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Preface

For many people there is life after 40; for some mathematicians there is
algebra after Galois theory. The objective of this book is to prove the latter
thesis. It is written primarily for students who have assimilated substantial
portions of a standard first year graduate algebra textbook, and who have
enjoyed the experience. The material that is presented here should not be
fatal if it is swallowed by persons who are not members of that group.

The objects of our attention in this book are associative algebras, mostly
the ones that are finite dimensional over a field. This subject is ideal for a
textbook that will lead graduate students into a specialized field of research.
The major theorems on associative algebras include some of the most
splendid results of the great heros of algebra: Wedderburn, Artin, Noether,
Hasse, Brauer, Albert, Jacobson, and many others. The process of refine-
ment and clarification has brought the proof of the gems in this subject to a
level that can be appreciated by students with only modest background.
The subject is almost unique in the wide range of contacts that it makes
with other parts of mathematics. The study of associative algebras con-
tributes to and draws from such topics as group theory, commutative ring
theory, field theory, algebraic number theory, algebraic geometry, homo-
logical algebra, and category theory. It even has some ties with parts of
applied mathematics.

There is no intention to make this book an encyclopedia of associative
algebra. Such a book would be a useful research tool, but it would not fit
the needs of a novice mathematician. On the other hand, it is more than a
rehash of existing expositions of the theory of associative algebras. The
classical results of the subject are explored more deeply than in most student-
oriented expositions of associative algebras, and the recent developments
in the theory of algebras are liberally sampled. The serious student will
find a substantial variety of challenges and rewards in the book.



vi Preface

Roughly speaking, the book is divided into two parts. Part one occupies
chapters one through eleven. It could be called “the classical theory of
associative algebras.” This first part contains the basic structure and rep-
resentation theorems for associative algebras: Wedderburn’s Structure
Theorem for Semisimple Algebras, Wedderburn’s Principal Theorem, the
structure of projective modules of Artinian algebras, and the recent work on
representation types. Part two of the book concentrates on central simple
algebras. It is organized around the concept of the Brauer group of a
field. Chapter 12 builds the tools that are needed to construct the edifice
of central simple algebras: the Jacobson Density Theorem, the Noether—
Skolem Theorem, and the Double Centralizer Theorem. The topics that
part two covers are fairly traditional: splitting fields, cohomological char-
acterization of the Brauer group, cyclic algebras, the reduced norm and its
applications, the Brauer groups of local and global fields, and finally an
introduction to Amitsur’s work on generic algebras.

The difficulty level of the book is a piecewise increasing graph. Each
chapter begins with elementary material and escalates in complexity. The
last few sections of each chapter contain the specialized and (usually) more
difficult topics. At the same time, the median difficulty level of the chapters
follows an increasing curve. Probably the best advice for readers of the book
is to start at the beginning and plod through it to the end.

Every section of the book is equipped with at least one exercise. The
exercises are included for the usual reasons: to keep the serious students
awake; to ease the author’s conscience pangs over omitted proofs; and to
include results for which there is no room in the text. Most of the exercises
are of the “follow your nose” variety. The non-trivial problems are ac-
companied by generous hints. In fact, some of the hints are so extensive
that they might justifiably be called proofs.

Following an established tradition, we conclude this preface with ac-
knowledgments and thanks to the friends who supported the preparation
of the book. A list of these persons should include the names of a couple of
dozen listeners who endured the author’s lectures at the University of
Connecticut, the University of Arizona, and the University of Hawaii.
Most of these people will remain anonymous, but special mention is due to
Javier Gomez, Oma Hamara, Eliot Jacobson, Bill Ullery, Bill Velez, and
Kwang-Shang Wong whose eagle eyes found some of the numerous errors
in the preliminary manuscript. Chuck Vinsonhaler deserves particular
recognition for using several parts of the book as a basis for his own lectures.
His suggestions and corrections have been extremely valuable.

The majority of credit for the completion of this book is owed to Marilyn
Pierce. It was her patience and impatience that kept the project moving from
its beginning to the end. She typed, corrected, and recorrected the whole
manuscript. Her help and encouragement were always given generously,
even though she has long held the author’s solemn written promise never to
write another book. It is to Marilyn that this book is dedicated.
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CHAPTER 1
The Associative Algebra

Our objective in this chapter is to show off a few examples of algebras that
occur naturally. After a brief orientation toward concepts and notation,
the reader is introduced to group algebras, endomorphism algebras, matrix
algebras, and quaternion algebras. Along the way, there is a brief digression,
which contains a hint of the connection between algebraic geometry and the
theory of finite dimensional algebras over a field.

1.1. Conventions

Throughout this book, the letter R will stand for a commutative ring with
unity 1. The subjects of our study are R-algebras.

Definition. An R-algebra (or algebra over R) is a unital right R-module 4
on which is defined a bilinear mapping 4 x 4 — A (denoted (x,y) — xy)
that is associative (x(yz) = (xy)z for all x, y, z in A), and there is a unity
element 1, in A that satisfies 1 ,x = x1, = x forall x € 4.

The assumption that multiplication is bilinear is equivalent to the right
and left distributive laws, plus

(xy)a = x(ya) = (xa)y forallx,ye AandaeR. @)

Any R-algebra is a ring with unity. Conversely, if 4 is a ring with unity and a
right R-module that satisfies (1), then A4 is an R-algebra.

Any R-module A that is equipped with a bilinear mapping 4 x 4 — 4
is called a non-associative R-algebra. Occasionally, this wider class of algebras
will be considered.
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The bilinearity of multiplication and the module identities for an R-
algebra imply that the mapping a — 1,4 is a ring homomorphism from R
to the center of 4. Conversely, if 4 is a ring with identity, then any homo-
morphism from R to the center of 4 imposes an R-module structure on 4
which turns 4 into an R-algebra. This observation provides an alternative
definition of R-algebras that is- sometimes convenient. If the mapping
a+— 1 ,aisinjective, that is, 4 is a faithful R-module, then R can be identified
with a subring of the center of 4. Making this identification, we have
xa = ax, and A4 becomes a left R-module. Even if A4 is not faithful as an
R-module, a left R-module structure can be defined on 4 by decreeing that
ax = xa, since R is commutative.

If no restriction is imposed on R, then the concept of an R-algebra is
very general. Indeed, every associative ring with unity is a Z-algebra. In
the elementary part of the theory of algebras, the ring R of scalars plays
almost no role. This will be the case in the first seven chapters of this book.
When we deal with these elementary aspects of our subject, no harm will
be done by using the term “algebra” rather than ““R-algebra.” Indeed, the
word “ring”” would usually be equally appropriate.

A major split between the theories of rings and algebras occurs when the
ring of scalars is taken to be a field. In this case, we will speak of an F-algebra.
The letter F will always designate a (commutative) field. Of course, other
symbols may be used to denote a field.

If 4 is an F-algebra, then in particular A is a vector space over the field
F. Thus, the module structure of A is determined by the dimension of 4
as an F-space. This dimension will be denoted by dim 4, or, if necessary,
dim, A. Strictly speaking, dim 4 might be any cardinal number, but for
our purposes it won’t be necessary to distinguish orders of infinity. Thus,
dim A is either a natural number or 0.

Beside making the machinery of linear algebra accessible, the restriction
to algebras over fields simplifies and enriches the theory of algebras in
many ways. For example, the mapping a +— 1,a imbeds F in A, provided
only that A4 is non-trivial, that is, 1, # 0 (or equivalently, |4| # 1). There-
fore, in cases of interest, F can be identified with a subring of the center
of A. In particular, 1, = 1. (Even for algebras over a ring R, we will often
use the symbol 1 for both the unity of R and the unity of 4, provided this
notation is not likely to cause confusion.)

The class of all R-algebras forms a category in which morphisms are
simultaneously module and ring homomorphisms that preserve the unity
element. Such mappings are called algebra homomorphisms. The concepts
of isomorphism, endomorphism, and automorphism for R-algebras are defined
in the expected way. As usual, we will write A =~ Bif there is an isomorphism
from A to B. Of course, = is an equivalence relation. Following an old
algebraic tradition, the term subalgebra can have two meanings: (i) a subset
of A that includes 0 and 1, and is closed under the addition, multiplication,
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and scalar operations of 4; (ii) an R-algebra B that is a subset of 4 such
that the inclusion mapping from B to 4 is a homomorphism. Of course,
these two definitions of a subalgebra are just different perspectives of the
same concept. Products in the category of R-algebras have an explicit
description. They are obtained by endowing the cartesian product of a set
of algebras with operations that are defined componentwise. The component
projections are then algebra homomorphisms that satisfy the universal
condition required of a product in any category. (See [45], p. 53.) Following
a classical tradition, we will denote the product of a finite set {4;, 4,, ...,
A} of algebrasby A4, + 4, + --- + 4,.

If ¢: A — B is a homomorphism of algebras, then the kernel of ¢, that
is, Ker¢ = {x € 4: ¢(x) = 0}, is a (two-sided) ring ideal and R-submodule
of A. Conversely, if Iis a ring ideal of 4 (notation: I < A), then [ is auto-
matically an R-submodule, because xa = x(1 ,a) € I when x € I and ae R.
It follows that the factor ring A/l is an R-algebra, and the natural projection
mapping n: A — A/I is an algebra homomorphism with kernel /. The
various homomorphism theorems of rings and modules are valid without
changes for R-algebras. Perhaps the most important of these theorems is
the (right) factorization criterion: if ¢: A — B and y: A — C are homo-
morphisms of R-algebras, and ¢ is surjective, then ¥ factors through ¢
(that is, y = 6¢ for some homomorphism §: B — C)if and only if Ker ¢ <
Kery.

The term ideal in the context of algebras will mean two sided ideal.
When right or left ideals are encountered, they will be called right (or left)
ideals. Just as we noted in the case of ideals, every right (left) ring ideal of
an R-algebra is also an R-submodule.

The definition of a module over an algebra is identical with the definition
of a unital module over a ring. If 4 is an R-algebra and M is a right 4-
module, then M inherits an R-module structure: ua = u(l a) for ue M
and g € R. Similarly, if M is a left A-module, then M is also a left R-module.
In particular, every module over an F-algebra is a vector space, so that its
additive structure is known.

If A4 and B are R-algebras, then an A-B bimodule is an algebraic system
M that is simultaneously a left 4-module and a right B-module, such that

(xu)y = x(uy) forallxe A,ue M,and y € B; 2
au = ua forallae Randue M. 3)

We will see later that the theory of 4-B bimodules can be reduced to the
study of modules over the tensor product of the opposite algebra of 4 with
B. However, it is often convenient to deal directly with bimodules.

To simplify terminology, we will use the expression A-bimodule instead
of A-A bimodule. Most of the bimodules that appear in the book are of this
kind.
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EXERCISE

Let 4 be a non-associative R-algebra. Denote B = 4 (—B R, and define a mapping
u: B x B — Bby((x,a), (y,b)) — (xy + ay + xb, ab). Prove the following statements.

(a) pis bilinear.

(b) If the multiplication on A is associative, then p is an associative multiplication on
B with (0,1) as a unity element for B; thus B is an R-algebra.

(c) The multiplication on B is commutative if and only if 4 is commutative.

(d) x — (x,0) is a bijective algebra homomorphism from 4 to an ideal of B.

(e) If A is an R-algebra, then B =~ 4 + R as R-algebras.

1.2. Group Algebras

The study of associative algebras was partly motivated by the theory of
group representations. The bridge between these subjects has its footings
on the concept of a group algebra. A group algebra over R is an R-algebra
that is constructed as a free R-module with a basis consisting of the elements
of a group G, and with multiplication induced by the given multiplication
in G. It is useful to generalize this construction to the case in which G is a
monoid, that is, a set with an associative multiplication with respect to
which there is a unity element.

Definition. Let G be a monoid, and suppose that R is a commutative ring
with a unity element. Denote

RG = {¢(eRC: &(x) =0 for almost all xe G}.
Define addition and scalar multiplication of elements in RG componentwise::
(la + nb)(x) = ((x)a + n(x)b fora,be R, é neRG, xeG.
Define multiplication in RG by convolution:

Em ) = Y Em(2),

summed over the finite set of pairs (y,z) € G x G such that yz = x and
¢(n(2) # 0.

The main result of this section is that RG is an R-algebra, called the
convolution algebra of G over R, or the group algebra of G over R when G
is a group. The R-algebra identities for RG can be proved by straight-
forward computations, but a bit of cunning will shorten the work and
provide extra information. First note that RG is closed under addition and
scalar multiplication, and that these operations satisfy the module identities.
It is also routine to verify that multiplication is bilinear. The more delicate
properties of associativity and the existence of unity reflect the corresponding
properties of the monoid G. To see that this is the case, define for each
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x € G the function y, € R® by x,(z) = 0if z # x, and x,(x) = 1. Clearly,
if £ € RG, then & = ) y,.&(x), summed over all x € G such that {(x) # 0.
It follows that RG is a free R-module, and {y,: x € G} is a basis for RG.
Moreover,

Yoy = Yy (1)

Indeed, x,(u)y,(v) =0 if u # x or v # y, and x,(x)x,(y) = 1. Thus,
(12, (@) = 0 if z # xy, and (x,.x,)(xy) = 1. It is clear from (1) and the
next lemma that y, is the unity element of RG, and RG is associative.

Lemma. Let A be an R-module on which is defined a bilinear binary operation
(x,y) — xy, that is, A is a non-associative R-algebra. Suppose that X = A
is such that X generates A as an R-module, and x(yz) = (xy)z for all x, y,
z€ X. Then A satisfies the associative law. If also there exists x, € X such
that x,y = yx, = yforall y € X, then x, is a unity element of A.

PROOF. Since 4 = ) _y xR, it is possible to write three typical elements of
A in the forms zie!xiai, stj‘xj{)j, Zkerkck, with a;, b;, ¢, € R; x;, x;,
x, € X. The bilinearity of multiplication and the commutative-associative
law of scalar multiplication give

((inai)(zijj))(;xkck) = .Zk(xixj)xk(aibjck) = Z xi(xjxk)(aibjck)

i,j.k

= (Z xiai) ((Z ijj) (Z xkck))-
i J k
The proof that x, is a unity element follows the same pattern. O

By (1), the mapping x — x, is a monoid homomorphism; plainly, this
mapping is injective. It is convenient and customary to identify x with the
corresponding function y,. This convention allows us to simplify our
notation: the elements of RG are the linear combinations ) xa,, where
x € G, a € R, and the sum is over a finite subset of G. Ignoring the order
of summands and the occurrence of zero summands, this representation is
unique.

Proposition. For a monoid G, RG is an R-algebra. As an R-module, RG is
free with basis G. If A is an R-algebra and ¢: G — A is a homomorphism to
the multiplicative monoid of A, then ¢ extends uniquely to an R-algebra
homomorphism of RG to A.

PrROOF. Only the last assertion requires further proof. Any extension of
¢ would be a module homomorphism ; hence it would satisfy

(Y xa) = Y ¢(x)a,. @

Since G is a basis of RG, the formula (2) does define an extension of ¢
to a module homomorphism. Using distributivity and the hypotheses
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o(xy) = () (), (1) = 1, it is easy to check that (2) is a ring homo-
morphism. O

EXAMPLE. Let X be a set of symbols. The free monoid on X is the set Gy
of all finite sequences X,X; - - - X,,_, of elements from X, including the
empty sequence. Multiplication in G, is defined by juxtaposing sequences:
(XoX; *** X)) (¥o¥1 *** ¥ac1) = XoXq =+ Xpu_1Yo¥; *** ¥ooq. Thus, the
empty sequence is the unity element of Gy. It is clear that any mapping
from X to a monoid H has a unique extension to a monoid homomorphism.
Thus, every mapping from X to an R-algebra A extends uniquely to an
R-algebra homomorphism of RG, to 4, that is, RGy is the free R-algebra
on X. We will denote RGy by the usual notation R{X} (or R{x,,...,X,}
if X consists of the distinct symbols x,, ..., x,). The elements of R{X}
are non-commuting polynomials in the symbols of X with coefficients in R.

The familiar (commutative) polynomial ring R[X] can be obtained by
a similar construction: let Hy be the free commutative monoid on X; then
R[X] = RHy. As usual, if X consists of the distinct symbols x, ..., Xx,,
we will write R[X,, ..., X,] for R[X]. In the case n = 1, R[X] and R{X}
coincide with the algebra of polynomials in one variable.

EXERCISE

Let € be a small category, that is, a category in which the objects form a set. Let
G=U Homg(X, Y) be the set of all morphisms of G. Note that G is a partial semigroup.
For an R-algebra A, denote

AC = {(€ A%: E(u) = 0 for almost all ue G}.

Define (£ + n) () = () + n(), (x§) @) = x(EW)), (Ex)(w) = {@)x, and ({n)(u) =
Y weu E@IN(w) for all €, € A€, x € A, u € G, with the convention that an empty sum is
0. Prove the following statements.

(a) A€ is an A-bimodule and a ring that satisfies the associativity conditions

x(én) = (x&n, (€x)n = &(xn), and (Em)x = E(nx) forall &, n e A€ and x € 4.

(b) If the set of objects in € is finite, then A has a unity element.

(c) If € is the category whose objects are the natural numbers 1, 2, ..., n, and
Homq(i,j) = {g;} for 1 < i,j < n, with ¢;;¢;, = ¢, for all i, j, and k, then 4€ = M, (4).

i

1.3. Endomorphism Algebras

Let 4 be an R-algebra. If M and N are right or left 4-modules, we will denote
the set of all A-module homomorphisms from M to N by Hom (M, N).
The set Hom  (M,N) has the structure of an R-module if addition and
scalar multiplication are defined pointwise: (¢ + ¥)(w) = d(v) + Y (),
(pa)(w) = Pp(u)a. If N coincides with M, then the composition of homo-
morphisms, (¢¥) () = ¢((u)), defines an associative bilinear product
under which Hom (M, M) becomes an R-algebra with unity element id,,.
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We will write E, (M) for Hom,(M, M), and call this algebra the endomor-
phism algebra of the module M.

If M and N are left A-modules, then it is sometimes advantageous to
write x¢ instead of ¢(x) for x € M, ¢ € Hom ,(M,N). In general, however,
we will not follow this convention. Functions and mappings will be written
on the left side of the object on which they operate. Exceptions to this rule
will be signalized.

The operation of E, (M) on M imposes a left E,(M)-module structure
on M. In this way, a right 4-module M is given an E, (M)-4 bimodule
structure: for ¢ e E, (M), ue M, x € A, and a € R, the equation ¢(ux) =
(¢u)x is satisfied by virtue of the fact that ¢ is an 4-module homomorphism,
and au = (id,,a)(u) = (id,,u)a = ua by the definition of scalar multiplica-
tion in E (M). If M is a left A-module, then by writing endomorphisms
on the right, we can view M as an 4-E ,(M) bimodule.

Suppose that 4 and B are R-algebras, and M is an 4-B bimodule. For
x€ A,define A, M - Mby A u = xu. Then A, € Eg(M): additivity is clear,
and A (wy) = x(uy) = (xu)y = A,(w)y by 1.1(2). Similarly if y € B, define
py,: M - M by pu = uy. Then p € E (M).

The mapping x — A_ is easily seen to be a ring homomorphism, and the
conditions 1.1(2) and (3) imply that it is in fact an R-algebra homomorphism:
A u = x(au) = x(ua) = (xu)a = (Awa = (A a)uforxe A,ae R,ue M.

The right scalar product mapping is not a ring homomorphism, but rather
an antihomomorphism. In fact, p, u = uxy = p (ux) = p,p.u. It is often
useful to think of p as a homomorphism of the opposite B* of Bto E ,(M).
Recall that B* is the R-algebra that is obtained from B by inverting the
order of the factors in a product.

We will denote the homomorphism x — 4,(x € 4) and the antihomo-
morphism y +— p, by 4 and p respectively.

If M is a left A-module, then M can be viewed as an A4-R bimodule,
since R is commutative. In this case, 4 is a representation of A, that is, an
algebra homomorphism of 4 to E (M), where M is an R-module. Con-
versely, if ¢: A - E(M) is a representation, then M is a left 4-module,
with xu = ¢(x)u, where u € M, x € A. The homomorphism 4: 4 — Ej(M)
associated with this 4-module structure on M is of course the original rep-
resentation ¢. Consequently, there is a one-to-one correspondence between
representations of an algebra A4 and left A-modules. There is a similar
relation between right 4-modules and representations of 4*.

A routine calculation shows that if ¢ and  are two homomorphisms of
A to Ex(M), that is, representations on the same R-module, then ¢ and ¥
induce isomorphic A-module structures on M if and only if there is a unit
6 of Eg(M) such that y(x) = 07 ¢(x)6 for all x € 4. More generally, there
is a homomorphism from M with the module structure defined by ¢ to M
with the module structure defined by ¢ if and only if there is an R-module
endomorphism 6 € Ex(M) such that ¢(x)0 = 0y(x) for all xe A. The
mapping @ is said to intertwine the representations ¢ and .

Any R-algebra A can be considered as an A4-bimodule by virtue of
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associativity and the identity 1.1(1). The corresponding homomorphisms
A and p of 4 to E ,(A4) are respectively called the left and right regular rep-
resentations of A.

Proposition. The right and left regular representations of an R-algebra A are
bijective. In particular, A ~ E ,(A) as R-algebras, where A is considered as a
right A-module.

PROOF. As we have observed, i: 4 — E,(A4) is an R-algebra homomorphism
with kernel {x € A: x4 = 0}, and this ideal is 0 because 4 has a unity
element. Now ¢(x) = ¢(1-x) = ¢(1)x = A x, where y = ¢(1). Thus, 4 is
surjective. A similar proof shows that p is bijective. O

EXERCISE

Let A be an R-algebra, and suppose that M is a right 4-module. Define a right
A-module structure on Hom (4,M) by (¢x)(y) = ¢(xy) for x and y in 4 and
¢ € Hom ,(4,M). Prove that Hom ,(4,M) is isomorphic to M as a right 4-module.

1.4. Matrix Algebras

Given an R-algebra 4 and a natural number n, let M,(4) denote the set of
all n by n matrices with entries in 4. Then M, (A) is itself an R-algebra with
the customary matrix addition, multiplication, and scalar operations by ele-
ments of R. We will not repeat the familiar definitions of these operations.
However, it is perhaps interesting to observe that the algebra M (A4) can be
constructed by a process that extends the definition in 1.2 of a convolution
algebra. (See Exercise 1.2.) The algebra M (A) is called the n by n matrix
algebra over A.

In general, we will denote matrices (not necessarily square) by lower case
Greek letters. In particular, 1 or 1, will designate the » by n identity matrix.
Moreover, in discussing M, (A) for a fixed n and A4, the matrix units will be
denoted by ¢;;. That is, ¢;; stands for the n by n matrix with the unity of 4 at
the row i, column j position, and the zero of A4 in all other entries. These
matrix units are easily seen to satisfy the following rules of multiplication:

forl <ijkl<n, e;g,=0 ifj#k; g, =c¢,. 0

ijjl
Occasionally it will be necessary to describe a matrix in terms of its
entries. In this case we will use such notations as

X11%X12 * 0 Xqp

XX Xo:Xnn 00 X

— — 11412 — 2122

x = [xij]5 a = , &= 2
X21%22 ) * ' :

Xm1Xm2 *°* Xpun
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Usually the entries of a matrix are designated by doubly subscripted letters,
in which case the first subscript indicates the row of the entry, and the second
subscript denotes its column.

If 4 is not commutative, then M, (A4) is not an A4-algebra. Nevertheless,
it is useful to introduce left and right scalar multiplication of matrices by
the elements of A4. If

X11X12 © Xy

x x PR x
o 21422 2n

xmlme U X

is an m by n matrix with entries in the algebra 4, and if y € A4, define

YX11 VX2 = YXyp X11YX12) c 0 Xq,Y
yo = YX21¥X22 * 0 YXoy ay = X021V X22Y t X,y
VX1 YXpz 0 YXun X1V X2l =00 X

These scalar operations define an A-bimodule structure on the set of all m
by n matrices with entries in 4. In particular, M,(A4) is a free A-module
with a basis consisting of the matrix units:

[xij] = Zeijxij’ 2

and this representation is unique.
In addition to the associative laws that hold in a bimodule, the matrix
algebras satisfy

(y)B = ¢(yB) fora, fe M, (4)andye 4. €)

From an abstract viewpoint, matrix algebras are special cases of endomor-
phism algebras. In fact, we will later prove (Corollary 3.4b) that M (A4) =~
E,(M), where M is the free right A-module on n generators. Therefore,
matrix algebras can always be replaced by endomorphism algebras. How-
ever, in many situations, matrices can be used efficiently for calculations in
which endomorphisms appear to be foreign.

Matrix algebras over division algebras play an important role in the
general theory of algebras over fields. We conclude this section with a
result that will later be incorporated into the fundamental structure theorem
of Wedderburn.

Lemma. If D is a division algebra, then M, (D) is simple for alln > 1.

PrOOF. Let I be a non-zero ideal of M, (D). We have to prove that if « =
[x,] € M, (D), then % € I. Since I # 0, there exists a non-zero f = [ y;]
in 7, say y,, # 0. By (1) and (2), @ = ), ;e;x; = > (e, Be )y x; € 1,
since I is a two sided ideal of M, (D). O
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EXERCISE

Generalize Lemma 1.4 by proving that if 4 is a simple algebra, then M, (4) is simple
foralln > 1. Hint. Show that if J is a non-zero ideal of M,(4),then {x e A: ¢, x € J}is
a non-zero ideal of 4.

1.5. Finite Dimensional Algebras over a Field

If Fis a field and A4 is an F-space with basis x,, . . ., x,, then non-associative
F-algebras can be defined by specifying the products

n
k k P
xX; = ) xaf, a;eF, 1<ij<n )
k=1

Indeed, (1) extends uniquely to a bilinear product on 4 by the rule () ; x;b,)
(Xxc) = Yxi (X ;bic;al). The n® elements aj; are called the structure
constants of the multiplication that is defined by (1) (In this section, super-
scripts represent indices, not exponents.)

Every n-dimensional F-algebra A can be realized (up to isomorphism)
by specifying suitable structure constants af. On the other hand, not all
choices of structure constants yield an associative multiplication with unity.
Furthermore, different choices of the structure constants can give isomorphic
algebras.

By Lemma 1.2, the multiplication in 4 is associative if and only if x;(x;x,)
= (x;x)x, for all i, j, k in the range 1 to n. A straightforward calculation,
using (1), shows that associativity is equivalent to the following relations
among the structure constants:

Z ajay, = Y aya;, forl < ijk,s <n. )
r=1

A more sophisticated viewpoint sheds light on the identities (2). Corre-
sponding to each linear transformation ¢ and F-basis x,, ..., x, of 4,
associate the matrix a(¢) = [a};] defined by ¢(x,) = Y5, x.ak;. It is well
known (and will be proved) that the mapping ¢ — a(¢) is an isomorphism
of E(4) to M, (F). Clearly, [a"] is the matrix that is associated in this way
with A, (with k as the row 1ndex and j as the column index), and [a
also the matrix corresponding to Px, (with k as the row index and i as the
column index). The equations (2) correspond to the conditions 4, p, (x;) =
Py A (x;) for 1 < i,j,k < n. In other words, (2) is a coordinatized version
of the condition that the left and right regular representations of 4 commute,
which is clearly equivalent to associativity.

The easiest way to guarantee that equations (1) define an algebra with
unity is to require that one of the basis elements, say x,, acts as unity.
Plainly this condition is equivalent to

af; =df =6, forl <jk<n, 3)
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where § is the usual Kronecker delta. In other words, 4, = p, = id,,
the 1dent1ty transformation on A. If (3) is satisfied, then so are the cases of
(2) in which any of i, j, or k is 1. Finally, it is worth remarking that by re-
quiring x, = 1, we have not restricted the class of F-algebras that can be
constructed on 4 via the multiplication (1). In fact, if n > 0, then any
n-dimensional F-algebra A is non-trivial, so that the unity element of A
can serve as one element of a basis of 4.

Next, consider the problem of non-uniqueness. When do two systems
as. and bi’; of structure constants define isomorphic (non-associative) algebra
structures on A? Clearly, this will be the case if and only if there is a non-
singular linear transformation y of A such that for 1 < i,j < n, y(x; * x) =
7(x;) o 7(x;), where * denotes the product defined by a and o stands for the
product given by bf. Let y(x,) = Y7, x,c} (c] € F) for 1 < i < n be the
matrix representatlon of y in terms of the distinguished coordinates. A
straightforward calculation based on (1) yields

Z ckbl = Z akeiel, 1<ijk <n. 4)
r=1 s,t=1
That is, the structure constants af; and bf; give rise to isomorphic algebras
if and only if there is a non-singular n by n matrix [ c¥] such that (4) is satisfied.
Denoting [c¥]™! = [d}], the equations (4) can be recast in the form

Z diaicic, 1 <ijk <n %)
r,s,t=1
We can put these equations in a coordinate-free form, using the left and
right regular representatlons Ay Py, corresponding to the multiplications
defined by af; and the representauons A% Py, corresponding to b" The
formulas (5) are equivalent to either of the systems:
n
Ao= Yy tAye 1<i<n;
s=1
P =2y pye, 1<j<n

J

II M:

If the multiplications defined by af; and b} are such that x, is a unity
element, then any isomorphism between these structures must map x, to
itself. In terms of the matrix [ c¥] of the isomorphism, this condition amounts
to specifying the first column to be
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Ifx,isa umty for the multiplication defined by af;, and if b}, is defined by
(5) with ¢* = 6%, then x, is also a unity for the multlphcation deﬁned by b
The discussion of this section can be formulated in the language of
algebraic geometry. Fix an ordering of the trlples @(j,k), 1 < ijk <n,
and assign to each system of structure constants a;; 2 k the point in 73 dimensional
affine F-space A" (F) whose coordinates are af;. This defines a one-to-one
correspondence between 4™ (F) and the set of all non-associative F-algebras
on A. The systems of equations (2) and (3) define a subvariety V (possibly
reducible) of 4™ (F) consisting of those points that correspond to F-algebras
for which x, is the unity element. The formulas (5) define a linear action
of the general linear group GL,(F) on A™(F) such that the orbits of the
action are in one-to-one correspondence with the isomorphism classes of
non-associative algebras over F. The variety V is invariant under the sub-
group A4,_, (F) of GL,(F) that consists of those matrices whose first column is

1
0

o]
that is, the n — 1 dimensional affine group. Consequently, the isomorphism
classes of n dimensional F-algebras are in one-to-one correspondence with
the orbits in ¥ of the affine group A4,_,(F).

Theoretically, the classification of the structure constants that we have
described gives a complete survey of the isomorphism classes of # dimen-
sional F-algebras. Practically speaking, however, this approach is useless
for large values of n. Exercise 3 shows what happens if n = 2.

We conclude this section with one obvious consequence of the remarks
that have been made here.

Proposition. For any field F and natural number n > 1, the cardznal number
of isomorphism types of n dimensional F-algebras is at most |F|™

EXERCISES
1. Verify the formulas 1.5(2) and (4).

2. Prove that for every n > 1 there exist structure constants af, ; satisfying 1.5(2) and (3).
(From the standpoint of algebraic geometry, this is not obv1ous because (2) and (3)
impose n* + 2n? — 1 conditions on »* indeterminates.)

3. Let F be a field with char F # 2. Use the methods of this section to classify all 2
dimensional F-algebras. In more detail:

(a) show that every F-algebra with F-space structure 4 = x, F @ x,F is

isomorphic to an F-algebra such that 4, = id,,and /, hasthe matrix representation

[: ]
,aEF;
1 0
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0 0 b
(b) two such algebras with 4, given by the matrices |:1 g] , [1 0:' respectively

are isomorphic if and only ifa = b = 0 or ab e F2 — {0};
(c) deduce that every 2 dimensional F-algebra is either a quadratic field extension
of F, the ring product F + F, or an F-algebra with basis 1, x, such that x* = 0.

4. The results of this section can be obtained without using coordinates, following the
outline of this problem. Let 4 be a right R-module. Prove the following facts.
(a) There is a bijection between the set of all multiplications that define a non-
associative algebra structure on 4 and the set of all R-module homomorphisms of
A ) A to A. (Tensor products are taken over R.)
(b) The multiplication corresponding to € Homg(4 (X) 4, A) is associative if
and only if the following diagram commutes

UR AR AZAR 4
le

al A

Tu
ARUR AH AR 4,
where « is the natural isomorphism (4 Q) A)X) 4 - 4 X) (4 X) A) defined by

c®NQzxQ Qa2

(c) The multiplication corresponding to u € Homg(4 X) 4,4) admits a unity
element if and only if there exists A € Homg(R,A4) such that the two diagrams
commute

ARRLE AL R® 4
4@1 | idy | | 1®id
AX A S A4 X 4,
where f, and §, are the natural isomorphisms defined by x - x (X) 1 and x - 1 X x
respectively.
(d) p, and u, in Homg(4 X) 4, A) define isomorphic algebras if and only if
there is an R-module automorphism 7 of 4 such that g, = y™u,(y &) 7).
(e) Use the results of (a) to (d) to derive formulas (1), (2), and (5).

1.6. Quaternion Algebras

The history of associative algebras begins with Hamilton’s discovery of the
real quaternions in 1843. In this section we will define quaternion algebras
over general fields. Some of the basic properties of these algebras will be
derived, using straightforward computational arguments. Most of the
results in this section will reappear as special cases of general theorems in
later chapters. In Section 1.7, we will prove an important fact about qua-
ternion algebras that does not generalize.

Throughout this section, F is to be a field whose characteristic is not 2.
The analogues of the quaternion algebras over fields whose characteristic
is 2 are defined differently. (See Exercise 2.)
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Definition. Let a and b be non-zero elements of F. Let A be the four dimen-
sional F-space with basis 1, i, j, k and the bilinear multiplication defined by
the conditions that 1 is a unity element, and
i’=a, f?=0b, ij=—ji=k M
As usual, the first two equations in (1) employ the conventional identi-
fication of F with the set of scalar multiples of the unity element in A.
Assuming associativity, the remainder of the multiplication table for the
basis of A4 follows directly from (1):

K2 = —ab, ik=—ki=js, jk=—kj= —ib. V)

Conversely, with structure constants given by (1) and (2) (plus 1i = il =i,
1j = jl =j, 1k = k1l = k), the condition 1.5(2) is satisfied, so that 4 is
an associative F-algebra.

Notation and Terminology: 4 = <‘—ll’7b> is called a (generalized) qua-

ternion algebra over F.

Hamilton’s quaternions occur as the special case H = <_ lﬂ’Q_ 1).

Lemma. For any non-zero a and b from F, (al,?b

) is a simple algebra whose

center is F.

PROOF. It is convenient to introduce the Lie bracket operation: [x,y] =
"l’f’), then by (1) and (2),
[i,.x] = jRacs) + k(2¢c,), [J,x] = i(—2bc3) + k(—2¢,), and [k,x] =
i(2bc,) + j(—2ac,). In particular, x € Z(4) implies [i,x] = [ j,x] = [k,x]
= 0, so that ¢, = ¢, = ¢; = 0. Consequently, Z(4) = F. Suppose that
0 # x € I, where I is an ideal of 4. Since /is a two sided ideal containing x,
it also includes the Lie triple products [ j,[i,x]] = i(—4bc,), [k,[ j,x]] =
j(4abc;), and [i,[k,x]] = k(—4ac,). If one of ¢,, c,, or ¢, is not 0, then I
contains a unit of 4; if ¢; = ¢, = ¢; = 0, then 0 # x = ¢, is a unit be-
longing to I. In all cases, I = A. O

xy —yx. If x =cy +ic; +jc, + keyed =

An F-algebra A is called central if Z(A) = F. Thus, the quaternion
algebras are central simple. It will be shown in Section 13.1 that every four
dimensional central simple algebra over a field F with char F # 2 is neces-
sarily a quaternion algebra. It will also follow from general theory that a
quaternion algebra over F is either a division algebra or else is isomorphic
to M, (F). This result is also outlined in Exercise 2 of Section 1.7. It is there-
ab

fore natural to ask: for what choices of @ and b in F is a division

algebra? This turns out to be a difficult question for most fields, for example
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if F = Q. However, the problem can be translated into a question concerning
quadratic forms for which there is a substantial theory.

Write (g;7b> =A=F@A,, where A, =iF P jF @ KkF. The ele-
ments of A4, are called pure quaternions. For x = ¢, + z, coeF,zeA,,
define the conjugate of x to be x* = ¢, — z. For x,y € 4, and d € F, we have

(x+p)*=x*+y* (p*=y*x* x**=x, d*=d (3

With the exception of (xy)* = y*x*, these equations are obvious. Linearity
reduces the proof that (xy)* = y*x* to the finite set of cases in which
{x,y} = {1,ij,k}. We relegate this chore to Exercise 1.

a,b

For xe A = , the norm of x is defined to be v(x) = xx*. If x =

o + ic; + je, + kej, then v(x) = ¢3 — ac? — be2 + abc? is obtained by
direct computation. In particular, v(x) € F, and v(x) = v(x*) = x*x.

If x,y € 4, and d € F, then v(xy) = v(x)v(y), v(d) = d>. 4)
Indeed, by (3),
v(xy) = xy(xp)* = xyy*x* = xv(y)x* = xx*v(y) = v(x)v(p); v(d) = d*

is obvious.

Proposition. The following conditions are equivalent for A = <a_;:l_>> :
(1) A is a division algebra;
(i) xe A — {0} implies v(x) # 0;
(i) if (cq,cy.¢,) € F3 satisfy ¢ = ac? + bc2, thenc, = ¢, = ¢, = 0.

PROOF. (i) implies (ii), since v(x)v(x~!) = v(xx™!) = v(1) = 1 by (4); and
(i) is a consequence of (ii), because xx*v(x)™' = (x*v(x)"!)x = 1 whenever
v(x) # 0.1f ¢ = ac? + bc3 with (cy,cy,¢,) # (0,0,0), then x = ¢, + ic, +
jc, # 0 and v(x) = 0. Therefore, (ii) implies (iii). Finally, (iii) implies (ii).
In fact, suppose that v(x) = 0, where x = d, + id, + jd, + kd,; that is,
d§ — bd} = a(d} — bd?).Thena(d} — bd})* = (d? — bd2)(d? — bd?) =
(dod, + bd,d5)* — b(dydy + d,d,)*. The hypothesis (iii) yields d> — bd2 =
0, and therefore d; = d; = 0. Thus, d? — bd? = 0, so that d, = d, = 0.
Thatis, x = 0. O

In the language of quadratic forms, the conditions (ii) and (iii) of the
proposition state that x; — ax} — bx3 + abx3 and x3 — ax? — bx2 are
anisotropic.

It is a consequence of the proposition that the Hamiltonian quaternions
<—_1[}’§—_1> form a division algebra: ¢ = —c3 — c% implies ¢, = ¢, = ¢,

= 0 for ¢y,cq,¢, € R.
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EXERCISES

1. Verify that (xy)* = y*x* for x,ye 4 = (a},:b>.

2. Let Fbe a field with char F = 2, and let a and b be non-zero elements of F. Define 4
to be the 4-dimensional F-algebra with basis 1,i,j,k, where multiplication is defined
by the conditions (1) and (2). Prove the following facts.

(a) Aisacommutative F-algebra, and the mapping x — x? is a ring homorphism
of Ato F.

(b) If a¢ F?, then A contains the field K = F(\/a) as a subring, and 4 =
F(\/a,/b), or A is isomorphic to the unique 2-dimensional K-algebra with non-zero
nilpotent radical that was described in part c of Exercise 3, Section 1.5.

(c) Ifae F?and be F?, then A has a basis i, u, v, wsuch that 4> = v> = w? = 0 and
w=uw=uvw=u-+0v+ w

For the remaining problems of this section, assume that char F # 2. Leta,b,c e F°.

3. Prove that for every a € F°, the quaternion algebra (%) is isomorphic to M,(F).
Hint. Compute the multiplication table for the basis e;; = (1/2)(1 — j), e,, =
. a,l
121 + 1), €21 = (12a)( = k), €1, = (1/2) (i + k) of | ).

4, Show that condition (ii) of Proposition 1.6 is equivalent to: a¢ F?> and
b ¢ Nnﬁ)/r (F(\/E))

5. Let F be a finite field with g elements, and suppose that a,b € F°.
(a) Prove that elements ¢, and c, exist in F satisfying ac? + bc2 = 1. Hint. Show
that the values taken by ac? and 1 — bc3 as ¢, and c, range independently over the g
elements of F cannot all be different.

(b) Deduce from (a) that a,b is not a division algebra. This result is a special

case of Wedderburn’s theorem that every finite division algebra is a field.

1.7. Isomorphism of Quaternion Algebras

The fundamental problem of the theory of quaternion algebras is the
question: when is ‘—11’7b > a_},:b_ ? In this section, we will use the norm
mapping to translate this problem into the language of quadratic forms.
It is convenient to introduce the bilinear form that is obtained by polarizing
the norm.

“2) define ) = 1205 + ) = ¥03) = )
Ifx =cy+2z,y=4dy, + w,withcy,dye Fand z = ic, + jc, + ke;€4,,
w=1id, + jd, + kdy e 4, then B(x,y) = 1/2((x + y)(x + p)* — xx* —
¥ = 120xy* + yx*) = 1/2((co + 2)(do — W) + (dp + W)(co — 2)) =

For x, yin 4 =
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cody — 1/2(zw + wz) = ¢od, — ac,d; — bc,d, + abc,d;. These equations
show that B is a bilinear mapping of 4 x A to Fthat is symmetric ((x,y) =
B(y,x)) and non-singular (f(x,y) = 0 for all y € 4 implies x = 0). More-
over, v(x) = B(x,x), and if Fis identified with 1 ,F = Z(A4), then

z,w € A, implies f(z,w) = —1/2(zw + wz) and v(z) = —z%. (1)

Lemma. Let A = <a1,:b) and A" = (%) be quaternion algebras with the

respective norms v and v'. As F-algebras, A is isomorphic to A’ if and only if
there is a vector space isomorphism ¢ of A, to A’ such that v'(¢(z)) = v(z)
forallze A,.

ProoF. We start the proof with a characterization of 4,. If x =c + z
with ce F and ze 4., then x* = ¢* + 22 + z(2¢) = ¢* — v(2) + z(20).
Thus, x? € F = Z(A) if and only if z = 0 (hence x € Z(A)), or ¢ = 0 (hence
x € A,). This calculation shows that for xe 4 — {0},

x € A, if and only if x ¢ Z(A) and x? € Z(A). #))

Naturally, A, can be characterized in the same way. Therefore, since any
algebra isomorphism ¢: A —» A’ satisfies ¢(Z(4)) = Z(4’), and ¢(x?) =
¢(x)?, it follows from (2) that ¢(4,) = A,, and if ze A, , then by (1),
V(p(2) = —¢(2)? = ¢(—2z%) = ¢(¥(2)) = v(2). Thus, ¢ restricts to a norm
preserving, vector space isomorphism of 4, to A’ . Conversely, suppose
that ¢: A, — A} is a bijective linear mapping such that v'(¢(2)) = v(z)
forallz e A, . To show that A" > A, we construct a basis of 4" for which the
structure constants are the same as the structure constants associated with
the standard basis of 4. By (1), ¢(i)* = —v'(¢(i)) = —v(i) = a. Similarly,
¢(j)*> = b. Moreover, ¢ () + ¢()P() = —2B(¢(@),P(J)) = —2p(0))
= ij + ji = 0, using (1) and the fact that the bilinear form B’ associated
with v clearly satisfies B'(¢(2),¢(W)) = B(z,w) for all z, w in A4, . Thus,
d(DPA)d(j) = () (—b), and (¢()¢p(j))* = —ab. It follows from (2) that
PP (j) € 4, . In fact, ¢p@i), ¢(j), ¢()P(j) is a basis of A : if p(i)c; +
$(i)c, + dM(i)es = 0 with ¢;,¢,.¢; € F, then 0 = p()(@Gi)e, + (e,
+ ¢ o(j)cs) = ac, + d()P(i)c, + ¢(j)ac; implies ¢, = 0; similarly,
¢, = 0, so that ¢c; = 0 as well. Define the mapping y: 4 — 4" by y(1 ) =
1., Y@@ = ¢@), ¥(§) = ¢(j), and Y(k) = ¢())@(j). The preceding dis-

cussion shows that s is an F-algebra isomorphism. O

In general, the mapping ¢ that is defined in this proof will not coincide
with ¢. The class of isometries from A4, to A4, is larger and more tractable
than the class of algebra homomorphisms from A to 4’.

The principal result of this section is obtained by translating the lemma
to the language of quadratic forms. If z = ic, + jc, + ke; € 4,, then
v(z) = ®(c,,c,,c;), where @ is the ternary quadratic form —ax] — bx: +
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abx?. Similarly, v'(z') = ®'(c},c},c3), where & = —a'x} — b'x3 + a'b'x3
and 2/ = i'c| + j¢; + K3 e 4, (with 1, ¥, j, k' denoting the standard
basis of 4’). It is convenient to put these equations in matrix form. Denote

—a 0 0 —-a 0 0
o= 0 —b 0}, o= 0 -=b 0|,
0 0 ab 0 0 ab
K2 ¢
t=le|s &=|c
| €3 )

Then, v(z) = &'af and v'(z") = (¢')'o’¢’, where the superscript ¢ denotes
matrix transposition. Moreover, if w = id; + jd, + kd; and w' = i'd] +
jd, + K'd;, then B(z,w) = &'am and B'(z',w') = (&)a'n’, where

d d
n=|d,| and 5’ =|d;|
ds dy

Suppose that ¢: 4, — A/, is linear, say [¢(),¢(j),0K)] = [i,i’ . k]o,
where 6 = [d,;] € M;(F). The mapping ¢ is bijective if and only if ¢ is
non-singular. If z = ic, + jc, + ke; = [i,j,k]¢, then

¢(2) = [¢@,4(D).0K)]¢ = [i",j kK]0
Similarly, ¢(w) = [i',j’,k"]dn. Consequently,

B (d(2).¢(w)) = (68 o' (On) = &'(8''d)n.
Therefore, ¢ satisfies v'(¢(z)) = v(z) for all ze 4,, or equivalently,
B (¢(2),¢(w)) = B(z,w) for all z, we 4, if and only if 'an = EH (S O)n
for all &,  in F>. Clearly, this last condition amounts to the equation « =
8o’ 5. Our discussion is summarized by saying that there is an isometry of
A, to A, if and only if the matrices « and o’ are congruent.

Proposition. The quaternion algebras <%é> and <%> are isomorphic if and

only if the quadratic forms ax? + bx% — abx3 and a’x} + b'x} — a'b'x; are
equivalent.

Two quadratic forms are called equivalent if it is possible to pass from
one to the other by a non-singular linear change of variables. When the
forms ® and @’ are represented as matrix products

X, Xy
D(x,,X,,X3) = [X;,X5,X3]a | X, |, D'(x,Xp,X3) = [x;.X5,x3]a" | X, 1,

X3 X3
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the condition that ® and @’ are equivalent amounts to the existence of a
non-singular matrix é € M;(F) such that o = ¢'a’d. Hence, the proposition
is just a reformulation of the lemma.

Corollary. If a, b, and c are non-zero elements of F, then
ac’,b\ _ (a,bc*\ _ (a,b
F ) \F /) \F)

By taking F = R in the corollary, we conclude that the only real quater-

. 1,1 1,—1 _(—1,-1 L1y _
nion algebras are <_[§>’ ( R ), and H = <———R ) In fact, (R) ~

<1,E¥ 1) ~ M, (R) by Exercise 3, Section 1.6.

EXERCISES
Assume in all of these exercises that char F # 2.

1. (@) Let V be an n-dimensional F-space, and let 8: V' x V — F be a non-degenerate,
symmetric, bilinear mapping. Assume that x, y in V satisfy f(x,x) = B(y,y) # 0.
Prove that there is a non-singular linear transformation ¢ of ¥ such that ¢(x) = y
and B(¢(z),¢(w)) = B(z,w) for all zand w in V (that is, ¢ is an isometry). Hint. Let
u = (1/2)(x + y),v = (1/2)(x — y). Prove that f(u,v) = 0, and that either S(u,u) # 0
or B(v,v) # 0. In the former case, define ¢(z) = 2(f(u,z)/f(u,u))u — z, and if
Blu,u) = 0, B(v,v) # 0,let $(2) = z — 2(B(v,2)/B(v,v))v.

(b) Use the result of (a) to prove the Witt cancellation theorem: If ® and ¥ are
(n — 1)-ary quadratic forms over F such that ax} + ®(x,, ..., X,) is equivalent to
ax? + ¥(x,, ..., x,), then @ is equivalent to P.
2. Leta ¢ F?, and denote E = F(,/a).
(a) Prove: (“;’) ~ (%) if and only if b/c € Ny p(E°).

Hint. Apply the Witt cancellation theorem to Proposition 1.7; then compute
with 2 by 2 matrices.

.(b) Deduce from (a), Proposition 1.6, and Exercise 3, Section 1.6, that <‘%b> is

either a division algebra or isomorphic to M,(F).

3. Leta, be Z — {0} be square free (i.., not divisible by the square of a prime). Prove

that (%) ~ M,(Q) if and only if

(i) a and b are not both negative,
(ii) a is congruent to a square modulo b, and
(iii) b is congruent to a square modulo a.

Hint. (Lab> =~ M,(Q) implies by Proposition 1.6 that there exist integers c,,c¢, ,¢,

with no common prime divisors such that ¢2 = ac? + bec?. This clearly implies (i).
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In order to prove (ii), it suffices by the Chinese Remainder Theorem to show that a is
a quadratic residue mod p for all primes p that divide b. This conclusion is obtained by
arguing that if p divides b, then either p divides a, or p does not divide ¢, . The converse
can be proved by induction on |a| + |b]. If |a] + |b] = 2, then a or b is 1 (by (ii)),
hence the result comes from Exercise 3, Section 1.6. Assume therefore that |a| < ]b|,
|b| > 2. By (ii), there exist integers c, d, and e such that c is square free, d > 0, |e| <
(1/2)|b], and e* — a = bcd>. Consequently, |c| < |e|*/|b] + |a]/|b] < (1/4)|b] +

1 < [b], bjc = (efed)* — a(1/cd)* € No(jayo(Q(/@)). By Exercise 2, <%b> ~ <a,c>,

Q
and the induction hypothesis applies to <%)

4. (a) Prove: if p is a rational prime that is congruent to 3 (mod 4), then (%) isa

division algebra.
(b) Prove: if p and q are distinct rational primes that are congruent to 3 (mod 4),

then (——é—’g> * (%)

Notes on Chapter 1

The study of group algebras has been, and still is, an area of active research.
For a reasonably up-to-date survey of this topic, the book [61] of Passman
is recommended. The discussion in Section 1.5 of finite dimensional algebras
over fields is thoroughly classical. Benjamin Peirce’s ground-breaking paper
[62] defines an associative algebra as a finite dimensional vector space with
an associative bilinear multiplication. The relization that algebraic geometry
sheds light on the classification of algebras came later. Gerstenhaber’s papers
[36] and [37] pioneered this approach to the subject. Our discussion of
quaternion algebras is modeled on the treatment in Lam’s book [54].
Quaternion algebras over Q (or more generally any algebraic number field)
admit a complete classification, based on the Hasse—Minkowski theorem.
Serre’s book [70] provides an elementary treatment of this theory for the
rational field.



CHAPTER 2
Modules

The theory of modules over a ring or algebra grew out of the study of
representations. However, as homological algebra developed, it became
clear that module theory constitutes a good foundation on which to erect
the structure of rings and algebras. On the basis of this dictum, we begin
our formal development with this chapter on modules. The emphasis is on
semisimple modules, since these structures lead to semisimple algebras, the
fundamental building blocks for any theory of algebras. Highlights of the
chapter are (1) a discussion of the lattice of submodules of a module, (2)
Schur’s Lemma, (3) a fundamental characterization of semisimple modules
(Proposition 2.4), (4) a structure and uniqueness theorem for semisimple
modules, and (5) an external characterization of finitely generated semi-
simple modules.

2.1. Change of Scalars

Throughout this chapter, A will stand for a non-trivial R-algebra. (A unital
module over a trivial algebra consists of the zero element; such objects are
uninteresting.) The ring R will seldom be mentioned, because its role in the
elementary parts of module theory is negligible. In particular, the expression
*“R-algebra” will be shortened to “algebra.”

Since 4 needn’t be commutative, there is no natural way to identify left
and right A-modules. On the other hand, the left and right sided theories
are identical, so that it is enough to develop one of them. Generally, our
choice is to consider right 4A-modules, and the term “A4-module” should
always be interpreted as “right 4-module.” Occasionally it is necessary to
deal with left modules, particularly when bimodules are considered.

21
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Any algebra A is itself a right and left 4-module, with the scalar operation
defined by the algebra product. The notation 4, and ,4 will often be used
to indicate that A is being considered as a right (respectively left) A-module.
The submodules of A, are precisely the right ideals of 4. Therefore, all the
concepts and results on submodules of a module can be used for right and
left ideals. We will later show (in Chapter 10) that the same comment applies
to two-sided ideals: A-bimodules can be viewed as right modules over the
“enveloping algebra” A° of A4, and the sub-bimodules of 4 are the two
sided ideals.

There is a fairly elaborate theory of the class of all 4-modules. We will
not deal with this topic in a systematic way, but many of these categorical
aspects of module theory will inevitably creep into our considerations.
Readers who are familiar with category theory will recognize many old
acquaintances. Uninitiated readers should not feel insecure, because cate-
gorical concepts will be introduced only in concrete forms.

One of the most useful techniques in the study of algebra involves com-
paring the modules over 4 with the modules over a related algebra B. In
category theory, such a comparison can be dealt with abstractly via the
notion of a functor. In later chapters, various special functors will be used
for this purpose. However, one of the most useful devices for comparing
modules over different algebras is completely elementary.

Let 4 and B be algebras, and suppose that §: 4 — B is an algebra
homomorphism. If M is a right B-module, define scalar operations on M
by the elements of 4 according to the rule ux = uf(x) forue M, xe A. A
routine check shows that with these operations M becomes a right A-module.
We will use the notation M, (or if necessary M,) to designate M with the
A-module operation defined in this way.

There are two important special cases of this change of scalar functor.
The first occurs when A is a subalgebra of B, and 6 is the inclusion homo-
morphism. The correspondence M — M, is called a forgetful functor. The
second case of importance is when B = A/I for some ideal I of 4, and 6 is
the projection homomorphism. The operation of 4 on the 4/I-module M
is then defined by

ux = u(x + 1. 1

Lemma a. Let 0: A — B be an algebra homomorphism, and suppose that M
and N are right B-modules:

() MPN),=MDN,
(i) If ¢ € Homg(M,N), then ¢ € Hom (M,,N,); if 0 is surjective, then
Homg(M,N) = Hom (M,,N,).
(iii) If N is a submodule of M, then N, is a submodule of M, ; if 0 is surjective,
then the sets S(M') and S(M,)) of the submodules of M and M, are equal.

We leave the proofs of these elementary facts as exercises.
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If 8: A - B is a surjective algebra homomorphism, then there is a con-
venient characterization of the 4-modules that have the form M, with M
a B-module.

Definition. Let M be a right 4A-module, and suppose that X is a subset of M.
The annihilator of X in A is

annX = {xeAd:ux =0 forallue X}.

There is an obvious analog of this definition for left 4-modules.
The annihilator has many simple properties that we record for future
reference.

Lemmab. Let M, M’,and { M, i € J} beright A-modules,X = MandY < M.

(i) ann X is a right ideal of A; if X is a submodule of M, then ann X < A.
(ii) X < Yimpliesann X = ann Y.
Gii) If M =~ M’, then ann M = ann M’.
(v) If M =Y, ; M, thenann M = (),_, ann M,.
(v) If M is a right ideal of A, then ann(A/M) is the largest ideal K of A
such that K < M.

The properties (i) through (iv) follow directly from the definition of the
annihilator. To obtain (v), note that by (i), ann(4/M) is an ideal of A4 that is
clearly a subset of M. On the other hand, if K <« 4 and K = M, then
(x + M)K = M for all x € 4, so that K < ann(4/M).

Proposition. Let A and B be R-algebras, and 6: A — B a surjective homo-
morphism. If N is a right A-module, then there is a right B-module M such
that N = M, if and only if Ker @ < ann N.

PRoOF. It is clear that Ker @ = ann M,. Conversely, if Ker§ = ann N, then
the equation uf(x) = ux defines a valid scalar operation on N by the elements
of Im6 = B. With this operation, N becomes a B-module M, and N = M,
by definition. O

The proposition is most useful when B = A/I for an ideal I of 4. In this
situation, an 4-module N comes from an A/I-module if and only if I =
ann N. We will usually make no distinction between A4/I-modules and 4-
modules N such that / < ann N.

An A-module M is called faithful if ann M = 0.

Corollary. If I is an ideal of the algebra A, and N is a right A/I-module, then
N is faithful as an A/I-module if and only ifann N, = I.

ProoF. Clearly, ann N, = (ann N /L. O
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EXERCISES

1. Prove Lemma a.

2. An A-module M is called cyclic if M is generated by a single element, thatis, M = u4
for some u € M. Prove the following statements.
(a) If M = uA is cyclic, then M =~ A/N, where N = annu.
(b) If N is a right ideal of 4, then A4/N is a cyclic right 4-module.
(c) Let N be a right ideal of 4. Denote B = {xe A: xN = N}. Then Bis a
subalgebra of 4, with N € B. Moreover E (A4/N) =~ B/N by the mapping ¢ —
¢(1) + N.

2.2. The Lattice of Submodules

For any A-module M, the collection S(M) of all submodules of M is partially
ordered by the inclusion relation. Moreover, if {N;:ie J} is any set of
submodules of M, then ();_, N, is a submodule of M. (If J = ¢, then the
empty intersection [ );.; N is defined to be M.) Plainly, this intersection is
the largest submodule of M that is included in all of the N;, that is, ();., N;
is the greatest lower bound of {N;:ieJ} with respect to the ordering
relation of inclusion. The set {N,: i € J} also has a least upper bound among
the submodules of M. In general this least upper bound is not the set union,
but rather the submodule that is generated by the union: ), , N, =
{dm u: u, € N,}. In particular, the least upper bound of two submodules
Nand Pof Mis N+ P= {u+ v:ue N,ve P}. Any partially ordered
set in which all subsets have a greatest lower bound and a least upper bound
is called a complete lattice. Our discussion can be summarized by the state-
ment that S(M) is a complete lattice.

Many fundamental properties of modules can be interpreted as facts
about submodule lattices. Section 2.4 will provide a striking example of
this phenomenon. There are a few lattice theoretic properties that hold in
all lattices of the form S(M). The most important of these is the

Modular Law. If N, P, and Q are submodules of M such that N < Q, then
N+PnQ) =N+ PnQ.

ProoF. Plainly, N+ (Pn Q)< N+ P, and N + (Pn Q) = Q by the
hypothesis that N = Q. Thus, N + (P n Q) = (N + P) n Q. On the other
hand, if ue (N + P) n Q, then u = v + w, where ve N and w € P. Thus,
w=u—-—veEPn(Q+N)=PnQ,andu=v+weN+PnQ). O

The modular law (or modularity) is a fairly weak condition on a lattice.
Some of the submodule lattices that interest us have the stronger property
distributivity.
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Lemma. Let M be an A-module. The following identities (that is, valid equations
for all choices of N, P, and Q) are equivalent for S(M):

ONNP+Q=NnNnP)+(NnQ);
@ N+@PnQ=N+Pn(N+ Q)
@) NP+ P +Q@nN)=N+Pn(P+0)n(Q+ N).

ProOF. Two applications of (i) gives
N+PA(N+QD=((N+P)NnN)+((N+P)nQ)
=N+((NnQ)+®PnQ)
=N+ (PnQ),
which is (ii). Similarly, by several applications of (ii) we get
NP+ PnQ)+(@nNN)
=((NnP)+P)Nn(NnP)+ Q) +(2nN)
=PNnN+DnP+0)+(@nN)
=P+ @nAN)AN+Qn(P+0Q
=P+QOnNn@P+N)nN+ 0.
Finally, it follows from (iii) and the modular law that
Nn(P+Q=Nn((N+P)n(P+Q)n(Q + N))
=Nn({(NnP)+(Pn Q)+ (QnN)
=(NnP)+(OQ@nN)+(NnPnQ)
=(NnP)+(Nn Q) O
The submodule lattice S(M) is called distributive if it satisfies the iden-
tities (i), (ii), and (iii).
REMARK. The inclusions
NAP)+ (NN Q) S Nn(P+QO,N+PnQ s (N+P)n(N+Q),
and
NAP)+ (PN +@nNAN)Sc(N+Pn(P+Q)n(Q+N)

are valid whether S(M) is distributive or not.

Proposition. Let M be an A-module such that S(M) is not distributive. Then
there exist distinct submodules P and Q of M such that PIP n Q ~ Q/P n Q
as A-modules.
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Proor. Since S(M) is not distributive, there exist submodules M,, M|,
M,, M, and M, of M such that

My=M, M)+ M,nM)+ (M;n M)
cM, + M))n(M, + M) n(M; + M)
=M,.
Define
N=M; M)+ M;n (M, + M),
P=(M,n M)+ M n(M,+ M),
and O0=WM,n M)+ M, n(M, + M,)).
By the modular law,
PnQ=((M,n M)+ M n(M, + M) n(M, nM,)
+ (M, 0 (M, + My)))
= (M, N M;) + (M, 0 My)
+ M, (M, + M) n M, n(M, + M,))
=M, n M)+ (M, n M)+ (M, n(M, + M,)
NM,n (M, + M)
=M, n"nM)+ (M,n"n M)+ (M, " M,)
= MO’
and
P+O=((M,n M)+ (M (M, + M,)))
+ (M, " M) + (M, n(M, + M,)))
=M, n(M, + M,)) + (M, n (M, + M;))
= ((M; n (M, + M3) + M) n (M, + My)
=M, + M))n(M, + M;) n(M; + M,;)
=M,

In particular, P # Q because M, = M,. Moreover, by symmetrical com-
putations, NN P=NnQ =M, and N+ P=N + Q = M,. By the
Noether Isomorphism P/P N Q = P/PAN = P + N/N = M,/N. Simi-
larly, O/P n Q = M /N. Thus, P/IPn Q = Q/P n Q. O

For an R-algebra 4, we denote by I(4) the set of all ideals of A. It was
noted in Section 2.1 that the ideals of 4 can be viewed as the submodules
of A4, considered as a right module over its enveloping algebra. (See Section
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10.1.) It follows that I(4) is a complete, modular lattice. Moreover, if
I(4) is not distributive, then there exist distinct ideals 7 and J in 4 such that
IIInJ = JInJ as A-bimodules. These facts can also be established
directly by making minor changes in the wording of our proofs in this
section.

EXERCISES

1. Use the Noether Isomorphism Theorems and the Modular Law to prove Zassen-
haus’s Lemma: if N, N', M, and M’ are submodules of an A-module such that
N c Nand M" = M, then (N + (M n N))/((N' + (M’ n N)) = (M n N)/
(M AN+ MAN)=M + (M~ N)/(M + (M~ N)).

2. Let 0=MycMc---cM,_,cM,=Mand 0=N,cN, c---cN,, <
N,, = M be chains of submodules of the 4-module M. Use the Zassenhaus Lemma
to prove that there exist refinements 0 = Mgc M| < --- c M, c M, =M
and 0 = Nj = N{ < --- < N;_; © N, = M of these chains (that is, every M, is
equal to some M/ and every N, is equal to some N;), and a permutation = such that
M}, IMj = N, /Ny for all j < k. This result is called the Schreier Refinement
Theorem. 1t is a generalization of the Jordan-Holder Theorem, which will be
proved by a more elementary argument in Section 2.6.

3. Prove that S(M) is distributiveif and only if: for N, P, 0 e S(M),if NN P=Nn Q
and N + P = N + Q,then P = Q. In particular, complements are unique in S(M).
(See Section 2.4.)

4. Assume that 4 is an F-algebra, where F is an infinite field. Prove that if M is a right
A-module such that S(M) is not distributive, then S(M) is infinite. Hint. Let P and
QO beasin Proposition 2.2. It can be assumed without loss of generality that PnQ = 0.
Let¢: P — Qbeanisomorphism. Show that foreacha e F, N, = {u + ¢(w)a: u € P}
is a submodule of M,and N, n N, = Ofora # bin F.

2.3. Simple Modules

Definition. A right or left module N is simple if N is not the zero module
and the only submodules of N are 0 and N. A module M is semisimple if M
is a direct sum of simple modules.

In the literature of ring theory, the term irreducible module is often used
for simple module, and completely reducible has the same meaning as
semisimple. The current trend in terminology seems to be moving in the
direction of the adjectives “‘simple”” and “‘semisimple.” We will follow this
fashion.

It is evident that a right ideal M of an algebra 4 is a simple 4-module
if and only if M is a minimal right ideal, that is, M is minimal in the set of
non-zero right ideals of 4. Of course, there is no guarantee that 4 has any
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minimal right ideals. There are none in the ring Z of integers, for example.
On the other hand, the hypothesis that 4 has a non-zero unity element
implies (by an argument using Zorn’s Lemma) that 4 includes at least one
maximal right ideal, that is, an ideal that is maximal in the set of proper
right ideals of 4. Moreover, if M is a maximal right ideal of 4, then by the
Correspondence Theorem, 4 ,/M is a simple module. Conversely, if 4 ,/M
is simple, then M is a maximal right ideal.

Proposition. For a non-zero right A-module N, the following conditions are
equivalent :

(1) N is simple;
(i) uA = N for all non-zeroue N;
(i) N = A ,/M for some maximal right ideal M of A.

PROOF. (i) implies (ii), because 0 # ueud < N forces ud = N by the
simplicity of N. Conversely, since N % 0, (ii) implies that N is the unique
non-zero submodule of N; that is, N is simple. As we noted before, the fact
that (iii) implies (i) is a consequence of the Correspondence Theorem. To
prove that (ii) implies (iii), let # be a non-zero element of N. By (ii), the
mapping x > ux is a surjective module homomorphism of 4, to N whose
kernel M is a right ideal of 4. Since (ii) implies (i), it follows that 4 ,/M =~ N
is simple. Therefore, M is a maximal right ideal of A. O

Schur’s Lemma. Let M and N be right A-modules. Suppose that ¢: M — N
is a non-zero homomorphism.

() If M is simple, then ¢ is injective.
(ii) If N is simple, then ¢ is surjective.

PRrOOF. Since ¢ # 0, it follows that Ker ¢ # M and Im¢ # 0. Hence, M
simple implies Ker ¢ = 0, and N simple implies Im¢ = N. O

Corollary a. If M and N are simple right A-modules, then either M =~ N or
Hom ,(M,N) = 0.

This corollary follows directly from Schur’s Lemma because a bijective
homomorphism is an isomorphism.

A right A-module N is indecomposable if N # 0, and N cannot be written
as a direct sum of non-zero submodules: if N = PP Q, then P = 0 or
0 = 0. Indecomposable modules are very important in the theory of
algebras. They will reappear often in later chapters.

Corollary b. For a semisimple module N, the following conditions are equiva-
lent.
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(i) N is simple.
(ii) E(N) is a division algebra.
(iii) N is indecomposable.

PRrOOF. If N is simple, then every non-zero endomorphism of N has an
inverse by Schur’s Lemma. That is, E,(N) is a division algebra. If E,(N)
is a division algebra, then id, # 0, so that N # 0. Moreover, for any direct
sum decomposition N = P (P Q, there is an element = € E ((N) such that
n(N) = P, (1 — n)(N) = Q, and n? = 7; namely, 7 is the projection of
N on P associated with the decomposition. Hence, n(idy — ) = 0. The
assumption that E ,(N) is a division algebra implies thatw = Qoridy, — n =
0. In these respective cases, P = 0 and Q = 0. Finally, (iii) implies (i),
because the hypotheses that N is indecomposable and semisimple (that is,
a direct sum of simple modules) are compatible only if N is simple. O

The term “‘Schur’s Lemma™ is often used to describe the implication in
Corollary b that if N is simple, then E (N) is a division algebra. We will
go beyond this custom and refer to the lemma and both of its corollaries as
Schur’s Lemma. This abuse of terminology shouldn’t cause confusion.

EXERCISES

1. Determine all of the simple right A-modules for the following algebras:

(@ 4=2;
(b) A= {afn:aeZ,neN,2)n};
(© 4=C[x];

(d) 4 = Cxy)/® +y> = 1);
(e) A = R-algebra of real valued, continuous functions on [0,1];

() 4 = {B (c)]: a,b,ce F} (F = any field).

2. Let 4 be an integral domain that is not a field. Denote the field of fractions of 4 by F.
Consider Fas an A-module. Prove that E ,(F,) =~ F, but F, is not simple. Of course,
F, is not semisimple, so that this example does not contradict Corollary b.

2.4. Semisimple Modules

If N and P are submodules of an A-module M, then P is called a complement
of NinS(M)if N+ P = Mand N n P = 0. In other words, M is the inner
direct sum of N and P. Plainly, the relation of being a complement is sym-
metric. In general, complements are not unique (but see Exercise 3, Section
2.2), and not all submodules have a complement in S(M). Our main result
in this section is that the universal existence of complements characterizes
semisimple modules.
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Lemma. Let M be a module such that M = Y, _; N,, where each N, is a simple
submodule of M. If P e S(M), then there is a subset I of J such that M =

(Dier V) D P.

ProOOF. By Zorn’s Lemma, there is a subset I of J such that the collection
{N;:ie I} u {P}is maximal with respect to independence: (},.;N) + P =
(@i N) @ P. Let M, = (3., N) + P. The maximality of I implies that
M, n N; # 0 for all j € J. Therefore, since each N, is simple, N; = M, for
alljeJ. Hence, M =Y, ;N M, c M,and M = (P,,,N)PP. O

Proposition. For a right A-module M, the following conditions are equivalent.

(1) M is semisimple.
(i) M =Y {NeS(M): N is simple}.
(iii) S(M) is a complemented lattice, that is, every submodule of M has a
complement in S(M).

PRrOOF. It is clear that (i) implies (ii) by the definition of semisimplicity.
By the lemma, (ii) implies (iii}. Also, the lemma shows that (ii) implies (i)
(taking P = 0). Using the modular law, (iii) can be strengthened to (iv)
if PeS(M), then S(P) is complemented. Indeed, if M, € S(P), then by
(iii) there exists M, € S(M) such that M = M, (—D M,. Hence, P = P n
M, P M) =M P Pn M, with Pn M,eS(P). To complete the
proof, we deduce from (iv) that if Q is a proper submodule of M, then there
is a simple submodule N of M such that N n @ = 0. This result implies
(ii), and completes the figure eight of equivalences. Let 0 # ue M — Q.
By Zorn’s Lemma, it can be assumed that Q is maximal with the property
u ¢ Q. Apply (iv) with P = M to obtain N € S(M) such that M = Q P N.
Write u = w + v with we Q, ve N. Since u ¢ Q, it follows that v # 0.
In particular N # 0.If N, is a non-zero submodule of N, then the maximality
of Q implies that w + v =ueQ + N, = Q@ N,. Thus, ve N,. In par-
ticular, two non-zero submodules of N have a non-zero intersection. On
the other hand, S(N) is complemented by (iv). The only way to escape a
contradiction is to conclude that S(N) = {0, N}, that is, Nis simple. []

Corollary a. If M is semisimple and P < M, then P and M|P are semisimple.

Proor. By (iii), M =~ P & M/P. Hence, P and M/P are semisimple by the
equivalence of (iii), (iv), and (i). O

Corollary b. A4 direct sum of semisimple modules is semisimple.

This corollary is a direct consequence of the definition of semisimple
modules.

It is occasionally useful to know when S(M) is a distributive lattice.
If M is semisimple, the following result settles this question.
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Corollary c. Let M be a semisimple right A-module. Assume that M =
@i N, where each N, is simple. Then S(M) is a distributive lattice if and
only if N; & N, foralli # jin J.

ProoF. If N is a non-zero right 4-module, and Q@ = N @ N, then S(Q)
is not distributive. In fact, if N, = {(®,00e Q:ue N}, N, = {(O,u) e Q:
ueN}, and Ny = {(u,u)e Q:ue N}, then N, + N, =0, N;yn N, =
N;nN,=0,and N; = N # 0; thus, Nyn (N, + N,) = N; 20 =
(N; " N;) + (N3 n N,). In the context of the corollary, this observation
shows that if S(M) is distributive, then N, & N, for all i # j. To prove the
converse implication, define N(J) = Zje 1 N; for each subset I of J. Since
the sum M = @),, N, is direct, it is clear that N(I; v I,) = N(I}) +
N(I,) and N(I; n I,) = N(I,) n N(I,) for any two subsets /, and I, of J.
Thus, {N(I): I = J} is a distributive sublattice of S(M). The proof is
completed by showing that S(M) = {N(I): I = J}. For P < M, define
I={ieJ: Pn N, # 0}. We will show that P = N(I). Since N, is simple,
P N N, # 0 implies that N; = Pn N; € P. Hence, N(I) = P. It will be
sufficient to prove that P n N(J — I) = 0, since the Modular Law then gives
P=PA(NJ—-1)+ NI))=PnNJ —1I)+ N(I) = NI). Assume that
P N(J —1I)# 0, and choose a set K = J — I of smallest cardinality
such that P n N(K) # 0. Clearly, K is finite, and | K| > 2 because P N N, =
0 for all ieJ — I. For ie K, let m;: N(K) - N, be the projection homo-
morphism that is associated with the direct decomposition N(K) =
@<k N;- Since Ker(m;|P n N(K)) € P n N(K — {i}), the minimality of
|K| implies that Ker(n;|P n N(K)) = 0. Therefore, since N, is simple and
P n N(K) # 0, it follows that n; maps P n N(K) isomorphically to N,.
The fact that |[K| > 1 then gives a contradiction to the hypothesis that
N, % Nforalli # jinJ. O

EXERCISE

Prove: if M = @), N,, where the N, are right 4-modules, and if ;, = J, [, = J,
then (3;; N) 0 Qicr, M) = Yicr,nr, Ni- This fact was used in the proof of Corollary
c. It is most easily established using outer direct sums.

2.5. Structure of Semisimple Modules

By definition a semisimple right 4-module has “nice” structure; it is a
direct sum of simple modules. The purpose of this section is to establish
the uniqueness of such direct sum representations. Some preliminary results
are needed.

Lemma a. Let M = (P),_; N, with each N, a simple right A-module. Suppose
that N is a simple right A-module for which there is a non-zero homomorphism
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¢: N — M. Then there exists je J such that M = $(N) P (P,4; N) and
N = N.
- 7

PrOOF. By Lemma 2.4, there exists J' < J such that M = ¢(N)P
(@DicrN)- Consequently, Pyey—yN; = M[(Dies M) = ¢(N) = N (by
Schur’s Lemma and the assumption ¢ # 0). It follows that |J - Jl =1,
which proves the lemma. O

For the rest of this section, let {N;:ie J} be a set of representatives of
the isomorphism classes of simple right 4-modules. Thus, J is a non-empty
indexing set, each N, is a simple right 4-module, and each simple right
A-module is isomorphic to exactly one N,.

Notation: For a right A-module M, denote by M(i) the submodule
Y{N < M:N = N}.

Lemma b. If M is a semisimple right A-module, then M = P, M(i).

ProoF. Since M is semisimple, M = @), ; M;, where M, = @), Ny,
N; = N,. Plainly, M; = M(i). 1t will be sufficient to prove that M(i) = M.
Let N, ~ N < M. Write M = M; P M/, M] = P;;;M;, and let n: M —
M be the projection associated with this decomposition. It follows from
Lemma a that #(N) = 0, that is, N = M,. Since N was any submodule of

M isomorphic to N,, this proves the desired inclusion M(i) € M,. |

Lemma c. Let M and M’ be semisimple right A-modules. If ¢: M — M’ is a
homomorphism, then ¢(M@I)) < M'(Q) forallie J.

PROOF. If N, @ N < M, then by Schur’s Lemma, either $(N) = 0or ¢p(N) =
N,. In both cases, ¢(N) = M’(i). It follows that ¢(M(i)) = M’(i). O

Proposition. Let M and M’ be semisimple right A-modules. Suppose that
M = @, M(Q) with M(i) = @e; N, and M’ = @;.; M'(i) with M’ (i) =
@B, N,. Then M is isomorphic to M’ if and only if the cardinal numbers o,
and B, are equal for all i e J.

PRrOOF. Suppose that ¢: M — M’ is an isomorphism. By Lemma c, ¢(M(i))
= M’(i) for all i. Fix ie J. For the proof that o, = B,, we first consider
the case in which o; is finite, and use induction. If «; = 0, then M'(i) =
d(M(i)) = ¢(0) = 0, so that B, = 0. Suppose that o, = m > 1. Write
M(l) = ]Vil C_D e @ ]Vim—l @ ]Vim’ M/(l) = @keljvi;c’ Where ]Vij = Nl;(
=~ N, for all j and &, and |/ | = f;. By Lemma a, there exists / € I such that
O WNiw) D (@Brpi Ni) = M'() = ¢(N,,) D ¢WN,, D - -+ @ Nyp—y)- Con-
sequently, N, @ T @ N1 = 0N, @ Tt @ N;p—1) = M'(D)[d(N,,)
= P+ Ny~ By the induction hypothesis, m — 1 = |I — {I}| so that o;; =
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m = |I| = B,. This completes the induction. If B, is finite, the same proof
applies using ¢~'. Therefore, assume that o; and f§; are both infinite. By
Proposition 2.3, there exist decompositions M(i) = @), x4, M'(i) =
@ieLu;A, with |[K| = o, and |L| = ;. The isomorphism ¢ induces a
mapping 4 from K to the set of finite subsets of L such that ¢(u,) € Y, ., 414,
and (J,.xA(k) = L since ¢ is surjective. Therefore, since L and K are
infinite, f; = |L| < Y, .x|A(k)| < Ry |K| = |K| = ;. By symmetry, o; <
;. This completes the proof that M =~ M’ implies o; = f; for all i € J. The
converse is obvious. O

EXERCISES

1. Use Lemma a to give an inductive proof of the Proposition in the special case that
M and M’ are finitely generated.

2. Prove that if V is an infinite dimensional F-space, and A4 = E.(V), then
Ay = A, @ A, Hint. V = V@ V as F-spaces implies

Homy(V,V) = Hom (V,V P V).

2.6. Chain Conditions

Most of the semisimple modules that we will enounter are finite direct sums
of simple modules. The main proposition of this section establishes the
equivalence of several finiteness conditions for semisimple modules. The
proof of this result is based on standard results of module theory that have
many applications outside the context of semisimple modules and algebras.

An A-module M is Artinian (Noetherian) if S(M) satisfies the descending
(ascending) chain condition. That is, there are no infinite, strictly decreasing
(increasing) sequences of submodules of M. Equivalently, M is Artinian
(Noetherian) if every non-empty subset of S(M) includes a minimal (maxi-
mal) member.

In a general context, the Artinian and Noetherian properties are in-
dependent of each other. For example, Z, is Noetherian but not Artinian,
whereas, the Z-module Z(p®) = {a/p":a€ Z,ne N}/Z is Artinian, but
not Noetherian. We will see that in the presence of semisimplicity these
conditions are equivalent.

Lemma a. Let M’, M”, and N be submodules of the A-module M, with M’ =
M. There is an exact sequence

M’/mN M// M//+N
0o ——— o ——

- 0.
M AN M M+ N
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ProOF. The Noether Isomorphism Theorems and the Modular Law give

M// + N _ M// + (MI + N) z M”
M + N M +N ~— M AM +N)
M// (MI//M/)

~

TM+M AN M + M AN)M’

and (M’ + (M” AN))/M’ = (M” AN)M' ~(M" AN) = (M” A N)/
(M’ A N). O

Lemmab. Let 0 - N - M — P — 0 be an exact sequence of A-modules.
The module M is Artinian (Noetherian) if and only if both N and P are Artinian
(respectively, Noetherian).

ProoF. There is no harm in assuming that Ne S(M) and P = M/N. In
this case, S(V) is a sublattice of S(M), and by the Correspondence Theorem,
S(P) is isomorphic to a sublattice of S(M). Therefore, if M is Artinian
(Noetherian), so are N and P. Conversely, if My o M, o M, o --- isan
infinite descending chain in S(M), then M,Nn N2 M, A" N2 M, n
N2 ...inS(N),and(M, + N))/ N2 (M, + N)IN=2(M, + N)IN= ---
in S(P); and by Lemma a, at least one of these chains is infinite. Thus, if N
and P are Artinian, so is M. The proof in the Noetherian case is similar. []

Lemma c. Assume that the A-module M is Artinian and Noetherian. There is
a sequence 0 = Myc M, c M, c --- = M,_, ¢ M, =M such that all
of the factor modules M, /M;, i < n, are simple.

PrROOF. If M = 0, then 0 = M, = M. Assume that M # 0. Using the fact
that M is Artinian, it is possible to construct (by induction) an increasing
sequence 0 = M, ¢ M, < M, < --- of submodules of M such that all of
the factors M, /M, are simple. Indeed, if M,, M,, ..., M, have been
obtained, and if M; # M, then there exists a submodule M,,, of M con-
taining M; such that M, /M, is a minimal, non-zero submodule of M/M,,
because M/M;is Artinian by Lemma b. Since M is Noetherian, this inductive
process must be blocked at some finite stage; that is, for some n < w, it
must be the case that M, = M. O

Achan0=MycM, cM,c-.. =« M, , =« M, =M of submodules
of M is called a composition series of M if M,,,/M, is simple for all i < n.
The factor modules M, /M, are called the composition factors of the series.
They are unique.

Jordan—Holder Theorem. I[f 0 = My c M, c M, c --- c M, , c M, =
Mand 0 = My c M{ c My c --- <« M,_;, « M = M are composition
series of the module M, then n = k, and there is a permutation 7 of {0, 1,
2, ...,n — 1} such that M{,,[M] = M, . ,/M,, forallj < n.

n
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PrOOF. Induce on n. If n = 0, then M = 0 and £k = 0. Assume that n > 0.
Consider the chain of submodules0 = M{ " M,_, s M{nM,_, < --- S

n—-1 =

MlzmMn—1=Mn—1=M(/)+Mn—l EM; +Mn—1 = ngz+Mn—1=
M,. Forj < k, there is an exact sequence

0 - M, M, R M;,, R M, + M,_,

4 ’ ’ e 0
Alj N Mn—l M] M] + Mn—l

by Lemma a. Since M;,,/M] is simple, exactly one of

M'/+1 N Mn—l Alj/+1 + Mn—l

J

Alj/ N Mn-l ’ Alj/ + Mn—l

is isomorphic to M;,,/M; and the other quotient is 0. Also, since M,/M,_,
is simple, there is exactly one i < k such that M, , = M/ + M,_, c
M, +M,_ =M, Thus, M\, /M, |, = M/, ,/M/,and 0 = M;gn M,_, <
MinM, e ---cM_ nM_cMoM,_ =M,,0nM,_,c - c
M, n M, . = M,_, is acomposition series of M, _,. By the induction hypo-

thesis, k — 1 = n — 1, and there is a bijective mapping =: {0, 1, ..., i — 1,
i+1,...,k—=1}t0{0,1,...,n — 2} such that M/, , /M = M, .,/M,,
for all j # i. The proof is completed by defining n(i) = n — 1. O

If a module M can be written as a finite direct sum of simple modules in
two ways,say M = N, PN, P --- P N,and M =N PN, P --- P
N, then the Jordan-Holder Theorem applies to the composition series
0Oc NNyeN +N,c---cN +N,+:---+N,=M and 0c N/c
N{+ N;jc ---= N+ N;+ --- + N/ = M. It yields the conclusions
n = kand N/ = N,;, for some permutation . In other words, the Jordan—
Holder Theorem leads to an elementary proof of the special case of Pro-
position 2.5 in which the direct sums are finite. ’

Terminology. Let M be aright 4-module that is Artinian and Noetherian.
By Lemma c, M has a composition series, and the length of this series is
unique by the Jordan—-Holder Theorem. The number of composition factors
in a composition series of M is called the composition length of M. This
number will be denoted by /(M). Two useful observations are clear con-
sequences of this definition: /(M) = 0 if and only if M = 0; /(M) = 1 if
and only if M is simple.

Corollary. Let M, N, and P be Artinian and Noetherian modules. If 0 — N —
M — P — 0 is an exact sequence of module homomorphisms, then (M) =
I(N) + I(P).

Proor. Without loss of generality, suppose that N is a submodule of M,
and P = M/N.If0 = N, ¢ N, < --- < N, = Nisacomposition series of
N, and 0 = Q,/N = Q,/Nc --- < Q/N = P is a composition series of
P,then0 =N, c Nyc ---c N, c @, c - < @, =M is a composi-
tion series of M. Thus, (M) =r + s = I(N) + I(P). O
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Proposition. For a semisimple right A-module M, the following conditions are
equivalent.

(i) M is finitely generated as an A-module.
(i) M=N, PN, P --- @ N, with each N, simple, and 0 < m < w.
(ili) M is Artinian.
(iv) M is Noetherian.
(v) There exists m < o such that if My <« M, c --- < M, is a finite,
strictly increasing sequence of submodules of M, then k < m.

ProoF. The conditions (i) and (ii) are equivalent. Indeed, (ii) implies (i) by
Proposition 2.3; and (ii) follows from each of the conditions (i), (iii), and
(iv), because M is semisimple (that is, a direct sum of simple modules), and
an infinite direct sum of non-zero modules cannot be finitely generated,
Artinian, or Noetherian. Since simple modules are plainly Artinian and
Noetherian, the conditions (iii) and (iv) both follow from (ii), using Lemma b
and induction on m. Clearly, (v) implies that M is both Artinian and Noether-
ian. Conversely, if M is Artinian and Noetherian, then a strictly increasing
sequence of submodules of M includes at most /(M) + 1 terms (by the
Corollary, using induction). O

Some of the implications in the proposition are true for arbitrary modules.
Our proof shows that (v) is equivalent to the conjunction of (iii) and (iv).
Also, every Noetherian A-module M is finitely generated: otherwise, the
axiom of choice would enable us to select an infinite sequence u,, u,, us, . . .
of elements from M such that w4 cuA + u,Ad cu A+ u, A+
usA < - .-, thereby violating the ascending chain condition.

EXERCISES

1. Prove the converse of Lemma c: if the module M has a composition series, then M
is Artinian and Noetherian.

2. (a) Assume that M is an Artinian module such that S(M) is not distributive. Prove
that the modules P and Q in Proposition 2.2 can be chosen so that P/P n Q and
Q/P n Q are simple. Hint. Let M, N, P, Q, and M, be chosen as in the proof of
Proposition 2.2. Use the descending chain condition to obtain N’ € S(M) such that
M, = N’ = Nand N'/M, is simple. Showthat P = Pn(N' + Q)and Q' = Q0 n
(N’ + P) have the required property.

(b) Prove the same result under the assumption that M is Noetherian.

3. Assume that M is Artinian and Noetherian. Prove that if S(M) is distributive, then
S(M) is finite. Hint. Otherwise, since M is Artinian, there is a minimal N e S(M)
such that S(N) is infinite. Use distributivity to show that if P,, P,, P, ... are
distinct maximal proper submodules of N, then P, > P, nP, > PN P, Py >
-+ -, so that by the descending chain condition {P} is finite. Use the fact that M is
Noetherian to deduce the contradiction that S(N) = | J;S(P) u {N} is finite.

4. Tt is possible to define a composition series for modules that are neither Artinian
nor Noetherian. A composition series for the module M is a maximal chain {N;:
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Jj €1} in the family of all submodules of M. That is, for all i, j € I, either N, = N,
or N; € N;; and if N is a submodule of M such that N ¢ {N;:je I}, then there
exists i€ Isuchthat N ¢ N, and N, & N.

(a) Deduce from Zorn’s Lemma that every module has a composition series.
(This is essentially equivalent to deducing the Hausdorff Maximum Principle from
Zorn’s Lemma.)

(b) Prove that a composition series {N;: j € I'} for M is closed under unions and
intersections: if X < I, then (J;.xN; and ();x N, are members of {N;:je I}. In
particular, 0 and M belong to the series. Deduce that for any u € M, there is a
largest N, such that u ¢ N, and a smallest N; such that u € N;; show that N, covers
N;(ie. N, = N;;and N, = N, < N;implies N, = N, or N, = N)), and N;/N, is simple.

(c) Let {N;:je I} be a chain of submodules of M. Prove that {N,:jel}is a
composition series for M if and only if {N,: j € I'} is closed under unions and intersec-
tions, and for every i, j in [ such that N, N, there exist k, / in I such that N, =
N, = N, € N, and N/N, is simple.

(d) Let M be a countably infinite dimensional F-space. Let {u,:n < w} be a
basis of M. Define N, = Y, ., u,.Fforn < w. Prove that {N,:n < w} is a composi-
tion series for M. Let {,: r€ @, 0 < r < 1} be a basis of M, indexed by the rational
numbers between 0 and 1. For each real number x with 0 < x < 1, define P, =
Y rear<xtF, and for se @ with 0 < s < 1, define P, = Y, o ,.,0,F. Prove that
{PixeR,0<x<1}U{P:seQ0<s< 1} is also a composition series for
M.

This example shows that the Jordan—-Holder Theorem does not carry over
intact to the generalized form of a composition series.

2.7. The Radical

We conclude this chapter with a characterization of finitely generated
semisimple modules.

Definition. Let M be an A-module. The radical of M israd M = ({Ne
S(M): M/N is simple}.

Of course, there might not be any submodule N of M such that M/N is
simple. In this case, rad M is the intersection of the empty subset of S(M)
which is M by convention.

Lemma a. Let M be an A-module.

(i) rad M is a submodule of M.
(i) If Ne S(M), then rad M/N = 0 implies N = rad M.
(ii1) rad(M/rad M) = 0.

These observations are routine consequences of the Correspondence
Theorem.
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Lemma b. If M is a semisimple A-module, then rad M = 0.

PROOF. Let M = (D), F; with each P, simple. Denote N; = 3, P, € S(M).
Then M/N,; = P;is 51mple so that rad M < jesN; = 0. O

Proposition. An A-module M is finitely generated and semisimple if and only
if M is Artinian andrad M = 0.

Proor. If M is finitely generated and semisimple, then M is Artinian by
Proposition 2.6, and rad M = 0 by Lemma b. Conversely, assume that M
is Artinian and rad M = 0. We can also suppose that M # 0. Sincerad M =
0, there is a non-empty set {N;:ieJ} = S(M) such that M/N; is simple
for all ie J, and ();c; N; = 0. The Artinian property of M guarantees the

existence of amodule N; N - -+ N N, that is minimal in the family {N,n--
AN, :ig,. ..,ikeJ}.Necessarlly,N Nn---nN, =0; otherw1seN SRR
N N & N, for some i € J, which gives the contradiction Nin---nN,n

A=A m -++ N N, to the minimality of N, n --- N N,,. Deﬁne o: M-
(MIN)@P --- @ (MIN,) by ¢(u) = (u + Ny, ...,u + N,). Plainly, ¢ is
an A-module homomorphism with kernel Ny n --- n N, = 0. Con-
sequently, M is isomorphic to a submodule of the semisimple module
MIN, @ --- @ M|N,, so that M is semisimple by Corollary 2.4a. By
Proposition 2.6, M is also finitely generated. O

EXERCISES
1. Let M be a right A-module. The socle of M is
socM = Y {NeS(M): N is simple}.

Prove the following facts.

(a) soc M is a semisimple submodule of M.

(b) If N is a semisimple submodule of M, then N < soc M.

(c) M is semisimple if and only if soc M = M.

(d) soc(soc M) = soc M.

(e) If socM = M, thenrad M = 0.

(f) If M # 0and M is Artinian, then soc M # 0.

(g) If M is Artinian, and ¢: M — N is a module homomorphism such that
¢|soc M is injective, then ¢ is injective.

2. Prove the following implications for Z-modules.
(@) M = Z impliesrad M = socM = 0.
(b) M = Q implies rad M = M and soc M = 0.
(¢) M = Q/Zimpliesrad M = M and 0 # socM # M.
(d) M= {a/n:aeZ,neN,2}n}implies rad M = 2M and soc M = 0.

3. Let A be a finite dimensional F-algebra, and suppose that M is a finitely generated
right (left) 4-module. Define the dual module M* of M to be Hom, (M, F).
(a) Prove that M" is a finitely generated left (right) 4-module with the scalar
operations given by (x¢)(u) = ¢(ux) (respectively, (¢x)(w) = P(xu)).



Notes on Chapter 2 39

(b) Prove that (M) =~ M.

(c) Provethat P~ P~ = {¢ € M": $(P) = 0} is an inclusion reversing bijective
mapping from S(M) to S(M").

(d) Prove that (socM)~ = rad(M ") and (rad M)~ = soc(M "), where ~ is
defined in (c).

(e) Prove that if M and N are finitely generated right (left) 4-modules, then
MPN" =M PN~

Notes on Chapter 2

The material of this chapter is well described as “standard algebra.” Our
terminology and general viewpoint is borrowed from the book [21] of
Cartan and Eilenberg. In particular, the fundamental Proposition 2.4 ap-
pears as 1.4.1in [21].



CHAPTER 3
The Structure of Semisimple Algebras

This chapter focuses on one of the early monuments of algebra: the Wedder-
burn structure theorem for semisimple algebras. Most of the other results in
the chapter are preliminaries to the proof of Wedderburn’s theorem. It
should be added, however, that much of this preparation leads to basic tools
of algebra that are needed for work in many areas of mathematics. One other
“name theorem” is proved in Section 6. This is Maschke’s theorem, which
shows that semisimple algebras arise naturally in the theory of finite groups.

Throughout most of the chapter, 4 is an R-algebra. The most interesting
case occurs when R is a field, but this extra restriction brings little sim-
plification of proofs or sharpening of results.

3.1. Semisimple Algebras

We are now ready to introduce one of the central concepts in the theory of
associative algebras.

Definition. An R-algebra A is semisimple if A is semisimple as a right A-
module.

In more detail, 4 is semisimple if 4 = (P, N,, where each N, is a simple
right A-module. Since N, is a submodule of 4, this means that N, is a minimal
right ideal. Moreover, the indexing set J must be finite by Proposition 2.6,
since A, is finitely generated by 1 ,.

The definition of semisimple algebras that is given above is biased toward
right modules. A similar definition can be made using left modules, and at
this point there is no reason to suppose that the classes of left semisimple

40
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algebras and right semisimple algebras coincide. They do, however, and this
fact will be clear from the structure theorem of Wedderburn. Even without
knowing that semisimplicity is symmetric, it is evident that the right and left
handed theories will run in parallel: just interchange “‘right” and “left,” and
reverse the order of factors that occur in any formula. As a matter of fact,
the equivalence between right and left theories can be proved rigorously
by switching from A to its opposite algebra. For this reason, we will restrict
our attention to algebras that are “right semisimple” in the sense of the
above definition. The adjectives “right” and “left” will modify the term
“semisimple” only when they are later needed to prove their own dispen-
sibility.

We begin the discussion of semisimple algebras with a reformulation of
our characterization of finitely generated semisimple modules. Another
definition is needed. An algebra A4 is called right Artinian (Noetherian) if A, is
Artinian (Noetherian). That is, the lattice of right ideals of A4 satisfies the
descending (ascending) chain condition. In contrast to semisimplicity, these
properties are not right-left symmetric. (See Exercise 2.)

Proposition a. An algebra A is semisimple if and only if A is right Artinian and
rad4, = 0.

Every algebra is finitely generated as a right or left module by the unity
element, so that this result is a corollary of Proposition 2.7.

A finite dimensional algebra A over a field F is automatically Artinian
since S(4,) is a sublattice of S(4p), and the finite dimensionality of A
implies that S(4,,) satisfies the descending chain condition of Proposition 2.6.
In this important case, 4 is semisimple if and only if the radical rad 4, is zero.
We will prove later that rad 4, = rad 44, so that this subset of 4 is an
ideal—the Jacobson radical.

The theory of modules over semisimple algebras is reduced to considering
the structure of the algebras, as our next result shows.

Proposition b. If A is a semisimple algebra, then every A-module is semisimple.
Moreover, the simple A-modules are isomorphic to minimal right ideals of A,
and all minimal right ideals of A are simple A-modules.

ProoF. Every free right A-module is isomorphic to a direct sum of copies of
A,. Therefore, free A-modules are semisimple by Corollary 2.4b. Since any
A-module is a homomorphic image of a free 4-module, the first part of the
proposition is a consequence of Corollary 2.4a. By Proposition 2.3, every
simple right 4-module is isomorphic to 4,/M, where M is a maximal right
ideal. The semisimplicity of A, guarantees that M has a complement N in
S(4,), according to Proposition 2.4. Since M is a maximal right ideal, N is
a minimal right ideal; and N =~ A ,/M. Thus, the minimal right ideals of 4
represent all isomorphism classes of simple modules. O
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Corollary. If A is a semisimple algebra, then every homomorphic image of A
is semisimple.

PROOF. Let 0: 4 — B be a surjective algebra homomorphism. The obser-
vations that were made in Section 2.1 show that B can be viewed as a right
A-module. Plainly, ann B, = ker 6. Bv the proposition, B is semisimple; say
B, = @, N,, where each N, is a simple A-module. Since ann N; 2 ann B, =
ker 6, it follows from Proposition 2.1 and Lemma 2.1a that N, is a simple
B-module. Therefore, B is semisimple. O

The class of semisimple algebras is also closed under finite products, as we
will see in the next section.

EXERCISES

1. Provethat a commutative R-algebra 4 is semisimple if and only if A4 is a finite product
of fields.

Q R
2. Let A be the set of all 2 by 2 matrices in |:0 [R} that is, all matrices [: x] with
Y

ae Q;x,yeR.
(a) Prove that 4 is a Q-subalgebra of M,(R).

0V
(b) Prove that if V' is a Q-subspace of R, then [0 0 :| is a left ideal of A4.
(c) Deduce from (b) that A4 is neither left Artinian nor left Noetherian.
QR
(d) Provethatevery right ideal of 4 has one of the following forms: 0, 4, [ ],

[O R} [0 x:IIRf fixed (x, y) € R? — {(0,0 e
0 R , or 0y or some fixed (x, y) € ,0)}.

(e) Deduce from (d) that A4 is both right Artinian and right Noetherian.

3. (a) Let A be an R-algebra, and n > 1. Prove that M, (A4) is right Artinian (Noethe-
rian) if and only if 4 is right Artinian (Noetherian). Hint. Show that 7+ ¢,/ and
N Zﬁ; 18N are inverse, order preserving correspondences between the right
ideals of M, (A4) and the submodules of ¢, , M, (A4).

(b) Deduce that if R is an integral domain that is not a field, then M,(R) is not
semisimple.

3.2. Minimal Right Ideals

Wedderburn’s structure theorem for semisimple algebras is derived from
Schur’s Lemma, plus some information on minimal right ideals. This section
collects some facts about these ideals.

Lemma a. Let A = A, + A, be the inner product of algebras A, and A,.
Suppose that M is a right ideal of A,.
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(1) M is a right ideal of A.

(i) E,(M) = E, (M).

(i) Hom ,(M,A) = Hom ,(M,A4,) = HomAl(M,Al).

(iv) S(MAl) = S(M,).

(v) M is a minimal right ideal of A if and only if M is a minimal right ideal of
A,.

(vi) Every minimal right ideal of A is a minimal right ideal of A, or a minimal
right ideal of A, .

Proor. The statements (i) to (v) are obtained easily from the observation that
MA, = A, A, = 0. The details of the argument are left for Exercise 1.
Suppose that N is a minimal right ideal of 4. Fori = 1,2, NA, = Nn 4, <
N, sothateither N = N n 4;  A;,or NA; = N n 4; = 0.It cannot be the
case that N4, = NA, = 0, because otherwise N = NA, + N4, = 0. O

Corollary a. If A | and A, are semisimple algebras, then A, + A, is semisimple.
Thus, the class of semisimple algebras is closed under finite products.

Lemma b. If N is a minimal right ideal of the algebra A, and x € A, then either
xN = 0, or xN is a minimal right ideal of A such that xN = N as A-modules.

Proor. The mapping y +— xy is a surjective 4-module homomorphism from
N to xN, so that the assertion is a consequence of Schur’s Lemma. O

Lemma c. Let N be a right ideal of the algebra A that satisfies N* = 0. If Pisa
simple A-module, then PN = 0. Moreover, N < rad 4.

Proor. Since P is simple and PN < P, either PN = 0 or PN = N. The
second option is impossible, because it leads to the contradiction P = PN =
PN? = ... = PN* = 0. In particular, if M is a maximal right ideal of 4,
then (4,/M)N = 0, thatis, N = M. Therefore, N = rad 4,, the intersection
of all maximal right ideals of A. O

Proposition. The following conditions are equivalent for minimal right ideals
N, and N, of the semisimple algebra A.

(i) N, @ N, as A-modules.
(i) NN, # 0.
(i) There is an element x € A such that N, = xN,.

PrRoOOF. If ¢: N, > N, is an A-module isomorphism, then ¢(N,N,) =
#(N,)N, = N} # 0 by Lemma c. Thus, N; N, # 0. Suppose that x € N, is
suchthat xN, # 0. Since N, is simple and xN, is a non-zero submodule of N, ,
it follows that N, = xN,. Finally, (i) follows from (iii) by Lemma b. O
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Lemma d. Suppose that A is a semisimple algebra,and A, = N, (—B - @ N,
with each N, a minimal right ideal of A. If N is a minimal right ideal of A, then
N = N, for some iwithl < i < m.

PRrOOF. Since A4, is semisimple, it follows from Proposition 2.4 that 4, =
N @ M for a suitable right ideal M. By Corollary 2.4a, M is also a semi-
simple A-module. The conclusion that N = N, for some i then follows from
Proposition 2.5 (or from the Jordan—Holder Theorem in this case). O

Corollary b. If A is a semisimple algebra, then the number of isomorphism
classes of simple A-modules is finite.

This corollary is a consequence of Proposition 3.1b and Lemma d.

EXERCISES
1. Prove the statements (i) through (v) in Lemma a.

2. Let A be a semisimple algebra, and suppose that 4 = 4, + --- + 4,, where each
of the algebras 4, is simple. Prove that if A, is a minimal right ideal of 4; and N,
is a minimal right ideal of A4; with i # j, then Hom ,(N,,N) = 0; in particular,
N, %N,

3. Anelement e of an algebra A is idempotent if e = e. Prove the following statements.

(a) A issemisimple if and only if every right ideal of A has the form eA4 for some
idempotent element e € 4.

(b) If 4 is semisimple and M < A,, then M? = M.

(c) If A4 is semisimple and I is an ideal of A, then there is a unique central
idempotent e (that is, e € Z(A)) such that I = e4. Conversely, if e is a central
idempotent, then eA is an ideal of A4.

(d) If1 =e; + --- + e, with each ¢; a central idempotent, and if e;e; = 0 for
i#j,thend =ed+ - + eA.

3.3. Simple Algebras

The term “‘semisimple algebra” suggests a generalization of simple algebras,
but in fact not all simple algebras are semisimple. (See Exercises 1 and 5.) In
this section we will characterize the simple algebras that are semisimple and
the semisimple algebras that are simple.

An algebra 4 is simple if A # 0 and I(4) = {0,4}.

Proposition a. For a simple algebra A, the following conditions are equivalent :

(i) A is semisimple;
(ii) A is right Artinian;
(iii) A has a minimal right ideal.
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PRroOF. (i) implies (ii) by Proposition 2.7, and it is evident that (ii) implies (iii).
Assume that N is a minimal right ideal of 4. Then AN =) _,xN is a
non-zero ideal of 4, so that 4 = ) __, xN because A is simple. By Lemma
3.2b, each non-zero xN is a simple right A-module. Therefore, 4 is semi-
simple by Proposition 2.4. O

Proposition b. For a semisimple algebra A, the following conditions are
equivalent :

(i) A is simple;
(ii) all minimal right ideals of A are isomorphic;
(iii) all simple right A-modules are isomorphic.

ProoF. By Proposition 3.1b, every simple right 4-module is isomorphic to a
minimal right ideal of 4, so that (ii) and (iii) are equivalent. Suppose that 4 is
simple, and that N, and N, are minimal right ideals of 4. Then AN, =
AN, = A, as in the proof of Proposition a. Hence, A(N, N,) = (AN,)N, =
AN, = A. In particular, N, N, # 0, so that N, @ N, by Proposition 3.2.
Conversely, assume that all of the minimal right ideals of 4 are isomorphic.
Let J be a non-zero ideal of 4. Since 4 is semisimple, there is a minimal right
ideal N of 4 such that N < J. The assumption that all minimal right ideals of
A are isomorphic, together with Proposition 3.2 and Proposition 2.4, yields
A =Y {xN:xe A} = J. Therefore, 4 is simple. O

Corollary a. Let A be a simple algebra, and suppose that N is a minimal right
ideal of A. If M is a right A-module, then there is a unique cardinal number o
such that M = @Pa N.

This corollary follows directly from Propositions a and b, and Proposition
2.5.

Corollary b. Let A be a finite dimensional, simple F-algebra, and suppose that
M, and M, are right A-modules. Then M, = M, if and only if dim; M| =
dim, M,.

Proor. Since A4 is finite dimensional, it is Artinian, and there is a minimal
right ideal N of A with dim N finite. By Corollary a, M, =~ Pa N and
M, = @B N for unique cardinal numbers « and B. Plainly, M; = M, if and
only if « = §; and since dimp N < oo, a = f is equivalent to dim, M, =
adim, N = fdim; N = dim; M,. O

ExAMPLE. Let 4 = M, (D) be the algebra of n by n matrices with entries in a
division algebra D. For 1 < i < n, define N, = ¢, 4.

(i) N, is a minimal right ideal of 4.

(i) A, = D=y M-
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(iii) N, = N, for alliand .
(iv) A, is simple and semisimple.
) E,() = D.

PROOF. Plainly, N, is a right ideal of 4. If « = ), , &,z with z, € D, then
;00 = Y &x2y. Hence, N; = Y, e, D = @, e, D, and A = @), 64D =
@ N;as D-modules. If B = ) , £,z € N, with some z; # 0, then B}, &;,z; ' w;)
= Y &,w, for arbitrary w, € D. That is, if 0 # € N,, then f4 = N,, so that
N;issimple by Proposition 2.3. Moreover, N, = ¢;4 = ¢;¢;4 = ¢;;N;; hence,
N; = N, by Proposition 3.2. It follows from (i), (i1), (iii) and Lemma 3.2d that
A, is semisimple and its minimal right ideals are isomorphic. Therefore, 4 is
simple by Proposition b. (This fact was proved more directly in Section 1.4.)
For z € D, the left multiplication mapping 4,0 = za is an 4-module en-
domorphism of N, and z— 4, is an injective homomorphism from D to
E (N). If ¢ e E (N), say &(e;) = ¢;8, then ¢(g;) = ¢(8;2;) = ¢(ey)e; =
&, Pe; = z¢;; for some z € D. Consequently, if « € N, then ¢(a) = ¢(e;0) =
(e )a = zeyoo = zoo = A,; thatis, ¢ = A,. Therefore, D =~ E ,(N). O

EXERCISES

1. Let ¥ be an F-space that is countably infinite dimensional. Define 4 = E (V).

Prove the following statements.

(@) I ={¢peAd:dimgV < oo} is a maximal proper ideal of A4, so that B = A4/I
is a simple F-algebra.

(b) B is neither right Artinian nor left Noetherian. Hint. Let V' = ¥V, o V| o
V, o ... be an infinite descending chain of subspaces such that dim; V}/V,,, = oo.
Denote M; = {¢peA4:¢(V) < V;} and N, = {p e 4: dim¢(V})) < o0} = I. Show
that (M, + /I o (M, + I)/I o (M, + I)/I > ... is an infinite descending chain
of right ideals in B, and N,/I < N,/I < N,/I < --- is an infinite ascending chain
of left ideals in B.

" (¢) Bis neither left Artinian nor right Noetherian.

2. Let A be an R-algebra, and M < A,. Prove the following statements.
(@) If B={xeA: xM < M}, then B is a subalgebra of 4 such that M < B
and E (4,/M} =~ B/M.
(b) If M = ed, where e is idempotent, then E (M) = ede.
(c) Use (b) to give a new proof of part (v) in the example.

3. A non-zero idempotent element e of the R-algebra A is called primitive if e cannot
be written in the form e = e, + e, with e, and e, non-zero idempotents such that
ee, = e,e; = 0. Prove that if 4 is semisimple, then the following conditions on
an idempotent element e € 4 are equivalent.

(i) eis primitive.
(ii) eA is a minimal right ideal of 4.
(iii) eAe is a division algebra.
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4. Let F be a field. Denote 4 = F (P F @ F. Define a bilinear multiplication 4 x
A > A by (a,,b,,c;) (a,,b,,¢,) = (a,a,,b,b,,a,c, + ¢,b,). Prove the following
facts.

(a) Aisan F-algebra.

(b) e = (1,0,0) is an idempotent element of A.

(c) The right ideal eA is not simple.

(d) E (ed) = F.
Thus, the converse part of Schur’s Lemma can fail even for finite dimensional 4-
modules, where A is a finite dimensional F-algebra.

5. The following example is called the algebra of quantum mechanics. It is simple and
Noetherian, but not Artinian. In addition, it is a non-commutative domain. Let
V = P<oitsR. Define &, n € Eg(V) by &(u,) = u,,yy/n + 1forn < w,nu,) =0
if n =0, and n(u,) = u,_,/n if n > 0. Let 4 be the subalgebra of Ey(V) that is
generated by £ and #. Prove the following facts.

