow from these two. E.g., the useful formulas

1 1
COsw —Ccosz = -—2sin§(w+z)sin§(w—z)
1 1
sinw—sinz = 2cos§(w+z)sin§(w—z)

follow easily for all complex w,z. From the plethora of other possible
formulas we note explicitly only that

1=cos?z+sin’z, cos2z = cos’ z —sin® z , sin2z = 2sin zcos 2

for all z € C.

5. Historical remarks on cos z and sin z. These functions were dis-
covered by geometers long before the advent of the exponential function; a
formula closely related to the addition theorem for sin(a+3) and sin(a— ()
was known already to ARCHIMEDES. In PTOLEMY the addition theorem
can be found implicitly in the form of a proposition about circularly in-
scribed quadrilaterals (cf. 3.4.5 in the book Numbers [19]). Toward the end
of the 16th century — before the discovery of logarithms— formulas like

1 1
coszTCosy = 5 cos(z+y) + 3 cos(z — y)

were used (for purposes of astronomy and navigation) to multiply two num-
bers A and B: in a table of sines (which of course is also a table of cosines)
the angles z and y were found for which cosz = A, cosy = B. Then
z + y and = — y were formed and the table again consulted for the values
of cos(z + y) and cos(z — y). Half the sum of the latter then gave AB.

The power series developments of the functions cosz and sinz were
known to NEWTON around 1665; e.g., he found the sine series by inversion
of the series

arcsinrz =z + lws + =z + ix7+---
6 40 112
which in turn he had arrived at by geometric considerations. But a system-
atic exposition of the theory is not to be found until the 8th chapter “Von
den transcendenten Zahlgrossen, welche aus dem Kreise entspringen” of
Euler’s Introductio [E]. Here for the first time the trigonometric functions
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are defined on the unit circle in the way that has since become standard.

Besides the addition theorems EULER presents an abundance of formulas,
in particular in §138 his famous (cf. 4.2.1)

1, . ) 1. .
cosz = 5(6” +e7**), sinz = —2—27(6” —e ), z€C.

6. Hyperbolic functions. As is done for real arguments, the hyperbolic
cosine and hyperbolic sine functions are defined by

(e —e%), z€C.

[

1
cosh z := -2—(ez +e %), sinhz:=

These functions are holomorphic in C and

(cosh)'(z) sinhz, (sinh)(z) = cosh z;

coshz = cos(iz), sinhz= —isin(iz), ze€C.

All the important properties of these function are derivable from these
equations. Thus we have

Z2V . z2u+1
coshzzzm , s1nhz=2(27+1—)! forze C

and the addition theorems have the form

cosh(w + z) = coshwcoshz + sinhwsinhz,
sinh(w + 2)

sinh w cosh z + cosh wsinh z,

while 1 = cos?(iz) + sin?(iz) yields 1 = cosh? z — sinh® z, an identity which
clarifies somewhat the adjective “hyperbolic”, if one remembers that z2 —
y? = 1 is the equation of a hyperbola in R?.

The hyperbolic functions provide a convenient means for decomposing
the complex sine and cosine functions into real and imaginary parts:

cos(z +1iy) = cosxcoshy — isinzsinhy,

sin(z +14y) = sinzcoshy+ icoszsinhy.
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Exercises

Ezxercise 1. Show that for z € C

sin3z = 3sinz—4sin®z

sin4z 8cos® zsinz — 4cos zsin z
cos 3z 4cos®z— 3cosz

cosdz = 8cos?z—8cos?z+ 1.

Il

Prove similar formulas for cosh 3z, cosh 4z, sinh 3z, sinh 4z.
Ezercise 2. Let k € N, £ > 1 and let I" denote the boundary of the square
in C which has the vertices k(1 +17). Show that |cosz| > 1forall z € T.

Egzercise 3. Let f, g be holomorphic in a region G which contains 0. Suppose
that

flw+2) = f(2)f(w) —g(z)g(w) and g(w+z) = g(2)f(w) + g(w)f(2)

hold whenever w, z and w + z all belong to G. Show that if f(0) = 1 and
f(0) = 0, then there is a disc B centered at 0 and lying in G such that

f(2) = cosbz and g(z) = sinbz for all z € B,

b being the number ¢'(0).

Ezercise 4. The power series f(z) := ) .,a,2z" converges in a disc B
centered at 0. For every z € B such that 2z is also in B, f satisfies f(2z) =
(f(2))%. Show that if £(0) # 0, then f(z) = expbz, with b:= f'(0) = a;.

Ezercise 5. Show that the sequence of functions fi(z) := F(1,k,1,2/k),
k > 1, z € E, converges compactly in the unit disc E to the exponential
function. (For the definition of F(a, b, c, z) see exercise 1 in Chapter 4, §2.)

Ezercise 6. Show that for every R > 0 there is an N € N such that none of
2 n
the polynomials 1+ & + %7 +--- + £ with n > N has any zeros in Bg(0).
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§2 The epimorphism theorem for exp z and
its consequences

Because exp z is zero-free, exp is a holomorphic mapping of C into C*.
The addition theorem can be formulated in this context as

The mapping exp : C — C* is a group homomorphism of the additive
group C of all complex numbers into the multiplicative group C* of all
non-zero complex numbers.

Whenever mathematicians see group homomorphisms ¢ : G — H they
instinctively inquire about the subgroups kery := {g € G : ¥(g) = the
identity element of H} and ¥(G) of G and H, respectively. For the ez-
ponential homomorphism these groups can be determined explicitly and
this leads to a simple definition of the circular ratio w. Decisive for this
undertaking is the

1. Epimorphism theorem. The exponential homomorphism
exp:C— C*

is an epimorphism (that is, it is surjective).
First we prove a
Lemma. The subgroup exp(C) of C* is an open subset of C*.

Proof. According to 4.3.4, exp A(z) = 1+ z for all 2z € E. From this follows
first of all that B;(1) C exp(C), because if ¢ € By(1), then ¢ — 1 € E, the
domain of A, so b:= A(c— 1) exists in C and expb =c.

Now consider an arbitrary a € C*. Evidently aB;(1) = B, (a). More-
over, by the group property of exp(C), aexp(C) = exp(C) if a € exp(C).
Therefore, in general

Byg|(a) = aB;(1) C aexp(C) = exp(C) for all a € exp(C).

This says that for each a € exp(C) the whole open disc By (a) of radius
la| > 0 about a lies in exp(C); that is, exp(C) is open in C*. O

The epimorphism theorem follows now from a purely topological argu-
ment. This argument is quite general and establishes the following theorem
about topological groups: an open subgroup A of a connected topologi-
cal group G must exhaust G. So here we are considering A := exp(C),
G := C*. Consider also B := C* \ A. Every set bA, b € B, is also open
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in C*. Therefore J,. 5 bA is an open subset of C*. But from elementary
group theory we know, since A is a subgroup, that

B = U bA = the union of all cosets different from A.
beB

Consequently, C* = AU B displays C* as the disjoint union of open sets
one of which, A, is not empty (1 = exp(0) € A). Since C* is connected (cf.
0.6), it follows that B = . That is, A = C*.

2. The equation ker(exp) = 2miZ. The kernel
K :=ker(exp) ={w e C:e¥ =1}

is an additive subgroup of C. From the epimorphism theorem we can easily
infer the following preliminary result:

(1) K is not the trivial group : K # {0}.
Proof. Since exp(C) = C* there is an a € C with e® = —1 # 1 = €. Then
a#0,s0c:=2a#0,yet e=(e?)2=1. That is, c€ K. ]

All the remaining steps in the characterization of K are quite elementary.
Since, by 1.3(3), |e*| = 1 is possible only for w € Ri, we learn next that

(2) K C Ri.
Thirdly, we will show that

(3) There is a neighborhood Uof 0 € C such that U N K = {0}.

Proof. If this were not the case, then there would be a null sequence h,, in
C, all h,, # 0, with exp h,, = 1. This would lead to the contradiction

1 = exp(0) = exp’(0) = lim exp(hn) — exp(0)

n—00 h,n

=0. a

Our goal is now within a few lines’ reach:

Theorem. There is a unique positive real number ™ such that

(4) ker(exp) = 2miZ.

Proof. The continuity of exp and (1)—(3) ensure that there is a smallest
positive real number m with 2mi € K (note that —K = K). Since K is a
group, 2miZ C K follows. If conversely r € R and ri € K, then 7 # 0 means
that 2nm < r < 2(n + 1) for an appropriate n € Z. Since ri — 2nmi € K
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and 0 < 7 — 2n7 < 27, the minimality of 7 implies that r — 2nm = 0, i.e.,
r € 2nZ. This proves that K C 2miZ and completes the proof of (4). The
uniqueness of 7 is clear. a

As far as this book is concerned, the content of the above theorem is the
definition of 7. It follows directly that

(5) e = ~1

and from this that e!™/2 = +i. With only the results presently at hand the
minus sign cannot be precluded: that will be accomplished in subsection 6
with the help of the Intermediate Value Theorem.

3. Periodicity of exp z. A function f: C — C is called periodic if there
is a complex number w # 0 such that f(z + w) = f(z) for all z € C. Such
a number w is called a period of f. If f is periodic, the set

per(f) := {w € C: w is a period of f} U {0}

of all periods of f together with 0 constitutes an additive (abelian) subgroup
of C.

The Periodicity Theorem. The function exp is periodic and
per(exp) = ker(exp) = 2miZ.

Proof. For a number w € C the number exp(z + w) = exp zexpw coincides
with expz € C* for every z € C exactly when expw = 1; which proves
that per(exp) = ker(exp). O

The equation ker(exp) = per(exp) = 27iZ describes the essential differ-
ence in the behavior of the e-function on the reals and on the complexes:
on the real line, because ker(exp) "R = {0}, it takes on every positive
real value exactly once; on the complex plane by contrast it has the purely
imaginary (hence unbeknown to its real restriction) minimal period 2m¢ and
it takes on every non-zero complex as well as real value countably infinitely
often.

On the basis of this discussion a simple visualization of the exponential
function is possible: divide the z-plane into the infinitely many contiguous
strips

Spi={2€C:2nm <SFz < 2(n+ 1)m}, ne€Z.

Every strip S, is mapped bijectively onto the set C* in the w-plane and in
the process the “orthogonal cartesian z-y-system of the z-plane” goes over,
with preservation of angles, into the “orthogonal polar coordinate system
of the w-plane.”
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N il e N NN
[/ A )/
z-plane w-plane

Remark. The difficulties which the complex exponential function caused math-
ematicians are well illustrated by the following exercise, which TH. CLAUSEN
(known from the Clausen-von Staudt formula for the Bernoulli numbers) set in
1827 and which CRELLE saw fit to reproduce in his famous journal (Journal fiir
die Reine und Angewandte Mathematik Vol. 2, pp. 286/287): “If e denotes the
base of the hyperbolic logarithms, 7 half the circumference of a unit circle, and

n a positive or negative whole number, then, as is known, e*"™* = 1, ¢! 27" — ¢;

. . N2 . 2.2 .
consequently also e = (e!t2nmi)I42nmi — o — (142077 _ pltdnmi—dn®r  gince
. 2, 2
however e!t4"™ = ¢, it would follow that e %* ™ = 1, which is absurd. Find
b b
the error in the derivation of this result”.

The reader for his part might give the matter some thought too.

4. Course of values, zeros, and periodicity of cos z and sin 2.
The exponential function assumes every complex value except zero. The
trigonometric functions have no exceptional values:

cos z and sin z assume every value c € C countably often.

Proof. Solving the equations e** + e~ ** = 2¢ and e¥* — e %% = 2ic for e'*
leads to e* = c + v/c2 — 1, respectively, e* = ic & v/1 — c2. Moreover,
for no ¢ € C are the numbers ¢ + v/c2 — 1 or ic & v/1 — ¢? equal to 0.
Therefore, since exp(C) = C* and ker(exp) = 2miZ, there are countably
many z satisfying each of the latter two exponential equations, and hence
satisfying cos z = ¢, sin z = ¢, respectively. O

Because cos(C) = sin(C) = C, cos and sin are unbounded in the complez
plane (in contrast to their behavior on the real line, where both are real-
valued and the identity cos?z + sin?z = 1 requires that |cosz| < 1 and
|sinz| < 1): For example, on the imaginary axis, for y > 0,

1 1 1
cosiy = E(ey +e ¥)>1+ §y2 , isiniy = 5(6—1‘ —e¥) < —y.

In contrast to expz, cosz and sin z have zeros. With 7 denoting the
constant introduced in subsection 2 we will show
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The Theorem on Zeros. The zeros of sinz in C are precisely all the

real numbers nw, n € Z. The zeros in C of cosz are precisely all the real
numbers im +nw, n € Z.

Proof. Taking note of the fact that €™ = —1, we have
2isinz = e **(e?** — 1) , 2cosz = ei(”_z)(e2i(z'%") - 1),

from which we read off that

sinw=0 <& 2iw € ker(exp) = 2miZ
& w=nn, n€Z

cosw=0 & 2 (w—%w) € 2miZ
o w= -;—71' + nmw.

O

Remark. We see that 7 (respectively, %T(‘) is indeed the smallest positive zero of
sin (respectively, cos). Even if all the real zeros of sin and cos are known from the
real theory, it would still have had to be shown that the extension of the domain
of these functions to C introduces no new, non-real, complex zeros.

Next we show that sin and cos are also periodic on C and have the same
periods there as on R.

Periodicity Theorem. per(cos) = per(sin) = 27Z.

Proof. Since cos(z + w) — cosz = —2sin(z + iw)sin jw, by 1.4(1), the
number w is in per(cos) if and only if sin %w = 0, that is, if and only if
w € 27xZ. The claim about the sine function follows by the same reasoning

from the identity sin(z 4+ w) — sin z = 2cos(z + jw) sin Fw.

Remark. Again, even if one knows that cos and sin each have the minimal period
27 on R, he would still have had to show that the extensions to C also have 27
as a period and that moreover no new non-real periods are introduced.

5. Cotangent and tangent functions. Arctangent series. By means
of the equations

cos 2

cotz = ——, z € C\ 7Z,
sin z
1 sin 2

tanz = = 2€C\(in+7Z
cotz cosz’ \ (37 +7Z)
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the known cotangent and tangent functions are extended into the complex
plane. Their zero-sets are %7‘[’ + nZ and wZ, respectively. Both functions
are holomorphic in these new domains:

-1 1

cot’'(z) = tan’(z) = .
(2) sin?z ’ an’(z) cos? 2

In classical analysis the cotangent seems to enjoy a more important role
than the tangent (cf. e.g., 11.2). From the Euler formulas for cos and sin
follow

_ ,62i2+1_, 2
cotz = ’Lm—l 1—-1T€m y

11— e2iz ) 1
Since the kernel of e?** is 7Z, we see immediately that

The functions cot z and tan z are periodic, and
per(cot) = per(tan) = 7Z.

We also take note of some computationally verifiable formulas which will
be used later:

1
—— = cotz+taniz, cot’(z) + (cot 2)2 + 1 =0,
sin z

2cot2z = cotz+cot(z+ 3m)  ( double-angle formula ).

From the addition theorems for cosz and sinz we get addition theorems
for cot z and tanz. E.g.,

cotwecotz —1

tw ootz in particular, cot(z + 1m) = —tanz.
cot w 2

cot(w+ z) =
There is an especially elegant “cyclic” way to write the addition theorem:

cotucotv + cotvcotw + cotweotu =1

in case u + v + w = 0. (Proof!)

In 4.3.4, 5) we introduced the arctangent series, which is defined and
holomorphic in the unit disc E:

3 55 H2n+1
42 ()
a(z) =z + +(-1) o T 1

T3 + -+, with d’(2) =

14+ 22°
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Since tan0 = 0, the function a(tan z) is defined and holomorphic in some
open disc B centered at 0. We claim that

a(tanz) = z in B.

Proof. The function F(z) := a(tan z) — z satisfies

1 1

Fl(2)= .
(2) 1+tan?z cos?z

-1=0 in B.

Consequently F is constant in B and since F'(0) = 0 that constant is 0 and
the claim follows. |

The identity a(tanz) = z explains the designation “arctangent”. It is
customary to write arctan z for the function a(z); in 5.2 we will see among
other things that tan(arctan z) = z holds as well as arctan(tan z) = z.

6. The equation e'> = i. From " = —1 it follows that ¢’ = +i. In
order to determine the sign we will show, with the help of the Intermediate
Value Theorem that

(1) : sinz >0 for0 <z <.
Proof. Doing a little grouping and factoring of terms in the power series
for sin gives sinz = 2 (1 - 563) + 15—? (1 — 5—27) + +--; from which we see

that sinz is positive for z € (0,v/6). Were sinz to be negative anywhere
in (0, 7), then by the Intermediate Value Theorem it would have to have a
zero somewhere in (0, 7), contrary to the theorem 4 on zeros. a

From (1) it follows that sin 3w = 1, because cos®z + sinfz = 1 and

cos %ﬂ' = 0. Then from e*® = cosz + isinz it is clear that

(2) et =1 (equation of Johann BERNOULLI 1702).

Because (e’%)2 = and Qe'T = sin § > 0, it further follows that

x 1
s = —/2(1+1).
% = SV3(1+1)
Thus for the functions cos 2z and sin z we have

T LT T . T T
cos— =0, sin— =1; cos— =sin— = — , whence cotZ:tan

™
2 2 4 4 2 =1

4

The reader should determine e'%.
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Exercises

Ezercise 1. a) For what 2z € C is cos z real?
b) For what z € C does cos z lie in [-1,1]?
Ezercise 2. For z € C show that
a) cosz =1 if and only if 2 € 27Z;
b) sinz =1 if and only if z € m + 2nZ.
Exzercise 8. Show that for z,w € C:
a) cosz = cosw if and only if either 2 + w € 27Z or z — w € 27Z;
b) sinz = sinw if and only if either 2 + w € 7 + 27Z or z — w € 27Z;
c) tanz = 1if and only if z € § + 7Z;
d) tanz = tanw if and only if z — w € 7Z.

Ezercise 4. Determine the largest possible regions in which each of cos z,
sin z, tan z is injective.

§3 Polar coordinates, roots of unity and
natural boundaries

In the plane R? = C polar coordinates are introduced by writing every
point z = z + iy # 0 in the form

z = |z|(cos @ + isin )

where ¢ measures the angle between the r-axis and the vector z (cf. the
figure).

iy

ilzlsingpg = - = - == z=x+iy=|z|€®

e - -
v
t

(4
|zl cos @

To make this intuitively clear idea precise is not so trivial; it will be
done later. We will discuss roots of unity further and, as a consequence of
these considerations, present examples of power series which have the unit
circle as natural boundary.
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1. Polar coordinates. The circle S; := 0E = {z € C: |z| = 1} is a group
with respect to multiplication and we have

The Epimorphism Theorem. The mappingp: R — S, ¢ — €, is
an epimorphism of the additive group R onto the multiplicative group Sp
and its kernel is 2nZ.

This follows immediately from the epimorphism theorem 2.1, since by
1.3(3), expw € S; & w € Ri. |

The process of wrapping the number line around the circle of circum-
ference 27 is accomplished analytically by the “polar-coordinate epimor-
phism” p. It now follows easily that

Every complez number z € C* can be uniquely written in the form
z = |2|€* = |z|(cos ¢ + isin ) with ¢ € [0,27).

Proof. Since z|z|~! € S, the range of p, there is a ¢ € R with z = |z]e*;
and since kerp = 27Z there is such a ¢ € [0,27). The latter requirement
uniquely determines . If [z|e?? = |z|e*¥ with ¢ € [0, 27), then eX¥=¥) =1,
80 1 — @ € 2xwZ. Since 0 < [ — ¢| < 2, it follows from ¢ — ¢ € 27Z that
Yv—p=0. 0O

The real numbers |z|, ¢ are called the polar coordinates of z; the number
@ is called an argument of z. Our normalization of ¢ to the interval [0, 27)
was arbitrary; in general any half-open interval of length 27 is suitable,
and in subsequent sections it often proves advantageous to use the interval
(—m, 7.

The multiplication of two complex numbers is especially easy when they
are given in polar coordinates: for w = |w|e’¥, z = |z|e!¥

wz = |w||z|e! ¥+,
Since (%)™ = €™V this observation contains
de Moivre’s formula. For every number cosy +ising € C
{cosp +isinp)™ = cosny + isinny , n e Z.
By expanding the left side (binomial expansion) and passing to real and
imaginary parts we get, for every n > 1, representations of cosny and

sinny as polynomials in cos ¢ and sin ¢. For example,

cos 3¢ = cos® ¢ — 3 cos p sin? @ , sin3p = 3cos? psinp — sin® .
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The above method of deriving these identities is a further illustration of
Hadamard’s “principle of the shortest path through the complexes” — cf.
1.3.

Historical note. In 1707 Abraham DEMOIVRE indicated the discovery of
his “magic” formula with numerical examples. By 1730 he appears to have
known the general formula

1 1
cos<p=5{/cosncp+isinn<p+5{/cosngo—isinncp, n > 0.

In 1738 he described a (complicated) process for finding roots of the form
Y a + ib; his prescription amounts in the end to the formula which is now
named after him. The present-day point of view first emerged with EULER
in 1748 (cf. [E], Chap. VIII) and the first rigorous proof for all n € Z
was also given by EULER 1749, with the help of differential calculus. For
biographical particulars on DEMOIVRE see 12.4.6.

2. Roots of unity. For every natural number n there are exactly n
different complex numbers z with z" = 1, namely

2mi 2 2
Gi=¢,0<v<n, where(::exp%zcos—g-’risin—-g.

Proof. ¢} = 1 for each v by deMoivre’s formula. Since (¢, ! =exp %(u—
1) and ker(exp) = 2miZ, it is clear that {, = {, exactly if 2 (v—pu) € Z. And
since |v — u| < n it follows that ¢, = {, © v = py; that is, o, (1,...,n-1
are all different. Since the nth degree polynomial 2™ — 1 has at most n

different zeros, the claim is fully established. a

Every number w € C with w™ =1 is called an nth root of unity and the
specific one { = exp(2ni/n) is called a primitive nth root of unity. The set
G, of all nth roots of unity is a cyclic subgroup of S; of order n. The sets

G:= CJOGH and H := D Gan

n=0

are also subgroups of S1, with H C G. We claim (for the concept of a
dense set, see 0.2.3):

Density Theorem. The groups H and G are dense in S;.

Proof. Since G D H we only need to consider H. The set of all fractions
having denominators which are powers of 2 is dense in Q hence in R. Then
M :={2rm2™" :m € Z , n € N} is also dense in R. The polar-coordinate
epimorphism p maps M onto H. Now generally a continuous map f: X —
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Y sends every dense subset A of X onto a dense subset f(A) of f(X) (since
f(A) C f(A)). Consequently, H = p(M) is dense in S; = p(R). O

In the next subsection we will give an interesting application of this
density theorem.

3. Singular points and natural boundaries. If B = Bg(c) ,0 <
R < oo, is the convergence disc of the power series f(z) = Y a,(z — ¢)¥,
then a boundary point w € 9B is called a singular point of f if there
is no holomorphic function f in any neighborhood U of w which satisfies
flUN B = f|U N B. The set of singular points of f on &B is always closed
and can be empty (on this point see however 8.1.5). If every point of B
is a singular point of f, 0B is called the natural boundary of f and B is
called the region of holomorphy of f.

Now let us consider the series g(2) := S 2% =24+ 22+ 24+ 28+ It
has radius of convergence 1 (why?) and for any z € E,n € N

-1

(x) 9(z"")=g(2) = (z+ 22 +---+2% ), 50 |g(z"")| < lg(2)] + .

The latter appraisal of g(22") has the following consequences:
For every 2™th root of unity ¢, n € N, we have lim¢, |g(t¢)| = oco.

Proof. Since g(t) > Y3t > (g+ 1)t* > 1(g+1) for all ¢ € N and all ¢
satisfying ( *v/2)~! < t < 1, it follows that lim;; g(t) = co. From this and
(%) we get, in case (2" =1,

l9(t¢)| > g(t*") —n,  hence lim|g(t¢)| = oo. O

Using the density theorem 2 there now follows quickly the surprising
Theorem. The boundary of the unit disc is the natural boundary of g(z).

Proof. Every 2"th root of unity ¢ € H is a singular point of g because
lim¢11 |9(¢¢)| = 0. Since H is dense in JE and the singular points consti-
tute a closed set, the claim follows. O
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Corollary. The unit disc E is the region of holomorphy of the function
h(z) := 3.2722" and this function (unlike the earlier g) is continuous on

E=EUOJE.

Proof. Were JE not the natural boundary of h, that would also be true
of b’ and of zh'(2) = g(z) (the function A’ being holomorphic wherever h
is — cf. 7.4.1). Since the series for h is normally convergent in E, h is
continuous in E together with its boundary JE. O

Likewise it is elementary to show that OE is tth natural boundary of
Y- z"'. Also the famous theta series 1 +23;° 2" has OE as a natural
boundary; the proof of this will be given in volume 2 (cf. also subsection 4
below).

We mention here without proof a beautiful, charming and, at first glance para-
doxical, theorem which was conjectured in 1906 by P. FATOU (French mathemati-
cian, 1878-1929) and elegantly proved in 1916 by A. HURWITZ (Swiss-German
mathematician in Zirich, 1859-1919) — see his Math. Werke 1, p.733:

Let E be the convergence disc of the power series Y a,z”. Then there is a
sequence €0,€1,€2, - - ., each being —1 or 1, such that the unit disc is the region of
holomorphy of the function e, a,2”.

4. Historical remarks about natural boundaries. KRONECKER and
WEIERSTRASS knew from the theory of the elliptic modular functions that
OE is the natural boundary of the theta series 1 + 2 1° 2 (cf. [K1], p.
182, as well as [Wy], p. 227). In 1880 WEIERSTRASS showed that the
boundary of E is the natural boundary of every series

Zb,,zau, a € N odd #1;breal,ab>1+g7r

([W4], p. 223); he writes there: “Es ist leicht, unzéhlige andere Potenz-
reihen von derselben Beschaffenheit ... anzugeben, und selbst fiir einen be-
liebig begrenzten Bereich der Veradnderlichen z die Existenz der Functionen
derselben, die tiber diesen Bereich hinaus nicht fortgesetzt werden kénnen,
nachzuweisen.” (It is easy to give innumerable other power series of the
same nature and, even for an arbitrarily bounded domain of the variable z,
to prove the existence of functions of this kind which cannot be continued
beyond that domain.) Thus it is already being maintained here that every
region in C is a region of holomorphy. But this general theorem will not
be proved until the second volume.

In 1891 the Swedish mathematician I. FREDHOLM, known for his contri-
butions to the theory of integral equations, showed that E is the region of
holomorphy of every power series ) a”z"z, 0 < |a] < 1 and that such func-
tions are even infinitely often differentiable in E (Acta Math. 15, 279-280).
Cf. also [Gg], vol. II, part 1, §88 of the English translation.
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The phenomenon of the existence of power series with natural boundaries
was somewhat clarified in 1892 by J. HADAMARD. In the important and oft-
cited work “Essai sur I’étude des fonctions données par leur développement
de Taylor” (Jour. math. pures et appl. (4) 8(1892), 101-186), where he
also re-discovered Cauchy’s limit-superior formula, he proved (pp. 116ff.)
the famous

Gap Theorem. Let the power series f(z) = > oo bz, 0 < Ao < A <
-+ +, have radius of convergence R < 0o and suppose there is a fized positive
number & such that for almost all v

Avel — Ay 2 6N, (lacunarity condition).

Then the disc Br(0) of convergence is the region of holomorphy of f.

The literature on the gap theorem and its generalizations is vast; we
refer the reader to GAIER’s notes pp. 140-142 of the 3rd edition of [Lan]
for a guide to it and to pp. 76-86 and 168-174 of that book for proofs of
one of the deeper generalizations, that of E. FABRY. The simplest proof of
Hadamard’s gap theorem is the one given in 1927 by L. J. MORDELL, “On
power series with the circle of convergence as a line of essential singulari-
ties,” Jour. London Math. Soc. 2 (1927), 146-148. We will return to this
matter in volume 2; cf. also H. KNESER [14], pp. 152fI.

Exercises

Exzercise 1. For a,b € R, b > 0 determine the image under the exponential
map of the rectangle {z +iy:z,y € R, |z —a| < b, |y| < b}

Ezercise 2 (Cf.4.2.5%). Define b,, := 3" for odd n and b,, := 2-3" for even n.
The power series f(z) 1= -, %ﬂz" then has radius of convergence 1
and converges at z = 1 (proof!). In this exercise you are asked to construct a
sequence z,, € E such that lim z,,, = 1 and lim |f(2,)| = co. Hint. Choose
a strictly increasing sequence of natural numbers k1 < ko < --- <k, < ---
such that for all n € N, n > 1, we have 302 L > 357711 Then set

1 v=n v
2y 1= 27 Ok )T i3

Erercise 8. Show that if be R, d € N and b > 0, d > 2, then the unit disc
is the region of holomorphy of the series } oo, b 24"

Exzercise 4. Show that E is the region of holomorphy of the series 3 z*'.
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§4 Logarithm functions

Logarithm functions are holomorphic functions £ which satisfy the equation
exp of = id throughout their domains of definition. Characteristic of such
functions is the differential equation ¢'(2) = 1/z. Examples of logarithm
functions are

1) in B;(1) the power series > ° (_13,”_1 (2 —-1),

2) in the “slit plane” {z =71 :7 >0, a < ¢ < a+ 27}, a € R fixed,
the function defined by

£(z) :=logr + igp.

1. Definition and elementary properties. Just as in the reals, a
number b € C is called a logarithm of a number a € C, in symbols (fraught
with danger) b = loga, if €® = a holds. The properties of the e-function at
once yield:

The number 0 has no logarithm. FEvery positive real number r > 0 has
exactly one real logarithm logr. Every complex number c = re?¥ € C* has
as logarithms precisely the countably many numbers

logr +ip+i2rn ,n € Z, in which logr € R.

One is less interested in the logarithms of individual numbers than in
logarithm functions. The discussion of such functions however demands
considerable care, owing to the multiplicity of logarithms that each number
possesses. We formally define

A holomorphic function £ : G — C on a region G C C is called a
logarithm function on G if exp((z)) = z for all z € G.

If £: G — C is a logarithm function, then certainly G does not contain
0. If we know at least one logarithm function on G, then all other such
functions can be written down; specifically,

Let £ : G — C be a logarithm function of G. Then the following asser-
tions about a function £ : G — C are equivalent:

i) £ is a logarithm function on G.
ii) £ = ¢+ 2nin for some 1 € Z.

Proof. i) = ii) We have exp({(z)) = exp(£(z)), that is, exp(£(z) —£(2)) = 1,
for all z € G. This has the consequence that £(z)—£(z) € 2miZ for all z € G.
In other words 2—71;(17 —£) is a continuous, integer-valued function on G. The
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image of the connected set G is therefore a connected subset of Z, viz., a
single point, 71, say. So ii) holds.
ii) = 1) £ is holomorphic in G and satisfies

exp(#(2)) = exp(£(2)) - exp(2min) = exp(f(z)) = 2
for all z € G. a

Logarithm functions are characterized by their first derivatives.

The following assertions about a function £ € O(G) are equivalent:
i) £ is a logarithm function on G.

ii) ¢(z) = 1/z throughout G and exp(£(a)) = a holds for at least one
acG.

Proof. i) = ii) From exp({(z)) = z and the chain rule follows 1 = ¢'(z) -
exp’(£(z)) = £/(z) exp(€(2)) = £/(2) - z and so £'(z) = 1/ z.

ii) = 1) The function g(z) := zexp(—£(2)), z € G, is holomorphic in G
and satisfies

g'(2) = exp(—£(2)) — 2£'(2) exp(—£(z)) = 0

for all z € G. Since G is a region it follows (cf. 1.3.3) that g = c € C*;
thus cexp(£(z)) = z throughout G. Since exp(¢(a)) = a, ¢ = 1 follows and
therewith i).

2. Existence of logarithm functions. It is easy to write down some
logarithm functions explicitly.

Existence Theorem. The function logz := Y S#(z —1)Y is a
logarithm function in B1(1).

Proof. By 4.34, 4) A(z) = > t—lyﬁ—lz" is holomorphic in the unit disc
E and satisfies M'(z) = (2 + 1)7! there. Since log z as defined here equals
A(z — 1), it follows that log € O(B;(1)) with log'(z) = z~!. Since log(1) =
0, e'°81 = 1 holds and so, by the derivative characterization of the preceding
subsection, log is a logarithm function on B;(1). g

The expression “logarithmic series” used in 4.2.2 for the series A(z) defin-
ing log(1+ 2) is now justified by the above existence theorem. We also note
that

|w|?
1 - fw]

for allw € E.

N =

(1) [log(1 +w) —w| <
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Proof. Since log(l1 + w) —w = —"’72 + %3 —+---, we have for all w € E

|w]?
O

| =

1
[log(1+w) —w| < —|w|2(1+|w|+|w|2+--~) < .
2 1— |w]

Existence is easily transferred from Bj(1) to other discs:

Let a € C* and b € C be a logarithm of a. Then log(za™!) + b is a
logarithm function in B, (a).

This is clear because £,(2) := log(za=!) + b is holomorphic in Big|(a)
and for z € Bj,(a)

exp(log(za™")) exp(b)

= zalexpb=z2a"la=2 a

exp(£a(2)) = exp(log(za~") +b)

Now logarithm functions are holomorphic per definitionem. But in fact
holomorphy follows just from continuity!

Let £ : G — C be continuous and satisfy expofl = id in G. Then £ is
holomorphic in G and consequently it is a logarithm function in G.

Proof. Fix a € G. Of course a # 0. Let £, denote the holomorphic
logarithm function log(za™') + b in B, (a), where b is any logarithm of
a. Then exp(€(z) — £q(2)) = 1, whence £(z) — £,(z) € 2miZ for all z €
GNBg|(a). The continuous function 5 (£—¢,) is therefore integer-valued,
hence locally constant. £ is therefore holomorphic in a neighborhood of a.
O

We emphasize: “continuous” logarithm functions are already holomor-
phic.

3. The Euler sequence (1 + z/n)". Motivated by, among other things,

questions of compound interest, EULER considered in [E] the polynomial
sequence

(1+f) n>1
n

and, via the binomial expansion and a passage to the limit which was
insufficiently justified in view of the subtleties present, he showed

Theorem. The sequence (1 + z/n)™ converges compactly in C to exp z.

We base the proof on the following
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Composition Lemma. Let X be a metric space, f, a sequence in C(X)
compactly convergent to f € C(X). Then the sequence expof, converges
compactly in X to expof.

Proof. All the functions expof,, expof are continuous on X. Let K be a
compact subset of X. Since

expofy — expof = [expo(fn — f) — 1 expof

and |expw — w| < 2|w| for |w] < 1/2 (cf. 4.2.1), it follows that

|expof, —expof|k < 2|expofl|k|fn — flk

whenever |f, — flx < 1/2. Since lim|f, — f|x = 0, the assertion follows.
O

Remark. The assertion of the Composition Lemma also follows directly
from the Composition Theorem in 3.1.5*.

We can now proceed with the proof of Euler’s convergence theorem. Let
a compact set K C C be given. There is an m € N such that |z/n| < 1/2
for all n > m and all z € K. Since by 2.(1), |log(1 + w) — w| < |w|? for
|w| < 1/2, it follows that

1
10g(1+—7z;)€C(K) and |nlog(1+%)—z|§;|z|§< for n > m.

Consequently, nlog(1 + %) converges compactly in C to z. Because of the

identity
n
s (v (1+2)) = (1+)"

the composition lemma ensures that (1 + %)" converges compactly in C to
exp z.

4. Principal branch of the logarithm. Next we will introduce a loga-
rithm function in the “slit plane” C™ (cf. 2.2.4). Our point of departure is
the real function

log:R* =R, r—logr (where RY := {z € R: z > 0}).

We will assume known from the infinitesimal calculus that this function
is continuous on R (although this is easily inferred from its being the
inverse of the strictly increasing continuous function z + e* on R). We
“continue this function into the complexes”: every number z € C7 is
uniquely representable in the form z = |z|e¥, where |2| > 0 and —7 < ¢ <
7. We claim that:
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The function log : C~ — C, z = [z]e*¥ + log|z| + iy, is a logarithm
function in C”. In By(1) C C™ it coincides with the function defined by
v—1
the power series y_|° (_l—l)/—(z —1)~.

Proof. First we want to see that the function is continuous. This comes
down to checking that z +— ¢ is continuous. Thus suppose 2z, = |z, |e¥*" €
C™ and 2z, — z = |z[e*? € C™, with ¢, € (=7, 7), and yet ¢, does not
converge to ¢. We use a compactness argument to reach a contradiction.
A subsequence ¢, converges to some 6 € [—, 7] different from ¢. But
by continuity of exp, z,, = |sz|ei“’”j — |z|€?, so z = |z|e?®, whence
e!®=% = 1. Since 0 < |p — 0| < 2m, this contradicts the periodicity
theorem 5.3. Next notice that

exp(log z) = exp(log |z| + ip) = €8 1*| . ¥ = |]¢* = 2

for all 2 € C™. Therefore, by 2, log z is a logarithm function in C~. By
the existence theorem 2, the function ) 7° %W—I(z —1)¥ is a logarithm
function in B;(1) C C™, hence it can differ from log z in the connected set
Bi(1) only by a constant, and that constant is 0 because both functions

vanish at z = 1. ]

The logarithm function in the slit plane C~ just introduced is called
the principal branch of the logarithm; for it logi = %m’. The infinitely
many other logarithm functions log z + 2win, n € Z, z € C~, are called
secondary branches or just simply branches; since C™ is a region (for each
point z € C™ the line segment [1, z] from 1 to z lies wholly in C™), these

branches are all the logarithm functions in C~.

The function £(z) = 3 log(z® + y?) + iarctan(y/z) considered in 1.2.3, 3),
coincides in the right half-plane {z € C : Rz > 0} with the principal branch
log 2, since z* + y* = |z|? and arctan(y/z) = ¢ if z > 0. By contrast, however,
s not a logarithm function at all in the left half-plane; since there evidently

exp(f(z)) = —z.

From now on log will always mean the principal branch of the logarithm.
In our definition the plane C was slit along the negative real axis, and a
certain arbitrariness was involved in this. One could as easily remove any
other half-line starting at 0 and by procedures analogous to the above define
a logarithm function in the resulting region. However, there is no logarithm
function in the whole of C*; for any such function would have to coincide
in C™ with some branch log z + 27in and consequently would fail to be
continuous at each point of the negative real axis.

5. Historical remarks on logarithm functions in the complex do-
main. The extension of the real logarithm function to complex arguments
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led at first to a phenomenon in analysis that was unknown in the real do-
main: a function defined by natural properties becomes multiple-valued in
the complex domain. On the basis of the permanence principle, accord-
ing to which all functional relations that hold in the real domain should
continue to hold in the complex domain, people believed, as late as the
beginning of the 18th century, in the existence of a (unique) function log z
which satisfies the equations

dlogz 1
1 = d —_— = -
exp(logz) = 2 an o >
From 1700 until 1716 LEIBNIZ and Johann BERNOULLI were involved in a
controversy over the true values of the logarithms of —1 and i; they got
entangled in irresolvable contradictions. At any rate, in 1702 BERNOULLI
already knew the remarkable equation (see also 2.6):

1 1
logi = Eﬂ , that is, ilogi = —37 (EULER, 1728).

EULER was the first to call the permanence principle into question; in
his 1749 work “De la controverse entre Messrs. Leibniz et Bernoulli sur
les logarithmes des nombres négatifs et imaginaires” (Opera Omnia (1) 17,
pp-195-232) he says quite clearly (p. 229) that every number has infinitely
many logarithms: “Nous voyons donc qu’il est essentiel & la nature des
logarithmes que chaque nombre ait une infinité de logarithmes, et que tous
ces logarithmes soient differens [sic] non seulement entr’eux, mais aussi de
tous les logarithmes de tout autre nombre. (We see therefore that it is
essential to the nature of logarithms that each number have an infinity
of logarithms and that all these logarithms be different, not only from one
another, but also [different] from all the logarithms of every other number.)”

Exercises

Forn € N, n > 2 and a region G C C, a holomorphic functionw : G — C
is called a holomorphic nth-root if w™(z) = z for all z € G.

Ezercise 1. Show that if ¢ is a logarithm function in G and w : G — C is
continuous and satisfies w"(z) = z for all z € G, then w(z) = e2™ik/me7t(2)
for all z € G and some k£ € {0,1,...,n — 1}.

Ezercise 2. There is no holomorphic nth-root in any region G which con-
tains 0.
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§5 Discussion of logarithm functions

The real logarithm function is frequently introduced as the inverse of the
(real) exponential function, and so log(expz) = z for ¢ € R. In the
complex domain this equation no longer enjoys unrestricted validity, since
exp : C — C* is not injective. The latter fact is also the reason why the
real addition theorem

log(zy) = logz + logy for all positive real z and y

is not unrestrictedly valid in the complex domain. First we will discuss
how these formulas have to be modified. Then we will study general power
functions, and finally we will show that

is normally convergent in the half-plane {z € C: Rz > 1}.

1. On the identities log(wz) = logw + log z and log(exp z) = z2.
For numbers w,z and wz in C~, with w = |w|e**, z = |z]e®¥, wz =
|wz|eX, where @,%,x € (—m,m), there is an n € {—2m,0,2nr} such that
X = ¢ + ¥ + 7. From this it follows that
log(wz) = log(|wllz]) + ix = (log|w| + i) + (log|2| + i) +in
= logw + log 2z + in.

We see in particular that
log(wz) = logw +logz < ¢ + ¢ € (—m, 7).

Since the condition —7 < ¢ + ¥ < 7 is met whenever Rw > 0 and Rz > 0,
a special case of the above is

log(wz) = logw+log z for all w, z € C with Rw > 0,Rz > 0. a

The number log(exp z) lacks definition precisely for those z = z + iy for
which e* = e” cosy +ie® siny falls into C\ C™. This happens exactly when
e®cosy < 0 and e®siny = 0, that is, when y = (2n + 1)7 for some n € Z.
Therefore log o exp is well-defined in the domain

B:=C\{z:92=(2n+1)mneZ} =G,

nez

where for each n € Z

Gni={z€C:(2n-1)r <z < (2n+ )7},
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a strip of width 27 parallel to the z-axis (cf. the figure above).
For z = ¢ + iy € G,, we have e* = ¢%e¥=2"%) and y — 2nr7 € (-7, 7).
It follows that

log(exp z) = log e® + i(y — 2nm)
and so
log(exp z) = z — 2min forall 2€ G,, n€Z

Only in the strip G does log(exp z) = 2 prevail. Since however exp(log z) =
z always holds, we have

The strip Gg = {z € C: —1 < Sz < w} is mapped biholomorphically
(and so certainly topologically) onto the slit-plane C~ by the ezponential
function, and the inverse mapping is the principal branch of the logarithm.

2. Logarithm and arctangent. The arctangent function, defined in the
unit disc in 2.5 satisfies

1 142
(1) arctanz=2—log +zz’ z€E.

1} 1-iz
Proof. The function h(z) := 3£ € O(C\ {1}) is, to within the factor ¢,
the Cayley mapping hc from 2.2.2; therefore A{E) = {z € C : Rz > 0}.
Accordingly, the function H(z) := logh(z) is well-defined in E and lies
in O(E). It satisfies H'(z) = %:—)) = 12;. Therefore G(2) := H(iz) -
2arctan z € O(E) satisfies

2i 2%

1+22 1422
for all z € E. Since G(0) = 0, it follows that G = 0. m|

G'(z) = iH'(iz) — 2i(arctan)’(z) =

On the basis of the identity arctan(tanz) = z proved in 2.5, equation
(1) yields
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1 1+t
(2) z=—log ——tl,—in—% for all z near 0.
21 1—itanz

We further infer that

3) tan(arctanz) =z for z € E.
. 2iw _ 192 .
Proof. w := arctanz satisfies e*" = T " account of (1). Since
1— e2iw 1z
tanw = i——— (cf. 2.5), it follows that tanw = z.
1+ e2iw

3. Power functions. The NEWTON-ABEL formula. As soon as a
logarithm function is available, general power functions can be introduced.
If £: G — C is a logarithm function, we consider the function

Do : G — C |, z— exp(cl(z)).

for each complex number o. We call p, the power function with exponent o
based on ¢. This terminology is motivated by the following easily verified
assertions:

Every function p, is holomorphic in G and satisfies pl, = ops—1. For
all 0,7 € C, pspr = Poir and for n € N, p,(2) = 2™ throughout G.

In the slit-plane C~ a power function with exponent o is defined by
exp(olog z). Except for a brief interlude in 14.2.2, we reserve the (some-
times dangerously seductive) symbol 2z for this power function. For whole
numbers o € Z this agrees with the usual notation and, as remarked above,
is consistent with the prior meaning of that notation. We have, for example,

19=1, i =e % =0.2078795763...

Remark. That it is real was remarked by EULER at the end of a letter to
GOLDBACH of June 14, 1746: “Letztens habe gefunden, da8 diese expressio
(+v/=1)V~T einen valorem realem habe, welcher in fractionibus decimalibus
= 0,2078795763, welches mir merkwiirdig zu seyn scheinet. (Recently I have
found that this expression (v/—1)V~1 has a real value, which in decimal
fraction form = 0.2078795763; this seems remarkable to me.)” Cf. p. 383
of the “Correspondence entre Leonard Euler et Chr. Goldbach” cited in
1.3.

The rules already noted above can be suggestively written in the new
notation thus:

(z°) =271, 2727 = 2777, zeC.



§5. DISCUSSION OF LOGARITHM FUNCTIONS 163

From the defining equation 2% = e?1°8% » € C™, follows:

For z = re*?, p € (—x,7), and 0 = s + it, we have |27| = |z|R7e~ ¥,
and so |27| < |z|RoemISel,
Proof. All is clear because |e¥| = e®* and |e~*%7| < e™I97I, )

The function (1 + z)? is, in particular, well defined in the unit disc E.
Since (1 + 2)? = exp(olog(1l + 2)) = by(2) according to 4.3.4(x), we have
the following

NEWTON-ABEL formula:

(1+z)"=2(a)z" foralloeC,z€E.

v
0

By means of this formula the value of the binomial series can be explicitly
calculated. Setting o = s + it and 1 + 2z = re*¥, we have

b,(z) — exp(o, log(l + Z)) = e(s+it)(logr+i¢p) = ,rae—tq:ei(tlogr+s<p)'
If you write z = z + iy, comparison of real and imaginary parts on both

sides of the equation 1 +  + iy = re™ yields r = ((1 + z)? + 3?)'/?,
@ = arctan ﬁ’,—m, and consequently

(1427 = (1+ :L‘)2 + y2)%ﬂe—tarctan ™ x

1
X [cos (3 arctan I :/_ p + §t10g((1 +z)* + yz))
- y 1 2 2
+ isin (sarctan i + 2t108((1 +z)"+y ))]

for all 2 € E. This monstrous formula occurs just like this on p.329 of
ABEL’s 1826 work [A].

4. The Riemann {-function. For all n € N | n* = exp(zlogn) is
holomorphic in C and |n?| = n®#, according to the foregoing.

Theorem. The series Y ; n~* converges uniformly in every half-plane
{z€C:R2>1+¢€},e >0 and converges normally in {z € C: Rz > 1}.

Proof. For € > 0, |n?| = n®* > nlte if Rz > 1+¢. It follows from this that

>

o0

1 1
SZnHe for all z with Rz > 1 +¢.
1

n*
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But it is well known that the series on the right converges whenever € > 0
(see, e.g., KNOPP [15], p. 115), so the theorem follows from the majorant
criterion 3.2.2 and the definition of normal convergence. a

The function
¢(2) == i 1 Rz>1
a ’

is therefore well defined and at least continuous in its domain of definition.
In 8.4.2 we will see that {(z) is actually holomorphic. Although EULER had
already studied this function, today it is called the Riemann zeta-function.
At this point we cannot go more deeply into this famous function and its
history, but in 11.3.1 we will determine the values {(2),¢(4),...,¢{(2n),...

Exercises

In the first three exercises G:=C\ {z e R: |[z]| > 1}.

Ezercise 1. Find a function f € O(G) which satisfies f(0) = i and f3(z) =
22 — 1 for all z € G. Hints. Set fi(z) :=exp(3log(z+1)) for 2€ C\ {z €
R:z < -1} and fa(z) := exp(34(z — 1)) for z € C\{x € R: z > 1}, where
{ is an appropriate branch of the logarithm in C\ {x € R: z > 0}. Then
consider fi(z)f2(z) for z € G.

Egercise 2. Show that ¢ : C* — C* given by z — 1(z + 27!) maps the
upper half-plane H biholomorphically onto the region G and determine the
inverse mapping. Hints. In Exercise 3 to Chapter 2, §1 it was shown that
q maps the upper half-plane bijectively onto G. Letting u : G — H denote
the inverse mapping, show that u is related to the function f constructed
in Exercise 1 above by

(*) (w(z) —2)?=22-1=f%2), z2€G.

Check that u is continuous and then infer from () that u(z) = z + f(2).

Ezercise 3. Show that z — cos z maps the strip S :={z € C: 0 < Rz < 7}
biholomorphically onto the region G. The inverse mapping arccos : G — S
is given by

arccos(w) = —ilog(w + v w? — 1)

where vw? — 1 suggestively denotes the function f(w) from Exercise 1
above.
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Ezercise 4. For G' := C\ [-1,0] find a function g € O(G’) such that
g(1) = V2 and g?(2) = z(z + 1) for all z € G".

Ezercise 5. Determine the image G of G’ := {z € C: Rz < Sz < Rz + 27}
under the exponential mapping. Show that exp maps G’ biholomorphically
onto G. Finally, determine the values of the inverse mapping ¢ : G — G’
on the connected components of G N R*.



Chapter 6

Complex Integral
Calculus

Du kannst im Groflen nichts verrichten
Und fingst es nun im Kleinen an
(Nothing is brought about large-scale
But is begun small-scale).

J. W. GOETHE

Calculus integralis est methodus, ex data differential-
ium relatione inveniendi relationem ipsarum quantita-
tum (Integral calculus is the method for finding, from a
given relation of differentials, the relation of the quan-
tities themselves). L. EULER

1. GAUSS wrote to BESSEL on December 18, 1811: “What should we make
of [z -dx for £ = a + bi? Obviously, if we're to proceed from clear
concepts, we have to assume that z passes, via infinitely small increments
(each of the form a +1403), from that value at which the integral is supposed
to be 0, to £ = a + bi and that then all the pz - dr are summed up. In
this way the meaning is made precise. But the progression of = values can
take place in infinitely many ways: Just as we think of the realm of all
real magnitudes as an infinite straight line, so we can envision the realm
of all magnitudes, real and imaginary, as an infinite plane wherein every
point which is determined by an abscissa a and an ordinate b represents
as well the magnitude a + bi. The continuous passage from one value of
z to another a + bi accordingly occurs along a curve and is consequently

167
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possible in infinitely many ways. But I maintain that the integral [ ¢z -dz
computed via two different such passages always gets the same value as long
as px = oo never occurs in the region of the plane enclosed by the curves
describing these two passages. This is a very beautiful theorem, whose
not-so-difficult proof I will give when an appropriate occasion comes up.
It is closely related to other beautiful truths having to do with developing
functions in series. The passage from point to point can always be carried
out without ever touching one where gz = co. However, I demand that
those points be avoided lest the original basic conception of [ ¢z - dx lose
its clarity and lead to contradictions. Moreover it is also clear from this
how a function generated by [ ¢z - dz could have several values for the
same values of =, depending on whether a point where pz = oo is gone
around not at all, once, or several times. If, for example, we define logz
via [ i—d:c starting at £ = 1, then arrive at log z having gone around the
point z = 0 one or more times or not at all, every circuit adding the constant
+2mi or —2mi; thus the fact that every number has multiple logarithms
becomes quite clear.” (Werke 8, 90-92).

This famous letter shows that already in 1811 GAuUss knew about con-
tour integrals and the Cauchy integral theorem and had a clear notion of
periods of integrals. Yet GAUSsS did not publish his discoveries before 1831.

2. In this chapter the foundations of the theory of complex contour-
integration are presented. We reduce such integrals to integrals along real
intervals; alternatively, one could naturally define them by means of Rie-
mann sums taken along paths. Complex contour integrals are introduced
in two steps: First we will integrate over continuously differentiable paths,
then integrals along piecewise continuously differentiable paths will be in-
troduced (Section 1). The latter are adequate to all the needs of classical
function theory.

In Section 3 criteria for the path independence of contour integrals will be
derived; for star-shaped regions a particularly simple integrability criterion
is found. The primary tool in these investigations is the Fundamental
Theorem of the Differential and Integral Calculus on real intervals (cf.
0.2).

§0 Integration over real intervals

The theory of integration of real-valued continuous functions on real inter-
vals should be known to the reader. We plan to carry this theory over to
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complex-valued continuous functions, to the extent necessary for the needs
of function theory. I = [a,b], with a < b will designate a compact interval
in R.

1. The integral concept. Rules of calculation and the standard
estimate. For every continuous function f : I — C the definition

/ T )t = / RO dt + / St eC

makes sense for any r, s € I because Rf and & f are real-valued continuous,
consequently integrable, functions. We have the following simple

Rules of calculation. For all f,g € C(I), allr,s€ I and allce C

(1) /Ts(f+g)(t)dt=/rsf(t)dt+/ g(t)dt /ch dt—c/ F(t)

(2) /z f)de + /S f)dt = /s f(®)dt for every z € I,

(3) /T ft)ydt = — /3 f)de (reversal rule)

@) §R/rsf(t)dt=/:§Rf(t)dt, %/Tsf(t)dtz/rs Sf(t)dt

The mapping C(I) —» C, f +— fab f(t)dt is thus in particular a complez-

linear form on the C-vector space C(I). We call fab f(t)dt the integral of f
along the (real) interval [a,b]. For real-valued functions f,g € C(I) there
is a

Monotonicity rule: f ft)dt < f g(t)dt in case f(t) < g(t) for allt € I.

For complex-valued functions the appropriate analog of this rule is the
Standard estimate: |fab f(t)dt‘ < f: |[f(#)|dt  forall feC(I).

Proof. For real-valued f this follows at once from the monotonicity rule
and the inequalities —|f(t)| < f(¢) < |f(¢)|. The general case is reduced
to this one as follows: There is a complex number ¢ of modulus 1 such
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that ¢ fab f(t)dt € R. From linearity and calculation rule 4) it follows that
cf: ft)ydt = f: R(cf(t))dt. Then |R(cf ()| < |c||f(®)| = |f(t)| forallt € I

and the monotonicity rule finish the proof:

/a b F(t)dt c / ’ F(t)dt

b
/ [R(cf(t))|dt (the case already discussed)

b
/ F®)ldz.

The standard estimate is occasionally also referred to as a “triangle inequal-
ity”. This usage is suggested by thinking of the definition of the integral in terms
of Riemann sums. From that point of view the inequality just established does
indeed generalize the A-inequality |w + 2| < Jw| + |2| for complex numbers.

/ ’ R(cf(t))dt

IA

IA

2. The fundamental theorem of the differential and integral cal-
culus. For calculating integrals the Fundamental Theorem of Calculus is
indispensable. To formulate it, we first consider differentiable functions
f:I— C. A function f € C(I) is called (continuously) differentiable on I,
if both Rf and S f are (continuously) differentiable on I. We set

D10 = 1(0) = (1) (0) +4(S7Y ()

(called the first derivative) and verify painlessly that the sum, product and
quotient rules retain their customary form; the chain rule says (cf. the
figure) among other things that:

y S
T ‘ = oW

If f is holomorphic in the domain D and if v : I — D is differentiable on
I, then

(foy)(®) = f(v()Y (®).

A function F € C(I) is called a primitive (or an antiderivative) of f €
C(I) on I, if F is differentiable on I and F’ = f. Just as for real-valued
functions, we have the
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Fundamental Theorem of the Differential and Integral Calculus
for Intervals. Let f € C(I). Then (existence theorem) z — [ f(t)dt
z € I, is a primitive of f on I. If F € C(I) is any primitive of f on I,
then

8
/ f(t)dt = F(s) — F(r) forallr,s e I.

The proof consists in going over to real and imaginary parts, apply-
ing the fundamental theorem of calculus for real-valued functions and re-
assembling the pieces. A direct consequence of the fundamental theorem
is:

IfFF e C(I) are primitives of f on I, then F — F is constant on I.

Here are two other useful applications of the fundamental theorem:

Substitution rule. If J is an interval in R and ¢ : J — I is continuously
differentiable, then for every function f € C(I)

s »(s)
/ flp(t)e (t)dt = /( : F()dt forallr,s e J
r o(r

Proof. Let F be a primitive of f on I. Then

w(s)
/ ) Fd= F(p() ~ Flp(r).

Because (F o) = (F'op)-¢', Fogpis a primitive of (f o) ¢’ on J.
According to the fundamental theorem we then have

/ f@lt) - ¢ ()t = (F o p)(s) ~ (F o g)(r).

Integration by parts rule. For all continuously differentiable functions

figec)

/ (g ()t = F(B)a(d) - f(a)g(a / F()g(t)dt

Proof. If F is a primitive of f’g, then fg — F is a primitive of fg'.

§1 Path integrals in C

We first define complex contour integrals f fdz along continuously differ-
entiable paths in C. But this class of 1ntegrals isn’t adequate for function
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theory, where we must often integrate along paths with “corners”. In all
important applications on the other hand, we only need to integrate over
paths comprised of line segments and circular arcs strung together. If in
spite of this we consider the broader class of all piecewise continuously dif-
ferentiable paths, the reason is not the all too frequent and pedagogically
dangerous striving for generality at any price, but rather the realization
that the formulation in terms of curves built from segments and circular
arcs is not any simpler and in fact notationally is often more complicated.

In (older) textbooks on function theory complex integrals along arbitrary
“rectifiable” curves are frequently considered. There was a time when it
was fashionable to sacrifice valuable lecture time to developing the most
general theory of line integrals. Nowadays it is more customary in lectures
on basic function theory to restrict oneself to integration along piecewise
continuously differentiable curves and get on with the main business of the
theory.

By I we again denote a real interval [a, b], where a < b.

1. Continuous and piecewise continuously differentiable paths.
According to 0.6.2 every continuous mapping 7 : I — C is called a path or
a curve, with initial point v(a) and terminal point v(b). Instead of v(t) the
more suggestive notation z(t), or occasionally ((t), is also used. The path is
called continuously differentiable or smooth if the function « is continuously
differentiable on I.

