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Preface 

A normed space is a real or complex vector space X along with a norm 
function on the space; that is, a function 11·11 from X into the nonnega
tive reals such that if x, y E X and a is a scalar, then lIaxll = lalllxll, 
Ilx + yll :s IIxll + lIyll, and Ilxll = 0 precisely when x = O. A Banach space 
is then defined to be a normed space such that the metric given by the 
formula d(x, y) = Ilx - yll is complete. In a sense, the study of Banach 
spaces is as old as the study of the properties of the absolute value func
tion on the real numbers. However, the general theory of normed spaces 
and Banach spaces is a much more recent development. It was not until 
1904 that Maurice Rene Frechet [80] suggested that it might be fruitful 
to extend the notion of limit from specific situations commonly studied in 
analysis to a more general setting. In his 1906 thesis [81], he developed 
the notion of a general metric space and immediately embarked on the 
study of real CIa, b], the vector space of all real-valued continuous func
tions on a compact interval [a, b] of the real line with the metric given by 
the formula d(f, g) = max{ If(t) - g(t)1 : t E [a, b] }. In this seminal work 
on metric space theory, Frechet was already emphasizing the important role 
played by the completeness of metrics such as that of CIa, b]. He was also 
doing a bit of Banach space theory since his metric for CIa, b] is induced 
by a norm, as will be seen in Example 1.2.10 of this book. By 1908, Er
hard Schmidt [211] was using the modern notation Ilxll for the norm of an 
element x of £2, but the formulation of the general definition of a normed 
space had to wait a few more years. 

Since the study of normed spaces for their own sake evolved rather than 
arose fully formed, there is some room to disagree about who founded the 
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field. Albert Bennett came close to giving the definition of a normed space 
in a 1916 paper [23] on an extension of Newton's method for finding roots, 
and in 1918 Frederic Riesz [195] based a generalization of the Fredholm 
theory of integral equations on the defining axioms of a complete normed 
space, though he did not use these axioms to study the general theory 
of such spaces. According to Jean Dieudonne [64], Riesz had at this time 
considered developing a general theory of complete normed spaces, but 
never published anything in this direction. In a paper that appeared in 
1921, Eduard Helly [102] proved what is now called Helly's theorem for 
bounded linear functionals. Along the way, he developed some of the general 
theory of normed spaces, but only in the context of norms on subs paces of 
the vector space of all sequences of complex scalars. 

The first undisputed efforts to develop the general theory of normed 
spaces appeared independently in a paper by Hans Hahn [98] and in Stefan 
Banach's thesis [10], both published in 1922. Both treatments considered 
only complete normed spaces. Though the growth of the general theory pro
ceeded through the 1920s, the real impetus for the development of modern 
Banach space theory was the appearance in 1932 of Banach's book Theorie 
des Operations Lineaires [13], which stood for years as the standard refer
ence work in the field and is still profitable reading for the Banach space 
specialist today. 

Many important reference works in the field have appeared since Ba
nach's book, including, among others, those by Mahlon Day [56] and by 
Joram Lindenstrauss and Lior Tzafriri [156, 157J. While those works are 
classical starting points for the graduate student wishing to do research 
in Banach space theory, they can be formidable reading for the student 
who has just completed a course in measure theory, found the theory of Lp 
spaces fascinating, and would like to know more about Banach spaces in 
general. 

The purpose of this book is to bridge that gap. Specifically, this book 
is for the student who has had enough analysis and measure theory to 
know the basic properties of the Lp spaces, and is designed to prepare such 
a student to read the type of work mentioned above as well as some of 
the current research in Banach space theory. In one sense, that makes this 
book a functional analysis text, and in fact many of the classical results 
of functional analysis are in here. However, those results will be applied 
almost exclusively to normed spaces in general and Banach spaces in par
ticular, allowing a much more extensive development of that theory while 
placing correspondingly less emphasis on other topics that would appear 
in a traditional functional analysis text. 

It should be made clear that this book is an introduction to the general 
theory of Banach spaces, not a detailed survey of the structure of the 
classical Banach spaces. Along the way, the reader will learn quite a bit 
about the classical Banach spaces from their extensive use in the theory, 
examples, and exercises. Those who find their appetite for those spaces 
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whetted have an entire feast awaiting them in the volumes of Lindenstrauss 
and Tzafriri. 

Prerequisites 

Appendix A contains a detailed list of the prerequisites for reading this 
book. Actually, these prerequisites can be summarized very briefly: Any
one who has studied the first third of Walter Rudin's Real and Complex 
Analysis [202]' which is to say the first six chapters of that book, will be 
able to read this book through, cover-to-cover, omitting nothing. Of course, 
this implies that the reader has had the basic grounding in undergradu
ate mathematics necessary to tackle Rudin's book, which should include a 
first course in linear algebra. Though some knowledge of elementary topol
ogy beyond the theory of metric spaces is assumed, the topology presented 
near the beginning of Rudin's book is enough. In short, all of this book is 
accessible to someone who has had a course in real and complex analysis 
that includes the duality between the Lebesgue spaces Lp and Lq when 
1 < p < 00 and p-l + q-l = 1, as well as the Riesz representation theorem 
for bounded linear functionals on C(K) where K is a compact Hausdorff 
space, and who has not slighted the usual prerequisites for such a course. 

In fact, a large amount of this book is accessible at a much earlier stage 
in a student's mathematical career. The real reason for the measure theory 
prerequisite is to allow the reader to see applications of Banach space theory 
to the Lp spaces and spaces of measures, not because the measure theory is 
itself crucial to the development of the general Banach space theory in this 
book. It is quite possible to use this book as the basis for an undergraduate 
topics course in Banach space theory that concentrates on the metric theory 
of finite-dimensional Banach spaces and the spaces fp and Co, for which 
the only prerequisites are a first course in linear algebra, a first course in 
real analysis without measure theory, and an introduction to metric spaces 
without the more general theory of topological spaces. Appendix A explains 
in detail how to do so. A list of the properties of metric spaces with which 
a student in such a course should be familiar can be found in Appendix B. 
Since the fp spaces are often treated in the main part of this book as special 
Lp spaces, Appendix C contains a development of the fp spaces from more 
basic principles for the reader not versed in the general theory of Lp spaces. 

A Few Notes on the General Approach 

The basic terminology and notation in this book are close to that used by 
Rudin in [200], with some extensions that follow the notation of Linden
strauss and Tzafriri from [156] and [157]. 
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Though most of the results in this text are divided in the usual way 
into lemmas, propositions, and theorems, a result that is really a theorem 
occasionally masquerades as an example. For instance, the theorems of 
Nikodym and Day that (Lp[O, 1])* = {O} when 0::; p < 1 appear as Exam
ple 2.2.24, since such an Lp space is an example of a Hausdorff topological 
vector space whose dual does not separate the points of the space. 

The theory in this book is developed for normed spaces over both the 
real and complex scalar fields. When a result holds for incomplete normed 
spaces as well as Banach spaces, the result is usually stated and proved in 
the more general form so that the reader will know where completeness is 
truly essential. However, results that can be extended from Banach spaces 
or arbitrary normed spaces to larger classes of topological vector spaces 
usually do not get the more general treatment unless the extension has a 
specific application to Banach space theory. 

Any extensive treatment of the theory of normed spaces does require 
the study of two vector topologies that are not in general even metrizable, 
namely, the weak and weak* topologies. Much of the sequential topological 
intuition developed in the study of normed spaces can be extended to non
metrizable vector topologies through the use of nets, so nets playa major 
role in many of the topological arguments given in this book. Since the 
reader might not be familiar with these objects, an extensive development 
of the theory of nets is given in the first section of Chapter 2. 

This book is sprinkled liberally with examples, both to show the theory 
at work and to illustrate why certain hypotheses in theorems are necessary. 

This book is also sprinkled liberally with historical notes and citations 
of original sources, with special attention given to mentioning dates within 
the body of the text so that the reader can get a feeling for the time 
frame within which the different parts of Banach space theory evolved. In 
ascribing credit for various results, I relied both on my own reading of 
the literature and on a number of other standard reference::> to point me to 
the original sources. Among those standard references, I would particularly 
like to mention the excellent "Notes and Remarks" sections of Dunford and 
Schwartz's book Linear Operators, Part I [67], most of which are credited 
to Bob Bartle in thc introduction to that work. Anyone interested in the 
rich history of this subject should read those sections in their entirety. I 
hasten to add that any error in attribution in the book you are holding is 
entirely mine. 

In many cases, no citation of a source is given for a definition or result, 
especially when a result is very basic or a definition evolved in such a way 
that it is difficult to decide who should receive credit for it, as is the case 
for the definition of the norm function. It must be emphasized that in no 
case does the lack of a citation imply any claim to priority on my part. 

The exercises, of which there are over 450, have several purposes. One 
obvious one is to provide the student with some practice in the use of the 
results developed in the text, and a few quite frankly have no reason for 
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their existence beyond that. However, most do serve higher purposes. One 
is to extend the theory presented in the text. For example, Banach limits 
are defined and developed in Exercise 1.102. Another purpose of some of 
the exercises is to provide supplementary examples and counterexamples. 
Occasionally, an exercise presents an alternative development of a main 
result. For example, in Exercise 1.76 the reader is guided through Hahn's 
proof of the uniform boundedness principle, which is based on a gliding 
hump argument and does not use the Baire category theorem in any form. 
\\T!th the exception of a few extremely elementary facts presented in the 
first section of Chapter 1, none of the results stated and used in the body 
of the text have their proofs left as exercises. Very rarely, a portion of an 
example begun in t,he body of the text is finished in the exercises. 

One final comment on the general approach involves the transliteration 
of Cyrillic names. I originally intended to use the modern scheme adopted 
by Mathematical Revie?'lS in 1983. However, in the end I decided to write 
these names as the authors themselves did in papers published in West
ern languages, or as the names have commonly appeared in other sources. 
For example, the modern MR transliteration scheme would require that 
V. L. Smulian's last name be written as Shmul'yan. However, Smulian 
wrote many papers in Western languages, several of which are cited in this 
book, in which he gave his name the Czech diacritical transliteration that 
appears in this sentence. No doubt he was just following the custom of 
his time, but because of his own extensive use of the form Smulian I have 
presented his name as he wrote it and would have recognized it. 

Synopsis 

Chapter 1 focuses on the metric theory of normed spaces. The first three 
sections present fundamental definitions and examples, as well as the most 
elementary properties of normed spaces such as the continuity of their 
vector space operations. The fourth section contains a short development 
of the most basic properties of bounded linear operators between normed 
spaces, including properties of normed space isomorphisms, which are then 
used to show that every finite-dimensional normed space is a Banach space. 

The Baire category theorem for nonempty complete metric spaces is the 
subject of Section 1.5. This section is, in a sense, optional, since none of 
the results outside of optional sections of this book depend directly on it, 
though some such results do depend on a weak form of the Baire category 
theorem that will be mentioned in the next paragraph. However) this sec
tion has not been marked optional, since a student far enough along in his 
or her mathematical career to be reading this book should become familiar 
with Baire category. This section is placed just before the section on the 
open mapping theorem, closed graph theorem, and uniform boundedness 
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principle for the benefit of the instructor wishing to substitute traditional 
Baire category proofs of those results for the ones given here. 

Since a course in functional analysis is not a prerequisite for this book, 
the reader may not have seen the open mapping theorem, closed graph 
theorem, and uniform bounded ness principle for Banach spaces. Section 1.6 
is devoted to the development of those results. All three are based on a very 
specific and easily proved form of the Baire category theorem, presented in 
Section 1.3 as Theorem 1.3.14: Every closed, convex, absorbing subset of a 
Banach space includes a neighborhood of the origin. 

In Section 1.7, the properties of quotient spaces formed from normed 
spaces are examined and the first isomorphism theorem for Banach spaces 
is proved: If T is a bounded linear operator from a Banach space X onto a 
Banach space Y, then Y and XI ker(T) are isomorphic as Banach spaces. 
Following a section devoted to direct sums of normed spaces, Section 1.9 
presents the vector space and normed space versions of the Hahn-Banach 
extension theorem, along with their close relative, Helly's theorem for 
bounded linear functionals. The same section contains a development of 
Minkowski functionals and gives an example of how they are used to prove 
versions of the Hahn-Banach separation theorem. Section 1.10 introduces 
the dual space of a normed space, and has the characterizations up to 
isometric isomorphism of the duals of direct sums, quotient spaces, and 
subs paces of normed spaces. The next section discusses reflexivity and 
includes Pettis's theorem about the reflexivity of a closed subspace of a 
reflexive space and many of its consequences. Section 1.12, devoted to sep
arability, includes the Banach-Mazur characterization of separable Banach 
spaces as isomorphs of quotient spaces of £1, and ends with the characteri
zation of separable normed spaces as the normed spaces that are compactly 
generated so that the stage is set for the introduction of weakly compactly 
generated normed spaces in Section 2.8. This completes the basic material 
of Chapter l. 

The last section of Chapter 1, Section 1.13, is optional in the sense that 
none of the material in the rest of the book outside of other optional sections 
depends on it. This section contains a number of useful characterizations 
of reflexivity, including James's theorem. Some of the more basic of these 
are usually obtained as corollaries of the Eberlein-Smulian theorem, but 
are included here since they can be proved fairly easily without it. The 
most important of these basic characterizations are repeated in Section 2.8 
after the Eberlein-Smulian theorem is proved, so this section can be skipped 
without fear of losing them. The heart of the section is a proof of the general 
case of James's theorem: A Banach space is reflexive if each bounded linear 
functional x* on the space has the property that the supremum of Ix* I on 
the closed unit ball of the space is attained somewhere on that ball. The 
proof given here is a detailed version of James's 1972 proof [117]. While 
the development leading up to the proof could be abbreviated slightly by 
delaying this section until the Eberlein-Smulian theorem is available, there 
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are two reasons for my not doing so. The first is that I wish to emphasize 
that the proof is really based only on the elementary metric theory of 
Banach spaces, not on arguments involving weak compactness, and the best 
way to do that is to give the proof before the weak topology has even been 
defined (though I do cheat a bit by defining weak sequential convergence 
without direct reference to the weak topology). The second is due to the 
reputation that James's theorem has acquired as being formidably deep. 
The proof is admittedly a bit intricate, but it is entirely elementary, not all 
that long, and contains some very nice ideas. By placing the proof as early 
as possible in this book, I hope to stress its elementary nature and dispel 
a bit of the notion that it is inaccessible. 

Chapter 2 deals with the weak topology of a normed space and the 
weak* topology of its dual. The first section includes some topological pre
liminaries, but is devoted primarily to a fairly extensive development of 
the theory of nets, including characterizations of topological properties in 
terms of the accumulation and convergence of certain nets. Even a student 
with a solid first course in general topology may never have dealt with 
nets, so several examples are given to illustrate both their similarities to 
and differences from sequences. A motivation of the somewhat nonintuitive 
definition of a subnet is given, along with examples. The section includes 
a short discussion of topological groups, primarily to be able to obtain a 
characterization of relative compactness in topological groups in terms of 
the accumulation of nets that does not always hold in arbitrary topological 
spaces. Ultranets are not discussed in this section, since they are not really 
needed in the rest of this book, but a brief discussion of ultranets is given 
in Appendix D for use by the instructor who wishes to show how ultranets 
can be used to simplify certain compactness arguments. 

Section 2.2 presents the basic properties of topological vector spaces and 
locally convex spaces needed for a study of the weak and weak* topologies. 
The section includes a brief introduction to the dual space of a topologi
cal vector space, and presents the versions of the Hahn-Banach separation 
theorem due to Mazur and Eidelheit as well as the consequences for locally 
convex spaces of Mazur's separation theorem that parallel the consequences 
for normed spaces of the normed space version of the Hahn-Banach exten
sion theorem. 

This is followed by a section on metrizable vector topologies. This section 
is marked optional since the topologies of main interest in this book are 
either induced by a norm or not compatible with any metric whatever. An 
F -space is defined in this section to be a topological vector space whose 
topology is compatible with a complete metric, without the requirement 
that the metric be invariant. Included is Victor Klee's result that every 
invariant metric inducing a topologically complete topology on a group is 
in fact a complete metric, which has the straightforward consequence that 
every F-space, as defined in this section, actually has its topology induced 
by a complete invariant metric, and thereby answers a question of Banach. 
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The versions of the open mapping theorem, closed graph theorem, and 
uniform boundedness principle valid for F-spaces are given in this section. 

Section 2.4 develops the properties of topologies induced by families 
of functions, with special emphasis on the topology induced on a vector 
space X by a subspace of the vector space of all linear functionals on X. 

The study of the weak topology of a normed space begins in earnest 
in Section 2.5. This section is devoted primarily to summarizing and ex
tending the fundamental properties of this topology already developed in 
more general settings earlier in this chapter, and exploring the connections 
between the weak and norm topologies. Included is Mazur's theorem that 
the closure and weak closure of a convex subset of a normed space are 
the same. Weak sequential completeness, Schur's property, and the Radon
Riesz property are studied briefly. 

Section 2.6 introduces the weak* topology of the dual space of a normed 
space. The main results of this section are the Banach-Alaoglu theorem and 
Goldstine's theorem. This is followed by a section on the bounded weak* 
topology of the dual space of a normed space, with the major result of this 
section being the Krein-Smulian theorem on weakly* closed convex sets: 
A convex subset C of the dual space X* of a Banach space X is weakly* 
closed if and only if the intersection of C with every positive scalar multiple 
of the closed unit ball of X* is weakly* closed. 

Weak compactness is studied in Section 2.8. It was necessary to delay 
this section until after Sections 2.6 and 2.7 so that several results about 
the weak* topology would be available. The Eberlein-Smulian theorem is 
obtained in this section, as is the result due to Krein and Smulian that the 
closed convex hull of a weakly compact subset of a Banach space is itself 
weakly compact. The corresponding theorem by Mazur on norm compact
ness is also obtained, since it is an easy consequence of the same lemma 
that contains the heart of the proof of the Krein-Smulian result. A brief 
look is taken at weakly compactly generated normed spaces. 

The goal of optional Section 2.9 is to obtain James's characterization 
of weakly compact subsets of a Banach space in terms of the behavior of 
bounded linear functionals. The section is relatively short since most of the 
work needed to obtain this result was done in the lemmas used to prove 
James's reflexivity theorem in Section 1.13. 

The topic of Section 2.10 is extreme points of nonempty closed convex 
subsets of Hausdorff topological vector spaces. The Krein-Milman theorem 
is obtained, as is Milman's partial converse of that result. 

Chapter 2 ends with an optional section on support points and subreflex
ivity. Included are the Bishop-Phelps theorems on the density of support 
points in the boundaries of closed convex subsets of Banach spaces and on 
the sub reflexivity of every Banach space. 

Chapter 3 contains a discussion of linear operators between normed 
spaces far more extensive than the brief introduction presented in Sec
tion 1.4. The first section of the chapter is devoted to adjoints of bounded 
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linear operators between normed spaces. The second focuses on projec
tions and complemented subspaces, and includes Whitley's short proof of 
Phillips's theorem that Co is not complemented in foo. 

Section 3.3 develops the elementary theory of Banach algebras and spec
tra, including the spectral radius formula, primarily to make this material 
available for the discussion of compact operators in the next section but 
also with an eye to the importance of this material in its own right. 

Section 3.4 is about compact operators. Schauder's theorem relating the 
compactness of a bounded linear operator to that of its adjoint is presented, 
as is the characterization of operator compactness in terms of the bounded
weak*-to-norm continuity of the adjoint. Riesz's analysis of the spectrum 
of a compact operator is obtained, and the method used yields the result 
for real Banach spaces as well as complex ones. The Fredholm alternative 
is then obtained from this analysis. Much of the rest of the section is de
voted to the approximation property, especially to Grothendieck's result 
that shows that the classical definition of the approximation property in 
terms of the approximability of compact operators by finite-rank operators 
is equivalent to the common modern definition in terms of the uniform 
approximability of the identity operator on compact sets by finite-rank op
erators. The section ends with a brief study of the relationship between 
Riesz's notion of operator compactness and Hilbert's property of complete 
continuity, and their equivalence for a linear operator whose domain is 
reflexive. 

The final section of Chapter 3 is devoted to weakly compact operators. 
Gantmacher's theorem is obtained, as well as the equivalence of the weak 
compactness of a bounded linear operator to the weak*-to-weak continu
ity of its adjoint. The Dunford-Pettis property is examined briefly in this 
section. 

The purpose of Chapter 4 is to investigate Schauder bases for Banach 
spaces. The first section develops the elementary properties of Schauder 
bases and presents several classical examples, including Schauder's basis 
for C[O, 1] and the Haar basis for Lp[O, 1] when 1 S p < 00. Monotone 
bases and the existence of basic sequences are covered, and the relationship 
between Schauder bases and the approximation property is discussed. 

Unconditional bases are investigated in Section 4.2. Results are presented 
about equivalently renorming Banach spaces with unconditional bases to be 
Banach algebras and Banach lattices. It is shown that neither the classical 
Schauder basis for C[O, 1] nor the Haar basis for L 1 [0, 1] is unconditional. 

Section 4.3 is devoted to the notion of equivalent bases and applications 
to finding isomorphic copies of Banach spaces inside other Banach spaces. 
Characterizations of the standard unit vector bases for Co and f) arc given. 
Weakly unconditionally Cauchy series are examined, and the Orlic?-Pettis 
theorem and Bessaga-Pelczynski selection principle are obtained. 

The properties of the sequence of coordinate functionals for a Schauder 
basis are taken up in Section 4.4, and shrinking and boundedly complete 
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bases are studied. The final section of Chapter 4 is optional and is devoted 
to an investigation of James's space J, which was the first example of a 
nonreflexive Banach space isometrically isomorphic to its second dual. 

Chapter 5 focuses on various forms of rotundity, also called strict con
vexity, and smoothness. The first section of the chapter is devoted to char
acterizations of rotundity, its fundamental properties, and examples, in
cluding one due to Klee that shows that rotundity is not always inherited 
by quotient spaces. The next section treats uniform rotundity, and includes 
the Milman-Pettis theorem as well as Clarkson's theorem that the Lp spaces 
such that 1 < p < 00 are uniformly rotund. Section 5.3 is devoted to gen
eralizations of uniform rotundity, and discusses local uniform rotundity, 
weak uniform rotundity, weak* uniform rotundity, weak local uniform ro
tundity, strong rotundity, and midpoint local uniform rotundity, as well as 
the relationships between these properties. 

The second half of Chapter 5 deals with smoothness. Simple smoothness 
is taken up in Section 5.4, in which the property is defined in terms of 
the uniqueness of support hyperplanes for the closed unit ball at points 
of the unit sphere and then characterized by the Gateaux differentiabil
ity of the norm and in several other ways. The partial duality between 
rotundity and smoothness is examined, and other important properties of 
smoothness are developed. Uniform smoothness is the subject of the next 
section, in which the property is defined using the modulus of smoothness 
and characterized in terms of the uniform Frechet differentiability of the 
norm. The complete duality between uniform smoothness and uniform ro
tundity is proved. Frechet smoothness and uniform Gateaux smoothness 
are examined in the final section of the chapter, and Smulian's results on 
the duality between these properties and various generalizations of uniform 
rotundity are obtained. 

Appendix A includes an extended description of the prerequisites for 
reading this book, along with a very detailed list of the changes that must 
be made to the presentation in Chapter 1 if this book is to be used for 
an undergraduate topics course in Banach space theory. Appendices B 
and C are included to support such a topics course. They are, respectively, 
a list of the properties of metric spaces that should be familiar to a student 
in such a course and a development of fp spaces from basic principles of 
analysis that does not depend on the theory of Lp spaces. Appendix D is a 
discussion of ultranets that supplements the material on nets in Section 2.1. 

Dependences 

No material in any nonoptional section of this book depends on material 
in any optional section, with the exception of a few exercises in which 
the dependence is clearly indicated. Where an optional section depends on 
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other optional sections, that dependence is stated clearly at the beginning 
of the section. 

The material in the nonoptional sections of Chapters 1 through 3 is 
meant to be taken up in the order presented, and each such section should 
be considered to depend on every other nonoptional section that precedes it. 
One important exception is that, as has already been mentioned, Section 1.5 
can be omitted, since its results are used only in optional Section 2.3. 
However, the reader unfamiliar with the Baire category theorem will not 
want to skip this material. 

All of the nonoptional sections of Chapters 1 and 2 should be covered 
before taking up Chapters 4 and 5. Chapter 4 also depends on the first two 
sections of Chapter 3. If the small amount of material in Chapter 4 on the 
approximation property is not to be skipped, then the development of that 
property in Section 3.4 must also be covered. 

Some results about adjoint operators from Section 3.1 are used in Ex
ample 5.4.13. Except for this, Chapter 5 does not depend on the material 
in Chapters 3 and 4. 

Appendix A does not depend on any other part of this book, except where 
it refers to changes that must be made to the presentation in Chapter 1 for 
an undergraduate topics course. Appendices Band C do not use material 
from any other portion of this book. Appendix D depends on Section 2.1 
but on no other part of the book. 
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1 
Basic Concepts 

This chapter contains the basic definitions and initial results needed for a 
study of Banach spaces. In particular, the material presented in the first 
twelve sections of this chapter, with the exception of that of Section 1.5, 
is used extensively throughout the rest of this book. Section 1.13, though 
containing material that is very important in modern Banach space theory, 
is optional in the sense that the few results and exercises in the rest of the 
book that depend on this material are clearly marked as such. 

1.1 Preliminaries 

Here are some of the definitions, conventions, and notation used throughout 
this book. Whenever a definition contains two or more different names for 
the same object, the first is the one usually used here. The alternative names 
are included because they are sometimes encountered in other sources. 

The set of positive integers is denoted by N. The fields of real and complex 
numbers are denoted by IR and C respectively. The symbol IF denotes a field 
that can be either IR or C. The elements of IF are called scalars. 

In a topological space, the closure of a set A, denoted by ::4, is the smallest 
closed set that includes A, that is, the intersection of all closed sets that 
include A. The interior of A, denoted by A 0, is the largest open subset 
of A, that is, the union of all open subsets of A. 

A vector space or linear space over IF is a set X of objects called vectors 
along with an operation + from X x X into X called addition of vectors 
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and an operation' from IF x X into X called multiplication of vectors by 
scalars satisfying these conditions: 

(1) addition is commutative and associative; 

(2) there is a zero vector 0 in X, sometimes called the origin of X, such 
that x + 0 = x for each vector x; 

(3) for each vector x there is a vector -x such that x + (-x) = 0; 

(4) for all scalars a and (3 and all vectors x and y, a· (x+y) = a·x +a· y, 
(0: + (3) . x = a . x + (3. x, and a· ((3. x) = (00(3) . x; 

(5) for each vector x, 1· x = x. 

The difference x - y of vectors x and y is the vector x + (-y). Scalars are 
usually represented in this book by lowercase letters near the beginning of 
the Greek alphabet and vectors by lowercase letters near the end of the 
Roman alphabet, with one major exception being that nonnegative real 
numbers are often denoted by the letters r, 5, and t. A product a· x of 
a scalar and a vector is usually abbreviated to ax. Though the symbol 0 
is used for the zeros of both IF and X, the context should always make it 
clear which is intended. In this book, a subspace of a vector space X always 
means a vector subspace, that is, a subset of X that is itself a vector space 
under the same operations. It is presumed that the reader is familiar with 
linear independence, bases, and other elementary vector space concepts. 

It is worth emphasizing that in this book the term "vector space" always 
means a vector space over IR 01' C. The terms real vector space and complex 
vector space are used when it is necessary to be specific about the scalar 
field. Another important convention is that except where stated otherwise, 
all vector spaces discussed within the same context are assumed to be over 
the same field IF, but IF may be either IR or C. For example, suppose that 
a theorem begins with the sentence "Let X be a normed space and Y a 
Banach space" and that no field is mentioned anywhere in the theorem. 
Normed spaces and Banach spaces, defined in the next section, are vector 
spaces with some additional structure. Thus, it is implied that X and Y 
are either both real or both complex. 

Notational difficulties can arise when a subset of a vector space is linearly 
independent, but a particular description of the set in an indexed form such 
as {xc> : a E I} allows x a, and x"' to be equal when 001 '" 002. In every 
instance in this book that such notation could cause a problem, the set 
turns out to be countable, I and the difficulty is avoided by writing the set 
as a finite list or a sequence. A finite list Xl,' .. ,Xno or a sequence (X n) 
of elements iu a vector space is said to be linearly independent if the cor
responding set {x 1, ... , Xno } or {Xn : n EN} is linearly independent and 

Xj '" Xk when j '" k. 

1 In this bO'O'k, finite sets as well as cO'untably infinite O'nes are said to' be cO'untable. 
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Notice that the sequence in the preceding paragraph was assumed to be 
indexed by N. Except where stated otherwise, sequences are indexed by the 
positive integers in their natural order; in particular, the indexing starts 
with 1 rather than O. This will be important when quantities related to the 
terms of a sequence (xn ) are stated as functions of the index value n. 

Suppose that X is a vector space, that x is an element of X, that A 
and B are subsets of X, and that a is a scalar. Then 

x + A = {x + y: YEA}, 

x - A = {x - y : YEA}, 

A + B = {y + z: YEA, z E B}, 

A - B = { Y - z : YEA, z E B }, 

aA = { ay : YEA}, and 

-A = {-y: YEA}. 

The set x + A is called the translate of A by x. Notice that A - B represents 
the algebraic difference of the sets A and B. The set-theoretic difference 
{ x : x E A, x f/- B} is denoted by A \ B. 

Suppose that A is a subset of a vector space X. Then A is convex if 
ty + (1 - t)z E A whenever y, z E A and 0 < t < 1. If aA ~ A whenever 
lal ~ 1, then A is balanced. The set A is absorbing if, for each x in X, 
there is a positive number Sx such that x E tA whenever t > Sx' The 
following properties of these special types of sets are not difficult to prove; 
see Exercises 1.1 and 1.3. 

(1) Absorbing sets always contain O. So do nonempty balanced sets. 

(2) If A is a balanced set, then aA = A whenever lal = 1, which in 
particular implies that -A = A. 

(3) Arbitrary unions and intersections of balanced sets are balanced. 

(4) Arbitrary intersections of convex sets are convex. 

(5) Translates and scalar multiples of convex sets are convex. 

(6) The set A is convex if and only if sA+tA = (s+t)A whenever s, t > O. 

The convex hull or convex span of A, denoted by co(A), is the smallest 
convex set that includes A, that is, the intersection of all convex sets that 
include A. It is not difficult to show that co(A) is the collection of all con
vex combinations of clements of A, that is, all sums of the form 2::7=1 tJxJ 
such that n E N, Xl, ... , Xn E A, t 1 , ... , tn 2: 0, and 2::;'=1 tj = 1. See Ex
ercise lA. If X has a topology, then the closed convex hull or closed convex 
span of A, denoted by co(A), is the smallest closed convex set that in
cludes A, that is, the intersection of all closed convex sets that include A. 
The linear hull or linear span of A, denoted by (A), is the smallest subspace 
of X that includes A, that is, the intersection of all subspaces of X that in
clude A. Notice that (0) = {O}. If A is nonempty, then it is not difficult to 
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show that (A) is the collection of all linear combinations of elements of A, 
that is, all sums of the form L7=l QjXj such that n E H, Xl, ... ,Xn E A, 
and Q1,"" Q n ElF. See Exercise 1.4. If X has a topology, then the closed 
linear hull or closed linear span of A, denoted by [AJ, is the smallest closed 
subspace of X that includes A, that is, the intersection of all closed sub
spaces of X that include A. See Exercise 1.12 for an important observation 
about co(A) and [A]. 

Two conventions are important for the interpretation of statements about 
arbitrary unions and intersections, such as statements (3) and (4) in the 
preceding paragraph. The first is that the union of an empty family of 
sets is the empty set, while the second is that the intersection of an empty 
family of sets is the universal set from which subsets are being taken. Both 
"conventions" actually follow directly from rigorous applications of the def
initions of arbitrary unions and intersections of sets; see, for example, [65]. 
However, some authors do prefer to leave intersections of empty families 
undefined because of the confusion that occurs when it is not clear what 
set is the universal set. The context will almost always prevent that prob
lem from arising here; for example, in the preceding paragraph it is clear 
that the universal set for the intersections in statements (3) and (4) is the 
vector space X. Where confusion might otherwise occur, it will be made 
clear what set is considered universal. In any case, every statement in this 
book about a union or intersection of an arbitrary family of subsets of some 
universal set is intended to apply also to the empty family, which should 
be kept in mind when interpreting such a statement. 

Let X and Y be vector spaces. A linear operator or linear function or 
linear transformation from X into Y is a function T: X --+ Y such that the 
following two conditions are satisfied whenever X, Xl, X2 E X and Q E IF": 

(1) T(XI + X2) = T(xd + T(X2); 
(2) T(ax) = aT(x). 

If IF" is viewed as a one-dimensional vector space, then a linear operator 
from X into IF" is called a linear functional or linear form on X. For linear 
mappings only, the notation Tx is often used as an abbreviation for T(x). 
The kernel or null space of a linear operator T, denoted by ker(T), is the 
subspace T-l({O}) of X. That is, ker(T) = {x: X E X, Tx = OJ. Notice 
that a linear operator T is one-to-one if and only if ker(T) = {OJ. The 
rank of a linear operator is the dimension of its range. Thus, a finite-rank 
linear operator is a linear operator with a finite-dimensional range. If S is 
a linear operator from X into Y and T is a linear operator from Y into 
a vector space Z, then the product or composite2 T S of Sand T is the 

20f course, the composite go f is defined for any functions f and g, linear or not, 
such that the range of f lies in the domain of g, but in the nonlinear case it is customary 
to insert the 0 symbol and not to use the term product, especially in situations in which 
composites could be confused with pointwise products of scalar-valued functions. 
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linear operator from X into Z formed by letting TS(x) = T(S(x)) for 
each x in X. Linear operators preserve some of the special properties of 
sets mentioned above. The following are easy to show; see Exercise 1.11. 

(1) Let A be a subset of the vector space X and let T be a linear operator 
with domain X. If A is convex, or balanced, or a subspace, then T(A) 
has the same property. 

(2) Let B be a subset of the vector space Y and let T be a linear operator 
with range in Y. If B is convex, or balanced, or absorbing, or a 
subspace, then T-1(B) has the same property. 

It is presumed that the reader is familiar with standard facts about lin
ear operators, including the fact that the collection of all linear operators 
from X into Y is a vector space with the vector space operations given by 
the usual addition of functions and multiplication of functions by scalars. 
This vector space of linear operators is denoted by L(X, Y). The vector 
space L(X, IF) of all linear functionals on X is denoted by X#. 

A metric space is a set M along with a metric or distance function 
d: M x M ---+ lR such that the following three conditions are satisfied by 
all x, y, and z in M: 

(1) d(x, y) ;:::: 0, and d(x, y) = ° if and only if x = y; 

(2) d(x,y) = d(y,x); 

(3) d(x, z) s: d(x, y) + dey, z) (the triangle inequality). 

If x E M and r > 0, then the closed ball in M with center x and radius r 
is {y : y E M, d(x, y) s: r} and is denoted by B(x, r). The corresponding 
open ball is {y : y E M, d(x, y) < r}. Appendix B has a list of some ele
mentary metric space properties with which the reader should be familiar. 

Suppose that M is a metric space with metric d and that A is a nonempty 
subset of M. If B is another nonempty subset of M, then the distance 
dCA, B) from A to B is inf{ d(x, y) : X E A, y E B}. For each x in M, 
the distance d(x, A) from x to A is inf{ d(x, y) : yEA}. It is not hard to 
show that Id(x, A) - dey, A)I s: d(x, y) for all x and y in M, from which it 
follows immediately that the function x f---+ d(x, A) is continuous on M. See 
Exercise 1.13. 

A preorder on a set A is a binary relation :5 on A satisfying the following 
two conditions: 

(1) a:5 a for each a in A; 

(2) if a :5 band b :5 c, then a :5 c. 

A set with a preorder is called a preordered set. Suppose that A is a pre
ordered set. A chain in A is a subset C of A such that for all a and b 
in C, either a :::S b or b :::S a. An upper bound for a subset B of4 is an 
element 'u' of A such that b :5 u for each b in B. A maximal element in A is 
an element m of A such that whenever m' E A and m :5 m', then m' :::S m. 



6 1. Basic Concepts 

The axiom of choice is going to be used frequently and fearlessly, often 
in the following form. 

Zorn's Lemma. (M. Zorn, 1935 [249]). A preordered set in which each 
chain has an upper bound contains at least one maximal element. 

A proof that Zorn's lemma is equivalent as an axiom of set theory to the 
axiom of choice can be found in [65]. The hard part of that proof, involving 
a "tower" argument to show that the axiom of choice implies Zorn's lemma, 
can be replaced by a more recent and greatly simplified argument due to 
Jonathan Lewin [152]. 

Zorn's lemma is sometimes stated only for partially ordered sets, that is, 
preordered sets also having this property: 

(3) if a :::: band b :::: a, then a = b. 

As axioms of set theory, these two forms of Zorn's lemma are equivalent; 
see Exercise 1.16. 

The following is a typical application of Zorn's lemma. 

1.1.1 Theorem. If X is a vector space and S is a linearly independent 
subset of X, then X has a basis that includes S. In particular, every vector 
space has a basis. 

PROOF. Let the collection of all linearly independent subsets of X that 
include S be denoted by 21. 3 Preorder the members of 21 by inclusion; that 
is, define a preorder :::S on 21 by declaring that Al :::S A2 when Al <::; A 2· 
If ~ is a chain in 21, then S U {U{ c : C E ~}} is an upper bound for ~ 
in 21. By Zorn's lemma, the collection 21 must have a maximal element M. 
If M were not a basis for X, then there would be an x in X \ (M), and 
M U {x} would be a member of 21 with the property that M :::S M u {x} 
but M U {x} i M, a contradiction to the maximality of M. 

The assertion that each vector space has a basis now follows, since each 
vector space must have a basis that includes the linearly independent 
~0. • 

Exercises 

Unless stated otherwise, in each of these exercises X is a vector space, the ele
ments x and yare vectors in X, the sets A, B, and C are subsets of X, and 0: 

and (3 are scalars. 

3The symbol Qt is the Fraktur letter A. Uppercase Fraktur letters Qt, '23, ([, ... will 
often be used to denote certain types of sets, particularly those whose members are sets 
or functions. See the List of Symbols for the list of Fraktur letters corresponding to the 
uppercase Roman letters. 
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1.1 (a) Show that if A is an absorbing set or a nonempty balanced set, then 
o E A. 

(b) Show that if A is balanced, then aA = A whenever lal = 1. 

(c) Suppose that Q3 is a collection of balanced subsets of X. Show that 
u{ s : S E Q3 } and n{ S : S E Q3 } are both balanced. 

(d) Suppose that <!: is a collection of convex subsets of X. Show that 
n { S : S E <!:} is convex. 

(e) Show that if A is convex, then x + A and aA are convex. 

1.2 (a) Show that the "addition" and "multiplication by scalars" defined for 
sets obey the commutative and associative laws for vector spaces. 
That is, show that A+ B = B +A, that A+ (B +C) = (A+B) +C, 
and that a(j3A) = (aj3)A. Show also that (x + A) + (y + B) 
(x+y)+(A+B). 

(b) Show that alA + B) = aA + aBo 

(c) Show that (a + j3)A ~ aA + j3A but that equality need not hold. 

1.3 (a) Prove that A is convex if and only if sA + tA = (s + t)A for all 
positive sand t. (Consider the special case in which s + t = 1.) 

(b) Use (a) and Exercise 1.2 to prove that if A and B are convex, then 
so is A + B. 

1.4 Show that the convex hull of A is the collection of all convex combinations 
of elements of A. Show that if A is nonempty, then the linear hull of A is 
the collection of all linear combinations of elements of A. 

1.5 Prove that if A and B are balanced, then so is A + B. 

1.6 Suppose that A is balanced. Prove that A is absorbing if and only if the 
following holds: For each x in X there is a positive number tx such that 
x E txA. 

1. 7 Identify all of the balanced subsets of IC. Do the same for ]R2. 

1.8 The balanced hull bal(A) of A is the smallest balanced subset of X that 
includes A. There is a simple expression for bal(A) as the union of a 
certain collection of sets. Find it. 

1.9 Prove that each convex absorbing subset of C includes a neighborhood 
of o. 

1.10 Is the conclusion of the preceding exercise true for nonconvex absorbing 
subsets of C? 

1.11 Let X and Y be vector spaces. Suppose that A ~ X, that B ~ Y, and 
that T: X -> Y is a linear operator. 

(a) Prove that if B is convex, or balanced, or absorbing, or a subspace, 
then T- 1 (B) has that same property. 

(b) Prove that if A is convex, or balanced, or a subspace, then T(A) 
has that same property. Prove that if T maps X onto Y and A is 
absorbing, then T(A) is absorbing. 
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1.12 Let X be the vector space JR2 with the topology whose only member 
besides the entire space and the empty set is {(a,f3) : (3 > a 2 }. Find a 
subspace A of X such that A is not convex (and therefore is not a subspace 
of X), so that neither of the equations [A] = (A) and co(A) = co(A) holds. 
(It will be shown in Sections 1.3 and 2.2 that both equations do hold for 
every subset A of a topologized vector space under certain restrictions on 
the topology, in particular when it comes from a norm.) 

1.13 Let M be a metric space with metric d. Suppose that A is a nonempty 
subset of M and that x and yare elements of M. Show that d(x, A) :::; 
d(x, y) + d(y, A). Conclude that Id(x, A) - d(y, A)I :::; d(x, y). 

1.14 Let e: be the collection of nonempty closed bounded subsets of a met
ric space M. The Hausdorff distance dH(A, B) between two members 
A and B of e: is defined as follows. Let peA, B) = sup{ d(x, B) : x E A}, 
and then let dH(A, B) = max{p(A, B), pCB, A)}. Prove that dH is a met
ric on e:. 

1.15 Prove that if S is a subset of a vector space X, then 5 has a subset B 
such that B is a basis for (5). Use this to give another proof that every 
vector space has a basis. 

1.16 (a) Suppose that P is a preordered set. Define a binary relation ~ on P 
by declaring that x ~ y when x :S y and y :S x. Prove that ~ is an 
equivalence relation. Now let P/~ be the collection of equivalence 
classes determined by~. For each x in P, let [x] represent the equiv
alence class containing x. Declare that [x] :S [y] when x :S y. Show 
that this unambiguously defines a relation on P / ~. Show that this 
relation partially orders P / ~. 

(b) Use (a) to derive the form of Zorn's lemma for preordered sets from 
the form for partially ordered sets. Conclude that the two forms of 
Zorn's lemma are equivalent as axioms of set theory. 

1.17 Prove that the following principle is equivalent to Zorn's lemma as an 
axiom of set theory. 

Hausdorff's Maximal Principle. (F. Hausdorff, 1914 [101, p. 140]). 
Every preordered set includes a chain that is not a proper subset of an
other chain. 

1.2 Norms 

Suppose that X is a vector space. For each ordered pair (Xl, X2) of elements 
of X, define (Xl, X2] to be {y : Y = (l-t)XI +tX2, 0 < t :::; 1 }. In particular, 
this implies that (x, x] = {x} for each x in X. It is not difficult to check 
that if (Xl, X2] = (Yl, Y2], then Xl = Yl and X2 = Y2; see Exercise 1.18. 
Define an equivalence relation on the collection of all of these "half-open line 
segments" in X by declaring that (Xl, X2] is equivalent to (Yl, Y2] whenever 
there is a z in X such that Yl = Xl + z and Y2 = .T2 + z. That is, two of 
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these segments are equivalent when one is a translate of the other. Let the 
arrow ~ with head X2 and tail Xl be the equivalence class containing 
(Xl, X2]' It is easy to see that the collection Xa of all such arrows is a vector 
space over IF when given these operations: 

----> ) 
a· Xl,X2 = aXl,aX2· 

It is also easy to see that the map X 1--* 0,1 is a vector space isomorphism 
from X onto Xa. Thus, the vectors of X can be regarded either as its 
elements or as directed line segments in X that remain fundamentally un
changed when translated. In fact, the familiar "arrow vectors" of calculus 
are obtained by treating the vectors of ]R2 or ]R3 the second way. 

The fundamental metric notion for vectors can be either distance or 
length, depending on the way vectors are treated. If they are thought of as 
points, then the distance between two vectors is a reasonable notion, while 
the length of a vector would seem to be a concept best left undefined. On the 
other hand, the length of a vector is an entirely natural concept if vectors 
are considered to be arrows. The distance between two vectors would then 
seem to be a more nebulous notion, though it might be reasonable to obtain 
it, as is done with the arrow vectors of calculus, by joining the tails of the 
two vectors and then measuring the length of one of the two "difference 
vectors" between their heads. 

The concept of a norm comes from thinking of vectors as arrows. A norm 
on a vector space is a function that assigns to each vector a length. There 
are some obvious properties that such a function should be required to 
have. A nonzero vector should have positive length; the additive inverse of 
a vector should have the same length as the original vector; half a vector 
should have half the length of the full vector; a vector forming one side of 
a triangle should not be longer than the sums of the lengths of the vectors 
forming the other two sides; and so forth. These requirements are embodied 
in the following definition. 

1.2.1 Definition. Let X be a vector space. A norm on X is a real-valued 
function II· lion X such that the following conditions are satisfied by all 
members x and y of X and each scalar a: 

(1) Ilxll 2: 0, and Ilxll = 0 if and only if x = 0; 

(2) Ilaxll = lalllxll; 

(3) Ilx + yll ::; IIxll + Ilyll (the triangle inequality). 

The ordered pair (X, 11·11) is called a normed space or normed vector space 
or normed linear space. 

The term norm is commonly used for both the function of the preceding 
definition and its values, so that Ilxll is read as "the norm of x." Another 
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common practice is to reserve the rigorous ordered-pair notation of the 
definition for situations in which several different norms have been defined 
on the same vector space, making it necessary to be able to distinguish be
tween the resulting normed spaces. When there is no danger of confusion, 
it is customary to use the same symbol, such as X, to denote the normed 
space, the vector space underlying the normed space, and the set under
lying the vector space. Corresponding shortcuts are often used in other 
language referring to normed spaces, for example by saying that some ob
ject is an element of a normed space rather than an element of the set 
underlying the vector space underlying the normed space. Notice that this 
is a straightforward extension of the common practice of having the same 
symbol represent a vector space and the set underlying it, rather than using 
a symbol such as X to denote the underlying set and then referring to the 
vector space as an ordered triple (X, +, . ) formed from the set and the two 
vector space operations. 

The distance between two vectors x and y in a normed space X can be 
defined just as it is for the arrow vectors of calculus; that is, the distance 
between x and y is the length of the difference vector x - y. It is easy to 
check that this does in fact give a metric on X. 

1.2.2 Definition. Let X be a normed space. The metric induced by the 
norTn of X is the metric d on X defined by the formula d(x, y) = Ilx - YII. 
The norm topology of X is the topology obtained from this metric. 

As will be seen in the next chapter, there are other natural topologies that 
normed spaces possess besides their norm topologies. Henceforth, when
ever reference is made to some topological property such as compactness or 
convergence in a normed space without specifying the topology, the norm 
topology is implied. 

Suppose that X is a normed space and that B(x, r) is the closed ball 
centered at a point x of X and having radius r. It follows easily from the 
defini tion of the metric of X that B (x, r) = x + r B( 0, 1). A corresponding 
relationship exists hetween open balls in X and the open ball with radius 1 
centered at the origin. Because of this, and for other reasons that will 
become apparent later in this book, the balls of radius 1 centered at the 
origin playa special role in the theory of normed spaces and are therefore 
given special names. 

1.2.3 Definition. Let X be a normed space. The closed unit ball of X is 
{x : x E X, II x II s: I} and is denoted by B x. The open unit ball of X is 
{x : x E X, Ilxll < 1 }. The unit sphere of X is {x : X E X, Ilxll = I} and 
is denoted by S x . 

It is time for some examples. 
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1.2.4 Example: IF. The prototype for all norms is the absolute value 
function on IF. It is the norm implied whenever IF is treated as a normed 
space without the norm being specified. Notice that this norm induces the 
standard metric on IF. 

1.2.5 Example: IFn. If n is a positive integer, then the vector space IFn of 
all n-tuples of scalars is a normed space with the Euclidean norm given by 
the formula 

This normed space is called Euclidean n-space. By convention, Euclidean 
O-space lFo is a zero-dimensional normed space with its Euclidean norm 
(and, for that matter, only norm) defined by the formula 11011 = O. For 
each nonnegative integer n, the Euclidean topology of IFn is the topology 
induced by the Euclidean norm. Henceforth, whenever n is a nonnegative 
integer and IFn (or, more specifically, ]Rn or en) is treated as a normed 
space without the norm being specified, the Euclidean norm is implied. 

1.2.6 Example: Lp(0., E, /1-), 1 :::; p :::; 00. Let /1- be a positive (that is, 
nonnegative-extended-real-valued) measure on a cr-algebra E of subsets of 
a set 0.. For each p such that 1 :::; P :::; 00, the Lebesgue space Lp(0., E, /1-) 
is a normed space with the norm II· lip given by letting 

Ilfllp = {(llfI P d/1-) lip 

inf{t:t>O,/1-({X:XE0., If(x)1 >t})=O} 

if 1:::; p < 00; 

if p = 00. 

For each p, the elements of Lp(0., E, /1-) are equivalence classes of either real
or complex-valued functions, giving, respectively, real or complex normed 
spaces. In the rare instances in which it is necessary to be specific about 
the scalar field, the terms "real Lp(0., E, J.L)" and "complex Lp(fl., E, J.L)" are 
used. A similar convention applies to the spaces defined in the following ex
amples. For many ofthe Lebesgue spaces appearing in this book, the set fl. is 
the interval [0,1], the cr-algebra E is the collection of Lebesgue-measurable 
subsets of [0, 1], and the measure /1- is Lebesgue measure on [0,1]' in which 
case Lp(0.,~, /1-) is abbreviated to Lp[O,l]. Other abbreviations such as 
Lp[O,oo) have analogous meanings. 

There is not universal agreement on whether the p in the notation for 
Lp(fl., E, /1-) should be written as a subscript or superscript. Similarly, the 
roles of subscripts and superscripts are often exchanged in the notations 
for some of the other normed spaces defined later in this section. 
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1.2.7 Example: Coo. The collection of all bounded sequences of scalars is 
clearly a vector space if the vector space operations are given by letting 
(aj) + ({3j) = (aj + (3j) and a· (aj) = (a· aj). For each element (aj) of 
this vector space, let 

It is easy to check that 11·1100 is a norm. The resulting normed space is 
called Coo (pronounced "little ell infinity"). A convention used for Ceo and 
other spaces whose elements are sequences is that the phrase "a sequence 
in the space" always means a sequence of elements of the space, never a 
single element. 

Suppose that J1 is the counting measure on the collection I: of all subsets 
of N, that is, the measure given by letting J1(A) be the number of elements 
in A. Then the measurable functions from N into IF are just the sequences of 
scalars, and Lee (N, I:, J1) is R.oo . As with R.(X), the normed spaces of the next 
two examples can be viewed as Lebesgue spaces by considering the counting 
measures on the sets N, {I, ... , n} where n E N, and 0. See Appendix C for 
an alternative derivation of these spaces that does not use measure theory. 

1.2.8 Example: CP' 1 :S p < 00. Let p be a real number such that p ?: 1. 
The collection of all sequences (aj) of scalars for which L~llaj IP is finite 
is a vector space with the vector space operations of the preceding example. 
Let the norm II· lip be defined on this vector space by the formula 

The resulting normed space is called Cp (pronounced "little ell p"). 

1.2.9 Example: C;, 1 :::; p :::; 00. Let p be such that 1 :::; p ::: 00 and let n 
be a positive integer. Define a norm on the vector space lFn by letting 

{ ( t laj IP ) lip if 1 :::; p < 00; 

II(al, ... ,an)llp= j=l 
max{lall,· .. , Ian I} if p = 00. 

The resulting normed space is called R.; (pronounced "little ell p n"). Notice 
that C2 is just Euclidean n-space. By convention, the space cg is Euclidean 
O-space. It is also possible to represent cg as a Lebesgue space by using 
the fact that there is exactly one scalar-valued function on the empty set, 
namely, the function represented by 0 x IF; see [65, p. 11, Ex. 3]. It follows 
that cg can be defined to be Lp( 0, {0}, J1), where of course J1(0) = O. 
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1.2.10 Example: C(K). Let K be a compact Hausdorff space. Then the 
collection of all scalar-valued continuous functions on K is a vector space 
under the operations given by the usual addition of functions and multipli
cation of functions by scalars. Notice that if K is empty, then this vector 
space has the single element represented by K x IF; see the reference cited 
in the preceding example. For each member 1 of this vector space, let 

1111100 = {~ax{ If(x) I : x E K} if K =J 0; 

if K = 0. 

It is easy to check that this defines a norm on the vector space. The re
sulting normed space is denoted by C(K). By analogy with Lp[O, l], the 
abbreviation C[O, 1] represents C([O, 1]). 

1.2.11 Example: rca(K). Let K be a compact Hausdorff space, and let 
rca(K) be the normed space formed from the collection of all regular finite 
scalar-valued Borel measures on K by defining the vector space operations 
in the obvious way and by letting lllill be the total variation of Ii on K 
whenever Ii is one of these measures. It follows easily from elementary 
properties of total variation that rca(K) really is a normed space; see [67] 
or [202] for details. Incidentally, the notation rca(K) comes from the fact 
that the members of the space are regular count ably additive set functions. 

It turns out that each of the norms in the preceding examples induces 
a complete metric. For IF, this is a basic fact from analysis; for C(K), 
this is just a special case of the fact that every uniformly Cauchy se
quence of scalar-valued continuous functions on a topological space con
verges uniformly to a continuous function; and for all of the other spaces 
except rca(K), this follows from the completeness of the metrics of Lebesgue 
spaces. The completeness of rca(K) is not difficult to prove from basic 
principles, as is done in Exercise 1.28, and also follows from a result in 
Section 1.10 about the completeness of dual spaces, as is mentioned in 
the comments following Theorem 1.10.7. It is also not difficult to prove the 
completeness of all of the spaces f.p and f.;, and therefore of all of the finite
dimensional Euclidean spaces, without invoking the general fact that every 
Lebesgue space is a complete metric space. See the proof of Theorem C.10 
in Appendix C. 

It is finally time for the definition of the objects that are the main focus 
of this book. 

1.2.12 Definition. A Banach norm or complete norm is a norm that 
induces a complete metric. A normed space is a Banach space or B-space 
or complete normed space if its norm is a Banach norm. 

Each subspace of a normed space X is obviously a normed space with the 
norm it inherits from X. Just as clearly, each closed subspace of a Banach 
space is itself a Banach space with the inherited norm. 
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1.2.13 Example: Co. Let Co be the collection of all sequences of scalars 
that converge to 0, with the same vector space operations and norm as loo. 
Then Co is a Banach space since it is a closed subspace of loo. 

1.2.14 Example: Lp(ll') and Hp, 1 ~ p ~ 00. Fix p such that 1 ~ p ~ 00. 

Let 11' be the unit circle {z : z E C, Izl = I} in the complex plane, and let X 
be the set of all complex-valued functions f on 11' with the property that 
if g: [-Jr,Jr) -+ C is defined by letting g(t) = f(e it ), then 9 E Lp[-Jr,Jr). 
As would be expected, two functions hand 12 in X are considered to be 
the same if h (e it ) = 12 (eit ) for almost all t in [-Jr, Jr). Since Lp [-Jr, Jr) is 
a Banach space, it is clear that X is also a Banach space with the obvious 
vector space operations and the norm 1I·llp given by letting 

{ (~ 1" If(eit)IP dt) lip 

Ilfllp = 2Jr_" 
Ilglloo (where 9 is as above) 

if 1 ~ P < 00; 

if p = 00. 

This Banach space is called Lp(ll'). Notice that Lp(ll') is essentially just 
Lp[-Jr,Jr), except that [-Jr,Jr) has been identified with 1I' and Lebesgue 
measure A has been replaced by normalized Lebesgue measure (2Jr)-1 A so 
that the measure of 1I' is 1. 

Suppose that f E Lp(1I'). For each integer n, the nth Fourier coeffi
cient j( n) of f is defined by the formula 

j(n) = ~ lIT f(eit)e-int dt. 
2Jr -1\" 

If n is an integer and (lj) is a sequence in Lp(ll') that converges to some f 

in Lp(1I'), then IjJ(n) - j(n)1 ~ Ilfj - fill ~ Ilfj - flip -+ 0 as j -+ 00, and 
so limj j)(n) = j(n). It follows that 

{f : f E Lp(1I'), j(n) = 0 whenever n < O} 

is a closed subspace of Lp(1I') and hence is itself a Banach space with 
the norm inherited from Lp(1I'). This Banach space is called the Hardy 
space Hp. 

Actually, the space Hp is usually defined to be the class of all func
tions analytic in the open unit disc of C and satisfying a certain condi
tion, depending on p, that restricts their growth near the boundary of 
that disc. It turns out that for each such function f there is a boundary 
function iT: 1I' ---> C such that lim r _>1- f(re it ) = h(eit ) for almost all t 
in [- Jr, Jr), and that the resulting collection of boundary functions is a su b
space of Lp(1I'). It is common for Hp to be viewed as a subspace of Lp(1I') by 
identifying each function satisfying the growth restriction with its bound
ary function. That is how the definition given above of Hp as a subspace 
of Lp(1I') is obtained. See [68] or [202] for details. 
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The following vector space, with various norms, is useful for generating 
counterexamples. 

1.2.15 Example. The vector space of finitely nonzero sequences is the 
collection of all sequences of scalars that have only finitely many nonzero 
terms, with the obvious vector space operations. This vector space is clearly 
a subspace of Co and of each space fp such that 1 ~ p ~ 00, and is, in fact, 
dense in all of these except foo. See Exercise 1.24. 

1.2.16 Definition. Let X be a vector space of sequences of scalars that 
has the vector space of finitely nonzero sequences as a subspace. For each 
positive integer n, the nth standard coordinate vector en of X is the element 
of X that has 1 as its nth term and all other terms O. If X is the vector space 
underlying a normed space and each of its standard coordinate vectors has 
norm 1, then each standard coordinate vector is also called a standard unit 
vector of X. 

Since the collection of standard coordinate vectors is a basis for the 
vector space of finitely nonzero sequences, it follows that every vector space 
that has the vector space of finitely nonzero sequences as a subspace is 
infinite-dimensional. In particular, the Banach spaces Co and fp such that 
1 ~ p ~ 00 are all infinite-dimenSional. Similarly, the Banach spaces e[O, 1] 
and Lp[O, 1] such that 1 ~ p ~ 00 are infinite-dimensional since each has 
in it the linearly independent sequence (xn), where xn(t) = tn whenever 
n E Nand 0 ~ t :-s: 1. 

Exercises 

1.18 With all notation as in the first paragraph of this section, show that 
if (Xl, X2] = (YI, Y2J, then Xl = YI and X2 = Y2. (This is easy when 
Xl = X2· Suppose instead that Xl -=1= X2. It may help to show first that 
[XI,X2] = [YI,Y2J, where [XI,X2] = {y: Y = (1- t)XI +tX2, 0 ~ t ~ I}. 
To this end, notice that (XI,X2] and [Xl, X2] are both convex and that 
[Xl, X2] has exactly one more point than does (Xl, X2]. In how many ways 
can (Xl, X2] be augmented by one point so that the resulting set is convex?) 

1.19 The definition of a norm contains some redundancies. Prove that an equiv
alent definition is obtained by replacing (1) in that definition with 

(1') IIxll -=1= 0 whenever X -=1= o. 
1.20 A sphere in a metric space X is a set of the form {y : Y E X, d(x, y) = r}, 

where X E X and r > o. 
(a) Prove that if X is a normed space, then every closed ball is the 

closure of the corresponding open ball, every open ball is the interior 
of the corresponding closed ball, and every sphere is the boundary 
of the corresponding open and closed balls. 
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(b) Find a metric space X such that the three etmclusions of part (a) 
all fail to hold for X. 

1.21 Let X be a normed space. Prove that if (Bn) is a sequence of balls in X 
such that Bn 2 Bn+1 for each n, then the centers of the balls form a 
Cauchy sequence. Give an example to show that this result can fail if X 
is only assumed to be a metric space. 

1.22 The purpose of this exercise is to show that the Banach spaces of Examples 
1.2.7, 1.2.8, and 1.2.9 can be obtained by subspace arguments beginning 
with the Banach spaces Lp[O, 00). 

(a) Show that £00 can be identified with a closed subspace of Loo[O, 00) 

by identifying (OJ) with the function whose value on each interval 
[j - 1, j) is OJ. Conclude that £00 is a Banach space. 

(b) Use a similar argument to prove that £p is a Banach space when 
1:::; p < 00. 

(c) For each p such that 1 :::; p :::; 00 and each nonnegative integer n, 
identify £; with a closed subspace of £p and conclude that e; is a 
Banach space. 

(d) Give analogous arguments for (a) and (b) based on the spaces Lp[O, 1] 
instead of Lp [0, 00 ). 

1.23 Let X be the vector space of all continuous functions from [O,IJ into IF. 
For each p such that 1 :::; p :::; 00, let II· lip be the norm that X inherits 
from Lp[O, 1]. For which values of p is this a Banach norm? 

1.24 Let X be the vector space of finitely nonzero sequences. Show that X is 
a dense subspace of Co and of £p when 1 :::; p < 00, but not of £00. 

1.25 Let c be the collection of all convergent sequences of scalars with the vector 
space operations and norm as given for £00. Show that c is a Banach space. 

1.26 (a) In each of the spaces Co and £p such that 1 :::; p :::; 00, identify the 
linear hull ({ en : n EN}) of the collection of unit vectors. 

(b) Do the same for [{ en : n E N }J. 

(c) Do the same for co({ en: n EN}). 

1.27 (a) Suppose that the unit sphere of £1 contains the sequence (x(n) 
and the element x. Show that (x(n) converges to x if and only 
if limn x;nl = Xj for each positive integer j. 

(b) Show that (a) fails if the requirement that IIxll = 1 is removed. 

(c) Show that (a) fails if £1 is replaced by Co. 

1.28 Suppose that E is a a-algebra of subsets of a set n. Let ca(n, E) be 
the normed space formed from the collection of all finite scalar-valued 
measures on E by using the obvious vector space operations and by letting 
the norm of a measure be its total variation. It is not difficult to show that 
ca(n, E) really is a normed space; see [202, pp. 116-119J for the details. 

(a) Prove that ca(!!, E) is a Banach space. 
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(b) Now suppose that i.8 is the a-algebra of Borel subsets of a com
pact Hausdorff space K. Prove that rca(K) is a closed subspace of 
ca(K, i.8) and is therefore a Banach space. 

1.29 Fix a positive real number p. A scalar-valued function f on [0,1] is said 
to satisfy a Lipschitz condition of order p if there is a nonnegative real 
number M such that If(s) - f(t)1 ~ Mis - W whenever s, t E [0,1]. The 
collection of all such functions is denoted by Lip p. 

(a) Show that Lipp is a subspace of the vector space of continuous 
scalar-valued functions on [0,1]. Show that if p > 1, then Lipp 
consists only of the constant scalar-valued functions on [0, 1]. 

(b) Define a function II· II: Lip p -+ IR by the formula 

{ I/(s) - f(t)1 } Ilfll = If(O)1 + sup Is _ W : s, t E [0,1]' s =I- t . 

Prove that II· II is a norm. For the rest of this exercise, Lip p is to be 
treated as a normed space having this norm. 

(c) Prove that Lipp is a Banach space. 

(d) Let lipp be the collection of all f in Lipp such that 

. { If(s) - f(t)1 } hm sup I IP : s, t E [0,1], s =I- t, Is - tl ~ 8 = O. 
6~O+ S - t 

Prove that lip p is a Banach space under the norm inherited from 
Lipp. 

1.3 First Properties of Normed Spaces 

The first order of business is to obtain a few basic continuity results. 

1.3.1 Proposition. Let X be a normed space. Then Illxll-llylll ~ Ilx-yll 
whenever x, y E X. Thus, the function x f-+ II xii is continuous from X 
into JR. 

PROOF. If x, Y E X, then /lx/l ~ Ilx - yll + IIYII and Ilyll ~ Ily - xii + Ilxll = 

Ilx - yll + Ilxll, so Illxll-IIYIII = max{ Ilxll-llyll, Ilyil-/lxll} ~ Ilx - YII· • 

1.3.2 Proposition. Let X be a normed space. 

(a) Addition of vectors is a continuous operation from X x X into X. 

(b) Multiplication of vectors by scalars is a continuous operation from 
IF x X into X. 

PROOF. Suppose that 0:,0:0 ElF, that x,y,xo,Yo E X, that E > 0, and that 
10: - 0:01 < E, Ilx - xoll < E, and Ily - Yoll < E. Then 

II(x + y) - (xo + yo)11 ~ Ilx - xoll + Ily - Yoll < 2E 
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and 

II00x - o:oxoll :::; II00x - O:oxll + II000x - o:oxoll 
= 10: - o:olllxli + Io:ollix - xoll 
< E(llxoll + E) + 10001E, 

from which (a) and (b) follow. • 
1.3.3 Corollary. Let Xo be an element of a normed space X and let 
0:0 be a nonzero scalar. Then the maps x f-+ x + Xo and x f-+ O:oX are 
homeomorphisms from X onto itself Consequently, if A is a subset of X 
that is open, or closed, or compact, then Xo + A and o:oA also have that 
property. If A and U are subsets of X and U is open, then A + U is open. 

PROOF. The continuity of the vector space operations of X implies that 
of the maps x f-+ x + Xo and x f-+ aox, as well as that of the respective 
inverse maps x f-+ x + (-xo) and x f-+ ao1x. The remark about translates 
and nonzero scalar multiples of sets that are open, closed, or compact 
now follows, since homeomorphisms preserve these properties. Finally, if A 
and U are subsets of X and U is open, then A + U = U{ a + U : a E A}, 
a union of open sets. • 

1.3.4 Corollary. Let S be a topological space and X a normed space. 
Then the collection of all continuous functions from S into X is a vector 
space over IF' if sums and scalar multiples of functions are defined in the 
usual way: (f + g)(s) = I(s) + g(s) and (a· I)(s) = a· I(s) for each sin S. 

PROOF. If a is a scalar and 1 and 9 are continuous functions from S 
into X, then the continuity of the vector space operations of X implies 
that the maps s f-+ (I(s), g(s)) f-+ (f + g)(s) and s f-+ I(s) f-+ al(s) from S 
into X are both continuous, that is, that 1 + 9 and al are continuous. The 
verification of the vector space axioms is then easy. Notice that the zero of 
this vector space is the map s f-+ 0 and that (-I) (s) = - (! (s)) for eaeh 1 
in this vector space and each s in S. • 

Because of the continuity of the vector space operations, it is possible to 
develop an interesting theory of series in normed spaces. 

1.3.5 Definition. Suppose that (xn ) is a sequence in a normed space. 
Then the series generated by (xn) is the sequence (2::~1 Xn):=l' For 
each positive integer m, the mth term 2::'=1 xn of this sequence of sums 
is the m th partial sum of the series. If the series converges, that is, if 
limm 2::'=1 xn exists, then this limit is the sum of the series and is denoted 
by 2:~=1 Xn or by 2:n x n· 

1.3.6 Example. Suppose that X is Cp , where 1 :::; p < 00, or co. Let (en) 
be the sequence of standard unit vectors in X. It is easy to check that 
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(an) = En anen whenever (an) E X. This result does not extend to too, 
for if (an) is a member of too whose terms do not tend to 0, then the 
sequence (E:=l anen):=l is not Cauchy and therefore cannot converge. 

If a sequence (xn) in a normed space generates a convergent series, then 
it is often said that En Xn is a convergent series or that En Xn converges, 
even though En Xn is only the limit of the series and is not the series itself. 
The term infinite sum is also used for both a convergent series and its limit. 
Even when the series generated by the sequence (xn) might not converge, 
the sequence of partial sums is often called the formal series Ln X n. To 
complicate things just a bit more, the notation En Xn is also used occa
sionally for the sum of a finite list Xl, ... ,Xm of objects. In any case, the 
context should always prevent confusion. 

1.3.7 Proposition. Let X and Y be normed spaces. 

(a) If Ln Xn converges in X, then Xn -> O. 

(b) If Ln Xn and Ln Yn both converge in X, then so does Ln (xn + Yn), 
and Ln (xn + Yn) = 2:n Xn + 2:n Yn' 

(c) If 2:n Xn converges in X and a is a scalar, then 2:n aXn converges, 
and 2:n aXn = a 2:n Xn· 

(d) If 2:n Xn converges in X and T is a continuous linear operator from X 
into Y, then 2:n TXn converges in Y, and 2:n TXn = T(2:nxn). 

(e) If 2:n Xn is a finite or infinite sum in X, then II2:n xnll ~ 2:nllxnll. 

PROOF. Part (a) follows immediately from the fact that if Ln Xn is a 
convergent series in X, then each Xn besides the first is the difference of 
two consecutive terms of the Cauchy sequence of partial sums of the series. 
Notice next that if a is a scalar and both 2:n Xn and 2:n Yn converge in X, 
then the continuity of the vector space operations implies that 

m m m 

~)aXn +Yn) = aLxn + LYn -> aLxn + LYn 
n=l n=l n=l n n 

as m -> 00, giving (b) and (c). A similar argument, with a replaced by T 
and references to Yn omitted, proves (d). For (e), repeated applications of 
the triangle inequality show that 112::=1 xnll ~ 2::=lllxnll for each finite 
sum 2:::'=1 xn in X. If 2:n Xn is an infinite sum in X, then the continuity 
of the map x ~ Ilxll assures that 112:::'=lxnll-> l12:nxnll as m -> 00, so 
the desired inequality for infinite sums can be obtained by letting m tend 
to infinity in the inequality 112:::1 Xn II ~ 2:::'=lllxn II. • 

Of course, the converse of (a) is not in general true since the harmonic 
series diverges. It should also be noted that the sum 2:nllxnll in (e) does 
not have to be finite when 2:n Xn is a convergent infinite sum; otherwise, 
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there would be no need to develop a theory of absolutely and conditionally 
convergent series in IF. A similar theory exists for arbitrary normed spaces, 
and has as one of its basic results a very nice characterization of Banach 
spaces among all normed spaces. 

1.3.8 Definition. Let Ln Xn be a formal series in a normed space. 

(a) The series Ln Xn is absolutely convergent if Lnllxnll converges. 

(b) The series Ln Xn is unconditionally convergent if Ln x".(n) converges 
for each permutation 'IT of N. 

(c) The series Ln Xn is conditionally convergent if it is convergent but 
not unconditionally convergent. 

The notions of absolute and unconditional convergence are equivalent 
in IF; see [140]. In fact, it was proved by A. Dvoretzky and C. A. Rogers [70] 
in a 1950 paper that the equivalence of absolute and unconditional con
vergence of series actually characterizes finite-dimensional normed spaces 
among all normed spaces. 

1.3.9 Theorem. A normed space X is a Banach space if and only if each 
absolutely convergent series in X converges. 

PROOF. Suppose that X is not a Banach space. Let (xn) be a nonconver
gent Cauchy sequence in X. For each positive integer j, there is a positive 
integer nj such that Ilxn - xmll ~ 2-j if n, m 2:: nj. It can be assumed that 
nj+l > nj for each j. Since a limit for a subsequence of a Cauchy sequence 
must be a limit for the entire sequence, the subsequence (xnj ) of (xn) has 
no limit. Therefore, the series Lj(Xnj+l - Xn,} is not convergent, since 

L~=l (xnJ +1 - xnJ = xnk+l - xn, for each positive integer k. However, this 
series is absolutely convergent, since Ljllxnj+l - Xnj II ~ Ej 2- j = 1. 

Conversely, suppose that X is a Banach space and that Ln Xn is an 
absolutely convergent series in X. If ml, m2 E Nand m2 > ml, then 

from which it follows that the partial sums of Ln Xn form a Cauchy se
quence and therefore that Ln Xn converges. • 

See Exercise 1.31 for some further observations about absolute and un
conditional convergence of series in Banach spaces. The reader interested 
in unconditional convergence should also see Propositions 4.2.1 and 4.2.3. 
While the proofs of those two propositions rely only on material that has 
already been covered, the results have been postponed until Section 4.2 
since they are not needed before then. 



1.3 First Properties of Normed Spaces 21 

If X is a vector space with a topology and A ~ X, then it need not be 
true that [AJ = (A) or that co(A) = co(A); see Exercise 1.12. It is an easy 
consequence of the next theorem that these equalities do hold if X is a 
normed space. See also Exercise 1.33. 

1.3.10 Theorem. Let X be a normed space. 

(a) If S is a subspace of X, then S is a subspace of X. 

(b) If C is a convex subset of X, then both C and Co are convex. 

PROOF. Let S be a subspace of X. Suppose that x, yES and that a 
is a scalar. Let (xn) and (Yn) be sequences in S converging to x and y 
respectively. Then (axn + Yn) is a sequence in S converging to ax + y, and 
so ax + yES. Since S is nonempty and contains the sum of each pair of its 
elements as well as each scalar multiple of each of its elements, it follows 
that S is a subspace of X. 

Suppose that C is a convex subset of X and that 0 < t < 1. If x, Y E C, 
then an argument similar to that just given shows that tx + (1 - t)y E C, 
so C is convex. To see that Co is convex, notice first that tCO + (1 - t)CO 
is open by Corollary 1.3.3. Since tc° + (1 - t)CO ~ tC + (1 - t)C = C, it 
follows that tCO + (1 - t) Co ~ Co, so Co is convex. • 

1.3.11 Corollary. Let A be a subset of a normed space. Then [AJ = (A) 
and coCA) = coCA). 

PROOF. Let X be the normed space. It follows from the theorem that (A) 
is a closed subspace of X that includes A, so (A) :2 [AJ. Since [AJ is a 
subspace of X that includes A, it is also true that (A) ~ [AJ. Therefore 
(A) ~ [AJ since [AJ is closed, and so (A) = [AJ. The other equality is proved 
similarly. • 

It is not in general true that balls in a vector space with a metric must 
be convex; see Exercise 1.35. However, balls in a normed space always have 
this property. 

1.3.12 Proposition. Every ball in a normed space, whether open or closed, 
is convex. 

PROOF. Suppose that B is a ball in a normed space and that x and rare, 
respectively, the center and radius of B. If y, z E Band 0 < t < 1, then 

Iity + (1 - t)z - xii = Iity + (1 - t)z - tx - (1 - t)xll 

s: tlly - xii + (1 - t)llz - xii 
s: T, 

whcre the last inequality is strict if B is open. Therefore ty + (1- t)z E B, 
and so B is convex. • 
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Balls centered at the origin of a normed space have some additional useful 
features. 

1.3.13 Proposition. Every ball centered at the origin of a normed space, 
whether open or closed, is balanced and absorbing. 

PROOF. Suppose that B is an open or closed ball centered at the origin of a 
normed space X and that r is the radius of B. It is clear that B is balanced. 
If x E X and t > r-Illxll, then IIt-Ixll = t-Illxll < r, so C1x E Band 
therefore x E tB. Thus, the set B is absorbing. • 

One consequence of the preceding two propositions is that every neigh
borhood of the origin in a normed space includes a closed, convex, absorbing 
set since it includes a closed ball centered at the origin. The following par
tial converse of this is a special version of a result called the Baire category 
theorem, a more general form of which is given in Section 1.5. Notice that 
this theorem is stated only for Banach spaces, not arbitrary normed spaces. 
As is shown in Exercise 1.36, there are incomplete normed spaces having 
closed, convex, absorbing subsets with empty interiors. 

1.3.14 Theorem. Every closed, convex, absorbing subset of a Banach 
space includes a neighborhood of the origin. 

PROOF. Let e be a closed, convex, absorbing subset of a Banach space, 
and let D = en (-e). It is enough to show that D includes a neighborhood 
of the origin. If A is a nonempty subset of D, then 

1 1 1 1 1 1 o E -A + -(-A) C -D + -(-D) = -D + -D = D 
2 2 -2 2 2 2 ' 

where the la.''lt equality comes from the convexity of D. Thus, it is enough 
to prove that DO i= 0, for then the neighborhood ~ DO + ~ ( - DO) of the 
origin must be included in D. 

Suppose that D has empty interior. For each positive integer n, the set 
nD is closed and has empty interior, and so X \ nD is an open set that 
is dense in X. Let Bl be a closed ball in X \ D with radius no more 
than 1. Since (X \ 2D) n B'l is a nonempty open set, there is a closed 
ball B2 in Bl \ 2D with radius no more than 1/2. There is a closed ball B3 
in B2 \ 3D with radius no more than 1/3. Continuing in the obvious way 
yields a sequence (Bn) of closed balls such that these all hold for each 
positive integer n: BnnnD = 0, the radius of Bn is no more than lin, and 
Bn :2 Bm if n ::; m. It follows that the centers of the balls form a Cauchy 
sequence whose limit x is in each of the balls and hence is in X \ nD 
for each n. However, the set e is absorbing, so there is a positive real 
number s such that if t > s, then x, -x E te and therefore x E tD. 
It follows that x E nD for some positive integer n, a contradiction that 
proves the theorem. • 
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In the preceding proof, it is not really necessary to force the radii of the 
balls to decrease to O. The fact that Bn :2 Bm whenever n ::; m is enough 
to assure that their centers form a Cauchy sequence. See Exercise 1.21. 

Exercises 

1.30 Let K be a compact Hausdorff space and let X be a normed space. By 
Corollary 1.3.4, the collection of all continuous functions from K into X 
is a vector space when functions are added and multiplied by scalars in 
the usual way. Define a norm on this vector space by the formula 

IIflloo = {:ax{ Ilf(x)11 : x E K} if K i 0; 

if K = 0. 

The resulting normed space is denoted by C(K, X). 

(a) Show that 11·1100 is in fact a norm on C(K, X). 

(b) Show that if X is a Banach space, then so is C(K, X). 

1.31 Lct I:n Xn be a formal series in a Banach space. 

(a) Prove that if the series is absolutely convergent, then it is uncondi
tionally convergent. 

(b) Give an example to show that the converse of (a) need not hold. 
(The space CO is a good place to look.) 

1.32 Identify co( { en : n EN}) in £1. Exercises 1.26 (c) and 1.27 ( a) may help. 

1.33 This exercise shows that the order in which closures and hulls are taken 
in Corollary 1.3.11 is important. 

(a) Prove that if A is a subset of a normed space, then co(A) :;! co(A) 

and [A] :;! (A). 
(b) Show that if A is the collection of unit vectors in co, then the inclu

sions in (a) are proper. 

1.34 Suppose that 5 is a subspace of a normed space X. It is clear that S° 
need not be a subspace of X because S° might be empty; consider {ot 
in IF. It is true, however, that S° is a subspace of X when S° i 0. In 
fact, a much stronger statement can then be made about S°. What is that 
statement? 

1.35 Euclidean-space intuition might make it tempting to think that balls in 
a vector space with a metric must be convex. To see that this is not so, 
let X be the vector space ]R2 with the metric given by the formula 

Show that d really is a metric on ]R2. Let B x be the closed unit ball 
of X, that is, the set of all members of X no more than 1 unit from (0,0). 
Sketch Bx. Notice that (1,0) and (0,1) are in Bx, but d,~) is not. Thus, 
the ball B x is not convex. 
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1.36 Suppose that X is the vector space underlying £1, but equipped with 
the £00 norm. Show that {(an) : (an) E X, Lnlanl :::; I} is a closed, 
convex, absorbing subset of X whose interior is empty. (Notice that, by 
Theorem 1.3.14, the normed space X cannot be a Banach space.) 

1.37 Suppose that a vector space X has a nonempty subset B that is convex, 
balanced, and has this strong absorbing property: For every nonzero x 
in X, there is a positive Sx such that x E tB if t ~ Sx and x (j. tB if 
o :::; t < sx. Show that there is a norm II· liB on X for which B is the 
closed unit ball. 

1.38 Suppose that T is a linear operator from a Banach space X into a normed 
space Y. Show that if T- 1 (By) is closed, then T is continuous at O. 
(It can then be concluded from Theorem 1.4.2 that T is actually contin
uous everywhere.) 

1.39 The core of a subset A of a vector space X is the collection of all points y 
in A with this property: For each x in X, there is a positive OX,y such that 
y + tx E A whenever 0 :::; t < Ox,y. Prove that if X is a Banach space, 
then the core of each closed convex subset of X is the interior of that set. 

1.4 Linear Operators Between Normed Spaces 

Linear operators between vector spaces were discussed briefly in Section 1.l. 
The purpose of this section is to derive a few basic properties of linear 
operators between normed spaces, with special emphasis on the continuous 
ones. 

Recall that a subset of a metric space is bounded if it is either empty or 
included in some ball. (Making a special case of the empty set is necessary 
only when the metric space is itself empty.) Each compact subset K of 
a metric space is bounded, since the metric space is either empty or the 
union of an increasing sequence of open balls which thus form an open 
covering for K, forcing K to lie inside one of the balls. Also, every Cauchy 
sequence in a metric space is bounded, since the sequence from some term 
onward lies inside a ball of radius 1, and increasing the radius of that ball, 
if necessary, causes it to engulf the rest of the terms. 

It is easy to check that a subset A of a normed space is bounded if and 
only if there is a nonnegative number M such that Ilxll :s: M for each x 
in A. 

1.4.1 Definition. Let X and Y be normed spaces. A linear operator T 
from X into Y is bounded if T(B) is a bounded subset of Y whenever B 
is a bounded subset of X. The collection of all bounded linear operators 
from X into Y is denoted by B(X, Y), or by just B(X) if X = Y. 

A function into a metric space is often called bounded when its range 
is a bounded set. It is quite possible for a linear operator between normed 
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spaces to be unbounded in this sense and yet bounded in the sense of 
Definition 1.4.1, an example being the operator I: IR ....... IR that maps each 
real number to itself. In fact, if X and Yare normed spaces, then the only 
member of L(X, Y) with a bounded range is the operator with range {O}, 
for the range of each other member of L(X, Y) contains a nonzero vector 
and all scalar multiples of that vector. Thus, the study of bounded-range 
linear operators between normed spaces does not lead to a particularly rich 
theory, and so the term bounded when applied to linear operators between 
normed spaces always has the meaning given in Definition 1.4.1. 

As was suggested earlier, the main emphasis in this section is on continu
ous linear operators between normed spaces. The following theorem makes 
clear the reason for introducing boundedness into this discussion. 

1.4.2 Theorem. Let X and Y be normed spaces and let T: X ....... Y be a 
linear operator. Then the following are equivalent. 

(a) The operator T is continuous. 

(b) The operator T is continuous at O. 

(c) The operator T is uniformly continuous on X. 

(d) The operator T is bounded. 

(e) For some neighborhood U of 0 in X, the set T(U) is bounded in Y. 

(f) There is a nonnegative real number M such that IITxl1 ::; Mllxll for 
each x in X. 

(g) The quantity sup{ IITxl1 : x E Bx } is finite. 

PROOF. Suppose that T is continuous at O. If E > 0, then there is a positive 6 
such that IITxl1 = IITx - TOil < E whenever x E X and Ilxli = Ilx - 011 < 6, 
so IITxI-Tx211 = IIT(XI -x2)11 < E whenever Xl,X2 E X and IlxI-X211 < o. 
Therefore T i;; uniformly continuous on X, which proves that (b) =? (c). It 
is clear that (c) =? (a) =? (b), and so (a), (b), and (c) are equivalent. 

If (b) holds, then there i;; an open ball V centered at 0 such that IITxl1 < 1 
whenever x E V. For each bounded subset B of X, there is a positive tB 

such that B <;;; tB V, and so IITxl1 < tB if x E B. Thus, the operator T is 
bounded, and so (b) =? (d). If (d) holds, then ;;0 doe;; (e), as can be seen 
by letting U be the open unit ball of X, a bounded set. Suppose that (e) 
holds. Let r be a positive number small enough that the clo;;ed ball Br of 
radius r and center 0 is included in U, and let Mo = sup{ IITxl1 : x E B r }. 

If x is a nonzero member of X, then rllxll-1x E B r , so IIT(rllxll-1x)11 <:::: Mo 
and therefore IITxl1 <:::: r-1 Mollxll· This last inequality also holds if x = 0, 
so (e) =? (f). It is clear that (f) =? (g). Finally, suppose that (g) holds. 
Let M = sup{ IITxl1 : x E Bx }. If E > 0 and x E EBx , then IITx - TOil = 

IITxl1 ::; EM, which establishes the continuity ofT at o. Therefore (g) =? (b), 
and so (b), (d), (e), (f), and (g) are equivalent. • 
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It follows from the preceding theorem that the collection B(X, Y) of all 
bounded linear operators from a normed space X into a normed space Y is 
the same as the collection of all continuous linear operators from X into Y. 
Convention dictates that a member of B(X, Y) be called bounded rather 
than continuous, which also explains why the notation B(X, Y) is used for 
this collection rather than something like CL(X, Y). While L(X, Y) is used 
in this book to denote the vector space of all linear operators from X into Y, 
be warned that many authors use L(X, Y) to denote the corresponding 
space of bounded linear operators. 

Let V be the vector space of all continuous functions from a normed 
space X into a normed space Y with addition of functions and multiplica
tion of functions by scalars defined in the usual way; see Corollary 1.3.4. 
Then B(X, Y) is clearly a subspace of V, and so is itself a vector space. It 
would be nice if B(X, Y) could somehow be made into a normed space. To 
do that, some notion for the "length" or "size" of a member T of B(X, Y) 
is needed. The quantity sup{ IITxl1 : x E Bx} mentioned in part (g) of 
Theorem 1.4.2 is in a sense a measure of the size of T(Bx), and therefore 
would seem to be a plausible candidate. 

1.4.3 Definition. Let X and Y be normed spaces. For each T in B(X, Y), 
the norm or opemtor norm IITII of T is the nonnegative real number 
sup{ IITxl1 : x E Bx }. The opemtor norm on B(X, Y) is the map T I---> IITII. 

1.4.4 Example. Let X and Y be normed spaces. The zero opemtor from X 
into Y is the zero element of the vector space B(X, Y), that is, the operator 
that maps each x in X to the zero element of Y. This operator clearly has 
norm O. The identity opemtor on X is the member I of B(X) defined by the 
formula Ix = x. Notice that 11111 = 1 as long as X # {O}. More generally, for 
each scalar a the linear operator Ta on X given by the formula TaX = ax 
is bounded, and has norm lal if X # {O}. Such operators are called scalar 
opemtors. 

1.4.5 Example. Let X be the vector space of finitely nonzero sequences 
with the foo norm. Define a linear operator T: X --+ IF by the formula 
T(an ) = Ln an· For each positive integer n, let Xn = L7=1 ej. Then 
Xn E Bx and TXn = n for each n. It follows that the set T(Bx) is not 
bounded, so neither is the operator T. 

1.4.6 Example. Define a linear operator T: C[O, 1] --+ C[O, 1] by mapping 
each f in C[O, 1] to its indefinite integral F given by the formula F(t) = 
J~ f(s) ds. Then T is bounded, and IITII = 1. See Exercise 1.40. 

Here are some useful characterizations of the operator norm that are 
sometimes used for its definition. 
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1.4.7 Proposition. Suppose that X and Y are normed spaces and that 
T is a bounded linear operator from X into Y. 

(a) IITII = sup{ IITxl1 : x E X, Ilxll < 1 }. 

(b) If X i- {O}, then IITII = sup{ IITxl1 : x E Sx }. 

(c) If x E X, then IITxl1 ~ IITIIllxll. Furthermore, the number IITII is 
the smallest nonnegative real number M such that IITxl1 ~ Mllxll 
for each x in X. 

PROOF. Define I: X -lR. by the formula I(x) = IITxll. Since I is continu
ous, its supremum on the open unit ball of X is the same as its supremum 
on the closure Bx of that ball, which gives (a). If x is a nonzero element 
of Bx , then IIxll-Ix E Sx and 1(llxll-Ix) = IIxll-I/(x) ;::: I(x). It follows 
that the supremum of I on S x is the same as its supremum on B x when
ever Xi- {O}, which gives (b). For (c), first notice that if 0 ::; M < IITII, 
then there is an x in Bx such that IITxl1 > M ;::: Mllxll, so there is no 
nonnegative real number M smaller than IITII such that IITxll ::; Mllxll for 
each x in X. If x E X and x i- 0, then IIxll-IIlTxll = IIT(llxll-Ix) II ::; IITII, 
and so IITxll ~ IITllllxll. This last inequality is trivially true if x = 0, which 
finishes the proof of (c). • 

So far, it has not been shown that the operator norm really is a norm. 
It is time to remedy this oversight. 

1.4.8 Theorem. Let X and Y be normed spaces. Then B(X, Y) is a 
normed space under the operator norm. If Y is a Banach space, then so is 
B(X, Y). 

PROOF. Suppose that S, T E B(X, Y). It is clear that IITII ;::: O. If T i- 0, 
then there is an Xo in X, necessarily nonzero, such that Txo i- 0, and so 
T(lIxoll-lxo) i- O. It follows that T = 0 if and only if Tx = 0 for each x 
in B x , that is, if and only if IITII = O. If a is a scalar, then 

lIaTIl = sup{ IlaTxl1 : x E Bx} = lal sup{ IITxll : x E Bx} = lalllTII· 

If Xo E Bx, then 

II(S + T)(xo) II ::; IISlIlIxoll + IITllllxoll ::; IIsll + IITII, 

and so 

liS + Til = sup{ II(S + T)(x)1I : x E Bx} ::; IIsll + IITII· 

Thus, the operator norm is a norm on B(X, Y). 
Suppose that Y is a Banach space. Let (Tn) be a Cauchy sequence 

in B(X, Y). If x E X, then 
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whenever n, mEN, from which it follows that the sequence (Tnx) is 
Cauchy in Y and hence convergent. Define T: X ---> Y by the formula 
Tx = limn Tnx. Because the vector space operations of Yare continu
ous, the map T is linear. To see that T is bounded, first notice that the 
boundedness of the Cauchy sequence (Tn) gives a nonnegative M such that 
IITnl1 ::; M for each n, so that IITnxl1 ::; M for each x in Bx and each n. 
Letting n tend to 00 shows that IITxl1 ::; M for each x in Bx, so T is 
bounded. To see that IITn - Til ---> 0 as n ---> 00, let E be a positive num
ber and let N f be a positive integer such that IITn - Tmll ::; E whenever 
n,m ~ N f • If x E Bx and n,m ~ N f , then IITnx - Tmxll ::; IITn -Tmll ::; E. 

Keeping n fixed and letting m tend to 00 shows that IITnx - Txll ::; E 

whenever x E Bx and n ~ N f • Taking the supremum over all x in Bx then 
shows that IITn - Til ::; E whenever n ~ N f • It follows that limn Tn = T, so 
B(X, Y) is complete. • 

Henceforth, whenever X and Y are normed spaces and B(X, Y) is also 
treated as a normed space, the operator norm is assumed unless specifically 
stated otherwise. 

If X is a Banach space and Y is an incomplete normed space, then 
B(X, Y) might not be a Banach space; see Exercise 1.41. In fact, it will 
follow from Exercise 1.117 that as long as X and Yare normed spaces 
and X i- {O}, the space B(X, Y) is a Banach space if and only if Y is a 
Banach space. If X = {O}, then B(X, Y) contains only the zero operator 
and is trivially a Banach space, even if Y is not. 

1.4.9 Proposition. Let X and Y be normed spaces. If T E B(X, Y) and 
(Tn) is a sequence in B(X, Y) such that Tn ---> T, then Tnx ---> Tx for each x 
in X. 

PROOF. For each x in X, 

IITnx - Txll = II(Tn - T)(x)1I ::; IITn - Tllllxll ---> 0 

as n ---> 00. • 
The converse of Proposition 1.4.9 is in general false, as should be ex

pected. Convergence in B(X, Y) represents uniform convergence on the 
closed unit ball of X, so it is not surprising that such convergence is not 
always implied by pointwise convergence on X. See Exercise 1.44. 

Suppose that X, Y, and Z are normed spaces and that S E B(X, Y) and 
T E B(Y, Z). Then the product TS is in B(X, Z) since the composite of 
continuous functions is continuous. It is too much to hope that liT SII would 
have to equal IITIIIISII; for example, it is easy to find nonzero members S 
and T of B(JR2 ) whose product is the zero operator. The following, at least, 
can be said. 
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1.4.10 Proposition. Let X, Y, and Z be normed spaces. If S E B(X, Y) 
and T E B(Y, Z), then TS E B(X, Z) and IITSII ~ IITIlIiSIi. 

PROOF. As has already been mentioned above, the operator TS is contin
uous as the composite of two continuous functions. The continuity of T S 
also follows from the fact that for each x in X, 

IITS(x)1I = IIT(Sx)1I ~ IITlIlISxll ~ IITIlIISllllxll· 

This inequality also shows that IITSII ~ IITIlIiSII, since IITSII is the smallest 
nonnegative real number M such that IITS(x)1I ~ Mllxll for each x in X .• 

As was shown in Example 1.4.5, there are normed spaces X and Y such 
that some members of L(X, Y) are unbounded. Of course, this cannot hap
pen when Y = {O}, for then L(X, Y) contains only the zero operator. This 
observation, together with the following two theorems, completely settles 
the question of which ordered pairs (X, Y) of normed spaces possess the 
property that L(X, Y) has an unbounded member: this happens if and only 
if X is infinite-dimensional and Y =I- {O}. 

1.4.11 Theorem. Let X and Y be normed spaces such that X is infinite
dimensional and Y =I- {O}. Then some linear operator from X into Y is 
unbounded. In particular, every infinite-dimensional normed space has a 
linear functional on it that is unbounded. 

PROOF. Let (bn ) be a linearly independent sequence in Sx, let ~ be a 
vector space basis for X that includes { bn : n EN}, and let y be a nonzero 
member of Y. Define T!l!: 23 -+ Y by letting T!l!(bn ) = ny for each nand 
letting T!l!(b) = 0 for every other member b of 23. Then T'B can be extended 
to a member T of L(X, Y), and T is not bounded since T(Sx) is not a 
bounded set. • 

1.4.12 Theorem. Let X and Y be normed spaces such that X is finite
dimensional. Then every linear operator from X into Y is bounded. 

PROOF. In this proof, the standard notation 11·11 is used for all norms except 
the special one about to be defined. Let V be the vector space underlying 
the normed space X and let n be the dimension of V. Since the theorem 
is trivial if n = 0, it can be assumed that n ~ 1. Let Xl, ... ,Xn be a vector 
space basis for V. Define a norm I· Ion V by the formula 

and let W be the normed space (V, I· I). It follows immediately from the 

definition of I· I that a sequence (a~jlxl + ... + a}!lxn ) in W converges to 

some member alxl + ... + anXn of W if and only if limj agl = am when 
m= l, ... ,n. 
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Claim: If Z is a normed space, then each member of L(W, Z) is bounded. 
To see this, suppose that T E L(W, Z) and O:IXI + ... + O:nXn E W. Then 

IIT(O:IXl + ... +O:nxn)11 ~ 100IlllTxlii + ... + 100nlllTxnll 

~ (IITxlll + ... + IITxnll) . /O:IXl + ... + O:nXn/, 

so T is bounded. This proves the claim. 
Let I be the identity operator on V, viewed as a member of L(X, W). 

Since every T in L(X, Y) can be written in the form Tw I where Tw is 
just T viewed as a member of L(W, Y), the theorem will be proved once it 
is shown that I is bounded. To this end, let (o:~j)Xl + ... + o:}!lxn) be a 

sequence in Sw. Then (o:~j)), ... , (o:}jl) are bounded sequences of scalars, 
so there are scalars 0:1,"" O:n and an increasing sequence (jk) of positive 
integers such that limk o:~k) = O:m when m = 1, ... ,n. It follows that 

li~(a~jk)xl + ... + o:~k)xn) = alxI + ... + O:nXn 

and that O:IXl + ... + O:nXn E Sw. Therefore every sequence in Sw has 
a subsequence converging to a member of Sw, so Sw is compact. Since 
I-I E L(W, X}, the function W t-+ III-lwll from W into IR is continuous 
and so attains a positive minimum on the compact set Sw. If I were not 
bounded, then there would be a sequence (Zj) in Bx such that /Izj / ~ j 
for each j. Letting Wj = /Izj/-lIzj for each j yields a sequence (Wj) in Sw 
such that III-lwjll = /Izj/-lllzjll --> 0 as j --> 00, a contradiction. Thus, 
the operator I must be bounded. • 

An important technique was used in the proof of the preceding theorem. 
To prove that a linear operator T from X into Y must be continuous, 
it was shown that there is a normed space W such that all the linear 
operators from W into Y have this property, and that T can be factored 
as the product of a continuous linear operator from X into Wand a linear 
operator from W into Y. Variations of this technique with other properties 
besides continuity have many applications in Banach space theory. 

1.4.13 Definitions. Suppose that T is a linear operator from a normed 
space X into a normed space Y. Then T is an isomorphism or normed 
space isomorphism into Y if it is one-to-one and continuous and its inverse 
mapping T- l is continuous on the range of T. The operator T is an iso
metric isomorphism or linear isometry if IITxlI = Ilxll whenever x E X. 
The space X is embedded in Y if there is an isomorphism from X into Y, 
and is isometrically embedded in Y if there is an isometric isomorphism 
from X into Y. The spaces X and Yare isomorphic if there is an iso
morphism from X onto Y, and are isometrically isomorphic if there is an 
isometric isomorphism from X onto Y. If X and Yare isomorphic, then 
this is denoted by writing X ~ Y. 
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Several points about the preceding definitions are worth emphasizing. In 
this book an isomorphism T is a one-to-one linear mapping from a normed 
space X into a normed space Y that is also a homeomorphism from X onto 
the range of T. This differs from the usual convention that a mapping called 
an isomorphism from an object A into an object B should be onto B, but 
agrees with normed space custom. A normed space isomorphism T: X ~ Y 
is essentially a mapping that provides a way of identifying both the vector 
space structure and the topology of X with those of T(X). An isometric 
isomorphism does this while also identifying the norms of X and T(X). 

1.4.14 Proposition. Let T be a linear operator from a normed space X 
into a normed space Y. 

(a) The operator T is an isomorphism if and only if there are positive 
constants sand t such that sllxll ~ IITxl1 ~ tllxll whenever x E X. 

(b) If T is an isometric isomorphism, then T is an isomorphism. 

(c) If X is a Banach space and T is an isomorphism, then T(X) is a 
Banach space. 

PROOF. The proposition is trivially true if X = {O}, so it can be assumed 
that X =I- {O}. It follows that T and T- 1 are both nonzero whenever T 
is an isomorphism, giving them both positive norms. For (a), notice that 
if T is an isomorphism, then IITxll ::; IITllllxl1 and Ilxll = IIT-1(Tx)11 ::; 
IIT-11I11Txll for each x in X, so letting s = IIT-111- 1 and t = IITII gives 
the desired inequalities. Suppose conversely that there are positive real 
numbers sand t such that sllxll ::; IITxl1 ::; tllxll for each x in X. Then 
the second half of the inequality shows that T is bounded while the first 
half shows that Tx =I- 0 whenever x =I- 0, that is, that T is one-to-one. 
Since IIT-l(Tx)1I = IIxll ~ s-lllTxll for each x in X, the operator T- 1 is 
bounded, so T is an isomorphism. 

Part (b) follows immediately from (a). For (c), suppose that X is a 
Banach space and T is an isomorphism. Let (Yn) be a Cauchy sequence 
in T(X). Since there is a positive number s such that sllT-1ylI ::; Ilyll for 
each y in T(X), it follows that (T-1Yn) is a Cauchy sequence in X and 
so converges to some Xo. The continuity of T implies that (Yn) converges 
to Txo, proving that T(X) is complete. • 

The significance of part (c) of the preceding proposition comes from the 
fact that, in general, homeomorphisms between metric spaces do not have 
to preserve completeness. See Exercise 1.42. 

An easy application of Theorem 1.4.12 immediately produces a large 
supply of isomorphic normed spaces. 

1.4.15 Theorem. Let n be a nonnegative integer and let X and Y be 
n-dimensional normed spaces over IF. Then every linear operator from X 
onto Y is an isomorphism. 
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PROOF. Let T be a linear operator from X onto Y. Since X and Y have the 
same finite dimension, the operator T is one-to-one. By Theorem 1.4.12, 
both T and T- 1 are bounded. • 

1.4.16 Corollary. Let 71, be a nonnegative integer. Then all n-dimensional 
normed spaces over IF are isomorphic to each other. 

PROOF. Let X and Y be n-dimensional normed spaces over IF. It is a 
standard fact from linear algebra that there is a linear operator from X 
onto Y; recall that such an operator can be found by letting SJ3 x and SJ3 y 
be vector space bases for X and Y respectively, letting f be any map from 
SJ3x onto SJ3 y , and then letting Tf be a linear extension of f to all of X. By 
the theorem, each such linear operator is a normed space isomorphism. • 

1.4.17 Corollary. Every finite-dimensional vector space has exactly one 
norm topology. 

PROOF. Let X be a vector space of finite dimension n and let T be a 
linear operator from X onto Euclidean n-space. It is easily checked that 
the formula IlxiiT = IITxl1 defines a norm on X. If 11·110 is any other norm 
on X, then the identity operator on X, viewed as a linear operator from 
(X, II· liT ) onto (X, 11·110), is an isomorphism, so the two norms induce the 
same topology. • 

1.4.18 Corollary. For each nonnegative integer 71" the only norm topology 
that IF" can have is its Euclidean topology. 

Of course, the preceding two corollaries do not prevent a finite-dimen
sional vector space from having many different norms, as Example 1.2.9 
shows. However, the different norms must all induce the same topology. 

The first of the following two corollaries is obtained by observing that 
each normed space with finite dimension 71, must be isomorphic to Euclidean 
n-space, a Banach space. The second then follows from the first, since each 
complete subset of a metric space is closed in that space. 

1.4.19 Corollary. Every finite-dimensional normed space is a Banach 
space. 

1.4.20 Corollary. Every finite-dimensional subspace of a normed space is 
a closed subset of the space. 

1.4.21 Corollary. Every finite-dimensional normed space has the Heine
Borel property, that is, the property that all closed bounded subsets of the 
space are compact. 

PROOF. Let n be a nonnegative integer. Notice first that if n > 0, then 
Euclidean n-space IF" has the Heine-Borel property, for if A is a closed 
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bounded subset of IFn and ((a~j), ... , a~))) is a sequence in A, then the 

bounded ness of each of the sequences (a~)) such that m = 1, ... , n as
sures the existence of a subsequence (jk) of N and scalars al,"" an such 

that (a~.)) --+ am for each m, which implies that (a~jkl, ... , a:~k)) --+ 

(aI, ... ,an)' It is trivially true that 1F0 has the Heine-Borel property. 
Let X be a uormed space having finite dimension n and let T be an 

isomorphism from X onto Euclidean n-space. If S is a closed bounded 
subset of X, then T(S) is closed and bounded in IFn and therefore compact, 
so S is itself compact. • 

A little more work shows that the Heine-Borel property actually charac
terizes the finite-dimensional normed spaces among all normed spaces. 

1.4.22 Lemma. If X is an infinite-dimensional normed space, then there 
is a linearly independent sequence (xn) in Sx such that Ilxn - xmll ;::: 1 
whenever n 1= m. 

PROOF. The sequence (xn) is constructed inductively, beginning with an 
arbitrary element Xl of S x. Suppose that n ;::: 2 and that linearly indepen
dent elements Xl, ... , xn-l of Sx have been found such that Ilxj - xkll ;::: 1 
if j, k :s: n - 1 and j =I- k. Let Y = (Xl,' .. ,Xn-l), a finite-dimensional sub
space of X. The induction will be complete once a member Xn of Sx is found 
such that d(xn' Y) = 1, for then Xl,." ,Xn must be linearly independent 
and Ilxn - xmll 2: 1 if m < n. Fix an element z of X\ Y and let t = d(z, Y), 
a positive number since Y is closed. A subspace of a vector space remains 
unchanged when multiplied by a nonzero scalar or translated by one of its 
own elements, which in particular implies that C l Y = Y. It follows that 
1 = Cld(z, Y) = d(Clz,t-lY) = d(Clz, Y). Let (Yj) be a sequence in Y 
such that IIYj - C l zll --+ 1. Since (Yj) is a bounded sequence in Y and Y 
has the Heine-Borel property, the sequence (Yj) has a subsequence (Yjk) 
that converges to some Y in Y. Then Ily - clzll = limkllYjk - c1zll = 1 
and d(y-C l z, Y) = d(y- C l z, Y- Y) = d(t- 1 z, Y) = 1. Let Xn = y_C 1 Z 

to complete the induction and the proof. • 

1.4.23 Theorem. (F. Riesz, 1918 [195]). A normed space X is finite
dimensional if and only if it has the Heine-Borel property, which happens 
if and only if Sx is compact. 

PROOF. If X is finite-dimensional, then it has the Heine-Borel property, so 
the closed bounded set Sx is compact. If X is infinite-dimensional, then 
the lemma produces a sequence in Sx with no convergent subsequence, so 
Sx is not compact and X lacks the Heine-Borel property. • 

Exercises 

1.40 Supply the details in Example l.4.6. 
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1.41 Suppose that Y is the vector space of finitely nonzero sequences, equipped 
with the £1 norm. Show that B(£l, Y) is not a Banach space. 

1.42 Define d: RxR --> R by the formula d(x, y) = Itan- 1(x)-tan-1 (y)!. where 
tan- 1 denotes the usual single-valued inverse tangent function from R 
onto (-7r /2, 7r /2). Prove that d is an incomplete metric on R that induces 
the usual topology of R. Conclude that it is possible for an incomplete 
metric space to be homeomorphic to a complete one. 

1.43 Suppose that T is a linear operator from a normed space X into a normed 
space Y such that En TXn is a convergent series in Y whenever En Xn 
is an absolutely convergent series in X. Prove that T is bounded. 

1.44 For each positive integer j, define ej : Co --> IF by the formula ej(an ) = aj. 

Show that (ej) is a sequence in B(eo,lF) that does not converge to the 
zero operator 0 of B(co,lF), even though limj ej(an ) = O(an) whenever 
(an) E Co. 

1.45 Prove that no Banach space has a count ably infinite vector space basis. 
(Suppose that X is a normed space with a countably infinite vector space 
basis (bn ). For each positive integer n, let Yn = (b1 , ••. , bn ). Select an Xl 

in Yl such that Ilxlll = 1. Use an argument like that of Lemma 1.4.22 to 
select an X2 in Y2 such that d(X2, Yd = IIx2 - Xlii = 1/4. Select an X3 
in Y3 such that d(X3, Y2) = IIx3 - X21! = 1/16. Continuing in this vein 
yields a Cauchy sequence that cannot converge to anything in any Yn .) 

1.46 Suppose that Y is a finite-dimensional normed space. Let T be a linear 
operator from a normed space X onto Y, where X is not assumed to be 
finite-dimensional and T is not assumed to be bounded. Prove that T is 
an open mapping, that is, that T(U) is an open subset of Y whenever U 
is an open subset of X. (Notice that it is enough to prove that T(Bx) 
includes a neighborhood of 0.) 

1.47 Let f be an unbounded linear functional on a normed space X. Prove 
that if U is a nonempty open subset of X, then feU) = IF. 

1.48 Let X and Y be normed spaces and let f: X --> Y be additive; that is, 
let f(XI + X2) = f(xd + f(X2) whenever Xl,X2 EX. 

(a) Prove that f(rx) = rf(x) for each rational number r and each X 
in X. 

(b) Prove that if X and Yare real normed spaces and f is continuous, 
then f is linear. 

(c) Show that the conclusion of (b) might not hold if X and Y are 
complex normed spaces and f is continuous. 

1.49 Let c be the Banach space of convergent sequences of scalars defined in 
Exercise 1.25. 

(a) Prove that c is isomorphic to co. 

(b) Suppose that x E Seo' Prove that there exist Xl and X2 in SeQ such 
that Xl # X2 and X = ~(Xl + X2). 

(c) Conclude from (b) that c is not isometrically isomorphic to eo. 
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1.50 The purpose of this exercise is to show that, unlike finite-dimensional 
vector spaces, infinite-dimensional vector spaces never have unique norm 
topologies. Let (X, II· II) be an infinite-dimensional normed space. 

(a) Construct an unbounded one-to-one linear operator T from (X, II .1/) 
onto itself. 

(b) Let IIxllT = IITxl1 whenever x E X. Show that II· liT is a norm, that 
T is an isometric isomorphism from (X, II· liT) onto (X, 11-11), and 
that II· liT is a Banach norm if and only if 11·1/ is a Banach norm. 

(c) Show that the topologies induced by 1/.1/ and 1/. I/T are different. 

1.51 Here is another proof of Corollary 1.4.18 that has a more geometric flavor. 
Let n be a nonnegative integer. Let II· I/o be a norm on lFn , let'! be the 
topology induced by this norm, and let Uo and Uc be the open unit balls 
for 1/. I/o and the Euclidean norm respectively. In the following, any term 
preceded by "e-" refers to the Euclidean topology or norm. Do not use 
Theorem 1.4.12 or any results based on it in your arguments. You may use 
the fact that Euclidean n-space has the Heine-Borel property, since the 
demonstration of that fact in the proof of Corollary l.4.21 is elementary. 

(a) Using the fact that e-convergence implies coordinatewise conver
gence when n ::::: 1, show that each e-convergent sequence in lFn is 
'I-convergent to the e-limit. Conclude that every 'I-open subset oflFn 

is e-open. 

(b) Let C be an e-closed e-unbounded convex set in lFn that contains 
the origin. Show that C includes a ray emanating from the origin, 
that is, a set of the form {tx : t ::::: O} where x is a nonzero element 
of lFn. 

(c) Let C be an e-open e-unbounded convex set in lF n that contains the 
origin. Show that C includes a ray emanating from the origin. 

(d) Show that sUo ~ Ue for some positive s. Conclude that every e-open 
subset of lFn is 'I-open, and that'! must therefore be the Euclidean 
topology. This concludes the proof of Corollary 1.4.18. 

(e) Obtain Corollary l.4.16 from Corollary l.4.18. (Let T be a linear 
operator from an n-dimensional normed space X onto lF n and define 
a norm 1/. I/o on lFn by letting lIyl/o = I/T-1yl/. Use this norm to show 
that X is isomorphic to Euclidean n-space.) 

1.5 Baire Category 

This section could have been marked optional, since the material developed 
in it is used only in optional Section 2.3. Though it is useful to have some 
form of the main result of this section, the Baire category theorem, to derive 
the three fundamental theorems to be presented in the next section, a weak 
form of the Baire category theorem already obtained as Theorem 1.3.14 is 
enough to do that. However, the reader who is not already familiar with 
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Baire category should spend some time with this section, since Baire cate
gory is an important component of the working analyst's toolkit. 

It is often useful to be able to prove that a set is too large to be written 
as a union of countably many other sets that are in some sense very small. 
For example, facts about the real line that depend on its uncountability 
are true because the real line is "large" enough that it cannot be written 
as a union of countably many one-point "very small" sets. Similarly, many 
results in measure theory are obtained from knowing that a set of nonzero 
measure is too "large" to be a union of countably many "very small" sets 
of measure zero. 

The concept of Baire category, due to Louis Rene Baire, gives a topolog
ical meaning to the notion of the size of a set. Baire's approach is based 
on density. A subset A of a topological space X is considered to be very 
small in Baire's sense if there is no nonempty open subset U of X such that 
An U is dense in U, that is, if it has empty interior. Baire's large sets are 
those that are not unions of countably many of these very small sets. 

1.5.1 Definitions. Let X be a topological space. A subset of X is 

(a) nowhere dense in X if its closure has empty interior; 

(b) of the first category in X or meager in X if it is the union of a 
countable collection of sets that are nowhere dense in X; 

(c) of the second category in X or nonmeager in X if it is not of the first 
category in X. 

In particular, the set A is of the first or second category in itself if A has 
that category as a subset of the topological space (A, 'I'A), where 'I'A is the 
relative topology that A inherits from X. 

1.5.2 Example. If a is any real number, then the set {a} is obviously of the 
first category, in fact nowhere dense, in the real line, and is equally obviously 
of the second category in itself. Since the set Q of rational numbers can be 
written as the union of countably many singleton subsets of JR., it follows 
that Q is of the first category in JR. while being at the same time dense in 1Ft. 

Here are some simple but useful facts about Baire category, followed by 
the main result of this section. 

1.5.3 Proposition. Let X be a topological space. 

(a) If a subset A of X is nowhere dense or of the first category in X, 
then every subset of A has that same property. 

(b) A subset of X is nowhere dense in X if and only if the interior of its 
complement is dense in X. 

(c) A subset of X is of the first category in X if and only if its comple
ment is the intersection of a countable collection of sets each of whose 
interiors is dense in X. 
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(d) The union of a countable collection of sets each of the first category 
in X is of the first category in X. 

(e) If a subset of X is of the second category in X, then it is of the 
second category in itself. 

PROOF. Clearly, subsets of nowhere dense subsets of X are themselves 
nowhere dense in X. It follows that if A is the union of a countable collec
tion It of nowhere dense subsets of X and B ~ A, then B is the union of 
the countable collection {B n C : CElt} of nowhere dense subsets of X, 
which proves (a). 

Now suppose that A is an arbitrary subset of X. Then (At = 0 if and 
only if X \ A intersects every nonempty open subset of X, which happens 
if and only if X \ A is dense in X. Since X \ A = (X \ A)O, this proves (b). 
Part (c) then follows from a straightforward application of De Morgan's 
laws. 

Part (d) is obvious. For (e), notice that if A ~ X, then a subset of A 
that is nowhere dense in A is nowhere dense in X, from which it follows 
that if A is of the first category in itself, then it is also of the first category 
inX. • 

1.5.4 The Baire Category Theorem. (L. R. Baire, 1899 [9]). Let X be 
a nonempty complete metric space. 

(a) If it is a countable collection of open subsets of X each of which is 
dense in X, then n{ U : U E it} is dense in X. 

(b) Every nonempty open subset of X is of the second category in X 
and hence in itself. In particular, the entire space X is of the second 
category in itself. 

PROOF. For (a), suppose that it is a countable collection of dense open 
subsets of X. It can be assumed that it =I- 0. Then the members of it can 
be written as a sequence (Un), which might require that some member of it 
be repeated infinitely often in the list. Let U be a nonempty open subset 
of X. To prove (a), it is enough to show that Un (nn Un) =I- 0. Since U1 is 
dense in X, there is a closed ball Bl of radius no more than 1 included in 
Un U1 • Now suppose that m 2 2 and that closed balls B1 , . .. ,Bm - 1 have 
been found such that these conditions are satisfied when 1 ::; j ::; m - 1: 

(1) B j - 1 2 B j if j ;::: 2; 

(2) B j ~ un U1 n .. · n Uj ; 

(3) the radius of Bj is no more than j-l. 

Let Gm - 1 be the open ball with the same center and radius as B m - 1 . 

Then the density of Um in X implies that there is a closed ball Bm of 
radius no more than m-1 included in Gm - 1 n Urn. It follows by induction 
that there is a sequence (Bn) of closed balls such that (1), (2), and (3) are 
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satisfied for each positive integer j. The centers of these closed balls form a 
Cauchy sequence that converges to some x in X. This x must lie in each Bn 
and therefore in U and each Un, which shows that Un (nn Un) -I- 0 and 
proves (a). 

For (b), notice that the complement of a nonempty open subset of X 
obviously cannot be dense in X, and therefore, by (a), cannot be the in
tersection of a countable collection of sets each of whose interiors is dense 
in X. It follows from Proposition 1.5.3 (c) that every nonempty open subset 
of X is of the second category in X, and therefore of the second category 
in itself by Proposition 1.5.3 (e). • 

Of course, the metric space formed from the empty set with its only 
possible metric is a complete metric space of the first category in itself. 
Nonempty incomplete metric spaces can be of either the first or second 
category in themselves. The rationals with the metric inherited from the 
reals form an incomplete metric space of the first category in itself, while 
the interval (0,1) in R with the metric inherited from R is an incomplete 
metric space that is of the second category in itself by part (b) of the Baire 
category theorem. 

Suppose that P is a property defined for the elements of some nonempty 
complete metric space X. It follows from the Baire category theorem that 
one way to prove that some member of X has property P is to show that the 
members of X lacking property P form a set of the first category in X. If 
this can be done, then the collection of elements of X having property P is 
a set of the second category in X whose complement is of the first category 
in X, so it can even be said that in some sense the "typical" member of X 
has property P. The following is a classical application of this idea. 

From Newton's time through the early part of the nineteenth century, 
most mathematicians assumed that a continuous real-valued function de
fined on an interval in the real line must be differentiable over most of 
its domain. In 1834, Bernhard Bolzano gave an example of a real-valued 
function continuous on an interval though differentiable nowhere on that 
interval,4 but for almost a century afterward mathematicians treated such 
functions as pathological. However, in 1931 Stefan Banach showed that, 
in a sense, the vast majority of continuous scalar-valued functions whose 
domain is a given interval in IR are not differentiable anywhere. 

1.5.5 Theorem. (S. Banach, 1931 [12]). Let D+ be the collection of all 
members f of C[O, 1] for which there is a point xf in [0,1) at which f has 
a finite right-hand derivative. Then D+ is of the first category in C[O, 1]. 

4Weierstrass is usually given credit for finding the first everywhere continuous, 
nowhere differentiable function, but his example was first presented in lectures in 1861 
and in a paper to the Berlin Academy in 1872. See pages 577 and 627 of [38] for a 
discussion of Bolzano's priority. 
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FIGURE 1.1. A member of e[O, 1] with norm € and large right-hand derivative. 

PROOF. For each positive integer n, let Un be the collection of all mem
bers f of e[O, 1] such that for each x in [0,1- n- l ], 

sup { I f(Y~ = ~(x) I : x < Y < x + ~ } > n. 

It will be shown that each Un is a dense open subset of e[O, 1]. To this end, 
fix an no in N. Suppose that (fm) is a sequence in e[O, 1] \ Uno converging 
to some fo in e[O,I]. To show that Uno is open, it is enough to show 
that fo E e[O, 1] \ Uno. For each positive integer m, let Xm be an element 
of [0,1 - noll such that I (JTn(Y) - fm(xm))/(y - xm)1 ::; no whenever 
XTn < Y < XTn + nolo By thinning the sequence (fm) if necessary, it can be 
assumed that there is an Xo in [0,1 - noll such that Xm ---+ Xo. If Y is such 
that Xo < Y < Xo +nol, then for m large enough that XTn < Y < Xm +nol, 

and so I (Jo(Y) - fo(xo))/(y - xo)1 ::; no· It follows that fo E e[O, 1] \ Uno' 
and therefore that Uno is open. 

The proof that Uno is dense in e[O, 1] uses the Weierstrass approximation 
theorem, which says that the polynomials are dense in e[O, 1]; see, for 
example, [19] or [201]. If to and M are positive numbers, then Figure 1.1 
shows how to construct a sawtooth function that is in e[O, 1], has norm to, 

and has a right-hand derivative with absolute value greater than M at each 
point of [0,1). Since each polynomial on [0,1] has a bounded right-hand 
derivative on [0,1), it follows that if p is a polynomial on [0,1] and to> 0, 
then a sawtooth function can be added to p to yield a member u of Uno 
such that Ilu - pll= ::; €. The set Uno is therefore dense in e[O, 1]. 

Thus, each Un is a dense open subset of e[O, 1], and so, by Proposi
tion 1.5.3 (c), the set e[O, 1] \ (nn Un) is of the first category in e[O, 1]. 
Since a member of e[O, 1] with a finite right-hand derivative at some point 
of [0, 1) cannot lie in every Un, the set of all members of e[O, 1] that are dif
ferentiable from the right anywhere on [0, 1) is included in e[O, 1] \ ( nn Un) 
and therefore is of the first category in e[O, 1]. • 



40 1. Basic Concepts 

1.5.6 Corollary. Let D be the collection of all members f of C[O, 1] for 
which there is a point x f in (0,1) at which f has a finite derivative. Then 
D is of the first category in C[O, 1]. 

Since the Baire category theorem prevents the nonempty complete metric 
space C[O, 1] from being the union of two sets of the first category in C[O, 1], 
the next corollary follows immediately from the preceding one. 

1.5.7 Corollary. The collection of all members of C[O,l] that are not 
differentiable anywhere on (0, 1) is of the second category in C[O, 1]. 

Exercise 1.45 at the end of the preceding section asks for a proof that Ba
nach spaces never have countably infinite vector space bases. The argument 
outlined in that exercise involves the careful construction of a certain non
convergent Cauchy sequence. The result can also be obtained very easily 
from the Baire category theorem. 

1.5.8 Theorem. No Banach space has a countably infinite vector space 
basis. 

PROOF. Suppose that X is a normed space with a count ably infinite vector 
space basis {xn : n EN}. If U is an open subset of X and x E U, then 
X = U~=l n( -x+U), and so X = (UI. It follows that no finite-dimensional 
subspace of X includes a nonempty open subset of X. 

For each positive integer n, let Fn = (Xl, ... ,xnl. Then each Fn is closed 
by Corollary 1.4.20 and includes no nonempty open subset of X, and so is 
nowhere dense in X. Since X = Un F n , the space X is of the first category 
in itself and therefore is not complete. • 

Readers interested in the analogies and interplay between measure and 
Baire category should become acquainted with J. C. Oxtoby's book [178]. 
R. P. Boas's monograph [31]' especially its Section 10, is another good 
place to look for additional interesting applications of the Baire category 
theorem. 

Exercises 

1.52 Derive Theorem 1.3.14 from the Baire category theorem. 

1.53 Prove that the union of finitely many nowhere dense subsets of a topo
logical space must itself be nowhere dense in the space. 

1.54 Prove that a topological space is of the first category in itself if and only if 
it is the union of countably many closed sets each having empty interior. 

1.55 Prove that if Xl and X 2 are topological spaces at least one of which is of 
the first category in itself, then thc topological product Xl x X2 is of the 
first category in itself. 
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1.56 The closure of a nowhere dense set is obviously nowhere dense. Must the 
closure of a set of the first category in a topological space X be of the 
first category in X? 

1.57 Prove that the boundary of a closed subset of a topological space must 
be nowhere dense in the space. Conclude that a subset of a topological 
space is nowhere dense in that space if and only if it is a subset of the 
boundary of some closed set. 

1.58 A subset A of a topological space X is nearly open if there are subsets 
Ml and M2 of the first category in X such that (A \ M1 ) U M2 is open. 
Prove that every Borel subset of a topological space is nearly open. (The 
preceding exercise might be helpful.) 

1.59 An element x of a subset A of a metric space is an isolated point of A if 
there is a positive f such that no point of A besides x itself has distance 
to x less than f. A subset of a metric space is perfect if it is closed and 
has no isolated points. Prove that every nonempty perfect subset of a 
complete metric space is uncountable. Use this to give a proof that the 
reals are uncountable without using the usual diagonalization argument. 
Prove in a similar way that the Cantor set is uncountable. 

1.60 Prove that the rational numbers are not a G6 subset of the reals. (Recall 
that a G6 set is a set that is the intersection of countably many open 
sets.) 

1.61 Suppose that f is any function from R into R Prove that the points of 
continuity of f form a G6 subset of R. Conclude that no function from IR 
into R is continuous precisely on the rationals. Is the same true for the 
irrationals? (The preceding exercise may help.) 

1.62 Show that the real line can be partitioned into two subsets, one of which 
is of the first category in IR and the other of which has Lebesgue measure 
zero. Thus, though the real line is large in both Baire's topological sense 
and Lebesgue's measure-theoretic sense, it can be written as the disjoint 
union of a topologically small set and a measure-theoretically small set. 

1.63 Prove that every nonempty locally compact Hausdorff space is of the 
second category in itself. 

1.6 Three Fundamental Theorems 

Much of the theory of Banach spaces is based on three related results, 
called the open mapping theorem, uniform boundedness principle, and 
closed graph theorem, whose conclusions do not hold for arbitrary normed 
spaces. The purpose of this section is to obtain these fundamental theo
rems. The general plan of attack is to derive each of them from a result 
called Zabre'iko's lemma that is itself a straightforward consequence of The
orem 1.3.14. Other interesting proofs of these three theorems can be found 
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in many analysis texts. See, for example, [67] and [200], as well as Sec
tion 2.3 of this book, all of which contain more general versions of these 
three results that are proved without using ZabreYko's lemma. 

1.6.1 Definition. A seminorm or prenorm on a vector space X is a real
valued function p on X such that the following conditions are satisfied by 
all members x and y of X and each scalar a: 

(1) p(ax) = lalp(x); 

(2) p(x + y) :5 p(x) + p(y). 

For example, if X and Yare normed spaces and T is a linear operator 
from X into Y, then the function x t-+ IITxl1 from X into lR is easily seen 
to be a seminorm on X, called the seminorm induced by T. Of course, a 
norm is always a seminorm, and is in fact just the seminorm induced by 
the identity operator on the space. 

Suppose that p is a seminorm on a vector space X. Then p(O) = 0, since 
p(O) = p(O ·0) = 0 . p(O); notice that some of those zeros are scalars and 
some are vectors. It then follows that p is nonnegative-real-valued rather 
than just real-valued, since 0 = p(O) :5 p(x) + p(-x) = 2p(x) for each x 
in X. A seminorm is therefore a function on a vector space that satisfies the 
definition of a norm, except that the value of the seminorm of a nonzero 
vector is allowed to be zero. 

1.6.2 Definition. A function f from a normed space X into the non
negative reals is countably subadditive if f(En Xn) :5 En f(xn) for each 
convergent series En Xn in X. 

For example, the norm of a normed space is always countably subadditive 
by Proposition 1.3.7 (e). More generally, let p be a seminorm on a normed 
space X. If p is continuous, then pis countably subadditive, as can be seen 
by letting En Xn be a convergent series in X and letting m tend to infinity 
in the inequality p(E~l xn) :5 E:'=l p(xn). Conversely, if p is countably 
subadditive, then p must be continuous provided that X is a Banach space. 
That is the content of ZabreYko's lemma. 

1.6.3 Zabre'lko's Lemma. (P. P. ZabreYko, 1969 [246]). Every countably 
subadditive seminorm on a Banach space is continuous. 

PROOF. Let p be a countably subadditive seminorm on a Banach space X. 
If P is continuous at 0 and x is an element of X, then the argument used in 
the proof of Proposition 1.3.1, with the norm function replaced by p, shows 
that Ip(x) - p(y)1 :::: p(x - y) = Ip(x - y) - p(O)1 whenever y E X, which 
implies the continuity of p at x. Thus, Zabrelko's lemma will be proved 
once it is shown that p is continuous at O. 
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Let G = {x : x E X, p(x) < I}, the "open unit ball" for p. If t > 0, 
then tG = {x : x E X, p(x) < t} by an application of property (1) in 
Definition 1.6.1, and so x E tG whenever x E X and t > p(x). Thus, the 
set G is absorbing. If x, y E G and 0 < t < 1, then 

p(tx + (1 - t)y) ::; tp(x) + (1 - t)p(y) < 1, 

so tx + (1 - t)y E G, which shows that G is convex. Therefore G is closed, 
convex, and absorbing, and so by Theorem 1.3.14 includes an open ball U 
centered at 0 with some positive radius E. If there is a positive real number s 
such that p(x) < s whenever Ilxll < 10, then p(x) < t whenever t > 0 and 
Ilxll < s-ltf, which would imply the continuity of p at O. Thus, the proof 
will be complete once such an s is found. 

Fix an x in X such that IIxll < E. Since x E U ~ G, there is an Xl in G 
such that Ilx - xIII < 2- 1f, Since 

x - Xl E TIU ~ TIG = 2- l G, 

there is an X2 in 2- 1G such that Ilx - Xl - x211 < 2-2 10. Similarly, there is 
an X3 in 2- 2G such that Ilx - Xl - X2 - x311 < 2- 3 E. Continuing in this way 
yields a sequence (xn) such that Xn E 2- n + l G and Ilx - 2:::7=1 xjll < 2- n E 

for each positive integer n. It follows that p(xn) < 2-n + l for each nand 
that X = 2:::n Xn, and so the countable subadditivity of p implies that 

p(X) = p( LXn) ::; LP(xn ) < 2. 
n n 

Letting s = 2 completes the proof. • 
The guaranteed continuity of their countably subadditive semi norms is 

an important way in which Banach spaces differ from incomplete normed 
spaces, for Zabrelko's lemma does not extend to all normed spaces. See 
Exercise 1. 75. 

1.6.4 Definition. A function J from a topological space X into a topolog
ical space Y is an open mapping if J(U) is an open subset of Y whenever 
U is an open subset of X. 

It is a well-known result of elementary complex analysis that every non
constant analytic function on a connected open subset of C is an open map
ping. Unfortunately, that fact and the unrelated one about to be proved 
here are both commonly called the open mapping theorem. The following 
result is also known as the interior mapping principle. 

1.6.5 The Open Mapping Theorem. (J. Schauder, 1930 [208]). Every 
bounded linear operator from a Banach space onto a Banach space is an 
open mapping. 
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PROOF. Let T be a bounded linear operator from a Banach space X onto 
a Banach space Y. Suppose that the image under T of the open unit ball U 
of X is open. Let V be an open subset of X. If x E V, then x + rU ~ V 
for some positive r, and so T(V) includes the neighborhood Tx + rT(U) 
of Tx. It follows that T(V) is open. Thus, the theorem will be proved once 
it is shown that T(U) is open. 

For each Y in Y, let p(y) = inf{ Ilxll : x E X, Tx = y}. If y E Y and a 
is a nonzero scalar, then {x: x EX, Tx = ay} = {ax: x E X, Tx = y}, 
and so 

p(ay) = inf{ Ilaxll : x E X, Tx = y} 

= lal . inf{ Ilxll : x EX, Tx = y} 
= lal p(y). 

Since p(Oy) = 0 = IOlp(y) whenever y E Y, it follows that p(ay) = lalp(y) 
for each scalar a and each y in Y. Now let 2:n Yn be a convergent series 
in Y. The goal is to show that p(2:n Yn) ::; 2:n P(Yn), so 2:n P(Yn) can be 
assumed to be finite. Fix a positive f. Let (xn ) be a sequence in X such 
that TXn = Yn and Ilxnll < P(Yn) + 2-n f for each n. Then 2:nllxnll < 
2:n P(Yn) + f, a finite number. Since X is a Banach space, the absolutely 
convergent series 2:n Xn converges. Now T(2:n x n ) = 2:n TXn = 2:n Yn, 
and so 

p( LYn) ::; IlL xnll ::; L IIxnll < LP(Yn) + f. 
n n n n 

Therefore P(2:n Yn) ::; 2:n P(Yn) since E is an arbitrary positive number, 
and so p is countably subadditive. This also implies that P(YI + Y2) ::; 
p(Yd + P(Y2) whenever Yl, Y2 E Y, as can be seen by letting Yn = 0 when 
n 2: 3. Thus, the function P is a countably subadditive seminorm on Y, and 
so is continuous by Zabrelko's lemma. Finally, 

T(U) = {y : Y E Y, Tx = Y for some x in U} = {y: y E Y, p(y) < I}, 

so T(U) is open. • 
A one-to-one map from one topological space onto another is a homeo

morphism if and only if it is both continuous and open. Combining this 
with the preceding theorem immediately yields the following result. 

1.6.6 Corollary. (S. Banach, 1929 [11]). Every one-to-one bounded linear 
operator from a Banach space onto a Banach space is an isomorphism. 

That is, if a one-to-one linear operator T from a Banach space onto a 
Banach space is continuous, then T- 1 is also continuous. For that reason, 
the preceding corollary is sometimes called the inverse mapping theorem. 
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1.6.7 Definition. Two norms on the same vector space are equivalent if 
they induce the same topology. 

It follows from Corollary 1.6.6 that if 11·111 and 11·112 are two Banach 
norms on the same vector space X and the identity operator, viewed as a 
linear operator from (X, 11·111) onto (X, 11·112), is continuous, then a subset 
of X is open with respect to one of the norms if and only if it is open with 
respect to the other. Restating this in the language of Definition 1.6.7 gives 
the following result. 

1.6.8 Corollary. Suppose that 11·111 and 11·112 are two Banach norms on 
a vector space X and that the identity map from (X, 11·111) to (X, 11·112) is 
continuous. Then the two norms are equivalent. 

A common way of applying Corollary 1.6.8 is by finding a nonnegative 
number a such that IIxl12 :s allxlll whenever x E X and concluding that 
there is also some nonnegative b such that Ilxlll ::; bllxl12 whenever x E X, or 
equivalently that there is a c such that c ~ 1 and c-lllxlll::; Ilx112::; cllxlll 
whenever x E X. 

Incidentally, two Banach norms 11·111 and 11·112 on a vector space X need 
not be equivalent just because there is some one-to-one bounded linear 
operator that maps (X, 11·111) onto (X, 11·lb), even if the map is an isometric 
isomorphism. See Exercise 1.50. 

The following result is often called the Banach-Steinhaus theorem, since 
a proof of it appeared in a 1927 paper by Stefan Banach and Hugo Stein
haus [17]. The result in its full generality for Banach spaces was actually 
first published in 1923 by T. H. Hildebrandt [104], though special forms of 
it had previously appeared in a 1922 paper by Hans Hahn [98] as well as in 
Banach's doctoral thesis [10], also published in 1922. In particular, Hahn's 
proof of the result for the special case in which the family of mappings is a 
sequence of bounded linear functionals can easily be modified to prove the 
more general theorem stated here; see Exercise 1. 76. 

1.6.9 The Uniform Boundedness Principle. (H. Hahn, 1922 [98]; 
S. Banach, 1922 [10]; T. H. Hildebrandt, 1923 [104]; S. Banach and H. Stein
haus, 1927 [17]). Let ~ be a nonempty family of bounded linear operators 
from a Banach space X into a normed space Y. If sup{ IITxl1 : T E ~} is 
finite for each x in X, then sup{ IITII : T E ~} is finite. 

PROOF. Let p(x) = sup{ IITxl1 : T E ~} for each x in X, and suppose that 
p is finite-valued. Notice that p(Qx) = IQI p(x) for each x in X and each 
scalar Q. If Ln Xn is a convergent series in X and T E ~, then 

IIT(Lxn ) II = IILTXnl1 ::; L IITxnl1 ::; LP(xn ), 
n n n n 
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from which it follows that P(Ln x n ) :S Ln p(xn ). In particular, when
ever Xl, X2 EX, letting Xn = 0 when n :::: 3 shows that P(X1 + X2) :S 
P(X1) + P(X2), so P is a count ably subadditive seminorm on X. Therefore 
P is continuous, so there is some positive 8 such that p(x) :S 1 whenever 
Ilxll ::; 8. It follows that p(x) ::; 8- 1 whenever X E B x , and therefore that 
IITxl1 :S 8- 1 whenever T E ~ and X E Ex, that is, that IITII ::; 6-1 for each 
T~~ • 

A family ~ of linear operators from a normed space X into a normed 
space Y is said to be pointwise bounded if, for each element x of X, the set 
{Tx : T E ~} is bounded, and is said to be uniformly bounded if, for each 
bounded subset B of X, the set U{T(B): T E~} is bounded. Notice that 
pointwise bounded ness does not imply the boundedness of the individual 
operators in the family, since every family consisting of one unbounded 
operator is pointwise bounded. Of course, uniform boundedness does im
ply the bounded ness of each member of the family. After only a moment's 
thought about the special case of an empty family of operators, it follows 
easily from the uniform bounded ness principle that pointwise boundedness 
implies uniform boundedness provided each member of the family of oper
ators is bounded and their common domain is a Banach space. This is the 
origin of the name of the theorem. 

1.6.10 Corollary. Let (Tn) be a sequence of bounded linear operators 
from a Banach space X into a normed space Y such that limn Tnx exists 
for each x in X. Define T: X -t Y by the formula Tx = limn Tnx. Then 
T is a bounded linear operator from X into Y. 

PROOF. The continuity of the vector space operations of Y and the linearity 
of each Tn together imply the linearity of T. Since sup{ IITnxl1 : n EN} is 
finite for each x in X, there is a nonnegative M such that II Tn II ::; M for 
each n, and so IITnx11 :S M for each x in Bx and each n. It follows that 
IITxl1 :S M for each x in Ex, and so T is bounded. • 

A linear operator from one Banach space into another is sometimes called 
a closed mapping if it satisfies the hypotheses of the next theorem (but see 
Exercise 1.74). For that reason, the following result is often called the closed 
mapping theorem. 

1.6.11 The Closed Graph Theorem. (S. Banach, 1932 [13]). Let T be 
a linear operator from a Banach space X into a Banach space Y. Suppose 
that whenever a sequence (xn ) in X converges to some x in X and (Txn) 
converges to some y in Y, it follows that y = Tx. Then T is bounded. 

PROOF. Let p(x) = IITxl1 for each x in X. It is enough to prove that 
p is continuous, for then there would be a neighborhood U of 0 such 
that the set p(U) is bounded, which would in turn imply that T(U) is 
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bounded, and that would imply the continuity of T by Theorem 1.4.2. 
Since p is a seminorm on X, an application of Zabrelko's lemma will fin
ish the proof once it is shown that p is count ably subadditive. Let Ln Xn 
be a convergent series in X. The proof will be finished once it is shown 
that IIT(Ln xn)11 ~ LnllTxnll, so it may be assumed that LnllTxnll is 
finite, which together with the completeness of Y implies that the abso
lutely convergent series Ln TXn converges. Since L::'=l Xn -+ Ln Xn and 
T(L::'=l xn) = L::'=l TXn -+ Ln TXn as m -+ 00, it follows from the 
hypotheses of the theorem that Ln TXn = T(Ln xn). Therefore 

IIT(2: Xn ) II = II2: Txn ll ~ 2:IITxnll, 
n n n 

which shows that p is countably subadditive and finishes the proof. • 

It is customary to derive all three of the major theorems of this section 
directly or indirectly from the Baire category theorem. This is exactly what 
has been done here, since Theorem 1.3.14, a weak version of the Baire cate
gory theorem, was used in the proof of Zabrelko's lemma. See Exercise 1.76 
for a different derivation of the uniform boundedness principle that does 
not use any form of the Baire category theorem. The argument, essen
tially due to Hahn, is of a type called a gliding hump argument. The only 
use of completeness in the argument is to assure that a certain absolutely 
convergent series converges. 

Exercises 

1.64 Suppose that X is a Banach space and T: X -> loo is a linear operator. 
For each n in N, let (Tx)n be the nth tenn of Tx and let fn be the linear 
functional on X that maps x to (T:!:)n. Prove that T is bounded if and 
only if each In is bounded. 

1.65 Repeat the preceding exercise, replacing loo by £1. 

1.66 Prove that if T is a bounded linear operator from a Banach space X onto 
a Banach space Y, then whenever a sequence (Yn) converges to a limit Y 
in Y, there is a sequence (x .. ) converging to an x in X such that Tx = Y 
and TXn = Yn for each n. 

1.61 Suppose that X and Y are metric spaces and that I is a function from X 
into Y. Prove that the graph { (x,J(x») : x EX} of f is closed in X x Y 
if and only if Y = f(x) whenever a sequence (x n ) converges to x in X and 
(I(x .. ») converges to y in Y. (This is the source of the name of the closed 
graph theorem. Suppose that X and Yare Banach spaces and that T is a 
linear operator from X into Y. Then the closed graph theorem says that 
T is bounded if its graph is closed in X x Y. In fact, the operator T is 
bounded if and only if its graph is closed in X x Y. See the next exercise.) 
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1.68 Prove the following converse of the closed graph theQrem: If / is a contin
uous function from a topological space X into a Hausdorff space Y, then 
the graph of / is closed in X x Y. 

1.69 Let X be a normed space and let X· = B(X, JF). Suppose that (Xn) is 
a sequence in X such that Ln x'xn converges whenever x· E X'. Show 
that the mapping x· f-7 Ln x'xn is a bounded linear functional on X'. 

1. 70 Suppose that 1 ::; P ::; 00 and that T is a linear operator from Lp [0, 1] 
into itself with the property that if (fn) is a sequence in Lp[O, 1] that 
converges almost everywhere to some / in Lp[O, 1], then (T/n) converges 
almost everywhere to T/. Prove that T is bounded. 

1.71 Suppose that X and Yare Banach spaces and that ;J is a family of 
continuous functions from Y into a Hausdorff space such that whenever 
Y1, Y2 E Y and Y1 "I Y2, there is an /YI,Y2 in ;J for which /YI,Y2(Y1) "I 
/YI,Y2(Y2). Prove that if T is a linear operator from X into Y such that 
/ 0 T is continuous for each / in ;J, then T is bounded. 

1. 72 Derive Corollary 1.6.6 from the closed graph theorem. 

1. 73 Obtain the uniform bounded ness principle directly from Theorem 1.3.14. 
(With all notation as in the statement of the uniform boundedness prin
ciple, let C = {x: x E X, IITxlI :S 1 for each T in ;J }.) 

1. 74 The term closed mapping is used both for a linear operator between Ba
nach spaces that satisfies the hypotheses of the closed graph theorem and 
for a mapping from one topological space to another that always maps 
closed sets onto closed sets. The two meanings are not equivalent for linear 
operators between Banach spaces, as will be shown in this exercise. 

(a) Suppose that X and Yare normed spaces and T is a linear operator 
from X into Y that is neither one-to-one nor the zero operator. Find 
a closed subset F of X such that T(F) is not closed in Y. 

(b) Find a linear operator T that satisfies the hypotheses of the closed 
graph theorem even though there is a closed subset F of the domain 
of T such that T(F) is not closed in the range of T. 

1. 75 The results of this section cannot in general be extended to incomplete 
normed spaces. To see this, let X be the vector space of finitely nonzero 
sequences equipped with the £1 norm. Let Y have the same underlying 
vector space as X, but equipped with the £00 norm. 

(a) Let / rrt ( (an)) = m· am for each element (an) of X and each positive 
integer m. Use the family {/m : mEN} to show that the uniform 
boundedness principle does not extend to incomplete normed spaces. 

(b) Show that the "identity" operator from X onto Y is a bounded 
linear mapping that is not open. 

(c) Use the "identity" operator from Y onto X to show that the closed 
graph theorem does not extend to incomplete normed spaces. 

(d) Show that the £, norm is a countably subadditivc scminorm on Y 
that is not continuous. 
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1. 76 The purpose of this exercise is to produce a proof of the uniform bound
edness principle without using Theorem 1.3.14 or any other form of the 
Baire category theorem. To this end, suppose that ~ is a nonempty col
lection of bounded linear operators from a Banach space X into a normed 
space Y such that sup{ IITII : T E ~} = +00. The goal is to find an x 
in X such that sup{ IITxl1 : T E ~} = +00. 

(a) The proof is based on the existence of sequences (Tn) and (Xn) in 
~ and X respectively such that the following two conditions are 
satisfied for each positive integer n: 

n-l 
IITnxnll2 n+ E II TnXj II (or 21 ifn = 1); 

j=1 

Argue that the only obstacle to the inductive construction of the 
sequences is the existence of an x with the desired property. The 
existence of such a pair of sequences may therefore be assumed. 

(b) Show that the series Z=n Xn converges to some x in X. 

(c) Show that Z=;:n+lIITnXjll:S: 1 for each n. 

(d) Show that IITnxl1 2 n - 1 for each n, so sup{ IITxl1 : T E J} = +00. 
This proof is essentially from Hahn's 1922 paper [98, pp. 6-8]' though he 
stated the result only for sequences of linear functionals. This is called a 
gliding hump argument. The sequences (Tn) and (Xn) are chosen so that 
Z=n Xn converges to some x in X and, for each n, the major contribution 
to Tnx comes from Tnxn. If (IITnxjll);:l is considered to be a sequence 
that depends on the parameter n, then the sequence has a "hump" in it at 
the nth term. As n increases, this hump glides forward and has unbounded 
height. (Incidentally, the argument can be simplified very slightly by re
placing z=;,:;IITnxj II by IITn(Z=;':ll xj)11 in (a), but then it is not obvious 
that IITnxn11 must be the dominant term of the sequence (IITnxjll);:l' 
and therefore it is harder to see the hump.) Gliding hump arguments 
of this form probably first appeared in work by Henri Lebesgue from 
1905; see [149J and [150, pp. 86-88J. Hahn specifically stated in his pa
per that the basic method for his proof was taken from a 1909 paper by 
Lebesgue [151, p. 61J. See [64, pp. 138-142J for more on the history of 
gliding hump arguments. 

1.7 Quotient Spaces 

Recall the following definition from linear algebra. 

1.7.1 Definition. Let M be a subspace of a vector space X. The quotient 
space or factor space X/M (read "X modulo M" or "X mod M") is the 
vector space whose underlying set is the collection {x + M : x EX} of 
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all translates of M along with the vector space operations given by the 
formulas 

(x + M) + (y + M) = (x + y) + M 

and 

ex· (x + M) = (ex· x) + M. 

For each x in X, the tran~late x + M is called the coset of M containing x. 

With M and X as in this definition, it follows that two elements x + M 
and x' + M of X I M are equal if and only if x - x' EM. Easy arguments 
based on this show that the addition of elements and multiplication of 
elements by scalars given in the definition are well-defined, that is, that if 
ex E F and x, x', y, y' are elements of X such that x + 1'v! = x' + M and 
y + M = y' + M, then (x + M) + (y + M) = (x' + M) + (y' + M) and 
ex(x + M) = ex(x' + M). The fact that XIM with these operations is a 
vector space then follows by routine verifications. Notice that the zero of 
XIM is M, for which 0 + .M is usually written in this context, and that 
-(x + M) = (-x) + M whenever x E X. 

Since two cosets x + M and x' + M are equal if and only if x' - x E M, 
and therefore if and only if x' Ex + M, it follows that x + M and x' + M 
are either equal or disjoint. Thus, the sets that are the elements of XI M 
partition X into equivalence clas~es, with two elements of X lying in the 
same equivalence class if and only if their difference lies in M. For this 
reason, the elements of XI M are sometimes treated as if they were just 
those of X, except that two elements are considered to be the same when 
they differ only by an element of M. Here is one familiar example of this 
practice. 

1. 7.2 Example. Suppose that J1 is a positive measure on a O"-algebra I: of 
subset~ of a set O. Let X be the vector space of all J1-measurable scalar
valued functions on 0 that are J1-integrable, and let M be the subspace of X 
consisting of all members of X that are zero almost everywhere. Then the 
vector space underlying L 1 (O,I:,J1) is actually XIM, though in practice 
it is often treated as if it were X. Similar remarks apply to the spaces 
Lp(O, I:, J1) such that 1 < p ::; 00. 

The notation of Definition 1.7.1 suggests that the sum of two cosets is 
just the algebraic sum of the two sets as defined in Section 1.1. It is easy 
to verify that this is indeed so. It is abo easy to check that the product of 
a scalar 0' with a coset x + M is just the product of 0' with the set x + M 
as such products were defined in Section 1.1 provided ex is nonzero. There 
is a trap waiting when ex = 0, since 

( ) { 
0 + M = M in the sense of Definition 1. 7.1; o x+M = 
{O} in the seIlSe of Section 1.1. 
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It is thus all right to treat the vector space operations of Definition 1. 7.1 
as being the set operations of Section 1.1 as long as this one discrepancy 
is kept in mind. The context should always prevent confusion about the 
meaning of O(x + M). 

Now suppose that M is a subspace of a normed space X. It is reasonable 
to ask if the norm of X induces a norm on XI M in some natural way. 
Such a norm clearly cannot come from the "formula" Ilx + Mil = Ilxll when 
M =I- {O}, for y + M = 0 + M whenever y E M even if Ilyll =I- 11011. This is 
one situation in which it is helpful to think first about distance and then 
recover the norm from the notion of distance. There is a natural way to 
define the distance between two cosets x + M and y + M, namely, the 
way in which the distance between subsets of a metric space is defined in 
Section 1.1: 

d(x + M, y + M) = inf{ Ilv - wll : v E x + M, w E Y + M}. (1.1) 

Also, the formula from Section 1.1 for the distance between a point and a 
set in a metric space can be used to find the distance between an element x 
of X and a member y + M of X/M: 

d(x, y + M) = inf{ Ilx - wll : w E y + M}. 

It follows that d(x, y + M) = d(x + M, y + M) whenever x, y EX, since 

{v - w : v E x + M, w E Y + M} = {(x + zd - (y + Z2) : zl, Z2 EM} 

= {x - (y + Z2 - Zl) : Zl, Z2 EM} 

= {x - (y + z) : Z EM} 

= {x - w: w E y + M}. 

Notice that if x E M \ M, then 0 ~ d(x + M,O + M) = d(x, M) = 0, and 
therefore d(x+M,O+M) = 0 even though x+M =I- O+M. It follows that if 
the function d of (1.1) is to have any hope of being a metric on X / M, then 
the set M \ M must be empty; that is, thc set M must be closed. Therefore, 
for the rest of this paragraph it will be assumed that M is a closed subspace 
of X. If the formula from (1.1) does now define a mctric on X/M (which 
it does, as will be shown in the comments following Theorem 1.7.4), and 
if this metric is induced by a norm, then that norm must measure the 
distance from a coset to the origin of X / M. 

1. 7.3 Definition. Let M be a closed subspace of a normed space X. The 
quotient norm of X/M is given by the formula Ilx+MII = d(x+M,O+M). 

With M and X as in the preceding definition, the quotient norm of a 
coset x + M can also be interpreted to be the distance from the point x to 
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the set M, or as the distance from the origin of X to the set x + M, since 
d(x, M) = d(x + M,O + M) = d(O, x + M). Therefore 

Ilx + Mil = inf{ Ilx - zll : z EM} = inf{ Ilx + zll : z EM} 

whenever x EX. 

1. 7.4 Theorem. If M is a closed subspace of a normed space X, then the 
quotient norm of X/Mis a norm. 

PROOF. Suppose that x, y E X and that a is a scalar. Since M is closed, 
it follows that d(x, M) = 0 if and only if x E M, that is, that Ilx + Mil = 0 
if and only if x + M = 0 + M. If a I- 0, then 

Ila(x + M)II = d(ax, M) = d(ax, aM) = lal d(x, M) = lallix + Mil, 

and 

110(x + M)II = 110 + Mil = 0 = 1011ix + Mil· 

To verify the triangle inequality, first observe that whenever Zl, Z2 E M, 

II(x+M)+(y+M)11 = II(x+y)+MII 
S Ilx + y + Zl + z211 
s Ilx + zlll + Ily + z211· 

Taking appropriate infima shows that 

II(x + M) + (y + M)II S Ilx + Mil + Ily + Mil· 

Thus, the quotient norm has all the properties required of a norm. • 

When X and M are as in the preceding theorem, the metric induced by 
the quotient norm of X/M is given by the formula from (1.1), since 

d(x + M,y + M) = d((x - y) + M,a + M) 
=11(x-y)+MII 
= II(x+M) - (y+M)11 

whenever x, y E X. 
Henceforth, whenever a quotient space oj a n077ned space by one of its 

closed subspaces is treated as a nOTTned space, a metric space, or a topolog
ical space though no nOTTn, metric, or topology has been specified, it is the 
quotient nOTTn, the metric induced by that nOTTn, or the topology induced by 
that metric that is implied. 

1.7.5 Example. In the Euclidean space ]R2, let M = {(a,;3) : a = a}. 
Then ]R2 / M is the collection of all vertical lines in the plane, with the norm 
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of each such line being its distance from the origin, that is, the absolute 
value of its a-intercept. Some of the proofs in this section are based on 
geometric ideas that are easier to visualize if this example is kept in mind. 

1. 7.6 Proposition. Let M be a closed subspace of a normed space X. 

(a) If x E X, then Ilxll ~ Ilx + Mil. 

(b) If x E X and f > 0, then there is an x' in X such that x' +M = x+M 
and Ilx'll < Ilx + Mil + f. 

PROOF. Since Ilx-OII ~ d(x, M) = Ilx+MII for each x in X, part (a) holds. 
For (b), suppose that x E X and f > O. Let y be an element of M such 
that Ilx - yll < d(x, M) + f = Ilx + Mil + f. Then x - y is the desired x' .• 

With X and M as in the preceding proposition, suppose that x and yare 
elements of X such that II(x-y)+MII < 8 for some positive 6. By part (b) 
of the proposition, there is a y' in X such that (x - y') + M = (x - y) + M 
and Ilx-y'll < 6. This observation is useful in the proof of the next theorem. 

1. 7.7 Theorem. If M is a closed subspace of a Banach space X, then 
XIM is also a Banach space. 

PROOF. Suppose that (xn +M) is a Cauchy sequence in XIM. It is enough 
to prove that some subsequence of (xn + M) has a limit, for then the entire 
sequence will converge to the same limit. By thinning, it may be assumed 
that II(xn - xn+d + Mil < 2-n for each n. By the remark preceding the 
theorem, there is some x; such that (Xl - X;) + M = (Xl - X2) + M 
and Ilxl - x;1I < 2- 1 . Since x; + M = X2 + M, it may be assumed that 
x; = X2· There is some x; such that (X2 - x;) + M = (X2 - X3) + M and 
IIx2 -x~1I < 2-2. It may be assumed that x~ = X3. By an obvious induction 
argument, it may be assumed that Ilxn - xn+lll < 2-n for each n. Then 
the Cauchy sequence (xn) converges to some x in X. For each n, 

II(xn + M) - (x + M)II = II(xn - x) + Mil::; Ilxn - xii, 

and so Xn + M --> x + M as n --> 00. • 
Suppose now that M is a closed subspace of a normed space X not known 

to be complete. It is natural to ask whether the completeness of X I M would 
imply that of X. In general, the answer is no. A trivial counterexample is 
obtained by letting X be any incomplete normed space, letting M = X, 
and noting that XI M is complete even though X is not. It turns out, 
though, that X would have to be complete if both XIM and M were so. 

1. 7.8 Definition. Let P be a property defined for normed spaces. Suppose 
that whenever X is a normed space with a closed subspace M such that 
two of the spaces X, M, and XIM have the property, then the third must 
also have it. Then P is a three-space property. 
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1. 7.9 Theorem. Completeness is a three-space property. 

PROOF. Let M be a closed subspace of a normed space X. If X is complete, 
then so are M and XIM. Therefore all that needs to be checked is that X 
is complete if both M and XIM are. 

Suppose that M and XIM are Banach spaces. Let (xn) be a Cauchy 
sequence in X. Since II(xn - xm) + Mil::; Ilxn - xmll whenever m,n E N, 
the sequence (xn + M) is Cauchy in XI M and so converges to some Y + M. 
By Proposition 1.7.6 (b), there is for each positive integer n some Yn in X 
suchthatYn+M= (xn-y)+M and IIYnl1 < II(xn -y)+MII+2-n . Then 
limn Yn = 0, so (x n - Yn - y) is a Cauchy sequence in M and therefore has 
a limit z in M. It follows that Xn (xn - Yn - y) + Yn + Y --+ z + Y as 
n --+ 00, so X is complete. • 

When a set X has been partitioned into a collection Y of equivalence 
classes, the function from X onto Y that maps each member of X to its 
equivalence class is often called the projection from X onto Y. If X is a 
normed space and the equivalence classes are the members of some quotient 
space XIM such that M is a closed subspace of X, then it is customary 
to call the projection from X onto XIM a quotient map, partly for the 
ohviollS reason but also because of a relationship to topological quotient 
maps that will be mentioned later. 

1.7.10 Definition. Let M be a closed subspace of a normed space X. 
Then the quotient map from X onto XI M is the function 7r defined by the 
formula 7r(x) = x + M. 