(@) n& — in = 1,(= idy).

b) n&" — & = E"n,n" — &n" = 1""'n.

© 0"E™ = Y00 E7I"ICN ()1 (where (7) = 0 for j > m, () = 0 forj > n).

(d) As an R-space, 4 = @), ,<., E™1"R.

For0 # ¢ = Y &™q"a,,, define the (total) degree of ¢ to be Deg¢ = max{m +
n:a,, # 0}.

(e) If ¢, ¢, and ¢ + ¥ # 0, then Deg(¢ + ¥) < max{Deg¢,Degi/};if ¢ # 0
and § # 0, then ¢y # 0, and Deg ¢y = Deg ¢ + Degy.

For ¢ € 4, denote ¢, = n¢ — ¢én, 0, = ¢& — &o.

(f) &, and §, are linear transformations of 4 such that 6,((™n") = Em 1y"m and
0,(&m ™ = &y .

(g) A is simple. Hint. If ] is an ideal of 4, then 6/ = Tand 0,/ < I. If ¢ =
Y. &'nla;; has degree r + s, then 0305¢ = r!sla,.

Write A = ,<, R[E]n" = Up<p 4, Where 4, = Y, R[E]n™ For0 # pe A,
define deg,¢ = min{n: ¢ € 4,}. Thus, deg,¢ = n if and only if ¢ = nn" + ¢,
where 0 # ne R[] and ¢ = Qor deg, ¥ < n.

(h) If r e R[&], then n"n = wn" + ¥, where = 0 or deg, ¥ < n.

(i) A is right Noetherian. Hint. Copy the proof that the ring of polynomials
with coefficients in a Noetherian domain is Noetherian.

3.4. Matrices of Homomorphisms

In preparation for the proof of the Wedderburn theorem, we introduce a
useful generalized matrix notation.

Let A be an R-algebra, and suppose that (M, M,, ..., M) is a sequence
of right 4-modules. Denote by

Hom ,(M,,M,), Hom ,(M,,M,), ..., Hom (M, ,M,)

Hom ,(M,,M,), Hom ,(M,,M,), ..., Hom (M,,M,)
[Hom ,(M;,M)] = e
Hom ,(M,,M,), Hom ,(M,,M), ..., Hom (M, M,
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the set of all n by n matrices

¢11 ¢12 T ¢1n
4’21 ¢22 e ¢2n .
¢n1 ¢n2 e ¢nn

in which ¢;; € Hom,(M;, M,).
Define addition and scalar multiplication componentwise in
[Hom, (M;,M))].

Define multiplication in [Hom,(M;, M) ] by the usual rule of matrix multi-
plication: [¢;][¥] = [xa], where z, = 25=1 G € Hom, (M, M)).

Proposition. [Hom ,(M;,M))] is an R-algebra that is isomorphic to
EM, PMP - PM,).

ProoF. Denote the direct sum M; P M, P --- P M, by M. Let 7;:
M — M;and k;: M; - M be the projection and injection homomorphisms
associated with this direct sum. Then

Yo Ky = idy, and 1)
mk; = 0 when i # j; mKk; = ide. )

Define mappings a: E (M) — [Hom ,(M;,M))] and f: [Hom ,(M;,M))] —
E (M) by a(¢) = [m;¢x;] and B([¢;]) = D7 ;=1 k:¢;m;. A straightforward
calculation using (1) and (2) shows that fa is the identity mapping on E ,(M)
and af is the identity on [Hom (M;,M,)]. Moreover, a is an R-algebra
homomorphism. For example, a(¢y) = [m,dpyi,] = [m,0 Q- k¥, ] =
D7y (mpr) (mypic)] = o)) by (1). Thus, o is an isomorphism. [

Corollary a. If 4 is an R-algebra, and M is a right A-module, then
E,(@nM) = M,E,(M)).

Corollary b. If A is an R-algebra, and M is the free right A-module on n
generators, then E (M) = M, (A).

Proor. Since M = (P, 4,, Corollary a yields E (M) =~ M,(E,(4,)); and
E,(4,) = A by Proposition 1.3. O

Corollary c. If A is an R-algebra, and if M,, M,, ..., M, are right A-modules
such that Hom, (M, ,M) =0 if i # j, then E, (P}, M) = E, (M, +
E,(My) + - + E,(M).
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PROOF. By the proposition, E A(@)-; M) is isomorphic to

[Hom,(M,,M;) Hom,(M,,M,) --- Hom,(M, M,)
Hom, (M,M,) Hom,(M,,M,) ... Hom,(M,M,)
| Hom,(M,M,) Hom,(M,,M,) ... Hom(M,,M,)
[E,(M,)

E/(1) = E (M) +E (M) + - +E (M),
L EA(Mn)

(]

EXERCISE

Let M=M P ---P M, and N = N, @ - @ N, be A-modules. Define
[Hom ,(M;,N)] to be the set of all m by n matrices [o; ] with ¢,; € Hom ,(M,,N).
Define addltron and scalar multiplication componentwise in [Hom AM,N)]. Prove
that [Hom ,(M;,N)] = Hom (M, N). Use this result to deduce that 1fHomA(P 0)=0,
then HomA((—BnP @EmQ) = 0forall m,neN.

3.5. Wedderburn’s Structure Theorem
We are ready to assemble the parts of the main result of this chapter.

Theorem. Let A be a right or left semisimple R-algebra.

() There exist natural numbers n,, ..., n, and R-division algebras
Dy, ..., D, such that

A= M, (D) + - + M(D). )

(i) The pairs (n;,D,), ..., (n,,D,) for which (1) is satisfied are uniquely
determined (to isomorphism) by A.

(iii) Conversely, ifn,, ...,n,e Nand Dy, ..., D, are division algebras over

R, then Mnl(Dl) + -+ M, (D,) is a right and left semisimple R-
algebra.

PROOF. (i) If 4 is right semisimple, then 4, = M, @ --- @ M,, where M,
is a direct sum of ; copies of a minimal rrght 1deal N, of 4, chosen so that N, is
not isomorphic to N; if i # j. By Lemma 2.5c, Hom AM, M) = 0if i # j.
The isomorphism (l) follows from Proposmon 1.3, Corollary 3.4c, and
Corollary 34a: AzEA4)=E M)+ - +EM) =M, .(Dy) +

-+ M,(D,), with D, = E (N, a division algebra over R by ‘Schur’s
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Lemma. The same result is obtained for left semisimple algebras by using
minimal left ideals and right handed endomorphisms.

(ii) Assume that 4 = 4, + .- + A, where 4, =~ M, (C) and C, is a
division algebra over R. By Example 3.3 and Lemma 3.2a, 4, is isomorphic as
an A-module to a direct sum of k; copies of a minimal right ideal P, of 4, with
P, c 4;, and C; = E,(P) = E (P). Since each 4; is an ideal of 4 that
contains F;, Proposition 3.2 implies that P, ¢ P;if i # j. The uniqueness of
the decompositions of direct sums of simple modules that was proved in
Proposition 2.5 gives the desired conclusions s = r and (for a suitable
ordering) k; = n;, P, @ N, as A-modules, and C; = E,(P) = E,(N)) = D,.

(iii) By Example 3.3 and its left analog, each of the R-algebras M, (D,) is
right and left semisimple. Therefore, M, (D,) + --- + M, (D,) is right and
left semisimple by Corollary 3.2a. O

Parts (i) and (iii) of the theorem fulfill our promise to show that the classes
of right semisimple and left semi-simple algebras coincide. Moreover, for
simple algebras, the right and left descending chain conditions are equivalent.

Corollary a. 4 right or left Artinian algebra A is simple if and only if A ~ M (D)
for a natural number n and a division algebra D. In this case, A determines n
uniquely and D to within isomorphism.

For some fields F, the only finite dimensional division algebras over F are
commutative. In this case, the structure theorem gives somewhat sharper
conclusions about finite dimensional semisimple algebras: the D, are
necessarily fields. The optimum result is obtained when F is algebraically
closed.

Lemma. Let F be an algebraically closed field. If D is a finite dimensional
division algebra over F, then D = F.

PROOF. Let dim; D = m. If x € D, then the sequence 1, x, ..., x™is linearly
dependent, so that there is a monic polynomial ® € F[x] of minimal degree
such that ®(x) = 0. Since D is a division algebra, the fact that the degree of
®@ is minimal implies that @ is irreducible over F. Consequently, ® = x — a
for some a € F, because F'is algebraically closed. Thatis, x = a € F. O

Corollary b. Let F be an algebraically closed field. A finite dimensional F-
algebra A is semisimple if and only if A ~ M, (F) + --- + M, (F), where
1 <n, < ... < n, are uniquely determined b)lz the isomorphism type of A.
Moreover, A is simple if and only if A =~ M (F), where dim, 4 = n®.

This corollary is a consequence of the lemma and the structure theorem.
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EXERCISES

1. Let A = A, + --- + A, be a semisimple algebra with each 4; simple. Prove that
the ideals of A are the sums Y, ; 4;, where J < {1,2, ...,r}.

2. Let A = A, + --- + A, be a semisimple algebra with each A4, simple. For each

index i, let e, be a central idempotent element of 4 such that 4, = e, 4. (See Exercise
3, Section 3.2.) For a right 4-module M, denote M, = Me,. Prove the following
statements.

(@) If i # j, then e;e; = 0.

) M;<M,andM =M@ - PM,

(c) ann M; 2 4;forallj # i

(d) M is a faithful 4-module if and onlyif M; # Ofor1 < i <r.

(e) M is a faithful 4-module if and only if every minimal right ideal of 4 is
isomorphic to a direct summand of M.

3. Prove that if 4 is a semisimple algebra and M is a finitely generated 4-module, then
E (M) is semisimple.

3.6. Maschke’s Theorem

The Wedderburn Structure Theorem is an internal characterization of
semisimple algebras. The theory of the radical that will be developed in
Chapters 4 and 11 shows how important semisimple algebras are for the
investigation of general algebras. In this section it will be shown that semi-
simple algebras are also encountered in a natural setting. They provide the
foundation of the classical theory of group representations.

Maschke’s Theorem. Let G be a finite group, and suppose that F is a field. The
group algebra FG is semisimple if and only if the characteristic of F does not
divide the order of G.

PRrOOF. Suppose that char Fdoes notdividen = |G|. The crucial consequence
of this hypothesis is that # (identified with n - 1 € FG)is a unit. By Proposition
2.4, itis sufficient to prove that if M is a right ideal of FG,then FG = M (P N
for some right ideal N of FG. This conclusion is obtained by proving that
there is an FG-module homomorphism p: FG — M such that pu = u for all
ue M. In fact, given such a p, N = Kerp = (1 — p)M is a right ideal such
that M " N = 0and M + N = FG. As a first approximation to p, we use
the fact that M is a subspace of FG (with FG considered as a vector space over
the field F) to get an F-space homomorphism n: FG — M satisfying nu = u
for all u € M. Define p by “averaging” © over G. Explicitly, for u € FG, let
pu = (3, .onx)x )n~". Clearly, p is an F-space homomorphism. How-
ever, more is true. For any yeG, pwy) = QO onwyx)x Hn™! =

(Qrea () () DI = (Lyreyo=6 7(yx) (rx) Hn ™)y = p)y.



52 3 The Structure of Semisimple Algebras

Therefore, p is an FG-module homomorphism. Finally, suppose that u € M.
Then ux € Mforall x € G since M is arightideal. Therefore, since n]M = id,,,
we have pu = O onx)x Hn™ = Q. ex)x™Hn™ = QY qunt =
(un)n~! = u. Now consider the case in which the characteristic of F (which is
necessarily a prime) divides the order n of G. This hypothesis has the con-
sequence that the sum of » copies of an element of FG is zero. Let e =
YucgX€FG — {0}. Theney =) _oxy =)  -qxy =eforall yeG.
Consequently, e* =) _cey =) e =en=0. Moreover, the right
ideal N of FG that is generated by e coincides with eF. Hence, N> = 0. It
follows from Lemma 3.2c that 0 # N < rad FG. Therefore, by Corollary
3.1a, FG is not semisimple. O

The implications of Maschke’s Theorem will be explored superficially in
the exercises of this section and various sections of later chapters. There are
many excellent text-books and monographs that offer detailed expositions of
relation between groups and algebras. The encyclopedic work [24] of Curtis
and Reiner is recommended with special warmth.

Classical group representations of a finite group G make use of the com-
plex group algebra CG. However, many results of this theory can be genera-
lized to representations that are defined in terms of a group algebra FG where
F is any algebraically closed field whose characteristic does not divide the
order of G. With this hypothesis, it follows from Maschke’s Theorem and
Corollary 3.5b that FG = M, (F) + -+ + M, (F) for suitable natural
numbers n,, ...,n,. These numbers are the degrees of the irreducible
representations of G, that is, the dimensions of the simple FG-modules. These
degrees are determined by the structure of G, but there is no simple formula
that produces the n; from elementary invariants of G. On the other hand, the
number r of simple factors of FG coincides with a standard numerical
property of G.

Corollary. Let G be a finite group whose order is not divisible by the charac-
teristic of the algebraically closed field F. The group algebra FG is isomorphic to
a product M, (F) + - -+ + M, (F) of full matrix algebras over F, where r is
the number of conjugate classes in G.

By virtue of Maschke’s Theorem and Corollary 3.5b, the only part of this
corollary that requires attention is the assertion that r is the number of
conjugate classes in G. This conclusion follows from two observations: as an
F-space, the center Z(M,,I(F Y+ -+ M, (F))is r-dimensional; dim, Z(FG)
is the number of conjugate classes in G. The first of these assertions is the
content of Exercise 1. To prove the second claim, let K,, K,, ..., K, be
the distinct conjugate classes in G. Thus, J # K, = G; and if x;€ K|,
then K, = {y'x;y:ye€G}. Denote z;=)Y, _xx€FG An element
w = Y .cXa, € FG belongs to the center of FG if and only if y"'wy = w for
all y € G. An easy calculation shows that this condition imposes the require-
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ment a,, -1 = a, on the coefficients of w. It follows that w € Z(FG) exactly
when w can be written asa sum Y 7, z;b, with b, € F. In other words, Z(FG) =

™, z;F, so that dimension of Z(FG) is m.

EXERCISES

1. Prove the following statements.
(@) If 4,, A,, ..., A, are algebras, then Z(4, + 4, + --- + 4,) = Z(4)) +
Z(A,) + - + Z(4,).
(b) Z(M,(F)) = 1,F.
© dim,Z(M, (F) + M, (F) + - + M, (F)) = r.

2. Prove that for every finite group G, ZG is not semisimple. Hint. Show that if p is a
prime divisor of |G |, then pZG is an ideal of ZG such that ZG/pZG is not semisimple.

3. Assume that char F does not divide the order of the finite group G. Denote 4 = FG.
Fora subgroup Hof G, defineey = (3., x)n!, wheren = | H|. Prove the following
statements.

(a) ey is an idempotent element of A such that xe, = eyx = e, for all xe H
and eyx # ey # xeyforallxe G — H.

(b) If H is a normal subgroup of G, then e, € Z(4) and ey A is isomorphic to
the group algebra over F of G/H.

(c) If G is not the one element group, then A4 is not simple. Hint. Show 4 =
egA + (1 — eg)A, and eg4 = F.

4. Let G be the Klein 4-group {1,x,y,z} where x> =3> =z =1, xy = yx = z,
xz=zx =y, yz =zy = x. Thus, G = Z/2Z x Z/2Z. Prove that if F is a field
with char F # 2, then FG =~ F + F + F + F. Hint. Consider

=11 +x+y+2,e,=01/H1+x—-y— 2,
e, =1/H1—-x+y—2,e;=01/H)1 —x—y+ 2).
—-1,—-1

5. Let H = < > be the quaternion algebra of Hamilton. The subgroup G of

H° consisting of 1, —1, i, —1i, j, —j, k, —K is called the quaternion group. Prove that
RG ~ H + R + R 4+ R + R. Hint. Show that the center K of G is {1,—1}, G/K is
isomorphic to the Klein 4-group, and (1 — e,)RG =~ H.

Notes on Chapter 3

This chapter offers a fairly traditional presentation of a classical theorem.
Wedderburn’s Structure Theorem is such a beautiful result that it needs no
slick embellishments. We have tried to give as clean a proof as possible.
Putting aside the uniqueness portion of the theorem, the proof of the
Wedderburn theorem is remarkably easy : it depends on (1) the definition of a
semisimple algebra, (2) the matrix notation for endomorphisms of direct
sums (Section 3.4), and (3) Schur’s Lemma, a triviality by modern standards.

It is unfair to give Wedderburn all of the credit for the structure theorem.
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In 1893, T. Molien published a result that is essentially the Wedderburn
Theorem for finite dimensional complex algebras. Wedderburn’s paper [76]
on the structure of semisimple algebras appeared in 1907. It treated finite
dimensional algebras over arbitrary fields. In 1927 Emil Artin extended
Wedderburn’s result to rings that satisfy the ascending and descending chain
conditions. Finally, in 1939, C. Hopkins showed that the ascending chain
condition is a consequence of the descending chain condition, which gives the
present form of the structure theorem. Because of its historical background,
the structure theorem is sometimes called Molien’s Theorem or the Artin—
Wedderburn Theorem. A colleague has facetiously suggested using the term
“W.H.A.M. Theorem.” However, the name ‘“Wedderburn’s Structure
Theorem” is universally recognized, and it will be used in this book.



CHAPTER 4
The Radical

Wedderburn’s Theorem shows that the class of semisimple algebras is very
limited. On the other hand, Proposition 3.1a suggests that Artinian algebras
are semisimple “up to a radical.” In fact, this is the case. All that is missing
from a proof is the result that rad 4, is an ideal. We will establish this fact
in Section 4.1. The rest of the chapter is concerned with properties and
characterizations of the radical, a theorem about nilpotent algebras, and
the radicals of group algebras.

4.1. The Radical of an Algebra

A fundamental fact about the radical of an algebra is that it is an ideal. We
begin with a result concerning the radical of a module. Recall that the
radical rad M of an A-module M is the intersection of all submodules N
of M such that M/N is simple.

Lemma. Let M, and M, be right A-modules. If ¢ € Hom ,(M,,M,), then
¢(rad M) = rad M,, and ¢ induces a homomorphism of M,[rad M, to
M,[rad M,.

PROOF. If N < M,, then ¢ induces an injection of M,/¢"*(N) to M,/N. In
particular, if M,/N is simple, then either ¢™'(N) = M, or M,/¢p™"(N) =
M,/N is simple. In both cases, $"*(N) = rad M,. Thus, ¢ '(rad M) =
rad M, ; that is, ¢(rad M,) < rad M,. The last statement is obvious. O

Proposition. If A is a non-trivial R-algebra, then rad A , is a proper (two sided)
ideal of A.

55
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Proor. The mapping y — xy is an A-module endomorphism of A4 for each
x € A. By the lemma, x(rad 4,) = rad 4, thatis, rad 4, < A. Since A4 has
a unity element, it follows from Zorn’s Lemma that there is a maximal right
ideal M of A. Consequently, 4 ,/M is simple. Thus, rad4, = M < A4, so
that rad 4, is a proper ideal of 4. O

Corollary a. If A is a right Artinian R-algebra, then A/rad A , is a semisimple
R-algebra.

ProoF. It follows from Corollary 2.4a that A/rad 4, is a semisimple 4-
module,and therefore it is also semisimple as an (4/rad 4,)-module (by
Proposition 2.1) According to Lemma 2.7a, rad(d4/rad 4,) = 0. Con-
sequently, A/rad 4, is a semisimple R-algebra by Proposition 3.1a. O

It is worth pointing out that this corollary makes sense by virtue of the
fact that rad 4 , is an ideal, so that 4/rad 4, is an algebra.

There is another consequence of the lemma that will be needed in the
next section.

Corollary b. If M is a right A-module, then M(rad A,) < rad M.

ProoF. For each u € M, the mapping x — ux is an A-module homomorphism
from 4, to M, so that by the lemma u(rad 4,) < rad M. O

EXERCISES

1. Let A be an algebra. Prove that a simple 4-module is a simple 4/rad 4,-module,
and conversely every simple 4/rad 4 ,-module is a simple 4-module.

2. (a) Prove that if A is a right Artinian algebra, and M is a right 4-module, then
rad M = M(rad A)). Hint. Corollary 4.1b gives one inclusion; the reverse inclusion
is obtained from the results in Sections 2.7 and 3.1.
(b) Prove that socM = {ue M: u(rad 4,) = 0}.

4.2. Nakayama’s Lemma

Several equivalent statements are called ‘“Nakayama’s Lemma.” This section
presents a couple of the most familiar versions of this keystone of ring
theory.

The radical of a module is analogous to the Frattini subgroup of a group,
and Nakayama’s Lemma is a variant of the standard characterization of the
Frattini subgroup. The connection between these topics is clear from the
lemma of this section.
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Lemma. For an element u of an A-module M, the following conditions are
equivalent.

(i) uerad M.
(ii)) If N < M is such thatud + N = M, then N = M.

PRrOOF. If u ¢ rad M, then there is a submodule N of M such that M/N is
simple and u¢ N. In this case, u4 + N = M # N. Therefore, (i) is a
consequence of (ii). Conversely, suppose that N < M exists with the property
uAd + N = M # N. Plainly, u ¢ N. By Zorn’s Lemma, there is a submodule®
P of M containing N that is maximal with the propertyu ¢ P.If P =« Q < M,
thenu e Q, so that M = ud + N = Q. Hence, M/P is simple, rad M < P,
and therefore u ¢ rad M. O

Nakayama’s Lemma for Modules. Suppose that P is a submodule of the
A-module M. Assume that P satisfies

for all submodules N of M,if P + N = M, then N = M; (6]

then P < rad M. Conversely, if P < M, P < rad M, and either P or M is
finitely generated as an A-module, then P satisfies (1).

PRrROOF. Suppose that there exists u € P — rad M. By the lemma, there is a
submodule N of M such that N # M = ud + N < P + N. To prove the
converse, suppose that P < rad M, and N < M is such that P + N = M.
If M is finitely generated, then there is a finitely generated submodule Q of
P such that Q + N = M. Thus, in all cases it can be assumed that P is
finitely generated—say P = u;4 + u,A + --- + u,A. By using the lemma
repeatedly, we obtain the desired conclusion M = u; 4 + u,A + --- +
uA+N=u,A+ - +uA+N=.-- =ud+ N=N. O

Nakayama’s Lemma for Algebras. For a right ideal P of the R-algebra A,
the following conditions are equivalent.

(i) P=radd,.
(ii) If M is a finitely generated right A-module, and N < M satisfies N +
MP = M, then N = M.
(ili) G = {1 + x:x € P} isa subset of A°.

ProoF. The property (ii) follows from (i) by Nakayama’s Lemma for
Modules, and Corollary 4.1b. In order to deduce (iii) from (ii), let x € P.
Denote y = 1 + x. It followsthatl = y — xe y4 + P,sothatyd + P =
A,. Since A, is finitely generated by 1, it follows from (ii) that y4 = 4.
In particular, 1 = yz = z 4+ xz for some z € 4. Consequently, z =1 —
xz € G because P < A, and x € P. This argument shows that every element
of G has a right inverse in G. Therefore, G is a group and G = A°. For the
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deduction of (i) from (iii), let x € P. By the lemma, it suffices to show that
if the right ideal N of A4 satisfies x4 + N = A, then N = A. The hypothesis
xA + N = A implies that 1 = xz + y for some ze 4 and ye N. Thus,
y =1 + x(—z) with x(—z)e P. By (iii), y € A°. Therefore, N = 4, as
required. dJ

By taking N = 0 and P = rad 4,, we obtain a corollary that is often
called Nakayama’s Lemma.

Corollary. If M is a finitely generated right A-module such that M(rad 4 )
=M, then M = 0.

EXERCISES
1. Show that the statement in Corollary 4.2 implies Nakayama’s Lemma for Algebras.

2. Let A4 be an algebra, and suppose that M and N are right 4-modules with N finitely
generated. Prove that if ¢ € Hom ,(M,N) induces a surjective homomorphism of
M/M(rad A4,) to N/N(rad 4,), then ¢ is surjective.

3. Prove that if 4 is an R-algebra that is finitely generated as an R-module, then
A(rad Rp) < rad 4,. Hint. Show that for any finitely generated A-module M, if
M(A(rad Rg)) = M, then M = 0, and apply Nakayama’s Lemma.

4. Let A be the Z-algebra {a/n: a€ Z,ne N, pyn}, where p is a fixed prime number.
Let Z(p™) be the group G,/Z, where G, = {a/p': a€ Z, i e N}. Prove that rad 4, =
pA, and that Z(p®) is a non-zero 4-module such that Z(p*)(rad 4,) = Z(p™).

4.3. The Jacobson Radical

We are now in a position to prove an assertion that was made in Section 3.1.

Lemma a. If A is an R-algebra, then rad A, = rad 4A.

ProoF. By the left hand analogues of Propositions 4.1 and 4.2,rad ,4 < A,,

and {1 + x:xerad 44} < A°. Nakayama’s Lemma implies that rad ,4

< rad 4,. By a symmetrical argument, rad 4, < rad ,4. O
The time has come to assign the radical its proper name and notation.

Definition. For an R-algebra A, the Jacobson radical of Ais J(4) = rad 4 ,.

Proposition. The Jacobson radical of an algebra A is a two sided ideal J(A)
of A that satisfies

(i) J(4) = (" {M: M = maximal right ideal of A},
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() J(A) = (\{M: M = maximal left ideal of A},
(iii) J(4) = {xed:1 + xye A° forally € A},
(iv) J(4) = {x€Ad:1 + yxe A° forall y € A}.

This proposition is a direct consequence of Lemma a and Nakayama’s
Lemma. Another characterization of the Jacobson radical is given in
Exercise 4.

Throughout the rest of this book, the expression “‘radical of 4 will refer
to the Jacobson radical of the algebra 4. Other radicals can be defined for
rings and algebras, but they will not concern us.

There is a useful variation of the proposition.

Corollary a. If M is a right or left ideal of the algebra A such that 1 + x € A°
forall xe M, then M < J(A). If also rad A/M = 0, then M = J(A).

Proor. The hypothesis that M is a right or left ideal and 1 + x € A° for all
x € M implies that M < J(A) by the proposition. On the other hand, if
rad A/M = 0, then J(4) = M by Lemma 2.7a. O

An element x of an algebra A4 is called nilpotent if there is a natural number
n such that x" = 0. The next corollary generalizes Lemma 3.2c.

Corollary b. If M is a right (or left) ideal of the algebra A such that every
element of M is nilpotent, then M < J(A4).

ProoF. If x" =0, then (1 + x)(} o<icn(—%)) = Qocicn (—2))(1 + x)
= 1, so that Corollary b is a special case of Corollary a. O

There are a few general properties of the Jacobson radical that are often
used. Here are two of them; another one is given in Exercise 2.

Lemma b. Let A and B be R-algebras.

() If6: A —> B is a surjective algebra homomorphism, then 0(J(A4)) < J(B).
(i) J(A4 + B) = J(4) + J(B).

Proor. The inclusion (i) is a consequence of Lemmas 4.1 and 2.1a: 8(J(4)) =
6(rad 4,) < rad B, = rad By = J(B). Applying this result to the projec-
tions of 4 + B to A and B gives J(4 + B) = J(4) + J(B). On the other
hand, if x € J(4) and y € J(B), then 1, + x € 4° and 1, + y € B° by the
proposition. Therefore, (1,,1) + (x,y) is a unit of 4 + B. Since J(4) +
J(B) is an ideal of 4 + B, it follows from Corollary a that J(4) + J(B) =
J(4 + B). O

We end this section with an example of a class of algebras that have zero
radical.
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ExampLE. If M is a semisimple 4-module, then J(E,(M)) = 0. When M is
also finitely generated, E ,(M) is even semisimple by Exercise 3 of Section
3.5; and the radical is certainly 0 in this case. To prove the assertion in
general, let 0 # ¢ € E (M). If follows easily from Proposition 2.4 that
there is a simple submodule N of M such that ¢(N) # 0. By Schur’s Lemma,
¢ maps N isomorphically to ¢(N). Another application of Proposition 2.4
gives the existence of 7€ E, (M) such that 7> = n and n(M) = ¢(N).
Let Y = (¢|N) 'n. Plainly, Y €e E,(M) and ¢y = n. Since 7 # 0 and
n(l — ¢y) = 0, it follows that 1 — ¢y is not a unit of E,(M). Therefore,
¢ ¢ J(E ,(M)) by the proposition.

EXERCISES

1. Determine J(4) for the following choices of the algebra A.
(@) 4 is a (commutative) principal ideal domain with infinitely many prime
ideals.
(b) 4 is a commutative integral domain with a finite set {M,, ..., M,} of
maximal ideals.
(c) A={a/@n - 1):aeZ,neN}.
(d) 4 = Z/nZ, where ne N.

2. Prove that if 4 is an algebra, then J(M,(4)) = {[x;] € M (4): x, e J(4) for
I <i,j < n}. Hint. Note that if « = [x;] = ¥, je;x;, then Y7_, g0e, = 1,x,.
Show that if 1,x € J(M,(4)), then x € J(A), and if x € J(4), then &x € J(M,(A4))
for all i and .

3. Prove that if 4 is an R-algebra such that 4° U {0} is a division algebra, then
J(4) = 0. Deduce that if D is a division algebra, then J(D[x,, ...,x,]) = 0 and
J(D{x{, ..., x,}) = 0.

4. An algebra A is primitive if there is a faithful, simple A-module. An ideal K of an
algebra 4 is primitive if the factor algebra A4/K is primitive. Prove the following
statements.

(a) If M is a maximal right ideal of 4, then ann(4,/M) is a primitive ideal of A.
(b) J(4) is the intersection of all primitive ideals of A.

5. Prove the following statements for an algebra A.
(a) If 4 is simple, then A is primitive.
(b) If 4 is commutative and primitive, then 4 is a field.
(©) If4 = Eg(V), where Vis an infinite dimensional F-space, then A is primitive,
but not simple.

6. Let {4;:i e J} be a set of non-trivial R-algebras. Denote by m; the canonical projec-
tion of the product algebra [ [;_, 4, onto 4;. A subalgebra B of [];., 4, is called a
subdirect product of {4;: ie J} if n(B) = A, for all jeJ. Prove: A is isomorphic
to a subdirect product of {4;: i e J} if and only if there is a set {K;: i € J} of ideals
of 4 such that 4/K; = 4, for all ie J, and (., K; = 0. Deduce that J(4) = 0 if
and only if A4 is isomorphic to a subdirect product of primitive algebras.
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4.4. The Radical of an Artinian Algebra

For most rings, the problem of finding the radical lies somewhere between
difficult and impossible. However, the radical of a finite dimensional algebra
over a field (or more generally of an Artinian algebra) is more accessible.

Proposition. If A is a right or left Artinian algebra, then there is a natural
number k such that J(A)* = 0.

PROOF. J(A4) 2 J(4)? 2 J(A4)® = - - - is a descending sequence of two sided
ideals, so that by the right or left Artinian property, there is a natural number
k such that J(4)* = J(A)**!. If we could assume that J(4)* is finitely
generated as an 4-module, it would then follow from Corollary 4.2 that
J(A)* = 0. Thus, if 4 is Noetherian as well as Artinian, then the proposition
is an easy application of Nakayama’s Lemma. The fact is that 4 must be
Noetherian, as we will show in the next section. However, the proof uses the
result that J(4)* = 0 for some k € N, so that it is necessary to base our
argument solely on the descending chain condition on (say) the right ideals
of A. Assume that J(4)* # 0. In particular, the set of non-zero right ideals
M of A such that MJ(A4) = M includes J(4)*. Therefore, there is a minimal
M with these properties. Since M = MJ(A) = MJ(A)* = --- = MI(A),
there is some x € M such that xJ(4)* # 0. Plainly, xJ(A4)* is a right ideal
of A that is contained in M, and (xJ(4)*)J(4) = xJ(A)*** = xJ(A)*. From
the minimality of M, it follows that M = xJ(4)* < x4 = M. Therefore,
M is finitely generated, which contradicts Nakayama’s Lemma, because
0# M= MIA). O

Corollary. Let A be a right or left Artinian algebra. For a right or left ideal
M of A, the following conditions are equivalent.

(i) M < J(A).
(ii) There is a natural number k such that M* = 0.
(iii) All of the elements in M are nilpotent.

PRrooF. The fact that (i) implies (ii) is a consequence of the proposition, and
it is evident that (ii) implies (iii). Finally, (i) follows from (iii) for any algebra
by Corollary 4.3b. O

It follows from the corollary that every element in the Jacobson radical
of a right or left Artinian algebra is nilpotent. The converse is not true:
nilpotent elements need not belong to the radical. For example, if n > 1,
then the matrix algebras M, (D) (D a division algebra) have many nilpotent
elements (for example, all ¢; with i # j are nilpotent), but J(M, (D)) = 0.
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EXERCISES

1. Let F be a field.
(a) Let 4 be the F-algebra of row-finite, infinite matrices

ay; Q12 43
a1 4;; Q43

a3y 4d3; A4zz " |,

where g;; € F for all i and j, and for all i, there exists m such that a;; = 0 for all
j > m. Prove that J(4) = 0.

(b) Let B be the subalgebra of A that consists of the matrices with zeros below
the main diagonal, that is, a; = 0 if i > j. Prove that J(B) is the set of matrices
in B that have zeros on the main diagonal, that is, a; = 0 for all i. Show that every
element in J(B) is nilpotent, but J(B)* # 0 for all ke N.

(c) Let C be the algebra of all infinite matrices

Ay 4y; ay3
0 ay ay
0 0 ay |,

where a;; € F, and the elements below the main diagonal are zero. These matrices
are not assumed to be row finite. Prove that J(C) consists of the matrices in C
that have zeros on the main diagonal. Show that not all elements of J(C) are
nilpotent.

2. Let A4 be a right Artinian algebra.
(a) Prove that soc(,4) = ann(J(4),) and soc(4,) = ann(,J(4)).
(b) Show that the algebra 4 that was defined in Exercise 4 of Section 3.3 is
such that soc(,4) # soc(4,).

3. An ideal, right ideal, or left ideal I in an algebra A is nilpotent if I" = 0 for some
n > 1. This property of I will of course imply that the elements of 7 are nilpotent,
but not conversely. (See Exercise 1(b).) If I has the property that all of its elements
are nilpotent, then 7 is called nil. The purpose of this Exercise is to outline a proof
that for Noetherian algebras all nil ideals are nilpotent.

(a) Show that if the R-algebra 4 contains a non-zero nilpotent right ideal 7,
then A1 is a non-zero nilpotent two sided ideal.

(b) Deduce that if 4 contains a maximal nilpotent ideal I, then 4/I contains
no non-zero nilpotent right ideals.

(c) Prove that if x4 is a nil right ideal, then Ax is a nil left ideal, and conversely.

(d) Let Ax be a nil left ideal. Let y € Ax be such that ann y is maximal in {ann z:
ze Ax — {0}}, where anny = {we A: yw = 0}. Prove that (4y)? = 0. Hint. Note
that by maximality, either wy = 0 or annwy = anny for w € 4. Using the fact that
Ay is nil, show that this implies ywy = 0 for all w € 4.
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(e) Deduce from (c) and (d) that if the Noetherian algebra 4 contains a non-zero
nil right ideal, then A contains a non-zero nilpotent right ideal.

(f) Prove Levitzki’s Theorem. If A is a right Noetherian algebra, then every nil
right or left ideal of 4 is nilpotent.

(g) Let 4 = F[x,,X;,X,, ... | be the F-algebra of polynomials in the commuting
indeterminants Xy, X,, X,, . ... Let I be the ideal of 4 that is generated by x3, x3,
x3, .... Prove that 4/ contains nil ideals that are not nilpotent.

4.5. Artinian Algebras Are Noetherian

One of the nicest applications of Proposition 4.4 is the result given as the
heading of this section. We will actually prove a more general statement
concerning modules.

Proposition. Let A be a right or left Artinian algebra. If M is an Artinian
A-module, then M is Noetherian.

Proor. Denote J = J(A). Since A is Artinian, there is a natural number &
such that J* = 0 by Proposition 4.4. In particular, there is a smallest n € N
such that MJ" = 0. (We consider the case of right A-modules; the proof
for left modules is obtained by reflection from right to left.) Proceed by
induction on n. If n = 0, then 0 = MJ® = MA = M; and the zero module
is plainly Noetherian. Let n = 1. The condition MJ = 0 means that M can
be considered as a module over the algebra A/J. Since 4/J is semisimple by
Corollary 4.1a, every right (left) 4/J-module is semisimple by Proposition
3.1b (using the fact that right and left semisimplicity coincide). Therefore,
M, is Noetherian by Proposition 2.6. Since S(M,) = S(M,;;) by Lemma
2.1a, M, is also Noetherian. Assume that n > 1. The induction step is based
on Lemma 2.6b. Denote N = MJ"* < M. Then Nis Artinian and NJ = 0,
so that by the case n = 1, N is Noetherian. The factor module M/N is also
Artinian and (M/N)J"~' = 0. By the induction hypothesis, M/N is Noether-
ian. Consequently, M is Noetherian. O

Corollary a. If the R-algebra A is right (left) Artinian, then A is right
(respectively, left) Noetherian.

Corollary b. If A is a right Artinian R-algebra, then the following conditions
on the right A-module M are equivalent:

(i) M is Artinian;

(ii) M is Noetherian;
(iii) M is finitely generated.
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Proor. By the proposition, (i) implies (ii), and (iii) follows from (ii) by
Proposition 2.6. (It was pointed out in Section 2.6 that finite generation of
a module follows from the ascending chain condition with no additional
hypothesis.) Finally, suppose that N = u;4 + --- + u,A. Then there is a
surjective 4-module homomorphism of Pr 4, to M defined by

Gegs ooy X)) ux;.
i=1
Since 4, is Artinian, it follows from Lemma 2.6b that (Pn A, is Artinian,
and consequently M is Artinian. O

EXERCISE

An ideal K in an R-algebra A is prime if K # A, and for any two ideals I and J of 4,
if IJ € K, then either ] = K or J < K. Prime ideals are less prominent in non-
commutative ring theory than they are in the study of commutative rings, but this
may be a reflection of the fact that the theory of commutative rings is more advanced
than the theory of non-commutative rings. The purpose of this Exercise is to develop
some elementary properties of prime ideals. In all parts of the Exercise, 4 is an R-
algebra.

(a) Prove that an ideal K of A4 is prime if and only if x4y = K implies x € K or
yeKforallx,ye A.

(b) Prove that if X = A4 is closed under multiplication, 0 ¢ X, and X # ¢, and
if K is maximal in the set of all ideals 7 of 4 such that I n X = ¢, then K is prime.

(c) Deduce from (b) that all maximal ideals are prime. The intersection of all
prime ideals of A is called the prime radical of A, and it is denoted by P(A).

(d) Prove that if x € P(A4), then x is nilpotent. Consequently, P(4) is a nil ideal
of A . Deduce that P(4) = J(4).

(e) Use Levitzky’s Theorem (Exercise 3(f), Section 4.4) to show that if A is right
Noetherian, then P(4) is the maximum nilpotent ideal of 4.

(f) Show that the intersection of any non-empty, totally ordered (by inclusion)
collection of prime ideals is a prime ideal. Deduce that for any proper ideal I of A4
there is a prime ideal that is minimal in the set of all prime ideals containing /.

(g) Assume that 4 is Noetherian. Prove that if I is a proper ideal of A, then the
set of minimal primes over / (that is, minimal in {K <1 4: K prime, I < K}) is finite.
Hint. Consider a maximal counterexample /. Then [ is not prime, so that x4y < I
for some x ¢ Iand y ¢ /. Show that the minimal primes over 7 are included among the
primes that are minimal over / + AxA4 or I + AyA.

(h) Prove that if 4 is Noetherian and every prime ideal of A is maximal, then
P(A4) = J(A4), and A4/J(A4) is a finite product of simple Noetherian algebras. Hint.
The hypothesis that all prime ideals are maximal and (g) yield the conclusion that
the set of all prime ideals of 4 is finite, say {K,K, ...,K,}. Use the Chinese Remainder
Theorem to conclude that 4/P(4) = A/K, + A/K, + --- + A/K,, and deduce from
Lemma 4.3b that J(4) = P(A).

(i) Prove the following converse of (h): if J(A4) is finitely generated as a right 4-
module, J(4) is nilpotent, and 4/J(A4) is a finite product of simple Noetherian algebras,
then A is Noetherian and every prime ideal of 4 is maximal. Hint. Show that for all i,
J(A)! is finitely generated as a right 4-module; then follow the idea in the proof of
Proposition 4.5.
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(j) Show that for a commutative algebra 4, the following properties are equivalent :

(1) A is Noetherian and every prime ideal of 4 is maximal.
(2) J(A) is finitely generated and nilpotent, and A/J(A) is a finite product of fields.
(3) A is Artinian.

4.6. Nilpotent Algebras

Another application of Proposition 4.4 gives a characterization of nilpotent,
finite dimensional algebras. The theorem comes from one of Wedderburn’s
late papers [ 77], but it is related to older results of Engel and Lie on nilpotent
and solvable Lie algebras.

The proof of Wedderburn’s theorem is based on Proposition 4.4, the
structure theorem, and an elementary lemma that is obtained using the trace
mapping for matrices. If « = [a;;] is an n by n matrix with entries in a field
F, the trace of a is

n
tra = Y a;.
i=1

Two properties of the trace are needed: the trace mapping is F-linear from
M (F) to F; if a is nilpotent, then tra = 0. The first of these statements is
an easy consequence of the definition. If @™ = 0, then the minimum poly-
nomial of a is x* with 1 < k < m (because this polynomial divides x™),
and the characteristic polynomial x" — (tra)x" ! + ... = x" (since the
minimum polynomial and the characteristic polynomial have the same
irreducible factors). Therefore, tra = 0.

We use these properties of the trace to prove a fact that will be subsumed
by the main result to this section.

Lemma. There is no set of nilpotent matrices that spans M, (F) as an F-space.

ProOF. Otherwise, there exist nilpotent matrices ay, ..., a, € M, (F), and
by, ...,b,e Fsuchthate,, = a;b; + --- + a,b,. By virture of the prop-
erties of the trace that were just mentioned, this equation leads to the
contradiction 1 = trg,; = (tra;)b, + -+ + (tra)b, = 0. O

Proposition. Let A be a finite dimensional F-algebra. Suppose that B is a
subspace of A that is closed under multiplication, and is spanned by a set of
nilpotent elements. Then B* = 0 for some k € N.

Proor. Two reduction steps precede the main part of the proof. First, it can
be assumed that

F is algebraically closed. ¢))
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To see this, let x,, ..., x, be an F-basis of 4, with xx, = Y7L, x,c.,

c;ix € F. Denote the algebraic closure of F by K. Form the K-algebra 4" =
x K@ - @ x,K with multiplication in 4’ defined by the structure
constants {c;}. Plamly, A is a subalgebra of (4'),. Therefore, B is a sub-
algebra of (B');, where B" = BK. Thus, (B')* = 0 implies that B* = 0. It
remains to note that B’ satisfies the same hypotheses as B: B’ is a K-subspace
of A’; B’ is closed under multiplication ; B’ is spanned by nilpotent elements.
The next reduction adds the hypothesis

B is an ideal of 4. 2

To achieve this condition, just replace 4 by B + 1 F. Since Bis closed under
multiplication, it is evidently an ideal of B + 1 F. In order to complete
the proof, it is sufficient to show

if 4 is semisimple, then B = 0. 3

In fact 4 can be replaced by the semisimple algebra 4/J(A4), and the ideal
B of A4 by the ideal (B + J(A))/J(A4) of 4/J(A4). Since (B + J(A))/J(4) is a
homomorphic image of B, it is spanned by nilpotent elements. Therefore,
(3) leads to the conclusion that B + J(4) = J(4), that is B < J(A4). By
Proposition 4.4, B* < J(A)* = 0 for a suitable k € N. It remains to prove
(3) usmg the added hypotheses (1) and (2). By Corollary 3.5b, 4 = 4,
- 4+ A,, where A; =~ = M, (F)issimple. Let n;: 4 — A, be the prOJectlon
homomorphlsm For each i, 7r ;(B) is an ideal of A s0 that either ,(B) = 0
or m,(B) = A;, because 4; is simple. The second option is ruled out, since
it implies thatAl = M, (F ) is spanned by nilpotent elements, in contradiction
with the lemma. Therefore B < kerm, for all i. Thus, B = ()i_ kern, = 0,
which proves (3). O

EXERCISES

. Let a = [x;] e M,(H) be defined by x,;, = —1 +1i, x;, =}, x,; = 2k, and
X,, = 1 + i. Show that o> = 0, but x,, + x,, # 0. This example shows that the
proof of the lemma cannot be generalized in a naive way to algebras of the form
M, (D), where D is a division algebra, even though the lemma remains true (if D
is finite dimensional over its center).

2. For an F-algebra A4, denote by C, the subspace of A4 that is spanned (as an F-space)
by {xy — yx: x, y€ A}, and let N, be the subspace of A that is spanned by the set
of all nilpotent elements of A. Prove the following statements.

(@) If 4= M,(F), then C; = N, = {ae4:tra = 0}. Hint. Show that {g;:
i#jyule —eg; j> 1) spans {aed: tra =0}, {g: i#,}u{e, —¢g:
j>1}eC nN,and C,u N, c {aed:tra = 0}.

(b) If Fisalgebraically closed, and A4 is a finite dimensional, semisimple F-algebra,
then N, = C,, and dim; 4/N, = dim, Z(A). Hint. See Exercise 1, Section 3.6.

(c) If F is algebraically closed, and A4 is a finite dimensional F-algebra, then
N,=C,+ J(A), and dim; A/N, = dim, Z(A/J(A)). Hint. Show thatif n: 4 — 4/J(A)
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is the projection homomorphism, then n(C,) = C,; 4 and n(N,) = Ny, Use (b)
and the inclusion N, 2 J(4) (that follows from Proposition 4.4).

3. Assume that F is an algebraically closed field of prime characteristic p. For an
F-algebra A, let C, and N, be defined as in Exercise 2. Prove the following facts.
(@) Ifx,ye A, then (x + y)’ = x* + y’modC,. Hint. (x + y)’ = Yz, --- z

p°

where the sum is over all sequences (zy, ..., z,) of x’sand y’s. Moreover, z,z, - - - z,
=z,--2,2 = -+ =2,z -+ z,;mod C,. Use the fact that p is prime to show
that the cyclic permutations of (z,, ..., z,) are distinct unless z; = z, = - .- = z,.

(b) Ifz € C,, thenz? e C,.

(c) If A4 is finite dimensional, then z? € N, implies z € N,. Hint. Reduce the proof
to the case in which A is M (F). Write z in the form ce,; + ¢, where tr¢ = 0, and
apply part (a) of Exercise 2.

(d) If A is finite dimensional, then z € N, if and only if z”* € C, for some k € N.

4.7. The Radical of a Group Algebra

This section is concerned with the problem of describing the radical of a
group algebra. What can be said about J(FG) when F'is a field and Gis a
finite group? Maschke’s Theorem is equivalent to the statement that if
char F does not divide the order of G, then J(FG) = 0. Therefore, assume
that char F is a prime p that divides n = |G|. The best known result con-
cerning J(FG) is a theorem that was discovered by Wallace [ 74]. The proof
of this result is based on the theorem of Wedderburn that was established
in the last section.

Proposition. Let F be a field of prime characteristic p. Assume that G is a
finite group that has a normal p-Sylow subgroup H. The Jacobson radical of
the group algebra FG is J(FG) = Y . .g_,(x — DFG.

PRroOF. Denote 4 = FG. By Proposition 1.2, the projection homomorphism
¢: G —» G/H extends linearly to a surjective F-algebra homomorphism ¢:
A = FG - F(G/H).Ify,, ..., y,is acollection of left coset representatives
of H, that is, G = Hy, v --- v Hy,, and if y € G, then ¢(y) = ¢(p) if
and only if y € Hy,. Therefore, for z = ZyeG ya, € A, we have ¢(z) = ZyEG
d(Ma; = Y ()Y senay,)- In particular, if ¢(z) =0, then ) ,
a,, =0 for 1 <i < m. This implies that a, = —) _p_(;,4,,, SO that

XYi i

z= Z'i"=1 erH—{l} (X - l)yiaxyi = erH—(l}(x - 1)(Z:n=1 yiaxyi) € erH—{l)
(x — 1)4. Conversely, if z€Y . g ,(x — DA, then ¢@)€), . pq,
(¢p(x) — ¢(1))¢(4) = 0. Therefore, Kerp = Y, 5, (x — 1)4 = J. This
shows that J is an ideal of 4 such that 4/J =~ F(G/H). Since H is a p-Sylow
subgroup of G, p does not divide |G/H|. Hence, F(G/H) is semisimple by
Maschke’s Theorem. This fact implies that J = J(4). The goal of showing
that J = J(A4) will be reached by proving that J* = 0 for some k € N. Denote



68 4 The Radical

B =Y. .y-u(x — 1)F.Plainly, Bis a subspace of 4. Also, Bis closed under
multiplication, because (x — )(y — ) =xy— 1) —(x—-1)— (y — 1).
If |[H| = p', then, since char F = p, (x — 1)’ = x?' — 1 = 0 for all x € H.
Therefore, B is spanned by nilpotent elements. Proposition 4.6 implies that
B* = 0 for some k € N. The desired result J* = 0 is a consequence of this
fact, because J = BA (obviously), and B4 = AB (since (x — 1)y =
y(y'xy — 1) and y"'xye H for xe H, y € G, by the normality of H).
Indeed, J* = (BA)* = B*A* = 04 = 0. O

Corollary. If H is a finite p-group, and F is a field of characteristic p, then
J(FH) = ery_{l}(x — DF.

ProoF. If x, ye H, then (x — 1)y = (xy — 1) — (y — 1). Consequently,
Ywenyx — DFH =Y __p_,(x — 1)F. The corollary therefore follows
from the proposition. O

EXERCISES

1. Let G be a finite group and suppose that F is a field. Denote 4 = FG, and
I=) ..6(x—DF.

(a) Provethat/ < 4,and 4/I =~ F. Hint. Prove that [is the kernel of the augmen-
tation homomorphism A — Fthatis defined by Y . . s xa, — Y .. ¢ a,. For this reason,
Iis called the augmentation ideal of A.

(b) Show that if the characteristic of F does not divide the order »n of G, then
I=(1 —e)d,wheree = O, ox)n "

2. Let F be an algebraically closed field of prime characteristic p, and suppose that G is
a finite group. Denote the group algebra FG by A. Define the subspaces C, and N, of
A by the prescription that was given in Exercise 2 of Section 4.6. Prove the following
statements.

@ Cy =3, ,e6(xy — yx)F.

(b) If z = Y .. gxa,, then ze C, if and only if ), _,a, = 0 for all conjugate
classes Kin G.

An element x in a finite group G is called p-regular (p-singular) if the order of x is
relatively prime to p (a power of p).

(c) If x € G, then x = yz = zy, where y is p-regular and z is p-singular.

(d) Ifxand y are p-regular elements of G such that x? = y? (x?is conjugate to y?),
then x = y (x is conjugate to y).

(e) If x = yz = zy with y a p-regular element and z a p-singular element, then
x = y mod N,. Hint. Use Exercise 3, Section 4.6.

) Ify,,»,, - .., y, belong to distinct conjugate classes of p-regular elements in
G, then y,a, + y,a, + -+ + y,8,€N,, ay, a5, ...,a,€F, implies a; = a, =

- = a,, = 0. Hint. Use parts (a) and (d) of Exercise 3 in Section 4.6, together with
(b) and (d) above.

@® If y,,y,, ..., Y, are representatives of the conjugate classes of p-regular
elementsin G, then 4 = N, Py, FP -+ P ynF.

(h) dim,Z(A4/J(A)) is the number of conjugate classes of p-regular elements in
G.
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4.8. Ideals in Artinian Algebras

We conclude this chapter with some results on the ideal lattices of algebras.
If A is semisimple, then I(4) is distributive. Lemma a proves this fact and
slightly more. This result makes it possible to determine whether or not
1(A4) is distributive by studying the lattice of sub-bimodules of J(4), provided
A[J(A) is semisimple. The criterion that is developed here will be used in
Chapter 11.

Lemma a. Let A be a semisimple algebra.

(1) If M is a right ideal of A, and N is a left ideal of A, then MN = M n N.
(ii) 1(A) is a distributive lattice.

PROOF. (i) MN = M since M < A,,and MN < Nsince N < ,A. Therefore,
MN = M n N. Since A is semisimple, it follows from Proposition 2.4 that
A, = M @ P for a suitable right ideal P of 4. Consequently, N = AN =
MN + PN = MN + P. By the modular law, Nn M = (MN + P)n M
= MN + (P~ M) = MN.

(i) If 1, J, and K are ideals of A,thenby (i), In (J + K) = I(J + K) =
IJ+ IK = ({nJ)+ (I nK). Thus, I(4) is distributive. O

The second part of this lemma can also be deduced from the result of
Exercise 1 in Section 3.5.

Lemmab. Let A be an algebra such that A|J(A) is semisimple. There
exist surjective lattice homomorphisms p : 1(4) — 1(4/J(A)) and o :1(A) -
S(,J(A4),) (where S(,J(A4),) is the lattice of sub-bimodules of J(A)), such
that if I and J are ideals in A that satisfy p(I) = p(J) and 6(I) = o(J), then
I1=J

PrOOF. Let p: A — A/J(A) be the projection homomorphism. It follows
from the fact that p is surjective that p(I) < A4/J(A) for all I € I(4). If I and
J are ideals of A4, then p(I + J) = p(I) + p(J), and p(InJ) € p(I) N
p(J) = p(Dp(J) = p(lJ) € p(InJ) by Lemma a. Thus, p is a lattice
homomorphism. By the Correspondence Theorem, every ideal of A/J(A4) has
the form I/J(A) = p(I) for a suitable I € I(4). That is, p is surjective. Define
g:1(4) - S(J(A)) by 6(I) = I n J(A). Plainly, c(I nJ) = o(I) no(J)
and c(/ + J) 2 a(I) + o(J) for I, JeI(A). If x + y e J(A), where xe [
and ye J, then p(x) = —p(y) e p(I) N p(J) = p(I n J). That is, p(x) =
—p(y) = p(z), where ze I n J. Therefore, x — ze I n J(4) = o(I) and
y+zeJnJA) =0a(J),sothatx + y=(x —2) + (y + 2)ea(l) + a(J).
This calculation shows that (I + J) < ¢(I) + o(J), which proves that o
is a lattice homomorphism. Every sub-bimodule of J(A4) is an ideal of A4,
so that ¢ is surjective. Finally, assume that p(I) = p(J) and o(I) = a(J).
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If x € I, then there exists y € Jsuch that p(x) = p(y). Hence,x — ye (I + J)
NJA) = +J)=0cl)+0(J)=0c(J)c J,andx =(x — y) + yeJ.
Similarly, if x € J, then x € I. Therefore, I = J. O

Proposition. Let A be an Artinian algebra. The lattice of ideals of A is distribu-
tive if and only if the lattice S(J(A)) of sub-bimodules of J(A) is distributive.

Proor. Since S(J(A4)) is a sublattice of I(A4), it is evident that if I(A4) is
distributive, so is S(J(4)). Conversely, suppose that S(J(4)) is distributive.
If I, J, and K are ideals of 4, then e(I n (J + K)) = o(I) n (6(J) + a(K))
=(e()nal)) + (c) naK)) =c(InJ)+ (I K)). Similarly, it
follows from Lemma a that p(I n (J + K)) = p(InJ) + (I n K)). By
Lemmab, In(J+ K)=(UnJ)+ {INnK). O

Anyone who is familiar with the formalism of universal algebra will
recognize Lemma b as the statement that I(4) is a subdirect product of
I1(4/J(A4)) and S(J(4)). In particular, I(4) is isomorphic to a sublattice of
the product of I(4/J(4)) and S(J(A)). This observation is the essential idea
behind the proposition.

EXERCISES

1. (a) Prove that for an algebra A, the following conditions are equivalent.

(i) if M < Ajand N < ,4,then M n N = MN.
(ii) For all x € A, there exists y € 4 such that xyx = x.
(iii) The principal right and left ideals of 4 are generated by idempotent elements.

An algebra that satisfies these conditions is called (von Neumann) regular. Thus,
by Lemma a, every semisimple algebra is regular. Prove the following statements.

(b) If Vis a vector space over the field F, then E (V) is regular.

(c) If 4 is regular, then S(4,), S(,A4), and I(4) are distributive lattices.

(d) If A4 is regular, then J(4) = 0.

(e) A regular algebra 4 is semisimple if and only if A is right (left) Artinian.

(f) If 4 is regular, then Z(A) is regular. Hint. If x € Z(A), and y € 4 is such that
xyx = x, show that z = yxy satisfies xzx = x, and z € Z(A4).

2. Let p be a prime, and suppose that G = {x)> x {y) is the product of two cyclic
groups of order p. Let F be a field of characteristic p, and denote the group algebra
FG by A. Prove the following statements.

@ JA) =x—-1DA4+ (- DA

(®) Jy™ = (x = 1PNy — )P4 34y = 0.

(c) I(A)isnotdistributive. Hint. Showthat I, = (x — 1)P*4,I, = (y — 1)P"14,
and L=((x— 1P+ (-1 N4 satisfy [, + , =1, + , =L, + I, and
LonL=InL=0LnI=JA4r"
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Notes on Chapter 4

The first four sections of this chapter are adapted from Bass’s treatment of
the Jacobson radical in [17]. The results of Section 5 are due to Hopkins;
they are now standard topics in every ring theory book. Proposition 4.7 is
due to Wallace [74]. The various properties of the radical that are offered
in the Exercises can be traced back to early research of Jacobson. A more
complete discussion of the Jacobson radical can be found in Jacobson’s
book [46]. An exhaustive treatment of general radicals is given in Divinsky’s
monograph [28]. The results that appear as Exercises 2 and 3 of Section 4.6,
and Exercise 2 of Section 4.7 are due to Brauer. They are important in the
theory of modular representations of groups.



CHAPTER 5
Indecomposable Modules

This chapter is the beginning of an examination of algebras that are more
general than the semisimple algebras. Our strategy is to generalize the process
that led to the Wedderburn Structure Theorem. The appropriate substitutes
for the basic building blocks of that theory—simple modules—are inde-
composable modules. These modules are introduced in this chapter. The
analogue of Schur’s lemma provides a characterization of indecomposable
modules in terms of their endomorphism algebras. The main result of the
chapter is the Krull-Schmidt Theorem. It leads to the conclusion that
finitely generated modules over an Artinian algebra decompose uniquely
into direct sums of indecomposable modules. In short, the results of Chapter
2 have close analogues in the theory of modules over Artinian algebras.

5.1. Direct Decompositions

Throughout this section and the rest of Chapter 5, 4 is an R-algebra. The
commutative ring R plays a minor role in the theory, and reference to it will
generally be omitted.

An A-module Nis indecomposable if N # 0, and the only direct summands
of N are 0 and N, that is, if N = P Q, then either P = 0 or Q = 0.
A module M is decomposable if M = M, (P M,, where M, and M, are
non-zero modules. Thus, the zero module is neither decomposable nor
indecomposable.

Proposition. If M is an A-module that is either Artinian or Noetherian, then
M can be written as a finite direct sum of indecomposable A-modules.

72
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Proor. If M = 0, then the proposition is true by virtue of our convention
that the empty sum is 0. Assume that M # 0. We first note (1) there is an
indecomposable direct summand of M. In fact, if N is minimal among the
non-zero summands of M, then N is evidently indecomposable. The existence
of such a minimal N is obvious if M is Artinian; if M is Noetherian, then any
complement of a maximal direct summand is minimal. By repeated applica-
tion of (1), using the fact that the Artinian and Noetherian properties are
inherited by submodules, we obtain

M=N®M =NPEN,PM,=NPN, PN, PM; = ---,
with each N, indecomposable and M, > M, > M; > ---. This sequence
of decompositions terminates at step k£ only if M, = 0, in which case
M=N@N,P - @ N, Either the descending chain condition
(applied to M, > M, > M; > ---) or the ascending chain condition
(applied to N, N, + N, N, + N, + N;c --.) forces such a
termination. O

EXERCISES

1. For each set X of rational primes, define N, to be the localization of Z at the mul-
tiplicative set generated by X, that is, Ny = {a/n:aeZ,ne N, (n,p) = 1 for all
primes p ¢ X }. Prove that Ny is an indecomposable Z-module, and N, = N, implies
X = Y. This example shows that there are uncountably many indecomposable
Z-modules. Of course, Ny is not finitely generated if X # (.

2. Let B be the Boolean ring of all subsets of an infinite set X, and define 4 = B/I,
where [ is the ideal whose elements are the finite subsets of X. Prove that 4, has no
indecomposable direct summands. Thus, the proposition fails for 4.

5.2. Local Algebras

It is obvious that simple modules are indecomposable. The converse is true
for modules over semisimple algebras, but not in general. For the class of
Artinian algebras there is a characterization of the finitely generated,
indecomposable modules in terms of their endomorphism algebras that is
analogous to the characterization of simple modules that is provided by
Schur’s lemma.

Definition. An algebra A4 is a local algebra if A/J(A) is a division algebra.
Note that if 4 is local, then 1, # 0, that is, A is non-trivial.

Proposition. For a non-trivial algebra A, the following conditions are equi-
valent.



74 5 Indecomposable Modules

(i) A is a local algebra.
(ii) 4 — A° < J(A).
(iii) A — A° is closed under addition.

Proor. (i) implies (ii). If x € 4 — J(A4), then (i) provides the existence of
y e Asuchthat xy — 1 € J(4) and yx — 1 € J(A4). Therefore, by Proposition
43, xy =1 + (xy — 1) e 4°; similarly, yx € A°. It follows that x € 4°. (ii)
implies (iii). Since A4 is non-trivial, it is clear from Proposition 4.3 that no
unit of A4 belongs to J(A4). That is, J(4) N 4° = J. Thus, (ii) is in fact
equivalent to 4 — A° = J(A), and (iii) is a consequence of the fact that
J(A4) is an ideal. (iii) implies (i). Suppose that x € 4 — J(4). By Proposi-
tion 4.3, there exist elements y and z in 4 such that 1 + xye 4 — A4°
and 1 + zxe 4 — A°. Consequently xy € A° and zx € A°, since otherwise
1 € A — A° by (iii). Therefore, x has both a right inverse and a left inverse
in A, so that x € A°. This argument shows that 4 — J(4) = A4°, from which
it is clear that A/J(A) is a division algebra. O

Corollary a. Let A be an algebra such that every non-unit of A is nilpotent.
Then A is a local algebra.

PrROOF. Let 0 # x € A — A°. By assumption, x* = 0 for some smallest
natural number k > 1. Then xye 4 — A° for all ye A. Otherwise,
x*"(xy) = 0 implies x*~! = 0, contrary to the minimality of k. Thus, by
hypothesis, every element of xA is nilpotent, so that xe x4 = J(4) by
Corollary 4.3b. This proves that 4 — 4° < J(A). Therefore, 4 is local by
the proposition. O

Corollary b. If N is an A-module such that E ((N) is a local algebra, then N
is indecomposable.

ProoF. The hypothesis that E,(N) is local includes the condition that
idy # 0, so that N # 0. If N = PP Q with the associated projections
n:N—- P and p: N — Q, then, since n + p = idy and E (N) is local,
either 7 or p is a unit by the proposition. Since 7> = mand p? = p, it follows
that # = idy or p = idy; thatis, Q = 0or P = 0. O

EXERCISES
1. Prove that an algebra 4 is local if and only if 4 has a unique maximal right ideal.

2. Let A4 be a finite dimensional F-algebra. Suppose that B is a subalgebra of 4 and Cis
a non-trivial homomorphic image of 4. Prove the following statements.
(a) If 4 is a division algebra, then B and C are division algebras.
(b) If A is a local algebra, then B and C are local algebras; moreover, J(B) =
B n J(A).
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3. Provethatif A is a local algebra, then every cyclic A-module is indecomposable. Hint.
See Exercise 2, Section 2.1.

4. Prove that if A is a finite dimensional F-algebra, and if M is a finitely generated
A-module such that M/M J(A) is simple, then M is indecomposable. Hint. Show that
there is a homomorphism 6 of E ,(M) to E ,(M/M J(A)) such that every ¢ in Ker 6 is
nilpotent. Then use Exercise 2.

5.3. Fitting’s Lemma

Our aim in this section is to prove a converse of Corollary 5.2b. The desired
result is a consequence of Fitting’s Lemma, one of the basic tools of algebra.
We begin with a lemma that has many applications of its own.

Lemma. Let M be an A-module, and suppose that ¢ € E ,(M). Each of the
following hypotheses implies that ¢ is an automorphism.

(i) M is Noetherian and ¢ is surjective.
(ii) M is Artinian and ¢ is injective.

ProoF. Assume that M is Noetherian, and ¢ is surjective. Since 0 = Ker¢ =
Ker ¢? < .. .,theascending chain condition implies that Ker ¢" = Ker ¢"*!
for some neN. That is (¢") '(Ker¢) = (¢"*)71(0) = Kerg"*! =
Ker ¢" = (¢")"1(0). Since ¢ is surjective, so is ¢". Therefore, Ker¢ =
¢"(d" " '(Ker ) = ¢"(¢™)'(0) = 0. The proof that (ii) implies ¢ € E ,(M)°
is left as Exercise 1. O

Fitting’s Lemma. Let M be an A-module that is both Artinian and Noetherian.
If ¢ € E (M), then there is a decomposition M = P ) Q such that

(i) ¢(P) = Pand ¢(Q) < 0,
(i) @|P is an automorphism, and
(iii) ¢|Q is nilpotent.

Proor. The assumption that M is Artinian and Noetherian applied to the
chains M 2 ¢(M) 2 ¢>(M) 2 ---and 0 < Ker¢g < Ker¢? < - - . yields
a natural number m such that ¢"(M) = ¢™(M) and Ker ¢" = Ker ¢™ for
alln > m. Define P = ¢™(M) and Q = Ker ¢™. Then ¢(P) = ¢ (M) =
¢"(M) = P, and ¢(Q) = ¢(Ker¢™) = ¢(Ker¢™"') < Ker¢™ = 0. By
the lemma, ¢|P is an automorphism. Also, ¢™(Q) = ¢™((¢™(0)) = 0,
so that ¢|Q is nilpotent. Moreover, P n Q = 0, because ¢|P n Q is both
injective and nilpotent. Finally, M = (¢™)"'(¢™(M)) = (™) 1 (¢*™(M)) =
(9™ (P™(@™(M))) = ¢™(M) + Ker¢™ = P + Q. O
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Corollary. If the A-module M is Artinian and Noetherian, then M is in-
decomposable if and only if E (M) is a local algebra.

Proor. If E, (M) is local, then M is indecomposable by Corollary 5.2b.
Assume that M is indecomposable. By Fitting’s Lemma, every element of
E ,(M)isnilpotent or a unit. Therefore, E ,(M) is a local algebra by Corollary
5.2a. O

For us, the most important case of this Corollary occurs when A is
right Artinian, and M is a finitely generated right 4-module. By Corollary
4.5b, these hypotheses guarantee that M is Artinian and Noetherian. When
the corollary is used in this context, we will often omit a reference to Corollary
4.5b.

EXERCISES

1. Complete the proof of the lemma by showing that if M is Artinian and ¢ is injective,
then ¢ is an automorphism.

2. Use the lemma to prove that if « and f are n by n matrices with elements in a field, and
ifaf =1, then fo = 1,.

3. Let V'be an infinite dimensional F-space. Show that there exists an injective ¢ € E (V)
that is not surjective, and there is a surjective ¢ in E.(¥) that is not injective.

4. Use the lemma to prove that for a Noetherian algebra 4, if Pn 4, = @Pm A,, then
n=m.

5. Give an example of a finitely generated, indecomposable Z-module M such that
E,(M) is not a local algebra.

6. Use Fitting’s Lemma to prove that if « € M,(F), then there is a non-singular matrix
y € M (F) such that y"'ay has the form

i

where € M, (F)°, 0 € M(F)(r + s = n), and §° = 0.

5.4. The Krull-Schmidt Theorem

This section deals with the uniqueness of direct sum decompositions. The
principal result is Azumaya’s generalization of a classical theorem of Krull
and Schmidt. The proof of this result is prefaced by two lemmas: a standard
criterion for an exact sequence to split; a technical matrix calculation.
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¢ v
Lemma a. For an exact sequence 0 - N > M - P — 0 of A-modules, the
following conditions are equivalent.

(i) There is a y € Hom (P, M) such that Yy = id,.
(i) There is a 0 € Hom,(M,N) such that 0¢ = id,.
In these cases, M = Im y (P Keryy = Im¢ P Ker 6.

Proor. If (i) holds, then u = yyu + (u — yyu) and Y(u — yWu) = Yyu —
Yyu = 0 for all ue M. Thus, M = Imy + Kery. Moreover, Keryy n Imy
= Ker(y|Imy) = 0, since Yy = id,. Also, because Im¢ = Kery, and ¢ is
injective, Ou = ¢ '(u — yyu) defines a homomorphism from M to N such
that O¢v = ¢~ v = v for all v € N. The analogous proof that (ii) implies
(i), and M = Im ¢ P Ker 6 is consigned to Exercise 1. O

If the conditions (i) and (ii) of the lemma hold, then0 - N - M - P - 0
is called a split exact sequence. Moreover, if (i) is satisfied, then ¥ is called
a split surjection, and if (ii) prevails, then ¢ is called a split injection.

Lemmab. Let M = M, P M, = N, @ N, be direct sum decompositions
of the A-module M. Assume that there is an automorphism ¢ of M, with

¢ = |:¢11 ¢12:|€[HomA(M1’N1) HomA(M29N1):|
b2 b2z Hom,(M,,N,) Hom,(M,,N,)|’

such that ¢, is an isomorphism. Then M, =~ N,.

PRrOOF. Plainly,

|: ile 0:| and [idul - 1_114)12:|
— 21011 idy, o iy,

are automorphisms of M. Since ¢ is an automorphism, so is

l: ile 0 :H: 11 ¢121| |:idMl _4’1—11451{' __:|:¢11 0}
—¢21¢1_11 idzv2 21 ¢22 0 idM2 0 Y ’

where ¥ = ¢,, — ¢,,071¢,, € Hom,(M,,N,). Thus, ¥ is also an
isomorphism. O

Proposition. Let A be an R-algebra. Suppose that M and N are right A-modules
with M=M @ - PM, N=NP --- PN, where E (M) and
E,(N) are local algebras for all i and j. If M = N, then r = s and there is a
permutation o such that M; = N, for 1 <i<r.

ProoF. Use induction on r, starting with r = 0, that is M = 0. For the base
step of the induction N >~ M = 0, so that s = 0. (Note that by definition
local algebras are non-trivial; hence E ,(N) local implies N, # 0.) Assume
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that r > 0, and the proposition is valid for modules that can be written as a
direct sum of fewer than r factors that have local endomorphism algebras.
Without loss of generality, it can be supposed that N = M ; just transfer the
decomposition of N to the module M, using the isomorphism that is assumed
to exist. Thus, we have

M=M,® ---PM,=N@ PN,

Let m;: M — M,, k;: M; > M; p;: M — N, A;: N, > M be the canonical
projections and injections that are associated with these decompositions
of M. Then idy = A,p; + -+ + Ap, and idy, = mk; = Y5 WAk, .
Since E (M) is a local algebra, it follows from Proposition 5.2 that
¢ = m Aip;k, is a unit of E, (M) for some index j. For notational con-
venience, order the decomposition Ny @ --- @ N,so thatj = 1. Let y =
¢ ~'mn, A, € Hom,(N,,M,) and y = p,x, € Hom,(M,,N,), so that yy =
idy, . It follows from Lemma a that N; = Kery (P Imy. However, since
E,(N,) is local, N, is indecomposable by Corollary 5.2b. Thus, N; = Imy,
and y = p,x, is an isomorphism. Denote M’ = M, P --- P M, and
N=N,PD--@PN, so that M=M, PM =N, PN with the
corresponding canonical projections and injections ©,: M —» M,, 7"
M- M, k;: M- M, x: M >M, p: M> N, p: M- N', J;:
N, » M, V: N' - M. The matrix

[91 Ky Py K/:|

p/KZ p/K/

corresponds to the composition of the isomorphisms M, @ M - M and
M - N; @ N’ (defined by (u,,u’) — u; + u’ and v (p,v,p'v)), so that
it is an isomorphism. Since p,x, is also an isomorphism, it follows from
Lemmabthat M\, - PM,=M =N =N,P --- @ N,. The in-
duction hypothesis applies to M’ and N’, and it completes the proof. [

Corollary a. If M is a right A-module that is both Artinian and Noetherian,
then M = M; @ --- @ M,, where each M, is an indecomposable A-module;
this decomposition of M is unique up to isomorphism.

The corollary follows directly from the proposition, Proposition 5.1, and
Corollary 5.3. The classical Krull-Schmidt Theorem is a slight generaliza-
tion of this corollary (to groups with operators).

Corollary b. If A is a right Artinian R-algebra, then every finitely generated
A-module is uniquely (to isomorphism) a finite direct sum of indecomposable
A-modules. ‘

This result is obtained by using Corollary a with Corollary 4.5b.
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EXERCISES

1. Complete the proof of Lemma a: show that (ii) implies (i) and M = Im ¢ @ Ker6.

2. Let V¥ be a four dimensional Q-space with the basis w, x, y, z. Define M to be the
Z-submodule of V' that is generated by {1/5"w, 1/5"x, 1/7"y, 1/11"z, 1/3(x + ),
1/2(x + z): ne N}. Let M;, M,, My, and M, be the Z-submodules of ¥ defined by
the respective generating sets: {1/5"w: ne N};

{1/5"x, 1/7"y, 1/11"2, 1/3(x + y), 1/2(x + 2):n e N};
{1/5"Gw — x), 1/7", 1/33w — x — y):ne N};
{1/5"2w — x), 1/11"2, 122w — x — z):ne N}.
Prove the following statements.
(@ M=MPM,=MPM,.
(b) M,, M,, M,, and M, are indecomposable.
(C) M1 é M3a M1 % M49 MZ _'i_ M‘;hMZ ;l; MA'
This example shows that the Krull-Schmidt Theorem fails for abelian groups that
are not finitely generated.

3. In this problem, 4 is assumed to be a right Artinian algebra. All modules are finitely
generated, right 4-modules. The isomorphism class of a module M is denoted by (M).
The collection of all classes (M) with M finitely generated is a set. Denote by F(4)
the free Z-module that has this set as a basis. The elements of F(4) are uniquely
represented as finite sums Y ¥_,(M,)n, with n, € Z. Let R(A) be the subgroup of F(4)
that is generated by all of the elements (M,) — (M,) — (M) for which there is an
exact sequence 0 - M, - M, - M; — 0. Let R,(4) be the subgroup of F(A4) that
is generated by all of the elements (M,) — (M,) — (M;) such that M, =~ M, P M,.
Finally, define the quotient groups K(4) = F(4)/R(4) and K (4) = F(4)/R,(A).
The group K(4) is called the Grothendieck group of the category of finitely generated
right A-modules; K,(4) is called the Krull-Schmidt—Grothendieck group of the
category. If M is a finitely generated right 4-module, denote [M] = (M) + R(4),
and [M], = (M) + R,(A4). Prove the following facts.

(a) There is a surjective homomorphism 6: K,(4) — K(4) such that 6([M],) =
[M]. If A4 is semisimple, then 6 is an isomorphism.

(b) [M] + [M,] = [M; D M,]and [M,], + [M,], = [M, D M,],.

(¢) Every element of K(A4) (or K,(4)) can be represented in the form [M] — [N]
(respectively, [M ], — [N],)-

(d) [M], = [N], if and only if M = N. Hint. Use the definition of R,(4) to
provethat[M ], = [N],ifandonlyif M @ P = N @ P for some finitely generated
A-module P.

(e) K,(4) is isomorphic to the free Z-module with the basis {(M): M = finitely
generated, indecomposable 4-module}.

O IfO=MycM, c...cM,_, =« M, =M is a composition series, then
(M] = Zi<n [M;,,/M,] in K(4).

(8) K(4)is generated as a Z-module by {[V,], ..., [N,]}, where N,, ..., N, are
representatives of the distinct isomorphism classes of simple right A-modules.

(h) K(4)is isomorphic to the free abelian group generated by [N,], ..., [N.] (as
in (g)). Hint. For 1 <j < r, define n;: F(4) - Z by n,((M)) = number of com-
position factors of M that are isomorphic to N,. Show that Kerm; =2 R(4), so that m;
induces a homomorphism p;: K(4) - Z, and p([N]) = 0.
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5.5. Representations of Algebras

One of the best reasons for studying modules is to get insight on group
representations. The purpose of this section is to clarify the relation between
the representations of an algebra 4, and the modules over 4. We will limit
our considerations to algebras over a field F, since most applications of the
theory fulfill this restriction.

Definition. A matrix representation of an F-algebra A is an algebra homo-
morphism 6 of A to the F-algebra of all » by » matrices with entries in the
field F.

The natural number # is called the degree of 6. It will be denoted by
deg 6.

A representation 0 of A4 is faithful if Ker = 0. In this case dim;4 <
dim, M (F) = n?, where n = deg0. In particular, 4 cannot have a faithful
representation if it is infinite dimensional. (See Corollary b below for a
converse result.)

The discussion of representations can be presented most efficiently by
using some concepts of category theory. The first step in this program is to
introduce an appropriate notion for the morphisms between representations.
This turns out to be an idea that was used in the earliest work on group
representations. Let 6 and y be representations of the algebra A4 that have
degrees n and m respectively. An n by m matrix o with entries in F intertwines
8 and ¢ if O(x)a = ouf(x) for all x € A. The intertwining matrices play the
roles of morphisms. For this reason we will use the notation a: 0 — y to
abbreviate the statement “o intertwines 6 and .” If o: 6 —» Y and B: ¢ — x
are matrices that intertwine representations of 4, then 8(x)af = af(x)f =
afy(x) for all x € A. Thus, the matrix product aff intertwines 6 and y. This
calculation shows that the composition of morphisms in the category
of representations of 4 can be taken to be matrix multiplication in the
reverse order, that is, «f = f o a. The required associativity of composition
is then automatically satisfied. Finally, the identity matrix 1, plainly inter-
twines a representation of degree n with itself, and it has the usual properties
of an identity morphism. This discussion shows that the representations of
an algebra A, together with the intertwining matrices, form a category. A
point of caution should be made. It is not accurate to identity the morphisms
of this category with matrices. Instead, the morphisms should be viewed as
triples (6,a,1), where o: 6 — . A single matrix can intertwine many different
pairs of representations, and fail to intertwine others. Nevertheless, we will
use notation that suppresses the dependence of a morphism on its domain
and target.

Representations 6 and ¥ of A4 are equivalent if they are isomorphic in the
categorical sense. This means that there are morphisms a: 6 — ¢ and
B: ¥ — 0 whose compositions in both orders are identity morphisms. It is
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easy to show (using Lemma 5.3, for instance) that 6 and ¥ are equivalent
if and only if deg§ = degy, and there is a non-singular (square) matrix o
that intertwines 6 and y. In other words, Y(x) = a~'0(x)a for all x € A.
We will write 0 =  if 6 and y are equivalent. Clearly, = is an equivalence
relation.

Let 6 be a representation of 4, withdeg & = n. Use 0 to define an 4-module
M, in the following way. As an F-space, M, = (Pn F. The scalar operation
of 4 on M, is given by

laj, ...,a,]x =[a;, ...,a,]0(x) e))

(matrix product on the right side) for all x € 4. A routine calculation shows
that M, is indeed a right 4-module. It is clear from (1) that

dim; M, = degf and annM, = Ker¥. 2

The correspondence M: 8 — M, is the object map of a functor into the
category of right 4-modules. In fact, suppose that a: 6 — y. Define p_:
My, - M, by u([a,, ...,a,]) =[ay, ..., a,]a Plainly, u, is an F-linear
mapping from M, to M, and p,([a,, ..., a,]x) = p,([a,, ..., q,]0(x)) =
[ay, ..., a,]0(X)a = [a,, ..., a]up(x) = p([a,, ..., a,])x. That is,
H, € Hom ,(M,y,M,). Clearly, p,p; = pg, = p,5. Thus, the mappings
0 — M,, o — u, define a functor from the category of representations of 4
to the category of right 4-modules. The basic properties of this functor are
collected in the next result.

Proposition. Let 0 and s be representations of the F-algebra A.

(@) Ifa: 60— yandB: 0 — ysatisfy p, = pg, thena = p.
(i) If ¢ € Hom ,(M,,M,), then there exists a.: 0 —  such that ¢ = p,.
(iii) If M is a right A-module such that 0 < dimp; M = n € N, then there is a
representation y of A such that M = M,.

ProoF. If u, = pg, then [ay, ...,a,]a = [a;,...,q,]f for all a, ...,
a, € F. Clearly, this can happen only if « = . If ¢ € Hom 4(My,M,), then
in particular, ¢ is a linear mapping between two row vector spaces. Thus,
there is a matrix « such that ¢([a,, ...,q,]) = [a;, ..., q,]a for all
a,, ...,a,in F. Also, ¢ is an 4-module homomorphism. Thus [a,, ...,
a,]0x)a = ¢([ay, ..., a,]x) = ¢([ay, ..., a,])x = [a,, ..., a,]ap(x)
foreveryay, ...,a, € F,sothat aintertwines  and y. By definition, u, = ¢.
For the proof of (iii), choose a basis u, ..., u, of M. Define y: 4 - M (F)
by the condition (written in matrix form)

Lug, oo udx (=luyx, oo ux]) = [ug, oo, u,]x(x), 3

where the superscript ¢ denotes the matrix transpose. Easy calculations
based on (3) show that y(x + y) = y(x) + x(»), x(xa) = x(x)a, and y(xy) =
2(x)x(y), for all x, y e A and a € F. Thus, x is a representation of 4. Define
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¢: M > @nF =M, by ¢(v) = [a,, ...,a,], where v = u;a; + --- +
u,a,. Clearly, ¢ is an F-space isomorphism that is characterized by v =
[y, ..., u,]o@). If ve M and x€ 4, then [u,, ..., u,]¢(vx) = vx =
[, v ,0@)x = [y, ..., w130 = [uy, ..., u]1()'¢@) by ()
and the fact that F < Z(A). Therefore, ¢(vx) = ¢(0)x(x) = ¢(v)x; that is,
¢ is an 4-module isomorphism. O

Corollary a. If 6 and  are representations of A, then 6 =  if and only if
M,=M,.

ProoOF. If a: 8 — y is non-singular, then pa: M, - M, is a module homo-
morphism such that u,_, = (u,)”'. Conversely, an isomorphism from M, to
M, is given by u,, where a: 6 — ¢ is non-singular. O

Corollary b. Let A be an F-algebra such that dimp A = n. There exists a
faithful representation 6 of A such that degf = n.

Proor. By the proposition, there is a representation § of A such that
A, =~ M,. Thus, degf = dim; M, = dim; 4 = n, and Ker0 = ann M, =
ann A4, = 0 by (2). O

The discussion of algebra representations in this section has a close
parallel in the theory of group representations. If G is a group and Fis a
field, an F-representation of G is a group homomorphism 0 of G to GL,(F),
where GL,(F) = M,(F)° is the general linear group of non-singular n by n
matrices with entries in F. As in the case of algebras, the F-representations
of G form a category in which the morphisms are triples (6,a,¥), such that
o is a matrix that intertwines 6 and y: 0(x)a = af(x) for all x € G.

The basic observation to make about the category of F-representations
of G is that it is isomorphic to the category of representations of the group
algebra FG. Indeed, by Proposition 1.2, if 6 is a group homomorphism of
G to GL,(F), then 6 has a unique extension to an algebra homomorphism
of FG to M,(F). Conversely, any algebra homomorphism of FG to M, (F)
restricts to a group homomorphism of G to GL,(F). Thus, there is a natural,
one-to-one correspondence between F-representations of G and the repre-
sentations of FG. This correspondence is a category isomorphism, since a
matrix o intertwines the F-representations 6 and ¥ of G if and only if «
intertwines the extensions of 6 and ¥ to FG. In short, the F-representations
of G are completely interchangeable with the algebra representations of FG.

EXERCISES

1. Prove thatif f is a representation of degree n, Y a representation of degree m, a: 8 — ¥
and B: ¢ — 0 intertwine these representations, and aff = 1,, o = 1, then m = n
and f = a7%.
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2. Prove that the scalar operations that are defined by (1) satisfy the module axioms.

3. Prove that the mapping y that is defined by (3) is a module homomorphism.

4. Let 4 = <£:> be a quaternion algebra. Prove that there is a representation 6 of 4
with deg § = 4, such that 6(1) = 1,

01 0 O 0010 0 0 01
a 0 0 O 0 0 01 0 0 a O

i = , 00 = , 6k =
® 00 0-1 W b 0 0 0 ® 0-b 00
0 0—a O 0b 00 —ab 0 0 0

Show that M, > 4,.

5.6. Indecomposable and Irreducible Representations

If 0 and y are representations of the algebra A withdeg § = nanddegy = m,
then the direct sum of 0 and y is the mapping 0 @Py:4-> M,,, (F)thatis
defined by

0 0
OOV = [ (g) »,tz(x)}'

It is obvious that 6 (P y is a representation of degree n + m.

A representation  of A4 is indecomposable if  cannot be written as a
direct sum of two representations (of positive degree). The Krull-Schmidt
Theorem can be translated to a fundamental property of representations. It
is convenient to preface the result.

Lemma a. If 0 and s are representations of A, then My g, = M, P M,.

ProoF. The mapping ([a;, . . .,a,],[b;, ..., b, ) —[ay, ...,a,,b,,...,b,]
is obviously an F-space isomorphism of M, (P M,, to M, g, and the scalar
operations for these modules are defined in a way that makes this mapping
a module isomorphism. O

Proposition a. (i) 0 is an indecomposable representation of A if and only if M,
is an indecomposable A-modiile.

(ii) Every representation 0 of A is equivalent to a finite direct sum of
indecomposable representations.

(i) Ify, D DY =2t P - D« with all Y, and y; indecom-

posable, then r = s, and there is a permutation ¢ such that y, =, for all i.

Proor. If 0 = ¢ @ x, then M, = M, @ M, by Lemma a. Thus, M, is not
indecomposable. Conversely, if M, = N; (P N, with N, # 0 and N, # 0,
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then by Proposition 5.5, M, =~ M, @ M, for suitable representations
and y. By Lemma a and Corollary 5.5a 6 = ¢ (P x. Thus, 6 is not indecom-
posable. To prove (ii), note that M, is finite dimensional, hence Artinian and
Noetherian. By Proposition 5.1, My = N; @ --- @ N,, with the N, finite
dimensional, indecomposable 4-modules. By Proposition 5.5, there are
representations y; of 4 such that N, =~ M, . Hence, 0 =y, P --- P,
as before. By (i), each ; is 1ndecomposab1e The uniqueness statement (iii)

is obtained from (i) and Corollary Sda:y P PY. =0, P - D

implies M, P --- P M, = @ - @ M, with all summands inde-
composable; thus r = s, and M =M, (hence Xi = ¥, by Corollary
5.5a) for a suitable permutation 0. O

Any two representations of 4 can be intertwined by a zero matrix of the
appropriate dimensions. In some cases, this is the only intertwining that is
possible.

Proposition b. For a representation 0 of the F-algebra A, the following condi-
tions are equivalent.

(1) 0 is equivalent to a representation \y of A such that for all x € A, y(x) has

the form
[l/u(X) * ]
0 Y],

where Y, and \, are representations of A.

(ii) There is a representation y of A with degy < deg6, and a non-zero
intertwining o.: 0 — .

(iii) M, is not simple.

Proor. If (i) is satisfied, then (ii) holds true with y = i, . Indeed, if r = degy,,
1
degf = n, and 0 is the n — r by r zero matrix, then I:(;] intertwines y and

¥, . Since 6 = , there is a non-zero intertwining a.: 6 — ;. Assume that (ii)
is satisfied. By Proposition 5.5, u,: M, - M, is a non-zero homomorphism.
If M, were simple, then u, would be injective by Schur’s Lemma, so that by
5.5(2), degf = dim M, < dim M, = degy, contrary to the hypothesis.
Hence, M, is not simple. Thus, (ii) implies (iii). If M, is not simple, then
there is a sub-module N of M, such that 0 # N < M,. Choose an F-space
basisu, ..., U, Uy, ...,u,0f Myinsucha waythatu, , ..., u,isa basis
of N. Thus, 1 <r <n — 1. Define y: 4 > M, (F) by [u, ..., u,]x =
[u,, ..., u,]Y(x). The proof of Proposition 5.5 shows that y is a repre-
sentation of 4 such that M, =~ M,. Therefore, y = 6 by Corollary 5.5a.
Let ¥(x) = [ay], so that by definition u,x = )7_, u;a,. Since N < M, and
U1 -+ -, U, €N, it follows that a¢; =0 if 1 <j<r <i<n In other
words, Y/(x) has the form
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[‘//1(36) * :|
0 Y, (x) ’

where ¥,: 4 > M,(F) and y,: 4 - M,_.(F) are suitable mappings. The
fact that i is a representation of A 1mp11es by an easy calculation that ,
and ¥, are also representations. O

A representation 0 of A4 is irreducible if 0 satisfies the negations of the
conditions (i), (ii), and (iii) in Lemma b. In particular, 6 is irreducible if and
only if M, is simple.

We need another characterization of simple modules. The result is valid
for R-algebras.

Lemma b. Let N be a right A-module. If N is simple, then J(A) < ann N
and N is indecomposable. The converse is true if A is right or left Artinian:
J(A) < ann N and N is indecomposable implies N is simple.

ProorF. If N is simiple, then by Corollary 4.1b, NJ(4) < rad N = 0. That is,
J(4) < ann N. Clearly, N is indecomposable. For the converse, note that
by Proposition 2.1, N can be viewed as an 4/J(4)-module. The assumption
that 4 is Artinian guarantees that 4/J(4) is semisimple; hence, N is semi-
simple by Proposition 3.1b. Since N is also indecomposable, it follows from
Corollary 2.3b that N is simple. O

Corollary a. If A is a semisimple F-algebra, then a representation 0 of A is
indecomposable if and only if 0 is irreducible.

Corollary b. Let A be a right Artinian F-algebra. The number of equivalence
classes of irreducible representations of A is the number of factors in a decom-
position of A|J(A) as a product of simple algebras.

Proor. By Lemma b, there is a one-to-one correspondence between the
isomorphism classes of simple 4-modules, and the isomorphism classes of
simple A/J(4)-modules. If 4/J(4) = A; + --- + A, with each 4, simple,
then by Proposition 3.1b and Lemma 3.2a, each simple 4/J(4)-module is
isomorphic to a minimal right ideal of some A4;. All minimal right ideals
in A; are isomorphic by Proposition 3.3b, whereas, if i # j, then a minimal
right ideal of 4; is not isomorphic to a minimal right ideal of 4;. The corollary
therefore follows from Proposition b. O

Corollary c. Let F be an algebraically closed field, and assume that A is a
finite dimensional F-algebra. The number of irreducible representations of A
is dim,Z(A4/J(A)).

ProoF. By Corollary 3.5b, 4 = M, (F) + .-+ M, (F). The number r is
dim,Z(A/J(A4)). (See Exercise 1, Section 3.6. ) Od
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EXERCISES

In all of these exercises, assume that F is a field with char F = 0.

1. In this exercise, 4 is assumed to be a finite dimensional F-algebra. If 8 is a representa-
tion of A, define the character afforded by 0 to be the mapping y,: A — F that is
defined by y,(x) = tr 8(x). Prove the following statements.

(a) g, 1s an F-space homomorphism of 4 to F, and y,(1,,) = deg¥.

(®) xo(J(4)) = 0.

(©) If 0 = y, then y, = ¥,

It follows from (c) and Proposition 5.5 that a character can be associated with
each finite dimensional A-module M by defining y,,(x) = x,(x), where 0 is a represen-
tation such that M, =~ M. The character y,, is said to be afforded by the module M.

(d) If0 - N - M — P — 0isasequence of finite dimensional 4-modules, then
Xm = Xn + xp- Hint. Copy the last part of the proof of Proposition b.

(e) If M is a finite dimensional, right 4-module, then x,, = x, for some semi-
simple module N.

Let X(A) be the subgroup of Hom,(4,F) that is generated by the set of all
characters of representations of A.

(f) X(4) is generated by {y,: 0 is irreducible}.

(g) X(4/J(A)) = X(A4) by the mapping y+— yon (7 € X(4/J(A4))), where =:
A — A/J(A) is the projection homomorphism.

(h) If 4 = B + C, then X(4) = X(B) @ X(C).

Q) X(MF)) = Z.

(j) If F is algebraically closed, then X(A4) is a free Z-module with a basis that
consists of the characters of irreducible representations.

2. Assume that F is an algebraically closed field. Let 8 and ¥ be irreducible repre-
sentations of the F-algebra A. Suppose that «: 6 — i intertwines. Prove that if
o # 0, then 6 =~ Y and a = 1,¢ for some c € F, where n = deg0.

3. Let G be a finite group, and suppose that Fis algebraically closed. Assume that 6 and
 are F-representations of G (or equivalently, representations of FG) with deg8 = n
and degy¥ = m. Prove the following statements.

(a) If y is an n by m matrix with entries in F, then a = Y __;08(x™")yy(x) inter-
twines 6 and .
(b) Write 8(y) = [a;;(»)], ¥(») = [b(»)]. Assume that § and y are irreducible.

(@) 10 % v, then ¥, ¢, (x"by(x) = O forall i, r, 5, and .
(i) Y., (x"Day(x) = §,6,.c, where c e F satisfies nc = |G|.

ijYrs

Hint. Use Exercise 2 and (a) withy = ¢, to obtain (i) and ), c @, (x ay(x) = d,c,,
for some c,, € F. By the change of variable, x — x~*, show that §,.c,, = J,5¢;;» 50 that
¢, = ,,c. Evaluate ¢ by summing the equation Y, _;a,(x )a,(x) = ;¢ over
r=1,...,n

(c) If @ and y are irreducible representations of G (that is, of FG), and if y, and y,,
are the characters that are afforded by these representations, as in Exercise 1, then

Yeeato(x ty(x) = 0if 0 % ¢, and }'. 1p(x )tp(x) = |G|.
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Notes on Chapter 5

Our treatment of the Krull-Schmidt Theorem proceeds by the classical
ring theoretic route that was pioneered by Azumaya. The lattice theoretic
approach due to Ore has not been considered. In recent years, there has been
much research on general versions of the Krull-Schmidt Theorem, and it
seems likely that the last word on this subject has yet to be uttered. The last
two sections of the chapter tidy up some previous vague allusions to the close
connection between the theories of group representations and associative
algebras. The material in these sections is expository.



CHAPTER 6
Projective Modules over Artinian

Algebras

The indecomposable modules that we encounter in studying algebra struc-
ture are very special: they are direct summands of 4 . In particular, these
modules are projective. ’

The first four sections of this chapter present the structure and classifica-
tion of projective modules over Artinian algebras. The last three sections
are concerned with applications of projective modules to the theory of
Artinian algebras. One of these is the promised structure theorem. Its proof
follows the pattern developed in Chapter 3 for semisimple algebras, but
the result obtained is far less satisfying than the Wedderburn Structure
Theorem. :

6.1. Projective Modules

There are two (or more) ways to define projective modules. We will use the
least technical one.

Definition. An 4-module P is projective if P is isomorphic to a direct sum-
mand of a free A-module.

Several basic properties of projective modules come as gifts with this
definition.
Proposition a. Let A be an algebra.

(i) Every free A-module is projective.
(ii) A direct sum of projective A-modules is projective.
(iii) A direct summand of a projective A-module is projective.

88
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This is obvious from the definition of a projective module. Not so obvious
is a lifting property for homomorphisms from a projective module.

Proposition b. Let A be an algebra, and suppose that M, N, and P are (right
or left) A-modules such that P is projective. If 0: N - M is a surjective
homomorphism, then every ¢ € Hom ,(P,M) factors through N. That is,
there exists y € Hom ,(P,N) such that ¢ = 6.

The most easily remembered version of this proposition has the form of
a commutative diagram

P
e
N—9>M——>0.

Still another statement of the conclusion of the proposition is: 6 induces a
surjective homomorphism Hom ,(P,N) - Hom (P, M) by ¢ — 6.

PRrOOF. Since P is projective, there is a free 4-module Q containing P as a
submodule, and a homomorphism 7: Q — P such that n|P = id,. Let X be
a basis of Q. Since 6 is surjective, 0 '¢n(u) # & for all ue X. By the
axiom of choice, there is a mapping y: X — N such that 6y(u) = ¢n(u) for
all u € X. Since Q is freely generated by X, y extends to a homomorphism
of Q to N. Plainly, 0y = ¢n. Hence, if § = y|P, then 0y = ¢. 0

Corollary a. If N and P are A-modules with P projective, and if there is a
surjective homomorphism 6: N — P, then N = Ker 0 (P Q, where Q =~ P.

Proor. By Proposition b, there is a homomorphism y: P - N such that
6y = idp. By Lemma 5.4a, N = Imy () Ker 6, and Imy = P. O

The proof of this corollary shows that any module P is projective if it
enjoys the lifting property of Proposition b: take N to be a free module for
which there is a surjective homomorphism 6: N — P; then P is isomorphic
to a direct summand of N. The homomorphism lifting property of Proposi-
tion b therefore characterizes projective modules, and this property is often
taken as the definition of a projective module.

Corollary b. For an algebra A, the following conditions are equivalent.

(1) A is semisimple.
(ii) Every right A-module is projective.

Proor. If 4 is semisimple, then every right 4-module is isomorphic to a
direct sum of right ideals of 4 by Proposition 3.1b, and any right ideal of 4
is a direct summand of 4, by Proposition 2.4. Thus, every right 4-module
is projective by Proposition a. Conversely, assume that every right 4-module
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is projective. If M is a right ideal of A4, then the projectivity of 4/M implies
that M is a direct summand of 4, by Corollary a. By Proposition 2.4, 4, is
semisimple. O

Since right and left semisimplicity are equivalent conditions, the same
argument shows that 4 is semisimple if and only if every left A-module is
projective.

EXERCISES

1. Prove that if 4 is a commutative, principal ideal domain, then every projective
A-module is free. The same result is true if 4 = F[x,, ..., X,], but this fact is a
difficult theorem of commutative ring theory (the Quillen—Souslin proof of the
Serre conjecture).

2. Let A be a commutative integral domain. Prove the following facts.
(a) If Pis a projective 4-module, then P is torsion free; that is, ua = 0 for u € P,
a€ Aimpliesu = Qora = 0.
(b) The following conditions are equivalent: A4 is a field; A is semisimple ; every
A-module is projective.

3. Show that if P is a projective 4-module, then there is a free 4-module Q such that
P@ Q = Q. Hint. Let P be a direct summand of the free 4-module N, and define

0 = PR,N.
4. A right A4-module Q is called injective if, for every diagram of right A-module
homomorphisms
0> M _6’ N
2
0

in which 0 is injective, there is an 4-module homomorphism y: N —» Q such that
¢ = 0. This definition is the categorical dual of the characterization of projective
modules in Proposition 6.1b. Prove that Q is injective if for every 4-module homo-
morphism ¢ of a right ideal of 4 to Q, there is an extension of ¢ to a homorphism
of 4, to Q. Hint. Use the given hypothesis to show that if M’ < N, ¢’ € Hom,(M’,
0),andue N — M’, then ¢’ can be extended to a homomorphism ¢”: M’ + ud —
Q. Apply Zorn’s Lemma.

5. Let A be an R-algebra, and suppose that M is a right 4-module such that M is
injective as an R-module. Denote @(M) = Homg(A4, M), with right 4-module struc-
ture defined by (¢x)(y) = ¢(xy). Prove that Q(M) is injective, and the left regular
representation u — A, with 4,(x) = ux, is an injective 4-module homomorphism of
M to Q(M). Hint. Apply the criterion of Exercise 4 to establish injectivity: if P is a
rightidealof 4 and ¢: P - Q(M)is an A-module homomorphism, definey: P — M
by ¥ (x) = ¢(x)(1,). Use the hypothesis that M is R-injective to extend ¥ to an
R-module homomorphism y of 4 to M. Let : 4 — Q(M) be defined by 6(x)(y) =
% (xy), and show that 6 is an A-module homomorphism extending ¢.

6. Let A4 be a finite dimensional F-algebra, and suppose that M is a finitely generated
right A-module. Prove that there is a finitely generated, injective, right A-module that
contains M as a submodule.
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6.2. Homomorphisms of Projective Modules

In this section we will explore the relation between the homomorphisms
from an 4-module P to an 4-module Q, and the homomorphisms from
P/PJ(A) to Q/QJ(A4). When A is Artinian and P and Q are projective, the
relation is very close indeed.

The results of Section 2.1 show that P/PJ(A4) and Q/QJ(A) can be con-
sidered either as 4-modules or as A/J(A4)-modules. Since Hom ,(P/PJ(4),
0/0J(A4)) = Hom ,,,(P/PI(A4), Q/QJ(A)), we are free to choose which-
ever viewpoint offers the best perspective.

If A is an R-algebra and J is any ideal of A, then the mapping P — P/PJ
is the object mapping of a functor from the category of right A-modules to
the category of right 4/J-modules. In fact, if ¢: P - Q is an 4-module
homomorphism, then ¢(PJ) = QJ. Consequently, there is a unique A4/J-
module homomorphism ¢: P/PJ — Q/QJ such that Ty = énp, where 7,
and m,, are the projection homomorphisms P — P/PJ and Q — Q/QJ. The
mapping ¢ +— ¢ is not only functorial, it is an R-module homomorphism.

Lemma a. For all pairs (P,Q) of right A-modules, there is an R-module
homomorphism 0 = 0(P,Q): Hom,(P,Q) — Hom,,(P/PJ, Q/QJ) such that
no¢ = 0(d)np. If ¢ € Hom,(P,Q) and Y € Hom,(N,P), then 6(N,Q)
(P o) = 6(P,Q)(¢)O(N,PY(Y). In particular, 0(P,P) is an R-algebra
homomorphism of E ,(P) to E ,(P/PJ).

The proof of this lemma is Exercise 1.

Lemma b. With the hypothesis and notation of Lemma a, if P is projective,
then 6(P,Q).: Hom (P,Q) —» Hom ,,(P/PJ, Q/QJ) is surjective.

ProoOF. If ¢ € Hom, ,(P/PJ, Q/QJ) = Hom,(P/PJ, Q/QJ), then since P is
projective and nr,,: Q — Q/QJ is surjective, it follows from Proposition 6.1b
that there is an 4-module homomorphism ¢: P — Q such that

P> P/PJ
0| |7
90— 0/QJ

commutes. By definition, ¢ = 0(). O

Proposition. If A is a right Artinian algebra and P is a projective right A-
module, then the functor 0 induces an isomorphism

E, (P)/J(E,(P)) = E 5, (P/PI(4)).
Moreover, if J(A)* = 0, then ¢* = 0 for all ¢ € J(E(P)).

PROOF. To simplify the notation, write J for J(4), 4 for A4/J, and P for
P/PJ. By Lemmas a and b, §: E (P) » E(P) is a surjective R-algebra
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homomorphism. If ¢ € Kerf, then ¢(P) = Kern, = PJ. Iterating this
observation gives ¢*(P) = PJ* for all k € N. Thus, every element of Ker 0
is nilpotent, so that Ker 6§ < J(E ,(P)) by Corollary 4.3b. It remains to show
that J(E,(P)) < Ker0. Since 4/J is semisimple, so is P by Proposition
3.1b. Thus, J(E(P)) = 0 by Example 4.3. That is J(E ,(P)/Ker ) = 0 and
J(E,(P)) < Ker0 by Lemma 4.3b. O

Corollary. If A is a right Artinian algebra, and if P and Q are projective right
A-modules, then P is isomorphic to Q if and only if P|PJ(A) is isomorphic to
0/QJ(4).

ProoF. If ¢: P — Q is an isomorphism, then the functorial property of
implies that 0(¢~") = 6(¢)~. Hence, P/PJ(A) = Q/QJ(A4). Conversely, if
P/PJ(4) = Q/QJ(A), then there exist homomorphisms ¢: P - Q and
¥:Q — Psuchthatid, — y¢ € Ker0 = J(E ,(P)), and

idQ - d’lp € J(EA(Q))-

By Proposition 4.3, y¢ = id, — (idp — Y ¢) € E ,(P)°, so that ¢ has a left
inverse. Similarly, ¢ has a right inverse. Thus, ¢ is an isomorphism. O

EXERCISES
1. Complete the proof of the lemma.

2. Show that the corollary remains true when the hypothesis that A4 is right Artinian is
replaced by the weaker assumption that J(4)* = 0 for some k € N.

3. Let A = Z/4Z. Give an example of 4-modules M and N such that M/MJ(A4) =~
N/NJ(4) and M & N.

6.3. Structure of Projective Modules

The results of the last section lead to classification and structure theorems
for projective modules over Artinian algebras. Throughout this section, 4
is a right Artinian R-algebra, and P is a right 4-module that is usually
assumed to be projective.

The indecomposable direct summands of 4, are called principal inde-
composable right A-modules. We emphasize that a principal indecomposable
right 4-module is a right ideal of 4, and it is projective.

Lemma. A direct summand P of A, is indecomposable if and only if P|PJ(A)
is a simple A/J(A)-module.

PROOF. Since 4 is Artinian, P < A, implies that P is Artinian and Noethe-
rian. By Corollary 5.3, P is indecomposable if and only if E ,(P) is a local
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algebra, that is, E ,(P)/J(E ,(P)) is a division algebra. The lemma therefore
follows from Proposition 6.2 and Corollary 2.3b (Schur’s Lemma):

E,(P)J(E(P)) = E ,(P[PI(4))

is a division algebra if and only if P/PJ(A) is simple. (Note that P/PJ(A) is
semisimple because it is an 4/J(A4)-module.) O

Proposition. Let A be a right Artinian algebra. The mapping P> P/PJ(A)
defines a bijective correspondence between the isomorphism classes of principal
indecomposable right A-modules and the isomorphism classes of simple right
AJJ(A)-modules.

Proor. If P is a principal indecomposable right 4-module, then P/PJ(A4) is
a simple 4/J(4)-module by the lemma. It follows from Gorollary 6.2 that
P>~ Q if and only if P/PJ(A) = Q/QJ(A). Therefore, P+> P/PJ(A)
induces an injective mapping of isomorphism classes of principal inde-
composable modules to simple modules. The mapping is also surjective.
Indeed, if A, = PP --- @ P, is a decomposition of 4, into a direct
sum of principal indecomposable modules, then by the lemma, 4/J(4) =
P/PJA)@ --- P P,/P,I(A) is a decomposition of A/J(4) into a direct
sum of simple right 4-modules. Every isomorphism class of simple right
A-modules is represented by some P,/P,J(A4) because of Proposition 3.1b
and Lemma 3.2d. O

Structure Theorem. If A is a right Artinian algebra, then every projective right
A-module is isomorphic to a direct sum of principal indecomposable right A-
modules. This decomposition is unique to within isomorphism and the ordering
of the factors.

PrROOF. Let P be a projective right 4-module. Since A is right Artinian,
A/J(A) is semisimple; so is P/PJ(A), that is, P/PJ(4A) = @), N,, where the
N; are simple. By the proposition, there exist principal indecomposable
modules P, such that N, = P,/P,J(A) for each i € I. Thus,

PIPY(A) = @ic; B/PI(A) = (Dier PI(@icr P)I(A).

Therefore, the required result P = (P, P, follows from Proposition 6.1a
and Corollary 6.2. In order to prove the uniqueness, suppose that

@ie[f)i = @jeKjS
where all of the Q; are principal indecomposable right A-modules. This

assumption yields @,.,(P/P,J(4)) = (—BjeK(Qj/QjJ(A)), where the Q)/
Q,J(4) are simple. By Proposition 2.5, there is a bijective mapping o: K — [
such that 0,/Q,J(4) = P,;/P,;J(4). Hence, Q; = P, O

Corollary a. If A is a right Artinian algebra, then every indecomposable, projec-
tive right A-module is isomorphic to a principal indecomposable right A-module.
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In particular, the indecomposable, projective 4-modules are cyclic.

Corollary b. Let A be a right Artinian algebra, and suppose that P is an
indecomposable, projective right A-module. If N is a proper submodule of P,
then N < PJ(A).

ProOOF. If N & PJ(A), then N + PJ(A4) = P, because P/PJ(A) is simple by
the lemma. It was noted that P is finitely generated. Hence, N = P by
Nakayama’s Lemma. O

EXERCISES

1. (a) Let 4 be an R-algebra. Prove that every finitely generated, projective right
A-module is a direct summand of a free A-module of finite rank, that is, a module of
the form (Pn 4,, where ne N.

(b) Use (a) and the Krull-Schmidt Theorem to give a short proof of the Struc-
ture Theorem for finitely generated projective modules.

2. Let A be a right Artinian algebra. Prove that every non-zero homomorphic image of
an indecomposable, projective right 4-module is indecomposable.

3. Let A4 be a right Artinian, local algebra. Prove that A4, is the only principal indecom-
posable right 4-module. Deduce that every projective right 4-module is free.