Ezamples. 0) A path ~ is called a null path if the function v is constant;
such paths are of course continuously differentiable.

1) The segment [zg, z1] from 2 to z; is the continuously differentiable
curve

zZ(t):=(1—-t)zg +tz1, te]0,1].
2) Let ¢ € C, r > 0. The function
2(t) ;== c+re* = Re+rcost +i(Sc+rsint) , € [a,b],

where 0 < a < b < 27, is continuously differentiable. The corresponding
curve 7 is called, as intuition dictates, a circular arc on the boundary of
the disc B,(c). In case a = 0, b = 27, v is the circle of radius r around
the center c¢. This curve is closed (meaning that initial point = terminal
point); we designate this curve by S,(c) or sometimes simply by S, and
it is often convenient to identify S, with the boundary 0B, (c) of the disc
B, (c). a

If 41,...,7Ym are paths in C and the terminal point of -y, coincides with
the initial point of v,y for each 1 < p < m, then the path-sum v :=
Y1 + Y2 + - -+ + ¥m was defined in 0.6.2; its initial point is the initial point
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of v, and its terminal point is the terminal point of 7,,. A path v is called
piecewise continuously differentiable (or piecewise smooth) if it has the form
¥ ="+ +%m with each v, continuously differentiable. The figure shows
such a path whose components v, consist of segments and circular arcs.

Ye

Y2
Y1
T3 Ya Vs

Every polygon is piecewise continuously differentiable.

In the sequel we will be working exclusively with piecewise continuously
differentiable paths and so we will agree that, from now on, the term “path”
will be understood to mean piecewise continuously differentiable path. Paths
are then always piecewise continuously differentiable functions v : [a,b] —
C, that is, -y is continuous and there are points ay,...,am4+1 Witha = a1 <
a2 < --+ < am < am+1 = b such that the restrictions v, := v|[a,,aut1],
1 < p £ m are continuously differentiable.

2. Integration along paths. As is 0.6.2, |y| = «(I) designates the
(compact) trace of the path 7. The trace of the circle S.(c) is, e.g., the
boundary of the disc B.(c) (cf. 0.6.5); we also write dB,(c) instead of
Sr(c).

If v is continuously differentiable, then f(z(t))-2'(t) € C(I) for every
function f € C(|v]|); therefore according to 0.1 the complex number

L fdz = / f(2)dz = / " Fe0) 2 O

exists. It is called the path integral or the contour integral or the curvilinear
integral of f € C(|y|) along the continuously differentiable path . Instead
of f», fdz we sometimes write f7 fd¢ = f7 f(¢)d¢. In the special case where
7 is the real interval [a, b], described via 2(t) := ¢, a < t < b, we obviously

have
Lfdz = /ab f@@)dte.

It follows that the integrals discussed in section 0 are themselves path
integrals.

It is now easy to define the path integral fv fdz for every path v =
7 + Y2 + -+ + vm for which the v, are continuously differentiable paths
and for every function f € C(|y|). We simply set
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m

(+) / gaz=Y [ fax

p=1 Y

Note that each summand on the right side is well-defined because each 7,
is a continuously differentiable path with |y,| C |v]|.

Our contour integral concept is in an obvious sense independent of the par-
ticular way <y is expressed as a sum; but to make this precise we would have to
introduce some rather unwieldy terminology and talk about refinements of repre-
sentations as sums. We will leave to the interested reader the task of formulating
the appropriate notion of equivalence among piecewise continuously differentiable
paths and proving that contour integrals depend only on the equivalence class of
the paths involved.

3. The integrals | 55(¢ — ¢)"d¢. Fundamental to function theory is the
following

Theorem. For n € Z and all discs B = B,(c), r > 0,

/ (C—c)"dCz{O for n# -1,
8B

2mi  for n=-—1.

Proof. Parameterize the boundary 8B of B by ((t) := c + re*, with
t € [0,27]. Then {'(t) = ire’ and

2w 27
/ (C~c)d¢ = / (ret)"iretdt = r"t! / ie!m Tt gy,
8B 0 0
Since A5e'("*Vt is a primitive of ie'ntDt if n L 1, the claimed equality
follows. d

Much of function theory depends on the fact that [ a5(C— c)~d¢ #0.

The theorem shows that integrals along closed curves do not always van-
ish. The calculation involved also shows (mutatis mutandis) that integrals
along curves which each have the same initial point and each have the
same terminal point need not be equal. Thus, e.g., (see the left-hand figure

below)
a ac .
/7+C—c_m’ [,-C—C_ mi.

In 1841 in his proof of LAURENT’s theorem WEIERSTRASS determined the value
of the integral f 286 ~1d¢ using a “rational parameterization” (cf. [Wi], p.52):
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Z;

He describes the boundary 8B of the disc (with ¢ = 0) by means of ((t) := r{t&,
—oo < t < +00. Evidently — as everyone used to learn in school — ((¢) is the
second point of intersection of 9B with the half-line starting at —r and having

slope t := tan ¢ (cf. the right-hand figure). Because

2i ¢ %
(1-ti)2 C(t)  1+t2

%=2i/ dt2=4i/ d_
on C oI+t o L+t

WEIERSTRASS now defines (!) (which we proved above)

®dt Yodt
=) et Tre
—o0 + 0 +

the reduction to a proper integral being accomplished via the substitution ¢ := %
in 1°° l—i—i—g. WEIERSTRASS remarked that all he really needed to know in his
further deliberations was that this integral has a finite non-zero value. Cf. also

5.4.5 of the book Numbers [19].

dy=r

and it follows that

4. On the history of integration in the complex plane. The first in-
tegrations through imaginary regions were published in 1813 by S. D. PoissoN
(French mathematician, professor at the Ecole Polytechnique). Nevertheless the
first systematic investigations of integral calculus in the complex plane were made
by CAUCHY in the two treatises [Ci] and [C;] already cited in the introduction
to Chapter 1. The work [C;] was presented to the Paris Academy on August 22,
1814 but only submitted for printing in the “Mémoires présentés par divers Sa-
vants a I’ Académie royale des Sciences de 'Institut de France” on September 14,
1825 and published in 1827. The second, essentially shorter work [C2] appeared
as a special document (magistral mémoire) in Paris in 1825. This document
already contains the Cauchy integral theorem and is considered to be the first ex-
position of classical function theory; it is customary and just (GAUsS’ letter to
BESSEL notwithstanding) to begin the history of function theory with CAUCHY’s
treatise. Repeated reference will be made to it as we progress. CAUCHY was
only gradually led to study integrals in the complex plane. His works make clear
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that he thought a long time about this circle of questions: only after he’d solved
his problems by separation of the functions into real and imaginary parts did he
recognize that it is better not only not to make such a separation at all, but also
to combine the two integrals

/ (udz — vdy) , / (vdz + udy),

which come up in mathematical physics in the study of two-dimensional flows of
incompressible fluids, into a single integral

/fdz with f:=u+iv, dz := dzx + idy.

A good exposition of the development of the integral calculus in the complex
plane along with detailed literature references is to be found in P. STACKEL’s
“Integration durch imagindres Gebiet. Ein Beitrag zur Geschichte der Funktio-
nentheorie,” Biblio. Math. (3) 1(1900), 109-128 and the supplement to it by the
same author: “Beitrdge zur Geschichte der Funktionentheorie im achtzehnten
Jahrhundert,” Biblio. Math. (3) 2(1901), 111-121.

5. Independence of parameterization. Paths are mappings v : I — C.
You can think of v as a “parameterization” of the trace or impression.
Then it is clear that this parameterization is somewhat accidental: one
is inclined to regard as the same curves which are merely traversed in the
same direction but in a different time interval or with different speeds. This
can all be made precise rather easily:

Two continuously differentiable paths v:I1 — C, 7: 1 = @, I;] — C are

called equivalent if there is a continuously differentiable bijection ¢ : I — I
with everywhere strictly positive derivative ¢, such that ¥ = v o ¢.

The mapping ¢ is called a “parameter transformation” and is, because
¢’ > 0, a strictly increasing function with a differentiable inverse. It then
follows that (@) = a, ¢(b) = b. The inequality ¢’ > 0 means intuitively
that in parameter transformations the direction of progression along the
curve does not change (no time-reversal!).

We immediately confirm that the equivalence concept thus introduced is

a genuine equivalence relation in the totality of continuously differentiable
paths. Equivalent paths have the same trace. We prove the important

Independence theorem. If~v, 7 are equivalent continuously differentiable
paths, then

/fdz = /_ fdz  for every function f € C(|v|).
g 5
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Proof. In the foregoing notation, (t) = v(¢(t)) and so ¥'(t) = ¥'(¢(t))¢'(t),
t € I. It therefore follows that

b b
[ fdz = / FG(E)7 B)dt = / F @@ (0(t)@' (Bt

According to Substitution Rule 0.2, applied to f(¥(t))¥'(¢), the integral on

the right coincides with f:((:) ()Y (¢ )dt Because (@) = a, p(b) = b,

we consequently have f fdz = f Ff(r(@®) f fdz. O

Thus the value of a path integral does not depend on the accidental
parameterization of the path; and so, e.g., the Weierstrass parameterization
(cf. 1.3) and the standard parameterization of 8B,(0) both give the same
values to integrals. Ideally we should from this point onward consider
only equivalence classes of parameterized paths, even extending this idea
in the natural way to piecewise continuously differentiable paths. But then
every time we make a new definition (like sums of paths, the negative
of a path, the length of a path) we would be obliged to show that it is
independent of the class representative used in making it; the exposition
would be considerably more unwieldy and complicated. For this reason
we will work throughout with the mappings themselves and not with their
equivalence classes.

6. Connection with real curvilinear integrals. As is well known, for a
continuously differentiable path -+ presented as 2(t) = z(t) +iy(t), a <t < b, and
real-valued continuous functions p, ¢ on |vy|, a real path integral is defined by

b b
(pdz + qdy) = / p(x(t), y (1)<’ ()t + / a(2(t), y(©)y' (B)dt € R.

Theorem. Every function f € C(||), with u:=Rf, v:= Sf, satisfies

/fdz = /(ud:c — vdy) +i/(vdz + udy).
Y Y Y

Proof. f =u+1iv and 2'(t) = 2'(t) + iy (t), so

f(2(£)2'(t) = [u(z(t), (1) + iv(2(t), y(t))][«'(t) + &/ (t)]

and the claim follows upon multiplying everything out and integrating. O

The formula in the statement of the theorem is gotten by writing dz = dz+idy,
fdz = (u + iv)(dz + idy) and “formally” multiplying out the terms; cf. also
subsection 4.

One could just as easily have begun the complex integral calculus by using (*)
to define the real integrals f—, (pdz + gqdy). It is entirely a matter of taste which
avenue is preferred. O
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One can also introduce general complex path integrals of the form f7 fdz,
fv fdy, L fdz for continuously differentiable paths v and arbitrary f € C(|v]),
understanding by them the respective complex numbers

/f 2 (t)dt /f Dy ()t /f @,

Then the identities

/fdzz%(/fdz+/fd2) ,/fdyz%(/fdz—/fdf),/fd2=/fdz
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

are immediate.

Exercises

Ezercise 1. Consider the rectangle R :={z € C: —r <Rz <r, -5 <
Sz < s}, whose boundary is the polygonal path

[~ —is,r —is] + [r — is,7 + i8] + [r + is, =7 + is] + [—7 + 45, —1 — is],

where 7 > 0 and s > 0. Calculate [, ('dC.

Ezercise 2. Let v : [0,2n] — C be v(t) := €' and let g : |y] — C be

continuous. Show that
[ o0dc=- [ q0ictac
¥ v

Ezercise 3. For a,b € R define v : [0,27] — C by ~(t) := acost + ibsint
and compute f7 I¢]2d¢.

§2 Properties of complex path integrals

The calculation rules from 0.1 carry over to path integrals; this will be our
first order of business. With the help of the notion of the euclidean length
of a curve we then derive (subsection 2) the standard estimate for path
integrals, which is indispensable for applications. From it, for example,
follow immediately (subsection 3) theorems dealing with interchange of
limit and path integration.

1. Rules of Calculation. For all f,g € C(|y]) , c€ C
1) fv(f +g)dz = fq/ fdz + f,7 gdz | f7 cfdz = cf,7 fdz.
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2) If v* is a path whose initial point is the terminal point of v, then

/ fdz=/fdz+ fdz for all f € C(|y +v*1).
Yty* Y T*

Proof. Because of definition () in 1.2 it suffices to verify 1) for continuously
differentiable paths. In that case however 1) follows immediately from the
corresponding rule in 0.1; thus, for example, if v is defined on [a, b]

b b
dz = )y (t)dt = )y (t)dt = dz.
chz [ et o= [ sawno /f
Rule 2) is immediate from definition (*) in 1.2. O

In order to get an analog of the reversal of limits in 0.1 (Rule 3), we
assign to every path v : I — C its reversed path —7 defined as y o ¢ where
p: I — Iis given by (t) := a + b—¢. Intuitively —v consists of “running
over v in the opposite direction.” The sum path v+ (—7) is always defined;
for every sum path v + v+ we have —(y + v*) = —y* +(—7).

~ and —v have the same trace and —+ is piecewise continuously differen-
tiable if v is. Note however that ¢ does not effect an equivalence between
the paths v and —v because ¢'(t) = —1 < 0. Integrals along —y can be
determined easily by means of the

Reversal rule. f—*r fdz = — f7 fdz for all f € C(|y}).

Proof. We need only consider continuously differentiable paths . Since
w(a) = b, p(b) = a, application of the substitution rule to f(v(¢))v'(t)
gives

b a
[ @ = [ seteonr e o= [ oo @
— a b
The reversal rule 3) from 0.1 now gives
b
dz = — )Y (t)dt = - | fd. m]
[ sz== [ syt wi=- [ s
Rule 4) from 0.1 does not carry over: in general f'r fdz # f'v Rfdz.

Thus, e.g., f,y dz = i for the path v := [0,i] and so 0 = §Rf7 fdz, but
f7 Rfdz =i for the function f:= 1.

Important is the
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Transformation rule. Let g : D — D be a holomorphic mapping with
continuous derivative g’; let 4 be a path in D and v := go# the image path
in D. Then

/ f(2)dz = / f@(O)d Qe for all £ € C().

Proof. We may assume that 4 is continuously differentiable. Then it follows
that

b
/ f(2)dz = / FaG®)d G ()t = / F9(0)g (Q)dC.

5

2. The standard estimate. For every continuously differentiable path
v :la,b] = C, t — 2(t) = z(t) + iy(t), the (real) integral

b b
L(y) = / 12/(8)|dt = / VO Ty (2t

is called the (euclidean) length of . (It can be shown rather easily that
L(v) is independent of the parameterization of .) We motivate this choice
of language by means of two

Ezamples. 1) The line segment [zg, z1] given by z(t) = (1 — t)2¢ + tzy,
t € [0,1], has 2/(t) = z; — 20 and hence has length

1
L(20, 21]) = / |21 — zoldt = |21 - 2o,
0

as we feel it should.

2) The circular arc v on the disc B,(c), given by 2(t) = c+re®, t € [a, b)],
has length L(y) = r(b — a) since |2/(t)| = |rie't| = r. The length of the
whole circular periphery 0B.(c), corresponding to a := 0, b := 2m, is
L(0B,(c)) = 2rm, in accordance with elementary geometry. O

Ify=v+79+ -+ vm is a path with continuously differentiable
constituent paths v,, then we call

L(v) := L(m)+ L(y2) + -+ + L(vm)

the (euclidean) length of v. We can now prove the fundamental

Standard estimate for path integrals. For every (piecewise continu-
ously differentiable) path ~ in C and every function f € C(|v])

[yfdz

<|flyL(v) , where  [f]y := X If(z(@®)]-
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Proof. First let v be continuously differentiable. Then the inequality

[yfdz

follows from the standard estimate 0.1. Then our claim follows from the
fact that |f(2(t))] < |f|y for all t € [a,b] and the monotonicity of real
integrals.

Now let v = 1 + 2 + - - - + ¥, be an arbitrary path. Since f,y fdz =
> f,m fdz and |f|,, <|f|y (due to |y,| C |v]), it follows from what has
already been proven that

[rfdz Si::/mfdz

In the standard estimate strict inequality prevails whenever there is at
least one point ¢ € |y| where |f(c)| < |f],. (Why?) This sharper version
of the result won'’t really be used in this book, but as an application of it
we will show now that

b b
/ f(Z(t))z’(t)dt’s [ s o

<D ML) < 1Fly Y- L) = IflyL(). O
1 1

le* — 1] < |2] for all z € C with Rz < 0.

Proof. Let v :=[0, 2], f(¢) := €. Then fy fdz=e*—1and |f(¢)| = |e¢| =
e® < 1 for all ¢ € C with R¢ < 0, in particular for all ¢ on v except its
initial point. Therefore from the sharp form of the standard estimate

/ eSdz
v

3. Interchange theorems. With the help of the standard estimate it
follows easily that integration and convergence of functions are interchange-
able.

le* = 1| = < L(y) = I2l.

Interchange theorem for sequences. Let v be a path and f, € C(|y|)
a sequence of functions which converges uniformly on |y| to a function
fily]— C. Then

lim/vfndz =L(limfn)dz =Lfdz.

Proof. According to the continuity theorem 3.1.2, f € C(|y|). Therefore
f7 fdz exists. From the standard estimate and the fact that lim | f, — f |y =
0 we then get

[yfndz—/vfdz

/7 (fo - f)dz

< |fa = flyLiy) = 0. 0
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Applying this result to partial sums gives us

Interchange theorem for series. Let v be a path, f, € C(|y]) functions
for which the series Y f, converges uniformly on || to a function f : |y| —

C. Then
Zlfudz = /;(Z f,,)dz = ‘/W‘fdz,

The significance of the interchange theorems for function theory will
only gradually become clear; e.g., from them follows Weierstrass’ theorem
concerning the holomorphy of the limit of a compactly convergent sequence
of holomorphic functions (cf. 8.4.1). In the next section we give our first
application; in it (as almost always) the series involved is normally conver-
gent.

271
B := B,(c) is given by ((t) = ¢+ re®t, t € [0, 27, we have

4. The integral %~ [, - Z—d;% Because the boundary 0B of the disc

1 dC r 27 eitdt
2mi =on | reti(o—n  loral aB.
2mi Jog C— 2z 2m Jy Tet+ (c—z) or all z € C\

The straight-forward calculation of this integral is difficult if z # c. There-
fore we don’t attempt to evaluate it directly, but (by means of a trick)
reduce to the case 2z = ¢. This is done via the geometric series.

Lemma. The following equations hold:

(1) Cizzciczo:(z:z)" for all {,z with |z — c| < |¢ — ¢,

(—z z—c

(2) : = z—_ch(C_c>u for all {,z with [z —c| > |[{ —c|.
0

For fized c,7 and z € C\ 0B,(c) these are normally convergent series in
the variable ¢ € B, (c).

For the proof of (1) we set w := (z — ¢)(¢ — ¢)~! and write

1 1 1 1
= = E v 11 .
p w forallw e E
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Correspondingly one verifies (2) by developing ({ — 2)™! = —[(z — ¢)(1 -
w)]™1, with w := (¢ — ¢)(2 — ¢)7?, into a geometric series. Actually (2)
is just (1) with the roles of z and ( interchanged, so it does not require
separate proof.

If we set q := |z — c|r™!, then for fixed 2 € B := B,(c),0 < g <1

n
and max¢esn ’(f%ﬁ) " n € N. Therefore the series (1) is normally

convergent in { € OB. The normal convergence of the series (2) is treated
in a similar manner.

1 d¢ _[1 forzeB _
Theorem. mfch_z_{ 0 fo'r‘ZEC\B- )

Proof. a) In case z € B, (1) and the interchange theorem for series give

i€ < Y d¢
/c')BC_z—ZO:( )AB(C—C)V+1'

According to 1.3 all the integrals on the right vanish except when v = 0
and that integral has the value 2.
b) In case z € C\ B, (2) and the interchange theorem for series give

/ch—z ; Z_CVH/BB(c—z)Vdg.

Now 1.3 insures that without exception all the integrals on the right vanish.
O

The reader will find another proof of a) via the Cauchy Integral Theorem
in 7.1.2.

The trick of developing 1/({ — z) into a geometric series around ¢ used
above will be exploited again in developing holomorphic functions into
power series (cf. also 7.3.1).

In the theory of the inder the integral 21” fﬂ/ C—d_% will be studied for every
closed path v as a function of z € C\ |y|. Then we will see that the function
defined by this integral is locally constant, has values only in Z and vanishes for

all “large values” of z (cf. 9.5.1).

Exercises

Ezercise 1. Let G := {2 € E: Rz + Jz > 1}. Find a convenient parame-
terization v of &G and compute fv 3¢d(¢ as well as f,y ]-%Idc .
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Ezercise 2. For any polynomial p(z), any c € C, r € R

/ p(Q)d¢ = 2mir?p/(c).
9B (c)

Ezercise 3. Let 7 : [a,b] — C be a continuously differentiable path with
7'(t) # 0 for all t € [a,b]. Then there is a path ¥ : [a,b] — C which is
equivalent to -y and satisfies |3'(¢)| = 1 for all ¢ € [a, b].

Ezercise 4 (Sharpened standard estimate). Let v be a path in C and
f € C(|7]). If there exists ¢ € || such that |f(c)| < |f|y := max¢epy| |£(C)],
then

L f<<>d<] <Ufly - L(3).

Ezercise 5. Let tn(z) := 1+ z+ 522 + --- + 12" be the nth Taylor
polynomial approximant to e*. Show that |e* — t,(2)| < |z|**! for all
n € N and all z € C with Rz < 0.

§3 Path independence of integrals.
Primitives.

The path integral f,y fd( is, for fixed f € C(D), a function of the path v in
D. Two points 2y, zr € D can be joined, if at all, by a multitude of paths v
in D. We saw in 1.3 that, even in the case of a holomorphic function f in D,
the integral fv fd( in general depends not just on the initial point z; and
the terminal point z7 but on the whole course of the path v. Here we will
discuss conditions which guarantee the path independence of the integral
f,y fd¢, in the sense that its value is determined solely by the initial and
terminal points of the path.

1. Primitives. We want to generalize the concept of primitive (function)
introduced in 0.2. Fundamental here is the following

Theorem. If f is continuous in D, the following assertions about a func-
tion F : D — C are equivalent:

i) F is holomorphic in D and satisfies F' = f.

ii) For every pair w,z € D and every path v in D with initial point w
and terminal point z

/de = F(z) — F(w).
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Proofi) = ii) If 4 : [a,b] — D, t — ((t) is continuously differentiable, then

b b
/ fd¢ = / FED)C (B)dt = / F/(C#)¢ ($)dt.

By the chain rule (cf. 0.2), F'(¢(£))¢'(t) = £ F(¢(t)). Since w = {(a) and
z = ((b), it follows from this and the fundamental theorem of 0.2 that

b d
[ 1dc= [ GFC@)E=FEO) - FG(@) = F(2) - Flw)

If more generally v = 41 + - - - + 7, is an arbitrary path in D from w to z
and z7(v,), 27(7,) designate respectively the initial and terminal points of
Yur 1 £ p < m, then w = 2z1(m), 20(y) = 21(yp41) for p=1,2,--- ,m—1
and z7(ym) = z. Therefore, according to what has already been proved

L Fac=3 / Fd6 = 3 (F(er() = Fler(ow)) = Flz) = F(w)

ii) = i) We show that at every point ¢ € D, F'(c) exists and equals f(c).
Let B C D be a disc centered at c. By the hypothesis of ii)

F(z) = F(c) + fd¢ for all z € B.
le,2]
Set

Fi(z) i= — fd¢ forzeB\{c} and Fi(c):= f(c).

z—C le,2]

Then F(z) = F(c)+(z—c)Fi(z) holds for all z € B. If we can show that
F, is continuous at ¢, then F'(¢) = Fi(c¢) = f(c) will follow. For 2z € B\ {c}

1

Fi(z) — Fi(c) = T — ¢

/[ (O = e,

due to the fact that f[c,z] d¢ = z — c. Because the segment [c, 2] has length
|z — c|, the standard estimate yields

1
z—d

|F1(2) — Fi(e)| < = ey} - 12 = el < |f = fle)ls,

for all z € B. The continuity of F; at ¢ thus follows from the continuity of
f at c O

From now on a function F : D — C will be called a primitive of f €
C(D), if F satisfies i) and ii) of the preceding theorem.
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2. Remarks about primitives. An integrability criterion. Theorem
1 furnishes an important method for calculating complex path integrals.
As soon as we know a primitive F' of f, we need never parameterize any
paths but just determine the difference of two values of F. And primitives
can often be found directly by using i). Thus, e.g., for every integer n # —1
n+1
o
primitive; therefore f7 ¢"d¢ = 0 for every closed path 7 in C* and every
nezZ,n#-1.

Because |, 5B (¢—¢)~td¢ = 2mi for every disc B centered at ¢ (by theorem
2.4), it is now clear that

the function 2™ in C* (or in C when n > 0) has the function as a

For no ¢ € C is there a neighborhood U of ¢ such that the function
(z—¢c)"t € O(C\ {c}) has a primitive in U \ {c}.

For ¢ := 0 this reflects the fact, already realized in 5.4.4, that there is
no logarithm function in C*.

Within its disc of convergence every power series f(z) = 3 a,(z—c)” has
the convergent series F'(z) = ) ;24 (z — ¢)**! as a primitive; this follows
immediately from theorem 4.3.2. a

If F is holomorphic in D and F' = 0 throughout D, then F is locally
constant in D.

Proof. The hypothesis says that F' is a primitive of the constant 0 function.
Because in every disc B C D each point z € B can be joined radially to
the center c, it follows that

F(z)—F(c)=/0dC=O,

~

that is, F(z) = F(c) for all z € B. |

As promised in 1.3.3, we have found another proof for the important
theorem 1.3.3. Another immediate consequence is:

If both F and F, elements of O(D), are primitives of f, then F — F is
locally constant in D. O

Every function f € C(I) has primitives (the existence assertion of the
fundamental theorem 0.2). If we pass from intervals I to domains D in
C, this statement is not true without further qualification. Possessing a
primitive is a special property that a function f € C(D) may or may not
have; those that do are called integrable in D. It is clear that, for a function
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f which is integrable in D, the integral f7 fd¢ along any closed path v in
D must vanish (according to theorem 1). This property is characteristic
of integrability; we thus get as the appropriate analog of the existence
assertion in the fundamental theorem 0.2 the

Integrability Criterion. The following statements about a continuous
function f in a domain D are equivalent:

1) f is integrable in D.
ii) f,y fd¢ = 0 for every closed path v in D.

If ii) holds and if D is a region, then a primitive F of f can be obtained as
follows: Fiz a point zy € D and to each point z € D “somehow” associate
a path v, in D from z; to z; finally set

F(z):= | fd¢, z€D.

Y=z

Proof. Only the implication ii) = i) needs verification. Because a path
must remain within a single connected component of D (cf. 0.6.4), we can
assume that D is a region. In order to show that F is a primitive of f,
consider an arbitrary path + in D from w to z. Choose paths ~,,,7v, in D
from z; to w and z, respectively. Then 4, + v — 7, is a closed path in D
and therefore

0= fd<=/wde+/7de—/%de=F(w)+Lfd€—F(z)-

Yw Y=Yz

Consequently F' has property ii) in theorem 1. ]

We will see in 8.2.1 that integrable functions are always holomorphic. If
we write f = u + v, then on the basis of theorem 1.6 the single complex
equation f7 fd¢ = 0 goes over into the two real equations

/(udm —vdy) =0 and /(vd:z: + udy) = 0.
¥ ¥
(On this point cf. also 1.4.)

3. Integrability criterion for star-shaped regions. The condition
that all integrals f,y fd¢ along all closed paths v in G vanish is not verifiable
in practice (it is a so-called academic point); consequently the integrability
criterion 2 is to a large extent useless in applications. It is of fundamental
importance for the Cauchy theory that this condition can be significantly
weakened in certain special regions in C.

A set M C C is called star-shaped or star-like if there is a point z; € M
such that the segment [z, 2] lies wholly in M whenever z € M. Any such
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point is called a (star-) center of M (cf. the left-hand figure below). It is
clear that every star-shaped domain D in C is a region; such regions will
be called star regions.

A set M C Cis called convez if the segment [w, z] lies in M whenever
its endpoints w and z do; such sets were introduced already in antiquity,
by ARCHIMEDES, occasioned by his investigations of surface area. Every
convex set is star-shaped and each of its points is a star-center. In particu-
lar, every convex domain, e.g., every open disc, is a star region. The plane
slit along the negative real axis (cf. 2.2.4) is a star region C~ (which is not
convex), all points z € R, z > 0 (and only these) being star- centers of C™.
The punctured plane C is not a star region.

o4 zy

21 +5(z,—2,)

Z

We want to show that in the study of the integrability problem in star
regions it suffices to consider, instead of all closed paths, only those which
are boundaries of triangles. Whenever 21, 22, 23 are three points in C, the
compact set

A={zEC:z=z1+s(zz—zl)+t(Z3~z1),520,t20,s+t§1}
={2€C:z=1t121 +tpzg +t323,t1 > 0,82 > 0,t3 > 0,t; +ta +t3 =1}

is called the (compact) triangle with vertices z1, z2, z3 (barycentric repre-
sentation).
The closed polygonal path

OA := (21, 23] + [22, 23] + [23, 21]

is called the boundary of A (with initial and terminal point z;); the trace
|0A| is actually the set-theoretic boundary of A (see the right-hand figure
above). We claim

Integrability criterion for star regions. Let G be a star region with
center z1. Let f € C(G) satisfy faA fd¢ = 0 for the boundary 8A of each
triangle A C G which has z; as a vertet.

Then f is integrable in G, and the function

F(z):= fd¢ , z €G,
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8 a primitive of f in G. In particular, f,y fd¢ = 0 for every closed path ~y
in G.

Proof. Because G is star-shaped with star-center 21, [21, 2] C G for every
2z € G, and so F is well defined. Let ¢ € G be fixed. If z is near enough to
¢, then the triangle A with vertices z, ¢, z lies wholly in G.

Because, by hypothesis, the integral of f along A = [z, ¢] + [, 2] + [, 21]
vanishes, we have

F(z)=F(c)+ fd¢ , z € G near c.
[e,2]
From this it follows literally by the same argument used in the proof of the

implication ii) = i) of theorem 1, that F is complex-differentiable at ¢ and
that F'(c) = f(c). O

In the next chapter we will see that the condition |, aa fd¢ = 0 in the
integrability criterion just proved (in contrast to the more general condition
in the criterion 2) is actually verifiable in important and non-trivial cases.

Exercises

Ezercise 1. Let G :== C\ [0,1], f : G — C the function f(z) := Z(—z-l——ﬁ
Show that for every closed path v in G

A F(Q)dc =0

Erercise 2. Let D be a domain in C, f, : D — C a sequence of continuous,
integrable functions which converge compactly to f : D — C. Show that f
is also integrable.

Ezercise 3. Let G1,G> be regions in C such that G; N G2 is connected.
Suppose f : G; UG, — C is continuous and fv F(¢)d¢ = 0 for every closed
path v in G; and for every closed path + in G3. Show that then this
equality holds for every closed path « in Gy U G5 as well.



Chapter 7

The Integral Theorem,
Integral Formula and
Power Series
Development

Integralsatz und Integralformel sind zusammen von solcher
Tragweite, dass man ohne Uebertreibung sagen kann, in diesen
beiden Integralen liege die ganze jetzige Functionentheorie
conzentrirt vor (The integral theorem and the integral formula
together are of such scope that one can say without exaggera-
tion: the whole of contemporary function theory is concentrated
in these two integrals) — L. KRONECKER.

The era of complex integration begins with CAUCHY. It is consequently
condign that his name is associated with practically every major result of
this theory. In this chapter the principal Cauchy theorems will be derived
in their simplest forms and extensively discussed (sections 1 and 2). We
show in section 3 the most important application which is that holomor-
phic functions may be locally developed into power series. “Ceci marque
un des plus grands progrés qui aient jamais été réalisés dans ’Analyse.
(This marks one of the greatest advances that have ever been realized in
analysis.)” — [Lin], pp. 9,10. As a consequence of the CAUCHY-TAYLOR
development of a function we immediately prove (in 3.4) the Riemann
continuation theorem, which is indispensable in many subsequent consid-

191
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erations. In section 4 we discuss further consequences of the power series
theorem. In a closing section we consider the Taylor series of the special
functions z cot z, tan z and z/ sin z around 0; the coefficients of these series
are determined by the so-called Bernoulli numbers. “Le dévelloppement de
Taylor rend d’importants services aux mathématiciens. (The Taylor devel-
opment renders great services to mathematicians.)” —J. HADAMARD, 1892

§1 The Cauchy Integral Theorem for
star regions

The main result of this section is theorem 2. In order to prove it we will
need in addition to integrability criterion 6.3.3, the

1. Integral lemma of GOURSAT. Let f be holomorphic in the domain
D. Then for the boundary OA of every triangle A C D we have

/Mde:O.

For the proof we require two elementary facts about perimeters of tri-
angles:

1) maxy cen Jw — 2| < L(0A).

2) L(OA') = 3L(0A) for each of the four congruent sub-triangles A’
arising from connecting the midpoints of the three sides of A (cf. the
left-hand figure below).

We now prove the integral lemma. As a handy abbreviation we use
a(A) = |, sa fdC. By connecting with straight line segments the midpoints
of the sides of A we divide A into four congruent sub-triangles A,, 1 <
v < 4; and then
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4 4
a(A) = 21: /a N fd¢ =: El:a(A,,),

because the segments connecting the midpoints of the sides of A are each
traversed twice, in opposite directions (as one sees clearly in the right-hand
figure above), causing the corresponding integrals to cancel each other (the
reversal rule), while the union of the remaining sides of the A, is just A.

From among the four integrals a(A,) we select one with the largest
absolute value and label the corresponding triangle Al. Thus

la(A)| < 4la(A1)].
Apply the same subdivision and selection process to Al to get a triangle A2
for which |a(A)| < 4|a(A)| < 4%|a(A?)|. Continuation of this procedure
generates a descending sequence Al D A2 > ... D A™ O ... of compact

triangles satisfying

1) la(A)] <4%a(A™)], n=1L2,...
From preliminary remark 2) follows moreover that

@) L(0A™) = %L(BA) . n=12,..

The intersection N° A consists of precisely one point ¢ € A (nested interval
principle). Because f lies in O(D), there is a function g € C(D) such that

fO=f+f -+ —-c)gl), ¢eD,

and g(c) = 0. Then from the equations (which are valid on trivial grounds
or can be justified by the evident existence of primitives)

/ fle)d¢ =0 and / fl(e)¢-¢c)d¢ =0 foralln>1,
BA™ A"
it follows that
adh = [ -9, m=12,..
aar

From the standard estimate for curvilinear integrals together with the first
preliminary remark, we get the inequality

la(A™)] < max (I¢ — cllg(Q)NL(OA™) < L(dA™?|gloan ,  n=1,2,...

From (1) and (2) it also follows that
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la(8)] < 47[a(A™)] < L(9D)*|gloan ,  n=1,2,...

Because g(c) = 0 and g is continuous at c, for every € > 0, thereisa 6 > 0
such that |g|p,() < e. To this § corresponds an ng such that A™ C Bjs(c)
for all n > ng. Accordingly, [g|lsar < € for n > ng, and so

la(A)| < L(0A)%.

Since L(OA) is a fixed number and arbitrary positive values can be chosen
for €, a(A) = 0. a

It is frequently and correctly maintained that all of Cauchy’s theory of
functions can be developed, by and large without any additional calcula-
tion, from Goursat’s integral lemma.

2. The Cauchy Integral Theorem for star regions. Let G be a star
region with center ¢ and let f : G — C be holomorphic in G. Then f is
integrable in G and the function F(z) := f[c‘z] fd¢, z € G, is a primitive of
f in G. In particular,

/ fd¢=0 for every closed path v in G.
¥

Proof. Since f € O(G), we have [,, fd¢ = 0 for the boundary of every
triangle A C G, on the basis of Goursat’s integral lemma. The present
claim therefore follows from the integrability criterion 6.3.3 for star regions.

O

Applications. 1) In the star region C~ with center 1, f[l . %{ is a primitive of

%. If we next choose as our path, from 1 to z = re*? € C~, the segment (1, 7]

followed by the circular arc W from r to z (cf. the figure below), then because
of path independence we get

r @ . it
/ %z/ Ed—t—l—/ zre“ dt =logr + ip.
[1,z] ¢ 1 ¢ o T€

The original primitive thus turns out to be the principal branch of the logarithm
function in C~ and we have another proof of the existence of the principal branch.

z=re' w

r
X

2) We give a second, direct proof of theorem 6.2.4 in the case where z € B.
Let € > 0 be small enough that B.(z) C B. We introduce two intermediate paths
defined by (see the left-hand figure below)
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M=m+a+y+s, L=y - 8+v—«

Since the function h({) := ciz is-holomorphic in the slit plane shown (right-hand
figure below) and I'; is a closed path in this star region, we have fl“l h(¢)d¢ = 0.

A similar argument shows that h(¢)d¢ = 0. It follows (cf. the figures) that
g Ty

o:/ hd(—/ hd(:/ hd¢ = hd(—/ hd¢
r ra r,-ro oB 8B, (z)

and so f op NAC = f 0B (2) hd¢. This reduces the integral to be determined to one
in which z is the center of the circular path of integration, a (quite simple) case
already dealt with.

0 8’
Fdotofrd
N z

Y2 ”

3) If R is an open triangle or rectangle in C, then

/ i:?m‘ for all z € R.
R G ™%

The proof is carried out just as in the preceding text, with R now replacing B in
the arguments and the figures.

3. On the history of the Integral Theorem. CAUCHY stated his
theorem in 1825 in [Cp]. The publication of this classical work occurred
in a very strange way. It went out of print soon and not until 1874/75 -
long after RIEMANN and WEIERSTRASS had created their own theory of
functions — was it reprinted as “Mélanges” in Bull. Sci. Math. Astron.
7(1874), 265-304, along with two continuations in Volume 8(1875), 43-55
and 148-159. P. STACKEL made a German translation “Abhandlung iiber
bestimmte Integrale zwischen imaginaren Grenzen” in 1900; it is the 65-
page Volume 112 in the well-known series Ostwald’s Klassiker der exakten
Wissenschaften.

In his book La vie et les travaur du baron Cauchy (Paris, 1868 in 2
volumes; reprint: Paris, Blanchard, 1970) Cauchy’s pupil and biographer
VALSON enthusiastically praised this work, which indeed by 1868 was al-
ready epochal: “Ce Mémoire peut étre considéré comme le plus important
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des travaux de Cauchy, et les hommes compétents n’hésitent pas a le com-
parer a tout ce que I’ésprit humain a jamais produit de plus beau dans la
domaine des sciences. (This memoir may be considered the most important
work of Cauchy and knowledgeable people don’t hesitate to compare it to
any of the most beautiful achievements of the human mind in the domain
of science.)” It seems all the more astonishing that in the 27 volumes of
the (Buvres complétes d’Augustin Cauchy which the French Academy of
Science published between 1882 and 1974 (1st series with 12 volumes, 2nd
series with 15 volumes) this particular work of Cauchy first showed up in
a shortened form in 1958 (pp. 57-65, Vol. 2 of 2nd series) and in full only
in 1974 in the last volume of the 2nd series (pp. 41-89).

CAUCHY formulated his theorem for the boundaries of rectangles (p. 7
of STACKEL’s translation):

“We now think of the function f(x+iy) as finite and continuous as long
as x remains between the bounds xo and X and y between the bounds yg
and Y. Then one proves easily that the value of the integral

X+iY T
/ fdz = [ [0 +ix ()fle(t) +ix(®)dt

0+iY0 to

is independent of the nature of the functions z = ¢(t), y = x(¢).”

This is for rectangular regions precisely the independence of the integral
from the path ¢(t) + ix(t), t € [to,T]. One is surprised to read that
CAUCHY only hypothesizes that the function f be finite and continuous
but in the proof uses, without further consideration, the existence and
continuity of f’. This reflects the conviction, going back to the Euler
tradition and also held by CAUCHY — at least in the early years of his work
— that continuous functions are perforce given by analytic expressions and
are therefore differentiable according to the rules of the differential calculus.

CAUCHY proves the Integral Theorem by methods of the calculus of
variations: he replaces the functions ¢(t), x(t) by “neighboring” functions
p(t) + eu(t), x(t) + ev(t), where u(to) = v(to) = u(T) = v(T) = 0, and
determines the “variation of the integral” as follows (pp. 7,8 of STACKEL):
“The integral will experience a corresponding change, which can be devel-
oped into ascending powers of €. In this way one gets a series in which the
infinitely small term of first order is the product of € with the integral !

T
(%) t [(u+ ) (2" + i) f (z +iy) + (v + ') f(z + iy)]dt

Now by partial integration we find

1If we abbreviate ¢ := ¢ +1ix, 7 := u+4v and put f(¢+en) in the form f(¢)+ f/(¢) -
en + higher order terms in 7, then the various e-dependent integrands have the form

fC+en)(¢ +en’) = FOC + ¢ () + 7' f(¢)]e + higher order terms in ¢, and this
confirms the claim ().
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T T
/ (W + ') f(z + iy)dt = —/ (u+w) (2’ + i) f'(z + iy)dt.

t() tO

Consequently the integral () reduces to zero.” Thus did CAUCHY deter-
mine that the variation of the integral vanishes; which for him established
the correctness of his theorem. This method of proof can be made rigorous
but is almost forgotten in modern function theory.

The sentence “Ich behaupte nun, dass das Integral [ ¢z -dz nach zweien
verschiednen Ubergéngen immer einerlei Werth erhalte, ...”, quoted in the
introduction to Chapter 6, from GAUSS’ letter of Dec. 18, 1811 to BESSEL
shows that GAUSS knew the integral theorem that early. “Aber es ist
doch ein grosser Unterschied; ob Jemand eine mathematische Wahrheit mit
vollem Beweise und der Darlegung ihrer ganzen Tragweite verdffentlicht,
oder ob ein Anderer sie nur so nebenher einem Freund unter Discretion
mittheilt. Deshalb kénnen wir den Satz mit Recht als das Cauchy’sche
Theorem bezeichnen (But there is nevertheless a big difference between
someone who publishes a mathematical truth with a full proof and an
indication of its complete scope, and another who only incidentally com-
municates it privately to a friend. Therefore the theorem can rightly be
designated as the Cauchy Theorem)” - KRONECKER, on p. 52 of [Kr].

4. On the history of the integral lemma. Edouard GOURSAT (1858-
1936, French mathematician, member of the Académie des Sciences) com-
municated his proof to HERMITE in an 1883 letter (published as “Démon-
stration du Théoréme de Cauchy,” Acta Math. 4(1884), 197-200); he em-
ploys rectangles instead of triangles and explicitly used the continuity of
the derivative (see the bottom of his page 199). But he must have soon
become aware of the superfluousness of this continuity hypothesis, as he be-
gins his 1899 work [G;] with the sentence: “J’ai reconnu depuis longtemps
que la démonstration du théoréme de Cauchy, que j’ai donnée en 1883, ne
supposait pas la continuité de la derivée. (I have recognized for a long time
that the demonstration of Cauchy’s theorem which I gave in 1883 didn’t
really presuppose the continuity of the derivative.)” And in the last sen-
tence of this work he says: “On voit qu’en se plagant au point de vue de
Cauchy il suffit, pour édifier la théorie des fonctions analytiques, de sup-
poser la continuité de f(z) et |ezistence de la dérivée. (One sees that, from
Cauchy’s point of view, it suffices, for purposes of erecting the theory of
analytic functions, to hypothesize the continuity of f(z) and the existence
of the derivative.)”

GOURSAT considered regions G with quite general boundaries and ap-
plied his bisection method also to rectangles which partly protruded out-
side of G. The technical difficulties which this occasioned were noted as
early as 1901 by Alfred PRINGSHEIM (1850-1941, German mathematician
in Munich; doctorate 1872 in Heidelberg; 1877 failed attempt at Habili-
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tation in Bonn “on account of the great ignorance of the candidate” (al-
legedly PRINGSHEIM refused to explain to the august faculty how one solves
quadratic equations); successful Habilitation in Munich in 1877; by his
own testimony “one of the most prominent exponents of the specifically
Weierstrassian ‘elementary’ function theory”; owner of a coal mine in Sile-
sia; friend of Richard WAGNER,; father-in-law of Thomas MANN, who in
1905 had to withdraw his already published short story Wailsungenblut
under pressure from the Pringsheim family) in his paper “Uber den Gour-
satschen Beweis des Cauchyschen Integralsatzes” (Trans. Amer. Math.
Soc. 2(1901), 413-421). PRINGSHEIM proceeded from triangles, saying
on p.418: “Der wahre Kern jenes Integralsatzes liegt in seiner Giiltigkeit
fiir irgend einen Special-Bereich einfachster Art z.B. ein Dreieck --- Die
Moglichkeit, ihn auf krummlinig begrenzte Bereiche zu iibertragen, beruht
dagegen lediglich auf Stetigkeits-Eigenschaften, welche den Integralen jeder
stetigen Function zukommen. (The real kernel of that [Goursat’s] integral
theorem lies in its validity for any special domain of the simplest kind,
e.g., a triangle - - - The possibility of extending it to domains with curved
boundaries rests, by contrast, merely on continuity properties which are to
be found in the integrals of every continuous function.)”

By means of his “triangle” proof PRINGSHEIM essentially simplified Gour-
sat’s method of proof and gave it the elegant, final form that it has had
to this day. The triangle variant also has the economic advantage that it
yields the integral theory for star regions immediately, whereas the rectan-
gle version cannot do this.

5*%. Real analysis proof of the integral lemma. From the point of
view of real analysis one likes to think of Goursat’s lemma as a special case
of STOKES’ formula. For triangles in R? this reads

Let p, q be real-valued and continuously differentiable functions in a do-
main D C R%. Then for the boundary OA of every triangle A C D we

have
dq Op
dz + qd :// (——-—)dmd ,
/BA(p ady) a\0z Oy v

where [ [ ---dxdy indicates the area integral over A.

From this the integral lemma follows immediately but only under the
supplemental hypothesis that the derivative f' of f is continuous in D: For
then u = Rf and v = Sf are continuously real-differentiable, so that there
follows (cf. 6.1.6)

fdz = / (udz — vdy) + z/ (vdz + udy)
an aa aa
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S LG5 (G a)

In these double integrals both integrands are 0 by virtue of the Cauchy-
Riemann differential equations; therefore |, aa fdz = 0 follows. a

The foregoing proof was known to CAUCHY in 1846, as his Comptes
Rendus note “Sur les intégrales qui s’étendent & tous les points d’une courbe
fermée” (Buvres (1) 10, pp. 70-74) shows. It is possible that this proof,
which moreover is supposed to have been known to WEIERSTRASS as early
as 1842, was suggested to CAUCHY by GREEN’s work from the year 1828.
In 1851 RIEMANN discussed in detail and utilized Stokes’ formula ([R],
article 7 ff.). Cauchy’s name is never mentioned in Riemann’s work. O

We have repeatedly emphasized that for the construction of the Cauchy
theory of functions — in contrast to real analysis — only the existence of the
first derivative, not however its continuity, need be hypothesized. Function
theorists are occasionally reproached for making too much of an issue of
this fine point in their theory, all the more because it is meaningless as far
as applications are concerned. It does seem that for all the holomorphic
functions f which occur in (mathematical) nature, the continuity of the
derivative f’ is known a priori (and in most cases it is even known in
advance that f is arbitrarily often complex-differentiable!) Nevertheless, it
remains a surprising and deep discovery that the continuity of f’ does not
need to be postulated. Moreover, the Goursat proof is less “imposing” than
the real variable proof based on Stokes’ formula, which in the final analysis
doesn’t just fall into our hands from heaven. There is naturally also a
Goursat lemma for real integrals, where instead of complex-differentiability
conditions of real-integrability are imposed.

Discussions about the value of and best proof for a mathematical propo-
sition will (perforce) come up again and again as long as mathematics
is done by human beings, and yet to many mathematicians the ensuing
polemics are as hard to understand as the disputations of the Byzantines
about the genders of angels.

6*. The Fresnel integrals [ “costdt, J7sint2dt have played an im-
portant role in the theory of light diffraction since A. J. FRESNEL (1788~
1827, French engineer and physicist). With the help of Cauchy’s integral
theorem we reduce the evaluation of these integrals to the “error integral”

R 0o

1

lim | e tdt= / e tdt = /7.
R—o0 0 0 2

(In turn this formula will be derived later in various different ways, among
others via the residue calculus, and it will be generalized; cf. 12.4.3, 12.4.6,
as well as 14.3.2 and 14.3.3.)
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Theorem. For every a € R with |a|] < 1

% (14ia)?e? 1 1
(1) / e~ (IF1) g = = VT,
0

21 + ia

Proof. The case a = 0 reduces to the error integral, which, as promised will
be proved later. The case a < 0 reduces to the case a > 0 by conjugating
both sides of (1). Thus we only have to deal with 0 < @ < 1. Define

f(z):= e=*". For this function the integral theorem gives

() /de= fac+ [ e,
RE]

7 Y2

since (see the accompanying figure) v; + 72 — 3 is a closed path and f is
holomorphic throughout C. Now ~,(t) =7 +it, 0 < t < ar, so

(@) =e ™+ <e et ifo<t<r

and from this, the fact that v4(¢) = i and a < 1, follows

fdz

2

S/ [f(v2(8))|dt < e"z/ e"tdt < l, that is, lim / fd¢=0.
0 0 r TSy,

r(1 +ai)

Y3 Y2

> . X
Y1 r

Because v3(t) = (1 +4a)t, 0 <t < r, and v4(t) = 1 + ia, it now follows
from (*) that

(1+ia) / e~ 1+ gt = lim [ fd¢ = lim / fd¢ = / et = YT
0 3 Ty 0 2

r—00

[}
Splitting (1) into real and imaginary parts gives

I e(@* =D co52at2dt = mﬁ , -1<a<1,
(2) s
Jo e@ V¥ sin2at?dt = sriosVT, -1<a<l.

Taking a := 1 and using ¢ in the role of v/2t,
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o0 o0 1
(3) / costidt = / sint2dt = —\/-Z?—.
0 0 2V 2

FRESNEL knew these formulas in 1819. The equations (2) were familiar to
EULER by 1781; in his work “De valoribus integralium a termino variabilis
z = 0 usque ad = = oo extensorum” (Opera Omnia (1) 19, 217-227) he gets,
with the help of his Gamma function I'(2) (whose theory will be developed
in the second volume of this book) the following (p. 225):

Forp,qERwithpZOandf::W#O

/°°e cosq:c \/_/f+p / smq:c zﬁ/f_—_p
0 f 2

If we substitute t = 1/z and set p := 1 — a2, q := 2a, then equations (2)
result.

The method of computing the Fresnel integrals described above was well
known in the 19th century, appearing, for example, in H. LAURENT’s Traité
d’analyse, Paris, 1888, Vol. 3, pp. 257-260.

Exercise

Egercise. Show that [~ e~v"**dg = \/7/u for all u € C* with |Su| <
Ru. (In other words, the evaluation can be achieved by acting as if the
substitution ¢ := uz were permissible.)

§2 Cauchy’s Integral Formula for discs

The integral theorem 1.2 is inadequate for deriving the Cauchy integral
formula. A sharper version, which we discuss next, is needed. Cauchy’s
integral formula itself will then follow in a few lines.

1. A sharper version of Cauchy’s Integral Theorem for star re-
gions. Let G be a star region with star-center ¢. Let f : G — C be
continuous in G and holomorphic in the punctured region G\{c}. Then f
is integrable in G.

The proof of this is a verbatim transcription of the proof of theorem 1.2
except that now we invoke the
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Sharpened version of GOURSAT’s integral lemma. Let D be a do-
main, c € D. Let f : D — C be continuous in D and holomorphic in
D\{c}. Then [,, fd¢ =0 for every triangle A C D which has a vertez at
c.

The proof of this sharper version consists of reducing to the original
version: on the sides of A of which ¢ is an endpoint we select any two
points and consider the sub-triangles A; (containing c as a vertex), A
and A3 thereby created. (See the figure below.)

The integrals over the “interior paths” cancel each other out and, because
Ay UA3z C D\ {c} where f is holomorphic, the original Goursat integral
lemma affirms that the integrals over A, and 8A3 vanish. It follows that

/ fdc= [ fdc, andso / fdcjslffAL(aAl).
OA OA, O8A

Since L(9PA;) can be made arbitrarily small, it follows that fa A fd¢ =0.

Remark. The propositions of this section are preliminaries to Riemann’s
continuation theorem, which, among other things, asserts that every func-
tion which is continuous in D and holomorphic in D \ {c} is in fact holo-
morphic throughout D (cf. 3.4). The above sharpening of the integral
theorem is therefore really no sharpening at all; but at this point in the
development of the theory we are not in any position to see this (cf. also
3.5).

2. The Cauchy Integral Formula for discs. Let f be holomorphic in
the domain D and let B := B,(c), r > 0, be an open disc which together
with its boundary OB lies wholly in D. Then for all z €¢ B

16 =5 [ Mac

2mi aBC—Z

Proof. Let z € B be given and fixed, and consider the function
9(¢) :=L=LE for ¢ € D\ {2}, g(2) = f (2).

Since f € O(D), g is holomorphic in D \ {z} and continuous in D. Since
B C D, there is an s > r close enough to r that B’ := B,(c) C D. Because
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B’ is convex, the sharpened version of the Integral Theorem 1 says that
g|B' is integrable, and so, in particular, [, g(¢)d{ = 0. By theorem 6.2.4,
the definition of g on 0B gives

_ [ S [ [ Qg g
o= [ a0ic= [ Bac—se) [ 2o [ Lac-anise)

-z B¢—2
0

The enormous significance of Cauchy’s Integral Formula for function the-
ory will manifest itself over and over again. What immediately attracts our
attention is that it allows every value f(z), z € B, to be computed merely
from knowledge of the values of f on the boundary dB. There is no analog
of this in real analysis. It foreshadows the Identity Theorem and is the first
indication of the (sit venia verbo) “analytic mortar” between the values of
a holomorphic function. In the integrand of the Cauchy Integral Formula
z appears ezplicitly only as a parameter in the denominator, no longer tied
to the function f! We will be able to glean a lot of information about
holomorphic functions generally from the simple structure of the special
function (¢ — z)~!; among other things, the power series development of
f and the Cauchy estimates for the higher derivatives of f. The function
(¢ — 2)7! is often called the Cauchy kernel (of the integral formula).

The special instance of the integral formula where z is the center ¢ of
the disc and 8B is parameterized by c + re'¥, ¢ € [0,27], is known as the

Mean value equality. Under the hypotheses of theorem 2

1 27

fle) fle+re'®)dp.

= E A
From which, e.g., immediately follows, using the standard estimate 6.2.2,
the

Mean value inequality:

[f()l < 1flas

which however is only a special case of the general Cauchy inequalities for
the Taylor coefficients (cf. 8.3.1).

Remark. By means of a beautiful trick of LANDAU’s (see Acta Math. 40(1916),
340, footnote 1)) much more than the mean value inequality can be immediately
inferred from the Cauchy integral formula:

(#) 1f(2)| < |flem for all z € B.

Proof. First we note that the integral formula and the standard estimate show
that
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|f(2)] < a:|floB , where a, :=r|1/(¢ — 2)|sB for z € B.

This estimate is of course valid as well for every positive integer power f* of
f, since f* € O(D). It then gives |f(z)| < ¥a.|f|sB, for all z € B, and since
limg—.co ¥/@z = 1, the claim follows. — The inequality (#) is a forerunner of the
maximum principle for bounded regions; cf. 8.5.2.

The Cauchy integral formula holds for other configurations besides discs. We
will be content here to cite two such:

Let f € O(D) and let R be an (open) triangle or rectangle which together with
its boundary lies in D. Then

&d( for all z € R.
or ¢~

fz) =5~

Proof. Since there is a convex region G with R C G C D, it follows, as above for
discs, that

dC

on =2

0= g“)dc )

R

According to 1.2 3) the last integral has the value 2mi.
In 13.1.1 below we will see a considerable generalization of this.

3. Historical remarks on the Integral Formula. CAUCHY discovered
his famous formula in 1831 during his exile in Turin. Its first publication
was in a lithographed treatise Sur la mécanique céleste et sur un nouveau
calcul appelé calcul des limites, lu & ’Académie de Turin le 11 octobre
1831. The integral formula first became generally accessible in 1841, when
CAUCHY, back in Paris, published it in the 2nd volume of his Ezercices
d’analyse et de physique mathématique (Euvres (2), 12, 58-112). CAUCHY
writes his formula for ¢ = 0 in the following fashion (loc. cit., p.61)

@)= o [ Ly,

L —

where he is denoting by T the variable of integration (and not the complex
conjugate of x) and is writing T = XePV~! (so that X = |z|). This
formula coincides, naturally, with ours if the boundary circle is described
by { =re¥, - < p <

1 Q) .. _ Q). Cf(C)
3t Ly 2= g | Fsirende =5, L(-2% o
The mean value equality f(c) = f (c + re*?)dyp is to be found

as early as 1823 in the work of POISSON in “Suite du mémoire sur les
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intégrales définies et sur la sommation des séries,” Journ. de UEcole Poly-
technique, Cahier 19, 404-509 (esp. 498). Por1ssoN did not recognize the full
scope of his formula; it was “von grianzenlosen Zauberformeln diinenartig
zugedeckt” (cf. p.120 of the article “Integration durch imaginéres Gebiet”
by STACKEL; this quotation — “covered by limitless sand dune-like magic
formulae” —, used in another connection, is from GOETHE Uber Mathematik
und deren Mifibrauch 2nd Abt., volume 11, p.85 of the Weimar edition of
1893, Verlag Hermann Béhlau.)

4*, The Cauchy integral formula for continuously real-differenti-
able functions. Under the supplemental hypothesis of the continuity of
f' the Cauchy integral theorem is a special case of the theorem of STOKES
(cf. 1.5). Therefore it is not surprising that, under the same additional hy-
pothesis, the Cauchy integral formula is a special case of a general integral
formula for continuously real-differentiable functions.