1.7.11 Lemma. If M is a closed subspace of a normed space X and 7r is 
the quotient map from X onto XI M, then the image under 7r of the open 
unit ball of X is the open unit ball of XIM. 

PROOF. This proof uses both parts of Proposition 1.7.6. Let Ux and UXjM 
be the open unit balls of X and X I M respectively. If x E U x, then 117r( x) II = 
Ilx + Mil::; Ilxll < 1, so 7r(Ux ) ~ UXjM · If Y + ME UXjM , then there is a 
Y' in Ux such that 7r(Y') = Y' +M = y+M. Therefore UXjM ~ 7r(Ux), so 
7r(Ux ) = UXjM· • 

1. 7.12 Proposition. Let M be a closed subspace of a normed space X. 
Then the quotient map 7r from X onto XI M is a bounded linear operator 
that is also an open mapping and has M as its kernel. If M of. X, then 
117r11 = 1. 

PROOF. The linearity of 7r follows immediately from the definition of the 
vector space operations of X 1M, and the fact that ker( 7r) = M is almost as 
immediate. By the lemma, the linear operator 7r maps the open unit ball 
of X onto a bounded subset of XI M, which implies that 7r is bounded. It is 
also clear from the lemma that 117r11 = 1 if XIM of. {M}, that is, if M of. X. 
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Finally, let x be an element of an open subset V of X. To show that 7r is 
an open mapping, it is enough to find a neighborhood W of 7r(x) such that 
W ~ 7r(V). Let Ux be the open unit ball of X. Then x+rUx ~ V for some 
positive r, so 7r(x) + r7r(Ux ) ~ 7r(V). Since 7r(Ux ) is the open unit ball 
of X/ M, the neighborhood 7r(x) + n(U x) of 7r(x) is an acceptable W .• 

Recall that a topological quotient map is a function f from a topological 
space X onto a topological space Y such that a subset A of Y is open in Y 
if and only if 1-1 (A) is open in X, and that if there is such a map f from X 
onto Y, then the topology of Y is called the quotient topology induced by f. 
Of course, a function from one topological space onto another that is both 
continuous and an open mapping is a topological quotient map. It therefore 
follows from Proposition 1.7.12 that the quotient map 7r from a normed 
space X onto X/M, where M is a closed subspace of X, is a topological 
quotient map, and the topology of X/M is the quotient topology induced 
by 7r. 

Another important class of topological quotient maps consists of the 
bounded linear operators from one Banach space onto another. Each such 
map actually is a topological quotient map since it is both continuous and 
open. More generally, let T be a bounded linear operator from a Banach 
space X into a Banach space Y such that the range of T is closed in Y. 
Then T, viewed as an operator onto the Banach space T(X), is a topological 
quotient map, so the norm topology that T(X) inherits from Y is also the 
quotient topology induced by T. 

An important feature of a closed-range bounded linear operator from 
one Banach space into another is that its range is an isomorphic copy 
of a certain quotient space of its domain. The next theorem is the main 
ingredient needed to prove this. 

1.7.13 Theorem. Suppose that X and Yare normed spaces and that 
T is a linear operator from X into Y, not assumed to be bounded. Suppose 
further that M is a closed subspace of X such that M ~ ker(T) and that 7r 

is the quotient map from X onto X/M. Then there is a unique function 8 
from X/M into Y such that T = 80 7r, that is, such that the following 
diagram commutes. 

This map 8 is linear and has the same range as T. The operator 8 is an 
open mapping if and only if T is an open mapping, and is bounded if and 
only if T is bounded. If T is bounded, then 11811 = IITII. 
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PROOF. Let 5(x + M) = Tx whenever x E X. If x + M = x' + M, then 
x - x' E M ~ ker(T), and so Tx = TX'. Thus, there is no ambiguity in the 
definition of 5. The linearity of 5 now follows immediately from that of T. 
Notice that T = 50 7r, and that if 5': XI M --t Y is such that T = 5' 0 7r, 
then 5 ' (x + M) = 5 ' (7r(x)) = Tx = 5(x + M) for each member x + M 
of X I M. This proves the claimed existence and uniqueness of 5. Also, 

{5(x + M) : x + ME XIM} = {5(7r(x)) : x EX} = {Tx: x EX}, 

so the ranges of 5 and T are the same. 
If U x and U x / M are the open unit balls of X and XI M respectively, 

then 7r(Ux) = UX / M by Lemma 1.7.11, and so 

sup{ 115(x + M)II : x + ME UX / M } = sup{ 115(7r(x)) II: x E Ux } 

= sup{ IITxll : x E Ux }. 

It follows that 5 is bounded if and only if T is bounded, and that if 5 
and T are bounded then the common value of the above suprema is the 
norm of each. 

Since the composite of two open mappings is an open mapping, it follows 
that T is an open mapping whenever 5 is. Conversely, suppose that T is 
an open mapping. If U is an open subset of XIM, then 

an open set. This shows that 5 is an open mapping and completes the 
proof. • 

The preceding theorem may have a familiar ring to it, for it is the normed
space analog of an important result from abstract algebra: If N is a normal 
subgroup of a group G and f is a group homomorphism from G into a 
group H such that N c::: ker(f) , then there is a unique group homomor
phism fa from the quotient group GIN into H such that f(g) = fo(gN) 
for each 9 in G. This result is used to prove the first isomorphism theorem 
for groups, which says that if f: G --t H is a group homomorphism, then 
G/ker(f) and f(G) are isomorphic as groups. Theorem 1.7.13 can be used 
to obtain an analogous result for Banach spaces. 

1. 7.14 The First Isomorphism Theorem for Banach Spaces. Sup
pose that X and Yare Banach spaces and that T E B(X, Y). 5uppose 
further that the range of T is closed in Y. Then XI ker(T) ~ T(X). 

PROOF. As the inverse image under T of the closed subspace {O} of Y, 
the kernel of T is a closed subspace of X. Let 5: X/ker(T) --t Y be the 
linear operator obtained from Theorem 1.7.13 by letting M = ker(T). Since 
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ker(S) = {x + ker(T) : x E X, S(7rx) = O} 
= {x + ker(T) : x E ker(T) } 

= {O + ker(T)}. 

It follows that S is a one-to-one bounded linear operator from the Banach 
space XI ker(T) onto the Banach space T(X), and therefore is an isomor
phism by Corollary 1.6.6. • 

This section concludes with two applications of quotient maps. The first 
gives a nice test for the continuity of a finite-rank linear operator between 
normed spaces. 

1.7.15 Theorem. Suppose that T is a finite-rank linear operator from a 
normed space X into a normed space Y. Then T is bounded if and only if 
its kernel is a closed subset of X. 

PROOF. If T is bounded, then the kernel of T is closed since it is the 
inverse image under T of the closed subset {O} of Y. Conversely, suppose 
that ker(T) is closed. Let M = ker(T) and let S: XIM ~ Y be as in 
Theorem 1.7.13. Then S(x + ker(T») = 0 exactly when Tx = 0, that 
is, exactly when x E ker(T). Thus, the kernel of S is the one-element 
set {ker(T)}, and so S is one-to-one. Since T(X), the range of S, is finite
dimensional, the domain of the one-to-one linear operator S is also finite
dimensional, and so S is bounded. By Theorem 1.7.13, the operator T must 
also be bounded. • 

Incidentally, a much stronger statement can be made for nonzero linear 
functionals. If f is a nonzero linear functional on a normed space X, then 
the kernel of f is either closed in X or dense in X, depending on whether 
or not f is bounded. 

1.7.16 Proposition. Suppose that f is an unbounded linear functional 
on a normed space X. Then the kernel of f is dense in X. 

PROOF. If a is a nonzero element of a balanced subset B of IF and 13 is a 
scalar such that 1131 ::; lal, then la-1 f31 ::; 1, and so 13 = a- 1f3a E B. It 
follows that the only balanced unbounded subset of IF is IF itself. Since the 
open unit ball U x of X is balanced and f is an unbounded linear functional, 
the set f(U x) is a balanced unbounded subset of IF and so equals IF. If V is 
an open ball in X, then V = x + rU x for some x in X and some positive r, 
so f(V) = f(x + rUx) = f(x) + rf(Ux ) = IF, which implies that f takes 
on the value zero somewhere on V. Thus, the kernel of f intersects every 
open ball in X, and so is dense in X. • 
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For the second application, suppose that M and N are closed subspaces 
of a normed space X. It is easy to see that M + N is also a subspace of X. 
However, the set M + N might not be closed; see Exercise 1.84. There is 
one situation, however, in which it must be. 

1. 7.17 Proposition. Let M and N be closed subspaces of a normed 
space X. If either M or N is finite-dimensional, then M + N is a closed 
subspace of X. 

PROOF. Without loss of generality, assume that M is finite-dimensional. 
Let 7r be the quotient map from X onto X/No By Corollary 1.4.20, the 
finite-dimensional subspace 7r(M) of X/N is closed, so 7r-l(7r(M)) is a 
closed subspace of X. It is easy to check that M + N = 7r- 1 (7r(M)). • 

Exercises 

1.77 Prove that II(an)+eol! = lim sUPnlan I for each element (an)+eo ofioo/eo. 

1.78 Let M = {f : f E e[O, 1], f(O) = O}, a closed subspace of e[O, 1]. Find 
a simple expression for the quotient norm of e[O, 1]IM. What familiar 
normed space is isometrically isomorphic to this quotient space? 

1. 79 Give an example to show that the isomorphism guaranteed by the first 
isomorphism theorem need not be an isometric isomorphism. Exercise 1.49 
might help. 

1.80 Display a bounded linear operator from a Banach space onto an incom
plete normed space. What does this say about trying to extend the first 
isomorphism theorem to incomplete normed spaces? 

1.81 Suppose that T is a bounded finite-rank linear operator from a normed 
space X into a normed space Y. Prove that XI ker(T) ~ T(X), whether 
or not either X or Y is complete. 

1.82 Show that the conclusion of Theorem 1.7.15 does not always hold for 
linear operators not having finite rank. Exercise 1. 75 (c) may be helpful. 

1.83 Prove that finite-dimensionality is a three-space property. 

1.84 The purpose of this exercise is to show that the sum of two closed sub
spaces of a Banach space need not be closed. Let M and N be the closed 
subspaces of Co defined by the formulas 

M = { (an) : (an) E Co, a Tn = mOTn-l for each even m}; 

N = { (an) : (On) E Co, a Tn = 0 for each odd m}. 

Show that M + N is a proper dense subspace of Co. 

1.85 In Co, let Ml = {(On) : 01 = O} and M2 = {(an) : 01 = a2 = O}. Show 
that calM! is not isomorphic to eo1M2 , even though M! is isometrically 
isomorphic to M 2 • 
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1.86 The purpose of this exercise is to prove this theorem: Suppose that X 
and Yare normed spaces and that M is a closed subspace of X such 
that X/M is finite-dimensional. If T E B(M, Y), then there is a To in 
B(X, Y) such that To agrees with T on M. That is, every bounded linear 
operator with domain M has a bounded linear extension to X. 

(a) Show that the theorem is true if the dimension of X/M is zero. 
Now assume that the dimension of X/M is a positive integer n. Let 
Xl + M, ... ,Xn + M be a basis for X/M and let Z = (Xl, ... ,xn ). 

Show that for each X in X there is a unique m(x) in M and a unique 
z(x) in Z such that X = m(x) + z(x). 

(b) Show that the mappings x f-> m(x) and x f-> z(x) are bounded linear 
operators from X onto M and Z respectively. 

(c) Prove the theorem. 

1.87 Find the second and third isomorphism theorems for groups in your fa
vorite abstract algebra text; for example, see [106]. 

(a) State and prove a Banach-space analog of the second isomorphism 
theorem. You might need to impose some conditions on the pertinent 
subspaces beyond just requiring them to be closed. 

(b) Do the same for the third isomorphism theorem. 

1.8 Direct Sums 

Recall that the vector space sum of the vector spaces Xl"'" Xn in a 
nonempty finite ordered list is the vector space whose underlying set is the 
Cartesian product Xl x ... X Xn and which has the vector space operations 
given by the formulas 

(Xl,'" ,Xn) + (YI, ... , Yn) = (Xl + YI,'" ,Xn + Yn)i 

a· (Xl, ... ,Xn) = (aXI, ... ,axn). 

If Xl"'" Xn are normed spaces, then there is a way to norm their vector 
space sum that is suggested by the norm of Euclidean n-space. 

1.B.1 Definition. Let X I, ... , Xn be normed spaces with respective norms 
11·llx" ... , 11·llxn · The (external) direct sum or direct product of Xl, ... , Xn 
is the normed space whose underlying vector space is the vector space sum 
of Xl, ... ,Xn and whose norm is the direct sum norm given by the formula 

This normed space is denoted by Xl EEl··· EEl X n . 
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The subscripts that appear on the norms of Xl, ... ,Xn in the preceding 
definition were included only for clarity, and will usually be omitted when 
there is no possibility of confusion. 

Of course, it must be shown that the formula in Definition l.8.1 actually 
does define a norm on the vector space sum of Xl, ... , X n . The triangle 
inequality follows from the triangle inequality for the norm of Euclidean 
n-space, for if (Xl, ... ,Xn ), (Yl, ... ,Yn) E XIX· .. X X n, then 

II (Xl, ... ,Xn ) + (Yl, ... ,Yn) II = (t IIXj + Yj 112) 1/2 

< (t(IIXjll + IIYjll)2) 1/2 

< (tIIXjI12r/2 + (tIIYjI12r/2 

= II(Xl, ... , xn)11 + II(Yl, ... , Yn)ll· 
It is easy to check that the direct sum norm has the other properties re
quired of a norm. 

It should be mentioned that there is no universal agreement on the best 
way to define the direct sum norm. For example, the norms defined by the 
formulas 

n 

II(Xl, ... ,xn)lh = 2)Xjll 
j=l 

and 

are often used instead of the norm given in Definition 1.8.1. Fortunately, 
these three norms turn out to be equivalent; see Exercise 1.88. The reason 
for choosing the particular norm used here is made clear in Section 1.10. 

Just as the symbol L:7=1 aj is often used to represent the sum of scalars 
001, ... ,an, there are compact "sigma" notations to represent the direct 
sum of normed spaces Xl' ... ' X n . Unfortunately, there seem to be about 
as many such notations in use as there are people to invent them. For 

n n ( n ) example, the notations L:ffi£o Xj, €Be 2 Xj, and L: Xj are all used, 
J=l J=l J=l /0 

where the £2 indicates in an obvious way the nature of the direct sum norm 
and is sometimes omitted or replaced by £"2 or just 2. 

When a normed space direct sum has only one summand Xl, the no
tation of Definition 1.8.1 does not distinguish between the summand Xl 
and the direct sum X 1. This is no problem, for in this situation it is com
mon practice to identify the direct sum with the summand. Since the map 
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x ~ (x) from the summand onto the direct sum is clearly an isometric 
isomorphism, the convention is justified. 

When (Xl, dd, . .. , (Xn , dn ) are metric spaces, there is a standard way 
to define a product metric on Xl x ... X X n , namely, by the formula 

see Definition B.50 in Appendix B. Furthermore, this metric induces the 
usual product topology on XIX ... X X n . When Xl, ... , Xn are normed 
spaces, the metric induced on Xl x ... X Xn by the direct sum norm is 
precisely the product metric dp , which immediately yields the following 
result. 

1.8.2 Theorem. Let Xl"'" Xn be normed spaces. Then the product 
metric induced on Xl x '" X Xn by the metrics of Xl,"" Xn is the same 
as the metric induced by the direct sum norm, so the product topology of 
Xl x··· X Xn is the same as the topology induced by the direct sum norm. 

The next result says that the direct sum of normed spaces X I, ... , Xn 
always includes isometrically isomorphic copies of the Xj's in the places 
where one would most expect to find them. 

1.8.3 Proposition. Let Xl, ... , Xn be normed spaces. For each integer j 
such that 1 :s: j :s: n, let 

Then each Xj is a closed subspace of Xl ffi ... ffi Xn that is isometrically 
isomorphic to the corresponding X j . 

PROOF. The map x f-7 (x, 0, ... ,0) is clearly an isometric isomorphism from 
Xl onto X~. If ((x(kl,O, ... ,O)) is a sequence in Xf and (XI, ... ,Xn ) is a 
member of Xl ffi· . ·ffiXn such that II (x(k\ 0, ... ,0) - (Xl, ... , Xn) II -> 0, then 
it is easy to see that X2, ... , Xn are all zero, from which it follows that X~ is 
closed in Xl ffi ... ffi X n. Analogous arguments work for the other Xl's .• 

The following two propositions give important "algebraic" properties of 
direct sums. The first is a generalized commutative and associative law, 
while the second serves as a cancellation law. 

1.8.4 Proposition. Let Xl, .. . , Xn be normed spaces. If two direct sums 
are each formed by permuting and associating the terms of Xl ffi· .. ffi X n , 
then those two direct sums are isometrically isomorphic. 

PROOF. It is enough to prove that a direct sum formed by permuting 
and associating the terms of X I ffi ... ffi X n is isometrically isomorphic 
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to Xl ffi ... ffi Xn' An example will tell most of the story. Suppose for the 
moment that n = 5, and consider the direct sum (X4ffi(X5ffiX2))ffiX3ffiXI 
formed from Xl ffi X 2 ffi X3 ffi X 4 ffi X5 by permuting and associating its 
terms. It is easy to check that the map 

((X4,(X5,X2)),X3,XI) r---. (XI,X2,X3,X4,X5) 

from (X4 ffi(X5 ffiX2)) ffiX3 ffiX I onto X I ffiX2 ffiX3ffiX4 ffiX5 is an isometric 
isomorphism. For any n and any direct sum Y formed by permuting and 
associating the terms of Xl ffi ... ffi Xn, the obvious analog of the above 
map is clearly an isometric isomorphism from Y onto Xl ffi··· ffi X n . • 

1.8.5 Proposition. Let Xl, .. ' ,Xn be normed spaces. Let {I, ... ,n} be 
partitioned into two nonempty sets {jl,' .. , jp} and {k1, ... , kq} and let 

Xj" .. ,jp = {(Xl, ... ,Xn) : (Xl, ... ,Xn ) E Xl ffi··· ffi X n , 

Xk" .. ·, Xk q are all zero}. 

Then (Xl EI) .. 'ffiXn )/ Xj" .. ,jp is isometrically isomorphic to Xk, ffi·· ·ffiXkq . 

PROOF. It is clear that Xj" ... ,jp is a subspace of Xl ffi ... ffi X n . If an 
element (Zl, ... , Zn) of Xl ffi··· ffi Xn is the limit of a sequence of elements 
of Xj" ... ,jp, then Zk j , ... ,Zkq must all be zero, so the subspace Xl! , ... ,jp is 
closed. Thus, the quotient space (Xl ffi ... ffi Xn) / X j , ''''ljp can be formed. 

Define T: (Xl ffi··· ffi Xn)/Xh, ... ,jp -> X k , ffi··· ffi Xk q by the formula 
T((XI, .. " xn) +Xjj, ... ,jp) = (Xk 1 ,···, Xk q )' Since (Xl"'" Xn) +Xj" ... ,jp = 

(Yl,"" Yn) + Xj".,jp if and only if Xkm = Yk m when m = 1, ... , q, the 
map T is well-defined. It is easy to check that T is linear, one-to-one, and 
onto X k , ffi· .. ffi X kq . If (Xl, ... , Xn) + X]" .,jp E (Xl ffi· .. ffi Xn) / X j , , ... ,]p' 
then 

II(Xl,''''Xn ) +Xj.,.,jpll 

= d((O, ... , 0), (Xl, ... , Xn) + Xh,.jp) 

= inf{ C~IIYmI12 r/2 
: (YI, ... , Yn) E Xl ffi .. · ffi Xu, 

Yk , = Xk
" 

... ,Ykq = Xkq } 

= ctlllXkm 112) 1/2 

= II(Xkl'""Xkq)11 

= IIT((Xl, ... ,Xn)+Xj" .. ,jp)ll, 

so T is the desired isometric isomorphism. • 



1.8 Direct Sums 63 

With all notation as in the statement of the preceding proposition, it is 
easy to see that Xj" ... ,jp is isometrically isomorphic to X j, ffi ... ffi Xjp. 

If spaces that are isometrically isomorphic are considered to be the same, 
then the proposition says that 

Xl ffi ... EB Xn 
-------::--- = X k, ffi ... ffi X kq , 
X j , ffi ... EB Xjp 

which is why the proposition can be called a cancellation law. This cancel
lation law would be more appealing visually if the symbol 0 were used to 
separate the terms of a direct sum, but that symbol is reserved for tensor 
products. Because of their product-like behavior and their relationship to 
Cartesian products, direct sums are sometimes called direct products, but 
then so are tensor products. For this reason, the term direct product will 
not be used in this book. 

A metric space is called topologically complete if its metric is equivalent 
to a complete metric, that is, if the topology of the space is induced by some 
complete metric, even if the given metric is not complete. If Xl, ... ,Xn are 
metric spaces, then the product topology of Xl x ... X Xn is topologically 
complete if and only if each Xj is topologically complete; see, for exam
ple, [65]. This suggests the following theorem, though it does not prove it. 
As was shown in Exercise 1.42, it is quite possible for an incomplete metric 
space to be topologically complete.5 

1.8.6 Theorem. Let Xl,'" ,Xn be normed spaces. Then Xl EB··· EB Xn 
is a Banach space if and only if each Xj is a Banach space. 

. (( (k) (k) )00 PROOF. Suppose that each Xj IS a Banach space. Let Xl"'" Xn ) k=l 
be a Cauchy sequence in Xl EEl ... EEl X n . Then the formula for the direct 
sum norm assures that each of the sequences (x;k») such that j = 1, ... , n 
is also Cauchy, and so there is an element (x I, ... , xn) of X I EB· .. EB X n such 

. (k) _ . _ ((k) (k) ) that hmk Xj - Xj when J - 1, ... , n. Thus, the sequence (Xl , ... , Xn ) 
converges to (Xl, ... ,xn), and so Xl ffi··· EB Xn is a Banach space. 

Conversely, suppose that Xl EB ... EB Xn is a Banach space. By Propo
sition 1.8.3, there are closed, hence complete, subspaces X~, ... , X~ of 
Xl EB· .. ffi Xn that are isometrically isomorphic to Xl, ... ,Xn respectively, 
which assures that each Xj is a Banach space. • 

Some notation is needed before proceeding. Suppose that V is a vector 
space and that AI"'" An are subsets of V. Then the (algebraic) sum 
of AI, ... ,An is {al + ... + an : aj E Aj for each j} and is denoted by 

5 Actually, it is not possible for an incomplete normed space to be topologically com
plete, as will be shown in Corollary 2.3.19. However, that fact, which first appeared 
in a 1952 paper by Victor Klee [135], is much deeper than what is needed to prove 
Theorem 1.8.6. 
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Al + ... + An or L7=1 A j . Notice that this is just the natural extension 
of the notion of the sum of two subsets of a vector space. It is easy to see 
that if AI, ... ,An are subspaces of V, then so is their sum. By convention, 
the sum of an empty collection of subspaces of V is {O}. 

Let X and Y be normed spaces and let the subsets { (x, 0) : x EX} 
and {(O,y) : y E Y} of X lOB Y be denoted by X' and Y' respectively. 
By Proposition 1.8.3, the sets X' and Y' are closed subs paces of X lOB Y 
isometrically isomorphic to X and Y respectively. Notice that X' + Y' = 

X lOB Y and that X' n Y' = {(O, O)}. In vector space terminology, the vector 
space underlying X lOB Y would be called the algebraic internal direct sum of 
its subspaces X' and Y'. More generally, a vector space X is said to be the 
algebraic internal direct sum of its subspaces M 1 , ... ,Mn if Lk Mk = X 
and M j n Lki"J Mk = {O} when j = 1, ... , n. The following is a useful 
characterization of these objects. 

1.8.7 Proposition. Suppose that X is a vector space and that MIl· .. 1 Mn 
are subspaces of X. Then the following are equivalent. 

(a) The space X is the algebraic internal direct sum of M I , ... , Mn. 

(b) For every x in X, there are unique elements mi (x), ... , mn (x) of 
M I ,···, Mn respectively such that x = Lk mk(x). 

PROOF. Suppose first that (a) holds. Since X = I:k Mk, there must be 
elements ml, ... , mn of X such that mk E Mk for each k and x = I:k mk. 
Suppose that m;, . .. ,m~ EX, that m~ E Mk for each k, and that x = 

Lk m~. If 1 ::; j ::; n, then 

mj - mj = 2)m~ - mk) E M j n LMk = {a}, 
k#j k#j 

so mj = mj. This shows that (a) =? (b). 
Suppose conversely that (b) holds. It is immediate that 2:k Mk = X. If 

1 ::; j ::; n and x E !vIj n Lk#j Mk, then there are members ml, ... , mn of X 
such that mk E Mk for each k and x = mj = Lk#j mk, which implies that 
mj + I:k#j (-mk) = 0 = 0+ Lk#j 0 and therefore that mi = ... = mn = 0, 
which in turn implies that x = O. Therefore M j n Lk#J Mk = {O} when 
j = 1, ... ,n, so X is the algebraic internal direct sum of M I ,···, Mn. This 
proves that (b) =? (a). • 

The internal direct sums that are of the most importance in the theory 
of normed spaces have an additional restriction on the subspaces used to 
form them. 

1.8.8 Definition. Suppose that M I , ... , Mn are closed subs paces of a 
normed space X such that I:k Mk = X and M j n I:k#j Mk = {O} when 
j = 1, ... , n. Then the normed space X is the (internal) direct sum of 
M I ,··· ,Mn-



1.8 Direct Sums 65 

That is, a normed space X is the internal direct sum of its subspaces 
M I , ... ,Mn if and only if each of these subspaces is closed and X is their 
algebraic internal direct sum. 

1.8.9 Example. In e[O, 1], let Ml be the collection of all constant func
tions, let M2 be the collection of all linear functions 1 such that 1(0) = 0, 
and let M3 be the collection of all 1 such that 1(0) = 1(1) = o. It is easy to 
check that M I , M 2 , and M3 are closed subspaces of e[O, 1] and that e[O, 1] 
is the internal direct sum of the three. 

Notice that the use of the words external and internal is optional when 
referring to normed space direct sums. This means that a statement such 
as "the normed space X is the direct sum of Y and Z" could be ambiguous. 
Normally, the context does make it clear which type of direct sum is being 
considered. Even when it does not, the two types of direct sums are so 
closely related that problems usually do not arise. This relationship is the 
subject of the next proposition. 

1.8.10 Proposition. 

(a) If XI, ... ,Xn are normed spaces and X =XIffi···ffiXn , then X has 
closed subspaces X~ , ... ,X~ such that X is the internal direct sum of 
X~ , ... ,X~ and each Xj is isometrically isomorphic to the corre
sponding Xj. 

(b) If X is a Banach space that is the internal direct sum of its closed 
subspaces M I , ... , M n, then X ~ MI ffi··· ffi Mn· 

PROOF. For (a), let X~, ... ,X~ be as in Proposition 1.8.3. It is easy to check 
that these closed subspaces of X do what is needed. For (b), suppose that 
X is a Banach space that is the internal direct sum of its closed subs paces 
M I , ... , Mn. Since each M j is a Banach space, so is MI ffi· .. ffiMn . The map 
T: MI ffi· . ·ffiMn --> X given by the formula T(ml' ... , m n ) = ml + .. +mn 
is clearly linear and onto X. By Corollary 1.4.18, the £"1 and £2 norms on lFn 

are equivalent, from which it follows that there is a positive constant c such 
that 

for each member (ml, ... , m n ) of Ml ffi ... ffi Mn· Thus, the operator T 
is bounded. If T(ml, .. · ,mn ) = 0, then m] = ... = mn = 0 by Proposi
tion 1.8.7. It follows that T is one-to-one. By Corollary 1.6.6, the operator T 
is an isomorphism from MI EEl··· ffi Mn onto X. • 

Part (b) of the preceding proposition is not in general true for incomplete 
normed spaces. See Exercise 1.95. 
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The notion of the direct sum of normed spaces leads in a very natural 
way to the notion of the direct sum of linear operators between normed 
spaces. 

1.8.11 Definition. Suppose that Xl,." ,Xn and Y I , ... , Yn are normed 
spaces and that Tj is a linear operator from Xj into Yj when j = 1, ... , n. 
Then the direct sum of TI , ... , Tn is the map 

TI EB ... EB Tn: X I EB ... EB Xn ---> YI EEl ••. EB Yn 

defined by letting 

TI EEl .•. EEl Tn (Xl, ... , Xn) = (TIXI, ... ,Tnxn) 

whenever (Xl, ... ,Xn ) E Xl ® ... ® X n . 

It is easy to check that the map TI EB ... ® Tn of the preceding definition 
is linear. As the next theorem indicates, special properties possessed by 
each T j tend to be inherited by TI EEl .•. EEl Tn. 

1.8.12 Theorem. Suppose that XI"",Xn and YI, ... ,Yn are normed 
spaces and that T j is a linear operator from Xj into Yj when j = 1, ... , n. 
Then TI EB ... EB Tn is bounded if and only if each T j is bounded. 1£ 
TI EB ... EEl Tn is bounded, then IITI EEl .•. EEl Tn II = max{ IITIII, ... , IITn II}· 
Furthermore, the operator TI EEl·· . EB Tn is one-to-one, or onto, or an iso
morphism, or an isometric isomorphism, if and only if TI , ... , Tn all have 
that same property. 

PROOF. Suppose that TI is unbounded. Then 

sup{ IITI ® ... EEl Tn(XI,"" xn)11 : (Xl, ... , Xn) E BX1(f1"'(f1Xn } 

~ SUp{ IITI EB··· EB Tn(Xb 0, ... ,0)11 : Xl E BX, } 

= SUp{ IIT1xIII : Xl E BX, } 

= +00, 

so TI EB ... EEl Tn is unbounded. Similarly, the operator TI ® ... EEl Tn is un
bounded whenever any Tj is unbounded. Conversely, suppose that each Tj 

is bounded. For each member (Xl"'" xn) of Xl ® ... EEl X n , 
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which implies that TI EB ... EB Tn is bounded and that IITI EB ... EB Tn II ::::: 
max{IITlll, ... , IITnll}· Notice next that whenever Xl E Bx" 

IITI EB '" EB Tnll ;::: IITI EB··· EB Tn(XI, 0, ... ,0)11 = IITlxlll, 

so IITI EB ... EB Tnll ;::: IITIII· It follows similarly that liT! EB ... EB Tn II ;::: IITj II 
when j = 2, ... , n, so liT! EB ... EB Tnll ;::: max{IITIiI,···, IITnll}. Therefore 
IITI EB··· EB Tn II = max{IITIII,···, IITnll}· 

It is easy to see that TI EB· .. EB Tn is one-to-one, or onto, or an isometric 
isomorphism, if and only if each T j has the corresponding property. All 
that remains to be proved is that TI e ... EB Tn is an isomorphism if and 
only if each Tj is so. The failure of one of the Tj's to be one-to-one would 
prohibit both TI EB ... EB Tn and that Tj from being isomorphisms, so it 
can be assumed that each Tj is one-to-one. Since TI EB ... EB Tn can be 
viewed as an operator onto the normed space T(XI ) EB ... EB T(Xn)' no 
harm comes from also assuming that each T j is onto the corresponding 1j. 
It is then easy to see that (TI EB··· EB Tn)-l = TI- 1 EB··· EB T;:l, and so 
(TI EB ... EB Tn)-l is bounded if and only if each Tj- l is bounded. Thus, 
the operator TI EB ... EB Tn is an isomorphism exactly when each Tj is an 
isomorphism. • 

1.8.13 Corollary. Suppose that XI"",Xn and Y1"",Yn are normed 
spaces. If Xj ~ 1j when j = 1, ... , n, then Xl EB··· EB Xn ~ YI EB'" EB Yn· 
If Xj is isometrically isomorphic to 1j when j = 1, ... , n, then Xl EB· . 'Ef)Xn 
is isometrically isomorphic to YI EB ... EB Yn . 

As an application of the results of this section, it will now be shown 
that a bounded linear operator from a subspace of a Banach space X into 
a normed space Y can always be extended to a bounded linear operator 
from X into Y if the subspace has the following property. 

1.8.14 Definition. A subspace M of a normed space X is complemented 
in X if it is closed in X and there is a closed subspace N of X such that 
X is the internal direct sum of M and N, in which case the subspace N is 
said to be complementary to M. 

The study of complemented subspaces of Banach spaces will be taken up 
in earnest in Section 3.2, where it will be shown that deciding whether or 
not a closed subspace M of a Banach space X is complemented is equivalent 
to deciding whether or not there is a bounded linear operator P mapping X 
onto M such that P(Px) = Px for every X in X. An operator with the 
properties just described is called a bounded projection from X onto M. 
The following argument is based on the construction of such a projection. 

Suppose that T is a bounded linear operator from a complemented sub
space M of a Banach space X into a normed space Y. Let N be a subspace 
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complementary to M and let S: M EB N ----; X be defined by the formula 
SCm, n) = m + n. By the proof of Proposition 1.8.10 (b), the map S is 
an isomorphism from M EB N onto X, so S-1 is an isomorphism from X 
onto MEBN. Notice that S-1m = (m,O) for each m in M. Let R(m, n) = m 
for each member (m, n) of M ffi N. Since R is a bounded linear operator 
from M ffi N onto M, the product RS- 1 is a bounded linear operator 
from X onto M; call it P. Notice that Pm = m for each m in M (and 
therefore P(Px) = Px for each x in X). It follows immediately that TP is 
a bounded linear operator from X into Y that agrees with T on M. 

More can be said if T is a bounded linear functional on a subspace M of 
a normed space X. In that case, it turns out that T can always be extended 
to a bounded linear functional on all of X, even if X is not a Banach space 
and f.t1 is not complemented or, for that matter, even closed in X. If Te is 
such an extension, then 

IITel1 = sup{ IITexl1 : x E Ex} ~ sup{ IITml1 : m E EM} = IITII, 

but it turns out that Te can even be selected so that IITel1 = IITII. That is 
the content of the main result of the next section. 

Exercises 

1.88 Suppose that Xl, ... ,Xn are normed spaces and that 1 ::: p ::: 00. To 
avoid an impending notational conflict, let the norm of e; be denoted 
by II· Ilf~ instead of II· lip· Show that the formula 

defines a norm on the vector space sum of Xl, . .. , Xn equivalent to the 
usual direct sum norm. Notice that this formula produces the usual direct 
sum norm when p = 2. 

1.89 Prove or disprove the following generalization of the preceding exercise: 
If / . / is a norm on IF n , then the formula 

must define a norm on the vector space sum of Xl, ... , Xn equivalent to 
the usual direct sum norm. 

1.90 Suppose that X is Cu or lp, where 1 ::: p ::: CX>. Prove that X 8 IF "" X. 
Conclude that X EB Y "" X whenever Y is a finite-dimensional normed 
space. 

1.91 Suppose that X is Co or l", where 1 ::: p ::: 00. Prove that X eX"" X. 

1.92 Prove that L1'[O, 1] EEl L1'[O, 1] "=' Lp[O, 1] when 1 ::: p::: 00. One way to do 
this requires some knowledge of how to change variables in the Lebesgue 
integral. See, for example, [202, pp_ 153-155]. 
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1.93 (a) Suppose that X, Y, and Z are normed spaces such that Y ED Y ~ Y 
and Z is the direct sum of X with a finite positive number of copies 
of Y. Prove that Z ~ X ED Y. 

(b) Suppose that X and Y are Banach spaces such that Y ED Y ~ Y 
and X has a complemented subspace isomorphic to Y. Prove that 
X ED Y ~ X, and therefore that every direct sum of X with a finite 
number of copies of Y is isomorphic to X. 

1.94 (a) Prove that £2 @£2 is isometrically isomorphic to £2. 

(b) Suppose that X is a normed space and that Y is the direct sum 
of X with a finite positive number of copies of £2. Prove that Y is 
isometrically isomorphic to X ED £2. 

1.95 (a) Conclude from Exercise 1.84 that Proposition 1.8.10 (b) does not 
always hold if "Banach space" is replaced by "normed space." 

(b) Let Xl and X2 be normed spaces such that Xj is the internal direct 
sum of its closed subspaces M j and Nj when j = 1,2. Suppose 
that MI and M2 are isometrically isomorphic, as are Nl and N 2. 
Conclude from (a) that Xl and X2 need not even be isomorphic. 

(c) In part (b), suppose that Xl and X 2 are Banach spaces. Can you 
then conclude that they are isomorphic? How about isometrically 
isomorphic? 

1.96 Suppose that the direct sum norm were defined to be any of the equiva
lent norms of Exercise 1.88. Prove that if T 1 , . .. , Tn are bounded linear 
operators, then the norm of their direct sum is still given by the formula 
IITI ED··· ED Tnll = max{liTI II,···, IITnll}· 

1.97 In this exercise, no result from Section 1.4 about finite-dimensional vector 
spaces may be used. (However, feel free to use Proposition 1.8.10. The 
application of Corollary 1.4.18 in the proof of that proposition can be 
replaced by an application of Cauchy'S inequality.) Let n be a positive 
integer and let X be a normed space of dimension n. Prove that X is the 
internal direct sum of n subspaces each isometrically isomorphic to IF. Use 
this to prove that all n-dimensional Banach spaces over IF are isomorphic 
to each other. (Notice that this is a weakened form of Corollary 1.4.16.) 

1.98 Suppose that X and Yare Banach spaces and that there is a bounded 
linear operator from X onto Y whose kernel is complemented in X. Prove 
that X has a complemented subspace isomorphic to Y. 

1.99 Let T be a bounded linear operator from a Banach space X into a finite
dimensional normed space Y. The purpose of this exercise is to show that 
'1' is, in a sense, the direct sum of a Banach space isomorphism and a zero 
operator. 

(a) Define a subspace M of X as follows. First show that XI ker(T) 
and T(X) have the same finite dimension n. If T(X) = {OJ, then 
let M = {OJ. If T(X) ¥ {OJ, then let Xl + ker(T), ... ,Xn + ker(T) 
be a basis for XI ker(T) and let M = (Xl, ... , Xn). Show that in 
the second case the vectors Xl, ... ,Xn are linearly independent, and 
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that in either case M is a closed subspace of X such that X is the 
internal direct sum of M and ker(T). 

(b) Let IBI be a basis for T(X). Show that there is a collection 1B2 of 
linearly independent vectors in Y such that (1B1) n (1B2) = {O} and 
IBI U 1B2 is a basis for Y. Let Z = (1B2). Show that Y is the internal 
direct sum of T(X) and Z. 

(c) Define T1 : M --t T(X) by the formula Tl(m) = T(m). Show that 
Tl is an isomorphism from M onto T(X). 

(d) Define II: X --t M EEl ker(T) and 12 : T(X) EEl Z -+ Y by letting 
II (m+k) = (m, k) whenever mE M and k E ker(T), and h(w, z) = 
w + z whenever (w, z) E T(X) ffi Z. Conclude from the proof of 
Proposition 1.8.10 (b) that hand h are isomorphisms from X onto 
M ffi ker(T) and from T(X) ffi Z onto Y respectively. 

(e) Let T2 be the zero operator from ker(T) into Z. Show that T = 

h(Tl ffi T2 )h. (If hand 12 are treated as ways of identifying X with 
M EEl ker(T) and T(X) ffi Z with Y, then T "is" Tl ffi T2.) 

1.9 The Hahn-Banach Extension Theorems 

Suppose that X and Yare normed spaces and that M is a subspace of X. 
It is often important to know whether a bounded linear operator from M 
into Y can be extended to a bounded linear operator from all of X into Y. 
When this is possible, it can also be important to know whether it can 
be done without increasing the norm of the operator. There is no problem 
doing so when Y is a Banach space and M is dense in X. 

1.9.1 Theorem. Suppose that M is a dense subspace ofa normed space X, 
that Y is a Banach space, and that To: M -+ Y is a bounded linear 
operator. Then there is a unique continuous function T: X -+ Y that 
agrees with To on M. This function T is a bounded linear operator, and 
IITII = IIToll· If To is an isomorphism or isometric isomorphism, then T has 
that same property. 

PROOF. If (xn) is a Cauchy sequence in M, then (Toxn) is a Cauchy se
quence in Y since IIToxnl -TOxn211 S IITollllxnl -xn211 whenever nI, n2 EN, 
so (Toxn) converges. Also, if (wn ) and (xn) are sequences in M that con
verge to the same limit in X, then IITown - Toxnll S IITollllwn-- xnll ---> 0 
as n --> 00, so limn ToWn = limn Toxn. Thus, a function T can be unam
biguously defined on X by the formula T(x) = limn Toxn, where (xn ) is 
any sequence in M that converges to x. 

For each m in M, the constant sequence (mn ) with m as each term 
converges to m, implying that T(m) = limn Tomn = Tom, so T and To 
agree on M. If W,X E X, a E IF, and (wn ) and (xn) are sequences in M 
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converging to wand x respectively, then aWn + Xn --+ aw + x, so 

T(aw + x) = lim To (awn + Xn) 
n 

= a lim ToWn + lim Toxn 
n n 

= aT(w) + T(x). 

It follows that T is linear. Since EM is dense in Ex, it is clear from the 
definition of T that sup{ JlTxl1 : x E Ex } = sup{ JlTomJl : m E EM }, 
so T is bounded and has the same norm as To. The uniqueness assertion 
follows from the fact that two continuous functions from one metric space 
into another that agree on a dense subset of their domain must agree on 
the whole domain. 

Finally, suppose that To is an isomorphism. By Proposition 1.4.14 (a), 
there are positive constants sand t such that s"m" :::; JlTomil :::; tJlm" 
whenever m E M. Notice that To is an isometric isomorphism if and only 
if this holds when s = t = 1. It is an easy consequence of the density of M 
in X and the continuity of T that sJlx" :::; JlTxJl :::; t"x" whenever x E X. 
It follows that T is an isomorphism, and is an isometric isomorphism if To 
is an isometric isomorphism. • 

The requirement that Y be complete cannot be omitted, as is shown in 
Exercise 1.100. Problems also arise ifthe requirement that M be dense in X 
is removed. For example, it turns out that when Co is treated in the usual 
way as a subspace of foc" the identity operator on Co cannot be extended 
to a bounded linear operator from foo onto Co. See Corollary 3.2.21. 

The main purpose of this section is to show that a bounded linear func
tional on a subspace of a normed space can always be extended to a bounded 
linear functional on the entire space without increasing its norm. The plan 
is to prove this for real normed spaces, then pass from the real case to 
the complex. To accomplish this, some preliminary facts about real-linear 
functionals on complex vector spaces are needed. 

1.9.2 Definition. Let X be a complex vector space. A real-linear func
tional on X is a real-valued function f on X such that if x, y E X and 
a E ~, then f(x + y) = f(x) + f(y) and f(ax) = af(x). 

Of course, every complex vector space X is also a real vector space Xr 
when multiplication of vectors by scalars is restricted to ~ x X. A real
linear functional on X is just a linear functional in the usual sense on X r . 

For the moment, a linear functional in the usual sense on X will be called 
a complex-linear functional on X. 

As usual, the real and imaginary parts of a complex number a will be 
denoted by Re a and 1m a respectively. 
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1.9.3 Proposition. Let X be a complex vector space and let Xr be the 
corresponding real vector space. 

(a) If f is a complex-linear functional on X and u is the real part of f, 
then u is a real-linear functional on X, and f(x) = u(x) - iu(ix) 
whenever x EX. 

(b) If u is a real-linear functional on X, then there is a unique complex
linear functional f on X such that u is the real part of f. This 
functional f is given by the formula from (a). 

(c) Suppose that X is a complex normed space and that f is a complex
linear functional on X with real part u. Then f is a bounded linear 
functional on X if and only if u is a bounded linear functional on X r . 

If f is bounded, then Ilfll = Ilull· 

PROOF. Let f be a complex-linear functional on X and let u be its real 
part. Since a = Re(o:) - iRe(io:) for every complex number a, it follows 
that 

f(x) = Re(J(x)) - iRe(if(x)) = Re(J(x)) - iRe(J(ix)) = u(x) - iu(ix) 

whenever x E X. If x, Y E X and 0: is a real scalar, Then 

u(ax + y) = Re(af(x) + fey)) 

= Re(au(x) - iau(ix) + u(y) - iu(iy)) 

= au (x) + u(y), 

so u is a real-linear functional on X. This proves (a). 
For (b), let u be a real-linear functional on X. It follows from (a) that 

the function f defined by the formula f(x) = u(x) - iu(ix) is the only 
possible candidate for a complex-linear functional on X with real part u. 
If x, Y E X and a is a complex scalar, then 

f(ax + y) = u(o:x + y) - iu(iax + iy) 

= u(Re(o:)x) + u(i Im(a)x) + u(y) 

- iu(iRe(a)x)- iu(-Im(a)x) - iu(iy) 

= Re(a)u(x) + Im(a)u(ix) + u(y) 

- i Re(a)u(ix) + i Im(a)u(x) - iu(iy) 

= au(x) - io:u(ix) + u(y) - iu(iy) 

= af(x) + fey), 

which shows that f is a complex-linear functional on X. This finishes the 
proof of (b). 

Finally, suppose that X is a complex normed space and that f is a 
complex-linear functional on X with real part u. For each x in X, there is 
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a scalar O:x such that icl:xl = 1 and O:xf(x) is a nonnegative real number. 
Notice that lu(x)1 :S If(x)1 = f(o:xx) = u(O:xx) whenever x EX. Therefore 

sup{ lu(x)1 : x E EXr } :S sup{ If(x)1 : x E Ex} 

so sup{ lu(x)1 : x E Exr } 

immediately from this. 

= sup{ u(o:xx) : x E EXr } 

:S sup{ lu(x)1 : x E EXr }, 

sup{ If(x)1 : x E Ex}. Part (c) follows 

• 
It is time for the main results of this section. There is a body of related 

facts, collectively called the Hahn-Banach theorem, that includes Theo
rems 1.9.5 and 1.9.6 and Proposition 1.9.15 from this section as well as 
Theorems 2.2.19, 2.2.26, and 2.2.28 in the next chapter. The common theme 
of all of them is that under certain conditions a vector space always has a 
large enough supply of well-behaved linear functionals to accomplish cer
tain tasks. 

1.9.4 Definition. Let p be a real-valued function on a vector space X. 
Then p is positive-homogeneous if p(tx) = tp(x) whenever t > 0 and x EX, 
and is (finitely) subadditive if p(x + y) :S p(x) + p(y) whenever x, y E X. 
If p has both properties, then it is said to be a sublinear functional. 

Notice that every seminorm, and in particular every norm, is a sublinear 
functional, as is every linear functional on a real vector space. 

1.9.5 The Vector Space Version of the Hahn-Banach Extension 
Theorem. (S. Banach, 1929 [11]). Suppose that p is a sublinear functional 
on a real vector space X and that fa is a linear functional on a subspace Y 
of X such that fa(Y) :S p(y) whenever y E Y. Then there is a linear 
functional f on all of X such that the restriction of f to Y is fa and 
f(x) <::: p(x) whenever x E X. That is, the linear functional fa can be 
extended to a linear functional on X that is still dominated by p. 

PROOF. The first step is to show that if Y is not all of X, then there is 
a linear extension h of fa to a subspace of X larger than Y such that h 
is still dominated by p. Suppose that Xl EX \ Y. Let YI = Y + ({xd), a 
subspace of X that properly includes Y. Notice that if y + tXI = y' + t'XI 
where y, y' E Y and t, t' E 1R, then (t - t')Xj = y' - Y E Y, and so t = t' 
and y = y'. Thus, each member of YI can be expressed in the form y + tXI, 
where y E Y and t E 1R, in exactly one way. Whenever Yl, Y2 E Y, 

fo(yd + fO(Y2) = fa(YI + Y2) 

:S P(YI - Xl + Y2 + xd 

:S P(YI - xd + P(Y2 + xd, 



74 1. Basic Concepts 

and so 

It follows that 

sup{ 10(Y) - p(y - xt) : y E Y} ::; inf{p(y + xd - lo(y) : y E Y}, 

so there is a real number tl such that 

sup{ 10(Y) - p(y - Xl) : y E Y} ::; tl ::; inf{p(y + Xl) - 10(Y) : y E Y}. 

Let lI(y + txd = 10(Y) + t· tl for each y in Y and each real number t. 
It is easy to check that II is a linear functional on YI whose restriction 
to Y is 10. It follows from the definition of tl that for each y in Y and each 
positive t, 

and 

lI(y - txd = t(Jo(Cly) - h) ::; tp(Cly - Xl) = p(y - tXI), 

so II (x) ::; p(x) whenever X E YI . 

The second step of the proof is to show that, in effect, the first step 
can be repeated until a linear functional on all of X is obtained that is 
dominated by p and whose restriction to Y is fo. Let 21 be the collection 
of all linear functionals 9 such that the domain of 9 is a subspace of X 
that includes Y, the restriction of 9 to Y is 10, and 9 is dominated by p. 
Define a preorder j on 21 by declaring that 91 j 92 whenever 91 is the 
restriction of 92 to a subspace of the domain of 92. It is easy to see that 
each nonempty chain I! in 21 has an upper bound in 21; consider the linear 
functional whose domain is the union Z of the domains of the members 
of I! and which agrees at each point z of Z with every member of I! that 
is defined at z. Of course, the empty chain has 10 as an upper bound. By 
Zorn's lemma, the preordered set 21 has a maximal element I. The domain 
of I must be all of X, for if it were not then the argument of the first step of 
this proof, applied to f and its domain instead of to fo and Y, would yield 
an II in 21 such that I j II but II ii I. This I does all that is required 
~rt. • 

The next result is sometimes called the analytic form of the Hahn-Banach 
theorem. It was first proved by Hahn [99] in 1927 for real normed spaces. 
Banach [11] independently published the same result with the same proof 
in 1929, but later became aware of Hahn's earlier paper and acknowledged 
Hahn's priority. Bohnenblust and Sobczyk [32] gave the extension to com
plex normed spaces in 1938. In the same year, Soukhomlinoff [227] inde
pendently published the same result, and showed that it even holds for the 
generalization of normed spaces for which the scalars are quaternions. 
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1.9.6 The Normed Space Version of the Hahn-Banach Extension 
Theorem. (H. Hahn, 1927, and others; see above). Suppose that fa is 
a bounded linear functional on a subspace Y of a normed space X. Then 
there is a bounded linear functional f on all of X such that IIfll = Ilfoll and 
the restriction of f to Y is fa. That is, the functional fa can be extended 
to a bounded linear functional on X having the same norm. 

PROOF. Suppose that X is a real normed space. Let p(x) = Ilfollllxli for 
each x in X. Then p is a sublinear functional on X and fo(Y) ::; p(y) for 
each Y in Y. By the vector space version of the Hahn-Banach extension 
theorem, there is a linear functional f on X such that f agrees with fa 
on Y and f(x) ::; Ilfollllxli for each x in X, and in fact If(x)1 ::; IIfollllxll 
for each x in X since 

- f(x) = f( -x) ::; Ilfollll-xil = Ilfollllxll· 

It follows that f is bounded and Ilfll ::; lifo II· Since 

Ilfll = sup{ If(x)1 : x E Bx } ~ sup{ If(y)1 : y E By} = Ilfoll, 

the linear functionals fa and f have the same norm. 
Now suppose that X is a complex normed space. Let Uo be the real 

part of fa. By the argument just given for real normed spaces, there is a 
bounded real-linear functional u on X that agrees with Uo on Y and has 
the same norm as uo. Let f be the unique complex-linear functional on X 
with real part u. Then the restriction of f to Y is the unique complex-linear 
functional on Y with real part uo, that is, the restriction is fa. Finally, the 
boundedness of u implies that of f, and IIfll = Ilull = Iluoll = Ilfoll· • 

The bounded linear functional f guaranteed by the theorem is called a 
Hahn-Banach extension of fa to X. 

The preceding theorem says nothing about the uniqueness of a Hahn
Banach extension. If fa is a bounded linear functional on a dense sub
space Y of a normed space X, then Theorem 1.9.1 assures that there is 
exactly one Hahn-Banach extension of fa to all of X. If Y is not dense 
in X, then fa might have more than one Hahn-Banach extension to X, but 
it also might not. See Exercise 1.105. 

1.9.7 Corollary. Let Y be a closed subspace of a normed space X. Suppose 
that x E X \ Y. Then there is a bounded linear functional f on X such 
that Ilfll = 1, f(x) = d(x, Y), and Y <;;;; ker(f). 

PROOF. Let fo(Y + ax) = a . d(x, Y) for each y in Y and each scalar a. 
Then fo is a linear functional on Y + ({x}) such that fo (x) = d( x, Y) and 
fo(Y) = 0 for each y in Y. Whenever y E Y and a =1= 0, 

Ifo(Y + ax)1 = lal' d(x, Y) ::; lallix - (-a-ly)11 = Ily + axil, 
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so fa is bounded and Ilfoll :S 1. Also, 

Ilfolllix - yll 2: Ifo(x - y)1 = d(x, Y) 

whenever y E Y, and so 

lifo II . d(x, Y) = lifo II . inf{ Ilx - yll : y E Y} 2: d(x, Y). 

Since d(x, Y) > 0, it follows that Ilfoll 2: 1, and so Ilfoll = 1. To finish, let f 
be any Hahn-Banach extension of fa to X. • 

Letting Y = {O} in the preceding corollary yields the first of the following 
two results. The second then follows from the first by replacing x by x - y. 

1.9.8 Corollary. If x is a nonzero element of a normed space X, then there 
is a bounded linear functional f on X such that Ilfll = 1 and f(x) = Ilxll. 

1.9.9 Corollary. If x and yare different elements of a nOTmed space X, 
then there is a bounded linear functional f on X such that f(x) =J fey). 

The historical roots of the Hahn-Banach extension theorems can be found 
in efforts to obtain simultaneous solutions for systems of linear equations. 
To see the connection, consider what must be done to solve a system 
of m linear equations in n unknowns. Given a collection of m elements 
( (1) (I») «'In) ('In») f IF'n d 11· f 1 a 1 , ... , an , ... , a 1 , ... , an 0 an a co ectlOn 0 m sca ars 
Cl, ... ,Cm , it is necessary to find an element (131, ... , f3n) of 1F n such that 

aij ) f31 + .. +a~) i3n = Cj when j = 1, ... , m. It is a standard fact from linear 
algebra that there is a one-to-one correspondence between (IF'n)# and IF'n 
such that for each f in (IF'n) # and the corresponding element (131, ... , f3n) 
of IF''', 

h ( ) E IF' n L t - ( (j) (j)) h . - 1 wenever al, ... ,an . e x) - a1, ... ,an wen] - , ... ,m. 
Then the problem of finding a solution to the given system becomes that 
of finding a linear functional Ion IF'n such that f(x)) = Cj for each j. 

Now suppose that Y is a subspace of a normed space X and that fa is 
a bounded linear functional on Y. For each y in Y, let c y = 10(Y). The 
normed space version of the Hahn-Banach extension theorem says that 
there is a bounded linear functional I on X with the same norm as fo such 
that fey) = c y for each y in Y. In a sense, a system of linear equations has 
been solved. Of course, this system is infinite if Y =J {O}. 

It is not surprising that the Hahn-Banach extension theorems have im
portant applications to solving systems of linear equations. The following 
one is due to Hahn himself. 
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1.9.10 Theorem. (H. Hahn, 1927 [99]). Suppose that X is a normed space. 
Let A be a non empty subset of X and let { Cx : x E A} be a corresponding 
collection of scalars. Then the following are equivalent. 

(a) There is a bounded linear functional I on X such that I(x) = Cx for 
each x in A. 

(b) There is a nonnegative real number M such that 

for each linear combination O!lXl + ... + O!nXn of elements of A, that 
is, for each element of (A). 

If (b) holds, then I can be chosen in (a) so that 11/11 ::; M. 

PROOF. Suppose that (b) holds. For each member x of (A), first express x 
as a linear combination O!lX1 + ... + O!nXn of members of A, then let 

If a member of (A) is expressed in two different ways 0!1X1 + ... + O!nXn 
and f3lY1 + ... + f3mYm as a linear combination of members of A, then 

It O!jCXj - f f3jCYj I ::; Milt O!jXj - f f3jyjll = 0, 
3=1 3=1 3=1 3=1 

so O!lexl +. "+O!ncxn = f31CYl + .. ·+f3mCym' Therefore 10 is an unambigu
ously defined scalar-valued function on (A). It is also clear that 10 is linear. 
The inequality in (b) assures that 10 is bounded and that 11/011 ::; M, so 
every Hahn-Banach extension I of 10 to X satisfies (a) and has norm no 
more than M. 

Conversely, suppose that (a) holds. Then for each linear combination 
0!1X1 + ... + O!nXn of elements of A, 

100lCx ! + ... + O!ncxn I = 1/(0!1X1 + ... + O!nxn)1 

::; 1I/IIII0!1x1 + ... + O!nxnll· 

Let M = 11/11 to obtain (b). • 
It is possible to exchange the roles of the elements of X and of the 

bounded linear functionals on X in the preceding theorem, though only 
finite collections of bounded linear functionals can be considered and the 
norm of the object found in (a) must be enlarged a bit. The resulting fact, 
called Helly's theorem, can be treated as a straightforward consequence of 
the normed space version of the Hahn-Banach extension theorem, though it 
actually predates it by a few years. The following useful result from linear 
algebra is needed for the proof of Helly's theorem given below. 
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1.9.11 Lemma. Suppose that I and h, ... , In are linear functionals on 
the same vector space. Then I is a linear combination of h, ... , In if and 
only if kerCh) n ... n ker(fn) ~ ker(f). 

PROOF. The "only if" portion is obvious. For the converse, proceed by 
induction on n. Let Pk be the proposition that if I and h,···, hare 
linear functionals on the same vector space and n~=l ker(fJ) ~ ker(f), 
then I must be a linear combination of h,···, Ik. 

To prove PI, suppose that I and h are linear functionals on a vector 
space V such that kerCh) <;::; ker(f). The desired conclusion is obvious if I 
is the zero functional, so it can be assumed that I is nonzero and thus that 
h is also nonzero. The following standard fact from linear algebra is now 
needed: If 9 is a nonzero linear functional on V, then ker(g) is a maximal 
proper subspace of V; see, for example, [105]. It follows that kerCh) = 

ker(f). Let x be a member of V \ ker(f) and let h = 1- (J(x)/h(x))k 
Then the linear functional h is zero on ker(f) and is zero at x, and so is 
zero on V since V = ({x} U ker(f)). It follows that I = (J(x)/h(x))h, 
which proves Pl. 

Suppose that k ~ 2 and that Pj is true when j = 1, ... , k - 1. Let I 
and h, ... ,h satisfy the hypotheses of Pk. If 9 and gl, ... ,gk-l are the 
restrictions of I and h,···, h-l respectively to the vector space ker(fk), 
then n~:t ker(gj) <;::; ker(g), so by Pk- l there are scalars al, ... ,ak-l such 

that 9 = 2::~:t ajgj. It follows that kerCh) <;::; ker(f - 2::7:t ajIj), so by PI 

there is a scalar ak such that 1- 2::7=; ajIj = akh· This proves Pk and 
finishes the induction. • 

1.9.12 ReIly's Theorem. (E. ReIly, 1921 [102]). Suppose that X is a 
normed space. Let h, ... , In be a nonempty finite collection of bounded 
linear functionals on X and let CI, ... , Cn be a corresponding collection of 
scalars. Then the following are equivalent. 

(a) There is an Xo in X such that Ij(xo) = Cj when j = 1, ... ,n. 

(b) There is a nonnegative real number M such that 

for each linear combination adl + ... + anfn of h, ... , In, that is, 
for each element of ({h,· .. , in}). 

ff (b) holds and E > 0, then Xo can be chosen in (a) so that Ilxo II 0<:: M + E. 

PROOF. If (a) holds, then whenever al,"" an E IF, 

icl'lCI + ... + ancnl = I(adl + ... + a,Jn)(xo)1 

0<:: Iladl + ... + anInllllxOII· 

Let M = Ilxall to obtain (b). 
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Conversely, suppose that (b) holds and that E > 0. If each Cj is zero, 
then both (a) and the remark following (b) hold when Xo = 0, so it can 
be assumed that some Cj is nonzero. It follows from the inequality in (b) 
that some fj is nonzero, so it can be assumed, after rearranging the iJ's 
if necessary, that there is an integer m for which h, ... ,fm is a maximal 
linearly independent subcollection of h, ... , f n' Thus, for each k such that 

(k) (k) _ ",m (k) 
k = 1, ... ,n there are scalars 0:1 , ... , O:m such that fk - uj=l O:j fj. 

Suppose that it were known that (b) implies (a) and the remark fol
lowing (b) under the additional assumption that the linear functionals 
h, ... ,fn are linearly independent. In the current situation in which only 
h, ... , fm are known to be linearly independent, it would still follow that 
there is an Xo in X such that Ilxoll ::; M + E and iJ(xo) = Cj when 

j = 1, ... ,m, which implies that fk(XO) = 2::;:1 o:}k)Cj for each k. It would 
then follow that 

that is, that h(xo) = Ck, when k = 1, ... ,n. Thus, it can be assumed that 
h, .. ·, fn are linearly independent. 

For each x in X, let T(x) = (hx, ... , fnx). Then T is a linear operator 
from X into Fn. Suppose for the moment that n 2': 2. For each k such that 
k = 1, ... , n, Lemma 1.9.11 implies that nj # ker(fJ) % ker(h), so there 
is a Yk in X such that fk(Yk) = 1 and fJ(Yk) = 0 when j =1= k. It follows 
that T(X) includes the standard basis for Fn, so T maps X onto Fn. If 
n = 1, then T obviously maps X onto Fn. In any case, there is a Yo in X 
such that (hyo, ... , fnYo) = (C1,"" cn). Since Yo tf- n7=1 ker(fJ), it follows 
from Corollary 1.9.7 that there is a bounded linear functional f on X such 
that Ilfll = 1, f(yo) = d(yo, n7=1 ker(fJ)), and n7=1 ker(Jj) S;;; ker(J). 
Another application of Lemma 1.9.11 yields scalars (31, ... ,!3n such that 
f = 2:7=1 (3jiJ. Therefore 

so there is a Zo in n7=1 ker(iJ) such that IIYo - Zo II ::; M + E. It follows 
that Yo - Zo is an Xo that docs what is needed in (a) and in the remark 
following (b). • 

Though Helly's theorem is a much weakened analog of Theorem 1.9.10, 
it is the best that can be done without placing additional restrictions on X. 
See Exercises 1.119 and 1.134. 

In addition to the extension theorems, there is another type of Hahn
Banach theorem called a separation theorem. The theme of such a theorem 
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is that given two nonempty convex subsets 0 1 and O2 of a vector space X 
that are not too badly intermingled, it is possible to find a well-behaved 
nonzero real-linear functional f on X such that 

sup{ f(x) : x E 0 1 } ::; inf{ f(x) : x E 0 2 }, 

where under certain conditions it is even possible to assert that the in
equality is strict. In a sense, the functional f separates 0 1 from C2 , since 
f(Od and f(02) are disjoint or nearly so. Such separation theorems are 
based on a very close relationship that exists between nonnegative sublinear 
functionals and convex absorbing sets. 

1.9.13 Definition. Let A be an absorbing subset of a vector space X. For 
each x in X, let PA(X) = inf{ t : t > 0, x E tA}. Then PA is the Minkowski 
functional or gauge functional of A. 

With X, A, and P A as in the preceding definition, let x be a nonzero 
member of X. Very roughly speaking, the number PA(X) is the ratio of 
the distance from the origin to x and the distance from the origin to the 
outermost edge of A in the direction of x, where that second distance might 
be infinite. 

1.9.14 Proposition. Suppose that X is a vector space. 

(a) Let PA be the Minkowski functional of an absorbing subset A of X. 

(1) The function PA is finite-valued, nonnegative, and positive-ho
mogeneous, and A c:;;; {x: x EX, PA(X) ::; 1}. 

(2) If A is a convex set, then PA is a sublinear functional on X, and 
{x: x E X, PA(X) < I} c:;;; A. 

(3) If A is both convex and balanced, then PA is a seminorm on X. 

(b) Let P be a nonnegative-real-valued positive-homogeneous function 
on X and let Ap = { x : x EX, p( x) < 1 }. 

(1) The set Ap is absorbing, and P is the Minkowski functional 
of Ap. 

(2) If P is a sublinear functional, then Ap is a convex set. 

(3) If P is a seminorm, then Ap is both convex and balanced. 

PROOF. Let PA be the Minkowski functional of an absorbing subset A 
of X. It follows immediately from the definition of an absorbing set that 
{t : t > 0, x E tA} is nonempty whenever x E X, so PA is nonnegative
real-valued. If x E X and to > 0, then 

to{t : t > 0, x E tA} = {s : s > 0, tox E sA}, 

so toPA(X) = PA(tOX). The function PA is therefore positive-homogeneous. 
It is clear that A c:;;; {x : x E X, PA(X) ::; I}. Now suppose that A is 
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convex. If XI,X2 EX, tl, t2 > 0, Xl E tlA, and X2 E t2A, then Xl + X2 E 
t1A+t2A = (tl +t2)A, so PA(XI +X2) ::; tl +b. Taking appropriate infima 
shows that PA(XI + X2) ::; PA(xd + PA(X2), so PA is a sublinear functional. 
If PA(X) < 1, then there is a t such that 0 < t < 1 and rlx E A, so 
X = t(r lx)+(l-t)O E A. Therefore {x: X E X, PA(X) < I} <;;; A. Suppose 
next that A is both convex and balanced, that a is a scalar, that X E X, 
and that t > O. Then t-Iax E A if and only if Cllalx E A, so ax E tA if 
and only if lalx EtA. It follows that PA(ax) = PA(lalx) = lalpA(x) (after 
a moment's thought about the special case in which a = 0), so PA is a 
seminorm. 

Now let P be a nonnegative-real-valued positive-homogeneous function 
on X and let Ap = {x : x E X, p(x) < 1 }. If x E X and t > p(x), then 
p(Clx) < 1, so x E tAp- The set Ap is therefore absorbing. For each x 
in X, 

inf{t: t > 0, x E tAp} = inf{t: t > 0, p(t-IX) < 1} 

= inf{ t : t > 0, p(x) < t} 

= p(x), 

so P is the Minkowski functional of Ap. Now suppose that P is a sublinear 
functional. If x, y E Ap and 0 < t < 1, then 

p(tx + (1- t)y) :::; tp(x) + (1 - t)p(y) < 1, 

so tx + (1 - t)y E Ap. Thus, the set Ap is convex. Finally, suppose that P 
is a seminorm. Then Ap is convex because P is a sublinear functional. If a 
is a scalar such that 0 < lal ::; 1, then 

aAp = {x: x E X, p(a-Ix) < I} = {x: x E X, p(x) < lal} <;;; Ap. 

Since Ap is absorbing, it is also true that OAp = {O} <;;; Ap, and so Ap is 
balanced. • 

In particular, a real-valued function on a vector space is a nonnegative 
sublinear functional if and only if it is the Minkowski functional of a con
vex absorbing subset of the space. (However, it does not follow that an 
absorbing set is convex when its Minkowski functional is sublinear. See 
Exercise 1.108 (b).) 

The following result is an example of how Minkowski functionals and 
the vector space version of the Hahn-Banach extension theorem are used 
to obtain separation theorems. Far better and more general results of this 
type will be obtained in Section 2.2, but this proposition will do all of the 
separating that needs to be done in this first chapter. 

1.9.15 Proposition. If C is a nonempty convex set in a normed space X 
and Xo is a point in X such that d(xo, C) > 0, then there is a bounded 
linear functional f on X such that Ref(xo) > sup{Ref(x): x E C}. 
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PROOF. Since every bounded real-linear functional on a complex normed 
space is the real part of a bounded complex-linear functional on the space, 
it can be assumed that X is a real normed space. Let V be the open ball 
centered at 0 with radius 2- l d(xo, C) and let Yo be an element of C. It is 
easy to check that -Yo + (C + V) is open, convex, and contains 0 and that 
d(xo - Yo, -Yo + (C + V)) = d(xo, C + V) > O. If f is a bounded linear 
functional on X such that f(xo -Yo) > sup{ f(x) : x E -Yo+( C+ V) }, then 
f(xo) > sup{ f(x) : x E C + V} 2: sup{ f(x) : x E C}, so no generality is 
lost by assuming that C is an open convex set that contains O. Notice that 
this implies that C is absorbing. 

Let Pc be the Minkowski functional of C, a sublinear functional on X. 
Since d(xo, C) > 0, there is an So such that 0 < So < 1 and SoXo ~ C. 
Since SoXo cannot be a convex combination of 0 and another element of C, 
it follows that sXo ~ C whenever S 2: So, so Xo ~ tC whenever 0 < t ::; SOl. 
Thus, 

pc(xo) 2: SOl> 1 2: sup{pc(x) : x E C}. 

Let fo(txo) = tpc(xo) whenever t E lit Then fa is a linear functional 
on ({xo}) that is dominated by Pc, since fo(txo) = pc(txo) when t > 0 
and fo (txo) ::; 0 ::; Pc( txo) when t ::; O. By the vector space version of the 
Hahn-Banach extension theorem, there is a linear functional f on X that 
agrees with fo on ({xo}) and is dominated by Pc on X. Now C includes 
an open ball U centered at 0, and for each x in U, 

If(x)l = max{J(x), f( -x)} ::; max{pc(x),pc( -x)} ::; 1. 

It follows that f is bounded. Finally, 

f(xo) = pc(xo) > sup{pc(x) : x E C} 2: sup{ f(x) : x E C}, 

which finishes the proof. • 
Exercises 

1.100 Let X be any Banach space with a proper dense subspace Y; for example, 
the space X could be Co and Y could be the subspace of X consisting of the 
finitely nonzero sequences. Show that the identity operator on Y cannot 
be extended to a continuous function from X into Y. 

1.101 Let X and Y be uOfmed spaces and let T be a bounded finite-rank linear 
operator from a subspace W of X into Y. Prove that T can be extended 
to a bounded linear operator on all of X with the same range as T. 

1.102 For this exercise, let the scalar field be lFt Recall that a sequence of scalars 
(an) is Cesaro summable to a scalar a or that a is the (C, i)-limit of (an) 
if limn ((al + ... + an)/n) exists and equals a; see, for example, [19]. 



1.9 The Hahn-Banach Extension Theorems 83 

(a) Prove that there is a bounded linear functional L on £00 such that 
for each member (an) of £00, 

L( ) < 1· a1 + ... + an 
an _ 1msup 

n n 

and L(an ) is the (C, I)-limit of (an) if it has one. (The functional L 
is called a Banach limit function on £00, and the "limits" that L 
assigns to the members of £= are said to form a system of Banach 
limits.) 

(b) Prove that 

1· . f < 1· . f a1 + ... + an 1m1n an 1mln 
n - n n 

:::; L(an ) 

. cq + ... + an 
:::; hmsup------

n n 
:::; lim sup an 

n 

for each member (an) of £00. Conclude from this that the notion of 
Banach limit is a generalization of the notion of (C, I)-limit, which 
is in turn a generalization of the usual notion of limit. Show that 
each generalization is proper, that is, that no two of the notions are 
equivalent. 

(c) Prove that L(an ) = L(ak+1, ak+2, ... ) for each member (an) of £= 
and each positive integer k, that is, that L is shift-invariant. There
fore Banach limits of bounded sequences, like regular limits, depend 
only on the tails of the sequences and not on their leading terms. 

(d) Of the three notions of limit discussed in (b), for which ones is it 
true that each subsequence of a convergent bounded sequence must 
converge to the limit of the entire sequence? 

(e) Show that the linear functional L found in part (a) is not unique, 
that is, that there is more than one system of Banach limits for £00. 

1.103 Suppose that (jn) is a bounded sequence of bounded linear functionals on 
a real normed space X. Show that there is a bounded linear functional f 
on X such that liminfn fn(x) :::; f(x) :::; limsuPn fn(x) whenever x E X. 
Conclude from this that if limn fn(x) exists whenever x E X, then the 
formula f(x) = limn fn(x) defines a bounded linear functional on X. 
(Compare Corollary 1.6.10.) 

1.104 Let Y be a subspace of a nOfmed space X and let 2l be the collection of 
all bounded linear functionals f on X such that Y ~ ker(f). Prove that 
17 = n{ker(j): f E 2l}. 

1.105 Let X be the vector space IR2 and let Y be the subspace of X consisting of 
all (a, (3) such that f3 = o. Define fa: Y -t lR by the formula fo(a, 0) = a. 
Notice that fa is a bounded linear functional on Y with respect to any 
norm given to X. 
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(a) Suppose that X is given the Euclidean norm. Show that fo has a 
unique Hahn-Banach extension to X. 

(b) Suppose that X is given the norm that makes it into fi. Show that 
fo has an infinite number of different Hahn-Banach extensions to X. 

1.106 Let X be a normed space and let W be a finite-dimensional subspace of 
B(X, IF). Suppose that F is a linear functional on B(X, IF). Show that 
there is an Xo in X such that F(w) = w(xo) for every w in W. If F is 
bounded and E > 0, show that Xo can be chosen so that IIxoll :s; IIFII + E. 

1.107 Which of the properties positive-homogeneity, subadditivity, and sublin
earity guarantee that if a real-valued function p on a vector space has that 
property, then p(O) = O? 

1.108 (a) Prove that every norm is the Minkowski functional of the closed unit 
ball of the corresponding normed space. 

(b) Find a nonconvex absorbing subset of some vector space such that 
the Minkowski functional of the set is a norm. 

1.109 Let X be a normed space. If t E lR and f is a nonzero bounded linear 
functional on X, then the subset of X defined by the formula 

H(f,t) = {x: x E X, Ref(x) S t} 

is called a closed half9pace. Show that if X i= {O}, then each closed convex 
subset of X is the intersection of some collection of closed halfspaces. 
(Don't forget special cases.) What can be said when X = {O}? 

1.110 Suppose that C is a nonempty convex subset of a normed space X and 
that Xo is an element of X \ C such that d(xo, C) = O. Proposition 1.9.15 
might lead one to conjecture that there must be some nonzero bounded 
linear functional f on X such that Re f(xol ~ sup{ Re f(x) : X E C}. 
Find a counterexample. (One can be constructed using a proper dense 
subspace of a normed space.) 

1.10 Dual Spaces 

The term dual space is often used in linear algebra to refer to the vector 
space X# of all linear functionals on a vector space X. In the theory of 
normed spaces, the vector spaces being studied often have norm topologies 
on them, and the unbounded linear functionals on these spaces are usually 
not nearly as important as the bounded ones. For that reason, it is cus
tomary in this context to reserve the term dual space for the space of all 
bounded linear functionals on a normed space. 

1.10.1 Definition. (H. Hahn, 1927 [99]). Let X be a normed space. The 
(continuous) dual space of X or dual of X or conjugate space of X is the 
normed space B(X, IF) of all bounded linear functionals on X with the 
operator norm. This space is denoted by X*. 
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To avoid confusion, the vector space X# of all linear functionals on a 
normed space X is called the algebraic dual space of X. Notice that when 
X is a finite-dimensional normed space, the vector space underlying X* is 
just X#, for in this case Theorem 1.4.12 implies that every linear func
tional on X is bounded. However, infinite-dimensional normed spaces al
ways have linear functionals on them that are unbounded, as was shown in 
Theorem 1.4.11. 

1.10.2 Example. Let (O,~, f..l) be a a-finite positive measure space. Fix p 
such that 1 :S p < 00 and let Lp denote Lp(O,~,f..l). Let q be conjugate 
to p; that is, let q = 00 if p = 1 and let q be such that p-l + q-l = 1 
otherwise. If x* is a bounded linear functional on Lp, then an argument 
involving the Radon-Nikodym theorem yields a g in Lq such that 

x*(f) = 10 fgdf..l (1.2) 

whenever f E Lp. Conversely, for each g in L q , Holder's inequality assures 
that (1.2) defines a bounded linear functional x* on Lp. Moreover, if an x* 
in L; and a g in Lq are related by (1.2), then Ilx*11 = Ilgliq. See [202]' 
for example, for the detailed arguments. If T: Lq ---* L; is defined by the 
formula T(g) = x*, where x* is given by (1.2), then it follows that T is 
an isometric isomorphism from Lq onto L;. Because of this, it is common 
practice to identify Lq with L; and say that Lq is the dual of Lp. 

In the preceding example, the requirement that the measure space be 
a-finite is not necessary as long as p is not 1; it can be shown that L; 
can still be identified in the above way with L q . If the measure space is 
not a-finite, then it can happen that Li is not Loo in the above sense. 
See pp. 286--288 and 387 of [67] for a discussion of the non-a-finite case, 
including some special conditions under which Li must still be Loo. 

There is a natural way to identify L':x, with a normed space ba(O, E l , f..ll) 
whose underlying set consists of all the bounded finitely additive scalar
valued set functions with domain ~l' where (0, ~l' f..ld is a measure space 
related to (O,~, f..l). See [67] for details_ 

1.10.3 Example. Suppose that f..l is the counting measure on the collec
tion ~ of all subsets of N and that 1 :S p < 00_ Let q be conjugate to p. 

Since R.p is Lp(N, ~, f..l), it follows from the preceding example that R.; can be 
identified with R.q . If the element x* of R.; corresponds to the element (;3n) 
of R.q , then the action of x* on an element (an) of R.p is given by the formula 

n 

Though the dual space of R.oo cannot be characterized so easily as a space of 
sequences, it can be identified in a natural way with a normed space whose 
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underlying set consists of all the bounded finitely additive scalar-valued set 
functions on the subsets of N. See [58] for an excellent discussion of £~. 

1.10.4 Example. The dual space of Co is £1 in exactly the same sense that 
the dual space of £p is £q when 1 :'S p < 00 and q is conjugate to p. That is, 
there is an isometric isomorphism T from £1 onto Co such that if (f3n) E £1, 
then T(f3n) is the linear functional x' on Co given by the formula 

(1.3) 
n 

Unlike the preceding example, this is not just a special case of Exam
ple 1.10.2 since Co is not a Lebesgue space in any natural sense. However, 
it is not difficult to prove directly. 

If (f3n) E £1, then 2:nlc~nf3nl :'S 11(f3n)111 II(an)lloo for each (an) in Co, 
from which it follows that (1.3) defines a member x* of Co for which Ilx' II :'S 
11(/3,,)111. It is then easy to check that the function T: £1 --+ Co that maps 
each (f3n) in i1 to the x' defined by (1.3) is a linear operator such that 
IIT(f3n) II :'S IIU1n)lll whenever ((3n) E £1, and this operator is one-to-one 
since T((3n) # 0 when (f3n) # o. 

Now suppose that x* is an arbitrary element of co. For each standard 
unit vector en of Co, let f3n = x' en and let In be a scalar such that hn I = 1 
and l(3nl = In(3n· Then 

for each m. The sequence ((3n) is therefore in iI, and 11((3n)lh :'S IIx'll· For 
each member (an) of Co, 

x* (an) = x· (L ane,,) = L anx* en = L O'.n(3n, 
n n n 

so x* and ((3n) satisfy (1.3) whenever (an) E Co. Since T(f3n) = x·, the 
operator T maps £1 onto Co. 

Finally, suppose that ((3n) is an arbitrary member of l\. Let x· = T((3n). 
By the argument of the preceding paragraph, there is a member (f3~) of £1 
such that T(f3~) = x* and 11((3~)lh :'S Ilx*ll. Since T is one-to-one, it follows 
that ((3~) = (!3n) and therefore that 11(!3n)lll :'S IIT(!3n)ll. Since it has al
ready been shown that IIT(!3n)11 :'S 1I(!3n)lll, the operator T is an isometric 
isomorphism, which finishes the proof. 

1.10.5 Example. Suppose that n is a positive integer and that 1 :'S p < 00. 

Let q be conjugate to p. If Jl is the counting measure on the collection L: 
of all subsets of {l, ... ,n}, then i~ is Lp({l, ... ,n},L:,p,), and so (f!~)* 
can be identified with f!~ by the method of Example 1.10.2. Notice that if 
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({3l, ... ,(3n) is in f~ and x* is the linear functional that it represents, then 
the action of x* on f; is given by the formula 

n 

x*(al,"" an) = 2:: aj{3j. 
j=l 

The dual space of f;;' can be identified with f'1 in the same way. A proof 
of this, using an argument similar to that of Example 1.10.4, is given in 
Appendix C; see Theorem C.13. This will also follow from some of the 
results of the next section, as will be shown in the comments following 
Theorem 1.11. 9. 

For the sake of completeness, it should be noted that if 1 ::; p ::; DO and 
q is conjugate to p, then (fg)' and f~ are both zero-dimensional, so (fg)' 
can be identified with £~ in a very obvious and trivial way. 

1.10.6 Example. Let K be a compact Hausdorff space. The Riesz repre
sentation theorem says that C(K)* is isometrically isomorphic to rca(K). If 
x* is a bounded linear functional on C(K) and J-L is the measure in rca(K) 
identified with x*, then the action of x* on C(K) is given by the formula 

x*(f) = L f dJ-L. 

See [67] or [202] for details. It turns out that rca(K) and C(K)* both have 
natural partial orders, and that the isometric isomorphism of the Riesz 
representation theorem is order preserving in the sense that if xi and xi 
are elements of C(K)* and J-Ll and J-L2 are the respective elements of rca(K) 
with which xi and x:i are identified, then xi :; x; if and only if J-Ll :; J-L2. 
See Exercise 1.121. 

Recall that if X is a normed space and Y is a Banach space, then B(X, Y) 
is a Banach space; see Theorem 1.4.8. Letting Y = F in this result produces 
the first theorem of this section. 

1.10.7 Theorem. If X is a normed space, then X* iii a Banach space. 

Because of this, one way to show that a normed space is a Banach space 
is to show that it is the dual of some other normed space. For example, 
if K is a compact Hausdorff space, then rca(K) is a Banach space since it 
is isometrically isomorphic to the dual of C(K). See the remarks following 
Example 1.2.11. 

One of the main reasons for proving the Hahn-Banach extension theorems 
before discussing duality is to obtain Corollary 1.9.9, which says that if x 
and yare different elements of a normed space X, then there is an x* 
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in X' such that x'x i= x'y. That is, the dual space of X is large enough 
to separate the points of X. Of course, this implies that X* i= {O} when 
X i= {O}. As will be seen in Sections 2.2 and 2.3, there are large vector 
spaces with metric topologies possessing many of the properties of norm 
topologies, even though the spaces have no continuous linear functionals 
on them besides the zero functional. 

The other corollaries of the normed space version of the Hahn-Banach 
extension theorem also have applications to the theory of dual spaces, as 
is shown by the proof of the following result. 

1.10.8 Theorem. A normed space is finite-dimensional if and only if its 
dual space is finite-dimensional. 

PROOF. Let X be a normed space. If X is finite-dimensional, then it is a 
standard fact from linear algebra that X#, which in this case is the same 
as X' by Theorem 1.4.12, has the same finite dimension as X. 

Now suppose instead that X is infinite-dimensional. Let (xn ) be a lin
early independent sequence in X. For each nonnegative integer n, let Fn = 
( { x j : j :.:; n }); notice in particular that Fo = {O}. Then for each n, the 
subspace Fn of X is finite-dimensional and therefore closed, and Fn does 
not contain xn +!. By Corollary 1.9.7, there is a sequence (x~) of elements 
of X' such that X~Xj = ° when j < n, but x~xn is nonzero for each n. 
If 2:7=1 D:jX; is a linear combination of the terms of (x~) that equals 0, 
then applying this linear combination to Xl, ... ,Xk in that order shows that 
D:1 = ... = D:k = 0, from which it follows that (x~) is a linearly independent 
sequence in X'. The space X' is therefore infinite-dimensional. • 

Corollary 1.9.8 is another consequence of the Hahn-Banach extension 
theorems that is useful in the study of dual spaces. The proof of the next 
theorem is based on it. 

1.10.9 Theorem. Suppose that X is an element of a normed space X. 
Then 

IIxll = sup{ Ix'xi : x' E Bx- }. 

Furthermore, this supremum is attained at some point of Bx-. 

PROOF. If X = 0, then the formula for Ilxll is trivially true and the supre
mum is attained at every point of Bx •. It may therefore be assumed that 
X =I- O. Since Ix'xl :.:; IIx' 1IIIxil :.:; IIxll whenever x* E Bx" it follows that 
Ilxll 2: sup{ IX'xl : x' E Bx> }. By Corollary 1.9.8, there is an Xo in X* 
such that Ilxoll = 1 and xox = Ilxll, and so Ilxll = sup{ IX'xl : x· E Bx- }, 
with the supremum being attained at xo' • 

The fact that the supremum is attained in the formula of the preceding 
theorem leads naturally to the question of when the supremum is attained 
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in the formula for the norm of a bounded linear functional x* on a normed 
space X: 

Ilx*11 = sup{ Ix*xl : x E Bx }. 

If X is finite-dimensional, then the compactness of Bx and the continuity 
of Ix* I together insure that this supremum is attained, and so it is said that 
all the elements of X* are norm-attaining functionals. If X is not finite
dimensional, then X* still contains many norm-attaining functionals for the 
following reason. If x E Sx, then Corollary 1.9.8 produces an x* in X* such 
that Ix*xl = Ilx*11 = 1, so this x* is norm-attaining. It may be, however, 
that X* contains functionals that are not norm-attaining. James's theorem, 
proved in Section 1.13, gives a very useful characterization of the Banach 
spaces X such that each element of X* is a norm-attaining functional. 

1.10.10 Example. Let x* be the element of c~ represented by the element 
(2-n) of £1. Then Ilx*11 = 1. If (an) is any element of BCD' then 

Ix*(an)1 = II: Tnanl ::; I: Tnlanl < I: Tn = 1, 
n n n 

so x* is not norm-attaining. See also Exercise 1.114. 

Suppose that X and Yare normed spaces and that y* E Y*, x EX, 
T E B(X, Y), and S E B(Y*, X*). The statement y*Tx = Sy*x can have 
only one meaning, but that meaning might take a few moments to unravel 
since the order in which the operations are to be performed differs on the 
two sides of the equation. The use of parentheses helps, but can still lead to 
expressions that are visually confusing. For this reason, the notation (x, f) 
is sometimes used for Ix when I is a linear functional on X and x E X. 
The statement y*Tx = Sy*x then becomes (Tx,y*) = (x,Sy*), which is 
easier to grasp. This device is useful in the following result. 

1.10.11 Proposition. Let X and Y be normed spaces. 

(a) If T E L(X, Y), then T is bounded if and only if 

sup{ I(Tx,Y*)I; x E Bx, y* E By.} 

is finite. If T is bounded, then its norm equals this supremum. 

(b) If T E L(X, YO), then T is bounded if and only if 

sup{ l(y,Tx)l: x E Bx, y E By} 

is finite. If T is bounded, then its norm equals this supremum. 
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PROOF. For (a), suppose that T E L(X, V). Theorem 1.10.9 implies that 
IITxl1 = sup{ I(Tx,y*)I: y* E By.} whenever x E X, so 

sup{ IITxl1 : x E Bx} = sup{ sup{ I(Tx, Y*)I : y* E By. } : x E Bx } 

= sup{ I(Tx,y*)I: x E B x , y* E By.}. 

Part (a) follows from this. For (b), suppose that T E L(X, Y*). Then 
IITxl1 = sup{ I(y, Tx)1 : y E By} whenever x E X, so 

sup{ IITxl1 : x E Bx } = sup{ sup{ I(y, Tx)1 : y E By} : x E Bx } 

= sup{ l(y,Tx)l: x E Bx, y E By}, 

from which (b) follows. • 
If two normed spaces X and Yare isometrically isomorphic, then they 

are in a sense identical as normed spaces and so should have identical 
duals. More properly, the spaces X* and y* should also be isometrically 
isomorphic. A few moments' thought shows how a proof of this might go. 
Let T be an isometric isomorphism from X onto Y and let XT = Tx for 
each x in X; that is, let XT be the element of Y identified with x. Then 
each y* in Y* can be thought of as a bounded linear functional y:;'. on X 
by letting y:;'.x = Y*XT for each x in X. The map T*: Y* -+ X* given 
by the formula T*y* = y:;'. should be the desired isometric isomorphism 
from y* onto X* . This idea, and its extension from isometric isomorphisms 
to isomorphisms, is behind the proof of the next theorem. 

1.10.12 Theorem. Suppose that X and Yare normed spaces such that 
there is an isomorphism T from X onto Y. Then the map T*: Y* -+ X* 
given by the formula T* (y*) = y*T, where y*T is the usual product of y* 
and T, is an isomorphism from y* onto X*, and IIT* II = IITII. If T is an 
isometric isomorphism, then so is T*. 

PROOF. it is clear that T*(y*) E X* whenever y* E Y*, and equally clear 
that T* is linear. Notice that (Tx, y*) = (x, T*y') whenever x E X and 
y* E Y*. By Proposition 1.10.11 (a), 

IITII = sup{ I(Tx, Y*)I : x E Bx, y* E By. } 
= sup{ I(x, T*y*)1 : x E B x , y* E By. }, 

so Proposition 1.10.11 (b) implies that T* is bounded and that IIT* II = IITII. 
If y* E Y* and T*y* = 0, then y*y = (T(T~ly), y*) = (T~ly, T*y*) = 0 
whenever y E Y, so y* = O. It follows that T* is one-to-one. If x* is 
a member of X*, then x*x = (Tx,x*T~l) = (x,T*(x*T~l» whenever 
x E X, so T*(x*T~l) = x*. Thus, the operator T* maps Y* onto X*. 
Since T* is a one-to-one bounded linear operator from one Banach space 
onto another, it is an isomorphism by Corollary 1.6.6. 
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Finally, suppose that T is an isometric isomorphism. Then for each mem
ber y* of Y*, 

IIT*y*11 = sup{ l(x,T*y*)I: x E Bx} 

= sup{ I(Tx,y*)I: x E Bx} 

= sup{ l(y,y*)1 : y E By} 

= Ily*ll, 

so T* is also an isometric isomorphism. • 
The map T* defined in the preceding theorem is called the adjoint of T 

and is very important in the study of linear operators. As will be seen in 
Section 3.1, every bounded linear operator T from a normed space X into 
a normed space Y has a bounded linear adjoint T* defined as in Theo
rem 1.10.12, and T* is an isomorphism (respectively, an isometric isomor
phism) from Y* onto X* if and only if T is an isomorphism (respectively, 
an isometric isomorphism) from X onto Y. However, it is not true that X 
and Y must even be isomorphic when there is some isometric isomorphism 
from X* onto Y*. See Exercises 1.111 and 1.112. 

The rest of this section is devoted to finding representations of the dual 
spaces of subspaces, quotient spaces, and direct sums of normed spaces. 
The representation of the dual of a direct sum given in the next theo
rem is a straightforward generalization of the way in which the dual of 
n-dimensional Euclidean space £~ is £~; see Example 1.10.5. 

1.10.13 Theorem. Let Xl"'" Xn be normed spaces. Then there is an 
isometric isomorphism that identifies (Xl EB ... EB Xn)* with Xi EEl ... EB X~ 
such that if the element y* of (Xl EB·· 'EBXn )* is identified with the element 
(xi, ... ,x~) of Xi EB ... EB X~, then 

n 

Y*(XI,""Xn) = LxjXj 
j=l 

PROOF. For each member (xi, ... ,x~) of Xi EB··· EBX~, let T(xi, ... ,x~) 
be the linear functional on Xl EB ... EB Xn given by the formula 

n 

((xl, ... ,xn),T(xi,···,x~) = LxjXj. 
j=l 

Then T is the desired isometric isomorphism from Xi EB ... EB X~ onto 
(X I EB ... EB Xn)*. There is some checking to be done. 

If (xi, ... ,x~) E Xi EB· .. EBX~, then it is clear that T(xi, ... ,x~) really is 
a linear functional on Xl EB··· EB X n , and since Cauchy's inequality implies 



92 1. Basic Concepts 

that 

n 

1«(X1, ... ,xn),T(xr,··· , x;,)) I ~ L Ilxillllxjll 
j=l 

whenever (Xl, ... , Xn) E Xl @ ... @ X n , the functional T(xr, ... , x~) is in 
(Xl EB· .. EBXn)* and has norm no more than II (xr, ... , x~) II· It follows that 
T is a linear operator from X; EB ... EB X~ into (Xl EB ... EB Xn)* such that 
IIT(xi, . .. , x~)11 ::: II (xi, ... , x~) II whenever (xi,· .. , x~) E Xi EB ... EB X~. 

Now suppose that y* E (Xl EB· . ·EBXn)*. For each j such that j = 1, ... , n, 
it is clear that the function x; on Xj defined by the formula x;(x) = 

y*(O, ... ,O,x,O, ... ,O), where x is the lh component of the n-tuple, is 
a member of X;. Then T( xi, ... , x~) = y*, which shows that T maps 
Xi EB··· EB X~ onto (Xl EB··· EB Xn)*· 

Suppose that (xi, .. ·, x~) E X; EB ... EB X~. All that remains is to 
prove that IIT(xi, ... ,x~)11 = II(xi, .. ·,x;JII, so it can be assumed that 
(xi, ... , x~) i- 0. It is enough to prove that 

so it can be assumed that II (xi, ... , x;,) II = 1 since 

It has already been shown that IIT(xi, ... ,x~)II::: lI(xi, .. · ,x~)11 = 1, and 
so it is enough to show that IIT(xi, ... , x~) II ::::: 1. For each j such that j = 

1, ... , n, let (y)kl)k=l be a sequence in BXj such that limklx;yyl I = Ilxj II; 

because there is for each j and each k a scalar o:jk) such that Io:;k) I = 1 and 

xj(o:jklyyl) = IxjyYll, it can be 3.'l5umed that x;yyl 2:: 0 for each j and 

each k and so that limk xjyyl = Ilx; II for each j. Let xjkl = Ilx.; IIYJkl for 

each j and each k. Then II (X\k l, ... , x~kl) II ::: II (xi, ... ,x~) II = 1 for each k, 
and 50 

n 

1 = L IIxill2 
j=l 

n 

I· L . (k) = 1m x-x-
k J J 

j=l 

-I· «( (kl (k)) T( • *)) - 1m Xl , ... , Xn , Xl'···' Xn 
k 

which is the inequality needed to finish the proof. • 
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As was mentioned in Section 1.8, there are a number of different for
mulas used to define the norm of a direct sum X I ttl ... ttl Xn of normed 
spaces that produce norms equivalent to the one given by the formula of 
Definition 1.8.1. The problem with using one of these other formulas is that 
Theorem 1.10.13 might not hold as stated, for using that formula to define 
the norms of both Xl ttl· .. ttl Xn and X; ttl ... ttl X~ might not result in 
(Xl ttl ... ttl Xn)* being isometrically isomorphic to X; ttl .,. ttl X~ in the 
sense of the theorem. See Exercise 1.116. 

Some facts about annihilators are needed before the duals of subs paces 
and quotient spaces can be discussed. 

1.10.14 Definition. Let X be a normed space and let A and B be subsets 
of X and X* respectively. Define A-L and -LB (pronounced "A perp" and 
"perp B") by the formulas 

A-L = {x* : x* E X*, x*x = 0 for each x in A}; 

-LB = {x: x E X, x*x = 0 for each x* in B}. 

Then A-L is the annihilator of A in X*, while -LB is the annihilator of B 
in X. 

The sets A-L and 1-B are usually called the annihilators of A and B 
respectively, with the qualifying phrases "in X*" and "in X" dropped. In 
theory, this could cause confusion when referring to annihilators of subsets 
of dual spaces. Since the dual X* of a normed space X is itself a normed 
space, both -LB and B-L are defined for each subset B of X*, and both have 
the right to be called the annihilator of B. In practice, the context usually 
prevents confusion. Where a misunderstanding might occur, the space in 
which the annihilator is being taken should be made explicit, either by 
adding the qualifying phrase or by using the left-hand or right-hand "perp" 
notation. 

1.10.15 Proposition. Let X be a normed space and let A and B be 
subsets of X and X* respectively. 

(a) The sets A1- and -LB are closed subspaces of X* and X respectively. 

(b) 1-(A1-) = [AJ. 
(c) If A is a subspace of X, then -L(A1-) = A. 

PROOF. Since 1-B = n{ ker(x*) : x* E B}, it follows that -LB is a closed 
subspace of X. Now 0 E A-L, and if ct is a scalar and x*, y* E A-L, then 
ctx*+y* E A1-, so A-L is a subspace of X*. Furthermore, if(z~) is a sequence 
in A 1- converging to some z* in X*, then z* E A -L, so the subspace A 1- is 
closed. This proves (a). 

For (b), first notice that 1-(A-L) is a closed subspace of X that includes A, 
so [A] t;;; 1-(A1-). Now suppose that Xo E X \ [AJ. By Corollary l.9.7, 
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there is an x~ in X· such that x(jxo =I- 0 and [AJ ~ ker(x(j). It follows 
that Xo rt. .L(A.L), since x(j E A.L and x(jxo =I- 0, so [AJ ;2 .L(A.L). This 
finishes the proof of (b). Since [AJ = (A) whenever A ~ X, part (c) follows 
immediately. • 

See Exercise 1.120 for some observations about (.LB).L when B is a sub
set of the dual space of a normed space. Characterizations of (.LB).L anal
ogous to those obtained in the above proposition for .L(A.L) will be given 
in Proposition 2.6.6. 

Suppose that M is a subspace of a normed space X. The restriction of an 
x* in X* to M always results in an element of M*. Moreover, if m* E M*, 
then the normed space version of the Hahn-Banach extension theorem al
lows m* to be extended to an element x;". of X*, and the restriction of x;". 
to M is m*. Thus, the elements of M* are just the restrictions of the ele
ments of X* to M, so in one sense M* can be identified with X*. Notice 
however that different elements of X* might agree on M, so elements of M* 
should really be considered to be equivalence classes of elements of X* , with 
two elements of X' considered equivalent if they agree on M. A moments' 
thought shows that the resulting equivalence classes are exactly the cosets 
x' + M.L that form the elements of X* / M.L. The following result is now 
not too surprising. 

1.10.16 Theorem. Let M be a subspace of a normed space X. Then there 
is an isometric isomorphism that identifies M* with X* / M.L such that if 
an element of M* is identified with the element x* + M.L of X* / M.L, then 
the action of x* +M.L on M is given by the formula (x* +M.L)(m) = x*m. 

PROOF. Let (T(x* + M.L))(m) = x*m whenever x* + M.L E X* /M.L and 
m EM; that is, let T: X* / M.L --> M* be the function that maps each 
member x* + M.L of X* /M.L to the restriction of x* to M. The goal is 
to show that T is an isometric isomorphism from X* / M.L onto M*. Since 
two elements xi + M.L and x; + M.L of X* / M.L are equal if and only if xi 
and x; agree on M, there is no ambiguity in the definition of T. It is clear 
that T is linear. If m* E M* and x;". is a Hahn-Banach extension of m* 
to X, then T(x;". + M.L) = m", so T maps X* /M.L onto M*. 

Suppose that x* + M.L E X*/M.L and that m* = T(x* + M.L). Since 
m" has a Hahn-Banach extension x;". to X and x;". + M.L = x* + M.L, 
it can be assumed that Ilx*11 = Ilm*ll. If y* E M.L, then m* and x* + y* 
agree on M, so 

It follows that 

IIm*1I = sup{ I(x* + y*)(m)1 : m E B M } 

:::; sup{ I(x" + y*)(x)1 : x E Bx } 

= IIx* +Y*II· 

IIm*11 :::; inf{ Ilx· + Y*II : y* E M.L} = II x" + M.LII :::; Ilx*11 = Ilm*ll, 
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so IIT(x* + M-.l)11 = Ilm*11 = Ilx* + M-.lII. Thus, the map T is an isometric 
isomorphism from X* j M -.l onto M*. • 

Now suppose that M is a closed subspace of a normed space X. Since M* 
can be identified in a natural way with a normed space derived from X*, 
namely X* jM-.l, it is reasonable to ask if (XjM)* can also be identified 
with some normed space related to X*. A logical first step in finding such 
an identification is to see how the elements of X* operate on those of X j M 
through the formula x*(x + M) = x*x. However, this formula does not 
always define x*(x + M) uniquely. If Xl and X2 are different elements of X 
such that Xl -X2 EM, and x* is an element of X* that separates Xl from X2 

in the sense of Corollary 1.9.9, then Xl + M = X2 + M but X'Xl -I- X*X2. 

A bit of reflection reveals that the formula x* (x + M) = x* X uniquely 
defines x*(x+M) for all elements x+M of XjM precisely when x* E Mi.. 
This suggests the following theorem, which is essentially just a corollary of 
Theorem 1.7.13. 

1.10.17 Theorem. Let M be a closed subspace of a normed space X. 
Then there is an isometric isomorphism that identifies (X j M) * with M i. 
such that if an element of (X j M)* is identified with the element x* of M i. , 
then the action of x* on XjM is given by the formula x*(x + M) = x*x. 

PROOF. Let 7r: X -+ XjM be the quotient map and let T(y*) = Y*7r for 
each y* in (XjM)*. It is clear that T is a linear operator from (XjM)* 
into Mi.. If x* E M-.l, then M ~ ker(x*), so Theorem 1.7.13 yields a 
unique y* in (XjM)* such that x' = Y*7r, and the same theorem guarantees 
that II Y*II = II x'll· This is just another way to say that T is one-to-one 
and onto M-.l and that Ily'll = IITy*11 for each y* in (XjM)*, so T is an 
isometric isomorphism from (XjM)' onto Mi.. Notice that if y* E (XjM)* 
and x' = Ty*, then y*(x+M) = (Ty*)(x) = x'x whenever x+M E XjM, 
as required. • 

Exercises 

1.111 Let c be the Banach space of all convergent sequences of scalars defined 
in Exercise 1.25. Prove that c' is isometrically isomorphic to £1' Notice 
from Exercise 1.49 that c and Co are not isometrically isomorphic, even 
though their dual spaces are. 

1.112 Let Y be a dense subspace of a normed space X. Prove that X' and Y' 
are isometrically isomorphic. Use this to give an example of two normed 
spaces X and Y such that X' and Y' are isometrically isomorphic, even 
though X and Yare not even isomorphic. 

1.113 Suppose that X is a complex normed space and that x· EX'. Prove that 
x· is a norm-attaining complex-linear functional if and only if its real part 
is a norm-attaining real-linear functional. 
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1.114 Characterize the elements of Co that are norm-attaining. Conclude that 
the norm-attaining functionals form a dense subset of Co. (This conclu
sion is a special case of the Bishop-Phelps subrefiexivity theorem of Sec
tion 2.11.) 

1.115 (a) Either prove that every element of t'i is a norm-attaining functional 
or display one that is not. 

(b) Repeat (a) with t'i replaced by t'~. 

1.116 (a) Let the direct sum Xl EB ... EB Xn of normed spaces Xl, ... , Xn be 
given one of the norms of Exercise 1.88. Denote this norm by II· lip, 
Find a norm on X~EB" 'EBX; that makes the map T: XiEB" 'EBX; -t 

(Xl EB· .. EB Xn)* in the proof of Theorem 1.10.13 into an isometric 
isomorphism. 

(b) Suppose that the norm II· 111 had been used instead of 11·112 for the 
norm of all direct sums of normed spaces. Let X be the real Banach 
space JR. Show that (X EB X EB X)* is not isometrically isomorphic 
to X* EB X' EB X*. (Notice that this requires more than just showing 
that the mapping T defined in the proof of Theorem 1.10.13 is not 
an isometric isomorphism.) 

1.117 Let X and Y be normed spaces. 

(a) Suppose that x* E X' and y E Y. Define Tx',y: X -t Y by the 
formula Tx"Y(x) = (x·x)y. Prove that Tx',y E B(X, Y) and that 

IITx',yll ~ Ilx*IIIIYII· 
(b) Suppose that Y =1= {a}. Prove that B(X, Y) has a closed subspace 

isometrically isomorphic to X*. 

(c) Suppose that X =1= {o}. Prove that B(X, Y) has a closed subspace 
isometrically isomorphic to Y. 

(d) Suppose that X =1= {a} and Y is not a Banach space. Prove that 
B(X, Y) is not a Banach space. (See the comments following Theo
rem 1.4.8.) 

1.118 Let X and Y be normed spaces. Prove that B(X, YO) is isometrically 
isomorphic to B(Y, X*). 

1.119 Exchanging the roles of X and X' in Theorem 1.9.10 results in the fol
lowing statement, which will be called statement 1.9.10*: 

Suppose that X is a normed space. Let A be a nonempty subset of X* 
and let {cx ' : x" E A} be a corresponding collection of scalars. Then the 
following are equivalent. 

(1) There is an Xo in X such that x'xo = Cx " for each x* in A. 

(2) There is a nonnegative real number M such that 

for each linear combination nlxi + ... + nnX~ of elements of A. 

If (2) holds, then Xo can be chosen in (1) so that Ilxoll ::: M. 
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Helly's theorem is of course a weakened version of statement 1.9.10*. 
The purpose of this exercise is to show that statement 1.9.10* is in gen
eral false, and that in fact Helly's theorem is the best result that can 
be obtained in this direction, even for Banach spaces, without putting 
additional restrictions on X. See also Exercise 1.134. 

(a) Find a Banach space X, a countable subset A of X*, and a cor
responding collection of scalars satisfying (2) but not (1) in state
ment 1.9.10·. (It can be done with co.) Thus, the requirement in 
Helly's theorem that the collection of functionals be finite cannot in 
general be relaxed. 

(b) Find a Banach space X, a nonempty finite subset A of X·, and 
a corresponding collection of scalars satisfying (2) for some M but 
for which Ilxoll > M whenever Xo satisfies (1). Thus, the to in the 
conclusion of Helly's theorem is in general necessary. 

1.120 Let X be a normed space and let B be a subset of X'. 

(a) Prove that ~(B~) S;; (~B)~. 

For the rest of this exercise, let X = Co and let B be the subset of X* that 
corresponds to the set {(an) : (an) E t\, En an = O} when Co and £1 
are identified in the usual way. 

(b) Show that ~(B~) = B. 

(c) Show that (~B).l = X*. Thus, the inclusion in (a) may be proper, 
even when B is a closed subspace of X*. 

1.121 Let K be a compact Hausdorff space and let T: rca(K) -- C(K)* be the 
isometric isomorphism of Example 1.10.6. 

1.11 

(a) A linear functional F on C(K) is said to be positive if F(f) 2': 0 
whenever f is nonnegative-real-valued. Define a relation on C(K)* 
by declaring that xi :::S X2 whenever X2 - xi is positive. Show that 
this relation is a partial order. 

(b) Define a relation on rca(K) by declaring that J.l1 :::S J.l2 whenever 
/12 - fl· 1 is nonnegative-real-valued. Show that this relation is a partial 
order. 

(c) Suppose that /11, /12 E rca( K). Prove that /11 :::S J.l2 if and only if 
T/11 :::S T/12. 

The Second Dual and Reflexivity 

1.11.1 Definition. Let X be a normed space. The second dual or double 
dual or bidual of X is the dual space (X*) * of X* and is denoted by X**. 
Similarly, the third dual of X is (X**)* and is denoted by X*** or X(3). 
The nth dual x(n) of X is then defined inductively to be (x(n-l)*. 

1.11.2 Example. Since Co is isometrically isomorphic to t\ and fi is iso
metrically isomorphic to f=, it follows from Theorem 1.10.12 that coo is 
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isometrically isomorphic to Coo. Similarly, if 1 < p < 00 then C;* is isomet
rically isomorphic to Cp • These isometric isomorphisms are usually treated 
as identifications by saying that c~* is Coo and that C;* is Cp if 1 < p < 00. 

However, see the warning note that ends this section. 

Let Xo be an element of a normed space X and let Q(xo) be the map 
from X* into the scalar field given by the formula (Q(xo))(x*) = x*xo. It is 
easy to check that Q(xo) is a linear functional on X'. By Theorem 1.10.9, 

sup{ I(Q(xo))(x*)I: x* E H x ·} = sup{ Ix'xol: x* E Bx ·} = Ilxoll, 

so Q(xo) E X** and IIQ(xo)11 = Ilxoll. If Q(x) is defined similarly for each x 
in X, then the resulting mapping Q: X --+ X** is clearly linear and so is 
an isometric isomorphism. Furthermore, the subspace Q(X) of the Banach 
space X** is closed if and only if it is complete, which happens if and only 
if X is complete. All of this is summarized in the following proposition. 

1.11.3 Proposition. Let X be a normed space and let (Q(x)) (x*) = x'x 
whenever x E X and x* E X*. Then Q(x) E X'* whenever x E X, 
and Q is an isometric isomorphism from X into X**. Furthermore, the 
subspace Q(X) of X** is closed if and only if X is a Banach space. 

1. 11.4 Definition. The map Q in the preceding proposition is called the 
natural map or canonical embedding map from X into X**. 

Recall that if S is a metric space and C is a complete metric space that 
includes a dense suhset isometric to S, then C is called a completion of S. 
As is shown by the proof of the next theorem, the natural map from a 
normed space into its second dual can be used to complete an incomplete 
normed space to a Banach space. This theorem also says, roughly speaking, 
that such a completion is unique and has the same dual space as the original 
normed space. 

1.11.5 Theorem. Let X be a normed space. Then there is a Banach 
space Y and an isometric isomorphism T: X --+ Y such that T(X) is dense 
in Y. Furthermore, the space X' is isometrically isomorphic to Y*. If Z is 
another Banach space such that there is an isometric isomorphism from X 
onto a dense subset of Z, then Z is isometrically isomorphic to Y. 

PROOF. Let Q be the natural map from X into X" and let Y = Q(X). 
Since X" is a Banach space, so is its closed subspace Y, and so Q is 
an isometric isomorphism from X onto a dense subspace of the Banach 
space Y. 

Define S: Y* --+ X* by the formula S(y*) = y*Q; that is, let (x, S(y')) = 

(Qx, yO) whenever x E X and y* E Y*. It is clear that S is linear. If 
x' E X*, then the bounded linear functional x'Q-l on Q(X) has a bounded 
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linear extension y* to Y, and Sy' = x'. Thus, the operator S maps Y* 
onto X'. If y* E Y*, then it follows from the continuity of y' and the 
density of Q(Bx) in By that 

Ily*11 = sup{ I(Qx,y*)I: x E Bx} = sup{ l(x,Sy*)I: x E Bx} = IISy'II, 

so S is an isometric isomorphism from y* onto X*. 
Finally, suppose that R is an isometric isomorphism from X onto a dense 

subspace of a Banach space Z. Then RQ-l is an isometric isomorphism 
from the dense subspace Q(X) of Y into Z, and so by Theorem 1.9.1 can 
be extended to an isometric isomorphism Ro from Y into Z. Since Ro (Y) 
is a Banach space that includes the dense subspace R(X) of Z, it follows 
that Ra(Y) = Z, which completes the proof. • 

There are other ways to prove that every incomplete normed space can 
be completed to a Banach space. See Exercise 1.123 for a proof that requires 
quite a bit more work than that of Theorem 1.11.5, but has the advantage 
that it could have been given almost as soon as Banach spaces and isometric 
isomorphisms had been defined. 

Suppose that X is a finite-dimensional normed space. It is a standard 
fact from linear algebra that the space of all linear functionals on X has the 
same finite dimension as X itself. Since each of these linear functionals is 
bounded, the spaces X and X* have the same dimension, so the dimension 
of x(n) equals that of X for each positive integer n. Since the natural 
map Q from X into X** is one-to-one, its range has the same dimension 
as X, which implies that Q actually maps X onto X**. 

1.11.6 Definition. (H. Hahn, 1927 [99]). A normed space X is reflexive if 
the natural map from X into X** is onto X**. 

Actually, Hahn called such spaces regular. The more descriptive term 
reflexive was coined by Edgar R. Lorch [158] in 1939. 

1.11.7 Theorem. Every reflexive normed space is a Banach space. 

PROOF. Every reflexive normed space is isomorphic to a Banach space, 
namely, its own second dual, and so is itself a Banach space. • 

Some authors call an incomplete normed space reflexive if its completion 
is reflexive in the sense of Definition 1.11.6. The term prerefiexive is also 
used for such a space. 

1.11.8 Proposition. Every normed space isomorphic to a reflexive normed 
space is itself reflexive. 

PROOF. Let T be an isomorphism from a reflexive normed space X onto a 
normed space Y, and let T*(y*) = y*T and T"(x") = x*'T* for each y* 
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in Y* and each x" in X**. By Theorem 1.10.12, the maps T* and T** 
are isomorphisms from Y* and X** onto X* and Y" respectively. Let Q x 
and Qy be the natural maps from X and Y into X** and Y** respec
tively. Fix an element y*' of Y** and let x be the element of X for which 
T**Qxx = y**. If y* E Y*, then 

(y*, y**) = (y*, T**Qxx) = (T*y*, Qxx) = (x, T*y*) = (Tx, y*), 

so y** = Qy (Tx). Thus, the map Qy is onto Y**. • 
Actually, a Banach space is reflexive whenever it is the image of a reflexive 

normed space under any bounded linear map whatever, whether or not the 
map is an isomorphism. That fact appears below as Corollary 1.11.22, but 
Proposition 1.11.8 is used in it~ proof. 

The discussion preceding the definition of reflexivity proves the following 
result. 

1.11.9 Theorem. Every finite-dimensional normed space is reflexive. 

Let n be a positive integer. As an application of Theorem 1.11.9, here is 
a proof that (i~)* can be identified with i'1 as claimed in Example 1.10.5. 
Let i~ be identified with (il)* as in that example, with T: €~ -> (i'1)* 
being the identifying isometric isomorphism. Then 

n 

((a1, ... , an), T(Pl, ... ,Pn) = L ajpj 
j=1 

whenever (a1, ... ,ar,) E i'1 and (Pl, ... ,Pn) E i~. By Theorem 1.10.12, 
the map T* given by the formula T*(x**) = x**T is an isometric isomor
phism from (i'1)** onto (i~)*. Since i1 is reflexive, the natural map Q 
from i1 into (il)** is onto (i1)**' so T*Q is an isometric isomorphism 
from £f onto (€~)*. Whenever (aI, ... ,an) E i'1 and (PI, ... ,Pn) E i~, 

((PI, ... , Pn), T*Q( aI, ... , an)) = (T(P1, ... , Pn), Q( aI, ... , an)) 

= ((a1, ... ,an),T(P1, ... ,Pn) 
n 

so T*Q identifies il with (i~)* in the desired way. 
Notice that all the preceding argument really says is that since i~ 

"is" (i1)* and il "is" (il)**' it follows that il "is" (~)*. The role of 
the isometric isomorphisms Q, T, and T* is to make the uses of the word 
"is" precise. 



1.11 The Second Dual and Reflexivity 101 

1.11.10 Theorem. Suppose that 1 < p < 00. If (D,E,J.L) is a positive 
measure space, then Lp(D, E, J.L) is reflexive. In particular, the space fp is 
reflexive. 

PROOF. Let q be conjugate to p, and let Lp = Lp(D, E, J.L) and Lq = 
Lq(D, E, J.L). Let Tq: Lq ~ L; and Tp: Lp ~ L~ be the usual isomet
ric isomorphisms as in Example 1.10.2; see also the paragraph following 
that example. Let Q be the natural map from Lp into L;*. Suppose that 
x** E L;*. Then x**Tq E L~, so there is an f in Lp such that x'*Tq = Tp(f). 
If x* E L;, then there is a gin Lq such that x* = Tq(g), so 

x**(x*) = x**Tq(g) = (Tp(f)) (g) = in gf d{L = (Tq(g)) (f) = x'(f) . 

It follows that x** = Q f, so Q is onto L;*. • 
With (D, E, J.L) as in the preceding theorem, it will be seen in Exam

ple 1.11.24 that L1 (D, E, J.L) is reflexive if and only if it is finite-dimensional, 
and similarly for Lcx,(D, E,J.L). 

It is time to give an example of a nonreflexive Banach space. The follow
ing result is a useful tool for doing so. 

1.11.11 Proposition. Let X be a reflexive normed space. Then every 
member of X' is norm-attaining. 

PROOF. Let x* be a member of X'. By Theorem 1.10.9, there is an x" 
in Bx" such that Ix"x*1 = Ilx*ll. If Q: X ~ X" is the natural map, then 
there is an x in Bx such that Qx = x'*, and so Ilx*11 = Ix'*x"1 = Ix*xl .• 

1.11.12 Example. By Example 1.10.10, the dual of Co has a member that 
is not norm-attaining, so Co is not reflexive. 

For Banach spaces, the converse of Proposition 1.11.11 is true. That 
is, if a Banach space X has the property that every member of X* is 
norm-attaining, then X is necessarily reflexive. This result, called James's 
theorem, is proved in Section 1.13. 

Just as the dual space of a subspace of a normed space can be char
acterized in terms of the annihilator of that subspace, it is possible to 
characterize the second dual of the subspace in terms of its second order 
annihilator. 

1.11.13 Definition. Suppose that A is a subset of a normed space X. The 
sets A .Ll , A 1...1..1, . .. are defined inductively to be the respective subsets 
(A 1.. )1.. , (A 1..1.. ) 1.. , ... of the respective normed spaces X** , X*** , ... and are 
called the annihilators of the second, third, ... order of A, respectively. The 
abbreviation A1..(3) is sometimes used for A1..1..1.., with a similar convention 
for annihilators of higher order. 
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1.11.14 Proposition. Let M be a subspace of a normed space X. Then 
there is an isometric isomorphism that identifies M** with M.1.1 such that 
if an element of M** is identified with the element m.1.l of M.1.1 and M* 
is identified with X* /M.1 as in Theorem 1.10.16, then the action of m.l.1 
on M* is given by the formula m.1.1 (x* + M.1) = m.l.1 x* . 

PROOF. With X*, M.l, and M.1.1 playing the respective roles of X, M, 
and M.1 in Theorem 1.10.17, let S be the isometric isomorphism from M.1.1 
onto (X* / M.1)* produced by that theorem, so that 

(x* + M\ Sm.11.) = m.11. x * 

whenever m1.1. E M 1.1. and x* + M 1. E X* / M 1.. Let T be the isometric 
isomorphism from X* /M.1 onto M* of Theorem 1.10.16, so that 

(rn,T(x* + M.1)) = x*m 

whenever x* + M.1 E X* / M.1 and m EM, and let T* be the resulting 
isometric isomorphism from M** onto (X* /M.l)* guaranteed by Theo
rem 1.10.12. Then (T*)-lS is the desired isometric isomorphism from M.l.l 
onto M**. Indeed, if m1..1 E M.11. and x* + M.1 E X* / M.1, then 

(T(x* + M1.), (T*)-lSm.1.1) = (x* + M\ T*(T*)-lSm.1.1) 

= (x* + M.1, Sm1.1.) 

= m.1.1 x *, 

as required. • 
As is suggested by the preceding proposition and Theorem 1.10.16, there 

is a close relationship between the higher order duals of a subspace of 
a normed space and the higher order annihilators of the subspace. See 
Exercise 1.127. 

When two normed spaces are isometrically isomorphic in some natural 
way, it is common practice to treat the spaces as if they were the same space 
with two different sets of labels for its elements, and then substitute one 
of the spaces and its elements' labels for the other space and its elements' 
labels in some expression or argument. Given this "substitution principle," 
Proposition 1.11.14 becomes rather obvious. When M is a subspace of a 
normed space X, Theorems 1.10.17 and 1.10.16 provide natural ways to 
identify M1..1 with (X* /M.1)* and X' /M1. with M*, so that M.1.1 can be 
treated as the dual space of M* , with the action of the elements of M 1.1. on 
those of M* given by the formula that shows how the elements of M 1.1. act 
on those of X* / M.1. The proof of Proposition 1.11.14 amounts to nothing 
more than combining the appropriate isometric isomorphisms in the correct 
order to make this argument rigorous. 

This substitution principle is often used without comment in the lit
erature to shorten an argument by suppressing portions of the argument 
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that amount only to pushing around identification maps in a fairly obvious 
way. This becomes especially helpful when a host of such identifying maps 
would be required, as is not uncommon with certain types of arguments in 
Banach space theory. The best attitude to take toward an argument using 
this substitution principle is that it is actually just a sketch of an argument 
whose details can be readily filled in by the concerned reader with the help 
of the following observations. 

1. Most of the important properties that normed spaces can have, such 
as completeness and reflexivity, are preserved by isometric isomor
phisms. 

2. There are specific results saying that when a normed space is de
fined by some particular expression involving other normed spaces, 
and some of the normed spaces in the expression are replaced by 
others isometrically isomorphic to those replaced, then the result
ing normed space is isometrically isomorphic to the original one. See 
Corollary 1.8.13 for an example of such a result. 

3. When an isometric isomorphism T from a normed space X onto a 
normed space Y is treated as a natural way to identify the two 
spaces, the isometric isomorphisms T*: Y* -> X*, T**: X** -> Y** , 
T***: Y*** -> X***, and so forth formed by repeated applications of 
Theorem 1.10.12 can be considered natural identifications of the cor
responding duals, second duals, and higher-order duals of X and Y. 

4. With T, X, and Y as in the preceding item, any linear operator L 
from Y into a normed space Z can be treated as a linear opera
tor from X into Z by identifying L with LT. The operator LT is 
bounded, open, one-to-one, onto Z, an isomorphism, or an isometric 
isomorphism if and only if L has that same property, which further 
justifies the identification. Analogous remarks can be made for any 
operator with domain X or Y or range in X or Y by preceding or 
following that operator with T or T- 1 . 

This substitution principle is sometimes extended to normed spaces that 
are only isomorphic rather than isometrically isomorphic. In any case, care 
should be taken not to use the principle in situations to which it does 
not apply. For example, the principle does not hold for denominators of 
quotient spaces, since it is quite possible for a Banach space X to have 
two isometrically isomorphic closed subspaces Y and Z such that XjY 
and XjZ are not even isomorphic. See Exercise 1.85. 

Suppose that M is a subspace of a normed space X and that M** is 
identified with Ml.l. as in Proposition 1.11.14. Let QM and Qx be the 
natural maps from M and X respectively into their second duals. Then M 
is reflexive if and only if QM(M) = Ml.l.. It is a simple but remarkably 
useful fact that this statement remains true if Q M is replaced by Q x and 
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M 1-1- is given its usual meaning as a subspace of X**. One of the most 
important theorems about reflexive spaces follows almost immediately. 

1.11.15 Lemma. Let M be a subspace of a normed space X and let Q 
be the natural map from X into X**. Then M is reflexive if and only if 
Q(M) = M1-1-. 

PROOF. This proof uses the substitution principle discussed above. Let M* 
and M** be identified with X* / M 1- and M.l1- respectively in the usual 
ways. Suppose first that M is reflexive. Let m.l1- be an element of M1-1-
and let m** be rn1-1- viewed as a member of N[**. Then there is an m in M 
such that for each x* in X*, 

so Qm = m1-.l. This shows that Q(M) d M1-1-. The reverse inclusion is 
easy to check, so Q (M) = M.l.l. 

Now suppose conversely that Q(M) = M1-1-. Let m** be an element 
of M*' and let m1-.l be the corresponding element of M .l.l. Then there is 
an m in M such that Qm = m.l1-, so for each member x' + M 1- of M*, 

It follows that the natural map from Minto M** is onto M*', so M is 
reflexive. • 

1.11.16 Theorem. (B. J. Pettis, 1938 [181]). Every closed subspace of a 
reflexive normed space is reflexive. 

PROOF. Let M be a closed subspace of a reflexive normed space X and 
let Q be the natural map from X onto X**. It is clear that x E .l (M 1- ) 
if and only if Qx E M1-.l, so Q(.l(M1-)) = M1-1-. But .l(M1-) = M by 
Proposition 1.10.15 (c), so an appeal to the lemma completes the proof. • 

1.11.17 Corollary. (B. J. Pettis, 1938 [181]). If X is a Banach space, then 
X is reflexive if and only if X* is reflexive. 

PROOF. Suppose that X is reflexive. Let Qx and Qx- be the natural maps 
from X and X* into X** and X*** respectively. Let x'** be an element 
of X***. If x'* E X" and x = Q)/ x**, then 

( " ***\ - (Q ***) - ( **'Q) - ("'Q **) x ,x 1- xX,X - x,x x - x x,x, 

so x*" = Qx- (x··'Qx). Since Qx- is onto X***, the space X* is reflexive. 
Conversely, suppose that X* is reflexive. Then both X** and its closed 

subspace Qx(X) are reflexive, so X is reflexive since it is isomorphic 
to Qx(X). • 
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1.11.18 Corollary. If X is a reflexive normed space and M is a closed 
subspace of X, then XjM is reflexive. 

PROOF. The space Mol is reflexive since it is a closed subspace of the 
reflexive space X*. Since (XjM)* ~ Mol, the space (XjM)* is reflexive. 
As a Banach space with a reflexive dual, the space X j M is reflexive. • 

1.11.19 Corollary. Reflexivity is a three-space property. 

PROOF. Let M be a closed subspace of a normed space X such that both M 
and XjM are reflexive. It suffices to prove that X is reflexive. Let Q be the 
natural map from X into X** and let x** be a member of X**. It suffices to 
prove that x** E Q(X). Let T be the usual isometric isomorphism from MJ... 
onto (XjM)*. Since x**T- 1 E (XjM)** and XjM is teflexive, there is an 
x + M in Xj M such that whenever mol E Mol, 

(mol,x**) = (Tmol,x**T-I) = (x + M,Tmol) = {x, mol) = (mol, Qx). 

It follows that x** - Qx E Molol. By Lemma 1.11.15, there is an m in M 
such that Qm = XU - Qx, so Q(m + x) = x**. • 

1.11.20 Corollary. Suppose that XI, ... , Xn are normed spaces and that 
X = Xl EEl··· EEl X n. Then X is reflexive if and only if each Xj is reflexive. 

PROOF. It can clearly be assumed that n 2:: 2, and in fact that X = 
Xl EEl X 2 ; an induction argument based on the fact that Xl ® ... ® Xn ~ 
(Xl EEl··· EEl X n- l ) EEl Xn when n 2:: 3 then gives the general case. Let M = 
{(XI'O) : Xl E Xl}' a closed subspace of X isometrically isomorphic to Xl 
by Proposition 1.8.3. The quotient space Xj M is isometrically isomorphic 
to X 2 by Proposition 1.8.5, so it is enough to prove that X is reflexive if 
and only if both M and X j M are reflexive. This follows from the preceding 
theorem and corollaries. • 

1.11.21 Corollary. If a Banach space X is the internal direct sum of its 
closed subspaces M I , ... , M n , then X is reflexive if and only if each M j is 
reflexive. 

PROOF. Just notice that X ~ MI EEl··· EEl Mn by Proposition 1.8.10 (b), 
then apply Corollary 1.11.20. • 

1.11.22 Corollary. Let X be a reflexive normed space and Y a Banach 
space. If there is a bounded linear operator from X onto Y, then Y is 
reflexive. 

PROOF. Suppose that T is a bounded linear operator from X onto Y. Then 
Y ~ Xjker(T), and Xjker(T) is reflexive by Corollary 1.11.18. • 

Many Banach spaces can be shown to be nonreflexive by beginning with 
the nonreflexive space Co and repeatedly applying Theorem 1.11.16 and its 
corollaries. 
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1.11.23 Example. Since R1 and Roo are isometrically isomorphic to Co 
and co' respectively, neither is reflexive. Another proof that Roo is not re
flexive comes from noticing that it has Co as a nonreflexive closed subspace. 

1.11.24 Example. Suppose that (0,2:, f.L) is a positive measure space and 
that 1 ::; p ::; 00. If Lp(O, 2:, j1) is infinite-dimensional, then Rp is isometri
cally embedded in itj see Exercise 1.129. It follows immediately from the 
nonreflexivity of Rl that L 1(0,2:,j1) is reflexive if and only if it is finite
dimensional, and similarly for L oo UJ,2:,f.L) because of the nonreflexivity 
of Roo. In particular, the spaces LdO, 1] and Loo[O, 1] are not reflexive. 

1.11.25 Example. Suppose that K is a compact Hausdorff space contain
ing an infinite number of points. Let (xn) be a sequence of distinct points 
in K. For each n, let bn be the Borel measure on K such that bn(A) = 1 
if Xn E A and bn(A) = 0 otherwise. Define a map T: Rl ---> rca(K) by 
the formula T(an) = L:n anb". Then T can be shown to embed Rl iso
metrically into rca(K)j see Exercise 1.125. Since rca(K) has a nonreflexive 
closed subspace, it is not reflexive. Since C(K)* is isometrically isomorphic 
to rca(K), the space C(K) is also not reflexive. 

The argument just given is ultimately based on Proposition 1.11.11, since 
that result was used to show that Co is not reflexive and therefore that the 
space Rl isometrically isomorphic to Co is not reflexive. The nonreflexivity 
of C(K) can also be obtained directly from Proposition 1.11.11. Let (xn) 
and (bn ) be as above. Since K is compact, there is an Xf in K such that 
each neighborhood of Xf contains infinitely many terms of (xn). It can be 
assumed that Xf = Xl. Let f.L = -2-1b1 + L:~=2 2-n bn . It is easy to check 
that 11f.L11 = 1, from which it follows that IJK f df.L1 :S 1 whenever f E BC(K)· 
It will now be shown that this last inequality is always strict. Suppose to 
the contrary that there is an fo in BCCK) such that IJK fo df.L1 = 1. There 
is a scalar a such that 1001 = 1 and JK afo dj1 = IJKfodf.Ll, so it can be 
assumed that JK fo df.L = 1. Since Ifo(x)1 :S 1 for each X in K, and 

it follows that fO(Xl) = -1 and fo(xn) = +1 if n ::0: 2. But this cannot be, 
since it would imply that there is a neighborhood of Xl on which the real 
part of fo is negative and in which there are infinitely many points at which 
fo takes on the value 1. Thus, if f E BC(K) , it must be that IJK f dill < 1, 
so 11, viewed as a member of C(K)', is not norm-attaining. The space C(K) 
is therefore not reflexive, and so the space rca(K) isomorphic to C(K)* is 
also not reflexive. 

This section ends with a word of caution about the definition of reflex
ivity. Since the natural map from a normed space into its second dual is 
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an isometric isomorphism, it is often useful to think of the space as being 
identified with a subspace of its second dual. Having done this, it is tempt
ing to define a normed space X to be reflexive if "X = X**," and in fact 
this definition appears in print in more than one place. There is nothing 
objectionable about this if it is understood that "X = X**" means that 
the natural map, not just some map, is an isometric isomorphism from X 
onto X**. Stefan Banach himself inadvertently created a research problem 
by being imprecise in this very situation. 

The prototype of all Banach space textbooks is Banach's own TheoTie des 
Operations Lineaires [13], published in 1932. The following result appears 
on page 189 of that book, reproduced here in translation using modern 
terminology. 

Theorem 13. Given a separable Banach space E such that every 
sequence of elements of E that is bounded in norm has a subsequence 
weakly convergent to an element of E, the space E is isometrically 
isomorphic to the space E** (the dual of E*). 

Though some of these terms have yet to be defined here, their meanings 
are not important at the moment. An examination of Banach's proof of 
this theorem shows that the isometric isomorphism he had in mind is the 
natural map from E into E**, so the conclusion of Banach's theorem is 
that E must be reflexive. In a note on that theorem given on page 243 of 
Banach's book, he made the following statement. 

The converse of Theorem 12, p. 189, is obviously false, but it is not 
known if it is the same for the converse of Theorem 13, p. 189, that 
is, if isometric isomorphism of the separable Banach space E and the 
space E** implies, yes or no, the existence in every bounded sequence 
of elements of E a subsequence weakly convergent to an element of E. 

Though Banach did not insist that the isometric isomorphism be the natu
ral map, that is probably what he meant. Nevertheless, those who took up 
Banach's implied challenge to prove or disprove the converse of his Theo
rem 13 first had to figure out whether the converse is supposed to contain 
this additional hypothesis. This led naturally to the question of whether 
or not it really makes any difference. That is, if there is some isometric 
isomorphism from a separable Banach space E onto E** , must E be reflex
ive? R. C. James [110] finally settled this last question in the negative in a 
1951 paper by constructing a nonreflexive separable Banach space J such 
that there is an isometric isomorphism from J onto J**. This space was 
also used to settle several other long-standing open questions in Banach 
space theory, as will be seen in Section 4.5. Incidentally, in Section 1.13, 
and again in Section 2.8, it will be shown that the converse of Banach's 
Theorem 13 is true if the isometric isomorphism is required to be the nat
ural map, and in fact that the property that every bounded sequence has a 
weakly convergent subsequence actually characterizes the reflexive spaces 
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among all normed spaces. The converse of Banach's Theorem 13 is there
fore false as Banach stated it, with J being a counterexample. It pays to 
be careful about the definition of reflexivity. 

Exercises 

1.122 Give a proof of Theorem 1.10.8 based on Proposition 1.11.3. 

1.123 Let X be an incomplete normed space. Supply the details for the following 
proof that X can be completed to a Banach space. 

(a) It is a standard fact that if S is an incomplete metric space, then 
there is an isometry from S onto a dense subset of some complete 
metric space; see, for example, [65] or [172]. Let T be an isometry 
from X onto a dense subset of a complete metric space Y. It is 
enough to give Y a vector space structure and a Banach norm such 
that T is a linear mapping and the metric of Y is induced by that 
norm. 

(b) Define an addition of elements of Y and a multiplication of elements 
of Y by scalars as follows. Whenever y, z E Y and a E IF, let (wn ) 

and (Xn) be sequences in X such that T(wn ) --> y and T(xn) --> z, 
then let y + z = limn T(wn + Xn) and ay = limn T(awn ). These 
operations are unambiguously defined. 

(c) The set Y is a vector space over IF with the operations defined in (b). 

(d) The map T is a linear operator from X into Y. 

(e) Let d be the metric of Y. If Yl, Y2, Z E Y, then d(Yl + Z, Y2 + z) = 
d(Yl, Y2); in particular, d(Yl - Y2, 0) = d(Yl, Y2). 

(f) Define 11·lly: Y --> lR by the formula lIylly = d(y, 0). Then 11·lly is a 
norm on Y such that the metric induced by 11·lly is d, so 11·lly is a 
Banach norm. 

1.124 Use Proposition 1.11.11 to prove that £1[0,1] is not reflexive. 

1.125 Prove that the map T in Example 1.11.25 embeds I!l isometrically into 
rca(K). 

1.126 Criticize the following "proof" that £2[0,1] is reflexive: Since the dual of 
£2[0,1] is £2[0,1], it immediately follows that (£2[0,1])** = £2[0,1], so 
£2[0,lJ is reflexive. 

1.127 Let M be a subspace of a normed space X. 

(a) For each positive integer n, find a normed space expressed in terms of 
Ml.(n) to which the nth dual M(n) of M is isometrically isomorphic. 

(b) Suppose that M is closed. For each positive integer n, find a normed 
space expressed in terms of Ml.(n) to which (XIM)(n) is isometri
cally isomorphic. 

1.128 Suppose that M is a subspace of a Banach space X and that both M 
and Ml. are reflexive. Prove that X is reflexive. 
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1.129 Suppose that (o,~, p,) is a positive measure space, that 1 ~ P ~ 00, and 
that Lp(O,~, p,) is infinite-dimensional. 

(a) Prove that there is a sequence of disjoint members of ~ each having 
nonzero measure, and that if p ::/= 00, then the sets can be selected 
so that each has finite measure. 

(b) Prove that f.p is isometrically embedded in Lp(O,~, p,). 

1.130 Complete the discussion begun in Example 1.11.25 by examining the re
flexivity or nonreflexivity of C(K) and rca(K) when K is a compact 
Hausdorff space with a finite number of points. 

1.131 Let X and Y be Banach spaces. Prove that if X is reflexive, then X"", Y 
if and only if X' "'" y'. Prove the corresponding statement for isometric 
isomorphisms. Compare this to the result of Exercise 1.111. 

1.132 Let X be a Banach space. Show that the kernels ofthe finite-rank bounded 
linear operators with domain X are either all reflexive or all nonreflexive. 

1.133 Prove or disprove: If X is a reflexive normed space and Y is a normed 
space such that there is a bounded linear operator from X onto Y, then 
the completion of Y must be reflexive. 

1.134 Let X be a normed space and let statement 1.9.10' be as in Exercise 1.119. 
Prove that statement 1.9.10* is true for X if and only if X is reflexive. 
In particular, show that if X is not reflexive then there is a subset A 
of X' and a corresponding collection of scalars satisfying (2) but not (1) 
in statement 1.9.10'. 

1.12 Separability 

Recall that a topological space is separable if it has a countable dense 
subset. In this section some of the special properties of separable normed 
spaces are explored. The first order of business is to determine which of the 
most commonly encountered normed spaces are separable. For this purpose, 
the following result is useful. 

1.12.1 Proposition. 

(a) If A is a countable subset of a normed space, then [AJ is separable. 

(b) If a metric space X has an uncountable subset B such that d( x, y) 2: f 

for some positive f and each pair of distinct elements x and y of B, 
then X is not separable. 

PROOF. For (a), it can be assumed that A =I- 0. Since a dense subset 
of (A) is also a dense subset of [AJ, it is enough to prove that (A) is 
separable. Let lQo be the rationals (if IF = JR) or the complex numbers 
with rational real and imaginary parts (if IF = C). Let S be the subset 
of (A) consisting of all linear combinations of elements of A formed using 
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only scalar coefficients from Qo. It is easy to check that S is countable. 
Suppose that Xl, ... ,Xm E A and D:l," . ,D:m E IF. For each j such that 
j = 1, ... , m there is a sequence (D:j.n)~l in Qo converging to D:j, and it 
follows from the continuity of the vector space operations that the sequence 
(D:l,nXl + ... + D:m,nXm);;"=l in S converges to D:IXI + ... + D:mXm . Thus, 
the countable set S is dense in (A), which proves (a). 

For (b), just notice that X has an uncountable collection of nonempty 
disjoint opcn subsets, namely, the open balls with radius E/2 and center 
in B. Since no countable subset of X can intersect each of these open sets, 
the space X is not separable. • 

1.12.2 Example. The classical Weierstrass approximation theorem says 
that the polynomials are dense in C[O, 1]; see, for example, [19] or [201]. For 
each nonnegative integer n, let in be the member of e[O, 1] given by the 
formulas io(t) = 1 and in(t) = tn if n i= 0. It follows from the Weierstrass 
approximation theorem that [{ in: n = 0,1,2, ... }] = e[O, 1], so e[O, 1] is 
separable. 

1.12.3 Example. If 1 ~ P < 00, then Lp[O, 1] is separable. One countable 
dense subset is the collection of all functions of the form 

rn=O 

such that n is a nonnegative integer, each Tm is rational (if IF = JR) or 
complex with rational real and imaginary parts (if IF = C), and I[a,b) is 
the indicator function of the interval [a, b); see, for example, [242]. Another 
countable dense subset is found by recalling that the continuous functions 
on [0,1] are dense in Lp[O, 1]; see, for example, [202]. If D is a countable 
subset of e[O, 1] dense in e[O, 1] with its usual norm, then D is easily seen 
to be dense in e[O, 1] with the Lp[O, 1] norm, and so D is dense in Lp[O, 1]. 
The separability of Lp[O, 1] thus follows from that of e[O, 1]. 

1.12.4 Example. The space Loo[O, 1] is not separable. To see this, suppose 
that B is the collection of all functions with domain [0,1] that are indicator 
functions of intervals of the form [0, t], where ° ~ t ~ 1. Then B is an 
uncountable subset of Loo[O, 1] such that II! - gll= = 1 whenever! and 9 
are different members of B. 

1.12.5 Example. For each t in [0, 1], let Dt be the Borel measure on [0, 1] 
such that Ot(A) = 1 if tEA and Ot(A) = ° otherwise. Then {Dt : t E [0,1] } 
is an uncountable subset of rca[O, 1]. Since IIOtl - Dt211 = 2 if tl f= t2, the 
space rca[O, 1] is not separable. 

1.12.6 Example. The space Co is separable, sincc Co = [{ en: n EN}]. 
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1.12.7 Example. If 1 S; p < 00, then Rp = [{en: n EN}] and so 
is separable. However, the space ROC) is not separable. To see this, let B 
be the subset of ROC) consisting of all sequences whose terms are from the 
set {O, I}. Then B is uncountable and II(an ) - (;3n)IIOC) = 1 if (an) and (;3n) 
are different members of B. 

1.12.8 Example. Every finite-dimensional normed space is the closed lin
ear hull of a finite subset of the space and so is separable. 

Most of the results about refiexivity in the preceding section have their 
analogs for separability, and in fact more general results are often true. 

1.12.9 Proposition. Let X be a normed space. 

(a) If X is separable and f is a continuous map from X into a topological 
space S, then the range of f is a separable subset of S; in particular, 
every normed space isomorphic to X is separable. 

(b) If X is separable, then each subset of X, and in particular each 
subspace of X, is separable. 

(c) If A is a separable subset of X, then A, coCA), coCA), (A), and [AJ 
are all separable. 

(d) If X is separable, then its completion is also separable. 

(e) If X is separable and M is a closed subspace of X, then XjM is 
separable. 

(f) If X is the external or internal direct sum of the normed spaces 
Xl, ... , X n , then X is separable if and only if each Xj is separable. 

PROOF. If X were any topological space with a countable dense subset D 
and f were a continuous map from X into a topological space S, then it 
would follow that f(X) = f(D) ~ f(D), and so f(X) would have the 
countable dense subset feD). This gives (a). Similarly, part (b) is just a 
special case of the more general fact that each subset of a separable metric 
space is separable. 

For (c), let DA be a countable dense subset of a separable subset A of X_ 
Then [DAJ is separable by Proposition 1.12.1 (a). Since A ~ DA ~ [D A], 
each of the sets listed in the conclusion of (c) is a subset of [D AJ and so is 
separable_ Part (d) now follows immediately from (a) and (c). 

For (e), suppose that X has a countable dense subset D and that M is 
a closed subspace of X. Let DX/M = {d + M : d ED}. Since 

II(x + M) - (d + M)II :s Ilx - dll 

whenever x + M E XjM and d + M E D X/ M , it follows that DX/M is a 
countable dense subset of XjM, proving (e). 

For (f), suppose that X is the external or internal direct sum of the 
normed spaces Xl, ... , X n . If X is separable, then each Xj is separable since 
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it is either a subspace of X or isomorphic to a subspace of X. Conversely, 
suppose that each Xj is separable. For each j, let D j be a countable dense 
subset of Xj' If X = Xl E9 ... E9 X n , then it is clear from the form of 
the direct sum norm that the countable set DI x ... x Dn is dense in X. 
Suppose that X is the internal direct sum of Xl"'" X n . If Xj E Xj when 
j = 1, ... , n, then for each j there is a sequence (dj.m)':;;~=l in D j such that 
limm dj,m = Xj, and so limm(dl,m + ... + dn,m) = Xl + ... + Xn. It follows 
that DI + ... + Dn is a countable dense subset of X, which finishes the 
proof of (f). • 

1.12.10 Corollary. Separability is a three-space property. 

PROOF. Suppose that M is a closed subspace of a normed space X such 
that both M and X/M are separable. Let DM and D' be countable subsets 
of M and X respectively such that DM is dense in M and {x+M : xED'} 
is dense in X/M. Suppose that Xo E X and I: > O. Then there is an Xl in D' 
such that d(xo - xI,M) = II(xo + M) - (Xl + M)II < 1:/2, and so there is 
an m in M such that II(xo -Xl) -mil < t/2. There is an X2 in DM such that 
Ilm-x211 < t/2, and so Ilxa-(X1 +x2)11 = II(xo-xd-X211 < t.1t follows that 
the countable set D' + D M is dense in X, and so X is separable. The rest 
of the proof follows from parts (b) and (e) of the preceding proposition. • 

1.12.11 Theorem. Let X be a normed space. If X* is separable, then X 
is separable. 

PROOF. Let {X;, : n EN} be a countable dense subset of X'. For each n, 
let Xn be an element of Ex such that Ix~xnl ::;:. ~llx~ll. If x' E X' and 
x' 1- 0, then there is an n such that Ilx' - x~ II < ~ Ilx' II, from which it 
follows that Ilx~11 ::;:. Ilx'II-llx' - x~1I > ~llx'll > 0 and that 

Ix'xnl ::;:. Ix~xnl-I(x' - x~)(xn)1 

::;:. Ix~xnl - Ilx' - x~11 

> ~llx~ll- ~llx*11 

> ~llx~11 - ~llx~11 
> O. 

Thus, the annihilator of {Xn : n EN} contains only the zero element of X' , 
and so 

An appeal to Proposition 1.12.1 (a) establishes the separability of X. • 

The converse of the preceding theorem is false. For example, the space f.J 
is separable, but its dual space is isometrically isomorphic to the nonsep
arable space f.oo and so is not separable. The following, at least, can be 
said. 



1.12 Separability 113 

1.12.12 Corollary. Let X be a reflexive normed space. Then X is sepa
rable if and only if X* is separable. 

PROOF. The "if" portion comes from the preceding theorem. For the "only 
if" portion, suppose that X is separable. Then X** is separable since it is 
isometrically isomorphic to X, so X* is separable. • 

Notice that the corollary gives new proofs of the nonreflexivity of the 
spaces L1[0, 1], £1, and e[O,l], and therefore of Loo[O, 1J , Roc)) rca[O,l], 
and co. 

Suppose that M is a closed subspace of £1. Proposition 1.12.9 (e) guar
antees that £dM is separable. It may be somewhat surprising that, up to 
isomorphism, such quotients of £1 are the only separable Banach spaces. 

1.12.13 Lemma. (S. Banach and S. Mazur, 1933 [16]). Let X be a separa
ble Banach space. Then there is a bounded linear operator from £1 onto X. 

PROOF. Let {Xn : n EN} be a countable dense subset of B x. If (an) E £1, 
then L:n anXn is absolutely convergent and therefore convergent, so the 
formula T(an ) = L:n anXn defines a map T from £1 into X. It is clear that 
T is linear. Since IIT(an)11 ::; L:nlanl = lI(an)111 whenever (an) E £1, the 
operator T is bounded. 

All that remains is to show that T is onto X. Suppose that x E Ex. 
It is enough to prove that x E T(£l)' Select n1 so that Ilx - xn,ll < 1/2. 
Select n2 so that n2 > n1 and 112(x - Xn,) - xn2 11 < 1/2, that is, so that 

Ilx - xn , - 2-1xn2 11 < r2. 

Select n3 so that n3 > n2 and 1122(x - X n, - 2- 1x n2 ) - xnJ < 1/2, that 
is, so that 

Ilx - X n , - 2-1 x n • - 2-2xn3 11 < 2-3 . 

Continuing in the obvious way yields a subsequence (xnJ of (xn) such 
that x = L: j 2 1- j x n]. Let (an) be the element of £1 obtained by letting 

a nj = 21 - j for each j and letting an = 0 whenever there is no j such that 
n = nj. Then T(an ) = x, so x E T(£l)' • 

1.12.14 Theorem. (S. Banach and S. Mazur, 1933 [16]). For every sep
arable Banach space X, there is a closed subspace Mx of 1!1 such that 
X~£dMx. 

PROOF. Let T be a bounded linear operator from £1 onto X and let Mx = 
ker(T). Then £I/Mx ~ X by the first isomorphism theorem for Banach 
spaces. • 

The final result of this section provides a characterization of separable 
normed spaces among all normed spaces that is occasionally useful and will 
have a specific application in the proof of Proposition 3.4.7. 
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1.12.15 Theorem. A normed space X is separable if and only if there is 
a compact subset K of X such that X = [K]. 

PROOF. If X has a compact subset K such that X = [KJ, then K itself 
has a countable dense subset A, which implies that X is separable since 
X = [K] = [A]. Suppose conversely that X is separable. It can be assumed 
that X -I- {O}. There is a sequence (xn) of nonzero members of X such that 

X = {xn : n EN} = [ {xn : n EN} ], 

which implies that 

This last set whose closed linear hull is being taken consists of the terms 
and limit of a convergent sequence in X, and so is compact. • 

A normed space that is the closed linear hull of one of its compact subsets 
is said to be compactly generated. The preceding theorem just says that a 
normed space is compactly generated if and only if it is separable. 

Exercises 

1.135 Prove that every separable infinite-dimensional normed space has a lin
early independent countable dense subset. 

1.136 Prove that a normed space is separable if and only if its unit sphere is 
separable. 

1.137 Let M be a subspace of a normed space X. Prove that if M and M.l. are 
both separable, then X is separable. 

1.138 (a) Show that no subspace of Co is isomorphic to £1. 

(b) Show that no quotient space of Co is isomorphic to £1. 

1.139 Let X be the subspace of £1 consisting of the sequences in £1 that sum 
to o. Is X· separable? Explain. 

1.140 Give an example of a one-to-one bounded linear operator from a nonsep
arable normed space onto a separable normed space. 

1.141 Here is a companion result for Lemma 1.12.13. Suppose that X is a Banach 
space and that T is a bounded linear operator from X onto £1. 

(a) Let (en) be the sequence of standard unit vectors in £1. Prove that 
there is a bounded sequence (Xn) in X such that TXn = en for 
each n. 

(b) Conclude that X has a subspace isomorphic to e 1· 

1.142 Let K be a compact Hausdorff space. Prove that rca(K} is separable if 
and only if K is countable. 
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1.143 Suppose that (0, E, p,) is a positive measure space. Prove that Loo(O, E, p,) 
is separable if and only if it is finite-dimensional. 

1.144 Let X be a normed space and let Z be a separable subspace of X'. 
Prove that there is a separable closed subspace Y of X such that Z is 
isometrically isomorphic to a subspace of Y·. 

1.145 The evidence accumulated so far might lead one to conjecture that all 
reflexive normed spaces are separable. Give a counterexample. (Consider 
counting measures on uncountable sets.) 

* 1.13 Characterizations of Reflexivity 

The purpose of this section is to obtain some characterizations of reflexive 
normed spaces among all normed spaces and among all Banach spaces. The 
culmination of these efforts will be James's theorem, a very beautiful and 
enormously useful result that is one of the major theorems of Banach space 
theory. 

Several of the proofs that are about to be given are much easier, at least 
notationally, if done only for real normed spaces. Fortunately, the case for 
complex normed spaces usually follows immediately from this next result. 

1.13.1 Proposition. Let X be a complex normed space and let Xr be the 
real normed space obtained from X by restricting multiplication of vectors 
by scalars to R x X. Then X is reflexive if and only if Xr is reflexive. 

PROOF. For each x* in (X*)r, let Tx' = Rex*. It is an easy conse
quence of Proposition 1.9.3 that T is an isometric isomorphism from (X*)r 
onto (Xr)*. By Theorem 1.10.12, the map T*: (Xr)** -+ ((X*)rr given 
by the formula T*(u**) = u**T is an isometric isomorphism from (Xr)** 
onto (( X')r ) *. Since two linear functionals on a complex vector space are 
equal if and only if their real parts agree on the space, it is easy to see 
that each of statements 1, 2, 3, and 4 below is equivalent to the statement 
following it. 

1. The space X is reflexive. 

2. For each element x** of X** there is an element x of X such that 
Re(x, x*) = Re(x*, x**) whenever x* E X*. 

3. For each element w* of ((X*)rr there is an element x of Xr such 
that (x, Tx*) = (x*, w*) whenever x* E (X*)r-

4. For each element u** of (Xr )** there is an element x of Xr such that 
(x, Tx*) = (x*, T*u**) = (Tx*, u**) whenever x* E (X*)r. 

5. The space Xr is reflexive. 

The equivalence of statements 1 and 5 yields the conclusion of the propo
ili~. • 
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The portion of this section extending from here through Example 1.13.7 
is devoted primarily to obtaining several closely related characterizations 
of reflexivity, one of which is in terms of the following type of convergence. 

1.13.2 Definition. Let x be an element and (xn) a sequence in a normed 
space X. Then (xn) converges weakly to x if x·xn ---+ x·x whenever X* E X*. 

It will be shown in Chapter 2 that every normed space has a topology 'I 
such that a sequence in the space converges weakly to an element of the 
space if and only if the sequence converges to that element with respect 
to 'I. For the moment, the statement that a sequence converges weakly to 
a certain limit should not be taken to imply anything more than is stated 
in Definition 1.13.2. Notice that if a sequence (xn) in a normed space X 
converges weakly to elements x and y of X, then x*x = limn x·xn = x*y 
for each X* in X*, and so x = y by Corollary 1.9.9. That is, no sequence 
in a normed space has more than one "weak limit." Notice also that the 
convergence of a sequence in a normed space in the usual sense implies 
the weak convergence of that sequence to the same limit. Incidentally, the 
converse is not true. The sequence (en) of standard unit vectors in £2 is 
obviously weakly convergent to 0 and equally obviously not convergent 
to anything with respect to the norm topology since the sequence is not 
Cauchy. 

The following lemma will be superseded by Theorems 1.13.5 and 1.13.6, 
in which it will be shown that statements (a), (b), and (c) of this lemma 
are actually equivalent. 

1.13.3 Lemma. Let X be a normed space. Then (a) => (b) => (c) in the 
following collection of statements. 

(a) The space X is reflexive. 

(b) Every bounded sequence in X has a weakly convergent subsequence. 

(c) Whenever (en) is a sequence of nonempty closed bounded convex sets 
in X such that Cn ;2 Cn+l for each n, it follows that nn Cn =I- 0. 

PROOF. Suppose that (b) holds. Let (en) be a sequence of nonempty closed 
bounded convex subsets of X such that C1 ;2 C2 ;2 .... For each positive 
integer n, let Xn be an element of en, and let x be the limit of a weakly 
convergent subsequence (xnk ) of (xn). If x fI. em for some m, then by 
Proposition 1.9.15 there is an x* in X* such that 

Re x*x > sup{ Rex*y : y E Cm } ;:::: limRex*xnk = Rex*x, 
k 

a contradiction. Therefore x E nn en, which shows that (b) => (c). 
Now suppose that it has been proved that (a) =?- (b) when X is separable. 

For the general case, let X be reflexive and let (xn) be a bounded sequence 
in X. Let Y = [{ Xn : n EN} 1, a separable reflexive subspace of X. Then 
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there is a subsequence (Xnk ) of (xn) and an x in Y such that y*xnk -+ y*x 
whenever y* E Y*. Since the restriction of each member of X* to Y is 
in Y·, it follows that (xnk ) converges weakly to x in X. Therefore all that 
is left to be proved is that (a) =} (b) when X is separable. 

Let X be a separable reflexive normed space and let {y~ : n EN} be 
a countable dense subset of X*. Suppose that (xn) is a bounded sequence 
in X. By diagonalization, a subsequence (xnk ) of (xn) can be found such 
that limk yjxnk exists for each j. If X* E X* and j, k, lEN, then 

IX*Xnk - X*Xn, I s: Iyjxnk - yjxn, I + I(x* - yj)(Xnk - xn,)1 

s: Iyjxnk - yjxnll + Ilx* - yjll sup{llxn - xmll : n, mEN}. 

This and the density of {y~ : n EN} in X* together imply that the se
quence (x*xnk) is Cauchy and hence convergent whenever x· E X*. The 
map X* ~ limk x*xnk is clearly a linear functional on X', and this func
tional is in X** since Ilimk x·xnk I s: IIx' II sup{ Ilxn II : n EN} for each x* 
in X'. The reflexivity of X yields an x in X such that limk x*xnk = x*x 
whenever x* E X*, so (xnk ) is a weakly convergent subsequence of (xn). 
Therefore (a) =} (b) when X is separable, which finishes the proof. • 

Most of the theorems of this section are ultimately derived from the 
following result. 

1.13.4 Theorem. (R. C. James, 1964 [112, 114]). Let X be a Banach 
space. Then the following are equivalent. 

(a) The space X is not reflexive. 