6.4. Idempotents

An element e of an algebra is called idempotent if e = e. Up to now, we have
avoided using idempotents, except in the Exercises. Standard arguments
using idempotents have been replaced by proofs that are based on homomor-
phisms. However, there are many situations in which the use of idempotent
elements is convenient and natural. Their usefulness in making concrete
calculations is beyond question.

The purpose of this section is to supplement our treatment of projective
modules over an Artinian algebra by showing where idempotents fit in this
subject. A few applications of idempotents will be given in the last three
sections of this chapter, and in several later parts of the book.

Proposition a. A right ideal P of an algebra A is a direct summand of A, if
and only if there is an idempotent element e € A such that P = eA. In this
case, if P=Q, P 0, P - @ O, then there exist idempotents e; such
that e=e; +e,+ -+ +e,, ee=0 for i #j, ee=ee, =e, and
Q, = e;A for 1 < i < m. In particular, P is decomposable if and only if there
is an idempotent fwith0 # f # e and ef = fe = f.
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PROOF. Let e € 4 be an idempotent. If ed = 0, P 0, P - - - P @, then

there exist elements ;€ 0, for 1 <i < msuchthate =e¢, + ¢, + --- +
e, lffxeQ, < ed,thenx = ex = e;x + e;x + --- + e,x. Hence,
x—ex=yexeQ,ny 0 =0.
J#i J#i

In particular, e, = ¢? and e;e; = 0 for all j # i. It follows directly that
e;e = ee; = e;. Moreover, 0, =eQ, = ¢,0, S eA< Q,. If fed is an
idempotent such that ef = fe = f, then ed = fAP (e — /)A4. In fact,
fA =efd S ed, (e — )4 =e(e — f)A < ed; ex = fx + (e — f)x for all
x€ A;and fx + (e — f)y = 0 implies fx = f(fx + (e —f)y) =0,(e — f)y =
0. Applying these observations to the special case in which e = 1, proves the
first assertion of the proposition, and completes the argument. O

An idempotent e of the algebra A is called primitive if eA is an indecom-
posable A-module. By the proposition, eA is projective. Thus, for a right
Artinian algebra 4, the idempotent e is primitive if and only if e4 is a
principal indecomposable module. A characterization of primitive idem-
potents follows directly from the proposition.

Corollary a. An idempotent element e of the algebra A is primitive if and only
if there is no idempotent f of A such that 0 # f +# e and ef = fe = f.

An equivalent formulation of this criterion for e to be primitive is the
definition that was given in Exercise 3 of Section 3.3: if e = f; + f,, where
f, and f, are idempotents such that f, f, = f, f; = 0, then either f; = 0 or
5L =0.

There is a connection between idempotents and homomorphisms of
ideals that is obtained from a generalization of Proposition 1.3.

Lemma. Let P be a direct summand of A,. If M is a right A-module, then
Hom ,(P,M) = {A,|P:ue M}.

The notation 4, is used (as in Section 1.3) to denote the homomorphism
from A, to M that is left multiplication by u, that is 4,(x) = wux. Plainly,
{4,|P: ueM} = Hom (P,M). To reverse the inclusion, write P = e4 with
e? = e, in accordance with the proposition. If § € Hom ,(P,M) and x € P,
then 0(x) = 0(ex) = 0(e)x = Agy(x). Thus, 6 = g,| P.

Corollary b. If e and f are idempotents of the R-algebra A, then Hom ,(eA,fA)
~ fdAe as R-modules, and E ;(eA) = eAe as R-algebras. If A is right Artinian,
so is eAe.

PROOF. By the lemma, Hom(e4,f4) = {,|ed: x € A}. Clearly, A, |ed =
Arceled. If Ay, led = A, |ed, then fxe = i (e) = 4, (e) = fye. Thus,

ye
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z+> 1,|ed is a bijective map from f4e to Hom,(e4,f4). Easy calculations
show that this mapping is a module isomorphism and an algebra isomor-
phism if e = f. If N is a right ideal of ede, then NA < 4,, and NAde =
Nede = N since e is the unity element of e4e. Thus, the mapping N — NA
embeds the lattice of right ideals of ede in S(A4 ). In particular, if 4 is right
Artinian, then eAe is right Artinian. O

Corollary c. Let e be an idempotent element of the algebra A, and denote
P = eA. The following conditions are equivalent for a right A-module M :

(i) Hom (P,M) # 0;
(i) MP # 0;
(iii) Me # 0.
In the most important case of this corollary, the modules P and M are
principal indecomposable right 4-modules, where A is right Artinian.

Corollary d. Let e and f be primitive idempotents in the right Artinian algebra
A, such that P = eA is not isomorphic to Q = fA. The following conditions
are equivalent :

(i) Hom (P,0) # 0;
(i) QI(A)P #0;
(iii) fI(4)e # 0.

PRrOOF. Since QJ(A)P = fAJ(A)ed = fJ(A)eA, it is evident that (ii) and
(iii) are equivalent. The assumption that P ¢ Q implies that P/PJ(A) %
Q/QJ(A) by Proposition 6.3, and Schur’s Lemma yields Hom ., ,,(P/PJ(4),
0/0J(4)) = 0. In particular, if 0 # ¢ € Hom ,(P,Q), then ¢(P) = QJ(4),
and 0 # Im¢ = ¢(eP) = ¢(e)P < QJI(A)P. Conversely, 0 # fJ(A)e =
fAe implies Hom ,(P,Q) # 0 by Corollary b. O

The program of generalizing the Wedderburn Structure Theorem to
Artinian algebras breaks down chiefly because of the existence of principal
indecomposable modules P and Q that are not isomorphic, but Hom ,(P,Q)
# 0. It is useful to pinpoint this phenomenon; we do this by associating a
particular graph to each Artinian algebra.

Definition. Let 4 be a right Artinian algebra. Suppose that e, e,, ..., e,
are primitive idempotents in 4 such that the right ideals P, = e, 4, P, =
e,A, ..., P, = e, A represent the distinct isomorphism classes of principal
indecomposable right 4-modules. The quiver of A is the directed graph
I'(4) = (V,E) with the vertex set V = {e,,e,, ..., e} and the edge set
E = {(e;,¢): ¢,J(A)e; # 0}. (In general, we will follow Gabriel [34] in
referring to finite directed graphs as quivers.)

It is convenient (and harmless) to call two quivers equal when they are
only isomorphic, that is, there is a bijection between their vertex sets that
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maps the edge sets bijectively. The nature of the objects that are the vertices
of T'(4) has no importance. Using primitive idempotents for vertices is
convenient, but there is no canonical way to choose these idempotents, and
it is usually not necessary to make a specific choice.

Proposition b. I'(A) is independent of the choice of primitive idempotents for
the vertex set. Moreover, if A =~ B, then I'(4) = T'(B).

PRrROOF. The content of the first assertion is: if e, ¢, f, and f” are primitive
idempotents such that e4d =~ e¢’4 and f4 = f'A, then eJ(A4) f # 0if and only
if eJ(A)f" # 0. Clearly, ed =~ e'A implies eJ(4) = ¢’J(A), so that

Hom,,(f4,eJ(4)) = Hom ,(f'4,¢'3(4)).

The required result is a consequence of Corollary c. The second statement
of the proposition is a consequence of the first part, and our convention
that isomorphic quivers are identified. O

As a rule of thumb, the quiver I'(4) measures the complexity of 4. If 4
is semisimple, then clearly I'(4) = (V, ), the quiver with no edges. The
converse is also true. (See Exercise 4.) If the vertex set of I'(4) is a singleton,
then A/J(A) is simple by Proposition 3.3b. Such an algebra is called primary.
The structure of primary Artinian algebras will be analyzed in the next
section. The edge sets of commutative Artinian algebras have simple forms:
the only edges are the loops (e;,e;) for which J(A)e; # 0. The structure of
commutative Artinian algebras is correspondingly simple.

EXERCISES

1. Let 4 be an algebra. Suppose that K is an ideal of 4 such that every element of K
is nilpotent. Let n: 4 — A/K be the natural projection homomorphism. Prove that
if e € A/K is idempotent, then there exists e € A4 such that e is idempotent and n(e) =
e. Hint. Choose x € 4 so that n(x) = e. Denote y = 1, — x, so that xy = yxe
Kern = K. Choose n so that (xy)" = 0. The binomial expansion gives

1, =(x+y>!

2n—1 2n —1
= xln—l + < >x2n~2y 4+ e+ ( >xnyn—1
1 n—1

2n — 1
+( )xn—lyn+ +y2n—1.
n

2n — 1 2n —1
e = x" xn—l + xn—zy + o+ yn—l
1 n—1

has the desired properties.

Show that
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2. Let 4 be an algebra. Denote B(4) = {e€ Z(A): e* = e}. Prove the following
statements.

(a) B(4) is a Boolean algebra (i.e., an [,-algebra in which all elements are
idempotent) under the multiplication inherited from A4 and addition given by
e@Pf=e+f—2f

(b) B(4) = B(4/I(A4)).

(c) If A is Artinian, then B(A) is finite.

3. Let A4 be a right Artinian algebra with the quiver I'(4) = (E,V), E = {e,, e,, ...,

e,}. For1 < i < r, denote P, = e,A. Prove the following statements.

(@) If i # j, then (e;,e;) € E if and only if the top composition factor of P, (that
is, P/P.J(4)) is isomorphic to a composition factor of P,

(b) (e;,e) € E if and only if the top composition factor of P appears more than
once in a composition series of P..

(c) e; and e; are in the same connected component of I'(4) if and only if there is
a sequence iy, i, ..., i, with n > 1 such that iy =i, i, = j, and forall k < n, P,
and P, have a composition factor in common.

kel

4. Prove that if 4 is a right Artinian algebra such that the edge set of I'(4) is empty,
then A is semisimple. Hint. Write 1, = ¢, + --. + ¢,, where the e, are primitive
idempotents, and use the fact that J(4) = 1,J(4)1,

6.5. Structure of Artinian Algebras

This section offers some applications of the results on projective modules
to the structure theory of Artinian algebras. We begin with a theorem that
gives a nice description of a special class of algebras. An R-algebra 4 is
called primary if A/J(A) is simple.

Proposition a. If A is a right Artinian, primary algebra, then all principal
indecomposable right A-modules are isomorphic. Moreover, A =~ M (B) for
a unique natural number n and a right Artinian local algebra B that is unique
to within isomorphism.

ProoF. Since A4/J(A) is semisimple and simple, all simple right 4/J(4)-
modules are isomorphic by Proposition 3.3b. It follows from Proposition
6.3 that all principal indecomposable right A-modules are isomorphic.
Consequently, A, = @n P where n is a uniquely determined natural
number and P is a principal, indecomposable right 4-module that is unique
to within isomorphism. By Proposition 1.3 and Corollary 3.4a,

A = E,(4,) = E(Pn P) = MB),

where B = E (P). Since P is indecomposable, Artinian and Noetherian
(by Corollary 4.5b), it follows from Corollary 5.3 that B is a local algebra.
Moreover, P = eA for some idempotent element e of 4 by Proposition
6.4a. Since 4 is right Artinian, it follows from Corollary 6.4b that E ,(e4)
is right Artinian. That is, B is Artinian. If 4 =~ 4" = M, (C) with C local,
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then A" =¢,; 4 @ eypd P - @ &pmd’, and (by Corollary 6.4b),
C~e¢ A%, =~E, (s,4), so that &, A" is a principal indecomposable
right A’-module. The uniqueness of n and Pimplym = nand C = B. [0

The converse of this proposition is outlined in Exercise 1.

Artinian algebras that are not primary can have principal indecomposable
modules P and Q that are not isomorphic, but Hom,(P,Q) # 0. When such
modules exist, the proof that led to the Wedderburn Structure Theorem
breaks down. The quiver I'(4) of an Artinian algebra A is defined in such a
way that it keeps track of the isomorphically distinct principal indecompos-
able modules P and Q such that Hom ,(P,Q) # 0. It can be expected that
the geometrical properties of I'(4) reflect the structure of 4. The rest of
this section develops one of the simplest connections between 4 and I'(4).

If T, = (V,E,) and T, = (V,,E,) are quivers with disjoint vertex sets,
then the disjoint union of I, and I, is I, w I, = (V; U V,,E; U E,). If
[ = (V,E) is a quiver, and ¥V = V, w V,, then T is the disjoint union
(Vi,En (Vy x V) w (V,,E 0 (V, x V,)) exactly in the case that there is
no edge in E that joins a vertex of V; to a vertex of V,. If I" cannot be written
as a disjoint union of two non-empty quivers, then I' is connected. This
means that all pairs of vertices in I can be joined by a path that consists
of a sequence of edges (with their orientations ignored). It is geometrically
plausible that every quiver has a unique representation as a disjoint union
of connected quivers. This fact will be proved in Section 8.4.

Lemma a. If the Artinian algebra A is a product B + C of algebras, then
I'4)=T®B) vwI(0).

PROOF. Let T'(B) = (V,,E,) and T'(C) = (V,,E,), with V, = {e, ..., ¢},
V, = {fi, - --,f.}. By definition, the elements e, and f; are primitive idem-
potents in B and C; they are also primitive idempotentsin 4: e;4 = e;B and
f,A = f,C are indecomposable. For suitable natural numbers m; and n;,
there are isomorphisms

By = P Pm;e.B, C. = P Pn; f,C.
i=1 =1
Hence,
4,=B,PC, = <@<—Bmi2i’4> @ (6‘2 @”jf;A>'
i= j=

By the Krull-Schmidt Theorem, every principal indecomposable right A-
module is isomorphic to a unique e;4 or f,4. Since J(4) = J(B) + J(C) by
Lemma 4.3b, it follows that e,J(4)f; = f,J(A)e; = 0 for all i and j; more-
over, e;J(A)e, # 0if and only if e,J(B)e, # 0, and f,J(4)f, # 0 if and only
if £I(C)f, # 0. This proves that I'(4) = (V, v V,, E, UE,) =T(B) v
r(C). O



100 6 Projective Modules over Artinian Algebras

Lemma b. If A is a right Artinian algebra such that I'(4) = I'; w T, then
there are right Artinian algebras B and C that satisfy A = B + C, I'(B) =
I',andT'(C) =T,.

ProoF. Denote I'; = (V,E;) and I, = (V,,E,), so that I'(4) = (¥, v V,,
E,VUE). Let A, = B@ Cwith B= P, P, C = P, Q, be a decom-
position of 4, as a direct sum of indecomposable modules that are grouped
sothatforl < i <m,P, =~ edforsomeee V ,andforl <j<n,Q; = f4
where fe V,. Since E, = V, x V;, and E, < V, x V,, it follows from
Corollary 6.4d that Hom ,(P,Q;) = Hom (Q;,F,) = 0 for all i and j. Con-
sequently, Hom ,(B,C) = Hom (C,B) = 0, and BC = CB = 0 by Corol-
lary 6.4c. Thus, B and C are ideals of 4, and 4 = B + C. If e€ V,, then
eB = eA is an indecomposable B-module. If also e’ € V; with ¢’ # e, then
eB # ¢'B. Similarly, the elements of V, are primitive idempotents that
generate isomorphically distinct C-modules. It follows from Lemma a that
I'B)=T,and I'(C) =T,. O

A non-trivial Artinian algebra B is called a block if I'(B) is a connected
quiver.

Proposition b. Let A be a right Artinian algebra.

(1) A is uniquely a product of blocks.
(ii) A block is indecomposable as an algebra.

PrOOF. The quiver I'(4) decomposes uniquely into a disjoint union I'; w - - -
w I, of connected quivers. By Lemma b, 4 = B, + --- + B,, where
I'(B,) = T,. Thus, each B, is a block. The uniqueness of this decomposition
is a special case of the result that is outlined in Exercise 2. The fact that
blocks are indecomposable follows directly from Lemma a. O

EXERCISES

1. Prove that if Bis a right Artinian local algebra, then M,(B)is a right Artinian primary
algebra. Hint. Use Exercise 2, Section 4.3.

2. Let A be an algebra such that A = B + C. Prove the following statements.
(@ IfM < A,,then MB=Mn B, MC = M n C, and
M=MnB@PMnC
(b) Every indecomposable right ideal of 4 is contained in either B or C.
(c) IfA=B, + --- + B, =C, + --- + C,withthe B;and C;indecomposable

algebras, then r = s, and C; = B,;), for some permutation o.

3. Prove that a right Artinian algebra 4 is a finite product of primary algebras if and
only if all of the edges in I'(4) are loops, that is, the edges have the form (e;,e,).

4. Let A be a commutative, Artinian algebra. Write 4, = ¢, 4 (P --- (P e,4, where
each e is a primitive idempotent. Prove that e, 4, ..., e, 4 are all of the principal
indecomposable 4-modules, and Hom ,(¢;4,e;4) = 0if i # j. Deduce from Exercise
3 that A4 is a finite product of commutative local algebras.
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6.6. Basic Algebras

An algebra Bis called reducedif B/J(B) s a finite product of division algebras.
In this section it is shown that for every right Artinian algebra A there is an
associated reduced algebra B that shares many properties with 4. The
reduced algebra B is uniquely determined by A ; it is called the basic algebra
of 4.

Throughout this section, it is assumed that A4 is a right Artinian R-algebra.

Lemma a. Let P,, P,, ..., P. be principal indecomposable right A-modules ;
define P =P, @ P, --- @ P,. The endomorphism algebra E ,(P) is
reduced if and only if P, £ P, for all i # j.

Proor. By Proposition 6.2, E, (P)/J(E(P)) = E,;,(P/PJ(4)) = E ,,
(P,/P,J(A) P P,/P,J(A) P --- @ P/PI(A)). 1t follows from Lemma
6.3 that each P/P,J(4) is a simple 4/J(4)-module. Hence, E ,(P)/J(E ,(P))
is a product of division algebras if and only if P/P,J(4)% P/P,J(A) for all
i # j by Corollaries 3.4a and 3.4c, and Schur’s Lemma. The lemma follows
from Proposition 6.3. O

Lemma b. Suppose that the right ideal P of A is a direct summand of A ,.
Write P =P, P P,® --- @ P,, where each P, is indecomposable. The
following conditions are equivalent.

(1) P/PJ(A) is a faithful right A|J(A)-module.
(i) AP = A.
(iii) FEvery principal indecomposable right A-module is isomorphic to one
(or more) of the modules P,.

ProOF. Two observations reduce the proof to the case in which 4 is semi-
simple. First note that (ii) is equivalent to

(i) (4/J(A))(P + J(4))/I(4) = 4/I(A).

Clearly, (ii) is equivalent to AP + J(A) = A, which is the same condition
as (i) by Nakayama’s Lemma. By Proposition 6.3, the condition (iii) can be
replaced by

(iii") every simple right A/J(A4)-module is isomorphic to one of the modules
P/PJ(A).

Since (i) is already a condition on A/J(A), it can be assumed that J(4) = 0,
A is semisimple, and principal indecomposable modules are simple. Write
A, = AP@ Q. By Lemma 3.2b, the simple submodules of 4P are the
minimal right ideals of A that are isomorphic to one of the P;, and every
simple submodule N of Q satisfies PN = 0. Thus, (i) implies (ii); and (ii)
is equivalent to (iii) because every simple right A-module is isomorphic
to a minimal right ideal of 4 by Proposition 3.1b. It is obvious that (ii)
implies (i). O
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Proposition a. If A is a right Artinian R-algebra, then there is a right ideal
P of A such that :

(i) P is adirect summand of A,;
(i) AP=A;
(iii) E,(P) is a reduced R-algebra.

An ideal P that satisfies (i), (ii), and (iii) is unique up to isomorphism.

PROOF. By Lemmas a and b, a right ideal P that is a direct summand of 4,
will satisfy (ii) and (iii) if and only if P = P, P P, P --- P F,, where
{P,, P, --- P} is aset of distinct representatives of the isomorphism classes
of principal indecomposable right 4-modules. Obviously, such a P exists,
and it is unique to within isomorphism. O

If P is a right ideal of A4 that satisfies conditions (i), (ii), and (iii) of the
proposition, then the algebra B = E (P) is called a basic algebra of A.
Since P is unique to within isomorphism, so is B. Therefore, no harm is
done by referring to B as the basic algebra of A.

EXAMPLE. Let 4 be a semisimple algebra. By the Wedderburn Structure
Theorem, A = A, + -+ + 4,, A, = M, (D)), where the D, are division
algebras. In fact, D, = E (P,), where P, is a simple right 4-module that is
a direct summand of 4;. Let P=P P --- @ P,. Then P is a direct
summand of 4, AP = A,and E,(P) =~ D, + --- + D, is reduced. Hence,
E ,(P) is a basic algebra of 4.

Proposition b. If 4 is a right Artinian algebra, then the basic algebra B of A
has the properties :
(i) B is Artinian;
(ii) there is a lattice isomorphism 7: 1(A) — 1(B) such that 1(J(A4)) = J(B)
and T is multiplicative, that is, ©(I I,) = t©(I,)T(l,) for all ideals I, and
L of A;
(iii) I'(B) = I'(4).

Proor. Let B = E,(P), where P is a direct summand of 4,, AP = A4,
and P=P P --- PP foraset {P, ..., P} of representatives of the
isomorphism classes of principal indecomposable right 4-modules. By
Proposition 6.4a, there exist idempotents e, e, e,, ..., e, in 4 such that
P=ed, P=ed, e=e +e,+ - +e, ee=0 for i#j, and
ee; = e;e = ¢; for 1 < i < m. By Corollary 6.4b, B can be identified with
eAe; for the rest of the proof, we make this identification. If N is a right
ideal of B, then NA is a right ideal of 4, and, as we noted in the proof of
Corollary 6.4b, N — NA is an inclusion preserving mapping from S(Bp) to
S(4 ). In particular, since A is right Artinian, B is also right Artinian.
Similarly, if J < B, then AJ4 <1 A, and I <t A implies ele < B. Moreover,
eAJAe = BJB = J; and AeleA = AeAlAeA = AIA = I. Thus, J+— AJA
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and I ele are inverse, inclusion preserving mappings between I(B) and
I(A). It follows that the mapping (/) = ele is a lattice isomorphism of 1(4)
to I(B). Moreover, t(I,1,) = el,,e = el, AeALLe = el el,e = t(I,)t(l,).
To prove that t(J(4)) = J(B), it is sufficient (because t is a lattice iso-
morphism) to note that J(4) = (|{M € I(4) : M is maximal in I(4)} and
J(B) = (){NeI(B): N is maximal in I(B)}. The representation of the
radical of an Artinian algebra as an intersection of maximal (two-sided)
ideals follows easily from Wedderburn’s Structure Theorem. To show that
['(B) = I'(4), observe that B = Pe = Ple @ Pre@ --- P P,e, where
Pe = e;Ae = e,B is indecomposable because Egz(e;B) = e;Be; = ¢;Ae; =
E(e;A4) is a local algebra. If ¢,B = ¢;B, then by Corollary 6.4b there exist
elements x and y in Bsuch that e;xe;ye; = e;. In this case, it also follows from
Corollary 6.4b that e;4 = e;4, so that i = j. Therefore, e, B, e,B, ..., eB
is a system of representatives of the isomorphism classes of principal inde-
composable right B-modules. Thus, I'(B) has the same vertex set {e,,
ey, ... e} as[(A4). Since e J(B)e; = e,ed(A)ee; = e;J(A)e;, T'(B) and I'(4)
have the same set of edges; that is, I'(B) = I'(4). O

EXERCISES

1. Let B be the basic algebra of a right Artinian algebra A. Prove the following state-
ments.
(@) If A/J(4) = M, (D,) + --- + M,(D,), where D, ..., D, are division
algebras, then B/JJ(B) = D, + --- + D,.
(b) If 4 = A, + A,, then B = B, + B,, where B, is the basic algebra of 4, for
i=1,2.

2. Let Bbe areduced R-algebra. Denote by @ = (e,, e,, ..., e,) a sequence of primitive
idempotent elements of Bsuch thate,e; = Ofori # j,andlp = e, + e, + --- + ¢,
Let #i = (n, n,, ..., n,) be a sequence of positive integers. Let M;(B,é) be the set
of all block matrices [ 1], <; ;<,» Where y; is an n; by n; matrix with entries in e;Be;.
Define componentwise addition and scalar multiplication by elements of R for the
matrices in M;(B,¢), and define matrix multiplication as usual (noting i, is an n;
by n, matrix with entries in e,Be;Be, < e,Be,). Then M,(B,¢) is an R-algebra that is
called a checkered matrix algebra. Prove that every right Artinian R-algebra A4 is
isomorphic to a checkered matrix algebra of the form M;(B,é), where B is the basic
algebra of 4.

6.7. Representation Type

For Artinian algebras, the Krull-Schmidt Theorem shifts the problem of
classifying finitely generated modules to the study of indecomposable
modules. Unfortunately, the difficulties encountered with these modules are
formidable. In this section, we will prove that “most™ Artinian algebras have
infinitely many isomorphism classes of finitely generated, indecomposable
modules.
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A right Artinian algebra A4 has finite representation type if there are
finitely many isomorphism classes of finitely generated, indecomposable
right 4-modules. In the contrary case, 4 has infinite representation type. By
Corollaries 2.3b and 3.2b, every semisimple algebra has finite representation
type. Some examples of algebras that have finite representation type and
are not semisimple will be given in the next chapter. However, the following
result shows that such algebras are exceptional.

Theorem. If A is a right Artinian algebra of finite representation type, then the
lattice I(A) of all ideals in A is distributive.

This theorem will be obtained from a lemma that gives sufficient condi-
tions for a right Artinian algebra A to have finitely generated indecomposable
modules of arbitrarily great length. The Proposition of Section 2.2 will be
used to show that if I(A4) is not distributive, then the conditions of the lemma
are satisfied. A preliminary lemma isolates the non-computational aspects
of the main construction.

Lemma a. Let A and B be right Artinian R-algebras, with B a local algebra.
Suppose that N is a non-zero B-A bimodule that is finitely generated and
projective as an A-module, and assume that L is a proper sub-bimodule of N.

(i) C = {y eE (N):y¥(L) = L} isa B-bimodule and a subalgebra of E ,(N).

(i) If C contains an ideal I such that the elements of I are nilpotent and
C = B-idy + I, then C is a local algebra, and N|L is indecomposable
as an A-module.

ProoF. The assertion (i) is obvious. To show that C is a local algebra under
the hypotheses in (ii), it is sufficient by Proposition 5.2 to prove that if
xeB,yeltheng = x-idy + y e C — C°ifandonlyif x e B — B°. If xis
aunit, then x™'- ¢ = idy + (x™'- ), and x~! - € Iis nilpotent. Therefore,
x~'-¢isaunit,and sois ¢. Conversely, if ¢ € C°, then x-idy = ¢(1 — ¢ ~1¢)
is a unit. In particular, x is not nilpotent, so that x € B° because B is a local
Artinian algebra. To prove that N/L is indecomposable, let n: N - N/L be
the projection homomorphism. If ¢ € C, then nd(L) = 0; equivalently,
Kern < Kern¢. Thus, there is a unique ¢ € E ,(N/L) such that n¢ = ¢n.
The mapping 0: ¢ — ¢ is easily found to be an algebra homomorphism.
Moreover, 6 is surjective: for each $eE 4(N/L) there exists ¢ € E,(N)
such that ¢ = ¢n (because N is projective and = is surjective), and
nd(L) = ¢n(L) = 0 implies ¢(L) = L, that is, ¢ € C. By Lemma 4.3b,
0(J(C)) < J(E(N/L)). Therefore, E (N/L)/J(E,(N/L)) is a non-trivial
(since L # N) homomorphic image of C/J(C), which is a division algebra
because C is local. Thus E ,(N/L) is local, and N/L is indecomposable. [J

We are ready to prove the existence lemma.
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Lemma b. Assume that the right Artinian algebra A contains a principal
indecomposable right A-module P such that there are non-zero submodules
M, and M, of P satisfying

(1) M, and M, are fully invariant in P, that is, (M) < M, and p(M,) = M,
forall p € E (P);
(i) M, = M, as E ,(P)-A bimodules;
(i) M, n M, = 0.

If2 < ne N, then there is an indecomposable A-module Q such that I(Q) > n.

Proor. Denote N = (Pn P with corresponding coordinate projections ; and
injections k; for 1 < i < n. Let 1: M; — M, be the bimodule isomorphism
that is assumed to exist. Define L, = Im(x;7 — «;,,) for | < i < n, and
L=L + ---+ L, ;. Plainly, L is a submodule of N, and the length of
L is at most (n — 1)I(M,) by Corollary 2.6. Define Q = N/L. Since [(N) =
nl(P) > nl(M, + M) = nl(M; @ M,) = 2nl(M,) by (i) and (iii), it
follows from Corollary 2.6 again that /(Q) > (n + 1)/(M,) > n. The proof
will be completed by using Lemma a to show that Q is indecomposable.
For the application of the lemma, let B = E ,(P). Since P is indecomposable
and finitely generated, B is a local algebra. The fact that B is right Artinian
follows from the assumption that A is right Artinian and P is a summand
of 4 ,, by the last part of Corollary 6.4b. Since M, and M, are fully invariant
in P and 7 is a bimodule homomorphism, L is a sub-bimodule of N. Thus
C = {yeE (N):¥(L) < L} is a subalgebra of E ,(N), and a B-bimodule.
It is convenient to represent the elements of E ,(N) as matrices, using the
isomorphism E (N) = E,(@n P) = M,(B) that is defined by ¢ — [¢,],
where ¢;; = m;¢x;. Define I = {¢ € C:¢;€ B — B° for all i and j}. Since
Bis local, I'is an ideal of C. Moreover, by Proposition 5.2, B — B° < J(B),
and J(B) is nilpotent, say J(B)" = 0. Therefore, if ¢ € I, then [d)ij]"‘ =0,
so that the elements of I are nilpotent. It remains to show that if ¢ € C,
then there exists £ € B and € [ such that ¢ = ¢-idy + . If x e M| and
J <n, then ¢(x;1x — x;,,x) € L. Thus, there exist y;€ M, such that
drTx — P X = Y1 ien (KT — Kiyy¥y;)- When the projection mappings
m; are applied to this equation, we obtain ¢,;1x — ¢, x = Ty; — Yy if
1l <i<n, ¢ix — ¢y x = 1py5, and ¢;tx — @, ;X = —y,_; ;. Since

;T = T¢; by (1) and M; n M, = 0 by (iii), these equations yield ¢;x =
Giv1jegx for 1 <i, j<n, ¢;;x=0 for 1 <j<n, and ¢,x =0 for
1 <j < n. It follows that ¢;,x = 0if i # j, and ¢y, x = --- = @,,x. Let
¢ =¢,,€E,(P) = B. Then ¢;|M, = 0 for i # j, and (¢, — &)|M; =0
foralli. Since M, # 0,itfollowsthat[¢;] — 1,& = [¥;], wherey; € B — B°
for all i, j. This gives the desired conclusion that ¢ = £-idy + ¥ with
vel O

We can now prove the theorem. Assume that I(A4) is not distributive.
By the remark that follows Proposition 2.2, there exist distinct ideals 7, J,
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and K in A4 such that I nJ = K and I/K = J/K as A-bimodules. If there
are infinitely many isomorphism classes of indecomposable 4/K-modules,
then by Lemma 2.1a there are infinitely many isomorphism classes of
indecomposable A-modules. For this reason, it can be assumed that K = 0.
Let A, =P, P - P P, be a decomposition of 4, as a direct sum of
indecomposable modules. Since 0 # [ = Al = PI+ --- + P, I thereisa
principal indecomposable right 4-module P such that M, = PI # 0. Let
M, = PJ. Plainly, M, and M, are submodules of P, and M, n M, =
INnJ=0.1f ¢ €E (P), then ¢ = 1,|P for some x € P by Lemma 6.4.
Thus, ¢(M,) = xPI = PI = M. Similarly ¢(M,) = M,. Therefore, M,
and M, are fully invariant in P. Since I =~ J as A-bimodules, there exists
a group isomorphism t: I — J such that t(xy) = xt(y) if xe 4, ye I and
1(xy) = t1(x)yif xe I, y € A. Hence, 1(M,) = ©(PI) = Pt(I) = PJ = M,,
and for xe 4, yeP, ze M, < I, 1(zx) = 1(z)x and t(4;2) = 1(yz) =
y7(2) = A,1(2). Therefore, 7 is a bimodule isomorphism.

EXERCISES

1. Prove that the product 4 + B oftwo right Artinian algebras has finite representation
type if and only if 4 and B both have finite representation type. Hint. See Exercise 2,
Section 3.5.

2. Prove that the following conditions are equivalent for a commutative Artinian
algebra A.

(i) A has finite representation type.
(i) A = A4, + --- + 4,, where F; = 4,/J(4,) is a field and dimj J(4,)/J(4)* < 1
forl<i<r
(iii) 4 = F[x]/(x*) + --. + F[x]/(x*), where each F; is a field, and k, e N.

Hint. Use Exercise 4, Section 6.5 along with Exercise 1 above to reduce the problem
to the case in which 4 is a local algebra. Use Proposition 4.8 to conclude that (i)
implies (ii), and pass from (ii) to (iii) by means of Nakayama’s Lemma. Finally,
(i) can be obtained from (iii) by using the fundamental theorem of modules over a
principal ideal domain.

Notes on Chapter 6

Standard treatments of the projective modules over Artinian algebras use
idempotents. We have avoided this procedure in the first three sections of
the chapter, but the usefulness of idempotents in the theory of algebras
should be clear from the last few sections.

Basic algebras were introduced by Nesbitt and Scott [60]; they attribute
the concept to Brauer. The definition of a reduced algebra appears in Chapter
6 of the notes [20] by Brauer and Weiss. The basic algebra of an algebra
A is also discussed in these notes, and the representation by checkered
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matrix algebras in Exercise 2, Section 6.6 is proved there. The theorem of
Section 6.7 is due to J. P. Jans [50] (for finite dimensional algebras over a
field) and R. Colby [23] (for Artinian algebras). Our proof is modeled on
a result of S. E. Dickson in [27].



CHAPTER 7
Finite Representation Type

If A4 is right Artinian, then the finitely generated right 4-modules can be
constructed in an orderly way from the indecomposable modules, and the
construction is unique by the Krull-Schmidt Theorem. The next step
toward understanding 4-modules is therefore in the direction of indecom-
posable modules, and this topic is currently the center of vigorous activity
in ring theory. The aim of this chapter and the next chapter is to introduce
the reader to the flavor of two lines that are being pursued by research
mathematicians who are now working on the theory of modules.

Throughout this chapter, it is assumed without mention that A is a right
Artinian algebra. (Example 7.1a is an exception to this convention.) All of
the A-modules under consideration are finitely generated, hence Artinian
and Noetherian.

7.1. The Brauer—Thrall Conjectures

It is convenient to introduce notation that will be used throughout the
chapter. The class of all finitely generated right 4-modules will be denoted
by 9M,, and the subclass of M, that consists of indecomposable
modules will be represented by N ,. For each natural number k, let
M, k) = {MeM, (M) =k}and R (k) = {NeR,:I(N) = k}. For the
discussion in this section it is useful to define n, and n (k) to be the cardinal
numbers of isomorphism classes of modules in 9t, and 9 ,(k) respectively.
Thus, n,(1) is the number of isomorphism classes of simple A-modules,
sothat 1 < n, (1) < N,.

It is natural to ask what sequences (n (1), n,(2), n4(3), . ..) are obtained

108
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from various Artinian algebras. This question has not been answered, but
some important properties of the sequences have been established in the
last few years. Around 1950 two conjectures were made, apparently by
Brauer and Thrall. The first published appearance of these conjectures was
in the paper [ 50] by Jans.

First Brauer—Thrall Conjecture. If n, is infinite, then n (k) # 0 for infinitely
many k.

Second Brauer—Thrall Conjecture. If n, is infinite, then n,(k) is infinite for
infinitely many k, provided Z(A) is infinite.

The first of these conjectures was proved by A. V. Roiter for finite
dimensional F-algebras in 1968. (See [68].) In 1974, M. Auslander gave a
different proof that applies to Artinian algebras. The Second Brauer—Thrall
conjecture was proved for finite dimensional algebras over an algebraically
closed field in 1974 by L. A. Nazarova and A. V. Roiter in [59]. Their
result was extended to finite dimensional algebras by C. M. Ringel. The
work of Ringel has not yet been published. Most of this chapter is devoted
to the proof of the first Brauer—Thrall conjecture. We will not discuss the
second conjecture; the existing proofs of this result are long, and probably
not in final form. The rest of this section provides examples of algebras that
have finite and infinite representation types.

ExAMPLE A. If 4 is a commutative principal ideal domain, then every finitely
generated A-module is uniquely a direct sum of cyclic 4-modules of the form
A[p*A, where p = 0 or p is irreducible. Thus, R (k) is the class of modules
that are isomorphic to 4/p*A4, where p is irreducible. In particular, if 4 is
local and not a field, thenn (k) = 1forall k. Of course, 4 cannot be Artinian
in this case.

EXAMPLE B. Let G = {¥) be a cyclic group of order p*, where p is a prime
integer and £ > 1. Suppose that 4 = FG, where F'is a field of characteristic
p. The mapping 0: F[x] - A defined by x+> y is a surjective algebra
homomorphism whose kernel is the principal ideal generated by x?* — 1 =
(x — 1)*. Thus, a finitely generated, indecomposable 4-module N is also a
finitely generated, indecomposable F| x]-module such that (x — 1) € ann N
(by Proposition 2.1). It follows from Example a that the isomorphism classes
of M, are represented by the cyclic modules F[x]/(x — 1), F[x]/((x — 1)?),
.., F[x]/((x — 1)"). Thus,n,(1) = n,2) = --- = n,(p*) = landn(m)
= 0 for all m > p*. In particular, FG has finite representation type.

ExaMPLE C. Let G = (x> x {y)> be the product of two cyclic groups of
prime order p: |x| = |y| = p. Suppose that A = FG, where F is a field of
characteristic p. In Exercise 2 of Section 4.8, a proof that I(4) is not dis-
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tributive was sketched. Thus, by Theorem 6.7 A4 has infinite representation
type. See Exercise 2 for another proof.

Examples b and c are group algebras. The group algebras of finite repre-
sentation type have been characterized in a satisfying way by D. G. Higman:
if Fis a field of prime characteristic p, and G is a finite group, then FG has
finite representation type if and only if the Sylow p-subgroup of G is cyclic.
The proof of Higman’s Theorem uses ideas that will be introduced in
chapters 9 and 10. The general case is based on the result for p-groups,
which in its turn is a consequence of the examples b and ¢ that we have just
described.

It is a standard fact that if G is a finite p-group and H is a proper subgroup
of G, then H < Ny (H). From this result it follows that there is a normal
subgroup M of index p in G such that H = M. Indeed, any maximal proper
subgroup containing H must be normal and of index p, as is easily verified.

Lemma. Let G be a finite p-group, and suppose that F is a field of characteristic
p- If G is cyclic, then FG has finite representation type. If G is not cyclic, then
FG has infinite representation type.

Proor. The first statement was proved in Example b. Assume that G is not
cyclic. We will show that there is a normal subgroup N of G such that
G/N >~ H=1Z[pZ x Z[pZ. By the remarks above, there is a normal sub-
group M, of G such that G/M, =~ Z/pZ. Let xe G — M,. Since G is not
cyclic, there is a normal subgroup M, of G such that x €e M, and G/M, =
Z/pZ. Define N = M, n M,. Since x € M, — M,, N is a proper subgroup
of M,, so that the index of N in G is at least p?. On the other hand, the
mapping y — (yM,,yM,) is a homomorphism of G to G/M, x G/M, =~ H,
and the kernel of this homomorphism is N. Thus, p*> < |G/N| < |(G/M)) x
(G/M,)| < p* and G/N = H. In particular, there is a surjective homo-
morphism ¢: G — H. By Proposition 1.2, ¢ extends to a surjective homo-
morphism of FG to FH. The discussion in Section 2.1 shows that every
indecomposable FH-module can be viewed as an FG-module that is still
indecomposable. Thus, by Example ¢, FG has infinite representation type.
O

EXERCISES

1. Let 4 be a finite dimensional F-algebra. Use Proposition 5.5 to prove that if F is
finite then n ,(k) is finite for all k € N, and if Fis infinite, then n,,(k) < |F| for all k.

2. This exercise outlines a direct proof of the result in Example c. We begin with an
elaboration of Lemma 6.2a.
(a) Let 4 be an algebra such that J(4)* = 0 for some k € N. Suppose that M is
a right A-module. Let 8: E (M) - E _(M/MJ(4)) be defined by 6(¢) = ¢, where
A + MI(A)) = ¢p(u) + MI(A), as in Lemma 6.2a. Prove that if 0(¢) = 0, then
¢* = 0. Show that if Im 6 is local, then E (M) is local and M is indecomposable.
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For the rest of this problem, assume that 4 = FG, where char F = p > 0, and
G = <{x) x {y) with |x| = |y| = p.

(b) Let P and Q be k dimensional F-spaces, and M = PP Q. Let y ¢
Hom(P,Q) be an isomorphism, and suppose that y € E.(P). Prove that there is
a unique A-module structure on M such that u(x — 1) = Y (w), u(y — 1) = Yx(w)
forallue P,and Q(x — 1) = Q(y — 1) = 0. Show that MJ(4) = Q.

(c) Prove that if ¢ e E (M) and ¢ = 6(¢), where 6: E, (M) — E (M/MI(4))
is defined as in (a), then ¢y = y¢, where M/MJI(A) is identified with P and ¢ is
viewed as a linear transformation of P. Show that every linear transformation of P
that commutes with y is of the form ¢ for some ¢ € E ,(M).

(d) Prove that if the minimum polynomial ® € F[x] of y has degree k, then the
image of 0 is isomorphic to F[x]/(®). Hint. View Pas an F[x -module withux = y(u)
for all u € P, and use Exercise 2, Section 2.1.

(e) Let uy, ..., u, be an F-basis of P, and suppose that y(u;) = w,a + u,,, for
i < k, y(u) = uga, where a € F. Prove that the module M is indecomposable. Hint.
Show that the minimum polynomial of y is (x — a)*, and use the results of (a)
and (d).

(f) Prove that if M’ is an A-module that is constructed by the process described
in (b) using ¢ and y’, where y’ is defined as in (e) with a replaced by @’ € F, and if
a’ # a,then M’ % M. Hint. Show that the existence of an isomorphism ¢: M — M’
would imply that y and y” are similar, and would therefore have the same minimum
polynomial.

(g) Prove that if Fis infinite, then n (k) = |F| for all even k e N.

7.2. Bounded Representation Type

The proposition of this section generalizes the characterization of indecom-
posable modules that was given in Corollary 5.3. It is the basis of the proof
of the First Brauer—Thrall Conjecture. The proof of this result is an elemen-
tary induction that evolves from Corollary 2.6:if 0 > N - M - P - 0 is
an exact sequence of modules in M ,, then /(M) = I(N) + I(P).

Lemma a. Let ¢ M — N and y: N - P be homomorphisms of modules in
m,.

(1) (¢(M)) < I(N), and equality holds if and only if ¢ is surjective.
(i) l(Pp(M)) < (M), and equality holds if and only if ¢ is injective.
(iii) IWp(M)) < I(y(N)), and equality holds if and only if

Im¢ + Kery = N.
@iv) I(Wod(M)) < l(p(M)), and equality holds if and only if
Im¢ n Kery = 0.

PRrOOF. The statements (i) and (ii) are obtained by applying Corollary 2.6 to
the exact sequences 0 —» ¢p(M) > N —» N/¢p(M) - 0 and 0 — Ker¢ —
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M — $(M) — 0, using the fact that only the zero module has length 0. The
result (iii) is a consequence of (i), applied to the homomorphism ¢:
M — Y(N), since yop(M) = Y(N) is equivalent to Im¢ + Keryy = N.
Similarly, (iv) is obtained by using (ii) with the homomorphism Y|p(M):
$(M) - P, because Ker y|¢(M) = Im ¢ n Kery. O

Lemma b. Let

T - X
0,— Qm—l_l) Op2— "~ Q1_l’ Qo

be a sequence of homomorphisms of modules in N,. Assume that 1(Q;) < n,
and either

(i) yx; is not injective for 1 < i < m, or
(ii) g, is not surjective for 1 < i < m.

Ifm > 2" then y %, -+ fm = 0.

Proor. It will be sufficient to show by induction on k thatif0 < k <n — 1,
and 0 < i < m — 2%, then I(AM();41 %42 * ** Xix2)) < n — k — 1. For the
case k = 0, note that by Lemma a, /[(Imy;,,) < /(Q;;,) < n if x;,, is not
injective, and /(Imy,,,) < /(Q) < n if y;,, is not surjective. In both cases,
I(Imy,,,) <n—1. Assume k + 1 <n—1,0<i<m— 2", and the
induction hypothesis is valid for compositions of 2* homomorphisms. Denote
= Livasr -0 Kixzor>s ¥ = Xigg 0 Xixoo M = Qiygen, N = Qiio, P =
Q,. Thus, we have a sequence of two homomorphisms M 4 N P, with
(¢p(M)) <n —k — 1 and I(y(N)) < n — k — 1 by the induction hypo-
thesis. To complee the induction step, it is required to show that /(Im y¢) <
n — k — 2. Suppose on the contrary that /(Imy¢) > n — k — 1. It would
then follow from Lemma a that /(Im ¢) = I(Imy) = n — k — 1 = I(Imy @),
and Im¢ + Keryy = N, Im¢ n Kery = 0, so that N = Imgb@ Kery.
Since N = Q,, ,« is indecomposable and /((Im¢) =n — k — 1 > 0, it fol-
lows that Im¢ = N and Kery = 0. In particular, x;, ,«,, is surjective, and
%+, 18 injective. These two conclusions respectively contradict the alterna-
tive hypotheses that Ker y; # 0 for all jor Imy; # Q;_, for allj. The induc-
tion is therefore complete. O

Proposition. Let
m Xm-1 Xy
Qm_’ Qm—l—_' Qm—Z = Ql - QO

be a sequence of homomorphisms of modules in R ,. Assume that I(Q;) < n,
and none of the y; is an isomorphism. If m > 2", then y, %, -+ % = 0.

PROOF. Let I = {j: y; is not injective} and I’ = {j: y;is not surjective}. The
assumption that none of the x; is an isomorphism translates to /U I’ =
{1, ..., m}. Thus,either|I| > 2" ' or|I'| = 2"7}, so that there is a sequence
1 <j, <j, < -+ <j, <mwithk > 2"7" such that either
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%;, is not injective for 1 < i < k, or ¢))

x; is not surjective for 1 < i < k. 2

In the first case, let

Bi = (XjH +1)(le,_‘ +2) X € HomA(le.’le._l)
with the convention that j, = 0. If the second alternative holds, define

05 = inin'H T (inﬂ _1) € HomA(jS+| ‘I’jS_l)

with the convention that j,,; = m + 1. In these cases, none of the
homomorphisms 6, is injective (respectively, surjective). By Lemma b,
0,0, --- 6, =0. Thus, x.%, -+ %m = 0, because 0,0, --- 6, divides
X1X2 " A O

It is convenient to make a provisional definition : the representation type
of the right Artinian algebra A4 is bounded by » if n,(k) = 0 for all k > n;
A has bounded representation type if the representation type of 4 is bounded
by some n. Plainly, if 4 has finite representation type, then 4 has bounded
representation type; the converse statement is the First Brauer—Thrall
Conjecture.

Corollary. If A has representation type that is bounded by n, and if

X - X
0, Qm—1"l’ Oz - >0, >0,

is a sequence of homomorphisms of modules in R , such that y, is not an isomor-
phism for 1 < i < m, thenm > 2" implies y,y, - x,, = O.

EXERCISES

1. Let A be a right Artinian algebra, and suppose that P € %t,. Prove that J(E ,(P)) =
{¢ € E,(P): ¢ is not an isomorphism}, and J(E ,(P)) is nilpotent.

2. Let A be right Artinian, and M e M,. Write M = PP P, P --- P P,, where
P.e N, for all i. Denote the projections and injections that correspond to this
decomposition by =; and «; respectively. Prove that J(E ,(M)) = {¢ € E ,(M): for
1 < i,j <k, my¢x; is not an isomorphism}. Show that J(E ,(M)) is nilpotent, and
E , (M)/J(E ,(M)) is semisimple.

7.3. Sequence Categories

Let Pe MM ,. A P-sequenceis a short exact sequence Y :0 > N > M LPo0
of module homomorphisms such that M € M, and N - M is the inclusion
mapping (hence, N = Ker ¢). Strictly speaking, ) is completely determined
by specifying the homomorphism ¢: M — P, but the kernel N of ¢ plays an
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important part in the theory to be developed, and we prefer to keep it
visible by using slightly redundant notatlon

The P-sequence ) :0 > N > M % P - 0is split if there is an 4-module
homomorphism y: P — M such that ¢y = id,. By Lemma 5.4a, Z 1s split
if and only if there is a homomorphism x: M — N such that y|N =

The notation €(P) will designate the class of all P-sequences. There isa
natural way to define morphlsms of sequences that makes (i(P) a category.
Let Y : 0>No>ME P50 and Z’: 0N ->M %P0 be P-
sequences. A morphism ¥ of ) to )’ is an A-module homomorphism
Y : M - M’ such that

0-N-M ﬁ»P—)O
T
0—>N’—>M’—¢-,>P—+0

commutes. The commutativity condition amounts to the requirement that
¢’y = ¢, since it will then follow that Y (N) = y(¢~1(0)) = (¢)7'(0) = N
Clearly, the composition of morphisms is a morphism, and id,, has the
usual properties of an identity morphism of Y :0 > N > M —» P — 0.

The terminology that goes with module homomorphisms will be used
for the morphisms of €(P). In particular, y: )’ — )" is a split injection or a
split surjection if yy¥ = idy (respectively, Yy = idy) for some morphism
x: Y/ — Y. In this case, ¥ is evidently a split injection (surjection) when it
is viewed as a module homomorphism. For split surjections the converse
is true: if y € Hom(M’,M) satisfies Yy = id,,, then ¢y = ¢'yy = ¢’,
so that y is a morphism of P-sequences and Yy = idy. It is a special case
of this observation that i is an isomorphism in €(P) if and only if it is a
module isomorphism.

Lemma. Let Y :0 > N> M LP>0bea P-sequence. Suppose that N =
@'=1 O;. Denote M; = M|y ,;Q;, N, = N[ ;. Q;, with m,;: M — M, the
natural projection homomorphism.

() n;|Q;: Q; > N, is an isomorphism.
(ii) There is a unique surjective homomorphism ¢,: M; — P such that ¢;n; =
¢, and Ker ¢, = N,. Thus,

Y0 N->MIP>0

is a P-sequence and m;: Y. — Y ; is a morphism in €(P).
(i) IfY, is split for | < i <, then is split.

Proor. The assertion (i) is obvious, and (ii) follows from definitions and
the facts that m; and ¢ are surjective, and Kern, = ) .,;0; = N = Ker ¢.
To prove (iii), suppose that all ) ; are split, say x;: M; — N, are homo-

morphisms such that y;|N, = idy . v,- Let k;: Q; » N be the injection homo-
morphisms that go with the decomposition N = @}, Q;- Define y =
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Yo k(m] Q) eHomA(MN) If ue Q,, then n(u)eN and m,(u) = 0
for j # i. Thus, y(u) = K(7t|Q) LU = K(n|Q) mu = K;u = u. Since
x is a homomorphism and N = Y7_, Q,, it follows that x]N idy. Thus,
Y is split. O

Let Y: 0> N—> M — P — 0 be a P-sequence. We will say that ) is
simple if )" is not split, and N is an indecomposable 4-module. The motive
for this choice of terminology is the analogy with Schur’s Lemma that will
emerge from Corollary 7.4a.

Proposition. If P e M, and P is not projective, then there is a simple P-
sequence.

ProOF. Since P is finitely generated, there is a finitely generated free A-
module M and a surjectlve homomorphism ¢: M — P. Let N = Ker¢.
Then >: 0> N->M % P 0is a P-sequence, and Y cannot be split:
otherwise, P would be a summand of M, hence projective. It follows from
the lemma that there is an indecomposable summand Q of N and a sub-
module M’ of M such that)':0 - Q - M’ M, p 5 0is not split. Thus,
Y is a simple P-sequence. O

EXERCISES

1. LetY: 0> N> M- P—->0and) :0 > N —> M’ - P - 0be P-sequences, and
suppose that §: Y — Y is a morphism. Prove the following statements.

(a) If ¢ is not injective (as a module homorphism), then there exist distinct
morphisms y and y’ from the P-sequence ) ": 0 - N (P Keryy » M P Kery —— el
P > 0to ) such that yy = yy'.

(b) If y is not surjective, then there exist distinct morphisms 6 and 6’ from )
to the P-sequence »”: 0 - M’/Imy — P P (M'/Imy) 4@8 p 0 such that
0y = 6'y.

This exercise shows that the monomorphisms of €(P) coincide with the injective
homomorphisms, and the epimorphisms of €(P) coincide with the surjective homo-
morphisms.

2. Let A be an algebra, and suppose that

0—-Q -K-)M—tP—-)O
Lx Lv L M
O—»Q’—fM’;fP—-»O

is acommutative diagram of right 4-modules with exact rows. Map8: Q' P M - M’
by 8(v,w) = k’(v) + Y(w). Prove that §is a surjective 4.-module homomorphism with
Ker 6 = {(x(u), —x(u)): u € Q}. Conversely, prove that if 0 - Q EMSPo0is
a short exact sequence of right 4-modules, and if y: @ — Q’ is a homomorphism,
then there is a right A-module M’ and module homomorphisms x': Q" - M’,
¢ M — P,y: M - M’ such that the resulting diagram (1) is commutative and
has exact rows. Moreover, the sequence
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Z’:O—»Q’—y M’?;P—>O
is unique to within the equivalence relation defined by
Z”EZ”:O-»Q’—,gM”;P—»O
if there is an isomorphism 6: M’ — M” such that k" = 6x’ and ¢’ = ¢”6, that is,
M
Q ¢ P
~ M7

commutes. (However, the homomorphism y in (1) is not unique. It can be modified
by adding x'0¢, 6 € Hom ,(P,Q").)

7.4. Simple Sequences

In this section we develop properties of simple P-sequences. It is convenient
to introduce the notation §(P) for the class of all simple P-sequences, where
P e M ,. If Pis not projective, then F(P) # J by Proposition 7.3.

Short S-Lemma. Let
N ->M - }’1 -0
ol o] vl
0O-N,>M,-> P,
be a commutative diagram of module homomorphisms that has exact rows.

(1) If ¢ and y are injective, then 8 is injective.
(ii) If ¢ and  are surjective, then 0 is surjective.

This standard result can be proved easily by a diagram chase ; this project
is suggested as an Exercise. It is also a corollary of the ‘“‘snake lemma”
that will be proved in Section 11.3.

Lemma a. LetZ:OaN—»MﬂP—»OandZ’:0—>Q_>M’ L P00
be P-sequences, with Y " simple. If =Y, — Y is a morphism, then y|N # 0.

ProoF. If Y|N = 0, then Ker¢ = N < Kery, so that y factors through
¢: Y = 0¢ for some 6 € Hom ,(P,M’). Consequently, ¢'0¢p = ¢’ = ¢,
and ¢’0 = id, because ¢ is surjective. Since simple sequences are not
split, this conclusion is a contradiction. [}

Corollary a. If Y e &(P) and y: Y, - > is a morphism, then Y is an iso-
morphism.
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PROOF. Let Y : 0 » Q - M — P — 0, with Q indecomposable. If ¥ is not
an isomorphism, then ¥|Q is not an isomorphism by the Short 5-Lemma.
It would then follow from Proposition 7.2 that y™|Q = (¥|Q)" = 0 if
m > 2"9 which contradicts the lemma. O

It will clarify our discussion if we introduce a pre-ordering relation on
the class (P). Write ). > }" if there is a morphism of )_ to ) ". The relation
> is transitive because the composition of morphisms is a morphism, and
the identity morphism on )" secures reflexivity: )’ > .

Corollary b. If' Y and ) are in F(P), then Y, > Y and Y’ > Y if and only
ify. = Y7 (that is, Y. is isomorphic to }).

PrOOF. If there exist morphisms §:) — 3’ and y': Y’ > Y, then by
Corollary a, Yy’ and Y'Y are isomorphisms. Thus, ¥ and Y’ are isomor-
phisms. The converse is obvious. O

The proof shows that if )’ = }, then every morphism from ) to ) is
an isomorphism.

A simple P-sequence ) will be called minimal if ) is minimal in F(P)
with respect to >. In other words, ) > " implies )’ > Y; or, by Corollary

b,y > Y implies ) = ).

Corollary c. If Y € &(P), then Y, is minimal if and only if every morphism
from Y to some )" € F(P) is an isomorphism.

ProoF. If )" is minimal and : )" — Y is a morphism, then )’ =~ )", and
¥ is an isomorphism by the remark after the proof of Corollary b. The
converse is obvious. 0

There is a useful analogue of Corollary ¢ for morphisms to P-sequences
that are not simple.

Lemma b. Let ) € §(P) be minimal, and suppose that Y’ € €(P). If Y’ is not
split, then every morphism from ) to ) is a split injection.

PROOF. Since ) is not split, it follows from Lemma 7.3 that there is a mor-
phism y': )" — 37, where " € F(P). If y: } - Y is a morphism, then
Y'Y:) — )" is an isomorphism by Corollary c. If y = (y'y)" 'y, then
¥ = idy, so that ¥ is a split injection. 0

The fact that minimal, simple P-sequences exist is important. When A
has bounded representation type, the existence question is easily settled.
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Lemma c. Assume that the representation type of A is bounded by n. Every
totally ordered subset of (P) has at most 2" isomorphically distinct members.

Proor. For 0 <j<m, let 3;:0 - Q;, > M;—~ P— 0 be a simple P-

sequence. Assume that for each j > 0, y;: ), — Y, is a morphism that
is not an isomorphism. By the Short 5-Lemma, l//jl Q;is not an isomorphism,

and (¥,]Q)¥,|Q2) -+ WnlQp) = WY -+ ¥,)|Q,, # 0 according to

Lemma a. Since each Q, is indecomposable and the representation type of
A is bounded by n, it follows that /(Q;) < n for 0 <j < m. Therefore,
m < 2" by Lemma 7.2b. O

Proposition. Assume that A has bounded representation type. If Y e F(P),
then there is a minimal ) € §(P) such that Y=Y

This result is an obvious consequence of Lemma c.

EXERCISE

Prove the Short 5-Lemma.

7.5. Almost Split Sequences

An almost split sequence is a simple P-sequence Y :0 > Q - M LPo0
such that P is indecomposable and if y: N — P is a module homomorphism
that is not split surjective, then y factors through ¢; that is, Y = ¢y for
some y € Hom (N, M). This last condition can be expressed as a diagram
that is analogous to the characterization of projectivity:

N
'y

M- P-0.
®

Proposition. Let Pe N, and suppose that Y :0 - Q > M SPo0isa
simple P-sequence. The following conditions are equivalent.

(i) 3. is an almost split sequence.
(i) IfY e F(P), then) =Y.
(iii) Y is minimal in F(P).

PROOF. Assume that Y is an almost split sequence. If
Z’:O—»Q’—-)M’ﬂP—»O

is simple, then ¢’ is not a split surjection, and there is a homomorphism
x: M’ > M such that ¢’ = ¢y. Thus, x is a morphism from Y to ), that
is, Y’ = ). Itis clear that (ii) is at least as strong as condition (iii). Assume
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that ) is minimal. Let : N - P be a homomorphism that is not a split
surjection. Define ¢': M @ N — P by ¢'(u,v) = ¢(u) + Y (v). Plainly, ¢’
is surjective. However, ¢’ is not split. Otherwise, there is a homomorphism
x': P- M(—D N such that ¢'y" = id,, say y'(w) = (x,(W),x,(w)), where
x; € Hom (P,M) and y, € Hom (P,N). It follows from the definition of
¢’ that id, = ¢y, + Yy,. Since P is indecomposable, we conclude from
Proposition 5.2 and Corollary 5.3 that one of ¢y, or Yy, is a unit. In these
cases, x,(¢yx,) " splits ¢, or ¥ is surjective and is split by y,(¥y,)"*. Both
options contradict the assumptions that ¢ and ¥ are not split surjections.
Denote L = Ker ¢’, and

Z':O—»L—»M@NﬂPﬁO.

By the definition of ¢, the injection x: M — M () N satisfies ¢p'x = ¢, so
that k: ). — Y is a morphism. By Lemma 7.4b, « is a split injection. That
is, there is a morphism 6: )" — ) such that 6x = ids. Define y: N - M
by x(v) = 6(0,v) for v € N. The definitions of y and ¢’ give

ox(v) = $6(0,0) = ¢"(0,v) = Y(v),

since 0 is a morphism. Therefore )’ is an almost split sequence. O

Corollary. If the algebra A has bounded representation type, and P€ R, is
not projective, then there is a P-sequence Y such that Y is an almost split
sequence. Moreover, Z is unique to within an isomorphism in the category

C(P).

PRrOOF. Since P is not projective, §(P) is not empty. Proposition 7.4 guar-
antees that §(P) contains a minimal sequence ) ; and Y is an almost split
sequence by the proposition, because P is indecomposable. Moreover, the
proposition shows that a minimal member of F(P) is a minimum, so that
Y is unique to within isomorphism by Corollary 7.4b. O

EXERCISE

Let0 > Q> M % P Obeanalmost split sequence. Suppose that € Hom ,(Q,N)
is not a split injection. Prove that there exists y € Hom (M, N) such that x|Q = 6.
Hint. Let L = {(6(w),—w): we Q} e SNP M), M’ = (NP M)/L with n: NP
M — M’ the projection homomorphism. Define y: M - M’ by ¥(v) = =n(0,v), and
A:N - M’by A(u) = n(u,0). Show that there is a surjective homomorphism ¢’: M’ — P
such that ¢'n(u,v) = ¢(v), and Ker ¢’ = A(N). Prove that y: ) — ) is a morphism,
where ) is the P-sequence

0N -M S Poo.

Show that A is injective, and Aw = yYw for w € Q. Use the hypothesis that 6 is not split
to show that y is not split injective. Deduce from Lemma 7.4b that Y’ is split, say
©: M’ - A(N) satisfies 1|A(N) = id,y,. Prove that y = A 'tyy: M — N is the desired
homomorphism.
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The development that has been presented in Sections 7.3, 7.4, and 7.5
can be dualized in the categorical sense (that is, reverse the arrows). The
exercise (together with its dual) shows that the concept of an almost split
sequence is self dual.

Our discussion of almost split sequences has only scratched the surface
of an area of active current research. Auslander and Reiten have proved
the existence of almost split sequences under hypotheses that are far more
general than those of the corollary in this section. Moreover, they have given
alternative characterizations of these sequences, and made considerable
progress toward an understanding of their structure. Basic references on
these topics are the papers [14] and [15].

7.6. Almost Split Extensions

If P is projective, then there are no simple P-sequences. In particular, no
almost split sequence can terminate with a projective module. This defect
can be remedied by broadening our definition. It will avoid confusion if the
terminology is also modified.

Let P e N ,. An almost sp{gt extension of Pis a homomorphism¢: M — P
such that 0 - Ker¢ - M — P — 0 is an almost split sequence if P is not
projective, and ¢ is injective and Im¢ = PJ(A4) if P is projective. An
alternative definition of almost split extensions is given in Exercise 1. Two
extensions of P, say ¢: M — P and ¢': M’ — P are isomorphic if there is
an isomorphism y: M — M’ such that ¢’y = ¢. Isomorphism of extensions
is obviously an equivalence relation.

Proposition a. Assume that A is a right Artinian algebra with bounded repre-
sentation type. If P is a finitely generated, indecomposable A-module, then
there is an almost split extension ¢: M — P of P that is unique to within
isomorphism. If y € Hom ,(N, P) is a module homomorphism that is not split
surjective, then there is a homomorphism y: N - M such that Y = ¢y.

Proor. If P is not projective, then the existence and uniqueness statement
reformulates Corollary 7.5. If P is projective, then the existence and unique-
nessof ¢: M — Pis obvious from the definition of an almost split extension.
The second assertion of the proposition is part of the definition of almost
split sequences in case P is not projective. If P is projective, then ¥ cannot be
surjective. Therefore, Imy = PJ(4) by Corollary 6.3b. Consequently,
since ¢ is injective with image PJ(A), it follows that y = ¢ 'y € Hom,,
(N,M), and ¢y = ¥ [

It is possible to construct indecomposable 4-modules from almost split
extensions. The process is not effective, using the tools of the theory that
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are now available. However, the construction is powerful enough to provide
a proof of the First Brauer—Thrall Conjecture.

For each non-empty subclass p of 9,, denote by I(p) the collection of
all @ € ;% such that either Q =~ P for some P € p, or there is an almost split
extension M — P with P € p and Q is isomorphic to a direct summand of
M. Define classes [, (p) < It by induction on k according to the conditions.

Io®) = p, Ly (p) = 1(L(p)). (M

When p is the class of all simple 4-modules, we will write J, for 1, (p).
Several obvious consequences of these definitions are worth recording:

p=L®) L) csLpc...;" )
L(L(p)) = I,,(p) forall/and k. (3)

Proposition b. For all k, the number of isomorphism classes of modules in I,
is finite.

Proor. It suffices to observe that if the number of isomorphism classes of
modules in some p = N, is finite, then the number of isomorphism classes
of modules in I(p) is also finite. This fact is a consequence of the Krull-
Schmidt Theorem and the uniqueness of almost split extensions of each
PeR,. (Note that this uniqueness holds without the assumption that 4
has bounded representation type; only Proposition 7.5 was used to show
that almost split extensions are unique.) O

EXERCISES

1. Let¢: M — Pand ¢’: M’ — P be extensions of P, that is, module homomorphisms.
If there exist homomorphisms ¢ : M — M’ and ¥': M’ — M such that ¢’y = ¢,
oY’ = ¢, and Yy’ = id,,., then M’ — P is called a summand of M — P. The
extension M — P is indecomposable if it has no summand other than 0 — P and
the extensions M’ — P that are isomorphic to M — P. Prove that the module
homomorphism ¢: M — P is an almost split extension of P if and only if:

(i) P isindecomposable;

(ii) ¢ is not an isomorphism;

(iii) ¢: M — P is indecomposable;

(iv) if y: N — Pis not a split surjection, then there exists y € Hom ,(N,M) such
that ¢y = . Hint. First show that if ¢: M — @(M) splits, then ¢ is injective. Use
this result, together with (i), (iii), and (iv), to show that if P is projective, then ¢ is
injective and Im ¢ = PJ(4). Show that if P is not projective, then (iv) implies that
¢ is surjective. Use Lemma 7.3 and (iv) to obtain a commutative diagram

0>Kerg>M S P00
vl |
0- Q0 - M ;7 P-0

with exact rows, Q indecomposable, and the bottom sequence is not split. Note
that idy,, — Yy maps M’ to Q, and this homomorphism cannot map Q isomorphically
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to itself since 0 > Q - M’ —» P — 0 does not split. Deduce that idy,, — yx is
nilpotent, from which it follows that Yy’ = id,,. for some y': M’ — M such that
¢y’ = ¢'. The indecomposability of M — P yields the desired result that 0 — Ker ¢
— M — P — 0is an almost split sequence.

2. Assume that N is a direct summand of the 4-module M. Prove that if E (M) is
right Artinian (Noetherian), then E ,(N) is right Artinian (respectively, Noetherian).
Hint. Let n € Hom (M,N) and x € Hom (N, M) satisfy nx = id. For each right
ideal K of E ,(N), denote K* = kK Hom ,(M,N). Show that K — K* is an inclusion
preserving, injective mapping from the lattice of right ideals of E ,() to the lattice
of right ideals of E ,(M); in fact, nK*x = K.

3. Let 4 be a right Artinian algebra with finite representation type. Prove that if
M e M, then E ,(M) is right Artinian. Hint. Let P,, ..., P, be a set of representa-
tives of the isomorphism classes of finitely generated, indecomposable right A-
modules. For 1 < i <k, let ¢;: M, > P, be an almost split extension. Denote
N=M@P - PMPP P @ P Use Exercise 2 above, and Exercise 3
of Section 3.1 to prove that it suffices to show that E ,(N) is Artinian. Let N = Q,
@ -+ @ @, be a decomposition of N into indecomposable modules, with corre-
sponding projections %,: N — Q, and injections «,: Q, — N. It can be assumed that
Q, = P,,, for a suitable mapping o: {1, ..., I} = {1, ..., k}. Let y € J(E,(N)).
Use Exercise 2 in Section 7.2 to prove that there exist homomorphisms y,, €
HomA(QsaMa(r)) such that '// = ler,ssl Kr(bd(r)pd(r)/la'(r)erns’ where pi: N - Mia
2;: M; — N are the projections and injections associated with the decomposition
N=M@P OMPP P - PP~ Deduce that J(E,(N)) is finitely
generated as a right E ,(N)-module, and complete the proof by using Exercise 2 of
Section 7.2.

7.7. Roiter’s Theorem

The tools that we need to prove the first Brauer—Thrall conjecture are now
in our hands; they are the existence of almost split extensions and the
bound on the lengths of compositions of morphisms (Corollary 7.2). Using
these facts, it will be possible to prove that if the representation type of A4 is
bounded by #, then every indecomposable 4-module belongs to I,., where
I denotes the subclass of 9t, that was constructed in Section 7.6. Since the
number of isomorphism classes of modules in each Z, is finite, this conclusion
yields the Brauer—Thrall Conjecture.

Here is an outline of the proof of this result. The key lemma shows that
if P and Q are indecomposable modules such that Q ¢ [,(P), then there is a
non-zero homomorphism from Q to P that is a composition y, - - - y, with
each y; a non-isomorphism between indecomposable modules. This result
is obtained by induction on k, using the existence of almost split extensions
to take the induction step. By Corollary 7.2, such a composition can exist
only if k& < 2". The theorem follows easily from this observation. As a
technical device in the existence proof, we introduce a modified version of
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the trace module Tr(Q,P) = Y {¢(Q): ¢ € Hom,(Q,P)} of Q in P: instead
of using all homomorphisms to define this submodule of P, the sum is
restricted to those ¢(Q) such that ¢ is a composition y, --- y, described
above. The existence of a non-zero composition is plainly equivalent to the
non-vanishing of this modified trace. We now give the details of the proof.

Let P,Q e R ,. Fork < w, denote by D,(Q, P) the set of homomorphisms
¢ € Hom ,(Q, P) such that there is a sequence

Q=Qk+1th_*"‘““’Q1£’Qo=P

in which all of the modules Q; are indecomposable, the homomorphisms

¥; are not isomorphisms, and ¢ = y,%, - - - X4, This definition has two
consequences.
If 0 % P, then Dy(Q,P) = Hom,(Q,P). )
If the representation type of 4 is bounded by =,
then D,(Q, P) consists of the zero homomorphism 2)

forallk > 2" — 1.

The statement (1) is obvious from the definition of Dy(Q,P), and (2) is a
reformulation of Corollary 7.2.

The modified trace module is defined for k < w by T,(Q,P) = Y, {¢(Q):
¢ € D,(Q,P)}. The properties (1) and (2) translate to:

T.(Q.P) < Tr(Q,P); if @ ¥ P, then To(Q,P) = Tr(Q,P); A3)

If the representation type of A4 is bounded by #, @
then 7,(Q,P) = Oforallk > 2" — 1.

Another useful fact comes easily from the definition of 7,(Q,P).

If N, P, Q € %t,, and y € Hom, (¥, P) is not an isomorphism, )
then Y(T,(Q,N)) < T+,(Q,P).

Indeed, itis clear that {{/¢: ¢ € D,(Q,N)} = D,,,(Q,P). Hence, y(Tr(Q,N))
= Yy {$(Q): ¢ D(Q.N)}) = Y {¥d(Q): o€ D(Q,N)} = ) {x(Q):
X € D1 (Q,P)} = T,,,(Q,P).

Lemma. Assume that A has bounded representation type. If P, Q € 9, are
such that Q ¢ I, ,(P), then T,(Q,P) = Tr(Q,P).

Proor. Induce on k. If k = 0, then the hypothesis Q ¢ I, ,,(P) includes the
condition Q # P. Thus, T,(Q,P) = Tr(Q,P) by (3). Assume that k > 1 and
the lemma holds for k& — 1. Our objective is to show that if ¥ € Hom ,(Q, P),
then Y(Q) < T,(Q,P). It will then follow that Tr(Q,P) = ) {y(Q): ¥ €
Hom (Q,P)} < T,(Q,P), which implies that 7,(Q,P) = Tr(Q,P) by (3).
Since Q # P, the homomorphism ¥ is not an isomorphism. Therefore, ¥
is not a split surjection, because Q is indecomposable. This observation
enables us to use the machinery of almost split extensions. Let ¢: M — P be
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an almost split extension of P. The existence of ¢ is guaranteed by Proposi-
tion 7.6a. Write M = P, (P --- @ P, with each P, indecomposable.
Denote the projection and injection homomorphisms that are associated
with this decomposition by n;: M — P, and «;: P, > M. We will use the
identity 7, k;n; = id), and the fact that ¢x, is not an isomorphism.
(Otherwise, k,(¢x;)~* € Hom(P,M) splits ¢, which is contrary to the
definition of an almost split extension.) Note also that Q ¢ [ (P). In fact,
P, € I,(P) by construction; therefore, Q € I, (P,) would imply that Q € [, ,, (P)
by (3) of Section 7.6, which is contrary to the assumption of the lemma. By
the induction hypothesis, Tr(Q,P) = T,_,(Q,P). Since y € Hom,(Q,P) is
not a split surjection, there is a homomorphism y: Q — M such that y =
¢yx. Therefore,

r

W) = 62(Q) = ¥ bxmr(©@ € T dx(Tr(Q.P)
= § (T (@.P) € (@D
by (5). As we observed earlier, this inclusion proves the lemma. O

Proposition. If the representation type of the right Artinian algebra A is
bounded by n, then I, = N, for allm > 2".

PROOF. Let Q € N ,. Since Q is right Noetherian, there is a maximal sub-
module N of Q. Let P be the simple module Q/N. Plainly, Tr(Q,P) = P # 0.
Thus, by (4), T,(Q,P) # Tr(Q,P) if k + 1 > 2". The lemma gives the
desired conclusion that Qe [ (P) = I form =k + 1 > 2". O

Theorem (Roiter, Auslander, Brauer, Thrall). 4 right Artinian algebra of
bounded representation type has finite representation type.

The theorem is a consequence of the proposition and Proposition 7.6b.

EXERCISE

Let A be a finite dimensional F-algebra. Prove that the following conditions are
equivalent.

(a) A has finite representation type for right A-modules.

(b) 4 has finite representation type for left 4-modules.

(c) There exists n € N such that /(socP) < nforall Pe i,.

(d) There exists n e N such that /[(P/rad P) < nforall Pe R,.
Hint. The equivalence of (a) and (b), and of (c) and (d) follow easily from Exercise 3,
Section 2.7. Clearly, (a) implies (c). Assume (c). Show that there is a positive integer m
such that /(Homg(4,soc P)) < mforall Pe R ,. Deduce from Exercise 5 of Section 6.1
and Exercise 1 of Section 2.7 that /(P) < m for all P e %t,. Apply the theorem.
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Notes on Chapter 7

The history of the Brauer—Thrall Conjectures was outlined in Section 7.1.
The exposition in this chapter follows the paper [80] of K. Yamagata, which
in turn was based on Auslander’s work in [11]. One of the essential parts
of the proof, Proposition 7.2, comes from the paper [39] of M. Harada and
Y. Sai. The result that is outlined in the Exercise of Section 7.7 is a theorem
of Curtis and Jans.

Other proofs of the First Brauer—Thrall Conjecture have been given by
M. M. Kleiner and A. V. Roiter in [ 53], and by S. O. Smalg. The paper [72]
by Smalg also gives a proof for finite dimensional F-algebras of the Sesqui—
Brauer—Thrall Conjecture: if n,(k) > X, then n,(m) > n (k) for infinitely
many m.



CHAPTER 8
Representation of Quivers

This chapter introduces another aspect of the current research on represen-
tation of algebras. This line of work began with the papers [34] and [35]
of P. Gabriel. He gave an explicit construction of the indecomposable
modules for certain finite dimensional F-algebras. The most surprising part
of Gabriel’s result is a link between the representation theory of algebras
and the Dynkin diagrams that occur in the study of semisimple Lie algebras.
This relation between associative and Lie algebras was clarified by Bernstein,
Gel’fand and Ponomarev in [ 18] ; they showed that many algebraic problems
can be formulated as questions about the representations of quivers. The
characterization of finite representation type for certain associative algebras
and the structure theory of semisimple Lie algebras are such problems.

Our aim in this chapter is to convey the flavor of this exciting new develop-
ment in representation theory. It can serve as an introduction to a growing
literature on the representation of quivers and related matrix problems.

8.1. Constructing Modules

We begin this chapter by introducing a class of algebras that have very
simple structure and representation theories. In fact, it will be possible to
give an explicit construction of the finite dimensional indecomposable
modules for the algebras of this class. The difficulty arises in trying to
characterize the isomorphism classes of indecomposable modules. That
problem will occupy our attention throughout the rest of the chapter.

The results that are obtained in this chapter fall short of characterizing
finite dimensional algebras that have finite representation types. That
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problem has not yet been solved. However, by combining the theorem that
will be proved here with Theorem 6.7, a result from Morita Theory (Proposi-
tion 9.6), and the Wedderburn Principal Theorem, we will arrive in Section
11.8 at a characterization of the algebras of finite representation type in a
fairly natural class of algebras.

It is useful to introduce notation that will be kept throughout the chapter.
Let I' = (V,E) be a quiver, that is, a finite directed graph, with vertex set
V ={1,2,...,r}. Asusual, Fdenotes a field. Later it will be assumed that
F is infinite.

To define the class of algebras that provide the motif for the chapter,
let A be a commutative, semisimple F-algebra with a basis consisting of the
orthogonal idempotent elements e, e,, ..., e,:

re

Ad=e F@E,’ZF@ @eF e u 1’ Z;=1ei = lA' (1)

We wish to attach a radical to 4. Let N denote the F-space with the basis
{w;: (i, )) € E}, where Eis the edge set of the quiver I'. As an algebra (without
unity) in its own right, N is given the zero multiplication. Thus, if N is to be
the radical of an algebra for which A is the semisimple quotient, then N will
be a left and right A-module. Explicitly, the module and ring structure on N is
defined by

ew; =wye, =0 if k#i and j+#I, )

Yy

W, = W.e, = W

i™vij ijvj u’wwklzo'

Lemma a. Let B = B = N () A be endowed with the multiplication defined
on the basis {e;: i € v} U {w: (i,j) € E} by (1) and (2). Then B is an F-algebra
with unity element 15 =1,, J(B) = N, and B/J(B) =~ A. The elements
e, €y, ..., e, formacomplete set of primitive idempotents with corresponding
principal indecomposable modules P, = ;B = ¢,F (P (P, {w;F: (i,j) € E}.

The mapping i +— e, defines a graph zsomorphzsm of I'toT'(B). T he lattice I(B)
of ideals of B is distributive.

PrOOF. The only non-zero products of three basis elements have the form
e( )— (e )ez’ (wljej) (elwu) (e )W e(el u)’ or W ( ej)

(w;;e;)e;. Thus, Bis associative. It is clear from (1) and (2) that 1, is the unity
element of B. By (2), N is an ideal of B such that N> = 0, and B/N Ais
semisimple. Thus, J(B) = N. Using (1) and 1, = e, + e, + --- + ¢,, we
obtain B=e¢, B e,B@ --- @ e,B. Since elB/eiJ(B) = ¢,F is simple in
A, it follows that ¢,B is a principal indecomposable module. Thus,
e,,€,, ...,e, is a complete set of primitive idempotents in B. Plainly,
e J(B)e; = 01f(z,]) ¢ E, and e, J(B)e; = w;Fif (i,j) € E. Therefore, i — e is
an 1somorphlsm of I'to I'(B). To prove that I(B) is distributive, it is sufﬁment
by Proposition 4.6 to show that the lattice of sub-bimodules of J(B) is
distributive; in other words, S(N) is distributive, when N is viewed as an
A-bimodule. By (2), N = P);. e W;;F1s a decomposition of N into a direct
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sum of simple 4-bimodules; and w;;F = w,,F as bimodules only ifi = k and
J = l:e(w;F)e; # Oimplies e,(w,,F)e; # 0,sothati = kandj = /. Thus, by
Corollary 2.4c (generalized to bimodules by means of Proposition 10.1), S(N)
is distributive. O

The algebra B = Brthat is described in the lemma depends only on the
quiver I'. Conversely, I is recovered from B in the form of I'(B). The lemma
therefore shows that every quiver can be realized as I'(B) for a suitable finite
dimensional F-algebra B.

Since I(B) is distributive, the possibility that B has finite representation
type is not excluded by Theorem 6.7. It will turn out, however, that the
representation type of B is finite only when I' satisfies certain restrictions.

If M is a finitely generated right B-module, then M is a finite dimensional
F-space, because B is finite dimensional. For 1 < i < r, denote M, = Me,.
Clearly, M, is a subspace of M, and an elementary calculation based on (1)
proves that M = M, P M, P --- @ M,. Moreover, ¢; acts as the zero
mapping on M, for each k # i, and as the identity on M,. If (,j) € E, then
Mw; = 0 for k # i, and Myw; = Mw;e; = M; by (2). Thus, the scalar
multiplication of w;; on M is uniquely determined by a linear mapping ¥,; of
M;to M;: y,(u) = uw,; forue M,.

For 1 <i<r, denote M; = {ue M;:uJ(B) = 0}.Plainly, M,, is a
subspace of M;. Since J(B)* = 0, M; » MJ(B) is a subspace of M,,. In
particular, ¥, ,(M;) < M;, for all i and j. Denote M;, = M;/M,,. Since the
kernel of ¥ includes M,,, it follows that y;; induces a linear mapping ¢,; of
M,, to M;, by the rule ¢,(u + M,,) = ,;(u) = uw;;. If ue M;, then uJ(B) = 0
ifand only if uw; = 0 for 1 < j < r. Thus,for1 <i <,

O Ker ¢ij =0, (3)

where the intersection is over {j: (i,j) € E}.
This process can be reversed to show that the data {M;,, M, :1 < i < r},
{¢;:(,))e E } can be used to construct a finite dimensional B-module.

Lemmab. Let {M,;:1 <i<r} and {M;;:1 < i <r} be sets of finite
dimensional F-spaces ; assume that {¢,;: (i,j) € E} is a set of linear mappings,
¢;;: Myy — M,y , such that the condition (3) is satisfied. Define M; = M, @ M,,
and M = ., M;. Then M is a right B-module with scalar operations:

ue; = uforue M;,ue; = 0 forue M;and j # i,

uw,; = 0 for ue M,,, k and j arbitrary; @
uw,; = 0 for ue Myo, k # i, and uw;; = ¢,;(u)

forue My,

Moreover, M; = Me;, M;; = {ue M;: uJ(B) = 0}, M,, = M,/M,,, and the
linear mapping of M,/M;, to M;, induced by the scalar multiplication by w; is
u + M — ¢,;w).
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ProoF. The conditions (4) extend by linearity to scalar operations on M by
the elements of B. The two distributive laws for module operations follow
from the nature of this extension process and linearity of ¢,;. The associative
law of scalar multiplication is a consequence of (1) and (2), together with the
fact that J(B) maps ) i, M, to > i_; M,,, and annihilates Y 7_, M,, . Finally,
uly, = uforallu e M by (1) and (4). The only part of the last statement of the
lemma that is not a direct consequence of (4) is the assertion that M, =
{ue M;: uJ(B) = 0}. This equality follows from the hypothesis that
{¢;;: (i,)) € E} satisfies (3). O

Lemma b gives a recipe for constructing all B-modules from data con-
sisting of a set of vector spaces and linear mappings between some of these
spaces. It is natural to ask how the data reflect homomorphisms of modules.

Let 6: M — M’ be a homomorphism of finitely generated B-modules.
Then 6(Me,) = 6(M)e; = M’e,, so that 0, = 0| M, is a linear mapping from
M, to M. Moreover, 0,;, = 6| M;, mapsto M {1»and induces a linear mapping
0,0: My, > M,. For (i,j)€ E, let ¢;: M;, > M;;, and ¢;;: My, — Mﬂ,
denote the mappings induced by w;;. If u + M, € M,,, then § qbu(u + M;)
= 0(uw,) = 0Ww; = ¢;0,,(u + M,,); hence, 0, ¢,; = ¢;;0,,. Conversely,
every system of 11near mappings satisfying this commutativity property
comes from a module homomorphism.

Lemma c. Let {0,y: 1 < i < r}and{0,,:1 < i < r} be sets of linear mappings

0.0 Myg > My, 0, : M, - M|, such that if (i,)) € E, then

014 = ¢ibio- (%)

Then there is a B-module homomorphism 0: M — M’ such that 6, = 0| M,,,
and 0,,(u + M;) = 6(u) + M,, for allu € M;. The mappings 0, and 0,, are all
isomorphisms if and only if 0 is an isomorphism.

PrOOF. Define linear mappings 6,: M; — M/ so that

0> My —>M—>M;—0
9nl oil oiol
0> M, > M ->M,—-0

commutes. This is possible because short exact sequences of vector spaces
split. If ue M;, then (5) yields 0,(uw,;) = 0,(¢,(u + M,;)) = ¢/(0,0(u + M;;))
= ¢/(0,(w) + M},) = 0,ww,;. Thus, 0 = 6, PO, P - - - P 6,isa B-module
homomorphism of M to M’. If 6,, and 6,, are isomorphisms, so is §; by the
Short Five-Lemma. It follows easily that 6 is an isomorphism if and only if all
of the 6,, and 0;; are isomorphisms. O

A minor precaution is in order. Lemma c is an existence theorem; the
homomorphism 6 is generally not unique, and there is no standard construc-
tion of this mapping.
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EXERCISES

1. Prove that B is local if and only if | V'| = 1, and By is simple if and only if | V| = 1
and |E| = 0.

2. Prove that Bris commutative if and only if every edge of I" is a loop, that is, (i, /) € E
implies i = j.

3. Let T besuchthat |V'| = |E| = 1. Prove that the isomorphism classes of B.-modules
are in one-to-one correspondence with the pairs (m,n) of non-negative integers

such that m < n. Hint. If M is the module corresponding to the data ({M,,, M, ,},
{¢,1}) in Lemma b, assign to M the pair (dim, M, dim, M,,).

8.2. Representation of Quivers

The results of Section 8.1 suggest that it may be useful to isolate and study
certain structures that are associated with quivers. We now begin that

project.
Throughout this chapter, I' = (¥, E) denotes a quiver whose vertex set is
V ={1,2,...,r} for notational convenience. As usual, F is a field.

Definition. An F-representation of I' is a pair (M,¢) consisting of a set
M = {M;: ie V} of finite dimensional F-spaces, and a set ¢ = {¢: () e
E} of linear mappings ¢,;: M; > M,.

The class of all F-representations of I will be denoted by R(I") (or R(T,F)
when it is necessary to identify F).

The class R(T") is made into a category by defining a morphism 0: (M, ¢)
— (M’,¢’) to be a set {6;: i € ¥} of linear mappings 6,: M; - M such that

M; % M,

o1

M 7 M;
commutes for all pairs (i,j) € E. If 0: (M,¢p) > (M',¢’) and 0': (M’,¢") —
(M”,¢") are morphisms, then so is 60 = {6/0;:ie V}; and id,, , =
{idM,.: i€V} is an automorphism of (M,¢). Thus, the requisities for a
category are fulfilled.

The sets Hom((M, ¢), (M’,¢")) of morphisms from (M, ¢) to (M’,¢’) have
an F-space structure that is defined by 6, + 6, = {6,, + 0,,:ie V} and
Oa = {6,a: i€V}, where 0,, 0,, 0 € Hom((M,®), (M',¢")) and aeF. A
routine calculation establishes the commutativity conditions for 6, + 6, and
fa, and it is clear that these operations make Hom((M,¢), (M’,¢")) an F-
space. Also, it is easy to verify that composition of morphisms is bilinear. In
particular, E(M,$) = Hom((M,¢), (M,¢)) is an F-algebra. The mapping
00, P06, P - PO, is plainly an embedding of E(M,$) in
EM, P MDP - @ M,), so that E(M,¢) is finite dimensional.
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Direct sums are defined in R([') by (M,¢) P (M',¢) = (M P M’,
P ¢),where M M = {M,PM:icViandd P ¢ = {¢; D ¢;;:
(i,j) € E}. Itis easy to check that this definition of a direct sum is satisfactory
from the standpoint of category theory. Since I is finite, and the spaces M,
are finite dimensional, it is obvious that every (M,¢) € R(I") can be written
as a finite direct sum of indecomposable objects:

(M,¢) = (My,$,) D (M3,¢,) D+ D (M., 9,

where (M,,¢,) # (0,0), and (M,,¢) = (M;,¢) P (M{,¢;) implies
M, d) = (0,0) or (M[,¢;) = (0,0) for 1 < k < s. The notation (0,0) in
this context abbreviates the sets of zero dimensional spaces and zero
mappings.

The arguments of Section 5.3 can be modified to prove that (M,¢) is
indecomposable if and only if E(M,¢) is a local algebra. The proof in
Section 5.4 of the Krull-Schmidt Theorem can be used to show that de-
composition into indecomposable objects is unique to within isomorphism.
A fuller outline of this argument is given in the hint to Exercise 2.

Validity of the Krull-Schmidt Theorem for the category R(I") makes it
meaningful to discuss quivers of finite representation type. To be precise, a
quiver I has finite F-representation type if there are finitely many isomor-
phism classes of indecomposable objects in R(I',F); otherwise, the F-
representation type of I is infinite.

It turns out that the finiteness of the representation type of a quiver I’
doesn’t depend on F. However, the proofs of this fact use different techniques
for finite and infinite fields. To avoid technical complications, we will
consider only the case in which F in infinite. Throughout the rest of this
chapter, the standing hypothesis that F is infinite will be in effect. Once
this restriction is made, all references to F can be safely omitted. Our results
are independent of F. In particular, it is permissible to use expressions such
as “‘representation of I'”” and “finite representation type” without mention
of F.

ExampLE. For i and k in V, define P¥ = 0if i # k, and B = F. For all
(i,j) € E, let ¢;; be the zero mapping from P to P*. Then (P®,0) is (obvi-
ously) an indecomposable object in R(I).

In fact, (P™,0) is simple in the sense that non-zero morphisms with
domain (P",0) are injective. We will call (P®,0) the simple representation
of T at k. Usually, R(I') includes (categorically) simple objects that are not
of this form.

The notation (P®,0) is slightly ambiguous, since it does not hint that
the set of zero morphisms denoted by 0 really depends on the orientation
of . If I” = (V’,E’) is a quiver such that V' = V, but E’ # E, then the
simple representation (P®,0) associated with I'" is different from the
(P®,0) for I': in the first case, 0 = {0;: (i,j) € E'}; for I',0 = {0,: (i,)) € E}.
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In order to state the main theorem on the representation of quivers, a
couple of items of notation are needed. The graph associated with a quiver
I' = (V,E) will be denoted by I'*. Thus, I'* is the undirected graph with
vertex set ¥, and edge set E, but with the orientation of edges ignored; the
ordered pairs (i,j) and (j,i) are identified. If (i,j) and (j,i) both occur as
edges of T, then these ordered pairs give rise to a double edge between i
and jin I'*

Every quiver and graph can be represented pictorially (in an unlimited
number of ways) by a plane geometric figure consisting of directed or
undirected lines between points. We will refer to such a figure as “the”
diagram of T or I'*. For example, if I' = ({1,2,3,4}, {(12),(23),(34),(43),
(13),(14),(24),(33)} ), then the diagram of I" is

1 2

4 3

The diagram of I'#is obtained from the diagram of I" by omitting arrowheads.
Thus, for the above example, I'* has the diagram

Theorem. The quiver I has finite representation type if and only if the diagram
of the graph T'* is a disjoint union of the following diagrams.

A, e—e—e— +c0 —o—e (n vertices,n > 1)

D, o—o—o - .. ‘._< (n vertices,n > 4)
E6 .——Q—I——'_.

The diagrams in this list are familiar from the classification theory of
Lie algebras. They are the Dynkin diagrams of the simple Lie algebras of
types 4,, D,, and E, for 6 < k < 8. We will see that they arise in studying
the representations of quivers for the same reason that they occur in Lie
algebra theory; they classify certain lattices of points in Euclidean spaces.
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EXERCISES

1. Prove that R(I') is an abelian category for every quiver I'. In more detail, show that
Hom((M,¢), (N,¥)) is an abelian group such that composition distributes across
sums; the direct sum (M, ) @ (N, ) is both a product and a coproduct ; a morphism
6: (M,¢) > (N,y¥) is a monomorphism (epimorphism) if and only if each 6, is
injective (surjective); and every morphism can be written as a composition 6’6",
where 6’ is a monomorphism and 0” is an epimorphism.

2. Let (M,¢) be an F-representation of the quiver I'.
(a) Prove that E(M,¢) is a finite dimensional F-algebra.
(b) Prove that (M, ¢) is indecomposable if and only if E(M,¢) is a local algebra.
Hint. Generalize the proof of Fitting’s Lemma to the category R(I'), and use (a).
(c) Prove that the Krull-Schmidt Theorem is valid for representations of
quivers. Hint. Use Exercise 1 together with (b) to translate the proof of Proposition
5.4 to the context of quivers.

8.3. Application to Algebras

The purpose of this section is to show how Theorem 8.2 can be used to
determine the representation types of the algebras that were described in
Section 8.1.

A quiver I' = (V,E) is called separated (or bipartite) if V is a disjoint
union ¥, w ¥, and all edges begin at a vertex of ¥, and end on V,. That
is, if (i,j) € E, then i € V,, and j e V,. We will call ¥, the set of sources and
V, the set of sinks of T'. If a vertex of does not lie on any edge, then it can
be either in ¥V, or ¥, as convenience dictates.

Associated with any quiver I' = (V,E) is the separated quiver I'* =
(V*=,E®), where V* = V x {0,1} and E* = {((i,0), (j,1)): (i,j) € E}. In this
case, ¥, = {(i,0):ie V}and V; = {(i,1):ie V}.If Bis an Artinian algebra
with I' = I'(B), then the separated quiver I'* corresponding to I is called
the separated quiver of B. Denote this separated quiver by I'*(B).

If I' is a separated quiver with the set V, of sources, then a representation
(M, ) of T is called reduced if for all i € ¥, the intersection over all j such
that (i,j) € E of Ker¢,; is zero. For example, the simple representation
(P®,0) of T defined in Example 11.2 is reduced if and only if k € V.

Lemma a. Let T be a separated graph with the set V, of sources. Suppose that
(M, ) and (M’, ") are representations of T.

(i) (M,¢) = (Brev, P (PY,0)) @ (N.Y), where (NY) is reduced, and
n, = dimg ("), Ker @) for all k € V,.
(i) (M,¢) @ (M',¢") is reduced if and only if (M,¢) and (M’,§’) are both
reduced.
(iii) An indecomposable representation is either reduced or it is isomorphic
to a simple representation (P™®,0) for some k € V.
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PRrOOF. (i) For k € ¥, write M, = Q, @ N,, where Q, = [\ ez Ker @y,
and let Y, = ¢ |N,. Since Ker¢,, 2 Q, and Im¢,, = M, with le V| =
V — Vy, it is clear that ¢, = 0, P ¥, O, P N, » 0P M,. Hence,
(M,¢) = (2,0) @ (V,¥), and (Q,0) = @rev, P PY. The statement (ii)
follows from the definition of a reduced representation because () ,cx
Ker ((¢ (‘B ) = (ﬂ(k,l)eEKer b @ (m(k,l)eE Ker ¢y), and (iii) is a con-
sequence of (i) and (ii). O

Lemma b. Let B = By be the F-algebra that was defined in Section 8.1.
There is a bijection between the isomorphism classes of finitely generated,
indecomposable right B-modules, and the isomorphism classes of indecom-
posable representations (M,¢) of the separated quiver T'°(B) such that (M, @)
is not isomorphic to a simple representation of the form (P%“9,0). In particular,
B has finite representation type if and only if T°(B) has finite representation

type.

Proor. For each finitely generated right B-module M, the construction
described in Section 8.1 yields a representation R(M) = ({M,,,M,, :
1 < i<}, {;:(G,0),(j,1)) € E%}) of the separated quiver I*(B). By 8.1 (3),
R(M) is reduced. By Lemma 8.1c, every module homomorphism 6: M - N
gives rise to a morphism R(6) = {6,,,6,,: 1 < i < r} of R(M) to R(N).
An easy calculation shows that R is a functor from the category of finitely
generated right B-modules to R(I"*(B)). Moreover, by Lemma 8.1c, R is
full: it maps Homg(M,N) onto Hom (R(M), R(N)). Lemmas 8.1b and ¢
also show that the mapping M +— R(M) carries isomorphism classes of
B-modules to isomorphism classes of objects in R(I"*(B)), and every iso-
morphism class of reduced objects in R(I'*(B)) includes some R(M). These
observations, together with two simple consequences of the construction
of R(M), namely

R(M P M’) = RIM) P R(M"), (€))]
and
M # 0if and only if R(M) # (0,0), )

lead easily to the assertion of the lemma. In fact, if M is a finitely generated,
indecomposable B-module, then R(M) is indecomposable: R(M) # (0,0)
by (2), and R(M) = (N',¢") @ (N”,¢") implies that there are finitely gener-
ated B-modules M’ and M” satisfying R(M’) = (N’,¢") and R(M") =
(N",07); by (1), RIM’ @ M") = R(M), so that M = M P M”, and
M =0 or M” =0 (hence (N',¢") = (0,0) or (N”,¢") = (0,0)) by the
indecomposability of M. Conversely, if M is decomposable, then so is R(M)
by (1) and (2). O

This lemma and Theorem 8.2 determine the representation types of the
algebras that were discussed in Section 8.1.
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Proposition. Let T" be a quiver, and I'* the separated quiver that is associated
with I'. If B = By is the F-algebra that was defined in Lemma 8.1a, then B
has finite representation type if and only if I'® has a diagram that is the disjoint
union of Dynkin diagrams of types A,, D,, Eq, E, or Eg.

In Chapter 11 we will reformulate this proposition in a more interesting
way.

One aspect of the proposition is worth a comment. The proof of Theorem
8.2 that will be given in this chapter is constructive. It provides a recipe for
making the indecomposable representations out of simple representations
of quivers that are related to I'. The process translates to an algorithm that
constructs the indecomposable Bp-modules, provided By has finite repre-
sentation type.

EXERCISES

1. Let B be the algebra that was constructed in Section 8.1. Prove that the isomorphism
classes of simple B-modules correspond bijectively to the isomorphism classes of
the simple representations (P!),0) of the separated quiver I'(B).

2. LetI" = (V,E) be a quiver. For each vertex i € V, define d; (i) = |{je V:(i,j) € E}|
and df (i) = |{je V: (j,i) € E}|. Let B = B be the F-algebra that was defined in
Section 8.1. Prove that if B has finite representation type, then dy (i) < 3, d; (i) < 3,
and d; (i) + di (i) < 5 for all vertices i of I'. Give an example of an algebra B for
which df (i) + d} (i) = 5, and B has finite representation type.

3. Find all quivers I’ = (V,E) with ¥ = {1, 2, 3} such that the separated quiver I'*
corresponding to I' has finite representation type.

8.4. Subquivers

In this section, we take a short step toward the proof of Theorem 8.2. Our
first objective is to show that if the diagram of the quiver I is not a disjoint
union of the Dynkin diagrams 4,, D, and E, (6 < k < 8), then I' has
infinite representation type; the second half of the proof establishes the
converse of this conclusion.

We start with an observation that will be used several times.

Lemma a. Let I’ = (V,E) be a quiver such that for some natural number n
there are infinitely many isomorphism classes of representations (M,¢) satis-
fying Y ;o dimp M; < n. Then T has infinite representation type.

PrROOF. If (M,¢) = (MW, @D -+ @ (M©,¢"), then Y., dim; M, =
Y Y epdimy M®. In particular, if the M® are not 0, then s < ),
dimj M;. Thus, if the number of isomorphism classes of indecomposable
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representations of I is finite, then so is the total number of isomorphism
classes of (M,¢) such that ) ,_, dim, M, < n. O

Let I' = (V,E) be a quiver. A subquiver of T is a quiver I = (V',E")
such that V" = V and E’ = E. For any subset V' of V, there is a largest
subquiver I'" of I that has vertex set V': I = (V’, En (V' x V’)). This
maximum subquiver is called the full subquiver on V’, and it is denoted by
ryv.

| IfI'" = (V',E’)and I'” = (V”,E”) are quivers with disjoint vertex sets,
then I wI” = (V' u V",E" U E”) is a quiver that is called the disjoint
union of I and I'”. Clearly, I' = (I v )|V and T” = (I" w I){V”. A
quiver I' = (V,E) is connected if it is not a disjoint union of non-empty
quivers. Thus, I is connected ifand onlyif V' = V' v V7and V' # & # V”
implies the existence of i € ¥’ and j € V" such that either (i,j) € E or (j,i) € E.

For vertices k and / of the quiver I' = (V,E), define k = [ if k = ] or
there is a path in the diagram of I'* (consisting of edges from E) that joins
k and /. It is easy to see that = is the smallest equivalence relation on V
that includes E. If V,, ..., V, are the distinct equivalence classes of =,
then I' = (I'|V}) w - .- w (I'|V}) is the unique decomposition of I as a
disjoint union of connected subquivers. In particular, I is connected if and
only if each pair of vertices in I can be joined by a path in the diagram of I"*.

LetI” = (V'E’) beasubquiver of I' = (V,E). If (M,¢)is a representation
of I, then the restriction 6(M,p) = (M’,¢") of (M,d) to T is defined by
M; = M, forie V' and ¢ = ¢, for (i,j) € E’. On the other hand, for each
(M’,¢") € R(I'), define the extension e(M’,¢’) = (M,¢) of (M’,¢") to T by
M; = M for ie V', M; =0 for ieV - V'; ¢, = ¢ for (i) e E’, and
¢; = 0 for (i,j) e E — E’. Plainly, ée(M’,¢") = (M’,¢"). The object maps
0 and ¢ extend to functors between R(I') and R(I™) by putting (660);, = 6,
forieV’; (e0), = 6, for ie V', (¢), = 0 for ie V — V. It is easy to see
that two objects in R(I'") are isomorphic if and only if their extensions to
I' are isomorphic. Moreover, (M’,¢") € R(I") is indecomposable if and only
if e(M’,¢") is indecomposable.

Lemma b. Let I be a quiver.

(i) If the subquiver T" of T has infinite representation type, then I has infinite
representation type.

() If T =T"wTI”, then T has finite representation type if and only if T”
and T'” have finite representation type.

PROOF. Let 6" and 6” be the restrictions of I to I and I'” respectively.
Similarly, denote by ¢” and &” the extensions from I'" and [ to I". If (M, ¢) €
R(T), then (M,¢) = &'0'(M,p) @ &”6”(M,¢). Therefore, the indecompo-
sable objects of R(I') are extensions of indecomposable objects in R(I™)
and R(I'”). It follows that if I'" and I'” have finite representation types,
then so does I'. The rest of the lemma follows from our previous observations.

d
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By the second part of Lemma b, we can limit our study of representation
types to connected quivers. The first part of the lemma leads to a more
interesting result. A quiver I' = (V,E)is called a loop if | V| = |E| = 1; and
I'isa cycleif I is a loop, or I' is connected, and each vertex is an endpoint of
exactly two edges of I'. With suitable labeling, I is a loop if and only if
V={L,2...,r} (r=1), and E = {(i;,j,), (iz,)5) --.,(isJ.)}, where
(> Ji) = (k,k + 1) or (k + 1,k) for k < r, and (i,, j,) = (r,1) or (1,r). The
unoriented diagram of a loop has one of the forms

o < o
Lemma c. Every cycle has infinite representation type.

ProOF. Let I' = (V,E) be a cycle with V = {1,2, ..., r} and E = {(i;,},),
(i55Ja)s - --» (,,J.)}, as described above. Define M, = Ffor 1 < i < r. For
each a e F define ¢ = {¢.:1 < k <r} by :(f;),. = id, for k < r, and
() = ac. If 0: (M) - (M,¢™) is an 1somorphlsm then the com-
mutativity conditions ¢{” 6, = 6, $\) for k < rimply 6, = 6, = =6,

and R .
b6, (1) = ¢{"6,(1) = 6, ${(1) = 6,(a) = ab,(1).

Hence, b = a. This proves that (M,¢") =~ (M,¢®) only if a = b. Since F
is infinite, it follows from Lemma a that I has infinite representation type. []

A quiver T is called acyclic if T has no cyclic subquivers. Lemmas b and ¢
yield the main result of this section.

Proposition. Every quiver that has finite representation type is acyclic.

EXERCISE

LetI' = ({1}, {(1,1)}) be aloop. Show that if (M,¢) and (M, ¢’) are representations
of I' in the same space M, then (M,¢) = (M,¢") if and only if the linear transformations
¢ = ¢,, and ¢" = ¢}, of M = M, are similar. Thus, the problem of classifying the
representations of a loop amounts to the classification of matrices with respect to
similarity.

8.5. Rigid Representations
A representation (M,¢) of the quiver I' = (V,E) is rigid at the vertex k if

every automorphism 6 = {0,:ie V} of (M,¢) is such that 6, is a scalar
multiple of the identity mapping. For example, if dim M, = 1, then (M,®)is
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rigid at k. The next result shows why the notion of rigidity is relevant to the
study of representation type.

Lemma. Let (M,¢) be a representation of the quiver I’ = (V,E). Assume that
(M, ) is rigid at the vertex k, and that dim; M, > 1. Define I" = (V' ,E’),
where V' = V U {l},1¢ V,and E' = E U {(l,k)}. The quiver T’ has infinite
representation type.

Proor. For each non-zero F-space homomorphism y: F - M,, define the
representation (M’,¢%) of I" by M; = M, forie V, M; = F; ¢; = ¢, for
(i,)) € E, and ¢, = . We will prove:

(M',¢%) =~ (M’,¢*) implies y = y-a forsome acfF. 0))

Since Fis infinite and dim; M, > 1, it will follow from Lemma 8.4a that I’
has infinite representation type. If 0: (M’,¢¥) — (M’,¢*) is an isomorphism,
then 6 = {6;: i € V} is an automorphism of (M, ¢). Since (M, @) is rigid at k,
there exists b € F such that 0;(u) = u-b for all ue M, = M, Also, 6; is an
F-space automorphism of F, so that for all c € F, 6/(c) = dc, where d =
6/(1) # 0. The commutativity condition 6,y = 6,¢% = ¢L6, = x0, yields
2(0) = x0/(cd™") = O(cd™) = Y(cd )b = Y(c)d™'b. Hence, x = Y a,
where a = d'b. O

In many cases, the rigidity of a representation at one or more vertices can
be proved by elementary computations. We illustrate this method with four
examples of increasing complexity. In all of these examples, the representa-
tion spaces are subspaces of one space M, the homomorphisms ¢, are
inclusion mappings, and the rigidity (at all vertices) is established by proving
that the only linear transformations 6 of M such that 6(M)) = M, for all
i € V are the scalar multiplications by elements of F. A representation of this
kind is called a poset representation of I'.

ExaMPLE A. Let I be the quiver with the diagram

r+3 1 2 e o @ r
o e — *c° s r> 1.
\r+2

Define the representation (M,§) of by M, =M, = - - - = M, =u, FPu,F,
M, =uF,M, , =uF,M, 5= (u; +u,)F;andall of the ¢,;are inclusion
homomorphisms. If § € E(M,$), then the commutativity conditions ¢;0; =
0,¢,implythat0, =0, = ... =6, = 0eE(M),and 6, = 0| M,fori=r + 1,
r+2,andr + 3. Hence, 0(u,)eu, F,0(u,) cu, F,and 0(u; + u,)e(u; + u,)F.
If0(u,) = u;a,and 0(u,) = u,a,,thenu,a, + u,a, = 0(u, + u,)e(u, + u,)F
yields a, = a,; that is, 0 = id-a,. This conclusion implies that {M,¢) is
rigid at all vertices.
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Corollary a. For every r > 1, the quiver

~—! 2 ... <

has infinite representation type.

The corollary is a consequence of the lemma, because the representation
(M, ¢) that was constructed in Example a satisfies dim, M, = 2.

ExAMPLE B. Let the diagram of the quiver I be

>-& -t — .

1 2 4 5

Define the poset representation (M,¢) of [ by M, = u, F,M, = u; FQP u,F,
M, = u,F @ u,F P uyF, M, = u,F @ uF, M5 = u,F, and Mg =
(uy + u,)F (u, + u3) F. Note that M, " M, = u, F, M¢n\ M, = (u, + u,)F,
and My n M, = (u, + u3)F. If 6 € E(M,¢), then 6, = y| M;, where y =
6, e E(M;). Thus, y(M,) = M;for 1 <i < 6.Since {NeS(M,):¢¥(N) = N}
is a sublattice of S(M;), any subspace N of M, that is in the sublattice of
S(M,) generated by {M,, M,, ..., M} has the property that y(N) = N.In
particular, y(M, n M,) = M, n M,, y(Mg " M,) = Mg n M,, and
Y(Mg n M,) = M, n M,. Hence, there exista,, a,, a;, b, and ¢ in Fsuch that
Y(uy) = uyay, Yuy) = uya,, Y(uy) = usay, Y(u, + u,) = (u; + u,)b, and
Y(u, + u3) = (u, + u,)c. These conditions imply that i/ is a scalar multiple of
idy,,. Hence, (M, ¢) is rigid.

w 9 O\

Corollary b. The quiver whose diagram is

has infinite representation type.