Theorem. Let f : D — C be continuously real-differentiable in the domain
D. Let B := B,(c), r > 0, be an open disc which together with its boundary
OB lies in D. Then for every z € B

_ 1 f(©) 1 of 1 x
f(Z)_%/aBC—ZdC+2_ﬁ/ B—ffC—deAdC'

The area integral on the right is the “correction term” which vanishes
in case f is holomorphic. In the general case part of what has to be proven
is the existence of this integral. Note that to compute it we must know
the values of f throughout B. We won’t go into these matters any further
because we don’t plan to make any use of this so-called inhomogeneous
Cauchy integral formula. (For a proof of it, see, e.g., [10].) Anyway, this
generalized integral formula was unknown in classical function theory; it
apparently first appeared in 1912 in a work of D. POMPEIU “Sur une classe
de fonctions d’une variable complexe ...,” Rend. Circ. Mat. Palermo 35
(1913), 277-281. Not until the 1950’s was it put to use in the theory of
functions of several variables by DOLBEAULT and GROTHENDIECK.

5*. Schwarz’ integral formula . From the Cauchy theorems countless
other integral formulas can be derived by skillful manipulation; for example:

If f is holomorphic in a neighborhood of the closure of the disc B =
B,(0), then

F 1 f(©)
1 = ——— —_—— .
1) f(0) o /ch_de forallz€ B
Proof. For z € B the function h(w) := T‘(_‘Ljf;_ u; is holomorphic in a neigh-

borhood of the closure of B. Therefore |, sp M¢)d¢ = 0 by the integral
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theorem. For ( € 9B we have

f(©) 1) 4_
¢ ¢ C-
From this and the Cauchy integral formula we get, for z € B,

- [ £Q, f© _ [ fQ_¢
g = [ Fhac= [ (Feno)ac= [ T

Because ¢(d{ + {d¢ = 0 for ¢ = s, it follows by conjugating the above
that

(on account of ¢ = s?).

+h(¢) =

NG O ¢ oo
_27r2f(0) B OB C C_ zdg B —C—_ C - zdc B /(9

f©

B¢ —=2

L5 ge o

The last line of the foregoing proof can also be gotten directly, if less elegantly,
without recourse to the “differential” equation (d¢ = —(d(, by introducing the
parameterization ¢ = se'* for &B, conjugating the resulting integral f;" <~ dep,
and then reverting to the unparameterized integral. The careful reader should
carry through the details of this little calculation.

In hlS 1870 work “Zur Integration der partiellen Differentialgleichung
a—’é + j‘ = 0” (Gesammelte mathematische Abhandlungen, 2, 175-210)
Hermann Amandus SCHWARZ (1843-1921, German mathematician at Halle,
Ziirich and Gottingen and, from 1892 at Berlin as WEIERSTRASS’ succes-
sor) presented an integral formula for holomorphic functions in which only
the real part of f entered into the integrand. He showed (p. 186)

Schwarz’ integral formula for discs centered at 0. If f is holomorphic
in a neighborhood of the closure of the disc B := B(0), then

1 [ RAOC+=

o oy ¢ (oKX TISHO) foralzeB.

f(z) =

Proof. On account of %é# = Zl— - —2:, 2Rf = f + f, and the Cauchy

z —z
integral formula, the integral in the equation to be proved has the value

F)+ 7 e - 1 ()+f(<)d€:
o (C—2 ¢

=2mif(z / = —m’f(O)—%/a‘B@ ¢

According to (1) both integrals on the right here have the value 27if(0).
Therefore
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1 [ R+

. K= f()+f(0)——f(0)—-f() f(z) —iS£(0).

2ni Jop ¢ (-

0O

The Schwarz formula shows that every value f(z), z € B, is already

determined by the values of the real part of f on B and by the number
3f(0). Upon setting u := Rf, ¢ = se*¥ we get

2w
£(z) = iﬂ / u(sei¢)c—+fd¢ +iSf(0), z€B.
i —

Since R sz = LT]CZ_ZLIJ_ consideration of real parts gives
1 2 |Z|
u(z) = — / sei)> di.
= ) e =t
This is the famous Poisson integral formula for harmonic functions: if we

further set z = re®®, then |¢ —z|? = 5% —2rs cos(¢) — ) +r? and the formula
takes its classical form

1 [ " s2—r
u(re’) = 2 / u(se ) — 2rscos(yp — ) + r? a.

2

Exercises

Ezercise 1. Using the Cauchy integral formula calculate

a) / __cdz c) / 2
8B,y(0) (2 +1)(z —3)%’ 8By (~2) 22 +1’

b) sin z &z d) e’ dz
oBy(0) 2+ 8Bi(0) (=2

Ezercise 2. Let + > 0, D an open neighborhood of B,.(0), f: D - C a
holomorphic function and a1, az distinct points of B,.(0).
d . .
a) Express faBr(o) (C_—i%(%g—a—z) in terms of faB,(o) (CA_%)dC F=1,2).

b) Use a) to deduce the “theorem of LIOUVILLE”: Every bounded func-
tion in O(C) is constant. (Cf. also 8.3.3.)

Ezercise 3. Let r > 0 and f : B,.(0) — C be a continuous function which
is holomorphic in B,(0). Show that

flz) = —/ 1(¢) d¢ for all z € B,-(0).

2mi Jop,(0) § — 2
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§3 The development of holomorphic
functions into power series

A function f : D — C is said to be developable into a power series around
¢ € D, if for some r > 0 with B := B,(c) C D there is a power series
>_a,(z — ¢)¥ which converges in B to f|B. From the commutativity of
differentiation and summation in a power series (Theorem 4.3.2) it follows
at once that:

If f is developable around c in B C D into a power series 3 a,(z —c),
then f is infinitely often complez-differentiable, and a, = f—(vT),@ for all
veN.

A power series development of a function f around c is, whatever the
radius r of the disc B, uniquely determined by the derivatives of f at c and
always has the form

(@)
i@ =3 oy
This series is called (as for functions on R) the Taylor series of f around
¢; it converges compactly in B.

The most important consequence of the Cauchy integral formula is the
acquisition for every holomorphic function of a power series development
about every point in its domain of definition. This development leads
easily to the Riemann continuation theorem. The point of departure of our
considerations here is a simple

1. Lemma on developability. If v is a piecewise continuously differen-
tiable path in C, then to every continuous function f : |y| — C we associate
the function

1) P =g [ ac,  zecyp
Yy
and claim:

Lemma on developability. The function F is holomorphic in C\ |v|.
For each c € C\ |y| the power series

= v 1 f(9)
zo:al,(z—c) with a, := %Lde

converges in every open disc centered at ¢ which does not touch |y| and in
fact converges to F. The function F' is infinitely often complez-differentiable
in C\ |y| and it satisfies
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k! f(©)
(2) ®(2) = 5~ Wdc forall ze C\|y|andall ke N
Proof. Fix B := B,(c) with r > 0 and BN |y| = 0. The series ﬁ;ﬁ =
> (5)w”*, which converges throughout E, is transformed by w :=
(z—¢)(¢ —c)~! into

(C——lz)kﬁ = Z (U) - 1)y+1 (z - C)v—k

v>k

which converges for all z € B, { € |y], k € N.
Set g, (¢) := f(¢)/(¢ — )1 for ¢ € ||. It follows that for z € B

2m/ (C_Z)kﬂ d¢ = 27rz/ Zk'( > c)u—k dc.

Because | — ¢| > r for all ¢ € ||, it follows from the definition of g, that
lguly < r~*V|f|, and therefore, with ¢ := |z — ¢|/r,

1
v—k v—k
a0, (O)(z — ¥ < Splfla ™

Since 0 < ¢ < 1 for every z € Bandsince Y, ., (¥)g* % = ﬁﬁ—;, the se-

ries in (*) converges normally in ¢ € || for each fixed z € B. Consequently,
according to the interchange theorem for series (6.2.3),

o %d( Thus it has been established that the function
F defined by (1) is representable in the disc B by the power series ) _ a, (z—

c)” (k = 0) and further, on account of theorem 4.3.2, that F' is complex-
differentiable in B and satisfies

with a, :=

F®(z)=> k! (Z)au(z -k, z€B,keN.

v>k

Since B is an arbitrary open disc in C\ ||, (2) is proved and in particular
F e O(C\ 1) 0

The trick of developing the kernel 1/(¢ — z)**! into a power series about
¢, then inverting the order of integration and summation was used in the
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case k = 0 by CAUCHY as early as 1831 — cf. (Euvres (2) 12, p.61 (pp. 37-40
of G. BIRKHOFF, A Source Book in Classical Analysis, Harvard University
Press (1973), for an English translation).

2. The CAUCHY-TAYLOR representation theorem. For every point
c in the domain D we will denote by d := d.(D) the distance from c to the
boundary of D; cf. 0.6.5. Thus By(c) is the largest disc centered at ¢ which
lies wholly in D.

CAUCHY-TAYLOR Representation Theorem. Every holomorphic func-
tion f in D is developable around each point c € D into a Taylor series
Y_a,(z — c)” which compactly converges to it in By(c). The Taylor coeffi-
cients a, are given by the integrals

_ 9 _ 1 / F(Qdg
8B

(1) v vl 2w (¢ —ct?

whenever B := B.(c), 0<r <d.
In particular, f is infinitely often complez-differentiable in D and in
every disc B of the above kind the Cauchy integral formulas hold:

(2) f(k)(z)zﬁ/ms%’ z€ B, forallk € N.

Proof. Since f € O(D), the Cauchy formula
f(z)-i/ —Ji(c—)dg, z€B

_27I'Z aBC—Z

holds for every disc B = B,(c), 0 < r < d. Therefore according to the
lemma on power series developability (with F' := f, v := 8B), f has a
Taylor development around ¢ which converges in B,(¢) and whose Taylor
coefficients are given by (1). As every choice of r < d generates the same
series, the convergence to f occurs throughout By(c).

Likewise the identities (2) follow directly from the lemma on developa-
bility. m]

Remark 1. The integral formulas (2) for the derivatives f(*)(z) flow from
the Cauchy integral formula for f(2) and the trivial identities

d* 1 k!
() g e

as soon as one knows that this differentiation operation is permutable with
the integration. In the above proof such a permutation was not used (but
instead summation was permuted with differentiation and integration.)
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Remark 2. The lemma on developability describes a simple process for
passing from certain integrals to power series. What makes this process
applicable in the above proof is the Cauchy integral formula.

Because power series are holomorphic, the lemma on developability (with v :=
8B) leads to a C-vector space homomorphism C(8B) — O(B), f — F. If the
function f is not, in addition, holomorphic in B and continuous on B, then
in general for approach to points of 3B, F does not realize the values of f as
boundary values: For B := E and f(¢) := ¢! on 8E, for example, we have F = 0
in E because for z € E \ {0}

[ a1 [fa [ & ]_
F(Z)_Qwi/aEC(C—z)_ 2miz |:/6EC /6E§—z:|_0'

This example also shows that the homomorphism C(0B) — O(B) is not injective.

3. Historical remarks on the representation theorem. In Brook TAYLOR'’s
Methodus incrementorum directa et inversa, Londini 1715, on pp. 21 ff. we
find the first formulation and derivation of the theorem in the domain of the
real numbers. An exhaustive analysis was given by A. PRINGSHEIM in “Zur
Geschichte des Taylorschen Lehrsatzes,” Biblio. Math. (3) 1(1900), 433-479;
Cauchy’s contributions are also gone into in detail there.

Cauchy immediately recognized that his integral formula implied, via develop-
ment of its kernel (( — z)~! into a geometric series, the representation theorem.
He expressed it thus in 1841 ((Buvres (2) 12, p.61, as well as Théoréme I on
p.64):

“La fonction f(z) sera développable par la formule de Maclaurin en une série
convergente ordonnée suivant les puissances ascendantes de z, si le module de la
variable réelle ou imaginaire z conserve une valeur inférieure a celle pour laquelle
la fonction (ou sa dérivée du premier ordre) cesse d’étre finie et continue. (The
function will be developable according to the formula of Maclaurin in a series
of ascending powers of z, if the value of the modulus of this variable z, real or
imaginary, is kept below that for which the function (or its derivative of the first
order) ceases to be finite or continuous.)” In order to understand the last line of
Cauchy’s text we have to realize that the only singularities which were accepted
in Cauchy’s time were poles.

Moreover CAUCHY also gave a representation for the remainder term, following
the model for functions on R. And he described just how well the remainder term
converges to 0. CAUCHY called his method the “calcul des limites”. KRONECKER
wrote this about the integral formula ([Kr], p.176): “in diese[r] hat man das
Prius, in ih(r] liegt implicite schon die Reihenentwicklung, wie alle Eigenschaften
der Functionen, wohl darum, weil in [ihrer] Geltung alle die hochst verwickelten
Bedingungen, die fiir die Function f(2z) bestehen miissen, zusammengefait sind
(in this we have what is absolutely primary; in it lies implicitly the power series
development and indeed all the properties of functions — probably for the reason
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that in its validity the most complicated conditions bearing on the function are
united)”.

4. The Riemann continuation theorem. It was already emphasized in
2.1 that the sharpening of the Cauchy integral theorem there is really not a
genuine sharpening; as a matter of fact, every function which is continuous
in D and holomorphic everywhere in D with the possible exception of one
point ¢ € D, is automatically holomorphic throughout D. This statement
in turn is a special case of a general theorem about extending a holomorphic
function over a discrete and closed exceptional set.

If Ais a closed set lying in D and f is holomorphic in D \ A, then
f is said to be continuously, respectively, holomorphically extendable over
Aif f = F|(D\ A) for some function F : D — C which is continuous,
respectively, holomorphic in D. It is appropriate to introduce here the
concept of a discrete set. If A is a subset of a metric space X, then a point
p € A is called an isolated point of A if there is a neighborhood U of p such
that UNA = {p}. The set A is called discrete in X if each point of A is an
isolated point of A. The set A is discrete exactly when there is no cluster
point of A in X which belongs to A.

The Riemann continuation theorem. If A is discrete and closed in D,
then the following assertions about a holomorphic function f in D\ A are
equivalent:

i) f is holomorphically extendable over A.

)
ii) f is continuously extendable over A.

ili) f is bounded in a neighborhood of each point of A.
iv) lim,_.(z — ¢)f(2) = 0 for each point c € A.

Proof. We may assume that A consists of just one point, ¢ = 0. The chain
i) = ii) = iii) = iv) is trivial. For proving iv) = i) we introduce the
functions

g(z) == zf(z) for ze€ D\ {0}, g(0) :=0 and h(z) := zg(2).

By assumption g is continuous at 0. Therefore the identity h(z) = h(0) +
2g(z) shows that h is complez-differentiable at the point 0, with h’'(0) =
g(0) = 0. Of course f € O(D \ {0}) entails h € O(D \ {0}). In summary,
h is holomorphic throughout D. Therefore according to the representation
theorem 2, h admits a Taylor development ag+a;z+asz2+asz3+- - - around
0. Because h(0) = h'(0) = 0, it follows that h(z) = 2%(as+azz+---). Since
h(z) = 22f(z) for z # 0, we see that F(z) := ay + agz + - - - is the desired
holomorphic extension of f to D. 0
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5. Historical remarks on the Riemann continuation theorem. In
1851 in his dissertation RIEMANN derived the implication ii) = i), more
generally for “lines” of exceptional points ([R], Lehrsatz p. 23). There were
lengthy discussions in the last century concerning correct and incorrect
proofs of this implication. The American mathematician William Fogg
OsGcooD (1864-1943, professor at Harvard and Peking; doctorate in 1890
from Erlangen under Max NOETHER; wrote his well-known textbook [Os]
in 1906) reported on this in 1896 in an interesting article entitled “Some
points in the elements of the theory of functions” (Bull. Amer. Math.
Soc. 2, 296-302). In 1905 E. LANDAU joined the discussion with the short
note “On a familiar theorem of the theory of functions” (Bull. Amer.
Math. Soc. 12, 155-156; Collected Works 2, pp. 204-5) in which he proved
the implication iii) = i) by means of Cauchy’s integral formula for the
first derivative. This had already been done in 1841 by WEIERSTRASS
(cf. [W1], p-63); he also used in addition the theorem about the Laurent
series development in circular regions, which he proved at that time, before
LAURENT (cf. in this connection chapter 12.1.4). This work of Weierstrass
was however not published until 1894.

By 1916 the situation was completely clear. At that time Friedrich Her-
mann SCHOTTKY (German mathematician, 1851-1935, professor at Mar-
burg and from 1902 in Berlin), in a work still worth reading today entitled
“Uber das Cauchysche Integral” (cf. [Sch]), sketched the path from the
(Riemann) definition of holomorphy to the continuation theorem that we
currently follow. SCHOTTKY emphasized that essentially everything can be
reduced to the sharpened version of Goursat’s integral lemma.

Exercises

Erercise 1. Develop each of the following functions into power series
about 0:

8) f(2) = exp(z + i),
b) f(2) =sin’ 2,

¢) f(2) = cos(? — 1),
d) f(2) = @t

Ezercise 2. For a,b € C, la] <1 < [b|, and m,n € N determine the value of

/ dc
8B, (0) ( —a)™({ —b)™’

Ezercise 3. Determine all entire functions f which satisfy the differential
equation f” + f =0.
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Ezercise 4. Let f be holomorphic in B, (0), r > 1. Calculate the integrals
Jog@E(C+¢ ‘U)%Qd( in two different ways and thereby deduce that

27
n! | f(e*) cos®(3t)dt = £(0) + 3./'(0),
2m

w7 [ H(e)sin® 3yt = £0) - 3£(0).

Ezercise 5. Let r > 0, B,(0) C D open C C and f,g € O(D). Suppose
there is an a € dB,(0) such that g(a) = 0, ¢g’(a) # 0, f(a) # 0 and g is
zero-free in B.(0) \ {a}. Let > .,an2" be the power series development
of f/g around 0. Show that lim,_ a2 = qa. Hint. Use the geometric
series.

Ezercise 6. Let D open C C,a € D, f: D\ {a} — C holomorphic. Show
that if f/ has a holomorphic extension to D, then so does f.

84 Discussion of the representation theorem

We will now draw some immediate conclusions from the power series rep-
resentation theorem; among other things we will discuss the rearrangement
and product theorems for power series. We will briefly go into the princi-
ple of analytic continuation and also show how to determine the radii of
convergence of power series “directly”.

1. Holomorphy and complex-differentiability of every order. From
the representation theorem together with theorem 4.3.2 we immediately get

Every function which is holomorphic in D is arbitrarily often complez-
differentiable in D.

This statement demonstrates especially clearly how strong a difference
there is between real- and complex-differentiability: on the real line the
derivative of a differentiable function in general need not even be continu-
ous; for example, the function defined by f(z) := z%sin(1/z) for z € R\ {0}
and f(0) := 0 is differentiable on R but the derivative is discontinuous at
the origin.

The representation theorem has no analog on the real line: there are
infinitely-often-differentiable functions f : R — R, which are not devel-
opable into a power series in any neighborhood of the origin. The standard
example
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f(z) := exp(—z~2%) forx #0, f(0) :=0,

can be found in CAucHY's 1823 Calcul Infinitésimal ((Buvres (2) 4, p.
230; pp. 7,8 of G. BIRKHOFF, A Source Book in Classical Analysis, Har-
vard University Press (1973) for an English translation). For this function
f™(0) = 0for alln € N. On the real line it is possible to prescribe arbitrar-
ily the values of all the derivatives at one point. The French mathematician
Emile BOREL (1871-1956) proved this in his 1895 thesis; he showed (Ann.
Scient. Ecole Norm. Sup. (3) 12, p. 44; also (Buwres 1, p. 274) that

For every sequence (rp)n>0 of real numbers there is an infinitely-often-
differentiable function f : R — R having f™(0) = r,, for every n.

We will prove this theorem and more in 9.5.5.

The representation theorem makes possible the “two-line proof” of the lemma
on units promised in 4.4.2: If e = 1—byz—baz? — - - - is a convergent power series,
then e is holomorphic near 0. Because e(0) # 0, so is 1/e; consequently 1/e is
also given by a convergent power series.

2. The rearrangement theorem. If f(z) = > a,(z — ¢)* is a power
series which converges in Br(c), then f is developable into a power series
>>b.(z — z1)" about each point z; € Bgr(c); the radius of convergence of
this new power series is at least R — |z1 — ¢|, and its coefficients are given
by

b,,=z<‘17/>aj(z1—c)j'” , veN.
ji=v

Proof. In the disc about z; of radius R—|z; — c| the representation theorem
says that f(z) = 3 f—(%gfl—)(z — z1)¥, while by theorem 4.3.2 % =

Yo, (Daj(z1 — ). =

The name “rearrangement theorem” is based on the following: in the
situation described in the theorem, the equation

HORDSUICEYRICEENEDY [Z a (f,) (21 — € ™ (2 = 21)”
j=0 j=0 Lv=0

holds. If we uncritically rearrange the double sum on the right as though
only a finite number of summands were involved, we get the double sum
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oo

g ) (Z)aj(zl e

j=v

which is precisely the development of f around z; which the theorem af-
firms. The formal rearrangement process can be rigorously justified with-
out recourse to the Cauchy-Taylor theorem. To see this, recall that an
absolutely convergent series can be divided up into infinitely many infinite
subseries, the sum of which coincides with that of the original series. The
proof thus carried out remains wholly within the Weierstrassian framework
and is valid as well when the coefficients come from any complete valued
field of characteristic 0.

3. Analytic continuation. If f is holomorphic in the region G and
we develop f into a power series around ¢ € G according to theorem 3.2,
then the radius of convergence R of this series is not less than the distance
d:(G) of ¢ from the boundary of G. It can actually be greater (cf. the
left-hand figure). In this case we say that f is “analytically continued”
beyond G (but it would be more accurate to speak of a “holomorphic”
continuation). For example, the geometric series > 2¥ € O(E) has the
Taylor series }_(z—c)”/(1—c)**! with radius of convergence |1 —c| around
the point ¢ € E; in case |1 — ¢| > 1 we have an analytic continuation. (In
this example the function (1 — 2)~! € O(C\ {1}) is naturally the largest
possible analytic continuation.)

The principle of analytic continuation plays a significant role in (Weier-
strassian) function theory. At this point we can’t go into analytic contin-
uation any deeper; we wish, nevertheless, to at least bring to the reader’s
attention the problem of multi-valuedness. This can occur if Bgr(c) N G is
disconnected; in such situations the Taylor series around c doesn’t always
represent the original function f in the connected components of Br(c)NG
which do not contain c. (The latter are the shaded regions of the left-hand
figure above.) The holomorphic logarithm log 2 in the slit plane C™ serves
to illustrate this phenomenon. Around each ¢ € C™ this function has the
Taylor series
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whose radius of convergence is |c|. In case Rc < 0, C™ N By (c) consists of
two connected components G1, G (see the right-hand figure above). In G
the series represents the principal branch of log, but not in Gs. To see this,
note that the negative real axis separates G; from G, and the principal
branch “jumps by +27¢” in passing over this axis, whereas the series is
continuous at each point of this boundary line.

4. The product theorem for power series. Let f(z) = Y a,z* and
g(z) = Y_b,z" be convergent in the respective discs Bs, B;. Then for
r := min{s,t} the product function f-g has the power series representation

(f-9)(z Zp,\z with py, = Z ayb, (Cauchy product, cf. 0.4.6)
pAv=XA

in the disc B,.

Proof. As a product of holomorphic functions, f - ¢ is holomorphic in B,
and so according to the representation theorem it is developable in this disc
into the Taylor series

U000,
Al ’
Since f(#*)(0) = pla, and g(*)(0) = vlb,, the Leibniz rule
(f- MO = > —f(“)(O)g(")( 0)
wtv=x uivt
for higher derivatives shows that this series is the one described in the
conclusion of the theorem.

With the help of Abel’s limit theorem there follows immediately the

Series multiplication theorem of ABEL. If the series > o au, > o b, and
Zo Px, with py 1= aobA + -4 axbo for every A, converge to the respective sums
a, b and p, then ab =

Proof. The series f(2) := Y auz*, g(z) := ) b,2z" converge in the unit disc E;
therefore we also have (f - g)(2) = Y_psz* in E. The convergence of the three
series ) _ay, Y. by, and 3 p» implies (cf. 4.2.5):

Jim f(@)=a, lm g(z)=b, lm (f g)()=
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Since limg—1-0(f - 9)(z) = [limz—1_¢ f(z)][limz—1-0 g(z)], the claim follows. O

The series multiplication theorem of ABEL is to be found in [A], p. 318.
The reader should compare this theorem with the product theorem of CAUCHY
(0.4.6). The series multiplication theorem of ABEL is susceptible to the following
direct proof (cf. CESARO, Bull. Sci. Math. (2) 14(1890), p. 114): We set sn
i=ao+ -+ @ny th :=bo+ -+ bn, gn := po + --- + pn and verify that ¢, =
aotn + @1tn_1 + -+ - + anto and that further

Q+q+ -+ gn=S0ln + S1tn_1 + - + Snto.

On the basis of Exercise 0.3.3 and the preceding equation, it follows that

= lim Sotn + S1tn—1 + - - + Snto = ab
P n+1 '

5. Determination of radii of convergence. The radius of conver-
gence R of the Taylor series ) a,(z — ¢)” is determined by the coefficients
(via the Cauchy-Hadamard formula 4.1.3 or the ratio criterion 4.1.4). The
representation theorem frequently allows the number R to be read off at
a glance from the properties of the holomorphic function so represented,
without knowledge of the coefficients. Thus, e.g.,

Let f and g be holomorphic in C and have no common zero in C*.
Let ¢ € C* be a “smallest” non-zero zero of g (that is, |w| > |c| for
every zero w # 0 of g). If the function f/g, which is then holomorphic
in Bjc|(0) \ {0}, is holomorphically continuable over the point 0, then its
Taylor series around 0 has radius of convergence |c|.

Proof. This is clear from the representation theorem 3.1, since f(c) # 0
means that f/g tends to oo as ¢ is approached.

Ezamples. 1) The Taylor series around 0 of tan z = sin z/ cos z has radius
of convergence %ﬂ', because %w is a “smallest” zero of cos z.

2) The functions z cot z = z cos z/sin z, z/sin z and z/(e* — 1) are holo-
morphically continuable over zero (each receiving value 1 there, since the
power series around 0 of each denominator begins with the term z). Since
7, respectively, 27i, is a “smallest” zero of sin z, respectively, e — 1, it fol-
lows that 7 is the radius of convergence of z cot z and of z/sin z around 0,
whereas the Taylor series of z/(e* — 1) around 0 has radius of convergence

2. O

The determination of the radii of convergence of these real series by
means of the Cauchy-Hadamard formula or the ratio criterion is rather te-
dious (cf. 11.3.1). The elegant route through the complexes is especially
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impressive for the function z/(e* — 1), because its denominator has no real
zeros except 0. Here we have a beautiful example illustrating GAUSS’s
prophetic words (cf. the Historical Introduction), according to which com-
plete knowledge of the nature of an analytic function in C is often indis-
pensable for a correct assessment of its behavior on R.

The technique described here for determining radii of convergence can be
converted into a method of approzimating zeros. If, say, ¢ is a polynomial with
only real zeros, all non-zero, we can develop 1/g into its Taylor series Zauz"
around 0 and consider the sequence a, /a,+1: if it has a finite limit r, then either
r or —r is the smallest zero of g. This technique was developed in 1732 and
1738 by Daniel BERNOULLI (1700-1782) and is extensively discussed by EULER
in §335 ff. of [E]. Concerning BERNOULLI's original works, with commentary
by L. P. BOUCKAERT, see Die Werke von Daniel Bernoulli, vol. 2, Birkhduser
Verlag, Basel-Boston-Stuttgart, 1982. The BERNOULLI-EULER method may be
generalized to polynomials with complex zeros. For this see, e.g., Problem 243
in Part 3 of the first volume of G. POLYA and G. SZEGO.

Exercises

Ezercise 1. Develop f into a power series about 0 and determine its radius
of convergence:

8) f(2) = 1=

z

t e C,

) f(Z) s1n2 Z

Ezercise 2. Determine all entire functions f which satisfy f(22) = (f(2))?2
for all z € C.

Ezercise 3. Let R > 0, Br(0) C D open C C, ¢ € dBg(0) and f €

O(D\ {c}). Let Z axz* be the power series development of f around 0.
k>0

Show that if f(2)(z — ¢) is bounded near ¢, then for all sufficiently small

r>0andall k€N

/BB (© (.Z(C— = 27”2 ( ) a,_1 —ca,)c’ 7k,

where a_; := 0.
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§5* Special Taylor series. Bernoulli
numbers

The power series developments given in 4.2.1 for expz, cosz, sinz,
log(1 + z), etc. are the Taylor series of these functions around the ori-
gin. At the center of this section will be the Taylor series (around 0) of the
holomorphic (near 0) function

g(z) == pr| for z#0, g(0) := 1,
which plays a significant role in classical analysis. Because of 5.2.5 this
function is linked with the cotangent and tangent functions through the

equations

(1) cot z = i + 27 1g(2iz),

(2) tan z = cot z — 2 cot 2z.

Consequently from the Taylor series of g(z) around 0 we can get those of
zcot z and tan z.

The Taylor coefficients of the power series of g(z) around 0 are essen-
tially the so-called Bernoulli numbers, which turn up in many analytic and
number-theoretic problems. We will encounter them again in 11.2.4. It
should be emphasized that the considerations of this section are quite ele-
mentary. The representation theorem is not even needed, because for our
purposes knowledge of the exact radii of convergence of the series concerned
is not particularly relevant.

1. The Taylor series of z(e* — 1)~*. Bernoulli numbers. For
historical reasons we write the Taylor series of g(z) = z(e* — 1)! around
0 in the form

fe o
vy By pec
0

ez -1 V!

Since cot z is an odd function, zcot z is an even function. Since g(z) +

12z = Zzcot(Zz), from equation (1) above, g(2) + 32 is an even function.

Consequently,
B; = —-% and Bj,41 =0 for all v > 1.
Thus

y4
e —1

=1-

(1)

D[ N

+i B2V 2211
— (2v)!
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e*—1
everything out and comparing coefficients (uniqueness of the Taylor series
(cf. 4.3.2) justifies this) we get the formula

(G (2 e

The B, are called the Bernoulli numbers?®; they can be recursively deter-
mined from this last equation.

From 1 = €21 . 2 = ( ° zu,l) (357 Bx2*) we get, by multiplying

Every Bernoulli number Bs, is rational, with

1 1 1
Bo—l,Bz—g,B4——%,Bﬁ 4—2
@ 1 5 691 7
B8=_§6’Bm=§6’312=-2_7_ﬁ’Bng'

Since the radius of convergence of the series in (1) is finite (and in fact equal to
2w), we further see that

The segquence Ba, of Bernoulli numbers is unbounded.

The explicit values of the first few Bernoulli numbers thus conduce to a false
impression of the behavior of the other terms; thus Bzg = 8553103/6 and Biz:
has a 107 decimal-place numerator but likewise the denominator 6.

2. The Taylor series of zcotz, tanz and ;i%? From equations (1)
and (2) of the introduction and from identity 1.(1) we immediately get

x 4v
1) cotz=—+ Z Bg,,z -1

¥4
1

e ,,_14 4 l) 22v-1
2 o B

= 2 2 .5 17 .7
Z+3z +152 +315 +

Equation (1) is valid in a punctured disc Bgr(0) \ {0} (it isn’t necessary to
know that according to 4.5 R = 7). Later we will see that (—1)*"1B,, is
always positive (cf. 11.2.4), and therefore all the series coefficients in (1)
are negative and in (2) all are positive.

The series (1) and (2) originate with EULER, and will be found, e.g., in
chapters 9 and 10 of his Introductio {E]. Equation (1) can also be put in
the graceful form

s

tanz

()

2The enumeration of these numbers is not uniform throughout the literature. Fre-
quently the vanishing ones B, 41 are not designated at all and instead of B2, the
notation (—1)*~!B,, is used.
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) 1 1 22 z4 26

1 ~zcot —z = —
(1) 2zco 5% 1- Bz +B4 366 +
Because cot z + tan 3z = - (cf. 5.2.5), it further follows from (1) and
(2) that

z > (4 - 2)

3 — _ v—1 21/‘

) sin z 20:( 2 (2v)! Bavz

3. Sums of powers and Bernoulli numbers. For all n,k € N\ {0}

1
1ok 4 ko nF Ly k1
+24 4t = o L E .
Proof. Writing S(n*) := 3"7 v* and S(n°) := n + 1, it follows that
» (o o] 1
En(w):=1+¢€" +-- E —k-:-

On the other hand we have

_ w e"v — 1 _ s B“ u R nk+1 N
Bn-1(w) = ew —1 w o (Z ut ) (g E T

p=0

And therefore from the product theorem 4.4 and the facts that Bo = 1, By = —-;—

and ;u(k—+k1'—7)" = %(ufl) we get for S((n — 1)*) the expression

k! RS S SS B " k+1-
> aoamBentt = et g +Z ne

p+A=k

Since S(n*) = S((n — 1)*) 4+ n*, this is the claim we were trying to prove. O

Remark. Jakob BERNOULLI (1665-1705) found the numbers now named after him
while computing the sums of powers of successive integers. In his Ars Conjectands,
published posthumously in 1713, he wrote A, B, C, D for B;, By, Bs, Bg and gave
the sums Y, v* explicitly for 1 < k < 10 but offered no general proof. (Cf. Die
Werke von Jakob Bernoulli, vol. 3, Birkhauser, Basel (1975), pp. 166/167; see
also W. WALTER: Analysis I, Grundwissen Mathematik, vol. 3, Springer-Verlag,
Berlin, (1985).)

If we introduce the rational (k + 1)th degree polynomial ®x(w) := 7 (w —

L 4 %(w -1+ EZ:Z %&(ufl) (w—1**'"* € Q] , k = 1,2,--, then
Bernoulli’s theorem says

(%) 42"+ 4+ (n—-1)*=®(n) ,n=1,2,--
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One checks that ®x(w) = ﬁl-wk“ - %wk%— lower degree terms. E.g.,

B1 (w) = %(w2 —w) , ®a(w) = é(zuﬁ —3u? +w) , Ba(w) = i(w“ — 2u® + w?).

We have further

1
®q(w) = %(Gws —15w* + 10w® —w) = Tlﬁ(w - Dw(2w — 1)(w® —w — 3)

and so from (*)
14+24+---+(n—1)4:%O(n—l)n(2n—1)(n2—n—%),n=2,3,--~

which readers who enjoy calculating can also confirm by induction on n. The
equations () actually characterize the sequence of polynomials @1, ®2, - - -. Namely,
if ®(w) is any polynomial (over the complex field!) such () holds for a fixed k > 1
and all n > 1, then the polynomial ®(w) — ®x(w) vanishes for all w € N and
must accordingly be the 0 polynomial, that is, & = ®;.

4. Bernoulli polynomials. For every complex number w the function ze**/
(e* — 1) is holomorphic in C\ {*2vmi : v = 1,2,---}. According to the repre-
sentation theorem we have, for each w € C, a Taylor series development around
0

ze"* By (w)
e —1 k!
for appropriate complex numbers Bi(w). (The series representation is actually
valid in the disc of radius 27 about 0.) The functions Bi(w) admit explicit
formulas:

(1) F(w,2) := P

Theorem. Bi(w) is a monic rational polynomial in w of degree k.

k
(2) Bi(w)=)_ (’;) Bt = w* — %kwk_l +-+By, keN

v=0

In particular, Bi(0) is the kth Bernoulli number.

Proof. Since F(w,z) = e¥* - %< and %7 = Y ¢z, (1) gives

e?

= () (25

for all z near 0. From this and the product theorem 4.4 it follows that

k

k! k -

B (w) = E mBuw“:E (V>B,,wk .
v=0

utv=k

We call Bi(w) the kth Bernoulli polynomial. We note three interesting for-
mulas:
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3) Bi(w) = kBg_1(w), k>1 (derivative formula)
(4) Br(w+1)— Bg(w) = kwk_l, k>1 (difference equation)
(5) Bk(l — w) = (—l)kBk(w), k>1 (complementam'ty formula).

Equation (2) yields direct proofs if one is willing to calculate a bit. But it is
more elegant to consider F(w, z) as a holomorphic function of w and exploit the
three obvious identities

bgu—}F(w,z) =2F(w,2) , F(w+1,2) — F(w,z) = ze"* , F(1 —w, 2) = F(w, —2).
The corresponding power series can be obtained from (1) by differentiation with
respect to w, since that series converges normally in the variable w € C. Then
(3) - (5) follow directly by comparing coefficients on the two sides of each of the
three identities. — From (4) we get immediately

1
].k =+ 2’“ + - +’Ilk = m[Bk+1(n+ 1) — Bk+1(1)].

A simple connection exists between the polynomials ®x(w) introduced in 3.
and the Bernoulli polynomials. Since

0 [e¥* —¢€° ze¥*? eV —¢e* 1
— = —— — 1
o ( pra ) and [F(w, z) — F(1, 2)],

e* —1 e*—1 2z
it follows upon engaging exercise 2 that
(6) Bi(w)=®k(w),  k®x1(w)=Bi(w)—-Bx(l), k=12,
One sees in particular that ®5(1) =0 for all k € N.

The first four Bernoulli polynomials are:

1 1
Bo(w)zl,Bl(w)zw—§,Bg(w)zwz—w—#g,
B(w)—w3—§w2+lw B(w)=w4—2w3+w2—~1—
= 2 2 04 30°
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Exercises

Ezercise 1. Derive the Taylor series of tan? z around 0 from 2.(2) by dif-
ferentiation.

Ezercise 2. Setting ®o(w) := w — 1, show that

eW? . g% _ Z @,,(’LU) oY
z _ 1 | ’
e = V!

Ezercise 8. Show that for k,n € N

n k
1 k+1
k __ k+1—v
z. =t 1§ ( y )(n+1) B,.



Chapter 8

Fundamental Theorems
about Holomorphic
Functions

Having led to the Cauchy integral formula and the Cauchy-Taylor rep-
resentation theorem, the theory of integration in the complex plane will
temporarily pass off of center-stage. The power of the two mentioned re-
sults has already become clear but this chapter will offer further convincing
examples of this power. First off, in section 1 we prove and discuss the
Identity Theorem, which makes a statement about the “cohesion among
the values taken on by a holomorphic function.” In the second section we
illuminate the holomorphy concept from a variety of angles. In the third,
the Cauchy estimates are discussed. As applications of them we get, among
other things, LIOUVILLE’s theorem and, in section 4, the convergence the-
orems of WEIERSTRASS. The Open Mapping Theorem and the Maximum
Principle are proved in section 5.

§1 The Identity Theorem

A holomorphic function is locally represented by its Taylor series. An iden-
tity theorem is already contained in this observation; namely:

If f and g are holomorphic in D and there is a point ¢ € D together with
a (possibly quite small) neighborhood U C D of ¢, such that flU = g|U,
then in fact f|By(c) = g|Ba4(c), where d := d (D) is the distance from c to
the boundary of D.

This is clear because f and g are represented throughout Bs(c) by their

227



228 8. FUNDAMENTAL THEOREMS ABOUT HOLOMORPHIC FUNCTIONS

Taylor series around ¢ and the coefficients of the one series coincide with
those of the other due to f|U = g|U.

An identity theorem of a different kind is an immediate consequence of
the integral formula:

If f and g are holomorphic in a neighborhood of the closed disc B and
if f|OB = g|0B, then in fact f|B = g|B.

The identity theorem which we are about to become acquainted with
contains these two as special cases. As an application of it we will show
(in section 5) among other things that every power series must have a
singularity at some point on its circle of convergence.

1. The Identity Theorem. The following statements about a pair f,g
of holomorphic functions in a region G C C are equivalent:

i) f=g
ii) The coincidence set {w € G : f(w) = g(w)} has a cluster point in G.
iii) There is a point c € G such that f™(c) = g™ (c) for alln € N.

Proof. i) = ii) is trivial.

ii) = iii) We set h:= f — g € O(G). Then the hypothesis says that the
zero-set M := {w € G : h(w) = 0} of h has a cluster point ¢ € G. If there
is an m € N with h(™)(c) # 0, then we consider the smallest such m. For
it we have the factorization

) (¢
POz~ oy e o(B)

h(z) = (2 = ¢)"hm(2) with hp(2):= > o

p2m

holding for every open disc B C G centered at ¢, and h,,(c) # 0. This
all follows from the representation theorem 7.3.2. Because of its continuity
hm is then zero-free in some neighborhood U C B of c. It follows from the
factorization above that M N (U \ {c}) = 0; that is, c is not a cluster point
of M after all. This contradiction shows that there is no such m, that is,
R(™(c) =0 for all n € N; i.e., f(™(c) = g(™(c) for all n € N.

iii) = i) Again we set h := f —g. Each set Sy := {w € G : h(*)(w) = 0}
is (relatively) closed in G, on account of the continuity of h(¥) € O(@).
Therefore the intersection S := (3° Sk is also (relatively) closed in G.
However, this set is also open in G, because if z; € S, then the Taylor
series of h around z; is the zero series in any open disc B centered at 2,
which lies in G. This implies that () |B = 0 for every k € N, entailing that
B C S. Since G is connected and S is not empty (¢ € S by hypothesis), it
follows from 0.6.1 that S = G. That is, f = g. O
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The connectedness of G, used in the proof that iii) = i), is essential
to the validity of that implication. For example, if D is the union of two
disjoint open discs B and B’ and if we set

f:=0in D ; g:=0in B and g:=1in B,

then f and g are holomorphic in D and have properties ii) and iii), yet
f # g in D. On the other hand the equivalence of (ii) with (iii) is valid in
any domain.

The conditions ii) and iii) of the theorem are fundamentally different in
nature. The latter demands equality of all derivatives at a single point,
whereas in the former no derivatives appear. Instead, we demand equality
of the function values themselves at sufficiently many points.

The reader should prove the following variant of the implication iii) = i) in
the Identity Theorem:

If f and g are holomorphic in the region G and at some point of G all but
finitely many of the derivatives of f coincide with the corresponding ones of g,
then there is a polynomial p € C|z] such that f = g + p throughout G.

The Identity Theorem implies that a function f which is holomorphic in
a region G is completely determined by its values on “very sparse” subsets
of G, for example on very short lengths of curves W. Properties of f which
are expressible as analytic identities therefore need only be verified on W.
They then automatically “propagate themselves analytically from W to the
whole of G.” We can illustrate this permanence principle with the example
of the power rule e¥+? = e¥e?. If this identity is known for all real values
of the arguments, then it follows for all complex values as well! First, for
each real number w := u the holomorphic functions of z expressed by e**+?
and e“e” coincide for all z € R, hence for all z € C. Consequently, for each
fixed z € C the holomorphic functions of w expressed by e*** and e¥e*
coincide for all w € R, and therefore coincide for all w € C. a

We are also now in a position to see that the definition of the functions
exp, cos and sin via their real power series represents the only possible way
to extend these functions from the real line to holomorphic functions in the
complex plane. In general

IfI:={zeR:a<z <b} isa real interval, f : I > R a function
defined on I and G is a region in C which contains I, then there is at most
one holomorphic function F : G — C which satisfies F|I = f. O

An important consequence of the Identity Theorem is a characterization
of connectedness in terms of the absence of zero-divisors.
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The following assertions about a non-empty domain D in C are equiva-
lent:

i) D is connected (and is thus a region).

ii) The algebra O(D) is an integral domain (that is, it has no non-zero
zero-divisors).

Proof. i) = ii) Suppose f,g € O(D), f is not the function 0 € O(D)
but f - g is, that is, f(2)g(z) = 0 for all z € D. There is some ¢ € D
where f(c) # 0 and then on continuity grounds a neighborhood U C D of
¢ throughout which f is zero-free. Then g(U) = 0 and since D is connected
this entails g(D) = 0 by the Identity Theorem. That is, g = 0, the zero
element of the algebra O(D).

ii) = i) If D were not connected, it would be expressible as the disjoint
union of two non-empty domains D, D,. The functions f, g defined in D
by

_J 0 for ze D,
f(z)'_{l for zED;,

L 1 fO’I' z e Dly
9(2) '_{ 0 for zeD,,

are then holomorphic in D, neither is the zero function in O(D) and yet
f - g is the zero function. This contradicts the hypothesis ii) that O(D) is
free of non-zero zero-divisors. O

The reader should compare the statement proved above with theorem
0.6.1.

In real analysis an important role is played by the functions with compact sup-
port, by which is meant real functions which are infinitely often real-differentiable
and whose supports are compact, the support of a function being the closure of the
complement of its zero-set. Such functions are used in a well-known construction
of infinitely differentiable partitions of unity. But there is no comparable holo-
morphic partition of unity, because the support of a holomorphic function in a
region G is either void or — by virtue of the Identity Theorem - all of G.
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2. On the history of the Identity Theorem. On page 286 of the
second volume of Crelle’s Journal, which appeared in 1827, we find

Aufgaben und Lehrsatze,

erstere aufzulosen, letztere zu beweilsen.

1.
(Von Herrn N. H. Abel.)

49. Theoréme. Si la somme de la série infinie
e+ arta 2t a4 Fa "+
est égale & zéro pour toutes les valeurs de x entre deux limites réelles
o et 3; on aura nécessairement
a,=0, ¢,=0, €,=0....€,=0....»
en vertu de ce que la somme de la série s'évanouira pour une valeur
quelconque de x.

This is an embryonic form of the Identity Theorem. Only in the case a <
0 < B is the claim immediately evident, the series in that case representing
the zero function around 0, so that all of its Taylor coefficients consequently
must vanish. That case had already been treated in 1748 by EULER ([E],
§214). In an 1840 article entitled “Allgemeine Lehrsédtze in Beziehung auf
die im verkehrten Verhiltnisse des Quadrats der Entfernung wirkenden
Anziehungs- und Abstossungs-Krifte” (Werke 5, pp. 197-242; English
translation on pp. 153-196, part 10, vol. 3(1843) of Scientific Memoirs,
edited by Richard TAYLOR, Johnson Reprint Corp. (1966), New York),
GAuss enunciated an identity theorem for potentials of masses (p.223),
which RIEMANN incorporated into function theory in 1851 and expressed as
follows ([R], p. 28): “Eine Function w = u+iv von 2z kann nicht l4ngs einer
Linie constant sein, wenn sie nicht iiberall constant ist (A function w =
u+1iv of z cannot be constant along a line unless it is constant everywhere).”
The proofs of GAUSS and RIEMANN employ integral formulas and are not
really sound; like it or not, one has to call on continuity arguments and
facts about series developments.

An identity theorem by CAUCHY also shows up in 1845. He expresses
the matter as follows (Fuvres (1) 9, p. 39): “Supposons que deux fonctions
de z soient toujours égales entre elles pour des valeurs de x trés voisines
d’une valeur donnée. Sil’on vient a faire varier x par degrés insensibles, ces
deux fonctions seront encore égales tant qu’elles resteront 'une et ’autre
fonctions continues de z (Suppose that two [holomorphic| functions of x are
always equal to each other for the values of z very near a given value. If =
is varied by imperceptible degrees, the two functions will still be equal as
long as they remain continuous [ = holomorphic] functions of z).” CAUCHY
made no applications of the identity theorem; its significance was first
recognized by RIEMANN and WEIERSTRASS.
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From lecture notes transcribed by the Italian mathematician PINCHERLE
(“Saggio di una introduzione alla teoria delle funzioni analitiche secondo
i principii del Prof. C. Weierstrass, compilato dal Dott. S. Pincherle,”
Giorn. Mat. 18(1880), 178-254 and 317-357) one can infer (pp. 343/44)
that in his 1877/78 lectures WEIERSTRASS derived the implication ii) =
i) for power series using Cauchy’s inequalities for the Taylor coefficients.
One would be inclined to doubt that WEIERSTRASS really argued in as
roundabout a way as PINCHERLE records.

3. Discreteness and countability of the a-places. Let f : G — C be
holomorphic and not constant. Then for every number a € C the set

fHa)={2€G: f(z) = a},

comprising the so-called a-places of f, is discrete and relatively closed (pos-
sibly empty too) in G. In particular, for every compact set K C G, each set
Y a)NK, a € C, is finite and consequently f~1(a) is at most countable;
that is, f has at most countably many a-places in G.

Proof. Because f is continuous, each fiber f~!(a) is relatively closed in G. If
one of the fibers f~!(a’) has a cluster point in G, then it would follow from
theorem 1 that f(z) = a’, which was excluded by hypothesis. If KN f~1(a)
were infinite for some a € C and some compact set K C G, then it would
contain a sequence of pairwise distinct points. Since K N f~!(a) is compact
such a sequence would have to have a cluster point in K N f~1(a), which is
impossible since the points of f~!(a) are isolated from each other. Every
domain in C being a countable union of compact sets (cf. 0.2.5), it further
follows that f~1(a) is at most countably infinite. m]

The theorem just proved says in particular that

The zero-set of a function which is holomorphic but does not identically
vanish in G is a discrete and relatively closed subset of G.

We should recall that the zeros of infinitely often real-differentiable func-
tions needn’t have this property. For example, the function defined by

f(z) := exp(—1/x%)sin(1/z) for z € R\ {0}, f(0):=0

is infinitely often differentiable everywhere in R (with f(™(0) = 0 for all
n € N) and 0 is a cluster point of its other zeros 1/(nn), n € Z\ {0}. O

The zeros of a holomorphic function f € O(G) may very well cluster at
a boundary point of G. Thus for example the function sin(2t}) belongs to

O(C\ {1}) and its zero-set {22+ : n € Z} has 1 as a cluster point.
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4. Order of a zero and multiplicity at a point. If f is holomorphic
and not identically zero in a neighborhood of ¢, then from the Identity
Theorem we know that there is a natural number m such that: f(c) =
fllc) == fm=U(c) = 0 and f(™)(c) # 0. (This statement constitutes
a strong generalization of the theorem that a holomorphic function with
identically vanishing derivative is locally constant.) We set

0c(f) :=m =min{r € N: f*)(c) # 0}.

This integer measures the degree to which f vanishes at ¢ and is called the
order of the zero of f at c or simply the order of f at c. Evidently

fle)=0% o.(f) > 0.
To complete the definition we set o.(f) := oo for functions f which are

identically 0 near c.

Ezamples. For n € N, 0p(z™) = n and 0.(z") = 0 for ¢ # 0. The function
sin rz has order 1 at each point of Z.

With the usual agreement that n+ 0o = oo and min(n, co) = n we verify
directly two

Rules of computation. For all functions f and g which are holomorphic
near ¢

1) o.(fg) = oc(f) + 0.(g) (the product rule);
2) o.(f + g) = min(o.(f), 0.(g)) with equality whenever o.(f) # o.(g).

In 4.4.1 the order function v : A — N U {co} for the algebra .A of convergent
power series was introduced. If f = Y a.(z —¢)” is holomorphic near ¢, then the
function fo 7. = > a,2”, where 7.(z) := z + c, belongs to A and we evidently
have

0c(f) = v(f o 7e).

Besides the order we often consider the number

v(f,c) == oc(f = f(c))-

We say that f assumes the value f(c) with multiplicity v(f,c) at the point
c. Of course v(f,c) > 1 always. One immediately confirms the equivalence
of the following statements:

i) f has multiplicity n < oo at c.
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i) f(z) = f(c) + (z — ¢)™F(2) for some F which is holomorphic near c
and satisfies F(c) # 0.

In particular we see that: v(f,c) =1 < f'(c) #0.

5. Existence of singular points. On the boundary of the disc of con-
vergence of a power series f(z) =3 a,(z —c)¥ there is always at least one
singular point of f.

Proof (by reductio ad absurdum). Let B := Bg(c) be the disc (assumed
bounded) of convergence of f and suppose the claim is false for this f. Then
for every w € 0B there is a disc B,(w) of positive radius r = r(w) and a
function g € O(B,(w)) such that f and g coincide in B N B,(w). Finitely
many of the discs B,(w), say Kji,...,K; suffice to cover the compact set
0B. Let g; € O(Kj) be so chosen that f[BNK; = g;|BNK;,1<j<U{.
There is an R > R such that B := Bg(c) CBUK U---UK,. We define a
function f in B as follows: For z € B, f(z) shall be f(z). If on the other
hand z lies in B\ B, then we choose one of the discs K ; which contains z
and set f(z) := g;(2). This definition is independent of the choice of the
disc K;. For if K} is another one containing 2, then K3 N K; N B is not
empty (shaded region in the figure)

and in this open set gy and g; each coincide with f; from this and the
Identity Theorem it follows that g and g; coincide throughout the (convex)
region K; N K} and in particular at the point 2.

The function f being well-defined, is evidently holomorphic in B and so
according to the CAUCHY-TAYLOR theorem it is represented by a power
series centered at ¢ and convergent throughout B. Since this power series is
also the power series at ¢ which represents f, the smaller disc B could not
have been the disc of convergence of f. We have reached a contradiction.

O

HurwiTZ ([12], p. 51) calls the result just proved a “fundamental the-
orem” and gives a direct proof of it which may well go back to WEIER-
STRASS. His proof does not use the Cauchy-Taylor theorem. Without the
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use of integrals he gets:

Suppose that for every w € Br(c) the function f : Br(c) — C is devel-
opable into a convergent power series centered at w (i.e., f is an “analytic”
function in WEIERSTRASS’ sense). Then the power series of f at c in fact
converges throughout Bg(c).

This “global developability” theorem allows an integral-free construction
of the WEIERSTRASS theory of analytic functions; on this point compare
also SCHEEFFER’s derivation of the Laurent expansion in 12.1.6.

The geometric series Y 2” = (1 — z)" ! has z = 1 as its only singular point.
A substantial generalization of this example was described by G. VIVANTI in
1893 (“Sulle serie di potenze,” Rivista di Matematica 3, 111-114) and proved by
PRINGSHEIM in 1894 (“ﬁber Functionen, welche in gewissen Punkten endliche Dif-
ferentialquotienten jeder endlichen Ordnung, aber keine Taylor’sche Reihenent-
wickelung besitzen,” Math. Annalen 44, 41-56):

Theorem. Let the power series f(z) = Y a.z” have positive finite radius of
convergence R and suppose that all but finitely many of its coefficients a, are real
and non-negative. Then z := R is a singular point of f.

Proof. We may suppose that R = 1 and that a,, > 0 for all v. If f were not
singular at 1, its Taylor series centered at 1/2 would be holomorphic at 1, that
is, 3 ) (2)(2 — 1)* would have radius of convergence r > 3. Since, for every
¢ with |¢| = 3, we have

55 (o] <55 () () - 20 ()

due to the fact that a, > 0 for all v, the Taylor series Y ﬁf(”)(C)(z —¢) of f
centered at each ¢ with |[¢| = 1/2 would have radius of convergence > r > 3. As
a result there would be no singular point of f on dE, contrary to the preceding
theorem. a

EGIE

On the basis of this theorem, for example, 1 is a singular point of the series
Zu)l v~ 22¥, which is normally convergent in the whole closed disc E U 8E. For
a further extension of this VIVANTI-PRINGSHEIM theorem see §17 of [Lan)].

Exercises

Ezercise 1. Let G be a region, B a non-empty open disc lying in G. When
is the algebra homomorphism O(G) — O(B) given by f — f|B injective?
When is it surjective?

Ezercise 2. Show that for a region G in C and an f € O(G) the following
assertions are equivalent:
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i) f is a polynomial.
ii) There is a point ¢ € G such that f(")(c) = 0 for almost all n € N.

Ezercise 3. Let G be a region in C, f, g € O(G) zero-free. Show that if the
set M :={z2€G:
AeCx.

f—((z—)z g’(:) } is not discrete in G, then f = A\g for some

Ezercise 4. Let G be a region in C which is symmetric about R, that is,
satisfiles G = {Z : z € G}, and let f € O(G). Prove the equivalence of the
following assertions:

i) f(GNR) CR.
ii) f(z) = f(z) forall z € G.

Exzercise 5. For each of the following four properties the reader is asked to
either produce a function f which is holomorphic in a neighborhood of 0

and enjoys that property or prove that no such function exists:
i) f(£)=(-1)"% for almost all n € N\ {0};

f(1) = (n?-1)"! for almost all n € N\ {0,1};

[=H

i)

ii)

iii) |f™(0)| > (n!)? for almost all n € N

iv) |f(1)] < e ™ for almost all n € N\ {0} and oo(f) # oo.

§2 The Concept of Holomorphy

Holomorphy is, according to the definition we have adopted, the same thing
as complex-differentiability throughout an open set. In this section we de-
scribe other possible ways of introducing the fundamental concept of holo-
morphy. Moreover our list of equivalences could be considerably expanded
without much trouble. But we will only take up those characterizations of
holomorphy which are especially important and historically significant and
which we feel every student of the subject should definitely know.

1. Holomorphy, local integrability and convergent power series.
A continuous function f in D is called locally integrable in D if D can be
covered by open subsets U such that f|U is integrable in U.

Theorem. The following assertions about a continuous function f : D —
C are equivalent:
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i) f is holomorphic (= complez-differentiable) in D.

)
ii) For every (compact) triangle A C D, faA f(¢)d¢ =0.

iii) f is locally integrable in D (the MORERA condition).

)
iv) For every open disc B with B C D

flz)= % - %d( holds for all z € B.

v) f is developable into a convergent power series around each point
ceD.

Proof. In the following scheme each labelled implication is clear from its
label, so only iii) = i) calls for further comment.

Integrability

i) —nielrabllY i)

Criterion 6.3.3
GOURSAT

1) 1)

Cauchy integral formula
Lemma on Theorem 4.3.2
. developability | (term-wise differentiation)
—_—V

iv)

To wit, given ¢ € D there is an open disc B such that c € B C D and
f|B has a primitive F in B, i.e., F’ = f|B. Since according to 7.4.1 F is
infinitely often complex-differentiable in B, it follows that f is holomorphic
in B, whence throughout D. )

We thus see that the validity of the Cauchy integral formula can serve as
a characterization of holomorphic functions. Much more important how-
ever is the fact that to date no alternative proof of the implication i) =
v) has been found which is convincingly free of the use of integrals (cf.
however the remarks in 5.1).

Among the various holomorphy criteria the equivalence of the concepts
of “complex-differentiability” and “locally developable into power series”
has played the principal role in the history of function theory. If you start
from the differentiability concept, you are talking about the Cauchy or the
Riemann construction, and if you give primacy to convergent power series,
then you are talking about the Weierstrass construction. Supplemental
remarks on this point will be found in subsection 4 of this section.

