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To my mother 

and 

the memory of my father 



Preface 

This book has evolved from my experience over the past decade in 
teaching and doing research in functional analysis and certain of its appli
cations. These applications are to optimization theory in general and to 
best approximation theory in particular. The geometric nature of the 
subjects has greatly influenced the approach to functional analysis presented 
herein, especially its basis on the unifying concept of convexity. Most of 
the major theorems either concern or depend on properties of convex sets; 
the others generally pertain to conjugate spaces or compactness properties, 
both of which topics are important for the proper setting and resolution of 
optimization problems. In consequence, and in contrast to most other 
treatments of functional analysis, there is no discussion of spectral theory, 
and only the most basic and general properties of linear operators are 
established. 

Some of the theoretical highlights of the book are the Banach space 
theorems associated with the names of Dixmier, Krein, James, Smulian, 
Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to 
these (and others) we establish to two most important principles of geometric 
functional analysis: the extended Krein-Milman theorem and the Hahn
Banach principle, the latter appearing in ten different but equivalent formula
tions (some of which are optimality criteria for convex programs). In 
addition, a good deal of attention is paid to properties and characterizations 
of conjugate spaces, especially reflexive spaces. On the other hand, the 
following (incomplete) list provides a sample of the type of applications 
discussed: 

Systems of linear equations and inequalities; 
Existence and uniqueness of best approximations; 
Simultaneous approximation and interpolation; 
Lyapunov convexity theorem; 
Bang-bang principle of control theory; 
Solutions of convex programs; 
Moment problems; 
Error estimation in numerical analysis; 
Splines; 
Michael selection theorem; 
Complementarity problems; 
Variational inequalities; 
Uniqueness of Hahn-Banach extensions. 

Also, "geometric" proofs of the Borsuk-Dugundji extension theorem, the 
Stone-Weierstrass density theorem, the Dieudonne separation theorem, 
and the fixed point theorems of Schauder and Fan-Kakutani are given as 
further applicati6ns of the theory. 



viii Preface 

Over 200 problems appear at the ends of the various chapters. Some 
are intended to be of a rather routine nature, such as supplying the details 
to a deliberately sketchy or omitted argument in the text. Many others, 
however, constitute significant further results, converses, or counter
examples. The problems of this type are usually non-trivial and I have 
taken some pains to include substantial hints. (The design of such hints 
is an interesting exercise for an author: he hopes to keep the student on 
course without completely giving everything away in the process.) In any 
event, readers are strongly urged to at least peruse all the problems. Other
wise, I fear, a good deal of the total value of the book may be lost. 

The presentation is intended to be accessible to students whose mathe
matical background includes basic courses in linear algebra, measure 
theory, and general topology. The requisite linear algebra is reviewed in §1, 
while the measure theory is needed mainly for examples. Thus the most 
essential background is the topological one, and it is freely assumed. Hence, 
with the exception of a few results concerning dispersed topological spaces 
(such as the Cantor-Bendixson lemma) needed in §25, no purely topological 
theorems are proved in this book. Such exclusions are warranted, I feel, 
because of the availability of many excellent texts on general topology. 
In particular, the union of the well-known books by J. Dugundji and J. Kelley 
contains all the necessary topological prerequisites (along with much 
additional material). Actually the present book can probably be read 
concurrently with courses in topology and measure theory, since Chapter I, 
which might be considered a brief second course on linear algebra with 
convexity, employs no topological concepts beyond standard properties 
of Euclidean spaces (the single exception to this assertion being the use of 
Ascoli's theorem in 7C). 

This book owes a great deal to numerous mathematicians who have 
produced over the last few years substantial simplifications of the proofs 
of virtually all the major results presented herein. Indeed, most of the proofs 
we give have now reached a stage of such conciseness and elegance that 
I consider their collective availability to be an important justification for a 
new book on functional analysis. But as has already been indicated, my 
primary intent has been to produce a source of functional analytic informa
tion for workers in the broad areas of modern optimization and approxima
tion theory. However, it is also my hope that the book may serve the needs 
of students who intend to specialize in the very active and exciting ongoing 
research in Banach space theory. 

I am grateful to Professor Paul Halmos for his invitation to contribute 
the book to this series, and for his interest and encouragement along the 
way to its completion. Also my thanks go to Professors Philip Smith and 
Joseph Ward for reading the manuscript and providing numerous correc
tions. As usual, Nancy Eberle and Judy Snider provided expert clerical 
assistance in the preparation of the manuscript. 
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Chapter I 

Convexity in Linear Spaces 

Our purpose in this first chapter is to establish the basic terminology 
and properties of convex sets and functions, and of the associated geometry. 
All concepts are "primitive", in the sense that no topological notions are 
involved beyond the natural (Euclidean) topology of the scalar field. The 
latter will always be either the real number field R, or the complex number 
field C. The most important result is the "basic separation theorem", which 
asserts that under certain conditions two disjoint convex sets lie on opposite 
sides of a hyperplane. Such a result, providing both an analytic and a 
geometric description of a common underlying phenomenon, is absolutely 
indispensible for the further development of the subject. It depends implicitly 
on the axiom of choice which is invoked in the form of Zorn's lemma to 
prove the key lemma of Stone. Several other equally fundamental results 
(the "support theorem", the "subdifferentiability theorem", and two extension 
theorems) are established as equivalent formulations of the basic separation 
theorem. After indicating a few applications of these ideas we conclude the 
chapter with an introduction to the important notion of extremal sets (in 
particular extreme points) of convex sets. 

§ 1. Linear Spaces 

In this section we review briefly and without proofs some elementary 
results from linear algebra, with which the reader is assumed to be familiar. 
The main purpose is to establish some terminology and notation. 

A. Let X be a linear space over the real or complex number field. The 
zero-vector in X is always denoted bye. If {xJ is a subset of X, a linear 
combination of {Xi} is a vector X E X expressible as x = LAiXi, for certain 
scalars Ai' only finitely many of which are non-zero. A subset of X is a (linear) 
subspace if it contains every possible linear combination of its members. The 
linear hull (span) of a subset S of X, consists of all linear combinations of its 
members, and thus span(S) is the smallest subspace of X that contains S. 
The subset S is linearly independent if no vector in S lies in the linear hull of 
the remaining vectors in S. Finally, the subset S is a (Hamel) basis for X if 
S is linearly independent and span(S) = X. 

Lemma. S is a basis for X if and only ifS is a maximal linearly independent 
subset of S. 

Theorem. Any non-trivial linear space has a basis; infact, each non-empty 
linearly independent subset is contained in a basis. 
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B. As the preceding theorem suggests, there is no unique choice of 
basis possible for a linear space. Nevertheless, all is not chaos: it is a re
markable fact that all bases for a given linear space contain the same number 
of elements. 

Theorem. Any two bases for a linear space have the same cardinality. 
It is thus consistent to define the (Hamel) dimension dim(X) of a linear 

space X as the cardinal number of an arbitrary basis for X. Let us now 
recall that if X and Yare linear spaces over the same field then a map 
T: X ~ Y is linear provided that 

T(x + z) = T(x) + T(z), X,ZEX, 

T(rxx) = rxT(x), XEX, rx scalar. 

It follows that X and Y have the same dimension exactly when they are 
isomorphic, that is, when there exists a bijective linear map between X and Y. 

C. We next review some constructions which yield new linear spaces 
from given ones. First, let {X"J be a family of linear spaces over the same 
scalar field. Then the Cartesian product II"X" becomes a linear space (the 
product of the spaces X,,) if addition and scalar multiplication are defined 
component-wise. On the other hand, let M b ... , Mn be subspaces of a 
linear space X and suppose they are independent in the sense that each is 
disjoint from the span of the others. Then their linear hull (in X) is called 
the direct sum of the subspaces M b ... , Mn and written Ml EB'" EB Mn or 

n n 

simply EB Mi' The point of this definition is that if M = EB M i , then each 
i= 1 i= 1 

n 

X E M can be uniquely expressed as x = L: mi , where mi E M i , i = 1, ... , n. 
i= 1 

Now let M be a subspace of X. For fixed x E X, the subset x + M == 
{x + y:y E M} is called an affine subspace (flat) parallel to M. Clearly, 
Xl + M = X2 + M if and only if Xl - X2 E M, so that the affine subspaces 
parallel to M are exactly the equivalence classes for the equivalence relation 
"~M" defined by Xl ~ M X2 if and only if Xl - X2 E M. Now, if we define 

(X + M) + (y + M) = (x + y) + M, 

rx(x + M) = rxx + M, rx scalar 

then the collection of all affine subspaces parallel to M becomes a linear 
space X/M called the quotient space of X by M. 

Theorem. Let M be a subspace of the linear space X. Then there exist 
subspaces N such that M EB N = X, and any such subspace is isomorphic to 
the quotient space X/M. 

Any subspace N for which M EB N = X is called a complementary 
subspace (complement) of M in X. Its dimension is by definition the co
dimension of M in X. The theorem also allows us to state that symbolically 

codimx(M) = dim(X/M), 
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where the subscript may be dropped provided the ambient linear space X 
is clearly specified. In fact, this theorem seems to suggest that there is not a 
great need for the construct X/M, and this is so in the purely algebraic case. 
However, later when we must deal with Banach spaces X and closed sub
spaces M, we shall see that generally there will be no closed complementary 
subspace. In this case the quotient space X/M becomes a Banach space and 
serves as a valuable substitute for the missing complement. 

Now let M be a subspace of X, and choose a complementary subspace 
N:M E8 N = X. Then we can define a linear map P:X -+ Mby P(m + n) = 
m, mE M, n EN. P is called the projection of X on M (along N). We have 
similarly that I - P is the projection of X on N (along M), where I is the 
identity map on X. The existence of such projections allows us the luxury 
of extending linear maps defined initially on a subspace of X: if T: M -+ Y 
is linear, then T == ToP is a linear map from X to Y that agrees with T on 
M. Such a map T is an extension of T. 

D. Let X be a linear space over the scalar field F. The set of all linear 
maps ¢: X -+ F becomes a new linear space X' with linear space operations 
defined by 

(¢ + tjJ)(x) == ¢(X) + tjJ(x), 

(o:¢ )(x) == o:¢(x), 0: E F, XEX. 

X' is called the algebraic conjugate (dual) space of X and its elements are 
called linear functionals on X. Observe that if dim(X) = n (a cardinal 
number) then X' is isomorphic to the product of n copies of the scalar field. 
As we shall see many times, it is often convenient to write 

¢(x) = <x, ¢), 

for x E X, ¢ E X'. The reason for this is that often the vector x and/or the 
linear functional ¢ may be given in a notation already containing parentheses 
or other complications. 

Since X' is a linear space in a natural fashion, we can construct its 
algebraic conjugate space (X,)" which we write simply as X". We call X" the 
second algebraic conjugate space of X. We then have a map J x: X -+ X" 
defined by 

<¢, Jx(x) = <x, ¢), XEX, ¢EX'. 

This map is clearly linear; it is called the canonical embedding of X into X". 
This terminology is justified by the next theorem. 

Theorem. The map J x just defined is always injective, and is surjective 
exactly when dim(X) is finite. 

Thus, under the canonical embedding J x' the linear space X is isomorphic 
to a subspace of its second algebraic dual space, and this subspace is proper 
(not all of X") unless X is of finite dimension. In either case, we see that if it 
suits our purposes, we can consider that a given linear space consists of 
linear functionals acting on some other linear space (namely, X'). 
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E. The proper affine subspaces of a linear space X can be partially 
ordered by inclusion. Any maximal element of this partially ordered set is 
a hyperplane in X. 

Lemma. An affine subspace V in X is a hyperplane if and only if there 
is a non-zero 4> E X' and a scalar IX such that V = {x EX: 4>(x) = IX} == [4>; IX J. 

Thus the hyperplanes in X correspond to the level sets of non-zero linear 
functionals on X. We can alternatively say that the hyperplanes in X consist 
of the elements of all possible quotient spaces Xjker(4)), where 4> E X', 
4> ¥- e, and ker(4)) == [4>; OJ, the kernel (null-space) of 4>. The hyperplanes in 
X which contain the zero-vector are in particular seen to coincide with the 
subs paces of co dimension one. More generally, the subspaces of co dimension 
n (n a positive integer) are exactly the kernels of linear maps on X of rank n 
(that is, with n-dimensional image). 

F. Suppose that X is a complex linear space. Then in particular X is a 
real linear space if we admit only multiplication by real scalars. This under
lying real vector space X R is called the real restriction of X. Suppose that 
4> E X'. Then the maps 

x ~ re 4>(x), 
x ~ im 4>(x), XEX, 

are clearly linear functionals on X R, that is, they belong to X~. On the other 
hand, since 4>(ix) = i4>(x), x E X, we see that 

im 4>(x) = - re 4>(ix) 

so that 4> is completely determined by its real part. Similarly, if we start 
with ljJ E X~, and define 

4>(x) = ljJ(x) - iljJ(ix), 

we find that 4> E X'. To sum up, the correspondence ljJ ~ 4> just defined is 
an isomorphism between X~ == (X R)' and (X')R' 

This correspondence will be important in our later work with convex 
sets and functions. The separation, support, sub differentiability, etc. results 
all concern various inequalities involving linear functionals; it is thus 
necessary that these linear functionals assume only real values. Consequently, 
in the sequel, linear spaces will often be assumed real. The preceding remarks 
then allow the results under discussion to be applied to complex linear 
spaces also, by passage to the real restriction, the associated linear functionals 
being simply the real parts of the complex linear functionals. 

G. We give next a primitive version of the "quotient theorem", which 
allows us intuitively to "divide" one linear map by another. The more 
substantial result involving continuity questions appears in Chapter III. 

Let X, Y, Z be linear spaces and let S:X ----> Y, T:X ----> Z be linear maps. 
We ask whether there exists a linear map R: Y ----> Z such that T = R 0 S. 
An obvious necessary condition for this to occur is that ker(S) c ker(T); it 
is more useful to note that this condition is also sufficient. 
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Theorem. Let the linear maps Sand T be prescribed as above, and assume 
that kereS) c ker(T). Then there exists a linear map R, uniquely specified on 
range(S), such that T = R oS. 

One consequence of this theorem, important for later work on weak 
topologies, is the following. 

Corollary. Let X be a linear space and let CPl, ... , CPn, t/J E X'. Then 
t/J E span {CP1' ... , CPn} if and only if 

n n ker( cp;) c ker( t/J). 
i=l 

H. Let M be a subspace of the linear space X. The annihilator MO of 
M consists of those linear functionals in X' that vanish at each point of M. 
It is clearly a subspace of X'. Similarly, if N is a subspace of X', its pre
annihilator ON consists of all vectors in X at which every functional in N 
vanishes. Thus: 

MO = n ker(Jx(x)), 
XEM 

ON = Jxl(range(Jx) n N°). 

Let T: X --+ Y be a linear map. The transpose T' is the linear map from 
Y' to X' defined by 

(x, T'(t/J) = (T(x), t/J), XEX, t/J E Y'. 

It may be recalled that when X and Yare (real) finite dimensional Euclidean 
spaces, and T is represented by a matrix (with respect to the standard unit 
vector bases in X and Y), then T' is represented by the transposed matrix, 
whence the above terminology. 

Lemma. Let T:X --+ Y be a linear map. Then ker(T') = range(Tt and 
range(T') = ker(Tt. 

Thus we see that T is surjective (resp., injective) if and only if T' is injective 
(resp., surjective). The various constructs in the preceding sub-sections can 
now all be tied together in the following way. Let us say that the linear spaces 
X and Yare canonically isomorphic, written X ~ Y, if an isomorphism 
between them can be constructed without the use of bases in either space. 
For example, we clearly have X ~ J x(X). On the other hand, it may be 
recalled that none of the usual isomorphisms between a finite dimensional 
space and its algebraic conjugate space is canonical. 

Theorem. Let M be a subspace of the linear space X. Then 
a) MO ~ (X/M)'; 
b) M' ~ X'/Mo. 
The proof of a) follows from an application of the lemma to the quotient 

map QM:X --+ X/M, defined by QM(X) == x + M. Since QM is clearly sur
jective, its transpose QM:(X/M)' --+ X' is an isomorphism onto its range, 
which is (ker(QM) t = MO. The proof of b) proceeds similarly by applying 
the lemma to the identity injection of Minto X. 
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§2. Convex Sets 

In this section we establish the most basic properties of convex sets in 
linear spaces, and prove the crucial lemma of Stone. This lemma is, in effect, 
the cornerstone of our entire subject, as we shall see shortly. Throughout 
this section, X is an arbitrary linear space. 

A. Let x, Y E X with x "# y. The line segment joining x and y is the set 
[x, y] = {ax + (1 - a)y:O ~ a ~ I}. Similarly we put [x, y) = [x, y]\{y}, 
and (x, y) = [x, y)\{x}. If A c X, then A is star-shaped with respect to 
pEA if [p, x] c A, for all x E A, and A is convex if it is star-shaped with 
respect to each of its elements. Clearly a translate of a convex set is convex, 
hence each affine subspace of X is convex. 

Since the intersection of a family of convex sets is again convex, we can 
define, for any A c X, the convex hull of A, written co(A), to be the inter
section of all convex sets in X that contain S. Thus co(A) is the smallest 
convex set in X that contains A. ThIS set admits an alternative description, 
namely 

the set of all convex combinations of points in A. (We emphasize again that 
all linear combinations of vectors involve only finitely many ~on-zero terms.) 
We have, for instance, that co( {x, y}) = [x, y]. More geneqtlly, if we define 
the join of two sets A and B in X to be u {[x, y]:XE A, y.~f2B}, then 

(2.1) co (A u B) = join(co(A), co(B)), 

so that if A and B are convex, then their join is convex an,_ jl<;' in fact, the 
convex hull of their union. 

Let us define addition and scalar multiplication on the", tmily P(X) of 
non-empty subsets of X by 

aA + f3B == {aa + f3b:aEA,bEB}, 

where A, B c X and a, f3 are scalars. This definition does not define a linear 
space structure on P(X); nevertheless, it proves to be quite convenient. For 
instance, we can state 

(2.2) co(aA + f3B) = a co(A) + f3 co(B). 

A set A c X is balanced (equilibrated) if aA c A whenever lal ~ 1. The 
balanced hull of A, bal(A), is the intersection of all balanced subsets of X 
that contain A, and is therefore the smallest balanced set in X that contains 
A. Alternatively: 

bal(A) = u{aA:lal ~ I}. 

Finally, a set which is both convex and balanced is called absolutely 
convex. The smallest such set containing a given set A is the absolute convex 
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hull of A, written aco(A). For example, aco({x}) = [ -x, x], if X is a real 
linear space. In general, we have 

aco(A) = co(bal(A)) 

= {1:O(ixi:1:llXil ~ 1, Xi E A}, 
the set of all absolute convex combinations of points in A. In particular, we 
see that A is absolutely convex if and only if a, bE A and 10(1 + IPI ~ 1 
implies O(a + pb E A. 

B. We come now to the celebrated result of Stone. Two non-empty 
convex sets C and D in X are complementary if they form a partition of X, 
that is, C n D = 0, CuD = X. An evident example of a pair of com
plementary convex sets occurs when X is real: choose a non-zero cp E X' 
andputC = {XEX:cp(X) ~ O},D = X\C. 

Lemma. Let A and B be disjoint convex subsets of X. Then there exist 
complementary convex sets C and D in X such that A c C, BcD. 

Proof. Let 'fl be the class of all convex sets in X disjoint from Band 
containing A; certainly A E 'fl. After partially ordering 'fl by inclusion, we 
apply Zorn's lemma to obtain a maximal element C E 'fl. It now suffices to 
put D == X\C and prove that D is convex. If D were not convex, there would 
be x, zED and v E (x, z) n C. Because C is a maximal element of 'fl, there 
must be points 1, q E C such that both (p, x) and (q, z) intersect B, say at 
points Lt, v, rec' (Reason by contradiction; if the last statement were false, 
then the folk .g assertion (*) would hold: for all pairs {p, q} c C, either 
(p, x) n B = or (q, z) n B = 0. Now if (q, z) n B = 0, for all q E C, 
then C c c(. Cn and C is not maximal. Consequently, there is some 
71 E C for whi' 71, z) n B i= 0. But then, if there were a point P E C such 
that (p, x) n 1 0, the pair {p,71} would violate (*). Thus, for all p E C, 
(p, x) n B i= 0, C c co( {x, C}), and C is not maximal.) Now, however, we 
find that [u, v] n co({p, q, y}) i= 0, which contradicts the disjointness of 
B~C. 0 

C. Let A and B be subsets of X. The core of A relative to B, written 
corB(A), consists of all points a E A such that for each bE B\{ a} there exists 
x E (a, b) for which [a, x] c A. Intuitively, it is possible to move from each 
a E corB(A) towards any point of B while staying in A. The core of A relative 
to X is called simply the core (algebraic interior) of A and written cor(A). 
Sets A c X for which A = cor(A) are called algebraically open, while points 
neither in cor(A) nor in cor(X\A) are called bounding points of A; they 
constitute the algebraic boundary of A. It is easy to see that the core of any 
(absolutely) convex set is again (absolutely) convex. 

A second important instance of the relative core concept occurs when 
B is the smallest affine subspace that contains A. This subspace, aff(A) (the 
affine hull of A), can be described as {1:O(iXi: 1:O(i = 1, Xi E A} or, equivalently, 
as x + span(A - A), for any fixed x E A. Now the set cor aff(Al (A) is called 
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the intrinsic core of A and written icr(A). In particular, when A is convex, 
a E icr(A) if and only if for each x E A\{a}, there exists YEA such that 
a E (x, y); intuitively, given a E icr(A), it is possible to move linearly from 
any point in A past a and remain in A. 

In general, icr(A) will be empty; but in a variety of special cases we can 
l'how icr(A) and even cor(A) are not empty. For example, it should be clear 
that if X is a finite dimensional Euclidean space and A c X is convex, then 
cor(A) is just the topological interior of A. But this last assertion fails in the 
infinite dimensional case as we shall see later, after introducing the necessary 
topological notions. We now work towards a sufficient condition for a convex 
set to have non-empty intrinsic core. 

A finite set {xo, Xl, ... ,xn} c X is affinely independent (in general position) 
if the set {Xl - Xo, ... ,Xn - xo} is linearly independent. The convex hull 
of such a set is called an n-simplex with vertices xo, Xl> ... , X n . In this case, 
each point in the n-simplex can be uniquely expressed as a convex com
bination of the vertices; the coefficients in this convex combination are the 
barycentric coordinates of the point. 

Lemma. Let A be an n-simplex in X. Then icr(A) consists of all points 
in A each of whose barycentric coordinates is positive. In particular, 
icr(A) i= 0. 

Proof. Let the vertices of A be {xo, Xl' ... ,xn }. Let a = 2:rxixi and 
b = 2:f3iXi be points of A with all rxi > 0. To show a E icr(A), it is sufficient 
to show that b + A(a - b) E A for some A > 1. If we put A = 1 + c, the 
condition on c becomes 

i = 0,1, ... , n, 
n 

L rxi + C(rxi - f3i) = 1. 
i=O 

n 

Since L (rxi - 13;) = 1 - 1 = 0, the second condition always holds, and 
i=O 

since all rxi > 0, the first condition holds for all sufficiently small positive 
c. Conversely, let a = 2:rxixi have a zero coefficient, say rxk = 0. Then we 
claim that Xk + A(a - Xk) ¢ A, for any A > 1. For otherwise, for some A > 1 
we would have 

n 

Xk + A(a - Xk) = L f3iXi E A. 
i=O 

It would follow that 

for certain coefficients Yi. But in this representation of a, the xk-coefficient is 
clearly positive (since 13k ~ 0). This leads us to a contradiction, since the 
barycentric coordinates of a are uniquely determined, and the xk-coefficient 
of a was assumed to vanish. 0 
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The dimension of an affine subspace x + M of X is by definition the 
dimension of the subspace M. The dimension of an arbitrary convex set A in 
X is the dimension of aff(A). A nice way of writing this definition symbolically 
is 

dim(A) == dim(span(A - A)). 

It follows from the preceding lemma that every non-empty finite dimensional 
convex set A has a non-empty intrinsic core. Indeed, if dim(A) = n (finite), 
then A must contain an affinely independent set {xo, Xl' ... ,xn } and hence 
the n-simplex co( {xo, Xl' ... , xn }). 

Theorem. Let A be a convex subset of the finite dimensional linear space 
X. Then cor(A) #- 0 if and only if aff(A) = X. 

Proof. Ifaff(A) = X, the last remark shows that cor(A) = icr(A) #- 0. 
Conversely, if p E cor(A), and X E X, there is some positive s for which 
[p, p + s(x - p)] c A. Then with A == (s - 1)/s, we have 

X = AP + (1 - A)(p + s(x - p)) E aff(A). 0 
Remark. The conclusion of this theorem fails in any infinite dimen

sional space. More precisely, in any such space X we can find a convex 
set A with empty core such that aff(A) = X. To do this we simply let A 
consist of all vectors in X whose coordinates wrt some given basis for X 
are non-negative. Clearly A - A = X, while cor(A) = 0. 

D. Let A c X. A point X E X is linearly accessible from A if there 
exists a E A, a #- x, such that (a, x) c A. We write lina(A) for the set of all 
such x, and put lineA) = Au lina(A). For example, when A is the open 
unit disc in the Euclidean plane, and B is its boundary the unit circle, we 
have that lina(B) = 0 while lineA) = lina(A) = A u B. In general, one sus
pects (correctly) that when X is a finite dimensional Euclidean space, and 
A c X is convex then lineA) is the topological closure of A. But we have 
to go a bit further to be able to prove this. 

The "lin" operation can be used to characterize finite dimensional spaces. 
We give one such result next and another in the exercises. Let us say that 
a subset of A of X is ubiquitous if lineA) = X. 

Theorem. The linear space X is infinite dimensional if and only if X 
contains a proper convex ubiquitous subset. 

Proof. Assume first that X is finite dimensional, and let A be a convex 
ubiquitous set in X. Now clearly A cannot belong to any proper affine 
subspace of X. Hence aff(A) = X and thus, by 2C, cor(A) is non-empty. 
Without loss of generality, we can suppose that e E cor(A). Now, given 
any X E X, there is some y E X such that [y, 2x) c A, and there is a posi
tive number t such that t(2x - y) E A. It is easy to see that the half-line 
{AX + (1 - A)t(2x - Y):A ~ O} will intersect the segment [y, 2x); but this 
of course means that X is a convex combination of two points in A, hence 
X E A also. 
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Conversely, assume that X is infinite dimensional. We can select a well
ordered basis for X (since any set can be well-ordered, according to Zermelo's 
theorem). Now we define A to be the set of all vectors in X whose last co
ordinate (wrt this basis) is positive; A is evidently a proper convex subset 
of X, and we claim that it is ubiquitous. Indeed, given any x E X, we can 
choose a basis vector y "beyond" any of the finitely many basis vectors 
used to represent x. But then, if t > 0, we have x + ty E A; in particular, 
x E lina(A). 0 

E. We give one further result involving the notions of core and "lina" 
which will be needed shortly to establish the basic separation theorem of 4B. 
It is convenient to first isolate a special case as a lemma. 

Lemma. Let A be a convex subset of the linear space X, and let p E 

cor(A). For any x E A, we have [p, x) c cor(A), and hence 

cor(A) = u{[p, x):x E A}. 

Proof. Choose any y E [p, x), say y = tx + (1 - t)p, where 0 < t < 1. 
Then given any Z E X, there is some A > 0 so that p + AZ E A. Hence 
y + (1 - t)AZ = (1 - t)(p + AZ) + tx E A, proving that y E cor(A). Finally, 
given any q E cor(A), q i= p, there exists some fJ > 0 such that x == q + 
fJ(q - p) E A. It follows that q = (fJp + x)!(l + fJ) E [p, x). 0 

Theorem. Let A be a convex subset of the linear space X, and p E cor(A). 
Then for any x E lina(A) we have [p, x) c cor(A). 

Proof. We can assume that p = e. Since x E lina(A), there is some 
Z E A such that [z, x) c A, and since e E cor(A), there is some fJ > 0 such 
that - fJz E A. Arguing as in 2D, given any point tx, 0 < t < 1, the line 
{Jctx + (1 - A)( -fJZ):A ~ O} will intersect the segment [z, x) if fJ is taken 
sufficiently small. Consequently, the segment [e, x) lies in A. But now the 
preceding lemma allows us to conclude that in fact [e, x) lies in cor(A). 0 

§3. Convex Functions 

In this section we introduce the notion of convex function and its most 
important special case, the "sublinear" function. With such functions we can 
associate in a natural fashion certain convex sets. The geometric analysis of 
such sets developed in subsequent sections makes possible many non-trivial 
conclusions about the given functions. 

A. Intuitively, a real-valued function defined on an interval is convex 
if its graph never "dents inward" or, more precisely, if the chord joining any 
two points on the graph always lies on or above the graph. In general, we 
say that if A is a convex set in a linear space X then a real-valued function f 
defined on A is convex on A if the subset of X x R 1 defined as {(x, t): x E A, 
f(x) ::( t} is convex. This set is called the epigraph of f, written epi(f). 
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An equivalent analytic formulation of this definition is easily obtained: 
J is convex on A provided that 

J(tx + (1 - t)y) ~ tf(x} + (1 - t)J(y), 

for all x, YEA, 0 < t < 1. Obviously the linear functionals in X' are convex 
on X, and it is not hard to see that the squares of linear functionals are also 
convex on X. Indeed, if </; E X' and J == </;02, and if x, y E X, then setting 
a = </;(x), f3 = </;(y), we find for 0 < t < 1 

tf(x) + (1 - t)J(y) - J(tx + (1 - t)y) 
= ta2 + (1 - t)f32 - (ta + (1 - t)f3)2 

= t(1 - t)(a - /3)2 ;;" O. 

Further examples of convex functions follow from the use of elementary 
calculus. Let J be a continuously differentiable function defined on an open 
interval I. Then J is convex on I if and only iff' is a non-decreasing function 
on I. Consequently, if J is twice continuously differentiable on I, then J is 
convex on I if and only if J" is non-negative on I. To obtain a third charac
terization of smooth convex functions, and to extend the preceding charac
terizations to higher dimensions, we consider that J is now a continuously 
differentiable function defined on an open convex set A in Euclidean n-space. 
Let VJ(x) be its gradient at x E A. The function 

E(x, y) == J(y) - J(x) - Vf(x) . (y - x) 

measures the discrepancy between the value of J at y and the value of the 
tangent approximation to J over x at y. (Here the dot denotes the usual dot 
product on Rn.) Intuitively, if J is convex, this discrepancy will be non
negative at all points x, YEA. To generalize the one-dimensional notion of 
non-decreasing derivative, let us say that the map x r-+ VJ(x) is monotone 
on A if 

(VJ(y) - VJ(x)) . (y - x) ;;" 0 

for all x, YEA. 

Theorem. Let J be a continuously differentiable fimction defined on the 
open convex set A in Rn. TheJollowing assertions are equivalent: 

a) E(x, y) ;;" 0, x, YEA; 
b) the map x r-+ VJ(x) is monotone on A; 
c) J is convex on A. 

ProoJ. If E(x, y) ;;" 0 throughout A x A, we have 

(VJ(y) - VJ(x)) . (y - x) = VJ(y) . (y - x) - VJ(x) . (y - x) 

;;" (f(y) - J(x)) - (f(y) - J(x)) = O. 

Next, if VJ(·) defines a monotone map on A, fix x, YEA and put g(t) = 

J(x + t(y - x)). We want to see that g is convex on [0,1] or that g' is 
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non-decreasing there. Choose ° :( a < P :( 1. Then 

g'(P) - g'(a) = (Vf(x + P(y - x)) - Vf(x + a(y - x))) . (y - x) 

1 
= P _ a (Vf(v) - Vf(u)) . (v - u) ~ 0, 

where we have put u == x + a(y - x) and v == x + P(y - x), both in A. 
Thus b) implies c). Finally, let f be convex on A and fix x, YEA. Define 

h(t) = (1 - t)f(x) + tf(y) - f( (1 - t)x + ty), 

so that h is a non-negative smooth function on [0,1J and h attains its 
minimum at t = 0. Therefore, h'(O) ~ 0. Since E(x, y) = h'(O), the proof is 
complete. 0 

Many further examples of convex functions will appear in due course. 

B. Here we record, for future reference, some elementary properties of 
the class Conv(A) of all convex functions defined on a convex set A in some 
linear space. First, Conv(A) is closed under positive linear combinations; 

n 

that is, if {Ill ... ,In} c Conv(A) and ai ~ 0, i = 1, ... ,n, then L aih E 
1 

Conv(A). Also, if {J;.} c Conv(A), and sUPaJ;.(x) < 00 for each x E A, then 

this supremum defines a function in Conv(A). Indeed, 

epi(sup J;.) = n epi(J;.). 
a a 

The set Conv(A) is of course partially ordered by f :( g if and only if 
f(x) :( g(x), x E A. Now let {J;.} c Conv(A) with each J;. non-negative on A, 
and suppose that the family {J;.} is "directed downwards", that is, given 
J;., jp there exists h such that h(x) :( min{J;.(x), jp(x)}, x E A. For example, 
{J;.} could be a decreasing sequence. Then infa J;. E Conv(A). 

We indicate one more procedure for forming new convex functions 
from old. Given fl' ... ,in E Conv(A) we define their infimal convolution 
flO··· D in by 

(fl D··· D in)(x) == inf {fl(Xl) + ... + in(xn):xi E A, * Xi = x}. 

This terminology is motivated by the case where n = 2, since we can then 
write 

(fO g)(x) = inf{I(y) + g(x - y):y E A}, 

and be reminded of the formula for integral convolution of two functions. 
In practice, the functions involved in an infimal convolution will be bounded 
below (usually non-negative), so that the resulting function is well-defined. 
The convexity of the infimal convolution of convex functions is an easy 
consequence of the next lemma. This result is of general interest; it allows 
us to construct convex functions on a linear space X by prescribing their 
graphs in the product space X x Rl. 
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Lemma. Let X be a linear space and K a convex set in X x R 1. Then 
the function 

f(x) = inf{t:(x, t) E K} 

is convex on the projection of K on X. 
The proof follows from the analytic definition of convexity in 3A. To 

apply the lemma to the convexity of fl D ... D In for /; E Conv(A), A 
convex in X, let K = epi(fl) + ... + epi(In). K is certainly convex in 
X x Rl and (x, t) E K exactly when there are Xi E A and ti E Rl such that 

n n 

/;(x i ) ~ t i , t = I: t i , x = I: Xi· Thus applying the procedure of the lemma 
1 1 

yields fl D ... D In which is thereby convex. 
Finally, note that if f E Conv(A) then the "sub-level sets" defined by 

{x E A:f(x) ~ A} and {x E A:f(x) < A} are convex for any real A. However, 
there will be non-convex functions on A that also have this property. 

C. We come now to the most important type of non-linear convex 
functions. Let X be a linear space. A real-valued function f on X is positively 
homogeneous if f(tx) = tf(x) whenever x E X and t ~ o. Such a function is 
convex if and only if f(x + y) ~ f(x) + f(y) for all x, y E X. We call such 
convex functions sub linear. In addition to the linear functions, many other 
examples of sublinear functions lie close at hand. Thus if X = Rn, we can 

choose a number p ~ 1 and let f(x) = (t !~dP) lip for x == (~b ... , ~n) ERn. 

f(x) is called the p-norm of x. Or, we can let X = C(T), the linear space of 
all continuous real-valued functions on a compact Hausdorff space T. If Q is a 
closed subset of T we letf(x) = max{x(t):t E Q}; thisfis clearly a sublinear 
function on X. 

Sublinear functions on linear spaces arise frequently from the following 
geometrical considerations. Let A be a subset of a linear space X such that 
e E cor(A). Such sets A are called absorbing: sufficiently small positive 
multiples of every vector in X belong to A. We define the gauge (Minkowski 
function) of A by 

PA(X) == inf{t > o:x EtA}. 

For example, if ¢ E X' and r:x > 0, let A be the "slab" {x EX: !¢(x)! ~ r:x}; 
then PA = !¢Ol!r:x. Or, let X = Rn and p ~ 1; then the p-norm introduced 
above is the gauge defined by the unit p-ball 

{x = (~1'···' ~n)ERn:t !~dp ~ 1}. 

The primary importance of gauges in a linear space X is that they can 
be used to define topologies on X. This is certainly apparent in the case of 
the p-norms on Rn; everyone of them defines the usual Euclidean topology 
on Rn if the distance between two points in Rn is taken to be the p-norm of 
their difference. (The resulting metric spaces are of course not the same.) 
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This example leads us to the general attempt to define a metric dA by 

dA(x, y) = PA(X - y), 

if PAis the gauge of some given absorbing set A. Thus we are saying that 
two points are close if their difference lies in a small positive multiple of A. 
However, it is immediately apparent that more information about A is 
needed in order to prove that dA is really a metric. Some of this information 
is given now and the topic will be continued in the next chapter. 

Lemma. Let A be an absorbing set in a linear space X. 
a) the gauge PA is positively homogeneous; 
b) if A is convex then PAis sublinear; 
c) if A is balanced then PA(h) = IAlpA(X) for all scalars A and all x E X. 

Proof. a) Clear. b) Let x, y E X and choose t > pix) + piy). Then 
there exist rf- > PA(X), f3 > PA(y) such that t = rf- + f3. Now since A is 
convex, we have Z E A whenever PA(Z) < 1; in particular x/rf- and y/f3 are in 
A. Consequently, (x + y)/t = (x + y)/(rf- + f3) = (rf-(x/rf-) + f3(y/f3) )/(rf- + f3) 
is also in A so that P A(X + y) ~ t. c) Assume that A =1= 0 and choose t > 
PA(X), Then x E A for some s, PA(X) < s ~ t and hence AX E IAlsA because A 
is balanced. Thus PA(h) ~ IAls and therefore PA(h) ~ 1),lpix). The reverse 
inequality follows after replacing x by AX and A by l/A in this argument. D 

D. The gauge of an absolutely convex absorbing set A is called a 
semi-norm. Thus a semi-norm P A has the properties that it is sublinear and 
that P A(h) = IAlp A(X), for all scalars A and vectors x. Conversely, any real
valued function P having these two properties is a semi-norm in the sense 
that there is an absolutely convex absorbing set A such that P = P A- Indeed, 
we can take A == {x EX: p(X) ~ 1}. Since x E tA ¢> p(x) ~ t it follows that 
P = PA-

If P = PA is a semi-norm on X then ker(p) == {x E X:p(x) = O} is a 
subspace of X; in fact, it is the largest subspace contained in A. When 
ker(p) = {8}, we say that P is a norm on X. Thus P is a norm if and only if 
p(x) = 0 => x = 8. The p-norms on RN are clearly examples of norms, 
which justifies the use of that earlier terminology. 

§4. Basic Separation Theorems 

In this section we establish two elementary separation theorems for 
convex subsets of a linear space, making use of Stone's lemma in 2B. Many 
of the major subsequent results in this book will depend in some degree on 
the use of an appropriate separation theorem. 

A. We begin with a lemma that draws upon the results of §2. Through
out, X is a real linear space. 

Lemma.. Let C and D be non-void complementary convex sets in X, and 
put M == lin(C) n lin(D). Then either M = X or else M is a hyperplane in X. 
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Proof. Since C and D are convex so are lin( C) and lin(D), and hence 
so is M. We claim that M is in fact an affine subspace of X. To see this, 
first note that lin(C) = X\cor(D) and lin(D) = X\cor(C), whence M = 
(X\cor(C)) n (X\cor(D)). Now let x, y E M and suppose that z is a point on 
the line through x and y. If z 1: M then z E cor(C) u cor(D); we may suppose 
that Z E cor( C) and that y E (x, z). This entails x E lina( C) and hence y E cor( C) 
by 2E. This contradiction proves that z E M and consequently M is an 
affine subspace. There is now no loss of generality in assuming that M is 
actually a linear subspace. Suppose that M ¥- X; then there is a vector 
p E X\M, say p E cor( C). Now - P E cor( C) u cor(D), but if - p E cor( C) 
then e E cor( C) also, since cor( C) is convex. This is not possible so it must 
be that - p E cor(D). Now it follows that for any x E C, [ - p, x] n M ¥- 0, 
and, for any y E D, [p, y] n M ¥- 0. But this means that the linear hull of 
p and M is all of X, since X = CuD. By definition then, M is a hyper
~~ D 

B. Let H == [¢; rt.] be a hyperplane in X defined by ¢ E X' and the 
(real) scalar r:t. The hyperplane H determines two half-spaces, namely, 
{x E X:¢(x) ~ rt.} and {x E X:¢(x) :( r:t}. Two subsets A and B of X are 
separated by H if they lie in opposite half-spaces determined by H. This 
does not a priori preclude the possibility that A n B ¥- 0 nor that A and/or 
B actually lie in H. Generally, the important question is not whether A and 
B can be separated by a particular H, but rather by any hyperplane at all. 
Simple sketches suggest that an affirmative answer to this question is unlikely 
unless both sets are convex. Following is the "basic separation theorem". 

Theorem. Let A and B be disjoint non-empty convex sets in X. Assume 
that either X is finite dimensional or else that cor(A) u cor(B) ¥- 0. Then 
A and B can be separated by a hyperplane. 

Proof. By 2B there are complementary convex sets C and D in X such 
that A c C and BcD. We let M = lin(C) n lin(D), as in the preceding 
lemma. If M is a hyperplane then it does the job of separating A and B. The 
lemma asserts that M can fail to be a hyperplane only if X = lin( C) = lin(D), 
that is, only if both C and D are ubiquitous (2D). But, if X is finite dimensional, 
neither C nor D can be ubiquitous since they are proper (2D again). On the 
other hand, if A (resp. B) has a non-empty core, then D (resp. C) is not 
ubiquitous. D 

We can in turn use this theorem to establish a stronger and more definitive 
separation principle, under the hypothesis that one of the sets to be separated 
has non-empty core. 

Corollary. Let A and B be non-empty convex subsets of X, and assume 
that cor(A) ¥- 0. Then A and B can be separated if and only if cor(A) n B = 

0· 
Proof. If A and B are separated by a hyperplane [¢; rt.], then the set 

¢(cor(A)) is an open interval of reals, disjoint from the interval ¢(B). Thus 
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cor(A) and B must be disjoint. Conversely, assuming they are disjoint, they 
can be separated by a hyperplane [¢; CtJ (since cor(A) is convex and alge
braically open (2C)). But clearly if ¢(x) ~ Ct, say, for x E cor(A), then also 
¢(x) ~ Ct for all x E A (2E). Thus [¢; CtJ separates A and B. D 

c. In some cases, stronger types of separation are both available and 
useful. Let us say that the sets A and B are strictly separated by a hyperplane 
H == [¢; CtJ if they are separated by H and both A and B are disjoint from 
H, and that they are strongly separated by H if they lie on opposite sides of 
the slab {x EX: I¢(x) - Ctl ~ e} for some e > o. Analytically, these two 
conditions can be expressed as ¢(x) < Ct < ¢(y), (respectively, as ¢(x) ~ 
Ct - e < Ct + e ~ ¢(y)), for all x E A, y E B (after possibly interchanging 
the labels "A" and "B"). Simple examples in the plane show that convex sets 
A and B can be strictly separated without being strongly separated. 

Some types of separation can be conveniently characterized in terms of 
the separation of the origin e from the difference set A-B. 

Lemma. The convex sets A and B can be (strongly) separated if and only 
if e can be (strongly) separated from A-B. 

The proof is straightforward. The assertion is not true for strict separa
tion, however. A slightly less obvious condition for strong separation will 
be given next, and called the "basic strong separation theorem". 

Theorem. Two disjoint convex sets A and B in X can be strongly separated 
if and only if there is a convex absorbing set V in X such that (A + V) n B = 

0· 
Proof. If such a V exists then A + V has non-empty core and so can 

be separated from B. Thus there exists ¢ E X' such that ¢(a + v - b) ~ 0 
for all a E A, bE B, v E V. Now the interval ¢(V) contains a neighborhood 
of 0, so there is Vo E V with ¢(vo) < O. Hence ¢(a) ~ ¢(b) - ¢(vo) for all 
a E A, bE V, whence inf{¢(a):a E A} > sup{ ¢(b):b E B}. Thus A and Bare 
strongly separated. Conversely, assume that A and B can be strongly sepa
rated. Then there are ¢ E X' and reals Ct, e, with e > 0, such that inf{¢(a): 
aEA} ~ Ct + e > Ct - e ~ sup{¢(b):bEB}.IfweputV == {xEX:I¢(x)1 < 
e} we find V is convex and absorbing and that (A + V) n B = 0· D 

A particular consequence of this theorem is that two disjoint closed 
convex subsets of Rn can be strongly separated, provided that one of them 
is bounded (hence compact). The boundedness hypothesis cannot be omitted 
as is shown by simple examples in R2. 

§5. Cones and Orderings 

In this section, we study a special type of convex set, the "wedge". Such 
sets are intimately connected with the notions of ordering in linear spaces, 
and positivity of linear functionals. This added structure in linear space 
theory is important because of its occurrence in practice, for example in 
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function spaces and operator algebras. Wedges associated with a given 
convex set (support and normal wedges, recession wedges) are introduced 
in later sections, and play important roles in certain applications. 

A. A wedge P in a real linear space X is a convex set closed under 
multiplication by non-negative scalars. Any such set defines a reflexive and 
transitive partial ordering on X by 

x ~ y ¢? y - X E P. 

This ordering has the further properties that x ~ y entails x + z ~ y + z 
for any Z E X, and AX ~ AY whenever A ;?; 0. For short, we call such a 
partial ordering a vector ordering and X so equipped an ordered linear space. 
Conversely, if we start with an ordered linear space (X, ~) and put P == 
{x EX: x ;?; 8}, then P is a wedge in X (the positive wedge) which induces 
the given vector ordering. 

A wedge P is a cone if P n ( - P) = {e}; in this case 8 is called the vertex 
of P. Since P n ( - P) is the largest subspace contained in P, this condition 
is equivalent to the assertion that P contains no non-trivial subspace. It is 
further easy to see that a wedge is a cone exactly when the induced vector 
ordering is anti-symmetric, in the sense that x ~ y, y ~ x ¢? x = y. 

The span of a wedge P is simply P - P. When P - P = X, the wedge 
is said to be reproducing, and X is positively generated by P. It is not hard 
to show that this situation obtains in particular whenever cor(P) ¥= 0. In 
terms ofthe associated vector ordering on X, we can state that X is positively 
generated by P if and only if the ordering directs X, in the sense that any 
two elements of X have an upper bound. Precisely, this means that given 
x, y E X, there exists Z E X such that x ~ Z and y ~ z. 

The simplest examples of ordered linear spaces are function spaces with 
the natural pointwise vector ordering. If X is a linear space of functions 
defined on a set T, and the linear space operations are the usual pointwise 
ones, then it is natural to let P = {x E X:x(t) ;?; 0, t E T}. The induced 
vector ordering is then defined by 

x ~ y ¢? x(t) ~ y(t), tE T. 

Let us now further specialize to the case where X = CEO, 1], the space of 
all (real-valued) continuous functions on the interval [0,1]' Clearly the 
pointwise vector ordering on X directs X and so the cone of non-negative 
functions is reproducing. On the other hand, let us consider in X the cone 
Q of all non-negative and non-decreasing functions in X. Now we have that 
Q - Q is the subspace of all functions in X that are of bounded variation 
on [0,1]' Consequently, Q is not reproducing in X. 

Another interesting cone is the set Conv(X) (3B) in the linear space of 
all real-valued functions on X. 

B. Let X be an ordered linear space with positive wedge P. A linear 
functional f E X' is positive if f(x) ;?; ° whenever x E P. Clearly a positive 
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linear functional f is monotone in the sense that x ::::; y => f(x) ::::; f(y). The 
set of all positive linear functionals forms a wedge p+ in X' called the dual 
wedge; the induced vector ordering on X' is the dual ordering, and the 
subspace p+ - p+ is the order dual of X. The dual wedge is actually a 
cone exactly when P is reproducing. 

It is not a priori clear whether or not there are any non-zero positive 
linear functionals on a given ordered linear space, and indeed there may be 
none. We now use the separation theory of §4 to give a useful sufficient 
condition for P + -# {8}. 

Theorem. If the wedge P is a proper sLlbset of X and has non-empty 
core, then p+ contains non-zero elements. 

Proof. We choose an x E X\P and apply 4B to separate x and P by a 
hyperplane [¢; rJ.], say ¢(x) ::::; rJ. ::::; ¢(y), YEP. Now any linear functional 
that is bounded below on a wedge must be non-negative there. Thus ¢ E p+ 
and ¢ -# 8. 0 

C. We consider briefly some conditions sufficient to guarantee that a 
wedge P in a linear space X is actually a cone. A linear functional ¢ E p+ 
is strictly positive if x E P (x -# 8) => ¢(x) > O. A base for P is a non-empty 
convex subset B of P with 8 1= P such that every x E P (x -# 8) has a unique 
representation of the form Job, where bE B and A > O. If ¢ E p+ is strictly 
positive and we set B == [¢; 1] n P then B is a base for P. The converse 
assertion is equally valid: given a base B for P, there is by Zorn's lemma a 
maximal element H in the class of affine subspaces which contains B but 
not 8. H is seen to be a hyperplane defined by a strictly positive linear 
functional. 

Theorem. Consider the following properties that a wedge P in X may 
possess: 

a) P is a cone; 
b) P has a base; 
c) cor(P+) -# 0. 

Then c) => b) => a); if X is some Euclidean space, and P is closed in X, then 
all three properties are equivalent. 

Proof. It is clear that the existence of a base for P implies that P is a 
cone, so that b) => a). Now assume that ¢ E cor(P+); it will suffice to show 
that ¢ is strictly positive. If not, there exists x E P(x -# 8) such that ¢(x) = O. 
But since x -# 8, there must be some If; E X' for which If;{x) < O. As ¢ E 

cor(P+), there is A > 0 such that ¢ + AIf; E P+; however ¢(x) + ),If;(x) = 

)~If;(x) < 0, a contradiction. Thus c) => b). Finally, assume that X = Rn for 
some n, and that P is closed in X. We show a) => c). Now according to 2C, 
cor(P+) -# 0 <¢? p+ is reproducing. If p+ is not reproducing then its linear 
hull p+ - p+ is a proper subspace of Rn (here we are tacitly utilizing the 
usual self-duality of Rn with itself: (Rn)' = Rn). There is thus a non-zero 
linear functional rJ> E (Rn)" = Rn such that rJ> vanishes on p+ - p+ (1C). 
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The proof is concluded by showing that ± tIJ E P, so that P is not a cone. 
If, for example, tIJ E P, there is a Euclidean ball V centered at () in R" such 
that (tIJ + V) n P = 0; this follows because P is assumed closed. But now 
by 4C we can strongly separate tIJ and P. As in SB, the separating hyperplane 
must be defined by an element cP E p+ with < cp, t1J> < 0; this however is a 
contradiction since tIJ vanishes on P+. D 

Without further hypotheses, the other conceivable implications between 
a), b), and c) are not valid. 

§6. Alternate Formulations of the Separation Principle 

In this section we establish four new basic principles involving convex 
sets and linear functionals, which, along with the basic separation theorems 
of §4, will be used repeatedly in the sequel. Of special interest here is that 
these new principles are in fact only different manifestations of our earlier 
separation principle 4B: they are all equivalent to it and hence to each other. 
(In 6B it is further noted that the existence theorem of SB is also equivalent 
to the basic separation theorem.) 

A. We begin with the extension principles. In IC it was noted that, 
rather trivially, a linear map defined on a subspace of a linear space admits 
a (linear) extension to the whole space. For the time being, all linear maps 
to be extended will be linear functionals, defined on a proper subspace M 
of a linear space X. What will make our extension theorems interesting (and 
useful) is the presence of various "side-conditions" which must be preserved 
by the extension. If f and g are real-valued functions with common domain 
D, we shall write f ~ g in case f(x) ~ g(x) for every XED. Our first result 
is the "Hahn-Banach theorem". 

Theorem. Let g E Conv(X) where X is a real linear space, and suppose 
that cP E M' satisfies cp ~ giM. Then there exists an extension qJ E X' of cp 
such that qJ ~ g. 

Proof. Let A be the epigraph (3A) of g and B the graph of cp in the space 
Y == X X RI. By hypothesis, B == {(x,cp(x)):xEM} is a subspace of Y 
disjoint from the convex set A. Now A is algebraically open. To see this, 
choose (xo, to) E A and (x, t) E Y. Then for 0 ~ A ~ 1, 

g(xo + Ax) - (to + J,t) 

= g(A(Xo + x) + (1 - A)Xo) - to - At 
~ Ag(Xo + x) + (1 - A)g(Xo) - to - At 

= A(g(Xo + x) - to - t) - (1 - A)(to - g(xo))· 

Since the second term here is positive, the entire expression will be negative 
for sufficiently small A, proving that (xo, to) E cor(A). Thus we can separate 
A and B by a hyperplane [tIJ; !Y.. ] c Y. Since the linear functional tIJ is bounded 
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on the subspace B, (J( = 0; we assume that !J> is non-negative (necessarily 
positive, in fact) on A. Since (e, t) E A for sufficiently large t, c == !J>(e, 1) > O. 
Now to define the desired extension iP E X' we note that !J>(x, 0) + !J>(e, t) = 
!J>(x, t) whenever (x, t) E A. That is, setting iP = (-1/c)!J>(', 0), we see that 
g(x) < t implies iP(x) < t also, so that iP ::::;; g on X. And since cjJ(m, cjJ(m)) = 0 
for mE M, we see that iP(m) = cjJ(m), m E M, so that iP is the desired extension 
ofcjJ. 0 

We indicate one direct and important consequence of the Hahn-Banach 
theorem; its derivation is outlined in exercise 1.21. 

Corollary. Let p be a semi-norm (3D) on the linear space X, and M a 
subspace of X. If cjJ E M' satisfies IcjJ(')1 ::::;; pIM, then there is an extension 
iP E X' of cjJ such that liP(') 1 ::::;; p. 

B. Our second extension principle concerns positive linear functionals. 
Let X be an ordered linear space with positive wedge P (SA), and let M be 
a subspace of X. M will be considered as an ordered linear space under the 
vector ordering induced by the wedge P (\ M. The next result, the "Krein
Rutman theorem", provides a sufficient condition for a positive linear func
tional (SB) on M to admit a positive extension to all of X. 

Theorem. With M, P, X as just defined, assume that P (\ M contains a 
core point of P. Then any positive linear functional cjJ on M admits a positive 
extension to all of X. 

Proof. It will suffice to construct a positive extension on the span of 
P and M; we can then extend to all of X in the trivial manner of Ie. For 
x in this span we define 

g(x) = inf{ cjJ(y): y ~ x, Y EM}. 

Now g is convex (actually sublinear; the proof is quite analogous to that of 
the lemma in 3C), and we have cjJ ::::;; glM on account of the monotonicity 
of cjJ on M. Thus we can apply the Hahn-Banach theorem (6A) and obtain 
an extension iP (to the span of P and M) of cjJ so that iP ::::;; g. To see that this 
iP is positive, choose Yo E P (\ M and x E P; we shall show that iP( - x) ::::;; O. 
Now for all t ~ 0, Yo + tx E P. Thus yo/t E M and yo/t ~ - x, so that 
iP( - x) ::::;; g( - x) ::::;; cjJ(Yo/t) = cjJ(yo)jt; to conclude, let t -> + 00. 0 

In order to show that both the preceding extension theorems are equiv
alent to the basic separation theorem, it clearly suffices to prove that the 
latter is a consequence of the Krein-Rutman theorem. In turn, recalling 4C, 
it suffices to show that if A is a convex set in a linear space X with non-empty 
core, and e ¢ A, then we can separate e from A by a hyperplane; or, in other 
words, we can find a non-zero linear functional in X' that assumes only 
non-negative values on A. Let us define P = {tA:t ~ O}. Then P is a wedge 
(actually a cone) in X and cor(P) =F 0. It now follows from SB that p+ 
contains a non-zero element, which is what we wanted. Although the proof 
of SB utilized the basic separation theorem, it is clear that SB is also a simple 
consequence of the Krein-Rutman theorem. 
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C. Let H == [4>; ctJ be a hyperplane and A a convex set in the real 
linear space X. We say that H supports A if A lies in one of the two half-spaces 
(4B) determined by H and A n H =F 0. A point in A that lies in some such 
supporting hyperplane is called a support point of A; a support point of 
A is proper if it lies in a supporting hyperplane which does not completely 
contain A. There is a more general notion of supp' rting affine subspace 
(not necessarily a hyperplane) which is introduced in exercise 1.37. 

The next result, the "support theorem", completely identifies the proper 
support points of convex sets with non-empty intrinsic core (2C). 

Theorem. Let A be a convex subset of a real linear space X such that 
icr(A) =F 0. If x ¢ icr(A), there exists 4> E X' such that 4>(x) > 4>(y), for all 
y E icr(A). 

Proof. We may assume that the origin () belongs to icr(A). Let M = 

span(A). If x ¢ M, we can certainly construct 4> E MO with 4>(x) > O. If x E M, 
the basic separation theorem allows us to construct 4>0 E M' such that 
4>o(x) ;::: 4>o(Y) for all y E icr(A). It is clear from the linearity of 4>0 and the 
definition of core that equality can never hold here. Now any extension 
4> of 4>0 to all of X will serve our purpose. D 

Corollary. The proper support points of a convex set A with icr(A) =F 0 
are exactly those in A\icr(A). In particular, if cor(A) =F 0, the proper support 
points of A are the bounding points (2C) of A that belong to A. 

Since all finite dimensional convex sets have non-empty intrinsic core 
(2C), their support points are fully located by this corollary. Naturally, the 
situation is a little more complicated in the general infinite-dimensional 
case. Let us consider, for example, the case of the real linear space CP(d), 
where 1 ~ p < 00 and d is a cardinal number, finite or infinite. This is the 
usual space of real-valued functions on a set S of cardinality d which are p-th 
power integrable wrt the counting measure on S (the counting measure is 
by definition defined on all subsets of S; its value at a particular subset is 
the cardinality of this subset if finite, and otherwise is + 00). Less formally, 
ifx:S ~ R and we identify x with the "d-tuple" of its values, x = (x(s):s E S), 
then x E CP(d) if and only if LSES Ix(s)!P < 00. Now CP(d) is clearly ordered by 
the natural pointwise vector ordering (SA), and the positive wedge P == 
{x E CP(d):x(s) ;::: 0, s E S} is a reproducing cone in CP(d). However, this 
wedge has no core when d ;::: ~o and hence no intrinsic core, so that the 
support theorem does not apply. 

Since no hyperplane can contain P, each support point of P (if there are 
any) must be proper. In the case where d > ~o, we claim that every point 
in P is a support point. This is so because each such point must vanish at 
some point in S. The characteristic function of this point in S then gives 
rise to a linear functional on CP(d) that defines a supporting hyperplane to 
P through the given point in P. For contrast, consider now the case where 
d = ~o and S == {l, 2, ... }. If x = (~;) E P and some ~i = 0 then the pre
ceding argument shows that x is a support point of P. But now it is possible 
that no ~i = 0 and in this case x is not a support point of P. 
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Thus we see that in the absence of core, a particular bounding point of 
a convex set mayor may not be a support point. More surprising, perhaps, 
is the possibility that a given convex set may have no support points at all. An 
example illustrating such a "supportless" convex set is given in exercise 1.20. 

It is clear from 4C that the present support theorem implies the basic 
separation theorem. 

D. Let f be a convex function defined on a convex set A in some real 
linear space X. A linear functional ¢ E X' isa subgradient of f at a point 
Xo E A if 

xEA. 

This definition is motivated by the result in 3A for the case where X = Rn, 
and f is differentiable at Xo. In this case, the gradient vector Vf(xo) was 
shown to satisfy the above condition (when viewed as a linear functional on 
Rn in the usual way). Thus a subgradient is a particular kind of substitute 
for the gradient of a convex function, in case the latter does not exist (or 
is not defined). 

Consider, for example, the case where A = X = R1 and f, although 
necessarily continuous on R1 (since it is convex), is not differentiable at 
some Xo. In this case, as is well known, f has a left hand derivative f'-(xo) and 
a right hand derivative j\(xo) at the point xo, and f'-(xo) ~ f'+(xo). Now 
we claim that any number t, f'-(xo) ~ f'+(xo), defines a subgradient of fat 
Xo. This is so because the difference quotients whose limits define these one
sided derivatives converge monotonically: 

f(x) - f(xo) t f'+(xo), 
x t Xo 

x - Xo 

and 

f(x) - f(xo) t f'-(xo), 
x - Xo 

x t Xo. 

Thus 
f'+(xo)(x - xo) ~ f(x) - f(xo), Xo < x 

and 
f'-(xo)(x - xo) ~ f(x) - f(xo), x < Xo. 

Other examples of subgradients are given in the exercises and in later sections. 
Let us consider next the geometrical interpretation of subgradients. First 

we recall that when X is a real linear space, (X x R 1)' is isomorphic to 
X' x R1. Indeed, such an isomorphism occurs by associating (¢, s) E X' x R 1 
with t{; E (X x R1)', where 

t{;(x, t) == ¢(x) + st, XEX, 

Now the basic geometric interpretation to follow is that subgradients cor
respond to certain supporting hyperplanes of the set epi(f) (3A) in X x R 1. 

Lemm~. Let A be a convex subset of X and let f E Conv(A). 
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a) ¢ E X' is a subgradient of f at Xo E A if and only if the graph of the 
affine function h(x) == f(xo) + ¢(x - xo) is a supporting hyperplane to epi(f) 
at the point (xo, f(xo) ). 

b) Conversely, assume that ljJ E (X .x· R 1)' and that H = [ljJ; O(] is a 
supporting hyperplane to epi(f) at (xo,f(xo)); say 0( = inf ljJ(epi(f)). Let ljJ 
correspond to (¢, s) E X' X Rl as above. Then, if s "# ° (intuitively, if H is 
"non-vertical"), we have s > ° and - ¢/s is a subgradient of fat Xo' 

Proof. a) By definition, ¢ is a subgradient of f at Xo if and only if 
hlA :::;; f. If we define ljJ E (X X Rl)' by ljJ(x, t) == -¢(x) + t, and let 0( = 
f(xo) - ¢(xo), then the inequality hlA :::;; f is equivalent to inf ljJ(epi(f)) = 

ljJ(xo,f(xo)) = 0(. Thus the hyperplane [ljJ; 0( J supports epi(f) at (xo,f(xo)); 
it is clear that graph(h) = [¢; O(]. 

b) We have ¢(xo) + sf(xo) :::;; ¢(x) + st, for all x E A and all t ~ f(x). 
From this the two assertions of b) are evident. 0 

If there exists a sub gradient ¢ of fat Xo we say that f is subdifferentiable 
at Xo. The set of all such ¢ is the subdifferential of f at xo, written 8f(xo); 
it is clearly a convex subset of X'. Since the sub differentiability of f at a 
given point depends, as we have just seen, on a support property of epi(f), 
we might suspect from the results of the previous section that in general 
8f(xo) will be empty. This is certainly the case as simple examples show. An 
existence theorem is thus required; the following "sub differentiability 
theorem" fills this order. 

Theorem. Let A be a convex subset of the real linear space X and f E 

Conv(A). Then f is subdifferentiable at all points in icr(A). 

Proof. Let Xo E icr(A), M = span(A - A) (M is the subspace parallel 
to aff(A)), and B = A - Xo. Define g E Conv(B) by g(x) = f(x + xo). Then 
any sub gradient in 8g(e) will, upon extension from M' to X', also belong to 
8f(xo). In other words, there is no loss of generality in assuming that e = 

Xo E cor(A); it is further harmless to take f(e) = 0. But now, in X x Rl, 
any point of the form (e, to), to > 0, belongs to cor(epi(f)}. To see this, pick 
(x, t) E X X Rl; we must show that (e, to) + A(X, t) E epi(f) for sufficiently 
small A > 0, or that f(h} :::;; to + At for small A. But the convex function 
g(A) == f(h) defined on (0, CX)) satisfies 

g(A)/A t g'+(O), A to, 
so that certainly 

f(h)/A == g(A)/A :::;; to/A + t 
for small A. Now since cor(epi(f)) "# 0, by 6C the bounding point (e, 0) is 
a support point of epi(f). The corresponding hyperplane cannot be "vertical", 
since e E cor(A). Thus, by part b) of the preceding lemma, there is a sub
gradient of f at e. 0 

To complete our circle of equivalent formulations of the basic separation 
principle, let us show that the sub differentiability theorem entails this 
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principle. From 4B and 4C we see that it is sufficient to prove that an alge
braically open convex set A in X can be separated from any point Xo ¢ A. 
As usual, after a translation, we may assume that e E A. Thus A is absorbing, 
its gauge PA belongs to Conv(X) (3C), and P A(XO) ~ 1. By the subdifferen
tiability theorem, there exists ¢E 8PA(XO):¢(x - xo) ~ PA(X) - PA(XO), x E 
X. Letting x = e and x = 2xo, and recalling that PAis positively homoge
neous, we see that 

¢(Xo) = P A(XO) == a 

¢(x) ~ PA(X), x E X. 

Consequently, the hyperplane [¢; a] separates Xo and A (since x E A implies 
PA(X) ~ 1 so that ¢(x) ~ PA(X) ~ 1 ~ a). 

E. In summary, we have now established the mutual equivalence of 
six propositions, each of which asserts the existence of a linear functional 
with certain properties. These propositions are 

1) the basic separation theorem (4B); 
2) the existence of positive functionals (5B); 
3) the Hahn-Banach theorem (6A); 
4) the Krein-Rutman theorem (6B); 
5) the support theorem (6C); 
6) the subdifferentiability theorem (6D). 

An important meta-principle is suggested by these results: if one wishes to 
establish the existence of a solution to a given problem, and one has some 
control over the choice of the linear space in which the solution is to be 
sought, then it will generally behoove one to choose the ambient linear space 
to be a conjugate space if possible. This is of course automatic in the finite 
dimensional case (lD), but does represent a restriction in the general case. 
We shall see many applications of this idea in subsequent sections. 

§7. Some Applications 

In this section we give a few elementary applications of the preceding 
existence theorems. Most of these results will play a role in later work. 
More substantial applications require the topological considerations to be 
developed in the next chapter. Throughout this section, X denotes a real 
linear space. 

A. We first consider a criterion ("Helly's condition") for the consistency 
of a finite system of linear equations, subject to a convex constraint. The 
most important special cases of this result are obtained by letting the set A 
below be the unit ball of a semi-norm p, that is, the set {x EX: p(X) ~ 1} 
(when P is identically zero, this definition yields simply A = X). 

Theorem. Let A be an absolutely convex subset ofX. Let {¢l' ... , ¢n} C 
X' and {c l , ... ,cn } c R. Then, a necessary and sufficient condition that for 
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every (j > 0 there exists xa E (1 + (j)A satisfying 

4>l{Xa) = Cb 

4>n{Xa) = cn' 

is that for every set {(J(b ... ,(J(n} c: R, 
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Proof. The stated condition is clearly necessary for the consistency of 
the given system. Let us prove its sufficiency. Suppose that for some (j > 0 
whenever x E (1 + (j)A, we have 4>i(X) # Ci for some i. If we define a linear 
map T:X --* Rn by 

T(x) = (4)l(X), ... , 4>ix)), 
our assumption becomes 

C == (c1, .•. , cn) ~ T( (1 + (j)A). 

By 4B these two sets can be separated: there is a non-zero linear functional 
)" on Rn such that 

),,(c) ? sup {A{v): v E T((l + (j)A)} = sup {1)"{v)l: v E T((1 + (j)A)} 

= sup {i)"(T(x))I :x E (1 + (j)A}. 

(The absolute values are permissible because A is a balanced set.) Now if )" 
n 

is given by ),,(v) = L (J(iVi, for v = (Vb . .. , Vn) ERn, we obtain 
1 

it (J(iCi ? sup {lit1 (J(i4>i(X)I : x E (1 + (j)A} 

= (1 + (j) sup {lit1 (J(i4>i(X)I:x E A}, 
in contradiction to ReIly's condition. 0 

B. Next, we consider a criterion ("Fan's condition") for the consistency 
of a finite system of linear inequalities. Such systems are of considerable 
importance in the theory of linear programming and related optimization 
models. 

Theorem. Let {4>1' ... ' 4>n} c: X' and {cb ... , cn} c: R. A necessary 
and sufficient condition that there exists x E X satisfying 

4>l(X) ? Cb 
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is that for every set {0(1' ... , O(n} of non-negative numbers for which 
n 

L O(i<Pi = e, 
i= 1 

it follows that 
n 

L rxiCi ::;; O. 
i= 1 

Proof. Again the necessity of the condition is clear, and we proceed to 
establish its sufficiency. Since a more general result will be established later, 
we merely outline the main steps and invite the reader to fill in the details. 
Let T:X ---+ Rn and c be as in the previous section, and let P be the usual 
positive wedge (SA) in Rn. If the given system of inequalities is inconsistent 
then, in Rn, the affine subspace T(X) - c is disjoint from P. Let {b 1, .•• , bd 
be a basis for the annihilator (IH) of the subspace T(X), and define a linear 
map S:Rn ---+ Rk 

S(v) = Bv, 

where B is the k x n matrix whose rows are the vectors b1, •.• , bk . Then 
S(P) is a closed wedge in Rk and, since our inequality system is inconsistent, 
-S(c) t/= S(P). Hence, by 4C, we can strongly separate the point -S(c) from 
the wedge S(P) by a hyperplane H in Rk. H is a level set of a linear functional 
A defined by a vector u in R k. We set 

rx = S'(A) == uB == (rxb ... , rxn), 

n 

where S' is the transpose (IH) of S. The numbers rxb ... , rxn satisfy L rxiCi > 0 
1 

n 

and I rxi<Pi = e, and consequently Fan's condition is violated. 
1 

o 
C. To illustrate the remark made in 6E we consider one more type of 

system oflinear inequalities. Now, however, we admit more complex systems 
than were covered above: infinitely many inequalities are allowed, together 
with an accompanying non-linear constraint. The problem will be formulated 
in a conjugate space, as recommended in 6E. 

We will need a result from general topology concerning compactness in 
function spaces. Let Y be a discrete topological space and Z a metrizable 
space (we are primarily interested in the special case Z = R.) Let G be a 
subset of the product space ZY endowed with its product topology. Con
ditions for the compactness of G in ZY are contained in the following result, 
a special case of the "Ascoli theorem". 

Lemma. The closed set G is compact in ZY if (and only if) 
a) G is equicontinuous; and 
b) for each y E Y, {f(y):fE G} has compact closure in Z. 
Now let g be a sublinear function (for example, a gauge PA) defined on our 

real linear space X. Let J be an arbitrary index set. Given sets {Xj:j E J} c X 
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and {cj:j E J} c R we consider the problem: find ¢ E X' such that 

(7.1) ¢(Xj) ~ cj' 
g ~ ¢. 

jE J, 
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We have the following criterion (the "Mazur-Orlicz condition") for the 
consistency of this system. 

Theorem. The system (7.1) has a solution'¢ E X' if and only if for every 
finite set U 1, ... ,jn} c J and every set {(Xl> ... , (Xn} of non-negative numbers 
we have 

(7.2) 

Proof. As usual we need only be concerned with the sufficiency. Let us 
first show that for each finite set Ul> ... ,jn} c J the system 

(7.3) ¢(XjJ ~ Cjk' k = 1, ... , n 

g~¢ 

has a solution ¢. Let C = (ch , ... , cjJ ERn and let P be usual positive 
wedge there. The set B == {¢(xj .), • •• , ¢(XjJ:¢ E X', ¢ ~ g} is a compact 
convex set in Rn (the compactness of B follows from the compactness of the 
set G == {¢ E X': ¢ ~ g} in R X, which in turn is a consequence of the 
Ascoli theorem). Now if the system (7.3) had no solution we would have 
B n (P + c) = 0, and consequently these two sets could be strictly sepa
rated by a hyperplane. Thus there would be numbers (Xl> ... , (Xn and {J such 
that 

n 
I (Xk¢(XjJ < {J, ¢E G, 

k= 1 

and 
n 

I (Xk(Pk + cjJ > {J, if Pk ~ O. 
k=l 

The first inequality here implies that g (t (XkXjk) ~ {J and the second that 
n 

I (XkCjk > {J and also that each (Xk ~ O. This is a contradiction of condition 
1 

(7.2). 
At this point we have proved that for each finite subset K c J, the set 

GK == {¢EG:¢(Xk) ~ cbkEK} 

is non-empty. These sets GK are closed subsets of G and, again from what 
we have just shown, they have the finite intersection property. Hence, since 
G is compact, all the sets GK have a non-empty intersection; any element of 
this intersection is clearly a solution of (7.1). 0 
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D. Let 9 be a real-valued function defined on X. The directional 
(Gateaux) derivative of gat XQ in the direction x is 

(7.4) '( . ) _ 1. - g(xo + tx) - g(xQ) 
9 xo , x = 1m . 

qo t 

Replacing t by - tin (7.4) we see that 

1. g(xo + tx) - g(xo) __ '( . _ ) 
1m - 9 xQ ' x. 

t r Q t 

As a preliminary to our next application, and to later work, we study this 
notion in the case where 9 is convex. 

Lemma. 

(7.5) 

Let 9 E Conv(X). For any xQ' x E X, the function 

g(xQ + tx) - g(xQ) 
n-~-------

t 

is non-decreasing for t > o. 
Proof. Observe first that if hE Conv(X) satisfies h(8) = 0, then f(t) == 

h(tx)/t is non-decreasing for t ~ O. Because, if 0 < s ~ t, 

s t - s 
h(sx) ~ - h(tx) + -- 11(8), 

t t 

so that f(s) ~ f(t). Now apply this argument to the function hey) == 
g(xQ + y) - g(xQ). D 

Theorem. Let 9 E Conv(X). Given any xQ E X, the directional derivative 
g'(xQ; x) exists for all x E X and is a sub linear function of x. 

Proof. Given x E X, we can establish the existence of g'(xQ; x) by 
showing that the difference quotient (7.5) is bounded below for t > 0 and 
then applying the lemma. In the convexity inequality 

(7.6) g(su + (1 - s)v) ~ sg(u) + (1 - s)g(v) 

let us replace u by XQ + tx, v by XQ - x, and s by 1/(1 + t). This yields 

g(xQ) = 9 C ~ t (xQ + tx) + 1 : 1 (Xo - X)) 

1 t 
~ -1-- g(xQ + tx) + -1-- g(xo - x), + t + t 

whence 

() ( ) g(xQ + tx) - g(xQ) 
9 Xo - 9 XQ - x ~ , 

t 
t> O. 

Now the function g'(xQ ; .) is clearly positively homogeneous (whether or 
not 9 is convex). To establish its sublinearity when 9 E Conv(X), we return 
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to inequality (7.6) and replace u by Xo + 2tx and v by Xo + 2ty for x, y E X. 
Setting s = !, we obtain 

g(xo + t(x + y)) :::;; !(g(xo +.2tx) + g(xo + 2ty)), 
and so 

g(xo + t(x + y)) - g(xo) g(xo + 2tx) - g(xo) g(xo + 2ty) - g(xo) ----------'- :::;; + . 
t 2t 2t 

Thus, when t t 0, we see that 

g'(xo; x + y) :::;; g'(xo; x) + g'(xo; y). o 
Corollary. Let 9 E Conv(X) and Xo E X. Then -g'(xo; -x) :::;; g'(xo; x), 

for all x E X. Consequently, if ¢ == g'(xo; .) is linear (that is, if ¢ E X') then 

(7.7) ¢(x) = lim g(xo + tx) - g(xo) , 
1-0 t 

XEX; 

that is, the two-sided limit as t ~ 0 exists for all x E X. Conversely, if this 
two-sided limit exists for all x E X, then the functional ¢ defined by (7.7) is 
linear. 

When the two sided limit in (7.7) exists for all x E X, the resulting ¢ E X' 
is called the gradient of 9 at xo, and is written ¢ == V g(xo). By way of illus
tration it is interesting to mention that when 9 E Conv(A), where A is an 
open convex set in Rn, then 9 has a gradient at almost every point in A and 
the map x f--+ Vg(x) is continuous on its domain in A. The proofs of these 
facts are not trivial and will be omitted, as the results play no role in the 
sequel. 

E. It was observed in 6D that when f E Conv(R) fails to be differentiable 
at Xo E R then 8f(xo} = [f'-(xo), f'+(xo)]. Guided by this special situation, we 
consider its analogue in a more general setting, and draw some interesting 
conclusions relating the notions of gradient, sub-gradient, and directional 
derivative. 

First of all, the results of 7D allows us to assert that the subgradients of 
9 E Conv(X) at a point Xo E X are exactly the linear minorants of the direc
tional derivative at Xo' That is, 

Since IjI is linear we can re-write this formula as 

(7.8) 8g(xo) = {IjJ E X': - g'(xo; - x) :::;; ljI(x) :::;; g'(xo; x), X EX}. 