ExAMPLE C. Let T be the quiver with the diagram

ol ]
o e
W
e
N
~
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Define a poset representation of I' by M; = w,F, M, = u;F @ u,F,
My =u FQu,FPuF,My = u; FP u,FP us FP u, F, Ms = uy FP
u,F, My = (u, + ) FQP (u; + u) FEP (uy + u)F,and M, = (u, — u)FEP
(4, + u,)F. Note that M, = My, as required, and the other mandated
inclusions obviously hold. Moreover, M; N My = uF, Ms n Mg =
(3 — uy)F, My n Mg = (uy + u,)F, My 0 M, = (u, — u3)F, M; 0
(M, + M) = (u; + u,)F,and Mg n (M, + (M5 N My)) = (u, + uy)F. If
0 € E(M, ), then 0, = | M;, where y = 0, satisfies Y (u,) = u,a,, Y(u;) =
Usas, Yy — uy) = (uy — u)by, Yy + uy) = Uy + uy)by, Y(u, — uy) =
(uy — us)by, Y(uy + uy) = (uy + uby, and Y(u, + u3) = (u; + uz)bs
for suitable g; and b; in F. Routine computation leads to the conclusion that
Y = idy, -ay,so that (M,¢) is rigid.

Corollary c. The quiver whose diagram is

N A

@ L 4 A4 o= -0 @ ®

has infinite representation type.

ExaMPLE D.Let I be the quiver with the diagram

[ @ & A

8 7 6 5
Define a poset representation of I" by
=u, FP u, FP us F P u,F P usF P ugF,
= u3F P usF P ugF,
=u, F@ u,F P u; F P u,F,
= u, FP u,F,

(u, + ua)F@ (u, + %)F@ (u5 + u4)F@
(us + us)F P (uz + ug)F,

Mg = (uy + u)F@ (uy — u)FP (uy — us)F P (us — ug)F,

M, = (u, +uy +uy — u)F@P (uy — us)F@P (uy + uz + us — ug)F,
and

Mg = (uy —uy, — us + ug) FP (u; — 2us + ug)F.

An easy check shows that the required inclusions My €« M, ¢ Mg «¢ M
M, , M, c M, =« M,,and M, c M, occur. The proof that if § € E(M,¢),

w
0

SEXEER
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then 6, = id,, -a for some a € F follows the pattern that was established
in Examples a, b, and c. The argument is based on the fact that 6, maps
the following one dimensional subspaces of M, into themselves:

M, " M; = uyF,

M, " M; = (u, — u,)F,

M, n Mg = (us — ug)F,

MM, =@, +u, +u; —u,)F,

Mg n (M, + (M, n My)) = (u, + u3)F,

Mg N (Mg n M) + (Mg nM,)) = (u; — uy — us + ug)F,
and

Mg (M, + M) = (u, — 2us + ug)F.

It is also necessary to use the invariance under 6, of the two dimensional
spaces M, and M, n M5 = (us — ug)F P (u3 + us) F. We leave the de-
tails of the proof as an Exercise.

A more interesting question is where does this strange example come
from? The choices of the dimensions of the spaces M, are crucial for success.
From a different point of view that will be explained later, these choices
are natural. The rest of the construction is largely based on trial and error,
carried out within certain guidelines.

Corollary d. The quiver whose diagram is

R

[ 4 & o —— o > @ @

has infinite representation type.

Our inclusion in this section of these four examples was not done for
perversity. We will show that these four examples, together with Proposition
8.4 and a result that will be established in Section 8.7, yield a proof of the
first half of Theorem 8.2.

Proposition. If the quiver T has finite representation, then I is a disjoint union
of quivers whose unoriented diagrams are among the Dynkin diagrams A,, D,,
and E,(6 < k < 8).

ProoF. The result from Section 8.7 that we need is the fact that the repre-
sentation type of a quiver does not depend on its orientation. (See Corollary
8.7) In particular, if I is a quiver whose unoriented diagram coincides
with the unoriented diagram of one of the quivers in Corollaries a, b, ¢, or
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d, then I"” has infinite representation type. Thus, the hypothesis that I" has
finite representation type implies by Lemma 8.4b that no subquiver of I"
has an unoriented diagram like the diagrams of the quivers in Corollaries
a, b, ¢, and d. Moreover, I is acyclic by Proposition 8.4. By limiting our
attention to the connected components, it can be assumed that I" is connected.
Corollary 8.5a implies that no vertex of I is an endpoint of more than three
edges, and at most one vertex is an endpoint of three edges. The diagram of
I" must therefore have the form

. r
. . e o o . I . e o o . .
u J [\ J
Y Y
t N

We can assume that r < s < ¢. By Corollary b, r < 1. If r = 0, then the
diagram of 'is 4, withn = s + ¢ + 1. Assume that r = 1. By Corollary c,
1 <5 < 2. If s = 1, then the diagram of I is D, with n = ¢ 4+ 3. Assume
that s = 2. By Corollary d, 2 < t < 4. In these three cases, the diagram of
Tis E,, where 6 < k < 8. (]

EXERCISE

Complete the proof that the quiver in Example d is rigid.

8.6. Change of Orientation

Throughout this section, I' = (V,E) is an acyclic quiver. The vertex i is
called a source (sink) in I if (j,i) ¢ E (respectively, (i,j) ¢ E) forallje V.

Lemma a. Every non-empty acyclic quiver has sources and sinks.

ProoF. Assume that I" has no sources. Since V' # (J, there exists iy € V. By
assumption, i, is not a source. Thus, there exists i; € ¥ such that (i;,i,) € E.
Since I'is acyclic, i; # i#,. The fact that i, is not a source implies the existence
of i, € V such that (i,,i;) € E. If i, = i, or i, = i, then I" would contain a
cycle. Hence, i, # i,, i;. Repeating this selection process |V'| + 1 times
plainly gives a contradiction. Thus, there is a source in I'. Similarly, T’
includes a sink. O
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Corollary. If T is an acyclic quiver, then the vertices of I" can be labeled
V={1,2,...,r}insuchaway that (i,j) € E implies i < j.

ProoF. Induce on r = |V|. If r = 1, then E = (, and there is nothing to
prove. Assume that » > 1, and the corollary is true for quivers with s
vertices whenever s < r. Let V' be the set of sinksin T, and V' = V — V",
By Lemma a, V' # (&, so that |V”| =s < r = |V|. By the induction
hypothesis, there is a labeling V” = {1, 2, ..., s} of the vertices of F] |2
such that if (i, )) e En (V" x V"), theni <j. Label V' ={s + 1, ...,r}
arbitrarily. If (i,j) € E, then i is not a sink. Hence, ie V”. If je V", then
i<j;ifjeV, theni<s<s+1<j. O

The quiver I' will be called standardized if V = {1,2, ...,r}, and i < j
for all pairs (i,j) € E. By the corollary, every acyclic quiver can be standard-
ized, generally in many ways. Note that if I" is standardized, then 1 is a
source in ["and ris a sink in T".

For each vertex k of the quiver I', define p,I" = (V,E,), where E, =
{(,HNeEi#k #j}u{(j,k):(k,j)e E} U {(k,i): (i,k) € E}. Geometrically,
p I is the quiver that is obtained from I' by reversing the orientation of
all edges that have k as an endpoint. Plainly, the unoriented graphs associated
with I' and p, I are identical.

The transformation I' — p,I" can be iterated, using various vertices. The
resulting quivers have the same unoriented graph as I, but different orienta-
tions. The principal result of this section is that it is possible to obtain
every orientation in this way.

Lemma b. Let I be a standardized quiver with r vertices.

() If1 < k < r, thenk is a sink and k + 1 is a source in pyp,_; --- p,I.
(i) If1 < k < r, then k is a source and k — 1 is a sink in pyp,,; --- p,T.

(i) pp,—y -+ oI =p1py -+ p I =T.

ProOF. These statements follow from the assumption that I' is standardized
together with the observation that if k,, k,, ..., k, are distinct vertices of
I', and P Pr, " pksl“ = (V,E"), then (i,j) € E’ if and only if: (i,j) € E and
either none or both of i,j occur among k,, k,, ..., k,; or (j,i)e E and
exactly one of i, j occurs among k, k,, ..., k.. O
Proposition. Let I" and I'" be acyclic quivers that satisfy I'* = (I'). There is
a sequence ky, k,, ..., k, of vertices of I such that for | <1< n, k,isa
sourceinp, p - pLandp p - p T =T

ProoF. The hypothesis I'* = (I"")* implies that I" = (V,E)and I'" = (V,E),
where (i, j) € E if and only if (i, j) € E" or (j,i) € E’. It suffices to prove the
special case of the proposition in which there is exactly one edge (i, j) € E
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such that (j,i) € E’; thatis, E’ = (E — {(i,/)}) v {(j,i)}. Iterating the result
for this special case will yield the full proposition. Let I'y = (V, E — {(i,)) }).
If I’y is written as the disjoint union of connected components, then i and j
must belong to distinct components: if i and j could be joined by a path in
I',, then this path, together with (i,/) would form a cyclic subquiver of I',
which is contrary to the assumption that I' is acyclic. Thus, I'y = I'; w T,
where I';, = (V,,E), I, = (V,,E,),ieV,,andje V,. Then V =V, v V,,
and E = E, v E, v {(i,j)}. By the corollary, it can be assumed that V, =
{1, 2, ..., s} is listed so that I'; is standardized. Let V, = {s + 1, s + 2,
oo Ifl <k <s<lI<rthen(k/)eEifandonlyifk = iand/ = j.
By Lemma b, k is a source in p,_ 0, --- p,[; for 1 <k < s, and p,
Py - py It =T,. Since Iy =T, wT,, it follows that k is a source in
Pu-1Pr—z -+ - piTLandpp_y - p T = (V,((E — {GH}) v {(D}) =T

d

EXERCISES

1. Let T’ = (V,E) be an unoriented graph with at most double edges, that is, for i # j
in I, there are at most two edges that join i and j. Assume that for each i € V there
is at most one loop at i. Prove that the edge set E can be oriented in such a way
that I becomes a quiver. Determine the number of ways in which I" can be oriented
to form a quiver.

2. LetI' = (V,E) be a quiver. An oriented cycle in I"is a sequence i,, i,, ..., i,(n = 1)
of vertices such that (i,,,), (i,i3), - - ., ({,-1,i,), (i,,i;) are all edges. Prove that a
non-empty quiver has a standard orientation if and only if there are no oriented
cyclesin T

8.7. Change of Representation

In this section, we will show that the orientation reversals defined in Section
8.6 are accompanied by a change of representations. This fact is the key
step in the proof of both parts of Theorem 8.2.

Notation. (i) Let i be a source in the quiver I' = (V,E). For a representa-
tion (M, ¢) of I, define S;” (M, ¢) = (N,¥) e R(p,I) by N, = M, for k # i,
N, = (‘B(i,j)eE M;/Im njd’ij = COkef(l_[,- éy), Uy = & for k # i # j, and
(for (i,k) € E) let y,; be the composition N, = M, > @ g M; = N, of
the inclusion of M, into @); ;. ¢ M;, and the natural projection of P); ;. M;
onto N. If 0: (M,¢) - (M’,¢") is a morphism in R(I'), define S; () =
2287 (M) » ST (M',¢") by y, = O, fork # i,and y,: N, = Coker([];¢,)
— Coker([];¢;) = N/ so that

=Y
@(i,jleE All — @(i,jieﬁ' MJ/

N. RN N/

13 Xi 1

M

commutes.
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(i1) Let i be a sink in I'. For (M,¢) € R(I'), define S;"(M,¢) = (N,) €
R(p;$) by N, = M, for k # i, N, = Kef(]_[j¢ji) < @(j,i)esjuja lpkj = ¢kj
fork # i # j, and (for (k,i) € E) let §,, be the composition

N, - @ (j,i)eEAlj - M, = N,
If0: (M,¢) - (M’,¢’) is a morphism in R(I"), define
S O) = x: ST (M,¢) > S (M',¢")

by y, = O fork # i,and y;: N, = Ker(] [;¢;) — Ker(] [;0;) = N/ is such
that
Xi

N, — N!

1

! ! @
DiinerM; o0 DPiiperM;

commutes.

The fact that S;” (M, ¢) and S;" (M, ¢) are representations of p,I" is evident :
the definition of quiver representations imposes practically no restrictions.
However, to see that S; (6) and S;"(6) are morphisms requires a bit of
checking. Assume that i is a source in I'. Denote S; (6) = {t;:jeV} If
J # i # k,then y, ¥, = ¥, is a restatement of the corresponding commu-
tativity condition on 6. The fact that y,, = .z, for k # i is seen by
chasing arrows in the diagram

@u‘.jmsl, ,
@(i,j)EE]Mj @(i,ﬂEEM]'
9 =
\ M, k= X M,:/
N,

’
i Xi Ni

where the unlabeled arrows are natural injections or projections. Similar
considerations show that S;* (f) is a morphism when i is a sink in T".

Lemma. Let I be an acyclic quiver, and suppose that (M,¢) and (M’,¢’) are
representations of T'.

() S and S; are functors from R(T') to R(p,T) in the respective cases
that i is a source or sink in T,
(i) S*((M,¢) D (M',¢) = SF(M,d) P S*(M',¢).
(i) If'i is a source in T, then (M,¢) = S S; (M,$) P (P,0), where P=0
forj # iand P, = Ker([[; ;).
(v) If iis a sink in T, then (M) = S S (M,$) P (Q,0), where Q; = 0
Jorj # iand Q, = Coker(]_[jqbﬁ).

Proor. The equations S7(6'0) = S (6)S*(0) are easily seen by putting
together diagrams of the kind that are shown in (1) and (2). Therefore,
(i) is verified, since clearly

i . — s
i (idpy, ) = ids; 5y, 9)-
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A routine calculation shows that S* (0 + 6) = S (0) + S (0"), from which
(ii) is an easy consequence. For the proof of (iii), denote S;*S;” (M,¢) by
(N, 7). A check of the definitions given above shows that N, = M, fork # i,
N, = Im(l_[j¢ij) < @u.jpeeM;, xy = ¢y for j # i, (j,k) € E, and for
(i,k) € E, ¥, is the restriction to N, of the projection from P ;g M; to
M, (thatis,if x = (... x, ...) € N, then x;,(x) = x,). Since P, = Ker([ [, ¢,),
the sequence of F-space homomorphisms 0 —» P, — M, 2%, N, - 0is exact.
Thus, there is an F-space homomorphism ¥: M; - N, such that 0,(u) =
((TT;¢;) @), ¥()) is an isomorphism of M; to N; @ P.. For j # i, define
0,(u) = w,0)e N;PO =N, @ P;. Then 8: (M,¢) - (N,) @ (P,0) is an

isomorphism: if (i,k) € E, then (yx; @ 0)0,w) = (xu(. .. o5 ...), 0) =

(5 (®),0) = 6,0, (u); clearly, (x; P 0)6;, = 0,¢; if j # i. The proof of (iv)
is the categorical dual of the proof of (ii1). O

Proposition. Let I' be an acyclic quiver. Assume that (M,®) is an indecom-
posable representation of T'. Let i be a source (sink) in I

Q) If(M,p) = (P?,0), where (P?,0) is the simple representation of T at i,
then S; (M,¢) = (0,0) (S (M,$) = (0,0)).

(i) If (M,9) & (P9,0), then S7(M,$) = (N.¥) (5] (M.,$) = (N,¥)) is
indecomposable, S;"S; (M,¢$) =~ (M,$) (S7S; (M,¢) = (M,9)), and
dim, N, = dimg M, for j # i, dimg N, = ) ; ;. gdimg M; — dimp M,.

(iii) T has finite representation type if and only if p,I" has finite representation
type.

Proor. We will prove the statements (i), (ii), and (iii) for the case in which i
is a source. The parenthetical assertions, that apply when i is a sink, are
obtained by the standard trick of reversing the arrows that represent mor-
phisms. The statement (i) is elementary: N, = M; = P{ = 0 for j # i, and
N, is a factor space of (P ;g M;, which is 0 since I has no loops. Assume
that (M,¢) % (P?,0). It follows from part (iii) of the lemma that (M,¢) =
S ST (M, ) P @m (P?,0). Since (M, $) is indecomposable and not isomor-
phic to (P?,0), it follows that (M,$) = S;'S; (M,¢). In particular, S; (M,¢)
# (0,0). Thus, we can write S, (M,¢) = (N,¥) P (M',¢), where (N, ) is
indecomposable and S;'(N,¥) # (0,0). Then (M,$) =SS (M,¢) =
S;F(N¥) PS;" (M’,¢"). The indecomposability of (M, ) implies S;" (M’,¢")
= (0,0). Consequently, (N,y) P (M",¢") = S; (M,$) = S S (N, ), so
that (M’,¢") = (0,0): if S;S;(N,¥) = (N’,¥’), then by part (iv) of the
lemma, dim; M/ = dim; N/ — dim; N; < 0 for all j€ V. To prove the last
part of (ii), use the fact that (M, ¢) is reduced by Lemma 8.3a. In particular,
[1,0;is injective, and P, . M; = M; @ N, as F-spaces. Hence, dim; N, =
Y. pepdimy M; — dim; M,. By the lemma and (ii), there is a bijection
between the non-simple, indecomposable representations of I' and the
non-simple indecomposable representations of p,I". Since R(I') and R(p,I")
have finitely many isomorphism classes of simple objects, the statement (iii)
is clear. O
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We can now pay the debt that was incurred in the proof of Proposition 8.5.

Corollary. Let T and I be quivers such that T" = (I'")*. The representation
type of T is finite if and only if T has finite representation type.

PRrooF. Since I'* = (I")*, either I or I'” are both acyclic, or neither of them is
acyclic. In the latter case, I' and I have infinite representation types by
Proposition 8.4. If I' and T are acyclic, then Proposition 8.6 assures the
existence of a sequence k,,k,,...,k, of vertices such that I" =

PePi, +- P, and k; is a source in p, _p, - p T for 1 <l<nm It
follows by repeated apphcatlons of part (111) of the Proposmon that the
representation types of I" and I'” are the same. |

EXERCISES

1. Prove that if i is a sink in T, and 0: (M,¢) — (M’,¢’) is a morphism, then S;*(6)
is a morphism.

2. Prove statement (iv) of the lemma.

3. Prove the parenthetical statements in the Proposition.

8.8. The Quadratic Space of a Quiver

Proposition 8.7 provides a way to construct indecomposable representations
from simple representations: if i is a source in the acyclic quiver I', and k # i,
then S; (P%®,0) is an indecomposable representation of p,I", and if (i,k) is an
edge of T', then S; (P™,0) is not simple. This process can be iterated to
construct a substantial supply of indecomposable representations.

In this section and the next one we will set up some geometric machinery
that keeps track of the representations that are produced in this way. As
usual, I' = (V,E) denotes an acyclic quiver with the vertex set labeled
V={1,2...,r}. Let {E} = {{i,j}: (i, /) € E}; in other words, {E} is the
edge set of the unoriented graph I'*. Associate with I the r-dimensional
rational vector space Ur = (P, v;Q, and a quadratic mapping ¢ of Uy to
Q defined by

de(Yva)y=Yal— Y aa. 6]

iev iev {i, j}e{E)
The quadratic form that defines ¢, is

Or(Xy, Xy .sX,) = ) XF — Y XX, 1)
i=1

(i, j}e{E}

The bilinear mapping obtained from ¢ by polarization will be needed. It is
defined by



148 8 Representation of Quivers
Be(Y viay, Y vb) = ) ab, — (1/2) ), (a;b; + a;b)). )
ieV ieV ieV {i,j}e{E}
Lemma a. If the (unoriented) diagram of T is one of the Dynkin diagrams A,,
D,, or E (6 < k < 8), then the quadratic form ® is positive definite.
Proor. For m > 1, denote

Y (x;,...,X,) = ‘X12X2 — X,X3 — 0 — X1 X
+x; + o+ x2, + ((m — D2m)x2

I

m—1

Y (1/2)k(k + D)k + D)x,p; — (k)X

k=1

Evidently, ¥, is positive semidefinite, and ¥,(a,, ..., a,) = 0 only if
a, = (1/2)a, = --- = (1/m)a,, If T has the diagram

1 2 3 n—1 n

A o———t——a— s 0+ —e—ae, N=>1,

then ®(x,, ...,X,) = ((n + 2)/2n)x% + ¥, (X,, ..., X,) is positive defi-
nite. If I has the diagram

1 2 n—3n-2 n—1
D,:o——e .- , n>4,
n

then dp(xy, ..., X,) =¥, Xy, - o, X,00) + P11, X, ) + Wa(x,, X, 5)
+ (1/2(n — 2))x2_, is positive definite. Finally, if the diagram of T is

B 2 ... k8 kf3 kol K 6<k<s,
k-2

then

O (X, -0 X)) = P a(Xq, oo, X3) + Po(Xmg, X23)
+ W3(%,, X_p, Xi_3) + (9 — K)/12(k — 3))x;_,

is positive definite. O
Proposition. If T has finite representation type, then ® is positive definite.

PrOOF. By Proposition 8.5, = I} w I,w - .. w I, where each quiver I'; has
a diagram that is one of the Dynkin diagrams A4,, D,, or E, (6 < k < 8). It
follows from the definitions that have been given that Up = Ur, @ Uy,
@ - DU and ¢r = ¢ Pdr, P -+ D ¢r,- That is, if w=w, +
w, + -+ w withw; € Ur,.s then (W) = ¢r, (W) + &, (W) + -+ +
¢r,(w,). By the lemma, each ¢, is positive definite. Thus, ¢r is positive
definite. O
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The converse of this proposition will follow from Proposition 8.5 and
Theorem 8.9. However, it is not difficult to prove this converse directly (see
Exercise 1), and a less roundabout proof of Proposition 8.5 can be based on
this fact. The lemma that we need is this: if I" has finite representation type
(hence, I is acyclic), then @ is positive definite. A geometrical argument due
to Tits can be used to establish this lemma. If @ is not positive definite, then
there exist non-negative integers k;, not all zero, such that ¢ (> ., v;k;) < 0.
For 1 <i < r, let M, be an F-space of dimension k;. The representations
(M,¢)of I'suchthat M = {M;: 1 < i < r}areinone-to-one correspondence
with the elements of the F-space N = P, jee Homg(M;, M)). By our con-
struction, dimy N = ) ; , _kk;. The algebraic group G = [[;., GL, (F)
acts on N by (...¢;...)— (.. .qubijé),.‘l. ..), and every nonzero scalar
multiple of 1 acts trivially. Thus, N can be viewed as a G/F°-module. Plainly,
the orbits of G/F° in N correspond bijectively to the isomorphism classes of
representations of T on the spaces {M;: 1 < i < r}. By Lemma 8.4a, the
representation type of I is infinite if there are infinitely many orbits. Now,
geometrical intuition comes into play. It is reasonable to suppose that the
number of G/F° orbits in N will be infinite if the “dimension” of G/F° is less
than the “dimension” of N. To make this reasoning sound requires an
interpretation of the word ‘““‘dimension.” The appropriate meaning comes
from algebraic geometry: G/F° and N are algebraic sets whose dimensions
arerespectively (3 7_, k?) — land ) ; ;. pkk;. By thechoice of k,k,, .. . ,k,,
dimN — dimG/F° =1 — ¢(}%_, v;k;) > 1. The desired conclusion that
G/F° has infinitely many orbits in N can then be proved. Some hints for
filling in the details of this sketch are provided with Exercise 2.

Definition. Let (M,¢) be a representation of the acyclic quiver I' = (V,E).
The dimension vector of (M, @) is the vector in U = @), v;Q given by

Dim(M,¢) = Y vy(dim; M).
ieV

To formulate the essential properties of Dim in a convenient way, we
introduce some notation that will be explored more systematically in the next
section. We will denote by Wi-the subgroup of U consisting of vectors with
integral components: Wy = Py v,Z. A vector w = Y, v,4; is positive if
w # 0, and g; > 0 for all i € V. Denote the set of positive vectors in Wy by
W¢. For each i€ V, define a linear transformation ¢, of Ur by o,(w) =
w — v,(2fr-(w,v;)). When ¢ is positive definite, o; is the usual reflection in the
plane perpendicular to v;. In fact, ¢-(v;) =1, so that g,(w) =w —
0,2Br(w,0)/dr(v)). If w = Y, v,a;, then an easy calculation yields

ow)= Y va+v(( Y a)-—a) 3)

i#jeV {i,j}e{E}
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Lemma b. Let (M,¢) be a representation of the acyclic quiver I' = (V,E).

(i) (M,d) = (0,0) if and only if Dim (M, ) is the zero vector. If (M,d) #
(0,0), then Dim (M,¢) € W;.
(i) Dim(M,¢) = v, if and only if (M,$) = (P¥,0).
(i) If i is a source in ', (M,¢) is indecomposable, and (M,¢) % (P9,0),
then Dim(S; (M, ¢)) = ¢,Dim (M, ¢).
(iv) If i is a sink in T, (M,¢) is indecomposable, and (M,$) % (P?,0), then
Dim(S;" (M, ¢)) = 6,Dim(M, ).

The statements (i) and (ii) come directly from the definition of the dimen-
sion vector. The properties (iii) and (iv) are restatements of a portion of
Proposition 8.7 by virtue of (3).

EXERCISES

1. Give a direct proof that if I" is an acyclic quiver such that @ is positive definite,
then the diagram of I' is a disjoint union of the Dynkin diagrams 4,, D,, and E,
(6 < k < 8). Hint. If I'" is a subquiver of I', then ®,. is positive definite. Use this
observation to prove that I' cannot contain a subquiver whose unoriented diagram
is the same as the unoriented diagram of the quiver in Corollary 8.5a. Hence, the
diagram of I" must be like the figure in the proof of Proposition 8.5. Thus,

DXy, o3 X Xpgs o v o5 Xog X305 -2 05 X35 ¥) =

Wi s X ¥) + Y (Xaps - X0 W) + W (X3, - X5, ) +

Y2 = (2(r + 1)) = (s/2(s + 1)) — (¢/2(t + 1)),

where ¥, is defined as in the proof of Lemma 8.8a. Assume without loss of generality

thatr < s < t. Deduce that if @ is positive definite, then either 7 = 0,orr = 5 = 1,
orr=1,s=2and2 <:<4.

2. Let T’ = (V,E) be an acyclic quiver. Assume that there is a set {M;: i € V'} of finite
dimensional F-spaces such that n=7Y, ,d? <Y, zdd, =m, where d;, =
dim; M;. As usual, assume that the field Fis infinite. Fill in the details of the following
sketch that ' has infinite representation type. Denote G, = [];., GL,(F), and
G={wa):a=(...0...)€Gya= ([],.pdeta)™*} = F**'. The affine ring of
Gis
AG)=1{0|G:@eF[...x0...,z]} = F[...x0. .., 2]/([T;cp det [x9])z — 1).
Ifé¢ = (... ¢;...)e F", then G operates on F™ by

O@a)p = (... o;0,0%( [z deta)a ...).

Note that a(] ], deta,)a = o;'. For a fixed ¢ € F™, define y,(2,a) = O(a,a)¢.
The mapping ¥, induces an algebra homomorphism y}: F[ ... y&?...] - 4(G)
by (Y3 ®@) (a,a) = ®(,(2,a)). Prove the following statements.

(@) If Kery$ # 0, then there are infinitely many orbits of the action of G on
F™, in which case I' has infinite representation type.

Denote ¥ = (y,, -..,¥n)> X = (X;, ...,X,), and XP = (xf, ..., x?), where
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P =Yvd. Let R = {}_,®(X) z/: ®(X) homogeneous of degree pj} = F[X,z],
and T = {}\_,®,(XP)2’: ®; € F[X] homogeneous of degree j}, a subring of R.

(b) F[X] = T.

Let K be the fraction field of R, and L the fraction field of T.

(¢c) Tr.degK/F = Tr.degL/F = n.

(d) Ifthere is a subring S of Rand 0 # ®(X,z) € S such that S/(®(X,z)) =~ F[Y],
then m < n. Hint. Show that m + 1 < Tr.deg E/F < Tr.deg K/F = n, where E is
the fraction field of S.

Denote O(%,z) = ([ ],y det[x¥])z — 1.

(e) (®)is a prime ideal in F[X,z]. Moreover, if ® € F[X,z] satisfies ®(x,a) = 0
for all (a,a) € G, then @ € ().

(f) If ®[X,z] € F[X,z] satisfies ®(ba,b"Pa) = ®(a,a) for all (x,a) € G and b € F,
then ®(X,z) = @'(X,z) mod (®), where &'(X,z) € R.

Deduce from (d), (¢), and (f) that if n < m, then Kery} # 0.

8.9. Roots and Representations

We are near the end of the proof of Theorem 8.2. Some facts about positive
definite inner product spaces are needed. For convenience, the proofs of
these results are given, even though they are standard fare in Lie algebra
theory.

In this section, U = (P}, v;Q denotes an r dimensional Q-space with a
distinguished basis v,, v,, ..., v,. The space V is partially ordered by
Y va; < Yob;ifa; < b;forl < i < r. In particular, w = ) v,a, is positive
ifw # 0and a; > 0 for all i; and w is negative if —w is positive. The sets of
positive and negative vectors are denoted by U* and U~ respectively.

Let W = Pj_, v,Z be the set of vectors in U that have integral com-
ponents with respect to the basis v,, v,, ..., v,. Plainly W is a finitely
generated subgroup of U. Denote W* = WU ,and W~ = Wn U".

Assume that ¢ is a positive definite quadratic mapping of U; that is,
¢: U — Qsatisfies p(wa) = p(w)a*forwe U,ae Q, p(w) > 0for0 # we U,
and B(w,w") = (1/2)(¢(w + w') — dp(w) — P(w’)) is a symmetric, bilinear
mapping. We also make the assumption that ¢(v,) = ¢(v,) = --- = ¢(,)
= 1, and ¢(u) € Z for all u e W. By Proposition 8.8, these hypotheses are
satisfied if U = Uy and ¢ = ¢, where I is a quiver that has finite represen-
tation type. The bilinear mapping f associated with ¢ may not map W x W
to Z, but clearly, 2f(u,u) e Z ifu, ' e W.

If wand w’ are in U and w’ # 0, then

(W) — BOw,w)*[dw) = d(w — w'(Bw,w)/p(w)) > 0

unless w = w’(B(w,w’)/¢(w’)). This observation proves Schwartz’s inequa-
lity:

Bw,w)? < dp(w)yp(w’) forallw,w e U, €))

and the inequality is strict unless w and w’ are linearly dependent.
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Foreachw € U, denote w* = {u e U: B(u,w) = 0}. Then w' is a subspace
of U. Note that

i

v = 0. ()

In fact, if u €\, v}, then B(u,w) = O for all w € U, since {v,, ..., v,} isa
basis of U. In particular, ¢(u) = B(u,u) = 0, so that u = 0.

If we U — {0}, then B(w,w) = ¢(w) > 0, so that w ¢ w*. On the other
hand, u — w(B(w,u)/¢p(w)) e w*, so that U = wQ @ w*. In particular,
dimgw* = r — 1. A routine induction using the dimension formula
dim(U, n U,) = dimU, + dimU, — dim(U; + U,) yields the estimate
dlmo(v NN vi) > r — n. In particular, there is a non-zero vector
u; € ﬂm v;. By(2),u; ¢ v;. Therefore, u; can be normalized so that B(x;,v,) =
1. This discussion estabhshes the existence of a ““dual basis” {u,, u,, ..., 4,}
c U satisfying

Bu,v) =6, for 1<ij<r ?3)
For 1 < i < r, define linear transformations a;: U — U by
o,(w) = w — v,(2B(w,v)),
as in Section 8.8. Since ¢(v;) = 1, it follows that
o) = —v;, and ow)=w forall weuv G))
That is, o, is the reflection in the plane v;-. The equation (4) implies
6} = idy, )
and
B(aw,ow’) = B(w,w") for w,w € U. (6)

Since 2 maps W x W to Z, each g; is an automorphism of W.

Let G be the subgroup of GL(U) that is generated by {a 1 <i<r} By
(5), every element of G can be written as a product g; 6;_ - - 0; . The group G
is called the Weyl group of (U, ¢; vy, ..., v,);in the case that U = Uy and
¢ = ¢r, we will refer to G as the Weyl group of the quiver I'. It follows from
(6) that the elements of G are orthogonal transformations:

B(xw,ww’) = p(w,w’) forallte Gandw,w’ e U. @)
Since the reflections g, map W to itself, so do the transformations of G:
t(W)y=W forallteG. ®)

Define Y = {t(v):1€G,1 <i<r}. If U= U and ¢ = ¢, then the
elements of Y are called roots of I'. In particular, the basis elements v; are
called simple roots of T. Note that if w = ©(v) € Y, then —w = 10,0, € Y.

Lemma a. G is a finite group, and Y is a finite subset of {w € W: ¢(w) = 1}.
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PrOOF. Let X = {we W: ¢(w) = 1}. By (7) and (8), G permutes the ele-
ments of X. The action of G on X is faithful because G = GL(U) and
{vy, ..., v,} = X. Moreover, Y < X. Thus, to prove the lemma it suffices to
show that X is finite. If w = Y v,a,€ X, then a,€ Z for 1 < i < r, and
a} = P(u,w)* < ¢p(u)p(w) = ¢(u) by (1) and (3). Therefore |X|<
[Ti-i Qo) + 1. O

Lemmab. Lett = 0,0,_, --- 6, €G.

ror—1
(1) Ifue U satisfies tu = u, thenu = Q.
(i) If w € U, then there is an integer k such that 0 < k < |G
positive.

, and t*w is not

PrOOF. (i) By (2), it is sufficient to prove: if o, - - - 6,,,0,u = u, then u € v;"

(hence o,u = u and o, --- 6,,,u = u). Denote p =0, -+ 0,,,, sO that
pou = u by hypothesis. It follows from (3) that o;u; = »; for j # i, and
ou; = u; — 2v. Thus, B(u,u) = BQu,pou) = B(po,o,p™ u,pou) =
B(o,0 " u;,u) = B(ou;,u) = P(u;,u) — 2B(v,,u). Consequently, ue v, as
required.

(i) By Lemma a, G is finite, so that t* = id,; for a positive integer & < |G|.
By (i), & > 1. It follows that u = w + ™w + 2w + --- + " !w satisfies
tu = u. By (i), u = 0. In particular, not all of the vectors t*w, 0 < k < h,

are positive. O

Henceforth, assume that U = U and ¢ = ¢, where I is a quiver such
that ¢ is positive definite. This assumption has the consequence that

B(w,v) <0 for i#}. )

It is easy to see that the previous hypotheses that were imposed on ¢, together
with the inequalities (9) imply that ¢ = ¢, for a suitable quiver I'. (See
Exercise 1.)

Lemma c. Assume that ¢ = ¢p is positive definite. Let we W™ satisfy
ow)=1.Forl <i<r:

() ifw = v, thenow = —w;
(i) ifw # v, thenow > 0.

PRrOOF. The assertion (i) restates part of (4). To prove (ii), note that by (1),
|B(w,v)| < 1. Thus, 2B(w,v) = 0, +1, or +2. If f(w,0) < 0, then gw >
w > 0. If 2B(w,v;) = 2, then B(w,v)* = ¢(w)¢(v). In this case, it follows
from (1) and the hypotheses w > 0, ¢(w) = 1 that w = v,. Finally, if
2B(w,v) = 1, then g,(w) = w — v, > 0. Otherwise, w = } ., v,a; with all

a; > 0,and 1/2 = B(w,v) = Z#iﬂ(vj,vi)aj < 0 by (9). O

Corollary. For each non-negative integer m,writem = jr + kwith0 < k <r;
define v, = g, --- 0,(0, - - 0,).
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G) IfweU" thent,we U* and <, .,w¢ U™ for somem > 0.
(i) Let we W™, ¢(w) = 1, and suppose that t,we U*, 1, , ,we¢ U". If
m=jr+ kwith0 <k <r, thenw = 1,(,,,).

These results follow directly from Lemmas b and ¢ together with (7) and

(8).

Theorem. Let I' be an acyclic quiver such that ¢ is positive definite. The
dimension mapping (M,¢) - Dim(M,¢p) defines a bijection between the
isomorphism classes of indecomposable representations of I and the positive
roots of T'.

ProoF. By Corollary 8.6 it can be assumed that I' = (V,E) is standardized,
where V = {1,2, ..., r}. Let (M,¢) e R(I) be indecomposable. Denote
w = Dim(M,¢). By Lemma 8.8b, w e W™*. Let m be the integer satisfying
the conditions of part (i) of the corollary, say m = jr + kwith0 < k < r.
The minimality of m implies that o, - - - 6,(q, - - - 6,)’ w is a positive root,
but not a simple root whenever j/ < j or j/ = j and k' < k. Since T is
standardized, it follows from Lemmas 8.6b, 8.8b, and Proposition 8.7 that
(M',¢) =87 --- S{(S” -+ S )Y(M,¢) is a well defined, indecomposable
representation of I" = p, --- p; (o, --- p; YT, and k + 1 is a source in
I". Since o, ,,Dim(M’,¢") = 1,,,,w is not positive, we infer from Lemma
8.8b that (M’,¢") = (P**V,0). Repeated use of Proposition 8.7 and Lemma
8.8bgetsus back to (M, ¢)and w: (M, ) = (S; --- SHYS; .- §H(P*,0)
and w = Dim(M, @) = 1,'v,,, is a positive root of I'. Since m is uniquely
determined by w, it follows that if (N,¥) is another indecomposable repre-
sentation of I" such that Dim(N,y) = Dim(M,¢), then (N,y) = (M,¢). It
remains to prove that every positive root w of I' has the form Dim(M,¢)
for some indecomposable representation (M,$) of I'. By Lemma a,we W™
and ¢(w) = 1. Hence, according to part (ii) of the corollary, w = 1, (v,.,)
for a minimal non-negative integer m = jr + k,0 < k < r. By Lemma 8.8b,
w = Dim(M,¢), where (M,¢) = (S; --- STYS] .. §F(P*™D,0). The
fact that (M,¢) is indecomposable follows from Proposition 8.7, using the
minimality of m (as in the first part of the proof). O

EXERCISES

1. Let U= P, v,Q, W =@P}-,vZ and suppose that ¢: U— Q is a positive
definite quadratic mapping such that ¢(v) = 1for 1 <i < r,and ¢p(W) = Z, as
in Section 8.9. Assume that the bilinear mapping f corresponding to ¢ satisfies
B(v,,v) < Oforalli # j. Prove thatthereisa quiverI' = (V,E)with V = {1,2, .. .,r}
such that ¢ = ¢,. Hint. Prove that f(v;,v;) > —1foralli # j.

2. Let T be a quiver such that @, is positive definite. Prove that the set of all roots of
Iis {ue W: ¢-(u) = 1}. Thus, finding the roots of I is the same as determining
the integral solutions of the Diophantine equation ®y(x,, ..., X,) = 1. Hint. Use
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Lemmas 8.9b and c, and Corollary 8.9 to prove that the set Y of all roots of I is
{ue W* U W™ : ¢r(u) = 1}. Then use the inequality (9) of Section 8.9 to show
thatifue Wand ¢-(u) = 1, thenue W* u W~.

3. (@ LetI' = (V,E), V = {1, 2, ..., n}, be the quiver with the diagram
A .

[ ® ° o0 ——e
n n—1 n-2 2 1

Prove that the positive roots of I' in Ur = (P}, v, Q are the vectors v; + v;,, +
-+, wherel <i<j<n
(b) Let I have the diagram

2
D,:e * * oo (n=4).
n n—1 n-=2 4 3 1

Prove that the positive roots of I' in Uy are the vectors v, v,, ..., 0,; U; + v, +
et I<i<jsn j235 vptos+ -+, j23; and v + 0, +
203+ -+ )+t +y,3<i<j<n

Hint. It suffices to verify that the vectors w in these lists satisfy ¢r(w) = 1, and
that the lists are closed under the reflections 6, 1 < k < n.

4. Let I be a quiver whose unoriented diagram is the Dynkin diagram E. Prove that I’
has 36 positive roots, and find these vectors. Do the same thing for quivers whose
diagrams are E, and E;: there are 63 positive roots for £, and 120 for E;.

Hint. The obvious embeddings of 4, 45, and D; in E, can be used to determine
most of the positive roots. The rest can be found by evaluating o,(w), where w is a
known root such that f.(v;,w) < 0.

5. Let B = B be the F-algebra that was defined in Section 8.1, corresponding to the
quiver I' = ({1, 2, 3}, {(12), (21), (23), (32), (31)}). Prove that B has finite represen-
tation type, and use the method that led to the proof of Theorem 8.9 to determine
representatives of the 18 isomorphism classes of indecomposable B-modules.

Notes on Chapter 8

Our exposition of the representation theory of quivers is based on the paper
[18] of Bernstein, Gel’fand, and Ponomarev. A minor innovation is the
elementary proof of the fact that indecomposable quivers of finite repre-
sentation type have the diagrams 4,, D,, or E,, based on the Examples
8.5a, b, ¢, and d. The usual proof due to Tits has conceptual advantages,
but the rigorous presentation of Tits’s argument (outlined in Exercise 2,
Section 8.8) is difficult for readers with meager backgrounds in commutative
ring theory.

There are several lines of research that start with the papers [34] and
[35] of Gabriel and the work of Bernstein, Gel’fand, and Ponomarev cited
above. Mention should be made of the work of Dlav and Ringel in [30]
and [31] and of Ringel in [67]. These papers extend Gabriel’s results to
quivers with weighted edges (called Species) and treat representations that
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are defined by vector spaces over a division algebra. With this extended
generality, it is possible to characterize certain finite dimensional algebras
over an arbitrary field that have finite representation types. It turns out
that all of the Dynkin diagrams arise in this context. Another problem that
has been pursued by Nazarova is the construction of indecomposable repre-
sentations for some quivers of infinite type. This turns out to be possible
for indecomposable quivers whose diagrams are cycles, or have one of the
forms shown in Corollaries 11.5a, b, ¢, or d. Such quivers are said to have
tame representation type. The rest are called wild.

A more complete discussion of the current work on representation of
quivers and related topics is given in Roiter’s address at the 1978 Inter-
national Congress of Mathematicians (see [69]).



CHAPTER 9
Tensor Products

Tensor products add a new dimension to the study of associative algebras.
The part of the theory of algebras that does not involve tensor products is
a purely additive subject; the tensor product introduces a multiplication.

The purpose of this chapter is to describe this powerful tool, and to show
how it shapes the study of algebras. The results that are presented here,
especially Proposition 9.2¢, Corollary 9.3b, and Proposition 9.4b, will be
used often in the later chapters. These theorems play an important part in
the theory of central simple algebras, even though their proofs are easy.
Indeed, none of the theorems in this chapter are deep. The machinery of
tensor products is primarily a convenient formalism. Its usefulness illustrates
the value of robust definitions and notation.

The last two sections of the chapter go beyond the standard materials in
Sections 9.1 through 9.4. The induced modules defined in Section 9.5 are
important in the theory of group representations. However, we only use
this concept to prove half of Higman’s Theorem on group algebras of finite
representation type. The last section of this chapter provides a brief introduc-
tion to Morita equivalence of algebras. The simple properties of Morita
equivalence that we prove here will be needed in the last part of Chapter 11.

9.1. Tensor Products of R-modules

Most applications of tensor products in the theory of algebras involve prod-
ucts over the commutative scalar ring R. In this section we outline the basic
results on the tensor products of R-modules. The next section deals with
R-algebras.

157
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Definition. Let M and N be R-modules. A tensor product of M and N is an
R-module M (X) N, together with a bilinear mapping M x N — M (X) N,
denoted by (u,v) — u (X) v such that:

(i) M Q) Nis generated as an R-module by {u(X) v:ue M,ve N};

(ii)) (Universality) if ®: M x N — P is a bilinear mapping of R-modules
(that is, ®(u,*): N - P and ®(*,v): M — P are module homomorphisms
for all ue M and v e N), then there is a homomorphism ¢: M (X) N - P
such that ¢(u X) v) = ®(u,v) forallu e M and v e N.

This deceptively simple definition has many facets that are worth adver-
tising. The hypothesis that (u,v) — u (X) v is bilinear implies four identities
that are used repeatedly in dealing with tensor products:

u@ (vya + v,0) = @@ vy)a + (@ K) vy)b; )
(wa + up) @ v = Q) v)a + (4, X v)b; )
u@0=0xwv=0; 3)

ua@ v = W v)a = u ) (va). 4

The assumption that M (X) N is generated by the elements u (X) v (called
rank one tensors) leads via (4) to the conclusion that every element of M (X) N
has a representation in the form u, X) v, + --- + u, (X) v,. However, in
most cases there is no natural canonical expression for the elements in a
tensor product. This circumstance is sometimes a source of difficulty, but
it is usually possible to avoid arguments involving arbitrary elements of
M (X) N by using a simple observation.

Lemma a. If ¢ and  are module homomorphisms of M @ N to P such that
¢ v) =Y v)forallue Mandve N, then ¢ = .

In fact, Ker(¢ — ) is a submodule of M (X) N that includes all rank one
tensors; hence Ker(¢ — ¢) = M (X) Nand ¢ = y.

Corollary a. The homomorphism ¢ in clause (i) of the definition of M (X) N
is unique.

Corollary b. If M (X) N and M (X)’ N are tensor products of M and N, then
there is a unique isomorphism ¢: M (X)) N - M (XY’ N such that ¢(u X) v) =
u X vforallue Mandve N.

PRrOOF. The existence of a unique homomorphism ¢: M Q N - M &X' N
such that ¢(u (X) v) = u(X)’ vis a consequence of the bilinearity of &)’ and
the universality of (X). Similarly, there is a homomorphism y: M (X)' N -
M (¥X) N such that y(u X)' v) = u(@)v. It follows from Lemma a that ¢y
and ¥ ¢ are identity mappings. O
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The uniqueness result in Corollary b allows us to speak about “the”
tensor product of M and N. This is a standard practice that we will follow.

Property (i) in the definition of tensor products can be used to show that
a homomorphism is surjective: if ¢: P - M (X) N is such that {u(X) v:
ueM,ve N} < Im¢, then ¢ is surjective.

Theorem. The tensor product of two R-modules M and N exists.

Here is an outline of the construction of M (X) N. Let F(M x N)
be the free R-module with the basis M x N. Define M (X) N to be
F(M x N)/G(M,N), where G(M,N) is a suitably defined submodule of
F(M x N). The rank one tensors are the cosets u (X) v = (u,v) + G(M,N),
ue M, ve N. In order that (u,v) — u (X) v is bilinear, it is necessary and
sufficient that G(M,N) include all elements of the form

(w,v,a + v,b) — (w,v)a — (u,v,)b 5

(u,a + uyb,v) — (uy,v)a — (u,,v)b. ©
This motivates the definition: G(M,N) is the submodule of F(M x N) that
is generated by all elements of the form (5). Condition (i) -of the definition
is satisfied since the pairs (u,v) generate F(M x N), hence their images
u ® v generate M (X) N. Let ®: M x N — P be bilinear. Since F(M x N)
is free on M x N, there is an extension ¥ of ® to a homomorphism of
F(M x N) to P. The bilinearity of ® guarantees that all elements of the
form (5) are in Ker y. Therefore, y can be factored through the projection
from F(M x N)to M (X) N. This yields a homomorphism ¢: M (X) N - P
such that ¢(u X) v) = ¢((u,v) + G(M,N)) = Y ((u,v)) = D(u,v).

Lemmab. Let M,, M,, N,, and N, be R-modules. If ¢: M, - M, and
Y : N, > N, are module homomorphisms, then there is unique module homo-
morphism ¢ Q) ¥: M; Q) N; - M, Q) N, such that forue M,,ve N,

Q@ Vu v) = oW Q Y. ()

The following identities hold for these homomorphisms (with suitable domains
and ranges).

() (0" @) R Y) = ¢'d Q) ¥y
(i) idy X idy = idygy-
(i) ¢ Q) (Wya + ¥,0) = (9 Q) ¥y)a + (9 Q) ¥,)b,
(d1a + $,0) Q¥ = (¢, Q W)a + (9, R Y)b.
(V) $R0=0R ¢ =0.
W @) @Y =¢ & Wa) = (¢ R V)a.

Since ¢ and ¥ are module homomorphisms, it follows from (1) and (2)
that (u,v) — ¢(u) ® Y (v) is bilinear. The existence and uniqueness of ¢ @ ¥
therefore follows from the definition of M, (X) N,. The identities (i)—(v)
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are obtained from Lemma a, using calculations that are based on (6), (1),
(2), (3), and (4.

Proposition a. Let M, M,, M,, N, N,, N,, and P be R-modules.

0 MR N, D N,) = (MR N) D M Q) N,) by an isomorphism that
maps u (X) (v,,v,) to (u ) vy, u Q) v,).
(i) M QN P) = (M) N)Q P by an isomorphism that maps u (X)
& w) to @ v) X w.
(iii) M Q N = N (X) M by an isomorphism that maps u(X) v to v Q) u.
(ivy MX) R = Mand R(Q) M = M by isomorphisms that map u (X) a and

a (X) u to ua.

The statement (i) can be proved using the identities of Lemma b and the
characterization of the direct sum in terms of the projection and injection
homomorphisms, or just by noting that the bilinear mapping (u,(v,,v,)) —
(u ) vy, u X) v,) fulfills the conditions that are required to make (M X Ny
@ (M (X) N,) a tensor product of M and N, (P N,. Two applications of
the universality condition produce a homomorphism ¢: M (X) (N X) P) —
(M ) N) X P that satisfies ¢u @) (v Q) w)) = ) v) X w. By sym-
metry, there is a homomorphism from (M &) N) X) P to M (X) (N X) P)
that sends (u X) v) @ w to u X) (v X) w). Thus, ¢ is an isomorphism, as
in the proof of Corollary b. The proof of (iii) is similar, in fact easier. Finally,
the bilinearity of (u,a) — ua leads to a homomorphism ¢ of M (X) R to M
that satisfies ¢(u (X) a) = ua; and Y(u) = u (X) 1 is a homomorphism such
that ¢y (u) = u and Yo X) a) = ua® 1 = u(X) a by (4). Thus, ¢ is an
isomorphism.

We now prove the fundamental exactness property of the tensor product.

Proposition b. If M, 4 M, A M, — 0 is an exact sequence oof R-modules,
then for any R-module N the sequence M, Q N 5 M, Q N > M; Q) N -
0 is exact, where y = ¢ (X) idy and 6 = Y X) idy.

ProoF. Plainly, Im 6 includes all rank one tensors, so that 6 is surjective.
Moreover, Y¢ = 0 implies 0y = 0; hence Imy < Ker6. Let = be the
natural projection of M, ) N to M, () N/Imy. Since y ()X N =
Im¢ X N < Imy = Kern, the formula ®(uy,v) = n(y 'uy Q) v) de-
scribes a well defined bilinear mapping of M; x N to P. Hence, there is a
homomorphism A: M;(X) N — P such that A(uy X) v) = 2y 'u; ) v).
In particular, A(Y(u,) X) v) = n(u, X) v), so that 0 = n by Lemma a.
Therefore, Ker0 = Kern = Imy. O

If0-»> M, - M, > M, - 0is a short exact sequence, then in general
0> M, X N - M, X N is not exact. (See Exercise 4.) In one important
case, full exactness is preserved by the tensor product.
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Corollaryc IfO—»M —»M —>M — 0 is split exact, then 0 > M, (X)
N3 M, ®N—>M @N—*Ozsexact

Infact,if 7: M, — M issuchthatt¢ = idy ,then(r (X) idy)(¢ X) idy) =
idy @n» SO that y is injective.

An important special case of Corollary c is the result that the tensor
product of vector spaces (that is, F-modules) preserves exactness. Indeed,
every short exact sequence of vector spaces splits.

Proposition c. If M and N are F-spaces with bases {u;: i€ I'} and {v;: j € J},
then {u; Q) v;: (i,j) € I x J}isabasisof M Q) N. In parttcular dim M QN
= (dim M) (d1m N).

Proor. If M, < M and N, < N, then by Corollary c the inclusion mappings
induce an injective homomorphism M, (X) N, - M (X) N. Therefore, since
the rank one tensors span M (X) N and linear independence is defined in
terms of finite sets, we can assume that / = {1,...,m} and J = {1,...,n}
are finite. Consequently,

M QN = (@i~ :F) Q (D=1 vF) = D, F Q v,F) = @, ; Qv)F

by Proposition a. O

The proof of this result illustrates a defect in the standard notation for
tensor products. The expression u; (X) v; depends not only on the elements
u; and v;, but also on the amblent modules N and M. For R-modules, the
fact that the elements u; (X) v;are distinct, non-zero, and linearly independent
in M, X) N; would not guarantee that the corresponding elements (also
denoted by u; (X) v;) in M (X) N retain these properties. In the case under
consideration, we are saved in the proposition by the exactness of the tensor
product over a field, that is, the fact that M, (X) N, - M (X) N is injective.

In a few sections of this chapter and Chapter 10 it will be necessary to
deal with tensor products of A-modules, where A is an algebra that may
not be commutative. The definition of such products is slightly more
complicated than the definition of the tensor product of two R-modules.

Let A be an R-algebra. Suppose that M is a right A-module, and N is a
left A-module. Then M and N can be viewed as R-modules by restricting
scalar operations to R. A bilinear mapping ® of M x N to an R-module P
is called balanced if ®(ux,v) = ®(u,xv) for all ue M, ve N, and x € A.
The tensor product over A of M and N is an R-module M (X), N, together
with a balanced, bilinear mapping M x N > M (X), N (denoted (u,v) —
u (X) v) such that M (X), N is generated as an R-module by {u (X) v: ue M,
veN};and if ®: M x N — P is a balanced, bilinear mapping, then there
is an R-module homomorphism ¢: M (X), N - P satisfying ¢(u X) v) =
®(u,v) forallue Mandve N.
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In general, the tensor product M (X), N cannot be considered as an A-
module. An exception to this assertion occurs when M or N is a bimodule,
as we will see in Section 9.5. In particular, this is the case when A is com-
mutative, since the right scalar operation can then be used to define a left
scalar operation and vice versa. However, if 4 is a commutative R-algebra
that properly contains R, then M (X), Nand M (X), N are generally different.
(When M and N are modules over two or more commutative rings, we will
often write M (X); N instead of M (X) N to avoid confusion.)

Most of the results given in this section generalize very easily to M (X), N.
Exceptions to this rule are the associative and commutative laws in Prop-
osition a: these isomorphisms make sense (and are valid) only for bimo-
dules. The identities (1)-(4) are satisfied in M (X), N, provided a € R and
b € R. The fact that (u,v) — u (X) vis balanced gives a stronger version of (4):

wx) v=u@@xv) forueM,veN,xeA. @)

EXERCISES

1. Establish the following isomorphisms of Z-modules:
(@ 0®0a=x=aq;
b) QX (@/2) = Q12X Q/z;
(c) for any abelian group M and n > 1, M X) (Z/nZ) =~ M/nM;
(d) Z/mz) Q) (Z/nZ) = Z/kZ, where k is the greatest common divisor of m
and n.

2. Establish the following isomorphisms.
(a) For any field F, F[x] Xy F[x] = F[x,y].
®) QX), M,(2) = M,(Q).

3. Prove that not all elements of the tensor product F[x] (X, F[x] have rank one.

4. (a) Show that when the exact sequence 0 > Z - Q — Q/Z — 0 is tensored over Z
with Q/Z, the resulting sequence is no longer exact.
(b) Define ¢: Z/2Z — Z|4Z by ¢(1 + 2Z) = 2 + 4Z.Prove that ¢ is an injective
homomorphism, but id,,, &) ¢: Z/2Z X) 2/2Z - 2/2Z X) Z/4Z is the zero map,
whereas Z/2Z (X) Z/2Z ~ Z/2Z = 7)2Z(X) Z/4Z.

5. Prove that if M is a right 4-module and N is a left A-module, then the tensor product
M ®A N exists and is unique (to isomorphism). Hint. Modify the proof of the
theorem by letting G(M, N) be generated by all elements that have one of the forms
(u, v,a + vy0) — (W,v)a — (U,v,)b, (u,a + uyb, v) — (u;,v)a — (uy,0)b, (ux,v) —
(u,xv), where u, u,, u, € M,v,v,,v,€ Nya,be R,and x € 4.

6. Let the R-module M be a union of a directed family of submodules, say M =
(it M;, where i, je I implies the existence of k € I such that M, U M; = M,.
For each i€ I, let k;: M; - M be the inclusion homomorphism. Use the proof of
the existence of M (X) N to show that M (X) N is the union of the submodules
Im(x; ) idy). Deduce that if {M;: j e J}isaset of R-modules and Nis an R-module,

then (P;., M) X N = D;., M; Q N.
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9.2. Tensor Products of Algebras

If A4 and B are R-algebras, then they are also R-modules. Therefore, we can
form the tensor product 4 (X) B. The results of this section show that 4 (X) B
is an R-algebra with a suitably defined multiplication, and that this tensor
product algebra has an internal characterization in terms of subalgebras.

Proposition a. If A and B are R-algebras, then there is a multiplication operation
on A (X) B that satisfies

(x1®y1)(x2®y2) =x1x2®y1y2. 1

The multiplication is associative, and 1, Q) 1 = 1,5 5.

PrOOF. For x; € 4 and y, € B, let 4, and /1 be the left multiplication
endomorphisms of 4 and B correspondmg to x1 and y,. By Lemma 9.1b,
b ® 4y, € BgA® B) satisfies (1, ® 4,)(; @ y2) = %, @ y1s.
Moreover (x4, yl) — A, @ 4, isa bilinear mappmg of A x BtoEg(4 X
B). Thus, there is an R-module homomorphism ¢: 4 X) B - Ex(4 X) B)
suchthat ¢(x; X) y,) = Ay, & A, .Define(4 Q) B) x (4 X B) > AR B
by (z,w) > zw = ¢(z)(w). Since qé is a homomorphism of R-modules, and
¢(z) € Ex(4 (X) B), the mapping is bilinear, that is, a multiplication operation
on 4 (X) B. By construction, (x; &) y,)(x, X y,) = ¢(x; X y)(x; X »,)
= (A, @ 4,)(x; Q) ¥2) = x,x, Q) y,,; that is, (1) is satisfied. It follows
easily from (1) and Lemma 1.2 that the multiplication is associative. More-
over, 1, (X) 1, is the unity element of 4 (X) Bby (1) and Lemma 9.1a. [J

Corollary a. Let A, B, and C be R-algebras.

HA+BDRC=2ARO)+BER O).
(i) ARBRC24R B O).

(iii) AR BB A.

i) AQ RXRX 4 = A4

In this corollary, = denotes the isomorphism relation in the category of
R-algebras. The corresponding isomorphisms were obtained for R-modules
in Proposition 9.1b. The proofs that the mappings described in Proposition
9.1b involve applications of the formula (1), and appeals to Lemma 9.1a.
This task is the content of Exercise 1.

Lemma a. The mappings k,: A > A) B and kg: B - A (X) B defined by
K4(x) = x ¥ lzandkg(y) = 1, ) y are algebra homomorphisms such that :

(i) x(A) U Ky(B) generates A (X) B as an R-algebra;
(i) k,(X)Kkpg(y) = k(MK (x) forallxe Aandy € B.
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If A and B are F-algebras, then k , and kg are injective; moreover, if {x;: i€ I'}
is a basis of A and {y;: j € J} is a basis of B, then {k,(x)xg(y)): (,j) e I x J}
is a basis of A X) B.

Proor. The bilinearity of (X) together with (1) imply that x, and x, are
algebra homomorphisms. By (1), k ,(x)k5(») = x X) y = Kkg(y)k 4(x), which
yields (i) and (ii). The last statement of the lemma is a consequence of Propo-
sition 9.1c. O

If X is a subset of the algebra A, then the centralizer of X in A is defined
to be

C,X)={yed:xy=yx forall xeX}.

This familiar concept will be used frequently in the following chapters. It
is convenient to record some obvious consequences of the definition.

Lemma b. Let X and Y be subsets of the algebra A, and suppose that B is a
subalgebra of A.

(i) C(X) is a subalgebra of A with Z(A) < C ,(X).
(i) If X € Y, then C (YY) = C,(X).
(i) X € C(Y)ifandonly if Y < C,(X); in particular, X = C(C (X)).
(iv) Bn C,(B) = Z(B).
) C,(X) = Aifandonly if X = Z(A).

We now prove a universality property of tensor products of algebras.
This result leads to the characterization theorem.

Proposition b. Let A, B, and C be R-algebras. If ¢: B - A and y: C > A
are algebra homomorphisms such that Yy(C) < C,(¢(B)), then there is a
unique algebra homomorphism 0: B (X) C — A that satisfies

0(x Q) y) = ¢ (») 2
fJor xe Band y € C. In particular, ¢ = Okgand Y = Ox.

PROOF. Since ¢ and Y are R-module homomorphisms, the mapping (x,y) —
¢(x)¥(y) is bilinear. Thus, there is an R-module homomorphism that
satisfies (2). By (1) and (2), 0((x; @ y)(x; X ¥2)) = (e x)¥(,,) =

dx )OIV (Y IV (y2) = ¢ ()PP () = 00x; ) y)O(x,
¥,), since Yy(C) = C,(¢(B)). Therefore, 8 is an algebra homomorphism. []

Corollary b. If ¢: B —» B, and y: C — C, are algebra homomorphisms, then
¢ X y: B C— B, X C, is an algebra homomorphism. If B, B,, C, and
C, are F-algebras, and if ¢ and s are injective, then ¢ (X) Y is injective.

The corollary follows from Lemma a and Proposition b.
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Proposition c. If A, B, and C are F-algebras, then B (X) C = A if and only
if A contains subalgebras B’ and C’ such that

(1) B' = Band C’ =~ C as F-algebras,
(i) ¢’ = C (B’), and
(iii) there exist bases {x;:i€ I} of B' and {y;:je J} of C" such that {x,y;:
(i,j) € I x J} is a basis of A.

If A is finite dimensional, then (iii) can be replaced by
(iv) A is generated as an F-algebra by B u C’ and dim A = (dim B)(dim C).

ProoF. By Lemma a, the conditions (i), (ii), (iii), and (iv) are necessary.
Assume that there are subalgebras B’ and C’ of A that satisfy (i) and (ii). Let
¢: B— B and ¢: C - C’ be the isomorphisms that are promised by (i).
By (ii) and Proposition b, there is an algebra homomorphism 6: B (X) C - 4
such that 6(x X) y) = ¢(x)y(y) for x € Band y € C. By Lemma a and (iii),
6 maps a basis of B (X) C bijectively to a basis of 4; so that 6 is an isomor-
phism in this case. If 4 is finite dimensional, and (iv) is satisfied, then 0
is surjective because 0(B (X) C) is a subalgebra of 4 that includes the gener-
ating set B u C’; and 6 is injective because dim A = (dim B)(dim C) =
dim B (X) C by Lemma a. O

ExaMPLE. Let G, and G, be finite groups, and suppose that G = G, x G,
is the product of G, and G,. If F is any field, then FG = FG, (X) FG,.

PRrROOF. Write 4 = FG. Consider G, and G, as subgroups of G, so that each
element of G has a unique representation in the form xy with x € G,, y € G,.
Let A, be the subspace that is spanned by G,, and let 4, be the subspace
that is spanned by G,. It is clear that 4, and A4, are subalgebras of 4 such
that 4, @ FG, and 4, =~ FG,. Since xy = yx for xe G, and y e G,, we
see that 4, = C,(4,). Plainly, 4, U A4, generates 4 as an F-algebra. Finally,
dim4 = |G| = |G,||G,| = (dim 4,)(dim 4,). Thus, by Propositionc, FG =
A=A, Q A4, = FG, X FG,. O

EXERCISES

1. Complete the proof of Corollary a.
-1,—-1

2. LetH = ( > be Hamilton’s quaternion algebra. Prove that H X C =~ M,(C),

considered as R-algebras. Hint. Consider the R-subalgebra of M, (C) that consists of
all matrices that have the form
ab
—-ba
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with a, b € C, and a is the complex conjugate of a. The general results of Chapter
13 will make this exercise a triviality.

3. Ifa = [a;] € M,(F) and § = [b,,] € M,,(F), then the tensor product of the matrices
« and B is the matrix a (X) B, whose rows and columns are indexed by the pairs
(,k)withl < i <nand1 < k < m, such that the element in row (i,k) and column
() is a;;b,,. Prove that the mapping («,f) — o X® B induces an F-algebra isomor-
phism of M,(F) ® M, (F)to M, (F).

4. Let ¢: 4 - M (F) and y: A > M,(F) be representations of the F-algebra 4.
Define 0: A - M, (F) by 6(x) = ¢(x) & y(x) (where ® denotes the matrix
tensor product that is defined in Exercise 3). Prove that 0 is a representation of A
whose character x, is the point-wise product y,y,. (See Exercise 1 in Section 5.6.)
Deduce that X(4) is a commutative ring.

5. Let the characteristic of the field F be different from 2. Prove that if a, b, c € F°,

then <%> ® (%) = ("—?) & M,(F). Hint. Let {1,i,j,k} and {1, ¥, §,k’} be

the standard bases of g}’?b and (%) respectively. Denote 1 = 1X) 1,i" =i Q) 1,
jl/ - j® jl’ k/l —_ k j/’ i//l - 1® jl’ j/// - i® kl, and k//l = (i® i/)(_c).
Show that 1, i”, j, k” is a basis of a subalgebra B of 4 = (5-12) a}’f) such that

F
B~ <f’—FIE>, and 1, i”’, j’, k"’ is a basis of a subalgebra C of 4 such that C =~

_ 2
(%) Show that A ~ B(X) C. Deduce from Exercise 2 of Section 1.7 that
C = M,(F).

9.3. Tensor Products of Modules over Algebras

Let 4 and B be R-algebras. If M is a right A-module and N is a right B-
module, then M and N are also R-modules, and the tensor product M ® N
can be endowed with the structure of an A (X) B-module. This section
explores the homological aspects of this construction.

Lemma. If M is a right A-module and N is a right B-module, then M (X) N
is a right A (X) B-module with scalar operations that satisfy

Q@) = ux Quy 0y

forallue M,ve N, xe A,and y € B.

The proof that there is a right module operation of 4 (X) B on M (X) N
satisfying (1) can be copied almost verbatim from the proof of Proposition
9.2a. It is a useful exercise to give the details of this argument.

Proposition. Let M, and M, be right A-modules, and suppose that N, and
N, are right B-modules.
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(i) If ¢ € Hom (M, M,) and y € Homy(N,,N,), then ¢ (X) ¥ € Hom g 5
(M, @ Ny, M; Q) N,).
(ii) The mapping (¢,Y) — ¢ X) ¥ induces an R-module homomorphism 0:
Hom ,(M,,M,) Q) Homg(N,,N,) -» Hom,gz(M, K N,, M, &) N,).
(iii) 6: E (M) Q) Ex(N)) - E, g5(M, X N,) is an algebra homomor-
phism.

PROOF. Since ¢ and  are module homomorphisms, (¢ X) ¥)((u ) v)(x Q)
) = $ux) @ ¥(oy) = $wx @ Y@)y = (¢ ® W) ® 1)) (x & ). The
assertion (i) therefore follows from Lemma 9.1a. Since (¢,¥) — ¢ X) ¥ is
bilinear, the existence of 6 is a consequence of the universality property
of tensor products. To avoid confusion in the proof of (iii) it is helpful to
denote a rank one tensor in E (M) X) E4(N,) by ¢ ® Y. Thus, by defi-
nition, 8(¢ X’ ¥) = ¢ X ¥. Consequently, by 9.2(1), 0((¢, Q' ¥,) (¢, K’
l/’2)) = 9(¢1¢2 ®/ l//ﬂpz) = ¢1¢2 ® %% = (¢1 ® lp1)(¢2 ® 'pz) =
0(d, X ¥,)0(¢, Q) ¥,). It follows that 6 is an algebra homomorphism.
(]

In general, the homomorphism 6 is neither injective nor surjective (Exer-
cise 3). However, in the cases that interest us most, 6 is an isomorphism.

ExaMpLE. 6 maps Hom ,(4,M) (X) Homg(B,N) isomorphically to Hom g
(A@B, M (X) N). This is to be expected because Hom ,(4,M) = M,
Homg(B,N) = N, and Hom,gz(AX B, MR N) = MK N by the
Exercise of Section 1.3. However, a bit of care is needed. Define o, : Hom,
(4,M) —» M by a,(¢) = ¢(1,). It follows from Lemma 6.4 that o, is an
isomorphism. A straightforward computation (using Lemma 9.1a) shows
that the diagram

Hom ,(4, M) (X Homg(B,N) % Hom,g4(4 X) B, M (X) N)
BT~ M@ N oo

is commutative. Therefore, 0 is an isomorphism.

Corollary a. Suppose that M, and M, are right A-modules, N, and N, are
right B-modules, and M, and N, are free with finite bases. The homorphism
0: Hom (M, ,M,) X) Homy(N,,N,) - Hom,g z(M; &) N;, M, Q) N,) is
an isomorphism. In particular, E (M) Q) Ez(N,) = E, g 5(M; @ N,).

PRrOOF. Since M, and N, are free, there exist natural numbers m and n such
that M, = (Pm A and N, = Pn B. By the example, Proposition 9.1a, and
the additivity of the Hom functor, Hom,(M,,M,) X) Homg(N,,N,) =
Hom (Pm 4,M,) Q) Homy(Pn B,N,) = (Pm Hom (4, M,)) ) (Pn
Homy(B,N,)) = @mn (Hom,(4,M,) ) Hom(B,N,)) = (Pmn Hom g

4® B, M, X N,) = Hom,gx(Pmn A& B, M,K) N,) = Hom, g,
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(M, X) N,, M, Q) N,). The ingredient that is missing from this proof is a
routine verification that 6 defines the composite isomorphism. An alternative
inductive proof is outlined in Exercise 4. O

Corollary b. M, (4) Q) M,(B) =~ M, (A B).

This result is a restatement of the last part of Corollary a, using the
isomorphism E ,(Pm A) = M, (4) that was proved in Corollary 3.4b.

EXERCISES

1. Prove the lemma.

2. Let P be a free right 4-module with the basis {«;: i€ I'}, and let Q be a free right
B-module with the basis {;: j € J}. Assume that 4 X) B is a non-trivial algebra.
Prove that P (X) Q is a free 4 (X) B-module with the basis {1, &) v;: (i,j) € I x J}.

3. Let A = B = Z. Prove the following statements concerning the homomorphism 6
that was defined in the lemma.
{a) 6: Hom,(Q,2) (X) Hom,(Q,Q) - Hom,(Q X Q,Z X Q) is not surjec-
tive.

(b) 6: E,(Q/2) X E(Q) > E,((Q/2) &) Q) is not injective.

4. Let M{, M7, and M, be right 4-modules, and suppose that N, and N, are right B-
modules. Prove that if the homomorphisms

¢': Hom ,(M;,M,) & Homy(N,,N,) - Hom,,gx(M; ® N,,M, ® N,)
¢”: Hom ,(M{,M,) @ Homy(N,,N,) - Hom ,gx(M; ® N,,M, X N,)
are isomorphisms, then so is
6: Hom ,(M; @ M{,M,) & Homg(N,,N,)
- Hom,gs((M] @ M) @ N,,M, ® N,).
Use this result (and its right analog) to give an inductive proof of the corollary.

5. Let Sand T be contravariant functors from R-modules to abelian groups such that
if N+ M — P — 0is exact, then so are 0 - S(P) - S(M) — S(N) and 0 — T(P)
— T(M) —» T(N). Let 6: S — T be a natural transformation of functors such that
0y : S(M) - T(M) is an isomorphism whenever M is a finitely generated free
module. Prove that 6, is an isomorphism for all finitely presented modules M. Use
this result to show that the homomorphism 6 of the proposition is an isomorphism
under the hypothesis that M, and N, are finitely presented.

9.4. Scalar Extensions

Tensor products play another role in the study of algebras. They are used
to extend the domain of scalars from R to a commutative ring that contains
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R as a subring. More generally, it is possible to pass from an R-algebra to
an S-algebra, where S is any commutative R-algebra.

Proposition a. Let A be an R-algebra. If S is a commutative R-algebra, then
A ) S is an S-algebra whose product satisfies

@I XA =xy& cd ey

forallx,y € Aandc,deS. The scalar operations by elements of Son A (X) S
is defined by

zc = 2(1A®c) 2
forallze AX) SandceS.

ProOOF. By Proposition 9.2a, 4 ® S is an R-algebra, and xg: S —> A4 @ S
(defined by x4(c) = 1,(X) ¢) is an R-algebra homomorphism such that
k4 (4) = C,ug5(k5(S)). Also, k5(S) = C, gs(ks(S)) because S is commuta-
tive. Therefore, A ® S = C,gs(ks(S)) by Lemmas 9.2a and b. That is,
ks(S) = Z(4 X) S). This inclusion guarantees that the S-module operation
given by (2) imposes an S-algebra structure on 4 (X) S. O

If 4 is an R-algebra and S is a commutative R-algebra, then we will
write A5 for A (X) S when this tensor product is to be viewed as an S-algebra.
It should be mentioned that the notation A is used for 4 (X) S in many
papers on associative algebras, especially in the early literature.

The distributive and associative laws (Corollary 9.2a) have important
consequences for scalar extensions.

Corollary a. Let A and B be R-algebras. If S is a commutative R-algebra and
T is a commutative S-algebra, then

() (4 + B)S = 45 + B,

(ii) (4 R B)S = 45 R BS,
(i) (45)T ~ AT.

Proor. The first isomorphism is a direct consequence of Corollary 9.2a(i).
The proofs of (ii) and (iii) use a minor extension of the associative law: if
M is an R-module, and if N and P are S-modules, then N and N ®s P can
be viewed as R-modules, and M (X)x (N Q)5 P) = (M Qg N) Q)5 P. Using
this result, we get (4 Xz B)® = (A R B) XS = (AR S) X B =
ARy Rs ) Rr B2 (4R S) Rs S) Xg B 4° ®s B, and
A =(ARr S Xs T2 AR S RsT) = AR T = A", O

Lemma. Let A be an F-algebra with the basis {x;: i € I'}. If E is a field extension
of F, then {x;(X) 1: i€ I} is a basis of A®. In particular, dimy A® = dim 4.
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PROOF. Let {c;: j € J} be an F-space basis of E. By Proposition 9.1c, {x; X
¢ () el x J} is an F-space basis of 4 %) E.By (2), x; Q) ¢; = (x; @ 1¢;,
so that {x, @ 1: ieI} spans AE. Suppose that ) (x; ® 1)d; = 0, with
d; € E. Write d; = ) ;c;a;;, with suitable a;; € F. It follows that

Jjir

PHEAOIEN ca; = Y., ® Dd; =0,
ij i
so that a;; = 0 for all j and i. Hence, d; = O forall i€ I. a

This lemma can be formulated more simply for finite dimensional
algebras.

Corollary b. Let A be an n-dimensional F-algebra with the basis x,,x,, ..., X,
and the corresponding structure constants a¥,. If E[F is a field extension, then
AE is isomorphic to the n-dimensional E-algebra with the basis x,,x,, ..., X
and the corresponding structure constants a’i‘j.

n

This result is an easy consequence of the lemma. The isomorphism is the
obvious one that maps x; ) 1 to x;.
A useful special case of Corollary b occurs when A is a quaternion

E
algebra: if E/F is a field extension and a, b € F°, then (‘3’:) = (a,b)‘

E

Proposition b. Let A be an F-algebra, and suppose that E|[F is a field extension.
An E-algebra B is isomorphic to AE if and only if there is an F-subalgebra A’
of B such that

(i) A" = A as F-algebras, and
(i1) there is an F-space basis of A’ that is also an E-space basis of B.

If dimy, A is finite, then (ii) can be replaced by
(iii) A’E = Band dimyB = dim 4

PROOF. If B =~ AE, then (i) and (ii) are satisfied by Proposition 9.2b and the
lemma. It is evident that conditions (ii) and (iii) are equivalent if dim; 4 <
o0. Assume that (i) and (ii) are satisfied. Let E’ = {1zc: c € E}. Plainly, E’
is an F-subalgebra of B that is isomorphic to E, and £ = Z(B) < Cg(4).
If {x;: ie I} is an F-space basis of 4’, and {c;: j € J} is an F-space basis of
E’, then {xicj: (i,j)eI x J} is an F-space basis of B. In fact, by (ii),
Yixi¢F = Y,x;E = B;and ), ;x,c;a; = 0 with a;; € Fimplies ) ;c;a; =
0 for all i, SO that a;=0foralliel, jeJ. By Propos1t10n 9.2b, there is
an F-algebra 1somorph1sm 6: A (X E — B such that 6(1,(X) ¢) = 1,c¢ for
all ce E. Hence, if ze AX) E and ceE, then 6(zc) = 0(z(1 ) ¢)) =
0(z)(15c) = 0(z)c, that is, 0 is an E-algebra isomorphism. O

ExampLE. Let A be a simple field extension of F, say A = F(d). Denote
the minimum polynomial of d over F by ®(x). We will show that 4f ~
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E[x]/K, where K = ®(x)E[x]. Let 4" = (F[x] + K)/K =~ F[x]/K n F[x].
Plainly, K n F[x] is a proper ideal of F[x] that contains ®(x)F[x]. How-
ever, ®(x) F[x] is a maximal ideal of F[x] because F[x]/®(x)F[x] = F(d)
is a field. Thus, K n F[x] = ®(x)F[x], so that 4" = A. The isomorphism
AE ~ E[x]/K therefore follows from Proposition b, since A'E = E[x]/K
and dim; E[x]/K = deg ®(x) = dim 4.

This example presages a connection between separability and the behavior
of fields under scalar extension that we will study in the next chapter. If the
polynomial ®(x) is separable, then it factors into distinct irreducible compo-
nents in E[x]. The Chinese Remainder Theorem yields the conclusion that
AE is isomorphic to a product of fields. However, the situation is different
if ®(x) is inseparable. For example, suppose that Char F = p and d = a'/?,
where a € F — FP. In this case, ®(x) = x? — a. If the extension field F also
contains d, then ®(x) = (x — d)? in E[x]. Consequently, E[x]/K has non-
zero radical: J(E[x]/K) = (x — d)E[x]/K.

EXERCISES

1. Prove the generalized associative law that was invoked in the proof of Corollary a:
if M is an R-module, and if N and P are S-modules, where S is a commutative

R-algebra, then M X, (N Qs P) = (M X N) Qs P.

2. Prove that if 4 is a simple field extension of F, then A/F is separable if and only if
AE is semisimple for all field extensions E/F.

3. Use Proposition a to simplify the first reduction step in the proof of Proposition
4.6.

4. Let A be a simple field extension of F. Assume that E/F is a finite Galois extension.
Use the result of the example to prove that A% is a finite product of field extensions
of E that are isomorphic as F-algebras.

9.5. Induced Modules

In this section, tensor products are used to convert 4-modules to B-modules,
where A is a subalgebra of B. This construction has important applications
in the theory of group representations. For the first time, we must use
tensor products over non-commutative algebras.

Lemma a. Let A and B be R-algebras. If M is a right A-module and N is an
A-B bimodule, then M (X), N is a right B-module with scalar operations that

satisfy
@& v)y = u@ @y M
forallue M,ve N,and y € B.
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Proor. If ye B, define ®,: M x N> M ), N by @,(u,0) = u Q) vy.
Plainly, ®, is R-bilinear, and @ (ux,0) = ux Qovy = u ® x(vy) = u X
(xv)y = (I) ,(u,xv). Thus, there is an R-module endomorphism ¢, of M X, N

that satisfies ¢,(u @ v) = u &) vy. Routine calculations with rank one
tensors give ¢,,, ., = ¢,a + ¢,band ¢,¢, = ¢y2 Thus, M (X), N is a right
B-module with the scalar operatlons wy = ¢ (w) for we M X), N and

P,(
y € B. Moreover, (u Qv)y = ¢,(u @v) = u ® ©). o

The mirror image of this argument shows that if M is a B-4 bimodule
and N is a left A-module, then M ®A N is a left B-module. In case M and
N are both bimodules, then M (X), N is also a bimodule. Indeed, suppose
that M is a B-A bimodule and N is an 4-C bimodule. Then M X), N is a
left B-module and a right C-module. If ye B, ze C,ue M, and v € N, then
y((u Q) v)z) = yu Q vz = (y(u &) v))z, which implies that the associativity
condition for a bimodule is satisfied. Finally, if e R, ue M, and ve N,
then a(u X) v) = (auw) Qv = (wa) Q) v = u Q) (av) = (u X v)a.

It is now possible to make sense of a generalized associativity law for
tensor products over algebras.

Corollary a. Let A and B be R-algebras. If M is a right A-module, N is
an A-B bimodule, and P is a left B-module, then M (X), (N X); P) =
M ), N) @y P as R-modules. If also M or P is a bimodule, then the
isomorphism is a module isomorphism; and it is a bimodule isomorphism if
M and P are both bimodules.

The proof of this corollary is just an elaboration of the proof of Prop-
osition 9.1a.

For us the most important case of the lemma occurs when N is an
R-algebra B that contains A as a subalgebra. Plainly, B can be considered
as an A-B bimodule. Therefore, if M is a right 4-module, then M X), B
is a right B-module that is induced by M. It is customary to denote M (X), B
by ME.

Lemma b. Let A, B, and C be R-algebras, with A a subalgebra of B and B
a subalgebra of C. Assume that M and N are right A-modules.

() (M P N)® = M® P N™.
(i) (MB)C =~ MC.
(iii) M4 =~ M.

Moreover if M and N are bimodules, then the isomorphisms (i), (ii), and
(iii) are bimodule isomorphisms.

The proof of this lemma is essentially the same as the proof of Corollary
9.4a. The formula (1) is used to show that the isomorphisms preserve the
scalar operations.
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If 4 is a subalgebra of B, then the forgetful functor N+ N, that was
described in Section 2.1 maps B-modules to 4-modules. By composing this
restriction of the scalar operations with the induction mapping, we get
correspondences M — (M®), and N — (N,)".

Lemma c. Let A, B, and C be R-algebras, with A a subalgebra of B. Suppose
that M is a right A-module and N is a right B-module. There exist homo-
morphisms vy, : M — (M®), (of right A-modules), and Uy (NDB > N (of
right B-modules) such that

v =u®1l, forallue M,and 2
uy(w Q1) =v  forallveN. 3)

If M is a C-A bimodule, then v, is a C-module homorphzsm if Nisa C-B
bimodule, then uy, is a C-module homorphism.

ProoF. It is clear that (2) defines an R-module homomorphism. If u e M
and x€ A, then vy (ux) =ux @1z =u @ x = @) 1p)x = v, (w)x by
9.1(4) and (1). Thus, v is an A-module homomorphism. If M is a C-4
bimodule, then it is obvious from (2) that v,, is a C-module homomorphism.
The mapping N, x B — N that is defined by (v,y) > vy is plainly R-bilinear
and balanced (relative to the scalar operations of elements in A4). Hence,
there is an R-module homomorphism uy: N, X), B—> N such that
pn(@ &) y) = vy. By (1), uy is a B-module homomorphism, and if N is a
C-B bimodule then p,, is evidently a C-module homomorphism. O

We will usually write v for v,, and u for u,. These mappings can be used
to relate the representation types of 4 and B.

Proposition a. Let A and B be Artinian algebras such that A is a subalgebra
of B, and B is finitely generated as a right A-module.

(i) Assume that for every right A-module M, the homomorphism v,,: M —
(MB), is split injective. If B has finite representation type, then so does A.

(ii) Assume that for every right B-module N, the homomorphism py: (N,)® —
N is split surjective. If A has finite representation type, then so does B.

ProoF. We will prove (i); the proof of (ii) is similar. (See Exercise 2.) Let
N,, N,, ..., N, be representatives of the isomorphism classes of finitely
generated indecomposable B-modules. Since B, is a finitely generated
A-module, so is each (N,),. By the Krull-Schmidt Theorem, each (N), is
uniquely a finite direct sum of indecomposable 4-modules. It will be suffi-
cient to prove that every finitely generated indecomposable 4A-module M is
isomorphic to a direct summand of some (N,) ,. Write M® =~ (Pt Pm; N,
where m; > 0. Since v,,: M — (M?), is split injective, M is isomorphic
to a direct summand of (M®), =~ Pk, Pm;(N,),. The Krull-Schmidt
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Theorem yields the required conclusion that M is a direct summand of
some (N)) ,, because M is indecomposable. O

To use Proposition a, we have to know when u and v are split homo-
morphisms. The splitting of v will be discussed here; u will be handled in
Section 10.8.

Proposition b. Let A be a subalgebra of the R-algebra B. The following
conditions are equivalent.

() B =A@ N, where N is a right and left A-submodule of B.
(ii) For every R-algebra C and C-A bimodule M, v: M — (M®), is a split
injective C-A bimodule homomorphism.

PRrOOF. (i) implies (ii). By virtue of (i), there is an A-bimodule homomorphism
n: B — A such that n|4 = id,. Since = is a left 4-module homomorphism,
the mapping of M x B to M that is defined by (u,y) — un(y) is bilinear
and balanced. Thus, there is a homomorphism p: M2 — M such that
p(u ) y) = un(y). Clearly, p is a left C-module homomorphism; it is a
right A-module homomorphism since = is a right 4-module homomorphism.
Finally, 1, = 1, € A4, so that pv(u) = p(u @ 1p) = ul, = u. Therefore, v
is split injective. The property (i) is the special case of (ii) in which C = A4,
and M = A is considered as an A-bimodule. O

The essential part of Proposition b can be stated succinctly: if v, is split
injective, then v,, is split injective for all A-modules M. It will be convenient
to call B a split extension of A if A is a subalgebra of B such that B, is a
finitely generated 4-module, and B = 4 (P N, where N is a right and left
A-submodule of B. The term cleft extension is sometimes used for a similar
concept.

ExampLE. If His a subgroup of the finite group G, then FG is a split extension
of FH for every field F. In fact, FG = FH P N, where N = Y __, VF;
and N is a sub-A4-bimodule of FG because x € H and y € G — H implies
xyeG — Handyxe G — H.

Corollary b. Let A and B be Artinian algebras such that B is a split extension
of A. If B has finite representation type, then so does A.

This corollary comes directly from Propositions a and b. By combining
Corollary a, the example, and Lemma 7.1, we obtain half of Higman’s
characterization of the group algebras of finite representation type.

Corollary c. Let p be a prime, F a field of characteristic p, and G a finite
group such that FG has finite representation type. Then the Sylow p-subgroups
of G are cyclic.
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EXERCISES
1. Prove Corollary a.

2. Prove the second statement of Proposition a. Hint. Let M,, M,, ..., M, be repre-
sentatives of the isomorphism classes of finitely generated indecomposable A-
modules. Show that if N is a finitely generated, indecomposable B-module, then
N, = @), @®n; M; for suitable n, > 0. Use the assumption that py is split surjec-
tive to conclude that N is isomorphic to a direct summand of some (Mj)”.

3. Let 4 and B be finite dimensional F-algebras. Assume that A is a subalgebra of B,
and that B is a free left 4-module. Fix an 4-module basis y,, ..., y, of B, that is,
B = Ay, P --- P Ay,. Suppose that M is a finitely generated right 4-module, so
that M is finite dimensional as an F-space. In (c) and (d), assume that char F = 0.

(a) Prove that if {;: 1 < i < n} is an F-basis of M, then {, @ y,;:1 < i <n,
1 <j < r}isan F-basis of M X), B = M®.

(b) For z € B, define £(z) € M,(A4) by the matrix equation

Nz M1
= &(2)
Yz Yr
Prove that for z € B, y,s(z) = 1,,(tr&(z)), where y,, and y,,s are the characters of
the representations of 4 and B that are afforded by M and M respectively. Show
that tr £(z) does not depend on the choice of the basis y,, ..., y,.

(c) Let G be a finite group, and suppose that H is a subgroup of G. Let M be a
right FH-module, that affords the character y. Extend y to a mapping y,: G — Fby
Xo(2) = x(z) for z€ H, and y,(z) = 0 for ze G — H. Let  be the character of G
that is afforded by M*¢. Prove that Y(z) = |H| ™), s 2o(yzy™!) forall z € G.

Terminology. The character  that is afforded by MT€ is said to be induced from
the character that is afforded by the FH-module M. It is customary to denote ¥ by
%%, when M affords .

(d) Let G be a finite group, and suppose that H is a subgroup of G. Let N be a
right FH-module, that affords the character . Prove that the character y that is

afforded by Np satisfies y(x) = ¥(x) for all x € H, that is, y = y|FH.
For obvious reasons, y is called the restriction of y to H, and it is denoted by y/,,.

9.6. Morita Equivalence

Two algebras 4 and B are called Morita equivalent if they have equivalent
module categories. In this case, the isomorphism classes of indecomposable
A-modules stand in one-to-one correspondence with the isomorphism classes
of indecomposable B-modules. In particular, 4 has finite representation type
if and only if B has finite representation type. Thus, the problem of deter-
mining the representation type of an algebra 4 can sometimes be simplified
by passing to a more tractable algebra B that is Morita equivalent to 4.
The appropriate setting for the study of Morita equivalence is category
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theory. In order to minimize the use of category theory, we will only prove a
special case of the main theorem on Morita equivalence. The result that is
obtained here will be sufficient for our needs. A systematic exposition of
Morita’s theory can be found in Bass’s book [17].

Lemma. Let P be a right ideal of the R-algebra A such that P is a direct
summand of A,, and AP = A. Define B = E,(P). Consider P as a B-A
bimodule. For each right A-module M, denote the right B-module Hom, (P, M)
by S(M); for each right B-module N, denote the right A-module N @B P by
T(N).

() TS(M) = M as A-modules by a mapping such that 6 (X) u — 0(u).

(i) N = ST(N)as B-modules by the mapping u — ¢,, where ,(x) = u ) x.

PRrOOF. (i) The bilinear mapping (6,y) — 6(y) of Hom,(P,M) x Pto M is
balanced, since (0a) (y) = 6(ay) by the definition of the right action of B on
Hom,(P,M). Thus, there is a homomorphism ¥ of the tensor product
TS(M) = Hom,(P,M) Xz P to M, such that y(8 (X) y) = 6(»). Plainly,
Y is an A-module homomorphism. To prove that y is an isomorphism, we
will construct ¥ L. Since 4 = AP, there are finite sets of elements x; € 4
and y,€ Psuch that 1, = '™, x,y,. For u e M, define

V@) = ;'"I(Aux..lP)®yi-

The definition yields Y’ (w) = ) .2, ux,y, = u; and
Aoy (@) = 0(¥x)z = 0(yx;2) = (04,,)(2)

implies

PHO®) = V60 = 3 (oI @3 = %, G D@
= $00,./PY® = % 0@ P
@ yxy =0 .

DMz iDs

i

Hence, y ' = .

(ii) Let u: N (X)5 P — N be the R-module homomorphism that is defined
by u(v @) ») = v(4,|P). The bilinear mapping (v,y) — v(4,|P) is balanced,
since (v(4,|P), y) and (v, (4,|P)y) both map to v(4,,|P), and B = {2 |P:
x € P} by Lemma 6.4. Therefore, the homomorphism p exists. Denote by
x the mapping v — ¢, of N to Hom,(P,N Qg P) = ST(N). Clearly, y is
an R-module homomorphism; it is a B-module homomorphism, because
2@ (y) = va @y = v Q ay = x(©)(2y) = (W)x)(y) for all aeB. If
x(v) = 0, then v(lylP) = u(v () y) = 0 for all y € P. Therefore, by Lemma
6.4, vB = 0, and v = 0. Hence, x is injective. If € Hom,(P, N X)5 P),
then by Lemma 6.4, there exists w = Y., v;X) y;€ N )y P such that



9.6. Morita Equivalence 177

0 = lw]P. (In fact, it can be assumed that » = 1, but to see this requires
some thought.) Let v = u(w) = Z;.‘=lvj(/1yj|P). If ze P, then y(v)(z) =
0@z =24 Qz=30&Q 4IPz = Y1, 5,Q yz =
wz = 0(z). Consequently, y(v) = 6. This argument shows that y is
surjective. O

The correspondences M — S(M) and N — T(N) are object maps for
functors between the categories of right A-modules and right B-modules.
That is, if ¢: M - M’ is an A-module homomorphism, then there is an
associated B-module homomorphism S(¢): S(M) — S(M’) defined by
S(¢)(0) = ¢0. Similarly, if y: N > N’ is a B-module homomorphism,
then T(¥) = ¢ X) idp: T(N) — T(N'). It is evident that S and T preserve
composition of homomorphisms, and they send the identity mappings to
identity mappings. It follows in particular that M =~ M’ implies S(M) =
S(M’), and N = N’ implies T(N) = T(N’). It is also clear that S and T
are additive: S(¢, + ¢,) = S(¢,) + S(¢,) and T(Y, + ¥,) = T(WY,) +
T(,). From this observation, an easy argument shows that S(M; P M,) =
S(M,) @ S(M,) and T(M, P M,) = T(M,) P T(M,). It can be shown
(see Exercise 1) that S and T define a categorical equivalence between the
categories of right A-modules and right B-modules. By definition, this is
the assertion that 4 and B are Morita equivalent.

Proposition. Let A be a right Artinian algebra, and suppose that B is a basic
algebra of A. There is a one-to-one correspondence between the isomorphism
classes of right A-modules and the isomorphism classes of right B-modules,
such that indecomposable modules correspond to indecomposable modules and
finitely generated A-modules correspond to finitely generated B-modules.

Proor. By the definition following Proposition 6.6a, there is a right ideal
P of A such that P is a direct summand of 4,, AP = A4, and B = E (P).
The lemma gives mappings S and T of 4-modules to B-modules and back,
such that TS(M) =~ M and ST(N) = N for each right A-module M and
every right B-module N. Since S and T are functorial, they induce inverse
bijections between isomorphism classes. The additivity of S and T imply
that S(M) is indecomposable if and only if M is indecomposable. Suppose
that M is a finitely generated right A-module, say M = Y;_, u, 4. As in the
proof of the lemma, write 1, = Y, x,»;, where x, € 4, y, € P. Then S(M) =
Hom,(P,M) is generated as a right B-module by {4, .[P: 1 <k <s,1 <
i < m}. In fact if 6 € Hom (P, M), then by Lemma 6.4b, there exists w =
Yi-14z(z, € A) in M, such that 6 = 1 |P. Since w = Y5_, Y™ u,x,,2,
with y,z, € P, it follows that 0 = )3 37", (4, |P)(A,. |P)eYi, dm,
(Aukxi|P)B. Finally, assume that N is a finitely generated right B-module,
say N =)'_,uB. By Proposition 6.4a, there is an idempotent ee P
such that P = ed. Consequently, T(N) = N @)z P = Y"_, 0B X P =
Vi, Qe BP =50, QP =3, e)d. That is, {y,@e:1 <
J < t} generates the right 4-module T(N).

O
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Corollary. If A is a right Artinian algebra, and B is a basic subalgebra of A,
then A has finite representation type if and only if B has finite representation

type.

EXERCISES

1. With the hypotheses and notation as they were in the lemma, prove that the isomor-
phism TS(M) =~ M and N =~ ST(N) are natural. That is, if ¢: M, > M, and
¥: N, - N, are module homomorphisms, then the following diagrams commute.

M, = TS(M,) ST(N) = N,
6] L 5@ STW) | I
M, = TS(M,) ST(N,) = N,

2. (a) Let 4 and B be R-algebras, and suppose that M is a right 4-module, N is an
A-B bimodule, and P is a right B-module. Prove that Homy(M ), N, P) =
Hom,(M,Homg(N,P)) as R-modules. Hint. For ¢ € Homg(M &), N, P), ue M,
and ve N, define (8(¢)(®)(®) = ¢p(u X v). Prove that (6¢)(u) e Homy(N,P),
0(¢) e Hom ,(M, Homg(N, P)), and

6: Homy(M X), N, P) -» Hom (M, Homy(N, P))

is an isomorphism of R-modules.

(b) Deduce that if 4 is a subalgebra of B, M is a right 4-module, and P is a right
B-module, then Homy(M2,P) ~ Hom ,(M,P,).

(c) Assume that Fis an algebraically closed field, 4 and B are finite dimensional,
semisimple F-algebras such that A is a subalgebra of B, M is a simple right 4-module,
and P is a simple right B-module. Let P, = @m M @ Q, where M is not a direct
summand of Q, and M® = @Pn P P N, where P is not a direct summand of N.
Prove that m = n. Hint. Use (b), Schur’s Lemma, and the exercise of Section 3.4
to obtain Pn F = Pm F.

The result (c) is the analogue for algebras of the Frobenius Reciprocity Theorem
in the classical theory of group representations. It is easy to deduce the Frobenius
Theorem from (c).

Notes on Chapter 9

The first four sections of this chapter provide an orderly development of
standard tensor product theory. The same material can be found in most
first year graudate algebra textbooks. The applications of tensor products
in Sections 9.5 and 9.6 are perhaps less familiar. The material in Section 9.5
is slanted toward the theory of group representations, particularly the proof
of Higman’s Theorem. Our discussion of Morita equivalence in Section 9.6
is skimpy, but perhaps it gives a hint of the usefulress of a categorical
approach to classical algebra.



CHAPTER 10
Separable Algebras

This chapter introduces a class of algebras that enjoys some of the attractive
properties of semisimple algebras. These are the separable algebras. For
F-algebras, separability is more restrictive than semisimplicity. One purpose
of this chapter is to give an effective characterization of separable algebras
over fields. In the course of obtaining this characterization, we will establish
some properties of separable algebras that are important even when they
are applied only to semisimple algebras.

The definition of separable algebras uses concepts that were introduced
by topologists for the study of manifolds. It is remarkable that the ideas
coming from homological algebra are so fruitful when they are applied to
ring theory. A principal objective of this chapter is to give some feeling for
the power of these abstract methods. They enable us to give elegant proofs
of some very deep results.

10.1. Bimodules

Section 9.5 provided a hint of the importance of bimodules in the study of
algebras. This chapter and the next one will confirm the central position of
the bimodule concept in algebra theory. In a sense, bimodules are no more
general than modules. The aim of this section is to explain how it is possible
to treat bimodules as modules.

If 4 is an R-algebra, the opposite algebra of A is the R-algebra A* that
coincides with A in its R-module structure, and has a multiplication opera-
tion o that is defined by x o y = yx. A routine calculation shows that A*
is an R-algebrawith 1, = 1,.

179
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Definition. The enveloping algebra of the R-algebra A is
A4° = 4* X A.

It is important to note that the definition of 4° depends in an essential way
on the scalar ring R. If 4 is viewed as an algebra over another commutative
ring S (for example, a subring of R or Z(A4)), then the associated enveloping
algebra A* (X); A is different from 4°. This is the first chapter of the book
in which the role of R is more than incidental. Therefore, we will take the
care to speak of R-algebras rather than simply algebras.

The multiplication operation in A° satisfies

(x1®J’1)(x2®}"2) =x2x1®J’1J’2- 1

Indeed, by 9.2(1), (x, ® v (x; ® y) = (x;0 xz)@)’xyz = x2x1® Y1Y2-
In general the opposite algebra of 4 will occur only as a factor of the envelop-

ing algebra. Therefore, (1) will make it possible to avoid the use of the
product symbol o.

Let 4 be an R-algebra. Recall that M is an A-bimodule if M is a right
A-module and a left 4-module such that

(xu)y = x(uy), and @
au = ua €)

forallue M, x, y € A, and a € R. Of course, au and ua are abbreviations of
(1 ,@)u and u(1,a) respectively. Equation (3) shows that the R-module
structure of A is important for the discussion of bimodules. When 4 can
be viewed as an algebra over different commutative rings R and S, it is
necessary to distinguish between A -bimodules and 4¢-bimodules.

Proposition. Let A be an R-algebra. If M is an A-bimodule, then M is a right
A®-module with scalar multiplication that satisfies

u(x Q) y) = (w)y = x(uy) 4)

for x,y € A, ue M. Conversely, every right A°-module is an A-bimodule with
xu=u(xQ1,), ux =u(l, Q) x). If M and N are A-bimodules, then
Hom,_,(M,N) = Hom ,.(M,.,N ,.).

In short, the categories of 4-bimodules and right 4°-modules are iso-
morphic. We will freely switch back and forth between A4-bimodules and
A°-modules, choosing the most convenient formulation of an argument or
statement in various situations.

The proof of the proposition is similar to arguments that were used in
Section 9.2. If M is an A-bimodule, then by (3) the mapping (x,y) —
(u+— xuy) is bilinear from 4* x A4 to Egx(M). This mapping induces a
unique R-module homomorphism ¢: 4° - E (M). For z€ A° and ue M,
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denote uz = ¢(z)(u). By construction, (4) is satisfied, and it follows from
(1) and (4) that u((x, ® Y1) (x, ® ¥2)) = x,xupy;y, = (u(x, ® »1)
(x,&X) »,). The other module identities are easy consequences of our defini-
tions. The proof of the converse is similar, using (x X) 1,)(1, Xy =
1, XNxX1yand1 .a X1, =1, 1, atoobtain (2) and (3). Note
that the functors ,M, — M,. and M, — ,M, are mutually inverse. The
last assertion of the proposition follows routinely from (4).

Corollary. If A is an R-algebra, then A is a right A°-module, and A° is an
A-bimodule.

Obviously, 4 is an 4-bimodule and A° is a right 4°-module, so that the
corollary follows from the proposition.

EXERCISES

1. Let 4 and B be R-algebras. Prove that there is a one-to-one correspondence between
the class of B-4 bimodules and the class of right B* (X) 4-modules. Show that this
correspondence is given by a category isomorphism, that is, there is a functor S
from the category of B-4 modules such that ! exists and S™! is a functor.

2. Prove that if 4 and B are R-algebras, then (4 + B)* = 4* + B*, (4 (X) B)* =
A* Q) B*,and (4 Q) By =~ A°(X) B°.
3. Let G be a group, and suppose that R is a commutative ring. Prove that the

group ring A = RG satisfies A* =~ A4. Show that if G is finite, and R is a field, then
A° =~ R(G x G).

4. An involution of an R-algebra A is an R-module automorphism x — x* of 4 such
that (xy)* = y°x* and x™ = x for all x, y € A. Prove that if there is an involution
of 4, then 4* = A. Deduce that 4* =~ A for the following algebras: 4 = M, (F),

<@

10.2. Separability
We are ready to meet the object of our affections in this chapter.
Definition. An R-algebra A4 is separable if A is a projective right 4°-module.

The scalar ring R enters this definition via the dependence of 4° on R.
An algebra may be separable as an R-algebra, but not separable as an
S-algebra for certain subrings S of R.

It will be useful to have several characterizations of separable algebras.
One of these involves a special case of the mapping u that was defined in
Section 9.5. For z € A°, define u(z) = 1,z. This definition takes advantage
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of the right A°-module structure of 4. Plainly, p is an A°-module homo-
morphism, therefore also an 4-bimodule homomorphism. If 4 is not com-
mutative, then yu is not a ring homomorphism. The description of u takes a
more familiar form in terms of rank one tensors:

px @ y) = xp. M)
It is clear from (1) that u is surjective. Thus, we have a short exact sequence
0 Kerpu— A°5 4 0. [®))

The homomorphism p is called the augmentation (or augmentation map-
ping) of A. The right A°-module Ker p is sometimes called the augmentation
module of A.

Proposition. For an R-algebra A, the following properties are equivalent.

(i) A is separable.
(ii) The sequence (2) is split exact.
(ili) There exists e € A° such that u(e) = 1, and xe = ex for all x € A (con-
sidering A¢ as an A-bimodule).

Proor. Condition (i) states that 4 is A°-projective, so that (i) implies (i) by
Corollary 6.1a. Conversely, if (2) is split exact, then 4° = 4 @ Kerp as
A°-modules, so that A4 is separable. The sequence (2) is split exact if and only
if there exists ¢ € Hom ,.(4,4°) such that u¢ = id,. Given such a ¢, let
e=¢(1,). Then u(e) = p¢p(1,) = 1,,and xe = x¢p(1,) = p(x1) = o(1,x) =
¢(1,)x = ex, since ¢ is a bimodule homomorphism. Therefore, (iii) holds.
Conversely, if e € A° satisfies (iii), and ¢: 4 — A° is defined by ¢(x) = ex,
then ¢ (xy) = e(xy) = (ex)y = ¢(x)y and ¢(yx) = e(yx) = (ey)x = (ye)x =
y(ex) = yp(x), that is, ¢ is a bimodule homomorphism. Moreover,
w(@(x)) = p(ex) = p(e)x = 1,x = x. Thus, (ii) is split exact. O

An element e € 4° that satisfies condition (iii) of the proposition is called
a separating (or separability) idempotent for A. Use of the term “idempotent”
is justified, as the next result shows.

Lemma. Let A be an R-algebra that is generated as an R-module by {z;:i € I}.

() Kerp=Y,,,&Q 1 -1 z)4%
(ii) if e € A° satisfies u(e) = 1,, then e is a separating idempotent for A if
and only if e Kery = 0.
(iii) If e € A° is a separating idempotent for A, then &* = e.
(iv) e = Y, x; Q) y; is a separating idempotent for A if and only if Yy
x;y; = 1, and Z;=1 ZiX; X y; = Z}':l X; X yjziforalliel

PROOF. By linearity, it can be assumed that 4 = {z;:i € I'}. For the proof of
(i), suppose that u(w) = 0, where w = Y™, z; X) y;, that is, ), z;y; = 0



10.3. Separable Algebras Are Finitely Generated 183

by (1). Consequently, w = Y™, (z; Q1 - 1 Q z)(1 Q) y) e,z Q1 —
1 X) z,)4°. The reverse inclusion is clear because p(z; X) 1 — 1 (X) z,) =
z, — z; = 0, and u is an A°-module homomorphism. (ii) follows from (i),
since z,e — ez; = e(z; R 1 — 1X) z). Since p(l e — &) = p(1 X1 —e) =
1 —1=0, it is a consequence of (ii) that e — e2 = e(1 — e¢) = 0. The
statement (iv) is a reformulation of the definition of a separating idempotent.

a

ExAMPLE A. If R is a commutative ring and » is a positive integer, then M, (R)
is separable.

ProoF. Fix j between 1 and n. Lete = Y7, &, X) ¢;; € M,(R)°. Then p(e) =

n —_ n _— n —_— —_— n
Zi=1 &€ = Zi=18ii =l and Zi=; &ij ® i = &; & = Zi=1£k18ij
¢;;- By the lemma, e is a separating idempotent for M, (R). O

ExAMPLE B. Let G be a finite group whose order # is a unit of the commutative
ring R. The group algebra RG is a separable R-algebra.

ProOF. Definee = (3, s x ' Q) x)n . Then u(e) = Q.. 1)n™" = 1, and
Qreax Q0™ = Peg VO Q) xp)n™! = Qreyx™ @ 207,
O

so that e is a separating idempotent for RG.

EXERCISES

1. Determine which of the following algebras are separable over the given ring.

(a) Q asa Z-algebra.

(b) F[x]/(x?) as an F-algebra, where F is a field of characteristic p.

(c) Z[x] as a Z-algebra.

(d) Z[x]/(x* + 1) as a Z-algebra.

(e) ZG as a Z-algebra, where G is a finite (non-trivial) group.

(f) C as an R-algebra.

(g) C asa Q-algebra.

(h) D is a division algebra with Z(D) = F, where F is a field, and dim; D = 0.
Consider D as an F-algebra.

(1) M,(Q) as a Z-algebra.

(j) E;(Q), where Q is a free abelian group of infinite rank, considered as a
Z-algebra.

2. Let e be a separating idempotent for 4. Prove that 4° = (1 — e)4° (P eA®, with
(1 — e)4° = Kerpy, and e4° =~ A as right A°-modules.

10.3. Separable Algebras Are Finitely Generated

This assertion is only approximately true. The correct statement is our main
result of this section.
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Proposition. Let A be a separable R-algebra that is projective as an R-module.
Then A is a finitely generated R-module.