The implication iii} = i) in theorem 1 is known in the literature as the

Theorem of Morera. FEvery function which is locally integrable in D is
holomorphic in D.
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The Italian mathematician Giacinto MORERA (1856-1909, professor of
analytical mechanics at Genoa and after 1900 at Turin) proved this “con-
verse of the Cauchy integral theorem” in 1886 in a work entitled “Un teo-
rema fondamentale nella teorica delle funzioni di una variabile complessa,”
Rend. Reale Istituto Lombardo di scienze e lettere (2) 19, 304-307. Os-
GOOD, in the 1896 work which was cited in 7.3.4, was probably the first
to emphasize the equivalence i) < iii) and to define holomorphy via local
integrability; at that time he did not yet know about Morera’s work.

2. The holomorphy of integrals. The holomorphy property 1.ii) is
frequently simple to verify for functions which are themselves defined by
integrals. Here is a simple and very useful example. We designate by
v : [a,b] — C a piecewise continuously differentiable path and claim

Theorem. If g(w,z) is a continuous function on |y| x D and for every
w € |y, g(w, 2) is holomorphic in D, then the function

h(z) ==/g(§,z)d€ ) ze D,
%
is holomorphic in D.

Proof. We verify 1.ii) for h. To this end let A be a triangle lying in D.
Then

0 [ modc= /6 ) ( /7 olc, ods) ac = l ( /6 RG odc) d,

because, on account of the continuity of the integrand g on |y| x A, the order
of integrations can be reversed. This is the well-known theorem of FUBINI,
for which the reader can consult any text on the infinitesimal calculus.
Since for each fixed &, g(&,¢) is holomorphic in D, faA g9(§,¢)d¢ = 0 by
Lii). This holds for each £ € |y], so from (x) follows that [, h(¢)d¢ = 0,
as desired. O

An application of this theorem will be made in 9.5.3.

3. Holomorphy, angle- and orientation-preservation (final for-
mulation). In 2.1.2 holomorphy was characterized by the angle- and
orientation-preservation properties. But the possible presence of zeros of
the derivative, at which points angle-preservation is violated, necessitated
certain precautions. The Identity Theorem and Riemann’s continuation
theorem combine to enable us to bring this result into a form in which the
condition f’(z) # 0 no longer appears.
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Theorem. The following assertions about a continuously real-differentiable
function f : D — C are equivalent:

i) f is holomorphic and nowhere locally constant in D.

ii) There is a relatively closed and discrete subset A of D such that f is
angle- and orientation-preserving in D\ A.

Proof. i) = ii) Since f’ doesn’t vanish identically in any open set, its zero-
set A is discrete and relatively closed in D, according to 1.3. Theorem 2.1.2
insures that f is angle- and orientation-preserving throughout D \ A.

ii) = i) f is holomorphic in D\ A by theorem 2.1.2. But then Riemann’s
continuation theorem 7.3.4 insures that in fact the (continuous) function f
is holomorphic in all of D. 0O

4. The Cauchy, Riemann and Weierstrass points of view. Weier-
strass’ creed. CAUCHY took over differentiability from the real domain
without even commenting on it. For RIEMANN the deeper reason for study-
ing complex-differentiable functions lay in the “Aehnlichkeit in den klein-
sten Theilen,” that is, in the angle- and orientation-preserving properties
of these functions. WEIERSTRASS based everything on convergent power
series. Operating out of a tradition in which the study of mathematics
commences with real analysis, the CAUCHY-RIEMANN conception of holo-
morphy as complex-differentiability seems more natural to us than that of
WEIERSTRASS, even though access to the latter requires only a single limit
process, local uniform convergence, a fact which gives this theory great
internal cohesion. A logically unimpeachable development of the CAUCHY-
RIEMANN theory, in which contour integration occupies center-stage, only
became possible after the infinitesimal calculus had been put on a firm
foundation (by, among others, WEIERSTRASS himself).

One shouldn’t overlook the fact that from youth WEIERSTRASS was
thoroughly proficient with integration in the complex plane. He used it
as early as 1841, long before RIEMANN and independently of CAUCHY, in
a proof of the LAURENT’s theorem (cf. [W;]). The caution with which
WEIERSTRASS at that time integrated in the complex plane shows that
he had clearly perceived the difficulties of constructing a complex integral
calculus; perhaps here lie the roots of his later phobia of the Cauchy theory.!

Nowadays all these inhibitions have disappeared. The integral concept
and the relevant theorems about it have been grounded in a simple and
satisfactory way. Consequently the Cauchy-Riemann point of departure
seems the more natural. And it is in fact complex integration which has

1WEIERSTRASS is supposed to have scarcely cited CAUCHY. We even read in the
highly interesting article “Eléments d’analyse de Karl Weierstrass,” Arch. Hist. Ezact
Sci. 10(1976), 41-176 by P. DUGAC that (p.61) in 1882 WEIERSTRASS did not even
confirm to the French Academy the receipt of volume 1 of Cauchy’s works which they
had sent him.
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furnished the most elegant methods and is even indispensable to a simple
proof of the equivalence of the Cauchy-Riemann and Weierstrass theories.
On the other hand, the Weierstrass definition is necessary if one wants
to develop a function theory over more general complete valued fields K
other than R or C (so-called p-adic function theory). There is no integral
calculus over them because the fields K are totally disconnected, so only
the Weierstrass point of view is fruitful. An Indian mathematician once
wrote in this connection that WEIERSTRASS, the prince of analysis, was an
algebraist.

D. HILBERT occasionally remarked that every mathematical discipline
goes through three periods of development: the naive, the formal and the
critical. In function theory the time before EULER was certainly the naive
period; with EULER the formal period began, while the critical period
began with CAUCHY, attaining its high point in 1860 with WEIERSTRASS’
activity in Berlin.

F. KLEIN [Hg] (p.70 of the German original) said of CAUCHY that
“mit seinen gldnzenden Leistungen auf allen Gebieten der Mathematik fast
neben Gauf stellen kann (with his brilliant achievements in all areas of
mathematics he can almost be put alongside Gauss)”. His assessment of
RIEMANN and WEIERSTRASS is (p. 246): “Riemann ist der Mann der
glinzenden Intuition. Wo sein Interesse geweckt ist, beginnt er neu, ohne
sich durch Tradition beirren zu lassen und ohne den Zwang der Systematik
anzuerkennen. Weierstra$ ist in erster Linie Logiker; er geht langsam, sys-
tematisch, schrittweise vor. Wo er arbeitet, erstrebt er die abschlieSende
Form. (Riemann is the man of brilliant intuition. Where his interest has
been awakened he starts from scratch, without letting himself be misled
by tradition and recognizing no compulsion to be systematic. Weierstrass
is in the first place a logician; he proceeds slowly, systematically and step-
wise. In his work he aims for the conclusive and definitive form.)” The
reader should compare these sentences with POINCARE’s words quoted in
the Historical Introduction of this book.

In a letter of October 3, 1875 to SCHWARZ, WEIERSTRASS summa-
rized his “Glaubensbekenntnis, in welchem ich besonders durch eingehendes
Studium der Theorie der analytischen Functionen mehrerer Verdnderlichen
bekréftigt worden bin (creed in which I have been especially confirmed by
a thorough study of the theory of analytic functions of several variables)”
in the following sentences (Mathematische Werke 2, p. 235):

“Je mehr ich iiber die Principien der Functionen theorie nachdenke —
und ich thue dies unablissig —, um so fester wird meine Uberzeugung, dass
diese auf dem Fundamente algebraischer Wahrheiten aufgebaut werden
muss, und dass es deshalb nicht der richtige Weg ist, wenn umgekehrt zur
Begriindung einfacher und fundamentaler algebraischer Sitze das ‘Tran-
scendente’, um mich kurz auszudriicken, in Anspruch genommen wird - so
bestechend auch auf den ersten Anblick z.B. die Betrachtungen sein mégen,
durch welche Riemann so viele der wichtigsten Eigenschaften algebraischer
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Functionen entdeckt hat. [Dass dem Forscher, so lange er sucht, jeder Weg
gestattet sein muss, versteht sich von selbst, es handelt sich nur um die
systematische Begriindung.] (The more I ponder the principles of function
theory — and I do so unceasingly — the firmer becomes my conviction that
they have to be built on a foundation of algebraic truths. It is therefore not
correct to turn around and, expressing myself briefly, use “transcendental”
notions as the basis of simple and fundamental algebraic propositions —
however brilliant, e.g., the considerations may appear at first glance by
which Riemann discovered so many of the most important properties of
algebraic functions. [That every path should be permitted the researcher
in the course of his investigations goes without saying; what is at issue here
is merely the question of a systematic theoretical foundation.])”

Exercises

Ezxercise 1. Let D be an open subset of C, L a straight lineinC, f: D - C
continuous. Show that if f is holomorphic in D \ L, then in fact f is
holomorphic in D.

Ezercise 2. Let D open C C, 7 a piecewise continuously differentiable path
in C, g(w, z) a continuous complex-valued function on |y| x D. Suppose
that for every w € |y|, z = g(w, z) is holomorphic in D with derivative
£ g(w, z). Show that then the function h(2) := [, g(¢, 2)d(, z € D, is also

holomorphic and that h'(z) = [, 2 9(¢, z)d¢ for all z € D.

§3 The Cauchy estimates and inequalities
for Taylor coefficients

According to 7.2.2 holomorphic functions satisfy the mean value inequality
|f(e)] < |flap. This estimate can be significantly generalized.

1. The Cauchy estimates for derivatives in discs. Let f be holomor-
phic in a neighborhood of the closed disc B = B.(c). Then for every k € N
and every z € B, the estimate

T .
If®)(2)| < K== |flon , with d, = d.(B) =

(e
holds.

Proof. The Cauchy integral formula 7.3.2(2) for derivatives says that
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f(k)(z) _ M / __f(() d¢ z € B.

T 2mi Jop (( — 2)FHT

If we apply to this integral the standard estimate 6.2.2 for contour integrals,
then the present claim follows from the facts that L(8B) = 2rr and

—k—

ax M < |f|65 min IC — 2| 1 = IfIaBd-k_l.
(edB | — z|k+1 = CedB z

Corollary. If f is holomorphic in a neighborhood of B, then for every

k € N and every positive number d < r, the estimate

)
FO() < K= | flas

holds for all z € B,_4(c).
In the limiting case when d converges to r we get

Cauchy’s inequalities for the Taylor coefficients.
Let f(2) = Y a,(2—c)” be a power series with radius of convergence greater
than r, and set M(r) := max|,_¢=, | f(2)|. Then
M
|au|§ﬂ , for allv € N. a

T-V
A simple covering argument leads at once to

Cauchy’s estimates for derivatives in compact sets. Let D be a
domain in C, K a compact subset of D, L a compact neighborhood of K
lying in D. For every k € N there exists a finite constant My (which
depends only on D, K and L) such that

IF®) |k < MilflL for all f € O(D).

We should note that the role of L cannot be taken over by K itself. For
fn:=2" € O(C) and K := E we have, e.g., |fo|x = 1 but |f.|x = n for
each n € N.

2. The Gutzmer formula and the maximum principle. The in-
equalities for the Taylor coefficeints can be derived directly, without in-
voking the integral formula for derivatives. They can even be refined, by
observing that on the parameterized circle z(p) = ¢ + re*?, 0 < ¢ < 27,
the power series Y a,(z — ¢)” are trigonometric series Y a,r"e?*. Be-
cause Y a,7e'(* "™ converges normally in [0, 27] to f(c+re*?)e™i"® the
“orthonormality relations”
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1
271'0

0 form#n

27 . )
i(m—n)yp _
€ dw_{l form=n

immediately lead to the following representation of the Taylor coeflicients:

If the series f(2) = Y a,(z — ¢)* has radius of convergence greater than
T, then

27

(%) anr" = % flc+re®)e ™?dy | n € N.
0

From this follows immediately

The Gutzmer formula. Let f(z) =3 a,(z — ¢)” be a power series with
radius of convergence greater than r, and set M(r) := max|,_ =, |f(2)|.
Then

1 27 )
S laur® = o [ 5+ reé®)dp < M(r)2
27T 0
Proof. Since f(c + rei?) =Y a,r"e ¥, we have
If(c+re)? = ar*flc+re)e ™%,

with convergence normal on [0, 2rr]. Consequently integration passes through
the sum and () yields

27

2w
[ s renipao =S ar [ jerre e edp = on 3 ol
0 0

On the other hand, the estimate fO% |f(c+re®)|?dp < 2rM(r)? is trivial.
O

The inequalities |a,|r” < M(r), v € N, are naturally contained in the
Gutzmer formula. Moreover, there follows directly the

Corollary. If f(z) = Y a,(2~c¢)” in Bs(c) and if there is anm € N and an
r with 0 < r < s and |an|r™ = M(r), then necessarily f(z) = am(z —c)™.

Proof. From GUTZMER we have that 3, la,[*r® < 0, and so a, = 0
for all v # m. O

This corollary together with the identity theorem implies the
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Maximum principle. Let f be holomorphic in the region G and have a
local mazimum at a point c € G; that is, suppose that |f(c)| = |f|v for
some neighborhood U of ¢ in G. Then f is constant in G.

Proof. If 3~ a,(z— c¢)¥ is the Taylor series of f about c, then by hypothesis
lao| = |flu. For all sufficiently small positive r it then follows that |a| >
M(r). From the corollary (with m = 0) f is consequently constant in some
disc centered at c. Then from the identity theorem f is in fact constant
throughout G. O

The maximum principle, which here is a somewhat incidental spin-off,
will be set in a larger framework in 5.2.

The set of all power series with center at ¢ and having a radius of convergence
greater than r forms a complex vector space V. By means of the equation

27
(o) =gz [ fetrengeTenide,  foev
0

a hermitian bilinear form can be introduced into V. The family e, := r™"(z—c)",
n € N, forms an orthonormal system in V:

(em,en)={ 0 form#n

1 for m =n.

Every f =Y a.(2—c)” € V is an orthogonal series with the “Fourier coefficients”
(f,ev) = a,r”; Gutzmer’s equation is the Parseval completeness relation:

I 1%:=(f 5 =) [(f.e).

And we have || f ||=0 & (f,e.) =a,r” =0 forallv € N« f = 0. Then with
respect to the form (, ), V is a unitary vector space. But V is not complete,
hence is only a pre-Hilbert not a Hilbert space. To see this (with ¢ := 0, 7 := 1),

v

consider the polynomials p,, := Z;’ Z-. Due to the equations

n

1
Ipm=pnP=)" 5, form<n,
m+1

these polynomials constitute a Cauchy sequence in V with respect to || ||. But
this sequence has no limit in V, because the only limit candidate is the series
Z? %, which has radius of convergence 1 and consequently does not lie in V.

3. Entire functions. LIOUVILLE’s theorem. Functions which are
holomorphic everywhere in C were called entire functions by WEIERSTRASS
([W3],p. 84). Every polynomial is of course entire; all other entire functions
are called transcendental. Examples of the latter are exp z, cos z, sin 2.
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The Cauchy inequalities immediately imply the famous
Theorem of Liouville. Every bounded entire function is constant.

Proof. The Taylor development f(z) = )" a, 2" of f at 0 converges through-
out C (by the representation theorem 7.3.2); according to subsection 1

’|a,| < ‘mla,x |f(2) holds for all » > 0 and all v € N.
zZ|\=r

Since f is bounded there is a finite M such that |f(z)| < M for all z € C.
It follows that r|a,| < M for all 7 > 0 and all v € N. Since r¥ can be
made arbitrarily large if v # 0, it follows that for such v we must have
a, = 0. Thus f(z) = ao. a

Variant of the proof: Use the Cauchy inequality only for v = 1 but apply
it at every point ¢ € C, getting |f'(c)| < Mr~?, for all » > 0, and conse-
quently f’(c) = 0. That is, f/ = 0 and so f = const. a

We can also give a second direct proof by means of the Cauchy integral
formula. Let ¢ € C be arbitrary. For r > |¢| and S := 3B, (0) we have

_ 1 1 J(Q)d¢
10 - 10 = 5 [ (25 - 1) e = o [ LU
If we choose r > 2|c|, then |¢ — ¢| > 3r for { € S and it follows that
] WioN 1
2nr < 2|e|Mr™+,
1f(c) - ()I_%m_r C=oc < 2lc|
where, as before, M is a (finite) bound for f. If we let r increase indefinitely,
it follows that f(c) = f(0), for each ¢ € C. a

LIOUVILLE’s theorem also follows directly from the mean value equality in
7.2.2. An elegant proof of this kind was given by E. NELSON, “A proof of Liou-
ville’s theorem,” Proc. Amer. Math. Soc. 12(1961), p. 995.

We plan to use LIOUVILLE’s theorem in 9.1.2 in a proof of the funda-
mental theorem of algebra. But as an immediate application we have

Every holomorphic mapping f : C — E is constant. In particular, there
are no biholomorphic mappings of E onto C or of H onto C.

It is however quite possible to map the plane topologically, even real-
analytically, onto the open unit disc. Such a mapping from C to E is given,
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e.g.,, by z — z/y/1+|z|?, with inverse mapping from E to C given by
w— w//1— w2

Remark. The algebra O(C) of entire functions contains the algebra C[z] of poly-
nomials. The greater abundance of functions in O(C) compared with Clz] is
convincingly attested to by two approximation theorems: According to WEIER-
STRASS (Math. Werke 3, p.5), every continuous function f : R — C is uniformly
approximable on each compact interval by polynomials. Uniform approximation
on all of R is not generally possible; e.g., sinz is certainly not approximable
uniformly on R by polynomials. But with entire functions, anything that’s con-
tinuous on R can be approximated uniformly well on R. Even more: In his paper
“Sur un théoréeme de Weierstrass,” Ark. Mat. Astron. Fys. 20B, 1-5 (1927) T.
CARLEMAN showed:

Let a continuous and strictly positive “error” function € : R — R be given.
Then for every continuous f : R — C there ezists a g € O(C) such that

[f(z) — g(z)] < e(x) forallz € R.

The reader will find a proof in D. GAIER’s book Lectures on Complex Approz-
imation, Birkhiduser, Boston, (1987), p. 149.

4. Historical remarks on the Cauchy inequalities and the theo-
rem of LIOUVILLE. CAUCHY knew the inequalities for Taylor coefficients
which bear his name by 1835 (cf. (Buvres (2) 11, p. 434). WEIERSTRASS
proved these inequalities in 1841 by an elementary method, which involved
arithmetic means instead of integrals ([W;], 67-74 and [W4], 224-226).
We will reproduce this beautiful proof in the next subsection. August
GUTZMER (1860-1925, ordinarius professor at Halle, 1901-1921 sole editor
of the high-level Jahresberichte der Deutschen Mathematiker- Vereinigung)
published his formula in 1888 in the paper “Ein Satz iiber Potenzreihen,”
Math. Annalen 32, 596-600.

Joseph LIOUVILLE (1809-1882, French mathematician and professor at
the College de France) in 1847 put the theorem “Une fonction doublement
périodique qui ne devient jamais infinie est impossible (a doubly periodic
function which never becomes infinite is impossible)” at the beginning of
his Legons sur les fonctions doublement périodiques. Carl Wilhelm BOR-
CHARDT (1817-1880, German mathematician at Berlin, pupil of JACOBI
and close friend of WEIERSTRASS, from 1855-1880 CRELLE’s successor as
editor of the Journal fiir die Reine und Angewandte Mathematik) heard
Liouville’s lectures in 1847, published them in 1879 in the aforementioned
journal, vol. 88, 277-310, and named the theorem after LIOUVILLE (cf. the
footnore on p. 277). But the theorem originates with CAUCHY, who de-
rived it in 1844 in his note “Mémoires sur les fonctions complémentaires”
(Buvres (1) 8, pp. 378-385; see théoreme II on page 378), via his residue
calculus. The direct derivation from the Cauchy inequalities was given in
1883 by the French mathematician Camille JORDAN (1838-1921, professor
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at the Ecole Polytechnique), in the second volume of his Cours d’analyse,
théoréme 312 on p. 312. (In the third edition of the second volume, which
appeared in 1913 and which was reprinted in 1959 by Gauthier-Villars, this
would be théoréme 338 on p. 364.)

5*. Proof of the Cauchy inequalities following WEIERSTRASS.
The kernel of the method is found in the proof of the following

Lemma. Let m,n € N and g(z) = Y." _a,(z —c)*. Then

lag| € M(r) := ICma(.)f 1q(Q)| for every r > 0.

Proof. We may assume that ¢ = 0. Fix r and write simply M for M(r).
Choose A € S;, the unit circle, so that for all v € Z\ {0}, \¥ # 1. For
example, )\ := e or (more elementarily) A := (2 —i)(2 + i)~!. [For the
verification in the latter case, suppose that A" = 1 for some n € N\ {0}.
Then (2—i)" = (21 +2—)" = 2)" +n2)" 12 —4) +---, s0 (2))" =
(2 — i)(a + iB) for certain a,3 € Z, whence 4" = 5(a? + 32), which is
absurd. Of course, instead of this calculation, one could just remark that
in the unique factorization domain Z[i], 2+ i and 2 — i are prime elements
which are not associates.] Let 3" denote summation over non-zero indices.

It then follows that
k— vk _

‘ JAE =1
=0q7‘)\‘7 —ka0+Za,, —IT:T’ k’Zl

.,

Now |g(rM)| < M, since |[rM| = r, and so we get

v

|a|<M+1§n,| |2 k>1
- A\~ =~ 1.
=T TR I T

Since the value of the sum on the right is independent of k and & may be
chosen as large as we like, it follows that |ag] < M.

Theorem. For some m € N let f(z) = 3% a,(z — ¢)” be holomorphic
in the punctured disc Bs(c) \ {c}. Then for every r with 0 < r < s, setting
M(r) := max,_¢—r |f(2)|, we have

la,] < N‘:Ef) , forall u>-m.

Proof. Again we may suppose ¢ = 0. First look at 4 = 0. Let £ > 0 be
given. Then choose n € N so large that the remainder series g(z) :=
Zn+1 a,z” satisfies max|, =, |9(2)] < €. Then ¢(z) := f(z) — g(z) =
S L auz” satisfies
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max lg(z)| < M(r) +e.

It then follows from the lemma that |ag] < M(r) + &. Since € > 0 is
arbitrary, we have |ag| < M(r).

Finally, consider an arbitrary g4 > —m. The function z7#f(z)
= Z‘f’(m +u) Gut+rv2” is, like f, holomorphic in Bs(c) \ {c}. Its constant
term is a, and its relevant maximum is max|,|—, |[27#f(z)| = r~*M(r).
So from what was learned in the first paragraph of the proof, we have
lay| < r7HM(r).

Exercises

Ezercise 1. Generalize the Gutzmer equality to

(f,9) = Z augurzu

v>0

for f(z) := Y soav(z — )" and g(2) := Y ob.(2 —c)” € V. [For the
definition of V, see subsection 2.] -

Ezercise 2. For f € O(C) prove the following sharper versions of Liouville’s
theorem:

a) If for some n € N and some finite constants R and M, the function
f satisfies |f(2)] < M|z|™ for all |z| > R, then f is a polynomial of
degree no greater than n.

b) If the function Rf is bounded in C, then f is constant.
Ezercise 3. Let f : C — C be entire. Show that the Taylor series of f at 0

converges to f uniformly in C if and only if f is a polynomial.

Exercise 4. Show that if the entire functions f and g satisfy |f(z)| < |g(2)|
for all z € C, then there is a A € C such that f = Ag.

§4 Convergence theorems of WEIERSTRASS

The focal point of this section is the theorem affirming that in function
theory — as contrasted with real analysis — compact convergence commutes
with differentiation and the sequence of derivatives converges compactly as
well. As corollaries we get theorems about differentiating series.
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1. Weierstrass’ convergence theorem. Let f, be a sequence of holo-
morphic functions in a domain D which converges compactly there to f :
D — C. Then f is holomorphic in D and for every k € N the sequence

,(lk) of kth derivatives converges compactly in D to f*).

Proof. a) First of all, the limit function f is continuous in D (by the con-
tinuity theorem 3.1.2). For every triangle A C D the interchange theorem
for sequences (6.2.3) then ensures that

/ fd¢ = lim frdC.
aA n=00 Jaa

Since each f, € O(D), each integral on the right side vanishes (GOURSAT);
consequently f is holomorphic in D, by the ii) = i) implication in theorem
2.1.

b) Evidently it suffices to verify the convergence claim for k = 1. Let K
be a compact subset of D. Cauchy’s estimates for derivatives in compact
sets furnish a compact L C D and a finite constant M such that | f], — f'|kx <
M| fn — f|r holds for all n. Since lim |f, — f| = 0 by hypothesis, it follows
that lim |f), — f'lx = 0. m|

The holomorphy of the limit function rests, in this proof, on the simple
fact that a limit function under compact convergence inherits local inte-
grability from the terms of the sequence. The theorem of MORERA then
concludes the proof. In this kind of reasoning the developability of the
functions into power series is irrelevant. For functions on the real line the
convergence theorem is false for a variety of reasons: Limit functions of
compactly convergent sequences of real-differentiable functions are in gen-
eral not real-differentiable. Cf. paragraph 2. of the introductory material
to chapter 3.

2. Differentiation of series. Weierstrass’ double series theorem.
Since the sequence {f,} and the series ) (f, — f.—1) exhibit the same
convergence behavior, from theorem 1 there follows at once

Weierstrass’ differentiation theorem for compactly convergent se-
ries. A series Y f, of holomorphic functions in D which converges com-
pactly in D has a holomorphic limit f in D. For every k € N the k-times
term-wise differentiated series ) f,Sk) converges compactly in D to f);

fB@) =3P, zeD.

This is a generalization of the theorem that convergent power series
represent holomorphic functions and may be “differentiated term by term”
(for f, take the monomial a,(z—c)"). In applications one frequently needs
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Weierstrass’ differentiation theorem for normally convergent se-
ries. If for f, € O(D) the series Y f, converges normally in D to
f € O(D), then for each k € N the series ), f,sk) converges normally
in D to f*).

Proof. Let K C D be compact. The Cauchy estimates furnish a compact
set L, K ¢ L C D, and, for each £k € N, a finite constant M}, such
that |g(*¥) | < My|g|L for all g € O(D). This implies that Zlf,sk)IK <
M Y |folL < oo; that is, the series of derivatives converge normally in D.
Since this entails compact convergence, the respective limits are the f(¥).
O

Ezample. The Riemann zeta function {(z) introduced in 5.5.4 is holomor-
phic in the right half-plane {z € C : Rz > 1} because the {-series ) ., n™*
converges normally there (theorem 5.5.4). -

An immediate application of the first differentiation theorem is

Weierstrass’ double series theorem. Let f,(2) = Za,(f')(z —c)* be
power series convergent in a common disc B centered at ¢, for v € N.
Suppose that the series f(z) = Y. f.(z) converges normally in B. Then for
each p €N, b, :=3 > a,(t ) converges in C, and f is represented in B by
the convergent power series

flz)= Zb (z—c)*

Proof. According to the differentiation theorem for compactly convergent
series, f € O(B) and fW = 320 f,E“ ) for every 4 € N. Then the rep-
resentation theorem 7.3.2 says that f is represented in B by the Taylor
series

(M)(c f(#) (c) i flgl-‘) (c) _ ia(l’)_

o o]
E (2 — ¢)* , where now =

! u! u!
0 v=0

The designation “double series theorem” is almost self-explanatory: In
B, f is given by the double series

=3 (z Az cw) |

v=0 \u=0

and the theorem affirms that, as with polynomials, the summations may
be interchanged without altering the convergence in B or the value of the
limit:
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e o] o0
10=3 () oo
p=0 \v=0
Finally, we mention the following corollary to the product theorem for
convergent series 3.3.1:

Product theorem for normally convergent series of holomorphic
functions. If f = > f, and g = _ g, are normally convergent series
of holomorphic functions in D, then every product series Y hy in which
ho, hi,... run through every product f, g, exactly once, converges normally
in D to fg € O(D). In particular, fg = 3 px withpx := 3,5 fuge
(Cauchy product).

This assertion becomes false if only compact convergence of the series
for f and g is hypothesized; under this hypothesis it is even possible that
> p» diverge. This is illustrated by the example of the constant functions

fo=9,= (_Vllyl considered in 0.4.6.

3. On the history of the convergence theorems. In the 19th cen-
tury series predominated over sequences, because series were thought of
as “closed analytic expressions,” a shibboleth until the function concept
finally got put on a firm foundation. For WEIERSTRASS the double series
theorem was the key to convergence theory. In 1841 in a work of his youth
(W3], pp.70 ff.) he stated and proved this theorem, for power series in
several complex variables even, knowing nothing about Cauchy’s function
theory. But it should be noted that besides the compact convergence of
>~ fu(2), he hypothesized in addition the unconditional (= absolute) con-
vergence of this series at each point of B. His proof is elementary, the
only tool used being the Cauchy inequalities for Taylor coefficients, which
he derived directly (as was done in 3.5) without employing integrals. In
1880 WEIERSTRASS came back once again to his convergence theorem for
series [Wy4]. This time he did not require the supplemental unconditional
convergence.

From the double series theorem WEIERSTRASS easily obtained the theo-
rem on differentiating compactly convergent series ([Ws], pp. 73/74) simply
by developing each f, into its Taylor series around each point ¢ € D and
noting that, for fixed ¢, they all converge in some fixed disc B centered at
¢ and lying in D.

In 1886 MORERA deduced the convergence theorem for compactly con-
vergent series from the converse of Cauchy’s integral theorem which he had
discovered; see p. 306 of his work cited in 2.1, and also his “Sulla rappresen-
tazione delle funzioni di una variabile complessa per mezzo di espressioni
analitiche infinite,” Atti R. Accad. Sci. Torino 21(1886), pp. 894-897. It
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was Morera’s technique that we used in part a) of the proof in subsection 1.
In 1887 P. PAINLEVE (1863-1933, French mathematician; 1908 first airplane
passenger of W. WRIGHT; 1915/16 minister of war, 1917 and again 1925
premier of France) proved Weierstrass’ convergence theorem with the help
of the Cauchy integral formula — in “Sur les lignes singuliéres des fonctions
analytiques,” Ann. Fac. Sci. Toulouse (1) 2(1887), pp. 11-12.

In 1896 OSGOOD gave Morera’s argument (pp. 297/298 of the work cited
in 7.3.4), and wrote: “It is to be noticed that this proof belongs to the most
elementary class of proofs, in that it calls for no explicit representation of
the functions entering (e.g., by Cauchy’s integral or by a power series).”

4. A convergence theorem for sequences of primitives. In convergence
theorem 1 we inferred from the compact convergence of a sequence of functions,
the convergence of the sequence of their derivatives. A supplemental hypothesis
to control the otherwise arbitrary “constants of integration” enables us to also
infer the compact convergence of certain sequences of primitives of the original
functions.

Theorem. Let G be a region, fo, f1,... a sequence in O(G) which converges
compactly to f € O(G). Let F, € O(G) be a primitive of fn, for each n € N.
Then the sequence Fo, Fy, . .. will converge compactly in G to a primitive F of f
if there is a point c € G for which the numerical sequence F,(c) converges.

Proof. We may assume that all F,(c) are 0 — otherwise we just pass over to
primitives F,, — F,,(c). Let w € G be arbitrary. We have, on the basis of theorem
6.3.1,

) Fa(w) = / a0

for every path < in G from ¢ to w because F), = f, and F.(c) = 0. It therefore
follows from the interchange theorem 6.2.3 that

(2) lim F, (w) exists and F(w) := lim Fy,(w) = /f(()d(.

A function F : G — C is thereby defined which obviously satisfies condition ii)
of theorem 6.3.1 and is therefore a primitive of f. Now consider an arbitrary
compact disc K = B-(a) in G. It follows directly (!) from (1) and (2) that

F(z) = Fa(2) = / [f(¢) = fa(€))d¢ + F(a) — Fa(a) , for all z € K.

(a,2]

The standard estimate 6.2.2 for path integrals then gives
|F — Folk < |f = folx -7+ |F(a) — Fa(a)|.

Since by (2) lim F,,(a) = F(a), lim |F — F,,|x = 0 follows. Therewith the compact
convergence in G of the sequence F;, to F' is demonstrated. 0
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Although Weierstrass’ convergence theorem will be applied again and again
in the sequel, this last theorem won’t play any further role.

5*. A remark of WEIERSTRASS’ on holomorphy. In [W,] WEIER-
STRASS studied the following problem thoroughly:

Let > f, be a series of rational functions which converges compactly
to f € O(D) on a domain D which decomposes into disjoint regions
G1,Ga,.... What “analytic connections” subsist among the limit functions
f|G1, fIGa, . .. on the various regions? (Naturally WEIERSTRASS was more
precise in his formulation; he asked whether f|G; and f|G; are “branches”
of one and the same “monogenic” holomorphic function, that is, whether
they “arise from one another via analytic continuation.”)

WEIERSTRASS discovered to his surprise (p. 216, op. cit.) that there
need be no connection between f|G; and f|G2; that there even exist disjoint
regions G; and G2 in C and a sequence of rational functions f, such that
the series Y f, converges compactly in G1UG; to +1 in G and to —1 in G».
Thus WEIERSTRASS discovered a special case of RUNGE’s approximation
theorem, which is so central to contemporary function theory. First of all
we want to give a very simple example involving sequences.

The sequence 1/(1 — z™) of rational functions are holomorphic in C\ OE
and compactly converge there to the function

|1 for |z} <1
h(z) := { 0 for |z|>1

From which we immediately obtain the following:

Let f,g € O(C) be given but arbitrary. Then the sequence
f(z) —g(z)

1—2n

fn(2) ==g(2) +
converges compactly in C\ JE to the function

| f(z) for |zl <1
G(2) = { g(z) for |z| > 1

Proof. This is clear from the preceding, since G = g + (f — g)h. O

Simple examples involving series can also be adduced:

2 4

z z
R
are rational functions all of which are holomorphic in C\ JE, converges
compactly in that domain to the function

‘ 1 z 28
The series —Zt = o1t whose terms
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|1 for |z] <1
F(z) '—{ 0 for |z|>1.

Proof. This follows from the identities

n ov—1 n

z 1 1 1 1

- = — = — . a
222"—1 Z(l—z2" 1—22"'1) 1-22" 1-2

1 1

Examples of series of this type go back to TANNERY, who used the series

142 2z 227 22 228 1 for |zl<1
1-2 22—1+z4—1+z8~1+z16—1+'“_ ~1 for |z|>1.
The reader is encouraged to provide a proof of this equality. (Compare also
[W4], 231/232.) WEIERSTRASS gave quite a bit more complicated an example,

:° P For him this convergence phenomenon was an inducement to ex-
press some of his criticisms of the concept of holomorphy. He wrote (loc. cit., p.
210):

“ .. so ist damit bewiesen, dass der Begriff einer monogenen Function einer
complexen Verdnderlichen mit dem Begriff einer durch (arithmetische) Grossen-
operationen ausdriickbaren Abhéngigkeit sich nicht vollstindig deckt. Daraus
aber folgt dann, dass mehrere der wichtigsten Satze der neueren Functionen-
lehre nicht ohne Weiteres auf Ausdriicke, welche im Sinne der &lteren Analysten
(Euler, Lagrange u.A.) Functionen einer complexen Verdnderlichen sind, diirfen
angewandt werden (- -- is thus proven that the concept of a monogenic function
of a complex variable is not completely coextensive with that of dependence ex-
pressible by (arithmetic) operations on magnitudes. But from this it then follows
that several of the most important theorems of contemporary function theory
may not, without further justification, be applied to expressions which repre-
sent functions of a complex variable in the sense of the older analysts (Euler,
Lagrange, et al.)).”

WEIERSTRASS thereby represents another viewpoint from that of RIEMANN,
who on p. 39 at the end of §20 of his dissertation [R] took a contrary position.

6*. A construction of WEIERSTRASS’. A number « € C is called algebraic
if p(a) = 0 for some non-zero polynomial p in Z[z]. It is shown in algebra that
the set K of all algebraic numbers is a countable field extension of QQ, and is
consequently not all of C. In an 1886 letter to L. KOENIGSBERGER (published in
Acta Math. 39(1923), 238-239) WEIERSTRASS showed that

There exists a transcendental entire function f(z) = Y avz” with a, € Q for
all v, such that f(K) C K and f(Q) C Q.

Proof. Due to countability of Z[z], its non-zero elements can be enumerated
Po,P1,P2,--.. Set gn := pop1...pn and let r, denote its degree, n € N. A
sequence my € N is inductively defined by

mo:=0,mi1:=mo+r0+1,...,Mpt1:=Mnp +7n+ 1.
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For every non-zero rational number k,, the polynomial k,¢,(2)2™" involves only

powers z¢ with £ € {mn,...,mn + r,} and the term z™"*™ is present with a
non-zero coefficient. Differently indexed polynomials therefore have no powers
in common, so f(z) := Y kngn(2z)2™" is a formal power series with rational

coefficients in which every summand z™"*™ actually occurs. Now if we choose
the kn so small that all the coefficients of kngn(z)z™" are smaller than {(m, +
)11, then it will follow that f € O(C) and f & C[2].

Given a € K, it is a zero of some p, and so gn(c@) = 0 for all n > s and
therefore

s—1

fla) =Y knga(a)a™ € K
0
with, moreover, f(a) € Q in case a € Q. o

This elegant construction of WEIERSTRASS’ caused quite a sensation in its day,
not the least because of the essential use it made of CANTOR’s counting method,
which at that time was by no means generally accepted. Following WEIERSTRASS,
P. STACKEL wrote a paper in 1895 “ Uber arithmetische Eigenschaften analyti-
scher Funktionen,” Math. Annalen 46, pp. 513-520, in which he showed that

If A is a countable and B a dense subset of C, then there exists a transcen-
dental entire function f with f(A) C B.

In particular, there is a transcendental entire function whose values at every
algebraic argument are transcendental (:= non-algebraic) numbers. A famous
theorem of LINDEMANN, GELFOND and SCHNEIDER affirms that the exponential
function takes transcendental values at every non-zero algebraic argument. In
1904 in Math. Annalen 58, pp. 545-557 G. FABER constructed a transcendental
entire function which together with all its derivatives takes algebraic values at
algebraic arguments.

Weierstrass’ construction laid to rest the idea that an entire function with
rational coefficients which assumes rational values at every rational argument
had to be itself rational, that is, a polynomial. Nevertheless under additional
hypotheses this conclusion does follow. Already in 1892 HILBERT remarked, at
the end of his paper “Uber die Irreduzibilitit ganzer rationaler Funktionen mit
ganzzahligen Koeflizienten” (Jour. fir die Reine und Angew. Math. 110, pp.
104-129; also Gesammelte Abhandlungen, vol. II, pp. 264-286), that a power
series f(z) with positive radius of convergence is necessarily a polynomial if it is
an algebraic function (meaning that p{f(z), z) = 0 for some non-zero polynomial
p(w, z) of two variables) and if it assumes rational values for all rational arguments
from some non-empty interval (however short) in R.

Exercises

Ezercise 1. Formulate and prove an inference from the normal convergence
of a series Y _ f,, f, € O(G), to that of a series 3 F,, of its primitives.
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Ezercise 2. Show that the series ), 5, (22" —27%") ™! converges compactly
in C* \ 0E and determine the limit function.

. . . . . —1 n
Exzercise 3. According to Exercise 3 in §2, Chapter 3, the series Y, -, S—Lz ey

converges compactly in C\ {—1,—2,-3,...} to a holomorphic function f.
Find the power series development of f around 0.

Ezercise 4. Let f be holomorphic in some neighborhood of 0. Show that if
the series

(+) 3£ (z)

n>1

converges absolutely at z = 0, then f is an entire function and the series
(*) converges normally throughout C.

Ezercise 5. Let 0 < m; < mg < --- be a strictly increasing sequence of
integers, p, complex polynomials satisfying degree (z™vp,(z)) < m,; for
all v. Suppose that the series f(2) := Y -, 2™ p,(2) converges compactly
in E. Show that the Taylor series of f around 0 contains just those mono-
mials axz* which occur in the summands 2™ p,(z) (theorem on removal
of parentheses).

856 The open mapping theorem and the
maximum principle

The fibers f~!(a) of a non-constant holomorphic function f consist of iso-
lated points (cf. 1.3) and are thus very “thin”. So f does not collapse
open sets U too violently and correspondingly the image set f(U) is “fat.”
This heuristic will now be made precise. To this end we introduce some
convenient terminology.

A continuous mapping f : X — Y between topological spaces X and Y
is called open if the image f(U) of every open subset U of X is an open
subset of Y. (By contrast continuity means that every open subset V of Y’
has an open pre-image f~!(V) in X.) Every topological mapping is open.
The mapping = — 22 of R into R is not open. But the latter phenomenon
cannot occur among holomorphic mappings; we even have the

1. Open Mapping Theorem. If f is holomorphic and nowhere locally
constant in the domain D, then it is an open mapping of D into C.

The proof rests on a fact of some interest by itself:
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Existence theorem for zeros. Let V be an open disc centered at c, with
V C D. Let f be holomorphic in D and satisfy min,cav |f(2)| > |f(c)|.
Then f has a zero in V.

Proof. If f were zero-free in V, then it would be zero-free in an open
neighborhood U of V lying in D. The function g : U — C, z — 1/f(2)
would then be holomorphic in U and the mean value inequality would imply
that

z€dV

1 -1
-1 < = _ = i
HOI = 19(6) < ma lo(e)| = gy = = (g 17 )
ie., |f(c)| > min,eav | f(2)|, contrary to hypothesis. ]
The existence theorem just proved delivers immediately a

Quantitative form of the open mapping theorem. Let V' be an open
disc centered at ¢ with V C D and let f be holomorphic in D and satisfy

26 := minzepv |f(2) — f(c)| > 0. Then f(V) O Bs(f(c))-
Proof. For every b with |b— f(c)| < 6,

£(2) =8 2 |£(z) - F©| = b— F(0)] > & forall z € BV.

It follows that min,csv |f(2) — b] > |f(c) — b|]. The preceding existence
theorem is therefore applicable to f(z) — b and furnishes a £ € V with
f(Z)=b. g

By now the proof of the open mapping theorem itself is trivial: let U be
an open subset of D, ¢ € U. We have to show that f(U) contains a disc
about f(c). Since f is not constant around ¢, there is a disc V' centered
at ¢ with V C U and f(c) ¢ f(OV) (thanks to the Identity Theorem).
Therefore the number 26 := min,cav | f(2) — f(c)} is positive. From this it
follows that Bs(f(c)) C f(V) C f(U). a

The open mapping theorem has important consequences. Thus for ex-
ample it is immediately clear that a holomorphic function with constant
real part, or constant imaginary part, or constant modulus is itself constant.
More generally, the reader should satisfy himself that

If P(X,Y) € R[X,Y] is a non-constant polynomial, then every function
f which is holomorphic in a region G and for which P(Rf(z),3f(2)) is

constant, is itself constant.

The open mapping theorem is frequently also formulated as the
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Theorem on the preservation of regions. If f is holomorphic and
non-constant in the region G, then f(G) is also a region.

Proof. According to the Identity Theorem f is nowhere locally constant
in G, so that by the open mapping theorem the set f(G) is open. As f is
continuous, the image set inherits the connectedness of G as well. m]

Our proof of the open mapping theorem goes back to CARATHEODORY
([5], pp. 139/140). The decisive tool is the mean value inequality hence,
indirectly, the Cauchy integral formula. It is possible, but admittedly quite
tedious, to carry through an integration-free proof; cf., say, G. T. WHY-
BURN, Topological Analysis, Princeton University Press, 1964, p. 79. The
fact that holomorphic functions are locally developable into power series
admits an elementary proof by means of the open mapping theorem (see,
e.g., P. PORCELLI and E. H. CONNELL, “A proof of the power series ex-
pansion without Cauchy’s formula,” Bull. Amer. Math. Soc. 67(1961),
177-181).

2. The maximum principle. With the help of Gutzmer’s formula the
maximum principle was derived in 3.2 in the formulation: ‘

A function f € O(G) whose modulus experiences a local mazimum is
constant in G.

This assertion is a special case of the open mapping theorem: namely,
if there is a ¢ € G and a neighborhood U of ¢ in G with [f(2)| < |f(c)| for
all z € U, then

fU) c{w e C: w <[f()I}-

The set f(U) is then certainly not a neighborhood of f{c), that is, f is not
an open mapping. Consequently, since G is connected, the open mapping
theorem implies that f is constant. O

If we interpret the real number |f(z)| as altitude above the point z
(measured perpendicularly to the z-plane), then we get a surface in R® over
G C C = R?, which is occasionally designated as the analytic landscape of
f. In terms of it the maximum principle may be stated in the following
suggestive fashion:

In the analytic landscape of a holomorphic function there are no genuine
peaks.

The maximum principle is often used in the following variant:
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Maximum principle for bounded regions. Let G be a bounded region,
f a function which is holomorphic in G and continuous on G = G U 9G.
Then the mazimum of the function |f| over G is assumed on the boundary

G of G:

If(2)| < |flac for all z € G.

The reader should construct a proof for himself. The hypothesis that
G be bounded is essential: the conclusion fails for the function h(z) :=
exp(exp 2) in the strip-like region S := {2z € C: —}n < ¥z < 37}. Indeed
in this example |h|ss = 1, but h(z) = exp(e®) — oo for z € R, z — +oo.

O

Application of the maximum principle to 1/ f leads straightaway to the

Minimum principle. Let f be holomorphic in G and let there be a point
¢ € G at which |f| experiences a local minimum, that is, at which |f(c)| =
inf,cp | f(2)| for some neighborhood U of ¢ in G. Then either f(c) =0 or
f is constant in G.

Minimum principle for bounded regions. Let G be a bounded region,
[ continuous in G and holomorphic in G. Then either f has zeros in G or
else the minimum over G of |f| is assumed on 9G:

@)= minFQ forallzeG.

Evidently the minimum principle is a generalization of the existence
theorem for zeros proved in subsection 1.

3. On the history of the maximum principle. RIEMANN wrote in
1851 (cf. [R], p. 22):

“FEine harmonische Function u kann nicht in einem Punkt im Innern ein
Minimum oder ein Mazimum haben, wenn sie nicht uberall constant ist. (A
harmonic function u cannot have either a minimum or a maximum at an
interior point unless it is constant.)” BURKHARDT formulated this theorem
for the real and imaginary parts of holomorphic functions on p.126 of his
1897 textbook [Bu] (p.197 of the English translation). In his 1906 work
[Os] OsGoOD also treated the maximum and minimum principles only for
harmonic functions (p. 652 of the 5th edition, 1928).

It seems to be difficult to find out when and where the theorem was
first formulated for holomorphic functions and proved for them without a
reduction to the harmonic case. Even experts in the history of function the-
ory could not tell me whether the maximum principle occurs in Cauchy’s
work or not. In 1892 SCHOTTKY spoke of “a theorem of function theory”
(the reader will find further details on this in 11.2.2). C. CARATHEODORY
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(German mathematician of Greek extraction, 1873-1950, originally an en-
gineer, assistant to A. SOMMERFELD; at Munich from 1924 onward) gave
his simple proof of the Schwarz lemma in 1912 (p. 110 of [Ca]) by means
of the maximum principle for holomorphic functions (for this see 9.2.5),
but in the course of doing so he said nothing about this important theo-
rem. HURWITZ discussed the theorem in his Vorlesungen tber allgemeine
Funktionentheorie und elliptische Funktionen ([12], p. 107) which was first
published in 1922 by Julius Springer, Berlin.

In 1915 L. BIEBERBACH (1886-1982) wrote in his little Géschen volume
Finfiihrung in die konforme Abbildung ([3], p. 8): “Wenn f(z) im Inneren
eines Gebietes G reguldr und endlich ist, so besitzt |f(z)| kein Mazimum im
Inneren des Gebietes. Die Behauptung (bekanntlich eine leichte Folgerung
des Cauchyschen Integralsatzes) kann auch unmittelbar aus der Gebiets-
treue gefolgert werden. (If f(2) is regular and finite in the interior of a
region G, then |f(z)| has no maximum there. This assertion (known to
be an easy consequence of Cauchy’s integral theorem) can also be imme-
diately deduced from the open mapping theorem.)” In the second volume
of his work [4], which appeared in 1927, BIEBERBACH spoke (p. 70) of the
“principle of the maximum.”

4. Sharpening the WEIERSTRASS convergence theorem. Let G be
a bounded region, f, a sequence of functions which are continuous on G
and holomorphic in G. If the sequence f,|0G converges uniformly on 0G,
then the sequence f, converges uniformly in G to a limit function which is
continuous on G and holomorphic in G.

Proof. According to the maximum principle for bounded regions

[fm = falg = fm — faloc

holds for all m and n. Since f,|0G is a Cauchy sequence with respect to
the supremum semi-norm | |g¢, this equality shows that f, is a Cauchy
sequence with respect to | |5. From the Cauchy convergence criterion
3.2.1, the continuity theorem 3.1.2 and Weierstrass’ convergence theorem
4.1 the assertion follows. a

WEIERSTRASS was aware of this phenomenon of the “inward propagation
of convergence.” As simple consequences let us note

Corollary 1. Let A be discrete in G, f, € O(G) a sequence which con-
verges compactly in G\ A. Then in fact the sequence f,, converges compactly
in the whole of G.

And



§5. THE OPEN MAPPING THEOREM AND THE MAXIMUM PRINCIPLE 261

Corollary 2. Let there be associated with the sequence f, € O(G) a
compactly convergent sequence g, € O(G) with a limit function which is
not identically 0, such that the sequence gnf. converges compactly in G.
Then the original sequence f, converges compactly in G.

The reader will have no trouble carrying out the proofs of these, and is
urged to do so.

5. The theorem of HURWITZ. This concerns the “preservation of zeros”
under compact convergence. We first show

Lemma. If the sequence f, € O(G) converges compactly in G to a non-
constant f, then for every ¢ € G there is an index n. € N and a sequence
cn € G, n > ng, such that

lime, =c¢ and fu(cn) = f(e) forall n>ne.

Proof. We may suppose f(c) = 0. By hypothesis f # 0, so there exists (by
the identity theorem) an open disc B centered at ¢ with B C G, such that f
is zero-free in B\ {c}. Since f,, converges to f uniformly on dBU{c}, there
is an n. such that | f,(c)] < min{|f.(2)|: 2 € 8B} for all n > n.. According
to the minimum principle (alternatively, the existence theorem for zeros in
1.), each f, (n > n.) has a zero ¢, in B. Necessarily lim, ¢, = ¢. For
otherwise there would be a subsequence ¢}, convergent to a ¢’ € B\ {c} and
then (continuous convergence) 0 = lim f} (¢n/) = f(c’), which cannot be.O

This lemma is quantitatively sharpened by

Theorem of Hurwitz. Suppose the sequence f, € O(G) converges com-
pactly in G to f € O(G). Let U be a bounded open subset of G with U C G
such that f has no zeros on 8U. Then there is an index ny € N such that

for each n > ny the functions f and f, have the same number of zeros in
U:

> ow(f) =" oul(fs) foralln>ny.

wel wel
Proof. Since f # 0 and U is compact, the number m := Y wel Cwlf) is
finite (by the identity theorem). We carry out a proof by induction on m.
In case m = 0, the number ¢ := min{|f(z)| : 2 € U} is positive. Since
|fn — flf < € for almost all n, almost all f, are zero-free in U.

Now consider m > 0 and a zero ¢ € U of f. According to the lemma

there is an n. and a sequence ¢, € U for n > n, such that f,(c,) =0 and
limc, = ¢. Then for these n there exist h, h,, € O(G) such that

(*) fa(2) = (2 = ca)hn(2), f(z) = (2 = )h(2).
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Corollary 2 in 4. above and the fact that lim(z — ¢,) = z — ¢ insure that
the sequence h, converges compactly in G to h. But according to (*), h
has exactly m — 1 zeros in U and none on OU. Therefore the induction
hypothesis furnishes an ny > n. so that for each n > ny the function
h,. has exactly m — 1 zeros in U. Then from (*) and the fact that ¢, € U

it follows that for each n > ny the function f, has exactly m zeros in U.

In 13.2.3 we will give a second proof of Hurwitz’ theorem by means of a
theorem of ROUCHE.

Hurwitz’ theorem is always applicable if f # 0. In that case around
each zero c of f there is a compact disc B C G such that f is zero-free in
B\{c}. It is to be noted that there are sequences of zero-free functions, e.g.,
fn(2) := z/n in C\ {0}, which converge compactly to the zero function.

Naturally a version of Hurwitz’ theorem holds as well for a-places (con-
sider the sequence f,(z) — a). The theorem of HURWITZ (or even the
lemma) contains as a special case

If f. is a sequence of zero-free holomorphic functions in G which con-
verges compactly in G to f € O(G), then f is either identically zero or is
zero-free in G.

This observation has the following consequence:

Let f,, : G — C be injective holomorphic functions which converge com-
pactly in G to f: G — C. Then f is either constant or injective.

Proof. Suppose that f is non-constant and consider any point ¢ € G. Each
function f, — fn(c) is zero-free in G \ {c} because of the injectivity of f,, in
G. The above observation, applied to the sequence f,, — fn(¢) in the region
G\ {c}, says that f — f(c) is zero-free in G\ {c}; that is, f(z) # f(c) for all
z € G\ {c}. Since c is any point whatsoever in G, this is just the assertion
that f is injective in G. 0.

This assertion will play an important role in the proof, to be given in
the second volume, of the Riemann mapping theorem.

Historical note. HURWITZ proved his theorem in 1889 with the aid of
ROUCHE’s theorem; cf. “Uber die Nullstellen der Bessel’schen Function,”
(Math. Werke 1, p.268). HURWITZ described his result in the following
suggestive terms (p.269; here we maintain our earlier notation):

The zeros of f in G coincide with those places at which the roots of the
equations fi1(z) =0, f2(2) =0,..., fu(z) =0,... “condense”..
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Exercises

Ezercise 1. Let R > 0, f : Br(0) — C holomorphic. For p € [0, R) define
M(p) :=sup{|f(2)| : |z| = p}. Show that the mapping p — M(p) of [0, R)
into R is non-decreasing and continuous. Show that this map is strictly
increasing if f is not constant.

Ezercise 2. Let G be a bounded region, f and g continuous and zero-free
in G and holomorphic in G, with |f(2)| = |g(2)| for all z € G. Show that
then f(z) = Ag(z) for some A € 9K and all z € G.

Ezercise 3. Let G be aregion in C, f € O(G). Show that if Rf experiences
a local maximum at some ¢ € G, then f is constant.



Chapter 9

Miscellany

Wer vieles bringt, wird manchem etwas brin-
gen (He who offers much will offer something
to many).— J. W. von GOETHE

As soon as Cauchy’s integral formula is available a plethora of themes
from classical function theory can be treated directly and independently
of each other. This freedom as to choice of themes forces one to impose
his own limits; in CARATHEODORY ([5], p. viii) we read: “Die grofte
Schwierigkeit bei der Planung eines Lehrbuches der Funktionentheorie liegt
in der Auswahl des Stoffes. Man muf} sich von vornherein entschlieBen, alle
Fragen wegzulassen, deren Darstellung zu groie Vorbereitungen verlangt.
(The greatest difficulty in planning a textbook on function theory lies in
the choice of material. You have to decide beforehand to leave aside all
questions whose treatment requires too much preparatory development.)”

The themes selected for this chapter, except for the theorem of RITT
on asymptotic power series developments, belong to the canonical material
of function theory. The theorem of RITT deserves to be rescued from
oblivion: its surprising statement generalizes an old theorem of E. BOREL
about arbitrarily specifying all the derivatives of an infinitely differentiable
real function at some point. This classical theorem of real analysis thus
finds a function-theoretic interpretation.

§1 The fundamental theorem of algebra

In chapter 4 (written by this author) of the book Numbers [19] we examined
the fundamental theorem of algebra and its history in some depth, giving
among others the proofs of ARGAND and LAPLACE. Here in what follows
we will present four function-theoretic proofs.

265
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1. The fundamental theorem of algebra. Every non-constant complez
polynomial has at least one complez zero.

This existence theorem was called by GAUSS the Grundlehrsatz of the
theory of algebraic equations (cf. his Werke 3, p. 73). Since zeros always
split off as linear factors (on this point cf. Numbers, chap. 4, §3), the
theorem is equivalent to

Factorization theorem. Every polynomial p(z) = ap+a1z+---+anz™ €
C[2] of positive degree n (i.e., a, # 0) is representable, uniquely up to the
order of the factors, as a product

p(z) =an(z—c1)™(z—c2)™ - (z— )",

where c1,. .., ¢, € C are different, my,...,m, € N\ {0} andn=my+---+
M.

For real polynomials p(z) € R[z] , p(z) = p(Z) and so whenever c is a
zero, € is also a zero. Of course (z — ¢)(z — ©) € R[z]. Therefore

Every real polynomial p(z) of degree n > 1 is uniquely expressible as a
product of real linear factors and real gquadratic polynomials.

By making use of the order function o, we can formulate the fundamental
theorem of algebra as an equation:

Every complez polynomial p of degree n satisfies ZZ e 0= (p) = n.

For transcendental entire functions there is no corresponding result. For ex-
ample, we have both

Z o.(exp) =0 and Z 0.(sin) = oo.

z€C zeC

Almost all proofs of the fundamental theorem use the fact that polyno-
mials of positive degree converge to oo uniformly as |z| grows. We make
this property more precise in the

Growth lemma. Let p(z) = Y g a,z” € C[z] be an nth degree polynomial.
Then there exists a real R > 0 such that for all z € C with |z| > R

1) Slanllel” < Ip(2)] < 2anll2I",

v

so that lim 12|
z=00 [p(2)]

=0for 0<v<n.
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Proof. We may suppose that n > 1. Set r(z) := 8—1 lay||z|”. Then
clearly for all z

lan[|2]™ — r(2) < |p(2)| < lanll2]™ +7(2).

If |zl > 1 and v < n, then |z|[¥ < |z|*"! and so r(z) < M|z[*"!, with
M = 23—1 la,|. It follows that R := max{l,2M|a,|~'} has the desired
property. O

The proof just given is elementary in that only properties of the absolute
value are used in it; consequently, the growth lemma is valid as well for
polynomials over any valued field.

2. Four proofs of the fundamental theorem. The first three proofs
involve reductio ad absurdum; so we assume that there is a polynomial
q(z) =Yg a,2” of degree n > 1 which has no complex zeros.

First proof (after R. P. BoAs: “Yet another proof of the fundamental the-
orem of algebra,” Amer. Math. Monthly 71(1964), 180; only the Cauchy
integral theorem and the complex exponential function are used).