(b) For each () such that 0 < () < 1 there is a sequence (x~) in Sx' and a 
sequence (xn) in Sx such that Rex~xj 2: () if n s: j and Rex~xj = 0 
if n > j. 

(c) For some () such that 0 < () < 1 there is a sequence (x~) in Sx' and 
a sequence (xn) in Sx as in (b). 

PROOF. It may be assumed that X is a real Banach space, since the case 
for complex scalars follows from that for real scalars by Proposition 1.13.1. 
Suppose that (c) holds. For each positive integer n, let 

Notice that each en lies in Ex and so is bounded. Suppose that x E eno 
for some no. If £ > 0, then there is a nonnegative integer mE and a y 
in co( {xno "'" x no+m ,}) such that Ilx - yll < £, so Ix~xl = Ix~(x - y)1 < £ 

whenever n > no + mE' Therefore limn x~x = O. Since x;'ox] 2: () when 
j 2: no, it follows that x;'oz 2: () whenever Z E co({xno,Xno+l, ... }), so 
x~ox 2: (). In particular, if x E nn en, then x~x 2: () for each n even though 
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limn x~x = 0, a contradiction that shows that nn en = 0. It follows from 
the preceding lemma that X cannot be reflexive, so (c) =} (a). 

James attributes the following proof that (a) =} (b) to Mahlon Day. 
Suppose that (a) holds, that is, that X is not reflexive. Fix a (} in (0,1). 
Let Q be the natural map from X into X**. Since Q(X) is a closed proper 
subspace of X**, there is a member x**+ Q(X) of X** /Q(X) such that 

(} < Ilx**+Q(X)11 = d(x**,Q(X») < 1. 

By Proposition 1.7.6, it may be assumed that (} < IIx** II < 1. It will now 
be shown that there are sequences (x~) in Ex- and (x n ) in Ex such that 
X~Xj = (} if n <::: j, X~Xj = 0 if n > j, and x**x~ = (} for every n, from which 
it immediately follows that (b) holds. Let xi in Ex- be such that x**xi = (}. 

Since (} <::: IIx**llllxill < Ilxill, there is an Xl in Ex such that xixi = (}. The 
rest of the sequence is constructed inductively. Suppose that Xl,· .. ,Xn-l 
and xi, ... ,X~_l have been chosen to satisfy the required conditions. Let 
M = (} /d(x**, Q(X»). Notice that 0 < M < 1. If aI, ... ,an -1 are scalars, 
then 

M Ilx** + ~ ajQxj 112: M . d(x**, Q(X») = (}. 

Let Cn = (} and let Cl = ... = Cn-l = O. Then for each linear combination 
alQx1 + .. : + a n -1Qxn -1 + anx'* of QXl,'" ,QXn-l, x**, 

By Helly's theorem, there is for each positive E a y; in X* such that 

(1) Ily;11 <::: M +E; 

(2) (QXj)(Y;) = Cj = 0 when j = 1, ... ,n -1; and 

(3) x**y; = Cn = e. 
Let x~ = y; for a positive E small enough that Ilx~1I <::: 1. Then x'*x~ = e 
and X~Xj = 0 when j = 1, ... , n - 1, so to finish the induction all that 
is needed is an Xn in Ex such that xjxn = (} when j = 1, ... , n. Let 
aI, ... ,an be scalars. Then 

Itajel = ItajX*'x;1 <::: IIX**lllltajx;ll, 
J=l J=l 1'=1 

so another application of Helly's theorem produces an appropriate Xn. This 
completes the induction step and shows that (a) =} (b). It is obvious that 
(b) =} (c), so the proof is finished. • 

Theorem l.13.4 is sometimes called James's sequential characterization 
of reflexivity. A number of other useful characterizations of reflexivity follow 
almost immediately from it, as will now be seen. 



*1.13 Characterizations of Reflexivity 119 

It is a corollary of Theorem 1.13.4 and its proof that (c) => (a) in 
Lemma 1.13.3. To see this, suppose that X is a normed space that sat
isfies part (c) of that lemma; that is, for which nn Cn =1= 0 whenever 
(Cn ) is a sequence of non empty closed bounded convex subsets of X such 
that Cn 2 Cn +1 for each n. The goal is to prove that X is reflexive, so 
by Proposition 1.13.1 it may be assumed that IF = JR. as in the proof 
of Theorem 1.13.4. Let (Yn) be a Cauchy sequence in X and let Dn = 
co{ Yj : j ::::: n} for each n. Then for each positive E there is a positive inte
ger n, such that Dn lies in a closed ball of radius E when n ::::: n,. It follows 
that nn Dn has exactly one element Yo and that Yn -- Yo. The space X is 
therefore a Banach space. If X were not reflexive, then part (c) of Theo
rem 1.13.4 would hold, and a peek at the first paragraph of the proof of 
that theorem shows that X would have a sequence (Cn ) of nonempty closed 
bounded convex subsets such that Cn 2 Cn+l for each nand nn Cn = 0. 

This contradiction proves that X is reflexive. 
Since (c) => (a) in Lemma 1.13.3, statements (a), (b), and (c) in that 

lemma are actually equivalent. This is the content of the next two theorems. 

1.13.5 Theorem. A normed space is reflexive if and only if each of its 
bounded sequences has a weakly convergent subsequence. 

1.13.6 Theorem. (V. L. Smulian, 1939 [223]). A normed space X is re
flexive if and only if nn Cn =1= 0 whenever (Cn ) is a sequence of nonempty 
closed bounded convex subsets of X such that Gn ;;2 Gn +1 for each n. 

1.13.7 Example. Let llJ) be the closed unit disc in the complex plane and 
let A(llJ)) be the disc algebra, that is, the subspace of G(llJ)) consisting of the 
members of C(llJ)) analytic in the open unit disc. Since the uniform limit 
of a sequence of functions analytic in the open unit disc is analytic in that 
disc, it follows that A(llJ)) is a closed subspace of G(IID) and so is a Banach 
space. 

For each positive integer n, define Xn in A(IID) by the formula xn(z) = zn, 
and let Gn = co({Xn ,Xn +1, ... }). If x is in CO({X1,X2, ... }), then IIxll oo = 1 
since x(l) = 1 and Ix(z)1 :S 1 for each z in llJ). It follows that Gn S;; SA(HlI) 

for each n. 
If n E N and x E co( {xn , Xn+l' ... } ), then x and its first n - 1 derivatives 

all have value 0 when z = O. Now if (Yj) is a sequence in A(llJ)) and Y is an 
element of A(IID) such that IIYj - Ylloo --> 0, then a standard result about 
the uniform convergence of analytic functions assures that yj(O) -- y'(O), 
yj'(O) -+ yl/(O), yj"(O) __ y'I/(O), and so forth. It follows that if n E Nand 
x E Cn, then x and its first n - 1 derivatives all have value 0 when z = O. 

Suppose that x E nn Gn . Then x and its derivatives of all orders have 
value 0 when z = 0, so a moment's thought about the power series ex
pansion for x about 0 shows that x = 0, even though Ilxll= = 1. This 
contradiction shows that nn Cn = 0, so A(IID) is not reflexive. 
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By Theorem 1.11.16, if a normed space is reflexive then it passes that 
property on to each of its closed subspaces. Conversely, if each closed sub
space of a normed space X is reflexive, then X is obviously reflexive as a 
closed subspace of itself. It turns out, however, that it is only necessary to 
check all of the separable closed subs paces of X for reflexivity in order to 
conclude that X is reflexive. That is, reflexivity is a property for normed 
spaces that is separably determined. 

1.13.8 Theorem. A normed space is reflexive if and only if each of its 
separable closed subspaces is reflexive. 

PROOF. Suppose that the normed space X is not reflexive. It is enough to 
find a separable closed subspace of X that is not reflexive. Let (xn) be a 
bounded sequence in X with no weakly convergent subsequence, and let 
Y = [{ Xn : n EN}]. Since the restriction of each member of X* to Y is 
in Y*, a subsequence of (xn) converging weakly in Y would also converge 
weakly in X, so (xn) has no subsequence converging weakly in Y. Therefore 
Y is the desired nonreflexive separable closed subspace of X. • 

Theorem l.13.6 is especially interesting because it gives a purely intrinsic 
test for reflexivity; that is, it requires knowledge only of the behavior of 
objects in X and no knowledge at all of X· or X**. This next result is also 
of that type. 

1.13.9 Theorem. (R. C. James, 1964 [114]). Let X be a Banach space. 
Then the following are equivalent. 

(a) The space X is not reflexive. 

(b) For each 8 such that 0 < 8 < 1 there is a sequence (xn) in Sx such 
that d( co( {Xl,' .. ,Xn }), CO( {Xn+l, Xn+2, ... })) ~ 8 for each n. 

(c) For some e such that 0 < e < 1 there is a sequence (xn) in Sx as 
in (b). 

PROOF. Suppose that (a) holds. Fix a e in (0,1) and let (x~) and (xn) 
be as in Theorem l.13.4 (b). If n E N, y E CO({Xl"" ,xn}), and z E 
co( {Xn+l, Xn +2, ... }), then Ily - zll ~ Re X~+l (z - y) ~ e, and so 

d(CO({Xl,'" ,xn }),co({xn +l,Xn +2,.·. })) :2: 8. 

This shows that (a) ==} (b). It is clear that (b) ==} (c). 
Finally, suppose that 8 and (xn) are as in (c). For each positive integer n, 

let en = co( {Xn+l' Xn+2""})' a subset of Bx· Suppose that X E nn en. 
Then there is an m in N and a y in co( {Xl"'" xm}) such that Ilx-yll < 8j2, 
as well as a z in cO({Xm+l,Xm+2, ... }) such that Ilx - zll < ej2, which 
implies that e s: Iiy - zll s: Ily - xII + Ilx - zll < e. This contradiction shows 
that nn en = 0, so X is not reflexive. This proves that (c) ==} (a). • 
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The preceding theorem could have been stated with the convex hulls 
replaced by closed convex hulls, since the distance between two nonempty 
subsets of a metric space is the same as the distance between their closures. 

Suppose that X is a Banach space. By Proposition 1.11.11, if X is reflex
ive then each member of X* is norm-attaining. The converse is also true 
and is known as James's theorem. This result has a long and interesting 
history, most of it associated with the name of Robert C. James. 

Stanislaw Mazur [163J was the first to ask if a Banach space must be 
reflexive when all members of its dual space are norm-attaining. Though 
Mazur's paper appeared in 1933, the first substantial progress toward an
swering his question was not made until 1950, when James [108J showed 
that if a separable Banach space X has a Schauder basis, a certain type of 
sequence that will be discussed in Chapter 4, then X is reflexive if each Ba
nach space Y isomorphic to X has the property that each element of Y· is 
norm-attaining. In the same year Victor Klee [132J used an argument based 
on Theorem 1.13.6 to improve James's result by removing the requirements 
that X have a Schauder basis and be separable. Incidentally, Klee's paper 
contains a number of interesting characterizations of reflexivity that will 
not be covered here. Most of the paper is accessible after reading Chapters 
1 and 2 of this book. 

In 1957, James [111J showed that a separable Banach space is reflexive if 
each member of its dual space is norm-attaining. Though the same result 
for nonseparable Banach spaces would not appear for another seven years, 
the impact of James's 1957 result on Banach space theory was immediate 
and substantial. It is often possible to prove from this result that a Banach 
space is reflexive by showing that all of its separable closed subs paces are 
reflcxivc. For example, it can be shown in this way that a Banach space is 
reflexive whenever each of its nonempty closed convex subsets has a point 
nearest the origin; see Exercise 1.153. It is not at all a coincidence that the 
branch of approximation theory called Banach space nearest point theory, 
dealing with points of sets in Banach spaces nearest other sets or points, 
began to grow rapidly at about this time. The interested reader might want 
to look at Section 4 of the 1958 paper by Ky Fan and Irving Glicksberg [77J 
on spheres in normed spaces for another good example of an argument in 
which James's 1957 result is used to prove that a possibly nonseparable 
Banach space is reflexive. 

James [112J finally completed his quest by showing in a 1964 paper that 
the separability hypothesis in his 1957 result is unnecessary. In fact, in an
other 1964 paper James [115J proved a stronger result called James's weak 
compactness theorem, or often just James's theorem since the reflexivity 
theorem that also goes by that name turns out to be a special case of the 
weak compactness theorem. It would not be easy to state James's weak 
compactness theorem in its full generality here, since the language needed 
to do so is not developed until Chapter 2. However, it is already possible to 
state the following version of it. Though the class of sets in the hypotheses 
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is smaller than in the general version, this version is still strong enough to 
imply the reflexivity theorem. See Exercise 1.154. 

Let C be a closed convex subset of a Banach space X. Suppose that 
whenever x* E X*, the supremum of Ix* I on C is actually attained 
by Ix*1 somewhere on C. Then every sequence in C has a weakly 
convergent subsequence. 

The general form of James's weak compactness theorem will be derived in 
Section 2.9. 

James's 1964 proof of his reflexivity theorem is based on Theorem 1.13.4 
and is somewhat intricate. The proof given here is a greatly simplified one, 
also by James [117], that appeared in 1972. The plan of attack is to prove 
James's theorem for separable Banach spaces, then obtain the general case 
from that. The following technical lemma is needed for the separable case. 
This lemma is stated and proved in a bit more generality than is actually 
needed in this section, for the only immediate application will be to the 
case in which the set A mentioned in the lemma is the closed unit ball of 
the space. However, the more general result is no more difficult to prove, 
and will have an important application in Section 2.9. 

1.13.10 Lemma. (R. C. James, 1972 [ll7]). Let A be a nonempty subset 
of the closed unit ball of a normed space X. Suppose that ({3n) is a sequence 
of positive numbers with sum 1, that 0 < () < 1, and that (x~) is a sequence 
in Ex' such that sup{ Ix*xl : x E A} 2 () whenever x* E co( {x~ : n EN}). 
Then there is an a such that () ::; a ::; 1 and a sequence (Y~) in Ex' such 
that 

(a) Y~ E co( {x; : j 2 n}) for each positive integer n; 

(b) sup{ 12::~1 {3jyjxl : x E A} = a; and 

(c) sup{ 12::7=1 {3jyjxl : x E A} < a(1 - ()2::~n+1 (3j) for each positive 
integer n. 

PROOF. This proof consists of the construction by induction of the se
quence (Y~) and a sequence (an) of scalars converging to a, followed by 
the verification of some good-sized inequalities. Here are the steps. 

1. For notational convenience, let Ix*IA = sup{ Ix*xl : x E A} whenever 
x* E X*. It is easy to check that 1·1 A is a continuous semi norm on X' 
such that Ix*IA ::; Ilx*11 for each x* in X*. Let (En) be a sequence of 
positive reals converging to 0 such that 

f DO {3k Ek 00 . < 1 - B. 
k=l 2:: j =k+l {3J LJ=k (3J 

A sequence (y~) in X* will be constructed inductively such that for 
each positive integer n, 

Y~ E co({x;: j 2 n}) ~ Bx> 
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and 

where 

an = inf{ 1~,8jY; + (f.,8j)y*1 : y* E co({x;: j::::: n})}. 
)=1 J=n A 

(1.5) 

The sums to n - 1 in (1.4) and (1.5) are to be considered to be the 
zero element of X* when n = 1. 

2. To start the induction, notice that 

a1 = inf { ly*1 A : y* E co( {x; : j ::::: 1 }) } 2: () > 0, 

so there is a yi in co( {xi : j ::::: I}) such that 

that is, such that (1.4) is satisfied when n = 1. 

3. Suppose that n 2: 2 and that yi, ... ,y~-1 have been found. If y* E 

co( {xi : j 2: n } ), then 

where the sum to n - 2 is to be considered to be the zero element 
of X' if n = 2. The object inside the rightmost pair of parentheses 
is a convex combination of two members of co( {xi : j 2: n - I}) 
and so lies in co( {xi ; j ::::: n - I}). It follows that the set whose 
infimum determines an is a subset of the one whose infimum deter
mines a n -1, so an-l <:::: an- Therefore an > 0, and so a y~ can be 
found in co( {xi; j 2: n}) satisfying (1.4). This finishes the induction. 

4. For each positive integer n, the set whose infimum determines an is 
easily seen to be bounded from above by 1. Since 

the sequence (on) converges to some 0 such that () <:::: a <:::: 1. 
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5. For each positive integer n, 

so letting n tend to infinity shows that 0: = 12::;:1 !'3jy;IA' 
6. All that is left is to show that 0: and (Y~) satisfy part (c) of the 

conclusion of the lemma. Fix a positive integer n. If n ::::: 2, then 

It !'3jY;IA 

= I 2::~:!'3j (;!'3jY; + (~!'3j)Y~) + 2::£~:tj ;!'3jy;IA 

giving an upper bound for 12::7=1 !'3jy;IA in terms of 12::7':; !'3jy;IA' 
If n ::::: 3, then 12::7':; !'3jy;1 A is bounded from above by an analogous 

expression involving 12::7':~ !'3jy;IA' and so forth. Therefore if n ::::: 2, 
then 

< 

< (J~~j) (~{ 2::~::;~ ~~!k !'3j } + ~£:I;j) 

< C~~j) ~(2::£::;~ ~7!k!'3J, 
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with the appropriate intermediate inequalities omitted if n is smalL 
This same inequality also holds if n = 1 (with all intermediate in
equalities omitted, of course) because it just reduces to the inequality 
fJdYilA < !310:1(1 + Ed· Since O:k ::; 0: for each k, 

which is the inequality needed in (c). • 
1.13.11 Theorem. (R. C. James, 1957 [111], 1972 [117]). Let X be a 
separable Banach space. Then the following are equivalent. 

(a) The space X is not reflexive. 

(b) If 0 < e < 1, then there is a sequence (x~) in Ex. such that 
limnx~x = 0 for each x in X and d(O,co({x~: n EN})) 2': e. 

(c) If 0 < e < 1 and (!3n) is a sequence of positive numbers with sum 1, 
then there is an 0: such that e ::; 0: ::; 1 and a sequence (y;') in Ex. 
sllch that 

(1) limn y;'x = 0 for each x in X; 

(2) 112:;:1 !3jYj II = 0:; and 

(3) 112:7=1 !3jYj II < 0:(1 - e 2:~n+l !3j) for each positive integer n. 

(d) There is a z* in X* that is not a norm-attaining functiona1. 

PROOF. To see that (a) ~ (b), suppose that X is not reflexive and that 
o < e < 1. Let Q be the natural map from X into X** and let x** be an 
element of X** such that 

e < d(x**,Q(X)) = Ilx**+Q(X)II::; Ilx**II::; 1. 

Let {xn : n EN} be a countable dense subset of X. The immediate goal 
is to construct a sequence (x~) in X* such that, for each n, 

(i) Ilx~ II ::; 1; 

(ii) x**x~ = e; and 

(iii) X~Xj = 0 whenever j ::; n. 

It will then be shown that (x~) satisfies the conclusion of (b). 
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Let M = Ojd(x",Q(X). Notice that 0 < M < 1. For the remainder of 
this paragraph, let n be a fixed positive integer. If ll:l, ... ,ll:n are scalars, 
then 

Let Cj = 0 when j = 1, ... , n and let Cn+1 = O. Then for each linear 
combination ll:lQXI + ... + ll:nQxn + Qn+lX'* of QXI,"" QXn' x'*, 

By Helly's theorem, there is for each positive E a V; in X* such that 

(iv) Ilv;II::;M+E; 
(v) (QXj)(V;) = Cj = 0 when j = 1, ... ,n; and 

(vi) x"y; = Cn+l = O. 

Letting x~ = Y; for a suitably small E yields an x~ satisfying (i), (ii), 
and (iii). 

If x* E cor { x~ : n EN}), then the validity of (ii) for each n implies that 
Ilx' II 2: Ix**x* I = 0, and so 

d(O,co({X~: n EN})) 2: O. 

Suppose that Xo E X and kEN. If n E N, then 

Since limn X~Xk = 0 and {x j : j EN} is dense in X, it follows that 
limn x~xo = O. This finishes the proof that (a) =? (b). 

Suppose now that (b) holds and that 0 is a real number and ((3n) a 
sequence of positive real numbers such that 0 < 0 < 1 and Ln (3n = 1. 
Let (x~) be a sequence as in the conclusion of (b) and let (y~) be the 
sequence in Ex' and Q the scalar such that 0 ::; Q ::; 1 guaranteed when 
Lemma 1.13.10 is applied with A equal to Ex. Then (y~) and Q do all 
that is required of them in (c). In particular, if x E X thcn the facts that 
y~ E cor {xj : j 2: n}) for each n and limn x~x = 0 together imply that 
limn y~x = O. Therefore (b) =? (c). 

Suppose that (c) holds. Let 0 be any scalar and ((3n) any sequence of 
positive scalars such that 0 < 0 < 1 and Ln (3n = 1. Let Q and (y~) be as 
in (c) and let z* "" L';.I(3JYj. Then Ilz*11 = Q. It will be shown that z' 
is not norm-attaining. Let x be an element of Ex and let n be a positive 



*1.13 Characterizations of Reflexivity 127 

integer such that Iyjxl < a() whenever j > n. Then 

Iz*xl = If {Jjy;XI 
1=1 

S; I~ {JjY;XI ~f-~jIY;XI 

< lit (JjY; II + a() f {Jj 
1=1 J=n+1 

< a (1 -() f: (Jj) + a() f (Jj 
j=n+1 j=n+l 

=a 

= Ilz*lI, 

so z* does not attain its norm at x. This proves that (c) => (d). 
Finally, Proposition 1.11.11 assures that each bounded linear functional 

on a reflexive normed space is norm-attaining, so (d) => (a). • 

Thus, a separable Banach space X is reflexive if and only if each x* in X* 
is a norm-attaining functional. To get the same result for arbitrary Banach 
spaces, some temporary notation is needed. 

Let X be a real normed space and let (x~) be a bounded sequence in X*. 
Let 

L(x~) = {x* : x* E X*, x'x S; limsupx~x whenever x EX} 
n 

and 

V(x~) = {(y~): (y~) is a sequence in X*, each y~ E co({X~,X~+1' ... })}. 

This notation is needed only for the next few results and does not ap
ply outside this section, with the only exception being that the nota
tion for L(x~) will be temporarily reinstated in Section 2.9. Notice that 
(x~) E V(x~), that each member of V(x~) is a sequence in the closed ball 
centered at 0 of radius sup{ Ilx~ II : n EN}, and that V(y~) ~ V(x~) and 
L(y~) ~ L(x~) whenever (y~) E V(x~). Notice also that if x' E L(x~), 

then Ilx*11 S; sup{ Ilx~11 : n EN} since IX'xl S; sup{ Ilx~11 : n EN }llxll for 
each x in X, and lim infn x~x ::; x'x whenever x E X since lim infn x~x = 
-limsuPn x~( -x). 

1.13.12 Lemma. Let X be a real normed space and let (x~) be a bounded 
sequence in X*. Then L(x~) is nonempty. 

PROOF. Let p(x) = limsuPn x;,x for each x in X. Then p is a sublinear 
functional on X. Let Y' be the zero functional on the subspace {O} of X. 
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Then y*(O) = p(O), so the vector space version of the Hahn-Banach ex
tension theorem implies that y* has a linear extension x* to X such that 
x*x ::::: p(x) whenever x E X. Since Ix*xl ::::: sup{ Ilx~1I : n E N}llxll when
ever x EX, the linear functional x* is bounded, and so x* E L( x~). • 

The following technical lemma is the heart of the proof of James's the
orem for arbitrary Banach spaces. Notice its similarity to Lemma 1.13.10. 
As with Lemma 1.13.10, it is proved in a bit more generality than is needed 
in this section, but the extra generality will be required in Section 2.9. 

1.13.13 Lemma. (R. C. James, 1972 [117]). Let A be a nonempty balanced 
subset of the closed unit ball of a real normed space X. Suppose that ({3n) 
is a sequence of positive numbers with sum 1, that 0 < () < 1, and that (x~) 
is a sequence in Bx. such that sup{ I(x* - w*)(x)1 : x E A} 2: () whenever 
x* E co( {x~ : n EN}) and w* E L(x~). Then there is an a such that 
() ::::: a ::::: 2 and a sequence (y~) in Bx * such that whenever w' E L(y~), 

(a) sup{ 12::;:1 {3j(Y; - w')(x)1 : x E A} = a; and 

(b) sup{ 12::7=1 {3j(Y; - w*)(x)1 : x E A} < a(l - () 2::;:n+1 (3j) for each 
positive integer n. 

PROOF. This proof consists primarily of the verification of a collection 
of eight claims, the first six of which appear in an induction argument. 
Lemma 1.13.12 and the remarks immediately preceding it are used exten
sively along the way. 

As in the proof of Lemma 1.13.10, let Ix"' A = sup{ IX'xl : x E A} 
whenever x* E X". Then 1·1 A is a continuous seminorrn on X, and Ix' I A ::::: 

II x' II for each x' in X'. Let (En) be a sequence of positive reals converging 
to 0 such that 

The first order of business is to use induction to obtain a sequence (aj) 
of scalars and sequences (yj); (Oxi), ex;), ex;), ... ; (1z;), ez;), (Szj), ... 
in X' such that (Ox;) lies in B x * and, for each positive integer n, 

(1) Y~ and the sequences (nz;) and (nxi) lie in Bx-; 
(2) (nz;) E v(n-Ix)); 

(3) (nx;) is a subsequence of (nz)); 
(4) • E ({n-I' n-1' n-1 * }) Yn co x n , Xn+l, x n+2, ... ; 

(5) e::::: an ::::: 2; and 

(6) a n -1 ::::: an if n 2: 2. 

To start the induction, let (Ox;) = (xi). Now suppose that mEN and, 
if m ?:: 2, that an, Y~, (nz)), and (nxj) have been chosen to satisfy (1) 
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through (6) when n = 1, ... , m - 1. In what follows, a sum from 1 to some 
upper limit N is to be considered to be 0 if N <:.:: O. 

Claim 1: If (vi) E v(m-Ix;), then (vi) lies in Bx-. To prove this, it is 
enough to show that (m-Ix;) lies in B x -, which follows immediately from 
the definition of (Ox;) if m = 1 or from the induction hypothesis if m ~ 2. 

CI > 2' If * E ({m-l * m-l * m-l * }) d ( *) E aIm . Y co x m , xm+l' x=+2' ... an Vj 

v(m-Ix;), then the formula 

Sm(Y*, (vj)) = { IY: (3jyj + (f (3j)Y* - w*1 : w· E L(vi) } 
J=l J=m A 

defines a nonempty subset of [a, 2], so the following formula defines a num
ber in [a, 2]: 

Q:m = inf{ sUPSm(Y*, (vi)) : 

Y* E co( {m-l x ;", m-lX;"+I, ... }), (vi) E v(m-lx;) }. 

T thO fi * . ({m-l * m-l * }) d (*)' v(m-l *) .Losee IS, xay mco x=, x m +l , .•. an a Vj In Xj . 

Then y* E Bx- since (m-Ix;) lies in Bx " and L(vi) ~ Ex> by Claim 1. 
Furthermore, if m 2: 2 then Y;, ... , Y';,,-I E Ex- by the induction hypoth
esis. It is an easy consequence of all this that if w* E L( vi), then 

Since L( vi) i= 0, Claim 2 follows. 
Claim 3: If m 2: 2, then v(m-2x;) :? V(=-lx;). For this, just notice 

that if m 2: 2, then (m-Ix;) is a subsequence of the element (m-Izi) 
of v(m-2xi), which implies that m-lx; E co({m-2x;, m-2x;+l' ... }) fur 
each j, that is, that (m-Ix;) E v(m-2x;). 

Claim 4: If m > 2 and x* E co( {m-Ix;", m-lx;"+l' m-Ix~'+2' ... }), 
then 

f3m-l * + L:;:m (3j * 
",00 (3 Ym-l "'= (3 x 
L...j=m-l j L...j=m-l j 

E ({ m-2 * m-2 * m-2 * }) co x m - 1 , x m' xm+l'.... 

To see this, first notice that (m-Ix;) E V(=-2 X ;) by Claim 3, and so 
m-lx; E co( {m-2xk : k 2: m - I}) when j 2: m. It follows that x* E 
co( { m-2Xk : k 2: m - 1 } ). Since Y';,,-l E co( {m-2xk : k 2: m - I}) by 
the induction hypothesis, every convex combination of Y';,,-l and x* is in 
co( { m-2xk : k 2: m - 1 }), which proves Claim 4. 

Claim 5: If m 2: 2, then Q:m-l ::; Om. To see this, notice that because 
of Claims 3 and 4 and the fact that the infimum of a subset of a set is at 
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least as large as the infimum of the entire set, 

<. f{ S (* ( *)). * _ {3m-l * 2:r;m (3j * am-l _ m sup rn-l y, Vj • Y - ,",00 ,Ym-l + ,",00 ,X , 
L..Jj=m-l (3) L..Jj=rn-l (3) 

X* E co({m-lx;;", m-lx;;"+l, ... }), (vj) E v(rn-lX;) } 

= inf{ sup{ I~ {3jyj + (3m-lY;;"-l 

)=1 

+ C~{3j)X* - w*IA: W* E L(Vi) } : 

X* E CO({m-lX;;", m-lX;;"+l' ... }), (vi) E v(rn-lX;) } 

= inf{ SUpSrn(x*, (v})) : 

X* E CO({m-lX;;", m-lx;;"+l' ... }), (vi) E vern-Ix;) } 

as claimed. 
Claim 6: e ~ am ~ 2. To prove this, notice that because of Claims 

2 and 5 it is enough to show that al :::: e. Let y* be an clement of 
co({x; : j EN}) and (v;) an element of Vex;). It is enough to show 

that SUPSl(Y*, (v})) :::: e, that is, that sup{ IY* - w*IA : w* E L(v})} :::: e. 
Let w* be an element of L(vi). It is enough to show that IY* - w*IA :::: e. 
But this is true by the hypotheses of this lemma, since L( vil c::: L( x;), 
which proves Claim 6. 

Using the definition of am, choose Y;" from co({m-lx:n, m-lx;"+l, ... }) 
and (mzil from V(m-lx,i) so that 

am ~ sup{ I ~l {3jyj + (~{3j )Y;;" - w*L: w* E L(Tnzj) } 
(1.6) 

< am(l + Em), 

then choose w;" from L( mzil so that 

The fact that A is balanced assures that there is an Xm in A such that 

(1.7) 
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It follows from Claim 1 that llim infj(mzixm) I :::; 1. Let (mxi) be a subse
quence of (mzi) such that limj(mxixm) = liminfj(mzixm)' It then follows 
from the fact that (m-1xi) lies in Bx " along with Claims 1, 5, and 6, that 
am, y;", (mzi), and (mxi) do what is required of them in (1) through (6) 
when n = m. This completes the induction. 

Claim 7: L(y;) c::::: n~=o L(nxi) c::::: n~=1 L(nzi). To see that the second 
inclusion holds, suppose that n E N. It is enough to show that L(nxi) c::::: 

L(nzj), for which it is enough to show that (nxi) E v(nzi), and this 
follows from the fact that (nxi) is a subsequence of (nzi). For the proof 
that L(yi) c::::: n~=o L(nxi), suppose that n is a nonnegative integer. Notice 
that if j EN, then (2), (3), and (4) together imply that 

* ({J-l' j-l • }) C ({j-l' J-l • }) Yj E co Xj' Xj+l, . . . _ co Zj' Zj+l,' .. 

C ({j-2' j-2 • }) C ({j-2' j-2 • }) _co Xj' Xj+l,'" _co Zj' Zj+l,'" 

C 

c::::: co( {Ox;, °Xi+l' ... }). 

Therefore Yi E co( {nxi, nX;+I' ... }) when j > n, from which it follows 
that lim SUPj (y}x) :::; limsuPj(nxjx) for each x in X and thus that L(y}) c::::: 

L(nx}). This finishes the proof of Claim 7. 
Claim 8: If w* E L(y}) and mEN, then (1.7) holds for the same 

element X Tn of A when w;" is replaced by W·. To prove this, notice from 
Claim 7 that w· E L(mxi), and so the way that (mxi) was obtained from 
(mz;) assures that 

Claim 8 follows from this. 
Fix a w* in L(y}). It follows from (1.6) and Claims 7 and 8 that if n EN, 

then 

Claims 5 and 6 together assure that limn an exists and lies in [B,2]. Call 
this limit a. Taking limits as n tends to infinity in (1.8) shows that 

All that remains to be proved is that 
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when n E N. The inequalities needed to do this are exactly those that 
appear in step 6 of the proof of Lemma 1.13.10, except that Yk must be 
replaced by (Yk - w*) for each k. • 

1.13.14 Theorem. (R. C. James, 1964 [112], 1972 [117]). Let X be a real 
Banach space. Then the following are equivalent. 

(a) The space X is not reflexive. 

(b) If 0 < 8 < 1, then there is a closed subspace M of X and a se
quence (x~) in Bx< such that d(M.1.,co({x~ : n EN})) 2:: 8 and 
limn x~x = 0 for each x in M. 

(c) If 0 < 8 < 1 and ({3n) is a sequence of positive numbers with sum 1, 
then there is an a such that 8 :::; a :::; 2 and a sequence (y~) in Bx< 
such that whenever w* E L(y~), 

(1) 11~~1 {3J(yj - w*)11 = a; and 

(2) 11~;'=1 {3J(yj - w*)11 < a(1 - 8 ~~n+l {3j) for each positive in
teger n. 

(d) There is a z* in X* that is not a norm-attaining functional. 

PROOF. For the proof that (a) =} (b), suppose that X is not reflexive 
and that 0 < 8 < 1. It follows from Theorem 1.13.8 that some separable 
closed subspace M of X is not reflexive. By Theorem 1.13.11, there is 
a sequence (m~) in B M , such that d(O,co({m~ : n EN})) 2:: 8 and 
limn m~x = 0 for each x in M. For each positive integer n, let x~ be a Hahn
Banach extension of m~ to X. If x· E co( {x~ : n EN}) and y' E M.1., 
then the restriction of x' - y* to M is a member m* of co( { m~ : n EN}), 
and so 

It follows that 

Ilx* - Y*II 2:: sup{ I(x' - y*)(m)1 : m E BM } 

~ Ilm'll 
2:: d ( 0, co ( { m~ : n EN} ) ) 

2:: 8. 

d(M.1.,eo({x~ : n EN})) 2:: e, 

so (x;,) is a sequence as in the conclusion of (b). Therefore ( a) =} (b). 
Suppose that (b) holds. Let e be a scalar and ({3n) a sequence of positive 

scalars such that 0 < e < 1 and ~n {3n = 1. For this 8, let M be a closed 
subspace of X and (x;,) a sequence in Ex< with the properties guaranteed 
by (b). It is easy to check that L(x~) c::: M.1., so 

d(L(x~),eo({x~: n EN})) ?:' 8. 
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Letting A equal Bx in Lemma 1.13.13 yields an a in [(;1,2] and a se
quence (y~) in Bx> satisfying (1) and (2) in (c), which proves that (b) => (c). 

Suppose that (c) holds. Let (;I and D. be scalars such that 0 < (;I < 1 and 
o < D. < (;12/2. For each positive integer n, let 

Then «(3n) is a sequence of positive scalars that sums to 1. Let a and (y~) 
be as in (c). Let w* be any member of L(y~) and let z* = 2:;:1 (3j(yJ -w*). 
Then Ilz·11 = a. It will be shown that z* is not norm-attaining. Suppose 
that x E Bx. Since liminfj yjx :<::; w*x and (;I :<::; a, there is a positive 
integer n such that 

(Y~+l - w*)(x) < (;12 - 2D. :<::; a(;l- 2D.. 

Since w*y :<::; limsuPj yjy :<::; 1 whenever y E B x , it follows that Ilw*11 :<::; 1. 
Therefore 

00 

j=1 
n 00 

< I: (3j(yj - w*)(x) + (aO - 2D.)(3nH + I: (3j(yJ - w*)(x) 
j=1 j=n+2 

:<::; lit (3j(yj - w*)11 + (a(;l- 2D.)(3n+1 + 2 f: (3j 
J=1 J=n+2 

< a( 1 - 0 f (3j) + (aO - 2D.)(3nH + 2 f (3j. 
j=n+1 j=n+2 

00 

z*x < a - (aO - 2D.) I: (3j + (aO - 2D.)(3n+l 
j=n+l 

00 

= a - (a(;l- 2D.) I:(3j 
j=n+2 

<a 

= Ilz*ll· 

Since -x E Bx, it also follows that -z'x = z*( -x) < Ilz'lI, so Iz*xl < IIz*lI. 
Therefore z' is not norm-attaining, which proves that (c) => (d). 

Finally, Proposition 1.11.11 assures that each bounded linear functional 
on a reflexive normed space is norm-attaining, so (d) => (a). • 
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The big theorem of this section is now an easy corollary of the result just 
proved. 

1.13.15 James's Theorem. (R. C. James, 1964 [112]). If every bounded 
linear functional on a Banach space is norm-attaining, then the space is 
reflexive. 

PROOF. Let X be a Banach space such that every bounded linear functional 
on X is norm-attaining. If X is a real Banach space, then the preceding 
theorem yields the desired result, so it may be assumed that X is a complex 
Banach space. Let Xr be the real Banach space obtained from X by using 
only real scalars. Let u* be a bounded linear functional on Xr and let x* 
be the member of X* such that Re x* = u*. Then there is an x in B x and 
a scalar a with modulus 1 such that 

!lu*11 = Ilx*11 = Ix·xl = x*(ax) = u*(ax). 

Since each member of (Xr)* is norm-attaining, the space Xr is reflexive, 
and so X is reflexive. • 

In 1971, James [116] gave an example to show that an incomplete normed 
space can have the property that all of its bounded linear functionals are 
norm-attaining, so the completeness hypothesis in the preceding theorem 
cannot in general he omitted. However, see Exercise 1.150. 

Here is a summary of the most important results of this section along 
with a few gleaned from Section 1.11. Though this summary is stated only 
for Banach spaces, conditions (a), (c), (d), (e), and (f) are equivalent with
out the completeness hypothesis, since each implies completeness; see the 
results from which the equivalences were taken. Notice that the fact that 
(a) implies (f) and (g) follows trivially by considering the identity operator 
on the space. 

1.13.16 Summary. Suppose that X is a Banach space. Then the following 
are equivalent. 

(a) The space X is reflexive. 

(b) The dual space of X is reflexive. 

(c) Each bounded sequence in X has a weakly convergent subsequence. 

(d) Whenever (Cn ) is a sequence of non empty closed bounded convex sets 
in X such that Cn 2 Cn + 1 for each n, it follows that nn Cn "10. 

(e) Each separable closed subspace of X is reflexive. 

(f) The space X is isomorphic to a reflexive space. 

(g) There is a bounded linear operator from some reflexive space onto X. 

(h) Each bounded linear functional on X is norm-attaining. 
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(i) The following does not hold: For each (} such that 0 < (} < 1 there 
is a sequence (x~) in Sx' and a sequence (xn) in Sx such that 
Rex~xj :::: (} if n ~ j and Rex~xj =0 if n > j. 

(j) The following does not hold; For some () such that 0 < () < 1 there is 
a sequence (x~) in Sx' and a sequence (xn) in Sx as in (i). 

(k) The following does not hold: For each () such that 0 < e < 1 there is 
a sequence (xn) in Sx such that 

for each n. 

(1) The following does not hold: For some () such that 0 < () < 1 there is 
a sequence (xn) in Sx as in (k). 

Another proof of the equivalence of (a), (c), and (e) will be obtained in 
Section 2.8 from the Eberlein-Smulian theorem. 

Exercises 

1.146 Use an argument based on Proposition 1.13.1 to show that the nonreflex
ivity of complex Co follows from that of real Co. (This is a trick question. 
To avoid the trap, think carefully about what is obtained from complex Co 

by restricting multiplication of vectors by scalars to IR x co.) 

1.147 Find a bounded sequence in £1 with no weakly convergent subsequence. 

1.148 Find a sequence (Cn ) of nonempty closed convex subsets of 8f= such that 
Cn "2 Cn +1 for each nand nn Cn = 0. 

1.149 In theory, Theorem 1.13.6 gives a test for the reflexivity of a normed 
space requiring no knowledge of its dual. In practice, it often happens 
that information obtained from the dual space is used to show that The
orem 1.13.6 can be applied. This is true in the proof of the nonreflexivity 
of A(lIli) given in Example 1.13.7. In that proof, what information comes 
from A(lIli)*? 

1.150 Suppose that X is an incomplete normed space such that every element 
of X' is norm-attaining. Prove that the completion of X is reflexive. 

1.151 Suppose that C is a closed convex subset of a normed space X. Show 
that C is "weakly sequentially closed"; that is, that whenever (Xn) is a 
sequence in C that converges weakly to some element x of X, it follows 
that x E C. 

1.152 Prove that a Banach space is reflexive if and only if it has this property: 
Whenever A and Bare nonempty closed convex subsets of the space such 
that d(A, B) = 0 and at least one of the two sets is bounded, the two sets 
intersect. Exercise 1.151 might help. 
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1.153 Let X be a Banach space. Prove that the following are equivalent. 

(a) The space X is reflexive. 

(b) Whenever C is a non empty closed convex subset of X, there is a 
point of C nearest the origin; that is, there is at least one x in C 
such that Ilxll = d(O, C). 

(c) Whenever Y is a closed separable subspace of X and y* E Y*, there 
is a point of {y : y E Y, y*y = Ily*11 } nearest the origin. 

If James's theorem is necessary in your argument, use only the version 
for separable spaces. If it is not, please send a copy of your proof to the 
author of this book! 

1.154 Show that James's theorem follows from the form of James's weak COIIl

pactness theorem stated in the discussion preceding Lemma 1.13.10. 

1.155 Give a single example that shows that the conclusions of Theorems 1.13.4 
and 1.13.9 do not necessarily hold if the normed space X in the statements 
of those theorems is not required to be complete. 

1.156 This exercise uses the result of Exercise 1.151. Theorem 1.13.8 might 
lead one to wonder if a normed space must be separable whenever each 
of its reflexive subspaces is separable. The purpose of this exercise is to 
disprove this conjecture by showing that each reflexive subspace of Roo 
is separable. Let X be a reflexive subspace of Roo. Justify each of the 
following statements. 

(a) Let II(Xj)lla = L::) TJlxjl whenever (x)) EX. Then 11·lla is a norm 

on X. Furthermore, if (Xj) E X and (x;n))~=l is a sequence in X 

bounded under the £00 norm, then limnll(xjn)) ~ (Xj)lla = 0 if and 

only if limn x;n) = Xj for each j. 

(b) The set Ex (meaning E(x, 11.1100)' not E(x, 11'lIa)) is a compact, hence 
separable, metric space under the metric induced by 11·lla' Let D be 
a countable subset of Ex dense in Ex with respect to this metric. 

For the rest of this exercise, the normed space language and symbols refer 
to the space (X,II·lloo), not (X,II·lla). 

(c) For each x in Ex there is a sequence from D converging weakly to x. 

(d) It follows that [D] = X, so X is separable. 



2 
The Weak and Weak* Topologies 

The topology induced by a norm on a vector space is a very strong topology 
in the sense that it has many open sets. This has some advantages, espe
cially since a function whose domain is such a space finds it particularly easy 
to be continuous, but it also has its disadvantages. For example, an infinite
dimensional normed space always has so many open sets that its closed unit 
ball cannot be compact. Because of this, many familiar facts about finite
dimensional normed spaces that are based on the Heine-Borel property 
cannot be immediately generalized to the infinite-dimensional case. 

The main purpose of this chapter is to study topologies for normed spaces 
that are in general weaker than the norm topology, in the sense that they 
have fewer open sets, but that are still strong enough to have useful proper
ties. The most important example of such a topology is the weak topology 
of a normed space X, which is the weakest topology for X such that every 
member of X* is still continuous. Another useful topology is the weak* 
(pronounced "weak star") topology of X*. If Q is the natural map from X 
into X**, then the weak* topology of X* is the weakest topology for X* 
such that every member of Q(X) remains continuous. The primary em
phasis of this chapter is on these two topologies, though it will often be 
convenient to carry out this study in a somewhat more general setting. 

The topologies that will be discussed are not always induced by metrics, 
so familiar metric space arguments based on the convergence of sequences 
cannot be used in their usual form. However, most of those arguments can 
be adapted to general topological spaces if sequences are replaced by more 
general objects called nets, whose behavior is much like that of sequences. 
This chapter begins with a discussion of them. 
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2.1 Topology and Nets 

For reference, and to make sure that the author and the reader are speaking 
the same topological language, here is a collection of the basic definitions 
from topology that will be needed. Many of these terms have already been 
encountered in Chapter 1 in a metric space setting. 

2.1.1 Definition. Let X be a set. A topology for X is a collection 'I of 
subsets of X such that 

(1) both X and the empty set belong to 'I; 

(2) for every subcollection of 'I, the union of the elements of the subcol
lection also belongs to 'I; 

(3) for every finite subcollection of 'I, the intersection of the elements of 
the sub collection also belongs to T 

The set X with the topology 'I is called the topological space (X, 'I), or just 
the topological space X when no confusion can result. The elements of 'I 
are called open sets. 

In the preceding definition, property (1) is actually redundant, since (2) 
and (3) assure that the union and intersection of the empty subcollection 
of 'I are both in 'I. 

2.1.2 Definition. Let (X, 'I) be a topological space and let x be an element 
of X. A (local) basis for 'I at x is a collection ~x of open sets containing x 
such that every open set containing x includes a member of ~x. 

2.1.3 Definition. Let X be a set and let ~ be a collection of subsets of X 
such that 

(1) U{ B : B E ~} = X; 

(2) if Bl,B2 E ~ and x E Bl n B 2, then there is a B3 in ~ such that 
x E B3 ~ Bl n B 2 · 

Let 'I be the collection of all sets t~at are unions of subcollections of ~. 
Then 'I is the topology generated by the basis ~. 

2.1.4 Definition. Let X be a set and let 6 (Fraktur S; notice its resem
blance to u) be a collection of subsets of X. Let ~6 be the collection of all 
sets that are intersections of finitely many members of 6. Then the topology 
generated by the subbasis 6 is the topology generated by the basis ~6. 

It is easy to check that the collection 'I in Definition 2.1.3 really is a 
topology and that the collection ~6 in Definition 2.1.4 is a basis for a 
topology; for this latter fact, notice that the intersection X of the empty 
subcollection of 6 is in ~6' 
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The following properties of bases and subbases for topologies follow di
rectly from the above definitions. Every basis for a topology is also a sub
basis for that topology. Every member of a basis or subbasis for a topology 
belongs to that topology. If 'I' is a topology for a set X, then a collection 23 
of subsets of X is a basis for 'I' if and only if every member of 23 is open 
and every open set is a union of members of 23, which happens if and only 
if the following holds: For each x in X, the family {B : B E 23, x E B} 
is a basis for 'I' at x. If 6 is a subbasis for a topology 'I'6 for a set X and 
'I' is another topology for X such that 6 ~ 'I', then 'I'6 ~ 'I'; that is, the 
topology 'I'6 is the smallest topology for X that includes 6. 

2.1.5 Definition. Let {Xc> : a E I} be a family of topological spaces. 
Let 6 be the collection of all subsets of the Cartesian product Il"EI Xu 
of the form TIc>EI Un, where each Ua. is open and at most one Ua. is not 
equal to the corresponding Xa.. Then the product topology of TIa.EI X", 
is the topology generated by the sub basis 6. The topological product of 
the family of topological spaces is the Cartesian product with the product 
topology. 

Notice that the basis generated by the sub basis in the preceding defini
tion consists of all sets of the form TIa.EI Ua., where each U'" is open and 
{ a : a E I, Un =1= X", } is finite. Henceforth, when the Cartesian product of 
topological spaces is treated as a topological space without the topology being 
specified, the product topology is implied. 

It is worth noting what happens when the index set I in the preceding 
definition is empty. In that case, the Cartesian product TInEI X", has as 
its lone element the empty set, viewed as a function from I into U"'EI X",; 
see, for example, [65, p. 22]. If 6 and 23 are, respectively, the subbasis and 
basis for the product topology of TIo:EI X", discussed above, then it is easy 
to check that 6 = 23 = {TI"'E! X",} = {{0}}. 

2.1.6 Definitions. Let X be a topological space. 

(a) A subset of X is closed if its complement is open. 

(b) A neighborhood of a point x in X is an open set that contains x. 

(c) The space X is a To space if, for each pair of distinct points in X, at 
least one has a neighborhood not containing the other. 

( d) The space X is a T 1 space if, for each pair of distinct points in X, 
each has a neighborhood not containing the other. 

(e) The space X is a Hausdorff or separated or T2 space if, for each pair 
of distinct points x and y in X, there are disjoint neighborhoods Ux 

and Uy of x and y respectively. 
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(f) The space X is a regular or T3 space if it is a Tl space, and for 
each x in X and each closed subset F of X not containing x there 
are disjoint open sets U and V such that U is a neighborhood of x 
and V includes F. 

(g) 

(h) 

The space X is a completely regular or Tychonoff or T 3.!. space if it 
2 

is a Tl space, and for each x in X and each closed subset F of X not 
containing x there is a continuous1 function f: X -> [0, 1] such that 
f(x) = 0 and f(y) = 1 for each y in F. 

The space X is a norrnal or T 4 space if it is a T 1 space, and for each 
pair of disjoint closed subsets Fl and F2 of X there are disjoint open 
sets U1 and U2 that include Fl and F2 respectively. 

(i) The relative or induced or inherited topology of a subset 5 of X is 
the collection of all sets 5 n U such that U is open in X. 

(j) The closure of a subset 5 of X, denoted by 5, is the smallest closed 
set that includes 5, that is, the intersection of all closed sets that 
include 5. 

(k) The interior of a subset 5 of X, denoted by 5°, is the largest open 
subset of 5, that is, the union of all open subsets of 5. 

(1) The boundary of a subset 5 of X, denoted by as, is the set 5nX \ 5, 
that is, the set 5 \ S° . 

(m) A subset D of X is dense in another subset 5 of X if D ~ 5 ~ D. 

(n) A limit point or cluster point or accumulation point of a subset 5 
of X is a point x in X such that each neighborhood of x contains at 
least one point of 5 distinct from x, that is, such that XES \ {x}. 

(0) A subset 5 of X is compact if, for each collection Qj of open sets 
whose union includes 5, there is a finite sub collection of Q'j whose 
union includes 5. That is, the set 5 is compact if each open covering 
of 5 can be thinned to a finite subcovering. The set 5 is relatively 
compact if its closure is compact. 

(p) The space X is locally compact if, for each x in X, there is a compact 
subset Kx of X such that x E K~. 

(q) A subset 5 of X is countably compact if each countable open covering 
of 5 can be thinned to a finite subcovering. The set 5 is relatively 
countably compact if its closure is countably compact. 

IThe sharp-eyed reader will notice that continuity is mentioned here even though its 
definition does not appear until later. It is assumed that the reader is already familiar 
with continuity in topological spaces, as well as with most of the other terms cataloged 
in the early part of this section for reference. 
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(r) A subset S of X is limit point compact or Frechet compact or has the 
Bolzano- Weierstrass property if each infinite subset of S has a limit 
point in S. The set S is relatively limit point compact if it satisfies 
the same condition except that the limit point need not be in S. 

(s) A sequence (xn) in X converges to an element x of X, and x is called 
a limit of (Xn), if, for each neighborhood U of x, there is a positive 
integer nu such that Xn E U whenever n 2': nu. This is denoted by 
writing Xn -> x or limn Xn = x.2 

(t) A subset S of X is sequentially compact if each sequence in S has 
a convergent subsequence with a limit in S. The sct S is relatively 
sequentially compact if it satisfies the same condition except that the 
limit need not be in S. 

(u) The sequential closure of a subset S of X is the collection of all 
elements of X that are limits of sequences whose terms come from S. 
The set S is sequentially closed if it equals its sequential closure. 

(v) A subset D of X is sequentially dense in another subset S of X if 
D c:;:: S c:;:: D s, where D S is the sequential closure of D. 

The conditions defined in (c) through (h) are sometimes called separation 
axioms. It is not hard to show that a topological space is a T} space if 
and only if each of its one-element subsets is closed; see Exercise 2.2 (a). 
From that and an application of Urysohn's lemma, it follows easily that 
T4 =} T31 =} T3 =} T2 =} T} =} To. 

2 

Here arc some relationships between the various types of compactness 
mentioned above. Most general topology texts, such as [65J or [172J, will 
have proofs of the less obvious ones. In a metric space, the properties of 
compactness, countable compactness, limit point compactness, and sequen
tial compactness are equivalent, as are the corresponding relative prop
erties. Compactness obviously implies countable compactness. Countable 
compactness implies limit point compactness; the properties are equivalent 
in Hausdorff spaces. Even in Hausdorff spaces it is not always true that a set 
is relatively sequentially compact exactly when its closure is sequentially 
compact, or that a set is relatively limit point compact exactly when its 
closure is limit point compact; see Exercise 2.15. However, the equivalences 
do hold in metric spaces; see Exercise 2.l. 

2Since two quantities equal to the same quantity should be equal to each other, it is 
best to avoid the notation limn Xn = X when (xn) might have more than one limit. A 
similar comment applies to the notation for net convergence that will be introduced in 
Definition 2.1.14. This problem does not arise in Hausdorff spaces; see Proposition 2.1.17. 
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2.1. 7 Definition. Let X and Y be topological spaces and let f be a 
function from X into Y. Then f is 

(a) continuous at the point Xo of X if, for each neighborhood V of f(xo), 
there is a neighborhood U of Xo such that feu) ~ V; 

(b) continuous if, for each open subset V of Y, the set f- 1 (V) is open; 

(c) sequentially continuous at the point Xo of X if, whenever a sequence 
(x n) in X converges to xo, the sequence (J(xn)) converges to f(xo); 

(d) sequentially continuous if, whenever a sequence (xn) in X converges 
to a point x, the sequence (J(xn)) converges to f(x); 

(e) open if, for each open subset U of X, the set feU) is open; 

(f) a homeomorphism if it is a bijection of X onto Y such that both f 
and f- 1 are continuous; that is, if f is one-to-one, onto Y, continuous, 
and open. 

A function from one topological space into another is continuous on its 
domain if and only if it is continuous at each point of its domain, and 
is sequentially continuous on its domain if and only if it is sequentially 
continuous at each point of its domain. Continuity at a point implies se
quential continuity at that point, and the properties are equivalent when 
the domain is a metric space. Thus, global continuity implies global se
quential continuity, with the properties equivalent when the domain is a 
metric space. 

These continuity results for metric spaces can be generalized a bit. Recall 
that a topological space satisfies the first countability axiom if at each point 
of the space there is a countable basis for the topology at that point. Every 
metric space satisfies the first count ability axiom; consider sequences of 
open balls with radii decreasing to O. Now suppose that X is any topolog
ical space satisfying the first countability axiom. Then a function from X 
into a topological space is continuous at a point if and only if it is sequen
tially continuous at that point, so global continuity and global sequential 
continuity are also equivalent for such a function. Moreover, a subset of X 
is closed if and only if it is sequentially closed. The proofs are essentially 
the same as those for metric spaces; see, for example, [172, p. 190]. 

Not every topology permits such straightforward sequential testing for 
continuity and closure. For example, some topological spaces have subsets 
that are sequentially closed but not closed; a Hausdorff space with this 
property is constructed in Exercise 2.3. Though it might seem that sequen
tial methods useful in metric spaces must be abandoned when working 
with topologies of this sort, many of those methods extend with very little 
modification to all topological spaces if sequences are replaced by nets. 
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2.1.8 Definition. A directed set is a nonempty set I with a relation j 

such that 

(1) a j a whenever a E I; 

(2) if a j {J and {J j ,,(, then a j "(; 

(3) for each pair a, {J of elements of I there is a "(a,{3 in I such that 
a j 'Ya,{3 and {J j 'Ya,{3' 

That is, a directed set is a nonempty preordered set that satisfies (3). A 
net or Moore-Smith sequence in a set X is a function from a directed set I 
into X. The set I is the index set for the net. 

Some sources require that the preorder in the preceding definition be a 
partial order; that is, that the following additional requirement be included 
in the definition: 

(4) a = {J whenever a j {J and (J ::5 a. 

The theory of nets can be developed either with or without this additional 
axiom. See [172, pp. 187-188] for a development that uses it. 

The reason that the term Moore-Smith sequence is sometimes used for 
a net is that E. H. Moore and H. L. Smith [171] introduced nets in 1922 
as the basis for a general theory of limits. Mauro Picone [190] devised the 
same theory independently in a book that appeared the next year. The 
term net was actually first used by J. L. Kelley [131] in a 1950 paper on 
topological convergence.3 More on the early history of nets and the general 
theory of limits can be found in the survey articles by E. J. McShane [167] 
and R G. Bartle [18]. 

If f: I -+ X is a net, then for each Q in I the Qth term f(a) of the net. 
is often denoted by X a, and the entire net is often denoted by (Xa)aEI or 
just (xa). By analogy with sequences, it is said that Xa precedes x{3 in a 
net when Q ::5 {J. In general, the familiar language of sequences is extended 
to nets whenever the meaning is clear. 

2.1.9 Example. Every sequence is a net, with the directed set being N in 
its natural order. 

2.1.10 Example. The set lR with its natural order is a directed set, so this 
order makes every function with domain lR into a net. Notice that a term 
in a net can be preceded by infinitely many others and that nets need not 
have first terms. 

3The terminology was not Kelley's invention, though. Kelley had wanted to call 
such an object a way. However, nets have subnets, which Kelley would have dubbed 
subways. Norman Steenrod talked him out of it. After some prodding by Kelley, Steenrod 
suggested the term net as a substitute for way. See [204]. 
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2.1.11 Example. The set JR2 can be made into a directed set by declaring 
that (O'l,!'h) j (0'2,jJ2) whenever 0'1 :::; 0'2. If X(a,j3) = O'+jJ for each (0',jJ) 
in JR2, then (X(a,j3)) is a net in lR. Notice that (1,2) j (1,3) and (1,3) j 

(1,2) even though (1,2) i- (1,3). 

2.1.12 Example. Let I be a three-element set {u,v,w} . Define j on I 
by letting these be all of the corresponding relations: 0' j 0' for each 0' 
in I; u j w; and v j w. This relation makes I into a directed set. Define a 
net (x Q ,) in JR with index set I by letting Xu = 0, Xv = 7r, and Xw = -3. This 
illustrates several important ways in which nets can differ from sequences. 

(a) The index set for a net can be finite. 

(b) Nets can have last terms. 

(c) Nets can have multiple "first" terms, that is, terms not preceded by 
other terms. 

(d) The index set for a net need not be a chain. 

2.1.13 Example. Here is a type of net that is useful in many topological 
arguments. Suppose that X is a topological space and that x EX. Let I 
be the collection of all neighborhoods of X with the relation j given by 
declaring that U j V when U ;2 V. Then I is a directed set. If Xu E U for 
each U in I, then (xu) is a net in X. 

A sequence in a topological space converges to an element of the space 
if, for every neighborhood of that element, all terms of the sequence from 
some term onward lie in that neighborhood. This definition generalizes 
immediately to nets. 

2.1.14 Definition. Let (Xa)uEI be a net in a topological space X and 
let x be an element of X. Then (x",) converges to x, and x is called a limit 
of (x,,), if, for each neighborhood U of x, there is an au in I such that 
Xc> E U whenever au j 0'. This convergence is denoted by writing Xu -> x 
or lim", Xa = x.4 

Thus, the net in Example 2.1.13 converges to x. As another example, 
every bounded increasing function from JR into JR, viewed as a net in the 
sense of Example 2.1.10, converges to its supremum. Notice that the net in 
Example 2.1.12 converges to -3. 

Only sub basic neighborhoods really need to be checked for the property 
required of all neighborhoods of the point x in Definition 2.1.14. 

2.1.15 Proposition. Suppose that (5 is a subbasis for the topology of a 
topological space X, that (Xa)aEI is a net in X, and that x E X. Then 

4 See footnote 2 on page 141. 



2.1 Topology and Nets 145 

xo: ---+ x if and only if the following is true: For every member U of 6 that 
contains x, there is an au in I such that Xo: E U whenever au :::5 a. 

PROOF. The forward implication follows immediately from the definition 
of net convergence. For the converse, suppose that every member U of 6 
that contains x satisfies the stated condition. It follows from conditions (2) 
and (3) in Definition 2.1.8 that every finite subset of I has an upper bound 
in I, which implies that if.j is a finite subset of 6 each of whose members 
contains x, then there is an a;; in I such that Xo: E n{ U : U E .j} whenever 
a;; ::S a. Therefore Xo: ---+ x because of the way that 6 determines a basis 
for the topology of X. • 

The proof of the preceding result illustrates a typical application of a 
useful consequence of conditions (2) and (3) in the definition of a directed 
set: If (xo:) is a net and {PI"", Pn } is a finite collection of properties 
defined for the terms of the net such that each Pj holds from some corre
sponding net index value OJ onward, then there is an index value a such 
that PI, ... , Pn all hold from a onward. 

For nets in a topological product, convergence is equivalent to coordi
natewise convergence. 

2.1.16 Proposition. Let {X(o:) : a E I} be a family of topological spaces 
and let X be their topological product. Suppose that (x{1){1EJ is a net in X 
and x is a member of X. Then x(3 ---+ x if and only if x~o:) ---+ x(a) for 
each a in I. 

PROOF. Let 6 be the usual subbasis for the topology of X, that is, the 
collection of all subsets of X of the form TIo:EI U(o:) such that each U(o:) 

is open and at most one is not equal to the corresponding x(a). It follows 
from Proposition 2.1.15 that x{1 ----> x if and only if the following holds: 
For every member U of 6 that contains x, there is a f3u in J such that 
x(3 E U whenever f3u ::S f3. This last condition is equivalent to requiring 
that x~a) ---+ x(a) whenever a E I. • 

Recall that in a Hausdorff space, convergent sequences have unique lim
its. The corresponding statement for nets actually characterizes Hausdorff 
spaces among all topological spaces. 

2.1.17 Proposition. A topological space X is a Hausdorff space if and 
only if each convergent net in X has only one limit. 

PROOF. Suppose that a net (xa ) in X has two different limits x and y. If 
Ux and Uy are neighborhoods of x and y respectively, then the entire net 
from some term onward lies in both Ux and Uy , so Ux n Uy i= 0. Thus, the 
space X is not Hausdorff. 
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Conversely, suppose that X is not Hausdorff. Let x and y be distinct ele
ments of X that cannot be separated by open sets. If UI and U2 are neigh
borhoods of x and VI and V2 are neighborhoods of y such that UI :2 U2 and 
VI :2 l/2, then declare that (UI , Vi) ~ (U2 , V2 ). For each neighborhood U 
of x and each neighborhood V of y let x(U, V) be an element of Un V. Then 
the net (X(u,v») converges to both x and y. • 

In a metric space, a point is in the closure of a set if and only if some 
sequence from the set converges to that point. If sequences are replaced by 
nets, then this remains true for arbitrary topological spaces. 

2.1.18 Proposition. Let S be a subset of a topological space X and let x 
be an element of X. Then xES if and only if some net in S converges to X. 

PROOF. If a net in S converges to a point x, then every neighborhood of x 
includes part ofthe net and thus intersects S, so xES. Conversely, suppose 
that xES. Let I be the collection of all neighborhoods of x directed by 
declaring that U:::; V when U :2 V. For each U in I, let Xu be a member 
of U n S. Then (xu) is a net in S converging to x. • 

Since a point x is a limit point of a set S if and only if xES \ {x}, this 
next corollary follows immediately from the proposition. 

2.1.19 Corollary. Let S be a subset of a topological space X. Then an 
element x of X is a limit point of S if and only if there is a net in S \ {x} 
converging to x. 

A set in a topological space is closed if and only if it includes its closure. 
Combining this with the preceding proposition gives the following result. 
Notice that it generalizes the fact that sets in metric spaces are closed 
exactly when they are sequentially closed. 

2.1.20 Proposition. A subset S of a topological space is closed if and 
only if S contains every limit of every net whose terms lie in S. 

The next result is a generalization of the equivalence of continuity and 
sequential continuity for functions from a metric space into a topological 
space. 

2.1.21 Proposition. Let X and Y be topological spaces and let I be a 
function from X into Y. 

(a) The function I is continuous at the point Xo of X if and only if 
I(xa ) -> I(xo) whenever (x",) is a net in X converging to Xo. 

(b) The function I is continuous on X if and only if I(xa ) -> I(x) 
whenever (xa ) is a net in X converging to an x in X. 
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PROOF. Fix an Xo in X. If f is continuous at Xo and (xoJ is a net in X 
converging to xo, then it follows immediately from the definitions of net 
convergence and continuity at a point that J(xo ) --+ f(xo). Conversely, 
suppose that J is not continuous at Xo. Let V be a neighborhood of J(xo) 
such that no neighborhood U of Xo has the property that J(U) ~ V. 
Let I be the collection of all neighborhoods of Xo directed by declaring that 
U1 ::5 U2 when U1 ::;? U2. For each U in I, let Xu be an element of U such 
that f(xu) tJ. V. Then the net (xu) converges to xo, but (J(xu)) does not 
converge to f(xo). This proves (a), from which (b) follows immediately .• 

2.1.22 Corollary. If two topologies on the same set result in the same 
convergent nets with the same limits for those nets, then the two topologies 
are the same. 

PROOF. Under the hypotheses of the corollary, the identity map on the 
space, treated as a map between the two topological spaces in question, is 
continuous in each direction and so is a homeomorphism. • 

2.1.23 Corollary. Suppose that X, Y, and Z are topological spaces and 
that (x, y) 1--+ X· Y is a continuous operation from X x Y into Z. Suppose 
further that (xo) and (Yo) are nets in X and Y respectively having the 
same index set, and that x and yare elements of X and Y respectively 
such that Xo --+ x and Yo --+ y. Then Xo . Yo --+ x . y. 

PROOF. By Proposition 2.1.16, the net (Xo, Yo)) in X x Y converges to 
(x, y), so an application of Proposition 2.1.21 (b) finishes the proof. • 

A subset of a metric space is compact if and only if it is sequentially 
compact. In order to generalize this fact to arbitrary topological spaces, 
some notion for a subnet of a net is needed. By analogy with sequences, it 
might seem reasonable to let a subnet be the object obtained after carefully 
thinning the index set of a net. The following definition is needed before 
exploring this possibility. 

2.1.24 Definition. A subset J of a directed set I is cofinal in I if for 
each Q in I there is a (30 in J such that Q ::5 (30' 

Suppose that J is a cofinal subset of a directed set I. Then each two 
elements of J have a common upper bound in I, which by the cofinality 
of J in I gives them a common upper bound in J. It follows that J is 
itself a directed set. Now suppose that I is the index set of a net (xa ) in a 
topological space and that (xa ) has a limit x. Let (x,l3) be the net formed 
by restricting (xa) to J. A moment's thought about the definitions of net 
convergence and cofinality shows that (x,l3) also converges to x. The fact 
that J is cofinal in I is important for this. If J were only a subset of I 
known to be a directed set under the inherited preorder, then (x,l3) might 
have no limit at all. 
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2.1.25 Example. Let No = NU{O}, directed by letting N retain its natural 
order and declaring that a ::5 0 for each a in No. Define a net from No into lR 
by letting Xn = a for each a in No. Then Xn --> 0 though (Xn)nEN is a net 
that does not converge to anything. Notice that N is not cofinal in No. 

Let (Xn)nEf be a net in a topological space. Whatever meaning is as
signed to the term subnet, any limit that (xc» has should also be a limit 
for each of its subnets. Sequential intuition, tempered by Example 2.1.25 
and the discussion preceding it, suggests that a subnet of (xc» should be 
defined to be the restriction of the net to a cofinal subset J of I, where 
J has the preorder that it inherits from I. It would seem that it might 
be necessary to impose additional restrictions on J, but there is no need 
to worry about this because this attempt at a definition is already in se
rious trouble. As it stands, this preliminary definition has already forced 
subnets of sequences to be SUbsequences. This will not do if the net analog 
of sequential compactness is to be equivalent to compactness, for there are 
compact Hausdorff spaces in which sequences need not have convergent 
subsequences; see Exercise 2.14. If such sequences, treated as nets, are to 
have convergent subnets, then the subnets must be more general objects 
than subsequences. 

The basic problem with this failed attempt to define subnets is the in
sistence on retaining the full strength of the preorder of I inherited by its 
cofinal subset J. This is not at all necessary. Suppose instead that J is 
given a preorder ::5J that makes it into a directed set, but not necessarily 
the preorder ::51 inherited from I, and that the net (xf3) formed by restrict
ing (xoe) to J and using the preorder of J is to be a "subnet" of (xn,). If 
(x (3) is to inherit whatever limits (xc» has, then it is fairly clear that one 
should impose on J the requirement that /31 ::5J /32 =} /31 ::51/32. However, 
there is no particular reason to inflict the converse of that requirement 
on J. Suppose that ::5.1 is obtained by starting with ::51, then weakening 
that relation on J by declaring that some pairs of elements of J related in I 
are unrelated in J, but leaving the relation strong enough that J remains a 
directed oet. It is easy to see that the "subnet" (xf3) indexed by J with its 
weakened relation still has every limit that the full net (xn) has. In fact, 
if /31, /32 E J and /31 = /32 in I, then in some sense thcre is not even any 
reason to require that (31 = /32 in J or even that /31 ::5J /32 or /32 ::5J /31 in J! 
This is the motivation behind the following definition. 

2.1.26 Definition. Suppose that X is a set, that I is a directed set, and 
that f: I --> X is a net. Suppose furthermore that J is a directed set and 
that g: J --+ I is a function such that 

(1) g(/31) ::5 g(/32) in I whenever /31 ::5 /32 in J; 

(2) g( J) is cofinal in I. 

Then the net fog: J --+ X is called a subnet of f· 
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1 3 5 7 9 

"x ~ "x "x ~ 
2 -- 4 -- 6 -- 8 -- 10 -- ... 

FIGURE 2.1. A weakening of the natural order of N. 

The function 9 in the preceding definition can be treated as a way of 
embedding J into I as a cofinal subset so that both the relation ~ and the 
very notion of equality can be weaker in J itself than in J viewed as a subset 
of I. If the net f is denoted by (x",) in the usual way, then its subnet fog 
should logically be denoted by (xg (,8). Though clarity sometimes requires 
that notation, the subnet is often denoted by just (x,8) when no confusion 
can result. Notice that the original naive attempt to define subnets following 
Example 2.1.25 does in fact always yield subnets; it just does not yield all 
subnets. In particular, it still follows that a subsequence of a sequence is a 
subnet of that net. As the next example shows, sequences also have subnets 
that are not subsequences. 

2.1.27 Example. Let (xn) be any sequence and let J be the natural num
bers with their usual order except that each relation between two integers 
that requires an integer to be properly less than an odd integer has been 
discarded. The directed set J is represented visually in Figure 2.1, where 
Q -> f3 means that Q ~ (3. If g is the "identity" map from J into the natu
ral numbers with their usual order, then (Xg(n) is a subnet of (xn). Thus, 
subnets of sequences do not have to be sequences, or even have chains for 
index sets. 

2.1.28 Example. Suppose that (xn) is any sequence. Let the subset [1, (0) 
ofR have its natural order and let g: [1, (0) -> N be the function that maps 
each r in [1, (0) to the greatest integer less than or equal to r. Then (x r ) 

(that is, (Xg(r))) is a sub net of (xn). While a subsequence is often thought of 
as being obtained from a sequence by thinning the index set, this example 
shows that a subnet can be formed from a net by thickening the index set 
(though of course the range of a subnet is never any larger than that of the 
original net). Incidentally, notice that in this particular case the net (xn) 
can also be viewed as a subnet of (xr) in an obvious way. 

2.1.29 Example. Let (x",) be the net of Example 2.1.25. Let J be a one
element set {(3} made into a directed set in the only way possible, and 
define g: J -> No by letting g«(3) = O. Then (Xg(,8) is a subnet of (x",). 
More generally, suppose that J is a directed set and g: J -> No is a function 
to be used to construct a subnet of (x",). Then the range of 9 must contain 0 
but does not have to contain anything else. 
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2.1.30 Example. Let j be a continuous real-valued function on C. Let I 
be the set of all positive reals directed by declaring that s ::S t when s 2: tj 
that is, the relation ::S reverses the usual order of the positive reals. For 
each r in I, let Ur be the open disk in C of radius r centered at 0 and 
let Sr be the supremum of j on Ur. Then (Sr) is a convergent net with 
limit j(O). Let J be the collection of all neighborhoods of 0 in C besides C 
itself, directed by declaring that U ::S V when U :2 V. Define g: J -+ I by 
letting g(U) = max{ r : U :2 Ur }. Then (Sg(U») is a subnet of (Sr) and 
converges to j (0) . 

Here is a collection of facts about subnets and the ways in which their 
convergence is related to that of the main net. 

2.1.31 Proposition. Let (xa) be a net in a set X. 

(a) The net (xa) is a subnet of itself 

(b) Every subnet of (xa) is a net in X. 
(c) Every subnet of a subnet of (xa) is a subnet of (xa). 

(d) If X is a topological space and (xa) converges to an element x of X, 
then every subnet of (xa) converges to x. 

(e) If X is a topological space and there is an element x of X such that 
every subnet of (xa) has a subnet converging to x, then Xa -+ X. 

PROOF. Parts (a), (b), (c), and (d) follow easily from the appropriate 
definitions. For (e), suppose that X is a topological space and that x is an 
element of X that is not a limit of (xa). Then there is a neighborhood U 
of x with this property: For every a in the index set I for (xa) there is 
a (30 in I such that a ::S (30 and xfJn ¢:. U. Let J = {(3 : (3 E I, xfJ ¢:. U}, 
a cofinal subset of I, and let (xfJ) be the restriction of (xa) to J. Then 
(XfJ) is a subnet of (xa) that clearly has no subnet converging to x, which 
proves (e). • 

2.1.32 Technique. Suppose that (xa) and (YfJ) are nets with respective 
index sets I and J. It is often useful to be able to find subnets (xl') and (Yl') 
of (xa) and (YfJ) respectively that have the same index set K. To do this, let 
K = I x J, directed by declaring that (a 1 ,(3d ::S (a2' (32) when a 1 ::S a2 and 
(31 ::::: (32. Let g: K -+ I and h: K -+ J be the projection mappings, that is, 
the mappings defined by the formulas g(a, (3) = a and h(a, (3) = (3. Then 
(xg(a,fJ» and (Yh(a,fJ» are subnets of (xa) and (YfJ) respectively having 
the same index set. Notice that these subnets are, in a sense, formed by 
thickening the index sets of the corresponding nets. Notice also that if (xa) 
lies in a topological space, then (xg(a,fJl) converges to some x if and only if 
(xa) converges to x, and similarly for (Yh(a,fJl) and (YfJ)· 

One more notion for sequences needs to be extended to nets before pro
ceeding. Recall that an accumulation point of a sequence in a topological 
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space is a point x such that every neighborhood of x contains terms of 
the sequence with arbitrarily large indices. The following is the natural 
generalization to nets. 

2.1.33 Definition. Let (Xl»l>EI be a net in a topological space X and 
let x be an element of X. Then (Xl» accumulates at x, and x is called an 
accumulation point of (Xl», if, for each neighborhood U of x and each a 
in I, there is a i3l>,U in I such that a ~ i3l>,U and x{3Q,u E U. 

Two of the most basic facts about net accumulation are contained in the 
next result. The proof follows very easily from the relevant definitions. 

2.1.34 Proposition. Suppose that (Xl» is a net in a topological space X 
and that x EX. 

(a) If (x",) converges to x, then (Xl» accumulates at x. 

(b) If (x",) has a subnet that accumulates at x, then (Xl» accumulates 
at x. 

Thus, while convergence is a property passed down from nets to subnets, 
the property of accumulation is passed up to nets from subnets. 

In a metric space, a sequence accumulates at a point if and only if the 
sequence has a subsequence converging to that point, from which it follows 
that a set in a metric space is closed exactly when it contains every ac
cumulation point of every sequence in the set. Compare those facts to the 
following proposition and corollary. 

2.1.35 Proposition. A net in a topological space accumulates at a point 
if and only if the net has a subnet converging to that point. 

PROOF. Let (X"')"'EI be a net in a topological space. If (x",) has a subnet 
converging to a point x, then that subnet accumulates at x, so (x",) accu
mulates at x. For the converse, suppose that (Xl» accumulates at x. Let J 
be the collection of all ordered pairs (a, U) such that a E I and U is a 
neighborhood of x containing xC<. Define a relation on J by declaring that 
(a1,U1)::s (a2,U2) when a1 ~ a2 and U1 :2 U2. If (a1,Ud,(a2,U2) E J, 
then the fact that (x",) accumulates at x assures that there is an a3 

such that a1 ~ a3, a2 ::S a3, and X"'3 E U1 n U2, which implies that 
(a1,U1 ) ~ (a3,U1 n U2) and (a2,U2) ~ (a3,U1 n U2). It follows that this 
relation defined on J makes J into a directed set. Let g(a, U) = a whenever 
(a, U) E J. Then (xg(",.U)) is a subnet of (x",) converging to x. • 

2.1.36 Corollary. A subset S of a topological space is closed if and only 
if S contains every accumulation point of every net whose terms lie in S. 

PROOF. It follows from Proposition 2.1.20 that S is closed if and only 
if it contains every limit of every convergent subnet of every net whose 
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terms lie in S, so an application of the proposition just proved yields this 
corollary. • 

The following result is the analog for arbitrary topological spaces of the 
equivalence of compactness and sequential compactness in metric spaces. 

2.1.37 Proposition. A subset S of a topological space is compact if and 
only if each net in S has a subnet with a limit in S, that is, if and only if 
each net in S has an accumulation point in S. 

PROOF. Suppose that (Xl» is a net in S with no accumulation point in S. 
For each X in S, let Ux be a neighborhood of x that excludes the entire 
portion of the net from some term onward. Let 115 = {Ux : XES}, an open 
covering for S. Since every finite sub collection of 115 excludes the entire net 
from some term onward, it follows that 115 cannot be thinned to a finite 
subcovering for S, so S is not compact. 

Conversely, suppose that S has an open covering 115 that cannot be 
thinned to a finite subcovering for S. It can be assumed that 115 is closed 
under the operation of taking finite unions of its elements. It follows that 
(5 can be made into a directed set by declaring that U ~ V when U ~ V. 
For each U in 115, let Xu be a member of S \ U. Then (xu) is a net in S 
with the property that xu, rt UI when UI ~ U2. It follows that (xu) has 
no accumulation point in S. • 

Compactness also has a useful characterization in terms of the conver
gence of special nets called ultranets. See Appendix D for this characteriza
tion as well as a general discussion of ultranets and examples of how they 
can be used to simplify compactness arguments that involve the axiom of 
choice. 

By analogy with metric spaces, it would seem reasonable to conjecture 
that a subset S of a topological space X must be relatively compact if each 
net in S has a subnet with a limit in X. Proposition 2.1.37 would seem 
to provide strong supporting evidence for this conjecture. It is perhaps 
surprising that the conjecture is in general false; see Exercise 2.15. It does 
hold, however, for a class of topological spaces large enough to include all 
of the important ones that appear in this book. 

2.1.38 Definition. Suppose that X is a set with a group (multiplication) 
operation, that is, an operation (x, y) f-t X· Y from X x X into X such that 

(1) (x· y) . z = X· (y. z) whenever x, y, Z E X; that is, the operation is 
associative; 

(2) there is an identity element e in X such that X· e = e· x = x whenever 
x E X; 

(3) each element x of X has an inverse X-I in X such that x . x-I = 
x-l . X = e. 
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Then (X,·) is a group. Suppose furthermore that 'I is a topology for X 
such that the mappings (x, y) f-+ X . Y from X x X into X and x f-+ x-I 
from X into X are both continuous. Then (X, 'I, . ) is a topological group. 
When no confusion can result, both the group (X" ) and the topological 
group (X, 'I" ) are denoted by X. 

For example, if X is a normed space and the group operation is addition 
of vectors, then X is a topological group by Proposition 1.3.2. 

The reader should be warned that other sources sometimes define a topo
logical group to be a Hausdorff space satisfying Definition 2.1.38. Most of 
the topological groups important in analysis actually are Hausdorff spaces. 
In fact, a topological group that is not a Hausdorff space is not even a 
To space; see Exercise 2.16. 

Recall that a group is said to be abelian if the group operation is com
mutative. When this happens, the operation is often called group addition 
instead of multiplication, with a corresponding shift to additive notation 
such as x+y and -x. In particular, the identity of an abelian group is often 
denoted by 0 instead of e. Most of the topological groups encountered in 
this book will be abelian. 

A bit more notation is needed before proceeding. Suppose that X is a 
group and that x E X and A, B <;;; X. Then x . A = {x . a : a E A}, 
A . x = {a· x : a E A}, A . B = {a· b : a E A, b E B}, and A-I = 

{a-I: a E A}. When the group is abelian and additive notation is being 
used, the corresponding objects are denoted by x+A, A+x, A+B, and -A. 

2.1.39 Proposition. Suppose that X is a topological group with iden
tity e. 

(a) Let Xo be an element of X. Then the maps x f-+ Xo . x, X f-+ X· xo, 
and x f-+ X-I are homeomorphisms from X onto itself Consequently, 
if A is a subset of X that is open, or closed, or compact, then Xo' A, 
A· xo, and A-I also have that property. If A and G are subsets of X 
and G is open, then both A . G and G . A are open. 

(b) For each Xo in X, the neighborhoods of Xo are exactly the sets Xo . U 
such that U is a neighborhood of e, which are in turn exactly the 
sets U . Xo such that U is a neighborhood of e. 

(c) For each neighborhood U of e, there is a neighborhood V of e such 
that V = V-I and V· V <;;; U. 

PROOF. For (a), suppose that Xo E X. The continuity of the group opera
tions of X implies that the maps x f-+ Xo . x, X f-+ X . Xo, and x f-+ X-I are 
continuous, as are their respective inverses x f-+ X 01 . X, X f-+ X . XOI, and 
x f-+ X-I, so the three maps of part (a) are homeomorphisms from X onto 
itself. If A is a subset of X that is open, or closed, or compact, then Xo . A, 
A· xo, and A-I have that same property since these properties are preserved 
by homeomorphisms. If A and G are subsets of X and G is open, then A· G 
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and G . A are open as unions of open sets, since A . G = U{ a . G : a E A } 
and G· A = U{ G· a: a E A}. This proves (a). If Ue and Uxo are neighbor
hoods of e and Xo respectively, then (a) implies that Xo . Ue and X01 . Uxo 

are neighborhoods of Xo and e respectively, which together with the fact 
that Uxo = Xo . (X01 . Uxo ) easily yields the first part of (b). The second 
part is proved similarly. 

Finally, suppose that U is a neighborhood of e. By the continuity of 
group multiplication, there are neighborhoods VI and V2 of e such that 
VI . V2 ~ U. Let V = VI n V2 n V1- 1 n V2- 1, another neighborhood of e. 
Then V does what is required of it in (c). • 

Here is the analog of Proposition 2.1.37 for relative compactness in topo
logical groups that could not be obtained for arbitrary topological spaces. 

2.1.40 Proposition. A subset S of a topological group X is relatively 
compact if and only if each net in S has a subnet with a limit in X (not 
assumed to be in S), that is, if and only if each net in S has an accumulation 
point in X. 

PROOF. If S is relatively compact, then 5 is compact, so every net in S 
has a subnet with a limit in 5 and therefore in X. 

For the converse, suppose that every net in S has a subnet with a limit 
in X. Let (XoJo:EI be a net in S. By Propositions 2.1.20 and 2.1.37, it is 
enough to show that (xaJ has a convergent subnet. For each a in I and 
each neighborhood U of the identity e of X, let Y(o:,U) be an element of 
(xo;U)nS. Then (Y(o:,U)) is a net if its index set J is preordered by declaring 
that (aI, Ud :::: (a2' U2) when a1 :< a2 and U1 :2 U2. Furthermore, a 
corresponding subnet (X(a,U)) of (xa) is obtained by letting x(o:,U) = Xa 
for each (a, U) in J. It is enough to show that (X(a,U)) has a convergent 
subnet. Since the net (Y(o:,U)) has a subnet (y,e) with a limit x, it is enough 
to show that the corresponding sub net (x,e) of (X(o:,U)) also converges to x. 

Suppose that Uo is a neighborhood of e. Let ao be any element of I. If 
(ao, Uo) :::: (a, U), then Y(a,U) E x(o:,U) . Un, so x(a1,U) . Y(a,U) E Uo. It follows 

that x(o:l,U) . Y(a,U) ----> e and therefore that Xfi1 . Y,e ----> e. The continuity of 
the group operations then assures that 

-1 (-1 )-1 -1 Y(3 . X,e = X,e . Y,e --> e = e 

and that 

X(3 = Y(3 . (Yfil . x,e) --> x . e = x, 

as required. • 
See Proposition D.lO in Appendix D for a characterization of relative 

compactness in topological groups in terms of the convergence of ultranets. 
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In metric spaces, the notion of a Cauchy sequence has an obvious gen
eralization to nets: A net (X")"EI in a metric space is Cauchy if, for every 
positive E, there is an a, in I such that d(x/3, x.J < E whenever a, ::5 /3 and 
a, ::5 {. Because of the special role played by the metric in this definition, 
it is not quite so easy to obtain a further generalization to more abstract 
topological settings. It turns out to be more fruitful to start with the special 
case of the Cauchy condition for nets in the real line, concentrate on the 
topological aspects of that condition rather than the metric space aspects, 
and then attempt a generalization from that special case. 

Suppose that (1""),,EI is a net in lR. Then {1"/3 - 1"'Y : (/3,{) E I x I} 
becomes a net if I x I is preordered by declaring that (/31, (I) ::5 (/32, (2) 
when /31 ::5 /32 and {I ::5 {2' The Cauchy condition for nets then becomes 
a convergence statement about such a net of differences: The net (r,,) is 
Cauchy if and only if the difference net (1"/3 - 1"'Y)(/3,'Y)ElxI converges to O. 

This topological characterization of the Cauchy condition for nets in JR 
can be immediately generalized to an abelian group X with a topology by 
declaring that a net (X")"EI in X is Cauchy if, under the same indexing 
scheme as for difference nets in JR, the difference net (X/3 - x'Y)(/3,'Y)EIXI 
converges to the identity element 0 of the group. To have a useful theory 
of Cauchy nets in such a topological space, it is reasonable to ask that 
convergent nets be Cauchy. By analogy with the usual argument for se
quences in the real line, the proof that a net (Xa,)aEI in X with a limit Xo 
is Cauchy should amount to showing that for every neighborhood U of 0 
there is an au in I such that if au :::: /3 and au :::: {, then x(3 is "near 
enough" to Xo and -x'Y is "near enough" to -xo to force x/3 - x'Y to be 
"near enough" to the sum 0 of Xo and -xo to lie in U. (All of this language 
will be made rigorous in the proof of Proposition 2.1.47.) To assure that 
this will happen, the maps (x, y) f---+ X + y from X x X into X and x f---+ -x 
from X into X should be continuous; that is, the space X should be a 
topological group. 

Thus, abelian topological groups form a natural setting for a generaliza
tion of the Cauchy condition. To avoid direct references to the convergence 
of difference nets, this generalization can be stated as follows. 

2.1.41 Definition. A net (Xa)aEI in an abelian topological group X is 
(topologically) Cauchy if, for every neighborhood U of the identity element 0 
of X, there is an au in I such that x/3 - x'Y E U whenever au ::5 /3 and 
au:::: {. 

It is worth emphasizing that the preceding definition is not a general
ization of the Cauchy condition for nets in metric spaces. It is instead a 
generalization of the topological formulation of the Cauchy condition for 
nets in the real line, while the Cauchy condition for nets in metric spaces 
is a different generalization based on the metric formulation of the Cauchy 
condition in lR. This has unfortunate consequences when an abelian topo-
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logical group has its topology induced by a metric, for it is quite possible 
for a net in such a space to be metrically Cauchy or topologically Cauchy 
without being Cauchy in both senses; see Exercise 2.17. However, this dif
ficulty does not arise in the situations of most importance in this book, as 
will be shown by Proposition 2.1.44 and its corollary. 

2.1.42 Definition. A metric d on a group X is left-invariant (respectively, 
right-invariant) ifd(z·x,z·y) = d(x,y) (respectively, d(x·z,y·z) = d(x,y)) 
whenever X,y,Z E X. If d is both left-invariant and right-invariant, then d 
is invariant. 

It follows that a metric d on an abelian group X is invariant if and only 
if d(x + z, y + z) = d(x, y) whenever x, y, z E X. In particular, a metric 
on a vector space is said to be invariant when it has this property, since 
the space is an abelian group under vector addition. Invariant metrics on 
abelian groups are sometimes said to be translation-invariant because of 
the additive notation. 

This is an appropriate place for the following result, which will be used 
in several of the examples in the next section. 

2.1.43 Proposition. If a topology for a group is induced by an invariant 
metric, then the group is a topological group when given this topology. 

PROOF. Suppose that a group X is given a topology that is induced by an 
invariant metric d. Let e be the identity element of X. If sequences (xn ) 

and (Yn) converge to x and Y respectively in X, then 

and 

d(xn . Yn, X· y) = d(x- 1 . Xn, y. y;;l) 

:'::: d(x- 1 . xn,e) + d(e,y. y;;l) 

= d(xn, x) + d(Yn, y) -+ 0 

so Xn . Yn -+ X· Y and X~ 1 -+ X-i. It follows that group multiplication and 
inversion are both continuous, so X is a topological group. • 

2.1.44 Proposition. Suppose that the topology of an abelian topological 
group is induced by an invariant metric. Then a net in the group is Cauchy 
with respect to this metric jf and only if the net is topologically Cauchy. 

PROOF. Let (xc<) be a net in an abelian topological group whose topology 
is induced by an invariant metric d. If X(3 and x-y are two terms of the net, 
then d(x(3,x-y) = d(x(3 - x-y,O), from which it easily follows that the net is 
metrically Cauchy if and only if it is topologically Cauchy. • 
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Since every normed space is an abelian topological group when the group 
operation is vector addition, and since the metric induced by the norm is in
variant for this operation, the following result is an immediate consequence 
of the proposition just proved. 

2.1.45 Corollary. Let X be a normed space, treated as an abelian topolog
ical group under vector addition. Then a net in X is topologically Cauchy 
if and only if it is norm Cauchy. 

In the real line, the convergence of a subsequence of a Cauchy sequence 
is enough to force the convergence of the entire sequence to the same limit. 
This fact generalizes to nets in abelian topological groups. 

2.1.46 Proposition. Ifa Cauchy net in an abelian topological group has a 
convergent subnet, then the entire net converges to the limit of the subnet. 

PROOF. Suppose that (Xc»aEI is a Cauchy net in an abelian topological 
group X and that (xa) has a subnet with a limit xo' Let U bc a neighbor
hood of 0 in X, let V be a neighborhood of 0 such that V + V ~ U, and let 
ao be a member of I such that X-y - X6 E V whenever ao ::: "( and ao ::: 8. 
Since (xc» accumulates at xo, there is an au in I such that ao ::: au and 
xc>u E Xo + V. If au ::: a, then 

X Q = (xc> - xuu) + xau E V + (xu + V) = Xo + (V + V) ~ Xo + U, 

which implies that Xc> ----; Xo' • 
The remarks that precede Definition 2.1.41 include a sketch of a proof 

that convergent nets in abelian topological groups are always Cauchy. It is 
time to fill in the details of that proof. 

2.1.47 Proposition. Every convergent net in an abelian topological group 
is Cauchy. 

PROOF. Let X be an abelian topological group and let (Xa)aEI be a net 
in X converging to some element Xu of X. Let U be a neighborhood of 0 
in X and let V be a neighborhood of 0 such that V = - V and V + V ~ U. 
Let au be a member of I such that Xc> E Xo + V whenever au ::: a. If 
au ::: (3 and au ::: ,,(, then 

X{3 - x-y E (xo + V) - (xo + V) = V - V = V + V ~ U, 

so (xc:.) is Cauchy. • 
2.1.48 Definition. An abelian topological group is complete if each Cau
chy net in the group converges. 
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This definition of completeness might seem fundamentally different from 
the usual one for metric spaces, since that definition requires only that 
all metrically Cauchy sequences converge. However, it turns out that the 
completeness of a metric space in the usual sense is actually enough to 
guarantee the convergence of all of its metrically Cauchy nets. 

2.1.49 Proposition. Let (X, d) be a metric space. Then d is a complete 
metric if and only if each d-Cauchy net converges. 

PROOF. Suppose that d is complete and that (Xa)aEI is a Cauchy net in X. 
It is cnough to prove that (xa) converges. Since (xa) is Cauchy, there is a 
sequence (an) in I such that an j a n+ 1 for each nand d( x (3, x,) < n- 1 

whenever an j (3 and an j 'Y. It follows that (xa n ) is a Cauchy sequence 
and so has a limit x. If t > 0, then there is a positive integer m such that 
m> 2/f. and d(xa=, x) < E/2, which implies that if am j a, then 

1 f 
d(xa, x) :::: d(xa, xam ) + d(xa m , x) < m + "2 < E. 

The net (xa) therefore converges to x. • 
Combining the preceding proposition with Proposition 2.1.44 yields the 

following result immediately. 

2.1.50 Corollary. Suppose that the topology of an abelian topological 
group X is induced by an invariant metric d. Then X is complete as an 
abelian topological group if and only if d is a complete metric. 

2.1.51 Corollary. Let X be a normed space. Then X is complete as an 
abelian topological group under vector addition if and only if X is a Banach 
space. 

In light of Proposition 2.l.49, one might ask if the convergence of every 
Cauchy sequence in an abelian topological group is enough to &'lsure that 
the group is complete. As will be seen in Example 2.5.24, the answer is no. 

Throughout the rest of this book, nets are the objects whose convergence 
properties are used in topological arguments. They are not the only possi
ble choice for this. Many authors use the convergence properties of filters 
or their close relatives, filter bases, to accomplish the same thing. This is 
especially true for those who learned much of their mathematics from Nico
las Bourbaki's Elements de Mathematique [33] since Bourbaki uses filters 
to do "his" topology. (Those who do not know why the quotes are around 
the word "his" should read Paul Halmos's delightful Scientific American 
article [100] about Bourbaki.) Suffice it to say here that whenever a net 
converges, there are related filters and filterbascs that are also forced to 
converge, and that if a filter or filter base converges, then there is a conver
gent net lurking not too far away. See, for example, [65] for a discussion of 
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filters and filterbases and the relationship of their convergence properties 
to those of nets. 

Exercises 

2.1 Let S be a subset of a metric space. Prove the following. 

(a) The set S is relatively sequentially compact if and only if its closure 
is sequentially compact. 

(b) The set S is relatively limit point compact if and only if its closure 
is limit point compact. 

2.2 Let X be a topological space. 

(a) Prove that X is a Tl space if and only if each one-element subset 
of X is closed. 

(b) Prove that X is regular if and only if it is a Tl space with this 
property: Whenever x E X and U is a neighborhood of x, there is a 
neighborhood V of x whose closure lies in U. 

( c) Prove that X is normal if and only if it is a T 1 space with this 
property: Whenever F is a closed subset of X and U is an open 
superset of F, there is an open superset V of F whose closure lies 
inU. 

2.3 Let X be the interval [0,1] with the topology given by declaring that a 
subset of X is open if it does not contain ° or its complement is countable. 
Verify that X is a Hausdorff topological space. Show that the subset (0,1] 
of X is sequentially closed but not closed. 

2.4 Let A and B be subsets of topological spaces X and Y respectively. Using 
net arguments, prove that A x B = if x Ii in X x Y. 

2.5 Using net arguments, prove that continuous images of compact sets are 
always compact. 

2.6 Using net arguments, prove that every compact subset of a Hausdorff 
space is closed. 

2.7 Using net arguments, prove that a topological space X is Hausdorff if and 
only if the diagonal {(x,x): x EX} is closed in X xX. 

2.8 Let X be a set. Using net arguments, prove that no Hausdorff topology 
for X can be properly weaker (that is, have fewer open sets) than a 
topology for X with respect to which X is compact. 

2.9 (a) Let K be a compact subset of a topological space X. Suppose that 
(X"')"'EI is a net in X such that whenever U is an open set that 
includes K and a: E I, there is a /3""u in I such that a: ::S /3""u and 
x{3c..u E U. Prove that some subnet of (x",) converges to an element 
ofK. 

(b) Use (a) to prove that every compact Hausdorff space is normal. 
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2.10 A subset S of a topological space is a Lindelof set if each open covering 
of S can be thinned to a countable subcovering. Suppose that the net (xc» 
in the Lindel6f set S has no subnet converging to any point of S. Show 
that there is a sequence (On) of net indices for (Xa) such that On :::::: On+l 

for each n and the sequence (X an ) has no subnet converging to a point 
of S. Conclude that every sequentially compact Lindelof set is compact. 

2.11 Recall that a topological space X is connected if there is no pair of disjoint 
nonempty open subsets of X whose union is X. 

(a) Prove that a topological space X is connected if and only if it has 
this property: Whenever S is a nonempty proper subset of X, there 
is either a net in S converging to a point in the complement of S, 
or a net in the complement of S converging to a point in S. 

(b) Let X and Y be topological spaces such that X is connected. Sup
pose that there is a continuous function from X onto Y. Use (a) to 
show that Y is connected. 

2.12 Let a and b be real numbers such that a < b. If T is a finite subset 
{to, ... ,tn } of [a,b] such that to = a, tn = b, and t]-l < tj when j E 
{1, ... ,n}, and S is a corresponding finite subset {SI, ... ,Sn} of [a,b] 
such that Sj E [t j -I, tj] for each j, then the ordered pair (T, S) is called 
a Riemann partition of [a, b]. Define a relation:::::: on the collection I of 
all Riemann partitions of [a, b] by declaring that (TI , SI) :::::: (T2, S2) when 
Tl ~ T2. Let f be a real-valued function on [a, b]. For each (T, S) in I, let 
X(T,S) = 2::;=1 f(Sj)(tj - t]_I)' 

(a) Show that I with the relation:::::: is a directed set. 

(b) Find necessary and sufficient conditions for the net (X(T,S» to con
verge. When it converges, identify its limit. 

2.13 Let a and b be real numbers such that a < b and let>. be Lebesgue measure 
on the Lebesgue-measurable subsets of [a, b]. Let I be the collection of all 
partitions of [a, b] into a finite number of disjoint measurable sets. Define 
a relation:::::: on I in the following way. Suppose that PI, P2 E I and that 
PI = {El, ... ,En } and P2 = {F1, ... ,FTn }. Then PI:::::: P2 if each Ej 
is the union of the members of some subcollection of [>2, that is, if the 
members of P2 are formed by subdividing the members of Pt. Now let f 
be a nonnegative real-valued measurable function on [a, b]. If PEl and 
P = {EI, ... , En}, let Xp = L;=l inf{J(t) : t E Ej }>.(E]). 

(a) Show that I with the relation:::::: is a directed set. 

(b) Find necessary and sufficient conditions for the net (xp) to converge. 
When it converges, identify its limit. 

2.14 Let Y be a two-element set with the discrete topology, that is, the topology 
in which every subset of the set is open. Let X be the collection of all 
functions from the closed interval [0, 1] into Y, viewed as the topological 
product ITaE[O,lj Y" where Y" = Y for each o. Show that X is a compact 
Hausdorff space that is not sequentially compact. (Notice that if Un) is a 
sequence in X, then the collection of all subsequences of Un) can be put 
into one-to-one correspondence with (0,1].) 
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Examples of sequentially compact Hausdorff spaces that are not compact 
can be found in [228]. 

2.15 Let X = {z : z E C, Izl ~ I} and let S = {z : z E C, Izl < I}. For 
each z in X \ S, let an inner deleted neighborhood of z be a set of the 
form UnS, where U is a neighborhood of z in C in the usual sense. Define 
a subset G of X to be open if G n S is open in C in the usual sense and for 
each z in Gn(X\S) there is an inner deleted neighborhood of z included 
in G. Show that this defines a Hausdorff topology on X for which S is 
not sequentially compact, limit point compact, or compact. Show that S 
is relatively sequentially compact and relatively limit point compact, and 
that each net in S has a subnet with a limit in X. 

2.16 Prove that every To topological group is Hausdorff. 

2.17 Show that the formula d(rl, r2) = I (rl - J2) -1 - (r2 - J2) -11 defines a 
metric on the rationals Q that induces the usual topology that Q inherits 
from JR. Use this to give an example of an abelian topological group whose 
topology is induced by a metric such that some sequence in the group is 
topologically Cauchy but not metrically Cauchy, and some other sequence 
in the group is metrically Cauchy but not topologically Cauchy. 

2.2 Vector Topologies 

Some useful properties of normed spaces proved in Chapter 1, such as the 
fact that the closed convex hull of a set in a normed space is the closure of 
its convex hull, actually follow only from the continuity of the vector space 
operations of such spaces rather than from any other special properties 
of norms. It turns out that a number of other important properties of 
these spaces, such as the fact that every continuous linear functional on 
a subspace can be extended continuously to the entire space, also rely on 
the fact that every neighborhood of a point in a normed space includes a 
convex neighborhood of that point, but not on any other special properties 
of normed spaces beyond the continuity of the vector space operations. This 
suggests the following generalizations of the notion of a normed space. 

2.2.1 Definitions. Suppose that X is a vector space with a topology 'r 
such that addition of vectors is a continuous operation from X x X into X 
and multiplication of vectors by scalars is a continuous operation from 
IF x X into X. Then 'r is a vector or linear topology for X, and the ordered 
pair (X, 'r) is a topological vector space (TVS) or a linear topological space 
(LTS). If'r has a basis consisting of convex sets, then 'r is a locally convex 
topology and the TVS (X, 'r) is a locally convex space (LCS). 

When (X, 'r) is a topological vector space, it is usually said informally 
(though admittedly not quite correctly) that X is the TVS, unless the more 
formal notation is needed for clarity. 
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The continuity of multiplication of vectors by scalars in a topological 
vector space implies the continuity of the map x ~ -x on the space, which 
immediately yields the following result. This characterization is sometimes 
used as the definition of a vector topology. 

2.2.2 Proposition. A topology on a vector space X is a vector topology 
if and only if both of the following occur: The space X is a topological 
group under addition of vectors, and multiplication of vectors by scalars is 
a continuous operation from IF x X into X. 

The continuity of the vector space operations in a TVS creates a link 
between the vector space structure and the topology of the space. The ad
ditional property possessed by an LCS provides each of its points with a 
supply of nicely shaped neighborhoods. Almost all of the TVSs important in 
Banach space theory are To spaces, which in fact implies that they are com
pletely regular, as will be proved in Theorem 2.2.14. For this reason, many 
sources include some separation axiom, ranging from To through T31, as 

2 

one of the defining properties of a vector topology. 
As the following result shows, Chapter 1 is teeming with examples of 

locally convex spaces. 

2.2.3 Theorem. Every norm topology is a locally convex topology. 

PROOF. The continuity of the vector space operations of a normed space 
is proved in Proposition 1.3.2, while the existence of a basis consisting 
of convex sets comes from the fact that every ball in a normed space is 
convex. • 

Here are some examples of vector topologies that are not in general 
induced by norms. 

2.2.4 Example. Let X be a vector space having a nonzero vector. Then 
the topology {0, X} is a locally convex topology for X that is not even a 
To topology. 

Some abbreviations will be helpful in preventing the notation in the next 
example from becoming too unwieldy. Suppose that (O,~, 1-£) is a measure 
space, that f is a scalar-valued function on 0, and that P is a property 
that f(x) might satisfy for some members x of 0. Then [f satisfies P] 
will be used as an abbreviation for {x : x E 0, f(x) satisfies P}. If 
[f satisfies P] is a measurable set, then 1-£[ f satisfies P] will be used to 
denote 1-£([ f satisfies P]). 

2.2.5 Example: Lo(O,~, 1-£). Suppose that 1-£ is a positive measure on a 
u-algebra ~ of subsets of a set n. Let Lo(O,~, 1-£) be the vector space of 
all I-£-measurable scalar-valued functions on 0, with the usual convention 
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that two functions are identified if they agree almost everywhere. It is a 
straightforward exercise in measure theory to show that the formula 

d(j,g) = inf{{l} U {f: f > 0, JL[lf - gl > f] < f}} 

defines a metric on Lo(n, r:, JL), that a sequence in Lo(n, r:, JL) is Cauchy 
with respect to d if and only if it is Cauchy in measure, and that a sequence 
in Lo(n, I:;, JL) converges to an element f of Lo(n, r:, JL) with respect to d 
if and only if the sequence converges to f in measure; see Exercise 2.18. 
Since sequences that are Cauchy in measure are convergent in measure, the 
metric d is complete. The topology of convergence in measure for Lo(n, r:, JL) 
is the topology induced by this metric. Henceforth, this will be the topology 
that Lo(n, I:;,JL) is assumed to have whenever it is treated as a topological 
space. 

It is clear that d is invariant, that is, that d(j + h, g + h) = d(j, g) 
whenever f, g, h E Lo(n, r:, f-t). It follows from Proposition 2.1.43 that 
Lo(n, I:;, f-t) is a topological group under the operation of addition of vec
tors, and in particular that vector addition is continuous. However, it is 
not in general true that multiplication of vectors by scalars is a continu
ous operation for Lo(n, I:;, f-t); see Exercise 2.18. It does turn out that this 
operation is continuous when JL is a finite measure, as will now be shown. 

Assume for the rest of this example that JL(n) < 00. Suppose that the 
sequences (an) and (In) are in IF and Lo(n, I:; , f-t) respectively and have 
respective limits a and f. Let (bn ) be a sequence of positive numbers de
creasing to 0 such that Ian - al ::::: bn for each n, and let B be a positive 
upper bound for the sequence (Ianl). For each positive f and each positive 
integer n, 

from which it follows that 

JL[ lanfn - afl > f] ::::: JL [Ianln - anfl > ~] + JL [Ianl - all > ~] 

::::: JL [ Blfn - II > ~] + f-t [bnlfl > ~ ] 

= JL [Ifn - II > 2~ ] + f-t [If I > 2: ]. 
n 

Letting n tend to 00 shows that f-t[ lanln - ail> f 1 -> 0 whenever e > 0, 
so anln converges to af in measure. (Notice that the finiteness of JL(n) is 
used here to assure that JL[ If I > e/2bn ] -> 0.) Multiplication of vectors by 
scalars is therefore a continuous operation, so the topology of convergence 
in measure is a vector topology for Lo(n, I:; , f-t) whenever (0" r:, JL) is a finite 
positive measure space. 

Now suppose that 0, is the interval [0,1]' that I:; is the u-algebra of 
Lebesgue-measurable subsets of 0" and that A is Lebesgue measure on 
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(n, ~). Let Lo[O,l] denote Lo(n,~, .\). Let C be a convex neighborhood 
of ° in Lo[O, 1] and let 10 be such that the open ball of radius 10 centered 
at ° lies in C. Suppose that f E Lo[O, 1]. Let n be a positive integer such 
that l/n < 10/2. For each integer j such that 1 ~j ~ n, let I[.t..;;-!.*) be the 

indicator function of the interval [~, *) and let the member h of La [0, 1] 
be defined by the formula fj(t) = nf(t)I[.t..;;-!.-!;)(t). Then A[ Ihl > E/2] ~ 
l/n < 10/2 for each fj, so each h is in C. Since f = 'L.j=l n-1 h, the convex 
combination f of members of C is itself in C. It follows that C = Lo[O, 1]. 
By Proposition 2.1.39 (b), every nonempty convex open set in Lo[O, 1] is a 
translate of a convex neighborhood of the origin, so it also follows that the 
only nonempty convex open subset of Lo[O, 1] is Lo[O, 1] itself. Thus, the 
topology of convergence in measure for Lo[O, 1] is a vector topology that is 
not locally convex. 

2.2.6 Example: Lp(n,~, '""), ° < p < 1. Suppose that'"" is a positive 
measure on a O"-algebra ~ of subsets of a set n and that ° < p < 1. Define 
Lp(n,~, '"") to be the collection of all ,",,-measurable scalar-valued functions 
on n such that 10 IflP d,"" is finite, with the usual convention that functions 
that agree almost everywhere are considered to be the same. If s ::::: ° and 
¢s(t) = sP + tP - (s + t)P whenever t ::::: 0, then ¢s is nondecreasing and 
hence nonnegative on [0,(0), from which it follows that 

If(x) + g(x)IP ~ (If(x)1 + Ig(x)I)P ~ If(x)IP + Ig(x)IP 

whenever f, g E Lp(rl,"2'" '"") and x E n. Easy arguments based on this show 
that Lp(rl,"2'" '"") is a vector space under the usual addition of functions and 
multiplication of functions by scalars, and that the formula 

defines a metric on Lp(rl,"2'" ,",,). Henceforth, whenever ° < p < 1 and 
Lp(n,"2'" '"") is treated as a topological space, the topology is assumed to be 
the one induced by this metric. 

The next order of business is to show that the metric d is complete. If 
f, g E Lp(n, "2'" '"") and E > 0, then 

,",,[If-g'>c1=1 1d,",,:St-pl If-gIPd,",,~cPdU,g), 
[I/-gl><] [1/-gl><1 

from which it follows that every Cauchy sequence in Lp(rl, L;, '"") is Cauchy 
in measure and so is convergent in measure to some measurable function. 
Let Un) be a Cauchy sequence in Lp(o',"2'" J-l) and let f be the function 
to which (f n) converges in measure. It is a standard fact from measure 
theory that there is a subsequence Unj) of Un) that converges to f almost 
everywhere. Suppose that 10 > O. Let the positive integer N. be such that 
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d(fm> In) < E whenever m, n 2: Nt· If n 2: N" then an application of 
Fatou's lemma shows that 

It follows that I = (f - INJ + IN, E Lp(D., E, fl) and that d(f, In) -+ 0, 
which establishes the completeness of d. 

The metric d is invariant, so vector addition is continuous for Lp(D., E, fl) 
since the space is a topological group under this operation. Furthermore, 
if (an) and (fn) are sequences in IE" and Lp(D.,E,fl) respectively and have 
the respective limits a and I, then 

d(anln, at) ::; d(anln , ant) + d(anl, at) 

= lanlPll/n - IIPdfl + Ian - alPll/lP dfl-+ ° 
as n -+ 00, so multiplication of vectors by scalars is also a continuous 
operation. Thus, the metric d induces a vector topology on Lp(D., E, fl). 

Specializing to the case of Lebesgue measure A on the Lebesgue-measur
able subsets of [0,1] yields the space Lp[O, 1]. Notice that Lp[O, 1] contains 
every member of Loo [0, 1] and so has nonzero elements. Suppose that C 
is a convex neighborhood of ° in Lp[O, 1] and that E is a positive number 
such that the open ball of radius E centered at ° is included in C. Let I 
be a member of Lp[O, 1] and let n be a positive integer large enough that 
d(f,O) < nl-PE. Since the function t t-t J[o,t]I/IPdA is continuous on [0,1], 
there must be numbers to, ... ,tn such that 0 = to < tl < ... < tn = 1 and 

for each integer j such that 1 ::; j ::; n. For each such j, let I[tj_l,tJ ) be the 
indicator function of the interval [tj-l, tj) and let the member fJ of Lp[O, 1] 
be defined by the formula /jet) = nl(t)I[tJ_l,tj)(t). Then 

d(fJ, 0) = nP 1 . I/IP dA = nP-ll I/IP dA = np-1d(f, 0) < E 

[tj-l,t) [0,1] 

for each j, so each fJ is in C. Since I = I:7=1 n-lfJ, the convex com
bination I of members of C is itself in C, so C = Lp[O, 1]. Since every 
nonempty convex open subset of Lp[O, 1] is, by Proposition 2.1.39 (b), a 
translate of a convex neighborhood of 0, the only nonempty convex open 
subset of Lp[O, 1] is Lp[O, 1] itself. Thus, the topological vector space Lp[O, 1] 
is not locally convex. 

2.2.7 Example: i p , ° < p < 1. Let p be a rcal number such that ° < p < 1 
and let J.l be the counting measure on the collection E of all subsets of N. 
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By analogy with what is done when 1 :::; p :::; 00, the space fp is defined to 
be Lp(N,~,f1,). Notice that fp is the space of all sequences (an) such that 
2::n lan lP is finite, and that if (an), (On) E fPl then 

n 

Suppose that C is a convex neighborhood of 0 in fp and that ( is such that 
the open ball of radius 2( centered at 0 is included in C. Let {en: n EN} 
be the collection of standard coordinate vectors of f p . Then (l/Pe n E C for 
each n, so m- 1(1/p 2::7=1 ej E C for each positive integer m. However, 

as m ---> 00, so C is unbounded with respect to the metric d. Thus, no open 
ball centered at 0 includes a convex neighborhood of 0, and so the metric 
of fp is another example of a complete invariant metric inducing a vector 
topology that is not locally convex. 

The notion of boundedness with respect to a metric, which played such 
an important role in the preceding example, is so useful that it would be 
good to be able to extend it somehow to vector topologies not induced by 
metrics. One reasonable approach would be to call a set A bounded if the 
points of A are "uniformly close enough to 0" that tx ---> 0 "uniformly" 
for x in A as t decreases to 0; that is, if the following happens: For each 
neighborhood U of 0, there is a positive ru such that tA C;;; U whenever 
o < t < ru. This requirement is clearly equivalent to the condition in the 
following definition. 

2.2.8 Definition. A subset A of a TVS is bounded if, for each neighbor
hood U of 0, there is a positive Su such that A C;;; tU whenever t > suo 

A moment's thought shows that a subset of a normed space is bounded 
in the sense of the preceding definition if and only if it is bounded with 
respect to the metric induced by the norm. However, it can happen that a 
vector topology is induced by a metric d such that the metrically bounded 
sets are not the same as the sets bounded in the sense of Definition 2.2.8. 
As an example, consider the metric d on lR defined by the formula 

d(x, y) = min{l, Ix - yl}, 

a complete invariant metric that induces the usual norm topology of R 
Notice that lR is itself metrically bounded with respect to d, though not 
bounded in the sense of Definition 2.2.8. Henceforth, the term "bounded" 
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when applied to a TVS is always to be interpreted in the sense of Defini
tion 2.2.8 unless specifically stated otherwise. 

One reason that a TVS is a good place to do analysis is that many familiar 
properties of normed spaces, and in particular of IR and C, generalize to 
TVSs. Here is a list of some of the most useful ones. 

2.2.9 Theorem. Suppose that X is a topological vector space. 

(a) Let (/30.) be a net in F and let (Xo.) and (yo.) be nets in X such that all 
three nets have the same index set and (/30.), (Xo.), and (Yo.) converge 
to /3, x, and y respectively. Let "( and z be elements of F and X 
respectively. Then Xo. + Yo. ~ x + y, /3o.xo. ~ /3x, Xu + z ~ x + z, 
"(Xo. ~ "(x, and /3o.z ~ /3z. 

(b) If f and g are continuous functions from a topological space into X 
and a is a scalar, then f + g and af are continuous. 

(c) Let Xo be an element of X and let ao be a nonzero scalar. Then the 
maps x f---; x + Xo and x f---; aox are homeomorphisms from X onto 
itself. Consequently, if A is a subset of X that is open, or closed, or 
compact, then Xo + A and aoA also have that property. If A and U 
are subsets of X and U is open, then A + U is open. 

(d) Suppose that A and B are subsets of X, that Xo E X, and that ao is 
a nonzero scalar. Then A + B ~ A + B, Xo + A = Xo + A, aoA = aoA, 
AO + BO ~ (A + B)O, Xo + AO = (xo + A)O, and aoAo = (aoA)o. 

(e) For each Xo in X, the neighborhoods of Xo are exactly the sets Xo + U 
such that U is a neighborhood of o. 

(f) Each neighborhood of 0 in X is absorbing. 

(g) For each neighborhood U of 0 in X, there is a balanced neighbor
hood V of 0 in X such that V ~ V ~ V + V ~ U. If U is convex, 
then V can be chosen to be convex. 

(h) Suppose that A is a bounded subset of X, that Xo is an element 
of X, and that ao is a scalar. Then Xo + A and aoA are bounded. 

(i) Let A be a subset of X. Then [AJ = (A) and coCA) = coCA). If A is 
a subspace of X, then so is A. If A is balanced, then so is A, and 
A 0 is also balanced provided that 0 E A 0 • If A is bounded or convex, 
then both A and AO have that same property. 

(j) Let Y be a subspace of X. Then the relative topology that Y inherits 
from X is a vector topology. If the topology of X is locally convex, 
then so is the relative topology of Y. 

PROOF. Part (a) is just a collection of special cases of Corollary 2.1.23. 
Part (b) is an easy consequence of the continuity of the vector space op
erations of X, and in particular follows readily from (a). For (c), suppose 
that Xo E X and ao is a nonzero scalar. The continuity of the vector space 
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operations of X implies that the maps x f-+ x + Xo and x f-+ aox are contin
uous, as are their respective inverses x f-+ x - Xo and x f-+ ao1x, so the two 
maps of part (c) are homeomorphisms from X onto itself. If A is a subset 
of X that is open, or closed, or compact, then Xo + A and aoA have that 
same property since these properties are preserved by homeomorphisms. 
If A and U are subsets of X and U is open, then A + U is open as the union 
of open sets, since A + U = U{ a + U : a E A}. This proves (c). 

Suppose that A, B, Xo, and ao are as in the hypotheses of (d). Let Yo 
and Zo be elements of A and B respectively, and let (y"J and (zj3) be nets 
in A and B respectively such that y" ....... Yo and zj3 -> Zo0 There are subnets 
(Yi) and (zi) of (Yo,) and (zj3) respectively having the same index set; see 
Technique 2.1.32. Then Y"I + z"I ....... Yo + Zo, so Yo + Zo E A + B. This proves 
that A + B <;;: A + B. Since A ° + BO is an open subset of A + B, it follows 
that AO + BO <;;: (A + B)o. Straightforward arguments based on (a) and (c) 
yield the rest of (d). 

Part (e) follows immediately from Proposition 2.1.39 (b) and the fact 
that X is a topological group under addition of vectors. For (f), suppose 
that U is a neighborhood of 0 in X. If x E X, then the continuity of 
multiplication of vectors by scalars yields a positive r x such that tx E U 
when 0 < t < r Xl so x E tU when t > r;l. Thus, the set U is absorbing, 
which proves (f). 

To prove (g), suppose that U is a neighborhood of 0 in X. The con
tinuity of vector addition yields neighborhoods U1 and U2 of 0 such that 
U1 + U2 <;;: U. Let Ua = U1 nU2 n( -Udn( -U2 ). Then U3 is a neighborhood 
of 0 such that U3 = -U3 and U3 + U3 <;;: U. The same procedure applied 
to U3 instead of U yields a neighborhood U4 of 0 such that U4 = -U4 and 
U4 + U4 + U4 + U4 <;;: U. It follows that U4 + U4 + U4 does not intersect 
X \ U, so the fact that U4 = -U4 implies that U4 + U4 does not intersect 
(X \ U) + U4 . Since (X \ U) + U4 is open, it follows that U4 + U4 does not 
intersect (X \ U) + U4, so U4 + U4 <;;: U. The continuity of multiplication of 
vectors by scalars produces a positive 8 and a neighborhood U5 of 0 in X 
such that aU5 <;;: U4 whenever lal < 8. Let V = U{ aU5 : lal < 8}. Then 
V is a balanced neighborhood of 0 lying in U4 , and 

This proves all of (g) except for the convexity assertion, which uses (i) in 
its proof and will be obtained below. 

Suppose that A is a bounded subset of X, that Xo is an element of X, 
and that ao is a scalar. Let U be a neighborhood of 0 in X and let V be a 
balanced neighborhood of 0 in X such that V + V <;;: U. Let Sv be a positive 
number such that A <;;: tV and Xo E tV whenever t > Sv. If t > sv, then 
Xo + A <;;: tV + tV <;;: tU, from which it follows that Xo + A is bounded. If 
t> (Iaol + l)sv, then aoA <;;: t(laol + 1)- l aoV <;;: tV <;;: tU, which shows 
that aoA is bounded and finishes the proof of (h). 
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Let A be a subset of X. Suppose for the remainder of this paragraph 
that x, y E II and a, fl E 1F'. As in the proof of (d), it is possible to find 
nets (x"!) and (y"!) in A having the same index set such that x"! -+ x and 
y"! -+ y. Then ax"! + fly"! -+ ax + fly· If ax"! + fly"! E A for each /, then 
ax + fly E II. It follows that II is a subspace of X if A is a subspace of X 
and, by considering the case in which a, fl > 0 and a + fl = 1, that II 
is convex if A is convex. The claim in (i) about linear hulls and convex 
hulls now follows easily; see the proof of Corollary 1.3.11. If A is balanced 
and lal ::; 1, then each ax"! is in A, so ax E II since ax"! -+ ax, which 
implies that II is balanced. Now suppose that A is bounded. Let U be a 
neighborhood of 0 in X and let V be a neighborhood of 0 in X such that 
V ~ U. Let BV be a positive number such that A ~ tV when t > BV. Then 
A ~ tV = tV ~ tU when t > BV, so II is bounded. This proves all the 
assertions about closures in (i). 

If A is a convex subset of X and 0 < t < 1, then tAo+(1-t)AO ~ A, which 
implies that the open set tAO + (1 - t)AD is included in AD and therefore 
that A ° is convex. If A is a bounded subset of X, then its subset AD is 
clearly bounded. Now suppose that A is a balanced subset of X such that 
o E AD. Let 0: be a scalar such that 0 < 10:1 ::; 1. Then o:AD ~ o:A ~ A, so 
o:AO ~ AO since aAD is open. It is also true that OAD = {O} ~ AO, so AD is 
balanced. This finishes the proof of (i). 

Let Y be a subspace of X. The vector space operations of Y inherit 
the continuity of those of X, so the relative topology of Y is a vector 
topology. If the topology of X has a basis ~ consisting of convex sets, then 
{ B n Y : B E ~} is a basis for the relative topology of Y consisting of 
convex sets, so the relative topology of Y is locally convex. This proves (j). 

All that remains to be proved is the convexity assertion in (g). Let U 
be a convex neighborhood of 0 in X. It suffices to find a set V with the 
appropriate properties inside the convex neighborhood U n (-U) of 0, so 
it can be assumed that U = -U. Since 3- 1U + 3- 1U - 3-1U = U, it 
follows that 3-1U + 3- 1U does not intersect the open set (X \ U) + 3- 1U 
that includes X \ u, so 3- 1U + 3-1U ~ U. It is enough to find a convex 
balanced neighborhood V of 0 such that V ~ 3- 1 U. Let 

W = n{ 3-10:U : 0: E IF, 10:1 = 1 }. 

Then W is a subset of 3- 1U and is convex as the intersection of convex 
sets. Let B be a balanced neighborhood of 0 included in 3-1U. If 0: is a 
scalar such that 10:1 = 1, then B = o:B ~ 3- 10:U, and so B ~ W, from 
which it follows that 0 E WO. Now let fl be a scalar such that Ifll ::; 1 and 
let t and / be scalars such that 0 ::; t ::; 1, III = 1, and fl = t/. Then 

flW = t (n{3- 10:/U : a E IF, lal = 1}) = tW = tW + (1 - tHO} ~ w, 
so W is balanced. It follows from (i) that W D is a convex balanced neigh
borhood of 0 included in 3-1U, and so is the desired V. • 
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2.2.10 Corollary. A subset A of a TVS X is bounded if and only if it 
has this property: For each balanced neighborhood U of 0 in X, there is a 
positive Su such that A ~ Su U. 

PROOF. The "only if" portion follows immediately from the definition of 
boundedness. For the "if" portion, suppose that A has the indicated prop
erty for each balanced neighborhood of 0 in X. Let U be a neighborhood 
of 0 in X and let V be a balanced neighborhood of 0 included in U. Let Sv 
be a positive number such that A ~ Sv V. If t > Sv, then 

A ~ svV = t(ClsvV) ~ tV ~ tU. 

It follows that A is bounded. • 
If U is a neighborhood of ° in JR, then U includes some balanced neigh

borhood (-€, €) of 0, and so there is a balanced neighborhood (-€/2, €/2) 
of 0 such that (-€/2, €/2) + (-€/2, €/2) ~ U. Therefore, if x, y E JR and 
Ixl,lyl < €/2, which is to say that x, y E (-€/2, €/2), then x + y E U. 
Many familiar "epsilon over two" arguments of analysis are based on this. 
Such arguments can often be generalized to TVSs because of part (g) of 
the preceding theorem. See Exercise 2.27 for an example. 

It is often easier to use Corollary 2.2.10 to check for boundedness than 
to proceed directly from the definition. The proof of the next result gives 
an example of this. 

2.2.11 Proposition. Every compact subset of a TVS is bounded. Thus, 
every convergent sequence in a TVS is bounded. 

PROOF. Let K be a compact subset of a TVS X and let U be a balanced 
neighborhood of ° in X. Since U is absorbing, the collection {tU : t > 0 } 
is an open covering for K, so there are positive numbers tl"'" tn such 
that tl < t2 < ... < tn and K ~ U7=1 tjU. Since tjU = tn(t;;ltjU) ~ tnU 
for each j, it follows that K ~ tnU, so Corollary 2.2.10 implies that K is 
bounded. The rest of the proposition then follows from the fact that a set 
in a topological space consisting of the terms and a limit of a convergent 
sequence must be compact. • 

One fairly obvious convention is needed before proceeding. Whenever 
terminology from the theory of abelian topological groups is used in a sit
uation involving topological vector spaces, the TVSs in question are being 
viewed as abelian topological groups under vector addition. In particular, a 
net (Xa)",EI in a TVS X is Cauchy if, for every neighborhood U of 0 in X, 
there is an o:u in I such that xfJ - x-y E U whenever O:u :::S j3 and o:u :::S " 
and X is complete if each Cauchy net in X converges; see Definitions 2.1.41 
and 2.1.48. 

By Proposition 2.1.47, every convergent net in a TVS is Cauchy. The 
fact that convergent sequences in a TVS are always bounded is therefore 
just a special case of the following more general result. 
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2.2.12 Proposition. Every Cauchy sequence in a TVS is bounded. 

PROOF. Suppose that (xn) is a Cauchy sequence in a TVS X. Let U be a 
neighborhood of 0 in X and let V be a balanced neighborhood of 0 such 
that V + V ~ U. Let N be a positive integer such that Xn - X N E V 
whenever n ~ N. Since V is absorbing, there is a positive number SN such 
that XN E SNV, It follows that if n ~ Nand t > max{l, SN}, then 

Xn = (xn - XN) + XN E V + SNV ~ tV + tV ~ tU. 

Finally, let {SI, ... ,SN-d be positive numbers such that Xj E tU when 
1 S j S N - 1 and t > Sj, and let S = max{l, Sl,"" SN-I, SN}' Then 
{xn : n EN} ~ tU whenever t > s, so the sequence (xn) is bounded. • 

The separation properties of the open subsets of a TVS tend to be either 
very good or very bad. In fact, if X is a TVS that is not completely regular, 
then there is an entire nontrivial subspace Y of X such that every open set 
intersecting Y actually includes Y; see Exercise 2.33. This result follows 
from the fact, which will now be proved, that every To vector topology is 
actually completely regular. The proof is based on the following construc
tion, which will have a further application in the proof of Theorem 2.3.11. 

2.2.13 Construction. Let B be a balanced neighborhood of 0 in a TVS X. 
A continuous nonnegative-real-valued function f on X will be constructed 
such that f is small "near the origin" and large "far from the origin," where 
the "distance" of a point from the origin is determined by how "far" the 
point is inside or outside B. Here are the steps in the construction. 

1. Let B(l) = B. For each positive integer n, define B(2n) inductively by 
letting B(2n) = B(2n- 1 )+B(2n- I ). For each positive integer n, define 
B(2-n) inductively by letting B(2-n) be a balanced neighborhood 
of 0 such that B(2-n) + B(2-n) ~ B(2-n+1). 

2. The terminating binary expansion of the number 5 ;6 is 101.1001. Let 

B(5 I96 ) = lB(4) +OB(2) + lB(l) + lB(~) +OB(i) +OB(~) + lB(6)' 

Define B(;::) analogously for each integer n and each positive inte
ger m, that is, for each positive dyadic rational. Notice that if n is an 
integer, then the definition of B(2n) given in this step is consistent 
with that given in Step 1, and that the inclusion of extraneous lead
ing or trailing zeros in the terminating binary expansion of a positive 
dyadic rational r does not affect the definition of B(r). 

3. Claim: B(rd + B(r2) ~ B(ri + r2) whenever rl and r2 are positive 
dyadic rationals. To see this, let rl and r2 be positive dyadic rationals 
and let 
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and 

be terminating binary expansions for r1, r2, and r1 + r2 respectively, 
where extra leading and trailing zeros have been included where nec
essary to assure that all three expansions have the same number of 
digits to the left of the binary point and similarly for the number of 
digits to the right. The claim will be proved once it is shown that 

A " .... m2 (1) ( ') ",n2 (2) ( ') Let n, = L...j=n, 6j B 2J + L...j=n, 6j B 2J and use the following 
inductive process to pass from An, to another set An2+1 . The sum 
representing An, must have exactly zero, one, or two terms of the 
form IB(2n,). If it has two such terms, delete those two terms from 
the sum and insert a term of the form 1B(2nl +1) to obtain An, +1; 

otherwise, let An, +1 = An, . It follows from Step 1 that An, ~ An, +1. 

The sum representing An, +1 must have exactly zero, one, two, or 
three terms of the form 1B(2nl +1). If it has more than one such 
term, delete two of those terms from the sum and insert a term of the 
form 1B(2nl +2) to obtain An, +2; otherwise, let An, +2 = An, +1. Then 
An, +1 ~ An, +2· The sum representing An, +2 must have exactly zero, 
one, two, or three terms of the form IB(2nl +2). If it has more than one 
such term, delete two of those terms from the sum and insert a term of 
the form IB(2nl +3 ) to obtain An, +3 ; otherwise, let An1 +3 = An, +z. 
Then An) +2 ~ And3 . Continue in the obvious fashion until A n2+1 

is obtained. Now think of how this inductive process is analogous 
to the usual algorithm for adding r1 to r2 by aligning their binary 
expansions one above the other by binary point and adding digits 
in columns, working from right to left and carrying a 1 to the left 
whenever necessary. It should be clear after a moment's thought that 

An2 +1 = L.7~nl 8?) B(2j). Since An, ~ A"2+1 , the claim is proved. 

4. Claim: If r1 and r2 are positive dyadic rationals such that r1 < r2, 
then B(rd ~ B(rz). This follows from the preceding claim, since 
o E B(r2 - rd and B(rl) + B(rz - r1) ~ B(r'2). 

5. For each positive real number t, let 

B(t) = U{B(r): r is a positive dyadic rational, r::; t}. 

It follows from Step 4 that if t is a positive dyadic rational, then this 
definition of B(t) is consistent with the definition from Step 2. 
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6. Claims: If s, t > 0, then B(s) + B(t) ~ B(s + t), and if 0 < s < t, 
then B(s) ~ B(t). These claims follow in an obvious way from Steps 
3 and 5. 

7. Claim: For each positive t, the set B(t) is a balanced neighborhood 
of O. To see this, first observe that if U and V are balanced neighbor
hoods of 0, then so is U + V. It then follows from Step 1 that B(2n) 
is a balanced neighborhood of 0 for each integer n, from Step 2 that 
B(r) is a balanced neighborhood of 0 for each positive dyadic ratio
nal r, and from Step 5 that B(t) is a balanced neighborhood of 0 for 
each positive real number t. 

8. Claim: X = U{ B(t) : t > O}. To see this, suppose that x E X. 
Let n be a positive integer such that x E 2n B. An easy argument 

2n 

based on Step 1 shows that 2nB ~ Lj=l B = B(2n), from which the 
claim follows. 

9. For each x in X, let f(x) = inf{ t : t > 0, x E B(t)}. It follows from 
Step 8 that f is finite-valued and so has its range in [0, +00). It is 
clear that f(O) = 0 and that if t > 0, then f(x) ~ t if x E B(t) 
and f(x) 2 t if x E X \ B(t). In particular, it follows that f(x) 2 1 
whenever x E X \ B. 

10. Claim: If x E X, then f(x) = f(-x). This is a straightforward 
consequence of the definition of f and the fact that B(t) = -B(t) for 
each positive t. 

11. Claim: If x, y E X, then f(x + y) ~ f(x) + f(y) and If(x) - f(y)1 ~ 
f(x - y). To see this, suppose that x, y E X and that to > O. Then 
there are positive reals s and t such that s < f(x) + to, t < f(y) + to, 

X E B(s), and y E B(t). Then x + y E B(s) + B(t) ~ B(s + t), and 
so f(x + y) ~ s + t < f(x) + f(y) + 2tO. It follows that f(x + y) ~ 
f(x) + f(y)· Also, 

and similarly 

f(x) - f(y) = f(x - y + y) - f(y) 

~ f(x - y) + f(y) - f(y) 

= f(x - y), 

f(y) - f(x) ~ f(y - x) = f(x - y). 

It follows that If(x) - f(y)1 ~ f(x - y), which finishes the proof of 
the claim. 

12. Claim: The function f is continuous. For the proof of this, suppose 
that Xo E X and that to > O. If x is in the neighborhood Xo + B(f) 
of xo, then x - Xo E B(f), and so If(x) - f(xo) I ~ f(x - xo) ~ f. It 
follows that f is continuous at xo, which proves the claim and finishes 
the construction. 
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2.2.14 Theorem. Every To vector topology is completely regular. 

PROOF. Suppose that X is a TVS whose topology is To. The first order 
of business is to show that the topology is in fact T 1. Let x and y be 
distinct elements of X. Then there is a neighborhood U of a such that 
either x ~ y + U or y ~ x + U; it can be assumed without loss of generality 
that x ~ y + U. Then y is not in the neighborhood x - U of x, from which 
it follows that the topology of X is T 1. 

Now let Xo be an element of X and let F be a closed subset of X not 
containing Xo. Since a is not in the closed set -Xo + F, there is a balanced 
neighborhood B of 0 such that Bn (-xo +F) = 0. By Construction 2.2.13, 
there is a continuous function f: X -. [a, +(0) such that f(O) = 0 and 
f(x) 2: 1 whenever x E X \ B; notice that f(x) 2: 1 for each x in -Xo + F. 
Let g(x) = min{l,f(x - xo)} whenever x E X. Then 9 is a continuous 
function from X into [0,1] such that g(xo) = 0 and g(x) = 1 whenever 
x E F. The topology of X is therefore completely regular. • 

Thus, a vector topology that satisfies any of the separation axioms To 
through T 31 actually satisfies all of them. It is traditional that such vector 

2 

topologies be called Hausdorff, but it should be kept in mind that for vector 
topologies the Hausdorff axiom is implied by the To axiom and implies 
complete regularity. 

Suppose that X is a vector space with a topology of any sort. If xt 
and x; are continuous linear functionals on X and a is a scalar, then the 
continuity ofaxi + x; follows easily from the continuity of addition and 
multiplication in IF; see also Corollary 1.3.4. The collection of all continuous 
linear functionals on X therefore forms a subspace of the vector space X# 
of all linear functionals on X, so the following definition is justified. 

2.2.15 Definition. Suppose that X is a vector space with a topology. 
The dual space of X or dual of X or conjugate of X, denoted by X *, is 
the vector space of all continuous linear functionals on X with the obvious 
vector space operations. 

There is a slight technical conflict between this definition and the one 
previously given for the dual space of a normed spacc. If X is a normed 
space, then by Definition 2.2.15 the dual space of X should be the vector 
space of continuous linear functionals on X, while by Definition 1.10.1 it 
should be the corresponding normed space. The only time this could cause 
any real problem is when the vector space X underlying a normed space is 
given a topology 'I different from its usual norm topology, and "X*" could 
refer to either (X, 11·11)* or (X, T)*, dual spaces that might not even have 
the same underlying vector space; see Exercise 2.30. In this situation, care 
will be taken to assure that no confusion results. 
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The following theorem, an extension to topological vector spaces of parts 
of Theorems 1.4.2 and 1.7.15 and Proposition 1.7.16, provides several ways 
to test a linear functional on a TVS for continuity. 

2.2.16 Theorem. Suppose that x* is a linear functional on a TVS X. 
Then the following are equivalent. 

(a) The functional x* is continuous. 

(b) There is a neighborhood U of 0 in X such that x*(U) is a bounded 
subset of If. 

(c) The kernel of x* is a closed subset of X. 

(d) The kernel of x* is not a proper dense subset of X. 

PROOF. The theorem is trivially true if x* is the zero functional, so it can be 
assumed that it is not. Since the kernel of x* is the inverse image under x* 
of the closed subset {O} of If, it is clear that (a) =} (c) =} (d). Suppose 
that (d) holds. Fix an element Xo of X \ ker(x*). Then parts (e) and (g) 
of Theorem 2.2.9 together imply that there is a balanced neighborhood U 
of 0 such that Xo + U s;;: X \ ker(x*). Notice that x*u f= -x*xo whenever 
u E U. Since the balanced subset x*(U) of If contains with each of its 
members every scalar of smaller absolute value, it must omit every scalar 
having absolute value larger than I-x*xol, and so must be bounded. This 
proves that (d) =} (b). 

Finally, suppose that there is a neighborhood U of 0 in X such that x* (U) 
is bounded. By multiplying U by a positive scalar if necessary, it may be 
assumed that Ix*xl < 1 whenever x E U, and therefore that Ix*xl < E 

whenever E > 0 and x E EU. If x E X and E > 0, then Ix*y - x*xl = 
Ix*(y - x)1 < E whenever y E x + EU, from which it follows that x* is 
continuous. This shows that (b) =} (a) and finishes the proof. • 

It is often important to know when two convex subsets C1 and C2 of a 
TVS X can be separated, not by open sets or by a continuous function in the 
sense of the topological separation axioms, but rather by a member x* of X* 
in the sense that sup{ Re x*x : X E C 1 } :::; inf{ Re x*x : X E C 2 }. Results of 
this type include Proposition 1.9.15 as well as the three separation theorems 
about to be proved here, and are often called collectively the Hahn-Banach 
separation theorem since they tend to be straightforward corollaries of the 
vector space version of the Hahn-Banach extension theorem. 

2.2.17 Definition. Let X be a vector space. A fiat or affine subset of X 
is a translate of a subspace of X, that is, a set of the form x + Y where 
x E X and Y is a subspace of X. 

2.2.18 Lemma. Suppose that C is a convex subset of a TVS X. If x E C, 
Y E Co, and 0 < t < 1, then tx + (1 - t)y E Co. 
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PROOF. Just notice that tx + (1 - t)y E tC + (1 - t)CO C C and that 
tC + (1 - t)CO is an open set. • 

2.2.19 Mazur's Separation Theorem. (G. Ascoli, 1932 [8]; S. Mazur, 
1933 [162]; D. G. Bourgin, 1943 [36]). Let X be a TVS and let F and C be 
subsets of X such that F is flat and C is convex with nonempty interior. 
If F nCo = 0, then there is an x* in X* and a real number s such that 

(1) Rex*x = s for each x in F; 

(2) Re x* x :s; s for each x in C; and 

(3) Rex'x < s for each x in Co. 

PROOF. Suppose first that the scalar field is IR. and that 0 E Co. Then C 
is a convex absorbing subset of X, so by Proposition 1.9.14 the Minkowski 
functional p of C is sublinear and 

{x : x E X, p(x) < 1 } ~ C ~ {x : x E X, p(x) :s; 1 }. 

The continuity of multiplication of vectors by scalars implies that for each x 
in Co there is an Sx such that Sx > 1 and SxX E Co, so that sxp( x) = 

p(sxx) :s; 1. It follows that p(x) < 1 whenever x E Co. Conversely, suppose 
that x E X and p( x) < 1. Then there is a tx such that tx > 1 and p( txx) = 

txp(x) < I, whieh implies that txx E C. Since x = t;l(txx)+(l-t;l)O, the 
lemma implies that x E Co. It follows that Co = {x: x E X, p(x) < I}. 

Let Y be a subspace of X and Xo an element of X such that F = Xo + Y. 
Since 0 ric F, the subspace Y contains neither -Xo nor its negative xo, from 
which it follows that each element of the subspace Y + \ {xo}) of X has a 
unique representation of the form y + O:Xo where y E Y and 0: E R Let 
xi) (y + o:xo) = 0: W hencver y E Y and 0: E R Then xi) is a linear functional 
on Y + ({xu}). If 0: is a positive scalar and y E Y, then o:~ly + Xo is in F 
and so is not in Co, from which it follows that 

xC;(y + axo) = 0: :s; o:p(o:~ly + .1:0) = p(y + o:xo). 

Since p(x) 2: 0 for each x in X, it is also true that x;;(y+o:xo) :s; p(y+o:xo) 
whenever y E Y and 0: :s; 0, so Xo is dominated by p on Y + ({ xo}). 
By the vector space version of the Hahn-Banach extension theorem, the 
functional xi) can be extended to a linear functional x* on X such that 
x'x :s; p(x) whenever x E X. Now Co includes a balanced neighborhood U 
of 0, and x* (U) is a bounded subset of IR. since 

Ix*ul = max{x*( ·-u), x'u} :s; max{p( -u),p(u)} < 1 

whenever u E U. An application of Theorem 2.2.16 shows that x* E X'. 
Since x* is dominated by p, it follows that x'x :s; 1 when x E C and that 
x' x < 1 when x E CC. Since F = Xo + Y, it follows that .1:* x = xox = 1 
when x E F, so this x* satisfies the conclusion of the theorem when s = 1. 
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Now drop the assumption that 0 E Co. Let Xl be an element of Co. Then 
the interior -Xl + Co of the convex set -Xl + C contains 0 and does not 
intersect the flat subset -Xl + F of X, so there is an x· in X* such that 
x·x = 1 when X E -Xl +F, x·x ~ 1 when X E -Xl +C, and x·x < 1 when 
X E -Xl + Co. It follows that x·x = X·XI + 1 when X E F, x·x ~ X*XI + 1 
when X E C, and x·x < X*Xl + 1 when X E Co, and again the conclusion 
of the theorem holds. 

Finally, suppose that the scalar field is C. Let Xr be the real TVS ob
tained by restricting multiplication of vectors by scalars to IR x X. Since 
every subspace of X is also a subspace of Xn the set F is flat in X r . It 
follows that there is a continuous real-linear functional z* on X and a real 
number s such that z·x = s when X E F, z·x ~ s when X E C, and 
z*x < s when X E Co. Let x·x = z·x - iz*(ix) for each x in X. It follows 
from Proposition 1.9.3 that x* is a complex-linear functional on X with 
real part z*. The continuity of z* and of the vector space operations of X 
and C implies that x· E X·, so x· has all the required properties. • 

The following three corollaries are analogs for locally convex spaces of the 
normed space version of the Hahn-Banach extension theorem and of Corol
laries 1.9.7 and 1.9.9 of that theorem. Notice that the third one requires 
the topology to be Hausdorff. 

2.2.20 Corollary. Let Y be a closed subspace of an LCS X. Suppose that 
x E X \ Y. Then there is an x* in X· such that x*x = 1 and Y ~ ker(x*). 

PROOF. Since X \ Y is a neighborhood of x, there is a convex neighbor
hood C of x that does not intersect the flat subset Y of X. The theorem 
yields an Xo in X* and a real number s such that Re xoz < s when z E C 
and RexoY = s when y E Y. Since 0 E Y, it follows that s = 0, and 
therefore that xoY (which equals Rexoy - iRexo(iy) ifF = q is 0 when 
y E Y. Let x· = (XOX)-IXO' Then x*x = 1 and ker(x*) = ker(xo) :2 Y, 
which finishes the proof. • 

2.2.21 Corollary. Suppose that Y is a subspace of an LCS X and that 
y* E Y*. Then there is an x* in X* whose restriction to Y is y*. 

PROOF. The zero element of X* extends the zero element of y* to X, so it 
can be assumed that y* =f. 0 and therefore that there is a Yo in Y such that 
Y*Yo = 1. Let Z = ker(y*), where the closure is taken in X. The continuity 
of y* and the fact that the topology of Y is inherited from X together 
imply that Yo ~ Z, so by the preceding corollary there is an x· in X· such 
that x*Yo = 1 and Z ~ ker(x*). If y E Y, then (Y*Y)Yo - Y is in ker(y*) 
and so in ker(x*), which implies that 

x*y = x*y + x* (Y*Y)Yo - y) = x*y + (y*y)(x*Yo) - x·y = y.y. 

The restriction of x· to Y is therefore y •. • 
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2.2.22 Corollary. If x and yare different elements of a Hausdorff LOS X, 
then there is an x* in X* such that x'x 1: x'y. 

PROOF. Since x - y is not in the closed subspace {O} of X, Corollary 2.2.20 
produces an x* in X* such that x'x - x'y = x*(x - y) = 1. • 

The conclusion of the preceding corollary does not in general hold if the 
vector topology is not required to be Hausdorff or is not required to be 
locally convex. The examples about to be given to illustrate this depend 
on the fact that if X is a TVS whose only convex open subsets are the 
empty set and X itself, then X* contains only the zero functional. To see 
this, suppose that X is a TVS having only those two convex open subsets 
and that x* E X*. For each open ball U centered at the origin of IF, the 
subset (x*) -1 (U) of X is a nonempty convex open subset of X and so must 
be X. Since x*(X) is either {O} or IF, it follows that x* = O. 

2.2.23 Example. This is a continuation of Example 2.2.4. Let X be a 
vector space having a nonzero vector. Then the topology {0, X} makes X 
into an LCS that is not Hausdorff. Since X* contains only the zero func
tional, it is not possible to separate two different vectors of X by a member 
of X* in the sense of Corollary 2.2.22. 

2.2.24 Example. Suppose that 0 s: p < 1. It was shown in Examples 2.2.5 
and 2.2.6 that the only nonempty convex open subset of Lp[O, 1J is Lp[O, 1] 
itself, so (Lp[O,l])* = {O}. Therefore Lp[O,I] is a Hausdorff TVS having 
more than just the zero element in which no two distinct elements can be 
separated by a member of the dual space in the sense of Corollary 2.2.22. 

Let f be a nonzero element of Lp [0,1] and let Y = ({J}), a one-dimen
sional subspace of Lp[O, 1]. Let y*(af) = a whenever a E IF. Then y* 
is a linear functional on Y that is continuous since its kernel is the closed 
subspace {O} ofY. Since (Lp[O, 1])* = {a}, there is no member of (Lp[O, 1])* 
whose restriction to Y is y*. Also, there is no member of (Lp[O, 1])* whose 
kernel includes the closed subspace {O} of Lp[O, 1] and whose value at f 
is 1. This shows that the assumption of local convexity in Corollaries 2.2.20 
and 2.2.21 cannot in general be omitted. 

The fact that (Lo[O, 1])* = {O} is a result of Otton M. Nikodym [175], 
while the corresponding property of Lp[O, 1] when 0 < p < 1 is due to 
Mahlon M. Day [46]. 

2.2.25 Example. Suppose that 0 < p < 1. For each m in N, the map x;" 
that sends each member (an) of fp to its mth term am is clearly a continuous 
linear functional on fp, so f; has enough members to separate the elements 
of fp in the sense of Corollary 2.2.22 even though fp is not an LCS. 

If the set F in the statement of Mazur's separation theorem is only 
required to be nonempty and convex instead of fiat, then the conclusion of 
the theorem turns out to hold in a form that is only slightly weakened. 
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2.2.26 Eidelheit's Separation Theorem. (M. Eidelheit, 1936 [74]; 
J. Dieudonne, 1941 [60]). Let X be a TVS and let C1 and C2 be nonempty 
convex subsets of X such that C2 has nonempty interior. If C1 n C2 = 0, 
then there is a member X* of X* and a real number s such that 

(1) Rex*x ~ s for each x in C1 ; 

(2) Re x*x :::; s for each x in C2; and 

(3) Rex·x < s for each x in C2. 
PROOF. Since the flat subset {O} of X does not intersect the nonempty 
convex open subset C2 - C1 of X, Mazur's separation theorem yields an x* 
in X* such that for each X2 in C2 and each Xl in C11 

Rex*x2 - Rex*xl = Rex*(x2 - xd < Rex*O = O. 

It follows that there is a real number s such that 

sup{Rex*x: x E C~}:::; s:::; inf{Rex*x: x E C1 }. 

Notice that x* and s satisfy (1). Now fix an X2 in C2 and an Xl in C1 . The 
continuity of the vector space operations of X implies that there is a to 
such that 0 < to < 1 and tOXl + (1 - to)X2 E C2. Therefore 

s ~ Re x* (tOXl + (1- to)X2) 

= to Rex*xl + (1- to) Rex*x2 

> to Rex*x2 + (1- to) Rex*x2 

= Rex*x2' 

from which it follows that x* and s satisfy (3). Finally, let x be an element 
of C2 and let X2 be the element of C2 previously fixed. If 0 < t < 1, then 
tx + (1 - t)X2 E C2 by Lemma 2.2.18, and so 

tRex*x + (1 - t) Rex*x2 = Rex· (tx + (1- t)X2) < s. 

Letting t increase to 1 shows that Rex*x :::; s, which establishes (2) and 
finishes the proof. • 

Mazur's and Eidelheit's separation theorems both require one of the con
vex sets to have nonempty interior. The third and final separation theorem 
of this section does not, but instead requires one of the convex sets to be 
closed and the other to be compact, and also requires that the TVS in 
question be locally convex. 

The following lemma gives another example of a phenomenon previously 
encountered in Proposition 2.2.11: In many ways, a compact subset of a 
TVS behaves as if it were a singleton. 

2.2.27 Lemma. Suppose that X is a TVS and that A and K are subsets 
of X such that A is closed and K is compact. Then A + K is closed. 
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PROOF. Suppose that (a",) and (k",) are nets in A and K respectively 
such that (a", + k",) converges to some x in X. It is enough to show that 
x E A + K. From the compactness of K, there is a subnet (k/3) of (k",) 
converging to some k in K. Since a/3 = (a/3 + k/3) - k/3 -+ x - k, it follows 
that x - k E A, so x E k + A ~ A + K. • 

2.2.28 Theorem. (J. W. Tukey, 1942 [233]; V. L. Klee, 1951 [133]). Let 
K and C be disjoint nonempty convex subsets of an LCS X such that K 
is compact and C is closed. Then there is a member x* of X* such that 
max{Rex*x: x E K} < inf{Rex*x: x E C}. 

PROOF. Since -K is compact, it follows from the preceding lemma that 
C - K is closed, and from the fact that C n K = 0 that 0 rt:. C - K. By 
the local convexity of X, there is a convex neighborhood U of 0 such that 
Un (C - K) = 0, which implies that (K + U) n C = 0. Since K + U 
is a nonempty open convex set disjoint from C, it follows from Eidelheit's 
separation theorem that there is a member x* of X* such that for each Xo 
in K + U, 

Rex*xo < inf{Rex*x: x E C}. 

From the compactness of (Rex*)(K), there is a ko in K such that Rex*ko = 
sup{ Re x* x : x E K}. Since ko = ko + 0 E K + U, 

max{ Rex*x : x E K} = Rex* ko < inf{ Rex*x : x E C}, 

as required. • 
Tukey proved the preceding theorem for only one special type of locally 

convex topology, the weak topology of a normed space to be defined later in 
this chapter. The general case of the theorem is due to Klee. The hypotheses 
on the two convex sets in the theorem cannot be relaxed very much, as 
is illustrated by several examples in Tukey's paper and by an example 
of Dieudonne [61], who showed that i!1 has two disjoint nonempty closed 
bounded convex subsets that cannot be separated by a bounded linear 
functional in the sense of the preceding theorem. Klee [134) later extended 
Dieudonne's result from i!1 to all nonreflexive separable Banach spaces. 
Also, the hypotheses of the theorem cannot be relaxed by only requiring X 
to be a TVSj see Exercise 2.32. 

One important consequence of Theorem 2.2.28 is that if it is known that 
the topology of a vector space X is locally convex, and the dual space of X 
under that topology is known, then the closure of each convex subset of X 
is completely determined just by that information. This is the content of 
the following corollary, which will have several major applications later in 
this chapter. 
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2.2.29 Corollary. Suppose that a vector space X has two locally convex 
topologies'rl and'r2 such that the dual spaces of X under the two topolo
gies are the same. Let C be a convex subset of X. Then the 'rl-closure 
of C is the same as its 'r2-closure. In particular, the set C is 'r I-closed if 
and only if it is 'r2-closed. 

PROOF. It may be assumed that C =1= 0. Let X* represent the dual space 
-:I, 

of X under each of'rl and 'r2. For each x in X \ C ,use Theorem 2.2.28 
to produce an x; in X* such that 

Rex~x = max{ Rex;y: y E {x} } < inf{ Rex;y: y E C:I, }, 

and let Ax = {z : z E X, Rex;z 2: inf{ Rex;y : y E a:I, } }. Then each 
-:I, { -:I, } -:I, Ax is 'r2-closed, and C = n Ax : x E X \ C . Therefore C is 

-:I2 -:II -:I2 
'r2-closed, and similarly C is 'rl-closed. It follows that C = C . • 

Suppose that X is a finite-dimensional vector space. Then Corollaries 
1.4.17 and 1.4.19 together imply that X has exactly one norm topology 
and that this topology is induced by a Banach norm. It is even true that 
this Banach norm topology is the only Hausdorff vector topology that X 
can have, as will now be shown. 

2.2.30 Lemma. Suppose that X is a Hausdorff TVS and that Y is a 
subspace of X such that the topology of Y inherited from X is a Banach 
norm topology. Then Y is a closed subspace of X. 

PROOF. Suppose that (Yo<) is a net in Y that converges to an x in X. It is 
enough to show that x E Y. By Proposition 2.1.47, the net (y",) is Cauchy 
with respect to the vector topology of X and therefore with respect to that 
of Y. It follows from Corollary 2.1.51 that (Yo,) converges in Y to some y. 
Since (Yet) also converges to y in X and X is Hausdorff, it must be that 
y = x, so x E Y as required. • 

2.2.31 Theorem. Suppose that X is a finite-dimensional vector space. 
Then X has exactly one Hausdorff vector topology. This topology is induced 
by a Banach norm. 

PROOF. The proof is by induction on the dimension of X. Let Pn be the 
proposition that the conclusions of the theorem hold for X whenever X is 
a vector space with finite dimension n. It is clear that Po is true. Suppose 
that n 2: 1 and that Pn - l is true. Let X be a vector space of dimension n 
and let {Xl, ... , x n } be a basis for X. Let 

whenever ai, ... ,an E IF. It is easy to check that 11·11 is a norm on X and 
so is a Banach norm by Corollary 1.4.19. Now let 'I' be a Hausdorff vector 
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topology on X and let X'! and XII' II be X equipped with the topology 'I' and 
the topology induced by 11·11 respectively. Let xi, ... ,x~ be the coordinate 
functionals for {Xl, ... ,xn}j that is, let X; (O:lXI + ... +O:nXn} = O:j when 
Q: 1, ... ,Q:n E F and j = 1, ... , n. Then the kernel of each of the linear 
functionals x; has dimension n - 1 and so is closed in X,! by Pn - 1 and the 
lemma preceding this theorem. It follows from Theorem 2.2.16 that each x; 
is continuous on X'r, and from the defining formula for 11·11 that each x; is 
continuous on XII· II· Since x = (XiX}Xl + ... + (x~X}Xn whenever x E X, 
the continuity of each x; and of the vector space operations of X'r and XII' II 
assures that the identity operator on X, viewed as a map from X'! onto XII'!! 
or from XII'!! onto X,!, is continuous. The topologies of X'r and XII'!! are 
therefore the same, which proves Pn and finishes the induction. • 

2.2.32 Corollary. Every finite-dimensional subspace of a Hausdorff TVS 
is a closed subspace of the space. 

PROOF. This follows immediately from the theorem and the lemma pre
ceding it. • 

2.2.33 Corollary. Let X be a finite-dimensional HausdorffTVS and let Y 
be a TVS. Then every linear operator from X into Y is continuous. 