ProoF. The first step of the proof uses the R-projectivity of 4 to construct
three collections of objects, all of which are indexed by the same set I,
{x; € Homg(4*,R): ie I}, {¢,€ Homg(4% A): ie I}, {z;€ A°: ie I}, such
that forallie I, X,y e 4, and z € A°,

¢i(x Q) = y1(x); (1
¢i(zy) = ¢i(2)y; 2
I(z) = {iel: ¢,(z) # 0} isfinite,and z = ), ., z;0:(2). (3)

This apparatus, together with the existence of a separating idempotent e for
A, leads easily to the conclusion that A, is finitely generated. In fact, let
e=Y"x. & y. By definition, pu(e) = 1,, and ey = ye for all yeA.
Hence, by (2), I(ye) < I(e), and it follows from (3) and (1) that y = y1,

y#(e) = lu'(ye) = ﬂ(21el(e) ld) (ye)) — H(Ztel(e) ld) (Zk 1 VX ® yk)) -

.“(Ziel(e)zizz=lkai(yxk)) = Zlel(e)Zk 1 H(Z)yexi(yx), because the aug-
mentation u is a bimodule homomorphism. Thus, 4 is generated as an

R-module by the finite set {u(z,)y,: ¢ € I(e), | < k < n}. It remains to con-
struct the homomorphisms y;,¢;, and the elements z,. The method used is a
slight elaboration of the construction of dual bases of projective modules.
Since A is R-projective, so is A*. Thus, there is a free R-module P with a
basis {u;: i € I'} such that 4* is a direct summand of P; that is, A* < P and
there is a projection homomorphism n: P — A* with n|A* = id .. Since P
is free on {u;: i €I}, there exist unique R-module homomorphisms y;:
A* > R such that I(x) = {ie I: x,(x) # 0} is finite for every x € 4*, and
X = Zle Iy ¥ u;x;(x). The mappings x; are just the coordinate projections
restricted to A*. We then have

X = Zielo(x) (1) 2:(x) 4

for all x € A*. Since (x,y) — yy;(x) is clearly bilinear from 4* x A to 4,
the existence of ¢, € Homg(A4°,A4) satisfying (1) is guaranteed by the universal
property of tensor products. Moreover, ¢,((x X) y)w) = ¢,(x X yw) =
ywr(x) = yr,)w = d,(x Q) y)w, so that (2) is also satisfied. In other
words, ¢, is a right A-module homomorphism. Finally, define z, = n(x,) &)
1, € A°. It suffices to prove (3) in the case z=x®) y. By (1), I(x ® y) S
Io(x) is finite, and by (4), x®y = Y., n(u)xl(x) Q¥ =Yerc
1) R V1) = e 10 @0) D Li(x @ D) = Yot Zibilx ®

Corollary. If A is a separable F-algebra, then A is finite dimensional.

This result is a consequence of the proposition, because every F-space is
free, hence projective.
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EXERCISE

Prove that if Q is viewed as a Z-algebra, then Q is separable but not finitely generated
as a Z-module.

10.4. Categorical Properties

The characterization of projective modules that was given in Proposition
6.1b leads to another description of separable algebras. The connection
between separable and semisimple algebras is an easy consequence of this
result.

Let M be an A-bimodule. Define

MP = {ueM:xu=ux forall xeA}.

If M is viewed as a right 4°-module, then by Lemma 10.2, M“ = {ue M:
u Kerp = 0}, where p is the augmentation of 4. Plainly, M4 is an R-
submodule of M; and if y € Hom .(M,N), then y(M“) = N. In other
words, M — M“ is a functor from the category of A-bimodules to the
category of R-modules. The functor acts on morphisms by sending y to
x|M™. A routine check shows that this functor is left exact: if 0 > M —
N - Pisexact, thensois 0 - M@ > N4 . p@ exact. We will show that
the functor is exact precisely in the case that A is separable.

Lemma. Let A be an R-algebra. If M is a right A°-module, then
Hom ,.(4,M) = MY as R-modules by the mapping 0,,(¢) = ¢(1,). For
each y € Hom ,.(M, N), the diagram

Hom ,.(4,M) =%, Hom ,.(4,N)
O} Lo

A A
MW > N@

commutes.

Proor. If ¢ € Hom,.(4,M), then ¢(1,)z = ¢(1,42) = ¢(u(z)) = 0 for all
z € Ker u. Hence, ¢(1 )Keru = 0; that is, ¢(1,) e M. Clearly, 0,, is an
R-module homomorphism. If ¢(1,) = 0, then for all x € 4, ¢(x) = ¢(1,)x
= 0 because ¢ is an A4-bimodule homorphism. Thus, 6,, is injective. If
ue M™, then 1, is a bimodule homomorphism from 4 to M and u =
A,(1,) = 6,,(4,). Thus, 0,, is an isomorphism. The commutativity of the
diagram is equivalent to the observation that Oy(x¢) = (x¢)(1,) = x(¢(1)))

= 1(0n(9))- O

Proposition. The R-algebra A is separable if and only if the functor M — M?
is exact.
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The essence of this proposition is that the separability of A4 is equivalent
to the validity of the statement that if y € Hom ,.(M,N) is surjective, then
¥ (M) = N, By the lemma, this implication coincides with the require-
ment that every surjective homomorphism y: M — N of A°-modules induces
a surjective homomorphism Hom ,.(4,M) — Hom ,.(A4,N) that is defined
by ¢ — x¢. According to Proposition 6.1b, the last condition is equivalent
to the statement that A is a projective 4°-module, that is, a separable
R-algebra.

Our main application of this proposition is based on the description of
P™ for a particular 4-bimodule P.

ExaMPLE. Let M and N be right A-modules. Define right and left scalar
operations of the elements of 4 on Homj(M,N) by

(x@) () = p(ux), (6x)() = d(w)x.

Routine calculations show that Homg(M,N) becomes an A-bimodule
with these scalar operations, and it is evident from the definitions that
Homg(M,N)* = Hom,(M,N).

Corollary a. Assume that A is a separable R-algebra. If P is a right A-module
that is projective as an R-module, then P is projective as an A-module.

PRrROOF. Let y: M — N be a surjective homomorphism of right 4-modules.
Since P is projective as an R-module, the mapping ¥/: ¢ +— y¢ is a surjective
homomorphism of Homg(P,M) to Homg(P,N) by Proposition 6.1b. The
assumption that y is an 4-module homomorphism implies that y is a
bimodule homomorphism:

Y(@9x)(v) = x((9x)(v)) = 2(P(v)x) = 1 (¢)x = (Y P)x)(v),
and
Y (xd)(v) = x((xP)(v)) = x(P(vx)) = (x(x9)) (v) = (x(Y))(v).

By the example and the proposition, Hom (P,M) = Homg(P,M)* -
Homg(P,N)“ = Hom,(P,N) is surjective. Thus, P is projective as an
A-module. O

Corollary b. Every separable F-algebra is semisimple.

Since all vector spaces are projective, it follows from Corollary a that
every right module over a separable F-algebra A is projective. Therefore,
A is semisimple by Corollary 6.1b.

EXERCISES

1. Prove that the functor M — MY from the category of 4-bimodules to the category
of R-modules is left exact.
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2. Verify the assertion in the example that Homy(M,N) is an A-bimodule.
3. Prove that if 4 is an R-algebra, then 4 = Z(4).

10.5. The Class of Separable Algebras

In this section we will use Proposition 10.4 to prove three closure properties
of separable R-algebras.

Proposition a. If K is an ideal of the separable R-algebra A, then A/K is a
separable R-algebra.

ProoF. By Proposition 2.1, the 4/K-bimodules M coincide with the A-
bimodules M such that KM = MK = 0. Moreover, (x + K)u = xu and
u(x + K) = uxforallu e M and x € A. Therefore, M4/® = M for every
A/K-bimodule. If y: M — N is a surjective A/K-bimodule homomorphism,
then y is also an A-bimodule homomorphism. Therefore, y(M“/X) =
Y(M@) = N = N“4K and A/K is separable by Proposition 10.4. O

Proposition b. Let A and B be R-algebras. The product A + B is separable
if and only if A and B are separable.

ProOF. If 4 + B is separable, then 4 and B are separable by Proposition a.
For the proof of the converse, it can be assumed that C = 4 + B is the
outer product of 4 and B. Denote e = (1,,0), f = (0,15). If M is a C-
bimodule, then M = M, P M, P M,, P M,, (as C-bimodules), where
M,, = eMe, M, = eMf, M,, = fMe, and M,, = fMf. Plainly, M, is an
A-bimodule and M,, is a B-bimodule. Moreover, M{9 = 0: if ue M9,
then u = (1,0)u = u(1,0) = u(0,1)(1,0) = 0. Similarly, M{9 = 0. Hence,
MO=MOPMT=MPPMPE. If y: M—> N is a surjective C-
bimodule homomorphism, then x(M,,) = N,,; and x(M,,) = N,,. The
hypothesis that 4 and B are separable implies that y(M{4) = N4 and
1 (MDY = N{B. Therefore, y(M©) = N©. 1t follows that Cisseparable. ]

The final result in this section concerns tensor products of separable
algebras: the class of separable R-algebras is closed under tensor products.
We will prove a more general technical result.

If B is a subalgebra of 4 and M is an A-bimodule, then M is also a
B-bimodule. Moreover, it is clear that M4 = M®.

Proposition c. Let B and C be subalgebras of the R-algebra A such that
C < C,(B) and B U C generates A as an R-algebra.

() If M is an A-bimodule, then M© is a B-bimodule and (M ©)® = M4,
(ii) If B and C are separable, then A is separable.
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ProoF. It is evident that the statement (ii) follows from (i) by using Proposi-
tion 10.4 twice. If u eM‘© and x € B, then

y(xu) = (yx)u = (xy)u = x(yu) = x(uy) = (xu)y

for all y € C. Therefore, xu € M©. Similarly, ux € M©, so that M© is a
B-bimodule. Moreover, u € (M©)® ifand only if xu = uxforallxe B u C.
Since {x € 4: xu = ux} is a subalgebra of 4, and B U C generates 4 as an
R-algebra, it follows that (M©)® = M4, O

Corollary. If B and C are separable R-algebras, then B (X) C is a separable
R-algebra.

EXERCISES

1. Prove that if K is an ideal of the separable R-algebra A4, then Z(A4/K) =
(Z(A4) + K)/K. Hint. Note that the projection 4 — A/K induces a surjective homo-
morphism A — (4/K)“4/®_and deduce the result from Exercise 3 of Section 10.4.

2. Give an alternative proof of Proposition b by showing that if e is a separating
idempotent for 4 and fis a separating idempotent for B, then e + f'is a separating
idempotent for 4 + B.

10.6. Extensions of Separable Algebras

In this section S will denote a commutative R-algebra. We will study the
relation between the conditions that A is a separable R-algebra and A5 is a
separable S-algebra, where 45 = 4 (X) S is obtained from A4 by scalar
extension.

Proposition a. If A is a separable R-algebra, then AS is a separable S-algebra.

PrOOF. The homomorphism x — x X) 15 of 4 to A5 endows each 4°-
bimodule M with an 4-bimodule structure that is defined by xu = (x ) 1)u,
ux = u(x X) 1) for all ue M, x € A. Moreover, M4" = M¥_ Indeed, if
ueM and ce S, then (1 Q) )u = (1 s0)u = u(l ;) = u(1 X) ¢) because
M is a bimodule over an S-algebra. Hence, u € M4”) if and only if (x X) 1)u
= u(x X) 1) forall x € 4, thatis,u € M. Let y: M — N be a surjective 45
bimodule homomorphism. Therefore, y(M“4Y) = y(M™@) = N4 = N4,
by Proposition 10.4 and the hypothesis that 4 is separable. Since y is an
arbitrary surjective 45-bimodule homomorphism, Proposition 10.4 gives the
desired conclusion that 45 is a separable S-algebra. O

There is a converse to this proposition, but it requires a mild restriction
on the algebra S.
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Proposition b. Assume that there is an R-module homomorphism ¢ of S to R
suchthat ¢(15) = 1. If A is an R-algebra for which A® is a separable S-algebra,
then A is a separable R-algebra.

Proor. We need some preliminary work in order to pass between
A-bimodules and A45-bimodules. According to Lemma 9.3, if M is an
A-bimodule, then M® = M (X) Sis an 45-bimodule such that for all u € M,
xeA,andc,de S,

x X e)(u ®d) =xu®cd, (u®d)(x®c) = ux X) dc. )

As in Proposition a, M5 is also an 4-bimodule with

ow =@ Dw, wx=wkx]1) 2

for all we M5 and x € A. In particular, if ue M, x € A, and c € S, then

xu®c)=xu@c and (uQc)x =ux X ec. 3)

Define ,,: MS - M by y,,(u Q) ¢) = ue(c), where ¢: S — R is the given
R-module homomorphism; that is, y,, is the composition M XS &4,
M ® R — M. 1t follows by calculation from (3) that y,, is an 4-bimodule
homomorphism. Moreover,

U (M4 = M. (4)

Indeed, it is clear from (2) that (MS)“) = (M5)4, so that ¥, ((M5)4))
MY (because y,, is an A-bimodule homomorphism). To obtain the reversed
inclusion, note that if ue M™, then u ) 1ge (M5“" by (1); and
Uy X 1g) = ud(lg) = uly = u. We can now show that the criterion of
Proposition 10.4 is satisfied. Let y: M — N be a surjective homomorphism
of A-bimodules. We wish to prove that y(M4) = N4, By Propositions 9.1b
and 9.3, y &) idy: MS — NS is a surjective homomorphism of 45-bimodules.
The separability of A5 gives

(1 & idg) (M5 4)) = (NS4, ®)

If ue M and ce S, then Yy(x & idg)(u X ¢) = Yy (x (@) & ¢) = x(w(c)
= yud(c)) = y\(u @ c); thus Y (x @ id) = yy,,. This commutativity
relation, together with (4) and (5), gives the desired conclusion N =

(V4 = Py @ id) (M3H) = 2 (M) = 5(M“). O

Corollary. An F-algebra A is separable if and only if A is finite dimensional,
and for every field E that contains F as a subfield, A® is semisimple.

PROOF. If 4 is separable, then dim, 4 is finite by Corollary 10.3, and A" is
semisimple for every field extension E/F by Proposition a and Corollary
10.4b. To prove the converse, let E be an algebraic closure of F. By assump-
tion AF is semisimple, and dim; A% = dimy; 4 < oo, using Lemma 9.4. The
structure of Af is therefore determined by Corollary 3.5b: 4* = M, (E)
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+ -+ + M, (E) for suitable »n; € N. It is a consequence of Example 10.2a
and Proposition 10.5b that ¥ is a separable E-algebra. Since E = 1, F P N
for some F-subspace N of E, there is an F-space homomorphism ¢: E — F
that satisfies ¢(1;) = 1. By Proposition b, 4 is a separable F-algebra. [

EXERCISES

1. Let ¢: T — S be a homomorphism of commutative R-algebras, and suppose that
A is an R-algebra. Prove that if AT is a separable T-algebra, then A° is a separable
S-algebra. Hint. ¢ induces an R-algebra homomorphism of 4T to A5. Show that if
M is an 45-bimodule, then M is an AT-bimodule such that M“4" = M,

2. Prove that if 4 is a separable R-algebra and M is a maximal ideal of R, then 4/AM
is a separable R/M-algebra. Hint. Show that A/AM =~ 4 X) R/M. (If A is finitely
generated as an R-module, the converse is true. However, the known proofs of this
fact use results of commutative ring theory that are fairly sophisticated.)

10.7. Separable Algebras over Fields

The criterion in Corollary 10.6 for separability of an F-algebra is not usually
easy to apply. In this section we give an alternative condition that reduces
the problem of recognizing separable algebras to the consideration of finite
field extensions.

Lemma a. Let A be an R-algebra. Suppose that S is a subring of R.

(i) If A is separable as an S-algebra, then A is separable as an R-algebra.
(ii) If A is separable as an R-algebra and R is separable as an S-algebra, then
A is separable as an S-algebra.

PROOF. Both parts of the lemma are proved by suitable applications of
Proposition 10.4. It is clear that every A ,-bimodule is also an Ag-bimodule.
Thus, if A is separable as an S-algebra, and y: M — N is a surjective homo-
morphism of Ag-bimodules, then y(M4Y) = N“. Tt follows that A is
separable as an R-algebra. To prove (ii), let M be an 4Ag-bimodule. Then M
is an R¢-bimodule, and by Proposition 10.5¢c, M® is an A4,-bimodule such
that (M®)4 = M If y: M - N is a surjective homomorphism of
Ag-bimodules, then y is also an Rg-bimodule homomorphism. Since R is a
separable S-algebra, it follows from Proposition 10.4 that y(M®) = N®,
That is, x|M™® is a surjective homomorphism of Ag-bimodules. Another
application of Proposition 10.4 gives the desired result

X(M(A)) — X((M(R))(A)) — (N(R))(A) = N4,
Thus, A is a separable S-algebra. O
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Lemma b. A4 finite field extension A/F is separable if and only if A is a separable
F-algebra.

Proor. If 4/Fis a finite separable field extension, then 4 is a simple extension
of F,say A = F(c). Also, the minimum polynomial ® of ¢ over Fis separable.
To prove that 4 is a separable F-algebra we use the criterion of Corollary 10.6.
Let E/F be an arbitrary field extension. By Example 9.4, A® is isomorphic
as an E-algebra to E[x]/®(x)E[x]. Since ® is separable, it factors in E[x]
as a product @, --- @, of distinct irreducible polynomials. The Chinese
Remainder Theorem gives an isomorphism

E[x]/®(x)E[x] = E[x]/®,(X)E[x] + - + E[x]/®,(x)E[x].

Thus, A% is a finite product of fields, that is, A% is semisimple. It follows from
Corollary 10.6 that A4 is separable. Assume that A/F is not separable. The
characteristic of F must be a prime p. Moreover, the set L of elements in 4
that are separable over F is a proper subfield of 4 such that A/L is purely
inseparable. Since A is finite dimensional, L is contained in a maximal proper
subfield K of 4. If de A — K, then A = K(d) by the maximality of K. The
minimum polynomial of d over L has d as its only root because 4/L is purely
inseparable; thus, the minimum polynomial of d over K is (x — d)”" for
some n > 1. (It can be shown that n = 1.) By Example 9.4, 4 ®K A=
A[x]/((x — d)A[x])”" has non-zero radical. It is a consequence of the
Corollaries 10.4b and 10.5 that 4 is not a separable K-algebra. Lemma a
implies that A is not separable as an F-algebra. O

Corollary a. Let A be a separable F-algebra. If K is a subfield of Z(A), then
K/F is a separable field extension.

PROOF. Let E/F be a field extension. By Corollary 9.2b K¥ is isomorphic to
an E-subalgebra of the center of 4%. Since 4% is semisimple by Corollary
10.4b, there are no non-zero nilpotent elements in Z(A4F). Thus, K is a
finite dimensional commutative E-algebra in which there are no non-zero
nilpotent elements. Hence, K¥ is semisimple. By Corollary 10.6, K is a
separable F-algebra. The corollary follows from Lemma b. O

Proposition. An F-algebra A is separable if and only if A =~ A, + --- + A,
where each A; is a finite dimensional, simple F-algebra and Z(A)/F is a
separable field extension.

ProoF. If A is separable, then A is semisimple. The Wedderburn Structure
Theorem provides the decomposition 4 =~ A4, + --- + 4, with 4, simple
for all i. By Proposition 10.5b, each 4, is a separable F-algebra. Thus,
dim; A; < oo. It is well known (and it will be proved in Chapter 12) that
the center of a simple algebra is a field. Hence, Z(4,)/F is a separable field
extension by Corollary a. To prove the converse, we borrow another result
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from Chapter 12: every finite dimensional simple F-algebra A is a separable
Z(A)-algebra. This fact, together with Lemmas a and b imply that the
algebras A, are separable F-algebras. Thus, A4 is a separable F-algebra by
Proposition 10.5b. O

Corollary b. Let F be a perfect field. An F-algebra A is separable if and only
if A is finite dimensional and semisimple.

EXERCISES

1. Prove that an F-algebra A is separable if there is a finite, separable field extension
E/F such that 4* = M, (E) + --- + M,(E) for suitable natural numbers n,, ...,
n,. (Later it will be possible to prove the converse of this exercise.)

2. Let F be a field of prime characteristic p. Assume that 4/F is a finite field extension

that is not separable.

(a) Prove that there exist elements x, ..., x, in A that are linearly independent
over F, but x%, ..., x{ is linearly dependent over F.

(b) Use the result (a) to give an alternative proof of the converse implication in
Lemma b: if A/F is not separable, then A4 is not a separable F-algebra. Hint. Let
E = F(aiP, ..., a}), and show that z = Y x; X al? is a non-zero nilpotent
element in A* for suitable g, € F.

3. Let 4 be a non-trivial R-algebra that is free as an R-module. Assume that S is a
subring of R such that A is separable as an S-algebra.
(a) Prove that A* X); 4 is a free R (X)s R-module.
(b) Deduce from the separability of 4 that 4 is projective asan R ®s R-module.
(c) Use the assumption that 4 is a non-zero free R-module and the definition of
separability to conclude that R is a separable S-algebra.

10.8. Separable Extensions of Algebras

This section provides a brief introduction to a generalization of the concept
of separable field extension. If Bis an R-algebra and 4 is a subalgebra of B,
then B can be viewed as a B-4 bimodule and as an A4-B bimodule. Therefore,
B (X), Bis a B-bimodule by Lemma 9.5a. Equivalently, B &), B is a right
B°-module, where B¢ = B* ®R B as usual. By Lemma 9.5¢c, there is a
B-bimodule homomorphism p = py: B X), B —» B such that p(x Ry =
xy. Obviously, u is surjective.

Definition. The R-algebra B is a separable extension of A (or more simply, B
is A-separable) if uy is a split surjection of B°-modules.

Explicitly, B is A-separable if there is a B-bimodule homomorphism ¢:
B — B (X, B such that u¢ = idy.
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It is a consequence of Lemma 10.7b that if 4 is a subfield of Band Bis a
field, then B is a separable extension of A4 in the sense of the definition if and
only if B/A is finite and separable according to the familiar definition of
field theory.

If A = R, then B is A-separable if and only if B is a separable R-algebra.
Indeed, the B-bimodule structure of B (X), B = B (X) B that was defined in
Section 9.5 coincides with the B-bimodule structure of B¢ = B* (X) B that
comes from the right B*-module structure that is induced by multiplication.
In other words, as B-bimodules B @ B and B¢ are identical.

It is not difficult to show that if B is a separable R-algebra, then Bis a
separable extension of all of its subalgebras. More generally, if B is a separ-
able extension of 4 and C is a subalgebra of B that contains 4, then B is a
separable extension of C. Moreover, separable extensions are transitive: if
C is a separable extension of 4 and B is a separable extension of C, then B
is a separable extension of 4. The proofs of these facts are sketched in
Exercise 1. It is clear from Lemma 9.5b that every algebra is a separable
extension of itself.

To obtain an example of a separable extension of R-algebras in which
the larger algebra is not a separable R-algebra we will use a generalization
of Proposition 10.2.

Lemma. The R-algebra B is a separable extension of its subalgebra A if and
only if there is an element e € B ®A B such that pg(e) = 1, and xe = ex for
all x € B.

The proof of the equivalence of conditions (ii) and (iii) in Proposition
10.2 carries over to the context of the lemma without substantive changes.

ExaMPLE. Let H be a Sylow p-subgroup of the finite group G. Suppose that
Fis afield of characteristic p. If B = FG and A = FH, then Bis A-separable.

ProoF. Let G = Hx, v --- v Hx, be a decomposition of G into a disjoint
union of right cosets of H. Since H is a Sylow p-subgroup of G, the index r
of H in G is not divisible by p. Thus, we can definee = (37, x;* &X), x;)r
€ B (X), B. The definition of p gives u(e) = (Y 7=, 1g)r~' = 15. Moreover,
if y € G, then there is a permutation = of {I, ..., r} and elements ;€ H
such that x;y = u;x,; (therefore x; ', = yx_;) for 1 < i < r. Thus, ey =
Qi Qx)rt = Qo x X uixn(i))r_l = Qi X 'y, ® xn(i))r—l
= Vo yxnh & x4e)r~' = ye. By the lemma, B is A-separable. By
Maschke’s theorem, B is not semisimple (therefore, not separable) unless
H is the one element group. |

The concept of a separable extension of algebras enables us to answer a
question that was posed in Section 9.5.
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Proposition. Let A be a subalgebra of the R-algebra B. The following condi-
tions are equivalent.

(i) B is a separable extension of A.
(ii) For every R-algebra C and C-B bimodule N, uy: (N,)® — N is a split
surjective homomorphism of C-B bimodules.

ProOF. Plainly, (i) is the special case of (ii) in which N and C coincide with
B. Assume that B is 4-separable. We have the diagram of bimodule homo-
morphisms

N ®; (B ®), B) 424, N ®), B
0] I

in which 6 is the composition

N®yB R, B~ (NR, B ®, B2 N R, B

and y: N Q) B — Nis defined as in Proposition 9.1b; thus, 8(u Q) (x X) »))
= ux Q) y, and y(u @) x) = ux. By Lemma 9.5b, y is an isomorphism. An
easy calculation with rank one tensors shows that the diagram commutes.
Since B is A-separable, there is a B-bimodule homomorphism ¢: B —
B X), B such that uz¢ = idy. If we define y = 0(id, X) )z ™", then ¥ is
a C-B bimodule homomorphism from N to N (X), B such that p, =
pn0(idy ® 4’)%—1 = x(idy ® ) (idy ® Pyt = 1 (idy ® idB)X_l = idy.

Therefore, p, is a split surjection. O

Corollary. Let A be a right Artinian R-algebra and suppose that B is an
R-algebra that contains A as a subalgebra and is finitely generated as a right
A-module. Assume that B is a separable extension of A. If A has finite repre-
sentation type, then B has finite representation type.

This corollary follows from the proposition and Proposition 9.5a.

Higman’s Theorem. Let F be a field of prime characteristic p. If G is a finite
group, then the group algebra FG has finite representation type if and only if
the Sylow p-subgroups of G are cyclic.

Proor. Let H be a Sylow p-subgroup of G. If FG has finite representation
type, then H is cyclic by Corollary 9.5¢c. If H is cyclic, then FH has finite
representation type by Lemma 7.1. It follows from the corollary and the
example that FG also has finite representation type. O
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EXERCISES

1. Let 4 and C be subalgebras of the R-algebra Bwith 4 =< C < B.

(a) Prove that if N and M are B-bimodules, then there is a surjective B-bimodule
homomorphism 8: M X), N - M X, N such that 8(u X), v) = u Q) v.

(b) Use (a) to show that if B is a separable extension of A4, then B is a separable
extension of C. Hint. Show that the augmentation B ®A B — Bis the composition
BR,B5>BRX.BS B

(c) Prove that if B is a separable extension of C and C is a separable extension
of A, then B is a separable extension of A. Hint. Prove that the composition B X), B
~ B®cC R, C R B “@4€4 BR). C®cB = BXcB * B is the augmen-
tation B (X), B — B, and deduce that if . and pu; are split surjections, then so is
BB - B.

2. Prove the lemma.

Notes on Chapter 10

The importance of separable algebras over fields has been recognized for
more years than most living mathematicians can include in their productive
lives. However, the broadening of separability to algebras over commutative
rings is a ““fairly”’ recent development. The credit for this development is
usually assigned to the paper [13] of M. Auslander and O. Goldman, but
as usual there were several forerunners of this work. The fundamental paper
[16] of G. Azumaya must be mentioned; it is a classic of modern algebra.

Our discussion in this chapter gives just a hint of the theory of separable
algebras. We have followed a part of the monograph [25] of F. DeMeyer
and E. Ingraham. A reading of the complete work [25] will provide sub-
stantially deeper understanding of separability. The notion of relative separ-
ability is a natural idea that is implicit in the papers [43] of Higman and [51]
of Jans.



CHAPTER 11
The Cohomology of Algebras

We have reached another stage of machinery building in our development
of the theory of associative algebras. This time the formalism of the cohomo-
logy of algebras is introduced. The reader is warned that the ratio of defini-
tions to theorems in the first five sections of the chapter is very high. However,
the cohomology of associative algebras plays an important part in the study
of central simple algebras, as we will see in Chapter 14. In this chapter the
cohomology theory is used to give a streamlined proof of the Wedderburn—
Malcev Principal Theorem, one of the landmarks in the theory of associative
algebras. The chapter ends with a discussion of the Principal Theorem in
the general theory of associative algebras. The results on extensions enables
us to formulate the work of Chapter 8 in a more natural way.

Anyone who has a low tolerance for diagram chasing and abstract non-
sense is advised to skip lightly through the first part of this chapter. One of
the virtues of cohomology is that its usefulness rests on a small number of
properties. The four statements in Section 11.2 and the interpretation of the
first cohomology group in Section 11.5 are sufficient tools for most applica-
tions of the theory. Familiarity with these results is certainly sufficient to
understand the uses of cohomology that are made in this book.

11.1. Hochschild Cohomology

This section gives the definitions that make a cohomology theory of associa-
tive algebras. As usual, 4 denotes an R-algebra. The letters M, N, and P
will designate A-bimodules.

A mapping ®: A" - M is multilinear if it is R-linear in each component,
thatis, ®(x, ..., x;a+ yb, ..., x)=®(x;, ..., x; ..., x)a+ D(x,, ...,

196
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Vis s xpbforallx,, ..., x, ¥y, ...,x,in Aanda,be R. If ® and ¥ are
multilinear mappings from A" to M and ¢ € R, then the mappings (® + V)
(g5 ooihx) =0(xy, ..., x,) + ¥Y(x;, ..., x,)and (@) (x,, ..., x,) =
®D(x,, ..., x,)c are multilinear. Thus, the set of all multilinear mappings
from A" to M is an R-module under the addition and scalar multiplication
defined in this way. We will denote this module by Cg(4,M), C"(M), or
C", depending on how much information can be inferred from the context.
It is convenient to identify Cg(4, M) with M. (This is a natural extension of
our notation if 4° is interpreted as the one element set {¥}.) Thus, C" is
defined for all non-negative integers n. The elements of Cr(4, M) are called
n-cochains on A with values in M.

If ¢: M — N is a homomorphism of A-bimodules, then ¢ induces R-
module homomorphisms ¢™: Cp(4,M) — Cp(4,N) by (6"®) (x,, ...,
x,) = ¢(@(x,, ..., x,) and ¢ = ¢. This definition obviously satisfies
the composition property ()™ = ™ $™ that is required to make ¢ — ¢™
a functor.

For n > 0, an alternative definition is available. Let A®" denote the
tensor product of n copies of 4, considered as an R-module. Map 7: Hom,
(A®" M) - Ci(A,M) by ©W(x,, ..., x,) = ¥(x; @ - &) x,). An easy
induction on » yields the results that (x,, ..., x,)—x, Q- &) x, is
multilinear, {x, X --- &) x,: x, € A} generates 4%" as an R-module, and
A®" has the universality property for multilinear mappings of 4"; that is,
if ®: A" - M is multilinear, then there is a homomorphism ¢: A®" 5 M
such that ®(x,, ..., x,) = ¢(x, ® e @ x,) forall (x, ..., x,)e A" In
other words, the mapping 7 is an R-module isomorphism. We can therefore
translate properties of HomR(A®",M )} to Cr(4,M) by using the isomor-
phism 7. The validity of this strategem is based on the fact that 7 is a functor
isomorphism: if ¢: M — N is a homomorphism (of R-modules), then

Hom,(4%", M) 25 Hom,(4®",N)
fl lt

commutes. Indeed, (t(¢¥))(x;, ..., x,) = dY(x, X - X x,) = ¢
(X, - ooy X,)

The construction of the cochain modules Cr(4,M) does not use the
algebra structure of 4 or the bimodule structure of M. However, to get a
cohomology theory, a coboundary operator is needed. The multiplicative
structure takes the principal role in the definition of the coboundary.

Definition a. The n’th coboundary homomorphism is the mapping 6™ (or
o) from Cg(A4,M) to Cg*'(A4,M) that is defined by

(1) (02u)(x) = xu — ux, and

(1) (MDY (xy, Xpr o ovs X Xppq) = X, Oy, ooy X)) + 2 (—1)
DXy, oy XX gy o vy Xpyy) + (=)0, ..., x,)x,,, forn > 1.
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The special cases of this definition that will be most important in our
study of algebras occur for n = 0, 1, and 2. For convenience we record the
explicit forms of the coboundary homomorphisms 5 and §?.

(OVD)(x,,x,) = x;®(x;) — B(x;x,) + D(x,)x,. M

(5(2’<D)(x1,x2,x3) = x1®(x2ax3) - (I)(x1x2’x3) +
2

DO(x,,x,x5) — D(x,,x,)x;5.

Lemma. For all n > 0, 8" is an R-module homomorphism from Ci(A,M) to
Ca*'(A,M) such that §"*V5™ = 0. Moreover, if ¢: M — N is a homo-
morphism of A-bimodules, then the following diagram commutes.

Cr(4,M) -5 C"(A4,N)
5$;l lé(;l
Cat'(4,M) 5= Ca*H(4,N)

PROOF. It is clear that 6 ®: 4"*! —» M is multilinear. Thus, 6™ maps C" to
C™*!'. Obviously, 6™ is an R-module homomorphism. The commutativity
of the diagram results from a routine computation, using the assumption
that ¢ is a bimodule homomorphism. The proof that 6"*V§"™ =0 is a
tedious computation. If n = 0, then (68 Pu)(x,,x,) = x,(6Pu)(x,) —
(0u)(x,x,) + (0w (x,)x, = x1(xu — ux,) — (X XU — ux,x,) +
(x;u — ux;)x, = 0. When n > 1, the computation of §**Vé"®(x, ...,
X,+,) leads to a sum in which each of the following terms occurs twice, once
with the coefficient 1, and once with —1:x, x,®(x5, . . ., x,,,); X, P(x,, . . .,
XiXipgs s Xpy2) 2 <P <0+ 1;0(xy, ..., X%, Ce s XXy s Xpg2)s
1 <i<j—1<n00, . .., XX 11 X405 -3 Xp42), 1 ST <n;®(xy, ...,
XiXigqs ovvs Xpp )Xo, 1 ST < n5 O(Xy, ..., X,)X,41X,4,- Thus, the sum
is 0. When it is done with pencil and paper, the calculation is more con-
vincing than when it is printed; so we will consign that chore to the

exercises. |

Definition b. Denote Zz(4,M) = Kerd™ and Bi(4,M) = Im "V for
n > 1, By(4,M) = 0. The n’th Hochschild cohomology module of A with
coefficients in M is the factor module

H(A,M) = Z1(A,M)/BL(A4,M).

This definition makes sense, because Im 6" = Ker 6™ (for n > 1) by
the lemma.

As in the case of C", we will use the notation Z"(M) or Z", B*(M) or
B", and H"(M) or H" for Zg(A,M), Bi(A,M), and Hg(A4,M) when it is safe
to do so. The elements of Z", B", and H" are respectively called n-cocycles,
n-coboundaries, and n-cohomology classes.

If ¢: M > N is a bimodule homomorphism, then it follows from the
lemma that ¢™ maps cocycles to cocycles and coboundaries to coboundaries.
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This observation proves the first part of the next proposition; the second
part is clear from the remark preceding Definition a; and the third part is
obvious.

Proposition. Let ¢: M — N, and y: N > P be A-bimodule homomorphisms.
Define ¢’ Hy(A,M) — Hy(4,N) by

YD + BR(4,M)) = ¢"(@) + Br(4,N).

(i) ¢\ is an R-module homomorphism.
(i) WO = ¥P¢y.
(iii) (idy)™ = idy.

In the language of category theory, this proposition asserts that Hg(4,*)
is a covariant functor from the category of A-bimodules to the category of
R-modules. The next few sections are devoted to establishing the basic
properties of the sequence of functors {H"}.

If Ais a group algebra, or more generally, if 4 is a free R-module on a basis
X that is closed under multiplication, then the cohomology modules of 4 can
be obtained more economically than by the construction in Definition b.
Map Ci(4,M) to M*" by ® — ®|X". If M* is made into an R-module
using pointwise operations, this mapping is a homomorphism. Since ® is
multilinear, <I)\X " = 0 implies ® = 0. Finally, the assumption that X is an
R-basis of 4 implies that any mapping of X" to M extends uniquely to a
multilinear mapping of 4" to M. Therefore, Ci(A4, M) is isomorphic to M*’
under the restriction mapping. Since X is closed under multiplication,
Definition a defines a coboundary homomorphism from M,. to M. .
Plainly, the restriction mapping carries cocycles to cocycles and coboundaries
to coboundaries. Thus, we can consider n-cohomology classes as cosets of
mappings ®: X" — M that satisfy 6™’® = 0. In particular, if X is finite, R is
Noetherian, and M is finitely generated as an R-module, then it is easy to
see that the cohomology modules Hg(A4,M) are finitely generated.

EXERCISES
1. Prove by calculation that §"*V§" = 0.

2. A multilinear mapping ¥: A" — M is normalized if ¥(x,, ..., x,) = 0 whenever

x, = 1, for at least one index i. Prove the following statements.

(a) If ¥ e C" is normalized, then 6™ is normalized.

(b) If® e C", then there exists ¥ € C" such that ‘¥ is normalizedand ® — ¥ € B™.
Hint. Define inductively ®, = ®, ®, = ®,_, — " V¥, where ¥,(x,, ..., X,_,) =
(—=1)7'®,_, (Xy, . s X;1> Lgs Xy - .., X,_y). Show by induction on i > 0 that if
one or more of x,, ..., x;is 1,, then ®,(x, ..., X;, X115 .- -, X,) = 0. Conclude
that ¥ = ®, has the required properties.

(¢) H" =~ Z7/B:, where Z! and By, are the submodules of Z" and B" that consist
of normalized cocycles and coboundaries.
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11.2. Properties of Cohomology

It is rather astonishing that the cohomology modules of an algebra play a
fundamental role in the structure theory of the algebra. The intuitive content
of Definition 11.1b is almost nil. However, as we progress through this
chapter, our appreciation of this new tool will grow.

In this section, the most important properties of the cohomology modules
will be presented. It is surprising that most facts about cohomology can be
derived from four basic results. Indeed, when certain ‘‘naturality conditions”
are assumed, these four basic properties uniquely determine the cohomology
modules.

Theorem. Zero Dimensional Cohomology. If M is an A-bimodule, then
HY(A,M) =~ MW,

Additivity. If ¢ and y are A-bimodule homomorphisms of M to N, and
a,beR, then foralln < w, (pa + Yb)P = ¢Pa + yP'b.

The Long Exact Sequence. Assume that Ay is projective. Let
Y0NS ME PO

be a short exact sequence of A-bimodules. For each n < w, there is an R-
module homomorphism 0™: H%(A,P) - H ' (A,N) (that depends on Y)
such that the following sequence is exact:

0~ HY(4,N) %5 HY(4,M) “5 HY(4,P) = HY(AN) > -

~ HR(4,N) 5 Hy(4,M) 25 Hy(4,P) 5> HE AN) > -

Coinduced Bimodules. For a left A-module M, let P = Homg(4,M).
Then P is an A-bimodule with the scalar operations (x0)(y) = x6(y) and
0x)(y) = 0(xy). For all n > 0, Hy(4,P) = 0. If M is an A-bimodule,
then there is an injective bimodule homomorphism ¢: M — P defined by

P ) (x) = ux.

The first two parts of this result are easy consequences of definitions.
By definition, B3(4,M) =0, and Z3(4,M) = {ue M: §u) = 0} =
{ue M: xu — ux = 0 forall xe A} = M. To obtain the additivity, note
that if ® € Cg(4,M), then (¢pa + Yb)"(®) = ¢™(D)a + Y(®)b. Hence,
® e Z3(A,M) implies

(¢pa + l//b)f:)((l) + BR(4,M)) = (¢a + yb)"® + Bx(4,N)
= ¢™®a + Y"Db + B}(A,N)
= @YD + Bgr(A,M))a + lﬂf:’((l) + Br(4,M))b
= (@Pa + YB) (@ + Ba(4,M)).
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The long exact sequence will be constructed in the next section by means
of the Snake Lemma. We conclude this section with a proof that coinduced
bimodules have trivial cohomology.

Using the fact that 0 is a homomorphism of R-modules, a routine check
establishes the assertion that P is an A-bimodule. It is also easy to see that
if M is an A-bimodule, then ¢ is a bimodule homomorphism that is injective
since ¢(u)(1) = u. It remains to show that Hy*'(4,P) = 0 for all n < w.
Define ¢™: Cit'(4,P) —» Ci(A,P) by

(@D (x, ..., x)(») = O(x,, ..., x,, YD)
If n > 0, then the compositions ¢™3™ and 6" Vg™~ are R-module homo-

morphisms of Cg(4,P) to itself, such that (—1)"*!(¢™é"™ — 5" Vg~D) is
the identity mapping. In fact,

(@5D)(x,, ..., x)(3) = (WD) (xy. ..., x,0 $)(1)
=x,0(x,, ..., x, (1)
+ :‘g(——l)i(l)(xl, s XXy s Xy Y)(1)
+ (—D)'"®(xy, ..., x,_4, x,)(1)
+ (=D)"*0(x,, ..., x)(»)
(using the definition of the right scalar product in P), and
(0" Ve VD) (xy, ..., x,)(¥) = x,6"VD(x,, ..., x)(»)
+ ':211 (=D VD) (X, -y XXy - X ) (D)
+ (D@0 (xy, - - X, )X (D) = X, D (x5 - -, X, P)(D)
+ :'g (— '@y, -y X Xiiqs s X Y)(1)
+ (=)' ®(xy, ..., x,_y, x,2)(D).
Subtracting the respective sides of these equations gives
g™ — Dt — (_1)ytig,
Thus, if n > 1 and ® € Z(A4, P), then
O = (=) (™" — s Vg~ D)
= " V((=1)"c""V®) € BR(4,P);
that is, Hg(4,P) = 0.
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EXERCISES

1. Show that the isomorphism H3(4,M) =~ M is natural. That is, if $: M - Nisa
bimodule homomorphism, then the following diagram commutes.

H(4,M) %5 H°(4,N)
| !
M(A) 7 N(A)

2. Prove that if {M;: i e I'} is a non-empty set of 4-bimodules, then Hg(4, P
@isl Hy(4,M).

3. Let 6: 4 —» B be a homomorphism of R-algebras. For a B-bimodule M, define left
and right scalar operations on M by the elements of 4 as in Section 2.1. Show that
M becomes an A-bimodule under these operations, still denoted by M. Define
6™: Cp(B,M) - Cp(4,M) by (6"®)(x,, ..., x,) = ®Ox,, ..., 0x,). Show that
6™ ® is multilinear for ® € C5(B,M), and that the following diagram commutes:

Cr(B,M) = C™(B,M)
0(..l lg(.m
Cr(A,M) = CR™H (4, M).

Deduce that " induces an R-module homomorphism 6*™ : Hx(B,M) — Hi(A,M).

Show that if ¢: M — N is a homomorphism of B-bimodules, then ¢ is also a homo-
morphism when M and N are viewed as A-bimodules, and

H:(B,M) -5 HI(B,N)

gawl lgmr
Hyg(A,M) 5 Hp(A,N)

M) =

iel

commutes.

4. Let B and C be R-algebras. Denote 4 = B + C. Let M be a B-C bimodule. Con-
sider M as an A-bimodule by defining CM = MB = 0. Prove that Hy(4,M) = 0
for all n. Use this result to show that for every A4-bimodule N, Hg(A4,N) =
HR(B, 1;N1,) P HR(C, 1:N1) foralln < w.

11.3. The Snake Lemma

Let

Bl 2] 4] 1

be a commutative diagram of module homomorphisms with exact rows. There
exist module homomorphisms Y s, Was, X 1xs X2+, and 0 such that

Kero, 5 Ker ¢, 5 Kerp, >
Coker ¢, 25 Coker ¢, 5 Coker ¢,

is exact. If Y, is injective, then 5o is Y., if 1, is surjective, then so is ¥ ,..

@
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The term “Snake Lemma’ comes from the diagram that illustrates this
result.

ha

Ker¢, > Kerg, % Ker o3
K, l v Ky l w2K3 l

NS N, SN 8
o Y R 3)
M - M, > M,
Xy
7y l T l 7‘3 l

Coker ¢, 7> Coker ¢, 32 Coker ¢,

The mappings k,, k,, and «; are inclusion homomorphisms, and =, #,,
and =, are projection homomorphisms. Our aim is to prove the existence
of homomorphisms ¥/., ¥,. X1 X2+ and ¢ that make the sequence (2)
exact, and the diagram (3) commutative. The commutativity requirement is
satisfied if and only if ¥, = y;|Ker¢;, x.(u + Im¢,) = x;(u) + Im¢,,
for i = 1,2. These definitions of . and y, are legitimate because
V,(Ker¢,) < Ker¢,,,, x;(Im¢) = Im¢,,; by the commutativity of (1).
The exactness of (2) at Ker ¢, and Coker ¢, follows from the exactness and
commutativity of (1) by traditional diagram chasing. For example,

Ker 3. = 7,715 158 (0) = myx5 7131 (0) = myx5  d5(N,)

= Ty07 D3¥, (V) = )2 1202 (Ny) = 7y(9,(N,) + 131(0))
=m0, (M) = y.n, (M) = Imy,..
Similarly, Ker,. = Imy,,. The definitions of «,, n;, and the commuta-
tivity of (3) make it clear that if y, is injective, then ¥ is injective; and
if y, is surjective, then y,. is surjective. The rest of the proof consists of

constructing ¢ in such a way that (2) is exact. To make this chore as painless
as possible, we digress. For a commuting square of module homomorphisms

define Ker ) = (Ker x, ¢,)/(Ker ¢, + Kery,) and
Im) = (Im@, N Imy,)/(Am¢,y,).

Lemma. If
N » N, 5 N,
4113 4213, l
M, > M M

is commutative with exact rows, then Im Zl ~ Ker),.
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ProoF. For x € N,: ¢,(x) e Im¢, n Imy, if and only if x € Ker y,¢,; and
¢,(x) e Im¢,y, if and only if xeImy, + Ker¢g, = Kery, + Ker ¢,.
Thus, ¢, induces an isomorphism of Ker 22 to Imz L O

To complete the proof of the Snake Lemma, we augment the diagram (3)
with P = Coker ¥,. and Q = Ker y,..

0 - P
I

Ker¢, —» Ker¢p, —» Ker¢, - P—-0
! [ SN

N - N, - Ny -0

! % i PA l
0- M - M, - M,

1% l Y ! !

0 - Q — Coker ¢, — Coker ¢, — Coker ¢,
Iz
g- 0

The lemma gives P =Im), =~ Ker), ~Im), = Ker), xIm) =
Ker) o ~Im), =~ Kerd s = Q. The composition Ker¢; - P - Q —
Coker ¢, is the desired homomorphism 0.

We can now prove the existence of the Long Exact Sequence that was
described in Section 11.2. By assumption, A is projective as an R-module.
It follows easily from Proposition 9.1a that 4®" is also projective. Therefore,
since0 » N % MﬁP—>0isexact,sois

0 —» Homgz(4®",N) - Homg(4®", M) - Homg(4®",P) - 0.

As we observed in Section 11.1, this means that 0 » C*(N) & C"(M) &5
C"(P) — 0is exact. It follows from Lemma 11.1 that the diagram

0—- C'(N) - C'"M) - CYP) -0

léw léw l(;on
0—*C"+1(N)—>C"+1(M)—>C"+1(P)—)O

commutes and has exact rows. By applying the Snake Lemma to this diagram
(and using B® = 0 in the case n = 0), we conclude that for all n < w, the
sequences 0 » Z"(N) - Z"(M) —» Z"(P) and

C"(N)/B"(N) —» C"(M)/B"(M) —» C"(P)/B"(P) - 0

are exact, where the homomorphisms are induced by ¢™ and ™. Since
B" = Keré™ and Imé™ < Z"*!, the coboundary homomorphism induces
oP: C"/B" - Z"*! by d{(® + B") = §"®. Clearly, Kero!” = H" and
Coker 8y = H"*'. The homomorphisms 6 give rise to the following
diagram with exact rows that is easily seen to be commutative.
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C"(N){B"(N) S "(M)iB”(M) C"(P){B"(P) -0
oy 5 5
0 Z™(N) o Z"'(M) S Z"(P)

By applying the Snake Lemma to th1s dlagram we obtaln a connectmg
homomorphism 8™ such that H'(N) % H"(M) B H'(P) 5 H (V) 25
H"" (M) —— H""'(P) is exact. A routine check shows that the homomor-
phisms ¢\, Y, 0"V, and Y " given by the Snake Lemma coincide with
the homomorphlsms of cohomology modules that are constructed from ¢
and ¥ in Proposition 11.1. Thus, these finite sequences can be fused to
produce all except the initial segment 0 — H(N) - H°(M) of the Long
Exact Sequence. Since H® = Z°, it follows that ¢, = ¢|Z°(N) is injective.
The proof of the Long Exact Sequence Theorem is complete.

EXERCISES

l. Let),: 0> N, —>M —»P -0
wl ml nl
22:0*N2?M27P2*0

be a commutative diagram of A-bimodules with exact rows. Prove that for all
n > 0, the following diagram commutes.

H"(Pl) ﬂ Hn+1(N1)
“) L
H"(PZ) ﬁ Hn+1(N2)
Hint. Stack the diagram (3) that goes with ) ; on top of the diagram that goes with
Y ,, and connect the corresponding modules by vertical homomorphisms induced
by x5 %2, and y;. Check commutativity around the various loops.

2. Use the Snake Lemma to prove the Short 5-Lemma:
(a) If ¢, and ¢, in the diagram (1) are injective, then ¢, is injective.
(b) If ¢, and ¢, in the diagram (1) are surjective, then ¢, is surjective.

3. Prove that the tensor product of two projective R-modules is projective.

11.4. Dimension

The geometrical notion of dimension can be translated to an algebraic
setting by using the Hochschild cohomology groups. It is a standard result
of topology that the sequence of cohomology groups of an n-dimensional
manifold becomes zero beyond n, while H" # 0 for suitably chosen coeffi-
cient domains. The similarity between the definitions and the properties of
Hochschild cohomology and the topological cohomology theories suggests
that an analogous concept of dimension might be a fruitful invariant for
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algebras. This idea provides the theme of this section and the two that follow
it. In particular, we will show that zero dimensional algebras are the separable
algebras that were studied in Chapter 10.

We begin with a useful lemma that also motivates the definition of
dimension.

Lemma. Let A be an R-algebra that is projective as an R-module, and suppose
that n is a natural number such that Hy(A,N) = 0 for all A-bimodules N. If
m > n, then HZ(A,M) = 0 for all A-bimodules M.

ProOF. Induction makes it sufficient to prove that H(4,M) = 0 for all
M. By Theorem 11.2, there is a short exact sequence0 > M - P - N — 0
of A-bimodules in which H%(4,P) = 0 for all kK > 0. This property of P,
together with the hypothesis of the lemma gives the following segment of
the Long Exact Sequence:

0 = HI(A,N) - H*'(4,M) - HE(A,P) = 0.
Thus, H*1(4,M) = 0. O

Definition. Let A be a non-trivial R-algebra. The dimension of A is
Dim A = sup{n: Hp(4,M) # 0 for some A-bimodule M}.

If, for every n < w, there is an 4-bimodule M such that Hgy(4,M) # 0,
then the dimension of A is c0. It must be pointed out that the supremum in
this definition is not applied to the empty set. In fact. Hy(4,M) = M'?;in
particular, Ha(4,4) = A = Z(A4) # 0, since 4 is non-trivial.

For R-algebras A such that 4, is projective, it follows from the lemma
that if Hx(4,M) = 0 for all bimodules M, then Dim 4 < n. We conclude
this section by translating the condition for an algebra to have dimension
less than two into more familiar ideas.

The elements of Z3(4,M) are the bilinear mappings ®: 4 x 4 - M
such that 6®® = 0, that is,

x®(y,z) — O(xy,z) + O(x,yz) — ®(x,)z =0 )

for all x, y, z € A. A bilinear mapping that satisfies (1) is called a factor set
of A with values in M. Such mappings occur in the study of group and
algebra extensions. The factor sets of the form 6V¢, where ¢: 4 — M is
linear, are called split factor sets. By Definition 11.1a, 5V ¢ is a factor set @,
defined by '

O (x,y) = xp(y) — d(xy) + d(x)y. 0}

The lemma yields the following result.

Corollary. If the R-algebra A is a projective R-module, then DimA < 1 if
and only if every factor set of A with values in any bimodule M is split.
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EXERCISE

Prove the uniqueness theorem for cohomology of algebras: Assume that {7T":n < w}
is a sequence of covariant functors from A-bimodules to R-modules satisfying the basic
conditions of Section 11.2 and the naturality conditions of the Exercises 1 of Sections
11.2 and 11.3; then there exists a class of isomorphisms {6 : n < w, M an A-bimodule},
0%: Hr(4A,M) - T"(M) such that:

(a) if ¢: M — N is a bimodule homomorphism, then

Hy(4,M) & H(4,N)
w) IS
T"(M) =% T'(N)

commutes;
(b) ifY:0 > N - M — P — 0is exact, then

HMA,P) 8 HIY(A4,N)
4 Lo
TP 7 TW)

N
a{li
commutes. Hint. Define 67 for all M by induction on n, using the shifting technique

that was introduced in the lemma. The proofs of the naturality conditions (a) and (b)
require three dimensional diagrams.

11.5. Zero Dimensional Algebras

Our aim in this section is to prove that if an R-algebra A4 is a projective
R-module, then 4 is separable if and only if Dim4 = 0.

Definition. Let M be an A-bimodule. A derivation of A to M is an R-module
homomorphism ¢: 4 — M that satisfies Leibnitz’s rule:

d(xy) = xd(y) + d(x)y forall x,yeA. )

A derivation ¢ of 4 to M is an inner derivation if there exists u € M such that
¢(x) = xu — ux for all x € 4.

Plainly, the derivations of 4 to M are exactly the elements of Z}(4,M),
while the inner derivations are the elements of Bx(4,M). Thus, the deri-
vations of 4 to M form an R-module with operations defined pointwise,
and the set of inner derivations is a submodule of derivations. The quotient
of these modules is Hj(A,M). Thus, Hy(4,M) = 0 if and only if every
derivation of A is inner.

Let u: A° —» A be the augmentation homomorphism of right 4°-modules
that was defined in Section 10.2. Define x: 4 — 4° by k(x) = x @1 —
1 X) x. Plainly, x is an R-module homomorphism such that ux = 0. Hence,
Imx = Ker pu.
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Lemma. Let M be an A-bimodule, or equivalently a right A°-module.

() If ¢ € Hom ,(Ker u,M), then ¢x is a derivation of A to M.
(ii) The mapping 0: ¢ — ¢x is an isomorphism of Hom ,.(Kerpu,M) to
ZYA,M).
(iii) 07" (By(4,M)) = {y|Ker u: Y e Hom .(4°,M)}.

PRoOF. (i) Plainly, ¢k is an R-module homomorphism. Moreover, ¢x(xy) =
$oy R1 - 10 xy) = ¢y Q1 - xRy + dx @y — 1® xp) =
dx(y Q@1 —1Q ) + ¢((x ¥ 1 — 1 Q) x)y) = xk(y) + PK(x)y.

(i) By (i), & maps Hom ,.(Keru,M) to Zz(4,M), and 6 is obviously
an R-module homomorphism. If ¢x = 0, then p(xX) 1 — 1 Q) x) = 0
for all x. By Lemma 10.2, ¢ = 0. Let y: 4 - M be a derivation. Define
y: A° - M to be the R-module homomorphism that is determined by the
condition Y (x Q) y) = x(x)y. If ¢ = y|Kerp, then ¢ is an R-module
homomorphism from Ker u to M such that for ijlxj X y;€ Keryu and
z,we 4,wehave p((Yx; ® 1)z @ w) = $(T 2%, @ yw) = Y a(zx)yyw
= Yzr)yw + Lx@xyw = zQ xxpy)w + 1 @QuEx; Q yw =
2. x; Q y)w = ¢(3x; ® ) (z X w). That is, ¢ € Hom ,.(Ker p, M).
Finally, if x € 4, then 0(¢)(x) = ¢x(x) = d(x X 1 — 1 X) x) = x(x) —
x(Dx = y(x), since x(1) = x(1%) = x(1) + z(1).

(iii) If ¢ € Hom (Keru,M) and ue M, then ¢x = 6Qu if and only
if ¢c@1—-1Qx)=xu —ux=1x@1~-1&x), where ¢
Hom ,.(4°,M) is the left multiplication homomorphism 4,(z) = uz for all
z € A°. Thus, since Ker p is generated as an 4°-module by {x @ 1 — 1 ) x:
x € A}, it follows that the condition 6(¢) € B'(M) is equivalent to ¢ =
AJKerp for some ue M, which proves (iii) because Hom ,.(4°,M) =
{A,:ue M} by Lemma 6.4. O

Proposition. For a non-trivial R-algebra A, Hz(A,M) = 0 for all A-bimodules
M if and only if A is a separable R-algebra.

Proor. By Proposition 10.2, A4 is separable if and only if the sequence of
A°-modules 0 — Keru — 4° - A4 — 0 is split exact, that is, there exists
¥ € Hom ,.(4° Ker ) such that y|Ker p is the identity homomorphism on
Ker u. Thus, 4 is separable if Hg(A4,Keru) = 0 by the lemma. Conversely,
if there is an extension ¥ € Hom ,.(4° Ker ) of the identity mapping of
Ker p, then every ¢ € Hom .(Ker yu,M) has the form y|Ker u, where y =
¢y € Hom .(4°,M). By the lemma, Zz(4,M) = Bj(4,M) for every A-
bimodule M. O

Corollary a. If A is a non-trivial R-algebra that is projective as an R-module,
then Dim A = 0 if and only if A is a separable R-algebra.

Corollary b. If A is a separable R-algebra that is projective as an R-module,
then every factor set of A is split.
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EXERCISES

1. Fora field F, let B be the three dimensional F-algebra with the basis 1, e, and x such
that e? = e, ex = x, xe = 0, and x*> = 0. Prove that B is an associative F-algebra,
and Dim B = 1. Hint. Prove that if ® is a normalized 2-cocycle, then ® = V¢,
where @(e) = 2e®(e,e) — D(e,e), and P(x) = eD(x,e) — D(e,x).

2. Let A be an R-algebra such that every derivation of A into a bimodule is inner.
Without using Corollary 11.4, prove that every factor set of A4 is split. In more
detail, let ®: A x A - M be a factor set. Let 0 » M — Homg(4,M) 5> N -0
be the short exact sequence of 4-bimodules that was constructed in Section 11.2.
Define y®: A - Homg(4,M) by (y®@)(x)(y) = ®(x,y) and y® = myP: 4 —» N.
Show that y® is a derivation, therefore inner by assumption. Use this fact to obtain
¢ € Homg(A4, M) such that ®(x,y) = x¢(y) — ¢(xy) + ¢(x)yforallx, ye 4.

11.6. The Principal Theorem

As an application of the cohomology theory, we prove one of the most
important results in the theory of associative algebras.

Theorem (Wedderburn, Malcev). Let B be an R-algebra that satisfies :

(a) DimB/J(B) < 1;

(b) B/J(B) is projective as an R-module ;

(c) J(B)* = 0 for some k > 1.
There is a subalgebra A of B such that B = A @ J(B) as R-modules, and
A = B/J(B) as algebras. If B satisfies

(a’) Dim B/J(B) = 0,
then for any two subalgebras A and A’ of B that satisfy B = AP J(B) =
A" @ J(B), there exists w € J(B) such that

A =10 — w4l — w).

ProoF. The existence of A is established by induction on k. If k& = 1, there
is nothing to do but take 4 = B. Assume that J> = 0, where J abbreviates
J(B). Let n: B — B/J be the natural projection. Since B/J is projective by
(b), the exact sequence of R-modules 0 - J — B — B/J — 0 splits. Thus,
there is an R-module homomorphism x: B/J — B such that nx = idy),.
For x, y € B/J, define ®(x,y) = x(xy) — k(x)x(y). Thus, ® is a measure
of the degree to which x fails to be an algebra homomorphism.

®(x,y)eJ forall x,yeB/]. ¢))

In fact, n®(x,y) = nk(xy) — n(k(x)x(y)) = xy — xy = 0, since © is an
algebra homomorphism and nx = id. Thus, ®(x,y) € Kern = J. Use k to
define right and left scalar operations of B/J on J; explicitly, ux = ur(x),
xu = k(x)u.

Jis a B/J-bimodule. Q)



210 11 The Cohomology of Algebras

Indeed, since k is an R-module homomorphism, and R < Z(B), the only
doubtful bimodule axioms are (xy)u = x(yu) and u(xy) = (ux)y. By (1),
G — x(yu) = x(ep)u — k(X)xk(Y)u = ®(x,y)ueJ?> = 0. Similarly,
u(xy) = (ux)y.
® e Z2(B/J,J). (3)
Plainly, ® is bilinear. Moreover,
(0P®)(x,y,2) = x(x(y2) — K(P)K(2) — (k(xyz) — K(xp)K(2))
+ (k(xyz) — k(x)k(yz)) — (K(xy) — K(x)K(y))z
= k(x)x(yz) — k()K()K(2) — K(xyz)
+ xk(xp)r(2) + K(xyz) — k(x)k(yz)
— k(xp)k(2) + k(X)x(P)k(z) = 0.

By (3) and the hypothesis (a), ® € Bz(B/J,J). That is, there exists ¢ €
Homyg(B/J,J) such that ®(x,y) = x¢(y) — ¢(xy) + ¢(x)yforallx,y e B/J.
Let Y = x + ¢ € Homg(B/J,B). Then my = nk = idy,, since n(J) = 0.
Moreover, Y(xy) — Y)Y (y) = k(xp) + ¢(xp) — (k(x) + ¢(x))(x(y) +
d() = k(xy) — k(X)k(y) — (x¢(») — d(xy) + ¢(x)y) — ¢(x)d(y) = 0,
because k(xy) — k(x)x(y) = ®(x,y) = x¢(») — ¢(xy) + ¢(x)y, and
d(x)p(y)eJ? = 0. Also, Y(lg,) — 1zeJ implies 0 = (Y(1) — 1)? =
Yy(1)? — 2y(1) + 1 = 1 — Y(1). Thus, ¢ is an algebra homomorphism,
and A = Imy is a subalgebra of B that satisfies B = 4 (P) J. Assume now
that k > 2, and the existence portion of the theorem has been established
for algebras whose radicals are nilpotent of order less than k. Let B, = B/J>.
Then J/J? < B, B,/(J/J*) = BJJ, and (J/J*)* = 0. Thus, J(B,) = J/J?,
and B, satisfies the hypotheses (a), (b), and (c). By the case k = 2 that has
been completed, there is a subalgebra 4, of B, such that B, = 4, @ J/J>.
Let A4, = C/J?, where C is a subalgebra of B such that C nJ = J2. As
R-algebras, C/J? = C/(CnJ) = (C + J)/J = BJJ. Moreover, (J?)*! =
JHk=2) < gk = 0. Thus, J(C) = J? and C satisfies (a), (b), and (c) with
J(C)*"' = 0. By the induction hypothesis, there is a subalgebra 4 of C
suchthat C = 4 @JZ. Consequently,4 + J=C+ J=B,andAnJ =
AnCnJ=A4nJ*=0,thatis, B= A4 J. This completes the “exis-
tence” portion of the theorem. For the proof of uniqueness, assume that
(@"), (b), and (c) are satisfied, and that 4 and 4’ are subalgebras of B such
that B= A @ J = A’ @ J. There exist commutative diagrams

BH4 BL A
w, Svox) S
BlJ BlJ

in which p and p’ are the canonical projections associated with the decom-
positions B =A@ J and B = 4" P J. Note that p and p’ are algebra
homomorphisms; therefore, so are y and Y. In fact, if x, ye A and z, w € J,
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thenp((x + 2)(y + w)) = p(xy + (xw + zy + zw)) = xy = p(x + 2)p(y
+ w). Define a B/J-bimodule structure on J by xu = Y(x)u and ux =
wy’(x). The bimodule axioms are satisfied since y and ¥" are algebra homo-
morphisms. Define y: B/J — B by y(x) = y(x) — ¥'(x). Note that nyn =
nyn — ny'n = mp — mp’ = n(idy — p’) — n(idy — p) = 0, because Im(idy
— p) =Im(idy; — p) =J = Kern. Hence, Imy = Imyn < J, that is,
x € Homg(B/J,J). Moreover, x(xy) = y(xy) — ¢'(xy) = Y)Y (y) —
YY) = ¥y&OWO) -0+ W - YY) = xx0) +
¥(x)y. Thus, y is a derivation of B/J to J. Since Dim B/J = 0, y is an inner
derivation: there exists w € J such that y(x) = xw — wx for all x € B/J.
Thatis, y(x) — ¥'(x) = xw — wx = Yy(x)w — w’(x), and Y (x)(1 — w) =
(1 — w¥'(x). Since w* = 0, 1 — w has an inverse, and 4" = y'(B/J) =
(I = w)y ' YBI)(A = w) =1 — w41 — w). O

Corollary. If F is a perfect field, and B is a finite dimensional F-algebra, then
there is a subalgebra A of B such that B = A P J(B). Moreover, A is unique
up to conjugation by units of the form 1 — w, where w € J(B).

ProoF. B/J(B) is a finite dimensional semisimple algebra over a perfect
field. By Corollary 10.7b, B/J(B) is separable, and therefore Dim B/J(B) = 0
by Corollary 11.5a. Since F is a field, all F~-modules are projective. Finally,
(J(B))* = 0 for some k > 1 by Proposition 4.4. Since the hypotheses (a"),
(b), and (c) of the theorem are satisfied, the corollary is proved. O

EXERCISES

1. (@) Let E be a field of characteristic 2, F = E(x), and define 4 = F(c), where
c? = x. Show that Z}(4,M) = M“ under the mapping ® - ®(c,c, ..., c).
Deduce that Dim 4 = oo.

(b) Let B be the four dimensional F-algebra (where Fis the field that was defined
in (a)) with the basis 1, d, y, z, and the multiplication defined by d*> = 1,x + y + z,
dy =yd =z dz = zd = yx, and y* = z? = yz = zy = 0. Prove that B is an
associative algebra with J(B) = yF + zF, B/J(B) = A, and no subalgebra of B is
isomorphic to 4.

2. Let B be the three dimensional F-algebra with basis 1,, e, x that was defined in
Exercise 1 of Section 11.5. Prove that J(B) = xF and B/J(B) =~ F + F. Show that
A=eF+ (1 —eFand A" = (e + x)F + (1 — e — x)F are subalgebras of B such
that B = A (P J(B) = A’ P J(B), and there is no unit u € Bsuch that 4’ = u™" Au.

11.7. Split Extensions of Algebras

The Wedderburn Principal Theorem can be viewed as a result concerning
algebra extensions. In this section we will introduce split extensions of
algebras and formulate Theorem 11.6 as a statement about such extensions.
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Definition. Let 4 be an R-algebra. A multiplicative A-bimodule is an Ag-
bimodule N on which an R-bilinear, associative multiplication (u,v) — uv
is defined, and

(w)x = u(vx), Wx)v = u(xv), (xu)v = x(uv) 0]

forallu,ve N, and x € A.

It is not assumed that a multiplicative A-bimodule N has a unity element
for multiplication, so that N may not be an R-algebra in the sense of Defi-
nition 1.1. Nevertheless, the terminology of algebra theory can be applied
to multiplicative bimodules. In particular, if ke N, we will call a multi-
plicative 4-bimodule N k-nilpotent if N* = 0; that is, u,u,- - -u, = 0 for
every sequence u,, uU,, ..., u, of elements in N. A homomorphism from a
multiplicative A-bimodule M to a multiplicative 4-bimodule N is a bimodule
homomorphism ¢: M — N such that ¢(uv) = ¢p(u)¢p(v) for all u, ve M.
If ¢ is also bijective, then it is called an isomorphism.

The equations (1) and the bimodule identities (ux)a = u(xa) = (ua)x,
(xu)a = x(ua) = (xa)uforue N, x € A, a € R imply that the multiplication
mapping (u,v) — uv on a multiplicative 4-bimodule N induces u € Hom ,.(N
&), N, N) such that the associativity condition

ulu @ po @ w) = u(u Q@ v) @ w) @

is satisfied for all u, v, and w in N. Conversely, any u € Hom ,.(N &), N, N)
that satisfies (2) defines a multiplicative structure on the A-bimodule M.
In particular, the zero mapping N X), N » 0 € N defines a 2-nilpotent
multiplicative structure on N.

There is another source of multiplicative A-bimodules. Let B be an
R-algebra, A a subalgebra of B, and N an ideal of B. The product in B
imposes an A-bimodule structure on N ((u,x) — ux, (x,u) — xu), and a
multiplication ((u,v) +— uv) that make N a multiplicative A-bimodule. The
next result shows that this example is universal.

Lemma a. Let N be a multiplicative A-bimodule. Define N x A = N (—D A
as R-modules, and (u,x)(v,y) = (uv + xv + uy, xy) foru,ve N; x, y€ A.

(i) N x A is an R-algebra with unity (0,1).
(i) A" = {(0,x): x € A} is a subalgebra of N x A that is isomorphic to A
by the mapping (0,x) — x.
(i) N = {(u,0): ue N} is an ideal of N x A that is isomorphic (as a
multiplicative A-bimodule) to N by the mapping (u,0) > u.
(ivV NxA=NPA.

The statements (i), (ii), (iii), and (iv) can be verified by routine com-
putation. The converse result is more interesting.

~
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Lemma b. If B is an R-algebra, A is a subalgebra of B, and N is an ideal of
B such that B= N 6—) A as R-modules, then N is a multiplicative A-bimodule
with the bimodule and multiplication operations inherited from B, and B =
N x A as R-algebras.

ProoF. The fact that N is a multiplicative A-bimodule is a special case of
earlier remarks. The mapping 0: (u,x) — u + xis an R-module isomorphism
of N x A4 to B because B = N (@ 4. Moreover, 0((u,x)(v,y)) = 0(uv +
xv+up,xy) =uv+ xvo+uy +xy =W+ x)(v+ y) = 6(u,x)0(v,y), so
that 6 is an R-algebra isomorphism. O

If the hypotheses of Lemma b are satisfied, then Bis called a split extension
of N by A. This terminology and the notation N x A is motivated by the
analogy of split extensions of groups. However, a warning should be given.
The product N + A of R-algebras is generally not an instance of a split
extension because A is not a subalgebra of N + 4: 1., # 1, if N # 0.
(See Exercises 4 and 5.)

The principal result of this section is essentially a reformulation of (a
special case of ) the Wedderburn Principal Theorem, using Lemmas a and b.

Proposition. If B is a finite dimensional F-algebra such that A = B|J(B) is
separable, then J(B) is a nilpotent, multiplicative A-bimodule, and B =
J(B) x A. Conversely, if A is a semisimple F-algebra, N is a nilpotent,
multiplicative A-bimodule,and B = N x A, then N ~ J(B)and A =~ B/J(B).

There is a uniqueness statement that accompanies the proposition.
Roughly, it states that N x 4 = N’ x A’ if and only if 4 and 4’ can be
identified in such a way that N and N’ are isomorphic as multiplicative
A-bimodules.

Corollary. Let A and A’ be separable F-algebras, and suppose that N and N’
are multiplicative A- and A’-bimodules respectively. If N x A =~ N’ x A’ as
F-algebras, then there is an F-algebra isomorphism 0: A — A’ and an F-space
isomorphism y: N — N’ such that

Yuo) = Y@y @), YGu) =0y, Y@ux) =ywoix) O

forallu,v e Nandx € A. Conversely,if0: A — A’ isan F-algebra isomorphism
and Y: N - N’ is an F-space isomorphism such that (3) is satisfied, then
Nx A= N x 4.

PROOF. Let ¢: N x A > N’ x A’ be an F-algebra isomorphism. By the
proposition, ¢(N) = ¢(J(N x A)) =J(N' x A)=N',and N x A" =
J(N' x A) P ¢(4). By Theorem 11.6, 4" = (1 — w) 1p(A4)(1 — w) for
some we N'. Define §: 4 - A4 by 6(x) = (1 — w) '¢(x)(1 — w) and
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U: N> N by y(u) = (1 — w)'¢m)(1 — w). Plainly, 6 is an algebra
isomorphism, and ¢ is an F-space isomorphism. The equations (3) are
obtained by a routine calculation. For the converse, define ¢: N x 4 —
N x A" by ¢(u,x) = (Y (u),0(x)). A straightforward check shows that ¢
is an F-algebra isomorphism. O

EXERCISES
1. Prove the statements (i), (i), and (iii) in Lemma a.
2. Complete the proof of the corollary.

3. Prove that if 4 is an R-algebra and N is an 4-bimodule, then there is an R-algebra
B that contains an ideal I such that B/I = 4, I*> = 0, and I is isomorphic to N
as an A-bimodule (with the bimodule operations induced by the isomorphism
A = BJI).

4. Let N be a multiplicative A-bimodule such that there is a unity element for the
multiplication of N. Prove that N x 4 = N + A. Hint. Show that (1,,0) and
(—1,,1,) are central idempotent elements in N x A.

5. Prove that the Z-algebra Z/2Z + 7/3Z cannot be written as a split extension of a
non-zero multiplicative bimodule by a non-zero algebra.

11.8. Algebras with 2-nilpotent Radicals

Classification is still the fundamental problem in the theory of algebras.
For many algebras the results of Section 11.7 shift the classification problem
to the study of nilpotent, multiplicative bimodules. In this section, we will
use this approach to study finite dimensional algebras B over an algebraically
closed field, that satisfy J(B)?> = 0. By combining the results of previous
chapters, it is possible to give a complete classification of these algebras,
and to characterize the algebras in this class that have finite representation
types.

In this section, assume that F'is an algebraically closed field. The algebras
under consideration are finite dimensional F-algebras. Since F is perfect,
such an algebra is separable if and only if it is semisimple. By Proposition
11.7, we can limit our attention to the algebras of the form N x A, where 4
is semisimple and N is a nilpotent multiplicative 4-bimodule. Since J(N x A)
=~ N, the assumption that N x A is 2-nilpotent is the same as the condition
N2 = 0, that is, N has the trivial multiplication. Thus, the isomorphism
classes of finite dimensional F-algebras B such that J(B)? = 0 are in one-
to-one correspondence with the isomorphism classes of pairs (4,N) such
that A is finite dimensional, semisimple, and N is a finite dimensional
A-bimodule, or equivalently a right 4°-bimodule.

Since F is algebraically closed, it follows from the Wedderburn Structure
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Theorem that every finite dimensional, semisimple F-algebra is isomorphic
to a product M, (F) + M, (F) + -+ + M,(F) of full matrix algebras
with the ordering of the factors chosen so that 1 <n, <n, < --- <n,.
The non-decreasing sequence (n,,n,, . . . ,n,) of natural numbers constitutes
a complete set of invariants for the finite dimensional, semisimple F-algebras.
To simplify notation, write 4 = 4; + 4, + --- + 4,, where 4, =
M, (F). The enveloping algebra 4° = A* &) A is the product over all pairs
(i) with 1 < i,j < r of the algebras 4;; = 4} ® A= M, (F)* X M,,j(F)
= M,,(F) (since M, (F)* =~ M, (F) by the transpose mapping). In par-
ticular, 4° is semisimple, so that every right 4°-module is isomorphic to a
direct sum of simple modules N;, where N is a minimal right ideal of 4;;
(considered as a right 4°module). To within isomorphism, N; depends
only on (i,j). Any finite dimensional 4-bimodule is isomorphic to a unique
direct sum P, ., <, @m;; N;;, in which the m,; are non-negative integers.
The pairs that consist of a non-decreasing sequence (n,,n,,...,n,) of
natural numbers and an r by r matrix [m;;] of non-negative integers deter-
mine a set of representatives of all isomorphism classes of finite dimensional
F-algebras B such that J(B)? = 0. If the n’s are not distinct, then different
matrices may correspond to isomorphic algebras. For example, if n, = n,,
then interchanging the first and second rows and columns of [m,] gives a
new invariant for the same isomorphism class of algebras. A genuine
invariant can be obtained by defining a suitable equivalence relation on
the matrices [m;;]. The details of this procedure are sketched in Exercise 1.
We now take a final look at the representation types of algebras.

Theorem. Let F be an algebraically closed field, and suppose that B is a finite
dimensional F-algebra such that J(B)* = 0. For B to have finite representation
type, it is necessary and sufficient that 1(B) is distributive, and the separated
quiver I'°(B) has a diagram that is a disjoint union of Dynkin diagrams of
types, A,, D,, E¢, E,, or Eg.

The proof of this result consists of assembling a few of the deep theorems
that we have proved concerning algebras and their representations. We
will sketch a map of the path that leads to the conclusion of the theorem.

By Corollary 9.6, B has finite representation type if and only if the basic
algebra of B has finite representation type. Proposition 6.6b therefore
permits us to assume that B is reduced, that is, A = B/J(B) is a product of
copies of F (since F is algebraically closed). In other words, the sequence
associated with 4 is (1,1,...,1). For B to have finite representation type,
it is necessary by Theorem 6.7 that the lattice I(B) of ideals in B be distri-
butive. By Proposition 4.8, I(B) is distributive if and only if the lattice of
sub-bimodules of J(B) is distributive, where J(B) can be viewed as an
A-bimodule because J(B)? = 0. The distributivity of I(B) therefore trans-
lates via Corollary 2.4c to the condition that the entries m;; in the matrix
[m;;] associated with B are all 0 or 1. An easy check shows that m; # 0
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exactly when (i,j) belongs to the edge set of the quiver I'(B). Consequently,
if B is reduced and I(B) is distributive, then B is isomorphic to the algebra
By that was defined in Section 8.1. The theorem follows from Proposition
8.3.

The hypothesis J(B)* = 0 severely restricts the usefulness of the theorem.
However, if B has finite representation type, then so does B/J(B)>. Thus,
for a finite dimensional algebra over an algebraically closed field, the
theorem imposes a condition on I'(B/J(B)?) that is necessary for B to have
finite representation type.

EXERCISES
1. Let F be a field. For each pair (v,u) consisting of a sequence v = (n,,n,, ...,n,)
of natural numbers with n; < n, < --- < n,, and a matrix g = [m;] of non-

negative integers, associate the finite dimensional F-algebra B(v,u) = N x A, where
A=A, x Ay x --- x A with 4; = M, (F), and N is the multiplicative 4-bimodule
@i <ij<r Pmi; Ny, where the N;; are simple right ideals in A* & 4;, and N? = 0.
Thus, if F is algebraically closed, then the discussion of Section 11.8 shows that
every finite dimensional F-algebra B such that J(B)*> = 0 is isomorphic to an algebra
of the form B(v,u). Prove the following statements:

(@ Ifv=(n,, ...,n)and G, = {n€S,: n(i) = j implies n; = n;}, then G is a
subgroup of the symmetric group S,.

(b) With v and G, as in (a), define [m] ~, [m;] if there exists = € G, such that
mj; = m ., for all i and j. Then ~ is an equivalence relation on the set of r by r
matrices Over .

(¢©) B(v,i') = B(v,p)ifand only if v/ = vand " ~, .

(d) dimgB(v,u) = v(u + 1)V

(¢) For v=(n;,n,,...,n)and v, = (1,1, ...,1) (a sequence of length r),
B(v,,u) is a basic subalgebra of B(v,u).

2. Let F be an algebraically closed field. Enumerate the isomorphism classes of four
dimensional F-algebras B such that J(B)? = 0.

Notes on Chapter 11

The cohomology groups of algebras were introduced by G. Hochschild. It
was also Hochschild who found the connection between separable algebras
and the theorems of Wedderburn and Malcev. Our treatment of these
results follows Hochschild’s paper [44]. There are more sophisticated ways
to obtain the cohomology modules of algebras than Hochschild’s original
construction, but his approach efficiently produces the needed machinery,
using fairly primitive tools. The proof of the Snake Lemma given in Section
11.3 is due to J. B. Leicht. The reduction of the structure problem for
algebras to the case of nilpotent algebras (as in Section 11.7) is enlightening,
but it does not come close to solving the problem. In his 1939 book [3],
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Albert remarked on page 172 that only fragmentary results were known
about the structure of nilpotent algebras. That situation has apparently
not changed. Theorem 11.8 first appeared in the paper [34] by Gabriel.
This work initiated a flurry of activity by numerous mathematicians. The
dust that this work stirred up has not yet settled. The best current summaries
of progress in the theory of algebra representations can be found in [29].
These notes also contain a very complete bibliography of papers on the
subject.



CHAPTER 12
Simple Algebras

This chapter is the beginning of a systematic study of simple algebras over
a field. We will concentrate our attention on finite dimensional algebras.
The problems encountered in the study of infinite dimensional simple
algebras are formidable; they lead to a theory that bears little resemblance
to the subject of finite dimensional, simple algebras.

The highlights of the chapter are four classical theorems: the Jacobson
Density Theorem, the Jacobson—Bourbaki Theorem, the Noether—Skolem
Theorem, and the Double Centralizer Theorem. These results, together with
Wedderburn’s Structure Theorem, comprise the foundation of the theory
of simple algebras.

The center plays a fundamental role in the study of simple algebras.
Especially important are the central simple algebras, that is, simple F-
algebras A4 such that Z(4) = F. Some basic properties of these algebras
are established in Section 12.4. The Brauer group of a field is introduced
in Section 12.5. These goups are of fundamental importance in the theory
of central simple algebras. The computation of the Brauer groups of various
fields is our principal theme in the remaining chapters of this book. The
last two sections of this chapter present proofs of the Noether—Skolem
Theorem and the Double Centralizer Theorem.

12.1. Centers of Simple Algebras

If 4 is an R-algebra, the center of A is the set Z(4) = {y € A: xy = yx for
all x € 4}. A two line check shows that Z(A4) is a subalgebra of 4. In parti-
cular, R © Z(A). By definition, Z(A) is commutative. '

218
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The center plays an important part in the study of simple algebras. We
will increasingly appreciate its usefulness as this chapter evolves.

Lemma. Let A be an R-algebra.

(i) A is simple if and only if A is a simple right A*-module.
(i) Z(A) = E,(A) under the mapping y — A, where A (x) = yx.

ProOF. The assertion (i) is a consequence of the observation that a subset 1
of A is an algebra ideal if and only if I is an A°-submodule of A. The state-
ment (ii) follows from Proposition 1.3 and the observation that Z(E,(4)) =

E ,.(4). O
This lemma and Schur’s Lemma give the main result of this section.
Proposition. If A is a simple algebra, then Z(A) is a field.

Because of this proposition, the study of simple algebras over fields is as
general as the investigation of simple algebras over an arbitrary commutative
ring.

Since Z(A + B) = Z(A) + Z(B), it follows from the proposition and
Wedderburn’s Structure Theorem that the center of a semisimple algebra
is a product of fields. The structure theorem also reduces the calculation of
the center of a simple algebra to the determination of the center of a division
algebra. This assertion is based on a more general observation.

ExaMPLE. For any algebra 4, Z(M,(A4)) = 1,Z(A4).
PrOOF. Let a = D7, &;x,; € Z(M,(A)), where x;;€ A. For 1 < k, | < n,
Yoy Xy = 0y = Eu0 = )7y ;X Thus, x,; = 0 for k # j, and x,, =
x,. That is, « = 1,x for some x € 4. Since 1,xy = (1,x)(1,») = (,»)(1,x) =
1,yx for all y € 4, it follows that x € Z(4). Hence, Z(M,(A4)) < 1,Z(A). The
reverse inclusion is obvious. O

This example can be reformulated as a statement about the center of
certain endomorphism algebras: if P is a finitely generated, free 4-module,
then Z(E(P)) = idpZ(A).

EXERCISES

1. Prove that the following F-algebras are central, that is, have F as their centers:
(a) the algebra of Exercise 2, Section 3.1 (where F = Q);
(b) the algebra of Exercise 1, Section 3.3;
(c) the algebra of Exercise 5, Section 3.3 (where F = R);
(d) the algebra of Exercise 1, Section 11.5.



220 12 Simple Algebras

2. Let 8: A — B be an algebra homomorphism.
(a) Prove that if 6 is surjective, then 8(Z(A4)) < Z(B).
(b) Prove that this inclusion can be proper, even when A4 is a finite dimensional
F-algebra. Hint. Let 4 be the algebra of Exercise 5, Section 11.5, and B = A/J(A).
(c) Prove that if 0 is not assumed to be surjective, then the inclusion of (a) can
fail.

3. (a) Prove that if 4 is an algebra such that J(4) and J(Z(A4)) are nilpotent, then
J(Z(A)) = Z(A) n J(A).

(b) Let R be the localization of Z at the prime p, that is, R = {m/n: me Z,
neZ — pZ}. Define

R Q a x
A=,: ]z [ J:aeR,x,ye@.
0 Q 0 y

Prove that A is a Z-algebra for which J(Z(A4)) = 1,(pR) # 0 = Z(A4) n J(A).

12.2. The Density Theorem

Jacobson’s Density Theorem is often viewed as a generalization of Wedder-
burn’s Structure Theorem to infinite dimensional algebras. However, it is
also an extremely useful tool for treating questions about finite dimensional
simple algebras. In this section we will prove one variant of the Density
Theorem. The traditional version of the Density Theorem is outlined in
Exercise 2.

Lemma. Let M be a semisimple right A-module. Denote D = E ,(M). Con-
sider M as a D-Ej(M)-bimodule. If ¢ € E(M) and u,, ..., u, € M, then
x € A exists so that u;p = u;x for1 <i < n.

ProoF. By Corollary 2.4b, N = (OnM is a semisimple A-module. Let
w = (uy, ..., u,) € N. By Proposition 2.4, there is a submodule P of N
such that N = wA @ P. Let n € E ,(N) be the corresponding projection of
N to wA. By Corollary 3.4b, we can identify E, (N) with M, (E (M)) =
M, (D). Plainly, 1,¢ is an endomorphism of N, considered as a left M, (D)-
module. Thus, (4,9, ..., u,0) = w(1,d) = (aw)(1,P) = n(w(,P)) € wA.
That is, there exists x € 4 such that (u,¢, ..., u,¢) = wx = (u;x, ...,
u,x). Equivalently, ;¢ = u;xforl < i <n. O

Density Theorem (Jacobson). Assume that M is a simple right A-module.
Consider M as a left D-space, where D is the division algebra E (M). If
Uy, ..., u, €M are linearly independent over D and w,, ..., w,€ M are any
elements, then x € A exists so that u;x = w, for 1 < i < n.
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Proor. Since M is simple, D is a division algebra by Schur’s Lemma. In
particular, ,M is a D-space, that is, semisimple and free as a D-module. By
Proposition 2.4 and the assumption thatu,, ..., u,are linearly independent,
there exists a D-subspace N of M such that M = Du; @ --- @ Du, P N.
Define ¢ € E,(M) by the conditions u;¢ = w; for 1 <i < nand N¢ = 0.
By the lemma, there is an element x € 4 such that w, = u;¢ = u,x for
l<i<n. O

EXERCISES

1. The various parts of this exercise outline an alternative proof of the density theorem.
This argument is essentially the original proof that was given by Jacobson. Let P
be a simple right 4-module over an R-algebra 4. Denote by D the division algebra
E (P). Consider P as a left D-space. Let uy, ..., u, € P be D-linearly independent.
Use induction on n to prove that (u,, ...,u,)4 = @n P. Hint. For 1 <i < n,
letw, = (uy, ..., 4, ...,u)e@n — 1)P. Define , € Hom (4, P(n — 1) P) by
¢;(x) = w;x. By the induction hypothesis, ¢, is surjective. Define y; € Hom ,(4,P)
by ¥;(x) = ux. Use the linear independence of u, ..., u, to prove that Ker ¢, ¢
Kery,. Let x; € Ker ¢, — Ker,. Use the hypothesis that P is simple to show that
(g, - u)A 2 Wx;,0, ..., 044+ - +(0,...,0,u,x)4 =PnP.

2. Let D be an R-algebra, and suppose that M is a left D-module. Consider M as a
right E,(M)-module. The finite topology on E (M) is defined by taking an open
basis consisting of the sets

Ny(uy, ..., u) = (Y eEp(M):upp = u¢ for 1<i<n}

A subalgebra of E (M) is called a dense algebra of endomorphisms of M if it is
dense in the finite topology.

(a) Use the Density Theorem to prove that an R-algebra A is primitive (as in
Exercise 4, Section 4.3) if and only if 4 is isomorphic to a dense algebra of endo-
morphisms of a D-space, where D is a division algebra over R. (Note that if endo-
morphisms operate on the right, then the right regular representation is an algebra
isomorphism rather than an anti-isomorphism.)

(b) Prove that the Jacobson radical of an R-algebra A is zero if and only if 4 is
isomorphic to a subdirect product of dense algebras of endomorphisms of vector
spaces over division algebras.

(c) Use the result (a) to give an alternative proof of the Wedderburn Structure
Theorem for simple Artinian algebras.

3. Let A be a primitive R-algebra that is finitely generated as an R-module. Prove that
A is a simple Artinian algebra.

12.3. The Jacobson—Bourbaki Theorem

If A is a simple F-algebra, then Z(A)/F is a field extension. If dim; 4 < oo,
then this extension is, of course, finite. The Jacobson—-Bourbaki Theorem
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establishes a Galois connection between the fields K satisfying F = K =
Z(A) and certain subalgebras of E;(4). The most important application of
this result is in Galois Theory, but it is also useful in the study of central
simple algebras.

Let 4 be an R-algebra. We will consider 4 as a left E;(4)-module and a
right Ex(4)*-module. In general, 4 is not an Eg(A4)-Egz(4)* bimodule. By
restriction, 4 becomes a left module over the subalgebras of Eg(4) and a
right module over the subalgebras of Eg(4)*. In particular, the left A4-
module structure of A coincides with the module structure defined by the
subalgebra A(4) of Ex(A), since the left regular representation 4 is injective.
It is convenient to be somewhat careless with notation, and identify 4 with
its image A(A4) in Eg(A4).

Since A is a right A°-module, the right regular representation p defines a
homomorphism of 4° to Eg(4)*. Specifically, xp,, = xw for x € 4, w € A°.
The image of A° under p is a subalgebra of Eg(4)* (hence also of Ep(4))
that is called the multiplication algebra of A. We will denote this algebra by
M(A).

The right regular representation p of 4 can be viewed as an injective
homomorphism of 4 to Ez(4)*, acting on the right of 4. In some cases it
is also useful to view the left regular representation A as a homomorphism
from A4* to E(A4)*, again operating on the right side of 4. Since 4* U 4
generates A* ® A, it follows that M(4) is the subalgebra of Ep(A4)* that is
generated by A(4*) U p(A). This characterization of M(A4) is often elevated
to the status of a definition.

Lemma. For a subalgebra B of Eg(A)* and a subalgebra D of Eg(A), define
k(B) = E(Ay) and B(D) = E(,A). Then k(B) is a subalgebra of Eg(A4), f(D)
is a subalgebra of Eg(A)*, and

(i) B, < B, implies k(B,) 2 k(B,),
(i) Dy € D, implies B(D,) 2 B(D,),
(i) B = B(x(B)),
@it") D = x(B(D)).

Moreover, k(M(A)) = Z(A), and M(A4) = B(Z(A)).

PRrOOF. The statements (i), (i), (ii), and (ii") are routine consequences of the
definitions of k and f. It is clear from the definition of M(4) that x(M(4)) =
E(4y ) = E(4,) = A(Z(A)) = Z(4) by Lemma 12.1. Consequently,
M(4) = B(x(M(4))) = B(Z(4)). O

Jacobson—Bourbaki Theorem. Let A be a finite dimensional, simple F-algebra.
The mappings k and B define mutually inverse, one-to-one correspondences
between the set B of subalgebras of E(A)* that contain M(A), and the set ]
of subfields of Z(A) that include F.
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PROOF. If B e B, then M(4) < B implies x(B) < k(M(A4)) = Z(A) by the
lemma. Since x(B) is a finite dimensional subalgebra of a finite field exten-
sion of F, k(B) is itself a field. (This fact also follows easily from the defini-
tion of k(B).) Hence, x(B) € K. Similarly, if K € &, then M(4) = B(Z(A)) <
B(K); hence, B(K) € B. It remains to show that f(x(B)) = B for all Be B
and x(B(K)) = K for all Ke & Let Be B. Since A4 is a simple algebra,
A4 18 2 simple module by the first part of Lemma 12.1. Indeed, S(4y,) =
S(4 4) by the definition of M(A4). Therefore, A4, is simple because M(4) <
B. Moreover, if K = k(B), then dimg4 < dim; 4 < oo because F < K.
In particular, 4 is a finitely generated left module over K = E(A4,). By the
Density Theorem, every ¢ € E(,A) can be matched on a generating set by
an element of B. That is, f(x(B)) = E(yx4) = B. The proof that x(B(K)) =
K for K € & begins with a useful observation: if Be B, then k(B) = {x € 4:
A, € Z(B)}. Indeed, y(1,¢) = (xy)¢ and y(¢4,) = x(y¢) for x, y e A and
¢ € Eg(4)*. Thus, x € E(4p) = x(B) if and only if A, e Z(B). Using this
comment in the case B = B(K) = E(xA) gives k(B(K)) = A" (Z(E(xA)) =
A"Y(id,K) = K by Example 12.1. 0

Corollary. If A is a finite dimensional, simple F-algebra such that Z.(A) = F,
then M(A4) = E (4)*.

EXERCISE

This exercise shows how the Jacobson—Bourbaki Theorem can be used to prove
the Fundamental Theorem of Galois Theory. Let E/F be a finite field extension. In
particular, E is a finite dimensional, simple F-algebra.

(a) Prove that the multiplication algebra M(FE) is p(E).

(b) Deduce from the Jacobson—Bourbaki Theorem that the mappings f: K+—
Ey(E), k: B> {x € E: p, € Z(B)} are mutually inverse, inclusion reversing bijections
between the set K of fields K between F and E, and the set B of subalgebras B of E.(E)*
such that p(F) < B.

(c) For each K € &, let G(E/K) be the Galois group of E/K, that is, the group of
automorphisms ¢ of E such that 6(x) = xforall x € K. For each subgroup H of G(E/F),
let E® be the fixed field of H, thatis, E¥ = {x € E: 6(x) = x for all ¢ € H}. Show that
K+— G(E/K) and H— E¥ form a Galois connection: F < K, < K, < E implies
G(E/K,) 2 G(E/K,), H, = H, = G(E/F) implies E*1 2 E#:, H = G(E/E"), and
K < ES@En,

(d) Show that if 6 € G(E/F) and x € E, then p,a = ap,,,.

(e) For each subgroup H of G(E/F), define By = {) ,.4p, 0: x, € E}. Prove that
B, e®B.

(f) Provethat x(B,) = E¥ for every subgroup H of G(E/F), and B(K) n G(E/F) =
G(E/K) for every K € K.

(2) Deduce from (f) that for each subgroup H of G(E/F), By = E (E)*, where
K = EX.

The results (a) through (g) provide a factorization of the Galois connection through
the class B of F-algebras. To make this point explicit, let $ be the class of all subgroups
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of G(E/F). We have constructed mappings

B B—BAG(E[F)
!

‘ — B
K By~ H

with k = 7, B(K) n G(E/F) = G(E/K), and x(B,) = EX.

We need a variant of Dedekind’s theorem on the independence of automorphisms.

(h) Let B e B. Assume that gy, ..., 6, € G(E/F) are distinct. Prove that if x, ...,
x, € E° exist so that p, 6, + --- + p, 6, € B, then gy, ..., 6, € B. Hint. Deny the
assertion, and let"k be minimal so that there is a counterexample : Py, 0L+ 0 +
P 0 € B, not all o; € B. Minimality implies that o, ¢ B for all i. Also, kK > 1 because
px;r € Byields 0 = p -p,0 € B. Derive a contradiction to the minimality of k using (d)
and the observation that for all y € E,

py(leol + o+ p 00 — (leo'l + -t ka"k)Pa,(y) €B.

(i) Deduce from (h) that By n G(E/F) = H for all He $, and if B € B satisfies
B < By, then B = By, where H = B n G(E/F).

(j) Prove the Fundamental Theorem of Galois Theory: (1) If H is a subgroup of
G(E/F), then G(E/E®) = H. (2) If E/F is Galois, that is, E S#"-= F, then E S&® = K
for all fields K between F and E. Hint: For the proof of (2), use (g) and the hypothesis
that E/F is Galois to show that B ;,, = E.(E), so that (i) applies to all B e B.

12.4. Central Simple Algebras

An F-algebra A is central simple if A is simple and Z(A4) = F. Every simple
algebra is central simple over its center, so that the study of simple algebras
can be factored into two parts: scalar extensions, central simple algebras.
In this section we will concentrate on central simple algebras with emphasis
on the tensor products of these algebras. Exercises 3 and 4 at the end of the
section give some results on the tensor products of simple algebras that are
not central.

We begin by looking at tensor products in which one factor is central
simple. In this case, the characterization of the tensor product can be
simplified.

Lemma a. Let B and C be subalgebras of the F-algebra A such that C < C ,(B).
Assume that B is central simple. If x,, ...,x, is a linearly independent
sequence of elements in Band y,, ...,y,€C, theny,x, + --- + y,x, =0
impliesy, = --- =y,=0.

Proor. The assumption C = C,(B) implies that 4 is a C-B® bimodule:
2)(x Q) x') = x(z)x’ = y(xzx) = y(z(x K) x")) forally e C, z € A4, and
x,x" € B. By Lemma 12.1, Bis a simple B*-module, and E(Bp.) =~ Z(B) = F.
Since x,, ..., x, is an independent sequence, it follows from the Density
Theorem that B° contains elements w; with the property that x,w; = 0 for
i#j and xw; =13 =1, Thus, y;x, + --- + y,x, = 0 implies 0 =
DXy + -0+ yxIw =y W) + -+ + Vulx, W) = ;. O
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Proposition a. Let B and C be subalgebras of the finite dimensional F-algebra
A such that C = C (B) and B is central simple. The following conditions are
equivalent.

(i) 4 = BC.
(i) dim; 4 = (dim; B)(dim C).
(iii) The inclusion mappings of B and C into A induce an isomorphism
B C = A.

PROOF. Let x,, ..., x, be an F-space basis of B, and suppose that y,, ...,
Y 18 a basis of C. If a;; € Fsatisfy Y 7_, >, x,y,a;, = 0, then Y, y,a, = 0
for 1 <i < nby Lemma a. Hence, a;; = 0 for all i and j. This argument
proves that {x,y,: 1 < i < n,1 < j < mj is linearly independent. Either of
the hypotheses (i) or (ii) implies that this set is a basis of 4, so that 4 ~
B (X) C by Proposition 9.2c. The same proposition shows that (iii) implies

both (i) and (ii). O

When the subalgebras B and C of an algebra A are such that the inclusion
mappings induce an isomorphism of B (X) Cto A, we will write 4 = B(X) C
and call 4 the inner tensor product of B and C. If B and C are F-algebras,
then the homomorphisms x — x ® le, y—= 1) y map B and C isomor-
phically to the respective subalgebras B (X) F and F ) C of B(X) C. It is
usually permissible to identify B with B (X) F and C with F (X) C.

Lemma b. Let B and C be F-algebras.

() If B () C is simple, then B and C are simple.
(ii) If B is central simple and C is simple, then B (X) C is simple.

PROOF. (i) If B is not simple, then either B = 0 and B (X) C = 0, or there is
a non-zero homomorphism ¢: B — B’ such that Ker ¢ # 0. In the second
case, ¢ X) id.: B(X) C - B’ (X) Cis a non-zero homomorphism with non-
zero kernel, so that B (X) C is not simple. The same conclusion is obtained
if C is not simple.

(ii) Since B and C are simple, they are not 0, and therefore B (X) C # 0.
Let ¢: B (X) C - 4 be a non-zero homomorphism. Since B (X) F =~ B and
F ) C = C are simple, the restrictions ¢|B (X) F and ¢|F (X) C are injec-
tive. Thus, ¢(B (X) F) is central simple and ¢(F X) C) < C,(¢(B Q) F)).
Let z € Ker¢. It is possible to write z = x; X) y; + --- + x, Q) y, with
X, ..., X, linearly independent in B. Since ¢(1 X) y)p(x;, Q1) + .-+ +
d(1 Q) y)9(x, X 1) = ¢(z) = 0, it follows from Lemma a that ¢(1 ) y,)

= ... = ¢(1 X)y,) = 0. Therefore,1 ) y; = --- = 1 (X) y, = 0because
}|F Q) C is injective, and z = 0. The argument proves that every non-zero
homomorphism of B (X) C is injective. Hence B (X) C is simple. O

Lemma c. Let B and C be F-algebras. Denote B (X) C by A.
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() C,BRF) =ZB)® C.
(i) Z(4) = Z(B) ® Z(C).

PROOF. Let {y;: j € J} be an F-space basis of C. By Proposition 9.1c, every
element of A has the form w = ) x; X) y; with the x; € B uniquely deter-
mined by w. If weC,(BQ) F), then 0 =(x @ hw — wx @ 1) =
Yies(xx; — x;x) ) y; for all x € B. Thus, xx; = x;x forall xe Band je J.
That is, every x; is in the center of B, and w e Z(B)X) C. This discussion
shows that C (B ® F) € Z(B) ® C. The reverse inclusion is obvious. By
symmetry, C,(F () C) = B () Z(C). Therefore, Z(4) = C,(BR) F) N
C,FRC) =ZB X C)n(BRZC)) = Z(B) R Z(C). O

Proposition b. Let B and C be central simple F-algebras, and suppose that E
is a field and an F-algebra.

(i) B Q) C is central simple.
(i) B @ E is a central simple E-algebra.
(iii) B* is central simple.
(iv) Ifdim; B = n < oo, then B* (X) B = M,(F).

ProOF. The properties (i) and (ii) are special cases of Lemmas b and c. The
assertion (iii) is an obvious consequence of the observations that I(B*) =
I(B) and Z(B*) = Z(B). It follows from (i) and (iii) that B* = B* (X) B is
simple. Therefore, B® ~ M(B); and if dimzB = n < oo, then B* (X) B =~
E.(B)* ~ M,(F) by Corollary 12.3. O

The corollary of Proposition b pays a debt that was incurred in the proof
of Proposition 10.7.

Corollary. Every finite dimensional central simple F-algebra is separable.
This result follows from Corollary 10.6, using part (ii) of the proposition.

EXERCISES

1. Let F be a field of characteristic p. Suppose that a € F — FP. Consider the field
A = F(a'?) as an F-algebra. Prove that 4 (X) 4 is not simple.

2. Let A4 be the Z-algebra that is a free Z-module on the basis 1,, e, x with multiplication
defined by € = ¢, ex = x, xe = 0, x> = 0. Define B = A% still considered as a
Z-algebra. Let C = A/I, where [ is the ideal x(2Z). Prove that Z(B) ® Z(C) is
properly contained in Z(B ) C).

3. Let A4 be a finite dimensional F-algebra. Assume that E = Z(A) is a field. Suppose
that B and C are simple subalgebras of 4 suchthat Z(B) < E,Z(C) < E,C = C(B),
and 4 = BC.Prove that 4 = (B®),,, E) ®; (CX),, E). Hint. Let B = BEand
C’ = CE. Use Proposition a to show that B’ = BX), E, €’ = C Xy, E, B and
C’ are central simple E-algebras, and 4 = B’ (X), C'.
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4. Let Band Cbesimple, separable F-algebras. Note that Band C are finite dimensional,
and Z(B)/F, Z(C)/F are separable field extensions by the results of Chapter 10.
Hence, Z(B) X) Z(C) = E,; + .- + E,, where each E, is a field that contains both
Z(B) and Z(C). Use the result of Exercise 3 to prove that B (X) C = (B®1(X), C¥)
o+ (BEQR, CF). '

12.5. The Brauer Group

The results of Proposition 12.4b can be put in a very interesting form by
considering the isomorphism classes of central simple algebras modulo a
suitable equivalence relation. The relation is the Morita equivalence that
was discussed in Section 9.6. Up to equivalence, the central simple F-
algebras form an abelian group that is called the Brauer Group of F. The
term “‘Brauer group” honors Richard Brauer who made the first systematic
study of this fundamental invariant. The importance of the Brauer Groups
in the theory of rings and fields is now firmly established. Much of the rest
of this book will be concerned with various properties of Brauer groups.

It will be economical to introduce notation for classes of central simple
algebras. Let F be a field. We will denote by S(F) the class of all finite
dimensional, simple F-algebras 4 such that Z(4) = F, that is, central
simple F-algebras. A simple F-algebra can fail to be in &(F) by being
infinite dimensional over F, or by having a center that is properly larger
than F.

Morita equivalence for central simple algebras takes a simple form.

Lemma. Let A and B be members of S(F). The following conditions are
equivalent.

(1) The basic algebras of A and B are isomorphic.
(ii) There is a division algebra D € S(F) and positive integers m and n such
that A ~ M, (D) and B =~ M, (D).
(iii) There exist positive integers r and s such that A (X) M,(F) = B (X) M,(F).

Proor. By the Wedderburn Structure Theorem A4 =~ M,(D,) and B =
M, (D,), where D, and D, are finite dimensional division algebras over F.
Moreover. D, and D, are central by Example 12.1. Therefore, the fact that
(i) implies (ii) is a consequence of the observation in Example 6.6 that D,
is the basic algebra of 4 and D, is the basic algebra of B. If (ii) is satisfied,
then 4 (X) M,,(F) = M,,(D) = B (X) M,(F), which is (iii) with r = m and

= n. On the other hand, if 4 X) M,(F) =~ B (X) M,(F), then M,,(D,) =
M_,(D,). By the uniqueness statement in Wedderburn’s theorem, this
isomorphism implies that D, =~ D,. Hence, 4 and B have isomorphic basic
algebras. ]
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We will say that algebras 4 and B in S(F) are equivalent if they satisfy
the conditions of the lemma. The notation 4 ~ B will abbreviate the state-
ment that 4 and B are equivalent. It is clear from property (i) of the lemma
that ~ is an equivalence relation on S(F). The equivalence class of 4 in
S(F) will be denoted by [ 4].

Proposition a. For a field F, the set B(F) = {[A]: A € &(F)} is an abelian
group with the product [A][B] = [4 X) B], the unity element [F], and the
inverse operation [A]™' = [4*].

PrOOF. If A = B, then A ~ B, Thus, B(F) is a set by Proposition 1.5. In
fact, |B(F)| < N, |F|. If A4, Be S(F), then 4 (X) Be &(F) by Proposition
12.4b. Moreover, A ~ A" and B ~ B’ implies 4 ® B~ A ® B’. Indeed,
if 4 Q) M,(F) = A’ (X) M(F) and B (X) M,(F) = B’ (X) M,(F), then

A QB My (F) = (4 Q M,(F)) Q (B Q) M(F))
= (4 Q M(F) Q (B Q M(F))
= 4 QB @ M),

Thus, the tensor product on &(F) induces a product on B(F) by the rule
[4][B] = [4 ) B]. The commutativity and associativity of (X) translate
to corresponding identities in B(F); and A (X) F =~ A implies [F] = 1.
Finally, if 4 € &(F), then A*e S(F) and 4*(X) 4 =~ M,(F) ~ F by
Proposition 12.4b. Therefore B(F) is a group in which [4]™! = [4*]. O

The group B(F) is called the Brauer group of the field F.
Our next result is an easy corollary of Wedderburn’s Structure Theorem,
but it is very useful.

Proposition b. Let F be a field.

() If A, Be &(F), then A = Bif and only if [A] = [B] in B(F) and dim,. A
= dim B.

(ii) Every class in B(F) is represented by a division algebra that is unique to
within isomorphism.

Proor. If [4] = [B], thatis, 4 ~ B, then 4 ~ M,(D) and B = M, (D) by
the lemma; and dim; 4 = dim, Bimpliesn = m, sothat 4 =~ B. Conversely,
A = B plainly implies [4] = [B] and dim, 4 = dim, B. By the Wedder-
burn Structure Theorem, every A e &(F) satisfies 4 =~ M, (D), where
D e &(F)isadivision algebra. Thus, [4] = [D].If D, and D, are equivalent
division algebras, say M,(D,) =~ M, (D,), then the uniqueness statement in
Wedderburn’s Structure Theorem yields D, =~ D,. O

Corollary. If F is algebraically closed, then B(F) = {1}.
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Indeed, the only finite dimensional division algebra over F is F itself by
Lemma 3.5.

The content of Proposition b is that B(F) classifies the finite dimensional
division algebras over F. However, the group structure of B(F) cannot be
defined within the class of division algebras. In general, the tensor product
of two division algebras is not a division algebra.

We conclude this section by showing that the Brauer group is the object
map of a functor.

Proposition ¢. If ¢: F — E is a homomorphism of fields, then ¢ induces a
group homomorphism ¢,: B(F) —» B(E) by ¢,([A4]) = [AQ) ,E]. The
correspondences F— B(F) and ¢ — ¢ define a functor from the category of
fields to the category of abelian groups.

The notation ,E in this statement has the meaning that was described in
Section 2.1: ,E is an F-algebra with the scalar operation defined by ab =
¢(a)bforae Fand be E.

By Proposition 12.4b, A (X) ,E € &(E). Moreover, 4 (X) B ,E =

A®¢E®B;A®(¢E®E¢E)®B;(A®¢E)®E(B®¢E). In

particular, if 4 ~ 4, say A (X) M,(F) = A’ (X) M,(F), then
(4 Q) 4E) Qe M(E) = (4 Q) 4E) Qr (M,(F) Q) 4E)
~ (4 QM,F) ® ,E
=~ (4" Q) M(F)) ® +F
= (AR 4E) X M(E).

Thus, ¢,([4]) = [4 () ,E] is a well defined group homomorphism of
B(F) to B(E). If : E —» K is another homomorphism of fields, then it is
easy to see that (4 (X) ,E) QR K = 4K ,,K as K-algebras. Hence,
¥,9, = (Y9),. This completes the proof of Proposition c.

In general, distinct embeddings of F into a field E give rise to different
homomorphisms of B(F) to B(E). Exercise 1 provides an example of this
phenomenon.

EXERCISES
1. Let F = Q(2'?), E = Q(2'*). Define homomorphisms ¢: F - Eand §: F — E by
@(212) = 212 y(242) = — 22 Let Dbe the quaternion algebra (4’7—21&) .Prove
that [D] e Kery, and [D] ¢ Ker ¢, in B(F). Hint. Let K = Q(i2"*). Show that
K = ,E as F-algebras. Use Proposition 1.6 to show that 4 X K = (ll—’_—zllj)

13

K
—1,-2M2\, .
M,(K)and AX) E = —’E—* is a division algebra.
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2. Let ¢: F - Eand : F — E be homomorphisms of fields. Assume that E/¢(L) is a
(finite) Galois extension, where L = {x € F: ¢(x) = y(x)}. Prove that ¢, = y,.
Hint. Use the assumption that E/¢(L) is Galois to show that there is an auto-
morphism y of E such that y¢ = . Deduce that y: ,E — ,E is an F-algebra iso-
morphism, and therefore, 4 Q) ,E = 4 &) ,E as E-algebras.