Theorem. Let 9 E Conv(X} and Xo E X. 
a) For any x E X, the two-sided limit in (7.7) exists and has the value rx if 

and only if the function IjI \--> ljI(x) is constantly equal to rx for allljl E 8g(xJ 
b) The gradient Vg(xo) exists in X' if and only if 8g(xo) consists of a single 

element, namely V g(xo). 
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Proof. a) is clear from (7.8) and the fact that the limit in (7.7) exists if 
and only if g'(xo; -x) = -g'(xo; x). To establish b), assume first that Vg(xo) 
exists in X'. Then given any t/J E og(xo) we see from (7.8) that 

t/J :( g'(xJ ; .) == V g(xo), 

so that t/J = Vg(xo) and hence og(xo) = {Vg(xol}. Conversely, if the gradient 
V g(xo) fails to exist, it is because - g'(xo; - x) < g'(xo; x) for some x E X. 
Let M = span {x} and choose any a in: the interval [ -g'(xo; x), g'(xo; -x)J. 
We define a functional i/i EM' by setting i/i(tx) = at, for t E R. Then by our 
choice of a, i/i(x) :( g'(xo; x) for all x E M. Now the Hahn-Banach theorem 
(6A) provides us with an extension t/J of i/i for which t/J :( g'(xo ; .). We obtain 
distinct such t/J's by varying a in the indicated interval and by (7.8) all the 
t/J's belong to og(xo)· 0 

F. Let A be a convex absorbing set in X. It is of interest to apply the 
preceding results about general convex functions to the study of the gauge 
P A of A. This will yield the insight that the linear functionals defining sup
porting hyperplanes to A at some bounding point in A are exactly the sub
gradients of PA at that point. Given the geometric interpretation (6D) of 
subgradients and the fact the PAis sub linear, this relationship should not 
be completely unexpected. 

We say that the map 'A:X x X --+ R defined by 

'A(X, y) = PA(X; y). 

is the tangent function of A. From 7D it is clear that the tangent function 
obeys the following rules: 

a) 'A(X,·) is sublinear on X; 
b) 'A (x, y) :( PA(Y); 
c) 'A (x, tx) = tpA(X), t E R; and 
d) 'A (ax, .) = 'A(X, .), a > 0. 

Theorem. Let A be a convex absorbing set in X with gauge P A- Given 
Xo E X with P A(xo) > 0, the following assertions are equivalent for ¢ E x': 

a) ¢ E 0PA(xo); 
b) ¢ :( 'A(xo, .); 

c) ¢(xo) = PA(Xo) and sup{¢(x):x E A} = 1. 

Proof. The equivalence of a) and b) is a consequence of equation (7.8). 
To see the equivalence of a) and c), we recall that 

¢ E 0PA(Xo) ¢> ¢ :( PA and ¢(xo) = PA(Xo)· 

(These implications depend only on the sublinearity of PA-) Since also it is 
clear that 

¢:( PA ¢>sup{¢(x):xEA} = 1, 

the proof is Gomplete. o 
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By virtue of the support theorem (6C) we know that every bounding 
point Xo of A belonging to A is a (proper) support point of A. The theorem 
above tells us that 1"ixo, .) i= () in this ~ase, and furthermore, that there is 
a unique hyperplane of support at Xo exactly when 1"A(Xo> .) is linear. (If this 
functional is linear, then the unique supporting hyperplane to A at Xo is 
[1"A(Xo, .); IJ == [VPA(Xo); 1].) When these conditions for uniqueness are 
satisfied we say that Xo is a smooth point of A, or that A is smooth at Xo. This 
terminology is chosen to suggest that (intuitively) the surface of A does not 
come together "sharply" at Xo. We have shown that smoothness of A at its 
bounding point Xo is equivalent to the existence of V PA(Xo) in X'. 

To illustrate these ideas, let X = Rn, let p ~ 1, and let A be the unit 
p-ball (3C) in Rn. We know that PA is then the p-norm on R": 

By direct differentiation we compute that, for x i= () and p > 1, 

(7.9) 

Here the sigmum function sgn ~ is defined for real or complex ~, by 

if ~ = 0 

if ~ i= o. 

Suppose that x is a bounding point of A, so that P A(X) = 1. Then equation 
(7.9) shows that the tangent function is linear in y. Consequently, the unit 
p-ball is smooth at all its bounding points and, for such points x, 

(7.10) V PA(X) = (I~ IIp-l sgn ~ 1, ... , l~nIP-1 sgn ~n)· 

Now consider the situation when p = 1. A simple sketch (when n = 2 
or 3) suggests, and (7.9) confirms, that 1" A(X, .) is still linear provided no 
~i = 0, that is, provided that x lies in no coordinate hyperplane in Rn. Thus 
the unit I-ball is smooth at such points and formula (7.10) remains valid. 
On the other hand, let us suppose that some components of x are zero; say 
~i = 0 for i E 10 S {I, 2, ... , n}. Then we compute that 

(7.11) 1"A(X, y) = L 1]i sgn ~i + L l1]d· 
i¢I, iEI, 

From (7.11) we see that 1"A(X, .) is not linear and, in fact, that -1"A(X, - y) < 
1"A(X, y) whenever 1]i i= 0 for some i E 10 • It follows that the unit I-ball is not 
smooth at any such x. In fact, we see that any hyperplane of the form [¢; 1J 
supports the unit 1-ball at x if ¢ is determined by ((1, ... ,(n) and 

(i = sgn ~i' i ¢ 10 

l(il~1, iE10· 
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§8. Extremal Sets 

In this section we introduce the last of our "primitive" linear space 
concepts: extremal subsets and points of convex sets. The fundamental idea 
here is that a given convex set can be "reconstructed" from knowledge of 
certain bounding subsets by use of the operation of taking convex com
binations (and perhaps also closures, as we shall see later). There is a faint 
analogy with the reconstruction of a linear space from the elements of a 
basis and the operation of taking linear combinations, although the more 
complicated behavior of general convex sets permits further classifications 
of extremal sets and points. 

A. Let E be a subset of a convex set A in the real linear space X. E is 
a semi-extremal subset of A if A\E is convex, and E is an extremal subset of 
A if x, YEA and tx + (1 - t)y E E for some t (0 < t < 1) entails x, Y E E. 
We often write "E is A-semi-extremal" or "E is A-extremal". It is clear that 
each extremal subset of A is semi-extremal; the simplest examples in R2 
show that the converse is generally false. However, when E = {xo} is a 
singleton subset of A, the two notions do coincide; when this happens, Xo 

is said to be an extreme point of A and we write Xo E ext(A). Thus the extreme 
points of A are just those points which can be removed from A so as to 
leave a convex set. Any such point is necessarily a bounding point of A. 

The prototypical example is an n-simplex (2C): it is (by definition) the 
convex hull of its vertices which are the extreme points in this case. More 
generally, the convex hull of any subset ofthe vertices is an extremal subset of 
the n-simplex. Other possibilities can occur: on the one hand, every bound
ing point of the unit p-ball (p > 1) in R" is an extreme point, and there are no 
other (proper) extremal subsets; on the other hand, an affine subspace of 
positive dimension contains no (proper) extremal subsets at all. Examples 
of A-semi-extremal subsets are obtained as the intersection of A with any 
half-space (4B) in X, or more generally, as the intersection of any A-extremal 
set with a half-space. Any subset of ext(A) is A-semi-extremal. 

The following lemma collects a variety of elementary but useful properties 
of (semi-) extremal sets; its proof is left as an exercise. It should be noted 
that the assertions below involving A-extremal sets do not require the 
convexity of A. 

Lemma. Let A be a convex subset of X. 
a) The union of a family of (semi-) extremal subsets of A is A-(semi-) 

extremal; 
b) The intersection of any (nested) family of A-(semi-) extremal sets is 

A-(semi-) extremal. 
c) Let E c B c A with B an extremal subset of A. If E is B-(semi-) 

extremal, then E is also A -(semi-) extremal. 
d) If E is A-extremal then ext(E) = ext(A) n E. 
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B. Let us now consider how the extremal subsets or extreme points of 
a given convex set A can be used to describe the set. Here we shall only 
consider the case where A is of finite dimension (2C). Thus we may as well 
assume that A c R" for some n; we shali also assume that A is closed. 

Lemma. Each closed convex subset A of R" rontains an A -extremal 
affine subspace, and any two such affine subspaces are parallel. 

Proof. To prove the existence of such extremal fiats in A we proceed 
by induction on the dimension of A. We may assume that existence has been 
established for sets of dimension less than dim(A), which we take to equal n. 
We may also assume that A has a bounding point p, for otherwise A = Rn 
and A is an extremal fiat in itself. Now if H is a hyperplane supporting A at 
p (6C), the set A n H contains an extremal fiat K by the induction hypothesis. 
However, since A n H is necessarily an extremal subset of A, it follows from 
the preceding lemma that K is also A-extremal. 

Now suppose that Kl = Pl + Ll and K z = pz + L z are two A-extremal 
fiats parallel to the subspaces Ll and L z (1C). We want to see that Ll = L z. 
If Ll is not contained in L z then 

(8.1) 

(The second inclusion of (8.1) can be shown as follows: let 11 ELl and 
pz + lz E K z; then for t :;:, 1, Pl + til E A and hence 

(8.2) (1 -D (pz + lz) + ~ (Pl + til) E A. 

As t -+ + 00, the left side of (8.2) converges to 11 + pz + Iz and this must 
belong to A since A is closed.) Now (8.1) contradicts the assumption that 
K z is A-extremal, so that we must have Ll c L z. Analogously, L z eLl, 
whence Ll = L z· 0 

It follows that the extremal affine subspaces of A are all parallel to a 
particular subspace LA called the lineality space of A. The dimension of LA 
is the lineality of A and an affine subspace of A is A-extremal exactly when 
it is of maximal dimension (with respect to all the affine subspaces of A), this 
dimension being just the lineality of A. It is easy to see that 

(8.3) 

A is said to be line-free exactly when LA = {8}. We now have sufficient 
information to state the basic existence theorem for extreme points. 

Theorem. The closed convex set A in Rn has an extreme point if and 
only if A is line-free. 

Proof. If A is not line-free then there is a non-zero x satisfying (8.3) so 
that no point of A can be extreme. On the other hand, if A is line-free, the 
only fiats contained in A are of zero dimension, hence points. The lemma 
now guarantees the existence of an extreme point. 0 
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This result allows us to obtain a preliminary decomposition of the closed 
convex set A. Let L~ be the orthogonal complement of the subspace LA, 
that is, the set of all vectors in R" that are orthogonal to LA- Then we can 
write 

(8.4) A = LA + (A n L;;"); 

the "section" A n L~ of A is clearly line-free and hence has an extreme point. 
It is not hard to show that this is the only way to express A as the orthogonal 
sum of a subspace and a closed line-free convex set. 

C. To obtain a more complete decomposition of the closed convex set 
A in R", we introduce the recession cone(1) (asymptotic cone) CB of a convex 
set B in a real linear space X: 

CB == {XEX:X + B c B}. 

Note the analogy with formula (S.3); clearly LB c CB , when B c R"; 
indeed, LB = CB n ( - CB) (SA). We shall want to consider the set CB 

especially in the case where B is line-free (LB = {B}); in terms of our original 
convex set A under investigation, we shall be interested in CBA, where 
BA == A n L~. 

Lemma. Let B be a convex subset of the real linear space X. 
a) The recession cone C B is a wedge in X; 
b) CB = {xEX:b + tXEBforallt ~ OandallbEB}; 
c) if X = Rn and B is closed then CB is closed and CB = {x E Rn: x = 

lim" tnx", where Xn E Band t" to}. 

Proof. a) Let x E CB so that x + B c B. Then 2x + B = x + (x + B) c 

x + B c B, and more generally, nx + B c B for every positive integer n. 
Since B is convex, this means that tx + B c B for all t ~ 0, that is, tx E CB, 

t ~ O. Next, if x, y E CB and 0 < t < 1, we have 

((1 - t)x + ty) + B = (1 - t)(x + B) + t(y + B) 
c(l - t)B + tB = B, 

using the convexity of B. This proves that CB is a wedge. 
b) The inclusion from right to left here is trivial, and the reverse inclusion 

follows from the proof of a). 
c) From part b) we see that given any b E B 

(8.5) CB = n{t(B - b):t > O} 

(whether or not X = Rn). Since B is closed, (8.5) exhibits CB as an inter
section of closed sets, so that CB is closed. Next, let x E CB ; for any fixed 

(1) The term "recession cone" is used in conformity with established terminology. To be 
consistent we should say "recession wedge", since this set is generally not a cone as defined 
in SA. 
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b E B, b + nx == xn E B and hence x = limn tnxn' where Xn E Band tn ! O. 
We claim that bo + tx E B for any fixed bo E B and any t > O. If this were 
not the case then for some to > 0, bo + tox fj: B and we could apply the 
strong separation theorem to find 4> E Rill and ()( E R such that 

(S.6) 

However,4>(x) = limn 4>(tnxn) and 4>(tnxn) ~ tnIX, so that 4>(x) ~ 0; this entails 
4>(bo + toX) ~ 4>(bo) ~ ()(, in contradiction to (8.6). 0 

The formula in part b) provides the motivation for the term "recession 
cone". Note that the wedge CB is a cone exactly when B is line-free. A pro
cedure for computing both LA and CA for a given closed convex set A eRn 
is indicated in exercise 1.35. 

We come now to the main decomposition formula for a closed convex 
set A eRn, the "Klee-Minkowski-Hirsch-Hoffman-Goldman-Tucker theo
rem". Associated with A we have its lineality space LA and the corresponding 
line-free section BA == A n L~. 

Theorem. Let A be a closed convex subset of Rn. Then 

(S.7) A = LA + CBA + co(ext(BA))' 

Proof. It will suffice (in view of (8.4)) to show that 

(S.S) B C CB + co(ext(B)) 

for any closed line-free convex set BeRn. We proceed (as in (SB)) via 
induction on the dimension of B and assume that (8.8) is valid for subsets B 
of dimension < n. Let p be an arbitrary point in B and let L be any line 
containing p. The set B n L is then either a closed half-line or a compact 
line segment, since B is line-free. In the former case we can write 

B n L = {x + AY:A ~ o}. 

The end-point x of this half-line is a bounding point of B and hence is con
tained in a hyperplane H of support to B. Applying the induction hypothesis 
to B n H, we have 

X E CBnH + co(ext(B c H)) 

C CB + co(ext(B)), 

using (SA). Since y must lie in CB and since p = x + 1y for some 1 ~ 0, it 
follows that 

p = x + 1y E (co(ext(B)) + CB) + CB 

cco(ext(B)) + CB' 

In the other case, B n L is a compact line segment and by analogous rea
soning both its end-points belong to CB + co(ext(B)); since this latter set is 
convex, it contains the entire line segment and, in particular, the point p. 0 

D. Some iIpportant consequences of the preceding theorem will now 
be given. The first of these, "Minkowski's theorem", follows from SC and 
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the observation that a convex set A c Rn is bounded if and only if C A 

(hence LA) = {8}. 

Corollary. A compact convex set in R" is the convex hull of its extreme 
points. 

Consider next the case where our closed convex set A c Rn is unbounded 
but line-free: LA = {8}. An extreme ray of A i, an A-extremal half-line; we 
write the set of all extreme rays of A as rext(A). The idea now is that A can 
be recovered (via convex combinations) from its extreme points and its 
extreme rays. 

Lemma. Let C be a closed (convex) cone in Rn. Then C = co(rext(C)). 

Proof. From 5C we know that our cone C has a base K given by 
K = [4>; 1] n C, where 4> is a linear functional that is strictly positive on 
C\{ 8}. The base K is clearly closed and we claim also that it is bounded. 
For otherwise, there would exist a sequence {xn } c K with IIxnl12 --+ + CX) 

(here IIxnl12 is the 2-norm (3C) of xn). Let z be a limit point of the sequence 
xn/llxnl12; since IIzl12 = 1, z #- 8, and since C is closed, z E C, whence 4>(z) > 
0. But also 

4>(z) = lim 4>(xn/llxnI12) = lim (1/1IxnI12) = 0, 
n n 

a contradiction; thus K must be bounded hence compact. Now an easy 
argument shows that if p is an extreme point of K then the ray {tp: t ~ O} 
is an extremal ray of C. The conclusion of the lemma is thus seen to be a 
consequence of Minkowski's theorem. 0 

The following result, "Klee's theorem", provides a substantial general
ization of Minkowski's theorem; its proof follows directly from the lemma 
and Sc. 

Theorem. A closed line-free convex set A in Rn is the convex hull of its 
extreme rays and extreme points: 

A = co(ext(A) u rext(A)). 

E. An important application of these structure theorems is to problems 
of optimization. An optimization (or variational) problem occurs when we 
are given a pair (A, f) (a variational pair) consisting of a set A and a real
valued function f on A; f is called the objective (or cost) function. The 
problem is to determine the number inf {f(x): x E A}, called the value of the 
optimization problem, and a point in A (if any) where f attains its infimum; 
any such point is a solution of the problem. It is traditional to also refer to 
such an optimization problem as an abstract mathematical program. It should 
be I;toted that by the simple expedient of changing the sign of the objective 
function, problems originally requiring the maximization of some function 
can be converted into the present format. 

Let us consider a special case of the preceding: a finite dimensional 
concave program (A, f), where A is a convex set in Rn for some nand f is 
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a concave function on A, that is, -f E Conv(A). In practice, such a problem 
might arise as a linear program, that is, f(x) = <{J(x) + c, where <{J is a linear 
functional on Rn and c is a constant, or, after a change of sign, as the problem 
of maximizing the utility of some risk-seeking investor. 

Theorem. Let (A, f) be a finite dimensional concave program as just 
defined; assume that A is line-free and closed, and that f is lower semicontinuous 
on A. If a solution exists in A, then there is a solution in ext(A). Conversely, 
any solution to the program (ext(A), f) is also a solution to the original program 
(A, f), provided that f is bounded below on A. 

Proof. The subset F of A where f attains its infimum over A is non
empty (by' hypothesis) and is in addition closed and convex. Therefore, by 
8B, F has an extreme point. Since F is also easily seen to be A-extremal it 
follows from 8A that this extreme point belongs to ext(A). For the converse, 
suppose that inf{f(x):x E ext(A)} is attained at p E ext(A). If x = Ltiei E 

co(ext(A)), then 

f(x) = f(Ltiei) ~ LtJ(e;) ~ XtJ(p) = f(p)· 

Now from8C, A = CA + co(ext(A)),sinceAisline-free(sothatLA = {On· 
Choose any c E C A and any t > 1. Then for x E co(ext(A)) we have tc + x E A 
and 

t - 1 1 
c + x = -- x + - (tc + x), 

t t 

so that 
t - 1 1 

f(c + x) ~ --f(x) + - f(tc + x) 
t t 

t - 1 1 
~ --f(p) + -inf{f(Y):YEA}. 

t t 

Letting t --+ 00, we conclude that f(c + x) ~ f(p)· D 
The effect of this theorem is of course to reduce the search for solutions 

of the finite dimensional concave program (A, f) to the extreme points of A. 
In particular, when f is bounded below on A, and ext(A) is a finite set, then 
we are assured of the existence of a solution in ext(A). For example, if A is 
the strip {(Xl' x2) E R2:r ~ xl> a ~ x2 ~ b} and the concave function f is 
bounded below on A, then at least one of the points (r, a), (r, b) is a solution 
of the concave program (A, f). 

F. The preceding results have dealt with finite dimensional convex sets 
and their extremal properties. To conclude this section we now want to give 
a famous.example concerning the extreme points of certain infinite dimen
sional convex sets. 

Let A be an algebra of real or complex-valued functions defined on some 
set Q; we assume that A contains the function e identically equal to one on 
Q. A is of course an ordered linear space with the natural pointwise vector 
ordering (SA); we let P be the positive wedge in A and p+ the dual wedge 
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in A'. In A' we consider the convex sets Ko == {4> E p+: 4>(e) :::; 1} and 
Kl == {4> E Ko: 4>(e) = 1}. The question now is: what are the extreme points 
of Ko and Kl? 

Let AR = {f E A:f is real-valued} and suppose that AR consists only of 
bounded functions on Q. Then we can derive a necessary algebraic condition 
for an element of Ko or Kl to be extreme. Note that since Kl is Ko-extremal, 
it suffices to work only with Ko; indeed, ext(Ro) = ext(Kl) u {e}. 

Theorem. An extreme point of Ko must be an algebra homomorphism of 
A. 

Proof. Let 4> E ext(Ko); if 4> = e we are done. Otherwise we must 
show that 

(8.9) 4>(fg) = 4>(f)4>(g) 

for all f, g E A. Let us first prove this when g = e. Let t/J = (1 - 4>(e) )4>. 
Since 4> E K o, t/J E p+ whence 4> + if E p+ ; similarly, 4> - t/J E P+. Further, 

<e,4> + t/J> = 4>(e) + 4>(e)(l - 4>(e)) 
:::; 4>(e) + (1 - 4>(e)) = 1, 

and <e, 4> - t/J> = 4>(e)2 :::; 1. Therefore, 4> ± t/J E Ko and so t/J = e, since 
4> E ext(Ko). Next we prove (8.9) assuming that g is real-valued. For this we 
may also assume that e :::; g :::; e; because, since g is bounded (by hypothesis), 
there are s, t > 0 such that e :::; sg + te :::; e, and, if it is true that <f(sg + te), 
4> > = 4>(f)4>(sg + te), then s4>(fg) + t4>U) = s4>(t)4>(g) + t4>U)4>(e). Now, 
with e :::; g :::; e, let t/JU) = 4>Ug) - 4>U)4>(g); then <e, 4> + t/J> = 4>(e) :::; 1. 
Further, if f E P, 

<f,4> + t/J> = 4>U) + 4>Ug) - 4>U)4>(g) 
= 4>U)(l - 4>(g)) + 4>Ug) ~ 0, 

and similarly, 

<f, 4> - t/J> = 4>U) - 4>Ug) + 4>U)4>(g) 
= <f( e - g), 4> > + 4>U)4>(g) ~ O. 

Again we have shown that 4> ± t/J E Ko and hence t/J = e. Finally, for 
arbitrary f, g E A, define t/J(g) = 4>Ug) - 4>(f)4>(g). If g E P then by what 
we have just shown, t/J(g) = 0; thus once more 4> ± t/J E Ko and t/J = e, 
completing the proof of (8.9). 0 

The algebra A was not assumed to be self-adjoint (that is, to contain J 
whenever it contains f). However, if ext(Ko) #- 0, then the self-adjointness 
of A follows; thus the theorem really concerns algebras of bounded functions 
(exercise 1.39). 

Let us also remark that the same proof applies to a more general situation. 
Namely, let A =11= be a second algebra of functions defined on some set Q =11= 

with positive wedge P =11= and containing the identically-one function e #. 
Let Ko(A, A:tI=) consist of all positive linear maps T:A ---+ A =11= such that 
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T(e) ~ e =11= (T is positive if T(P) c: P=I1=). Similarly we let K 1(A, A =11=) = 

{T E Ko(A, A =11=): T(e) = e=l1=}. Then the preceding theorem is true for 
Ko(A, A =11=) and K 1(A, A =If). 

Before treating the converse of the theorem, let us note a useful fact: if 
fEAR and <P E Ko then 

(S.10) 

The proof of this follows 11P~11 consideration of the discriminant of the non
negative quadratic form t 1---+ «(if + e)2, <p). 

Now assume that our algebra A is self-adjoint and that <p is a homo
morphism of A belonging to Ko. Then we can prove that <p E ext(Ko). To do 
so, suppose that <p = !(<Pl + <P2) where <Pi> <P2 E Ko· Now, if fEAR' 

!<Pl(fl + !<P2(f)2 ~ !(<Pl(P) + <P2(P)) 
= <p(P) = <p(f)2 = Ml(f)2 + !<Pl(f)<P2(f) + t<P2(f)2, 

where the first inequality is a consequence of (8.10). This argument shows 
that (<Pl(f) - <P2(f))2 ~ 0, whence <PI and <P2 agree on AR. Since A is 
self-adjoint this means that <PI = <P2 and so <P E ext(Ko) as claimed. Again, 
this proof generalizes to the case Ko(A, A =11=). 

To sum up, in the case where A is a self-adjoint algebra of bounded 
functions, we have obtained both an algebraic characterization of the 
extreme points of the sets Ko and Kl and a geometrical interpretation of 
certain algebra homomorphisms of A (for many common algebras A, every 
homomorphism of A belongs to Ko; this is true in particular when A = C(Q), 
the space of all continuous functions on the compact Hausdorff space Q). 
Now at present we don't know whether extreme points or (non-zero) homo
morphisms exist, but we have at least arrived at the point where knowledge 
of one has implications for the other. Existence proofs for either extreme 
points or homomorphisms involve the Axiom of Choice, usually in the guise 
of Zorn's lemma. We might, for example, try to utilize the latter to produce 
a proper maximal ideal M in A; we would then expect M to be the kernel of 
a homomorphism. However, in conformity with our geometric approach, 
we will adopt the opposite course and try to develop methods for proving 
the existence of extreme points for certain infinite dimensional convex sets. 
The eventual results bear some analogy to the finite dimensional case treated 
earlier in this section, but the methods are quite different. Interestingly 
enough, these methods require topological considerations (interesting 
because the notion of extreme point is purely algebraic). We turn to such 
considerations next. 

Exercises 

1.1. a) Show that the sequence of monomials {tn:n = 0, 1,2, ... } is a 
linearly independent subset of the linear space of all real-valued 
functions defined on the interval [0, 1]. 
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b) Show that the family of complex exponentials {eiAt : - 00 < A < oo} 
is a linearly independent subset of the linear space of all continuous 
bounded complex-valued functions defined on R. 

c) What is the dimension of the space in b)? 
1.2. Let n be an arbitrary cardinal number. Construct a (real or complex) 

linear space of dimension n. 
1.3. a) Let X be the linear subspace of exercise l.1a), let 0 ~ t1 < t2 < ... < 

tm ~ 1, and let {Cl> Cz, .•. , em} C R. Show that the set {x EX: 
x(t i ) = Ci> i = 1, ... , m} is an affine subspace of X. 

b) Let X be an arbitrary linear space. If cPl> ... , cPm E X', show that 
m n ker cPi is a subspace of co dimension ~ m. 
1 

1.4. a) Let X be an infinite dimensional linear space over the field IF. Prove 
that dim(X') = 2dim(X). (First show that dim(X') ~ 2~o by considering 
a linear independent sequence {en} C X and the set {cP,\: A E IF} c 
X' defined by cP;..(en) = An. Then verify 

2dim X = card(X') = 2~o dim(X') = max(2~O, dim(X')) = dim(X').) 

b) Prove that two linear spaces over IF are isomorphic if (and only if) 
their algebraic conjugate spaces are isomorphic. (In the case where 
the spaces are of infinite dimension use part a) and the generalized 
continuum hypothesis.) 

1.5. Let T:X --+ Y be a linear map between linear spaces X and Y. 
a) Show that T" == (T)':X" --+ Y" is an extension of T. 
b) If X = Y, show that T is always the transpose of some linear map 

exactly when X is finite dimensional. 
1.6. Let X and Y be linear spaces. A map T: X --+ Y is affine if the map 

x --+ T(x) - T(e) is linear. Show that if T is affine the image T(A) 
of a convex set A c X is convex, and the inverse image T- 1(B) of a 
convex set BeY is convex. 

1.7. Let A be an absolutely convex set in a linear space. Show that span(A) = 
00 

U nA and that cor(A) is again absolutely convex. 
1 

1.8. Let A eRn, for some n. 
a) If A is convex show that the core of A is the (topological) interior 

of A, and that lin(A) is the closure of A. 
b) Show by example in R2 that when A is not convex, there can be 

points in cor(A) which are not interior points of A. 
c) If A is open show that co(A) is also open. 
d) Find an example of a closed A such that co(A) is open (yet not 

all of Rn). 
e) Show that each x E co(A) lies in some m-simplex with vertices in 

m 

A, and m ~ n. ("Caratheodory's theorem". Express x as L (XiXi 
o 
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m 

where Xi E A, lXi ~ 0, and I lXi = 1 and assume that this represen-
D 

tation of X involves the minimum possible number of points in A. 
It is to be shown that m ~ n. Proceed by contradiction, assuming 
that m ~ n + 1; the points Xo, Xl> ... , Xm are then not in general 
position.) 

f) Use the result of e) to show that coCA) is compact whenever A 
is compact. 

1.9. Taking into account exercise 1.8a) show that a linear space X has fi:.lite 
dimension if and 0llly if for all convex A c X we have lin(lin(Aj) = 

lineA). (If X is infinite dimensional and X E X, define sex) to be the sum 
of the coefficients involved in the expression of x relative to a fixed 
basis for X, and define n(x) to be the number of these coefficients that 
are not zero. Let A be the set of x with non-negative coefficients such 
that n(x) > 0 and n(x)s(x) > 1. Then A is convex but e E lin(lin (A) )\A.) 

LlO. A real-valued function f defined on a linear space X is quasi-convex 
if its sublevel sets {x E X :f(x) ~ A} are convex for each real A. Show 
that f is quasi-convex if and only if f(tx + (1 - t)y) ~ max {f(x), 
fey)} for X, y E X and 0 ~ t ~ 1. Thus every convex function is quasi
convex but the converse fails even in R 1. 

Ll1. Prove the lemma in 3C. 
Ll2. Let A be a convex absorbing set in a linear space X. The gauge P A 

determines A analytically as follows: 
a) cor(A) = {xEA:PA(X) < 1}; 
b) the algebraic boundary of A is {x E X:PA(X) = 1}; 
c) if {X:PA(X) < 1} c B c {X:PA(X) ~ 1}, then PA = PB· 
It follows that an absorbing non-convex set may still have a sub linear 
gauge. 

1.13. Let Al> ... , An be convex absorbing sets in the linear space X. Express 
n 

the gauge ofn Ai in terms of the gauges PAl'···' PAn· 
1 

Ll4. Establish the following variant of the basic separation theorem: let A 
and B be convex subsets of a linear space such that both icr(A) and 
icr(B) are non-empty; then A and B can be separated by a hyperplane 
if and only if icr(A) n icr(B) = 0 (we exclude the trivial case that 
A u B already lies in a hyperplane). 

1.15. Show by example in R 2 that the lemma in 4C is not valid for strict 
separation. 

1.16. Let A eRn. The polar of A is the convex set AD == {x E Rn:(a, x) ~ 1, 
a E A}, where (., .) is the usual inner product on Rn. If now A is convex 
and absorbing with gauge P A, show that 

PA(X) = sup {(X, y):y E AD}, 

Ll7. Sometimes it is of interest to know when two disjoint convex sets can 
be (strongly), separated by a given hyperplane. The simplest case is 
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the following: we are given points a, b, PI' P2' ... , Pn in Rn with the Pi 
in general position. Let H be the hyperplane aff( {PI' ... , Pn})' Assuming 
that neither a nor b lies in H, show that H strongly separates a and b 
if and only if the determinants det(a, PI' ... , PIl) and det(b, Pb ... ,Pn) 
have opposite signs, where for x = (~1' ... , ~n)' X == the column vector 
(~1' ... , ~'" If. (Consider the condition for the line segment (a, b) to 
intersect H.) 

1.18. Show that a w:::Jge P in a real linear space is reproducing if and only 
if the dual wedge p+ is a cone. Show that this happens in particular 
when P has non-empty core. 

1.19. a) Let X be the space qT) (resp. Co(T)) of continuous real-valued 
functions (resp. that vanish at infinity) on the compact (resp. locally 
compact) Hausdorff space T. Determine in each case the core of 
the positive wedge in X (the natural pointwise vector ordering is 
assumed.) 

b) Let X be the space of real n x n symmetric matrices and let P 
be the wedge of positive semi-definite matrices in X. Show that P 
is reproducing and determine its core. 

1.20. Let X be the linear space of (the usual equivalence classes of) real
valued measurable functions on the interval [0, 1], and let P be the 
wedge of ae non-negative functions in X. Show that p+ = {e}. It 
follows that every non-trivial linear functional in X' maps Ponto 
all of R; consequently P cannot be separated from any set in X, and 
in particular, P contains no support points. (Suppose ¢ E p+ but 
¢ 1= e. If XE is the characteristic function of the measurable set E c 

[0,1], then <X[O.11' ¢) == a > ° for otherwise ¢ would annulI all 
bounded functions in X and hence ¢ would be the zero functional. 
Then one of <X[O, t), ¢) and (X[t. 1), ¢ > is at least a12, say the former, 
so that (4X[o, t), ¢) ;3 2a. Repeating this argument, an increasing 
sequence of functions in X can be constructed such that ¢ cannot be 
defined on the (measurable) limit of this sequence.) 

1.21. Let A be a convex absorbing subset of the real linear space X, M a 
subspace of X, and ¢ E M'. If sup{¢(x):x E A n M} ::( 1, then there 
is an extension (f) of ¢ in X' such that sup {(f)(x):x E A} ::( 1. (Note 
that the inequality on ¢ is equivalent to ¢ ::( PAlM.) Use this result 
in the case where A is absolutely convex to prove the corollary in 6A. 

1.22. Where is the hypothesis that cor(P) n (P n M) 1= 0 used in the proof 
of the theorem in 6B? 

1.23. Let X = (P(d) where 1 ::( P < 00 and d is a cardinal number ;3 ~o (6C). 
Show that the positive wedge P in X has no core, and give the details 
for the assertions made in the text regarding the support points of P. 

1.24. Let M be a subspace of the linear space X, ¢ E M ', and let j, 9 be two 
convex functions on X. Then there is an extension (f) of ¢ in X' such 
that - 9 ::( (f) ::( j if and only if for all pairs x, y E X with x - y E M 
we have ¢(x - y) ::( j(x) + g(y). In particular, the case M = {e} gives 
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a condition for the existence of a linear functional in X' interposed 
pointwise between -g and f. (Let g-(x) == g( -x) and set h = f D g
(3B); then the condition ¢(x - y) ;::;; f(x) + g(y) for x - Y E M is 
equivalent to ¢ ~ hiM.) 

1.25. a) Let f be the p-norm (3B) on Rn (1 ~ p < ct)). Find all subgradients 
of f at the origin. Same problem if f(x) == (Qx, x), where Q is a 
symmetric positive semi-definite n x n matrix. 

b) Let f be a continuous convex function defined on Rn (continuity 
is actually automatic as we shall learn later). Identifying Rn with 
Rn' in the usual way, show that of(xo) is a non-empty compact 
convex set in Rn, for all Xo ERn. 

c) Let f be the convex function on the interval [ -1, 1] defined by 
f(x) = -.J1 - x 2 • Show thatf is not subdifferentiable at the points 
±1. 

1.26. Let X be a real linear space. 
a) The equality system 

¢m(x) = Cm 

for given ¢; E X' and C; E R is consistent if and only if for any set 
m m 

{IX1' ... ,IXm} c R, I IX;C; = 0 whenever I IX;¢; = e. Write the 
1 1 

matrix version of this assertion when X = Rn. 
b) In 7C, prove that there is ¢ E X' satisfying 

¢(x;) = cj ' j E J, 

g?;¢ 

if and only if the Mazur-Orlicz condition (7.2) holds with no sign 
restriction on IX 1, ... , IXw 

1.27. Suppose that the inequality system in 7B is inconsistent. Show that 
there is some B > 0 such that for every choice of 61, ... , 6n with each 
6; ?; - B the system 

is inconsistent. 
1.28. Let X be a real ordered linear space whose positive wedge has non

empty core. Given an index setJ and sets {Xj:j E J} c X, {cj:j E J} c 

R, suppose that for somejo E J, Xjo E cor(P) and cjo > O. The "moment 
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problem" is to find ¢ E p+ such that ¢(Xj) = cj . Show that this problem 
is consistent if and only if for every finite set {jt> ... ,jn} C J such that 
n n 

L IXkCjk = 0 for {1X1, ... , IXn}c R, the vector L IXkxik is not in cor(P}. 
1 1 

Interpret this result in the case where X = C([O, 1J) and for j = 0,1, 
2, ... , Xj(t) == tj. 

1.29. In the course of proving the theorem in 7C we needed to know that 
sup {1/!(x):1/! E G} = g(x), for various x E X. Prove this and show that 
the "sup" is actually a "max". 

1.30. Let f E Conv(Rn). If the n (two-sided) partial derivatives of f exist 
at Xo ERn then f has a gradient at Xo. 

1.31. Given a convex absorbing set A in a real linear space X, XO E A with 
P A(Xo) = 1, x E X, and IX E R such that - 1" A(Xo, - x) ~ IX ~ 1" A(Xo, x), 
show that there exists ¢ E X' with ¢(x) = IX such that the hyperplane 
[¢; 1 J supports A at Xo. 

1.32. Let A be the "unit max-ball" in RH, that is, A = {(~l' ... , ~H) ERn: 
I~il ~ 1, i = 1, ... , n}. Compute PA, determine the smooth points of 
A, and find a formula for V P A at such points. 

1.33. Let A be a convex subset of the linear space X. 
a) If p E X, then p E ext(A) if and only if the condition p ± x E A for 

x E X implies x = 8. 
b) If F is a finite subset of A and X '5' ext(A) n co(F), then x E F. 
c) The intersection of an A-extremal set with a half-space in X is 

A -semi-extremal. 
d) If A is a wedge in X then it is actually a cone if and only if 8 E ext(A). 

1.34. Let A be a compact convex set in Rn and let E c A. 
a) Then E is semi-extremal if and only if for all compact sets B c A\E 

we have co (B) c A\E. 
b) If E is a closed semi-extremal subset of A, then E contains an extreme 

point of A. (This assertion is certainly true if E is convex; in general 
consider a maximal convex subset of E.) 

1.35. Let A be a closed convex subset of RH. To compute the lineality space 
LA and the recession cone CA we express A as {x ERn:¢}x) ~ Cj, 
j E J} for suitable linear functionals ¢j' reals cj and (countable) index 
set J. (Use 4C.) Then 

LA = {xERH:¢j(X) = O,jEJ} 
and 

CA = {xERn:¢ix) ~ O,jEJ}. 

1.36. Let B be a closed convex set in Rn with CB = {8}. Show that B must 
be bounded. 

1.37. A basis f3 = {u l , ••• , un} for R n is orthonormal if (Ui> Uj) = bij for 
1 ~ i,j ~ n. The associated lexicographic order < f3 in R n is then defined 
by x < f3 Y if there is k ~ n such that ~i = 11i for i ~ k - 1 and ~k < 11k 
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(here x == (~b ... , ~n) and y == (1]b ... , 1]n)). Now given a compact set 
A eRn we define 

Au, = {x E A:(ub x) = max (Ub Y)}, 
yeA 

AU, ... Uk = {xEAu, ... Uk_,:(Uk>X) = max (uk,y)}, 
YEAu\"'Ulc_l 

inductively for k = 2, ... , n. Show that dim(Au, ... Uk) ~ n - k so that 
AU, ... Un is a singleton set, whose unique element is denoted by e(A, [3). 
Show that e(A, [3) is the lexicographic maximum of A with respect to 
the basis [3, that e(A, [3) is an extreme point of A, and that every extreme 
point of A arises in this manner for some (not necessarily unique) 
basis [3. 

1.38. Let X be a real linear space, A a convex subset of X, and Van affine 
subspace of X. We say that V supports A if A (\ V is a non-empty 
extremal subset of A. (This reduces to the definition in 6C when V 
is a hyperplane.) 
a) Let E be a convex A-extremal set. Show that the affine subspace 

aff(E) supports A. 
b) If X is partially ordered with positive wedge P, a subspace M c X 

is an order ideal if the order interval {x: y ~ x ~ z} lies in M 
whenever y, Z E M. Show that M is an order ideal if and only if 
M supports P. 

1.39. Let A be a convex subset of the real linear space X. 
a) Show that x E icr(A) if and only if x lies in no proper A -extremal set. 
b) For x E A, the A-extremal hull E(x) of x is the intersection of all 

extremal sets containing x and the A-facet F(x) of x is the largest 
convex subset of A containing x in its intrinsic core. Prove that 
E(x) = F(x). 

1.40. Let A and Ko c A' be defined as in SF. Suppose that ext(Ko) is non-void. 
Show that the algebra A must be self-adjoint, that is, f E A implies 
J E A where f(w) == few), WE Q. (A criterion for the self-adjointness 
of A is that A = AR + iAR.) 

1.41. Let X be a linear space and {o/b ... , o/n} a linearly independent subset 
of X'. Prove the existence of a subset {Xl' ... ,xn } of X such that 

o/i(Xj) = 6ij 
for 1 ~ i, j ~ n. 
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Convexity in Linear Topological Spaces 

We have made g00d progress in developing the algebraic aspects of our 
subject but the needs and applications of functional analysis require more 
powerful methods based on topological concepts. Thus, as our next step, we 
consider the result of imposing on a given linear space a "compatible topol
ogy". This is hardly a novel idea; indeed, several excellent books already exist 
which are devoted to a detailed investigation of the many ramifications of 
this notion. However, our treatment is less ambitious and more pragmatic, 
being shaped primarily by the necessities of our intended applications. These 
necessities require an understanding of the properties of topologies defined 
by one or more semi-norms on a linear space. They also require a well
rounded duality theory and it is interesting to discover that the maximal class 
of linear topologies which yields the requisite duality theory is precisely the 
class of topologies defined by a family of semi-norms. 

§9. Linear Topological Spaces 

In this section we give the definition and fundamental properties of 
"linear topologies". This notion is too general for our purposes and it will 
shortly be specialized by the introduction of a geometrical constraint on 
the basic neighborhoods. 

A. Let X be a linear space over the (real or complex) scalar field F. We 
recall that a topology on X is a family 5 of subsets of X, closed under the 
formation of finite intersections and arbitrary unions, and containing in 
particular the empty set 0 and the whole space X. 5 is a linear topology 
on X if it is compatible with the linear space structure on X; that is, if both 
the linear space operations 

(9.1) 
(x, y) r---q + y, 

(IX, x) f--> lXX, 

X,YEX 

IXEF, XEX 

are continuous on their respective domains X x X and F x X. Here these 
product spaces are given the usual product topologies determined by 5 and 
the natural topology on F. In this case the pair (X, 5) is a linear topological 
space. However, once 5 is clearly understood, it is convenient to just say 
that X is a linear topological space. 

For any non-zero scalar 1X0 E IF and vector Xo E X the map x f--> Xo + 1X0X 
is a homeomorphism of X with itself, so that, in particular, a linear topological 
space is homogeneous. Consequently, the topological structure of X about 
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any point is determined by a base of neighborhoods about the origin 8. 
For if Olt is a base of 8-neighborhoods, then the sets x + U (U E Olt) constitute 
a base of x-neighborhoods. For short, we say that a base of 8-neighborhoods 
is a local base in X. The next result summarizes the fundamental working 
properties of a local base. 

Lemma. Let X be a linear topological space and Olt a local base in X. 
Then 

a) every U E Olt is absorbing; 
b) if U E Olt there exists a balanced 8-neighborhood V such that V + V c U; 
c) if A c X then A, the closure of A in X, equals n{A + U: U E Olt}; 
d) the topology on X is Hausdorff if and only if n{U: U E Olt} = {8}. 

Proof. Parts a) and b) follow directly from the assumed continuity of 
the linear space operations (9.1). Thus, given x E X and U E Olt, we have 
that Ox = 8, so there must exist an interval (- b, b) for which tx E U if 
-b < t < b; this proves a). Next, since 8 + 8 = 8 and addition is con
tinuous, there is certainly some WEill! for which W + We U. To complete 
the proof of b) it will suffice to find a balanced 8-neighborhood V c W. 
But the map (0:, x) 1--* o:x is continuous at (0, 8) so there is b > ° and N E Olt 
such that o:N c W if 10:1 < b. Now we can put V = U {o:N: 10:1 < b} and this 
V meets the requirements of b). 

c) LetA c X and let B = n{A + U:UEolt}.IfxEAand UElll!then, 
choosing Vas in b), we see that the x-neighborhood x + V intersects A and 
so x E A - V = A + V c A + U. Thus x E B and we have shown that 
A c B. However, if x E B a completely similar argument shows that every 
x-neighborhood intersects A and so x E A. Therefore, B = A. 

d) If the topology is in fact Hausdorff and we choose any x "# 8 in X, 
there is some 8-neighborhood V such that x ¢ V; consequently there is some 
U E Olt such that x ¢ U. This proves that x ¢ n {U: U E Ill!}. Conversely, if 
this intersection contains only the zero vector 8 and if we choose x "# y in 
X, then there is some U E Ill! for which x - y ¢ U. Selecting Vas in b) we 
then see that x + V and y + V are disjoint neighborhoods of x and y, thus 
proving that our topology is Hausdorff. 0 

Theorem. A linear topological space X has a local base consisting of 
closed balanced sets. 

Proof. First we note that the closure of any balanced set A c X is 
again balanced. That is, if IAI :(; 1 then AA c A. To see this, choose any 
such A and any x E A; if N is any neighborhood of Ax we wish to show that 
N intersects A. By continuity there is an x-neighborhood V such that AV c N. 
Since x E A, there exists a E A n V. Consequently, Aa E AnN, and so A is 
balanced if A is. 

Now let W be any 8-neighborhood in X. Applying the lemma we can 
choose 8-neighborhoods U and V such that U is balanced and U eVe 
V c W. Then a eVe Wand a is balanced. 0 
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At this point we have obtained a few elementary properties of linear 
topologies. Many more connections between the algebraic and topological 
structure are collected together in exercise 2.1; they will be used freely as 
we go on. Let us also take note of a kind of converse to some of these facts. 
Suppose that in a linear space X we are given a family Illt of balanced ab
sorbing sets such that whenever U E Illt there exists V E Illt with V + V c U 
and whenever U, V E Illt there exists WE Illt with W c U ("\ V. Then Illt is a 
local base for a unique linear topology..'? on X. Indeed,..'? consists of those 
sets V c X such that, for every x E V, there exists U E Illt with x + U c V. 

Clearly, real or complex Euclidean n-space is a linear topological space 
for every n. Other more substantial (infinite dimensional) examples will 
follow shortly, as we learn systematic procedures for constructing linear 
topologies. 

B. Most of our subsequent interest in linear topological spaces will 
tend to emphasize the effects of the topology on the linear structure. This 
may be expected in view of our previous developments in Chapter 1. However, 
momentarily it is of interest to adopt the opposing view: what kinds of 
topological spaces are obtained via the imposition of a linear topology on 
a given linear space? Our main point is that such topological spaces must 
be very "smooth". 

We have already noted that a linear topological space X must be 
homogeneous, that is, given Xb X 2 E X, there exists a homeomorphism 
h:X ---+ X such that h(xd = X2. (Indeed, we can take h to be the translation 
x 1----+ x + (X2 - xd.) Further, if the linear topology on X is Hausdorff then 
X must be regular (even completely regular; see exercise 2.6 for an important 
special case.) This follows from 9A using that X contains a local base of 
closed sets. 

Let us recall that a topological space X is contractible if the identity map 
on X is nullhomotopic. This means intuitively that X can be continuously 
shrunk to a point, and precisely that there is a continuous function (a 
homotopy) h:[O, 1] x X ---+ X such that h(O, x) = x (x E X) and h(1, x) is 
constant. Similarly, X is said to be locally contractible if every point x E X 
has a neighborhood base consisting of sets contractible to x. These conditions 
entail very strong connectivity properties of X. Thus if X is (locally) con
tractible then X is (locally) path connected and (locally) simply connected. 
It is clear that a linear topological space is both contractible and locally 
contractible, since the map (a, x) f-+ ax is continuous by definition. 

Finally, some linear topological spaces of considerable importance in 
our subject (conjugate spaces with the "weak-star" topology; defined later) 
turn out to be expressible as a countable union of compact subsets. Such 
spaces then have the Lindelof covering property (every covering by open 
subsets admits a countable subcovering). It is known that any regular 
Lindelof space must be paracompact (every open covering has an open 
neighborhood-finite refinement), and in particular normal. The paracom
pactness property is a weak substitute for metrizability, which mayor may 
not be available depending on the nature of a particular linear topology. 
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C. Although we have as yet established no results of any substance 
concerning linear topological spaces, it is nevertheless already possible to 
give an interesting application and we digress briefly to do so. The result to 
be established concerns simultaneous approximation and interpolation in 
abstract setting; upon suitable specialization it yields a variety of refinements 
of known classical approximation principles such as the Stone-Weierstrass 
theorem. 

The main difficulty in the proof may be localized to the following lemma. 
We consider a convex subset A of a real linear topological space X. 

Lemma. Let ¢ be a continuous linear functional in X'. If A is dense in 
X then A () ker( ¢) is dense in ker( ¢). 

Proof. The hyperplane H == ker(¢) is closed (since ¢ is continuous) 
and the half-spaces H+ == {x E X:¢(x) > O}, H- == {x E X:¢(x) < O} are 
open. Let Olt be a local base in X consisting of balanced sets (9A). Fix x E H 
and U E Olt. Now the dense set A intersects the sets (x + U) (\ H+ at points 
p±. Since ¢(p-) < 0 < ¢(p+), there exists t, 0 < t < 1, such that tp- + 
(1 - t)p+ E H. We now have 

tp- + (1 - t)p+ E A (\ H () (x + 2U). 

This argument shows that A (\ H intersects every neighborhood of x. 0 
Now we come to the main result, known as the "Singer-Yamabe theorem". 

The idea is that if it is possible to approximate points in X from the convex 
set A (that is, if A is dense in X), then it is also possible to 8pproximate while 
simultaneously satisfying a number of linear interpolatory conditions. 

Theorem. Let A be a dense convex subset of X and let ¢ 1> ••• , ¢n be 
continuous linear functionals in X'. Given any Xo E X and any xo-neighborhood 
V, there exists a point Z E A such that Z E V and ¢i(Z) = ¢i(XO), i = 1, ... , n. 

Proof. After replacing A by its translate A - Xo we may assume that 
Xo = B. Let M j = {x E X:¢l(X) = ... = ¢j(x) = O}. Then Mo == X:=> 
Ml :=> M2 :=> ... :=> Mn and either M j + 1 = M j or else M j + 1 is a closed 
hyperplane in M j , for each j. Now, A (\ M j is convex, and if it is dense 
in M j then by the lemma A (\ M j + 1 is dense in M j + 1 • Thus n repeated 
applications of the lemma establish the desired result. 0 

Let us consider a particular instance of this theorem. Let X = C(Q), 
the usual space of real-valued continuous functions defined on the compact 
space Q. We define a linear topology (the topology of uniform convergence 
on Q) by taking as a local base the sets 

(9.2) Un = {x E C(Q):sup Ix(t) I ~ lin}, 
teQ 

for n = 1, 2, .... This topology takes its name from the fact that a sequence 
of continuous functions co verges in this topology exactly when it converges 
uniformly on Q in the usual sense. Now if /.! is a finite signed measure on the 
Borel sets in Q, it defines a linear functional ¢ E X' by the rule 

¢(x) = SQ x d/.!, x E C(Q). 
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Such functionals are continuous with respect to the topology of uniform 
convergence on Q since 

I¢(x) - ¢(Y)I ~ Ifo(x - y)dlll 
~ sup Ix(t) - y(t)IIIlI(Q), 

tEO 

where 11l1(Q) is the total variation of Il on Q. 
Now suppose tb~ A is a subalgebra of qQ) that contains the constant 

functions and that Ill' ... , Jln are Borel measures on Q as above. Then the 
following assertions are equivalent: 

i) for each Xo E qQ) and each c > 0, there exists YEA such that 

sup Ixo(t) - y(t) I < c 
tEO 

and 

i = 1, ... , n; 

ii) A separates the points of Q. 
The equivalence here follows directly from the Singer-Yamabe theorem and 
the Stone-Weierstrass theorem (22E) which asserts that A is dense in qQ) 
(in the topology of uniform convergence) exactly when A separates the points 
ofQ. 

Note in particular that if each Ili is a positive Borel measure concentrated 
at a point ti E Q then fox dlli = CXiX(ti ), for some CXi > ° (for details, see 22E). 
Thus if A is a separating subalgebra of qQ) containing the constant functions 
we can uniformly approximate any given function x in qQ) by a function 
in A that agrees with x at a finite number of points in Q. 

If we take instead our space X to consist of all complex-valued continuous 
functions on a compact space Q, then the preceding extension of the Stone
Weierstrass theorem remains valid, provided that the algebra A is also 
self-adjoint (SF). 

D. We now establish some facts about products, sums, and quotients 
of linear topological spaces. These facts allow us to systematically construct 
new spaces from given ones; they represent a continuation ofthe development 
begun in Ie. 

First, let {Xa:cx E I} be a family of linear topological spaces over the 
same field and let X be the product space fla Xa. Following the classical 
Tychonov construction of the product topology we can define a local base 
in X. To do so, let o/ia be a local base in Xa. For each finite subset J c I 
we choose a neighborhood v: E o/ia for cx E J and define 

(9.3) UJ = {XEX:XaE v:,cxEJ}. 

Then the collection of all such U J is a local base for the product topology on 
X. It is easy to see from the characterization of Hausdorff linear topologies 
in 9A that the product topology on X is Hausdorff exactly when the given 
linear topology on each space Xa is Hausdorff. 
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When XIX. = Y for each rx the resulting product space is denoted yI; by 
definition, it consists of all Y-valued functions defined on the set 1. In this 
case the product topology is often called the topology of pointwise conver
gence on I, because a net {~:b E D} of functions in yI converges in the 
product topology to f E yI exactly when lim {fa(rx):b E D} = f(rx), for every 
rxE I. 

Consider next the situation where a linear topological space X is the 
algebraic direct sum of subspaces M and N:X = M E9 N. If P:X -+ M is 
the associated (linear) projection along N then P is an open map, that is, if 
(!) is an open subset of X then P((!)) is open in M. (Because, (!) + N is open 
and P((!)) = P((!) + N) = ((9 + N) (\ M.) We say that X is the topological 
direct sum of M and N if the map (m, n) f----+ m + n from the product space 
M x N to X is a homeomorphism (it is clearly a continuous isomorphism 
in all cases). For this to happen it is necessary and sufficient that the pro
jection P be continuous. In turn, for P to be continuous it is evidently 
necessary (but not sufficient!) that the subspaces M and N be closed in X. 

Finally, let M be a subspace of the linear topological space X and let 
QM:X -+ XjM be the quotient map (lH). The quotient topology on XjM is 
the strongest topology on XjM for which QM is continuous. This means 
that a set A c XjM is considered to be open exactly when its inverse image 
Qi/(A) is open in X. The quotient topology is a linear topology on XjM: 
indeed, a local base for it is the QM-image of a given local base in X. When 
XjM is given the quotient topology, the quotient map QM is both continuous 
and open. 

Theorem. Let M be a subspace of X. The quotient topology on XjM is 
Hausdorff if and only if M is closed in X. 

Proof. If XjM is Hausdorff the zero-vector in XjM is a closed set and 
its QM-inverse image must be closed. But Q,,/(e) = M. Conversely, assume 
that M is closed. We will show that given a non-zero vector x + Min XjM 
there is a closed neighborhood of x + M that does not contain e, and this 
will prove that the quotient topology is Hausdorff. Now, since x + M i= e, 
x ¢ M, so that X\M is an open x-neighborhood in X. Since QM is an open 
map, QM(X\M) is an open (x + M)-neighborhood that does not contain e. 
Since the quotient topology is a linear topology, we conclude by 9A that 
there is a closed (x + M)-neighborhood within QM(X\M). D 

E. We turn next to some finite dimensional considerations. Let us say 
that two topological linear spaces over the same field are isomorphic (linearly 
homeomorphic) if there exists an algebraic isomorphism between them which 
is at the same time a homeomorphism. Such spaces cannot be distinguished 
from one another by examination of their algebraic-topological structure. 

Now let F be either the real field R or the complex field C. For each 
n = 1,2, ... , Fn is an n-dimensional Hausdorff topological linear space 
over F in its natural (product) topology (9D). We claim that it is the only 
such space. 
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Theorem. Let X be an n-dimensional Hausdorff topological linear space 
over the field F. If {Xl> ... ,xn} is a basis for X then the map T: Fn ~ X 
defined by 

n 

T(A'l> ... , An) = L Aixi 
i= 1 

is an isomorphism between lW and X. 

Proof. T is wd~ known to be an algebraic isomorphism and an obvious 
induction, based on the axioms (9A) for a linear topological space, shows 
that T is also continuous. Let B be the unit 2-ball (3C) in Fn; that is, B = 

n 

{v = (~l>"" ~n) E Fn:llvll~ == L l~d2 :::;; 1}. In order to show that T is an 
1 

open map (and hence a homeomorphism) it suffices to show that T(B) con-
tains a 8-neighborhood in X. Now the boundary S == {v E Fn:llvl12 = 1} of 
B is compact in Fn and so T(S) is a compact Get in X that does not contain 8. 
Hence X\T(S) is a 8-neighborhood in X and so contains a balanced 8-
neighborhood U. We claim that U c T(B). Because, if x ¢ T(B), then 
IIT- 1 (x)112 > 1, whence 

x/IIT- 1(x)112 = T(T- 1(x)!IIT- 1(x)112) E T(S), 

and so x cannot belong to U. 0 
This theorem admits several corollaries two of which follow below and 

two of which appear as exercises. First note this implication: if M is any 
finite dimensional subspace of a Hausdorff linear topological space X, then 
M is closed in X. This is because M is topologically complete, being homeo
morphic to the complete metric space Fn. 

Corollary 1. Let M and N be closed subspaces of the Hausdorff linear 
tnpological space X with N of finite dimension. Then M + N is a closed 
subspace of X. 

Proof. Let QM:X ---+ X/M be the quotient map. The subspace QM(N) 
is a finite dimensional subspace of X/M, hence closed in X/M. Consequently, 
its inverse image Q;l(QM(N)) = M + N is closed. 0 

Corollary 2. Let X and Y be linear topological spaces with X Hausdorff 
and finite dimensional. Then any linear map R: X ---+ Y is necessarily continuous. 

Proof. Let T: Fn ---+ X be an isomorphism. Then the map RoT: Fn ---+ Y 
must be of the form (Al> ... , An) ---+ A1Yl + ... + AnYn for suitable vectors 
Yt, ... , Yn E Y. Such a map is surely continuous (as noted in the proof of 
the theorem). Consequently, R = (R 0 T) 0 T- 1 is continuous. 0 

F. We continue our finite dimensional considerations by establishing 
a characterization of finite dimensional linear topological spaces. We precede 
this result by some new terminology which also is needed for later work. 

Let X ,be a linear topological space over the field F with local base !lII. 
A sequenc~ {xn} c X is bounded if Anxn ---+ 8 whenever )'n ---+ 0 in F. A set 
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A c X is bounded if every sequence in A is bounded. According to exercise 
2.3 this happens exactly when A is absorbed by every neighborhood in dIf 
(that is, given U E dIf, AA c U for sufficiently small IA\). A set A c X is 
totally bounded if for every U E dIf there is a finite subset B c X such that 
A c B + U. Clearly a compact set is totally bounded and every totally 
bounded set is bounded. The converse of this last remark is sometimes valid; 
see exercise 2.3. In particular, the bounded sets in lFn are exactly the relatively 
compact sets there. 

Finally, a subset of X is fundamental in X if its linear hull is dense in X. 
Evidently, X has finite dimension exactly when it contains a finite funda
mental subset (9E). We preface the main result by an abstract form of 
"Riesz's lemma". 

Lemma. Let A be a bounded subset and M a closed subspace of X. If 
there exists), ElF, IAI < 1, such that A c M + AA, then A c M. 

Proof. For any U E dIf there is an integer n such that An A c U. Hence 
A c M + An A c M + U, and so A c 1\4 = M. 0 

It follows immediately that if A is both bounded and fundamental, if 
IAI < 1, and if A c B + ),A, then the set B is fundamental. 

Theorem. The linear topological space X is finite dimensional if and 
only if it contains a totally bounded neighborhood. 

Proof. Suppose that some U E dIf is totally bounded. Then U is both 
bounded and fundamental. For any scalar ), with 0 < IAI < 1 there is a 
finite set B such that U c B + AU; the preceding remark now shows that 
B must be fundamental. 0 

Thus we see that a locally compact (Hausdorff) linear topological space 
must be finite dimensional. 

§10. Locally Convex Spaces 

In this section we specialize the very general notion of linear topology 
developed in the preceding section. The reason for doing so is that the linear 
topology axioms are simply too weak to yield a useful duality theory. Thus 
in order to be able to link up the present topological considerations with the 
powerful linear-geometric theory of Chapter I, we find it necessary to impose 
an additional but crucial geometric condition on our linear topologies, 
namely that the topology be determined by convex neighborhoods. 

A. A linear topological space X is a locally convex space if it contains 
a local base consisting of convex 8-neighborhoods. This condition implies 
that any x-neighborhood (x E X) contains a convex x-neighborhood. The 
definitions (9.2) and (9.3) oflocal bases for C(Q) and for ax Xa show that these 
spaces are locally convex (provided in the latter case that each Xa is locally 
convex and the local base dlfa in XC{ contains only convex sets). 
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A barrel in a linear topological space X is a closed absolutely convex 
absorbing subset of X. It follows from 9A and the preceding definition that 
any locally convex space has a local base consisting of barrels. Note that 
we do not claim that every barrel is a 8-neighborhood; only that enough of 
them are so as to define the topology. Clearly intersections and positive 
multiples of barrels are again barrels. In general, an absolutely convex 
absorbing set A in X is a barrel exactly when its gauge PA is lower semi
continuous on X. 

The next lemma comprises the geometric description of locally convex 
topologies; the analytical description follows momentarily. 

Lemma. Let Olt be a family of absolutely convex absorbing sets in a 
linear space X. 

a) Suppose that, given U, V E Olt, there exists W E Olt such that We U n 
V, and that (XU E Olt whenever (X =1= 0. Then Olt is a local base for a unique 
locally convex linear topology on X. 

b) Whether or not Olt satisfies the conditions of a), there is a weakest 
linear topology on X such that every set in Olt is a 8-neighborhood. A local base 
for this topology consists of all positive multiples of finite intersections of the 
members of Olt; in particular, the topology is locally convex. 

Part b) evidently follows from part a). The proof of part a) is omitted, 
being straightforward but tedious. Let us just note that the unique topology 
whose local base is Olt consists of those sets V c X such that, for each x E V, 
there exists U E Olt with x + U c V. 

B. In 3D it was observed that the semi-norms on a linear space X are 
exactly the gauges of absolutely convex absorbing subsets of X. For any 
semi-norm P on X we let Up == {x E X:p(x) :::::; 1} be the p-unit ball in X. 

Lemma. Let X be a linear topological space and B a barrel in X. Then 
a) the gauge PB is the only semi-norm on X for which Up = B. 
b) PB is continuous on X if and only if B is a 8-neighborhood. 

Proof. a) We know from exercise 2.4 that B c UPB • Suppose that 
x E U PB; then for every B > ° there is Yo E B such that x = (1 + B)Ye. Clearly 
Ye --+ x as B to so that x E 13 = B. Thus B = UPB . Now if also B = Up for 
some semi-norm P then we would have p(x) :::::; 1 <:? PB(X) :::::; 1. For any 
fixed y E X and B > 0, put x = yj(p(y) + B) and then put x = yj(PB(Y) + B) 
to obtain piy) :::::; p(y) + Band p(y) :::::; PB(y) + B. 

b) If PB is continuous then B contains the open 8-neighborhood {x E X: 
PB(X) < 1}. Conversely, if B is a 8-neighborhood, for each B > 0, piBB) 
lies in the interval [0, B]. This proves that PB is continuous at 8. Since 

iPB(X) - PB(y)i :::::; PB(X - y), 

it now follows that PB is (uniformly) continuous on X. 0 
One implication of this lemma is that the unit balls of all the continuous 

semi-norms on a given locally convex space X constitute a local base of 
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barrels in X. However, this would be an inordinately large local base. It is 
more interesting (and practical) to be able to define the topology on X with 
as few semi-norms as possible. The following details constitute the analytic 
description of locally convex topologies. 

Let ff be a family of continuous semi-norms on X. We say that ff is a 
base of continuous semi-norms on X if, for any continuous semi-norm (]' on 
X, there exist t > 0 and P E ff such that (]' ~ tp (equivalently, Up c tUa ). 

Thus if ff is a base of continuous semi-norms on X, then {tUp:P E ff, t > O} 
is a local base in X. 

The most common way of specifying a locally convex topology by means 
of semi-norms is to make use of lOA. Suppose that we are given a family 
ff of semi-norms on a linear space X. Then there is a weakest locally convex 
topology fT on X for which all the semi-norms in .Ai are continuous. fT is 
said to be generated by ff and we often call fT the ff-topology. A local base 
for fT consists of all positive multiples of finite intersections of p-unit balls 
for p E ff and a base of continuous semi-norms on (X, fT) is given by the 
collection of suprema of the finite subsets of ff. 

Another perspective on the ff-topology is gained from the following 
considerations. Each semi-norm p E ff defines a pseudo metric dp on X by 

dp(x, y) = p(x - y). 

That is, the relations 

dp(x, y) ~ 0, 

dp(x, y) = dp(Y, x), 

dp(x, y) ~ dp(x, z) + dp(y, z) 

hold for all x, y, z EX. (The pseudo-metric dp interacts with the linear 
structure on X by virtue of being translation invariant, that is, the relation 

dp(x + z, y + z) = dp(x, y) 

holds for all x, y, z E X.) Each pseudo-metric dp defines in the usual way a 
pseudo-metric topology on X and the .Ai-topology is simply the least upper 
bound of these dp-topologies for p E jV'. The point of these remarks is to 
suggest that a property of the ff -topology is likely to be the conjunction of 
the corresponding properties in all the do-topologies. This idea is made 
forcefully clear by the next theorem which' summarizes the main operating 
characteristics of ff -topologies. 

Theorem. Let ff be a family of semi-norms on the linear space X. 
a) The ./I/·-topology is Hausdorff if and only if for each non-zero x E X 

there exists p E ull for which p(x) > O. 
b) A net {xo: bED} c X converges to x E X if and only if limop(xo - x) = 

0, for every p E ff. 
c) A subset A of X is bounded in the ff-topology if and only if A has 

finite p-diameter for every p E .K. 
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d) A subset A of X is totally bounded in the .At -topology if and only if 
for every 6 > 0 and every P E JV there is a finite (6, p )-net in A. 

Let us clarify some terminology here. The p-diameter of the set A is the 
number sup {p(x - y):x, YEA}, An (6, p)-net in A is a subset B of A such 
that for every x E A there exists y E B with p(x - y) < 6. Thus, parts c) and 
d) may be reworded: the set A c X is bounded (resp., totally bounded) in 
the JV -topology exactly when A is bounded (resp., precompact) in each 
dp-topology (p E vV,. The proof of this theorem is straightforward and is 
left to the exercises, as is a criterion for metrizability of an JV -topology. 

C. Recall (3D) that a norm p on a linear space X is a semi-norm 
with trivial kernel: p(x) = 0 only if x = e. Geometrically, p is the gauge of 
an absolutely convex absorbing set which contains no proper subspace. A 
locally convex space is normable if its topology is the JV-topology for JV 
consisting of a single norm. 

Theorem. A locally convex space X is normable if and only if there 
exists a proper bounded e-neighborhood in X. 

Proof. Hthe topology on X is defined by a norm p then the p-unit ball 
(lOB) is such a e-neighborhood. Conversely, if such a e-neighborhood exists, 
it must contain a barrel B. The gauge PB must be a norm since PB(X) = 0 
implies nx E B for n = 1, 2, ... , so that x = e or else B would not be 
bounded. Since PB is continuous (lOB) the PB-topology is weaker than the 

original topology. But since B is bounded, the sets { ~ B: n = 1, 2, ... } form 

a local base in X; hence the PB-topology is exactly the original topology 
on X. D 

Corollary. Let {X a: IX E I} be a family of normable spaces over the same 
field. Then the product space TIa X a is normable if and only if the index set I 
is finite. 

The proof results directly from the theorem and exercise 2.3b. 

D. In practice a normable locally convex space is specified analytically 
rather than geometrically as in lOe. That is, there is given a pair (X, p) 
consisting of a linear space X and a norm p on X. X is then considered to 
be topologized by the JV -topology with JV = {p}; the resulting locally 
convex space is called a normed linear space. Since p is a norm the pseudo
metric dp (lOB) is actually a metric on X x X. The study of normed linear 
spaces and the interplay between the resulting algebraic-geometrical
topological structure is one of the major objects of this book. 

Let us now consider some prototypical examples of normed linear spaces. 
In doing so and in subsequent work we shall adhere to the tradition of writing 
a norm as 11'11. 

Example J. (Spaces of continuous functions). Let Q be a topological 
space and let F be either R or C. Then the space Cb(Q, F) is the linear space 
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of all bounded continuous F -valued functions f on Q normed by the uniform 
norm 

(10.1) Ilflloo == sup{lf(t)l:t E Q}. 

Convergence in the associated metric is uniform convergence on Q (as in 9C). 
The case where Q is discrete is of interest here; in this case Cb(Q, F) comprises 
the space of all bounded F -valued functions on Q. 0 

Example 2. (Spaces of integrable functions). Let (Q, 2:, 11) be a positive 
measure space and let p ;::: 1. The space LV == LP(Q, 11, F) is the linear space 
of all (equivalence classes of) p-th power l1-integrable functions f: Q ---4 F 
normed by the p-norm 

(10.2) 

The sub additivity ofthe p-norm is not entirely obvious; it is in fact equivalent 
to Minkowski's inequality in measure theory. Convergence in the associated 
metric is called convergence in the mean of order p. Note that this example 
subsumes the earlier case of the p-norm on Fn (3C). 0 

Example 3. (Spaces of measures). Let (Q, L) be a measurable space. 
Then the space A1(Q, 2:, F) is the linear space of all F -valued countably 
additive set functions 11 defined on the O"-algebra 2:, normed by 

(10.3) Ii 11 Ii v == sup {Jl II1(AJI:{AJ partitions Q}. 
To say that {AJ partitions Q means that {AJ is a sequence of pairwise 
disjoint subsets of 2: whose union is Q. As is well known, if in the right hand 
side of (10.3) we replace Q by an arbitrary set A E 2:, then the formula 
defines a finite positive measure 1111 on 2:, called the total variation (measure) 
of 11· Thus 1II111v == 1111(Q)· 0 

Example 4. (Spaces of Lipschitz functions). Let (Q, d) be a metric space. 
Then the space Lip(Q, d, F) is the linear space of all bounded F -valued 
functions on Q which satisfy a Lipschitz condition on Q (in the sense that 

(10.4) Ilflld == sup {If(s) - f(t)l/d(s, t):s, tE Q, s =1= t} 

is finite), normed by 

(10.5) 

Convergence in the associated metric is much stronger than uniform con
vergence; for an illustration, see exercise 2.9. 0 

Example 5. (Spaces of analytic functions). Let Q be a subset of C 
consisting of a simple closed curve and its interior; for example, let Q = 

{z E C: Izi ~ I}. Then the space A(Q) is the linear space of all continuous 
complex-valued functions on Q which are analytic in the interior of Q, 
normed by the ulliform norm (10.1). We may similarly define the space 
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Hoo(Q) to be the linear space of all bounded analytic functions defined on 
the interior of Q, again normed by the uniform norm. 0 

At this point we have a large variety of examples at our disposal, because 
in addition to the preceding exa,mples we can consider subspaces, quotient 
spaces and (finite) products. A subspace M of a normed linear space X is 
of course again a normed linear space with norm equal to the restriction of 
the given norm on X to M. Similarly, the quotient space XjM is normable, 
provided that M is .:;lvsed in X. To see this, we recall from 9D that a local 
base in X j M is given by the QM-image of a local base in X. Since X is normed 
we let A c X/A! be the QM-image of the unit ball in X. The set A fails to 
be a barrel in XjM only because it may fail to be closed; in any event, its 
gauge PA is a norm on XjM which defines the quotient topology. We can 
give a formula for this quotient norm as follows: 

(10.6) Ilx + Mil == PA(X + M) = d(x, M) 

where the right hand side of (10.5) is defined for all x E X by 

(10.7) d(x, M) = inf{llx - yll:y EM}. 

It was shown in 10e that a product X = Xl X .. , X Xn of normed 
linear spaces Xl>' .. , X n is normable. The question remains of actually 
constructing a norm on X in terms of the given norms 11'lli defined on Xi' 
A general way of doing this is to select any monotonic norm P on Rn and 
then to define 

(10.8) 

for all x = (Xl> ... , x n ) E X. The norm P on Rn is monotonic provided that 
p(u) ~ p(v) whenever e ~ u ~ v in Rn. In particular, the p-norms on Rn 
are monotonic. 

One final remark should be made about our list of examples of normed 
linear spaces. In all cases these examples were linear spaces of scalar-valued 
functions with certain special properties. Much more complicated examples 
can be constructed by replacing the range space F (the scalar field) by some 
normed linear space X (necessarily complex for Example 5). Then we con
sider the preceding examples with the feature that our functions are now 
X-valued. We must then modify the definitions (10.1)-(10.4) by replacing 
the absolute values on the right hand sides by the norm in X. Thus, for 
example, (10.1) becomes 

(10.9) Ilflloo = sup{llf(t)ll:t E Q), 

where Ilf(t)11 is the X-norm of the vector f(t) EX. 
In addition to the foregoing list of spaces of scalar or vector-valued 

functions, there is one other class of normed linear spaces that is very impor
tant in practice. These spaces consist of the continuous linear operators 
acting between two given normed linear spaces. We defer further discussion 
of such spa-ces until we have learned how they should be normed. 
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§11. Convexity and Topology 

In this section we study the basic topological properties of convex sets 
in linear topological spaces, and learn conditions for the continuity of linear 
mappings on such spaces. The results ofthis section will allow us to establish 
sharper forms of the separation, support, and extension theorems in the 
context of linear topological spaces. 

A. The following lemma summarizes information that we shall need 
concerning the topology of convex sets. We write the interior of a set A as 
int(A), and we say that A is solid if its interior is non-empty. 

Lemma. Let A be a convex subset of a linear topological space X. Then 
A is convex. If A is also solid, then 

a) int(A) = cor(A); 
b) A = int(A) and int(A) = int(A) (in particular, int(A) is dense in A); 
c) lin(A) = A (in particular, lin(A) is convex); 
d) the algebraic boundary of A is its topological boundary. 

Proof. The map f: X x X x [0, 1] -4 X defined by f(x, y, t) = tx + 
(1 - t)y is continuous; hence 

f(A x A x [0,1]) = f(A x A x [O,IJ) 
cf(A x A x [0,1]) c A. 

Thus we see that A is convex. 
The key observation for the rest of the proof is the fact that 

(11.1) tA + (1 - t)int(A) c int(A), 

for ° ~ l < 1. To prove this, it suffices to show that the left hand side of 
(11.1) lies in A since it is clearly open. Let p E int(A). Then (1 - t)(int(A) - p) 
is an open 8-neighborhood and so 

tA = tA c tA + (1 - t) (int(A) - p) 

= tA + (1 - t)int(A) - (1 - t)p c A - (1 - t)p. 

a) From exercise 2.1 we know that int(A) c cor(A). Suppose that x E 

cor(A) and p E int(A}. Then there exists YEA such that x E [p, y). Since this 
segment lies in int(A) by (11.1), we see that cor(A) c int(A). 

b) Clearly int(A) c A. Suppose that x E A and p E int(A). Then [p, x) c 

int(A) by (11.1) and so x E int(A). To prove the second assertion of part b), 
we see that int(A) c int(A) is trivial. Suppose that x E int(A) and p E int(A). 
Then x E [p, y) for some YEA; by (11.1) again, this implies that x E int(A). 

c) Clearly lin(A) c A. Suppose that x E A and p E int(A). Then [p, x) c 

int(A) shows immediately that x E lin(A). 
d) If x is a bounding point of A, then x E lin(A)\cor(A) = A\int(A) == 

8(A), the topological boundary of A. This reasoning is clearly reversible. 0 
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Let A be a subset of the linear topological space X. We define the closed 
convex hull of A, co(A), to be the smallest closed convex set in X that contains 
A: 

co(A) = n{K c X:A- c K, K closed and convex}. 

It follows from the lemma that 

co(A) = co(A), 

that is, co(A) is simply the closure of the ordinary convex hull co(A). 
Let A and B be two subsets of X whose closed convex hulls are compact. 

Then 
co (A u B) = co(co(A) u co(B)) 

is compact, since the right hand side (the join (2A) of co(A) and co(B)) is 
the continuous image of the compact space co(A) x co(B) x [0,1] under 
the mapping (x, y, t) f--+ tx + (1 - t)y. Analogously, if at least one of co(A), 
co(B) is compact, and rx, 13 are scalars, then 

co(rxA + f3B) = rx co(A) + 13 co(B). 