PROOF. It may be assumed that X =I {O}. Let {Xl, ... , xn} be a basis for X, 
and let IIQ:lxl + ... + Q:nxnll = 10:11 + ... + lQ:nl whenever (}:1,"" O:n E F. 
Then the Hausdorff vector topology of X is induced by the norm II· II. 
Suppose that T is a linear operator from X into Y. If 0:1,.'" Q:n E F, then 

It follows from the continuity of the vector space operations of Y and of the 
maps O:lXl + ... + Q:nXn I--> O:j when j = 1, ... ,n that T is continuous. • 

Exercises 

2.18 Let J-L be a positive measure on a o--algebra ~ of subsets of a set 0. 

(a) Prove that the function d in Example 2.2.5 is a metric on Lo(O,~, J-L). 

(b) Prove that a sequence in Lo(O,~, J-L) is Cauchy with respect to d if 
and only if the sequence is Cauchy in measure, and that a sequence 
in Lo(O,~, J-L) converges to an f in Lo(fl,~, J-L) with respect to d if 
and only if the sequence converges to f in measure. 

(c) Suppose that A is Lebesgue measure on the o--algebra ~ of Lebesgue
measurable subsets of JR. Find an element f of Lo (JR, ~, A) such that 
the sequence (n- 1 f) does not converge in measure to O. Conclude 
that multiplication of vectors by scalars is not a continuous operation 
for Lo(JR,~, A). 
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(d) Suppose that IL( \1) < 00. Let 

1 Ij-gl 
p(j,g)= n 1 +lj_gldlL 

whenever j, 9 E Lo(\1,~, IL). Prove that p is a metric on Lo(\1,~, IL)· 
Prove that a sequence in Lo(\1,~, IL) is Cauchy with respect to p if 
and only if the sequence is Cauchy in measure, and that a sequence 
in Lo(\1,~, IL) converges to an j in Lo(\1,~, IL) with respect to p if 
and only if the sequence converges to j in measure. Conclude that 
p is another complete invariant metric that induces the topology of 
convergence in measure. 

2.19 Let IL be the counting measure on the collection ~ of all subsets of N. 
Then the space fa is defined to be Lo(N,~, IL), that is, the space of all 
sequences of scalars with the metric d of Example 2.2.5. 

(a) Prove that 

d( (a,,), (,8,,)) = min{l, sup{ la" - ,8nl : n EN}} 

whenever (a,,), (,8,,) E fa. 

(b) Prove that fa is not a TVS. 

(c) Prove that the topology that £00 inherits as a subspace of fo is its 
usual norm topology. 

2.20 Suppose that 0 < p < 1 and n E N. Let IL be the counting measure on the 
O"-algebra E of all subsets of {I, ... , n}, and let f; = Lp({l, ... , n},~, IL)' 
Notice that e; is the space of all ordered n- tuples (al, .. . , a,,) of scalars 
with the metric given by the formula 

" 
d((al, ... ,an),(,81, ... ,,8n)) = Llaj -,8jIP. 

j=l 

Prove that e; is an LCS. Now consider the scalar field to be ~ and sketch 
the graph of the closed unit ball of ei j 2, that is, the set of points of ei j 2 

no more than one unit from the origin. 

2.21 Suppose that 0 < p < 1 and that x and yare two different elements of fp. 

Show that there are disjoint convex neighborhoods Cx and Cy of x and y 

respectively. Notice that fp has many more convex open sets than does 
Lp[O,I] (which has only two), even though it does not have enough to 
make it an LCS. 

2.22 Suppose that (\1,~, J-t) is a finite positive measure space and 0 < p :s: 00. 

Prove that the set underlying Lp(\1, E, IL) is a dense subset of Lo(\1,~, IL). 

2.23 Show that equality need not hold in the inclusions A + Ii c;;;; A + Band 
AD + B O C;;;; (A + B)O in Theorem 2.2.9 (d). Also, find a balanced subset 
of a TVS whose interior is not balanced. 

2.24 Prove that if A and B are bounded subsets of a TVS, then A + B is 
bounded. 
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2.25 The purpose of this exercise is to show that in a TVS, translation by a 
compact set has many of the properties of translation by a point. Let A 
and K be subsets of a TVS such that K is compact. Prove that if A is 
open, closed, compact, or bounded, then A + K has that same property. 
(Much of the work has been done for you in various results from this 
section. ) 

2.26 Let C be a convex subset of a TVS such that Co i= 0. Prove that C 
and Co have the same closure. 

2.27 Let X and Y be TVSs, let A be a subset of X, and let f be a function 
from A into Y. Then f is said to be uniformly continuous on A if it has this 
property: For each neighborhood U of 0 in Y there is a neighborhood Vu 
of 0 in X such that if x E A and x' E An (x + Vu), then f(x') E f(x) + U. 
Prove that if A is compact and f is continuous on A, then f is uniformly 
continuous on A. (One way to do this is to write out an "epsilon over two" 
type of proof for the special case in which X = Y = JR., then generalize it 
using Theorem 2.2.9 (g).) 

2.28 Give an example of an unbounded convergent net in a TVS. 

2.29 Suppose that 0 < p < 1. If (an) E Cp and ({3n) E Coo, let 

n 

Prove that the map ({3n) f--> x({3n} is a vector space isomorphism from Coo 
onto C;. 

2.30 Give an example of a vector space X with a norm 11·11 and a Hausdorff 
vector topology '1" such that (X, 11·11) * and (X, '1")* do not have the same 
underlying vector space. 

2.31 Obtain Proposition 1.9.15 as a corollary of Eidelheit's separation theorem. 

2.32 Find two disjoint. nonempty convex subsets K and C of a TVS, with K 
compact and C closed, such that K and C cannot be separated by a 
continuous linear functional in the sense of Theorem 2.2.28. 

2.33 Let X be a TVS and let S be the collection of all x in X such that each 
open set containing either x or 0 contains both. 

(a) Prove that S is a subspace of X. 

(b) Prove that every open set that intersects S actually includes S. 

(c) Prove that if X is not completely regular, then S i= {a}. Thus, a TVS 
that is not completely regular has very weak separation properties. 

(d) Let 7r be the quotient map from X onto the quotient vector space 
XIS; that is, let 7r(x) = x + S for each x in X. Define the quotient 
topology of X/ S by letting a subset U of X/ S be open if and only 
if 7r- 1 (U) is open in X. Show that this defines a completely regular 
vector topology for X/ S. (This is one way to start with a TVS that 
is not To and construct a completely regular TVS from it.) 
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(e) Let (0, L, p,) be a positive measure space and let X be the vector 
space of all scalar-valued p,-integrable functions on O. In this exer
cise, do not consider functions to be the same if they agree almost 
everywhere but differ somewhere on O. For each I in X and each 
positive E, let U(f, t) = {9 : 9 E X, fol9 - II dp, < t}. Prove that 
{U(f, t) : I E X, E > O} is a basis for a locally convex topology 
for X. Describe S. Describe XIS and the quotient topology of XIS. 

2.34 The purpose of this exercise is to study vector topologies for finite-dimen
sional vector spaces without assuming that the topologies are Hausdorff. 
Part (a) of Exercise 2.33 is needed for this. Let 'I be a vector topology 
for a finite-dimensional vector space X and let S be the subspace of X 
consisting of all x in X such that each open set containing either x or 0 
contains both. Let Y be a vector space complement of S in X, that is, 
a subspace of X such that S + Y = X and S n Y = {O}. (For example, 
let lEI be a vector space basis for S, let 1E2 be a subset of X such that 
lEI n 1E2 = 0 and lEI U 1E2 is a basis for X, and let Y = (1E2)') 

(a) Prove that the relative topology that Y inherits from X is the unique 
Hausdorff vector topology for Y. 

(b) Prove that 'I = {U + S: U is an open subset of Y}. 

(c) Prove that 'I is a locally convex subtopology of the unique Hausdorff 
vector topology of X. 

This exercise will be continued at the end of Section 2.4 as Exercise 2.51, 
in which will be developed a characterization of vector topologies on finite
dimensional vector spaces in terms of linear functionals on the space. 

*2.3 Metrizable Vector Topologies 

N one of the material in this section depends on that of any other optional 
section. 

This section contains a few results about metrizable vector topologies 
that are not, in general, induced by norms. This material is marked as 
optional since most of the vector topologies important for this book either 
are induced by norms or are not in general compatible with any metric 
whatever, as will be seen in Propositions 2.5.14 and 2.6.12. However, it is 
interesting and instructive to see which of the most important results about 
normed spaces survive in the somewhat more general setting to be studied 
in this section. 

Since completeness plays such an important rule in the study of normed 
spaces, it is natural to pay special attention to completeness in the study 
of more general metrizable TVSs. As was shown in Exerchie 1.42, it is 
quite possible for a vector topology to be induced by two different metrics, 
one incomplete and the other complete, so it is useful to have a form of 
completeness that does not depend on the particular metric that induces 
the vector topology. One possibility would be to use completeness as an 
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abelian topological group under vector addition; see Definition 2.1.48. It is 
somewhat more customary to use the following form of completeness, and 
that is what will be done here. As will be shown by Corollary 2.3.22, these 
two forms of completeness are equivalent for metrizable vector topologies. 

2.3.1 Definition. A topological space is topologically complete if some 
complete metric induces its topology. 

2.3.2 Definition. An F-space is a topologically complete TVS. A Frechet 
space is a locally convex F-space. 

The reader should be warned that some sources include local convexity 
in the definition of an F-space, while others omit it from that of a Frechet 
space. It is also common to require that the topology of a TVS be induced 
by some complete invariant metric before the TVS is called an F-space. 
Banach noticed that all of the topologically complete TVSs he studied ac
tually do have their topologies induced by complete invariant metrics, and 
he 3.'lked in [13] if this must always be the case. It is a remarkable fact due 
to Victor Klee that the answer is yes, as will be shown in Theorem 2.3.20. 
The definition of an F-space that requires invariance is therefore equivalent 
to the one given above that does not. 

2.3.3 Example. Suppose that J.L is a finite positive measure on a a
algebra I: of subsets of a set 0. It was shown in Example 2.2.5 that 
Lo(O, L:, J.L) is a TVS whose topology is induced by a complete metric, 
so Lo(O,L.,J.L) is an F-space. It was also shown in that same example that 
Lo[O, 1] is not locally convex, so Lo[O, 1] is an F-space that is not a Frechet 
space. 

2.3.4 Example. Suppose that 0 < p < 1. It was shown in Example 2.2.6 
that if J.L is any positive measure, finite or not, on a a-algebra L. of subsets of 
a set D, then Lp(D, L., J.L) is a TVS whose topology is induced by a complete 
metric, so Lp(D, L., J.L) is an F-space. It was also shown in Example 2.2.6 
that Lp[O, 1] is not locally convex, and so is an F-space that is not a Frechet 
space. The space fp is a further example of an F-spaee that is not a Frechet 
space, 3.'> was seen in Example 2.2.7. 

Of course, every Banach space is a locally convex topologically complete 
TVS. Definition 2.3.2 provides a shorter way to say this. 

2.3.5 Theorem. Every Banach space is a Fnkhet space. 

As will be shown by Example 2.3.25, not every Frechet spaee has its 
topology induced by a norm. 

This section contains two major results linking metrizability of a vector 
topology to metrizability by an invariant metric. The first, Theorem 2.3.13, 
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says that a vector topology that is induced by a metric is in fact induced by 
an invariant metric, while the second, Theorem 2.3.20, says that a vector 
topology that is induced by a complete metric is actually induced by a 
complete invariant metric. Before obtaining the first of these two, it is 
necessary to make a short excursion into the theory of local bases for vector 
topologies. 

2.3.6 Definition. A local basis for a vector topology is a basis for the 
topology at O. 

That is, a local basis for a vector topology is a collection 1)30 of neigh
borhoods of 0 such that every neighborhood of 0 includes a member of 1)30. 

Notice that every vector topology has a local basis, namely, the collection 
of all neighborhoods of O. 

The following proposition contains a few basic facts about local bases 
that all follow easily from the appropriate definitions and from various 
parts of Theorem 2.2.9. 

2.3.7 Proposition. Let 1)30 be a local basis for the topology of a TVS X. 

(a) The collection of all translates of members of 1)30 is a basis for the 
topology of X. 

(b) The space X has a local basis 1)3~ for its topology with cardinality 
no more than that of 1)30 such that every member of 1)3~ is balanced. 
If X is locally convex, then 1)3~ can be selected so that each of its 
members is balanced and convex. 

(c) If U is a neighborhood of 0 in X, then there is a member V of 1B0 
such that V c: V c: V + V c: U. 

2.3.8 Corollary. Every TVS has a local basis for its topology consisting 
of balanced sets, and every LCS has a local basis for its topology consisting 
of balanced convex sets. 

2.3.9 Corollary. A TVS is locally convex if and only if its topology has a 
local basis consisting of convex sets. 

2.3.10 Corollary. If a vector space has two vector topologies with a com
mon local basis, then the two topologies are the same. 

If the topology of a TVS is induced by a metric, then the open balls cen
tered at the origin whose radii are reciprocals of positive integers form a 
countable local basis for the topology. This, together with the following re
sult, shows that in fact the existence of a countable local basis characterizes 
metrizable vector topologies among all Hausdorff vector topologies. 
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2.3.11 Theorem. (G. Birkhoff, 1936 [27]; S. Kakutani, 1936 [124]). SUJr 
pose that X is a Hausdorff TVS whose topology has a countable local basis. 
Then the topology of X is induced by an invariant metric such that the 
open balls centered at the origin are balanced. If X is locally convex, then 
its topology is induced by a metric with the preceding properties and for 
which all open balls are convex. 

PROOF. Let 'I be the given vector topology for X. This proof is based 
on Construction 2.2.13, so the local basis about to be defined is indexed 
to match the notation of that construction. As an easy consequence of 
parts (b) and (c) of Proposition 2.3.7, the topology 'I has a local basis 
{B(2-n) : n = 0,1,2, ... } such that, for each n, the set B(2-n) is balanced 
(and, if X is an LCS, convex) and B(2-n- 1 ) + B(2-n- 1 ) ~ B(2-n); call 
this local basis 1130. Let B = B(l), then let Band {B(2-n) : n EN} be 
used in Step 1 of Construction 2.2.13 to get the construction started. In 
that construction, the map t f--7 B(t) from {2- n : n = 0,1,2, ... } into 'I 
is extended to (0,00) in such a way that each B(t) is a 'I-neighborhood 
of 0 that is balanced (and convex if each member of 1130 is convex) and 
B(s) ~ B(t) whenever 0 < s < t. It is then shown that the formula 

f(x) = inf{ t : t> 0, x E B(t)} 

defines a 'I-continuous nonnegative-real-valued function on X such that 
f(O) = 0 and such that f(x) = f( -x) and f(x+y) ::; f(x) + fey) whenever 
x, y EX. If x is a nonzero member of X, then the fact that 1130 is a 
local basis for the Hausdorff topology 'I implies that there is a nonnegative 
integer n such that x rt. B(2-n) and therefore that f(x) ::::: 2-n > O. It 
follows from all of this that the formula d(x, y) = f(x - y) defines an 
invariant metric on X. 

For each positive t, let Vet) = U{ B(s) : 0 < s < t}. Then each Vet) is 
a 'I-neighborhood of 0 that is balanced (and convex if each member of 1130 
is convex), and {V (t) : t > O} is a local basis for 'I. It is easy to see that 
Vet) = {x : x E X, f(x) < t} whenever t > 0, that is, that each Vet) is the 
d-open ball of radius t centered at the origin, so the d-open balls centered 
at 0 are all balanced (and convex if each member of 1130 is convex). Now 
let U(x, r) denote the d-open ball ofradius r centered at x. Then for each x 
in X and each positive r, 

U(x, r) = {y : y E X, fey - x) < r} 

= x + {y: y E X, fey) < r} 

= x + VCr). 

Since {U(x, r) : x E X, r > O} is a basis for the topology induced by d 
and {x + VCr) : X E X, r > O} is a basis for 'I, and since these bases are 
the same, the metric d induces 'I. Finally, if 'I is a locally convex topology, 
then the selection of each member of 1130 to be convex assures that each 
d-open ball x + VCr) is convex, which finishes the proof. • 
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2.3.12 Corollary. The topology of a HausdorffTVS is induced by a metric 
if and only if the topology has a countable local basis. 

Combining Theorem 2.3.11 with its corollary yields the first of the two 
major results of this section connecting metrizability of vector topologies 
to metrizability by invariant metrics. 

2.3.13 Theorem. If the topology of a TVS is induced by a metric, then 
it is induced by an invariant metric such that the open balls centered at 
the origin are balanced. If the topology of an LCS is induced by a metric, 
then it is induced by an invariant metric such that the open balls centered 
at the origin are balanced and all open balls are convex. 

Notice that the preceding theorem does not say that the original metric 
inducing the topology has to have the nice properties assured by the con
clusions of the theorem, but rather that some metric inducing the topology 
has those properties. 

The second major result of this section linking metrizability of vector 
topologies to metrizability by invariant metrics is an easy consequence of 
a more general result about topological groups obtained by combining the 
results of three lemmas, each of which is interesting in its own right. 

2.3.14 Lemma. Suppose that X is a group with a topology induced by 
an invariant metric dx. Let dy be a complete metric on a set Y such 
that there is an isometry I from X onto a dense subset of Y; that is, 
let Y be a completion of X. Define a multiplication of members of Y as 
follows. For each ordered pair (YI, Y2) of members of Y, let (XI,n) and (X2,n) 
be sequences in X such that limn I(xj,n) = Yj when j = 1,2, and let 
YI . Y2 = limn I(XI,n . X2,n). Then Y with this multiplication is a group, the 
map I is a group isomorphism onto a subgroup of Y, and dy is invariant. 

PROOF. It must first be shown that multiplication of members of Y is a 
well-defined operation. Suppose that YI, Y2 E Y and that (XI,n) and (X2,n) 
are sequences in X such that limn f(Xj,n) = Yj when j = 1,2. By the 
invariance of dx and the fact that f is an isometry, 

dy(j(XI,n' X2,n), I(XI,m 'X2,m)) s:: dX(XI,n' X2,n, XI,m' X2,n) 

+ dX(XI,m' X2,n, XI,m' X2,m) 

= dy (j(XI,n), I(XI,'m)) 

+ dy (j(X2,n), I(X2,m)) 

whenever m, n E N. Since (I(XI,n)) and (j(X2,n)) are Cauchy, the sequence 
(I(Xl,n . X2,n)) is also Cauchy, and therefore converges. Now suppose that 
(WI,n) and (W2,n) are any sequences in X such that limn I(wj,n) = Yj 
when j = 1,2. Letting (Vj,n) be the sequence (X),l, Wj,l, Xj,2, Wj,2, . .. ) when 
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j = 1, 2 and observing that (J ( VI, n . V2, n)) must converge shows that there 
is no ambiguity in the definition of Yl . Y2. Multiplication is therefore a 
well-defined operation on Y. 

Suppose that Yl, Y2, Y3 E Y and that sequences (Xl,n), (X2,n), and (X3,n) 
in X are such that limn f(xj,n) = Yj when j = 1,2,3. Then 

(Yl'Y2)'Y3 =limf((Xl n 'X2n)'X3n) n J J J 

= 1imf(xl,n' (X2,n' X3,n)) 
n 

= Yl . (Y2 . Y3), 

so multiplication of elements of Y is associative. Let e be the identity of X 
and let en = e for each positive integer n. Then 

and similarly f(e) . Yl = Yl, so f(e) is an identity for Y. Notice next that 
the invariance of dx implies that dx(xl,;' xl,;") = dX(Xl,m, Xl,n) whenever 

m,n E N, so (J(xl,;)) is a Cauchy sequence in Y. Let Yo denote its limit. 
Then 

Yl . Yo = limf(xl,n . xl,;) = f(e) = limf(xl,; . Xl,n) = Yo . Yl, 
n n 

so each member of Y has an inverse in Y. It follows that (Y,' ) is a group. 
Also, 

and similarly dy (Y2 . Yl, Y3 . Yl) = dy (Y2, Y3), so dy is invariant. Finally, if 
U, v EX, and Un = U and Vn = v for each positive integer n, then 

f (u . v) = lim f (un . V n ) = f ( u) . f ( v), 
n 

which together with the fact that f is one-to-one shows that f is a group 
isomorphism onto a subgroup of Y. • 

Recall that a Go subset of a topological space is a set that is the inter
section of count ably many open sets. 

2.3.15 Lemma. (W. Sierpiriski, 1928 [213]). Suppose that X is a topolog
ically complete subset of a metric space Y. Then X is a Go subset of Y. 
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PROOF. Let dy be the metric of Y and let dx be a complete metric 
for X that induces the same topology for X as does dy . For each x 

in X and each n in N, let rn(x) be a positive real number such that 
rn(x) < n-1 and dx(w,x) < n-1 whenever WE X and dy(w,x) < rn(x), 
and let Un(x) be the open ball in Y of dy-radius rn(x) centered at x. Let 
Gn = U{Un(x): x E X} for each n in N, and let r = n{Gn : n EN}. 
Then r is a G{j subset ofY. Since each x in X lies in Un(x) for every nand 
therefore lies in each Gn , it follows that X <:;;; r. The lemma will be proved 
once it is shown that r <:;;; X. 

Let Xo be a member of r. For each positive integer n, the fact that 
Xo E Gn implies that there is an Xn in X such that Xo E Un(xn ), that is, 
such that 

(2.1) 

It follows that Xn ~ Xo in Y. 
Let E be a positive number, and choose a positive integer N such that 

2jN < E. Let m be a positive integer such that 

(2.2) 

It follows from (2.1) that for each positive integer k, 

1 
dY(Xk' XN) ~ dY(Xk' xo) + dy(xo, XN) < k + dy(xo, XN), 

which together with (2.2) implies that if k > m, then dy(Xk,XN) < rN(xN) 
and therefore dX(Xk,XN) < N-l. If k,l > m, then 

and therefore the sequence (xn) is dx-Cauchy and so convergent to some 
member of X. Since Xn ~ Xo in Y, it follows that Xo E X, so r <:;;; x. • 

The next lemma is not one of the three important lemmas used di
rectly in the proof of Theorem 2.3.18, but is instead just a "sublemma" 
for Lemma 2.3.17. The result is almost obvious, but needs a moment's 
arguing. 

2.3.16 Lemma. Suppose that Y is a topological group, that A is a subset 
of Y that is of the first category in Y, and that y E Y. Then y . A is of the 
first category in Y. 

PROOF. Suppose that N is a nowhere dense subset of Y. By an obvious 
argument involving the definition of a first category set, it suffices to show 
that y. N is nowhere dense in Y. It follows from the continuity of the group 
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operation that y . N = y . N; one straightforward arg:.lment showing this 
uses Proposition 2.1.18. If y. N were not nowhere dense in Y, then there 
would be a nonempty open set U in y. N, so y-l. U would be a nonempty 
open subset of N, which would contradict the fact that N is nowhere dense 
in Y. • 

The following lemma is due to Victor Klee, and the proof given here 
is from Klee's paper. As Klee points out, the argument is essentially the 
same as one used by S. Mazur and L. Sternbach [165] to show that every Go 
subspace of a Banach space is closed. 

2.3.17 Lemma. (Y. L. Klee, 1952 [135]). Suppose that Y is a topological 
group that is of the second category in itself and that X is a subgroup of Y 
that is a dense Go subset of Y. Then X = Y. 

PROOF. It follows from Proposition 1.5.3 (c) that Y \ X is of the first 
category in Y and therefore that X is of the second category in Y. If 
y E Y \ X, then y . X ~ Y \ X, and so y . X is of the first category in Y, 
which implies that X itself is of the first category in Y, a contradiction. It 
follows that Y \ X = 0 and therefore that X = Y. • 

Notice that by Proposition 2.1.43, the hypotheses of the following theo
rem do imply that the group in question is a topological group. 

2.3.18 Theorem. (V. L. Klee, 1952 [135]). Suppose that X is a group 
with a topologically complete topology induced by an invariant metric dx. 
Then dx is a complete metric. 

PROOF. By Lemma 2.3.14, there is a group Y with a topology induced by a 
complete invariant metric dy and a map f: X --+ Y that is an isometry and 
a group isomorphism onto a dense subgroup of Y. It follows from Propo
sition 2.1.43 that the group Y with the topology induced by dy is a topo
logical group. If px is a complete metric that induces the topology of X, 
then it is easy to check that the formula py(J(xd,f(X2)) = (JX(Xl,X2) 
defines a complete metric on f(X) that induces the topology that f(X) 
inherits from Y. As a topologically complete subset of Y, the set f(X) is a 
Go subset of Y by Lemma 2.3.15. The Baire category theorem assures that 
Y is of the second category in itself, so an application of Lemma 2.3.17 
shows that f(X) = Y and therefore that dx is complete. • 

In [135], Klee used an example due to Dieudonne [62] to show that the 
conclusion of the preceding theorem can fail if the metric dx is only as
sumed to be left-invariant. 

As an easy consequence of Proposition 1.4.14 (c), a normed space is a 
Banach space if there is some complete norm that induces its topology, and 
Corollaries 2.1.50 and 2.1.51 provide a strengthening of that statement: A 
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normed space is a Banach space if there is some complete invariant metric 
that induces its topology. It is an immediate consequence of Theorem 2.3.18 
that a further strengthening can be made: A normed space is a Banach 
space if there is some complete metric, invariant or not, that induces its 
topology. 

2.3.19 Corollary. (V. L. Klee, 1952 [135]). A normed space is a Banach 
space if and only if it is topologically complete. 

The main consequence of Theorem 2.3.18 for the purposes of this section 
is the following one, which gives an affirmative answer to Banach's question 
mentioned after Definition 2.3.2. 

2.3.20 Theorem. (V. L. Klee, 1952 [135]). A TVS is an F-space if and 
only if its topology is induced by a complete invariant metric. 

PROOF. A TVS whose topology is induced by a complete invariant metric 
is obviously an F-space. Conversely, suppose that X is an F-space. By 
Theorem 2.3.13, the topology of X is induced by an invariant metric, and 
Theorem 2.3.18 assures that this metric is complete. • 

A bit more can be said. The invariant metric used in the proof of the 
preceding theorem can, by Theorem 2.3.13, be selected to have some special 
properties. This is summarized by the following result. 

2.3.21 Corollary. Every F-space has its topology induced by a complete 
invariant metric such that the open balls centered at the origin are bal
anced. Every Fh~chet space has its topology induced by a complete invari
ant metric such that the open balls centered at the origin are balanced and 
all open balls are convex. 

Combining Theorems 2.3.13 and 2.3.20 with Corollary 2.1.50 yields the 
following result immediately. 

2.3.22 Corollary. A TVS whose topology is induced by a metric is an 
F-space if and only if it is complete as an abelian topological group under 
vector addition. 

That is, for a metrizable TVS, topological completeness is equivalent to 
completeness as an abelian topological group under vector addition. 

Since the boundedness of certain sets is an issue in many of the remaining 
results of this section, this is a good place to mention again a convention 
adopted after Definition 2.2.8. When it is said that a subset of a TVS 
is bounded, it is meant that the set is bounded in the topological sense of 
Definition 2.2.8 rather than in any metric sense, unless specifically stated 
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otherwise. This is especially important when working with metrizable vec
tor topologies, for such topologies are always compatible with a metric for 
which the entire space is metrically bounded; see Exercise 2.36. However, 
also keep in mind that for subsets of a normed space, metric bounded ness 
and boundcdncss as a subset of the corresponding TVS are equivalent. 

2.3.23 Definition. A vector topology is locally bounded if some neighbor
hood of the origin in the space is bounded. 

For example, every norm topology is locally bounded, since the open unit 
ball of the space is bounded. The following result is a partial converse of 
that fact. 

2.3.24 Theorem. Every locally bounded Hausdorff vector topology is in
duced by a metric. 

PROOF. Suppose that a Hausdorff TVS X has a bounded neighborhood V 
of O. It follows that if U is a neighborhood of 0, then there is a positive 
integer nu such that n[:/V S;; U, so {n- 1 V : n EN} is a countable local 
basis for the topology of X. By Theorem 2.3.11, the topology of X is 
metrizable. • 

There are, however, metrizable vector topologies that are not locally 
bounded. 

2.3.25 Example. Let X be the collection of all sequences of scalars, made 
into a vector space with the usual vector space operations for spaces of 
sequences. Define d: X x X -+ [0,1] by the formula 

d(x, y) = LTj min{l, IXj- Yjl}· 
J 

I t is easy to check that d is an invariant metric and that a sequence (x( n)) 

of members of X converges to some x if and only if limn xjn) = Xj for 
each j, for which reason the topology induced by d is called the topology 
of termwise convergence. By Proposition 2.1.43, the invariance of d implies 
that addition of vectors is continuous. Also, if a sequence (x(n)) of members 

of X converges to some x and O:n -+ 0: in IF, then limn O:nxjn) = O:Xj for 

each j, and so limn O:nx(n) = O:X, from which it follows that multiplication 
of vectors by scalars is continuous. The topology of termwise convergence 
is therefore a vector topology for X. Since every Cauchy sequence of mem
bers of X is termwise Cauchy, hence termwise convergent and therefore 
convergent to some member of X, the metric d is complete. The space X 
with the topology of termwise convergence is therefore an F-space. Now 
define a collection of neighborhoods of the origin of X by letting 

Vn = {x : x EX, Ix j I < n- 1 when j = 1, ... , n } 
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for each positive integer n. It is easy to check that each Vn is convex and 
that each open ball centered at 0 includes some Vn , from which it follows 
that {Vn : n EN} is a local basis for the topology of X consisting of 
convex sets and thus that X with the topology of termwise convergence is 
a Frechet space. 

It will now be shown that the topology of X is not locally bounded, 
for which it is sufficient to show that no member of {Vn : n EN} is 
bounded. Fix a positive integer n and a positive real number t and let x 
be the member of X for which Xn+l = t and all other terms are O. Then 
x E Vn \ tVn+l, which shows that Vn is not included in any positive scalar 
multiple of Vn+l and therefore is not bounded. 

Notice that since no neighborhood of the origin of X is bounded, the 
topology of X is not induced by a norm, so X is an example of a Frechet 
space whose topology is not compatible with any norm. 

In light of the preceding results on metrizability, it is natural to ask what 
conditions on a TVS assure normability. The following theorem completely 
settles the question. 

2.3.26 Theorem. A topology for a vector space is induced by a norm if 
and only if it is a Hausdorff vector topology that is locally bounded and 
locally convex. 

PROOF. The topology induced by a norm on a vector space is a Haus
dorff locally convex topology for which the open unit ball is a bounded 
neighborhood of the origin. Conversely, suppose that the topology 'I of a 
Hausdorff TVS X is locally bounded and locally convex. An application of 
Corollary 2.3.8 produces a neighborhood V of 0 that is bounded, balanced, 
and convex (and, by Theorem 2.2.9 (f), absorbing). By Proposition 1.9.14, 
the Minkowski functional p of V is a seminorm on X. If x is a nonzero 
member of X, then the fact that 'I is Hausdorff implies that X \ {x} is 
a neighborhood of 0, which together with the boundedness of V implies 
that there is a positive t such that s V ~ X \ {x} whenever 0 < s < t, 
which in turn implies that p(x) > O. It follows that p is actually a norm. 
By Proposition 1.9.14, 

{x: x EX, p(x) < l} ~ V ~ {x: x E X, p(x) ~ I}. 

If x E V, then it follows from the 'I-continuity of multiplication of vectors 
by scalars and the fact that V is 'I-open that there is some real number r 
greater than 1 such that rx E V, which in turn implies that p(x) < 1. 
Therefore V is the open unit ball for p, so the collection {n- l V : n EN} is a 
local basis for the p-topology of X. A glance at the proof of Theorem 2.3.24 
shows that this collection is also a local basis for 'I, so 'I is induced by the 
norm p. • 
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As is true for the theory of linear operators between normed spaces, the 
theory of linear operators between TVSs is quite rich, especially when the 
topology of the domain space is metrizable. The following definition and 
theorem extend Definition 1.4.1 and Theorem 1.4.2 from normed spaces 
into these more general settings. 

2.3.27 Definition. Let X and Y be TVSs. A linear operator T from X 
into Y is bounded ifT(B) is a bounded subset ofY whenever B is a bounded 
subset of X. The collection of all bounded linear operators from X into Y 
is denoted by B(X, Y), or by just B(X) if X = Y. 

2.3.28 Theorem. Let X and Y be TVSs and let T: X ---> Y be a linear 
operator. Then the following two statements are equivalent. 

(a) The operator T is continuous. 

(b) The operator T is continuous at O. 

Each of the above two statements implies the following one, and all three 
statements are equivalent if the topology of X is metrizable. 

(c) The operator T is bounded. 

PROOF. Suppose first that T is continuous at O. If a net (Xl» in X converges 
to some X, then Xc> - X ---> 0, so T(x", - x) ---> TO = 0, and therefore 
Tx", ---> Tx. The operator T is thus continuous at each point of X, and so 
(b) =:} (a). The reverse implication is obvious, so (a) {:} (b). 

Now suppose that T is continuous, that B is a bounded subset of X, and 
that V is a neighborhood of 0 in Y. The continuity of T implies that there 
is a neighborhood U of 0 in X such that T(U) ~ V, and the boundedness 
of B implies that there is a positive s such that B ~ tU whenever t > s. It 
follows that T(B) ~ tT(U) ~ tV whenever t > s, and therefore that T(B) 
is bounded. Statement (a) therefore implies (c). 

Finally, suppose that the topology of X is induced by a metric, that T 
is bounded, and that (xn ) is a sequence in X converging to O. For each 
positive integer k, there is a positive integer nk such that kXn lies in the 
open ball of radius k- 1 centered at 0 whenever n 2": nk, from which it follows 
that there is a nondecreasing sequence (kn ) of positive integers such that 
kn ---> 00 and knxn ---> O. Since the set {knxn : n EN} and the operator T 
are bounded, so is the set {knTxn : n EN}. Let W be a neighborhood 
of 0 in Y and let s be a positive number such that {knTxn : n EN} ~ tW 
whenever t > s. It follows that there is a positive integer nw such that 
knTxn E kn W whenever n 2": nw, which implies that TXn E W for all 
sufficiently large n. The sequence (Txn) therefore converges to 0, which 
establishes the continuity of T at 0 and proves that (c) =:} (b) when the 
topology of X is induced by a metric. • 

It is not always true that part (c) of the preceding theorem implies parts 
(a) and (b) when the topology of X is not metrizable. See Exercise 2.57. 
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The open mapping theorem, closed graph theorem, and uniform bound
edness principle all have natural extensions to F-spaces that will now be 
obtained. To make the statement of each extension conform as closely as 
possible to the statement of the corresponding result for normed spaces 
given in Section 1.6, reference will be made in the statement of each to 
bounded linear operators. In each case, the domains of the linear operators 
will be F -spaces, so for these operators boundedness will be equivalent to 
continuity. 

Several of the following results cite Banach's 1932 monograph [13] in 
addition to earlier sources. When this occurs, the earlier references are 
to proofs for Banach spaces, while the references to [13] are to Banach's 
extensions of the results to F-spaces by substantially the same arguments. 

2.3.29 The Open Mapping Theorem for F-Spaces. (J. Schauder, 
1930 [208]; S. Banach, 1932 [13]). Every bounded linear operator from an 
F-space onto an F-space is an open mapping. 

PROOF. This proof uses the fact that if d is an invariant metric on a vector 
space Wand Wl,···,Wn E W, then d(2::7=lWj,0) S; 2::7=ld(wj,0). This 
follows from a straightforward induction argument that begins with the 
observation that d(Wl + W2, 0) = d(Wl, -W2) S; d(Wl'O) + d(O, -W2) = 
d(Wl'O) + d(w2, 0). 

Let T be a bounded linear operator from an F -space X onto an F -space Y 
and let N be a neighborhood of the origin Ox of X. Suppose that it were 
shown that T(N) must include a neighborhood of the origin Oy of Y. It 
would follow that if G is an open subset of X and x E G, then 

T(G) = Tx + T( -x + G) ::2 Tx + (T(-x + G)t, 

and so T( G) would be open since it would include a neighborhood of each 
of its points. It is therefore enough to prove that Oy E (T(N) r. 

It will first be shown that Oy E (T( N) ) Q. Let V be a balanced neigh-

borhood of Ox such that V + V ~ N. If (T(V)) Q =1= 0, then 

Oy E (T(V)) 0 - (T(V)) 0 ~ T(V) - T(V) = T(V) + T(V) ~ T(N); 

that is, the set T(N) includes the neighborhood (T(V)) 0 _ (T(V)) 0 

of Oy. It will therefore follow that Oy E (T( N) ) 0 once it is shown that 

(T(V)) 0 is not empty. Since T(X) = Y and V is absorbing, it follows 

that Y = Un T(nV), so by the Baire category theorem there must be a 
positive integer no such that T(noV) is not nowhere dense in Y, that is, 

such that (T( no V) ) Q =1= 0. It follows that (T(V») Q =1= 0 and therefore 

that Oy E (T(N)r· 
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Let dx and dy be complete invariant metrics inducing the topologies 
of X and Y respectively. Let U x (r) and Uy (r) denote the open balls of 
radius r centered at Ox and Oy respectively when r > 0, and let E be a 
positive number such that UX(E) ~ N. By the argument of the preceding 
paragraph, there is a sequence (8n ) of positive reals converging to 0 such 

that Uy(8n ) ~ T(Ux(2-nE)) whenever n E N. Let Yo be an arbitrary 
element of Uy(8d. The theorem will be proved once it is shown that there 
is an Xo in Ux(t) such that Txo = Yo. 

Since Yo E Uy (81) ~ T(Ux (2- 1E)), there is an Xl in Ux (2- 1E) such 

that dy(yo, TX1) < 82 . Since Yo - TX1 E Uy(82) ~ T(Ux(2- 2E)), there is 
an X2 in Ux(2- 2t) such that dy(yo, TX1 +TX2) = dy(yo - TX1, TX2) < 83 , 

Continuing in the obvious fashion yields a sequence (xn) in X such that 
Xn E Ux(2-nt) and dy(yo, 2:7=1 TXj) < 8n+1 for each positive integer n. 
If ml, m2 EN and m1 < m2, then 

m2 

< L dx(xj,Ox) 
j=ml+1 

00 

< L 2- j ( 

j=ml +1 

= 2-m ,(, 

from which it follows that the partial sums of the formal series 2:n Xn form 
a Cauchy sequence and therefore that 2:n Xn converges. Let Xo = 2:n Xn · 

Since limn dY (Yo,T(2:7=1 Xj)) = 0, it follows that 

TXO=T(li,;ntXj) = li,;n T(tXj) = Yo· 
)=1 )=1 

Finally, 

dx(xo,Ox) = li,;n dx (~Xj,ox) :s: ~dx(Xj,Ox) < ~Tjt = t, 

so Xo E U x (() as required. • 
2.3.30 Corollary. (S. Banach, 1929 [11], 1932 [13]). Every one-to-one 
bounded linear operator from an F-space onto an F-space has a bounded 
inverse. 

The preceding corollary is a generalization of Corollary 1.6.6 and, like 
that earlier result, is sometimes called the inverse mapping theorem. 
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2.3.31 The Closed Graph Theorem for F-Spaces. (S. Banach, 
1932 [13]). Let T be a linear operator from an F-space X into an F-space Y. 
Suppose that whenever a sequence (xn ) in X converges to some x in X 
and (Txn ) converges to some y in Y, it follows that y = Tx. Then T is 
bounded. 

PROOF. Let dx and dy be complete invariant metrics inducing the topolo
gies of X and Y respectively. For each pair of elements (Xl, YI) and (X2' Y2) 
of X x Y, let 

Then dxxY is a complete invariant metric that induces the product topol
ogy of X x Y; see the discussion of product metrics in Appendix B. It 
is easy to check that X x Y is an F -space when given its product topol
ogy and the usual vector space operations for a vector space sum. Let 
G = {(x, Tx) : X EX}; that is, let G be the graph of T in X x Y. It 
follows from the hypotheses of this theorem that G is a closed subspace 
of X x Y and so is itself an F-space. Since the map (x, Tx) f-> x from G 
onto X is a one-to-one bounded linear operator, its inverse is bounded by 
Corollary 2.3.30, so the map x f-> (x, Tx) f-> Tx is itself a bounded linear 
operator. • 

The statement of the uniform boundedness principle given in Section 1.6 
needs a bit of reinterpretation before it can be extended from Banach spaces 
to F -spaces. Let J be a nonempty family of bounded linear operators from a 
Banach space X into a normed space Y. Suppose that sup{ IITxl1 : T E J} 
is finite for each x in X, which is the same as saying that {Tx : T E J} 
is bounded whenever x EX. The conclusion of the uniform boundedness 
principle for Banach spaces is that sup{ IITII : T E J} is finite. A moment's 
thought about properties of the norm of a bounded linear operator between 
normed spaces shows that this conclusion is equivalent to the following 
statement: For each bounded subset A of X, there is a bounded subset BA 
of Y such that T(A) <;;; BA whenever T E J. 

2.3.32 Definition. A family J of linear operators from a TVS X into a 
TVS Y is uniformly bounded if U{ T(B) : T E J} is a bounded subset of Y 
whenever B is a bounded subset of X. 

In addition to the horde of citatiuni::i that accompanies the statement 
of the uniform bounded ness principle for Banach spaces, the following re
sult contains one more, since Mazur and Orlicz obtained the extension to 
F-spaces. 

2.3.33 The Uniform Boundedness Principle for F-Spaces. (H. Hahn, 
1922 [98]; S. Banach, 1922 [10]; T. H. Hildebrandt, 1923 [104]; S. Banach 



200 2. The Weak and Weak* Topologies 

and H. Steinhaus, 1927 [17]; S. Mazur and W. Orlicz, 1933 [164]). Let ~ 
be a family of bounded linear operators from an F-space X into a TVS Y. 
Suppose that { Tx : T E ~} is bounded for each x in X. Then ~ is uniformly 
bounded. In short, the pointwise boundedness of ~ implies its uniform 
boundedness. 

PROOF. To avoid having to think about a special case throughout this 
proof, notice that it can be assumed that ~ i= 0. Let B be a bounded 
subset of X and U a neighborhood of the origin Oy of Y. The theorem will 
be proved once a positive s is found such that T(B) c:;: tU when T E ~ and 
t > s. Let V be a balanced neighborhood ofOy such that V + V c:;: U and let 
S = n{ T- 1 (V) : T E ~}, a closed subset of X because of the continuity 
of each T in ~. If x E X, then the boundedness of {Tx : T E ~} assures 
that {Tx : T E ~} c:;: nx V for some positive integer nx and therefore 
that x E nxS. It follows that X = U{ nS : n EN}. By the Baire category 
theorem, one of the closed sets nS, and hence S itself, must have nonempty 
interior. Let Xo be a point in So and let W = Xo - So, a neighborhood of 
the origin of X. For each T in ~, 

T(W) c:;: Txo - T(S) c:;: V - V c:;: V + V c:;: U. 

The bounded ness of B yields a positive s such that B c:;: tW whenever 
t > s. It follows that if T E ~ and t > s, then T(B) c:;: tT(W) c:;: tU, as 
required. • 

In the following corollary, the reason for requiring Y to have a Hausdorff 
topology is to assure that limits of convergent sequences in Yare unique. 

2.3.34 Corollary. Let (Tn) be a sequence of bounded linear operators 
from an F-space X into a Hausdorff TVS Y such that limn Tnx exists for 
each x in X. Define T: X -+ Y by the formula Tx = limn Tnx. Then T i8 
a bounded linear operator from X into Y. 

PROOF. The continuity of the vector space operations of Y and the linearity 
of each Tn together imply the linearity of T. Let B be a bounded subset 
of X. The proof will be complete once it is shown that T(B) is bounded. The 
convergence of the sequence (Tnx) for each x in X forces {Tnx : n EN} 
to be bounded whenever x E X, which by the preceding theorem implies 
that U{ Tn(B) : n EN} is bounded. As a subset of the bounded set 
U{Tn(B) : n E N}, the set T(B) is bounded. • 

Thus, the three fundamental theorems of Section 1.6, as well as their 
major corollaries, survive virtually unscathed when extended from Banach 
spaces to F-spaces. This leads to the question of which major results about 
normed spaces do not generalize to metrizable TVSs. 
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Some of the most important casualties are the normed space version of 
the Hahn-Banach extension theorem and its main corollaries about con
tinuous linear functionals. Most of these results do extend in some way to 
Frechet spaces, as is shown by Corollaries 2.2.20-2.2.22 of Mazur's separa
tion theorem, but this is due to the local convexity of Frechet spaces (and, 
in the case of Corollary 2.2.22, to the fact that their topologies are Haus
dorff) rather than to the metrizability of their topologies. These corollaries 
do not in general extend to F -spaces that are not locally convex. For in
stance, it was shown in Examples 2.2.24 and 2.2.25 that if 0 < p < I, then 
Corollary 2.2.22, which says that Hausdorff LCSs have enough continuous 
linear functionals to separate points, does extend to the non-Iocally-convex 
F-space Ep but not to Lp[O, 1]. 

The situation is less ambiguous for Corollary 2.2.21, which says that 
every LCS has the property that for each subspace of the space, every 
continuous linear functional on that subspace has an extension as a con
tinuous linear functional to the entire space. For F-spaces, this property 
is called the Hahn-Banach extension property. In 1969, Duren, Romberg, 
and Shields [69] noted that all of the classical non-Iocally-convex F-spaces, 
as well as other examples of such spaces that they had studied, lack the 
Hahn-Banach extension property, and asked if it might be the case that an 
F-space has the Hahn-Banach extension property if and only if it is locally 
convex. Nigel Kalton showed in 1974 [126] that the answer is yes. For an 
exposition of Kalton's result, see [128], which is an excellent source for the 
reader wishing to learn more about F -spaces. 

Exercises 

2.35 Let X be the vector space of all continuous functions from ]F into ]F, and 
let 

d(f, g) = L Tj min{ 1, max{ If(a) - g(a)1 : lal :'S: j} } 

whenever f, g EX. 

(a) Prove that d is a complete invariant metric. 

(b) Prove that a sequence (fn) in X converges to an f in X if and 
only if the following holds: For each compact subset K of ]F, the 
sequence Un) converges uniformly to f on K. (Because of this, the 
topology induced by d is called the topology of uniform convergence 
on compact sets.) 

(c) Prove that X with its d-topology is a Fnkhet space that is not locally 
bounded. Conclude that this topology is not induced by a norm. 

2.36 Show that in each of the two statements in Theorem 2.3.13, the invariant 
metric in the conclusion of the statement can be selected to have the nice 
properties of that conclusion and the further property that the diameter 
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of the space with respect to that metric is at most 1. (Recall that the 
diameter of a nonempty subset A of a metric space with metric d is 
sup{ d(x, y) : x, yEA }.) 

2.37 (a) Suppose that fL is a positive measure on a a-algebra I: of subsets of a 
set n and that 0 < p < 1. Prove that Lp(n,~, fL) is locally bounded. 

(b) Prove that Lo [0, 1] is not locally bounded. 

2.38 Prove that no F-space has a count ably infinite vector space basis. 

2.39 Prove that Zabrelko's lemma extends to F-spaces, that is, that every 
countably subadditive semi norm on an F-space is continuous. 

2.40 Prove that if a vector space has two topologies under which it is an F
space, and one of the topologies includes the other, then the two topologies 
are the same. 

2.41 (a) Prove the following generalization of Theorem 1.3.14: Suppose that 
C is a closed, convex, absorbing subset of an F-space. Then C in
cludes a neighborhood of the origin. (While this can be done by 
copying the proof of Theorem 1.3.11 verbatim, there is a shorter 
proof available. Find it.) 

(b) Suppose that X is a vector space with a topology. A barrel in X 
is a closed, convex, balanced, absorbing subset of the space. The 
space X is barreled if each of its barrels includes a neighborhood of 
the origin. Conclude from (a) that every F-space is barreled. 

(c) For some F-spaces, the observation in (b) is not very significant. To 
see why this is so, list all of the barrels in Lp [0, 1] when 0 -s: p < 1. 

2.42 Suppose that X is an infinite-dimensional metrizable TVS and that Y 
is a TVS with more open sets than just 0 and Y (which happens, for 
example, when Y is a Hausdorff TVS such that Y i {O}). Prove that 
some linear operator from X into Y is unbounded. Conclude that every 
infinite-dimensional metrizable TVS has a linear functional on it that is 
unbounded. 

2.43 An F-space is often said to have the Hahn-Banach extension property if, 
for every closed subspace of the space, every bounded linear functional 
on that subspace has an extension as a bounded linear functional to the 
entire space. Show that this is equivalent to the definition of the Hahn
Banach extension property for F -spaces given near the end of this section, 
in which the word "closed" is omitted. 

2.44 Some texts define an F-space to be a vector space X with a topology 
ind uced by a complete invariant metric such that multiplication of vectors 
by scalars is continuous in each variable separately; that is, which has 
the property that for each scalar 0'0 and each vector Xo, the mappings 
fao: X --> X and 9"'0: IF ---+ X given by the formulas fa.o(x) = aox and 
9"'0 (a) = axo are continuous. The purpose of this exercise is to prove that 
this definition is equivalent to the one given in Definition 2.3.2. For the 
moment, let an Fa-space be a vector space satisfying the above alternative 
definition. 
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(a) Prove that every F-space is an Fo-space. 

(b) Suppose that X is an Fo-space whose topology is induced by the 
complete invariant metric d and that (" > O. Prove that there is a 
positive /j such that d(ax, 0) ~ (" whenever x is a member of X and 
a a scalar such that d(x, 0) ~ /j and lal ~ 1. (Notice that the set 
{x: x E X, d(ax, 0) ~ (" whenever lal ~ I} has nonempty interior.) 

(c) Conclude that every F o-space is an F -space. 

2.4 Topologies Induced by Families of Functions 

Suppose that X is a set and that ~ is a family of functions such that each J 
in ~ maps X into a topological space (Yf , T j ). It is always possible to find 
a topology for X that makes every member of ~ continuous; for example, 
just declare every subset of X to be open. However, such a topology might 
have too many open sets to be of much use, especially when it is important 
that as many subsets of X as possible be compact. For that reason, it is 
often desirable to be able to find a topology for X that has just enough 
open sets to make every member of ~ continuous. As the following result 
shows, this is always possible. 

2.4.1 Proposition. Let X be a set and let ~ be a family of functions and 
{ (Yj, T j) : J E ~} a family of topological spaces such that each J in ~ 
maps X into the corresponding Yj . Then there is a smallest topology for X 
with respect to which each member of ~ is continuous. That is, there is a 
unique topology T;r for X such that 

(1) each J in ~ is T;)-continuous; and 

(2) if T is any topology for X such that each J in ~ is T-continuous, 
then T;r <:" T. 

The topology T;r has {J- 1(U) : f E~, U E Tj } as a subbasis. 

PROOF. Let 6 = {J-1(U) : J E ~, U E Tj} and let T;r be the topology 
generated by the sub basis 6. Since 6 ~ T;r, every member of J is T;)
continuous. Now suppose that T is a topology for X such that every member 
of ~ is T-continuous. Then 6 ~ T, so T;r ~ T. The uniqueness assertion 
follows immediately. • 

2.4.2 Definition. Let all notation be as in the preceding proposition. Then 
the set ~ is a topologizing family of functions for X, and the topology T;) 
is the ~ topology of X or the topology O"(X,~) or the weak topology of X 
induced by J. The collection {J-1(U) : J E J, U E T j } is the standard 
subbasis for this topology, and the standard basis for the topology is the 
collection of all sets that arc intersections of finitely many members of this 
subbasis. 



204 2. The Weak and Weak* Topologies 

The term weak topology is included in the preceding definition for ref
erence, since it is often given this meaning. However, there is a specific 
topology for normed spaces called the weak topology whose study will be 
taken up in the next section. To avoid confusion, the term weak topology 
will not be used here in the more general sense. 

2.4.3 Example. Let { (Xn' T",) : a E I} be a family of topological spaces 
and let X be the Cartesian product Il"EI X n . For each a in I, let 1fa be the 
projection from X to X"" that is, the map x f-> x",. Let J = {1f", : a E I}. 
If ao E I and U is an open subset of X nD , then 1f~ol(U) = lInEl Un, where 
Uo:o = U and Un = Xo: when a -I- ao. Let 671" = {1f~l(U) : a E I, U E To:} 
and let 6n be the standard subbasis for the product topology of X as given 
in Definition 2.1.5. If I -I- 0, then clearly 671" = 6 n . If 1= 0, then 671" = 0 
but 6n -I- 0 by the discussion following Definition 2.1.5; however, the two 
different subbases 671" and 6 n both generate the only topology that the 
one-element set X can have. It follows that the product topology of X is 
the J topology of X, whether or not I = 0. That is, the product topology 
of X is the smallest topology for X with respect to which each of the 
maps 1f n is continuous. 

Suppose that X is a topological product and that J is the family of 
projection maps as in the preceding example. Let x be a member of X and 
(x,e) a net in X; notice that f3 represents a net index element here, not a 
member of the index set for the Cartesian product. Then Proposition 2.1.16 
says that x(:J ---> x if and only if f(x(3) ---> f(x) for each f in J. This result 
generalizes to arbitrary J topologies. 

2.4.4 Proposition. Let X be a set and J a topologizing family offunctions 
for X. Suppose that (xo:) is a net in X and x is a member of X. Then 
Xn -+ x with respect to the J topology if and only if f(xn) -+ f(x) for 
each f in J. 

PROOF. The forward implication follows immediately from the continuity of 
each member of J with respect to the J topology. For the converse, suppose 
that f(xa) -+ f(x) for each f in J. If f E J and U is a neighborhood of f(x), 
then there is an aj,U such that Xa E f-1(U) when Ctj,U :< Ct, It follows 
from Proposition 2.1.15 that Xn ---> x with respect to the J' topology. • 

2.4.5 Corollary. Let W be a topological space, let X be a set topologized 
by a family J of functions, and let g be a function from W into X. Then 
g is continuous if and only if fog is continuous for each f in J. 

PROOF. For each f in J', the continuity of f implies that of fog when g 
is continuous. Conversely, suppose that fog is continuous for each f in J'. 
If (wa ) is a net in W that converges to some w, then f(g(wn )) ---> f(g(w)) 
whenever f E J, so g(wn ) -+ g(w). It follows that g is continuous. • 
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Proposition 2.4.4 is not only a generalization of a statement about net 
convergence in a topological product, but is in fact itself just a statement 
about net convergence in a specific topological product. Suppose that X 
and ~ are as in the statement of the proposition. For each I in ~, let Yf be 
the topological space into which I maps X. Because of the equivalence of 
convergence and coordinatewise convergence for nets in topological prod
ucts, Proposition 2.4.4 says that a net (xoJ in X converges to some Xo in X 
with respect to the ~ topology if and only if (J(x Q )) fE~ --4 (J(xo)) fE~ in 

the topological product rrfE~ Yf ; notice that if ~ is empty, then the nota

tion (J(x)) fE~ is being used to represent the unique element of rrfE~ Yf · 

lt follows immediately that the map x I-> (J(x)) fE~ is a homeomorphism 

from X onto a topological subspace of rrfE~ Y f provided the map is ane
ta-one. A moment's thought shows that the property needed to assure that 
the map is one-to-one is exactly the following one. 

2.4.6 Definition. Let X be a set and let ~ be a family of functions each 
of which has domain X. Then the family ~ is separating or total if, for 
each pair x and y of distinct elements of X, there is an Ix,y in ~ such that 
Ix,y(x) oF Ix,y(y). 

The discussion preceding this definition can be summarized by the fol
lowing result. 

2.4.7 Proposition. Let X be a set and ~ a separating topologizing family 
of functions for X. For each I in ;3', let Yf be the topological space into 
which I maps X. Then the map x I-> (J(x)) fa is a homeomorphism 
from X with the ~ topology onto a topological subspace of rrfE~ Yf with 
the product topology. 

If a topologizing family ~ of functions for a set X is to induce a topology 
satisfying one of the separation axioms, then it is helpful if each topological 
space Yf into which the corresponding member I of ~ maps X satisfies that 
separation axiom, as will be seen in the next proposition. However, it is far 
from essential that this be so. For example, let X be any set and let Y be 
a topological space satisfying none of the separation axioms but having a 
nonempty proper open subset U. For each x in X, let Ix map x into U and 
the rest of X into Y \ U, and let ;3' = {Ix: x EX}. Then the ~ topology 
of X satisfies just about any separation axiom one might devise, since each 
of its one-element sets, and hence each of its subsets, is open. 

On the other hand, the spaces Yf can satisfy any of the separation axioms 
whatever, yet the;3' topology will still have no hope of being even a To space 
if ;3' is not a separating family. To see this, suppose that there are distinct 
elements Xl and Xz of X such that I(XI) = I(X2) whenever I E ;3'. Then a 
member of the standard subbasis for the ~ topology that contains either Xl 
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or X2 must contain both, so the same holds for each member of the standard 
basis for the ~ topology, from which it follows that the ~ topology is not 
even To. 

2.4.8 Proposition. Let X be a set and ~ a separating topologizing family 
of functions for X. For each f in ~, let Yj be the topological space into 
which f maps X. If each Yj is To, or T l , or T 2 , or T 3, or T3 1 , then the 

2 

~ topology of X satisfies that same separation axiom. 

PROOF. Throughout this proof, the topology of X is its ~ topology. Sup
pose that Xl and X2 are different elements of X, that f is a member of ~ 
such that f(xI) 1= f(X2), and that UI and U2 are disjoint neighborhoods of 
f(XI) and f(X2) respectively. Then f-I(Ud and f- I(U2) are disjoint neigh
borhoods of Xl and X2 respectively. It follows that X is Hausdorff whenever 
each Y j is so. The proofs for the To and TI axioms are analogous. For the 
other two cases, recall that topological subspaces and topological products 
of regular topological spaces are always regular, and that the corresponding 
result for completely regular spaces is also true; see, for example, [172J. Ap
plications of Proposition 2.4.7 and the fact that homeomorphisms preserve 
regularity and complete regularity then finish the proof. • 

The preceding result cannot be extended to normal topological spaces, 
for topological products of normal spaces need not be normal; see [172] for 
an example. However, the extension to metrizable topological spaces does 
hold, provided that the topologizing family is countable. 

2.4.9 Proposition. Let X be a set and ~ a separating topologizing fam
ily of functions for X. For each f in ~, let Y j be the topological space 
into which f maps X. If ~ is countable and the topology of each Yf is 
metrizable, then the ~ topology of X is metrizable. 

PROOF. It may be assumed that X has more than one element, and there
fore that ~ 1= o. Then the members of ~ can be listed in a sequence (In), 
where the sequence is constant from some term onward if ~ is finite, 
and the members of {Yj : f E ~} can be listed in a corresponding se
quence (Yn). For each n, let dn be a metric inducing the topology of Yn· 
Define d: X x X --> [0,1] by the formula 

d(XI,X2) = L min{1,dn(Jn2~d,fn(X2))}. 
n 

It is easy to check that d is a metric on X, and that a net (Xc.) in X con
verges to some X with respect to this metric if and only if f n (Xo.) --> f n (x) 
for each n, which happens if and only if Xo. --> x with respect to the ~ topol
ogy. It follows from Corollary 2.1.22 that the topologies induced on X by 
d and ~ are the same. • 
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2.4.10 Corollary. If X is a compact topological space and there is a 
countable separating family of continuous metric-space-valued functions 
on X, then the topology of X is metrizable. 

PROOF. Let J be the countable separating family, let 'I';j be the J topol
ogy of X, which is metrizable by the proposition, and let 'I'c be the given 
compact topology of X. Then 'I';j ~ 'I'c by Proposition 2.4.1. It follows 
that 'I';j = 'I'c since Hausdorff topologies are never proper subtopologies of 
compact topologies; see [200, p. 61] or Exercise 2.8. • 

The count ability hypothesis cannot be omitted from Proposition 2.4.9. 
See Exercise 2.45. 

In the rest of this book, almost all of the interest in topologies induced by 
families of functions will be in topologies induced on a vector space X by 
subspaces of the vector space X# of all linear functionals on X. The follow
ing result makes the connection between such topologies and those studied 
in Section 2.2. The characterization of the dual space in this theorem is a 
1940 result of R. S. Phillips [188]. 

2.4.11 Theorem. Suppose that X is a vector space and that X' is a 
subspace of the vector space X# of all linear functionals on X. Then the 
X' topology of X is a locally convex topology, and the dual space of X 
with respect to this topology is X'. 

PROOF. Throughout this proof, all allusions to a topology for X refer to 
the X' topology. Suppose that (xj3) and (Yj3) are nets in X and (0:13) a net 
in IF such that all three nets have the same index set, and that (x{3), (Y{3), 
and (0:13) converge to x, y, and 0: respectively. The continuity of addition 
and multiplication in IF assures that for each f in X', 

so a{3xj3 + Yj3 -+ ax + y. It follows that the vector space operations of X 
are continuous. It is easy to see that 

{rl(U) : f EX', U is an open ball in IF} 

is a sub basis for the topology of X that generates a basis for that topology 
consisting of convex sets, so X is an LeS. 

Let fo be a continuous linear functional on X. There is some neigh
borhood of 0 in X that is mapped by fo into the open unit ball of IF, 
from which it follows that there is a nonempty finite collection h,···, fn 
of members of X' and a corresponding collection U1 , ..• , Un of neigh
borhoods of 0 in IF such that fll(Ut} n ... n f;; 1 (Un) is mapped by fo 
into the open unit ball of IF. Suppose that x E kerCh) n ... n ker(fn). 
Then mx E fl-l(Ut} n ... n f;;l(Un ) for each positive integer m, and so 
mlfo(x)1 = Ifo(mx)1 < 1 whenever mEN, which implies that x E ker fo. 
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It follows from Lemma 1.9.11 that fo is a linear combination of 11,···, fn, 
so fo E X'. Thus, the dual space of X is included in X'. The reverse in
clusion follows from the definition of the X' topology of X, which finishes 
the proof. • 

It turns out that the topology induced on a vector space X by a sub~pace 
of X# has a particularly simple subbasis and basis. 

2.4.12 Proposition. Suppose that X is a vector space and that X' is a 
subspace of X#. For each x in X and each f in X', let 

B(x, {f}) = {y : y E X, If(y - x)1 < l}. 

Similarly, for each x in X and each finite subset A of X', let 

B (x, A) = { y : y EX, 11 (y - x) I < 1 for each 1 in A }. 

Let 

(5 = {B(x, {f}) : x E X, f E X'} 

and let 

IE = {B(x, A) : x E X, A is a finite subset of X' }. 

Then (5 is a subbasis and IE a basis for the X' topology of X. If U is a 
subset of X that is open with respect to the X' topology and Xo is an ele
ment of U, then there is a finite subset Ao of X' such that BCxo, Ao) <;;; U; 
that is, the set U includes a basic neighborhood of Xo that is "centered" 
at xo. 

PROOF. Throughout this proof, the topology of X is the X' topology. 
First of all, notice that for each x in X, each f in X', and each finite 
subset A of X', the sets B(x, {f}) and B(x, A) are open. Now let 1 be a 
member of X' and U an open subset of IF, so that f-l(U) is a member 
of the standard sub basis for the topology of X, and let x be an element 
of f-l(U). To show that (5 is a subbasis for the topology of X, it is enough 
to find a 9 in X' such that B (x, {g}) <;;; 1- 1 (U). Let E be a positive number 
such that {o: : 0: Elf, 11(x) - 0:1 < E} <;;; U, and let 9 = ell. Then this 9 
does what is required of it. 

Suppose that f1, ... , In E X', that U1,···, Un are open subsets oflF, and 
that x E f1l(U1 ) n··· n l;;l(Un ). Then a straightforward modification of 
the argument just given yields a positive c such that 

from which it easily follows that IE is a basis for the topology of X. 
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Finally, let Xo be an element of an open subset U of X, and let x be a 
member of X and A a finite subset of X' such that Xo E B(x, A) ~ U. It 
may be assumed that A i- 0. Let 8 be such that 

0< 8 < 1 ~ max{ II(xo ~ x)1 : I E A}, 

and let Ao = 8- 1 A. If y E B(xo, Ao) and I E A, then 

II(y ~ x)1 :S II(y ~ xo)1 + II(xo ~ x)1 < 8 + (1 ~ 8) = 1, 

and so y E B(x, A). It follows that Xo E B(xo, Ao) ~ B(x, A) ~ U, as 
required. • 

Let X and X' be as in the preceding two results, with X treated as 
a topological space under its X' topology. The rest of this section con
cerns properties that are defined for objects in X because X is a TVS. 
In particular, the Cauchy condition for nets is defined, and has a char
acterization analogous to the characterization of net convergence given in 
Proposition 2.4.4. 

2.4.13 Proposition. Suppose that X is a vector space and that X' is a 
subspace of X#. Let (x",) be a net in X. Then the following are equivalent. 

(a) The net (xa ) is Cauchy with respect to the X' topology of X. 

(b) For each I in X', the net (J(xa )) is Cauchy in IF. 

(c) For each I in X', the net (J(x a )) is convergent in IF. 

PROOF. Throughout this proof, the topology of X is the X' topology. It 
suffices to prove that (a) and (b) are equivalent. Let I be the index set 
for (xa ). Then {x!3 ~ xI : (/3,,) E I x I} is a net if I x I is preordered 
by declaring that (/31, It) ~ (/32, 12) when /31 ~ i32 and 11 ~ 12· Fur
thermore, it is easy to see that the net (xa,) is Cauchy if and only if the 
net (x!3 ~ xI) converges to 0; see the discussion preceding Definition 2.1.41. 
It therefore follows from Proposition 2.4.4 that (xa) i!:> Cauchy if and only 
if lim(!3,J) (J(X!3) ~ I(x l )) = 0 for each I in X', which happens if and only 
if (J(xa )) is a Cauchy net in IF for each I in X'. • 

The final two re!:>ults of this section concern boundedness with respect 
to the topology induced on a vector space X by a !:>ubspace of X#. The 
first gives a useful test for such boundedness, while the second shows one 
dramatic difference between topologies of this sort and norm topologies 
when the topologizing subspace of X# is infinite-dimensional. 

2.4.14 Proposition. Suppose that X is a vector space and that X' is a 
subspace of X#. Then a subset A of X is bounded with respect to the 
X' topology if and only if I(A) is bounded in IF for each I in X'. 
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PROOF. Throughout this proof, the topology of X is the X' topology. Let A 
be a subset of X. Suppose first that A is bounded. Let f be a member of X' 
and let U be the open unit ball of IF. Then there is a positive t such that 
A ~ tj-I(U), which implies that f(A) ~ tU and therefore that f(A) 
is bounded. Conversely, suppose that f(A) is bounded whenever f E X'. 
Let Uo be a neighborhood of 0 in X and let iI, ... , fn be members of X' and 
VI, ... , Vn neighborhoods of 0 in IF such that fll (VI) n ... n f;; 1 (Vn) ~ Uo. 
The boundedness of each h(A) yields a positive S i:iUch that fJ(A) ~ tVj 
foreachj when t > s. It follows that A ~ t(J1I(VJ)n·· ·nf;;I(Vn)) ~ tUo 
when t > s, so A is bounded. • 

2.4.15 Proposition. Suppose that X is a vector space and that X' is a 
subspace of X#. If X' is infinite-dimensional, then every nonempty subset 
of X that is open with respect to the X' topology is unbounded with 
respect to that topology. 

PROOF. Throughout this proof, the topology of X is the X' topology. Let U 
be a nonempty open subset of X. Since translates of bounded subsets of a 
TVS are bounded, it may be assumed that U is a neighborhood of the ori
gin. Let 11, ... ,In be members of X I and VI, ... , Vn neighbor hoods of 0 in IF 
such that Il-l(vd n··· n 1;;1 (Vn) ~ U, and let 8 = ker(JI) n··· n ker(fn), 
a subspace of X. It follows that 8 ~ U, so it is enough to show that 8 
is unbounded. Let 1 be a member of X' that is not a linear combination 
of JI, ... ,In. It follows from Lemma 1.9.11 that 8\ ker(f) contains some x. 
Since nx E 8 for each positive integer nand If(nx)1 = nII(x)1 ---+ 00 as 
n ---+ 00, the set 1(8) is unbounded. By Proposition 2.4.14, the set 8 is 
unbounded. • 

Exercises 

2.45 Give an example of a set X and an uncountable separating topologizing 
family ~ of functions for X such that the ~ topology of X is not metrizable 
even though each of the topological spaces into which the members of ~ 
map X is a metric space. Exercise 2.14 might be helpful. 

2.46 If X is an infinite-dimensional normed space, then some linear functional 
on X is not continuous; see Theorem 1.4.11. Show that this result does 
not generalize to infinite-dimensional Hausdorff locally convex spaces. 

2.47 Prove that if a vector space with a topology has a linearly independent 
sequence in it that converges to 0, then some linear functional on the space 
is not continuous. Use this fact and your example from the preceding 
exercise to give an example of an infinite-dimensional Hausdorff LeS in 
which no linearly independent sequence converges to O. 

2.48 Let X be a set and ~ a separating topologizing family of functions for X. 
Suppose that for each f in ~, the topological space Yf into which f maps X 
is Hausdorff. Prove that X is compact with respect to its J topology if 
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and only if f(X} is compact in Yj for each f in J and the image of X in 
fI fEJ Yj under the map x t--7 (J(x)) fEJ is closed. 

2.49 Let X be a vector space with the topology induced by some subspace X' 
of X#, and let A be a subset of X. Prove that A is a closed subspace 
of X if and only if the following holds: For each x in X \ A, there is an fx 
in X' such that fx(x) = 1 and A ~ ker(fx). 

2.50 Let K be a compact Hausdorff space. Show that if C(K) is separable, 
then the topology of K is metrizable. 

2.51 The goal of this exercise is to prove that the vector topologies of a finite
dimensional vector space are exactly the topologies induced by subspaces 
of the vector space of all linear functionals on that space. This will be 
done by continuing the argument begun in Exercise 2.34. Let all notation 
be as in that exercise. All unqualified references to the topologies of X 
and Y will be to the given topology of X and to the relative topology 
that Y inherits from that given topology of X. 

(a) Prove that the topology of Y is the same as the Y* topology of Y. 

(b) For each y. in Y·, each sin S, and each y in Y, let x;. (s+y) = y.y. 
Show that the map y* f-> x;. is a vector space isomorphism from Y* 
onto X·. 

(c) Prove that every open subset of X is open with respect to the 
X· topology of X. Conclude that the topology of X is the same 
as the X* topology of X. 

(d) For each subspace X' of X#, let ~x' be the X' topology of X. Show 
that the map X' t--7 ~x' is a one-to-one correspondence between the 
subs paces of X# and the vector topologies of X. 

2.52 The preceding exercise says that every vector topology ~ on a finite
dimensional vector space X (which, by Exercise 2.34, is the same as say
ing every locally convex topology ~ on X) is exactly the topology induced 
by the vector space X* of all ~-continuous linear functionals on X. This 
result clearly does not extend to infinite-dimensional TVSs, since Exam
ple 2.2.24 shows that there are Hausdorff TVSs with nonzero elements, 
and hence other open sets besides the empty set and the entire space, 
whose dual spaces contain only the zero functional. However, the TVSs 
in Example 2.2.24 are not LCSs, so this leaves open the possibility that 
the finite-dimensional result might extend to infinite-dimensional LCSs. 
The purpose of this exercise is to show that it does not. Prove that if X 
is an infinite-dimensional normed space, then the norm topology of X is 
not induced by any subspace of X#. 

2.5 The Weak Topology 

The following convention will help prevent a bit of confusion that could 
otherwise occur throughout the rest of this book. If X is a normed space, 
then the notation X* and the term "the dual space of X" always refer to 
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the dual space of X with respect to the norm topology of X, except where 
explicitly stated otherwise, even in contexts in which another topology for X 
is being discussed. Recall also the convention from Section 1.2 concerning 
topological terms when a normed space is involved: Whenever reference is 
made to some topological property in a normed space without specifying the 
topology, the norm topology is implied. For example, if a subset of a normed 
space is said without further qualification to be open, then it is meant that 
it is open with respect to the norm topology of the space. 

It is time to introduce the first of the two topologies that are the main 
topics of this chapter. 

2.5.1 Definition. Let X be a normed space. Then the topology for X 
induced by the topologizing family X* is the weak topology of X or the 
X* topology of X or the topology u(X, X*). 

That is, the weak topology of a normed space is the smallest topology 
for the space such that every member of the dual space is continuous with 
respect to that topology. See Proposition 2.4.1 and Definition 2.4.2. 

Since the dual space of a normed space X is a separating family of 
functions for X by Corollary 1.9.9, and each x* in X* maps X into the 
completely regular space IF, it follows from Proposition 2.4.8 that the weak 
topology of X is itself completely regular. By Theorem 2.4.11, this topology 
is also locally convex, and the dual space of X with respect to this topology 
is exactly X*. As the smallest topology for X with respect to which every 
member of X* is continuous, the weak topology of X must be included in 
every topology with respect to which the members of X* are all continuous, 
and in particular must be included in the norm topology of X. These 
observations are summarized in the following two results. 

2.5.2 Theorem. The weak topology of a normed space is a completely 
regular locally convex subtopology of the norm topology. 

2.5.3 Proposition. A linear fUIlctional on a normed space is continuous 
with respect to the weak topology if and only if it is continuous with respect 
to the norm topology. 

2.5.4 Example. Let (en) be the sequence of unit vectors in £2. It is clear 
from the usual identification of £2 with £2 that x* en --+ 0 for each x* 
in £i, and so, by Proposition 2.4.4, the sequence (en) converges to 0 with 
respect to the weak topology. Since IIen ll2 = 1 for each n, the sequence (en) 
cannot converge to 0 with respect to the norm topology. The norm and weak 
topologies of £2 are therefore different, so it is possible for the weak topology 
of a normed space to be a proper subtopology of the norm topology. 

A topological property that holds with respect to the weak topology is 
said to be a weak property or to hold weakly. For example, the preceding 
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theorem and proposition could be restated in part by saying that weakly 
open subsets of a normed space are always open and that continuity and 
weak continuity are equivalent for linear functionals on a normed space. 
Attaching the letter w to a topological symbol is another way to indicate 
that the weak topology is being used. For example, the weak convergence 
of a net (x,,) to an element x can be expressed by writing x" ~ x or 
w-lim" x" = x, while the weak closure of a set A can be denoted by AW. 

Of course, all of the results derived in Sections 2.2 and 2.4 for a Haus
dorff locally convex topology induced by a separating vector space of linear 
functionals hold for the weak topology of a normed space X. In particular, 
it follows from Propositions 2.4.4 and 2.4.13 that if (x,,) is a net in X and 
x is an element of X, then Xc> ~ x if and only if x*xc> -> x*x for each x* 
in X*, and (x,,) is weakly Cauchy if and only if (x*x,,) is a Cauchy (that 
is, convergent) net in IF for each x* in X*. A particularly useful basis for 
the weak topology of X is given by the collection of all sets of the form 

{ y : y EX, I x* (y - x) I < 1 for each x* in A} 

such that x E X and A is a finite subset of X*; see Proposition 2.4.12 for the 
development of this basis and some other information about it. The reader 
might also wish to review the properties of a TVS given in Theorem 2.2.9, 
since those properties will be used extensively in what is to follow. 

As a special case of Definition 2.2.8, a subset A of a normed space X 
is weakly bounded if, for each weak neighborhood U of 0 in X, there is a 
positive Sf} such that A ~ tU whenever t > Sf}. By Proposition 2.4.14, this 
is equivalent to requiring that x* (A) be a bounded set of scalars for each x* 
in X'. As Example 2.5.4 shows, the weak topology of a normed space can 
be a proper subtopology of the norm topology, so it might seem easier for 
a subset of a normed space to be weakly bounded than to be bounded. 
Perhaps surprisingly, this is not the case. 

2.5.5 Theorem. A subset of a nOfmed space is bounded if and only if it 
is weakly bounded. 

PROOF. It is clear that every bounded subset of a normed space is weakly 
bounded, since every weakly open subset of a normed space is open. Con
versely, suppose that A is a weakly bounded subset of a normed space X. 
It may be assumed that A is nonempty. Let Q be the natural map from X 
into X**. Then Q(A) is a nonempty collection of bounded linear functionals 
on the Banach space X*. For each x* in X*, 

sup{ I(Qx)(x*)1 : x E A} = sup{ Ix*xl : x E A} < 00. 

It follows from the uniform bounded ness principle that 

sup{ Ilxll : x E A} = sup{ IIQxll : x E A} < 00, 

as required. • 
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2.5.6 Corollary. A subset A of a normed space X is bounded if and only 
if x*(A) is a bounded set of scalars for each x* in X*. 

As special cases of Propositions 2.2.11 and 2.2.12, every weakly com
pact set and every weakly Cauchy sequence in a normed space is weakly 
bounded, and every weakly convergent sequence in a normed space is 
weakly Cauchy by Proposition 2.1.47. The next two corollaries of the above 
theorem follow immediately. 

2.5.7 Corollary. Weakly compact subsets of a normed space are bounded. 

2.5.8 Corollary. In a normed space, weakly Cauchy sequences, and so 
weakly convergent sequences, are bounded. 

2.5.9 Corollary. Every nonempty weakly open subset of an infinite-dimen
sional normed space is unbounded. 

PROOF. Let X be an infinite-dimensional normed space. Then X* is also 
infinite-dimensional. By Proposition 2.4.15, every nonempty weakly open 
subset of X is weakly unbounded, and therefore unbounded. • 

Theorem 2.5.5 and its corollaries have several important consequences 
for the continuity of linear operators. Suppose that T is a linear operator 
from a normed space X into a normed space Y. Then T is bounded if and 
only if the set T( B x) is bounded, which by Corollary 2.5.6 happens if and 
only if y*T(Bx) is bounded for each y* in Y*. This immediately yields the 
following result. 

2.5.10 Proposition. A linear operator T from a normed space X into a 
normed space Y is bounded if and only if y*T E X* whenever y* E Y·. 

Since a linear functional on a normed space is continuous if and only 
if it is weakly continuous, the above proposition also says that the linear 
operator T is continuous if and only if y*T is a weakly continuous linear 
functional on X whenever y* E Y*. By Corollary 2.4.5, this is equivalent 
to the weak-to-weak continuity of T. 

2.5.11 Theorem. A linear operator T from a normed space X into a 
normed space Y is norm-to-norm continuous if and only if it is weak-to
weak continuous. 

2.5.12 Corollary. A linear operator T from a normed space X onto a 
normed space Y is an isomorphism of normed spaces if and only if it is a 
weak-to-weak homeomorphism. 

In particular, if two normed spaces are implicitly treated as the same 
because of some natural isometric isomorphism from one onto the other, 
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such as the way Co is usually identified with lI, then the weak topologies 
of the two spaces are preserved by the same isometric isomorphism. 

If X is an infinite-dimensional normed space, then Corollary 2.5.9 implies 
that its open unit ball cannot be weakly open, so the norm and weak topolo
gies of X must differ. This could not happen if X were finite-dimensional, 
for then the norm and weak topologies of X would both be the unique Haus
dorff vector topology of X and so would be the same; see Theorem 2.2.31. 
Summarizing these observations yields the following useful characterization 
of normed spaces whose norm and weak topologies are identical. 

2.5.13 Proposition. The norm and weak topologies of a normed space 
are the same if and only if the space is finite-dimensional. 

The weak topology of an infinite-dimensional normed space is therefore 
not induced by the norm of the space. In fact, the weak topology of such a 
space is not induced by any metric at all. 

2.5.14 Proposition. The weak topology of a normed space is induced by 
a metric if and only if the space is finite-dimensional. 

PROOF. The weak topology of a finite-dimensional normed space is the 
same as the norm topology, and so is induced by a metric. For the con
verse, suppose that the weak topology of some infinite-dimensional normed 
space X is induced by a metric d. For each positive integer n, let Un be 
the d-open ball in X centered at 0 having d-radius n-1 . By Corollary 2.5.9, 
each Un contains some Xn such that Ilxnll ~ n. It follows that (xn) is an 
unbounded sequence in X that converges weakly to 0, which contradicts 
Corollary 2.5.8. • 

Completeness is yet another property that the weak topology cannot 
have unless the normed space is finite-dimensional. 

2.5.15 Proposition. The weak topology of a normed space is complete if 
and only if the space is finite-dimensional. 

PROOF. Let X be a normed space. If X is finite-dimensional, then X is 
a Banach space that is the same TVS with respect to the weak topology 
as it is with respect to the norm topology, so the weak topology of X is 
complete by Corollary 2.1.51. 

Suppose that X is infinite-dimensional. Since X· is infinite-dimensional, 
it follows from Theorem 1.4.11 that some linear functional f on X· is 
unbounded. It will first be shown that if Fo is a finite subset of X*, then 
there is an xFo in X such that x'xFo = fx· for each x· in Fo. This is trivial 
if Fo is empty, so it may be assumed that Fo is a nonempty finite subset 
{xi, ... , x~} of X·. Let M be the norm of the bounded linear functional 
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obtained by restricting I to the finite-dimensional subspace ({xi, ... , x~}) 
of X*. For each linear combination al xi + ... + anx~ of xi, ... ,x~, 

ladxi + ... + anlx~1 = I/(alxi + ... + anx~)1 
::; M IlalXi + ... + anx~ll. 

By Helly's theorem, there is an x Fu in X such that x; x Fo = I x; when 
j = 1, ... ,n, as was claimed. 

Let I be the collection of all finite subsets of X* , preordered by declaring 
that FI ::< F2 when FI ~ F2. For each F in I, let x F be a member of X 
such that X'xF = Ix' for each x* in F. Then the net (XF)FEI is weakly 
Cauchy, since x*xF = Ix' whenever x' E X' and {x'} ::< F. However, 
the net (xF ) is not weakly convergent, for if it were to converge weakly to 
some x in X, then it would follow that Ix' = limFx*xF = x'x for each x· 
in X*, which would imply that I is in the image of X in X** under the 
natural map, in contradiction to the fact that I is unbounded. • 

Suppose that X is an infinite-dimensional normed space. Then X must 
have open convex subsets that are not weakly open; in particular, the open 
balls in X cannot be weakly open since they are bounded. Because of this, 
it might not seem likely that the closed convex subsets of an arbitrary 
normed space would have to be the same as its weakly closed convex sub
sets. However, Corollary 2.2.29 assures that this must be the case, since 
the dual space of a normed space with respect to the norm topology is the 
same as the dual space with respect to the weak topology. The following 
theorem is just a special case of that corollary. 

2.5.16 Theorem. (S. Mazur, 1933 [162]). The closure and weak closure 
of a convex subset of a normed space are the same. In particular, a convex 
sllbset of a normed space is closed if and only if it is weakly closed. 

Mazur actually showed that every closed convex subset of a normed space 
is weakly sequentially closed, but his method can be used to prove the more 
general result. 

2.5.17 Corollary. (S. Banach, 1932 [13]). The closllre and weak closure 
of a subspace of a normed space are the same, so a sllbspace of a normed 
space is closed if and only if it is weakly closed. 

2.5.18 Corollary. If A is a subset of a normed space, then coCA) = 

coW(A). 

PROOF. It follows from Theorem 2.2.9 (i) that coCA) = coCA) = coCA) W = 
co W(A). • 
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2.5.19 Corollary. If (Xc.)aEI is a net in a normed space that converges 
weakly to some x, then some sequence of convex combinations of members 
of {xa : 0:: E I} converges to x with respect to the norm topology. 

PROOF. Since x E co( {Xa : 0:: E I}) by the preceding corollary, some 
sequence in co( {xa : 0:: E I}) must converge to x. • 

One of the basic properties of normed spaces is that the norm function 
x ~ Ilxll is continuous. However, it does not have to be weakly continuous. 
For instance, the norm function on £2 is not weakly continuous since, by 
Example 2.5.4, there are sequences in the unit sphere of £2 that converge 
weakly to o. In fact, it can be shown that the norm function is weakly 
continuous if and only if the norm and weak topologies of the space are the 
same, that is, if and only if the space is finite-dimensional. See Exercise 2.54. 

Thus, it is not always true that Ilxall ---> Ilxll when a net (xa) in a normed 
space converges weakly to some x. Something can be said in this situation, 
but saying it requires the definition of the limit inferior of a net of real 
numbers. 

Suppose that (ta)aEI is a net of real numbers. For each 0:: in I, let ia = 
inf{ t{3 : 0:: ::S f3} and Sa = sup{ t{3 : 0:: ::S f3}; notice that ia and Sa could 
be infinite. If 0::1 ::S 0::2, then ial ::; ia2 and Sa,;::: Sa2l from which it follows 
that lima ia and lima Sa both exist, provided that the notion of the limit 
of a net of real numbers is extended in the obvious way to nets of extended 
real numbers, that is, to nets in the ordered set lRu { -00, +oo}. By analogy 
with sequences of real numbers, it is natural to call these limits the limit 
inferior and limit superior, respectively, of (ta). 

2.5.20 Definition. Let (ta)aEI be a net in R Then lima inf{ t{3 : 0:: ::S f3} 
and lim" sup{ t{3 : 0:: ::S f3} are, respectively, the limit inferior and limit su
perior of (t,,), and are denoted, respectively, by liminfa t" and limsuPa ta. 

See Exercise 2.55 for some properties of the limit inferior and limit su
perior that can be extended from sequences to nets. 

2.5.21 Theorem. If (xa) is a weakly convergent net in a normed space, 
then Ilw-lim"x"ll:s: liminfollxoll· 

PROOF. Let x be the weak limit of a weakly convergent net (X")"EI in 
a normed space X. It may be assumed that x i= O. By Corollary 1.9.8, 
there is an x* in Sx' such that x*x = Ilxll, so Ilxll = limolx*xal. For each 
positive E, there is an 0::, in I such that Ilxll- E :s: Ix*xal :s: Ilx,,11 if 0::, ::S 0::, 

from which it follows that Ilxll :s: liminf"llxall. • 

A function f from a topological space X into lR is said to be lower semi
continuous if f(x) :s: liminf" f(xa) whenever (xa) is a net in X converging 
to some element x of X. Thus, the preceding theorem says that norm func
tions are weakly lower semicontinuous. 
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Suppose that M is a subspace of a normed space X. Then a statement 
such as "the net (xu) in M converges weakly to an x in M" might seem 
ambiguous, since it is not clear whether the statement refers to the weak 
topology of X or to that of M treated as a normed space in its own right. 
Fortunately, it makes no difference. 

2.5.22 Proposition. Let M be a subspace of a normed space X. Then the 
weak topology of the normed space 111 is the same as the topology of M 
inherited from the weak topology of X. 

PROOF. Let (xu) be a net in M and x an element of M. It is enough to 
show that (xa ) converges to x with respect to the weak topology of M if 
and only if (xu) converges to x with respect to the weak topology of X. 
Since the restriction of a member of X* to M always lies in M*, and each 
member m* of M* has a Hahn-Banach extension x;". in X*, it follows that 
x*xa ----> x*x for each x* in X* if and only if m*xa ----> m*x for each m* 
in M*, as required. • 

The rest of this section deals with sequential properties of the weak 
topology and ways in which those sequential properties can mimic those of 
the norm topology. 

It follows from Proposition 2.5.15 that every infinite-dimensional normed 
space contains a weakly Cauchy net with no weak limit, but that does not 
eliminate the possibility that all of the weakly Cauchy sequences in such a 
space could be weakly convergent. This sometimes happens. 

2.5.23 Definition. A normed space is weakly sequentially complete if every 
weakly Cauchy sequence in the space has a weak limit. 

2.5.24 Example. Let ((o:~k»):=l be a weakly Cauchy sequence in £1' 
For each positive integer no, the map (!3n) f--7 !3no is a bounded linear 

functional on £1, which implies that the sequence (O:~:»k=l of nth terms 

of the members of (( o:~k»)) := 1 has a limit O:no' It will be shown that the 

sequence (O:n) oftermwise limits of ((o:~k»):=l is itself a member of £1 and 

that II(o:~k» - (O:n)lll ----> O. 
To this end, lct M be a bound for the norms of the members of the 

sequence ((o:~k»):=l' Then for each pair of positive integers m and k, 

Llo:~k)l:S; M. 
11,=1 

Treating m as fixed and letting k tend to 00 in this inequality shows that 

Tn 

n=l 
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for each positive integer m, from which it follows that 

00 

Llanl::; M, 
n=l 

that is, that (an) E fl. 
Suppose that II(a~k» - (an )111 does not tend to O. Then there is a sub

sequence (a~kj»);:l of (a~k»):l and a positive scalar t such that 

for each j. Let (3~) = ta~kj) - tan for each j and each n. Then (jJ~») ';:1 
is a weakly Cauchy sequence in f1 such that 11«(3$/)111 :::;:. 1 for each j and 

limj (3$/) = 0 for each n. After thinning ((3$/))';:1 if necessary, it may be 

assumed that there is a sequence (nj) of nonnegative integers such that 
0= n1 < n2 < ... and 

m=nj+1 

for each j. For each positive integer m, let 'Ym be a scalar of absolute 
value 1 such that if j is the positive integer for which nj < m ::; njH, then 

'Ym(3';/,) = (-lFI(3';/,\ Let x* be the member of £i that is represented in 
the usual way by the member bn) of f oo . For each positive even integer j, 

nj+l 

Re x* «(3$/) = L 'YmjJ';/,) + 

nj+l 

> L 1(3';/,)1-

> ~ II «(3$/) III - ill «(3~» 111 
:::;:. ~, 

and similarly Re x* «(3~» < - ~ whenever j is odd. This contradicts the 

weak Cauchyness of ((3$/»);:1' so it must be that II(a~k) - (a n )111 --> O. 
Thus, every weakly Cauchy sequence in £1 is norm convergent, from 

which it follows that f1 is weakly sequentially complete even though, by 
Proposition 2.5.15, it cannot be weakly complete. 

Since weakly convergent sequences are weakly Cauchy, it also follows 
that every weakly convergent sequence in f1 is actually norm convergent 
to the weak limit of the sequence. The fact that £1 possesses this property 
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first appeared in a 1920 paper by J. Schur [212], and is important enough 
that Schur's name has become attached to the property. 

2.5.25 Definition. A normed space has Schur's property if it satisfies the 
following condition: Whenever (xn) is a sequence in the space and x an 
element of the space such that Xn ~ x, it follows that Xn ~ x. 

By Example 2.5.4, the space £2 does not have Schur's property. As will 
be shown, it does have the following weakened version of the property. 

2.5.26 Definition. A normed space has the Radon-Riesz property or the 
Kadets-Klee property or property (H), and is called a Radon-Riesz space, 
if it satisfies the following condition: Whenever (xn) is a sequence in the 
space and x an element of the space such that Xn ~ x and Ilxnll ~ Ilxll, it 
follows that Xn ~ x. 

2.5.27 Example. Let (Xk) be a sequence in £2 and x an element of £2 such 
that Xk ~ x and IIXkl12 ~ Ilxll2. It will be shown that Xk --> x. For each k, 
let (a~k)) be the sequence of scalars that is Xk and let Xk be the member 
of £2 obtained by replacing each scalar a in that sequence with its complex 
conjugate n. Similarly, let (an) be the sequence of scalars that is x and let 
x = (an). Let X* and x* be the members of £::; that are identified in the 
usual way with x and x respectively. Then 

n 

n n n 

= Ilxkll~ ~ X*Xk ~ X*Xk + Ilxll~ 
--> Ilxll~ ~ x*x ~ x*x + IIxll~ 
=0. 

Thus, the space £2 has the Radon-Riesz property. 

n 

The reason that the Radon-Riesz property is named after J. Radon and 
F. Riesz is that they proved that the spaces Lp(O,~,J-l), where J-l is a 
positive measure on a O"-algebra ~ of subsets of a set 0, have it when 
1 < p < 00, with Radon's proof coming in 1913 [192] and Riesz's in 1928~ 
1929 [196, 197]. M. 1. Kadets and V. L. Klee used versions of the Radon
Riesz property to develop the ingredients for the proof that all infinite
dimensional separable Banach spaces are homeomorphic; see [119], [138], 
and [122]. In addition, Kadets used it in [120] to prove that every sepa
rable normed space has an equivalent locally uniformly rotund norm; the 
definition of this rotundity property will be given in Chapter 5. Because 
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of the work that Kadets and Klee did with the Radon-Riesz property, it 
is sometimes named after them. The Radon-Riesz property is also some
times called property (H) since a strengthened form of it was given that 
name and studied in a 1958 paper by K. Fan and I. Glicksberg [77], and 
M. M. Day later adopted that notation for the Radon-Riesz property in 
his book [56]. Incidentally, the letter H in the notation does not stand for 
anything. The Fan and Glicksberg paper has an alphabetically-labeled list 
of properties for normed spaces that starts with (A) and ends with (H), and 
their strengthened version of the Radon-Riesz property happens to fall last 
in the list. Such is often the way mathematical notation gets established! 

Exercises 

2.53 Suppose that X is CQ or £p, where 1 < p < 00. Let (,B~"»)aEI be a net 
in X and (,Bn) an element of X. 

(a) Show that if (,B~a» ~ (,Bn), then ,B~a) --+,Bn for each n. 

(b) Show that if the net (,B~Q»)QEI is bounded and ,B~u) --+ ,Bn for 

each n, then (,B~"» ~ (,Bn). 

(c) Show that the conclusion of (b) can fail if the net (,B~C<»)aEI is not 
required to be bounded. 

(d) Suppose that (,B~a»)OEl is a net in £1 and (,Bn) an element of fl. 
Does the result stated in (a) still hold? What about (b)? 

2.54 Suppose that X is an infinite-dimensional normed space. Show that there 
is a net in Sx that converges weakly to 0. (Notice that this implies that 
the map x r--+ Ilxll from a normed space into IF' is not weakly continuous if 
the normed space is infinite-dimensional.) 

2.55 For the purposes of this exercise, the notions of infimum, supremum, and 
net limit in ~ have been extended in the obvious way to the extended 
real numbers. Suppose that (ta ) and (Ua) are nets in ~ having the same 
index set I. Prove that the following hold. 

(a) liminfutu = sup{inf{ttl : Q ~,B}: Q E I} and limsuPata = 
inf { sup{ ttl : a ~ ,B} : Q E I }. 

(b) liminf" ta ~ limsupo t". 

(c) If s ;::: 0, then liminf,,(st,,) = sliminfata and limsuPa(st,,) 
s lim sup" ta. 

(d) If s ~ 0, then lim inf,,(st,,) 
slim infa t". 

(e) liminf"t" + lim infa U a ~ liminfa(ta+ua) and limsuPa(ta+ua ) ~ 
limsupu ta + limsuPa u" except in cases in which a sum of liminf's 
or limsup'6 i6 formally +00 - 00 or -00 + 00 and therefore not 
defined. 

(f) There arc subnets (t"() and (to) of (ta) such that lim"( t"( = lim inf a ta 
and limo to = lim sup" ta. 
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(g) If (td is a convergent subnet of (t",), then lim inf" t", ::; lim, t, ::; 
lim sup" t",. (Notice that lim, t, could be ±oo.) 

(h) If (td is any subnet of (t,,) whatever, then lim inf" t" ::; lim inf, t, ::; 
lim sUPe t( ::; lim sup" to. 

(i) lim inf" t" = lim sup" to if and only iflimo to exists. If lima to exists, 
then lima t" = lim inf a t" = lim sup" ta. 

2.56 Prove that a normed space with its weak topology is of the second category 
in itself if and only if the space is finite-dimensional. (The fact that an 
infinite-dimensional normed space with its weak topology is of the first 
category in itself is a 1938 result of J. V. Wehausen [241].) 

2.57 Find a one-to-one linear operator from a Hausdorff TVS onto a normed 
space such that the operator is bounded but not continuous. (Compare 
this to Theorems 1.4.2 and 2.3.28.) 

2.58 Prove that if £1 is isomorphic ally embedded in a normed space X, then 
some bounded sequence in X h8.5 no weakly Cauchy subsequence. (Com
pare Exercise 2.66.) This is the easy part of Rosenthal's J\ theorem (H. P. 
Rosenthal, 1974 [199]): Each bounded sequence in a Banach space X has 
a weakly Cauchy subsequence if and only if £1 is not isomorphically em
bedded in X. See Joseph Diestel's book [58] for an extensive discussion 
of this theorem and its consequences. 

2.59 Show that Co is not weakly sequentially complete. 

2.60 Suppose that K is a compact Hausdorff space. Show that C(K) is weakly 
sequentially complete if and only if K is finite. 

2.61 Suppose that 1 < p < 00. Show that £p is weakly sequentially complete. 
(Do not use any results from later sections of this book to do this. As will 
be seen in Section 2.8, every reflexive normed space is weakly sequentially 
complete, but that result is a corollary of a fairly deep theorem of that 
section.) 

2.62 Show that the spaces Co and £p such that 1 < p < 00 all lack Schur's 
property. 

2.63 Show that if a normed space X h8.5 Schur's property, then so does every 
subspace of X, but in general the same cannot be guaranteed of every 
quotient space X / M such that M is a closed subspace of X. 

2.64 Show that a normed space X h8.5 the Radon-Riesz property if and only 
if it satisfies this condition: Whenever (Xn) is a sequence in Sx and x is 
an element of Sx such that Xn ~ x, it follows that Xn --> x. 

2.65 A normed space X has the semi-Radon-Riesz property if it satisfies the fol
lowing condition: Whenever (Xn), x, and (x;') are, respectively, a sequence 
in Sx, an element of Sx, and a sequence in Sx· such that x;'xn = 1 for 
each nand Xn ~ x, it follows that x;'x --> 1. 

(a) Show that the Radon-Riesz property implies the semi-Radon-Riesz 
property. 

(b) Show that Co does not have the semi-Radon-Riesz property. 
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The definition of this property is due to L. P. Vlasov [236], who called it 
property (SA) and provided an example to show that it is properly weaker 
than the Radon-Riesz property. See also Vlasov [238] and Megginson [168] 
for further studies of the property. 

2.66 This exercise assumes familiarity with ultranets; see Appendix D. Prove 
that every bounded ultranet in a normed space is weakly Cauchy. Con
clude from this that every bounded net in a normed space has a weakly 
Cauchy subnet. (Compare Exercise 2.58.) 

2.6 The Weak* Topology 

The dual space of a normed space is the setting for the second of the two 
topologies that are the main focus of this chapter. 

2.6.1 Definition. Let X be a normed space and let Q be the natural map 
from X into X**. Then the topology for X* induced by the topologizing 
family Q(X) is the weak* (pronounced "weak star") topology of X* or the 
X topology of X* or the topology a(X*, X). 

That is, the weak* topology of the dual space of a normed space X is the 
smallest topology for X* such that, for each x in X, the linear functional 
x* f-+ x*x on X* is continuous with respect to that topology. 

By analogy with the weak topology, a topological property that holds 
with respect to the weak* topology is said to hold weakly*5 or to be a weak* 
property. Whenever w* is attached to a topological symbol, it indicates that 

the reference is to the wea~* topology. Examples of this would be x~ .:!'.;+ x*, 
* I' * * d -A w 

W - lma Xa = X , an . 
Let X and Q be as in Definition 2.6.1. If x* and y* are different elements 

of X*, then there is an x in X such that x'x oF y*x, so Q(X) is a separating 
family of functions for X*. It therefore follows from Proposition 2.4.8 and 
Theorem 2.4.11 that the weak* topology of X* is a completely regular 
locally convex topology and that the dual space of X' with respect to this 
topology is Q(X). Since Q(X) ~ X** and the weak topology of X* is the 
smallest topology for X* with respect to which all members of X** are 
continuous, the weak* topology of X* is included in the weak topology 
of X*, and the two topologies are the same if and only if Q(X) = X", 
that is, if and only if X is reflexive. The following theorem and proposition 
summarize these observations. 

5 "Weakly'" might sound somewhat awkward, but the alternatives are at least equally 
unpleasant. "Weak*ly" is perhaps grammatically correct, but too outrageous to consider. 
"Weak*" is sometimes used as both an adjective and adverb, but consistency then 
demands that "weak" be used as an adverb, and calling a function "weak continuous" 
also seems awkward. "Weakly'" was suggested to the author by Mahlon Day. 
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2.6.2 Theorem. Let X be a normed space. Then the weak* topology 
of X* is a completely regular locally convex subtopology of the weak topol
ogy of X*, and therefore of the norm topology of X'. Furthermore, the 
weak* and weak topologies of X* are the same if and only if X is reflexive. 

2.6.3 Corollary. Let X be a normed space. Then the weak* and norm 
topologies of X* are the same if and only if X is finite-dimensional. 

PROOF. If X is infinite-dimensional, then the weak topology of X* is a 
proper subtopology of the norm topology by Proposition 2.5.13, and there
fore so must be the weak* topology. If X is finite-dimensional, then the 
weak*, weak, and norm topologies of X' are each the unique Hausdorff 
vector topology of X*. • 

2.6.4 Proposition. Let X be a normed space. Then a linear functional 
on X* is weakly* continuous if and only if it has the form x* f-> x'xu for 
some Xu in X. 

2.6.5 Example. Let Ce~) be the sequence of elements of Co that corre
spond in the usual way to the standard unit vectors of 1\. It is clear that 
Ce~) is weakly* convergent to O. By Corollary 2.5.12, the natural isomet
ric isomorphism from i\ onto Co is also a weak-to-weak homeomorphism, 
from which it follows that (e~) does not converge weakly to O. The weak 
and weak* topologies of Co are therefore different, as Theorem 2.6.2 assures 
must be the case since Co is not reflexive. 

As with the weak topology of a normed space, the results obtained in 
Sections 2.2 and 2.4 for a Hausdorff locally convex topology induced by a 
separating vector space of linear functionals all hold for the weak* topology 
of the dual space X* of a normed space X. For example, Propositions 2.4.4 
and 2.4.13 imply that if (x~) is a net in X* and x* is a member of X*, 
then (x~) is weakly* convergent to x* if and only if x~x -> x'x for each X 

in X, and (x~) is weakly* Cauchy if and only if (x~x) is a Cauchy (that is, 
convergent) net inlF for each x in X. Notice also that by Proposition 2.4.12, 
a basis for the weak* topology of X' is given by the collection of all subsets 
of X* of the form 

{y* : y' E X*, ICy* - x*)xl < 1 for each x in A} 

such that x* E X' and A is a finite subset of X. 
Since the weak* topology of the dual space of a normed space X is a 

subtopology of the norm topology of X*, part (a) of the following result is a 
strengthening of part (a) of Proposition 1.10.15, while the rest of this result 
provides the characterizations of (.1.B).1. for a subset B of X* promised in 
the discussion following that proposition. 
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2.6.6 Proposition. Let X be a normed space and let A and B be subsets 
of X and X* respectively. 

(a) The set A.l is a weakly* closed subspace of X*. 

(b) (.lB).l = [B] w·. 

(c) If B is a subspace of X*, then (.lB).l = B W
•• 

PROOF. Let Q be the natural map from X into X**. Then 

A.l = {x*: x* E X*, x'x = 0 for each x in A} = n{ker(Qx): x E A}. 

For each x in A, the linear functional Qx is weakly* continuous on X* , from 
which it follows that n{ ker( Qx) : x E A} is a weakly* closed subspace 
of X', proving (a). For (b), first notice that e-B).l is a weakly* closed 
subspace of X* that includes B, so [B] w' c:;: eB).l. Now suppose that 
xii E X* \ [B] w·. An application of Corollary 2.2.20 then yields an Xo 
in X such that xiixo = 1 and [B] w' c:;: ker(Qxo). Since Xo E .lB, it follows 
that xii <t (:B).l. Therefore (.LB).l c:;: [B] w', which finishes the proof of (b). 

Since (B) W = [B] w' by Theorem 2.2.9 (i), part (c) follows immediately .• 

Suppose that X is a normed space and that A c:;: X*. In accordance with 
Definition 2.2.8, the set A is weakly* bounded if, for each weak* neighbor
hood U of 0 in X*, there is a positive Su such that A c:;: tU whenever 
t > su. By Proposition 2.4.14, the set A is weakly* bounded if and only if 
{x*x : x* E A} is bounded in II? for each x in X. The following result is 
the weak* analog of the fact that a subset of a normed space is bounded if 
and only if it is weakly bounded. However, notice the requirement that X 
be a Banach space. 

2.6.7 Theorem. Let X be a Banach space. Then a subset of X* is 
bounded if and only if it is weakly* bounded. 

PROOF. Since every weak* neighborhood of 0 in X* is open with respect to 
the norm topology, it is clear that every bounded subset of X* is weakly* 
bounded. Conversely, suppose that A is a weakly* bounded subset of X* . 
It may be assumed that A is nonempty. Then sup{ Ix'xl : x* E A} is finite 
for each x in the Banach space X, so the uniform boundedness principle 
implies that sup{ Ilx' II : x* E A} is finite, as required. • 

2.6.8 Corollary. Let X be a Banach space. Then a subset A of X* is 
bounded if and only if {x'x : x' E A} is a bounded set of scalars for 
each x in X. 

If X is a normed space, then it follows from Propositions 2.2.11, 2.2.12, 
and 2.1.47 that wcakly* compact sets and weakly* Cauchy sequences in X* 
are weakly* bounded and that weakly* convergent sequences in X' are 
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weakly* Cauchy. This immediately yields two more corollaries of Theo
rem 2.6.7. 

2.6.9 Corollary. Let X be a Banach space. Then weakly* compact subsets 
of X* are bounded. 

2.6.10 Corollary. Let X be a Banach space. Then weakly* Cauchy se
quences in X*, and so weakly* convergent sequences in X*, are bounded. 

Neither the preceding theorem nor any of its three corollaries remain true 
if X is only required to be a normed space; see Exercise 2.68. However, the 
following result does hold for every normed space, whether or not it is 
complete. 

2.6.11 Proposition. Let X be an infinite-dimensional normed space. Then 
every nonempty weakly* open subset of X* is unbounded. 

PROOF. Since X is infinite-dimensional, so is X·. If A is a nonempty 
weakly* open subset of X*, then A is also weakly open, and so is un
bounded by Corollary 2.5.9. • 

The following two results are the weak* analogs of Propositions 2.5.14 
and 2.5.15. The first of the two has a completeness hypothesis that cannot 
be omitted; sec Exercise 2.70. 

2.6.12 Proposition. Let X be a Banach space. Then the weak* topology 
of X* is induced by a metric if and only if X is finite-dimensional. 

PROOF. If X is finite-dimensional, then the weak* topology of X* is in
duced by a metric since it is the same as the norm topology. For the con
verse, suppose that X is infinite-dimensional and that the weak* topology 
of X* is induced by a metric d. For each positive integer n, let Un be 
the d-open ball in X* centered at 0 and having d-radius n-l. By Proposi
tion 2.6.11, each Un contains some x~ such that Ilx~11 :::: n. It follows that 
(x~) is an unbounded sequence in X* that converges weakly* to 0, which 
contradicts Corollary 2.6.10. • 

2.6.13 Proposition. Let X be a normed space. Then the weak* topology 
of X* is complete if and only if X is finite-dimensional. 

PROOF. If X is finite-dimensional, then the weak* topology of X* is the 
same vector topology as the norm topology, and therefore is complete by 
Corollary 2.1.51. 

Suppose that X is infinite-dimensional. By Theorem 1.4.11, some lin
ear functional f on X is unbounded. Let I be the collection of all finite 
subsets of X, preordered by declaring that Fl ::< F2 when Fl ~ F2. For 
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each F in J, obtain an x'F in X* that agrees with I on F by first restrict
ing I to the finite-dimensional subspace (F) of X, then letting x'F be any 
Hahn-Banach extension to X of this bounded linear functional on (F). The 
net (x'F)FEI is weakly* Cauchy, since x'Fx = Ix when {x} :::::; F, but can
not be weakly* convergent to any x* in X*, since that would require that 
x*x = limF x'Fx = Ix for each x in X. • 

Just as norm functions are weakly lower semicontinuous, norm functions 
on dual spaces are weakly* lower semicontinuous. 

2.6.14 Theorem. Let X be a normed space. If (x:) is a weakly* conver
gent net in X*, then IIw*-limnx~11 ::::: liminCl'llx~ll. 

PROOF. Let x* = w*-lim", x~. Suppose that I' > o. Then there is an x 
in Ex such that limQlx~xl = Ix*xl 2 Ilx'll - E. Since there is an O:E in the 
index set for (x:) such that Ilx*11 - 21' ::::: Ix~xl ::::: Ilx~11 when 0:. :::::; 0:, it 
follows that IIx*11 ::::: liminfallx~ll· • 

The following partial converse of the preceding theorem will have an 
application in Example 5.4.13. 

2.6.15 Theorem. Suppose that X is a normed space, that 11·lla is a 
norm on X* equivalent to its usual dual norm, and that Ilw*-lim", x~lla ::::: 
lim inf",llx~ lIa whenever (x:) is a weakly* convergent net in X*. Then there 
is a norm II· lib on X equivalent to its original norm such that 11·lla is the 
dual norm on (X, 11·llb)*. 

PROOF. Throughout this proof, the original norms of X and X* will be 
denoted by 11·11. Let Ilxllb = sup{lx*xl: x* E X*, Ilx*lla::::: I} whenever 
x E X. It is easy to check that II· lib is a norm on X. Now let sand t 
be positive reals such that sllx* II ::::: Ilx* Iia ::::: tllx* II whenever x* E X*. If 
x E X, then 

and 

Ilxllb = sup{ Ix*xl : x* EX', Ilx'lla ::::: 1} 
::::: sup{ Ix*xl : x* E X*, sllx*11 ::::: I} 

= s-lllxli 

Ilxll = sup{ Ix*xl : x* E X*, Ilx* II ::::: I} 

::::: sup{ Ix*xl : x* E X*, t-lllx* Iia ::::: 1 } 

= tllxllb, 

so sllxllb :s: Ilxll :s: tllxllb. Therefore II· lib is equivalent to the original norm 
of X. 
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Let II· lie be the dual norm on (X, 11'llb)*' All that remains to be proved is 
that 11·lIa = II· lie. Fix an x* in X*. If Ilx*lla :S 1, then Ix*xl :S 1 whenever 
Ilxllb :S 1, so Ilx*lle :S 1. It follows that Ilx*lle :S Ilx*lla no matter what the 
value of Ilx*lla is. All that is left to be shown is that Ilx*lle ~ Ilx*lla. 

Let E be a fixed positive number. Suppose that n E N and that Xl, ... , Xn 

is a basis for an n-dimensional subspace Mo of X. Let (T(x»)(x*) = x*x 
whenever X E X and x' E X'. Then T is an isometric isomorphism from 
(X, II· lib) into (X*, 11·lla)*. If aI, ... , an ElF, then 

lalx'xl + ... + anx'xnl :S Ilx'lle lIalXl + ... + c¥nxnllb 

= Ilx'lle IlalTxl + ... + anTxnll(x*,II'llu)*' 

so by Helly's theorem there is an xMo in X' such that 

when j = 1, ... , n, and 

Notice that xMo and x' agree on Mo. It follows that for each finite-dimen
sional subspace M of X there is an xM in X* such that xM and x* agree 
on M and IlxM Iia :S Ilx* lie + €. Preordering the collection of all finite
dimensional subspaces of X by declaring that Ml :::S M2 when Ml 0;;;; M2 

makes (xM) into a net. Since x M :!!.* x*, it follows that 

Ilx' Iia :S lim inf IlxM Iia :S Ilx' lie + E. 
M 

Therefore Ilx'lla :S Ilx'lle since E is an arbitrary positive number. • 

So far, most of the results of this section have emphasized the similarities 
between the weak and weak* topologies, especially when the weak* topol
ogy is for the dual space of a Banach space. As the following two examples 
show, there are also some fundamental ways in which the two topologies 
differ. 

2.6.16 Example. Let X be a nonreftexive Banach space and let x*' be 
any member of X** that is not in the image of X under the natural map 
from X into X**. Since x*' is continuous but not weakly* continuous, the 
kernel of x** is a closed convex subset of X' that is not weakly* closed. 
Thus, the weak* analog of Theorem 2.5.16 does not hold. 

2.6.17 Example. Let Co be identified with £1 in the usual way. Define 
T: Co -> Co by the formula T((an») = (2::nC¥n,a2,c¥3,a4,''')' Then T 
is linear, is one-to-one since ker(T) = {O}, and maps Co onto itself since 
T(a1 - 2::~=2 an, a2, a3,"') = (an) whenever (an) E co' Since IIT(an)lll :S 
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211(an)lh and IIT-l(an)lIl :::: 211(an)lIl whenever (an) E co, the operator T 
is an isomorphism from Co onto itself. 

Now let (e~) be the sequence of standard unit vectors of £1, viewed as 
members of Co. Then (e~) converges weakly* to 0, but the sequence (Te~) 
does not since (Te~)(l, 0, 0, 0, ... ) = 1 for each n. The operator T is there
fore not weak*-to-weak* continuous, even though it is a norm-to-norm iso
morphism from Co onto itself. Thus, the weak* analogs of Theorem 2.5.11 
and Corollary 2.5.12 both fail. 

As will be seen in Corollary 3.1.12, it is true that if X and Yare normed 
spaces and T is a weak*-to-weak* continuous linear operator from X* 
into Y*, then T is norm-to-norm continuous. 

The next theorem illustrates another way in which the weak* topology 
is strikingly different from both the norm and the weak topology. As was 
mentioned in the introduction to this chapter, many of the difficulties that 
arise when trying to extend familiar facts about finite-dimensional normed 
spaces to the infinite-dimensional case come about because of the loss of 
the Heine-Borel property, that is, because the closed unit ball of a normed 
space X is not compact unless X is finite-dimensional. When X is infinite
dimensional, the fact that the weak topology of X is a proper subtopology 
of the norm topology makes it easier for Bx to be weakly compact than 
compact, and in fact Bx is weakly compact if and only if X is reflexive, as 
will be seen in Theorem 2.8.2. This leads naturally to the question of what 
conditions on X assure that Bx. is weakly* compact. 

One of the major results of the theory of normed spaces is that B x' 
is always weakly* compact. The general form of this result first appeared 
in a 1940 paper by Leonidas Alaoglu, and for that reason is often called 
Alaoglu's theorem. However, there is a result on page 123 of Banach's 1932 
book [13] that easily implies the theorem when X is a separable Banach 
space; see Exercise 2.73 at the end of this section. For that reason, Banach 
is often given joint credit with Alaoglu for discovering the theorem, and 
that is what is done here. 

2.6.18 The Banach-Alaoglu Theorem. (S. Banach, 1932 [13]; L. Alao
glu, 1940 [3]). Let X be a normed space. Then Bx' is weakly* compact. 

PROOF. Let Q be the natural map from X into X**. Then Q(Bx) is a sep
arating topologizing family of functions on Bx' that induces the restriction 
of the weak* topology of X* to Bx-. All references to a topology for Bx' in 
the rest of this proof are to this topology. Let I = { a : a E IF, lal ::; 1 }, let 
Ix = I for each x in Bx , and let IBx be the topological product ITxEBx Ix. 

Then IBx is compact by Tychonoff's theorem, and the map F: Bx. ----+ IBx 

defined by the formula F(x*) = (X*X)XEBx is a homeomorphism from Bx' 
onto a topological subspace of IBx by Proposition 2.4.7. The theorem will 
be proved once it is shown that F(Bx .) is closed in IBx. 
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Let (x;) be a net in Bx- such that F(x;) converges to some (OX)XEBx 

in JBx . The goal is to find an x* in Bx- such that F(x*) = (Ox)XEBx ' 

For each nonzero x in X, let x*(x) = IlxlloCllxll-1x), and let x*(O) = O. 
Since x* (x) = Ilxlllim,a xHllxll-1x) = lim,a x;x whenever x E X \ {O}, and 
thus x* (x) = lim,a x~x for every x in X, it follows that x* is a linear func
tional on X, and furthermore that x* E Bx- since Ix*xl = lim,alx.exl ::; Ilxll 
whenever x EX. For each x in B x, 

so F(x*) = (OX)XEBx , as required. • 
It is an obvious consequence of the Banach-Alaoglu theorem that every 

closed ball in the dual space of a normed space is weakly* compact, from 
which the next result follows immediately. 

2.6.19 Corollary. Let X be a normed space. Then every bounded subset 
of X* is relatively weakly* compact. In particular, subsets of X* that are 
bounded and weakly* closed are weakly* compact. 

2.6.20 Corollary. Let X be a separable normcd space and let A be a 
bounded subset of X*. Then the relative weak* topology of A is induced 
by a metric. 

PROOF. It may be assumed that A is weakly* closed in X* and therefore 
weakly* compact. Let D be a countable dense subset of X and let Q be 
the natural map from X into X'*. Since Q(X) is a separating family of 
functions for A, so is the countable dense subset Q(D) of Q(X). It follows 
from Corollary 2.4.10 that the relative weak* topology of A is metrizable .• 

2.6.21 Corollary. Let X be a Banach space. Then every weakly* Cauchy 
sequence in X* is weakly* convergent. That is, every Banach space has a 
weakly* sequentially complete dual space. 

PROOF. Let (x~) be a weakly* Cauchy sequence in X*. Corollary 2.6.10 
implies that the sequence (x~) is bounded, and therefore has a weakly* 
convergent subnet by the relative weak* compactness of bounded subsets 
of X*. It follows from Proposition 2.1.46 that (x;,) is weakly* convergent 
to the limit of that subnet. • 

Dual spaces of infinite-dimensional Banach spaces are therefore always 
weakly* sequentially complete but never weakly* complete. An example of 
an incomplete normed space whose dual space is not weakly* sequentially 
complete is given in Exercise 2.69. 

2.6.22 Corollary. Let X be a normed space. Then there is a compact 
Hausdorff space K such that X is isometrically isomorphic to a subspace 
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of C(K). If X is a Banach space, then X is isometrically isomorphic to a 
closed subspace of C(K). 

PROOF. Let K be Bx- with the topology it inherits from the weak* topol
ogy of X·, and define T: X -+ C(K) by the formula (T(x))(x*) = x*x. It 
is easy to check that T really does take its values in C(K) and that T is 
linear. If x EX, then it follows from Theorem 1.10.9 that 

Ilxll = max{ Ix*xl : x* E Bx·} = max{ I(Tx)(x*)1 : x* E K} = IITxll oo ) 

so T is an isometric isomorphism from X into C(K). If X is a Banach 
space, then so is T(X), and therefore T(X) is closed in C(K). • 

Thus, in a sense the entire theory of normed spaces is contained in the 
theory of the subspaces of normed spaces C(K) such that K is a compact 
Hausdorff space. This by no means trivializes the theory of normed spaces, 
but rather serves to point out the richness of the theory of the spaces C(K). 

Suppose that X is a normed space. If X is separable, then the relative 
weak* topology of Bx- is metrizable by Corollary 2.6.20. It turns out that 
the converse is also true. 

2.6.23 Theorem. Let X be a normed space. Then the relative weak* 
topology of Bx' is induced by a metric if and only if X is separable. 

PROOF. As was observed in the discussion preceding the theorem, one 
direction follows from Corollary 2.6.20. For the other, suppose that the 
relative weak* topology of Bx' is induced by some metric d. For each 
positive integer n, let Un be the d-open ball in Bx- of radius n-1 centered 
at O. By Proposition 2.4.12, there is for each n a finite subset An of X such 
that 

Un ~ Bx' n {x* : x* E X*, Ix*xl < 1 for each x in An} 

~ Bx' n {x· : x* EX·, x*x = 0 for each x in An }, 

from which it follows that 

{O} = nUn = Bx- n { x* : x· EX·, x·x = 0 for each x in U An }. 
n n 

Since {x· : x· EX·, x·x = 0 for each x in Un An} is a subspace of X·, 
it must be that 

{ x· : x· EX·, x·x = 0 for each x in UAn } = {O}. 
n 
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Therefore by Proposition 1.10.15 (b), 

= 1. { x' : x' EX', x'x = 0 for each x in U An } 
n 

Since Un An is countable, it follows from Proposition 1.12.1 (a) that X is 
separable. • 

The second dual X" of a normed space X is the dual of X' and therefore 
has its own weak* topology. The rest of this section concerns that topology. 

2.6.24 Proposition. The natural map Q from a normed space X into X" 
is weak-to-weak* continuous, and in fact is a weak-to-relative-weak* ho
meomorphism from X onto Q(X). 

PROOF. Just notice that if (xa) is a net in X and x is an element of X, 
then Xa :!!!., x if and only if x'xa --+ x'x for each x* in X', which happens 

if and only if Qx", :'!'... Qx. • 

2.6.25 Corollary. Let X be a normed space and let Q be the natural map 
from X into X**. Then the topologies that Q(X) inherits from the weak 
and weak* topologies of X** are the same. 

PROOF. It follows from the preceding proposition and Corollary 2.5.12 
that Q is both a weak-to-relative-weak* homeomorphism from X onto the 
subset Q(X) of X** and a weak-to-weak homeomorphism from X onto 
the normed space Q(X). By Proposition 2.5.22, the weak topology of the 
normed space Q(X) is the same as the relative weak topology of Q(X) when 
Q(X) is viewed as a subset of X**, from which the corollary follows. • 

If Q is the natural map from a nonreflexive Banach space X into its 
second dual, then Q(X) is a convex proper subset of x*' that is closed and 
therefore weakly closed, so Q(X) is neither dense nor weakly dense in X**. 
However, it turns out that Q(X) must be weakly* dense in X**, and in 
fact a bit more than that can be said. 

2.6.26 Goldstine's Theorem. (H. H. Goldstine, 1938 [89]). Let X be a 
normed space and let Q be the natural map from X into X**. Then Q(Ex) 
is weakly* dense in Ex ... 

---w' 
PROOF. It is enough to show that Ex·' C;;;; Q(Ex) . Suppose that x~' is an 

---7V'" 

element of X** not in Q(Ex) . It is enough to show that Ilx~* II > 1. Since 
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---w' 
Q(Bx) is convex and weakly* closed, an application of Theorem 2.2.28 
produces an Xo in X* such that 

Ix~'x~1 ~ Rex~'x~ 

> sup{ Re x*'x~ : x" E Q(Bx) w·} 
~ sup{Rex~x: x E Bx} 

= IIRex~1I 
= Ilx~ll· 

It follows that Ilx;)' II > 1. • 
2.6.27 Corollary. Let X be a normed space and let Q be the natural map 

---w' 
from X into X". Then Q(Bx) = Bx'" 

PROOF. The Banach-Alaoglu theorem and Goldstine's theorem together 
imply that Q(Bx) is weakly* dense in the weakly* closed set Bx", from 
which the corollary follows. • 

2.6.28 Corollary. Let X be a normed space and let Q be the natural map 
from X into X**. Then Q(X) is weakly* dense in X**. 

PROOF. If x** is a nonzero element of X*', then Goldstine's theorem im-
w· 1 

plies that there is a net (x",) in Ex such that Qx", ---- Ilx" 11- x**, from 

which it follows that Q(llx**llx",) ~. x**. • 

Exercises 

2.61 Suppose that X is Co or f p , where 1 :S p < 00, and that X' is identified 
in the usual way with the appropriate fq such that 1 :S q :S 00. Let 

((,B~<»))<>El be a net in X' and (,Bn) an element of X'. 

(a) Show that if (,B~Q») ~. (,Bn), then ,B~<» ----> (3n for each n. 

(b) Show that if the net ((,B~"'»))"'El is bounded and ,B~"') ----> ,Bn for 

each n, then (,B~Q») ~. (,Bn). 

(c) Show that the conclusion of (b) can fail if the net ((,B~Q») tEl is not 
required to be bounded. 

2.68 Let X be the vector space of finitely nonzero sequences equipped with the 
f1 norm. For each positive integer m, let x;" : X ----> IF be defined by the 
formula x;" ((an)) = m . am. Let A = {x;" : mEN}. 

(a) Show that A is a weakly* bounded subset of X' that is not norm 
bounded, and therefore that the conclusions of Theorem 2.6.7 and 
Corollary 2.6.8 do not follow when X is only required to be a normed 
space. 
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(b) Show that the conclusions of Corollaries 2.6.9 and 2.6.10 do not 
follow when X is only required to be a normed space. 

2.69 Let X be the vector space of finitely nonzero sequences equipped with 
the £1 norm. Find a weakly* Cauchy sequence in X· that is not weakly* 
convergent. 

2.70 Give an example of an infinite-dimensional normed space X such that the 
weak* topology of X· is metrizable. 

2.71 Suppose that X is a normed space and that D is a dense subset of S x. 

(a) Show that a bounded net (x~) in X· converges weakly* to an ele
ment x" of X" if and only if x~x --> x·x for each x in D. 

(b) Give an example to show that the requirement in (a) that the net 
be bounded cannot be omitted. 

(c) Let 0[0,1]* be identified with rca[O, 1] in the usual way. Show that 
a bounded net (1-£",) in 0[0,1]· converges weakly* to an element 1-£ 
of 0[0,1]* if and only if f[o.I) t n dl-£",(t) --> f[o.I) t n dl-£(t) for each 
nonnegative integer n. 

2.72 Suppose that X is a separable normed space. The goal of this exercise 
is to show that there is a norm 11·110 on X" such that for each bounded 
subset A of X·, the topologies induced on A by the weak* and 11·110 
topologies of X" are the same. It may be assumed that X #- {O}. Let 
{xn : n EN} be a countable dense subset of S x. 

(a) Define 11·110: X" ..... IR by the formula Ilx"llo = Ln Tnlx·xnl. Show 
that 11·110 is a norm on X', and that if 11·11 is the usual norm of X·, 
then IIx"llo :::; Iix"1I for each x" in X· . 

(b) Let A be a bounded subset of X·. Show that the topologies that 
A inherits from the weak* and 11·110 topologies of X" are the same. 
Exercise 2.71 might help. 

Do not use the Banach-Alaoglu theorem or any of its corollaries in your 
arguments. Notice that this provides a proof of Corollary 2.6.20 that is 
not based on the Banach-Alaoglu theorem. 

2.73 The following result appears on page 123 of Banach's book [13], using 
slightly different notation and terminology: If the Banach space X is 
separable, then every bounded sequence in X" has a weakly* convergent 
subsequence. Prove that this implies the conclusion of the Banach-Alaoglu 
theorem when X is a separable Banach space. Of course, you should not 
use the Banach-Alaoglu theorem or any of its corollaries in your argument. 
You might find Exercise 2.72 helpful. 

2.74 For this exercise, it will be useful to know that if K is a compact metric 
space and P is the Cantor set, then there is a continuous map from P 
onto K. (I. Rosenholtz has given a particularly nice proof of this that is 
built up from a sequence of elementary lemmas; see [198].) Let X be a 
separable normed space. 

(a) Prove that X is isometrically isomorphic to a subspace of O(P). 

(b) Prove that X is isometrically isomorphic to a subspace of 0[0, 1]. 
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2.15 (a) Prove that if X is a separable Banach space, then every weakly* 
compact subset of X* is weakly* sequentially compact. 

(b) Find a subset of f~ that is weakly* compact but not weakly* se
quentially compact. 

2.76 Use the Banach-Alaoglu theorem to prove that every bounded net in a 
normed space has a weakly Cauchy subnet. (See Exercise 2.66 for another 
line of proof that uses ultranets.) 

2.11 Corollary 2.6.28 can be easily derived from results of this section much 
more basic than Goldstine's theorem. Do so. 

2.78 The purpose of this exercise is to generalize the notion of a weak* topology 
to a more abstract setting. Let X be a topological vector space and let Y 
be the subset of (X')# consisting of all linear functionals f on X· for 
which there is an xf in X such that fx' = X'Xf for each x' in X'. 
Then the weak* topology of x' is the topology induced on X' by the 
topologizing family Y. 

(a) Prove that Y is a subspace of (X')# that is a separating family of 
functions for X', and therefore that the weak* topology of X' is 
a completely regular locally convex topology for X· such that the 
dual space of X' with respect to this topology is Y. 

Suppose that A C;;; X. Then {x' : x· EX', Ix'xl :S 1 for each x in A} is 
called the absolute polar set for A. 

(b) Let U be a neighborhood of 0 in X. Prove that the absolute polar 
set for U is weakly* compact. 

(c) Derive the Banach-Alaoglu theorem from (b). 

The statement proved in (b) is itself sometimes called the Banach-Alaoglu 
theorem. 

2.7 The Bounded Weak* Topology 

Most of this section is devoted to the study of yet another locally convex 
topology for the dual space of a normed space, the bounded weak* topology. 
Though this topology is interesting in its own right, the primary reason for 
introducing it is to obtain a theorem due to M. G. Krein (pronounced 
"crane") and V. L. Smulian that provides a useful way to test whether a 
convex subset of the dual space of a Banach space is weakly* closed. 

2.1.1 Definition. (J. Dieudonne, 1950 [63]). Let X be a normed space. 
For each x· in X* and each sequence (xn) in X that converges to 0, let 

B(x*, (xn)) = {y* : y' EX', I(y* - x*)xnl < 1 for each n}. 

The topology for X* having the basis consisting of all such sets B(x*, (xn )) 

is the bounded weak* topology of X'. 
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Of course, it must be shown that the collection of sets B(x*, (xn)) really 
is a basis for a topology for X*. This is done in the proof of the next 
theorem. 

For notational convenience, properties related to the bounded weak* 
topology will often be referred to as "b-weak*" properties; for example, 
a set that is closed with respect to the bounded weak* topology will be 
said to be b-weakly* closed. Convergence of a net (x~) to an x* with re-

spect to this topology will be denoted by writing x~ ~ x*. 

2.7.2 Theorem. Let X be a normed space. Then the bounded weak* 
topology of X* is a completely regular locally convex topology. Let 'Ibw' 
be this topology, and let 'Iw' and 'In be, respectively, the weak* and norm 
topologies of X*. Then 'Iw' ~ 'Ibw' ~ 'In- If A is a bounded subset of X*, 
then the relative bounded weak* and relative weak* topologies of A are the 
same. If 'I is a topology for X* such that the relative topologies inherited by 
each bounded subset of X* from 'Iw* and 'I' are the same, then 'I ~ 'I'bw* . 

PROOF. Let ~ be the collection of all subsets B(x*, (xn)) of X* as in 
Definition 2.7.1. It is necessary to check that ~ really is a basis for a 
topology for X*. Since X* = B(O, (0,0, ... )), it follows trivially that X' = 

U{B: B E ~}. Now suppose that B(xi, (xl,n)),B(x;, (x2,n)) E ~ and 
that xCi E B(xi, (Xl,n)) n B(X2' (X2,n))' Since Xl,n -+ 0 and X2,n -+ 0, it 
follows that { I (xCi - xj)Xj,nl : j E {I, 2}, n EN} has a maximum element 
less than 1. Let 8 be such that 

0< 8 < 1 - max{ l(xC; - Xi)xj,nl : j E {I, 2}, n EN}, 

and let (XO,n) be the sequence 

8-1 8-1 8-1 ) X22' X13 ' X2 3, . " , , , , 

a sequence in X that converges to O. If X* E B(xCi, (xo,n)), then 

I(x* - xi)xj,nl s: I(x' - XC;)Xj,nl + I (xC; - xi)Xj,nl < 8 + (1 - 8) = 1 

whenever n E Nand j is lor 2, so x* E B(xi,(x1,n)) n B(X2,(X2,n))' 
It follows that xCi E B(xC;, (xo,n)) ~ B(xi, (x 1,n)) n B(x;, (X2,n)), which 
finishes the proof that ~ is a basis for a topology for X*. 

The argument just given yields another fact that will be useful later in 
this proof. Suppose that x* E X*, that (xn) is a sequence in X converging 
to 0, and that xCi E B(x*, (xn))' Letting xi = x; = x' and (Xl,n) = 
(X2,n) = (xn ) in the argument of the preceding paragraph shows that there 
is a sequence (XO,n) in X converging to 0 such that xC; E B(xCi, (xo,n)) ~ 
B(x*, (xn)). 

To see that 'I'w' ~ 'Ibw* ~ 'In, first observe that for each x* in X* and 
each x in X, 

B(x*, (x, 0, 0, ... )) = {y* : yO E X*, I(y* - x*)xl < I}. 
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It follows from this and Proposition 2.4.12 that 

{B(x*, (x,O,O, ... )) : x* E X*, x EX} 

is a subbasis for 'Iw', and therefore that 'Iw' ~ 'Ibw" Notice that this 
implies that 'Ibw' is Hausdorff. Now suppose that (X~)O:EI is a net in X* 
that is norm convergent to an x* in X*. Then for each sequence (xn ) in X 
converging to ° there is an a(xn ) in I such that x~ E B(x*, (xn )) when 

a(x n } :5 a. This implies that x~ ~ x*, so 'Ibw' ~ 'In. 
The next order of business is to show that 'Ibw' is locally convex. Suppose 

that x*, y* E X*, that a E IF, and that U and V are b-weak* neighborhoods 
of x* + y* and ax* respectively. Then there are sequences (un) and (vn ) 

in X converging to ° such that x* + y* E B(x* + yo, (Un)) ~ U and 
ax' E B(ax*, (vn )) ~ V. It is easy to check that 

from which it follows that addition of vectors is 'Ibw·-continuous. If 

1.8 - al < min {(Ill) : n EN} 2 x'vn + 1 

and w* E B(x*, ((2Ial + l)vn )), then a straightforward computation shows 
that I (.8w' - .8x* )vn I < ~ and I (,Bx' - ax' )vn I < ~ for each n, so ,Bw' E 
B( ax', C vn )). Multiplication of vectors by scalars is therefore 'Ibw.-continu
ous, so 'Ibw' is a vector topology. It then follows that 'Ibw' is locally convex 
since its basis ~ consists of convex sets. Because this vector topology is 
Hausdorff, it is completely regular by Theorem 2.2.14. 

Now suppose that A is a bounded subset of X'. Let x* be a member 
of X* and let (xn ) be a sequence in X converging to O. Then there is a 
positive integer no such that I(y* -x*)xnl < 1 whenever y' E A and n > no. 
It follows that 

An B(x', (xn )) 

= An {y': y' E X*, ICy* - x*)xnl < 1 when n = 1, ... , no}. 

Since An {y* : y* E X*, I(y* - x*)xnl < 1 when n = 1, ... , no} is open 
with respect to the relative topology that A inherits from 'Iw', it is clear 
that the relative topologies that A inherits from 'Ibw' and 'Iw' are the 
same. 

Let 'I be a topology for X* such that the relative topologies inherited 
by each bounded subset of X* from 'Iw' and 'I are the same, and let U 
be a member of 'I. The proof of the theorem will be finished once it is 
shown that U E 'Ibw" Let x* be an element of U. The proof that U is 
b-weakly* open is based on the construction of a sequence Fo, F l , F2 , ... 

of finite subsets of X such that for each nonnegative integer n, 
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(1) {y* : y* E X*, Ily* - x*11 ::; n + 1, I(y* - x*)xl ::; 1 when x E Fa U 
... U Fn } ~ U; and 

(2) Ilxll ::; n- l if n ;?: 1 and x E Fn. 

The construction begins with the observation that since the closed ball 
of radius 1 centered at x* inherits the same relative topologies from 'T 
and 'Tw " there are elements Xl, ... ,xno of X such that 

{y* : y* E X*, Ily* - x*11 :so 1, I(y* - x*)xjl < 1 when j = 1, ... , na} ~ U. 

Let Fa = {2XI, ... , 2xno }. Now suppose that mEN and that finite subsets 
Fa, .. . , Fm - 1 of X have been found such that (1) and (2) are satisfied when 
n = 0, ... ,m - 1. Suppose further that there is no finite subset Fm of X 
such that (1) and (2) are satisfied when n = m. Let I be the collection 
of all finite subsets of m- 1 Bx , pre ordered by declaring that F =5 G when 
F ~ G. For each F in I, let 

K(F) = {y*: y* E X*, lIy* -x*II:so m+ 1, 

I(y' - x*)xl ::; 1 whcn x E Fa U ... U Fm - 1 U F} \ U. 

Notice that each K(F) is nonempty and that K(F) :;2 K(G) when F =5 G. 
As a straightforward consequence of the Banach-Alaoglu theorem and the 
fact that 'T and 'Tw' induce the same relative topology on bounded subsets 
of X*, each K(F) is weakly* compact. For each F in I, let x'F be an element 
of K(F). Then (x'F)PE[ is a net in the weakly* compact set K(0) and has 
the property that Xc E K(F) whenever F =5 G, and so has a subnet with 
a weak* limit Xo in n{ K(F) : F E I}. It follows that I(xo - x*)xl < 1 
whenever X E m- 1 Bx , so Ilxo - x*11 :so m. This means that 

Xo E {y* : y* E X*, Ily' - x* II :so m, 

I(y* - x*)xl :so 1 when x E Fa U··· U Fm - 1 }, 

but this last set lies inside U by (1) when n = m-l. This is a contradiction, 
since xC; E K(0) :;;;; X* \ U. It follows that there is a finite subset Fm of X 
such that (1) and (2) are satisfied when n = m, which mcans that the 
construction of the sequence Fa, F1 , F2 , ... can be accomplished. It may be 
assumed that each Fn is nonempty, since each empty Fn may be replaced 
by {O}. 

By (2), the elements of U~=a Fn can be listed as a sequence (xn ) that 
converges to O. It follows from (1) that B(x*, (xn )) :;;;; U, which is enough 
to establish that U is b-weakly* open. • 

A useful fact obtained in the proof of the preceding theorem is worth 
repeating. With all notation as in Definition 2.7.1, suppose that x' is an 
element of a b-weakly* open subset U of X'. Then there is a sequence (xn) 
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in X converging to 0 such that B(x*, (xn )) ~ U. That is, there is a basic 
b-weak* neighborhood of x* "centered" at x* that is included in U. 

Suppose that (x~) is a bounded net in the dual space of a normed space 
and that x* is an element of that dual space. If A is the set consisting 
of x* and the terms of (x~), then the preceding theorem assures that the 
relative bounded weak* and relative weak* topologies of A are the same. 
The following result is an immediate consequence. 

2.7.3 Corollary. Let X be a normed space, let (x~) be a bounded net 

in X*, and let x* be an element of X*. Then x~ ~ x* if and only if 

x* ~* x* 
Cl • 

The characterizations of b-weakly* open sets in the following corollary 
are often used to define the bounded weak* topology. 

2.7.4 Corollary. (J. Dieudonne, 1950 [63]). Let X be a normed space and 
let A be a subset of X*. Then the following are equivalent. 

(a) The set A is b-weakly* open. 

(b) The set A n B is relatively weakly* open m B whenever B is a 
bounded subset of X*. 

(c) The set An tBx- is relatively weakly* open in tBx- whenever t > O. 

PROOF. Let 'I be the collection of all subsets U of X* such that U n B is 
relatively weakly* open in B whenever B is a bounded subset of X*. It is 
easy to check that 'I is a topology for X*, that 'I and the weak* topology 
of X* induce the same relative topology on each bounded subset of X*, and 
that 'I' ~ 'I whenever 'I' is a topology for X* such that 'I' and the weak* 
topology of X* induce the same relative topology on each bounded subset 
of X*. By the preceding theorem, the topology 'I is the bounded weak* 
topology of X*, which shows that (a) and (b) are equivalent. It is clear 
that (b) '* (c). Also, for each bounded subset B of X* there is a positive 
tB such that B ~ tBBx-, from which it easily follows that (c) '* (b). • 

2.7.5 Corollary. (J. Dieudonne, 1950 [63]). Let X be a normed space and 
let A be a subset of X*. Then the following are equivalent. 

(a) The set A is b-weakly* closed. 

(b) The set A n B is relatively weakly* closed in B whenever B is a 
bounded subset of X*. 

(c) The set An tBx- is weakly* closed in X* whenever t > O. 

(d) The set A contains the weak* limits of all bounded nets in A that 
are weakly* convergent in X*. 
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PROOF. The equivalence of (a), (b), and (c) follows from the preceding 
corollary and the fact that tBx- is weakly* compact, hence weakly* closed, 
whenever t > O. The equivalence of (c) and (d) is clear. • 

One pleasant property of the bounded weak* topology is that in contrast 
to what happens with the weak* topology, completeness is not lost when 
passing from the finite-dimensional to the infinite-dimensional case. 

2.7.6 Proposition. Let X be a normed space. Then the bounded weak* 
topology of X* is complete. 

PROOF. Let (x~)aEI be a net in X* that is b-weakly* Cauchy. Then (x~) is 
also weakly* Cauchy, so (x~x) converges for each x in X. Define f: X --+ IF 
by the formula f(x) = lima x~x. Then f is a linear functional on X. It will 

bw' 
be shown that f E X* and that x~ ---4 f. 

Let (xn) be a sequence in X converging to o. For each positive E, the set 
{y* : y* EX', Iy*xnl < f for each n} is a b-weak* neighborhood of 0; in 
the notation of Definition 2.7.1, it is the set B(O, (C1Xn)). It follows from 

this and the fact that (x~) is b-weakly* Cauchy that the net ((x~xn)) aEI 
in Co is Cauchy, hence convergent, and therefore has limit (fxn). Since 
(fxn) E Co, the linear functional f must be bounded, for otherwise the 
sequence (xn) could have been chosen so that Ifxn I --+ +00 even though 
Xn --+ O. The convergence of the net (((x~ - j)xn))aEI to 0 in Co assures 

that there is an 0:0 such that x~ E BU, (xn)) when 0:0 ::S 0:. Since each 
b-weak* neighborhood of f includes a b-weak* neighborhood of f of the 
form BU, (Yn)), where (Yn) is a sequence in X converging to 0, it follows 

bw· f that x~ ---4 . • 

2.7.7 Corollary. Let X be an infinite-dimensional normed space. Then 
the bounded weak* topology of X* is different from the weak*, weak, and 
norm topologies of X*. 

PROOF. Since the bounded weak* topology of X* is complete and the 
weak* and weak topologies of X* are not, the bounded weak* topology is 
not equal to either of those. The bounded weak* and norm topologies of X* 
must also differ, since B x * is b-weakly* compact but not norm compact .• 

It follows from the preceding corollary that if X is an infinite-dimensional 
normed space, then some subset of X* is b-weakly* closed but not weakly* 
closed, and therefore is not weakly* closed even though it contains the 
weak* limits of all the bounded nets in the set that are weakly* convergent 
in X*. 

As was suggested in the introduction to this section, much can be learned 
about the weak* topology of the dual space X* of a normed space X by 
studying the bounded weak* topology of X*. The main reason for this is 
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contained in the next theorem: The dual spaces with respect to the two 
topologies are the same if X is a Banach space. When interpreting this 
theorem and its corollaries, keep in mind that a linear functional on X* is 
weakly* continuous if and only if it has the form x* f-+ x*xo for some Xo 
in X. 

2.7.8 Theorem. Let X be a Banach space. Then a linear functional on X* 
is weakly* continuous if and only if it is b-weakly* continuous. That is, the 
dual spaces of X* with respect to the weak* and bounded weak* topologies 
are the same. 

PROOF. Since every weakly* open subset of X* is b-weakly* open, every 
weakly* continuous linear functional on X* is b-weakly* continuous. For 
the converse, suppose that I is a b-weakly* continuous linear functional 
on X*. A moment's thought about basic b-weak* neighborhoods of 0 "cen
tered" at 0 shows that there is a sequence (xn) in X converging to 0 such 
that IIx*1 < 1 whenever X* E X* and Ix*xnl < 1 for each n. Notice that 
this implies that Ix* = 0 when x*xn = 0 for each n. 

Define T: X* -> Co by the formula T(x*) = (x*xn). Then T is clearly 
linear and bounded. It is also easy to check that the map v*: T(X*) -> IF' 
given by the formula v*(Tx*) = Ix* is well-defined, linear, and bounded. 
By the normed space version of the Hahn-Banach extension theorem, there 
is a w* in Co whose restriction to T(X*) is v*. Let (an) be the element of ~\ 
that represents w* in the usual way. For each x* in X*, 

Ix* = v*(Tx*) = w*(x*xn) = 2:>l:nX*Xn = x* (2::Cl!nxn), 
n n 

where the convergence of the last sum is assured by the completeness of X. 
It follows that I is in the image of X in X** under the natural map, and 
so is weakly* continuous. • 

2.7.9 Corollary. Let I be a linear functional on the dual space of a Banach 
space X. Then I is weakly* continuous if and only if the restriction of I 
to Bx. is continuous with respect to the relative weak* topology of Bx·. 

PROOF. If I is weakly* continuous, then its restriction to Bx. is certainly 
continuous with respect to the relative weak* topology of Bx'. Conversely, 
suppose that the restriction of I to Bx· is continuous with respect to the 
relative weak* topology of Bx'. Since Bx. is weakly* closed in X*, so 
is ker In Bx·. If t > 0, then ker I n tBx. = t(ker f n Bx')' which is 
weakly* closed, so ker f is b-weakly* closed by Corollary 2.7.5. It follows 
from Theorem 2.2.16 that f is b-weakly* continuous, and therefore weakly* 
continuous. • 

2.7.10 Corollary. A linear functional on the dual space of a separable 
Banach space is weakly* continuous if and only if it is weakly* sequentially 
continuous. 
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PROOF. Let X be a separable Banach space and let f be a weakly* sequen
tially continuous linear functional on X*. Since continuity always implies 
sequential continuity, the corollary will be proved once it is shown that 
f is weakly* continuous. By the preceding corollary, it is enough to show 
that the restriction of f to Ex- is continuous with respect to the rela
tive weak* topology of Ex-. Since this relative topology is metrizable by 
Corollary 2.6.20, the continuity of f on Ex- with respect to this topology 
is assured by the weak* sequential continuity of f. • 

Theorem 2.7.8 has the main result of this section as an easy corollary. 

2.7.11 The Krein-Smulian Theorem on Weakly* Closed Convex 
Sets. (M. G. Krein and V. L. Smulian, 1940 [146]). Let e be a convex 
subset of the dual space of a Banach space X. Then e is weakly* closed if 
and only if en tEx- is weakly* closed whenever t > O. 

PROOF. If C is weakly* closed and t > 0, then the weak* compactness 
of tEx- assures that en tEx- is weakly* closed. Conversely, suppose that 
en tEx- is weakly* closed whenever t > O. Then C is b-weakly* closed by 
Corollary 2.7.5. Since the dual spaces of X* with respect to the weak* and 
bounded weak* topologies are the same, it follows from Corollary 2.2.29 
that C is weakly* closed. • 

2.7.12 Corollary. Let M be a subspace of the dual space of a Banach 
space X. Then M is weakly* closed if and only if M n Bx- is weakly* 
closed. 

PROOF. Since M n tBx- = t(1\,f n Bx-) whenever t > 0, it follows that 
M n tEx· is weakly* closed for each positive t if and only if M n Ex- is 
weakly* closed, which together with an application of the preceding theo
rem finishes the proof. • 

2.7.13 Corollary. Let X be a separable Banach space. Then a convex 
subset of X* is weakly* closed if and only if it is weakly* sequentially 
closed. In particular, every weakly* sequentially closed subspace of X* is 
weakly* closed. 

PROOF. Suppose that C is a weakly* sequentially closed convex subset 
of X*. It is enough to show that C is weakly* closed. Let t be a positive 
number. It is enough to show that en tBx- is weakly* closed. By Corol
lary 2.6.20, the relative weak* topology of the weakly* closed set tEx- is 
metrizable, so it is enough to show that en tEx- is weakly* sequentially 
closed. This follows immediately from the fact that both C and tEx' are 
weakly* sequentially closed. • 
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Exercises 

2.79 Prove that a bounded net in the dual space of a normed space is b-weakly* 
Cauchy if and only if it is weakly* Cauchy. 

2.80 Let X be an infinite-dimensional normed space. Prove that every non
empty b-weakly* open subset of X* is unbounded. 

2.81 Let X be a Banach space. Prove that a subset of X* is bounded if and 
only if it is b-weakly* bounded. 

2.82 Let X be a Banach space. Prove that the bounded weak* topology of X* 
is metrizable if and only if X is finite-dimensional. Exercise 2.80 might 
be helpful. 

2.83 The purpose of this exercise is to show that if X is a Banach space and 
1: is a topology for X* such that the relative topologies inherited by each 
bounded subset of X* from 1: and the weak* topology 1:w ' are the same, 
then it does not necessarily follow that 1:w * c;;:; 1:, even if 1: is a completely 
regular locally convex topology. To this end, let X = Co, let Q be the 
natural map from Co into c~*, let Y be the subspace of Co consisting of 
the finitely nonzero sequences, and let 1: be the Q(Y) topology of c~. 

(a) Prove that 1: is a completely regular locally convex topology for c~ 
such that 1: ~ 1:w *. 

(b) Prove that the relative topologies inherited by each bounded subset 
of c~ from 1: and 1:w * are the same. Exercise 2.67 might be helpful. 

2.84 Let C be a convex subset of a normed space X. 

(a) Prove that C is closed if and only if en tBx is closed whenever 
t > o. 

(b) Prove that C is weakly closed if and only if en tB x is weakly closed 
whenever t > o. 

These are, of course, the analogs for the norm and weak topologies of the 
Krein-Smulian theorem on weakly* closed convex sets. Notice that these 
analogs do not require X to be complete. 

2.85 The hypotheses of both Theorem 2.7.8 and the Krein-Smulian theorem 
on weakly* closed convex sets include the requirement that the normed 
space X in question be a Banach space. The purpose of this exercise is 
to show that this requirement cannot in general be omitted. Let X be an 
incomplete normed spacej let Q be the natural map from X into X·* j let Y 
be the closure of Q(X) in X'*j let 1:w ', 1:bw', and 1:y be, respectively, the 
weak*, bounded weak*, and Y topologies of X*j and let (X,:,.)*, (X;w')*' 
and (X;')* be the respective dual spaces of X' under these topologies. 

(a) Show that the relative topologies inherited by each bounded subset 
of X· from 1:w ' and 1:y are the same. 

(b) Show that (X,:,.)* ~ (X;')* c;;:; (X;w')*. Conclude that the require
ment in the hypotheses of Theorem 2.7.8 that the normed space be 
complete is necessary. 
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(c) Find a convex subset C of X* that is not weakly* closed even though 
en tBx' is weakly* closed whenever t > O. 

2.86 The bounded weak topology. Let X be a normed space and let 'Ibw be the 
collection of all subsets U of X such that Un B is relatively weakly open 
in B whenever B is a bounded subset of X. Then 'Ibw is the bounded 
weak topology of X. For convenience, properties related to this topology 
will be called "b-weak" properties. Let 'Iw and 'In be the weak and norm 
topologies of X respectively. Prove each of the following statements. 

(a) The collection 'Ibw is a topology for X. 

(b) 'Iw <:;; 'Ibw <:;; 'In. 

(c) The relative topologies inherited by each bounded subset of X from 
'Iw and 'Ibw are the same. Furthermore, if 'I is a topology for X 
such that the relative topologies inherited by each bounded subset 
of X from 'I", and 'I are the same, then 'I <:;; 'Ib,,,. 

(d) A bounded net (xe» in X is b-weakly convergent to some x in X if 
and only if (Xa) is weakly convergent to x. 

(e) A subset A of X is b-weakly open if and only if AntBx is relatively 
weakly open in tEx whenever t > O. 

(f) A subset A of X is b-weakly closed if and only if An B is relatively 
weakly closed in B whenever B is a bounded subset of X, which 
happens if and only if An tBx is weakly closed in X whenever 
t > o. 

2.87 Let X be a normed space. The purpose of this exercise is to study another 
topology for X related to the bounded weak topology developed in Exer
cise 2.86. For each x in X and each sequence (x;') in X* that converges 
to 0, let 

B(x, (x~)) = {y : y E X, Ix~(y ~ x)1 < 1 for each n}. 

Prove the statements in (a) through (d). 

(a) The collection of all sets B(x, (x;')) described in the above definition 
is a basis for a topology for X. 

Let 'Io denote the topology from (a), and let 'Iw and 'Ibw denote the weak 
and bounded weak topologies of X respectively. 

(b) The relative topologies inherited by each bounded subset of X from 
'Iw and 'Io are the same. 

(c) 'Iw <:;; 'Io <:;; 'Ib",· 

(d) The topology 'Io is completely regular and locally convex. 

Instead of just trying to modify arguments from the proof of Theo
rem 2.7.2, it might be useful to consider Q(X), where Q is the natural 
map from X into X". 

2.88 The purpose of this exercise is to show that the topologies 'Ibw and 'Io 
defined in Exercises 2.86 and 2.87 do not have to be the same. For each 
pair of positive integers m and n, let x(m, n) be the element of Co that 



2.8 Weak Compactness 245 

has its first n - 1 terms equal to m-1 , its nth term equal to m, and all 
the rest of its terms equal to O. Let A = {x(m, n) : m, n EN}. 

(a) Show that A is b-weakly closed. 
-~ h fi (b) Show that 0 EA. Conclude that A is not 'I'D-closed, and t ere ore 

that 'I'D ~ 'I'bw for co· 

This example is due to R. F. Wheeler [243J. 

2.8 Weak Compactness 

Though Section 2.5 is devoted to the introduction and study of the weak 
topology of a normed space, nothing is said in that section about weakly 
compact sets other than that they are bounded. Actually, there is little more 
about weak compactness that could be said very easily in that section, since 
most of the interesting results about weakly compact sets are most readily 
obtained from facts about the weak* topology that are derived in Sections 
2.6 and 2.7. Those results are now available, so it is time to take a closer 
look at weak compactness. 

The first result of this section provides two tests for weak compactness 
using the weak* topology of the second duaL 

2.8.1 Proposition. Let A be a subset of a normed space X and let Q be 
the natural map from X into X**. Then the following are equivalent. 

(a) The set A is weakly compact. 

(b) The set Q(A) is weakly* compact. 

(c) The set A is bounded and Q(A) is weakly* closed. 

PROOF. By Proposition 2.6.24, the map Q is a weak-to-relative-weak* ho
meomorphism from X onto Q(X). It follows that A is weakly compact if 
and only if Q(A) is compact with respect to the relative weak* topology 
of Q(X), which happens if and only if Q(A) is weakly* compact in X**. 
This proves the equivalence of (a) and (b). The equivalence of (b) and (c) 
is an easy consequence of the Banach-Alaoglu theorem, the boundedness 
of weakly* compact subsets of the dual space of a Banach space, and the 
fact that Q is an isometry. • 

The preceding result is one of the three key ingredients in the proof of 
the following important characterization of reflexivity, with the Banach
Alaoglu theorem and Goldstine's theorem being the other two. 

2.8.2 Theorem. A normed space is reflexive if and only if its closed unit 
ball is weakly compact. 

PROOF. Let Q be the natural map from a normed space X into X**. 
It follows easily from Proposition 2.8.1, the Banach-Alaoglu theorem, and 
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Goldstine's theorem that each of statements 1 through 3 below is equivalent 
to the one following it. 

1. The normed space X is reflexive. 

2. Q(Bx)=Bx ••. 

3. The set Q(Bx) is weakly* closed. 

4. The set Bx is weakly compact. 

The equivalence of statements 1 and 4 is the conclusion of the theorem. • 

One nice property of topologies induced by metrics is that for such 
topologies, the properties of compactness, countable compactness, limit 
point compactness, and sequential compactness are equivalent. By a rather 
remarkable theorem due to W. F. Eberlein and V. L. Smulian, the same 
is true for the weak topology of every normed space, despite the fact 
that this topology is not metrizable when the underlying space is infinite
dimensional; see Proposition 2.5.14. It is fairly easy to show that in any 
topological space, compactness =? countable compactness =? limit point 
compactness ~ sequential compactness. The hard part of the proof of the 
Eberlein-Smulian theorem is showing that weak limit point compactness 
implies both weak sequential compactness and weak compactness. The fol
lowing lemmas will be useful for obtaining these latter implications. 