3. Involutions of F-algebras were defined in Exercise 4 of Section 10.1. Prove that if
there is an involution t of 4 € &(F), then [4]*> = 1 in B(F). Deduce that [4]*> = 1
for every quaternion algebra.

4. Use the result of Exercise 4, Section 1.7 to prove that B(Q) is an infinite group.

12.6. The Noether—Skolem Theorem

The purpose of this section is to prove the Noether—Skolem Theorem for
algebras in the class S(F). A more general result is outlined in Exercise 1.

We begin with a special case of the Noether—Skolem Theorem from
which the full result will then be deduced.

Lemma. Let B be a finite dimensional, simple F-algebra, and suppose that M
is an F-space. If ¢ and  are F-algebra homomorphisms of B to Ep(M), then
there exists 6 € E(M)° such that ¢(x) = 0~'y(x)0 for all x € B.

The idea of the proof is that ¢ and y impose B*-module structures on
M. The resulting modules must be isomorphic because B is simple and the
modules over finite dimensional simple algebras are classified by their
dimension according to Corollary 3.3b. The required linear transformation
0 is just the isomorphism between these modules. In detail, define M, to be
the right B*-module on M with the scalar operation ux = ¢(x)(u), and let
M, have scalar operation defined by u o x = ¥/(x)(«). Routine calculations
show that M, and M, satisfy the module axioms. Let 6: M, — M, be the
B*-module isomorphism whose existence is guaranteed by Corollary 3.3b.
Then 6 € Ex(M)°, and 6(¢(x)(u)) = 8(ux) = 0(u) o x = Y(x)(0(u)). That
is, ¢(x) = 071y (x)0 for all x € B.

Noether—Skolem Theorem. Let A € S(F), and suppose that B is a simple
subalgebra of A. If x is an algebra homomorphism of B to A, then there exists
u € A° such that y(y) = u " yu for all y € B.

PRrROOF. By Proposition 12.4b, there is an algebra isomorphism p: 4° =
A* Q) A > Eg(A). Define ¢ = p(id @ x): A* Q) B - Ep(4) and y =
p(id R k): A* X) B — Eg(4), where k: B — A is the inclusion homomor-
phism. Since 4* (X) B is simple by Lemma 12.4b, it follows from the lemma
that there exists 6 € E;(4)° such that ¢(x X) y) = 67 ¢ (x X) )0 for all
x€ A*,ye B.Letz = p~!(0) € 4°. Since fisa unit, soisz,and 7! = p(z™).
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Moreover,
p(x @ x()) = p@p(x Q) 1) = 06(x Q) »)
=¥(x Q10 = p(x Q »p() = p((x X »)2),

because p is an algebra homomorphism. Since p is injective,

x@x() =z'(x®y)z forall xeAd* yeB. 6))

By letting y = 1 in (1), we obtain z(x (X) 1) = (x X) 1)z; that is, ze C .
(A4* @) F) = F Q) A by Lemma 12.4c. Similarly, z™" € F (X) A. Therefore,
z=1Qu and z7! = 1(X) v with u, ve A. Hence, uv = 1, ue A4°, and
v =u"'. Finally, if x = 1in (1), then 1 Y) x(y) = 1 Q) u”'yuforally € B;
therefore, x(y) = u 'yu. O

EXERCISES

1. Show that the hypothesis dim;4 < oo in the Noether—Skolem Theorem can be
replaced by the condition that B is finite dimensional. Hint. Note that the image of
x: A° = E.(4) is a dense subalgebra, and Kery = 0 because A° is simple. (It is
still assumed that A is central simple.) This remark makes it possible to extend the
proof of the Noether—Skolem Theorem that is given in this section.

2. (a) Let a € M,(F) be such that the minimum polynomial ®(x) of « (over F) is irre-
ducible. Prove that B € M, (F) is similar to « (that is, 8 = y~'ay for some y € M,(F)°)
if and only if ®(x) is also the minimum polynomial of f over F.
(b) Prove that

"1 o0 0
o= 1 0
10 0 2]

and
_ o
B=10 2 0
10 0 2]

in M,(Q) have the same minimum polynomial (x — 1)(x — 2) over Q, but « is not
similar to f.

3. Prove that every automorphism of a finite dimensional, central simple algebra 4 is
an inner automorphism, that is, a mapping x > u~ !xu for a fixed u € 4°.

12.7. The Double Centralizer Theorem

The term “Double Centralizer Theorem” (abbreviated D.C.T.) is the generic
name for a class of theorems that relate subalgebras B of an algebra 4 to
their second centralizers C,(C ,(B)). It is evident from the definition of the



232 12 Simple Algebras

centralizer that B = C,(C,(B)) in all cases. Generally this inclusion is
proper. Double Centralizer Theorems deal with conditions in which B =
C,(C,(B)).

In this section we will prove a classical D.C.T. A more general result
(with a different proof) is sketched in Exercise 5. Our discussion begins
with a modest generalization of the second part of Lemma 12.1.

Lemma. Let A be an F-algebra, and B a subalgebra of A. Consider A as a
right B* (X) A-module, by way of the homomorphism B* (X) A - A* X)
A = A°. The left regular representation of A maps C ,(B) isomorphically to
Ep g a(4).

ProoF. If xe B, ye C,(B), and z, we 4, then A, (w(x X 2)) = yxwz =
xywz = /ly(w)(x® z). Thus, A(C,(B)) € Epg (4). If 1, € Epg 4(4) and
x € B,thenyx = ly(l(x® 1)) = Ay(l)(x® 1) = xy. Therefore, y € C,(B).
It follows from Proposition 1.3 that 1 maps C,(B) isomorphically to
EB*®A(A)‘ D

Theorem. Let A € S(F), and suppose that B is a simple subalgebra of A.

(i) C (B) is simple.
(i) (dimg B)(dim;C ,(B)) = dim, 4.
(iii) C,(C,(B)) = B.
(iv) If Bis central simple, then C (B) is central simple,and A = B (X) C ,(B).

PROOF. By Lemma 12.4b, B* (X) 4 is simple. This algebra is also Artinian
because it is finite dimensional over the field F. Let P be a minimal right
ideal of B* (X) 4. By the Wedderburn Structure Theorem in the form of
Corollary 3.5a, B* (X) A = M, (D), where D is the division algebra E g ,(P).
Hence, B* (X) 4 ~@n Pand P =@ n D, as in Example 3.3. In particular,

(dim 4)(dim B) = n*(dim D). ¢y

Since 4 is a finite dimensional B* (X) 4-module, it follows from Proposition
3.3b that 4 = @k P for a suitable k € N. Thus by the lemma, C,(B) =
Epg(@k P) = M(D). Consequently, C,(B) is simple, and

dim 4 = k(dim P) = kn(dim D) @)
dim C,(B) = k*(dim D). 3)

By eliminating k, n, and dim D from (1), (2), and (3), we obtain (ii): (dim B)
(dim C 4(B)) = dim 4. Since C,(B) is simple, it is permissible to replace B
by C (B) in (ii) to obtain (dim C ,(B))(dim C,(C,(B))) = dim 4 = (dim B)
(dim C,(B)). Therefore, dimB = dimC,(C,(B)); and B = C_(C,(B))
because B < C,(C,(B)). If B is central simple, then 4 = B (X) C,(B) by
virtue of Proposition 12.4a and (ii). Moreover, F = Z(B(X) C,(B)) =
F ® Z(C ,(B)), so that C ,(B) is central simple. |
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EXERCISES

1. Let A = M,(F), and take B to be the set of all lower triangular matrices [a;] € 4,
that is, a; = 0 for i > j. Prove that B is a subalgebra of 4 such that C,(B) = 1,F;
hence C ((C,(B)) = 4 > B.

2. Let B be an F-algebra. Denote 4 = E(B). Prove that C,(A(B)) = p(B) and
C,(p(B)) = A(B).

3. Generalize Lemma 12.4c: if 4 and B are F-algebras, and if C and D are respectively
subalgebras of 4 and B, then C,, g 5(C &) D) = C(C) Q) Cyx(D).

4. Let B be a subalgebra of the F-algebra A. Prove that if z € 4°, then C (z™'Bz) =
z71C4(B)z.

5. Generalize the D.C.T.: if 4 is a central simple F-algebra (not necessarily finite
dimensional) and B is a finite dimensional simple subalgebra of A4, then C,(B) is
simple, and C,(C(B)) = B. Hint. Denote C = E.(B)and D = 4 (X) C. Note that
A(B) and p(B) are subalgebras of C with C.(A(B)) = p(B), C.(p(B)) = A(B)
(Exercise 2), and D is simple by Lemma 12.4b. Use the version of the Noether—
Skolem Theorem in Exercise 1, Section 12.6 to obtain z € D° such that z!(F ¥)
A(B))z = B ) F. Use the results of Exercises 3 and 4 to obtain C BRC=:z"
4 ()%9 p(B))z, so that C,(B) is simple. Repeat this strategy to get C,C,(B) QR F=
BX) F.

Notes on Chapter 12

The material in this chapter is classical; so is our exposition of it. In the
interest of simplicity, we have added finite dimensionality to the hypotheses
of the Jacobson—-Bourbaki Theorem, the Noether—Skolem Theorem, and
the Double Centralizer Theorem. More general results can be found in
most expositions of non-commutative ring theory (for example, in [41],
[46], and [55]), and some generalizations are outlined in the exercises of
Sections 12.6 and 12.7.



CHAPTER 13

Subfields of Simple Algebras

In this chapter we set the stage for a systematic study of the Brauer group.
The details of the program will be worked out in the next chapter, using two
main tools: the cohomology theory that was introduced in Chapter 11,
and the properties of subfields of central simple algebras which will be
established in the first five sections of this chapter. The last section of the
chapter gives applications of the theory, including Wedderburn’s Theorem
on Finite Division Algebras, and the Cartan—Brauer—Hua Theorem.

13.1. Maximal Subfields

A subfield of an F-algebra A is a subalgebra E of 4 such that E is a field.
In particular, E contains 1 ,F, so that E can be viewed as an extension of F.
As usual, [E: F] is the dimension of E as an F-space. Plainly, [E: F] <
dimg 4. If there is no subfield K of 4 such that EF < K, then E is called a
maximal subfield of A.

Lemma a. If B is an F-algebra with dim; B = k < oo, and if n € N is divisible
by k, then B is isomorphic to a subalgebra of M, (F).

ProOF. If k = n, then the lemma restates Corollary 5.5b. The general case

follows from this special situation because the diagonal map x — (x,...,x)
is an injective algebra homomorphism of B to a product 4 of n/k copies
of B, and dimy 4 = n. O

We will often use the following simple property of division algebras.

234
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Lemma b. Let D be a division algebra over F. If x € D, then there is a subfield
E of D such that x € E. If dim; D < oo, then the subalgebra F[x] = {®(x):
® € F[x]} is a subfield of D.

ProoF. Since F = Z(D), the set F[x] is a commutative subalgebra of D
and 6: ® > ®(x) is an algebra homomorphism of F[x] to F[x]. Since D
has no proper zero divisors, F[x] is an integral domain. Thus, Ker 0 is a
prime ideal of F[x]. If Ker§ # 0 (which must be the case if dim; D < o),
then Ker6 is maximal and F[x] is a field. If Kerf = 0, then E =
{O(X)¥(x)': @, ¥ e F[x], ¥ # 0} is a subfield of D that includes x. [

It follows from Lemma b that if D € S(F) and D is a division algebra,
then every subalgebra B of D is also a division algebra. Indeed, if 0 # x € B,
then x™!' € F[x] < B.

For a natural number n, we will say that the field F is n-closed if there is
no proper extension E of Fsuch that [ E: F] divides n. Every field is 1 closed
since no proper extension has degree 1. At the opposite extreme, Fis n-closed
for all n e N if and only if F is algebraically closed. The field R is n-closed
for all odd », but R is not 2-closed. It is obvious from the definition that if F
is n-closed, then F is k-closed for every divisor k of .

Lemma c. If A is a simple, finite dimensional F-algebra such that F is a maximal
subfield of A, then A = M,(F) and F is n-closed, where n € N is (dimj 4)*>.

ProoF. Since A is simple and finite dimensional, the Wedderburn Structure
Theorem yields 4 =~ M, (D), where D is a division algebra over F. In fact,
D = F. Otherwise, by Lemma b there is a subfield E of D that properly
contains F. The assumption that F is a maximal subfield of 4 excludes this
possibility. If F is not n-closed, then there is a proper extension E/F such
that [ E: F] divides ». In this case, M,(F) =~ A contains a subfield that is
isomorphic to E by Lemma a, which again contradicts the maximality of F.

O

The converse of this lemma follows from the next result by taking 4 =
M,/(F)and E = F.

Proposition. Let A € S(F), and suppose that E is a subfield of Awith[E: F] =
k. The following conditions are equivalent.

(i) E is a maximal subfield of A.
(i) C,(E) = M,(F) and E is n-closed.

If (i) and (i) are satisfied, then dimp A = (kn)?.

ProoF. Assume that E is a maximal subfield of 4. Since E is simple, so is
C,(E) by the Double Centralizer Theorem. Moreover, E = Z(C4(E)) be-
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cause E is commutative. Thus, C,(F) is a simple E-algebra, and since E
is maximal in 4, it is also maximal in C ,(E). By Lemma c, there exists n € N
such that C ,(E) =~ M,(F)and Eisn-closed. The D.C.T. also givesdim, 4 =
(dimg E)(dim; C ,(E)) = [E: F](dim; M,(E)) = n*k*. Conversely, sup-
pose that (ii) is satisfied. Let E < K, where K is a maximal subfield of A4.
Then K < C,(E) =~ M,(E). Hence, K is a maximal subfield of B = C(E) e
S(E). The first part of the proof gives Cx(K) = M, (K)and n*> = dim_ B =
(m[K: E])* In particular [K: E] divides n. However, E is n-closed by
assumption. Thus, E = K is a maximal subfield of A4. O

Corollary a. If A € G(F), then dim; A = m? for some m € N. For a subfield
E of A, | E: F] divides m.

These statements reformulate the last part of the proposition, since every
subfield of 4 can be enlarged to a maximal subfield. The natural number m
is called the degree of A. It will be denoted by Deg 4. Explicitly Deg 4 =
(dimj A)'* for 4 € S(F).

If E is a subfield of 4 € S(F), then [E: F] < DegA4 by Corollary a.
Hence, when [E: F] = Deg 4, the field E is necessarily a maximal subfield
of A. The converse is not true in general. For example, if F is n-closed, then
F is maximal in M,(F), and Deg M, (F) = n. We will say that a subfield £
of A € S(F) is strictly maximal if [E: F] = Deg A. Exercise 2 provides an
example of an algebra that contains a strictly maximal subfield and also a
maximal subfield that is not strictly maximal.

Corollary b. 4 subfield E of A € S(F) is strictly maximal if and only if C ,(E)
= E. If A is a division algebra, then every maximal subfield of A is strictly
maximal.

ProoF. The first assertion is a consequence of the D.C.T. because E =
C,(E), and (Deg A)> = dim, 4 = [E: F](dim; C,(E)). If E is a maximal
subfield of the division algebra 4, so that M,(E) =~ C,(E) < A4 by the
proposition, then n = 1 since 4 has no non-zero nilpotent elements. Thus,
C,(E) = E, and E is strictly maximal. |

We conclude this section with an application of maximal subfields that
proves an assertion that was made in Section 1.6.

Theorem. Let F be a field whose characteristic is not 2. If A € S(F) has degree
2, then A is isomorphic to a quaternion algebra.

PROOF. Let E be a maximal subfield of 4. If E = F, then 4 >~ M,(F) =

%) by Lemma c. If E # F, then E/F is a quadratic extension; and since
char F # 2, it is possible to write E = F(x), where x> = ae F°, x ¢ F. The
mapping x — — x defines an automorphism of E, so that by the Noether—
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Skolem Theorem, there exists y € 4° such that y"'xy = —x. Plainly, y €
A — E. Therefore, dim (F + xF + yF + xyF) = 4 = dim; 4. Note that
xy = —yx implies xp?> = —yxy = y?x. Hence, y> € Z(A) = F, say y* =
b € F°. Our discussion shows that the correspondences 1 — 1, x — i, y > j,

xy — k extend to an F-algebra isomorphism of 4 to (al,:b) O

Corollary ¢ (Frobenius). Up to isomorphism, the only finite dimensional,

non-commutative division algebra over Ris H = (:—1@_—1> Hence, B(R) =

Z/27.

PrOOF. Let D be a finite dimensional, non-commutative division algebra
over R. Since C is the only non-trivial algebraic extension of R, either
Z.(D) = Ror Z(D) = C. The second possibility is excluded because B(C) =
{1}. Thus, D € S(R). Let E be a maximal subfield of D. By Corollary b,
DegD = [E:R] = [C:R] = 2. Thus, D is a quaternion algebra, so that
D =~ H according to the remark after Corollary 1.7. O

EXERCISES

1. Assume that Fis a field of characteristic zero. Prove the following statements.

(a) Fisn-closed if and only if there is no irreducible ® € F[x] such thatdeg® > 1
and deg @ divides ».

(b) Let E/F be a finite extension of degree m. If E is n-closed and m is relatively
prime to n, then F is n-closed.

(c) Let E and K be field extensions of F with K/F finite. If n e N is such that E
is m-closed for allm < nand [K: F| < n, then K < E. Hint. Consider KE/E.

(d) Foreachn e N, there is a smallest field E between F and its algebraic closure
with the property that E is m-closed for all m < n.

(e) If Fis n-closed, then (F°)? = F° for all primes p that divide n.

(f) Fis 2-closed if and only if (F°)? = F°.

(g) Fis both 2-closed and 3-closed if and only if (F°)® = (F°)* = F°. Hint. Use
Cardano’s formula for the solution of a cubic equation.

(h) If Fis an algebraic number field, that is, a finite extension of Q, then F is
not n-closed for any n > 1.

2. Let K be the maximal solvable extension of @, that is, the compositum of all finite
Galois extensions E/Q such that G(E/Q) is a solvable group. Let F = K n R. Prove
the following statements.

(@ [K:F]=2.

(b) Kis 2-closed and 3-closed.

(c) K is not 6-closed. Hint. Let ® € Q[x] be a polynomial of degree 6 such that
the Galois group of the splitting field of ® is the symmetric group on 6-letters. For
a proof that such polynomials exists, see [73], p. 201. An explicit example is given
on p. 109 of [47]. Show that @ is irreducible over K.

(d) M, (F) contains a maximal subfield that is isomorphic to X, and also a
strictly maximal subfield that is isomorphic to F(y), where y is a root of ®@.
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3. Let F be a field of characteristic 2 such that F is not 2-closed. Assume that 4 € S(F)
has degree 2. Prove that there exist elements x and y € 4 such that 4 = F + xF +
yF + xyF, where yx = x(y + 1), x> = a, y> + y + b = 0, and the polynomials
x? 4+ a, x* 4+ x + b are irreducible over F. Conversely, show that an F-algebra A4
that is defined by this recipe is central simple, and A is a division algebra if and only
if there are no elements ¢ and d in F such that ¢ + cd + d?b = a.

4. Let D = (“’b
F

) be a quaternion division algebra. Prove that if 0 # x € D is a pure

quaternion (thatis, x = ic, + jc, + ke, forsome c,, ¢,, ¢; in F), then F((—v(x))'?)
is isomorphic to a maximal subfield of D, where v: D — Fis the quaternion norm.
Conversely, show that every maximal subfiell of D has the form F(c'?), where
¢ = —v(x) and x is a pure quaternion in D.

13.2. Splitting Fields

—-1,—1
R
when the coefficient domain is extended to C: H (X)) C = <_—lq’:_—l) ~
M, (C) by Proposition 1.6. This phenomenon is of fundamental importance
in the theory of central simple algebras. It is the key to the construction

of all such algebras.

The division algebra H = ( ) of real quaternions loses its glamour

Definition. Let 4 € S(F). An extension field E of F is a splitting field for A
if A¥ =~ M (E) as E-algebras, where n = Deg A® = Deg 4.

Recall that A is our notation for 4 (X) E, that is, A® is the E-algebra
obtained from A by extending the coefficient domain from F to E. We will
often say that E splits A if E is a splitting field for 4.

It will be useful to have alternative characterizations of splitting fields.

Proposition a. Let A € S(F) have degree n. The following conditions are
equivalent for a field extension E of F.

(i) E is a splitting field for A.
(ii) There is an F-algebra homomorphism ¢: A - M, (E).
(iii) There is an F-algebra homomorphism ¢: A - M, (E) such that ¢(A)E =
M (E) (that is, $(A) spans the E-space M (E)).
(iv) For some m e N, there is an F-algebra homomorphism ¢: A - M, (E)
such that ¢(A)E = M, (E).

ProOF. If E is a splitting field for 4, then the composite mapping 4 —» 4 X)
E - M,(E) is an F-algebra homomorphism. Assume that ¢: 4 -» M, (E)
is an F-algebra homomorphism. Write B for M, (F), viewed as an F-algebra.
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Then E = Z(B) < Cyx(¢(4)), ¢(A) is central simple, and dim,B =
n?[E: F] = (dim; ¢(4))(dimy E). By Proposition 12.4a, B = ¢(4) X) E.
In particular, B = ¢(A)E. Obviously, (iii)) implies (iv). Finally, if (iv) is
satisfied, then there is an F-algebra isomorphism M,,(E) = ¢(4) X) E = 4"
by Proposition 12.4a; and m* = dim; M, (E) = dim; A% = n?. Hence, E
is a splitting field for 4. O

The splitting fields of a central simple F-algebra have an important
relation with the Brauer group of F. It is convenient to introduce some
notation that will be used extensively in the next chapter.

Let E be a field extension of F. Denote the inclusion homomorphism of
F to E by x. Then x induces a group homomorphism «_: B(F) —» B(E).
The kernel of x, is called the relative Brauer group of E/F; it will be denoted
by B(E/F).

The following lemma reformulates the definition of a splitting field in
the terminology of Brauer groups.

Lemma. Let A € S(F). If E/F is a field extension, then E is a splitting field
for A if and only if [ A] € B(E/F).

If E/F and K/E are field extensions with corresponding inclusions «,
and x,, then x,k, is the inclusion of Fin K. Since Kerx;» = Kerx kv =
Ker(k,x,),, it follows that B(E/F) < B(K/F). Thus, the lemma has the
following useful consequence.

Corollary. If E is a splitting field for A € S(F), then every field extension
of E splits A.

Results on the subfields of splitting fields are rare. The last proposition
of this section is one of the few specimens of such theorems.

Proposition b. Let L be a splitting field for A € S(F). There is a subfield E
of L that is finitely generated over F and splits A.

PRrOOF. Proposition a allows us to assume that A4 is a subalgebra of M, (L),
where n = Deg 4, and M,(L) = AL. Let {{;: 1 < i,j < n} be an F-basis
of 4. Write ¢; = Y 1< k1< ExCiaij» Where ¢ € L. On the other hand, since
AL = M,(L), thereexist dyg € L(1 < i,j, k, | < m)suchthate, = _,._,
&,id;j- 1t follows that the n* x n? matrices [c,,;] and [d,,] are inverses of
each other. If E is the field generated over F by {c,;: 1 < i,j, k,1 < n},
then dy, € E for all i, j, k, I. Therefore, 4 = M,(E) = ) ,_, ,.,&;E, and
AE = M,(E). By Proposition a, E splits 4.

One might suspect that the field E in Proposition b could be chosen to
be algebraic over F. Exercise 2 shows that this is not the case.
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EXERCISES

1. Let D = (%) be a quaternion division algebra, where char F # 2 and a, b € F°.

Prove that E = F(,/a) is a splitting field for D by showing explicitly that the map-
ping ¢: D - M,(E) defined by

e
co +ic; +je, + key) = |,
$(co 1T )6 3) I:bf E]
e =co+ . Jac,, & = ¢, — Jac,, f= ¢, + \Jacy, f = ¢, — \Jac, is an F-algebra
homomorphism.

2. LetD = <a_}_lz> be a quaternion division algebra, where char F # 2, and a, b € F°.

(a) Show that if ¢ is transcendental over F, then x? — b(t> — a) is irreducible in
F()[x].

Define E = F(t,y), where y is a root of x2 — b(12 — a).

(b) Use Proposition 1.6 to prove that E splits D. Hint. Note that (b1)> = ab* +
by?.

(c) Show that F is algebraically closed in E. Hint. Prove that if ce E — F is
algebraic over F, then F(t,c) = E. Show that y € F(c)(¢) is impossible.

13.3. Algebraic Splitting Fields

In this section our attention is on the finite algebraic extensions of a field F
that split a given central simple F-algebra A. We will see that these extensions
are closely related to maximal subfields of A.

Lemma. Let A€ &(F). If E is a subfield of A, then C,(E)e S(E), and
C,(E) ~ AE as E-algebras.

The proof of this result is the same as the first part of the proof of the
D.C.T. Since E is a subfield of 4, we can view 4 as a right 4E-module, and
from this standpoint C,(E) =~ E ;:(4) by Lemma 12.7. Let P be a repre-
sentative of the unique (because A* is simple) isomorphism class of right
AE-modules. If D is the division algebra E = (P), then for suitable natural
numbers k and n, C,(E) = E:(4) = E - (PkP) = M(D) ~ M,(D) =
E {(@PnP) = E (AF) = A* as E-algebras. In particular, C,(E) € S(E).

Proposition. Let A € S(F). For a subfield E of A, the following conditions
are equivalent.

(1) E is a splitting field for A.
(i) C,(E) @ M,(E), where k[E: F] = Deg A.
(iii) 4 = B X) C, where Be &(F), C =~ M,(F), and E is a strictly maximal
subfield of B.
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Proor. If E is a splitting field for A4, then C,(E) =~ M,(F) by the lemma,
and the D.C.T. yields Deg 4 = k[E: F]. It follows from (ii) that C,(E) =
E ® C, where C =~ M, (F). Let B = C,(C). Clearly, F is a subfield of B.
Since C € S(F), it follows from the D.C.T. that Be &(F), 4 = B X C,
and Deg B = (Deg A)/k = [E: F], according to (ii). Thus, E is a strictly
maximal subfield of B. Assume that (iii) is satisfied. By Corollary 13.1b,
Cy(E) = E. Thus, E splits B by the lemma. Hence, [4] = [B] € B(E/F),
and F splits A by Lemma 13.2. O

It follows from the proposition and Proposition 13.1 that every maximal
subfield of 4 € S(F) splits A. Up to equivalence, the converse is true.

Theorem. Let A€ S(F). For a finite field extension E|F, the following
conditions are equivalent.

(1) E is a splitting field for A.
(il) There exists Be S(F) such that B ~ A and E is a strictly maximal
subfield of B.
(ili) There exists B € S(F) such that B ~ A and E is a maximal subfield of B.

Proor. Plainly, (ii) implies (iii); and (i) follows from (iii) by the proposi-
tion, Proposition 13.1, and Lemma 13.2. Assume that E splits 4. By Lemma
13.1a it can be assumed that E is a subfield of M,(F), where n = [E: F].
In this case, E is a subfield of 4 ® M (F) and E splits A @ M, (F). By the
proposition, 4 ~ A X M(F) = B(X) C = B (X) M,(F) ~ B, where Be
S(F) and E is a strictly maximal subfield of B. 0

Corollary. If A € S(F) and E|F is a finite field extension such that [E: F] =
Deg A4, then E splits A if and only if E is isomorphic as an F-algebra to a
strictly maximal subfield of A.

The corollary follows from the theorem and Proposition 12.5b.

EXERCISE

In this problem, D is the division algebra of rational (Hamiltonian) quaternions

( — ld_ ! ) Prove the following assertions for subfields F and E of C.

(a) Eis a splitting field for D if and only if there are elements a and b in E such
that a> + b* = —1.

(b) If p is a prime divisior of 2" + 1, where r > 1, z is a primitive p’th root of
unity, and E = Q(z), then E is a splitting field for D.

Hint. Let X = {c* + d*: ¢, de E}. Show that X is closed under multiplication
and includes 1 + z™ for all m € N (in fact, z™ € (E°)?). Let 2" + 1 = sp, and deduce
that
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p—1 s—1 r—1
0= < ) zi><z z”’) =z'+ J](1 + %),
k=0
so that

r-1
-1=zJQ + M ex.

k=0
Apply (a).

(c) Suppose that [E: Q] = 2"m with m odd, where E is one of the fields that
was defined in (b). Then there is a unique subfield F of E such that [F: Q] = 2",
and F is a splitting field for D.

Hint. E/Q is Galois and G(E/Q) is cyclic. Use this observation together with
Proposition 13.4 below.

(d) If F/Q is Galois with G(F/Q) cyclic of order 2", then no proper subfield of
F splits D.

Hint. Show that every proper subfield of F is contained in R by proving that
[F:FnR] <2

(e) If pis a prime divisor of the Fermat number 2% + 1, then 2**! dividesp — 1.

Hint. Show that the multiplicative order of 2 in F , is 2***.

(f) For infinitely many natural numbers #, there exist splitting fields F for D
such that [F: Q] = 2", and no proper subfield of F splits D.

13.4. The Schur Index

The degree mapping is plainly not invariant under the Morita equivalence.
Because of this fact, and for other reasons, it is useful to define a different
numerical function on central simple algebras.

If A e &(F), then by Proposition 12.5b there is a division algebra D
such that 4 ~ D, and D is unique to within isomorphism. Explicitly, D is
determined by the conditions: 4 =~ M (D) for a suitable ne N; and D is
a division algebra. The Schur index of A is

Ind 4 = Deg D.

For simplicity, we will usually refer to Ind A4 as the index of 4, since Schur’s
fame is sufficiently honored by the expression “Schur’s Lemma.”

In this section, we will use the results concerning splitting fields to prove
some basic facts about the index.

Lemma. Let A € ©(F). If E is a finite field extension of F that splits A, then
Ind A4 divides [E: F]. Conversely, A contains a subfield E that splits A, and
[E:F] = Ind 4.

Proor. If E splits A, then by Theorem 13.3 there is an algebra Be S(F)
that contains E as a strictly maximal subfield, and B ~ 4. If B =~ M, (D),
where D is a division algebra, then 4 ~ D and [E:F] = DegB =



13.4. The Schur Index 243

n(Deg D) = n(Ind 4). To prove the converse, write 4 = D ® B, where D
is a division algebra and B =~ M,(F) for some k € N. By Corollary 13.1b,
a maximal subfield E of D is strictly maximal. That is, [E: F] = Deg D =
Ind A. By Theorem 13.3, any maximal subfield of D is a splitting field
for A. O

Proposition. Let A, B € S(F), and suppose that E/F is a finite field extension.

(i) If[A] = [B], thenInd A = Ind B.
(ii) Ind A4 divides Deg A, and Ind A = Deg A if and only if A is a division
algebra.
(iti) Ind 4 = min{[K: F]: K splits A}.
(iv) Ind AE divides Ind A.
(v) Ind A4 divides [E : F](Ind AF).
(vi) IfInd A is relatively prime to [E : F], then Ind AX = Ind A ; in this case,
if A is a division algebra, then so is AE.
(vii) Ind(4 (X) B) divides (Ind A)(Ind B).
(viii) For m > 1, Ind A®™ divides Ind A, where A®™ is the tensor product of
m copies of A.

ProoF. The statements (i) and (ii) are easy consequences of the definitions
of the index and the degree. The formula (iii) is an obvious consequence of
the lemma. For the proofs of the remaining statements, it can be assumed
that 4 and B are division algebras. Properties (iv) and (vii) then follow from
(ii). To prove (v), let K/E be a field extension such that K splits 4% and
[K: E] = Ind AE. Clearly, K is a splitting field for 4, so that Ind 4 divides
[K:F] = [K:E][E:F] = [E: F](Ind A%). The combination of (iv) and
(v) plainly implies (vi). To prove (viii), let K/F be a field extension such that
K splits A4 and [K: F] = Ind 4. In the Brauer group of K, [(4®™X] =
[4X]" = 1. By the lemma, Ind A®™ divides [K: F] = Ind 4. O

As an application of the index, we will prove a useful variant of Corollary
13.3.

Corollary. Assume that D € S(F) is a division algebra, and K|F is a field
extension such that [ K : F | is a prime divisor of Deg D. The following properties
are equivalent.

() K is isomorphic to a subfield of D.
(i) DX is not a division algebra.
(iiiy Deg D = [K: F](Ind D¥).

PRroOF. For the proof that (i) implies (ii) it can be assumed that K is a subfield
of D. Extend K to a maximal subfield E of D. By Theorem 13.3, Eis a
splitting field for D; therefore E also splits D¥. The lemma and Proposition
13.1 yield Ind DX < [E: K] < [E: F] < Deg D = Deg DX, so that DX is
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not a division algebra by part (ii) of the proposition. Conversely, if DX is not
a division algebra, then Ind D* < Deg D. In this case, it follows from parts
(iv) and (v) of the proposition and the hypothesis “[K: F] is prime” that
DegD = [K: F] (Ind D¥). Finally, by the lemma there is an extension
E/K such that E splits D¥ and [E: K] = Ind DE. Thus, E splits D, and (iii)
implies that [E: F] = Deg D. By Corollary 13.3, E is isomorphic to a
subfield of D. Therefore, so is K. O

EXERCISES

1. Let A € S(F) have index k. Assume that E is a splitting field for 4. Prove that if P
is a minimal right ideal of 4 and Q is a minimal right ideal of 4%, then P£ = P(X) E
(considered as an AE-module) is isomorphic to a direct sum of k copies of Q. Hint.
Compute the dimensions of PE and Q.

2. The Schur index can be defined for arbitrary separable F-algebras in the follow-
ing way. Let 4 be a separable F-algebra. In particular, A is semisimple and finite
dimensional. Let 4 = 4, + --- + A, with each 4, simple. Hence 4, € S(Z(4,)).
The index of 4, is defined to be its index as a central simple algebra over its center.
The index of A4 is the sequence (Ind 4,, ..., Ind 4,). It is this notion of the Schur
index that occurs in the theory of group algebras.

Let A4 be a finite dimensional F-algebra. An extension field E of Fis a splitting field
for A if A% is a product of matrix rings over E, that is, 4% =~ M, (E) + -+ + M,(E)
for suitable n; > 1. Prove the following results. '

(a) A has a splitting field if and only if 4 is separable.

(b) If A = F(x), where x is separable and algebraic over F with minimum poly-
nomial ® € F[x], then E is a splitting field for A if and only if ® decomposes into a
product of linear factors in E; that is, E is a splitting field for ® in the usual field
theoretic sense. In particular, F is isomorphic to a subfield of E.

(c) If A is a separable F-algebra,and 4 = A4, + --- + A, with each 4, simple,
then E is a splitting field for 4 if and only if E is a splitting field for each Z(4,) and
also a splitting field for each A4;, considered as a Z(4,)-algebra. Hint. Use the result
of Exercise 4, Section 12.4.

(d) With the hypotheses of (c) and the notation m; = [Z(A4,): F], n; = Ind 4,,
prove that there is a splitting field E for 4 such that [E: F] < (m,!) - -+ (m,!)

n, ---n,.

13.5. Separable Splitting Fields

The connection between the Brauer group of a field F and cohomology
groups is based on the existence for each 4 € S(F) of a finite Galois exten-
sion E/F such that E splits 4. Since every separable extension can be enlarged
to a Galois extension, it is sufficient to prove the existence of a splitting
field that is separable over F.

Lemma. Let D € &(F) be a division algebra. If every subfield of D is purely
inseparable over F, then D = F.
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Proor. By Corollary 13.1b, D contains a strictly maximal subfield K; say
DegD = [K: F] = n. If char F = 0, then K/F is separable and purely
inseparable, so that F = K = D. Assume that char F = p > 0. In this case,
n = [K:F] = p™ for some m > 0, since K/F is purely inseparable. The
algebraic closure F of Fsplits D, so that there is an F-algebra homomorphism
¢: D> MJ(E), with M (E) = ¢(D)E. If xe D, then F(x)/F is purely
inseparable. Hence, x” = a for some k < m and a € F. Thus,

(@(x) — 1,8y = 0.
Consequently,
tr(¢(x)) — na'™ = tr(¢p(x) — 1,a"%") = 0,

because the trace of a nilpotent matrix is 0. If » > 1, then p divides n,
tr(¢(x)) = 0 for all xe D, and tra = 0 for all « € $(D)E = M (E). This
contradiction proves that » = 1 and F = D in the prime characteristic
case. O

Proposition. If D € S(F) is a division algebra, and K is a subfield of D that is
maximal with the property that K/F is separable, then K is a strictly maximal
subfield of D.

ProoF. By Lemma 13.3 and the remark that was made after Lemma 13.1b,
C,(K) € &(K) is a division algebra. Since K is maximal with the property
that K/F is separable, and a separable extension of a separable extension is
separable, it follows that every subfield of C,(K) is purely inseparable over
K. By the lemma, C,(K) = K. Therefore, K is strictly maximal in D by
Corollary 13.1b. O

In this book, the term “Galois extension” is used to describe a finite,
separable, normal, field extension. Infinite Galois extensions will appear
only in a few exercises of Chapter 14. By a standard result of Galois
theory, E/F is Galois if and only if E is the splitting field of a separable
polynomial in F[x]. Therefore, any finite separable extension K/F can be
enlarged to a Galois extension E/F: let E be the splitting field of a separable
polynomial ® € F[x] such that K =~ F[x]/®F[x].

Theorem. If A € S(F), then there exists Be€ S(F) and a strictly maximal
subfield E of B such that B ~ A and E/F is a Galois extension.

PrROOF. Let A ~ D € S(F), where Dis a division algebra. By the proposition,
D has a strictly maximal subfield K such that K/F is separable. Let E/F be
a Galois extension with K = E. Since K splits D by Proposition 13.3, so
does E. The theorem therefore follows from Theorem 13.3. 0O

Corollary. For a field F, the Brauer group B(F) is the union of the subgroups
B(E/F), where E|F ranges over all Galois extensions. Every element of B(E/F)
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has the form [ A], where A € S(F) contains E as a strictly maximal subfield ;
the algebra A with this property is unique up to isomorphism.

The uniqueness statement in the corollary is a consequence of Proposition
12.5b because the strict maximality of E'in 4 implies that dim, 4 = [E: F]*.

EXERCISES

1. The existence of a separable maximal subfield of certain infinite dimensional division
algebras can be proved using the result of this exercise. Let D be a non-commutative
division algebra whose center is a field F of prime characteristic p. Assume that
every x € D is algebraic over F. Prove that there exists x € D — F such that F(x)/F
is separable. Hint. Deny the assertion. Show that some a € D — F satisfies a” € F.
Fix such an a, and define ¢p: D — D by ¢(x) = xa — ax. Prove that ¢ # 0 = ¢*.
Let ye D and k > 1 be such that ¢*(y) = 0 # ¢* (). Define w = ¢*2(y),
x = ¢ 1(p) = d¢(w) # 0. Write x = au, v = wu™'. Show that v*" = 1 + av?"a*
for all m € N, and obtain a contradiction when v*" € F.

2. Let D be a division algebra over a field of prime characteristic. Prove that every
finite subgroup of D° is abelian. Hint. Show that a finite subgroup of D generates a
finite subalgebra, and use the fact (to be proved) that every finite division algebra
is a field.

3. An algebra A4 is strongly regular if for every x € A, there exists y € 4 such that
x%y = x. For example, division algebras are strongly regular. Prove the following
facts concerning a strongly regular algebra 4.

(a) A has no non-zero nilpotent elements.

(b) If x>y = x, then xyx = yx? = x, so that xy is idempotent.

(c) If ee 4 is idempotent, then e e Z(4). Hint. Compute (exe — xe)* and
(exe — ex)?.

d) J4) =0.

(e) Every (left) idea] of 4 is a two sided ideal in A.

(f) Every homomorphic image of A is strongly regular.

(g) A is a subdirect product of division algebras.

4. Prove Jacobson’s Commutativity Theorem: If A is an algebra such that for each
x € A there exists n > 2 (depending on x) such that x" = x, then 4 is commutative.
Hint. Use Exercise 3 to reduce the proof to the case in which A4 is a division algebra.
Let F = Z(A), and show that the characteristic of F is prime. Assume the existence
of x € A — F, and show that ¢ € G(F(x)/F) exists such that 6(x) = x’ # x. Deduce
from the generalized Noether~Skolem Theorem (Exercise 1, Section 12.6) that
utxu = x' # x for some u € A°. Obtain a contradiction by applying the result of
Exercise 2 to the group generated by u and x.

13.6. The Cartan—Brauer—Hua Theorem

There are more questions about the subfields of central simple algebras than
there are theorems on this subject. Some of the most important problems
concern the relation between the group of units of 4 € S(F) and the multi-
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plicative subgroups of the subfields of 4. The Cartan—Brauer—Hua Theorem
deals with one aspect of this relationship.

Lemma. Assume that F is an infinite field and A is a finite dimensional F-
algebra. If x € A, then there exists a € F° such that x — a is a unit in A. In
particular, every element of A is a sum of two units in A.

The proof of this result is outlined in Exercise 1.
For a subset X of an algebra A4, define the normalizer of X in 4 by

NX) ={ued°:u"'Xu = X}.
Obviously, N ,(X) is a subgroup of 4°.

Cartan—Brauer—Hua Theorem. Let A € S(F), where F is an infinite field.
If D is a subalgebra of A such that D is a division algebra and D° is a normal
subgroup of A°, then either D = For D = A.

ProOF. The hypothesis that D° is normal in 4° implies
N, (D) = 4°. €))

With the aim of getting a contradiction, suppose that F = D — A. By the
last statement of the lemma, D° = A4°. Moreover, C (D)° = A°, since F <
D implies C ,(D) = Abythe D.C.T. Thus, D° u C,(D)° = A°.(See Exercise
2) Let we 4° — (D° u C (D)°). Since w ¢ C (D), it follows from (1) that
x, y € D exist such that

x#y and wx = yw. @)

By the lemma, w — a € 4° for some a e F°. Consequently, (W — a)x =
z(w — a) for some z € D by (1). This equation and (2) give

(z—=x)a=(z—yw. (3)
Since x # y in D and a€ F°, it.follows that z — y e D°. Hence, w =
(z — »)"'(z — x)a € D°, which contradicts the choice of w. O

Corollary a. Let D € S(F) be a division algebra. If E is a subfield of D that
properly contains F, then | ), pox™" Ex generates D as an F-algebra.

Proor. The existence of a division algebra D e S(F) with DegD > 1
implies that F is infinite, as we will soon prove. Let 4 be the subalgebra of
D that is generated by (J,.px 'Ex. By Lemma 13.1b, 4 is a division
algebra, and 4 2 E o F. The definition of 4 implies that A° is a normal
subgroup of D°. Hence, 4 = D. O

Rougly speaking, this corollary tells us that if a proper extension E of
the field F can be embedded in the division algebra D, then the conjugates
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of E are “dense” in D. A related property characterizes the division algebras
with a unique maximal subfield.

Proposition. Let D € S(F) be a division algebra, and suppose that E is a
maximal subfield of D. All of the maximal subfields of D are isomorphic to
E if and only if E|F is separable and D = | ), pox ' Ex.

Proor. If all maximal subfields of D are isomorphic, then E/F is separable
by Proposition 13.5. Moreover, every y € D is in some maximal subfield
Kof D,and K =~ Eimplies that K = x~!Ex for some x € D° by the Noether—
Skolem Theorem. Thus, D = | ), _pox ™" Ex. Conversely, assume that E/F is
separable and D = (), pox 'Ex. If y e D, then y e x™*Ex for a suitable
x € D°. Consequently, y is separable over F. It follows that every maximal
subfield of D has the form F(y) for some y € D; and y € x™! Ex implies that
F(y) = xF(y)x* = E by maximality. O

The condition that D = {J,.pox ' Ex for a maximal subfield E of D
implies that the multiplicative group D° contains an abelian subgroup E°
such that D° is the union of the conjugates of E°. An easy counting argument
that is sketched in Exercise 3 shows that no finite, non-abelian group can
satisfy this condition. Thus, the proposition implies another one of Wedder-
burn’s celebrated results.

Wedderburn’s Finite Division Algebra Theorem. Every finite division algebra
is a field.

ProoF. If D is a finite division algebra with center F, then D e S(F). All
maximal subfields of D are finite fields with | F|" elements, where n = Deg D.
Since finite fields with the same number of elements are isomorphic, the
proposition implies that D° = | J, _ox ' E°x, where E is a maximal sub-
field of D. Because D° is finite, this can only happen if D° is abelian, that is,
D =F. O

EXERCISES

1. Prove the lemma. Hint. Since dim; 4 < o0, every x € 4 satisfies ®(x) = 0 for some
® e F[x] — {0}. Show that since F is infinite, there is an a € F° such that ®(x + )
has a non-zero constant term.

2. Let H, and H, be proper subgroups of the group G. Prove that H, U H, c G.
Hint. Reduce the proof to the case in which H, ¢ H, and H, ¢ H,. Show that if
x€H, — Hyandye H, — H,thenxye G — (H, U H,).

3. Prove that if G is a finite group, and H is a proper subgroup of G, then G # Uses
x~'Hx. Hint. Note that |{x™'Hx: x € G}| is at most equal to the index [G : H] of
Hin G, and 1 € x ! Hx for all x € G. Use these observations and the assumption
that [G: H] > 2 to show that || ), .o x ' Hx| < |G|.
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4. A field F is Pythagorean if any sum of squares of elements in F is in F2. Thus, F is
Pythagorean if and only if a* + b% € F? for all a, b€ F. A field F (necessarily of
characteristic zero) is formally real if —1 cannot be written as a sum of squares in
F. In particular, a Pythagorean field is formally real if and only if —1 ¢ F2. Prove
that a quaternion division algebra D over F has the property that all maximal sub-
fields of D are isomorphic if and only if F is formally real, Pythagorean, and D =~

<_1;__1>. Hint. Show that for a, be F — F?, the fields F(,/a) and F(,/b) are

isomorphic if and only if a/b € F2. Use the result of Exercise 4, Section 13.1 to show
-1,-1

that if all maximal subfields of D are isomorphic, then D ~ ( ) Moreover,

—-1,—

since ¢ + d? = v(ic + jd) in < >, the hypothesis that maximal subfields

are isomorphic yields F(~/ —(c? + d?)) = F(/—1). Deduce that F is formally real
and Pythagorean.

5. The purpose of this exercise is to show that there are formally real, Pythagorean
fields E such that E°/(E°)? has arbitrarily large (finite) order. Of course, R is formally
real and Pythagorean, but |[R°/(R°)?| = 2. Let F be a formally real, Pythagorean
field such that |F°/(F°)?| = 2™. Let E be the field of formal Laurant series Y.,
x*a,, n € Z, a, € F with componentwise addition and the convolution product, that
is, x'x/ = x**J. Prove the following statements.

(@ 1+ xa, + x*a, + --- e(E°?foralla,,a,, ... inF.

(b) Eis Pythagorean.

(c) Eis formally real.

(d) |E°/(E°)?| = 2™*'. Hint. x and —x are in different cosets of (E°)2.

Notes on Chapter 13

Our discussion of subfields and splitting fields for simple algebras follows
the classical line in two respects: only finite dimensional algebras are
considered; all subfields are required to contain the center. In discussing
maximal subfields of arbitrary central simple algebras rather than just
division algebras, we have been slightly unorthodox. This extra generality
makes it necessary to fuss over the pathology of n-closed fields. However,
such fields do exist, and the property of n-closure shows up in the structure
of the Brauer group. The Cartan—Brauer—Hua Theorem is usually stated for
subalgebras of division algebras. The extra generality in our statement of
this result falls short of what is known about the normal subgroup structure
of M (D)° = GL,(D) when n > 2. An elegant treatment of this topic is
given in Chapter IV of Artin’s book [6]. The example that is outlined in
the exercise of Section 13.3 is due to Brauer and Noether. (See [19].)



CHAPTER 14
Galois Cohomology

The explicit calculation of the Brauer group of a field is usually a formidable
task. In this chapter, we develop the machinery that in principle will com-
pute B(F) for any field F. The key results in this program are: (1) B(F) =
(UB(E/F), where the union is taken over all Galois extensions E/F (Corollary
13.5); (2) B(E/F) =~ H?*(G(E/F),E°), the second cohomology group of E°,
considered as a ZG(E/F)-bimodule in a suitable way (Theorem 14.2); (3)
the isomorphism of (2) lifts to an isomorphism of B(F) = (B (E/F) with
the direct limit H*(G(F/F),F_) = lim H*(G(E/F),E°), where F, is the
maximal separable extension of F (Theorem 14.6). The group H*(G(E/F),
F) is one of the Galois cohomology groups of F. To provide some relief
from this morass of formalism, we have inserted an application of Theorem
14.2: a proof that B(F) is a torsion group.

Like Chapters 9 and 11, this chapter is heavily oriented toward technical
constructions: the cohomology of groups, direct and inverse limits, and
Galois cohomology. It would be an unusual reader indeed who developed
great enthusiasm for the results that are given here. The theorems in this
chapter are not that exciting. However, they are absolutely fundamental
tools for modern research in the theory of central simple algebras. The only
available way to construct the Brauer groups of arbitrary fields is by using
these techniques. Moreover, Galois cohomology provides the bridge
between central simple algebras and class field theory that leads to the
fundamental theorems on the Brauer groups of local fields and algebraic
number fields. These are among the most profound results in modern
algebra.

250
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14.1. Crossed Products

If E/F is a finite Galois extension, then there is a construction that produces
the central simple F-algebras that contain E as a strictly maximal subfield.
By Corollary 13.5, every element of the relative Brauer group B(E/F) is
represented uniquely by such an algebra. In this section we describe the
construction.

Throughout this section, E/F denotes a Galois extension with Galois
group G(E/F) = G. It is convenient to represent the action of G on E by
exponential notation ¢: ¢ — ¢°.

Lemma. Assume that A € S(F) contains E as a strictly maximal subfield.
(i) There is a set {u,: 6 € G} < A° such that for all ce Eand o € G,
¢ =ucu,. 1

(i) If {u,: o € G} satisfies (i), then this set is an E-space basis of Ay ; more-
over, if 6, T € G, then ®(a,7) = (u,,) *u,u, € E°, and

®(0,7)@(po,7) ' ®(p,07)(®(p,0)) ' =1 forallp,a,7€G. (2)

(i) If u; = 1 and ® is defined as in (ii), then ®(o,1) = ®(1,0) = 1 for all
oeG.

ProoF. The statement (i) is a special case of the Noether—Skolem Theorem.
To prove the first part of (ii), it is sufficient to show that {u,: o€ G} is
linearly independent, since the strict maximality of E in A implies that
dimg A, = [E: F] = |G|. If the u, are linearly dependent over E, then there
is a relation ) _yu,c, = 0in which ¢c,e E° force X and @ # X < G is
minimal. Since each u, # 0, the set X includes at least two elements of G.
For each d € E°, the equation (1) yields Y, . u,d°c, = d(},.xu,c,) = 0.
By the minimality of X, the sequences (.. d’c, ..),.x and (.. ¢, ..),cx
must be proportional; that is, d’ = d* for all de E° and o, 1€ X. This
conclusion contradicts | X| > 1, and proves that {u,: ¢ € G} is a basis of 4.
We remark for future reference that the proof of the linear independence of
{u,: 6 € G} has used only (1). An easy computation based on the property
(1) shows that (u,,) " 'u,u,c = c(u,,) 'u,u, for all c € E. Hence, (u,,) 'u, u, €
C,(E) = E by Corollary 13.1b. Clearly, ®(s,7) = (u,)) 'u,u, # 0. Finally,

(D(Pay T)_l (D(P,O'T)(D(O'af) = u‘t_l u;al uporu;;rupuatuo_‘rl Usu,

— .1 -1 — T
= u; u,,uuu, = O(p,0)".

The statement (iii) is obvious. O

The mapping ®: G2 — E° defined in (ii) determines a cochain, and the
equation (2) is the cocycle condition for suitable cohomology groups. The
details of this identification will be given in the next section.
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Proposition. Let E/F be a Galois extension with G(E/F) = G, and suppose
that ®: G* — E° satisfies the cocycle condition. Let {u,: o € G} be a basis
for the E-space A = P, U, E. Definep: A x A - Aby

u(Z UCyr Y urdt> =Y u, ®(0,7)cid,. (3)
geG teG ,T

The mapping u is F-bilinear, and it defines a product on A such that A € S(F),
1,E is a strictly maximal subfield of A, the basis {u,: o € G} satisfies (i) of
the lemma, and (u,) 'u,u, = 1,0(0,7).

Proor. The F-bilinearity of p is a consequence of the fact that G fixes the
elements of F. By a routine calculation, the form ®(p,a7)®(0,7) = ®(pa,7)
®(p,0)" of the cocycle condition implies that u defines an associative multi-
plication. It is also easy to check that 1, = u, ®(1,1)7*; and (1,0)(1,d) =
1,cd, so that 1,E is a subfield of 4 that is isomorphic to E. Moreover,

uu, = u;®0,07") = L,0(1,1)P(0,07") € 4°,

u; eu, = u;'u,c” = 1, foro € G, c € E, and (u,.) ' u,u, = u, ' u, ®(0,7)
= 1,0(0,7). If 8: 4 > B is a surjective F-algebra homomorphism, then
0|(1,E) is injective, and {0u,: o € G} satisfies (1). As we noted in the proof
of the lemma, this fact implies that {fu,: o0 € G} is linearly independent
over E. Thus, dim,4 > dim;B > |G|[E:F] = dim; 4, and 6 is an
isomorphism. Hence, 4 is simple. If x = Y gu,c, € Z(A), then for all
deE, 0= (L,d)x — x(1,d) = Y ;g (d° — d)c,. Thus, (d° — d)c, =0
for all ¢ € G and d e E, which implies that ¢, = 0 for all ¢ # 1. That is,
x = l,c for some ceE. In fact, since 1,¢° = u,;'(1,0)u, = l,¢ for all
o € G, the assumption that E/F is Galois puts c in F. O

The algebra A that is obtained from the construction of the proposition
is called the crossed product of E and G relative to ®. We will denote 4 by
(E,G,®). As usual, E will be identified with the subfield 1,E of 4, and for
c € E, the element 1 ,c will be designated by c.

Corollary. The mapping ® — [(E,G,®)] is surjective from the mappings
®: G2 — E° that satisfy the cocycle condition to B(E/F).

The construction of (E,G,®) is somewhat neater if @ is normalized, that
is, ®(1,1) = 1. In this case 1, = u,, and the cocycle condition yields ®(s,1)
= ®(1,0) = 1 for all ¢ € G. The lemma implies that for any ‘¥’ there exists
a normalized @ such that (E,G,¥) = (E,G,D).

EXAMPLE. Let E/F be Galois, with [E: F] = n and G(E/F) = G. Denote
A = Ep(E) =~ M,(F). The left regular representation maps E to a strictly
maximal subfield of 4. For ¢ € G and ¢ € E, define ¢, € A by ¢,(c) = ¢
If b e E, then (¢, 1A,¢,)(c) = b’c = Ay(c). That is, ¢, 4,¢, = 4,.. More-
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over, ¢, ¢, = ¢,, for 0,71 € G. Thus, 4 = (E,G,I), where I(s,7) = 1 for all
0,7€G.

EXERCISES

1. Prove that if ®: G> —» E° is a mapping that satisfies the cocycle condition (2) and
®(1,1) = 1, then ®(a,1) = ®(l,0) forallo e G.

2. Fill in the details that were omitted from the following parts of the proof of the
proposition.
(a) The multiplication defined by (3) is associative.
(b) u,®(1,1)" is the unity element of A.
(c) Ifc,de E, then (1,¢)(1,d) = 1,cd.

3. Let F be a field whose characteristic is not 2, and suppose that 4 = <a1,:b) is a

quaternion algebra withae F — F?,be F°. Let E = F(\/a), G = G(E/F) = {l,a}.
Prove that 4 =~ (E,G,®), where ©(1,1) = ®(1,6) = ®(g,1) = 1 and ®(0,0) = b.

4. Let A € S(F), and suppose that B and C are simple subalgebras of 4 such that
C = C,(B). Denote G = Aut, Band H = Aut, C. Prove the following statements.
(a) There exist elements u, € N,(B) for all 6 € G and v, e N(C) for all te H

such that o(x) = u,'xu,, x€ B,and ©1(y) = v, 'yv,, y € C.

(b) With the notation of (a), u!u,u € C° for 6,7€G, and v}'v,v,€ B° for
o, 7€ H.

(c) N(B) is the disjoint union of the cosets C°u,, 0 € G, and N (C) is the
disjoint union of the cosets B°,, 7 € H.

(d) o€ G is an inner automorphism if and only if u, € B°C®, and t€ H is an
inner automorphism if and only if v, € B°C®. Let X be a set of representatives of
the right cosets in Aut, B of the group Inn, B of inner automorphisms of B, and
let Y be a set of representatives of the cosets of Inn, C in Aut, C.

(€) N,B) = {J,.xB°C°u,and N (C) = (.., B°C°v,.

(f) If B is a division algebra, then {u,: ¢ € X} is linearly independent over B,
and Yy BCu, is a subalgebra of 4.

14.2. Cohomology and Brauer Groups
The results of the last section lead to a cohomological interpretation of

relative Brauer groups. The correspondence will be described in this section.

Lemma. Let E/F be a Galois extension with Galois group G. If ® and ¥ are
mappings from G?* to E° that satisfy the cocycle condition, then (E,G,®) ~
(E,G,Y) if and only if there is a mapping ©®: G — E° such that

®(0,7)¥(0,7)! = O(1)O(01) ' O(a)* forall o,71€GC. )

PrOOF. Let 4 = (E,G,®) = P, ¢4, E, and B = (E,G,¥) = @P,.¢V,E, as
in Proposition 14.1. Suppose that there is an isomorphism ¢: 4 — B. There
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is no harm in assuming that ¢(1,c) = lzc¢ for all c€ E. In fact, by the
Noether—Skolem Theorem, the homomorphism 1z¢ — ¢(1,¢) extends to an
automorphism « of B, and a~'¢ is an F-algebra and E-space isomorphism
of 4 to B. By applying ¢ to the equation u,'(1,c)u, = 1,¢°, we obtain
() (15009 (u,) = 1p¢° = v, (1gc)v, for all ce E. Thus, ¢(u,)v," €
Cz(1zE) = 14E, so that there exists @ (o) € E° satisfying

¢(u,) = v,0(0). @

As o ranges over G, the equation (2) defines the required mapping from G
to E°. In fact,

150(0,7) = ¢(1,0(0,7))

= ¢(u;fl uﬂ'ut

= 1,0(07) " 'v,.'v,0(0)v,O(1)
= 1,0(07) v} v,0,0(0)*O(7)

= 1;,0(07) " ¥(0,7)O(0)*O (1),

so that (1) is satisfied. Conversely, if there is a mapping ®: G - E° such
that (1) holds, then the equation (2) defines an E-space isomorphism from
A to B. A routine calculation using (1) and the definition of multiplication
in crossed products shows that ¢((u,c)(u.d)) = ¢(u,c)¢(u.d) for all o,
1€ Gand c, d e E. Thus, ¢ is an F-algebra isomorphism. O

The cocycle condition and condition (1) in the lemma can be interpreted
as cohomology relations for a suitable bimodule. Let E/F be a Galois
extension with the corresponding Galois group G. The multiplicative group
E° becomes a ZG-bimodule in which the elements of G act as the identity
mapping on the left, and on the right they operate as the automorphisms
that they are. Explicitly, if z = ), _s0n, € ZG, and ¢ € E°, then

2o = l"[ C"”, o = l“[ (Ca)na. (3)

ceG ceG

A routine check shows that E° is a ZG-bimodule with the scalar operations
defined by (3).

The cohomology modules corresponding to the bimodule E° are defined
as in Section 11.1, except that the bimodule addition is written multiplica-
tively. The role of R is played by Z, so that the cohomology modules are
just abelian groups. It is convenient to simplify the notation of Section 11.1
by writing C*(G,E°), Z"(G,E°), B"(G,E°), and H"(G,E®) for the groups of
n-cochains, n-cocycles, n-coboundaries, and n-cohomology classes respec-
tively. For each ® € Z"(G,E®), the cohomology class ®B"(G,E°) will be
denoted by [®@].

Since ZG is a group algebra, the elements of C"(G,E°) can be identified
with the mappings of G" to E°, as we noted in Section 11.1. Taking this
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viewpoint, the first three coboundary homomorphisms take the following
forms: (59¢)(6) = ¢(c®)™! = ¢'7° for ce E° = C%G,E°) and o€G;
6'V0)(0,7) = O(1)O(01) 1 O(0)* for a mapping ®: G — E° and g, 1€ G;
6P®)(p,0,7) = ®(0,7)P(pa,7) ' ®(p,07)(P(p,0)°)"! for a mapping @:
G? - E°. Therefore, the cocycle condition on a mapping ®: G — E° is
identical with the assumption that ® € Z%(G,E°). Moreover, the condition
(1) of the lemma is equivalent to ®¥~! = 50, that is, [®] = [¥].

Theorem. If E/F is a Galois extension with G = G(E/F), then the mapping
Ogr: [®@] — [(E,G,®)] is an isomorphism of H*(G,E°) to B(E/F).

By Corollary 14.1 and the lemma, the mapping 6 is a well defined
bijection from H?*(G,E®) to B(E/F). The proof that 6 is a group homomor-
phism occupies the next section.

A special case of the fact that 6 is a group homomorphism was outlined
in Exercise 5 of Section 9.2: if char F # 2 and a, b, c € F°, then (%) X

<a;Fc> x~ a,Tbc> &) M,(F). If a ¢ F?, then by Exercise 1 of Section 14.1,

the algebras (al,:b>’ <a1,:c>, and <a,li)c can be identified with the respective
crossed products (E,G,®), (E,G,¥), and (E,G,®¥) in which E = F(ﬁ),
G = G(E/F) = {l,6}, and ®(1,1) = ®(1,0) = ®(0,1) = ¥(1,1) = ¥(1,0)
= ¥(o,1) = 1,®(0,0) = b, ¥(s,6) = c. The assertion (E,G,®) X) (E,G,¥)
~ (E,G,®W¥) is confirmed by the Exercise 5 in Section 9.2.

EXERCISES

1. Prove that the mapping ¢ that is defined in the lemma by (2) satisfies ¢ ((u,c) (u.d)) =
d(u,c)p(ud)foralle,7eGand c,de E.

2. Prove that E° is a ZG-bimodule with the scalar operations defined by (3).

3. Prove Hilbert’s Theorem 90: if E/F is a Galois extension with G(E/F) = G, then
H°(G,E°) =~ F°and H'(G,E°) = {1}. Hint. Let ©: G — E°satisfy (6'V0)(q,7) = 1
for all g, T € G. Using an argument that is similar to the proof of Lemma 14.1, show
that there exists ¢ € E° such thatd = ) ,_;©(0)c” # 0. Deduce that d* = O(7)"'d
for all 7 € G, so that ® € B!(G,E°).

4. Let E/F be a Galois extension with the Galois group G. Consider the additive group
of E as a ZG-bimodule in which the elements of G act as the identity on the left
and by their standard action on the right. Consider F as a submodule of ,;E. Prove
that E ~ Homy(ZG,F) as ZG-bimodules, where Homz(ZG, F) has the ZG-bimodule
structure that was defined in the Coinduced Bimodules statement of Theorem 11.2.
Conclude that H*(ZG,E) = 0 for all n > 1. Hint. By the normal basis theorem of
Galois theory, there exists d € E such that {d° : 6 € G} is a basis of E,. Prove that the
mapping ¢ : Hom,(ZG,F) — E defined by ¢(0) = Y, . d°0(c™") is a ZG-bimodule
isomorphism.
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14.3. The Product Theorem

The purpose of this section is to complete the proof of Theorem 14.2. It
only remains to show that the correspondence between H?*(G,E°) and
B(E/F) that was given in Section 14.2 is a group homomorphism.

Proposition. Let E/F be a Galois extension with G = G(E[F). If ®,¥ €
Z*(G,E°), then

(E,G,®) X (E,G,¥) ~ (E,G,0Y).

The proof of this proposition is based on two lemmas, the first of which
is elementary and widely useful.

Lemma a. Let A € S(F). If e is a non-zero idempotent element of A, then
ede e S(F) and ede ~ A.

PrOOF. Let P be a minimal right ideal of 4. Since A4 is finite dimensional
and simple, it follows from Proposition 3.3b that e4 =~ Pk P as right
A-modules for a suitable k € N. By Corollaries 6.4b and 3.4a, ede =~
E,(@k P) =~ M, (D), where D = E ,(P) is a division algebra. Thus, ede is
simple, and ede ~ D. In particular, ife = 1,then 4 ~ D. Hence ede ~ A,
and Z(ede) = Z(A4) = F. O

We will prove the proposition by applying the lemma to 4 = (E,G,®) ®
(E,G,¥), and an idempotent e that satisfies ede = (E,G,®¥). This idem-
potent is found in the subalgebra E (X) E of A. The structure of E (X) E is
known from Example 9.4: if E = F(d), then E (X) E =~ E[x]/®E[x], where
® is the minimum polynomial of d over F. Since E/F is Galois, @ is a product
of distinct linear factors in E[x]. By the Chinese Remainder Theorem,
E (R E is isomorphic to a product of [E: F] copies of E. Consequently,
E (X) E contains a set of [ E: F] pairwise orthogonal, primitive idlempotents
e such that e(E (X) E) = E. We will show that one of these idempotents
satisfies ede =~ (E,G,®¥). Some information about the primitive idem-
potents in E (X) E is needed to obtain this isomorphism. A careful look at
the decomposition of E (X) E as a product of copies of E leads to the second
lemma of this section.

Lemmab. Let E/F be a Galois extension with G = G(E[F). Denote R =
E (X) E. There exists {e, € R: 6 € G} such that :

(i) e2=e,, e,e,=0forc # t,and ), e, = lg;
(i) e,(c Q1) =e,(1 Q) ) forallce E;
(i) ¢ e,(c X) 1) maps E isomorphically onto e, R;
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(iv) iff € Ris a non-zero idempotent element such that f(c (X) 1) = f(1 ) ¢°)
forallce E, thenf = e,.

PROOF. Since every Galois extension is simple, there exists d € E such that
E = F(d). Let © be the minimum polynomial of d over F; thus, ©(x) =
[legx —d) =x"+a,x"" + --- + a, where n = [E:F] and g, F
for1 < i < n. For o € G, define
0,x) =[] (@ —d)'(x —d) =b, X" + b,x"? + --- +b,,
T¥0
with b,; € E. By construction, ®,(d") = 0 if 7 # ¢ and ©,(d’) = 1. Thus,
1 —Y,.69,is a polynomial of degree less than n that has n distinct roots.
Therefore,
yYe,=1 (1)
ceG
For each ¢ € G, define 1 (X) ©, € R[x] by (1 ® ©,)(x) = (1 &) b, )x" ! +
I ®b,)x" 2+ -+ + (1 b,,). It follows from (1) that
Z 1 ® 0, = lgy 2
ceG
Moreover, if 1RO =1Q@Dx"+ (1 Ra)x"' + - --- +(1Ra)e
R[x], then

x-1Qd)N1R®O, =1 bI1K e), (3

and
ifo#7, thn 1®0,)1R0)=(01RONY, )
for some Y, € R[x]. Define ¢, = (1R 0,)dX1) = @' X b,,) +

@ 2®b,,) + -+ +(1&b,,). Since d"7!, d""%, ..., 1, are linearly
independent, it follows from Proposition 9.1c that e, # 0. However,

1ROERXIN=E"@D+ @' ®a) + -+ +(1Qa,)
=@ +ad '+ - +a)Q1=0,

sothat} e, =1,d @1 — 1) d%e, = 0,and e,e, = 0 for o # 1, by
(2), (3), and (4). Consequently, e, = Y. se,e, = eZ, which proves (i).
Moreover, for all ke N, e (@ X 1) = (e,(d Q D) = (¢,(1 R d))* =
e,(1 X (d*)°). The statement (ii) follows from this observation because the
powers of d span E,, and ¢ fixes the elements of F. Since E is a field, ¢ —
e(c ® 1) is an isomorphism from E to e(E (X) F) for every non-zero idem-
potent e € R. This observation proves (iii) because e,(E &) F) = e, R by (ii).
Suppose that fis a non-zero idempotent in R such that f(c XD =0
¢®) forall ce E. If T # o, then ¢ # ¢ for some c€ E, and e f(c Q) 1) =
fe1® ) = e f(c”" ®1). Thus, e,f = 0, since ¢ — ¢ is in the kernel
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of bi>e f(b QR 1). By (i), f = Y..qfe. = fe,. On the other hand, f = e, f
is a non-zero idempotent element in the field e, R, sothat f = 1, p = ¢,. [

We can now prove the proposition. Let 4 € &(F) be such that 4 = B (X)
C, where B ~ (E,G,®) and C =~ (E,G,¥). By Lemma a, it suffices to find
a non-zero idempotent element e € 4 such that ede =~ (E,G,®¥). The
assumptions B = (E,G,®) and C = (E,G,¥) mean that there are F-algebra
homomorphisms ¢: E —» B, y: E— C, and sets {u,:0e€G} < B°, {v,:
1€ G} c C°suchthat B = P, u,¢(E), C = P, v,Y(E),

u;tP(u, = ¢(c?), v, Y (c)v, = Y(c°) foreeG,cekE, Q)
and
utuu, = ¢(®(0,7)), v lv,0, = Y(¥(o,7)) foro, t€G. (6)

ot 6t "0t

Our aim is to find a non-zero idempotent element e € R = ¢(E) (X) Y (E),
a non-zero F-algebra homomorphism y: E — ede,and aset {w,:6€ G} <
(ede)° such that: ede = P, w,x(E); x(E) is a maximal subfield of ede;
w, Lx(w, = x(c°) for 0 € G, ce E; and w;'w,w, = x(®(c,7)¥(0,7)) for
o, 1€ G. It will then follow that (E,G,®¥) =~ ede ~ A by Lemma a. The
facts that B centralizes C in 4 and R is a commutative subalgebra of 4 will
be used often in the rest of the proof. Apply Lemma b to R = ¢(E) (X)
Y (E) to get non-zero idempotents e, € R such that

ee. =0 ifo # 1, @)
e e,4(c) ®)

is an F-algebra isomorphism of E onto ¢_R,
e, d(c) = e, Yy(c°) foroeG,cekE, )

and e, is the unique non-zero idempotent in R that satisfies this condition.
Define e = e, and x: E - eR < ede by x(c) = ed(c). Note that ed(c) =
ey/(c) by (9). The following equations follow from (5) and (9):

u,e =eu, and ev, =ve, foro,7€G. (10)
Indeed,
u,Ru;' = u,p(E)(E)u;"
= u,$(E)u, ' Y(E)
= ¢(ETW(E)
= G(EW(E) = R,

so that u,eu ' is a non-zero idempotent in R; and u,eu; ' ¢(c) = u ed(c”)u;*
= uef(c”)u; ' = u,eu;'y(c”) because B centralizes Y(E). Thus u,eu,’ =
e,. A similar calculation gives the second part of (10). It follows from (7)
and (10) that if ¢ # 7, then evu,e = vee,u, = 0. Thus, ede = e(}, .
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vu,R)e = Y w,x(E), where w, = evu e = v,e,e u, = v,e,u, = ev,u, =

v,u,e. By Lemma a, ede € S(F) and dimpede < |G|[x(E): F] = [x(E):
F]? < dimgede. Thus, ede = (P, w,z(E) and x(E) is a maximal subfield
of ede. Since w,(eu; v;'e) = e, the elements w, are units in ede. If c € E,
then w; 7w, = ev, ;' $(Ou,r,e = ev; ' $(Iv,e = ep(c”) = 1(c°).
Finally,

w,W, = ev,u,evu,
v, Y (¥ (0,7))u,. ¢ (@(0,7))
= ev,.U, Y (¥(0,7))$(P(0,7))
= w,.e¥(¥(0,7))9(P(0,7))
Ww,.ep(¥(0,7))p(®@(0,7))
W, x(®(0,7) ¥ (0,7)).

I

I

EXERCISE

Specialize the construction that was used in Lemma b and the proposition to the

quaternion algebras B = (a,b>’ C= <a,c>’ where char F # 2, a, b, c€ F°, a¢ F?,

F F
and E = F(\/a). Specifically, show that e = (1/2)(@'(i Qi) + (1 X 1)) and e, =
1/2)((—=aHA Q1) + (1 Q 1)), where o(,/a) = —,/a. Verify that eR has the F-
basise, el ® 1) = (1/2)(1 Q) i) + (1 ® 1)), and that w, = eandw, = e(j Q) j) =
1D R ) + & ® K)). Prove that ede has the F-basis e, e(j Q) {), e(i ) 1), and
—e(k ® j)). Compare these results with the hints for Exercise 5, Section 9.2.

14.4. Exponents

This section is a digression from the formalism of the rest of the chapter.
We will use crossed products to prove that the Brauer groups have no
elements of infinite order.

Lemma a. If A € S(F) has index n, then [A]" = 1 in B(F).

PRrOOF. By Proposition 13.4 and Theorem 13.5, it can be assumed that 4
contains a strictly maximal subfield E such that E/F is Galois. By Proposi-
tion 13.4, n = Ind 4 divides DegA4 = [E: F], say [E:F] = mn. Thus,
A =~ M, (D), where D is a division algebra of degree . It follows that there
is a D-A4 bimodule M with dim, M = m. Since E is a subfield of 4, M is
also a right E-space. The bimodule condition au = ua for ae F, ue M
implies that dim M, = dim M. Therefore, (dim My)mn = (dim Mp)[E: F]
= dim M, = dim ;M = (dim ,M)(dim ;D) = mn*; that is, dim M, = n.
Letw,, ..., w, be a basis of M;. By Lemma 14.1, 4 has a basis {u,: 0 € G}
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(where G = G(E/F)) such that u;'cu, = ¢’ forallo € G, ce E, and u, ' u u,
= ®(o,7)forallo, te Gwith® e ZZ(G E°).Thatis, 4 = (E,G,®). Relative
to the basis {w,, ..., w,} of M, the right regular representation of 4 on M
is described by matrices. In particular, if e Gand 1 < j < n, then

= 3 vty (0). M

Let u(o) = [u;(0)] € M,(E). Since u, € A°, the matrix u(c) has an inverse.
Moreover, Y 7 w;p,;(67)®(0,7) = W, ﬂd)(a 1) = wi,u, = (Y ey Wit (0))u,
= Zk—l Wk i (0)° = Zl 1 W(Zk 1/111((“)#1‘,(0')!) so that

1) ®@(0,7) = u(v)u(o)’, ()

where u(0)" = [;;(0)°]. Define ©: G — E° by @ (¢) = det (o). By taking
the determinant of each side of (2) we get ®(o1)®(0,7)" = O(1)O(0)".
Hence, ®" = 60O and [®]" = [®"] = | in H*(G,E). By Theorem 14.2,
[4]" = Ogp([@]) = 1. O

Proposition a. If E/F is a finite field extension with[E: F | = n,then[A]" = 1
for all [ A] € B(E/F). In particular B(F) is a torsion group.

Proor. By Lemma 13.2, E splits any algebra 4 € S(F) such that [4] e
B(E/F). In this case, Ind 4 divides [E: F] = n by Lemma 13.4. Thus,
[4]" = 1 by Lemma a. O

The fact that H*(G,E®) is a torsion group can be proved directly, and in
a more general form. An outline of this development is given in Exercise 3.

Definition. Let 4 € S(F). The exponent Exp 4 of 4 is the order of [4] in
B(F).

In other words, Exp 4 is the least m € N such that the tensor product of
m copies of A is a matrix algebra over F. The exponent is similar to the
index in many ways, and for important classes of algebras these invariants
are equal. The rest of this section is occupied with the proofs of fundamental
properties of the exponent.

Lemma b. Let A € S(F) have index p°m, where p is a prime, e > 1, and p
does not divide m. There is a finite, separable field extension K/F such that
p does not divide [K : F] and Ind A* = p°.

Proor. By Theorem 13.5 there is a Galois extension E/F such that E splits
A. Let H be a Sylow p-subgroup of G(E/F), and define K to be the fixed
field of H. This construction gives [E: K] = |H| = p’ for some r < w and
[K: F] is not divisible by p. Proposition 13.4 shows that Ind 4% = p°. In
fact, Ind 4* divides both Ind 4 = p°®m and [E: K] = p" because E splits
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AX. Thus, Ind 4¥ = p*, where s < e. On the other hand, p°m = Ind 4
divides [K: F]Ind 4* = [K: F]p*; hence, e < s. O

Proposition b. Let A, B € S(F), and suppose that K| F is a finite field extension.

(i) If[A] = [B], then Exp A = ExpB.
(it) Exp 4 divides Ind A, every prime divisor of Ind A divides Exp A.
(iii) Exp A* divides Exp A.
(iv) Exp 4 divides [K : F] Exp 4.
(v) If Ind A is relatively prime to [K : F], then Exp AX = Exp 4.
(vi) Exp(4 ® B) divides the least common multiple of Exp A and Exp B.
(vii) Exp A®™ = (Exp A)/k where k is the greatest common divisor of m and
Exp 4.
(vii) If Ind A and Ind B are relatively prime, then Ind(4 ® B) = (Ind A)
(Ind B) and Exp(A (X) B) = (Exp A)(Exp B); in this case, if A and B
are division algebras, then so is A @ B.

PrOOF. The statement (i) is obvious from the definition of the exponent,
and the statements (vi) and (vii) are translations of elementary group
theoretic facts. The property (iii) is a consequence of the observation that
[A] — [A¥] is a homomorphism from B(F) to B(K). The first part of (ii)
follows from Lemma a; the second half of (ii) is a consequence of the first
part of (ii), Lemma b, and (iii). Indeed, if p divides Ind 4, then there is an
extension K/F such that Ind A% = p° with e > 1. Thus, Exp A¥X = p/ with
f>1 since'[AK] # 1. Therefore, p divides Exp 4. To prove (iv), let m =
Exp AX. Then K splits A®™, so that Ind 4®™ divides [ K : F] by Proposition
13.4. By (vii) and (ii), Exp 4/Exp A¥ = Exp A®™ divides Ind A®™; hence,
Exp 4 divides [K : F] Exp 4X. Clearly, (v) is a consequence of (ii), (iii), and
(iv). It remains to prove (viii). By the hypothesis and (ii), Exp 4 and Exp B
are relatively prime. Thus, m € N exists so that m = 1 (mod Exp 4) and
m = 0 (mod Exp B). Thus, (4 X) BY®" =~ 4®™ (X) B®™ ~ A. By Proposi-
tion 13.4 and (vii), Ind 4 divides Ind(4 (X) B) and Exp 4 divides Exp(4 (X)
B). Similarly, Ind B divides Ind(4 (X) B) and Exp B divides Exp(4 (X) B).
Thus, (Ind A)(Ind B) = Ind(4 (X) B) and (Exp 4)(Exp B) = Exp(4 (X) B)
by Proposition 13.4 and (vi). If 4 and B are division algebras, then

Ind(4 (X) B) = (Ind A)(Ind B) = (Deg 4)(Deg B) = Deg(4 (X) B),
so that 4 (X) B is a division algebra. O

It is a consequence of this result that every central simple division algebra
admits a primary decomposition.

Primary Decomposition Theorem. Let D € S(F) be a division algebra with
DegD = p§t - - pf, where p,, ...,p, are distinct primes and e;e N for
1 < i < r. There is a unique (to isomorphism) decomposition D = D; (X) - - -
&) D, with D, € &(F) a division algebra such that Deg D; = pffor1 < i <r.
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PrROOF. By Proposition b, ExpD = p{+ .- p/ =n, with 1 < f, <e, If
n; = n/p{’, then the greatest common divisor of n,, ..., n, is 1, that is,
1 =)"_,mn, for suitable m;e Z. For 1 <i <, let D,e S(F) be the
unique division algebra such that [D;] = [D]™". Then [D; ) --- X) D,]
= [[;=; [P]™ = [D], and Exp D, = p/' by Proposition b. Hence, D, (X)
-+~ D, isadivision algebra that is necessarily isomorphic to D. Moreover,
Deg D; = Ind D; = p}, where 1 < f; < I. In fact, p¢ ... p = DegD =
Deg(D, ) --- Q@ D,) = pit --- p}r implies e, =/, for 1 <i<r. The
uniqueness of the D; is clear because our construction is reversible. O

The algebras D, in the theorem are called the primary components of D.
Many questions about division algebras can be reduced to the case of
algebras whose degree is a prime power, that is, primary division algebras.

EXERCISES

1. Fill in the details of the proof that the primary components of a division algebra
D e &(F) are unique.

2. Let F be an n-closed field. Prove that the order of every element of B(F) is relatively
prime to n.

3. Let E/F be a Galois extension of degree n. Prove that [®]" = 1 for all ® € Z¥(G,E®)
if £ > 1. Hint. Write the condition 6*'® = 1 in the form

@(oy, ..., 0) = ®(6y0,, 0, ..., 6)P(0y, 0,0,, ...,0)"" -+ ®(cy, 7y, ..., 0,_,) 1%,

and take the product over all 6, € G(E/F).

14.5. Inflation

By Corollary 13.5, the Brauer group B(F) is the union over all Galois
extensions E/F of the relative Brauer groups B(E/F). In turn, the relative
Brauer groups can be identified with cohomology groups. In order to
relate the full Brauer group to cohomological data, an interpretation is
needed for the inclusion mappings B(K/F) — B(E/F) that arise when
F < K < E with K/F and E/F Galois extensions. Those inclusions corre-
spond to the inflation homomorphisms. We discuss inflation in this section.

It will be useful to standardize the notation for this section. Let E/F and
K/F be Galois extensions with K < Eand [E: K] = r. Denote G = G(E/F)
and H = G(K/F).

The restriction mapping ¢ — ¢|K is a surjective homomorphism of G to
H that induces an adjoint homomorphism C"(H,K°) - C*(G,E°) by
® - @*, where ®*(0,, ..., 0,) = ®(0,|K, ..., 0,|K). A simple calculation
shows that this map commutes with the coboundary: (6™ ®)* = 5™ (d*).
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Thus, the adjoint map carries Z"(H,K°) to Z"(G,E°) and B"(H,K°) to
B"(G,E°). Consequently, it induces a group homomorphism of H"(H,K°)
to H"(G,E®) that is called the inflation mapping, and is denoted by inf (or if
necessary, inf}._, ). Explicitly, inf[®@] = [®*] for ® € Z"(H,K°).

Proposition. If k: B(K/F) — B(E/F) is the inclusion homomorphism, then
k 0 Oy = Oy o inf. That is,

H*(G(K/F),K°) 5 H*(G(E/F),E®)
Ok/F l l OgF

B(K/F) -  B(E/F)

commutes.

If ®eZ?*(H,K°), then Oy, oinf[®] = [(E,G,0*)] and k,[®] =
[(K,H,®)]. The proposition is equivalent to (E,G,®*) ~ (K,H,®). Denote
B = (K,H,®) = @te uV. K, where {v,: 7€ H} satisfies the conditions of
Lemma 14.1 and X is a strictly maximal subfield of B. Let 4 = M (B) =~
M,(F) Q) B. Then A€ &(F), A ~ B, and Deg A = Deg(E,G,®*) since
r = [E: K]. The proposition will be proved by embedding E in A and
constructing a set {u,:0€ G} < A° satisfying 14.1(1) and u 'uu, =
®*(g,7) forallo, 1€ G.

Lemma. Let G act on M,(K) by [¢;]° = [c{]. There is an injective K-algebra
homomorphism A: E - M _(K) and a mapping u: G - M,(K)° such that:

() u(or) = p(r)p(o) forallo, 1€ G;
(i) p(o)Ad)® = AMd®)u(o) forallee G,de E.

ProoF. Fix a basis {b;, ..., b} of E, and define A(d) = [[;(d)], u(o) =

[m(e)] by db; =37, llJ(d) by = Y, bym;(c). Routine calculations
show that 2 is a K-algebra homomorphlsm and conditions (i) and (ii) are
satisfied. The computations can be simplified by a couple of general observa-
tions. First, note that N = (Pr E is an E-FG bimodule and a faithful, cyclic
right M,(K)-module (under matrix multiplication) with 8 = (b,, ..., b,) as
a generator. The mappings A and p are characterized by df = pA(d) and
B° = Bu(o). Hence, fu(ot) = B = (Bu(o))" = B*u(o)" = Pu(v)u(o)” gives
(i); and Bu(0)A(d)” = B°Ad)” = (BAd))” = (dp)° = d°B° = d°Bulo) =
BA(d°)u(¢p) implies (ii). Since u(l) = 1,, it is a consequence of (i) that
u(G@) € M(K)°. O

PROOF OF THE PROPOSITION. Let 4 and u be the mappings that were defined
in the lemma. Since K < B, we can view 4 as an embedding of Ein M,(B) =
A. Since A is an F-algebra homomorphism, the Galois group G(E/F) acts
on A(E) by : A(d) — A(d°). To avoid confusion with the notation that was
introduced in the lemma, we will not write A(d)? for 1(d”); these expressions
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have different meanings in the proof. For ¢ € G, define u, € M,(B)° = A° to
be the scalar product of v, with the matrix u(c)” ! Thatis,u, = = D,k ,u(a)

It follows from the lemma that u]'A(d)u, = ,u(a)vaml(d) |Ku(a)
(@A@Y (o)™t = Ad")pu(o)u(o)™ = A(d°), and

Uy, = Vyyept(0)  vgu(t) ™
= Dy (pu(0)) ()™
= Vi el (0| K, | K p(ot) ™!
= Darm#(af)_ld’*(d,r)
= u,, 0*(0,7).
Thus, 4 =~ (E,G,0%). -

EXERCISES

1. Prove that the inflation mapping is functorial: if F < K < E < L are fields such
that K/F, E/F, and L/F are Galois, then infg},, , = inf{}_, - o infg} ...

2. With the notation that was used in the proof of the proposition, prove that C,(K) =
K () C, where C =~ M,(F),and C,(C) = B

14.6. Direct Limits

This section gives the definition of direct limits and the basic existence and
uniqueness theorems that are associated with this concept. Our main result
establishes an isomorphism between the Brauer group of a field F and the
second Galois cohomology group of F that is obtained as a direct limit of
the groups H*(G(E/F),E°).

Definition a. Let I be a set that is partially ordered by <. A direct (inverse)
system of groups over [ is a pair (G,¢) of functions such that for each i € J,
G; is a group, and for each pair (i,j) with i < j, ¢; is a homomorphism from
G to G; (respectively, G; to G)); it is assumed that ¢, =id; forall iel,
and i < j < k implies d),k G ®,; (respectively, ¢, = ¢,,¢,k) If (G,¢) and
(G',¢") are direct (inverse) systems over I, then a morphism from (G,¢) to
(G',¢’) is a function 6 on I such that each 6, is a homomorphim from G,
to G/, and if i < j, then 6;¢; = ¢;;6; (respectively, ¢/,6, = 6,¢,). That is,
the diagram

% G,

i J

6 | 1o

commutes for all < j.



14.6. Direct Limits 265

The morphisms of direct and inverse systems of groups compose com-
ponentwise: if 6: (G,¢9) — (G',¢)and 0": (G',¢') — (G”,¢") are morphisms,
then '6: (G,¢) — (G”,$") is a morphism, where (6'0);, = 6,6, for all ie I.
The identity morphism of (G,¢) is id; , whose value at i is id; . Thus, the
class of all inverse (direct) systems over [ is a category. For future reference,
note that a morphism 0 is an isomorphism, that is, 6 has an inverse in the
category, if and only if all 6, are isomorphisms.

The definitions of direct and inverse systems are categorically dual. As a
result, the basic concepts in the theory of inverse systems can be obtained
from their counterparts in the theory of direct systems by ‘‘reversing the
arrows.” This observation justifies our concentration on direct systems.
Some facts about inverse systems involve new methods; these are described
in Exercise 3.

In most of the direct systems that occur in applications the index set /
is directed, that is, for each i, j € I, there exists k € I such that i < k and
j < k. All of the examples that we will consider have this property.

ExXAMPLE A. For a given field F, let I be the set of all Galois extensions E/F
such that E is a subfield of the algebraic closure of F. Partially order I by
defining E/F < K/F if E = K. The set I is directed because any two Galois
extensions E/F and L/F have a compositum EL/F that is also Galois. There
are two direct systems and one inverse system of groups over 7 that interest
us.

(i) The system of relative Brauer groups (B,x) is the direct system of
abelian groups B(E/F) and the inclusion mappings x:B(E/F) —
B(K/F) defined when E < K.

(ii) The system of n’th cohomology groups (H",inf) is the direct system of
abelian groups H"(G(E/F),E®) and the inflation mappings

inf{)_xr: H'(G(E[F),E°) » H"(G(K/F),K"),

defined when F < K.

(iii) The system of Galois groups (G,p) is the inverse system of groups
G(E/F) and the restriction mappings p: o — o|E from G(K/F) to
G(E/F) defined when E < K.

Proposition 14.5 can be stated succinctly in the terminology of Definition
a: 0 is an isomorphism from (H ?,inf) to (B,x).

Definition b. Let (G,¢) be a direct system of groups over I.

(i) A prelimit of (G,¢)is a pair (H,x) in which H is a group, y is a function
on I such that y;: G, » H is a homomorphism for all i € I, and

13

i <j implies x; = x;P;5 )]
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H is generated by
U Imy,, )]
iel

that is, no proper subgroup of H contains this union.

(ii) If (H,y) and (H',y’) are prelimits of (G,¢), then a morphism from
(H,x) to (H',y’) is a homomorphism y of H to H’ such that y; = Yy, for all
i € I. (It is clear from (2) that y is necessarily surjective.)

It is easily checked that the composition of morphisms of prelimits is a
morphism, and that idy, is a morphism of (H, ). Thus, the class of prelimits
of (G,¢) is another category.

If the indexing set I is directed, then the condition (2) in the definition
of a prelimit is equivalent to a simpler property:

H={)Imy,. 3)
iel

In fact, if I is directed, then |, ,Im ¥; is a subgroup of H.

iel
Lemma a. If (H,y) and (H',y’) are prelimits of (G,¢), then there is at most
one morphism : (H,y) - (H',)).

Proor. If ¥, and ¥, are morphisms from (H,y) to (H',x’), then Y, x; = x; =

Y,yx; for all iel. Thus, ¢1|(Uie,lmxi) = wzl(UiE,Imxi). Since {xe€ H:
¥, (x) = ¥,(x)} is a subgroup of H, it follows from (2) that y, = ¢,. [

Definition c. Let (G,¢) be a direct system over 1. A limit of (G,¢) is a prelimit
(H,x) of (G, ) such that for all prelimits (H’,x") of (G,¢), there is a morphism
of (H,x) to (H',x).

Proposition a. Any two limits (H,y) and (H',)") of (G,¢) are isomorphic.

PRrOOF. By the definition of a limit, there exist homomorphisms v : (H,y) —
(H',y) and ¥': (H',x") — (H,y). Since ¥’y and Y1)’ are homomorphisms,
it follows from Lemma a that Y'Y = idy and Yy’ = id,.. O

The uniqueness of limits allows us to speak of the limit of (G,¢). The
notation (H,x) = lim(G,®) (or just H = lim G) abbreviates the assertion
that (H,y) is the limit of the direct system (G, ¢).

Free products can be used to show that every direct system of groups has
a limit. For direct systems of abelian groups, free products can be replaced
by direct sums.

Proposition b. If (G,¢) is a direct system of abelian groups over a directed
set, then the limit of (G,9) exists.

PrOOF. Let I be the directed set that indexes (G,¢). For each i € I, denote
the natural embedding of G; in ()., G, by ;. Define N to be the subgroup
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of @), G, that is generated by Uisjlm(icjd)ij - k). Let H = (@), G)/N,
and y; = nx;: G; > H, where n: @), G, > H is the natural projection.
We will show that (H,x) = im(G,¢). If i < j, then y;¢; — x; = n(x;¢,; —
k;) = 0 by the definition of N. Since (P, G, is generated by | jer kG, it
follows that H = n(®P);,,G)) is generated by n({J;.,;x,G) = ;,Imy;.
Thus, (H,y) is a prelimit of (G,¢). Let (H’,x’) be another prelimit of (G, ¢).
Since 1 is directed and all G, are abelian, H" = UJ.E 1 X;(G)) is abelian. Thus,
there is a homomorphism : (P);., G, » H' given by (3., x) = ¥ ;1 X/X;
that satisfies ok; = x; for all i e I. Moreover, a(x;¢; — k) = x;d; — 1i»
sothat N = Kero. Thus, o factors through n,say ¢ = yn, whereyy: H - H’
is a homomorphism. Because y; = ok; = Ynk; = Yy;, the mapping ¥ is a
morphism from (H,y) to (H’,x’). Since (H',x’) is an arbitrary prelimit of
(G,9), it follows that (H,y) = lim(G,¢). O

The next lemma characterizes limits in a special case.

Lemma b. Let (G,¢) be a direct system of groups over a direct set I. If (H,y)
is a prelimit of (G,$) such that all y; are injective, then (H,y) = lim(G, ).

PROOF. Let (H’, ") be a prelimit of (G,¢). Define yy = e Xixit. Since each
¥; 1s injective and I is directed, the set ¥ is a homomorphism to H’ with
domain |J,.,Imy, = H (by (3)). By definition, Y, = ¥, so that ¥ is a
morphism of (H,y) to (H',y’). Thus, (H,y) = lim(G,¢). |

ExaMPLE B. For any field F, (B(F),y) = lim(B,x), where y: B(E/F) —
B(F) is the inclusion homomorphism.

Lemma c. Let 0: (G,¢) — (G',¢") be a morphism of direct systems of groups
over I. If (H,x) = im(G,) and (H',)") = lim(G’,¢"), then there is a unique
morphism . (H,y) — (H',)) such that Yy, = x;0; for allie I.

ProoF. The composition y = x;0; defines the prelimit (H’,x”) of (G,¢).
Since (H,y) is the limit of (G,¢), there is a unique morphism ¥ : (H,y) —
(H',x"); thatis, yy; = xi = xi6,. O

Write y = lim 6, where 0 and y have the same meaning as in Lemma c.
If (G,9) > (G',¢") 5 (G”,¢”), then lim 6’6 = (lim 6")(lim 6) by the unique-
ness property in Lemma c. Also, limidy 4 = idlﬂG. Thus, the limit is a
functor on the category of direct systems.

The principal result of this section follows directly from Proposition b,
Lemma c, and Examples a and b.

Theorem. For any field F,
lim 0: lim H?*(G(E/F),E°) - B(F)

is an isomorphism.
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The group lim H 2(G(E/F),E®) is the second Galois cohomology group
of the field F. If F, F, is the separable algebraic closure of F, then lim H 2(G(EIF),
E°)can be v1ewed as the second cohomology group of the ZG(F /F)-bimodule
F?. However, this definition does not agree with the definition of the co-
homology groups that was given in Section 11.1. The cochain groups
C"(G(F,/F),F?) must be modified to take account of the topology of the
infinite Galois group G(F,/F).

EXERCISES

1. Let I be the unordered set {i,j}. Define G; and G; to be the subgroups of the group
H of all permutations of {1,2,3} that are respectively generated by the cycles (1,2)
and (1,2,3). If ¢, = id;, ¢; = idc,’ then (G,¢) is a direct system. Show that (H,y)
is a prelimit of (G,), where y;: G, - Hand y;: G; — H are inclusion mappings, but
(H,y) is not a limit of (G, ¢). It can be shown that lim G is the free product of G; and

G;, and this group is isomorphic to PSL,(Z).

2. (a) Let (G,¢) be a direct system of abelian groups over a directed partially ordered
set I, and suppose that (H,y) is a prelimit of (G,®). Prove that (H,y) = lim(G,¢)
if and only if Kery; = szi Ker ¢,; for all i € I. Hint. For the “only if” part of the
proof, it can be assumed that (H,y) is defined by the construction in the proof of
Proposition b. To obtain the converse, let (H’,x") be a limit of (G,¢), so that there
is a morphism v : (H’,y") = (H,y). Use the hypothesis to prove that ¥ is an isomor-
phism.

(b) Let I be a directed partially ordered set. Suppose that (G,¢) 5 (G,¢) LN
(G”,¢”) is an exact sequence of direct systems of abelian groups over I, that is,
for all iel, Kerf, = Iméf,. Use the result of (a) to prove that Ker(lim¢’) =
Im(li_rr} 0): the sequence @(G,¢) - 1i_n}(G’,¢’) - lln(G”,qS”) isexact.

3. In this exercise, (G,¢) is an inverse system of groups over the partially ordered set
L. A prelimit of (G,¢) is a pair (H,y) in which H is a group and  is a function on /
with each y; a homomorphism from H to G, such that (1) y; = ¢,;%; if i < j, and
2 ﬂje, Kery; = {1}.If (H,y) and (H",y’) are prelimits of (G,¢), then a morphism
from (H',y’) to (H,y) is a homomorphism : H" — H such that y; = yy for all
i € I. Prove the following statements.

(a) The class of prelimits of (G,¢) is a category.

(b) If (H',x")and (H,y) are prelimits of (G,¢), then there is at most one morphism
from (H',y") to (H,y).

A prelimit (H,y) of (G,¢) is a limit of this inverse system if, for every prelimit
(H',y") of (G,9), there is a morphism of (H’,x") to (H,). Denote (H,y) by lim(G,¢).

(c) Any two limits of (G,d)) are isomorphic. <

(d) For i < j, define H; = {xe[],.,G,: ¢;mx = m;x}, where m;: [],;G, —
G; is the component prOJectlon Let H = (., H;;. Define y; = n,|H: Ho G,. Then
(H ) is the limit of (G,¢).

(e) If6:(G',¢") - (G,p) is a morphism of inverse systems of groups over /, and
(H,y) and (H’,y’) are the limits of (G,¢) and (G’,¢’") respectively, then there is a
unique morphism Y : (H’,x") — (H,y) such that yy = 6,y; forallie J.

(f) Let {N;:ie I} be a set of normal subgroups of the group G, where I is a
directed partially ordered set. Assume that: (i) / < jimplies N; = N;; (ii) N jerN; =
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{1}; and (iii) G; = G/N; s finite for all i e 1. For i < j, let ¢,;: G; — G, be the projec-
tion ¢, (xN) = xN,. Prove that ({G},{¢,}) is an inverse system of groups, and
(G,{x;}) is a prelimit of this system, where y,(x) = xN.. Prove that (G,{y;}) is a
limit of ({G;},{¢,}) if and only if G is compact in the topology that is defined by
letting the set of cosets {xN,: x € G, i€ I'} be a neighborhood basis of G. (In this
case, G is called a profinite group.) Hint. Apply Tychonov’s theorem to the con-
struction (d).

(g) Let F, be the separable algebraic closure of F. Define G = G(F,/F) to be the
group of F-algebra automorphisms of F,. For each Galois extension E/F, let yp
be the restriction homomorphism ¢ > ¢|E from G to G(E/F). Use (f) to prove that
(G,y) is the limit of the inverse system (G, p) that was defined in Example a.

4. In this exercise the notation and hypotheses are the same as they were in part (f)
of Exercise 3, including the assumption that G is profinite. Let M be a right ZG-
module. Consider M as a ZG-bimodule with the elements of G acting trivially (that
is, as the identity) on the left side of M. Denote M; = {ue M: ux = uforallx e N;}.
Call M discrete if \ J;.; M; = M. It is assumed that the ZG-modules in this exercise
are discrete.

(a) Prove that M; is a ZG;-bimodule with the right scalar operation u(xN)) = ux.

(b) Fori < j, define a mapping of C"(ZG;, M) - C"(ZG;,M,) by ® — ®*, where
O*(x, N, ..., x,N) = ®(x;N, ..., x,N), that is, @+ ®* is the adjoint of ¢,;.
Show that ® > ®* induces a generalized inflation homomorphism inf: H*(G,,
M) - H"(G;, M), and ({H"(G;, M) },inf™) is a direct system to abelian groups over
I. The direct limit H"(G,M) = lim({H"(G,,M,)},inf) is the n’th Galois cohomology
group of G with coefficients in M.

(c) Prove that a homomorphism y: M — M’ of discrete ZG-modules induces a
group homomorphism Y «: H"(G,M) > H"(G,M’), namely, Y5 = lim{(t//|Mj)*:
jel. -

(d) Let G have the topology that is defined by the neighborhood basis {xN;:
x€G,jel}. Thus G is compact. For n e N, endow G” with the product topology,
and give M the discrete topology. Let C(G,M) be the abelian group of all contin-
uous mappings from G" to M, with pointwise addition. Show that the usual co-
boundary homomorphism maps C/(G,M) to C**'(G,M). (Hint. If ® e C*(G,M),
then ®(G") is discrete and compact, hence finite. Use this observation and the
hypothesis M = (J;.; M, to show that 6"’® is continuous.) Define Z(G,M) =
Ker o™, BY(G,M) = Im "™V, and H"(G,M) = Z*(G,M)/B"(G,M). Prove that the
adjoint of the projection mapping y;: G — G, induces a homomorphism ¥;: H"(G;,
M) — H}(G,M), by the same construction that defines the inflation mapping.
Show that (H}(G,M),}) is the limit of ({H"(G;,M))},inf). Thus, H"(G,M) =
HXG,M).

(e) Use the result (d) to generalize the cohomology properties described in
Section 11.2 to the Galois cohomology groups of discrete ZG-modules.

(f) Let M be a discrete ZG-module. For a submodule N of M, denote by Ay,
the homomorphism of H"(G,N) to H"(G,M) that is induced by the inclusion map
of N to M. Prove that ({H"(G,N)},{Ayy}) is a direct system over the set of finitely
generated submodules of M (ordered by inclusion), and (H"(G,M),{Ay,}) is a
limit of this system. That is, H*(G,M) = lim H"(G,N). Hint. Use Exercise 2 and
the previously observed fact that continuous cochains have finite images.

jel

5. Let F have characteristic p > 0. Denote the separable algebraic closure of F by
F,, and write G = G(F/F).
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(a) Use the result of Exercise 4 in Section 14.2 to prove that F, is a discrete ZG-
module (under addition and the usual action of G') such that the Galois cohomology
groups H*(G,F) = Oforalln > 1.

(b) Define yr: F, » F, by y(x) = x — x. Show that y is a surjective ZG-module
homomorphism with Kery =~ Z/pZ, where ZG acts trivially on Z/pZ. (Hint. Note
that if a € F,, then X? — x — ais separable.) Use the Long Exact Sequence Theorem
for Galois cohomology to show that H"(G,Z/pZ) = 0 foralln > 2.

14.7. Restriction

If F is a subfield of K, then the inclusion mapping x: F — K induces a
homomorphism kx: B(F) - B(K). When these Brauer groups are repre-
sented as unions of relative Brauer groups corresponding to cohomology
groups, the description of ks can be given in terms of certain homomor-
phisms that are standard tools of cohomology theory. The purpose of this
section is to define these homomorphisms, and relate them to the mappings
of the Brauer groups.

Let H be a subgroup of the finite group G. If M is a right ZG-module,
then M can also be viewed as a ZH-module because ZH is a subalgebra of
ZG. Moreover, the trivial action of G on the left of M yields a ZG-bimodule
or a ZH-bimodule. Let ® € C"(G,M) be an n-cochain, considered as a
mapping from G" to M. The restriction ®| H" is then an element of C"(H, M).
The coboundary homomorphism plainly satisfies 6 (®|H") = (3™ ®)|H",
so that ® — ®|H" maps Z"(G,M) to Z"(H,M) and B*(G,M) to B"(H,M).
Therefore, ® — ®|H" induces a group homomorphism.

res: H'(G,M) - H"(H,M)

that is called the restriction mapping. Explicitly, res[®] = [®|H"] for all
® € Z"(G,M). For clarity we will sometimes denote this restriction mapping
by resgLy-

The applications of the restriction mapping that interest us occur when
n =2, G =G(E/F), and H = G(E/K), where E/F is Galois and K is a
field between F and E. Moreover, M will generally be E° with the usual
ZG-bimodule structure. Note that H°(G,E®) = (E°)¢ = F° and H°(H,E®)
= (E°)# = K°. It is easy to check that res: H°(G,E°) - H°(H,E®) is the
inclusion map of F° to K°.

Lemma a. Let E/F be a Galois extension, G = G(E|F), H a subgroup of G,
and K = E", the fixed field of H. If ® € Z*(G,E®), then ¥ = ®|H? ¢
Z*(H,E°) and (E,H,¥) = C(K) ~ AX, where A = (E,G,®).

PROOF. In the notation of Section 14.1, 4 = P, s u,E, where the u, € 4°
satisfy u;cu, = ¢° for all c € E, and u;}u,u, = ®(c,). Since H is a sub-
group of G and ¥ = ®|H?, it follows that B = (), .5 . E is a subalgebra
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of A4 that is isomorphic to (E,H,¥).If t € Hand c € K, thenu_'cu, = ¢* = c.
Therefore, B = C,(K). The Double Centralizer Theorem implies that
dim;C,(K) = (dimgA)/[K: F] = |G|[E: F]/[K:F] = |H|[E:F] =
dimg B. Thus, B = C,(K). By Lemma 13.3, C,(K) ~ AX. O

Proposition a. Let F = K < E be fields such that E/F is a Galois extension.
If k: F —» K is the inclusion mapping, then kx«(B(E/F)) = B(E/K) and the
diagram

H*(G(E[F),E°) —=— H*(G(E/K),E°)
Ogr | { Oex (1)
B(E/F) B(E/K)

—_—
x| B(EIF)
is commutative.

PROOF. If 4 € S(F) is split by E, then E also splits AX since (4¥)f ~ AXE =
AE. Thus, k«(B(E/F)) < B(E/K). Moreover, if ® € Z2(G(E/F),E°) and
A = (EG(E/F),®), then rxbp,[®] = ra[d] = [4¥] = [(E.G(E/K),
®|G(E/K)*)] = g res [®] by Lemma a. O

If F< K < E < Lis achain of fields such that E/F and L/F are Galois
extensions, then an easy calculation shows that the following diagram
commutes.

H"(G(E/F),E°) = H"(G(E/K),E°)
inf | | inf @)
H"(G(L/F),L°) — H"(G(L/K),L°)

In the ordering of extensions, the Galois extensions of F constitute a cofinal
subset of the Galois extensions of K. This remark and the commutativity
of the diagram above implies that the family of restriction homomorphism
induces a restriction homomorphism of the Galois cohomology groups:
res: HY(G(F/F),F;)) - H"(G(F,/K),Fy). Of course, F, = K,. It is easy to
check that if k: F — K is the inclusion mapping, then x4 : B(F) — B(K) is
the limit of {x«|B(E/F): E/F Galois and K < E}. The result of Proposition
a therefore implies that the diagram

H*(G(E/[F),F}) == H*(G(F/K),F)
lim 6 l llx_r>n Ogyx

B(F) —  B(K)

is commutative when K/F is a finite separable extension.

We will need a stronger version of Proposition a, based on some elemen-
tary field theory. If E and K are fields that contain a common subfield F,
and at least one of [E: F], [K: F] is finite, then E and K are said to be
linearly disjoint over F if E (X)z K is a field. When E and K are subfields
of a common field L, and [E: F] is finite, the condition that E and K are
linearly disjoint over F is equivalent to the (algebra) compositum EK being
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a tensor product over F of E and K. Indeed, EK is a field and a homomor-
phic image of E (X) K by Proposition 9.2b, so that E (X) K is a field if and
only if this mapping is an isomorphism. In this case, it follows from Proposi-
tion 9.2¢ that E and K are linearly disjoint over F if and only if every basis
of E, is also a basis of (EK)y, that is [E: F] = [EK:K]. If E/F is also
Galois, then there is a sharper result.

Lemma b. Let F, K, and E be subfields of the field L with F = E n K. Assume
that E[F is Galois.

() E and K are linearly disjoint over E n K.
(i) EK/K is Galois, and o+ o|E is an isomorphism of G(EK/K) to
G(E/E n K).

Proor. For notational convenience and without loss of generality, assume
that E n K = F. Since E/F is Galois, this extension is simple, say E = F(d).
Let ® be the minimum polynomial of d over F. Then EK = K(d) and ©®
splits completely in EK[x]. Thus, EK is the splitting field of ® over K. In
particular, EK/K is a Galois extension. If ® € K[x] is a monic divisor of ®,
then the roots of @ are also roots of @. Since © splits in E[x], it follows
that ® = (x — ¢,) - -- (x — ¢,) with ¢; € E. Therefore, ® € E[x] n K[x] =
(E n K)[x] = F[x]. Consequently, ® = ® because @ is irreducible in
F[x]. This argument shows that @ is also irreducible in K[x]. Thus, [ EK : K]
= deg® = [E: F], E and K are linearly disjoint over F, and |G(EK/K)| =
|G(EJF)|. Since E/F is Galois, every o € G(EK/K) maps E to itself, that is,
o|E € G(E/F). If 0 € G(EK/K) satisfies ¢|E = idy, then 0 = idgy: 06— o|E
is an injective group homomorphism of G(EK/K) to G(E/F). This homomor-
phism is an isomorphism because the finite groups G(EK/K) and G(E/F)
have the same cardinality. 0O

Lemma c. Let F, K, and E be subfields of the field L such that F = E N K,
L = EK, and E[F is Galois. Identify G(L/K) with G = G(E/F) by the
restriction isomorphism o — ¢|E. If ® € Z*(G,E"), then ® € Z*(G,L°) and
(L,G,®) = (E,G,®)X.