Because, being closed and convex, the set co(aA) + co(f3B) contains co(rxA + 
f3B) (making use of equation (2.2)); on the other hand, 

co(rxA + f3B) = co(rxA + f3B) 
:::J co(rxA) + co(f3B). 

Finally, we employ the general fact 

co(cA) = c co(A) 
for any scalar c. 

B. The following proposition, concerning the preservation of bounded
ness properties, requires us to work in locally convex spaces; both conclusions 
can fail in a general linear topological space. 

Lemma. Let A be a bounded (resp. totally bounded) subset of a locally 
convex space X. Then the absolutely convex hull of A is bounded (resp. totally 
bounded). 

Proof. Let JV be a base of continuous semi-norms (lOB) on X. We 
know (lOB again) that A is bounded if and only if it has finite p-diameter for 
each p E JV. Now if A has finite p-diameter for a semi-norm p the same is 
clearly true for bal(A) and for co(bal(A)) == aco(A) (2A). Now suppose that 
A is totally bounded. Then for each a > ° and each p E JV, there is a finite 
(a, p)-net in A (lOB). To show that bal(A) is totally bounded, we select a > 0, -

p E JV, an (~, p) -net {Xl' ... ,xn } in A and an a/2y-net {rxl> ... ,rxm } in the 

set of scalars {rx:lrxl ~ 1}; here y == max{p(x l ), ... , p(xn)}. Then we see that 
the set {rxiXj: 1 ~ i ~ m, 1 ~ j ~ n} is an (a, p)-net in bal(A). Finally we 
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show that coCA) is totally bounded if A is. Given a, p, and {Xl' ... ,xn } c A 
as above, let B = CO({Xb ... ,xn }). Then B is totally bounded (actually 

compact by exercise 1.8 and 9E); let {Yr,.' . ,Ym} be an G, p) -net in B. We 

claim that the y's form an (a, p)-net in coCA). Because, if X = L()(iai is in 
coCA), there are points xk(i) in {Xl>"" xn} such that pea; - Xk(;») < a/2. 
Consequently, setting y = L()(;xk(i)' we have p(x - y) < a/2; since Y E B, 
there is some Yj with p(y - Yj) < a/2, whence p(x - Yj) < a. 0 

The chief interest in this result is that it provides a means of constructing 
or recognizing compact convex sets. That is, if a set A is known to be totally 
bounded we intuitively suspect that the sets coCA) and aco(A) == aco(A) 
should be compact. Whether they actually are or not depends on the com
pleteness properties of X. We briefly consider such properties next. 

C. Let X be a locally convex space. A net {xo:ii E D} in X is a Cauchy 
net if 

lim (xa - xa,) = 8. 
a, a'ED 

A subset A of X is complete (resp., semi-complete) if every Cauchy net (resp., 
sequence) contained in A has a limit in A. X is called quasi-complete if every 
closed bounded subset of X is complete. In particular, a quasi-complete 
space must be semi-complete, since any Cauchy sequence is necessarily 
bounded. 

A complete normed linear space is called a Banach space. All the examples 
in lOD of normed linear spaces are actually Banach spaces (exercise 2.8). In 
the next chapter we shall see some important examples of quasi-complete 
but not complete spaces. 

Theorem. Let X be a quasi-complete locally convex space. If A is a 
totally bounded subset of X then aco(A) (and hence co(A)) is compact in X. 

Proof. The most expedient proof of this theorem is based on the notion 
of universal net. Recall that a universal net in a topological space A is a net 
in A with the property that for each set B c A, the net is eventually in B or 
else eventually in A\B. Now in order to show that aco(A) is compact we 
must show that any net {x,,:ii E D} in aco(A) has a cluster point in aco(A). 
Since every net has a universal subnet, we may as well suppose that {xo:ii E D} 
is already universal. We are going to show that a universal net in aco(A) 
must be Cauchy; once this is done we can invoke the completeness of aco(A) 
to conclude that this Cauchy net converges in aco(A) and so finish the proof. 

Let U be an arbitrary 8-neighborhood in X and choose a balanced 
8-neighborhood V such that V + V c U (9A). Then since aco(A) is totally 
bounded (being the closure of a totally bounded set), there is a S'et B = 

{YI' ... ,Yn} c X such that aco(A) c B + V. Because our net is universal 
it must eventually lie in one of the setsYI + V"", Yn + V, say in Yj + v. 
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That is, there exists Y E D such that XfJ E Yj + V whenever (j ?: y (in the 
ordering of D). Consequently, if (j, (j' ?: y then 

XfJ - XfJ ' E (Yi + V) - (Yj + V) 
== V - V = V + V c U, 

and so our universal net is indeed a Cauchy net. 0 
It is to be noted that this argument made no use of local convexity 

beyond the appeaJ to lIB. It follows that any complete and totally bounded 
subset of a linear topological space must be compact. The converse is also 
true, and much easier to prove. 

D. Now we consider some criteria for the continuity oflinear mappings 
between linear topological spaces. The only satisfactory general results occur 
when the target space is finite dimensional. We begin with a very general 
elementary proposition, whose straightforward proof is omitted. 

Lemma. Let T:X ~ Y be a linear map between linear topological spaces 
X and Y. The following are equivalent: 

a) T is continuous on X; 
b) T is continuous at 8 in X; 
c) T is uniformly continuous on X, that is, for each 8-neighborhood 

V c Y, there is a 8-neighborhood U c X such that T(x) - T(y) E V if 
x - Y E U. 

Corollary. If X and Yare locally convex then a linear map T:X ~ Y 
is continuous if and only if for every continuous semi-norm p on Y, there is a 
continuous semi-norm (J on X and a constant f3 > 0 such that 

(11.2) p(T(x)) ~ f3(J(x), XEX. 

Suppose in particular that X and Yare normed linear spaces. Then we 
can state that T: X ~ Y is continuous if and only if for some f3 > 0 

(11.3) X E X. 

The smallest such f3 is called the norm of T and written II Til, that is 

(11.4) _ {IIT(x)ll. } II Til = sup ~. x =I 8 . 

Note that this quantity serves as the Lipschitz constant for T. On account 
of the inequality (11.3) continuous linear maps between normed linear spaces 
are frequently called bounded linear maps, since they map bounded sets into 
bounded sets. Let B(X, Y) be the linear space of all bounded linear maps 
between the normed linear spaces X and Y. Then B(X, Y) is again a normed 
linear space with norm defined by (11.4). Such spaces constitute the class of 
examples suggested at the end of IOD. 

We now give a useful condition for a certain important class of linear 
maps to be continuous. Recall that the rank of a linear map is the dimension 
of its image. 
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Theorem. Let T: X ~ Y be a linear map of finite rank between linear 
topological spaces X and Y. Then T is continuous if and only if its kernel is 
closed in X. 

Proof. The condition is trivially nec~ssary. Conversely, suppose that 
N == ker(T) is closed. Then by 9D, the quotient space X/N is a finite dimen
sional Hausdorff linear topological space, and so, by 9E, any linear map 
defined on X/N must be continuous. In particular the map T:X/N ~ Y 
defined by 

T(x + N) = T(x) 

is continuous (and also injective). Thus T = To QN is also continuous. 0 
This theorem of course applies in the case of linear functionals: a linear 

functional ¢ in X' is continuous if and only if its hyperplanes [¢ ; IX] are 
closed for all scalars IX. We denote the set of all such ¢ by X*; it is a subspace 
of X' but possibly trivial in the sense that its only element may be 8. We 
shall soon see that the local convexity of X is sufficient to insure that X* is 
in fact a usefully "large" subspace of X'. First we note a corollary to the 
preceding theorem for linear functionals. 

Corollary. Let X be a linear topological space. A linear functional ¢ E X' 
is discontinuous if and only if one (and hence all) of its level sets [¢ ; IX] is 
dense in X. 

Proof. It only needs to be observed that if ¢ is discontinuous then its 
kernel is not closed in X and so is properly contained in its closure. Since 
this closure is a subspace it must be all of X because a hyperplane is by 
definition (IE) a maximal proper flat in X. 0 

Observe that this corollary implies that a discontinuous linear functional 
defined on a real linear space X cannot be bounded above or below on any 
(proper) open subset of X. 

E. Now it is time to reconsider the separation and support principles 
of sections 4 and 6. The necessity for this is due to the phenomenon of dense 
hyperplanes, possible in infinite dimensional spaces. Separation or support 
assertions involving such hyperplanes are devoid of useful geometric impli
cation. To avoid this problem we must work exclusively with closed hyper
planes, or equivalently, with continuous linear functionals. Following is the 
topological version of the basic separation theorem of 4B, to be called 
henceforth simply the "separation theorem". 

Theorem. Let A and B be convex subsets of the real linear topological 
space X, and assume that A is solid. Then A and B can be separated by a 
closed hyperplane if and only if int(A) n B = 0. 

Proof. Since cor(A) = int(A) i= 0, we know from 4B that A and B 
can be separated by some hyperplane exactly when int(A) n B = 0. Let 
[¢; IX] be any such hyperplane. Then [¢; IX] n int(A) = 0 so that the level 
set [¢ ; IX] is not dense in X. By llD it follows that ¢ is continuous and that 
[¢; IX] must be closed. 0 
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As a consequence we note a geometric criterion for the existence of 
non-trivial linear functionals on X, namely, the existence of a proper solid 
convex set in X. For if such a set exists, it can be separated from any point 
outside it by a closed hyperplane" which is a level set of some non-zero 
continuous linear functional. This observation in turn yields an even more 
striking corollary which provides most of the motivation for the study of 
locally convex topologies. 

Corollary 1. Let X be a locally convex Hausdorff space. Then the space 
X* separates the points of x. 

Proof. Let x and y be distinct points in X. We are to find a continuous 
linear functional ¢ on X such that ¢(x) i= ¢(y). Letting z = x - y i= e, we 
shall find such a ¢ for which ¢(z) i= O. Let V be a convex e-neighborhood 
that does not contain z. Then z and V can be separated by a closed hyper
plane [1/1; IX J. Since I/I(V) is an interval containing 0 in its interior, I/I(z) cannot 
be o. Thus 1/1 is (the real part (IF) of) a continuous linear functional ¢ and 
¢(z) i= o. 0 

The Hausdorff restriction here is crucial; the assertion of the corollary 
is false for non-Hausdorff spaces. Consequently, all locally convex spaces 
will henceforth be assumed to be Hausdorff, unless the contrary is explicitly 
allowed. The space X* will be called the continuous dual (topological conjugate 
space) of X. One ofthe major techniques in our subject is the characterization 
of a property of a space X by means of a "dual" property of the space X*. 

Corollary 2. A closed solid convex subset of a real linear topological 
space is supported at every boundary point by a closed hyperplane. 

This is an immediate consequence of the theorem, and is the topological 
version of the support theorem of 6C. 

F. Here we give our final separation theorem in linear topological 
spaces. Its necessity is evidenced by the fact that at present we don't even 
know if a point can be separated from a closed convex set (disjoint from the 
given point). We can only be sure of this if the convex set were known to be 
solid. However, we can exploit the fact that the point is a compact set. What 
is needed is the topological version of the basic strong separation theorem 
of 4C. 

Theorem. Two convex sets A and B in a locally convex space X can be 
strongly separated by a closed hyperplane if and only if e 1= B - A. 

Proof. The condition is clearly necessary. Conversely, if e 1= B - A 
there is an open absolutely convex set V in X such that V n (B - A) = 0, 
or, such that the open convex set A + V is disjoint from B. By HE we can 
separate these sets by a closed hyperplane which, just as in 4C, strongly 
separates A and B. 0 

Corollary. Let A and B be disjoint closed convex subsets of a locally 
convex space with A compact. Then A and B can be strongly separated by a 
closed hyperplane. 
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Proof. The set A - B is closed and does not contain e. 0 
A profound extension of this corollary is given later in 15D. See also 

exercise 2.26. 

G. We conclude this section with sharpened forms of the Hahn-Banach 
theorem (6A) and its corollary. There is an obvious analogous sharpening 
of the Krein-Rutman theorem (6B); see exercise 2.45. 

Theorem. Let M be u ;)ubspace of the linear topological space X and 
let 4> E M*. 

a) Assume that X i~ real, that g E Conv(X) is continuous on X, and that 
4> :::;;; giM. Then there is an extension <t> E X* of 4> such that <t> :::;;; g. 

b) Assume that p is a continuous semi-norm on X and that 14>(-)1 :::;;; piM. 
Then there is an extension <t> E X* of 4> such that 1<t>01 :::;;; p. 

The proof is an immediate consequence ofthe existence ofthe extensions 
(6A) and the continuity criteria in UD. 

§12. Weak Topologies 

In this section we introduce a class of linear topologies which, together 
with the normable topologies, leads to the most important examples of 
locally convex spaces (at least for our purposes). The ultimate reason for the 
importance of these so-called "weak topologies" is the compactness criterion 
presented below in 12D. 

A. Let X be a linear space and Y a subset of the algebraic conjugate 
space X'. The "¥-topology (lOB) defined on X by means of the family of 
semi-norms 

..¥ = {i4>(·)I:4> E Y} 

is called the weak topology on X generated by Y, and denoted a(X, Y). It is 
the weakest topology on X in which all the functionals belonging to Yare 
continuous. It is clear that a(X, Y) is unchanged if we replace Y by span( Y), 
so we shall assume always that Y is a subspace of X'. From the general 
properties of ..¥-topologies given in lOB we can deduce the following 
important facts about weak topologies. Recall that a subset Y c X' is total 
if it separates the points of X; that is, Y is total if 4>(x) = 0 for all 4> E Y 
implies x = e. 

Lemma. Let X be a linear space and Ya subspace of x'. 
a) The weak topology a(X, Y) is a Hausdorff topology if and only if Y 

is total. 
b) A net {Xll:b E D} in X converges to x in the a(X, Y) topology if and 

only if lim {4>(XIl):b E D} = 4>(x), for all 4> E Y. 
c) The following properties of a set A c X are equivalent: 

i) A is a(X, Y)-bounded; 
ii) A is a(X, Y)-totally bounded; 

iii) sup {14>(x) I: x E A} < oo,for all 4> E Y. 
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d) A a(X, Y)-local base in X is given by the family 

{x E X: 14>(x) I ~ 1,4>E.?E.?}, 

where :¥ consists of the finite subsets of Y. 
Important cases in practice of weak topologies occur when X is already 

a locally convex (Hausdorff) space and Y is its continuous dual X*. The 
resulting (Hausdorff) topology a(X, X*) is called simply the weak topology 
on X, and we speak i1ccordingly of weakly bounded or weakly compact sets 
in X, and of weak convergence of nets in X. Even more important is the 
topology a(X*, X) == a(X*, J x(X)) defined on the continuous dual X* of 
X by the evaluation functionals 

4> f-4 4>(x), XEX, 4> E X*. 

The map J x here is the canonical embedding of X into X" introduced in 
1D; we have tacitly restricted the domain of these functionals to be X* 
rather than all of X'. The topology a(X*, X) is called the weak* (weak-star) 
topology on X*, and we may consider weak*-compact sets in X*, weak*
convergence of nets in X *, etc. 

Let us consider in general a weak topology a(X, Y) on a linear space X 
generated by a total subspace Y c X'. We know that each 4> E Y is a(X, Y)
continuous on X and we ask if there are any other a(X, Y)-continuous 
functionals in X'. 

Theorem. A functional 4> E X' is a(X, Y)-continuous on X if and only if 
¢E Y. 

Proof. If ¢ is a(X, Y)-continuous then 4> is bounded (say by 1) on some 
a(X, Y)-8-neighborhood in X. By part d) of the lemma it follows that there 
are 4>1, ... , ¢n E Y such that 1¢(x)1 ~ 1 whenever l4>i(X)I ~ 1, 1 ~ i ~ n. In 
particular, if x E n {ker(4)i): 1 ~ i ~ n}, then 14>(kx)1 ~ 1 for all k, whence 
4>(x) = O. Thus 

n{ker(¢;): 1 ~ i ~ n} c ker(¢), 

so that, by IG, 4> E span {4>1, ... ,¢n} c Y. 0 
Let us consider some implications of this theorem for a locally convex 

space X and its weak topology a(X, X*). First note that the weak topology 
really is weaker than the given topology on X. This follows, for example, 
from part b) of the lemma which implies that any convergent net in X is 
also weakly convergent. Now the theorem implies that every continuous 
linear functional on X is necessarily weakly continuous. Thus, even though 
the weak topology on X may be strictly weaker than the given topology, the 
two topologies yield exactly the same continuous linear functionals. We also 
see that the two topologies yield the same closed convex sets. 

Corollary 1. Let A be a convex subset of a real locally convex space X. 
Then A is closed if and only ifit is weakly closed. 
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Proof. Assume that A is closed and that x E X\A. By llF x can be 
strongly separated from A by a hyperplane [CP; a] for some cP E X*. Thus, 
by part b) of the lemma again, no net in A. can converge weakly to x. That is, 
x does not belong to the weak closure of A. 0 

This corollary shows us in turn that the weak closure of any set A c X 
lies in coCA), since this latter set is weakly closed. In particular, if X is 
metrizable (for example, if X is a normed linear space), then each point in 
the weak closure of A is the lImit (in the origimiJ topology on X) of a sequence 
of convex combinations of points in A. 

Corollary 2. Let X be a normed linear space. Then the norm on X is a 
weakly lower semicontinuous function. 

This result follows directly from the weak closure of the unit ball (and its 
positive multiples) in X. The implication is that 

(12.1) 

whenever {Xb: <5 ED} is a net in X that converges weakly to x. 

B. Let X be a locally convex space and letJx:X ~ X*' be the canonical 
embedding of X into the algebraic conjugate space of X*: 

<cP, J x{x) == CP(x), cP E X*, XEX. 

Now X* with its a(X*, X) topology is a locally convex space and J x(X) 
is its continuous dual. (Although a simple enough consequence of 9A, this 
is still an important remark. Explicitly it asserts that any weak*-continuous 
linear functional defined on X* must be an evaluation functional, that is, 
it must have the form cP ~ CP(xo) for some fixed Xo E X.) Thus J x(X) has its 
own weak* topology. With J x(X) so topologized and with X topologized 
with the weak topology, the map Jx:X ~ Jx(X) is an isomorphism. Thus 
every locally convex space is weakly reflexive in that it is canonically iso
morphic to the dual of its dual, provided that the appropriate topologies are 
used on the spaces involved. Because of its universal validity this result is 
not of great usefulness in practice; it is much more important (but not always 
possible) to achieve such an isomorphism when X has its given topology. 
We shall return to this problem in Chapter III. 

e. In exercise 1.16 the notion of the polar of a subset of R n was intro
duced. We now extend this definition. Let X be a real linear topological 
space. The polar of a set A c X is 

AD = {CPEX*:CP(X):::::; 1,xEA}. 

Since e E AD always, we see that AD is a non-empty convex and weak*-closed 
subset of X*. As an example, if A is a subspace of X, its polar is the intersection 
of X* and its annihilator subspace (lH) in X'. 

The bipolar of A is 

bAD == D(AD) = {x E X:CP(x) :::::; 1, cP E AO}. 
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The precise relation between a set in X and its bipolar is quite important 
and is contained in the following "bipolar theorem". 

Theorem. Let A be a subset of a real locally convex space. Then 

(12.2) °AO = co({e} u A). 

Proof. It is clear that the set {e} u A lies in °AO. Since °AO is convex 
and (weakly) closed we see that °AO ::J co({e} u A). On the other hand, if 
any closed half-space (4B) contains {e} u A, it must also contain ° A 0. Taking 
into account exercise 2.13, we obtain the reverse inclusion. 0 

Corollary 1. (0 A 0)0 = A 0. 

Corollary 2. Let A be a subset of a real locally convex space X. Then 
span(A) is weakly dense in X if and only if ¢ = e is the only functional in X* 
to annul every point of A. 

Proof. Let M = span(A) and let MW be its weak closure in X. Then 
MW = X if and only if (Mw)" = xo = {e}, since MW and X are each equal 
to their own bipolars. But MW = 0 MO so that om condition for MW = X 
becomes 

{e} = (MW)O = (OMo)" = M O, 

which is clearly equivalent to the condition stated in the corollary. 0 
Corollary 3. Let X be a real locally convex space. A subset of X* is 

total if and only if its span is weak*-dense in X*. 

Example. To gain some insight into the significance of weak*-density 
of subspaces, we consider a particular case. Let U == U([O, 1J, R) be the 
Banach space of real-valued Lebesgue integrable functions on the interval 
[0, 1J (a special case of the spaces in Example 2, 10D). Now every essentially 
bounded measurable function g on [0, 1J defines a continuous linear func
tional on L 1 by 

(12.3) f t---+ J6 f(t)g(t)dt, 

and the norm (llD) of this functional is just the essential sup norm Ilgllco. 
In this fashion we obtain a norm-preserving isomorphism from L 00 
L""([O, 1J, R) into U*. On the other hand, if ¢ E L1* then the formula 

p(E) == ¢(XE) 

defines an absolutely continuous measure p on the measurable subsets 
E c [0, 1JwhoseRadon-NikodymderivativegbelongstoLoowithllgll00 = 

II¢II. Since 
S6 XE(t)g(t)dt = III XE dp = p(E) = ¢(XE), 

we see that g defines via the formula (12.3) a continuous linear functional 
on L 1 that agrees with ¢ on each characteristic function, hence on each 
simple function, and finally (by continuity) on all of L 1. Thus we may identify 
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U * with the space L oc!. (The same result holds if [0, 1 J is replaced by any 
CJ-finite measure space.) 

Now the space C([O, 1J, R) is evidently a proper closed subspace of L 00. 

We claim that it is weak*-dense, however. To see this, it is enough (by 
Corollary 3) to verify that the continuous functions are total over L 1. That 
is, we must show that if, for some f E L 1, 

S6 f(t)g(t)dt = 0 

for all continuous g, then f = 8. There are various ways to prove this last 
assertion. One may note, for example, that the hypothesis implies that f has 
an everywhere vanishing Fourier transform, so that by the uniqueness of 
Fourier transforms, f = 8. Otherwise, it may be attacked directly (a good 
exercise!) by use of standard measure theoretic tools such as the regularity 
of Lebesgue measure and the dominated convergence theorem. 0 

D. We consider next a criterion (the "Alaouglu-Bourbaki theorem") for 
the weak*-compactness of subsets of the continuous dual X* of a linear 
topological space X. It is possible to give more general (but more com
plicated) criteria for compactness in any CJ(X, Y) topology. However, such 
criteria are difficult to apply in practice, and, in any event, most practical 
situations can be handled by the clear and simple condition below. Also we 
point out that very sophisticated (and useful) compactness conditions will be 
given in the next chapter for complete locally convex spaces (especially, 
Banach spaces). 

Let G be a subset of X*. Since G consists of continuous linear functionals 
we can assert that Gis equicontinuous if and only if there is some balanced 
8-neighborhood V c X such that </J(x) ~ 1 for x E V and </J E G. In other 
words, G is equicontinuous if and only if G c VO, for some balanced 8-
neighborhood V c X.(2) 

Suppose, for example, that X is a normed linear space with unit ball 
V(X) == {x E X:llxll ~ 1}. We have seen (llD) that X* is also a normed 
linear space with norm defined by 

_ {1</J(x)l. } _ ._ II</JII = sup ~.x -# 8 - sup{I</J(x)I.llxll - 1}. 

It follows that 

V(xt = V(X*) == {</JEX*:II</JII ~ 1}.(3) 

Consequently, since 
(t -# 0) 

(2) Polars such as UO have only been defined in real spaces; in case our space X here is 
complex we apply this condition to the real restriction X R (tF). 

(3) If X is complex this equation means that U(X*) consists of those functionals whose real 
parts belong to U(XjO; it is justified by the fact that 114>11 = lire 4>11, 4> E X* 
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always holds for polars, we see that a subset G of X* is equicontinuous 
exactly when it is bounded in the norm topology on X*. 

Theorem. Let V be a e-neighborhood in the linear topological space X. 
Then VO is weak*-compact in X*. In particular, every equicontinuous subset 
of X* is relatively weak*-compact. 

Proof. Let V be a balanced e-neighborhood contained in V; since 
VO c vo , it will suffi~~ to show that VO is weak*-compact. Now, by part c) 
of the lemma in 12A, VO is totally bounded because, for any x E X, there is 
8 > 0 for which ;;x E V, whence 

sup{I¢(x)I:¢ E VOl ~ 8- 1 < 00 

On the other hand, VO is certainly weak*-complete. To see this, let {¢o} be 
a weak*-Cauchy net in VO. Then {¢o(x)} is a Cauchy net of scalars for each 
XEX so that limo¢o(x) == ¢(x) exists and deflnes a linear functional ¢EX'. 
But, since I¢o(x) I ~ 1 for each x E V, we must have 1¢(x)1 ~ 1 also, so that 
¢ E VO. 0 

Note that this result can also be considered as another application of 
the Ascoli theorem (7C). 

Corollary 1. Let X be a normed linear space. Then every bounded subset 
of X* is relatively weak*-compact, and every ball in X* is weak*-compact. 

(A ball in a normed linear space X is a set of the form 

{x E X: Ilx - xoll ~ r} == Xo + rV(X), 

for some Xo E X and r > 0.) The converse of this corollary is not true in 
general unless X is complete; this will be shown in the next chapter (see 
also the following sub-section). 

Corollary 2. Let At> ... , An be closed convex e-neighborhoods in a 
locally convex space. Then 

(12.4) (A1 n ... n AnY' = co(Al n ... n A~). 

Proof. This is a consequence of the general formula for the polar of 
the intersection of an arbitrary family of closed convex sets containing e 
(exercise 2.28) and the Alaoglu-Bourbaki theorem which guarantees that 
each of the polars A~ is weak*-compact. It remains only to apply exercise 
2.21 to conclude that the right hand side of (12.3) is weak*-compact. 0 

E. Let X be a normed linear space. We remain interested in the problem 
of deciding whether a given weak*-compact set G c X* is necessarily 
bounded (or, equivalently, equicontinuous). We noted after Corollary 1 of 
12D that this will not generally be the case unless X is a Banach space. 

Example. Let X be the subspace of C1(~o) (6C) consisting of sequences 
of scalars that have only a finite number of non-zero terms. Let tn be a 
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sequence of positive numbers such that lim tn = + 00, and let 4>n E X* be 
defined by 

Then the set G == {e, t14>1, t24>2," .}in X* is clearly unbounded since 
1 Itn4>nl 1 = tn- However, the sequence {tn4>n} converges weak* to e so that G 
is weak*-compact. 0 

We see next that such. ~ ~ituation cannot- occur in the presence of con
vexity. 

Theorem. A weak*-compact convex set G in X* is bounded. 

Proof. We can write 

G = u{G n nU(X*):n = 1,2, ... }, 

exhibiting G as a countable union ofweak*-closed subsets. Since any compact 
topological space is a Baire space (17A), one of the sets G n nU(X*) must 
be solid. That is, there exists 4> E G and a weak*-e-neighborhood V c X* 
such that 

(4) + V) u G c nU(X*). 

Since G - Gis weak*-bounded (actually w*-compact) it is absorbed by V: 
there exists A., 0 < A. < 1, such that A.(G - G) c V. Because G is convex 
we see that 

(1 - ..1.)4> + A.G c (4) + A.(G - G)) n G 

c(4) + V) n G c nU(X*). 

This inclmion shows that A.G lies in some ball in X* and hence so does 
G. 0 

F. In studying new topological spaces such as linear spaces X with a 
weak topology a(X, Y) (12A), one is naturally concerned with their metri
zability. Unfortunately, except for generally uninteresting special cases (such 
as finite dimensionality), the weak topologies are not definable by a metric. 
This assertion will be justified in the next chapter, as an application of some 
results about Banach spaces. 

In spite of this general disappointment we shall see next that the restric
tion of the a(X, Y) topology to certain subsets of X is metrizable. Such 
results can be quite useful. 

Theorem. Let X be a locally convex space and Ya total subspace of X*. 
Let A be a a(X, Y)-compact subset of X and suppose there exists a countable 
set G c Y which separates the points of A. Then the (relative) a(X, Y) topology 
on A is a metric topology. 

Proof. Consider the product space lFG where IF is the scalar field 
associated with X. Since G is countable this space is metrizable as we see 
by recalling the construction (9.3) of a local base in lF G and the metrizability 
criterion of exercise 2.5. Hence each subset of lF G is metrizable and we will 
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be done if we can show that A is homeomorphic to some such subset. To do 
this we define Q: A ~ FG by 

Q(x) = J x(x)IG, xEA, 

where J x is, as usual, the canonical embedding of X into X*'. Then Q is 
certainly continuous by the definitions of the relevant topologies (the relative 
o"(X, Y) topology on A, the topology of pointwise convergence on G). 
Furthermore Q is injective because G separates the points of A. Consequently, 
since A is compact Q must be a homeomorphism. D 

Corollary 1. Let X be a separable locally convex space and let A be a 
weak*-closed equicontinuous subset of X*. Then in its (relative) weak* 
topology A is a compact metric space. 

Proof. This is a consequence of the Alaoglu-Bourbaki theorem (12D) 
and the preceding result where we choose the set G to be any countable 
dense subset of X. D 

The most important special case of this corollary occurs when X is a 
normed linear space; we can then completely characterize those cases where 
the conclusion of Corollary 1 holds. 

Corollary 2. Let X be a normed linear space. Then the following state-
ments are equivalent. 

a) U(X*) is weak*-metrizable; 
b) every ball in X* is weak*-metrizable; 
c) X is separable. 

Proof. We need only check that a) implies c). Since every metric space 
is first countable there exists a countable 8-neighborhood base {v,,} in 
U(X*) and hence a sequence {An} of finite subsets of X such that 

n = 1,2, .... 

Let A = u{An:n = 1,2, ... }. If ¢ E U(X*) vanishes at each point of A, 
then ¢ E n {v,,: n = 1, 2, ... } = {8 j. It now follows from llF that span(A) = 

X and so X is separable (exercise 2.22). D 
The analogue of Corollary 2 for the weak metrizability of balls in a 

normed linear space X is also valid, the necessary and sufficient condition 
being the separability of X* (in its norm topology). However, this situation 
occurs less in practice than that of the corollary. 

A topological space Q is called sequentially compact if every sequence in 
Q has a convergent subsequence (with limit in Q). For example, every com
pact metric space is sequentially compact. In particular, if X is a separable 
normed linear space, the ball U(X*) is weak*-sequentially compact. What 
happens if X is not separable? 

Example. Let m be the linear space of all bounded scalar sequences 
x = (~b ~z, ... ) normed by IIxlioo == SUP{I~ll, 1~21 ... }. m is a non-separable 
normed linear space (in fact, a Banach space). Hence the ball U(n'i>*) is 
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weak*-compact but not weak*-metrizable. We claim that it is not weak*
sequentially compact. To see this, let ¢n E m* be defined by ¢n(x) = ~n for 
x E IN!. Clearly II¢nll = 1 for all n. But {¢.} has no weak*-convergent sub
sequence. On the other hand, {¢n} has aweak*-cluster point in U(m*). That 
is, there exist weak*-convergent subnets of {¢n} none of which is a sub
sequence. D 

G. Let X be a normed linear space. We shall see in the next chapter 
that if X is complete then X* is weak*-quasi-complete. However, as we now 
show, it is never the case that X* is weak*-complete, unless X is finite 
dimensional. 

Example. Let X have infinite dimension. According to exercise 2.14, 
there exists a linear functional ¢ E X'\X*. For each finite dimensional sub
space M of X, there is, by exercise 2.2, a closed complementary subspace of 
M in X and consequently there is a continuous proj;;ction PM:X ~ M. We 
define ¢M = ¢ 0 PM. Each ¢M is continuous by 110. Now the collection jl 
of finite dimensional subspaces of X can be partially ordered by inclusion 
and then forms a directed set. The net {¢M: MEA} is consequently a weak*
Cauchy net in X* with no weak*-limit in X*. D 

What is going on here is the following. As a product of complete spaces 
the space F X of all scalar-valued functions on X is complete in its product 
topology, the topology of pointwise convergence on X. The subspace X' of 
F X is closed (hence complete) in this topology and the preceding argument 
shows that X* is a proper dense subspace of X'. 

It is also true but somewhat harder to prove that X is never weakly 
complete (unless it is finite dimensional, of course). We shall give a criterion 
(reflexivity) for X to be weakly quasi-complete in the next chapter. 

§13. Extreme Points 

In this section we continue the discussion of §8 concerning the extreme 
points of a convex set and their usefulness in describing that set. A basic 
difficulty (SF) is the very existence of an extreme point and we deal with 
this problem first. Then we give the infinite dimensional analogue of Mink ow
ski's theorem (&0). Frequent applications of these results appear in this 
and later sections. 

A. Throughout this section X will be a real locally convex (Hausdorff) 
space. Let A be a closed convex subset of X. If X is finite dimensional we 
were able to give a concise necessary and sufficient condition for A to have 
an extreme point, namely that A be line-free (SB). As simple examples show 
(exercise 2.30), this result is generally false in infinite dimensional spaces, 
although it is clearly always necessary for A to be line-free. Our first result, 
a nice application, of the strong separation theorem (llF), shows that a 
sufficiently strong topological assumption (compactness) entails the existence 
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of extreme points, whether or not our set is even convex. As noted in SF, 
this type of result is somewhat surprising because the notion of extreme 
point is strictly algebraic. It is at. this point that an appreciation for the 
efficacy of topological methods in functional analysis should really begin. 

Lemma. Let A be a (non-empty) compact subset of X. Then A has an 
extreme point. 

Proof. The famlly d of all compact extremal subsets of A is non-empty 
(since A E d) and is partially ordered by inclusion. The intersection of any 
nested family in d is non-empty (by compactness) and A-extremal (by SA). 
Therefore, there exists a minimal element B of d. We claim that B contains 
only one point which, in that case, must belong to ext(A), If not, there are 
distinct points p, q E B. By HE these points can be separated by a continuous 
linear functional ¢ E X*:¢(p) # ¢(q). But now the set 

B n [¢; min {¢(x):x E B}] 

is a proper compact extremal subset of B. By SA this set is also A-extremal 
and this contradicts the minimality of B. Thus B must be a singleton set. D 

There is an application of this theorem to concave programming prob
lems (SE). Letfbe a concave function defined on X and let A be a non-empty 
compact subset of X. We consider the optimization problem (A,f). 

Corollary. If f is lower semicontinuous on A then f attains its minimum 
on A at an extreme point of A. D 

Proof. The set where f attains its minimum is a non-empty compact 
extremal subset of A. This set has an extreme point which, by SA, must also 
be an extreme point of A. D 

Note that this corollary applies in particular to the case where f E X*. 

B. The result to be given next is an extended form of the "Krein-Milman 
theorem", one of the most important general principles of geometric func
tional analysis. It provides two conditions for a subset B of a compact 
convex set A c X to satisfy co(B) = A. In particular the conditions are 
satisfied when B = ext(A). The additional operation of closure is necessary 
now in contrast to the finite dimensional case (SD) because, for example, 
co(ext(A)) will not be closed in general (exercise 2.31). 

Theorem. Let B be a subset of the compact convex set A c X. The 
following conditions are equivalent: 

a) co(B) = A; 
b) inf{¢(x):x E B} = min {¢(x):x E A},for any ¢ E X*; 
c) ext(A) c B. 

Proof. The equivalence of a) and b) follows directly from the strong 
separation theorem HF and the fact that 

inf{¢(x):x E B} = inf{¢(x):x E co(B)} 
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for every ¢ E X*. Note that the compactness of A is not needed for this 
conclusion. The preceding corollary shows that c) implies b). It remains to 
prove c) from a). This will follow from the general fact that 

(13.1) ext(co(B)) c.: B, 
a result of independent interest. To prove (13.1), let x E ext(co(B)); we must 
show that (x + V) n B ¥= 0 for any e-neighborhood V (by lOA it may be 
assumed that V is a barrel). ~"';ow B is totally bounded and hence there is a 
finite subset {Xl' ... , xn} c B such that 

Be U{Xi + V:i = 1, ... ,n}. 

Since the sets Ki == co( (Xi + V) n B) c co(B) = A are compact and 
convex, we have 

co(B) = co( U {Ki: i = 1, ... , n}) = co( U {Ki: i = 1, ... , n} ), 

the last equality by exercise 2.21. It now follows from exercise 1.33 b) that 
X actually belongs to some K i • In particular, x = Xi + v from some v E V, 
whence Xi = X - v is a point in (x + V) n B. 0 

We now list a few corollaries of this theorem, the rirst two pertaining 
to an arbitrary compact convex set A c X (see also exercise 2.32). 

Corollary 1. Let B be a non-empty closed semi-extremal subset of A. 
Then B contains an extreme point of A. 

Corollary 2. A lower semicontinuous quasi-concave fimction f on A attains 
its minimum on A at an extreme point of A. 

Proof. A quasi-concave function is by definition the negative of a 
quasi-convex function (exercise 1.10). It follows that the sets {x E A: IX < f(x)} 
are open and convex for every real IX. Thus we see that the set B c A where 
f attains its minimum satisfies the conditions of Corollary 1 and so contains 
an extreme point of A. 0 

The optimization result given in Corollary 2 is known as "Bauer's 
minimum principle". There is of course an analogous statement pertaining 
to the maximum of an upper semicontinuous quasi-convex function. 

Now suppose that X is a normed linear space. Then in the weak*
topology any ball in X* is a compact convex set (12D) and so is the closed 
convex hull of its extreme points. This fact yields a geometric strengthening 
of Corollary 1 in liE. 

Corollary 3. For every normed linear space X the extreme points of 
U(X*) separate the points of X. 

We can paraphrase this corollary by stating that to any pair x, y of distinct 
points of X there corresponds a ¢ E ext(U(X*)) such that ¢(x) ¥= ¢(y). 
The fact that the balls in the dual space of a normed linear space are well 
supplied with extreme points has an interesting implication. Namely, if a 
given space X ha~ the property that ext(U(X)) is empty it follows that X 
cannot be a dual space. Examples of such spaces occur in exercise 2.30. 
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C. In the two preceding sections we have been successful in developing 
a viable extreme point theory for compact sets. It has further been noted 
that such results do not extend much beyond the compact situation because 
of the existence of closed bounded (convex) sets with no extreme points. 
One avenue of extension is available, however, and this is to the case of 
locally compact sets. This extension will result in a generalization of Klee's 
theorem (SD) to arbitrary infinite dimensional (locally convex) spaces. 
Two preliminary leiiii,1aS are required, the first being a bit stronger than we 
need but having some independent interest. 

Lemma 1. A (non-zero) cone C in a real locally convex space X is locally 
compact if and only ifit has a compact base, in which case C is necessarily closed. 

Proof. Assume that C is locally compact. There is then a closed convex 
e-neighborhood U c X for which C n U is compact. Let D be the inter
section of C with the boundary of U. Then co(D) c C n U and hence is 
compact. Since e E ext(C) and e ¢ D we have by (13.1) that e ¢ co(D). Now 
let H be a closed hyperplane strongly separating e and co(D). We then have 
that B c C n H is a base for C and that B == C n U, whence B is compact. 

Conversely, suppose that B is a compact base for C. Then for all t > 0 
the sets Kt == {AX:X E B, 0 ~ A ~ t} are compact. Let H again be a closed 
hyperplane strongly separating e and B; we can assume that H = [¢; 1] 
for some ¢ E X*. Now let Xo E C; we wish to find a compact xo-neighborhood 
in C. Since Xo = tobo for suitable to > 0 and bo E B (5C), we have that 
Xo E K2to. But if f3 == inf{¢(x):x E B} then the set{x E C:¢(x) ~ 2f3to } c K2to 

is the desired neighborhood. 
The proof that C must be closed if it has a compact base is left as an easy 

exercise. 0 
Note that the linear functional ¢ used to separate e from the base B 

is a strictly positive functional (5C) on X: ¢(x) > 0 for all x E C, x =1= e. 
In SC we introduced the recession cone C A of a convex set and in exercise 

1.36 it was noted that if C A = {e} and A is closed in R n then A must be 
compact. The same argument applies in our more general (infinite dimen
sional) setting, provided we hypothesize that A is locally compact: C A = {e} 
if and only if A is compact. We now use this observation to establish the 
existence of extreme points. 

Lemma 2. A (non-empty) closed, convex, locally compact, and linejree 
set A in X has an extreme point. 

Proof. We may assume that A is not compact. Then CA is a non-trivial 
closed cone in X (closure follows from equation (8.5)). Further C A is itself 
locally compact since a translate of it lies in A. Let ¢ E X* be a strictly 
positive linear functional and let K be the half-space {x E X:¢(x) ~ O}. 
Ifwe translate C A and K to a point Xo E A we see that the set A n (xo + K) == B 
must be compact, since otherwise, by its local compactness, it would contain 
a half-line' outside the set Xo + C A, in contradiction to the definition of 
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C A- Finally, either B is contained in the hyperplane {x EX: 4>(x) = 4>(xo)} in 
which case ext(B) c ext(A) (SA), or else B has an extreme point not in this 
hyperplane; but such a point must again be an extreme point of A. D 

N ow we can give the general version of Klee's theorem. In particular our 
approach here provides a new but less direct proof of the original finite 
dimensional result in SD. 

Theorem. Let A satisfy ;lie hypotheses oILemma 2. Then 

(13.2) A = co(ext(A) u rext(A)). 

Proof. Let B be the right-hand side of (13.2). If B were properly con
tained in A we could strongly separate B from a point in A\B by a closed 
hyperplane H. By Lemma 2 there is an extreme point p of A n H which, 
by definition, does not belong to ext(A). There is hence a line L in X such 
that p E cor(A n L), where A n L is either a line segment or a half-line. 
In the former case we claim that the end-points of A n L are both extreme 
points of A, which would then imply that p E B, in contradiction to the 
choice of p. To prove this claim, let q be an end-point of A n L. If q f ext(A) 
there are distinct points Lt, v E A with q E (u, v). Then, if z is a point of An Lin 
the half-space of H that does not contain q, it follows that p E cor(H n co(u, 
v, z)) which again contradicts the choice of p. Finally, if A n L is a half-line, 
we see analogously that it must in fact be an extren-;,e ray of A; this entails 
p E B which is again a contradiction. D 

D. Let M be a closed linear subspace of a real normed linear space X. 
It is frequently of interest to determine how well an element Xo E X\M can 
be approximated by members of M. (A classical situation occurs when 
X = C([ a, b], R) and M consists of all polynomials of degree at most n, 
for some n.) By definition this closeness of approximation is given by the 
quantity 

We are going to see that the extreme points of certain convex sets in X* 
playa role in the determinatioD of this value. 

Let 4> E U(MO) where MO is the annihilator (or, equivalently, the polar) 
of Min X*. Then for any y E M, 

whence 

(13.3) 

On the other hand, we can separate M and the ball {x EX: Ilxo - xii ~ 
d(xo, M)} to obtain a functional l/J E MO such that l/J(xo + x) ;?: 0 for 
Ilxll ~ d(xo, M). Thus 

-l/J(xo) ~ inf{l/J(x):llxll ~ d(xo, M)} = -d(xo, M)IIl/JII, 
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so that the functional ¢ == II~II satisfies ¢ E U(MO) and 

(13.4) d(xo, M) ~ ¢(xo). 

Combining (13.3) and (13.4) we obtain 

d(xo> M) = max {¢(xo):¢ E U(MO)} 
= sup{¢(x~):¢ E ext(U(MD))}, 

(13.5) 

where the second equality is a consequence of 13A applied to the weak*
continuous linear function ¢ ~ ¢(xo) on the weak*-compact set U(MO) 
(the compactness of U(MO) follows from 12D and the fact that subspaces of 
the form MO are weak*-c1osed). 

We now develop a technique for recognizing the extreme points of sets 
of the type U(MO). Let p be a continuous semi-norm on X (which may be 
any real locally convex space for the moment). For any ¢ E U~ (the polar 
of the p-unit ball (lOB)) we define a set 

A</> = {x E X:p(x) - ¢(x) ~ 1}. 

Each such set is an unbounded convex B-neighborhood in X. We give 
next a preliminary result for the case M = {B}. 

Lemma. A functional ¢ E U~ is an extreme point of U~ if and only if the 
difference set A", - A</> is dense in X. 

Proof. In general, by the strong separation theorem, a convex set 
K c X fails to be dense in X exactly when some non-zero t/J E X* is bounded 
(above) on K. Suppose first that ¢ 10 ext(U~). Then there is a non-zero 
t/J E X* such that ¢ ± t/J E U~. Hence i<x, ¢ ± t/J>i ~ p(x) for all x E X 
and in particular t/J(x) ~ p(x) - ¢(x). Thus t/J is bounded above by 1 on 
±A</> and hence by 2 on A</> - A</>; consequently, A</> - A", is not dense in 
X. Conversely, if we assume that A</> - A", is not dense, there is some non
zero t/J E X* bounded above (say by 1) on A</> - A</>. Since A</> is a balanced 
set containing A", it follows that sup{it/J(x)i:x E A</>} ~ 1. It remains to prove 
that ¢ ± t/J E U~ for this will show that ¢ 10 ext(U~). To do this select any 
x E Up and set rx = p(x) - ¢(x). 

Case 1: r:t. = O. In this case we have tx E A</> for every t > 0 whence 
it/J(x)i ~ l/t and so t/J(x) = O. Thus < x, ¢ ± t/J> = ¢(x) = p(x) ~ 1. 

Case 2: r:t. > O. We have p(x/rx) - ¢(x/r:t.) = rx/rx = 1, so that x/rx E A", 
and hence it/J(xjr:t.)i ~ 1. Thus it/J(x)i ~ r:t. == p(x) - ¢(x), so that again 
< x, ¢ ± t/J > ~ p(x) ~ 1. D 

We can now establish the main characterization of extreme points 
of sets of the type U(MO), known as the "Buck-Phelps theorem". 

Theorem. Let p be a continuous semi-norm on the real locally convex 
space X and let M be a linear subspace of X. A functional ¢ E MO () U~ 
is an extreme point of MO () U~ if and only if 
(13.6) 
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Proof. Let a be the semi-norm d(·, M), that is, a(x) == inf{p(x - y):y E 
M}. Then Ua = M + Up and we define Bq, = {x E X:a(x) - 4>(x) ~ 1} 
for any 4> E U~. By the lemma we know that 4> E ext( U~) if and only if Bq, - Bq, 
is dense in X. Now it is clear that U~ ~ MO II U~. We show next that 
M + Aq, - Aq, is dense in Bq, - Bq,. Since a(x + y) ~ p(x) for all Y E M, 
we see that M + Aq, c Bq, and then that M + Aq, - Aq, c Bq, - Bq,. Next, 

n - 1 
select any x E Bq, and set Uc. = -- x for n= 1,2, .... We have a(un) -

n 
4>(un) < 1 so that there exists Yn EM such that p(un + Yn) < 1 + 4>(un) = 

1 + 4>(un + Yn); that is, Un + Yn E Aq,. Similarly given Z E Bq, we can analo
n - 1 

gously define Vn = -- z and vectors y~ E M. We then have (un + Yn) -
n 

(vn + y~) E Aq, - Aq, so that Un - Vn E M + Aq, - Aq, and limn(un - vn) = 

x - z. This establishes the density of M + Aq, - A.p in Bq, - Bq, as claimed 
above. 

We now know that 4> E ext(MO II U~) if and only if M + Aq, - Aq, 
is dense in X. It remains to see that this density is equivalent to (13.6). 
However, this is a consequence of the fact that the sets Aq, are solid which 
entails that M + Aq, - Aq, is also solid. Thus any x E X\(M + Aq, - Aq,) 
could be separated from M + Aq, - Aq, by a closed hyperplane, but this 
contradicts the density of M + Aq, - Aq, in X. 0 

Corollary. A functional 4> E MO II U~ is an extreme point of MO II U~ 

if and only if for each n = 1, 2, ... , 

1 1 
X=M+-A --A. n q, n q, 

Observe that 

~ Aq, = {x E X:p(x) - 4>(x) ~ ~}. 
n n 

E. Let us now give a few examples of the extreme point structure of 
the unit balls in certain normed linear spaces. We omit most of the details 
of the following assertions; filling these in should constitute an interesting 
exercise. The notation of IOD IS utilized when possible. 

Example 1. Let X be either Cb(Q, F) or else L oo(fl, F), where F == R 
or C and, in the latter case, fl is a a-finite measure on some measure space. 
The extreme points of U( Cb(Q, F)) are the functions with modulus one 
everywhere on Q. Similarly, any fl-measurable function f with fl( {t: if(t)i =I-
1}) = 0 defines an extreme point of U(L OO(Q, F)) and every extreme point 
is so obtained. (Interestingly enough, for all these spaces except X = Cb(Q, R) 
we have 

(13.7) U(X) = co(ext(U(X))). 

However, when X = Cb(Q, R) the validity of (13.7) is equivalent to a topo
logical constraint on Q, namely that Q should be totally disconnected, which 
means that there is a base for the topology of Q consisting of sets which are 
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both open and closed. The proof of (13.7) depends on the equivalence of a) 
and b) in 13B and on further knowledge of the continuous dual space 
X*J 0 

Example 2. Let Q be the unit disc {z E C: Izl ~ 1} and let X = A(Q). 
As in Example 1, any function in X which is of modulus one on the boundary 
oQ of Q (the unit circle) is an extreme point of U(X). More generally, because 
the functions in X are analytic on the interior of Q, it follows that any func
tion in U(X) which has modulus one on a subset of positive (Lebesgue) 
measure of oQ is also extreme. The complete answer is that f E U(X) is an 
extreme point if and only if 

(13.8) S~"log(1 -If(eit)l)dt = -00. 

(To see that this condition is necessary, assume that it fails. Select a con
tinuous function h on oQ such that e ~ h(') ~ 1 - If(-) I and such that h 
is of class CIon each open arc of the set where If(-)I < 1. Then if we define 

[ 1 I" eit + z ] g(z) = exp ~2 ~ log h(t)dt , 
TC _" e z 

we will have g E A(Q) and Ilf ± glloo ~ 1). 
The same result holds for the space Hoo(Q), although some preliminary 

work is needed to establish the existence of boundary values on oQ before 
the condition (13.8) can be applied. For both these spaces it is again true 
that formula (13.7) is valid. 0 

Example 3. Let X = Lip([O, 1J, d, JF) where d is the usual metric on 
[0, 1J and, as usual, JF = R or C. Any functionf E X is differentiable almost 
everywhere and, in fact, 11f' 1100 = Ilflld' IfJhas modulus one at each point of 
[0, 1J then certainly f E ext(U(X)) by Example 1. Also for f to belong to 
ext(U(X)) it is necessary that Ilflloo = 1 (otherwise, we just add and subtract 
a suitable constant and see thereby that f is not extreme). Then we have 
thatf E U(X) is extreme if and only if 1f'(')1 = 1 almost everywhere in the 
set where If(')1 < 1. (To see that this condition is necessary, we can proceed 
by contradiction. Let E be a compact subset of {t E [0, 1]:lf(t)1 < 1} with 
positive measure such that 11f'IElloo < 1. Then we can choose to E [0, 1 J 
such that the function 

g(s) == SO XE(t){X[O, tait) - X(to, 1](t)}dt 

belongs to X and g'(-) vanishes off E. Then for sufficiently small (j > 0, 
Ilf ± (jglIL ~ 1.) Again we remark that (13.7) is valid for this example, 0 

Example 4, We consider again X = Cb(Q, JF) but now we try to identify 
ext(U(X*)). In this example we shall assume that Q is a compact Hausdorff 
space. This is a very important case in practice. Our task is facilitated by 
the results of8F. We let P be the positive wedge in X and let p* == p+ n X* 
be the continuous dual wedge in X*. Ifwe now define K = {¢ E P*: ¢(e) = 1} 
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where e is the function constantly equal to one on Q then we know from 
8F that ext(K) consists of the algebra homomorphisms of X. In particular, 
given any point t E Q the evaluation functional (jt defined by (x, (jt) = x(t) 
for x E X belongs to ext(K). Since K is clearly an extremal subset of U(X*) 
it follows that each evaluation functional is an extreme point of U(X*). 
More generally, 

E == {1X(j;:!IY! = 1,tEQ} c ext(U(X*)). 

Now evidently °E = U(X), so by the bipolar theorem (12C) we have 

U(X*) = °EO = co*(E), 

where "co*" refers to weak*-closure. But since E is weak*-compact (by 
virtue of being a continuous image of the compact set {IX E F: IIXI = I} x Q), 
we see by applying (13.1) th&t 

ext(U(X*)) c E* = E c ext(U(X*)). 

Thus we have achieved the identification 

(13.9) ext(U(C(Q, F)*)) = {1X(jt:1X E F, IIXI = 1, t E Q}, 

for every compact Hausdorff space Q. 0 
The discussion of this class of examples is continued in exercise 2.35 

for the case of non-compact Q. Also, in contrast with the preceding examples, 
U(C(Q, F)*) is not now generally equal to the norm-closure of the convex 
hull of its extreme points (consider, for example, the case Q = [0,1]). 

Example 5. A normed linear space (X, 11·1 i) is strictly normed if 
Ilx + yll = Ilxll + Ilyll implies that x = ty for some t ~ ° or else y = e. 
This constraint on the norm is easily seen to be equivalent to the geometric 
condition that U (X) be rotund, where a convex set is rotund if every bounding 
point is an extreme point. From our present point of view such spaces are 
not very interesting since, for example, condition (13.7) is automatically 
fulfilled. Examples of strictly normed spaces are the U(Q, j1, F) spaces for 
1 < p < 00; this may be shown by consideration of the condition for 
equally in Holder's inequality. 0 

Example 6. For our final examples we consider normed linear spaces 
X and Y (over the same scalar field) and study some extreme points of 
U(B(X, Y)). A map T E B(X, Y) is an isometry if T "preserves the norm", 
that is, if IIT(x)11 = Ilxll, for all x EX. It is easy to see that if Y is strictly 
normed then any isometry in B(X, Y) is an extreme point of U(B(X, Y)). 
Now we assume that X = Y and abbreviate B(X, Y) to B(X). Then we 
claim that the identity map I (where I(x) == x for all x E X) is an extreme 
point of U(B(X)) (whether or not X is strictly normed). In fact, one can 
prove the much stronger assertion that I is a vertex of U(B(X)) in the sense 
that the set {<p E B(X)*: 11<p11 = 1 = <p(l)} is total over B(X). In other words, 
the intersection of all hyperplanes of support to U(B(X)) that contain I 
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is just {I}. Examples of such functionals ¢ are the double evaluation func
tionals OJ f. x E B(X)* defined by 

OJf,x(T) = (T(x),J), T E B(X), 

where x E X,J E X*, IIfil = Ilxll = f(x) = 1. (The proof that I is a vertex 
is not entirely straightforward for general spaces X but it should be clear in 
the special finite ciimensional case where X = Rn or en.) 

Once it is known that I is a vertex of U(B(X) ) for some X it then readily 
follows that any isometry T E B(X) whose range is all of X is also a vertex. 
This can be seen by observing that the map S ~ T- 1 0 S is an isometry on 
B(X) that sends T into I. Thus, for example, when X = Rn or en (with the 
usual Euclidean norm) then every linear map on X defined by a unitary 
matrix is a vertex of U(B(X)). Furthermore, in this case a strong converse 
is valid: every extreme point of U(B(X)) is defined by a unitary matrix, 
and hence is a vertex. (If T E ext(U(B(X))) is defined by T(x) = Ax for 
some square matrix A, then we can express A as VDUH ("singular value 
decomposition") where U and Vare unitary, UH is the hermitian transpose 
of U, and D is a diagonal matrix with diagonal entries 0 :(: db dz, ... , dn :(: 1. 
Because T is extreme each dj is either 0 or 1. If some dj = 0 we define a linear 
map S by S(x) = (x, uj)vj where uj (resp. Vj) is the r column of U (resp. V). 
Then II T ± SII :(: 1 contradicting that T is extreme. Thus we see that A is 
unitary.) D 

§14. Convex Functions and Optimization 

In this section we resume our general discussion of convex functions 
which was begun in §3 and continued in 6D and 7D-E. Further developments 
depend on topological considerations reflected in continuity assumptions 
about the functions. Our approach constitutes a noteworthy application 
of the geometric theory developed in earlier sections. In particular, it is 
interesting to observe how the existence of various separating or supporting 
hyperplanes to certain convex sets entails analytical information about a 
given convex function or program. 

A. We first discuss conditions which insure the continuity of a given 
convex function f defined on an open convex set A in a linear topological 
space X. The main point to be made is that, except in very pathological 
cases, f is automatically continuous on A. We have already seen a special 
case ofthis in UD where f was a linear function: f E X'. We note that if f is 
continuous at a point p in A then f is certainly bounded on some neighbor
hood of p. It is striking that this trivial necessary condition forces f to be 
continuous throughout A. 

Theorem. Let A be an open convex subset of the linear topological space 
X. Iff E Conv(A) is bounded above on a neighborhood of a point pEA then 
f is contin1:l0us at every point in A. 
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Proof. Let us first see that f must be bounded from above on a neigh
borhood of any point q E A. Given such a point q, there is t > 1 such that 
p + t(q - p) E A (llA). Now, suppose that a == sup {f(x):x E p + V} < 00 

for some balanced 8-neighborhood V; then we claim that f is bounded on 
the q-neighborhood q + (1 - 1/t)V. Indeed, if z = q + (1 - 1/t)v for 
some v E V, then 

fez) =f(q - (1 -Dp + (1- D(p + V)) 

~ ~ f(p + t(q - p)) + (1 -D a. 

To complete the proof it will suffice to show that iff is bounded above 
on some neighborhood of pEA then f is continuous at p. Choose a and 
Vas above and let 0 < 8 < 1. Then if z E p + 8V we can write 

z = (1 - 8)p + 8(p + v) 

for some v E V, and therefore 

fez) ~ (1 - 8)f(p) + a8, 

fez) - f(p) ~ 8(a - f(p))· 

On the other hand, since, for any v E V, we can write 

p = _1_ (p + av) + (1 __ 1_) (p - v), 
1+8 1+8 

we have 
1 8 

f(p) ~ -1 -f(p + 8V) + -1 -f(p - v) 
+ 8 + 8 

1 a8 
~ --fez) + --. 

1+8 1+8 
This yields 

Thus we see that 
8(f(p) - a) ~ fez) - f(p)· 

If(z) - f(p)1 ~ a(a - f(p)), 

for all z E p + a V, proving that f is continuous at p. 0 
Some important corollaries are now at hand. First, if A is not open but 

is solid then the theorem applies to the interior of A. Next, suppose that A 
has no interior. We may view A as a subset of its closed affine hull aff(A) == 
aff(A). Relative to aff(A) the set A may be solid. This will occur exactly 
when there is a point p E A and a 8-neighborhood V in the closed linear 
subspace span(A-A) == span(A-A) such that p + V c aff(A). Such points 
p (if any) constitute the relative interior of A (written re1-int(A)), and evidently 
the theorem still applies to these points. 

Corollary 1. Iff E Conv(A) is bounded above on some neighborhood of a 
relative interior point of A, then f is continuous throughout rel-int(A). 
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The concept of relative interior of a convex set is the appropriate sub
stitute for the intrinsic core (2C) when dealing with infinite dimensional 
linear topological spaces. In particular, then, we have the following strong 
result about convex functions with finite dimensional domain. 

Corollary 2. If f E Conv(A) where A c Rn for some n, then f is con
tinuous throughout icr(A). 

When X is a normed linear space we can make a still stronger assertion 
about the continuity of convex functions with domain in X. Namely such 
a function must satisfy a Lipschitz condition throughout some neighborhood 
of each point of continuity; see exercise 2.40. 

It is clear from the theorem that continuity of f E Conv(A) at some point 
p E int(A) is equivalent to upper semicontinuity of f at p. On the other 
hand, when f is only known to be lower semicontinuous at p the theorem 
need not apply. Nevertheless (exercise 3.50), it is a consequence of the Baire 
category theorem that when X 13 a Banach space and f is lower semi
continuous at every point of A, then f is continuous throughout cor(A) 
(when A is closed we actually have cor(A) = int(A), again by the Baire 
theorem). If we recall that f is lower semicontinuous on A if and only if 
the sub-level sets {x E A:f(x) ~ A} are closed for all A, then we have the 
basis for the proof of the second part of the next corollary, which establishes 
the connection between continuity properties of convex functions and 
topological properties of their epigraphs (3A). 

Corollary 3. Let f E Conv(A) where A is a convex subset of the linear 
topological space X. 

a) f is continuous throughout int(A) if and only if epi(f) is solid; 
b) f is lower semicontinuous on A if and only if epi(f) is a closed subset 

of X x RI. 

B. Letf E Conv(A) where A is a convex set in the real linear topological 
space X. Subgradients of f were introduced in 6D and were shown to exist 
(in X') at each intrinsic core point of A. As usual, we would like these linear 
functionals to be continuous and it is natural to inquire as to what hypothesis 
on f will ensure this. The following result is a satisfactory answer. 

Theorem. Let pEA. The set of(p) n X* of continuous subgradients is 
a weak*-closed convex set. If f is continuous at p E int(A), this set is also 
non-empty and weak*-compact. 

Proof. The first assertion is clear from the definitions. If now f is 
continuous at p and cjJ E of(p) then cjJ ~ f - (f(p) - cjJ(p)) on A. In particular 
cjJ is bounded (above) on some p-neighborhood and hence continuous by 
lID. To complete the proofit is now sufficient to show that of(p) is relatively 
weak*-compact in X*. From 12D we see that this will be true if there is a 
8-neighborhood V c X such that of(p) c VO. But there is such a neighbor
hood, namely V = {x E X: if(p + x) - f(p)i < 1}. 0 

From now on we shall consider only continuous subgradients for convex 
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functions; in particular, the set of(p) will always be considered to belong to 
X* (rather than X'). In practical terms this results in little loss of generality, 
since we just observed it to be the case whenever f is continuous at p. 

Let us note that when X is a normed linear space and f is continuous 
at p then of(p) is a bounded subset of X*. This is .a consequence of the 
convexity and weak*-compactness of of(p) (12E). 

C. Let f, A, and X be as in the preceding section, and let us suppose 
that the directional derivative f'(p; x) is defined for some pEA and every 
x E X. From 7D we know that this will be the case in particular if p E int(A). 
Now if ¢ E of(p) it follows from formula (7.S) that the directional derivative 
function f'(p; .) is bounded below on some B-neighborhood in X. This 
means that as we move linearly away from the point p the value of f cannot 
drop off too sharply. We show next that this condition is actually equivalent 
to the sub differentiability of f at p, provided that X is locally convex. 

Theorem. Let f E Conv(A) where A is a convex subset of the real locally 
convex space X. For any pEA we have of(p) i= 0 if and only if there is 
some B-neighborhood V c X such that - 00 < inf{f'(p; x):x E V}. 

Proof. Since X is locally convex we can assume (lOA) that V is a barrel 
with gauge Pv. Since f'(p; .) is positively homogeneous we have 

YPv(x) ~ f'(p; x), XEX, 

where y == inf{f'(p; x):x E V}. Now iyiPv is a continuouf> seminorm on X 
so that its epigraph E is a solid convex set in X x R.I. Also, int( - E) n 
epi(f'(p; .)) is void; for otherwise it would contain a point (x, t) and then 
t < -iyiPv(x) = yPv(x) ~ f'(p; x) ~ t, a contradiction. Consequently, we 
can separate these two convex sets by a closed hyperplane [ljJ; ()(] where 
ljJ(x, t) == ¢(x) + t for x E X, t E Rl (6D). Since epi(f'(p; .)) is a wedge we 
must have ()( = O. Further, we must have s i= 0 because, if s = 0, then it 
would follow that ¢(x) < 0 for every x E X, since (x, t) always belongs to 
int( -E) for sufficiently small negative t. But now part b) of the Lemma in 
6D allows us to conclude that - ¢/s E of(p)· D 

When X is finite dimensional there is an even more striking implication 
of the failure of f to be subdifferentiable at a point pEA. 

Corollary. If dim(X) < 00 and of(p) = 0 for some pEA, then there 
there exists x E X such that f'(p;x) = - 00. 

Actually, any x E icr(A - p)yieldsf'(p; x) = - 00 whenof(p) = 0. This 
corollary may be illustrated by the function f(t) == - Jf-=tY defined on 
A == [ -1, 1] c Rl. We see that of( ± 1) = 0 (exercise 1.25) and that 
f'(±1; +1) = -00. 

The theorem also yields a new proof that of(p) =J 0 whenever p E int(A) 
and f is continuous at p. For if we put g(x) = f(p + x) - f(p) then 9 is 
continuous at Band f'(p; .) ~ g. This shows that f'(p; .) is continuous at B 
and hence certainly bounded below on some B-neighborhood. 
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D. We give one final and important general relation between directional 
derivatives and subgradients of convex functions. Let f E Conv(A) where A 
is a solid convex set in the real linear topological space X. Then from equation 
(7.8) we have, for p E int(A). 

(14.1) 
- f'(p; -x) ~ inf{t/J(x):t/J E of(p)} 

~ sup {t/J(x): t/J E of(p)} ~ f'(p; x), 

for any x E X. We now see when the outside inequalities in (14.1) become 
equalities. 

Theorem. If X is a real locally convex space and f E Conv(A) is con
tinuous at p E int(A), then 

(14.2) f'(p; x) = max{t/J(x):t/J E of(p)} 

and 

(14.3) - f'(p; - x) = min {t/I(x): t/J E of(p)} 

for every x E X. 

Proof. By 14B the set of(p) is weak*-compact so that the max and min 
in (14.2) and (14.3) are attained. We shall just prove (14.2) as (14.3) then 
follows by an analogous argument (or even by just a change in sign of x). 
Suppose that 

(14.4) max{t/J{x):t/JEof(p)} < a < f'(p;x) 

f01 some x E X and a E R. Arguing as in 7E we define a linear functional 
lfi on M == span {x} by lfi(tx) = at for all t E R. Then on M, lfi ~ f'(p; .) and 
hence by HG there is a continuous extension t/J on lfi to all of X such that 
t/J ~ f'(p'; .). Since t/J(x) == a we have arrived at a contradiction to (14.4). 0 

It is an instructive exercise to give an alternative proof of this theorem 
by separating epi(f) from the ray {(p + tx,f(p) + tj'(p; x)):t ;:: O} in 
X x R 1. In any case we now have the exact analogue of the results in 7E 
for continuous subgradients provided that we make the usual continuity 
hypothesis on f. 

Corollary 1. With the same hypotheses on f, p, A and X, we have that 
the gradient Vf(p) exists in X* if and only if the subdifferential 8f(p) consists 
of a single element, namely Vf(p}. 

The above theorem has some further more substantial corollaries. We 
give one now and another in the next subsection. Consider a fixed set A c X 
and let pEA. Then the gradient map f -> Vf(p) is a linear map from the 
space of smooth functions on A into X*. When we drop the smoothness 
requirement we still obtain an analogue of the gradient map by imposing 
convexity conditions: A is a convex set and f E Conv(A). The analogue 
is now the subdifferential mapf f-7 8f(p), considered as a map from the wedge 
Conv(A) ifltO the weak*-closed convex subsets of X*. We show that this map, 
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although in no ways linear (Conv(A) is not even a linear space), still generally 
respects the wedge operations on Conv(A). 

Corollary 2. Let f, g E Conv(A) and assume both are continuous at 
pEA. Then for any non-negative numbers :5 and t we have 

o(sf + tg)(p) = sof(p) + tog(p). 

Proof. Let h = sf + tc/. Then 

max{t/l(x):t/tEoh(p)} = h'(p;x) = sf'(p;x) + tg'(p;x) 

= s max {t/t(x):t/t E of(pn + t max {t/t(x): t/t E og(p)} 

= max{t/t(x):t/tEsof(p) + tog(p)}, XEX. 

Now the sets oh(p) and sof(p) + tog(p) are both convex and weak*-compact, 
and the first contains the second (using 7E, for example). They must therefore 
be equal (13B). 0 

Again it is an instructive exercise to give a direct proof by use of a 
separating hyperplane argument in X x Ri. This will also yield a slightly 
stronger version of Corollary 2, in that it will be seen that the continuity of 
only one of the functions f and g at p need be assumed. 

E. As another application of the preceding theorem we derive a global 
criterion of the solvability of convex optimization problems. Suppose we 
are given the variational pair (A, f) consisting of a convex set A c X (real, 
locally convex) and f E Conv(A). The general problem then is to minimize 
f over A, and in particular, to decide whether a given point pEA is a solu
tion in the sense that 

f(p) = min {J(x):x E A}. 

To accomplish this we introduce the set F(p; A) of feasible directions 
of A at p as the set of all x E X for which some D > 0 exists (depending on 
x) such that p + tx E A for 0 ~ t < D. This concept is related to our earlier 
notion (8C) of the recession cone C A by 

(14.5) CA = n{F(p; A):p E A} 

provided that A is closed (ac~ually, (14.5) does not even require that A be 
convex). Now the set F(p; A) is a wedge in X; we let F(p; A)* be the con
tinuous dual wedge, that is, the wedge of continuous linear functionals on 
X which assume non-negative values on F(p; A). We then have the following 
optimality principle ("Pshenichnii's condition"). 

Theorem. If f is continuous at pEA then p is a solution of the convex 
program (A, f) if and only if 

(14.6) of(p) n F(p; A)* i= 0. 
Proof. Suppose that condition (14.6) holds and that ¢ E of(p) n 

F(p; A)*. Since A, is convex we have x - p E F(p; A) for all x E A, and so 

o ~ ¢(x - p) ~ f(x) - f(p), x E A. 
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Thus p is a solution of our program. (Note that the continuity hypothesis 
was not needed for this implication.) 

Conversely, suppose that p is a solution but that (14.6) does not hold. 
Then, in X* the origin does not belong to the weak*-closed convex set 
F(p; A)* - 8f(p) (the weak*-closure of this set results from the weak*
compactness of 8f(p)). Applying the strong separation theorem and 14A we 
obtain Xo E X such that 

6 == inf{</J(xo):</J E F(p; A)* - 8f(p)} > 0, 
or 

(14.7) inf{</J(xo):</J E F(p; A)*} ~ 6 + max{</J(xo):</J E 8f(p)}. 

Since F(p; A)* is a wedge the left side of (14.7) must be zero. This has two 
implications: first, that !'(p; xo) ~ -6 < 0, and second, that Xo E F(p; A). 
This second fact follows from the bipolar theorem (12C) when we recognize 
that F(p; A)* == - F(p; At. Now since !'(p; .) is continuous at 8 (14C), it is 
everywhere continuous (14A). Hence !'(p; x) is negative at all x in some 
xo-neighborhood and in particular at some point x E F(p; A). But this 
means that f(p + tx) - f(p) is negative for sufficiently small t; since 
p + tx E A for such t we have arrived at a contradiction. 0 

Corollary. Under the same hypotheses on A, f, and p, a necessary and 
sufficient condition for p to be a solution of the convex program (A, f) is that 
there exist </J E 8f(p) such that p is a solution of the program (A, </J). 

Again, the sufficiency of the condition does not depend on the continuity 
assumption. The effect of this corollary is to reduce the quest for solutions 
of the original convex program (A, f) to the quest for solutions to the linear 
program (A, </J). The practical application of this reduction depends of 
course on our knowledge of the subdifferential 8f(p). The most important 
special case is that where f is smooth, in the sense that !'(p; .) == Vf(p) 
exists in X*. Then, as we know (14D), 8f(p) = {Vf(p)} and so our program 
(A, f) reduces to the linear programs (A, Vf(p)), pEA. 

Example 1. Consider the special case where A = Xo + M is an affine 
subspace (1C) of X. For any pEA the necessary and sufficient condition 
that p solve the program (A, f) is that 8f(p) n MO ¥- 0, where MO is the 
annihilator subspace of M in X*. This is because F(p; A) = M in this 
case. 0 

Example 2. Suppose that g E Conv(X) and that A is the set {x E X: 
g(x) ~ O}. An important special case occurs when we have a semi-norm p 
on X and we put g(.) = p(.) - A, for some A> 0; that is, A = AUp • We 
select pEA and try to determine F(p, A)*. Ifp E int(A) then clearly F(p, A) = 
X and F(p, A)* = {8}, whence p is a solution of the program (A, f) if and 
only if 8 E 8f(p). (Note that this conclusion does not depend on the special 
form of A.) Otherwise, and this is the more typical case, p is a boundary 
point of A. We assume that g is continuous so that g(p) = 0. We shall also 
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assume that there is some point q E A such that g(q) < 0 ("Slater's regularity 
condition"). Then we assert that 

F(p; A)* = (- 00, O]og(p) 
(14.8) == {</>EX*:</> = t!f!,t ~ O,l/JEog(p)}. 

The inclusion from right to left in (14.8) is clear, because if x E F(p; A) and 
l/J E og(p), then 

tl/J(x) ~ g(p + tx) ~ 0 

for sufficiently small t >- 0, whence l/J(x) ~ O. To reverse the inclusion we 
note that since q - pEA we have 

l/J(q - p) ~ g(q) < 0, l/J E og(p), 

so that () ¢ og(p). Let </> E F(p; A) (</> # ()); we shall assume that t</> ¢ og(p) 
for any t < 0 and reason to a contradiction. We can separate the weak*
closed convex set ( - 00, OJ</> - og(p) from () and so obtain Xo E X such that 

(14.9) t ~ o. 
By 14D it follows that g'(p; xo) < 0 and hence Xo E cor(F(p; A». But then 
</>(xo) > 0, in contradiction to (14.9). 

We conclude that a point p with g(p) ~ 0 is a solution of the convex 
program 

min {J(x):g(x) ~ O} 

if and only if there are subgradients </> E of(p), l/J E og(p) and a "multiplier" 
A ?: 0 such that 

(14.10) 
</> + Al/J = () 

Ag(p) = O. o 
This example could be further generalized by replacing g by a vector 

valued convex function on X, that is, a map from X into Rn each component 
of which is a convex function. We would then be dealing with the problem 
of minimizing f subject to n simultaneous convex constraints gi(X) ~ 0, 
i = 1, ... , n. After a fair amount of work we would arrive at the natural 
generalization of (14.10), namely that the existence of multipliers Ai ?: 0 
such that 

n 

(14.11) 
() E of(p) + L Ai Ogi(P), 

i= 1 

i = 1, ... , n 

is necessary and sufficient for p to be a solution (the necessity of (14.11) 
again requires a regularity assumption). 

It would even be possible to go further, replacing Rn by a suitable ordered 
linear space Y, and g be a convex mapping of X into Y. But we do not feel 
the added generality justifies the effort involved, the above examples being 
adequate illustratitms of the optimality principle. However, the concept of 
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a Y-valued convex mapping is useful, and will be utilized in the following 
sub-sections; in particular, to develop some new principles of convex 
optimization. 

F. We are now going to derive a very general principle of convex 
analysis whose usefulness will be amply illustrated by subsequent examples. 
Let A be a convex subset of a linear space X and let Y, Z be two linear 
topological spaces (all linear spaces are real). We assume that Y and Z are 
also ordered linear spaces (SA) with orderings induced by positive wedges 
P c Y, Q c Z. A mapping S:A --+ Y is a convex mapping if 

S(exu + (1 - ex)v) :::;; exS(u) + (1 - ex)S(v), 

for every u, v E A and 0 :::;; ex :::;; 1. The inequality here refers to the vector 
ordering on Y, and so we cannot determine the convexity of a mapping S 
until we have specified also the ordering on Y. Obviously all linear maps 
from X into Yare examples of I:onvex mappings. We suppose given two 
convex mappings S:X --+\ Yand T:X --+ Z. The case Y = R\ Z = Rn is of 
special importance. In this case S is simply a convex function on A and T is 
an n-tuple (gl, ... , gn) with each gi E Conv(A). 

A subset Y" of Y is said to be a regularizing set for the positive wedge P 
if e E v" and P + Y" is a solid convex set. If we know that P is solid then this 
condition holds with Y" == {e} or P. In general, regularizing sets are intro
duced when P is known not to have interior. When Y" is a regularizing set 
for P we write 

Y1 :::;; Y2 + (y") 

(resp. Y1 < Y2 + (y")) 

to indicate that Y2 - Yl E P + Y" (resp. Y2 - Y1 E int(P + y")). 
Consider now an abstract inequality system 

(14.12) S(x) < e, xEA. 

If Y" is a regularizing set for P we shall say that Xo E A is a Y,,-solution of the 
system (14.12) if S(xo) < e + (y"). If such a solution exists, the system is 
Y,,-consistent. Suppose that w" c Z is a regularizing set for the positive 
wedge Q. Then the system 

(14.13) S(x) < e, T(x) < e, xEA 

is (Y", w,,)-consistent if there exists a (Y", w,,)-solution Xo E A in the sense that 
S(xo) < e + (y") and T(xo) < e + (w,,). The main result ("Tuy's inconsis
tency condition") is a necessary condition for the inconsistency of an abstract 
system of the form (14.13) under certain hypotheses. 