2.8.3 Lemma. Every relatively weakly limit point compact subset of a 
normed space is bounded. 

PROOF. Suppose that A is a relatively weakly limit point compact subset 
of a normed space X and that X* E X*. By Corollary 2.5.6, it is enough to 
show that x*(A) is bounded. 

Suppose to the contrary that x*(A) is not bounded. Let (xn) be a se
quence in A such that Ix*xn+ll ;::: IX'xnl + 1 for each n, and let w be 
a weak limit point of the infinite subset {xn : n EN} of A. Then the 
weak neighborhood {x : x E X, Ix'x - x'wl < ~} of w must contain 
two different members xno and X n, of the sequence, which implies that 
Ix*xno - x'xn,1 < 1. This contradiction proves the lemma. • 

2.8.4 Lemma. Let X be a Ilormed space and Ya finite-dimensional sub
space of X'. If M > 1, then there is a finite subset FM of Bx such that 
Ily*11 ::; Mmax{ ly*xl : x E FM } for each y* in Y. 

PROOF. It may be assumed that Y '" {OJ. The compactness of Sy implies 
that there is a finite subset {Yi, ... , y~} of Sy such that the open balls 
f d· M - I d * * S S· M + I 1 th o ra IUS 2M centere at YI,' .. , Yn cover y., IIlce 2M < , ere are 

elements Xl,··. ,xn of Bx such that lyiXjl > ~i11 when j = 1, ... ,no Let 
FM = {XI, ... ,Xn }. 
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Suppose that Yo E By. Select j so that Ilyo - yjll < ~Ml. Then 

IYoxjl2:: lyjxjl-IYoxj - yjxjl 
2:: Iyjxjl-Ilyo - yjllllxjll 
> M+l _ M-l 

2M 2M 

= k· 
Therefore max{ IYoxl : x E FM } 2: k. It follows that 

whenever y* E Y and y. i= 0, and therefore that 

for every y. in Y. • 
The following result is central to the proof of the Eberlein-Smulian theo

rem to be given below. It is called Day's lemma because the argument used 
to prove it is essentially the same as an argument used by Mahlon Day to 
prove that every weakly sequentially compact subset of a normed space is 
weakly closed; see [54, Theorem III.2.4]. 

2.8.5 Day's Lemma. Let X be a normed space. 

(a) 

(b) 

If A is a relatively weakly limit point compact subset of X and 
Xo E :A w , then there is a sequence in A that converges weakly to Xo. 

If A. is a relatively weakly limit point compact subset of X* and 

xii E A* w·, then there is a sequence in A. that converges weakly 
to xii. 

PROOF. The plan of attack is to prove (b) and then to obtain (a) from (b). 
To this end, let A. be a relatively weakly limit point compact subset of X* 
and let xii be in A* w*. It may be assumed that xii ~ A •. By a straightfor
ward argument involving various parts of Theorem 2.2.9 and the fact that 
-xii + A. is relatively weakly limit point compact, it may also be assumed 
that xii = o. 

The first order of business is to construct an increasing sequence (Fn) 
of nonempty finite subsets of Ex and a sequence (x~) in A. such that 
X~, i= X~2 when nl i= n2 and such that for each positive integer n, 

(1) IIx*11 :::; 2max{ Ix·xl : x E Fn} whenever X* E ({xi, ... ,x~}); and 

(2) max{ IX~+lXI : x E Fn} < n~l. 
To start the construction, let xi be any element of A., let Xl be a member 
of Ex such that 21xixil 2:: Ilxill, and let Fl = {xd. Now suppose that a 
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nonempty finite subset Fn of Ex and elements xi, ... , x~ of A. satisfy (1). 
Since {x· : x· EX·, Ix·xl < (n+1)-l whenever x E Fn} is a weak* neigh-

borhood of 0 in X· and 0 E A* w' \A., there is an x~H in A* \ {xi, ... , x~} 
that satisfies (2). By Lemma 2.8.4, there is a finite subset F~ of Ex such 
that Ilx*11 ~ 2max{lx*xl : x E F~} whenever x* E ({xi, ... ,x~H})' 
Letting FnH = Fn U F~ completes the inductive construction. 

Let D = U{ Fn : n EN}, a subset of Ex. Then (1) implies that Ilx* II ~ 
2 sup{ Ix*xl : xED} whenever x* E ( {x~ : n EN} ), from which it easily 
follows that Ilx*11 S; 2sup{ Ix*xl : XED} whenever x* E [{ x~ : n EN}]. 
By hypothesis, the infinite subset {x~ : n EN} of A. has a weak limit 
point w*. Since w* must lie in the weakly closed set [{ x~ : n EN}], 
it follows that 11111* II S; 2 sup{ Iw*xl : xED}. For each x in D and each 
positive E, the weak neighborhood {x* : x* E X*, Ix*x - w*xl < E/2 } of w* 
contains infinitely many members of {x~ : n EN}, which by (2) implies 
that Iw*xl < E whenever xED and E > 0, that is, that w*x = 0 whenever 
xED. It follows that w* = O. 

Thus, the set {x~ : n EN} has 0 as its one and only weak limit point. 
If (x~) did not converge weakly to 0, then there would be a weak neigh
borhood U of 0 and a subsequence (x~.) of (x~) lying entirely outside U. 

J 

Then {x~ : j EN} would have a weak limit point of its own, necessarily 
J 

different from 0, even though this new weak limit point would also be a 
weak limit point of {x~ : n EN} and therefore would have to be O. This 
contradiction shows that x~ ~ 0, which proves (b). 

Now suppose that A is a relatively weakly limit point compact subset 
of X and that Xo E }fw. Let Q be the natural map from X into X·*. 
Because of the weak-to-weak continuity of Q, the set Q(A) is relatively 
weakly limit point compact in X**. Since Xo is the weak limit of a net 
from A, it follows that Qxo is the weak* limit of a net from Q(A), so 
by (b) there is a sequence (xn) in A such that QXn ~ Qxo. This implies 
that Xn ~ Xo and finishes the proof of (a). • 

As has already been mentioned, the hard parts of the proof of the follow
ing theorem are the arguments that (c) =} (d) and that (c) =} (a). These 
were, essentially, the respective contributions of Smulian and Eberlein to 
this result. See [67, p. 466] for more details. 

2.8.6 The Eberlein-Smulian Theorem. (W. F. Eberlein, 1947 [71]; 
V. L. Smulian, 1940 [225]). Let A be a subset of a normed space. Then the 
following are equivalent. 

(a) The set A is weakly compact. 

(b) The set A is weakly countably compact. 

(c) The set A is weakly limit point compact. 

(d) The set A is weakly sequentially compact. 
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Also, the following are equivalent. 

(aT) The set A is relatively weakly compact. 

(bT) The set A is relatively weakly countably compact. 

(c T ) The set A is relatively weakly limit point compact. 

(dT) The set A is relatively weakly sequentially compact. 

PROOF. It should be noted that the equivalence of (aT) through (dT) does 
not follow immediately from the equivalence of (a) through (d) by con
sidering weak closures. The problem lies in the definition of relative limit 
point compactness and relative sequential compactness. It is possible for a 
subset of a topological space to be both relatively limit point compact and 
relatively sequentially compact, yet have its closure be neither limit point 
compact nor sequentially compact; see Exercise 2.15. 

Let X be the normed space of which A is a subset. It is clear that 
(a) =} (b) and that (ar ) =} (br ). Suppose that (c) does not hold, that is, 
that A has an infinite subset with no weak limit point in A. Then there is 
a countably infinite subset {xn : n EN} of A with no weak limit point 

in A. For each positive integer n, let Un = X \ {Xj : j ~ n} w; notice that 
A \ Un = {Xj : j ::;> n}. It follows that { Un : n EN} is a countable covering 
of A by weakly open sets that cannot be thinned to a finite subcovering. 
The set A is therefore not weakly countably compact, which shows that 
(b) =} (c). Now suppose that the preceding argument is repeated under the 
stronger supposition that A has an infinite subset with no weak limit point 
in X. The set {xn : n EN} will also have no weak limit point in X, which 
implies that {Xj : j ::;> n} is weakly closed for each positive integer n. 
It follows that Un = X \ {Xj : j ::;> n} and JIw \ Un = {Xj : j ~ n} 
for each n. Therefore {Un : n EN} is a countable covering of JIw by 
weakly open sets that cannot be thinned to a finite subcovering, so A is 
not rclatively weakly count ably compact. This proves that (br ) =} (cr ). It 
is easy to see that (d) =} (c) and that (dr ) =} (cr ). 

Notice that no special properties of the weak topology of X have yet been 
used, and in fact the preceding arguments show that (relative) compactness 
=} (relative) countable compactness =} (relative) limit point compactness 
"'*= (relative) sequential compactness in every topological space. What re
mains to be shown is that (relative) weak limit point compactness implies 
both (relative) weak sequential compactness and (relative) weak compact
ness in X. 

For the rest of this proof, assume that A is relatively weakly limit point 
compact. The first order of business is to show that A is relatively weakly 
sequentially compact. Let (Yn) be a sequence in A. Since the goal is to 
show that (Yn) has a weakly convergent subsequence, it may be assumed 
that Yn, cI Y"2 when nl cI n2· Let Yo be a weak limit point of the infinite 
subset {Yn : n EN} of A. By discarding one Yn if necessary, it may be 

assumed that Yo tJ. {Yn : n EN}. Since Yo E {Yn :nEN}w, part (a) 
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of Day's lemma assures that there is a sequence in {Yn : n EN} that 
converges weakly to Yo. It follows easily that some subsequence of (Yn) 
converges weakly to Yo, which shows that (cr ) =} (dr ). If A were actually 
weakly limit point compact, then the weak limit point Yo could have been 
selected to lie in A, which would have implied that (Yn) has a subsequence 
converging weakly to an element of A. It follows that (c) =} (d). 

Let Q be the natural map from X into X**. Since Q is weak-to-weak 
continuous and A is relatively weakly limit point compact, the set Q(A) 
is also relatively weakly limit point compact. It follows from Lemma 2.8.3 

--w· 
that Q(A) is bounded, and therefore that Q(A) is weakly* compact. 

--w· 
Suppose that xo' E Q(A) . By part (b) of Day's lemma, there is a 

sequence (zn) in A such that QZn ~ xo·. However, the relative weak se
quential compactness of A assures that (zn) has a subsequence converging 
weakly to a member Zo of X. This implies that xo· = Qzo E Q(X), so 

Q(A) w· <;;: Q(X). Since Q-l ( Q(A) w.) is a weakly compact subset of X 

and A <;;: Q-l( Q(A)w·), the set A is relatively weakly compact. This 

proves that (c,.) =} (a r ). 

Finally, suppose that A is actually weakly limit point compact, and there
fore weakly sequentially compact. If Wo E A W

, then part (a) of Day's lemma 
produces a sequence in A that converges weakly to woo Since this sequence 
must in turn have a subsequence converging weakly to a point of A, it fol
lows that Wo E A. Thus, the set A is weakly closed and relatively weakly 
compact, and so is weakly compact. This shows that (c) =} (a), the last 
implication needed to finish the proof of the theorem. • 

2.8.7 Corollary. If A is a relatively weakly compact subset of a normed 
space and Xo E AW, then there is a sequence in A that converges weakly 
to Xo. 

PROOF. All that is needed is the observation that A is relatively weakly 
limit point compact, followed by an appeal to part (a) of Day's lemma .• 

The following corollary is often summarized by saying that weak com
pactness and relative weak compactness are separably determined. Notice 
that the condition in the statement of the corollary that AnY be weakly 
compact in Y is equivalent to AnY having that same property in X, 
and that the same is true for relative weak compactness since every closed 
subspace Y of X is a weakly closed subset of X. 

2.8.8 Corollary. Let A be a subset of a normed space X. Then A is 
weakly compact if and only if AnY is weakly compact in Y whenever Y 
is a separable closed subspace of X. The same is true if "weakly compact" 
is replaced by "relatively weakly compact." 
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PROOF. If A is (relatively) weakly compact and Y is any closed subspace 
of X, then the intersection of A with the weakly closed set Y is (relatively) 
weakly compact in X, and hence with respect to the weak topology of Y. 

Conversely, suppose that whenever Y is a separable closed subspace of X, 
the set AnY is (relatively) weakly compact in Y and therefore (relatively) 
weakly sequentially compact in Y. Let (xn) be a sequence in A. Then 
[ {xn : n EN} 1 is a closed subspace of X and is separable by Proposi
tion 1.12.1 (a). It follows that (xn) has a subsequence that is convergent 
with respect to the weak topologies of both Y and X. Notice that A must 
contain the weak limit if A n [ {xn : n EN} 1 is actually weakly compact 
in [{ Xn : n EN}]. It follows that A is (relatively) weakly sequentially 
compact and therefore (relatively) weakly compact. • 

The next two results were previously obtained in optional Section 1.13 
from a sequential characterization of reflexivity by R. C. James. See The
orems 1.13.4, 1.13.5, and 1.13.8. 

2.8.9 Corollary. A normed space is reflexive if and only if each bounded 
sequence in the space has a weakly convergent subsequence. 

PROOF. A normed space is reflexive if and only if its closed unit ball is 
weakly compact, which by the Eberlein-Smulian theorem and the fact that 
the closed unit ball is weakly closed is equivalent to the condition that every 
sequence in the closed unit ball has a weakly convergent subsequence. The 
corollary follows easily. • 

2.8.10 Corollary. A normed space is reflexive if and only if each of its 
separable closed subspaces is reflexive. 

PROOF. Let X be a normed space. Then X is reflexive if and only if Ex is 
weakly compact, which by Corollary 2.8.8 is true if and only if the closed 
unit ball Bx n Y of each separable closed subspace Y of X is weakly 
compact in Y, which holds if and only if each separable closed subspace 
~X~~~~. • 

2.8.11 Corollary. Every reflexive normed space is weakly sequentially 
complete. 

PROOF. Let (xn) be a weakly Cauchy sequence in a reflexive normed space. 
Then (xn) is bounded and so has a weakly convergent subsequence. It 
follows that (xn) converges weakly to the weak limit of this subsequence .• 

2.8.12 Corollary. A reflexive normed space has Schur's property if and 
only if it is finite-dimensional. 

PROOF. If X is a reflexive normed space with Schur's property, then every 
bounded sequence in X has a convergent subsequence, which implies that 
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X has the Heine-Borel property and therefore is finite-dimensional. Con
versely, all finite-dimensional normed spaces have Schur's property since 
the weak and norm topologies of a finite-dimensional normed space are the 
same. • 

Suppose that K is a weakly compact subset of a Banach space X. Then 
the convex hull of K does not have to be weakly compact; see Exercise 2.93. 
As it turns out, all that really prevents co(K) from being weakly compact is 
that it might not be weakly closed, since it does have to be relatively weakly 
compact. (There can be further complications when X is not complete. See 
Exercise 2.94.) 

The fact that the closed convex hull of a weakly compact subset of a 
Banach space must be weakly compact is due to M. G. Krein and V. L. 
Smulian, and is the analog for the weak topology of an earlier result of 
S. Mazur for the norm topology. The two results have proofs that are very 
similar and that begin by considering the separable case. 

2.8.13 Lemma. Suppose that ':r is the norm or weak topology of a separa
ble Banach space X and that K is a ':r-compact subset of X. Then co( K) 
is ':r-compact. 

PROOF. It may be assumed that K =I 0. Notice that K is weakly compact, 
whether ':r is the norm or the weak topology. For the rest of this proof, the 
topology of K is assumed to be its relative ':r topology whenever K is 
treated as a topological space. 

This proof makes extensive use of the standard identification of C(K)* 
with rca(K); sec Example 1.10.6. Let K, be the identity function on K, 
viewed as a map from the topological space K into the topological space 
consisting of X with the topology ':r. For each x* in X*, the map x* K, is 
in C(K), so JKx*K,d/1 exists for each /1 in rca(K). 

Let /10 be a member of rca(K). It will be shown that there is a unique xl"o 
in X such that x* x 1"0 = J K x* K, d/10 for each x* in X*. To this end, suppose 
that (x~) is a sequence in X* that is weakly* convergent to some xo. For 
each x in K and each positive integer n, 

IX~K,(x)1 S; Ilx~lIllxll S; sup{ Ilx;"1I : mEN} sup{ Ilyll : y E K}, 

and Corollaries 2.6.10 and 2.5.7 imply that these last two suprema are fi
nite. Since .'E~r.:(x) -> xor.:(x) for each x in K, it follows from Lebesgue's 
dominated convergence theorem that J K x~ K, d/10 -+ J K Xu r.: d/10. The linear 
functional x* f-+ J~ x* K, d/10 on X* is therefore weakly* sequentially con
tinuous, and so is weakly* continuous by Corollary 2.7.10. Thus, there is a 
unique xl"O in X such that x*x!-,o = JKx*r.:dJ1o for each x* in X*, as was 
claimed. 

Define T: C(K)* -> X as follows. For each y* in C(K)*, let J1y' be 
the member of rca(K) identified with y* and let T(y*) be the unique ele
ment xl'V" of X such that x*x!-'y* = JKx*K,dJ1y' for each x* in X*. It is 
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easy to check that T is linear. If (y~) is a net in C(K)* that is weakly* 
convergent to some y*, then for each x* in X*, 

x*Ty~ = L x*Kdf.ly;, = y~(X*K) -> Y*(X*K) = x*Ty*, 

and so Ty~ ~ Ty*. Thus, the map T is weak* -to-weak continuous. It 
follows from this, the weak* compactness of BC(K», and the linearity of T 
that T(BC(K)*) is a weakly compact convex subset of X. 

Suppose for the moment that ~ is the norm topology. Let E be a positive 
number. Since K is a compact metric space, there are elements Xl, ... , xm 
of K and a partition AI' ... ' Am of K into Borel subsets such that if 
each Aj has corresponding indicator function IA] and K. is the function 
2:;:lIAjXj from K into X, thcn IIK(X) - K.(x)11 < E for each X in K. 
Define T.: C(K)* -> X as follows. For each y* in C(K)*, let f.ly> be the 
member of rca(K) identified with y* and let T.(y*) = 2:;:1 f.ly>(Aj)Xj. 

Then T, is linear and IIT,y*11 :s: (2:;:lllxjll)lly*11 for each y* in C(K)*, so 

T. E B(C(K)*,X). If x* E Bx> and y* E BC(K», then 

Ix*(Ty* - T.Y*)1 = Ii x*",df.ly> - ~f.ly>(Aj)x*Xjl 

= 11K x*",df.ly. - lK X*"" df.ly-I 

= Ii X*(K - "") df.ly> I 
:s: IIx*11 sup{ II "'Cx) - ",.(x)11 : X E K} If.ly-ICK) 

:S:f. 

Therefore, if y* E BC(K)-, then 

IITy* - T.y*1I = max{ Ix*(Ty* - T.Y*)1 : x* E Bx· } :s: f. 

Since T. is a bounded finite-rank linear operator, the subset T.(Bc(K») 
of X can be covered with a finite number of open balls of radius E, and 
the inequality just proved assures that if the radius of each of these balls 
is doubled without changing the center, then the resulting open balls cover 
T(Bc(K)*). The set T(Bc(K») is therefore totally bounded, and so is norm 
compact since it is norm closed and the normed space X is complete. 

Thus, the set T(BC(K») is a ~-compact convex subset of X, whether ~ 
is the norm or the weak topology. 

Let Xo be a member of K and let oxo be the member of rca( K) such that 
oxo({xo}) = 1 and IOxolCK \ {xo}) = O. Let y~ be the member of C(K)* 
that corresponds to oxo. Then for each x* in X*, 

x*Ty6 = i x*", doxo = x*",(xo) = x*xo, 
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so Tyo = Xo· Since IIYol1 = Iloxoli = 1, it follows that K ~ T(Bc(K)*), so 
co(K) ~ T(Bc(K)*)' As a 'I"-closed subset of a 'I"-compact set, the set co(K) 
is itself'I"-compact. • 

The following theorem was obtained by Krein under the additional as
sumption that X is separable. The general case is due to Krein and Smulian. 

2.8.14 The Krein-Smulian Weak Compactness Theorem. (M. G. 
Krein, 1937 [143]; M. G. Krein and V. L. Smulian, 1940 [146]). The closed 
convex hull of a weakly compact subset of a Banach space is itself weakly 
compact. 

PROOF. Let K be a weakly compact subset of a Banach space X. If it can 
be shown that co(K) is weakly sequentially compact, then an application of 
the Eberlein-Smulian theorem will finish the proof. Let (xn) be a sequence 
in co(K). Since co(K) is weakly closed, it is enough to show that (xn) has 
a weakly convergent subsequence. For this, notice that each Xn is the norm 
limit of a sequence of convex combinations of elements of K, from which it 
follows that there is a countable subset A of K such that 

{Xn : n EN} ~ co(A) ~ co(K n [AJ) ~ [AJ. 

Since Kn [AJ is a weakly compact subset of the separable Banach space [AJ, 
it follows from the preceding lemma that co(K n [AJ) is weakly compact 
and thus weakly sequentially compact in [AJ, and so (Xn) has a subsequence 
that is weakly convergent in [AJ and therefore in X. • 

2.8.15 Mazur's Compactness Theorem. (S. Mazur, 1930 [161]). The 
closed convex hull of a compact subset of a Banach space is itself compact. 

PROOF. Let K be a compact subset of a Banach space X. Then K is 
separable since it is a compact subset of a metric space, so [KJ is separable. 
It may therefore be assumed that X is itself separable. The conclusion of 
the theorem now follows immediately from Lemma 2.8.13. • 

Recall that a normed space is compactly generated if it is the closed 
linear hull of one of its compact subsets, which is equivalent to the space 
being separable; see Theorem 1.12.15 and the comments following it. Since 
separable normed spaces have so many nice properties, it is natural to ask 
what special properties a normed space has when it is the closed linear 
hull of one of its weakly compact subsets, and in fact such spaces have been 
studied extensively. It turns out to be easier to prove theorems about spaces 
with this property when they are complete, which is why the completeness 
requirement is traditionally included in the following definition. 

2.8.16 Definition. A normed space X is weakly compactly generated if 
it is a Banach space that includes a weakly compact subset K such that 
X=[KJ. 
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Banach spaces that are the closed linear hull of a compact set or have a 
weakly compact closed unit ball are obviously weakly compactly generated, 
which immediately leads to two large classes of weakly compactly generated 
normed spaces. 

2.8.17 Proposition. If a Banach space is separable or reflexive, then it is 
weakly compactly generated. 

There are weakly compactly generated normed spaces that are neither 
separable nor reflexive; see Exercise 2.98. As is shown in Exercise 2.99, the 
space £00 is not weakly compactly generated, so there are Banach spaces 
that lack this property. 

See Mahlon Day's book [56, pp. 72-77] for more on weakly compactly 
generated normed spaces. Klaus Floret's book [79] is a good source of fur
ther information about weak compactness in general. 

Exercises 

2.89 Suppose that K is a weakly compact subset of the dual space of a normed 
space X. 

(a) Prove that the relative topologies induced on K by the weak and 
weak* topologies of X· are the same. 

(b) Part (a) might seem to suggest that if x" E X", then there must 
be an x in X such that x" and Qx agree on K, where Q is, as usual, 
the natural map from X into X**. Show that this does not have to 
be so, even if K is norm compact and X is a Banach space. 

2.90 Prove that a subset of £1 is compact if and only if it is weakly compact. 
Conclude that no infinite-dimensional subspace of £1 is reflexive. 

2.91 Use the results of this section to prove that Co is not reflexive. 

2.92 Let X be a normed space and let Q be the natural map from X into X·*. 

(a) Find conditions on X necessary and sufficient for Q(X) to be dense 
in X**. 

(b) Find conditions on X necessary and sufficient for Q(X) to be weakly 
dense in X". 

2.93 Find a compact subset K of a Banach space such that co(K) is not closed. 
(A peek at Exercise 2.94 would not hurt.) 

2.94 The goal of this exercise is to show that the conclusions of Lemma 2.8.13, 
the Krein-Smulian weak compactness theorem, and Mazur's compactness 
theorem can all fail if the normed space in question is not required to be 
complete. Let X be the separable incomplete normed space consisting of 
the vector space of finitely nonzero sequences with the £= norm, and let 
{en : n EN} be the collection of standard unit vectors of this space. 
Show that the subset {D} U { n -1 en : n EN} of this space is compact, 
but that its closed convex hull is not even weakly compact. 
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2.95 (a) Prove that if a normed space X is weakly compactly generated, 
then there is a subset K of X that is convex, balanced, and weakly 
compact such that X = U{tK: t > O}. 

(b) Suppose that the convex, balanced, weakly compact set K in (a) 
were such that X = U{ tK : t > O}. What could then be said 
about X? 

2.96 (a) Prove that if a Banach space X is separable, then there is a sub
set K of X that is convex, balanced, and compact such that X = 
U{tK: t > O}. 

(b) Suppose that the convex, balanced, compact set K in (a) were such 
that X = U{ tK : t > O}. What could then be said about X? 

2.97 Prove that if Xl, ... , Xn are weakly compactly generated normed spaces, 
then Xl E9 ... E9 Xn is weakly compactly generated. Exercise 2.95 might 
help. 

2.98 Give an example of a weakly compactly generated normed space that is 
neither separable nor reflexive. Exercises 1.145 and 2.97 might help. 

2.99 (a) Prove that if K is a weakly compact subset of loo, then the relative 
weak topology of K is induced by a metric. (Exercise 2.89 might 
help.) Conclude that K is norm separable. 

(b) Prove that loo is not weakly compactly generated. 

*2.9 James's Weak Compactness Theorem 

This section is motivated by the form of James's theorem proved in Sec
tion 1.13, and requires the following material from that section: Lemmas 
1.13.10, 1.13.12, and 1.13.13, and the observations about L(x~) made just 
after the proof of Theorem 1.13.11. Reading that material does not require 
the reading of any other part of that section. No other material from that 
or any other optional section is used in this section. In particular, James's 
theorem itself is not needed to prove any of the results of this section, and 
in fact will be derived from the main theorem of this section. 

James's theorem says if X is a Banach space such that the supremum 
of Ix· I on B x is actually an attained maximum whenever x· E X*, then 
X is reflexive. Robert James's first proofs of this for the separable and 
general cases appeared in 1957 [111] and 1964 [112] respectively, with a 
greatly simplified proof of the general case following in 1972 [117]. It is the 
1972 proof that is presented in Section 1.13 of this book. 

Since a Banach space is reflexive if and only if its closed unit ball is weakly 
compact, James's theorem can be interpreted to say that if the closed unit 
ball of a Banach space X has the property that Ix* I attains its supremum 
on Bx whenever x* E X*, then Bx is weakly compact. Motivated by this 
interpretation, Victor Klee conjectured in a 1962 paper [139] that James's 
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result extends to every weakly closed subset of a Banach space; that is, that 
a weakly closed subset A of a Banach space X must be weakly compact if 
sup{ Ix*xl : x E A} is attained whenever x* E X*. (A moment's thought 
about the half-open interval (0, IJ in the Banach space R shows why A must 
be required to be closed in some sense. Also, requiring A to be closed in 
the norm sense is not enough; see Exercise 2.101.) 

James proved Klee's conjecture in a 1964 paper [115J using some of the 
same ideas he had used in his proof of the reflexivity theorem. In his 1972 
paper containing the simplified proof of the reflexivity theorem, James 
showed how that argument could be modified to obtain a simplified proof 
of the more general weak compactness result. 

The purpose of this section is to give a proof of Klee's conjecture follow
ing James's lead from his 1972 paper. The general plan of attack is to use 
Lemma 1.13.10 to prove the weak compactness result for nonempty, sep
arable, weakly closed subsets of the closed unit ball of a Banach space in 
Proposition 2.9.1, then use this proposition and Lemma 1.13.13 to obtain 
the corresponding result for nonempty, balanced, weakly closed subsets of 
the closed unit ball of a real Banach space in Proposition 2.9.2, and fi
nally use Proposition 2.9.2 to obtain the general result and several useful 
variations of it in Theorem 2.9.3. This program parallels the one used in 
Section 1.13 to prove James's theorem, with Propositions 2.9.1 and 2.9.2 
taking the place of Theorems 1.13.11 and 1.13.14 respectively. This is a full 
agenda, so it would be best to get started. 

2.9.1 Proposition. (R. C. James, 1972 [117]). Let A be a nonempty, 
separable, weakly closed subset of the closed unit ball of a Banach space X. 
Then the following are equivalent. 

(a) The set A is not weakly compact. 

(b) There is a () for which 0 < () < 1 and a sequence (x~) in Bx- such 
that limn x~x = 0 for each x in A and sup{ Ix*xl : x E A} 2: () 
whenever x* E co( {x~ : n EN} ). 

(c) There is a () for which 0 < () < 1 such that if (f3n) is a sequence of 
positive numbers with sum 1, then there is an a such that () :::; a :::; 1 
and a sequence (y;) in Bx- such that 

(1) limn y;x = 0 for each x in A; 

(2) sup{ IE;:1 f3jyjxl : x E A} = a; and 

(3) sup{ IE.1=l f3jyjxl : x E A} < a(l - () E;:n+l f3j) for each pos
itive integer n. 

(d) There is a z* in X* such that sup{ Iz*xl : x E A} is not attained. 

PROOF. To see that (a) '* (b), suppose that A is not weakly compact. Let 
V = [AJ and let W be the vector space underlying V* but with the norm 
given by the formula IIv* IIw = sup{ Iv*xl : x E A}j it is easy to check 
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that 1I·llw really is a norm on W, with the key observation being that a 
member of W that is zero on A must be zero on V. Let I: A - W* be 
defined by the formula (J(x))(v*) = v·x; that is, let I be the "natural 
map" from A into W*. Notice for this that the definition of 11·llw assures 
that f(x) really is a bounded linear functional on W whenever x E A, and 
that f(A) ~ Bw •. Since V* is a separating family of linear functionals 
on V, the function I is one-to-one. It is clear that a net (x",) in A is weakly 

convergent in X to an x in A if and only if l(xaJ ~ f(x) in W*, from 
which it follows that I is a homeomorphism from A with its relative weak 
topology as a subset of X onto f(A) with its relative weak* topology as 
a subset of W*. Since A is not weakly compact in X, the set I(A) is not 
weakly* compact in W*. As a subset of the weakly* compact subset Bw. 
of W* , the set I (A) must not be weakly* closed in W*. Fix an element F of 
--w· 
f(A) \ f(A). Notice that there cannot be a v in V such that Fv· = v*v 
for each v* in W, for it is easy to see that such a v would have to be in 
A W 

\ A, contradicting the fact that A is weakly closed. In particular, it 
follows that F f= 0, and therefore that 11F11w· > O. Since A ~ B v , 

sup{ IFv*1 : v* E Bv.} :::; sup{ jFv*1 : v* E W, sup{ Iv*xl : x E A} :::; 1 } 

= 1IFIIw" 
from which it follows that F E V** and IlFllv" :::; 1IFIIw •. Let Qv be the 
natural map from V into V**. Since V is complete, the set Qv (V) is closed 
in V**, and since F ¢. Qv(V), it follows that d(F,Qv(V)) > 0, where d is 
determined by the norm of V**. Let b.. be such that 

0< b.. < d(F,Qv(v)) 

and let {an : n EN} be a countable dense subset of A. If n E Nand 
aI, ... ,an+l are scalars, then 

which by HeIly's theorem implies the existence of a v~ in V* such that 

. ~ d(F, Qv(V)) - b.. 
(1) Ilv~llv· :::; d(F, Qv(V)) + 2. d(F, Qv(V)) < 1; 

(ii) Fv~ = ~; and 

(iii) v~aj = (Qvaj)v~ = 0 if j :::; n. 

For each n, let x~ be a Hahn-Banach extension of v~ to X. Then (iii) 
together with the density of {an: n EN} in A assures that limn x~x = 0 
for each x in A. If x· E co( {x~ : n EN}) and v* is the restriction of x* 
to V, then 

~ = Fv* :::; 11F11w. sup{ Iv*xl : x E A} = 11F11w· sup{ Ix*xl : x E A}. 
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Let () = .l/llFllw*. Since 

0< .l = Fv; ::; 1IFIIv**llv~ Ilv- < 1IFIIw*, 

it follows that 0 < () < 1. Therefore f) and (x~) satisfy (b), which finishes 
the proof that (a) => (b). 

Now assume the existence of a f) and a sequence (x~) as in (b), and 
let ({3n) be a sequence of positive reals summing to 1. Then the 0 and 
the sequence (Y~) guaranteed by Lemma 1.13.10 do all that is required 
of them in (c). In particular, notice that if x E A, then the facts that 
Y~ E co( {xj : j 2:: n}) for each n and limn x~x = 0 together imply that 
limn Y~x = O. It follows that (b) * (c). 

Suppose that (c) holds. Fix a sequence ({3n) of positive scalars summing 
to 1. Let 0 and (Y~) be as in (c) and let z* = 2:;:1 {3jyj. It will be shown 
that sup{ Iz*xl : x E A} is not attained. Let Xo be an element of A and 
let n be a positive integer such that IYixol < 00 whenever j > n. Then 

Iz*xol = If: {3j YiXO I 

J=l 

::; It {3j YiXO I ~E~j'Y;xo' 
< sup { It {3jY;XI : x E A } + of) f= {3j 

J=l J=n+1 

< 0 ( 1 - f) f= (3j ) + of) f= {3j 
j=n+1 j=n+l 

=0 

= sup{ Iz*xl : x E A}, 

so sup{ Iz*xl : x E A} is not attained at Xo. This proves that (c) => (d). 
Finally, if A is weakly compact and x* E X*, then the weakly continuous 

function Ix*1 must attain its supremum on A, so (d) => (a). • 

For the next result, it will be necessary to reinstate temporarily some 
notation used in Section 1.13. Suppose that X is a real normed space and 
that (x;,) is a bounded sequence in X*. Let 

L(x~) = {x* : x* E X*, x*x ::; limsupx~x whenever x EX}. 
n 

The only use that will be made of this notation in the rest of this book is 
in the next proposition. It was shown in Lemma 1.13.12 that L(x~) i- 0. 
Notice also that liminfnx~x <::: x*x whenever x· E L(x~) and x E X, since 
liminfnx~x = -limsuPnx~(-x). 
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2.9.2 Proposition. (R. C. James, 1972 [117]). Let A be a nonempty, 
balanced, weakly closed subset of the closed unit ball of a real Banach 
space X. Then the following are equivalent. 

(a) The set A is not weakly compact. 

(b) There is a 0 for which 0 < 0 < 1, a subset Ao of A, and a se
quence (x~) in Bx- such that sup{ I(x* - w*)(x)1 : x E A} 2' 0 for 
each x* in co( {x~ : n EN}) and w* in At, and limn x~x = 0 for 
each x in Au. 

(c) There is a 0 for which 0 < 0 < 1 such that if (;3n) is a sequence of 
positive numbers with sum 1, then there is an a such that 0 ::; a ::; 2 
and a sequence (y~) in Bx- such that whenever w* E L(y~), 

(1) sup{ 12::;:1 fJj(yj - w*)(x)1 : x E A} = a; and 

(2) SUp{ 12::;'=1 fJj(yj - w*)(x)1 : x E A} < a(l - 02::;:n+l ;3j) for 
each positive integer n. 

(d) There is a z* in X* such that sup{ Iz*xl : x E A} is not attained. 

PROOF. Suppose first that A is not weakly compact. By Corollary 2.8.8, 
there is a separable closed subspace Y of X such that AnY is not weakly 
compact. It follows from Proposition 2.9.1 that there is a 0 for which 
o < 0 < 1 and a sequence (x~) in Bx> such that limn x~x = 0 for each x 
in AnY and sup{ Ix*xl : x E AnY} 2' 0 whenever x* E co( {x~ : n EN}). 
Let Ao = AnY. If x* E co( {x~ : n EN}) and w* E At, then 

sup{ I(x' - w*)(x)1 : x E A} 2' sup{ I(x* - w*)(x)1 : x E Ao } 

= sup{ Ix*xl : x E Au} 2' O. 

The number 0, the set Ao, and the sequence (x~) do all that is required of 
them in (b), so (a) =? (b). 

Now suppose that (b) holds. Since liminfn x~x ::; x'x ::; limsuPn x~x 
whenever x* E L( x~) and x EX, it follows that x* x = limn x~ x = 0 
whenever x* E L(x;,) and x E Ao, that is, that L(x~) <;; A(}. This and 
Lemma 1.13.13 together imply that (c) holds, so (b) =? (c). 

Suppose next that (c) holds. Let .6. be a scalar such that 0 < .6. < 02 /2. 
For each positive integer n, let 

Then (fJn) is a sequence of positive scalars that sums to 1. Let a and (y~) be 
as in (c). Let w* be any member of L(y~) and let z* = 2::;:1 fJj(yj - w*). 
It will be shown that sup{ Iz*xl : x E A} is not attained. To this end, 
suppose that Xu E A. Since lim inf j yj Xo :S w* Xo and 0 :S a, there is an n 

such that 
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Since w*x ::; limsuPj yjx ::; 1 whenever x E Ex, it follows that Ilw* II ::; l. 
Therefore 

00 

Z*xo = L (3j(yj - w*)(xo) 
j=l 

n 00 

< L (3j(yj - w*)(xo) + (oJ) - 2tl.){3n+1 + L (3j(yj - w*)(xo) 
j=l j=n+2 

::; sup { It {3j(yj - w*)(x)1 : x E A} + (08 - 2tl.){3n+1 + 2 f (3j 
J=l J=n+2 

< o{ 1 - 8 f (3j) + (08 - 2tl.){3n+l + 2 f {3j. 
j=n+1 j=n+2 

00 

Z*xo < 0 - (08 - 2tl.) L {3j + (08 - 2tl.){3n+1 
j=n+1 

00 

= 0 - (08 - 2tl.) L {3j 
j=n+2 

<0 

= sup { 1~{3j(y; - w*)(x)1 : x E A } 

= sup{ Iz*xl : x E A}. 

Since A is balanced and therefore contains -Xo, it is also true that -z*xo < 
sup{ Iz*xl : x E A}, and therefore that Iz*xol < sup{ Iz*xl : x E A}. This 
proves that sup{ Iz*xl : x E A} is not attained, and shows that (c) => (d). 

Finally, if z* E X* and the weakly continuous function Iz* I does not 
attain its supremum on A, then A cannot be weakly compact, which proves 
that (d) => (a). • 

2.9.3 James's Weak Compactness Theorem. (R. C. James, 1964 [115]). 
Suppose that A is a nonempty weakly closed subset of a Banach space X. 
Then the following are equivalent. 

(a) The set A is weakly compact. 

(b) Whenever x* is a bounded linear functional on X, the supremum 
of Ix'i on A is attained. 

(c) Whenever u* is a bounded real-linear functional on X, the supremum 
of lu* I on A is attained. 

(d) Whenever u' is a bounded real-linear functional on X, the supremum 
of u' on A is attained. 
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PROOF. The weak continuity of the functions mentioned in (b), (c), and (d) 
assures that (a) implies each of (b), (c), and (d). 

For the rest of this proof, it may be assumed that A is bounded, for 
the hypotheses of (b), (c), and (d) all assure that x*(A) is a bounded set 
of scalars for each x* in X*, and therefore, by Corollary 2.5.6, that A 
is bounded. Clearly, it may then be assumed that A ~ B x. Let Xr be 
the Banach space formed from X by using real scalars (which does not 
imply any assumption that IF = C; if IF = lR, then Xr and X are the same 
Banach space). Even when IF = C, straightforward arguments based on 
Proposition 1.9.3 and Corollary 2.1.22 show that the weak topologies of Xr 
and X are the same topology for the set underlying these Banach spaces. 

Suppose that (b) holds. Let 

B = n {x: X E X, Ix*xl ::::; sup{ Ix*yl : YEA} }. 
x*EX· 

Then B is a balanced, weakly closed subset of Bx that includes A, and 
sup{ Ix* xl : x E B} is attained by Ix* I on B, in fact on A, whenever 
x* E X*. If IF = C, then easy arguments based on the fact that B is 
balanced and on standard facts about the relationship between real-linear 
and complex-linear functionals show that 

sup{ IRex*xl : x E B} = sup{ Ix*xl : x E B} 

for each x* in X* and that sup{ lu*xl : x E B} is attained whenever 
u* E (Xr)*. Whether or not IF = C, it now follows from Proposition 2.9.2 
that B is a weakly compact subset of X r , and so of X, and therefore that 
the weakly closed subset A of B is also weakly compact. This proves that 
(b) => (a). 

Suppose next that (c) holds. Since it has already been proved that 
(b) => (a) when IF = lR, it follows immediately that A is a weakly com
pact subset of Xr and therefore of X, which shows that (c) => (a). 

Finally, suppose that (d) holds. If u* is a bounded real-linear functional 
on X, then 

sup{ lu*xl : x E A} = max {sup{ u*x: x E A },sup{ -u*x: x E A}}, 

from which it follows that sup{ lu*xl : x E A} is attained. This shows that 
(d) => (c) and finishes the proof of the theorem. • 

James's theorem is itself an easy corollary of James's weak compactness 
theorem. 

2.9.4 James's Theorem. (R. C. James, 1964 [112]). If every bounded 
linear functional on a Banach space is norm-attaining, then the space is 
reflexive. 
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PROOF. Just observe that if every bounded linear functional on a Banach 
space is norm-attaining, then James's weak compactness theorem implies 
that the closed unit ball of the space must be weakly compact. • 

Of course, if a Banach space X is reflexive, then for each x* in X* 
the weakly continuous function Ix' I attains its supremum on the weakly 
compact set B x, so the condition that all bounded linear functionals be 
norm-attaining is actually equivalent to reflexivity for Banach spaces. 

In 1971, James [116] gave an example of a normed space, necessarily 
incomplete, with the property that each bounded linear functional on the 
space is norm-attaining, though the space is not reflexive and its closed unit 
ball is therefore not weakly compact. Thus, the completeness requirement 
cannot be deleted from the hypotheses of either James's theorem or James's 
weak compactness theorem. See also Exercise 2.102. 

Actually, the term James's theorem is often used for both the reflexivity 
theorem proved immediately above and the weak compactness theorem 
that also bears James's name. In practice, the context always makes it 
clear which of these two closely related results is intended. 

Exercises 

2.100 Either prove the following weak* analog of James's weak compactness 
theorem or find a counterexample: Suppose that A is a nonempty weakly* 
closed subset of the dual space of a Banach space X. Then A is weakly* 
compact if and only if sup{ Ix'xl : x' E A} is attained whenever x E X. 

2.101 Find a nonempty closed subset A of a Banach space X such that A is 
not weakly compact even though the supremum of Ix"1 on A is attained 
whenever x* E X*. 

2.102 Without citing the 1971 example by James mentioned in this section, find 
a nonempty weakly closed subset A of an incomplete normed space X such 
that A is not weakly compact even though the supremum of Ix*1 on A is 
attained whenever x* E X*. Exercise 2.94 might help. 

2.103 Suppose that X is a Banach space having a subset A with nonempty inte
rior such that the supremum of Ix"1 on A is attained whenever x" E X". 
Prove that X is reflexive. 

2.104 Prove the following result. 

Theorem. (V. L. Smulian, 1939 [223]). A convex subset C of a Banach 
space is weakly compact if and only if nn Cn =1= 0 whenever (Cn ) is a 
decreasing> sequence of nonempty convex subsets of C that are closed 
in C. 

6Recall that a sequence (An) of subsets of a set X is decreasing if An =2 A n+1 for 
each n, even if some or all of the inclusions are equalities. 
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2.105 Prove the following result. 

Theorem. (V. L. Klee, 1962 [139]). Suppose that C is a closed bounded 
non-weakly-compact convex subset of a Banach space X. Then there is a 
decreasing sequence (Cn ) of nonempty closed convex subsets of C such 
that whenever x E C and 0 :::; t < 1, the set x + t( -x + C) intersects only 
finitely many of the sets Cn. 

2.106 Derive the Krein-Smulian weak compactness theorem from James's weak 
compactness theorem. 

2.10 Extreme Points 

Suppose that C is a closed convex polygonal region in the Euclidean plane 
and that Vl, ... , Vn are the vertices of the polygon that bounds C. Then 
it is easy to see that C is the convex hull of the set {Vl,'" ,vn}' The 
main purpose of this section is to show that the same is true whenever C 
is a nonempty compact convex subset of a Hausdorff locally convex space, 
provided that the notion of a "vertex" of the boundary of C is appropriately 
generalized and that the closed convex hull of the set of "vertices" is used. 
As one consequence, it will be seen that certain common Banach spaces 
are not isometrically isomorphic to the dual space of any normed space. 

2.10.1 Definition. Let C be a non empty closed convex subset of a TVS. 
A subset D of C is extremal in C if D is itself a nonempty closed convex 
set having this additional property: If x, y E C and tx + (1 - t)y E D for 
some t such that 0 < t < 1, then x, Y E D. 

That is, a nonempty closed convex subset D of C is extremal in C if 
every "closed line segment" in C whose "interior" intersects D must lie 
entirely in D. 

2.10.2 Definition. Let C be a nonempty closed convex subset of a TVS 
that is Hausdorff (so that singleton sets are closed). An extreme point of C 
is an element x of C such that {x} is an extremal subset of C. 

In other words, an element of C is an extreme point of C if the point 
does not lie in the "interior" of any nontrivial "closed line segment" in C. 

2.10.3 Example. In real t'~, the extreme points of the closed unit ball are 
the four points (±1, ±1), that is, the vertices of the polygonal boundary of 
the closed unit ball. In real Euclidean 2-space, the set of extreme points of 
the closed unit ball is the entire unit sphere. 

2.10.4 Example. Suppose that (an) is an element of the closed unit ball 
of Co. Let no be a positive integer such that lano I < ~, and let (;3n) and Cl'n) 
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be the members of Co such that (3n = "'In = On if n ¥: no, but (3no = ono + ! 
and "'Ino = Ono - !. Then ((3n) and bn) are different elements of Beo 
such that (on) = !((3n) + !bn), so (On) is not an extreme point of B cQ . 
Therefore Bco has no extreme points, so not even in Banach spaces are 
bounded nonempty closed convex sets guaranteed to have extreme points. 

Since Co is infinite-dimensional and not reflexive, its closed unit ball is 
neither norm compact nor weakly compact, but this leaves open the pos
sibility that there might be some other Hausdorff locally convex topology 
for Co with respect to which Bco is compact. One of the consequences of the 
Krein-Milman theorem, the main result of this section, is that this possi
bility is ruled out, for the compactness of Bco with respect to a Hausdorff 
locally convex topology for Co would force Beo to have extreme points. 

The following collection of simple facts about extremal sets will be useful 
in the proof of the Krein-Milman theorem. 

2.10.5 Lemma. Let C be a nonempty closed convex subset of a TVS X. 

(a) If D is an extremal subset of C and D' is an extremal subset of D, 
then D' is an extremal subset of C. 

(b) If;,y is a nonempty family of extremal subsets of C and n{ D : D E ;,y} 
is nonempty, then n{ D : D E ;,y} is an extremal subset of C. 

(c) Suppose that C is compact and that x* E X*. Then 

{x: x E C, Rex*x = max{ Rex*y: y E C} } 

is an extremal subset of C. 

PROOF. Parts (a) and (b) follow easily from Definition 2.10.1. For (c), sup
pose that C is compact and that x* E X*. Let s = max{Rex*x: x E C} 
and let D s = {x : x E C, Re x* x = s }, a nonempty closed convex subset 
of C. If x and yare members of C such that tx + (1- t)y E Ds for some t 
in (0,1), then tRex*x + (1- t) Rex*y = s, which together with the defi
nition of s implies that Re x* x = Re x* y = s and thus that x, y E D s' The 
set D s is therefore an extremal subset of C. • 

2.10.6 The Krein-Milman Theorem. (M. G. Krein and D. P. Milman, 
1940 [145]). Let C be a nonempty compact convex subset of a Hausdorff 
LOS. Then C is the closed convex hull of its set of extreme points. 

PROOF. Let X be the Hausdorff LeS of which C is a subset. The first order 
of business is to show that C has at least one extreme point. To this end, 
let 1) be the collection of all extremal subsets of C, preordered by reverse 
inclusion; that is, preordered by declaring that Dl :5 D2 when Dl ;;::> D2. 
Then 1) =f. 0 since C E 1). If I! is a nonempty chain in 1), then it follows 
from the compactness of C that n{ D : DEI!} =f. 0 and therefore from 
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Lemma 2.10.5 (b) that n{ D : DEe:} is an upper bound for e: in 1). By 
Zorn's lemma, the set 1) has a maximal element M. 

Suppose that M were to contain two distinct elements y and z. By Corol
lary 2.2.22, there would be an x' in X' such that x*y i- x* z; after mul
tiplying x' by i if necessary, it may be assumed that Re x*y i- Re x' z. 
Since Re x* is not constant on M, it follows from parts (a) and (c) of 
Lemma 2.10.5 that {x: x E M, Rex*x = max{Rex*y: y E M}} would 
be a proper subset of M that is also an extremal subset of C, which con
tradicts the maximality of M. Thus, the set M contains only one point, 
and so C has an extreme point. 

Let E be the collection of all extreme points of C. To finish the proof, it is 
enough to show that C ~ co(E). Suppose to the contrary that C r.t. co(E). 
Applying Theorem 2.2.28 to the compact set co(E) and anyone-element 
subset {xo} of C \ co( E) yields an Xo in X* such that 

max{ Rexox : x E co(E)} < Rexoxo ::; mo = max{ Re xox : x E C}. 

The extremal subset {x : x E C, Re xox = mo } of C is itself a nonempty 
compact convex subset of X, and therefore has an extreme point Xe which 
must also be an extreme point of C. However, the fact that Re xOxe = 
mo > sup{ Re xox : x E E} prevents Xe from being an extreme point of C, 
a contradiction that finishes the proof of the theorem. • 

2.10.7 Corollary. Let C be a nonempty compact convex subset of a Haus
dorff LCS X and let x* be a member of X'. Then there is an extreme 
point Xe of C such that Rex'xe = max{Rex*x: x E C}. Consequently, 
if E is the set of extreme points of C, then max{ Rex'x : x E C} = 
max{ Rex'x : x E E}. 

PROOF. The extremal subset { x: x E C, Re x'x = max{ Rex*y : y E C} } 
of C is a nonempty compact convex subset of X, and therefore has an 
extreme point Xe which is also an extreme point of C. The corollary follows 
immediately from this. • 

2.10.8 Corollary. If X is a reflexive normed space, then Bx is the closed 
convex hull of its set of extreme points. 

PROOF. Since the closed convex hulls of the set of extreme points of Ex 
with respect to the norm and weak topologies are the same, it is enough 
to know that Ex is weakly compact, which follows from the reflexivity 
~X. • 

2.10.9 Corollary. If X is a normed space, then Bx' is the weakly* closed 
convex hull of its set of extreme points. 

PROOF. This follows immediately from the weak* compactness of Ex.· • 
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FIGURE 2.2. A polygon P in the Euclidean plane, and its closed convex hull. 

2.10.10 Corollary. An infinite-dimensional normed space whose closed 
unit ball has only finitely many extreme points is not isometrically isomor
phic to the dual space of any normed space. 

PROOF. It is clear that isometric isomorphisms from one normed space onto 
another preserve extreme points, so it is enough to show that the closed 
unit ball of an infinite-dimensional normed space's dual space always has 
infinitely many extreme points. Let X be an infinite-dimensional normed 
space. Then X* is also infinite-dimensional, and Ex. is the weakly* closed 
convex hull of its set E of extreme points. The weakly* closed convex hull 
of a finite subset of X* must lie in the finite-dimensional linear hull of that 
finite set, and therefore cannot be Ex •. Thus, the set E is infinite. • 

2.10.11 Example. As was shown in Example 2.lO.4, the closed unit ball 
of Co has no extreme points, so Co is not isometrically isomorphic to the dual 
space of any normed space. Similarly, the space L1 [0,1] is not isometrically 
isomorphic to the dual space of any normed space, since it can be shown 
that E LdO ,lj has no extreme points. See Exercise 2.110. 

Suppose that P is a polygon in the Euclidean plane, not assumed to be 
convex, whose sides intersect only at its vertices and whose vertices are 
each common to exactly two sides; see Figure 2.2. Let K be the compact 
region in the plane consisting of P together with the bounded component 
of its complement. It is easy to see that co(K) (which is the same as co(K) 
in this case) is a closed convex polygonal region whose vertices are a subset 
of the vertices of K. In particular, the extreme points of co(K) all tie in K. 
There is a partial converse of the Krein-Milman theorem, due to Milman, 
that says that the same is true whenever K is a nonempty compact subset 
of a Hausdorff LCS, provided that co(K) is also compact. To get this result, 
several lemmas will be used that are of some interest in their own right. 

2.10.12 Lemma. Suppose that Xe is an extreme point of a nonempty 
closed convex subset C ofa HausdorffTVS and that Xe = ~;=1 tjXj, where 
t 1 , ... ,tn are nonnegative real numbers summing to 1 and Xl, ... ,Xn E C. 
Then Xj = Xe for each] such that tj -I- O. 

PROOF. It may be assumed that each tj is nonzero and that n ~ 2. Fix an 
integer ]0 such that 1 :S]o :S n. Then ~#jo(l - tjo)-ltj Xj E C because 
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o is convex. Since Xe is an extreme point of 0 and 

Xe = tjoXjo + (1- tjo) 2)1- tjo)-l tjXj , 
#jo 

it follows that Xjo = Xe· • 
2.10.13 Lemma. Suppose that 0 1, ... ,On arenonempty convex subsets of 
a vector space. Then co( 0 1 U ... U On) consists of all sums 2:7=1 tjXj such 
that t1, .. " tn are nonnegative real numbers summing to 1 and Xj E OJ 
when j = 1, ... , n. 

PROOF. It suffices to show that every member of CO(Ol U ... U On) can 
be written as a sum of the type described in the statement of the lemma. 
Suppose that x E co(Cl U ... U On). Then there are positive numbers 
81, ... , 8 m that sum to 1 and elements Y1, ... , Ym of 0 1 U· .. U On such that 
x = 2:;;'=1 8kYk· For notational convenience in what is to follow, it may be 
assumed that the elements Yk come from more than one OJ. By reordering 
the indices if necessary, it may be assumed that there are integers ko, . .. , kq 
and h, ... , lq such that 0 = ko < ... < kq = m and 1 ~ II < ... < lq ~ n 
such that Ykp_l +1, ... ,Ykp E Olp when 1 ~ p ~ q. For each integer p such 

that 1 ~ p ~ q, let tp = 2:=~kp_l+l 8k and let xp = 2:=~kp_l+1 ti/ 8kYk. 
Then the convexity of each Olp implies that xp E Olp for each p. Since 
2:~=1 tp = 1 and x = 2:~=1 tpxp, the lemma is proved. • 

2.10.14 Lemma. (N. Bourbaki, 1953 [34, p. 80]). Suppose that K 1, ... , Kn 
are compact convex subsets of a TVS. Then CO(K1 U··· U Kn) is compact. 

PROOF. Each K j may be assumed to be nonempty. Let (2:7=1 t;a)x;"'))O:EI 
be a net in co(Kl U ... U Kn), where each term of the net is being writ
ten as a sum of the type described in Lemma 2.10.13. Since each K j is 

compact, as is the interval [0,1]' there is a subnet (2:7=1 t;(3)xt)){3EJ of 

(2:j=l t;"')x;a))aEI such that, for each j, there are elements tj of [0,1] 

and Xj of K j such that t;(3) ---> tj and xJ(3) ---> Xj. It then follows from the 

continuity of the vector space operations that 2:7=1 tt)x;{3) ---> 2:7=1 tjXj. 

Also, the continuity of the map (a1'.'.' an) f---+ 2:7=1 aj from Euclidean 
n-space into IF assures that 2:7=1 tj = 1, so 2:j=1 tjXj E CO(K1 u· .. U Kn)· 
Since every net in CO(K1 U ... U Kn) has a convergent subnet with a limit 
in CO(K1 U ... U Kn), the set CO(K1 U ... U Kn) is compact. • 

2.10.15 Theorem. (D. P. Milman, 1947 [170]). Let K be a nonempty 
compact subset of a Hausdorff LOS such that co(K) is also compact. Then 
every extreme point of co(K) lies in K. 

PROOF. Let X be the Hausdorff LeS of which K is a subset, let Xe be 
an extreme point of co(K), and let U be a neighborhood of 0 in X. To 
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show that x" E K, it is enough to show that Xe + U -intersects K. By 
Theorem 2.2.9 (g) and the local convexity of X, there is a convex balanced 
neighborhood V of 0 such that V ~ U. Since K is compact, there are 
elements Xl,"" xn of K such that K ~ U7=1 (Xj + V). 

For each integer) such that 1::;)::; n, let K j = co(Kn (Xj + V)). 
As closed subsets of the compact set co(K), the sets K l , ... , Kn are all 
compact, and so CO(Kl U ... U Kn) is compact by Lemma 2.10.14. Since 
K ~ Kl U ... U Kn ~ co(K), it follows that 

By Lemma 2.10.13, there are nonnegative real numbers t l , ... , tn summing 
to 1 and elements Yl, ... , Yn of K l ,· .. , Kn respectively such that Xe = 
2:7=1 tjYj· An application of Lemma 2.10.12 yields a)o such that Xe = Yjo' 
which implies that 

Xe E Kjo = co( K n (Xjo + V)) ~ Xjo + V = Xjo - V. 

It follows that Xjo E (xe + V) nK ~ (xe+U)nK, so xe+U intersects K .• 

2.10.16 Corollary. Let A be a nonempty subset of a Hausdorff LCS such 
that co(A) is compact. Then every extreme point of co(A) lies in A. 

PROOF. Since A is compact and co(A) co(A), this corollary follows 
immediately from the theorem. • 

2.10.17 Corollary. Let K be a nonempty weakly compact subset of a 
Banach space. Then every extreme point of co(K) lies in K. 

PROOF. By the Krein-Smulian weak compactness theorem, the closed con
vex hull of K (which is the same as the weakly closed convex hull of K) 
is weakly compact, so K contains all of the extreme points of its closed 
convex hull. • 

2.10.18 Corollary. Suppose that X is a normed space and that K is a 
nonempty subset of X* that is bounded and weakly* closed. Then every 
extreme point of co w"(K) lies in K. 

PROOF. It is an easy consequence of the Banach-Alaoglu that both K 
and co w*(K) are weakly* compact, so the corollary follows immediately .• 

Exercises 

2.107 Let x be an element of a nonempty closed convex subset C of a Hausdorff 
TVS. Show that x is an extreme point of C if and only if it has this 
property: Whenever XI,X2 E C and x = ~(XI + X2), it follows that Xl = 
X2 = X. 
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2.108 Identify all of the extreme points of the closed unit ball of e1 , then show 
that Be, is the closed convex hull of its set of extreme points. Do not use 
any results from this section in your arguments. 

2.109 Identify all of the extreme points of the closed unit ball of eao , then show 
that Beoo is the closed convex hull of its set of extreme points. Do not use 
any results from this section in your arguments. 

2.110 Prove that B L ,[o,l] has no extreme points. 

2.111 Prove that real 0[0,1] is not isometrically isomorphic to the dual space 
of any normed space. 

2.112 Let 0 be a nonempty closed convex subset of a Hausdorff TVS X. An 
element Xe of 0 is an exposed point of 0 if there is an x· in X' such that 
Re x· is bounded from above on 0 and attains its supremum on 0 at Xe 

and only at Xe. 

(a) Show that an exposed point of 0 must be an extreme point of O. 

(b) Find a Banach space Xo such that some extreme point of Bxo is 
not an exposed point of Bxo' (This can be done by constructing an 
appropriate norm on ne. Exercise 1.37 might be helpful.) 

Exposed points were introduced by S. Straszewicz [229] in 1935. Two good 
sources for more on exposed points and related objects are Klee's 1958 
paper [136] and Day's book [56, pp. 105~1O6]. 

2.113 Let P be a polygon in the Euclidean plane, not assumed to be convex, 
whose sides intersect only at its vertices and whose vertices are each com
mon to exactly two sides, and let K be the compact region in the plane 
consisting of P together with the bounded component of its complement. 
In the discussion of such polygonal regions that precedes Lemma 2.10.12, 
it is claimed that "co(K) (which is the same as co(K) in this case) is a 
closed convex polygonal region whose vertices are a subset of the vertices 
of K." Prove this. Base your arguments on elementary principles, without 
using the Krein-Milman theorem or Theorem 2.10.15 in any way. 

2.114 Let A be a nonempty subset of a Hausdorff LeS X such that co(A) is 
compact, let E be the set of extreme points of co(A), and let B be a 
subset of A. Show that the following are equivalent. 

*2.11 

(a) co(B) = co(A). 

(b) E ~ B. 

(c) sup{Rex'x: x E B} = sup{Rex'x: x E A} whenever x· EX". 

Do not overlook the possibility that B might be empty. 

Support Points and Subreflexivity 

The ideas and results of this section have close ties to James's theorem and 
James's weak compactness theorem from Sections 1.13 and 2.9, but do not 
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actually depend on the material of those or any other optional sections of 
this book. 

Recall that a bounded linear functional x' on a normed space X is said 
to be norm-attaining if there is an Xo in B X such that 

Ix'xol = sup{ Ix'xl : x E Bx} = Ilx*ll· 

As was shown in Section 1.13 and again in Section 2.9, a Banach space 
is reflexive if and only if each bounded linear functional on the space is 
norm-attaining. About the time that Robert C. James's proof of that fact 
for separable Banach spaces appeared in 1957 [111], Robert R. Phelps be
gan investigating norm-attaining bounded linear functionals on nonreflex
ive Banach spaces, and was struck by the fact that each classical nonreflex
ive Banach space X has the property that the collection of norm-attaining 
members of X* is dense in X*. In light of James's work, it seemed to Phelps 
that a normed space X such that the norm-attaining members of X' are 
dense in X* is in a sense almost reflexive, which is the reason he gave such 
spaces the following name. 

2.11.1 Definition. (R. R. Phelps, 1957 [184]). A normed space X is sub
reflexive if the set of norm-attaining members of X' is dense in X*. 

Early in his study of subreflexivity, Phelps established that not ev
ery incomplete normed space is subreflexive, giving an example of a non
subreflexive one in his 1957 paper [184] that introduced subreflexivity. The 
following somewhat simpler example is attributed to Yitzhak Katznelson 
in [28]. 

2.11.2 Example. Let X be the subspace of real e[O, 1] consisting of the 
polynomials on [0,1]. Since the Weierstrass approximation theorem assures 
that X is dense in e[O, 1], the dual space of X can be identified with rca[O, 1] 
in the same way as is the dual space of e[O, 1]. For the rest of this example, 
consider X* to be so identified. The collection of all possible norm-attaining 
members of X* will now be found. 

Suppose that p is a constant polynomial in Sx, that is, that p is either 
identically 1 or identically -Ion [0,1]. Let /1> be a member of X* such that 
1/1>(p) I = 11/1>11, and let /1>+ and /1>- be the positive and negative variations 
of /1> respectively, so that /1> = /1>+ - /1>_ and 1/1>1 = /1>+ + /1>_. Then 

1/1>+([0,1]) - /1>_([0, 1])1 = 1/1>([0,1])1 

-ltOoll p d/1>1 

= 11/1>11 
= /1>+([0, 1]) + /1>_([0, 1]), 
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from which it follows that either /.L+ or /.L- is the zero measure, that is, that 
/.L is either a nonnegative or a nonpositive measure. 

Now suppose that P is a nonconstant member of Sx and that F is the 
nonempty finite subset of [0, 1] on which Ipi is 1. Let /.L be a member of X* 
such that I/.L(p) I = II/.LII· If I/.LI([O, 1] \ F) > 0, then 

II/.LII =! r Pd/.L! 
J[D,l] 

:S r Ipi dl/.LI + r dl/.LI 
J10,1]\F JF 

< r dl/.LI + r dl/.LI 
J10,1]\F JF 

= II/.LII, 
a contradiction that shows that 1111([0,1] \ F) = 0, that is, that /.L is finitely 
supported. 

Thus, a member of X* that is norm-attaining must be nonnegative, non
positive, or finitely supported. Let ..\ be Lebesgue measure on [0,1] and 
let /.La be the member of X* given by the formula 

/.Lo(A) = ..\(A n [0, 1/2]) - ..\(A n [1/2, 1]). 

Then II/.Lo II = 1. If 11 is a member of X* that is finitely supported, then it 
is easy to see that II/.L - /.La II = 11/111 + 11/10 II ~ 1, whereas if 11 is a member 
of X* that is nonnegative or non positive , then it is equally easy to see 
that II/.L - /.Loll ~ 1/2. It follows that the open ball of radius 1/2 centered 
at /.La contains no norm-attaining members of X*, and therefore that the 
collection of norm-attaining members of X* is not dense in X*. 

It is possible for an incomplete normed space to be subreflexive; see 
Exercise 2.115. In fact, as was shown by an example due to James [116], it 
is even possible for all of the bounded linear functionals on an incomplete 
normed space to be norm-attaining. 

Examples such as the one given above leave open the possibility that 
every Banach space is subreflexive, and Phelps's early work on subreflex
ivity was aimed toward finding a proof of this. After Phelps discussed a 
new approach toward the problem with Errett Bishop, the two were able 
to devise a proof that appeared in 1961 [28]. The proof to be given here is 
based on a later reformulation of their technique in terms of support cones 
that allowed Bishop and Phelps to obtain much more general results about 
support points and support functionals of nonempty closed convex subsets 
of Banach spaces. The notation and arguments used here will closely follow 
those of Bishop and Phelps. 

2.11.3 Definition. Let A be a subset of a topological vector space X. A 
nonzero x* in X* is a support functional for A if there is an Xo in A such 
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that Re x· Xo = sup{ Re x· x : x E A}, in which case Xo is a support point 
of A and x* supports A at Xo. 

Support points have been encountered before in disguise, for Corol
lary 1.9.8 is just a roundabout way of saying that if X is any normed 
space, then every point of S x is a support point of B x. 

The notion of a support functional is in a sense a generalization of the 
notion of a norm-attaining functional, for if x* is a nonzero member of the 
dual space of a normed space X, then it follows easily from the fact that 
sup{Rex'x: x E Bx} = sup{ IX'xl: x E Bx} that x' is norm-attaining if 
and only if x' supports B x . 

If a subset A of a TVS X is supported at some point Xo by an x' in X' 
and U is a neighborhood of xo, then the continuity of Re x* implies that 
there is a y in U such that Rex'y > sup{Rex*x: x E A}, which implies 
that y ~ A. It follows that every support point of a subset of a TVS is a 
boundary point of that set. 

2.11.4 Definition. Let X be a vector space. A subset K of X is a wedge if 
it is nonempty, convex, and has the property that tK s;:; K whenever t 2: O. 
A wedge K in X is a cone if K n ( - K) = {O}. 

See Exercise 2.117 for other equivalent definitions of wedges and cones 
that are sometimes used. Notice that if K is a wedge, then OK s;:; K, so 
wedges always contain O. 

2.11.5 Definition. (E. Bishop and R. R. Phelps, 1963 [29]). Suppose that 
X is a TVS such that X =J {O}. Suppose further that Xo is an element of 
a subset A of X and that K is a cone in X with nonempty interior such 
that An (xo + K) = {xo}. Then K is a support cone for A, the point Xo is 
a conical support point of A, and Xo + K supports A at Xo. 

The reason for defining conical support points only in nontrivial topo
logical vector spaces is that without this restriction, the convex subset {O} 
of the normed space {O} would have 0 as a conical support point but not 
as a support point. This would be inconsistent with the behavior of conical 
support points of convex sets in larger topological vector spaces, as the 
following proposition shows. 

2.11.6 Proposition. (E. Bishop and R. R. Phelps, 1963 [29]). Suppose 
that X is a TVS such that X =J {O}. Then every conical support point of 
a convex subset of X is a support point of that set. 

PROOF. Suppose that Xo is a conical support point of a convex subset C 
of X. Let K be a cone in X with nonempty interior such that Xo + K 
supports C at Xo· If 0 E KO, then the continuity of multiplication of vectors 
of X by scalars and the fact that X contains nonzero vectors together assure 
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that there is a nonzero Yo in X such that Yo and -Yo are both in K, which 
contradicts the fact that K n (-K) = {O}. It follows that Xo ¢:. (xo + K)O, 
and therefore that en (xo + K)O = 0. By Eidelheit's separation theorem, 
there is an x* in X* and a real number s such that Rex*x ::; s for each x 
in C, Rex*x 2:: s for each x in xo+K, and Rex*x > s for each x in (xo+K)o. 
It follows that x* =I- 0 and that Rex*xo = s = sup{ Rex*x : x E C}, and 
therefore that x* supports C at Xo. • 

Some temporary notation is now needed that will not apply outside this 
section. Suppose that X is a normed space, that x* E Sx', and that t > 1. 
Then 

K(x*, t) = {x: X E X, Ilxll ::; Re x* (tx) }. 

Since Ilx*11 = 1, there is an Xo in X such that Rex*(txo) > Ilxoll, which 
assures that {x : x E X, Ilxll < Rex*(tx)} is a nonempty open set inside 
K(x*, t). It then follows easily that K(x*, t) is a closed cone with nonempty 
interior. 

2.11.7 Lemma. (E. Bishop and R. R. Phelps, 1963 [29]). Suppose that 
x is an element of a complete subset A of a normed space X, that x* is 
a member of Sx' such that Rex' is bounded from above on A, and that 
t> 1. Then there is an Xo in A such that Xo E x+K(x*, t) and xo+K(x*, t) 
supports A at xo. 

PROOF. Let B = A n (x + K(x*, t)). Notice that an element z of A is in B 
if and only if liz - xii::; Rex*(t(z - x)). The set B is a closed subset of 
the complete set A and so is itself complete. Since K(x*, t) is a cone, it 
follows easily that the relation on B defined by declaring that y ::::; z when 
z - y E K(x*, t) is a partial order for B. It is also clear that x E B and that 
x ::::; z whenever z E B. 

Suppose that ~ is a nonempty chain in B. Then ~ can be used as the 
index set for a net, so the restriction of Re x* to <!: is a net in R Since 
Re x*y ::; Re x* z whenever y ::::; z, the boundedness from above of Re x* 
on A implies that the net Re x* II!: converges and therefore is Cauchy. Since 
liz - yll ::; Re x* (t(z - y)) whenever y, z E Band y ::::; z, the net It (or, more 
properly, the identity function on <!:, viewed as a net) is a Cauchy net in B 
and so converges to some u in B. Since K(x*, t) is closed, it follows that 
u - y E K(x*, t) for each y in ~, that is, that u is an upper bound for ~ 
in B. 

By Zorn's lemma, the set B contains a maximal element Xo. Then Xo E 

x + K(x', t) since x ::::; Xo. Suppose that yEA n (xo + K(x*, t)). Then 

y E Xo + K(x*, t) ~ x + K(x*, t) + K(x*, t) = x + K(x*, t), 

so Y E Band Xo ::::; y. It follows from the maximality of Xo that y = Xo, and 
therefore that An (xo + K(x*, t)) = {xu}. The set Xo + K(x*, t) therefore 
supports A at Xo· • 
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2.11.8 Theorem. (E. Bishop and R. R. Phelps, 1963 [29]). If C is a closed 
convex subset of a Banach space X such that X =1= {O}, then the conical 
support points of e are dense in the boundary of e. 
PROOF. Suppose that x E 8e and that I: > O. Let Yo be an element of X\e 
such that Ilyo - xii < 1:/2. By Theorem 2.2.28, there is an x* in X* such 
that sup{ Re x*y : y E e} < Re x*yo; it may be assumed that Ilx* II = 1. An 
application of Lemma 2.11.7 produces an Xo in e such that Xo E x+K(x*, 2) 
and Xo + K(x*, 2) supports e at Xo. Since Xo - x E K(x*, 2) and Xo E e, 

Ilxo - xii::; 2Rex*(xo - x) < 2Rex*(yo - x) ::; 211Yo - xii < E; 

that is, the conical support point Xo of e, which is in Be by Proposi
tion 2.11.6 and the fact that the support points of e all lie in Be, is less 
than distance I: from x. • 

The preceding theorem, with a little help from Proposition 2.11.6, im
mediately yields the following result when the Banach space is not {O}. If 
the space is {O}, then the result is trivially true since both subsets of the 
space have empty boundaries. 

2.11.9 The Bishop-Phelps Support Point Theorem. (E. Bishop and 
R. R. Phelps, 1963 [29]). If e is a closed convex subset of a Banach space, 
then the support points of e are dense in the boundary of e. 

In 1958, Victor Klee [136] asked if a nonempty bounded closed convex 
subset of a Banach space X such that X =1= {O} has to have a support point. 
Every such set, and in fact every nonempty proper subset A of a TVS X, 
has a nonempty boundary; fix an x in A and a y in X \ A, let 

s = sup{ t : 0 ::; t ::; 1, (1 - t)x + ty E A}, 

and consider (1- s)x+sy. The Bishop-Phelps support point theorem there
fore implies that the answer to Klee's question is yes. 

Let e be a closed convex subset of a Banach space X. Then in addition 
to the support points of e being dense in the boundary of e, it turns out 
that the support functionals for e must be dense in X* provided that a few 
restrictions are placed on e and X. To see what those restrictions might 
be, first notice that e cannot be empty or all of X, for then e would have 
no support functionals at all. It is not enough of a restriction on e just 
to require that it be nonempty and not all of X; see Exercise 2.119. As 
will be shown, it is enough to require e to be nonempty and bounded, 
provided that X =f {O} so that e cannot be X. This will follow easily 
from a separation theorem due to Bishop and Phelps. The proof of this 
separation theorem is based on Lemma 2.11.11 below, which is in turn a 
consequence of the following result, which says, roughly speaking, that if 
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the kernels of two norm-one bounded linear functionals on a real normed 
space are about the same near the origin, then each functional is about the 
same as the other or the negative of the other. 

2.11.10 Lemma. (R. R. Phelps, 1960 [186]). Suppose that X is a real 
normed space, that E > 0, and that xi and x2 are members of Sx. such that 
x2 (Bx n ker xi) <;:: [-E/2, f/2]. Then either Ilxi - x211 ::; f or IIx! + x211 ::; f. 

PROOF. The normed space version of the Hahn-Banach extension theorem 
produces a y* in X* such that the restrictions of y* and xi to ker xi are 
the same and Ily*11 ::; f/2. Since ker(x2 - y*) :2 kerxi, it follows from 
Lemma 1.9.11 that there is a scalar a such that x2 - y* = axi, and 

11 -la ll = Illx;II-llo:xilll ::; Ilx; - o:xill ::; ~. 

If 0: 2: 0, then 

Ilx; - xiii::; Ilx; - o:xill + 11- o:lllxill :S ~ + ~ = t, 

whereas if 0: < 0, then 

Ilx; + xiii :S Ilx; - axill + 11 + allixill ::; ~ + ~ = E. 

In either case, the conclusion of the lemma holds. • 
2.11.11 Lemma. (E. Bishop and R. R. Phelps, 1963 [29]). Suppose that X 
is a real normed space, that xi, X2 E Sx., that ° < f < 1, that t > 1 + 2/ f, 

and that xi is nonnegative on K(xi, t). Then Ilxi - xiii :S E. 

PROOF. Fix an Xo in Sx such that xixo > max{C1(1 + 2/t), E}; notice 
that this implies that Ilxoll = 1 < txixo, so Xo E K(xi, t) and xixo 2' 0. If 
x E Bx n kerxi, then 

Ilxo ± ~xll :S 1 + ~ < txixo = txi (xo ± ~x), 
so Xo ± (2/c)x E K(xi, t) and therefore x2(xo ± (2/E)X) 2: 0, from which it 
follows that 

By Lemma 2.11.10, either Ilxi - x211 :S for Ilxi + x211 :S E. However, the 
second inequality cannot hold, since Ilxi + xiii 2: (xi + xi)(xo) > E, which 
completes the proof. • 

The following theorem says that, under the hypotheses on X, C, and A, 
any member of Sx. that strictly separates C from A can be approximated 
by members of SX. that support C and strictly separate C from A. 
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2.11.12 Theorem. (E. Bishop and R. R. Phelps, 1963 [29]). Suppose that 
C and A are nonempty subsets of a Banach space X such that C is closed 
and convex and A is bounded. Suppose further that E > 0, that xi E Sx., 
and that 

sup{Rexix: x E C} < inf{Rexix: x E A}. 

Then there is an x; in Sx' and an Xo in C such that 

Rex;xo = sup{ Rex;x : x E C} < inf{ Rex;x : x E A} 

and Ilxi - xzll :S E. 

PROOF. It may be assumed that 0 < E < 1 and that X is a real Banach 
space. Let 

M = ~(inf{ xix: x E A} + sup{ xix: x E C}) 

and 

6 = ~(inf{ xix: x E A} - sup{ xix: x E C}). 

Let B = A + 6Bx, a bounded set that includes A in its interior. Then 

inf { xi x : X E B } = inf { xi x : X E A} + 6 inf { xi x : x E B x} 

= inf{ xix: x E A} - 6 

=M· 

Let 8 = 1 + 2/ E and select a z from C such that 

sup{xix: x E C} - xiz < ~. 
28 

Let M be any number larger than both 6/2 and sup{ Ily _. zll : y E B} and 
let t = 2sM/6; then t > s > 1. By Lemma 2.11.7, there is an Xo in C such 
that Xo - z E K(xi, t) and Xo + K(xi, t) supports C at Xo. 

Suppose that y E B. Then 

Ily - xoll :S Ily - zll + Ilxo - zll 

< M + xi (t(xo - z)) 
:S M + t(sup{xix: x E C} - xiz) 

t6 
<M+-

tf; 

s 
< t6 

28 

:S txi(y - xo). 
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Therefore Y - Xo E K(xr, t), and so B s:;: Xo + K(xi, t). 
An application of Eidelheit's separation theorem yields an x~ in Sx' 

such that 

x;xo = sup{ x;x : x E C} 

= inf{x2x: x E Xo +K(xi,t)} 

:s: inf { x;x : x E B } 

= inf {x;x : x E A} + 6 inf { xix: x E B x} 

= inf{ x;x : x E A} - 6 

< inf{x;x: x E A}. 

Since t > 1 + 2/E and 

inf{x;x: x E K(xi, t)} = inf{x;x: x E Xu + K(x~, t)} - x;xo = 0, 

it follows from Lemma 2.11.11 that Ilxi - x211 :s: E. • 
Two of the main results of this section are easy consequences of the 

theorem just proved. 

2.11.13 The Bishop-Phelps Support Functional Theorem. (E. Bish
op and R. R. Phelps, 1963 [29]). If C is a nonempty bounded closed convex 
subset of a Banach space X such that X of- {O}, then the support function
als for C are dense in X * . 

PROOF. It suffices to prove that the norm-one support functionals for C 
are dense in Sx" Let xi be an element of Sx', let Y be an element of X 
such that sup{Rexix: x E C} < Rexiy, and let E > O. Letting A = {y} 
in Theorem 2.11.12 yields a norm-one support functional xi for C such 
that IIxi - x~ II :s: E. • 

The completeness hypothesis in the preceding result is necessary, for 
Bishop and Phelps proved in [29] that every incomplete normed space X 
has a bounded closed convex subset C with nonempty interior such that 
the support functionals for C are not dense in X*. 

Applying the preceding result to the closed unit ball of a Banach space 
immediately yields the subrefiexivity result that motivated this entire sec
tion. (The special case in which the Banach space is {O} is trivial.) 

2.11.14 The Bishop-Phelps Subreflexivity Theorem. (E. Bishop and 
R. R. Phelps, 1961 [28]). Every Banach space is subreflexive. 

Suppose that X and Yare normed spaces. As one would expect, a mem
ber T of E(X, Y) is called norm-attaining if there is an x in Ex such that 
IITxl1 = IITII· In light of the Bishop-Phelps subrefiexivity theorem, it is 
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natural to ask the following question that Bishop and Phelps posed in [28]: 
What conditions on two Banach spaces X and Y assure that the collection 
of norm-attaining members of B(X, Y) is dense in B(X, Y)? There must 
be some additional conditions imposed on at least one of the spaces; in 
particular, in a 1963 paper Joram Lindenstrauss [153] showed that there 
is a Banach space X such that the set of norm-attainers in B(X) is not 
dense in B(X). Partial answers to the question have emerged from research 
done on a property for Banach spaces called the Radon-Nikodym property, 
in particular from work by Jean Bourgain [35) published in 1977. See the 
books by Richard Bourgin [37] and by Joseph Diestel and J. Jerry Uhl [59] 
for discussions of the Radon-Nikodym property and its relationship to the 
question raised by Bishop and Phelps. 

Since Bishop and Phelps showed that the norm-attainers are dense in 
B(X, Y) for every Banach space X when Y = IF, it is particularly nat
ural to ask what conditions on a Banach space Y would assure that the 
norm-attainers are dense in B(X, Y) for every Banach space X. A good 
starting point for anyone interested in that problem is Timothy Gowers's 
1990 paper [90], in which he shows that each space 1!p such that 1 < p < 00 

lacks this property. 

Exercises 

2.115 Let X be the vector space of finitely nonzero sequences, equipped with 
the e2 norm. Show that X is an incomplete subreflexive normed space. 

2.116 Suppose that C is a closed convex subset of a TVS such that Co Ie 0. 
Prove that every point of the boundary of C is a support point of C. 

2.117 Let K be a nonempty subset of a vector space X. 

(a) Prove that K is a wedge if and only if it has this property: If x, Y E K 
and t ~ 0, then x + y, tx E K. (Notice the natural way in which 
wedges are generalizations of subspaces.) 

(b) Prove that K is a wedge if and only if it has this property: If x, y E K 
and s, t ~ 0, then sx + ty E K. (Notice the natural way in which 
convex sets are generalizations of wedges.) 

(c) Prove that K is a cone if and only if it is a wedge with the property 
that x = ° whenever x, -x E K. 

2.118 The preceding exercise is useful, though not at all essential, for this one. 
Suppose that P is a wedge in a real vector space X. Define a relation ~ 
on X by declaring that x ~ y when y - x E P. 

(a) Prove that ~ is a preorder on X. 

(b) Prove that if x, y, z E X, t ~ 0, and x ~ y, then x + z ~ y + z and 
tx ~ ty. 

(c) Prove that ~ is a partial order if and only if P is a cone. 
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The pair (X,~) is called an ordered vector space, the members of P are 
called the positive elements of X, and P itself is called the positive wedge 
(or positive cone, if appropriate) of X. 

2.119 Find a closed convex subset C of a Banach space X such that the collection 
of support functionals for C is nonempty but not dense in X'. (It can be 
done in Il~?) 

2.120 Call a subset A of a normed space X orthodox iffor each x in X \ A there 
is a norm-attaining x' in X· such that Rex'x > sup{Rex'y: yEA}. 
Prove that a normed space is su breflexive if and only if each of its bounded 
closed convex subsets is orthodox. 

2.121 Prove the following improvement of Theorem 2.2.28 for Banach spaces: 
Let K and C be disjoint nonempty convex subsets of a Banach space X 
such that K is compact and C is closed. Then there is a member x' 
of X· such that inf{Rex'x : x E C} is attained by Rex' on C and 
max{Rex'x: x E K} < min{Rex'x: x E C}. 

2.122 Let X be a normed space such that X f:. {O}. If t E lR and x· is a nonzero 
member of X·, then the subset of X defined by the formula 

H(x',t) = {x: x E X, Rex'x ~ t} 

is called a closed hal/space. Let C be a nonempty closed convex sub
set of X. Then a closed haifspace H(x', t) is said to support C if t = 
sup{ Rex'x : x E C} and x* is a supporting functional for C. It was 
shown in Exercise 1.109 (which is not needed for this exercise) that C is 
the intersection of a collection of closed halfspaces. Prove that if X is a 
Banach space, then C is the intersection of the collection of its supporting 
closed halfspaces. 

2.123 Suppose that A is a subset of a topological vector space X. A nonzero x· 
in X· is a modulus support functional for A if there is an Xo in A such 
that Ix'xol = sup{ Ix'xl : x E A}, in which case Xo is said to be a modulus 
support point of A. 

(a) Show that if A is balanced, then the modulus support points of A 
are the same as the support points of A, and the modulus support 
functionals for A are the same as the support functionals for A. 

(b) Give an example of a subset C of a Banach space such that the mod
ulus support points of C are not dense in the boundary of C, even 
though C is bounded, closed, convex, and has nonempty interior. 
(This can be done in C.) 

It turns out not to be too hard to show that every nonempty bounded 
closed convex subset of a real Banach space X has the property that its 
modulus support functionals are dense in X'. At the time of this writing, 
it is not known if this result extends to complex Banach spaces. For more 
information, see Phelps's 1992 survey article [187] on this problem. 

2.124 Let X be a normed space. By Corollary 1.9.8, every member of Sx is 
a support point of Ex. The space X is said to be smooth if for each x 
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in Sx there is a unique x; in Sx. that supports Ex at x. The space X 
is then said to be very smooth if it is smooth and the map x 1-+ x; 
from Sx into Sx' is norm-to-weak continuous. These definitions will be 
encountered again in Chapter 5. 

(a) Prove that if X is a Banach space and X· is very smooth, then every 
member of X· is norm-attaining. 

(b) (This part depends on James's theorem from Section 1.13 or 2.9.) 
Conclude from (a) that every Banach space with a very smooth dual 
is reflexive. 



3 
Linear Operators 

Linear operators have already received quite a bit of attention in this book, 
primarily as tools for probing the structure of normed spaces. The purpose 
of this chapter is to reverse that emphasis temporarily by studying linear 
operators between normed spaces as interesting objects in their own right, 
with the properties of normed spaces obtained in the first two chapters used 
as the tools for the study. Almost all of the attention will be on bounded 
linear operators, though there is also an interesting theory of unbounded 
ones; see, for example, Chapter 13 of [200] or Chapter VII, Section 9 of [67]. 

The adjoint of an isomorphism from one normed space onto another was 
introduced in Section 1.10, primarily to be able to prove that normed spaces 
that are isomorphic or isometrically isomorphic have dual spaces bearing 
that same relationship to each other. The first order of business is to extend 
the notion of adjoint operators and learn more about them. 

3.1 Adjoint Operators 

Recall the following notation introduced in Section 1.10: When x is an 
element of a vector space X and x# E X#, then x# x is often denoted 
by (x, x#), particularly in situations in which the usual notation might be 
visually confusing. 

3.1.1 Definition. Suppose that X and Yare vector spaces and that 
T E L(X, Y). Then the algebraic adjoint of T is the linear operator T# 
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from y# into X# given by the formula T#(y#) = y#T. That is, the al
gebraic adjoint T# is defined by letting (x, T#y#) = (Tx, y#) whenever 
x E X and y# E y#. 

With X, Y, and T as in the preceding definition, it is immediate that 
T#(y#) really is a linear functional on X whenever y# in Y#, and it is 
easy to check that T# is itself linear. 

3.1.2 Proposition. Suppose that X and Yare normed spaces and that 
T E L(X, Y). Then T is bounded if and only if T#(Y*) C;;;; X*. If T 
is bounded, then the restriction T* of T# to Y*, viewed as a member 
of L(Y*,X*), is itself bounded, and IIT*II = IITII. 
PROOF. The fact that T is bounded if and only if T#(Y*) C;;;; X* is just 
a restatement of Proposition 2.5.10. Now suppose that T is bounded, so 
that T# (y*) C;;;; X*, and let the restriction T* of T# to Y· be viewed as 
a member of L(Y*, X*). An application of Proposition 1.10.11 (a) shows 
that 

IITII = sup{ I(Tx,y*)I: x E Bx, y* E By.} 

= sup{ I(x, T*y*)1 : x E B x , y* E By.}. 

By Proposition 1.10.11 (b), the fact that the second supremum in the above 
equality is finite assures that T* is bounded and has its norm equal to that 
supremum, and therefore to IITII. • 

3.1.3 Definition. Suppose that X and Yare normed spaces and that 
T E B(X, Y). Then the (normed-space) adjoint of T is the restriction 
of T# to Y*, that is, the linear operator T* from y* to X* given by the 
formula T*(y*) = y*T. 

Thus, with all notation as in the preceding definition, the normed-space 
adjoint T* of T is defined by letting (x, T*y*) = (Tx, y*) whenever x E X 
and y* E Y*. For the rest of this book, the only real interest in adjoints 
will be in the normed-space variety, so the unqualified term adjoint will 
always refer to them and not to algebraic adjoints. 

Definition 3.1.3 is due to Banach [11] for the case in which X and Y 
are arbitrary Banach spaces, but adjoints of operators on special spaces 
were used long before the appearance of Banach's paper in 1929. In par
ticular, Frederic Riesz made use of adjoints in published works appearing 
in 1910 [193] and 1913 [194] concerning linear operators on £2 and certain 
other Lp spaces. The idea of an adjoint actually has its roots in matrix 
theory, as will now be shown. 

For the purposes of the next paragraph, consider Euclidean p-space 
(p> 0) to be identified with the collection of all p x 1 matrices of scalars 
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in the obvious way, and B(lFP, lFq ) (p, q > 0) to be identified with the col
lection of all p x q matrices of scalars, with the action of a member T of 
B(lFP, lFq ) on an element x of lFP given by the formula Tx = Tt . x, where 
Tt is the transpose of the matrix T and· represents matrix multiplication. 
In particular, when IF is identified with lF 1 in the obvious way, a member x* 
of (lFP)* acts on a member x of lFP through the formula x*x = (x*)t . x. 

Suppose that m and n are positive integers and that T E B(lFm,lFn). If 
x E lFm and y* E (lFn)*, then 

so T*y* = (Tt)t . y*. It follows that T* is, as a matrix, equal to Tt. The 
notion of an adjoint operator is therefore, in a sense, a generalization of 
the notion of the transpose of a matrix. 

The verification of the following proposition is easy. The corollary then 
follows after a glance at Proposition 3.1.2. 

3.1.4 Proposition. If 8 and T are bounded linear operators from a 
normcd space X into a normed space Y and a E IF, then (8+T)* = 8*+T* 
and (a8)* = a(8*). 

3.1.5 Corollary. If X and Yare normed spaces, then the map T ....... T* 
is an isometric isomorphism from B(X, Y) into B(Y·, X*). 

The isometric isomorphism of the preceding corollary docs not have to 
map B(X, Y) onto B(Y', X*), even when both X and Yare Banach spaces. 
See Exercises 3.3 and 3.4. 

3.1.6 Example. Let I be the identity operator on a normed space X. For 
each x in X and each x* in X*, 

(x,I*x*) = (Ix,x*) = (x,x*). 

It follows that I*x' = x* for each x* in X*, that is, that 1* is the identity 
operator on X*. 

3.1. 7 Example. In this example, members of f1 will also be treated as 
members of Co and f oc)) so to avoid confusion a subscript of 0, 1, or 00 

will indicate whether a particular sequence of scalars is being treated as a 
member of co, f1' or foc; respectively. Let T be the map from £1 into Co given 
by the formula T((anh) = (an)o. Then T is clearly linear and bounded 
and is easily seen to have norm 1. Consider fi and Co to be identified with 
foo and £1 respectively in the usual way. Then for each pair of elements 
(anh and (t3nh of f1' 

((anh, T*(t3nh) = (T(anh, (t3nh) = ((an)o, (t3nh) = L t3n a n, 
n 
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so the element T*((3nh of fi can be identified with the element (;3")00 
of foo. In short, the adjoint of the "identity" map from f1 into CO is the 
"identity" map from f1 into f=. It is clear that the norm of T* is 1, as 
predicted by Proposition 3.1.2. 

The preceding two examples might give one the idea that the adjoint of 
a one-to-one bounded linear operator between normed spaces must itself 
be one-to-one. As the next example shows, this is not the case. The actual 
relationships between such properties as being one-to-one and being onto 
for bounded linear operators and their adjoints will be settled by Theorems 
3.1.17,3.1.18, and 3.1.22. 

3.1.8 Example. Let X be any nonreflexive Banach space and let Qx be 
the natural map from X into X**, an isometric isomorphism from X onto 
a closed subspace of X**. Then Q-;' maps X*** into X*. Let Q X' be the 
natural map from X* into X***. Then for each x in X and each x* in X* , 

(x,QxQx'x*) = (Qxx,Qx'x*) = (x*,Qxx) = (x,x*), 

which implies that Q-;'Q X' is the identity map on X* and therefore that 
Q-;' maps X*** onto X*. If Q-;' were also one-to-one, then Qx' would have 
to map X* onto X***, contradicting the fact that X* is not reflexive. The 
isometric isomorphism Qx therefore does not have a one-to-one adjoint. 

As has already been mentioned, adjoints were used in Section 1.10 to 
prove that normed spaces that are isomorphic or isometrically isomorphic 
have dual spaces that are isomorphic or it:iometrically isomorphic, respec
tively. Adjoints had another ut:ie in that section, as the next example shows. 

3.1.9 Example. Suppose that X is a normed space and that M is a closed 
subspace of X. By Theorem 1.10.17, there is an isometric isomorphism that 
identifies (XjM)* with M1.. such that if an element of (XjM)* is identified 
with the element x* of M 1.. , then x* (x + M) = x* x for each member x + M 
of X j M. A glance at the proof of Theorem 1.10.17 shows that this isometric 
isomorphism is the adjoint of the quotient map from X onto XjM. 

Since the concept of the adjoint of a linear operator it:i in a sense a 
generalization of the notion of the transpose of a matrix of scalars, it is not 
surprising that some of the properties of transposes of matrices generalize to 
adjoints of operators. In particular, the following result is a generalization 
of the fact that if A and B are matrices whose dimensions are such that 
the matrix product A· B is defined, then (A· B)t = Bt . At. 

3.1.10 Proposition. Suppose that X, Y, and Z are normed spaces, that 
S E B(X, Y), and that T E B(Y, Z). Then (TS)* = S*T*. 
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PROOF. If x E X and z* E Z*, then 

(x,(TS)*(z*)) = (TSx,z*) = (Sx,T*z*) = (x,S*T*z*), 

from which it follows that (TS)* = S*T*. • 
It is certainly true that every matrix A is the transpose of a matrix, since 

A = (At)t. There is a sense in which this fact generalizes to adjoints, as 
Proposition 3.1.13 and the comments immediately preceding it will show. 
In another sense it does not, since there exist Banach spaces X and Y such 
that some members of B(Y*, X*) are not adjoints of members of B(X, Y); 
see the comment after Corollary 3.1.5. The following result characterizes 
the linear operators between dual spaces of normed spaces that actually 
are adjoints. 

3.1.11 Theorem. Suppose that X and Yare normcd spaces. If T E 

B(X, Y), then T* is weak*-to--weak* continuous. Conversely, if S is a 
weak*-to--weak* continuous linear operator from y* into X*, then there 
is a T in B(X, Y) such that T* = S. 

PROOF. Suppose first that T E B(X, Y). Let (y~) be a net in y* that is 
weakly* convergent to some y'. For each x in X, 

(x, T*y~) = (Tx, y~) -+ (Tx, yO) = (x, T*y*}, 

so T*y~ ~. T*y*. This establishes the weak* -to--weak* continuity of T*. 
Now suppose instead that S is a weak*-to-weak* continuous linear oper

ator from y* iuto X*. Let Qx aud Qy be the natural maps from X and Y 
respectively into their second duals. For each x in X, the weak* continuity 
of Qx(x) on X* assures that the operator product Qx(x)S is a weakly* 
continuous linear functional on Y* and so is a member of Qy(Y), which in 
turn implies that Qyl(QX(x)S) E Y. 

Define T: X -+ Y by the formula Tx = Qyl(QX(X)S). It is easy to 
check that T is linear. To see that T is bounded, suppose that (xa,) is 

a net in X converging weakly to some Xo. Then Qx(xa ) ~. Qx(xo), 
so (Qx(xaJS)(y*) -+ (Qx(xo)S)(y*) whenever y* E yo, which in turn 

implies that Qx(x",)S ~. Qx(xo)S and therefore that 

The operator T is therefore weak-to-weak continuous and so is norm-to
norm continuous by Theorem 2.5.11. 
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Finally, observe that for each x in X and each y* in Y*, 

(x, T*y*) = (Tx, yO) 

which shows that T* = S. 

= (Q;.:I(Qx(x)S),y*) 

= (y*, Qx(x)S) 

= (Sy*, Qx(x)) 

= (x,Sy*), 

• 
3.1.12 Corollary. Suppose that X and Yare normed spaces. Then every 
weak*-to-weak* continuous linear operator from X* into y* is norm-to
norm continuous. 

In Example 2.6.17, an isomorphism T from Co onto itself was constructed 
that is not weak*-to-weak* continuous, so the converse of the preceding 
corollary is not in general true. Notice also that, by Theorem 3.1.11, the 
isomorphism T is an explicit example of a member of B(co) that is not the 
adjoint of any member of B(co). 

As was mentioned in the comments preceding Theorem 3.1.11, there is a 
sense in which the fact that (At)t = A for every matrix A has an extension 
to adjoints. The generalization is given in the following proposition, which 
says that if T is a bounded linear operator from a normed space X into a 
normed space Y and each space is identified with its image in its second 
dual under the natural map, then T** = Ton X. 

3.1.13 Proposition. Suppose that X and Yare normed spaces and that 
T E B(X, Y). Let Qx and Qy be the natural maps from X and Y 
into their respective second dual spaces. Then T**Qx(X) ~ Qy(Y) and 
Q}/T**Qx = T. 

PROOF. Fix an x in X. First notice that whenever y* E Y* , 

(y*,T**Qxx) = (T*y*,Qxx) = (x,T*y*) = (Tx,y*). 

If a net (y~) in Y* is weakly* convergent to some Yo, then 

(y~, T**Qxx) = (Tx, y~) -> (Tx, y~) = (y~, T**Qxx), 

so T**Qxx is a weakly* continuous linear functional on Y* and therefore 
lies in Qy (Y). Whenever y* E Y*, 

(Tx, yO) = (y*, T**Qxx) = (Q}}T**Qxx, yO), 

from which it follows that Q}}T**Q x = T. • 
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3.1.14 Corollary. Suppose that X and Y are normed spaces and that 
T E R(X, Y). Let Qx and Qy be the natural maps from X and Y into 
their respective second dual spaces. 

(a) The operator T is one-to-one if and only if the restriction of T** 
to Qx(X) is one-to-one. 

(b) The operator T maps X onto Y if and only if T** maps Qx(X) 
onto Qy(Y). 

PROOF. The preceding proposition implies that T**Qx = QyT, from 
which the corollary follows easily. • 

Yet another property of transposes of matrices that generalizes to ad
joints is the fact that a square matrix A is invertible if and only if its 
transpose is invertible, in which case (A -l)t = (At)-l. The generalization 
of the formula for (A -1) t is easy. 

3.1.15 Proposition. Suppose that T is an isomorphism from a normed 
space X onto a normed space Y. Then (T- 1 )* = (T*)-l. 

PROOF. By Theorem 1.10.12, the operator T* is an isomorphism from y* 
onto X*, so (T*)-l does exist. For each y in Y and each x* in X*, 

(y, (T-1)*(x*)) = (T- 1y,x*) 

= (T- 1y, T*(T*)-l(X*)) 

= (TT-1y, (T*)-l(X*)) 

= (y, (T*)-l(x*)), 

from which it follows that (T-l)* = (T*)-l • 
The generalization to adjoints of the fact that a square matrix is invert

ible if and only if its transpose is invertible requires a bit more work. One 
key element for obtaining the generalization is part (b) of the next theorem. 
The lemma used to prove the theorem is itself of some interest. 

3.1.16 Lemma. Suppose that X and Yare normed spaces and that T E 

B(X, Y). Then ker(T) =.L (T*(Y*)) and ker(T*) = (T(X)).L. 

PROOF. Since y* is a separating family of functions for Y, an element x 
of X is in ker(T) if and only if 

(x, T*y*) = (Tx, y*) = 0 (3.1) 

for each y* in Y*, which is the same as saying that x E .L(T*(Y*)). Simi
larly, an element y* of y* is in ker(T*) if and only if (3.1) holds for each x 
in X, which is equivalent to requiring that y* be in (T(X)).L. • 
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3.1.17 Theorem. Suppose that X and Yare normed spaces and that 
T E B(X,Y). 

(a) The operator T is one-to-one if and only if T*(Y*) is weakly* dense 
in X*. 

(b) The operator T* is one-to-one if and only if T(X) is dense in Y. 

PROOF. By Lemma 3.1.16 and Propositions 2.6.6 (c) and 1.10.15 (c), 

(3.2) 

and 

(3.3) 

Since T is one-to-one if and only if ker(T) = {O}, which happens if and only 

if (ker(T)).L = X*, it follows from (3.2) that T is one-to-one if and only 

if X* = T*(Y*) w', proving (a). Part (b) follows from a similar argument 
based on (3.3). • 

Here is the promised extension of the fact that square matrices are in
vertible exactly when their transposes are. Part of this result was previ
ously obtained as Theorem 1.10.12. Unlike Theorem 1.10.12 and Propo
sition 3.1.15, this theorem has a completeness hypothesis that cannot in 
general be removed. See Exercise 3.8. 

3.1.18 Theorem. Suppose that X is a Banach space, that Y is a normed 
space, and that T E B(X, Y). Then T is an isomorphism from X onto Y 
if and only if T* is an isomorphism from y* onto X*. The same is true if 
"isomorphism" is replaced by "isometric isomorphism." 

PROOF. It has already been shown in Theorem 1.10.12 that if T is an 
isomorphism or isometric isomorphism from X onto Y, then T* is an iso
morphism or isometric isomorphism, respectively, from y* onto X*. 

Suppose that T* is an isomorphism from y* onto X*. Then there is a 
positive constant c such that (T*) -1 (B x.) ~ cBy •. If x EX, then 

IITxl1 = sup{ I(Tx, Y*)I : y* E By.} 

= sup{ l(x,T*y*)I: y* E By.} 

2 sup{ I(x, x*)1 : x* E c-1 Bx·} 

= c-11Ixll, 

which is enough to assure that T is an isomorphism. Since T(X) is dense 
in Y and complete, hence closed, it follows that T(X) = Y. 
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Suppose now that T* is an isometric isomorphism from y* onto X*. 
Then the constant c in the argument just given can be selected to be 1. 
This and the fact that IITII = IIT* II assures that Ilxll :::; IITxll :::; II xII for 
each x in X, which implies that T is an isometric isomorphism. • 

One immediate consequence of Theorem 3.1.17 is that, with all notation 
as in that theorem, ifT maps X onto Y (respectively, T* maps Y* onto X*), 
then T* (respectively, T) is one-to-one. These statements can be greatly 
strengthened when X and Y are Banach spaces, as will be shown in Theo
rem 3.1.22. A major ingredient in the proof of that result is Theorem 3.1.21, 
which establishes important relationships between closure properties of the 
range of T and those of the range of T* when X and Yare complete. 
The proof of Theorem 3.1.21 given here, which is essentially the one that 
appears in [43J, uses the Krein-Smulian theorem on weakly* closed convex 
sets. See [200J for a different proof that does not. 

3.1.19 Lemma. Suppose that M is a closed subspace of a normed space X 
and that rr is the quotient map from X onto XIM. Then rr* is a homeo
morphism from (XIM)* with its weak* topology onto the weakly* closed 
subspace M.l of X* with the relative weak* topology that M.l inherits 
from X*. That is, the usual identification map from (XI M) * onto M.l also 
identifies the weak* topologies of the two spaces. 

PROOF. As has been noted in Example 3.1.9, the map rr* is the usual 
identification map from (XI M)* onto M.l and so is one-to-one. The set M.l 
is weakly* closed in X* by Proposition 2.6.6 (a), and the weak*-to-relative
weak* continuity of rr* follows from Theorem 3.1.11, so all that needs to 
be shown is the relative-weak*-to-weak* continuity of (rr*)-l on M.l. 

Suppose that a net (m~) in M.l is weakly* convergent to some mem
ber m* of M.l. Then for each x in X, 

• 
See Theorem 1. 7.13 for the basic properties of the map S in the following 

lemma. 

3.1.20 Lemma. Suppose that X and Y are normed spaces and that T E 

B(X, Y). Let rr be the quotient map from X onto XI ker(T), let S be 
the bounded linear operator from XI ker(T) into Y such that T = Srr, 
let Z = T(X), and let R be T viewed as a member of B(X, Z). 

(a) The set S(XI ker(T») is closed if and only if T(X) is closed. 

(b) The set S* (Y*) is closed if and only if T* (Y*) is closed. 



292 3. Linear Operators 

(c) The set S*(Y*) is weakly* closed if and only if T*(Y*) is weakly* 
closed. 

(d) The set R(X) is closed if and only if T(X) is closed. 

(e) The set R*(Z*) is closed if and only if T*(Y*) is closed. 

(f) The set W(Z*) is weakly* closed if and only if T*(Y*) is weakly* 
closed. 

PROOF. Part (a) follows immediately from the fact that the range of S is the 
same as that of T, while (b) and (c) hold because T* = 7f* S* and 7f* is both 
an isometric isomorphism and a weak*-to-relative-weak* homeomorphism 
from (XIM)* onto the weakly* closed subspace MJ. of X*. Part (d) is 
obvious. For (e) and (f), notice that if y* E y* and z* is the member of Z* 
formed by restricting y* to Z, then 

(x, T*y*) = (Tx, yO) = (Rx, z*) = (x, R* z*) 

whenever x E X, and so T*y' = R·z*. Since every member of Z' has 
a Hahn-Banach extension to Y and therefore is the restriction of some 
member of Y* to Z, the ranges of R* and T* are the same, from which (e) 
and (f) follow immediately. • 

3.1.21 Theorem. Suppose that X and Yare Banach spaces and that 
T E B(X, Y). Then the following are equivalent. 

(a) The set T(X) is closed. 

(b) The set T*(Y*) is closed. 

(c) The set T*(Y*) is weakly* closed. 

PROOF. Let 7f be the quotient map from X onto XI ker(T) and let S be the 
bounded linear operator from XI ker(T) into Y such that T = S7r. Then S 
is one-to-one since its kernel contains only the zero element of XI ker(T). 
It is a consequence of this and parts (a), (b), and (c) of Lemma 3.1.20 that 
the theorem is true if it holds under the additional hypothesis that T is 
one-to-one. It may therefore be assumed that T is one-to-one. Now suppose 
that the theorem holds under the additional hypothesis that T(X) = Y. 
The general case then follows from parts (d), (e), and (f) of Lemma 3.1. 20, 
so it may also be assumed that T(X) is dense in Y. By Theorem 3.1.17, 
the operator T* is one-to-one and T* (Y*) is weakly* dense in X*. 

Suppose that T(X) is closed and therefore that T(X) = Y. Then Corol
lary 1.6.6 implies that T is an isomorphism from X onto Y, so it follows 
from Theorem 1.10.12 that T* is an isomorphism from Y* onto X* a.nd 
therefore tha.t T*(Y*) is closed. This shows that (a) => (b). 

Suppose next that T* (Y*) is weakly* closed. Then T* (Y*) = X*, so T* 
is an isomorphism from Y* onto X*. It follows from Theorem 3.1.18 that 
T is an isomorphism from X onto Y and therefore that T(X) is closed, 
which shows that (c) => (a). 
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Finally, suppose that T*(Y*) is closed. Since Y* and T*(Y*) are both 
Banach spaces, the operator T* is an isomorphism from y* onto T* (Y*). 
Suppose that (x:) is a net in T*(Y*) n Bx" that is weakly* convergent 
to some x* in X*. Then x* E Bx" since Bx " is weakly* closed. Let 
y: = (T*)-l(X:) for each a. Then (y:) is a bounded net and so, by the 
Banach-Alaoglu theorem, has a subnet (y~) that is weakly* convergent to 
some y* in Y*. It follows from the weak*-to-weak* continuity of T* that 

x~ = T*y~ }1!," T*y*, so T*y* = x*. Since x* E T*(Y*) n B x ", the set 
T* (Y*) n B x" is weakly* closed, which by Corollary 2.7.12 of the Krein
Smulian theorem on weakly* closed convex sets implies that T*(Y*) is 
itself weakly* closed. This shows that (b) => (c) and finishes the proof of 
the theorem. • 

3.1.22 Theorem. Suppose that X and Yare Banach spaces and that 
T E B(X,Y). 

(a) The operator T maps X onto Y if and only if T* is an isomorphism 
from Y* onto a subspace of X*. 

(b) The operator T* maps y* onto X* if and only if T is an isomorphism 
from X onto a subspace of Y. 

PROOF. The operator T maps X onto Y if and only if T(X) is both closed 
and dense in Y, which by Theorems 3.1.17 and 3.1.21 is equivalent to 
T* being one-to-one and having closed range, which by Corollary 1.6.6 is 
equivalent to T* being an isomorphism from y* onto a subspace of X*. The 
operator T* maps y* onto X* if and only if T* (Y*) is both weakly* closed 
and weakly* dense in X*, which is equivalent to T being one-to-one and 
having closed range, which is in turn equivalent to T being an isomorphism 
from X onto a subspace of Y. • 

See [205] for a discussion of adjoints in settings more general than that 
of bounded linear operators between normed spaces. 

Exercises 

3.1 Suppose that x' is a bounded linear functional on a normed space X. 
Describe the adjoint of x*. 

3.2 Suppose that X is Co or R.p such that 1 < p < 00 and that mEN. Let T m 

and T -m be the right-shift and left-shift operators defined by the formulas 

and 

T-m((an») = (am +l,am +2, ... ), 

where the number of leading zeros in the formula for Tm is m. It is easy 
to check that Tm , T_ m E B(X). Describe T:;" and T"."". 
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3.3 Show that there is no continuous map from B(JF, co) onto B(c~, JF'). 

3.4 Suppose that X and Yare normed spaces. 

(a) Prove that if X t {O} and Y is not reflexive, then some member 
of B(Y', X') is not weak*-to-weak* continuous. 

(b) Prove that the isometric isomorphism T f-+ T' maps B(X, Y) onto 
B(Y', X') if and only if either X = {O} or Y is reflexive. 

3.5 Prove that every weakly* closed subspace of the dual space of a normed 
space is the range of the adjoint of some bounded linear operator. That 
is, prove that if X is a normed space and N is a weakly* closed subspace 
of X', then there is a normed space Y and a T in B(X, Y) such that 
T*(Y*) = N. 

3.6 Prove that every weakly* closed subspace of the dual space of a normed 
space is the kernel of the adjoint of some bounded linear operator. That 
is, prove that if X is a normed space and N is a weakly* closed subspace 
of X*, then there is a normed space Y and a T in B(Y, X) such that 
ker(T*) = N. Conclude that a subspace of the dual space of a normed 
space is weakly* closed if and only if it is the kernel of the adjoint of some 
bounded linear operator. 

3.7 (a) Suppose that X and Y are Banach spaces, that T E B(X, Y), and 
that Y* is an isomorphism from Y* onto X*. Prove that T' is also 
a weak*-to-weak* homeomorphism from Y* onto X*. 

(b) Give an example to show that the conclusion of (a) can fail if X 
and Yare only assumed to be normed spaces. 

3.8 (a) If the normed space Y in Theorem 3.1.18 is incomplete, then the the
orem really says nothing about T itself that was not already shown 
in Chapter 1, but instead amounts only to a statement about T*. 
What is that statement? 

(b) Show that Theorem 3.1.18 would not be true if its statement were 
amended to require Y instead of X to be complete. 

3.9 Show that the conclusion of Theorem 3.1.21 does not have to hold if the 
completeness hypothesis is dropped for either X or Y. 

3.10 Suppose that P is a property defined for Banach spaces such that 

(1) if a Banach space X has property P, then so does every Banach 
space isomorphic to X; 

(2) if a Banach space has property P, then so does every closed subspace 
of the space; and 

(3) a Banach space ha::; property P if and only if its dual space ha..<; 
property P. 

For example, reflexivity satisfies these conditions. Prove that if X and Y 
are Banach spaces such that X has property P and there is a bounded 
linear operator from X onto Y, then Y has property P. Conclude that if 
a Banach space X has property P and M is a closed subspace of X, then 
X/M has property P. 
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3.11 Let X be a normed space. In this exercise, the notation Qy represents 
the natural map from Y into Y" whenever Y is a normed space. 

(a) Prove that Qx maps X'" onto X'. 

(b) Prove that Q'; is an isomorphism from X" onto a subspace of X(4). 

(c) Prove that Q';Qx = Qx··Qx, that is, that Q'; and Qx" agree 
on Qx(X). 

(d) Parts (b) and (c) might lead one to suspect that Q'; = Qx'" Prove 
that this is true if and only if X' is reflexive (which is of course 
equivalent to X being reflexive if X is a Banach space). 

3.12 Suppose that T is an isomorphism from a Banach space X onto a Ba
nach space Y. Let Qx and Qy be the natural maps from these respec
tive Banach ,,'paces into their second duals. Define S: X"/Qx(X) --> 

Y"/Qy(Y) by the formula S(x" + Qx(X)) = T"x" + Qy(Y). Prove 
that S is an isomorphism from X" /Qx(X) onto Y" /Qy(Y), and that 
S is an isometric isomorphism if T is. Notice that it must be established 
that S is well-defined. 

3.13 Prove that a normed space is isomorphic to the dual space of a separable 
Banach space if and only if it is isomorphic to a weakly* closed subspace 
of £r. That is, prove that, up to isomorphism, the normed spaces that are 
dual spaces of separable Banach spaces are exactly the subspaces of £00 
that are weakly* closed when £00 is identified in the usual way with £r. 

3.2 Projections and Complemented Subspaces 

The following two definitions have already been encountered in Section 1.8 
for the special case in which X is a normed space. 

3.2.1 Definition. Suppose that MI"'" Mn are closed subspaces of a 
topological vector space X such that 2:k Mk = X and M j n2:kh Mk = {O} 
when j = 1, ... , n. Then X is the internal direct sum of Ml"'" Mn. 

In other words, a TVS X is the internal direct sum of its subspaces 
M I , ... , Mn when each of these subspaces is closed and X is their algebraic 
internal direct sum. By Proposition 1.8.7, this is equivalent to requiring 
that each M j be closed and that for each x in X there be unique elements 
ml(x), ... , mn(x) of M I ,· .. , Mn respectively such that x = 2:k mk(x). 

3.2.2 Definition. A subspace M of a TVS X is complemented in X if 
it is closed in X and there is a closed subspace N of X such that X is 
the internal direct sum of M and N, in which case it is said that the two 
subspaces are complementary or that N is complementary to M. 

By analogy with the relationship between algebraic internal direct sums 
and the internal direct sums of Definition 3.2.1, a subspace M of a vector 
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space X is said to be algebraically complemented in X if there is a sub
space N of X such that X is the algebraic internal direct sum of M and N. 
These more general algebraic notions will be useful in what follows, but 
it must be emphasized that references in this book to internal direct sums 
or to the complementation of subspaces without the qualifier "algebraic" al
ways imply that·the subspaces involved are closed subspaces of some TVS. 

The question of which subs paces of a vector space are algebraically com
plemented can be settled quickly. 

3.2.3 Proposition. Every subspace of a vector space X is algebraically 
complemented in X. 

PROOF. Suppose that M is a subspace of X. Let BM be a vector space 
basis for M, let BN be a subset of X such that BMnBN = 0 and BMUBN 
is a basis for X, and let N = (BN). It is easy to check that X = M + N 
and M n N = {O}, so M is algebraically complemented in X. • 

Not every closed subspace of every TVS is complemented in the sense 
of Definition 3.2.2. In particular, it will be seen that some Banach spaces 
have uncomplemented closed subspaces. 

Section 1.8 contained a very brief glance at complemented subspaces 
of normed spaces; see the discussion that follows Definition 1.8.14. The 
purpose of this section is to take a closer look at complemented subspaces 
and their relationship to linear operators of the following type. 

3.2.4 Definition. Suppose that X is a vector space. A linear opera
tor P: X ---+ X is a projection in X if P( Px) = Px for each x in X, 
that is, if p 2 = P. 

Trivial examples of projections are given by the identity operator and 
zero operator on a vector space. The more interesting projections lie be
tween these two extremes. In particular, the following one will provide a 
useful counterexample later in this section. 

3.2.5 Example. Let X be the vector space of finitely nonzero sequences 
with the (X) norm, let ((3n) be a sequence of scalars, and let P be the linear 
operator from X into X defined by the formula 

Then P is a projection. Also, 

P(X) = {(an) : (an) EX, a2n = 0 for each n in N} 

and 

ker(P) = {(an) : (an) EX, a2n-l + (3na2n = 0 for each n in N}, 
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from which it readily follows that the range and kernel of P are both closed 
subspaces of X and that X is the internal direct sum of these two subspaces; 
see Exercise 3.14. It is easy to check that P is bounded if and only if ((3n) 
is bounded, and that IIPII = 1 + 11((3n)lloo whenever ((3n) is bounded. 

Notice that all of this is just as valid if X is all of C[XJ provided that ((3n) 
is required to be bounded to assure that P takes its values in £00' in which 
case P must be a bounded projection. 

If t ;::: 1, then it is possible to arrange for the projection P of the preceding 
example to be bounded with norm t by selecting the sequence ((3n) properly; 
one obvious choice is (t-I, t-I, ... ). However, it is not possible for P to be 
bounded with norm strictly between 0 and 1. This is actually a property of 
all bounded projections on a normed space, since a projection always acts 
as the identity operator on its range. 

The next several results contain some of the basic properties of projec
tions. 

3.2.6 Theorem. Suppose that X is a vector space and that T is a linear 
operator from X into X. Then T is a projection if and only if the algebraic 
adjoint T# of T is a projection. If X is a normed space and T is bounded, 
then T is a projection if and only if T* is a projection. 

PROOF. Suppose first that T# is a projection. For each x in X and each x# 
in X#, 

which implies that T(Tx) = Tx since the collection of all linear functionals 
on a vector space is always a separating family for that vector space. Thus, 
the operator T is a projection. The remaining claims in the theorem are 
proved by similar arguments. • 

As usual, the symbol I in the next several results represents the identity 
operator on the vector space in question. 

3.2.7 Proposition. Suppose that X is a vector space and that T is a 
linear operator from X into X. Then T is a projection if and only if I - T 
is a projection. If X is a TVS, then T is a continuous projection if and 
only if I - T is a continuous projection. 

PROOF. Suppose first that T is a projection. For each x in X, 

(I - T)2(x) = X - 2Tx + T 2 x = X - Tx = (I - T)(x), 

so I - T is a projection. Conversely, if I - T is a projection, then so is T 
since T = I - (I - T). The result for TVSs now follows immediately. • 
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3.2.8 Proposition. If P is a projection in a vector space X, then ker( P) = 
(I - P)(X) and P(X) = ker(I - P). 

PROOF. If X E ker(P), then (I - P)(x) = x, so ker(P) c:::;: (I - P)(X). The 
reverse inclusion follows from the fact that p((I - P)(X)) = {O}, which 
proves that ker(P) = (1 - P)(X). The rest of the proposition follows by 
applying what has already been proved to the projection 1- P. • 

3.2.9 Corollary. If P is a projection in a vector space X, then P(X) = 

{x : x E X, Px = x}. 

Since the kernel of a continuous linear operator from a Hausdorff TVS 
into itself must be closed, Proposition 3.2.8 has the following additional 
corollary. 

3.2.10 Corollary. Every continuous projection in a Hausdorff TVS has 
closed range. 

3.2.11 Theorem. Suppose that X is a vector space. If P is a projection 
in X, then X is the algebraic internal direct sum of the range and kernel 
of P. Conversely, if X is the algebraic internal direct sum of its subspaces 
M and N, then there is a unique projection in X having range M and 
kernel N. 

PROOF. If P is a projection in X, then it follows from Proposition 3.2.8 
that X = P(X) + (I - P)(X) = P(X) + ker(P) and P(X) n ker(P) = 

ker(I - P) nker(P) = {O}, so X is the algebraic internal direct sum of P(X) 
and ker(P). Conversely, suppose that X is the algebraic internal direct sum 
of its subspaces M and N. By Proposition 1.8.7, every element x of X can 
be represented in a unique way as a sum m( x) + n( x) such that m( x) E M 
and n(x) E N. It is clear that the map x f---+ m(x) is a projection in X with 
range M and kernel N. Furthermore, if Po is any projection in X having 
range M and kernel N, then Po(x) = Po(m(x)+n(x)) = Po (m(x)) = m(x) 
whenever x E X, which proves the uniqueness assertion. • 

3.2.12 Corollary. If P is a continuous projection in a Hausdorff TVS X, 
then X is the internal direct sum of the range and kernel of P. 

Suppose that x is an element of a vector space X that is the algebraic 
internal direct sum of its subspaces M and N, that PM,N is the unique 
projection in X with range M and kernel N, that PN,M is the unique 
projection in X with range N and kernel M, and that m and n are the 
unique elements of M and N respectively such that x = m + n. Then 
PM,N(X) = m and PN,M(X) = n, so I = PM,N + PN,M. Conversely, if there 
are projections PI and P2 in X such that 1 = PI + P2 , then P2 = 1 - PI, 
so it follows from Theorem 3.2.11 and Proposition 3.2.8 that X is the 
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algebraic internal direct sum of the ranges (or kernels) of PI and P2 • Thus, a 
decomposition of X as a sum of two algebraically complementary subspaces 
corresponds to a decomposition of I as a sum of two projections; that is, to 
a decomposition of I as a sum of two operators that are "smaller identities" 
in the sense that each acts as the identity operator on its range. 

Corollary 3.2.12 suggests the following question: If M and N are com
plementary subspaces of a Hausdorff TVS X, must the projection with 
range M and kernel N be continuous? The answer does not have to be yes, 
even when X is a normed space. 

3.2.13 Example. Suppose that X is the vector space of finitely nonzero 
sequences with the Coo norm and that ({3n) is an unbounded sequence of 
scalars. Let P be the projection in X constructed in Example 3.2.5. Then 
X is the internal direct sum of the range and kernel of P even though P is 
not bounded. 

The normed space X of the preceding example is not complete. As it 
turns out, that is a crucial aspect of the example. 

3.2.14 Theorem. If M and N are complementary subspaces of a Banach 
space X, then the projection in X with range M and kernel N is bounded. 

PROOF. Let P be the projection in question. Suppose that a sequence (xn) 
in X converges to some x and that (Pxn ) converges to some y. Then 
(I -P)(xn ) -+ x-yo It follows that y E M and x-y E N, so y = Py = Px. 
By the closed graph theorem, the operator P is bounded. • 

3.2.15 Corollary. A subspace of a Banach space is complemented if and 
only if it is the range of a bounded projection in the space. 

3.2.16 Corollary. If M and N are complementary subspaces of a Banach 
space X, then M ~ X/No 

PROOF. Just apply the first isomorphism theorem for Banach spaces to the 
bounded projection in X with range M and kernel N. • 

Though the normed space version of the Hahn-Banach extension theo
rem guarantees that every bounded linear functional on a subspace M of a 
normed space X has a bounded linear extension to all of X, it does not ad
dress the more general problem of finding conditions on M, X, and normed 
spaces Y besides IF that guarantee that all bounded linear operators from M 
into Y have bounded linear extensions to X. The next theorem, which is a 
straightforward consequence of Corollary 3.2.15, provides a partial solution 
to this problem. 
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3.2.17 Theorem. Suppose that M is a subspace of a Banach space X. 
Then the following are equivalent. 

(a) For every Banach space Y and every bounded linear operator T 
from Minto Y, there is a bounded linear operator Tx from X into Y 
that agrees with Ton M. 

(b) The closure of M is complemented in X. 

PROOF. Suppose first that (a) holds. Let T be the identity operator on M 
viewed as a bounded linear operator from Minto M and let Tx be a 
bounded linear operator from X into M that agrees with T on M. It follows 
from the continuity of Tx that Tx agrees with the identity operator of M 
on M, which implies that Tx is a bounded projection in X with range M. 
Therefore M is complemented in X by Corollary 3.2.15, which shows that 
(a) =? (b). 

Suppose conversely that M is complemented in X. By Corollary 3.2.15, 
some bounded projection P in X has range M. If Y is a Banach space 
and T is a bounded linear operator from Minto Y, then Theorem 1.9.1 
guarantees the existence of a bounded linear operator Tl from Minto Y 
that agrees with T on /1/1, and it is then clear that TI P is a bounded 
linear operator from X into Y that agrees with T on M. This proves that 
(b) =? (a). • 

The idea used to prove that (b) =? (a) in the preceding theorem can also 
be used to prove results about the extensibility of more general continuous 
functions. See Exercise 3.22. 

The closed subs paces {O} and X of a Hausdorff TVS X are certainly 
complemented, since X is the internal direct sum of the two. The follow
ing theorem says that closed subspaces of X that differ by only a finite 
number of dimensions from X or, if X is locally convex, from {O}, are also 
complemented. 

Recall that if M is a subspace of a vector space X, then the codimension 
of M in X is the dimension of the quotient vector space XI M. 

3.2.18 Theorem. Suppose that M is a subspace of a Hausdorff TVS X. 
Then M is complemented in X if either of the following two statements 
holds. 

(a) The subspace M is closed and finite-codimensional. 

(b) The subspace M is finite-dimensional and X is locally convex. 

PROOF. It may be assumed that M is neither X nor {O}. Suppose first 
that M is closed and finite-codimensional. Let Xl + M, ... ,Xn + M be a 
basis for XIM and let N = ({Xl, ... ,Xn}). By Corollary 2.2.32, the finite
dimensional subspace N of X is closed. It is easy to check that M + N = X 
and M n N = {O}, so M is complemented in X. 
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Now suppose instead that AI is finite-dimensional and X is locally con
vex. Then AI is closed by Corollary 2.2.32. Let m1, ... , mn be a basis 
for AI and let m;(a1m1 + ... + anmn ) = aj whenever j E {I, ... , n} and 
a1, ... ,an E IF. Then each m; is a linear functional on AI that is contin
uous by Corollary 2.2.33 since M is a finite-dimensional Hausdorff TVS 
with respect to the topology it inherits from X. Since X is an LCS, Corol
lary 2.2.21 assures that each m; has a continuous linear extension x; to X. 
It follows easily that the formula Px = (x~x)m1 + ... + (x~x)mn defines a 
continuous projection from X onto AI, which by Corollary 3.2.12 implies 
that AI is complemented in X. • 

The stipulation in part (b) of the preceding theorem that X be locally 
convex cannot in general be omitted. See Exercise 3.20. 

Not every closed subspace of every Banach space is complemented. In 
fact, J. Lindenstrauss and L. Tzafriri showed in 1971 [155J that the only 
Banach spaces having all of their closed subs paces complemented are those 
isomorphic to Hilbert spaces. One specific example of an uncomplemented 
closed subspace of a Banach space is the subspace Co of loo. This was first 
shown in 1940 by R. S. Phillips [189J. The proof to be given here is by 
R. J. Whitley [244J and is based on an idea due to M. Nakamura and 
S. Kakutani [174J as well as A. Pelczyriski and V. N. Sudakov [180J. The 
following lemma needed for the proof can be found in [214, p. 77J. The 
lemma's extremely short proof is from Whitley's paper and is credited by 
Whitley to Arthur Kruse. 

3.2.19 Lemma. Suppose that A is a countably infinite set. Then there is 
a family {Set: a E I} of subsets of A such that 

(1) for each a in I, the set Sex is infinite; 

(2) if a, (3 E I and a =1= (3, then Sa n Sf3 is finite; and 

(3) the index set I is uncountable. 

PROOF. It may be assumed that A is the set of rational numbers in (0,1). 
Let I be the irrationals in (0,1). For each a in I, let Sa be a set whose 
members come from a sequence of rationals in (0,1) converging to a. Then 
A, I, and { Sa : a E I} do all that is required of them. • 

3.2.20 Theorem. (R. S. Phillips, 1940 [189]). The space Co is an uncom
plemented closed subspace of loo. 

PROOF. In this proof, a Banach space X will be said to have property P 
if X* has a countable subset that is a separating family for X. It is clear 
that if a Banach space X has property P, then so does every closed sub
space of X and every Banach space isomorphic to X. It is also clear that 
l= has property Pi one countable separating family for loo in l~ is the 
collection {e~ : n EN} such that each e~ maps each member of lDO to its 
nth term. 
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Suppose that some closed subspace N of foo is complementary to the 
closed subspace eo. Then foo/co ~ N, so foo/eo has property P. A contra
diction will be obtained and the theorem will be proved once it is shown 
that foo/co cannot have property P. 

Let A = N and let I and { Sa. : 0: E I } be as in the preceding lemma. For 
each 0: in I, let Xa be the member of foo that, when viewed as a function 
from N into F, is the indicator function of Sa:; that is, let the nth term 
of Xa: be 1 whenever n E Sa and let all other terms of Xa be O. Notice that 
xa:+co # x,e+co when 0: # (3. Suppose that y* E (foo/eo)*, that pEN, and 
that 0:1,,'" O:q are distinct members of I such that Iy*(xaj + co)1 2: p-l 
when j = 1, ... , q. Let 11, ... "q be scalars of absolute value 1 such that 
IjY*(Xaj + co) = ly*(xnJ + co)1 for each j. Properties (1) and (2) listed in 
the lemma assure that infinitely many terms of the member 2::;=1 1jXOIj 

of foo have absolute value 1 and that only finitely many have absolute value 
more than 1, from which it follows that 

Therefore 

and so q ::; pIIY*II. Consequently, there are only finitely many index ele
ments 0: such that Iy*(xa: + co)1 2: p-l. Since p was an arbitrary positive 
integer, it follows that there are only countably many index elements 0: 

such that y*(xa: + eo) # O. 
Now suppose that C is a countable subset of (foo/co)*. It follows that 

there are only countably many members 0: of I such that z*(xa: + co) # 0 
for some z* in C. Since I is uncountable, there must be two different mem
bers 0:1,0:2 of I such that z*(xal +co) = Z*(X02 +co) = 0 for each z* in C, 
which shows that C is not a separating family for eX) / Co. The space f= / Co 
therefore lacks property P, which is the desired contradiction. • 

3.2.21 Corollary. No bounded linear operator from foo onto Co maps each 
element of Co to itself 

3.2.22 Corollary. Let Q be the natural map from Co into cQ*. Then Q(co) 
is not complemented in co*. 
PROOF. Suppose Q( co) were complemented in co'. Then there would be 
a bounded projection P in coo with range Q(co). Let S: foo -+ fi' and 
T: f 1 -+ Co be the standard identifying isometric isomorphisms, and let 
Po = S-lT* P(T*)-lS. Routine verifications show that Po is a projection 
in foo with range co---a contradiction. • 



3.2 Projections and Complemented Subspaces 303 

The preceding corollary might lead one to ask if it is ever possible for 
the natural image of a nonreflexive Banach space in it second dual to be 
complemented. It is quite possible, as the next result shows. 

3.2.23 Proposition. Suppose that X is a normed space that is isomorphic 
to the dual space of a normed space and that Q x is the natural map from X 
into X**. Then Qx(X) is complemented in X**. 

PROOF. Since the dual space of a normed space is a Banach space that is 
isometrically isomorphic to the dual space of the completion of its predual, 
the space X is actually a Banach space isomorphic to the dual space y* of 
a Banach space Y. Let T be an isomorphism from X onto Y* and let Qy. 
be the natural map from y* into Y***. It is enough to show that there is a 
bounded projection P in Y*** with range Qy. (Y*), for then (T**)-l PT** 
is a bounded projection in X** with range Qx(X) since 

(T**)-l PT**(T**)-l PT** = (T**)-l PPT** = (T**)-l PT** 

and 

(T**)-l PT**(X**) = (T-l)** P(Y***) = (T-l)**Qy.(Y*) = Qx(X), 

where the very last equality comes from Corollary 3.1.14. 
Let Qy be the natural map from Y into y** and let P = Qy.QY. For 

each y in Y and each y* in Y*, 

(y,QYQy·y*) = (Qyy,Qy.y*) = (y*,Qyy) = (y,y*), 

so QYQy. is the identity map on Y*. It follows that p 2 = P, that is, that 
P is a projection in Y***. Since Qy is an isomorphism from the Banach 
space Y onto a subspace of Y**, its adjoint Qy maps y*** onto Y*, so 
P(Y***) = Qy.QY(Y***) = Qy.(Y*). • 

3.2.24 Corollary. The Banach space Co is not isomorphic to the dual 
space of any normed space. 

The preceding corollary improves the result of Example 2.10.11, where 
the fact that Bco has no extreme points was used to show that Co is not 
isometrically isomorphic to the dual space of any normed space. 

Exercises 

3.14 Provide the missing details in Example 3.2.5 by showing that the range 
and kernel of P are both closed subspaces of X, that X is the internal 
direct sum of these two subspaces, that P is bounded if and only if CBn} 
is bounded, and that IIPII = 1 + II (,Bn) 1100 whenever (,Bn) is bounded. 
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3.15 For each T in L(JF2, JF2), let the determinant of T be the determinant of 
the matrix meT) of T with respect to the standard basis for JF2, and let 
the trace of T be the trace of meT), that is, the sum of the elements 
along the main diagonal of meT). Prove that a member T of L(JF2, ]F2) is 
a projection if and only if it satisfies one of the following three conditions. 

(a) T = f. 
(b) T = O. 

(c) The determinant of Tis 0 and the trace of Tis 1. 

3.16 (a) Prove that if M is a complemented subspace of a Banach space, then 
all subspaces complementary to M are isomorphic to one another. 

(b) Give an example of a complemented subspace of a Banach space 
that has infinitely many different subs paces complementary to it. 

3.17 (a) Suppose that P is a bounded projection in a normed space X. Prove 
that P(X) = .L(ker(P"») and P·(X·) = (ker(P»)l.. 

(b) Suppose that M and N are complementary subspaces of a Banach 
space X. Prove that M.L and N.L are complementary in X·. 

(c) Give an example to show that the conclusion of (b) need not hold if 
X is only assumed to be a normed space. 

3.18 Suppose that P is a bounded projection in a normed space X. Prove that 
P(X) has finite dimension n if and only if P*(X·) has finite dimension n. 
(One proof of this uses Exercise 3.17 (a) and either Exercise 1.81 or the 
first isomorphism theorem for vector spaces; see, for example, [105, p. 397] 
for this theorem.) 

3.19 This exercise uses the material of optional Section 2.3. Show that Theo
rem 3.2.14 and Corollary 3.2.15 have natural extensions to F-spaces. 

3.20 Suppose that 0 ::; p < 1. Prove that no finite-dimensional subspace 
of Lp[O, 1] other than {O} is complemented. Exercise 3.19 may be helpfuL 

3.21 This exercise improves the conclusion of Exercise 1.141. Suppose that X 
is a Banach space and that there is a bounded linear operator from X 
onto £1. Prove that X has a complemented subspace isomorphic to £1. 

3.22 Suppose that M is a subspace of a Banach space X and that M is com
plemented in X. 

(a) Prove that if M is closed, then the following holds: For every topo
logical space Z and every continuous function I from Minto Z, 
there is a continuous function Ix from X into Z that agrees with f 
onM. 

(b) Show by example that the conclusion in (a) does not necessarily 
hold if M is not required to be closed, even when Z is assumed to 
be a normed space and f is assumed to be linear. 

3.23 Suppose that M is a closed subspace of a Banach space. It follows from 
Exercise 3.17 (b) that if M is complemented, then so is M.L. The main 
goal of this exercise is to prove that the converse is not in general true. 
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(a) Prove that if X is a Banach space and Qx and Qx' are the natural 
maps from X and X· into X" and X"· respectively, then Qx' (X') 
and (Qx(X»).L are complementary subspaces of X···. 

(b) Find a closed subspace M of a Banach space such that M.L is com
plemented but M is not. 

3.24 No result in this section says anything about complemented subspaces of 
TVSs that are not Hausdorff. There is a good reason for this. Find it. 

3.3 Banach Algebras and Spectra 

The main purpose of this section is to obtain a few facts about the spectrum 
of a bounded linear operator from a Banach space into itself. Most of the 
discussion of the spectrum will take place within the more general context 
of Banach algebras, since it is no more difficult to do so and since it provides 
an opportunity to take a brief look at these objects. 

3.3.1 Definition. Suppose that X is a set, that + and e are binary op
erations from X x X into X, and that . is a binary operation from F x X 
into X such that 

(1) (X, +, . ) is a vector space; 

and for all x, y, z in X and every scalar a, 

(2) x e (y e z) = (x e y) e z; 

(3) x e (y + z) = (x e y) + (x e z) and (x + y). z = (x. z) + (y e z); and 

(4) a·(xey)=(a·x)ey=xe(a·y). 

Then (X, +, e,. ) is an algebra. This algebra is an algebra with identity if 
X '" {O} and there is a member e of X such that 

(5) eex=xee=x 

whenever x EX, in which case e is the (multiplicative) identity of X. If 
11·11 is a norm on the vector space (X, +, . ) such that 

(6) Ilx e yll ~ Ilxllllyll 
whenever x, y E X, then (X, +, e,·, 11·11) is a normed algebra, and is a 
Banach algebra if the norm is a Banach norm. 

With all notation as in the preceding definition, the products a·x and xey 
are usually abbreviated to ax and xy respectively, and it is usually said 
that X is an algebra (or normed algebra or Banach algebra if there is a 
norm involved) rather than using the more formal notations (X, +, e, . ) 

and (X, +, e,·, 11-11). 
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The reason for requiring an algebra with identity to contain more than 0 
is to make it impossible for 0 to be a multiplicative identity for the algebra. 
See the proof of Proposition 3.3.10 (b). 

3.3.2 Example. The set IF with its usual vector space operations, its 
usual multiplication, and the norm given by the absolute value function is 
a Banach algebra with identity 1. 

3.3.3 Example. Suppose that K is a compact Hausdorff space. Define 
the product of two members f and 9 of C(K) to be the usual pointwise 
product. Then C(K) is a Banach algebra when given this multiplication, 
the usual vector space operations, and the usual norm. As long as K is 
nonempty, the algebra C(K) has an identity, namely, the function taking 
on the constant value 1 on K. 

3.3.4 Example. Suppose that J1 is a positive measure on aCT-algebra 1: 
of subsets of a set n. As with C(K), let the product of two members f 
and 9 of Loo(n, 1:, f-L) be the pointwise product. Then L(X)(n, 1:, J1) with 
this multiplication, the usual vector space operations, and the usual norm 
is a Banach algebra. As long as f-L(n) > 0, the function having constant 
value 1 on n is an identity for Loocn, 1:, J1). 

3.3.5 Example. As a special case of the preceding example, the space Roc> is 
a Banach algebra with identity (1,1,1, ... ). Notice that the multiplication 
of elements of Roc; is done termwise. 

3.3.6 Example. With Roo treated as a Banach algebra as in the preceding 
example, the space Co is a closed subalgebra of Roo and therefore is itself a 
Banach algebra. Notice that Co has no multiplicative identity. 

The following example is the most important one for the purposes of this 
book. 

3.3.7 Example. Suppose that X is a normed space. As has been done 
throughout this book, let the product ST of two members Sand T of B(X) 
be given by composition, that is, by the formula ST(x) = S(T(x)). Then 
B(X) with this multiplication, the usual vector space operations, and the 
operator norm is a normed algebra. If X is a Banach space, then B(X) is 
a Banach algebra. As long as X cI {O}, the identity operator on X is a 
multiplicative identity for B(X). 

The multiplication operations defined in the above examples are the stan
dard ones for their spaces and are the ones that will be assumed when these 
spaces are treated as algebras in this book. 
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3.3.8 Definition. Suppose that X is an algebra with identity e. A mem
ber x of X is invertible if there is a y in X such that xy = yx = e, in which 
case y is the (multiplicative) inverse of x and is denoted by X-I. 

3.3.9 Definition. Suppose that x is an element of an algebra X. Then 
xn is defined inductively for each positive integer n by letting Xl = x and 
xn = xn-Ix when n ~ 2. Now suppose that X has identity e. Then xO 

is defined to be e. If x is invertible and n E N, then x-n is defined to 
be (x-l)n. 

It is implicitly assumed in the preceding two definitions, as well as in the 
use of the phrase "the (multiplicative) identity" in Definition 3.3.1, that 
every algebra has at most one identity and that an invertible element of 
an algebra with identity has at most one inverse. This does turn out to be 
the case. The next proposition contains these facts, as well as some other 
basic ones about algebras. 

3.3.10 Proposition. Suppose that X is an algebra. 

(a) If x E X and 0 is the zero element of X, then Ox = xO = O. 

(b) The element 0 of X is not a multiplicative identity for X. 

(c) The algebra X has at most one multiplicative identity. 

Now suppose that X is an algebra with identity e. 

(d) The element 0 of X is not invertible. 

(e) Each element of X has at most one inverse. 

(f) If x, y, and z are elements of X such that yx = xz = e, then y = z 
and x is invertible with inverse y. That is, every element of X that 
is both left-invertible and right-invertible is invertible, and each of its 
left inverses and right inverses equals its inverse. 

(g) If x and yare invertible elements of X and a is a nonzero scalar, then 
xy, ax, and x-I are invertible and have respective inverses y-Ix- l , 
a-lx-I, and x. 

(h) If x is an invertible element of X and n E N, then xn is invertible, 
and (Xn)-l = (x-I)n = x-no 

Suppose next that X is a normed algebra, possibly without identity. 

(i) If x E X and n E N, then Ilxnll ~ Ilxlln. 
Finally, suppose that X is a normed algebra with identity e. 

(j) Ilell 2: l. 

(k) If x is an invertible element of X, then Ilx-III ~ IIxll- i . 
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PROOF. If x E X and 0 is the zero element of X, then Ox = (0 + O)x = 
Ox + Ox, so 0 = Ox, and similarly 0 = xO. This gives (a), from which (b) 
follows immediately once it is noted that, by definition, an algebra with 
identity must have a nonzero element. If el and e2 are both identities 
for X, then el = eIe2 = e2, proving (c). 

Suppose that X has identity e. It follows immediately from (a) and (b) 
that 0 is not invertible, giving (d). If an element x of X has inverses Y 
and z, then y = ye = y(xz) = (yx)z = ez = z, proving (e). The same 
string of equalities proves (f). Parts (g) and (h) are easily verified. 

Now suppose that X is a normed algebra, possibly having no identity, and 
that x E X and n is a positive integer greater than l. Then Ilxlli = Ilxll l and 
Ilxnll :::; Ilxn-Illllxll, which together with an obvious induction argument 
yields (i). 

Finally, suppose that X is a normed algebra having identity e. Then 
Ilell = IIe2 11 :::; Ile11 2, which together with the fact that e i= 0 proves (j). If 
x is an invertible clement of X, then 1 :::; Ilell = Ilx-Ixll :::; Ilx-Illllxll, so 
Ilx-III 2: IIxll- l , which finishes the proof of (k) and of the proposition. • 

Many of the familiar laws of exponents from basic arithmetic also hold 
for algebras, and are easy consequences of Definition 3.3.9 and parts (g) 
and (h) of Proposition 3.3.10 (but beware of assuming that (xY)" = xnyn 
unless it is known that xy = yx). 

It often happens that an identity for a normed algebra has norm 1, and 
the examples given in this section might lead one to suspect that this must 
always be the C3.'le. However, part (j) of Proposition 3.3.10 cannot in general 
be sharpened, even for Banach algebras. See Exercises 3.27 and 3.28. 

Addition of vectors and multiplication of vectors by scalars are contin
uous operations for a nOfmed algebra because of the continuity of these 
operations for normed spaces. It turns out that multiplication of vectors 
by vectors is also continuous. The proof is essentially thc same as the fa
miliar proof of the continuity of multiplication in the scalar field. 

3.3.11 Proposition. The multiplication of members of a normed alge
bra X is a continuous operation from X x X into X. 

PROOF. Suppose that (xn) and (Yn) are sequences in X for which there 
are elements x and y of X such that Xn --t x and Yn --+ y. Since the 
sequence (x n ) is bounded, 

IlxnYn - xY11 :::; IlxnYn - xnyll + IlxnY - xY11 

:::; IlxnllllYn - yll + Ilyllllxn - xii --+ 0 

as n --+ 00, so XnYn --+ xy as required. • 
The continuity of the inversion map x f--> x-Ion its domain in a Banach 

algebra is most easily treated after the introduction of resolvent functions 
and will be taken up then. 
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One immediate consequence of the preceding proposition is that multipli
cation in a normed algebra distributes through infinite sums; that is, that if 
x is a member of a normed algebra and .En Xn is a convergent series in the 
algebra, then .En XXn and .En XnX both converge, and x(.En xn) = .En xx" 
and (.En Xn)X = .En XnX. Here is an application of this. 

Suppose that X is a Banach algebra with identity e, that x E X, and 
that 0: is a scalar such that 10:1 > Ilxll. Then 

t 1I00-(n+l)xn ll = 10:1-1 (Ilell + t II(o:-lx)nll) 
n=O n=l 

:::; 10:1- 1 (Ile ll + ~ 1100-lxlln). 

This last series is a convergent geometric series, so .E::'=o o:-(n+1)xn is an 
absolutely convergent series that is therefore convergent. This, together 
with the formula for the sum of a convergent geometric series of scalars, 
suggests that o:e - x might be invertible with inverse .E::'=o o:-(n+l)xn , 
which is in fact the case since 

= = = 
(o:e - x) L o:-(n+l)xn = L o:-nxn - L o:-nxn = e 

n=O n=O n=l 

and similarly (.E::'=o o:-(n+l)xn)(o:e - x) = e. This motivates the next 
definition and proves the theorem that follows it. 

3.3.12 Definition. Suppose that x is an element of an algebra X with 
identity e. Then the resolvent set p(x) of x is the set of all scalars 0: such 
that o:e - x is invertible. The spectrum iT(x) of x is the complement in IF 
of p( x). The resolvent function or resolvent Rx of x is the function from p( x) 
into X defined by the formula Rx (a) = (o:e - x) -1. 

3.3.13 Theorem. Suppose that x is an element of a Banach algebra with 
identity and that 0: is a scalar such that 10:1 > Ilxll. Then 0: E p(x) and 
R (0:) ="",00 o:-(n+l)xn . 

x ~n=O 

3.3.14 Corollary. If x is an element of a Banach algebra with identity 
and 0: E iT(x), then 10:1 :::; Ilxll. 

3.3.15 Corollary. If x is an element of a Banach algebra with identity e 
and Ilx - ell < 1, then x is invertible and X-I = L~o(e·- x)n. 

PROOF. Since x = Ie - (e - x) and III > lie - xii, Theorem 3.3.13 assures 
the invertibility of x and yields the series expansion for x-I from the series 
expansion for the resolvent function. • 
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All the ingredients are now at hand for the examination of the continuity 
of inversion promised earlier in this section. 

3.3.16 Proposition. Suppose that X is a Banach algebra with identity e. 
Let G(X) be the set of invertible elements of X. Then G(X) is an open 
subset of X that is a group with identity e under the restriction of the 
multiplication operation of X to G x G. Furthermore, the map x f--> X-I 

is a topological homeomorphism of G(X) onto itself 

PROOF. It is clear that G(X) has the claimed group structure. By parts (e) 
and (g) of Proposition 3.3.10, the map x f--> X-I is one-to-one from G(X) 
onto G(X) and is its own inverse, so the proposition will be proved once it 
is shown that the map is continuous and that G(X) is open. Suppose that 
x E G(X) and that ( > O. It follows from the continuity of multiplication of 
members of X that there is a positive 8 such that Ilx-Iyll < (/(llx-111 + c) 
whenever y E X and Ilyll < 8. Fix a z in X such that IIzll < 8. It is enough 
to prove that x + z E G(X) and II(x + Z)-l - x-III < (. 

Since lI-x-1zll < 1, Theorem 3.3.13 assures that 1 E p(-x-1z) and 
therefore that e + x-1z is invertible and has inverse I::~=o(_x-lz)n. It 
follows that x + z is invertible because x + z = x(e + x-Iz). Furthermore, 

as required. 

II(x+Z)-I_X-111 = II(e+x-Iz)-lx-1_x-111 
:-:; Ilx-lllll(e + X-IZ)-I - ell 

= Ilx-IIIII~(_x-Iz)n - ell 

= IIx-IIIII~(_x-Iz)nll 

n=1 

= (, 

• 
With all notation as in the preceding proposition, suppose that x EX. 

Then p(x) = { Q : Q E IF, Qe - x E G(X) }. The next result is therefore an 
immediate consequence of the continuity of the map Q f--> Qe - x from IF 
into X. 

3.3.17 Proposition. If x is an element of a Banach algebra with identity, 
then p(x) is open. 
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It follows from the preceding proposition and Corollary 3.3.14 that the 
spectrum of an element of a Banach algebra with identity is closed and 
bounded. This can be summarized as follows. 

3.3.18 Theorem. If x is an element of a Banach algebra with identity, 
then a(x) is compact. 

It is possible for the spectrum of an element of a Banach algebra with 
identity to be empty if the Banach algebra is real; see Exercise 3.30. As will 
now be shown, this never happens when the scalar field is C. The following 
fact will be useful for one of the lemmas needed for the proof. 

3.3.19 The Resolvent Equation. If x is an element of an algebra with 
identity, then 

whenever a,(J E p(x). 

PROOF. Let e denote the identity of the algebra. If a,(J E p(x), then 

((J - a)Rx(a)Rx((J) = (ae - x)-l((Je - ae)((Je - X)-l 

as claimed. 

= (ae - x) -1 (((Je - x) - (ae - x)) ((Je - X)-l 

= (ae - X)-l - ((Je - X)-l 

= Rx(a) - Rx((J), 

• 
3.3.20 Definition. Suppose that f is a function from an open subset G 
of IF into a normed space X, that a E G, and that 

~i~ (* (J(a + (J) - f(a))) 

exists. Then f is differentiable at a. The above limit is the derivative of f 
at a and is denoted by l' (a). 

3.3.21 Lemma. If x is an element of a Banach algebra with identity e, 
then Rx is differentiable on p(x), and R~(a) = -(ae - X)-2 whenever 
a E p(x). 

PROOF. Suppose that a E p(x). Let (J be a nonzero scalar such that a+(J E 

p(x). It follows from the resolvent equation that 

1 
i3(Rx(a + (J) - Rx(a)) = -Rx(a + (J)Rx(a) 

= - ( (a + (J)e - x) -1 (ae _ x) -1 . 

Letting (J tend to 0 establishes the lemma. • 
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3.3.22 Lemma. Suppose that x is an element of a Banach algebra X with 
identity and that x* E X*. Then x* Rx is differentiable on p( x). 

PROOF. Let e denote the identity of X. It follows from the preceding lemma 
and the continuity and linearity of x* that x* Rx is differentiable on p(x) 
with derivative x* (-(ae - x)-2). • 

3.3.23 Lemma. If x is all element of a Banach algebra with identity, then 
limlal_oo Rx(a) = O. 

PROOF. Let e be the identity of the Banach algebra. If a is a scalar such 
that la I > II x II, then it follows from Theorem 3.3.13 and the computation 
preceding Definition 3.3.12 that 

oc 

n=O 

Letting lal tend to 00 finishes the proof. • 
3.3.24 Theorem. If x is an element of a complex Banach algebra with 
identity, then O'(x) is nonempty. 

PROOF. Let X be the Banach algebra. Suppose that O'(x) = 0. For each x* 
in X*, it follows from Lemmas 3.3.22 and 3.3.23 that x* Rx is bounded 
and entire and so, by Liouvillc's theorem, constant; another application of 
Lemma 3.3.23 then shows that the constant value is O. This assures that 
Rx(a) = 0 for each a in i.C, which implies that 0 is invertible. Since this 
cannot be, the supposition that O'(x) = 0 must be wrong. • 

Thus, each element x of a complex Banach algebra with identity has a 
nonempty compact spectrum lying in the closed disc in i.C centered at 0 of 
radins Ilxll. The next portion of this section is devoted to finding the radins 
of the smallest closed disc in i.C centered at 0 that includes the spectrum. 

3.3.25 Definition. Suppose that x is an element of a complex Banach 
algebra with identity. Let 

T,,(X) = max{ lal : a E O'(x)}. 

Then T u (x) is the spectral radius of x. 
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3.3.26 Lemma. Suppose that x is an element of an algebra with identity, 
that n E N, and that a E a(x). Then an E a(xn). 

PROOF. Let e be the identity of the algebra. Suppose that (3 is a scalar 
such that (3n rt. a(xn), that is, such that (3ne - xn is invertible. The lemma 
will be proved once it is shown that (3e - x is also invertible. Since 

(where (30 is to be interpreted to be 1 if (3 = 0), it follows that 

Since (3e - x has both a right inverse and a left inverse, it is invertible. • 

In the following result, the existence of the limit in the formula is part 
of the conclusion. The existence of the limit does not actually require the 
complex normed algebra in question to be complete or to have an identity; 
see Exercise 3.31. 

3.3.27 The Spectral Radius Formula. If X is a complex Banach alge
bra with identity, then 

rCT(x) = lim Ilxnll l / n 
n 

whenever x E X. 

PROOF. Fix an x in X. Suppose first that (3 E a(x). For each positive 
integer n, the preceding lemma assures that (3n E a(xn ) and therefore that 
l(3nl:s Ilxnll and 1(31 :S Ilxnll l / n. It follows that 1(31 :S liminfnllxnlil/n and 
thus that rCT(x) :S liminfnllxnlil/n. 

Now suppose that 'I' is a scalar such that I'l'l > rCT(x). Let x* be a 
member of X*. Then x* Rx is analytic on {a : a E te, lal > rCT(x)} by 
Lemma 3.3.22. Applying x* to the series expansion for Rx from Theo
rem 3.3.13 shows that x* Rx(a) = E~=o x*(xn)a~(n+l) when lal > IIxll. 
This series expansion must actually hold for x* Rx(a) when lal > ra(x) 
by the uniqueness of Laurent series expansions on annuli; see, for example, 
[42, p. 103]. In particular, it holds for x* Rxb), so E~=o x*(xnh~(n+1) 
converges, which in turn implies that limnx'b~(n+1)xn) = O. Since x· is 
an arbitrary member of X', it follows that 'Y~(n+l)xn ~ 0 and therefore 
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that the sequence c-r-(n+l)xn ) is bounded. Let B be a positive upper bound 
for the norms of the terms of this sequence. For each positive integer n, 
it follows that Ilxnll ~ IIln+l B and thus that Ilxnll l / n ~ Irl(IIIB)l/n. 
Therefore limsuPnllxnlll/n ~ III since limn(IIIB)l/n = 1. Since r could 
have been any scalar with absolute value greater than r iT (x), it must be 
that limsuPnllxnlll/n ~ riT(x), which when combined with the inequality 
involving lim inf n Ilxn Ill/n derived in the first part of this proof shows that 
limnllxnlil/n exists and equals riT(x). • 

3.3.28 Corollary. Suppose that X is a complex Banach algebra with 
identity and that M is a closed subalgebra of X with an identity (not 
assumed to be the identity of X). Let x be an element of M and let r iT M (x) 
and r iTX (x) be the spectral radii of x with respect to the algebras M and X 
respectively. Then r iT M (x) = r iT x (x). 

Notice that the preceding corollary says only that the spectral radii of x 
with respect to the two algebras have to be the same, not that the spectra 
themselves do. See Exercise 3.34. 

This ends the portion of this section covering the general theory of Ba
nach algebras. Those interested in learning more about this theory will find 
[148] to be an excellent source. 