ProoF. The identification of G(L/K) with G gives the inclusion Z2(G,E°) <
Z*(G,L°). Let (E,G,®) = @P,cu,E, where u;'cu, = ¢” for 6 € G, ce E,
and u, u,u, = ®(0,7). As K-spaces, (E,G,0)* = @, cu,EK = D,cq
u, L. If d = Y7_ ¢;b, with ¢,€ E, b, e K, then u; 'du, = Y'_, u'cu b, =

i 17a™1

Yi_,cfb; = d°. Hence, (E,G,0)F ~ (L,G,®). O

This lemma has a cohomological interpretation. Let A: E —» L be the
inclusion mapping, and k = A|F: F — K. If 4 € S(F) has degree n, and if
E splits A4, then (4% =~ (45)L =~ M (L). Hence, xx(B(E/F)) = B(L/K).
Moreover, the following diagram commutes.



14.7. Restriction 273

H*(G,E°) 2% H(G,L°)
Our | | O 3)
B(E/[F) — B(L/K)

In fact, kx5, [®] = [(E,G,®)%] = [(L,G,®)] = 6,,4x[®].

Proposition b. Let F, K, and E be subfields of a field L such that F < En K
and E[F is Galois. The extension EK/K is Galois with

G(EK/K) =~ G(E/E n K),
and the diagram of group homomorphisms

H*(G(E/F),E°) —~— H*(G(EK/K),(EK)°)
BE/F l l "sm(

B(E/F) B(EK/K)

_—
K, |B(E/F)
commutes, where i: F — K is inclusion and x is the composition of the restric-
tion homomorphism 1€Sg g .cgE~x) With the cohomology map that corre-
sponds to the inclusion of E° in (EK)°.

This result combines Proposition a with Lemmas b and c. Indeed, we
have the commutative diagram

H*(G(E|F),E°) = H*(G(EJE n K),E°) » H*(G(EK/K),(EK)°)
l ! l
B(E[F) — BEENK) - B(EK/K)

in which the left square is (1) and the right square is (3).

EXERCISES
1. Prove that diagram (2) is commutative.

2. Prove that if K/F and E/F are Galois extensions such that K < E, then the sequence
0 - HX(G(K/F),K°) =% H?*(G(E/F),E°) > H*(G(E/K),E®) is exact. Hint. Pass
to relative Brauer groups.

3. Let H be a subgroup of the finite group G. Let O - M — N — P — O be an exact
sequence of right ZG-modules. Prove that the following diagram commutes.

0 - H°(G,M) » H°(G,N) - ... - HYG,M) - H"(G,N) » H"(G,P) » H"*'(G,M) - - ..
res | res | res | res | res | res |
0> H°(H,M) » H°(HN) -» ... - H"(H,M) - H"(H,N) - H"(H,P) > H""\(H M) -» ...

4. Let H be a subgroup of index m in the finite group G. Fix a coset decomposition
G = Hx, v ... v Hx,, of G. Suppose that M is a right ZG-module. For ue M¥,
define coru = u(Y1; x).

(a) Prove that coru does not depend on the choice x,, ..., x,, of coset repre-
sentatives, and cor is a group homomorphism from M¥ = H(H,M) to M¢ =
H°(G,M).

(b) Fix an exact sequence 0 > M - N —» P — 0 of right ZG-modules such
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that H"(G,N) = 0 for all n > 1. Use induction on n > 1 to get a sequence of
homomorphisms cor: H"(H,M) - H"(G,M) such that

H"'(H,N) »> H* (H,P) » H"(H,M) - 0

corl corl corl
H"Y(G,N) - H"(G,P) » H'(G,M) - 0

commutes. The homomorphisms that are defined in this way are called the core-
striction mappings.

(c) Prove by induction on »n that cor(resu) = mu for all u € H*(G,M).

(d) Specialize H to be a Sylow p-subgroup of G. Use the result of (c) to show
that the restriction mapping res: H'(G,M) - H"(H,M) is injective on the p-
primary component of H"(G,M).

5. Let K be the separable closure of the field F. For a prime p, let L be a subfield of
K that is maximal with the property that p{[ F(d) : F] for all de L. Zorn’s Lemma
shows that L exists.

(a) Show that L is a subfield of K with F & L, K is the separable closure of L,
and if L € E < K with E/L a Galois extension, then G(E/L) is a p-group.

(b) Denote G = G(K/F), H = G(K/L). Prove that H is a closed subgroup of G
and if N is an open normal subgroup of G, then H/H n N is a Sylow p-subgroup of
the finite group G/N. Deduce that H = lgn H/H n N, where N ranges through the
open normal subgroups of G.

(c) Let M be a discrete ZG-module. Show that the restriction mapping res:
H"(G,M) — H"(H,M) (defined as the limit of the family {res;y._;x~x}) is injective
on the p-primary component of H"(G,M).

6. The purpose of this exercise is to outline the proof of a theorem that is due to E.
Witt: if Fis a field of prime characteristic p, then B(F) is p-divisible, that is, pB(F) =
B(F). To this end, we adopt the notation and hypotheses of Exercise 5 plus the
assumption that char F = p. Prove the following facts.

(a) If N is a finitely generated, discrete ZH-module such that pN = 0, then N
is finite.

(b) If P is a simple, discrete ZH-module such that pP = 0, then P =~ Z/pZ with
the trivial action of H. Hint. By (a), P is a finite F -space, so that | P| = p™ for some
m > 1. Use discreteness to show that if v € P, then |[vH| = p* with 0 < k < w. By
a counting argument, deduce that there exists 0 # v € P such that vH = {v}. Hence,
P =vZH = vZ = Z|pZ.

(c) If N is a discrete, finitely generated ZH-module such that pN = 0, then
H?*(H,N) = 0. Hint. If N is simple, use (b) and Exercise 5 of Section 14.6 (with F
replaced by L). The general case can be obtained by induction on |N | (because of
(a)), using the long exact sequence for Galois cohomology.

(d) If M is a discrete ZH-module such that pM = 0, then H*(H,M) = 0. Hint.
Use Exercise 4(f) of Section 14.6.

(e) If M is a discrete ZG-module such that pM = 0, then the p-primary compo-
nent of H%(G,M) is 0. Hint. Use Exercise Sc.

(f) B(F)isp-divisible. Hint. Char F = pimpliesthat 1 » K°~=%5 K° » M — 1
is exact with M = K°/(K°)?. Use the long exact sequence - - - - H?(G,K°) Rl
H*(G,K°) » H*(G,M) - - .- and (d) to conclude that the p-primary components
of H*(G,K°) and B(F) are p-divisible. Note that if g # pis prime, then the g-primary
component of a torsion abelian group is p-divisible.
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Notes on Chapter 14

The title of this chapter is probably inappropriate. We have given only an
introductory look at Galois Cohomology. The reader who wants to explore
this subject more fully is advised to read Serre’s monograph [71]. The
exercises in Sections 14.6 and 14.7 go a bit beyond the text in these sections.

The first five sections of the chapter cover the basic connection between
Brauer groups and cohomology in about the same way that this topic is
handled in the books of Artin, Nesbitt and Thrall [9], Herstein [41],
Jacobson [48], and Reiner [66].



CHAPTER 15
Cyclic Division Algebras

The first examples of division algebras that were found after the quaternions
belong to the class of cyclic division algebras. This class still plays a major
role in the theory of central simple algebras. If Fis a local field, an algebraic
number field, or more generally a global field, then every central division
algebra over Fis cyclic. This fact will be proved later; it is one of the most
profound results in this book.

This chapter has two purposes. The first two sections collect basic facts
about cyclic algebras that will be used later. The rest of the chapter elaborates
the theory of cyclic division algebras. In particular, we prove Wedderburn’s
theorem that all division algebras of degree 3 are cyclic. The final section
presents an example that is due to Albert of a non-cyclic division algebra of
degree 4.

15.1. Cyclic Algebras

A field extension EJ/F is called cyclic if E/F is Galois and G(E/F) is a cyclic
group.

Definition. An algebra 4 € ©(F) is cyclic if there is a strictly maximal
subfield E of A4 such that E/F is a cyclic extension.

In particular, a cyclic algebra is a crossed product. However, cyclic
algebras are very special crossed products. The purpose of this section is

to specialize the results of Chapter 14 to cyclic algebras.

276
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Proposition a. Let E/F be a cyclic extension such that G = G(E/[F) is cyclic
of order n with the generator o. If A € S(F) contains E as a strictly maximal
subfield, then there is an element u € A° that satisfies

i 4= @0£j<nqu’

(i) u 'du = d° for all d € E, and

(iii) u" = a€e F°.

Conversely, if A is the F-algebra that is defined by the conditions (i), (ii),

and (iii), then A =~ (E,G,®,), where

00", o) = {1 TfO < l.,j.,l +j<n,
a f0<ij<n<i+]

Proor. Assume that E is a strictly maximal subfield of 4 € S(F). By the

Noether—Skolem Theorem, there is an element u € A° such that u 'du = d°

for all de E. By induction, (/) 'dw’ = d” for 0 < j < n. In particular,

u"e C,(E) = E. Since G = {l,0,67%,...,06"'}, Lemma 14.1 implies that

A = @o<j<nWE. Therefore u" € Z(4) = F. To obtain the converse, check

by computation (Exercise 1) that ®, € Z*(G,E®). Define 4 = (G,E,®,) =

@Po<j<ntt.E With u; = 1, (because @, is normalized) and u, = u (as a

notational convenience). If 1 < j < n, then u,u - = ®(a,6 VYu,, = u,;.

Therefore, u,; = u’ for all 1 < j < n by induction. Also, u" = u,u - =

®(6,6" ")u, = a. Thus, 4 is the algebra that is defined by (i), (ii), and (iii).
O

It is convenient to simplify the crossed product notation. In the case of
cyclic algebras, we will write (E,0,a) instead of (E,G(E/F),®,) when G(E/F)
= (o). The symbols u and u, will denote an element of (E,s,a)° that satisfies
u 'du = d° for all d € E, and u" = a, where n is the order of o.

The results of Chapter 14 can be translated as three corollaries of Pro-
position a. In these statements, E/F is a cyclic extension of degree n, G =
G(E/F) = (o), and a and b are elements of F°.

Corollary a. (i) (E,0,a) ® (E,0,b) ~ (E,0,ab). In particular, (E,c,1) ~ F.
(ii) If k € Z is relatively prime to n, then (E,c*,a*) ~ (E,o,a).

Since ®,, = @,,, (i) follows from Theorem 14.2; (ii) is clear because
G = (", u*du* = d*, and (u*y" = a*.

Corollary b. If K is a subfield of E that contains F and [K: F| = m, then
K|F is cyclic with G(K/F) = {6|K) and (K,s|K,a) ~ (E,a,a"™).

ProoF. This is essentially a reformulation of Proposition 14.5, but it takes
some work to connect these results. Since G is cyclic, all subgroups of G
are normal and the factor groups of G are cyclic. If © = o|K, then H =
G(K/F) = {t), where 1 has order m. Define ¥,: H> — F° as in Proposition
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a:¥ (th1) =1for0 < k, Lk + 1 <m, P, (t57) =afor0 < k,l<m <
k + I Thus, (K,7,a) = (K,H,¥,). By Proposition 14.5, (K,7,a) ~ (E,G,¥}),
where W*(o',67) = ¥,(1%,7%) for 0 < i, j < n. In order to obtain an explicit
formula for W} we represent i and j by the division algorithm. That is,
i=rm+ k,j=sm+ [with0 < k, ! < m. Plainly,

- 1 fk+i<m
Y*(a',07) = 1
(0599 {a ifk +1>m. M
The proof of the corollary will be completed by showing that ¥} and
®, ... belong to the same cohomology class. Define ®: G — F° by @(c¢') = a"
if0<i=rm+ k <n,0 <k < m. A computation gives

1 ifi+j<nk+i<m
- -t ifi +j k+1>
Ve = ¢ T smaEiEm @
a"m ifi+j>nk+Il<m
a"mt ifi+j>nk+1>m.
Then, (1) and (2) imply
I 1 ifi+j<n
SVYOY¥*)(gi.¢)) =
(7O {a"/"' ifi+j>n,
so that @,,, = (8V@)¥* and [®,..] = [¥*]. O

For cyclic algebras, Proposition 14.7b takes the following form.

Corollary c. If F, K, and E are subfields of a field L, F < E n K, and E[F
is cyclic, then EK|K is cyclic and G(EK/K) =~ {c¢"), wherer = [E n K: F].
Moreover, (E,o,a)X is cyclic and (E,0,a)* ~ (EK,0",a).

This corollary comes directly from Proposition 14.7b when we use the
restriction of automorphisms to identify G(EK/K) with G(E/E n K) =
{a").

For a finite extension E/F, denote the field norm from E to F by Ngjp-
The norm can be viewed as a group homomorphism from E° to F°. If E/F
is Galois with G = G(E/F), then N (d) = [],.cd°. In the cyclic case
G = {6), Ngjp(d) = d'***"" where n = |G|.

Lemma. Let E/F be a cyclic extension of degree n with G(E|F) = (o). If
a,be F°, then (E,0,a) = (E,0,b) if and only if bja € Ny, p(E°). In particular,
(E,0,a) = M,(F) if and only if a € Ngz(E®).

PROOF. If u € (E,0,a)° satisfies u"'du = d° for all de E and u" = a; and

if v = uc for some ce E°, then v? = ucuc = u?c'*’, v = ucu?c'* =
2 s n— . .

we Ot o" = we! Tt = N b (c). This calculation shows that

if b/ae Ng,(E®), then (E,0,a) = (E,0,b). Conversely, suppose that ¢:
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(E,0,b) - (E,0,a)is an isomorphism, where (E,0,a) = P, w'E, (E,0,b) =
@P;<,v’E, u" = a, and v" = b. As in the proof of Lemma 14.2, it can be
assumed that ¢|E = id; and ¢(v) = uc € uE°. In this case, b = ¢(b) =
¢(") = (uc)" = aNg;p(c), that is b/a € Ny z(E°). The last statement of the
lemma is a consequence of Corollary a. O

Proposition b. If E/F is a cyclic extension with G(E[F) = {c), then B(E/F) =~
F°[Ng(E) by the mapping aNgs(E%) > [(E,0,a)].

Proor. By Proposition a and Corollary a, the mapping a > [(E,0,a)]
is a surjective homomorphism from F° to B(E/F). The kernel of this homo-
morphism is Ng,(E°) by the lemma. O

This proposition has many applications. Here is one of them; two other
consequences of the proposition are outlined in Exercises 4 and 5.

Corollary d. If E/F is a cyclic extension of degree n, and if the order of a € F°
modulo Ng,p(E®) is n, then (E,0,a) is a division algebra.

ProOF. By Propositions b, 13.4, and 14.4b,n = Exp(E,s,a) < Ind(E,0,a) <
Deg(FE,0,a) = n. Hence, Ind(E,0,a) = Deg(E,0,a) and (E,0,a) is a division
algebra. O

EXERCISES

1. Prove that the mapping ®, that was defined in Proposition a satisfies the cocycle
condition.

2. Prove the formula (2).

3. (a) Show that if char F # 2, then every 4 € S(F) of degree 2 is cyclic. Hint. Use
Theorem 13.1.
(b) Use the result of Exercise 3 in Section 13.1 to obtain the same result for fields
of characteristic 2. Hint. If char F = 2, then the splitting field over Fof x> + x + a,
a e F, is cyclic.

4. Use Proposition b or the lemma to give a new proof of Proposition 1.6.
5. Use Proposition b to give a new proof that B(F) = {1} for a finite field F. Hint.
Let |F| = g and suppose that [E: F] = n. Thus, |E| = ¢" and E° is cyclic of order

q" — 1. Let E° = {c). Use the fact that G(E/F) is generated by the Frobenius
automorphism d +— d to show that N () = ¢'*4*"*¢""has order ¢ — 1 in F°.

6. Give an example of a cyclic division algebra D such that M, (D) is not cyclic for all
n > 1. Hint. TryD = H.
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15.2. Constructing Cyclic Algebras by Inflation

The main result of this section shows that a central simple algebra of index
greater than one can be inflated to an algebra that is equivalent to a cyclic
division algebra of prime index. This proposition is a useful tool for inductive
proofs. Its most important application is in Chapter 18. In this section
we will use the result of characterize fields whose finite separable extensions
have trivial Brauer groups. Another application is an improvement of
Proposition 14.4b(ii).
We begin with a generalization of Lemma 14.4b.

Lemma. Let A € S(F) have index p°m, where p is prime, e > 1, and p does
not divide m. There is a natural number n that is not divisible by p, and a chain
of fields F< K, < K,_, © --- < K, such that:

(i) K,/F is a separable extension of degree p° 'n;
(i) K;/K;,, is cy'clic forO0<i<e;
(iii) Ind A% = p' for 0 < i < e, in particular, K, splits A.

PrOOF. If 4 is replaced by 4%, where L is the field that was constructed in
Lemma 14.4b, then the proof is reduced to the case in which m = 1. Hence,
assume that Ind 4 = p®. By Proposition 13.5, there is a separable extension
K/F with [K : F] = p° such that K splits 4. Extend K to a field E that is a
Galois extension of F. Let |G(E/F)| = p*n, where p does not divide n.
Denote a Sylow p-subgroup of G(E/F) by H, and define L to be the fixed
field of H. Since [L:F] =n and [KL:L][L:F] = [KL:K][K:F], it
follows that [KL: L] = [K: F] = p®. If Hy, = G(E/KL), then H, < H and
[H:H,] = [KL:L] = p*. Since H is a p-group, there is a chain H,
H, < ... ¢ H, = H with H, normal in H,, and H,,,/H; cyclic of order
pfor0 < i < e. Let K, be the fixed field of H;. Then KL = K, > K; o - --
> K, = L and K/K;,, is Galois with G(K,/K;,) = H;,,/H, a cyclic group
of order p. Thus, [K;: F] = p*”'[L:F] = p*"'n. Since K, = KL splits
A% it follows from Proposition 13.4 that Ind 4%+ divides p Ind 4% and
Ind A% = Ind A* = Ind 4 = p°. By induction, Ind 4% = p'for0 < i < e.

O

Proposition. Let A € S(F) have index p°m, where p is prime, e > 1, and p
does not divide m. There is a separable extension K|F such that [K:F] =
p°~'n, p does not divide n, and A¥ ~ D where D € S(K) is a cyclic division
algebra of degree p.

Proor. Define K = K, where K, has the properties that were listed in the
lemma. Let D € S(K) be a division algebra that satisfies AX ~ D. Then
K,/Kiscyclicwith [K, : K] = p = Deg D and K|, splits D. By Corollary 13.3,
D contains a strictly maximal subfield that is isomorphic to K, as a K-
algebra. Thus, D is cyclic. O
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An important application of the proposition concerns the index of tensor
products.

Corollary a. If A € S(F) has index rs, then Ind A®" divides s.

PRrOOF. It can be assumed that Ind 4 = p°m and r = p. If K is defined as in
the proposition, then Exp AX = Ind 4¥ = p. Thus, (4®?)¥ = (4%)®” ~ K,
so that Ind A% divides [K: F] = p°~'n. Since Ind A®? also divides Ind 4
by Proposition 13.4, the corollary is established. O

The second corollary of the proposition characterizes cohomologically
trivial fields. It is an easy consequence of the proposition and Proposition
15.1b.

Corollary b. For a field F, the following conditions are equivalent.

(i) B(E) = {1} for all finite separable extensions E|F.
(i) If E/F is a finite separable extension, and K/E is a cyclic extension, then
Nye(K°) = E°.

EXERCISE

In this exercise, assume that char F = p, 4 € S(F), and Deg 4 = p®, wheree > 1.
Our aim is to prove that there is a finite, purely inseparable extension K/F such that
K splits A. Prove the following statements.

(a) If L and K are subfields of the algebraic closure of F, L/F is finite separable,
and K/F is finite purely inseparable, then [KL: K] = [L: F]. Hint. Use Exercise 2,
Section 10.7.

(b) There is a finite separable extension L/F of degree p®~'n (where pfn) and a cyclic
extension E/L of degree p such that AL ~ (E,0,c), where G(E/L) = {o) and ce L°
has the form ¢ = a,x? + --- + a,x} withx;e L, a;€ F.

(c) There is a purely inseparable extension K/F of finite degree (with K contained
in the algebraic closure of F) and an element d € KL such that d* = c.

(d) KL splits A. Hint. Show that ¢ € Ny, (KE).

(e) Ind AX = p’, where f < e — 1. Hint. By (d), Ind A¥ divides [KL : K]. Use (a).

(f) There is a finite, purely inseparable extension of F that splits 4. Hint. Use
induction based on the result of (e).

(g) If Fis a perfect field of characteristic p > 0 and 4 € S(F), then p does not divide
Ind 4. Hence, the p-primary component of B(F) is zero.

15.3. The Primary Decomposition of Cyclic Algebras

In Section 14.4 it was proved that every division algebra D is uniquely a
tensor product of division algebras that have prime power degrees. To use
that result effectively it is necessary to relate the properties of D with corre-
sponding properties of its factors. In this section we prove that D is cyclic
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if and only if its primary components are cyclic.

We need to supplement the results on linearly disjoint field extensions
that were given in Section 14.7. The next lemma is more general than is
necessary for this section. The extra generality will be used in Section 15.5.

Lemma a. Let K/F and L|F be finite field extensions where K and L are
subfields of the algebraic closure of F.

() If [K: F] and [L: F] are relatively prime, then K and L are linearly
disjoint over F.
(i) If K/F and L|F are Galois, and K and L are linearly disjoint over F, then
(K ) L)/F is Galois and G(K Q) L)/F) = G(L/F) x G(K/F).
(iii) If E/F is Galois, G(E/F) = H, x H,, K is the fixed field of H, and L
is the fixed field of H,, then K and L are linearly disjoint over F, E =
K ) L, K/F and L|F are Galois, and G(K/F) = H,, G(L/F) = H,.

PROOF. The statement (i) is clear from the observations [KL: L] < [K: F],
[KL:K] <[L:F], and [KL:K][K:F] = [KL:L][L:F]. It follows
from Example 9.2 and Corollary 9.3a that the mapping 6: G(K/F) x
G(L/F) » E.(K Q) L) defined by 6(c,7) = ¢ (X) 7 is injective. An easy
calculation with rank one tensors shows that Im8 = G((K &) L)/F), and
0 is a group homomorphism. Thus, |G((K &) L)/F)| > [Im6| = |G(K)|-
|G()| = [(KQ L): F] = |G(K &) L)/F)|. Hence, (K (X) L)/F is Galois
and 0 is an isomorphism. The statement (iii) is an easy consequence of
Galois theory: G(E/L) = H, < G(E/F), G(E/K) = H, < G(E/F), so that
K/F and L/F are Galois with G(K/F) &~ H, and G(L/F) = H,; the F-
automorphisms of E that fix all elements of KL are in H; n H, = {1}, so
that KL = E; and [E:F] = |H,|-|H,| = [K:F][L:F] implies E =
KX L. O

Lemma b. Let K/F and L|F be cyclic extensions with G(K/F) = {o),
G(L/F) = {1). Assume that m = [K: F] is relatively prime ton = [L: F],
sayrm + sn = 1,wherer,s € Z.Ifae F°, then(K,0,a°) X) (L,7,a") = (K
L), (a,7), a).

PrOOF. By Lemma a, (K (X) L)/F is a Galois extension with Galois group
(o) x {1). Since the orders m and n of ¢ and 7 are relatively prime, {(¢) X
t) is cyclic with the generator {(s,7)). Let 4 = (K,0,a°) = @), u'K
and B = (L,7,a") = @);<,v’L, as in Proposition 15.1a. Then 4 (X) B =
Dicmjen@ @ KR L) = B @ 0K ® L), ® 0) " c ® d)
@®v)= @' @ (v 'd) =" Qd = (cQd)>? for ceK, delL,
and(u @ v)™ = a" Q) a™ = (1 Q Da™"™ = (1 Q) 1)a.Thus, 4 Q) B =
(KX L, (0,7), a). O

Proposition. If A and B in G(F) have relatively prime degrees, then A (X) B
is cyclic if and only if A is cyclic and B is cyclic.
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PRrOOF. Let Deg A = m, Deg B = n, where rm + sn = 1 for suitable integers
r and 5. Assume that 4 (X) B = (E,0,a) with a e F° and G(E/F) = (o).
Note that () =~ {(¢*) x {¢"™) under the correspondence o > (¢*",c™).
Let K be the fixed field of ¢™ and let L be the fixed field of ¢*". By Lemma a,
E =K L,and G(K/F) = {o*"y, G(L/F) = {¢™). Also, 4, = (K,6",a) =
(K,6*",a®) and B, = (L,6™a) =~ (L,6™,a"), using Corollary 15.la. By
Lemma b, 4, ® B, =~ (K ®) L, (¢*",6™), a) = (E,0,a) = A (X) B. Since
DegA, = DegA = m and Deg B, = Deg B = n, it follows from Proposi-
tion 14.4bthatin B(F),[4] = [4][4]™[B]" = ([4][B])*" = [4 & B]*"
= [4, ® B,]" = [4,]. Similarly, [B] = [B,]. By Proposition 12.5b, 4 =
A, and B = B,, so that A4 and B are cyclic. Conversely, if 4 and B are
cyclic, then by Lemmas a and b so is 4 X) B. O

Corollary. A central division algebra is cyclic if and only if its primary com-
ponents are cyclic.

EXERCISES

1. Verify the statement in the proof of Lemma a that 6 is a homomorphism of G(K/F) x
G(L/F) to G(K ) L)/F).

2. Let E/F be a cyclic extension, and suppose that K is a subfield of E that contains F,
and [E: K] = n. Assume that 4 € S(F) contains a strictly maximal subfield that is
isomorphic as an F-algebra to K. Prove that 4 (X) M,(F) contains a strictly maximal
subfield that is isomorphic to E.

3. Use Exercise 2 to show that if —1 € F? and ae F — F?, then <fl}—b>® <%> isa

cyclic algebra for all b, ¢ in F°. In Section 15.7, an example will be given of a non-
cyclic division algebra that is a tensor product of two quaternion algebras.

15.4. Characterizing Cyclic Division Algebras

The problem of characterizing cyclic division algebras is interesting and
important. It does not have a fully satisfactory solution, but in this section
we will obtain a partial characterization of cyclic algebras in terms of the
maximal subfields of the algebras.

Lemma. If D = (E,0,a) is a cyclic division algebra of degree n, then X" — a
is irreducible in F[X] and D contains a strictly maximal subfield K that is
isomorphic to F(a*") as an F-algebra.

ProoF. Using the notation of Section 15.1, D = EQQuE® --- P u"'E,
where u € D° satisfies u” = a. Thus,uisarootof X" — aand [F(u): F] = n.
Hence, X" — a is irreducible. O
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n—1

It is worth remarking that even though the sequence 1, u, ..., u" ' is
linearly independent over E, the polynomial X" — a may not be irreducible
over E. The arithmetic of polynomials over division algebras is not a straight-
forward generalization of the arithmetic of polynomials over a field.

In order to prove a converse of the lemma, some additional hypothesis
is needed. If enough roots of unity are in F, then the converse is easily
obtained. In the next section we will show that this assumption can be
dropped for division algebras of prime degree.

Proposition. Let F be a field whose characteristic does not divide the natural
number n, and suppose that there is a primitive n’th root of unity in F. Assume
that A € S(F) has degree n. If a € F is such that X" — a is irreducible and A
contains a subfield that is isomorphic to F(a*"), then A is a cyclic algebra.

ProoF. If Eis a subfield of A that isisomorphic to F(a'"),then[E: F] = n =
Deg A because x" — a is irreducible. Thus, E is strictly maximal in 4. By
the theory of Kummer extensions, E/F is cyclic. Thus, 4 is cyclic. O

It is easy to describe the algebras that satisfy the hypotheses of the
proposition. The subfield E of 4 has the form F(v) where v" = a. The Galois
group of F(v)/F is generated by an automorphism ¢ that is defined by the
condition v° = v{, where { € F is a primitive n’th root of unity. If u e 4
is such that ¥ 'ou = v, then vu = uv{ and u" = b e F°. These remarks
are summarized by the equations

A= @Osi’j<"uiva, )
vu = wl, @)
u'=>b, " =a 3)

Conversely, if x" — a is irreducible, then the F-algebra that is defined by
(1), (2), and (3) is central simple and cyclic.
The algebras that are defined by (1), (2), and (3) generalize the quaternion

algebras. Indeed, if n = 2and { = —1,then 4 = a},:b . This observation

a,

motivates the notation that is used to denote the algebra that is

defined by the conditions (1), (2), and (3).
b,a

If x" — a and x" — b are both irreducible, then (;’E) = <FZ_—1> In

the notation of cyclic algebras, %’Ié = (F(a'™),0,b) = (F(b'™),067%,a) =

-1 *
(F(b*™),0,a7") = (bL> = <b’“> CIf (“’b> is a division algebra, then

F( F( F(
x" — b is necessarily irreducible by the Lemma.
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EXERCISES

1. Give an example of a cyclic division algebra (E,s,a) such that x" — a is reducible
over E. Hint. Try H.

2. Let F be a field whose characteristic does not divide n € N. Assume that { € Fis a
primitive »n’th root of unity. Prove the following equivalences for a, b, ¢ € F°.

a,bc N a,b a,c
@ (55)~ (32)®(55)
ab,c a,c b,c
o (%) ~ (7)o (%)

1 - ] ‘
© <%> ~ F. Hint. Compute Ny, (1 — v), where v is a root of X" — a.

It can be assumed that x" — q is irreducible.

Remark. The mapping F° x F° — B(F), that is defined by (a,b) — [(%ﬂ =
{a,b}, satisfies {a,bc} = {a,b}{a,c}, {ab,c} = {a,c}{b,c},and {a, 1 — a} = 1. Any
mapping from F° x F°toan abelian group with these properties is called a Steinberg
symbol on F. By a theorem of Matsumoto, every Steinberg symbol on a field F
induces a homomorphism from K, F, the image of F under the second algebraic
K-theory functor. A more complete discussion of this subject can be found in Milnor’s
book [57].

15.5. Division Algebras of Prime Degree

The assumption that the field F contains a primitive n’th root of unity
limits the usefulness of Proposition 15.4. However, if this hypothesis is
omitted, the proposition isn’t true. Albert has given an example of a non-
cyclic division algebra of degree four that contains a subfield of the form
F(a'™).

In this section we will prove that the converse of Lemma 15.4 is true for
division algebras of prime degree p without any extra hypotheses. The
strategy of the proof is to extend the field F by a p’th root of unity {, apply
Proposition 15.4, and then use Corollary 15.1c to cancel F({). The fact
that [ F() : F] is prime to p is used several times in the proof; the failure of
this property when ( is a p®’th root of unity is the main reason that the char-
acterization of cyclic division algebras does not extend to algebras of prime
power degree.

Throughout this section, p is a prime that is different from the charac-
teristic of the field F. (Fields of characteristic p are treated in Exercise 3.)
Let { be a primitive p’th root of unity in the algebraic closure of F. Denote
L = F({),and m = [L: F]. Since p is prime and m < p, the greatest com-
mon divisor of m and p is 1. The extension L/F is cyclic, say G(L/F) = {t).
The conjugates of { are powers of {, so that {* = {* for a k € N such that
1 < k < p. Since the order of 7 is m, it follows that k™ = 1 (mod p) and
ki # 1 (modp)forl <j < m.
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Lemma. If be L — L? satisfies b*/b* e L? and E = L(b*?), then E|F is
cyclic and E = K (X) L, where K|F is cyclic of degree p.

PrOOF. By assumption, b* = b*c? for a suitable c € L. Let E = L(u), where
u? = b. Extend 7 to E by the condition u® = u*c. This prescription defines
an F-algebra automorphism of E because (u*c)” = b*c? = b*. The as-
sumption b ¢ L? implies that u ¢ L, so that there is an L-algebra automor-
phism ¢ of E that satisfies u° = (u. Thus, [E: L] = p and G(E/L) = {c).
Since u* = (u*c)° = (*u*c = ((u)" = u°" and {* = (* = {°*, the mappings
o and 7 generate a commutative group G of F-algebra automorphisms of E
whose fixed field is F. Thus, E/F is Galois with G(E/F) = G. The order m
of 7| L divides the order of t; hence, t' has order m for some / € N. Therefore,
oy n Yy = {1} and (a,7') = (o) x (z') has order mp. On the other
hand, |G(E/F)| = [E:L][L:F] < pm. Consequently, G(E/F) = (o) x
<t is cyclic, and by Lemma 15.3a, E = K (X) L, where K is the fixed field
of 7!. Thus, K/F is cyclic of degree p. O

The converse of this lemma is true: if be L — L? is such that L(b?)/F
is a cyclic extension, then b°/b* € L?. (See Exercise 1.)

Proposition. Let D € S(F) be a division algebra of prime degree p, where
char F # p. The algebra D is cyclic if and only if D contains a subfield that is
isomorphic to F(a'®) for some ac F — FP.

Proor. If D is cyclic, then D contains a subfield of the form F(a'/?) by
Lemma 15.4. In the proof of the converse result, we retain the notational
conventions that preceded the lemma. Since [ L : F] is relatively prime to p,
it follows from Proposition 13.4 that D* is a division algebra of degree p
over L. Moreover, a € F — F? implies that x? — g is irreducible over L.
(See Exercise 2.) By assumption, v* = a for some v € D. Thus, by Proposi-
tion 15.4, D' = ;. , W L(v), where vu = uv{ and u” = b e L°. It suffices
to prove: b can be chosen so that

bjb* e LP. 1)

Indeed, by the lemma and Corollary 15.1c it will follow that D' = (%’%) =

-1
(b,a = (L(w),0,a™") = (KX L, 0,a™") = (K,0,a")* with K/L cyclic.

L]
If A is the cyclic algebra (K,0,a™"), then [D][ 4]~ € B(L/F) implies [D]"=
[A]™ by Proposition 14.4a. Also, [D]? = 1 = [4]” because DegD =
Deg A = p. Thus, [D] = [A4], and D = 4 is cyclic by Proposition 12.5b.
To simplify the notation, write £ = L(v). By Lemma 15.1, (E,0,b) =
(E,0,0) if ¢/b € Ng;, (E°). Thus, the proof can be completed by producing
x € E° such that ¢ = bNg, (x) satisfies (1), that is, ¢*/c* € L?. Define p =
id;, X) T € Aut, D" Note that p(v) = v because v € D, and p(d) = d" for all
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de L. In particular, p(0) = {* =% Thus, (pu) 'v(pu) = p(u~tvu) =
p(°) = p({v) = v = u*vu, so that (pu)u™* = y € Cp.(E) = E. Conse-
quently, b° = (pu)? = (yub)? = Py o * ™ = BN, (3), since {k,
2k, ..., pk} is a complete system of residues modulo p. A similar calculation
gives the more general result

b = BN, () for0 <i<m, )

where y, € E°. Choose /, ne N so that k/ = 1 = mn (mod p), and define
¢ = ([Toci<m @) By (2), c= ([ [;6*")" Ny (z) = be? Ny (z) = bNg (e2),
where e € L°, z € E°. Moreover, since [ = ["k™ = 1™ = 1 (mod p), there
exist r, s € Z such that /" = 1 + rpand [k = 1 + sp. Consequently,

b = b = bb'P,
() = ([Tosicm @)y = ct™,
and
¢/t = (b™/c™) e LP. O

The proposition can be reformulated and generalized somewhat.

Corollary. If n is a square-free natural number that is not divisible by char F,
and if D € S(F) is a division algebra of degree n, then D is cyclic if and only
if there exists a € F such that F(a'") splits D.

Proor. If D is cyclic, then such a splitting field exists by Lemma 15.4 and
Corollary 13.3. For the proof of the converse, let n = p, - - - p,, where the
p; are distinct primes. The Primary Decomposition Theorem yields D =
D; ) --- &) D,, where each D, is a division algebra of degree p;. The field
E, = F(a'®) must split D;; otherwise Ind D¥ = p,, in which case F(a')
would not split D, since p; doesn’t divide [F(a'") : E;]. Thus, [E;: F]| = p;.
By Corollary 13.3, D, contains a subfield that is isomorphic to E;. Therefore,
D, is cyclic according to the proposition. Corollary 15.3 shows that D is
also cyclic. O

EXERCISES

1. Prove the converse of the lemma: if L = F({) and E = L(b'”) is such that E/F
is cyclic, then b%/b* € L*. Hint. Let v € E satisfy v? = b. Use 10 = a7 to show that
v*/o*e L.

2. Prove that if ae F — F? and L/F is an extension such that p{[L : F], then x? — a

is irreducible over L. Hint. Otherwise, there is an extension K/L of degree m < p
such that x? = a for some x € K. Obtain a contradiction from Ny (@) = Nyp(x)".

3. The purpose of this problem is to show that the proposition is also true when char F =
p. Throughout the problem assume that F is a field of prime characteristic p.
(a) Suppose that « € M,(F) satisfies a? = 1,a, where ae F — F”. Prove that
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B € M (F) exists such that fa = a(f + 1). Hint. Use Exercise 2 of Section 12.6 to
reduce the problem to the case

00 --- 0 a 10 .- 0 0
10 - 00 0 0 0
«={0 1 --- 0 0|. Tryf= .
00 - p—10
00 - 10 00 - 0 0

(b) Suppose that D € S(F) is a division algebra of degree p that contains an
element x such that x? = a € F, where x? — q is irreducible in F[x]. Prove that
there exists y € D such that yx = x(y + 1).

Hint. Let K be a separable extension of F that splits D. Show that x? — a is
irreducible in K[x]. Let ¢: D — M (K) be an injective F-algebra homomorphism
such that M,(K) = ¢(D)K. Use the result of (b) to find f € M(K) such that f¢(x) =
$()(B + 1). Write B = () + d(1)c, + - + d(¥,)c,, where 1, ¢, ..., c,
is an F-basis of K. Show that y does the job.

(c) Suppose that D € S(F) is a division algebra of degree p. Prove that D is
cyclic if and only if D contains a maximal subfield of the form F(a'?),a € F.

Hint. Let x € D satisfy x? = a. Let y € D satisfy yx = x(y + 1) as in (b). Show
that F(y)/F is cyclic of degree p.

15.6. Division Algebras of Degree Three

A division algebra of degree two is necessarily cyclic because separable qua-
dratic extensions are cyclic. In this section we will prove that every division
algebra of degree three is cyclic. This result is another one of Wedderburn’s
fundamental contributions to the theory of associative algebras.

Theorem. If D € S(F) is a division algebra of degree three, then D is cyclic.

We will prove this result for the fields F with char F # 3. The proof for
fields of characteristic 3 is outlined in the Exercise 2.

By Corollary 15.5 it is sufficient to show that D has a splitting field of
the form F(a'), where a € F — F?3. This splitting field will be found among
the subfields of D%, where L is a quadratic extension of F such that D* is
cyclic. Here are the details of the proof.

Let K be a maximal separable subfield of D. By Proposition 13.5, K is
strictly maximal in D, that is, [K: F] = 3. Since K/F is separable, there is
an element v € D such that K = F(v). Moreover, v can be chosen so that its
minimum polynomial over F has the form ®(x) = x> + b,x + b because
char F # 3. Let E be a splitting field of ® over F with K < E; define G =
G(E/F). We can assume that G is not abelian; otherwise K/F is cyclic and
the proofis finished. Thus, [ E: F] = 6and G is the group of all permutations
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of the three roots of ®. If we let G(E/K) = {t) and choose ¢ to be a gener-
ator of the (normal) Sylow 3-subgroup of G, then G = {0,7), T has order 2,
o has order 3, and 1ot = 2. Let L be the fixed field of ¢; L/F is Galois of
degree 2, and G(L/F) = (r|L>, G(E/L) = {a). Plainly, ve E — L, so that
E = L(v) and the three roots of ® are v, v°, and v*". In particular,

v+ 1"+ v =0, and )
w’v” =beF. )]

The algebra D" is cyclic because it contains the strictly maximal subfield
E = L(v) and E/L is cyclic. Thus, D* = E (@ uE P w*E, where u™'yu =
y° for all y € E. Define p = id,, (X) (t|L) € Aut, D". Since v* = v, it is clear
that p(y) = y* for all y € E. Hence, vp(u) = p(v)p(u) = p(vu) = p(u®) =
pW)p(”) = p(W)r°* = p(W)v™* = pu)v® ,and cp(u) = p(uw)cforallce L =
Z(D"). Therefore, w = p(u)u™" satisfies w'yw = y° for all ye E; and

pw) = p*Wpw) ™ = up)™ = (pu™")"' = w!, since t* = idy im-
plies p2 = id. These observations and Proposition 15.1a give

w = wr’, v°w=wr®, 1v”w=wo, and 3)

w? =deL, whered®=d'. 4)

Define z = (1 + w + w™')v. A straightforward computation using (1), (2),
(3), and (4) leads to the result z> = a, where a = b(d + d* — 2) e F. The
cubic polynomial x* — a is irreducible over L. Otherwise, z € E because
E/L is Galois. Then (3) and (4) yield w = d(v — v°)(v®* — v)~! € E. How-
ever, this conclusion contradicts (3) because the roots of @ are distinct.
Thus, L(z) is strictly maximal in D%, so that L(z) splits D*. Since [L: F] =
2, it is clear from Proposition 13.4 that F(z) splits D. Thus, D is cyclic by
Corollary 15.5.

Corollary. If D € S(F) is a division algebra of degree six, then D is cyclic.

The corollary follows from the proposition and Corollary 15.3 when
char F # 3. The case in which char F = 3 is handled by Exercise 2.

EXERCISES

1. Ifz = (1 + w + w™Y)vis defined as it was in the proof of the proposition, show that
22 = v (w(d™' = 1) + wi(d — 1)), and deduce that z*> = b(d™! +d — 2) =
bd+ d"—2)€eF.

2. Prove that the proposition is also true when char F = 3. Hint. Follow the general

pattern of the proof for the case char F # 3 with one change: definez = w + w™.

Then z3 = d + d° € F, so that the result of Exercise 3, Section 15.5 is applicable.
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15.7. A Non-cyclic Division Algebra

The first division algebras of degree greater than 2 were found by L. E.
Dickson in 1914. They were cyclic algebras of the form (;’?) that were
defined in Section 15.4. For eighteen years after Dickson’s paper, the exis-
tence of division algebras that are not cyclic was an open problem. In a 1932
paper, A. A. Albert gave an example of such an algebra. He followed this
work with constructions of non-cyclic algebras that have various other
properties. In this section, we will describe Albert’s first example.

Let F = K(u,v), where u and v are algebraically independent over a
totally ordered field K. For instance, K can be any subfield of R. Define

D1 = <u,;1>aD2 = <_;’v>’andA = Dl ®D2

Theorem. A is a division algebra that is not cyclic.

b

There are four ingredients in the proof of this statement. The first two
of these technical preliminaries are general facts about cyclic extensions of
degree four. They don’t depend on the special form of F.

If —1 is not a sum of squares in F, and E/F is 1
a cyclic extension of degree four, then —1 ¢ E2. 1

Let E/F be a cyclic extension with [E: F] = 4.

Suppose that —1 ¢ E2. If L is the unique

subfield of E such that [L: F] = 2, then L ~ @
F((r* + s*)"?) for some r, s € F.

The other two facts that we need are special properties of F = K(u,v).
In particular, they depend on the assumption that K is totally ordered. If
p € K[u,v], we will denote by deg, p and deg, p the degrees of p considered
as a polynomial in u and v respectively.

Ifp=ri+ - +rlandg=s*+ - - + 2,

where the r; and s; are non-zero members of

K[u,v],thenp # 0,p + ug # 0, and the )]
degrees deg,p, deg,p, deg,p + ugq, and deg,

P — uq are even.

If L = F((r* + s*)"?) with r, s € K[u,v] and
r* + s® ¢ F?, then A" is a division algebra. @)

In particular, (4) implies that A4 is a division algebra. If A4 is cyclic, then
by (1), (2), and (3), there is a subfield L of 4 with [L: F] = 2, such that
L = F((r* + s*)') for suitable r, s € K[u,v]. However, for such an exten-
sion L/F, (4) implies that A" is a division algebra. By Corollary 13.4, AL
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cannot be a division algebra if L is a subfield of A that properly contains F.
Hence, 4 is not cyclic.

The proofs of (1), (2), and (3) are fairly easy. They are left as exercises.
The rest of this section is devoted to the proof of (4).

Lemma. Let F be a field with char F # 2, and suppose thata,,b,,a,,b, € F°.
Define D, = (LFb‘) , D, = <a_2_;7b_2> ,and A = D, (X) D,. The following
properties are equivalent.

(1) A is a division algebra.
(i) If E; is a maximal subfield of D, for i = 1, 2, then E, ¢ E,.
(i) If x;, y;, 2; € F satisfy ayx} + by} — a;b,z} = a,x3 + by} — a,b,23,
thenx, =y, =z, =x,=y,=2,=0.

ProoF. The equivalence of (ii) and (iii) is a consequence of two observations:
F(\Jc) = F(,/d)ifand onlyif c/d € F? ; the maximal subfields of a quaternion
algebra D have the form F((—v(z))"/?) where z € D is a pure quaternion and
v is the norm of D. (See Exercise 4, Section 13.1.) If (i) fails, then ¢, d, and e

can be found in F so that D, = (C’—d} D, = (c,e>’ and 4 ~ (%) has

F F

index 2 by Corollary 15.1b. Thus, (i) implies (ii). (A more general form of
this implication is given in Exercise 1.) Assume that (ii) is satisfied. By
Corollary 13.4, this hypothesis implies that if E; is a subfield of D, for i = 1,
2, then E, (X) D, and D, (X) E, are division algebras. To prove that 4 is a
division algebra, it will therefore suffice to show that if z # 0 in A4, then
there exists u € 4 such that zu is a non-zero element of E; (X) D, or D; X) E,
for suitable subfields E; of D,. Let 1, i, j, and ij be the quaternion units
of D,. Thus, 4 = D, @ iD, @ iD, P iiD, = F()D, @ j(F()D,). Write

= wy + jw, with wy, w, e FG)D,. If w, = 0, then z € F(i)D, is a unit.
Otherwise, zw;' = wowi! + j. Thus, we can assume that z = w + j with
w=x+iye F{i)D,,x,ye D,.Since(w + j)(j'wj — j) = wj'wj — j?> =
x> — ay* — b + i(yx — xy) € F()D,, the proof is finished unless x* —
a* —b=0and yx =xy. If yeF, then z=x+ iy + je Fliy + ) &
D, = A°.1f y ¢ F, then yx = xy implies x € Cp, (F(y)) = F(y). In this case,
ze D, ® F(y) < 4°. O

We now prove (4). Let ® = @, — ®,, where @, and ®, are the quadratic
forms associated with D, and D, in Section 1.7. Explicitly, ®(x,,. . .,Xq) =
ux? — x3 + ux3 + ux? — vx? — uvx?. By the lemma, it is sufficient to
prove that if ¥ = (x,,...,xs) € Féand j = (y,,...,y,) € FO satisfy ®(X +
(r* + sH)¥*%) = 0, then X = ¥ = (0,...,0). By homogeneity, it can be
assumed that the x; and y; are in K [u,v]. If @ is the bilinear form obtained
by polarizing ®, then ®(X) + (2 + sH)D(F) + 2(r* + sHO(X,p) =
O(X + (r* + s)Y?5) = 0. The hypothesis r? + s> ¢ F? yields ®(¥) +
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(r* + s?)®(¥) = 0; thatis, up, — p, + up; = —up, + vps + uvp,, where
p; = x2 + (ry)* + (sy)* If both sides of the equation are 0, that is, p, =
u(p, + ps)andup, = v(ps + ups),thenp, = p, =p; =p, = ps = ps =
0 by (3). Otherwise, v(ps + upg) = u(p; + p3 + py) — P,; and (3) implies
ps =Pe = 0and p, = u(p, + p; + p,), since deg, v(p5 + up;) is odd and
deg,u(p, + p3 + p,) — p, is even unless p; = po = 0. Similarly, p, =
u(p, + ps + p,) yields p, = p, = p; =p, = 0. Since r and s are not
zero, one more application of (3) gives the required conclusion that X = y =
,...,0).

EXERCISES

1. Let D,, D, € S(F) be division algebras that respectively contain maximal subfields
E, and E, such that E, and E, are not linearly disjoint. Prove that D, X) D, is
not a division algebra. Hint. The assumption that E, and E, are not linearly disjoint
implies the existence of a compositum K of E; and E, such that [K: F] < [E, : F]
[E,:F] = Deg D, X) D,. Show that X splits D, X) D,.

2. Prove the statement (3).

3. Prove the statement (1). Hint. Otherwise, E = F(i,u), where u?> = x € F(i), * = —1,
G(E/F(i)) = {o) with u® = —u, G(E/F) = {t), and ¢ = t2. Show that u*u € F(i)
and (u'u)* = —u'u, hence u'u = ci for some c € F. If x = a + ib, derive the con-

tradiction —1 = (a/c)? + (b/c)>.

4. Prove the statement (2). Hint. Let K = E@ F(i) = E(i), where i> = —1. Show
that K is a field, K/F is Galois, G(K/F) = G(K/E) x G(K/F(i)) = {t) x (o),
K = F(i,w) with w* = xe F(i), w° = iw, i = —i. Deduce from ot = 10 that
w'w € F, say w* = aw™!. Show that L is the fixed field of {o?,7), and deduce that
the elements of L have the form y, + y,w?, where y§ = y, € F and y{ = y,xa™ 2.
Prove that (y,w?)* = r* + s? for suitable r, s € F. Finally, note that if y,w?, z,w? €

L, then y,/z, € F.

S. Let D, and D, be quaternion algebras that satisfy the hypotheses of the lemma.
Prove that if K/F is a quadratic extension, then D¥ ~ DX. This fact can also be
proved using some fairly deep properties of quadratic forms. It is then possible to
give an easy proof that (ii) implies (i) in the lemma.

Notes on Chapter 15

The material in this chapter is about 50 or 60 years old. It seems surprisingly
youthful. Most of the results that are presented here are due to Albert,
Dickson, and Wedderburn. Except for the example in Section 15.7, the
exposition is based on Albert’s book [3]. Section 15.7 is a rewrite of Albert’s
paper [2].

We conclude these notes with a survey of what is known about cyclic
division algebras. In this chapter it has been shown that all division algebras
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of degrees two, three, and six are cyclic, but there are non-cyclic algebras
of degree four. Albert has proved (in [1], for instance) that every division
algebra of degree four over F is a crossed product. (See Exercise 7, Section
20.8.) Little is known about division algebras of degree p for primes p
greater than three. Brauer proved that if D e S(F) is a division algebra
with Deg D = 5, then there is a solvable extension E/F of degree 12 such
that DE is cyclic; it is still not known if such a D is cyclic, or even a crossed
product. Amitsur has proved that if » is divisible by 8 or the square of an
odd prime, then there are division algebras of degree » that are not crossed
products. We will prove Amitsur’s Theorem in Chapter 20. Much more
is known about the division algebras over special kinds of fields. Trivially,
if B(F) = {1}, then all questions about the division algebras in S(F)
evaporate. However, there are important classes of fields such that B(F)
is not trivial and all of the division algebras in S(F) are cyclic. We will
prove (in Chapters 17 and 18) that this is the case when F is a local field
or a number field. It would be interesting to have a description of the fields
F such that all the division algebras in @(F) are cyclic, but such an objective
is now out of sight. There is a related problem that seems more tractable:
for which fields F is B(F) generated by the equivalence classes of cyclic
algebras? It has been conjectured that all fields have this property.



CHAPTER 16
Norms

A finite dimensional central simple F-algebra can be thought of as a non-
commutative analogue of a finite field extension. If we adopt that viewpoint,
it is natural to look for analogues of the useful ideas in field theory. This
chapter is concerned with the counterpart for central simple algebras of the
norm of a field extension. These mappings are called reduced norms.

The definition and the basic properties of the reduced norm are presented
in the first half of the chapter. The last three sections use the norm to get
some information about the multiplicative structure of central simple
algebras. This development leads us to one of the active frontiers of research
on central simple algebras: the investigation of the Reduced Whitehead
Groups of algebras.

The reduced norm will reappear in later chapters. The most impressive
application of the norm will be its use in Chapter 19 to prove Tsen’s Theorem.

16.1. The Characteristic Polynomial

This section presents an array of candidates for the role of the norm of an
associative algebra. It is shown that for the class of central simple algebras,
all of the norms can be obtained as powers of a single one, the reduced norm.

It is useful to generalize the definition in Section 5.5 of a representation
of an F-algebra A. If K is an extension of the field F, n is a natural number,
and ¢ is an F-algebra homomorphism of 4 to M,(K), then ¢ will be called
a representation of A. For K = F this concept agrees with Definition 5.5.
The advantage of adopting a more liberal definition stems from our results
on splitting fields in Section 13.2. On the basis of Proposition 13.2a, we will

294
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call an F-algebra homomorphism ¢: A - M,(K) a splitting representation
of the finite dimensional central simple F-algebra 4 if n = Deg A4.

Definition. Let ¢: 4 — M, (K) be a representation of the F-algebra A. The
¢-characteristic polynomial of an element y € 4 is

X (y,Xx) = det(1,x — ¢()).
The ¢-trace and ¢-norm of y are 7,(y) = tr¢(y) and v,(y) = det d(y).

Two special cases of this definition are familiar. If 4 = M, (F) and ¢
is the identity homomorphism, then X, (,x) is the characteristic polynomial
of the matrix a, v,(®) = deta, and 7,(x) = tra. In this case, ¢ is a splitting
representation because Deg M, (F) = n. The other well known case of the
definition occurs when A is a finite field extension of F and ¢ is a matrix
representation that corresponds to the left regular representation of 4. In
this situation v, is the field norm N, and 7, is the trace mapping T, .

It is clear from the definitions that

X,(3,%) = X" = (X" + -+ (= 1)) ¢y

This identity enables us to deduce many facts about the trace and the norm
from the properties of characteristic polynomials.
Another useful observation is a familiar property of determinants.

If x e M, (K) and y € M,(K)°, then det (1,x — y 'ay) = det(1,x — ). (2)

In fact, det(i,x — y 'ay) = det(y"(1,x — a)y) = (dety) *(det 1,x — «))
(dety) = det(1,x — ).

Lemma. Let A€ S(F). If ¢: A - M, (K) is a splitting representation of A
and y: A - M _(K) is an arbitrary representation of A, then m = nk for
some k € N and X, = Xj.

ProoF. By Proposition 9.2b, ¢ and ¢ extend to K-algebra homomorphisms
¢: A = M,(K), y: 4X - M,,(K) such that ¢(y Q) ¢) = d(y)c, Y(y &) ¢)
= Y(y)c; and the extension of ¢ is an isomorphism by Proposition 13.2a.
Since 4% € S(K), ¢ is injective, and the Double Centralizer Theorem
implies that M, (K) = y(4A*) (X) B for a suitable B € S(K). Therefore, m =
(Deg y(A%))(Deg B) = nk, where k = Deg B € N. Define 0: 4X - M, (K)
by 0(z) = ¢(z) &) 1,. By the Noether—Skolem Theorem, there is an element
y € M (K)° such that y(z) = y~'0(z)y for all z € A¥. In particular, if y € 4,
then X, (y,x) = det(t,x — ¥(»)) = det(i,x — 0(»)) = det((1,x — () ®
) = X¢(y,x)k by (2). O

Proposition. Let A€ S(F). If ¢: A - M, (E) is a splitting representation of
A, then X, € F[x]. Moreover, if Y: A - M,(L) is another splitting repre-
sentation of A, then X, = X,.
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ProoF. Assume that E/F is Galois. If ¢ € G(E/F), then ¢ determines an
automorphism of M,(E) by a([c;]) = [¢]], and a¢ is a splitting repre-
sentation of 4. The lemma yields X, = X,, = o(X,), where ¢ operates on
the coefficients of polynomials in E[x]. Since E/F is Galois, it follows that
X, e F[x]. Let y: 4 - M,(L) be another splitting representation. There
is a field extension K/F and F-algebra homomorphisms y: E — K and 6:
L — K. (See Exercise 1.) These mappings extend to F-algebra homomor-
phisms x: M,(E) - M,(K) and 8: M, (L) - M,(K) by x([c;]) = [x(c;)]
and 0([d;]) = [0(d;)]. The lemma implies 6(X,) = X,, = X,, = 7(X,) =
X, because X, € F[x] and y is an F-algebra homomorphism. Thus, X, =
X, € F[x]. By Theorem 13.5, splitting representations ¢: 4 — M,(E) such
that E/F is Galois exist. This observation finishes the proof. O

The proposition enables us to simplify our notation. We will write
X yp> Tayr> @nd v ¢ (01 just X, 7, and v when there is no danger of confusion)
for X, 7, and v, respectively, where ¢ is any splitting representation of 4.
If y € 4, then X(,x), ©(p), and v(y) are called the characteristic polynomial,
trace, and reduced norm of y.

Corollary a. Let A € S(F) have degree n. If ¢: A - M (K) is a repre-
sentation of A, then n divides m and X, = X™, t, = (m/n)t, and v, = v™.
In particular, ©,(y), v,(y) € F for all y € A.

Corollary b. Let E[F be a field extension, and suppose that A € S(F), B e
S(E). If 0: A - B is an F-algebra homomorphism, then Deg B = k Deg A
Jor some k e N and Xp,(0(y),x) = XA/F(y,x)" for all ye A. In particular,
XAE/E(y’X) = X,q/p()’ax)a TAE/E(.V) = TA/F(.V), and VAE/E(y) = V() for all
yeA.

ProoF. Let Deg B = m, DegA = n. Suppose that ¢: B - M (K) is a
splitting representation of B. Since ¢0: 4 - M, (K) is a representation of
4, it follows from the lemma that m = kn and X; ;(0(y),x) = X s0(¥,X) =
Xy r(y,x)* for some k e N. O

EXERCISES

1. Let E/F and L/F be field extensions. Prove that there is an extension K/F such that
both E and L are isomorphic as F-algebras to subfields of K that contain F. Hint.
Let M be a maximal ideal of E (X) L. Consider (E X) L)/M.

2. Let 4 be a finite dimensional F-algebra. For a fixed basis {w,, w,, ..., w,} of 4
and y € 4, define ¢(y) € M (F) by [yw,, yw,, ..., yw,] = [w;, wy, ..., w, ] ().
That is, ¢(y) is the matrix of A, relative to the basis {w,, w,, ..., w,}. Prove the

following statements.

(@ ¢: A > M(F) is a representation of A4, and X, does not depend on the
choice of the basis {w;, w,, ..., w,}. Thus, there is no ambiguity when we write
X, for the ¢-characteristic polynomial that is defined in this way.



16.2. Computations 297

(b) If E/F is a field extension and y € 4, then X,(y,x) is the same polymomial
when y is viewed as an element of AF as it is for y € A4.

(c) If 4 € S(F) has degree n, then X, = X". As a challenge, prove this statement
without using Corollary a, by appling the result (b) in the case that E splits 4. In
this situation, 4% can be identified with M, (E).

16.2. Computations

Explicit calculations of the characteristic polynomials, norms, and traces
in central simple algebras are usually difficult. In this section we exhibit
some cases in which formulas can be given for these quantities.

By 16.1(1), the norm can be recovered from the characteristic polynomial.
However, it is sometimes easier to work directly with the norm. We begin
this section by showing that the characteristic polynomial can be viewed
as a norm.

Lemma a. Let ¢: A - M (K) be a representation of the F-algebra A. If
E=Fx) and ¢ = ¢ Q) idg: A¥ - M,(K(x)), where M, (K) Q) F(x) is
identified with a subalgebra of M,(K(x)), then X,(y,x) = v,(x — y) for all
y € A. In particular, if A € S(F), then X, p(y,X) = vex(X — ).

PrOOF. By definition, y/(y) = ¢(y) for all y € 4, and Y(x) = ¢(1) X x =
1,X. Thus, v, (x — y) = det(¥(x — y)) = det(1,x — ¢(y)) = X(y,x). O

If K/F is a finite field extension, then it follows from the lemma that the
characteristic polynomial of an element d e K over F is Ny, (X — d).
We will need a more general version of this observation.

Lemma b. Assume that K/F is a field extension of degree r. If ®(x) = x™ +
dx" ' + ... +d,eK[x], then ¥(X) = Nyype(®(X)) is a monic poly-
nomial of degree mr in F[x], and ¥(0) = Ny,(d,,).

PROOF. Let w,, ..., w, be a basis of K.. Define ¢: K > M (F)byd[w,,...,
w,] = [wy,....w,]¢(d), that is, ¢ is the left regular matrix representation
of K relative to wy, ..., w,. Since w;, ..., w, is also a basis of K(X)g,
itfollows that ®(x)[w,,...,w,] = [wy,....w,]0X™ + ¢d)x" " + .- +
¢(d,)) and ¥(x) = det@,x™ + ¢(d)x" ' + - + $(d,)) = X" + -+ +
Nyp(d,,)- O

Proposition a. Let A € S(F). If K is a subfield of A, then k € N exists such
that Deg A = k[K: F], 1(y) = kT, (), and v(y) = Ny, p(p) for all y e K.

PrOOF. It was pointed out in Corollary 13.1a that [K: F] divides Deg 4.
Let v, ..., v, be a basis of (4. If u,, ..., u, is a basis of ;K, then {u;;:
1 <i<r, 1<j<mjisa basis of ;4. Let ¥ be the left regular matrix
representation of K relative to u,, ..., u,; thatis, y[u,,...,u,] = [u,,...,
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u,]Y(y) for y € K. Since Y(y) € M,(F) and F = Z(4), it follows that y[u,v;,

o] = [uy0,. . uy]Y(y) for 1 <j< m. Thus, the left regular
matrix representation of 4 relative to {;} has the form of a matrix tensor
product ¢(y) = Y(y) @, if y € K. By Corollary 16.1a, kr = Deg A4 divides
mr, and v(y)™ = v,(y) = (detY(»))™ = Ng,x(»)". Up to a root of unity,
this is the last statement in the proposition. When 4, K, and F are replaced
by B = A", K(x), and F(x) respectively, Lemma a gives X, x(y,x)™ =
VarmX = D™ = Nero®X — 2" = X, (»,x)™ Since X,(y,x) and
X, (»,x) are monic polynomials in x, it follows that X, z(y,x) = X, ( 7,x)~.
In particular, t,:(y) = kTy(y) and v, (y) = Nm.(y)" by 16.1(1). O

Corollary. If A € ©(F) is a division algebra of degree n, and if y € A has the
minimum polynomial ®(x) over F, then v(y) = (—1)"®(0)*, wherer = deg ®.

In fact, K = F(y) is a subfield of the division algebra 4, and [K: F] = r.
The same proof works when the hypothesis that 4 is a division algebra is
replaced by the assumption that the minimum polynomial of y is irreducible.
Indeed, this is exactly the case in which y belongs to a subfield of 4.

When 4 is a crossed product, then it is possible to give an explicit splitting
representation of 4 and hence a formula for the norm.

Proposition b. Let A = (E,G,®) be a crossed product of degree n, where
G = G(E/F), A = @yccUoE, u;'du, = d° foralloc € G,d e E, and u}u u,
= ®(o,1). The formula

¢< Y upcp> = [d,] with d, = @@ !0)ct 1)
peG

defines a splitting representation of A. In particular, if A = (E,c,a) is cyclic
and A = @), ,u'E withu™'du = d° for all d € E and u" = a, then

a a2 o" 1
co acg_, acls, --- acs
2 n-1
; c cg acy -eeoacs
i — 1 0 n—1 2
o(gua)=| G T g
i<n
o o2 g1
cn—l cn—2 cn—3 CO

and

"(Z “ici> = (—l)n_lNE/F(cn—l)an—l + oo+ Ngipl(co). (3
Proor. If y = ) e U,C,s then @(y) is the matrix of A, relative to the basis
{u,:0€ G} of Ay. The calculation that proves this assertion is left as
Exercise 1. O

b

If4a= (%) = (F(\/a),0,b) is a quaternion algebra, then (3) takes the

form v(c, + ic; + je, + ijc;) = N jayr(co + ciJa) — Neayr(ca —
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c3/a)b = ¢ — ac? — bc} + abc3. That is, the reduced norm for a quater-
nion algebra is the norm that was introduced in Section 1.6.

A word of caution is needed: if n > 2, then the coefficients of &’ in (3)
for 1 < i < n — 1 are fairly complicated homogeneous polynomials in the
various ¢; and their conjugates. They are not simple expressions like
(—1)*Ng(c)). Exercise 2 illustrates this fact.

EXERCISES

1. Complete the proof of Proposition b.
2. Let F be a field with char F # 3 such that there is a primitive third root of unity

15.4. Thus, A has an F-basis {u'v':0 < i,j < 3} such that vu = w{, u*> = a e F°,
v’ =be F°.Provethatifz = ) o, ;s u'vicy, then v(z) = a*(c3o + bey, + b*c3, —
3bcy6C21€22) + al(clg + beyy + bPc3; — 3beyo¢y1€¢15) = 3(Co0C10€20 + bCo1€11€2y
+ B2e512655) — 3bL(CooC12Ca1 + Co1C10€a2 F C02€11€20) — 3bL3(Co0¢s €2z +
C02€10C21 + Co1€12€20)] + (o + bedy + bPcd; — 3beyocoy€o)-

{inF. LetA = (;’IZ) be the cyclic algebra of degree 3 that was defined in Section

16.3. The Reduced Norm

In this section we will translate standard facts about matrices and deter-
minants into statements about the reduced norm. The main result of this
program is a norm criterion for an element of a central simple algebra to
be a unit.

Lemma a. Let ¢: A - M (K) be a representation of the F-algebra A. If
x,y€ Aanda, b € F, then

() t4(xa + yb) = 14(x)a + 14(»)b,

(i) vo(xp) = v4(x)v,(¥),
(iii) vy(a) = a".
If yi, ..., Y, is a basis of Ag, then there is a homogeneous polynomial ® of
degree n in x,, ..., X, with coefficients in K such that vy}, y.a) =
oy, ...,a,).

Proor. Equations (i), (i), and (iii) reflect corresponding properties of the
trace and determinant mappings of matrices. For example, v,(xy) =
det(¢(xy)) = det(@p(x)p(»)) = det d(x)det (y) = v,(x)v,(»). Let ¢(y) =
[6}] € M,(K). Then

Vg (i yiai> = det[; b;kaii|
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= ngnn(ﬂl ( 1 b;:,,(j)al))
n j=1 \i=

= P, ...,a,),

where ® € K[x,, ..., X, ] is homogeneous of degree n. O

Lemmab. If A € &(F), and if $: A > M (K) is a representation of A, then
every element of A is a root of its ¢-characteristic polynomial.

Proor. By Corollary 16.1a, X,(y,x) has coefficients in F, so that
PXy(y,3) = Xy(y,0(»)

because ¢ is an F-algebra homomorphism. By definition, X(y,x) is the
characteristic polynomial of the matrix ¢(y). Thus, X,(y,¢(y)) = 0 by the
Cayley—Hamilton Theorem for matrices. Finally, since A is simple, ¢ is
injective. Hence, X,(y,y) = 0. O

Proposition a. Let A € S(F). Anelement y € A is a unit if and only if v(y) # 0.

PROOF. If y € 4°, then v(y~")v(y) = v(1) = 1 by Lemma a. Thus, v(y) # 0.
Assume that v(y) # 0. Then X(y,x) = x" + a;x" ' + ... + a, witha, =
(=1)"v(y) # 0by 16.1(1). Since y" + a, " * + --- + a, = 0 by Lemma b,
it follows that —(»"™* + a;»"" % + --- + a,_,)a;" is the inverse of y. [

Corollary a. If ¢ is a representation of A € S(F), then A is a division algebra
if and only if v,(y) # 0 forallye A — {0}.

This corollary follows from the proposition and Corollary 16.1a.

It follows from Lemma a and the proposition that the reduced norm is a
group homomorphism from A° to F°. Since F° is commutative, the kernel
of v contains the commutator subgroup 4" = [4°,4°] of A°. Therefore,
v induces a homomorphism v** from 4* = 4°/4’ to F°: v**(xA4") = v(x).

Corollary b. If A € S(F), then v is a group homomorphism of A° to F° that
induces a homomorphism v** : A** — F°.

The groups Ker v** = Kerv/4’ and Coker v** = Cokerv are important
invariants of central simple algebras. The kernel of v*° is encountered in
algebraic K-theory; it is called the Reduced Whitehead Group of A, and it is
denoted by SK,(A4). Corollary b yields an exact sequence

1 > SK,(4) > A% - F° - Cokerv — 1. 1)

Itis clear from Lemma a that if Deg 4 = n, then (F°)* < Imv. Therefore,
Coker v is a homomorphic image of F°/(F°)". In particular, the exponent of
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Coker v divides n. The same statement will be proved for SK,(4) in Section
16.6.

We conclude this section with a proof that SK; and Cokerv are the
object maps of functors.

Proposition b. Let K/F be a field extension. Suppose that A € S(F), B € S(K),
Deg A = m, and Deg B = n. An F-algebra homomorphism 0: A — B induces
group homomorphisms 6°: A® — B®, 0,: SK,(A) - SK,(B),and 0,:
Coker v, — Coker vy g such that the diagram

1 - SK,(4) » A” - F°—— Cokerv,; — 1

10 1 L 1o @
1 - SK,(B) - B* - K°—— Cokervg, — 1

commutes, where 1, is the exponential mapping a — a*.

Proor. The composite homomorphism A° % B° - B% has the kernel
0~1(B’). Thus, 4°/0~'(B’) is isomorphic to a subgroup of the commutative
group B?. Therefore, A’ = 67(B’), and 6 induces 6% : 4 — B such that

0°°(xA4") = 6(x)B'.
By Corollary 16.1b, vi0%(xA4") = vp0(x) = v, (x)" = n,, Vir(xA")
for all x € A°. Thus, the middle square of (2) commutes. From this fact

and the exactness of the rows in (2) it follows easily that there are unique
homomorphisms 6, and 6, such that the whole diagram commutes. O

If 6: A > B and y: B - C are respectively F-algebra and K-algebra
homomorphisms, then the construction in the proof of Proposition b shows
that

WO)*® = 0%, ), = ¢,0,, and ¥0), = ¥,0,. 3

In particular, SK, is a functor from the category S(F) to the category of
abelian groups.

EXERCISES

1. Complete the proof of Proposition b. That is, show that the exactness of rows and
the commutativity of the center square in (2) implies the existence and the uniqueness
of homomorphisms 6, and 6, so that the diagram commutes.

2. Compute Coker v, in the following cases.
(a) Farbitrary, 4 = M (F).
(b) F=R, A =H.

€ F=0,4 =<_1"1>.

Q

d) F=Qx),4 = (“1{1)
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3. Let A e S(F). If y € A, then the minimum polynomial of y over F is the monic
polynomial ® of least degree in F[x] such that ®(y) = 0. Prove that every y € 4
has a unique minimum polynomial ®, and ® divides X(y,x) in F[x]. Show that y
is contained in a subfield K of 4 if and only if @ is irreducible in F[x].

4. Let D e S(F) be a division algebra. Denote the F-algebra of polynomials with
coefficients in D by D[x]. (By definition, xy = yx for all y € D.) Define the degree
deg ® of ® € D[x]} — {0} in the usual way. Forye Dand ® = x, + xx, + - +
x"x, € D[x], define ®,(y) = xy + yx; + --- + y"x,. Prove the following state-
ments.

(@) If ®, ¥ € D[x] — {0}, then deg®Y¥ = deg® + deg'V.

(b) If ® € D[x] has degree n > 1 and y € D, then there exists ¥ € D[x] such
that deg¥ =n — 1 and ® = (x — »)¥ + ®,(»). Deduce that ®,(y) = 0 if and
only if ® = (x — y)¥ for some ¥ € D[x].

(c) If ® = PX and y € D satisfies ®(y) = 0 # ¥,(»), then X,(z"'yz) = 0 for
some z € D°. Hint. Apply (b) to ® and ¥. Take z = ¥,(y).

(d) If¥ € D[x] — {0} is monic of minimal degree with the property ¥,(z"yz) =
0 for all z € D, then ¥ € F[x]; hence deg¥ > [F(y): F].

(e) If ® € F[x] < D[x] is the minimum polynomial over F of y e D, then
® =(x — y)(x —y,) - (x —y,), where the y, are conjugates of y in D. Hint. Use
(b), (c), and (d).

(f) If Deg D > 2,then there is no total ordering of D such that sums and products
of positive elements are positive. Hint. Find y € D such that the minimum poly-
nomial of y has the form x" + a,x""? + ... + a,. Show that if y > 0, then the
conjugates of y are positive, and if y < 0, then the conjugates of y are negative.
Obtain a contradiction.

16.4. Transvections and Dilatations

If D is a division algebra in ©(F) and 4 = M, (D), then the reduced norm
v4r is analogous to a determinant mapping. In this section and the next one
we will construct a determinant for matrices over a division algebra that is
closer in spirit to the usual determinant than the norm. The difference
between the reduced norm and the determinant is measured to a large
extent by the reduced Whitehead group and the cokernel of the norm.

The letter D denotes a division algebra that is not necessarily finite
dimensional over the field F. Denote M, (D)° by GL, (D). Thus, GL,(D) is
the group of invertible # by » matrices with entries in D. In this section we
tacitly assume that n > 2; most of the statements that make sense for
GL,(D) = D° are trivially true.

It is useful to introduce notation for two classes of n by n matrices. Let
1 <i#j<n; define 7(x) =1 + g;x for xe D, and 6,(x) = ) ;.84 +
gx =1+ ¢x — DifxeD° If it 1s necessary to incorporate » into this
notatlon we will write r,, (x) and 67 (x) instead of 7;;(x) and J,(x). The matrices
0,(x) play a special part in the theory, and it is convenient to abbreviate J,,(x)
by 4(x).
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Every 1;;(x) and J,(x) belongs to GL,(D). In fact 7,;(x)7" = 1;(—x) and
8,(x)™" = 6,(x71), since 7;;(x + y) = 7;(x)7;;(¥) and 4,(xy) = §;(x)5,(»). In
particular,

0: D° - GL,(D) is an injective group homomorphism. 0))

The matrices 7;;(x) are called transvections ; the J,(x) are dilatations. There
are geometrical definitions of transvections and dilatations which assign
these titles to matrices that don’t have the forms 7;;,(x) and J,(x), but this
matter won’t concern us.

Lemma a. If D # [, then the transvections t,/(x) are elements of the com-
mutator subgroup GL, (D) of GL, (D).

PROOF. Since 1;;(x) has only one non-zero entry off the diagonal, it suffices
to prove the lemma when n = 2. Choose y € D — {0, —x}. This choice is
possible because D # F,. Let z = y(x + »)~'. A routine calculation shows

1 0 1 0 1 0
that ] = o ' 'af € GL (D), where o =[ and f = )
x 1 y 1 0 :z

1
Also, [0 )lc] e GL (DY, since GL, (D) is closed under transposition. O

Denote the subgroup of GL,(D) that is generated by {7;(x): i # j,
x € D°} by H or H,. In the next section we will see that H is the commutator
subgroup of GL,(D). Since rij(x)'1 = 1,,(—x), every element of H is a
product of transvections.

If o, B € GL,(D) with n > 2, write « ~ f when « and f are in the same
right coset of H; that is § = ya for some y € H. Plainly, ~ is an equivalence
relation on GL, (D).

The relation ~ has a familiar characterization:

o ~ Bif and only if § can be obtained from a by a sequence
of elementary row transformations of the first kind, that is, )
transformations that add a left multiple of one row to another row.

Indeed, if & = [y,] = Zk.lsklykl’ then Tij(x)_“ =0+ 8ijx)(2k,l£klykl) =
Zk,lgklykl + EaXYy = [z,), where z,; = y,, if k # i and z; = y; + xy;.
That is, 7,,(x)a is obtained from o by adding the left multiple by x of row j
to row i.

Lemma b. If « € GL,(D), then a ~ (x) for some x € D°.

Using only elementary row transformations of the first kind, the Gauss
elimination process carries an invertible matrix o to a matrix of the form
8(x). Thus, & ~ §(x) by (2). The details of this construction are outlined in
Exercise 1.
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Corollary a. H is a normal subgroup of GL,(D). In particular, o, ~ B, and
a, = B, imply a0, = BB,

PROOF. If i,j # n, then §(x)™'7,;(»)8(x) = 7,4(»); and 8(x) "7, (»)d(x) =
1,,(yx), 671 (0)1,;(»)d(x) = 1,(x”'y). Thus, H < GL,(D) by Lemma b.
Moreover, o, = y,8, and a, = 7,f, with y;, y,€ H implies o0, =

V1ﬂ13’2ﬁ;1ﬁ1ﬂ2 ~ B, B,- O

Lemmac. Ifx,,...,x,e D°and1 < i, ...,i, < n,thend, (x;)---6,(x,) ~
8(x, - - -x,). In particular, 6,(x) ~ 6,(x) for all k and I.

PRrOOF. By induction on r, it is sufficient to prove that §,(x)d(y) =~ d(xy).
Moreover, it can be assumed that n = 2 and (by (1)) i = 1. By (2), 9,(x)é(»)

B |:x 0] N [x 0] N [l (x ' — l)y:| N I:l (x™! - l)y] N |:1 0]
~lo vyl lx vl Lx y Lo xy 10 xy
= 6(x). O

Corollary b. If o € GL,(D), then o = y(ix) for some y € H and x € D°.

By Lemma b there is an x € D° such that a ~ (x). Therefore, a" ~
S(x)" ~ 8,(x)- - -0,(x) = 1x by Corollary a and Lemma c.

This corollary enables us to prove an important analogue of Corollary
16.1b in which the roles of E and F are reversed.

Proposition. Let E/F be a finite field extension, A € S(E), and B e S(F).
Assume that [E:F] =1, DegA = m, and DegB = n. If 0: A —> B is an
F-algebra homomorphism, then n = mik for some ke N and vgp(6(y)) =
Ngp(vyz(0)) for all y € A.

PROOF. Since A is simple, we can assume that 4 < B and 6 is the inclusion
homomorphism. In this case, E is a subfield of Band F < E < A. By the
D.C.T. and Corollary 16.1b, n* = I?(Deg C4(E))* = (Imk)*. Fix an element
yeA.Ifye B°, theny™ € F[y] = 4 by Lemma 16.3b. Hence, v, () = 0
implies vp p(¥) = 0. Assume that v, (y) # 0, that is, y € A°. By the Wedder-
burn Structure Theorem, 4 =~ M (D), where D is a division algebra in

(E). It can be assumed for convenience of notation that D < 4. The
assumption that y € 4° implies by Corollary b that y* = zw for some
ze A’ < B’ and we D°. It follows from Corollary 16.3b that vgr(y)* =
Ve p(2) Vg r(W) = vgp(w) and v (y)° = v p(w). Let K = E[w].Sincewe D
and D is a finite dimensional division algebra over E, K/E is a finite field
extension, say [K: E] = t. Then [K: F] = It and vgp(w) = Ng W)™ =
Ngp(wy™* = Ngp(vye(w))* by Proposition 16.2a. Hence, vgr(y)’ =
(Ngp(vye(2)*)*. The device that was introduced at the end of the proof of
Proposition 16.2a can again be used to conclude that vpp(y) = Ngp(v4( .
The details of the argument constitute Exercise 2.
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Corollary c. If the hypotheses of the proposition are satisfied, then 0 induces
group homomorphisms 6°, 0, , and 0, such that the diagram
1 - SK,(4) > A** - E° — Coker Ve — 1
10 Loy 1o
1 > SK,(B) - B* —» F° — Coker vgr = 1

commutes, where Y = 1, N

This corollary follows from the proposition by the same reasoning that
was used to deduce Proposition 16.3b from Corollary 16.1b.

EXERCISES
1. Prove Lemma b. Hint. For 0 < k < n, denote by G, the set of all « € GL (D) that
1 *
have the form l:(;‘ [J with g e M,_ (D). Show that f e GL,_,(D). Prove that if

1 *
2€G, and k + 1 <n, then a ~ [(’; ] where y = [y;] € M,_,(D) satisfies
Y

Y11 = 1. Deduce that « ~ o’ € G, . Finally, show that if « € G,_,, then a ~ §(x)
for some x € D°.

2. Complete the proof of the proposition by applying the result obtained in the first
part of the argument to F(x), E(x), A¥®, BF™ and x — y. It is necessary to use
both Lemma 16.2a and Lemma 16.2b.

3. Prove that Lemma a is true for D = F, provided n > 3, but it is false for GL,(F,).

16.5. Non-commutative Determinants

The construction of the determinant mapping for GL,(D) is completed
in this section. We also complete the preparations for the study of SK,
in Section 6.

The notation that was introduced in Section 4 has the same meaning in
this section. In particular, H is the subgroup of GL,(D) that is generated
by the transvections 7;,(x). We have shown that H <« GL (D), H < GL,(DY,
and 6(D°) is a subgroup of GL (D) such that Hé(D°) = GL,(D). To complete
this picture, it is necessary to determine H n 6(D°).

Lemma a. If n > 2 and x € D°, then 6(x) € H if and only if x € D’, the com-
mutator subgroup of D°.

PrOOF. Assume that x = y~'z"'yz. We will prove that é(x)e H. It is
sufficient to consider the case n = 2:

e o b el o S
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yiz7ly 0 0 —yt! 0 —yt 1 0
z[ y Z]:[y z ]:[y 1 ]:[y 1]
1 0
z[o 1].

Since every element of D’ is a product of commutators, it follows from
16.4(1) that 6(D’) = H. The proof that §(x) € H implies x € D’ is more
difficult. This implication is equivalent to the existence of a determinant
homomorphism from GL,(D) to D*. It is convenient to extend our notation
to cover the casen = 1. Write H, for D', x ~ yify"'x € H,,and 6} (x) = x.
For n > 1, denote the natural projection homomorphism from GL,(D)
to GL,(D)/H, by n. The proof of the lemma will be completed by con-
structing a mapping 6: GL, (D) - GL,_,(D)/H,_, for n > 2 such that

o ~ B implies 6(x) = 0(p), )
and
0(3;(x)) = (3,7} (x)). 2

This will do the job because 57(x) = 6(x) € H, implies 6"~} (x) € H,_,, and
by induction x = é{(x) e H, = D". Ifa = [x,;] e GL,(D),n > 2,and 1 <
i < n, define the row vectors & = [X;1,X;,,. . .,X;,] and n; = [x;5,...,X;,]-
Let [ y,,y5,- - .,¥,] be the first row of a™*. This vector is characterized by

v +y252 + - +yné,,= [1,0,...,0]. 3)
In particular,
Yy + Yoty + oo + Y, = 0. @

If y, # 0, then [y7%,0,...,0] =y & + - + &+ -+ + )78, by
(3). It follows from Lemma 16.4c that

¢y
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for every k # i. Define

(_ 1)i+1yi—1nk

L M B
where the symbol 7, indicates that the row i is omitted. If D = F, so that the
determinant mapping is defined, then deto = deta,. Our definition of 6
is motivated by this observation: (a) = m(a,,), where i and & satisfy y, # 0
and k # i.

If y, # Oand y; # 0, then oy ~ oy forallk # iand/ # j. o)

By Lemma 16.4c the choices of k and [ are irrelevant; it is sufficient to
prove that o;; ~ a; under the assumptions y;, # 0, y; # 0, and i < j. By (4),
-y = Zf,# Y7 v yin,.. Thus, elementary row transformations of the
first kind yield

1R

Y (=D e (=D 'y s

k#j .

If the matrix y is obtained from f by interchanging rows k£ and k£ + 1 and
multiplying the new row k by —1, then y = 7, ., (D)7, (= D7y s (DB =
B. Consequently,
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(—1y*ty” 1J’j_ 'y

o~ . = 5{'_1(Yi_1yj_1yz'yj‘)“ji = o

L . _
by the first part of the proof. Thus, (5) is proved. It is clear from the definition
of 0 that (2) is satisfied. For the proof of (1), it can be assumed that f =
7;;(z). Thus, row i of Bis & + z&;, and the other rows of f are the same as
the corresponding rows of a. By (3), y, &, + - + y(§ +25) + --- +
;= y2& + - + 58 =[10,... ,0], so that the first row of 7' is
(Vs osVieeos¥y = V%o 5Va)- If 3y # 0 for some k # j, then B, =
1;((— D' zp)ay; ~ o;. In this case, 0(B) = n(B,) = n(a,;) = 0(x) by (5).
(If k = i, then in fact §; = «;.) If y, = O for all k # j, then by (4), n; = 0
and y; — y,z = y;. In this case, §; = a; and 6(B) = 0(«) by (5). ]

Proposition a. If D is a division algebra, D % F,, and n > 2, then the com-
mutator subgroup of GL, (D) is generated by the transvections t,(x). Moreover,
GL,(D)* = D*.

PROOF. By 16.4(1) and Lemma 16.4b, 6(D°) is a subgroup of GL,(D) such
that H5(D°) = GL,(D). Lemma a is equivalent to the equation H n 6(D°) =
3(D"). Therefore, since H < GL,(D) by Corollary 16.4a, the Noether iso-
morphism yields GL,(D)/H = H)(D°)/H = §(D°)/(H n 6(D°)) = 6(D°)/
8(D’) = D®. Thus, H = GL, (D) because D* is commutative. By Lemma
16.4a, H = GL (D). O

It is a consequence of Exercise 3 in Section 16.4 that the proposition
is true for D = F,, provided n > 3. The second statement of the proposition
is valid with no restrictions on D or n.

Corollary a. If D is a division algebra and n € N, then there is a unique group
homomorphism Det: GL, (D) — D® such that Detd(x) = n(x) for x € D°,
where n: D° — D is the projection homomorphism.

The explicit definition of Det a is this: write & = yd(x) where y € H and
x € D°; Deta = 7(x). By Lemma 14.4b and Lemma a, this recipe furnishes
the unique homomorphism that satisfies the condition Det (x) = n(x).

The mapping Det was introduced by J. Dieudonné in his study of the
classical groups. If D is a field, then Det is the ordinary determinant. The
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kernel of Det is called the Special Linear Group, and it is denoted by SL,(D).
If D # F,, then SL(D) = GL,(D) by the proposition. In particular,
SL,(D) = D'.

Lemma b. If A = M,(D),where D € ©(F)is adivision algebra, then vy 0 6 =
vD/F|D°.

ProoF. Let ¢: D - M, (K) be a splitting representation of D. Define y:
A4 - M, (K) by ¥([x;]) = [¢(x;)], considered as a matrix of blocks.
Plainly,  is a splitting representation of 4. Thus, if x € D°, then v, ;(6(x)) =

det (P(5(x))) = det [’mg"n ¢?x)} = det $(x) = vpp(). 0

Proposition b. Let A = M, (D), where D € S(F) is a division algebra such
that |D| > 2. There are isomorphisms 6®: D - A** and é,: SK,(D) -
SK,(A) such that the following diagram commutes.

1 - SK,(D) » D** - F° — Coker vy, — 1
Lo Lo i L
1 - SK,(4) -» A* — F° - Cokerv,; — 1

PrOOF. By Lemma a, 6°°(xD’) = 6(x)A’ is a well defined, injective group
homomorphism from D to A*. By Lemma 16.4b, 6% is surjective. It is a
consequence of Lemma b that the middle square of the diagram commutes.
Therefore, the other squares commute, and 6, = *°|SK, (D) is an isomor-
phism. O

Corollary b. If A = M, (D), where D e G(F) is a division algebra, then
v p|A° = v*" 0 6 o Det.

PROOF. Assume that D # [F,. Let a € 4. Write a = yd(x) with ye H = A’
and x € D°. Then v*§** Det o = v*§%n(x) = v**5(x) 4" = v (ad’) = v(«).
The case D = [, is trivial. O

Corollary c. Assume that |F| > 2. If A, Be &(F) satisfy A ~ B, then
Coker v, = Coker vy and SK,(4) = SK,(B). In particular, |SK, (M, (F))|
= |Coker vy ryp| = 1.

EXERCISES

1. Prove the assertion that the second statement of Proposition a is true for all D and
all n e N. Show that SK,(M,(F,)) ~ Z/2Z. Hint. Show that GL,(F,) is isomorphic
to the symmetric group of order 6.

2. Let A: GL (D) — D°/D’ be a mapping that satisfies:
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(i) if B is obtained from a € GL (D) by adding a left multiple of one row to another
row, then A(f) = A(®);
(i) if B is obtained from « € GL,(D) by multiplying one row of a on the left by
x € D°, then A(B) = (xD")A(a);
(iii) A@,) = D'
Prove that A = Det.

3. Prove by induction on » that there is a mapping A that satisfies conditions (i), (ii)
and (iii) of Exercise 2. Hint. Use the technique that was developed in the proof of
Lemma a.

4. Let D be a division algebra. Let n: D° — D be the projection homomorphism.
Derive the following formulas for determinants of the elements of M, (D).

0
(a) If y, z € D°, then Det[ y ] = n(—zy).
zZ W
X
zZ

(b) If xe D°and w # zx~'y then DetI:
w

y:l = n(xw — xzx~'y).

1
(c) If yz # zy, then Detli y:] = n(yz — zy).
z yz

16.6. The Reduced Whitehead Group

This section presents some of the elementary results concerning the structure
of SK, (A), where A € S(F). It is shown that the exponent of SK (4) divides
the index of A, the primary decomposition of a division algebra 4 induces a
corresponding decomposition of SK,(4), and SK,(4) is trivial if Ind 4 is
square-free. Deeper properties of the Reduced Whitehead Groups are
described in the Notes. To avoid the anomaly SK,(M,(F,)) # {1}, we
assume in this section that |F| > 2.

Lemma. Let K/F be a finite field extension. If D € S(F) is a division algebra,
Ae S(K), B = M/(F), and y: A — B is an F-algebra homomorphism, then
there is a sequence SK,(D) 5 SK,(D ) A4) Y, SK,(D Q) B) > SK,(D)
such that 0 is an isomorphism and 0y = n,, where n,(x) = x.

ProOF. Proposition 16.3b, Corollary 16.4c, and Proposition 16.5b give the
commutative diagram

SK,(D) % SK,(D® 4) 5 SK,(D® B) > SK,(M,(D)) & SK,(D)

! ! ! 14 !
Dab N (D ® A)ab - (D ® B)ab N Mk(D)ab - Dab

in which the vertical mappings are inclusions, ¢ is induced by x — x X) 1,
¥ is induced by x X) y > x X) x(»), and t is induced by x Q) z — p(2)x
(where p: B — M,(F) is the isomorphism that is assumed to exist). Since
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p is an isomorphism, so is 7; and J, is an isomorphism by Proposition
16.5b. Thus, 6 = 6;'t: SK,(D X) B) > SK,(D) is an isomorphism. If
xD’" € SK,(D), then Oy¢p(xD’) is the coset (mod D’) of the image of x —
x @ 1 x & x(1) - x> 5 (1x). By Corollary 16.4b, 6 (3, x)D’ =
x*D’. Hence, 0y ¢ = 1,. O

Proposition a. If A € ©(F), then the exponent of SK,(A) divides Ind A.

Proor. By Corollary 16.5¢, we can assume that 4 = D is a division algebra.
Let K be a maximal subfield of D, so that [K: F] = DegD = IndD = k
and D X) K =~ M,(K). Thus, SK,(D (X) K) = {1} by Corollary 16.5c. Apply
the lemma with 4 = K and y: K > M,(F) = B is a left regular repre-
sentation. If xD’ e SK,(D), then (xD')* = n,(xD’) = OYp(xD’) = (1)
=1. O

Proposition b. If the division algebra D € S(F) has the primary decomposition
D=D, ---Q D,, then SK,(D) has the primary decomposition SK, (D)
~ SK,(D,) x --- x SK,(D,).

Proor. By Proposition 14.4b, it will be sufficient to prove that if 4 and B
are division algebras of relatively prime degrees m and n, then SK, (4 (X) B)
~ SK,(4) x SK,(B). By Proposition a, the exponent of SK,(4 ®B)
divides mn, so that SK,(4 (X) B) = G x H, where the exponent of G divides
m and the exponent of H divides n. In particular, 5,(G) = G and n,(H) =
{1}. By symmetry, it suffices to show that G =~ SK,(4). Define y: B —
B B* ~ M,.(F) by x(x) = x(X) 1. The lemma provides a sequence of
homomorphisms SK,(4) % SK,(4® B) % SK,(4 X B X B*) 5
SK,(4) with 6 an isomorphism, and 6y¢ = n,.. Thus, SK,(4) =

N2(SK (A)) = n,00$(SK,(4)) = OYn,(G x H) = 0Y(G) = SK,(4).
Hence, 6y: G —» SK,(A4) is a surjective homomorphism. The proof is
completed by showing that |G is injective. To do so, we use the lemma w1th
the left regular representation B* — M,.(F) to obtaln SK,(4 @B)

SK,(AQ BX B*) % SK,(AR BX® M.(F)) 5 SK,(4(K) B) with
0'Y’'¢p’ = n,.. A check of the deﬁmtlons shows that ¢’ = l// Ifw=x(4 ) B
€ G — {1}, then O'Y'y(w) = 0'Y'¢’(w) = n,2(w) = w" # 1. Thus, Y|G is
injective. O

Proposition c. If D € S(F) is a division algebra and L/F is a finite field ex-
tension such that [L: F] is relatively prime to DegD, then the inclusion
homomorphism D — D" induces a split injection SK,(D) — SK,(D").

PrOOF. Let n = [L:F]. By the lemma, the left regular representation
L- M,(F) leads to the sequence SK, (D) % SK,(D*) % SK,(D X M, (F))
5 Sk (D) with 0y ¢ = n,. Since (n,Deg D) = 1, it follows from Propo-
sition a that #, is an automorphism of SK, (D). Therefore, ¢ is a split in-
jection. O
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Theorem. If the index of A € S(F) is square-free, then SK,(A4) = {1}.

Proor. By Corollary 16.5c and Proposition b, it can be assumed that 4 = D
is a division algebra of prime degree p. Let x € D satisfy v(x) = 1. We must
prove that x € D’. This conclusion follows from

there is a finite extension L/F such that p does not
divide [L : F], and D" contains a maximal subfield E )]
that is a cyclic extension of L with x € E.

In fact, (1) implies that Ng;(x) = vp;(x) = vpr(x) = 1 by Proposition
16.2a and Corollary 16.1b. Since E/L is cyclic, it follows from Hilbert’s
Theorem 90 and the Noether—Skolem Theorem that x € (D). (See Exercises
1 and 2.) Thus, x € D’ by Proposition c. The proof of (1) is a simple version
of the proof of Lemma 15.2 with a minor twist: F(x)/F is separable, so that
there is a maximal subfield K of D such that K/F is separable and x € K.
(If xeF, then F(x)/F is obviously separable. Otherwise, Np.,(x) =
vpr(x) = 1 by Proposition 16.2a and the hypothesis; since [F(x): F] = p,
it follows that F(x)/F must be separable.) The proof of Lemma 15.2 yields
a finite extension L/F such that p does not divide [L: F], [KL:L] = p,
and KL/L is Galois. Thus, E = KL is a maximal subfield of DX, E/L is
cyclic, and x € E. O

EXERCISES

1. Use the results of Exercises 3 and 4 of Section 14.2 to prove that if K/F is a cyclic
extension with G(K/F) = {¢), then:
(a) if x € K satisfies Tyr(x) = 0, then x = y — »° for some y € K;
(b) if x € K satisfies Ny p(x) = 1, then x = () 'y for some y € K°.
In fact, (a) and (b) are the original statements of Hilbert’s Theorem 90.

2. Let A € S(F). Prove the following statements.
(a) If x € A satisfies v(x) = 1, and if there is a strictly maximal subfield K of
A such that x € K and K/F is cyclic, then x € 4. Hint. Use the result of Exercise I
and the Noether—Skolem Theorem.
(b) Prove that if 4 is a quaternion algebra, and x € 4, then v(x) = 1 if and only
if x is a commutator in 4°. This result strengthens the theorem for the case of algebras
of degree two.

3. Complete the proof of the theorem. In particular, show that F(x)/F is separable,
and give a detailed proof of (1).

Notes on Chapter 16
The characteristic polynomials, traces, and reduced norms of central simple

algebras are treated in most expositions of associative algebras. The dis-
cussion of these topics in the first three sections of this chapter follows the
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traditional line. The connection between Dieudonné’s non-commutative
determinant and the reduced norm was first exploited by S. Wang in [75].
Most of the results on SK;(4) in Section 16.6 were first proved in [75].
One of the deepest results on the Reduced Whitehead Groups is Wang’s
theorem that if Fis an algebraic number field and 4 € S(F), then SK,(4) =
{1}. Early results suggested that SK,(4) might be trivial for all central
simple algebras 4. This question was called the “Tannaka—Artin Problem.”
In 1975, V. P. Platonov showed that there are algebras 4 such that SK, (4) #
{1}. It is now known that virtually all bounded torsion abelian groups occur
as Reduced Whitehead Groups. An extensive discussion of the Tannaka—
Artin Problem is given in the monograph [32]. There is also an interesting
and concise exposition of this topic in Platonov’s survey paper [63].



CHAPTER 17
Division Algebras over Local Fields

This chapter gives a fairly complete description of the finite dimensional
division algebras over fields that are locally compact in the topology of a
discrete valuation, that is, local fields. The most important property of these
algebras is that they contain maximal subfields that are unramified extensions
of their centers. It follows that all such algebras are cyclic. Moreover, the
classification of the unramified extensions of local fields gives a characteri-
zation of the Brauer groups of such fields; they are all isomorphic to Q/Z.

The theory of field valuations can be extended in a straightforward way to
division algebras. The first half of this chapter gives a self-contained develop-
ment of this subject. No prior knowledge of valuation theory is assumed.

17.1. Valuations of Division Algebras

The basic definitions in the theory of valuations are given in this section. Our
main result relates the valuations of a division algebra D e S(F) to the
reduced norm v,.

Definition. A valuation of a division algebra D is a mapping v: D —» R such
that

v(x) = 0 for all x e D and v(x) = 0 if and only if x = 0, 4]

v(xy) = v(x)v(y) forall x, ye D, )

there is a positive real number a such that

v(x + y) < amax{v(x),v(y)} forall x, y e D. ©)

314
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If v is a valuation of D. then v|D° is a homomorphism of D° to the
multiplicative group R* of positive real numbers. Conversely, a homomor-
phism v: D° - R* can be extended to a valuation by v(0) = 0 if (3) is
satisfied. For example, the homomorphism of D° to {1} gives a valuation v
such that v(x) = 1 for all x # 0 and v(0) = 0. This v is called the trivial
valuation of D. Other valuations of D are called non-trivial.

The uniqueness of roots in R* implies that if v(x") = v(»"), then v(x) =
v(y). In particular, if x is a root of unity in D, then v(x) = v(l,) = 1. Two
special cases of this observation are used frequently: v(—x) = v(x); v(—1)
=1.

By (3), the set {v(1 + x): x € D, v(x) < 1} is bounded. Define

a(v) = sup{v(l + x): xe D, v(x) < 1}. 4)

Lemma a. If v is a valuation of the division algebra D and x, x,, ..., x, € D,
then

v(x; + x, + -+ + x,) < a@)"max{v(x): 1 <i<n},

where m is the least integer greater than log, n.

An easy argument gives this inequality for » = 2. Induction extends it to
powers of 2. The final form of the lemma is obtained by adjoining 2™ — n
zeros tothe sum x, + --- + Xx,.

If v is a valuation of the division algebra D and e € R*, then the mapping
v°: D — Rdefined by v°(x) = v(x)¢ is also a valuation of D. Moreover, since
v°(x) < 1ifand only if v(x) < 1, it follows from (4) that

a(v®) = a(v)°. %)
Two valuations v and w of the division algebra D are equivalent if w = v°

for some e € R*. Since (1)’ = v*/, the concept of equivalence for valuations
is an equivalence relation on the set of valuations of D.

Lemma b. Let v be a valuation of the division algebra D.

@) a() = 1.
(ii) If a(v) = 1, then a(w) = 1 for all valuations w that are equivalent to v.
(iii) Ifa(v) > 1 and 1 < a € R, then there is a unique valuation w such that w
is equivalent to v and a(w) = a.

The property (i) is clear from (4) because v(0) = 0 and v(1) = 1; the
statements (ii) and (iii) follow easily from (5).

Proposition. If v is a valuation of the division algebra D, then a(v) < 2 if and
only if v satisfies the triangle inequality: v(x + y) < v(x) + v(y) for all
x, y € D. Every valuation of D is equivalent to a valuation that satisfies the
triangle inequality.
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Proor. If v satisfies the triangle inequality, then v(1 + x) < v(1) + v(x) < 2
for all x such that v(x) < 1. Hence, a(v) < 2. Conversely, if a(v) < 2, then
Lemma a implies that v(x, + -+ + x,) < 2n)max{v(x;)):1 < i < n}since
a()® < 2™ < 2n. Thus, v(x + )" =v((x + ) =v(zg + --- + 2,) <
2(n + 1)max{v(z): 0 < k < n}, where z, is the sum of the (k) monomlals

xipi oo xhyh with i + +z—k]1 - + j, = n — k. The sum-
mands of z, satisfy v(x 1y’1 oo xbyh) = v(x)"v(y)" k so that v(z) <
2()v(x)*v(y)"*. Therefore, v(x + y)" < 4(n + 1)Y i o Do) v(y)"™ =
4(n + 1)(v(x) + v(p))". Taking n’th roots and letting n — co gives the
triangle inequality because lim,,  (4(n + 1)) = 1. The last statement of
the proposition follows from Lemma b. O

There is an obvious property of valuations that is worth mentioning. If
v is a valuation of the division algebra D and A is a subalgebra of D that is
also a division algebra, then v|A is a valuation of A. If D is finite dimensional,
then every subalgebra of D is a division algebra.

Theorem. Let D € S(F) be a division algebra. If v is a valuation of D, then
v = W O vy, where w is the valuation of F that is defined by w = (0| F)*", with
n = DegD.

PrROOF. If xe D°, then y = x"(x)™! satisfies v(y) = v(x")v(v(x)™") =
v(x)"(x)™" = 1. By Proposition 16.6a, y" € D’ = Kerv. Thus, v(y)" = 1.
That is, o(x"v(x)™!) = v(») = 1, and v(x) = v(V(x))" = w(¥(x)). O

The converse of this theorem is false: if w is a valuation of F, then the
mapping w o v, may not satisfy (3). (See Exericse 4 in Section 17.2.)

EXERCISES
1. Give the details of the proof of Lemma a.

2. Show that if D is a division algebra and v: D° — R* is a group homomorphism such
that {v(1 + x): xe D — {0,—1}, v(x) < 1} is bounded, then v can be extended to a
valuation of D.

3. (a) Prove that the mapping v: R — R that is defined by the absolute value v(b) = |b|
is a valuation of R such that a(v) = 2.
(b) Prove that the mapping v: C — R thatis defined by v(c + id) = ¢* + d*isa
valuation of C such that a(v) = 4.
(c) Prove that the reduced norm vy, -is a valuation v of H such that a(v) = 4.

4. Prove that the only valuation of a finite field is the trivial valuation.



17.2. Non-archimedean Valuations 317

17.2. Non-archimedean Valuations

A valuation v of the division algebra D is called non-archimedean if the
constant a(v) defined by 17.1(4) is equal to 1. In other words, v satisfies

v(x + y) < max{v(x),0(y)} (1)

for all x, y € D. If a(v) > 1, then v is an archimedean valuation. It is clear
from Lemma 17.1b that the dichotomy between archimedean and non-
archimedean valuations is respected by the equivalence relation. The main
purpose of this section is to obtain an effective characterization of non-
archimedean valuations. We begin by recording an important consequence
of the inequality (1).

Domination principle. If v is a non-archimedean valuation of the division
algebra D, and x, x,, ..., x, are elements of D such that v(x,) > v(x;) for
2<i<n thenv(x; +x, + - + x,) = v(xy).

ProOOF. Denotey = x, + --- + x,. By (1),

v(y) < max{v(x,), ..., v(x,)} < v(x,).

Hence,

v(x; + y) < max{v(x,), v(y)}

v(x,) < max{v(x, + ), v(—y)}

= max{v(x; + y), v(»)}.
Thus,

v(x; + y) = v(xy). O

Propeosition. For a valuation v of the division algebra D, the following conditions
are equivalent.

(i) v is non-archimedean.
(ii) v(mly) < 1 forallmeZ.
(ili) {v(mly,): m e N} is bounded.

ProoF. If v is non-archimedean, then v(—ml,) = v(mly) < 1forallme N,
and v(0) = 0. Plainly, (ii) implies (iii). Assume that v(ml,) < b for all
m e N. If x € D satisfies v(x) < 1, then for all k e N, v(1 + x)* =
v(3*_ o ()x) < av) max {v(())v(xy: 0 < j < k}, where log,k < I <
log,k + 1. Consequently, v(1 + x)* < a(v)b; and v(1 + x) <
lim,_ a(v)*b'* = 1, since (log, k)/k — 0 as k — oo. Hence, a(v) = 1 and
v is non-archimedean. O

Corollary. Let D be a division algebra over the field F. Denote the prime
field of F by L. A valuation v of D is non-archimedean if and only if v|L is
non-archimedean. In particular, if the characteristic of F is a prime, then every
valuation of D is non-archimedean.
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The last statement of the corollary is a consequence of the observation
that if L is finite then {v(ml,): m € N} is finite, hence bounded.

If Fis a subfield of C, then the ordinary absolute value v(z) = |z| = (z2)'?
is an archimedean valuation of F. (See Exercise 3, Section 17.1.) One example
of a non-archimedean valuation is always on hand: the trivial valuation is
plainly non-archimedean. We concluded this section with a fairly general
construction of non-archimedean valuations.

ExAMPLE. Let R be a principal ideal domain with the fraction field F. Fix a
real number d that satisfies 0 < d < 1. Corresponding to each irreducible
p€ R, definev,: F° — R* by v,(x) = d*, where k is the unique integer such
that x = p*(a/b) with a, b € R — pR. Easy calculations show that v, extends
to a non-archimedean valuation of F.

Two cases of this example are especially interesting: R = Z and F = Q;
R = K[x] and F = K(x), where K is any field. In the next section we will
show that all non-archimedean valuations of Q have the form v,,.

EXERCISES
1. Prove that the mapping v, of the example is a non-archimedean valuation.

2. For each positive rational prime p, define v,: @° — R* as in the example with
d = 1/p. Define v (x) = |x| for x € @°. Prove that for each x € Q°, v,(x) = 1 for
almost all p, and ([, v,(x))v,,(x) = 1.

3. Let F = K(x) be the fraction field of the polynomial algebra K[x], where K is any
field. Fix d e R with 0 < d < 1. Define v, : K(x)° = R* by v, (®/¥) = d*, where
®, ¥ € K[x] and k = deg ¥ — deg ®. Prove that v, extends to a non-trivial, non-
archimedean valuation of Fsuch that v, | K is trivial. Show that v, is not equivalent to
a valuation of F that is obtained by the construction in the example.

4. Let p be a rational prime with p = 3 (mod4). Thus, D = <%> is a division

algebra by Exercise 4, Section 1.7. Let g be an odd prime for which p is a quadratic
residue. Prove that there is no valuation v of D such that v|Q is equivalent to v,. Hint.
For each ne N, let ¢,e N be such that (c,)* = p (modg"). Prove that if v|Q is
equivalent to v,, then v(c, + j) — 0 as # —» oo. Derive the contradiction v(2j) = 0.

17.3. Valuation Rings

As Example 17.2 correctly suggests, there is a close relation between non-
archimedean valuations of a division algebra D and certain subrings of D.
These subrings are called valuation rings. They play a major role in the theory
of valuations.

Lemma. Let v be a non-archimedan valuation of the division algebra D. If
O() = {xeD:v(x) <1} and P(v) = {xe D:v(x) < 1}, then O(v) is a
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subring of D that is a local Z-algebra with J(O(v)) = P(v), and E(v) =
O(v)/P(v) is a division algebra.

Proor. If x,ye O(v), then v(x — y) < max{v(x),v(y)} < 1; thus, x —
y € O(v). Similarly, x, y € P(v) implies x — y € P(v). The equation v(xy) =
v(x)v(y) implies that O(v) is a subring of D and P(v) is an ideal of O(v).
If x e O(v) — P(v), then v(x) = 1. Thus, v(x™!) = 1, x 1 € O(v), and x €
O(v)°. Conversely, if x e O(v)°, then v(x) < 1 and v(x™!) < 1. Hence,
v(x) = 1, that is, x € O(v) — P(v). In particular, O(v) — O(v)° = P(v) is
closed under addition, O(v) is a local ring, and E(v) = O(v)/P(v)is a division
algebra. O

If v is a valuation of the division algebra D, denote
OD,v) = {xeD:v(x) < 1}
and
P(D,v) = {xe D:v(x) < 1}.

When v is non-archimedean we will call these sets the valuation ring of v and
the valuation ideal of v. By the lemma this terminology is accurate. If we are
considering only one division algebra or valuation then the notation O(D,v)
and P(D,v) will be shortened to O(D) or O(v) and P(D) or P(v).