For ¢*(z) := Y ga,2” € C[z], we have ¢*(¢) = g(c) for every ¢ € C.
Therefore g := qq* € C[z] is zero-free and satisfies g(z) = |g(z)|? > 0 for
all z € R. Writing ¢ := €**, 0 < ¢ < 2w, we have cosp = %(C +¢7H. It
follows that

27 2n—1

(#) 0</ di(pzl/ i_—l—:l/ C—dC,

o 9Q2cosy) i Jog C(C+CTY) i Jar A(Q)
with h(2) := 22"g(z + z7!); notice that h(z) is a polynomial. Since g is
zero-free in C, h has no zeros in C*. An easy calculation reveals that the
constant term in A is h(0) = |a,|? # 0. Therefore 1/h € O(C) and, since
n > 1, so does 22"~1/h(z). Consequently according to Cauchy’s integral
theorem the integral on the right end of (# ) vanishes, a contradiction! [In
the first German edition of this book the integral f_rr % was considered
instead of (#). By means of the growth lemma and the Cauchy integral
theorem a contradiction in the form 0 = lim,._, o, f_rr % was reached. In
BoAS’s proof “there is no need to discuss the asymptotic behavior of any
integrals.”]

The remaining proofs all make use of the growth lemma.

Second proof (via the mean value inequality). Because q is zero-free, the
function f := 1/q is holomorphic in C. Therefore |f(0)| < |f|ss, for every
circle 9B, of radius r > 0 centered at 0 (cf. 7.2.2). Since lim|,|_. |f(2)| =
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0 according to the growth lemma, we get f(0) = 0, in contradiction to

f(0) = q(0)~! #0.

Third proof (via Liouville’s theorem) . As in the second proof we use the
facts that f := 1/q € O(C) and lim|;|_, | f(2)| = 0. But the latter fact
implies that f is bounded in C, hence by LIOUVILLE it is constant; that is,
g is constant — which cannot be because n > 1.

Fourth proof (directly, from the minimum principle). Let p(z) := Y ¢ a,2*
be a non-constant polynomial of degree n. Since a, # 0, we can find
an s > 0 so that |p(0)] < %|a,|s". The growth lemma insures that if
we increase s enough we can also have |p(0)| < min|;|—, |p(2)|. Therefore
the minimum of |p| over B,(0) occurs at some point a € B,(0). From
the minimum principle it follows that p(a) = 0 (alternatively, we can also
conclude this directly from the existence theorem for zeros in 8.5.1).

3. Theorem of GAUSS about the location of the zeros of derivatives. If
p(z) is a complex nth degree polynomial and ¢y, ...,c, € C its (not necessarily
distinct) zeros, then

/
p(z) 1 N _ z—cy
) p(z) _z—01+ z—cn le—c,,lz
This can be proved by induction on n, since from p(z) = (z — cn)gq(z) follows
P'(2) = q(2) + (2 — ca)q'(2) and thus p'(2)/p(z) = ¢'(2)/q(2) +1/(z — cn). With
the help of (1) we quickly obtain:

Theorem (GAuss, Werke 3, p.112). If c1,...,cn are the (not necessarily dis-
tinct) zeros of the polynomial p(z) € C[z], then for every zero ¢ € C of the
derivative p'(z) there are real numbers A1, ..., \, such that

c:i)\uc,,,/\lzo,...,/\nZO, i)“’zl'
1 1

Proof. If c is one of the zeros of p, say c;, then set A; :=1 and A, := 0 for v # j.
On the other hand, if p(c) # 0, then it follows from (1) that

Z —
|c— cu|?
and so, with m, :=|c—c¢,|7%? > 0 and m := E? My,

n
mc = E myCy.
1

Consequently the numbers A, := m, /m have the required properties. O

p(C)
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For any set A C C the intersection of all the convez sets which contain A is
called the convex hull of A and denoted conv A. One checks readily that

n n
conv{cy,...,cn} = {zGC:z=ZA,cV ;A1>0,...,A, >0, Z/\,, =1}
1 1
Consequently, the theorem of GAUSS may be expressed thus:

Every zero of p'(z) lies in the convez hull of the set of zeros of p(z).

Remark. From (1) it follows that all z € C with p’(z) # 0 satisfy the inequality

. —c < U
min |z - e < nlp(2)/# ()],
which says that inside the circle of radius n|p(z)/p’(z)| centered at z lies at least
one zero of p. This information is successfully exploited in the numerical search
for complex zeros of p via NEWTON’s Method.

Exercises

Ezercise 1. Let p(z) € C[z] be a non-constant polynomial. Using the
growth lemma and the open mapping theorem (but not the fundamental
theorem of algebra) show that p(C) = C.

Ezercise 2. Let f be an entire function with only finitely many zeros; let
these be, each repeated as often as its multiplicity requires, ¢1,...,¢Cy.
a) Show that the equality fTI(%Z =Y z—_lc—] forall z € C\ {c1,...,cn}

holds if and only if f is a polynomial.

b) Show by means of an example that for an entire function f, the zeros
of f' are not generally all to be found in the convex huli of those of

f

§2 Schwarz’ lemma and the groups AutE,
AutH

The goal of this section is to prove that the automorphisms of the unit
disc E and of the upper half-plane H described in 2.3.1-3 are all of the
automorphisms of E and H, respectively. The tool used is a lemma con-
cerning mappings of the unit disc which fix 0. The result goes back to H.
A. SCHWARZ.
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1. Schwarz’ lemma. Every holomorphic map f : E — E with f(0) =0
satisfies

If(2)] < || forallz€E, and|f'(0) <1
If there is at least one point c € E\ {0} with |f(c)| = |c|, or if |f'(0)] =1,
then f is a rotation about 0, that is, there is an a € Sy such that

f(z) =az for all z € E.
Proof. f(0) = 0 means that

9(z) = f(2)/z  for z€ E\ {0}, g(0) := f'(0)
defines a holomorphic function g in E. Since |f(z)| < 1 for every z in E,
1
lmla\.x lg(2)| < - for every positive r < 1.
Z|=Tr

From the maximum principle follows then

lg(z)| < 1/r for z€ B.(0) ,0<r <1

Letting » — 1, gives |g(z)| < 1, that is, |f(2)| £ |z|, for all z € E and
|£/(0)] = |g(0)] < 1. In case either |f'(0)] = 1 or |f(c)| = |c| for some
c € E\ {0}, then |g(0)] = 1 or |g(c)] = 1; which says that |g| attains a
maximum in E. According to the maximum principle, ¢ is then a constant,
of course of modulus 1. O

2. Automorphisms of E fixing 0. The groups AutE and AutH.
For every point ¢ of a domain D in C and every subgroup L of Aut D, the
set of all automorphisms in L which fix ¢ is a subgroup of L. It is called
the isotropy group of ¢ with respect to L. In case L = Aut D we denote
this subgroup by Aut.D. For the group AutgE of all center-preserving
automorphisms of E we have

Theorem. Every automorphism f:E — E with f(0) = 0 is a rotation:

AutgE={f:E—E,z— f(z) =az:a€ S1}.

Proof. Certainly all rotations belong to AutgE. If conversely f € AutgkE,
then also f~! € AutgE and from Schwarz’ lemma follow

If(2) <1zl and |2l =1fT(f)I < If(2)]  for z€E,
that is, | f(2)/z| = 1 for all z € E\ {0}, and so f(z2)/z =a € 5. a

The explicit specification of all automorphisms of E is now simple. We
base it on the following elementary

Lemma. Let J be a subgroup of Aut D with the following properties:
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1) J acts transitively on D.
2) J contains, for some ¢ € D, the isotropy group Aut.D.
Then J = Aut D.

Proof. Consider h € AutD. On account of 1) there is a g € J with
g(h(c)) = c. From 2) it follows that f :=goh € J,soh=g 1o f e J.

Theorem.
az+b
bz+a

AwtE = { :a,beC,Ialz—lbl2=1}

= {ei"’_z_w :weE,0§<p<27r}.
wz —1

Proof. The two sets on the right are equal and constitute a subgroup J
of AutE which acts transitively on E (cf. 2.3.2-4). On the basis of the
preceding theorem AutoE = {€**z : 0 < ¢ < 27} C J and so from the
lemma it follows that J = AutE. a

According to 2.3.2 the mapping h — hgr o ho he of AutE into Aut H,
where hg, hor designate the Cayley mappings, is a group isomorphism.
Since we also have

{M. (a ﬁ) € sL(ZR)}

yz+6 \7v 6

:{hC'ng+bohc:a,b€C,|a|2—|b|2=1}

zZ+a

as a result of 2.3.2, our theorem above has the

Corollary. AutH = {%—g : (: ?) € SL(Z,R)}.

3. Fixed points of automorphisms. Since the equation ‘—C‘fj_“—g = z has
at most two solutions (unless b = ¢ = 0 and a = d), the automorphisms of
E and H other than the identity have at most two fixed points in C. Here
by fized point of a mapping f : D — C is meant any point p € D with

f(p) =p.

Theorem. Every automorphism h of E (respectively, H) with two distinct
fized points in E (respectively, H) is the identity.

Proof. Because the groups AutE and AutH are isomorphic, it suffices to
prove the result for E. Since E is homogeneous, we may assume that one
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of the fixed points is 0. Then already we know that h(z) = az for some
a € S1, by Theorem 2. If there is another fixed point p, that is, one in
E\ {0}, then h(p) = ap =p, and so a =1 and h =id. o

As in 2.2.1 let h4 € Aut H be the automorphism z — %j}g determined

by the matrix A = : g) € SL(2,R). The number Tr A := a + 6 is

called the trace of A. A direct verification shows

Theorem. For A € SL(2,R) \ {£E} the automorphism hy € AutH has
a fized point in H, precisely when |Tr A| < 2.

All automorphisms hy : H — H with h4 # id and |Tr A| > 2 are there-
fore fized-point-free in H. Among such automorphisms are, in particular,
all translations z +— z + 27, 7 € R\ {0}. To these translations correspond
the automorphisms

(1+ir)z —ir

—— 0
H’iTZ+(1—iT)’ T#

of E (proof!), which are, of course, fixed-point-free in E.

4. On the history of Schwarz’ lemma. In a work entitled “Zur Theo-
rie der Abbildung” (from the program of the Federal Polytechnical School
in Ziirich for the school-year 1869-70; vol. II, pp. 108-132 of his Gesam-
melte Mathematische Abhandlungen) Weierstrass’ favorite student H. A.
SCHWARZ stated a theorem, which for a long time attracted no attention,
and used it, together with a convergence argument, in a proof of the Rie-
mann mapping theorem. SCHWARZ formulated his proposition essentially
as follows (cf. pp. 109-111):

Let f : E — G be a biholomorphic mapping of the unit disc E onto
a region G in C with f(0) = 0 € G. Let p; denote the least and p, the
greatest values of the distance function |z|, z € G (cf. the figure below).
Then

1]z] < |f(2)| £ p2|2| forall z € E.

G

b~

SCHWARZ proved this by examining the real part of the function
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log[f(2)/2). His upper (respectively, lower) estimate can be gotten more
simply by an application of the maximum principle to f(z)/z (respectively,
to 2/£(2)).

In 1912 CARATHEODORY [Ca] recognized the importance for function
theory of the theorem SCHWARZ had used,*and suggested (p. 110) that a
particularly important variant of it be called Schwarz’ lemma. The ele-
gant proof offered in section 1, the one generally used nowadays, based on
the maximum principle, is to be found in the work of CARATHEODORY.
It occurred earlier in his note “Sur quelques applications du théoréme de
Landau-Picard,” C.R. Acad. Sci. Paris 144 (1907), 1203-1206 (Gesam-
melte Math. Schriften 3, 6-9). There in a footnote CARATHEODORY ac-
knowledges his indebtedness for the proof to Erhard ScHMIDT: “Je dois
cette démonstration si élégante d’un théoréme connu de M. Schwarz (Ges.
Abh. 2, p. 108) & une communication orale de M. E. Schmidt. (I owe such
an elegant proof of a known theorem of M. Schwarz to an oral communi-
cation from M. E. Schmidt).”

A beautiful application of Schwarz’ lemma which is not so well known is

5. Theorem of STUDY. Let f : E — G be biholomorphic and let G, =
f(Br(0)) denote the f-image of the open disc Br(0), 0 <r < 1. Then

a) If G is convez, so is every Gr, 0 <r < 1.
b) If G is star-shaped with center f(0), so is every G-, 0 <7 < 1.

Proof. We assume f(0) = 0 (otherwise, replace f(z) with f(z) — f(0)).

(a) Let p,q € Gr, p # ¢, be given. We must show that every point v =
(1 —¢t)p+1tq, 0 <t <1, on the line segment joining p and g also belongs to G-.
Let a,b € B,(0) be the f-preimages of p,q. We may suppose the notation such
that |a|] < |b|, and then b # 0. Then too zab™! € E for all z € E, and so the
function

g(2):i= (1 —t)f(zab™" )+ tf(z), z€ E

is well-defined. Because G is convex, g(z) lies in G for every z € E. Therefore a
holomorphic mapping h : E — E is well-defined by

h(z):= f'(g(z)), zeE.

Since f(0) = 0, we have g(0) = 0, hence h(0) = 0. From Schwarz’ lemma
therefore |h(z)| < |2| for all z € E| and in particular

£~ (g(0)] < [b]-

Since g(b) = (1 ~ t)f(a) + tf(b) = v and |b| < r, this says that f~*(v) € B.(0),
so v € f(Br(0)) = G-, as desired.
(b) Argue as in (a) but only allow p to be the point f(0). o
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Historical note: The theorem just presented is due to Eduard STUDY (German
mathematician, 1862-1930; Professor at Marburg, Greifswald and, after 1903,
at Bonn; author of important works on coordinate-free and projective geome-
try; with contributions to algebra and philosophy); it is a special case of a more
general theorem of his about the convexity of image sets under biholomorphic
mappings. Cf. pp. 110 ff. of E. STuDY: Konforme Abbildungung einfach-
zusammenhdngender Bereiche, Vorlesungen tber ausgewdhlte Gegenstinde der
Geometrie; 2. Heft, published in collaboration with W. BLASCHKE, Teubner
(1914), Berlin & Leipzig; see also in this connection G. POLYA and G. SZEGO,
vol. I, part 3, problems 317, 318 and vol. II, part 4, problem 163.

The “sehr elementarer Beweis dieses schonen Satzes (very elementary proof
of this beautiful theorem)” reproduced above was given in 1929 by T. RADO:
“Bemerkung iiber die konformen Abbildungen konvexer Gebiete,” Math. Annalen
102(1930), 428-429.

Exercises

Ezercise 1. Prove the following sharper version of Schwarz’ lemma: If
f : E — E is holomorphic with og(f) =n € N, n > 1, then

If(2)| < |z|* forallzeE and |f™(0)] <n!

Moreover, f(z) = az" for some a € JE if (and only if) either |f(™(0)| = n!
or |f(c)| = |c|™ for some c € E\ {0}.

Ezercise 2. (SCHWARZ-PICK lemma for E) For z,w € E set
z—w
A(w, z) = |IWTI|T
Let f : E — E be holomorphic. Prove that
a) For all w,z € E, A(f(w), f(2)) < A(w, 2).
b) The following assertions are equivalent:
i) f € AutE.

ii) For all w,z € E, A(f(w), f(2)) = A(w, 2).

iii) There exist two distinct points a, b € E such that A(f(a), f(b)) =
A(a, b).

Hint. For each w € E let g,, denote the involutory automorphism z +— Z=*2

of E and apply Schwarz’ lemma to the mapping Ay = gf(w) © f 0 guw of E
into E.

Ezercise 3. (SCHWARZ-PICK lemma for H) Set §(w, z) := |Z=Z| for z,w € H

zZ—w
and show that all the conclusions formulated in the preceding exercise, with
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6 in the role of A, are valid for holomorphic mappings f : H — H. Hint.
Use the Cayley transformation hg : H = E and apply the SCHWARZ-PICK
lemma for E to the composite g := hc 0 g o hg'.

Ezercise 4. a) Show that for every holomorphic mapping f:E — E

I (=)l 1

* <

*) - [P = 1= [P
and if equality holds here for a single z € E, then in fact equality holds for
all z and f € AutE.

b) Prove for holomorphic f : H — H assertions like those in a) with the
inequality

forallze E

Il o 1
Sf(2) < Sz

in the role of (*).

Ezercise 5. Let G be a subgroup of Aut E which contains AutgE. Show that
either G = AutoE or G = AutE. Hint. Let h,  denote the automorphism
z > eV Z=% of E. Whenever hy, y € G so does h, o for each a € R and
each a € C with |a| = |w|. Now consider hjy) 0 © hjw|,o € G for arbitrary

a€R.

Ezercise 6. Let f : E — H be holomorphic, with f(0) = 4. Show that

a) E{%S!f(z)lﬁi—tﬁl for all z € E;

b) |f'(0)] < 2.

Ezercise 7. Let f : E — E be holomorphic, with f(0) = 0. Let n € N,
n>1, ¢ := e?™/™ Show that

(%) |£(C2) + F(C22) + -+ + F(C"2)| < ml2|” for all z € E.

Moreover, if there is at least one ¢ € E \ {0} such that equality prevails
in (%) at z = ¢, then there exists an a € JE such that f(z) = az™ for all
z € E. Hint. Consider the function h(z) := ;2=r 37, f(¢?2). For the
proof of the implication f({z) +--- + f(¢"2) = naz" = f(z) = az", verify
that the function k(z) := f(z) — az™ satisfies

k(z)+ - +k(C"2) =0 and |az"|? + 2R(az"k({72)) + [k(¢F2)]? < 1

for every j € {0,1,...,n— 1}, and consequently |k(z)|2 < n(1 — |z|?").
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§3 Holomorphic logarithms and
holomorphic roots

In 5.4.1 holomorphic logarithm functions £(z) were introduced via the re-
quirements that they satisfy exp(€(z)) = z. In 7.1.2 we saw that in the slit
plane C™ the principal branch log z of the logarithm possesses the integral
representation f[l,z] %4.

If f is any holomorphic function in a domain D, then any holomorphic
function g in D which satisfies

exp(g(2)) = f(2)

will be called a (holomorphic) logarithm of f in D. Of course for f to possess
a logarithm in D it must be zero-free in D. In the following we will prove
existence assertions about holomorphic logarithms, using contour integrals.
To be able to formulate things conveniently, we work in subsection 2 with
homologically simply-connected domains.

From the existence of holomorphic logarithms follows at once the exis-
tence of holomorphic roots — cf. subsection 3; a converse of the theorem on
roots will be found in subsection 5. In subsection 4 among other things we
willhderive the integer-valuedness of all integrals 27” f,y iG] dC over closed
paths ~.

1. Logarithmic derivative. Existence lemma. If g is a logarithm of
f in D, which means that f = e9, then
1) g=r/f

Generally, for any zero-free holomorphic function f in D, the quotient f'/f
is called the logarithmic derivative of f. (This terminology is suggested by
the dangerous notation g = log f, which one is inclined to use when a log-
arithm of f exists, even though it obscures the non-uniqueness issue.) For
the logarithmic derivative the product rule (f1f2) = fif2 + f1f5 becomes
a

Sum formula:

(frf2)'/fif2 = fi/f1 + f2/ fa-

Existence lemma. The following assertions about a zero-free holomorphic
function in a domain D are equivalent:

i) There exists a holomorphic logarithm of f in D.

ii) The logarithmic derivative f'/f is integrable in D.
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Proof. i) = ii) Any holomorphic logarithm of f is, according to (1), a
primitive of f'/f.

ii) = i) We may assume that D is a region. Let F € O(D) be a primitive
of f'/f in D. Then h := f -exp(—F) satisfies k' = 0 throughout D, and so
for some constant a, necessarily non-zero since f is, we have f = aexp(F).
Being non-zero, a has the form a = e for some b € C. Then the function
g := F + b satisfies expg = f. o

2. Homologically simply-connected domains. Existence of holo-
morphic logarithm functions. A domain D in C in which every holo-
morphic function g € O(D) is integrable is called homologically simply-
connected.! According to the integrability criterion 6.3.2 this property is
enjoyed by a domain D exactly when:

/g(()d{ =0 for all g € O(D) and all closed paths v in D.
y

On the basis of the Cauchy integral theorem 7.1.2 all star-shaped regions
in C are homologically simply-connected. There are however many other
kinds of examples.

As an important immediate consequence of the existence lemma we ob-
tain

Existence theorem for holomorphic logarithms. In a homologically
simply-connected domain every zero-free holomorphic function has a holo-
morphic logarithm.

Thus in a star-shaped region G, like C or the slit plane C™, every zero-
free holomorphic function f has the form f = €9, g € O(G). Here the
functions g can even be written down explicitly: Fix ¢ € G, choose any b
with e’ = f(c) and for each z € G let vy, be any path in G from c to z.
Then one such g is

(2) g(z) == / j;((é)) d¢ +b.
It follows in particular that
) 1) = flerem [ e

1This concept, which describes a function-theoretic property of domains, is conve-
nient and useful in many considerations. But in reality it is a superfluous concept:
Because sufficiently detailed knowledge of plane topology would reveal that the homo-
logically simply-connected domains in C are precisely the topologically simply-connected
ones. This equivalence of a function-theoretic and a topological condition is however not
particularly relevant in what follows and we won’t go into it any further until the second
volume.
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These are the natural generalizations of the equations
d
logz = / %« and z = exp(log 2)
s §
(where f(z) := 2).

3. Holomorphic root functions. Let n > 1 be an integer, D a domain
in C. A function ¢ € O(D) is called a (holomorphic)nth root of f € O(D)
if ¢" = f throughout D.

If D is a region and q is an nth root of f # 0, then, for ¢ := exp(2mi/n),
the functions q,(q,(%q,...,(" 'q are all of the nth roots of f.

Proof. Since f # 0, there is an open disc B C D in which f, hence also g,
is zero-free; so 1/q € O(B). If now § € O(D) is any nth root of f, then
(§/¢)™ = 1 in B. That is, in B the continuous function §/q takes values
in {1,¢,...,¢{""'}. By virtue of the connectedness of B, §/q is therefore
constant in B: § = (¥q in B for some 0 < k < n. From the identity
theorem it follows that § = ¢*q throughout D. m|

Theorem on roots. If g € O(D) is a logarithm of f in D, then for each
n=1,2,3,... the function exp(Lg) is an nth root of f.

Proof. This is immediate from the addition theorem for the exponential,

which shows that
1 n
[exp (Eg>] =expg=f. a

From the existence theorem 1 there now follows immediately an

Existence theorem for holomorphic roots . If D is homologically
simply-connected and f € O(D) is zero-free, then for every n > 1, f has
an nth root.

This is not true of an arbitrary domain: The reader should show that the
function f(z) := z has no square-root in the annulus {z € C: 1 < |2] < 2}.

!
4. The equation f(z) = f(c) exp f~1 ‘.1; g d¢. In homologically simply-

connected domains f,{ %CC—))dC is path-independent. For general domains
this integral itself is not path-independent but its exponential is.

Theorem. Let D be an arbitrary domain, and let f be holomorphic and
zero-free in D. For any path v in D with initial point ¢ and terminal point
2, we have
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f(2) = £(©) exp / MOPY

Proof. Let [a,b] be the parameter interval of v and choose finitely many
points @ =: tp < t; < -+- < t, := b and discs Uy,...,U, in D in such
a way that the path 4, := «4|[t,—1,t,] has its trajectory wholly in U,

(v =1,2,...,n). Compactness of v clearly ensures that this can be done.
Then (cf. 1.(3))
Q) f(v(t))
d¢ = ) 1<v<n
= | 5% = Tt 2y vEn

Since v =1 + 72 + - - - + ¥n, it follows (addition theorem) that

FQ o [ £Q,_ F60) _ £
= [ g% = Hew | 7%= 7060 = 7@

Corollary. Let f be holomorphic and zero-free in the domain D, and let
v be an arbitrary closed path in D. Then

f() .
[y 70 d¢ € 2miZ.

Proof. Here ¢ = z, so the theorem shows that exp f7 %(g)ldg = 1. Since
ker(exp) = 2miZ, the stated result follows. a

This corollary will be used in 5.1 to show that the index function is
integer-valued. In 13.3.2 the integral f7 %d( will be used to count the
number of zeros and poles of f.

5. The power of square-roots. With the help of corollary 4 a converse
to the theorem on roots in subsection 3 can be proved:

(1) Let M be an infinite subset of N, f € O(D) a function which is
nowhere locally identically 0. If for each m € M, f has a holomorphic mth
root function in D, then f has a holomorphic logarithm in D.

Proof. First we note that f must be zero-free in D. If namely, ¢,, € O(D)
is an mth root of f, then o0,(f) = mo.(qm) at each 2 € D. From which
follows o,(f) = 0, for all z € D, since otherwise the right side would be
arbitrarily large, whereas the hypothesis says that f has no zero of order
00.

According to the existence lemma 1 it therefore suffices to show that
f'/f is integrable in D, i.e., that f,y(f’/f)d( = 0 for every closed path ~
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in D (recall the integrability criterion 6.3.2). Now from ¢ = f follows
mg™ g/, = f’ and so

PO el
Lf(C)dC‘m[qm(c)dC’ me M.

According to corollary 4 both these integrals lie in 2miZ. The right side
must therefore vanish for some m as m runs through M, for otherwise
its modulus is at least 27wm, i.e., it is arbitrarily large. It follows that
J,(f'/£)d¢ = 0, as desired. ]

We may immediately obtain

Theorem. Suppose that every zero-free holomorphic function in the do-
main D has a holomorphic square-root in D. Then every zero-free function
in O(D) also has a holomorphic logarithm and holomorphic nth roots in
D, for every n € N.

Proof. Choose M := {2 : k € N} in (1). m)

Remark. The power of (iterated) square-root extraction was impressively
demonstrated by the technique which A. HURWITZ suggested in 1911 for
introducing the real logarithm function into elementary analysis; cf. “Uber
die Einfiihrung der elementaren Funktionen in der algebraischen Analysis,”
Math. Annalen 70(1911), 33-47 [Werke 1, 706-721].

Exercises

Ezercise 1. Determine all pairs of entire functions f;, fo which satisfy
f+f=1

Ezercise 2. Let D be an open neighborhood of 0, f : D — C a holomor-
phic function with f(0) = 0. Show that for any m € N there is an open
neighborhood U C D of 0 and a holomorphic function g : U — C satisfying
g(z)™ = f(z™) forall ze U.

Ezercise 3. Let D1, Dy be homologically simply-connected domains. Show
that if D; N Dy is connected, then D; U Ds is also homologically simply-
connected.

Ezercise 4. Let D be a domain in C, a € D, f : D — C holomorphic with
0q(f) € N. Prove the equivalence of the following statements:

i} There is a neighborhood U of a in D and a holomorphic square-root
for f|U.
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ii) 0.(f) is an even integer.

§4 Biholomorphic mappings. Local normal
forms

The real function R — R, x — z2 is infinitely differentiable and has a

continuous inverse function R — R, y — &%, but this inverse function is
not differentiable at 0. This phenomenon does not occur in C : holomorphic
injections are necessarily biholomorphic (subsection 1). As with functions
on the line, functions f in the plane having f'(c) # 0 are injective in a
neighborhood of ¢. We will give two proofs of this (subsection 2): one via
integral calculus (which is also valid for functions on R) and one via power
series. Taken together this means that a holomorphic mapping f is locally
biholomorphic around every point ¢ where f’(c) # 0. It is further deducible
from this that in the small (i.e., locally) each non-constant holomorphic
function f has a unique normal form

f(2) = f(c) + h(2)"

provided f'(c) # 0 (subsection 3). Mapping-theoretically this means that
near ¢, f is a covering map which branches nowhere except possibly at ¢
(subsection 4).

1. Biholomorphy criterion. Let f : D — C be a holomorphic injection.
Then D' := f(D) is a domain in C and f'(2) # 0 for all z € D.

The mapping f : D — D’ is biholomorphic and the inverse function f~!
satisfies

(F V() =1/f(f(w))  forallwe D'

Proof. a) Since f is nowhere locally constant, the open mapping theorem
affirms that f is open, so D’ is a domain; but it follows too that the inverse
map f~!: D' — D is continuous, because for every open subset U of D,
its f~!-preimage (f~!)"!(U), being f(U), is open in D'.

Because f is injective the derivative cannot vanish identically in any disc
lying in D, so according to the identity theorem its zero-set N (f’) is discrete
and closed in D. Since f is an open mapping , the image M := f(N(f'))
is discrete and closed in D’.

b) Consider d € D'\ M and set ¢ := f~1(d). We have f(z) = f(c)+ (2 —
¢)fi(z), where fi : D — C is continuous at ¢ and fi(c) = f'(c) # 0. For
z = f~Y(w), w € D', it follows that w = d + (f ~}(w) — ¢) fi(f~}(w)). The
function q := f; o f~! is continuous at d and q(d) = f’(c) # 0. Therefore
we can transform the last equation into
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fHw) = f7Hd) + (w — d)1/q(w) for all w € D' near d.

From which we infer that f~! is complex-differentiable at d and that

(F @) =1/f'(0)=1/f(f7'(d)  forallde D'\ M.

c) By now we know that f~! is holomorphic in D’ \ M and continuous
throughout D’. It follows from Riemann’s continuation theorem 7.3.4 that
f~! € O(D'). The equation (f~1)'(w) - f/(f~*(w)) = 1, which holds in
D'\ M by b) therefore remains valid throughout D’ by continuity. In
particular, f/'(z) # 0 for all z € D. O

In the proof just given the open mapping theorem, the identity theorem
and Riemann’s continuation theorem were all used; in this sense the proof
is “expensive.” But part b) of the proof (a variant of the chain rule) is
completely elementary.

2. Local injectivity and locally biholomorphic mappings. In order
to be able to apply the biholomorphy criterion one needs conditions which
insure the injectivity of holomorphic mappings. Analogous to the situation
in R we have the

Injectivity lemma. Let f : D — C be holomorphic, ¢ € D a point at
which f'(c) # 0. Then there is a neighborhood U of ¢ with the property that
the restriction f|U : U — C is injective.

First proof. We will use the fact that derivatives are uniformly approx-
imable by difference quotients; more precisely (cf. lemma 5.3):

Approximation lemma. If B is a disc centered at ¢ and lying in D, and
f ts holomorphic in D, then

f(’UJ) - f(Z) _ f’(C)

<I|f'=f(o)ls forallw,z€ B, w# z.
w—z

(+)

For the proof of this, note that f(¢)— f'(c)( is a primitive of f'(¢)— f'(c)
in D, and so

fw) - 1) - Qw2 = [ (PO - £ forallw,ze B,

the integration being along the segment [z, w] C B. The standard estimate
for integrals gives
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J @ - rena| <1 - f@lslu -4
and therewith the inequality (). O

The proof of local injectivity is now trivial: If namely f'(c) # 0, then
continuity of f’ means that for appropriate r > 0, B := B,.(c) lies in D and

If' = f(als <|f ().

Then for w,z € B with w # z we necessarily have f(w) # f(c), since
otherwise (*) furnishes the contradiction |f'(c)| < |f'(c)|. Consequently
fIB : B — C is injective. ]

Second proof. This one uses the following

Injectivity lemma for power series. Suppose that f(z) =3 a,(2—¢)”
converges in B := B,(c), r > 0 and that |a1| > 3 5o vau|r’” 1. Then
f:+ B — C is injective.

This is verified by calculating. Consider w,z € B with f(z) = f(w).
Thus for p:=w —c and ¢ := z — ¢ we have 0 = ) a,(p¥ — ¢"). Since

pP—¢ =(w-2)p"  +p" g+ + ¢,

it follows, in case w # z, that —a; = Y s,a, ("' + -+ ¢*7!) and
this entails, bearing in mind that |p| < r and |q| < r, the contradiction
la1] < 3,5, lau|yr”~!. Therefore whenever f(z) = f(w) with z,w € B, it
must be true that z = w. o

The proof of local injectivity is once again trivial: we consider the Taylor
series } a,(2—c)” of f around c. Since a; = f'(c) #0and }_ 5, vla,|tr~!
is continuous near ¢ = 0, there is an 7 > 0 with > -, v|a, |r"~ T < |ay| and
consequently f|B,(c) is injective. a

A holomorphic mapping f : D — C is called locally biholomorphic around
¢ € D if there is an open neighborhood U of ¢ in D such that the restric-
tion f|U : U — f(U) is biholomorphic. The biholomorphy criterion and
the injectivity lemma imply the

Local biholomorphy criterion. A holomorphic mapping f : D — C is
locally biholomorphic around ¢ € D ezactly when f'(c) # 0.
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Proof. In case f'(c) # 0, the injectivity lemma furnishes an open neigh-
borhood U of ¢ in D such that f|U : U — C is injective. According to
the biholomorphy criterion, f|U : U — f(U) is then biholomorphic. The
converse follows trivially.

Ezample. Each function f, : C* — C, 2 — 2", n = £1,42,... is every-
where locally biholomorphic but only when n = %1 is it biholomorphic.

3. The local normal form. Suppose f € O(D) is not constant in any
neighborhood of the point ¢ € D. Then we have:

1) Ezistence assertion: There is a disc B C D centered at ¢ and a
biholomorphic mapping h : B — h(B) satisfying

(%) fIB=f(c)+h",
with n := v(f, c), the multiplicity of f at c.

2) Uniqueness assertion: If B C D is a disc centered at ¢ and h is
holomorphic in B, h'(c) # 0 and for some m € N

f1B = f(o) +E™,

then m = n, and there is an nth root of unity £ such that h=¢hin
BN B, where h and B are as in 1).

Proof. ad 1) According to 8.1.4 an equation f(z) = f(c) + (z — ¢)"g(2)
holds, in which 1 < n := v(f,¢) < oo and g is holomorphic in D with
g(c) # 0. We choose a neighborhood B of ¢ in D so small that g is zero-
free therein. The existence theorem 3.3 for holomorphic roots supplies a
g € O(B) such that ¢" = g|B. Set h := (z — ¢)g € O(B). Then (*) holds
and A’'(c) = g(c) # 0, since ¢"(c) = g(c) # 0. Therefore the biholomorphy
criterion insures that B can be shrunk a little if necessary so as to have
h : B — h(B) biholomorphic.

ad 2) In BNB, k™ = h™, with h(c) = h(c) = 0. Since moreover h/(c) # 0
and h/(c) # 0, the order of the zero that each of h, h has at c is 1. Therefore
n = 0c(h™) = 0.(h™) = m. Consequently k™ = h" prevails in BN B. That
is, h and h are both nth roots of A™. _As the latter is not identically the
zero function, it follows from 3.3 that h = £h in BN B, for some constant
& with £€" = 1. O

The representation of f|B in (x) is called the local normal form of f near
c. The reader should compare the results of this subsection with those of
4.4.3.
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4. Geometric interpretation of the local normal form. The geomet-
ric significance of the multiplicity v(f, c) becomes clear from the following
mapping-theoretic interpretation of the existence assertion 3.1:

Theorem. Let f € O(D) be non-constant near ¢ € D. Then there is
a neighborhood U of ¢ in D, a biholomorphic mapping u : U = E with
u(c) = 0 and a linear mapping v : E — V onto a disc V with f(U) =V
and v(0) = f(c), such that the induced map f|\U : U — V factors as follows:

ULE" S ESV with n := v(f,c).
Proof. Write d := f(c). According to theorem 3 there is a disc B about ¢
lying in D and a biholomorphic mapping h : B = h(B) such that f|B =
d + h™. Since h(c) = 0, there is an r > 0 such that B,.(0) C h(B). We set

U:=h Y (B.(0), u(z) :=r"1h(2), p(z) := 2" , v(2) := r"2 + d.

Then v : U — E is biholomorphic, with u(¢) = 0, p : E — E is holomorphic,
and f|U = vopou. Because V := v(E) is a disc centered at v(0) = d, the
theorem is proved. O

Non-constant holomorphic mappings thus behave locally as does the map-
ping E — E, z — 2" near 0. Note that the neighborhood U of ¢ can be
chosen “arbitrarily small” and, thanks to the theorem, in each such U there
are n distinct points which f maps to a common value different from f(c).
It is then natural to declare that the value of f at c is also realized n-fold.

Setting U* := U \ c and V* := V' \ f(c), the mapping f|U* : U* - V*
has, in view of the theorem, the following properties: every point in V* has
an open neighborhood W C V* whose preimage (f|U*)~*(W) consists of
n open connected components Uy, ..., U, on which each induced mapping
fIU, : U, — W is biholomorphic (1 < v < n). This state of affairs is
expressed in topology as follows:

The mapping flU* : U* — V* is a (unlimited, unbranched) holomorphic
covering of V* by U* having n sheets.

Intuitively these n sheets “branch out” from the point c. In the case
n > 2 (that is, when f is not locally biholomorphic in a neighborhood of
¢), ¢ is a branch point and flU : U — V is a branched (at c) holomorphic
covering. Thus locally everything is just exactly as it is for the mapping
z — 2" of E onto E: the point 0 is a branch point and the covering z + 2"
of E\ {0} onto E\ {0} is unlimited and unbranched.

5. Compositional factorization of holomorphic functions. If g :
G — G’ is a holomorphic mapping then, by virtue of the chain rule, for
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every holomorphic function h in G’ the composite h(g(z)) is holomorphic
in G. Thus a mapping

9" :0(C) = OG) , hhog

is defined which “lifts” holomorphic functions in G’ to holomorphic func-
tions in G. It is the work of an instant to verify that

g* : O(G") — O(G) is a C-algebra homomorphism and is injective if and
only if g is not constant.

Every lifted function f = g*(h) is constant on the fibers of g. This
necessary condition for f to lie in the image set of g* is also sufficient in
certain important cases.

Factorization theorem. Let g : G — G’ be a holomorphic mapping
of a region G onto a region G'. Let f be a holomorphic function on G
which is constant on each g-fiber g~ (w), w € G’. Then there is a (unique)
holomorphic function h in G’ such that g*(h) = f, i.e., h(g(2)) = f(2) for
all z € G.

Proof. For each w € G, g~}(w) is non-empty and f(g~'(w)) is a single
point. Denoting this point by A(w), a function A : G’ — G is well defined
and it satisfies f = h o g. We have to show that h € O(G’).

Being non-constant, g is an open mapping (cf. 8.5.1). Consequently
A=Y (V) = g(f~1(V)) is open in G’ for every open V C C, proving that h
is continuous in G’.

The zero-set N(g’) of the derivative of g is discrete and closed in G. The
fact that g is an open mapping then entails that the set

M:={beG :g7'(b)C N(¢')}

is discrete and closed in G’. (The reader should check the simple topologi-
cal argument confirming this.) Therefore to prove h is holomorphic in G,
it suffices, by Riemann’s continuation theorem 7.3.4, to prove h is holomor-
phic in G’ \ M. Every point v € G’ \ M has at least one g-preimage c € G
at which g’(c) # 0. According to the local biholomorphy criterion 2, g is
therefore locally biholomorphic near ¢, so there is an open neighborhood V'
of v in G’ and a holomorphic function g : V — G such that go g = id on
V. It follows that h|V = hogog = fog, that is, h € O(V). This shows
that A is holomorphic in G’ \ M and, as noted earlier, completes the proof
of the theorem.
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Exercises

Ezercise 1. Let g : D — C, h: D' — C be continuous, with g(D) C D'.
Suppose h and hog are holomorphic and h is nowhere locally constant in D.
Without using exercise 4 of chapter 1, §3, show that g is also holomorphic.

sin z

Exzercise 2. The tangent function tanz = 2*£ is holomorphic in the disc
of radius § centered at 0. Show that it is locally biholomorphic in this disc
and write down the power series of the inverse function at 0.

Fzercise 3. Show by means of an example that the condition |ai| >
3> Vlay|r? ! featuring in the injectivity lemma for power series is not
negessary for the injectivity of f(z) := > oo, a,2”.

Ezercise 4. For regions G, G in C let h : G — G be holomorphic and
denote by O'(G) the C-vector space {f' : f € O(G)}. Show that:

a) The C-algebra homomorphism f — foh of O(G) into O(G) generally
does not map the subspace O’(G) into the subspace O'(G).

b) But the C-vector space homomorphism ¢ : O(G) — O(G) given by

f— (foh)-h does map O'(G) into O'(G).

¢) If h is biholomorphic and surjective, then ¢ is an isomorphism and

maps O'(G) bijectively onto O’(G).

§5 General Cauchy theory

The integral theorem and the integral formula were proved in 7.1 and 7.2
only for star-shaped and circular regions, respectively. That’s adequate
for deriving many important results of function theory. But mathematical
curiosity impels us to find the limits of validity of these two key results.
Two questions suggest themselves:

For a domain D given in advance, how can we describe the closed paths
~ in D for which the Cauchy theorems are valid?

For what kind of domains D are the integral theorem and/or the integral
formula valid for all closed paths in D?

In this section both questions will be treated. The first is satisfactorily
answered by the so-called principal theorem of the Cauchy theory (subsec-
tions 3 and 4): the necessary and sufficient condition is that the inside of
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v lies in D. Our answer to the second question is only a formal one: the
theorem saying that such D are just the (homotopically) simply-connected
domains must await the second volume for its full elucidation.

We remind the reader of the agreement made at the end of 6.1.1:
All paths to be considered are piecewise continuously differentiable.

1. The index function ind.(2). If v is a closed path in C and z a point
in C not lying on ~y, we are looking for a measure of how often the path
winds around the point z. We will show that

1 da¢
ind =— [ ——€C
ind,(2) 27 ‘[y (—z
is an integer and that it measures this “winding” very well. We already
know, from theorem 6.2.4, that for every disc B

indgp(2) = 1 for z€B
oB1%)=1 0 for zeC\B,

which corresponds to the following intuitive state of affairs: all points on
the “inside of a circle” are wound around exactly once in the course of a
(counterclockwise) traversal of the circle, while no point on the “outside of
a circle” is wound around at all during such a circuit.

The number ind,(z) defined by (1) will be called the indez (or also the
winding number) of v with respect to z € C\ 7. Exercise 2 below explains
the latter terminology. The considerations of this section are based on
corollary 3.4.

Properties of the index function. Let v be a given, fized closed path in
C. Then the following hold:

1) For every z € C\ v, ind,(2) € Z.
2) The function indy(2), z € C\ v, is locally constant in C\ v.

3) For any closed path v* in C having the same initial point as v
ind,4++(2) = ind(2) +ind,-(2) , ze€C\ (yUy™);
in particular, we have for every z € C\ v the rule

ind_,(z) = —ind, ().
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Proof. The first claim follows from corollary 3.4, applied to f(¢) :=¢ — 2.
The second claim follows from the integer-valuedness and the continuity
(proof!) of the index function in C\ . The claims in 3) are trivial to
verify. O

If v is a closed path in C, the sets Int v := {z € C\ v : ind,(2) # 0}
and Exty := {z € C\ 7 : ind,(2) = 0} are called the inside (interior) and
the outside (exterior) of vy, respectively. Because of the different meanings
the parenthetic terms have in topology we will not use them in the present
context.

We have

*) C=IntyU~yUExt4~,

a (disjoint) decomposition of C. Since v is locally constant it follows that

The sets Inty and Ext~y are open in C and their topological boundaries
satisfy: OInty C v, OExty C .

For every open disc B, IntdB = B, ExtdB = C \ B and 8ExtdB =
OInt 8B = OB. Analogous equalities hold for triangles, rectangles, etc. We
show more generally that

The set Int v is bounded; the set Ext-~y is never empty and always un-
bounded; more precisely,

Inty C Br(¢) and C\ B,(c) C Exty

whenever v C B,(c).

Proof. The set V := C \ B.(c) is non-empty, connected and disjoint
from the trace of v, so the index function for v is constant in V. Since
lim,_, f,{ C—d_% = 0, it follows that this constant value is 0, that is, V C
Ext~. The inclusion Inty C B,(c) now follows from (x). O

For constant paths the inside is empty.

2. The principal theorem of the Cauchy theory. The following
assertions about a closed path ~ in a domain D are equivalent:

i) For all f € O(D) the integral theorem is valid, that is,

L £(Q)d¢ =o.
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if) For all f € O(D) the integral formula

f(z)

(1) ind, (2)£(2) = “ac, zeD\y

1is valid.

27i
iii) The inside Int v of v lies wholly in D.

The equivalence of i) and ii) is quickly seen: i) => ii) Introduce, as
was done in 7.2.2, for fixed z € D the holomorphic difference quotient

g9(¢) == [f(Q) - z)](C —2)71, ¢ € D\ {z}, whose value at z is defined to
be g(2) := f'(z). By i), f,y g(¢)d¢ = 0 and this yields

d
27rz g(f)z _27rz/C( =ind,(2)f(z)  ifz€D\v.

ii) = i) Apply the integral formula, for any fixed 2 € D \ v whatsoever, to
the function h(¢) := (¢ — 2)f(¢) € O(D). Since h(z) = 0, it follows that

J, f(¢)d¢ =o.

Also the proof of i) = iii) is very easy: Since (( —w)™! € O(D) as a
function of ¢ for each point w € C\ D, it follows that

1 ¢

il’ld-y('U)) = % C _w
~

=0 for all w € C\ D,
that is, Int v C D.

But the implication iii) = ii) is not so simple to verify. Here lies the real
“burden of proof”. For a long time people had been searching for a simple
argument that the inclusion Inty C D has as a consequence the validity of
Cauchy’s integral formula for . In 1971 J. D. DIXON in the paper “A brief
proof of Cauchy’s integral theorem,” Proc. Amer. Math. Soc. 29(1971),
625-626 gave a surprisingly simple such proof, which illustrates once again
the power of Liouville’s theorem. Dixon writes: “[We] present a very short
and transparent proof of Cauchy’s theorem. ... The proof is based on
simple ‘local properties’ of analytic functions that can be derived from
Cauchy’s theorem for analytic functions on a disc. ... We ... emphasize
the elementary nature of the proof.” It is this proof which we now give.

3. Proof of iii) = ii) after DIXON. Let f € O(D) and consider the
difference quotients

(1) g(w,z) := M ,w# 2z g(z,2) = f'(2) ,w,z € D.

w —
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Because of the (definitional) equation ind,(z) = 7 f7 C—‘f_%, the integral
formula 2.(1) is equivalent to the formula

(2) /Q(C,Z)dC=0, ZED\’)’.

Lemma. The difference quotient g formed from any fired f € O(D) is
continuous on D x D. The integrated function h(z) := f7 9(¢,2)d¢, z € D,
s holomorphic in D.

Proof. (1) shows that for each fixed w € D, 2z — g(w, z) is holomorphic in
D. Therefore only the continuity of g in D x D needs to be proved and
theorem 8.2.2 does the rest. This continuity is immediate and trivial, from
the quotient recipe in (1), at each point (a,b) € D x D with a # b. So
consider a point (¢,c) € D x D. Let B be an open disc centered at ¢ and
lying wholly in D, 3" a,(z — ¢)” the Taylor series of f in B. One checks
easily that for all w,2 € B

g(w, z) = gle,¢) + Za,,q,,(w, z), where
v>2

v

g (w, 2) := Z(w —c)*I(z—c)y L.

Jj=1
Since |g, (w, 2)| < vt*~! whenever |[w—c| < t and |z —¢| < t, it follows that

for sufficiently small ¢

lg(w, z) — g(c, )| < t(2]az] + 3las|t + -+ + nlant" "2 + - )

whenever w, z € By(c) C B. Since the power series on the right side of this
inequality is continuous at ¢ = 0, we see that lim,, ,)_.(c,c) 9(w, 2) = g(c, ¢).

O
Equation (2) will now be proved from Liouville’s theorem by demonstrat-
ing that the function A € O(D) admits an extension to an entire function

h € O(C) which satisfies lim,_,o, 2(z) = 0. In the outside Ext~y of v we
consider the function (so-called Cauchy-transform)

h*(z) = / g%d( , z € Ext .

According to 8.2.2, h* € O(Ext~) and lim,_,o, h*(z) = 0. Since (by defi-
nition of Ext ) f,y C_d—% = 0 for z € Ext~, it follows that

h(z) = h*(2) for all z € DN Ext~.
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Now the hypothesis Int v C D and the identity C = Int v U v U Ext~ have
as a consequence the identity C = D U Ext~. Consequently the decree

= .| h(z) for 2z2€eD
h(z) = { h*(2) for zé€ Exty

well defines an entire function h which is an extension of h. Since the
inclusion Int 4 C B, (0) prevails for all sufficiently large r > 0, h and h*
coincide outside B, (0), for such r, and so like h*, the function h satisfies
lim . h(2) = 0. -

Remark. In the second volume we will give a quite short proof of the
implication iii) = i) using Runge’s approximation theorem and the residue
calculus.

4. Nullhomology. Characterization of homologically simply-con-
nected domains. Closed paths in D enjoying the equivalent properties
i), ii) and iii) of theorem 2, play a key role in function theory. They are
said to be nullhomologous in D. This terminology comes from algebraic
topology and signifies that the path “bounds a piece of area inside D”. In
C* the circular paths v := 8B,.(0), r > 0, are not nullhomologous, because

f,y F(¢)d¢ # 0 for f(z) :=1/z € O(C*).

The Cauchy function theory of a domain D is simplest when every closed
path in D is nullhomologous in D. Theorem 2 and the results of §3 combine
to give the following characterization of such domains.

Theorem. The following assertions about a domain D are equivalent:

i) D is homologically simply-connected.

ii) Every holomorphic function in D is integrable in D.

iii) For every f € O(D) and every closed path v in D

ind, (2)f(z) = %/ Cf(_ozdc, z€ D\l

iv) The inside Int y of each closed path v in D lies wholly in D.
v) Every unit in O(D) has a holomorphic logarithm in D.

vi) Every unit in O(D) has a holomorphic square-root in D.

Proof. The assertions i) through iv) are equivalent by theorem 2 and the-
orem 3.2. The equivalence of v) and vi) follows from the theorem on roots
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3.3 and theorem 3.5. One gets the implication ii) = v) from the existence
lemma 3.1.

For the proof of v) = iv), consider a € C\ D and a closed path « in
D. The unit f(z) := z —a € O(D) has a holomorphic logarithm in D.
Consequently, f'(2)/f(z) = 1/(z — a) is integrable in D (existence lemma
3.1). It follows that ind,(a) = 0, and this for every a € C\ D. And that
says that the inside of «y lies in D. D

In the second volume we will see, among other things, that D is ho-
mologically simply-connected just when D has no “holes”, and that every
homologically simply-connected proper subset of C is biholomorphic with
E (the Riemann mapping theorem).

Exercises

Exzercise 1. Show with appropriate examples that in general neither Int ~y
nor Ext v need be connected.

Ezercise 2. Let a,b € R, a < b, w : [a,b] - R and 7 : [a,b] — R be
continuously differentiable functions. Set v := re?™, Show that

2—71?-/‘1(—4: 2—}T—ilog%+w<b)—w(a)

and use this observation to give a geometric interpretation of the index
function.

Ezercise 3. a) Let v be a closed path in C\ {0}, n € N and g(2) := 2™.
Show that indgo,(0) = n - ind, (0).

b) Let D be a domain in C, f : D — f(D) a biholomorphic map, ¢ € D,
7 a closed path in D\ {c} such that Int v C D. Show that ind,(c) =
indfoy (f(c)). Hint. For b): The function

, Zz=c¢

1
h(z) := { £(2) - ___f(zz)’ = 3‘(0—) , ze D\ {c}

is holomorphic in D.
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§6* Asymptotic power series developments

In this section G will always denote a region which contains 0 as a boundary
point. We will show that certain holomorphic functions in G, even though
in general not even defined at 0 € G, can nevertheless be “developed into
power series” at 0. A special role is played by circular sectors at 0. These
are regions of the form

S=8(ra,p):={z=|2e¥:0<|z|<T,a<p<B},0<r< oo

Circular sectors of radius oo are also called angular sectors. Our principal
result is a theorem of RITT about the asymptotic behavior of holomorphic
functions at the apex 0 of such circular sectors (subsection 4). This theorem
of RITT contains as a special case (subsection 5) the theorem of E. BOREL
stated in 7.4.1. For the proof of Ritt’s theorem the Weierstrass convergence
theorem is the primary tool; for the derivation of Borel’s theorem we will
need in addition to that the Cauchy estimates for derivatives (cf. subsection
3).

As follow-up literature for the themes of this section we mention W.
Wasow, Asymptotic Exzpansions for Ordinary Differential Equations, In-
terscience Publishers, New York (1965), esp. chapter III, (reprinted by R.
E. Krieger, Huntington, New York, 1976).

As in Chapter 4.4 we use A to designate the C-algebra of formal power
series centered at 0.

1. Definition and elementary properties. A formal power series
Y- a,z¥ is called an asymptotic development or representation of f € O(G)
at 0 € 0G if

(1) lim 27" [f(z) - Za,,z”} =0 for every n € N.

2—0
0

A function f € O(G) has at most one asymptotic development at 0,
since from (1) we get at once the recursion formulas

n-—1
a0=zli_1'r(1)f(z) ,anzli_r)%z'" l:f(z)—z:auz”] for n > 0.
0

We will write f ~¢ 3 a,2z” when the series is the asymptotic develop-
ment of f at 0. Condition (1) for this to happen can be rephrased as

For each n € N there exists f, € O(G), such that
I n
(1) f(2) => a,z" + fn(2)2"  and lirr%J fa(z) =0.
0 z=
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The existence of asymptotic developments depends essentially on the
region G. Thus, e.g., the function exp(1/z) € O(C*) has no asymptotic
development at 0; but by contrast in every angular sector W := S(oo, %7r+
7,37 —1n), 0 <n < }m, lying in the left half-plane (with aperture less than
7) we have

(%) exp(1/z) ~w Z a, 2", in which all a, = 0.

The reader should confirm all this, and also show that (x) is false if n =0
is allowed in the definition of W.

If f € O(G) has a holomorphic extension f in a region G ¢ G with
0 € G, then the Taylor development of f in a neighborhood of 0 is the
asymptotic development of f at 0. By means of the Riemann continuation
theorem and the equality ag = lim,_,o (%) it follows immediately that:

If 0 is an isolated boundary point of G, then f € O(G) has an asymptotic
development Y a, 2z at 0 if and only if f is bounded near 0; in that case,
> a,z" is the Taylor series of f around 0.

We will denote by B the set of functions in O(G) which possess asymp-
totic developments at 0.

Theorem. B is a C-subalgebra of O(G) and the mapping
B A, [ Ya

where f ~g Y. a,2", is a C-algebra homomorphism.

The proof is canonical. To see, e.g., that ¢(fg) = ¢©(f)e(g), write
f(2) = Y0 a2+ fa(2)z™, g(2) = > b2 +gn(z)z", where for each n € N,
lim, o fa(2) = lim,0gn(2) = 0. For the numbers c, := > . ,_, axbx
then, we have

)g(z) = Zc,,z + hn(2)2", with

hn(z) == Eiﬁ-l 2’ + ful(2) 30 @ 2” + gn(2) 30 bu2¥ + 2" fn(2)gn(2) €
O(G); whence clearly lim,_oh,(2) = 0 for each n € N. It follows that
fgeBand fg ~¢ Y. c,z". Since the series > ¢, z” with ¢, thus defined is
by definition the product of the series 3" a,2” and Y b,2" in the ring A,
it further follows that ¢(fg) = o(f)p(g)- m]

The homomorphism g is generally not injective, as the example exp(1/z)
~r 3. 0z¥ above demonstrates. In case G := C*, p is injective but not
surjective. Cf. also subsection 4.
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2. A sufficient condition for the existence of asymptotic devel-
opments. Let G be a region with 0 € 8G and the following property: to
every point z € G 1is associated a null sequence cx such that each segment
[ck, 2] lies wholly in G. If then f € O(G) is a function for which all the
limits f)(0) := lim,_o f®)(2), v € N, exzist, the asymptotic development

> £2@ v is valid for § at 0.

Proof. Choose and fix n (arbitrary) in N. Since lim, .o f(**1)(2) exists,
there is a disc B centered at 0 such that |f ("+1)| Bnc < M for some finite
M. Consider any pair c, z with [¢,2] C BN G. As in the case of functions
on intervals in R, there is for each m € N a Taylor formula

W) (e
1= 06 oy b
D

with remainder 7,,,+1(2) given by

rmi1(2) = — RAaR(GICRIaS

m! [e,z

(Integration by parts here will drive an inductive proof on m.) For 7,4,
the standard estimate gives

1 1
il (m+1) A\ (m+1) __ym+1
rer(2) < 5 sup £ e= O le—el < IF] el

If we take m = n and a null sequence of ¢ with [ck, 2] C G, these consid-
erations yield in the limit

n )
HOEDY ! ,(O)z" < —1‘£,|z|"+1 , valid for all z € BNG.
0 V. n!

Since M depends on n but not on z, it follows that lim, .oz "[f(2) —
Yo ﬂu)!glz"] =0, for each n € N. o

The hypotheses concerning the limits of the derivatives of f are sug-
gested by the form of Taylor’s formula — which leads us to expect that,
in case f(z) does have the asymptotic development 5 a,2", then vla, =
lim,_,o f*)(2). The notation f*)(0) which we chose for lim,_,o f*)(z) is
(merely) suggestive — naturally f(*)(0) is not a derivative.

The hypothesis imposed on G is fulfilled by every circular sector at 0.

3. Asymptotic developments and differentiation. We consider two
circular sectors at 0 which have the same radius, § = S(r,a,(3) and T =
S(r,7,6). We suppose that S # B,.(0) \ {0}, i.e., that 8 — o < 2w. We
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will say that T is enveloped by S, and note this by T C S, if the inclusion
{z=|z]e¥ : 0 < |z] < 7,7 < ¢ < 6} C S holds (cf. the figure below).

Lemma. Let S,T be circular sectors at 0 with T G S. Suppose that g €
O(S) satisfies lim,cg .0 g(z) = 0. Then it follows that lim et .0 29'(2)
=0.

Proof. There is evidently an a > 0 such that for every point z € T with
lz| < %r the compact disc Bg|;|(2) lies wholly in S (e.g., a := sin¢ in the
figure). The Cauchy estimates 8.3.1 yield

1 .
e < ot e deg () < ol

for all z € T with |2| < %r. Since a is constant and by hypothesis the right
side of the last inequality converges to 0 as z does, the claim follows. O

Theorem. Let f be holomorphic in the circular sector S # B.(0) \ {0}
at 0. Suppose that f ~s 5. a,z”. Then f' ~1 3 o, va,2""! for every
circular sector T G S. -

Proof. For each n € N there is an f,, € O(S) satisfying lim,ecg 0 fn(2) =0
and f(z) =Y g av2” + fa(z)z". It follows that

f'(z) = zn:vauz”“ +gn(2)2" 7", with ga(2) := 2£,,(2) + nfa(z) € O(S).
1

According to the lemma each g, has the requisite limiting behavior, i.e.,
limzer,2—0 gn(2) = 0. O

It now follows quickly that for circular sectors the limit conditions on
the f(®) in subsection 2 are also necessary. More precisely, we have

Corollary. If f is holomorphic in the circular sector S at 0 and f ~g
S a,2¥, thenlim,er .0 f™(2) = nla, for every n € N and every circular
sectorT G S.
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Proof. From n successive applications of the theorem we get

f™(2) ~p Z viv—1)--- (v —n+1)a,z"" "

v>n

According to definition 1.(1) this implies that lim,cr .o f(™(2) = nla,.
a

The corollary just proved is essential to the arguments presented in
subsection 5.