Theorem. Let Sand T be convex mappings from the convex set A in the 
(real) linear space X into the ordered linear topological spaces Y and Z, 
respectively. Let Y" (resp. w,,) be a regularizing set for the positive wedge P 
(resp. Q) if! Y (resp. Z) and, suppose that the system (14.12) is Y,,-consistent. 
Then if the system (14.13) is (Y", w,,)-inconsistent there exist continuous 
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monotone linear functionals ¢ E P*, !/J E Q* such that !/J =1= e and 

(14.14) (S(x), ¢) + (T(x),!/J) ?; 0, XEA. 

Proof. Let x be a Va-solution of the &ystem (14.12). We introduce the set 

E == {(y,Z)E Y x Z:y - S(X)EP + Va 
and Z - T(x) E Q + Jt: for some x E A}. 

We assert that E is a solid convex set and that (e, B) is not an interior point 
of E. The convexity of E follows from the convexity of Sand T, and the 
second assertion follows from the hypothesis that the system (14.13) is 
(Va, Jt:)-inconsistent. To prove that E is solid we select an interior point Wo 

of Q + Jt: and define z = Wo + T(x). We then claim that (B, Z) E int(E). To 
see this, we select B-neighborhoods V c Y, W c Z such that V - S(x) c 
P + Va and Wo + W c Q + Jt:. Then it easily follows that V x (z + W) c 
E. Thus E is a solid convex set. We therefore can separate E from (B, B) by 
a closed hyperplane (HE) and so find a non-zero linear functional <P E 

(Y X Z)* such that <P(y, z) ?; ° for all (y, z) E E. Now we define ¢ E Y*, 
!/J E Z* by ¢(y) = <P(y, e) and !/J(z) = <P(B, z). The remainder of the proof 
involves showing that ¢ and !/J have the desired properties. 

By definition of regularizing sets there are nets {Yb} c P + Va and 
{Zy} c Q + Jt: each convergent to the respective zero vectors. We have 

so that 

and hence 

(S(X) + Yb) - S(x) E P + Va, 
(T(x) + Zy) - T(x) E Q + Jt:, 

(S(X) + Yb' T(x) + Zy) E E, 

XEA, 

xEA, 

XEA, 

(S(X) + Yb' ¢) + (T(x) + ZY' !/J) ?; 0, 

We thus obtain (14.14) by letting Yb ~ B, Zy ~ e. 
XEA, 

Next, select any YEP, Z E Q and s, t > 0. Then 

(S(X) + sy, T(x) + tz) E E, XEA, 
and so 

(S(X) + sy, ¢) + (T(x) + tz, !/J) ?; 0. 
Hence 

(14.15) (S(x), ¢) + (T(x),!/J) + s¢(y) + t!/J(z) ?; 0. 

By letting first s, then t become large in (14.15) we see that ¢(y) ?; 0, tfJ(z) ?; 0; 
that is, we have shown that ¢ E P*, !/J E Q*. 

Finally, we observe that if!/J = e, then from the fact that (B, z) E int(E) 
we would have ¢ non-negative on some B-neighborhood in Y, whence 
¢ = B. But this contradicts <P =1= B. 0 

It is to be noted that the regularizing sets make a transient appearance 
in this argument; tpe conclusion (14.14) depends only on the data A, S, T, P, 
and Q. 
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Corollary 1. If the positive wedges P and Q are both solid and if the 
system (14.12) is consistent, then the system (14.13) is inconsistent only if 
functionals 4> E P*, tjJ E Q * (tjJ # e) exist and satisfy (14.14). 

We now proceed to several applications of the theorem and Corollary l. 
The first is known as the "Farkas-Minkowski lemma". 

Corollary 2. Let A be a convex subset of the (real) linear topological 
space X and let f E Conv(A). Let S:A ---+ Y be a convex mapping with values 
in an ordered linear topological space Y. Assume that the associated system 
(14.12) is consistent and that f(x) ~ 0 whenever x E A satisfies Sex) < e. 
Then there exists a monotone linear functional 4> E y* such that 

f(x) ~ - (S(x), 4», xEA. 

Proof. This is a direct consequence of Corollary 1 and the theorem if 
we take Z = R 1 with the usual ordering and let T = f. D 

This corollary contains as a special case the classical version of Farkas' 
lemma in matrix theory. Namely, let B be an m x n real matrix. Then a 
vector bERn will satisfy (b, x) ~ 0 for all x such that Bx ~ e if and only 
if there is a non-negative vector y E Rm such that yB = b. 

G. For another application of Tuy's inconsistency condition we re
consider the general convex programming problem of 14E. We shall assume 
that our program has the form 

(14.16) min{j(x):xEA,S(x)::( R} 

where A is a convex set in some linear space X, S: A ---+ Y is a convex mapping, 
and Y is an ordered linear topological space with positive wedge P. As usual, 
the case Y = Rn is of special importance. The following optimality principle 
is the "Hurwicz saddle-point condition". 

Theorem. If pEA solves the program (14.16) and if the associated 
system (14.12) is consistent then there exists a linear functional 4> E p* such 
that 

(14.17) f(p) + (S(p), tjJ) ::( f(x) + (S(x),4» 

for all x E A and all tjJ E P*. Conversely, if for some point pEA such a 4> 
exists in P*, and if P is closed in Y, Y being now a locally convex space, then 
p is a solution of(14.16). 

Proof. Again the first assertion follows directly from Corollary 1 in 
14F, because if p is to be a solution of (14.16) then the system 

(14.18) Sex) < e, f(x) - f(p) < 0, xEA 

must be inconsistent. 
To establish the second assertion we observe that (14.17) entails 

(S(p), tjJ) ::( (S(p), 4» for all tjJ E P*, whence (S(p), tjJ) ::( 0 for all tjJ E P*. 
Then since P is closed it follows that - S(p) E P, or, that S(p) ::( e. We now 
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appeal to exercise 2.43 to conclude that the system 

Sex) ~ e, f(x) - f(p) < 0, xEA 

is inconsistent and hence that p is a solution of (14.16). 0 
The consistency of the associated system (14.12), as a hypothesis for the 

necessity of (14.17) is again known as Slater's regularity condition (14E). 
To see the reason for the saddle-point terminology employed just above 

we define a function L (the "Lagrangian function") on A x p* by 

(14.19) L(x, 4» = f(x) + < S(x), 4». 
A point (p, 4» E A x p* is called a saddle-point of L if for every x E A and 
1/1 E p* we have 

L(p, 1/1) ~ L(p, ¢) ~ L(x, 4». 
It thus appears that if we a"sume that Y is a locally convex ordered space 
with closed positive wedge P, and that the Slatel condition holds, then 
pEA is a solution of the convex program (14.16) if and only if there exists 
4> E P* such that (p, 4» is a saddle point of the Lagrangian function (14.19). 

H. We continue our study of the convex program (14.16) with the same 
assumptions as in the first paragraph of 14G. Let v be the value ( 8E) of the 
program. We introduce the companion notion of weak value. We say that 
a net {xo: (j ED} is a weak solution of the system 

(14.20) S(x) ~ e, xEA 

if S(xo) = Ya + Y;; where Ya ~ e and Y;; -> e. The weak value of the program 
(14.16) is then 

v' == inflim{!(xo):(j ED}, 

where the infimum is taken over all weak solutions (if there are none we 
set v' == + co). In all cases we clearly have v' ~ v. 

Suppose now that Y is locally convex and that its positive wedge P is 
closed. It follows that 

, {f(X), if S(x) ~ e 
g(x) == sup{J(x) + <S(x), 4»:4> E P*} = 'f + co, 1 not 

and so 
inf{g(x):xEA} = v. 

In other words, in terms of the Lagrangian function (14.19) 

v = inf sup L(x, 4». 
xeA q,eP* 

We are thus led to consider the variational pair (P*, h) where h(4)) == 
inf{L(x, 4»:x E A}. The corresponding maximizing program is called the 
dual of(14.16). Let the dual value be denoted v*: 

v* == sup inf L(x, 4». 
q,eP* XEA 
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We now have "Goistein's duality theorem". The proof constitutes another 
application of 14F and illustrates the use of regularizing sets. 

Theorem. Assume that the system (14.20) is weakly consistent in that 
it possesses a weak solution. Then the weak value of the primal program 
(14.16) equals the value of the dual program: v' = v*. 

Proof. Suppose first that - 00 < v' and select some IX < v'. We claim 
that for some convex l1-neighborhood Vo c Y the system 

(14.21) S(x) < f) + (Vo), f(x) - IX < 0, xEA 

is inconsistent. For if not we let {Vo:<5 E D} be a f)-neighborhood base 
directed by inclusion and select a solution Xli of (14.21) for each <5 E D. The 
net {xo:<5 E D} is then a weak solution of (14.20), but lim {f(x,j):<5 E D} ::::; 
IX < v', a contradiction of the definition of v'. (Note that any convex f)

neighborhood in Y is a regularizing set for the positive wedge P.) Now for 
the f)-neighborhood Vo that makes (14.21) inconsistent the system 

S(x) < f) + Yo, X E A 

is consistent; this follows from the existence of a weak solution of (14.20). 
Hence we can apply Tuy's inconsistency condition and obtain ¢ E p* such 
that 

f(x) + (S(x), ¢) ): IX, xEA. 

This proves that v* ): IX for all IX < v' and hence that v* ): v'. 
For the converse let {xo:<5 E D} be a weak solution of (14.20) so that 

S(x,;) = Ya + Ya', where Ya ::::; f) and Ya' ----> O. For any ¢ E p* we have 

<S(x,j} - y'o', ¢) + f(x,j) = <y'o, ¢) + f(xo} ::::; f(xo}, 

which yields 

lim{(S(xo) - y'o', ¢) + f(xij):<5 E D} ::::; lim {f(xb ):<5 ED}. 
Thus 

h(¢) == inf{L(x, ¢):x E A} 
::( lim{L(x,j, ¢):<5 E D} ::::; lim{f(xo):(j ED}. 

This being true for all ¢ E p* we see that 

v* == sup{h(¢):¢ E P*} ::::; v', 

which completes the proof, even in the case where v' = - 00. 0 
We say that the convex program (14.16) is well-posed if it has the same 

value as its dual program. Thus, being well-posed is equivalent to 

(14.22) inf sup L(x, ¢) = sup inf L(x, ¢). 
XEA q,EP* 

Let us also say that a sequence {(xn' ¢n)} in A x p* is a weak saddle-point 
for the Lagrangian Lon A x p* if there exists a numerical sequence an ): 0, 
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8n ~ 0 such that for every n 

(14.23) XEA, tP E P*. 

We then have an alternative characterization of well-posed programs. 

Corollary. The convex program (J4.16)is well-posed (with afinite value) 
if and only if there is a weak saddle-point for its Lagrangian. 

Proof. From (14.23) we see that the left side of (14.22) is not larger 
than the right side. Since the reverse inequality is always true for any function 
L we see that (14.22) is valid and hence that the program is well-posed. 
Conversely, assume the program to be well-posed and let {xn} c A be any 
minimizing sequence: g(xn) ~ V > - 00. Similarly, let {tPn} c p* be a 
maximizing sequence for the dual program: h(tPn) ~ v. Define 

8n = max {Iv - g(xn) I, Iv - h( tPn) I}. 

Then 0 ~ 8n ~ 0 while g(xn) ~ v + en and v - 8n ~ h(tPn); this leads to 
(14.23). D 

I. In 6E we summarized the equivalence of six versions of the basic 
separation theorem in linear spaces. In the present chapter we have obtained 
the topological forms of these principles along with several new versions. 
It remains true that all these versions are equivalent to one another. They 
(collectively) constitute the single most importalJ.t general principle of 
geometric functional analysis. (We may also safely assert that the (extended) 
Krein-Milman theorem of 13B is the second most important general principle 
of our subject.) For ease of reference we now list the ten topological formula
tions of our fundamental principle. 

1) The separation theorem (UE); 
2) the support theorem (UE, Cor. 2); 
3) the Hahn-Banach theorem (UG); 
4) the Krein-Rutman theorem (6B and exercise 2.46); 
5) the subdifferentiability theorem (UC); 
6) the Tuy inconsistency theorem (14F); 
7) the Farkas-Minkowski lemma (14F, Cor. 2); 
8) the Hurwicz saddle-point condition (14G); 
9) the GolStein duality theorem (14H); 

10) the Dubovitskii-Milyutin separation condition (exercise 2.47). 
It is important to be convinced of the mutual equivalence of these 

theorems. Most of the techniques for establishing these equivalences have 
already been presented (particularly in §6), so we will be content with making 
a few additional suggestions. 

We have shown in the preceding several sub-sections that 6) implies 
7)-10). Now we can use either 7) or 8) to establish the linear space version 
of the Krein-Rutman theorem (6B), and from that as usual the topological 
version. To do this assume the data M, P, X and tP as in 6B, and define 
S:M ~ X by S(x} = -x. If we assume 7) then the hypotheses that the 
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system (14.12) is consistent and that 4>(x) ~ 0 at each of its solutions are 
both satisfied, and the conclusion of 7) immediately yields the conclusion 
of the Krein-Rutman theorem. On the other hand, if we assume 8) then we 
consider the convex program 

min {f(x):x E M, S(x) ~ 8} 

where f E X' is any extension of 4>. The value of this program is 0 and 8 
is a solution. By 8) "TV;:; obtain a positive linear functional (j) E X' such that 

o ~ f(x) + <S(x), (j) > == f(x) - (j)(x) 

for all x E M. Thus f is a positive extension of 4>. 
Finally, it is immediate that 10) implies 1), so that it only remains to see 

what we can do with 9). Let X be a real locally convex space. A real-valued 
affine functionf on X (exercise 1.6) necessarily has the formf(x) = 4>(x) + c 
for some 4> E X' and c E R. Let {fj:j E J} be a family of continuous affine 
functions on X, put f(x) = sup {fAx):j E J}, and A = {x:f(x) < + ex)}. 
Then if A "1= 0 it is clear that f E Conv(A) and is lower semi continuous. 
We can use 9) to demonstrate the converse. 

Lemma. Let A be a convex set in X and assume thatf E Conv(A) is lower 
semicontinuous. Then there is a family {fj:j E J} of continuous affine functions 
on X such that fjlA ~ f, j E J, and 

f(x) = sup{fAX):jEJ}, XEA. 

Proof. For each 4> E X* define 

f*(4)) = sup{4>(x) -f(X):XEA}. 

If there exists cP E X* such that f*(4)) is finite then f", == 4>IA - f*(4)) is a 
continuous affine minorant off on A; we shall show in fact that 

(14.25) f(x) = sup{f",(x):f*(4» < oo}, xEA. 

In order to apply 9) we select pEA and set up a convex program of the type 
(14.16) with S:A ---+ X defined by S(x) = p - x, and assume that X has the 
trivial positive wedge P = {8} (so that p* = X*). Because of the lower 
semicontinuity of f on A, the hypotheses of 14H are satisfied and so we 
may assert that 

f(p) = sup inf L(x, 4» 
"'EX·XEA 

== sup inf {f(x) + 4>(p - x)} 
'" x 

= sup {4>(p) - f*(4))}· 

'" Thus either {4> E X*:f*(4)) < oo} is non-empty or else A = 0; assuming 
the former to be the case we have then proved (14.25). 0 

This lemma in turn leads to a proof of 2) by the same method employed 
in 6D. Thus let A be a solid convex set in X and Xo f/= int(A). Assuming that 
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o E int(A) we can write (14.25) as 

PA(X) = sup{¢(x) - p~(¢):P~(¢) < oo} 

= sup{¢(x):¢ =:;; PA}' X E X, 

where the second equality follows from the positive homogeneity of the 
gauge PA- Since the set {¢ E X*:¢ =:;; PA} == AO is weak*-compact (12D) 
we can choose ¢ =:;; P A with ¢(xo) = P A (xo) == 1 and then [¢; 1] defines 
the desired supporting hyperplane to A at Xo. 

A more direct proof of the lemma is indicated in exercise 2.47. 

§15. Some More Applications 

In this section we present a variety of applications illustrating the ideas 
and principles of this chapter. 

A. In 7B we studied a criterion (Fan's conditlOn) for the consistency 
of a finite system oflinear inequalities. We now give a generalization but, in 
keeping with the advice offered in 6E, we formulate the problem in a suitable 
conjugate space, as in 7C. 

Let X be a real locally convex space, {Xj:j E J} a family of vectors in X, 
and {cj:j E J} an accompanying family of real numbers. We inquire about 
the consistency of the system 

(15.1) jEJ, 

where ¢ is to belong to X*. A condition for the consistency of (15.1) can be 
expressed in terms of the smallest closed wedge P c X X Rl that contains 
each pair Yj == (x j , cj ) for j E J. That is, P is the closure of the set 
[0, oo)co( {Yj:j E J}). Our consistency criterion is based on the following 
simple consequence of the strong separation theorem (llF). 

Lemma. Let A be a subset of the real locally convex space Y. A point 
q E Y belongs to the smallest closed wedge containing A if and only if every 
¢ E y* satisfying ¢(x) ~ 0 for x E A also satisfies ¢(q) ~ o. 

Corollary. The inequality system (J5.1)is consistent if and only if(O, 1) 1= P. 

Proof. Using the general form of linear functionals on the product 
space Y == X X Rl (6D) we see from the lemma that (0, 1) E P if and only 
if every real s satisfying 

¢(Xj) + sCj ~ 0, j E J 

for some ¢ E X* satisfies s ~ O. But it is clear that this last condition is 
equivalent to the inconsistency of (15.1). 0 

The consistency criterion described in the lemma will also be referred 
to as "Fan's condition". It is easily verified that this result contains the 
earlier result of 7B as a special case. A further application to inequality 
systems is given in exercise 2.50. 
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B. In 13D we derived a formula (13.5) for the distance d(x, M) from 
a point x to a linear subspace of a normed linear space X. An interesting and 
important question is whether or not this distance is attained in the sense 
that there exists some y E M so that Ilx - yll = d(x, M). Such a y is a 
best approximation to x from M. In other words, we ask: does the convex 
program 

(15.2) 

have a solution? The general theory of 14E (cf. Ex. 1 there) implies that 
p E M is a solution of (15.2) if and only if of(p) n MO i= 0, where f(y) == 
Ilx - yll, y E X. Interpreting this condition we may assert that p E M is 
a solution ifand only if there exists ¢ E U(MO) such that ¢(x - p) = Ilx - pll; 
this intuitively means that p must be chosen in M so that the error vector 
x - p is in a certain sense "perpendicular" to M. But the optimality theory 
does not actually help us to decide whether such a p exists. This existence 
question is really quite difficult in general and particular cases must often 
be handled by ad hoc methods. The next result ("Godini's theorem") contains 
a pair of necessary and sufficient conditions for a subspace M to admit 
a best approximation to every x E X. Such subs paces are said to be proximinal 
in X; they clearly must be closed in X. 

Theorem. Let M be a linear subspace of the real normed linear space X. 
The following conditions are equivalent: 

a) M is proximinal in X; 
b) QM(U(X)) = U(X/M); 
c) QM(U(X)) is closed in X/M. 

Proof. Assume that M is proximinal and select a coset x + M with 
1 = Ilx + Mil == d(x, M). Let y E M be a best approximation to x. Then 
x - y E U(X) and QM(X - y) = x + M. This proves that a) implies b) 
while it is trivial that b) implies both a) and c). It remains to show that c) 
implies b). If QM(U(X)) is closed but properly contained in U(X/M) then 
there is a coset x + M of norm one which can be strongly separated from 
QM( U(X)). Taking into account the duality formula of IH we can obtain 
¢ E MO such that 

¢(x) > sup{¢(u):llull ::,; 1} == II¢II. 

But this results in a contradiction since 1¢(x)1 ::,; 11¢lld(x, M) = II¢II· D 
Let us see what this theorem says in the particular cases where M is 

either of finite dimension or finite codimension. 

Corollary. a) Every finite dimensional subspace of X is proximinal in 
X. 

b) If M is closed and of codimension n < 00 in X, then M is proximinal 
in X if and only if S(U(M)) is closed in Rn, where S:X ~ Rn is defined by 

S(x) = (¢l(X), ... , ¢n(x)) 

for any given basis {¢b ... , ¢n} of MO. 



§15. Some More Applications 99 

Proof. a) We show that QM(U(X» is closed in X /M. Suppose that 
Xn + M ~ x + M where Ilxnll ~ 1. Then d(xn - x, M) ~ 0 and so there 
exist vectors Yn E M and en E X, en ~ (), such that Xn - x - Yn = en' The 
sequence {Yn} is bounded and so contains a convergent subsequence (9F) 
with limit Y E M (9E). Consequently, lim Xn = x + Y E U(X) and x + M = 
QM(X + y). 

b) Given a basis {¢l, ... , <Pn} for MO we can select vectors Vi' ... , Vn E X 
so that ¢i(Vj) = c'5ij (exercise 1.41). The set {Vi + M, •.. , Vn + M} is then 
a basis for X/M, and since 

(12C), it follows that 

n 

X - L ¢ix)VjEOMO = M 
j= 1 

n 

X + M = L ¢j(x)(vj + M). 
j= 1 

Now if T:Rn ~ X/M is the isomorphism defined in 9E in terms of the 
basis {Vi + M, ... , Vn + M}, we have QM = SoT, and our assertion 
follows from Godini's theorem. 0 

Observe that the condition of b) may also be expressed as the condition 
that U(X) be complete in the (non-Hausdorff) weak topology a(X, MO). 
Also note the special case n = 1 of b): if M = ker(¢) is a hyperplane in X 
then M is proximinal in X if and only if ¢ "attain<> its norm" in the sense 
that there is some non-zero x E U(X) such that ¢(x) = II¢II. That this need 
not always happen is demonstrated by the example 

¢(X) = Sf> tx(t)dt, 

c. In 13E (Ex. 5) we introduced the notion of a strictly normed linear 
space X. Such spaces were noted to have the property that their unit ball 
U(X) is rotund, that is, every boundary point (unit vector) is an extreme 
point of U(X). It,follows that if we try to minimize the distance from a point x 
in such a space to a linear subspace M or, indeed, to any convex set A, 
this distance can be attained by at most one point in M (resp. A). In other 
words, a convex subset of a strictly normed space contains at most one 
best approximation to any point. The reason for this is simply that if there 
were two best approximations to some particular point x then the line 
segment joining these two best approximations would consist entirely 
of best approximations and we would hence have a line segment lying on 
the boundary of a ball centered at x, in contradiction to its rotundity. 

Lemma 1. Let A be a closed locally compact convex subset of a strictly 
normed linear space. For each x E X there is a unique best approximation 
P A(X) to x in A and the map PAis continuous on x. 

Proof. The sets A n (x + AU(X» are closed, convex, locally compact 
and non-empty for sufficiently large A > O. Since they have a trivial recession 
cone, they must also be compact (13C). Their intersection, taken over those 
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A yielding non-empty sets, is therefore also non-empty, and consists exactly 
of the best approximations to x in A. Because X is strictly normed we see 
that the map P A: X -+ A is well defined and single valued. It remains to 
verify the continuity of P A- Suppose that limn Xn = x. Then 

IllXn - PA(xn)11 - Ilx - PA(x)111 == Id(xno A) - d(x, A)I 
::::;; Ilxn - xii -+ 0, n -+ 00. 

(15.3) 

Because of local co":'pactness any subsequence of the sequence {P A (xN )} 

has a cluster point YEA which, by (15.3), satisfies 

Ilx - yll = Ilx - PA(x)11 == d(x, A). 

By uniqueness of approximation it follows that y = P A(X). 0 
The map P A is called the metric projection of X on A. 
Most normed spaces do not come equipped with strict norms. In order 

to be able to apply Lemma 1 to some interesting situations we show next 
that the normed spaces occuring in practice can be "renormed" with strict 
norms. This means that we can find a new norm on the space which defines 
the same topology as does the original norm and which is in addition a 
strict norm. In general, it is easy to see (9B) that two norms p and (J on a 
linear space define the same topology exactly when they are equivalent in 
the sense that positive constants a and b exist such that 

(15.4) ap(x) ::::;; (J(x) ::::;; bp(x), XEX. 
The first inequality quantitatively expresses that the p-topology on X is 
weaker than the (J-topology, and the second that the (J-topology is weaker 
than the p-topology. We can alternatively state that the norms p and (J 
on X are equivalent if and only if the identity map I: (X, p) -+ (X, (J) is an 
isomorphism. Renorming a space in this sense thus changes the geometry 
but not the topology. We now have the "Clarkson-Rieffel renorming lemma". 

Lemma 2. Let X be a separable normed linear space. 
a) There is an equivalent strict norm on X. 
b) There is a strict norm p on X*, weaker than the usual dual norm, such 

that the p-topology on any bounded subset of X* coincides with the weak*
topology. 

Proof. a) By 12F there is a weak*-dense sequence {4>n} in U(X*). 
Define 

XEX, 

where 11·11 is the given norm on X. Then (J is a norm on X and since 

XEX, 
the two norms are equivalent. Finally, we show that (J is a strict norm. 
Let us assume that (J(x + y) = (J(x) + (J(Y), and set ~n = 4>n(x), 11n = 4>n(Y)· 
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Then 

(15.5) C~l rnl~n + I1nl 2 yl2 = C~l 2-nl~nI2 yl2 + (J1 2-nll1nI2) 1/2. 

Because all L 2(Q, j1, F) spaces are strictly normed (in the present case, 
Q = {1, 2, ... } and j1( {n}) = rn), equation (15.5) entails either 11 == (I1n) = e 
or else the existence of t ? 0 such that ~ = tl1. Thus, recalling that the 
sequence {</>n} is total over X (12C), it follows that either y = e or else 
x = ty, proving that (J' is a strict norm. 

b) Let {xn} be a dense sequence in U(X) and define 

p(</» = (J1 rnl</>(XnW)1/2, </> E X*. 

Then p is a strict norm on X* satisfying p(</» ~ 11</>11, </> E X*. Consider now 
the identity map from U(X*) in its weak*-topology to U(X*) with its 
p-topology. If we show that this map is continuous it will follow that it is 
actually a homeomorphism because of the weak*-compactness. This will 
show that the two topologies agree on U(X*) and hence on any bounded 
subset of X*. To prove the continuity of the identity map at </>0 E U(X*), 
select e > 0 and let V = {</> E U(X*):p(</> - </>0) < e}. Then if an integer 
m is chosen so that 

00 

L Tn < e2 j4, 
n=m+1 

and we define the weak*-</>o-neighborhood 

W== {</>EX*:I</>(xn) - </>O(Xn) I < V;, 1 ~ n ~ m}, 
we see that U(X*) n W is a (relative) weak*-</>o-neighborhood contained 
~v 0 

Note that the argument just given reproves in stronger form a special 
case of 12F. We now outline some applications of these two lemmas. 

Example I. Let f: Q ~ Q be a map from a set Q into itself. A point 
p E Q is a fixed point of f if j lp) = p. The solution of many non-linear equa
tions can be obtained as fixed points of certain mappings. The existence of 
fixed points in Euclidean spaces is resolved by the classical "Brouwer fixed 
point theorem": every continuous map of a Euclidean unit ball into itself 
has a fixed point. Since every compact convex set in R n is homeomorphic 
to some Euclidean unit ball, the fixed-point statement can be made about 
all such sets as well. We shall obtain a substantial generalization of this 
fact known as the "Schauder fixed point theorem". 

Theorem. Let A be a closed convex subset of a normed linear space X, 
and let f be a continuous map of A into a compact subset of A. Then f has a 
fixed point in A .. 
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Proof. We first reduce the problem to the case where A is bounded 
and X is a separable strictly normed space. This can be done noting that 
if f(A) c K, a compact set, then we can replace A by B == co(K) c A and 
try to prove the theorem for B. Next we let Y = span(B); this is a separable 
subspace of X and we can work entirely in Y. Finally, by Lemma 2, we can 
assume that Y is strictly normed. 

Now f(B) is totally bounded and hence contains a ~-net (f(x;): i = 1, ... , 
. n 

m = m(n)} for each n (lOB). Let Yn be the linear hull of this ~-net and put 
n 

Bn = B n Ym a compact convex subset of the finite dimensional space Yw 

Let Pn: Y ~ Bn be the metric projection. Then the map 

is a continuous map from Bn into itself (using Lemma 1) and so has a fixed 
point Un :f,,( Un) = Un- By compactness we can assume that v == limn f( un) 
exists in K. Now 

IIUn - vii = 11f,,(un) - vii 

(15.6) 

because, for any x E Bn , 

~ 11f,,(un) - f(Un) I I + Ilf(un) - vii 
1 

~ -=- + Ilf(un) - vii, 
11 

Ilfn(x) - f(x) I I == Ilpn(.f(x» - f(x)11 
1 

= d(.f(x), Bn) ~ min{llf(x) - f(x;) I I: 1 ~ i ~ m} ~ -. 
n 

The estimate (15.6) proves that limn Un = V == limn f(un) = f(v); that is, 
v is a fixed point off· 0 

Example 2. Let (Q, d) be a metric space and let A be a closed subset 
of Q. According to the "Tietze extension theorem" every continuous function: 
A ~ R can be extended to a continuous function: Q ~ R. (This extension 
theorem actually chai'3.cterizes normal Hausdorff spaces.) According to 
the "Borsuk-Dugundji extension theorem" this extension can be achieved 
for bounded functions via a "linear extension operator" from Cb(A, R) into 
Cb(Q, R). This means that there exists T E B(Cb(A, R), Cb(Q, R» such that 
T(x) is an extension of x for every x E Cb(A, R). Further, it can be arranged 
that II Til = 1 and that the functions be permitted to take values in an 
arbitrary locally convex space instead of R. 

We give now a geometric proof of the latter extension theorem under 
the restriction that the metric space (Q, d) be compact, and that the functions 
be real or complex-valued. The reason for the compactness restriction is 
that it is the only case where we can guarantee that C(Q, F) is separable. 
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Lemma 3. The Banach space Cb(Q, F) is separable if and only if the 
metric space (Q, d) is compact. 

Proof. From exercise 1.40 we see that Cb(Q, C) is separable if and only 
ifCb(Q, R) is, so wejust work with the latter space. Suppose that Q is compact. 
Then Q is 2nd-countable and there is a countable base {Vn} for its topology. 
We define xn(t) = d(t, Q\Vn) and let d be the subalgebra of C(Q, R) generated 
by the xn's. Now d is by definition the linear hull of the "monomials" 
xl' ... x~m, where ()(b"" OCm are non-negative" integers and m is arbitrary. 
This collection of monomials is countable and the linear combinations of 
them with rational coefficients also constitute a countable set which is, 
moreover, dense in d. Thus it suffices to show that d is dense in C(Q, R). 
But this is an immediate consequence of the Stone-Weierstrass theorem, 
since the functions {xn} evidently separate the points of Q. This proves 
that C(Q, R) is separable whenever Q is a compact metric space. 

Conversely, suppose that Q is not compact. Th:m there is a sequence 
{tn } of distinct points in Q with no cluster point in Q. Centered at each 
tn there is a ball En containing no other member of the sequence and such 
that Bn n Bm = 0, m =1= 11. As above, let xn(t) = d(t, QWn)' Let / be the 
family of all non-empty subsets of the positive integers and, for each J E /, 

define 

(15.7) yAt) = I xn(t)/llxnlloo, t E Q. 
nEJ 

The function Y J is a well-defined member of Cb(Q, R) since at each t E Q, 
at most one term on the right hand side of (15.7) is non-zero. But if J 1 and 
J 2 are distinct members of" then IIYJ, - YJ,lloo = 1, showing that {YJ:J E /} 

is an uncountable discrete subset of Cb(Q, R), and hence that this space is 
not separable. 

Now to achieve our geometric proof of the Borsuk-Dugundji theorem 
subject to the above restrictions, we fix a closed set A c Q and consider 
the weak*-compact convex subset B of C(Q, F)* consisting of those positive 
linear functionals ep such that epee) = 1 (where e is the constantly one function 
in C(Q, F)), and such that ep annuls every continuous function vanishing 
on A. Thus B contains in pariiclIlar the set {(jt: tEA}. Let Q be the restriction 
of the metric projection PB (defined and weak*-continuous by Lemmas 1 
and 2b)) to the set {(jt: t E Q}. We can then define our linear extension operator 
T: C(A, F) --+ C(Q, F) by the formula 

T(x)(t) = <x, Q«(jt), t E Q. 

It is easily checked that T has the desired properties and that, in addition, 
T maps the constantly one function on A into e. D 

D. We give now the generalization of the strong separation theorem 
promised in llF. This result, known as "Dieudonne's separation theorem" 
is an immediate consequence of the general criterion for strong separation 
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given in llF and the lemma below. Actually, this lemma has considerable 
independent interest. For example, we shall utilize it along with a result 
in Chapter III in discussing the existence of solutions to a certain type of 
convex program which serves as model for problems of optimal control 
and spline approximation. 

Theorem. Let X be a locally convex space and let A, B be disjoint closed 
convex subsets ofX. We suppose that A is locally compact and that the recession 
cones have trivial ihitdSection: CA n CB = {8}. Then A and B can be strongly 
separated by a closed hyperplane. 

It is clear that this theorem includes the strong separation theorem of 
11F, since the hypothesis there was that A is compact which implies C A = {8}. 
On the other hand, the hypothesis that CAn C B = {8} is crucial; omitting 
that, the conclusion can fail even in case B is finite dimensional. We now 
state and prove the key lemma. 

Lemma. Let X be a Hausdorff linear topological space and let A, B 
be closed convex subsets of X. If A is locally compact and CA n CB = {8} 
then B - A is closed in X. 

Proof. The conclusion is clear if A is compact (exercise 2.1) so we 
shall explicitly assume that A is non-compact. Let c E B - A; there are 
thus nets {bo:c:5 E D} c Band {ao:c:5 E D} c A such that c = limo(bo - ao). 
For any balanced 8-neighborhood V in X we define 

Mv = {x E A:x + (c + V) n B i= 0}. 

The sets Mv are non-empty: they eventually contain the vectors ao. Suppose 
that some Mv is relatively compact. Then there is a cluster point a E A of 
the net {ao:c:5 E D} and so the net {bo:c:5 E D} also has a cluster point b, neces
sarily in B. Hence c = b - a E B - A, and the proof is complete in this 
case. Thus we are reduced to the situation where none of the sets M v is 
relatively compact. 

Without loss of generality we may assume that () E A. Let W be a closed 
balanced 8-neighborhood such that A n W is compact. Now, for each 
positive integer n and each V as above, we define 

Pn, V = Mv nAn X\(nW). 

Because Ann W c n(A n W) which is compact, and because of our 
assumption that none of the sets Mv is relatively compact, it follows that 
none of the sets Pn, V is empty. The proof is now concluded in two steps: 
a) the existence of a half-line LeA such that L c [0, oo)Pn, v, for every 
n and V; and b) use of this half-line to obtain a contradiction to the hypothesis 
CA n CB = {8}. 

Proof of a). Let K = An W n (X\int(!W)); this is a compact subset 
of A. We ,!onsider the directed family of sets [0, oo)Pn, v n K. Because K is 
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compact this family has a cluster point Xo E K; necessarily Xo =f. e. Then 
the desired half-line L is [0, 00 )xo. To see this, choose any A > 0. Then, 
noting that the sets Pn, V decrease as n increases and/or V shrinks, we see 
that AXo belongs to the closure of each set [0, oo)P n, v. Also, since .Axo E ), W, 
Axo belongs in fact to the closure of [O,cx:,)Pn, v n nW for any n > A. But 
this set lies in A, since e E A and A is convex. That is, Axo E A = A. 

Proof of b). We select an arbitrary bE B and show that b + L c B; 
this will yield the desired contradiction. Let Z ELand choose an integer no 
such that Z E int(no W). Now for any integer n and any balanced e-neighbor
hood V there exist A > ° and v E V such that x == A(Z + v) E Pn, V and 
Z + v E no W. This entails A ~ nino. Since P n, V C M v we can write x = 
y - c + v' with y E B and v' E V. Then 

b + Z = b + X/A - v 
(15.8) == b + (y - c + v')! A - v 

= b + (y - b)/A + (b - C)!A + V'/A - v. 

Now if n > no then A > 1 and so b + (y - b)/A E B; we can further take n 
so large that (b - c)! A belongs to V. Then by (15.8) we have b + Z E B + 3 V, 
whence (9A) b + Z E 13 == B. D 

We note one special case of this lemma as a corollary; it makes use of 
the local compactness of finite dimensional spaces (9F). 

Corollary. Let N be a finite dimensional subspace of X and P a closed 
wedge in X such that N n P = {e}. Then N + P is closed in X. 

Note that if the wedge P is also a linear subspace then N + P is always 
closed, whether or not N n P = {e} (9E). Thus in this very special case we 
can obtain a stronger result than that provided by the lemma. In general, 
when Nand P are closed subspaces of a normed space satisfying N n P = 

{e}, it is easy to see that N + P is closed whenever inf {llx - yll: x E N, 
YEP, Ilxll = II YII = 1} > 0. This condition certainly holds in particular 
when N has finite dimension. 

E. As our final application of this chapter we utilize the Krein-Milman 
theorem to study the range ()f certain vector measures. The result to be 
presented below contains as a special case the famous Liapunov convexity 
theorem concerning finite dimensional vector measures. This theorem in 
turn has a wide variety of applications, notably to the optimal control of 
linear dynamical systems (where it is essentially equivalent to the "bang-bang 
principle"), and to statistical decision theory. 

Let (Q, 2:, v) be a totally finite (positive) measure space. In 12C we 
observed that the continuous dual of the Lebesgue space L 1(V) == L 1(Q, v, R) 
could be identified with the space L OO(v) of v-essentially bounded measurable 
real-valued functions on Q. Since the positive wedge {¢ E LOO(v):¢ ~ e} is 
weak*-closed (because, for example, it can be expressed as {¢ E LOO(v): 
IE ¢ dv == JQ ¢XE dv ~ O}, and the characteristic functions XE belong to 
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L1(V) for all EEL), its intersection K with U(L OO(v)) is weak*-compact. 
According to exercise 2.56 the extreme points of K are just the characteristic 
functions: 
(15.9) ext(K) = {XE:E E l'}. 

Now let M be a subset of U(v) and E a measurable subset of Q. We 
consider the subspaces Ml.(E) of L OO(v) consisting of all those </J that vanish 
a.e. on the complement of E and that annul each member of M: In f</J dv = 

0, f EM. We shall write M.1(Q) as simply Ml.· M IS said to be thin provided 
that Ml.(E) #- {8} whenever v(E) > O. It is clear that M is thin if and only 
if span(M) is thIn. 

Lemma 1. If M is thin then K c ext(K) + Ml.. 

Proof. Let </J E K. Then the set A == K n (</J + M) is compact and so 
by 13A there exists ljJ E ext(A). We claim that ljJ is a characteristic function 
and hence in ext(K).lfnot, there exist B > 0 and EEL such that B :( ljJ/E :( 
1 - B. Now since M is thin there is a non-zero ljJ1 E M.1(E) and, since ljJ1 is 
essentially bounded, we can arrange that IljJ 1 (,)1 :( B. But then ljJ ± ljJ 1 E A, 
contradicting ljJ E ext(K). 0 

Let us recall that a set EEL is an atom of v if v(E) > 0 and every mea
surable set FeE satisfies v(F) = 0 or else v(F) = v(E). Intuitively an atom 
is a point of positive mass. The measure v is called purely atomic if the com
plement of all the atoms of v is a null set. An example of such a measure 
occurs when Q is a countable set and for all E c Q, v(E) == cardinality of E. 
Such a measure is naturally called a counting measure. At the other extreme, 
the measure v is non-atomic if there are no atoms in L. Lebesgue measure on 
R" is non-atomic and, more generally, given any Lebesgue integrable function 
f on R", the map E ---> J E f(t)dt defines a non-atomic measure on the Lebesgue 
measurable subsets ofR". The next two lemmas indicate some of the relevance 
of these types of measures in our present framework. 

Lemma 2. If v is non-atomic then any finite set M c U(v) is thin. 

Proof. Suppose that M = {Ii>' .. ,In} and that EEL. Since v is non
atomic we can partit!l)n E into disjoint sets E1, ... , E,,+ 1 of positive measure. 
Let A be the n x (n + 1) matrix with entries JE j Ii dv. Then there is a non-

,,+1 

zero solution x of the system Ax = 8. Hence the function I XjXE j is a 
1 

non-zero element of MJ-(E). 0 
Lemma 2 does not characterize thin sets. By partitioning Q into countably 

many sets of positive measure we can easily construct infinite thin sets. 

Lemma 3. a) ext(K) is weak*-dense in K if (and only if) v is non-atomic. 
b) ext(K) is weak*-closed in K if (and only if) v is purely atomic. 

Proof. a) Let N == {</J E LG(J(v):IJnli</J dvl :( 1,1 :( i:( n} be a weak*-
8-neighbOl;hood in L 00 (v) and set M = {f~, ... ,In}. Then by Lemmas 1 
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and 2 
K c ext(K) + M c ext(K) + N, 

--* so that K c ext(K) . 
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b) If v is purely atomic the set Q is a couutable union of atoms E b E 2, .... 

Since any measurable function is necessarily constant a.e. on an atom, it 
follows from (15.9) that 

00 

ext(K) = n {</J E LOO(v):</J(·) = 0 or 1 a.e. on En} 
n= 1 

00 

= n {</J E LOO(v):Jn XEn</J dv = 0 or v(En)}. 
n= 1 

This exhibits ext(K) as an intersection ofweak*-closed sets. 0 
The conclusion of the first part of Lemma 3 should be duly noted. It 

provides us with an example of a non-triviai compact convex set which is the 
closure of its extreme points. This is a surprising possibility and emphasizes 
once again the occasionally bizarre properties of weak*-topologies. 

We now suppose given a family {flj:j E J} of totally finite signed measures 
on (Q, 2:), each member of which is v-absolutely continuous. By the Radon
Nikodym theorem the densities jj == dfl)dv exist in Ll(V) for eachj E J. Let 
Ji:2: -+ RJ be defined by Ji(E) = (flj(E):j E J) and, for any E E 2:, let R(E) = 
{Ji(F):F E 2:, FeE}. Thus Ji is a vector measure Oii (Q, 2:) and R(E) is the 
range of its restriction to E. We are interested in the nature of R(E) as a 
subset of the product space R J (which is assumed to have the product 
topology (9D)). Our answer is contained in the following theorem of 
Kingman and Robertson. 

Theorem. With the above notation let M = {jj:j E J}. Then R(E) is a 
(compact) convex set in R J for every set E E 2: if and only if M is thin. 

Proof. Suppose that M is thin. It is sufficient to prove the assertion for 
the case E = Q, since otherwise we can apply the following argument to 
the restriction of Ji to E. Now the map T:LOO(v) -+ RJ defined by 

(15.10) T(</J) = (In jj</J dv:j E J) 

is linear and weak*-continuous, and ker(T) = ML. Further, R(Q) = 

T(ext(K)). Since M is thin Lemma 1 implies that 

T(K) c T(ext(K) + ML) = T(ext(K)) c T(K). 

That is, R(Q) = T(ext(K)) = T(K) is the continuous linear image of a 
compact convex set and so is itself compact and convex. 

Conversely, suppose that M is not thin; we shall find a set E E 2: for 
which R(E) is not convex. Indeed, there is a set E with v(E) > 0 such that 
M(E) = {e}. Let ME = {jjIE:j E J}. Then ME is dense in Li(vIE). This 
implies that the map T E defined on L OO(vIE) as in (15.10) (with Q there 
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replaced by E) is injective. Hence if R(E) were convex then ext(KE) = 
Til(R(E)) would also be convex, where KE == {4> E LOO(vIE):e ~ 4> ~ 1}; 
thus ext(KE) = {XF:F E l:, FeE}. But this set of characteristic functions is 
certainly not convex (consider, for example, the sets F = E and F = 0)· 0 

Our approach in this theorem has been to study the vector measure 
Ji: l: -+ RJ by postulating the existence of a density defined wrt some positive 
measure v. It is useful to note that this represents no restriction when the 
index set J is denumcrable. For then such a measure always exists. We may 
take, for example, 

(15.11) v = L I fljl/2jl fljl(Q), 
jeJ 

where Ifljl is the total variation (100) of flj. Then each flj is certainly v
absolutely continuous. Also, if each flj is non-atomic the same is true for v. 

The most important case of the theorem occurs when J is a finite set, 
say J = {1, ... , n}. Now Ji == (flt. ... , fln) is an Rn-valued measure on l:. 
We then have the classical "Liapunov convexity theorem". 

Corollary. The range R{E) (E E l:) of a finite dimensional vector measure 
Ji = (fll, ... , fln) is a compact subset of Rn and is convex whenever each flj is 
non-atomic. 

Proof. The second assertion follows from Lemma 2 and the theorem. 
Now if some of the flj fail to be non-atomic the measure v defined by (15.11) 
will have atoms. However, the restriction of v to the complement of the set 
ofits atoms is a non-atomic measure. Thus Q can be partitioned as Q 1 u Q 2 

such that v is non-atomic on Q1 and purely atomic on Q2. Then for any 
EEl:, R(E) = R(E n Ql) + R(E n Q2) and we know that R(E n Ql) is 
compact (and convex). On the other hand, taking part b) of Lemma 3 into 
account, we see that R(E n Q2) is also compact, as the continuous image of 
a compact set of extreme points. 0 

To see some implications of Liapunov's theorem let us briefly consider 
a dynamical system governed by a set of linear differential equations 

(15.12) x(t) = A(t)x(t) + B(t)u(t), 

where x:[O, TJ -+ Rn, u:[O, TJ -+ Rm, and A, B are appropriately shaped 
matrix functions of t E [0, TJ with Lebesgue integrable entries. The vector 
x(t) represents the "state" of our system at time t and u(t) represents a 
"control" which we apply to the system in order to influence its state. If we 
know the transition matrix 4>(t) of the system (15.12), that is, the matrix 
solution of 

cP(t) = A(t)4>(t), 4>(0) = I, 

then we can express the effect of the control on the state by 

(15.13) x(t) = 4>(t) n 4>-l(s)B(s)u(s)ds, 

where for simplicity we have assumed x(O) = e. In particular, if A is a 
constant matrix, then 4>(t) is just the matrix exponential exp(tA). 
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The controls u are chosen to be measurable and to take their values in 
some fixed compact convex subset C c R m. In order to know what effect 
we can hope to achieve on the state x(·) with such controls, we see from 
(15.13) that we must know about the set 3ft; C) of functions {J~ P(s)u(s)ds} 
where P == tP -1 Band u runs through the measurable C-valued controls. 
The "bang-bang principle" asserts that 

(15.14) 3(t; C) "- 3{t; ext(C», o ~ t ~ T. 

This terminology arises from the special case where C = {z E R m: IZil ~ 1, 
i = 1, ... ,m}, the unit cube in Rm. It means that any point in Rn to which 
we can drive the state by means of an admissible (that is, C-valued) control 
in time T can also be attained in the same time by a "bang-bang control", 
that is, intuitively one that uses full power at all times. 

The proof of (15.14) in its full generality is difficult but the special case 
where C = unit cube is a fairly direct consequence ofthe Liapunov convexity 
theorem. The necessary argument is outlined in exercise 2.57. 

Exercises 

2.l. Let X be a linear topological space over the field F and let A, B be 
subsets of X. Prove the following assertions. 
a) x + A = x + A for x E X; 
b) if A is a linear subspace of X, so is A; 
c) the interior of A is contained in cor(A); 
d) if B is open then so is A + B; 
e) if A is compact, B is open, and A c B, then there is a 8-neighborhood 

U c X such that A + U c B; 
f) if A is compact and B is closed then A + B is closed; 
g) if A and B are both compact, so is A + B. 

2.2. Let the linear topological space X be the algebraic direct sum of its 
subspaces M and N, and let P:X ~ M be the associated projection. 
a) Show that the direct sum is topological exactly when P is continuous. 
b) If P is continuous show that M and N must be closed. 
c) Show that the conditions of a) are also equivalent to the following: 

the map T:XjM ~ N defined by T(x + M) = (x + M) n N is 
an isomorphism (note that T is always continuous). 

d) If M is closed and of finite codimension in X show that the direct 
sum X = M EB N must be topological. 

2.3. Let A be a subset of the linear topological space X. 
a) if A is bounded or totally bounded then the same is true of A and 

of any continuous linear image of A; 
b) if X = ITa Xa is a product of linear topological spaces Xa and X 

has the product topology then A is bounded if and only if A c ITa Ba, 
where each Ba is a bounded subset of Xa. 

c) If X = FI for an arbitrary set I (f= 0) then any bounded set A c X 
is actually totally bounded. 
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2.4. Let A be a convex absorbing subset of a linear topological space X, 
and let P A be the gauge of A. Show that {x EX: PA(X) < 1} is the 
interior of A and that {x E X:PA(X) ~ 1} = A. 

2.5. a) Give the details of the proof of the theorem in lOB. 
b) Establish the following metrizability criterion for a locally convex 

space X: X is metrizable if and only if its given topology is Hausdorff 
and X contains a countable local base. (Assume that {U 1> U 2, •.• } 

is a local ~~se of barrels. After replacing Un by U 1 n'" n Un 
if necessary it may be assumed that U 1 ::::l U 2 ::::l •••• Let Pn be the 
gauge 0f Un and define 

00 

d(x, y) = L: Tn min(Pn(x - y), 1) 
n= 1 

for x, y E X. d is the desired metril.: and is, in addition, translation 
invariant.) 

c) Is the function x ~/d(x, e) a semi-norm on X? 
2.6. Show that every locally convex Hausdorff space is a completely regular 

topological space. 
2.7. Prove the quotient norm formula (10.6). 
2.8. Verify that the normed linear spaces in Examples 1 through 5 (IOD) are 

actually Banach spaces. (For the U spaces of Example 2 note first 
00 00 

that if e ~ fn E U and L: Ilfnllp < 00, then f == L: fn belongs to U 
1 1 

00 

also and Ilfllp ~ L: Ilfnllp' This conclusion follows from Minkowski's 
1 

inequality and the monotone convergence theorem. Now if {fn} is a 
Cauchy sequence in U it may be supposed that Ilfn+1 - fnllp < 2-n 

00 

(by passing to a subsequence if necessary). If gn == fn - L: Ifi+ 1 - fd 
n 

00 

and hn == fn + L: Ifi+ 1 - fd, then our remark implies gm hn E U and 
n 

Ilgn - hnll < Tn+2. Finally,! == limn gn exists in U and is the desired 
limit of {In}.) 

2.9. Let Rn be normed by the p-norm (3C) with p > 1 and let f:Rn -t R 
be continuously differentiable with gradient Vf(x) ERn, x ERn. Let 
Q be a compact convex subset of R n. Prove that f E Lip(Q, II' lip, R) by 
showing that the norm (10.4) is given by sup{IIVf(x)llq:x E Q}, where 
q = p/(p - 1). It follows that for smooth functions convergence in the 
metric defined by (10.5) is equivalent to uniform convergence of the 
functions and their first partial derivatives. 

2.10. Every linear space X has a strongest locally convex topology, namely 
that generated by the family of all semi-norms on X. Establish the 
following properties of this unique topology, often called the convex 
core topology on account of g) below. 
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a) The topology is Hausdorff; 
b) every linear (hence every affine) subspace is closed; 
c) unless X is finite dimensional the topology is not metrizable; 
d) any bounded set is necessarily finite dimensional; 
e) X is complete (begin by showing that the projection of a given 

Cauchy net in X on any finite dimensional subspace has a limit in 
that subspace); 

f) every linear functle!!:!] in X' is necessarily continuous; 
g) if A is a convex subset of X then int(A) = cor(A). 

2.11. Let X be a linear t0pological space and let A c X. 
a) If A is open then so is co(A). 
b) If8EAandAisconvexthenA:::J n{tA:t > 1}andequalityholds 

if A is a 8-neighborhood. 
c) If A is solid and convex then o(A) is nowhere dense in X. 

2.12. Show that Corollary 1 in llE is false for all non-Hausdorff locally 
convex spaces (use 9A). 

2.13. Let A be a subset of a real locally convex space X. Show that co(A) 
is the intersection of all the closed half-spaces in X that contain A. 
In case A is already closed and convex it follows that A can be deter
mined by a family of linear constraints: A = {x E X:¢rt(x) ~ Crt} for 
some family {¢rt} c X* and corresponding family {Crt} c R. This is 
the principle of "quasi-linearization of convex sets". When X is a 
separable normed linear space the family of determining linear func
tionals can always be taken to be denumerable. (Compare with exercise 
1.35.) 

2.14. Let X be an infinite dimensional normed linear space. Show that there 
exists a discontinuous linear functional on X (that is, X'\X* "# 0). 
Use this fact to construct discontinuous (unbounded) linear map from 
X into itself with a closed kernel (compare with llD). 

2.15. Show that a linear functional ¢ defined on a real linear topological 
space X is discontinuous if and only if the set {x E X:¢(x) "# O} is 
connected. 

2.16. Let M be a linear subspace of the locally convex space X and let 
¢ E M*. Show that there exists an extension of ¢ in X*. 

2.17. A semi-norm p defined on a linear space X is discrete if M == {x EX: 
p(x) = O} has finite codimension in X. 
a) Give examples of discrete semi-norms on the space Cb(Q, R). 
b) Show that ¢ E X' is continuous in the p-topology on X exactly 

when ¢ E MO. 
2.18. Let A be a closed convex subset of the separable Banach space X. 

Show that either A is contained in some closed hyperplane or else A 
has a non-support point. (Assume the former not to be the case and 
that 8 E A. Let {xn} be a dense sequence in A and set Yn = Xn ifllxnll ~ 1 

00 

and otherwise Yn = xn/llxnli. Define p = I rnYn- Then pEA but p is 
1 

not a support point of A.) 
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2.19. Establish the following cancellation law for convex sets. Let A and B 
be closed convex sets of a linear topological space X. Suppose that 
A + C = B + C for some (non-empty) bounded set C c X. Then 
A=B. 

2.20. Let X be a locally convex f>pace, A a compact convex subset of X, and 
M a closed linear subspace of codimension ? n. If A n M = 0 show 
that there exists a linearly independent set {4> i> .•• , 4>n} c X * such 
that each 4>j defines a hyperplane strongly separating A and M. 

2.21. Let Ai> . .. ,An be compact convex subsets of a linear topological space. 
Show that CO(AI U ... U An) is also compact (and convex). 

2.22. Let X be a linear topological space. 
a) If A is a countable subset of X show that the closed linear span of 

A is a separable subspace of X. 
b) If X is locally convex show that X is separable if (and only if) X 

is weakly separable. 
c) If X is separable and normed show that X* is weak*-separable. 

Is the converse true? 
2.23. Let X be an infinite dimensional normed linear space. 

a) Endowed with its weak topology X is a set of first category in itself. 
b) The weak closure of the set {x EX: Ilxll = 1} is the entire unit ball 

U(X). 
c) The analogues of a) and b) for X* al1d its weak* topology are also 

valid. 
2.24. Let (Q, L, fl) be a positive a-finite measure space. 

a) The space L oo(fl) is either finite dimensional or not separable. 
b) Define an equivalence relation on L by E ~ F if and only if 

fl(ED..F) == fl(E\F) + fl(F\E) = 0 and let Lo be the set of equivalence 
classes containing a set of finite measure. We can define a metric 
on Lo by d(E, F) = fl(ED..F). Verify that d is a metric on Lo and then 
prove that for 1 ::::; p < 00 the space U(fl) is separable if and only 
if the metric space (Lo, d) is separable. 

c) Show that U(fl) is separable whenever the a-algebra L is countably 
generated, that is, whenever L is the smallest a-algebra containing 
a given cou:ntable family of subsets of Q. 

d) Show that if Q eRn and fl is Lebesgue measure then U(fl) is 
separable for 1 ::::; p < 00. 

e) Give an example of a finite measure space such that the corre
sponding LP spaces are not separable. 

2.25. Discuss the separability ofthe Banach spaces in Examples 3-5 ofiOD. 
2.26. Prove that two disjoint closed convex subsets of a locally convex space, 

one of which is weakly compact, can be strongly separated by a closed 
hyperplane. 

2.27. Let X be a locally convex space and J x the canonical embedding (12B) 
of X into X*'. 
a) SI10W that a net {xa: bED} in X converges to x E X if and only if 
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J x(Xb) converges to J x(x) uniformly on each equicontinuous subset 
ofX*. 

b) Show that each weakly compact subset of X is complete. 
2.28. Establish the following working n.Iles for polars in a locally convex 

space. 
a) BO c AO if A c B; 

1 
b) (tA)O = - AO, t ¥- 0: 

t 

c) (U{Aj:jEJ}t = n{Aj:jEJ}; 
d) (n{Aj:j E J}t = co*(u{Aj:j E J}). 

2.29. Give an example of a compact convex set in R3 whose set of extreme 
points is not closed. 

2.30. Let X be either the space L 1([0, 1], j1, F) (where j1 is Lebesgue measure) 
or the space Co(.Q, F) consisting of all continuous F-valued functions 
on the non-compact locally compact Hausdorff space that vanish at 
infinity (that is, functions f E Cb(Q, F) such that {t E Q: If(t) I ~ B} is 
compact for all B > 0), normed by the uniform norm (10.1). Show that 
in both cases the unit ball U(X) has no extreme points. Thus "compact" 
in 13A cannot be replaced by, for example, "closed and bounded". 

2.31. In the space m of bounded sequences (12F) let en be the sequence with 
all terms 0 except the nth which is 1. Let A = co({e, eb ez/2, e3/3, . .. }). 
Show that A is compact (and convex) but that A ¥- co(ext(A)). Thus 
in the Krein-Milman formula A = co(ext(A)) of 13B the closure 
operation cannot generally be omitted. 

2.32. Let A be a compact convex subset of a locally convex space. Prove that 
A is the closed convex hull of its extreme support points (that is, support 
points belonging to ext(A)). Note that it is not claimed that every 
extreme point must be a support point. 

2.33. Prove that, in contrast with exercise 1.36, there exists an unbounded 
closed convex set B in some Banach space whose recession cone CB 

contains only the zero vector. (In the sequence space t2(~O) let B = 
{x = (~b~z, ... ):I~nl ~ n}.) 

2.34. Let X be a locally convex space and P a wedge in X. 
a) If P is solid then its dual wedge p* is weak*-locally compact in X*. 
b) If P is a closed cone in X then the subspace p* - p* is weak*-dense 

inX*. 
2.35. Let Q be a completely regular Hausdorff space (a Tychonov space). 

a) The map q: t -4 ()t is a homeomorphism of Q into the ball U( Cb(Q, 
F)*) endowed with the weak* topology. 

b) The image q(Q) is weak*-closed exactly when Q is compact. 
--* c) Assume that Q is not compact and set j3(Q) = q(Q) . Then j3(Q) 

is a compact space containing Q as a dense subspace. Thus j3(Q) is, 
by definition, a compactification of Q and is in fact the maximal or 
Stone-Cech compactijication of Q. (It is to be shown that if (T, h) 
is any compactification of Q, so that h is a homeomorphism of Q 
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onto a dense subspace of the compact Hausdorff space r, then r is 
a quotient space of (J(D). In turn this may be achieved by con
structing a continuous surjection F:{J(D) --+ r such that h = F 0 q. 
Finally, we can obtain F by considering the transpose (lH) of the 
map g 1-+ g 0 h from C(r, F) into Cb(Q, F), restricting this transpose 
to (J(Q), and composing this restriction with the inverse of the 
canonical homeomorphism of r into U(C(r, F)*).) 

d) Every f F I:;.(Q, F) has a uniquely specified extension to C({J(Q), F). 
e) (J(D) consists of the non-trivial homomorphisms defined on the 

algebra Cb(Q, F). It then follows that (J(Q) may be identified with 
the set of extreme points of {tjJ E U( Cb(Q, F)*): tjJ(e) = 1}, where e 
is, as usual, the constantly one function on Q. 

f) If f is any continuolls map from Q into a compact space r then 
there exists a uniquely specified continuous extension of f defined 
on (J(D). lSame argument as in c).) Hence this extension property 
characterizes (J(D) up to homeomorphism. 

g) Let Q be the space of positive integers with the discrete topology. 
Then 11'6 == Cb(Q, F) can be identified with C({J(D), F) (use d». 

h) If Q = (0, 1] with the usual topology then (J(Q) is not (homeo
morphic to) [0, 1]. (use d) ). 

All of which goes to show, among other things, that when Q 

is not compact the extreme point structure of U(Cb(Q, F)*) is much 
more complicated than in the compact case, when formula (13.9) 
provides a complete description. We may also note, in reference to 
Lemma 3 of 15C, that from 12F and a) above it follows that in the 
case where Q is completely regular, the metrizability of Q is a 
necessary condition for the separability of Cb(Q, F). 

2.36. Show that the unit ball of a normed linear space X is rotund if and 
only if X is strictly normed. 

2.37. Let X be a normed linear space, let {tjJl,' .. ,tjJn} c X* and {cl , ... , 
cn} cR.LetVbetheaffinesubspace{xEX:tjJ/x) = cj,j = 1, ... ,n}. 
For any Xo E X show that 

d( V) _ IIt/cj - tjJj(xo) )1 
X o, - sup I I ItjtjJj I I 

where the supremum is taken over all sets {tb ... , tn } C R such that 
ItjtjJj of- 8. Conclude that a sequence {xn} C X converges weakly to 
Xo if and only if its distance from any closed finite co dimensional flat 
through Xo tends to 0. (By contrast, a sequence converges to Xo in the 
norm topology if and only if its distance to any closed flat through Xo 

tends to 0.) 
2.38. Let X be either a space L l(Q, fl, F) for fl CT-finite, or a space qQ, F) 

for Q compact. Show that each extreme point of U(X*) is actually a 
vertex of U(X) (in the sense of 13E, Ex. 6). More precisely, for any 
tjJ E X* define B</> = {x E X :tjJ(x) = Ilxll}. Then show that tjJ Eext(U(X*» 
if and only if X = B</> - B</>. 
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2.39. Let A and B be compact convex subsets ofthe locally convex space X. 
Prove that, in the product space X x X, ext(A x B) = ext(A) x ext(B). 

2.40. Let X be a locally convex space with the property that every non
empty, closed, bounded, convex subset of X has an extreme point. 
Show that every such subset is then the closed convex hull of its extreme 
points. (Proceed by contradiction and use the strong separation 
theorem. This result was originally formulated for Banach spaces, and 
provided the basis f01 i1 ploof that every dosed bounded convex subset 
of fl(~O) is the closed convex hull of its extreme points. Compare with 
exercise 3.10). 

2.41. Let f be a convex function defined on a neighborhood of a point Xo 

in some normed linear space and continuous at Xo' Show that there 
exist an xo-neighborhood V and a positive constant A such that when
ever x and y belong to V we have the Lipschitz inequality jf(x) -
f(y)j ~ Allx - YII· (It may be assumed that Xo = e; choose b > ° so 

that jf(x) - f(e)j < 1 if IIxil < b. Then we may take V = ~ U(X) and 

A = 8/b.) It follows that the restriction of a continuous convex function 
to a compact convex set in X satisfies a Lipschitz condition uniformly 
on that set. 

2.42. Prove the formula (14.5). 
2.43. The solvability of any optimization problem is always a topological 

matter. Thus, let (A, f) be a variational pair. We define a topology 
L = L(f) on the set A by taking as a subbase all sets of the form {x E A: 
f(x) > A} as A runs through R. 
a) L is the weakest topology on A in which f is lower semicontinuous. 
b) There is a solution to the program (A, f) if and only if A is L-compact. 

2.44. With the terminology and notation of Tuy's inconsistency theorem 
(14F) suppose that the wedge Q is solid and that there exist linear 
functionals <p E P*, ljI E Q* (ljI =1= e) satisfying (14.14). Show that the 
system 

S(x) ~ e, T(x) < e, xEA 
is inconsistent. 

2.45. With the same notation and the assumption that Q is solid, suppose 
also that the system 

T(x) < e, x E A 

is weakly inconsistent (in other words, has no weak solution in the 
sense of (14H)). Prove that there exists a non-zero ljI E Q* such that 
< T(x), ljI)? 0, x E A. 

2.46. Apply the theory of 14F to establish the topological form of the Krein
Rutman theorem: let M be a linear subspace of the linear topological 
space X, ordered by the solid positive wedge P; if int(P) n M =1= 0 
then any positive linear functional in M* has an extension belonging 
to P*. 
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2.47. Establish the "Dubovitskii-Milyutin separation condition": let A o, 
A l> .•. , An be convex sets in a real linear topological space X with 
e E Aj for allj and Al>"" An open; then n{Aj:j = 0,1, ... , n} = 0 
if and only if the sets are separated in the sense that there exist linear 
functionals CPo, CPl> .•. ,CPn E X*, not all e, such that cpAx) ~ 0 for all 
x E Aj and CPo + CP1 + ... + CPn = e. (For the necessity, apply a 
separation theorem in the product space X x ... x X (n times) to 
the sets A~ x ... x An and {(Xl>' .. , xn):x1 = ... = Xn E Ao}.) 

2.48. Give a direct proof the lemma in 141. (Apply exercise 2.13 to the 
epigraph of f.) 

2.49. Consider a convex program (A, f) where A is a convex subset of a 
locally convex space X and f is lower semicontinuous. Unless the value 
of this program is - 00, the conjugate function f* defined by (14.24) 
will be finite at cP = e in X*. Assuming this, prove that the program 
is solvable if and only if f* is subdifferentiable at e, and then Jf*(e) 
is exactly the set of solutions of the program. 

2.50. Let f E Conv(Rn) be differentiable. Show that the conjugate function 
f* is finite at y ERn exactly when y = Vf(x), for some x ERn. Thus 
f* is everywhere finite exactly when Vf: Rn -4 R n is surjective. (3A is 
helpful for the sufficiency; for the necessity, assume that f*(y) < 00 

and show that the supremum in (14.24) is attained at some x ERn.) 
2.51. a) Verify that the consistency condition of 7B is a special case of that 

inl5A. 
b) Let the system (15.1) be consistent and let S c X* be the set of all 

its solutions. Let (y, b) E X x R 1. Then the inequality b ~ cp(y) is 
a consequence of (15.1) (in the sense that this inequality is valid for 
every cP E S) if and only if there exists a ~ b such that (y, a) belongs 
to the wedge P of 15A. (If no such a exists then the wedge P and the 
segment [(e, 1), (y, b)] in X x R1 can be strongly separated.) 

2.52. Let X be a normed linear space and A a (non-empty) weak*-closed 
subset of X*. Prove that A is proximinal in X*. (Use 12D. This is a 
very versatile and powerful optimization principle, which illustrates 
again the value of the recommendation in 6E. Note that A need not 
be a linear sub:;pacenor even convex.) 

2.53. Let T be a continuous map of a normed linear space X into itself. 
Suppose that T maps bounded sets into compact sets and that 

lim IIT(x)11 = 0 
Ilxll~C() Ilxll . 

Show that for any A > 0 and y E X the equation x = AT(x) + y has 
a solution x E X. (Apply the Schauder fixed point theorem to the map 
f(x) == AT(x) + y after observing that f must map some multiple of 
the unit ball into itself.) 

2.54. Let (so, to) E R2 and let g: R2 -4 R be continuous on a neighborhood 
of (so, to). According to "Peano's theorem" the differential equation 
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y'(s) = g(s, y) has a solution h defined on a neighborhood of So and 
satisfying h(so) = to. To prove this, choose e > ° so that Ig(s, t)1 ~ 1 
on the square [so - e, So + e] x [to - e, to + eJ. Let X = q[so - e, 
So + e], R) and let A = {XEX: Ito -x(s)1 ~ e, Is - sol ~ e}. Then define 
f:A -+ A by 

f(x)(s) = to + I;o g(s, xes) )ds 

and show that a solution may be obtained by applying the Schauder 
fixed point theorem to f. 

2.55. Let p and a be two norms on a finite dimensional linear space. Show 
that p and a must be equivalent, in that constants a, b > ° exist so that 
(15.4) holds. 

2.56. Prove formula (15.9). 
2.57. Establish the special case of the bang-bang principle (15.14) where C 

is the unit cube in R m. (Let U be a C-valued measurable function on 
[0, T] and, for definiteness, take t = T in (15.14). We are to find a 
C-valued measurable function v on [0, T] such that each component 
Vj of v satisfies Ivk)1 = 1 a.e. on [0, T] and 

n; P(s)u(s)ds = n; P(s)v(s)ds. 

Let us concentrate on a particular Vj. We must choose a measurable 
set Bj C [0, T] (the set on which Vj equals 1) suc.h that 

g Plis)Uj(s)ds = hj Plj(s)ds - fBi P 1j(s)ds,(4) 

g Pnj(s)uj(s)ds = IBj Pnj(s)ds - IB} Pnj(s)ds, 

where Pij is the (i, j)th -entry of the matrix P. Thus the requirement 
on Bj is that 

fBj Pij(s)ds = t g (1 + uis)) Pij(s)ds, i = 1, ... , n. 

In order to apply Liapunov's theorem we define a vector measure 11 
on [0, T] by 

11(E) = (h P1j(s)ds, . .. , fE Pnis)ds); 

then we know R([O, T]) is a compact convex set in Rn. We also define 
a weak*-continuous affine map <P: U(L ~([O, T], R)) -+ R n by 

<P(w) = t n; (1 + w)d11· 

We can finish by proving that the range of <P lies in R([O, T]), and 
for this it suffices to prove that <P maps every extreme point of 
U(L 00([0, T], R)) into R([O, T]). This is not hard as these extreme 
points can be characterized in a way analogous to that of (15.9).) 

(4) Bj is the complement of Bjo 
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2.58. Let (Q, 1:, fl) be a positive non-atomic measure space and let M be 
a finite dimensional linear subspace of L l(fl). Establish the existence 
of arbitrarily small "determining sets" for M. Precisely, given 8 > 0, 
there exists E E 1: such that 0 < fleE) < 8 with the property that if x, 
Y E M and xlE = YIE then x = y. (Proceed by induction on dim(M).) 

2.59. Let (Q, 1:, fl) be a positive measure space and consider the unit ball 
U == U(L l(Q, fl, F)). In exercise 2.30 it was shown that this set may 
have no extreme points. 
a) Let F = C and choose fEU, Ilfllt = 1. Then f E ext(U) if and 

only if If 01 E ext(U(L l(Q, fl, R))). 
b) Let F = R and choose fEU, Ilflll = 1. Then f E ext(U) if and 

only if f = ±XA/fl(A), where A is an atom in 1:. 
2.60. Show that the conclusion of Dieudonne's separation theorem (15D) 

remains valid if the hypothesis concerning the recession cones is 
weakened to: M == CA n CB is a linear subspace of X. (Work in the 
quotient space XjM.) 



Chapter III 

Principles of Banach Spaces 

The theme of our presentation up to this point may be described as a 
study of the interplay between the algebraic-geometric notions of convex 
sets and mappings, extreme points, etc. and the topological notions of 
openness, compactness, continuity, etc. For such a study the correct setting 
is, as we have seen, the linear topological space (frequently required also to 
be locally convex). The resulting theory is broad and powerful, as we hope 
has been demonstrated by Chapter II. Further development now requires 
some additional specialization of our setting. The crucial new hypothesis 
which we now bring in is that of completeness. We shall also generally limit 
our considerations to normed linear spaces, unless the results under con
sideration can be clearly and cleanly extended to locally convex spaces. 
More typically, locally convex topologies will playa vital supporting role 
in our theory of Banach spaces, particularly the weak and weak* topologies. 

Of the numerous important results presented in this chapter the most 
important for applications (as we hope to illustrate in the examples and 
problems) are the various category theorems of §17. Fur further theoretical 
developments in the study of Banach spaces, the profuund characterizations 
of weak compactness due to Eberlein and James and the theorems of Bishop
Phelps are important. 

§16. Completion, Congruence, and Reflexivity 

In this section we present a miscellany of general facts about Banach 
spaces and linear maps defined thereon. The most important notion is that 
of reflexivity of a Banach space. A number of characterizations of reflexive 
spaces are collected together in 16F, and others occur in later sections. 
Because of their many useful properties and generally tidy theory, it is both 
a shame and a challenge that many of the important Banach spaces are not 
reflexive. 

A. Let X and Y be normed linear spaces over the same scalar field and 
let B(X, Y) be the normed space of bounded linear maps from X into Y 
(11D). Our first problem is to decide when B(X, Y) is a Banach space (that 
is, complete). The answer depends only on the range space Y. 

Theorem. B(X, Y) is a Banach space if and only if Y is a Banach space. 

Proof. Suppose that Y is complete and let {Til} be a Cauchy sequence 
in B(X, Y). For any x E X we have 

IITII(x) - Trn(x) I I = II(TII - Trn)(x) I I 
~ IITn - Tmllllxll, 
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from which we conclude that {Tn(x)} is a Cauchy sequence in Y. Hence 
T(x) == limn Tn(x) exists in Y. The correspondence x ~ T(x) clearly defines 
a linear map from X into Y. Now a Cauchy sequence in any metric space is 
bounded; in our case we have therefore that P == supn IITnl1 < 00. Thus 
IITn(x)11 ::::; Pllxll and so 

IIT(x)11 == Illim Tn(x) I I = lim IITn(x)11 ::::; Pllxll, 
n n 

for all x E X; thtll is, IITII ::::; P and so T belongs to B(X, Y). 
Conversely, suppose that B(X, Y) is complete and let {Yn} be a Cauchy 

sequence in Y. Select a vector Xo E X with Ilxoll = 1 and then, by HE, a 
functional 4> E X* such that 4>(xo) = 1. Then if we define Tn E B(X, Y) by 

XEX, 

we see that IITn - Tmll ::::; 114>11 llYn - Ymll. Consequently, {Tn} is a Cauchy 
sequence in B(X, Y) and therefore has a limit T E B(X, Y). Finally, 

llYn - T(xo)11 = IITn(xo) - T(xo)11 ~ 0, 

whence limn Yn = T(xo) E Y. 

n ~ 00, 

o 
Corollary. Let X be a normed linear space. Then X* is a Banach space. 

B. Again, let X and Y be normed spaces over the same field and T E 

B(X, Y). As in 9E T is an isomorphism it it identifies X and Y as linear 
topological spaces, that is, if T is both an algebraic isomorphism and a 
homeomorphism. Otherwise put, T is an isomorphism exactly when T- 1 

exists and belongs to B(Y, X). More generally we say that T is an isomor
phism into Y if T is injective and T- 1 is bounded on its domain (which is, 
by definition, the image T(X) of X in Y). 

Lemma. T E B(X, Y) is an isomorphism into Y if and only if 'Y == 
inf{IIT(x)II:llxll = I} > o. 

Proof. By its definition 'Y satisfies IIT(x)11 :): 'Yllxll for all x E X. Hence 
if'Y > 0 then T is certainly injective and IIT-1(T(x))11 == Ilxll ::::; 'Y-11IT(x)ll, 
so that T- 1 is bounded. Similarly, if T- 1 exists and is bounded then Ilxll == 
IIT-1(T(x))11 ::::; IIT-1111IT(x)11 so that 'Y :): 1/IIT- 111 > o. 0 

We can thus write for comparison 

(16.1) IIT~lll = inf{IIT(x)II:llxll = I} 

::::; sup{IIT(x)II:llxll = I} == IITII 

when T is an isomorphism into, and in particular 

(16.2) 

We see also that T is an isomorphism into exactly when T has a bounded 
inverse. 
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Dealing as we are with normed spaces rather than more general linear 
topological spaces, it is important to know when two such spaces can be 
identified with all their structure. Such identifications are made by means 
of a congruence, that is, a norm-preserving isomorphism. Thus T E B(X, Y) 
is a congruence when T is surjective and 

(16.3) IIT(x)11 = Ilxll, XEX. 

This condition is clearly eq~i;·~lent to 

(16.4) 

Again, when T is not surjective but satisfies (16.3) or (16.4) we shall say that 
T is a congruence into. In this case T identifies X with a subspace of Y. 

Note that, because of its linearity, a congruence is actually an isometry 
on the underlying metric space of X. Thus it preserves all the geometric 
features of X and in particular it maps the unit ball U(X) onto the unit 
ball of its range. This of course need not happen when T is merely an 
isomorphism; in that case we can only be sure that topological properties 
are preserved. In the remainder of this section we are going to see several 
important examples of congruences. (We have previously encountered a 
congruence between the spaces L 1 * and L 00 in 12C.) 

C. Let X, Y, T be as in 16B. According to IH:here is a linear map 
T': Y' -) X' (the transpose of T) defined by the equation 

(x, T'(ljI) = (T(x), ljI), XEX, ljI E Y'. 
We set 

T* = T'IY*, 

and call T* the conjugate (adjoint, dual) of T. Directly from the definitions 
it follows that T* is weak*-continuous, that is, T* is continuous when both 
X* and y* are given their weak* topologies. 