The rest of this section is devoted to a very brief look at the particular 
Banach algebras of the most interest in this chapter, namely, the Banach 
algebras B(X) such that X is a nontrivial Banach space, that is, a Banach 
space that is not just {O}. As usual, the symbol I will be used throughout 
this discussion and the rest of this chapter to denote the identity operator 
on X. The identity operator on X* will be denoted by I*, which is con
sistent with the fact that this operator is the adjoint of I. Notice that I 
and J* are multiplicative identities for B(X) and B(X*) respectively since 
X is nontrivial. Notice also that a member T of B(X) is invertible in the 
sense of Definition 3.3.8 if and only if it is a normed space isomorphism 
from X onto itself, which by Corollary 1.6.6 happens exactly when T is 
algebraically invertible, that is, when T is one-to-one and maps X onto 
itself. Incidentally, this would not in general be true if X were not assumed 
to be complete, since it is possible for a one-to-one bounded linear operator 
from an incomplete normed space onto itself not to have a bounded inverse; 
consider the map (an) I--> (n- 1a n ) on the vector space of finitely nonzero 
sequences with t4e Roo norm. 

Suppose that T E B(X), where X is a nontrivial Banach space, and that 
a E IF. Since (aI - T)* = aI* - T*, it follows from Theorem 3.1.18 that 
aI - T is invertible if and only if aI* - T* is invertible. If aI - T is invertible, 
then an application of Proposition 3.1.15 shows that (( aI - T) -1 r = 

(aI* - T*) -1. These observations can be summarized as follows. 

3.3.29 Proposition. Suppose that X is a nontrivial Banach space and that 
T E B(X). Then a(T) = a(T*). If a E p(T), then (RT(a))' = RT* (a). 
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If T E B(X), where X is a nontrivial Banach space, then a scalar a is 
in the spectrum of T if and only if af - T is not invertible, that is, if and 
only if af - T either is not one-to-one or fails to map X onto X. The first 
possibility is interesting enough to deserve special treatment. 

3.3.30 Definition. Suppose that X is a nontrivial Banach space and that 
T E B(X). The point spectrum ap(T) of T is the collection of all scalars a 
such that af - T is not one-to-one. That is, 

ap(T) = {o : 0 E JEi', ker(of - T) f::. {O} }. 

Each member of ap(T) is an eigenvalue of T. If 0 E ap(T), then the closed 
subspace ker( of - T) of X is the eigenspace associated with the eigenvalue 0: 

of T, and each nonzero member of this eigenspace is an eigenvector of T. 

When X and T are as in the preceding definition, the continuous spec
trum ac(T) of T is the collection of all scalars 0: such that af - T is 
one-to-one and (af - T)(X) is a proper dense subset of X, while the resid
ual spectrum ar(T) of T is the collection of all scalars a such that af - T 
is one-to-one and (of - T)(X) is not dense in X. These two terms will 
not be needed here. Notice that a(T) is the disjoint union of ap(T), ac(T), 
and ar(T). 

Eigenvalues have many other names (with corresponding names for eigen
spaces and eigenvectors), including proper values, characteristic values, 
characteristic roots, secular values, spectral values, latent values, and latent 
roots. See [67, pp. 606-607] for an interesting quote by Sylvester concerning 
the rationale for that last name. 

With X and T as in Definition 3.3.30, a scalar 0: is an eigenvalue of T 
if and only if there is a nonzero x in X such that Tx = ax, while a 
nonzero member x of X is an eigenvector of T if and only if T maps x to 
a scalar multiple of itself. Some sources allow the zero element of X to be 
an eigenvector. While this does make every member of an eigenspace an 
eigenvector, many interesting facts about eigenvectors hold only for nonzero 
ones anyway. For example, see the next theorem. 

Though the spectrum of a bounded linear operator from a nontrivial 
complex Banach space into itself must be nonempty, it is quite possible for 
its point spectrum to be empty. See Exercise 3.38. 

The following theorem is just another way to say that if T is a bounded 
linear operator from a nontrivial Banach space into itself, then every sum 
of a nonempty finite collection of distinct eigenspaces of T is actually an 
internal direct sum. 

3.3.31 Theorem. Suppose that X is a nontrivial Banach space, that T E 
B(X), that 0:1, ... ,an are distinct eigenvalues of T, and that Xl, ... ,Xn 
are eigenvectors associated with aI, ... ,an respectively. Then Xl, ... ,Xn 
are linearly independent. 
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PROOF. It may be assumed that n > 1. Suppose that j E {2, ... ,n} and 
that Xl, ... ,Xj~l are linearly independent. Suppose moreover that there 
are scalars f31, ... , f3j~l such that Xj = f31Xl + ... + f3j~lXj~l. Then 

Since exj-exk f 0 when k = 1, ... ,j-1, it follows that f31 = ... = f3j~l = o. 
This implies that Xj = 0, a contradiction. It must be that Xl, ... , Xj are 
linearly independent, so it follows by induction that Xl, ... ,Xn are linearly 
independent. • 

The linear independence of eigenvectors associated with distinct eigen
values is a key element in the proof of the following analysis of the spectrum 
of a linear operator on a nontrivial finite-dimensional Banach space. 

3.3.32 Theorem. Suppose that X is a nontrivial Banach space having 
finite dimension n and that T E B(X). 

(a) The spectrum O"(T) of T is finite with cardinality no more than n. 

(b) O"(T) = O"p(T). 

(c) If ex is an eigenvalue of T, then the eigenspaces of T and T* associ-
ated with ex have the same dimension. 

PROOF. Part (b) is an immediate consequence of the fact that a member 
of B(X) is one-to-one if and only if its range is all of X. Part (a) then 
follows from Theorem 3.3.31. For (c), first note that if S E B(X), then by 
Theorem 1.10.17, Lemma 3.1.16, and basic properties of finite-dimensional 
vector spaces and linear operators on them, 

dim(ker(S)) = dim (S~)) 

= dim ((S~) r) 
= dim(S(X).L) 

= dim(ker(S*)). 

Letting S = cd - T, where ex is an eigenvalue of T, completes the proof. • 

In contrast, it is quite possible for the point spectrum of a bounded 
linear operator from an infinite-dimensional Banach space into itself to be 
uncountable; see Exercise 3.38. The next section will take up the study 
of a particular class K(X, Y) of bounded linear operators from a Banach 
space X into a Banach space Y such that if X is nontrivial, then the spectra 
of members of K(X, X) have properties very similar to those described in 
Theorem 3.3.32, even though the Banach space in question might not be 
finite-dimensional. 
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Exercises 

3.25 The purpose of this exercise is to show that every normed algebra can 
be completed to a Banach algebra. To this end, suppose that X is a 
normed algebra. Show that there is a Banach algebra Y and a map T 
from X onto a dense subspace of Y such that T is a normed algebra 
isometric isomorphism, that is, a normed space isometric isomorphism 
for which T(XIX2) = T(xI)T(X2) whenever Xl, X2 EX. Show that if X 
ha.s identity e, then Y ha.s identity T(e). 

3.26 Suppose that X is an algebra. Let X[e] be the vector space sum X x IF; see 
the introduction to Section 1.8 for the definition of a vector space sum. 
Define a multiplication of elements of X[e] by the formula (x, a)(y, (3) = 
(xy + o.y + (3x, 0.(3). 

(a) Let e be the element (0,1) of X[e]. Prove that with its multiplication 
and its vector space operations a.s a vector space sum, the space X[e] 
is an algebra with identity e. 

(b) Suppose that 11·llx is a norm for X. Define a norm for X[e] by the 
formula lI(x, a) IIX[e] = Ilxll x + 10.1. Prove that this really does define 
a norm for X[e]. Prove that if X with 11·llx is a normed or Banach 
algebra, then X[e] with 11·IIX[e] is, respectively, a normed or Banach 
algebra with identity. 

(c) With all notation a.s in (b), suppose that X with the norm 11·llx is 
a normed algebra and therefore that X[e] with the norm 11·IIX[e] is 
a normed algebra with identity. Prove that the map T: X -+ X[e] 
given by the formula T(x) = (x,O) is a normed algebra isometric 
isomorphism from X into X[e]; see Exercise 3.25 for the definition. 

Thus, every Banach algebra without an identity can be embedded into a 
Banach algebra with identity as a subalgebra having codimension 1. 

3.21 Suppose that t 2: 1. Give an example of a Banach algebra with identity e 
such that lIell = t. 

3.28 Suppose that X is a normed algebra with identity e. For each x in X, let 
Tx(Y) = xy whenever y E X. Show that the map x f-+ Tx is a normed 
algebra isomorphism (that is, a normed space isomorphism such that 
TXl TX2 = TX1X2 whenever Xl, X2 E X) from X onto a sub algebra of B(X). 
Conclude that X is isomorphic as a normed algebra to a normed algebra 
with identity e' such that Ile'll = 1, whether or not lIell = 1. 

3.29 Suppose that (o.n) is a member of the Banach algebra £00. Identify the 
spectrum of (an). 

3.30 Let X be the real Banach algebra with identity formed from the com
plex Banach algebra £00 by restricting multiplication of vectors by scalars 
to lR x £00' and let x be the member (i, 0, 0, ... ) of X. 

(a) Show that O"(x) = 0. 

(b) Find limnllxnli l / n. Comment on what this says about extending the 
spectral radius formula to real Banach algebra.s. 
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3.31 Prove that if X is a complex normed algebra not assumed to be complete 
or to have an identity, and x EX, then limn IIxn 1I 1 / n exists. Exercises 3.25 
and 3.26 could be helpful. 

3.32 Suppose that X is a Banach algebra with identity e and that (xn ) is a 
sequence of invertible elements of X that converges to some noninvert
ible x. Prove that Ilx;;-lll -+ 00 as n -+ 00. (Otherwise, there would be 
an n such that Ilx;;-lx - ell < 1.) 

3.33 Prove that if X is a normed algebra with identity, then the map x f-+ X-I 

on the set of invertible elements of X is continuous, whether or not X is 
complete. Exercise 3.25 might help. 

3.34 Let el be the element (1,0,0,0, ... ) of the complex Banach algebra Coo 
and let M be the closed subalgebra of eDQ consisting of all the scalar 
multiples of el, a Banach algebra with identity el. Find the spectra of el 
with respect to the two algebras M and X. Notice that these spectra are 
ciifferent though, of course, the spectral raciii are the same. 

3.35 A complex homomorphism or multiplicative linear functional on a com
plex algebra X is a nonzero linear functional T on X such that T(XY) = 
T(X)T(Y) whenever x, Y E X. Suppose that T is a complex homomorphism 
on a complex algebra X with identity e. Prove the following. 

(a) T(e) = l. 

(b) If x is an invertible element of X, then T(X) f= ° and T(X- 1) = 

(T(X)(l. 

(c) Suppose that X is a Banach algebra. Then IT(x)1 :::: Ilxll whenever 
x E X, so T E X*. 

3.36 A division algebra is an algebra with identity such that the only element 
of the algebra that is not invertible is 0. Suppose that X is a complex 
Banach algebra with identity e and that X is also a division algebra. 
Prove that X = {ae : a E C}. Conclude that X is isomorphic as a 
normed algebra to IC. (See Exercise 3.28 for the definition of a normed 
algebra isomorphism.) This result is called the Gelfand-Mazur theorem. 

3.37 An involution for an algebra X is a map x -+ x* from X into X such that 
if x, y E X and a E Jl<, then 

(1) (x+y)*=x'+y*; 

(2) (axl' =ax'; 

(3) (xy)* = y'x'; 

(4) (xT = x. 

(It is not being assumed in (2) that IF = C. If IF = JR, then a is just a.) 
A Banach algebra X with an involution is a B' -algebra or a C* -algebra 
if Ilx'xll = IIxl1 2 whenever x E X. Suppose that x is an element of a 
B' -algebra X. 

(a) Prove that Ilx'll = Ilxll· 
Now suppose for the rest of this exercise that the B* -algebra X has an 
identity. 
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(b) Prove that x is invertible if and only if x* is invertible, in which case 
(x*)-l = (x- l )*. 

(c) Suppose that IF = C and that x is self-adjoint, that is, that x* = x. 
Prove that TO" (x) = Ilxll. 

3.38 Let X be complex f2, let Y be complex foo, and let II)) be the closed unit 
disc in the complex plane. 

(a) Let Tr be the right-shift operator from X into X given by the for
mula Tr(O!l, 0!2, ... ) = (0, O!l, 0!2, ... ). Show that CT(Tr) = II)) but 
CTp(Tr) = 0. 

(b) Let Tl be the left-shift operator from X into X given by the formula 
Tl(O!l, 0!2, ... ) = (0!2, 0!3, ... ). Show that cr(Tl) = II)) and CTp(Tl) = II))0. 

(c) Let Sl be the left-shift operator from Y into Y given by the formula 
for Tl from (b). Show that CT(Sz) = CTp(Sz) = II)). 

3.4 Compact Operators 

The following definition could be generalized to linear operators between 
normed spaces, but enough of the results that follow depend on the com
pleteness of the normed spaces in question to justify concentrating on the 
Banach space case. 

3.4.1 Definition. (D. Hilbert, 1906 [103]; F. Riesz, 1918 [195]). Suppose 
that X and Yare Banach spaces. A linear operator T from X into Y 
is compact if T(B) is a relatively compact subset of Y whenever B is a 
bounded subset of X. The collection of all compact linear operators from X 
into Y is denoted by K(X, Y), or by just K(X) if X = Y. 

The definition of a compact operator as it appears above is due to Riesz. 
More will be said about Hilbert's earlier definition near the end of this 
section. 

The notion of a compact operator is in a sense a generalization of the 
notion of a bounded finite-rank linear operator. To see this, suppose that 
T is a finite-rank linear operator from a Banach space X into a Banach 
space Y. Since a subset of T(X) is bounded if and only if it is relatively 
compact, the operator T is bounded if and only if it is compact. Even if 
the assumption that T(X) is finite-dimensional is dropped, it is still true 
that relatively compact subsets of T(X) are bounded, which implies that 
T is bounded if it is compact. These observations are summarized in the 
following two results. 

3.4.2 Proposition. Evcry compact linear operator from a Banach space 
into a Banach space is bounded. 
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3.4.3 Proposition. A finite-rank linear operator from a Banach space 
into a Banach space is compact if and only if it is bounded. In particular, a 
linear functional on a Banach space is compact if and only if it is bounded. 

As will be seen in Example 3.4.5, not every compact operator has finite 
rank. 

Recall that a subset S of a metric space X is totally bounded if, for every 
positive €, there is a finite subset FE of S (or, equivalently, of X) such that 
every point of S is within distance € of a member of FE; that is, such that 
S is covered by the finite collection of open balls in X having radius € and 
centered at the points of FE' It is a basic fact from the theory of metric 
spaces that a subset of a complete metric space is relatively compact if and 
only if it is totally bounded; see, for example, [67, p. 22] or [129, p. 101J. 
This, together with other obvious arguments, proves the following collection 
of characterizations of compact operators. 

3.4.4 Proposition. Suppose that T is a linear operator from a Banach 
space X into a Banach space Y. Then the following are equivalent. 

(a) The operator T is compact. 

(b) The set T(Bx) is a relatively compact subset of Y. 

(c) The set T(B) is a totally bounded subset of Y whenever B is a 
bounded subset of X. 

(d) Every bounded sequence (xn) in X has a subsequence (x nj ) such that 
the sequence (TxnJ) converges. 

Here is an application of this proposition. 

3.4.5 Example. Define the linear operator T from £2 into itself by the 
formula T(an) = (n- 1an). Let ((,8j,n));':l be a bounded sequence ofmem-

bers of £2' It will be shown that (T(,8j,n));':l has a convergent subse
quence. Since £2 is reflexive, each of its bounded sequences has a weakly 
convergent subsequence, so it may be assumed that there is a member (,8n) 
of £2 such that w-limj(,8j,n) = (,8n). It follows that limj ,8j,n = ,8n for 
each n. Also, for each positive € there is a positive integer n, such that 
L~=n,ln-1(,8j,n - ,8n)12 < € for every j. These two facts together imply 
that limj T(,8j,n) = T(,8n). It follows from the equivalence of (a) and (d) 
in Proposition 3.4.4 that T is compact. Notice that T(X) contains the 
sequence (en) of standard unit vectors of £2, so T is an example of a 
compact operator that does not have finite rank. Notice also that the 
range of T is not closed since it contains, for each positive integer n, 
the element (l-1,2-1, ... ,n-1,O,O, ... ) of £2, but does not contain the 
limit (1- 1 ,2- 1 , ... ) obtained by letting n tend to 00. 
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The failure of the range of T to be closed in the preceding example is a 
general phenomenon for compact operators not having finite rank. 

3.4.6 Proposition. The range of a compact linear operator from a Banach 
space into a Banach space is closed if and only if the operator has finite 
rank. 

PROOF. The reverse implication follows immediately from the fact that 
finite-dimensional subspaces of normed spaces are always closed. For the 
forward implication, suppose that T is a compact linear operator from a 
Banach space X into a Banach space Y having closed range. Then T(X) 
is itself a Banach space. By the open mapping theorem, the operator T 
maps open subsets of X onto open subsets of T(X). It follows that T 
maps the open unit ball of X onto a nonempty relatively compact open 
subset of T(X), which implies that T(X) has the Heine-Borel property 
and therefore is finite-dimensional. • 

Of course, the range of a bounded finite-rank linear operator from a 
Banach space into a Banach space is separable. It turns out that this is a 
property shared by the ranges of all compact operators. 

3.4.7 Proposition. Every compact linear operator from a Banach space 
into a Banach space has a separable range. 

PROOF. Suppose that X and Yare Banach spaces and that T E K(X, Y). 
Then [T(Bx)] is separable by Theorem 1.12.15 since T(Bx) is relatively 
compact. It follows that the subspace T(X) of [T(Bx)] is separable. • 

If X and Yare Banach spaces, then K(X, Y) is closed in the usual 
algebraic and topological senses. 

3.4.8 Proposition. Suppose that X and Yare Banach spaces, that R 
and S are compact linear operators from X into Y, that 0 E IE", and that 
(Tn) is a sequence of compact linear operators from X into Y that converges 
to some T in B(X, Y). Then R + S, oR, and T are all compact. 

PROOF. If (xn) is a bounded sequence in X, then (xn) can be thinned to 
a subsequence (xnj ) such that both (RxnJ ) and (Sxnj ) converge, which 
implies that ((R + S)(xnJ) and (oRxnJ converge. It follows that R + S 
and a.R are compact. 

Now suppose that B is a bounded subset of X and that 10 > O. Let n 

be such that IITnx - TxlI < E/3 whenever x E B. Since Tn(B) is totally 
bounded, there is a finite subset F of B such that every member of Tn(B) 
lies within distance 10/3 of a member of Tn(F). It follows from straightfor
ward applications of the triangle inequality that every member of T(B) lies 
within distance 10 of a member of T(F), which implies that T(B) is totally 
bounded and therefore that T is compact. • 
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With X and Y as in the preceding proposition, the space K(X, Y) is 
nonempty since it contains the zero operator, so the following corollary is 
essentially just a restatement of the proposition. 

3.4.9 Corollary. If X and Yare Banach spaces, then K(X, Y) is a closed 
subspace of B(X, Y). 

It also turns out that the product of two compact operators must be 
compact. In fact, the compactness of the product follows even if only one 
of the operators is compact and the other is bounded. 

3.4.10 Proposition. Suppose that X, Y, and Z are Banach spaces, that 
S E B(X, Y), and that T E B(Y, Z). If either S or T is compact, then TS 
is compact. 

PROOF. By definition, bounded linear operators between normed spaces 
map bounded sets to bounded sets, and also map relatively compact sets to 
relatively compact sets because of their continuity. The proposition follows 
easily from this. • 

When A is a subset of an algebra X and x EX, the sets {xy : yEA} and 
{yx : yEA} are denoted, as one might expect, by xA and Ax respectively. 

3.4.11 Definition. An ideal in an algebra X is a vector subspace M of X 
such that xM, M x t;;; M whenever x EX. 

It is clear that every ideal in an algebra is a subalgebra of the algebra. 
With this term in hand, and in light of Corollary 3.4.9, the following result 
is an immediate corollary of Proposition 3.4.10. 

3.4.12 Corollary. If X is a Banach space, then K(X) is a closed ideal 
in B(X). 

For a bounded linear operator between Banach spaces, the property of 
being compact can be characterized in several different ways in terms of 
the behavior of the adjoint of the operator. One such characterization will 
be derived here from the Arzela-Ascoli theorem, and a second will then be 
obtained from the first. 

3.4.13 Definition. Suppose that K is a compact Hausdorff space and that 
S is a subset of C(K) with the property that for every x in K and every 
positive E there is a neighborhood UX,f of x such that If(y) - f(x)1 < f 

whenever f E Sand y E UX,E' Then S is equicontinuous. 

In the following theorem, ArzeIa proved the forward implication while 
Ascoli is responsible for the converse. 
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3.4.14 The Arzela-Ascoli Theorem. (C. Arzela, 1889 [6]; G. Ascoli, 
1882-1883 [7]). Suppose that K is a compact Hausdorff space and that 
S is a subset of C(K). Then S is relatively compact jf and only if S is 
bounded and equicontinuous. 

PROOF. It may be assumed that K and S are nonempty. Suppose first that 
S is relatively compact. Fix a positive ( and an Xo in K. Since S is totally 
bounded, there is a finite subset F of S such that every member of S lies 
within distance (/3 of a member of F. Let UXQ,f be a neighborhood of Xo 
such that If(y) - f(xo)1 < (/3 whenever f E F and y E UxQ , •• It follows 
that if fo E Sand y E UXQ,f) then there is an f in F such that 

Ifo(Y) - fo(xo)1 ~ Ifo(Y) - f(Y)1 + If(y) - f(xo)1 + If(xo) - fo(xo)1 < (. 

The set S is therefore equicontinuous, and is bounded since it is relatively 
compact. 

Suppose conversely that S is bounded and equicontinuous. Again, fix 
a positive (. For each x in K, let UX,f be a neighborhood of x such that 
If(Y) - f(x)1 < (/3 whenever f E Sand Y E UX,f' Since K is compact, there 
is a finite collection Xl, ... , Xm of members of K such that K £.;; U;:l U Xj,f' 

It follows from the boundedness of S that { (J(Xl), ... ,f(xm ») : f E S} 
is a subset of Euclidean n-space that is bounded and therefore totally 
bounded, so there is a finite collection II, ... , f n of members of S such 
that for each f in S there is a j for which (J(xJ), ... , f(x m ») is within 
distance (/3 of (Jj(xd, ... ,fj(x.,.,,)). Fix an f in S and let fj be as in the 
preceding sentcnce. If X E K, then there is a k such that x E UXk ,., and so 

It follows that Ilf - fj 1100 < E. The set S is therefore totally bounded and 
so is relatively compact. • 

The following characterization of operator compactness is important 
enough to have inherited the name of its discoverer. 

3.4.15 Schauder's Theorem. (J. Schauder, 1930 [209]). A bounded linear 
operator from a Banach space into a Banach space is compact if and only 
if its adjoint is compact. 

PROOF. Let T be a bounded linear operator from a Banach space X into 
a Banach space Y. Suppose first that T is compact. Let K = T( B x) and 
let B be a bounded subset of Y·. Since 

whenever z* E Band Yl,Y2 E K, the set B, viewed as a subset of C(K), 
is bounded and equicontinuous and therefore relatively compact by the 
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Arzela-Ascoli theorem. Suppose that (y~) is a sequence in B. By what has 
been proved, some subsequence (y~) of (y~) is uniformly Cauchy on K, 
which implies that (y~. T) is unifori'nly Cauchy on B X and therefore, by 

J 

the completeness of X*, convergent as a sequence in X*. Since (T* (Y~j)) = 
(y~ T), it follows that T* is compact. 

J 

Conversely, suppose that T* is compact. Then T** is compact by what 
has already been proved. Let Qx and Qy be the natural maps from X 
and Y respectively into their second duals. Then T = Q};1T**Qx by Propo
sition 3.1.13, from which it follows that T is compact. • 

As was promised earlier, there is another important characterization of 
operator compactness in terms of the behavior of the adjoint, and it is 
based on a continuity condition involving the bounded weak* topology. 

3.4.16 Theorem. A bounded linear operator from a Banach space X into 
a Banach space Y is compact if and only if its adjoint is continuous from 
the bounded weak* topology of y* to the norm topology of X*. 

PROOF. Let T be a bounded linear operator from X into Y. Suppose first 
that T is compact. Then T* is also compact. Let F be a closed subset 
of X*. To show that T* has the claimed continuity property, it is enough 
to show that (T*)-1(F) is b-weakly* closed. Let (y~) be a bounded net 
in (T*) -1 (F) that is weakly* convergent to some y* in Y*. By Corol
lary 2.7.5, the set (T*)-l(F) will be shown to be b-weakly* closed once it 
is shown that y* E (T*)-l(F). Now the weak*-to-weak* continuity of T* 

assures that T*y~ ~. T*y*, while the compactness of T* produces a sub
net (y~) of (y~) such that (T*y~) converges in the norm topology to some x* 
in X* that must lie in the closed set F. It follows that T*y* = x*, so 
y* E (T*)-l(F) and T* has the required continuity property. 

Suppose conversely that T* is continuous from the bounded weak* topol
ogy of Y* to the norm topology of X*. Let B be a bounded subset of y* 
and let (z;) be a net in B. To show that T* is compact and therefore that 
T is compact, it is enough to show that (T* z;) has a subnet convergent in 
the norm topology. By the Banach-Alaoglu theorem, the bounded net (z;) 
has a subnet (z~) that is convergent in the weak* topology and therefore 
in the bounded weak* topology, which implies that (T* z;) is convergent in 
the norm topology. • 

3.4.17 Corollary. If the adjoint of a bounded linear operator T from a 
Banach space into a Banach space is weak*-to-norm continuous, then T is 
compact. 

It it; not true that every compact operator has a weak*-to-norm contin
uous adjoint. See Exercise 3.44. 

The next portion of this section is devoted to obtaining Theorem 3.4.23, 
Frederic Riesz's analysis of the spectrum of a compact operator from an 
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infinite-dimensional Banach space into itself. The path that will be taken 
to this theorem is related to Riesz's original method. See [67, p. 609] for the 
history of Riesz's result and its relationship to earlier work of Fredholm, 
and for references to various methods of obtaining it. 

The first lemma en route to Theorem 3.4.23 is so useful throughout 
functional analysis that it has become a named result. 

3.4.18 Riesz's Lemma. (F. Riesz, 1918 [195]). Suppose that M is a proper 
closed subspace of a normed space X and that 0 < () < 1. Then there is 
an x in Sx such that d(x, M) ?: (). 

PROOF. By Corollary 1.9.7, there is an x* in Sx' such that M ~ ker(x*). 
Let x be an element of Sx such that Ix*xl ?: (). If y E M, then Ilx - yll ?: 
Ix*x - x*YI = Ix*xl ?: (), as required. • 

Suppose that X is a Banach space. It often happens that if a statement 
is true for f - T whenever T E K(X), then it must also be true for af - T 
whenever T E K(X) and a is a nonzero scalar since a-IT is compact and 
af -T = a(I -a-IT). This can sometimes be used to simplify the notation 
in certain arguments just a bit, as is done in the proofs of the next three 
lemmas. 

3.4.19 Lemma. Suppose that X is a Banach space, that T E K(X), and 
that a is a nonzero scalar. If (af - T)(X) = X, then af - T is one-to-one. 

PROOF. It may be assumed that a = 1. Notice that T commutes with 
(I - T)n for each positive integer n; think of the expansion of (I - T)n into 
polynomial form. It follows that 

whenever n E N. 
Suppose that (I -T)(X) = X but f -T is not one-to-one. If n is a positive 

integer, then (f -T)n(x) = X and therefore (f _T)n+l maps some member 
of X to 0 that (I - T)n does not, so ker((I - T)n) ~ ker((f - T)n+l). By 
Riesz's lemma, there is a sequence (xn ) in Sx such that if n E Nand 
y E ker((I - T)n), then Xn E ker((I - T)n+I) and Ilxn - yll ?: 1/2. If 
n,m EN and n > m, then (I - T)(xn ) + TXm E ker((f - T)n), so 

1 
IITxn - TXml1 = Ilxn - ((I - T)(xn ) + Txm) II?: 2· 

It follows that (Txn) has no convergent subsequence, which contradicts the 
compactness of T. • 

Under the hypotheses of the preceding lemma, it actually turns out that 
(af - T)(X) = X if and only if af - T is one-to-one. This is an immediate 
consequence of the next lemma. 
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3.4.20 Lemma. Suppose that X is a Banach space, that T E K(X), and 
that 0: is a nonzero scalar. Then 0:1 - T has finite-dimensional kernel and 
closed range, and the dimension of its kernel equals the codimension of its 
range. 

PROOF. It may be assumed that 0: = 1. If ker(I - T) were infinite-dimen
sional, then, by Lemma 1.4.22, the unit sphere of ker(I - T) would contain 
a sequence (xn) such that Ilxn - Xm II 2: 1 whenever n =1= m, which would 
imply that IITxn - TXml1 = Ilxn - xmll 2: 1 whenever n =1= m, and so (Txn) 
would have no convergent subsequence. This contradicts the compactness 
of T, so ker(1 - T) must be finite-dimensional. 

It follows from Theorem 3.2.18 (b) that ker(I - T) is a complemented 
subspace of X. Let M be a closed subspace of X such that X is the internal 
direct sum of ker(I - T) and M. Then (I - T)(M) = (I - T)(X) and 1-T 
is one-to-one on M. To show that (I - T)(X) is closed, it is enough to show 
that the restriction of I - T to M is an isomorphism. Suppose it were not. 
Then there would be a sequence (Yn) in SM such that (I - T)(Yn) ---+ O. 
Due to the compactness of T, it may be assumed that (TYn) converges to 
some z, which implies that Yn = (I - T)(Yn) + TYn ---+ z and therefore that 
z E SM. However, 

(I - T)(z) = lim (I - T)(Yn) = 0, 
n 

which implies that z = 0 since I - T is one-to-one on M. This contradicts 
the fact that z E 8 M and therefore establishes that (I - T)(X) is closed. 

It remains to be shown that dim(ker(I - T») = codim((I - T)(X»). 
The first step toward this is to observe that, by Theorem 1.10.17 and 
Lemma 3.1.16, 

((I _ ~)(X») * ~ ((I - T)(X»)-L = ker(I* - T*). 

Since ker( J* - T*) is finite-dimensional by the compactness of T* and since 
a finite-dimensional normed space has the same dimension as its dual space, 

codim((I - T)(X») = dim(ker(I* - T*»). (3.4) 

The compactness ofT* also implies that (1* -'I'*)(X*) is closed and thus, by 
Theorem 3.1.21, weakly* closed. It follows from Lemma 3.1.16 and Propo
sition 2.6.6 (c) that 

and therefore from Theorem 1.10.16 that 

X* X* 
----,- ~ (ker(I - T) r. 
(ker(I - T»)-L (I* - T*)(X*) 
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A further application of the fact that every finite-dimensional normed space 
has the same dimension as its dual then shows that 

cOdim((I* - T*)(X*)) = dim(ker(I - T)). (3.5) 

Next, suppose that dim(ker(I - T)) > codim((I - T)(X)). It follows from 
Theorem 3.2.18 (a) that there is a closed subspace N of X such that X 
is the internal direct sum of (I - T)(X) and N. Applying the first iso
morphism theorem for Banach spaces to the projection with range Nand 
kernel (I - T)(X) shows that codim(I - T)(X)) = dim(N), so there is 
a bounded linear operator S that is not one-to-one that maps the finite
dimensional Banach space ker(I - T) onto the smaller-dimensional Banach 
space N. Consider S to be a member of B(ker(I - T), X), and notice that 
S is compact. As in the first part of this proof, let M be a closed subspace 
of X such that X is the internal direct sum of ker(I - T) and M, and 
let P be the projection in X with range ker(I - T) and kernel M. Let 
R = T + SP. Then R is compact since T and S are so, and 

(I - R)(X) = «I - T) - SP)(ker(J - T)) + ((I - T) - SP)(M) 

= N + (I - T)(M) 

= N + (I - T)(X) 

=X. 

It follows from Lemma 3.4.19 that 1- R is one-to-one. However, there is 
some nonzero w in the subset kereS) of ker(I - T), which implies that 
(I - R)(w) = (I - T)(w) - SPw = 0, a contradiction. Therefore, it must 
be that 

dim(ker(I - T)) :::; codim(I - T)(X)) , (3.6) 

and furthermore, since T* is compact, that 

dim(ker(I* - T*)) :::; codim((I* - T*)(X*)). (3.7) 

It follows from (3.4), (3.5), (3.6), and (3.7) that 

dim(ker(I - T)) = codim((I - T)(X)), 

as required. • 
The next result also follows from (3.4), (3.5), (3.6), and (3.7). 

3.4.21 Lemma. Suppose that X is a Banach space, that T E K(X), and 
that a is a nonzero scalar. Then dim(ker(aI - T)) = dim(ker(aJ* - T*)). 

3.4.22 Lemma. Suppose that X is a nontrivial Bana.ch space, tha.t T E 
K(X), and that (an) is a sequence of distinct eigenvalues of T. Then 
an ---> O. 
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PROOF. It may be assumed that each O:n is nonzero. For each positive 
integer n, let Xn be an eigenvector associated with O:n and let Mn = 
({ Xl, ... , Xn}), a closed subspace of X that has dimension n by Theo
rem 3.3.31; then Mn ~ Mn+1 and (O:n+l1 - T)(Mn +1) ~ Mn, so by 
Riesz's lemma there is a Yn+l in SMn + 1 such that d(Yn+1, Mn) 2': 1/2 and 
(O:n+l1 - T)(Yn+r) E Mw It follows that if j, kEN and j > k> 1, then 

T(o:j1 yj ) - T(O:k 1Yk) 

= O:k1(O:k1 - T)(Yk) - 0:-; 1 (O:j1 - T)(Yj) - Yk + Yj 

= Yj - (Yk + 0:-;1 (O:j1 - T)(Yj) - O:k1(O:k1 - T)(Yk»)' 

The expression subtracted from Yj lies in M j - 1 and therefore has dis
tance at least 1/2 from YJ, so IIT(o:-;lYj) - T(O:k1Yk)11 2: 1/2. Therefore 

(T(o:;;-lYn») has no convergent subsequence. Since T is compact, it must be 
that (o:;;-lYn) has no bounded subsequence, which implies that O:n -> O .• 

3.4.23 Theorem. (F. Riesz, 1918 [195]). Suppose that X is an infinite
dimensional Banach space and that T E K(X). 

(a) The spectrum a(T) of T is a countable compact set whose only pos
sible limit point is O. 

(b) a(T) = {O} U ap(T). 

(c) If 0: is a nonzero eigenvalue of T, then the eigenspaces of T and T* 
associated with a have the same finite dimension. 

PROOF. Since X is infinite-dimensional, the compact operator T cannot 
be an isomorphism from X onto itself, so 0 E a(T). If a E a(T) \ {O}, then 
either ker(a1 -T) i {O} or (a1 -T)(X) i X; it follows from Lemma 3.4.20 
that both are actually true, so a E ap(T). This proves (b). 

It follows from Theorem 3.3.18 that a(T) is compact. Now suppose that 
r > 0, that AT = {o: : a E a(T), lal 2: r}, and that AT is infinite. Then 
some sequence of distinct members of AT converges to some member of AT' 
By (b), each member of this sequence is an eigenvalue ofT, so this sequence 
converges to 0 by Lemma 3.4.22. This contradiction assures that AT is finite 
for each positive r, from which (a) follows. 

Now suppose that a is a nonzero eigenvalue of T. Then dim(ker( 0:1 - T») 

is finite by Lemma 3.4.20 and equal to dim(ker(a1* -T*)) by Lemma 3.4.21, 
which proves (c). • 

The preceding theorem does not say that the spectrum of a compact 
operator from an infinite-dimensional Banach space into itself is the dis
joint union of {O} and ap(T). For example, the compact operator (an) f--> 

(a1,0,0, ... ) from £2 into itself has 0 as an eigenvalue (and the associ
ated eigenspace is infinite-dimensional). On the other hand, notice that 
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the member T of K(£2) from Example 3.4.5 is one-to-one and therefore 
does not have 0 as an eigenvalue. 

Several of the lemmas leading up to the preceding theorem have an in
teresting application to the solution of linear equations. 

3.4.24 The Fredholm Alternative. Suppose that X is a Banach space, 
that T E K(X), and that a is a nonzero scalar. Then the following are 
equivalent. 

(a) For every y in X, the equation (al - T) (x) = y is satisfied by some x 
in X. 

(b) For every y* in X*, the equation (aI* - T*)(x*) = y* is satisfied by 
some x* in X*. 

(c) The homogeneous equation (al - T)(x) = 0 is satisfied only when 
x=O. 

(d) The homogeneous equation (al* - T*)(x*) = 0 is satisfied only when 
x* = O. 

If any (and therefore all) of (a), (b), (c), and (d) are true, then the equation 
in (a) has a unique solution Xy whenever y E X, and similarly for the 
equation in (b). Whether or not (c) and (d) are true, the solution spaces of 
the homogeneous equations in (c) and (d) have the same finite dimension. 

PROOF. The fact that the solution spaces of the homogeneous linear equa
tions in (c) and (d) have the same finite dimension is just a restatement of 
Lemma 3.4.21 and part of Lemma 3.4.20. The equivalence of (c) and (d) 
follows from this. It is a consequence of Lemma 3.4.20 that al - T is one
to-one if and only if (al -T)(X) = X, which is another way to say that (a) 
and (c) are equivalent; this also shows that if (a) holds, then the equation 
in (a) is satisfied by a unique Xy whenever y E X. The same argument 
applied to T* proves the equivalence of (b) and (d) and the uniqueness 
assertion about solutions of the equation in (b). • 

See Exercise 3.47 for more properties of solutions of homogeneous and 
nonhomogeneous equations that are sometimes included in the Fredholm 
alternative. 

Most of the rest of this section is devoted to a very brief look at the ap
proximation property. Historically, the motivating example is the following 
one. 

3.4.25 Example. For each positive integer n, define Pn : £2 ~ £2 by the 
formula Pn ((OJ)) = (a1, . .. ,an, 0, 0, ... ). Then each Pn is a bounded pro
jection from £2 onto { (aj) : (aj) E £2, an+l = a n +2 = ... = 0 }. Suppose 
that S is a nonempty relatively compact subset of £2. For each positive E, 
there must be a positive integer ne such that (Ej:n,+llaj 12 )1/2 < E when
ever (aj) E S, because if this failed for some positive E then it would be 
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possible to construct a sequence of elements of S with no convergent sub
sequence; the basic idea is to start with some (al,j) in S, select an n1 
such that O:;:n,+1la1,jI2)1/2 ::; E/2, then select an (a2,j) in S such that 

(E;:nl +1l a2,j 12)1/2 ~ E, and continue in the obvious fashion. It follows 

that limn {sup{ 11(1 - Pn )(y)112: yES}} = o. 
Now suppose that T is a compact operator from a Banach space X 

into £2. Let Tn = PnT for each n. Then each Tn is a bounded finite-rank 
linear operator, and 

0= lim{sup{ 11(1 - Pn)(y)112: Y E T(Bx)}} 
n 

= lim{sup{ I/(T - Tn)(x)112 : x E Bx}} 
n 

= lim liT - Tn 1/. 
n 

This proves that every compact linear operator from a Banach space into £2 
is the limit of a sequence of bounded finite-rank linear operators from that 
Banach space into £2' Since bounded finite-rank linear operators from a 
Banach space into a Banach space are compact, another way of expressing 
this is to say that £2 has the following property. 

3.4.26 Definition. A Banach space X has the approximation property if, 
for every Banach space Y, the set of finite-rank members of B(Y, X) is 
dense in K(Y, X). 

The argument that proves the following result is essentially the same as 
that of Example 3.4.25. 

3.4.27 Theorem. The spaces Co and £p such that 1 ::; p < 00 have the 
approximation property. 

Though the definition of the approximation property given above is the 
historical one, it is probably not the one used most often by modern au
thors. The definition commonly encountered today is an equivalent one 
due to Alexandre Grothendieck that has the advantage of being based on 
intrinsic properties of the Banach space X in question rather than on prop
erties that involve every Banach space Y as well as X. The equivalence of 
these two definitions will be proved in Theorem 3.4.32, both for the impor
tance of the result and because some useful ideas occur in the proofs of the 
theorem and the lemmas leading up to it. 

3.4.28 Lemma. Suppose that S is a nonempty relatively compact subset 
of a Banach space X and that 11·llx is the norm of X. Let 

Ks = co (U{ as : a E IF', lal :S 1} ) 

and let Y = (Ks). Then 
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(a) the set Ks is a compact subset of X that includes S; 

(b) the vector space Y has a Banach norm 11·lly such that Ks is the 
closed unit ball for that norm; and 

(c) the "identity" map from (Y, IHy) into (X, 11·llx) is compact. 

PROOF. The set U{ o:S : 0: E IF, 10:1 ::; I} is relatively compact because 
each of its sequences has a convergent subsequence. Since 

Ks = co (u{ o:S: 0: ElF, 10:1 ::; l}) , 
the set Ks is compact by Mazur's compactness theorem. This and the 
obvious fact that S ~ Ks prove (a). 

Since co( U{ o:S : 0: E IF, 10:1 ::; I}) is balanced, so is Ks by Theo
rem 2.2.9 (i), which implies that Ks is an absorbing subset of Y since 
Y = (Ks) and Ks is convex. Let 1I·lly be the Minkowski functional of Ks 
on Y, a seminorm by Proposition 1.9.14 (a) (3). If y is a nonzero mem
ber of Y, then lIylly > 0, for otherwise there would be a sequence tn of 
positive reals converging to 0 such that t;;;ly E Ks for all n, contradicting 
the boundedness of K s in X. Therefore II· II y is a norm on Y. It is easy to 
check that lIylly ::; 1 if Y E Ks and lIylly > 1 if y E Y \ Ks, that is, that 
Ks is the closed unit ball for 11·lly. The "identity" map from (Y, II·lly) 
into (X, 11·llx) is bounded since it maps BCy.II'lly) onto the bounded sub
set Ks of X, and will necessarily be compact once it is demonstrated that 
(Y, II· II y) is a Banach space. 

All that remains to be proved is that the metric induced by 11·lIy is 
complete. Suppose it is not. Let (vn ) be a nonconvergent Cauchy sequence 
in B CY•II . IIY)' Since (vn ) is also Cauchy in X and lies in Ks, there is some v 
in Ks such that Ilvn - vllx -+ O. Letting Wn = Vn - v for each n produces a 
nonconvergent Cauchy sequence in Y such that Ilwn Ilx -+ O. It follows that 
there is a subsequence (WnJ of (wn ) and a positive {j such that IIwnj Ily ~ (j 
for each). Letting Zj = Ilwnj 1I;}wnj for each) produces a Cauchy sequence 
in S(Y.II'lIy) that, when viewed as a sequence in X, converges to O. Let)o 
be a positive integer such that Ilzj - zklly ::; 1/2 whenever j,k ~ )0' Then 
2(zjo - Zj) E Ks whenever ) ~ )0' Since Zj -+ 0 in X and Ks is closed 
in X, it follows that 2zjo E Ks. This implies that IIzjolly ::; 1/2, which is a 
contradiction. • 

3.4.29 Lemma. Suppose that (xn) is a sequence in a Banach space X 
that converges to 0 and that the subset H of IF is either {I} or a closed 
ball in IF centered at O. Then 

co( {o:xn : 0: E H, n EN}) 

= { L tno:nxn : tn ~ 0 and O:n E H for each n, L tn ::; 1 } 
n n 

and this closed convex hull is compact. 
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PROOF. The set {UXn : Q E H, n EN} U {O} is compact because each 
sequence in it has a convergent subsequence whose limit is in the set. Also, 

cO({UXn: U E H, n EN}) = co({uxn: Q E H, n E N} U {O}) 

and this last set is compact by Mazur's compactness theorem. Let 

B = {Ltnunxn: tn 2': 0 and Un E H for each n, Ltn::; I}. 
n n 

Notice that there is no problem with the definition of B, since X is a 
Banach space and each of the formal series that is supposed to belong to B 
is absolutely convergent. It will now be shown that B is closed. Suppose 
that (Ln tj,nUj,nXn)'j=1 is a sequence in B convergent to some member 
of X. By a straightforward diagonalization argument, it may be assumed 
that, for each n, the sequence (tj,n)~1 converges to some nonnegative tn 
and (Uj,n)~1 converges to some Un in H. It follows that Ln tn ::; 1 and, 
by an argument involving the fact that Xn ---+ 0, that limj Ln tj,nUj,nXn = 
Ln tnunxn· Therefore B is closed. It is not difficult to show that B is 
convex; when H is a closed ball in IF centered at 0, this uses the fact that 
if Ln tnunxn, Ln t~u~xn E Band 0 < t < 1, then 

for each n. Since 

{UXn : U E H, n EN} ~ B ~ co( {uxn : U E H, n EN}), 

it follows that B = co( {uxn : U E H, n EN}). • 
3.4.30 Lemma. Suppose that A is a relatively compact subset of a normed 
space X. Then there is a sequence (xn) in X converging to 0 such that 
A ~ CO({xn: n EN}). 

PROOF. It may be assumed that A =I 0. For each x in X and each 
positive r, let B(x,r) denote the closed ball of radius r centered at x. 
Since 2A is relatively compact and therefore totally bounded, there are 
members Xl>'" ,Xn, of 2A such that 2A ~ U;~1 B(Xj, 2-1). Let 

n, 
Al = U((2AnB(xj,2- 1)) -Xj). 

j=1 

Then Al ~ B(D, 2- 1). Since Al is nonempty and relatively compact, there 
are members Xn,+l,'" ,xn2 of 2Al such that 2Al ~ U;~n,+1 B(xj,2-2). 
Let 

n2 
A 2 = U ((2A1 nB(xj,z-2))-Xj). 

j=n,+1 
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Then A2 <;;; B(0,2-2). Since A2 is nonempty and relatively compact, there 
arc members Xn2 +1,' .. , xn3 of 2A2 such that 2A2 <;;; U;!n2+1 B(Xj, 2-3). 
Let 

n3 

A3= U ((2A2 nB(xj,T3))-Xj). 
j=n2+1 

The construction of (xn) is continued in the obvious fashion. Notice that 
Xn -+ O. 

Suppose that Xo E A. Then there is a positive integer jl with 1 ::; j1 ::; nl 

such that 2xo - Xj, E AI, so there is a positive integer j2 with nl < 12 ::; n2 
such that 4xo - 2xj} - xJ2 E A2, and so forth. It follows that 

m 

Xo - L Tnxjn E 2-m Am <;;; B(O, 4-m) 
n=l 

for each m, and therefore that Xo = Ln 2-nxjn E co( {Xn : n EN}). • 

Thus, every relatively compact subset of a normed space is small in the 
sense that it is included in the closed convex hull of a null sequence. If the 
normed space is not a Banach space, then such a closed convex hull is not 
guaranteed to be compact; see Exercise 2.94. However, it is when the space 
is complete, as was shown in Lemma 3.4.29. 

3.4.31 Lemma. Suppose that X is a Banach space. 

(a) A subset A of X is relatively compact if and only if there is a se
quence (xn) in X converging to 0 such that A <;;; co( {xn : n EN}). 

(b) If A is a relatively compact subset of X and (xn) is as in (a), then 
there is a compact subset S of X such that co( {xn : n EN}) <;;; S 
and, with Y being the Banach space constructed from this S as in 
Lemma 3.4.28, the sequence (xn) converges to 0 in Y as well as in X. 

PROOF. The forward implication in (a) follows immediately from the pre
ceding lemma, while the converse comes from Lemma 3.4.29 and the fact 
that every subset of a compact subset of X is relatively compact. 

For (b), suppose that A is a relatively compact subset of X and that (xn) 
is a sequence in X as in (a). It may be assumed that each Xn is nonzero. 

Let 11·llx be the norm of X. For each n, let Yn = Ilxnll~1/2xn if IIxnllx < 1 
and let Yn = Xn otherwise. Let S = co( {Yn : n EN}), a compact subset 
of X since II Yn II x -+ O. Then co( {xn : n EN}) <;;; S. Let Y and II . II y be as 

in Lemma 3.4.28 for this S. If Ilxnllx < 1, then Ilxnll~1/2xn E B(Y,II'b-), 

so Ilxnlly ::; Ilxnll3/2. It follows that Ilxnlly -+ 0, which proves (b). • 
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3.4.32 Theorem. (A. Grothendieck, 1955 [96]). Let X be a Banach space. 
Then the following are equivalent. 

(a) The space X has the approximation property. 

(b) For every compact subset K of X and every positive f, there is a 
finite-rank member TK,. of B(X) such that IITK,Ex - xii < f when
ever x E K. That is, the identity operator on X can be uniformly 
approximated on compact subsets of X by bounded finite-rank linear 
operators. 

PROOF. Suppose first that X has the approximation property, that K is 
a compact subset of X, and that f > O. By Lemma 3.4.31, there is a se
quence (x,,) in X converging to 0 such that K ~ co({ Xn : n EN}), and 
there is a compact subset S of X that includes co( {xn : n EN}) such 
that (xn ) converges to 0 in the Banach space Y constructed from S as 
in Lemma 3.4.28. Let 11·llx and 11·lly be the norms of X and Y respec
tively. For the rest of this argument, references to Y as a normed space are 
to (Y, 11·lly) rather than to Y as a subspace of X. Since the "identity" map 
from Y into X is compact, there is a finite-rank member 11 K,E of B(Y, X) 
such that II1IK"x-xllx < f/2 whenever x E K. The goal is to find a finite
rank member of B(X) that uniformly approximates the identity operator 
of X within f on K, so it may be assumed that 11 K,E "I O. It follows that 
there are members Yi, ... , y:r, of Y* and a basis Zl, ... , Zm for 11 K,E (Y) such 
that lIK,EY = r:;=l(YjY)Zj whenever Y E Y. The proof that (a) '* (b) will 
be done once it is shown that if y* E Y* then there is an x* in X· such 
that IY·x - x·xl < f/(2mmax{ Ilzlllx, ... , Ilzmllx}) whenever x E K, for 
with elements xi, ... , x:r, of X * near in this sense to Yi, ... , y:r, respectively 
and TK,EX = I:;:l(XjX)Zj whenever x E X, it would follow that for each x 
in K, 

IITK,E X - xlix ~ IlfeXix)Zj - f(YjX)Zjll + II1IK,EX - xlix 
J=l )=1 X 

m 

< L:( Ixi x - YixlllZjllx) + ~ 
j=l 
E E 

<2+2 
=E. 

Suppose that y* E Y*. Let 0 = f/(2mmax{llzlllx, ... ,llzmllx})· Since 
Xn -+ 0 in Y, there is an no such that Iy*xnl < 0/2 when n > no. Let 

Kno = 20- 1co({axn : a E F, lal ~ 1, n > no }); 

by Lemma 3.4.29 and the continuity of the map x f-+ x from Y into X, this 
is the same closed convex hull whether it is taken in Y or in X. Let 

c = {y: y E (Xl, ... ,Xno), Rey*y = I}. 
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Then C is a closed subset of a finite-dimensional subspace of Y and so 
is closed in X, while Kno is, by Lemma 3.4.29, a compact subset of X. 
If Xl,"" Xno E ker(y*), then by letting X* be the zero element of X* it 
would follow that IY*x - x*xl = ly*xl < 8/2 for every X in K, so it may 
be assumed that at least one of Y*Xl" .. ,y*xno is nonzero and therefore 
that C =1= 0. Since ly*xl < 1 when x E Kno and Iy*xl ~ 1 when x E C, 
the sets Kno and C are disjoint, so by Theorem 2.2.28 there is an x* in X* 
such that 

max{Rex*x: X E Kno} < inf{Rex*x: X E C}. 

Notice that Rex* must actually be constant on C, for otherwise Rex*(C) 
would be R Since 0 E Rex*(Kno), it may be assumed that Rex*x = 1 
whenever x E C. It follows that x*x = y*x whenever x E (Xl"'" x no ) and 
therefore that x*xn = y*xn when n = 1, ... ,no. Since Kno is balanced, 
it must be that Ix*xo I < inf {Re x*x : X E C} = 1 whenever Xo E K no ' 
which implies that Ix*xnl < 8/2 when n > no. If x E K, then let (tn) be a 
sequence of nonnegative reals such that Ln tn ::::: 1 and x = Ln tnxn and 
observe that 

Ix*x - y*xl = 12:)n(x*xn - y*xn)l::::: f t n ( Ix*xnl + Iy*xnl) < 8. 
n n=no+l 

This finishes the proof that (a) =} (b). 
Now suppose that (b) holds. Let Z be a Banach space and let T be a 

compact operator from Z into X. By (b), there is a sequence (w n) of finite
rank members of B(X) such that IIwnx - xlix < l/n for each x in T(Bz ) 
and each n in N. It follows that 

1 
IlwnT - Til = sup{ Ilwnx - xlix: x E T(Bz )} ::::: -

n 

for each n. Therefore T is the limit in K(Z, X) of the sequence (wnT) of 
finite-rank operators, so X has the approximation property. • 

The proof of the preceding theorem is essentially the one found in [156] 
with minor modifications to allow for the possibility of complex scalars. 

For a long time one of the major open problems in Banach space the
ory, the approximation problem, was whether every Banach space has the 
approximation property. This was finally settled in the negative in a 1973 
paper by Per EnBo [76], who found a separable reflexive Banach space, 
necessarily infinite-dimensional, that lacks the approximation property. 1 

1 It had been established by Grothendieck in [96J that an example of a Banach space 
lacking the approximation property would abo provide a negative answer to a question 
of Mazur from real analysis. On November 6, 1936, Mazur had entered his question 
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A. M. Davie [45] has published a simplified version of Enflo's example that 
is reproduced in [156]. 

See Grothendieck's memoir [96] for other properties equivalent to the 
approximation property. Another excellent source for more on the approxi
mation property and its consequences is [156]. The approximation property 
will be briefly revisited in Section 4.1. 

This section ends with a quick look at Hilbert's original version of the 
definition of a compact operator, which is essentially the following one. 

3.4.33 Definition. (D. Hilbert, 1906 [103]). Suppose that X and Yare 
Banach spaces. A linear operator T from X into Y is completely continuous 
or a Dunford-Pettis operator if T(K) is a compact subset of Y whenever 
K is a weakly compact subset of X. 

Complete continuity is not really equivalent to compactness. As a prop
erty for linear operators between Banach spaces, complete continuity actu
ally lies properly between compactness and boundedness, as the next two 
results and Exercise 3.51 together show. 

3.4.34 Proposition. Every compact linear operator from a Banach space 
into a Banach space is completely continuous. 

PROOF. Suppose that X and Yare Banach spaces, that T E K(X, Y), 
and that K is a weakly compact, hence bounded, subset of X. Then T(K) 
is relatively compact, and is also weakly compact since T is weak-to-weak 
continuous. It follows easily that T(K) is compact. • 

3.4.35 Proposition. Every completely continuous linear operator from a 
Banach space into a Banach space is bounded. 

PROOF. Suppose that T is an unbounded linear operator from a Banach 
space X into a Banach space. Then there is a sequence (xn) in Bx such 
that IITxnll ~ n 2 for each n. It follows that {n-1xn : n E Ii} U {O} is a 
weakly compact subset of X whose image under T is not bounded, hence 
not compact. • 

The following characterization of complete continuity is what Hilbert 
actually used as the definition of the property. 

3.4.36 Proposition. A linear operator from a Banach space into a Banach 
space is completely continuous if and only if it is weak-to-norm sequentially 
continuous. 

in the famous "Scottish book" of open problems kept at the Scottish Coffee House in 
Lwow, Poland, by Banach, Mazur, Stanislaw Ulam, and other mathematicians in their 
circle; see [160, problem #153]. Mazur offered a live goose as the prize for a solution. 
About a year after solving the problem, Enflo traveled to Warsaw to give a lecture on 
his solution, after which he was awarded the goose. 
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PROOF. The forward implication is an easy consequence of the weak-to
weak continuity of completely continuous operators along with the fact that 
a subset of a Banach space consisting of the terms and limit of a weakly 
convergent sequence is weakly compact. The converse follows directly from 
the fact that weakly compact subsets of a normed space are weakly sequen
tially compact. • 

Since sequential continuity does not in general imply continuity, the pre
ceding proposition stops a bit short of claiming that every completely con
tinuous operator is weak-to-norm continuous, and in fact not all completely 
continuous operators are; see Exercise 3.51. It does of course follow from 
the preceding proposition, and in fact directly from the definition of com
plete continuity, that every weak-to-norm continuous linear operator from 
a Banach space into a Banach space is completely continuous. 

The reason that Hilbert is given joint credit with Riesz for founding the 
field of compact operator theory is that Hilbert was interested in linear op
erators with domain £2 when he gave the definition of complete continuity, 
and for such operators compactness and complete continuity are equivalent. 

3.4.37 Theorem. A linear operator from a reflexive Banach space into a 
(possibly nonreflexive) Banach space is compact if and only if it is com
pletely continuous. 

PROOF. It is enough to prove that every completely continuous linear op
erator from a reflexive Banach space into a Banach space is compact, but 
this follows immediately from the weak compactness of the closed unit ball 
of the domain space. • 

Though this section has concentrated on compact operators between ar
bitrary Banach spaces, the theory of compact operators between Hilbert 
spaces, especially the theory of the Banach algebra K(H) where H is a 
Hilbert space, is particularly rich. In this situation, many of the results of 
this section can be proved in somewhat different and often simpler ways. 
The interested reader should have no difficulty finding sources in which this 
more specialized theory is developed. See, for example, Conway's text [43]. 

Exercises 

3.39 Characterize the compact projections in a Banach space among all pro
jections in that Banach space. 

3.40 (a) Suppose that X is a reflexive Banach space. Prove that every mem
ber of B(X, e1 ) is compact. 

(b) Suppose that Y is a reflexive Banach space. Prove that every mem
ber of B(co, Y) is compact. 



338 3. Linear Operators 

3.41 Give an example of a closed subalgebra of a Banach algebra that is not 
an ideal in the algebra. 

3.42 Suppose that K is a compact Hausdorff space and that S ~ C(K). Then S 
is pointwise bounded if {f(x) : f E S} is a bounded subset of IF whenever 
x E K. Prove that if S is equicontinuous, then S is pointwise bounded 
if and only if S is a bounded subset of C(K). (Thus, the boundedness 
condition in the statement of the Arzela-Ascoli theorem can be replaced 
by pointwise boundedness, and in fact the theorem is often stated that 
way.) 

3.43 Suppose that g: [0, 1] x [0, 1] --> IF is continuous. Define T: C[O, 1] --> 

C[O, 1] by the formula (T(f)) (t) = fa1 get, s)f(s) ds. Prove that T is a 
compact linear operator. 

3.44 (a) Suppose that X and Yare infinite-dimensional normed spaces and 
that S is a one-to-one linear operator from Y' into X'. Prove that 
S is not weak*-to-norm continuous. 

(b) Give an example of a compact linear operator T from a Banach space 
into a Banach space such that T' is not weak*-to-norm continuous. 

3.45 Prove the following improvement of Riesz's lemma for reflexive spaces: 
If M is a proper closed subspace of a reflexive normed space X, then 
there is an x in Sx such that d(x, M) = l. 

3.46 Lemma 3.4.21 is in a sense a generalization of the fact that the row rank 
and column rank of a matrix are the same. (At least, it is a generalization 
of that fact for square matrices.) Explain. 

3.47 Suppose that X is a Banach space, that T E K(X), and that a is a 
nonzero scalar. Prove the following facts that are sometimes included in 
the Fredholm alternative. 

(a) If y E X, then (0.1 -T)(x) = y for some x in X if and only if x*y = 0 
whenever x* E X* and (ar - T*)(x*) = O. 

(b) If y' E X*, then (ar - T*)(x*) = y' for some x* in X' if and only 
if y'x = 0 whenever x E X and (0.1 - T)(x) = O. 

(c) If y E X and the equation (cd - T)(x) = y has a solution, then 
the general solution of the equation is found by adding a particular 
solution of that equation to the general solution of the equation 
(0.1 - T)(x) = O. 

(d) If y* E X* and the equation (ar -T*)(x*) = y* has a solution, then 
the general solution of the equation is found by adding a particular 
solution of that equation to the general solution of the equation 
(ar - T*)(x*) = O. 

3.48 Prove the following converse of Proposition 3.4.7: If X is a separable 
Banach space, then there is some Banach space Y and a compact linear 
operator T from Y into X such that T(Y) is dense in X. 

3.49 Prove that the collection of completely continuous linear operators from 
a Banach space X into a Banach space Y is a closed subspace of B(X, Y). 
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3.50 Suppose that T is a linear operator from a normed space X into a normed 
space Y. Prove that the following are equivalent. 

(a) The operator T is continuous. 

(b) The set T(K) is a compact subset of Y whenever K is a compact 
subset of X. 

(c) The set T(K) is a weakly compact subset of Y whenever K is a 
weakly compact subset of X. 

Notice the analogy between this result and the definition of complete 
continuity. 

3.51 (a) Suppose that Y is a Banach space. Prove that every member of 
B(ll, Y) is completely continuous. (Compare Exercise 3.40 (a).) 

(b) Give an example of a linear operator from a nonreflexive Banach 
space into a reflexive Banach space that is completely continuous 
but not compact. 

(c) Give an example of a linear operator from a Banach space into a 
Banach space that is bounded but not completely continuous. 

(d) Give an example of a linear operator from a Banach space into a 
Banach space that is completely continuous but not weak-to-norm 
continuous. 

3.5 Weakly Compact Operators 

Since compact operators possess so many interesting properties, it is nat
ural to ask how much of what has been shown in the preceding section 
survives if the linear operators being studied are only required to have the 
following weakened version of the compactness property. 

3.5.1 Definition. (S. Kakutani, 1938 [125]; K. Yosida, 1938 [245]). Sup
pose that X and Yare Banach spaces. A linear operator T from X into Y 
is weakly compact if T(B) is a relatively weakly compact subset of Y when
ever B is a bounded subset of X. The collection of all weakly compact 
linear operators from X into Y is denoted by KW(X, Y), or by just KW(X) 
if X = Y. 

The development of the theory of weakly compact operators in this sec
tion parallels that done for compact operators in the preceding section, up 
to but not including spectral theory. The reason for not saying anything 
hcrc about the spectral theory of weakly compact operators is mentioned 
near the end of this section. 

The first two results of this section place weak compactness between 
compactness and bounded ness as a property for linear operators between 
Banach spaces. The first is obvious, while the second is an immediate conse
quence of the fact that every relatively weakly compact subset of a Banach 
space is bounded. 
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3.5.2 Proposition. Every compact linear operator from a Banach space 
into a Banach space is weakly compact. 

3.5.3 Proposition. Every weakly compact linear operator from a Banach 
space into a Banach space is bounded. 

Weak compactness is genuinely different from the other two properties 
for linear operators mentioned in the preceding two propositions. For ex
ample, it is easy to see that the identity operator on £1 is bounded but not 
weakly compact, while the identity operator on £2 is weakly compact but 
not compact. 

Since a subset of a finite-dimensional subspace of a normed space is 
relatively weakly compact if and only if it is relatively compact, a finite
rank linear operator between Banach spaces is weakly compact if and only 
if it is compact. Thus, the most obvious analog for weak compactness of 
Proposition 3.4.3, that a finite-rank linear operator from a Banach space 
into a Banach space is weakly compact if and only if it is bounded, is 
trivially true. A more interesting analog can be obtained by first observing 
that, as an immediate consequence of Proposition 3.4.3, a bounded linear 
operator from a Banach space X into a Banach space Y is compact if either 
X or Y is finite-dimensional, and then recalling that weakly compact sets 
often play the same role in reflexive Banach spaces that compact sets do 
in finite-dimensional ones. 

3.5.4 Proposition. If X and Yare Banach spaces and either X or Y 
is reflexive, then every bounded linear operator from X into Y is weakly 
compact. 

PROOF. This follows easily from the relative weak compactness of bounded 
subsets of reflexive spaces and the weak-to-weak continuity of bounded 
linear operators between normed spaces. • 

The equivalence of the following characterizations of weak compactness 
for linear operators is easily proved using elementary arguments and the 
Eberlein-Smulian theorem. 

3.5.5 Proposition. Suppose that T is a linear operator from a Banach 
space X into a Banach space Y. Then the following are equivalent. 

(a) The operator T is weakly compact. 

(b) The set T(Bx) is a relatively weakly compact subset of Y. 

(c) Every bounded sequence (xn) in X has a subsequence (xnj ) such that 
the sequence (Txnj ) converges weakly. 

The fact that the range of a compact operator is closed if and only 
if the operator has finite rank does have an analog for weakly compact 
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operators, and again that analog is suggested by the similarity between the 
role of compact sets in finite-dimensional Banach spaces and that of weakly 
compact sets in reflexive Banach spaces. 

3.5.6 Proposition. The range of a weakly compact linear operator from 
a Banach space into a Banach space is closed if and only if the range of the 
operator is reflexive. 

PROOF. One implication is a trivial consequence of the fact that every 
reflexive subspace of a Banach space is closed. For the other, suppose that 
a weakly compact linear operator T from a Banach space X into a Banach 
space Y has closed range. Then T is an open mapping from X onto T(X), 
so T(Bx) is a relatively weakly compact suhset of T(X) that includes a 
neighborhood of 0 in T(X). This implies that BT(x) is weakly compact 
and therefore that T(X) is reflexive. • 

If T is a weakly compact linear operator from a Banach space X into a 
Banach space Y such that T(X) is not known to be closed in Y, then it is 
not necessarily the case that T(X) is reflexive; see Exercise 3.52. However, 
it does follow that T(X) is the closed linear hull of the weakly compact 
set T( B x), which yields the following analog of the fact that every compact 
linear operator from a Banach space into a Banach space has a separable 
(that is, compactly generated) range. 

3.5.7 Proposition. Suppose that T is a weakly compact linear operator 
from a Banach space X into a Banach space Y. Then T(X) is weakly 
compactly generated. 

The collections KW(X, Y) and KW(X) of Definition 3.5.1 have the same 
algebraic and topological closure properties that were shown to hold for 
K(X, Y) and K(X) in Section 3.4. Before showing this, it will be useful 
to have the following result relating the weak compactness of an operator 
to the location of the range of its second adjoint. This theorem is due to 
Gantmacher when the spaces are separable, while the general case is due 
to Nakamura. 

3.5.8 Theorem. (V. Gantmacher, 1940 [83]; M. Nakamura, 1951 [173]). 
Suppose that X and Yare Banach spaces, that T E B(X, Y), and that 
Qy is the natural map from Y into Y**. Then T is weakly compact if and 
only if T**(X**) ~ Qy(Y). 

PROOF. Let Qx be the natural map from X into X**. Suppose first that 
T**(X**) ~ Qy(Y). By Proposition 2.6.24, the map Ql::;l is relative-weak*
to-weak continuous from Q(Y) onto Y, and T*' is weak*-to-weak* contin
uous, so QyIT** is weak*-to-weak continuous. It follows from the weak* 
compactness of Bx·· that Qy1T*'CBx **) is weakly compact and there
fore that its subset QylT**Qx(Bx) is relatively weakly compact. Since 
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Q:y.1T**Qx = T by Proposition 3.1.13, the set T(Bx) is relatively weakly 
compact, so T is a weakly compact operator. 

Suppose conversely that T is weakly compact. Then QyT(Bx) W is a 
weakly compact subset of y** and therefore is weakly* compact. This im
plies that 

-=----=-o-:=:~ w' W 

QyT(Bx) = QyT(Bx) = QyT(Bx), 

where the last equality follows from the convexity of QyT(Bx) by Theo
rem 2.5.16. It is therefore a consequence of the weak*-to-weak* continuity 
of T**, the Banach-Alaoglu theorem, Goldstine's theorem, and the fact 
that Q;}T**Qx = T, that 

T**(Bx") = T**Qx(Bx) w' = QyT(Bx) w' = QyT(Bx) ~ Qy(Y), 

from which it follows that T**(X**) ~ Qy(Y). • 
3.5.9 Proposition. Suppose that X and Yare Banach spaces, that R 
and S are weakly compact linear operators from X into Y, that a E IF, 
and that (Tn) is a sequence of weakly compact linear operators from X 
into Y that converges to some T in B(X, Y). Then R + S, aR, and Tare 
all weakly compact. 

PROOF. The claims about R+S and aR follow easily from the equivalence 
of (a) and (c) in Proposition 3.5.5. For the weak compactness of T, just 
notice that if Qy is the natural map from Y into Y**, then T~*(X**) lies in 
the closed set Qy(Y) for each n, so T**(X**) ~ Qy(Y) sinceT~* ~ T** .• 

With X and Y as in the preceding proposition, the set KW(X, Y) is non
empty since it contains the zero operator from X into Y, so the proposition 
can be restated as follows. 

3.5.10 Corollary. If X and Y are Banach spaces, then KW(X, Y) is a 
closed subspace of B(X, Y). 

The weak-to-weak continuity of a bounded linear operator from a Banach 
space into a Banach space assures that the operator maps relatively weakly 
compact sets to relatively weakly compact sets, and by definition such 
an operator maps bounded sets to bounded sets. The next result is an 
immediate consequence of this. 

3.5.11 Proposition. Suppose that X, Y, and Z are Banach spaces, that 
S E B(X, Y), and that T E B(Y, Z). If either S or T is weakly compact, 
then T S is weakly compact. 

3.5.12 Corollary. If X is a Banach space, then KW(X) is a closed ideal 
in B(X). 
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As was done for compact operators in the preceding section, the weakly 
compact linear operators from a Banach space X into a Banach space Y will 
now be characterized among all members of B(X, Y) in two different ways 
based on the behavior of their adjoints. The first characterization is just 
Schauder's theorem with compactness replaced by weak compactness, while 
the second, an analog of Theorem 3.4.16, involves a continuity property for 
the adjoint. 

3.5.13 Gantmacher's Theorem. (V. Gantmacher, 1940 [83]). A bounded 
linear operator from a Banach space into a Banach space is weakly compact 
if and only if its adjoint is weakly compact. 

PROOF. Let T be a bounded linear operator from a Banach space X into a 
Banach space Y. As usual, let the natural map from a Banach space Z into 
its second dual be denoted by Qz. Suppose first that T is weakly compact. 
Let y*** be an element of Y***. To show that T* is weakly compact, it is 
enough to show that T***y*** E Qx' (X*), for which it is enough to show 
that T***y*** is weakly* continuous on X**. Suppose that (x~*) is a net 

in X** that is weakly* convergent to some x** in X**. Then T**x~* ~. 
T**x**. Since T**(X**) ~ Qy(Y) and the relative weak and relative weak* 
topologies of Qy(Y) as a subspace of Y** are the same, it follows that 
T**x~* ~ T**x**, and so 

( ** T*** ***) = (T** ** y***) (T** ** ***) = ( ** T*** ***) xCI! ,y Xc> , -+ x, y x, y , 

as required. 
Suppose conversely that T* is weakly compact. Then T** is weakly com

pact by what has already been proved. Since T = Ql}T**Qx, it follows 
that T is weakly compact. • 

As with Theorem 3.5.8, Gantmacher established the following result for 
separable spaces while Nakamura obtained the general result. 

3.5.14 Theorem. (V. Gantmacher, 1940 [83]; M. Nakamura, 1951 [173]). 
A bounded linear operator from a Banach space into a Banach space is 
weakly compact if and only if its adjoint is weak*-to-weak continuous. 

PROOF. Let T be a bounded linear operator from a Banach space X into 
a Banach space Y. Suppose first that T is weakly compact, that (y~) is 
a net in Y* that is weakly* convergent to some y*, and that x** E X**. 
To show that T* is weak*-to-weak continuous, it is enough to show that 
x**T*y~ -+ x**T*y*, that is, that (y~, T**x**) -+ (y*, T**x**). This follows 
from the fact that T**x** is in the natural image of Y in Y** and therefore 
is weakly* continuous. 

Suppose conversely that T* is weak* -to-weak continuous. Since each 
bounded subset of y* is relatively weakly* compact, it follows that T* 
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maps bounded subsets of Y' to relatively weakly compact subsets of X' 
and is therefore weakly compact, so T is weakly compact. • 

As properties for linear operators, both weak compactness and complete 
continuity lie between compactness and boundedness, which suggests that 
the two properties might be related. In general, neither implies the other; 
see Exercise 3.58. However, it does happen that some common Banach 
spaces have the property that every weakly compact linear operator whose 
domain is that space is completely continuous. This property has a name 
given to it by Grothendieck in honor of N. Dunford and B. J. Pettis, who 
proved in a 1940 paper [66] that L1 (8,~, >.) has the property when>. is 
Lebesgue measure on the u-algebra ~ of Lebesgue-measurable subsets of a 
finite or infinite interval 8 in ]Rn, where n is a positive integer. 

3.5.15 Definition. (A. Grothendieck, 1953 [95]). A Banach space X has 
the Dunford-Pettis property if, for every Banach space Y, each weakly com
pact linear operator from X into Y is completely continuous. 

It is obvious that every finite-dimensional Banach space has the Dun
ford-Pettis property. So do some infinite-dimensional ones. 

3.5.16 Example. It can be shown that for every Banach space Y, each 
member of B(£l, Y) is completely continuous; see Exercise 3.51. Therefore 
£1 trivially has the Dunford-Pettis property. Another (perhaps not entirely 
independent) proof that £1 has this property can be found in Exercise 3.59. 

However, not every infinite-dimensional Banach space has the Dunford
Pettis property. If X is an infinite-dimensional reflexive Banach space and 
I is the identity operator on X, then I is weakly compact but certainly 
not completely continuous since it does not map the closed unit ball of the 
space to a compact set. The next result follows from this. 

3.5.17 Proposition. No infinite-dimensional reflexive Banach space has 
the Dunford-Pettis property. 

The definition of the Dunford-Pettis property given above has the draw
back that it involves every Banach space Y rather than just the space X 
in question. The following theorem gives characterizations of the Dunford
Pettis property that lack this defect. 

3.5.18 Theorem. Suppose that X is a Banach space. Then the following 
are equivalent. 

(a) The space X has the Dunford-Pettis property. 

(b) Every weakly compact linear operator from X into Co is completely 
continuous. 
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(c) For every sequence (xn) in X converging weakly to some x and 
every sequence (x~) in X· converging weakly to some x*, the se
quence (x~xn) converges to x·x. 

(d) For every sequence (xn) in X converging weakly to 0 and every se
quence (x~) in X* converging weakly to 0, the sequence (x~xn) con
verges to O. 

PROOF. Suppose that (d) does not hold. Let (xn) and (x~) be sequences 
converging weakly to 0 in X and X* respectively such that Ix~xnl ~ t: for 
some positive t: and each n. Define T: X --+ Co by the formula Tx = (x~x). 
Then T E B(X, co), but T is not completely continuous since IITxmll ~ t: 

for each m. The immediate goal is to show that T is weakly compact. 
To this end, let (wm ) be a bounded sequence in X. It is enough to show 
that (Twm) has a weakly convergent subsequence. Let Qx be the nat
ural map from X into X** and let x** be a weak* accumulation point 
of (Q x wm ). It follows that there is a subsequence (wmj ) of (wTn ) such 
h I * ** * I ·-1 h k 1 . N (** *) ·t . t at XkWTnj - x xk <] w en = , ... ,]. ow x xn E Co, so 1 IS 

enough to show that (Twmj ) ~ (x"x~), that is, that w-limj(x~wTnJ = 
(x**x~). Fix a positive integer no. It is now enough to show that X~oWTnj --+ 

x** x~o' but this is guaranteed by the construction of the sequence (wTnJ. 
Therefore the operator T is weakly compact though not completely contin
uous, so (b) does not hold. This shows that (b) => (d). 

Suppose next that (a) does not hold, that is, that there is a Banach 
space Y and a member T of KW(X, Y) that is not completely continuous. 
Let (zn) be a sequence in X such that Zn ~ 0 but IITznl1 2: {j for some 
positive {j and every n. For each n, let y~ be a member of By. such that 
y~Tzn = IITznll. The adjoint T* of T is weakly compact by Gantmacher's 
theorem, so the sequence (T·y~) has a weakly convergent subsequence; it 
may be assumed that T*y~ ~ z* for some z* in X*. Then (T*y~)(zn) = 

y~Tzn 2: {j for each n, so (T*y~)(zn)) does not converge to z·O (that is, 
to 0) even though T*y~ ~ z* and Zn ~ o. Therefore (c) fails, so (c) => (a). 

Now suppose that (d) holds. Let (vn ) be a sequence in X converging 
weakly to some v and let (v~) be a sequence in X* converging weakly to 
some v*. Then 

* • (* *)( ) + * * 2 * vn Vn - V V = vn - V Vn - V Vn V + V Vn - V V 

--+ 0 + v·v + v·v - 2v*v = 0, 

which shows that (d) => (c). It is obvious that (a) => (b), so the theorem 
is proved. • 

The spaces Ll (n, E, p,) such that (n, E, p,) is a finite measure space have 
the Dunford-Pettis property, a fact that is essentially due to Dunford and 
Pettis [66), and the spaces C(K) such that K is a compact Hausdorff space 
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do also, as was shown by Grothendieck in a 1953 paper [95] and indepen
dently by Bartle, Dunford, and Schwartz in a 1955 paper [20]. These facts 
are proved in Diestel and Uhl's book [59] as Corollaries III. 2. 14 and VI.2.6, 
and an interesting discussion of the Dunford-Pettis property and its history 
appears on pp. 176-178 of the same work. See also Diestel's book [58], in 
which the fact that C(K) and LdO, 1] have the Dunford-Pettis property is 
developed in exercises. 

It was mentioned earlier that the spectral theory of weakly compact op
erators would not be developed in this section. The reason for this omission 
is illustrated by the following example. 

3.5.19 Example. Let X be complex £2 and let []) be the closed unit disc 
in C. Let 11 and Tr be, respectively, the left-shift and right-shift oper
ators on X, that is, the bounded linear operators from X into X de
fined by the formulas Tl (al,a2, ... ) = (a2,a3, ... ) and Tr (al,a2, ... ) = 
(0, aI, a2' ... ). It can be shown that 0"(11) = []) and O"p(Tl) = [])O, and that 
O"(Tr) = []) and O"p(Tr) = 0; see Exercise 3.38. Also, the identity operator I 
on X has 1 as an eigenvalue, and the associated eigenspace, which is all 
of X, is certainly not finite-dimensional. By Proposition 3.5.4, the opera
tors T l , Tn and I are all weakly compact. Together, they show that none 
of the conclusions of Theorem 3.4.23, or even reasonable generalizations of 
those conclusions such as the possibility that either the point spectrum or 
its complement in the spectrum must be countable, need hold for weakly 
compact operators from an infinite-dimensional Banach space into itself 
(except for the statement about the compactness of the spectrum, and 
that is true for the spectrum of every element of every Banach algebra 
with identity). 

It does sometimes happen that an infinite-dimensional Banach space X 
has the property that the square of every member of KW(X) is compact, 
so the conclusions of Theorem 3.4.23 then hold for members T of KW(X) 
provided that T is replaced by T2 in those conclusions. See Corollaries 
VI.7.5 and VI.8.13 in [67] for particular examples of this phenomenon. 

Exercises 

3.52 Give an example of a bounded linear operator T from some reflexive Ba
nach space X onto a dense subspace of some non reflexive Banach space Y. 
Conclude that T is weakly compact but T(X) is not reflexive. 

3.53 Suppose that X and Yare Banach spaces, that T E L(X, Y), that M is 
a closed subspace of X such that M <;;; ker(T), that 1f is the quotient map 
from X onto X/M, and that S is the unique map, automatically linear, 
from X/M into Y such that T = So 1fj see the commutative diagram in 
Theorem 1.7.13. 
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(a) Prove that T is compact if and only if S is compact. 

(b) Prove that T is weakly compact if and only if S is weakly compact. 

3.54 (a) Prove that a linear operator from a Banach space into £1 is weakly 
compact if and only if it is compact. 

(b) Prove that a linear operator from Co into a Banach space is weakly 
compact if and only if it is compact. 

(c) Prove that neither Co nor £1 has any complemented infinite-dimen
sional reflexive subspaces. 

3.55 Prove that if a weakly compact linear operator from one Banach space 
onto another has a reflexive kernel, then the domain of the operator is 
reflexive. 

3.56 Prove the following converse of Proposition 3.5.7: If Y is a weakly com
pactly generated Banach space, then there is some Banach space X and 
a weakly compact linear operator T from X into Y such that T(X) is 
dense in Y. 

3.57 Obtain from Gantmacher's theorem another proof that a Banach space is 
reflexive if and only if its dual space is reflexive. 

3.58 (a) Give an example of a linear operator from a Banach space into a 
Banach space such that the operator is weakly compact but not 
completely continuous. 

(b) Give an example of a linear operator from a Banach space into a 
Banach space such that the operator is completely continuous but 
not weakly compact. (Exercise 3.51 might help for this part.) 

3.59 Prove that every Banach space having Schur's property also has the 
Dunford-Pettis property. 

3.60 (a) Suppose that X is a Banach space. Prove that if X· has the Dunford
Pettis property, then so does X. 

(b) Conclude from (a) and Exercise 3.59 that Co has the Dunford-Pettis 
property. 

3.61 Why is there no section on weakly* compact operators in this book? 



4 
Schauder Bases 

Much of the theory of finite-dimensional normed spaces that has been pre
sented in this book is ultimately based on Theorem 1.4.12, which says 
that every linear operator from a finite-dimensional normed space X into 
any normed space Y is bounded. A careful examination of the proof of 
that theorem shows that it essentially amounts to demonstrating that if 
Xl, ... , Xn is a vector space basis for X, then each of the linear "coordi
nate functionals" O'IXI + ... + O'nXn 1-4 O'm, m = 1, ... , n, is bounded; this 
can be seen from the nature of the norm /. / used in the proof and the 
argument near the end of the proof that there is no sequence (Zj) in Bx 
such that /1 Zj / 2: j for each j. It should not be too surprising that many 
topological results about finite-dimensional normed spaces are ultimately 
based on the continuity of the members of the family ~# of coordinate 
functionals for some basis ~ for the space, since it is an easy consequence 
of Proposition 2.4.8, Theorem 2.4.11, and the uniqueness of Hausdorff vec
tor topologies for finite-dimensional vector spaces that the norm topology 
of the space is the ~# topology of the space. 

Though it is possible for an incomplete infinite-dimensional normed space 
to have a vector space basis ~ such that all coordinate functionals for ~ are 
bounded, this can never happen for an infinite-dimensional Banach space; 
see Exercises 4.1 and 4.2. Thus, the topology of an infinite-dimensional 
Banach space is not nearly so closely tied to coordinate functionals with 
respect to a vector space basis as is the topology of a finite-dimensional 
Banach space. It is primarily for this reason that vector space bases have 
not been used very much in this book's exploration of the general theory 
of Banach spaces. 
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Many of the classical infinite-dimensional Banach spaces do have se
quences of elements with properties enough like those of a vector space 
basis to allow some arguments involving bases in finite-dimensional vector 
spaces to be carried over almost unchanged. For example, consider the se
quence (en) of standard unit vectors of Co. The set consisting of the terms 
of this sequence is not a vector space basis for Co, nor is any other countable 
subset of Co by Theorem 1.5.8. However, this sequence does have the prop
erty that every element (an) of Co can be written in exactly one way as a 
"linear combination" of these unit vectors, namely, as 2::n anen , provided 
that infinite sums are allowed. Notice also that for each positive integer m, 
the "coordinate functional" (an) I-> am is a bounded linear functional. 
Compare the proof of the separability of Co given in Example 1.12.6 to the 
proof of the separability of all finite-dimensional normed spaces in Exam
ple 1.12.8 to see one instance in which the standard unit vectors of Co are 
used to extend a finite-dimensional argument to that space. 

The purpose of this chapter is to study sequences in Banach spaces such 
that every member of the space can be written in exactly one way as an 
"infinite linear combination" of the terms of the sequence, and to see what 
can be learned about the structure of Banach spaces having such Schauder 
bases. 

4.1 First Properties of Schauder Bases 

Notice that the following definition pertains to ordered sequences (In) 
rather than unordered sets of the form {In: n EN}. 

4.1.1 Definition. (J. Schauder, 1927 [206]). A sequence (In) in a Banach 
space X is a Schauder basis for X if for each I in X there is a unique 
sequence (an) of scalars such that I = 2::n anIn· 

Schauder included in his definition the requirement that each of the co
ordinate functionals 2::n anIn I-> am such that mEN be continuous. As 
will be shown in Corollary 4.1.16, that actually follows from the rest of the 
definition. 

The following generalization of the notion of a Schauder basis also has 
its uses. 

4.1.2 Definition. A sequence (In) in a Banach space is a Schauder basic 
sequence if it is a Schauder basis for [{ Xn : n EN}]. 

Henceforth, whenever reference is made to a basis for a Banach space or 
a basic sequence in a Banach space, the reference is to a Schauder basis 
or a Schauder basic sequence unless stated otherwise. To avoid confusion, 
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vector space bases are often called Hamel bases after the German analyst 
and applied mathematician Georg Karl Wilhelm Hamel (1877~1954). 

4.1.3 Example. If X is Co or lp such that 1 ::; p < 00, then it is easy to 
check that the sequence (en) of standard unit vectors of X is a basis for X 
and that (O:n) = Ln O:nen whenever (an) EX. However, the sequence (en) 
is not a basis for loo. For example, there is no sequence (O:n) of scalars such 
that (1,1,1, ... ) = Ln O:nen. See Exercise 4.3. 

Whenever the sequence (en) lies in the unit sphere of a Banach space of 
sequences of scalars and is a basis for the space, the sequence will be called 
the standard unit vector basis for the space. 

The basis of the preceding example has the special property that each 
of its terms has norm 1. As will now be shown, every Banach space having 
any basis whatever has a basis with this property that can be obtained 
from the original basis in the obvious way. 

4.1.4 Definition. A basic sequence (xn) in a Banach space is bounded if 
0< infnllxnll ::; sUPnllxnl1 < +00, and is normalized if each Xn has norm 1. 

The use of the terms "bounded basic sequence" and "bounded basis" 
in the sense of the preceding definition is common but unfortunate, since 
the usual meaning of the word "bounded" when used to describe a se
quence (xn) in a Banach space does not imply that infnllxnll > O. To avoid 
confusion, the word will not be applied to basic sequences in this book. 

4.1.5 Proposition. Suppose that (xn) is a basis for a Banach space X 
and that (An) is a sequence of nonzero scalars. Then (Anxn) is also a basis 
for X. 

PROOF. It is easy to check that for each member x of X there is a unique 
sequence of scalars (an) such that x = Ln (}:nAnXn, as required. • 

The uniqueness of basis expansions implies that the terms of a basis 
are nonzero, so the following result is an immediate consequence of the 
preceding proposition. 

4.1.6 Corollary. If (xn) is a basis for a Banach space, then (1Ixnll~lXn) 
is a normalized basis for the space. 

Just as each of the classical separable Banach sequence spaces of Exam
ple 4.1.3 has the sequence of standard unit vectors as a basis, every Banach 
space with a basis can be viewed in a natural way as a sequence space for 
which the sequence (en) of standard coordinate vectors is a basis (though 
it would be misleading to call this basis the standard unit vector basis for 
the space, since the terms of the sequence might not have norm 1). The 
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following proposition shows how this is done, and is obvious enough that 
it is really just an observation. 

4.1. 7 Proposition. Suppose that X is a Banach space with a basis (xn). 
Let Y be the collection of all sequences (Cl:n) of scalars such that 2::n Cl:1'1X1'1 
converges, treated as a normed space with the usual vector space opera
tions for a space of sequences of scalars and with the norm 11·lly given 
by the formula II(an)lly = 112::1'1 Cl:1'1xnll. Then Y is a Banach space having 
the sequence (en) of standard coordinate vectors as a basis, and the map 
2::1'1 anXn f-+ (an) is an isometric isomorphism from X onto Y. 

The isometric isomorphism of the preceding proposition maps the given 
basis (x1'1) for X onto a basis (en) for Y. This turns out to be a general 
property of Banach space isomorphisms. 

4.1.8 Proposition. Suppose that X and Yare Banach spaces, that T is 
an isomorphism from X into Y, and that (xn) is a basic sequence in X. 
Then (Txn) is a basic sequence in Y. In particular, if (xn) is a basis for X 
and T maps X onto Y, then (Txn) is a basis for Y. 

PROOF. Since T maps [{X1'1 : n E Ii}] onto [{Txn : n E Ii}], it may be 
assumed that (xn) is a basis for X and that T(X) = Y. It is then enough 
to show that (Txn) is a basis for Y, which follows easily from the fact that 
T(2::1'1 Cl:1'1xn) = 2::n anTx1'1 whenever 2::n anXn EX. • 

The spaces with bases in Example 4.1.3 are infinite-dimensional and 
separable. In fact, every Banach space with a basis must be separable by 
Proposition 1.12.1 (a) since the space is the closed linear hull of the collec
tion of basis elements. Also, every basic sequence is linearly independent 
since no element of the underlying Banach space can be written in two 
different ways as a finite linear combination of the terms of the sequence. 
Therefore, Banach spaces having bases must be infinite-dimensional. These 
observations are summarized formally in the following two results. 

4.1.9 Proposition. Every basic sequence in a Banach space is linearly 
independent. 

4.1.10 Proposition. Every Banach space having a basis is infinite-dimen
sional and separable. 

It can be shown that every separable Banach space is isometrically iso
morphic to a subspace of e[O, 1]; see Exercise 2.74. It is therefore of some 
interest that e[O, 1] has a basis. 

4.1.11 Example: The classical Schauder basis for e[O, 1]. This example 
is from Schauder's 1927 paper [206] that introduced the notion of Schauder 
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FIGURE 4.1. The first few terms of the classical Schauder basis for e[a, 1]. 

bases. Define the sequence (sn):;'=o of members of e[O, 1] as follows. Let 
so(t) = 1 and Sl(t) = t. When n 2: 2, define Sn by letting m be the positive 
integer such that 2m - l < n :S 2m , then let 

if 2n-2 - 1 < t < 2n-l - 1· 
2Tn - 2m , 

otherwise. 

See Figure 4.1 for the graphs of So through S8, which should demystify 
these formulas a bit. 

Suppose that 1 E e[o, 1]. Define a sequence (Pn):;'=o in e[o, 1] in the 
following way. Let 

Po = 1(0)so, 

Pl = Po + (J(1) - Po(l))sl' 

P2 = Pl + (J(1/2) - Pl(1/2))s2, 

P3 = P2 + (J(1/4) - P2(1/4))s3, 

P4 = P3 + (J(3/4) - P3(3/4))S4' 

P5 = P4 + (J(1/8) - P4(1/8))s5, 

P6 = P5 + (J(3/8) - P5(3/8))S6, 

P7 = P6 + (J(5/8) - P6(5/8))S7' 

P8 = P7 + (J(7/8) - P7(7/8))S8, 

and so forth. Then Po is the constant function that agrees with 1 at 0, while 
PI agrees with 1 at 0 and 1 and interpolates linearly in between, and P2 
agrees with 1 at 0, 1, and 1/2 and interpolates linearly in between, and so 
forth. For each nonnegative integer n, let an be the coefficient of Sn in the 
formula for Pn. Then Pm = 2::=0 ansn for each m. It follows easily from 
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the uniform continuity of f that limmllpm - fll= = ° and therefore that 

f = L~=o ansn· 
Now let (!3n)~=o be any sequence of scalars such that f = L~=o !3nsn. 

Then L~=o(an - !3n)sn = 0, which implies that L~=o(an - !3n)sn(t) = ° 
when t = 0,1,1/2,1/4,3/4,1/8,3/8,5/8,7/8, ... , from which it quickly fol
lows that an = !3n for each n. Therefore there is a unique sequence (rn)~=o 
of scalars such that f = L~=o InSn, and so the sequence (sn)~=o is a basis 
for e[O, 1]. Notice that this basis is normalized. 

The next order of business is to prove the continuity of two types of 
natural linear maps on Banach spaces having bases. 

4.1.12 Definition. Suppose that a Banach space X has a basis (xn). For 
each positive integer m, the mth coordinate functional x;" for (xn) is the 
map Ln anXn f---+ am from X into F, and the mth natural projection Pm 
for (xn) is the map Ln anXn f---+ L~=l anXn from X into X. 

\Vith all notation as in the preceding definition, it is clear that each x;" 
is a linear functional on X and that each Pm is a projection from X onto 
({ Xl, ... ,xm})' To show that these maps are bounded, it is convenient 
to work not with the original norm of the underlying Banach space, but 
instead with the following one. 

4.1.13 Definition. Suppose that (xn) is a basis for a Banach space X. 
Then the (xn) norm of X is defined by the formula IILn anxnll(xn) = 

sUPmIIL~=1 anxnll· 

It is important to notice that the norm 11·11 (Xn) in the preceding definition 
depends not only on (xn ), but also on the space's original norm. 

4.1.14 Theorem. Suppose that (xn) is a b&<;is for a Banach space X. 
Then the (xn) norm of X is a Banach norm equivalent to the original 
norm of X, and Ilxll(x n ) ::::: Ilxll for each.7: in X. 

PROOF. Throughout this proof, symbols denoting convergent series repre
sent series convergent with respect to the original norm of X, not the (xn) 
norm, even when such series appear inside (xn) norm function symbols. 
(Of course, one consequence of this theorem is that there is no difference 
between these two types of series convergence.) 

Suppose that a member of X has expansion Ln anXn in terms of the 
basis (xn). Then 

which is the inequality claimed in the statement of the theorem. 
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It is easy to check that 11·II(xn ) really is a norm. To see that it is com
plete, let (Ln on,JXn)~l be a sequence in X that is Cauchy with respect 
to II-II(xn )' If j1,h, kEN and k 2: 2, then 

10k,J, - ok,j,lllxkll = 11;(on,]' - on,j,)xn - %(on,J, - on,j,)xnll 

~ 2112)on,J, - on,h)xnll 
n (xn) 

and 101,j, -0l,j211Ix111 ~ IILn(on,J, -on,j,)xnll(xn), from which it follows 
that, for each n, the sequence (On,J)~l is Cauchy and therefore convergent. 
Let (on) be the resulting sequence of limits. Fix a positive E, and let j, be 
a positive integer such that if j, j' 2: j" then 

for each m. Letting j = j, and letting j' tend to infinity shows that 

Il f °nXn - f on,j,xnll ~ ~ 
n=l n=l 

(4.1) 

for each m. It follows that if m2 2: m1 > 1, then 

Now let mE be such that if m2 2: m1 > mEl then IIL:~m, on,],xnll < E/3. 
It follows that 

II ~ Onxnll ~ II ~ OnXn - ~ on,j,xnll + II ~ On,j,Xnll < E 
n-ml n-ml n-ml n-ml 

when m2 2: m1 > mE, so Ln OnXn converges. Now (4.1) still holds if j, is 
replaced by any j such that j 2: j" so making that substitution and taking 
the supremum over all m shows that limj IILn 0nXn - Ln on,jxnll(xn ) = 0, 
which finishes the proof that 11·II(xn ) is a Banach norm. 

Finally, the inequality verified at the beginning of this proof implies that 
the identity operator from (X, 11·11 (x n )) onto (X, 11·11) is continuous, which 
by Corollary 1.6.8 assures that the two norms are equivalent. • 
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The continuity of coordinate functionals and natural projections follows 
easily from the preceding theorem. 

4.1.15 Theorem. Each natural projection associated with a basis for a 
Banach space is bounded. 

PROOF. Suppose that (xn) is a basis for a Banach space X, that mEN, 
and that Pm is the mth natural projection for (xn). If Ln D:nXn E X, then 

from which the continuity of Pm is immediate. • 
4.1.16 Corollary. (S. Banach, 1932 [13, p. 111]). Each coordinate func
tional associated with a basis for a Banach space is bounded. 

PROOF. Let (x~) and (Pn ) be, respectively, the sequence of coordinate 
functionals and the sequence of natural projections for a basis (xn) for a 
Banach space X, and let m be a positive integer. If m 2: 2, then x;" is the 
map Ln D:nXn f-+ (Pm - Pm-I)(Ln D:nXn) = D:mXm f-+ D:m , while xi is the 
map Ln D:nXn f-+ PI (Ln D:nXn) = D:IX1 f-+ D:1. In either case, the map x~ 
is clearly continuous. • 

4.1.17 Corollary. If { Pn : n EN} is the collection of natural projections 
associated with a basis for a Banach space, then sUPnIlPnII is finite. 

PROOF. This is an easy consequence of the uniform boundedness principle, 
but also follows directly from the inequality in the proof of Theorem 4.1.15 
by noting that, in the notation of that proof, if I is the identity map from 
(X, 11·II(xn )) onto (X, 11·11), then 

IIPm (~D:nxn) II ~ IIIllllPm (~D:nxn) II(xn) 

~ IIIIIII~D:nxnll(xn) 
~ 1IIIIIIrlllllL:D:nXnll 

n 

whenever mEN and Ln D:nXn EX. • 
4.1.18 Definition. Let {Pn : n EN} be the collection of natural pro
jections associated with a basis for a Banach space. Then sUPn II Pn II is the 
basis constant for that basis. The basis is monotone or orthogonal if its 
basis constant is 1. 
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The term monotone for a basis with basis constant 1 was introduced by 
M. M. Day in his 1958 book [53], while the older term orthogonal for such 
bases dates back to independent studies of them by V. Ya. Kozlov [142] 
and R. C. James [1l0] published in 1950 and 1951 respectively. 

Since each natural projection for a basis has norm at least 1, basis con
stants are always greater than or equal to 1, and a basis is monotone if and 
only if each of the natural projections for the basis has norm 1. 

Of course, a basic sequence is a basis for the closed linear hull of the set 
consisting of the terms of the sequence and therefore has a basis constant 
associated with it. As one would expect, a monotone basic sequence is one 
whose basis constant is 1. In general, terminology used for bases automat
ically extends to basic sequences in this fashion as long as the extension 
makes sense. 

It must be emphasized that basis constants depend on the norm of the 
space. In particular, it will follow from Exercise 4.11 and Corollary 4.1.22 
that every Banach space with a basis has a nonmonotone basis (xn) that 
becomes monotone when the space is renormed with 11·II(xn ). 

4.1.19 Example. If X is Co or £p such that 1 :::; p < 00, then the standard 
unit vector basis for X is monotone. 

Some useful characterizations of basis constants and monotone bases 
are given in the following two propositions. It is from the equivalence of 
(a) and (c) in the second of these propositions that monotone bases get 
their name. (The reader interested in knowing why such bases were once 
called orthogonal should be able to reconstruct the reason from this same 
equivalence and the comments preceding Lemma 4.1.28.) 

4.1.20 Proposition. Suppose that (xn) is a basis for a Banach space X 
and that K is the basis constant for (xn ). Then K is the smallest real 
number M such that 

whenever Ln anXn E X and mEN, which is in turn the smallest real 
number M such that 

whenever ml,m2 EN, ml :::; m2, and al,.·· ,am2 ElF. 

PROOF. It is a straightforward consequence of Definition 4.1.18 that 

K { IIL~:"l anxnll '" \ { } } 
= sup II Ln anxn II : Dn anxn E X 0, mEN , 

from which the proposition readily follows. • 
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The equivalence of (a) and (b) in the next result follows immediately 
from the preceding proposition. It is clear that (b) and (c) are equivalent, 
while the equivalence of (c) and (d) is an easy consequence of the definition 
of the (xn) norm. 

4.1.21 Proposition. Suppose that (xn) is a basis for a Banach space X. 
Then the following are equivalent. 

(a) The basis (xn) is monotone. 

(b) 11.E:=1 Q:nxnll ::; II.En Q:nxnll for each positive integer m and each 
member .En Q:nXn of X. 

(c) 11.E:=1 Q:nxnll ::; 11.E::11 Q:nxnll for each positive integer m and each 
collection of m + 1 scalars Q:l, ... , Q:m+l' 

(d) The original norm of X and the (xn) norm of X are the same. 

4.1.22 Corollary. If (xn) is a basis for a Banach space X, then (xn) is 
monotone with respect to the (xn) norm of X. 

The following definition is suggested by the equivalence of (a) and (c) in 
the preceding proposition. 

4.1.23 Definition. (M. G. Krein, M. A. Krasnoselskii, and D. P. Mil
man, 1948 [144]). A basis (xn) for a Banach space is strictly monotone 
if 11.E:=1 Q:nxnll < 1I.E::11 Q:nxnll for each positive integer m and each 
collection of m + 1 scalars Q:l, ... ,Q:m+l such that Q:m+! =I- O. 

For example, the standard unit vector basis for each space £p such that 
1 ::; p < 00 is strictly monotone, while the corresponding basis for Co is 
monotone but not strictly monotone. 

So far, the results of this section have been about conclusions that can 
be drawn when it is known that certain sequences are basic rather than 
properties sequences can have that assure that they are basic. The next 
theorem is probably the most important result of the latter kind. 

4.1.24 Theorem. (S. Banach, 1932 [13]). A sequence (xn) in a Banach 
space X is a basis for X if and only if 

(I) each Xn is nonzero; 

(2) there is a real number M such that 

whenever ml,m2 EN, ml::; m2, and Q:l, ... ,Q:m2 E IF; and 

(3) [{xn:nEN}]=X. 
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PROOF. By what has already been proved in this section, the sequence (xn) 
has properties (1), (2), and (3) if it is a basis for X. 

For the proof of the converse, assume that (xn) satisfies (1), (2), and (3). 
Suppose first that (J3n) and (,n) are sequences of scalars such that Ln J3nxn 
and Ln 'YnXn both converge and are equal. By (2), 

1J31 -,111I x 111 ::::: MII2::J3nxn - 2:: Inxnll = 0, 
n n 

so J31 = 11· It then follows by induction that J3n = In for each positive 
integer n. Thus, for no element x of X is there more than one sequence (an) 
of scalars such that x = Ln anxn-

For each positive integer m and each finitely nonzero sequence (an) of 
scalars, let Pm (Ln anXn) = L:'=l anxn · It follows from (2) that each Pm is 
a bounded linear operator from ({ Xn : n EN}) onto ({Xl, ... , xm}) having 
norm no more than M, and so, by Theorem 1.9.1, has a bounded linear 
extension Pm from X onto ({Xl, ... ,xm}) with norm no more than M. For 
each x in X, each Y in ({ Xn : n EN}), and each positive integer m, 

l[Pmx - xii::::: l[Pmx - Pmyll + l[PmY - yll + Ily - xii 

::::: (M + l)lIx - yll + l[PmY - YII· 

Letting m tend to infinity shows that limsuPml[Pmx-xll ::::: (M + l)llx -yll 
whenever X E X and y E ({ Xn : n EN}). Since Y is an arbitrary member 
of a dense subset of X, it follows that limsuPml[Pmx - xII = 0 whenever 
x E X, that is, that limm Pmx = X for each x in X. 

Fix an x in X and let a1 be such that PIX = a1x1. Now P1P2y = PlY 
whenever y is in the dense subset ({ Xn : n EN}) of X, from which it follows 
that P1P2 = Pl· Therefore, there is an a2 such that P2x = L~=l anxn. 
An easy induction argument produces a sequence (an) of scalars such that 
Pmx = L:'=l anXn for each m, so x = limm Pmx = Ln anxn· It follows 
from this and the uniqueness assertion proved earlier that (xn) is a basis 
furX. • 

4.1.25 Corollary. A sequence (xn) in a Banach space is basic if and only 
if each Xn is nonzero and there is a real number M such that 

4.1.26 Corollary. Every subsequence of a basic sequence in a Banach 
space is itself a basic sequence. 

4.1.27 Example: The Haar basis for Lp[O, 1], 1 ::::: p < =. Suppose that 
1 ::::: p < =. Define a sequence (hn ) in Lp[O,lJ as follows. Let hI be 1 
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'p '~ '~ h.(t) 

I I 
I t I t I t I I 

I I II I I I I II 
I I I I I I 

-I -I ~~ -1 ~ -I 

'~ 
h6(t) h7(t) h8(t) 

I I I I I I 

I t II II I I 

I I I I I I I 1 111 
I I I I I I I I 

-I ~ -1 -I -I 

FIGURE 4.2. The first few terms of the Haar basis for Lp[D, 1], 1 ::; p < 00. 

on [0, 1) and 0 at 1. When n 2:: 2, define hn by letting m be the positive 
integer such that 2m - 1 < n :s: 2m , then let 

if 2n-2 - 1 < t < 2n-1 - l' 
217l. - 2n1. , 

if 2n -1 _ 1 < t < 2n - l' 2171 - 2»1 , 

otherwise. 

See Figure 4.2 for the graphs of the first few of these functions, which will 
make it clear how they are being constructed. The vertical dashed lines 
in the graphs are included for clarity. Notice that each hn is a positive 
multiple of the derivative of the corresponding member Sn of the classical 
Schauder basis for e[O, 1]. 

Suppose that (an) is a sequence of scalars, that no and mo are positive 
integers such that no 2:: 2 and 2mo - 1 < no :s: 2ffio, and that hand /2 are the 
respective intervals [2no-2 - 1 2no-1 - 1) and [2no-1 - 1 ~ - 1) Let a 

2 rno '2"T1l.0 2 1710' 2171.0 . 

be the constant value of L:~,,=~1 anhn on h U /2' It is a straightforward 
calculus exercise to show that sP + tP - 2((s + t)/2)P 2:: 0 when s,t 2:: 0, 
from which it follows that 

jo,J~ anhnlP - jo,J~l anhnlP 

= r la+anoIP+ r la-anoIP- r lalP Jh J~. JhU~ 
la + ano IP + la - ano IP - 21alP 

2ffio 

2:: O. 

Therefore 11L:~,,=~1 anhnll p ::; 11L:~"=1 anhnllp , and so 11L::~1 anhnll p :s: 
11L::~1 anhnll p whenever ml,m2 EN and ml :s: m2· 

It is easy to check that ({ hn : n EN}) contains the indicator function of 
every dyadic interval [~-;;,l, 2';" ) such that m is a nonnegative integer and n is 
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an integer for which 1 ~ n ~ 2m. It follows that Lp[O, 1] = [{ hn : n EN}]; 
see the argument of Example 1.12.3. Since each hn is nonzero, an appli
cation of Theorem 4.1.24 shows that (hn) is a basis for Lp[O,I]. Notice 
that this basis is monotone by the equivalence of (a) and (c) in Proposi
tion 4.1.21. 

The sequence (hn) is called the Haar basis for Lp[O, 1]. The fact that it 
is a basis for Lp[O, 1] was first shown by Schauder in a 1928 paper [207]. 

The infinite-dimensional separable Banach spaces are, up to isometric 
isomorphism, just the infinite-dimensional closed subspaces of C[O, 1]; see 
the comments preceding Example 4.1.11. Since C[O,I] has a basis, it is 
natural to ask if every infinite-dimensional separable Banach space has a 
basis. This question appeared in Banach's book [13, p. 111] and is called 
Banach's basis problem. It remained open for forty years, but was finally 
settled in the negative in a 1973 paper by Per Enflo [76], who found a 
reflexive counterexample. The space is the same one used by Enflo as an 
example of a Banach space lacking the approximation property; see the 
discussion following Theorem 3.4.32. The connection between bases and the 
approximation property will be explored briefly at the end of this section. 

It is at least true that every infinite-dimensional Banach space has a ba
sic sequence in it. This result has a rather interesting history. It is often 
attributed to Banach since it first appeared in his book [13, p. 238], with
out proof, as an afterthought to some remarks on his basis problem. The 
way it is stated there almost makes it sound as if Banach is leaving the 
result as a straightforward exercise for the reader. 1 However, no published 
proof appeared for twenty-six years. Proving this result was an idea whose 
time had apparently come in 1958, for three proofs appeared that year, by 
Bernard Gelbaum [86], Czeslaw Bessaga and Aleksander Pelczynski [26], 
and Mahlon Day [53, p. 72] (though Day's proof contained an error that he 
corrected in a 1962 paper [55]). It is a testament to the faith put in Banach 
that the review of [26] in Mathematical Reviews referred to Bessaga and 
Pelczynski's accomplishment as a new proof of a previously known result. 

Though this leaves open the question of whether Banach really did have 
a proof, a 1962 paper by Pelczynski [179] provides a clue. In that paper, 
Pelczynski displayed a method of constructing basic sequences that he at
tributed to S. Mazur and that can be used to produce a fairly simple 
proof that infinite-dimensional Banach spaces always have basic sequences 
in them. It seems likely that Banach knew of Mazur's method and had a 
proof based on that method in mind when he made his claim. 

The essence of Mazur's method is contained in the next two lemmas. 
Suppose that n EN, that Y is a proper subspace of Euclidean n-space IFn , 

and that Xo is a member of IFn such that lIyll ~ Ily + Q:xoll whenever 

1 "Remarquons toutefois que tout espace du type (8) a une infinite de dimensions 
renferme un ensemble lineaire ferme a une infinite de dimensions qui admet une base." 
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Y E Y and a E IF. Then Xo is orthogonal to Y. The second lemma says 
that, analogously, for every finite-dimensional subspace Y of an infinite
dimensional Banach space X there is a norm-one vector in X that is "almost 
orthogonal" to Y. To prove that every infinite-dimensional Banach space 
has a basic sequence in it, the general plan of attack is to use this lemma to 
construct a particular sequence (xn) of norm-one members of the Banach 
space such that Xn is, in the sense of the lemma, "almost orthogonal" to 
(Xl, ... ,Xn-l) when n > 1, then show that this sequence is basic. 

The only immediate use made of the first lemma is to derive the second, 
and in fact the second lemma could be proved directly by a slightly modified 
version of the proof of the first. However, the first will have a further 
application later in this section, in the proof of Theorem 4.1.32. 

4.1.28 Lemma. Suppose that Y is a nontrivial tinite-dimensional subspace 
of a Banach space X and that 0 < E < 1. Let YI, ... , Yrn be elements of the 
compact set By such that every member of By is within E/4 of some Yj, and 
let xi, ... ,x;" be members of Bx' such that xjYj = 1 for each j. Suppose 
that (xn) is a sequence in X such that infnllxnll > 0 and limn xjxn = 0 
when j = 1, ... , m. Then for every positive integer N there is a positive 
integer nE,N greater than N such that Ilyll :s; (1 +f)lly+axn,.N II whenever 
Y E Y and a E IF. 

PROOF. Suppose that N E N. Let nE,N be a positive integer greater than N 
such that Ixjxn"NI < (Einfn llxn ll)/8 when j = 1, ... ,m. Since 1- E/2 > 
l/(l+E), it is enough to prove that Ily+axn"N II > 1-E/2 whenever Y E By 
and a ElF. 

Suppose that Y E By and a E IF. If lal ~ 2/llxn"N II, then lIy+axn"N II ~ 
Ilaxn"N II-IIYII ~ 1 > 1- E/2, so it may be assumed that lal < 2/llxn"N II· 
Since there is a jo such that Ily - Yjo II < E/4, it follows that 

as required. 

E 
lIy + aXn"N II > IIYjo + aXn,.N II - 4; 

~ IXJo(Yjo + aXn"N)I- ~ 

~ IxjoYjo I - lallxJoxn,.N I - ~ 
f E 

>1----
4 4 
E 

= 1- 2' 

• 
4.1.29 Lemma. Suppose that Y is a tinite-dimensional subspace of an 
intinite-dimensional Banach space X. Then for every positive E there is 
an x, in Bx such that IIYII :s; (1 + E)lly + ax. II whenever Y E Y and a E IF. 

PROOF. Fix a positive f. It may be assumed that E < 1 and that Y i- {O}. 
Let YI,'" , Yrn and xi, ... , x;,. be as in the statement of Lemma 4.1.28. 
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Since not every member of X* is a linear combination of xr, ... , x;", it 
follows from Lemma 1.9.11 that nj'=l kerx; =I {O}. Let x, be any mem

ber of nj'=l ker x; having norm 1 and let Xn = x, for each n. Then 
Lemma 4.1.28 assures that Ilyll ::; (1 + E)lly + O:'x,11 whenever y E Yand 
0:' E IF. • 

4.1.30 Theorem. Suppose that X is an infinite-dimensional Banach space 
and that M > 1. Then there is a normalized basic sequence in X having 
basis constant no more than M. 

PROOF. Let Xl be any member of Sx. By Lemma 4.1.29, there an X2 in Sx 
such that 1I000lxIli :s; MI/21lalxl + 0:'2x211 whenever 0:'1, a2 E IF. Further 
applications of the lemma then produce a sequence (xn) in Sx such that 

112:;:'=1 O:'nXn II ::; M1/2= II 2:;:':11 O:'nXn II whenever m is a positive integer 
and aI, ... ,am+! are scalars. It follows that 

whenever ml, m2 E N, ml < m2, and aI, ... ,am2 E IF. The sequence (xn) is 
therefore basic by Corollary 4.1.25 and has basis constant no more than M 
by Proposition 4.1.20. • 

Thus, every infinite-dimensional Banach space has in it basic sequences 
with basis constants as close to 1 as desired. This naturally leads to the 
question of whether every Banach space with a basis must have bases with 
basis constants arbitrarily close to 1; that is, whether the following quantity 
must be 1 for every Banach space possessing a basis. 

4.1.31 Definition. Suppose that X is a Banach space having a basis. For 
each basis (xn) of X, let K(xnl be the basis constant for (xn). Then the 
basis constant for X is inf{ K(xnJ : (xn) is a basis for X}. 

Of course, if every Banach space with a basis were to have a monotone 
basis, then every Banach space with a basis would have basis constant 1. 
However, it was shown in a series of papers by V. I. Curaril, culminating 
in the 1965 paper [97], that some Banach spaces with bases do not have 
monotone bases; see pages 241 248 and 623 of [216] for an exposition of 
Curarij's result. The larger problem was put to rest by Per Enflo in a 1973 
paper [75J in which he constructed a Banach space having a basis such that 
the basis constant of the space is greater than 1. 

Though Theorem 4.1.30 guarantees the presence of basic sequences inside 
every infinite-dimensional Banach space, it does not suggest any specific 
places in a Banach space to look for them. The following result does. It is es
sentially this result that Pelczynski obtained in [179] using Mazur's method; 
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see the comments preceding Lemma 4.1.28. In his paper, Pelczynski points 
out that the result was first proved by Czeslaw Bessaga in his thesis, also 
using Mazur's method. 

Notice the close similarity between the proof of this theorem and that of 
Theorem 4.1.30. 

4.1.32 Theorem. Suppose that (Xn) is a sequence in a Banach space such 
that (xn) converges weakly to zero but does not converge to zero with 
respect to the norm topology. Then some subsequence of (xn) is a basic 
sequence. 

PROOF. Since some subsequence of (xn) is bounded away from 0, it may 
be assumed that infn Ilxn II > O. Let M be any real number greater than 1, 
and let nl = 1. By Lemma 4.1.28, there is a positive integer n2 greater 
than nl such that Ilalxn11l:::; Mlj211alxnl +a2xn211 whenever al,a2 ElF. 
An easy induction argument based on Lemma 4.1.28 then produces a sub
sequence (xn») of (xn) such that IIL;:l ajxnj II :::; M 1 j2m IIL7=il ajXn] II 
whenever mEN and a1,"" am+l ElF. It follows that 

whenever ml, m2 E N, ml < m2, and aI, ... ,am2 E IF. The sequence (XnJ 
is therefore basic by Corollary 4.1.25. • 

The final topic for this section is the brief exploration of the connection 
between bases and the approximation property promised earlier. The main 
result in this direction is the following one. 

4.1.33 Theorem. Every Banach space with a basis has the approximation 
property. 

PROOF. Suppose that X is a Banach space with a basis (x n ), that (Pn ) 

is the sequence of natural projections for (xn ), and that M is the basis 
constant for (xn). Let K be a nonempty compact subset of X and let I' 

be a positive number. By Theorem 3.4.32, it is enough to find a positive 
integer no such that IIPnox - xii < c whenever x E X. 

Let Yl, ... ,Ym be members of K such that every member of K is within 
distance c/(M + 2) of some Yj, and let no be a positive integer such that 
IlPnoYj-Yjll < c/(M+2) whenj = 1, ... ,m. Suppose that x is any member 
of K. Let jo be such that Ilx - Yjo II < c/(M + 2). Then 

which finishes the proof. • 
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Thus, Enflo's example of an infinite-dimensional separable Banach space 
lacking the approximation property is also an example of an infinite-dimen
sional separable Banach space lacking a basis. 

Actually, a bit more was proved in the preceding theorem than adver
tised. In the notation of the theorem, it was shown not only that the identity 
operator on X can be uniformly approximated on compact subsets of X by 
bounded finite-rank linear operators, but also that the family of approxi
mating operators can be selected to be a bounded subset of B(X), since 
sUPnllPnl1 is the finite basis constant for (xn ). That is, it was shown that 
every Banach space with a basis has the following property. 

4.1.34 Definition. Let X be a Banach space. Suppose that there is a 
positive constant t having the property that, for every compact subset K 
of X and every positive E, there is a finite-rank member TK,E of B(X) such 
that IITK,EII ::; t and IITK,EX - xii < E whenever x E K. Then X has the 
bounded approximation property. 

A Banach space that satisfies the conditions of the preceding definition 
for a specific t is said to have the t-approximation property, and is said to 
have the metric approximation property if it has the I-approximation prop
erty. See Exercise 4.21 for an important characterization of the bounded 
approximation property for separable Banach spaces. 

Though the bounded approximation property obviously implies the ap
proximation property, it was shown by Tadeusz Figiel and William B. 
Johnson in a 1973 paper [78] that there are infinite-dimensional separa
ble Banach spaces with the approximation property but not the bounded 
approximation property. It is therefore of some interest that every Banach 
space with a basis has not just the approximation property, but in fact the 
bounded approximation property. 

Incidentally, there are infinite-dimensional separable Banach spaces hav
ing the bounded approximation property but no basis. The first example of 
one appeared in a 1987 paper of Stanislaw Szarek [230]. Thus, for infinite
dimensional separable Banach spaces the property of having a basis implies 
the bounded approximation property, which in turn implies the approxi
mation property, but neither of the implications is reversible. 

For a further discussion of the relationship between the approximation 
property, the bounded approximation property, and the existence of bases, 
see the comments of Pelczynski and Bessaga in either [14] or [15]. 

Exercises 

4.1 Suppose that ~ is a vector space basis for an infinite-dimensional Banach 
space and that ~# is the collection of coordinate functionals for ~. The 
purpose of this exercise is to show that not all members of ~# can be 
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bounded, and that, in fact, only finitely many can be so. Let '13t be the 
collection of members of '13# that are bounded. 

(a) Show by example that '13t might be nonempty. 

(b) Show that sup{ 11/11 : I E '13t } -j. +00. 

(c) Show that '13t is finite. 

4.2 Give an example of an infinite-dimensional normed space with a vector 
space basis '13 such that every coordinate functional for '13 is bounded. 
(Compare Exercise 4.1.) 

4.3 Prove the claims made in Example 4.1.3. 

4.4 Prove that the sequence (1,1,1, ... ), el, e2, e3, ... is a basis for the Banach 
space c of Exercise 1.25. 

4.5 Prove that if Banach spaces X and Y have bases, then so does X EEl Y. 

4.6 Suppose that (Xn) is a basis for a Banach space X and that (nj) is a 
sequence of positive integers such that N \ {nj : j EN} is infinite. Let 
M = [{ Xnj : j EN}]. Prove that both M and X / M have bases. 

4.1 Suppose that X is a complex Banach space and Xr is the real Banach 
space obtained from X by restricting multiplication of vectors by scalars 
to R x X. Show that a sequence (Xn) in X is a basis for X if and only if 
the sequence (Xl,ixl,X2,ix2, ... ) is a basis for X r . 

4.8 Suppose that (xnl is a basis for a Banach space and that (An) is a sequence 
of nonzero scalars. 

(a) Must each coordinate functional for (AnXn) be the same as the cor
responding coordinate functional for (Xn)? 

(b) Must each natural projection for (AnXn) be the same as the corre
sponding natural projection for (Xn)? 

(c) Must the basis constant for (AnXn) be the same as the basis constant 
for (Xn)? 

4.9 Prove that the classical Schauder basis for e[G, 1] is monotone. Is it strictly 
monotone? 

4.10 Suppose that 1 S p < 00. Is the Haar basis for Lp[G, 1] strictly monotone 
for any or all such p? 

4.11 Prove that every Banach space with a basis has a nonmonotone basis. 

4.12 (a) Suppose that (xnl is a basis for a Banach space X. What is wrong 
with the following "proof" that there is only one norm for X equiv
alent to the original norm of X with respect to which (Xnl is mono
tone? "By the equivalence of (a) and (d) in Proposition 4.1.21, every 
norm for X equivalent to the original norm of X with respect to 
which (Xn) is monotone is the same tl.'l the (Xn) norm of X, so there 
is only one such norm." 

(b) Display a basis (Xn) for a Banach space X and two different norms 
for X equivalent to the original norm of X with respect to which 
(xn) is monotone. 
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4.13 The purpose of this exercise is to show that uniqueness of expansions is 
not enough to guarantee that a sequence in a Banach space is basic; that 
is, that it is possible for a sequence (Xn) in a Banach space not to be 
basic even though the sequences (an) and can) of scalars are the same 
whenever Ln anXn and Ln f3nxn both converge and are equal. Show this 
by considering the sequence (Xn)~=o in e[o, 1] defined by the formulas 
xo(t) = 1 and xn(t) = tn when n 2: 1. 

4.14 Suppose that (Xn) is a basis for a Banach space and that (x~) is the 
sequence of coordinate functionals for (Xn). Prove that there is a positive 
constant M such that 1 ::; Ilxn II II x;. II ::; M for each n. 

4.15 Suppose that (Xn) is a basis for a Banach space and that (x~) is the 
sequence of coordinate functionals for (Xn). 

(a) Show by example that sUPnllx~11 might not be finite. 

(b) Find necessary and sufficient conditions on (Xn) for sUPnllx;'11 to be 
finite. (Exercise 4.14 might help.) 

(c) Find necessary and sufficient conditions on (x~) for sUPnllXnll to be 
finite. 

4.16 Suppose that (Xn) is a basis for a Banach space. 

(a) Show by example that it might not be true that Ln anXn converges 
whenever Lnlanl < 00. 

(b) Find necessary and sufficient conditions on (Xn) for Ln anXn to be 
convergent whenever Lnlanl < 00. 

4.17 Suppose that (Xn) is a basic sequence in a Banach space. 

(a) Prove that 0 is the only possible weak limit point of {xn : n EN}. 

(b) Show by example that {Xn : n EN} might have 0 as a weak limit 
point, even if (Xn) is normalized. 

(c) Show by example that {Xn : n EN} might have no weak limit 
points whatever, even if (xn) is normalized. 

4.18 Suppose that Xl, ... ,Xm is a nonempty linearly independent finite list in 
an infinite-dimensional Banach space. Show that this list can be extended 
to a basic sequence (Xn). 

4.19 Theorem 4.1.32 is not very useful for finding basic sequences inside l\. 
Why not? 

4.20 Give a proof of Theorem 4.1.33 that uses nothing deeper about the ap
proximation property than its definition, and in particular avoids the use 
of Theorem 3.4.32. 

4.21 Prove that a separable Banach space X has the bounded approximation 
property if and only if there is a sequence (Tn) of finite-rank members 
of B(X) such that limn Tnx = X for each X in X. 

4.22 Prove that every Banach space with a monotone basis has the metric 
approximation property. 
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4.23 The major content of Theorem 4.1.24-namely, that conditions (1), (2), 
and (3) in the statement of that theorem together imply that the se
quence (Xn) is a basis-does appear in Banach's book [13] in an equiva
lent form, but it is not all that easy to spot. Banach's result is actually 
about biorthogonal sequences rather than bases, where a biorthogonal "se
quence" is actually a pair of sequences (xn), (x~) such that (Xn) lies in 
some Banach space, the sequence (x~) lies in the dual of that space, and 
X;"Xn is 1 if m = nand 0 otherwise. This is Banach's result, which appears 
as Theorem 4 of Chapter VII on page 108 of his book: 

Suppose that X is a Banach space; that (Xn) is a sequence in X and 
(x~) a sequence in X· that together form a biorthogonal sequence; 
that [{ Xn : n EN}] = X; and that, for each x in X, the partial 
sums ofthe formal series Ln(X~X)Xn are bounded. Then Ln(x~X)Xn 
converges for each x in X. 

Here is another way to look at this result. Suppose that X, (x n ), and (x~) 
satisfy the initial parts of the hypotheses of Banach's result up to and 
including the requirement that [{ Xn : n EN}] = X. For each positive 
integer m, let Pm be the member of B(X) given by the formula Plnx = 
L;;'=l (x~x )Xn. Banach's result says that if sUPIn IIPlnxl1 is finite for each x 
in X, then limm Pmx exists for each x in X. The purpose of this exercise 
is to demonstrate that Banach's result is essentially the same as the major 
content of Theorem 4.1.24 by showing that each can be readily derived 
from the other. 

(a) Suppose that X, (Xn), and (x~) satisfy the hypotheses of Banach's 
result. Use Theorem 4.1.24 to show that the sequence (Xn) is a basis 
for X having (x~) as its sequence of coordinate functionals, and that 
the conclusion of Banach's result follows. 

For the rest of this exercise, assume that Banach's result is known to hold 
but that neither Theorem 4.1.24 nor the consequences of it demonstrated 
in part (a) have been proved. 

(b) Show that under the hypotheses of Banach's result and using the 
notation in the explanation of Banach's result given above, it follows 
that lim ln Plnx = x whenever x E X, that is, that x = Ln(X~X)Xn 
for each x in X. 

(c) Suppose that (Xn) is a sequence in a Banach space X satisfying 
conditions (1), (2), and (3) of Theorem 4.1.24. Use Banach's result 
to prove that (xn) is a basis for X. You may duplicate the relevant 
portion of the proof of Theorem 4.1.24 up to and including the 
construction of the maps Pin, but you should then concentrate on 
obtaining the sequence (x;.) as in the hypotheses of Banach's result 
with the goal of applying his result as quickly thereafter as possible. 

4.2 Unconditional Bases 

The following two propositions will prove useful in what is to follow. Though 
these results were not needed until now, their proofs are entirely elementary 
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and could have been given in Section 1.3. The first of these propositions 
has a much shorter, though less elementary, proof; see Exercise 4.25. 

4.2.1 Proposition. If 2:n Xn is an unconditionally convergent series in a 
normed space, then 2:n X7r(n) = 2:n Xn for each permutation 1T of N. 

PROOF. Suppose that 2:n Xn is a series in a normed space and that 1T is 
a permutation of N such that 2:n Xn and 2:n X7r(n) both converge but to 
different limits. It will be shown that there is another permutation 1T' of N 
such that 2:n X7r/(n) does not converge, from which it follows that 2:n Xn 

is only conditionally convergent. 
Let ( = II2:n X1r(n) - 2:n xnll and let the positive integer PI be such that 

There is a positive integer qi such that 

{ 1T(n) : n E N, 1 ::; n ::; PI } c:;;: {n : n E N, 1 ::; n ::; qi } 

and 

There is then a positive integer P2 such that 

{ n : n E N, 1 ::; n ::; qi } c:;;: { 1T(n) : n E N, 1 ::; n ::; P2 } 

and 

and a further positive integer q2 such that 

{1T(n) : n E N, 1 ::; n ::; P2} c:;;: {n : n EN, 1 ::; n ::; q2 } 

and 

Continue the construction of the sequences (Pn) and (qn) in this fashion. 
Now let 1T' be the permutation of N obtained by listing N in the following 

order. First list 1T(1) through 1T(Pl), then follow this by the members of 
1, ... , ql not already listed. Follow this by the members of 1T(1), ... , 1T(P2) 
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not already listed, and in turn follow that by the members of 1, ... ,Q2 

not already listed, and so forth. Since the partial sums of Ln X7l"(n) swing 
back and forth between being within c/3 of Ln X7l'(n) and being within c/3 
of Ln X n , the series Ln X7l"(n) does not converge. • 

4.2.2 Definition. In any setting in which the notion of series makes sense, 
a subseries of a formal series '"'" Xn is a formal series '""'. X n · obtained L-n ~J J 

from a subsequence (Xnj) of (xn). 

4.2.3 Proposition. A formal series Ln Xn in a Banach space is uncondi
tionally convergent if and only if each subseries of Ln Xn converges. 

PROOF. Suppose first that there is a subsequence (xnJ of (xn) such that 
Lj xnJ does not converge. Then there must be a positive E and sequences 
(Pn) and (qn) of positive integers such that 

and IIL3~Pk Xnj II ~ E for each k. It may be assumed that infinitely many 
positive integers are omitted from Uk {nj : Pk S; j S; qk}. Let (Tn) be the 
sequence consisting of those omitted integers in ascending order, and let 7f 

be the permutation of N into the order 

where the admittedly ambiguous notation n pk , ... , n qk is being used here 
to represent the particular terms of (nj) that are indexed by Pk through qk 
rather than all integers j such that npk S; j S; n qk . It is clear that Ln X7f(n) 

does not converge, so Ln Xn is not unconditionally convergent. 
Suppose conversely that Ln x7l'(n) does not converge for some permuta

tion 7f of N. Then there must be a positive E and sequences (sn) and (tn ) 
of positive integers such that 

and II L~k=Sk X7l'(n) II ~ E for each k. It may be assumed that 

max{ 7f(n) : Sk S; n S; tk} < min{ 7f(n) : Sk+1 S; n S; tk+l } 

for each k. Let (nj) be formed by applying 7f to the terms of the se
quence Sl, ... , t 1, S2, ... , t2, . .. to get 7f( 81), ... , 7f( h), 7f( S2), ... , 7f( t2), ... 
and sorting the resulting sequence into ascending order. Then the sub
series Lj x nJ of Ln Xn does not converge. • 

4.2.4 Corollary. If a series in a Banach space converges unconditionally, 
then so does each of its subseries. 



4.2 Unconditional Bases 371 

An important consequence of Proposition 4.2.1 and Corollary 4.2.4 is 
that it is possible to define "unordered subseries" of unconditionally con
vergent series in Banach spaces in the following way. 

4.2.5 Definition. Suppose that Ln Xn is an unconditionally convergent 
series in a Banach space X and that A S;; N. If A = 0, then LnEA Xn is 
the zero element of X, otherwise LnEA Xn is the member of X obtained 
by listing the elements of A in any order nl, n2, ... and letting LnEA Xn = 
x n , + x n2 + .... 

One other important characterization of unconditional convergence in 
Banach spaces requires a bit of preliminary work. 

4.2.6 Lemma. If Y is a closed subspace of £00 that contains every se
quence of scalars whose terms all come from {O, 1}, then Y = £=. 

PROOF. Suppose that the member (t n ) of Sf~ has only nonnegative real 
terms. It is enough to show that (tn) E Y. For each positive integer n, 
let 0.Sn,lSn,2Sn,3'" be a binary expansion of tn. Then ((Sn,j));:l is a 

sequence in Y, and (tn) = Lj 2-j (sn,j) E Y. • 

The next lemma is proved in a bit more generality than is really needed 
here, but the more general version will have a further use in Section 4.3 to 
prove Proposition 4.3.9. 

4.2.7 Lemma. Suppose that Ln Xn is a formal series in a normed space X 
such that 2:n x*xn is absolutely convergent whenever x* E X*. Then 
there is a nonnegative real number M such that sUPrnlIL;:l D:nxnll ::; 
MII(D:n)lloo whenever (D:n) E £00' 

PROOF. Define T: X* -+ £1 by the formula T(x*) = (x*xn)' It is clear 
that T is linear, and it follows from the closed graph theorem that T is 
bounded. Fix a member (D: n ) of [=. If mEN and x' E B x " then 

Ix' (~D:nxn) I = I~ D:nX'Xnl ::; 11(D:n)ll= IITx*lll ::; 11(D:n)lI= IITII, 

so 112::'=1 D:nXnll ::; IITIIII(D:n)lIoo whenever mEN. Let M = IITII to finish 
the proof. • 

4.2.8 The Bounded Multiplier Test. A formal series 2:n Xn in a Ba
nach space is unconditionally convergent if and only if Ln D:nXn converges 
whenever (D:n ) E £00' 

PROOF. Let X be the Banach space in which the sequence (xn) lies. Sup
pose first that 2:n D:nXn converges whenever (D:n ) E [=. It follows immedi
ately that every subseries of 2:n Xn converges, so 2:n Xn is unconditionally 
convergent. 
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Suppose conversely that 2::n Xn is unconditionally convergent. Let Y be 
the subspace of loo consisting of all members (an) of loo such that 2::n anXn 
converges. The goal is to show that Y = loo. Since each subseries of 2::n Xn 
converges, every sequence of scalars whose terms all come from {O, I} is 
in Y, so by Lemma 4.2.6 it is enough to show that Y is closed. 

Suppose that ((an,j));:1 is a sequence in Y that converges to some (an) 
in loo. It is enough to show that (an) E Y, for which it is enough to show 
that the sequence of partial sums of 2::n anxn is Cauchy. To this end, sup
pose that E > O. For each x* in X*, the series 2::n x*xn is a series of scalars 
that is, by Proposition 4.2.3, unconditionally convergent and therefore ab
solutely convergent, so 2::n Xn satisfies the hypotheses of Lemma 4.2.7. 
Let M be as in the conclusion of that lemma. Let j( be a positive integer 
such that II (an,j,) - (an) Iltxl < E, then let N be a positive integer such that 
112::~=pan,j,xnll < E whenever q 2: p 2: N. It follows that if q 2: P 2: N, 
then 

< E + Mil (an,j,) - (an)lloo 
:::; (1 + M)f.. 

Thus, the sequence of partial sums of 2::n anxn is Cauchy. • 
4.2.9 Corollary. If a series 2::" Xn in a Banach space converges uncondi
tionally, then so does 2::n anxn whenever (an) E ltxl· 

Considering the title of this section and the emphasis already placed 
on unconditionally convergent series, the reader may have anticipated the 
following definition. 

4.2.10 Definition. A basis (xn) for a Banach space X is unconditional 
if, for every x in X, the expansion 2::n anxn for x in terms of the basis is 
unconditionally convergent. A basis for a Banach space is conditional if it 
is not unconditional. 

The term unconditional basis is due to R. C. James [109]. However, others 
studied such bases before James gave them their modern name in his 1950 
paper. In particular, S. Karlin [130] called such bases absolute in a study 
published two years earlier, and this term was still used by some authors 
at least as late as 1962; see, for example, [82]. 

4.2.11 Example. Suppose that X is Co or lp such that 1 :::; P < 00. Then 
the standard unit vector basis for X is clearly unconditional. 

The following elementary results about unconditional bases follow easily 
from the corresponding general results about bases in Section 4.1. 
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4.2.12 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X and that (An) is a sequence of nonzero scalars. Then 
(AnXn) is also an unconditional basis for X. 

4.2.13 Corollary. If (xn) is an unconditional basis for a Banach space, 
then (1Ixnll- 1xn) is a normalized unconditional basis for the same space. 

4.2.14 Proposition. Suppose that X and Yare Banach spaces, that T 
is an isomorphism from X into Y, and that (xn) is an unconditional basic 
sequence in X. Then (Txn) is an unconditional basic sequence in Y. In 
particular, if (xn) is an unconditional basis for X and T maps X onto Y, 
then (Txn) is an unconditional basis for Y. 

If (xn) is an unconditional basis for a Banach space, then in addition 
to the (xn) norm there are several other useful norms based on (xn) and 
the original norm of the space that are equivalent to the original norm. 
The following is the most useful one for the purposes of this book. See 
Exercise 4.29 for another. 

4.2.15 Definition. Suppose that (xn) is an unconditional basis for a Ba
nach space X. Then the bounded multiplier unconditional (xn) norm of X 
or bmu-(xn) norm of X is defined by the formula II.En anxnllbmu-(xn ) = 
sup{ II.En ,6na nx nll : ((3n) E Sf",}. 

4.2.16 Theorem. Suppose that (xn) is an unconditional basis for a Banach 
space X. Then the bounded multiplier unconditional (xn) norm of X is 
a Banach norm equivalent to the original norm of X, and Ilxllbmu-(xn ) 2: 
Ilxll(xn ) 2: IIxll for each x in X. 

PROOF. Throughout this proof, symbols denoting series convergence always 
indicate convergence with respect to the original norm of X, not the bmu
(xn) norm. (It is of course a consequence of this theorem that there is really 
no difference between these two forms of series convergence.) 

The first issue is whether Ilxllbmll-(xn ) is finite for each x in X. Sup
pose to the contrary that there is a member .En anXn of X such that 
II.En anxnllbmu-(xn ) = +00. Then for each positive integer n1 there is a 
positive integer n2 greater than n1 and scalars ,61, ... ,,6n2 each having 
absolute value no more than 1 such that 

which implies that 

II f ,6na nx nll2: Ilf(3nanxnll- f: Ilanxnll 2: l. 
n=n,+1 n=l n=l 
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Using this fact, it is easy to construct a sequence ("'tn) in £00 such that 
2.::n "'tnanXn does not converge since its sequence of partial sums is not 
Cauchy. This contradicts the unconditional convergence of 2.::n anxn. Thus, 
the function 11'llbmu~(xn) is finite-valued. 

It is now easy to check that 11·llbmu-(xn) really is a norm. The inequalities 
claimed in the statement of the theorem follow immediately from Theo
rem 4.l.14 and the definitions of IHbmu-(xn ) and IH(xn ), which in turn 
implies that the identity operator from (X, 11·llbmu-(xn ») onto (X, 11·11) is 
continuous. If 11·lIbmu-(xn) is a Banach norm, then it will be equivalent to 
the original norm of X by Corollary l.6.8, so all that remains to bc proved 
is the completeness of (X, 11·lIbmu-(xn »)' 

Let (2.::n an.jXn)~l be a sequence in X that is Cauchy with respect 
to 11·llbmu-(xn )' Then this sequence is also Cauchy with respect to 11·11 and 
so converges with respect to II· II to some 2.::n anXn having the property 
that an = limj an.j for each n. Suppose that f > O. Let j, be a positive 
integer such that if j,j' ~ j" then II2.::n an,j'Xn - 2.::n an,jxnllbmu-(xn ) < E. 

For each member (,Bn) of Sf=, each pair of integers j,j' such that j, j' ~ j" 
and each positive integer m, 

Letting j' tend to infinity shows that if (,Bn) E Si= and m is a positive 
integer, then 

whenever j ~ j,. Letting m tend to infinity shows that 

IIL,Bnanxn - L,Bnan,jxnll ::; E 

n n 

whenever (,Bn) E Sc= and j ~ JEJ from which it follows that 

IILanXn - Lan,jXnll ::; f 
n n bmu-(xn ) 

whenever j ~ j,. The norm 11·llbmu-(xn) is therefore a Banach norm. • 

It is possible to impose an algebra structure on a Banach space having an 
unconditional basis, and, if the Banach space is real, a lattice structure also. 
The following two order properties of bounded multiplier unconditional 
norms will be used in the arguments that show this. 
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4.2.17 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X. Then 

whenever Ln anXn E X and (13n) E Ccxo · 

PROOF. Suppose that Ln anXn E X and (13n) E Sloc. The proof will be 
finished once it is shown that IILn 13nanxnllbmu-(x n ) ::; IILn anxnllbmu-(xn ), 

and this inequality follows easily from the definition of 11·llbmu-(xn). • 

4.2.18 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X. Then 

\\l.:anXn \\ < \\l.:13nXn\\ 
n bmu-(xn) n bmu-(xnl 

whenever Ln anxn, Ln 13n xn E X and lanl ::; l13nl for each n. 

PROOF. If Ln anxn, Ln 13nxn E X and lanl ::; l13nl for each n, then there 
is a member (rn) of Beoc such that an = In13n for each n, which by Propo
sition 4.2.17 implies that 

\ 1
l.:anXn\\ ::; II(rn)II=\\l.:13nX n\\ ::; \\l.: 13nxn 1\ ' 

n bmu-(xn) n bmu-(xn) n bmu-(xn) 

as required. • 
Bounded multiplier unconditional norms provide a way to turn any Ba

nach space having an unconditional basis into a Banach algebra. Suppose 
that a Banach space (X, +,·,11·11) has an unconditional basis. By Corol
lary 4.2.13, the space has a normalized unconditional basis (xn). Define a 
multiplication of the elements of X by the formula 

It follows from the bounded multiplier test that the series on the right side 
of this formula does converge, since the convergence of Ln anXn and the 
fact that Ilxnll = 1 for each n together imply that (an) E co. It is easy to 
check that for all x, y, z in X and every scalar a, 

(1) xe(yez)=(xey)ez; 

(2) x e (y + z) = (x e y) + (x e z) and (x + y) e z = (x e z) + (y e z); and 

(3) a·(xey)=(a·x)ey=xe(a.y). 
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11 2::anf3nxnll <:; II(an)lIooI12::f3nXnll 
n bmu-(xn) n bmu-(xn) 

< 112:: anxn ll 112:: f3nxn ll . n bmu-(xn) n bmu-(xn) 

Thus, whenever x, y EX, 

(4) Ilx. yllbmu-(xn ) ~ Ilxllbmu-(xn ) Ilyllbmu-(xn )' 

It follows that the ordered quintuple (X, +,., . , 11·llbmu-(xn )) is a Banach 
algebra. This algebra cannot have a multiplicative identity; the only candi
date is '2::n x,,, and that series does not converge. The algebra does, how
ever, have the following property. 

4.2.19 Definition. A Banach algebra (X, +'.",11'11) is commutative if 
x • y = y • x whenever x, y EX. 

These observations can be summarized as follows. 

4.2.20 Theorem. Suppose that (X, +,·,11·11) is a Banach space with an 
unconditional basis. Let (xn ) be a normalized unconditional basis for X, 
and let 

whenever '2::n anxn , '2::n f3n x n EX. Then (X, +,.,', 11·llbmu-(xn )) is a com
mutative Banach algebra without identity. 

Suppose that X is a partially ordered set and that x, y E X. A least 
upper bound for x and y is an element of X, denoted by x V y, such that 

(1) x ::s x V y and y ::S x V y; and 

(2) x Vy ::S z whenever x ::S z and y ::S z. 

The appropriate modifications can be made to this to give the definition 
of a greatest lower bound x /\ y for x and y. Least upper bounds and 
greatest lower bounds are obviously unique when they exist, so the notation 
is unambiguous. 

4.2.21 Definitions. An ordered vector space is a vector spa~e X over lR 
with a partial order ::S such that if x, y E X and x ::S y, then 

(1) x + z ::S y + z whenever z E X; and 

(2) tx::s ty whenever t > O. 
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A vector lattice is an ordered vector space X such that 

(3) every pair of elements of X has a least upper bound. 

For every element x of a vector lattice, let the absolute value of x be defined 
by the formula Ixl = x V (-x). A real normed space X that is also a vector 
lattice is a normed lattice if 

(4) Ilxll ::; Ilyll whenever x, y E X and Ixl ::S IYI· 

A Banach lattice is a real Banach space that is a normed lattice. 

Suppose that X is an ordered vector space. It is easy to check that 
-y ::S -x whenever x, y E X and x ::S y. It readily follows that if x and y 
are members of a vector lattice, then - (( -x) V (-y») is a greatest lower 
bound for x and y. It would therefore be redundant to require that every 
pair of elements of a vector lattice have a greatest lower bound; however, 
that requirement is sometimes inserted into the definition of a vector lattice 
for clarity. 

4.2.22 Theorem. Suppose that (X, 11·11) is a real Banach space having an 
unconditional basis (xn ). Define a partial order ::S on X by declaring that 
Ln anXn ::S Ln f3n x n when an ::; f3n for each n. Then (X,::s, 11·llbmu-(xn) 
is a Banach lattice. Furthermore, if x and y are members of X, where 
x = Ln anXn and y = Ln f3n x n, then x Vy = Ln max{ an, f3n}xn , X 1\ Y = 

Ln min{an ,f3n}xn, and Ixl = Lnlanlxn. 

PROOF. It is easy to verify that (X, ::S) is an ordered vector space. Now sup-
pose that x, y E X, where x = Ln anXn and y = Ln f3nxn. It follows from 
the bounded multiplier test that Lnlanl Xn and Lnlf3nl Xn both converge, 
and therefore that Ln(lanl + lf3nl)xn converges. The bounded multiplier 
test then implies that both Ln max { an, f3n} Xn and Ln min { an, f3n} Xn 
converge. It is clear that Lnmax{an,f3n}xn and Lnmin{an,f3n}xn are, 
respectively, the least upper bound and greatest lower bound for x and y, 
so (X,::s) is a vector lattice. Notice that Ixl = Ln ma..x:{an, -an}xn = 

Lnlanl x n · 

Finally, suppose that Ixl ::S IYI, that is, that lanl ::; lf3nl for each n. Then 
Ilxllbmu-(xn) ::; Ilyllbmu-(xn) by Proposition 4.2.18, so (X,~, 11·llbmu.(xn) is 
a Banach lattice. • 

4.2.23 Example. Suppose that X is Co or €p such that 1 ::; p < 00 and that 
(en) is the standard unit vector basis for X. Then the original norm of X is 
the same as its bmu-(en) norm, so the multiplication of elements of X given 
by the formula (an) • (f3n) = (an f3n) turns X into a commutative Banach 
algebra. Furthermore, if IF = 1R, then X is a Banach lattice with respect to 
the partial order given by declaring that (an) ::S (!3n ) when an ::; f3n for 
each n. 
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The reader interested in Banach lattices can find out more about them 
from [157], while [205] is a good source of information on lattices in more 
general topological vector spaces. 

When (xn) is a basis for a Banach space, the (xn) norm is a useful tool 
for demonstrating the continuity of the natural projections {Pn : n EN} 
for (xn); see the proof of Theorem 4.1.15. If the basis (xn) is unconditional, 
then the bmu-(xn) norm can be used to prove the boundedness of a much 
larger class of linear maps. 

4.2.24 Definition. Suppose that (xn) is an unconditional basis for a 
Banach space X. For each subset A of N, let PA be the linear operator 
Ln anX" f---+ LnEA anXn from X into X. Then each such map is a natural 
projection for (xn). 

Notice that the maps Pn of Definition 4.1.12 are just special cases of 
those of Definition 4.2.24. 

4.2.25 Theorem. Suppose that (xn) is an unconditional basis for a Banach 
space X. For each (/3n) in Coo, let T«(3nl be the map L" an x" f---+ Ln /3nanxn 
from X into X. Then each such map T«(3n 1 is a bounded linear operator 
from X into X, and sup{ II T«(3n 1 II : (/3n) E Sfoc } is finite. 

PROOF. Suppose that bn) E Coo. Then Thnl is clearly linear. For the 
proof that Thnl is bounded, it may be assumed that bn) E Sf oc ' The 
bounded ness of Thnl then follows, since 

11 Th l(Lanxn)11 = IILinanxnl1 < IILanxnl1 n n bmu-(xn 1 n bmu-(xnl - n bmu-(xnl 

whenever Ln anXn E X. Finally, since sup{ IIT«(3nlxll : (/3n) E Sfoc } = 
Ilxllbmu-(xnl < +00 whenever x EX, the uniform bounded ness principle 
assures that sup{ IIT«(3n) II : (/3n) E Sloc} is finite. • 

With all notation as in the statement of the preceding theorem, it follows 
that if A is any nonempty subset of Sloc' then sup{ IIT«(3nl II : (/3n) E A} 
must be finite. This fact can be used to obtain several constants important 
for the study of Banach spaces having unconditional bases. The two that 
arc probably most commonly used are given in the following two corollaries, 
the first of which generalizes some properties of the natural projections Pn 

of Definition 4.1.12 proved in Section 4.1. 

4.2.26 Corollary. Suppose that (xn) is an unconditional basis for a Ba
nach space X. For each subset A of N, the natural projection PA is a 
bounded projection from X onto [{ Xn : n E A}]. Furthermore, the quan
tity sup{ IWAII: A <::: N} is finite. 
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PROOF. It follows immediately from the preceding theorem that each PA 

is a bounded linear map and that sup{ I !FA II : A <::: N} is finite. Now fix a 
subset A of No Then PA maps X into [{ Xn : n E A}]. Furthermore, the con
tinuous map P A agrees with the identity operator for X on ({ Xn : n E A}) 
and therefore on [{ Xn : n E A}], from which it follows that PA is a projec
tion onto [{ Xn : n E A}]. • 

4.2.27 Corollary. Suppose that (xn) is an unconditional basis for a Ba
nach space X. Let S be the collection of all sequences whose terms come 
from the set {-I, + 1 }, that is, of all sequences of signs. For each mem
ber (<Tn) of S, let T(an) be the isomorphism from X onto X given by the 
formula T(O"n)(2::n onxn) = 2::n <TnOnXn· Then sup{ IITCan) II : (<Tn) E S} is 
finite. 

PROOF. The only issue is whether each T(O"n) is a vector space isomorphism 
from X onto X with a bounded inverse, and this is settled by noting that 
each T«(J"n) has itself as an inverse. • 

4.2.28 Definition. Suppose that (xn) is an unconditional basis for a Ba
nach space X. Let {P A : A <::: N} be the collection of all natural pro-
jections for (xn). Then sup{ I !FA II : A <::: N} is the unconditional basis 
constant for (xn). Now let S be the collection of all sequences of signs, and 
let T(O"n)(2::n onxn) = 2::n <TnOnXn whenever (un) E Sand 2::n OnXn EX. 
Then sup{ IIT(O"n) II : (un) E S} is the unconditional constant for (xn ). 

The two constants of the preceding definition have characterizations anal
ogous to those given for basis constants in Proposition 4.1.20. 

4.2.29 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X and that Kub is the unconditional basis constant for (xn). 
Then K ub is the smallest real number M such that 

Ill: OnXn11 ~ MIIl:onXnll 
nEA n 

whenever 2::n OnXn E X and A <::: N, which is in turn the smallest real 
number M such that 

II l: Onxnll ~ Mil l: OnXn11 
nEA nEB 

for each pair A and B of finite subsets of N such that A <::: B and each 
collection {on : nEB} of scalars. 

PROOF. It is a straightforward consequence of the definition of Kub that 

{ II2::nEA OnXn II } 
Kub = sup II2::n onxnll : 2::n OnXn EX \ {O}, A ~ N , 

from which the proposition readily follows. • 
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4.2.30 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X and that Ku is the unconditional constant for (xn ). Then 
K u is the smallest real number M such that 

112: anXn - 2: anxnll ~ MII2: anxn ll 
nEA nEN\A n 

whenever Ln O:nXn E X and A ~ N, which is in turn the smallest real 
number M such that 

112: anxn - 2: o:nXnl1 ~ Mil 2: anxnll 
nEA nEB nEAUB 

for each pair A and B of disjoint finite subsets of N and each collection 
{ O:n : n E A u B} of scalars. 

PROOF. Easy arguments based on the fact that 

prove the proposition. • 
With all notation as in the statement of the preceding proposition, the 

proposition essentially says that if Ln O:nXn E Bx and the positive inte
gers are split into two disjoint sets A and N \ A, then the two "halves" 
of Ln anXn obtained by summing over A and N \ A separately cannot be 
farther than Ku units apart, and furthermore that Ku is the smallest real 
number having this property for every member of Bx and every subset 
of N. 

Since an unconditional basis has associated with it a basis constant, an 
unconditional basis constant, and an unconditional constant, it is worth
while to know the relationship between these numbers. 

4.2.31 Proposition. Suppose that (xn) is an unconditional basis for a 
Banach space X and that K b, K ub, and K u arc, respectively, the basis con
stant, unconditional basis constant, and unconditional constant for (xn)· 
TheIl 1 ~ Kb ~ Kub ~ ~(1 + Ku) ~ KIl ~ 2Kuh . If X is renormed with 
11·llbmu-(xn), then Ku = Kub = Kb = l. 

PROOF. It was shown in the discussion following Definition 4.1.18 that 
1 ~ K b , and it is an easy consequence of the definitions of Kb and Kub 
that Kb ~ Kub. If Ln O:nXn E X and A ~ N, then 

211 L anxnll-IIL o:nxnll ~ II L anXn - L anxnll ~ Kull2: anxnll, 
nEA n nEA nEN\A n 
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so IILnEA O::nxnll ::; ~(l+Ku)IILn O::nxnll· It follows that Kub ::; ~(1 + Ku). 
Now ~(1 + Ku) ::; Ku because Ku ~ 1, while Ku ::; 2Kub since 

II L O::nXn - L O::nXn \I ::; \I L O::nXn \I + \I L O::nXn \I 
nEA nEN\A nEA nEN\A 

::; 2K ub \I L O::nXn \I 
n 

whenever Ln O::nXn E X and A <::;:: N. 
Now suppose that X has been renormed with 11·llbmu-(xnl. A quick glance 

at the proof of Theorem 4.2.25 shows that, after the renorming, each of the 
maps T(anl used in the definition of Ku has norm no more than 1. Therefore 
Ku ::; 1, and so Ku = Kub = Kb = 1. • 

The test for being a basis given in Theorem 4.1.24 has its analog for 
unconditional bases. 

4.2.32 Theorem. A sequence (xn) in a Banach space X is an uncondi
tional basis for X if and only if 

(1) each Xn is nonzero; 

(2) there is a real number M such that 

for each pair A and B of finite subsets of N such that A c:;;: Band 
each collection {O::n : nEB} of scalars; and 

(3) [{xn:nEN}]=X. 

PROOF. By results earlier in this chapter, the sequence (xn) has properties 
(1), (2), and (3) if it is an unconditional basis for X. 

Suppose conversely that (xn) satisfies (1), (2), and (3). Then (xn) is a 
basis for X by Theorem 4.1.24, so the only issue is whether it is uncon
ditional. Suppose that Ln O::nXn E X and that Lj O::nj x nj is a subseries 
of this series. It is enough to show that Lj o::njxnj converges. This follows 
immediately from the convergence of Ln O::nXn and the fact that 

II~ O::nJxnJ II ::; Mil ~ o::nxnll 
J-Tnl n-nTTll 

• 
4.2.33 Corollary. A sequence (xn) in a Banach space is an unconditional 
basic sequence if and only if each Xn is nonzero and there is a real number M 
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such that 

for each pair A and B of finite subsets of N such that A ~ B and each 
collection { an : nEB} of scalars. 

4.2.34 Corollary. Every permutation of an unconditional basic sequence 
in a Banach space is itself an unconditional basic sequence. 

So far, no examples of conditional bases have been given. It is time to 
remedy that. 

4.2.35 Theorem. The classical Schauder basis for e[O, 1] is a conditional 
basis. 

PROOF. Let (8 n );:O=O be the classical Schauder basis for e[o, 1]. For the 
argument about to be given, it will be helpful to refer to the graphs in 
Figure 4.1 on page 353. The argument will involve a subsequence of (8 n ), 

that for convenience will be called (tn ), obtained as follows. Let h = 82, 

the member of the basis that is nonzero precisely on (0, 1). Let t2 = 83, the 
member of the basis that is nonzero precisely on (0,1/2). Let t3 = 86, the 
member of the basis that is nonzero precisely on (1/4,1/2). Let t4 = 811, 

the member of the basis that is nonzero precisely on (1/4,3/8). Continue 
this pattern, selecting each tn to be nonzero on an interval half as long as 
is the case for tn- 1 , and arranging for the interval on which tn is nonzero 
and the corresponding interval for tn-1 to share left endpoints if n is even 
and right endpoints if n is odd. 