4. The theorem of RITT. The question of what conditions a power
series must satisfy in order to occur as an asymptotic development has a
surprisingly simple answer for circular sectors S at 0: there are no such
conditions. For every formal power series > a,2” (thus even for such mon-
sters as ) v”z") we will construct a holomorphic function f in S which
satisfies f ~5 3" a,2”. The idea of the construction is simple: Replace the
given series by a function series of the type

1) =Y anf(2)
0

in which the “convergence factors” f,(z) are to be chosen as follows:

1) The series should converge normally in S; this requires that f,(z)
become small very quickly as v grows.

2) f ~s > a,z” should hold; this requires that for each fixed v, f,(z)
converge rapidly to 1 as z approaches 0.

We will see that functions of the form
fu(2) =1 —exp(=b,/Vz) , with v/z := €216 € O(C™),

have the desired properties if the b, > 0 are properly chosen. To this end
we need the following

Lemma. Let S :=S(r,—m+ ¢, 7 — ), 0 < ¥ < 7 be a circular sector at
0 in the slit plane C™. Then the function h(z) := 1 — exp(=b/\/z), b € R,
b > 0 is holomorphic in C™ and has the following properties:

1) |h(z)| <b/lvz| forz€s.
2) lim,es,—02"™(1 - h(2)) =0 for every m € N.

Proof. 1) Every z € S has the form z = |z]e!* € C* with |p| < 7T — 9.
Since |3¢| < 37 and cosz is positive in the interval (—3m, 37), and b > 0,
it follows that w := b//z satisfies Rw = be~ 7 1°812] cos %90 > 0. Therefore
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|h(z)| = |1 — exp(—b/+/z)| < b/|\/z| for z € S, upon recalling (cf. 6.2.2)
that generally |1 — e™*| < |w| whenever Rw > 0.
2) We have 2~™(1 — h(z)) = 2~ ™ exp(—b/+/z) and so

|27 (1 = h(2))] = |2 ™|l exp(—b/v/2)| = |2] ™™ exp(—blz| % cos(io/2))-

For z € S, |p| < ™ — 1, so cos %go > cos %(71' — ) = sin 1. Since b > 0, it
follows that

|2=™(1 — h(2))| < |2| ™ exp(—blz|~F sin(/2))  forz € S.
Set t := b//|2| and note that sin 3¢ > 0. We then obtain

lim |z7™(1 - h(2))| <b72™ lim t*me 5" 1% =0, for every m € N,
2€8,z—0 t—+o00

since for ¢ > 0, e~*? decays more rapidly than any power of t as t approaches
0. |

A circular sector S = S(r,a, 3) is called proper if B,(0) \ S has interior
points, i.e., if 3—a < 2m. [Generally a point z in a subset A of a topological
space X is called an interior point of A if there is a neighborhood of z in
X which is wholly contained in A.] We now maintain that

Theorem of RITT. If S is a proper circular sector at 0, then to every
formal power series Y a,z” there corresponds a holomorphic function f in
S such that f ~g > a,z".

Proof. If z +— €7z rotates S into the circular sector S* and if f* € O(S*)
satisfies f*(2) ~s- Y. a,e"z¥, then f(z) := f*(e72) € O(S) satisfies
f(z) ~s Y. a,z¥. Since S is a proper sector, after such a rotation we may
assume that S has the form S(r, -7+, 7 — ), with 0 < ¢ < w. Obviously
we need only consider angular sectors, that is, the case r = co. We set

b, = (la,|v)) "t ifa, #0, b, ;=0 otherwise, veN.

Then define f,(z) := 1 — exp(—=b,/v/z) and f(z) := 3 ;" avfu(2)z”. Ac-
cording to assertion 1) of the lemma

1
lay £ (2)2%| < |bya, 2"~ < | =272 7Y/ for z € S.
v!

Since Yo ﬁz” converges normally in C, the series defining f converges
normally in S. It follows from Weierstrass’ convergence theorem (cf. 8.4.2)
that f € O(S). The first sum on the right side of the equation 2~ "(f(2) —
Shaz) = =Yg a1 = ()" + 37 a, fi(2)2" ™ converges to

0 as z converges to 0 through S, because each summand has this property,
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according to statement 2) of the lemma. For the second sum on the right
with z € § and |z| < 1 we have the estimate

Z a, fy (z)zu—n

n+1

< Z lay, fu(2)2" ™| < Z |Z|V—%—n _ V2l

Y
n+1 n+l1 1 — |z

and therefore this sum also converges to 0 when z converges to 0 through
S. m]

Since every convez region G in C with 0 € AG lies in some proper angular
sector with vertex 0 (proof!), it follows in particular that RITT’s theorem
remains valid if the S there is replaced by any convex region G having 0 as
a boundary point.

In the terminology of subsection 1 we have shown that

For every proper circular sector at 0 the homomorphism ¢ : B — A is
surjective.

Special cases of the theorem proved here were proved by the Ameri-
can mathematician J. F. RITT in “On the derivatives of a function at a
point,” Annals of Math. (2) 18(1916), 18-23. He used somewhat different
convergence factors f,(z) but indicated (p. 21) that the factors we have
used, involving /2 in the denominator of the argument of the exponential
function, were probably the best suited for the construction. On this point
compare also pp. 41, 42 of WASOW’s book.

From this theorem of RITT we immediately get

5. Theorem of E. BOREL . Let 4o, q1,q2. ... be any sequence of real
numbers, I := (—r,7), 0 < r < oo an interval in R. Then there ezists a
function g : I — R with the following properties:

1) g is real-analytic in I\ {0}, that is, g is representable by a convergent
power series in a neighborhood of each point of I\ {0}.

2) g is infinitely often real-differentiable in I and g\™(0) = q,, for every
n € N.

Proof. Choose a proper circular sector S at 0 of radius r which contains
I'\ {0}. Theorem 4 furnishes an f € O(S) with f ~g 3" Z2¥. If we set
g(z) := Rf(z) for x € I\ {0}, then g: I\ {0} — R is real-analytic and so,
in particular all the derivatives g(™ : I'\ {0} — R exist. Since gy, is real,

lim ¢ (z) = lim f™(z) = ndn — dn foreachn € N
z—0 z—0 n!

(cf. subsection 3). This shows that g(® can be extended to a continuous
function I — R by assigning it the value ¢, at 0. Now if u,v : I — R are
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continuous, u is differentiable in I\ {0} with v’ = v there, then u is also
differentiable at 0 and u’(0) = v»(0). This is an easy consequence of the
mean value theorem of the differential calculus. Since g™ is the derivative
of g~V in I'\ {0}, it follows from the fact just described that this equality
prevails at 0 too. Consequently, g™ : I — R is the nth derivative of
g = ¢‘© throughout I. Since g(™(0) = g,,, the theorem is proven. o

RITT actually re-discovered the Borel theorem; not until after writing
his paper (cf. the introduction thereof) did he learn of Borel’s dissertation,
in which in fact only the existence of an infinitely differentiable function g
in I with prescribed derivatives at 0 was proven.

It is hard to understand why, but textbooks on real analysis have scarcely
picked up on Borel’s theorem. You find it in, say, the book of R. NARASIM-
HAN: Analysis on Real and Complex Manifolds, North-Holland (1968), Am-
sterdam, on pp. 28-31 for the case R™; and set as a problem for infinitely
differentiable mappings between Banach spaces on p. 192 of J. DIEUDONNE:
Foundations of Modern Analysis, vol. 1, Academic Press (1969), New York
& London.

There are as well some quite short real proofs (which however do not
show that g can even be chosen to be real-analytic in I \ {0}). One can,
e.g., proceed as follows [after H. MIRKIL: “Differentiable functions, formal
power series and moments,” Proc. Amer. Math. Soc. 7(1956), 650-652]:
First manufacture — say, via Cauchy’s famous exp(—1/z?) example — an
infinitely differentiable function ¢ : R — R which satisfies ¢ = 1 in [-1, 1],
¢ =01in R\ (-2,2). Then set

q
gu(z) = V—‘;m"ga(r,,m) , veEN
with positive numbers rq, 71,72, ... so chosen as to make

lgim|g < 27 forn=0,1,...,v -1

and for all » € N. Because ¢ has compact support, such choices are possi-
ble. Standard elementary convergence theorems of real analysis show that
g(z) := Y g,(z) is infinitely differentiable in R. Since ¢ is constant in
[—1,1], it follows that for x € [-7, 1, 7]

gM() = v i"n)!m”_"cp(r,,x) forn=20,1,...,v ; and
g™(z) = 0 for n > v.

We see therefore that g,(,")(O) = 0 for v # n and g,(ln) (0) = ¢n; whence
g™ (0) = g¢,, for all n € N.



Chapter 10

Isolated Singularities.
Meromorphic Functions

Functions with singularities are well known from calculus; e.g., the func-
tions

1 .1 1
~ ., esin—, exp (——m?) , z € R\ {0}

are singular at the origin. Although the problem of classifying isolated
singularities cannot be satisfactorily solved for functions defined only on
R, the situation is quite different in the complex domain. In section 1 we
show that isolated singularities of holomorphic functions can be described
in a simple way. In section 2, as an application of the classification we study
the automorphisms of punctured domains, showing among other things that
every automorphism of C is linear.

In section 3 the concept of holomorphic function will be considerably
broadened — meromorphic functions will be introduced. In this larger func-
tion algebra it is also possible to perform division. Just as for holomorphic
functions, there is an identity theorem.

§1 Isolated singularities

If f is holomorphic in a domain D with the exception of a point ¢ € D, i.e.,
holomorphic in D \ {c}, then c is called an isolated singularity of f. Our
goal in this section is to show that for holomorphic functions there are just
three kinds of isolated singularities:

1) removable singularities, which upon closer examination turn out not
to be singularities at all;

303
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2) poles, which arise from reciprocals of holomorphic functions with ze-
ros. In every neighborhood of a pole the function uniformly exceeds every
bound,

3) essential singularities, in every neighborhood of which the function
behaves so erratically that its values come arbitrarily close to every complex
number.

Singularities such as the real functions || or xsinl have at the origin
are not to be found in complex function theory.

In the sequel we will always write simply D \ ¢ instead of D \ {c}.

1. Removable singularities. Poles. An isolated singularity ¢ of a
function f € O(D\c) is called removable if f is holomorphically extendable
over ¢ (cf. 7.3.4).

2

z
Ezamples. The functions have removable singularities at 1

z
z2—1"e* —
and 0, respectively.

From Riemann’s continuation theorem 7.3.4 follows directly the

Removability theorem. The point ¢ is a removable singularity of f €
O(D\c) tf f is bounded in U \ ¢ for some neighborhood U C D of c.

Thus if ¢ is not a removable singularity of f € O(D \ c), then f is not
bounded near c. We might then ask whether (2 — ¢)™f is bounded near ¢
for a sufficiently large power n € N. If this occurs, then c is called a pole
of f and the natural number

m :=min{v € N: (z — ¢)” f is bounded near ¢} > 1

is called the order of the pole ¢ of f. The order of a pole is thus always
positive. Poles of the first order are called simple. For m > 1, the function
(z — ¢)~™ has a pole of order m at c.

Theorem. For m € N, m > 1 the following assertions concerning f €
O(D \ ¢) are equivalent:

i) f has a pole of order m at c.
ii) There is a function g € O(D) with g(c) # 0 such that

f(z)=ﬂ forze D\c.

(z—c)m
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iii) There is an open neighborhood U of c lying in D and an h € O(U)
which is zero-free in U \ ¢ and has a zero of order m at ¢, such that
f=1/hinU\ec.

iv) There is a neighborhood U of ¢ lying in D and positive finite constants
M., M* such that for all z € U \ ¢

M.z — o™ < |f(2)] < M*|z — o™

Proof. i) = ii) Since (z—c)™ f € O(D\¢) is bounded near ¢, the removabil-
ity theorem furnishes a g € O(D) with g = (z —¢)™f in D\ ¢. If g(c) were
0, then it would follow that g has the form (2 — ¢)g, with § € O(D) and
consequently § = (z —c)™ ! f in D\ c. This would imply that (z —c)™"1f
is bounded near ¢ and since m — 1 € N, that would violate the minimality
of m.

ii) = iii) Since g(c) # 0, g is zero-free in some open neighborhood U C D
of c¢. Then (z — c)™/g(z) € O(U) furnishes the desired function h. _

_ iii) = iv) If U is chosen small enough, then h has the form (2—c)™h for an
h € O(U) with M, := inf, ey {|h(2)| 7'} > 0and M* := sup,y {|h(2)|71} <
0. Since |f(z)| = |z — ¢|~™|h(z)| !, the claim follows.

iv) = i) The inequality |(z — ¢)™f(z)] < M* for z € U \ ¢ shows that
(z — ¢)™f is bounded near c, whereas the inequality |(z — ¢)™ ! f(2)| >
M., |z — c|~! shows that (z — c¢)™ ! f is not bounded near c. Consequently,
¢ is a pole of f of order m. a

Because of the equivalence between i) and iii) poles arise basically via
the formation of reciprocals. The equivalence of i) and iv) characterizes
poles via the behavior of the values of f near c. We say that f increases
uniformly to co around c, written lim,_,. f(z) = oo, if for every finite M
there is a neighborhood U of ¢ in D such that inf ey |f(2)| > M. (The
reader should satisfy himself that lim,_.. f(z) = co obtains precisely when
limp o0 [f(2n)| = oo for every sequence z, € D\ ¢ with lim, o0 2, =
¢.) Another equivalent statement is: lim,_.1/f(z) = 0. Therefore the
following less precise version of iv) is a direct consequence of the equivalence
i) & iii):

Corollary. The function f € O(D \ ¢) has a pole at c if and only if
lim,_,. f(2) = occ.

2. Development of functions about poles. Let f be holomorphic in
D\ ¢ and let ¢ be a pole of f of order m. Then there exist complez numbers
bi,...,bm, with b,, # 0, and a holomorphic function f in D such that

b b1 by

1) fz)= (2 —mc)m (z — c)m-1 toot z—c

+ f(z), ze D\ec.
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The numbers by, . ..,by, and the function f are uniquely determined by f.
Conversely, every function f € O(D\ c¢) which satisfies equation (1) has
a pole of order m at c.

Proof. According to theorem 1 there is a holomorphic function g in D
with g(c) # 0 and f(z) = (2 — ¢)"™g(z) for all z € D\ c. g is uniquely
determined in D\c by f and this equation; hence by continuity it is uniquely
determined throughout D by f. The Taylor series of g at ¢ can be written
in the form

9(2) =bm +bm_1(z—c)+ -+ bi(z—c)™ 4+ (2 — c)’"f(z)

with b, = g(c) # 0 and f holomorphic in a disc B C D centered at c.
Inserting this representation of g into the equation f(z) = (2 — c)"™g(z),
gives (1) in the punctured disc B \ c. We simply use (1) to define f in
D\ B. The uniqueness claims are clear from the uniqueness of g. Just as
clear is the converse assertion in the theorem. O

The series (1) is a “Laurent series with finite principal part”; such series
and generalizations of them will be intensively studied in chapter 12. From
(1) follows

@) £ = i+ e + Q)

Since mb,, # 0, it is therefore clear that

If ¢ is a pole of order m > 1 of f € O(D\ ¢), then f' € O(D\ ¢c) has a
pole of order m+1 at c; in the development of f' about ¢ no term a/(z—c)
occurs.

The number 1 is thus never the order of a pole of the derivative of a holomor-
phic function whose only isolated singularities are poles. We can show a little
more: there is no holomorphic function with isolated singularities of any kind
whose derivative has a pole anywhere of first order:

If f is holomorphic in D\ ¢ and f' has a pole of order k at c, then k > 2 and
f has a pole of order k — 1 at c.

Proof. We may assume that ¢ = 0. From the development theorem we have for
appropriate h € O(D) and di,...,dr € C with dx # 0

fl(2)=dez™ 4+ diz7  + h(z),z€ D\O.

For every disc B centered at 0 with B C D, the fact that f is a primitive of f
in D\ 0 yields



§1. ISOLATED SINGULARITIES 307

0= ﬂx:%m+/ hd¢

9B oB

since fas ¢7Vd¢ = 0 for v > 1. But by the Cauchy integral theorem fBB hd¢ =0,
and so it follows that d; = 0. Since dx # 0, it must be that k > 1. Let H € O(B)
be a primitive of h|B and define

— oo —dpz”t + H(z)

F(z)i= — 1t

for z € B\ 0. Then f' = F’, and f = F+ const., in B\ 0. Therefore, along with
F| the function f has a pole at 0, of order k — 1.

3. Essential singularities. Theorem of CASORATI and WEIER-
STRASS. An isolated singularity c of f € O(D\ ¢) is called essential if c is
neither a removable singularity nor a pole of f. For example, the origin is
an essential singularity of exp(27!) (cf. exercise 2).

If f has an essential singularity at c then, on the one hand each product
(z—¢)"f(2), n € N, is unbounded near ¢ and on the other hand there exist
sequences z, € D\ ¢ with limz, = ¢, such that lim f(z,) exists and is
finite. Using the idea of a dense set introduced in 0.2.3, we can show more:

Theorem (CASORATI, WEIERSTRASS). The following assertions about a
function f which is holomorphic in D\ ¢ are equivalent:

i) The point c is an essential singularity of f.

il) For every neighborhood U C D of ¢, the image set f(U \ c) is dense
in C.

iil) There exists a sequence z, in D \ ¢ with limz, = c, such that the
image sequence f(zn) has no limit in C U {oc}.

Proof. i) = ii) by reductio ad absurdum. Assume that there is a neighbor-
hood U C D of ¢ such that f(U\c) is not dense in C. This means that there
is some B,(a) with r > 0 and B,(a) N f(U \ ¢) = 0, that is, |f(z) —a| > r
for all z € U\ ¢. The function g(z) := 1/(f(2) — a) is thus holomorphic in
U \ ¢ and bounded there by r—!, and so has ¢ as a removable singularity.
It follows that f(z) = a + 1/g(z) has a removable singularity at c in case
lim,_.. g(2) # 0 and a pole at ¢ in case lim,_..g(z) = 0. Thus in either
case there is no essential singularity at c, contrary to the hypothesis i).
The implications ii) = iii) = 1) are trivial. O
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Since non-constant holomorphic functions are open mappings, in the situation
of the CASORATI-WEIERSTRASS theorem every set f(U \ ¢) is (in case U is open)
even open and dense in C. Far more can actually be shown: f(U \ ¢) is always
either the whole of C (as in the case f(z) = sin(z™')) or C with just one point
deleted (as in the case f(z) = exp(z~!), in which 0 is the one point never taken as
an f-value). This is the famous great theorem of PICARD, which we can’t derive
here.

As a simple consequence of the Casorati-Weierstrass theorem we record
the

Theorem of CASORATI-WEIERSTRASS for entire functions. If f
is a transcendental entire function, then for every a € C there exists a
sequence z, in C with lim |z,| = 0o and lim f(z,) = a.

This is obviously a consequence of the general theorem and the following

Lemma. The entire function f € O(C) is transcendental if and only if
the function f* € O(C*) defined by f*(z) := f(z~') has an essential
singularity at 0.

Proof. Let f(z) = ) a,2" be entire and suppose that 0 is not an essen-
tial singularity of f*. Then for all sufficiently large n € N, 2" f*(z) =
Y pa,2™¥ € O(C™) is holomorphically continuable over 0. For these n
the Cauchy integral theorem yields

0= /61E M (Q)d¢ = Zo:au /aIE ¢"Vd¢ = 2mian 41,

which means that f is a polynomial — of degree at most n.
Conversely, suppose f is not transcendental, that is, f is a polynomial
ag+aiz+---+a,2" Then

X)) =fzH=a, 2"+ --+az7 +ap
and according to theorem 2 the origin is either a pole (if n > 0) of f* or a

removable singularity of f* (if n = 0); so in either case 0 is not an essential
singularity of f*. O

The lemma, is also a direct consequence of theorem 12.2.3, which we will
prove later.

4. Historical remarks on the characterization of isolated singu-
larities. The description of poles in terms of growth behavior as well as
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the series development theorem 2 are to be found as early as 1851 in RIE-
MANN ([R], Art. 13). The word “pole” was introduced in 1875 by BRrIOT
and BOUQUET ([BB], 2nd ed., p. 15). WEIERSTRASS used the phrase
“auBlerwesentliche singulire Stelle (inessential singular point)” for the oppo-
site of the “wesentlich singuldren Stellen (essential singular points)” ([W3],
p.78).

It is customary to designate the implication i) = ii) in theorem 3 as
the CASORATI-WEIERSTRASS theorem. It was discovered in 1868 by the
Italian mathematician Felice CASORATI (1835-1890, Professor at Padua).
The proof reproduced here goes back to him (“Un teorema fondamentale
nella teorica delle discontinuita delle funzioni,” Opere 1, 279-281). WEIER-
STRASS presented the result in 1876, independently of CASORATI. He for-
mulated it thus ([W3], p. 124):

“Hiernach andert sich die Function f(z) in einer unendlich kleinen Umge-
bung der Stelle ¢ in der Art discontinuirlich, dass sie jedem willkiirlich
angenommenen Werthe beliebig nahe kommen kann, fiir z = c¢ also einen
bestimmten Werthe nicht besitzt. (Accordingly the function f(z) varies so
discontinuously in an infinitely small neighborhood of the point ¢ that it
can come as close as desired to any prescribed value. So it cannot possess
a determinate value at z = ¢.)”

The CASORATI-WEIERSTRASS theorem for entire functions was known
to BRIOT and BOUQUET by 1859, although their formulation of it ([BB],
1st ed., §38) is incorrect. The state of the theory around 1882 is beautifully
reviewed in O. HOLDER's article “Beweis des Satzes, dass eine eindeutige
analytische Function in unendlicher Nahe einer wesentlich singulidren Stelle
jedem Werth beliebig nahe kommt,” Math. Annalen 20(1882), 138-143.
For a detailed history of the Casorati-Weierstrass theorem and a discus-
sion of priorities, see E. NEUENSCHWANDER, “The Casorati-Weierstrass
theorem (studies in the history of complex function theory I),” Historia
Math. 5(1978), 139-166.

Exercises

Ezercise 1. Classify the isolated singularities of each of the following func-
tions and in case of poles specify the order:

4 2 _ .2
8) ——s, d) = 27r )
(2* + 16)2 sin” z
1—cosz 1 1
b) sin z ) et —1 2z-—2mi’
1
c) z f)

e* —z+1’



310 10. ISOLATED SINGULARITIES. MEROMORPHIC FUNCTIONS

Ezercise 2. Show that the function exp(1/z) € O(C*) has neither a re-
movable singularity nor a pole at 0.

Ezercise 8. Show that a non-removable singularity ¢ of f € O(D \ ¢) is
always an essential singularity of expof.

Ezercise 4. Let ¢ € D open C C, f € O(D \ ¢), P a non-constant poly-
nomial. Show that c is a removable singularity or a pole or an essential
singularity of f if and only if it is a removable singularity or a pole or an
essential singularity, respectively, of P o f.

§2* Automorphisms of punctured domains

The results of section 1 permit us to extend automorphisms of D \ ¢ to
automorphisms of D. It thereby becomes possible to determine the groups
Aut C and Aut C* explicitly. Furthermore, we can exhibit bounded regions
which have no automorphisms at all except the identity map (conformal
rigidity).

1. Isolated singularities of holomorphic injections. Let A be a dis-
crete and relatively closed subset of D and let f : D\ A — C be holomorphic
and injective. Then:

a) no point ¢ € A is an essential singularity of f;
b) if c € A is a pole of f, then ¢ has order 1 ;

c) if every point of A is a removable singularity of f, then the holomor-
phic continuation f : D — C is injective.

Proof. a) Let B be an open disc containing c and satisfying BN A = {c}
and D' := D\ (AUB) # 0. Then f(D’) is non-empty and open (Open
Mapping Theorem). Because of injectivity f(B \ ¢) does not meet the set
f(D"), consequently is not dense in C. By the CASORATI-WEIERSTRASS
theorem c is therefore not an essential singularity of f.

b) Consider a pole ¢ € A of order m > 1. There is a neighborhood
U C D of ¢ with UN A = {c} such that g := (1/f)|U is holomorphic and
has a zero of order m at ¢ (cf. Theorem 1.1). Because f is injective so is
the function g : U \ {c} — C\ {0}. Consequently, g : U — C is injective.
According to theorem 9.4.1 then g¢'(c) # 0; that is, m = 1. :

_ c) Suppose there are two different points a,a’ € D with p := f(a) =
f(a’). Choose disjoint open discs B, B’ containing a, a’, respectively, and
satisfying B\a C D\ A, B'\d € D\ A. Then f(B)N f(B') is a
neighborhood of p and accordingly there exist points b€ B\a, ¥ € B'\a’
with f(b) = f(V'). Since b,b both lie in D \ A and are unequal, the
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injectivity of f is compromised. This contradiction proves that no such
a,ad exist. a

2. The groups AutC and Aut C*. Every mapping C — C, z — az+b,
a € C*, b € C is biholomorphic, and in particular a holomorphic injection.
We show that conversely

Theorem. Every injective holomorphic mapping f : C — C is linear, that
is, of the form

f(z)=az+b, acC* ,beC.

Proof. Along with f the function f* : C* — C defined by f*(z) := f(z71)
is also injective. Taking D := C, A := {0} in theorem 1la), we learn that 0
is an inessential singularity of f* € O(C*). According to lemma 1.3 f is
then a polynomial, and so f’ is too. But the injectivity of f forces f’ to be
zero-free, which by the Fundamental Theorem of Algebra means that f’ is
constant, f therefore linear. m|

Holomorphic injections C — C thus always map C biholomorphically
onto C. It follows in particular that

AtC={f:C—->C,z—az+b:aeC*,beC}.

This so-called affine group of C is non-abelian. The set

T:={feAutC: f(z)=2+b,be C}

of translations is an abelian normal subgroup of AutC. The plane C is
homogeneous with respect to 7.

The group Aut C being considered here is not to be confused with the
group of field automorphisms of C. a

The mappings z — az and z — az~!, a € C*, are automorphisms of
C*. The converse of this observation is contained in the following

Theorem. Every injective holomorphic mapping f : C* — C* has either
the form

f(2) = az or f(z)=az"!, a € C*.

Proof. According to theorem 1, with D := C, A := {0} there are two
possible cases:

a) The origin is a removable singularity of f. The holomorphic contin-
uation f : C — C is then injective. It follows from the preceding theorem
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that f has the form f(z) = az + b for appropriate a € C*, b € C. Since
f(C*) c C* while f(—ba~!) =0, it follows that b = 0.

b) The origin is a pole (of order 1) of f. Since w — w™?! is an automor-
phism of C*, z + g(z) := 1/ f(z) is another injective holomorphic mapping
of C* into itself. Since 0 is a zero of g by theorem 1.1, it follows from a)
that g has the form g(z) = dz, d € C*, and so f(z) = az~! for a := d~1.

O

Holomorphic injections C* — C* thus always map C* biholomorphi-
cally onto C*. It follows in particular that

AutC* = {f:C*—>C*,z—az;aeC*}U
{f:C* -C*,z—az"t;ae C*}

This group is non-abelian. It decomposes into two “connected components
each isomorphic to C*.” The component L := {f : C* — C*,z —
az ; a € C*} is an abelian normal subgroup of Aut C* and the punctured
plane C* is homogeneous with respect to L.

3. Automorphisms of punctured bounded domains. For every sub-
set M of D the set

Auty D :={f € AutD: f(M) = M}

of all automorphisms of D which map M (bijectively) onto itself, consti-
tutes a subgroup of Aut D. If M consists of a single point ¢, then this is
none other than the isotropy group of ¢ with respect to Aut D introduced
in 9.2.2. If D\ M is again a domain, then via restriction to D \ M every
f € Autp D determines an automorphism of D \ M. A group homomor-
phism from AutpD into Aut(D \ M) is thereby defined. If D \ M has
interior points in each connected component of D, then this (restriction)
mapping is injective — for in this case any g € Autas D which is the identity
map on D\ M is necessarily the identity map on D, on account of the
identity theorem. In particular we have

If M is relatively closed in D and has no interior, then Auty D is iso-
morphic in a natural way to a subgroup of Aut(D\ M).

In interesting cases AutpsD is in fact the whole group Aut(D \ M).

Theorem. If D is bounded and has no isolated boundary points, then
for every discrete and relatively closed subset A of D, the homomorphism
Aut4D — Aut(D \ A) is bijective.

Proof. All that needs to be shown is that for each f € Aut (D \ A) there
exists an f € Aut 4D with f = f|(D\ A). Since f and g := f~! map D\ A
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into D \ A, a subset of the bounded set D, these functions are bounded.
Since A is discrete and relatively closed in D, f and g are bounded and
holomorphic in a punctured neighborhood of each point of A. By Riemann’s
continuation theorem they extend to holomorphic functions f:D - C,
g : D — C. According to theorem 1.c) both f and § are injective.

Next we show that f(D) c D. Since f is continuous, f(D) at least lies
in the closure D of D. Suppose there were a point p € D with f(p) € 8D.
Then p would necessarily lie in A and there would be a disc B around p
with (B\ p) C (D \ A) because A is discrete. Since f is an open mapping,
f(B) would be a neighborhood of f(p). Then since f is injective, it would
follow that

B\ fp) = f(B\p) = f(B\p) C D,

which says that f(p) is an isolated boundary point of D, contrary to the
hypothesis that D has no such points. Therefore no such p exists and
f(D) C D is confirmed. In exactly the same way we show that §(D) C D.
This established, the composites fog: D — C and go f:D — C are
well defined. Since these maps agree with fog = go f = id on the sense
subset D \ A of D, we have fog=gof=idon D, that is, f € Aut D.
Finally, because f(D\ A) = D\ 4, it follows that f(A) = A, meaning that
f € AutysD. a

Ezample. The group Aut E* of the punctured open unit disc EX :=E\ 0
is isomorphic to the circle group Si:

AwtE* ={f:E* - E*,z2—az;a € S1}.

Proof. As a result of our theorem, Aut E* = AutgE. Therefore the claim
follows from theorem 9.2.2. ]

The theorem proved in this subsection is a continuation theorem for
automorphisms of D \ A to automorphisms of D, and the boundedness of
D is essential, as the example D := C, A := {0}, f(z) := 1/z shows. The
theorem is likewise false for bounded domains which have isolated boundary
points: Take, for example, D = E* (of which 0 is an isolated boundary
point) and A := {c}, where ¢ € E*. We then have Aut.E* = {id}, by
virtue of the preceding example; while the automorphism

zZ—C

S cz—1
of E which interchanges 0 and c restricts to an automorphism of E* \ {c}
different from the identity. Cf. also corollary 1 in the next subsection.

4. Conformally rigid regions. A domain D is called (conformally) rigid if
its only automorphism is the identity map. We want to construct some bounded
rigid regions and by way of preparation prove
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Theorem. Let A be a finite non-empty subset of E*. Then there is a natural
group monomorphism m : Aut (EX \ A) —> Perm (A U {0}) into the permutation
group of the set A U {0}. (This permutation group is of course isomorphic to a
symmetric group &,,.)

Proof. Since EX\ A = E\ (AU {0}), we have Aut (E* \ A) = Aut 4u(03;E from
theorem 3. Every automorphism f of E* \ A thus maps A U {0} bijectively
onto itself, that is, induces a permutation 7(f) of A U {0}. It is clear that
the correspondence f +— 7(f) is a group homomorphism 7 : Aut (E* \ 4) —
Perm (A U {0}). Because a non-identity automorphism of E can fix at most one
point (theorem 9.2.3) and A # @, 7 is injective.

Corollary 1. Fach group Aut(E* \ ¢), ¢ € EX, is isomorphic to the cyclic

Z—C

group Sy, the mapping g(z) :=
of EX\ c.

s the only non-identity automorphism

Proof. According to the theorem Aut (E™ \ ¢) is isomorphic to a subgroup of
Perm {0, ¢} = ©,; on the other hand, g does belong to Aut (E* \ ¢), by theorem
2.3.3.

Corollary 2. Suppose a,b € E*, a # b. Then Aut (E* \ {a,b}) # {id} if and
only if at least one of the following four relations obtains between a and b:

a=—b or 2b=atab® or 2a=b+ba® or

la| =1|b| and a®+b® = ab(1+ |b]).
Proof. Because Aut(E* \ {a,b}) = Aut.yE (theorem 3), theorem 9.2.2 insures
that every f € Aut(EX \ {a,b}) has the form f(z) = &' Ezz_—wl’ for appropriate
¢ € R, w € E. Now f # id is the case precisely when f : {0,a,b} — {0,a,b}
is not the identity permutation. Five cases are possible, of which we will discuss
two:

f(0)=0, f(a)=b, f(b) =a < f(z) =€z, with both e¥a = b , e’b=a.

That occurs exactly when €2 = 1, that is, when e'® = %1, or equivalently,

since a # b by hypothesis, when a = —b. The second case we consider is:
O =a, @) =b, fB) =0 & f(z) = 22,

with both a = e**b and b(ba — 1) = €**(a — b).
This leads to the case |a| = |b| and a® +b® = ab(1 +|b|?). The remaining three
cases are treated analogously.

Consequence. The region E\ {0, 1,2} is rigid.
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Exercises

Ezercise 1. Show that if f : C* — C is holomorphic and injective, then for some

ceC f(C)=C\e.

Ezercise 2. Show that Aut (C\ {0,1}) is comprised of exactly the following six
functions: z + 2z, z 4+ 27, 2z 1 —2, 2= (1 —2)7% 2z 2z(z—1)"! and
20 (z—1)z7L

Ezercise 3. Investigate for which z € H the region H \ {3, 2i, 2} is rigid.

§3 Meromorphic functions

Holomorphic functions with poles have played such a prominent role in
function theory from the beginning that very early a special name was in-
troduced for them. As early as 1875 BRIOT and BOUQUET called such
functions meromorphic ([BB], 2nd ed., p.15): “Lorsqu’une fonction est
holomorphe dans une partie du plan, excepté en certains péles, nous dirons
qu’elle est méromorphe dans cette partie du plan, c’est-a-dire semblable
aux fractions rationnelles. (When a function is holomorphic in part of the
plane except for certain poles, we say that it is meromorphic in that part
of the plane; that is to say, it resembles the rational fractions.)”

Meromorphic functions may not only be added, subtracted and multi-
plies but even — and therein lies their great advantage over holomorphic
functions —~ divided by one another. This makes their algebraic structure
simpler in comparison to that of the holomorphic functions. In particular,
the meromorphic functions in a region form a field.

In subsections 1 through 3 the algebraic foundations of the theory of
meromorphic functions will be discussed; in subsection 4 the order function
o, will be extended to meromorphic functions.

1. Definition of meromorphy. A function f is called meromorphic in
D, if there is a discrete subset P(f) of D (dependent of course on f) such
that f is holomorphic in D\ P(f) and has a pole at each point of P(f). The
set P(f) is called the pole-set of f; obviously this set is always relatively
closed in D.

We remark explicitly that the case of an empty pole-set is allowed:

The holomorphic functions in D are also meromorphic in D.

Since P(f) is discrete and relatively closed in D it follows, just as for
a-places (cf. 8.1.3), that
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The pole-set of each function meromorphic in D is either empty, finite,
or countably infinite.

A meromorphic function f in D having a non-empty pole-set can’t map
the whole of D into C. In view of corollary 1.1 it is natural and convenient
to choose the element oo as the function value at each pole:

f(z):=00 for z € P(f).

Meromorphic functions in D are thus special mappings D — C U {oc}.

Ezamples. 1) Every rational function

ap+a1z2+ -+ anp2™
h(z) := -
bo+biz+ - +bpz

’ bn?é()’ma'n'EN’

is meromorphic in C, the pole-set is finite and is contained in the zero-set
of the denominator polynomial.

2) The cotangent function cot 7z = coswz/sin 7z is meromorphic, but
not rational; its pole-set is countably infinite:

P(cotmz) = Z(sinnz) = Z.

A function is called meromorphic at c if it is meromorphic in a neighbor-
hood of ¢. According to the development theorem 1.2 every such function
f which is non-zero has a representation

(e o)

f@) =Y azc

v=m

around c, with um’queli; determined numbers a, € C and m € Z such that
am #0. f m <0, Y " a,(z—c) is called the principal part of f at c. In
case m < 0 the principal part of f is defined to be 0.

From the expansions sin7z = (—1)"7(z — n)+ higher powers of (z — n)
and costz = (—1)" + (=1)"*17(z — n)?/2 + higher powers of (z — n) it
follows that

1
(1) wcotmz = P + power series in (z —n), for every n € Z.
z—

This equation will be used to obtain the partial fraction series of the cotan-
gent in 11.2.1.

2. The C-algebra M(D) of the meromorphic functions in D. For
the totality of meromorphic functions in D there is no generally accepted
symbol. But recently, especially in the theory of functions of several com-
plex variables, the notation, which we will use,
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M(D) := {h : h meromorphic in D}

has gained the ascendancy. Clearly O(D)CM(D).

Meromorphic functions may be added, subtracted and multiplied. If,
say, f,g € M(D) with pole-sets P(f), P(g) are given, then P(f)U P(g) is
also discrete and relatively closed in D and in D\ (P(f)U P(g)) each of f
and g, hence also f £ g and f-g, are holomorphic. For each ¢ € P(f)UP(g)
there are natural numbers m,n and a neighborhood U of ¢ lying in D with
UN(P(f)UP(g)) = {c}, such that (z —¢)™f(z) and (z — ¢)"g(z) are each
bounded in U \ ¢. (Cf. theorem 1.1; m = 0 in case ¢ € P(f) and n =0 in
case ¢ € P(g).) Then each of the three functions

(z =)™ - [f(2)%g(2)]

is bounded in U \ ¢. The point ¢ is then either a removable singularity or
a pole of the various functions f¥g. Thus the pole-sets of these functions
are subsets of P(f) U P(g) and as such are discrete and relatively closed in
D. From this it follows that f¥g € M(D). The rules of calculating with
holomorphic functions imply that

M(D) is a C-algebra (with respect to pointwise addition, subtraction and
multiplication). The C-algebra O(D) is a C-subalgebra of M(D). For all
fyg € M(D) the pole-sets satisfy

P(-f) = P(f) , P(f*g) C P(f) U P(g).

P(f*g) is generally a proper subset of P(f)U P(g). For example, with
D :=C, f(z) :== 1/z, g(z) :== z — 1/z we have P(f) = P(g) = {0}, but
P(f +g) =0 # P(f) U P(g); while for f(z):=1/z and g(z) := z we have
P(f) ={0}, P(g) =0 and P(fg) =0 # P(f)U P(g). o

Like O(D), the C-algebra M(D) is closed under differentiation; more
precisely (on the basis of results from 1.2):

Along with f, its derivative f' is also meromorphic in D. These two
functions have the same pole-set: P(f) = P(f’); and if q is the principal
part of f at a pole, then ¢’ is the principal part of f' there.

3. Division of meromorphic functions. In the ring O(D) of holomor-
phic functions in D, division by an element g is possible just when g is
zero-free in D. But in the ring M(D) we can — and this is of great advan-
tage — also divide by functions which have zeros. By the zero-set Z(f) of a
meromorphic function f € M(D) we understand the zero-set of the holo-
morphic function f|(D\ P(f)) € O(D\ P(f)). Clearly Z(f) is relatively
closed in D and Z(f) N P(f) = 0.
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Theorem on units. The following assertions about a meromorphic func-
tion u € M(D) are equivalent:

i) u is a unit in M(D), that is, utt = 1 for some & € M(D).
ii) The zero-set Z(u) is discrete in D.

When 1) holds, P(i) = Z(u) and Z(a) = P(u).
Proof. i) = ii) The equation u@ = 1 immediately implies for ¢ € D

u(c) =04 i(c) = and u(e) = 0o & d(c) = 0,

which means that Z(u) = P(4) and P(u) = Z(@). In particular, being the
pole-set of a meromorphic function in D, Z(u) is discrete in D.

ii) = i) The set A := Z(u) U P(u) is discrete and relatively closed in D.
In D\ A, @ := 1/u is holomorphic. Every point of Z(u) is a pole of @ (cf.
theorem 1.1) and every point ¢ € P(u) is a removable singularity (and a
zero) of @ because lim,_,. 1/u(z) = 0. This means that & € M(D). O

On the basis of this theorem the quotient of two elements f,g € M(D)
exists in the ring M(D) exactly when Z(g) is discrete in D. In particular,
f/g € M(D) for any f,g € O(D) when Z(g) is discrete in D.

An important consequence of the theorem on units is the

Corollary. The C-algebra of all meromorphic functions in a region is a
field.

Proof. If f € M(G) is not the zero element and G is a region, then G\ P(f)
is a region (proof!) and f|(G \ P(f)) is a holomorphic function which is
not the zero element of O(G \ P(f)). Therefore Z(f) is discrete in G (cf.
8.1.3) and so by the theorem on units, f is a unit in M(G). That is, every
element of M(G) \ {0} is a unit. O

The field M(C) contains the field C(z) of rational functions as a proper
subfield, since, e.g., exp(z), cot(z) & C(z).

Every integral domain lies in a smallest field, its so-called quotient field. The
quotient field of @(G), which consists of all quotients f/g with f, g € O(G) and
g # 0, consequently lies in the field M(G). A fact which even for G = C is
not trivial and which we will only be able to prove in the second volume (via
Weierstrass’ product theorem) is:

The field M(G) is the quotient field of O(G).

In 9.4.5 we associated to every non-constant holomorphic mapping g : G — G’
a monomorphic lifting g* : O(G’) — O(G), h — h o g. We now show that
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The mapping g* : O(G') — O(G) extends to a C-algebra monomorphism
" : M(G') — M(G) of the field of meromorphic functions in G' into the field
of meromorphic functions in G. For every h € M(G’), we have P(g*(h)) =
97 (P(h)).

Proof. Since g is not constant and each set P(h), h € M(G’), is discrete and
relatively closed in G, the set g~ (P(h)) is always discrete and relatively closed
in G (see 8.1.3). ho g is holomorphic in G \ g~ (P(h)). Since in addition

lim(hog)(z) = lim h(w)= o0 for every c € g7 (P(h)),

w—g{c)
we infer that g*(h) := h o g is a meromorphic function in G with pole-set
g *(P(h)). Evidently the mapping g* so-defined is a C-algebra monomorphism
of M(G") into M(G). O

Next the Identity Theorem 8.1.1 will be generalized to

The Identity Theorem for Meromorphic Functions. The following state-
ments about a pair of meromorphic functions f, g in a region G are equivalent:

i) f=g
ii) The set {w € G\ P(f) U P(g)) : f(w) = g(w)} has a cluster point in
G\ (P(f) U P(g)).
i) There is a point c € G \ (P(f) U P(g)) such that f™(c) = ¢g'™(c) for all
n € N.

Proof. If G is a region, G \ (P(f) U P(g)) is also a region. Also f and g are each
holomorphic in the latter region. Therefore the asserted equivalences follow from
8.1.1. 0

4. The order function o.. If f # 0 is meromorphic at ¢, then f has a
unique development

f(z)=2a,,(z—c)" with a, € C, m € Z and a,,, #0

(cf. subsection 1). The integer m which is uniquely determined by this
equation is called the order of f at ¢ and denoted o.(f). If f is in fact
holomorphic at ¢, then this is the order already introduced in 8.1.4. From
the definition it is immediate that

For an f which is meromorphic at c:
1) f is holomorphic at ¢ <3 o.(f) > 0.

2) In case m = o.(f) < 0, c is a pole of f of order —m.
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The poles of f are therefore just those points where the order of f is
negative. It is unfortunate that the word “order” has acquired a double
meaning in connection with meromorphic functions: at a point ¢, f al-
ways has an order, possibly negative, and it may have a pole, the latter
being necessarily of positive order. Thus forewarned, the reader will not
be confused about this in the future.

As in 8.1.4 we now again have the

Rules of computation for the order function. For all functions f,g
which are meromorphic at ¢

1) oc(fg) = oc(f) + oc(g) (product rule);
2) o.(f + g) 2 min{o.(f), 0c(g)}, with equality whenever o.(f) # o.(g)-

The proof is remanded to the reader.

Let M., O, denote the set of all functions which are meromorphic or holo-
morphic, respectively, at ¢. Consider two such functions equal if they coincide in
some (perhaps smaller than the domain of either) neighborhood of ¢. O, is an
integral domain and M. is in a natural way its quotient field. The order function
introduced above is nothing but the natural extension of the order function of
O, to a non-archimedean valuation of M,; on this point cf. 4.4.3.

Exercises

Exzercise 1. Show that if f is meromorphic in D and has a finite set of poles,
then there is a rational function h with P(k) = P(f) and (f—h)|D € O(D).

Ezercise 2. a) Prove the equivalence of the following statements about a
pair of functions f and g which are meromorphic in a region G:

i) f=g

ii) The set {w € G\ (P(f) U P(g)) : f(w) = g(w)} has a cluster point
in G.

b) Find an example of an f € O(C*) which is not the function 0 but
satisfies f(2) = 0 for all non-zero integers n.

Ezercise 3. Let f € M(C) satisfy |f(z)| < M|z|" for all z € C\ P(f) with
|z| > r, for some finite constants M,r and some n € N. Show that f is a
rational function.



Chapter 11

Convergent Series of
Meromorphic Functions

In 1847 the Berlin mathematician Gotthold EISENSTEIN (known to students
of algebra from his irreducibility criterion) introduced into the theory of
the trigonometric functions the series

- 1
Z m y k = 1, 2, e

v=—c0
which nowadays are frequently named after him. These Eisenstein series
are the simplest examples of normally convergent series of meromorphic
functions in C. In this chapter we will first introduce in section 1 the
general concepts of compact and normally convergent series of meromorphic
functions. In section 2 the partial fraction decomposition

1 2z 1 (1 1
t7wz = = — =
wcotmz 2+;z2—u2 z+21:(z+u+z—u>

of the cotangent function will be studied; it is one of the most fruitful series
developments in classical analysis. In section 3 by comparing coefficients

from the Taylor series of >_1° ;TZ_Z-I/‘Q' and wcotwz — % around 0 we secure
the famous Euler identities
o)
1 (2m)2n
— =(=1)""1? B, , =1,2,....
2 m=D 22n)! 2" "

1
In section 4 we sketch Eisenstein’s approach to the trigonometric functions.

§1 General convergence theory

In the definition of convergence of series of meromorphic functions the
poles of the summands not unexpectedly cause difficulties. Since we want

321
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the limit function in any case to be itself meromorphic in D, it is not
unreasonable to demand that in every compact subset of D only finitely
many of the summands really have any poles. This “dispersion of poles,”
which will be found to prevail in all later applications, is really the only
new feature here; everything else proceeds just as in the convergence theory
of holomorphic functions.

1. Compact and normal convergence. A series ) f, of functions f,
each of which is meromorphic in D is called compactly convergent in D, if
to each compact K C D there corresponds an index m = m(K) € N such
that:

1) For each v > m the pole-set P(f,) is disjoint from K, and
2) The series ), fu|K converges uniformly on K.

The series ) f, is called normally convergent in D if 1) holds but in place
of 2) the stronger

2) Yvomlfulk < o0

prevails.

Conditions 2) and 2’) make sense because, thanks to the “pole-dispersion
condition” 1), the functions f, with v > m are all pole-free, hence continu-
ous, in K. Another consequence of this condition is that the set (Jg~ P(f.)
is discrete and relatively closed in D. It is clear that 1) and 2), or 1) and
2"}, hold for all compact subsets of D if they hold for all closed discs lying
in D.

As before, normal convergence implies compact convergence. If all the
functions f, are actually holomorphic in D, then requirement 1) is vacuous
and we are back to talking about compact or normal convergence of series
of holomorphic functions.

Compactly convergent series of meromorphic functions have meromor-
phic limit functions. More precisely,

Convergence theorem. Let f, € M(D) and Y f, be compactly (respec-
tively, normally) convergent in D. Then there is precisely one meromorphic
function f in D with the following property:

IfU is an open subset of D and for some m € N none of the functions f,
with v > m has any poles in U, then the series Y, ... f.|U of holomorphic
functions converges compactly (respectively, normally) in U to an F €
O(U) such that

(1) fIU=folU+ filU+ -+ fm-1|U + F.
In particular, f is holomorphic in D\ Uy P(f.), i.e., P(f) c Uy P(f.)-
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The proof is a simple exercise. Naturally we call the function f the sum
of the series 3 f, and write f =) f,. It should be noted that due to the
pole-dispersion condition, for every relatively compact subdomain U C D
equation (1) holds for appropriate m and F € O(U). [Recall that a subset
M of a metric space X is called relatively compact in X if its closure M
in X is compact.] You can quickly develop a sound sense for calculating
with series of meromorphic functions by just keeping in mind the following
simplifying rule of thumb:

In every relatively compact subdomain U of D, after subtraction of finitely
many tnitial terms what remains is a series of functions which are holo-
morphic in U and this series converges compactly (respectively, normally)
to a holomorphic function in U.

2. Rules of calculation. One confirms in a microsecond that:

Iff =% fu, 9 =23 g are compactly (respectively, normally) convergent
series of meromorphic functions in D, then for every a,b € C the series
S>(af, +bg,) converges compactly (respectively, normally) in D to af +bg.

If f, € M(D), and the series )_ f, converges normally in D, then so
does every one of its subseries; likewise we have (cf. 3.3.1):

Rearrangement theorem. If f, € M(D) and Y 7 f, converges nor-
mally in D to f, then for every bijection 7 : N — N the rearranged series
o frv) converges normally in D to f.

Also valid is the

Differentiation theorem. If f, € M(D) and 3" f, = f converges com-
pactly (respectively, normally) in D, then for every k > 1 the k-times

term-wise differentiated series > f,Ek) converges compactly (respectively,
normally) in D to f&),

Proof. It suffices to consider the case k = 1. Given an open and relatively
compact set U C D, choose m so large that f, is holomorphic in U for every
v > m. Then ) .  f.,|U converges compactly (respectively, normally)
in U to a function F € O(U) for which 1.(1) holds. We have f'|U =
(fu|U) € O(U) and by 8.4.2 the series Y, -, f,|U converges compactly
(respectively, normally) in U to F/ € O(U). This establishes that Y f/,
converges compactly (respectively, normally) throughout D. Due to 1.(1),
its sum g € M(D) satisfies

JU =FlU+ -+ fro WU+ F = (folU+ - + fmalU + F) = (f|U)".
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This proves that g = f'. O

There is no direct analog of the theorem in 8.4.2 on products of series. To see
this, assume f,,g, € M(D), f = > fu. and g = ) g, are normally convergent
in D and form a product series Zh;\, in which the h) run through all the
products f.g. exactly once. In general there is no guarantee that the sequence hy
satisfies the ° pole—dispersion condition.” However Y _ hx does converge normally

in D\U, ,(P(fu) U P(g.))-
3. Examples. For any r > 0 the inequalities
|z n|* > (n—7r)* fork>1,neN,|z|<r<n

hold. From them we infer for K := B,.(0) the estimates

1 1 T
-=] <— for [n| > 7 ;
z+n njg " n(n-r)
1 1
< fork>1,n>r.
(zxn)k | = (n—r)k

Since the series - n~* (k > 1) and Y (n(n — r))~! converge, and since
every compactum in C lies in some disc B,(0), we see that (cf. 3.3.2):

The four series

> 1

i(ziu_%) ’i(ziu+%> ’i(z-{—lu)k ! ;(z—v)k

(where k > 2) are normally convergent in C to meromorphic functions.

Addition of the first two of these series shows that Z —2———7 is also

normally convergent in C.

Besides the series ) o° f,, one has to consider more general series of the
form

-1 -1 —1
i fo= Zf,, + i fv, where Zf" means HILH;OZ fo.
— o0 —00 0 —00 -n

Such a series of functions is said to converge (absolutely) at ¢ € C if both
the series Z_l f.(c) and >_3° f,(c) converge (absolutely). Compact or
normal convergence of 3% f, means compact or normal convergence of
both of 3°1 oo fv and Eo f,, Such generalized series will play a significant
role later (cf 12.3.1) in the theory of Laurent series.



§2. THE PARTIAL FRACTION DEVELOPMENT OF 7 cot 7z 325

From the preceding it is now clear that

The series of meromorphic functions in C given by

i’ L. —f: 2 and i——-—-l k>2
z+v  v) — 22 —v? S(z+v)k’ 7T

— 00

00
are each normally convergent in C. (The standard abbreviation Z =

-1 00
Z + Z is being used here.)
—00 0

Exercises

v—1

Ezercise 1. Show that the series ) -, *—

zl 4— converges compactly in C
but not normally.

Ezercise 2. Show that the following series are normally convergent in C:

a) ZZO— (z 2n+1)
b) oy (Gl —1- %)

FEzxercise 3. Set a, := "T_l for n > 2. Show that:

o T2 {2+ 2 T (2))

is normally convergent in E and diverges at every point of C\ E;
b) Tot { s + Srse ()R}

is normally convergent in C\ {1}.

§2 The partial fraction development of
w cot 11z

On the basis of 1.3 the equations

e1(2) = nh—{goznz—i-u:;—*_ (z+u z—u) z ; — 2

involve series of meromorphic functions which converge normally in C and
so by the convergence theorem 1.1 the function £; thus defined is mero-
morphic in C. For its esthetic and suggestive value we write
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o0 n

E e = lim _;_ ;
n—oo

—0o0 —7n

this is the so-called “Eisenstein summation.” Thus
=1

61(z) =ZEZ+V'

(One should note that 3> ﬁ; does not exist according to the conven-

tions established in 1.2.) Also we have

[e @)

a0 =3 +% (5 )

The study of this function is the central concern of this section. We begin
by characterizing the cotangent function.

1. The cotangent and its double-angle formula. The identity
meot wz=e;(z). The function 7cotwz is holomorphic in C \ Z and every
point m € Z is a first-order pole at which the principal part is (z — m);
see 10.3.1(1). Furthermore this is an odd function and it satisfies (see 5.2.5)
the

Double-angle formula

2w cot 2mz = weot w2 + weot w(z + 1),

We will show that these properties characterize the cotangent.

Lemma. Let the function g be holomorphic in C\ Z and have principal
part (z —m)~! at each m € Z. Suppose further that g is an odd function
and satisfies the duplication formula

29(22) = 9(2) + 9(2 + 3)-
Then g(z) = wcotwz for all z € C\ Z.
Proof. The function h(z) := g(z) — wcot w2z is entire and odd and satisfies

(*) 2h(22) = h(2) + h(z + 1), h(0) = 0.

Were h not identically 0, the maximum principle 8.5.2 would furnish a
¢ € By(0) such that |h(z)| < |h(c)| for all z € By(0). Since both ic and
1(c+1) lie in B3(0), it would follow that
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hGe) + e+ < Ih o)+ [hG(e+ 1) <2/h(d)],

in contradiction with (*). Therefore h must indeed be the function 0. O
Now follows quickly the

Theorem. The cotangent function has in C\ Z the series representations

2z
2 _ 2

N

= 1 1 & 1 1
1 = = = —_ 4 — -
(1)  meotmz =¢e1(2) Zez+u z+§ (HV U)
oo
1

Proof. From the definition of €; we immediately infer that it is holomorphic
in C\ Z and has principal part (z — m)~! at each m € Z. It also follows

directly from that definition that &;(—z) = —e1(2). And we verify by
routine algebra that the partial sums s, (2) = % +37 {ziv + zly} satisfy
1

1y
sn(2) + sa(2+3) = 2550(2) + 5 o T 1’
from which, after passage to the limit on n, we acquire the duplication
formula 2¢,(22) = €1(z) +€1(z+ 1). The preceding lemma thus guarantees
that €;(z) = wcot 7z, a

The equation (1) is called the partial fraction representation of m cot 7z.
A second, quite different proof of it, which goes back to EISENSTEIN, will
be given in 4.2.

2. Historical remarks on the cotangent series and its proof. The
partial fraction series for 7 cot 72 was quite familiar to EULER; by 1740 he
knew the more general formula (“De seriebus quibusdam considerationes,”
Opera Omnia (1) 14, 407-462)

m cos[m(w — 2)/2n] _
nsin[r(w + 2)/2n] — sin[r(w — 2)/2n]

1 n i 2w 2z
2 (v -1 —w? ()P - 22
which for n := 1, w := —z becomes the cotangent series. In 1748 he

incorporated the cotangent series into his Introductio (cf. [E}, §178 bottom).
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The double angle formula for the cotangent was used as early as 1868
by H. SCHROTER to get the partial fraction series “in the most elemen-
tary way”; cf. “Ableitung der Partialbruch- und Produkt-Entwickelungen
fiir die trigonometrischen Funktionen,” Zeitschr. Math. u. Physik 13, 254-
259. The elegant proof of the equality 7 cot 7z = ;(z) reproduced in sub-
section 1 was published in 1892 by Friedrich Hermann SCHOTTKY in a now
forgotten paper “Uber das Additionstheorem der Cotangente ---,” Jour.
fir Reine u. Angew. Math. 110, 324-337; cf. in particular p. 325. Gustav
HERGLOTZ (German mathematician, 1881-1953; from 1909-1925 Professor
at Leipzig, thereafter at Gottingen; teacher of Emil ARTIN) observed that
in Schottky’s proof one doesn’t need the maximum principle at all. Because
it is elementary to prove the

Lemma (HERGLOTZ). Every function h which is holomorphic in a disc
B,(0), r > 1, and satisfies the duplication formula

(*)  2h(2z) = h(2) + h(z + }), whenever z,z + 1,22 all lie in B,(0),
s constant.

Proof. From (x) follows 4h’(2z) = h'(2) + h’(2 + ). Choose 1 < t < r and

let M denote the maximum of |h'| in the compact disc B;(0). We notice
that 3z and 1z + 1 lie in B;(0) whenever z does and we apply the above
identity involving A’ with 1z in the role of z; it yields, for all z € B,(0)

4b(2)) < W (L2) |+ W Rz + 1) | < M+ M.