If v is a non-archimedean valuation of the division algebra D, then the
algebra E(D,v) = O(D,v)/P(D,v)is called the residue class field of D. (In most
cases that interest us, E(D,v) turns out to be commutative.) Unless it causes
confusion the notation E(D,v) will be shortened to E(D) or E(v). It is
convenient and custormary to write X for the image in E(v) of an element
x € O(v), that is, X = x + P(v). Moreover, if ®(x) = aox" + a,x"! +
.-+ + a, € O(v)[x], then we will write ®(x) for g,x" + @, x" ' + --- + a,.

Our next result shows that O(v), P(v), and E(v) are unchanged when v is
replaced by an equivalent valuation.

Proposition. Let v and w be non-trivial valuations of the division algebra D. The
following conditions are equivalent.

(1) v and w are equivalent valuations.
(i) O(v) = O(w) and P(v) = P(w).
(iii) O(v) € O(w).

@iv) P(v) < P(w).

ProOF. If w = v for some e € R, then it is evident that v(x) < 1 if and
onlyifw(x) < 1andv(x) < lifand onlyif w(x) < 1.Itis therefore sufficient
to show that both (iii) and (iv) imply that v is equivalent to w. Assume that
O(v) € O(w). We will first prove that O(v) = O(w). If x e O(w), then
w(x™) > 1 for all ne N. Since w is non-trivial, there exists y € D° such
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that w(y) > 1. Consequently, w(x™"y) > 1foralln e N. Since O(v) = O(w),
it follows that v(x™"y) > 1 for all n € N. Hence v(x) < 1, that is, x € O(v).
Let x, y € D° satisfy w(x) > 1 and w(y) > 1. Then v(x) > 1 and v(y) > 1.
For m, ne N, the inequality logw(x)/logw(y) < m/n is equivalent to
logw(x") < logw(y™) or w(x"y™) < 1. Thus, log w(x)/logw(y) < m/n if
and only if x"y™™ e O(w) = O(v). Hence, {m/n: m, n e N, log w(x)/log w(y)
< m/n} = {m/n: m, n e N, logv(x)/logv(y) < m/n}, and log w(x)/log w(y)
= logv(x)/log v(y). Therefore, w(x) = v(x)° for all x € D such that w(x) >
1, where e = (logw(y))/(logv(y)) e R*. It follows easily that w = v°,
Finally, if P(v) = P(w), then O(w) — {0} = {xe D°: x™' ¢ P(w)} < {x€
D°: x7!' ¢ P(v)} = O(v) — {0}. Therefore, v and w are equivalent. O

Corollary. Let R be a principal ideal domain whose fraction fieldis F. If vis a
non-trivial, non-archimedean valuation of F such that v(x) < 1 for all x € R,
then there is an irreducible element p € R such that v is equivalent to v,, and
E(v) = R/pR. Moreover, v, is equivalent to v, if and only if the irreducible
elements p and q are associates in R.

Proor. By assumption, O(v) 2 R. The lemma implies that R n P(v) is a
non-zero prime ideal of R. Since R is a principal ideal domain, there is an
irreducible p € R such that R n P(v) = pR. If x € F satisfies v,(x) < 1, then
x = a/b withae R,be R — pR = R — P(v). Thus, v(x) = v(a) < 1. This
remark shows that O(v,) = O(v). Hence, v is equivalent to v, by the proposi-
tion. Clearly, R n P(v,) = pR and R + P(v,) < O(v,). If x e O(v,), say
x = a/bwithae Randbe R — pR,thenl = c¢b + dp(c, d € R) implies that
x = ac + p(ad/b) € R + P(v,). Thus, E(v) = O(v)/P(v) = (R + P(v))/P(v)
= R/R N P(v) = R/pR. If v, is equivalent to v,, then pR = R O(v,) =
R N O(y) = qR;thatis, pand g are associates in R. Conversely, if pand g are
associates in R, then v, and v, are equivalent by definition. O

Theorem. (i) If v is a non-archimedean valuation of Q, then v is equivalent to
v, for some rational prime p. In this case, E(v) = Z/pZ.

(i) If v is an archimedean valuation of Q, then v is equivalent to v, the
absolute value on Q.

PRrOOF. If v is non-archimedean, then v(n) < 1 for all n € Z by Proposition
17.2. Therefore (i) is a special case of the corollary. Let v be archimedean. By
Proposition 17.1, it can be assumed that v satisfies the triangle inequality. By
the proposition, it is sufficient to show that v(x) < 1implies |x| < 1. We can
assume that x > 0, say x = m/n, where m and n are relatively prime natural
numbers. Suppose that v(x) < 1 and x > 1, that is, m > n. Every ke N
has an mj/n-ary representation: k = Y '_,a;(m/ny, a;€{0,1, ..., m — 1}.
(See Exercise 1.) By the triangle inequality, v(k) < Y’ oaw(m/n) <
(m — I)Z‘i";ov(x)" = (m — /(1 — v(x)). It follows from Proposition 17.2
that v is non-archimedean, which is contrary to hypothesis. O
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EXERCISES

1. Let m, n e N with m > n. Prove that every k € N can be written in the form k =
Y'_oa;(m/ny witha; € {0, 1, ..., m — 1}. Hint. Choose a, € {0, 1, ..., m — 1} so
that k — a, = ml with/ > 0 in Z, and apply induction to k¥’ = In.

2. Let F = K(x) be the fraction field of K[x]. Let v be a valuation of F such that v|K is
trivial and v(x) > 1. Prove that v is equivalent to the valuation v, that was defined in
Exercise 3 of Section 17.2. Deduce that every valuation of F is equivalent to exactly
one of the valuations v, or v,, where ® is a monic irreducible polynomial in K[x].

3. Let v be a non-archimedean valuation of the field F. Use the Domination Principle to
prove that O(v) is integrally closed in F, that is, if x € Fsatisfies x, + a,x" ' + -+ +
a, = 0, where all g; are elements of O(v), then x € O(v).

17.4. The Topology of a Valuation

If v is a valuation of the division algebra D and v satisfies the triangle
inequality, then v determines a distance function 6: D x D — R by

0(x,y) = v(x — y). M

Thus, v defines a metric topology on D in which the neighborhoods of x € D
are defined for e € R* by

N(x,e,v) = {yeD:v(x — y) < e}. ?)

It is a standard consequence of the triangle inequality that the sets defined by
(2) have the properties of a neighborhood basis for a Hausdorff topology on
D. (In this chapter, a few standard results of set topology are assumed to be
known.) Even if v does not satisfy the triangle inequality, the sets described by
(2) define a topology because N(x,e,v) = N(x,e’/,v”) forall fe R* ; and if fis
sufficiently small, then v/ does satisfy the triangle inequality by 17.1(5) and
Proposition 17.1.

For a valuation v of the division algebra D, the v-topology of D is the
topology that is defined by taking the family of sets { N(x,e,v): x € D, e € R*}
as a neighborhood basis for the open subsets of D. Thus, a subset of D is open
in the v-topology if and only if it is a union of sets of the form N(x,e,v).

Lemma a. If v and w are valuations of D, then the v-topology has the same open
sets as the w-topology if and only if v and w are equivalent.

Proor. We have already observed that equivalent valuations generate the
same neighborhood bases, hence the same topologies. Conversely, if the v
and w topologies coincide, then there exists e € R* such that N(0,e,w) <
N(0,1,0). If x € D satisfies w(x) < 1, then w(x") = w(x)" < e for a suffi-
ciently large n. Thus, x" € N(0,e,w) = N(0,1,v), that is, v(x)" = v(x") < 1.
Consequently, v(x) < 1. By Proposition 17.3, v is equivalent to w. O
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In the rest of this section, assume that v is a valuation of the division
algebra D, and v satisfies the triangle inequality. Let o be the distance
function on D that is defined by (1).

Lemma b. Addition and subtraction in D are uniformly continuous ; multiplica-
tion is uniformly continuous on bounded subsets of D, the inverse operation is
uniformly continuous on sets that are bounded away from 0.

These facts follow from the estimates 6((x + z) + (y + w), x + y) <
v(z) + v(w), 6((x + 2)(¥y + w), xy) < v(2)v(y) + v(W)v(x) + v(z)v(w), and
S((x + 2L x™YH) = o((x + 2((x + 27! — xHx)vx + 2v(x) =
v(2)/v(x + z)v(x).

A metric space is completeif every Cauchy sequence has a limit in the space.
It is a basic fact of topology that every metric space X can be embedded in a
complete metric space X such that X is dense in X, and the restriction to X of
the distance function on X coincides with the original distance function on X.
The completion X of X is unique: if Y is a complete metric space that contains
X as a dense subspace, then there is a unique distance preserving homeomor-
phism ¢ of X to Y such that ¢|X = id.

Proposition. Let v be a valuation of the division algebra D. There is a division
algebra D that contains D as a subalgebra and a valuation © of D such that:

() D is complete in the i-topology ;
(ii) D is dense in D ;
(ii)) 8|D = v;
(iv) a(®) = a(v);
(V) if v is non-archimedean, then $(D°) = v(D°);
(vi) if D is a field, then so is D.

The division algebra D with properties (i), (ii), and (iii) is unique to within an
isomorphism that is the identity on D.

PrOOF. Let D be the metric space completion of D. The uniform continuity
of the ring operations of D implies that these operations extend uniquely to
D. For example, if %, ye D, then there exist sequences {x,: n < o} < Dand
{y,:n < w} = D such that lim,, x, = £ and lim,_,_ y, = y because D is
dense in D. These Cauchy sequences are necessarily bounded, so that by
Lemma b, {x,y,: n < o} is a Cauchy sequence in D and D. Since D is
complete, lim,_  x,y, exists. It is easy to check that this limit does not
depend on the choice of the sequences converging to % and j. Therefore,
%y = lim,,_ x,y, provides a definition of the product in D. Addition,
subtraction, and the inverse operation are similarly derived from the
corresponding operations of D by a limit process. The identities that define
a division algebra or field follow by continuity from the corresponding laws
in D. For example, if £ # 0, then X = lim,_, x,, where {x,: n < 0} < D°,
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7! =1lim,,, x,!, and £27! = lim,,, x,x;* = 1, = 1. If xe D, then
x = lim,, x,, where x, = x for all n. It follows that D is a subalgebra
of D. For %€ D, deﬁne 5(%) = 6(%, 0) By the definition of the metric
topology, % is a continuous mapping of D° to R; and oD =

d. It follows easily that & is a valuation of D with a(d) = a(v), and 4 is the
distance function induced by . Thus, D is complete in the é-topology. If v
is non-archimedean, then so is # by (iv). In this case, if £ # 0 in D, then
x € Dexists so that (X — x) < #(x). The Domination Principle then implies
that #(£) = 8(£ — (X — x)) = d(x) = v(x). Therefore, #(D°) = v(D°). The
uniqueness of D is clear from Lemma b and the assumption that D is dense
in D. O

The division algebra D is called the completion of D in the v-topology.
We will generally use the symbol v instead of ¢ to represent the valuation
on D that is the extension of the valuation on D.

Corollary a. Let v be a valuation of the division algebra D such that D is
complete in the v-topology. If A is a sub-division algebra of D, then the closure
of A in D is isomorphic to A.

PRrROOF. By the continuity of addition, subtraction, multiplication and divi-
sion, the closure B of A4 is a division algebra that contains 4 as a dense
subalgebra. Since B is complete in the v|B-topology, it follows from the
uniqueness statement of the proposition that B &~ A. O

Corollary b. If v is a non-archimedean valuation of the division algebra D,
then O(D,v) = P(D,v) + O(D,v) and P(D,v) = P(D,v) n O(D,v). Thus, the
inclusion mapping of O(D,v) to O(D,v) induces an isomorphism of E(D,v) to
ED,v).

PROOF. If 0 # % € O(D,v), then (since D is dense in D) there is an element
xeD such that v(X¥ — x) < v(X) < 1. By the Domination Principle,
v(x) = v(X) < 1. Hence, X = x + (£ — x) € O(D,v) + P(D,v). Obviously,
P(D,v) = P(D,v) n O(D,v). Thus, E(D,v) = O(D,v)/P(D,v) = (O(D,v) +
P(D,v))/P(D,v) = O(D,v)/(P(D,v) n O(D,v)) = O(D,v)/P(D,v) = E(D,v).

O

If v = v, is the absolute value of the field of rational numbers, then
the completion Q is the real field R. Indeed, R is complete with respect to
v, and Q is dense in R. The completion of Q in the v,-topology defined by
the prime p is called the field of p-adic numbers. We will denote this field
by Q,.

Tlfe final result of this section demonstrates the usefulness of the com-
pleteness property.
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Hensel’s Lemma. Let D be a division algebra over the field F, and suppose
that D is complete in the topology of a non-archimedean valuation v. Assume
that ® € O(F,v) [X] is such that ® and @ (the derivative of ®) are relatively
prime in E(F,v) [x]. If X € E(D,v) is a root of ®, then y € O(D,v) exists so
that ®(y) = 0andy = X.

PrOOF. Since the coefficients of @ are in Z(D), the expressions ®(y) and
®@(x) are not ambiguous. The same remark applies to similar notation in
the proof. The hypotheses that ® and @’ are relatively prime and ®(x) = 0
imply that ®'(x) # 0. Thus, if X is the coset of x € O(D,v), then v(®(x)) < 1
= v(®’(x)). This inequality enables us to use x as a first approximation of the
required y. The construction is a non-archimedean analogue of Newton’s
method for obtaining the real roots of a polynomial. We use the Taylor
expansions

O(x + 2) = O(x) + O'(x)z + Dy (x,2)z> 3)

and
O(x +2) =X + D (x,2)z 4
with @y, @, € O(F,v) [x,z]. Define recursively x, = X, X,11 = X, + Zy»
where z, = —®(x,)/®(x,). The choice of z, is such that when x is replaced

by x, and z, is substituted for z in (3), we get ®(x,,,) = D,(x,,z,) (z,)*
From this observation and (4), it follows by induction that v(®’(x,)) = 1
and v(®(x,)) < v(®(x))>". Consequently,

0(Xppy — %) = 0(z,) = 0(Q(x,)) < v(D(x))”"

Therefore, y = lim___ x, exists by the completeness of D. Moreover,

o(y) = lim,,, CI)(x:)ﬁZ 6, and v(x — y) < max{v(x,, ; — x,):n < 0} <
v(®(x)) < 1 implies y = Xx. O

There are generalized versions of Hensel’s Lemma, but we won’t need
them in this chapter.

EXERCISES

1. Fill in the details of the proof of the proposition. In particular, show that the defini-
tions of addition, subtraction, multiplication, and division do not depend on the
choices of sequences converging to % and j. Verify the identities for division algebras
(and the commutative law when D is a field). Show that # is a valuation and a(p) =

a(v).

2. LetKbeafield. Define F = K((x))to be the set of all formal Laurant series Y .. , X"a,,
with a, € K, k € Z. Define the K-space operations componentwise on F, and let
multiplication be given by convolution: (},.,,X"a,) Q51 X"5,) = Y s x41X"C,,» Where
Cp = Y rs=n@b,. Show that Fis a field. Fixd e R* withd< 1, and define v: F° - R*

by v(},,.(X"a,) = d* when a, # 0. Prove that v extends to a non-archimedean
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valuation of Fand F is complete in the v-topology. Show that F is isomorphic to the
completion in the v,-topology of the fraction field K(x) of the principal ideal domain
K[x].

3. Show that the polynomial ®(x) = x? — 2€ 0(Q,)[x] has no root in Q,, even
though ®(x) € E(Q,)[x] has a root in E(Q,). Reconcile this observation with
Hensel’s Lemma.

17.5. Local Fields

This section introduces the class of fields that occupies our attention in the
rest of the chapter. A local field is a field F with a non-archimedean valuation
v such that O(F,v) is compact in the v-topology. The main result of this
section is a practical characterization of local fields.

A valuation v of the division algebra D is discrete if v(D°) is a cyclic
subgroup of R*. Thus, v is discrete if and only if there is an element z € D°
such that v(D°) = {v(2)": ne Z}. If also v(z) < 1, then z is called a unifor-
mizer at v. The historical roots of the terminology are in the theory of
Riemann surfaces. It is obvious that if v is equivalent to a discrete valuation,
then v is discrete.

Proposition a. Let v be a valuation of the division algebra D.

(1) If v is discrete, then v is non-archimedean, and every uniformizer at v
generates P(v), both as a right ideal and as a left ideal.

(ii) If v is non-archimedean and P(v) is principal as either a left or right ideal
of O(v), then v is discrete.

PrROOF. An archimedean valuation v cannot be discrete because v(D°) 2
v(@°), and v(Q°) is dense in R* by Corollary 17.2 and Theorem 17.3. If z
is a uniformizer at the discrete valuation v and x € P(v), then v(x) = v(z)"
for some n e N. Hence, v(z7™"x) = 1, z7"x € O(v), and x = z"(z7"x) € zO(v).
Similarly, x € O(v)z. Therefore, z generates P(v) as a left or right ideal.
Conversely, assume that v is non-archimedean and P(v) = zO(v). It is then
easy to see that v(z) = max {v(x): x € D, v(x) < 1} and v(z) < 1. In parti-
cular, if x € P(v) — {0} then v(z)" > v(x) > v(z)"** for some n € N. Conse-
quently, 1 > v(z™"x) > v(z), so that v(z""x) = 1. That is v(x) = v(z)". It
follows easily that v(D°) = {v(z)": n€ Z}. A similar proof shows that v is
discrete if P(v) is a principal left ideal of O(v). O

Lemma. Let v be a non-trivial discrete valuation of the division algebra D.
If z is a uniformizer at v, then z"O(v)/z""*O(v) = E(v) as abelian groups for
all n e N. In particular, if E(v) is finite, then |0(v)/z"O(v)| = |E@)|" for all
ne N.
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PrOOF. The mapping x — zx is a surjective group homomorphism ¢ of
Z¥O(v) to z¥*10(v), and ¢~ (z**20(v)) = z***O(v), since z # 0 (because v is
non-trivial). Hence,

2O W)/2H20@) = ZX0)/Z100) = -+ = 0(1)/z0() = E(v). [

Proposition b. Let v be a non-archimedean valuation of the division algebra
D. The ring O(v) is compact in the v-topology if and only if v is discrete, D
is complete, and E(v) is finite.

PROOF. Assume that O(v) is compact. If {x,: n < w} is a Cauchy sequence
in D, then there exists m < w such that v(x,, — x,,,) < 1 for all k < w.
Therefore, {x,, — X,k < w} is a Cauchy sequence in the compact metric
space O(v). Since compact spaces are complete, it follows that y = lim,_,
(X, — Xm+p) exists. Therefore, lim,_,, x, = x,, — y exists. Hence D is com-
plete. Let X = O(v) be a set of representatives of the cosets of P(v), that is,
E@W) = {x + P(v): xeX}. Plainly, O() = J,.x(x + P(v)), each set
x + P(v)is openin O(v), and (x + P(v)) n (y + P(v)) = Zifx # yin X.
By compactness, X is finite. Therefore, E(v) is finite. Moreover, P(v) =
ow) — J{x+ P):xeX — P(v)} is closed in O(v). In particular, P(v) is
compact. Thus, max{v(x): x € P(v)} is attained: there exists z € P(v) such
that v(x) < v(z) for all x € P(v). As in the proof of Proposition a, it follows
that v is discrete. Conversely, assume that v is discrete, D is complete, and
E(v) is finite. Since O(v) is closed in D, it is also complete. To prove that
this set is compact, it suffices (by an elementary theorem of metric topology)
to prove that O(v) is totally bounded, that is, for each e > 0, O(v) is a finite
union of sets with diameter less than e. Let z be a uniformizer at the discrete
valuation v. Choose n so that v(z") < e. It follows easily from the inequality
17.2 (1) that the cosets x + z"O(v), x € O(v), have diameter less than e. By
the lemma, O(v)/z"O(v) is finite. Hence, O(v) is a finite union of sets of
diameter less than e, that is, O(v) is totally bounded and therefore compact.

O

If O(v) is compact in the v-topology of the division algebra D, then D is
clearly a locally compact space in the v-topology. The converse statement is
false because D is locally compact in the discrete topology, which is the
topology of the trivial valuation. However, this is the only exception to the
converse. (See Exercise 1.) It is therefore safe to call a division algebra
locally compact in the v-topology if O(v) is compact.

It can be proved that the only fields that are locally compact in the
topology of an archimedean valuation are R and C (Ostrowski’s Theorem).
By definition, the local fields are the fields that are locally compact in the
topology of a non-archimedean valuation.

If v is a non-trivial valuation of the division algebra D such that O(v) is
compact in the v-topology, then every closed, bounded subset X of D is
compact. In fact, if 0 < v(z) < 1, then z"X < O(v) for a sufficiently large
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ne N, and x — z"x is a homeomorphism from X to z"X. In particular, every
closed, bounded subset of a local field is compact, since a field with the
discrete topology is a local field only if it is finite.

Corollary a. If v is a discrete valuation of the field F such that E(F,v) is a
finite field, then the completion F of F in the v-topology is a local field.

The corollary follows directly from Proposition a, Proposition b, Propo-
sition 17.4, and Corollary 17.4b.

Corollary b. If p is a rational prime, then Q, is a local field.

If Fis the fraction field of a principal ideal domain R and p € R is irreduc-
ible, then v, is a discrete valuation by definition. In the case that F = Q,
R = Z,and pis a prime, it follows that E(v,) = [, is finite by Theorem 17.3.
Thus, Corollary b follows from Corollary a.

It is convenient to refer to the valuation of the local field F, meaning the
valuation v such that O(v) is compact. In fact, it can be shown that the
valuation with this property is unique up to equivalence.

EXERCISES

1. Let v be a non-trivial valuation of the division algebra D such that D is a locally
compact space in the v-topology. Prove that O(v) is compact. Hint. Local compact-
ness implies that {x € E: v(x) < e} has compact closure for some e > 0. Since v is
non-trivial, there exists y € D° that satisfies v(y) < 1. Conclude that y"O(v) is com-
pact for a suitable n.

2. Prove that if v is an archimedean valuation of the division algebra D, and D is locally
compact in the v-topology, then D is complete and v(D°) = R*.

3. Let v be a non-trivial discrete valuation of the field F such that F is complete in the
v-topology. Let z be a uniformizer at v. Suppose that X is a set of representatives in
O(v) of the cosets of P(v). Prove that every element of F has a unique “‘Laurant
series” representation

Y z'a,= lim Y :z"a,

nzk MOk <nsm
where a, € X for all n and k € Z. Deduce that if X can be chosen to be a subfield K of
O(v), then F is isomorphic to K((x)).

4. Prove the following statements.
(a) If K is a finite field, then K((x)) is a local field.
(b) If K and L are finite fields such that K((x)) = L((x)) as fields, then K =~ L.

Hint. Prove that K is the algebraic closure in K((x)) of the prime field of K((x)).
5. Let F be a local field of prime characteristic p. Prove that F =~ K((x)), where K =
E(F). Hint. Let |K| = g, where ¢ is a power of p. Use Hensel’s Lemma to find
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x € O(F) such that x2~! = 1. Show that F,(x) = O(F) is a set of representatives of
the cosets of P(F). Use the result of Exercise 3.

6. Prove that if Fis a field of prime characteristic such that F is locally compact in the
topologies of the discrete valuations v and w, then v is equivalent to w.

7. Prove that if Fis alocal field in the topology of the discrete valuation v, and z € P(v) is
a uniformizer, then every proper non-zero ideal of O(v) has the form z"O(v) for some
n € N. In particular, O(v) is a principal ideal domain.

17.6. Extension of Valuations

In this section we will prove that if D is a finite dimensional division algebra
over a local field F, then the valuation of F extends uniquely to a valuation
of D. The following hypotheses and notation are in effect throughout the
section: F'is a field, v is a valuation of F that satisfies the triangle inequality,
and D is a finite dimensional division algebra over F.

Lemma a. Let M be a finite dimensional F-space with the basis x, ..., x,.
Define the mapping x— ||x| from M to R by |xa; + -+ + x,a,|| =
max{v(a): 1 <j < n}.

@) |x|| = 0 for all x e M, and ||x|| = 0 only if x = 0.
@) [|x + y| < |x|| + |»|| for all x, y € M.
(iii) If x e M and a € F, then ||xa| = ||x||v(a).

These statements follow routinely from the triangle inequality.

The mapping x — ||x| is called the uniform norm on M relative to the
basis x,, ..., x,. The uniform norm determines a distance function (x,y) —
[|x — y| which gives a metric topology on M that is called the uniform

topology.

Lemma b. Assume that O(F,v) is compact. Let M be a finite dimensional
F-space. Define the uniform norm ||-| relative to a basis x,, ..., x,. If
0: M — R is a mapping that satisfies

(1) 8(x) = 0 forall xe M, and 8(x) = O only if x = 0,
(ii) O(xa) = O(x)v(a) for xe M, a € F, and
(iii) 6 is continuous in the uniform topology of M,
then ¢ and d exist in R* such that c|x| < 0(x) < d||x|| for all x e M.

PrROOF. The set U = {y € M: | y|| = 1} is compact in the uniform topology.
Indeed, U is a closed subset of V' = {ye M: ||y| < 1}, and (a,, ..., a,) —
Y"_, x;a; is a homeomorphism of the compact space O(v) x --- x O(v) to
V. By (i), 0(y) > 0 for all y € U. Since 6 is continuous and U is compact,
there exist ¢, de R* such that ¢ < 6(y) < d for all ye U. Let 0 # x =
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x,a, + --- + x,a, € M. Choose i so that v(a)) = max{v(g):1 <j < n} =
| x| Then y = xa;* satisfies ||y|| = 1, that is, y € U. Hence, ¢ < 6(y) < d
and c||x|| < 6()v(a) = 0(x) < d|}x]. O

This lemma shows in particular that the uniform topology on a finite
dimensional space over a local field does not depend on the basis that is
used to define it.

Proposition. Let D be a finite dimensional division algebra over the locally
compact field F with the valuation v.

(i) v extends uniquely to a valuation w of D.
(ii) D is locally compact in the w-topology.
(iii) If v is discrete, then so is w and [w(D°) : v(F°)] divides [Z(D) : F]Deg D.

Proor. If v is trivial, then F and D are finite fields. In this case there is
nothing to prove. Assume that v is non-trivial. Denote K = Z(D), r =
[K:F],s = Deg D, and m = rs. Define w: D — R by

w(x) = U(NK/F(VD/K(x)))l/m-

Clearly, w is a group homomorphism of D° to R*. If a € F, then w(a) =
o(Ngr (Vo (@)™ = v(Ngp(a%))'™ = v(@™)'" = v(a). Thus, w extends v.
In particular, w(xa) = w(x)v(a) if x € D and a € F. We will use Lemma b
to prove that w is a valuation. It is necessary to know that w is continuous
in the uniform topology of D. Let x, ..., x, be a basis of D;. By Lemma
16.3a, there is a polynomial ® € F[x,, ..., X, ] such that

NK/FvD/K(xlal + - +x,a,) =0ay, ...,a,)

1t follows from Lemma 17.4b that the mapping (e, ..., q,) — ®(@,, ..., a,)
from F™" to F is continuous; and v: F— R is continuous by the definition
of the topology of F. Therefore, w is continuous. By Lemma b there are
numbers ¢, de R* such that ¢|x| < w(x) < d|x| for all x e D. Thus, if
x, ye D, then w(x + y) < d|x + y| < d(|x]| + [|[¥]) < de7'(w(x) +
w(y)) < 2dc *max{w(x), w(y)}. Hence, w is a valuation of D. By Lemma b,
any two extensions of v to D determine the same topology and are therefore
equivalent by Lemma 17.4a. However, two equivalent extensions of a
non-trivial valuation are obviously identical. Thus, w is unique. By Lemma b,
the w-topology of D coincides with the uniform topology. Hence, O(D,w) is
closed and bounded in the uniform topology. Since F is locally compact, the
closed, bounded subsets of F are compact. This property extends to the
uniform topology on D because D is homeomorphic to a finite product of
copies of F. Thus, O(D,w) is compact; that is, D is locally compact. The
definition of w implies that w(x) — w(x)™ is an injective group homomor-
phism from w(D°) to v(F°). If v is discrete, then v(F°) is cyclic, and it follows
that the index of v(F°) in w(D°) divides m = [K : F]Deg D. O
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Henceforth we will use v to denote both the valuation of F and the exten-
sion of this valuation to a finite dimensional division algebra over F.

Corollary. If Fis a local field and K| F is a finite field extension, then K is a local
field.

EXERCISES

1. Prove Lemma a.

2. By embedding Q(i) in @Dp(i), prove:
(a) if x* + 1 is irreducible in @p[x], then v, has a unique extension to Q(i);
(b) if x* + 1 factors in @,[x] and p # 2, then v, has two extensions to Q(i).

3. Let E/Q be an algebraic extension. Suppose that ¢: E — C is a Q-algebra homomor-
phism. Define v,(x) = |¢(x)| for x € E. Prove that v » 18 @ valuation of E that extends
the absolute value on Q. Apply this construction with E = Q(/2) to obtain two
inequivalent extensions of the absolute value on Q.

17.7. Ramification

Let v be a discrete valuation of the division algebra D. If K is a subfield of D
such that le is non-trivial, then v(K°) is a subgroup of finite index in v(D°).
The order of the finite cyclic group v(D°)/v(K°) is called the ramification index
of Kin D (at v), and this number is denoted by e(D/K) (or e (D/K)). When

e(D/K) = 1, D is said to be an unramified extension of K. If n: O(D,v) —»

E(D,v) is the natural projection, then Ker(nz|O(K,v)) = K n P(D,v) =

P(K,v). Thus, the inclusion mapping O(K,v) - O(D,v) induces an injective
ring homomorphism E(K,v) — E(D,v). In this situation it will be convenient
to identify E(K,v) with a subfield of E(D,v). In particular, E(D,v) can be
viewed as a right E(K,v)-space whose dimension is called the relative degree
of D/K (at v). The relative degree of D/K is denoted by f(D/K) (or f,(D/K)).

By definition, f{D/K) is a non-negative integer or co. The purpose of this
section is to establish some fundamental properties of e(D/F) and f(D/F).in
the case that Fis a local field and D is a finite dimensional division algebra
over F. In the lemmas, local compactness is not needed.

Lemma a. Let D be a finite dimensional division algebra over the field F. If v
is a non-trivial discrete valuation of D, then v|F is non-trivial, E(D,v) is a
finite dimensional E(F,v)-algebra, and e(D/F) f(D/F) < dim, D.

PRrOOF. If v|F is trivial, then supv(D) = sup v(X), where X is a basis of D;.
The assumption that dim; D < oo implies that v is bounded. However,
non-trivial valuations are obviously unbounded. Therefore, v|F is non-
trivial. We have noted that E(F,v) is a subfield of the division algebra E(D,v)
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under the identification of E(F,v) with the subring (O(F,v) + P(D,v))/P(D,v)
of O(D,v)/P(D,v) = E(D,v). Since F < Z(D), it follows that E(F,v) <
Z(E(D,v)), that is, E(D,v) is an E(F,v)-algebra. It remains to show that
e(D/F)f(D|F) < dim;D. To simplify our notation, write e = e(D/F),
B=0WD,v),A=O0(F,v)=BnF,Q=PWD,v),and P= P(F,v) = QNF.
Let z € Q be a uniformizer at v, and suppose that ¢ € Pis a uniformizer at v | F.
It follows that v(z)¢ = v(c), z°B = c¢B,and P = cA = z°B n A. In particular,
if m: B — B/z°B is the projection mapping, then n(4) = A/(z°B N A) =
A/P = E(F,v), and B/z°B is a n(A4)-space. By Lemma 17.5, E(D,v) =
B/zB = zB/z’B = --- = z°"'B/z°B as n(4)-spaces. Thus, dim, ,, B/z°B =
edim, , E(D,v). If x,,...,x,€B are such that =n(x,), ..., n(x,) are
linearly independent over n(4), then x;, ..., x,, are linearly independent
over F. Otherwise, there is an equation of the form x, = ) .., x;a; with
a; € A; and this expression yields the contradiction n(x,) = ) ., n(x)n(a;) to
the independence of n(x,), . .., n(x,,). Thus, ef(D/F) = edimg ,, E(D,v) =
dim,,, B/z°B < dimy D. O

Lemma b. Let v be a discrete valuation of the division algebra D. Assume that K
is a subfield of D such that v| K is non-trivial andf(D|K) = 1.Ifz € P(D,v)isa
uniformizer and e = e(D/K), then the K-space N = K + zK + --- + z¢7'K
is dense in D.

PROOF. Let ¢ € K n P(D,v) = P(K,v) be a uniformizer at v|K; thus, v(c) =
v(z)°. Since v is discrete (hence 0 is the only limit point of v(D°)), it is sufficient
to show that for each x € D°, there exists y € N such that v(x — y) < v(x).
Let v(x) = v(z)", wherene Z. If n = ke + rwithk,re Z,0 < r < e, then
v(z""xc™*) = 1. Thus, z7"xc™* € O(v). The hypothesis f(D/K) = 1 implies
E(D,v) = E(K,v), that is, O(v) = (K n O(D,v)) + P(D,v). Consequently,
z7"xc™® = d + w for a suitable de K and w € P(v). Let y = z"dc*. Then
yez'K < Nand v(x — y) = v(z'wc®) = v(@)**"v(w) < v(2)" = v(x). O

We can now prove the main result of this section.

Proposition. Let D be a division algebra over the infinite field F. Assume that v
is a discrete valuation of D such that F is closed in D and D is locally compact in
the v-topology.

(1) Fisalocal field and dim, D = e(D/F)f(D|F) < 0.
(ii) There is a subfield K of D such that K|F is unramified, f(D/K) = 1, and
ADIF) = [K:F].
(i) If F = Z(D), then e(D/F) = f(D|F) and K is a maximal subfield of D.

Proor. The hypothesis that Fis closed in D implies that O(F,v) = Fn O(D,v)
is closed in the compact space O(D,v). Therefore, Fis a local field, and v}F is
nontrivial because F is infinite. By Proposition 17.5b, E(D,v) and E(F,v) are
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finite fields. In particular, E(D,v) = E(F,v)(x) for some x. Let ® € O(F,v)[x]
be a monic polynomial of degree f(D/F) such that @ is the minimum poly-
mial of X over E(F,v). Any such @ is irreducible over F; otherwise, Gauss’s
Lemma applied to the principal ideal domain O (F,v)(Exercise 7, Section 17.5)
gives ® = ¥O in O(F,v)[x] and ® = ¥O in E(F,v)[x], which contradicts
the irreducibility of ®. Since E(F,v) is perfect and @ is irreducible, the poly-
nomials ® and @ are relatively prime. Therefore, Hensel’s Lemma provides
an element y € D such that ®(y) = 0and y = X. If K = F(y), then K is a
subfield of D that satisfies [K : F] = deg® = f(D/F) and E(K,v) = E(D,v),
that is f(D/K) = 1. By Lemma b, there is a subspace N of Dy that is dense
in D, dimg N < e(D/K) < e(D/F), and dim; N < e(D/F)f(D/F). Since the
v-topology on N coincides with the uniform topology by Lemma 17.6b, N
is complete. Consequently, N = D, and dim, D < e(D/F)f(D/F) < . By
Lemma a, dim; D = e(D/F)f(D/F). Moreover, e(D/K) = e(D/F), v(K°) =
v(F°), and K/F is unramified. Assume that Z(D) = F. By Proposition 17.6,
e(D/F) < DegD;and f(D/F) = [K: F] < Deg D because K is a subfield of
D. Therefore, [K: F] = f(D/F) = e(D/F) = Deg D, since e(D/F)f(D/F) =
dim, D = (Deg D)>. O

The first corollary of the proposition plays a fundamental role in the
theory of division algebras over local fields.

Corollary a. Let F be a local field. If D € S(F) is a division algebra, then there
is a maximal subfield K of D such that K|F is unramified.

Corollary b. Let F < K < E be a chain of local fields such that E|F is a finite
extension.

(1) e(E/F) = e(E/K)e(K/|F) and f(E[F) = f(E/K)f(K]F).
(ii) It is possible to choose K so that K|F is unramified and f(E/F) = f(K/F) =
[K:F].

The index of v(F°) in v(E®) is the product of the index of v(F°) in v(K°)
and the index of v(K°) in v(E°), so that e(E/F) = e(E/K)e(K/F) whether or
not the fields F, K, and E are local. The other statements of the corollary
follow from the proposition.

The last corollary provides a description of the local fields that have
characteristic zero.

Corollary c. If F is a field of characteristic zero, then F is local if and only if F
is a finite extension of @p Sfor some prime p.

ProOF. If F/Q p 18 finite, then Fis local by Corollaries 17.5b and 17.6. Let Fbe
a local field with Q = F. The restriction v | Q is non-trivial; otherwise, the
projection O(F,v) - E(F,v) would embed Q in the finite field E(F,v). By
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Theorem 17.3, v|Q is equivalent to v, for some prime p, and the closure of
Q in Fis isomorphic to @ by Corollary 17.4a. The proposition implies that

Fis a finite extension of @ e O

Another characterization of the local fields of characteristic zero will be

given in Exercise 3 of Section 17.8.

EXERCISES

1.

4,

Let v be a discrete valuation of the division algebra D such that D is locally compact in
the v-topology. Prove that Z(D) is a local field and D is finite dimensional over Z(D).
Hint. Prove that Z(D) is closed in D. Apply the proposition.

. Let K be a finite field, £ = K((x)), and F = K((x")), that is, F is the field of formal

Laurent series in x". Note that E =~ F as K-algebras by x — x". Prove that if L/F is
any field extension of degree n such that e(L/F) = n, then L =~ E as F-algebras.

. Let p be an odd prime. Prove the following statements.

(a) Ifa € Z is not divisible by p, then a € @ﬁ if and only if a is a quadratic residue
modulo p.

(b) Ifa e Zisnotdivisible by p and a is a non-residue modulo p, then @ p(\/E) isan
unramified quadratic extension of Q,. Moreover, if b € Z is also not divisible by p
and a non-residue modulo p, then Q,(\/6) = Q,(,/a) as Q, algebras.

(©) p¢ QZand e(@p(\/;)/@p) =2.

(a) Use Hensel’s Lemma to prove that if p is a prime, n € N is relatively prime to
p — 1,and x e Q, satisfies v,(x) = 1, then x € (Q,)".

(b) Deduce from (a) that 1f p and q are distinct primes, then v, cannot be extended
to a discrete valuation of @

(c) Use(b)toshow that 1f vand ware discrete valuations of the field F, char F = 0,
and F is locally compact in the v-topology and the w-topology, then v is equivalent
to w.

. Let v be a discrete valuation of the finite dimensional division algebra D over the field

F. The extension D/F is totally ramified (at v) if e(D/F) = dim,. D. In the following
statements it is assumed that F is a local field. Prove these assertions.

(a) If E/Fis a finite field extension, then there is a field K between F and E such
that K/F is unramified and E/K is totally ramified.

(b) If xis a root of a polynomial X" + a,x"' + ... + a,, where a; € P(F,v) for
alliand a, is a uniformizer at v, then F(x)/Fis a totally ramified extension of degree n.
Any polynomial of this form is called an Eisenstein polynomial.

(c) If K/F is a totally ramified extension of degree n, then K = F(x), where x
is a uniformizer in P(K,v) at v. Moreover, the minimum polynomial of x over F is
an Eisenstein polynomial.
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17.8. Unramified Extensions

Corollary 17.7a is the key to the structure of Brauer groups of local fields.
The application of this result is based on the properties of unramified
extensions of local fields. The purpose of this section is to prove the needed
facts about such unramified extensions.

It is convenient to fix our hypotheses and introduce simplified notation to
be used throughout this section. Let K/F be a finite field extension of degree n.
Assume that K and F are local fields relative to the discrete valuation v. For
our purposes, the case in which K and F are finite is uninteresting. Therefore,
it can be assumed that v is non-trivial. Denote 4 = O(F,v), P = P(F,v),
B = O(K,v), and Q = P(K,v). We will also write F for E(F,v) and K for
E(K,v). As usual, F is identified with the image of 4 under the residue class
mapping y — 7 of B to K. Since K and F are local fields, K and F are finite.
Denote the order of F by g, where g is a power of the characteristic of F.

Lemma a. If K/F is a Galois extension and 6 € G(K/F), then v(y°) = v(y) for
allye K.

ProOOF. The mapping v: K — Rdefined by v°(y) = v(y°)isclearly a valuation
of K such that v|F = v|F. By the uniqueness part of Proposition 17.6,
v = v. That is, v(y°) = v(y) forall y e K. 0O

Lemma b. If K/F is a Galois extension, then there is a homomorphism
¢: G(K/F) - G(K/F) such that y° = y** for all y € B and o € G(K/F).

Proor By Lemma a, 6(B) = B, 0(Q) = Q, and 6|4 = id,. Thus, ¢ induces
an automorphism ¢(c) of B/Q = K such that 3* = y° If be 4, then
b*@ — b7 — b. Thus, ¢(c) € G(K/F). Clearly, ¢(o7) = d(c)d(c); that is, ¢
is a group homomorphism. O

Proposition. The following properties of K/F are equivalent.

() K is the splitting field over F of x'™* — 1, where | = ¢".

(ii) K/F is Galois, and K = F(y), where y is a root of a monic polynomial
® € A[X] such that ® has distinct roots in an extension of F.

(iii) K/F is Galois, and K = F(y), where y is a root of a monic, irreducible
polynomial ¥ € A[X] such that ¥ has distinct roots in K.

(iv) K/Fis Galois, and the homomorphism ¢ : G(K/F) - G(K/F) of Lemma b
is an isomorphism.

(v) KJ/F is unramified.

ProOF. If (i) is true, then K/F is Galois, and there is a primitive /’th root of
unity y € K. Hence, K = F(y), so that (ii) is satisfied. Assume that (ii) holds.
Write® = ¥, --- ¥ with ¥, ..., ¥ monic and irreducible in F[x]. Since



17.8. Unramified Extensions 335

A s a principal ideal domain, Gauss’s Lemma implies that ¥, € 4[x] for all .
For some i, ¥(y) = 0, since ®(y) = 0. The roots of Y, are distinct because
the roots of @ are distinct. By Lemma a, ¥, sphts completely in B[x] because
K/Fis Galois; hence, all the roots of ¥, are in K. If (iii) is satisfied, then ¥ =
[Toec® —y9) and ¥ = [[,.6(x — y“"‘”) where G abbreviates G(K/F).
The assumption that W has distinct roots therefore implies that ¢ is injective.
Since K is finite, K/F is Galois, and therefore |G(K/F ) = [K:F] =
[F(»):F] < deg¥ = deg¥ = [K: F] = |G(K/F)|. It follows that ¢ is an
isomorphism. If (iv) holds, then so does (v) because e(K/F)f(K/F) =

[K:F] = |G(K/F)| = |G(K/F)| = [K: F] = f(K/F) by Proposition 17.7.
Assume that K/Fis unramified. By Proposition 17.7, [K: F] = [K: F 1=n
Therefore, |[K| = |F|" = ¢" = /and K is the splitting field over Fofx'™! — 1.
By Hensel’s Lemma, there is an element y € B such that '™! = 1 and yis a
primitive /’th root of unity in K. Thus, y is a primitive /’th root of unity in
K,K = F(y),andn = [K: F] = [F(}): F] < |F(y):F] <[K:F] =nby
Lemma 17.7a. Consequently, K = F(y) is the splitting field over F of
x!71— 1. O

Let F, denote the separable algebraic closure of the field F.

Corolloary a. If F is a local field, then for each n € N, there is a unique field K
between F and F, such that [K : F] = n and K/F is unramified.

This corollary is a direct consequence of the equivalence of (i), (iv), and
(v) in the proposition.

For a local field F, let K, (F) denote the subfield of F, such that K (F)/Fis
an unramified extension of degree n. By Corollary 17.6, K (F) is a local field
and v(K,(F)) = v(F). The extension K, (F)/F is Galois with G(K,(F)/F) =
G(K,(F)/F). Since F is finite of order ¢, the group G(K,(F)/F) is cyclic of
order #. It has a canonical generator: the mapping x + x%. The correspond-
ingelement of G(K,,(F)/F)is called the Frobenius automorphism (or Frobenius
substitution) of K,(F)/F. We will denote this generator of G(K,(F)/F) by o
(or just o when this abbreviation is permissible). Explicitly, ¢ is defined to be
the F-algebra automorphism of K,(F) that satisfies v(x® — x9) < 1 for all
x € O(K,(F)).

From our viewpoint, the next corollary is the most important consequence
of the proposition.

Corollary b. If F is a local field and D € S(F) is a division algebra, then D is
cyclic.

This result follows from Corollary 17.7a and the proposition.
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EXERCISES

1. Let F, be the separable algebraic closure of the local field F. Define F,, = J ..y K,(F).

Prove the following statements.

(a) F, is a subfield of F, such that F,/F is an infinite Galois extension with
G(F,/F) = imZ/nZ = 7.

(b) There exists o € G(F,,/F) such that ¢|K,(F) is the Frobenius automorphism
of K, (F)/F.

(c) If E is a finite extension of F with E < F, then (E n F,)/F is an unramified
extension and E/(E n F,) is a totally ramified extension.

2. (a) Prove Krasner’s Lemma: let F, K, and E be subfields of the local field L such that
F < E n K, E/Fis Galois, and Kis an infinite, closed subfield of L;if x e Eandy € K
satisfy v(x — y) < v(x* — x) for all ¢ € G(E/F) such that x* # x, then x € K. Hint.
Use Lemma a and the Domination Principle to prove that x* = x forall ¢ € G(EK/K).

(b) Deduce from (a) that if K is a local field, E/Kis a Galois extension,and x, y € E
satisfy v(x — y) < v(x® — x) for all 6 € G(E/K) such that x* # x and v(x — y) <
v(y* — y) for all T € G(E/K) such that y* # y, then F(y) = F(x).

3. (a) Let K be a local field of characteristic zero, and suppose that L is the splitting
field over K of a monic polynomial ® € K[x]. Write ®(x) = (x — x,) - -+ (x — x,)
=x"+a,x"' + ... + a,withx; € L and g; € K. Denote r = min{v(x; — x):i # j}
and s =max{v(x)*:0 <k <n,1 <i<n}. Prove that r >0,s> 1, and if b,, ... ,b,€
K satisfy v(b, — @) < r"/sfor 1 < k < n, then ¥(x) = x" + b,x""' + ... + b, is
irreducible in K[x], and there is a root y of ¥ such that K(y) = K(x,). Hint. Write
¥(x) = (x —y,) - - - (x — y,), with the y;in a splitting field of ¥ over L. Note that for
1<i<n [l o0 —y) = o(¥(x) — B(x)) < max{v(b, — av(x)" ™ : 1 <k <n}
< r". Deduce that there exists j(i) such that v(x; — y;;) < r. Use the Domination
Principle to show that v(y;;, — y;4)) = rif i # k. Apply Exercise 2(b)

(b) Prove that if E is a local field of characteristic zero, then there is a finite
extension F of @ and a discrete valuation v of F such that E is isomorphic to the
completion of F in the v-topology. Hint. Use Corollary 17.7¢c and the result in (a).

17.9. Norm Factor Groups

We are close to the description of B(F) when F is a local field. By Corollary
17.7a, B(F) = (JB(K/F), where the union is over the finite, unramified
extensions of F. Every unramified extension K/F is cyclic by Proposition
17.8, so that B(K/F) = F°/Ny,(K®). It remains to describe the norm factor
groups F°/Ng,(K°) of unramified extensions of the local field F. It will be
shown in this section that if [ K : F] = n, then F°/ Ny (K°)is cyclic of order n.

The hypotheses and notation that were introduced in Section 17.8 will be
used in this section. We also assume that K = K, (F), that is, the unramified
extension K/F (of local fields) has degree n. Therefore, [K:F] = n and the
Galois groups G = G(K/F) and G = G(K/F) are cyclic of order n. The
Frobenius automorphism ¢ generates G, and the image & of ¢ under the
isomorphism ¢: G — G satisfies X° = x4, where ¢ = |F|. It is convenient to
abbreviate the norm and trace mappings from K to F by N and T. Thus,
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N(y) = [];<,y”and T(y) = ¥ ,.,y"'forall y € K. Similarly, N: K - Fand
T: K —» F will denote the norm and trace mappings for K/F.
We record a standard fact, leaving its proof as Exercise 1.

Lemma a. N(K) = F; T(K) = F.
The heart of the proof of our main result is in the next lemma.

Lemmab.IfV = B° = {ye K:v(y) = 1}andU = 4° = {a e F:v(a) = 1},
then N(V) = U.

Proor. If yeK, then vo(N(») = [[;c,v(»”) = v(»)", and v(T(y)) =
v}, i<n d”’) < v(d) by Lemma 17.8a and the fact that v is non-archimedean.
In particular, N maps the compact set ¥ continuously to U. Hence, N(V)isa
closed subset of U, and the lemma can be proved by showing that N(V) is
dense in U. If y € B, then

N(y) = N(») and T(y) = T(9). (M

Indeed, N(y) = [[,<,»” = [L;<n¥” = N(¥). A similar calculation gives
T(y) = T(p). It follows from Lemma a and (1) that

A = T(B) + P, 2

and
U= NWV)(1 + P), 3)

that is, every element of U can be written in the form N(y)(1 + b), where
ye Vandb e P.Leta e Pbeauniformizer: P = aA. Since K/Fis unramified,
we also have Q = aB. By (2), P* = a*4 = a*T(B) + a*P = T(a*B) + P**! =
T(Q") + P**fork > 1. Thus, 1 + P* = 1 + T(Q") + P**'. Moreover, if
yeQhthen N1 +y) = [, + ) =1+Y, .,y +c=1+T(y) +o,
where c € Q* N 4 = P** Thatis, 1 + T(Q" < N(1 + Q%) + P*. Therefore,
1+ P N(1 + 0%+ P¥' = N(1 + 01 + P**") for k > 1. It follows
by induction from (3) that U < N(V)N(1 + @Y1 + P**Y) = N(V)
(1 + P*¥Y) < U for all k. Hence, N(V) is dense in U. '

Proposition. If K is an unramified extension of the local field Fand [K : F] = n,
then F°|Ng,r(K®) is a cyclic group of order n. Moreover, if a € F° is a unifor-
mizer, then aNy,(K°) generates F°[Ny(K°).

ProoF. The Snake Lemma gives the following commutative diagram with
exact rows and columns.

1- V - K 35@)-1

I LT
l- U - F° 5 (v(a)) - 1
l l !

U/N(V) - F°IN(K°) » Z/nZ -1
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As in Chapter 16, 5, is the exponential mapping ¢+ ". By Lemma b,
U/N(V) = 1. Thus, v induces an isomorphism of F°/N(K°) to Z/nZ with
aN(K°) mapped to a generator of Z/nZ. |

EXERCISES

1. Prove Lemma a. Hint. Use Proposition 15.1b to show that N(K) = F. By linearity,
the trace map is surjective if it is not zero.

2. Let v be a non-trivial, discrete valuation of the field F. Denote 4 = O(v), P = P(v),
F=E@W = A/P, Uy = U= A° = O(v) — P(v), and for neN, U, =1+ P" =
{1 + b:b e P"}. Show that U, is a subgroup of U, and prove the following statements.

(a) F° =~ U x Z.Hint. Show that the exact sequence 1 - U —» F° — v(F°) - 1
splits. _ _

(b) U,/U, =~ F°. Hint. Map U, —» F° by c+>c. B

(c) Forne N, U,/U,,, is isomorphic to the additive group of F. Hint. Let a be a
uniformizer at v. Map 1 + a"ce U,toce F.

17.10. Brauer Groups of Local Fields

We are ready to assemble parts from the previous sections to obtain a
complete description of the Brauer groups of local fields.

Theorem. If F is a local field with the uniformizer a, then B(F) = Q/Z via the
mapping
6p: kin + Z — [(K,(F), 0, a")],

wherene N and 0 < k < n.

Recall that K (F) denotes the unique subfield K of the separable closure of
F such that K/F is unramified of degree r; and ¢ is the Frobenius automor-
phism of K/F. The theorem is a combination of three statements.

(i) For a fixed neN, the mapping 6,(k/n + Z) = [(K,(F), 6,a%)],
0 < k < n, is a well defined isomorphism of the groups n~'Z/Z and
B(K,(F)/F).

(ii) If m, n € N, then the diagram

nz/7 - (mnm)'z2/Z
o | Oum
B(K,(F)/F) - B(K,,(F)/F)

is commutative (where the horizontal mappings are inclusions).
(iii) @/Z = \J,.nn"'Z/Z and B(F) = |, . B(K,(F)/F).
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PROOFs OF (i), (ii), AND (iii). The mapping k — [(K,(F), 6, a")] is a group
homomorphism from Z to B(K,(F)/F) by Corollary 15.1a. By Propositions
17.9 and 15.1b, this homomorphism is surjective and has the kernel nZ. The
statement (i) follows, because multiplication by # induces an isomorphism of
n~'Z/Z to Z/nZ. The commutativity property in (ii) follows from Corollary
15.1b: (K, (F),0, a*™) ~ (K (F), 0, a"). The first statement in (iii) is ob-
vious. If D € &(F)is a division algebra of degree n, then [ D] € B(K,(F)/F) by
Corollary 17.7a and Proposition 17.8. Thus, B(F) = | J,..B(K,(F)/F). O

It is useful to define a new invariant for the algebras in S(F), where F
is a local field. For 4 € S(F), denote

INV, 4 = 0([4]),

where 6 is the isomorphism of Q/Z to B(F) that was defined in the theorem.
When only one field F is under consideration, we will write INV instead of
INV,. Plainly, INV can be viewed as an invariant of the elements of the
Brauer group. It is used this way in local class field theory. However, for
our purposes, it is more convenient to consider INV as an invariant of
central simple algebras.

Corollary a. Let F be a local field; suppose that A, B€ S(F) and me N.

(i) A ~ Bifand only if INVA = INVB.
(ii) A ~ Fifandonly if INVA = 0.
(iii) Ind A4 is the order of INV A in Q/Z.
(iv) INV(4 X) B) = INVA + INVB.
(v) INVA®™ = mINV 4.

Proor. The assertions (i), (ii), (iv), and (v) follow directly from the theorem
and Corollary 15.1a. For the proof of (iii), let INVA = k/n + Z, where
neN,0 < k < n,and (n,k) = 1. Thus, n is the order of INV A. The order
of a* modulo Ng,ryr(Ko(F)°) is n by Proposition 17.9. Thus, Ind4 =
Ind(K,(F),q,a*) = n, according to Corollary 15.1d. O

The properties (ii), (iii), and (v) of the corollary imply one of the funda-
mental facts about the central simple algebras over a local field.

Corollary b. If F is a local field and A € S(F), then Exp A = Ind 4.

The last result of this chapter relates INV to INV,, when E/F is a finite
extension of local fields. It is based on the work that was done in Section 14.7.

Proposition. If E/F is a finite extension of degree m, where F is a local field,
then INV, A% = m(INV, A).
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The proof is based on a diagram of field extensions.

K,(F)E
K,(F) E
S K,(F) A Et
1|~" '

Let[K,(F) N E:F] = r,[K,(F):K,(F) n E] = s,and [E: K,(F) n E] = t.
By Lemma 14.7b, [K(F)E: E] = s and [K,(F)E: K,(F)] = t. It follows
from Corollary 17.7b that the fields between F and K,(F) are unramified.
Therefore, r = (n,f(E/F)) and f(E/K,(F) n E) is relatively prime to s. Since
f(K(F)E/E)f(E/K(F) n E) = f(K,(F)E/K,(F))s, it follows that s divides
f(K(F)E/E). Thus, f(K,(F)E/E) = s = [K,(F)E/E] and K, (F)E/E is un-
ramified. The uniqueness of unramified extensions implies that K (F) n E =
K,(F) and K,(F)E = K/(E). This discussion is summarized by:

m=rt, n=rs; §))
ifl = f(E/K,(F) n E), then f(E/F) =1Ir,t = le(E/F), and(ls) = 1. (2)
The Frobenius automorphisms of K,(E) and K, (F) are related by

og|K.(F) = af®/P. A3)

Moreover, if a is a uniformizer for E, then b = a*®" is a uniformizer for
F. We can use these data to prove that the diagram

Q/z 5 Qjz
%] Lo
B(F) > B(E)

commutes, where «, is induced by the inclusion of Fin E. This commutativity
is obviously equivalent to the statement of the proposition. If ne N and
1 < k < n, then k,0:(k/n + Z) = k [ (K,(F),05,b")] = [(K,(F)E,0},b")] =
[(K(E),c ,a"EPY] = [(K(E),05,a")] = [(K,(E),05,a™)] = O(m(k/n +
Z)). In addition to (1), (2), and (3) we have used Corollary 15.1¢ in this
calculation.

EXERCISES

1. Let Fbe alocal field. Prove that for each » € N, the number of isomorphism classes of
division algebras D € S(F) of degree n is ¢(n) (where ¢ is the Euler Totient).

2. Let A and B be division algebras in S(F), where Fis a local field. Prove that 4 X Bis
a division algebra if and only if the degrees of 4 and B are relatively prime.

3. Let p be an odd prime, and suppose that a € N is not a quadratic residue modulo p.
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Prove that the quaternion algebra D = (E"Dp > is a division algebra, and show that

N\ =p
every division algebra of degree 2 in S(Q),) is isomorphic to D.

4. Let Fbealocal field, and suppose that 4 € S(F)hasdegreen> 1. Prove the following

statements.

(a) If K/Fis a field extension of degree n, then A contains a maximal subfield that
is isomorphic to K as an F-algebra. Hint. Use the proposition and Corollary 13.3.

(b) If x € F°, then there is an extension K/F of degree » and y € K such that
Ngrp(¥) = x. Hint. Let x = z'u, where z is a uniformizer in F and v(u) = 1. If n
divides r, let K = K (F) and y = z"™w with w € K chosen according to Lemma 17.9b
so that Ny,-(w) =, u. If n is relatively prime to r, let K = F(y), where y is a root of
O(x) = x" + " x 4+ (—1)"x. Thus, v(z)" = v(x) < max {v()", v(y)o(z)"*1}.
Use the Domination Principle to show that in fact v(x) = v(y)", and deduce from the
hypothesis (r,7) = 1 that n divides e(K/F). Thus, ® is irreducible over F and x =
Ny;r(»). Combine the special cases to obtain the general result.

(c) vyr(4) = F. Hint. Use (a), (b), and Proposition 16.2a.

Notes on Chapter 17

This chapter gives a brief introduction to valuation theory, following the
traditional development of this subject. Its coverage is limited to topics that
are needed for the study of division algebras. The results in this chapter
provide the foundation for the study of division algebras over number fields,
our subject in the next chapter.

In the interest of keeping the exposition finite, it has been necessary to
trim off some of the most interesting topics in the theory of valuations.
The reader who wants to probe this subject more deeply can find many
references that are less goal oriented. The most complete discussion of
local fields is given in Serre’s book [71]. Also recommended are Artin’s
books [7] and [8], and Chapters 1, 2, and 6 of [22]. In Chapter 19 we will
take a brief look at fields that are complete under a discrete valuation, but
are not local.



CHAPTER 18
Division Algebras over Number Fields

In this chapter we come to some of the deepest and most beautiful results
in modern algebra. These are the theorems that classify and describe the
central simple algebras over algebraic number fields. This work is associated
with the names of several of the greatest heroes of mathematics: Hasse,
Brauer, Noether, and Albert. It is based on developments in number theory
that are due to Kronecker, Weber, Hilbert, Minkowski, Furtwangler,
Artin, Takagi, Hasse, Witt, and many others.

It will no longer be possible for us to give self-contained proofs of the
basic theorems. Instead, we will quote some results from class field theory
and derive the classification and structure theory of algebras from these
deep number theoretic facts. Some theorems on rational division algebras
that can be derived in an elementary way are outlined in the exercises.
However, even in this simple case, the best results require the use of number
theoretical tools that cannot be called elementary.

18.1. Field Composita

In the last chapter we studied two cases of the question “‘when can a valuation
v of a field F be extended to a larger field K?” It was shown that such exten-
sions exist and are unique when X is the completion of F in the v-topology
and also when F is a local field and KJF is finite. Our work in this chapter
requires an answer to the extension question in the case that K/F is a finite
extension and no hypothesis is made on F. By using field composites we
will reduce this problem to the cases that were treated in the last chapter.
This section is concerned with those topics in the theory of field composita
that are needed to solve the valuation extension problem.

342



18.1. Field Composita 343

Let K and L be fields that contain F as a subfield. 4 compositum of K and
Lover Fisatriple (E,¢,y) in which E'is a field that contains F,and ¢: K — E,
Y: L — E are F-algebra homomorphisms such that E = ¢(K)y/(L). Two
such composita (E,¢,y) and (E’,¢’,y’) are equivalent if there is an F-algebra
homomorphism 6: E — E’ such that ¢’ = 6¢ and y’ = 0. In this case,
0(E) = 0(p(K)W (L)) = ¢'(K)Y'(L) = E’, so that 6 is a field isomorphism.
It follows that equivalence of composita is a symmetric relation; plainly,
it is also reflexive and transitive.

Lemma a. If K/F is a finite, separable field extension and L|F is a field exten-
sion, then K QL = K~ = E, + --- + E,, where E/L is a field extension
such that [K: F] = Y7 [E;:L]. Write lyg; = €, + -+ + e, where e; =
lg, and define ¢;: K> E;, y;: L > E; by ¢(x) = e(xQ 1), y,(y) =
e(1 ® ¥). The triples (E;,¢,,¥,) are pairwise inequivalent composita of K and
L over F, and every compositum of K and L over F is equivalent to one of

the (E,,d;,¥,).

ProOOF. By Lemma 10.7b and Proposition 10.6a, K (X) L = K" is a separable
L-algebra. In particular, K ® L is semisimple. Since K (X) L is commutative,
the Wedderburn Structure Theorem takes the form K (X) L = E, + --- +
E, in which each E; is a field that contains F. The mappings ¢, and , are
clearly F-algebra homomorphisms of K and L to E;, and ¢(K)¥,(L) =
e(K Q) L) = E,. Thus, (E,,¢,,¥,) is a compositum of K and L over F. If
E, is given the L-space structure that is induced by y;, then Y, [E;: L] =
dim, K" = [K: F]. Suppose that there is an isomorphism 6: E, - E;
such that 0¢, = ¢, O; = y; with i # j. If ¢, = Y, (x, X »,), then ¢, =
O(e) = G(Zk e;(x; ® ») = H(Zk &:(x V() = Zk ¢j(xk)lpj(yk) =
Y e;(x; X y) = e;e; = 0, which is a contradiction. Thus, (E;,¢,,¥,) is not
equivalent to (E;,¢;,y;) if i # j. Suppose that (E,¢,¥) is a compositum of
Kand L. The mapping ¢ X) : K (X) L —» Eisan F-algebra homomorphism
such that (¢ Q) ¥)(KX) L) = ¢(K)¥(L) = E. In particular, there is an
index i such that 0 = (¢ X) Y)|E; is a non-zero F-algebra homomorphism
of E; to E. Thus, 0(e) = 1, and if x € K, then 8¢,(x) = 8(e;(x ¥) 1)) =
0(e)d(x)Y(1) = ¢(x). Similarly, 6y; = Y. Consequently, (E,P,y) is equiv-
alent to (E;,¢;,¥,). O

Lemma b. Let K/F be a Galois extension with the Galois group G, and suppose
that L/F is an arbitrary field extension. Assume that (E,$,\) is a compositum
of K and L over F. If o € G then (E,pa™",Y) is a compositum of K and L
over F. Every compositum of K and L over F is equivalent to (E,po!,y)
for some 6 € G.

PROOF. It is obvious that if ¢ € G then (E,¢pa™,¥) is a compositum. For
the proof of the last statement, we adopt the notation that was introduced
in Lemmaa. Assumethat(E, : L] < --- < [E,: L]. Themappingo — 6, =
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o X) id; is an injective group homomorphism of G to Aut; K () L. If
y = 0,, then y permutes the minimal ideals of K (X) L. Thus, there is a unique
Jj such that x(E;) = E;. In particular, y(e;) = ¢;, so that y¢;(x) =
e, @ D) = 2e)((6 ®id)x @) = " ®1) = ($0)(x) for
all xe K. Similarly, x¢,(y) = ¢;(1°Q) ») = ¥;(») for all yeL:y is an
L-space homomorphism. Let H = {c € G: 0,E, = E,}. Since g+ 0, is a
homomorphism, H is a subgroup of G and 6,E, = 0.E, if and only if
1710 € H. Therefore, the left cosets of H are in one-to-one correspondence
with the fields {0,E, : o € G}. If o € H, then 6,|E, € G(E,/L). When 6,|E,
is the identity automorphism, ¢,(x) = 6,¢,(x) = ¢,(x°) for all x e K, so
that ¢ = idy. Consequently, |H| < |G(E,/L)| < [E,:L], and r|H| <
r(E,:L] < Yi_,[E;:L] = [K:F] = |G| = [G:H]|H|. Thus, r >
|{6,E,: 6 € G}| = [G: H] > r. Therefore, every E; has the form ,E, for
some ¢ € G. This conclusion, together with Lemma a proves the last state-
ment of the lemma. Indeed, we can assume that (E,¢,¥) = (E;,¢,,¥,). If
6,E, = E;, then po™' = 0, ¢,and y = 6,"y;; hence (E;,;,¥;) is equivalent
to (E,pa ). O

The composita (E,¢o"',i) are not in general inequivalent. In fact,
(E,po™1,y) is equivalent to (E,¢,y) if and only if padp ! € G(¢K/PK N YL).

EXERCISES

1. Prove the last statement of the section: if K/Fis Galois, (E,¢,V) is a compositum of K
and L over F, and o € G(K/F), then (E,¢a~*,\) is equivalent to (E, ¢, ) if and only if
(padp 1)(2) = z for all z € ¢(K) N Y(L).

2. Prove that if K/F and L/F are Galois extensions with the compositum (E,¢,V), then
E/F is Galois.

3. Let F, K, and L be fields with F = K = L. Show that if ¢: K — L is an F-algebra
homomorphism, then (L,¢,id;) is a compositum of K and L over F. Prove that if
¢’: K — L is another F-algebra homomorphism, then (L,¢",id;) is equivalent to
(L,¢,id;) if and only if ¢’ = ¢, Deduce that the number of equivalence classes of
composita of K and L over F may be infinite unless K/F is a finite extension.

18.2. More Extensions of Valuations

Our aim in this section is to survey the extensions to K of a valuation v of
the field F when K/F is a finite separable field extension. The approach to
this problem is: extend v to the valuation & of F; extend ¢ to E, where (E, ¢, )
is a compositum of K and F over F; restrict the valuation on E back to K.
We will write w =2 v or v = w if w is an extension of v to a field K that
contains F as a subfield. If w|F is equivalent to v, though not necessarily
equal to v, then w divides v. This property is indicated by writing w|v. If v
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and w are non-archimedean valuations, then it follows from Proposition 17.3
that w|v if and only if P(K,w) 2 P(F,v). In other words, the ideal P(K,w)
divides the ideal P(F,v)O(K,w).

We will need a generalization of Corollary 17.8b.

Lemma a. Let F = K < E be a chain of fields. If w is a discrete valuation of E,
andv = w|K, then

(i) e,(E/F) = e, (E[K)e,(K[F),
() £, (E[F) = [ (E[K)f,(K[F).

The first part of the proof of Corollary 17.8b gives (i). In the argument, the
assumption that Fis a local field was not used. We leave the proof of (ii) as an
easy exercise.

A technical lemma leads to the main result of this section. In the statement
of this lemma the topological terms refer to the relevant valuation metrics
and topologies.

Lemma b. Let F, K, L, and E be fieldswith F < L < E,F < K,and[K: F] <

00. Suppose that v is a valuation of F, and u and w are respectively extensions of
v to E and K. Assume that L is locally compact (that is, O(L,u) is compact),

Fis dense in L, and ¢ : K — E is an isometric F-algebra homomorphism.

(i) There is an isometric F-algebra isomorphism y: F — L.
(ii) ¢(K)L is closed in E and ¢(K) is dense in ¢(K)L.
(ili) There is an extension of ¢ to an isometric F-algebra isomorphism
0:K - ¢(K)L.

ProoF. The assumptions that L is locally compact (hence complete) and Fis
dense in L imply L = F algebraically and topologically, by Corollary 17.4a.
The isometric isomorphism ¥ is defined by letting y/(x) be the limit in L of a
Cauchy sequence {a,} = Fwhose limitin Fis x. Since dim, ¢(K)L < [K: F],
it follows from Lemma 17.6b that the uniform topology of the L-space ¢(K)L
coincides with the u-topology. Moreover, ¢(K)L is locally compact in the
uniform topology, hence also in the u-topology. In particular, ¢p(K)L is
complete and therefore closed in E. Since F is dense in L, it is clear that
¢(K) = ¢(K)F is dense in ¢(K)L. If {y,} = K is a Cauchy sequence that
converges to y € K, then {¢(y,)} is a Cauchy sequence in ¢(K)L that con-
verges to an element 6(y). A routine check shows that 6 is a well defined,
isometric F-algebra isomorphism of K to ¢(K)L. O

Proposition. Let v be a non-trivial valuation of the field F such that F is locally
compact. Assume that K/F is a finite, separable field extension. If w is a
valuation of K that extends v, let K,, denote the completion of K in the w-
topology, ¢,, the standard embedding of K in K,,, and \,, the isometric F-
algebra homomorphism of F to the closure of F in Kw (defined in Lemma b). The
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mappingw — (K., ,,,,,) induces a bijection between the extensions w of v to K
and the equivalence classes of composita of K and F over F. If v is discrete, then
all extensions w of v are discrete, e, (K/F) = e (K,/F), f.(K/F) = f,(K,/F),
and e, (K|F)f(K/F) = [K,: F].

ProoF. If w is an extension of v to K, then (Kw,¢w,¢w) is a compositum of K
and F over F. In fact, (¢, K) (¥, F) = K, F) is closed in K, by Lemma b;
hence (¢, K)(W, F) = K,. Let (E,$,) be a compositum of K and F over F.
We wish to associate an extension of v with this compositum. Since F is
locally compact by assumption, and dim,; E < dim;K < oo, it follows
from Proposition 17.6 that there is a unique valuation w of E such that
W (»)) = v(p)forally e F. Define the valuation w of Kby w(x) = Ww(¢(x)).
If a € F, then w(a) = w(a) = v(a), so that w 2 v. We must prove that these
constructions are mutually inverse to within equivalence of composita. One
way is clear: w is the extension of v that corresponds to (K,,,¢,,,V,.). Indeed,
the extension w of w to K,, does satisfy w(y, (»)) = v(y) for all y € F because
¥, is an isometry ; and obviously (¢, (x)) = w(x) forall x € K. Suppose that
w is obtained from the compositum (E,¢,{) by our construction. We will
show that (K, ,,,,,) is equivalent to (E,¢,). By the definition of w and ,
the mappings ¢ and y are isometries. Proposition 17.6 implies that E is
locally compact, hence complete in the w-topology. By lemma b, ¢(K) is
dense in E. Therefore, ¢ extends to an isometric isomorphism §: K,, » E. By
the definition of ¢,, 6¢, = 0| K = ¢. To prove that Oy, = lP let y =
limx, € F with {x, } € F. Since 0 and ¥ are isometric mappings, we have
0y, (y) = 0y, (imP x)) = 0(1lim® x) = limP x, = YyAimP x) = Y(y).

(The superscripts on lim keep track of the space in Wthh the limits are taken.)
We next prove that equivalent composita give rise to the same extension of v.
Let (E',¢",¥") and (E,¢,¥) be equivalent composita, say 6: E’ —» E is an
isomorphism that satisfies ¢ = 6¢’ and ¥ = 6’. Denote the valuations
associated with (E,¢,¥) and (E’,¢’,¥") by w and w’ respectively. The mapping
z + w(0(z)) is a valuation of E’ that satisfies w(OY'(»)) = w(y(»)) = v(p)
for all y € F. The uniqueness statement in Proposition 17.6 implies that
w(0(z)) = W'(z) when z € E’. In particular, if x € K, then w’'(x) = w'(¢’(x))
= Ww(0¢’'(x)) = w(¢(x)) = w(x). It remains to consider the consequences of
discreteness. Let v be a discrete valuation of F. If (E,¢, ) is a compositum of
K and F, then the extension of v to F is discrete by Proposition 17.4, and the
further extension to the valuation w of E is also discrete according to Pro-
position 17.6. Hence, the valuation w of K corresponding to (E,$,¥) is
discrete. Proposition 17.4 and its Corollary 17.4b yield e (K, /K) = e, (F|F)
= 1= f(K,/K) = f,(F[F). Thus, e (K/F) = e K,/F) and f,(K/F) =

fo (K JF) by Lemma a. It follows from Proposition 17.7 that e WKIF),(KIF)
= [k, : F]. O

Corollary a. Let v be a non-trivial valuation of the field F such that F is locally
compact. If K| F is a finite, separable field extension, then there are finitely many
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distinct extensions wy, ..., w,of vto K,and Y'_ [K,:F] = [K:F]. Ifvis
discrete, then all of the w; are discrete and Y '_, e, (K/F M, (KIF) = [K: F ].

i=1%w;

This corollary is a consequence of the proposition and Lemma 18.1a.

Corollary b. Let v be a non-trivial valuation of the field F such that F is locally
compact. Assume that K/F is a Galois extension. If w is a valuation of K that
extends v, then for all 6 € G(K/F), w’ is an extension of v to K, where w°(x) =
w(x®™") for all x € K. Every extension of v to K has the form w° for some
o € G(K/F).

Proor. If ¢ € G(K/F), then (K, ,$,,07 ,¥,) is a compositum of K and F over
F, and the corresponding valuation of K is defined by w(¢, 0 1(x)) =
Ww(g,(x°")) = w’(x). Thus, w” is an extension of v to K. By Lemma 18.1b and
the proposition, every extension of v to K has the form w® for some
o € G(K/F). O

When the extension K/Fis Galois, then Corollary b gives a nice classifica-
tion of the valuations of K that extend the valuation v of F. Our last corollary
lists some consequences of this classification.

Corollary c. Let the hypotheses and notation be as they were in Corollary b. In
particular, K|F is Galois.

() As an F-algebra, K, is independent of the choice of w.
(i) K, /F is Galois.
(iii) o ¢ a¢,, is an injective homomorphism from G(K,,/F) to G(K/F) the
image of this mapping is G,, = G(K/¢, (¢,(K) N ¥, (F))).
(iv) If o, € G(K/F), then w’ = w® if and only if at™' € G,,; in particular,
G, = {ceGK/F):w* =w},and G,. = t7'G,7.
(v) If v is discrete, then e (K[F) = e, (K/F), [, AK/F)=f(K/F), and
e (K/F)f,(K|F)g,(K/F) = [K:F), where g,(K|F) is the index of G,
in G(K/F).

ProOF. The statement (i) is clear from the proposition and Corollary b. The
properties (ii) and (iii) restate Lemma 14.7b. To prove (iv), note that w® = w*
if and only if (K, ,¢,071,¥,) is equivalent to (K,,¢,,7™1,¥,,), that is, there is
an automorphism p of K, satisfying pys, = ¢, and pp,o™' = ¢,77". The
equation py,, =y, is equivalent to pe G(K,/F); the second equation
translates to 61! = ¢, po, € G, (noting that the switch from composition
of maps to exponentiation reverses the order of the product of t ! and o). The
last assertion of (iv) comes from the easily checked observation that w? =
(w°). Finally, if v is discrete, then e .(K/F) = e, (K,/F) = e (K/F) and
FAKIF) = f,(R,/F) = f(KIF) by (). O
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The group G, is called the decomposition group of w. When G(K/F) is
abelian, then G,, is the same subgroup of G(K/F) for all extensions w of v.
In this case, it is customary to write G, instead of G,,, and identify this group
with G(K, /F).

EXERCISES
1. Prove the statement (ii) of Lemma a.
2. Prove the assertion w“® = (w°)" that was made in the proof of Corollary c.

3. Let a be a square free integer, and denote K = @(\/E). Assume that p is an odd prime

that does not divide a. Prove that the p-adic valuation v, of Q has two extensions to

valuations of K if a is a quadratic residue modulo p,and v, has one extension to K if a
is a non-residue modulo p. Hint. Note that x> — ais 1rreduc1ble over Q ,ifand only if
a is a non-residue modulo p. Prove that e, (K/Q) = 1 in all of these cases.

18.3. Valuations of Algebraic Number Fields

An algebraic number field is a subfield F of C such that [F: Q] < co. We will
use the results of the previous section to survey the valuations of algebraic
number fields.

Proposition. Let F be an algebraic number field.

(i) Every non-trivial valuation of F divides a non-trivial valuation of Q.
(ii) If v is a non-trivial, non-archimedean valuation of F, then v divides a
valuation v, of Q for a unique prime p, v is discrete, E(F,v) is a finite field,
and E, is a local field. For each prime p, there are at most [ F : Q] extensions
of v, to F in fact, ), ., e, (F/Q)f,(F/Q) = [F: Q].
(iii) Every archimedean valuation v of F is equivalent to a valuation w(x) =
|p(x)|, where ¢: F — C is a non-zero field homomorphism. There are at
most [ F: Q] equivalence classes of archimedean valuations of F.

PROOF. If v is non-trivial, then so is v| Q by (the proof of ) Lemma 17.7a. If v
is non-trivial and non-archimedean, then v|Q is also non-archimedean.
Hence, v | Q is equivalent to v, for a unique prime p. The remaining assertions
in (ii) follow from Proposition 18.2: the separability hypothesis is automati-
cally satisfied because char F = 0. If v is archimedean, then v | Q is equlvalent
to the absolute value v_. Since @, = Rand F /@ is finite, either £, ~ R
or £, = C. Thus, (iii) also follows ‘from Proposmon 18.2. O

If K/Fis an extension of algebraic number fields, v is a valuation of F, and
wis a valuation of K that divides v, then K /F is a finite field extension whose
degree is called the local degree of K/F at w. When K/F is Galois, K, is the
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same K -algebra for all extensions w of v by Corollary 18.2¢. In particular, the
local degrees at the extensions of v are the same. In this case, we will write K,
instead of K, and denote the local degree “at v” by [K, : F,].

Corollary. Let K/F be a Galois extension of algebraic number fields. Assume
that v is a non-trivial valuation of F and w is a valuation of K that extends v.

() [K,: F,] divides [K : F].

(i) If v is discrete and e (K/F) = 1, then the decomposition group G, of w is
cyclic. There is a unique generator a,, of G,, such that w(x® — x9) < 1 for
all x € O(K,w), where ¢ = |E(F,v)|. If t € G(K/F), then o, = 1 '0,,t.

Proor. By Corollary 18.2¢, (K, : F] = |G(K F)| = |G, | divides |G(K/F)

= [K: F] for all extensions w of v. Since [K, : F,] = [K,, : F,], this observa-
tion proves (i). Assume that v is discrete and e, (K/F) = 1 for one (hence
every) extension w of v. By Proposition 18.2, ¢, (K, /F) = 1; thatis, K, /E is
an unramified extension of local fields. Consequently, G(K,,/E) is cyclic with
the Frobenius automorphism as a generator, according to the results of
Section 17.8. The generator g,, of G,, is the image of the Frobenius automor-
phism under the isomorphism of G(K,/F,) to G,,. The characterization of o,
by the condition w(x™ — x?) < 1 for all x € O(K,w) is a consequence of the
analogous characterization of the Frobenius automorphism. If T € G(K/F)
and x e O(K,w"), then x*' € O(K,w) and wi(x* ' %% — x9) = w(x* ' —
(x*)9) < 1. Therefore, o,. = t'0,1. O

The element g, of G(K/F) is called the Frobenius automorphism of K/F at
w. When K/F is Galois, these automorphisms are defined for all discrete
valuations w of Ksuch thate (K/F) = 1. As we will see, almost all valuations
of K have these properties. It is clear that ¢, = o, when w and w’ are
equivalent.

If K/F is an abelian extension, that is, K/F is Galois and G(K/F) is an
abelian group, then by part (ii) of the corollary, 6, = o, whenever w and w’
divide the same valuation v. In this case, w — ¢, can be viewed as a mapping
from a certain set of discrete valuations of Fto G(K/F), and it is natural to
write o, instead of o, if w |v. These remarks apply in particular when K/Fis a
cyclic extension.

The inconvenience of dealing with equivalence classes of valuations can
be avoided in the study of algebraic number fields. There are several ways to
select a canonical representative from each equivalence class of valuations.
The standardization that we will adopt leads to an elegant product formula,
due to Artin and Nesbitt.

Let v be a non-trivial valuation of the algebraic number field F. By the
proposition, v divides a non-trivial valuation v, of @, where p is a prime or
p = oo; that is, v, is either a p-adic valuation of Q or the absolute value. If
v|Q = vp®, where n@) = [£:Q o] ([E, : R] if p = 0), then v is called a
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normalized valuation of F. Every non-trivial valuation of Fis equivalent to a
unique normalized valuation. Moreover, if p is a prime or co, then the number
of normalized valuations that divide v, is finite. Denote by S(F) the set
of all (non-trivial) normalized valuations of F; if p is a prime or infinity,
let S,(F) = {veS(F): vdivides v,}.

Lemma. Let F and K be algebraic number fields with F < K.
(i) If ve S(F), we S(K) and w|v, then w|F = v*, where k = [K,,: F,].

and w° | v.
(iti) If K/Fis Galois,v € S(F),andy € K, then [ |, s &) wisW(») = v(Ngip(»)).
@iv) If p is a prime or o and x € F, then Hves V(X)) = v,(Npq (x)).

PROOF. Let v € S (F) with p a prime or 00. Note that if w € S(K) and w|v
then w e S, (K). Moreover w|F = v* for some k. If n(w) = [K,:Q N
and n@) = [F,: @] then v;™ = w|Q = v¥Q = (|Q)* = v Hence

= n(w)/n(v) = [K Q ]/[F Q,] = [K,:E] AssumethatK/F is Galois.
Denote G = G(K/F). Plarnly, if o € G, then w°|F = w|F. Therefore, w’ |v.
Moreover, w’|Q = w|Q = v3™ = v®*” by Corollary 18.2c. Thus, w’ € S (K).
Let G, = {peG: w* = w} be the decomposition group of w. By Corollary
18.2¢, the order k of G, is [K,, : £,];and g, T € G satisfy w* = w*if and only if
ot 'eG,. IfG =G0, v --- v G,0, is a coset decomposition of G, then

k g9
( 1 w(y)) [T IT w() = TTwe() = w(Hy““)
weS(K),w|v i=1 peG, oceG ceG

= W(Ngr(y) = v(Ngp(»)*. forallyeKk.

Since k’th roots are unique in R™, this calculation proves (iii). For the
proof of (iv), choose the algebraic number field K so that K/Q is Galois
and F c K. Thus, K/F is Galois. If s = [K: F], ve S, (F), and x € F, then
v(x)* = v(Ngp(x)) = [Twes,wip W(X). Note that if w € S (K), then there is
a unique v € S (F) such that w|v Conversely, w € S(K), ve S, (F) and wlv
implies w e S (K) Hence, if x € F, then ([ [,s 5 v(x))* = ]_[wes oW =

v,(Ngo(X)) = v,(Ngjq (x))°, which yields (iv). O

The lemma leads to an important property of normalized valuations.

The Product Formula. If F is an algebraic number field and x € F°, then
v(x) = 1 for almost all v e S(F) and Hvesm o(x) = 1.

ProOF. If x € F, then x is algebraic over Q,say x" + a;x" ' + --- + a, =0,
where q; € Q, a, # 0,and n > 1. The set X of all prime factors of the numer-
ators and denominators of the g, is finite; and if p is a prime that is not in
X, then v,(a;) = 1 whenever a; # 0. Let. pbea prirne, p ¢ X, and ve S (F).
Then v is non-archimedean and v(g;x"~*) = v(x)" " if @; # 0. The Domina-
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tion Principle implies that v(x) = 1. Indeed, if v(x) > 1, then v(x)" > v(a;x" ")
for 1 <i < nyields 0 = v(0) = v(x)" > 0. If v(x) < 1, then 1 = v(a,) >
v(a,x""%) for 0 < i < n; hence, 0 = v(0) = 1. Therefore, v(x) = 1 unless v
isin the finite set S (F) U (J,.x S,(F). In particular, the product | [, cs ) v(x)
is finite. By the lemma, [ ], s V(%) = Voo (Ng0 ) 1, prime Uy (NVrjo (¥))). It
is easy to see from the definition of the p-adic valuations that for any rational
number ¢, the product v (c) (]_[p v,(c)) is equal to 1. (See Exercise 2, Section
17.2.) O

We will frequently use the part of this result that states v(x) = 1 for
almost all v. The actual product formula is less important for us. However,
this equation has an important role in class field theory, and it appears
implicitly in many results that will be stated in the next few sections.

EXERCISES

1. An algebraic function field is a finite separable extension of a field of the form K(x),
where K is a finite field.

(a) Prove that all valuations of an algebraic function field are discrete.

(b) Prove the analogue of Proposition a for algebraic function fields.

(c) Using the same definition of normalized valuation that was given for algebraic
number fields, prove that the product formula is valid for algebraic function fields.
Hint. See Exercise 3, Section 17.2 and Exercise 2, Section 17.3.

Artin and Nesbitt proved that if the product formula holds for a field F, then Fis
either isomorphic to an algebraic number field or an algebraic function field. The
members of the union of these classes of fields are called global fields. The basic
results of class field theory are valid for all global fields. All of the results that we will
describe in the next few sections generalize to global fields. This assertion will be
completely obvious if the claim that class field theory applies to global fields is
accepted.

2. Thepurpose of this problemistooutlinea proofofthe Weak Approximation Theorem:

if Fis an algebraic number field, v, ..., v, € S(F) are distinct, x,, ..., x,, € F°,and
e € R*, then there exists y € F° such that v,(y — x) < eforl <i < m.

(a) Prove that if ve S(F) and x, y € F°, then in the v-topology lim,__ x*y/
1 + x% = yifv(x) > 1, and lim,_  x*y/(1 + x*) = 0if v(x) < 1.

(b) Use(a)and induction onmto show that there exists z € K°satisfyingv,(z) > 1
ando,(z) < 1for2 <i<m.

(¢) Choosez,, ..., z, € K°sothatv(z) < 1ifi # jand v(z;) > 1. Prove that if
k e N is sufficiently large, then y = Y™ (z*x,/(1 + 2¥)) satisfies v,(y — x;) < e for
l<i<m

3. Let Fbe an algebraic number field. For each homomorphism ¢: F — C, denote by v
the archimedean valuation v,(x) = |¢(x)‘. IfIm¢ = R, then ¢ is a real embedding,
otherwise a complex embedding. Prove the following statements.

(a) v,isequivalenttoy, ifand onlyif ¢ = Y or ¢ = ¥, where ¥(x) is the complex
conjugate of (x). Hint. Use Proposition 18.2, noting that the only isometric homo-
morphisms of R to R or R to C are the embedding maps.
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(b) If ¢ is a real embedding, then v, is normalized. If ¢ is a complex embedding,
then v} is normalized.

(c) The number of complex embeddings of Fin Ciseven,say 2r,,andr; + 2r, =
[F: @], where r is the number of real embeddings of Fin C. In this case, the number
of normalized archimedean valuations of Fisr; + r,.

(d) With the notation of (c), denote the real embeddings of Fby ¢, ..., ¢, and
the complex embeddings of F by ¢, .. nﬂ, Yy, . n// Let x,, .. x be
arbitrary real numbers, z,, ..., z, arbltrary complex numbers and e€ R+ There
exists y € F such that |¢(y) - x| <efor 1 <i<r and |[¥,(y) — z| < e for
1 <j < r,. Hint. Use the weak approximation theorem.

18.4. The Albert—Hasse—Brauer—Noether Theorem

The most profound result in the theory of central simple algebras is the
Albert—Hasse—Brauer—Noether Theorem. It was proved independently by
Hasse, Brauer, and Noether in [40] and by Albert and Hasse in [4].

Albert-Hasse—Brauer—Noether Theorem. Lez F be an algebraic number field.
If A € &(F) satisfies A R) F, ~ F, for all v e S(F), then A ~ F.

For convenience, we will refer to this result as the “Basic Theorem™
throughout the rest of this section.

The Basic Theorem is closely related to one of the deep results of class
field theory, the Hasse Norm Theorem. As we will show, the Basic Theorem
can be deduced fairly easily from the norm theorem. On the other hand,
the norm theorem is essentially the statement that a certain cohomology
group in class field theory vanishes, and the triviality of this cohomology
group is an easy consequence of the Basic Theorem. A direct proof of the
Basic Theorem can be obtained from the analysis of generalized zeta func-
tions. Expositions of this proof are given in the books by Deuring [26] and
Weil [78].

The Hasse Norm Theorem. Let K/F be a cyclic extension of algebraic number
fields. An element a in F is the norm of an element of K if and only if a €
Ng 5. (K,) for all v e S(F).

All proofs of the norm theroem are long. We will use the result without
proving it. An algebraic treatment of class field theory, including the norm
theorem, is given in the article by Tate in [22] and in Artin-Tate [10].
Proofs of the norm theorem that use some analytic machinery can be found
in the books by Janusz [52] and Lang [56].

Our statement of The Hasse Norm Theorem merits some explanation.
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Since K/F is cyclic (hence Galois), all extensions w of v to K produce the
same completion K. In particular, NK /F, (K,) does not depend on w.
Therefore, the notation K, instead of K,, is justified.

If K/F is Galois and v € S(F), then it can (and will) be assumed that K
and F, are subfields of K, such that K, = KF,. There may be different
embeddings of K in K but they all have the same image. Let G, be one of
the various conjugate decomposition groups associated with an extension
of v to K. If G(K/F) = 0,G, v --- v g,G, is a coset decomposition and
y e K, then

Ngr(y) = H Hy“* HNK/F(J’ ) =N, R.JE, (HJ’ )

i=11eG,

This observation shows that if x € F is the norm of an element in K, then
x € Ng i, (K,) for all v € S(F), that is, one implication of the norm theorem
is true and easy to prove for Galois extensions. The difficult reverse implica-
tion is a special property of cyclic extensions. (See [22], p. 360.)

PROOF OF THE Basic THEOREM. We begin the proof by treating the case in
which 4 is a cyclic algebra: 4 = (K,0,a), where K/F is a cyclic extension
of algebraic number fields, G(K/F) = o), and a € F° By Corollary 15.1¢c
and our hypothesis, ifv € S(F), then £, ~ 4 X) E, ~ (KE,,6%,a) = (K,,6%,a),
where g[K, : ] = [K: F]. It follows from Lemma 15 I that a Ni g, (K)
for all v € S(F). The Hasse Norm Theorem implies that a € Ny z(K), so that
A ~ Fby Lemma 15.1 again. Consider the general case. With the aim of
getting a contradiction, assume that Ind 4 > 1. If p is a prime divisor of
Ind A, then by Proposition 15.2 there is an algebraic number field E contain-
ing F such that A¥ ~ D, where D e &(E) is a cyclic division algebra of
degree p. In partlcular D + E. Let we S(E) divide v e S(F). Identlfy

with a subfield of E,. Our hypothe51s gives D R E, ~ AE R E, =
AR E) Ry E, ~ F,Qy, E, = E,. Since D is cyclic, the first part of
the proof leads to the requlred contradiction D ~ E. O

The Basic Theorem can be put in a convenient form by using the mappings
INV,. for central simple algebras over local fields that were introduced in
Section 17.10. First, we must extend the definition of INV, to the cases
F=R and F=C. If 4e S(R), then either 4 ~ R or 4 ~ H. Define
INV,: S(R) »> Q/Z by INVGA =0if 4 ~Rand INV 4 =12+ Z if
A ~ H. Plainly, INV, A4 = INV_ B if and only if A ~ B. Thus, INV, can
be viewed as a bijective mapping from B(R) to (1/2)Z/Z. Since H (X) H =

—1,-1 —-1,—1 —-1,1 . .
< R )@( m >~ ( = > ~ R by the results of Section 15.4, it
is clear that INVy is a group homomorphism. Define INV,. to be the zero
homomorphism from S(C) to @/Z. In this case it is a trivial observation
that INV,. is an injective group homomorphism of B(C) to Q/Z because
B(C) = {1}.
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If v is an archimedean valuation of the algebraic number field F, then £,
is either R or C by Proposition 18.3. In these respective cases v is called a
real or complex valuation of F. The invariants INV; are therefore defined
for all v e S(F); they induce injective group homomorphlsms from the
multiplicative groups B(F) to the additive group Q/Z. To simplify notation
we will write INV_ instead of INV; . The same -expression will be used to
designate the correspondmg homomorphlsm B(F ) - Q/Z.

If A e &(F) and v € S(F), then INV,(4 X) FE)) is called the local invariant
of A4 at v. By collecting the local invariants we get the global invariant of A.
It is the mapping INV = INV®: &(F) - [],.s Q/Z that is defined by
INVA=(...INVAX) E) ...). Clearly, INVA = INVB if 4 ~ B.
Thus, INV can be viewed as a mapping from B(F) to a product of copies of
Q/Z. The same notation INV or INV'® will be used in both contexts.

Proposition. If F is an algebraic number field, then INVY) is an injective group
homomorphism from B(F) to [ [, s Q/Z.

Since (4 Q B) Q £, = (A Q) E) Ry, (B E), it follows from Corol-
lary 17.10a that INV® is a group homomorphism; the injectivity of this
homomorphism is a restatement of the Basic Theorem.

Corollary a. Let A, Be S(F).
(i) A ~ Bifand only if INV¥) 4 = INVP B,
(i) 4 = Bifandonly if INVP 4 = INV®) B and Deg A = Deg B.

Lemma. If K/F is an extension of algebAraicAnumber fields, we S(K), v e S(F),
®K Kw) = [Kw : EJ] INVv(A ® EJ)

PRrOOF. If v is discrete, then the lemma restates Propos1t10n 17.10. Assume
that v is archimedean. If INV,(4(X) £) = 0, then 4 &) £, ~ F,. Conse-
quently, AX @K Kw, as in the last part of the proof of the Basic
Theorem. If INV, (A & £) # 0, then , = R and 4 ) £, ~ H. Either
K,=CorK,=R=EFE,. In the former case, A* Qi K, ~ [H]@,RC C
and 0 =INV (AK®KK ) =2(12 + 7) = [K, F]INV(A@F) If
K, =R, thenAK®KK ~ A®R ~ H,and INV,_(4* Q) K,) = 1/2 +
Z=INVARXR E) = [K : EJINV, (A®F) O

Corollary b. Let K/F be an extension of algebraic number fields, and suppose
that A € S(F).
(i) K splits A if and only if [K,,: E]INV,(4 R) F)) = 0 for all v € S(F) and
w € S(K) such that w|v.
(1) K is isomorphic to a strictly maximal subfield of A if and only if Deg A =
[K:F] and [K, : E]JINV,(A X E) = 0 for all ve S(F) and w € S(K)
such that w|v.
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This corollary is a consequence of the lemma, the Basic Theorem, and
Corollary 13.3.

EXERCISES
1. Prove that if 4 € S(F) has odd index, then INV,(4 &) F)y=0forallve S, (F).

2. The purpose of this exercise is to outline a proof of a special case of Hasse’s Norm
Theorem.

Theorem. If a, b € Q are such that b € Ng (a0, (Qp(ﬁ)) for all primes p and
p = o, then b € No(/aya (Q(/a)).

(a) Prove that it suffices to establish the theorem with the added hypotheses:
a, b e Z and a, b are square free.

Henceforth, assume that a, b € Z are square free. The proof is by induction
on |a| + |b|. Denote N, = Nq.zya(Q(/a)) and for p a prime or o, N, ,=
Na,ava(Q@ ,(+/@)), with similar meanings assigned to N, and N, ,.

(b) Prove that b € N, if and only if a € N, and for all p, be N, , if and only if
ae N, ,. Our hypothesis is that b € N, , for all p. Hence, a e N, , for all p.

(c) Use the hypothesis with p = oo to prove that if |a| = |b| = 1, thena = 1 or
b = 1, hence a € N, or b € N, and the theorem is true.

(d) Show thatifa = x2 — by* € N, ,withx,ye Q »» and if p divides b but p does
not divide a, then v,(x) = 1.

(e) Deduce from (d) that if p is a prime divisor of b, then a is a quadratic residue
mod p. Use the Chinese Remainder Theorem and the assumption that b is square free
to conclude that a is a quadratic residue mod b.

(f) Assume (as we may by (b) and (c)) that |a| < |b|and |b| > 2. Conclude from
(¢) that there are integers ¢, d, e with ¢ square free such that bcd? = > — a =
Naware (¢ + /@), where |c| < |cd?| < |b|. Provethat b € N, ifand onlyif c € N,, and
ceN,, forallp.

(g) Use induction to complete the proof of the theorem.

3. Let 4 € S(Q) be a quaternion algebra. Use the result of Exercise 2 to prove that
A ~ Qifand only if 4 Q) @, ~ Q, for all primes p and for p = 0.

4. This exercise develops machinery that can be used to compute the local invariants of
quaternion algebras over Q. It also introduces a concept of classical number theory
that is an ancestor of the Artin Reciprocity Law. Assume throughout the exercise that
Fis a field with char F # 2. For a, b € F°, the norm residue symbol of a and b relative
to Fis defined by (a,b); = —1 if ax® + by> — z? = 0 has no solution except the
trivial one x = y = z = 0, and (a,b), = 1 if there is a non-trivial solution of this
equation in F. The norm residue symbol was introduced by Hilbert. Prove the
following results for elements a, b, c € F°.

(a) The following three conditions are equivalent: (a,b), = 1; (al,:b> ~ F;

b € Ny jzyr(F(/a)). Hint. Use Proposition 1.6.

(b) (a9b)F = (b’a)F; (aal)F = (a’ —a)F = (a’ 1 - a)F = 19 (a’bcz)F = (aab)F;
(a,b); = (a, —ab)r = (a, (1 — a)b);. A

In the remaining parts of this exercise, it is assumed that F = @Q, with p a prime, or
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F=Q, = Randa,beZ — {0} are square free. The notation (a,5)Q, is shortened
to (a,b), where p is a prime or c.

©If4 = (“«f ) ®a, = <%b> then (a,b), = €2V, A),

p

(d) (a,bc), = (a,b),(a,c),. Hint. Use (c) and the fact that (tg}>®<a,c> ~

Q
(a,bc)
o )
() (ab), = —lifandonlyifa < Oand b < 0.
(f) If p is a prime that does not divide a, and ax® + py? = z? has a non-trivial

solution in Q »» then this equation has a solution (x,y,z) such that v,(x) = v,(z2) = 1
and v,(y) < 1.

(g) If p is an odd prime that does not divide a, then (a,p), = <£>, the Legendre

Symbol. Hint. By Hensel’s Lemma,< g) = 1 implies that a € @ﬁ. For the converse,
P
use (f).

(h) If p is an odd prime, then (p.p), = <_—1> = (=1)*"Y2, Hint. (p,p), =
(= 1p),(~p.D),- P

(i) If p is an odd prime that does not divide either a or b, then (a,b), = 1. Hint.
Use Lemma 17.9b.

(j) Ifaisan odd integer, then a € (©,)? if and only ifa = 1 (mod 8). Hint. For the
implication that a = 1 (mod 8) implies a € (Q,)%, show that if z2 = a (mod 2"*?)
for n > 1, then a suitable y, € Z satisfies (z, + 2""'y,)* = a(mod 2"*3).

(k) @5/(Q35)%isa group of order 8 whose elements are the (multiplicative) cosets of
+1, +3, +2,and +6.

() Ifaisodd, then ax? + by? = z2 has anon-trivial solution in Q, if and only if it
has a non-nilpotent solution in Z/8Z. Hint. Assume that (x,y,z) is a solution in 7>
modulo 8 with not all of x, y, z even. If one of a or b is even, then ax® + by? is odd,
and by (j) there exists w € Q, such that w?> = ax? + by?. If a and b are both odd,
then one of ax?, by* is odd, and a similar argument applies, using a(z> — by?) or
b(z* — ax?)astheconstant. Note thata® = b*> = 1(mod8),anda™!,h ' existin Q,.

(m) If p and ¢ are odd primes, then (—1,-1), = =1, (2,2), = 1, (=1,p), =
(=P 2,2,p), = <§> = (=D)"*"8,(p,g), = (—1)""P@"D% Hint. Use (k), (1),
and a lot of paper.

(n) If pis an odd prime, a = p°a’, and b = p’b’, where p does not divide &’ or &',

NS r\ e
then (a,b), = (—1)/¥~1? (a_) (b— .Ifa = 2% and b = 2/b’, where a’ and &’
p P

NS 7 \e
are odd, then (a,b), = (—1)<a'—1)(b'—*>/4<%> (%)

5. Use the Basic Theorem and the results of Exercise 4 to determine which pairs of the
following quaternion algebras are isomorphic, that is, classify the algebras by

. . 1,1 2,3 -1,2 -1,3 —-1,6\ /=23
h :M — b > b b b b
isomorphism types: M, (Q) <@>’<Q>’< Q ),( Q >,< Q >,< Q >,
2,-3 —-1,-2 -1,-3 —-1,—-6 —-2,-3
o)) ) ) )
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18.5. The Brauer Groups of Algebraic Number
Fields

The Albert—Hasse—Brauer—Noether Theorem shows that the Brauer group
of an algebraic number field can be embedded in a product of copies of
Q/Z. The main theorem of this section gives a precise description of the
embedding.

Theorem. If F is an algebraic number field, then there is an exact sequence
1-B(F)->I(F)—> Q/Z -1,

where I(F) = Py esr) LF), L(F) = Q/Z if v is discrete, I(F) = (1/2)Z/Z
ifvisreal,and I (F) = 0 if v is complex.

The homomorphism B(F) — I(F) is the invariant mapping INV®). The
homomorphism I(F) — Q/Z is the coproduct y of the inclusion mappings
I(F) > Q/Z, thatis, y: (... 1, ...) > Y 1,

The proof of the theorem occupies the rest of this chapter. We have noted
that the injectivity of INVY is equivalent to the Albert—Hasse—Brauer—
Noether Theorem. Most of this section is devoted to the proof that the
image of INV) is a subgroup of I(F). This fact is obtained by an elementary
argument. The deepest part of the proof is the exactness of the sequence at
I(F). We will prove this fact in Section .18.7, using preliminary results from
Section 18.6 and two basic theorems of class field theory. It is obvious that
y is surjective: if v is discrete, so that I (F) = Q/Z, then y(I (F)) = Q/Z.

Lemma. If F and K are algebraic number fields and F < K, then e (K/F) = 1
for almost all w € S(K).

ProOF. We can assume that K/F is Galois. Otherwise, enlarge K to an
algebraic number field L such that L/F is Galois, and note that if u is an
extension to L of w € S(K), then e (K/F) divides e,(L/F). In particular, if
e, (L/F) =1 for almost all ueS(L), then e, (K/F) =1 for almost all
w € S(K). The assumption that K/F is Galois implies that K /F, is Galois
and K, doesn’t depend on the choice of the extension w of v. Moreover,
e, (K/F) = e, (K,/E), so that it suffices to show that the field extension
KE |E is unramified for almost all v € S(F). Let K = F(y). If ® € F[x] is
the minimum polynomial of y over F, then ® is monic, irreducible, and the
roots of ® are distinct. Thus, @ is relatively prime to its derivative @’. Since
F[x] is a principal ideal domain, ®@® + Y& = 1 for suitable ® and ¥ in
F[x]. The Product Formula guarantees the existence of a finite set X of
valuations of F with S_(F) € X such that ®, @', ©, ¥ e O(F,v)[x] <
O(F) [x] for allv e S(F) — X. Thus, if v ¢ X, then the residue field mapping
of O(F)[x] to E(F,)[x] is defined on @, ®’, ®, and . It gives @D + YO’ =
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1. Consequently, @ has distinct roots in an extension of E(F)). By Proposition
17.8, E(»)/F, = KF, /F, is unramified for all v € S(F) — X, that is, for
almost all v € S(F). O

Proposntlon Let F be an algebraic number field. If A € S(F), then INV,(4 (X)
F) = 0 for almost all v € S(F).

Proor. INVH) is constant over equivalence classes of algebras. Thus, we
can assume that 4 is a crossed product, say 4 = (K,G,®), where K/Fis a
Galois extension, G = G(K/F), and ® € Z?(G,K°). By the Product Formula
and the lemma, there is a finite set X = S(F) such that if v € S(F) — X and
w € S(K) divides v, then v is discrete, K, /F, is unramified, and w(®(p,7)) = 1
for all p, t € G. We will show that INV,(4 X) £ <) = 0 in this case. The
choice of X guarantees that £, is a local field and K JF, = KE|E is unram-
ified for all v e S(F) — X. It follows from Proposition 17.8 that K, /E, is
cyclic, say H = G(K,/E) = (o). Denote k = |H| = [I{' : £]. The defini-
tion of crossed products implies that 4 = @, c%,K, u; 'du, = d* for all
deK, 1€G, and w,u, = u, ®(p,7). By Proposmon 14, 7b A®F ~
(K, H,®|H?) = @,Ekua,Kw = @ik @)K, In fact, u? = u,.®(0,0), u

uasd)(a,az)d)(a,a), ces Ut = uy, ®(0,6572) - .. ®(0,0) and finally, u*

u, ®(c,6* 1) ... ®(0,06) = a,wherea = ®(1,1)®(c,6*"!) ... D(0,0) € 13; )
K. In the notation of Section 15.1, A®f§, ~ (K,,0,a). Since v ¢ X, it
follows that w(®(p,)) = 1 for all p, 7 € G. Therefore, v(a) = w(a) = 1. By
Lemma 17.9b, ae Ng ;. (K ). Consequently, (K,,,0,a) ~ I:], by Lemma
15.1b. That is, INV(A®F)—0 O

Corollary. If F is an algebraic number field, then the image of INV® is aq
subgroup of I(F).

EXERCISES

1. Prove that if the algebraic number field F contains a primitive n’th root of unity,
n > 2, then all non-archimedean valuations of F are complex, and I(F) is isomorphic
to a direct sum of copies of Q/Z.

2. Give a simplified proof of the proposition in the case that 4 is the cyclic algebra
(K,0,a) with K/F cyclic, G(K/F) = (o), a€ F°. Show that INV,(4 ® E) = 0if v
is discrete, v(a) = 1, and e (K/F) = 1 for all extensions w of v to K. Hint. Use
Corollary 15.1c.

3. Use the theorem to show that if 4 € S(F), where F is an algebraic number field,
and if [4] # 1, then INV, (4 (X) F)) # 0 for at least two v € S(F).

4. Let a € 7 be square free. Prove that e, (Q(,/a)/@) = 2 in the following cases.
(@) w 2 v,, where p is a prime divisor of a.
(b) w 2 v, and a = 3 (mod 4). Hint. Show that w(l + \/a) = v,(2)*.
Prove that e, (Q(,/a)/Q) = 1 for all other discrete valuations w of Q(y/a). Hint.
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Show thatifw 2 v,anda = 1 (mod 4), then the assumptionthat1 > w(c + dﬁ) >
v,(2), ¢, d € Q, leads to a contradiction.

5. Prove that the lemma and the proposition are also true when F is an algebraic
function field.

18.6. Cyclic Algebras over Number Fields

One remarkable consequence of the Albert—Hasse—Brauer—Noether Theo-
rem is that every central simple algebra over an algebraic number field is
cyclic. In this section we will prove this fact, using a fundamental existence
theorem for cyclic extensions of algebraic number fields.

The Grunwald—Wang Theorem. Let F be an algebraic number field. Assume
that {(v;,n,), ..., (v,,n,)} is a finite set of pairs such that v, € S(F), n; e N,
n; = 1 if v, is complex, and n; < 2 if v, is real. Let m be the least common
multiple of {n,, ...,n,}. If ne N is divisible by m, then there is a cyclic
extension K/F of degree n such that n, divides [K . E ] for 1 <i<r. More-
over, if 2m divides n, then K can be chosen so that K /F is unramified for
all of the v, that are discrete.

We won’t prove the Grunwald—Wang Theorem. It is treated fully in
Chapter 10 of the Artin—Tate notes on class field theory [10]. A related
weaker theorem is outlined in Exercise 3.

Theorem. Let F be an algebraic number field. If A € S(F), then A is cyclic
andInd 4 = Exp 4.

Proo¥. By Proposition 18.5, the set of valuations v of F such that INV,(4 (X)
F) # 0 is finite, and no such v is complex. Let v,, ..., v, be a listing of
these valuations. For 1 < i < r, define n; = Ind(4 X) F) If v, is real, then
A F, ~ Handn; = 2. Denote the least common multiple of {n,...,n}
by m. Accordlng to Proposition 13.4, the degree n of A is divisible by each
n;; thus, m divides n. By the Grunwald—Wang Theorem, there are cyclic
extensions K/F and L/F of degrees n and m respectively such that », divides
[K,:F,]and[L, : E]for1 < i < r.Sincen,is the order of INV, (4 Q) £,)
by Corollary 17.10a, it is a consequence of Corollary 18.4b that K and L
split 4. By construction Deg A = [K: F], so that K is isomorphic to a
strictly maximal subfield of 4 according to Corollary 13.3. Hence, A4 is
cyclic. The fact that L splits 4 implies that Ind 4 < m by Proposition 13.4.
If k is the exponent of A, then kKINV[A] = INV[4]* = 0; that is,
KINV,(4 ) ﬁu) = 0 for all ve S(F). Thu