Lemma. The mapping T ~ T* is a congruence of B(X, Y) with the 
subspace of B(Y*, X*) consisting ofweak*-continuous linear maps. 

Proof. The mapping is clearly linear and its range consists of weak*
continuous maps on y* as was just noted. Next, we have 

IIT*II == sup{IIT*(ljI)II:llljIll ~ 1} 
= sup {I (x, T*(ljI)I:llxll ~ 1, IlljIll ~ 1} 

== sup{I(T(x), ljI>I:llljIll ~ 1, Ilxll ~ 1} 
= sup{IIT(x)II:llxll ~ 1} == IITII· 

(Note that the penultimate equality here requires the Hahn-Banach theorem 
llG to guarantee the existence ofljl E U(Y*) such that (T(x), ljI) = IIT(x)II.) 
Finally, we must show that any weak*-continuous S E B(Y*, X*) is the 
conjugate of some T E B(X, Y). Such T must satisfy 

(16.5) (T(x), ljI) = (x, S(ljI) 
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for all x E X and t/I E Y*. Now the right-hand side of(16.5) is by assumption 
a weak*-continuous linear functional on y* for any fixed x E X. By 12B it 
follows that there is a vector in Y, which we call T(x), such that (16.5) holds. 
The map T: X -+ Y so defined is single-valued (lIE), linear, and continuous 
since 

IIT(x)11 = sup {i(T(x), t/I)I:IIt/l11 ~ 1} 

== sup {i(x, S(t/I»I:IIt/l11 ~ 1} ~ IISllllxll, 
so that IITII ~ !iSi!. 0 

This lemma implies that B(Y*, X*) is generally a more complicated 
space than B(X, Y). However, it is a direct corollary to 16F below that 
whenever Y is reflexive every map in B(Y*, X*) is weak*-continuous, so 
that this space is congruent to B(X, Y) under the above mapping. The 
converse is also valid. 

The following result belongs in this sub-section as it connects the ideas 
of conjugate maps and isomorphisms. However, part of its proof makes use 
of a later result, which we must temporarily take on faith. 

Theorem. T E B(X, Y) has a bounded inverse if and only if T* is surjective. 

Proof. Suppose that T has a bounded inverse T - 1, defined on a sub
space R (== range (T» of Y. For any ¢ E X* the functional ¢ 0 T- 1 belongs 
to R* and may therefore be extended to a fUlctional t/I E y* (exercise 2.16). 
We claim that T*(t/I) = ¢. Indeed, for any x E X, 

<x, T*(t/I» == (T(x), t/I) == ¢ 0 T-1{T(x» = ¢(x). 

Thus T* is seen to be surjective. 
Conversely, suppose that T* is surjective. If T fails to have a bounded 

inverse then by exercise 3.3 there is a sequence {xn } in X with 

(16.6) 
n n 

Now for any ¢ E X* we have by assumption that ¢ = T*(t/I) for for some 
t/I E Y*. Hence 

lim ¢(xn) = lim <xm T*(t/I» = lim < T(xn), t/I) = O. 
n n n 

According to the uniform boundedness principle (17C) the sequence {xn} is 
bounded since we have just shown that it converges weakly to e. We thus 
have a contradiction to (16.6). 0 

D. We now give a second important example of congruence in normed 
linear space theory. Let X be a normed linear space and consider once again 
the canonical embedding Jx:X -+ X*' defined by 

<¢, Jx(x» = ¢(x), x E X, ¢ E X*. 

For fixed x we see that 

I<¢, Jx(X» I = 1¢(x)1 ~ 11¢llllxll 
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which proves that J x(x) is a continuous function on X* with norm ~ Ilxll. 
Thus range(J x) c X** == (X*)*. Further, as was noted in 16C, it is an 
elementary consequence of the Hahn-Banach theorem that given x E X 
there is 4> E U(X*) with 4>(x) = IIxli. This entails 

(16.7) 

and proves that J x is a congr'..!ence of X into X**. 
It is convenient to write x = J x(x) for x E X and to denote the closure 

of range(J x) by X. Since X** is a Banach space (16A) and X is closed (by 
definition) in X**, it follows that X is complete and hence a Banach space. 
Consequently, X satisfies all the requirements for a completion of X: it is a 
Banach space containing a dense subspace congruent to X. 

A routine argument shows that, for any normed space Y, any T E B(X, Y) 
has exactly one extension Tbelonging to B(X, Y) and satisfying II Til = II Til· 
This fact in turn shows that, up to congruence, X is the only completion of 
X. It also shows that (X)* is congruent to X*. But, let it be noted carefully 
that if X =F X (that is, if X is not complete) then the respective weak* 
topologies on X* and on (X)* are not the same, since the former is the 
topology of pointwise convergence on X while the latter is the topology of 
pointwise convergence on the properly larger space X. However, the two 
topologies do agree on any ball B in X*, since B is weak*-compact by 120 
and so the identity map of B, being o-(X*, X) - o-(X*, X)-continuous, is 
actually a homeomorphism. 

E. We are going to exhibit a few other congruences important in the 
general theory of normed spaces. First, however, let us agree on some 
terminology. A bounded linear map between two normed spaces will hence
forth be called an operator. Given an operator T E B(X, Y) we define an 
operator T called the 1-1 operator induced by T by 

T:X/ker(T) ~ Y, 

T(x + ker(T)) == T(x), XEX. 

This new operator Tis well-de:Gned, linear, injective, and has the same range 
as T. Further, it is easy to see that IITII = IITII. Do not confuse the notation 
T with the completion notation X just introduced. 

The notation X ~ Y was used in IH to signify canonical isomorphism 
of linear spaces. In our present context of normed linear spaces we shall use 
this notation to mean that there is a canonical isomorphism between X and 
Y which is also a congruence. Thus we have, for example, X ~ J x(X), 
because of (16.7). 

Theorem. Let M be a linear subspace of the normed linear space X. Then 
a) (X/M)* ~ MO; 
b) M* ~ X*/Mo; 
c) M** ~ Jx(M)* 
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Proof. a) The proof runs parallel to that of the linear space analogue 
given in IH, but also makes use of 16C. Let QM:X ~ X/M be the quotient 
map. Then QL:(X/M)* ~ X* is an injective operator with range MO and 
it remains to see that it is a congruence. This requires proving that for each 
ef> E MO 

(16.8) 11ef>11 = sup {1ef>(x)l/d(x, M):x E X\M}. 

Now the left-hand sIde of (16.8) is ::;; the right hand side since IIQLII = 
IIQMII = 1. On the other hand, ifm E M, Ief>(x) 1 = Ief>(x - m)1 ::;; 1Ief>lIlIx - mil, 
so that Ief>(x) 1 ~ 1I<t>lld(x, M). 

b) Again we follow IH and consider the identity injection 1M:M ~ X. 
Then 1L:X* ~ M* is just the restriction operator (that is, 1M<t» = ef>IM) 
and the 1-1 operator fL:X*/Mo ~ M* is an (algebraic) isomorphism. To 
prove that it is a congruence we must verify that for each ef> E X* 

(16.9) d(<t>, MO) = sup {1<t>(y)l:y E U(M)} == 1I<t>IMIi. 

Let us just check that the left-hand side of (16.9) cannot exceed the right
hand side. Let, be a norm-preserving extension (11G) of ef>IM to all of X 
and set t/J = ef> - ,. Then t/J E MO and hence d(<t>, MO) ::;; lief> - t/JII = 11,11 == 
11<t>IMII· 

c) Let MOO == (Mot be the annihilator of MO in X**:MoO = {<p E X**: 
<p(ef» = 0, <t> E MO}. Then by combining a) and b) we see that 

(16.10) 

and the proof can be completed by showing that 

(16.11) MOO = Jx(M)*. 

Now the left-hand side of (16.11) certainly contains the right-hand side 
since MOO is weak*-closed and contains J x(M). If the inclusion were proper 
there would exist a <P E MOO that could be strongly separated from J x(M)* 
by a weak*-closed hyperplane in X**. Using 12B we could then find a 
<t> E X* such that ef>(y) = <<t>, y) = 0, Y EM, and < ef>, <p) ¥- 0. In other 
words, <t> E M O yet <cp, ([J) ¥- 0, which contradicts <P E MOO. D 

A few remarks should be made about this theorem. First, the inverses of 
the congruences in a) and b) are easily described and could be used as the basis 
of alternate proofs. Thus in a) we have simply <t> ~ £$ ° , as the congruence 
from MO to (X/M)*, where ,:X/M 1-+ X/ker(ef» is the norm-decreasing sur
jection defined by ,(x + M) = x + ker(ef». In b) the congruence from M* 
to X*/Mo sends each element t/J of M* into the affine subspace of X* con
sisting of all possible extensions of t/J to X. 

Secondly, the congruence in c) can also be explicitly described. For 
example, in the direction MOO 1-+ M** it sends <P E MOO into the functional 
on M* whose value at f E M* is the value assumed by <P on any extension 
of fin X*. This value is of course independent of the particular extension 
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since any two extensions of f must differ by an element of MO. (The inverse 
congruence is used in the proof of the theorem in 16F below; see also 
exercise 3.16c.) 

Finally, note that the theorem identifies the second conjugate space M** 
with a subspace of X**, while the first conjugate M* can only be identified 
with a quotient space of X*. It is unusual that this quotient can in turn be 
identified with a subspace of X*. 

A generalization of formula (16.11) pertaining to convex sets containing 
8 is given in exercise 3.7. 

F. A normed linear space X is reflexive if the canonical embedding 
Jx:X -> X** is surjective. This requirement should be compared with the 
result in ID for the purely algebraic situation. There it was noted that when 
X is infinite dimensional there will always be linear functionals on X' which 
are not evaluation functionals. But our reflexivity defi_nition does not ask so 
much; the requirement is merely that every continuous linear functional on 
the subspace X* of X' should be an evaluation functional. This is a situation 
which does in fact occur in a number of common normed spaces (16G below). 
Such spaces have several pleasant and useful properties as we shall see. 

It is clear that any reflexive normed space must be complete, by virtue 
of being congruent to a complete space (namely, X**). It should also be 
clear that the condition of reflexivity is equivalent to the identity of the weak 
and weak* topologies on X*. Indeed, if these topologies are the same then 
any functional in X** is a(X*, X**)-continuous (since any operator between 
normed spaces is weakly continuous, that is, continuous when both spaces 
are given their weak topologies), and so a(X*, X)-continuous (by assump
tion). Hence the functional must be an evaluation functional by 12B. 

It is clear that every finite dimensional normed space is reflexive (ID), 
and we shall see other examples later in this section. On the other hand, the 
space L 1 == L 1([0, 1], R) is not reflexive. To see this we recall (12C) that 
L 1* can be identified with (is congruent to) LOO == LOO([O, 1],R). We shall 
prove the existence of functionals ll> E L 00* which are not of the form 

(16.12) ll>(g) = S5 f(t)g(t)dr, 

for some fELl. Now the subspace C == C([O, 1], R) is a proper closed 
subspace of L 00 and so there is a non-zero ll> E CO (UF). If ll> were an evalua
tion functional defined by some fEU as in (16.12) then we would have in 
particular 

SA f(t)g(t)dt = 0, 9 E C. 

But, as was observed in 12C, this last condition forces f = 8; that is, a 
representation of ll> as in (16.12) does not exist, and so U is not reflexive. 

We are going to present a few necessary and sufficient conditions for the 
reflexivity of a given Banach space. It is convenient to first establish a useful 
general fact, known as the "Goldstine-Weston density lemma". For X a 



126 Principles of Banach Spaces 

given normed space, we let V be a subspace of X* and define the canonical 
embedding Jx, v:X --7 V* by the usual formula: 

<4>, J x, v(x) > =- 4>(x), XEX, 

Clearly IIJ x, v II ::::; 1 and J x, v is injective exactly when V is total. 

Lemma. For every 'P E V* there is a net {X<l: bED} in X such that 

sup {lIX<lII:(5 E D} ::::; II'PII 
and 

lim {4>(X<l):b E D} = 'P(4)), 

In particular, J x, v( U(X)) is weak*-dense in U(V*). 

Proof. Let 'Po = 'P/II'Pli (the result is trivial if 'P = 8). Let N be an 
arbitrary weak*-neighborhood of 'Po:N = {<P E V*:I<P(4)J - 'Po(¢JI < 
so} for some finite set {4> 10 ... , rf>n} C v. We shall exhibit Xo E U(X) such 
that J x, v(xo) E N, thereby proving that 'Po belongs to the weak*-closure of 
Jx, v(U(X)). Let r = max{ll4>dl:i = 1, ... , n}. Because II'Poll = 1 we can 
apply Helly's condition (7 A) to conclude that for every s > 0 there exists 
Xe with Ilxell ::::; 1 + sir and 4>;(xJ = 'PO(¢i), i = 1, ... , n. We now set 
Xo = (rl(r + SO))xeo· Then Ilxoll ::::; 1 and 

l4>i(XO) - 'Po(4)JI = l¢i(XO) - 4>i(Xeo)I 

= l¢i(XO) - (1 + solr)4>;(xo)I ::::; r I-rsol = so· 

Thus 'PoEJx,v(U(X))* and so there is a net {Y<l:bED} in U(X) that 
converges weak* to 'Po. Hence we may set X<l = 11'PIIY<l to conclude. D 

The most important application of this lemma is of course to the cast> 
where V = X*. Also, we note that whenever V is separable then the net 
{xo: bED} can be taken to be a sequence, since, in this case, U( V*) is compact 
and weak*-metrizable (12F). An alternate proof of the lemma is suggested 
in exercise 3.7. 

Theorem. The following properties of a Banach space X are equivalent. 
a) X is refleXive; 
b) X* is reflexive; 
c) M and X/M are reflexive for every closed linear subspace M of X; 
d) M and XIM are reflexive for some closed linear subspace M of X; 
e) U(X) is weakly compact; 
f) X is weakly quasi-complete. 

Proof. Assume that X is reflexive. To show that X* is reflexive, choose 
any G E X*** == (X**)* and define ¢ = Go J x E X*. Then if <P E X**, 
<P = x for some x E X, and 

(<P, G) = (x, G) = (x, G 0 Jx) 

== ¢(x) = <4>, x) = (4),<P); 
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that is, G = J x.( ¢), and thus J x' is surjective. Next, let M be a closed sub
space of X. If ([J EO MOO c X** then ([J = Xo for some Xo EO X. Hence if 
¢ EO MO, ° = (¢, xo> == ¢(xo), whence Xo E °MO = M by 12C. Now, given 
any F EO M**, we define ([J EO MOO by ([J(¢) == F(¢IM), ¢ EO X*. Then ([J = Xo 
for some Xo EO M, as we have just seen. Therefore, F = J M(XO) and J M is 
surjective. 

Suppose that X* is reflexive. Then X** is reflexive and so is its closed 
subspace J x(X). Since this subspace is congruent to X, X must also be 
reflexive. Also, if M is again a closed subspace of X, then (XjM)* ~ MO is 
a closed subspace of the reflexive space X*, hence is reflexive. Since (XjM)* 
is reflexive so is XjM. 

To complete the proof of equivalence of a) through d) we show that d) 
implies a). Select any ([J EO X**. Then ([JIMo E MO* ~ (X/M)** = J x/M(XjM), 
and so there exists Xo E X wch that (¢, ([J> = ¢(xo), for all ¢ E MO. Con
sequently, ([J - Xo E MOO ~ M** = J M(M), and it follows that there is 
Yo E M such that ([J - Xo = Yo· Therefore, ([J = Xo + Yo E J x(X), and J x is 
surjective. 

It remains to establish the equivalence of a), e), and f). For e) the keys 
are the Goldstine-Weston density lemma (with V = X*) and the observation 
(12B) that J x is a homeomorphism between X and J x(X) when these spaces 
are given the weak and weak* topologies respectively. Thus U(X) is weakly 
compact if and only if J x(U(X)) is weak* compact. Since J x(U(X)) is weak*
dense in U(X**) which is weak*-compact (12D), it follows that U(X) is 
weakly compact exactly when J x(U(X)) = U(X**). Thi~ last condition is 
of course equivalent to the surjectivity of J x. Next, assume that X is weakly 
quasi-compiete. Then in particular U(X) is weakly complete. The same 
argument then shows that J(U(X)) = U(X**) and hence that X is reflexive. 

Finally, suppose that X is reflexive, and let A be any weakly bounded 
and weakly closed subset of X. We want to see that A is weakly complete. 
Appealing once more to the forthcoming uniform boundedness principle 
(17C), the set A is norm-bounded. Thus A is a weakly closed subset of some 
ball which, bye), is weakly compact and, in particular, weakly complete. 
Hence A must also be weakly complete. D 

In exercise 3.37 there is given a useful necessary and sufficient condition 
for an arbitrary subspace of a Banach space to be reflexive. 

G. In 12C we outlined an argument showing that the spaces L l(Q, fl, F)* 
and L W(Q, fl, F) are congruent provided that the measure fl is a-finite. That 
some restriction on fl is necessary can be seen from the following example. 

Example. Let Q = [0, 1 J. Let the a-algebra 1: of subsets of Q consist 
of all countable subsets of Q and their complements. Then any 1:-measurable 
function defined on Q has a countable range. Now let fl be the counting 
measure on Q so that fleE) == cardinality of E if E E 1: is finite, and otherwise 
fleE) == 00. Then the functional 

f f-+ 16 tf(t)dfl(t), 
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does not arise from any 2:'-measurable function, and so the usual congruence 
from L OO(Q, }1, F) into L l(Q, }1, F)* is not surjective. D 

In spite of examples such as this, any L 1 space that fails to have the 
corresponding L'0 space as its dual (via the usual congruence) does so for 
an essentially trivial reason. In other words, the difficulty is more apparent 
than real. Precisely, the following result is true: for any measure space 
(Q, 2:',}1) there is another such space (r, ff, v) such that U(r, v, F) ~ 
U(Q,}1, F) and ~}(r, v, F)* = LOO(r, v, F) (via the usual congruence). We 
shall not prove this result but in exercise 3.11 we ask that such a measure 
space be determined for the preceding example. 

Let us now consider the problem of determining U(Q, }1, F)* for a given 
measure space (Q, 2:', }1) and 1 < p < 00. In this case the answer requires no 
restrictions whatever on the nature of the underlying measure space, and 
can be used to show that all such spaces are reflexive. This is the single most 
important class of infinite dimensional reflexive Banach spaces. Given p with 
1 < p < 00 we define q = p/(p - 1), and for g E U == U(Q,}1, F) we define 
a linear functionallP 9 on U == U(Q, }1, F) by the rule 

(16.13) fEU. 

Theorem. The map g 1-+ tPg is a congruence of U with (U)*. 

Proof. Holder's inequality shows that /[>g E (U)* and that IllPgll ~ Ilgllq. 
Let us assume first that }1(Q) < 00. Given any 'P E (U)* we proceed as in 
12C by considering the measure v on 2:' defined by v(E) = 'P(XE), E E 2:'. 
v is }1-absolutely continuous and the Radon-Nikodym theorem yields g == 
dv/d}1 EL l such that v(E) = SE g d}1. Then 'P(f) = Sf.! f dv = Sf.! fg d}1 for 
all simple functions f, and hence for all fEU (which includes U). Let us 
next see that g E U. Select any h E L 00 with e ~ h ~ Igl. Then 

Ilhll~ ~ Sf.! hq - 1 lgl d}1 = Sf.! hq - 1 ~:I dv 

== 'P (hq - 1 ~:I) ~ 11'Pllllhq- 1 dJ:lllp 

= 11'Pllllhll:IP, 

whence Ilhllq ~ II'PII. Taking the supremum over all such h we see that 
Ilgllq ~ II'PII· This completes the proof for the case }1(Q) < 00. 

In the general case we consider an arbitrary set E E 2:' with 0 < }1(E) < 00. 

Such sets are called chunks. Restricting the given lj; E (U)* to the subspace 
{fxE:f E U} we obtain by the preceding method an element gE E U with 
gE = gEXE and 'P(fXE) = Sf.! jgE d}1. If E1 is any other chunk with corre
sponding gE, then on E (l E1 the elements gE and gE, must be equal. Now 
let E1 , E2 , .•• , be a sequence of chunks chosen so that 

lim IlgEnllq = sup {llgEllq: 0 < }1(E) < oo} == 'Y. 
n 
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Then y ~ IIPI! and the sequence {gEJ is a Cauchy sequence in U since, 
assuming m ~ n, 

IlgEm - gEnll~ ~ fEn\Em IgEnl q dJ1 = fEn IgEnl q dJ1 - fErn IgEmlq dJ1. 

The limit g E Lq satisfies Ilgllq = y and y vanishes outside the CT-finite set 
A == Un En- This g is the desired U representer of P. Indeed, by the maximal 
property of g (llgllq = y) it follows that any chunk E disjoint from A must 
have its corresponding gE -;:-;: 9. Thus, if we select any fEU such that f 
vanishes outside some chunk E, then 

P(f) = P(fXE) = Sf.! fgE dJ1 

(16.14) = SA~E fgE dJ1 + fE\A fgE dJ1 

= fAnE jqA:'E dll + ° = SAnE fg dJ1 
= Sa fg dJ1, 

where the penultimate equality follows from the relation gAnE = gEn in the 
set E n En (which implies that, on A n E, gA~E = limn gEn = g). Equation 
(16.14) shows that P(f) = <Pg(f) whenever f vanishes off a chunk. The set 
of such f contains in particular the space of the characteristic functions of 
chunks and so is dense in U. Hence by continuity P = <Pg and so the map 
g ~ <P 9 is surjective in the general case as well. 0 

Corollary. For 1 < p < 00 the space U(Q, J1, F) is reflexive. 
The proof is a direct consequence of the theorem; the details are left to 

exercise 3.12. 

H. We finally consider some function spaces defined on an arbitrary 
set Q and determine congruent representations of their dual spaces. It will 
follow from these representations that none of the spaces under consideration 
is reflexive. 

We define Co == co(Q, F) to be the set of all F-valued functions x on Q 
that vanish at infinity in the sense that [tEQ:lx(t)1 > E} is finite for each 
E > 0, and m == m(Q, F) to be the set of all bounded F -valued functions 
on Q. These are special cases of earlier examples of spaces of continuous 
functions if Q is assumed to have the discrete topology. In both cases, of 
course, the spaces are normed by the uniform norm Ilxlloo == sup{lx(t)l: 
t E Q}, and Co is a closed linear subspace of the Banach space m. We also 
define C1 == Ll(Q, J1, F) where J1 is the counting measure with domain 2f.!, 
the family of all subsets of Q. Note that m = L OO(Q, J1, F) but that in general 
(unless Q is countable) J1 is not CT-finite. 

If X and Yare two normed spaces we define the £P-product (X x Y)p 
to be the product space X x Y with the norm II(x, y)llp = 11(llxll, IlylDllp == 
(llxW + IlyW)I/P for 1 ~ p < 00 (a special case of formula (10.8)). We can 
now represent the dual spaces of Co, £1, and m. 

Theorem. a) c~ ~ C1 ; 

b) 1* ~ m; . 
c) m* ~ (ct X (Cot)l. 
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Proof. a) The congruence of this part (and of b)) is defined in the 
expected way; namely, given y E .e1 we define cPy E o~ by 

cPy(x) = Sxy dJl 
(16.15) == L x(t)y(t), XEOo· 

tEa 

Clearly, IlcPyll ~ LtEa I y(t) I == Ilylk Consider now any 'P E o~. We define 
a function y on Q by yet) == 'P(et ), where et == X{,}, t E Q. For each finite set 
E c Q define an operator T Eon 00 by T E(X) = XXE' Then T~ is an operator 
on o~ (16C) and 

<x, T~('P) = <T E(X), 'P) 

(16.16) = <~ x(t)et , 'P) = ~ x(t)'P(et ) 

== L x(t)y(t), X E CO· 
tEE 

Setting x(t) = ly(t)l/y(t) whenever yet) =ft 0 and x(t) = 0 otherwise, it follows 
from (16.16) and (16C) that 

II'PII ~ IIT~'PII ~ L ly(t)1 == JE Iyl dJl. 
tEE 

Thus y E .e1 and II Ylll ~ II 'P II. This proves that the map y 1---* cP y is a surjective 
congruence and completes the proof of a). 

b) The proof ofthis assertion is quite similar to that of a). The congruence 
from m onto .e 1* is defined as in (16.15) except that now y Em and x E C1• 

c) The notation o~ refers to the annihilator of 00 in m* when Co is 
considered as a subspace of m. The congruence is defined as follows: let 
y E .e 1 and ¢ E c~, then to this pair we associate the functional cPy, <p in m* 
defined by 

cPy, <p(x) = <y, x) + <x, ¢) == Ja xy dJl + ¢(x), x E m. 

Clearly IlcPy, <pI I ~ II yl It + II¢II· Consider now any 'P E m *. The restriction 
'Plco defines an element cPy of c5 (notation as in part a») for some y E C1 . 

We can then let ¢ = :p - 1m (y) and ¢ will belong to c~. Thus 'P = cPy, <p 
and so the mapping (y, ¢) f-* cPy , <p is linear and surjective. It remains to see 
that IlcPy, <pI I ~ Ilylll + II¢II· 

Let e > O. Since every integrable function on a measure space can be 
approximated in the mean (of order 1) by an integrable simple function, 
there is a finite set r c Q such that LW ly(t)1 < E. We define a function 
x E Co by 

x(t) = {sgn(y(t)), 
0, 

t E r 
otherwise 

so that Ilxlloo = 1. Next, we choose any Z E U(m) for which ¢(Z) > II¢II - e, 
and then put z == X!w' z. Then z has the properties that z E U(m), X· z = e, 
and ¢(z) = ¢(z), since z - Z E Co. Now the function x + z has unit norm 
in m and 

cPy,<p(X + z) = <x,y) + <y,z) + ¢(z) 
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since cfJ(x) = O. Thus 

II<py,</>11 ~ <Py,</>(x + z) > lIylll - 8 - 8 + IIcfJlI - 8 

= lIylll + IIcfJlI - 38. 0 
The preceding representation of m* is of somewhat limited usefulness 

when Q is of infinite cardinality due to the mysterious nature of the linear 
functionals belonging to Co. Iildeed, it is onlY'by means of non-constructive 
arguments such as the Hahn-Banach or separation theorems that we can 
even establish the existence of such functionals. An alternative perspective 
on Co can be gained by employing exercise 2.35 to identify m congruently 
with C(f3(Q), F), where f3(Q) is the Stone-Cech compactification of Q (Q being 
considered to have the discrete topology). Since the boundary of the unit 
ball U(co) is an extremal subset of U(m*), the extreme points of U(co) 
correspond via formula (13.9) to the functionals rdit E c(f3(Q), F)* where 
lal = 1 and t E f3(Q)\Q. 

I. We make two final remarks about reflexive spaces. First, we have 
defined a Banach space X to be reflexive if the canonical embedding J x: 
X ~ X** is a congruence between X and (all of) X**. It is important to 
stress that this definition requires that the congruence between X and X** 
be implemented by this particular mapping. For eXlmple, there is a non
reflexive Banach space Y (the "James space") whi~h is congruent to Y**. 
However, the canonical embedding Jy(Y) of Yin y** is a subspace of co
dimension one in Y**. In general, a Banach space who&e canonical image 
in its second conjugate space has finite co dimension is called quasi-reflexive. 
In analogy with the theorem of 16F it can be shown that X is quasi-reflexive 
if and only if X* is quasi-reflexive if and only if M and XjM are quasi
reflexive for some (hence every) closed linear subspace M c X (see exercise 
3.16). 

Second, reflexive spaces are an ideal setting for optimization problems 
involving norms. This is because every (non-empty) weakly closed set in a 
reflexive space is proximinal and, in particular, contains an element of 
minimal norm. This assertion follows from exercise 2.51. From 12A we then 
see that every closed convex set in a reflexive space is proximinal. Moreover, 
as we shall establish later in this chapter (19C), this last property is actually 
characteristic of reflexive spaces. 

§17. The Category Theorems 

In this section we present a collection of results of decisive importance 
in the theory of Banach spaces. Most are derived from a single basic fact 
(Lifshits' lemma) which in turn depends on the Baire category theorem. The 
section also contains a variety of applications of these and other results 
based on the Baire theorem (recall, in fact, that we have already had occasion 
in 16C and 16F to look ahead to the uniform boundedness principle of 17C). 
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A. We begin by reviewing the notions of category and the theorem of 
Baire. Let Q be a topological space. A subset A of Q is nowhere dense in Q if 

1nt(A) = ¢. 

Thus a closed subset A of Q is nowhere dense if and only if Q\A is dense 
(and open) in Q. From this we conclude that the closed nowhere dense sets 
in Q are the boundaries of the open sets in Q. Specific examples of such sets 
are (i) a finite set, {ii) the Cantor set in [0, 1], (iii) a rectifiable curve in Rn, 
and (iv) a closed proper affine subspace of a linear topological space. 

In general, any finite union of nowhere dense sets is nowhere dense. We 
define a set ofjirst category in Q to be a countable union of nowhere dense 
subsets of Q. All other subsets of Q are said to be of second category. Roughly 
speaking, sets of first category playa role in topology analogous to that of 
null sets in measure theory, although there is no direct overlap even in the 
case Q = [0, 1]. For although any countabie set (in any topological space) 
is of first category, there exists a first category subset of [0, 1] which has 
(Lebesgue) measure 1. (Namely, the union of a sequence of Cantor sets, the 
measures of which form a sequence increasing to one.) 

The topological space Q is a Baire space if the complement of every first 
category subset of Q is dense in Q. Such subsets are called residual sets in 
Q. Since a set of first category in a Baire spa ~e Q can have no interior, it 
follows that any residual subset of Q (in p::>rticular Q itself) is of second 
category (as well as dense in Q). Also, any open subset of a Baire space is 
clearly a Baire space. Finally we can apply DeMorgan's rules of set theory 
to deduce that Q is a Baire space if and only if the intersection of any countable 
family of dense open subsets of Q is itself dense in Q. 

In the applications we typically use the following property ofBaire spaces: 
if a Baire space Q is the countable union of closed subsets An then some one 
of the An has non-empty interior. In fact, Un int(An) is dense in Q. To see this 
we let B equal the union of the boundaries of the Am so that B is a set of 
first category in Q. It follows that Un int(An) contains the residual set Q\B. 

For the purposes of functional analysis the most important Baire spaces 
are those topological spaces Q whose topology is defined by a complete 
metric (or pseudo-metric). This is the content ofthe "Baire category theorem". 

Theorem. Let Q be a complete metric (or pseudo-metric) space. Then Q 
is a Baire space. 

Proof. Let {(Db (D2' ... } be a sequence of dense open subsets of Q and 
let (D be an open ball in Q of radius r > 0. We must show that (On (Dn) n (D 
is not empty. Now there exists t1 E (D n (D1 such that (D n (D1 contains the 
ball B1 at t1 of positive radius r1 < r/2. Next, there exists t2 E B1 n (D2 such 
that B1 n (D2 n (D1 n (D contains the ball B2 at t2 of positive radius r2 < 1"/4. 
Proceeding inductively we find a point tn E Bn- 1 n (Dn and a positive number 
rn < r/2n such that the ball Bn at tn of radius I"n is contained in Bn - 1 n 
(Dn n ... n (D1 n (D. The sequence Bb B2 , • •• is a nested sequence of sets 
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whose diameters tend to 0. By virtue of the completeness of Q we can conclude 
that there is a point common to all the Bn and hence to all the sets (!)n and 
(!). 0 

In exercise 3.17 it is to be shown that any locally compact Hausdorff 
space is also a Baire space. 

B. The Baire category theorem can be used to provide non-constructive 
existence proofs in somewhat the same way as the various versions of the 
Hahn-Banach and separation theorems. However, there is a difference in that 
the Baire theorem is applied after showing that the desired object belongs 
to a residual set in some Baire space; it is then concluded that the objects 
being sought comprise a large subset (precisely, dense subset of second 
category) of the particular Baire space. In other words the Baire theorem 
does not produce examples one by one but, so to speak, in bunches. 

An interesting and classical illustration of the t~chnique is provided by 
the problem of the existence of continuous functions on [0, 1 J that are 
nowhere differentiable. Examples of such functions have been known for a 
long time; the original example 

f(t) = I bn cos(annt) 
n=O 

where a is an odd integer and b satisfies ° < b < 1, ab > 1 + 3n/2 was 
given by Weierstrass. The nature of this and similar examples as contrasted 
with the familiar smooth functions encountered in calculas tends to suggest 
that such examples are the exception rather than the rule. But in fact the 
actual situation is quite the reverse. We are going to see that the class of 
nowhere differentiable functions in C == q[O, 1J, R) is a residual set there, 
so that we should be surprised in some sense whenever we encounter a 
function that is differentiable at a single point in [0, 1 J, let alone one that 
is, say, of class C1. 

The precise statement that we prove is the following: let En be the subset 

of C consisting of those functions f such that for some t E [0, 1 - ~) and 

every hE (o,~} we have 

(17.1) If(t + '~ - f(t)1 ~ n. 

We claim that for n = 1,2, ... , En is a nowhere dense subset of C. Granting 
this is follows that E == Un En is a set of first category. But any function 
with even a finite right-hand derivative at some point in [0, 1J must belong 
to E. 

The proofthat each ofthe sets En is nowhere dense is achieved by showing 
that each En is closed in C and has a dense complement. The closure of En 
follows from the observation that the set En, h of j's satisfying inequality 
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(17.1) for some t E [0, 1 - ~) and for a fixed hE ( 0, ~) is closed under 

uniform convergence, and so En = n { En, h: ° < h < ~} is also closed. 

Next, select any f E C and any E > 0. We shall find 9 E C\En such that 
Ilf - glloo < 2e and thereby show the density of C\En- To construct such a 
9 we first find a polynomial p such that IIf - pllco < E (classical Weierstrass 
theorem). We then let q be a continuous function satisfying IIqlloo < E and 
Iq'(t) I > n + 211p'1100 for all but finitely many t E [0,1]' For example, p could 
be a piecewise-linear (saw-tooth) function, the straight line segments of whose 
graph have sufficiently large slope (in absolute value). Now we set g = p + q; 
clearly IIf - glloo ~ IIf - plloo + IIqlloo < 2e. On the other hand, if we 

select any t E [0, 1 - ~) and choose h > ° sufficiently small we see tha~ 

Ip(t + h) - p(t)1 ,,::: I' '11 
h "'" ,P 00' 

Iq(t + hh - q(t)1 > n + 2I1p'lIoo, 

whence 

Ig(t + h) - g(t)1 >-Iq(t + h) - q(t)I_lp(t + h) - p(t)1 
h ::-- h h >n, 

which proves that 9 E C lEn-

C. Let X be a Banach space and f E Conv(X). It was remarked in 14A 
that if it is known that f is lower semi-continuous on X then actually f is 
continuous. We can see this by noting that 

00 
X X Rl = U (epi(f) - (8, n)). 

n=l 

Since epi(f) is closed on account of the lower semicontinuity of f (14A), 
this formula and the Baire category theorem imply that some translate of 
epi(f), and hence epi(j) itself, is solid. Consequently, by 14A again, f is 
continuous. (See exercise 3.50 for a further generalization.) 

We are now ready for the first of the important category theorems known 
as the "principle of uniform boundedness." 

Theorem. Let X be a Banach space, Y a normed linear space, and let 
'§ c B(X, Y). Then the following assertions are equivalent: 

a) sup{IITII: T E '§} < 00; 

b) sup{IIT(x)II:TE'§} < 00, XEX; 
c) sup{I<T(x),l/I>I:TE'§} < 00, XEX, l/IE Y*. 

Proof. Trivially a) implies b) and c). Assume that b) holds and define 
fT(X) = IIT(x)lI, T E '§. The functions fT are continuous and sublinear on X 
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and our hypothesis guarantees that 

f(x) == sup{fT(x):TE~}.< 00, XEX. 

Now f, as the supremum of a family ofc:mtinuous convex functions on X 
is a lower semicontinuous convex function on X, and hence is continuous. 
In particular, there exists f> > 0 such that 

Hence 
sup{IIT(x)ii: T E~} ~ 1, 

1 
sup{IIT(x)ll: T E~} ~ J,llxll, 

Ilxll < f>. 

XEX, 

and so sup{IITII: T E~} ~ l/f>. Thus b) implies a). Finally, assume that 
c) holds and fix x EX. Then the function 

1/1 f-+ sup {I (T(x), 1/1> I: T E ~} 

is continuous on Y*. As before, there exists f> > 0 such that 

111/111 < f>. 
Therefore, 

IIT(x)11 = sup {1<T(x), 1/1>1:111/111 = 1} ~ 1/f>, TE~. o 
Corollary. a) Let A be a subset of a normed linear space X. If 

sup {Icf>(x) I: x E A} < 00 for all cf> E X*, then A is a bounded set. 
b) Let B be a subset of X* where X is a Banach space. If sup {1cf>(x)l: 

cf> E B} < 00 for all x E X, then B is a bounded set. 
The corollary may be paraphrased by stating that any weakly bounded 

subset of a normed linear space is bounded, and any weak*-bounded set in 
the conjugate space of a Banach space is bounded. The assumption of com
pleteness of X in part b) here is vital: recall that in 12E an example was 
given of an unbounded weak*-convergent sequence in the conjugate space 
of an incomplete normed space. 

Example. Let X be a Banach space. Then X* is weak*-quasi-complete. 
Indeed, if B is any weak*-closed and bounded subset of X* then by the 
preceding corollary B is (norm)-bounded. Hence B is weak*-compact (12D) 
and a fortiori B is weak*-complete. This result was promised in 12G and 
complements the negative result given there concerning the failure of (infinite) 
dimensional) conjugate spaces to be weak*-complete. 0 

D. Here we take a slightly deeper look at the equivalence of parts 
a) and b) of the principle of uniform boundedness. With the notation of 
17C suppose that ~ is an unbounded set in B(X, Y), that is, we suppose 
that part a) is not valid. Then it follows that the set of x E X for which 
sup{IIT(x)ll: T E~} = 00 is a residual set in X. Indeed, its complement M 
is a linear subspace of X which can be expressed as the union of the closed 
setsMk == {x E X:'IIT(x)11 ~ k, T E ~}; since~isby assumption unbounded, 
none of the sets M~ can be solid, and therefore M is of first category. 
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This type of refinement of the uniform boundedness principle leads us to 
the classical result known as the "principle of condensation of singularities". 

Theorem. Let X, Yb Y2, •• -. be normed linear spaces with X complete 
and let rg n C R(X, Yn ) for n = i, 2, .... If rg n is unbounded for each n then 
the set 

(17.2) {xEX:supIlT(x)JI = W,n = 1,2, ... } 
Te'iJ o 

is a residual set in X. 

Proof. Put 
An = {x E X:sup IIT(x)1I < w} 

Te!!i, 

By hypothesis each An is a proper subset of X and the argument just 
given above shows that An is a set of first category in X. Consequently 
u{An:n = 1,2, ... } is of first category and therefore its complement, which 
is exactly the set in (17.2), is a residual set in X. 0 

In practice the set rg n usually consist of a sequence {T m, n: m = 1, 2, . , . } 
of operators in R(X, Yn), and we are able to find a point Xn in X such that 

lim sup IITm,n(xn)11 = W 
m-+oo 

for each n. We may then conclude that 

{x EX : lim sup IITm, n(x) I I = 00 for all n} 
m-+ 00 

is a residual set in X. 

Example. A classical application of the principle of condensation of 
singularities is to the problem ofthe pointwise convergence of Fourier series. 
We consider elements x of the Banach space Ll = U([ -n, n], fl, R) where 
fl is Lebesgue measure. For each such x the Fourier coefficients of x are 

1 (" 
ak = ak(x) = -, x(t)cos kt dt 

n" -" 

and we let 

1 ftt bk = bk(x) = - x(t)sin kt dt 
1t -" 

m 

Sm(t; x) = L ak cos kt + bk sin kt, -n ~ t ~ n, 
k=O 

be the mth-partial sum of the Fourier series of x. 
We recall that if x E L2 then the Fourier series converges to x in the mean 

of order 2: 
lim IISm('; x) - xl12 = O. 

m--"'oo 
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Thus for large m the trigonometric sums Sm(·; x) represent x satisfactorily 
in a mean square sense. In particular, a subsequence of {Sm(·; x)} will con
verge pointwise a.e. to x. However, this approach yields no information as 
to whether 

(17.3) lim Sm(t; x) = x(t) 
m->oo 

for a particular t E [ - n, n]. Of course this is not really a well-defined question 
as x is itself only defined to within a.e. equivalence. Therefore, let us specialize 
to the case x E C2,,' the (closed) subspace of C([ -n, nJ, R) consisting of 
functions with equal values at t = - nand t = n. Thus C2" can be thought 
of as the linear space of real2n-periodic continuous functions on R; equipped 
with the uniform norm C2" is a Banach space. 

In this setting it is known that the pointwise convergence (17.3) takes 
place under a variety of further hypothe~es on x; for example, it is valid if 
x is of bounded variation on a neighborhood of t ("Jordan's test"). But 
continuity alone is definitely inadequate as we shall now see. Let {tb t2, ... } 
be an arbitrary (possibly dense) sequence in [ -n, n]. We shall prove that 
there exists x E C2" whose Fourier series diverges on an uncountable subset 
D of [ - n, n J, and that D can be chosen to contain the sequence {t b t 2, ... }. 

We recall that 

1 f" Sm(t; x) = 2 x(s)Dm(s - t)ds 
n _" 

where 
m 

Dm(u) == 1 + 2 I cos ku 
k=O 

sin (m + D u 
sin (~) 

is the Dirichlet kernel. According to exercise 3.19 Sm(t; .) is a bounded linear 
functional on C 2" with 

(17.4) 

Next we show that 

lim S'=-" IDm(S - t)1 ds = 00. 
m->oo 

Indeed, 

f" IDm(s - t)1 ds = 2 Jn~1 ISin(2~ + l)UI du ~ 2 J7[~1 Isin(2m + 1)ul du 
_" -7[-1 SIn u -7[-1 lui 

2 2 
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In-t (k+l)n 
2m T+2m+i 

=2" L.. -1t-t kn 
k=O --+-

2 2m+1 
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Isin(2m + l)UI d 
lUi U 

~ 2 I[n - t + (k + l)n]-l r Isin(2m + l)ul du 
k=O 2 2m + 1 Jsame 

2m 1 
~2cL--·, 

k=O k + 1 

where c is an appropriate positive constant. It follows that {Sm(t; '):m = 
1, 2, ... } is not a bounded subset of C!" for any given t E [ - n, n] and 
hence, by the uniform boundedness principle, there exists some x E C2" 

whose Fourier series diverges at t. 
Now consider the sequence {Sm(tn; .)} in C!". The principle of condensa

tion of singularities implies that 

{ X E C2,,:lim sup ISm(tn; x)1 = w for all n} 
m-+oo 

is a residual set in C2m and evidently the Fourier series of every x in this 
set diverges at each tno Select any such x and put 

D = {t: - n :( t :( n, lim sup I S'm(t; x)1 = w}; 
m-+oo 

we wish to show that D is uncountable. Let 

Dm,k = {t: -n :( t:( n, ISm(t; x)1 :( k}, 
Dk = n{Dm,k:m = 1,2, ... }. 

By continuity each Dm, k is closed, hence so is Dk. We claim that each Dk is 
a set of first category. Granting this it follows that u {Dk: k = 1, 2, ... } is 
also of first category; but this set contains the set of all t at which the Fourier 
series of x is convergent. Thus the set of t at which the Fourier series diverges 
contains a set of second category in [ - n, n] and such a set is necessarily 
uncountable. 

To prove that each of the sets Dk is of first category we assume that the 
sequence {tn } is augmellted (if necessary) by an additional sequence so as to 
be dense in [ - n, n]. Then if Dk were not of first category it would not, in 
particular, be nowhere dense, and so, being closed, it would contain a non
trivial interval. Hence ISm(t; x)1 :( k for all m = 1,~, ... and all t in this 
interval. But this is a contradiction since any interval must contain one of 
the points tn and each tn E D. 0 

E. The remaining category theorems will be derived from the following 
basic geometric principle due to Lifshits. If X is a linear topological space 
a subset A of X is called ideally convex if for any bounded sequence {xn} c A 

00 00 

and sequence {An} of non-negative numbers with L An = 1, the series L AnXn 
1 1 

either convefJ~es to an element of A, or else does not converge at all. One 
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general reason for the usefulness of such sets is that they satisfy certain 
preservation rules analogous to those for general convex sets; such rules are 
assembled in exercise 3.70. Further, we can note that any convex set which 
is either open or closed is ideally convex,and that if X is finite dimensional, 
any convex set is ideally convex. 

We come now to the fundamental lemma of Lifshits. 

Lemma. Let A be an id'!ally convex subset of a Banach space X. Then 

(17.5) int(A) = cor(A) = cor(A) = int(A). 

Proof. As remarked in 14A it is a consequence of the Baire category 
theorem that the core of any closed convex set (such as A) is equal to its 

00 

interior. Indeed if p E cor(A) then A - p is absorbing and so X = U n(A - p). 
I 

Hence A - p is solid by Baire's theorem. Therefore, by llA, BE cor(A - p) = 

int(A - p) whence p E int(A). Now to complete the proof of (17.5) it will 
suffice to show int(A) c int(A). 

Suppose that p E int(A); without loss of generality we may assume that 
p = B. Then for some " > 0 we have B == "U(X) c A. Hence B cAn 
B c A nBc (A n B) + tB (9A). Consequently, for any 15 > 0 we have 

(17.6) 
15 

15B c 15(A n B) + "2 B. 

Now consider any x E tB, that is, Ilxll ~ !. By (17.6) there exist Xl E A n B 
and YI E iB such that x = tXI + YI. Proceeding inductively using (17.6) 
with 15 = i, t, ... , we obtain the sequences {xn} cAn Band {Yn} c 
2-(n+1)B for which 

But then 

00 

whence x = I rnXn and therefore, by the ideal convexity of A, x E A. This 
I 

proves that the B-neighborhood tB lies in A and so completes the proof. 0 
F. Let X and Y be normed linear spaces, and let T be a linear map 

defined on a subspace D(T) c X and taking values in Y. The graph of Tis 
the linear subspace of X x Y defined by 

gr(T) = {(x, T(X)):XED(T)}. 

We say that T is closed on X if gr(T) is a closed subspace of X x Y (in the 
product topology). We leave the proof of the following simple lemma as 
exercise 3.20. 

Lemma. a) T'is closed on X if and only if {xn} c D( T), limn Xn = X E X, 
and limn T(xn) = yimply x E D(T) and T(x) = y. 
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b) If T is closed on X and injective then T- I is closed on Y. 
c) If T is closed on X then ker(T) is a closed subspace of X. 
d) If D(T) is a closed subspace of X and T is continuous then T is closed 

onX. 
The notion of closed linear maps is used extensively in the theory of 

ordinary and partial differential equations, where it often serves as an 
effective substitute for the more familiar notion of continuous linear maps. 

Example. The simplest kind of differential operator is the map T = :t 

defined on D(T) == C1([O, 1J, R) c X == C([O, 1J, R) == Y. Thus for each 
continuously differentiable x E X we have 

T(x)(t) == x'(t). 
T is certainly not continuous on D(T) since if Pn(t) == tn, n = 1, 2, ... , we 
havellpnlloo = 1andIIT(Pn)1100 = sup{ntn-I:O ~ t ~ 1} = n.Butwec1aim 
that T is closed on X. To see this, suppose that Xn E D(T) and that limn Xn = 
x, limn T(xn) = y. By definition this means that {xn} converges uniformly to 
x and that {x~} converges uniformly to y on [0,1]' It follows that 

x(t) - x(O) = lim(xn(t) - xn(O» 

= lim J~ x~(s)ds = J~ y(s)ds, o ~ t ~ 1, 

whence x E D(T) and y = x' == T(x). 0 
We shall not pursue this area of application of closed linear maps any 

further. Rather we shall proceed directly to the famous result which allows 
us to prove that certain closed linear maps are necessarily continuous. This 
fact, known as the "closed graph theorem" has a number of useful and 
surprising consequences, as we shall soon see. 

Theorem. Let X and Y be Banach spaces and suppose that the linear 
map T:X -'> Y is closed on X. Then T E B(X, Y); that is, T is continuous. 

Proof. To show that T is continuous at e (and hence at every point in 
X) it will suffice to prove that e is interior to T-I(U(Y». Now this set is 
certainly absorbing so we can complete the proof via Lifshits' lemma (17E) 
by showing that T - I( U( Y) ) is ideally convex. To do so we select a bounded 
sequence {xn} for which IIT(xn)11 ~ 1 and a sequence {A.n} of non-negative 

00 00 

numbers with LAn = 1. Let x = L Anxn; we must show that IIT(x)11 ~ 1. 
I I 
00 

Now the series L }'n T(xn) is absolutely convergent, hence convergent to some 
I 

element y E Y (exercise 3.lb). Because T is closed it follows that 
00 

T(x) = Y == I An T(xn), 
n= I 

00 

from which it is clear that IIT(x)11 ~ LAn = 1. o 
I 
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A most important consequence of this theorem is the following "inverse 
mapping theorem". 

Corollary 1. Let T be a continuous algebraic isomorphism between 
Banach spaces X and Y. Then T is a topological isomorphism. 

Proof. It must be shown that the inverse mapping T- 1 is continuous. 
By hypothesis T -1 is defined on all of Y and is closed on Y by part b) of 
the preceding lemma. Therefore, T -1 is continuous by the closed graph 
theorem. 0 

G. We give two more general operator-theoretic consequences of the 
method of ideally convex sets (an application of a different nature occurs in 
exercise 3.71). The first of these is known as the "open mapping theorem", 

Theorem. Let X and Y be Banach spaces and suppose that T E B(X, Y) 
is surjective. Then 

a) T is an open mapping; and 
b) there exists a constant y > 0 such that to every y E Y there corresponds 

an x E X with T(x) = y and Ilxll ~ yllyll. 

Proof. a) Because T is surjective the set T( U(X» is absorbing. Since 
this set is easily seen to be ideally convex it follows from Lifshits' lemma 
(17E) that () E int( T( U(X) ». Hence, from the linearity of T, it follows that 
the T-image of any open ball in X is open in Y, and consequently that T 
is an open mapping. 

b) By what we have just shown there exists a (j > 0 such that aU(Y) c 

T(U(X». Hence for any non-zero y E Y there is some X E U(X) such that 
T(x) = (jy/llyll. If we put x = Ilyllx/(j we see that T(x) = y and Ilxll :::; 
Ilyil/(j == YIIYII· 0 

Corollary. Let X and Y be Banach spaces and suppose that T E B(X, Y) 
has a dense but proper range in Y. Then there exists y E Y with the property 
that whenever limn T(xn) = Y it follows that limn Ilxnll = + 00. 

Proof. If no such y exists then the set T(U(X» is absorbing. By 17E 
then, the set T(U(X») is a 8-neighborhood and consequently T is surjective. 
This is a contradiction. 0 

H. A mistake that occasionally occurs in applications of the open 
mapping theorem is the assumption that, because a linear mapping trans
forms open sets into open sets, it necessarily transforms closed sets into 
closed sets. Of course this would be true if the closed set were compact. 
Otherwise, the simplest examples in R2 show that it is possible to have a 
closed convex set map into a non-closed set. Specifically we may let T be 
the orthogonal projection of W onto R 1 (T(x, y) == (x, 0» and let A = 

{(x, y) E R2:X > 0, xy ~ I}. Then A is the closed region in the first quadrant 
bounded by a branch of the hyperbola xy = 1, and T(A) is the positive 
x-axis {(x, O):x > O}, which is not closed. 



142 Principles of Banach Spaces 

If we specialize our closed set further by assuming that it is an affine 
subspace then its T-image will also be an affine subspace. Thus we can 
assert that the linear image of any finite dimensional affine subspace is closed 
(using 9E). But without the finite dimensionality restriction this assertion too 
can fail. This will prove to be a particular consequence of the following 
general necessary and sufficient condition. 

Lemma. Let X and Y be Banach spaces and let T E B(X, Y) be surjective 
with kernel N. Then a subset A of X has the property that T(A) is closed in 
Y if and only if A + N is closed in X. 

Proof. The key to the proof is once again the factorization T = T 0 QN. 
If T(A) is closed in Y then certainly T-l(T(A» is closed in X, since T is 
continuous. But T-1(T(A» = Q;l(QN(A» = A + N. Conversely, assume 
that A + N is closed in X. We must show that QN(A) is closed in X/N, 
as then T(A) = T(QN(A» will be closed in Y because T is an isomorphism 
(17F). Suppose that we have {xn} c A such that limn QN(Xn) = QN(X) for 
some x E X. Then limn d(xn - x, N) = 0 and we must see that QN(X) E QN(A), 
or that x E A + N. But we have sequences {zn} c Nand {en} c X, with 
limn en = e, such that Xn - x - Zn = en or Xn - Zn = X - en" Since {xn -
zn} c A + N which is closed, we have x = limn(x - en) E A + N. 0 

Example. Let X = CZ(~o), let Y be the subspace of X consisting of 
sequences with zero components in the cdd numbered places, and let 
T E B(X, Y) be defined as that operator which multiplies each x E X by 
the characteristic function of the even integers: 

T«(1, (Z, (3, (4,·· .» = (0, (Z' 0, (4' 0, ... ). 

Then N == ker(T) = {x = «(1' (z, ... ) E X:(even = O}. Let 

A = span {(cos~) X + (sin~) X :n = 1,2, ... }. n {2n-l} n (Zn) 

Then A + N is not closed in X (exercise 3.25) and so T(A) cannot be closed 
~y 0 

The preceding lemma leads to another interesting question which we 
discuss briefly. Narriely, given a Banach space X, which subsets A of X have 
the property that T(A) is always closed whenever T:X -. Y is a surjective 
operator and Y is a Banach space? Certainly the compact subsets of X have 
this property. A satisfactory answer is known only under certain restrictions: 
X is finite dimensional and A is considered a priori to be both convex and 
closed in X. Under these restrictions we say that a half-line LeX is a 
boundary ray (resp. asymptote) of A if L c o(A) (resp. if L c X\A but 
dist(A, L) = 0). Suppose that A has no boundary ray or asymptote. Then 
it can be proved that A + N is closed in X for any closed convex set N-c X 
(exercise 3.26). In particular, when N = ker(T), we see that T(A) must be 
closed in Y. 
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Finite dimensional convex sets A in R" lacking both boundary rays and 
asymptotes are called continuous convex sets, because they can be alterna
tively characterized as sets whose support function (J A is continuous on the 
unit sphere: 

(JA(U) == sup{(x,u):xEA}, 

The simplest example of a continuous but non-compact convex set is (the 
closure of) the region in R2 interior to a parabola. 

We shall return to this general problem below in 21B when we discuss 
spline minimization problems. In particular, we shall see some examples 
of infinite dimensional non-compact sets whose continuous linear image in 
a Banach space is always closed. 

I. We now give a simple but useful application of the category theorems. 
Many other applications occur in later sections and in the exercises. 

Let the normed linear space X be the direct sum of two subspaces M 
and N, X = M EB N, and let P:X --+ M be the associated projection: 

P(m + n) == m, mEM, nEN. 

In exercise 2.2 it was shown that if P is continuous then M and N are 
necessarily closed in X (indeed, N = p- 1(e), etc.}. Of greater interest is the 
converse, which is valid under a completeness hypothesis. 

Theorem. Let X be a Banach space. If X = M EB N where M and N 
are closed subspaces of X, then the associated projection is continuous. 

Proof. By the closed graph theorem (17F) it is sufficient to show that 
P is closed on X. Thus suppose that lim" x" = x E X and lim" P(xn} = Y E M. 
Then limn(xn - P(xn)} = X - YEN. Hence x = y + (x - y) yields P(x) = 

P(y) = y, which proves that P is closed on X. 0 
An alternative proof can be based on par~ c) of exercise 2.2 and the open 

mapping theorem (17G). Also we note that if we define the angle between 
the (disjoint) subspaces M and N to be 

y(M, N) == inf{lIm - nll:m E M, n E N, Ilmil = IInll = 1} 
then 

(17.7) 

Indeed, for any unit vectors m E M, n E N, we have 

IIPlilim - nil ~ IIP(m - n)11 = IImll = 1. 

Inequality (17.7) establishes (for Banach spaces) the converse ofthe assertion 
made at the end of 150. Thus: 

Corollary. Let M and N be disjoint closed subspaces of a Banach space 
X. Then M EB N is closed in X exactly when y(M, N) is positive. 

J. Our final topic of this section is a striking application of the Baire 
category theorem, due to Lindenstrauss and Phelps. We consider a solid 
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closed convex subset A of a Banach space X and again raise the question: 
does A have any extreme points? We shall assume that A is bounded to rule 
out examples such as a half-space which has no extreme points. Even so, 
ext(A) may still be empty as we know (exercise 2.30). However, if we further 
assume that X is reflexive, then ext(A) # 0 by virtue of the Krein-Milman 
theorem. As we now see, it turns out that quite a stronger assertion is true, 
if X has infinite dimension. 

Theorem. Let X be a real reflexive Banach space of infinite dimension. 
If A is a solid, closed, bounded and convex subset of X then ext(A) is un
countable. 

Proof. Suppose that the theorem has been proved whenever A is the 
unit ball in a reflexive space. Then given A and X as in the theorem, let Y 
be the reflexive space X x R1 with norm II(x, t)11 == max{llxll, Itl}. Let 
A1 = {(X,1):XEA} and define B=co(A1U(-A1)). In Y, B is a solid 
absolutely convex bounded set and hence its gauge is an equivalent norm 
on Y. So normed, Y is still reflexive and now U( Y) = B. Therefore, ext(B) 
is uncountable. Since ext(B) = ext(A1) u ext( - A 1) == ext(A1) u - ext(A1) 
(formulas (2.1) and (13.1)), it follows that ext(A1) is uncountable. But 
ext(A1) = {(x, 1):x E ext(A)}, so that ext(A) is also uncountable. 

Thus the proof is reduced to the case A = U(X). SupposP. that ext( U(X) ) 
is countable: ext(U(X)) = {XbX2' ... }. Let Gn = {4>E U(X*):I4>(xn)1 = 
114>11}; these sets are weak*-closed subsets of U(X*) and hence are weak*
compact (12D). Since U(X) is weakly compact (16F), each 4> E X* attains 
its supremum on U(X) at an extreme point (13A), and so U(X*) = Un Gn
By the Baire category theorem some Gm say G1 , has non-empty interior 
relative to the weak topology on U(X*). Let 4>0 belong to this interior. Since 
scalar multiplication is weakly continuous, we can assume that 114>011 < 1. 
Now there exist Zb ... , Zm E X such that 4> E G1 whenever 114>11 :::;; 1 and 
I <Zj, 4> - 4>0>1 < 1,j = 1, ... , m. Let Vbe the flat {4> E X*:4>(Zj) = 4>o(z), 
j = 1, ... , m, 4>(x1) = 4>0(x1)}. Because V has finite codimension in the 
infinite dimensional space X*, there exists 4>1 E V, 4>1 # 4>0, and 4>t == 4>0 + 
t(4)1 - 4>0) E V for all t. Since 114>011 < 1 there exists t such that II4>tll = 1. 
But now 4>t E G1 and so 1 = II4>tll = l4>t(x1)1 = 14>0(x1)1 :::;; 114>011 Ilxdl = 
114>011· This is a contradiction to 114>011 < 1. 0 

This theorem does not initially appear to be of interest for complex 
spaces since, for example, if x E ext(U(X)) then IXX E ext(U(X)), for all IX, 
IIXI = 1. Thus if there are any extreme points at all, there are uncountably 
many. However, if we say that two extreme points x and yare equivalent 
provided that y = IXX for some IIXI = 1, then the theorem directly implies 
that if X is reflexive and infinite dimensional there must be uncountably 
many such equivalence classes of extreme points. 

The theorem has various implications, some of which we mention now 
(see also exercise 3.59). First, suppose that A and X are as in the theorem, 
and that X is also separable. Then ext(A) cannot consist entirely of isolated 
points. This is because any set of isolated points in a separable metric space 
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is necessarily countable. Surprisingly enough, this consequence fails in 
general: there are inseparable reflexive spaces for which every pair x, y of 
distinct extreme points of the unit ball satisfies Ilx - yll ~ (j for some 
constant (j > o. 

There is a class {X} of real Banach spaces with the property that any 
three balls in X will intersect if each two of them intersect. This class contains 
all C(Q, R) and L l(Q, /1, R) spaces but does not contain, for example, any 
Euclidean space (Rn, 11·112). It is known that every space in this class contains 
a separable subspace again in the class. It is also known that if X belongs to 
this class and if x E ext(U(X)), cP E ext(U(X*), then Icp(x) I = 1. Now, given 
any pair x, y E ext(U(X)), there is some cP E ext(U(X*)) for which cp(x) i= cp(y) 
(13B), whence Ilx - yll ~ Icp(x - y)1 = 2. It follows that ext(U(X)) consists 
of isolated points and so no infinite dimensional space in this class can be 
reflexive. 

§18. The Smulian Theorems 

In this section we establish two of the most profound and useful theorems 
in normed linear space theory. These are the Eberlein-Smulian theorem 
characterizing weakly compact subsets of normed spaces and the Krein
Smulian theorem characterizing weak*-closed convex subsets of the conju
gate space of a Banach space. 

A. Let Q be a topological space. A subset A of Q is called (relatively) 
countably compact if every sequence in A has a cluster point in A (in Q). 
If Q is metrizable this property of the subset A is equivalent to the (relative) 
compactness of A and to the (relative) sequential compactness of A. Further, 
in the metrizable case, A is then sequentially dense, meaning that every point 
in .if is the limit of a sequence of points in A. 

Supposed now that X is a normed linear space and that Xw is the topo
logical space obtained by endowing X with the weak topology a(X, X*) 
(12A). According to exercise 3.29 this topology is not metrizable unless X 
is finite dimensional. Nevertheless it turns out that the three types of compact
ness indicated above are equivalent properties of any subset of X w' and 
further any subset having these properties is weakly sequentially dense. We 
now set out to prove this assertion; along the way we shall establish a few 
other equivalent properties of subsets of X w-

Lemma Let X be a normed linear space such that X* contains a countable 
total subset. If A is a weakly compact set in X thert the (relative) weak topology 
on A is metrizable. 

Proof. Let {¢t> ¢z, ... } be the countable total subset of X*. Without 
loss of generality we can assume that II¢nll = 1 for all n. We define a norm 
p on X by 

00 

p(x) = L rnl¢n(x)l; 
n=l 
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clearly p::O; 11'11. Now the set A, being weakly compact, is in particular 
weakly bounded and hence norm bounded (17D). Hence the identity map 
from A in its (relative) weak topology to A in its (relative) p-topology is 
continuous and therefore isa homeomorphism (because A is weakly 
compact). 0 

The use of the norm p and the subsequent argument are quite analogous 
to the corresponding features of the c;larkson-Rieffellemma of ISC. Observe 
that the lemma applies to any space X which is either separable or conjugate 
to a separable space (for example, X = nih). 

Corollary. Let A be a weakly compact subset of the normed linear space 
X. Then A is weakly sequentially compact~ 

Proof. Let {xn} be a sequence in A. We must show that some sub
sequence converges weakly to a point in A. Let M = span( {xn}). Since M is 
weakly closed (12A) the set A (\ M is a weakly compact subset of the sepa
rable space M. By the lemma, then, A (\ M is weakly metrizable in M. Hence 
{xn} contains a subsequence that converges weakly to a point in A (\ M. Ob
viously this subsequence is also convergent in the weak topology on X. 0 

We next show that weak sequential compactness is equivalent to several 
other properties of subsets of normed spaces. 

Theorem. Let X be a real locally convex space and A c X. Then each 
of the following properties implies its successor. If X is normed all the properties 
are equivalent. 

a) A is weakly sequentially compact; 
b) A is weakly countably compact; 
c) for any sequence {xn} c A there exists x E A such that 

(18.1) 

d) if {Cn} is a decreasing sequence of closed convex sets in X such that 
A (\ Cn i= 0 for all n then A (\ ( nn Cn) i= 0; 

e) if M is a separable closed linear subspace of X and {Hn} is a sequence 
of closed half-spaces such that A (\ M (\ H 1 (\ ... (\ Hn i= 0 for every n 
then A (\ M (\ mn Hn) i= 0· 

Proof. Directly from the definitions involved a) implies b). Now given 
a sequence {xn} c A, any cluster point x of this sequence will meet the 
requirements of c). To see this select any ¢ E X* and let r = limn ¢(xn). If, 
for some 8 > 0, ¢(x) > r + 8, then for infinitely many n we would have 
¢(xn) > r + 8, contradicting the definition of r. This proves the right-hand 
side of (18.1) and the proof of the left-hand side is analogous. Next, assume 
that c) holds and for each n choose Xn E A (\ Cn- Then we claim that the x 
of (18.1) corresponding to the sequence {xn} belongs to A (\ mn Cn). Indeed, 
part of the conclusion of c) is that x E A. Further, if x 1= Cn for some n then 
by the strong separation theorem (UF) there exists ¢ E X* such that 

¢{x) > sup {¢(x):x E Cn} ;?; sup {¢(x):x E Cn+d ;?; "', 
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whence limn ¢(xn) < ¢(x), contradicting (18.1) and proving d). It is clear 
that d) implies e) if we take en == M II HI II'" II Hn" 

It remains to show that e) implies a) if X is normed. Let {xn} be a sequence 
in A and put M = span( {xn}). Then M is separable and hence there exists 
a total sequence {¢m} in M*. Now we note that A is weakly bounded (if not, 
then for some ¢ E X*,sup{¢(X):XE A} = oo;settingHn = {XEX:¢(X) ~ n}, 
the sequence {Hn} would then satisfy e) yet nn Hn = 0). In particular, for 
each m the sequence {¢m(xn)} is bounded. The Cantor diagonal process now 
yields a subsequence {Yn} of {xn} such that Cm == limn ¢m(Yn) exists for every m. 

We next claim that there exists YEA such that Cm = ¢m(Y) for every m. 

This follows from e) by arranging the half-spaces {XEX: ±(¢m(x) - cm) ~ n, 
(k, m = 1,2, ... ) in a sequence {Hn} and using the vectors Yn; it follows that 
A II M II mn Hn) of. 0 and we can take Y to be any point in this intersection. 

We complete the proof by showing that weak-limn Yn = y. For this it 
will suffice to prove that for every ¢ E X* limn ¢(Yn - y) ~ ° (since then it 
will follow that limn ¢(Yn - y) ~ 0, whence limn ¢(Yn - y) = 0). If not, 
there exists some ¢ E X*, some t: > 0, and a subsequence {zn} of {Yn} such 
that ¢(zn) ~ ¢(y) + dor all n. Let H be the half-space {x EX: ¢(x) ~ ¢(y) + 
t:} and adjoin H to the sequence {Hn} above. Then for each n, A II H II 
HI II' .. II Hn contains terms of {zn}, so that bye) again there exists a point 
Z E A II M II H II (nn Hn). For this Z we have 

(18.2) ¢m(Z) = lim ¢m(zn) = lim ¢m(Yn) = Cm = ¢m(Y)· 
n 

But the sequence {¢m} is total over M so that (18.2) entails Y = z, which 
contradicts Z E H. 0 

For a comment on this theorem see exercise 3.31. 

B. At this stage we know that weakly compact subsets of normed linear 
spaces are weakly sequentially compact and that this property in turn is 
equivalent to several others. We now complete this chain of implications 
by proving that weakly countably compact sets are weakly compact 
("Eberlein'S theorem"). The resulting collection of characterizations of weakly 
compact sets is the "Eberlein-Smulian theorem". The essentials of the 
remaining proof are contained in the following technical lemma to be called 
"Whitley's construction". 

Before the lemma we make one simple observation. Suppose that M 
is a finite dimensional subspace of a conjugate space X*. Since aU(M) is 
compact (9E) it contains a finite t-net{ ¢l, ... , ¢n}; thus for each ¢ E M 
with II¢II = 1 there is some ¢k such that II¢ - ¢kll ~ t. If we now select 
Xl> ... , Xn E aU(X) such that ¢k(Xk) > i, we shall have for any ¢ E M 

(18.3) 

Lemma. Let A be a relatively countably compact subset of the normed 
linear space X, and let tP E lx(A)*. Then there is a sequence {xn} c A with 
a unique weak cluster point x E X such that x = tP. 



148 Principles of Banach Spaces 

Proof. Choose any <PI EOU(X*). There is then Xl EA such that 
1<<pI> Xl - <1»1 < 1 (since <1> E Jx(A)*). Applying now our preliminary 
observation above, there exist <P2, ... , <Pn(2) E oU(X*) such that for every 
PEspan({<1>,xl - <1>})wehave(by(18.3)) 

max{IP(<pk)I:2 ~ k ~ n(2)} ~ tilpil. 

Next we can find X2 E A such that 

max{I<<Pk' x2 - <1»1:1 ~ k ~ n(2)} < t. 

Then by the observation again there exist <Pn(2) + I> ... , <Pn(3) E OU(X*) such 
that (by (18.3) again) 

max{IP(<pk)l:n(2) < k ~ n(3)} ~ tiIPII, 

for every P E span( {<1>, Xl - <1>, X2 - <1>}). Then we choose X3 E A so that 

max{I<<pk> X3 - <1»1:1 ~ k ~ n(3)} < t, 
and continue. In this way we inductively construct a sequence {xn} c A. 

By hypothesis there is at least one weak cluster point X of the sequence 
{xn }. Since span( {xn}) is weakly closed we have X in this subspace and 
consequently 

(18.4) X - <1> E span( {<1>, Xl - <1>, X2 - <1>, ... }). 

Now by construction any P in this span satisfies 

(18.5) 

so the same inequality remains valid for P in the closed span of (18.4). 
In particular, (18.5) is true for P = X - <1>. 

We next prove that <¢b X - <1» = 0 for every k; granting this it will 
follow from (18.5) that x = <1>. Since p ~ n(p) for p = 1,2, ... , we have 

for k ~ n(p) < n that 1 <¢b xn - <1»1 < ! and hence 
p 

1<¢b X - <1»1 ~ 1<¢bXn - <1»1 + I¢k(xn - x)1 
(18.6) 1 

~ - + l¢k(Xn - x)l· 
p 

Since x is a weak cluster point of {xn}, given ¢k and p > k there exists Xn 

1 
such that l¢k(Xn - x)1 < - and k ~ n(k) ~ n(p) < 11 (because the sequence 

p 
{xn} is frequently in the weak x-neighborhood defined by the functional 

¢k and the number!, and so there will be some Xn in this neighborhood for 
p 

arbitrarily large n). For this Xn we then have by (18.6) that 1 <¢k, X - <1»1 ~ ~. 
p 

This proves that <¢b x - <1» = 0 and hence that X = <1>. 
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Thus we have shown that any cluster point x of {xn } satisfies x == J x(x) = 

cI>; since J x is injective the cluster point x must be unique. D 
Notice that a particular consequence of Whitley's construction is 

(18.7) 

Theorem Let A be a relatively weakly countably compact subset of a 
normed space X. Then the weak closure of A is weakly compact. 

Proof. For any ¢ E X* the image ¢(A) is relatively countably compact, 
hence in particular bounded. Thus A is weakly bounded and therefore 

--* bounded by 17D. Thus Jx(A) is a weak*-closed and norm-bounded subset 
of X** and hence is weak*-compact. Because Jx is a homeomorphism from 
the weak topology on X to the (relative) weak* topology on J x(X) (12B), 
we see from (18.7) that the weak closure of A is weakly compact. D 

It is now also clear that any such set A must be weakly sequentially 
dense. Indeed, if x belongs to the weak closure of A then x E J x(A )*, and so 
Whitley's construction yields a sequence in A that converges weakly to x. 
It is also possible to use this result to give another proof that a weakly 
compact set is weakly sequentially compact (18A); however, we leave this 
to exercise 3.32. 

We note an important consequence of the Eberlein-Smulian theorem: 
one of the strongest characterizations of reflexive spaces (the others appear 
in 19C). 

Corollary. A normed linear space X is reflexive if and only if U(X) is 
weakly sequentially compact. 

Of course any reflexive space is necessarily complete (16A), but it is 
easy to see that if U(X) is weakly sequentially compact then X must already 
be complete. The condition of the corollary is frequently stated in the form 
that every bounded sequence in X has a weakly convergent subsequence. 

C. The Eberlein-Smulian theorem can be useu to give a negative 
answer to the question of whether every infinite dimensional Banach space 
must contain a reflexive subspace (of infinite dimension). 

Example. Let e1 = £l(~O). We prove that every reflexive subspace of 
£1 must be finite dimensional. Indeed, the following lemma ("Schur's lemma") 
shows that e1 has the peculiar property that every weakly convergent sequence 
is actually norm-convergent. Granting this fOl a moment, let M be any 
reflexive subspace of (1. Then U(M) is weakly compact (16F), hence weakly 
sequentially compact (18B), and hence compact. Thus M must be finite 
dimensional (9F). 

Lemma. Let ,{ x n} == {( ~inl, ~~), ... )} be a sequence of vectors in .fl. 
Then {xn} is weakly convergent if and only if it converges in the norm topology. 
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Proof. Suppose that {xn} is weakly convergent; we may assume that 
its weak limit is e. We shall prove that 

00 

(18.8) lim IIxnlll == lim L l~ln)1 = o. 
n-oo n-"'oo i=l 

Given e > 0 define 

The sets Fk , k = 1,2, ... , are weak*-closed in m and their union exhausts 
U(m). Since U(m) is a compact metric space in its relative weak* topology, 
we can apply the Baire category theorem to conclude that some Fk has 
non-empty weak*-interior. For this k there then exists ¢ E U(rn), an integer 
N, and b > 0 such that 

(18.9) 

N e 
Because w-limn Xn = e we can arrange that L l~ln)1 < - for all n :;:, p, say. 

1 3 
Now fix any n :;:, max(k, p) and define I/J E U(m) by 

{ ¢i' 1 ~ i ~ N 
I/Ji = sgn(~ln»), N < i. 

This I/J belongs to the left-hand side of (18.9) and hence to Fk • Therefore, 

whence 

It follows that 
00 

IIxnlll == L l~ln)1 < e, n :;:, max(k, p). o 
i= 1 

D. We now begin our preparations for the other major result of this 
section which concerns the conjugate space of a Banach space. We shall 
need a new locally convex topology on conjugate spaces. This topology, the 
bounded weak*-topology, is defined on the conjugate of any normed linear 
space X by declaring that a subset of X* is bw*-closed if and only if its 
intersection with every weak*-compact set is again weak*-compact. Thus, 
formally, the bw*-topology is the inductive topology on X* defined by the 
family of weak*-compact subsets of X* together with the injection maps 
defined on these subsets; hence it is the strongest topology on X* for which 
all these injection maps are continuous (equivalently, it is the strongest 
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topology on X* agreeing with the weak*-topology on every weak*-compact 
set). 

By elementary manipulations of complements we see that a set in X* is 
bw*-open if and only if its intersection with every ball centered at 0 E X* 
is a relatively weak*-open subset of that ball. It is further easy to see that a 
set G c X* is bw*-closed exactly when every bounded weak*-convergent 
net in G has its limit in G. Of greater significance is the following lemma 
which shows in particular that the bw*-topology is locally convex and is 
stronger than the weak*-topology. 

In order to encompass complex linear spaces in the following discussion 
let us define the absolute polar Aa of a set A c X by 

Aa = {4> E X*: \4>(x) \ ~ 1, x E A}. 

Thus when X is real we have Aa = (Au - A)o. Rules and results for absolute 
po lars parallel those for po lars as developed in 12C; see exercise 3.34. 
However, they will not be important in what is to transpire. We are rather 
interested in the convenience of the notation. 

Lemma. Let X be a normed linear space. Then {Aa:A c X, A compact} 
is a local base for the bw*-topology on X*. 

Proof. Let A be a compact subset of X. First we check that L'.!a is a 

bw*-O-neighborhood. Given t > Owe can select a finite (~) -net{ Xl> .•. , xn(t)} 

for the compact set 2A. Now consider any 4> E X* with \\4>\\ ~ t and \4>(Xi) \ < 

1, j = 1, ... , n(t). If x E A we can find some Xi within a distance of ~ from 
t 

2x. Hence 
1 1 

\4>(x)\ = 2: \4>(2x) \ ~ 2: (\4>(x - xJ\ + \4>(xi )\) 

1 1 t 1 
~ 2:\\4>\\\\x - xd\ + 2: < 2t + ]: = 1. 

Letting N = {4> E X*: \4>(x)\ < 1, x E A} we have shown that 

{4> E tU(X*): \4>(xJ\ < 1, i = 1, ... , n(t)} c NcAa, 

so that Aa contains the bw*-open O-neighborhood N and is consequently 
itself a bw*-O-neighborhood. Note that this argument only uses the total 
boundedness of the set A. 