Therefore 4M < M + M, M = 0. That is, ' = 0; so h is constant, in
B;(0) hence throughout B,(0). O

This proof, which makes a factor of 4 out of the 2, is called the HER-
GLOTZ trick; it furnishes particularly easy access to the partial fraction
representation of the cotangent in C. HERGLOTZ used this trick in his lec-
tures but never published it. The first explicit appearance of it in print was
in the 1950 original German edition of CARATHEODORY [5], pp. 268-271;
besides this it has occurred in some 1936 mimeographed lecture notes of
S. BOCHNER at Princeton on functions of several complex variables. And
ARTIN had used the Herglotz trick in connection with the gamma function
in his little monograph The Gamma Function, Holt, Rinehart and Winston
(1964), New York (see p. 26), whose German original appeared in 1931.

It may be noted that equation 1(1) can be secured for real z somewhat more
immediately: The function h satisfying the duplication formula (*) is real-valued
and continuous on R and, as the difference of two odd functions, it is odd. Given
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r > 1, let M denote the maximum of |h| over the interval [—r,r]. If M were
positive, then h(0) = 0 and h(—z) = —h(z) for all z would insure the existence
of a smallest positive real number 2t < r with |h(2t)] = M. The identity (*)
would yield 2M < |h(t)| + |h(t + 3)| and the fact that t,t + 3 € [—r,r] would
give |h(t)] < M and |h(t+ 1)| < M as well; from which | f(t)| = M would follow,
in violation of the minimality of t. Therefore it must be that M = 0, and since
r > 1 is arbitrary, this says that h = 0 throughout R. This verifies 1(1) for real
2. But to get the formula for all complex z from this we would have to invoke
the Identity Theorem.

2 T : :
3. Partial fraction series for sn'wz 2 gmrze Noting the iden-

tity (cot z)’ = —(sinz)~2 and applying the differentiation theorem 1.2 to

00
the normally convergent series %+ Z’ ( ) we deduce from the

z+u

equation &;(2) = wcot 7z the classica.iuﬁartla.l fraction development

2

1 —
) sin® rz 2 (z+ V)2
Another differentiation yields
cotwz
2 3 —
2) sin? 7z Z (z +v

From the identities wtan 3wz = mcot 3wz — 2mcotmz (cf. 5.2.5), and
weotwz = £1(2) it follows that

o0
4z
1 —
®) kLD Y oy

_r
The formula ;'—

with the equation

@) I

sSmmmwz z

= mcotmz + mtan 37z (cf. 5.2.5) further supplies us

> . 2 1
From (4) and the obvious relation ;%> = 15

partial fraction development

1

5
() sinmz Zz-%—u

In (5) we may group the summands corresponding to 1nd1ces v and
—(v 4+ 1), for v € N, and apply the identity cosmz = sinm(z + %) to verify
that
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v+
(6) cosmz Z( b* zl—E—l)zzzz2

When z = 0 we have the Leibniz series 7 = 1 — 3 + 5 —+---. Amusing
series for 7/ \/2 arise from (4) and (6) with the choice z = 1/4.

4*, Characterizations of the cotangent by its addition theorem
and by its differential equation. According to 5.2.5

2iz 1 t t
gz—i;j_—l , cot{w+2z) = cotweotz - 1 , (cot z)’' +(cot 2)2+1 = 0.

cotz =1
cotw + cot 2

We will show that the second of these identities, the addition theorem, and
the third, the differential equation, each characterize cot z. To this end we
need the following

Lemma. Let g be meromorphic in the region G. Then the differential
equation g’ + g°> + 1 = 0 holds only for the family of functions

2iz 1
g(z) =i, g(2)= ig:ziz—+1 , a arbitrary in C.
a p—

Proof. That the functions listed do satisfy the differential equation is a
direct and routine calculation. Conversely, consider g € M(G) which sat-
isfies the differential equation but is not the constant function i. Then
the “Cayley transform” f := (g +i)/(g — ) also belongs to M(G) and it
satisfies the differential equation f’ = 2if. From theorem 5.1.1 it follows
that f(2) = aexp(2iz). At first this is valid only in the region G \ P(f)
but, after appeal to the Identity Theorem 10.3.4, it holds throughout G.
Since g = i(f + 1)/(f — 1), the claim about the form of g follows.

Remark. The trick in the foregoing proof is the passage to the “Cayley
transform” of g. This is the device that linearizes the “Riccati” differential
equation ¢/ +y2 =1 =0.

Theorem. The following statements concerning a function g which is
meromorphic in a neighborhood U of 0 are equivalent:
i) The principal part of g at 0 is % and for all w,z € U\ P(g) such that
w+2z €U\ P(g)

= _______g(w)g(z) —1 ition eorem
glw+2)= ) + 902) (Addition Theorem) .

ii) g has a pole at 0 and satisfies g’ + g°> +1 = 0.
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iii) g(z) = cot 2.

Proof. i) = ii) From the addition theorem it follows that

gz+h)-g(2) _ . 9(@)*+1
h h—0 hg(z) + hg(h)
because limy_,q hg(h) = 1 and limy_,o hg(2z) = 0 for all z € U \ P(g).
ii) = iii) Since g(2) # i, it has the form 1—2——+— for some a € C,

according to the preceding lemma. Since g has a pole at 0 the denominator
must vanish at 0, which means that a = 1 and consequently g(z) = cot 2.
iii) = i) Clear.

¢(2) = lim ~g(2)* -

Exercises

Ezercise 1. From the formulas of subsection 3 derive, by means of differenti-
ation or of simple identities between trigonometric functions, the following
partial fraction developments:

cos 5 (w — z) 1 & 2w 2z
™ =_+ Z 2 2 2 _ 2|
sin 3 (w + z) -sing(w—2) 2z S{(2v-12-w? ()?-2z
due to EULER, 1740.

Ezercise 2. Give the partial fraction developments for the following func-
tions:

a) f(z)=(e -1~}

b) f(z) = m(coswz —sinmwz)~ L.

Hints. For a) use the partial fraction development of cot wz. For b) re-

T —gin® — L
member that cos § = sin 1= 7

§3  The Euler formulas for ¥, v ™"

The first order of business in this section is to determine the numbers {(2n)
for all n > 1. We also derive an interesting identity between Bernoulli
numbers, and finally we briefly discuss the Eisenstein series £x(2), k > 2.
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1. Development of €,(z) around 0 and Euler’s formula for {(2n).
The function €;(z) — 27! is holomorphic in the unit disc E and has poles
at +1. Its Taylor series at 0, which thus has radius of convergence exactly
1, can be explicitly written:

1 & on
1) ei(z)= ;_ngnz , z € EX, where go,, 1= 2¢(2n) = 2; 1/2"
v

Proof. —-% is the (2n — 2)th Taylor coefficient of 2(22 — v?)~1, as one
. . . 2 _92 2u
sees from the geometric series expansion x%; = £ #_0( ) . Since
the series Y, ;2(z%2 — v?)~! converges compactly in E, it follows from
Weierstrass’s double series theorem 8.4.2 that its (2n — 2)th Taylor coeffi-
cient is 3°,-, 5=, that is, —gan. But 3_, -, 2(22 — v2)"! is an even func-
tion, so all Taylor coefficients of odd index vanish, and so this series has
3-7° —g2n2?"2 as Taylor series about 0. Since €1(2) L+23 702
v?)~1 for all z € E*, the claim (1) follows. l:l

The Bernoulli numbers By, were introduced in 7.5.1. In a few lines we
can now acquire the famous

Formulas of EULER:

n1(27r) _
(o) = ()T B =12

Proof. From (1) and 7.5.2(1) we have in a neighborhood of 0

2n

> 0o
E 2
271 q2nz2"—1 = 61(z) =mcotmwz = z_1+§ "(_1 (Zn) anﬂ}n 2n-1
1 1

Since g2, = 2¢(2n), comparison of coefficients here leads to the desired
conclusion. m]

From the formulas of EULER we can infer incidentally that the Bernoulli num-
bers Bg, Ba, ..., Ban,... have alternating signs (as was already hinted at in the
equations (2) in 7.5.1). Moreover, the unboundedness assertion concerning the
sequence Bz, in 7.5.1 can now be made more precise: since 1 < Z v < 2 for
every n > 1, it follows that

(2n)!
(2m)2’

B2n+2

B2n

in particular, lim

It further follows from 1 < ¢((2n) < 2, the identity (2—31"),1 325%;"; and the
Cauchy-Hadamard formula that the Taylor series of z/(e* — 1) about 0 has ra-
dius of convergence 2m; this is the “rather tedious” determination of this radius
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of convergence without examining the zeros of the denominator, which was men-
tioned in 7.4.5.

The Euler formulas will be generalized in 14.3.4.

2. Historical remarks on the Euler {(2n)-formulas. As early as
1673 during LEIBNIZ’s first visit to London J. PELL, an expert in series
summation, had posed to him the problem of summing the reciprocals of
the squares. LEIBNIZ had maintained in youthful exuberance that he could
sum any series, but Pell’s query made clear to him his limitations. The
brothers Jakob and Johann BERNOULLI (the latter was EULER’s teacher)
also expended quite a lot of effort in vain trying to find the value of the
sum 1+ §+5+75+

Finally, in the year 1734, using the product formula he had discovered
for the sine, EULER in his work “De summis serierum reciprocarum” (Opera
Omnia (1) 14, 73-86) proved his famous identities

> 1 ™ =1 6 =1 w8
> 213'—4= X F T 2

1

It is often said of the first of these identities that it is among the most
beautiful of all Euler’s formulas.

Euler’s problems in summing the series 3" v~2" were described in detail
by P. STACKEL in a note entitled “Eine vergessene Abhandlung Leonhard
Eulers iiber die Summe der reziproken Quadrate der natiirlichen Zahlen,”
Biblio. Math.(3) 8(1907/08), 37-54 (also included in Euler’s Opera Omnia
(1) 14, 156-176). Also interesting is the article “Die Summe der reziproken
Quadratzahlen,” by O. SPIESS in the Festschrift to the 60th birthday of
Prof. Andreas Speiser, Orell Fiissli Verlag, Ziirich 1945, pp. 66-86; and the
paper by R. AYOUB entitled “Euler and the Zeta function,” Amer. Math.
Monthly 81(1974), 1067-1086.

3. The differential equation for €, and an identity for the Bernoulli
numbers. Because (cot z)’ = —1 — (cot 2)? (cf. 5.2.5), it follows that

(1) e = —&f — 7%

the function &; thus solves the differential equation y’ = —y? — 72. With
the help of (1) we get an elegant but not very well known recursion formula
for the numbers ((2n), namely

2

(@) (+gen)= Y LML) forn>1, @) =T
kkz+1€721

Proof. Using the differentiation theorem 1.2 and 1(1), we get
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()= -~ —2 i(m —1)¢(2n) 222,
1

22

From 1(1) it follows, on the basis of the differentiation theorem 1.2 and the
product theorem 8.4.2, that

1 (o o] 3 e o) B
e2(z) = =4 §1 ((2n)2 % + 4 § : § ' C(2k)¢(20)2*" %, z € E.
n=2 k+£€=n
k>1,6>1

Substituting these into (1) and comparing coefficients of like powers of z
yields (2). O

If we use the Euler formulas for {(2n), then we get from (2)

1

(®) @+ DBn+ (0! 3 Gy

k+f=n
E>1.6>1

BBy =0, n>2.

Equations (2) and (3) and their derivation from the differential equation
of the cotangent function were brought to my attention by Professor M.
KOECHER.

20

= (z + V)
1.3, normally convergent in C for all integers k > 2 and consequently, by
the convergence theorem 1.1, they represent meromorphic functions in C.
It is immediate from the definition that ¢} is holomorphic in C\ Z and
that at each n € Z it has a pole of order k and principal part 1/(z — n)*.
The functions €94 are even and the functions €504, are odd. The series for
€1(2) is unexceptional and has this same general form if we agree to use
the Eisenstein summation convention ), for it. In 2.3 we saw that

4. The Eisenstein series ei(2) := 2 . are, according to

2
£2(2) = — , e3(2) = m°—5—.
sin” w2 simm- mTz

3 cotmz

Thus we have €3 = e5¢1, an identity that certainly cannot be perceived
directly from the series representations (on this point see also 4.3).

The periodicity theorem. Let k > 1 be an integer, w € C. Then

ex(z+w)=¢x(z) forallze CoweZ.

Proof. If ex(z + w) = ex(z), then along with 0, w is also a pole of ¢, so
that w € Z. Since the series may be rearranged at will due to the fact of
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their normal convergence, we get for every k, ex(z + 1) = ex(2). From this
it follows that ex(z + n) = ex(z) for all n € Z. i

From the differentiation theorem 1.2 it follows that

(1) E;c = —k6k+1 for k > 1.

00
For &, use the normally convergent series Ly (L -1t .} From this
z o Fad’ v

via induction on k we get

DR ey

(2) Ep = Uc——l)!sl

for k > 2.

From the development 1.(1) of £, it follows (again inductively) that

1 2n -1 _
3) ex(z) = prs + (1) E ( 1 )qgnzzn k for k > 2
2n>k

and in particular

1 1
(4) e2(2) = po) + g2 +3qa2+ -, e3(2) = 3 —3q4z — 10gg2® — - -+

§4*. The EISENSTEIN theory of the
trigonometric functions

The theory of the trigonometric functions, which nowadays is almost always
based on that of the complex exponential function, can also be developed
ab ovo from the Eisenstein functions ¢ and simple non-linear relations be-
tween them. This construction of the theory of the circular functions was
sketched in passing by EISENSTEIN in 1847 in a work [Ei] that today is fa-
mous and in which, for example, Weierstrass’ p-function and its differential
equation also feature. EISENSTEIN writes (p.396):

“Die Fundamental-Eigenschaften dieser einfach-periodischen Functionen
ergeben sich aus der Betrachtung einer einzigen identischen Gleichung,
némlich der folgenden (The fundamental properties of these simply-periodic
functions reveal themselves through consideration of a single identity, namely
the following):

(a) 1 1 (1+1>+ 2 (1+1),,

r’¢®  (p+@?\p* ¢/ (p+9\p q/°
The p and ¢ here are indeterminates and one confirms (a) by direct cal-
culation or {more simply) by differentiating the obvious identity p~1q¢~! =
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(p+q)~Y(p~! + ¢~ 1) with respect to p and with respect to q. EISENSTEIN
gets all the important propositions about his series by virtuoso manipula-
tions with the identity (a).

EISENSTEIN was a pupil of Karl Heinrich SCHELLBACH (German mathe-
matician, 1805-1892, professor of mathematics and physics at the Friedrich-
Wilhelm Gymnasium in Berlin and from 1843 onward concurrently teacher
of mathematics at the general military school in Berlin). In 1845 SCHELL-
BACH published, in the school-program of his Gymnasium, a treatise en-
titled Die einfachsten periodischen Functionen, in which for the first time
functions like

if(:lJ-FS) and ﬁf(w+/\)

were employed in the construction of periodic functions. This treatise of
Schellbach’s had a big influence on EISENSTEIN (cf. [Ei], p.401).

In 1976 in the second chapter of his Ergebnisse monograph [We| André
WEIL gave a concise presentation of Eisenstein’s theory, at the same time
expanding the calculations involved. “Man wird bei diesen Ausfilhrungen
an ein musikalisches Analogon, die Diabelli-Variationen von Beethoven
erinnert (This presentation brings to mind a musical analog, the Diabelli
variations of Beethoven).” - E. HLAWKA in the Monatshefte fiir Math.
83(1977), p. 225. WEIL chose the notation ¢, in honor of EISENSTEIN,
who himself wrote (k, z) instead of ex(z) ([Ei], p. 395).

In what follows we present the beginnings of Eisenstein’s theory, after
[We]. We will only work with the first four functions €1,€2,€3,64. The
identity €1(2z) = mcot wz will be proven anew, independently of the con-
siderations of the preceding sections, save for using theorem 2.4 on the
solutions of the differential equation g’ + g + 1 = 0.

1. The addition theorem.
e2(w)ez(2) — e2(w)ez(w + 2) — e2(2)ez(w + 2) = 2e3(w + 2)[e1(w) + £1(2)].

Proof (following [We], p.8). Weset p:=2+pu, ¢g:=w+v —pin (a) and
get

1 _ 1 ( 1 + 1 )
(z+p)Rw+rv—p?2 (w+z+v)2\(z+p)? (w+v-—p)?

2 1 1
= 3 + .
(w+z+v)$P \z+p wH+v—p
Eisenstein summation over p with v fixed gives

> 1 1

y;; rpPw+v-—p? (w+z+v)? [e2(2) + e2(w + V)]
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2

= m[al(z) +e1(w +v))].

Since v is a period of & (cf. the periodicity theorem 3.4), we may write
eo(w) instead of eo(w + v) and e;(w) instead of &;(w + v). Moreover,
because it converges normally, the first sum on the left coincides with the
ordinary sum E‘f’w After we make all these simplifications and sum over
v, we obtain

[ o)

; Z (z +”)2(1j+ v—p)? e2(w + 2)[e2(2) + €2(w)]

=—00

= 2e5(w + 2)[e1(2) + 1 (w)]

Because of normal convergence it is legitimate to interchange the two sum-
mation processes on the left. After doing so, we recall that ea(w — p) =
€2(w). The double sum then becomes

oo

15 1 _ . sw—p)
DN e D DI crpmyr D Dy e e UL OF

p=—00 v=-—00 p=-—00

which proves the addition theorem.

2. Eisenstein’s basic formulas. The addition theorem 1 was not expli-
citly formulated by EISENSTEIN. Rather he derives the identities

(1) 3e4(2) = €2(2) + 2e1(2)e3(2)
(2) €3(2) = e4(2) + 2q22(2)

directly from (a) ([Ei], 396-398). We now get these basic formulas of Eisen-
stein from the addition theorem ([We], p.8). To this end we need the
following easily verified statements (to derive (+) use 3.4(1)):

For every z € C\ Z and every integer k > 1 there is a neighborhood of
w = 0 in which

1 v
er(w+2) = Z ;Ei ) (2)w”;
v>0

in particular,
e1(w + 2) e1(2) — e2(2)w + e3(2)w? — eg(2)wd + —- .-
(+) g2(w + 2) £2(2) — 2e3(2)w + 3e4(2)w? — 4+ - -
ea(w+2) = e3(2) — 3eq(2)w + bes(2)w? — +- - O
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We now prove equation (1): For fixed z € C\ Z the functions appearing
in the addition theorem are meromorphic functions of w. Develop each
around w = 0 and compare the constant (as far as w is concerned) terms.
The development 3.4(4) for €3 together with the equation (+) above for
e2(w+2) yield for the function on the left side of the identity in the addition
theorem, bearing in mind that e2(w)e2(z) cancels and e2(2)ea(w + 2) has
“constant” term e2(z),

- (—u% +q2+-- ) (—2e3(2)w + 3e4(2)w? +---) — e2(2) + - -

= —3ea(2) —e3() + 5

here the latter ellipsis indicates terms in w™?!, w, w?, ... For the function on

the right side of the identity in the addition theorem we use the development
3.1(1) for &; and the equation (+) for e3(w + z) to obtain

2ea(s) = Bea(e)ut ) (5 k) + 2aen () +

= —6e4(2) + 2e3(2)e1(2) + - -.

From which follows —3e4(2) —£%(2) = —6e4(2)+2¢3(2)e1(2), a re-statement
of (1).

The proof of (2) is carried out similarly. We again fix 2 € C\ Z, but
this time consider ¢ := w + z as the variable in the addition theorem. We
carry out the development around ( = 0, set w = ¢ — z and compare the
constant (as far as ¢ is concerned) terms. Using the development 3.4(4) for
€2(2) as well as the equation (+) for e2({ — 2) [realize that £o, is an even
and €244 is an odd function], we see that the “constant” term on the left
in the addition theorem is £2(z) — 2g2e2(2) — 3e4(2). On the basis of 3.4(4)
and (+), €3(¢)e1(¢ — 2) has constant term —e4(z). Also e3(()e1(2) is an
odd function of { and consequently has no constant term. Therefore the
constant term on the right in the addition theorem is —2e4(2). (2) then
follows immediately.

3. More Eisenstein formulas and the identity e,(2) = wcotwz.
Eliminating €4(z) between 2(1) and (2) yields
(1) e1(2)es(z) = €5(2) — 3qae2(2).

If we differentiate (1), and take into account 3.4(1), we obtain eze3 =
€164 + 2goe3. Use 2(2) to eliminate €4 here, and, after division by €3 — 2¢5,
get

(2) e3(z) = e1(2)e2(2).
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Insert this into (1) and divide by €9, and it follows that
(3) el(2) = e2(2) ~ 3qa.
From the relations already garnered the reader can draw the
Conclusion ([Ei], p.400) Each function ei, is a real polynomial in €;.

On account of g3 = —¢f, equation (3) may also be viewed as the differ-
ential equation

(4) e1(2) = —€1(2) - 3¢z
for the function €;. From (4) alone we now obtain {anew)

1
7l = Z = (and therefore g, = 37%) .

v>1

=

(*) e1(z)=mcotmz and

Proof. Let a be the positive square-root of 3¢ =6 ., v 2. For g(z) :=
a~te1(a"1z) € M(C), the differential equation g’ + g2 + 1 = 0 holds. Since
g has a pole at the origin, it follows from theorem 2.4 that g(z) = cot z,
and so £1(z) = acotaz. Since Z is the set of periods of €;(z), while Ta=1Z
is the set of periods of cot az (note that per(cot) = 7Z by 5.2.5), it follows
that Z = ma~'Z, and so a = 7 since a is positive. m]

The addition formula for the cotangent says (cf. 5.2.5)

e1(w)e1(z) — n*

g +2) =)t

EISENSTEIN also proves this formula by direct manipulation of series ([Ei], pp.
408, 409); interested readers are referred to [We}, pp. 8, 9.

4. Sketch of the theory of the circular functions according to
EISENSTEIN. The foregoing considerations show that basically the theory
of the trigonometric functions can be developed from Eisenstein’s function
€1 alone. One first defines m as /3¢, and makes the equation wcotmrz =
€1(z) the definition of the cotangent. All the other circular functions can
now be reduced to £,. If we recall the formula

1 _1 cotz cotz+7r
sinz 2 2 2

(which is mentioned in passing on p.409 of [Ei]), then it is clear that in the
putative Eisenstein theory the equation
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T _1 R (E)—s z+1
sinmz 2| '\2 '\ T2
should be elevated to the status of definition of the sine. The partial
fraction development

S M
sinﬂ'z—2_ooez+2u 2_Ooez+1+21/_ z+v

—00

is an incidental bonus. Because cos 7z = sinw(z + %), we can regard

m —ls 2z+1 e 22+ 3
cosmz 2| ! 4 1 4

as the definition of the cosine.
Also the exponential function can be defined by means of €; alone: For
the function

e(z) = e1(z)+mi  1+miz+--- € M(C)

e1(z) —mi  1—miz+---

it follows at once, recalling —&} = €2 + 72, that
1=¢€1

gl (2) — omi e2(z) + w2
(e1(z) —m)2 — 7 (ea(2) — mi)?

Since e(0) = 1, theorem 5.1.1 and the Identity Theorem tell us that the
function e(z) just introduced is in fact exp(2wiz).

It seems that the construction of the theory of the circular functions
sketched here has never been consistently carried out in all detail this way.
Even so, due to lack of space, we shall have to forego doing it here. One
advantage of the Eisenstein approach is that the periodicity of the circular
functions is evident on the basis of the explicit form of the series for &;.

= 2mie(z).

Exercise

Ezercise. Using the duplication formula 2¢1(22) = €1(2) + €1(z + 1), show that
1 2 _
e1(z)er(z+3)+ 7 =0.

What does this formula say about the classical trigonometric functions?
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J. LiouviLLE 1809-1882 H.A. ScHWARZ 1843-1921
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Chapter 12

Laurent Series and
Fourier Series

At quantopere doctrina de seriebus infinitis Analysin sublim-
iorem amplificaveret, nemo est, qui ignoret (There is nobody
who does not know the extent to which the theory of infinite
series has enriched higher analysis). — L. EULER 1748, Intro-
ductio.

In this chapter we discuss two types of series which, after power series,
are among the most important series in function theory: Laurent series
> o au(z —c)” and Fourier series ) . c,e?™*. The theory of Laurent
series is a theory of power series in annuli; WEIERSTRASS even called Lau-
rent series power series too (cf. [Wp], p.67). Fourier series are Laurent
series around ¢ = 0 with e2™** taking over the role of z; their great impor-
tance lies in the fact that periodic holomorphic functions can be developed
in such series. A particularly important Fourier series is the theta series
>, e ’"Te2mivz which gave quite a decisive impulse to 19th-century
mathematics.

§1 Holomorphic functions in annuli and
Laurent series

Let r,s € RU {oo} with 0 < 7 < s. The open subset
Ars(c)={zeC:r<|z—-¢| < s}

of C is called the annulus or circular ring around ¢ with inner radius r
and outer radius s. When s < 0o, Ap s(c) = Bg(c) \ ¢, a punctured disc,

343
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and Ag,(0) is the punctured plane C*. In contexts where there is no
possibility of misunderstanding the notation A, ;(c) is shortened to just A.
The annulus A with radii s and r is naturally the intersection

A=AYNA" with A" :=Bs(c) and A~ :={z€C:|z—c|>r}.

This notation will be used extensively in the sequel. As in earlier chapters,
the boundary 0B,(c) of the disc will be denoted by S,,.

1. Cauchy theory for annuli. The point of departure for the theory of
holomorphic functions in circular rings is the

Cauchy integral theorem for annuli. Let f be holomorphic in the
annulus A around c with radii r and s. Then

(1) /fd(=/ fd¢ forall poeRwithr<p<o<s.
s, S,

We intend to give three proofs of this basic theorem. In all of them we
may take ¢ = 0.

First proof (by reduction to theorem 7.1.2 via decomposition into convex
regions). Let p be given. We choose a p' with r < p’ < p and determine
on S, the vertices of a regular n-gon which lies wholly in the annulus with
radii 7 and p’. This inclusion occurs for all sufficiently large n. In the figure
n = 6.

S~

As this figure shows, 41 := 71 +72+73+74 is a closed path in the truncated
circular sector G, a convex region lying in the domain of holomorphy of
f, for any o with p < o < s. Consequently f’n fd¢ = 0. Analogously,
J=. fd¢ =0 for the path 4, (partly shown in the figure) which begins with

Y2 2 .
the piece —v3. Continuing, we define closed paths 4,, v = 1,2,...,n, with
—; featuring as a piece of 4,. It then follows that

ozzn:/:ufd(=/:gafd4—[gpfd47

v=1
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since the integrals over the various radial components of the paths ¥, cancel
out.

Second proof (by reduction to theorem 7.1.2 via the exponential mapping).
We assume that 0 < r < s < oo and pick a,a,3,b € R with e? =1, e® = p,
ef = o, e® = 5. By means of z — exp z the boundary dR of the rectangle
R:={ze€C:a<Rz<f,|32 < r} is mapped onto the (closed) path
I:= Z‘; exp(v,) = S, +v+ S, — v (cf. the figure below and 5.2.3).

a+in < f+in
expz
Yay 4y, ——— -0
a—in > B—in

From the transformation rule 6.2.1 it follows that

/f(()dC=/ f(exp 2) exp zdz.
r 8R

Since the convex region G := {z € C : a < Rz < b} which contains R
is mapped into A by exp z, the integrand on the right is holomorphic in
G and the integral is consequently 0 by theorem 7.1.2. The claim follows
from this.

Third proof (by interchanging integration and differentiation). Since each

[ € O(A) can be written in the form f(z) = 27 !g(z) with g € O(A4), it
suffices to show that for each g € O(A) the function

27
J(t) :=/S -g—%c—)-dc = i/o g(te*)dy , t € (r,s)

is constant. According to well-known theorems of real analysis, J(t) is
differentiable and

27 2n
I = i / % (te*)dp = i / g (t69)e dy
0 0

t‘l/ g'(¢)d¢ for t € (r,s).
Sr

I

The last integral is 0 because ¢’ has a primitive. Thus J'(t) =0, so J is
constant. O

Remark. From a “higher point of view” the integrals over S, and S, are
equal because these paths can be deformed into one another while staying
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in A. But we won’t go into the general theory of integration for such
“homotopic” paths until the second volume. O

From the integral theorem follows (as did the analogous fact for discs in
7.2.2)

The Cauchy integral formula for annuli. Let f be holomorphic in the
domain D. Suppose that the annulus A = AT N A~ about c € D lies, along
with its boundary, in D. Then

56 = o= [ M

2ri aa(—z
A G A
= o - Cﬁde 5 /aA_ C_de for all z € A.

Proof. For fixed z € A the function

g(C):={ ﬂ%_‘uzfﬁ for (€D\z
f(2) for (==

is continuous in D and holomorphic in D\ z. From theorem 7.3.4 it follows
that in fact g € O(D). Therefore the integral theorem for annuli insures

that f;,, gd¢ = ;- 9d(; that is,

FQ) @ _ [ 1) 4 &«
/aA—C—ch—f(Z)/afa—C”Z_/afﬁ(—zdc f(z)/¢9A+C—Z'

The second integral in this equation vanishes because |2| > r and the fourth
integral has the value 27 because |z| < s. g

The integral formula is the key to the

2. Laurent representation in annuli. First we introduce a convenient
locution: if h is a complex-valued function in an unbounded domain W,
then we write lim, .., h(z) = b € C, if for every neighborhood V of b there
is a finite R such that h(z) € V for all z € W with |z| > R. Of course it
should be noted that this definition depends on W. In what follows W will
be the exterior of a disc, that is, a set A™.

Theorem. Let f be holomorphic in the annulus A = A* N A~ with center ¢
and radii v, s. Then there are two functions, f+ € O(A%) and f~ € O(A™)
such that

f=ft+f" in A and lim f~(2) =0.

Z— 00
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These conditions uniquely determine the functions f* and f~ as follows:
For every p € (1, 3)

o) = = [ 9% eBe)

2mi s,(—2

1

() = 2_7”/3 CfE_Odg, z € C\ B,(c).

Proof. a) Existence: the function

fre=on [ e, sen,

is holomorphic in B,(c). For o € (p,s) we have ff = ff|B,(c), thanks
to the integral theorem. Hence there is a function f+ € O(A*) which in
each B,(c) coincides with f;. In the same way a function f~ € O(A™) is
defined by the prescription

F(2):=f7(2) = 2;12 /S Cf(f) d(¢ , whenever r < ¢ < min{s, |z — ¢|}.

Application of the integral formula to all the different annuli A’ centered
at ¢ with A’ C A confirms that the representation f = f*+ + f~ holds
throughout A. The standard estimate for integrals gives, for z € A,
- < _ 1 e
[f7(2) < omax|F(O(¢ - 2)77| < P =Ifls.

whence lim, o f~(2) = 0.

b) Uniqueness: Let gt € O(At), g~ € O(A™) be other functions satis-
fying f=9¢g" +¢  in Aand lim, ., g (2) =0. Then f* —g* =g~ ~ f~
in A and consequently the recipe

b ft—gt in At
=19 -f in A

well defines an entire function & which satisfies lim,_,o, A(z) = 0. It follows
from Liouville’s theorem that h =0, and so ft =gt and f-=¢~. O

The representation of f as the sum ft + f~ is known as the Laurent
representation (or the Laurent separation) of f in A. The function f~ is
called the principal part, the function f* the regular part of f.

If f is meromorphic in D\ ¢, then the representation of f described in the
development theorem 10.1.2 is nothing but the Laurent representation of
fin B\ ¢ (where B C D and r = 0). In particular, the notion of principal
part introduced here for Laurent developments generalizes the notion of
the principal part of a meromorphic function at a pole.
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[o )

3. Laurent expansions. Expressions of the form % a,(z — ¢)¥ are

called Laurent series around c. The series
1 o0 [e ]
Za,,(z - = Z a_,(z —¢)™" , respectively, Za,,(z —c)”
—00 1 0

are called its principal part, respectively, its regular part. Laurent series
are thus special examples of the series of functions Ziooo f.(2) introduced
in 11.1.3. Therefore in particular, the concepts of absolute, compact and
normal convergence are available for Laurent series in annuli.

Laurent series are generalized power series. The corresponding general-
ization of the CAUCHY-TAYLOR representation theorem is the

LAURENT expansion theorem. FEvery function f which is holomorphic
in the annulus A of center ¢ and radii r, s is developable in A into a unique
Laurent series,

(1) f(2) =) a(z -0,
which converges normally in A to f. Furthermore, we have

(2) a,,———l——/s ——‘—f—(—o————-d( forall r<p<s,veL

T 2mi (o)t

Proof. Let f = f* + f~ be the Laurent separation of f in A= AT N A,
as provided by theorem 2. The regular part f+ € O(A%) of f has a Taylor
development Y a, (z—c)” in At = B,(c), by the CAUCHY-TAYLOR theorem
of 7.3.1. Observe that the principal part f~ € O(A™) of f also admits a
simple series development in A~ = {z € C: |z — ¢| > r}. We see this as
follows. The mapping

w—z:=c+w ' of B,-1(0)\0onto A~

1

is biholomorphic with inverse z — w = (z — ¢)~' and

g(w) := f~(c+w™') defines an element of O(B,(0) \ 0).

We have lim,_,0g(w) = 0 on account of lim, ., f~(z) = 0, and so,
by the Riemann continuation theorem, g(0) := 0 extends g holomorphi-
cally over 0. This extended g therefore has a Taylor development g(w) =
>ou>1 bbw? € O(B,-1(0)), which in fact converges normally in B,-1(0).
Since f~(z) = g((z — ¢)™!) for = € A~, we obtain from this the repre-
sentation f~(z) = 3, bu(z — ¢)™¥, which converges normally to f~ in
A~. With the notation a_, := b,, v > 1, this series can be written as
f(2) = Z:io a,(z ~ ¢)”. In summary, we have thus found a Laurent se-
ries 3% a,(z — ¢)¥ which converges normally in A to f. The uniqueness
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follows as soon as the equations (2) are verified. To this end, consider any
series satisfying (1) and for each n € Z the equation

-1

(z—0)™" ' f(2) = Z Ay int1(z — )" + Z Qytntr{z —€)¥

v=—00 v=0

which, thanks to the convergence being normal, may be integrated term-
wise. After this is done over the circle S,, only the summand corresponding
to v = —1 survives:

J

We call (1) the Laurent ezpansion (or development) of f about c in A.

(z =) " f(2)dz = an/ (2 —¢)"'dz = 2mia, , n€Z. o

I3 S,

4. Examples. The determination of Laurent coefficients by means of the
integral formulas 3(2) is only possible in rare cases. More often, known
Taylor series are exploited to develop f into a Laurent series. One that
proves adequate for most examination questions is the geometric series.

1) The function f(z) = 1/(1 + 2?) is holomorphic in C \ {i,—i}. Let
¢ be any point in the upper half-plane H. Then (see the figure below)
le—i| < |c+1i}, since e > 0, and in the annulus A centered at ¢ with inner

radius r := |c—1|, outer radius s := |c¢+i|, f has a Laurent expansion, which
can be quickly found with the aid of the partial fraction decomposition
1 1 1 -1) 1
= (=1 z € C\ {1, —1}.

1+22 2iz—i ' 2% z+41i'

If we set

L P

Ll

212 —1

then evidently f = f*|A + f~|A is the Laurent separation of f in A. The
associated series are

oy -1 1 &1 (=1
f (z)_2i(i+c)1+§+;§_; ; (i
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o= —Z; e, la=d>r

It is to be noted that the case ¢ = 7 is allowed. What form do f*(z) and
f(2) then assume? We should note further that (1 + 22)~! also has a
Laurent expansion in the exterior {z € C: |z — ¢| > s} of the larger disc.
What does it look like?

2) The function f(z) = 6/[z(z+1)(z—2)] is holomorphic in C\ {0, -1, 2}
and consequently has three Laurent developments around 0: one in the
punctured unit disc E*, one in the annulus {z € C: 1 < |z] < 2} and one
in the exterior {z € C : |z| > 2} of the disc B2(0). Using the partial fraction
decomposition of f, determine the corresponding Laurent developments.

3) The function exp(2~%) € O(C*) has the Laurent development around
0 given by

11 11 11

—+ + e+ —

1' k 572—275 n'ﬂ c oy k=1,2,

exp(z7¥) =14 =
5. Historical remarks on the theorem of LAURENT. In the year 1843
CaucHY reported to the French Academy (C. R. Acad. Sci. Paris 17,
p. 938; also in his Euvres (1) 8, 115-117) about a work of P. A. LAURENT
(1813-1854, engineer in the army and active in the construction of the
port of Le Havre) entitled “Extension du théoreme de M. Cauchy relatif
a la convergence du développement d’une fonction suivant les puissances
ascendantes de la variable.” Here LAURENT shows that Cauchy’s theorem
on the representability via power series of holomorphic functions in discs
is even valid in annuli, if series in which negative powers of z — ¢ occur,
are allowed. The original work of LAURENT was never published. Only
in 1863, thanks to the dedication of his widow, did his “Mémoire sur la
théorie des imaginaires, sur 1’équilibre des températures et sur 1’équilibre
d’élasticité” appear in Jour. de UEcole Polytech. 23, 75-204; it contains
his proof, the exposition of which is unfortunately very cumbersome (esp.
pp. 106, 145).

In his 1843 report CAUCHY talks more about himself than about LAU-
RENT’s result. He emphasizes that LAURENT arrived at his theorem by a
meticulous analysis of his own proof of power series developability. Never-
theless he does declare that “L’extension donnée par M. Laurent - -- nous
parait digne de remarque (the extension given by M. Laurent - - - seems to
us worthy of note).” LAURENT proves his theorem by using, as we did in
the text, the Cauchy integral method, which he generalized. To this day
there is no proof which does not, however cryptically, use complex integrals.
(Cf. in this connection also the next section.)

The integral theorem for annuli is to be found in CAUCHY’s 1840 Exer-
cices D’Analyse ((Buvres (2) 11, p.337); he formulated it however without
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integrals and in terms of mean values. In his report on Laurent’s work he
says that the latter’s theorem follows immediately from this (“Le théoréme
de M. Laurent peut se déduire immédiatement - --”, p.116).

The theorem under discussion had already been proved by WEIER-
STRASS [W;] in 1841, a work which was not published until 1894. Many
authors consequently call the theorem the LAURENT-WEIERSTRASS theo-
rem. On this issue of the name, KRONECKER bitingly says (cf. [Kr], p.177):
“Diese Entwicklung wird manchmals Laurent’scher Satz bezeichnet; aber
da sie eine unmittelbare Folge des Cauchy’schen Integrals ist, so ist es
unniitz, einen besonderen Urheber zu nennen (This development is some-
times designated as Laurent’s theorem, but since it is an immediate conse-
quence of Cauchy’s integral, it is useless to name one particular author).”
KRONECKER doesn’t vouchsafe a word about his colleague WEIERSTRASS.

The independence of the integral 1 (1) from the radius is the heart of
Weierstrass’ work [W;]; it says there (p.57): “..., d.h. der Werth des
Integrals ist fiir alle Werthe von xy, deren absoluter Betrag zwischen den
Grenzen A, B enthalten ist, derselbe (..., i.e., the value of the integral is
the same for all values of ¢y whose modulus is contained between the limits
A, B[=r,s]).”

Throughout his life WEIERSTRASS never gave much prominence to this
result, possibly due to the integrals in his proof (on which point cf. also
6.1.3 and 8.2.4). For example, in 1896 PRINGSHEIM in his paper ‘‘Ueber
Vereinfachungen in der elementaren Theorie der analytischen Functionen,”
Math. Annalen 47, 121-154 expressed surprise that in his lectures WEIER-
STRASS “weder explicite bewiesen noch direct angewendet (neither explic-
itly proved nor directly applied)” the theorem.! PRINGSHEIM laments that
this theorem had not yet “den ihm eigentlich zukommenden Platz erhalten
hat (secured the place it really deserves)” in elementary function theory
— by which he understood that part of the theory of holomorphic func-
tions which is based solely on power series without any use of integrals.
He rightly points out that it seems that “die elementare Functionentheorie
ohne den Laurent’schen Satz keinerlei Hilfsmittel zu besitzen (elementary
function theory without Laurent’s theorem possesses no means whatso-
ever)” of inferring, e.g., Riemann’s continuation theorem, even when the
function has already been continuously extended over the isolated singu-
larity ¢ and moreover all the power series which represent f in a punctured
neighborhood of ¢ converge absolutely at c. (Cf. also 2.2.)

In 1896 PRINGSHEIM considered it “dringend wiinschenswerth (urgently
desirable)” to ground the theorem of LAURENT in the “méglichst ele-
mentaren Weg (most elementary possible way).” He believed this goal
could be achieved through the “Einfilhrung gewisser Mittelwerthe an Stelle
der sonst benutzten Integrale (introduction of certain mean values in place
of the otherwise-used integrals).” His elementary direct proof of Laurent’s

1PRINGSHEIM seems to have learned about this youthful work of Weierstrass only as
his own paper was in press (cf. footnote p. 123).
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theorem works in a very contrived way however. As he himself says (p.125)
— his mean values may “stets als Specialfille bestimmter Integrale ansehen
(always be viewed as special cases of definite integrals)”. For this reason
his proof, which is only integral-free insofar as its inner workings aren’t ex-
amined, has not caught on. PRINGSHEIM set out his “pure methodology”
in the 1223-page long work [P]. To which treatise might be applied the
very words (p.124) with which PRINGSHEIM appraised a so-called elemen-
tary proof of Laurent’s theorem by MITTAG-LEFFLER: “Die Consequenz
der Methode [wird] auf Kosten der Einfachheit allzu theuer erkauft (the
consequences of the method are bought all too dearly at the expense of
simplicity).”

6*. Deviation of LAURENT’S theorem from the CAUCHY-TAYLOR
theorem. The existence proof carried out in section 3 rests on the Laurent
representation of theorem 2 and thereby on the Cauchy integral formula for annuli.
The view is sometimes maintained that in fact Cauchy’s theory for annuli is essential
to proving Laurent’s theorem. But this is not so. As early as 1884 L. SCHEEF-
FER (1859-1885) had reduced the theorem to the Cauchy-Taylor theorem in a
short paper “Beweis des Laurent’schen Satzes”, in Acta Math. 4, 375-380. In
what follows we are going to reproduce this forgotten proof. We use the notation
of section 3 and suppose ¢ = 0; thus A = A, ¢(0). First we show that

Lemma. Let f € O(A) and suppose there is an annulus A’ C A centered at 0
such that f has a Laurent development around 0 in A’:

o0

flz)= Za,,z" , ze A

— 00

Then this Laurent series is in fact normally convergent throughout A to f.

Proof. Because of the identity theorem the only issue is the normal convergence
throughout A of the given Laurent series. Let A’ = A,.(0). It suffices to
consider each of the two special cases p = r and o = s. By considering f(27!) €
O(A,-1 ,.-1) instead of f(z) € O(A,,s), the second of these cases is reduced to
the first, which we now treat.

The series Y. a,z” and } o a,2z” converge normally in A,,o(0) and B, (0),
respectively. (Recall the definitions in 11.1.3.) Therefore the function

f(z) - E:io a2 , z€A

> av2” , z € B,(0)

is well defined and holomorphic in B, (0). Since Zg" a, 2" is the Taylor series of f;
at 0, this series converges normally throughout B;(0) according to the CAUCHY-
TAYLOR representation theorem 7.3.2. Therefore Efw a.,z” converges normally
in A. ]

fi(z) =

Let us further remark that it suffices to prove the existence of Laurent develop-
ments for odd functions in O(A4). This is because an arbitrary function f € O(A)
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can always be realized as a sum fi(z) + 2f2(2) with odd functions

fi(2) =3 (f(2) = f(=2)), fal2) == 32 f(2) + f(-2)), ze A

From Laurent developments of fi and f2 we immediately get one for f at 0 in A.

We now begin the proof proper. Thus we are given an odd function f holo-
morphic in the annulus A = A, ,(0). Because of what was proved in the lemma,
we can shrink s and expand r if necessary and thereby assume without loss of
generality that 0 < r < s < co. By introducing the new variable v := (1/73) "}z
and working with it, we find we may further assume without loss of generality
that rs = 1. Then necessarily s > 1. We conscript the function q : C* — C,
z 2(z+ z7') and use the following property of it, established by the reader in
Exercises 3 and 4, §1 of Chapter 2:

Every q-fiber ¢71(b), b # %1, consists of two distinct points a,a™* € C*.
Suppose that 3 > 1+ /2, and set R := is—-s')>1,0:=R+VR2-1,
p := 07 . Then on the one hand the g-preimage of the disc B := Bgr(0) is
contained in A and on the other hand ¢~ '(B) completely contains the annulus
A = A,, CA.

We first suppose that s > 1 + v/2, so that the properties just recorded be-
come available. Since ¢~1(B) C A4, f(z) + f(27!) is holomorphic in ¢~*(B) and
evidently constant on each g-fiber. Since moreover ¢ maps ¢~'(B) onto B, the
factorization theorem 9.4.5 is applicable. It furnishes a g € O(B) for which

f2)+ f(z") =g(a(z))  forall z € ¢ '(B).

Let Y 0° a,w* = g(w) be the Taylor series of g in B. It follows that for
ze A Ccq}(B)

oo oo p
R T e I D Y s (5) .
p=0 pu=0 v=0

We will show that for every compact K C A’

() 33 lau2 (’:) P

p=0 v=0
With this result in hand, the summands in the preceding double sum can be
ordered according to powers of z and we get, from the sharpened form of the
rearrangement theorem 3.3.1, a Laurent development

< oo.
K

@+ =) b2

which is normally convergent throughout A’. Thanks to the foregoing lemma, this
Laurent development is actually valid throughout 4. Analogous considerations
involving the mapping § : C* — C given by §(z) := —ig(iz) = 1(z—2~") furnish
a Laurent development
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f@)+ (=2 =) b2

which converges normally throughout A. Since f is odd, addition gives us

oo

f@) =330 +bh),  zeA

— 00

In proving (*) it suffices to look at K of the form K = A, ,, where p < u <
v < o and uv = 1. Now for all y,v € N, [2#~2|x = v/#*~2|. Using the trivial
identity (uf l,) = (‘:) , it follows easily that

"

) (u) |27 e < 200+ 10 = 2w

v=0

Since g(v) lies in the disc B of convergence of _ a,w*, we get

53 [aa ()

p=0 v=0
Now let us take up the case of arbitrary s > 1. There is a (smallest) natural
number n for which s2° > 1 + /2. By what was proved above, every function
which is holomorphic in A,2n ,2» has a Laurent development in that annulus.
Consequently our work is completed by n applications of the following fact:

<2y lawg(®)*| < oo
K n=0

and therewith (x).

If every function in O(A,z2 ,2) has a Laurent development around 0 in A,z 2,
then every function in O(A) has a Laurent development around 0 in A := A, ,.

We now prove the preceding statement. As we have noted, it suffices to prove
the conclusion for every odd function f € O(A). The image of A under the
square map z — 2° is A2 ,2 and every point in A,z ,2 has exactly two distinct
pre-images, which are negatives of one another, in A. Since zf(z) is an even
function, 9.4.5 furnishes an h € O(A,2 ,2) such that zf(2) = h(2?) for all z € A.
By assumption k has a Laurent development h(w) = Z"_"w a,w" in A2 ;2. Then
3°% _a,z*7! is evidently a Laurent development of f around 0 in A. O

—00

Remarks on the SCHEEFFER proof. In the proof of the lemma as well as in
the proof proper the global aspect of the power series development of a holomor-
phic function (namely, that the Taylor series at a point represents the function
in as large a disc about the point as lies in the domain) was used decisively.
[By contrast, it was only for convenience that the factorization lemma 9.4.5 was
invoked; at the appropriate points ab initio arguments could have been given,
as e.g., SCHEEFFER did.] The representation theorem 7.3.2 which affirms this
is derived from the Cauchy integral formula 7.2.2. In this sense SCHEEFFER’s
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proof is therefore not integration-free. But it does yield the Cauchy theory in
annuli as a corollary: Because for every f € O(A), as soon as we have a Laurent

development E‘f’oo a, 2" for it, there follows at once the fundamental equation
1.1(1)

fd(=27ria_1=/ fd¢ for all p,c e Rwithr < p<o <s.

Nevertheless, Cauchy’s integral formula for an annulus constitutes the natural
approach to the Laurent expansion theorem. SCHEEFFER’s baroque route is not
recommended for lectures.

Exercises

Ezercise 1. Develop the following functions into their Laurent series in the
indicated annuli:

2) f(2) = @iy in A12(0), A2,00(0), Ags(-1),

b) f(Z) = ﬁa (n € N1 n2 17 ce Cx) in AIC|,00(0)’ AO,OO(C)a

c) f(2) = graprmyy  in 42:3(0), A3,60(0), Ao, (-2),

d) f(z) = sin (;Tzl) in Ag (1),

e) f(z) =sin(%1) inCX,

f) f(z) = (exp(z7'))"! inC*.
FEzercise 2. Let f,g be holomorphic in A = A, ,(c), 0 < r < s < o0 and
have in A Laurent representations

Z a, (2 —c)” and i bu(z — c)*,

v=—00 p=—00

respectively. Show that the series ¢ci := Eg‘;_w a, by, converges in C for

each k € Z and that Y72 _ __ cx(2—c)* is the Laurent representation in A of

; ; _— 1 f(©g($)
fg. Hint. The kth Laurent coefficient of fg is given by 5~ /. () R{%‘;’éﬁdc
forany r < p < s.

Exercise 3. Let A be a non-empty open annulus centered at 0, f € O(A)
and > 07 ___ a,z" the Laurent representation of f(z) in A. Prove that f is
even (that is, f(z) = f(—=2) for all z € A) if and only if a,, = 0 for all odd
v and f is odd (that is, f(2) = —f(z) for all z € A) if and only if a, = 0
for all even v.

Ezercise 4. Let A be a non-empty open annulus centered at 0, f € O(A) a
unit.
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a) Show that if > oo a,2” is the Laurent development of f'/f in A,
then n := a_; is an integer and f has a holomorphic logarithm in A

exactly when this integer is 0.
b) Prove the lemma on units for O(A): In the notation of a), there exists

g € O(A) such that f(z) = 2"e9(?) for all z € A; and if f(z) = 2™eM?)
for all z € A and some m € Z, h € O(A), then m = n.

Hint. For a) utilize corollary 9.3.4.

Ezercise 5. (Bessel functions) For v € Z, w € C let J,(w) designate the
coefficient of z* in the Laurent series of the function exp[}(z — 27 !)w] €
O(C*); thus exp[3(z — 2z Hw] = Y02 _  J,(w)z”. Show that

a) J_,(w)=J,(w) forallveZ, weC.
b) J(w) =5 f02” cos(vp — wsin @)dp.

c¢) Each function J, : C — C is holomorphic. Its power series at 0 is
(for each v > 0)

(1) Gt

)= e

The functions J,,, v > 0, are called Bessel functions (of the first kind). J,
satisfies the Bessel differential equation 22 f"(z)+zf'(2)+ (22 —v?) f(z) = 0.

§2 Properties of Laurent series

In this section many elementary assertions about power series are extended
to cover Laurent series. In addition, we show how the Laurent development
of a holomorphic function at an isolated singularity leads to a simple char-
acterization of the singularity type in terms of the Laurent coefficients.

1. Convergence and identity theorems. On the basis of theorem 1.3,
every function f which is holomorphic in an annulus A centered at c is
developable into a Laurent series which converges normally in A to f. In
order to get a converse to this statement, we associate to every Laurent
series Y a,(z—c)” the radius of convergence s of its regular part and the
radius of convergence 7 of the power series 3, a_,w”. We set 7 :=7"1,
meaning 7 = 0 if # = 0o and r = oo if # = 0, and we demonstrate the
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Convergence theorem for Laurent series. If r < s, the Laurent series
Y% au(z — ¢)¥ converges normally in the open annulus A := A, 4(c) to
a function which is holomorphic in A; the Laurent series converges at no
point of C\ A.

If r > s, the Laurent series converges in no open subset of C.

Proof. We set
f(z): Za,,(z —¢)” € O(B,(c)) , g(w) : Zaﬂ,w € O(B;(0)).

Then E_ a,(z — ¢)” converges normally in C\ B,(c) to the function
f(2) == g((z = ¢)~1) € O(C\ B,(c)). Therefore if r < s, the Laurent
series converges normally in B,(c) N (C\ B.(c)) = Ato f* + f~ € O(A).
The remaining statements of the theorem follow from the convergence
behavior of the power series f1, g in their respective discs of convergence.
(Use theorem 4.1.2.) m

In function theory we are only concerned with Laurent series having
r < s. Laurent series with 7 > s are uninteresting, since there is no
meaningful calculus for them: For L := Y% 2 with r = s = 1, formal
calculation leads to z- L = Y 2”*1, that is, back to L, so that one gets
(2 — 1)L = 0 which can’t happen in function theory.

For Laurent series we have a simple

Identity theorem. If Y= a,(z —c)” and Y. _b,(z — c)” are Laurent
series which each converge umformly on a czrcle Sp, p > 0, to the same
limit function f, then

1 2w

(1) a, =b, = flc+ pe*)e~™dy , ved.

Proof. First note that these integrals exist, because f is necessarily con-
tinuous on S,. The uniformity of the convergence is the reason for this
continuity and it also justifies interchanging the integration with the limit
process which determines f. Then equation (1) emerges from the “orthog-
onality relations” among the exponentials (on which point cf. also 8.3.2).

O

2mp¥

Naturally the equations (1) are nothing other than the formulas (2) from
1.3. The assumption that a Laurent series about ¢ converge compactly on
a circle S, centered at c is fulfilled in all cases where the series actually
converges in an annulus around ¢ which contains S,. If we let L(A) be the
set of Laurent series which (normally) converge in the annulus A, then the
identity theorem and the theorem of Laurent together prove that
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The mapping O(A) — L(A) which assigns to every holomorphic function
in A its Laurent series around c is bijective.

The holomorphic functions in A and the convergent Laurent series in A
thus correspond biuniquely.

Historical remark. CAUCHY proved the above identity theorem for Lau-
rent series in 1841 (Buvres (1) 6, p.361). He hypothesized merely the
pointwise convergence of the two series to the same limit function on S,
and then blithely integrated term-wise (which is inadmissible). Thereupon
LAURENT communicated his investigations to the Paris Academy and
in an accompanying letter remarked (C. R. Acad. Sci. Paris 17(1843),
p. 348) that he was in possession of convergence conditions “for all the
series developments heretofore used by mathematicians.”

2. The Gutzmer formula and Cauchy inequalities. If the Laurent

series Z‘f’oo a,(z — ¢)¥ converges uniformly on the circle S, centered at c

to f:8, — C, then the Gutzmer formula holds:

d 2
W) 3ol = 3 | ek pe) o < MR M(p) 1= Ifls,

In particular, the Cauchy inequalities

M
(2) lay| < % prevail for all v € Z.
The proof is analogous to that of 8.3.2. (|

If the Laurent series is holomorphic in some annulus A, ,(c) with r <
p < s, then one can naturally get the inequalities (2) directly and imme-
diately from 1.3(2). WEIERSTRASS’ proof in [W3], pp. 68, 69, which was
reproduced in 8.3.5, was actually carried out by him for Laurent series.

With the help of the inequalities (2) we can understand at a glance and bet-
ter than before why the Riemann continuation theorem is valid. Namely, if
3% au(z —c)” is the Laurent development of f in a neighborhood of the iso-
lated singularity ¢ and if M < oo is a bound for f near ¢, then for all sufficiently
small radii p the estimates p”|a.| < M hold for all v € Z. Since lim,_.¢ p¥ = 0o
for every v < —1, the only way out is for a, to be 0 for every such v. That
is, the Laurent series is really a power series and consequently via f(c) := ao, f
is holomorphically extended over c. It was in just this way that WEIERSTRASS
proved the continuation theorem in 1841 ([W,], p.63).

3. Characterization of isolated singularities. The theorem of Laurent
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makes possible a new approach to the classification of isolated singularities
of holomorphic functions. If f is holomorphic in D \ ¢, where ¢ € D,
then there is a uniquely determined Laurent series Z‘fw a,(z — ¢)” which
represents f in every punctured disc B,(c) \ ¢ lying in D\ ¢. We call this
series the Laurent development of f at (or around) ¢ and show

Theorem (Classification of isolated singularities). Suppose ¢ € D is
an isolated singularity of f € O(D\ ¢) and that

f2) =) a(z—¢)"

is the Laurent development of f at ¢. Then ¢ is
1) a removable singularity < a, = 0 for all v <0,
2) a pole of orderm > 14 a, =0 forallv < —m and a_,, # 0,

3) an essential singularity <> a,, # 0 for infinitely many v < 0.

Proof. ad 1) The singularity c is removable exactly when there is a Taylor
series at ¢ which represents f near c. Because of the uniqueness of the
Laurent development, this occurs just when the Laurent series is already a
Taylor series, i.e., a, =0 for all v < 0.

ad 2) On the basis of theorem 10.1.2 we know that c is a pole of order
m exactly when an equation

bm b, z

f(z)=m+...+z_c+f(z) with b, #0

holds in a punctured neighborhood of ¢, f being given by a power series
convergent in that whole neighborhood. Again due to the uniqueness of
the Laurent development, this occurs just if a, = 0 for all v < —m and
A = by #0.

ad 3) An essential singularity occurs at ¢ exactly when neither case 1)
nor case 2) prevails, that is, when a, is non-zero for infinitely many v < 0.

0

It now follows trivially that exp z~! and cos 2~! have essential singular-
ities at the origin, since their Laurent series

o0 [ ]
11 (-1)¥ 1
;Ez_” and > @)l 22

each have principal parts containing infinitely many non-zero terms. Fur-
thermore, lemma 10.1.3 also follows directly. m|
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We want to emphasize again that

If ¢ is an isolated singularity of f, the principal part .,” the Laurent
development of f at c is holomorphic in C \ c.

This follows from theorem 1.2 because in this case A~ = C\ c. a

A Laurent series at the point c in the punctured disc B\ ¢, when regarded
as the sum of the series of meromorphic functions f,(z) := a,(z —c)” in B,
converges normally in B in the sense of 11.1.1 exactly when its principal
part is finite (for only then is the pole-dispersion condition met).

Exercises

Ezercise 1. Determine the region of convergence of each of the following
Laurent series:

v
a’) Zr’:—oo f, [

o -1 2v
b 2o G

c) Y _c(z—d)Y, ceCX deC,

o z2—3 2v
d) Zu:—oo éﬁl)LV

Ezercise 2. Let f(z) = Y 2 a,z” be a power series with positive radius
of convergence. Determine the region of convergence of the Laurent series
Zf’:_w a;,12” and identify the function which it represents there.