For each positive integer n, let Vn be the midpoint of the interval on 
which tn is nonzero, and let an = 0:=7=1 tj)(vn ); that is, let (v1,ad = 
(1/2,1) and, when n;::: 2, let (vn , an) be the coordinates of the new vertex 
added when passing from the graph of 2:,7~t tj to that of 2:,7=1 tj. Then 
a1 = 1, a2 = 3/2, and a moment's reflection on the process of passing from 

the graph of 2:,7~t tj to that of 2:,7=1 tJ shows that 

when n 2: 3. Since 

when n 2: 3, an easy induction argument shows that 1/2 :=:: an - an-1 :=:: 3/4 
when n 2: 2. It follows from this that (an) is strictly increasing and un
bounded and that 112:,7=1 tj 1100 = an for each n. 

Now let bn = (2:,7=1(-1)J+ 1tj)(vn ) for each n; that is, let (v1,b 1 ) = 

(1/2,1) and, when n ;::: 2, let (vn' bn ) be the coordinates of the vertex added 
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when passing from the graph of L;:;( -1)i+1tj to that of L;=1 (-l)j+ltj. 
Then b1 = 1, b2 = -1/2, and, when n :::: 3, 

{ 
~(bn-l + bn- 2 ) + 1 

bn = 
~(bn-l + bn- 2 ) - 1 

if n is odd; 

if n is even. 

It follows by induction that 1 s: bn s: 2 when n is odd and -1 s: bn s: ° 
when n is even, so 

for each n. 
If (sn) were unconditional and Ku were its unconditional constant, then 

it would have to be true that 

for each n, which contradicts the fact that (an) is an unbounded sequence 
of positive numbers. The basis (sn) is therefore conditional. • 

Notice that, in the notation of the proof of the preceding theorem, the 
formal series Ln tn and L n(-1)n+ltn do not converge; in fact, the se
ries Ln antn cannot converge for any sequence (an) of signs since the terms 
of the series do not tend to 0. This illustrates the power of the methods 
that have been developed in this section, since the preceding proof shows 
that the classical Schauder basis for e[O, 1] is conditional without actually 
producing any members of e[O, 1] whose expansions with respect to the 
basis are only conditionally convergent. 

It actually turns out that no basis for e[O, 1] is unconditional. Proofs of 
this can be found in [156] and [216). 

4.2.36 Theorem. The Haar basis for L 1 [0, 1] is a conditional basis. 

PROOF. To follow this argument, it will be helpful to refer to the graphs 
in Figure 4.2 on page 360. Let (hn ) be the Haar basis for Ll [0,1]. It will 
be more convenient to work with the normalized version 

(hI, h2' 2h3 , 2h4 , 4h5 , 4h6 , 4h7 , 4h8 ,· .. ) 

of this basis; call it (h~). It is enough to show that (h~) is conditional. 
Let gl = h~, then let gn = h;n-2+1 when n :::: 2; that is, let (gn) be the 
subsequence of (h~) formed by saving only the members of (h~) for which 
h~ (0) i= O. It is easy to check that for each positive integer n, 

if Os: t < 2-(n-l); 

otherwise, 



384 4. Schauder Bases 

so 112::7=1 gjl11 = 1 for each n. Now form a subsequence (gn,) of (gn) in 
the following way. Let n1 = 1 and n2 = 2; notice that Ilgn,11r ~ 1/2 
and Ilgnl + gn211r ~ 2/2. Now suppose that positive integers nl, ... , np -1 
have been chosen so that nl < ... < np-l and 112::~=1 gnj III ~ k/2 when 
1 s: k s: p - 1. Then there is a to in (0,1) such that gnp~l (to) > 0 and 

Jt~l2::j:i gnj(t)ldt ~ (p - 2)/2. Let np be a positive integer such that the 
subset of [0, 1] on which gnp is nonzero lies in [0, to). Then np-l < n p , and 
it is easy to check that 

By induction, there is a subsequence (gn]) of (gn) such that II 2::~=1 gnj III ~ 
k/2 for each k. 

Suppose that (h~) were an unconditional basis. Let Kub be its uncondi
tional basis constant. Then for each positive integer k, 

a contradiction. • 

As with the proof that the classical Schauder basis for e[O, 1] is condi
tional, the above proof does not actually produce any elements of the space 
whose basis expansions are only conditionally convergent. 

It can be shown that L1 [0, 1] has no unconditional bases at all; proofs 
of this can be found in [156] and [216]. It does turn out that the Haar 
basis for Lp[O, 1] is unconditional if 1 < p < 00, but that is not as easy to 
show as the conditional nature of the basis when p = 1; see [157] and [216] 
for proofs. Exercise 4.30 gives an example of a Banach space that has two 
natural bases, one of which is unconditional and the other conditional. 

Much has been said in this section about unconditional bases, but little 
about unconditional basic sequences. This does not mean that they are 
unimportant. In fact, the settling of an old problem about unconditional 
basic sequences sparked a burst of activity in Banach space theory in the 
early 1990s. Bessaga and Pelczyiiski, having just provided in their 1958 
paper [26] one of the first published proofs that every infinite-dimensional 
Banach space has a basic sequence in it, did not wait long before asking 
whether all infinite-dimensional Banach spaces have unconditional basic 
sequences lurking in them; their paper [25] containing the question is the 
very next paper in the same volume of the same journal.2 The problem 

2Gowers and Maurey mention in [94J that although Bessaga and Pe!czynski's paper 
apparently marked the first appearance of this question in print, Mazur was aware of it 
at least ten years earlier. 
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remained open until the summer of 1991, when Timothy Gowers found 
a counterexample based on earlier work of Thomas Schlumprecht [210]. 
Shortly thereafter, Bernard Maurey independently found essentially the 
same counterexample by essentially the same argument, so the two decided 
to publish jointly. Their paper [94] appeared in 1993. Upon seeing Gowers's 
and Maurey's original preprints, William B. Johnson pointed out that the 
proofs could be modified to show that their space was the first example of a 
hereditarily indecomposable Banach space; see [94] for the definition of this 
property. Acting on Johnson's observation, Gowers [92] was able to adapt 
the construction to produce the first example of an infinite-dimensional Ba
nach space X having a closed subspace Y of codimension 1 not isomorphic 
to X, thus settling a question of Banach known as the hyperplane problem. 
Soon afterward, Gowers [91, 93] was able to produce counterexamples that 
settled several other major open problems in Banach space theory. 

A good, brief, and accessible summary of the Schlumprecht-Gowers
Maurey-Johnson accomplishments, as well as several related problems still 
open at the time, can be found in Peter Casazza's 1994 book review [39]. 

Exer-cises 

4.24 Let (Xn) be a sequence in a normed space X and let I be the collection 
of all finite subsets of N directed by declaring that A :j B when A ~ B. 
Define a net (SA) with index set I by letting SA = LnEA Xu; as usual, 
the empty sum is defined to be the zero element of X. Prove that Ln Xn 

is unconditionally convergent if and only if (SA) converges. 

4.25 Prove the following generalization of Proposition 4.2.1: Suppose that X is 
a topological vector space for which X· is a separating family. If Ln Xn is 
a series in X such that Ln x 7f (n) converges for each permutation 7l" of 1'\1, 
then Ln X7r(n) = Ln Xn for each permutation 7l" of N. You may take it as 
known that rearranging the terms of an unconditionally convergent series 
of scalars does not change the limit of the series. (Do not be surprised if 
your proof is much shorter than that of Proposition 4.2.1. That proof is 
det>igned to be accessible to the reader who has just encountered series in 
Section 1.3 and knows nothing about dual spaces.) 

4.26 Prove or disprove: If a series Ln Xn in a Banach space X converges un
conditionally and (Yn) is a sequence in X such that llYn II ::; IIxn II for 
each n, then Ln Yn converges unconditionally. 

4.27 Suppose that Ln Xn is a formal series in a Banach space. Prove that the 
following are equivalent. 

(a) The series Ln Xn is unconditionally convergent. 

(b) For every sequence (Qn) of scalars such that IQnl = 1 for every n, 
the series Ln QnXn converges. 

(c) For every sequence (O"n) of signs, that is, of scalars taken from the 
set {-I, +1}, the series Ln O"nXn converges. 
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4.28 Prove that a sequence (Xn) in a Banach space X is an unconditional basis 
for X if and only if (xrr(n)) is a basis for X for each permutation 7r of N. 

4.29 Suppose that (Xn) is an unconditional basis for a Banach space X. Then 
the norm for X defined by either the formula 

or the formula 

is called the unconditional (Xn) norm of X. 

(a) Show that the two formulas really do yield the same norm. 

(b) Prove that the unconditional (Xn) norm of X is a Banach norm 
equivalent to the original norm of X, and that 

Ilxllbmu-(xn ) ::::- Ilxllu-(xn ) ::::- Ilxll(xn ) ::::- Ilxll 

for each x in X. 

4.30 (a) Show that the basis for c given in Exercise 4.4 is unconditional. 

(b) For each positive integer n, let Xn be the member of c whose first 
n -1 terms are 0 and the rest of whose terms are 1. Prove that (Xn) 
is a monotone normalized conditional basis for c. (This is called the 
summing basis for c.) 

4.31 Suppose that (Xn) is an unconditional basis for a Banach space X and 
that K u is the unconditional constant for (Xn). 

(a) Prove that if (f3n) E loo and ~n CtnXn E X, then lI~n f3nCtnXnll ::; 
2Ku 11(f3n)lloo II~n CtnXnll· 

(b) Prove that if (f3n) is a member of loo having only real terms and 
~n CtnXn E X, then II~n f3n Ct nXnll ::; Ku II (f3n) 1100 II~n Q:nXnll· 

(Notice that if (f3n) E £00 and ~n CtnXn E X, then there is a bounded 
norm-one real-linear functional u* on X such that u* (~n f3nQ:nXn) = 
lI~n f3n Ct n X n ll·) 

4.3 Equivalent Bases 

It is often useful to know when a Banach space Y has an isomorphic copy of 
some standard Banach space X embedded in it. If X has a basis, then it is 
plausible that one way to find an isomorphic copy of X inside Y would be 
to look for a basic sequence (Yn) in Y that is "enough like" a basis for X 
that [{ Yn : n EN} 1 must be isomorphic to X. The following definition 
would seem to be a good starting point when seeking a way to tell if two 
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bases (xn) and (Yn) for Banach spaces are enough alike that the Banach 
spaces have to be isomorphic. 

4.3.1 Definition. Two bases (xn) and (Yn) for Banach spaces are equiva
lent if, for every sequence (an) of scalars, the series En anXn converges if 
and only if En anYn converges. 

The equivalence of bases really does guarantee the isomorphism of the 
Banach spaces they span. 

4.3.2 Proposition. Suppose that (xn) and (Yn) are bases for the respective 
Banach spaces X and Y. Then (xn) and (Yn) are equivalent if and only if 
there is an isomorphism T from X onto Y such that TXn = Yn for each n. 

PROOF. It is clear that (xn) and (Yn) are equivalent if there is an isomor
phism T from X onto Y such that TXn = Yn for each n. Suppose conversely 
that (xn) and (Yn) are equivalent. If (En !3n,jXn)fr= 1 is a sequence in X that 
converges to some member En !3nxn of X and (En !3n,jYn)fr=l converges 
to some Y in Y, then it follows from the continuity of the coordinate func
tionals for (xn) and (Yn) that Y = En !3nYn. It is an easy consequence of 
the closed graph theorem and the equivalence of (xn) and (Yn) that the 
map En anXn f--> En anYn is an isomorphism from X onto Y that maps 
each Xn to the corresponding Yn. • 

4.3.3 Corollary. A basis equivalent to an unconditional basis is itself 
unconditional. 

One useful consequence of the preceding proposition is that a sequence 
that does not lie very far from a basis must itself be a basis. 

4.3.4 Proposition. Suppose that X is a Banach space, that (xn) is a basic 
sequence in X, that Kb is the basis constant for (xn), and that (Yn) is a 
sequence in X such that Enllxnll-lllxn - Ynll < 1/(2Kb). Then (Yn) is a 
basic sequence equivalent to (xn). If (xn) is a basis for X, then so is (Yn). 

PROOF. It is easy to see that the normalized basic sequence (1Ixnll-1xn) 
has the same basis constant as (xn); for example, this is a consequence of 
Proposition 4.1.20. It may therefore be assumed that (xn) is normalized. 

For each positive integer m, let x;'" and Pm be, respectively, the mth 

coordinate functional and mth natural projection for (xn ), with both maps 
of course having domain [{ Xn : n EN}]. If x E [{ Xn : n EN}] and m is a 
positive integer greater than I, then 

so II x;'" II S; 2Kb when m ~ 2. An obvious modification of this argument 
shows that IIxili S; K b · 
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For each positive integer n, let z~ be a Hahn-Banach extension of x~ 
to X. Since Lnlz~xlllxn - Ynll :s; 2Kb{Lnllxn - Ynll) Ilxll whenever x E X, 
it follows that the formula T(x) = Ln(Z~X)(xn - Yn) defines a bounded 
linear operator from X into X and that IITII :s; 2Kb Lnllxn -Ynll < 1. Let I 
be the identity operator on X. By Theorem 3.3.13, the operator I - T is an 
invertible member of the Banach algebra B(X) and so is an isomorphism 
from X onto X. Notice that (1 - T)(xn) = Yn for each n. It follows from 
Propositions 4.1.8 and 4.3.2 that (Yn) is a basic sequence equivalent to (Xn), 
and that (Yn) is a basis for X if (xn) is. • 

4.3.5 Corollary. Suppose that a Banach space X has a basis (xn) and 
that D is a dense subset of X. Then X has a basis equivalent to (xn) 
whose terms all come from D. 

The rest of this section is devoted primarily to finding characterizations 
of basic sequences equivalent to the standard unit vector bases for £1 and Co 
and deriving some results from those characterizations for Co. The following 
two theorems give the fundamental characterizations. 

4.3.6 Theorem. Suppose that (xn) is a sequence in a Banach space. Then 
(xn) is a basic sequence equivalent to the standard unit vector basis for £1 
if and only if sUPn Ilxn II < +00 and there is a positive constant M such 
that 

whenever mEN and 0:1, ... ,O:m E IF. 

PROOF. Let (en) be the standard unit vector basis for £1. Suppose first 
that (xn) is a basic sequence equivalent to (en). Let T be an isomorphism 
from [{ Xn : n EN} 1 onto £1 that maps each Xn to the corresponding en· 
Then sUPnllxnl1 = suPnllT-lenll :s; liT-III < +00. Furthermore, if mEN 
and 0:1, ... ,O:m E IF, then 

so the claimed inequality is shown to hold by letting M = IITII. 
Suppose conversely that sUPn Ilxn II < +00 and there is a positive con

stant M such that L~llO:nl .::; MIIL:'=lOnxnll whenever mEN and 
01, ... ,Om E IF. It must first be shown that (xn) is a basic sequence. To 
this end, notice that 1 :s; Mllx n II for each n, so each Xn is nonzero. Now 
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suppose that ml, m2 EN, that ml ::; m2, and that al,···, a'm2 E IF. Then 

m2 

::; (suPllxnll) L lanl 
n n=l 

It follows from Corollary 4.1.25 that (xn) is basic. 
Let (an) be any sequence of scalars. Ifml,m2 EN and ml::; m2, then 

~ lanl ::; Mil ~ anxnll ::; M(s~Pllxnll) ~ lanl· 
n=ml n=m} n=ml 

It follows that 2::n anen converges if and only if 2::n anXn converges, so 
(xn) and (en) are equivalent. • 

Notice that the hypotheses of the following theorem are stronger than 
those of the preceding one, since the statement that (Xn) is basic is now 
in the hypotheses rather than in one of the equivalent statements in the 
conclusion. See Exercise 4.34 for the reason for this. 

4.3.7 Theorem. Suppose that (x T.) is a basic sequence in a Banach space. 
Then (xn) is equivalent to the standard unit vector basis for Co if and only 
if infn Ilxn II > 0 and there is a positive constant M such that 

whenever mEN and al, ... , am ElF. 

PROOF. Let (en) be the standard unit vector basis for Co. Suppose first 
that (xn) is equivalent to (en). Then there is an isomorphism T from Co 

onto [{ Xn : n EN}] that maps each en to the corresponding Xn. It follows 
that infnllxnll = infnllTenl1 > o. Furthermore, 

whenever mEN and al, ... , am ElF', so the claimed inequality is obtained 
by letting M = IITII. 

Now suppose instead that infnllxnll > 0 and there is a positive con
stant M such that 112:::=1 anxnll ::; Mmax{ lanl : n = 1, ... ,m} whenever 
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mEN and 01, ... , am E F. Let (an) be a sequence of scalars. If the series 
'Ln OnXn converges, then so does 'Ln Onen since (an) E Co. On the other 
hand, if 'Ln Onen converges, then 

whenever m1,m2 E Nand m1 :s; m2, so 'Ln 0nXn must also converge. The 
basic sequences (xn) and (en) are therefore equivalent. • 

Another characterization of basic sequences equivalent to the standard 
unit vector basis for Co requires a brief excursion into the realm of weakly 
unconditionally Cauchy series. 

4.3.8 Definition. A formal series 'Ln Xn in a Banach space is weakly 
unconditionally Cauchy if, for each permutation 7r of N, the sequence of 
partial sums of 'Ln X11'(n) is weakly Cauchy. 

4.3.9 Proposition. Let 'Ln Xn be a formal series in a Banach space X. 
Then the following are equivalent. 

(a) The series 'Ln Xn is weakly unconditionally Cauchy. 

(b) For each subseries of 'Ln Xn , the sequence of partial sums of the 
subseries is weakly Cauchy. 

(c) The series 'Ln x*xn is absolutely convergent whenever x* E X*. 

(d) The series :En OnXn converges whenever (an) E Co. 

(e) There is a positive constant M such that 

whenever mEN and 01, ... ,am E F. 

PROOF. For series of scalars, the properties of absolute convergence, un
conditional convergence, and convergence of all subseries are equivalent. It 
follows that each of statements 1 through 4 below is equivalent to the next 
statement in the list. 

1. The series :En Xn is weakly unconditionally Cauchy. 

2. For each x· in X* and each permutation 7r of N, the series :En x*X11'(n) 
converges. 

3. For each x* in X*, the series 'Ln x'xn is absolutely convergent. 

4. For each subseries 'Lj xnJ of :En Xn and each x' in X*, the se
ries :Ej x*xnJ converges. 
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5. For each subseries of En Xn , the sequence of partial sums of the 
subseries is weakly Cauchy. 

This proves the equivalence of (a), (b), and (c). 
If (c) holds, then by Lemma 4.2.7 there is a nonnegative real number M 

such that sUPmIIE;:'=1 anxnll :5 MII(an)lloo whenever (an) E £00' from 
which (e) follows. Now suppose that (e) holds and that (an) E Co. If 
ml,m2 EN and mi :5 m2, then 

Ilj~~l anxnll :5 Mmax{ lanl : n = ml,··· ,m2}, 

from which it follows that En anXn converges. Therefore (e) =} (d). 
The proof will be finished once it is shown that (d) =} (c). Suppose that 

(c) fails, that is, that there is an x(j in X* such that Enlx(jxnl = +00. It 
follows that there is an increasing sequence (nj) of positive integers such 
that ni = 1 and E:~~j-Ilx(jxnl ;:.:: j for each j. Define a member (f3n) of CO 
as follows. For each positive integer n, first let j be the positive integer 
such that nj :5 n < njH, then let f3n be a scalar such that lf3nl = j-I 
and f3nx(jxn = j-Ilx(jxnl. It follows that En f3n x(jXn = +00, so En f3nxn 
cannot converge. Therefore (d) does not hold. • 

With the preceding proposition in hand, the promised second characteri
zation of basic sequences equivalent to the standard unit vector basis for Co 
is now just a restatement of Theorem 4.3.7. 

4.3.10 Theorem. Suppose that (xn) is a basic sequence in a Banach space. 
Then (xn) is equivalent to the standard unit vector basis for Co if and only 
if infnllxnll > 0 and the formal series Enxn is weakly unconditionally 
Cauchy. 

By Propositions 4.1.8 and 4.3.2, a Banach space X has in it an isomorphic 
copy of some particular Banach space Y with a basis (Yn) if and only if X 
has in it a basic sequence equivalent to (Yn). Thus, results such as Theorems 
4.3.6, 4.3.7, and 4.3.10 can be useful when trying to decide whether a 
Banach space has certain other Banach spaces embedded in it. The next 
theorem is an example of such an application of Theorem 4.3.10. 

4.3.11 Lemma. Suppose that a formal series En Xn in a Banach space is 
weakly unconditionally Cauchy but not unconditionally convergent. Then 
there is a subsequence (xnj ) of (xn) and an increasing sequence (mk) of 

positive integers with the property that if Yk = L~~~ -1 xnj for each k, 
then (Yk) is a basic sequence equivalent to the standard unit vector basis 
for Co. 

PROOF. Let (xnj) be a subsequence of (xn) such that Lj Xnj does not 
converge. Then there is a positive f with the property that for each positive 
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integer N there are positive integers P N, qN such that qN ~ P N > Nand 
IILJ~PN x nj II ~ f.. After thinning (xnJ if necessary, it may be assumed 
that there is an increasing sequence (mk) of positive integers such that 

IIL7:;.~-1 xnjll ~ f for each k. Let Yk = L~;.~-l x nj for each k. Then 
the formal series Lk Yk is weakly unconditionally Cauchy since Ln Xn is 
so. Since Yk ~ 0, it follows from Theorem 4.1.32 that (Yk) can be thinned to 
a basic sequence that will also be denoted by (Yk). By Theorem 4.3.10, the 
basic sequence (Yk) is equivalent to the standard unit vector basis for Co .• 

4.3.12 Theorem. Suppose that X is a Banach space. Then the following 
are equivalent. 

(a) The space X does not have Co embedded in it. 

(b) Every weakly unconditionally Cauchy series in X is convergent. 

(c) Every weakly unconditionally Cauchy series in X is unconditionally 
convergent. 

PROOF. Suppose first that there is an isomorphism T from Co into X. 
Let (en) be the sequence of standard unit vectors of Co. Then Ln Ten is 
weakly unconditionally Cauchy, but not convergent since infn IITen II > O. 
This shows that (b) ::;.. (a). Since (c) obviously implies (b), all that remains 
to be proved is that (a) ::;.. (c). However, this follows immediately from 
Lemma 4.3.11. • 

In light of the preceding theorem, it is natural to ask what conditions 
must be placed on a Banach space to assure that every series in the space 
that is in some sense "weakly unconditionally convergent" is uncondition
ally convergent. Before investigating this, it is necessary to decide what 
"weak unconditional convergence" might mean. Here are two possibilities. 

4.3.13 Definition. A formal series Ln Xn in a Banach space is weakly 
reordered convergent if Ln x..-(n) is weakly convergent (that is, the sequence 
of partial sums of Ln x..-(n) is weakly convergent) for each permutation 7r 

of N, and is weakly subseries convergent if each subseries of Ln Xn is weakly 
convergent. 

Since norm reordered convergence and norm subseries convergence are 
equivalent in Banach spaces, as are weak reordered Cauchyness and weak 
subseries Cauchyness, it might seem likely that the two terms defined just 
above are equivalent. However, this turns out not to be so in any Banach 
space that has Co embedded in it; see Exercise 4.37. Though the term weak 
unconditional convergence will not be used in this book, it does occasionally 
appear elsewhere, and usually refers to weak reordered convergence. 

It turns out that no conditions whatever need to be imposed on a Ba
nach space to assure that each of its weakly subseries convergent series is 
unconditionally convergent. 
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4.3.14 The Orlicz-Pettis Theorem. CW. Orlicz, 1929 [177]; B. J. Pettis, 
1938 [182]). A formal series in a Banach space is weakly subseries convergent 
if and only if it is unconditionally convergent. 

PROOF. Every unconditionally convergent series in a Banach space has to 
be weakly subseries convergent since each of its subseries is actually con
vergent with respect to the norm topology. For the converse, suppose that 
some Banach space has a weakly subseries convergent series 2::n Xn in it 
that is not unconditionally convergent. By Lemma 4.3.11, there is a subse
quence (xnJ of (xn) and an increasing sequence (mk) of positive integers 

such that, after letting Yk = 2::T:~~ -1 x nj for each k, the sequence (Yn) is 
a basic sequence equivalent to the standard unit vector basis (en) for co. 
Notice that the weak convergence of 2::j xnj implies that of 2::n Yn' Let T 
be an isomorphism from Co onto [{ Yn : n EN}] such that Ten = Yn for 
each n. It follows from the weak-to-weak continuity of T-1 that 2::n en 
is weakly convergent. However, this is just not so, and this contradiction 
finishes the proof. • 

An immediate consequence of the Orlicz-Pettis theorem is that weak 
subseries convergence implies weak reordered convergence for formal series 
in Banach spaces. With a small amount of extra effort, it can be shown that 
weak subseries convergence and weak reordered convergence are equivalent 
notions in a Banach space X if and only if X has no copy of Co embedded 
in it; see Exercise 4.38. Therefore, a formal series in a Banach space in 
which Co is not embedded is weakly reordered convergent if and only if 
it is unconditionally convergent, which could be called the Orlicz-Pettis 
theorem for weak reordered convergence. 

The proof of the Orlicz-Pettis theorem given above is due to Bessaga 
and Pelczynski [26]. See [58] for two other interesting proofs of the Orlicz
Pettis theorem, one due to S. Kwapien [147] that uses the Bochner inte
gral and is based on the Pettis measurability theorem, and another that 
is similar to the original proofs by Orlicz and Pettis. Joseph Diestel's 
notes [58, pp. 29-30] on the Orlicz-Pettis theorem contain a very inter
esting history of this result, including the reason Pettis's name became 
attached to it nine years after Orlicz's original proof because of an over
sight in Banach's book [13]. Other interesting discussions of this theorem 
can be found in [127] and [235]. 

The final item on this section's agenda is a look at block basic sequences, 
especially those taken from basic sequences equivalent to the unit vector 
basis for Co or fl' 

4.3.15 Definition. Suppose that (xn) is a basic sequence in a Banach 
space and that (Pn) is a sequence of positive integers such that 1 = PI < 
P2 < P3 < .... For each positive integer n, let O!pn' ... 'O!Pn+l-l be scalars 
at least one of which is nonzero, and let Yn = 2::;;:';~ -1 O!jXj. Then (Yn) is 
a block basic sequence taken from (Xn). 
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4.3.16 Proposition. Every block basic sequence taken from a basic se
quence in a Banach space is itself a basic sequence and has basis constant 
no more than that of the original basic sequence. 

PROOF. Suppose that (Yn) is a block basic sequence taken from a basic 
sequence (xn). Then each Yn is nonzero by the uniqueness of expansions of 
members of [{ Xn : n EN}] in terms of (xn). Let K be the basis constant 
for (xn). Then IIE:'~lanxnll ::; KIIE:'~lanxnll whenever ml,m2 EN, 
m1 ::; m2, and a1, ... ,am2 E IF. It follows that the same is true if Xn is re
placed by Yn, so (Yn) is basic by Corollary 4.1.25 and, by Proposition 4.1.20, 
has basis constant no more than K. • 

If a basic sequence equivalent to the standard unit vector basis for £1 
or Co is permuted, thinned out, or blocked up, then the resulting basic 
sequence still generates a subspace isomorphic to £1 or Co respectively. 

4.3.17 Theorem. Suppose that (xn) is a basic sequence equivalent to the 
standard unit vector basis for £1. Then every permutation of (xn) and 
every subsequence of (xn) is a basic sequence equivalent to the standard 
unit vector basis for £1. If (Yn) is a block basic sequence taken from (xn), 
then (1IYnll- 1Yn) is a basic sequence equivalent to the standard unit vector 
basis for £1, so [{ Yn : n EN}] is isomorphic to £1. 

PROOF. It follows readily from Theorem 4.3.6 that every permutation 
of (xn) and every subsequence of (xn) is a basic sequence equivalent to 
the standard unit vector basis (en) for £1. 

Now suppose that (Yn) is a block basic sequence taken from (xn). Let T be 
an isomorphism from £1 onto [{ Xn : n EN}] that maps each en to the corre
sponding X n . The definition of a block basic sequence and the nature of the 
norm of £1 together imply that IIE:'=l ,8nT - 1Yn II 1 = E:'=11,8nIIlT-1Ynlll 
whenever mEN and ,81, ... ,,8m E IF. It follows that if mEN and 
a1, ... ,am E IF, then 

m m 

~)anl :::; IITII L lanIIlYnll-1I1T- 1Ynlll 
n=l n=l 

= IITIIII~ anIlYnll-lT-lYnlll 

:::; IITIIIIT-llIll~ anIIYnll-lYnll· 

By Theorem 4.3.6, the basic sequence (IIYnll-1Yn) is equivalent to (en) .• 

4.3.18 Theorem. Suppose that (xn) is a basic sequence equivalent to the 
standard unit vector basis for Co. Then every permutation of (xn) and 
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every subsequence of (xn) is a basic sequence equivalent to the standard 
unit vector basis for Co. If (Yn) is a block basic sequence taken from (xn), 
then (IIYnll- I Yn) is a basic sequence equivalent to the standard unit vector 
basis for Co, so [{yn : n EN} I is isomorphic to Co. 

PROOF. Since (xn) is an unconditional basic sequence, each of its permu
tations is a basic sequence. It follows immediately from Theorem 4.3.7 that 
every permutation of (xn) is a basic sequence equivalent to the standard 
unit vector basis (en) for Co. The same theorem guarantees that every sub
sequence of (xn) is equivalent to (en). 

Now let (Pn) be a sequence of positive integers such that 1 = PI < 
P2 < P3 < ... , and for each positive integer n let Yn = E~~;~-I O:jXj, 

where O:pn' ... ,O:pn+l- I are scalars that are not all zero. All that remains 
to be proved is that the normalization (1IYnll- 1Yn) of the block basic se-

quence (Yn) is equivalent to (en). To this end, let Zn = E~~;~-1 O:jej for 
each n. Suppose it could be proved that (1Iznll;;,lzn) is equivalent to (en). 
Let T be an isomorphism from Co onto [{ Xn : n EN}] such that Ten = Xn 
for each n. It would follow from Theorem 4.3.7 that there is a positive 
constant M such that whenever mEN and f31, ... , f3Tn Elf, 

II~ f3nllYn 1I-I Yn II = IIT(~f3nIlTznll-lzn) II 
~ IITIIIIT-ll1ll~ f3nllznll;;,lznlloo 

~ MIITIIIIT- 1 11 max{ lf3nl : n = 1, ... ,m}, 

so (1IYnll- 1Yn) would be equivalent to (en) by another application of The
orem 4.3.7. It is therefore enough to prove that (1Iznll;;,lzn) is equivalent 
to (en). If mEN and f31, . .. ,f3Tn E If, then 

II~ f3n II Zn 11;;,1 znlL 

II Tn Pn+l- 1 II 
= ~ j~n f3n (max{IO:pJ, ... , IO:Pn+l- 1 1})-IO!jej 00 

~ max{ lf3nl : n = 1, ... ,m}, 

so yet another application of Theorem 4.3.7 shows that (II Zn 11;;,1 Zn) is equiv
alent to (en). • 

The final result of this section is the following variation on the fact that 
every sequence in a Banach space that converges to zero weakly but not in 
norm has a basic subsequence; see Theorem 4.1.32. 
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4.3.19 The Bessaga-Pelczynski Selection Principle. (C. Bessaga and 
A. Pelczynski, 1958 [26]). Suppose that (x~) is the sequence of coordinate 
functionals for a basis (xn) for a Banach space X and that (Yn) is a sequence 
in X such that limm x~Ym = 0 for each n but (Yn) does not converge to 
zero with respect to the norm topology. Then some subsequence of (Yn) is 
a basic sequence equivalent to a block basic sequence taken from (Xn). 

PROOF. Suppose first that IIYnl1 = 1 for each n. Let K(xn) be the basis con
stant for (xn) and let ql = 1. Since limm x~Ym = 0 for each n, there is a pos
itive integer ml such that 112:~'=l(x~YmJxnll = II (XiYm,)Xl II < K~~)2-4. 
Since Ym, = 2:n (X;,Ym, )xn' there is a positive integer q2 such that q2 > ql 
and 112:~=q2+1 (x~Yml )xn II < K~~)2-4. There is then a positive integer m2 

such that m2 > ml and 112:~2=1(x~Ym2)xnll < K~~)2-5, and a positive 

integer q3 such that q3 > q2 and 112:~=q3+l (X~Ym2 )xn II < K~~l2-5. Con
tinuing in the obvious fashion produces increasing sequences (mn) and (qn) 
of positive integers such that for each positive integer j, 

and 

For each positive integer j, let 

qJ+l 
Zj = L (x~Ymj )xn. 

n=qJ+1 

It follows that for each j, 

1 = IIYm] II 

= IIL(x~YmJ)xnll 
11. 

::; Ilt(X~YmJxnll + Ilzjll + 11_ f: (x~YmJxnll 
n-l n-qJ+l+1 

< liz II + K- 1 T(j+2) 
J (x,,) 

< Ilz}ll + 2- 1 , 

so Ilzj II > 1/2 > O. Therefore (zn) is a block basic sequence taken from (xn). 
The basis constant K(znl for (zn) can be no more than K(xnJ by Proposi-
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tion 4.3.16, which together with what has been proved above shows that 

j j 

j 

1 

2K(xnl 
1 

<--
- 2K(znl' 

It follows from Proposition 4.3.4 that (Ym,,) is a basic sequence equivalent 
to (zn). This finishes the proof for the special case in which IIYnl1 = 1 for 
each n. 

Now drop the assumption that each Yn has norm 1. By thinning (Yn) if 
necessary, it may at least be assumed that infnllYnl1 > O. It follows that for 
each positive integer n, 

and therefore that limrn x~ (1IYrnll- 1Ym) = 0 for each n. By the special case 
proved above, some subsequence (1IYrn" 11- 1Ym,,) of (1IYnll-1Yn) is a basic 
sequence equivalent to some block basic sequence (zn) taken from (xn), so 
(Yrn,,) is a basic sequence equivalent to the block basic sequence (1IYm" Ilzn) 
taken from (xn). • 

In this book, the only need for the Bessaga-Pelczynski selection principle 
will be for the proof in the next section that a Banach space has £1 em
bedded in it if Co is embedded in its dual. However, the principle has many 
other applications to Banach space theory. See [58] for several important 
ones. 

Exercises 

4.32 Suppose that X is C[O, 1] or Lp[O, 1] such that 1 ::; p < 00. Show that X 
has a basis whose terms are all polynomials. (However, the sequence of 
polynomials that is the most obvious candidate to be a basis for C[O, 1] 
is not even a basic sequence. See Exercise 4.13.) 

4.33 Suppose that 1 < p < 00. Prove the best analog of Theorems 4.3.6 
and 4.3.7 for €p that you can devise. 
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4.34 (a) Give an example of a sequence (Xn) in a Banach space such that 
(Xn) is not basic even though infnllxnll > 0 and there is a positive 
constant M such that 

II~ onxnll :::; Mmax{ 10nl: n = 1, ... ,m} 

whenever mEN and 01, ... , am E F. Thus, unlike the situation for 
Theorem 4.3.6, the statement that (Xn) is basic must appear in the 
hypotheses of Theorem 4.3.7 rather than in one of the two equivalent 
statements in the conclusion. 

(b) Give an example of a sequence (Xn) in a Banach space X and a se
quence (Yn) in a Banach space Y such that for each sequence (an) of 
scalars, the formal series En OnXn converges if and only if En OnYn 
converges, even though (Xn) is basic and (Yn) is not. 

4.35 Let (hn ) be the Haar basis for LdO, 1] and let (Xn) = (lIhn ll- l hn ). Show 
that (Xn) is not equivalent to the standard unit vector basis (en) for ll, 
but that (Xn) does have a subsequence equivalent to (en). 

4.36 Suppose that En Xn is a formal series in a Banach space. Prove that the 
following are equivalent. 

(a) The series En Xn is weakly unconditionally Cauchy. 

(b) There is a positive constant Mo such that IIEnEF Onxnll :::; Mo 
whenever F is a finite subset of Nand {an: n E F} is a collection 
of scalars each having absolute value 1. (As usual, the sum of an 
empty collection of members of the Banach space is defined to be 
the zero element of the space.) 

(c) There is a positive constant Ml such that IIEnEF unxnll :::; Ml 
whenever F is a finite subset of N and (Un) is a sequence of signs, 
that is, of scalars taken from the set {-1, +1}. 

4.37 Let (en) be the standard unit vector basis for co. Let Xl = el, and let 
Xn = en - en-l when n::::: 2. 

(a) Prove that the formal series En Xn is weakly reordered convergent. 

(b) Prove that the formal series En Xn is not weakly subseries conver
gent by displaying one of its subseries that is not weakly convergent. 
(Notice that this also follows from the Orlicz-Pettis theorem, since 
the formal series does not converge.) 

4.38 Suppose that X is a Banach space. Prove that the notions of weak re
ordered convergence and weak subseries convergence (that is, uncondi
tional convergence; see the Orlicz-Pettis theorem) are equivalent in X if 
and only if X does not have Co embedded in it. Exercise 4.37 may help. 

4.39 (a) Prove that every block basic sequence taken from a monotone basic 
sequence is itself monotone. 

(b) Prove that every block basic sequence taken from an unconditional 
basic sequence is itself unconditional. 
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4.4 Bases and Duality 

Suppose that X is Co or Cp such that 1 < p < 00. Let T be the usual 
isometric isomorphism from Cq onto X*, where q is 1 if X is Co and otherwise 
is such that p-l + q-l = 1. Let (en) and (e~) be the standard unit vector 
bases for X and Cq respectively, and let (e~) be the sequence of coordinate 
functionals for (en). Then Te~ = e~ for each n, from which it follows 
immediately that (e~) is a basis for X*. 

This leads naturally to the question of whether it is always the case that 
the sequence of coordinate functionals for a basis for a Banach space is 
a basis for the dual space, but this is quickly settled by observing that 
the sequence (ei n) of coordinate functionals for the standard unit vector 
basis (el,n) for Cl ' ca:nnot be a basis for Ci, since Ci is not separable. However, 
a moment's thought about the natural identification of Ci with Coo shows 
that (ei n) is a basis for a subspace of Ci isometrically isomorphic to Co, so 
one couid still hope that sequences of coordinate functionals for bases are 
themselves always basic sequences. This hope, at least, turns out not to be 
in vain. 

4.4.1 Theorem. Suppose that (x~) is the sequence of coordinate function
als for a basis (xn) for a Banach space X. Then (x~) is a basic sequence 
in X* whose basis constant is no more than that of (xn). Furthermore, 
if Q is the natural map from X into X**, then the sequence of coordi
nate functionals for (x~) is formed by restricting the terms of (Qxn) to 
[ {x~ : n EN}]. 

PROOF. Let K be the basis constant for (xn). Suppose that ml and m2 are 
positive integers such that ml :S m2 and that al, ... , am2 are scalars. 
Let 6 be a positive number and Ln f3nxn a member of Sx such that 
I(L:~l anx~)(Lnf3nxn)l2: IIL:~l anx~ll- 6. Then 

II~ anX~11 :S I (~anx~) (~f3nxn) 1+ 6 

= I ( ~ anx~) ( ~ f3n Xn) I + 0 

:S II~ f3nxnllll~ Qnx~1I + 6 

:S KII~f3nxnllll~anx~1I +6 

= KII~anx~1I +0. 
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Since 8 is an arbitrary positive number, it follows that 

Each x~ is nonzero, so Corollary 4.1.25 implies that (x~) is a basic sequence. 
By Proposition 4.1.20, the basis constant for (x~) is no more than K. 
Finally, if mEN and Ln InX~ E [{ x~ : n EN}], then (Qxm)(Ln InX~) = 

Ln InX~ Xm = 1m, so the restriction of QXm to [{ X~ : n EN} 1 is the m th 

coordinate functional for (x~). • 

Consider again the example given in the second paragraph of this section. 
It is true that (ei n) is not a basis for fi in the usual sense, but it is 
a basis for ti: in a' certain weak* sense. Suppose that x* E fi and that 
(an) is the member of 1'00 that is identified with x* in the usual way. 

It is easy to check that limk L~=l anei,nx = x*x whenever x E 1'1, so 

X* = w* -limk L~=l anei,n· Since x*e1,n = an for every term e1,n of the 
standard unit vector basis for 1'1, no sequence of scalars ((3n) besides (an) 

has the property that x* = w*-limk L~=l (3nei,w Notice that (e1,n) (or, 
more properly, the sequence (Qe1,n), where Q is the natural map from 1'1 
into fi*) is the sequence of "coordinate functionals" for the "weak* basis" 
(ei.n) for fi· 

As it turns out, the sequence of coordinate functionals for any Banach 
space basis (xn) has this property of being a weak* basis whose sequence 
of coordinate functionals is (xn) in the sense of the preceding paragraph. 

4.4.2 Theorem. Suppose that (x~) is the sequence of coordinate func
tionals for a basis (xn) for a Banach space X. For each x* in X*, there 

is a unique sequence (an) of scalars such that x* = w* -limk L~=l anx~, 
Furthermore, if Q is the natural map from X into X", then 

for each positive integer m and each sequence (an) of scalars such that 
* l' ",k *. t w - Imk Ln=l anXn eX1S s. 

PROOF. Fix an x* in X*. For each element Ln (3nxn of X and each positive 
integer k, 
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from which it follows that 2::~=1 (x*xn)x~ ~: x* as k ---+ 00. Furthermore, 

if (an) is any sequence of scalars such that x* = w*-limk 2::~=1 CtnX~, then 

k 

x*xm = lif 2: anx~xm = am 
n=l 

for each positive integer m, which proves the uniqueness assertion of the 
theorem and also shows that (Qxm)(W*-limk 2::~=1 anx~) = am whenever 
mEN. • 

With all notation as in Theorem 4.4.1, the last conclusion in that theorem 
is, roughly speaking, that each Xm can be found in [{ x~ : n EN}]* as the 
mth coordinate functional for the basic sequence (x~). Since (xn) is a basis 
for X, this leads naturally to the question of whether [{ x~ : n E N }]* 
might have embedded in it an entire copy of X. This turns out to be so. 

4.4.3 Lemma. Suppose that (x~) is the sequence of coordinate functionals 
for a basis (xn) for a Banach space X. Let K be the basis constant for (xn) 
and let Q be the natural map from X into X** . For each member x of X, let 
\II (x) be the restriction of Qx to [{ x~ : n EN}]. Then \II is an isomorphism 
from X into [{x~: n E N}]*, and K-Illxll ::; II\Ilxll ::; Ilxll for each x in X. 

PROOF. The restriction map R: X** ---+ [{ x~ : n E N }]* is clearly linear, 
and IIRx** II ::; Ilx** II whenever x** E X**. Since Q is an isometric isomor
phism from X into X** and \II = RQ, the map \II is linear and bounded, 
and II \II x II ::; IIxll for each x in X. 

Suppose that mEN and that Xo E ({Xl, ... ,xm}). Let x* be a member 
of Sx* such that Ix*xol = Ilxoll, and let y* = 2:::=1 (x*xn)x~. Notice that 

ly*(~Ctnxn)1 = I~Ctnx*xnl 

= Ix* (~Ctnxn) I 
::; II; anxnll 

::; KII2: CtnXn ll, 
n 
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which implies that II y* II :S; K. Therefore 

Ilxoll = Iy*xol = l(wxo)(y*)1 :S; Ily*llllwxoll :S; Kllwxoll, 
so K-111xoll :S; IIwxoll· Since Xo is an arbitrary member of the dense subset 
({ Xn : n EN}) of X, it follows that K-111xll :S; Ilwxll for each x in X. Since 
K-111xll ::; Ilwxll :S; Ilxll whenever x E X, the map W is an isomorphism. • 

4.4.4 Proposition. Suppose that (x~) is the sequence of coordinate func
tionals for a basis (xn ) for a Banach space X. Then X is embedded in 
[{x~: n E N}]*, and is isometrically embedded in [{x~: n E N}]* if (xn) 
is monotone. 

PROOF. This follows immediately from the preceding lemma and the obser
vation that the map W of the lemma is an isometric isomorphism whenever 
K=l. • 

Theorem 4.4.1 and Proposition 4.4.4 suggest several further lines of in
quiry. In light of Theorem 4.4.1, it is natural to ask for a simple condition C 1 

on a basis (xn ) for a Banach space X that is necessary and sufficient for 
the sequence (x~) of coordinate functionals for (xn) to be a basis for X*, 
not merely a basic sequence. Similarly, Proposition 4.4.4 and its derivation 
from Lemma 4.4.3 suggest the search for a simple condition C 2 on (xn ) 

that is necessary and sufficient for the isomorphism W of Lemma 4.4.3 to 
map X onto [{ x~ : n E N }]*, which would guarantee that X is, at least 
up to isomorphism, a dual space. It would be particularly interesting if 
(x n ) were to satisfy both C 1 and C2 • In that case, the fact that (xn ) sat
isfies C 1 guarantees that the map W of Lemma 4.4.3 is just the natural 
map Q from X into X**, and the fact that (xn) satisfies C2 then assures 
that Q maps X onto X**, that is, that X is reflexive. 

The purpose of this section is to pursue these issues and to see what can 
be learned about the structure of Banach spaces with bases along the way. 
Most of the ideas and results of this section are due to R. C. James and 
come from his 1950 article [109]. 

To bcgin thc search for a condition C 1 as described abovc, suppose that 
(x~) is the sequence of coordinate functionals for a basis (xn ) for a Banach 
space X. A few moments' thought about the role of (xn ) as the sequence of 
coordinate functionals for (x~) as described in Theorem 4.4.1 shows that 
whatever condition C 1 might be, the basis (xn) will have it if and only if 
Ilx* - 2::=1(X*xn)x~lI-+ 0 as m -+ 00 whenever X* E X*. Now fix an x* 
in X* and a positive integer m. For each member 2:n anXn of X, 

(x* - ~(x*xn)x~) (~anxn) = ~anx*xn - ~anx*xn 

= x* ( f: anxn), 
n=m+1 
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so x· - ~:=l (x*xn)x~ is, roughly speaking, the part of x* that acts on 
[{ Xn : n > m }]. In fact, the linear functional x* - ~::l (x·Xn}X~ is what 
one gets by restricting x· to [{ Xn : n > m}] and then re-extending this 
restriction back to a member of X* in such a way that the re-extension is 
zero on ({Xl, ... ,xm}). The condition C1 should be such that (xn) possesses 
it if and only if this re-extension must have small norm when m is large. 
This might not seem to be the same as requiring the restriction to have 
small norm when m is large, since extending a bounded linear operator 
to a larger space can increase its norm, but it at least suggests that the 
following might be the desired condition C l . As will be seen, it is. 

4.4.5 Definition. Suppose that (xn) is a basis for a Banach space X. 
For each x* in X* and each positive integer m, let IIx*ll(m) be the norm 
of the restriction of x· to [{ Xn : n > m }]. Then (xn) is shrinking if 
limmllx*ll(m) = 0 for each x· in X*. 

4.4.6 Example. If X is Co or fp such that 1 < p < 00 and (en) is the 
standard unit vector basis for X, then the nature of the identification of X· 
with fq for some q such that 1 ::; q < 00 assures that (en) is shrinking. 
However, the standard unit vector basis for f1 is not shrinking. Consider, 
for example, the member x* of £i identified in the usual way with the 
element (1,1,1, ... ) of £00' and observe that IIx*lI(m) = 1 for each m. 

4.4.7 Proposition. Suppose that (xn) is a basis for a Banach space X 
and that (x~) is the sequence of coordinate functionals for (xn). Then (x~) 
is a basis for X* if and only if (xn) is shrinking. 

PROOF. Suppose first that (x~) is a basis for X*. If ~n ,Bnx~ E X·, then 

II L,Bnx~11 = II f: ,Bnx~11 ::; II f: ,BnX~11 
n (m) n=m+1 (m) n=m+l 

for each positive integer m, so limmll~n ,Bnx~ll(m) = O. The basis (xn) is 
therefore shrinking. 

Suppose conversely that (xn) is shrinking. Let K be its basis constant 
and let x· be a member of X·. Then for each positive integer m and each 
member ~n QnXn of X, 

II 1= QnXnll::; IlL QnXn11 + Ilf QnXn11 ::; (1 + K)IIL QnXnll, 
n=m+1 n n=l n 

and so 

I (x* - ~(x.xn)x~) (~Qnxn) I = Ix· (n~+l QnXn) I 

::; Ilx*IICm)(l + K)IIL QnXnll· 
n 
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Therefore Ilx* - 2::'=l(x*xn)x~1i S; Ilx*ll(m)(l + K) whenever mEN, so 
limrnllx* - 2::'=1 (x*xn)x~11 = O. It follows that X' = [{ x~ : n EN}] and 
therefore that (x~) is a basis for X*. • 

With all notation as in Lemma 4.4.3, the next item on the agenda is to 
find a simple condition C2 on (x n ) that is necessary and sufficient for W to 
map X onto [{ x~ : n EN}]*. The search will begin with a condition that 
is in a sense dual to the shrinking condition. 

4.4.8 Definition. A basis (xn) for a Banach space is boundedly complete 
if, whenever a sequence (an) of scalars is such that sUPm II 2::'=1 O:nxnll is 
finite, the series 2:n O:nXn converges. 

4.4.9 Example. Let (en) be the standard unit vector basis for i p , where 
1 S; p < 00. If (an) is a sequence of scalars such that sUPmll2::'=l anenll p 

is finite, then 

so 2:n anen converges to the element (an) of i p . The basis (en) is therefore 
boundedly complete. However, the standard unit vector basis (eo,n) for Co is 
not, since 2:n eO,n does not converge even though sUPmll2::'=l eo,nlioo = 1. 

The shrinking property for a basis implies bounded completeness for the 
"dual basis." 

4.4.10 Proposition. Suppose that (x~) is the sequence of coordinate func
tionals for a shrinking basis (xn) for a Banach space X. Then (x~) is a 
boundedly complete basis for X* . 

PROOF. It follows from Proposition 4.4.7 that (x~) is a basis for X*, so 
the only issue is whether (x~) is boundedly complete. Suppose that (O:n) 
is a sequence of scalars such that (2::'=1 anX~)~=l is bounded. Then the 
Banach-Alaoglu theorem assures that (2::'=1 O:nX~)~=l has a subnet that 
is weakly* convergent to some x* in X*. Since limm (2::'=l O:nX~)(Xk) = ak 
for each k, it follows that X*Xk = ak for each k, so 

n n 

In particular, the series 2:n anx;, converges. • 
The following theorem summarizes major portions of several of the pre

ceding results and adds the important fact that a boundedly complete "dual 
basic sequence" must actually be a basis for the entire dual spacc. 
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4.4.11 Theorem. Suppose that (xn) is a basis for a Banach space X 
and that (x~) is the sequence of coordinate functionals for (xn). Then the 
following are equivalent. 

(a) The sequence (x~) is a basis for X*. 

(b) [{x~:nEN}]=X*. 

(c) The basis (xn) is shrinking. 

(d) The basic sequence (x~) is boundedly complete. 

PROOF. The implications (a) {::} (b) {::} (c) '* (d) follow immediately from 
Theorem 4.4.1 and Propositions 4.4.7 and 4.4.10, so it is enough to show 
that (d) '* (b). To this end, suppose that (x~) is boundedly complete and 
that x* E X*. Then x* = w' -limm 2::'=1 (x'xn)x~ by Theorem 4.4.2, so 
the sequence (2::'=1 (X'Xn)X~):=1 is bounded by Corollary 2.6.10 and thus 
converges by the bounded completeness of (x~). It follows immediately that 
x* = 2:n(x'xn)x~, so x* E [{x~: n EN}]. • 

As one might have suspected from the way the plot has developed, the 
search for the condition Cz that began in the discussion following Propo
sition 4.4.4 is about to end. Bounded completeness is that condition. 

4.4.12 Lemma. Let X, (xn ), (x~), and I}i be as in Lemma 4.4.3. Then I}i 

maps X onto [{ x~ : n E N }]* if and only if (xn) is boundedly complete. 

PROOF. Suppose first that (Xn) is boundedly complete. Let y* be a member 
of [{ x~ : n E N }]*. The goal is to find a member of X that I}i maps to y*. 
Let K and K' be the basis constants for (xn) and (x~) respectively. Then 
for each positive integer m and each member 2:n (Jnx~ of [{ x~ : n EN}], 

I (I}i(~(y*x~)xn)) (~(Jnx~) I = I (~(Jnx~) (~(y*x~)xn) I 

= 1~(y*x~)(Jnl 

= I y* ( ~ (Jnx~ ) I 

~ K' Ily* II IlL f3nx~ II· 
n 

Therefore 111}i(2::'=1(y*x~)xn)11 ~ K'lly*11 whenever mEN, so it follows 
from Lemma 4.4.3 that 112:::1(y*x~)xnll s KK'lly*11 whenever mEN. 
The bounded completeness of (xn) then assures that Ln(Y*X~)xn con
verges. Now (1}i(2:n(Y*X~)xn))(xi;) = y*xi; for each k, from which it fol
lows that I}i(Ln(Y*X;,)xn ) = yO. 
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Suppose conversely that W maps X onto [{ x~ : n E N }]*. Then (wxn) 
is a basis for [{ x~ : n EN}]* and is also the sequence of coordinate 
functionals for (x~), so (wxn) is boundedly complete by Theorem 4.4.11. 
Since isomorphisms clearly preserve bounded completeness, the basis (xn) 
is boundedly complete. • 

Notice that the first of the following two results is a partial converse 
of Proposition 4.4.10, while the second is an analog of Theorem 4.4.11 in 
which the roles of bounded completeness and the shrinking property have 
been exchanged. 

4.4.13 Theorem. Suppose that a Banach space X has a boundedly com
plete basis (xn ). Then X is isomorphic to the dual space of a Banach space 
with a shrinking basis, and is isometrically isomorphic to such a dual space 
if (xn) is monotone. 

PROOF. Let (x~) and W be as in Lemma 4.4.12. Then W is an isomorphism 
from X onto [{ x~ : n E N }]*, and a glance at the last paragraph of the 
proof of that lemma shows that the sequence of coordinate functionals 
for (x~) is a basis for [{x~: n E N}]*. It follows from Theorem 4.4.11 that 
(x~) is a shrinking basis for [{ x~ : n EN}]. Furthermore, Lemma 4.4.3 
assures that W is an isometric isomorphism if (xn) is monotone. • 

4.4.14 Theorem. Suppose that (xn) is a basis for a Banach space X and 
that (x~) is the sequence of coordinate functionals for (xn). Then (xn) is 
boundedly complete if and only if the basic sequence (x~) is shrinking. 

PROOF. It was shown in the proof of Theorem 4.4.13 that the basic se
quence (x~) is shrinking if (Xn) is boundedly complete. Suppose conversely 
that (x~) is shrinking. Let W be the isomorphism of Lemma 4.4.12. Then 
(Wxn) is the sequence of coordinate functionals for the shrinking basis (x~) 
for [{ x~ : n EN}], and so is a boundedly complete basic sequence by 
Theorem 4.4.11. It follows that (xn) is also boundedly complete. • 

The following result has already been suggested in the comments follow
ing Proposition 4.4.4. 

4.4.15 Theorem. Suppose that X is a Banach space with a basis. Then 
the following are equivalent. 

(a) The space X is reflexive. 

(b) Some basis for X is both shrinking and boundedly complete. 

(c) Every basis for X is both shrinking and boundedly complete. 

PROOF. Suppose first that X has a basis (xn) that is both shrinking and 
boundedly complete. Let (x~) be the sequence of coordinate functionals 
for (xn) and let W be the isomorphism of Lemmas 4.4.3 and 4.4.12. Since 



4.4 Bases and Duality 407 

[{ X~ : n EN}] = X* by Theorem 4.4.11, it follows directly from the 
definition of W that W is just the natural map from X into X** and from 
Lemma 4.4.12 that W(X) = [{x~ : n E N}]* = X**. The space X is 
therefore reflexive, which proves that (b) =} (a). 

Since (c) obviously implies (b), all that remains to be proved is that 
(a) =} (c). For this, suppose that X is reflexive. Let (zn) be a basis for X 
and let (z~) be the sequence of coordinate functionals for (zn). Then the 
closed convex subset [{ z~ : n EN}] of X* is weakly closed and so is 
weakly* closed because the weak* and weak topologies of X* are the same. 
Since ({ z~ : n EN}) is weakly* dense in X* by Theorem 4.4.2, it follows 
that [{ z~ : n EN}] = X*. Therefore (zn) is shrinking by Theorem 4.4.11. 
Applying the same argument to (z~) instead of (zn) shows that (z~) is also 
shrinking, so (zn) is boundedly complete by Theorem 4.4.14. • 

4.4.16 Corollary. If (x~) is the sequence of coordinate functionals for a 
basis for a reflexive Banach space X, then (x~) is a basis for X*. 

As has already been observed, the standard unit vector basis for Co is 
not boundedly complete. It turns out that no basis for Co is boundedly 
complete, and in fact much more than that can be said. 

4.4.17 Lemma. If Co is embedded in the dual space of a Banach space X, 
then £1 is embedded in X. 

PROOF. Let (eo,n) and (el,n) be the standard unit vector bases for Co 

and £1 respectively, let (e~) be the basis for Co that corresponds to (el,n) 
when Co is identified with t\ in the usual way, let Q be the natural map 
from X into X**, and let T be an isomorphism from Co into X*. Then the 
adjoint T* ofT maps X** onto Co by Theorem 3.1.22 (b). For each positive 
integer n, let 

Vn = {y* : y* E c~, Iy*eo,ml < ~ when 1 S; m < n, Iy*eo,nl > ! } , 
a weak* neighborhood of e~ in co' The open mapping theorem assures 
that there is a positive t such that e~ E T*(tBx **) for each n, so the 
weak* density of Q(tBx) in tBx** and the weak*-to-weak* continuity 
of T* guarantee that for each positive integer n there is an Xn in tBx 
such that QXn E (T*)-I(Vn); that is, such that I(T*Qxn)(eo,n)1 > ~ and 
I(T*Qxn)(eo,m)1 < ~ when 1 S; m < n. Now limn(T*Qxn)(eo,m) = 0 for 
each m, but (T*Qxn) does not converge to 0 since IIT*Qxnll > ! for 
each n, so by the Bessaga-Pelczyriski selection principle there is a subse
quence (Xkn ) of (xn) such that (T*QXkn) is a basic sequence equivalent to 
some block basic sequence (z~) taken from (e~). Since (lIz~lI-l z~) is equiva
lent to (el,n) by Theorem 4.3.17, the basic sequence (1Iz~II-IT*QXkn) must 
also be equivalent to (el,n), which implies the existence of a positive con
stant b such that for each positive integer n, 
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Let S be an isomorphism from [{ Ilz~II-1T*Qxkn : n E Pi!}] onto £1 such 
that S(llz~II-1T*QXkn) = el,n for each n. If m E Pi! and al,"" am ElF, 
then 

Tn m 

n=l n=l 

= II~ 21Iz~llbanel,nlll 

= II~ 21Iz~llbanS(llz~II-1T*QXkn)lll 

= 2bIIST*Q(~QnXkn) III 

S 2bIISIIIIT*QIIII~anXknll· 
Since sUPn Ilxkn II s t, it follows from Theorem 4.3.6 that (Xk,.) is a basic 
sequence equivalent to (el,n), so f1 is embedded in X. • 

4.4.18 Lemma. If Co is embedded in the dual space X* of a normed 
space X, then X* is not separable. 

PROOF. By Theorem 1.11.5, it may be assumed that X is a Banach space. 
Let R be an isomorphism from f1 into X. Then the adjoint of R maps X* 
onto fr, a nonseparable space. It follows from Proposition 1.12.9 (a) that 
X* must itself be nonseparable. • 

With only a bit more work, it can even be shown that if a Banach space X 
has Co embedded in its dual, then there is a complemented copy of fl em
bedded in X, and X* has embedded in it a subspace isomorphic to foo 

and complemented by a weak*-to-weak* continuous projection. An expo
sition of this result of Bessaga and Pelczyriski [26] can be found in Joseph 
Diestel's book [58, pp. 48-49]. 

4.4.19 Theorem. If a Banach space has Co embedded in it, then no basis 
for the space is boundedly complete. 

PROOF. Suppose that a Banach space X has a boundedly complete ba
sis (x n ). Let III be the map of Lemmas 4.4.3 and 4.4.12. Then III is an 
isomorphism from X onto [{ x~ : n E Pi! }]* by those two lemmas. If X 
were to have Co embedded in it, then so would the separable dual space 
[{ x~ : n E Pi! }]*, a possibility that is ruled out by Lemma 4.4.18. • 

The preceding result has an analog for f1 and the shrinking property. 
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4.4.20 Theorem. If a Banach space has £1 embedded in it, then no basis 
for the space is shrinking. 

PROOF. Suppose that X is a Banach space such that some isomorphism T 
maps £1 into X. Then the adjoint of T maps X* onto the nonseparable 
space £i, so X* cannot be separable and therefore cannot have a basis. By 
Proposition 4.4.7, the space X has no shrinking basis. • 

The rest of this section is devoted to the shrinking and bounded com
pleteness properties for unconditional bases. The main result for this study 
is the following one. 

4.4.21 Theorem. Suppose that X is a Banach space with an unconditional 
basis (xn ). 

(a) The basis (xn) is shrinking if and only if £1 is not embedded in X. 

(b) The basis (xn) is boundedly complete if and only if Co is not embed
ded in X. 

PROOF. Giving X a different norm equivalent to its original one does not 
affect whether (xn) is shrinking or boundedly complete or whether X has 
£1 or Co embedded in it. Thus, the norm of X used in this proof will be 
the bmu-(xn) norm and will be denoted by 11·11 rather than 11·llbmu-(xn ) for 
convenience. 

Theorem 4.4.20 provides the forward implication in (a). Suppose con
versely that (xn) is not shrinking. Let x* be an element of X* such that, 
in the notation of Definition 4.4.5, the sequence (1Ix* II (m)) does not tend 
to O. Let E = 1limmllx*ll(m), a positive number. It follows that there is 
an increasing sequence (mn) of positive integers and a sequence (Yn) in X 
such that for each positive integer n, 

(1) Yn E ({xmn , .. · ,xmn+1-r}); 

(2) IIYnl1 = 1; and 

(3) x*Yn > E. 

Suppose that mEN and aI, ... ,am E IF. Then it follows from Proposi
tion 4.2.18 that 

The sequence (Yn) is therefore a basic sequence equivalent to the standard 
unit vector basis for £1 by Theorem 4.3.6, so £1 is embedded in X. This 
finishes the proof of (a). 

The forward implication in (b) is an immediate consequence of Theo
rem 4.4.19. For the converse, suppose that (xn) is not boundedly com
plete. Then there is a sequence (,an) of scalars and a positive M such that 
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112:::::'=l,Bnxnll ::; M for each m but 2:::n ,Bnxn does not converge, so there 
are sequences (Pn) and (qn) of positive integers and a positive 6 such that 
P1 ::; q1 < P2 ::; q2 < P3 ::; q3 < ... and I12:::J:Pn {3jxjll 2': 6 whenever 
n E N. Let Zn = ~J:Pn,BjXj for each n. Then (zn) is a block basic se
quence taken from (xn). It follows from Proposition 4.2.18 that if mEN 
and a1, ... ,am Elf, then 

II~ anznll ::; II~ max{ lanl : n = 1, ... , m }znll 

= max{ Ian I : n = 1, ... ,m } II ~ Zn II 

::; max{ lanl : n = 1, ... , m} II~ {3n Xnll 

::; Mmax{ lanl : n = 1, ... ,m}. 

Therefore (zn) is equivalent to the standard unit vector basis for Co by 
Theorem 4.3.7, and so Co is embedded in X. • 

4.4.22 Corollary. Suppose that X is a Banach space. 

(a) Either every unconditional basis for X is shrinking, or none is. 

(b) Either every unconditional basis for X is boundedly complete, or 
none is. 

4.4.23 Corollary. Suppose that X is a Banach space with an uncondi
tional basis. Then X is reflexive if and only if neither Co nor P 1 is embedded 
in X. 

PROOF. This follows immediately from Theorems 4.4.21 and 4.4.15. • 

4.4.24 Corollary. Suppose that X is a Banach space in which there is an 
unconditional basic sequence. Then X has an infinite-dimensional reflexive 
subspace, or a subspace isomorphic to co, or a subspace isomorphic to fl' 

The preceding corollary points out the special importance of Bessaga 
and Pelczynski's question of whether all infinite-dimensional Banach spaces 
have unconditional basic sequences in them; see the discussion at the end 
of Section 4.2. As long as that question remained open, therc was at least a 
small amount of hope that every infinite-dimensional Banach space might 
have an infinite-dimensional subspace that is reflexive or isomorphic to ei
ther Co or i\. That hope faded rapidly when Cowers and Maurey produced 
their example of an infinite-dimensional Banach space with no uncondi
tional basic sequence in it, and vanished altogether when Cowers pub
lished in a 1994 paper [91] an example of an infinite-dimensional Banach 
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space with no infinite-dimensional reflexive subspace and in which neither 
Co nor fl is embedded. 

See Exercises 4.41 and 4.42 for two other applications of the ideas ex
plored in the last few results. 

Exercises 

4.40 Prove that C[O,l] is not isomorphic to the dual space of any normed 
space. 

4.41 Suppose that X is a Banach space with an unconditional basis. Prove that 
if X· is separable, then X is reflexive if and only if Co is not embedded 
in X. 

4.42 Suppose that X is a Banach space with an unconditional basis. Prove 
that X·· is separable if and only if X is reflexive. Exercise 4.41 may help. 

*4.5 James's Space J 

None of the results of this section depend on those of any other optional 
section. 

The purpose of this section is to continue the development of some of the 
ideas of the preceding section, with the goal of being able to examine some 
of the unusual characteristics of an important Banach space J first devised 
and studied by R. C. James. Many of this space's important properties are 
related to the fact that it has a natural monotone shrinking basis, so the 
first portion of this section will focus on properties of such bases and spaces 
that have them. 

4.5.1 Lemma. Suppose that (xn) is a basis for a Banach space. Let 

S = { (an): (an) is a. sequence of scalars, s~ll~anxnll < +00 }. 

Let lI(an)lIs = sUPmll2::=1 anxnll for each member (an) of S. Then S, 
with the usual vector space operations for spaces of sequences of scalars 
and the norm 11·115, is a Banach space. 

PROOF. It is easy to check that S is a vector space and just as easy to 
check that II· lis is a norm for S. The only remaining issue is whether 1I·lls 
is a Banach norm. Suppose that ((an ,j)):'1 is a Cauchy sequence in S. If 
m,j,j' EN and m ~ 2, then 

lam,j - am,j' I = IIxm 11-111 f) an,j - an,j' )Xn - 'I: (an,j - an,j' )Xn II 
n=1 n=1 

~ 21Ixm ll- 1 11(an ,j) - (an,j')lls, 
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while 

It follows that for each positive integer m there is a scalar am such that 
limj am,j = am. 

Suppose that f > O. Let j. be a positive integer such that if j, j' 2:: jf' 
then II(an,j) - (an,],) lis < Eo If mEN and j, j' 2:: j., then 

Letting j' tend to infinity shows that 

whenever mEN and j 2:: jf' and therefore that 

whenever j 2:: j,. It follows that (an) E S and that II(an ,)) - (an)lls -> 0 
as j -> 00, so Cauchy sequences in S do converge. • 

4.5.2 Proposition. Suppose that (xn) is a shrinking basis for a Banach 
space X. Let S be the Banach space of the preceding lemma. Let (x~) be 
the sequence of coordinate functionals for (xn) and let ¢(x**) = (x**x~) 

whenever x*' E X*'. Then ¢ is an isomorphism from X** onto S. If 
(xn) is monotone, then ¢ is an isometric isomorphism, and so Ilx" II = 

limm llL:::'=l (x**x~)xn II whenever x** E XH. 

PROOF. It may be assumed that the norm of X is its (xn) norm and 
therefore that (x n ) i~ monotone. Then (x~) i~ a monotone basis for X* by 
Theorem 4.4.1 and Proposition 4.4.7. For each element x** of X**, each x' 
in X', and each positive integer m, 

IX'(~(x'*x~)xn)1 = IX**(~(X'xn)x~)1 

::; IIX*'llll~(x*xn)x~11 
::; II x" 1111x' II 

since x* = L:n(x*xn)x;,. Therefore IIL::=l(x'*x~)xnll ::; Ilx"1I when
ever x" E X** and mEN, and so ¢(x") = (x*'x~) E S whenever 
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X** E X**. Notice that II¢x**lls = sUPmlll::=l(x**x~)xnll s: Ilx**11 for 
each x·* in X**. 

It is clear that ¢ is linear. If x·* E X** and ¢x** = 0, then for each x' 
in X', 

x**x* = x** ( 2)X*Xn)X~) = 2)X'Xn)(X'*X~) = 0, 
n n 

so x·* = O. The map ¢ is therefore one-to-one. 
Suppose that (an) E S. If x* E X*, the positive integers ml and m2 are 

such that ml < m2, and 11'II(m) has the meaning given in Definition 4.4.5, 
then 

I f: anX*Xnl s: Ilx*lI(m,) I! f: anXnl! s: 21I x *lI(m,) II(an)lls, 
n=m,+l n=m,+l 

which implies that l:n anx'xn converges since limmllx*ll(mJ = O. Define 
xo': X' ---> IF by the formula xo*(x*) = Enanx·xn. Then x;)* is clearly 
linear. If x* E X* and mEN, then 

so Ixo*x*1 s: II(an)lIs Ilx'll whenever x' E X*. It follows that xo* E X'* 
and ¢x;)* = (xo*x~) = (an), so ¢ maps X** onto S. 

Notice that the argument just given, along with the fact that ¢ is one-to
one, shows that Ix*'x* I s: II <px*' 11 s Ilx' II whenever x·* E X'* and x* E X*, 
and therefore that II x** II :s 11 <px** II s whenever X** E X *'. The reverse 
inequality was obtained earlier, so ¢ is an isometric isomorphism from X** 
onto S. The fact that (xn) is monotone then assures that 

whenever X** E X'*. • 
Let X, (xn), (x~), and S be as in the preceding proposition, with the 

stipulation that (xn) is a monotone shrinking basis for X. For the purposes 
of this section, the main point of the proposition is that X** can be iden
tified in a natural way with the space of all sequences (an) of scalars such 
that sUPmIIE:=l anxnll is finite. Since (x~) is a basis for X* by Propo
sition 4.4.7, it follows that X* can be identified with the space of all se
quences (an) of scalars such that Ln anx~ converges, while of course X 
itself can be identified with the space of all sequences (an) of scalars such 
that l:n anXn converges; see Proposition 4.1.7. To summarize, the space X 



414 4. Schauder Bases 

Identified with the 
Space space of sequences of Norm 

scalars (an) such that 

X (~ anxn) :=1 converges II(an)11 = l~ II~ anXnl1 

= s~p II~ anxnll 

X* (~ anX~ ) :=1 converges II(an)11 = 1~~\I~anx~11 

=s~ll~anx~11 

X** ( m ) 00 ~ anXn m=l is bounded II(an)11 = l~ II~ anXnl1 

=s~ll~anxnll 

TABLE 4.1. The natural identification of X, X*, and X" with sequence spaces 
when X is a Banach space with a monotone shrinking basis (Xn) and (x~) is the 
sequence of coordinate functionals for (Xn). 

and its first and second dual spaces can be treated as if they were sequence 
spaces as in Table 4.1, where the equalities of limits and suprema in the 
norm column are due to the fact that (xn) and (x~) are both monotone, 
the first by hypothesis and the second by Theorem 4.4.1. 

Suppose that the sequences of scalars (an), «(3n) , and bn) have been 
identified with the members x** , X* , and x of X** , X* ) and X respectively. 
Then the actions of (an) on «(3n) and of ((3n) on bn) are given by the 
formulas 

n 

and 

n 

since 

n n 
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and 

Furthermore, if Q is the natural map from X into X** and the identifica
tions of Table 4.1 are made, then it is clear from the formulas for (an)(f3n) 
and (f3n)(,n) given above that Qbn) = bn) for each member bn) of X. 

Now suppose that X is Co and that (xn) is its standard unit vector 
basis, which is indeed monotone and shrinking. Let W, Y, and Z be the 
sequence spaces that the correspondences of Table 4.1 identify with Co, co, 
and co* respectively. It is easy to check that Wand Z are just Co and £=, 
respectively, with their usual norms, and an easy argument based on the 
standard way that Co is identified with £1 shows that Y is just £1 with its 
usual norm. Furthermore, the identification of Co with itself given in the 
table is just the identity map, while the identifications of cO and co* with £1 
and £00 respectively that follow from the table are precisely the standard 
identifications of these spaces that have been discussed previously in this 
book. 3 Thus, the identifications of Table 4.1 are generalizations of the usual 
characterizations of the first and second duals of Co to other Banach spaces 
having monotone shrinking bases. 

The identifications described in Table 4.1 will prove useful for analyzing 
the space about to be defined. 

4.5.3 Definition. For each member (an) of the vector space V underlying 
real Co, let 

II(an)lIa = 2- 1/ 2 sup { (~(apn - a pn+J2 + (aPm _ a p J2 ) 1/2 

m 2: 2, PI < ... < Pm } 

and 

Then James's space J is the real Banach space of all members (an) of V 
such that II(an)lla is finite, with the norm 1I·lIa. 

Though the function II· lib is not actually used to define J, this function 
will have important uses in the study of the space to be done below. Of 

3See Example 1.11.2 for the standard identification of co' with i=. It is easy to check 
directly that if that identification has been made and i1 has been identified with Co in 
the natural way, then (an )(l'n) = En anl'n whenever (an) E co' and (I'n) E co. 
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course, the first issue in the analysis of J is whether it truly is a Banach 
space. 

4.5.4 Proposition. The space J is a real Banach space, and II· lib is a 
norm for this space equivalent to 11·lla' 
PROOF. The triangle inequality for 11·lla follows readily from that for £2, 
and it is apparent that ILB(an)lIa = liJllI(an)lla whenever (an) E J and 
f3 E lR. It follows that J is a vector subspace of the vector space that 
underlies real Co. It is apparent that IIOlla = 0 and that II(an)lla > 0 
whenever (an) is a nonzero member of J, so 11·lla is a norm for J. It is 
just as easy to check that II· lib is also a norm for J, and that this norm is 
equivalent to 11·lla since lI(an)llb ::; II(an)lla ::; 211(an)llb whenever (an) E J; 
this last inequality uses the fact that for each member (an) of J, 

whenever m ::::: 2 and PI < ... < Pm. 

All that remains to be proved is that 11·lla is a Banach norm. Suppose 
that ((f3n,j));:1 is a Cauchy sequence of elements of J. If (an) E J and 
no, nl E N, then 

Letting nl tend to 00 shows that lanol S lI(an)lla whenever (an) E J and 
no E N. From the fact that ((f3n,j)):1 is Cauchy, it follows that (f3n,j )~I is 
a Cauchy, therefore convergent, sequence of real numbers whenever n E N. 
Let f3n = lim] f3n,j for each n. 

Let E be an arbitrary positive number and let j, be a positive integer 
such that IICBn,]) ~ CBn,j')lIa < E when j,j' ::::: jE' If j,j',m,Pl,'" ,Pm are 
positive integers such that j,j' ::::: j" m ::::: 2, and PI < ... < Pm, then 

< E. 
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Letting j' tend to 00 shows that 

whenever j 2: j" m 2: 2, and PI < ... < Pm. It follows that ((3n) E J and 
that 

whenever) 2: )E' Since ((3n,j) -+ ((3n) as) -+ 00, the space J is complete .• 

Let (en) be the sequence of standard unit vectors in real Co. Then each 
of these vectors is in J, and Ilenlla = 1 for each n. The sequence (en) turns 
out to be a monotone shrinking basis for J just as it is for Co. 

4.5.5 Proposition. The sequence (en) of standard unit vectors in J is a 
monotone shrinking basis for J, and (an) = ~n anen whenever (an) E J. 

PROOF. If (an) E J, then the sequence (11(O:l, ... ,O:k,Q,Q, ... )lla):=l is 
clearly nondecreasing, so (en) is a monotone basic sequence in J by Corol
lary 4.1.25 and Proposition 4.1.21. Now fix a member ((3,,) of J. To prove 

that (en) is a basis for J, it is enough to show that II ((3n)- L:~=l (3jejlla -+ 0 
as k -+ 00, that is, that 11(0, ... ,0, (3k+l, (3k+2, ... ) Iia -+ 0 as k -+ 00. Sup
pose to the contrary that this did not happen. Then there would be a 
positive E and, for each positive integer j, a collection {Pl,j, ... ,Pm(j),j} of 
positive integers such that PI,j < ... < Pm(j),j < Pl,Hl and 

m(j)-l 

L ((3Pn,j - (3Pn+l,j)2 + ((3P=U),j - (3Pl,j)2 2: Eo 

n=1 

Since (3n -+ 0, there is some positive integer )0 such that 

when) 2: )0' But a moment's thought about the definition of 11·lla then 
shows that 11((3n)lIa = +00, a contradiction. This finishes the proof that 
(en) is a basis for J and verifies the formula for basis expansions. 

All that remains to be shown is that the monotone basis (en) is shrinking. 
Suppose it is not. Then there is an x* in J*, a positive 6, and a normalized 
block basic sequence (un) taken from (en) such that x*un 2: 6 for each n. 
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Therefore En x' (n- l un) does not converge, so En n-1un does not con
verge. To obtain a contradiction to this and thereby finish the proof of the 
proposition, it is enough to show that there is a positive constant c such 
that IIE:~m, n- l u n llb ::; c(E:~ml n-2)1/2 whenever m1 ::; m2· 

Let ((n) be a sequence of real numbers and (qn) a sequence of positive 
integers such that 1 = ql < q2 < q3 < ... and Uj = E~~~J-1 (nen for 
eachj. Notice that I(nl ::; 1 for each n since Ilujlla = 1 for eachj. A positive 
integer P will be said to belong to a term Uj of (un) if qj ::; P < Qj+l· 

Let positive integers ml and m2 be such that m1 ::; m2, and let bn) 
be the element E:~Tn' n-Iun of J. Fix a positive integer m and positive 
integers PI, ... ,Pm such that m :2: 2 and PI < ... < Pm, then let s = 
E::l\"(Pn - I'Pn+I)2. Let It 1 be the collection of summands bPk - "YPk+ I? 
of s such that Pk and PHI both belong to the same term of (un), that 
is, such that there is some j for which qj ::; Pk < PHI < Qj+I' For each 
member bPk - 'IPk+l? of Itl and the Uj to which it belongs, either 

( )2 ( .-I( .-I( )2 '-2(r r )2 
I'Pk - 'IPk+l = J Pk - J Pk+1 = J '>Pk - '>Pk+1 

or bPk - 'IPk+J 2 = O. It follows that if SI is the sum of all members of ([.}) 
then 

m2 ffi2 

81 ::; 2 L n-21Iunll~ = 2 L n-2 . 

n=Tnl 

Now let ([.2 be the collection of summands bPk - 'IPk+!)2 of s such that Pk 
and PHI do not belong to the same term of (un), and let 82 be the sum of 
all members of ([.2. Fix a member bPk - "YPk+I)2 of ([.2 and let uj, and uj, 

be the terms of (un) to which Pk and PHI, respectively, belong. Then "YPk 

is either jl I (Pk or 0, and similarly "YPk+l is either j:;I(Pk+l or O. It follows 
that 

( )2 < ('-I()2 (.-1( )2 2 ·-1 .-11( r I 
"YPk - 'IPk+l - 11 Pk + 12 Pk+l + 11 12 Pk '>Pk+1 

::; j1 2 + j:;2 + 2jl1j:;1 

::;j12 +j:;2+ j12 +j:;2 

= 2j12 + 2j:;2. 

Of course, if ji < ml or jl > m2, then jl1 and j12 can be replaced 
by 0 in the above inequality, and similarly for J2. Also, it is clear from 
the definition of ([.2 that if the preceding argument is repeated for each 
member bPk - 'IPk+J 2 of ([.2, then each integer jo such that mi ::; jo ::; m2 
can appear in at most one of those arguments as ji and in at most one 
other as J2. Consequently, 

Tn2 

82 ::; 4 L n-2 . 

n=ml 
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Therefore 

It follows from the definition of II· lib that 

As has already been shown, this is a contradiction that implies that (en) 
is shrinking. • 

As one would expect, the sequence (en) of standard unit vectors in J is 
called the standard unit vector basis for J. 

The rest of this section is devoted to a close look at J**. As observed in 
the comments following Proposition 4.5.2, the space J can be identified with 
the space of all sequences (an) of real numbers such that (2:.::'=1 anen)~=1 
converges, with the norm given by the formula 

In fact, the space J is already precisely that space; in particular, the norm 
given by (4.2) is precisely 11·lIa' Furthermore, the space J** can be viewed 
as the space of all sequences (an) of scalars such that (2:.::'=1 anen)~=1 is 
bounded in J, with the norm also given by (4.2). For consistency, this norm 
will be denoted by 1I·lIa as for J. As an aid to understanding, in most of the 
rest of this section the space J** will be treated as if it actually were this 
sequence space rather than just isometrically isomorphic to it, and J will 
often be viewed as the subspace of J** with which the natural map from J 
into J** identifies it; again, see the comments following Proposition 4.5.2. 
The reader wishing to rewrite the following arguments to include all of the 
appropriate isometric isomorphisms will have no trouble doing so. 

Suppose that (f3n) is a sequence of reals such that limn f3n does not exist. 
Then there must be a positive f; and sequences (Pn) and (qn) of positive 
integers such that 1 ~ PI < ql < P2 < q2 < ... and such that If3Pn -f3qn I 2: f; 

for each n. For every positive integer m, 

so (f3n) ¢. J**. Therefore limn an exists whenever (an) E J**. 
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Though 11·lla is being used to denote the norm of J**, that does not 
mean that the formula of Definition 4.5.3 can be used to compute it. For 
example, it is easy to see that every constant sequence (e, e, e, ... ) of real 
numbers is in J** and has norm lei by (4.2), but the formula from Def
inition 4.5.3 would incorrectly give 0 for the value of the norm. For the 
moment, let the "norm" of a member (an) of J** computed using the for
mula in Definition 4.5.3 be denoted by l(an)la' and let II(an)lla continue 
to represent the actual value of the norm of (an). For each (an) in J**, 

whenever m,Pl, ... ,Pm E N, m 2': 2, and PI < ... < Pm, from which it 
follows that l(an)la ~ II(an)lla and in particular that l(an)la is finite. One 
immediate consequence of this is that 

since the only way that a member of J** can avoid being in J is to have a 
nonzero limit. 

Incidentally, the formula for 11·lla of Definition 4.5.3 can be modified a 
bit so that the resulting slightly more complicated formula does also work 
to compute the norms of members of J**. See Lemma 4.5.8. 

Let eo = (1,1,1, ... ). Then eo E J** and lIeolla = 1. It will now be 
shown that (eO,el,e2, ... ) is a basis for J**. Fix an element hn) of J** 
and let 'Y = limn 'Yn. Then limnhn - 'Y) = 0, so hn) - 'Yeo E J and 
hn) - 'Yeo = L:~=1 hn - 'Y)en . Therefore 

CXl 

hn) = 'Yeo + Lhn - 'Y)en . 

n=1 

Now suppose that ((n)~=o is any sequence of reals such that 

00 

hn) = (oeo + L (nen· 
n=1 

Then hn) - (oea = L:~=1 (nen E J, which implies that limnhn - (0) = 0, 
which in turn implies that (0 = 'Y. Therefore 

00 00 

L (nen = Lhn - 'Y)e n E J, 
n=1 n=1 

so (n = 'Yn -'Y when n 2': l. Thus, there is one and only one sequence ((n)~=o 
of reals such that hn) = L:~=o (nen, and so (en)~=[) is a basis for J**. 

It would not hurt to pause for a moment to recap in rigorous language 
part of what has been discovered in the preceding discussion. 
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4.5.6 Proposition. Let X J •• be the Banach space of sequences of scalars 
described above that is identified with J** and has J as a subspace, and 
let A: X J •• -> J** be the identifying isometric isomorphism. Let (en) be 
the standard unit vector basis for J, and let eo be the element (1,1,1, ... ) 
of XJ*" Let Q be the natural map from J into J**. 

(a) If (an) E J, then Q(an) = A(an). 

(b) If (an) E X J .. , then limn an exists. 

(c) J = {(an) : (an) E X J **, limn an = o}. 
(d) The sequence (en)~=o is a basis for XJ*" Consequently, the sequence 

(Aen)~=o' which is the same as (Aeo, Qel' Qe2,"')' is a basis for J**. 

Recall that if W is a vector subspace of a vector space V, then the 
codimension of W in V is the dimension of the quotient vector space V /W; 
that is, roughly speaking, the number of dimensions that W lacks of being 
all of V. Let J** be identified as before with a space of sequences of scalars 
and J with its natural image in J**. Suppose that x** E J** and that 
2::=0 (nen is the expansion for x** in terms of the basis (en)~=o for J**. 
Consider the element x** + J of the quotient Banach space J** / J. Since 
2:::1 (nen E J, it follows that x** + J = (oeo + J, so J** IJ = ({eo + J}). 
Therefore {eo + J} is a basis for J** 1 J, so J has co dimension 1 in J**. 
This can be stated more formally as follows. 

4.5.7 Theorem. Let Q be the natural map from J into J**. Then the 
co dimension of Q(J) in J*' is 1. Thus, the space J is not reflexive. 

Though the natural map is an isometric isomorphism from J onto a 
proper subspace of J** , there is another isometric isomorphism from J onto 
all of J**. The key to the proof of that to be given here is the following 
formula for computing the norms of members of J*'. 

4.5.8 Lemma. Let J** be identified with a Banach space of sequences of 
scalars as has been done above, and let (an) be a member of J". Then 
II(an)lIa is the supremum over all real numbers t such that t equals either 

(4.3) 

or 

( 
m-2 ) 1/2 

2- 1/ 2 "(a - a )2 + a2 + a2 
~ Pn Pn+l PTn-l PI 

n=l 

( 4.4) 

for some positive integers m, PI, ... ,Pm such that m 2: 2 and PI < ... < Pm. 
(By convention, the sum from 1 to m - 2 is considered to be 0 if m = 2.) 
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PROOF. For each positive integer k, let I{l,oo.,k} be the indicator function 
of the set {I, ... ,k}. Then 

II(an)lla = s~plI~ anen\\a 

=supll(al,oo.,ak,O,O,.oo)lla 
k 

+ (apmI{l, ... ,k} (Pm) - a p, )2 
)

1/2 

m ~ 2, kEN, PI < 00. < Pm, Pm-I:::; k }. 

A moment's thought shows that this last supremum is precisely the one 
described in the statement of this lemma. • 

For the duration of this paragraph, let (an) be a fixed member of J**. It 
is easy to see that II(O,al,oo.,am,O,O,oo.)lla = lI(al,.oo,am ,O,O,oo.)lla 
for each m, from which it follows that 

and therefore that the "shifted" sequence (0, a1, a2, ... ) is in J**. Sub
tracting (limn an)eo from this shifted sequence yields the member 

(-liman , a1 -liman, a2 -liman , ... ) 
n n n 

of J** , which is in fact in J since the limit of this sequence is 0. If the norm 
of this member of J is computed using the formula of Definition 4.5.3 (with 
the 2-1/ 2 brought inside the supremum), then the set whose supremum is 
being taken is precisely the set whose supremum is used to compute II (an) Iia 
in Lemma 4.5.8, so the above member of J has the same norm as (an). 

Define T: J** -t J by the formula 

T((an )) = (-lim an, al -lim an, a2 -liman, ... ). 
n n n 

It is clear that this map is linear, and therefore is an isometric isomorphism 
from J** into J by the result of the preceding paragraph. Now suppose that 
(13n) E J. Then (132,133,' .. ) is clearly in J, so (132,133, ... ) - 131 eo E J**. It 
is easy to check that T ((132,133, ... ) - 131 eo) = (13n). Therefore T( J**) = J, 
which finishes the proof of the following result. 
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4.5.9 Theorem. The Banach space J is isometrically isomorphic to J**. 

The ideas and results of this section are essentially from R. C. James's 
papers [109J and [110J that appeared in 1950 and 1951 respectively. In the 
earlier paper, James constructed a Banach space that is almost J and is 
isomorphic to it; however, the norm is not quite right for the space to be 
isometrically isomorphic to its second dual, so James had to settle for an 
isomorphism. By tweaking the norm a bit in the later paper, he was able 
to obtain the stronger result. 

The space J proved useful as a counterexample for several long-standing 
conjectures. As was discussed at the end of Section 1.11, a comment in 
Banach's book [13J can be interpreted to be the question of whether a sep
arable Banach space must be reflexive if there is any isometric isomorphism 
whatever from the space onto its second dual. The space J shows that the 
answer is no. Also, the separability of J** shows that J is a counterexample 
for the conjecture that a Banach space must be reflexive if its second dual 
is separable. 4 See Exercises 4.44 and 4.45 for two other conjectures settled 
in the negative by J. A list of references for other applications of J can be 
found in [118, p. 633J. 

Exercises 

4.43 Prove that J has no unconditional basis. 

4.44 Prove that J is an example of an infinite-dimensional Banach space X 
such that X is not isomorphic to X ED X. Exercise 3.12 could help. 

4.45 Prove that J is an infinite-dimensional real Banach space for which there 
is no complex Banach space X such that J is isomorphic to the real 
Banach space Xr obtained from X by restricting multiplication of vectors 
by scalars to lR x X. It might help to look at Exercise 3.12 as well as 
Proposition 1.13.1 and its proof. 

4 However , it was not quite the first such counterexample. That honor went to J's 
isomorphic cousin constructed in [109], as James observed in that paper. 



5 
Rotundity and Smoothness 

When thinking of the closed unit ball of a normed space, it is tempting to vi
sualize some round, smooth object like the closed unit ball of real Euclidean 
2- or 3-space. However, closed unit balls are sometimes not so nicely shaped. 
Consider, for example, the closed unit balls of real ei and e~. Neither is 
round by any of the usual meanings of that word, since their boundaries, 

1 

1 

which is to say the unit spheres of the spaces, are each composed of four 
straight line segments. Also, neither is smooth along its entire boundary, 
since each has four corners. These features of the closed unit balls have 
a number of interesting consequences that cause the norms of these two 
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spaces to behave a bit unlike that of real Euclidean 2-space. For example, 
if Zl and Z2 are different points on anyone of the four sides of one of these 
balls, then 1 = Ilzlll = IIz211 = ~llzIil + ~llz211 = II~Zl + ~z211, so equality 
is attained in the inequality IlzI + z211 ~ IIzIl1 + IIz211 despite the fact that 
neither Zl nor Z2 is a nonnegative real multiple of the other. Furthermore, 
the presence of the corners leads to the existence of multiple norming f1LnC

tionals for some points Z of the unit sphere of each of these spaces, that is, 
norm-one members z* of the dual space such that z*z = Ilzll. To see why 
this would be, let Z be either of these two spaces and let Zo be one of the 
four corners of B z. Then there are infinitely many different straight lines 
that pass through Zo without intersecting the interior of the closed unit 
ball; let hand l2 be two of them. By Mazur's separation theorem, there 
are members zi and Zz of Z*, necessarily different, such that if j E {1,2}, 
then zj z = 1 when Z E lj and zjz ~ 1 when z E B z · It follows readily 
that zi and Zz are both norming functionals for Zo. As will be seen, it is 
precisely the presence of the corners or sharp bends in the unit sphere that 
caused this multiplicity of norming functionals for elements at the locations 
of the bends. 

The purpose of this chapter is to study the special properties of normed 
spaces whose closed unit balls are round, in the sense that the unit spheres 
include no nontrivial line segments, and of those whose closed unit balls 
are smooth, in the sense that the unit spheres have no corners or sharp 
bends. Roundness will be taken up first. 

5.1 Rotundity 

The property about to be defined was formulated independently by James 
Clarkson and Mark Krein. Clarkson was particularly interested in the uni
form version of this property that will be studied in the next section, while 
Krein used it in joint work with Naum Akhiezer on the moment problem. 
There is an entire host of equivalent ways to define this property, some of 
which are given in this section. 

5.1.1 Definition. (J. A. Clarkson, 1936 [41]; N. I. Akhiezer and M. G. 
Krein, 1938 [1]). A normed space X is rotund or strictly convex or strictly 
normed if IltXI + (1 - t)x211 < 1 whenever Xl and X2 are different points 
of Sx and 0 < t < 1. 

If a normed space satisfies the condition of the preceding definition, then 
it is sometimes said that its norm or its closed unit ball is rotund rather 
than attaching that label to the entire space. The term rotund used here 
is due to Mahlon Day, who published a series of six important papers 



5.1 Rotundity 427 

[47]-[52J on rotundity and uniform rotundity between 1941 and 1957.1 The 
term strictly normed is Krein's. 

Definition 5.1.1 actually says that a normed space is rotund when its 
unit sphere includes no nontrivial straight line segments, but some arguing 
needs to be done to show that. Suppose that X is a normed space. Just 
for the remainder of this paragraph, let (XljX2) denote the "open line 
segment" {tXl +(I-t)x2 : 0 < t < I} whenever Xl,X2 EX. If X is rotund 
and Xl and X2 are different points of its unit sphere, then the definition 
of rotundity assures that (XljX2) lies entirely in the interior of Ex, so no 
nontrivial line segments lie in S x. Suppose conversely that no nontrivial line 
segments lie in Sx and that Xl and X2 are different points of Sx. Then some 
of the points of (XljX2) lie in Bx, so it follows easily from Lemma 2.2.18 
that all of the points of (Xl j X2) lie in Ex. The space X is therefore rotund. 
Incidentally, the last portion of this argument also establishes the following 
characterization of rotundity that allows the verification of the property 
by examining only the midpoints of straight line segments rather than the 
entire segments. 

5.1.2 Proposition. Suppose that X is a normed space. Then X is rotund 
if and only if II ~ (Xl + X2) II < 1 whenever Xl and X2 are different points 
of Sx. 

It is time for some examples. 

5.1.3 Example. The scalar field IF, viewed as a normed space over IF, is 
obviously rotund. More generally, it is easy to see that every normed space 
that is zero- or one-dimensional is rotund. 

5.1.4 Example. Suppose that p, is a positive measure on a a-algebra :E 
of subsets of a set n and that 1 < p < 00. Then Lp(n,:E, p,) is rotund. 
The argument showing this will be saved for the proof of Theorem 5.2.11, 
in which it will be shown that Lp(n, :E,p,) has the stronger property of 
uniform rotundity. 

5.1.5 Example. This generalizes the examples of nonrotund spaces given 
in the introduction to this chapter. As in the last example, suppose that p, 
is a positive measure on a a-algebra :E of subsets of a set n, but suppose in 
addition that there are two disjoint measurable subsets Al and A2 of n each 
having finite positive measure. Let IAl and IA2 be the respective indicator 

functions of these sets, and let II = (p,(Al)) -IIA" h .= (p,(A2» -IIA2 , 

1 However, Day referred to the property as strict convexity in those papers, as most 
others did before and, admittedly, have since. The term rotund first appeared in his 1958 
book [53J. 
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from which it follows that neither Ll(n, 2:, J.t) nor Loo(n, 2:, J.t) is rotund. 
In particular, the spaces 1\ and £00 are not rotund, and £f and £~ are not 
rotund when n ~ 2. Notice that £f and £~ are rotund when n < 2 by 
Example 5.1.3. 

5.1.6 Example. Let el and e2 be the first two standard unit vectors of Co. 
Let Xl = el + e2 and X2 = el - e2. Then 

so neither Co nor £00 is rotund. 

5.1. 7 Example. Suppose that K is a compact Hausdorff space having 
more than one element. Let kl and k2 be different members of K. Then 
Urysohn's lemma assures that there is a continuous function h: K ~ [0,1] 
such that h (k1) = ° and h (k2) = 1. Let 12 be the function taking on the 
value 1 everywhere on K. Then 

Ilhlloo = 11121100 = 11~(h + 12)1100 = 1, 

so C(K) is not rotund. 

5.1.8 Example. The evidence presented so far might lead one to conjec
ture that rotund Banach spaces are always reflexive. The purpose of this 
example is to construct a nonreflexive rotund Banach space by finding a 
rotund norm for £1 that is equivalent to its original norm. This construc
tion might seem to have some unnecessary complications in it, but the new 
norm is being designed to have some special properties that will be useful 
in Example 5.1.22. 

The first step is to define some functions. For each positive integer m 
and each nonnegative real number t, let 

f () _ t 2 + mt 
rn t - . 

m+1 

Then for each Tn, 

(1) the function 1m maps [0,1] continuously onto [0,1]' and 1m(0) = ° 
and 1rn(1) = 1; 

(2) fm, 1:n, and 1:'n are all positive on (0, (0), so in particular the function 
1m is strictly increasing on [0, (0); 

(3) m~l t :S 1m(t) :S t whenever t E [0,1], with strict inequality when 
t E (0, 1); 
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(4) fm{st l + (1- s)b) < sfm(h) + (1- S)fm(t2) whenever hand t2 are 
different members of [0, (0) and 0 < s < 1; and 

(5) Ifm(td - fm(t2 )1 ~ max{ f:n(t) : 0 ~ t ~ I} It 1 - t21 ~ ~ It 1 - t21 
whenever t l , t2 E [0,1]. 

Let {Am: mEN} be a collection of pairwise disjoint infinite subsets of N 
whose union is N, and for each positive integer n let m(n) be the index m 
of the set Am containing n. Let 

c = { (an): (an) E £1, 2: fm(n) (Iani) ~ 1 }. 
n 

Notice that if (an) E C, then lanl ~ 1 for each n. Suppose that (((n,j));:l 
is a sequence in C that converges to some member ((n) of £1. For each j, 

12: fm(n) (I(n,jl) - 2: fm(n) (I(nl) I ~ E!fm(n)(I(n,jl) - fm(n)(I(nl)! 
n n n 

:s ~ L II(n,jl- I(nll 
n 

n 

= ~1I((n,j) - ((n)lIl, 

so Ln fm(n) (I(nl) = limj Ln fTn(n) (I (n,j I) :s 1 and ((n) E C. The set C is 
therefore closed. If (fin), bn) E C and 0 < s < 1, then 

n n 

:s S L fm(n) (Ifinl) + (1 - s) L fm(n) (I,nl) 
n n 

:s 1, 

so s(fin) + (1- s)bn) E C. The set C is therefore convex. It is clear that C 
is balanced and, since Be, ~ C, absorbing. The Minkowski functional Pc 
of C is therefore a semi norm on £1 by Proposition 1.9.14. Now fTn(t) 2: t/2 
whenever mEN and 0 ~ t ~ 1. From this and Proposition 1.9.14, it follows 
that 

which in turn implies that pc(x) = 0 only if x = O. The seminorm Pc is 
therefore actually a norm, which will be denoted by 11·11r- The normed 
space resulting from this new norm will be denoted by £l,T to distin
guish it from (£1,11'111)' Since Be, ~ C S;; 2Be" it is easy to check that 
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~llxI11:::; Ilxll r :::; IIxl11 whenever x E £1, so the norms 11·111 and 11·llr are 
equivalent. Now 

{x: x E £1, Ilxll r < I} ~ C ~ {x: X E £1, Ilxll r :::; I} 

by Proposition 1.9.14, which together with the fact that C is closed in the 
common topology of £1 and £i,r shows that C is the closed unit ball of £l,r' 

The equivalence of 11·111 and 11·llr shows that £l,r is a nonrefiexive Ba
nach space, so all that remains to be proved is that the norm 11·llr is 
rotund. Suppose that ((3n) and ("'fn) are different elements of Se"r' Let 
(I-£n) = ~ ( ((3n) + ("'fn))' It is enough to find a real number a greater than 1 
such that a(l-£n) E C, for this will imply that Ila(l-£n)llr :::; 1 and there
fore that II (I-£n) liT < 1. To this end, let no be a positive integer such that 
(3no =I "'fno' Then either \~((3no + "'fno) \ < ~1(3nol + ~hnol or l(3nol =I hnol· 
It follows that one of the first two inequality symbols in the inequality 

Lfm(n) (II-£nl) = Lfm(n)(I~((3n + "'fn)l) 
n n 

n 

n n 

actually represents a strict inequality, so Ln f-m(n) (II-£nl) < 1. This implies 
that maxnll-£nl < 1, so there is a real number a greater than 1 such that 
maxn laILn 1 < 1. An argument like that used to demonstrate that C is closed 
then shows that 

iLfm(n)(lal-£nl) - Lfm(n)(ll-£nl)j:::; ~lla(l-£n) - (I-£n) II 1 

n n 

= ~(a - 1)11(l-£n)111, 

so it is possible to reduce a enough that Lnf-m(n)(lal-£nl) < 1 while leav
ing a greater than 1. It follows that a(l-£n) E C, which establishes the 
rotundity of £l,T' 

It should be noted that in the last few lines of the preceding argu
ment it was established that if (an) E £l,T and Ln fm(n) (Ianl) < 1, then 
lI(an)llr < 1. This fact will be used again in Example 5.1.22. 

One consequence of Examples 5.1.4 and 5.1.5 (which, for the real case at 
least, is also apparent from diagrams of the corresponding unit spheres) is 
that Euclirlean 2-space is rotund while £i is not, even though the two spaces 
are isomorphic. Thus, in contrast to most properties of normed spaces that 
have been studied so far, rotundity is not isomorphism-invariant. The fol
lowing is the most that can be said along these lines. The proof is obvious. 
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5.1.9 Proposition. Every normed space that is isometrically isomorphic 
to a rotund normed space is itself rotund. 

The next portion of this section is devoted to obtaining a number of 
characterizations of rotundity. One easy one involves extreme points and 
is based on the observation that if Xo is a point in the unit sphere of 
a normed space X and there are elements Xl and X2 of Bx and a real 
number t such that 0 < t < 1 and Xo = tXI + (1- t)X2' then Xl and X2 also 
lie in S x; this is easy to prove directly and also follows immediately from 
Lemma 2.2.18. Thus, if a point in Sx is an "interior point" of a "closed 
line segment" {tXI + (1 - t)X2 : 0 ::::; t ::::; 1} in Bx such that Xl =1= X2, then 
both endpoints lie in Sx, which by Lemma 2.2.18 implies that the entire 
"closed line segment" lies in Sx. Therefore every point of Sx is an extreme 
point of Bx if and only if Sx includes no nontrivial "closed line segments," 
which happens if and only if X is rotund. 

5.1.10 Proposition. A normed space is rotund if and only if each element 
of its unit sphere is an extreme point of its closed unit ball. 

Another useful characterization of rotundity is based on the occurrence of 
equality in the triangle inequality. It is an elementary fact from Euclidean 
geometry that if A, B, and C are points in the Euclidean plane and B 
does not lie on the straight line segment connecting A to C, then the 
distance from A to C must be strictly less than the sum of the distances 
from A to B and from B to C. Treating the vectors of real Euclidean 
2-space as arrows2 transforms this property of the Euclidean plane into 
the statement that if Xl, X2 E t'~, then equality occurs in the inequality 
IlxI + x2112 ::::; IIxll12 + IIx2112 only if one of the vectors Xl and X2 is a 
nonnegative real multiple of the other. It turns out that this condition 
characterizes rotund norms among all norms. 

5.1.11 Proposition. Suppose that X is a normed space. Then the follow
ing are equivalent. 

(a) The space X is rotund. 

(b) Whenever XI,X2 E X and II Xl + X211 = IIxIiI + IIX211, one of the two 
vectors must be a nonnegative real multiple of the other. 

PROOF. Suppose first that X is rotund and that Xl and X2 are members 
of X such that IIXI +x211 = IlxI11 + Ilx211. It must be shown that one of the 
two vectors Xl and X2 is a nonnegative multiple of the other, so it may be 
assumed that neither is zero. It may even be assumed that 1 = IlxIIi ::::; Ilx211. 

2See the introduction to Section 1.2. 
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2 ~ II Xl + yll 
= IIXI +X2 - (1-llx211-I)X211 
~ II Xl +X211- (1-llx211- 1)ll x211 
= IIXIII + IIx211-llx211 + 1 
= 2, 

from which it follows that II ~(Xl + y) II = 1. Since Xl, Y E Sx, the rotundity 
of X requires that Xl = Y = Ilx211-IX2. This shows that (a) '* (b). 

Suppose conversely that (b) holds. Let Zl and Z2 be different members 
of Sx. Then neither of the two vectors is a nonnegative multiple of the 
other, which implies that Ilzl + z211 < Ilzlll + IIz211 = 2 and therefore that 
11~(zl + z2)11 < 1. The space X is therefore rotund, so (b) '* (a). • 

It should be noted that for any normed space whatever and any two 
members Xl and X2 ofthe space such that one of the vectors is a nonnegative 
multiple of the other, it is true that IIxl + x211 = IlxIiI + Ilx211. Thus, the 
preceding proposition yields the following strengthened form of the triangle 
inequality for rotund normed spaces. 

5.1.12 Corollary. Suppose that X is a rotund normed space and that 
Xl, X2 EX. Then Ilxl + x211 ::; IIxIl1 + Ilx211, with equality if and only if one 
of the two vectors is a nonnegative real multiple of the other. 

Still another characterization of rotundity involves support hyperplanes. 
Most of the following definition was given earlier as Definition 2.11.3, but 
will be repeated here since it appeared in an optional section. 

5.1.13 Definition. Let A be a subset of a topological vector space X. 
A nonzero x* in X* is a support functional for A if there is an Xo in A 
such that Re x* Xo = sup{ Re X* X : X E A}, in which case Xo is a support 
point of A, the sct {x : X E X, Re X* X = Re x* Xo } is a support hyperplane 
for A, and the functional X* and the support hyperplane are both said to 
support A at Xo. 

Notice that if H is the support hyperplane of the preceding definition, 
then H n A is exactly the collection of points at which H supports A, and 
this intersection is by definition nonempty. 

An abuse of terminology is being committed in the preceding definition. 
In standard linear algebra parlance, a hyperplane in a vector space V is 
usually defined to be a set of the form {v : v E V, f ( v) = ao }, where f 
is a nonzero linear functional on V and ao is a scalar. In Definition 5.1.13, 
the support "hyperplane" is the set of all points in X where a particular 
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real-linear functional, rather than a true linear functional, takes on some 
constant value. Of course, there is no difference when the scalar field is ]R, 

but there is when it is C. For example, let x* be the linear functional 
on the complex Banach space C given by the formula x*a = a. Then x* 
supports Be at 1, with the corresponding support hyperplane being the 
line {a : a E IC, Rea = I}. However, it is easy to see that the true 
hyperplanes in IC are exactly the individual points of IC rather than lines. 
Of course, every complex normed space X is also a real normed space when 
multiplication of vectors by scalars is restricted to ]R x X. Thus, when X is 
a complex normed space, the object called a hyperplane in Definition 5.1.13 
really is a hyperplane in the standard linear algebra sense if X is treated 
as a real normed space in this fashion. 

To see what motivates the next characterization of rotundity, it will be 
helpful to review some of the properties of the hyperplanes of the real 
vector space Il~? Since every linear functional on ]R2 has the form (a,;3) 1---* 

aoa + ;30;3 where ao,;3o E ]R, the hyperplanes in ]R2 are exactly the sets of 
the form 

{(a,;3): (a,;3) E ]R2, aoa + ;30;3 = /o} 

such that ao,;3o, /0 E ]R and ao and ;30 are not both zero. Thus, the hyper
planes in ]R2 are precisely the straight lines in ]R2. The hyperplanes in 1R2 

that pass through the origin, that is, the hyperspaces in ]R2, are precisely 
the kernels of the linear functionals on the space. If H is a hyperplane 
in 1R2 that does not pass through the origin, then clearly there is some 
linear functional f on 1R2 such that 

H = {(a,;3): (a,;3) E ]R2, f(a,;3) = I}, 

from which it follows that 

{ (a,;3) : (a,;3) E 1R2 , f(a,;3) < 1} 

is the open halfspace bounded by H that contains the origin, while 

{(a,;3): (a,;3) E Il~.z, f(a,;3) > I} 

is the open halfspace on the other side of H. 
Now suppose that X is a real normed space whose underlying vector 

space is 1R2 . It follows from the preceding discussion that the support hy
perplanes for Ex are exactly the straight lines in 1R2 that intersect Ex 
without penetrating its interior, that is, the "tangent lines" to Ex. If X is 
rotund, then no support hyperplane for Ex can intersect Ex at more than 
one point, for the straight line segment connecting two points of intersec
tion would have to lie in Sx. Suppose conversely that X is not rotund. 
Let x 1 and X2 be different points of S x such that the entire line segment 
{tXl + (1- t)X2 : 0 :S t:S 1} lies in Sx. By Lemma 2.2.18, the straight line 
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that includes this segment cannot intersect Bx, so this line is a support 
hyperplane for Bx that intersects it at more than one point. To summa
rize, the space X is rotund if and only if each support hyperplane for B x 
intersects it at exactly one point. This fact generalizes to arbitrary normed 
spaces. 

5.1.14 Lemma. Suppose that H is a support hyperplane for a subset A 
of a topological vector space. Then H n A 0 = 0. 

PROOF. Let X be the topological vector space in question, and let x* be 
a nonzero member of X* and Xo an element of A such that Re x*xo = 

sup{Rex*x: x E A} and H = {x: x E X, Rex*x = Rex*xo}. Suppose 
that there is some y in H n A o. Lct x 1 be an element of X such that 
Rex·xl = l. Then y + t5xl E AD for some small positive 15, so 

Rex'xo 2: Rex*(y + t5Xl) = Rex·xo + 15 > Rex'xo, 

a contradiction. • 
5.1.15 Theorem. (A. F. Ruston, 1949 [203]). A normed space X is rotund 
if and only if each support hyperplane for B x supports B x at only one 
point. 

PROOF. This proof is very much like the one done above for real normed 
spaces having ]R2 as their underlying vector space. Suppose first that X 
is rotund. Let H be a support hyperplane for Bx. Then H n Bx C;;; Sx 
since H n Bx = 0. The convexity of Hand B x assures that H n B x is 
also convex, so H n Bx cannot have two distinct points in it without also 
including the entire straight line segment connecting the points. However, 
the set Sx includes no nontrivial straight line segments, so the only point 
in H n B x is the one guaranteed by the definition of a support hyperplane. 

Suppose conversely that X is not rotund. Let Xl and X2 be distinct 
elements of Sx such that {tXl + (1 - t)X2 : 0 ::; t ::; 1} C;;; Sx; call 
this line segment C. By Eidelheit's separation theorem, there is an x· 
in X* such that Rex'x 2: 1 for each x in C and Rex'x ::; 1 for each x 
in Bx. Notice in particular that Rex'xl = Rex'x2 = 1. It follows that 
{x : X E X, Re x'x = I} is a support hyperplane for Ex at both Xl 

and X2. • 

Since a member x' of the unit sphere of the dual space of a normed 
space X supports B x at some point x of S x if and only if Re x· x = x· x = 1, 
the following result is essentially just a restatement of the preceding one. 

5.1.16 Corollary. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is rotund. 
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(b) No member x* of Sx' supports Bx at more than one point. 

(c) For each x* in Sx" there is no more than one x in Sx such that 
Rex*x = 1. 

(d) For each x' in Sx" there is no more than one x in Sx such that 
x·x = 1. 

The next characterization of rotundity is important in approximation 
theory. It links rotundity to the possession by nonempty convex sets of a 
certain nearest point property. 

5.1.17 Definition. A nonempty subset A of a metric space M is a set of 
uniqueness if, for every element x of M, there is no more than one element y 
of A such that d(x, y) = d(x, A). The set A is a set of existence or proximinal 
if, for every element x of M, there is at least one element y of A such that 
d(x, y) = d(x, A). The set A is a Chebyshev set if, for every element x of M, 
there is exactly one element y of A such that d(x,y) = d(x,A); that is, if A 
is both a set of uniqueness and a set of existence. 

5.1.18 Theorem. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is rotund. 

(b) Every nonempty convex subset of X is a set of uniqueness. 

(c) Every nonempty closed convex subset of X is a set of uniqueness. 

PROOF. It will first be shown that (a) =?- (b). Suppose that X is rotund, 
that C is a nonempty convex subset of X, and that Xo EX. The goal is to 
show that there are not two or more points of C closest to Xo. Since y is a 
point of C closest to Xo if and only if y - Xo is a point of - Xo + C closest to 0, 
it may be assumed that Xo = O. It may also be assumed that d(O, C) > 0 
and then, after multiplying each point of C by the same positive constant, 
that d(O, C) = 1. Suppose that Cl and C2 are points of C closest to O. Then 
Ilcili = IIC211 = 1, so 

{tCl + (1 - t)C2 : 0 ~ t ~ I} ~ C n Bx ~ Sx. 

Since X is rotund, it follows that Cl = C2, which proves that (a) =?- (b). 
It is clear that (b) =?- (c), so all that remains to be shown is that (c) =?- (a). 

Suppose that X is not rotund. Then there is a line segment in Sx of the 
form {tXl + (1 - t)X2 : 0 ~ t ~ I}, where Xl =I- X2. This line segment is a 
nonempty closed convex subset of X such that each of its infinitely many 
points is at the same distance from the origin. The failure of (a) therefore 
implies the failure of (c). • 

5.1.19 Corollary. (M. M. Day, 1941 [47]). If a normed space is rotund and 
reflexive, then each of its nonempty closed convex subsets is a Chebyshev 
set. 
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PROOF. Let C be a nonempty closed convex subset of a rotund reflex
ive normed space X and let Xo be an element of X. Then there is a se
quence (Yn) in C such that limn llYn - xoll = d(xo, C). By the reflexivity 
of X, there is some subsequence (Yn;) of the bounded sequence (Yn) that 
converges weakly to some Yo. Then Yo E C since C is weakly closed, and Yo 
is a point of C closest to Xo since an application of Theorem 2.5.21 shows 
that 

d(xo, C) :::; Ilyo - xoll :::; liminf llYn; - xoll = d(xo, C). 
J 

Therefore there is at least one point of C closest to Xo. Notice that the 
rotundity of X has not yet been used. 

Finally, the rotundity of X implies that C is a set of uniqueness, so 
there is no other point of C besides Yo closest to Xo. Thus, the set C is 
Chebyshev. • 

It was shown in the proof of the preceding corollary that if a normed 
space X is reflexive, then each of its nonempty closed convex subsets is a 
set of existence. Conversely, it can be shown, as a straightforward corollary 
of James's theorem that appears in the optional Sections 1.13 and 2.9, that 
a Banach space is reflexive if every nonempty closed convex subset of the 
space is a set of existence, and a tiny bit of extra work based on a result of 
Jorg Blatter then shows that a norrned space is reflexive if every nonernpty 
closed convex subset of the space is a set of existence; see Exercise 5.11. 
Combining this with Theorem 5.1.18 and Corollary 5.1.19 shows that a 
normed space is rotund and reflexive if and only if each of its nonempty 
closed convex subsets is a Chebyshev set. This important result is sometimes 
called the Day-James theorem. 

The last characterization of rotundity to be given here characterizes the 
property in terms of itself. One important ingredient in the characterization 
is the following obvious result. 

5.1.20 Proposition. If a Ilormed space is rotund, then so is each of its 
subspaces. 

As a trivial consequence of this and the fact that every normed space 
is a subspace of itself, a normed space is rotund if and only if each of its 
subspaces is rotund. The following is a far better result along these lines. 

5.1.21 Proposition. A normed space is rotund if and only if each of its 
two-dimensional subspaces is rotund. 

PROOF. Suppose that X is a normed space that is not rotund. It is enough 
to find a two-dimensional subspace of X that is not rotund. Let Xl and X2 