For the converse let N be a bw*-open O-neighborhood in X*. Then 
by definition of the bw*-topology there is a finite set F 1 C X such that 
F~ n U(X*) c N. Now assume for the sake of an inductive construction 
that for some integer n we have obtained a finite set F" c X with the property 
that 

(18.10) F~ n nU(X*) c N. 
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We shall show that there is a finite set Hn C ~ U(X) such that (Fn u Hn)a n 
n 

(n + l)U(X*) c N. Suppose not. Then the family of sets 

(F" u H)a n (n + l)U(X*) n (X\N) 

where H is a finite subset of ~ U(X) has the finite intersection property. 
n 

Since X\N is bw*-closed, this family consists of weak*-closed subsets of the 
weak*-compact set (n + l)U(X*). Consequently the intersection of all the 
sets in this family is non-empty. Any point ¢ in this intersection has the 

properties that ¢ E F~ n (X\N) and that 1¢(x)1 :::; 1 whenever Ilxll :::; ~. This 
n 

last property implies that II¢II :::; n so that ¢ E F~ n nU(X*) c N, which 
contradicts ¢ E X\N. 

Thus if we set Fn + l = F" u H" we have achieved an inductive construc
tion of finite sets F" with the property (18.10), and such that if the set Un F" 
is enumerated in any order the resulting sequence {xn} converges to e in X. 

It follows that the set A == {e, {xn }} is compact and that Aa c N. 0 
Corollary. Let X be a normed linear space. 
a) {{xlI}a: xn E X, lim" Xn = e} is a local base for the bw*-topology. 
b) A net X* is bw*-convergent if and only if it converges uniformly on 

each compact subset of X. 
c) A bounded weak*-convergent net in X* is bw*-convergent. 
The verification of these assertions follows readily from the lemma; the 

details are left to exercise 3.35. Parts b) and c) suggest that the bw*-topology 
is always strictly stronger than the weak*-topology (unless, of course, X is 
finite dimensional), and this is true as is demonstrated by the following 
example in particular and exercise 3.36 in general. 

Example. Let X = tP(~o) for 1 :::; p < 00. Let {¢n} c X* be defined 
by ¢n = nl/Pen, where en == the nth-standard unit vector == X{n}' Then, in 
X*, e belongs to the weak*-closure of the sequence {¢n}. To see this, let 
{Xi == (~~), ~~), ... ):1 :::; i:::; k} be a finite subset of X and let e > O. Since 
Ln 1~~)lp < 00 for each i we have 

Hence there must be some n for which 

k 

L 1~~i)1 < en -lip 

i= I 

(if not, raise both sides to the pth-power and obtain a contradiction from 
the divergence of the harmonic series). Choosing such an n we find that 

i = 1, ... , k, 
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thus proving that the sequence {<Pn} intersects every basic weak*-8-
neighborhood. 

However, 8 does not belong to the bw*-closure of {<Pn}. We can see this, 
for example, by defining the compact set A c X to be {8, n-1/Pen}. Since 
<pm(n-1/Pen) = bmm no subnet of {<Pn} can converge to 8 uniformly on A. 

Finally we might note that e also fails to be in the weak*-sequential 
closure of {<Pn}, since no subsequence of {<Pn} can converge on account 
of the uniform boundedness principle. This observation provides a direct 
proof that the weak*-topology on tP(~o) is not metrizable for 1 < P ~ 00 

(compare with exercise 3.29). 0 
E. We show now that the space ofaB bw*-continuous linear functionals 

on X* can be identified with the completion X == J x(X) (16D). This fact, 
a special case of "Grothendieck's completeness theorem", is an important 
justification of our interest in the bw*-topology. In particular, it leads 
immediately to the Krein-Smulian theorem. 

Theorem. Let X be a normed linear space. Then 

(18.11) X = {<1> E X*':<1> is bw*-continuous}. 

Proof. First suppose that <1> E X**\X. Let H be the hyperplane [<1>; 1] 
in X*. We shall show that there is a bounded net in H that weak*-converges 
to 8. This will imply that H is not bw*-closed, whence <1> cannot be bw*
continuous. 

Let d = d( <1>, X) > 0 and choose any A such that dA > 1. Let V == 
{Xl>' .. , xn}a be an arbitrary basic weak*-8-neighborhood in X*. We 
shall show that 

(18.12) AU(X*) n H n V =I 0 
or, in other words, that 8 belongs to the weak*-closure of AU(X*) n H. 
To do so we utilize Helly's condition (7A) with A = (1jd)U(X*). Accordingly, 
we can prove that there exists <P~ E (1 + b)A for every b > 0 such that 

<1>(<po) = 1 

xi(<Po) = 0, i = 1, ... , n 

(any such <P~ will certainly belong to the left-hand side of (18.12) if b is 
sufficiently small), provided that 

(18.13) lal ~ sup {la<1>(<p) + it ai<P(x;)1 :11<p11 ~ ~}, 
for arbitrary real a, al> ... ,aU' Now (18.13) is trivial if a = 0; if not, we 

n 

divide both sides by lal and let X = I (a;/a)xi . We are then reduced to proving 
1 

(18.14) 1 ~ sup {I<<P' <1> - x>I:II<p11 ~ ~}. 
But (18.14) is certainly valid since 11<1> - xii ~ d. 
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At this point we have shown that every bw*-continuous linear functional 
on X* belongs to X. It remains to select any I/> E X and to show that I/> is 
bw*-continuous. We can do this by showing that I/> is bounded on some 
bw*-O-neighborhood. Now since I/> E X == J x(X) there is a sequence {xn} C X 
such that limn xn = 1/>. We let A = {xn} and note that since A is totally 
bounded, Aa is a bw*-O-neighborhood (IBD). We can conclude the proof by 
showing that 11/>(1))1 ~ 2 if 1> E Aa. ~ut 

11/>( 1» 1 ~ 11>(xn) 1 + 1 < 1>, I/> - xn) 1 

~ 1 + 111>11111/> - xnll 

for any n and we can certainly choose some n so that 11:1) - xnll ~ 1/111>11· 0 

Corollary 1. Let X be a normed linear space. Then X is complete if and 
only if every bw*-continuous linear functional on X* is weak*-continuous. 

This corollary provides a useful method for establishing the weak*
continuity of a given functional I/> E X*', when X is a Banach space. Indeed, 
the problem is reduced to verification that U(X*) fl ker(c1» is weak*-closed. 
More generally we can assert that any linear subspace M c X* is weak*
closed if and only if U(M) == U(X*) fl M is weak*-closed. This assertion 
is known as the "Banach-Dieudonne theorem", and is a special case of the 
next corollary which is the "Krein-Smulian theorem". This result again 
emphasizes the important role played by convex sets since it shows that any 
convex set in X* has the same closure in both the weak* and the bw*
topologies. We already know that this property is not enjoyed by arbitrary 
subsets of X* (unless as usual X is finite dimensional). 

Corollary 2. Let X be a Banach space. A convex subset C of X* is 
weak*-closed if and only ifit is bw*-closed. 

Proof. Suppose that 1> does not belong to the bw*-closure of C. Since 
the bw*-topology is locally convex we can apply the strong separation 
theorem and separate C from 1> by a bw*-closed hyperplane H. By the 
theorem H is weak*-closed so that 1> cannot ryelong to the weak*-closure 
of C. Therefore C* c Cbw', and the reverse inclusion is trivial since the 
weak*-topology is weaker than the bw*-topology. 0 

F. We now give two applications of the Banach-Dieudonne theorem. 
The first is a new characterization of reflexive spaces. Let X be a Banach 
space with norm 11·11 and let (J be an equivalent norm on X: oclixil ~ (J(x) ~ 
fJllxll for some oc, fJ > 0 and all x E X. Then 

~ 11>(x)1 ~ 11>(x)1 ~ ~ 11>(x) I x E X 1> E X*. 
fJ Ilxll '" (J(x) '" oc Ilxll ' , 

Thus the norm (J* defined on X* by 

(18.15) (J*(x) = sup 11>(x) I , 
xtO (J(x) 

1> E X* 
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is equivalent to the original norm 11'11* on X*. Any norm on X* of the 
form (18.15) derived from an equivalent norm on X is called a dual norm. 
Thus dual norms are equivalent to the original norm on X*. We shall 
consider the converse question: for which spaces X is every equivalent norm 
on X* necessarily a dual norm? 

We first prove a lemma which gives a general topological criterion for 
a given equivalent norm on X* to be a dual.norm. 

Lemma. Let p be a norm on X* equivalent to the original norm. Then 
p is a dual norm if and only if its unit ball Up is weak*-closed. 

Proof. Suppose that there is an equivalent norm a on X such that 
a* = p. Then 

(18.16) a(x) = sup 1¢(x)1 = sup I¢(~)I. 
HO a*(4)) HO p(cp) 

Thus there is at most one candidate for a. Let us now define (J according 
to (18.16). Then if au p = {x EX: I¢(x) I ~ 1,4> E Up} is the polar of Up in X, 
we have aU p = U cr' whence 

Up c °U~ = U~ = Ucr' == {¢ E X*:a*(¢) ~ I}. 
-* By 9B and 12C it follows that p = a* if and only if Up = 0 U~ = Up. 0 

Theorem. Every equivalent norm on X* is a dual norm if and only if 
X is reflexive. 

Proof. Assume that X is reflexive and that p is an equivalent norm on 
X*. Then Up is closed and convex, hence weakly closed, and hence weak*
closed (16D). Conversely assume that every equivalent norm on X* is a 
dual norm. To show that X is reflexive we must show that every bounded 
linear functional <P on X* is weak*-continuous (12B). Since X is complete 
(by hypothesis) it is sufficient to show that <P is bw*-continuous, or that 

00 

B == ker(<P) n U(X*) is weak*-closed (18E). But B = n Bn where Bn == 
1 

{¢ E U(X*):I<p(¢)1 ~ ~}, so it suffices to show that each Bn is weak*-closed. 

However, for each n, Bn is a solid bounded barrel in X* and so its gauge 
Pn is an equivalent norm on X*. By hypothesis Pn is a dual norm and the 
lemma then implies that Bn == U Pn is weak*-closed. 0 

There is an extension of this theorem to quasi-reflexive spaces (161): 
A Banach space X satisfies dim(X** /J x(X)) ~ n if and only if there is 
a subspace M c X* of co dimension ~ n such that for every equivalent 
norm P on X* there is a dual norm on X* that agrees with P on M. This 
more general result is known as the "Roth-Williams theorem". 

G. As our second application we establish a companion result to the 
theorem of 16C. The present result lies deeper than that of 16C but is cor
respondingly of greater use. Before stating this result let us make two simple 



156 Principles of Banach Spaces 

remarks about conjugate operators. Let X and Y be normed linear spaces 
and TE B(X, Y). 

i) T** E B(X**, Y**) is an extension of T in the sense that T** ° J x = 
J y 0 T. 

ii) If T is an isomorphism of X onto Y then T* is an isomorphism of 
y* onto X*. 

The proof of i) is completely analogous to the argument required for 
exercise 1.5b). As for ii), it is easily verified that (T- 1 )* is a bounded inverse 
for T* that is defined on X *. The converse of ii) is also true and can be 
established by use of both i) and ii). 

Theorem. Let T E B(X, Y). 
a) If Y is complete and T is surjective, then T* has a bounded inverse. 
b) If X is complete and T* has a bounded inverse, then T is surjective 

(hence Y is also complete). 

Proof. The proof of a) is similar to the corresponding argument in 
16C and is left to exercise 3.42. The main difficulty with b) is to prove that 
T(X) is complete, since it is easy to see that it must be dense in Y(otherwise 
we could strongly separate some point in Y from T(X), and so find a non-zero 
element in T(Xt c ker(T*), whence T* could not have an inverse). 

Let N = ker(T) c X. We shall prove that T*(Y*) = N°. Granting 
this for a moment we can finish the proof by introducing the 1-1 operator 
T:X/N --+ Y. We find that T* is then (by hypothesis) an isomorphism from 
y* onto (X/N)* (indeed, T* = (Q%)-l ° T* where Q%:(X/N)* --+ N° is 
an isomorphism (16E)). Hence by remark ii) above T** is an isomorphism 
of (X/N)** onto Y**. In particular, T**(JX/N(X/N)) is complete in y** 
and so by remark i) above T(X) == T(X/N) is complete in Y. 

It remains to prove that T*(Y*) = N°. We clearly have T*(Y*) c N°. 
If we knew that T*(Y*) were weak*-closed then we could obtain a contra
diction by assuming this inclusion to be proper. For in this case there would 
be a functional ¢ E N°\T*(Y*) and hence a weak*-continuous functional 
.x that vanishes on T*( Y*) but not on ¢. It would then follow that Ij;( T(x)) = 0 
for all ljJ E y* so that T(x) = 8. Thus x E N but ¢(x) # 0 for some ¢ E N°, 
a contradiction. 

We shall finally prove that T*(Y*) is weak*-closed. Let K = T*(U(Y*)). 
Then K is absolutely convex and weak*-compact (12D and 16C) and 
M == span(K) = T*(Y*) is closed in X* (by hypothesis). Thus M is complete 
and it follows from 17C that the gauge PK is a continuous norm on M :PK(¢) :::; 
Ajj¢jj for all ¢ E M and some }, > O. Now if {¢o:b E D} is any net in U(M) 
with weak*-limit ¢, then since PK(¢o) :::; ), we have by exercise 2.4 that 
{¢o/kbED} c K. Hence ¢/AEK. This proves that ¢E},K c M and 
since U(X*) is weak*-compact, ¢ E U(M). By the Banach-Dieudonne 
theorem we conclude that M is weak*-closed. 0 

In this way we obtain a complete "dual" version of the theorem of 
16C under tQe assumption that both X and Yare Banach spaces. 
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§19. The Theorem of James 

In this section we discuss a final characterization of weakly compact sets 
in Banach spaces. It is one of the most profound theorems in this book 
and we shall only completely establish a special case. The result is actually 
valid in any quasi-complete locally convex space, but we shall not go into 
this added generality here. The consequences for Banach spaces are already 
impressive and we shall give several of these. 

A. Let A be a weakly compact subset of a real Banach space X. If 
<P E X* then <P is weakly continuous on X and in particular on A. Hence 
sup {<p(x):x E A} is attained. The theorem of James asserts, surprisingly, that 
this trivial necessary condition is sufficient to guarantee the weak compact
ness of A under mild restrictions. 

Theorem. Let A be a bounded and weakly closed subset of the real Banach 
space X. If every continuous linear functional on X attains its supremum on A 
then A is weakly compact. 

The proof will be given in several steps. The first step is a new characteriza
tion of weakly compact sets in Banach spaces known as the "iterated limit 
condition". This result is in effect another version of the Eberlein-Si~lUlian 
theorem (18B). 

Lemma 1. Let A be a bounded subset of the Banach space X. Then A 
is relatively weakly compact if and only if for every pair of sequences {xn} c A 
and {<Pm} C U(X*) 

(19.1) 
n m m n 

whenever both of the limits exist. 

Proof. If A is weakly compact and such a pair {.vn}, {<Pm} 'is given, let 
Xo be a weak cluster point of {xn} and let <Po be a weak*-cluster point of {<Pm}. 
Then if either of the limits in (19.1) exists it must be <Po(xo). 

For the converse we proceed as in 18B: since A is bounded Jx(A) * is 
weak*-compact in X**; if we can prove the inclusion (18.7) we will be done. 
If iP E Jx(A) * we shall prove that iP is bw*-continuous; this will establish 
(18.7) by 18E and 12B. If iP is not bw*-continuous then its restriction to 
U(X*) fails to be weak*-continuous at some poiDt <Po. There is thus a iP(<Po)
neighborhood N such that each weak*-<po-neighborhood contains a point 
<P with iP(<p) rf= N. 

We now construct a pair of sequences that will violate (19.1). For any 
Xl E A there is a <Pi E U(X*) such that I<x l, <Po - <Pi> 1 < 1 and iP(<Pl) rf= N. 
Select X2 E A so tl}at 1 <<Po, x2 - iP>1 < 1, 1<<Pl' x2 - iP>1 < 1. Then select 
<P2 E U(X*) so that,l<x l, <Po - 4>2>1 < !, I<X2' <Po - <P2>1 < t and iP(<P2) rf= 
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N. Proceeding, we inductively construct sequences {xn} c A, {¢m} C U(X*) 
such that 

max{j(¢j' xn - cJ»1:0 ~ j ~ n - I} < _1-1' 
n-

. 1 
max{l<xj, ¢o - ¢n>l: 1 ~ ) ~ n} < -, n 

<l>(¢n) ¢ N. 
It follows that 

lim lim ¢m(xn) = lim ¢O(xn) = <l>(¢o) 
n m n 

while 
lim ¢,ixn) = <l>(¢m) ¢ N. 

n 

Therefore, if we choose a subsequence of {¢m} such that {<l>(¢m)} converges 
to a point outside N, the iterated limit condition (19.1) will fail. 0 

B. Now to begin the proof of James' theorem we suppose that A is 
not weakly compact. Then the iterated limit condition (19.1) fails for some 
pair of sequences {xn} c A, {¢m} c U(X*). After changing the signs of the 
¢m (if necessary), and after possibly discarding a finite number of {xn} and/or 
{¢m}, we can find an r > 0 such that for all k 

(19.2) ¢k(Xn) - lim ¢m(xn) ~ r, 
m 

provided that n is sufficiently large. We shall moreover assume that {¢m} 
contains a weak*-convergent subsequence with weak*-limit ¢o E U(X*). 
This assumption is certainly warranted if X is separable (12F). We relabel 
the terms of this subsequence as {¢m} and discard any other terms of the 
original sequence. Hence (19.2) becomes simply 

(19.3) 

for each k, provided that n is sufficiently large. 
For each n = 1, 2, ... , we let Kn = cO({¢m:m ~ n}) and we let ITA 

be the support function of A: 

ITi¢) = sup {¢(x):x E A}, 

Then we note that for ¢ E K b 

¢EX*. 

ITA(¢ - ¢o) ~ (xm ¢ - ¢o> 

(19.4) 
p p 

= L Aj <xm ¢mj - ¢o> ~ r L )'j = r, 
j= I j= I 

p 

where AI, ... ,Ap ~ 0, L Aj = 1 exist by virtue of ¢ E K I , and where n is 
I 

taken sufficiently large. 
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Lemma 2. Let {Pn} be a sequence of positive numbers. Then there exists 
t/ln E Km n = 1,2, ... , such that 

(TACtl Pi(t/li - <Po)) > ~Pnr+ (TACt: Pi(t/li - <Po)} 

Let us grant the validity of this lemma momentarily and see how we can 
use it to construct a functional t/I E X* that fails to attain its supremum on 
A. Such a construction will of course reduce the proof of James' theorem to 
that of Lemma 2. 

Suppose that the sequence {Pn} is chosen so that 

1 00 

lima L Pi = 0; 
n Pn i=n+l 

for example, Pn = lin!. Define 
00 

t/I = L Pi(t/li - <Po); 
i= 1 

this series converges absolutely since Iit/ld I ~ 1, and so defines an element 
of X* (exercise 3.1). Suppose that t/I attains its supremum on A at Xo E A: 
(TA(t/I) = t/I(xo)· Then ify == sup {(TA(<P):<P E Kl - <Po} we would have 

n 00 

L Pi <xo, t/li - <Po> = t/I(xo) - L Pi <XO, t/li - <Po> 
i= 1 i=n+ 1 

00 00 

? t/I(XO) - y L Pi == (TA(t/I) - y L Pi 
i=n+ 1 i=n+ 1 

Therefore, 

whence 

But this is a contradiction to limn t/lixo) = <Po(xo) which follows in turn 
from limm <Pm(XO) = <Po(xo) and the fact that t/I" E Kn' 
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We shall complete the proof of James' theorem by an inductive construc
tion of the sequence {I/I .. } of Lemma 2. This construction uses at each step 
the following algebraic fact. 

Lemma 3. Let (J be a sub linear function on a linear space X, K a convex 
subset of X, u a point in X, and a, f3, and f3' three positive numbers. If 
inf{(J(u + f3x):x E K} > af3 + (J(u), then there exists Xo E K such that 

inf{(J(u + f3xo + f3'x):x E K} > af3' + (J(u + f3xo). 

Proof. There is a b > 0 such that - (J(u) = af3 - inf {(J(u + f3x): 
x E K} + b. For any xo, Y1 E K, put z = (f3xo + f3'Y1)/(f3 + f3') E K. Then 
(J(u + f3xo + f3'Y1) ~ (J( (1 + f3'If3)(u + f3z)) - (J(f3'ulf3). Hence 

inf{(J(u + f3xo + f3'Y1):Y E K} ~ (1 + ~) inf{a(u + f3x):x E K} - ~ (J(u) 

= (1 + ~) inf{(J(u + f3x):x E K} 

f3' f3' 
+ p(af3 - inf{(J(u + f3x):xEK}) + pb 

8' 
= af3' + inf{(J(u + f3x):x E K} + P b. 

We can now achieve the proof of Lemma 3 by selecting Xo E K so that 

(J(u + f3xo) < inf{(J(u + f3x):x E K} + ~ b. D 
Let us finally give the construction of the sequence {I/In} of Lemma 2. 

For 1/11 we apply Lemma 3 with (J = (JA, K = K1 - tPo, U = e, f3 = f3b 
f3' = f32 and a = r12. The hypothesis of Lemma 3 is an immediate conse
quence of (19.4) and so there exists 1/1 1 E K 1 such that 

inf{(JA(f31(1/I1 - tPo) + f32(1/1 - tPo)):1/I E Kd > tf32r + (JA(f31(1/I1 - tPo)). 

In general, we obtain 1/1 .. by applying Lemma 3 with K = Kn - tPo, U = 
n-1 
L f3J I/Ii - tPo), f3 = f3m and f3' = f3n + 1· The hypothesis of Lemma 3 in this 
1 

general case follows from the conclusion of the lemma at the previous step: 

inf{(JA(u + f3(1/1 - tPo)):1/I E Kn} ~ inf{(JA(u + f3JI/I - tPo)):1/I E Kn-d 
> tf3nr + (J A(U). 

This step completes the proof of James' theorem. D 
We emphasize that we have only completely proved James' theorem for 

separable Banach spaces (but see also exercise 3.44). However, as will be 
noted in the following paragraphs, this restriction is not as serious as it may 
seem. The reason is that by use of the Eberlein-Smulian theorem we can 
always reduce the problem of determining the weak compactness of a 
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specified set A to that of determining the weak compactness of each separable 
"slice" of A. By this term we mean the intersection of A with a closed separable 
subspace. 

C. We now give two new and striking geometric characterizations of 
reflexive spaces. First let X be a reflexive real Banach space. As was noted in 
161 every closed convex subset of X is then proximinal. Further, according 
to exercise 3.lOa), any two disjoint, closed, convex subsets of X, one of which 
is bounded, can be strictly (actually strongly) separated by a (closed) hyper
plane. Our next result is that either of these geometric properties is charac
teristic of reflexivity. 

Theorem. A real Banach space X is reflexive if (and only if) 
a) every closed convex subset of X is proximinal; or 
b) each pair of disjoint closed, convex subsets of X, one of which is bounded, 

can be strictly separated by a hyperplane. 

Proof. Suppose that X is not reflexive. 
a) From exercise 3.33 we know that X contains a nonreflexive separable 

subspace M. The ball U(M) is therefore not weakly compact and so, by 
James' theorem, there exists a functional ¢ E M* that fails to attain its 
norm on U(M). This means (15B) that the closed convex set H == [¢; ii¢iiJ 
has no minimal element and is consequently not proximinal. 

b) We shall show that the disjoint closed convex sets Hand U(M) 
cannot be strictly separated. Suppose otherwise; then there would exist 
IjJ E X* and a positive number y such that ljJ(x) < y < ljJ(y), for all x E U(M), 
Y E H. Let us assume that ¢ has been extended to all of X via the Hahn
Banach theorem, and let us call the extension ¢ also. Choose any point 
x E X such that ¢(x) = ii¢ii and any Z E X for which ¢(z) = O. Then for 
all A E R, ljJ(x + AZ) > y. Hence ljJ(z) = 0 and so ker(¢) c ker(IjJ). This 
means that the set {¢, 1jJ} is linearly dependent. We can therefore choose a 
constant IX so that IjJ = (lXy/ii¢ii)¢. Now if y E H then y < ljJ(y) = IXY, so 
that 1 < IX. On the other hand, if x E U(M) then ljJ(x) < y, and so ¢(x) = 
(ii¢ii/lXy)ljJ(x) < ii¢ii/IX; since IX > 1, this contradicts the definition ii¢ii = 

sup {¢(x):x E U(M)}. 0 
There is another (and stronger) characterization of reflexive spaces by 

means of a separation property, known as the "Klee-Tukey theorem", which 
we shall state without proof: a real Banach space is reflexive if (and only if) 
each pair of disjoint, closed, bounded, convex subsets can be separated by 
a hyperplane. The proof does not depend on James' theorem but hinges 
rather on the fact that any non-reflexive space contains a non-reflexive 
(closed) subspace of infinite codimension. This fact in turn depends on the 
existence of a bounded sequence with no weakly convergent subsequence 
(18B). ' 

D. In 13E al).d 15C we discussed the notion of a strictly normed linear 
space. We now define a stronger property. Let us say that a closed convex 
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subset A of a normed linear space X is uniformly rotund if there is a non
decreasing function b on [0, co) with ° = b(O) < bet), t > 0, such that 
!(x + y) + Z E A whenever x, YEA and Ilzll ~ bCllx - yll).If U(X) satisfies 
this condition we shall say that X is uniformly normed. 

The condition that a convex set A be uniformly rotund is a strong 
geometric constraint on A. It requires that the mid-point of any chord joining 
two boundary points of A be bounded away from the boundary by a positive 
quantity that depends only on the length ofthe chord and not on the location 
of its end-points. Intuitively the boundary of A cannot come too close to 
"flattening out" in any region. In particular, any uniformly rotund set is 
rotund, and on the other hand, any finite dimensional strictly normed linear 
space is actually uniformly normed. 

Our interest in this condition is summarized by the next result known 
as "Milman's theorem". We see that it is another of those peculiar hybrids 
wherein a hypothesis of one type (in this case, geometric) leads to a conclusion 
of a different type (topological). By this nature it reminds us of the Krein
Milman theorem wherein a topological hypothesis implied an algebraic 
conclusion. 

Theorem. A uniformly normed Banach space X is reflexive. 

Proof. As usual, it is sufficient to prove that U(M) is welil~ly compact 
where M is any separable closed subspace of X. If ¢ E M* let a sequence 
{xn} c U(M) be chosen so that limn ¢(xn) = II¢II. We wish to show that 
{xn} is a Cauchy sequence. If we do so then its limit will be a point where ¢ 
attains its norm; hence U(M) will be weakly compact on account of James' 
theorem. Now as m and n become large, ¢(xn) + ¢(xm) --4 211¢11, so that 

lim ¢(!(xn + xm)) = II¢II. 
m,n 

Hence limm, n 11!(xn + xm)11 = 1. Because of the uniform rotundity of 
U(M) (which follows a fortiori from that of U(X)), we conclude that 
limm, n Ilxn - xmll = 0, and so {xn} is indeed a Cauchy sequence. 0 

Are there any uniformly normed Banach spaces of infinite dimension? 
The answer is in the affirmative: every U(Q, /1, F) space (of infinite dimension) 
is uniformly normed for 1 < p < co ("Clarkson's theorem"). This is difficult 
to prove for general p but not so hard when p = 2. For in this case it is 
easily seen that 

IIX + YII~ + Ilx - YII~ = 2(llxll~ + IIYII~), 
(the "parallelogram law") from which it follows that we may take bet) = 
.Jl + 4t2 - 1 in the definition of uniform rotundity ofthe ball U(L 2(Q, /1, F)). 

E. We shall finally give two applications of the theorem of James that 
do not pertain to reflexivity. The first is "Krein's theorem". 

Theorem. Let A be a weakly compact subset of a real Banach space X. 
Then aco(A) is weakly compact. 
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Proof. As usual, it will suffice to prove that each separable slice of A 
is weakly compact; we shall therefore assume directly that X is separable. 
Now let ¢ E X*; we must show that ¢ attains its supremum on aco(A). 
Leta = min{¢(x):xEA} ~ max{¢(x):xEA} = p.SinceAisweaklycom
pact there exist u, v E A such that ¢(u) = a, ¢(v) = p. Now the image 
¢(aco(A)) is the interval [ -y, y] where y == max {Ial, IPi}, and aco(A) con
tains a point (namely - u or v) at which ¢ assumes the value y. Since ¢(aco(A)) 
also equals [ - y, y], we have shown that aco(A) satisfies the hypotheses of 
James' theorem and consequently is weakly compact. 0 

Observe that Krein's theorem is only new in the case where X is not 
reflexive. For we know that all reflexive spaces are weakly quasi-complete 
(16F), and that in any quasi-complete locally convex space aco(A) is compact 
whenever A is totally bounded (HC). 

F. Our second application concerns vector measures taking values in 
a real Banach space X. Let (Q, 1:) be a measurable space and let Ji:1: ---> X be 
a function having the property that for every sequence {En} C 1: of mutually 
disjoint sets 

where the series on the right is assumed to converge unconditior.~ 1ly in X 
00 00 

(that is, to converge regardless of the order of its terms: L Ji(En) = L Ji(Ep(n»), 
1 1 

for any permutation p of the positive integers; this is equivalent to absolute 
convergence of the series when dim(X) < 00, but otherwise is weaker). 

Our aim is to show that the range Ji(1:) is relatively weakly compact in X 
("theorem of Bartle-Dun ford-Schwartz"). The contrast between this situation 
and that of 15E is that we are studying measures with values in an arbitrary 
Banach space rather than in a product space and, more importantly, the 
measures are not assumed to possess a density. 

Theorem. Under the above assumptions the range Ji(1:) is relatively weakly 
compact in X. 

Proof. For any functional ¢ E X* the composite ¢ 0 Ji is a finite signed 
measure on (Q, 1:), and there is a corresponding Hahn-decomposition of Q. 
That is, there is a partition Q = A u B, A n B = 0, with ¢ 0 Ji a non
negative measure on A and - ¢ 0 Ji a non-negative measure on B. Now, 
to show that the weak closure R of the range Ji(1:) is weakly compact, we 
observe that 

sup {¢(x):x E R} = sup {¢(x):x E Ji(1:)} 

= sup {¢(Ji(E)):E E 1:} = ¢(Ji(A)). 

This proves that ¢ attains its supremum on R and hence, by James' theorem, 
that R is weakly €Ompact. (Note that it is implicit in the preceding argument 
that R is weakly bounded and hence bounded by 17C.) 0 
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We remark that a stronger conclusion is possible in the special case 
where X is reflexive and Ji is of bounded variation in the sense that 

sup I I I Ji(En) I I < 00, 
1t n 

where the supremum is taken over all partitions n = {E l , • .• , Em} consisting 
of a finite collection of disjoint sets in l: whose union is Q. Namely, in this 
case it can be shown that the norm closure ofthe range Ji(l:) is norm-compact, 
and is also convex provided that Ji has no atoms (where this latter term is 
defined in complete analogy with the scalar case considered in 15E). The 
proof of this second assertion utilizes the finite dimensional Lyapunov 
convexity theorem of 15E. 

. §20. Support Points and Smooth Points 

In this section we establish the famous theorems of Bishop and Phelps 
concerning the existence of support points and support functionals for a 
given convex subset of a Banach space and observe the particular conse
quence that every Banach space is subreflexive. We also discuss the sub
differentiability oflower semicontinuous convex functions on Banach spaces, 
a situation which is not covered by the earlier discussion i~ 14B. Unlike 
most of the earlier results in this chapter which admit extensions to certain 
more general types of locally convex spaces, the present results require both 
a norm and completeness for their validity, as we see by appropriate examples 
and exercises. Finally, we resume the discussion begun in 7E-F of smooth 
points. The density theorem of Mazur is established for separable spaces, 
and some applications to the uniqueness of Hahn-Banach extensions of 
linear functionals are given. 

A. Let A be a closed subset of a real Banach space X. We say that 
Xo E A is a conical support point of A if there is a closed cone C in X such that 

(20.1) 

In terms of the ordering induced on X by C (SA) equation (20.1) simply 
means that Xo is a maximal element of A (that is, Xo ~ X E A implies Xo = x). 
Now in general there is no reason why such points in the set A should exist. 
However, as we shall now see, their existence can be guaranteed for a certain 
class of cones. After establishing this technical fact we shall discuss some of 
its implications. 

For ¢ E X*, II¢II = 1, and 0 < y < 1 we define a closed cone C = 

C(¢, y) = {x E X:yllxll ~ ¢(x)}. It is easily seen that C is the cone generated 
by the set B = B(¢, y) == U(X) (\ {x E X:y ~ ¢(x)}, that is, C = [0,00)B. 
Also, from now on, we shall write sup ¢(A) in place of sup {¢(z): Z E A}. 

Lemma. Let A be a closed subset of the Banach space X and suppose 
that ¢ E X* (II¢II = 1) is bounded above on A. Then for 0 < y < 1, and any 
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X E A, there exists Xo E A such that Xo E x + C and (20.1) holds for C = 
C(4), y). 

Proof. Let An = A n (xn + C) where the sequence {xn} is defined in
ductively as follows: Xl = x and having obtained Xl"'" Xn we take Xn +l 

to be any point in An for which sup 4>(An) < 4>(xn+ 1) + lin. Since xn+ 1 E 

An C Xn + C, we have xn+ 1 + C C xn + C, ahd hence An+ 1 C An. Now, 
if yE An +1 , then 4>(y) ~ sup 4>(An) and 

1 
ylly - xn +1 11 ~ 4>(y) - 4>(xn+1) ~ sup 4>(An) - 4>(xn+d < -, n 

whence diam(An+ 1) ~ 2y. Because A is complete the intersection of the 
n 

nested sequence {An} consists of a single point Xo' Since Xo E Al we have 
Xo E X + C. Finally, since Xo E An = A n (Xn + C) for all n, we have 
An (xo + C) c An for all n (because C is a cone), hence A n (xo + C) = 
{xo}, and so (20.1) is satisfied. 0 

B. If A is a solid closed convex subset of a real linear topological space 
then the support theorem (lIE) assures us that every boundary point of A 
is a support point. On the other hand, whether or not A is solid, it will in 
general (exercise 2.18) contain non-support points. For a long ti~~ it was 
unknown whether an arbitrary (not solid, not weakly compact) closed convex 
set A in a Banach space necessarily contained any support points. We can 
now see that, in fact, support points must exist in this setting, since any 
conical support point Xo E A (with respect to some solid cone C) is actually 
a support point of A. This follows from an application of the separation 
theorem to the convex sets A and Xo + C. 

The first theorem of this section will provide a stronger response to the 
question of the existence of support points by proving their density in the 
boundary of a given closed convex set A. We will then known that either 
the support points of A are exactly the boundary points (when A is solid) 
or else they are dense in A (when A has no interior). For both this theorem 
and a later one we shall need another technical fact which we shall call the 
"Phelps-Brondsted-Rockafellar lemma". 

Lemma. Suppose that A is a closed convex subset of the Banach space X, 
that ¢ E X* has norm 1, and that 8 > 0 and x E A are such that 

sup ¢(A) ~ ¢(x) + 8 .• 

Then for any y E (0, 1) there exist ljI E X* and Xo E A such that sup ljI(A) = 

ljI(xo), Ilxo - xii ~ 8jy, and II¢ - ljIll ~ y. 

Proof. By the preceding lemma there is a conical support point Xo E A 
(with respect to the cone C = C(¢, y)) such that Xo E x + c. We shall obtain 
the desired functi,onal ljI via a separation argument resembling the one used 
to obtain subgradients. Letf(x) = yllxll- ¢(x) and let A1 = {(Z,O)EX X Rl: 
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Xo + z E A}. Then Al (\ epi(f) = {(8, On by (20.1) and so Al is disjoint 
from the interior of epi(f). By the separation theorem we can find a functional 
<P E (X X RI)* such that sup <P(A1) = 0 = inf <P(epi(f)). Now the point (8, 1) 
belongs to int(epi(f)) so that <P(8, 1) > O. Hence we can write <P(z, t) = 
I/I(z) + t for all (z, t) E X X RI. Now (z - Xo, 0) E Al whenever z E A, so 
that <P(z - xo,O) = I/I(z - xo) ~ 0, whence sup I/I(A) = I/I(xo). Also, since 
(z, J(z)) E epi(f) for all z E X, we have 0 ~ <P(z, J(z)) = I/I(z) + J(z), whence 
- I/I(z) ~ J(z) == Ylizil - 4>(z) and therefore 114> - 1/111 ~ y. Finally, Xo - x E C 
implies Yllxo - xii ~ 4>(xo - x) ~ sup 4>(c) - 4>(x) ~ 8. 0 

This lemma leads directly to the "first Bishop-Phelps theorem" on the 
density of support points. 

Theorem. IJ A is a closed convex subset oj a Banach space X, then the 
support points oj A are dense in the boundary oj A. 

ProoJ. Let x E 8(A) and 6 > 0 be given. Choose Z E X\A so that 
Ilx _. zll < 6/2 and then choose 4> E X* such that 114>11 = 1 and sup 4>(A) < 4>(z) 
(UF). Then 4>(z) ~ 4>(x) + Ilx - zll, whence sup 4>(A) < 4>(x) + 6/2. We 
now apply the preceding lemma with 8 == 6/2 and Y == 1/2 to obtain Xo E A 
and 1/1 E X* such that sup I/I(A) = I/I(xo), Ilxo - xii ~ 6, and 114> - 1/111 ~ !. 
This last inequality shows that 1/1 ¥- 8 (since 114>11 = 1), and thus Xo is a 
support point of A within distance 6 from x. 0 

C. In order to show that there is not much hope of extending this 
theorem beyond the setting of Banach spaces we shall indicate an example 
of Peck (based on an earlier more specialized example of the same type of 
phenomenon due to Klee). This example will lead to a bounded closed convex 
subset of a complete metrizable locally convex space which has no support 
points at all. The construction serves also as a further application of the 
theorem of James. Let us say that a linear functional 4> is a support Junctional 
of a set A if 4> ¥- 8 and 4> attains its supremum over A:sup 4>(A) = 4>(xo), 
for some Xo E A. 

00 

Example. Let X = n X k be the product of a sequence of non-reflexive 
I 

real Banach spaces X k' In its product topology X is locally convex and 
complete, and this topology is metrizable by exercise 2.4. We are going to 
construct a closed bounded convex subset A of X such that the projection 

n 

of A on each n X k is open, n = 1,2, .... Since any functional 4> E X* is 
I 

n 

bounded on some basic 8-neighborhood in X, 4> must have the form L 4>k 0 nb 
, I 

where 4>k E X{: and nk:X --+ X k is the usual projection. It follows that 4>(A) 
must be open and hence that 4> cannot be a support functional of A. Therefore, 
A can have no support points. 

The construction of A is based on an inductive construction of a sequence 
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n 

of closed bounded convex sets An C n U(Xk). To begin, let cf>2 E Xf be a 
1 

norm-one functional that is not a support functional of U(X2 ) (19A). Let 
A2 = {(Xl>X2)E U(Xd x U(X2):llxlll ~ cf>2(X2)}. Note that ifllx211 < 1 and 
cf>2(X2) > 0, then (e, x2) belongs to the interior of A2 in XIX X 2. For the 
inductive step we suppose that n ~ 3 and that a closed bounded convex 

n-l 
set An- 1 c n U(Xk ) has been constructed containing an interior point 

1 

y(n-l) == (Yl> ... , Yn-l). Choose a norm-one functional cf>n E X; which is 
not a support functional of U(Xn). Let Pn-l be the gauge of the convex e
neighborhood An- 1 - y(n-l), and define 

n 

An = {(Xl' ... , Xn-l> Xn) E n U(Xk):(XI> . .. , Xn-l) E An- 1 and 
1 

Pn-l((XI> ... ,xn-d - y(n-l) ~ cf>n(Xn)}. 

If Yn E int(U(Xn» is chosen so that cf>n(Yn) > 0 then y(n) == (Yl, ... , Yn- I> Yn) 
is an interior point of An" 

Having obtained the sets AI> ... , Am ... we now define 

A = {(Xl' X2, . .. ) E X:(XI> ... , Xn) E Am n ~ 2}. 

Clearly A is a closed bounded convex subset of X. To complete the example 
n 

it will suffice to prove that the projection of A on n X k is int(An) for n = 
1 

2,3, .... Suppose first that (XI> ... , Xm Xn+b . .. ) E A. Then 

Pn((x1, ... ,xn) - y(n) ~ cf>n+1(Xn+1) < 1, 

whence (Xl> ... , xn) - y(n) E int(An - y(n)), or (XI> ... , xn) E int(An). To re
verse the inclusion, take (Xl> ... ,xn) E int(An); then Pn( (Xl> ... ,xn) - y(n) < l. 
Since IIcf>n+ 111 = 1, there exists xn+ 1 E int(U(Xn+ 1» such that Pn( (Xl' ... ,xn) -
y(n)) < cf>n+ I(Xn+ 1)· Therefore, (XI' ... , xm xn+1) E int(An+1). We can continue 
this inductive procedure and obtain (Xl, . .. , Xm Xn+L ... ) E A whose pro-

n 

jection on n X k is (Xl> ... , Xn)· 
1 

o 
D. Let A be a convex subset of a Banach space X, and let f E Conv(A) 

be lower semi-continuous. Then f is continuous throughout int(A) (exercise 
3.50), and hence subdifferentiable there (14B). If A is not solid it is still of 
interest to inquire about the subdifferentiability of f. Recall (6D) that sub
gradients of f correspond to non-vertical supporting hyperplanes to epi(f). 
Making use of arguments analogous to those used in the lemma of 20B, 
the following result was established by Brondsted and Rockafellar. 

Lemma. Let e, ')' > O. Suppose that cf> E X* satisfies 

(f(x) - e) + cf>(z - x) ~ f(z), 
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for some x and all z in A. Then there exist Xo E A and t/J E X* such that 
Ilxo - xii ~ y, II¢ - t/JII ~ ely, and t/J E of(xo)· 

Any such ¢ is called an e-approximate subgradient of f at x and the set 
of all these is denoted 8J(x). The sets 8B f(x) are non-empty weak*-closed 
convex subsets of X* for e > 0, and they decrease to of (x) as e decreases to 
0. (That 8J(x) =I 0 may be seen by strongly separating the point (x, f(x) - e) 
from the closed set epi(f) (14A).) How well one of these sets approximates 
of (x) can be estimated by the above lemma. We shall use this lemma to prove 
a formula which implies that the points at which f is sub differentiable con
stitute a dense subset of A. Let B = {z E X:of(z) =I 0} and let J = fiB. 

Theorem. F or all x E A, 

(20.2) f(x) = lim inf J(y). 

Proof. Because f is lower semicontinuous we need only prove that 
f(x) ): lim inf J(y). Given x E A and (j > 0, put e = (j/2 and select ¢ E oJ(x). 
Choose y > ° so small that y ~ (j and YII¢II ~ (j/2. Now let Xo E A and t/J E X* 
satisfy the conclusions of the lemma. Then 

f(xo) - f(x) ~ - t/J(x - xo) 

~ Ilx - xolilit/JII ~ Y (II¢II + ~) < ~ ;- e = (j. 

Thus Xo E B, Ilx - xoll < (j and f(xo) < f(x) + (j. 0 
We remark that this result too cannot be extended beyond the confines 

of Banach spaces. To illustrate, let K be the supportless set constructed in 
20e in the product space X. We choose an arbitrary non-zero Xo E X and 
define a convex function by 

(20.3) f(x) = min{tER:x + tXoEK}, 

the domain A of f being the set of x E X for which some such t exists. Because 
K is closed and bounded in X this function is lower semi continuous on A. 
However, if of (x ) =I 0 for some x E A then it can be shown (exercise 3.51) 
that the set K would have a non-trivial supporting hyperplane at the point 
x + f(x)xo, and this is a contradiction. Thus (20.3) defines a lower semi
continuous convex function on A c X which is nowhere subdifferentiable. 

E. We shall now give a second application of the Phelps-Brondsted
Rockafellar lemma. This intended application is motivated by the problem 
of subreflexivity of Banach spaces, which is in turn motivated by the theorem 
of James (19A). Given a real Banach space X we let £?l>(X) = {¢ E X*: ¢ 
attains its norm on U(X)}. Then the theorem of James asserts that £?l>(X) = 
X* if and only if X is reflexive. We say that X is subreflexive if £?l>(X) is dense 
in X* (in the norm topology). We are thus led to inquire as to which Banach 
spaces are subreflexive. 

For example, if we identify C6 with (1 as in 16H, then £?l>(co) is that subset 
of (1 whose members vanish except on a finite set (the finitely supported 
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elements of P). Or, if we identify IJ * == £1 (Q, 11, F)* with L 00 == L OO(Q, 11, F) 
as in 12C (here 11 is a a-finite measure), then &>(Ll) = {fELoo :l1{tEQ: 
If(t)1 = Ilflloo} > O} (in other words, &>(£1) is that subset of LOO whose 
members attain their norm on a set of positive measure). In both these 
cases it is easy to see that the spaces are subreflexive. The next result, the 
"second Bishop-Phelps theorem", shows that this is not an accident. 

Theorem. Let A be a closed convex set in the real Banach space X, and 
let ¢ E X* (II¢II = 1) be bounded above on A. Then for any bE (0, 1) there 
exists a support fimctional t/J of A with II¢ - t/JII < b. 

Proof. Choose x E A so that sup f(A) :( f(x) + 1 and apply the lemma 
of 20B with e = 1 and'Y = b. We obtain t/J E X* such that sup t/J(A) = t/J(xo) 
for some Xo E A, and II¢ - t/JII :( b < 1 == II¢II. Hence t/J =I e and is therefore 
a support functional of A. D 

This theorem shows that the set of support functionals of A is dense 
in the space of functionals that are bounded above on A, and leads imme
diately to the following corollaries. 

Corollary 1. If A is a closed bounded and convex subset of X then the 
support functionals of A are dense in X*. 

Corollary 2. Every Banach space is subreflexive. 
It is interesting to remark that when X is an incomplete normed linear 

space there is a solid closed bounded convex subset A of X such that the 
support functionals of A are not dense in X* (exercise 3.53). Consequently, 
Corollary 1 is actually a new characterization of Banach spaces within the 
class of normed spaces. On the other hand, an incomplete normed space 
mayor may not be subreflexive. For example, the space of sequences with 
only finitely many non-zero terms, normed by the CP(~o)-norm for 1 < p < 
00, is a subreflexive normed space. But the space of polynomials on [0, 1 J, 
normed by the supremum norm, is not reflexive. The proof of this latter 
assertion depends on the representation of the general continuous linear 
functional on this space (or, equivalently, on the space C([O, 1J, R» as a 
Stieltjes integral defined by an integrator function of bounded variation 
(171, 22D, and exercise 4.9). 

F. We consider now a special kind of support point for convex subsets 
in normed spaces. In general, let A be a solid convex set in a real linear 
topological space X. A support point of A is called a smooth point of A if 
there is only one (closed) hyperplane supporting A at x. We assume that A 
has non-empty interior so as to rule out situations where A lies in some 
hyperplane; in such cases we would not expect A to have any smooth points 
(except in trivial cases such as the case where A is already a hyperplane.) If 
every boundary point of A is a smooth point we shall say that A is smooth. 
The set of all smooth points of A is denoted sm(A), so that A is smooth if 
and only if o(A) = sm(A). If A is the unit ball in the normed space X and if 
A is smooth, then X will be said to be smoothly normed. 
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Smooth points were introduced in 7F for the purely linear space situation 
and in particular we classified the unit vectors of the p-norm unit balls in 
Rn as to smoothness (1 ~ p < 00). We can also readout of7Fthefollowing 
application to smoothness in normed spaces: a unit vector Xo is a smooth 
point of U(X) exactly when the norm function has a gradient at Xo. Thus 
(7F) Xo E sm(U(X)) exactly when 

(20.4) ( . ) _ l' Ilxo + txll - IIxoll g Xo, x = 1m '--L-=--_...l!----'-'----=-'-'-
t-->O t 

exists for all x and defines a functional g(xo; .) in X*. The functional g(xo; .) 
is the gradient of the norm at Xo and, as an element of X*, has norm one. 
When the limit in (20.4) exists we have g(xo; x) = 't'U(X)(xo, x), the tangent 
function of U(X) (7F). 

We now consider some of the standard normed spaces and determine 
the smooth points of their unit balls. Most of the details are left as an exercise. 

Example. a) Let U(Q, /1, R) for 1 < p < 00. Then every unit vector 
is a smooth point of U(U). This can be seen from the condition for equality 
in Holder's inequality, or by directly differentiating under the integral 
sign in order to compute the limit in (20.4). However, it also follows from 
the fact that U* = U is strictly normed (13E-Ex. 5, and 16G), and the 
duality between smoothly normed and strictly normed reflexive spaces 
(20G). For Xo E aU(U) the gradient of the p-norm at Xo is given by the 
function xolxolp-2/lIxoW-1 E U. 

b) Let U = L1(Q, /1, R). Then Xo E sm(U(U)) if and only if /1({t E 

Q:xo(t) = O}) = O. When this condition holds the gradient of the norm 
at Xo is the function sgn(xo) E LcD. (We assume that the measure /1 is such 
that the usual congruence between L 1* and LcD holds.) In the special case 
where Q = [0, 1], /1.= Lebesgue measure, it follows that the subspace of 
polynomials of degree ~ n, for some integer n, is a smooth subspace of L 1. 

c) By contrast, the sequence space C1(~O) has no smooth subspaces 
of dimension> 1. This may be seen by taking allY two vectors x = (~1o ~ 2, ••. ), 

cD 
Y = (1J1o 1/2, ... ) in C1, and considering the function J(t) == L I~n + tlJnl· 

1 

The functionJ is either a constant (if y = 8) or else fails to be differentiable 
at t = - ~n/lJn whenever IJn =1= O. But, f'(t) == g(x + ty; y). 

d) Let C = C(Q, R), where Q is a compact Hausdorff space. A peak 
Junction in C is a function Xo that attains its norm IIxoli oo at a single point 
in Q. Clearly, any unit vector in C that is not a peak function cannot belong 
to sm(U( C)). On the other hand, a peak function Xo of unit norm is indeed 
a smooth point of U(C). To prove this we assume that xo(Po) = 1 = IIxoli oo 

and verify that g(xo; .) = (ypo. For any x E C we have 
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Therefore, 

whence 

o ~ 1 - IXo(pt)1 ~ Itllx(Po)1 + Itllx(pt)1 

~ 2l tlllx lloo, 

lim Ixo( Pt) I = l. 
t-O 

171 

Since Q is compact, it follows that Pt -+ Po as t -+ O. Now, for sufficiently 
small It I 

tx(po) = 1 + tx(po) - 1 = 11 + tx(Po)1 - 1 
~ IXo(pt) + tx(pt)1 - 1 

:; Ilxo + txll oo - Ilxoll oo 

= xo(Pt) + tX(Pt) - 1 ~ tX(Pt)· 

Now divide through by t and let t -+ O. If xo(po) = -1, we use the general 
rule g( - Xo; .) = - g(xo; .) and so obtain g(xo; .) = sgn(xo(po) )bpo' 0 

The main result about smooth points is known as the "Mazur density 
theorem". 

Theorem. Let A be a solid closed convex subset of a separable Banach 
space X. Then sm(A) is a residual subset of 8(A). 

Proof. Since A is solid we can assume that e E int(A). Let, = 'U(X)' 

the tangent function (7F) of the unit ball in X. From the properties of , 
listed in 7F we see that 

(20.5) 

I,(x, y) - ,(x, z)1 ~ max(PA(Y - z), PA(Z - y)) 

1 
~ -IIY - zll, 

13 

if 13 > 0 is chosen small enough that 13U(X) c A. From formula (7.8) and 
the theorem in 7F we see that a boundary point Xo of A is a smooth point 
of A provided that ,(xo, x) = -,(xo, -x), for all x E X. Now let {Yn} 
be a countable dense set in X\{e}; and define 

Zn = {XEX:,(X,Yn) = -,(x, -Yn)}, 

n= 1 

Then, because of the continuity of ,(x, .) as shown by (20.5), a non-zero 
x E Z will satisfy xl PA(X) E sm(A). Since ,(ax,') = ,(x, .), a > 0, we see 
that the problem is reduced to proving that Z is a residual set in X. 

Let 

Zn,i,j = {x E X:j (PA (x + ~n) - 2PA(X) + PA (x - ~n) ) < n. 
These sets are open in X and so Zn, i :; U {Zn, i, j:j = 1, 2, ... } is also 



172 Principles of Banach Spaces 

open. But Zn = n{Zn,i:i = 1, 2, ... }. Thus it remains only to show that 
each set Zn, i is dense in X. Suppose not; then for some integers i and n 
there exists a point Xo E X and (j > ° such that Z", i is disjoint from Xo + 
(jU(X). If we put g(A) = PA(XO + AYn) it follows that g is not differentiable 
for IAI < (j/lly"ll. But g is a Lipschitz continuous (hence absolutely continuous) 
function of A, since PAis sublinear, and, as is known from analysis, any such 
function is differentiable almost everywhere. Thus we arrive at a contradiction 
by assuming that Zn i fails to be dense. D 

Having obtained such a geometrical fact about convex sets we can, 
by the usual device of applying the fact to epigraphs, obtain a corresponding 
conclusion about convex functions. 

Corollary. Let A be a convex subset of the separable Banach space X 
andf E Conv(A). Iff is continuous at a relative interior point of A thenf has 
a gradient at each point of a residual subset ofrel-int(A). 

Proof. As usual, after passing to aff(A), we can assume that f is con
tinuous throughout int(A). The epigraph off is then a solid closed convex 
set in the separable Banach space X x Rl, and so the smooth points con
stitute a residual subset of its boundary gr(f). There are therefore open sets 
Zn C X x R 1 such that sm( epi(f») = n n (Zn n gr(f)) and Zn n gr(f) is 
dense in gr(f). Let P:X x Rl -7 X be the projection along ~l: P(x, t) == x. 
Then P is a continuous open mapping and P(gr(f)) = A. It follows that the 
sets P(Zn n gr(f) are dense and open in A, and hence that their intersection 
B is a residual subset of int(A). If x E B, then (x, f(x)) E nn (Zn n gr(f») == 
sm(epi(f»). Thus there is a unique hyperplane of support to epi(f) at the 
point (x, f(x)). By 6D it follows that there can be at most one subgradient of 
fat x. But by 14B, 8f(x) =1= 0. Therefore, there is a unique subgradient 
offat x which must, by 14D-Cor. 1, be the gradient offat x. This shows 
that fhas a gradient at the points of the residual set B. D 

The separability hypothesis in these results is crucial. Lacking this, the 
conclusion can fail completely. For example, the norm in the Banach spaces 
LOO([O, 1], /1, R) (/1 = Lebesgue measure) and C1(t{) (t{ > t{o) is nowhere 
differentiable. Hence the unit balls of these spaces have no smooth points 
at all. However, it is known that the conclusions do hold for all reflexive 
spaces. 

G. We now discuss a few miscellaneous topics related to the notion 
of smoothness. First is the observation that the properties of being strictly 
normed and smoothly normed are, in a sense, dual to one another. 

Theorem. Let X be a real normed linear space. If X* is smoothly (resp. 
strictly) normed then X is strictly (resp. smoothly) normed. 

Proof. The proofs of both assertions are similar, so we shall just prove 
the first. Suppose that X is not strictly normed. Then the boundary 8U(X) 
contains a non-trivial line segment [u, v J. Let 4> E 8U(X*) be a support 
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functional to U(X) at the point (u + v)/2. Then the functionals U, v E X** 
are both subgradients of the norm at the point ¢, and so there cannot be 
a gradient of the norm in X* at ¢ (14D). Hence X* is not smoothly 
normed. 0 

Corollary. Let X be a real reflexive Banach space. Then X is strictly 
(resp. smoothly) normed if and only if X* is smoothly (resp. strictly) normed. 

Let A be an open convex set in a normed linear space X. Suppose that 
f E Conv(A) is continuous and differentiable on A. Thus we have the gradient 
map x --+ Vf(x), defined from A into X*. The following result establishes 
two basic properties of such a mapping: mono tonicity (3A) and demicon
tinuity. In general, a mapping from a subset of X into X* is demicontinuous 
if it is continuous from the norm topology into the weak*-topology. The 
kinds of convex functions to which we want to apply this result are those 
associated with the norm on a smoothly normed space; for example,f(x) = 

Ilxll or f(x) = tllxW. But notice also that even in the finite dimensional 
case the theorem provides some new information by showing that a differen
tiable convex function (defined on an open subset of Rn, say) is automatically 
continuously differentiable. 

Theorem. Let X be a normed linear space and f a continuous and differen
tiable convexfimction defined on an open convex set A c X. Then the gradient 
map x --+ Vf(x) is monotone and demicontinuous on A. 

Proof. The mono tonicity inequality 

<x - y, Vf(x) - Vf(y) ~ 0, x,YEA, 

is proved exactly as in 3A, making use of the sub gradient property < u - v, 
Vf(v) ~ f(u) - f(v), for u, v EA. 

In order to prove that f( .) is demicontinuous at a given point Xo E A, 
we first note that there is an xo-neighborhood V such that the restriction 
flY satisfies a uniform Lipschitz condition on V with constant A (exercise 
2.41). It follows that the restriction Vf(·)1Y is a bounded mapping: 

(20.6) I IVf(x) I I ~ A, x E V. 

Now suppose that limn Xn = Xo for some sequence {xn } C V. We shall 
prove that weak*-limn Vf(xn) = Vf(xo) by showing that the sequence 
{Vf(xn)} has the unique weak*-c1uster point Vf(xo). Because of the weak*
compactness of {Vf(xn)} guaranteed by (20.6), there is some weak*-c1uster 
point ¢ E X*. To see that ¢ = Vf(xo) it must be shown that ¢(y - x o) ~ 
f(y) - f(xo) for all YEA. Now 

¢(y - x o) = <y - xo, ¢ - Vf(xn» + <y - Xno Vf(xn) 
(20.7) 

YEX. 

Select some y E A and any e > 0. Then there is a sequence {nk } of positive 
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integers such that I(y - xo, </> - Vf(xnJ> I < e, If(xnJ - f(xo) I < e and 
;tllxnk - xoll < e. Hence, from (20.7), 

</>(y - x o) < (y - xnk ' Vf(xnJ> + 2e 
~ f(y) - f(xnJ + 2e < f(y) - f(xo) + 3e. 

This proves that </> is a subgradient of f at Xo and hence, by uniqueness of 
subgradients (14D), that </> = Vf(xo)· . D 

Example. Let X be a smoothly normed space. Then the norm gradient 
mapping x 1-+ g(x; .) is defined by (20.4) from aU(X) into aU(x*). From 
7F it follows that this mapping is positively homogeneous of degree zero: 

g(IXx; .) = g(x; .), IX > 0, IIxil = 1. 

Hence we may consider that g is defined on the open set X\{e}, where it is 
consequently monotone and demicontinuous. The range of the norm gradient 
consists of certain kinds of extreme points of U(X*); this idea is developed 
further in exercise 3.57. 

Now let f(x) = tllxW. By the chain rule, f is differentiable on all of X 
and 

(20.8) 
X E X, x 1= e, 
x = e. 

The mapping (20.8) is called the norm-duality map and will be denoted by T. 
Again, T is monotone and demicontinuous. Further, we can assert that 
range(T) = £?l>(X) (20E). Hence range(T) is dense in X* whenever X is 
complete but it equals X* only when X is reflexive (James' theorem). Finally, 
it is easy to see that T is injective exactly when X is strictly normed. Thus, 
when X is a reflexive Banach space which is both smoothly and strictly 
normed, it follows that T is a bijection between X and X*. It may also happen, 
but not necessarily, that T is a homeomorphism (see exercise 3.58). D 

H. Let M be a linear subspace of a normed space X. We know from 
the Hahn-Banach theorem that any </> E M* ha~ a norm-preserving extension 
;p in X*. A most interesting question pertains to the uniqueness of ;Po We 
shall study this question briefly, making use ofthe concepts of rotundity and 
smoothness. Let us say that M has property (U) if every </> E M* admits 
exactly one norm-preserving extension to all of X. We may as well confine 
ourselves to closed subspaces in X, since a subspace M has property (U) 
if and only if M has property (U). 

Example. The simplest space where property (U) always occurs is 
Euclidean n-space, that is, Rn normed by the 2-norm. Any subspace M of 
Rn has an orthogonal complementary subspace MJ. for which M EB MJ. = 

Rn. Let PM be the corresponding projection of X on M. Then any ¢ E M* 
has the unique norm-preserving extension ;p == ¢ 0 PM. Indeed, any other 
such extension, ¢ say, could be represented as an inner product ¢(x) = (x, z), 
where z = u + v, u E M, v EM. By confining x to M we see that ¢(x) = 
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<x, u), whence 114>11 = Ilull· But, II¢II = Ilzll == (11uW + IlvW)1/2 and so 
II¢II = 114>11 requires v = e. That is, ¢ = 4> ° PM == (fj. 0 

We shall now obtain a substantial generalization of this example. The 
basic fact here is due to Phelps. Let us say that a subspace N of a normed 
space is a Chebyshev subspace if it is proximinal and every point outside of 
N has a unique best approximation (15B) from N. 

Theorem. The subspace M of the normed linear space X has property 
(U) if and only if its annihilator MO is a Chebyshev subspace of X*. 

Proof. If M does not have property (U) there exists some functional 
4> E M* with two distinct extensions t/ll and t/l2 in X*. Hence t/ll - t/l2 is 
a non-zero element of MO. We claim that t/ll has two distinct best approxima
tions from MO, namely e and t/ll - t/l2. To see this, recall from formula 
(16.9) that d(t/ll, MO) = IIt/llIMI/ == 114>11· Thus Iit/ll - ell = IIt/llll == 114>11 = 
d(t/ll' MO), and Iit/ll - (t/ll - t/l211 = 11t/l211 = 114>11, as well. Conversely, sup
pose that MO is not a Chebyshev subspace. Then there exists a functional 
t/I E X* that has two distinct best approximations from MO, say t/ll and t/l2. 
(We are implicitly using the fact that MO is proximinal, since it is weak*
closed (exercise 2.52).) After translating by t/I 1 we can assume that t/I 1 = e. 
Then t/I and t/I - t/l2 have the same restriction to M (since their difference, 
t/l2, belongs to MO), and Iit/lil = d(t/I, MO) = 11t/lIMI/ = Iit/I - t/l211. Therefore, 
M does not have property (U). 0 

From 15C we recall that every convex subset of a strictly normed space 
contains at most one best approximation to each point. Conversely, it is 
easy to see that any normed space with this property must be strictly normed 
(consider one-dimensional convex subsets). With these remarks the theorem 
is seen to have as an immediate corollary the "Taylor-Foguel theorem". 

Corollary. Every subspace of a normed linear space X has property (U) 
if and only if X* is strictly normed. 

I. Finally, we look at the problem of extending a single functional in 
a unique manner. We shall need the following lemma concerning convex 
functions, although only for the case of the norm function. 

Lemma. Let A be a solid convex subset of a locally convex space X. 
Let f E Conv(A) be continuous at a point pEA. Then the set 

r(f; p) == {x E X: - !'(p; -x) = !'(p; x)} 

is a closed linear subspace of X, on which !'(p; .) is a continuous linear 
functional. 

Proof. This follows from 7E or 14D, as either of these subsections 
shows that x E r(f; p) if and only if the functional J x(x) in X*' assumes a 
constant value on 8f(p). Thus r(f; p) is the subspace of direction vectors 
in X for which the function f is differentiable. Furthermore, the directional 
derivative !'(p; .) being sublinear on X (7D), is continuous on X since 
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f'(p; x) :::; f(p + x) - f(p), which is bounded for x in some It-neighborhood. 
Therefore, its restriction to r(f; p), where it is linear, is also continuous. 0 

We now specialize to the case where X is a normed space andf(x) = jjxjj. 
For x =1= It we define 

(20.9) rx = {y E X:lim jjx + tyjj - jjxjj eXists}, 
t--+O t 

and we let ¢x E r-; be the linear functional whose value at y is the limit in 
(20.9). Thus for each x in X (x =1= It), r x is a smooth subspace of X and ¢x 
is the norm gradient for this subspace. We can now state a sufficient condition 
for unique extendability of linear functionals. 

Theorem. Let M be a subspace of X and suppose that ¢ E M* attains 
its norm at x E aU(M). Then ¢ has a unique norm-preserving extension to the 
subspace M + r X' 

Proof. Any norm-preserving extension (fJ in (M + r J must satisfy 
(fJjM = ¢ and (fJjrx = ¢x, so that (fJ is uniquely determined on M + rx 
and hence on its closure. 0 

Corollary. If ¢ E M* attains its norm at a point in aU(M) which happens 
to be a smooth point of U(X), then ¢ has a unique norm-preserving extension 
to all of X. 

From this we can in turn observe that if X is smoothly normed then 
every reflexive subspace of X has property (U). 

§21. Some Further Applications 

In this section we discuss a variety of miscellaneous topics, some of 
which are direct applications of previous developments. All the topics here 
have been chosen on the basis of their usefulness and intrinsic interest. 

A. We begin by establishing the Banach space version of the quotient 
theorem (lG), known as the "Sard quotient theorem". We are given normed 
linear spaces X, Y, and Z, with X and Y complete, and operators S E B(X, Y), 
T E B(X, Z), with S surjective. 

Theorem. Let the operators Sand T satisfy in addition ker(S) c ker(T). 
Then there exists a uniquely specified operator R E B( Y, Z) such that T = R 0 S. 

Proof. We introduce the 1-1 operators S:X/ker(s) ---+ Y and T: 
X/ker(T) ---+ Z (16E). By the inverse mapping theorem (17F) the linear 
mapping S-I is bounded. Now to each coset x + ker(S) we make correspond 
the coset x + ker(T). This correspondence is well defined because of our 
hypothesis that ker(S) c ker(T), and defines a linear map P: X /ker(S) ---+ 

X/ker(T). Since jjx + ker(T)jj == d(x, ker(T)) :::; d(x, ker(S)) == jjx + ker(S)jj, 
we have jiPjj :::; 1. We can thus finally define R = ToP 0 S-I and easily 
verify that T = R 0 S. 0 



§21. Some Further Applications 177 

Although a simple enough consequence of the inverse mapping theorem, 
this result plays an important role in the analysis of certain problems in 
approximation theory and numerical analysis. We indicate a prototypical 
application. 

Example. Suppose that we have some sort of numerical formula that 
we wish to apply to functions defined on an interval [a, b] (or perhaps some 
region of higher dimension). This formula is to be thought of as providing 
an approximation to a desired quantity. Thus if this desired quantity is the 
definite integral of a function, the formula may give us a prescribed linear 
combination of some values of the function (and perhaps of certain of its 
derivatives) at specified points in [a, b]. In this case the formula is usually 
called a quadrature rule. We have to have some reason for believing that the 
formula is going to be effective; let us suppose that the formula gives exactly 
the correct answer when applied to polynomials of degree :::; n - 1, say. 
The general problem is then to appraise the error when the formula is applied 
to functions other than such polynomials. 

Let C == Cn( [a, b], R) be the linear space of n-times continuously 
differentiable functions on the interval [a, b], normed by 

(Convergence of a sequence in this norm thus means uniform convergence 
on [a, b] of the functions together with that of their first n derivatives.) The 
completeness of Cn can be seen either directly or via the observation that 
cn is isomorphic to the product space Rn x C == Rn x q[ a, b], R) under 
the mapping 

(21.1) S(x) == (x(a), x'(a), ... , x(n-1)(a), x(n)), 

Now let T E C*. Since S is an isomorphism, {e} = ker(S) c ker(T) 
and so the quotient theorem applies. We thus obtain a functional cP E 

(Rn x C)* such that T = cP 0 S. If cP has the form 

n-1 
(21.2) cp( (to, tb ... , tn- b f)) = I Cktk + cp(f) 

k=l 

for (to, tb· .. ,tn - dE R" and f E C, it follows from (21.1) and (21.2) that 
n-1 

(21.3) T(x) = I Ckx(k)(a) + cp(x(n)). 
k=O 

Thus we have reduced the problem of determining the form of the continuous 
linear functionals on C" to the corresponding problem for C. For the rest 
of this example we shall grant the validity of the remark made at the end 
of 20E, namely that to any cp E C* corresponds a function g of bounded 
variation on [a, b] such that 

(21.4) cp(f) = f~ f(t)dg(t), 
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Returning now to the error analysis problem above, let T E en* be the 
error functional. That is, for each x E en, T(x) is the difference between the 
true (but unknown) value at x and the approximate (but computable) value. 
We have assumed that T(x) = 0 whenever x is a polynomial of degree ::::;; 
n - 1. This condition can be interpreted as the condi,:ion that ker(T) contains 
the kernel of the linear map x f-+ x(n) from Cn to C. Applying the quotient 
theorem we conclude that there exists ¢ E C* such that T(x) = ¢(x(n»), 
X E cn. From the representation (21.4) we reach our final conclusion that 
there exists a function 9 of bounded variation on [a, b] such that 

(21.5) T(x) = J~ x(n)(t)dg(t), X E cn. 

With the achievement of formula (21.5) the contribution of functional 
analysis to this problem is completed. However, it is clear that for the 
purposes of numerical analysis the problem is far from solved. The next 
step is to determine the nature of the integrator function g. For instance, 
due to additional information that may be available regarding the functional 
T, we might be able to conclude that 9 is absolutely continuous. In this 
case the Stieltjes integral in (21.5) becomes an ordinary Lebesgue integral 
of the product x(n)g'. We could then estimate the error in our approximation 
by 

or perhaps by 
1 T(x) 1 ::::;; Ilg'lllllx(n)lloo, 

1 T(x) 1 ::::;; Ilg'1121Ix(n)112' 
if we could be sure that g' is square integrable. If our original goal were to 
design an optimal approximation formula we might be led, in view of the 
preceding estimates, to the optimization problem of selecting 9 so as to 
minimize either Ilg% or Ilg'112 over a certain class of formulas. However, 
even the mere computation of these quantities can be difficult, and so we 
shall leave the problem at this point. 0 

B. We consider next a special type of optimization problem known as 
an abstract spline problem. Given are two re",l Banach spaces X and Y, 
an operator R E B(X, Y), and a subset K of X. An R-spline in K is by definition 
any solution of the program 

(21.6) min{IIR(x)ll:x E K}. 

It is usually assumed that K is disjoint from the kernel of R, as otherwise 
points in the intersection would yield trivial solutions to (21.6). 

In all cases of interest the set K is defined by means of a second operator 
T E B(X, Z), for some normed space Z and some prescribed subset r of Z: 

(21.7) 

The most common situations occur when r is a singleton, so that K is an 
affine subspace of X, or when r = Zo + C for some cone C c Z. In this 
latter case k appears in the form {x EX: T(x) ;" zo}, where the inequality 
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refers to the ordering induced on Z by C. As usual, the case Z = Rn for 
some n is of special importance. In this case T is defined by a subset 
{¢l> ... ,¢n} c X*: 

T(x) = (¢1 (x), ... , ¢n(x)), x E X. 

Then K is either of the form {x EX: ¢i(X) = Ci , i = 1, ... , n} (a finite co
dimensional flat) or {x EX: ¢1(X) ~ Ci , i = 1, ... , n} (a polyhedron). 

The operator R is most commonly a linear differential operator of the 
form 

(21.8) 

on some interval [a, b], and X and Yare accordingly function spaces of 
such a nature that R E B(X, Y). At first glance it might seem adequate to 
take X = Cm([ a, b], R) and Y = C([ a, b], R). This choice fails to be satis
factory because of the nature of Y in this case: it is not reflexive and in fact 
not even a conjugate space (13B, 13E, -Ex. 1), hence it will be difficult to 
guarantee solutions to our basic optimization problem (21.6). Instead we 
set Y = U == U( [a, b], jl, R) where jl is Lebesgue measure and 1 < p < 00. 

Then for X we might take the space 

(21.9) H; == {f E Cm- 1([a, b], R):pm-l) is absolutely continuous 
and pm) E U}. 

The spaces H; for m = 1, 2, ... , and 1 < p < 00 are known as Sobolev 
spaces and are indeed Banach spaces under a variety of norms; for example 

m 

Ilfll~m) == I 1 f(t;) 1 + Ilpm)llp 
i= 1 

where {tl' ... , tm} is a set of distinct points in [a, b J. 
The classical case occurs where m = p = 2, R = d2/dt2 , and n data 

points (tl, c1 ), ••• , (tm cn) are given. Here a ~ tl < ... < tn ~ b and the Ci 

are arbitrary. In this case a solution ofthe program (21 6) will be a smoothest 
interpolant of the data, that is, a function f satisfying 

f E H~, f(t;) = Ci , i = 1, ... , n, 
J~ (f"(t) )2dt = min. 

(21.10) 

This classical problem is only of interest when n ~ 3, since when n = 2 
there is a unique polynomial of degree one that interpolates the given data 
and obviously the minimum in (21.10) is zero in this case. When n ~ 3 
the solution of(21.10) is known to be a natural cubic spline, that is, a function 
of class C2 whose restriction to each sub-interval (ti' ti+ 1) is a cubic poly
nomial, i = 1, ... , n - 1, and which in addition reduces to a first degree 
polynomial in each of the intervals [a, t1 ), (tm bJ. 

With this background we return to the abstract program (21.6). We 
shall assume that Y is reflexive and that the range of the operator R is closed 
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in Y. Since any closed subspace of a reflexive space is again reflexive (16F) 
we can replace Y by range(R) and therefore assume that R is surjective. 
From 161 we know that every closed convex subset of a reflexive space is 
proximinal. Hence if the set K is convex and if R(K) is closed in Y we can 
be sure of the existence of an R-spline in K. 

Theorem. Let Y be reflexive and let K be a closed convex subset of X. 
Suppose that the operator R has a finite dimensional kernel N which is disjoint 
from the recession cone of K: N n C K = {e}. Then there exists an R -spline 
in K. 

Proof. The image R(K) is convex by exercise 1.6 so we must show that 
it is closed in Y. According to 17H R(K) is closed exactly when K + N 
is closed in X. Now N, being a finite dimensional linear subspace of X, is 
locally compact and equals its own recession cone. We have assumed that 
N n C K = {e}; hence all the hypotheses of the lemma in 15D are satisfied 
and so we may conclude that K + N is indeed closed. 0 

In the important special case where K is an affine subspace parallel to 
some linear subspace M, an R-spline in K will always exist provided that 
dim(N) < 00. This is because the condition for R(K) to be closed, namely 
that M + N be closed, is automatically satisfied (9E). The hypothesis that 
the operator R should have a finite dimensional kernel is suggested (and 
certainly satisfied) by linear differential operators of the form (21.8). 

Corollary Let Y be reflexive and assume that R has finite dimensional 
kernel N. Suppose that K has the form (21.7) for some surjective operator 
T E B(X, Z) and some closed convex set r c Z. If M n N = {e}, where 
M == ker(T), and if Cr n T(N) = {e}, then an R-spline in K exists. 

Proof. We must verify that CK n N = {e}, for then the preceding 
theorem can be applied. Now, using the surjectivity of T, it is easy to see that 
T(CK ) = Cr. Then T(CK n N) c Cr n T(N) = {e}, whence CK nNe 
M n N = {e}. 0 

We finally consider a class of closed convex sets to which the preceding 
theorem need not apply. These sets constitute the examples promised in 
17H of non-compact sets whose continuous linear image in a Banach space 
is always closed. 

Example. Let X and Y be real Banach spaces and R E B(X, Y) a 
surjective operator. If K is any polyhedron in X then R(K) is closed in Y, 
and so an R-spline in K exists if Y is reflexive.· To prove that R(K) is closed 
we note first that if y E R(K) then the flat R -ley) is at zero-distance from K; 
this observation uses only the fact that the 1-1 operator R is an isomorphism 
and does not depend on the special nature of K. It remains to show that 
K n R-l(y) of. 0. 

Let K = {x E X:¢;(x) ~ c;, i = 1, ... , n} for appropriate ¢i E X* and 
Ci E R. Let E.(x) = y and N = ker(R). Setting ci = Ci - ¢;(x), i = 1, ... , n, 
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we see that K n R -l(y) "# 0 is equivalent to the consistency of the inequality 
system 

(21.11) 

XEN. 

We can prove the consistency of (21.11) by applying Fan's condition (7B). 
n 

Suppose that at. ... , an are non-negative numbers for which L: ai<PdN = e. 
1 

Since the sets K and R -l(y) are at zero-distance there are sequences {kj) c: K, 
{Zj} c: N, such that limj Ilkj - x - Zjll = 0. Then 

whence 

(21.12) 

lim I¢i(kj - x - Zj)1 = 0, 
j 

lim inf <Pi(Zj) ~ c{, 
j-'t 00 

i = 1, ... , n, 

i = 1, ... , n. 