Ezercise 3. Let 0 <1 < s < 00, A= A,4(0) and f € O(A). Suppose that
limy, .0 f(2n) = O either for every sequence {2,} C A with |z,| — r or for
every sequence {2,} C A with |z,] — s. Show that then f(z) = 0 for all
z € A. Investigate whether this conclusion remains valid in either limiting
case r =0 or s = o0.

Ezercise 4. For each of the following functions classify the isolated sin-
gularity at 0 and specify the principal part of the Laurent development
there:

a) S;n Z’

2z .
b) (z + ) sin(z")’ nen;

c) cos(z71)sin(271);

n €N;



§3. PERIODIC HOLOMORPHIC FUNCTIONS AND FOURIER SERIES 361

d) (1—2z"")"%, nkeN\{0}.

83 Periodic holomorphic functions and
Fourier series

The simplest holomorphic functions with complex period w # 0 are the

entire functions cos(2Xz), sin(2*z) and exp(32z). Series of the form
- 2mi

(1) Zc,, exp (-;1/2) , ¢ €C
-

are called Fourier series of period w. The goal of this section is to show
that every holomorphic function with period w admits development into
a normally convergent Fourier series (1). The proof is accomplished by
representing every such function f in the form f(z) = F(exp(2Ziz)), where
F is holomorphic in an annulus (cf. subsection 2); the Laurent development
of F' then automatically furnishes the Fourier development of f.

1. Strips and annuli. In what follows w will always designate a non-zero
complex number. A region G is called w-invariant if z + w € G for every
z € G. This evidently occurs just when every translation z — 2z + nw
(n € Z) induces an automorphism of G. For every pair a,b € R witha < b
the set

T, :=T,(a,b) := {zEC:a<%(2§z) < b}

will be called the strip determined by w, a and b. The argument of w deter-
mines the “direction” of the strip, as the example in the figure illustrates.

Strips T, are w-invariant and in fact convex, so if d € T,, then the whole
interval [d,d+w] and indeed the whole line d+ wR lies in T,,. We also want
to admit @ = —oo0 and b = oo. Evidently T,,(—o0,b), with b € R, is an
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open half-plane, while T,,(—00, 00) is all of C. The figure shows T} ;(0, 2);
/4 is the argument of w = 1 + 4.

By means of z — z/w the strip T, (a,b) is mapped biholomorphically
onto Ti(a,b). Therefore most problems reduce to the case w = 1. On the
other hand, z — w := exp(2niz) maps the straight line L, := {z € C :
I(27z) = s} onto the circle {w € C : |w| = e™*}, for each s € R. From
this observation it follows immediately that

The strip T1(a,b) is mapped by
h:Ti(a,b) = Ae-b ¢-a(0) , 2 +— w := exp(27iz)

holomorphically onto the annulus A.-» .—a(0) centered at 0 and having in-

ner radius e~?, outer radius e °.

As special cases of this, h(T1(a,00)) is the punctured disc {w € C: 0 <
|lw| < e7?} and A(C) = C*.
In the sequel we will write just A for A.-s .—a(0).

2. Periodic holomorphic functions in strips. If f is holomorphic in
an w-invariant region G, then for every z € G and n € Z, the number
f(z+nw) is well defined. The function f is called periodic in G with period
w, or simply w-periodic in G, if

fz+w) = f(2) holds for all z € G.

The ostensibly more general identities f(z + nw) = f(z) for all z € G,
n € Z, follow trivially.

The set O,,(G) of all w-periodic holomorphic functions in the w-invariant
region G is evidently a C-subalgebra of O(G) which is closed in O(G) with
respect to compact convergence.

Now again let w = 1 and G be the strip 7. The holomorphic mapping
h: G — A of G onto the annulus A, considered in subsection 1, induces an
algebra monomorphism h* : O(A) — O(G) via F' — f := Foh which “lifts”
every holomorphic function F on A to a holomorphic function f(z) :=
F(exp(2miz)) on G with period 1. The image algebra h*(O(A)) is thus
contained in the algebra O1(G). In fact, O;(G) is precisely the range of
h*. We have namely, as an immediate consequence of the factorization
theorem 9.4.5,

Theorem. For every l-periodic holomorphic function f on G there is
exactly one holomorphic function F on A such that f(z) = F(exp(2miz))
forall z € G.

So, in summary, the mapping h* : O(A) — O1(G) is a C-algebra iso-
morphism.
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3. The Fourier development in strips. In any strip T,, all the (com-

plex) Fourier series Y% ¢, exp(2£tvz), ¢, € C, which are normally con-
vergent there define w-periodic holomorphic functions. The fundamental

insight here is that all w-periodic f € O(T,,) are thereby accounted for.

Theorem. Let f be holomorphic and w-periodic in the strip G = T,,. Then
f can be expanded into a unique Fourier series

(1) flz)= icu exp (2—;2.%)

which is normally convergent to f in G. (The convergence is uniform in
every substrip T,(a', V') of T, wherea <a’ <b <b.)
For every point d € G we have

@) 6 = = /[d’dw] £(C)exp (—?;‘—iuc) &, velL

w

Proof. We again restrict ourselves to the case w = 1. According to theorem
2 there is a unique holomorphic function F in the annulus A := {w € C:
e ® < |w| < e7®} such that f(z) = F(exp(2miz)). The function F has a
unique Laurent development in A:

F(w) = g.:ocuw” with ¢, = _2%/517(5)6—1/—1(%

and S any circle with center 0 which lies in A. This settles the question
of the existence of the representation (1). The uniqueness and convergence
assertions here follow from the corresponding ones for Laurent series.

The interval [d,d + 1] is parametrized by {(t) := d + 3=t and the circle
S by &(t) = ge®, t € [0,2n]. Here q := exp(2mid) € A. It follows that

1 1 [ .
_— F —v—1 - it\—v
o O e = o [ e e
= [ Q) exp(-2miv,
[d,d+1]
that is, (2) is valid for the coefficients c,, in view of 1.3(2). O

In simple cases, as with Laurent series, the Fourier series of a function
can be exhibited directly without recourse to the integral formulas (2) for
the coefficients. We discuss some.

4. Examples. 1) The Euler formulas
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1 _. 1., 5 1 . 1
COSZ=56 ”‘+§e”, smz=—%e 1z+Ee

iz

are the complex Fourier series of cos z and sin z in C.
2) The function ‘c’o’ls‘i is holomorphic in the open upper half-plane and

in the open lower half-plane and it has period w := 2w. Since ﬁ =
2¢i#—L ., we have
1+ ez
. o0 . i .
1 - — Zl 242V if §z>0,
o8 i+ Z" 2ie?*  if F2 < 0.
—00

as the corresponding Fourier developments.
3) The function cot z is holomorphic in the open upper half-plane and in

the open lower-half plane and it has period #. From cotz =1 (1 1 _2621-;)

we get the respective Fourier developments
(G S vklemy i g >,
cotz =
(—k21r11.)' Z— k—le21r'iuz if Sz2<0.

4) Since £1(z) = wcot 7z and (k—1)leg = (—1)k—1s§’°“1) (see 11.3.4(2)),
from differentiation of (3) we get the Fourier developments of all the Eisen-
stein functions for k£ > 2, namely

(=2mi)*t T vk-lemiv if Qz>0
ek(z) - (k—1)! 3
~GEAL S I AT i Sz <0,

The reader should derive the Fourier series of tan z, (sin z) ™! and (cos z) 2.

5. Historical remarks on Fourier series. As early as 1753 D.
BERNOULLI and L. EULER used trigonometric series

1 (e o]
—ag + Z(au cosvz + b, sinvz) , a,,b, €R
2 1

ay 28y

in solving the differential equation of a vibrating string. The

real creator of the theory of tngonometrlc series is however Jean Bap-
tiste Joseph de FOURIER (born 1768, took part in Napoleon’s Egyptian
campaign; later a politician by profession, close collaborator of Napoleon’s
for years, among other capacities as prefect of the Isére département; did
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physics and mathematics in his scant spare time, died in Paris 1830). It is
to honor him that such series are called Fourier series. FOURIER developed
the theory of his series starting in 1807. The point of departure was the
problem of heat conduction in a solid body, which leads to the “heat equa-
tion” (cf. 4.1). Although the physical applications were more important for
FOURIER than the new mathematical insights being uncovered (cf. the fa-
mous statement of JACOBI in 4.5 contrasting his and FOURIER's attitudes),
he nevertheless perceived at once the great significance of trigonometric se-
ries within the so-called pure mathematics and occupied himself intensively
with it. He published his investigations in Paris in 1822; this fundamental
book, which is exciting to read even today, was entitled La Théorie An-
alytiqgue de la Chaleur (see also vol. I of his (Buvres, or the 1878 English
translation by A. FREEMAN, published by Cambridge University Press and
reprinted by Dover Publ. Co., Inc. (1955), New York). A very good his-
torical presentation of the development of the theory in the first half of
the 19th century was given in 1854 by RIEMANN in his G6ttingen Habili-
tationsschrift entitled Ueber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe (Werke, 227-264).

§4 'The theta function

The focus of this section is the theta function
o0
0(2!,7') = Z e—u27r‘re27riuz,
—00

which by its very form is a Fourier series (in z). “Die Eigenschaften dieser
Transcendenten lassen sich durch Rechnung leicht erhalten, weil sie durch
unendliche Reihen mit einem Bildungsgesetz von elementarer Einfachheit
dargestellt werden konnen (The properties of these transcendental func-
tions are easily obtained via calculation because they can be represented by
infinite series whose formation law is of elemental simplicity).” Thus spoke
FROBENIUS in 1893 in his induction speech before the Berlin Academy
(Gesammelte Abhand. 2, p. 575).

After the necessary convergence proof (subsection 1) our first business
will be the construction (subsection 2) of doubly periodic meromorphic func-
tions by means of the theta function. In subsection 4 from the Fourier
development of e~2"""8(itz, ) we will get the classical
Transformation formula

0z, 1) = Ve " THlirz,7),

in the course of which the famous equation
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/ e de = /7

for the error integral drops out as a by-product, though to be sure we have
first to derive (in subsection 3 via Cauchy’s integral formula) a certain
“translation-invariance” of this integral.

Historical remarks on the theta function and the error integral will be
found in subsections 5 and 6.

1. The convergence theorem. The theta series

(e <]

0(2,7_) — Z e——u27r1'627riuz

—00

is normally convergent in the region {(z,7) € C%: R > 0}.

Proof. In the product region C* x E the Laurent series
had 2
Iw,0) =3 ¢ u”
—oo

is normally convergent (by the ratio criterion 4.1.4). Since I(e27%*,e7™") =
0(z,7) and since |e™™"| < 1 for all 7 with 7 > 0, the claim follows. O

We designate by T the open right half-plane {r € C : ®r > 0}. (The
capital “t” should remind us that this set involves the variable “7”.) From
the preceding theorem and general theory, 8(z,7) is continuous in C x T
and for each fixed value of one of the variables it is a holomorphic function
of the other. We think of 7 principally as a parameter; then 6(z,7) is a
non-constant entire function of z. We also have

0(z,7) =1+ 226“’2’" cos(2mvz) , (z,7) e Cx T.
1

Because of the normal convergence, the theta series may be differentiated
term-wise arbitrarily often with respect to either variable. Calculating in
this way one easily confirms that

% 4 o6 inCxT

— =4dn— .

022 or
The theta function therefore satisfies the partial differential equation g—;—% =
47rg§, which is central in the theory of heat conduction (7 being regarded
as a time parameter).
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2. Construction of doubly periodic functions. We first notice the
trivial identity

(1) 0(z+1,7) =0(z,71).
Furthermore
00
Z + i, 7_) Ze—u wT—2muT 2mivz _ oW —2Wiz Ze—(u—{—1)21\"re2‘m’(u+l)z7
-0

that is, upon rephrasing the latter sum in terms of v instead of v + 1,

(2) 6(z + i1, 7) = e"Te"2"20(2, 7).

The theta function consequently has period 1 in z and the “quasi-period it
with periodicity factor e™"e~27%*”, This behavior enables us to construct
doubly periodic functions.

Theorem. For each 7 € T the function

0(z + %,T)
0(z, 1)

is meromorphic and non-constant in C. It satisfies

E.(z) =

3) E.(z+1) = E.(z) and E.(z+1i1) = —E.(2).

Proof. Obviously E, (%) is meromorphic in C and on account of (1) and (2),
equations (3) hold. If there were a o € T for which E,(z) were constant,
equal to a € C, say, then 6(z + %,0) = af(z,0) would hold for all z € C.
Now

Z+ 0. ( lu —v2no 21rwz
2 E

is the Fourier development of 6(z + %,0’). The preceding identity and
uniqueness of Fourier developments would then lead to the contradiction
that ¢ = (1) for all v € Z. a

A meromorphic function in C is called doubly periodic or elliptic provided
it has two real-linearly independent periods. On the basis of the foregoing
theorem it is clear, since Rr # 0, that

The functions E.(z) and E.(z)?, for each 7 € T, are non-constant dou-
bly periodic functions having the two periods 1 and 2it, and 1 and ir,
respectively.
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22 . . .
3. The Fourier series of € " 0(iTz, 7). For our discussion of this
function we will need the following “translation-invariance” of the error
integral:

e o) o0
(1) / e~b@ta) gy = \/b—l/ e®dr  forallaeC,beR".

—0o0

(The meaning and criteria for the existence of improper integrals are briefly
reviewed in 14.1.0 and in what follows we will use R*, as was frequently
done in 5.4.4, to designate the set of positive real numbers.)

> —5+1i
Y2 a=p+iq 4
£ 141

-r 0 s

242
Proof. From the power series representation we obtain e’ > Lb_r;’TL for
all z € R and all b > 0. Therefore 2" < 2b=2z=2 — 0 as |z| — oo
and consequently the integral ffooo e~%"dz exists. We consider the entire

function g(z) := e, According to the Cauchy integral theorem we have
for all finite r, s > 0 (see the above figure)

(+) / i gdz + /7 ek L o

Using 71 (¢) := s +it, 0 < ¢t < q and the standard estimate 6.2.2, it follows
that

_ Y b2
5 sis

where the constant M := qequ is independent of s. Since b > 0, it follows
that

8§—00
m

lim gd¢ =0, and analogously lim / gd¢ = 0.
T s

Because 72(t) = t+a, t € [-r—p,s—p|, we have [. gd( = f_s;fp e—b(t+a)’ g,
From what has been noted so far, the left side of (x) has a limit in C as
r,8 — 00. Therefore the existence of the improper integral of e~bt+a)® ag

well as the equality
o0 2 o0 2
/ e—b(t+a) dt = / e—bt dt
—00 —00
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follows from (*). Substitution of z := Vbt on the right side of this gives us
(1). g

Anyone who has no anxiety about permuting the order of differentiation
and improper integration, can derive (1) as follows: The function h(a) :=

fix;o e~%@+9)* 4z has throughout C the (complex) derivative

o0 o0
K (a) = —-/ 2b(z + a)e @+’ g = ¢~blta)’ =0.

—oo —00

Therefore h is constant: h(a) = h(0). To adequately justify this argument
requires however a bit of work. O

Now denote by /7 the holomorphic square-root function in T which is
uniquely determined according to 9.3.2 by the specification v/1 = 1. Then
with the help of equation (1) we can show

Theorem. For each 7 € T, e“zz"TO(iTz,z) i8 an entire function of z
having period 1 and Fourier expansion

(2) e—zz-n-re(i,rz’ z) _ (\/F)—l Ze—nzr/-re'hrinz
-

Proof. The series definition of §(z,7) gives
2 d 2
(3) e MY(irz,2) = Y e TR (z,7) € CxT.
—o0

For each 7 € T this is an entire function of z which visibly has period 1
(shift of summation index). Consequently according to theorem 3.4 there
is valid for it the equation

oo
e~ " Q(itz, 2) = Z cn(r)e*™™  forall (z,7)€CxT,
where 1
en(r) = / e~ "Tg(irt, T)e =" dt.
0

Due to the identity (¢ + v)2 + 2itn/T = (t + v + in/1)? — 2vin/T + n? /12
and the normal convergence of the theta function, it follows from (3) that

o0 1 o0 1
Cn(T)= Z /0 e—(t+y)21r-re—21rintdt= E / e—7r‘r(t+u+in/‘r)2_7rn2/-rdt‘
0

v=-—00 v=-—00

Since fol e~mTttvin/T)? gy f:H e~"(t+in/7)* gt equation (1) converts

the last expression for c,(7) into
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( ) —n?r/T /oo —1r‘r(t+in/‘r)2dt 1 —nlr/T /oo _tzdt
cn(T) =€ e = —F—=¢€ € s
" —o0 V

T —oo

provided 7 is not just in T but 7 € RT. Assembling the pieces,

(%) e_zz"TO(sz T)

=)
+2 2 )
dt e ™ 7r/7-e27r'mz
= VT / Z_

for all (z,7) € C x Rt. Taking z := 0, 7 := 1, this yields

o= (e L)oo

Since 6(0,1) = $°_e=**7 > 0, it follows that = e~t'dt = /7. (%) then

oo
becomes the equation (2), for the points (z,7) € C x R*. For fixed z € C,
both sides of (2) are holomorphic functions of 7 € T, so we can now cite
the identity theorem 8.1.1 to affirm the validity of (2) for all (z,7) € Cx T.
O

4. Transformation formulas of the theta function. From the Fourier
expansion 3.(2) we immediately deduce the

Transformation formula:
0(z =) = V7e " "6(it2,7),  (57) €Cx T

an equation which can also be written in the “real” form

zzvr'r

o0
2 € 2
e~ TT2nmTZ _ (1 +2 E e~ /T cos(2mrz)> .
2 v :

The function

(e o)
0(r) :==6(0,7) = Ze—"z’" , T€T,
is the classical theta function (the “theta-null-value”); for it there is the
Transformation formula:

6 (}) — V().

Considerable numerical power is concealed in this identity. For example, if
we set ¢:=e~"" and r := e~"/7, then it says that
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1420+2¢* +2¢° +--- =1/ +2r+2r* + 2r% +..).

If q is only a little smaller than 1 (that is, if the positive number 7 is very
small), then the series on the left converges very slowly; but in this case r
is very small and a few summands from the right side suffice to calculate
the value of the sum with high precision.

The transformation formula for 8(z, 7) is only the tip of an iceberg of in-
teresting equations involving the theta function. In 1893 FrOBENIUS (loc.
cit., pp. 575,6) said: “In der Theorie der Thetafunctionen ist es leicht, eine
beliebig grosse Menge von Relationen aufzustellen, aber die Schwierigkeit
beginnt da, wo es sich darum handelt, aus diesem Labyrinth von Formeln
einen Ausweg zu finden. Die Beschéftigung mit jenen Formelmassen scheint
auf die mathematische Phantasie eine verdorrende Wirkung auszuiiben (In
the theory of the theta functions it is easy to assemble arbitrarily large
collections of relations; but the difficulty begins when it becomes a ques-
tion of finding one’s way out of this Labyrinth. Preoccupation with such
masses of formulas seems to have a dessicating effect on the mathematical
imagination).”

5. Historical remarks on the theta function. In the year 1823
Poi1ssoN considered the theta function 6(r) for positive real arguments
7 and derived the transformation formula 6(7=1!) = /70() (Jour. de
UEcole Polytechn. 12 Cahier 19, p. 420). RIEMANN used this formula in
1859 in his revolutionary, short paper “Uber die Anzahl der Primzahlen
unter einer gegebenen Grosse” ( Werke, 145-153) when studying the func-
tion (1) == > ° eV’ = 1(6(r) — 1), in order to get “einen sehr be-
quemen Ausdruck der Function {(s) (a very convenient expression of the
function ({(s))” - p.147.

Carl Gustav Jacob JACOBI (born 1804 in Potsdam, 1826-1844 professor
at Konigsberg and founder of the Konigsberg school, from 1844 academi-
cian at the Prussian Academy of Science in Berlin; died 1851 of smallpox;
one of the most important mathematicians of the 19th century; the JA-
COBI biography by L. KOENIGSBERGER, Teubner-Verlag (1904), Leipzig is
very informative) studied #-series systematically from 1825 on and founded
his theory of elliptic functions with them. This was in his Fundamenta
Nova Theoriae Functionum Ellipticarum published in Konigsberg in 1829
(Gesammelte Werke 1, 49-239), a work of extraordinary richness. It closes
with an analytic proof of LAGRANGE’s theorem that every natural number
is a sum of four squares. Our transformation formula is but a special case
of more general transformation equations in JACOBI (cf., say, p. 235 loc.
cit.).

JACOBI secured the properties of the 6-functions purely algebraically.
Since the time of LIOUVILLE’s lectures, methods from Cauchy’s function
theory have predominated, as is, e.g., already the case in the book [BB]J.
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We speak of the theta function because JACOBI himself happened to
designate the function 6(z,7) that way (using © instead of ). In his
memorial address on JACOBI, DIRICHLET ( Werke 2, p.239) says: “... die
Mathematiker wiirden nur eine Pflicht der Dankbarkeit erfiillen, wenn sie
sich vereinigten, [dieser Funktion] JACOBI's Namen beizulegen, um das
Andenken des Mannes zu ehren, zu dessen schénsten Entdeckungen es
gehort, die innere Natur und die hohe Bedeutung dieser Transcendente
zuerst erkannt zu haben (... mathematicians would simply be fulfilling an
obligation of gratitude if they were to unite in bestowing JACOBI’s name
on this function, thus honoring the memory of the man among whose most
beautiful discoveries was to have first discerned the inner nature and enor-
mous significance of this transcendent).”

As shown in subsection 1, the function 8(z, 7) satisfies the heat equation.
So it is not surprising that as early as 1822 — seven years before the appear-
ance of Jacobi’s Fundamenta Nova — theta functions show up in Fourier’s
La Théorie Analytique de la Chaleur (cf., e.g., Buvres 1, p. 295 and 298);
however FOURIER did not perceive the great mathematical significance of
these functions? To him the value of mathematics generally lay in its ap-
plications, but JACOBI did not recognize such criteria. His point of view is
wonderfully expressed in his letter of July 2, 1830 to LEGENDRE (Gesam-
melte Werke 1, p.454/5): “Il est vrai que M. Fourier avait ’opinion que
le but principal des mathématiques était 1'utilité publique et I’explication
des phénomenes naturels; mais un philosophe comme lui aurait da savoir
que le but unique de la science, c’est I’honneur de I’esprit humain ... (It is
true that M. Fourier had the opinion that the principal aim of mathemat-
ics was public usefulness and the explanation of natural phenomena; but a
philosopher like him should have known that the unique aim of science is
the honor of the human mind ... ).”

6. Concerning the error integral. In the proof of theorem 3 the equality

(1) / e dz =7
— o0

was an incidental by-product. This integral is frequently called the Gauss
error integral. It already occurs implicitly in the famous work on the cal-
culus of probability by DE MOIVRE entitled The Doctrine of Chances (first
edition 1718); the reprint of the third edition 1967 by Chelsea Publ. Co.
contains a biography of DE MOIVRE on pp. 243-259. (Abraham DE
MOIVRE, 1667-1754, Huguenot; emigrated to London after the repeal of
the Edict of Nantes in 1685; 1697 member of the Royal Society and later

2In 1857 in his first lectures on the theory of elliptic functions WEIERSTRASS said
of the heat equation (cf. L. KOENIGSBERGER, Jahresber. DMV 25(1917), 394-424, esp.
p. 400): “..., die schon Fourier fiir die Temperatur eines Drahtes aufgestellt, in der er
jedoch diese wichtige Transzendente nicht erkannt hat (..., which Fourier had already
proposed for the temperature of a wire, but in which he did not perceive these important
transcendents).”
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of the academies in Paris and Berlin; discovered the “Stirling formula”
n! = v/2rn(n/e)" before STIRLING; served on a committee of the Royal
Society adjudicating the priority dispute between NEWTON and LEIBNIZ
over the discovery of the infinitesimal calculus; in his old age NEWTON is
said to have replied when someone asked him a mathematical question:
“Go to Mr. DE MOIVRE; he knows these things better than I do.”) GAuss
never laid any claim to the integral and in fact in 1809 in his “Theoria Mo-
tus Corporum Coelestium” ( Werke 7, p.244; English translation by Charles
H. Davis, Dover Publ. Co., Inc. (1963), New York) he indicated LAPLACE
as the inventor; later he corrected himself and said (Werke 7, p. 302) that
(1) in the form

/1 In(1/z)dz = %\/E
0

was already in a 1771 work of EULER (“Evolutio formulae integralis [ z/~1
dz(fzx)* integratione a valore = 0 ad z = 1 extensa,” Opera Omnia (1)
17, 316-357). In Euler (p.333) even the more general formula

2n -1
2

3 5
55 \/7_1", TL~——1,2,,..

1
(@) /0 (n(1/2) do = -

is to be found; via the substitution z := e“z, that is, t = 4/In(1/z), this
goes over directly into the formula

e 2 !
(3) / e dr = (2) v, n € N,

oo nl4r

which may also be found on p. 269 of LAPLACE’s “Mémoire sur les approx-
imations des formules qui sont fonctions de trés grands nombres” ( Buvres
10, 209-291). However, the equations (3) follow immediately by induction
from the more basic (1), using integration by parts (f'(z) := 2" , g(z) :=
e~%") and the fact that lim 7)o g2ntle=a® =0,

EULER knew the special cases n = 1,2 of formula (2) as early as 1729
(Opera Omnia (1) 14, 1-24, esp. pp. 10,11) but the equality (1) seems not
to have come up explicitly with EULER.

In the theory of the gamma function I'(z) = [;° t*~le~'dt (which will
be taken up in the second volume) equation (1) is just a trivial case of Eu-
LER’s functional equation I'(2)['(1 — 2) = =, since I'(}) = vl e dt =

2 e e~*"dz (z := v%). EULER knew the equality L(3) = /7, but nowhere
does he mention the 51mp1e proof that via substltutlon as above one thereby
gets the equality I'(3) = 2f0 e~ dr (cf. Opera Omnia (1) 19, p. LXI).
In chapter 14 usmg the residue calculus we will give further proofs of the
formula [ e e~ dz = /7.
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One gets the value I of the error integral most quickly by reduction to
a certain double integral which arises from iterated integrals (EULER had
evaluated other integrals this way; cf. Opera Omnia (1) 18, pp. 70,71).
Using the polar coordinates z = r cos ¢, y = rsiny, the double integral is
evaluated thus:

I? / e"zdw/ e_yzdy_—_// e_zz_yzdxdy
—00 —oo R?
27 oo 2 0o
= / / e " rdrdp = 7r/ e tdt = 7.
o Jo 0

This proof is due to POISSON and was used in 1891 by E. PICARD in his
Traité d’analyse, vol. I, pp. 102-104.

There is yet another quite elementary way to determine the value of I. Fol-
lowing J. VAN YZEREN, “Moivre’s and Fresnel’s integrals by simple integration,”
Amer. Math. Monthly 86(1979), 691-693, we set

oo e—t(1+12)

— 00

42
) = et e dr < et 1 dr = et
e(t)=e Tl se k=T,

whence lim¢_, o €(t) = 0. Differentiating under the integral sign gives

e o) fe o)
(*) e'(t) _ _/ e—t(l—f—z?)dw — _e—t/ E—tzzdilt _ —I(\/Z)_le_t§

which together with lim,_, e(t) = 0 yields

* e * 2
e(t) = —/ e'(u)du = I/ ——du = 2_[/ e_z dz.
t t ﬁ Vvt

Set t = 0 to obtain I? = m = ¢(0). The perilous appearing interchange of
differentiation and integration which is involved in () is readily and rigorously
justified: For p > 0, h € R\ 0 we have ph < e®® — 1 < pheP", from which follows

Then

—pt _ o—P(t+h)

p

he PR < & < he P for all t € R.

Suppose now that t > 0, t+h > 0 and p := 1 + z°. Integration with respect to =
from —oo to oo gives h(vE+ h) e ¢TM < e(t) —e(t + h) < h(VE)"'e '], and
so upon dividing by h and letting h — 0, we see that €'(t) = —I(v/t) e "

In closing let us note that the translation-invariance formula 3.(1) holds
also in the more general form
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oo 2 o0 2
/ e—ule+a) g _ / e’dr  forallaeC,ueT.

— 00 — 00

The proof from subsection 3 for w = b > 0 carries over almost verbatim
to the present context where only Ru > 0. From this and either theorem
7.1.6* or the Exercise in §1 of Chapter 7 follows:

For all (u,v,w) e TxCxC

/oo e—(um2+2vm+w)dm — [Ee(vz/u)——w,
Ju

— 00

where \/u = \/|ule’ with |p| < 3.
In turn we immediately get from this

oo —uz? _ \/7_1' —v?/4u
(#) /0 e cos(vr)dz = 2\/56 .
For real values of the parameters u and v this last formula is to be found
in the book Théorie analytique des probabilités of LAPLACE, on page 96 of
the 3rd edition, 1820 (1st ed. was 1812, Paris). By decomposing into real
and imaginary parts the reader can derive two real integral formulas from

(#)-



Chapter 13

The Residue Calculus

As early as the 18th century many real integrals were evaluated by passing
up from the real domain to the complex (passage du réel 4 I'imaginaire). Es-
pecially EULER (Calcul intégral), LEGENDRE (FEzercices de Calcul Intégral)
and LAPLACE made use of this method at a time when the theory of the
complex numbers had not yet been rigorously grounded and “all conver-
gence questions still lay under a thick fog.” The attempt to put this pro-
cedure on a secure foundation lead CAUCHY to the residue calculus.

In this chapter we will develop the theoretical foundations of this calculus
and in the next chapter use it to evaluate classical real integrals. In order
to be able to formulate things with ease and in the requisite degree of
generality, we work with winding numbers and nullhomologous paths. The
Residue Theorem 1.4 is a natural generalization of the Cauchy integral
formula. The classical literature on the residue calculus is quite extensive.
Especially deserving of mention is the 1904 booklet [Lin] by the Finnish
mathematician Ernst LINDELOF (1870-1946); it is still quite readable today
and contains many historical remarks. The monograph by MITRINOVIC and
KECKIC is a modern descendant of it which is somewhat broader in scope
and contains a short biography of Cauchy.

§1 The residue theorem

At the center of this section stands the concept of the residue, which is dis-
cussed in considerable detail and illustrated with examples (subsections 2
and 3). The residue theorem itself is the natural generalization of Cauchy’s
integral theorem to holomorphic functions which have isolated singularities.
Its proof is reduced to the integral theorem by means of Laurent’s expan-
sion theorem.

In order to be able to formulate the residue theorem in sufficient gener-

377
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ality we call on the index function ind,(z) which was introduced in 9.5.1.
The special situation in which this number equals 1 will be considered first,
in subsection 1.

1. Simply closed paths. A closed path « is called simply closed if

Inty#® and ind,(2)=1 for all z € Int .

Here we are using the notation introduced in 9.5.1:

ind, (2) ! / S €Z, zeC\y
¥

= omi (—2z

and
Inty = {z € C\ 7 :ind,(z) # 0}.

Simply closed paths are particularly amenable. According to theorem 6.2.4
every circle is simply closed. In what follows we offer further examples,
sufficient for the applications of the residue calculus to be made in the next
chapter.

0) The boundaries of circular segments and of triangles and rectangles
are simply closed.

Proof. Let A be an open circular segment; this expression is used faute
de mieuz to designate a chord-arc region of the kind shown shaded in the
figure below, viz., the intersection of an open disc and an open half-plane.
We have 04 = OB — 0A’, with 8B = v ++" a circle and A’ = " — 4 the
boundary of the circular segment A’ complementary to A (cf. the figure).

It follows that indga(z) =1 —indpa-(z) for z € A. Points z in A lie in the
outside of the curve JA’, as we see by joining z to oo by a ray which is
disjoint from A’. Constancy of the index on this line and its vanishing at
oo then give indpa/(z) = 0. Thus indpa(z) = 1 and JA is simply closed.

This proof can be repeated if more of A is excised by chords of the
containing circle. Since every triangle and every rectangle arises from such
excisions on a containing circle, each has a simply closed boundary. (Cf.
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the assertion that indgr(z) = 1 for z € R, about the rectangular boundary
OR, with Exercise 1 in §1 of Chapter 6. )

1) The boundary of every open circular sector A (left-hand figure below)
is simply closed.

Proof. We have A = v+71+v2 and A = B —9A’, with A’ denoting the
sector complementary to A in the whole disc B. It follows that indga(z) =
1—indgas(z) for z € A. As before, indg4- is constant on a radial path from
2 to co which lies outside A’, so indsa/(2) = 0.

2) The boundary of every open convez n-gon V is simply closed.

Proof. Convex n-gons are decomposable into triangles. For example, in the
right-hand figure above OV = 9A; + 0As. For z € Ay, indga,(2) =1 by
0), and indga, (2) = 0 because z lies outside A,. Thus indgy (2) = 1. Since
V is a region and the index is locally constant, it follows that inday (2) = 1
forall z € V.

3) The boundary of every circularly indented quadrilateral ? of the kind
shown in the left-hand figure below, in which ' is a circular arc, is simply
closed.

Proof. The quadrilateral V = abed is convex and 61?= OV — GA, where A

is the circular segment being excised. Since each z € i//\ lies outside A the
claim indav(z) = 1 follows from the preceding example.

Y2

S+

4) The boundary of every open circular horseshoe H is simply closed.
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Proof. We have (cf. the right-hand figure above)

OH=m+mn+r+nu=n+5"-v+7-5 -4

where S™, S* are the inner and outer circles, respectively. Now indg+(z) =
1for z € H. And every z € H lies outside of S~ and outside of the circular
quadrangle L bounded by v — v; + 6 — v3. It follows that indpy(z) = 1 for
z€ H.

The preceding examples can be multiplied at will. They are all special in-
stances of the following theorem, the usual proof of which rests on the integral
theorem of STOKES:

A closed path v : [a,b] — C is simply closed under the following circumstances:

1) v is homeomorphic to the circle Sy (that is, v : [a, b) — C is injective).

2) Inty # 0 and lies “to the left of v (that is, if the tangent line y(u) + 7' (u)t,

t € R, to v at any point of v where v'(u) # 0, is “rotated by %7r,” the resulting
line y(u) + iy (u)t has points lying in Inty for which t is positive and arbi-
trarily small.)

According to 9.5.2-3 for every path ~ which is nullhomologous in a
domain D the general Cauchy integral formula

ind, (2)f 27”/(‘ d¢ forall fe O(D),ze€e D\«

is valid. In particular then, for a simply closed path v which is nullhomol-
ogous in D we always have

1 f(©)
=— [ == 1 D ,
) 271_2_[7( zd( for all f € O(D), z € Inty
We want to explicitly emphasize

Cauchy’s integral formula for convex n-gons. Let V be an open,
conver n-gon with V.C D and n > 3. Then every function f € O(D)
satisfies the equation

1 f) d¢ = {f(Z), for zeV
2w Joy C—2 0, for z€D\V.

For the simply closed path 0V is nullhomologous in D: There is an open
n-gon V' (obtained by dilating V by a similarity transformation) with
V C V' ¢ D, and so by Cauchy’s integral theorem for star-shaped regions
we even have

/ gd¢ =0 for all g € O(V’).
v
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2. The residue. If f is holomorphic in D\ c and Y- a.,(z — ¢)¥ is its
Laurent development in a punctured disc B* centered at c, then according

to 12.1.3(2)
2m/f

for every circle S centered at ¢ and lying in B. Thus of all the Laurent
coefficients only a_; remains after integration of f. For this reason it is
called the residue of f at ¢ and we write

res.f ;= a_1.

The residue of f is defined at every isolated singularity of f.

Theorem. The residue at ¢ of f € O(D\ ¢) is the unique complex number
a such that the function f(z) —a(z — ¢)~! has a primitive in a punctured
neighborhood of c.

Proof. If 3 a,(z — ¢)” is the Laurent series of f in B* := B.(c) \ ¢,
then the function F(z) :=3_,, (2~ )t € O(BX) has derivative

= f—a_1(z—c)~!. Therefore a function H is a primitive of f—a(z—c)™!
in some punctured neighborhood of c if and only if (F — H)' = (a — a—1)
(2 —c)~! there. Since according to 6.3.2 (z —c)~! has no primitive around
¢, an H with H = F+ const. exists if and only if a = a_;. O

If f is holomorphic at ¢, then res.f = 0. However, this last equation can
hold for other reasons too. For example,

res, ——l— =0 for n > 2.
(z—o)"

For every f € O(D \ ¢) we always have res.f’ = 0, because the Laurent
development of f’ around c has the form } °va,(z — ¢)*~! and conse-
quently contains no term a(z — c)~1. O

We discuss next some rules for calculating with residues. Immediately
clear is the C-linearity

resc(af + bg) = a res.f + b res.g for f, g€ O(D\c),a,beC.

Decisive for many applications is the fact that residues, though defined
as integrals, can often be calculated algebraically. The matter is especially
simple at a first order pole:

Rule 1). If ¢ is a simple pole of f, then



382 13. THE RESIDUE CALCULUS

res.f = iLnlc(z —o)f(2).

Proof. This is trivial, because f = a_;(z — ¢)~! + h, with h holomorphic
in a neighborhood of c. a

From this rule we obtain a result which is extremely useful in practice:

Lemma. Suppose g and h are holomorphic in a neighborhood of ¢, g(c) # 0,
h(c) =0 and h'(c) # 0. Then f := g/h has a simple pole at c and

g(c)
R(c)

Proof. Since h has the Taylor development h(z) = h’'(¢)(z — ¢) + - - - about
¢, it follows that

rescf =

9(z) _ g(0)
fm(e =) = ImG = 9hG) = v

Consequently, c is a pole of f of the first order with residue g(c)/h/(c). O

£ 0.

There is no comparably handy criterion for the determination of residues
at poles of higher order:

Rule 2). If f € M(D) has a pole at ¢ of order at most m and if g is
the holomorphic continuation of (z — ¢)™f(z) over ¢, then

1

res.f = (_m_:__l)_!g(m-l)(c)_

b

Proof. Near ¢ we have f = —m-r +- + = + h, with h holomorphic

at ¢ as well. Then g(2) = by, + by 1(z—c)+ +b1(z—c)m 14...is the
Taylor series of g at ¢, so that res.f = b; = (mil)!g(m‘l)(c) follows. O

There is no simple procedure for calculating residues at essential singu-
larities.

3. Examples. 1) For the function f(z) = , the point ¢ := exp(F L) =

1 +
%( 1+ 1) is a simple pole. Since ¢~! = ¢, it follows from lemma 1 that

c? 1_
rescfZEzzc— 4\/_(1—1)
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The points ic, —c and —ic are likewise first order poles of f; for them one
finds

i_ 1_ i_
res;.f = —Zc , res_.f = —Zc , res_;cf = Zc.

2) Let n € N\ {0}, g € O(C) be such that g(c) # 0 for any ¢ € C
satisfying ¢ = —1. Then the function f(z) := 1%_%2” has a simple pole at
each such ¢, with

res.f = nislc_)l = —-%g(c).

3) Suppose p € R and p > 1. Then the rational function R(z) =
_(—?T%Z—ZW has poles of order two at each of the points ¢ := —p +
VP -1 € Eandd:= —p—+/p?—1¢€ C\E. Since 22 +2pz+1 =
(z — ¢)(z — d), g(z) := 4z(z — d)™2 is the holomorphic continuation of
(2 — ¢)?R(z) over c. We have g'(c) = —4(c+d)(c — d)~3, and so from Rule
2,2)

P
(VP -1)

4) Let g, h be holomorphic near ¢ and ¢ be an a-point of g of multiplicity
v(g,c). Then

res. R =

res, (h(z)g (gz = a) = (5,0

Proof. Setting n := v(g,c), we have g(z) = a + (z — ¢)"§(2) near ¢, with §
holomorphic near ¢ and §'(¢) # 0 (cf. 8.1.4). It follows that near ¢

gz _ nz-9"'i(z) + (2 - )" (2)
9(z) —a (z —)"g(2)

n
P + holomorphic function .

From this the claim follows. o
We emphasize the special case:
If g has a zero at ¢ of order o.(g) < 00, then

e (%) =000

A proof analogous to that of 4) establishes:
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5) If g has a pole at ¢ and h is holomorphic at c, then

9'(2)
res. (h(z)g(z) —

Application of 4) yields a

) = h(c)o.(g) for alla € C.

Transformation rule for residues. Let g : D — D, 7 — 2z := g(r) be
holomorphic, with g(¢) = ¢, ¢'(¢) # 0. Then

res.f = resz((f 0 g)g’) for all f € M(D).

Proof. Set a := res.f. According to theorem 1 there is a punctured neighborhood

V* of cand an F € O(V*) such that F'(z) = f(z) — 2 a z- Then g (VX)isa

punctured neighborhood of ¢ and for 7 in that neighborhood

(Pog)(r) = (o) (1) = £la(r)g'(r) — oL

Since derivatives always have residue 0 (subsection 1), it follows that

resz((f 0 g)g’) = a res: ( g'() ) .

g(t)—c¢

Since, due to g'(¢) # 0, g has at & a c-point of multiplicity 1, the present claim
follows from 4). m]

The transformation rule says that the residue concept becomes invariant if it
is applied to differential forms instead of functions.

4. The residue theorem. Let v be a nullhomologous path in the domain
D, A a finite subset of D\ v. Then

(1) gez [ hdC= D indy(c) - resch

c€Inty

for every holomorphic function h in D\ A.

Remark. Since res,h = 0 in case z € A, the sum on the right side of (1)
is really only extended over ¢ € A N Int~y, and so there is no convergence
question.

Proof. Let A = {c1,...,cn}. We consider the principal part h, = b,(z —
c,) 1+ il,, of the Laurent development of h at c,, where h, contains all the
summands featuring powers (z — ci,)’c with k£ < —2. According to 12.2.3,
h. is holomorphic in C\ ¢,. Since h, has a primitive in C\ ¢, and ¢, € 7,
it follows from the very definition of the index that
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(*) /h,,d( = b,,/ & = 2mib,ind,(c,) , 1<v<n.
¥ ¥

( —Cy
Since h — (hy + - - - + hy,) is holomorphic in D and + is nullhomologous in
D, [ (h—hy—---~hn)d¢ = 0 by the integral theorem. Because of () and

the fact that b, = res. h, it follows that

27rz/ «=55 Z/h d¢ = Zmd (cv) - resc, h

Since ind,(c,) = 0 whenever ¢, € Ext~, this is just equation (1). O

On the right side of equation (1) we find residues, which depend on the
function h € O(D\ A) and are analytically determinable, as well as winding
numbers, which depend on the path and are generally not susceptible to
direct calculation. Thus the residue theorem becomes especially elegant for
simply closed paths:

If v ¢ D is simply closed and nullhomologous in D, then under the
hypotheses of the residue theorem we have the

Residue formula: — / hd¢ = Z resch O

c€Int vy

In later applications D will always be a star-shaped region; the hypoth-
esis that v be nullhomologous in D is then automatically fulfilled by every
yC D.

The general Cauchy integral formula is a special case of the residue
theorem. For if f is holomorphic in D and z is a point in D, then
¢~ f(¢)(¢ — 2)7! is holomorphic in D \ z and has the residue f(z) at
z. Therefore for every path v which is nullhomologous in D the equation

f(C) = ind,(2) f(2) forz€e D\~

27r1, y

holds.

5. Historical remarks on the residue theorem. Cauchy’s first in-
vestigations in function theory were the beginnings of the residue calculus
as well. The memoir [C;] from the year 1814, which we have repeatedly
cited, had as its primary goal the development of general methods for cal-
culating definite integrals by passing from the reals to the complexes. The
“singular integrals” introduced by CAUCHY at that time ([C,], p.394) are
in the final analysis the first residue integrals. “Der Sache nach kommt das
Residuum bereits in der Jacobi’schen Doctor-Dissertation [aus dem Jahre
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1825] vor (In essence the residue already occurs in Jacobi’s doctoral dis-
sertation [from the year 1825])” — quoted from p.170 of [Kr]. The word
“residue” was first used by CAUCHY in 1826 (Euvres (2) 6, p. 23), but
to be sure the definition there is quite complicated. For details of these
matters we refer to LINDELOF’s book [Lin], especially pp. 12 ff.

As applications of his theory CAUCHY derived anew virtually all the then
known integral formulas; for example, “la belle formule d’Euler, relative a
I'intégrale”

* zldzx
/o Trp (O] p432);

and in addition he discovered many new integral formulas (also see the next

chapter).
Nevertheless POISSON was not particularly impressed with the treatise
[Ci], for he wrote (cf. CAUCHY’s Euvres (2) 2, 194-198): «...je n’ai

remarqué aucune intégrale qui ne fiit pas déjad connue --- (I have not
noticed any integral which was not already known- - -)”.

Naturally nullhomologous paths aren’t to be found in CAUCHY’s writing.
Moreover, because he was unaware of essential singularities, he worked
exclusively with functions having at worst polar singularities.

Exercises

Ezercise 1. Determine res.f for all isolated singularities ¢ € C of the
following:

2 <
2) flo) = £ 253
b) f(2) = (z* +a*)*

9 1) = &=

22
d) f(2) = (z-2)*(cosz —1)°

e) f(z) = cos (l—'z_—z)
f) f(z) =tan3z

g) f(2) =cos (1%5)

h) f(z) =sin(1 + 27 !)cos(1 + z72).
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Egercise 2. Show that resoexp(z + 271) = X0 o s

Ezercise 8. Let f,g be holomorphic around ¢ with g(¢) = ¢g’(¢) = 0 and
g”(c) # 0. Show that

resc(f/g) = [6f'(c)g” (c) — 2f(c)g" (c)]/ (39" (c)?).
Ezercise 4. With the help of the residue theorem show that

a) / '-—L,—l————dl =0
8B, (0) Sin” z cos 2
sin z
— 7 dr=—2r
b) ~/8]E A1) 2z smi
c) [y (—E;If)_dz = —m, where v is the boundary of B;(0) N H.

Ezercise 5. Let q(z) be a rational function having denominator of degree
at least 2 more than the degree of its numerator. Show that

Z res.q = 0.

ceC

Ezercise 6. a) Let f be holomorphic in C with the exception of finitely many
(isolated) singularities. Then 27 2f(z~1) is holomorphic in a punctured
neighborhood of 0. Show that

reso(z2f(271)) = Z res. f.

ceC

b) Show that —=——dz = 5mi.
8K 42

¢) With the help of a) give new solutions to exercise 1 g) and h).

§2 Consequences of the residue theorem

Probably the most famous application of the residue theorem is its use in
generating a formula for the number of zeros and poles of a meromorphic
function. We will derive this formula from a more general one. As a special
application we discuss the theorem of ROUCHE.

!
1. The integral E;Lr—i L F(C) .f.z C_ ~dC. Let f be meromorphic in D

and have only finitely many poles. Suppose v is a nullhomologous path in
D which avoids all the poles of f. For any complex number a such that the
fiber f~1(a) is finite and disjoint from ~, and for any F € O(D), we then
have
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L _f’(() = i -v(f,c)- F(c
: / FOFe i = Ce;@) nd, (€) - v(f, ¢) - F(c)

+ Y indy(d) - 0a(f) - F(d).
deP(f)

Remark. Only finitely many summands are involved here and only the
a-points and poles which lie inside of v play a role.

Proof. According to the residue theorem 1.4

2mi / FQ)7 f(c) A=A =Y indy(2)res, (F(C) A )(C) )

2€D\vy

f'(z

The only possible points at which the function F(z) HOET) can have a

non-zero residue are the points of the pole-set P(f) or the fiber f~1(a). If
f is holomorphic at ¢ € D and has an a-point at ¢ of multiplicity v(f, c),
then by 1.3,4)

res. (F(z)f—(f;—,)(i_)—a> = F(c)v(f,c).

If on the other hand c is a pole of f of order o.(f), then by 1.3,5)

f'(2) )
res. | F(z)—=——— ) = F(c)o.(f).
(Fa L) = Pt
The claim follows from these three equations. O

In most applications we find + is simply closed. Then (under the hy-
potheses of the theorem) we have, for example

NP
ai | TG = Lo,

where the sum extends over all zeros and poles of f inside ~.

The theorems just proved make possible explicit local descriptions via integrals
of the inverses of biholomorphic mappings.

Let f : D 5 D, z — w := f(2) be biholomorphic with inverse function
f7Y:D* 5 D given by w— z := f~(w). If B is any compact disc contained in
D, then the mapping f~|f(B) is given by the formula

1 f(C)
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Proof. Since 8B is simply closed and nullhomologous in D and the pole-set
P(f) =0, the integral on the right has the value

1 AN d¢ = Z v(f,c)c.

2mi Jop " f(Q) ~w e

Because f is biholomorphic, each fiber f~'(w) consists of exactly one point and
v(f, f (w)) = 1. Therefore the sum on the right is just the number f~(w).

2. A counting formula for the zeros and poles. If f is meromorphic
in D and M is a subset of D in which there are only finitely many a-points
and poles of f, then the numbers

Anzs(a,M):= > v(fe), aeC;

cef~Ya)NM

Anzg (oo, M) := Z loc(£)]

ceP(f)INM

are finite; we call them the number (= Anzahl in German, hence the nota-
tion), counted according to multiplicity, of a-points, respectively, poles of f
in M. Immediately from theorem 1 follows

Theorem. Let f be meromorphic and have only finitely many poles in D;
let v C D\ P(f) be a simply closed path which is nullhomologous in D. If
a € C is any number whose fiber f~1(a) is finite and disjoint from =, then

1
2mi

(1) [y %d( = Anzs(a,Inty) — Anz¢(co, Int ).

A special case of equation (1) is the famous

A counting formula for zeros and poles. Let f be meromorphic in D
and have only finitely many zeros and poles. Let v be a simply closed path
in D such that no zeros or poles of f lie on . Then

' I (OB
(1) %5WNOM_N_R

where N := Anzs(0,Intvy) and P := Anzs(oo, Int 7).

Formula (1') yields incidentally yet another proof of the Fundamental Theorem
of Algebra. Namely, if p(2) = 2" + a12" ' +--- +an € Cl2], n > 1 and r is
chosen large enough that |p(2)] > 1 for all |2| > r, then for such 2

p(z) mna""'+...
P -

n 't
= — + terms in — , v>2.
z zv
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If we now integrate over 8B,.(0), it follows from (1') that N = n, since p has no
poles in C. The claim follows because n > 1.

3. ROUCHE’s theorem. Let f and g be holomorphic in D and let v be
a simply closed path which is nullhomologous in D and which satisfies

(%) 1) — 9Ol <1g(Ol  forallCen.

Then f and g have the same number of zeros inside y:
Anzf(0,Intvy) = Anzy(0, Int ).

Proof. We can assume without loss of generality that f and g each have
only finitely many zeros in D. The function h := f/g is meromorphic in D
and (x) insures that there is a neighborhood U of 4, U C D, in which h is
actually holomorphic, with

h(2) -1 <1 forzeU, ie,h(U)cB(1)cC .

Consequently, log k is well defined in U and furnishes a primitive for h’/h
in U. Since f and g are both zero-free on v by (%), and h'/h = f'/f—g'/g
there, it follows that

R T I (O S T A (9]
_2m'/7f(<) % 2wiLg(4) .

The theorem then follows from formula (1’) of the preceding subsection. O

Here is a second proof: The functions h; ;=g +¢t(f —g), 0 <t <1, are
holomorphic in D. Because of () they satisfy |h:({)] = |g({)| — |f(C) —
g(¢)] > 0 for all ¢ € ~. All the functions h; are thus zero-free on vy and so
by theorem 2

1

h/
Anzp, (0,Inty) = 2_7rz/ hzgg
vy

The right side of this equation depends continuously on ¢ and according
to 9.3.4 it is integer-valued. Hence it must be constant. In particular,
Anzp,(0,Inty) = Anz,(0,Inty). Since hyp = g and h; = f, the claim
follows. (]

d¢, 0<t<1.

Remark. The conclusion of ROUCHE’s theorem remains valid if instead of
the inequality (*) we only demand

(%) [£(Q) =9I <1F QI +19(Q)]  forali¢ €.

Since once again this condition entails that g is zero-free on vy, we form h := f/g.
This function assumes no non-positive real value on +; for if h(a) = r < 0 with
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a € v, then (*x) would imply the contradiction |r — 1| < |r| + 1. Consequently,
we can choose U, as in the first proof, so that h € O(U) and h(U) Cc C~

The second proof can also be carried through, because each h, is again zero-
free on . Indeed, hg = g and for 1 >t > 0 from h:(a) = 0, a € =, the equation
h(a) =1 -1/t < 0 would follow. O

We will give five typical applications of Rouché’s theorem. In each one
must find, for the given f, an appropriate comparison function g whose
zeros are known and which satisfies the inequality (x).

1) Yet another proof of the Fundamental Theorem of Algebra: Given
f(z2) =2"+an_12""1 +--- + ag, with n > 1, we set g(z) := z". Then for
sufficiently large r and all |[¢| = », |f(¢) — g({)| < |9(¢)| (by the growth
lemma), whence follows Anzf(0, B;(0)) = Anz,(0, B,(0)) = n.

2) One can wring information about the zeros of a function from knowl-
edge of the zeros of its Taylor polynomials. More precisely:

If g is a polynomial of degree less than n, f(z) = g(2) + 2"h(z) is
the Taylor development of f in a neighborhood of B, where B := B.(0),
and if r*|h(¢)| < |g(¢)| for all { € OB, then f and g have equally many
zeros in B. — This is clear from ROUCHE. For example, the polynomial
f(z) = 3 + az + 22, where a € R and a > 5, has exactly one zero in E
because 3 + az does and 2 < |3 + a(| for all ¢ € OE.

3) If h is holomorphic in a neighborhood of E and h(OE) C E, then h
has ezactly one fired point in E. — If f(2) := h(2) — 2, and g(2) := —z we
have

1£(©) — 9Ol = ROl <1=1g(¢)]  for all { € IE;

therefore h(z) — z and —z have the same number of zeros in E, that is,
there is exactly one ¢ € E with h(c) = c.

4) For every real number A\ > 1 the function f(z) := ze*~% — 1 has
ezactly one zero in E and it is real and positive. — Setting g(z) 1= ze*~2,
1=|f(¢) — 9(Q)| < |g(¢)| prevails for all ¢ € GE, because A > 1; therefore
f and g have the same number of zeros in E, viz., exactly one. It is real
and positive because, thanks to f(0) = —1, f(1) = e*~! — 1 > 0 and the
intermediate value theorem, the real-valued function f|o 1) has at least one
zero in the interval (0,1).

5) Proof of the theorem of HURWITZ. We use the notation employed in
8.5.5. First consider the case that U is a disc. We have ¢ := min{|f(¢)| :
¢ € U} > 0. So we can choose ny large enough that |f,, — floy < ¢ for
all n > ny. Then |f,(¢) — f(O)| < |f(¢)] for all { € AU and all such n.
Our assertion therefore follows from Rouché’s theorem (with f in the role
of g and f, in the role of f). Now for an arbitrary U, f has only finitely
many zeros in the compactum U (by the identity theorem). Consequently
there exist pairwise disjoint discs Us,...,Ux (k € N) such that f is zero-
free in the compactum K := U \ U’f U,. Then almost all the f, are also
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zero-free in K. Therefore the conclusion of the theorem is reduced to the
case already settled of discs. O

Historical note. The French mathematician Eugéne ROUCHE (1832-
1910) proved his theorem in 1862 in the “Mémoire sur la série de Lagrange”
(Jour. UEcole Imp. Polytechn. 22 (no. 39), 193-224). He formulated it as
follows (pp. 217/218, but we use our notation)

Let a be a constant such that on the boundary 8B of B := B,(0)
f(z)

o——

g(2) <!

holds for a pair of functions f and g which are holomorphic in a neighbor-
hood of B. Then the equations g(z) — a - f(2) = 0 and g(z) = 0 have an
equal number of roots in B.

ROUCHE used logarithm functions in his proof. In 1889 HURWITZ for-
mulated ROUCHE’s theorem as a lemma and proved his theorem (as in 5)
above) with it. Cf. the citations in 8.5.5. ROUCHE’s name is not mentioned
by HURWITZ.

The sharper version of ROUCHE’s theorem based on the inequality (*x)
is to be found on p.156 of the 1962 textbook of T. ESTERMANN: Complez
Numbers and Functions, Athlone Press, London.

Exercises

Ezercise 1. Determine the number (counted according to multiplicity) of
zeros of the following functions in the indicated domains:

a) 2%+ 32°+ 122+ 3 inE and in By/5(0).
b) 2° +322+928+10 in E and in B2(0).
¢) 92°+52-3 in{zeC:3<|z| <5}
d) 224+ 2"+422 -1 inE and in By(0).

Ezercise 2. Let p(z) = 2" +an_12" "1 +- - -+ao be a normalized polynomial
with coefficients a; € C and n > 1. Show that there is a point ¢ € OE where

lp(c)] = 1.

Ezercise 8. Show that if A € R, A > 1, then the function f(z) ;== A—2—e~*
has exactly one zero in the closed right half-plane, that it is real and that
it lies in By(A\). Hint. In ROUCHE’s theorem set g(z) := A — z and
Y= 631 (/\)
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Ezercise 4. Let {c,} be a strictly decreasing sequence of positive real
numbers. Then f(2) := Y oo, cn2™ defines a holomorphic function in E.
Show that f has no zeros in E. Hint. Show that the partial sums of f have
no zeros in E and deduce from this that f has no zeros in B,(0) for every
0 <r < 1. (Cf. also Exercise 3 in §1, Chapter 0.)



Chapter 14

Definite Integrals and the
Residue Calculus

Le calcul des résidus constitue la source naturelle des
intégrales définies (E. LINDELOF)

The residue calculus is eminently suited to evaluating real integrals whose
integrands have no known explicit antiderivatives. The basic idea is sim-
ple: The real interval of integration is incorporated into a closed path =
in the complex plane and the integrand is then extended into the region
bounded by . The extension is required to be holomorphic there except
for isolated singularities. The integral over + is then determined from the
residue theorem, and the needed residues are computed algebraically. Eu-
LER, LAPLACE and P0OISSON needed considerable analytic inventiveness to
find their integrals. But today it would be more a question of proficiency in
the use of the Cauchy formulas. Nevertheless there is no canonical method
of finding, for a given integrand and interval of integration, the best path
~ in C to use.

We will illustrate the techniques with a selection of typical examples in
sections 1 and 2, “but