Now, given e > 0, it follows from (21.12) that when j is sufficiently large 
n n ° = L: ai<Pi(z) ~ L: a;(ci - 8); 

i= 1 i= 1 

consequently 
n n 

8 L: ai ~ L: aici· 
i= 1 i= 1 

n 

Since 8 is arbitrary we have shown that L: aici :;;;; ° and so Fan's condition 
1 

is satisfied. This in turn proves that the system (21.11) is consistent. 0 

C. Let Q and X be sets. A mapping F: Q ~ 2x is called a carrier. 
Intuitively a carrier is a "multivalued function" on P, assigning a certain 
subset of X to each point in Q. In this and the following subsection we are 
going to study some properties of carriers defined on a certain kind of 
topological space, and taking values in the family of convex subsets of a 
Banach space. The theorems we prove concerning the existence of selections 
and fixed points are extremely powerful and useful, and their range of 
applicability appears to be limited only by the ingenuity of the user. 

Basic to our work is the availability of partitions of unity on normal 
topological spaces. We recall that a partition of unity on a topological space 
Q is a family {Pa:a E I} of nonnegative continuous functions on Q, such 
that all but a finite number of these functions vanish on some neighborhood 
of each point in Q, and 

L: g,(t) = 1, t E Q. 
aEI 
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A partition of unity {p,,:o: E I} is subordinate to a given covering of Q if 
each p" vanishes outside some member of the covering. We also say that a 
family IJlt of subsets of Q is locally finite if each point in Q has a neighborhood 
that intersects only finitely many members of ilI!. 

Lemma 1. Let {~: 0: E I} be a locally finite open covering of a normal 
space Q. Then there exists a partition of unity {p,.:o: E I} which is subordinate 
to this covering. 

The proofis achieved by shrinking the covering {V,.} to obtain a new 
open covering {W,.: 0: E J} such that W,. c V,,, 0: E J, and then using Urysohn's 
lemma to obtain continuous functions q,,:Q -+ [0, 1J such that 

{ 1, 
q,,(t) = 0, 

Then the definition 

yields the functions making up the desired partition of unity. 
If ill! and "f/' are coverings of a space Q, "f/' is said to be a refinement of 

ill! if each member of ,,/1 is contained in some member of ilI!. Then a Hausdorff 
space Q is paracompact if every open covering of Q has an open, locally 
finite refinement. It is known from topology that metric spaces and compact 
(Hausdorff) spaces are paracompact, and that every paracompact space is 
normal. 

Let Q and X be topological spaces. A carrier F: Q -+ 2x is lower semi
continuous if {t E Q:F(t) n (!) =I 0} is open in Q, for every open set (!) c X. 
When F is an ordinary (single-valued) mapping from Q to X this definition 
reduces to the usual requirement of continuity. Observe that if the carrier F 
is lower semicontinuous and iflim {t~: bED} = t in Q, then for each x E F(t) 
there exists x~ E F(t~) such that Iim{x~:b E D} = x. 

Before starting our main result we establish a technical lemma concerning 
convex-valued carriers on paracompact spaces. 

Lemma 2. Let Q be a paracompact space, X a normed linear space, and 
F: Q -+ 2x a lower semicontinuous carrier whose values are non-empty convex 
subsets of X. Then if r > 0 there exists a continuous map f: Q -+ X such that 
d(f(t), F(t)) < r, t E Q. 

Proof. For each x E X let 

(!)x = {tEQ:d(x, F(t)) < r}. 

These sets (!)x are open in Q because of the lower semicontinuity of F and 
therefore {(!)x:x E X} is an open cover of Q. Hence there exists an open 
locally finite refinement {V,,:o: E I}. Let {p,,:o: E I} be a partition of unity 
subordinate to this refinement. Then if for each 0: E J we select x(o:) E X so 
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that Va C (9x(a), the desired map f can be defined by 

f(t) = L Pa(t)X(IX), t E Q. 
aEI 

To see that this sum is well-defined and that f is continuous we can note 
that each t E Q has a neighborhood U which intersects only a finite number 
of the va, and so, on U, f is a finite sum of continuous functions. Thus f is 
continuous on a neighborhood of each point in Q, and hence is continuous 
on all of Q. Finally, for each t E Q, f(t) is a convex combination of points 
X(IX) each of which belongs to the convex set {x EX: d(x, F(t)) < r}; it 
follows that d(f(t), F(t)) < r also. 0 

Given a carrier F: Q ~ 2x a selection for F is a mapping f: Q ~ X such 
that 

f(t) E F(t), t E Q. 

The following "Michael selection theorem" asserts the existence of a con
tinuous selection for certain kinds of carriers. 

Theorem. Let Q be a paracompact space and X a Banach space. If F is 
a lower semicontinuous carrier on Q whose values are non-empty closed convex 
suhsets of X, then there is a continuous selection f: Q ~ X for F. I 

Proof. We shall inductively construct a sequence of continuous func
tions }; : Q ~ X such that, for each t E Q, 

a) IIDt) - };-I(t)11 < r i + 2, i = 2,3, ... , 
b) d(};(t), F(t)) < r i , i = 1,2, .... 

(21.13) 

This will suffice for the proof, because by a) the sequence is uniformly 
Cauchy and so converges to a continuous f:Q ~ X; by b) we have f(t) E F(t) 
for all t E Q. That is, f is a continuous selection for F. 

The existence of fl satisfying b) follows immediately from Lemma 2. 
Suppose that flo ... ,fn have been constructed to satisfy a) and b) for 
i = 1, ... , n. We shall construct in+ 1 so as to also satisfy a) and b). 

We define a new carrier F n + 1 on Q by 

Fn+1(t) = {x E F(t): Ilx - fn(t) I I < 2- n}, t E Q. 

By the induction hypothesis Fn +1(t) #- 0, tEQ. We claim that Fn+l is 
lower semicontinuous. To see this, let (9 be an open set in X and let U = 
{t E Q: F n + 1 (t) (\ (9 #- 0}; we show that each to E U has a neighborhood 
contained in U, so that U is open in Q. Given to E U, select a positive), < 2- n 

so that Q == {x E X:llx - fito) I I < A} #- 0 Then if 

VI == {t E Q:F(t) (\ (!) (\ Q #- 0}, 
V2 == {t E Q:llfn(t) - fn(to) I I < rn - A}, 

the set VI is open because F is lower semicontinuous, V2 is open because 
in is continuous, and to E (VI (\ V2 ) C u. 
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Finally, we apply Lemma 2 to the carrier Fn+1 and obtain a continuous 
function fn + 1 : Q ~ X such that 

d(fn+1(t),Fn +1(t» < rn-l, tEQ. 
But now 

which is a), and 

d(fn+1(t), F(t» :( d(fn+1(t), Fn+1(t» < r n- 1 

which is b). 0 
It is interesting to remark that the Michael selection theorem admits a 

converse: if Q is a Hausdorff space with the property that there exists a 
continuous selection for every lower semicontinuous carrier on Q whose 
values are non-empty closed convex subsets of some Banach space, then Q 
is paracompact. The proof is based on the fact (also due to Michael) that 
Q is paracompact if to any given open covering of Q there is a subordinate 
partition of unity. In terms of the given covering a special Banach space and 
lower semicontinuous carrier are constructed, and the assumed existence of 
a continuous selection leads immediately to the desired partition of unity 
(exercise 3.64). 

As an application of the selection theorem we shall establish a useful 
result known as the "theorem of Bartle and Graves". The setting is a pair of 
Banach spaces X, Y, and a surjective operator TE B(X, Y). A right-inverse 
of T is an operator S E B(Y, X) such that TS is the identity on Y. In this 
case the operator ST is a projection on X since 

(ST)2 = (ST)(ST) = S(TS)T = ST. 

Since ker(ST) = ker(T) it follows that I - ST is a projection of X onto 
ker(T). Hence a right-inverse of T can exist only if ker(T) is a topological 
direct summand of X. Since an arbitrary (closed) linear subspace of a Banach 
space need not be a topological direct summand (22F), we cannot expect a 
right inverse to exist in general. What we can always find is a (continuous) 
cross-section of T, that is, a continuous but not necessarily linear map 
f: Y ~ X such that T(f(y» = y, for all y E Y. We can also impose some 
additional requirements on f, as we see next. 

Corollary. Let X and Y be Banach spaces and let TE B(X, Y) be sur
jective. For each A > 1 there exists a continuous and homogeneous cross
section f of T such that 

(21.14) Ilf(y)11 :( )" inf{llxil: T(x) = y}. 

Proof. By the open mapping theorem (17G) T is open. Hence the 
carrier F defined on Y by F(y) == T- 1(y) is lower semicontinuous. Any 
continuous selection f of F will therefore be a continuous cross-section of F. 
In order tq obtain a cross-section with the specified additional properties 
we restrict F to the set a U( Y) of all unit vectors in Y; call this restriction F 1. 
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Let y(y) = A. inf {llxll: T(x) = y}. Since the 1-1 operator T is an isomor
phism, y is a continuous function on Y. Define a new carrier F2 on 8U(Y) by 

F ( ) = {F1(Y) n {x E X:llxll < y(y)}, 
2 Y {e}, 

y(y) > 0 
y(y) = o. 

This carrier is lower semicontinuous and hence so is the carrier F 3 defined 
by F 3(y) == F 2(y). Let g be a' continuous selection for F 3 and then define 

hey) = {"y"g (II~II} 
e, y = e. 

This function h meets all our requirements except that it is only positively 
homogeneous: h(ty) = they), t ~ O. 

To satisfy the remaining requirement of homogeneity we distinguish 
between the cases where the underlying scalar field is real or complex. In 
the real case we simply define fey) = (h(y) - h( - y) )/2; this function meets 
all our requirements. The complex case is a bit more subtle. We define 

(21.15) f(y) = 2~ S~" e-ith(eity)dt, y E Y. 

For each y E Y the integrand in (21.15) is a continuous be-periodic function 
from R to X, so that the integral can be defined in the expected manner, 
namely as the norm-limit of Riemann approximating sums: 

(21.16) fey) = ~ lim ± eitjh(eitj)(tj - tj- 1), 
2n n j~ 1 

where 0 = to < t1 < ... < tj - 1 < tj < tj < ... < tn = 2n. The existence 
n 

of the limit is assured by the completeness of X. Since L (tj - tj _ 1 )/2n = 1 
1 

we see from (21.16) that fey) belongs to the closed convex hull of the set 
{e-ith(eity):tE R}; hencefis a cross-section of Tthat satisfies (21.14). The 
continuity of f follows from that of h: if limn Yn = Yo in Y then 

lim e-ith(eitYn) = e-ith(eityo) 
n 

uniformly in t, because h is uniformly continuous on the compact set 
{aYn:n = 0,1,2, ... , a EC, lal = I}. Finally, because of the periodicity of 
the integrand we have, for S E R, 

(21.17) 

f(eiSy) == ~ f~" e-ith(ei(s+t)y)dt 
2n 

eis .. . 
= 2n S~" e-!th(e'ty)dt = e''i(y); 
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since f is already positively homogeneous (because h is) we see from (21.17) 
thatf is homogeneous, as desired. 0 

D. We are now going to establish a fixed point theorem for certain 
kinds of carriers. If Q is a set and F:Q --+ 2Q is a carrier, a point to E Q for 
which to E F(to) is called a fixed point of F. This is a natural generalization 
of the usual notion (15C) for single-valued mappings. Fixed point theorems 
for carriers, or multivalued mappings, have important applications to 
game theory,. mathematical economics, non-linear programming, and to 
boundary value problems for certain kinds of partial differential equations. 
As a particular application of the fixed-point theorem below we shall 
prove the existence of solutions to a so-called "variational inequality". 
Since many problems can be cast into the form of such an inequality, this 
result is a useful adjunct to the fixed-point theorem. 

If Q and X are topological spaces a carrier F:Q --+ 2x is upper semi
continuous if {t E Q:F(t) c (1)} is open in Q for every open set (1) c X. Again, 
this definition reduces to that of ordinary continuity when F is a single
valued mapping. We now have the "Fan-Kakutani fixed-point theorem". 

Theorem. Let K be a compact convex subset of a locally convex space X. 
Let F: K --+ 2K be an upper semicontinuous carrier whose values are non
empty closed convex subsets of K. Then there exists Xo E K with Xo E F(xo)· 

Proof. Let {Va:a E I} be a local base in X consisting of absolutely 
convex open sets. For each index a E I there exists a finite set {xaP: f3 E J(a)} c 

K such that K c u{xaP + Va:f3 E J(a)}. Let {Pap:f3 E J(a)} be a partition 
of unity subordinate to this covering of K (21C). Choose Yap in F(xaP) arbi
trarily and define the function fa: K --+ X by 

fa(x) = L PaP(X) Yap· 
pEJ(a) 

Now the set Ca == CO{ Yap: f3 E J(a)} is a finite dimensional compact convex 
set to which the classical Brouwer·fixed-point theorem (15C) applies. Hence, 
since fa( Ca) c Ca, there is a point Xa E Ca with fa(xa) = Xa. 

To produce the desired fixed-point of F we note that the correspondence 
Va --+ Xa defines a net in K, since the local base {Va: a E I} is directed 
(downward) by inclusion. Let Xo E K be any cluster point of this net, and 
suppose that Xo ¢ F(xo). By the strong separation theorem there is a closed 
convex neighborhood W of F(xo) with Xo ¢ W. Since F is upper semi
continuous there exists an xo-neighborhood V such that F(x) c W whenever 
x E K n V; clearly we may also assume that V n W = 0. Choose an 
index}' E I so that Vy + Vy c V - Xo. Then, by definition of xo, there 
exists a E I with Va C V y, so that Xa E Xo + V y; hence Xa + Va C V. 
Finally, if Pap(xa) of. 0 for any f3 E J(a) then Xa E xap + Va, so that xa(l E V. 
Hence Yap E Wand so 

Xa = fa(xa) = L Pap(xa)YaP E W; 
(leJ(a) 
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however, this contradicts XIX E V. We have thus proved that Xo E F(xo)· 0 
Before giving the application to variational inequalities we introduce 

a new topology on the conjugate space of a given locally convex space X. 
Let 11 be the family of all weak*-closed barrels in X*. According to lOA 
11 is a local base for a unique locally convex topology on X* called the 
strong topology on X*. According to exercise 3.67 a net in X* converges 
strollgly (that is, in the strong topology) only if it converges uniformly on 
each bounded subset of X. The converse is also true but we shall not need it. 
Also according to this same exercise, the strong topology on the conjugate 
of a normed space is just the usual norm topology there. 

Corollary. Let K be a compact convex subset of a real locally convex 
space X, and let T:K -+ X* be strongly continuous. Then there exists Xo E K 
such that 

(21.18) XEK. 

Proof. We define a carrier F: K -+ 2K by 

F(x) == {zEK:<z, T(x) = min<y, T(x)}. 
YEK 

The values of F are clearly non-empty closed convex subsets of K, and 
evidently the fixed points of F (if any) are exactly the points Xo in K for 
which (21.18) is valid. Thus, if we show that F is upper semicontinuous we 
can apply the preceding theorem and complete the proof. 

Let (!J be a (relatively) open set in K and choose any Yo E K such that 
F(yo) c (!J; we shall find a Yo-neighborhood N such that F(y) c (!J for all 
YEN. Suppose that we can find an 8 > 0 such that, with ¢o == T(yo), 

(21.19) {
SUP I <z, ¢. - ¢o) I < 8 implies 
ZEK 

{xEK:¢(x) = min¢(K)} c (!J. 

Then we can let 

(21.20) 

Since Ka, the absolute polar of K (18D), is by definition a strong 8-neighbor
hood in X*, and since T is strongly continuous, (21.20) does define a Yo
neighborhood N such that F(y) c (!J for all YEN. Thus it remains to establish 
(21.19). 

We assert that there is an 80 > 0 such that 

(21.21) X E K\(!J implies ¢o(x) ~ 80 + min ¢o(K). 

. 1 
For otherwIse there would be a sequence {xn} c K\(!J such that ¢o(xn) < - + 

n 
min ¢o(K). Any cluster point of this sequence would be a point in K\(!J at 
which ¢o attains its minimum over K; this, however, is in contradiction to 



188 Principles of Banach Spaces 

our assumption that F(yo) c (9. Finally we show that G == Go/3 satisfies , 
(21.19). If sup{! <z, 4J - 4Jo>!:z E K} < Go/3, then 

GO GO 
4Jo(z) - 3:::;; 4J(z) :::;; 4Jo(Z) + 3' ZEK. 

Hence, from (21.21) 

GO 2GO • 
4J(z) ~ 4Jo(Z) - 3 ~ 3 + mm 4Jo(K) 

~ ~ + min 4J(K) > min 4J(K), Z E K\(9. 

This proves the implication (21.19). D 
The inequality (21.18) is called a variational inequality because of its 

interpretation when T is the gradient or "first variation" of a functional f 
which is to be minimized on the set K. In 14E it was shown that when f E 

Conv(K) andf has a gradient in X* then a point Xo E K is a solution of the 
program (K,f) exactly when Xo is a solution of the program (K, Vf). (Iff is 
not convex it is still easy to see that any solution of the program (K, f) 
must also be a solution of (K, Vf), although the converse may fail.) But 
if we let T(x) == Vf(x), x E K, then solutions of this latter program are 
exactly solutions of (21.18). 

Of course, the assumption in the corollary that K is compact does not 
leave the question of the existence of a minimum in much doubt, unless f is 
a badly behaved function. There is thus some interest in relaxing the compact
ness hypothesis; however, this is possible only at the cost of more stringent 
restrictions on the mapping T. We might mention also that the corollary 
can be extended in a different direction in that T can be allowed to be an 
upper semicontinuous carrier on K whose values are compact convex sub
sets of X* (all topological statements about T refer to the strong topology 
on X*). 

E. As an illustration both of the use of tee variational inequality and 
of its extension to certain non-compact sets, we consider a continuous 
mapping T:R" --* Rn. The complementarity problem (determined by TUs 
to find a solution to the system 

y = T(x) 
(21.22) x ~ e, y ~ e, 

x· y = e. 

Since x and yare non-negative vectors in R" the bottom line of (21.22) 
can be interpreted as either the requirement of orthogonality, <x, y> = 0, 
or, as indicated, that the componentwise product of x and y is the zero vector. 
Thus the complementarity problem asks us to find a non-negative vector 
whose image is also non-negative and such that the two vectors are 
orthogonal. 
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The interest in the complementarity problem is that it provides a unified 
model for certain problems in several different fields such as optimization, 
game theory, economics, and mechanics. The most important cases lead 
to a linear complementarity problem wherein T is an affine mapping: 
T(x) = Ax + b, for some n x n matrix A and fixed vector bERn. 

Example. Consider the problem of minimizing a convex function f 
over the positive cone P c Rn:p = {x E Rn:x ~ 8} == {x = gb" ., ~n): 
~l ~ 0, ... , ~n ~ O}. Such a problem would arise in particular if we were 
interested in approximating from a finite dimensional linear subspace of 
some normed space X, subject to non-negativity constraints on the coeffi
cients. In this case f would have the form 

f(~b ... '~n) = Ilu - ~lUl - ... - ~nunll, 

for prescribed u, ul , ... , Un E X. Iff is differentIable then Xo E P is a solution 
of the program (P, f) if and only if <xo, Vf(xo) ~ <x, Vf(xo), for all x E P 
(14E). It follows that Vf(xo) E P and that <xo, Vf(xo) = O. Thus, letting 
T = Vf(·), we are led to a complementarity problem. This problem will be 
linear exactly whenf is a quadraticfunction:f(x) = t<x,Ax) + <x,b) + c, 
f01' symmetric A and fixed vectors bE R', C E R. 0 

It is easy to see that the complementarity problem (21.22) is equivalent 
to the variational inequality 

(21.23) x ~ 8, Xo ~ 8. 

That is, Xo ~ 8 solves (21.23) if and only if the pair (xo, Yo) == (xo, T(xo)) 
solves (21.22). However, because of the non-compactness of the cone P it is 
not so easy to decide on the solvability of either of these problems. Even 
when T(x) = Ax + b it is only possible to establish the existence of a 
solution under rather specialized hypotheses on the matrix A. We shall 
give an existence-uniqueness theorem for the general complementarity prob
lem which will apply in particular to the linear problem when A is positive 
definite. 

Let D be a subset of Rn. A mapping T: D ~ Rn is strongly monotone if 
there exists a constant et. > 0 such that 

(21.24) <x - y, T(x) - T(y) ~ et.llx - YII~. x,YED. 

This is clearly a strengthening of the concept of monotone mapping intro
duced in 3A. In the single variable (n = 1) case any function g whose deriva
tive g' satisfies g'(x) ~ et. > 0 for x in some interval D is strongly monotone 
on D. A generalization to Rn is given in exercise 3.68. 

We know from 3A that for a smooth function f defined on an open 
convex set D in Rn, convexity of f is equivalent to the monotonicity of Vf 
on D. A function f on D is strongly convex if there exists a constant et. > 0 
such that 

(21.25) f(tx + (1 - t)y) ~ tf(x) + (1 - t)f(y) - et.t(l - t)llx - yilL 
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for x, y E D, 0 ~ t ~ 1. Intuitively a strongly convex function is a convex 
function whose graph has positive curvature. Thus, in one variable, f(x) = X2 

is strongly convex while f(x) = X4 is not. More generally, of all the p-norms 
on R", only the 2-norm is strongly convex (whereas from 19E we know that 
the p-norms are uniform norms on R" for p > 1). Exercise 3.69 makes the 
connection between strongly convex functions and strongly monotone 
mappings: a smooth convex function is strongly convex if and only if its 
gradient is strongly monotone. 

The following result on the solvability of the complementarity problem 
is due to Karamardian. All norms appearing in the proof are 2-norms. 

Theorem. The complementarity problem (21.22) has a unique solution if 
the mapping T is continuous and strongly monotone on the positive cone P. 

Proof. In (21.24) we let y = 8: 

<x, T(x) ~ <x, T(8) + allxW, x ~ 8. 

Let K be the compact convex set {x E p:llxll ~ IIT(8)II/a}. Then for any 
x E P\K we have 

allxW > l!xIIIIT(8)11 ~ - <x, T(8), 
whence 

(21.26) <x, T(x) > 0, xEP\K. 

Now for all u ~ 8 let Du = {x E K: <u - x, T(x) ~ O}. The sets Du are 
closed and we claim that they have the finite intersection property. To verify 
this assertion select any finite subset {u b ... , urn} of P, and apply the corol
lary of 21D to the compact convex set D == co(K U {u b . .. , urn}). The 
conclusion is that there exists an Xo E D for which the variational inequality 

(21.27) XED, 

holds. In particular, <u i - xo, T(xo) ~ 0 for i = 1, . .. , m. We further 
have Xo E K since otherwise there would result a contradiction to (21.26) 
(the origin belongs to K, hence to D, so we can take x = 8 in (21.27)). This 
proves that the family of closed sets {Du:u ~ 8} has the finite intersection 
property. Since K is compact, n {D,,: U ~ 8} =1= 0; any point in this inter
section solves the variational inequality (21.23). Hence the complementarity 
problem has a solution. 

Finally, suppose that we have two solutions to (21.23), say Xl and X2. 
Then, since 0 ~ <Xb T(x2), 0 ~ <xz, T(x l ), and 0 = <Xl, T(x l ) = <X2, 
T(X2), we have 

o ~ <Xl - Xz, T(x l ) - T(x 2 ) ~ allx l - X2W, 

whence Xl = X 2· D 
This theorem can be generalized in various ways. First, we can replace the 

usual positive cone P by an arbitrary closed (convex) cone C in R". Under 
the same hypotheses on T it can be shown that there exists exactly one 
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Xo E C for which T(xo) E C* (== - CO) and (xo, T(xo) = 0. Second, we 
can replace Rn by a real reflexive Banach space X. If C is a closed (convex) 
cone in X and T is a mapping from C into X* satisfying the condition of 
strong mono tonicity (21.24), and continuous from the norm to the weak* 
topology, then we can obtain the same conclusion. The proof proceeds via 
the observation that any solution Xo E C of the variational inequality 
(x ~ xo, T(xo) ?!: 0, x E C, must satisfy Ilxoll ~ IIT(8)11, independently of 
C. Then, given any finite dimensional linear subspace M of X, the preceding 
theory is applied to obtain a solution XM of the finite dimensional problem 
with cone C n M. Since IlxM11 ~ IIT(8)11, the bounded net {xM:dim M < oo} 
has a weak cluster point in C, and this cluster point turns out to solve the 
general problem. 

Exercises 

3.1. Let X be a normed linear space. 
a) Show that X is complete if and only if M and XI M are complete for 

some, and hence every, closed linear subspace M of X. 
00 00 

b) A series I Xn with Xn E X is absolutely convergent if I Ilxnll < 00. 
1 1 

Show that X is complete if and only if every such series converges 
N 

to an element Z E X, in the sense that lim I Xn = Z. 
N 1 

3.2. Let X be a Banach space and put B(X) == B(X, X). 
a) If T E B(X) satisfies III - Til < 1 (I is the identity operator on X) 

then T is an automorphism of X, that is, T- 1 E B(X). (Consider 
00 

the series I (I - Tt in B(X).) 
1 

b) Let {Xl> ... , xn} be a linearly independent set in X. Show that there 
is an e > ° such that any set {Yl' ... ,Yn} for which Ilxi - ydl < e, 
i = 1, ... , n, is also linearly independent. (Construct an automor
phism T E B(X) for which T(xi) = Yi' i = 1, ... , n.) 

3.3. Let T E B(X, Y) be an operator between normed spaces X and Y which 
fails to have a bounded inverse. Show that there exists a sequence 
{xn} C X having the properties of (16.6). (Use 16B.) 

3.4. Let X be a real normed linear space and ¢ E X*, ¢ =1= 8. 
a) Show that inf{llxll:¢(x) = 1} = 1/11¢11. 
b) Show that there is an equivalent norm on X such that the subspace 

ker( ¢) is proximinal wrt this new norm. 
3.5. Let X be a normed linear space. Show that any weakly-complete 

subset of X is norm-complete. It follows that a Cauchy sequence is 
convergent in X if (and only if) it is weakly convergent. 

3.6. Let X be a locally convex space and N a linear subspace of X*. Show 
that N is weak*-closed in X* (if and) only if N = MO, for some subspace 
Me X. (Take M = ON.) 
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3.7. Let X be a normed linear space. If G c X* then ("G)O = co*( {G, e}) 
and O( GO) = co( {G, e}). Hence GO = (0 GtO if and only if co( {G, e}) is 
weak*-closed. (The point of this exercise is as follows. Let A be a given 
convex subset of X with e E A. Suppose that we represent A in quasi
linear form as {x E X: <p(x) ::::; 1, <p E G} for an appropriate set G c X*. 
That is, A = °G. Then A 00 = J x(A) * c GO and equality holds if and 
only if co( {G, e}) is weak*-closed in X*. In other words, whether or 
not AOO is "what it should be" in X** depends, in the indicated fashion, 
on the "richness' of the representing set G.) 

3.8. Give an alternative proof of the Goldstine-Weston density lemma in 
16F, proceeding by contradiction and use of the strong separation 
theorem. 

3.9. Let X and Y be Banach spaces over the same field. Show that the 
congruence T f--+ T* from B(X, Y) into B(Y*, X*) is surjective if and 
only if Y is reflexive. 

3.10. Let X be a reflexive Banach space. 
a) Show that two disjoint closed convex subsets of X can be strongly 

separated by a closed hyperplane provided that one of the sets is 
bounded. (Compare with the remark at the end of 19E.) 

b) Show that every closed bounded convex subset of X is equal to the 
closed convex hull of its extreme points. 

3.11. Consider the example in 12G of a measure space (Q, 1:, fl) for which 
the usual congruence of L OO(Q, fl, F) into L l(Q, fl, F)* is not surjective. 
Determine a measure space (T, !Y, v) for which L l(T, v, F) ~ L l(Q, fl, F), 
and L l(T, v, F)* = LOO(T, v, F) via the usual congruence. 

3.12. Give the details of the proof of the corollary in 16G. 
3.13. Consider the sequence spaces CP(~o) for 1 ::::; p < 00. Let en be the 

sequence (0, ... ,0, 1, 0, ... ), where the nth-component is one. Show 
that this sequence converges weakly to e if and only if p > 1. 

3.14. Show that a weakly semi-complete Banach space whose conjugate 
space is separable must be reflexive. 

3.15. Prove the statements made at the end of 16H pertaining to co. (Under 
the congruence between m(Q, F) and C(P(Q, F)) the elements of Co 

go into the (continuous) functions that vanish on P(Q)\Q.) 
3.16. Let X be a Banach space. 

a) Show that X is quasi-reflexive if and only if X* is quasi-reflexive. 
(This wiII follow from the observations that, on the one hand 

J x(X)O ~ (X** jJ x(X))* 

(16E) and, on the other hand, that J x(xt is isomorphic to 
X*** jJ x'(X*). This latter isomorphism can be obtained (via exercise 
2.2c) from the stronger observation that 

X*** = J x*(X*) EB J x(X)o. 

Indeed, a projection P from X*** onto J x*(X*) along J x(xt can 
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be defined by P(F) = ¢F' FE X***, where ¢F E X* is defined by 
¢F(X) = F(x), x EX.) 

b) Let M be a closed linear subspace of X. Then J x(X) + MOO is a 
closed linear subspace of X**. (This follows from 

Jx(X) + MOO = Qtc*-l 0 Jx/M(XjM), 

which is in turn a consequence of the formula J X/M 0 QM = Qtc* 0 J x.) 
c) Show that X is quasi-reflexive if and only if M and XjM are quasi

reflexive for some (hence every) closed subspace M c X. (For any 
Banach space X we have in fact that M** fJ M(M) is isomorphic to 
(Jx(X) + MOO)jJx(X) and that (XjM)**fJX/M(XjM) is isomorphic 
to X**j(Jx(X) + MOO). To obtain these isomorphisms let RM: 
X* ~ M* be the restriction map. Then Rtc is a congruence between 
M** and MOo, and Rtc 0 J M = J xiM. Now for the first isomorphism 
consider the map QJx(X) 0 Rtc, and for the second isomorphism 
consider 

3.17. Prove that any locally compact Hausdorff space Q is a Baire space. 
(Use the fact that Q has a basis consisting of relatively compact open 
sets.) 

3.18. Let Q be a Baire space. 
a) Show that each open subset of Q is again a Baire space. 
b) Let I be a lower semicontinuous function on Q. Then the subset 

of Q consisting of points having a neighborhood on which I is 
bounded above is dense in Q. 

c) Let {f,,} be a sequence in C(Q, F) that converges pointwise on Q 
to a function I. Show that the set of points at which I is continuous 
is a residual set. ("Osgood's theorem". Without loss of generality, 
assume F = R. Observe that if I is any open interval in R then 
I- 1(I) is an F,,-set in Q. Now, given e > 0, cover R by a sequence 
{In} of open intervals each of length <e. If I- 1(In) = u{Cin): 

k = 1,2, ... } where each qn) is closed, then Q, == Un Uk int(Cin)) 
is a dense open set in Q, at each point of which the oscillation of I 
is <e. It follows that I is continuous on the residual set nn Q1Jn-) 

d) If (Q, d) is a complete metric space then every non-negative lower 
semicontinuous function I on Q is continuous on a residual set 
in Q. (Apply c) with f,,(t) == inf{J(x) + nd(t, x):x E Q}.) 

3.19. Prove the formula (17.4) for the norm of the Fourier series partial sum 
functional on C 2,,' 

3.20. Verify the statements of the lemma in 17F. 
3.21. Let X and Y be Banach spaces and let T:X ~ Y be linear. 

a) Suppose that T is weakly continuous, that is, T is continuous when 
both X and Yare given their weak topologies. Show that T must 
be bounded and hence that T E B(X, Y). 
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b) Suppose that'" 0 T E X* for all '" E G c Y*, where span(G) = Y*. 
Show that T must be bounded. (In both cases show that T is closed 
on X. A typical application of b) is to the case where Y = L l(Q, fl, F) 
for some a-finite measure fl and GeL OO(Q, fl, F) is the set of char
acteristic functions of chunks.) 

3.22. Let {ad be a sequence of real numbers such that for all {bk } E tq(~o), 
00 

1 ~ q < 00, the series L akbk is convergent. Prove that {ad E CP(~o) 
1 

for p = q/(q - 1) (p == 00 when q = 1.) (Define a linear map T: 
n 

cq -> nib by T({bd)n = L akbko and show that T is continuous.) 
1 

3.23. Let M be a closed linear subspace of C == C([O, 1], R) consisting of 
continuously differentiable functions. Show that M must be finite 
dimensional. (Consider the mapping x 1-+ x' from Minto C. In fact, 
a stronger assertion is true. Namely, M must be finite dimensional if 
it consists of functions of bounded variation.) 

3.24. Let X and Y be Banach spaces with X reflexive. If there exists a surjec
tive operator in B(X, Y) then Y is also reflexive. In other words, the 
continuous linear image of a reflexive space must also be reflexive. 

3.25. In the example in 17H show that A + N is not closed in X by verifying 

that I: (sin ~) X belongs to A + N\(A + N). 
1 n {211} 

3.26. Let A be a closed convex set in R n having no boundary rays nor 
asymptotes (17H). Show that A + B is closed for any closed convex 
set BeRn. (Proceed via the following steps. Let C be a closed convex 
set in Rn. 
a) Suppose that p E C, q E Rn (q "i= e), and that there are sequences 

{xd c c, {td c (0, (0) such that limk tk = 0 and limk tkxk = q. 
Then C contains the ray p + [0, oo)q. 

b) Suppose that L is a half-line emanating from e and that x, yare 
points in R n such that x + L c R n\c and y + L c C. Then for 
some Z E [x, y] the half-line Z + L is either a boundary ray or an 
asymptote of C. 

c) If A n C = 0 then dist(A, C) > O. For suppose that dist(A, C) = 

o. Then there exist sequences {xd c A, {yd c C such that 
limk(xk - Yk) = e. We get an immediate contradiction unless 
limk Ilxkll = 00. We may then assume that limk xk/llxkll = q. Now 
use a) and b) to get a contradiction to our assumption about A. 

d) Finally, let p E A + B. Then dist(A - p, - B) = 0.) 
3.27. Let A be a subset of a normed linear space X. Show that A is compact 

if and only if for any sequence {<Pn} c X* with weak*-limn <Pn = e, 
the sequence {<PnIA} converges uniformly to zero. 

3.28. Find the error in the following argument. "Theorem": Let X be a 
separable normed linear space. Then weak and norm sequential 
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convergence are equivalent. (Recall Schur's lemma in lSC.) "Proof": 
Let {xn} be a sequence in X that converges weakly to 8. Then {xn} is 
bounded and hence the sequence of functionals {xnlU(X*)} is equi
continuous. Since U(X*) is a compact metric space in its weak*
topology and {xnl U(X*)} converges pointwise to 8, the convergence 
is uniform. Therefore, limn Ilxnll = o. 

3.2<1. Let X be a normed linear space of infinite dimension. Then the weak 
topology on X is not metrizable (12F). (If the weak topology on X 
were metrizable there would be a countable local base for the weak 
topology and it would follow that X* would have countable Hamel 
dimension. But X* is complete (16A) and any infinite dimensional 
Banach space must have uncountable Hamel dimension.) It follows 
similarly that if X is complete then the weak*-topology on X* is not 
metrizable. 

3.30. Let X and Y be normed linear spaces with X complete. Suppose that 
X and Yare homeomorphic. Then Y is complete. (It is known from 
topology that any topologically complete subset of a complete metric 
space is a Gb set in that space. Applied to the present situation this 
means that Y is a (dense) Gb set in its completion Y, say Y = nn Yn 

where each Y,. is a dense open set in Y. Then Y\Y = Un (Y\Y,.) is a set 
of first category. Finally, if Y\y #- 0 it would follow that Y is a set 
of first category in Y, whence Y = Y u (Y\Y) gives a contradiction to 
the Baire category theorem. Therefore, Y\Y = 0.) 

3.31. In the theorem of lSA, where is the hypothesis that X is normed used 
in the proof that e) implies a)? Given an example to show that 
properties a)~e) are not equivalent for subsets of general locally convex 
spaces. 

3.32. Use the equivalence of weak relative compactness and weak relative 
countable compactness established in lSB to prove that each weakly 
countably compact subset of a normed space is weakly compact, and 
that each weakly compact subset is weakly sequentially compact (lSA). 
(For the second assertion proceed by contradiction, assuming the 
existence of a sequence with no weakly convergent subsequence.) 

3.33. Show that a Banach space X is reflexive if and only if every closed 
separable linear subspace of X is reflexive. 

3.34. Formulate and prove a bipolar theorem for the absolute polar of a 
subset A of a locally convex space. Use it to show that (a Aa)a = Aa. 
(Observe that aAa == a(Aa) is a weakly closed absolutely convex set 
containing A.) 

3.35. Prove the assertions of the corollary in ISO. 
3.36. Let X be an infinite dimensional normed linear space and let {Mn} 

be an increasing sequence of n-dimensional subspaces of X*. For 

n = 1,2, ... , let An be a finite !-net in aU(Mn), and set A = Un An
n 
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Then e belongs to the weak*-closure of A but not to the bw*-closure. 
Conclusion: the bw*-topology on X* is strictly stronger than the 
weak*-topology. 

3.37. Let M be a closed linear subspace of a Banach space X. Then M is 
reflexive if and only if Jx(M) is weak*-closed in X**. 

3.38. Let X be a real Banach space and f/> E X**. Suppose that there exists 
a compact set A c X such that f/> ~ a A, where a A is the support 
function of A: aA(¢) = max{¢(x):xEA}, for all ¢EX*. Prove that 
f/> E J x(co(A)). (If, in fact, f/> = x for some x E X, then necessarily 
x E co(A). To prove the existence of some such x, show that a A is 
bw* -con tin uo us.) 

3.39. Show that a Banach space X is reflexive if and only if every closed 
bounded convex subset of X* is weak*-compact. 

3.40. Let X be a Banach space and M a closed linear subspace of X*. Show 
that if M, as a Banach space, is reflexive, then M is weak*-closed in X*. 

3.41. Let X be a normed linear space, and let H(X) be the linear space of 
all real-valued, continuous, positively homogeneous functions on X. 
Any such function is necessarily bounded on U(X) and so we can 
norm H(X) by Ilfll = sup{lf(x)I:lIxll ~ 1}. Let N(X) be the subset of 
H(X) consisting of semi-norms, and E(X) the subset of N(X) consisting 
of equivalent norms. For each a E E(X) we let a* E E(X*) be the dual 
norm as defined by (18.15). 
a) H(X) is a Banach space and N(X) is a closed cone in H(X); 
b) E(X) = int(N(X)) (in particular, E(X) is dense in N(X) (llA)); 
c) a ~ a* is a homeomorphism of E(X) into E(X*), and is surjective 
exactly when X is reflexive. (For b), consider the continuous function 
y:N(X) ~ [0, (0) defined by y(a) = inf{a(x):lIxll = 1}; y(a) is positive 
if and only if a E E(X).) 

3.42. Give the details of the proof of statement a) of the theorem in 18G. 
3.43. Let X and Y be Banach spaces and T E B(X, Y) a surjective operator. 

a) ker(T**) = ker(TrO; 
b) if dim(ker(T)) < 00, and if M is a closed linear subspace of X, 

then T(MrO = T**(MDO). 
3.44. Let A be a bounded and weakly closed subset of a Banach space X 

with the property that every functional in X* attains its supremum 
on A. Then if Y is any separable Banach space and T E B(X, Y) is 
surjective, the image T(A) is weakly compact in Y. Is this statement 
true if T is not assumed surjective? 

3.45. Let A be bounded and weakly closed subset of a Banach space X. 
Show that the following assertions about A are equivalent. 
a) A is weakly compact; 
b) if {xn } c A and limn ¢(xn) exists for some ¢ E X*, then there is an 

x E A such that limn ¢(xn) = ¢(x); 
c) if B is a weakly closed subset of X which is disjoint from A, then 

dist(A, B) > o. 
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3.46. Let X be a Banach space. 
a) Show that X is uniformly normed if and only if any pair of sequences 

{xn}, {Yn} of unit vectors in X for which lim" Ilxn + YIIII = 2 satisfies 
limn Ilx" - Ynll = 0. 

b) If X is finite dimensional and strictly normed, show that X is 
uniformly normed. 

3.4 7. Let X be a uniformly normed Banach space. 
;1) If {xn} is a sequence of unit vectors in X for which weak-limn XII == 

X is also a unit vector, then limn Xn = x. 
b) The metric projection (15C) on any closed convex subset of X is 

single-valued and continuous. 
3.48. There exists an incomplete (hence a fortiori a non-reflexive) normed 

linear space X such that every functional ¢ E X* attains its supremum 
on U(X). The example is suggested by the observation that if Z is a 
reflexive Banach space then every ¢ E Z* attains its supremum on U(Z) 
at an extreme point of U(Z) (13B, 16F), and that X == span(ext(U(Z))) 
is dense in Z (exercise 3.1Ob). Consequently, if X =1= Z, X will serve 
as the desired example. (To obtain such an example, let Zn be the space 
lR" normed by the supremum norm, 11(~b ... , ~,,)lloo == maxi(l~d), and 
let Z be the linear subspace of [1n ZII consisting of those sequences 
z = (~\l), ~\21, ~~2), ~\3), ~~3), ~~3), ... ) for which 

a) So normed, Z is a reflexive Banach space. 
b) If X = span {z E Z: l~in)1 = I~~)I = ... = 1~~n)l, n = 1, 2, ... } then 

X is dense in Z (by the above extreme point argument). 
c) X =1= Z, so that X is not complete (any sequence in Z with distinct 

terms cannot belong to X). 
d) Every ¢ E Z* has the following form: there is a sequence of numbers 

{r(7)} such that 

¢(z) = rx\l)~\l) + (rx\2)~i2) + rx~2)~~2») 
+ (rx\3)~\3) + rx<])~~3) + rx~3)~~3») + .... 

e) Every ¢ E Z* attains its supremum on U(Z) at a point z:llzll = 1, 
¢(z) = II¢II. Taking into account the form of ¢ given in d), the 
terms of z can be modified so that a point X E X is obtained with 
Ilxll = 1 and ¢(x) = ¢(z).) 

3.49. Let X be a normed linear space and let B be a closed, bounded, convex 
subset of X with () rt= B. If C = [0, oo)B, show that C is a closed cone 
in X. 

3.50. Let A be a convex set in a Banach space. If f E Conv(A) is lower 
semicontinuous then f is continuous at each relative interior point 
of A. (It is,sufficient to assume that A is solid. Use 14A and exercise 
3.18b.) 
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3.51. Prove (by contradiction) that the convex function defined by·(20.3) 
is nowhere subdifferentiable. 

3.52. Let M be a subspace of finite codimension in the (real) Banach space 
X. Suppose that A is a closed convex set in X, that £ > 0, and that 
x E a(A) n M. Then there exists a support point Xo of A such that 
xoEMandllx - xoll < £.(IfwerepresentMas{xEX:4>l(X) = ... = 

4>n(x) = O} for appropriate functionals 4>1, ... , 4>n E X*, then this 
assertion is a generalization of the first Bishop-Phelps theorem of 20B: 
it states that a boundary point of A satisfying a finite number of linear 
constraints can be approximated by a support point satisfying the 
same constraints (compare with 9C). The following lemma is useful 
for the proof: if Xo is a support point of the set A n M with respect 
to the subspace M, then Xo is a support point of A. To prove the lemma, 
use the support theorem and induction on codim(M).) 

3.53. Let X be an incomplete normed linear space. Then there exists a solid, 
closed, bounded, convex set A c X such that the support functionals 
of A are not dense in X*. (Embed X in its completion X and select 
a unit vector x E X\X. Then select 4> E X* ~ X* such that 114>11 = 

1 = 4>(x). Let B = U(X) n ker(4)), and then put A1 = co({x, B}). A1 
is a solid closed convex set in X. Finally, let A = A1 n X. Show that 
any support functional of A must be at distance at least t from 4>.) 

3.54. Verify the formulas for &>(co) and &>(U) given in 20E, and use these 
formulas to show directly that Co and L 1 are subreflexive. 

3.55. Let M be a closed linear subspace of a Banach space X. Let YM = 

{4> E &>(X): 4>(x) = 114>11 for some x EM}. Suppose that I:., is ~" linear 
subspace of X*. Then YM ~ M*. (Consider the restri" "W ..;p from 
YM into M*. The point of the problem is that it gives a ( .mon under 
which we can identify M* with a subspace of X* rat ". than just a 
quotient space as in 16E.) 

3.56. Show that the unit ball of L 00([0, 1], fl, R) has no smooth points. 
(Lebesgue measure is assumed. Let Xo be a unit vector in L 00, and 
suppose that essup xo(') = 1. Let {En} be a sequence of pairwise 
disjoint chunks such that xolEn ~ n/(n + 1), and define norm-one 
functionals 4>n on LOOby 

Now the sets M:= {xELw :limn4>2n_1(x) exists} and N:= {XEX: 
limn 4>2n(X) exists} are subspaces on which the indicated limits define 
norm-one linear functionals. Let 4>' and 4>" be Hahn-Banach extensions 
of these functionals to all of L 00. Then [4>'; 1] and [4>"; 1] are distinct 
hyperplanes of support to U(L (0) at xo.) 

3.57. Let X be a real normed linear space. A functional 4> E aU(x*) is a 
regularly exposed point of U(X*) if there exists a unit vector x E X 
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such that x attains its supremum (= Ilxll) on U(X*) only at <p. Prov,e 
that 
a) if Xo E sm(U(X)), then the norm gradient g(xo;') is a regularly 

exposed point of U(X*), and conversely; 
b) every regularly exposed point of U(X*) is an extreme point; 
c) if X is a separable Banach space, the regularly exposed points of 

U(X*) are weak*-dense in ext(U(X*) (use 13B and 20F). 
3.58. Let U = U(Q, /1, F) for 1 < p < 00. Show that the norm duality 

map (20G) from U into Lq is given by 

x =f. e 

x = e. 

Show that this mapping is a homeomorphism from U onto Lq (although 
it is not linear unless p = 2). 

3.59. Let A be a countable weakly compact subset of an infinite dimensional 
Banach space. Show that coCA) can have no interior. (Use 17J and 19E.) 

3.60. Let g be a real-valued function defined on an interval [a, b J. If g is 
of bounded variation then, as is well known, the Riemann-Stieltjes 
integrals J~ f(t)dg(t) exist for all f E C == C([ a, b], R). Prove the con
verse: ifthese integrals exist for every f E C then g must be of bounded 
variation. (Otherwise there would exist a sequence {11:n } of partitions 
of [a, b], with 11:n = {a == t~n), t!;>, ... , t~in) == b}, tjn21 < tjn), such that 

'im l111:n ll == lim max {t)n) - t)~ 1 : 1 ~ j ~ m} = 0, 
n 

m 

I Ig(t)n») - g(t)~ 1)1 > n. 
j=! 

It follows that each 11:n contains a set {s\n), ... , s~(~)} such that 

N ow define <Pn E C* by 

m(n) (t(n) + t(n») 
<Pn(f) = j~1 f j-l 2 j [g(t)n») - g(tj~ dJ. 

Apply 17C to this sequence offunctionals, after noting that limn <Pn(f) = 

J~ f(t)dg(t), for each f E C; then make a special choice of f to obtain 
a contradiction). 

3.61. For fixed t E [a, b] show that the evaluational functional f ~ f(t) is 
a continuous linear functional on the Sobolev space H; of 21B. 

3.62. Let X and Y be Banach spaces and R E B(X, Y) a surjective operator 
with kernel N. 
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a) Let M be a closed linear subspace of X. Then each affine subspace 
of X parallel to M (that is, each element of XjM) contains a unique 
R-spline if and only if R(M) is a Chebyshev subspace (20H) of Y 
andM n N = {8}. 

b) When the conditions of a) hold, the mapping I - RM 0 T M 0 R 
assigns to each x E X the unique R-spline in the flat x + M. Here 
T M == the metric projection of Y onto R(M) and RM == RIM. 

c) Suppose that dim(N) < 00 and that T E B(X, Z) for some normed 
spaceZ. If r is a closed, bounded, and convex set in Z, then R(K) 
is closed in Y, where K is defined by (21.7). Consequently, if Y is 
reflexive, an R-spline exists in K. 

3.63. Let F:Q ~ 2x be a lower semicontinuous carrier, where Q is a topo
logical space and X is a linear topological space. Prove that the carrier 
t f--+ co(F(t)) is also lower semi continuous. 

3.64. Prove the converse to the Michael selection theorem: let Q be a 
Hausdorff space such that every lower semicontinuous carrier whose 
values are non-empty closed convex subsets of a Banach space admits 
a continuous selection; then there is a partition of unity subordinate 
to any given open covering of Q, and so Q is paracompact. (Let {CDa: 
rx E I} be the given open covering and put X = Cl(I). Define a carrier 
F:Q ~ 2X by 

F(t) = {XEX:Xa;::' O,Lxa = 1,xa = Oift¢CDa}. 
a 

Then F admits a continuous selection f: Q ~ X and we can put 
Pa(t) = (f(t))a; {Pa: rx E I} is the desired partition of unity.) 

3.65. Let X and Y be Banach spaces and T E B(X, Y) a surjection. Show 
that T has the k-covering property, that is, for every compact set BeY 
there is a compact set A c X such that B c T(A). 

3.66. Let T, X, Y be as in exercise 3.65. Show that T has a right-inverse if 
(and only if, by 21C) ker(T) is a topological direct summand of X. 
Show that the set of all such operators is an open subset of B(X, Y). 
(Suppose that ToE B(X, Y) has a right-inverse So E B(Y, X). (Choose 
T E B(X, Y) to satisfy liT - Toll < IISoll-l and look for a right-inverse 
of T in the form So V, for suitable V E B(Y); apply exercise 3.2a.) 

3.67. Let X be a locally convex space. 
a) Show that strong convergence in X* implies uniform convergence 

on each bounded subset of X. (Observe that if B is a bounded subset 
of X then W is a weak*-closed barrel in X*.) 

b) Let X be a normed linear space. Then the strong topology on X* 
coincides with the norm topology. (X* is always a Banach space.) 

3.68. Let D be an open convex subset of Rn and let T: D ~ Rn be differen
tiable. Suppose that there is a constant rx > 0 such that the spectrum 
of the symmetric part of the Jacobian matrix J of T lies in the interval 
[rx, (0), for all points in D. (That is, if A is an eigenvalue of the matrix 
!(J +J'), evaluated at some point in D, then }, ;::, rx.) Show that T is 
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strongly monotone on D. (Fix x, y E D and consider the function 4>(t) == 
(x - y, T(tx + (1 - t)y), for 0 ~ t ~ 1.) 

3.69. Let D be an open convex subset of Rn and f a differentiable convex 
function on D. Prove that f is strongly convex if and only if Vf is 
strongly monotone on D. (First show that strong convexity is equivalent 
to the existence of a > 0 such that (y - x, Vf(x) ~ f(y) - f(x) -
allx - yllUor x, y ED.)· 

3.70. Let X be a linear topological space. 
a) Let A be a convex subset of X. If A is either open or closed, or if X 

is finite dimensional, then A is ideally convex. 
b) Any intersection of ideally convex subsets of X is again ideally 

convex. 
c) If T: X -+ Y is continuous and linear, and if A c Y is ideally convex, 

then T- 1(A) is ideally convex in X. 
Now let X be a Banach space. 

d) If T is as in c) (Y is arbitrary) and if A is a bounded ideally convex 
subset of X, then T(A) is ideally convex in Y. 

e) The sum of two ideally convex sets in X is again ideally convex, 
provided that one of them is bounded. 

3.71. Let X be an ordered Banach space with closed positive wedge P. Pis 
non-fiat if there exists a constant y > 0 such that to every x E X 
corresponds some YEP with x ~ y and II yll ~ yllxll· 
a) P is non-flat if and only if P is reproducing. (For the forward 

implication apply 17E to the set P n U(X) - P n U(X).) 
b) If P is reproducing then any positive linear functional 4> on X is 

bounded. (That is, p+ c P*. It is enough to show that 4>IP is 
continuous at e, and then use the non-flatness of P.) 

c) If P is both reproducing and locally compact then X must be finite 
dimensional. 



Chapter IV 

Conjugate Spaces and Universal Spaces 

Motivated by the importance of conjugate spaces indicated in earlier 
sections, we devote the bulk of this final chapter to some further consider
ations regardi.ng such spaces. We begin with the famous Riesz-Kakutani 
characterization of C(Q, R)* as the space of regular signed Borel measures 
on Q. After giving some applications of this theorem we proceed to some 
characterizations of general conjugate spaces, and use these to exhibit some 
new conjugate spaces (spaces of operators and Lipschitz functions). The 
fact that certain spaces of operators are conjugate spaces has some interesting 
implications for optimization theory as we shall see. We shall also establish 
an isomorphism between certain spaces of Lipschitz functions and certain 
spaces of L 00 type. A particular consequence of this is an example of a pair 
ofBanach spaces (namely, .e l(~O) and U([O, 1])) which fail to be isomorphic, 
yet whose conjugate spaces are isomorphic. 

Finally we show that the space of continuous functions defined on 
an uncountably compact metric space can serve as a "universal" Banach 
space, in the sense that every (separable) Banach space can be congruently 
(isometrically) embedded in any such space. 

§22. The Conjugate of C(Q, R) 

In this section we identify congruently the space C(Q, R)* with the space 
Ar(Q, B, R) of regular measures defined on the Borel subsets of the compact 
space Q. This is an exceedingly useful representation and we shall indicate 
a few of its more immediate applications. 

22A. As a preliminary to the representation theorem we establish a 
general fact about the conjugate spaces of certain ordered normed linear 
spaces. Let X be a real ordered linear space (5A) with positive wedge P. 
The ordering induced by P is archimedean (resp. almost archimedean) if 
x ~ ty (resp. - ty ~ x ~ ty) for some y ~ B and all t > 0 implies x = B. 
An element e E P is an order unit for P if for each x E X there is some t > 0 
such that - te ~ x ~ teo If X possesses an order unit e then 

(22.1) Ilxll == inf{t > 0: -te ~ x ~ te} 

defines a norm on X exactly when X is almost archimedean ordered. Such 
a norm is called an order unit norm. If X is actually archimedean ordered 
then 

U(X) = [-e,e] == {xEX:-e ~ x ~ e}. 
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The class of order unit normed linear spaces contains (among others) 
all spaces of bounded continuous functions, all spaces L "'(Q, j1, R), and the 
spaces of hermitian matrices of order n, for any n ~ 2 (considered as oper
ators on Rn with the norm (11.4)). The following lemma shows in particular 
that the conjugate of any such space is positively generated. 

Lemma. Let X be an order unit normed linear space with positive wedge 
P. Then each ¢ E X* has a decomposition ¢ = ¢ + - ¢ -, where ¢ +, ¢ - E p* 

and II¢II = II¢+II + II¢-II· 
Proof. Let Y be the product space X x X with the usual coordinate

wise algebraic operations and ordering induced by the wedge P x P. Let 
e be the order unit defining the norm in X as in (22.1). Then (e, e) is an order 
unit in Y. Now define a subspace M of Y by 

(22.2) M = {y E Y:y = tee, e) - (x, -x), t ER, x EX}. 

Then given ¢ E X* define lj; E M* by lj;(y) = tll¢11 - ¢(x), where t, x are 
related to y as in (22.2). This functionallj; is positive, since if y E M is positive 
then - te ~ x ~ te, whence Ilxll ~ t and therefore ¢(x) ~ tll¢ll, that is, 
lj;(y) ~ O. 

We can now apply the Krein-Rutman theorem (exercise 2.46) to extend 
lj; to a positive linear functional\fi on all of Y. The hypothesis ofthis theorem, 
namely that int(P x P) n M =1= 0, is satisfied by the point (e, e). We now 
set ¢ + = \fi(', 8) and ¢ - = \fi(8, .). Then ¢ + and ¢ - belong to P* and 
¢ = ¢ + - ¢ -. Finally, we observe that 

II¢II = \fi(e, e) = ¢+(e) + ¢-(e) 

= II¢+II + II¢-II· 
This computation is justified by the fact that any positive linear functional 
nEP* satisfies 111011 = nee). Indeed, nee) ~ Ilnllllell ~ 111011, while if -te ~ 
x ~ te then - tn(e) ~ n(x) ~ tn(e), so that In(x) I ~ tn(e) and therefore 
In(x) I ~ n(e)llxll, that is, 111011 ~ nee). 0 

We can also note that the dual wedge p* in the space conjugate to 
an order unit normed linear space is weak*-locally compact. This is an 
immediate consequence of exercise 2.34a and the fact that P is solid (since 
e E int(P)). From 13C we then expect that p* has a weak*-compact base, 
and indeed such a set is given by B == {¢ E P*:¢(e) = I}. Then we can 
observe the following structure of the unit ball in X *: 

(22.3) U(X*) = co(B u - B). 

We might finally remark that real Banach spaces having an order-unit 
are "close" to being spaces of the type qQ, R). Namely, if X is such a Banach 
space and is in addition a lattice (so that every pair x, y E X has a supremum 
in X), then X is congruent to a space qQ, R). In fact, the compact space Q 

turns out to be ext {¢ E P*: ¢(e) = I}, where P is the positive cone in X and 
e is the order-unit. (It must first be verified that this set is weak*-closed in 
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U(X*). Then the congruence is simply the map x f-+ xlQ, x EX; this map 
is also order-preserving. The lattice hypothesis on X is used to guarantee 
that the range of the congruence is dense in, and hence equal to, C(Q, R). 
The density follows from the order theoretic form of the Stone-Weierstrass 
theorem, since the range is a linear sublattice of C(Q, R) which contains the 
constant functions and separates the points of Q.) Any such Banach space 
is called an M -space. 

B. Let Q be a fixed compact Hausdorff space. Recall that the u-algebra 
of Borel (resp. Baire) sets in Q is the u-algebra generated by the compact 
(resp. compact Gb ) subsets of Q. The Baire u-algebra may alternatively be 
described as the smallest u-algebra with respect to which every continuous 
function on Q is measureable. A finite signed measure on one of these 
u-algebra is naturally called a Borel (resp. Baire) measure. It is known from 
measure theory that each Baire measure is regular (in the sense that its 
value at any Baire set A is the supremum of its values on the compact Baire 
subsets of A), and that every Baire measure can be uniquely extended to a 
regular Borel measure. 

If J-l is a Borel (or Baire) measure then as has already been noted in 9C 
the mapping 

(22.4) x f-+ So x dJ-l, x E C(Q, R), 

defines an element <1>11 E C(Q, R)*, and 11<1>1111 ::::; IIJ-lliv == 1J-l1(Q) (10D, Ex. 3). 
Now we claim that if J-l is regular then actually 11<1>1111 = IIJ-lilv. To see this, 

n 

let I> > 0 and select disjoint Borel sets AI, ... , An in Q such that L 1J-l(AJI > 
1 

I> 
1J-lI(Q) - 1>. Let C; be a compact subset of A; such that 1J-lI(A;\C;) < -, 

n 
and let {(Ob .. . ,(On} be a family of disjoint open sets such that C; c (0;, 

i = 1, ... ,n. Because J-l is regular we may assume that 1J-l1«(o;\CJ < ~, 
n 

i = 1, ... ,n. By Urysohn's lemma there exist Xl> ... , Xn E C(Q, R) such 
that 0 ::::; x;(t) ::::; 1, t E Q, x;(t) = 1, t E C;, and x;(t) = 0, t ¢ (0;. Hence if we 

n 

put Xo = L sgn(J-l(C;) )x; we find that IIxolioo = 1 and 
1 

1<1>Il(xo) - 1J-lI(Q)I < 1>. 

As a final preliminary to the representation theorem we give the following 
lemma. The proof will be momentarily deferred to 22C. 

Lemma. Let if; be a positive linear functional in C(Q, R)*. Then there 
exists a (unique) positive Baire measure J-l such that <1>11 = if;. 

Now let B be the family of Borel sets in Q and let uHr(Q, B, R) be the 
linear space of regular Borel measures on Q, normed by the total variation 
norm 1I'lIv as in formula (10.3). We then have the "Riesz-Kakutani theorem" 
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(a particular consequence of which is that .4tr(Q, B, R) is a Banach space, 
although this fact can also be proved directly.) 

Theorem. The correspondence fl f4 if> fl is a congruence between the spaces 
.4tr(Q, B, R) and C(Q, R)*. 

Proof· We have already noted that the correspondence fl f---+ if>fl' which 
is clearly linear, is norm-preserving and hence is an isometry. It remains to 
show that every functional <p E C(Q, R)* arises in this fashion. 

Now the constantly one function e E C(Q, R) is an order-unit and, 
indeed, [ - e, e] is the unit ball. By 22A, therefore, any <p E C(Q, R)* de
composes as <p = <p + - <p -, where <p +, <p are positive. Let fl + and fl- be 
the positive Baire measures associated with <p + and <p - by the lemma. Then 
fl == fl+ - fl- satisfies if>fl = <p. Finally, fl can be extended to a regular 
Borel measure as already remarked. 0 

Since the proof that I I if> flll = Ilflllv applies equally well to complex 
measures, it is clear that the Riesz-Kakutani theorem is also valid for spaces 
of complex-valued continuous functions: C(Q, C)* ~ .4t,(Q, B, C). We 
simply apply the real version just proved to the real and imaginary parts of 
any given functional in C(Q, C)*. It is also true that, in the real case, the 
c0rrespondence fl -4 if> fl is bipositive in the sense that it and its inverse are 
both order-preserving. In other words, fl is a positive measure if and only if 
if> fl is a positive functional (exercise 4.3). 

C. The proof of the lemma in 22B requires a topological result con
cerning Stone-Cech compactifications (exercise 2.35) which is of some 
independent interest. Let us say that a topological space Q is extremally 
disconnected (a Stonean space) if the closure of every open set is again open. 
Several properties of such spaces are given in exercise 4.5; for example, Q is 
extremally disconnected exactly when any two disjoint open subsets of Q 

have disjoint closures. The simplest examples of such spaces are the discrete 
spaces and their Stone-Cech compactifications. We prove this latter assertion 
now. 

Lemma. The Stone-Cech compactijication of a discrete topological space 
Q is extremally disconnected. 

Proof. Let (1)1 and (1)2 be disjoint open subsets of j3(Q), and put Ai = 

(1)i n Q, i = 1,2. Since Q is dense in j3(Q) these sets are non-empty (assuming 
that (1)i =f. 0). Since Q is discrete, the characteristic functions XA i are con
tinuous, and so have continuous extensions J; to j3(Q) (exercise 2.35f)). By 
continuity each J; assumes only the values 0 and 1, and we have flf2 = o. 
Since Ai is dense in (1)i it follows that f;j(1)i is identically 1, i = 1,2, and this 
shows that iJJ 1 n iJJz = 0. 

We remark that it can be shown that any extremally disconnected 
compact Hausdorff space is a retract of j3(Q), for some discrete space Q. 
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Now, to proceed with the proof of the lemma in 22B, we let r be the 
space Q with the discrete topology, and let f:[3(r) --+ Q be the continuous 
extension of the identity map from r to Q. The formula 

(Tx)(t) ~ x(f(t)), t E Q, 

defines an isometric embedding T of C(Q, R) into C([3(r), R). Hence for any 
given positive functional </J E C(Q, R)* there is, by the Hahn-Banach theorem, 
a functional <P E C(/f(r), R)* such that <Tx, <P) = </J(x), x E C(Q, R), and 
such that II<PII = II</JII. Since <P(e) = <P(Te) = </J(e) = II</JII = 11<p11, it follows 
from exercise 4.2 that <P is also positive (here we have used e to denote the 
identically one function on the appropriate space). 

Next let fl be the algebra of open-and-closed sets in [3(r). For each 
A E fl the characteristic function XA is continuous and so we can define 
v(A) = <P(XA). This function v is a finitely additive measure on fl and we 
claim that it is actually countably additive. Indeed, if {An} is a sequence of 
disjoint sets in fl whose union A belongs to fl, then only finitely many An 
can be non-empty, since they are open sets and A is compact. Thus v is 
trivially countably additive, and by the usual Carath6odory extension pro
cedure v can be extended to a measure on the u-algebra S(fl) generated by 
fl; let us call the extension v also. 

Since each set in fl is a Gih S(fl) contains only Baire sets. We claim that 
S(fl) is exactly the u-algebra of Baire sets; this will follow by showing that 
each Y E C([3(r) is S(fl)-measurable. Given such a y and any real IX define 
En = {s E [3(r):y(s) < IX + lin}. The sets En are open and so, by the lemma, 

w 

En E fl. Hence {s:y(s) ~ IX} = n En E S(fl), whence y is S(fl)-measurable. It 
1 

now also follows that 

<P(y) = SP(r) Y dv, 

for each y E C([3(r), R); we see this by approximating y (in the mean) by 
simple functions based on sets in fl, and using the definition of v on such 
sets. 

Finally, if A is any Baire set in Q, f -l(A) is a Baire set in [3(r); define 
,u(A) = v(f-l(A)). Then,u is a Baire measure on Q and if x E C(Q, R) 

</J(x) = <Tx, <P) = SPIT) Tx dv = Sn x d,u. 

This completes the proof of the lemma and hence of the Riesz-Kakutani 
theorem. 0 

D. The original version of the Riesz-Kakutani theorem was given by 
Riesz and pertains to the spaces C([a, b], R). For such spaces a somewhat 
more concrete representation of their conjugate spaces is possible. Namely, 
given any Borel measure ,u on [a, b] the definition 

(22.5) g(t) =;; ,u([a, t]), 

g(a) =;; 0, 

a < t ~ b, 
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yields a function of bounded variation on [a, bJ which is left-continupus at 
every point in (a, b). Such functions constitute, by definition, the space 
NBV([ a, b], R) of normalized functions of bounded variation. This space 
can be normed by taking the norm of each such function to be its total 
variation over the interval [a, b]. The correspondence J.l ~ g defined by 
(22.5) is a linear norm-decreasing mapping from the space .,Hr([ a, b], B, R) 
into the space NBV([a, b], R) (We recall that any Borel subset of any 
Euclidean space is automatically a Baire set, so that Borel and Baire measures 
coincide in this case and, in particular, any Borel measure is regular.) 

It turns out that this correspondence is actually a congruence between 
the spaces .,Hr([a, b], B, R) and NBV([a, b], R). One verifies this statement 
by defining for any g E NBV([a, b], R) a function J.l on certain sub-intervals 
of [a, b] according to the rules 

J.l([ a, b]) = g(b) - g(a), 

J.l([a, t)) = get) - g(a), a < t,;;;; b. 

This function J.l can then be extended, first to the open sets of [a, b], and 
then to all Borel sets in a standard fashion, so as to be a (signed) measure. 
This measure is called the Borel-Stieltjes measure induced by g. Since 
II~i([a, t)) ,;;;; total variation of g on [a, t], the correspondence J.l+-'> g is 
isometric. 

In this way we see that every linear functional ¢ E q[ a, b], R)* is given 
by a Riemann-Stieltjes integral 

(22.6) ¢(x) = J~ x(t)dg(t), XE C, 

where g E NBV([a, b], R) and II¢II = total variation of g on [a, b]. (The 
correctness of (22.6) can be verified by approximating the given continuous 
function x uniformly by step-functions based on intervals of the form [c, d), 
a ,;;;; c < d ,;;;; b.) In particular, positive linear functionals on q[ a, b], R) are 
seen to correspond to non-decreasing functions in NBV([ a, b], R). 

Example. As an illustration of the use of formula (22.6) we establish a 
result of some interest in probability theory, known as the "ReIly selection 
principle". Recall that a distribution function is a bounded, non-decreasing, 
and left-continuous function defined on R. Typically, such functions arise 
in connection with random variables: if G is a real-valued random variable 
defined on some probability space then 

get) == Pr{w:G(w) < t} 

defines a distribution function g such that 

g( - 00) == lim get) = 0, 
t--+ - 00 

g( + 00) == lim get) = 1. 
t-+ + 00 

Because of its monotonic nature any distribution function is continuous at 
all but at most cotmtably many points. 
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Suppose we have a sequence {gn} of distribution functions all of which 
are concentrated on some interval [a, b], in the sense that gnCa) = 0, gn(b) = 1 
for every n. (Such a sequence might arise in association with a uniformly 
bounded sequence of random variables.) Then the selection principle asserts 
the existence of a subsequence {gnJ and a distribution function 9 such that 
limk gnk(t) = get) at every point t where 9 is continuous (in particular, at all 
but at most countably many points of [a, b]). 

To prove this assertion we use the fact that we can consider the sequence 
{gn} to belong to the unit ball of q[ a, b ], R)*. Since this ball is a compact 
metric space in its weak*-topology (12D, F), there is a subsequence {gnJ 
which converges weak* to some hEN BV([ a, b], R). Suppose that to E [a, b] 
is a point of continuity of h. For each e > ° define 

Then 

{
I, 

hit) = 0, 

linear 

t ::::; to 

to + e ::::; t 

to < t < to + e. 

lim J~ he(t)dgnk(t) = J~ he(t)dh(t), 
k-+ OCJ 

since he is continuous on [a, b]. But, 

gnJtO) = J~o he(t)dgnk(t) ::::; J~ hit)dgnk(t), 
and 

J~ he(t)dh(t) ::::; h(to + e). 
Therefore, 

lim sup gnk(tO) ::::; h(to + e) 
k-+OCJ 

for each e > 0, and so lim SUPk gnJtO) ::::; hUo). Similarly, one shows that 
lim infk gnk(tO) ~ h(to - e). In this way we establish the pointwise conver
gence of {gnk} to h on the continuity set D of h. 

We complete the argument by showing that h is a distribution function 
concentrated on [a, b]' Since hE NBV([a, b], R) we know that h is left
continuous and h(a) = 0. Also, 

h(1) = J~ dh = lim J~ dgnk 
k-+OCJ 

= lim (gnk(b) - gnJa)) = lim 1 = 1. 
k-+oo k-+oo 

Therefore, since the total variation of h on [a, b] is at most one, it must be 
that h is non-decreasing on [a, b], as desired. 0 

For a more general result see exercise 4.37. 

E. As an application of the Riesz-Kakutani theorem we shall give a 
geometric functional analytic proof of the Stone-Weierstrass theorem. It is 
convenient to begin by isolating a portion of the argument as a technical 
lemma. We let Q be an arbitary compact Hausdorff space. 
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Lemma. Let M be a non-dense linear subspace of qQ, R) and let Jl E 

ext(U(MO)). Suppose that gEL W(Q, E, R) has the property that So fg dJl = 0, 
for all f E M. Then 9 is a constant IJlI-almost everywhere. 

Proof. After adding a constant to 9 and multiplying by a scalar we 
can assume that 9 ~ () and So 9 dlJlI = 1. Now if IIglioo ~ 1 then certainly 
9 = 1 [IJlll Otherwise IIglioo < 1. In this case let 2 = I/l1glloo and define 
two new (signed) Borel measures Jll and Jl2 by 

r (1 - 2g) 
Jll(E) = JE 1 _ 2 dJl, 

Jl2(E) = SE 9 dJl, E E B. 

By construction, Jl = (1 - 2)Jll + AJl2 and neither Jll nor Jl2 equals Jl 
(since IIglioo > 1 and 2 > 0). Thus we will have obtained a contradiction if 
we can prove that both Jli E U(MO). Since they clearly belong to MO we need 
only estimate their norms. Now 

Also, since () ~ 2g ~ 1, 

So 11 - 2gldlJlI = Sn (1 - 2g)dlJlI = IIJlII - 2 = 1 - 2, 

whence IIJld: = 1. 0 
Let v be a positive regular Borel measure on Q. Recall that the support 

a(v) of v is the complement of the union of all open subsets (!) c Q for which 
IJlI((!)) = 0. Consequently, a(v) = {t E Q: every t-neighborhood has positive 
v-measure}. The support has the important property that Iof dv = ° for 
a non-negative fE qQ, R) if and only if fla(v) = () (exercise 4.7). Now it 
is not difficult to establish the Stone-Weierstrass theorem. 

Theorem. Let A be a subalgebra of qQ, R) with the properties that 
for each t E Q there exists f E A such that f(t) =1= ° and that A separates the 
points of Q. Then A is dense in qQ, R). 

Proof. Suppose that A is not dense. Then by the Hahn-Banach, Alaoglu, 
and Krein-Milman theorems there exists some Jl E ext(U(AO)). For any 
9 E A we have fg E A whenever f E A, so that Io fg dJl = 0. Hence by the 
lemma 9 is constant IJlI-almost everywhere. Since 9 is continuous 9 must be 
constant on a(\Jli). Since this is true of every 9 E A and A is assumed to 
separate the points of A it follows that a(IJlI) must consist of a single point, 
say p. We complete the proof by obtaining the contradiction that g(p) = 0, 
gEA. 

Let e be the constantly one function on Q and choose any f E qQ, R). 
Since the function f - f(p)e vanishes on a(IJli) we have 

I SoU - f(p}e)dJlI ~ Solf - f(p)eldIJlI = 0, 

so that Iof dJl = af(p}, where a == Jl(Q). Because Jl =1= () we see that rx =1= 0. 
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Therefore, 

1 
g(p) = - fng dJ1 = 0, 

r:!. 
gEA. o 

The complex version of the Stone-Weierstrass theorem is obtained in 
the usual manner, by assuming that the algebra A is self-adjoint (SF) in 
addition to the other hypotheses of the theorem. By exercise 1.39 we then 
have A = AR + iAR, and the algebra AR must be dense in C(Q, R) by 
what we have just shown. 

F. As our final topic in this section we give an explicit example of a 
closed linear subspace of a Banach space X which is not the range of any 
continuous linear projection defined on X. In other words, this subspace 
is uncomplemented in the sense that it has no closed complementary subspace 
in X. Another example of this phenomenon is given in exercise 4.19 to 
illustrate a result in §23. 

We begin with a simple lemma which provides some information about 
operators from a general Banach space into a space of continuous functions. 

Lemma. Let X be a Banach space over the field ]8', let Q be a compact 
Hausdorff space, and let T E B(X, C(Q, ]8')). Then there exists a continuous 
map ,:Q -+ X* (given the weak*-topology) such that Tx(t) = <x, ,(t), t E Q, 

x E X, and IITII = 11,1100. 
Proof. We know that the map t f-+ 6, is a continuous map of Q onto 

a weak*-compact subset of U(C(Q, ]8')*). Hence, if we define ,(t) = T*(6,), 
it follows from 16C that, is continuous. Finally, 

IITII == sup IIT(x)11 = sup sup ITx(t)1 
!Ixll';;l IlxiiO tEa 

= sup sup I Tx(t) I == SUp sup I <x, ,(t) I 
'Ea Ilxll';;l 'Ea Iixll,;;l 

= sup 11,(t)11 == 11,1100. 
tEa 

It is clear that, conversely, any such map, from Q into X* defines an 
operator T:X -+ C(Q, R) with IITII = 11,1100- 0 

Example. Let X be the Banach space of bounded real-valued functions 
on [O,lJ with the usual sup-norm, and let e be the closed subspace of 
continuous functions. We shall show that there is no closed complementary 
subspace for e in X. Indeed, if there were such a subspace then by 171 there 
would be a continuous linear projection P from X onto C. Let,: [0, 1] -+ X* 
continuous map associated with P according to the lemma. Thus Px(t) = 

<x, ,(t) for 0 ~ t ~ 1 and all x E X. In particular, since the restriction of . 
P to e is the identity operator, it follows that ,(t)le = 6" 0 ~ t ~ 1. We 
claim that ,(t) is "evaluation at t" as a functional on X; let us call this 
functional b,. The claim is valid because 6, attains its norm on U( C) at 
peak functions in U( e), for example, at the function X t defined by xb) = 
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1 - Is - tl, ° ~ s ~ 1. The function Xt is a smooth point of V(C) by 20F, 
Ex. d) and in fact is also a smooth point of VeX) (exercise 4.10). Consequently, 
by 20I bt has a unique Hahn-Banach extension to all of X. This proves 
that bt = T(t) as claimed. 

We can now easily obtain a contradiction. Let x be a discontinuous 
function in X. To be explicit let us take x to be the characteristic function 
of(O, 1]. Then, for n = 1,2, ... , 

Px(O) = X,T(O) = ° =F 1 = (X'T(~)) = PxG} 

which proves that Px is not continuous at 0, or, equivalently, that T is not 
continuous from [0, 1] to the weak*-topology on X*. 0 

§23. Properties and Characterizations of Conjugate Spaces 

In this section we discuss several special properties of conjugate Banach 
spaces, some of which are strong enough to characterize such spaces among 
general Banach spaces. Certain of these properties, such as the Bessaga
Pe1czynski necessary condition, pertain specifically to separable spaces. 
Several examples of these results are also given. 

A. Let X be a given Banach space. To say that X is a conjugate space 
means that there exists a Banach space V such that X is congruent to V*. 
We shall begin by presenting a simple condition sufficient to guarantee 
that such a space V exists. This result will be called the "Dixmier-Ng 
theorem". 

Theorem. Suppose that there is a (Hausdorff) locally convex topology 
r on X such that VeX) is T-compact. Then X is a conjugate space. 

Proof. Let V = {4> E X':4>IV(X) is T-continuous}. Then V is a closed 
linear subspace of X*, and is therefore a Banach space. (To see that V c X* 
observe that for any 4> E V the image 4>(V(X)) is a compact hence bounded 
set of scalars; that is, 114>11 is finite and so 4> E X*. Vis closed in X* because 
convergence in X* entails uniform convergence on V(X).) We now bring 
in the operator Jx. v:X ~ V* introduced in 16F. This operator assigns to 
each x E X thefunctional "evaluation at x" in V*. We clearly have IIJ x. vII ~ 1. 
The proof will be completed by showing that J x, v is a congruence between 
X and V*. We do this by showing that J x, v is injective and that it maps 
VeX) onto V(V*). 

The first assertion follows because V is total. Indeed, V contains the dual 
space X; which certainly separates the points of X (HE). The second 
assertion follows from the fact (evident by definition of V) that J x, v is 
continuous from the T-topology on X into the weak*-topology on V*. 
This means in particular that Jx , v(V(X)) is w*-compact in V*. But, by the 
Goldstine-Weston density lemma (16F), this image is also weak*-dense in 
V(V*). 0 
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Let us now illustrate this theorem with a few examples. We first note 
that it immediately implies the fact (already known from l6E and exercise 3.6) 
that any weak*-closed linear subspace X of a conjugate space y* is itself 
a conjugate space. This follows from the observation that U(X) is compact 
in the (relative) weak*-topology. It also implies the fact (known from l6H) 
that the space m == m (Q, F) of bounded functions on a set Q is a conjugate 
space (exercise 4.12). We now give a new example. 

Example. . Let X = Lip(Q, d, F) be the space of bounded Lipschitz 
functions defined on the metric space (Q, d) and normed by 11'1 k == max {11'lloo, 
II' lid} (lOD, Ex. 4). Let T be the topology of pointwise convergence on X 
(9D). Then U(X) is certainly a .-closed subset of X. In addition, U(X) is 
contained in the product BD, where B == {A E F: 1,11 ~ I}. Since B is compact 
Tychonov's theorem implies that BD is compact in its product topology. 
Consequently, U(X) is .-compact and so X is a conjugate space. 0 

Any space V for which X is (congruent to) V* is called a pre-dual of X. 
In general, a given conjugate space X can have more than one pre-dual, 
although it is known, for example, that whenever J1 is a a-finite measure 
the space U(J1) is the unique pre-dual of U)(J1) (see also exercise 4.13). 
In any event, having recognized that a given Banach space is a conjugate 
space, it is usually of interest to identify a particular pre-dual as a more or 
less familiar type of space. This problem is considered in exercise 4.14 for 
the Lipschitz spaces just discussed. 

B. We shall now look a little deeper into the question of whether a 
given Banach space X is a conjugate space. It will also be of interest to raise 
a companion question: is X isomorphic to a conjugate space? This is defi
nitely a weaker question; for example, it can be shown that every quasi
reflexive space (161) has this latter property. More interesting, perhaps, 
is the fact that any non-reflexive space can be renormed so as not to be a 
conjugate space (see 23E). 

Example. As a special case ofthis last remark let m be the usual space of 
bounded sequences. Let A = U(m) + U(m) n co. A may be characterized as 
thesetofsequences(~b ~20" .)in m for which supn I~nl ~ 2 and lim supn I~nl ~ 
1. Now U(m) cAe 2U(m) and so the gauge PA of A is an equivalent 
norm on m. But the set A has no extreme points, and so PAis not a conjugate 
space norm. 0 

We proceed now to reduce the search for answers to either of the above 
questions to subspaces of X*. Recall that this is where we found a pre-dual 
for spaces X satisfying the condition of 23A. If V is a subspace of X * let us 
henceforth write simply Jv for the operator J x, v. 

Lemma. Let X and Y be Banach spaces and suppose that T: X -7 y* 
is a congruence (resp. an isomorphism) between X and Y*. Then there exists 
a subspace VofX* such that Jv:X -7 V* is a congruence (resp. an isomorphism). 
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Proof. Let V be the range of T* 0 J y. For any y E Y set v = T*(J y(y)). 
Then for any x E X 

(y, T(x) = (T(x), Jy(y) == (x, v) 

== <v, Jv(x) == (T*(Jy(y)), Jv(x) 

= <y, (T* 0 J y)* 0 Jv(x). 

This proves that T = (T* 0 J y)* 0 J v and consequently that 

(23.1) J v = (T* 0 J y)*-l 0 T. 

Since J y is always a congruence formula (23.1) exhibits Jv as a composite 
of congruences (resp. of isomorphisms). Further, range( J v) is all of V* because 
T* 0 J y: Y ~ V is surjective, and hence so is (T* 0 J y)*-l: y* ~ V*. 0 

This lemma makes it clear that any reflexive space X has a unique 
pre-dual, namely X*. 

A closed linear subspace V of X* is said to be minimal if it is total and 
no proper subspace of V is both total and closed. Also, V is said to be duxial 
(or norm determining) if sup {I(x, v >I:v E V(V)} = Ilxll, x E X. That is, V is 
duxial exactly when Jv is an isometry. Finally, we say that a closed subspace 
M of a Banach space X is constrained by a subspace N if there exists a norm
one projection P:X ~ M such that ker(P) = N. 

We now have the following several characterizations of conjugate spaces 
and their isomorphs. We shall refer to these results collectively as the 
"Dixmier-Goldberg-Ruston theorem". 

Theorem. Let X be a Banach space. 
a) X is a conjugate space (resp. is isomorphic to a conjugate space) if and 

only if there is a total subspace V of X* such that VeX) is a(X, V)-compact 
(resp. is relatively a(X, V)-compact). 

b) X is isomorphic to a conjugate space (resp. is a conjugate space) if and 
only if X* contains a minimal subspace (resp. a duxial minimal subspace). 

c) X is isomorphic to a conjugate space (resp. is a conjugate space) if and 
only if J x(X) has a weak*-closed complementary subspace in X** (resp. is 
constrained by such a subspace). 

Proof. a) The condition for X to be a conjugate space is an immediate 
consequence of Alaoglu's theorem and the Dixmier-Ng theorem (23A). 
Suppose that X is isomorphic to a conjugate space. By the lemma we can 
assume that J v: X ~ V* is an isomorphism for some (total) subspace V of 
X*. Now J v is also a homeomorphism from the a(X, V)-topology into the 
weak*-topologyon V*. Therefore, 

Jv(V(X))" = Jv(V(X))* = V(V*), 

where the second equality is a consequence of the Goldstine-Weston density 
theorem (16F). This proves that V(X)" is a(X, V)-compact. 
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Suppose conversely that U(X) is a(X, V)-relatively compact for some 
total V c X*. Then, as before, 

Jv(U(xt) = Jv(U(X)) * (') Jv(X) = U(V*) (') Jv(X). 

This shows that U(Jv(X)) = U(V*) (') Jv(X) is weak*-compact in V*.Hence 
Jv(X) is weak*-closed in V* by the Banach-Dieudonne theorem (18E). Since 
Jv(X) is also (as noted above) weak*-dense in V*, it follows that Jv is 
surjective. Consequently, by the inverse mapping theorem (17F) Jv is an 
isomorphism between X and V*. 

b) Suppose that there is a subspace V of X* such that 1v is an isomor
phism (resp. a congruence). Then we claim that j7 is a minimal (resp. a duxial 
minimal) subspace of X*. Indeed, if W were a proper closed subspace of j7 

-* ' there would exist some non-zero <P E WO c V = V*. If <P = Jv(x) then 
x E ow yet x "# 8, so that W could not be total. 

Conversely, suppose that V is a minimal subspace of X*. We have to 
prove that Jv is surjective. Select any <P E V*, <P "# 8. Then ker(<P) is a 
proper closed subspace of V and so cannot be total. Hence there exists a 
non-zero Xo E X such that 4>(xo) = 0 whenever <P(4)) = O. That is, ker(<P) c 

ker( J v(xo) ), and it follows that <P = rxJ v(xo) = J v(rxxo) for a suitable scalar rx. 
(We have used the fact that Jv(xo) "# 8, since V is total and so Jv is injective.) 
If V is also duxial then we know that Jv is actually a congruence. 

c) Suppose that there is a subspace V of X* such that Jv is an isomor
phism. We claim that VO is a closed complementary subspace for J x(X) in 
X**.WecertainlyhaveJx(X) (') VO = {8},sinceVistotaI.LetR:X** ~ V* 
be the restriction map: R(<P) = <PJV, <P E X**. Now define P:X** ~ Jx(X) 
by 

P=Jx oJ;;l o R. 

Then clearly P is a projection of X** onto J x(X), ker(P) = ker(R) = yo, 
and Ilpll ~ II J;; 111, which is finite by hypothesis. If also J v is a congruence 
then IIPII ~ 1; hence IIPII = 1 and so J x(X) is constrained by VO. 

Finally, let W be a weak*-closed complementary subspace for J x(X) 
in X**. By exercise 3.6 W = V O for some subspace V of X*. Because 
Jx(X) (') VO = {8}, V is total. Now given any <P E V*, let if> be a Hahn
Banach extension of <P belonging to X**. Then if> = x + W, WE yo, and it 
follows that 

<4>, <P) = <4>, x) + <4>, W) 

= <x,4» == <4>, Jv(x), 

That is, Jv(x) = <P, so that Jv is surjective and hence is an isomorphism. If 
J x(X) is actually constrained by W then we have in addition 

this proves that J v is a congruence. o 
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Implicit in this proof are some formulas for II J v 111 in the case where J y 

is an isomorphism; see exercise 4.15. 
If a Banach space is not isomorphic to a conjugate space then it mayor 

may not be complemented in its second conjugate space. Examples are dis
cussed in 23D and in the exercises. In particular, it happens that L 1([0, 1 J, R) 
is constrained in its second conjugate, yet is not isomorphic to any conjugate 
space. 

We now indicate a new class of conjugate spaces. 

Example. Let X and Y be Banach spaces and consider the space B == 
B(X, Y*). We claim that any such operator space is a conjugate space. We 
can see this by defining for each x E X, Y E Y, a functional x ® y E B* by 

<T, x ® y) = <y, T(x), 

and letting V be the linear hull of all such functionals. Since 

sup I <T, x ® y) I ~ sup I <y, T(x) I 
Ilx0yll,,;1 Ilxll,,;1 

IIYII,,; 1 

= sup IIT(x)11 == IITII 
Ilxll,,;1 

it follows that V is duxial and hence that J y is an isometry. To show that 
J y is surjective we can either prove that V is a minimal subspace of B* or 
that U(B) is relatively a(B, V)-compact. 

It seems more natural to adopt the second course. Accordingly we 
observe that U(B) is a closed subset of the product space A == I1{llxIIU(Y*): 
x E X}. Now, if U(Y*) is topologized by the weak*-topology, it follows 
from the theorems of Alaoglu and Tychonov that A is compact. Since the 
product topology on A clearly induces the a(B, V)-topology on U(B) we see 
that U(B) is indeed a(B, V)-compact. Thus by either part a) or b) of the 
theorem J y is a congruence between Band V*. The topology a(B, V) is 
called the weak*-operator topology on B. 

We continue this example by showing an application (see also exercise 
4.18). Let I be an index set, let {x~: 0( E I} (resp. {t/J ~: 0( E I}) be bounded 
subsets of X (resp. of Y*), and let L be a positive number. We consider the 
operator moment problem: find T E B such that 

(23.2) 
T(x~) = t/Ja, 
IITII ~ L. 

0( E I, 

(When I is finite and Y = Fl problem (23.2) is known in the literature as 
the "L-problem of moments", and the smallest value of the parameter L is 
of special importance. In addition to its purely mathematical interest, the 
L-problem of moments subsumes many special models of optimization and 
control.) 

Now problem (23.2) may not, as it stands, be consistent. It may not be 
possible to find an operator interpolating all the data {xa, t/J a: 0( E I} or it 
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may be that no interpolating operator can have norm ~L. We intend to 
prove that there always exists a Chebyshev (or minimax) solution. That is, 
we shall show that an operator T exists satisfying II Til ~ Land 

sup IIT(xJ - l/I"II ~ sup IIT(x,,) - l/I"II, 
" " 

whenever II Til ~ L. 
To do this we observe that the functionalh:B ~ Rdefined by 

TEB, 

is weak*-operator lower semicontinuous on B. Indeed, the map T f-+ T(x,,) -
l/I" is continuous from the weak*-operator topology on B into the weak*
topology on Y*, and, of course, the norm on y* is weak*-lower semi
continuous. Hence the functional f == SUP{h:O: E I} is also weak*-operator 
lower semicontinuous on B, and so attains its infimum over the compact 
set LU(B) (exercise 2.43). Any operator T E LU(B) at which f attains its 
minimum is a Chebyshev solution of the moment problem. 0 

C. We are now going to present a very striking geometric property 
possessed by all separable conjugate spaces and their isomorphs. This con
dition is thus necessary for a given separable Banach space to be isomorphic 
to a conjugate space. We shall see that it follows easily that certain standard 
separable spaces are not isomorphic to any conjugate space. 

The crux of the matter is to establish the following general lemma due 
to Namioka. Let us agree that if A is a subset of a conjugate space then 
Aw* denotes the set A topologized by the (relative) weak*-topology. 

Lemma. Let Y be a Banach space for which y* is separable, and let A 
be a weak*-compact and convex subset of Y*. If Z is the set of all points of 
continuity of the identity map: Aw* ~ A, then Z n ext(A) is weak*-dense in 
ext(A). 

Granting momentarily the truth of this lemma we can use it to establish 
our main result, known as the "Bessaga-Pelczynski theorem". 

Theorem. Let X be a separable Banach space which is isomorphic to a 
conjugate space. Then every (non-empty) closed, bounded, and convex subset 
of X is the closed convex hull of its extreme points. 

Proof. According to exercise 2.40 it is sufficient to prove that every 
such subset has an extreme point. Now if it is known that all separable 
conjugate spaces have this property then X also has the property, since it 
is clearly preserved under isomorphism. Hence there is no loss of generality 
in assuming that X is a conjugate space: X = y* for some Y. 

-* Now let B be a closed, bounded, and convex subset of Y*. Let A = B . 
Because B is bounded A is weak*-compact, and we may apply the lemma. 
Let z belong to the set Z of the lemma. Since B is weak*-dense in A there 
is a net {f3~} c B that converges weak* to z. By definition of Z it follows 
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that lima IIPa - zll = o. This entails z E B. Consequently Z c Band Z n 
ext(A) c B n ext(A). Now the lemma implies that Z n ext(A) is weak*
dense in ext(A), and of course ext(A) =1= 0 (13A). Since B c A we have 
B n ext(A) c ext(B), and so we have shown that in particular ext(B) =1= 0· 0 

The proof of Namioka's lemma depends heavily on category and is 
based on two additional lemmas, the first of which is of some independent 
interest. 

Lemma 1. Let A be a compact convex subset of a locally convex space. 
If A is also metrizable then ext(A) is a Baire space. 

Proof. Let d be a metric that defines the topology on A, and define 

en = H (x + y):x, YEA and d(x, y) ~ ~}. Then the sets en are closed and 

Un en = A\ext(A). This proves that ext(A) is a G6 subset of A. Now, since 
A is compact and metrizable, it is d-complete. From topology it is known 
that any G6 subset of a complete metric space is homeomorphic to a complete 
metric space. Thus, being homeomorphic to a Baire space, ext(A) is itself a 
Baire space. 0 

The conclusion of Lemma 1 remains valid even if A is not metrizable, 
but the proof is more difficult and the result in this generality will not be 
needed. 

Lemma 2. Let Y be a Banach space for which y* is separable, and let 
A be a weak*-compact subset of Y*. Then the set of all points of continuity 
of the identity map: A w* --+ A is weak*-dense in A. 

Proof. For each 8 > 0 let A, be the union of all open subsets of (norm) 
diameter ~ 8. Clearly A, is open and we shall show that it is dense in A. 
Since A is separable there is a (norm) dense sequence {¢n} c A. Hence 

A = Un An (¢n + ~ U(X*)). From 17A and exercise 3.17 the union of the 

interiors of these sets is dense in A, and the union is clearly contained in A,. 
Consequently, since A is a Baire space the set nn A 1/n is dense in A; but this 
set is exactly the set of points of continuity ofthe identity map: Aw* --+ A. 0 

Proof of the Lemma. For each 8 > 0 let B, consist of those points ¢ E 

ext(A) for which there exists a weak*-¢-neighborhood N such that diam(A n 
N) ~ 8. Clearly B, is a weak*-open subset of ext(A) and it will be shown to 
also be weak*-dense in ext(A). Granting this it will follow from Lemma 1 
that nn B 1/n is also weak*-dense in ext(A). But this set is exactly Z n ext(A). 
(Notice that in applying Lemma 1 we have tacitly used 12E, F to guarantee 
that A is bounded and hence weak*-metrizable.) Thus it remains only to 
show that B, is weak*-dense in ext(A). 

Let W be an arbitrary weak* -open set in Y* such that ext( A) n W =1= 0; 
--* we must prove th,at B, n W =1= 0. Let D = ext(A) ; D is weak*-compact 

and certainly D n W =1= 0. By Lemma 2 the set of continuity points of the 
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identity map: Dw* ~ D is weak*-dense in D. Hence there is a weak*-open 
set V c y* such that 0 =f. D n V c D n W, and diam(D n V) ~ 1'./4. Let 
Al = co*(D\V) and A2 = co*(D n V). Since ext(A) c Al U A2 c A it 
follows from llA and 13B that A = CO(AI U A2)' We can also note that 
diam(A 2) ~ 1'./2 since D n V is contained in a ball of radius ~ 1'./4. Moreover, 
Al =f. A because ext(Ad c D\V (13B) and D n V =f. 0. 

Now let d = diam(A) and r = f./4d. We define C to be the image of the 
set Al x A2 x [r, 1] under the map f(<pI> <P2, t) == t<PI + (1 - t)(Pz. Then 
C is a weak*-compact and convex subset of A. Further, C =f. A since ext(A) n 
C c AI> and Al is a proper subset of A. Now any l/! E A\C is of the form 
l/! = t<PI + (1 - t)<P2, where <Pi E Ai and 0 ~ t < r. It follows that Ill/! -
<p211 ~ tll<pI - <p211 ~ rd; consequently diam(A\C) ~ 2rd + 1'./2 = f., using 
diam(A2 ) ~ 1'./2 and the definition of r. 

Finally, since C =f. A, there exists <P E (A\C) n ext(A) (13B). Thus A\C 
is a weak*-<p-neighborhood in A of diameter ~ f., so that <P E Be. And since 
D\V c Al c C, we must have <p E D n V c D n W. This shows that 
<p E Be n W. 0 

D. We shall now give some examples and discussion pertaining to the 
Bessaga-Pelczynski theorem. 

Example 1. Let Q be a non-compact but locally compact Hausdorff 
space and let Co(Q, F) be the Banach space of continuous F -valued functions 
on Q that vanish at infinity, with the usual sup norm. According to exercise 
2.30 the unit ball of this space has no extreme points. Now if Q is metrizable 
we know from 15C (Lemma 3) that Co(Q, F) is separable. Therefore, by 23C 
the space Co(Q, F) for metrizable Q is not isomorphic to any conjugate 
space. In particular the sequence space Co has this property. Hence so does 
the sequence space C, where C consists by definition of all convergent 
sequences of scalars. 0 

It is interesting to remark that Co fails to be isomorphic to a conjugate 
space for another reason: namely, it fails to satisfy criterion c) of the Dixmier
Goldberg-Ruston theorem (23B). Indeed, as is to be shown in exercise 4.19, 
Co fails even to be complemented in its second conjugate space m. 

Example 2. Again according to exercise 2.30 the Lebesgue space L I == 
Ll([O, 1], R) has the property that its unit ball contains no extreme points. 
Consequently L I fails to be isomorphic to any conjugate space. This result 
is known as "Gelfand's theorem". The conclusion has been substantially 
generalized by Pelczynski: a space L 1(Q, fl, R) where fl is a a-finite measure 
is isomorphic to a conjugate space (if and) only if fl is purely atomic. This 
last condition means that every chunk A in Q differs only by a null set from 
the union of all the atoms contained in A. 

By contrast with Example 1 the space L 1 is complemented (in fact, 
constrained) in its second conjugate space. To prove this assertion we must 
define a norm-one projection from L 1** ~ L 00* onto hi (L 1). Given t:fJ E L 00* 
let <p = t:fJIC([O, 1],R). Let gENBV([O, l],R) correspond to <p according 
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to formula (22.6). Then the derivative g' belongs to L 1 and we can define 
the desired projection P by P(<P) = JL' (g'). Since 

IIP(<P)II = IIg'lb == H Ig'(t)I dt 

~var(g) = 114>11 ~ 1I<p1I, <PELoo *, 

we see that IIpll ~ 1. Further, if <P = JL' (f) for some j E U then 9 is an 
indefinite integral of j, and so P(<P) == JL' (g') = JLI (f) == <P. This proves 
that P is a norm-one projection of L 1** onto JL' (U). (In exercise 4.20 it is 
to be shown that ker(P) is weak*-dense in L 1**.) D 

Although more difficult to prove in complete generality it is true that 
any L l(Q, /l, R) space is constrained in its second conjugate. 

Either by direct proof or as a consequence of results in the next section 
it follows that C([O, 1J, R) is also not isomorphic to a conjugate space. 

Next, let us note that the separability hypothesis in the Bessaga
Pelczynski theorem is really necessary. For example, consider the sequence 
spacem; Tn is a non-separable conjugate space as we know (16H and exercise 
2.24a). However, ru certainly contains closed, bounded, convex subsets 
having no extreme points; for example, U(co) and the set A appearing in 
the example in 23B. 

Finally, it should be remarked that there is no converse to the Bessaga
Pelczynski theorem. This disappointment has been rather dramatically 
illustrated by an example of Lindenstrauss: there exists a closed linear 
subspace of (l(t{O) which fails to be isomorphic to any conjugate space. 
Such a subspace appears in the following manner. Given any separable 
normed linear space X there exists an operator T E B( (1, X) such that T* 
is an isometry. Namely, letting {xn} be a sequence dense in aU(X), we define 

n= 1 

Clearly, II Til ~ 1 and 

IIT*(4))lIoo = sup I <em T*(4))) I 
n 

= sup 14>(Xn)I = sup 14>(X) I = 114>11, 
n IIxll=l 

4> E X*. 

By 18G, T is surjective and X is necessarily complete. (It also follows that 
t: C1 /ker(T) ~ X is a congruence, proving that any separable Banach space 
is (congruent to) a quotient space of (1; however, this fact is not essential 
to the example.) Lindenstrauss' example is now obtained by choosing X = 
U([O, 1J, R); the kernel M of the associated operator T is shown to have 
the property that it is not complemented in any conjugate space, whence by 
part c) of the Dixmier-Goldberg-Ruston theorem M cannot be isomorphic 
to a conjugate space. 

E. We now establish the result alluded to in 23B concerning non
reflexive spaces. This theorem, formulated by Davis and Johnson, provides 
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a new characterization of reflexive spaces: a Banach space is reflexive if 
and only if every isomorph of X is a conjugate space. (The necessity of this 
condition is clear since any isomorph of a reflexive space is actually reflexive, 
as we know.) 

We shall prepare for the theorem with another renorming lemma, due 
originally to Kadec and Klee. 

Lemma. Let X be a Banach space and V a closed separable subspace of 
X*. Then there is an equivalent norm (J on X such that if {<Po:i5 ED} is any 
net in X* that converges weak* to <P E V, and if limo (J*(<P1J = (J*(<p), then 
limo !!<Po - <PI! = O. 

Proof. Since V is separable there is an increasing sequence {Gn } of 
finite dimensional subspaces of V such that Un Gn is dense in V. Define 

IjJ E X*. 

Then p is an equivalent norm on X* and we claim that its unit ball Up is 
weak*-closed in X*. This follows from the observation that a semi-norm 
IjJ I--> d(ljJ, G) is lower semicontinuous whenever the subspace G is weak*
closed (which in turn follows from formula (16.9) and exercise 3.6). Since 
Up is weak*-closed we know from 18F that p is a dual norm on X*, say 
p = (J* for some equivalent norm (J on X. 

Now, by weak*-lower semicontinuity we have .li!no I!<Pol! ?= I!<PI! and 
limo d(<po, Gn) ?= d(<p, Gn), for every n. In conjunction with the relation 
limo p(<Po) = p(<p) we have limo d(<po, Gn) = d(<p, Gn). But limn d(<p, Gn) = 0 
since <p E V. This fact plus the compactness of balls in the subspaces Gn 

enables us to show that the net {<Po:i5 E D} is relatively compact in X*. (The 
details of the argument needed here are routine but tedious; we therefore 
defer them to exercise 4.21.) But any cluster point of this net must be <p, 
since weak*-limo <Po = <p. Consequently, limo !!<Po - <PI! = o. 0 

Theorem. Let X be a non-reflexive Banach space. Then there is an 
equivalent norm (J on X such that X so normed is not (congruent to) a conjugate 
space. 

Proof. By 18B U(X*) is not countably compact: there exists a sequence 
{<Pn} c U(X*) with no weak cluster point. Let {<Po:i5ED} be a subnet of 
{<Pn} that converges weak* to some <p E U(X*), and set V = span {<p, <Pn:n = 

1,2, .. } Letting lv = lx, vas in 23B, we have 

lim <<Po, Jv(x) == lim <po(x) = <p(x) 
Ii 0 

= <p(x) == <<p, Jv(x), XEX. 

On the other hand there exists some cf> E V* such that <<Po, cf» fails to 
converge to <<p, cf». This argument shows that lv is not surjective. 

Let (J be the equivalent norm on X defined by V according to the lemma. 
Suppose that X so normed is (congruent to) some conjugate space Y*. 
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For each ¢ EVe y** there is a net {yo:t5 E D} c Y such that a*(yo) ",;; 
a*(¢) and weak*-limo Jy(yo) = ¢ (Goldstine-Weston density lemma, 
16F). The weak*-convergence entails limo a*(Jy(yo)) ~ a*(¢) and hence 
limoa*(Jy(yo)) = a*(¢). By the lemma it follows that limo Jy(yo) = ¢, 
whence ¢ E J y( Y). But now any cP E V* can be viewed as defined on a 
subspace of Y. Any Hahn-Banach extension of cP belonging to y* corresponds 
to some x E X, and we see that (¢, Jv(x) == ¢(x) = (¢, cp), ¢ E V. Thus 
we have arrived at the contradiction that Jv is surjective. 0 

§24. Isomorphism of Certain Conjugate Spaces 

In this section we prove that the L 00 spaces defined on a separable measure 
space are all isomorphic to the space of Lipschitz functions on [0, 1 J. In 
addition to its intrinsic interest this result stands in contrast with the 
corresponding negative fact for the U spaces with 1 ",;; p < 00, p f=. 2. For 
such values of p the spaces CP(~o) and U([O, 1], F) fail to be isomorphic. 

A. We shall first work to establish the existence of an isomorphism 
between the spaces m and LOO([O, 1], F); the general isomorphism theorem 
will then follow with little difficulty. There is clearly no loss of generality in 
assuming the scalars to be real: F = R. We shall need two preliminary 
lemmas which provide some interesting information about general spaces 
of L 00 type. Let us say that an ordered linear space is boundedly complete if 
every subset which has an upper bound has a least upper bound. 

Lemma 1. Let (Q,J:,f.1) be a a-jinite measure space. ThenLOO == Loo(Q,f.1,R) 
is boundedly complete. 

Proof. Let A be a subset of L'1J which is bounded above: there exists 
gEL 00 such that f ",;; g (that is, 8 ",;; g - f[f.1]) for all f E A. After replacing 
A by the suprema of its finite subsets (if necessary) we may suppose that A 
is directed by ",;;, and hence that A = {J;': rx E A} is a non-decreasing net 
in L 00 with fa ",;; g, rx E A. Now for any non-negative x ELI we have (x, fa) ",;; 
(x, g), rx E A, and so lima (x, fa) exists and defines ¢(x) E R. Next, for any 
non-negative x, y ELI we define ¢(x - y) = ¢(x) - ¢(y), and obtain a 
linear functional: ¢ E (U)'. Further, ¢ is continuous since (x, fa) ",;; ¢(x) ",;; 
(x, g) for x ~ 8 and rx E A, so that there exists A > ° with 1¢(x)1 ",;; ),llxlll; 
then decomposing any x E LI as x = x+ - x-, x± ~ 8, we see that 

1¢(x)1 == I¢(x+ - x-)I ",;; 1¢(x+)1 + I¢(x-)I 

",;; Allx+111 + Allx-III = },llxll l . 

Let hE L 00 correspond to ¢ under the usual congruence between (L I )* 
and L 00. Since (x, h - fa) ~ 0, x ~ 8, we have h - fa ~ 8, and so h is 
an upper bound for A. Finally, if k E L 00 is any upper bound for A, then 
(x, fa) ",;; (x, k), x ~ 8, whence ¢(x) == (x, h) ",;; (x, k), x ~ 8. This proves 
that h ",;; k and therefore that h = sup {fa:rx E A} = sup A. 0 
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It may be noted that the only use of the a-finiteness hypothesis was to 
guarantee (L 1)* ~ L 00, so that a slightly more general theorem is true via 
the same argument. 

For our second lemma we need the concept of an injective Banach space. 
A Banach space X is injective if given any congruence between X and a 
subspace of a Banach space Y, its image has a complementary subspace in 
Y. In other words, X is injective if it is complemented in every Banach space 
containing it. If there is always a projection of norm :::; A onto X from every 
space containing it then X is a P A-space. For example, every finite dimensional 
space X is injective (cf. exercise 2.2d) and in fact is a Prspace with A :::; y'Yi. 
Further, it is known that for X = (Rn, 11'112) we have for the smallest possible 
value of A, 

(n ~ (0), 

so that the general estimate ), :::; y'Yi is close to optimal, in an asymptotic 
sense. It will now be shown that the L 00 spaces are injective (actually P 1-

spaces). 

Lemma 2. Let L 00 be as in Lemma 1 and suppose that L 00 is (congruent 
with) a subspace of a Banach space X. Then L 00 is constrained in X. 

Proof. Let e be the identically one function in L 00 and define a sublinear 
mapping g:X ~ L'X' by g(x) = Ilxlle. Let f be the identity map on L OO • 
Then f :::; glM, and any extension of f to an operator P:X ~ L"Q for which 
P :::; g will be a norm-one projection of X onto L 00. The proof that such an 
extension exists is essentially a copy of a standard proof of the Hahn-Banach 
extension theorem (6A), except that L 00 plays the role of range space instead 
of R 

To proceed with this proof we consider the family of all linear extensions 
F of f to some subspace M with L 00 c M c X such that F :::; giM. This 
family can be partially ordered by saying that F 1 :::; F 2 if F 2 is an extension 
of F b and use of Zorn's lemma yields a maximal extension F of f such that 
F :::; glM, where M is the domain of F. It remains only to see that M = X. 

If not, there exists Xo E X\M and we can define F 0 on M 0 == span {xo, M} 
by F o(x + txo) = F(x) + t[3, for every t E R. Then F 0 is a proper extension 
of F and we complete the proof by showing that a choice of [3 exists for which 
Fo :::; glMo. For any x, y E M we have 

F(y) - F(x) = F(y - x) :::; g(y - x) :::; g(y + xo) + g( -Xo - x), 

whence 
-g( -Xo - x) - F(x) :::; g(y + xo) - F(y). 

Since the left side of this inequality is independent of y, and the right side 
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is independent of x, we can apply Lemma 1 to obtain the existence of f3 E L 00 

for which 

-g(-xo - x) - P(x) ~ f3 ~ g{x + xo) - P(x), xEM. 

With this definition of f3 the inequality Fo ~ glMo is easily seen to hold, 
and we can therefore conclude that F 0 ~ P, Po#- P, which contradicts the 
maximality of F. D 

It is evident from an inspection of the proof that the Banach space 
structure of X and L ""was not used at all, and so it would have been possible 
to formulate a purely algebraic version of this extension theorem for ordered 
linear spaces with the bounded completeness property. However, the prime 
examples of such spaces (among Banach spaces) are the L 00 spaces so that 
the extra generality has not seemed worthwhile. 

Throughout this section we shall use the notation X '" Y to indicate 
that the Banach spaces X and Yare isomorphic. Let L 00 = L OO( [0, 1 J, R). 
Then it is easy to verify that L 00 '" L 00 x L 00 and that m '" m x m (these 
product spaces may each be normed by II(x, y)11 = max(llxll oo , Ilylloo). We 
now have our basic result due to Pelczyiiski. 

Theorem. m '" L 00. 

Proof. From 23D we know that L 00, being dual to the separable space 
L 1, is congruent with a subspace of m. Since L 00 is injective by Lemma 2 
there is a complementary subspace X in m, and so we have m '" X x L 00 

(9D). On the other hand, we can directly embed minto L 00; for example, 
by choosing a pairwise disjoint sequence {En} of chunks in [O,lJ and 
defining T: m -+ LOOby 

00 

T(x) = I ~nXEn' x = (~b ~2> ••. ) Em. 
n=l 

(The sum is pointwise convergent but does not, of course, converge in the 
L co topology.) Hence there is a complementary subspace Y for T( 11'h) because 
m is injective (the existence of Y is easily seen directly in this case), and so 
L 00 '" m x Y. We now have 

L OO '" m x Y '" (m x m) x Y", m x (m x Y) 
~ m x £"IJ '" (X x L 00) X £,,10 '" X x (L 00 x L 00) 

'" X x L OO ~ m. D 
It will be noted that this is quite a non-constructive proof and, in fact, 

an explicit isomorphism between m and L 00 is not known. 
It is clear that we can similarly embed f,P isometrically in U (1 ~ p < 00). 

However, it was shown by Banach that LP cannot be even isomorphically 
embedded in f,P (unless p = 2). 

Some of the interest in this theorem derives from the fact that the respec
tive pre-dual spaces (,1 and L 1 are not isomorphic (although by 23D L1 is a 
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quotient space of .{l). Indeed, L 1 cannot be isomorphic to any conjugate 
space (23D, Ex. 2).. Thus we see that although isomorphic spaces must have 
isomorphic conjugates, the converse is not true. An even more surprising 
possibility along these lines is pointed out in 25E. 

B. Weare now in position to prove our general isomorphism theorem. 
Let (Q, J:, 11) be a measure space for which the spaces U(Q, 11, F) are separable 
for 1 :::;; p < 00 (exercise 2.24). Note that the measure 11 is necessarily a-finite. 
Also we consider the space Lip([O, 1], F) of all Lipschitz continuous F -valued 
functions on [0, 1] with the norm 11·1 /L defined by (10.5). 

Theorem. L oo(Q, 11, F) ,...., Lip([O, 1], F). 

Proof. As usual, we can restrict our attention to the case of real scalars: 
F = R. Let M be the subspace of Lip([O, 1], R) consisting of those functions 
which vanish at 0. The map that sends f E Minto f' E L 00([0, 1], R) is 
clearly an isomorphism (actually a congruence). By 24A there is an isomor
phism T:M -+ m. Now consider the map S:Lip([O, 1], R) -+ Rl EB m de
fined by S(f) = (f(0), T(f - f(O)e)), where e is the identically one function 
on [0, 1 J. Then S is clearly an isomorphism, and since m ,...., Rl EB m 
trivially, we have shown that Lip([O, 1], R) ,...., m. It remains to see that all 
L OO(Q, 11, R) spaces are isomorphic. This is a consequence of 24A along 
with some measure theory. 

Consider first the case where 11 is non-atomic (15E). If Il(Q) = 1 then 
there is an isometry between its associated metric space (exercise 2.24b) and 
that of Lebesgue measure on [0, 1]. This is a consequence of the isomorphism 
theorem from measure theory which states that any separable, non-atomic, 
normalized measure algebra is isomorphic to the measure algebra of the unit 
interval. Given this correspondence between measurable sets we obviously 
can obtain a correspondence between characteristic functions defined by 
subsets of 1: and those defined by the measurable subsets of [0, 1]. This 
correspondence extends by linearity to the simple functions where it becomes 
isometric, and thence to an isometry from L OO(Q, 11, R) onto L 00([0, 1], R). 
If Il(Q) is finite we still clearly can obtain an isometry from L oo(Q, 11, R) onto 
L 00([0, 1], R). Finally, if Il(Q) is infinite we can in this manner obtain a 
congruence between L oo(Q, 11, R) and L OO(R,R). However, L OO(R, R) is con
gruent to Loo([O 1],R); for example, via the map f 1--+ fog, where g(t) = 

tan n(t - t), ° < t < 1. 
Now the most general a-finite measure space (Q, J:, 11) will contain some 

atoms, but at most count ably many. Thus we can obtain a partition Q = 

A u B where A is the union of the atoms in 1: and B == Q\A is either a null 
set or else a subset of J: on which 11 defines by restriction a non-atomic 
measure. Clearly L oo(Q, 11, R) ~ L oo(A, IlA' R) EB L OO(B, IlB' R) where IlA 
(resp. IlB) is the restriction of 11 to the measurable subsets of A (resp. of B). 
The first oft~ese summands is isomorphic to either (Rn, 11'1100) ifn == card(A) is 
finite, or else to m; the second summand is isomorphic to L 00([0, 1], R) or else 
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pCB) = 0. Making use of 24A it is now clear that we have L CO(Q, p, R) ~ m 
in all cases. 0 

It is interesting to remark that some other function spaces on [0, 1 J are 
also known to be isomorphic to m (and hence to all of the preceding spaces). 
Namely, the spaces Ha == H",([O, 1 J, R) of all Holder-continuous functions 
on [0, 1 J of order IX are each isomorphic to m, if the norm on Ha is defined 
as max{llfll,m Ilflla}, where 

Ilflla == inf{A > O:lf(s) - f(t) I ~ Als - tla, ° ~ s, t ~ I} O~IX<l. 

Furthermore, in contrast with the preceding case (IX = 1), Ciesielski has 
shown that an isomorphism between H", and m can be effectively written 
down in terms of a standard family of step functions on [0, 1 J known as 
the Haar functions. 

C. There are two general reasons why isomorphism theorems are of 
interest. The first and more obvious reason is that we may thereby easily 
gain some new information about particular spaces. For example, based on 
our knowledge of L 00 spaces the preceding theorem allows us to conclude 
that Lip([O, 1J, F) is a non-separable P;.-space. A second and more basic 
reason for the importance of such theorems depends on their interpretation 
as providing equivalent norms that have more pleasant or useful geometric 
properties than a given norm. This technique is frequently employed in non
linear functional analysis wherein non-convex sets (for example, manifolds) 
and non-linear mappings between them are studied. In many cases only 
topological properties of the sets and mappings are of interest, and these of 
course are unchanged by a renorming. However, the new norm may facilitate 
certain constructions. We have seen some uses of this technique in 15C and 
a further example is mentioned in 25F. 

§25. Universal Spaces 

In this final section we discuss the concept of a universal Banach space 
and give some examples. The interest in such spaces is discussed in 25F. 

A. A Banach space Y is universal for a class C(} of Banach spaces if 
every X E C(} is congruent to a subspace of Y. The simplest example of a 
universal space is the sequence space m. 

Example 1. Let C(} consist of all separable Banach spaces and their 
conjugate spaces. Then m is universal for C(}. Indeed, let X be a separable 
Banach space. Then U(X*) is a compact metric space in the weak*-topology, 
and in particular there is a sequence {¢n} that is weak*-dense in U(X*). 
Define T:X --> In by T(x) = (¢n(x)), x E X. Then T is linear and 

IIT(x)lloo = sup l¢n(x)1 = Ilxll, 
II 

so that T is a congruence of X with some subspace of m. On the other 
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hand, the argument given at the end of 23D shows how to construct a 
congruence between X* and a subspace of m. 0 

Thus m is, in a sense, a "macrocosm" of all the Banach spaces of much 
real interest. It can further be shown that any separable metric space can 
be isometrically embedded in m. Clearly, if a Banach space Y contains a 
subspace congruent to m then Y is itself universal for the class of separable 
spaces and their conjugates. Examples of such spaces Yare the spaces 
L OO(Q, jl, F) of 24B. 

Let Q be a topological space. The density character dens(Q) of Q is the 
smallest cardinal number of a dense subset of Q. Thus, for instance, Q is 
separable if and only if dens(Q) ~ ~o. We note that the density character 
of a topological space is always well-defined, since any set of cardinal numbers 
when ordered according to size is well ordered. Some further examples and 
properties of dens(·) occur in the exercises. 

Example 2. Let X be a Banach space. Then there exists a compact 
Hausdorff space Q with dens(Q) ~ dens(X) such that X is congruent to a 
subspace of C(Q, F). To see this we let Q = U(X*) given the (relative) weak*
topology. The map x \-7 xlQ, x E X, is clearly a linear isometry of X into 
C(Q, F), since 

IIxll = sup{lcfJ(x)I:lIcfJlI ~ I} == sup{l<cfJ,x>I:lIcfJlI ~ I}. 

To estimate dens(Q) we let {xa:rx E I} be a dense set in aU(X) and for 
each rx choose cfJa E aU(x*) with cfJa(xa) = 1. Then, for each x E X, IIxll = 

sup{l<x, cfJ,,>I:rxEI}, so that by the extended Krein-Milman theorem (13B) 
we have co* ({ cfJa:rx E I}) = U(X*) == Q. In particular, rational convex com
binations of the cfJa are dense in Q, whence dens(Q) ~ ~o card(I) = card(I), 
and therefore dens(Q) ~ dens(aU(X» = dens(X). 0 

Thus any Banach space can be isometrically embedded in some space 
C(Q, F) where Q is "not too large". In particular, every separable space can 
be embedded in some space C(Q, F) where Q is compact metric, that is, in 
a separable space of type C(Q, F). It is now natural to inquire whether there 
is a fixed compact metrizable space Q such that C(Q, F) is universal for the 
class of all separable Banach spaces (over the field F). In exercise 4.30 it is 
to be shown that a necessary condition for Q to serve this purpose is that 
Q be uncountably infinite. We are now going to prove that this condition 
on the cardinality of Q is also sufficient. 

B. We begin with the most famous case of this result due to Banach: 
the space C == C([O, IJ, F) is universal for all separable Banach spaces. The 
most expedient proof of this result depends on the result from topology 
which states that any compact metric space is the continuous image of the 
Cantor set. 

Theorem., Any separable Banach space X is congruent with a subspace 
of C. 
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Proof. Let h be a continuous mapping from the Cantor set K onto 
U(X*). Now the complementary set [0, 1J\K is a union of open intervals 
In == (sm tn) ("middle thirds"). The map h can be extended over each interval 
In via the definition h(ASn + (1 - A.)tn) ::: A.h(sn) + (1 - A.)h(tn), ° < A < 1. 
The extended map, which we continue to call h, is clearly a continuous map 
of [0, 1 J onto U(X*). Define T: C(U(X*), ]F) ~ C by 

T(g)(t) = g(h(t», ° ::::; t ::::; 1. 

Clearly T is linear and isometric. Composing T with a congruence from X 
into C(U(X*), ]F) yields the desired congruence between X and a subspace 
ofC. 0 

C. A closed subset A of a topological space Q is perfect if it has no 
isolated points, that is, if every point of A is an accumulation point of A. 
If Q contains no perfect subsets it is said to be dispersed (scattered). Thus in 
a dispersed space the isolated points are dense. Also, any dispersed space 
must be totally disconnected in the sense that it contains no non-trivial 
connected components. 

We shall be interested in dispersed compact metric spaces. The simplest 
example of such a space is the one-point compactification of a countable 
discrete metric space. We can also consider ordinal sections. Let IX be an 
ordinal number and set ra = {~:~ ::::; IX}. With the usual order topology ra 
is compact, and is metrizable exactly when it is countable, that is, when IX 

is less than the first uncountable ordinal Wl' The spaces ra are dispersed, 
and it is known that conversely any dispersed compact metric space is 
homeomorphic to some space ra, where IX < W 1• 

Lemma 1. A real Banach space X is congruent with a subspace of C == 
C(Q, R), where Q is a dispersed compact Hausdorff space, (if and) only if 
ext(U(X*» * is dispersed. 

Proof. Suppose that T is a congruence of X with a subspace of C. Let 
¢ E ext(U(X*». Then ¢ 0 T- 1 E ext(U(T(X)*» and so extends to a func
tional tf; E ext(U(C*» (exercise 4.32). It follows that T*(tf;) = ¢ and we may 
conclude that ext(U(X*» c T*(ext(U(C*»). Since T* is weak*-continuous 
(16C) and ext(U(C*» is weak*-compact (13E, Ex. 4, and exercise 2.35), we 
have 

(25.1) ext(U(X*»* c T*(ext(U(C*»). 

Now T* is continuous and surjective (16C) and hence is an open mapping 
(17G). It is easy to check that the continuous open image of a dispersed 
space is again dispersed. Therefore, if Q is dispersed it follows that ext(U( C*» 
is dispersed, and from this that T*(ext(U(C*» is dispersed. Hence from 
(25.1) we conclude that ext( U(X*) ) * is also dispersed. 

The converse is a consequence of the fact that a Banach space X can 
always be isometrically embedded into C(Q,]F) where Q = ext(U(X*» * 
(13B). 0 
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From this lemma we can already see that not all infinite compact metric 
spaces Q have that property that C(Q, R) is universal for real separable 
Banach spaces. For example, the Euclidean spaces X = (Rn, 11'112) certainly 
have ext(U(X*)) not dispersed, and therefore cannot be congruent with a 
subspace of C(Q, R), for Q dispersed. In a moment we shall see conversely 
that if C(Q, R) does contain a copy of any Euclidean space (of dimension 
> 1) then it must be universal, and Q must not be dispersed. 

Lemma 2. Let Q be a compact metric space which is not dispersed. Then 
there exists a continuous mapping from Q onto [0, 1]. 

Proof. Let P be a perfect subset of Q. We distinguish two cases. 
a) P is totally disconnected. In this case P is known to be homeomorphic 

to the Cantor set. Since any compact metric space (in particular, [0, 1J) is 
the continuous image of the Cantor set, there exists a continuous map of P 
on [0, 1]. This map can now be extended to all of Q by the Tietze extension 
theorem (15C, Ex. 2). 

b) If P is not totally disconnected then it contains a non-trivial compact 
connected subset Q which is necessarily infinite. By virtue of being second 
countable and completely regular Q can be homeomorphically embedded 
in the "cube" [0, 1J~o. Now considering Q as a subset of this cube project 
it onto the various factors. Not all of these projections can consist of a 
single point or else Q would be a singleton. Therefore, some projection is a 
non-trivial compact connected subset of [0, 1J, and hence is an interval 
homeomorphic to [0, 1]. In this way we obtain a continuous map from Q 
onto [0, I], and this map can be extended to all of Q as usual. 0 

We now have the following theorem due to Lacey and Morris. 

Theorem. Let Q be a compact metric space. The following assertions are 
equivalent. 

a) C(Q, R) is universal for the class of separable real Banach spaces. 
b) Some Euclidean space (R", II' liz) for n > 2 is congruent with a subspace 

of C(Q,R). 
c) C(Q, R) contains a smooth subspace of dimension> 2. 
d) C(Q, R) contains a subspace of dimension >2 with a strictly normed 

conjugate space. 
e) Q is /lot dispersed. 

Proof. It is clear that a) implies b) implies c). If X is a smooth subspace 
of C(Q, R) let M be a subspace of X with 1 < dim(M) < 00. Then M* is 
strictly normed by 20G and so d) holds. Next let X be a subspace satisfying 
the condition of d). Suppose that Q is dispersed. Then by Lemma 1 so is 
ext(U(X*)) *. But this set is just aU(x*) * (13E, Ex. 5). Now either aU(x*) * 
equals aU(x*) (if X is finite dimensional) or else it equals U(X*) (exercise 
2.23C). Certainly U(X*) is not dispersed and since dim(X) > 1 neither is 
aU(x*). Therefore, Q cannot be dispersed. 

Finally, ife) holds let h:Q ~ [0, 1J be the continuous surjection guar
anteed by Lemma 2. Then the map 9 ~ g 0 11 defines a linear isometric 
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embedding of q[O, 1 J, R) into qQ, R).1t now follows from 25B that qQ, R) 
is universal. 0 

D. The final step in our program can now be taken. This involves 
proving that an uncountable compact metric space is not dispersed. This 
fact is in turn an immediate consequence ofthe following classical topological 
result, known as the "Cantor-Bendixson lemma". Let us recall that a point p 
in a topological space Q is a condensation point if every p-neighborhood 
contains uncountable many points of Q. 

Lemma. Any separable metric space Q can be partitioned into the union 
of a perfect set and a countable dispersed set. 

Proof. Let Ql be the union of all perfect subsets of Q and set Q 2 = 
Q\Ql. Then Q 1 is closed, hence perfect, while Q2 is by definition dispersed. 
Let Qe be the set of all condensation points of Q. Then Qe is a perfect set 
and so Qe C Ql. The proof can now be completed by showing that Q\Qe is 
countable, since we have Q 2 == Q\Q l c Q\Qe• 

Since Q is separable it is 2nd countable and there is a countable basis 
{Vl> V2 , ••• } for the topology. For each p E Q\Qe there is a p-neighborhood 
W such that W is countable, and there is an integer n(p) such that y"(P) C W, 
whence y"(p) is countable. Now the set A = u{Y,,(p):P E Q\Qe} is countable 
and contains Q\Qe ; this proves that Q\Qe and hence Q 2 is countable. 0 

The main result on universal spaces is now at hand. Notice that in 
contrast with 25C there is no restriction on the underlying scalar field. 

Corollary. Let Q be a compact metric space. Then qQ, F) is universal 
for the class of separable Banach spaces (over the field IF) if and only if Q 

is uncountable. 

Proof. The necessity is a consequence of exercise 4.30. For the converse 
it is sufficient to find a continuous map h from Q onto [0, 1 J, as this will 
show that q[O, 1J, IF) is congruent with a subspace of qQ, IF) and 25B can 
be applied. By Lemma 2 the map h can be constructed provided that Q is 
not dispersed. But this is a consequence of the Cantor-Bendixson lemma 
and the assumption that Q is uncountable. 0 

E. Let Q be a compact metric space. It is seen from the Lacey-Morris 
theorem that the decisive geometric criterion for determining the universality 
of the space qQ, R) is whether or not it contains a non-trivial smooth 
subspace, or, equivalently, whether or not it contains a non-trivial subspace 
with a strictly normed conjugate. It is interesting to consider what kinds of 
continuous functions on Q can compose such a subspace. In general such 
functions exhibit a somewhat pathological behavior. For example, let Q = 
[0, 1 J, and suppose that X is a subspace of q[O, 1 J, R) with a strictly normed 
conjugate and satisfying 3 :(: dim(X) < 00. Let {Xl> ... , xn} be a linearly 
independent set ip X with n < dim(X). Then, as has been observed by 
Donoghue and Smith, the curve t 1--+ (Xl (t), ... , xn(t)) is a space-filling curve 
in Rn, that is, it covers some open set in Rn. 
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F. Let us make a few further and final remarks about the material in 
this section. The theory of universal spaces is of interest for several reasons. 
First, it is a conceptual aid in thinking about Banach spaces in general to be 
able to encapsulate the most important classes into a single space, such as 
m or C([O, 1J, F). Second, and more importantly, it is frequently possible 
to establish some property for a class of Banach spaces by establishing it 
first for a particular universal space and then verifying that the property is 
hereditary, in the sense that it is possessed by all subspaces of the universal 
space. It then follows that all Banach spaces in the class under consideration 
have the property. 

An outstanding example of this method is the problem of renorming 
certain Banach spaces so that the new norm has some desirable property 
not enjoyed by the original norm. For example, to prove that all separable 
Banach spaces have an equivalent strict norm (ISC) it suffices simply to 
note that the norm 11·1 Lx> + 11·112 is an equivalent strict norm on C([O, 1], F). 
Of greater import is the fact that it is possible to prove that C([O, 1], R) 
admits an equivalent locally uniform norm, that is, a norm p with the property 

that whenever p(x), p(xn) ~ 1 and li~ p (X ~ Xn) = 1 then li~ Xn = x. 

This notion is evidently mid-way between the notions of strict norm and 
uniform norm that we have encountered earlier. Once this has been done it 
follows that all separable real Banach spaces admit equivalent locally 
uniform norms. The existence of such equivalent norms was one ingredient 
in the proof of the famous theorem of Kadec to the effect that all separable 
infinite dimensional Banach spaces are homeomorphic. 

A second remark concerns the spaces C~ == C(r~, R), where r~ is the 
ordinal section introduced in 2SC. Assuming that rx < WI the spaces r~ are 
countable, and hence C: is congruent to t 1(~O). On the other hand, the 
spaces C~ for infinite ordinals rx < WI are not all isomorphic. In fact, Bessaga 
and Pelczynski have shown that for rx ~ f3 < Wi> C~ ~ Cf3 if and only if 
f3 < r:t.w , where W is the first infinite ordinal. In particular, the spaces COl 

and Cww are not isomorphic yet their conjugate spaces are congruent (!) 
This surprising example answered a long standing question posed originally 
by Banach, and may be contrasted with the earlier example of the non
isomorphic spaces t l(~O) and L 1([0, 1 J, R) whose conjugate spaces are 
isomorphic (but not congruent). 

A third remark pertains to some further work of Pelczynski, who has 
shown that while there are other kinds of separable universal Banach spaces 
besides those of 2SD, the space C(K, C) is, in a sense, the smallest possible 
such space. (Here K is the Cantor set.) More precisely, let Q be an uncountable 
compact metric space, and let A be a function algebra on Q; that is, let A be 
a closed subalgebra of C(Q, C) which contains the constant functions and 
separates the points of Q. An example of such an algebra is the space A(Q) 
where Q is a closed disc in the complex plane (IOD, Ex. 5). Then any function 
algebra is universal for the class of separable Banach spaces. However, it 
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has also been shown that any separable universal Banach space contains a 
constrained subspace which is congruent to C(K, C). 

Finally, we remark that while no. (separable) reflexive space can be 
universal for all separable Banach spaces (as a consequence of exercise 4.33), 
it is possible for such a space to be universal for the class of all finite 
dimensional spaces (but not for the class of all separable reflexive spaces). 
Indeed, there is an example due to Szankowski of a separable reflexive 
space X such that every finite dimensional Banach space is congruent with a 
constrained subspace of X. 

Exercises 

4.1. Prove formula (22.3). (To prove the inclusion from left to right consider 
first the case where ¢ E U(X*) has norm one.) 

4.2. Let X be an order unit normed linear space with order unit e. If ¢ E X* 
satisfies II¢II = ¢(e) then ¢ is a positive linear functional. 

4.3. Show that the correspondence 11 I--> t:P I' of 22B is bipositive in the sense 
that 11 is a positive Borel measure if (and only if) Ja x dl1 ~ ° for all 
non-negative x E C(Q, R). 

4.4. Let Q be a compact Hausdorff space. Suppose that {xn} is a bounded 
sequence in C(Q, F) that is pointwise convergent to e: limn xn(t) = 0, 
t E Q. Show that Xn converges weakly to e. Show by example that this 
conclusion may fail if {xn} is replaced by a bounded pointwise con
vergent net in C(Q, F). 

4.5. Let Q be an extremally disconnected topological space. 
a) Any two disjoint open subsets of Q have disjoint closures. 
b) If Q is metrizable (more generally, first countable) then Q is discrete. 
c) No sequence in Q can converge unless it is eventually constant. 

4.6. a) Use the Riesz-Kakutani theorem to give a new proof of the fact 
that a Banach space X is reflexive if U(X) is weakly compact (16F). 
(Given t:P E U(X**), define a Borel measure 11 on U(X) by t:P(¢) = 

SU(X) ¢IU(X)dl1, ¢EX*. Then 1111(U(X)) = 111111v:!( 1. By 13B,E, 
11 is the weak* -limit of a net of atomic measures of the form 
Li C\a)Dxl'), where {x\a)} is, for each rt., a finite subset of U(X), and 
c\a) ~ 0, Li c\a) = 1. Now consider any weak cluster point in U(X) 
of the net {Ic\a)x\a)}.) 

b) Use the fact that reflexivity of a Banach space is equivalent to the 
weak compactness of its unit ball to give a new proof ofthe reflexivity 
of all closed subs paces and quotient spaces of a reflexive space. 
(For the quotient space argument use 15B and 161.) 

4.7. Let v be a positive regular Borel measure on a compact Hausdorff 
space Q. Prove the two assertions made about the support of v in 22E. 

4.8. For any real Banach space X the set £!P(X) was defined in 20E. For 
any compact Hausdorff space Q show that £!P( C(Q, R) ) can be identified 
with the set Clfmeasures 11 E Ar(Q, B, R) such that a(I1+) n a(I1-) = 0· 
(11+ and 11- were defined in 22B.) 
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4.9. Prove that the space of all polynomial functions on [0, 1J normed by 
the uniform norm is not subreflexive. 

4.10. Let x be a normalized peak function in m == m(Q, R), so that Ix(t)1 = 
Ilxlloo = 1 for a single t E Q. Show that x E sm(U(I1'i»). (This can be 
done in two ways: either directly by use of the representation of m* 
(16H), or by use of the congruence m ~ C(P(Q), R), and the result of 
20F, Ex. d.) 

4.11. Generalize the example of 22F to compact spaces other than [0, 1]. 
What must be assumed about such spaces for that proof to still apply? 

4.12. Use the Dixmier-Ng theorem to show that the spaces m(Q, F) and 
C l(Q, F) are conjugate spaces. 

4.13. Show that any reflexive space has a unique pre-dual. 
4.14. Determine a pre-dual of the Lipschitz space Lip(Q, d, F). (Consider 

the linear span of the evaluation functionals {b t : t E Q} in Lip(Q, d, F). 
This space can in turn be identified with the free vector space generated 
by Q.) 

4.15. Let X be a Banach space and Va subspace of X*. 
a) Suppose that Jv == J x, v has a bounded inverse. Prove 

where 0' == O'(X, V). 
b) Suppose that X** = Jx(X) EB VO and let P:X** ~ Jx(X) be the 

associated projection. Prove that IIJ viii = IIPII· 
4.16. Let X be a Banach space. 

a) Show that X is reflexive if and ont'y if X* contains no proper total 
closed linear subspace. 

b) Assume that X is separable. Show that X is reflexive if and only if 
every total sequence in X* is fundamental (9F). 

4.17. Let X be a separable Banach space. 
a) Show that X* contains a separable duxial subspace. 
b) Let X be the Lebesgue space Ll([O, 1J, ]F). Show that the space 

C([O, 1J, F) as a subspace of VIJ([O, 1J, ]F) is a (separable) duxial 
subspace of X*. 

4.18. Let M be a (closed) complemented linear space of a Banach space X, 
and suppose that M is a conjugate space. Then there exists a minimal 
projection on M, that is, a projection: X ~ M whose norm is ~ that 
of any other projection of X on M. (Use the method of the example 
in 23B.) 

4.19. Show that the sequence space Co is not complemented in the space m, 

thereby proving anew that Co is not isomorphic to any conjugate space. 
(A simple proof can be constructed along the following lines. Suppose 
that Z is a complementary subspace for Co in m: Co EB Z = m. Then 
Z is isomorphic to tn/co (exercise 2.2). Now there exists a countable 
total set 'in m*, hence there is such a set in Z*, and therefore also in 
(m/co)*. This last assertion leads to a contradiction. To obtain it, we 
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make use of a fact about any countable set N: there exists an un
countable family {U oj of infinite subsets of N such that U IX n Up is 
finite whenever rt. =1= /3. Applying this fact to the case where N = 
{I, 2, ... } we let fa be the coset in 1n/co that contains the characteristic 
function of the set UIX • Show that for any <P E (rn/co)* the set {fa: 
<p(fa) =1= o} is countable. From this it follows that if {<pd is any sequence 
in (m/co)* then {fa: <Pk(fa) =1= ° for some k} is countable, whence {<pd 
cannot be a total subset of (m/co)*.) 

4.20. Let P:Loo* -+ Li be the projection constructed in 23D, Ex. 2. Show 
that °ker(P) = {8} c VI.). (One way to proceed is to select any 1 E L OO 

(f =1= 8) and show that there is some <P E ker(P) such that <1, <P> =1= 0. 
Consider separately the cases where 1 is or is not continuous on [0, 1].) 

4.21. Fill in the details of the proof of the lemma in 23E. (The problem is to 
show that the net {<Po:b E D} is a relatively compact subset of X*. 
For every 8 > ° show that there exists bE E D such that the tail {<Po: 
b ~ be} has a finite 8-net. This result can then be used to show that any 
subnet of {<Po: bED} has a Cauchy subnet.) 

4.22. Consider the subspace of 04'/([0,1], B, R) consisting of those measures 
that are absolutely continuous with respect to Lebesgue measure. Is 
this subspace weak*-closed in q[O, 1], R)*? 

4.23. Give a direct proof that any space m(Q, R) is aPi-space. 
4.24. In §24 it is shown that m ~ L 00([0, 1], F). Are these spaces in fact 

congruent? 
4.25. Show that the spaces (Rn, II· lip) are P A-spaces with A ~ ni /p (1 ~ p < 00). 
4.26. Show that any separable metric space can be isometrically embedded 

in m, and consequently can be so embedded in C == q[O, 1], R). 
(Thus C is universal for all separable metric spaces.) 

4.27. Show that the density character of a metric space is equal to the largest 
cardinal of a discrete (or isolated) subset. 

4.28. Let X be a normed linear space. Prove that dens(X) ~ dens(X*), and 
give examples where equality (resp. strict inequality) holds. 

4.29. Compute the density character of a space m(Q, R). (Answer: 2cardQ.) 
4.30. Let Q be a countable compact metric space. Show that qQ, F) cannot 

be universal for the class of separable Banach spaces. 
4.31. a) Prove that a dispersed topological space is totally disconnected. 

b) Prove that the oridinal sections Til (rt. < 0h) are dispersed compact 
metric spaces in the order topology. 

4.32. Let M be a subspace of a normed linear space X. Suppose that <P E 

ext(U(M*)). Show that there exists an extremal extension of <p, that is, 
a functional (f) E ext(U(X*)) such that (f)IM = <p. (Consider the set 
of all norm-preserving extensions of <P in X*). 

4.33. Let X be a separable Banach space, universal for the class of all 
separable Banach spaces. Show that X cannot be isomorphic to a 
conjugate space. 

4.34. Show that the sequence space c (space of all convergent scalar 
sequences), and hence its subspace co, has no infinite dimensional 
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reflexive subspace. (Let M be an infinite dimensional subspace of o. 
Apply 25C and 17J. Compare with the example in 18C.) 

4.35. Prove that any separable Banach space X can be smoothly renormed, 
that is, admits an equivalent smooth norm. (Construct an equivalent 
strict norm on X* via 15C, Lemma 2, which is weak*-lower semi
continuous; then apply 18F and 20G.) 

4.36. Determine a congruent representation of the conjugate of the space 
Co(Q, F) of exercise 2.30 as a space of Borel measures on Q. 

4.37. Let NBV == NBV([a, bJ, R) be considered as the conjugate space of 
C([a, b], R) as in 22D. Show that a bounded sequence {gn} C NBV 
converges weak* to g E NBV if and only if limn gn(t) = g(t) at each 
point t of continuity of g. 
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The purpose of the following remarks is to suggest collateral reading to 
supplement the material in this book. The references given below have been 
chosen, for the most part, not to be redundant with the present material, 
but rather to indicate further developments of topics studied above or else, 
in a few cases, to serve as introductions to material that has not been dis
cussed above, but which is felt to constitute an important aspect of functional 
analysis and its applications. 

For general introductory treatments of functional analysis the texts by 
Taylor (1959), Goffman-Pedrick (1965), Brown-Page (1970), Larsen (1973), 
and Rudin (1973) are recommended. More compendious treatments are the 
Edwards volume (1965) and the massive Dunford-Schwartz trilogy (1958-
71). An overview of Banach space theory (in a somewhat compressed format) 
is given by Day (1973), and the classical Banach spaces are studied in the 
recent monographs of Lindenstrauss-Tzafriri (1973) and Lacey (1974). The 
theory of general linear topological spaces is well covered by Kelley, 
Namioka, et aI. (1963) and Schaefer (1971), and the specialized theory of 
Hilbert spaces is treated by Halmos (1951, 1967) and Maurin (1967). 
Operators on general Banach spaces are discussed by Goldberg (1966) and 
Kato (1966), as well as by Dunford-Schwartz, and on Hilbert spaces by 
Riesz-Nagy (1955), Gohberg-Krein (1969), Beals (1971), as well as by 
Halmos and Dunford-Schwartz, Part II. 

Functional analysis provides (as we hope has already been demonstrated) 
a powerful and unified approach to problems of optimization. Detailed 
developments of this theme are given by Luenberger (1969), Balakrishnan 
(1971), Pshenichnii (1971), Girsanov (1972), Holmes (1972a), and Laurent 
(1972). Applications to engineering are given by Porter (1966) and Naylor-Sell 
(1971), to optimal control by Hermes-LaSalle (1969), and to mathematical 
economics by Telser-Graves (1972). Functional analytic treatments of partial 
differential equations have been given by Treves (1967) and Carroll (1969), as 
well as by Dunford-Schwartz, Part II. Applications to approximation theory 
are covered by Singer (1974), as well as by Holmes and Laurent. 

We now indicate some specific references to accompany particular 
sections or sub-sections. 

§l. Jacobson (1953). 
§2. Valentine (1964), Stoer-Witzgall (1970). 
§3. Rockafellar (1970), Stoer-Witzgall, Holmes. 
§4. Klee (1969). 
§5. Jameson (1970). 
§7. 7B-C: Fan (1956). 
§8. 8B-E: Rockafellar; 8F: Phelps (1963). 
§9. Kelly, Namioka, et aI., Schaefer; 9C: Deutsch (1966). 
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§10. Kelly, Namioka, et aI., Schaefer. 
§11. Kelly, Namioka, et aI. 
§12. Kelly, Namioka, et aI. 

References 

§13. 13C: Klee (1957); 13D: Buck (1965); 13E, Ex. 2: Hoffman (1962); 
Ex. 3: Roy (1968); Ex. 6: Bohnenblust-Karlin (1955). 

§14. 14B-E: Moreau (1967), Pshenichnii; 14F-H: Tuy (1972). 
§15. 15A: Fan (1956,1968); 15C, Ex. 1: Bonsall (1962); Ex. 2: Michael-

Pelczynski (1967); 15E: Kingman-Robertson (1968), Hermes-LaSalle. 
§16. 161: Civin-Yood (1957). 
§17. 17H: Gale-Klee (1959); 17J: Lindenstrauss-Phelps (1968). 
§18. 18A-E: Day. 
§19. 19A-C: James (1964); 19F: Bartle-Dunford-Schwartz (1955). 
§20. 20A-B: Phelps (1974); 20C: Peck (1971); 20D: Brondsted-

Rockafellar (1965); 20H: Phelps (1960), Holmes (1971). 
§21. 21A: Sard (1963); 2IB: Laurent, Holmes (1972b); 21C: Michael 

(1956), Parthasarathy (1972); 21D: Browder (1968); 21E: Bazaraa et aI. 
(1972), Karamardian (1972). 

§22. 22F: Lindenstrauss-Tzafriri (1971). 
§23. 23C: Namioka (1967). 
§24. 24B: Ciesielski (1960), Lacey-Bernau (1974). 
§25. 25C: Pelczynski-Semadeni (1959); 25D: Lacey-Morris (1968); 

25F: Kadec (1967), Semadeni (1963), Pelczynski (1967), Szankowski (1972). 
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Symbol Index 

R,C number fields 1 
8 zero vector 1 
span(· ) linear hull 1 
EE> direct sum 2 
XjM quotient space 2 
X',X" algebraic conjugate spaces 3 
J x canonical embedding 3 
[fI'; IX] hyperplane 4 
ker( .) kernel 4 
MO, oN annihilators 5 
- isomorphic or congruent 5, 123 
QM quotient mapping 5 
[x, y] line segment 6 
co(· ) convex hull 6 
aco(- ) absolute convex hull 7 
cor(·) core 7 
aff(· ) affine hull 7 
icr(· ) intrinsic core 8 
Iin( . ), lina( . ) linearly accessible points 9 
epi(· ) epigraph 10 
0 infimal convolution 12 
p+ dual wedge 18 
CP(d) integrable functions 21 
Bf(xo) sub differential 23, 85 
g'(xo; x) directional derivative 28 
Vg(xo) gradient 29 
'A tangent function 30 
ext(· ) extreme points 32 
LA lineality space 33 
CB recession cone 34 
rext(- ) extreme rays 36 
Vp p-unit ball 54 
Cb(Q, F) continuous functions 56 
U(Q, L,F) integrable functions 57 
.Jt(Q, L, F) measures 57 
Lip(Q, d, F) Lipschitz functions 57 
A(Q) analytic functions 57 
11·1100 uniform norm 57 
11·llp LP norm 57 
co(· ) closed convex hull 60 
B(X, Y) continuous linear maps 62, 119 
X* topological conjugate space 63 
(T(X, Y) weak topology 65 
AO, 0 AO polars 67 
VeX) unit ball 69 
m bounded functions 72, 129 
co*(· ) weak*-c1osed convex hull 81 
8, evaluation functional 81 
rel-int(· ) relative interior 83 
F(p, A) feasible directions 87 
p* continuous dual wedge 87 
f3(Q) Stone-Cech compactification 113 
T* conjugate mapping 121 
x canonical image of x 123 
X completion 123 



242 Symbol Index 

t 1-1 operator 63, 123 
Jx,v canonical embedding 126 
Co functions vanishing at infinity 129 
(X x Y)P LP product 129 
O"A support function 143, 158 
Xw weakly topologized space 145 
bw* bounded weak* topology 150 
Aa absolute polar 150 
C(4), y) cone 164 
sm(') smooth points 169 
H"; Sobolev space 179 
A,(Q, B, F) regular Borel measures 204 
NBV normalized bounded variation 207 

isomorphic 223 
dens(' ) density character 226 
Wi first uncountable ordinal 227 

int(· ) topological interior 
8(-) topological boundary 
A topological closure of A 
XE characteristic function of E 

wrt with respect to 
- equals by definition 
I restriction 

\ Complementation 



absolute convergence, 191 
absolutely convex, 6 
absorbing, 13 
algebraic 

boundary, 7 
conjugate space, 3, 40 

archimedean, 202 
atom, 106 

Baire 
measure, 204 
space, 132, 193 

balanced, 6 
ball, 70 
Banach space, 61 
bang-bang principle, 109 
barrel,54 
barycentric coordinates, 8 
base, 55 

local,47 
basis, 1 
best approximation, 98 
bipolar, 67 
bipositive, 205 
Borel measure, 50, 204 
Borel-Stieltjes measure, 207 
bounded, 52, 109 

linear map, 62 
totally, 53 
weak*-topology, 150 

canonical embedding, 3, 122 
canonically isomorphic, 5 
Cantor-Bendixson lemma, 229 
carrier, 181 

lower semicontinuous, 182 
upper semicontinuous, 186 

category, 132 
Cauchy net, 61 
chunk, 128 
Clarkson-Rieffellemma, 100 
closed mapping, 139 
codimension, 2 
compact 

countably, 145 
sequentially, 72 
weakly, 66,145-149, 157, 196 
weak*,66 

compatible, 46 
complementarity problem, 188 
complete, 61 

boundedly, 221 
quasi-, 61 
semi-,61 

Subject Index 

completion, 123 
condensation 

of singularities, 136 
point, 229 

condition 
Dubovitskii-Milyutin, 116 
Fan, 25,97 
Helly,24 
Hurwicz saddle-point, 92 
iterated limit, 157 
Mazur-Orlicz, 27, 43 
Pshenichnii, 87 
Slater regularity, 89 
Tuy inconsistency, 90 

cone, 17 
recession, 34 

congruence, 121 
conjugate 

function, 116 
mapping, 121 
space, 64 

consistent, 90 
constrained, 213 
continuous dual, 64 
contractible, 48 
convex 

combination, 6 
core topology, 110 
function, 10 
hull,6 
mapping, 90 
set, 6 

core, 7 
cross-section, 184 

demicontinuous, 173 
density character, 226, 233 
dimension, 2, 9 
direct sum, 2 
directional derivative, 28 
dispersed, 227 
duxial,213 

epigraph, 10 
extension, 3, 102 

unique, 174-176 
extremal set, 32 
extreme point, 32, 73-82,106-107, 

144,216-218 
extremally disconnected, 205, 231 

Farkas-Minkowski lemma, 92 
feasible direction, 87 
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fiat, 2 
Fourier series, 136-138 
function 

concave, 37 
convex, 10 
distribution, 207 
objective, 36 
support, 143, 158, 196 

function algebra, 230 
functional 

evaluation, 67, 81 
linear, 3 
positive, 17 
strictly positive, 18 
support, 166 

fundamental, 53 

gauge, 13,41,110 
Goldstein-Weston density lemma, 126 
gradient, 29 
graph, 139 

half-space, 15 
Helly selection principle, 207 
homogeneous, 48 
hull 

affine, 7 
balanced, 6 
closed affine, 83 
closed convex, 60 
convex, 6 
linear, I 

hyperplane, 4 

ideally convex, 138,201 
independent 

affinely, 8 
linearly, I 

infimal convolution, 12 
injective, 222 
intrinsic core, 8 
interior 

algebraic, 7 
relative, 83 

isometry, 81 
isomorphic, 2, 51 
isomorphism into, 120 

join, 6 

Kadec and Klee lemma, 220 
kernel, 4 

Lagrangian function, 93 
Lifshits' lemma, 139 
lineality, 33 

space, 33 
line-free, 33, 76' 

linear 
combination, I 
functional, 3 
map, 2 

topology, 46 
topological space, 46 

line segment, 6 
locally convex space, 53 

M-space, 204 
minimal 

projection 232 
subspace, 213 

moment problem, 44, 215 
monotone, 11, 18 

n-simplex, 8 
Namioka's lemma, 216 
non-atomic, 106, 118 
non-support points, III 
norm, 14 

dual, 155 
duality map, 155 
equivalent, 100, 117, 196 
locally uniform, 230 
order unit, 202 
uniform, 57,197 

normable, 56 
normed linear space, 56 

operator, 123 
order unit, 202 
ordered linear space, 17 
ordinal section, 227 

p-ball, 13 
p-norm, 13, 57 
paracompact, 48, 182,200 
partition of unity, 181,200 
peak function, 170, 232 
perfect, 227 
Phelps-Brondsted-Rockafellar 

lemma, 165 
point 

bounding, 7 
conical support, 164 
extreme, 32 
extreme support, 113 
fixed, 101, 186 
regularly exposed, 198 
smooth, 31, 169 
support, 21, 165-167 

polar, 41, 67, 113 
absolute, 151, 195 

polyhedron, 179 
positively 

generated, 17 
homogeneous, 13 

pre-dual, 212 

Subject Index 



Subject Index 

product, 2 
program, 36 

dual, 93 
well-posed, 94 

projection, 3, 109 
metric, 100, 197 

property(U), 174 
proximina1, 98, 116 
purely atomic, 106 

quasi-
convex, 41 
linearization, 11, 192 
reflexive, 131, 192 

quotient 
map, 5 
space, 2 
topology, 51 

R-spline, 178, 200 
rank, 62 
reflexive, 125-127, 161, 192, 196 
regularizing set, 90 
reproducing, 17 
residual set, 132 
right-inverse, 184, 200 
rotund, 81 

uniformly, 162 

saddle-point, 93 
weak, 94 

Schur's lemma, 149 
selection, 183 
semi-

extremal, 32, 44 
norm, 14 

separated, 15 
strictly, 16 
strongly, 16 

sequentially dense, 145 
slice, 161 
smooth, 31, 169 
smoothly normed, 169,234 
Sobolev space, 179, 199 
solid, 59 
Stone-Cech compactification, 113, 205 
strictly normed, 81, 99 -1 00 
strong topology, 187,200 
strongly 

convex, 189, 201 
monotone, 189,201 

subdifferential, 23 
subgradient, 22, 84 

e-approximate, 168 
sublinear, 13 
subreflexive, 168 
subspace 

affine, 2 
Chebyshev, 175 

complementary, 2 
linear, 1 
uncomp1emented,210 
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