be distinct members of S x such that ~ (Xl + X2) E S x. If there were a 
scalar a such that Xl = aX2, then 1 and a would be different scalars 
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of absolute value 1 such that ~ (1 + a) also has absolute value 1, which 
would contradict the rotundity of IF. It follows that Xl and X2 are linearly 
independent. Therefore ({Xl, X2}) is a two-dimensional subspace of X that 
~~~~. . 

Proposition 5.1.20 leads naturally to the question of whether quotient 
spaces formed from rotund normed spaces must be rotund. Perhaps sur
prisingly, the answer is no, even for Banach spaces. The following example 
is from a 1959 paper by Victor Klee [137]. 

5.1.22 Example. This is a continuation of Example 5.1.S. The reader 
should review the following items from that example: property (3) of the 
functions f m, the definition of the sets Am and C, the fact that if (an) E C 
then Ian I ~ 1 for each n, the fact that C is the closed unit ball of the rotund 
Banach space £1,,., and the fact that II (an)lIr < 1 whenever (an) E £l,r and 
l:n fm(n) (Ianl) < 1. 

Let Y be any separable nonrotund Banach space; for example, either Co 
or £1 will do. Let D be a countable dense subset of By and let 9 be a 
function from N onto D such that g(Am) ~ m";.l By for each m. Define 

T: £l,r --> Y by the formula T((an )) = l:n ang(n); notice that the sum 
is absolutely convergent, so there is no problem with the definition. The 
function T is clearly linear. 

Most of the remaining work in this example involves showing that T 
maps the open unit ball of £l,r onto the open unit ball of Y. To this end, 
it will first be shown that T(C) ~ By. Suppose that (an) E C. Then 

IIT(an)1I = IlL ang(n)11 
n 

n 

~ L( L lanlm: 1) 
m nEA~ 

~ L( L fTT1(la n l)) 
m nEA~ 

= L fm(n) (Ianl) 
n 

~ 1, 

as claimed. Notice that this also shows that T is bounded, since C = B i,r . 

Let Ui,,, and Uy be the open unit balls of £l,r and Y respectively. It will 
now be shown that T(Uil r) 2 Uy. Suppose that y E Uy. Since 112yll < 2, 
the open balls of radius l' centered at 2y and the origin intersect (at y, for 
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example), so there is a d l in D such that 

Since 114y - 2d l ll < 2, there is a d2 in D such that 

114y - 2d l - d2 11 < 1. 

Since 118y - 4dl - 2d2 11 < 2, there is a d3 in D such that 

118y - 4dl - 2d2 - d3 11 < 1. 

Continuing in the obvious fashion produces a sequence (dn ) in D such that 

for each positive integer k, so y = Ln 2-ndn. Rearranging the terms of 
the sequence (2- n ) and interspersing zeros where necessary produces a 
member (rn) of £1,,. such that T(rn) = y. It follows from property (3) of 
the functions fm that Ln fm(n)(rn) < 1, so (rn) E Ul 1 •r • This proves that 
T(Uc1,J :2 Uy . An immediate consequence of this is that T(1\,.) = Y, so 
T is an open mapping. Since Uy ~ T(Ul l r) ~ By and T(Uc l J is open, it 
must be that T(Ue, ,) = Uy.' , 

By the first isomorphism theorem for Banach spaces, there is an isomor
phism S from £1,,./ ker(T) onto Y. A glance at the proof of that theorem 
shows that S is the map from Theorem 1.7.13 such that T = S7f, where 7f is 
the quotient map from £1,,. onto £1,,./ ker(T). Let Ue"r/ ker(T) be the open 
unit ball of £l,,./ker(T). Then 7f(UC1 ,r) = Ue",./ker(T) by Lemma 1.7,11. 
Since T(Ue,.,) = Uy, it must be that S(UC"r/ker(T» = Uy. It follows that 
S is an isometric isomorphism from £1,,./ ker(T} onto Y. Thus, the quotient 
space £1,,./ ker(T) of £1,1' is not rotund even though £1,1' is. 

It does turn out that if X is a rotund normed space and M is a closed 
subspace of X that is a set of existence in X, then X / M is rotund. See 
Exercise 5.13. 

Direct sums do a better job of preserving rotundity than do quotients. 

5.1.23 Theorem. Suppose that Xl,.'" Xn are normed spaces. Then 
Xl EEl ... EEl Xn js rotund jf and only if each Xj is rotund. 

PROOF. This proof is based on the rotundity of real £~. It may be assumed 
that n = 2, for then an obvious induction argument based on the fact that 
(Xl EEl·· . EEl X k - 1 ) EEl X k is isometrically isomorphic to Xl EEl··· EEl X k when 
2 ::.:; k ::.:; n yields the general case. 

Suppose first that either Xl or X 2 is not rotund. It follows from Propo
sition 1.8.10 (a) that Xl EEl X 2 has a subspace isometrically isomorphic to 
this nonrotund space, so Xl EEl X 2 is itself not rotund. 
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Now suppose conversely that both Xl and X 2 are rotund. Let (Xl,X2) 
and (YI,Y2) be different members of SX, fBX2 • The proof will be finished 
once it is shown that 11~(xl + YI,X2 + Y2)11 < 1. Notice that 

If either Ilxlll =l-IIYlll or IIx211 =I- IIY211, then it follows from the rotundity of 
real £~ that 

II ~(XI + YI, X2 + Y2) II = II Hlixi + YIII,IIX2 + Y211) 112 
::; IIHllxll1 + IIYIII, IIx211 + IIY211)112 
< 1, 

as required. Thus, it may be assumed that IlxI11 = IIYIII and IIx211 = IIY211· 
It may also be assumed without loss of generality that Xl =I- YI. Then 

by the rotundity of X I. Therefore 

II ~ (Xl + YI, X2 + Y2) II = II Hlixi + yIiI, IIx2 + Y211) 112 
< IIHllxll1 + IlytIi, IIX211 + IIY211)112 
= 1, 

which finishes the proof. • 
Much more could be said about basic rotundity, but for the purposes of 

this book it is time to move on to some of its special forms. The reader 
interested in learning more about rotundity in general should see Day's 
book [56, pp. 144~ 151] for an excellent brief discussion of it, and Istratescu's 
book [107] for a more thorough introduction to the subject. 

Exercises 

5.1 Suppose that (Xn) is a sequence of normed spaces and that 1 ~ P < =. 
Then the Cp sum lp((Xn)) of the sequence (Xn) is the collection of all 
sequences (xn) such that Xn E Xn for each nand LnllxnllP is finite, 
along with the obvious vector space operations and the norm defined by 
the formula 

Prove that all of this really does define a normed space, and that lp (( X n)) 
is a Banach space if and only if each Xn is a Banach space. 
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5.2 With all notation as in the preceding exercise, suppose that 1 < p < 00. 

Prove that fp((Xn)) is rotund if and only if each Xn is rotund. You 
may use the fact about the rotundity of certain Lebesgue spaces that is 
mentioned in Example 5.1.4. 

5.3 Prove that if K is a compact Hausdorff space having more than one 
element, then rca(K) is not rotund. 

5.4 This exercise assumes some knowledge of inner product spaces. See, for 
example, [24J (in which such spaces are called pre-Hilbert spaces) or [202J. 
Prove that every inner product space is rotund. 

5.5 Suppose that X is a normed space. Prove that the following are equivalent. 

(a) The space X is rotund. 

(b) Whenever (Xn) is a sequence in Sx and there is a member x· of Sx' 
such that limn x'Xn = 1, all weakly convergent subsequences of (Xn) 
have the same limit. 

(c) Whenever (Xn) is a sequence in Sx and there is a member x· of Sx' 
such that limn x'xn = 1, all convergent subsequences of (Xn) have 
the same limit. 

5.6 (P. R. Beesack, E. Hughes, and M. Ortel, 1979 [22]). Suppose that X is 
a complex normed space. Prove that the following are equivalent. 

(a) The space X is rotund. 

(b) For each pair Xl and X2 of different members of Sx, there is a 
scalar a X" X2 such that Ilaxl,x2xl + (1 - ax" x2)x211 < 1. 

5.7 Prove that a normed space is rotund if and only if no two closed balls in 
the space having disjoint interiors intersect at more than one point. 

5.8 If C is a nonempty closed convex subset of a Hausdorff TVS X, then an 
element Xe of C is an exposed point of C if there is an x· in X' such that 
Re x· is bounded from above on C and attains its supremum on C at Xe 

and only at Xe. (This definition was previously given in Exercise 2.112, in 
which it was shown that the property of being an exposed point is properly 
stronger than that of being an extreme point.) Prove that a normed space 
is rotund if and only if every point of its unit sphere is an exposed point 
of its closed unit ball. 

5.9 Prove that if X is a Banach space that is not zero- or one-dimensional, 
then there is a nonrotund norm on X equivalent to the original norm. 

5.10 Suppose that X is a normed space and that there is a one-to-one bounded 
linear operator T from X into a rotund normed space Y. Prove that the 
formula IIXllr = Ilxll + IITxl1 defines a rotund norm for X equivalent to its 
original norm 11·11. 

5.11 This exercise requires James's theorem from either of the optional Sections 
1.13 and 2.9. 

(a) Prove that if every nonempty closed convex subset of a Banach space 
is a set of existence, then the space is reflexive. 
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(b) Prove that a Banach space is rotund and reflexive if and only if each 
of its nonempty closed convex subsets is a Chebyshev set. 

(c) It is a 1976 result of Jorg Blatter [30J that a normed space is complete 
if every nonempty closed convex subset of the space has an element 
of minimum norm. Use this result to improve parts (a) and (b) of 
this exercise by replacing "Banach space" with "normed space." 

5.12 (a) Show that every reflexive subspace of a normed space is a set of 
existence. 

(b) Show that every nonempty weakly compact subset of a normed space 
is a set of existence. 

(c) Show that every nonempty weakly* compact subset of the dual space 
of a normed space is a set of existence. 

5.13 (a) Prove that if M is a subspace of a rotund normed space X and M 
is a set of existence in X, then XjM is rotund. (Notice that the fact 
that M is a set of existence implies that it is closed. Why?) 

(b) From parts (a) of this exercise and Exercise 5.12, conclude that if 
M is a reflexive subspace of a rotund normed space X, then XjM 
is rotund. (This is a 1959 result of Victor Klee [137J.) 

5.2 Uniform Rotundity 

By Proposition 5.1.2, a normed space is rotund if and only if every nontriv
ial straight line segment whose endpoints lie in the unit sphere of the space 
has its midpoint in the interior of the closed unit ball. This leads naturally 
to the question of how far into the interior of the closed unit ball the mid
point of such a segment must be if the segment has some minimum positive 
length, since this is a measure of the "amount of rotundity" the space has. 
As will be seen in Example 5.2.13, it is quite possible for a normed space X 
to be rotund and yet for there to be sequences (xn) and (Yn) in Sx such 
that Ilxn -Ynll is bounded away from 0 even though supn II ~(Xn + Yn)11 = 1. 
It seems reasonable to call a normed space X uniformly rotund if this does 
not happen; that is if, for every positive f, there is a positive /5 depending 
on f such that 11~(x + y)11 :s 1 - /5 whenever x, Y E Sx and Ilx - yll :::;. f. 

5.2.1 Definition. (J. A. Clarkson, 1936 [41]). Let X be a normed space. 
Define a function Ox: [0,2J --+ [0, 1J by the formula 

bx(f) = in£{ l-II~(x + y)11 : x,y E Sx, !Ix - yli :::;. f} 

if X 1= {O}, and by the formula 

if E = 0; 

ifO<E:S2 
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if X = {O}. Then 8x is the modulus of rotundity or modulus of convexity 
of X. The space X is uniformly rotund or uniformly convex if {j x (f) > 0 
whenever 0 < f ::; 2. 

It is easy to see that for each normed space X, the modulus of rotundity 
is a nondecreasing function of f such that {j x (0) = O. It is also clear that if 
M is a subspace of X, then {j M (f) ~ 8 x (f) when 0 ::; f ::; 2. Furthermore, 
if X is a real one-dimensional normed space, then 

if f = 0; 

if 0 < f ::; 2, 

which means that the definition of b{O} given above is exactly what is needed 
to avoid having exceptions for the zero-dimensional case to the properties 
given at the beginning of this paragraph. 

The first portion of this section is devoted to obtaining Theorem 5.2.5, 
which gives some alternative formulas for the modulus of rotundity that 
are often used as its definition. These formulas are not actually used in any 
crucial way later in this book. The main reason for developing them is to 
give some examples of a certain type of argument involving the geometry 
of two-dimensional real normed spaces that is often encountered in the 
theory of normed spaces but that has not yet been used in this book. 
A generous amount of detail will be provided to illustrate how much care 
must be taken to avoid making unwarranted assumptions about the relative 
positions of objects such as lines and points in the plane when carrying 
out such an argument, as well as other unjustified assumptions based on 
possibly unsupported intuition about the shape of closed unit balls. 

5.2.2 Lemma. Suppose that X is a two-dimensional real normed space. 
Then S x is connected. Moreover, if x* E X*, then { x : XES x, x* x ~ 0 } 
is connected. 

PROOF. Only the second statement in the conclusion needs to be proved, 
since the first then follows by letting x* = O. By an easy argument involv
ing the facts that X is isometrically isomorphic to a normed space with 
underlying vector space ]R2 and that continuous functions preserve con
nectedness, it may be assumed that the vector space underlying X is the 
same vector space]R2 that underlies £~. Let 11·llx be the norm function of X 
and let x* be a member of X*. Define a map f: {x: x E Se~, x*x ~ O}----> 

{x : x E Sx, x*x ~ O} by the formula f(x) = Ilxllx1X. It is easy to 
check that f is continuous and has range {x : x E Sx, x·x ~ O}. Since 
{x : x E Se~, x·x ~ O} is either a circle or a closed semicircle, it is con
nected, and therefore {x : XES x, x* x 2: 0 } is also connected. • 

5.2.3 Lemma. Suppose that X is a normed space that is not zero-dimen
sional if IF = C and is neither zero- nor one-dimensional if IF = R If 
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Xo 0 

(a) (b) 

FIGURE 5.1. Two diagrams for the proof of Lemma 5.2.3. 

Xo E Sx and Yo E Ex, then there are members Xl and Yl of Sx such that 
Xl-Yl =Xo -Yo and II~(XI +ydll ~ 1I~(xo+Yo)ll· 

PROOF. Since X is a real normed space when multiplicat.ion of vectors by 
scalars is restricted to IR x X, and since a one-dimensional complex normed 
space becomes a two-dimensional real normed space when treated this way, 
it may be assumed that IF = IR, and then that X is two-dimensional, and, 
for purposes of visualization, that the vector space underlying X is JR.2 . It 
may also be assumed that IIYol1 < 1. 

Let X* be a member of X* whose kernel is the line through Xo and -Xo 
and such that x*Yo ~ O. Then the set {x: x E Sx, x*x ~ O} is connected 
due to the preceding lemma. Since 

Ilxo + Yo - xoll = Ilyoll < 1 

and 

II-xo + Yo - xoll ~ 211 xoll - IIYol1 > 1, 

the intermediate value theorem for connected sets assures that there is an Xl 
in {x : xES x, x* x ~ 0 }, necessarily different from both Xo and - xo, such 
that IIxl + Yo - xoll = 1. Let Yl = Xl + Yo - Xo· Then Xl,Yl E Sx and 
Xl - Yl = Xo - Yo, so all that remains to be proved is that II ~(Xl + Yl)11 ~ 

11~(xo+Yo)ll· 
If Zl E Ex and Z2 E Ex, then tZl + (1- t)Z2 E Ex when 0 < t < 1; this 

follows from the triangle inequality as well as from Lemma 2.2.18. This fact 
will be used repeatedly in the following arguments. Let Zl, Z2 represent the 
straight line (not just a straight line segment) through the points Zl and Z2 
in X when Zl i= Z2. In Figure 5.1 (a), the set Wo is the set of all points on 
or above Xo, -Xo and on or to the left of xo, -Xl, while l-VI is the set of all 
points strictly above Xl, -xo and strictly to the left of Xo: Xl. Notice that 
the parallelogram with vertices xo, Xl, -xo, and -Xl lies in Ex by an easy 
convexity argument, and the interior of that parallelogram lies in Ex. It 
has already been shown that, with the points Xo, -xo, and Xl arranged as 
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they are in Figure 5.1 (a), the point Yo lies on or above xo, -Xo. If Yo were 
strictly to the left of Xo, Xl, then it would follow that either Yo E Wo or 
YI E WI' However, either case would place one of the two points Xo and Xl 

in the "interior" of a straight line segment with one endpoint in Bx and 
the other in B1:, which would imply that either Xo or Xl is in B1:. This 
contradiction shows that Yo lies on or to the right of xo, Xl. If Yo were to 
lie on this line, then an easy argument involving the location of YI would 
show that IlxI11 < 1, another contradiction. Therefore Yo lies strictly to the 
right of XO,XI' 

Since -Xo and -Xl are different elements of Sx, it follows that the points 
of -xo, -Xl lying on or above Xo, -Xo all have norm at least 1, so no point 
on Xo, Yo strictly between Xo and Yo can intersect -Xo, -Xl, nor can Yo 
lie on that line; see Figure 5.1 (b). Thus, the point Yo lies strictly to the 
left of -xo, -Xl' Since xo, Xl, 0, Xl - Xo, and -xo, -Xl are parallel, it also 
follows that ~ (xo+yo), denoted by mo in Figure 5.1 (b), lies strictly between 

xo, Xl and 0, Xl - Xo. Therefore 0, ~ (xo + Yo) intersects xo, Xl somewhere 

on or above Xo, -Xo and at a point of 0, ~ (xo + Yo) that is reached by 
traveling from 0 to ~ (xo + Yo) and then beyond. 

The point to the preceding argument is that there are real numbers S 

and t such that s > 1 and t 2': 0 that satisfy the equation 

It follows easily that 

If t ::; 1, then 

S 
-(xo + Yo) = Xo + t(XI - xo). 
2 

Ilxo + t(XI - xo)11 ::; 1 ::; Ilxo + (t + S)(XI - xo)ll· 

If t > 1, then the facts that IlxI11 = 1, that Ilxo + (t + S)(XI - xo)11 2': 1, 
and that Xo + t(XI - xo) lies on the straight line segment connecting Xl to 
Xo + (t + S)(XI - xo) together assure that 

Ilxo + t(XI - xo)11 ::; Ilxo + (t + S)(XI - xo)ll· 

In either case, it follows that II ~s(xo + Yo) II ::; II ~S(XI + YI) II, and therefore 
that 11~(xo+yo)ll::; 11~(xI+ydll· • 

5.2.4 Lemma. Suppose that X is a normed space, that 0 < E < 2, and 
that X and yare members of Sx such that Ilx - yll = E. Then there are 
sequences (xn) and (Yn) in Sx such that Ilxn -Ynll > E for each n and such 
that limn Xn = X and limn Yn = y. 

PROOF. It may be assumed that X is a two-dimensional real normed space 
whose underlying vector space is IR2. Let X* be a nonzero member of X* 
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x y 

• ~(y - x) ~(x-y) 
o 

-y -x 

FIGURE 5.2. A diagram for the proof of Lemma 5.2.4. 

such that x*(x - y) = O. If x·x = 0, then it would follow that x, y E 

Sx n ker x· and therefore that Ilx - yll is either 0 or 2, a contradiction. It 
may therefore be assumed that x·x = x*y = 1. For each real number 8, 
let H{j = {z : z E X, x*z = 8}. The topmost horizontal line in Figure 5.2 
represents HI. The convexity of Bx assures that the parallelogram whose 
vertices are x, y, -x, and -y lies in Bx. The conclusion of the lemma is 
immediate if the straight line segment HI n Bx has length greater than E, 

so it may be assumed that x and yare the endpoints of HI n Bx. 
Suppose that Hr;o n Bx were to have length E for some 80 such that 

o < 80 < 1. Then some point of S x would lie on the line through x 
and -y somewhere strictly between those points, which would imply that 
II ~ (x - y) II = 1. Since II x - y II = f < 2, this is a contradiction. Therefore 
HIj n Bx has length greater than f when 0 < 8 < 1. Let (8n ) be a sequence 
of positive real numbers strictly increasing to 1. For each positive integer n, 
let Xn and Yn be the endpoints of H6n nBx such that Xn is on or to the left 
of the line through x and -Y in Figure 5.2 and Yn is on or to the right of 
the line through y and -x. Notice that Xn, Yn E Sx and Ilxn - Yn II > f for 
each n. Because of the compactness of Sx, it may be assumed that there are 
elements Xo and Yo of Sx such that limn Xn = Xo and limn Yn = Yo. Since 
Xo, Yo E HI n Sx and Ilxo - Yoll 2: f, it follows that x = Xo and Y = Yo. • 

5.2.5 Theorem. Suppose that X is a normed space that is not zero-dimen
sional if IF = C and is neither zero- nor one-dimensional if IF = JR. Let 8x 
be the modulus of rotundity of X. Then 

8X(E) = inf {l-II~(x + y)11 : x, y E B x , IIx - yl 2: f} 
= inf {l-II~(x +y)11 : X,y E sx, Ilx - yll = E} 
= in£{ l-IIHx + y)11 : X,y E Bx , Ilx - yll = f} 

when 0 ::; f ::; 2, and 

8X(f) = inf {l-II~(x + y)1I : x, y E Sx, Ilx - yll > f} 
= in£{ l-II~(x + y)1I : x,y E Bx , IIx - yll > f} 

when 0 ::; f < 2. 
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PROOF. It may be assumed that IF = R Let Ox be as in Definition 5.2.1 and 
let 01, 02, 03, 04, and 05 be the five infima in the statement of this theorem 
in the order in which they occur. The first claim is that OX(E) = 01(10) 
when 0 ::; E ::; 2. Suppose that 0 < EO ::; 2, that Xo, Yo E Ex, and that 
Ilxo - Yoll 2: fO· To prove the claim, it is enough to show that OX(EO) ::; 
1-11 ~(xo + Yo) II· It may be assumed that Xo E Sx. By Lemma 5.2.3, there 
are members Xl and Yl of Sx such that Ilxl - Ylil = Ilxo - Yoll 2: EO and 
II~(XI +ydll2: 11~(xo +Yo)ll, so 

h(Eo) ::; 1 -II~(XI + ydll ::; l-II~(xo + Yo)ll· 

Therefore OX(E) = Ol(E) when 0 ::; E ::; 2, as claimed. A similar argument 
shows that 84(E) = 85(E) when 0::; E < 2. 

The next claim is that 8X(E) = 04(10) when 0 ::; 10 < 2. To show this, 
suppose that 0 < El < 2, that X2, Y2 E Sx, and that IIx2 - Y211 = 101. 
It is enough to show that 84 (Ed -::: 1 - 11~(X2 + Y2)11. By Lemma 5.2.4, 
there are sequences (vn) and (wn ) in Sx such that Ilvn - wnll > 101 for 
each n and such that limn v" = X2 and limn Wn = Y2. It follows that 
84 (Ed -::: 1 - 11~(Vn + wn)11 for each n, so passing to the limit yields the 
inequality needed to prove the claim. 

It is next claimed that 82(E) = 8:'!(E) when 0 -::: E ::; 2. Suppose that 
o < E2 -::: 2, that X:,!, Y3 E Ex, and that IIx3 - Y311 = 102. To prove the claim, 
it suffices to show that 82(102) ::; l-II~(X3 + Y3)11. Suppose for the moment 
that X3 and Y3 both have norm less than 1. Then there are two closed line 
segments of length 102 on the line through X3 and Y3 such that each segment 
has one endpoint in Sx and the other in Ex. Since ~(X3 + Y3) is a convex 
combination of the midpoints of these two segments, the midpoint of at least 
one of the segments has norm at least II ~ (X3 + Y3) II, so it may be assumed 
that X3 E Sx. Lemma 5.2.3 then produces clements X4 and Y4 of Sx 
such that IIx4 - Y411 = II x3 - Y311 = 102 and 11~(x4 + Y4)11 2: H(X3 + Y3)11· 
Therefore 

as required for the claim. 
The final claim needed to prove the theorem is that 8X(E) = 82(f) when 

o -::: E ::; 2. Suppose that 0 < 103 < 2 and that X5 and Y5 are elements 
of Sx such that IIx5 - Y511 2: E3- It is enough to show that 82 (E3) <::; 
1 - II ~ (X5 + Y5) II· The closed line segment with endpoints X5 and Y5 in
cludes a closed line segment of length exactly E3 centered at ~ (X5 + Y5), 
which by the argument of the preceding paragraph produces elements X6 

and Y6 of Sx such that IIx6 - Y611 = 103 and 11~(x6 + Y6)11 2: 11~(x5 + Y5)11· 
Therefore 

which finishes the proof of the claim and of the theorem. • 
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It is time to leave the general study of the modulus of rotundity and to 
focus on uniform rotundity. Notice that if X is a uniformly rotund normed 
space with modulus of rotundity 8x and x and yare different elements 
of Sx, then 11~(x + y)11 ::; 1 - 8x (11x - yll) < 1, which proves the most 
basic fact about uniformly rotund normed spaces. 

5.2.6 Proposition. Every uniformly rotund normed space is rotund. 

As is true for rotundity, uniform rotundity is not always preserved by iso
morphisms. For example, real Euclidean 2-space is clearly uniformly rotund 
even though it is isomorphic to real fi, a nonrotund space. The following 
statement, whose proof is obvious, is about all that can be said in this 
direction. 

5.2.7 Proposition. Every normed space that is isometrically isomorphic 
to a uniformly rotund normed space is itself uniformly rotund. 

Though the definition of uniform rotundity allows its nature to be visu
alized easily, the following sequential characterizations of the property are 
sometimes easier to use in applications. 

5.2.8 Proposition. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is uniformly rotund. 

(b) Whenever (xn) and (Yn) are sequences in Sx and II ~ (xn + Yn) II -+ 1, 
it follows that Ilxn - Ynll -+ O. 

(c) Whenever (xn) and (Yn) are sequences in Bx and 11~(Xn +Yn)ll-+ 1, 
it follows that Ilxn - Ynll -+ O. 

(d) Whenever (xn) and (Yn) are sequences in X and Ilxnll, llYn II, and 
11~(xn + Yn)11 all tend to 1, it follows that Ilxn - Ynll-+ O. 

PROOF. Suppose that (b) holds and that (xn) and (Yn) are sequences in X 
such that IIxnll -+ 1, IIYnl1 -+ 1, and II ~(Xn + Yn)11 -+ 1. It will be shown 
that Ilxn - Ynll -+ O. By discarding terms from the beginning of the se
quences if necessary, it may be assumed that no Xn or Yn is O. Then 

1 2: II Hllxnll-1xn + IIYnll-1Yn) II 

2:11~(Xn + Yn)II-II~(1-llxnll-l)Xnll-II~(I- IIYnll-1)Ynll 
-+ 1, 

so IIHllxnll-1xn + IIYnll-1Yn) II -+ 1. Since 1lllxnll-1xn - IIYnll-1Ynll -+ 0 
by (b), it follows that 

Os Ilxn .- Ynll 

S 1lllxnll-1xn -IIYnll-1Ynll + 11(1-llxn ll- 1)Xn ll + 11(1 -IIYnll-1)Ynll 
-+ O. 
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Therefore Ilxn - Ynll --+ 0, which establishes that (b) :::;. (d). 
Now suppose that (d) holds and that (xn) and (Yn) are sequences in Bx 

such that 11~(Xn + Yn)11 --+ 1. Since 11~(Xn + Yn)11 ~ Hllxnll + IIYnl!) for 
each n, it follows that Ilxnll --+ 1 and llYn II --+ 1, so Ilxn - Ynll --+ 0 by (d). 
Therefore (d) =} (c), from which it follows that (b) {:} (c) {:} (d). 

Suppose that X is uniformly rotund and that (xn) and (Yn) are se
quences in Sx such that II ~(Xn + Yn)11 --+ 1 but Ilxn - Ynll does not tend 
to O. Let Ox be the modulus of rotundity of X. It follows that there is a 
subsequence (x nj ) of (xn) such that Ilxnj - Ynj II ;::: f for some positive f 

and each j, which implies that 11~(Xnj +Ynj)1I ~ 1- OX(f) for each j, a 
contradiction. Therefore (a) =} (b). 

Finally, suppose that X is not uniformly rotund. Then there is an f such 
that 0 < f ~ 2 but OX(f) = O. Therefore there are sequences (xn) and (Yn) 
in Sx such that Ilxn -Ynll;::: f for each n but 11~(Xn+Yn)II--+ 1, so (b) 
does not hold. This shows that (b) =} (a). • 

One very important class of uniformly rotund Banach spaces is that of the 
spaces Lp(n, I:, J1.), where J1. is a positive measure on a a-algebra I: of subsets 
of a set nand 1 < p < 00; notice that this includes the spaces lp and i; 
such that 1 < p < 00 and n is a nonnegative integer. The uniform rotundity 
of these spaces was first established in 1936 by James Clarkson [41] in the 
same paper in which he introduced the notions of rotundity and uniform 
rotundity. Proofs of this usually begin by establishing some inequality or 
inequalities in the scalar field or for the norms of elements of Lp(n, I:, J1.), 
and often require the separate consideration of the cases in which 1 < p :S 2 
and 2 ~ P < 00; see, for example, Clarkson's paper or [21]. The proof 
given here is from [141] and is based on a method from a 1950 paper by 
E. J. McShane [166] that does not require the consideration of the two 
different cases. 

The following lemma is proved in quite a bit more generality than is 
needed for the proof of Clarkson's result, but the extra generality will be 
required later for the proof of Theorem 5.2.25. 

5.2.9 Lemma. For each p such that 1 < p < 00 and each function 
A: (0,2] --+ (0,1], there is a function 'Yp,>.; (0,2] --+ (0,1] such that if X 
is a uniformly rotund normed space whose modulus of rotundity Ox has 
the property that A(E) :S OX(E) when 0 < f ~ 2, then 

whenever 0 < t ~ 2 and x and yare members of X such that Ilx - yll ;::: 
tmax{llxlI,IIYII}· 

PROOF. Suppose to the contrary that there were a p such that 1 < p < 00 

and a function A: (0,2] --+ (0,1] for which no such function 'Yp,A exists. 
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Let f(t) = (~(1 + t))V /(~(1 + tv)) when 0:::; t :::; 1. It is an easy calculus 
exercise to show that f strictly increases on [0,1) to its maximum value 
of 1, from which it follows that if X is a normed space and x and yare 
members of X such that Ilxll = 1 and lIyll :::; 1, then 

11~(x+Y)llv < (H1+lIyll))V <1 
Hllxllv + Ilyllv) - ~(1 + Ilyllv) - . 

By the supposition of the nonexistence of a function IV,A with the required 
properties, there must be a t such that 0 < t :::; 2, a sequence of uniformly 
rotund normed spaces (Xn) such that the modulus of rotundity 8xn of 
each Xn has the property that >'(E) :::; 8Xn (E) when 0 < E :::; 2, and sequences 
(xn) and (Yn) such that for each positive integer n, 

(1) X n, Yn E Xn; 

(2) Ilxnll = 1 and IIYnll :::; 1; 

(3) Ilxn - Ynll ~ tmax{llxnll, IIYnll} = t; and 

(4) IIHxn +Yn)IIP > (1-~) (l'xnIIP; IIYnIl P). 

Notice that 

. 11~(Xn+yn)llv 
(5) h,;n Hllxnllp + IIYnllv) = 1. 

It is an easy consequence of what has been proved about f that IIYnl1 -+ 1, 
so in particular it may be assumed that no Yn is zero. Let Zn = IIYnll-1Yn 
for each n. Then Ilzn - Ynll -+ 0, so it may be assumed that Ilxn - znll ~ ~t 
for each n. It follows that 

for each n. However, it also follows from (5) that 

limll~(xn+zn)11 =limll~(xn+Yn)11 = 1, 
n n 

a contradiction. • 
With all notation as in the statement of the preceding lemma, letting >. 

be the restriction of the modulus of rotundity of the scalar field to (0,2] 
produces the following special case of the lemma, which is what is actually 
needed for the proof of Theorem 5.2.11. 

5.2.10 Lemma. Suppose that 1 < p < 00. Then there is a function 
Ip: (0,2] -+ (0,1] such that 

la; f3 IP :::; (l- rp(t») CaIP ;lf3IP
) 

when 0 < t :::; 2 and a and 13 are scalars such that la - 131 ~ t max{lal, If3l}. 
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5.2.11 Theorem. (J. A. Clarkson, 1936 [41]). Suppose that {t is a positive 
measure on a (J-algebra E of subsets of a set ° and that 1 < p < 00. Then 
Lp(O, E, {t) is uniformly rotund. 

PROOF. Suppose that h, 12 E SLp(O,E,p.) and that IIh - hll p 2: E > O. Let 

A = { w : w E 0, Ih(w) - h(w)iP 2: ~ (lh(w)iP + Ih(w)IP) }, 

and observe that Ih(w) - h(w)1 2: (E/41/ p ) max{lh(w)l, Ih(w)l} when 
w E A. With "fp as in Lemma 5.2.10, it follows from that lemma that 

/h(w);h(w)I P::; (1-"fp (4 1E/ p)) Ch(wW;lh(WW) 

whenever w E A and that 

1 

h(w) + h(w) /P < Ih(wW + Ih(w)IP 
2 - 2 

whenever w E 0, so 

l-ii~(h+h)ii== 1nChIP ;lhIP _Ih;h/P)d{t 

2: i ChiP; IhlP -I h; 12 IP ) d{t 

> (_E) r IhlP + IhlP d 
- "fp 41/p JA 2 {to 

Let lA be the indicator function of A. Then 

IlhlA - hIAII~ = Ilh - hll~ - { Ih - hiP d{t 
JO\A 

2: fP - E
P 1 (lhl P + IhI P ) d{t 
4 O\A 

EP 

2: EP - 4(llhll~ + Ilhll~) 
EP 

2' 
from which it follows that max{llhlAllp, IlhlAllp} 2: E/(2· 21/ P ). Therefore 

1 P (f) IlhlAII~ + IlhlAII~ ([) fP 
l-ii'2(h + h)ii p 2: "fp 4 1/ p 2 2: "fp 41/p 2P+2 ' 

and so 

The uniform rotundity of Lp(O, E, {t) follows immediately. • 
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5.2.12 Corollary. Suppose that 1 < p < 00. Then fp is uniformly rotund, 
as is f; whenever n is a nonnegative integer. 

5.2.13 Example. This is an example of a rotund Banach space that is 
not uniformly rotund. For each positive integer n, let Pn = 1 + ~. The 
example is based on an observation about the spaces f;", each of which 
is itself uniformly rotund by Corollary 5.2.12. It is easy to check that 
(1,0), (0, 1) E Si~n' that 11(1,0) - (O,l)IIPn = 2n /(n+1) ?: v'2, and that 

IIH(l, 0) + (0,1)) IIPn = 2- 1/(n+l) for each n. Since limn 2- 1/(n+1) = 1, the 

spaces f;" such that n E N are not "uniformly" uniformly rotund. In partic
ular, if a normed space X has each space f;n such that n E N isometrically 
embedded in it, then X cannot be uniformly rotund. 

Let X be the collection of all sequences (Xn) such that Xn E f;" for each n 
and I:n Ilxn II;" is finite, along with the obvious vector space operations and 
the norm given by the formula 

It is not difficult to check that this defines a Banach space; see Exercise 5.1. 
Suppose that (Xn,l), (Xn,2), H(xn,d + (Xn,2)) E Sx. Then the triangle in
equalities for f2 and each f;" imply that 

= 1, 

so each of the two inequality symbols actually represents an equality. It 

follows that (1IXn,Iilp,J,(llxn'21Ipn),~((IIXn'11Ipn) + (1Ixn,21Ip,,)) E Se2 , so 

the rotundity of f2 implies that Ilxn ,lllPn = Ilxn,21lPn for each n. It also 
follows that Ilx",l + xn ,21lPn = Ilxn,lllPn + Ilxn ,21lPn for each n. Therefore 
xn,l = X n,2 for every n by the rotundity of each f;n' which shows that 
(Xn,l) = (Xn,2) and thus that X is rotund. 

Fix a positive integer m. To show that X is not uniformly rotund, it is 
enough to produce a subspace of X isometrically isomorphic to f;m . Letting 

does precisely this. 
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It is clear that the Banach space of the preceding example is infinite
dimensional. As the next result shows, this is an essential property of any 
rotund normed space that is not uniformly rotund. 

5.2.14 Proposition. A finite-dimensional normed space is uniformly ro
tund if and only if it is rotund. 

PROOF. Suppose that X is a finite-dimensional rotund normed space. It is 
enough to show that X is uniformly rotund. Let (xn) and (Yn) be sequences 
in Sx such that Ilxn - Ynll does not tend to O. It is enough to show that 
111 (Xn + Yn) II does not tend to 1. After thinning the sequences, it may be 
assumed that there is a positive t such that Ilxn - Yn II ::::0: I: for each nand 
that there are elements x and Y of Sx such that Xn --+ x and Yn --+ y. Then 
Ilx - yll ::::0: E, and II ~(xn + Yn) II --+ II ~(x + y) II < 1. • 

As was seen in Example 5.1.8, rotund Banach spaces do not have to be 
reflexive. It turns out that uniformly rotund Banach spaces do. 

5.2.15 The Milman-Pettis Theorem. (D. P. Milman, 1938 [169]; B. J. 
Pettis, 1939 [183]). Every uniformly rotund Banach space is reflexive. 

PROOF. This proof is due to Lindenstrauss and Tzafriri [157, p. 61]. Sup
pose that X is a uniformly rotund Banach space, which may be assumed 
to be infinite-dimensional, and that x** E Sx'" Let Q be the natural map 
from X into X". By Goldstine's theorem, there is a net (Xa)"EI in Bx 

such that Qx" ~. x*'. Declaring that (al,J3d::s (a2,J32) when a1::S 02 

and J31 ::S (32 then makes (QO(x" + Xj3)))(n,j3)ElxI into a net. An. easy 

argument based on Theorem 2.2.9 (g) shows that Q(~(xo: + Xj3)) ~ x**, 
so 11~(Xa +.7:,,,)11-> 1 by Theorem 2.6.14. It then follows from the uniform 
rotundity of X that Ilxo: - xj311 --+ 0, which in turn implies that (x,,) is 
a Cauchy net in X. By Proposition 2.1.49, the completeness of X implies 
that (xo:) has some limit xo, so Qxa. --+ Qxo· Therefore x·* = Qxo, so X 
is reflexive. • 

5.2.16 Corollary. If a normed space X is isomorphic to a uniformly rotund 
Banach space, then X is reflexive. 

Notice that if a property P defined for normed spaces is such that when
ever a Hormed space X has it then so do all normed spaces isometrically 
isomorphic to X, then a normed space (X, 11·llx) is isomorphic to some 
normed space (Y, 11·lly) with property P if and only if there is a norm 11·11 p 

for X equivalent to 11·llx such that (X, II· lip ) has property P. The forward 
implication comes about by letting IIxlip = IITxlly for each x in X, where T 
is the isomorphism, while the converse is obtained by noting that the iden
tity map on X is an isomorphism from (X, II· II x) onto (X, 11·11 p). Thus, 
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the preceding corollary can be viewed as the statement that every normed 
space with an equivalent uniformly rotund Banach norm is reflexive. 

A normed space is called superrefiexive if it can be given a uniformly 
rotund norm equivalent to its original norm (though that is not the original 
definition of superreflexivity; see [56, pp. 168~ 173] for the original definition 
and a proof that it is equivalent to the one given here). It follows from 
Corollary 5.2.16 that every superreflexive Banach space is reflexive. Mahlon 
Day showed in a 1941 paper [47] that there are reflexive spaces that are 
not superreflexive. 

In a way, the Milman-Pettis theorem explains why it should not be sur
prising that the classical nonreflexive Banach spaces examined in the intro
ductory examples of Section 5.1 are all nonrotund, and why it took so much 
work to construct a nonreflexive rotund Banach space in Example 5.1.8. 
A nonreflexive rotund Banach space X cannot be uniformly rotund, which 
means that while the midpoint of every straight line segment connecting 
distinct points on the unit sphere of X must dip into the interior of the 
closed unit ball, there is some positive f such that one can always find two 
points on the unit sphere at least distance E apart with the midpoint of the 
line segment connecting the points taking as shallow a dip into Bx as one 
might wish. Such a unit sphere is somewhat oddly shaped. 

Incidentally, it follows from the Milman-Pettis theorem that the rotund 
nonreflexive Banach space f l ,,. of Example 5.1.8 is another example of a 
rotund Banach space that is not uniformly rotund. 

By Corollary 5.1.19, every nonempty closed convex subset of a rotund 
reflexive normed space is a Chebyshev set, so the following result is an 
immediate consequence of the Milman-Pettis theorem. 

5.2.17 Corollary. Every nonempty closed convex subset of a uniformly 
rotund Banach space is a Chebyshev set. 

Recall that a normed space has the Radon-Riesz property if, whenever 
(xn ) is a sequence in the space and x an element of the space such that 
Xn ~ x and Ilxn II ---> Ilxll, it follows that Xn ---> x. As was discussed in Sec
tion 2.5, J. Radon and F. Riesz proved that the Lebesgue spaces Lp(O, L:, /1) 
such that 1 < p < 00 have this property. It turns out that this is a direct 
consequence of the uniform rotundity of those spaces. 

5.2.18 Theorem. Every uniformly rotund normed space has the Radon
Riesz property. 

PROOF. Suppose that X is a uniformly rotund normed space and that 
(xn ) is a sequence in X and x an element of X such that Xn ~ x and 
Ilxnll ---> Ilxll. It is to be shown that Xn ---> x, so it may be assumed that 
x -I- 0 and therefore, after discarding some initial terms of (xn) if necessary, 
that each Xn is nonzero. Now IIxnll~lxn ~ Ilxll~lx, and it is enough to show 
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that IIxnll-1xn -+ Ilxll-Ix, so it may even be assumed that x and each Xn 

are in Sx. Since HXn +x) ~ x, the weak lower semicontinuity of the norm 
function implies that iiHxn +x)ii-+ 1, so IIxn -xll-+ 0, as required .• 

5.2.19 Corollary. (J. Radon, 1913 [192]; F. Riesz, 1928-1929 [196, 197]). 
Suppose that J-L is a positive measure on a a-algebra E of subsets of a set n 
and that 1 < p < 00. Then Lp(n, E, J-L) has the Radon-Riesz property. 

Like rotundity, uniform rotundity is inherited by subspaces, as can be 
verified by a glance at Proposition 5.2.8. A slightly better proof of this fact 
uses an important, though obvious, relationship between the modulus of 
rotundity of a normed space and those of its subspaces. That relationship 
is given in the next lemma, which was previously stated as an observation 
after Definition 5.2.1. The proposition following it is then an immediate 
consequence of the definition of uniform rotundity. 

5.2.20 Lemma. Suppose that M is a subspace of a normed space X and 
that 6M and 6x are the respective moduli of rotundity of the two spaces. 
Then 6M (t:) 2 6x(t:) when 0 ~ t: ~ 2. 

5.2.21 Proposition. Every subspace of a uniformly rotund normed space 
is uniformly rotund. 

As was shown in Example 5.1.22, it is possible for a quotient space of a 
rotund normed space not to be rotund. In contrast, uniform rotundity is 
always inherited by quotient spaces. Two proofs of this will be given, one 
that is based on the following lemma and one that is not. Notice that, in 
the notation of this lemma, it is not claimed that 6X / M (2) 2 6x (2). The 
reason for this will be made clear in the example that follows the lemma. 

5.2.22 Lemma. Suppose that M is a closed subspace of a normed space X 
and that 6X / M and 6x are the moduli of rotundity of X/M and X respec
tively. Then 6X / M (t:) 2 6x (t:) when 0 ~ E < 2. 

PROOF. It may be assumed that X/M is not zero-dimensional if IF' = C and 
is neither zero- nor one-dimensional if IF' = R.. Suppose that x + M, Y + M E 

SX/M and that lI(x - y) + Mil> E. By Theorem 5.2.5, it is enough to show 
that 1-ii~(x+y)+Mii2 6X(E). It follows from Proposition 1.7.6 that 
there are sequences (xn) and (Yn) in X such that Ilxnll 2 1, IIYnl1 2 1, 
Xn + M = x + M, and Yn + M = Y + M for each n, and IIxnll -+ 1 and 
llYn II -+ 1. Then 

iillxnll-IXn -IIYnll-1Ynii 
2 IIxn - Ynll- (1 - Ilxnll-1)llxnll- (1 - IIYnll-I)IIYnll 
2 II (x - y) + MII- (1Ixnll- 1) - (1IYnll- 1) 
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for each n, so it may be assumed that 1lllxnll-1xn - IIYnll-1Ynll > € for 
each n. Therefore 

OX(E)::; l-IIHllxnll-1xn + IIYnll-1Yn)II 
::; 1 - II ~ (lIxn 11-1xn + llYn II-lYn) + Mil 
:::; l-II~(xn + Yn) + Mil 

+ ~(1 - IIxnll-I)lIxn + Mil + ~(I-IIYnll-l) llYn + Mil 
= 1-11~(x + y) + Mil + ~(1-IIXnll-l) + ~(1-IIYnll-l) 

for each n, so letting n tend to infinity produces the inequality needed to 
prove the lemma. • 

5.2.23 Example. Let il,r be the rotund nonreflexive Banach space of Ex
amples 5.1.8 and 5.1.22 and let Oll,r be its modulus of rotundity. It follows 
readily from the rotundity of il,r that oll,r(2) = 1; see Exercise 5.14. It was 
shown in Example 5.1.22 that if Y is a separable nonrotund Banach space, 
then there is a closed subspace M of il,r such that il,r/.M is isometrically 
isomorphic to Y, so in particular there is a closed subspace Mo of il,r such 
that il,r/Mo is isometrically isomorphic to i~. Then the modulus of rotun
dity 0ll,rIMo for this quotient space is the same as that for R~, so it follows 
easily that Oll,rIMo(2) = O. Therefore Oll,r(2) > OI.I,rIMo(2), which shows 
why the preceding lemma was stated and proved only proved for values of E 

strictly less than 2. 
Incidentally, this example relies on the fact that RI,r is not reflexive. See 

Exercise 5.19 for the reason. 

5.2.24 Theorem. If M is a closed subspace of a uniformly rotund normed 
space X, then X/M is uniformly rotund. 

PROOF. This is an immediate consequence of Lemma 5.2.22 and the fact 
that moduli of rotundity are nondecreasing functions on [0,2]. 

Here is another proof that is related to the argument of Lemma 5.2.22 
but that does not ultimately rely on Theorem 5.2.5. Suppose that (xn +M) 
and (Yn + M) are sequences in SXIM such that II ~(Xn + Yn) + Mil -> 1. It 
suffices to show that II(xn - Yn) + Mil -> O. By Proposition 1.7.6, it may 
be assumed that 

for each n, from which it follows that Ilxnll -> 1. Similarly, it may be 
assumed that llYn II -> 1. Since 

it also follows that II ~ (xn + Yn) II -> 1, which implies that IIxn - Yn II ---> 0 
and therefore that lI(xn - Yn) + Mil -> O. • 
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As is the case for rotundity, uniform rotundity is preserved by the oper
ation of taking direct sums. The proof of this to be given here will seem 
suspiciously similar to that of Theorem 5.2.11. The reason for this is that 
both proofs are generalizations of an argument that can be used to derive 
the uniform rotundity of Euclidean n-space for each positive integer n from 
the uniform rotundity of the scalar field. 

5.2.25 Theorem. Suppose that Xl' ... ' Xn are normed spaces. Then 
Xl EEl ... EEl Xn is uniformly rotund if and only if each Xj is uniformly ro
tund. 

PROOF. Suppose first that Xl EEl·· ·EElXn is uniformly rotund. Since each Xj 
is isometrically isomorphic to a subspace of Xl EEl ... EEl X n , it follows im
mediately that each Xj is uniformly rotund. 

Now suppose instead that each Xj is uniformly rotund. Let (Xl, ... , Xn) 
and CYI, ... , Yn) be elements of SX,EB ... EBXn such that 

Lct 

A = {j : j E {I, ... ,n}, Ilxj _ Yjl12 ~ ~ (11xj112 + IIYjI12) }, 

and observe that Ilx) - Yjll ~ (E/2)max{lIxjll, IIYjll} for each j in A. Let 
'\(8) = min{c5x1 (8), ... ,c5xn (8)} when 0 < 8 S 2, where c5x "..·,c5xn are 
the respective moduli of rotundity of the spaces Xl, ... ,Xn . With /2,'>' as 
in Lemma 5.2.9, it follows from that lemma that 

whenever j E A and that 

whenever j E {I, ... , n}, so 
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Furthermore, if B = {I, ... , n} \ A, then 

L Ilxj - Yjl12 = II(Xl,'" ,xn ) - (Yl,"" Yn)11 2 - L Ilxj - Yjl12 
JEA JEB 

2 

?: E2 - ~ (11(Xl, .. ' ,xn)112 + II(Yl, ... ,Yn)11 2) 

E2 

2' 
so O:=jEAllxj - YjI12)1/2 ?: t/21/2, from which it follows that 

and so 

It follows that Xl ffi ... ffi Xn is uniformly rotund. • 
There are many sources available for the reader interested in learning 

more about uniform rotundity, including [21], [56], [107], [141], and [157]' 
as well as Mahlon Day's papers [47H50j. 

Exercises 

5.14 Prove that if X is a normed space and 6x is its modulus of rotundity, 
then X is rotund if and only if 6x(2} = 1. 

5.15 Find an explicit formula, in terms only of functions one might encounter 
in a precalculus course, for the modulus of rotundity D2 of Euclidean 2-
space. (This formula is important because it provides a simple expression 
for the least upper bound of the moduli of rotundity of all uniformly 
rotund normed spaces of dimension at least two. It is a 1960 result of 
G. Nordlander [176] that if X is a uniformly rotund normed space that 
is not zero-dimensional if IF = IC and is neither zero- nor one-dimensional 
if IF = 1ft, and if Dx is the modulus of rotundity of X, then DX(E) ::; b2(E} 
when 0::; E ::; 2.) 
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5.16 This exercise assumes some knowledge of inner product spaces and Hilbert 
spaces. See, for example, the references cited in Exercise 5.4. 

(a) Suppose that X is an inner product space that is not zero-dimension
al if IF = C and is neither zero- nor one-dimensional if IF = R Find 
an explicit formula for the modulus of rotundity of X in terms only 
of functions one might encounter in a precalculus course. (Compare 
Exercise 5.15.) 

(b) Use the formula found in (a) to show that every inner product space 
is uniformly rotund. 

(c) Conclude from (b) that every Hilbert space is reflexive. 

5.17 The purpose of this exercise is to provide another proof of Theorem 5.2.11 
when p 2: 2 that is perhaps a bit more in the spirit of Clarkson's. Let p 
be such that 2 :.:; p < 00. 

(a) Prove that if 0:, {3 E IF, then 

and therefore 

Notice that this is a generalization of the well-known parallelogram 
law for IF, namely, that 

whenever 0:, (3 E IF. 

(b) Suppose that p, is a positive measure on a ",-algebra E of subsets of 
a set n. Use (a) to prove that Lp(n, E, p,) is uniformly rotund. 

5.18 This exercise requires James's theorem from either of the optional Sections 
1.13 and 2.9. Suppose that X is a uniformly rotund Banach space. 

(a) Show that for each nonzero member x· of X·, the set 

{x: x E X, Rex·x = Iix·lI} 

has a unique point closest to the origin. Do not use the Milman
Pettis theorem or its corollaries to do this (but do look at the be
havior of the nets in the proof of the Milman-Pettis theorem). 

(b) Derive the Milman-Pettis theorem from (a) and James's theorem. 

5.19 Suppose that the requirement that M be a set of existence is added to 
the hypotheses of Lemma 5.2.22. Then there is a much simpler proof of 
the lemma that does not rely on Theorem 5.2.5 and that extends to the 
case in which E = 2. Find this proof. 

It can be shown that every reflexive subspace of a normed space is a set 
of existence; see Exercise 5.12. Since every closed subspace of a reflexive 
normed space is reflexive, it follows that Lemma 5.2.22 can be extended 
to the case in which E = 2 under the additional hypothesis that X is 
reflexive. 
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5.20 (M. M. Day, 1944 [50]). Prove that a normed space X is uniformly rotund 
if and only if 

inf{ OM(E) : M is a two-dimensional subspace of X} > 0 

whenever 0 < E :::; 2, where OM is the modulus of rotundity of the sub
space M. 

5.21 (M. M. Day, 1941 [48]). This exercise uses the notion of the fp sum of 
normed spaces developed in Exercise 5.1. Suppose that (Xn) is a se
quence of normed spaces, that (OXn) is the corresponding sequence of 
moduli of rotundity of the spaces, and that 1 < p < 00. Prove that 
fp((Xn)) is uniformly rotund if and only if each Xn is uniformly rotund 
and infn OXn (E) > 0 when 0 < E :::; 2. (The condition that each Xn be 
uniformly rotund has been added only for emphasis, since the condition 
involving the infimum of the moduli of rotundity clearly implies it.) 

5.22 Suppose that X is a superreflexive Banach space and that Y is a Banach 
space such that there is a bounded linear operator from X onto Y. Prove 
that Y is superreflexive. 

5.23 Prove that the Banach space X of Example 5.2.13 is superreftexive. (Ex
ercise 5.21 might he helpful.) Conclude that X is a reflexive Banach space 
that is rotund but not uniformly rotund. 

5.3 Generalizations of Uniform Rotundity 

In approximation theory, it is sometimes important to know if a Banach 
space X has the property that whenever x is an element of X and (xn) 
is a sequence in a closed convex subset C of X such that Ilx - xnll -+ 

d(x, C), then (xn) converges. For the moment, call this property D; the 
definition will appear again later in an equivalent form. As will be seen 
below, for a Banach space X to have property D it is necessary that X be 
rotund and sufficient that X be uniformly rotund. However, it is known 
that there are rotund Banach spaces lacking property D and Banach spaces 
that have property D without being uniformly rotund. Thus, property D 
can be viewed as a strong form of rotundity that lies properly between 
simple rotundity and uniform rotundity. 

Many other properties lying properly between rotundity and uniform 
rotundity have been defined and studied since Clarkson's introduction of 
the notions of rotundity and uniform rotundity in 1936. The purpose of 
this section is to examine a few of the more well-known ones. Since such a 
study tends to abound with lengthy terms such as "weakly locally uniformly 
rotund" and "uniformly rotund in every direction," it is both helpful and 
customary to use abbreviations for these terms along with the following 
notational scheme. 
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5.3.1 Notation. Suppose that P is an abbreviation for a property that 
normed spaces can have. Then a normed space X is said to be (P) if it has 
property P, and is said to be (P) if there is a norm II· lip for X equivalent to 
its original norm such that (X, II· lip ) is (P). In particular, a normed space is 
said to be (UR), (R), (B), (Rf), or (H) ifit is respectively uniformly rotund, 
rotund, a Banach space, reflexive, or a Radon-Riesz space. A normed space 
that has properties P and Q is said to be (P) & (Q). 

For example, the £i and £~ norms are equivalent on JF2, so £i is not (R) but 
is (UR). As further examples, the statement that every uniformly rotund 
Banach space is a rotund reflexive Radon-Riesz space can be abbreviated 
to (UR) & (B) "* (R) & (Rf) & (H), while the fact that every superreflexive 
Banach space is reflexive can be stated symbolically as (UR) & (B) "* (Rf). 

The first generalization of uniform rotundity to be examined here is a 
localization of that property obtained by requiring that for each fixed x 
in the unit sphere of a normed space X and each positive E, there is a 
positive 0 depending on E and x such that 11~(x + y)11 S 1 - 0 whenever 
y E Sx and Ilx - yll 2': E. 

5.3.2 Definition. (A. R. Lovaglia, 1955 [159]). Suppose that X is a normed 
space. Define a function ox: [0, 2] x S x ---> [0, 1] by the formula 

8X(E,X) = inf {1-11~(x + y)11 ; y E Sx, Ilx - yll 2': E}. 

Then Ox is the L UR modulus of X. The space X is locally uniformly rotund 
or locally uniformly convex if 8 x (E, x) > 0 whenever 0 < E S 2 and xES x. 
The abbreviation LUR is used for this property. 

Notice that every zero-dimensional normed space is (LUR) since the 
requirement on its LUR modulus is satisfied vacuously. Similar observa
tions about the other moduli defined later in this section show that zero
dimensional normed spaces have the rotundity properties defined in terms 
of those moduli. 

A comparison of the definitions of uniform rotundity and local uniform 
rotundity shows that the first implies the second. Also, if X is a locally 
uniformly rotund normed space with LUR modulus Ox and x and yare 
different elements of Sx, then II ~(x + y) II S 1 - Ox (11x - yll, x) < 1, which 
finishes the proof of the following result. 

5.3.3 Proposition. Every uniformly rotund normed space is locally uni
formly rotund, and every locally uniformly rotund normed space is rotund. 
In symbols, (UR) "* (LUR) "* (R). 

In particular, the uniformly rotund normed space f!~ is locally uniformly 
rotund though it is isomorphic to the nonrotund normed space £i, so lo
cal uniform rotundity is not preserved by isomorphisms. It certainly is by 
isometric isomorphisms. 
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5.3.4 Proposition. Every normed space that is isometrically isomor
phic to a locally uniformly rotund normed space is itself locally uniformly 
rotund. 

In general, the strengthenings of rotundity to be studied in this section 
are preserved by isometric isomorphisms but not isomorphisms, though this 
will not be stated explicitly for any more of these properties. The argument 
for isometric isomorphisms will always be obvious, while the argument for 
isomorphisms can always be based on £~ as above. 

As with uniform rotundity, there are sequential characterizations of local 
uniform rotundity that are often used as its definition. Notice that the proof 
of the following result is essentially the same as that of Proposition 5.2.8. 

5.3.5 Proposition. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is locally uniformly rotund. 

(b) When x E Sx and (Yn) isasequenceinSx such that 11~(X+Yn)ll-+ 1, 
it follows that Ilx - Ynll -+ o. 

(c) When x E Sx and (Yn) is a sequence in Ex such that 11~(x + Yn)ll-+ 1, 
it follows that Ilx - Ynll -+ o. 

(d) When x E Sx and (Yn) is a sequence in X such that IIYnl1 and 
II ~ (x + Yn) II both tend to 1, it follows that Ilx - Yn II -> O. 

PROOF. Suppose that (b) holds and that x is an element of Sx and (Yn) a 
sequence in X such that llYn II and II ~ (x + Yn) II both tend to 1. It will be 
shown that Ilx - Yn II -> O. By discarding terms from the beginning of the 
sequence if necessary, it may be assumed that no Yn is O. Then 

1:::: IIHx+ IIYnll-1Yn)ll:::: 11~(X+Yn)II-II~(1-IIYnll-l)Ynll-+ 1, 

so II Hx + IIYnll-1Yn) II -+ 1. Since IIYnll- 1 Yn -> x by (b), it follows that 
Yn -+ x, which establishes that (b) =? (d). 

Now suppose that (d) holds and that x is an element of Sx and (Yn) a 
sequence in Ex such that II ~ (x + Yn) II -+ 1. Since 

for each n, it follows that IIYnl1 -> 1, so Ilx - Ynll -> 0 by (d). Therefore 
(d) =? (c), from which it immediately follows that (b) <=;. (c) B (d). 

Suppose that X is locally uniformly rotund and that x is an element 
ofSx and (Yn) a sequence in Sx such that 11~(X+Yn)ll-> 1 but Ilx-Ynll 
docs not tend to O. Let Ox be the LUR modulus of X. It follows that there 
is a subsequence (Ynj) of (Yn) such that Ilx - Yn J II :::: E for some positive E 

and each j, which implies that II!(x + YnJl1 ~ 1 - OX(E,X) for each j, a 
contradiction. Therefore (a) =? (b). 
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Finally, suppose that X is not locally uniformly rotund. Then there is 
an E such that 0 < E :s; 2 and an x in Sx for which 8X(E, x) = O. Therefore 
there is a sequence (Yn) in Sx such that Ilx - Yn II ~ E for each n but 
II ~(x + Yn)ll----+ 1, so (b) does not hold. This shows that (b) =} (a). • 

For most of the generalizations of uniform rotundity in this section, exam
ples will be cited from the work of Mark Smith to show that the properties 
are distinct from each other and from rotundity and uniform rotundity. 
Space limitations prevent the detailed presentation of all the examples, 
but the following one showing that local uniform rotundity does not imply 
uniform rotundity will give the flavor of such constructions. 

5.3.6 Example. (M. A. Smith, 1978 [219]). This example uses the paral
lelogram law for £2, namely, that if (an), (f3n) E £2, then 

See Exercise 5.24. Also needed is the fact that if (an) E £1, then (an) E £2 
and II(an)112 :s; II(an)111. The proof of this is easy: If (an) E Sfp then 
lanl :s; 1 for each n, so 2:nlanl2 :s; 2:nlanl = 1 and (an) E B e2 . 

For each member (an) of £1, let 

It is easy to check that II· liE is a norm on £1, and this norm is equivalent 
to the usual norm of £1 since lI(an )111 :s; lI(an)IIE :s; -/211(an)1I1 whenever 
(an) E £1' 

Suppose that x E SUd' liE) and that (Yk) is a sequence of elements 
of Seed liE) such that II ~(x + Yk) II E ----+ 1. For notational convenience, the 
element x and each Yk will sometimes be denoted by (an) and (f3n,k) re
spectively. If u and v are members of a normed space, then 

Ilu + vl12 :s; (Ilull + Ilvll)2 
:s; (Ilull + Ilvll)2 + (liull -lIvll)2 
= 2(llu112 + Il vI1 2), 

so 2(lIu112 + Ilv112) -Ilu + vl1 2 ~ O. Since 

o :s; 2(llxlli + IIYklli) - Ilx + Yklli + 2(llxll~ + IIYkllD - Ilx + Ykll~ 
= 2(llxll~ + IIYkll~) - Ilx + Ykll~ 
= 4 - Ilx + Ykll~ 

for each k, and since 4 - Ilx + Ykll~ ----+ 0, it follows that 
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when j = 1,2. This, together with the fact that 

0:::; (1lxlh - IIYklh)2 
= 2(llxlli + IIYklii) - (1lxlh + IIYklh)2 
:::; 2(llxlli + IIYklli) - Ilx + Yklli 

for each k, shows that IiYklil --> Ilxlh. Moreover, since 

for each k by the parallelogram law, it also follows that Ilx - Ykl12 --> 0, so 
f3n,k --> an for each n. 

It will now be shown that Ilx - Yk 111 --> O. If x = 0, then this fol
lows immediately from the fact that IIYklll --> Ilxlll. Suppose instead that 
x i= 0. Fix a positive f less than Ilxlh and let m be a positive integer 
such that L:~=m+1Ianl < E. Notice that L:::'=llanl > Ilxlh - E. It follows 
that L:::'=llf3n,kl > Ilxlll - E for large k, which together with the fact that 
L:nlf3n,kl = IiYklil --> Ilxlh implies that L:~=Tn+11f3n,kl < 2E for large k. 
Therefore for large k, 

m 00 00 

n=l n=m+1 n=m+1 

which shows that Ilx - Yk III --> O. 
It follows from the equivalence of 11·111 and II· liE that Ilx - YkllE --> 0, 

which establishes that (1\, 11·11 E) is locally uniformly rotund. By the Mil
man-Pettis theorem, this Banach space is not uniformly rotund, or even 
isomorphic to a uniformly rotund normed space, since it is not reflexive. The 
space does have the Radon-Riesz property, and even Schur's property, since 
(f 1, II· 111) has Schur's property, so (f 1, II· II E) is an example of a nonreflexive 
Banach space that is not (UR) but is (LUR) & (H). 

Smith's paper [219] also contains examples of reflexive Banach spaces 
that are locally uniformly rotund without being uniformly rotund, as well 
as reflexive and nonreflexive Banach spaces that are rotund but not locally 
uniformly rotund. 

Although an issue was made of the fact that the Banach space of the 
preceding example has the Radon-Riesz property, this is actually true for 
every locally uniformly rotund normed space. Notice that the statement 
and proof of the following result are obtained from the statement and 
proof of Theorem 5.2.18 by just :mbstituting "locally uniformly rotund" 
for "uniformly rotund" everywhere it occurs. 

5.3.7 Theorem. (R. Vyborny, 1956 [240]). Every locally uniformly rotund 
normed space has the Radon-Ricsz property. In symbols, (LUR) :::} (H). 
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PROOF. Suppose that X is a locally uniformly rotund normed space and 
that (xn) is a sequence in X and x an element of X such that Xn ~ x and 
Ilxnll ---f Ilxll. It is to be shown that Xn ---f x, so it may be assumed that 
x -I- 0 and therefore, after discarding some initial terms of (xn) if necessary, 
that each Xn is nonzero. Now Ilxnll-Ixn ~ IIxll-Ix, and it is enough to show 
that Ilxnll-Ixn ---f IIxll-Ix, so it may even be assumed that x and each Xn 

are in Sx. Since ~ (xn +x) ~ x, the weak lower semicontinuity of the norm 
function implies that II ~ (xn + x) II ---f 1, so II Xn - x II ---f 0, as required. • 

One reason for the importance of local uniform rotundity is that it im
parts some of the same benefits, such as the presence of the Radon-Riesz 
property, as does uniform rotundity, while far more spaces can be equiv
alently renormed to be (LUR) than to be (UR). It was shown in a 1971 
paper by S. L. Troyanski [232] that every weakly compactly generated Ba
nach space is (LUR), while no nonreflexive Banach space can be (UR). 

The next generalization of uniform rotundity is obtained by letting the 
weak topology play the rolc of the norm topology in the definition of uni
form rotundity, in a sense that will be made clearer by Proposition 5.3.9. 

5.3.8 Definition. (V. L. Smulian, 1939, 1940 [223, 224]). Suppose that 
X is a normed space. Define a function Ox: [0,2] x Sx' ---f [0,1] by the 
formula 

bX(E,X*) = inf({l} U {l-II!(x +y)11 : x,y E Sx, Ix*(x - y)1 ~ E}). 

Then bx is the wUR modulus of X. The space X is weakly uniformly 
rotund or weakly uniformly convex if bX(E,X*) > 0 whenever 0 < f:S: 2 and 
x* E SX'. The abbreviation wUR is used for this property. 

The reason for specifically including 1 in the set whose infimum defines 
the wUR modulus is to keep the modulus finite-valued in one particular 
situation. With all notation as in Definition 5.3.8, suppose that some x* 
in SX' is not norm-attaining. Then there are no members x and y of Sx 
such that Ix*(x - y)1 ~ 2, so bx(2,x*) would be +00 were it not for the l. 

As with uniform rotundity and local uniform rotundity, weak uniform 
rotundity has sequential characterizations. The next result gives one along 
the lines of the equivalence of (a) and (b) in Propositions 5.2.8 and 5.3.5. 
The derivation of other characterizations analogous to parts (c) and (d) of 
those two propositions is left as an exercise for the interested reader. 

5.3.9 Proposition. Suppose that X is a Ilormed space. Then the following 
are equivalent. 

(a) The space X is weakly uniformly rotund. 

(b) Whenever (xn ) and (Yn) are sequences in Sx and 11!(xn + Yn)ll---f 1, 

it follows tlJat Xn - Yn ~ O. 
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PROOF. Suppose that (b) fails. Then there are sequences (xn) and (Yn) 
in Sx and an x* in Sx' such that II ~ (xn + Yn) II -+ 1 but X* (Xn - Yn) does 
not tend to O. Let Ox be the wUR modulus of X. It follows that there is a 
subsequence (xnj ) of (xn) such that Ix' (xn) - Yn)) I 2: E for some positive E 

and each j, implying that OX(E,X*)::; 1-11~(Xnj +YnJII for each j and 
therefore that () x (E, x*) = O. Therefore X is not weakly uniformly rotund. 

Suppose conversely that X is not weakly uniformly rotund. Then there is 
an E such that 0 < E ::; 2 and an x' in Sx' for which OX(E) = O. Therefore 
there are sequences (xn) and (Yn) in Sx such that Ix*(xn - Yn)1 2: E for 
each n but 11~(Xn + Yn)ll-+ 1, so (b) does not hold. • 

It follows easily from the preceding proposition that weak uniform ro
tundity lies between uniform rotundity and rotundity. 

5.3.10 Proposition. Every uniformly rotund normed space is weakly uni
formly rotund, and every weakly uniformly rotund normed space is rotund. 
In symbols, (UR) =* (wUR) =* (R). 

PROOF. Suppose that X is a uniformly rotund normed space. If (xn) 
and (Yn) are sequences in Sx such that 11~(Xn + Yn)ll-+ 1, thenxn-Yn -+ 0 

by Proposition 5.2.8, so Xn - Yn ~ O. It follows from Proposition 5.3.9 that 
X is weakly uniformly rotund. 

Now suppose that X is a normed space that is not rotund. Then there 
are distinct elements x and Y of X such that Ilxll = Ilyll = II ~(x + y) II = 1. 
Let x* be a member of X* such that x* (x - y) =I- 0 and let Xn = x and 
Yn = Y for eaeh positive integer n. Then x* (xn - Yn) does not tend to 0, 
which implies that Xn - Yn does not tend weakly to O. An application of 
Proposition 5.3.9 shows that X is not weakly uniformly rotund. • 

Mark Smith's paper [219] contains examples of Banach spaces (l2' II· lid 
and (l2' 11·llw), each formed by putting a norm on l2 equivalent to its orig
inal norm, such that (l2' II· IlL) is (LUR) but not (wUR) while (l2' 11·llw) 
is (wUR) without being (LUR). This shows that neither of the conditions 
(LUR) and (wUR) implies the other, and also shows that weak uniform ro
tundity does not imply uniform rotundity. Smith also shows that (l2' 1I·llw) 
lacks the Radon-Riesz property, so (wUR) does not imply (H). 

Incidentally, it turns out that the Banach space (i1' II· liE) of Exam
ple 5.3.6 is another Banach space that is (LUR) but not (wUR), since 
V. E. Zizler showed in a 1971 paper [248J that II cannot be equivalently 
renormed to be (wUR). 

There is an obvious analog of weak uniform rotundity for dual spaces 
that is obtained by exchanging the roles of the normed space and its dual 
in the definition of the wUR modulus. This analog will be examined only 
briefly here, but will have an important application in Section 5.6. 
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5.3.11 Definition. (V. L. Smulian, 1939, 1940 [223, 224]). Suppose that 
X is a normed space. Define a function OX, : [0,2] x Sx ----> [0,1] by the 
formula 

OX·(f,X) = inf {1-11~(x* +y*)II: x*,y* E Sx*, I(x* - y*)(x)1 ~ f}. 

Then OX, is the w*UR modulus of X*. The space X* is weakly* uniformly 
rotund or weakly* uniformly convex if O'x ·(f,x) > 0 whenever 0 < I' :S 2 
and x E Sx. The abbreviation w*UR is used for this property. 

Notice that unlike what was done for the wUR modulus, there is no 1 
explicitly included in the set whose infimum is being taken to obtain the 
w' UR modulus. This is not needed to assure that 8 x- (2, x) is finite when 
xES x, since for each x in S X there is an x* in S X' such that x* x = 1 
and therefore such that I (x' - (-x')) (x) I = 2. 

It should be noted that some sources say that if X is a normed space 
such that X* satisfies the above definition of weak* uniform rotundity, 
then it is X instead of X' that is called weakly* uniformly rotund. See 
[107, p. 71] for an instance of the use of the term in this alternative sense, 
and [239, p. 48J for an example of the use of the term the way it has been 
defined here. 

5.3.12 Proposition. Suppose that X is a normed space. If X* is weakly 
uniformly rotund, then it is weakly* uniformly rotund, and if X* is weakly* 
uniformly rotund, then it is rotund. In symbols, (wUR) => (w*UR) => (R) 
for dual spaces of normed spaces. 

PROOF. Let Q be the natural map from X into X". Then the w*UR 
modulus of X* is given by the formula 

OX- (I', x) = inf {1 -II ~(x' + y*)11 : x', y' E Sx·, I(Qx)(x* - Y*)I ~ f} 

whenever 0 :S I' :S 2 and xES x. Comparing this to the formula for the 
wUR modulus of X* shows that X* is weakly* uniformly rotund if it is 
weakly uniformly rotund. 

Now suppose that X* is not rotund. Let xi and x~ be different elements 
of Sx- such that ~(xi + x2) E Sx' and let Xo be an element of Sx such 
that xixo =I- xzxo. Let 1'0 = I(xi -xz)(xo)l· Then OX*(EO,XO) = 0, so X* is 
not weakly* uniformly rotund. • 

Local uniform rotundity and weak uniform rotundity have a common 
generalization stronger than simple rotundity. Given the definitions of local 
and weak uniform rotundity, the definition of this new property could be 
deduced from its name. 

5.3.13 Definition. (A. R. Lovaglia, 1955 [159]). Suppose that X is a 
normed space. Define a function 8x : [0,2J x Sx x Sx* ----> [O,lJ by the 
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formula 

bX(E,X,X*) = inf ({I} U {l-II~(x + y)11 : y E Sx, Ix*(x - y)1 ~ E}). 

Then bx is the wLUR modulus of X. The space X is weakly locally uni
formly rotund or weakly locally uniformly convex if bX(E,X,X*) > 0 when
ever 0 < E:::; 2, x E Sx, and x· E Sx" The abbreviation wLUR is used for 
this property. 

A glance at the definitions of local, weak, and weak local uniform rotun
dity shows that each of the first two properties implies the third. Also, if X 
is a normed space with wLUR modulus bx and there are distinct elements 
x and y of X such that Ilxll = liyll = 11~(x+Y)11 = 1, then there is an x· 
in Sx' such that x*(x-y) ~ 0, which implies that bx (lx*(x-y)l, x,x*) = O. 
It follows that weak local uniform rotundity implies rotundity. These ob
servations are summarized in the following proposition. 

5.3.14 Proposition. Every normed space that is either locally uniformly 
rotund or weakly uniformly rotund is weakly locally uniformly rotund, and 
every weakly locally uniformly rotund normed space is rotund. In symbols, 
(LUR) =} (wLUR) and (wUR) =} (wLUR) =} (R). 

Mark Smith's paper [219] has examples showing that none of the impli
cations in the preceding proposition is reversible. 

The next generalization of uniform rotundity is defined in terms of ge
ometric properties of convex sets instead of the behavior of a modulus. 
Recall that the diameter of a nonempty subset A of a metric space is given 
by the formula diam(A) = sup{ d(x, y) : x, yEA }. 

5.3.15 Definition. (V. L. Smulian, 1940 [224]; K. Fan and 1. Glicksberg, 
1958 [77]). Suppose that X is a normed space such that whenever C is a 
nonempty convex subset of X, the diameter of C n tBx tends to 0 as t 
decreases to d(O, C). Then X is strongly rotund or strongly convex. The 
abbreviation K is used for this property. 

The abbreviation D is sometimes used for the combination of strong 
rotundity and completeness; that is, (D) {:} (K) & (B). 

5.3.16 Proposition. Every uniformly rotund normed space is strongly 
rotund, and every strongly rotund normed space is rotund. In symbols, 
(UR) =} (K) =} (R). 

PROOF. Suppose first that X is a normed space that is not strongly rotund. 
Let C be a nonempty convex subset of X such that diam( CntBx) does not 
tend to 0 as t decreases to d(O, C). Clearly d(O, C) =1= 0, so it may be assumed 
that d(O, C) = 1. It follows that there must be a positive E such that for 
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each positive integer n there are elements Xn and Yn of en (1 + n- 1 )Ex 
such that Ilxn - Ynll ::::> L Now ~(xn + Yn) E en (1 + n-1)Ex for each n 
by convexity, from which it follows that Ilxnll, IIYnll, and 11~(Xn + Yn)1I all 
tend to 1 even though Ilxn - Yn II does not tend to O. By Proposition 5.2.8, 
the space X is not uniformly rotund. 

Now suppose instead that X is a nonrotund normed space. Then there 
are distinct elements x and Y of Sx such that {tx + (1 - t)y : 0 ::; t ::; 1 } 
lies in S x. This line segment is a nonempty convex subset L of X such that 
diam(L n tEx) does not tend to 0 as t decreases to d(O, L), so X is not 
strongly rotund. • 

Each of the two characterizations of strong rotundity in the following 
theorem is sometimes used as its definition. In fact, the condition given 
in (c) is essentially Smulian's original formulation of the property. 

5.3.17 Theorem. (K. Fan and 1. Glicksberg, 1958 [77]). Suppose that X 
is a normed space. Then the following are equivalent. 

(a) The space X is strongly rotund. 

(b) Whenever x* E Sx+, the diameter of {x: x E Ex, Rex*x::::> 1- 15} 
tends to 0 as 6 decreases to O. 

(c) Whenever (xn ) is a sequence in Sx for which there is an element x' 
of Sx' such that Rex'xn --t 1, the sequence (xn) is Cauchy. 

PROOF. Suppose first that (b) does not hold. This implies the existence of 
an x* in Sx' and a positive E such that for each positive integer n there 
are elements Xn and Yn of Ex for which Re x*xn 2: (1 + n-1 )-1, Re X*Yn ::::> 

(1+n- 1)-1, and Ilxn-Ynll 2: E. Let A = {x: x E X,Rex*x::::> 1}, 
a nonempty convex subset of X. It is clear that d(O, A) ::::> 1. Since there 
is a sequence (zn) of members of Ex such that Re x' Zn > 0 for each n 
and Rex'zn --t 1, and since ((Rex*zn)-1Zn) is a sequence in A such that 
II(Rex'zn)-lznll -> 1, it follows that d(O,A) = 1. Let Un = (1 + n-1)xn 
and Vn = (1 + n- 1 )Yn for each n. Then Un, Vn E An (1 + n- 1 )Ex and 
Ilun - vnll > E for each positive integer n, so diam(A n tEx) does not tend 
to 0 as t decreases to d(O, A). Therefore X is not strongly rotund, which 
shows that (a) =} (b). 

It is clear that (b) =} (c). To see that (c) =} (a), suppose that X is not 
strongly rotund. Then there is a nonempty convex subset C of X such that 
d(O, C) = 1 and diam( C n tEx) does not tend to 0 as t decreases to 1. 
Therefore there must be a positive I and a sequence (wn ) in C such that 
Ilwnll -> 1 and Ilw2n-1 -w2nll 2: I for each positive integer n. By Eidelheit's 
separation theorem, there is an x* in X* and a positive real number s such 
that Rex*x ::::> s whenever x E C and Rex'x ::; s whenever x E Ex. It may 
be assumed that s = 1. Then Ilx"11 = IIRex'll::; 1, and in faet Ilx'll = 1 
since Rex*(lIwnll-1wn) -> 1; for this, notice that 

1::::> Rex*(llwnll-1wn) 2: Ilwnll- 1 
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for each n. Now (1Iwnll-1wn) is a sequence in Sx that cannot be Cauchy 

since Ilwnll -; 1 and (wn) is not Cauchy. Since Rex*(lIwnll-1wn) -; 1, it 
follows that (c) does not hold. Therefore (c) =} (a). • 

A normed space that satisfies condition (b) of the preceding theorem 
is sometimes said to be (v). Day's wonderful description of this property 
in [56] is that "thin nibbles are small nibbles." 

5.3.18 Corollary. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is a strongly rotund Banach space. 

(b) Whenever (xn) is a sequence in Sx for which there is an element x* 
of Sx' such that Rex*xn -; 1, the sequence (xn) converges. 

PROOF. It follows immediately from the preceding theorem that (a) =} (b) 
and that (b) implies that X is strongly rotund. All that needs to be shown 
is that (b) implies that X is complete. Suppose that (b) holds and that (Yn) 
is a Cauchy sequence in X. It may be assumed that IIYnl1 does not tend to 0 
and therefore that II Yn II -; 1 and no Yn is zero. Since there is a norm-one 
element of the completion of X to which (Yn) converges, and since there is a 
norm-one member of the dual space of the completion of X that maps this 
limit to 1, there is an x* in Sx' such that Rex*(IIYnll-1Yn) -; 1. Therefore 
(1IYnll-1Yn) has a limit, and so (Yn) has the same limit. • 

In the branch of approximation theory known as nearest point theory in 
Banach spaces, it is often useful to know when a Banach space is strongly 
rotund. This is because of several characterizations of the property that 
use the terms of the following definition. 

5.3.19 Definition. Suppose that A is a nonempty subset of a metric 
space M, that x E M, and that (Yn) is a sequence in A such that d(x, Yn) -; 
d(x, A). Then (Yn) is a minimizing sequence in A with respect to x. The 
set A is appmximatively compact if each minimizing sequence in A has a 
convergent subsequence whose limit is in A. 

The word "approximatively" is occasionally misspelled "approximately" 
in the literature, since that is what the eye tends to see at a rapid glance. 
While the idea of a minimizing sequence is an old one, the notion of ap
proximative compactness was introduced in a 1961 paper by N. V. Efimov 
and S. B. Stechkin [72]. 

One of the reasons for the importance of approximative compactness in 
approximation theory is that every approximatively compact set A is a 
set of existence, and therefore for each element x of the space there is at 
least one point of A that is a best approximation to x from the set in the 
sense that it is at least as close to x as every other member of A. To see 
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that approximatively compact sets are always sets of existence, suppose 
that A is an approximatively compact subset of a metric space M and that 
x E M. Then there is a minimizing sequence (Yn) in A with respect to x; 
just select each Yn from A so that d(x, Yn) :::; d(x, A) + n-l. Then (Yn) has 
a subsequence that converges to some Y in A, and d(x, y) = d(x, A). 

5.3.20 Theorem. (K. Fan and 1. Glicksberg, 1958 [77]). Suppose that X 
is a normed space. Then the following are equivalent. 

(a) The space X is strongly rotund. 

(b) Whenever C is a nonempty convex subset of X and (Yn) is a mini
mizing sequence in C with respect to some x in X, the sequence (Yn) 
is Cauchy. 

PROOF. It is very easily seen that (b) is equivalent to the following state
ment. 

(bo) Whenever C is a non empty convex subset of X and (Yn) is a mini
mizing sequence in C with respect to 0, the sequence (Yn) is Cauchy. 

The equivalence of (a) and (bo) follows almost immediately from the defi
nition of strong rotundity. • 

A space that satisfies part (b) of the preceding theorem is sometimes 
said to be (Kw). 

5.3.21 Theorem. (K. Fan and 1. Glicksberg, 1958 [77]). Suppose that X 
is a normed space. Then the following are equivalent. 

(a) The space X is a strongly rotund Banach space. 

(b) Whenever C is a nonempty convex subset of X and (Yn) is a mini
mizing sequence in C with respect to some x in X, the sequence (Yn) 
converges. 

(c) Whenever C is a nonempty closed convex subset of X and (Yn) is 
a minimizing sequence in C with respect to some x in X, the se
quence (Yn) converges to an element Y of C. 

(d) Every nonempty closed convex subset of X is an approximativcly 
compact Chebyshev set. 

If (c) holds and C, x, (Yn), and yare as in the statement of (c), then Y is 
the unique point of C closest to x. 

PROOF. It follows immediately from Theorem 5.3.20 that (a) =? (b), and it 
is obvious that (b) =? (c). Suppose next that (c) holds and that C, x, (Yn), 
and yare as in the statement of (c). Then Ilx - yll = d(x, C). Furthermore, 
if y' is any member of C such that Ilx - y'll = d(x, C), then (c) implies 
that the sequence (y, y', y, y', . .. ) eonverges, which shows that Y = y'. This 
establishes the last statement in the theorem. It is now clear that (c) =? (d) 
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since for every nonempty closed convex subset C of X and every x in X 
there is a minimizing sequence in C with respect to x. 

Finally, suppose that (d) holds. Let (zn) be a sequence in Sx for which 
there is an element z* of S X. such that Re z* Zn - 1. The goal is to 
show that (zn) converges, so, after perhaps discarding some terms from the 
beginning of the sequence, it may be assumed that Re Z· Zn > ° for each n. 
Let A = {x : x EX, Re z* x = 1 }, a nonempty closed convex subset of X, 
and let Wn = (Re z* zn)-l Zn for each n. It is clear that d(O, A) ~ 1, and 
thus that d(O, A) = 1 since the sequence (wn ) lies in A and Ilwn II - 1. Since 
every subsequence of (wn ) is a minimizing sequence in A with respect to 0, 
it follows that every subsequence of (wn ) has a subsequence that converges 
to the unique point W of A closest to 0, so Wn - w. Therefore Zn - W, 

which by Corollary 5.3.18 proves that X is a strongly rotund Banach space. 
This shows that (d) '* (a). • 

The property given in part (c) of Theorem 5.3.17 might seem to have 
some of the flavor of the Radon-Riesz property. In fact, it implies the 
Radon-Riesz property. 

5.3.22 Theorem. (K. Fan and I. Glicksberg, 1958 [77]). Every strongly ro
tund normed space has the Radon-Riesz property. In symbols, (K) '* (H). 

PROOF. Suppose that X is a strongly rotund normed space and that (xn ) is 
a sequence in X and x an element of X such that Xn ~ x and IIxnll -llxll. 
Since the goal is to prove that Xn - x, it may be assumed that x =I- o. It is 
easy to see that it may then be assumed that x and each Xn lie in Sx. Let x* 
be a member of Sx. such that x*x = Rex·x = 1. Then Rex·xn -> 1, so by 
Theorem 5.3.17 the sequence (xn ) is Cauchy. Therefore (xn ) converges in 
the completion of X to some y, which together with the fact that Xn ~ x 
implies that Xn -> x. • 

Combining the Radon-Riesz property with a few other conditions pro
duces a partial converse for the preceding result. 

5.3.23 Theorem. (K. Fan and I. Glicksberg, 1958 [77]). Every reflexive 
rotund normed space having the Radon-Riesz property is strongly rotund. 
In symbols, (Rf) & (R) & (H) '* (K). 

PROOF. Suppose that X is a normed space that is (Rf) & (R) & (H). Let C 
be a nonempty closed convex subset of X. Then C is a Chebyshev set 
by Corollary 5.1.19. By Theorem 5.3.21, it is enough to show that C is 
approximatively compact. Let (Yn) be a minimizing sequence in C with 
respect to some x in X and let y be the unique element of C closest to x. 
It is enough to show that (Yn) has a subsequence converging to y. By the 
reflexivity of X, there is a subsequence (YnJ of (Yn) that c:onverges weakly 
to some element Y' of the weakly closed set C, and Ilx - Y'II = d(x, C) since 
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d(x,C) :::; Ilx - y/ll :::; liminfjllx - YnJ = d(x,C). Therefore y' = y. Since 

x - Ynj ~ X - Y and Ilx - Ynj II -4 Ilx - YII, it follows that x - Yn] -4 X - Y 
and therefore that Yn J -4 y. • 

5.3.24 Corollary. Every reflexive locally uniformly rotund normed space 
is strongly rotund. In symbols, (Rf) & (LUR) =} (K). 

It follows from what has already been proved that (Rf) & (R) & (H) =} 

(K) & (B) =} (R) & (H). If it could be shown that every strongly rotund 
Banach space is reflexive, then a nice characterization of the strongly rotund 
Banach spaces would follow: They would be precisely the normed spaces 
that are reflexive and rotund and have the Radon-Riesz property. 

This characterization does in fact hold since every strongly rotund Ba
nach space is reflexive, as was first shown by Fan and Glicksberg in their 
1958 paper [77J. However, this does not seem to be all that easy to prove 
from elementary principles. The known proofs (or at least the ones known 
to this author at the time of this writing) all use some form of James's theo
rem or, in one case, the Bishop-Phelps 8ubreflexivity theorem; see [168J and 
Exercises 5.33 and 5.65. Both of these results appear in optional sections 
of this book, and neither i8 particularly trivial. Though Fan and Glicks
berg published their result several years before the general case of James's 
theorem appeared in James's 1964 paper [112], they did use a weak form 
of James's theorem from his 1957 paper [111J. 

Though reflexive locally uniformly rotund normed spaces are strongly 
rotund, it follows from the remarks of the preceding paragraph that nonre
flexive locally uniformly rotund Banach spaces, such as the one of Exam
ple 5.3.6, cannot be strongly rotund, so (LUR) does not imply (K). Mark 
Smith's paper [219J contains additional examples to show that (K) neither 
implies nor is implied by any of the properties (LUR), (wUR), and (wLUR). 

For more on strong rotundity, see [224J and [226], and in particular Fan 
and Glicksberg'8 paper [77J in which a number of reformulations of the 
property are given in addition to the ones obtained above. 

The last generalization of uniform rotundity to be studied in the body of 
this section is obtained by starting with the first sequential characterization 
of uniform rotundity in Proposition 5.2.8 and then stiffening the hypotheses 
on the sequences (xn ) and (Yn) by requiring not just that 11~(Xn + Yn)11 
tend to 1, but that there actually be an element of Sx to which ~(xn +Yn) 
converges. 

5.3.25 Definition. (K. W. Anderson, 1960 [5]). Suppose that X i8 a 
normed space such that whenever (xn) and (Yn) are sequences in Sx and 
~(xn +Yn) converges to some member of Sx, it follows that Ilxn -Ynll --> O. 
Then X is midpoint locally uniformly rotund or midpoint locally uniformly 
convex. The abbreviation MLUR is used for this property. 
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Notice that if (Xn) and (Yn) are sequences in the unit sphere of a normed 
space X that is (MLUR), and if ~(xn + Yn) converges to some z in Sx, 
then both Xn and Yn also converge to z. In fact, a moment's thought shows 
that an equivalent definition of midpoint local uniform rotundity would 
have been obtained if in Definition 5.3.25 it were required that Xn and Yn, 
or for that matter just Xn, tend to the same limit as ~(xn + Yn), rather 
than requiring that II Xn - Yn II --> O. There is a large number of such ways 
to make small modifications to the conclusion about (xn) and (Yn) in Def
inition 5.3.25 without changing the property being defined. The following 
result gives one simple one that will be useful in what is to follow. 

5.3.26 Proposition. Suppose that X is a normed space. Then the follow
ing are equivalent. 

(a) The space X is midpoint locally uniformly rotund. 

(b) Whenever (xn) and (Yn) are sequences in X such that Ilxnll and IIYnl1 
tend to 1 and ~(xn +Yn) converges to some member of Sx, it follows 
that Ilxn - Ynll --> O. 

PROOF. All that needs to be proved is that (a) =} (b). Suppose that X 
is (MLUR) and that (xn) and (Yn) are sequences in X such that Ilxn II 
and IIYnl1 tend to 1 and ~(Xn + Yn) converges to some z in Sx. It may be 
assumed that no Xn or Yn is zero. Then 

0:::; IIHllxnll-1xn + IIYnll-1Yn) - zll 
:::; ~ 1lllxnll-1xn - Xnll + ~ 1111Ynll-1Yn - Ynll + II ~(Xn + Yn) - zll 

for each n, from which it follows that Hllxnll-1xn + llYn 11-1Yn) --> z. There
fore 1lllxnll-1xn - IIYnll-1Ynll--> O. This and the fact that 

0:::; IIxn - Ynll 
:::; IIXn -llxnll-1Xnll + 1lllxnll-1xn -IIYnll-1Ynll + 1111Ynll-1Yn - Ynll 

for each n together show that Ilxn - Ynll --> 0, as required. • 
It is clear from Proposition 5.2.8 that every uniformly rotund normed 

space is midpoint locally uniformly rotund. In fact, two of the other gener
alizations of uniform rotundity studied in this section also imply midpoint 
local uniform rotundity. 

5.3.27 Proposition. Every normed space that is either strongly rotund or 
locally uniformly rotund is midpoint locally uniformly rotund, a.nd every 
midpoint locally uniformly rotund normed space is rotund. In symbols, 
(K) =} (MLUR) and (LUR) =} (MLUR) =} (R). 

PROOF. Suppose first that the normed space X is not rotund. Then there 
are distinct members x and Y of S x such that ~ (x + y) E S x, which allows 
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the construction in the obvious way of trivial sequences (xn) and (Yn) in Sx 
such that ~ (xn + Yn) converges to the element ~ (x + y) of Sx even though 
IIxn ~Ynll does not tend to O. Therefore X is not midpoint locally uniformly 
rotund. 

Now suppose instead that X is strongly rotund and that (xn) and (Yn) 
are sequences in Sx such that ~(xn + Yn) converges to some member Z 

of Sx. Then there is some z* in Sx* such that z* Z = Re z* Z = 1. Since 
Rez*xn ::; 1 and Rez*Yn ::; 1 for each n and ~(Rez*xn + Rez*Yn) -> 1, 
it follows that Re z*xn -> 1 and Re z*Yn -> 1. Let (zn) be the sequence 
(Xl, YI, X2, Y2' .. ')' Then Re z* Zn -> 1, so (z,,) is Cauchy by Theorem 5.3.17. 
Therefore Ilxn - Ynll -> 0, which shows that X is (MLUR). 

Finally, suppose that X is locally uniformly rotund instead of strongly 
rotund, and again suppose that (xn) and (Yn) are sequences in Sx such 
that ~ (xn + Yn) converges to some Z in S x. Since 

as n --+ 00, it follows that 11~(Xn + z)ll--+ 1. Therefore Ilx" - zil --+ 0 by 
Proposition 5.3.5. Similarly, it follows that llYn - zll --+ 0, so Ilxn - Yn II -> O. 
This establishes that X is (MLUR). • 

As was mentioned above, it is known that every strongly rotund Banach 
space is reflexive. Since the Banach space of Example 5.3.6 is (MLUR) 
but not reflexive, it follows that (MLUR) does not imply (K). Smith's pa
per [219] contains other examples to show that (R) does not imply (MLUR) 
and that (MLUR) does not imply (LUR). His paper also has examples 
to show that (MLUR) neither implies nor is implied hy either (wUR) or 
(wLUR). Smith later settled the question of whether midpoint local uniform 
rotundity implies the Radon-Riesz property by equivalently renorming Co 
to be (MLUR) but not (H); sec his 1981 paper [220]. 

Midpoint locally uniformly rotund normed spaces have a characterization 
in terms of approximative compactness analogous to the one for strongly 
rotund Banach spaces given in Theorem 5.3.21. 

5.3.28 Theorem. (R. E. Megginson, 1984 [168]). A normed space X is 
midpoint locally uniformly rotund if and only if every closed ball in X is 
an approximativeiy compact Chebyshev set. 

PROOF. Suppose first that X is (MLUR), that X is a point in X, that 
C is a closed ball in X with center c and radius r, and that (Yn) is a 
minimizing sequence in C with respect to x. The immediate goal is to 
prove that there is a unique point of C closest to x and that (Yn) has a 
subsequence convergent to a member of C, so it may be assumed that x = 0 
and that d(O, C) = 1. First of all, there cannot be two different points of C 
at distance 1 from 0, for it would then follow from the convexity of C n Bx 
that the entire straight line segment connecting the two points would lie 
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in S x, a contradiction to the rotundity of X. Let Y be the point where the 
straight line segment connecting 0 to e intersects the boundary of C. Then 
the triangle inequality implies that y is the unique point of C closest to O. 
Notice that !lYII = d(O, C) = 1 and that e = (1 + r)y. 

It will now be shown that (Yn) has a subsequence converging to an ele
ment of C, and in fact that Yn -+ y. 

Case 1: r = 1. For each positive integer n, let y~ = 2y - Yn' and observe 
that ~(Yn + y~) = y. Since e = 2y, 

2 = 112yII ::; 112y - Ynll + IIYnl1 ::; 1 + IIYnl1 

for each n, so IIY~ II = 112y - Yn II -+ 1 because llYn II -+ 1. It then follows 
from Proposition 5.3.26 that llYn - y~ II -+ 0, so Yn ---> y. 

Case 2: r < 1. In this case lie - 2yII = II(r - l)YII = 1 - r. For each 
member z of C, 

liz - 2yII ::; liz - ell + lie - 2yII ::; r + 1 - r = 1, 

which shows that C is included in the closed ball of radius 1 centered at 2y. 
Therefore (Yn) is a minimizing sequence in this larger ball with respect to 0, 
so all that is needed to show that Yn -+ Y is an appeal to case 1. 

Case 3: r > 1. Let C' be Lhe closed ball of radius 1 centered at 2y. For 
each positive integer n, let Zn = Y + r- 1(Yn - y) and observe that Zn E C' 
because 

Since 

1::; Ilznll ::; 11(1- r-1)yll + IIr-1Ynll = (1 - r- 1 ) + r-111Ynll 

for each n, and since (1- 1'-1) + r- 1 11Ynll -+ 1, it follows that Ilznll -+ 1 
and therefore, by case 1, that Zn -+ y. Therefore Yn -+ y. 

In any case, there is a unique point of C closest to 0, and the minimizing 
sequence (Yn) in C with respect to 0 converges to the element Y of C, so 
every closed ball in X is an approximatively compact Chebyshev set. 

Now suppose conversely that every closed ball in X is an approxima
tively compact Chebyshev set. Let (un) and (vn ) be sequences in Sx such 
that there is an element w of S x to w hich ~ (un + vn ) converges. Then 
d(2w, Bx) = 1 and w is the unique point of Bx closest to 2w. Since 

for each n and since Ilun + Vn - 2wll ---> 0, each subsequence of (un) is a 
minimizing sequence in Bx with respect to 2w and therefore must have 
a convergent subsequence whose limit is necessarily the unique point w 
of Bx closest to 2w. It follows that Un -+ w, and similarly that Vn -+ w, 
and therefore that Ilun - vnll -+ 0. This proves that X is (MLUR). • 
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(K) 

l~ 
(H) (MLUR) 

i/ ~ 
(UR)-----. (LUR) (R) 

~ 
(wLUR) 

/ 
(wUR) 

FIGURE 5.3. An implication diagram for generalizations of uniform rotundity. 

Figure 5.3 shows all of the implications between single properties proved 
in this section, except for those involving weak* uniform rotundity that 
apply only to dual spaces; however, see also Theorem 5.3.23 and Corol
lary 5.3.24. Notice that (H) does not imply any of the other properties in 
the diagram, since £i is not rotund but, like all finite-dimensional normed 
space8, has the Radon-Riesz property. It follows from this and Smith's 
examples already mentioned above that no arrows can be added to this 
diagram showing relationships not already implied by the diagram. 

Extensive lists of other generalizations of uniform rotundity as well as 
some of their characteristics and the relationships between them can be 
found in [56, pp. 145-147] and [107, pp. 71-93]. A few of these general
izations can be found in the exercises for this scction. Two of the general
izations from the exercises, namely, uniform rotundity in weakly compact 
sets of directions and uniform rotundity in every direction, as well as weak 
uniform rotundity and uniform rotundity itself, are directionalizations of 
uniform rotundity in the sense that they can be defined in terms of the 
following modulus. See Exercises 5.29-5.32. 

5.3.29 Definition. Suppose that X is a normed space. Define a function 
6x: [0,2] x (X \ {O}) --> [0,1] by the formula 

OX(E, -->z) = inf{ 1 -11~(x + y)11 : x, y E Sx, Ilx - yll 2: E, 

x - Y = az for some scalar a}. 

Then {j x is the directional modulus of rotundity of X. If A is a nonempty 
subset of X \ {O}, thcn 

oX(E,-->A) = inf{6x(E,-->z): z E: A} 

whenever 0 ::; E ::; 2. 
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A good starting point for discovering more about approximative com
pactness and other approximative properties of sets in normed spaces is 
L. P. Vlasov's 1973 survey article [238J. Those interested in the subject 
of equivalently renorming spaces to have desired properties should read 
Mark Smith's articles [219J and [220J to learn about the art from one of its 
masters. 

Exercises 

5.24 Prove the parallelogram law for £2 mentioned in Example 5.3.6. 

5.25 Give at least one sequential characterization of weak local uniform rotun
dity. 

5.26 Find a sequential characterization of weak* uniform rotundity. 

5.27 (a) Prove that every approximatively compact set is closed. 

(b) Give an example of an approximatively compact set that is not com
pact, or even weakly compact. 

5.28 (K. Fan and 1. Glicksberg, 1958 [77)). Suppose that k is a positive integer 
such that k :2: 2. A normed space X is k-rotund if each sequence (Xn) in X 
such that limnl, .. ,nk~(X)lIk-1 2:;=1 Xnj II = 1 is Cauchy. (The notation 

limnl, ... ,nk~(X)llk-l 2:;=1 Xnj II = 1 means that for every positive t there 

is a positive integer N< such that Illk- ' 2:;=1 Xnj II - 11 < E whenever 
n" ... , nk :2: N,.) The abbreviation kR is used for the property of k
rotundity. 

(a) Prove that every uniformly rotund normed space is k-rotund, and 
that every k-rotund normed space is (k + I)-rotund. That is, show 
that (UR) =} (kR) =} ((k + I)R). 

(b) Prove that every k-rotund normed space is strongly rotund. That 
is, show that (kR) =} (K). 

5.29 Prove that a normed space X is (UR) if and only if 6X(E, ~A) > 0 
whenever 0 < E ~ 2 and A is a nonempty bounded closed subset of X\ {OJ. 

5.30 Prove that a normed space X is (wUR) if and only if 6X(E, --+A) > 0 
whenever 0 < E ~ 2 and A is a nonempty bounded weakly closed subset 
of X \ {OJ. 

5.31 (M. A. Smith, 1975, 1977 [217, 218]). A normed space X is uniformly 
rotund in weakly compact sets of directions if 6x (E, --+A) > 0 whenever 
o < E ~ 2 and A is a nonempty weakly compact subset of X \ {OJ. The 
abbreviation URWC is used for this property. 

(a) Prove that a normed space X is (URWC) if and only if it has this 
property: Whenever (Xn) and (Yn) are sequences in Sx such that 
II ~(Xn + Yn)11 ~ 1 and Xn - Yn ~ v for some v in X, it follows that 
v =0. 

(b) Show that (wUR) =} (URWC) =} (R). 



478 5. Rotundity and Smoothness 

(c) Show that (Rf) & (wUR) {=> (Rf) & (URWC); that is, that weak 
uniform rotundity and uniform rotundity in weakly compact sets of 
directions are equivalent properties for reflexive normed spaces. 

Smith has shown in [219J that the nonreflexive Banach space (£1, II· liE) 
of Example 5.3.6 is (URWC) but not (wUR). 

5.32 (A. L. Garkavi, 1962 [84]). A normed space X is uniformly rotund in 
every direction or uniformly convex in every direction or directionally 
uniformly rotund if OX(E, ->z) > 0 whenever 0 < E ::; 2 and z E Sx. The 
abbreviation URED is used for this property. 

(a) Prove that a normed space X is (URED) if and only if it has this 
property: Whenever (Xn) and (Yn) are sequences in Sx such that 
11~(Xn + Yn)11 -> 1 and such that Xn - Yn E ({v}) for some v in X 
and each n, it follows that Xn - Yn -> O. 

(b) Show that (wUR) =} (URED) =} (R). 

(c) (This uses material from Exercise 5.31). Show that (URWC) =} 

(URED). 

Smith gave an example in [219] of a Banach space that is (URED) but not 
(URWC) , and another Banach space that is (R) but not (URED); both 
examples are formed by equivalently renorming £2. It can be shown that 
a normed space X is (URED) if and only if OX(E, ->A) > 0 whenever 0 < 
E ::; 2 and A is a nonempty compact subset of X \ {O}; see [218]. Another 
good source of information on uniform rotundity in every direction is the 
paper of Day, James, and Swaminathan [57] devoted to the property. 

5.33 This exercise requires James's theorem from either of the optional Sections 
1.13 and 2.9. Prove that a normed space is a strongly rotund Banach space 
if and only if it is a reflexive rotund normed space with the Radon-Riesz 
property. That is, show that (K) & (B) {=> (R) & (Rf) & (H). 

5.34 (Ivan Singer, 1964 [215]). A normed space X has the Efimov-Stechkin 
property if, whenever (xn) is a sequence in Sx for which there is an 
element x' of Sx* such that Rex'xn -> 1, the sequence (Xn) has a 
convergent subsequence. The abbreviation CD is used for this property. 

(a) Show that a normed space X has the Efimov-Stechkin property if 
and only if every nonempty closed convex subset of X is approxi
matively compact. 

(b) Prove that every strongly rotund Banach space has the Efimov
Stechkin property. 

(c) Show by example that not every Banach space with the Efimov
Stechkin property is rotund. 

(d) Prove that every normed space with the Efimov-Stechkin property 
is a Banach space. 

(e) Prove that every normed space with the Efimov-Stechkin property 
has the Radon-Riesz property. 

(f) The rest of this exercise requires James's theorem from either of the 
optional Sections 1.13 and 2.9. Prove that every normed space with 
the Efimov-Stechkin property is reflexive. 
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(g) Prove that a normed space has the Efimov-Stechkin property if and 
only if it is reflexive and has the Radon-Riesz property. That is, 
show that (CD) ¢:} (Rf) & (H). 

(h) Conclude from the results of this exercise and Exercise 5.33 that a 
normed space is a strongly rotund Banach space if and only if it is 
rotund and has the Efimov-Stechkin property. That is, show that 
(K) & (B) ¢:} (R) & (CD). 

5.35 The purpose of this exercise is to present a technique that can be used 
to design a real normed space having ]R2 as its underlying vector space 
such that the closed unit ball of the space has certain specified geometric 
properties. 

(a) Prove that if a subset C of ]R2 is balanced (which in this case is 
equivalent to being symmetric about the origin), convex, and closed, 
and has nonempty interior with respect to the Euclidean topology 
for IR2, then C is the closed unit ball for some norm on ]R2 that is 
equivalent to the Euclidean norm of ]R2. 

(b) Use (a) to construct a Banach space X with the property that for 
some clement x of S x there can be found a different element y of S x 
such that ~ (x + y) E Sx, but for some other element x' of Sx there 
is no y' in Sx such that x' oj y' and ~(x' + y') E ."ix . 

5.36 (R. C. James, 1964 [113]). Suppose that X is a normed space and that 
fix is the modulus of rotundity of X. Then X is in quadrate or uniformly 
nonsquare if there existll an E such that 0 < E < 2 and fiX(E) > O. The 
abbreviation NQ is used for this property. It is obvious that this property 
is implied by uniform rotundity. Show that it does not imply rotundity. 
The method of Exercise 5.35 might be helpful. 

James has shown in [113] that every inquadrate Banach space is reflexive. 
Notice that it follows from this and Exercise 5.14 that if fiy is the modulus 
of rotundity for a rotund nonreflexive Banach space Y, then 

fiY(E)={~ if 0 < E < 2; 

if E = 2. 

It even turns out that a normed space is (NQ) if and only if it is (UR), 
that is, if and only if it is superreflexive. See [56, pp. 169-173] for a proof 
of this and for references concerning the history of the result. 

5.4 Smoothness 

In the introduction to this chapter, it was said that a normed space's closed 
unit ball is smooth if the unit sphere has no "corners" or "sharp bends." It 
is time to make this "definition" a bit more rigorous. One clue as to how 
this could be done is given by the illustration of the unit sphere of real Pi 
in Figure 5.4. Through each of the four corners of this unit sphere, it is 
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FIGURE 5.4. Multiple support hyperplanes for Be? at a point of Ser 

possible to pass more than one line that does not penetrate the interior of 
the closed unit ball, while this is not possible at any of the other points 
of S£,i' Since the support hyperplanes for B£~ are precisely the straight lines 
in fi that intersect S£2 but not B~2' this suggests the following definition. 

1 < 1 

5.4.1 Definition. Suppose that Xu is an element of the unit sphere of a 
normed space X. Then Xu is a point of smoothness of B x if there is no 
more than one support hyperplane for Ex that supports Bx at Xu. The 
space X is smooth if each point of Sx is a point of smoothness of Bx. 

By Corollary 1.9.8, each point Xo of the unit sphere of a normed space X 
is a support point for Bx and therefore gives rise to at least one support 
hyperplane for Bx that supports Bx at Xo. It would therefore be equiv
alent to replace "no more than one support hyperplane" in the preceding 
definition by "exactly one support hyperplane." 

If the closed unit ball of a normed space X is supported at some point Xo 

of Sx by elements xi and X2 of Sx*, and if xi and x2 induce the same 
support hyperplane H for B x, then 

H = {x: x E X, Rcxix = I} = {x: x E X, Rex;x = I}, 

from which it follows that Re xi = Re x2 and therefore that xi = x;. The 
following characterizations of points of smoothness and the smoothness 
property follow easily. 

5.4.2 Proposition. Suppose that X is a normed space and that Xo E Sx. 
Then the following are equivalent. 

(a) The element Xo is a point of smoothness of B x . 

(b) There is exactly one element xC; of Sx* that supports Bx at Xo. 

(c) There is exactly one element xC; of S x' such that Re xC;xo = 1. 

(d) There is exactly one clement xC; of Sx' sl1ch that xC;xo = 1. 
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5.4.3 Corollary. Suppose that X is a normed space. Then the following 
are equivalent. 

(a) The space X is smooth. 

(b) For each x in Sx, there is a unique x* in Sx' that supports Ex at x. 

(c) For each x in S x, there is a unique x* in S x' such that Re x* x = 1. 

(d) For each x in S x, there is a unique x* in S x' such that x* x = 1. 

The following result is essentially obvious, and in any case is an easy 
consequence of the preceding corollary. 

5.4.4 Proposition. Every normed space that is isometrically isomorphic 
to a smooth normed space is itself smooth. 

This does not generalize to isomorphisms. For example, real C~ is ob
viously smooth even though it is isomorphic to the nonsmooth normed 
space ci. 

As will be apparent from the examples given below, the classical Banach 
spaces studied earlier in this book tend to be both rotund and smooth when 
they have either property. However, neither property actually implies the 
other; see Exercise 5.37. It is true that the presence of either one in a 
normed space is implied by the existence of the other in the dual space. 

5.4.5 Proposition. A normed space is smooth if its dual space is rotund. 

PROOF. Suppose that X is a nonsrnooth normed space. Then for some x 
in Sx there are two different elements xi and x 2 of Sx' such that xix = 
x2x = 1. Therefore ~(xi +x;)(x) = 1, so 1::;: 11~(xi +x2)11::;: I, and thus 
11~(xi +x~;)11 = 1. It follows that X* is not rotund. • 

5.4.6 Proposition. A normed space is rotund if its dual space is smooth. 

PROOF. Suppose that X is a nonrotund normed space and that Q is the 
natural map from X into X**. Then there are two different clements Xl 

and X2 of Sx and an element x· of Sx' such that 1 = x* (~(XI + X2)) = 
X*XI "'" X*X2 = (QxI}(x*) = (QX2)(X*). The space X* is therefore not 
smooth. • 

An obvious argument based on the preceding three propositions then 
yields the following result. 

5.4.7 Proposition. A reflexive normed space is rotund if and only if its 
dual space is smooth, and is smooth if and only if its dual space is rotund. 

The implications in Propositions 5.4.5 and 5.4.6 cannot in general be 
reversed for nonrefiexive normed spaces. The rotund Banach space CI,T of 
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Example 5.1.8 obtained by equivalently renorming f\ has its dual space 
isomorphic to Roo, but it was shown by M. M. Day in a 1955 paper [51J 
that Roo cannot be equivalently renormed to be smooth. See Exercise 5.41 
for another proof that Rr T is not smooth. Also, see S. L. Troyanski's 1970 
paper [231J for an example of a smooth Banach space whose dual is not 
rotund, and [107, pp. 130-132J for an English exposition of the example. 

5.4.8 Example. The scalar field IF, viewed a..') a normed space over IF, 
is obviously smooth. The same holds for every zero- or one-dimensional 
normed space. 

5.4.9 Example. Suppose that /1 is a positive measure on a O"-algebra 2:: 
of subsets of a set ~ and that 1 < P < 00. Let q be the real number such 
that p-l + q-l = 1. Then (Lp(~, 2::, /1))' is isometrically isomorphic to the 
rotund normed space Lq(~, 2::, /1), so Lp(n, 2::, /1) is smooth. 

5.4.10 Example. As in the last example, suppose that JL is a positive 
measure on a O"-algebra 2:: of subsets of a set ~, but suppose also that there 
are disjoint measurable subsets Al and A2 of 0, each with finite positive 
measure. Let lA, and IA2 be the respective indicator functions of these 

sets, and let II = (JL(AdrlIAl' 12 = (JL(A2 )rlIA2 , gl = lA, + I A" 
and g2 = lA, - IA2 . Then gl and g2 can be identified in the usual way 
with different norm-one bounded linear fllnctionals on Ll (0,,2::, /1), and 
similarly hand 12 can be identified with different norm-one bounded linear 
functionals on Loo(0., 2::, JL). Notice that this can be proved directly; it does 
not require that (L1(0.,2::,JL))' be identifiable with Loo (0.,2::,JL) through 
some assumption such as that the measure space is O"-finite. Since 

r hg2 = r hg1 = 1 hg1 = 1, in in n 

neither Ll(0., 2::, JL) nor Loo(0., 2::,JL) is smooth. In particular, the spaces R1 
and £00 are not smooth, nor are £f and £~ when n :::: 2. Notice that the 
spaces Rf and £~ are smooth when n < 2 by Example 5.4.8. 

5.4.11 Example. Let xi and x; be the members of SCa identified in the 
usual way with the first two standard unit vectors of £1, and let x be the 
member (1,1,0,0,0, ... ) of SCD' Then xix = X2X = 1, so Co is not smooth. 
Since xi and x2 can be viewed in the obvious way as members of Sf':x" it 
also follows that Roo is not smooth. 

5.4.12 Example. Suppose that K is a compact Hausdorff space with more 
than one element. Let k1 and k2 be different members of K. For j = 1,2, 
let 6j be the member of Srca(K) defined by the formula 

if kj E A; 

if kj 1:. A. 
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Let f be the member of SC(K) that takes on the value 1 everywhere on K. 
Since 81 and 82 can be viewed in the usual way as norm-one bounded linear 
functionals on C ( K), and since 

[fd81 = [fd82 = 1, 

the normed space C(K) is not smooth. 

5.4.13 Example. This is an example of a nonreflexive smooth Banach 
space. Define T: £2 --> Co by the formula T((an») = (an). Then T is a one
to-one bounded linear map having norm 1, and T(£2) is dense in Co since 
T(£2) includes the vector space of finitely nonzero sequences. Therefore the 
adjoint T* of T is a one-to-one weakly* continuous bounded linear map 
from Co into the rotund normed space £i, and IIT*II = 1. Let Ilx*lla = 
Ilx*11 + IIT'x*11 for each x* in co. Then Ilx*11 S; Ilx*lla S; 211x*11 whenever 
x* E Co, from which it follows easily that 1I·lla is a norm on c~ equivalent 
to its original dual norm. 

Suppose that xi, xi E Co and that Ilxi + xilla = Ilxilla + Ilxilla· Then 
IITxi +Txill = IITxil1 + IITxill, so it follows from the rotundity of £i that 
one of the two vectors Txi and Txi is a nonnegative multiple of the other. 
Since T* is one-to-one, this implies that one of the vectors xi and xi must 
be a nonnegative multiple of the other, so 11·lla is a rotund norm. 

It follows from the weak* lower semicontinuity of the original norms of 
c~ and £i and the weak*-to-weak* continuity ofT* that Ilw*-limCl'x~lla S; 

liminfCl'llx~lla whenever (x~.) is a weakly* convergent net in co. By Theo
rem 2.6.15, there is a norm II· lib on eo equivalent to its original norm such 
that 1I·lIa is the dual norm on (co, 1I·llb)*. Since 11·lla is a rotund norm, the 
Banach space (eo, II· lib) is smooth, but is not reflexive since it is isomorphic 
to eo. 

Just as there is a connection between the smoothness of the graph of a 
real-valued function of a real variable and the differentiability of the func
tion, so is there a connection between the smoothness of the unit sphere of 
a normed space and the Gateaux differentiability of the norm. In the inter
est of sticking to the subject at hand, the following treatment of Gateaux 
differentiability is done specifically for norm functions. A far more general 
and extensive discussion of Gateaux differentiability can be found in [88]. 

5.4.14 Lemma. Suppose that X is a normed space and that Xo E Sx. 
Then for each y in X, the iunction3 

Ilxo + tY11 - IIxoll t f---7 -"----'---::....:.:..--"--"-"-

t 

3The reason for not substituting 1 for IIxo II in the following quotient or in similar 
quotients in the rest of this chapter is to make the point that these expressions represent 
difference quotients for the norm function. 
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from ~ \ {O} into ~ is non decreasing, so both 

I' Ilxo + tY11 -llxull 
lIIl "'-----"--'-"--'-'---'" 
t->O~ t 

and 

I ' Ilxo + tY11 - Ilxoll 1m ---'------'---'-'-
t->o+ t 

exist, and 

I ' Ilxo + tY11 - Ilxo II < I' Ilxo + tY11 - Ilxo II 
1m 1m , 

t->U- t - t--->O+ t 

Furthermore, the function 

l ' Ilxo + tYII- Ilxoll 
Y f-t 1m 

t->O+ t 

is a sublinear functional on X, 

PROOF, For the moment, consider the element Y of X to be fixed, and let 

f(t) = Ilxo + tyll- Ilxoll 
t 

whenever t E ~ \ {O}, Suppose that 0 < tl < t2' Then 

so 

and 

Ilxo + tlyil-lixoll = II ~~ (xo + t2y) + (1- ~:) xoll-"xoll 

::; ~ Ilxo + t2 yll + (1 -~) Ilxoll - Ilxoll 
t2 t2 

= ~~ (1lxu + t 2 yII - Ilxoll), 

Ilxo + tlyll - Ilxoll < Ilxo + t2 yII - Ilxoll 
tl t2 

Ilxo - t2 yll - Ilxoll 
-tz 

< 

Ilxo + t2( -Y)II - Ilxull 
t2 

Ilxo + tJ (-Y)II - Ilxoll 
tl 

Ilxo - tlyll - Ilxoll 
-tl 

Since Ilxoll ::; Hllxo - tlyll + Ilxo + tlyll), it is also true that 

Ilxo - t1yll- Ilxoll Ilxo + t1YII-llxoll 
~--~~~~< , 

-tl - tl 
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It follows from all of this that J is nondecreasing, so limt->o- J(t) and 
limt->o+ J(t) both exist and limt-+o- J(t) ::; limt-+o+ JU)· 

Now drop the assumption that Y is fixed, and let 

() 1. Ilxo + tY11 - Ilxoll 
9 Y = 1m 

t-+o+ t 

whenever Y E X. Suppose that S > 0 and that Yl, Y2 EX. Then 

( ) I. IIxo + tSYlll - Ilxoll I' Ilxo + tSYl11 -- Ilxoll () 
9 SYI = 1m = S 1m = sg Yl . 

t-+o+ t t->o+ ts 

The function 9 is therefore positive-homogeneous. Also, if t > 0 then 

Ilxo + t(Yl + Y2)11 -lixoll Ilxo + 2tyIiI- Ilxoll Ilxo + 2tY211 - Ilxo ll 
t :S 2t + 2t ' 

so letting t tend to 0 through positive values shows that g(Yl + Y2) < 
g(Yd + g(Y2)' Therefore 9 is finitely subadditive and so is sublinear. • 

5.4.15 Definition. Suppose that X is a normed space, that Xo E Sx, and 
that Yo EX. Let 

G_(Xo,Yo) = lim Ilxo +tYoll-lixoll 
t->O- t 

and 

Then G_(XO,Yo) and G+(xo, Yo) are, respectively, the left-hand and right
hand Gateaux derivative oj the norm at Xo in the direction Yo. The norm is 
Gateaux differentiable at Xo in the direction Yo if G - (xo, Yo) = G + (xo, Yo), 
in which case the common value of G-(xo,Yo) and G+(xo, Yo) is denoted 
by G(xo, Yo) and is called the Gateaux derivative oj the norm at Xo in the 
direction Yo. If the norm is Gateaux differentiable at :Z:o in every direc
tion y, then the norm is Gateaux differentiable at Xo. Finally, if the norm 
is Gateaux differentiable at every point of the unit sphere, then it is simply 
said that the norm is Gateaux differentiable. 

Notice that the norm of a normed space X is Gateaux differentiable at 
a point Xo of the unit sphere in a direction Yo if and only if 

1. Ilxo + tyo II - Ilxo II 
Im~----~--~~ 

t->O t 

exists, in which case G(xo, Yo) is the limit. Therefore the norm of the space 
is Gateaux differentiable if and only if the above limit exists for each Xo 
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in the unit sphere and each Yo in the space. Notice also that if Xo E S x, 
then G~(xo, y) = -G+(xo, -y) whenever y E X, which together with the 
sub linearity of G+(xo,·) implies that G~ (xo,·) is positive-homogeneous. 

5.4.16 Lemma. Suppose that X is a normed space, that Xo E Sx, and 
that Xo E Sx·. Then Xo supports Ex at Xo if and only jf 

whenever y EX. 

PROOF. Suppose first that Xo supports Ex at Xo and that y EX. If t > 0, 
then 

and so 

Rex~(ty) = Rex~(xo + tV) - Rex~xo 

= Rex~(xo + tV) -Ilxoll 

<S: Ilxu + tY11 - Ilxull, 

Ilxo - tYII-llxull Ilxu + t( -y)ll- Ilxoll 
-t t 

<S:-Rex~(-y) 

= Rex~y 

< Ilxo + tY11 - Ilxoll 
- t ' 

from which it follows that G~(xo,Y) <S: RexoY s:: G+(xo,Y). 
For the converse, suppose that G~(xo, y) <S: RexoY <S: G+(xo, y) when 

y E Y. Since the norm is Gateaux differentiable at Xo in the direction Xo 
and G(xo,xo) = 1, it follows that Rexoxo = 1 and therefore that xC; 
supports B x at Xo. • 

5.4.17 Theorem. (S. Banach, 1932 [13]). Suppose that X is a normed 
space and that Xo E S x. Then Xo is a point of smoothness of B x if and 
only if the norm of X is Gateaux differentiable at Xo. Furthermore, if Xo 
is a point of smoothness of Bx and x(j is the unique member of Sx' that 
supports Bx at xo, then the Gateaux derivative of the norm of X at Xo 
in each direction y is given by the formula G(xo, y) = Re xoY. 

PROOF. Suppose first that the norm of X is not Gateaux differentiable 
at Xo. Then there is a Yo in X i:luch that G~(xo,yo) < G+(XO,yo). Fix a 
real number s such that G~(xo,yo) <S: s <S: G+(XO,yo), and let !..(ryo) = rs 
for each real number r. Then Is is a real-linear functional on the real vector 
space V consisting of all real multiples of Yo, and Is(ryu) <S: G+(xu, ryo) 
whenever r E lR; this uses the positive-homogeneity of G+(xo,·) and the 



5.4 Smoothness 487 

fact that G+(xo,ryo) = -G_(xo,-ryo) for each real r and in particular for 
each negative r. By the vector space version of the Hahn-Banach extension 
theorem, there is a linear functional x; on X such that the restriction 
of Re x; to V is Is and Rex;y S; G+(xo, y) whenever y E X. Notice that 
this implies that 

for each y in X. It also follows that 

whenever y EX, so x; is bounded and has norm at most 1. The norm 
of x; is in fact 1 since Re x;xo = G(xo, xo) = 1. Therefore x; is a member 
of Sx' that supports Bx at Xo. Now s can be anyone of the infinitely 
many real numbers in the interval [G _ (xo, Yo), G + (xo, Yo) J, and each such s 
gives rise to a different x; in Sx' supporting Bx at Xo since Re x;Yo = s. 
Therefore Xo is not a point of smoothness of B x . 

Now suppose conversely that the norm of X is Gateaux differentiable 
at Xo and that Xo is a member of Sx' that supports Bx at Xo. It follows 
from the preceding lemma that Rexoy = G(xo,Y) whenever y E X, so 
every other member of Sx' that supports Bx at Xo has the same real part 
as Xo and thus equals xo. Therefore Xo is a point of smoothness of Bx by 
Proposition 5.4.2, which finishes the proof of the equivalence that is the 
first conclusion of this theorem. The argument given at the beginning of 
this paragraph then produces the formula for the Gateaux derivative that 
is the other conclusion. • 

5.4.18 Corollary. A normed space is smooth if and only if its norm is 
Gateaux differentiable. 

There is another characterization of points of smoothness that is histori
cally related to Gateaux differentiability. Smulian first stated the following 
result as a characterization of points at which the norm is Gateaux differ
entiable rather than as a characterization of points of smoothness. 

5.4.19 Theorem. (V. L. Smulian, 1939 [222]). Suppose that X is a normed 
space and that Xo E Sx. Then the following are equivalent. 

(a) The element Xo is a point of smoothness of Bx. 

(b) Whenever (x~) is a sequence in Sx' such that x;,xo --+ 1, the se
quence (x~) is weakly* convergent. 

If Xo is a point of smoothness of B x, then the weak* limit in (b) is the 
unique member of Sx' that supports Bx at Xo. 
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PROOF. Suppose that Xo is not a point of smoothness of B x. Let xi and X2 
be two different members of Sx' that support Bx at Xo. Then the se
quence (xi, X2, xi, xz, ... ) is not weakly* convergent, so (b) fails. Therefore 
(b) => (a). 

Suppose conversely that Xo is a point of smoothness of B x. Let x~ be 
the element of Sx* that supports Bx at xo and let (x~) be a sequence 
in Sx' such that x~xo --+ 1. Let (x~) be a subnet of (x~). By the Banach
Alaoglu theorem, the net (x~) has a subnet (x~) weakly* convergent to 
some y* in Bx •. Now y*xo = limf3 x~xo = I, so y* = xo. Since every 
subnet of (x~) has a subnet that is weakly* convergent to xo, it follows 
that (x~) is weakly* convergent to xo' This proves that (a) => (b) and 
establishes the final conclusion in the statement of the theorem. • 

As is true for rotundity, smoothness is inherited by subspaces. 

5.4.20 Proposition. If a normed space is smooth, then so is each of its 
subspaces. 

PROOF. Suppose that M is a subspace of a smooth normed space X, that 
x E SM, and that y EM. The left-hand Gateaux derivatives of the norms 
of M and X at x in the direction yare obviously equal, and the same 
is true for the corresponding right-hand Gateaux derivatives. It follows 
immediately that every point of SM is a point of smoothness of BM, so M 
~smo~h. • 

Another characteristic that smoothness shares with rotundity is that the 
existence of the property for a normed space is determined by its presence 
in the two-dimensional subspaces of the space. 

5.4.21 Proposition. A normed space is smooth if and only if each of its 
two-dimensional subspaces is smooth. 

PROOF. Suppose that X is a nonsmooth normed space. Then there is an x 
in Sx and a y in X such that the norm of X is not Gateaux differentiable 
at x in the direction y. Since X is neither zero- nor one-dimensional, there 
is a two-dimensional subspace M of X that contains both x and y. The 
norm of M is not Gateaux differentiable at x in the direction y, so M is 
not smooth. • 

Though smoothness is inherited by subspaces, it is not always inherited 
by quotient spaces. S. L. Troyanski gave an example in his 1970 paper [231] 
of a smooth Banach space with a closed subspace M such that X/M is not 
smooth. 

It is true that smoothness is inherited by direct sums of normed spaces 
when it is present in each of the summands. 
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5.4.22 Theorem. Suppose that Xl"'" Xn are normed spaces. Then 
Xl EEl··· EEl Xn is smooth if and only if each Xj is smooth. 

PROOF. It may be assumed that n = 2, for then an obvious induction 
argument proves the general case. Since each of Xl and X 2 is isometrically 
isomorphic to a subspace of Xl EEl X 2, each is smooth when Xl EEl X 2 is so. 
Suppose conversely that Xl and X 2 are smooth. Let (Xl, X2) be an element 
of SX1 ffiX2 and X* and y* elements of S(X1 ffiX 2)* such that X*(Xl,X2) = 
Y*(Xl' X2) = 1. Then there are elements xi and Yi of Xi and elements x2 
and Yz of X2' such that X*(Zl' Z2) = xi Zl +X2Z2 and Y' (Zl, Z2) = yi Zl +y::i Z2 

whenever (Zl, Z2) E Xl EElXz; see Theorem 1.10.13. It follows from Cauchy's 
inequality for real Euclidean 2-space that 

1 = xixl + X~X2 
:S Ilxillllxlll + Ilx~llllx211 
:S (11xi1l2 + Ilx~1I2)l/2(llxlI12 + Ilx2112)1/2 
= Ilx*IIII(Xl,X2)11 
= 1, 

and, since there must actually be equality throughout, that (1lxi II, IIX21i) 
is a real multiple of (1Ixrli, Ilx211)· Therefore Ilxill = Ilxlll and IIx211 = 

Ilx211. It also follows that xixl = IIxillllxtll = IIxll12 and x2x2 = Ilx2112. 
The same argument applied to y* shows that Ilyi II = IlxrIl, Ily::i11 = Ilx211, 
yiXl = IIxIil 2 , and yiX2 = Ilx2112. However, it is an easy consequence of 
the smoothness of Xl that there is a unique member z* of Xi such that 
Ilz*11 = Ilxlll and Z'XI = Ilxll12. Therefore xi = yi, and similarly xi = yi, 
so x* = y*. By Corollary 5.4.3, the normed space Xl EEl X z is smooth. • 

The rest of this section is devoted to a closer look at the relationship 
hetween the points of the unit sphere of a normed space X and the memhers 
of Sx* that support Bx at those points, 3.'l well as the connection between 
that relationship and smoothness. In this context it is natural to study the 
hehavior of the following set-valued map. 

5.4.23 Definition. Suppose that X is a normed space. For each X in Sx, 
let 

1/(X) = {x*: x* E Sx*, x*x = I}; 

that is, let 1/(x) be the subset of Sx* whose members are the support 
functionals for Ex that support Ex at x. Then 1/ is the spherical image 
map for Sx. 

The convention will be adopted that with all notation as in the preceding 
definition, when the map 1/ is everywhere singleton-valued it will be treated 
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in this text as if its values were members of Sx' rather than singleton sub
sets of Sx" The following result, which is essentially just a restatement of 
Corollary 5.4.3, says that this convention will be invoked precisely when X 
is smooth. 

5.4.24 Proposition. A normed space is smooth if and only if the spherical 
image map for the unit sphere of the space is singleton-valued. 

Rotundity can also be characterized in terms of this map. The following 
is just a restatement of Corollary 5.1.16. 

5.4.25 Proposition. Suppose that X is a normed space and that v is 
the spherical image map for Sx. Then X is rotund if and only if v(xd 
and V(X2) are disjoint whenever Xl and X2 are different members of Sx. 

5.4.26 Corollary. A normed space is rotund and smooth if and only if the 
spherical image map for its unit sphere is singleton-valued and one-ta-one. 

Spherical image maps for unit spheres of normed spaces are always 
weakly* -compact-valued. 

5.4.27 Proposition. Suppose that X is a normed space, that v is the 
spherical image map for Sx, and that x E Sx. Then v(x) is weakly* 
compact. 

PROOF. Since Ex' is weakly* compact, all that needs to be shown is that 
v(x) is weakly* closed. Suppose that (x~) is a net in v(x), that x* E X*, 

and that x~ ~. x'. Then x* E Ex •. Since x'x = lima x~x = 1, it follows 
that x* E Sx' and therefore that x* E v(x), so v(x) is weakly* closed .• 

When a normed space is smooth and the spherical image map for its unit 
sphere is treated as point-valued rather than set-valued, it is natural to ask 
if the map has any continuity properties. More generally, one might ask 
if the set-valued spherical image map for the unit sphere of an arbitrary 
normed space has any properties analogous to continuity. In fact, it does. 

5.4.28 Theorem. Suppose that v is the spherical image map for the unit 
sphere of a normed space X and that G is a weakly* open subset of X*. 
Then {x: x E Sx, v(x) ~ G} is an open subset of Sx. 

PROOF. Suppose to the contrary that {x : X E Sx, v(x) ~ G} is not open 
in Sx. Then there is an Xo in Sx and a sequence (xn) in Sx converging 
to Xu such that v(xu) ~ G but v(xn ) % G whenever n E N. For each n, 
let x~ be a member of v(xn) \ G. By the weak* compactness of Ex., there 
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is some sub net (x~) of (x~) that is weakly* convergent to some Xo in Ex-. 
For each 0:, 

so passing to the limit shows that xi)xo = 1 and therefore that x(j E Sx-. 
It follows that x(j E v(xo), so xi) is in the weakly* open set G even though 
the net (x~) that is weakly* convergent to xi) lies entirely outside G. This 
contradiction finishes the proof. • 

5.4.29 Corollary. The spherical image map for the unit sphere of a smooth 
normed space is norm-to-weak* continuous. 

It follows from this corollary that the spherical image map for the unit 
sphere of a smooth normed space is norm-to-weak continuous if the space 
is reflexive, and is even norm-to-norm continuous if the space is finite
dimensional. These stronger continuity conditions can be used to define 
and characterize strengthened smoothness conditions for normed spaces, 
as will be seen in Section 5.6. 

Exercises 

5.37 (a) Give an example of a rotund Banach space that is not smooth. 
Exercise 5.35 might help. 

(b) Give an example of a smooth Banach space that is not rotund. 

5.38 This exercise is based on the results of Exercise 5.1. Suppose that (Xn) 
is a sequence of normed spaces. 

(a) Let t'oo((Xn)) be the collection of all sequences (Xn) such that 
Xn E Xn for each nand sUPnllXnll is finite. Let II(xn)lloo = sUPnllxnl1 
for each member (Xn) of t'oo((Xn)). Show that £00 ((Xn)) is a vec
tor space when given the obvious vector space operations and that 
11·11= is a norm on this vector space. Show also that £= ((Xn)) is a 
Banach space if and only if each Xn is a Banach space. 

(b) Suppose that 1 S p < 00 and that q is conjugate to p. For each 
member (x;,) of £q((X;;)), let 

whenever (Xn) E £p ((Xn )). Show that T is an isometric isomorphism 
from £q ((X;;)) onto £p ((Xn)r. A look at the proof of Theorem C.12 
could be helpful. 

5.39 This exercise is based on Exercise 5.38. Suppose that (Xn) is a sequence 
of normed spaces and that 1 < p < 00. Prove that £p((Xn)) is smooth if 
and only if each (Xn) is smooth. 
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5.40 Suppose that X is a normed space. 

(a) Prove that X* is rotund if and only if XjM is smooth whenever Ai 
is a closed subspace of X SHch that XjI'vi is two-dimensional. 

(b) Prove that X' is smooth if and only if XjM is rotund whenever M 
is a closed subspace of X such that XI"\{ is two-dimensional. 

(c) Conclude from (a) and (b) that for X to be rotund (respectively, 
smooth) it is sufficient that every two-dimensional quotient space 
of X be rotund (respectively, smooth). (However, sufficient cannot 
be replaced by necessary as can be seen from the examples cited in 
this section of rotund (respectively, smooth) Banach spaces whose 
duals are not smooth (respectively, rotund).) 

5.41 Let £l.T be the nonreflexive rotund Banach space constructed 1Il Exam
ple fl. 1.8 and studied further in Example 5.1.22. Usc Exercise 5.40 t.o prove 
that £i,T is not smooth. 

5.42 Suppose that K is a compact Hausdorff space with more than OIle element. 
Show that rca(K) is not smooth, 

5.43 This exercise assumes some knowledge of inner product spaceb and their 
duals; see, for example, [24]. Prove that every inner product space is 
smooth. Exercise 5.4 might help. 

5.44 (V. L. Smulian, 1939 [222]). Suppose that X is a normed space and that 
Xo E Sx" Show that the following are equivalent. 

(a) The dCIIlfmt. Xo is a point. of smoothness of Bx·. 

(bl Whenever (Xn) is a sequence in Sx such that x~Xn -> 1, the se
quence (Xn) is weakly Cauchy. 

5.45 This exercise depends on Exercise 5.44 and on James's theorem from ei
ther of the optional Sections 1.13 and 2.9. Show that a weakly sequentially 
complete normed "pace is reflexive if its dual space is smooth. Conclude 
that. there is no norm II· lis· on £1 equivalent to its standard norm such 
that (£1, II·II~·) * is smooth. 

5.46 (D. F. Cu<iia, 1964 [44]). Suppose that X is a normed space and that Q is 
the natural map from X into X'*. Then X' is Q(X)-rotund if, whenever 
Xi,X2 E Sx' and there is an x" in SQ(X) such that x*'xr = x**x.~ = 1, 
it follow" that xr = X2' Also, the space X' is Q(X)-srnooth if, whenever 
xi', x~' E SQ(X) and there is an x* in Sx' such that xi'x' = x;*x' = 1, 
it follows that xi' = x~*. 

(al Prove that X is rotund if and only if X* is Q(X)-smooth. 

(b) Prove that X is smooth if and only if X* is Q(X)-rotund. 

5.47 Characterize the members (an) of Seo that are points of smoothness of Bco 
by means of some property of the terms of (an). Do the same for the 
members of Sf l that are points of smoothness of Bt" 

5.48 Prove t.hat if X is a Banach space that is not zero- or one-dimensional, 
then there is a nonsmooth norm on X equivalent to its original norm. 
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5.49 Suppose that Xo is an element of the unit sphere of a normed space X. 
Prove that Xo is a point of smoothness of Ex if and only if the map 
y r-> G+ (xo, y) is a real-linear functional on X. 

5.50 (a) This exercise requires James's theorem from either of the optional 
Sections 1.13 and 2.9. Find a characterization of the reflexive Banach 
spaces among all Banach spaces in terms of the behavior of the 
spherical image map for the unit sphere. 

(b) Find a characterization of the reflexive, rotund, smooth Banach 
spaces among all Banach spaces in terms of the behavior of the 
spherical image map for the unit sphere. 

5.51 Suppose that X is a normed space, that Q is the natural map from X 
into X**, and that v and v* are the spherical image maps for Sx and Sx* 
respectively. 

(a) Prove that X is rotund if and only ifQ-1 (v*(v(x))) = {x} whenever 
x E Sx. (If A is a set and <1> is a set-valued map with domain A, 
then <1>(S) = U{ <1>(8) : 8 E S} whenever S ~ A.) 

(b) Prove that X is smooth if and only if v( Q-1 (v*(x*))) = {x*} when
ever x' E Sx*. 

5.5 Uniform Smoothness 

This section and the next are based on strengthenings of the notion of 
Gateaux differentiability of a norm. The following result is a good starting 
point for understanding the basis for the strengthenings. 

5.5.1 Proposition. Suppose that X is a normed space. Then the following 
are equivalent. (The variable t in the expressions is real-valued.) 

(a) The space X is smooth. 

. Ilx + tY11 - Ilxll . (b) hm eXlsts whenever x E Sx and Y E: X. 
t~O t 

.! (11x + tY11 + Ilx - tyll) - 1 
(c) lim 2 . = 0 whenever x E Sx and Y E X. 

t~O+ t 

Now suppose that X is smooth. Then the expression whose limit is being 
taken in (b) converges to its limit uniformly for x in Sx when Y is a fixed 
element of S x, or for y in S x when x is a fixed element of S x, or for (x, y) 
in S x x S x, if and only if the expression whose limit is being taken in (c) 
converges to its limit uniformly under the same condition on x and y. 

PROOF. The equivalence of (a) and (b) is just a restatement of the fact 
that X is smooth if and only if its norm is Gateaux differentiable. Observe 
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next that if x E Sx and y E X, then 

G+(x, y) - G_(x, y) = ~ lim (11x + tyll- Ilxll _ Ilx - tYII- IIXII) 
2 2 t->O+ t -t 

. ~ (11x + tY11 + Ilx - tyll) - 1 
= hm , 

t-->O+ t 

from which it follows that the limit in (c) exists, and furthermore that the 
limit is 0 if and only if the norm of X is Gateaux differentiable at x in the 
direction y. The equivalence of (a) and (c) follows immediately. 

Suppose that X is smooth, that x, y E Sx, and that t > O. It follows 
from Lemma 5.4.14 that 

Illx + tY~1 -llxll _ G(x, y)1 + Illx - t~~ -llxll _ G(x, y)1 

= Ilx + tY~1 - Ilxll _ G(x, y) + G(x, y) _ Ilx - t~~ - Ilxll 

=2~1(~II_x_+_tY_II_+_I_lx_-_t_YI~I)_-_1 
t 

= 21 Hllx + tY11 +tllx - tyll) - 1 _ 01, 

from which the claims about uniform convergence follow easily. • 

With all notation as in the statement of the preceding proposition, it is 
reasonable to say that X is uniformly smooth if the expression whose limit 
is being taken in (c) converges to 0 uniformly for (x,y) in Sx x Sx; that 
is, if, for every positive E, there is a positive 8, depending only on E such 
that 

~ (11x + tY11 + Ilx - tyll) - 1 -"--'-"---..::...:..:-"-----'--'''"----- < E 
t 

(5.1) 

whenever 0 < t < 8, and x, y E Sx. Notice that the expression on the left 
side of (5.1) is positive since 

1 (11x + tYIl + Ilx - tyll) - 1 2: 1112xll - 1 = 0, 

and therefore no absolute value symbols are needed around it. 
The actual definition of uniform smoothness to be used in this book will 

be given in a form equivalent to the one stated in the preceding paragraph. 
To set the stage for this definition, suppose for the moment that X is a 
normed spaee that is not zero-dimensional, and let 

px(t) = sup{ ~ (11x + tY11 + IIX - tyll) - 1 : x, y E S'x} 
whenever t > O. Then 0 ::; px(t) ::; t for each positive t. It is clear after 
only a moment's thought that the following are equivalent. 
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(a) For every positive f there is a positive Of such that (5.1) holds when
ever 0 < t < Of and x, yES x. 

(b) For every positive f there is a positive 0< such that Px(t)/t < f 

whenever 0 < t < 8f • 

Consequently, the formal definition of uniform smoothness about to be 
given is equivalent to the one stated above in terms of uniform convergence. 

5.5.2 Definition. Suppose that X is a normed space. Define a function 
px: (0, +00) -? [0, +00) by the formula 

px(t) = sup{ ~ (lix + tY11 + Ilx - tyll) - 1 : x, y E Sx} 

if X i {O}, and by the formula 

Px(t) = {o 
t - 1 

ifO<t<1; 

if t ;::: 1 

if X = {O}. Then Px is the modulus of smoothness of X. The space X is 
uniformly smooth if limt_o+ px(t)/t = O. The abbreviation US is used for 
this property. 

Here are a few simple properties of the modulus of smoothness that will 
shed some light on portions of the preceding definition. 

5.5.3 Proposition. Suppose that Px is the modulus of smoothness of a 
normed space X. Then px(t)/t is non decreasing as t increases. Also, 

max{O, t - 1} :S Px(t) :S t 

whenever t > O. 

PROOF. It may be assumed that X i {O}. Suppose that 0 < tl < t2 and 
that x, y E Sx. By Lemma 5.4.14, 

~ (ilx + tlyll + Ilx - tlyll) - 1 = ~ (IIX + hyll - Ilxll _ Ilx - tlyll - Ilxll) 
tl 2 t1 -tl 

< ~ (IIX + t2yll - Ilxll _ Ilx - t2yll - Ilxll ) 
- 2 t2 -t2 

~ (11x + t2yll + Ilx - t2yll) - 1 

t2 

from which it follows that PX(tl)/t l :S PX(t2)/t2. 
Now fix a positive t. Since 0 :S Px (t) :S t, all that remains to be proved 

is that p x (t) ;::: t - 1. However, this is an immediate consequence of the 
fact that if x, y E Sx, then 

Hllx + tyll + Ilx - tyll) - 1 ;::: ~ 112tyll - 1 = t - 1, 

which finishes the proof. • 
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With all notation as in the statement of the preceding proposition, it 
follows that px(t)/t converges to some nonnegative real number as t ---+ 0+, 
so the content of the requirement that limt->o+ Px(t)/t = 0 for X to be 
uniformly smooth is that the limit be 0; existence of the limit is not an issue. 
Also, it follows from Proposition 5.5.3 that the modulus of smoothness of 
a zero-dimensional normed space has been defined to be as small as it can 
be while still satisfying the inequalities of that proposition. 

An approach to uniform smoothness only slightly different from the one 
taken above is based on condition (b) of Proposition 5.5.1 and involves the 
last differentiability criterion in the following definition. The other forms 
of differentiability in this definition will not be used until Section 5.6 but 
arc included here for comparison. 

5.5.4 Definition. Suppose that X is a normed space. Then the norm of X 
is 

(a) uniformly Gateaux differentiable if 

1. Ilx + tyll - Ilxll 1m "'-_--.C:."'----"----"-
t->O t 

exists for every x in Sx and y in X, where the variable t is real-valued, 
and furthermore the convergence is uniform for x in Sx whenever y 
is a fixed element of Sx; 

(b) Prechet differentiable if the limit in (a) exists for every x in Sx and y 
in X and the convergence is uniform for y in Sx whenever x is a fixed 
clement of S x; 

(c) uniformly Frechet differentiable if the limit in (a) exists for every x 
in S x and y in X and the convergence is uniform for (x, y) in S x x S x. 

5.5.5 Definition. A normed space is uniformly Frechet smooth if its norm 
is uniformly Frechet differentiable. The symbol UF is used for this property. 

The following result is an immediate consequence of the equivalence of (b) 
and (c) in Proposition 5.5.1, the observations about uniform convergence 
in that proposition, and the discussion preceding Definition 5.5.2. 

5.5.6 Proposition. A normed space is uniformly smooth if and only if it 
is uniformly Frechet smooth. In symbols, (US) {:} (UF). 

Of course, every uniformly Frechet differentiable norm is Gateaux differ
entiable, which proves the most basic property of uniformly smooth normed 
spaces. 

5.5.7 Proposition. Every uniformly smooth normed space is smooth. 
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Another very basic property of uniform smoothness follows immediately 
from its definition. 

5.5.8 Proposition. Every normed space that is isometrically isomorphic 
to a uniformly smooth normed space is itself uniformly smooth. 

As one might suspect, the preceding result does not generalize to isomor
phisms. For example, the space £i is not uniformly smooth since it is not 
even smooth, but it is isomorphic to £~ which will be shown to be uniformly 
smooth in Corollary 5.5.17. 

Uniform smoothness implies stronger continuity properties for the spher
ical image map than does smoothness. In fact, uniformly smooth normed 
spaces can be characterized among all smooth normed spaces in terms of 
the continuity of this map, as is apparent from the following lemma. This 
lemma will have a further application in Section 5.6. 

5.5.9 Lemma. Suppose that X is a smooth normed space and that v is 
the spherical image map for Sx. Then v, treated as a point-valued map, is 
norm-to-norm continuous if and only if the norm of X is Fnkhet differen
tiable, and is uniformly norm-to-norm continuous on Sx if and only if the 
norm of X is uniformly Fnkhet differentiable. 

PROOF. It follows from the smoothness of X that if x E Sx, then the 
Gateaux derivative G(x, y) of the norm at x in the direction Y exists when
ever Y E X, and the map y f-+ G(x, y) is Re v(x). 

Suppose first that the norm of X is uniformly Fnkhet differentiable but 
that v is not uniformly norm-to-norm continuous on S x. This implies the 
existence of a positive s and sequences (zn) and (xn) in Sx such that 
Ilzn - xnll ~ 0 but Ilv(zn) - v(xn)11 > s for each n. It follows that there is 
a sequence (Yn) in Sx such that Re(v(zn) - v(Xn)) (Yn) > s for each n. By 
the uniform Frechet differentiability of the norm of X, there is a positive t 
such that whenever n E N, 

jllxn + tY~" - Ilxnll _ Re(V(Xn))(Yn)j = jllXn + tY~" - IIXnl1 _ G(Xn' Yn)\ 

and therefore 

For each positive integer n, 

S 
<-

2 

Re(v(zn))(xn + tYn - zn) = Re(v(zn))(xn + tYn) - 1 

s:: IIxn +tYnll-lIxnll, 
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which implies that 

and therefore that 

ts < Re(v(zn) - v(Xn)) (tYn) 

::; Ilxn + tYnll-IIXnll- Re(v(xn)) (tYn) + Rc(v(Zn))(Zn - Xn) 
ts 

< "2 + Ilzn - Xnll· 

It follows that Ilzn - xnll does not tend to 0, a contradiction. Therefore 
the uniform Frechet differentiability of the norm of X implies the uni
form norm-to-norm continuity of v on Sx. A similar argument, with the 
sequence (xn) replaced by a single element x of S x, shows that v is norm
to-norm continuous whenever the norm of X is Frechet differentiable. 

Now suppose conversely that v is uniformly norm-to-norm continuous 
on S x. Fix a positive E. Then there is a Of such that 0 < Of ::; 1 for which 
Ilv(llx + tyll-1(x + ty)) - v(x)11 < E when x, Y E Sx and 0 < t < Of; notice 
that x + ty -I- 0 since 0 < t < L If x, Y E Sx and 0 < t < Of' then 

Re(v(x))(ty) = Re(v(x))(x + ty) - 1 

::; Ilx + tyll - Ilxll 

::; Ilx + tyll Re(v(llx + tyll-l(x + ty))) 

(11x + tyll-l(x + ty) - Ilx + tyll-Ix) 

= Re(v(llx + tyll-l (x + ty)) ) (ty), 

which in turn implies that 

0::; Ilx + tyll-Ilxll- Re(v(x)) (ty) 

::; Re(v(llx + tyll-l(X + ty))) (ty) - Re(v(x)) (ty) 

::; tllv(llx + tyll-l(X + ty)) - v(x)11 < tf 

and therefore that 

\llx + tY~I- Ilxll _ G(x, y)\ = \IIX + tY~1 - Ilxll _ Re(v(x))(y)\ < E. 

It follows that the norm of X is uniformly Frechet differentiable. Fixing x 
but otherwise applying the same argument also proves that the norm of X 
is Frechet differentiable whenever v is norm-to-norm continuous. • 

The preceding lemma and the equivalence of uniform Frechet smoothness 
and uniform smoothness immediately produce the following result. 
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5.5.10 Theorem. Suppose that X is a normed space and that II is the 
spherical image map for S x. Then X is uniformly smooth if and only if II 
is singleton-valued and, when viewed as a point-valued map, is uniformly 
norm-to-norm continuous on Sx. 

It was seen in Section 5.4 that if the dual space of a normed space X is 
either rotund or smooth, then X has the other property, but the presence of 
one of the properties in X does not imply that of the other in X· . It turns 
out that there is a more nearly complete duality between uniform rotundity 
and uniform smoothness, since a normed space has either property if and 
only if its dual space has the other. Early proofs of this or of results that 
readily imply this can be found in [50] and [224]. The proof to be given 
here is from [157] and is based on an interesting relationship between the 
moduli of rotundity and smoothness of a normed space and of its dual. 

5.5.11 Lemma. (J. Lindenstrauss, 1963 [154]). Suppose that Ox and Px 
are, respectively, the modulus of rotundity and modulus of smoothness of 
a normed space X and that Ox' and Px- are the corresponding moduli 
of X*. Then 

PX' (t) = sup { t; -ox(€) : 0 s:; € s:; 2 } 

and 

px(t) = sup {t; - ox-(€) : 0 s:; f s:; 2 } 

when t > O. 

PROOF. It is easy to check that the formulas work if X = {O}, so it will be 
assumed that X =1= {O}. For each positive t, 

2px' (t) = sup{ Ilx· + ty· II + Ilx· - ty* II - 2 : x·, y* E Sx- } 
= sup{ Rex·x + t Rey*x + Rex*y - t Rey*y - 2 : 

x,y E Sx, x·,y* E Sx-} 

= sup{ Ilx + yll + tllx - yll - 2 : x, y E Sx } 

= sup{ Ilx + yll + tf - 2: x, y E Sx, IIx - yll 2: E, 0 s:; f s:; 2} 

= sup { tf - 2 inf { 1 - II ~ (x + y) II : x, y E Sx, IIx- yll 2: f } : 

OS:;fS:;2} 

= sup{ tf - 20X(f) : 0 s:; € s:; 2}. 

Dividing through by 2 gives the first ofthe two claimed formulas. The other 
is proved exactly the same way after exchanging the roles of X and X·. • 
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Smulian's 1940 version of the following result is actually that uniform 
Frechet differentiability of the norm is the condition dual to uniform ro
tundity. 

5.5.12 Theorem. (V. L. Smulian, 1940 [224]). A normed space is uniformly 
rotund if and only if its dual space is uniformly smooth, and is uniformly 
smooth if and only if its dual space is uniformly rotund. 

PROOF. Let X be a normed space and let 8x and PX' be, respectively, the 
modulus of rotundity of X and the modulus of smoothness of X'. By the 
preceding lemma, 

px·(t) =sup{~_h(E) :0<E<2} 
t 2 t --

when t > O. Suppose first that X is uniformly rotund, and let s be a 
positive number. To prove that X* is uniformly smooth, it is enough to 
find a positive ts such that px' (ts)/ts ::; s, because px' (t)/t is nonnegative 
for each positive t and is non increasing as t --+ 0+. To this end, let (s 

min{2,2s} and let ts = 8X (Es).1f0::; E::; fs, then 

E 8X (E) E Es 
----<-<-<8 2 ts - 2 - 2 - , 

while if 1' .. < to ::; 2, then the fact that 8 x is nondecreasing assures that 

(h(E) 8X (E .. ) - - -- < 1 - --- = 0 < 8. 
2 ts - ts 

It follows that px·(t .. )/ts ::; 8, so X* is uniformly smooth. An analogous 
argument with the roles of X and X* exchanged proves that X is uniformly 
smooth when X* is uniformly rotund. 

Now suppose that X* is uniformly smooth and that 0 < I' ::; 2. Let the 
positive number t, be such that PX' (t,)/t, ::; 1'/4. It follows that 

~ _ h(f) < PX' (t,) < ~ 
2 t, - t, - 4' 

so 8X(f) :::: tE E/4 > O. Therefore X is uniformly rotund. The argument 
just given, with the roles of X and X* exchanged, then proves that X* is 
uniformly rotund when X is uniformly smooth. • 

It follows from the preceding result and the Milman-Pettis theorem that 
if X is a uniformly smooth normed space, then X* is uniformly rotund and 
therefore reflexive, which in turn implies the reflexivity of X provided that 
X is complete. 

5.5.13 Theorem. (V. L. Smulian, 1940 [224]). Every uniformly smooth 
Banach space is reflexive. 
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It is finally time to give some examples. 

5.5.14 Example. Since every zero- or one-dimensional normed space has 
a uniformly rotund dual space, each such space is uniformly smooth. The 
uniform smoothness of zero-dimensional normed spaces also follows trivially 
from the definition of the property. 

5.5.15 Example. The Banach space (co, II· lib) of Example 5.4.13 is smooth 
but not reflexive, and therefore is an example of a smooth Banach space 
that is not uniformly smooth. 

The main examples of uniformly smooth Banach spaces arise from the 
following theorem. 

5.5.16 Theorem. Suppose that p, is a positive measure on a u-algebra I; 

of subsets of a set n and that 1 < p < 00. Then Lp(n, I;, p,) is uniformly 
smooth. 

PROOF. Let q be such that p~l + q~l = 1. Then (Lp(n, L:, p,»)* is isomet
rically isomorphic to the uniformly rotund normed space Lq(n, I;,IL) and 
is therefore itself uniformly rotund, so Lp(rl, L:, p,) is uniformly smooth .• 

5.5.17 Corollary. Suppose that 1 < p < 00. Then f.p is uniformly smooth, 
as is f.; whenever n is a nonnegative integer. 

It is probably becoming obvious that much of the theory of uniform 
smoothness can be obtained from the theory of uniform rotundity and the 
duality between the two properties. This lode will be mined several more 
times in the rest of this section. Here is another application of the method. 

5.5.18 Proposition. If a normed space is finite-dimensional, then it is 
uniformly smooth if and only if it is smooth. 

PROOF. Suppose that X is a finite-dimensional smooth normed space. Then 
X* is finite-dimensional and rotund, and so is uniformly rotund, which 
implies that X is uniformly smooth. • 

As with smoothness, uniform smoothness is inherited by subspaces. The 
reason for this is that thinning a normed space to a subspace cannot in
crease the modulus of smoothness. 

5.5.19 Lemma. Suppose that M is a subspace of a normed space X and 
that PM and px are the respective moduli of smoothness of the two spaces. 
Then PM(t) <::: Px(t) when t > O. 

PROOF. This follows directly from the definition of PM, with a little help 
from Proposition 5.5.3 when M = {O}. • 
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5.5.20 Proposition. Every subspace of a uniformly smooth normed space 
is uniformly smooth. 

Unlike smoothness but like uniform rotundity, uniform smoothness is 
always inherited by quotient spaces. 

5.5.21 Lemma. Suppose that M is a closed subspace of a normed space X 
and that PX/M and Px are the moduli of smoothness of X/M and X 
respectively. Then PX/M(t) ::; px(t) when t > O. 

PROOF. Fix a positive t and let 8M .l. and OX' be the respective moduli of 
rotundity of Ml.. and X*. Since 8M .l. (E) 2': 8 X' (f) when 0 ::; f ::; 2 and since 
(X/ M)* is isometrically isomorphic to M'L, it follows from Lemma 5.5.11 
that 

as claimed. 

PX/M(t) = sup { ~ - 8M .!. (f) : 0 ::; 10 ::S 2 } 

::; sup { ~ - 8x , (E) : 0 ::; I' ::; 2 } 

= px(t), 

• 
5.5.22 Theorem. If M is a closed subspace of a uniformly smooth normed 
space X, then X/M is uniformly smooth. 

Uniform smoothness is also inherited by direct sums from the summands. 

5.5.23 Theorem. Suppose that Xl,"" Xn are normed spaces. Then 
Xl EEl·· . E8 Xn is uniformly smooth if and only if each Xj is uniforIIlly 
smooth. 

PROOF. If Xl EEl' .. EEl Xn is uniformly smooth, then each Xj is uniformly 
smooth since it is isometrically isomorphic to a subspace of Xl EEl· .. EEl X n . 

Suppose conversely that each Xj is uniformly smooth. By Theorem 5.2.25, 
the normed space Xr EEl ... EEl X~ is uniformly rotund because each of its 
summands is uniformly rotund, so (Xl EEl··· EEl Xn)* is uniformly rotund 
since it is isometrically isomorphic to Xi EEl·· ·EElX~. Therefore Xl EEl·· ·EElXn 

is uniformly smooth. • 

It is apparent from the results of this section that there are many analo
gies between the behavior of uniformly smooth normed spaces and that 
of uniformly rotund Hormed spaces. In fact, there is a much stronger con
nection between the two properties than their duality and these analogies 
would suggest. It turns out that a normed space has a uniformly smooth 
norm equivalent to its original norm if and only if it has a uniformly ro
tund norm equivalent to its original norm; that is, that (US) ¢} (UR); and 
therefore that the (US) norrned spaces are exactly the snperrefiexive ones. 
A proof and references can be found in [56, pp. 169-173]. 
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Exercises 

5.52 Recall that a real-valued function f defined on a possibly unbounded 
subinterval I of 1R is convex if 

f(stt + (1- s)h) :::; sf(td + (1 - S)f(t2) 

whenever tl, t2 E I and 0 < s < 1. Prove that for every normed space X, 
the modulus of smoothness of X is a convex function. 

5.53 Prove that for every normed space X, the modulus of smoothness of X 
is a continuous function. (It is not at all necessary to base the argument 
on the result of Exercise 5.52, but feel free to use that result if you have 
proved it.) 

5.54 The modulus of smoothness of a normed space X is sometimes defined 
by the formula 

px(t) = sup{ ~ (lix + yll + IIx - yll) - 1 : x E Ex, Y E X, lIyll :::; t} 

when X t= {a}. Show that this definition is equivalent to the one given in 
this section for normed spaces that are not zero-dimensional. 

5.55 Suppose that X is a normed space. Prove that the following are equivalent. 

(a) The space X is uniformly smooth. 

(b) For each positive TJ there is a positive tTl such that if xES x, Y EX, 
and Ilx - yll :::; f'7' then Ilx + yll ~ Ilxll + Ilyll - TJllx - yll· 

The condition given in (b) is sometimes used as the definition of uniform 
smoothness. See, for example, [56, p. 147]. 

5.56 Suppose that X is a normed space that is neither zero- nor one-dimen
sional. Let PM represent the modulus of smoothness of M whenever M is 
a subspace of X. For each positive t, let 

f(t) = sup{ PM(t) : M is a two-dimensional subspace of X}. 

Prove that X is uniformly smooth if and only if f(t)/t ----+ 0 as t -> 0+. 

5.57 (M. M. Day, 1944 [50]). Prove that a normed space X is uniformly rotund 
if and only if 

inf{ 8X / M (f) : M is a closed subspace of X 

and X / M is two-dimensional} > 0 

whenever 0 < f :::; 2, where 8X / M is the modulus of rotundity of the 
quotient space X/M. Exercise 5.56 could be helpful. 

5.58 Prove that every uniformly rotund normed space has a uniformly rotund 
completion and that every uniformly smooth normed space has a uni
formly smooth completion. 
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5.59 Find an explicit formula, in terms only of functions one might encounter in 
a precalculus course, for the modulus of smoothness of Euclidean 2-space. 
The result of Exercise 5.15 could help, but it is not crucial. 

5.60 This exercise assumes some knowledge of inner product spaces and their 
duals; see, for example, [24]. Prove that every inner product space is 
uniformly smooth. Exercise 5.16 might help. 

5.61 Prove that, for every normed space, the modulus of smoothness of the 
space is the same as the modulus of smoothness of its second dual. 

5.6 Generalizations of Uniform Smoothness 

The purpose of this section is to examine several conditions that lie be
tween smoothness and uniform smoothness, primarily by seeing what hap
pens when the norm is Gateaux differentiable in some uniform sense that 
is not quite so strong as the uniform Frechet sense characterizing uniform 
smoothness. For example, requiring the norm to be only Frechet differen
tiable as in Definition 5.5.4 (b) results in the following generalization of 
uniform smoothness. 

5.6.1 Definition. A normed space is Fn!chet smooth if its norm is Frechet 
differentiable. The symbol F is used for this property. 

It is clear that every uniformly Frechet differentiable norm is Frechet 
differentiable and that every Frechet differentiable norm is Gateaux differ
entiable. This can be restated in the language of smoothness as follows. 

5.6.2 Proposition. Every uniformly smooth normed space is Frechet 
smooth, and every Frechet smooth normed space is smooth. In symbols, 
(US) =? (F) =* (S). 

As has already been proved in Lemma 5.5.9, Frechet smoothness can 
be characterized in terms of the continuity of the spherical image map for 
the unit sphere. The following result is just a restatement of the pertinent 
portion of that lemma. 

5.6.3 Theorem. Suppose that X is a normed space and that 1/ is the 
spherical image map for S x. Then X is Frechet smooth if and only if 1/ is 
singleton-valued and, when viewed as a point-valued map, is norm-to-norm 
continuous. 

Since smoothness of the dual space of a normed space X implies that X 
is rotund, and since uniform smoothness of X* implies that X is uniformly 
rotund, one would expect that Frechet smoothness of X* would imply 
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some rotundity condition for X lying between simple rotundity and uniform 
rotundity. In fact, it turns out that Frechet smoothness of X* is equivalent 
to X being strongly rotund, a fact due to SmuIian. The proof to be given 
here will closely follow SmuIian's, and is based on four lemmas concerning 
Cauchy and weakly* Cauchy norming sequences. 

5.6.4 Definition. Suppose that X is a normed space and that Z is a 
subspace of X* such that 

Ilxll = sup{ Iz*xl : z* E Sz} 

whenever x E X. Then Z is a nanning subspace for X in X*. If x E X 
and (z~) is a sequence in Sz such that z~x -t Ilxll, then (z~) is a nanning 
sequence for x in S z. 

5.6.5 Lemma. (V. L. Smulian, 1939 [221]). Suppose that X is a normed 
space, that x E Sx, that Z is a norming subspace for X in X*, that (z~) 
is a weakly* Cauchy norming sequence for x in Sz, that y E Sx, and 
that t is a nonzero real number such that It I :s; 1/4. Then there exists a 
sequence (Y~('; y, t)) in Sz, where the notation indicates that the linear 
functionals y~ depend on y and t, such that 

(1) limnRey~(x;y,t) and limnRey~(y;y,t) both exist; 

(2) Illx + tY~1 - Ilxll - Ii;,n Re z~y I :s; Ilimn Re z~y - limn Re y~ (y; y, t)l; 

and 

(3) IlimnRey~(x;y,t) -11:S; 21tl· 

PROOF. Let (Y~('; y, t)) be a sequence in Sz such that 

Ilx + tY11 = limy~(x + ty; y, t) = lim(Rey~(x; y, t) + tRey~(y; y, t)). 
n n 

By thinning the sequence (y~ ( . ; y, t)) if necessary, it may be assumed that 
limn Re y~ (x; y, t) and limn Re y~(y; y, t) both exist. Then 

limRey~(x;y,t) = Ilx+tyll-tlimRey~(y;y,t) 
n n 

::::: Ilxll - Itlllyll-ltlllimRey~(y; y, t)1 
n 

::::: 1- 21tl, 

so 

O:S; 1 -limRey~(x; y, t) :s; 21tl, 
n 

which proves that (3) holds. Notice next that 

Ilx+tyll-llxll ~ IlimRez~(x+ty)I-1 
n 

= (1 + t lim Re z~y) - 1 
n 

= t lim Re z~y. 
n 
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Also, 

Ilx + tYII- Ilxll = limRey~(x; y, t) + tlimRey~(y; y, t) - 1 
n n 

:::; tlimRey~(y;y,t). 
n 

Therefore 

0:::; Ilx + tyll-Ilxll- tlimRez~y:::; tlimRey~(y; y, t) - tlimRez~y. 
n n n 

Taking absolute values and dividing through by It I proves that (2) holds .• 

5.6.6 Lemma. (V. L. Smulian, 1939 [221]). Suppose that X is a normed 
space, that Z is a norming subspace for X in X*, and that a sequence 
in Sz is Cauchy if there is an element of Sx for which the sequence is a 
norming sequence. Then X is Frechet smooth. 

PROOF. Throughout this proof, references to (1), (2), and (3) are to the 
conditions in the conclusion of Lemma 5.6.5. Fix an element x of Sx and a 
norming sequence (z~) for x in Sz. For each y in Sx and each nonzero real 
number t such that It I :::; 1/4, let (y~(.; y, t)) be a sequence in Sz satisfying 
(1), (2), and (3). A moment's thought about (2) and the definition of a 
FrE3chet differentiable norm shows that it suffices to prove that 

IlimRez~y -limRey~(y; y, t)1 
n n 

converges to 0 as t -+ 0 uniformly for y in S x. Suppose to the contrary that 
this does not happen. Then there must be a sequence (tm) of nonzero real 
numbers such that Itml :::; 1/4 for each m and limm tm = 0, a sequence (Ym) 
in S x, and a positive E such that 

(5.2) 

for every m. Let (jm) be an increasing sequence of positive integers such 
that 

and 

for each m. Then Rey;~ (x; y"", t'Tn) -+ 1 by (3) and the fact that (5.3) holds 
for each m, so (y;~ (.; Y'Tn' t'Tn)) is a norming sequence for x in Sz. Since 
(5.2) and (5.4) hold for each m, it also foHows that 

Ili;nRez~y",,-ReY;~(Ym;Y'Tn,t'Tn)1 > ~ 
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for all sufficiently large m, which together with the fact that (z~) is Cauchy 
implies that 

Ilz~-y;=(,;ym,tm)11 ~ IRez~ym-ReY;m(Ym;ym,tm)1 > ~ 

whenever nand m are greater than some positive integer no. However, this 
cannot be, since the sequence 

is a norming sequence for x in S z and therefore is itself Cauchy. • 

5.6.7 Lemma. (V. L. Smulian, 1940 [224]). Suppose that X is a normed 
space, that x E Sx, that Z is a norming subspace for X in X*, and that 
(z~) is a weakl.Y* Cauch'y norming sequence for x in Sz. Then 

(Rez*y)(Rez*x) -limRez~y 
n 

:s (l-IRez*xl) (~+2) + Ilx+t[y- (limn~ez~y)xlil-Ilxli 

whenever z* E Sz, Y E Sx, and t > O. 

PROOF. For each real number s, let 

signs = {+1 
-1 

if s 2: 0; 

if s < O. 

Fix a z* in Sz, a y in Sx, and a positive t. Then 

(Rez'y)(Rez'x) -limRez~y 
n 

= (Rcz*y)(signRez*x) -IRez'xllimRez~y 
n 

+ (Rez*y)(Rez'x - sign Rez*x) + (IRez*xl- 1) limRez~y 
n 

:s (Re z'y)(sign Re z*x) - IRe z*xllim Re z;,y 
n 

+ IRez*x - signRez'xl + (1 -IRez'xl) 

= [Re z'y - (Rez*x) limRez~yl signRez'x + 2(1 --IRez'xl) 
n 

= 2(1 _ IRe z*xl) + 1 - IRe z*xl 
t 

(Rez*x + t[Rez*y - (Rez*x) limn Rez~y]) sign Rez*x -llxll 
+ t 

:s (1 _ IRe z'xl) (~ + 2) + Ilx + tty - (limn ~e z~y)xlll - Ilxll , 

as claimed. • 
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5.6.8 Lemma. (V. L. Smulian, 1940 [224]). Suppose that X is a Fnkhet 
smooth normed space, that x E Sx, that Z is a norming subspace for X 
in X*, and that (z~) i8 a norming sequence for x in Sz. Then (z~) is 
Cauchy. 

PROOF. Let x* be the unique element of Sx' that supports Ex at x. Then 
'w· 

z~ --> x* by Theorem 5.4.19. By Theorem 5.4.17, 

I. Ilx + tYII - Ilxll 
1m = Rex*y 
t~O t 

whenever y EX. Therefore 

1. Ilx + try - (Rex*y)xlll - Ilxll 
1m =0 
t~O t 

whenever yES x. Fix a positive f and let bE be a positive real number such 
that 

IIx+t[y- (Rex*y)xlil-Ilxli E 
~--~--~----~~~~ < -

t - 4 

whenever 0 < t :::; b, and y E Sx; the Fn§chet differentiability of the norm 
of X guarantees the existence of such a bE. It follows from Lemma 5.6.7 
that 

(Rez~y)(Rez~x) - Rex*y:::; (l-IRez~xl) (;, + 2) + ~ 

for each y in Sx and each positive integer n. Since -y E Sx whenever 
yES x, it even follows that 

I(Re z~y)(Rez~x) - Rex*YI :::; (1 - IRe z~xl) (;E + 2) + ~ 

for each y in S x and each n. It is an easy consequence of this and the 
convergence of Re z~x to 1 that there is a positive integer no such that 

whenever yES x and nl, n2 ~ no, and therefore that 

Ilz~, - z~211 = sup{ IRe z~,y - Re z;'2 y l : y E Sx} :::; f 

whenever nl, n2 ~ no. The sequence (z~) is therefore Cauchy. • 
5.6.9 Theorem. (V. L. Smulian, 1940 [224]). A normed space is strongly 
rotund if and only if its dual space is Frechet smooth. 

PROOF. Let X be a Hormed space and let Q be the natural map from X 
into X**. It may be assumed that X I- {O}. Then Q(X) is a norming 
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subspace for X* in X**. By Theorem 5.3.17, the space X is strongly rotund 
if and only if the following condition holds: Whenever x* E Sx' and (xn) is 
a sequence in X such that (Qxn) is a norming sequence for X* in SQ(X), the 
sequence (Qxn) is Cauchy. By Lemmas 5.6.6 and 5.6.8, this last condition 
is equivalent to X* being Frechet smooth. • 

Since Frechet smoothness is obviously preserved by isometric isomor
phisms, a reflexive normed space is Frechet smooth if and only if its second 
dual is Frechet smooth, which together with the preceding theorem pro
duces the following result. 

5.6.10 Corollary. A reflexive normed space is Fnkhet smooth if and only 
if its dual space is strongly rotund. 

As will be seen in a moment, this corollary does not in general extend 
to nonreflexive Banach spaces. 

Since the dual space of a normed space X is a norming subspace for X 
when X =I- {O}, the following result is another immediate consequence of 
Lemmas 5.6.6 and 5.6.8 when X =I- {O}, and is trivially true when X = {O}. 
Notice that the Cauchy property of the lemmas has been replaced by con
vergence since X* is complete. 

5.6.11 Theorem. (V. L. Smulian, 1940 [224]). Suppose that X is a normed 
space. Then the following are equivalent. 

(a) The space X is Frechet smooth. 

(b) Whenever (x~) is a sequence in Sx' for which there is an element x 
of Sx such that Re x~x -r 1, the sequence (x~) converges. 

By Theorem 5.3.17, the dual space of a normed space X is strongly ro
tund if and only if the following holds: Whenever (x~) is a sequence in Sx' 
for which there is an element x** of Sx" such that Rex**x~ --> 1, the 
sequence (x;,) converges. Condition (b) of Theorem 5.6.11 is analogous, 
except that the only members of Sx" considered are those that come 
from Q(X), whcre Q is the natural map from X into X". In fact, this con
dition (b) is properly weaker than the strong rotundity of X*, since there 
are Frechet smooth Banach spaces whose duals are not strongly rotund. 
One example of this follows from the fact that there is a Frechet smooth 
norm II·IIF for Co equivalent to the usual norm for co; see [56, p. 160]. As 
was mentioned in Section 5.3 at the end of the discussion of strong rotun
dity, it can be shown that every strongly rotund Banach space is reflexive, 
so (co, Ii ·IIF)* cannot be strongly rotund. 

The following, at least, does hold, by an easy argument based on the 
observations about sequential characterizations given at the beginning of 
the preceding paragraph. 
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5.6.12 Theorem. If the dual space of a normed space X is strongly rotund, 
then X is Fnkhet smooth. 

The example (eo, II·IIF) given above can also be used to show that Frechet 
smoothness is different from uniform smoothness, since the Banach space 
(co, II· II F) is Frechet smooth but cannot be uniformly smooth because it is 
not reflexive. In fact, the three properties of uniform smoothness, Frechet 
smoothness, and smoothness are distinct even in the presence of reflexivity, 
as can be shown by applying Theorem 5.6.9 to some examples by Mark 
Smith from [219]. Among Smith's examples are two reflexive normed spaces 
(£2, II· II d and (£2, II· II w), each formed by giving £2 a norm equivalent to 
its original norm, such that (£2, II· IlL) is (K) but not (UR) and (£2, 11·llw) 
is (R) but not (K). It follows that (£2, II·IIL)* is (F) but not (US), while 
(£2, IHw)* is (S) but not (F). 

It is time to move on to the other major generalization of uniform 
smoothness to be examined in this section. 

5.6.13 Definition. A normed space is uniformly Gateaux smooth if its 
norm is uniformly Gateaux differentiable. The symbol UG is used for this 
property. 

It is clear from the definitions that every uniformly Frechet differentiable 
norm is uniformly Gateaux differentiable and that every uniformly Gateaux 
differentiable norm is Gateaux differentiable, which translates into the lan
guage of smoothness as follows. 

5.6.14 Proposition. Every uniformly smooth normed space is uniformly 
Gateaux smooth, al1d every uniformly Gateaux smooth normed space is 
smooth. In symbols, (US) =} (UG) =} (S). 

The main fact to be proved here about uniform Gateaux smoothness is 
a characterization of the property in terms of a rotundity property of the 
dual space. The proof is, essentially, Smulian's original one. 

5.6.15 Theorem. (V. L. Smulian, 1940 [224]). A normed space is uniformly 
Gateaux smooth if and only if its dual space is weakly* uniformly rotund. 

PROOF. Let X be a normed space, which may be assumed not to be {O}. 
Suppose first that X is uniformly Gateaux smooth, that f is a fixed real 
number such that 0 < f ::; 2, and that y is a fixed element of S x. Let x 
be an arbitrary element of Sx, let z* be an arbitrary element of Sx" and 
let x* be the unique clement of Sx' that supports Ex at x. Since X* is a 
nonning subspace for X in X' , it follows from Lemma 5.6.7 that whenever 
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t> 0, 

(Rez*y)(Rez*x) - Rex*y 

:S (1 -IRez*xl) (~+ 2) + Ilx + try - (R~x*y)xlll - IIxli. 

By Theorem 5.4.17, 

1· IIx + tyll - IIxll R * 1m = ex y, 
t-->O t 

so the uniform Gateaux differentiability of the norm of X implies the exis
tence of a B"y, not dependent on the member x of Sx, such that 0 < B"y < 1 
and 

IIx + try - (Rex*y)xlll -lIxll 
t 
= 1I(I-tRex*y)x+tyll-lI(l-tRex*y)xll_Rex*y 

t 

= IIx + (1- tRex*y)-ltyll-lIxll _ Rex*y 
(1 - tRex*y)-lt 

E 
<
- 16 

whenever 0 < t :S BE,y' Thus, 

(Rez*y)(Rez*x) - Rex*y 'S (l-IRez*xl) (_(jl + 2) +~. 
E,y 16 

Replacing x and x* by their negatives in this inequality then shows that 

ICRez*y)(Rez*x) - Rex*yl 'S (l-IRez*xl) (_(jl + 2) +~. 
',y 16 

It is worth pointing out again that (jE,y does not depend on the member x 

of Sx or the member z* of Sx" Therefore 

I(Rez;y)(Rez]"x) - (Rez;y)(Rez;x)1 

:S (2 - IRe z;xl - IRe z;xl) (~=- + 2) + ~ 
(jE,y 8 

whenever zr, zi E Sx' and x E Sx. It follows that there is a. 8E ,y such that 
0< 8E ,y < 1/4 and 

ICRez~y)(Rez;x) - (Rez;y)(Rez;x)1 'S ~ 
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whenever zi,zi E Sx*, x E Sx, and Rezix,Rezix > 1 - 4D"y. After 
decreasing 8f ,y a bit if necessary, it follows that 

whenever zi, Z2 E Sx*, x E Sx, and Re zix, Re zix ?:: 1 - 48f ,y. 

For the moment, fix two elements zi and Z2 of Sx' such that 

Then there is an x in Sx such that ~(Rezix + Rezix) ?:: 1- 2D"y, which 
in turn implies that Re zix, Re Z2X ?:: 1 - 48"y and thus that 

IRez;y - Rez2yl < ~. 

If IF = C, then 11~(izi + iz2)11 ?:: 1 - 8"y, from which it follows that 

IImz;y - 1m z2yl = IRe(iz2Y) - Re(iz;y)1 < ~. 

In any case, it follows that IziY - z2yl < E whenever zi, Z2 E Sx' and 
11~(zi + z2)11 ?:: 1- D"y. Let Dx' be the w*UR modulus of X*. Then 

OX*(E,y) = inf {l-II~(zi + z2)11 : Z~,Z2 E Sx*, Iz;y - z2yl ?:: E} 
?:: D"y 
> 0, 

and so X* is weakly* uniformly rotund. 
Now suppose conversely that X* is weakly* uniformly rotund. Then X* 

is rotund, so X is smooth. As in the first part of this proof, let y be a fixed 
element of .'ix . Let x be an arbitrary member of .'ix, let t be an arbitrary 
real number such that 0 < It I ::; 1/4, and let x~ be the unique element 
of Sx* that supports Ex at x. By Lemma 5.6.5, there exists a sequence 
(y~(·;y,x,t)) inSx* such that 

(4) limnRey~(x;y,x,t) and limnRey~(y;y,x,t) both exist; 

I" x + ty" - "x" * I . (5) t - Rexxy ::; IRex;y - lImn Rey~(y; y, x, t)l; and 

(6) IlimnRey~(x;y,x,t) -11::; 21tl. 

By (5), the theorem will be proved once it is shown that 

IRex~y -limRey~(y; y,x, t)1 
n 

converges to 0 as t -> 0 uniformly for x in S x· Suppose to the contrary that 
this does not occur. Then there is a sequence (tm ) of nonzero real numbers 
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such that Itml :::; 1/4 for each m and limm tm = 0, a sequence (xm) in Sx 
and a corresponding sequence (x~) in Sx' such that each x~ supports Ex 
at X m , and a positive E such that 

(5.5) 

for each m. Let (jm) be an increasing sequence of positive integers such 
that 

and 

for each m. Since (5.5) and (5.6) hold for each m, it follows that 

whenever m 2: 2/t. Consequently, 

whenever m 2: 2/E. However, it also follows from (6) that 

which together with the fact that (5.7) holds for every m implies that 

whenever m is sufficiently large. Therefore for large values of m, 

IIHX~ +Yj=( ·;y,xm ,tm))II2: HRex;"xm + ReYj,Jxm;y,xm,tm)) 

> HI + 1- OX'(E/2,y)) 

> 1 - OX' (E/2, y) 

2: IIHx;"+Yj,J';y,xm,tm))II, 

which is the contradiction needed to finish the proof. • 
It takes only a few moments' reflection on the wUR and w*UR moduli 

of the dual space of a reflexive normed space X to see that X* is weakly 
uniformly rotund if and only if it is weakly* uniformly rotund. The following 
result is therefore an immediate consequence of Theorem 5.6.15. 
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5.6.16 Corollary. A reflexive normed space is uniformly Gateaux smooth 
if and only if its dual space is weakly uniformly rotund. 

5.6.17 Corollary. A reflexive normed space is weakly uniformly rotund if 
and only if its dual space is uniformly Gateaux smooth. 

PROOF. Let X be a reflexive normed space. Then X* is uniformly Gateaux 
smooth if and only if X** is weakly uniformly rotund, which happens if 
and only if X is weakly uniformly rotund since weak uniform rotundity is 
preserved by isometric isomorphisms. • 

One implication in the preceding corollary survives even in the absence 
of reflexivity. 

5.6.18 Corollary. If the dual space of a normed space X is uniformly 
Gateaux smooth, then X is weakly uniformly rotund. 

PROOF. Since X* is (UG), the space X** is (w*UR) by Theorem 5.6.15. 
An obvious argument based on the way that X naturally embeds in X** 
and on the forms of the wUR modulus of X and the w*UR modulus of X** 
then shows that X is (wUR). • 

Corollary 5.6.17, along with the two examples by Mark Smith men
tioned in the discussion following Theorem 5.6.12, can be used to show that 
uniform Gateaux smoothness is genuinely different from both smoothness 
and uniform smoothness, even for reflexive normed spaces. Smith showed 
in [219J that (t'2, 11·llw) is (wUR) but not (UR) and that (£2, II· IlL) is (R) 
but not (wUR). It follows that (£2, 11'llw)* is (UG) but not (US), while 
(£2, II·IIL)* is (S) but not (UG). As was previously mentioned, the space 
(£2, II'IIL)* is (F) while (£2, 11'llw)* is not, so this also shows that neither 
of the properties of Frechet smoothness and uniform Gateaux smoothness 
implies the other. 

One further generalization of uniform smoothness deserves mention be
fore leaving the subject. It has been shown in Proposition 5.4.24, Corol
lary 5.4.29, and Theorems 5.6.3 and 5.5.10 that a normed space X is 

(a) smooth, 

(b) Frechet smooth, or 

( c) uniformly smooth 

if and only if the spherical image map for Sx is singleton-valued and, when 
viewed as a point-valued map, is 

(a) norm-to-weak* continuous, 

(b) norm-to-norm continuous, or 

(c) uniformly norm-to-norm continuous, 
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respectively. The following definition fills the one conspicuous gap in this 
list of continuity conditions. 

5.6.19 Definition. A normed space is very smooth if the spherical image 
map for its unit sphere is singleton-valued and, when viewed as a point
valued map, is norm-to--weak continuous. The symbol VS is used for this 
property. 

The final result of this section then follows immediately from the obser
vations made just before the preceding definition. 

5.6.20 Proposition. If a normed space is Frechet smooth then it is very 
smooth, and if it is very smooth then it is smooth. In symbols, (F) =} 

(VS) =} (8). 

Several conditions equivalent to the property of being very smooth can 
be inferred from the results in J. R. Giles's article [87], which is a good 
starting point for the reader interested in this condition. 

Exercises 

5.62 (A. R. Lavaglia, 1955 [159]). Prove that a normed space is Fhkhet smooth 
if its dual space is locally uniformly rotund. 

5.63 (V. L. Smulian, 1940 [224]). Show that a Banach space is reflexive if 
its dual space is both strongly rotund and Frechet smooth. Do not use 
James's theorem or any result based on it, such as Exercise 5.33, in your 
argument. (In fact, it follows from Exercise 5.33 and Theorem 5.6.9 that 
a Banach space is reflexive if its dual space is either strongly rotund or 
Frechet smooth.) 

5.64 (V. L. Smulian, 1940 [224]). Suppose that X is a weakly sequentially 
complete normed space with Schur's property (as is the case for every 
normed space isomorphic to i\ j see Example 2.5.24). Prove that if X' is 
smooth, then X' is Frechet smooth. 

In particular, it follows from this exercise that if there is a norm 11·lls* 
on £1 equivalent to the standard norm of £1 such tha.t (£1, II· lis· r is 
smooth, then (£1, II· lis' ) is strongly rotund. However, this is a contradic
tion since it would imply that £1 is reflexive; see Exercise 5.33. See also 
Exercise 5.45. As was mentioned in Section 5.4, M. M. Day showed in a 
1955 paper [51 J that £00 cannot be equivalently renormed to be smooth, 
which is a stronger statement than saying that £1 cannot be equivalently 
renormed to make its dual space smooth. 

5.65 (a) Suppose that X is a strongly rotund Banach space, that Q is the 
natural map from X into X", that x" E Sx'" tha.t x· E Sx" and 
that x"x' = 1. Prove that there is an x in Sx such that Qx = x". 
Do not use any material from any optional sections of this book in 
your argument. 
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(b) Use an argument based on the Bishop-Phelps subreflexivity theo
rem from optional Section 2.11 to prove that every strongly rotund 
Banach space is reflexive. 

5.66 (L. P. Vlasov, 1972, 1973 [236, 238]). A normed space X has the semi
Radon-Riesz property if it satisfies the following condition: Whenever 
(x n ), x, and (x;') are, respectively, a sequence in Sx, an element of Sx, 
and a sequence in Sx' such that x;'xn = 1 for each nand Xn ~ x, 
it follows that x;'x -7 1. (This condition was previously encountered in 
Exercise 2.65, but that exercise is not needed for this one.) Show that ev
ery uniformly Gateaux smooth normed space has the semi-Radon-Riesz 
property. 

5.67 (J. R. Giles, 1975 [87]). Suppose that X is a normed space, that Q is the 
natural map from X into X··, and that every point of SQ(X) is a point 
of smoothness of Bx··. Prove that X is very smooth. 



Appendix A 
Prereq uisi tes 

This book is intended primarily as a text for Banach space courses taught 
to graduate students in mathematics. The following are the prerequisites 
for a course taught from this book at that level. 

1. A first course in linear algebra that covers bases, linear transforma
tions, dual vector spaces, and related topics in the theory of real and 
complex vector spaces. The course should not treat just the finite
dimensional theory. 

2. An acquaintance with elementary properties of the complex plane. To 
understand all of the examples, some knowledge is needed of analytic 
functions and integrals of complex-valued functions of a real variable. 
However, the actual theory presented in this book does not require 
properties of complex numbers much beyond elementary facts about 
moduli and conjugates and the fact that the complex numbers form 
a complete field. 

3. Courses covering elementary measure theory and the Lebesgue spaces 
Lp(fl, 'L., f.t), where 1 ::; P ::; 00 and f.t is a nonnegative-extended-real
valued measure on a (I-algebra 'L. of subsets of the set fl. The material 
covered should include the completeness of Lebesgue spaces as well 
as the duality between Lp and Lq when 1 ::; p < 00, the "exponents" 
p and q are conjugate, and the measure space is (I-finite. The reader 
should also have seen the Riesz representation theorem for bounded 
linear functionals on the real and complex Banach spaces C(K), 
where K is a compact Hausdorff space. However, the Riesz repre-



518 Appendix A. Prerequisites 

sentation theorem is actually needed only to understand examples 
involving the dual space of C(K), not for the main development of 
the theory. 

4. A first course in general topology that includes product topologies, 
metric topologies, the separation axioms, and related topics. Much of 
the topology needed for this course is presented at the beginning of 
Section 2.1, but in a condensed fashion that is probably not ideal for 
someone seeing the material for the first time. 

A course in functional analysis is not a prerequisite. The results from func
tional analysis required for this book, such as the Hahn-Banach theorems, 
open mapping theorem, closed graph theorem, and uniform boundedness 
principle, are stated and proved as they are needed. 

Chapter 1 can be used as the basis for an undergraduate Banach space 
course having the following reduced set of prerequisites. 

1. The linear algebra course mentioned above. 

2. A first course in real analysis. This course should cover the topology 
of the real line, continuous real-valued functions on the real line, 
properties of the Riemann integral, and convergence of sequences and 
series of real numbers and real-valued functions on the real line. 

3. An introduction to metric spaces. This introduction should cover most 
of the material outlined in Appendix B. 

The following is a section-by-section description of the changes that should 
be made to the presentation in Chapter 1 for such a course. Notice that 
after Section 1.1, most of the changes are modifications or omissions of 
examples, exercises, and comments that depend on material not covered 
by the above three prerequisites. 

Section 1.1. If complex vector spaces arc not to be treated, then use the 
symbollF to represent only the field IR and replace the paragraph on page 2 
that begins with "It is worth emphasizing ... " by "Since all vector spaces 
will have IR as their scalar ficld, the terms vector space and real vector space 
will be treated as being synonymous. Similarly, the adjective real is to be 
considered to be redundant whenever it is used to describe some special 
type of vector space, such as the normed spaces and Banach spaces to 
be defined in the next section." In the definitions of closure and interior, 
replace "topological spacc" by "metric space." In the definitions of closed 
convex hull and closed linear hull, replace "topology" by "metric." After 
covering the definition of a metric space, review the properties of metric 
spaces listed in Appendix B, perhaps treating some of the less-standard 
ones as exercises. Notice in particular that the term "topology" is defined 
for metric spaces in Definition 13.5, allowing its use in Chapter 1 in the 
context of metric spaces. Omit Exercise 1.12. If complex vector spaces are 
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not to be treated, then omit Exercises 1.9 and 1.10 and the first part of 
Exercise 1. 7. 

Section 1.2. If complex vector spaces are not to be treated, then omit 
the reference to en in Example 1.2.5. Omit Example 1.2.6, and replace the 
paragraph following it by the single sentence "The roles of subscripts and 
superscripts are often exchanged in the notations for the normed spaces 
of the next three examples." Cover Appendix C through Definition C.9 
before covering Examples 1.2.7-1.2.9, and omit the paragraph following 
Example 1.2.7 as well as the last two sentences of Example 1.2.9. In Ex
ample 1.2.10, replace "Hausdorff space" by "metric space" and omit the 
reference to Lp[O, IJ. Omit Example 1.2.11, and in the paragraph follow
ing it replace "topological space" by "metric space" and omit everything 
after the argument that C(K) is complete. Cover Theorem C.lO and Corol
lary C.ll after covering Definition 1.2.12. Omit Example 1.2.14. Delete the 
reference to the Banach spaces Lp[O, 1] in the last sentence before the ex
ercises. Omit Exercises 1.22, 1.23, and 1.28. 

Section 1.3. In Corollary 1.3.4, replace "topological space" by "metric 
space." Omit the paragraph immediately preceding Theorem 1.3.10. In 
Exercise 1.30, replace "Hausdorff space" by "metric space." 

Section 1.4. If complex vector spaces are not to be treated, then omit 
part (c) of Exercise 1.48. 

Section 1.5. Delete the last sentence of the second paragraph of the 
section. In the third paragraph of the section, leave "topological meaning" 
as it is, since this reference makes sense in the context of the topology of 
a metric space, but change "topological space" to "metric space." In the 
collection of definitions following this paragraph, change the first occurrence 
of "topological space" to "metric space" and change the last sentence to "In 
particular, the set A is of the first or second category in itself if A has that 
category as a subset of the metric space (A, dA ), where dA is the restriction 
of the metric of X to A x A." In Proposition 1.5.3, change "topological 
space" to "metric space." Omit the first sentence of the last paragraph 
before the exercises. In Exercises 1.53-1.57, replace "topological space" 
or "topological spaces" by "metric space" or "metric spaces" respectively. 
Omit Exercises 1.58, 1.62, and 1.63. 

Section 1.6. In Definition 1.6.4, replace "topological space" by "metric 
space." In the paragraph following that definition, omit all but the last 
sentence. In the paragraph preceding Corollary 1.6.6, replace "topologi
cal space" by "metric space." In Exercise 1.68, replace "topological space" 
and "Hausdorff space" by "metric space." Omit Exercise 1.70. In Exer
cise 1.71, replace "Hausdorff space" by "metric space." In Exercise 1.74, 
replace "topological space" by "metric space." 

Section 1.7. Omit Example 1. 7.2 and the last sentence of the paragraph 
preceding it. In the paragraph following the proof of Theorem 1.7.4, omit 
the three references to a topology. In the last sentence of the paragraph 
preceding Definition 1.7.10, delete everything following "a quotient map." 
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Omit the first two paragraphs following the proof of Proposition 1.7.12. 
If it cannot be assumed that the student has seen the isomorphism theo
rems for groups, omit the paragraph preceding Theorem 1.7.14 and skip 
Exercise 1.87. 

Section 1.8. Omit Exercise 1.92. 
Section 1.9. If complex scalars are not to be treated, then omit the 

following: beginning with the second sentence of the paragraph preceding 
Definition 1.9.2, all material through Proposition 1.9.3; the last paragraph 
of the proof of Theorem 1.9.6; the occurrence of "real-" in the paragraph 
preceding Definition 1.9.13; the two occurrences of "Re" in the statement of 
Proposition 1.9.15; the first sentence of the proof of Proposition 1.9.15; and 
the single occurrence of "Re" in Exercise 1.109 as well as its two occurrences 
in Exercise 1.110. 

Section 1.10. Omit Example 1.10.2 and the two paragraphs following 
it. Cover Theorem C.12 before covering Example 1.10.3, and replace the 
first three sentences of that example with the following: "Suppose that 
1 :S p < 00 and that q is conjugate to p. Then €; can be identified with €q 
in a natural way; see Theorem C.12." Omit the last two sentences of the 
first paragraph of Example 1.10.4. Cover Theorem C.13 before covering 
Example 1.10.5, then replace the entire text of that example with the fol
lowing: "Suppose that n is a positive integer, that 1 :S p :S 00, and that q 
is conjugate to p. Then (€~)* can be identified with €~ in a natural way; 
see Theorem C.13." Omit Example 1.10.6. Omit the last two sentences of 
the paragraph following Theorem 1.10.7. If complex scalars are not to be 
treated, then omit Exercise 1.113. Omit Exercise 1.121. 

Section 1.11. Replace the statement of Theorem 1.11.10 by that of The
orem C.14, and the proof of Theorem 1.11.10 by the statement "See The
orem C.14." Omit the paragraph following the proof of Theorem 1.11.10. 
Omit Examples 1.11.24 and 1.11.25. Omit Exercises 1.124-1.126, 1.129, 
and 1.130. 

Section 1.12. In the introductory paragraph of the section and in the 
statement and proof of Proposi tion 1.12.9, replace each occurrence of "topo
logical space" by "metric space." If complex scalars are not to be treated, 
then replace the third sentence of the proof of Proposition 1.12.1 by "Let 
lQo be the rationals." Omit Examples 1.12.3-1.12.5. In the paragraph fol
lowing the proof of Corollary 1.12.12, omit the references to LdO, 1], C[O, 1], 
L(XJ[O, 1], and rca[O, 1J. Omit Exercises 1.142, 1.143, and 1.145. 

Section 1.13. Omit the first sentence of the paragraph following Defi
nition 1.13.2. Omit Example 1.13.7 and Exercise 1.149. If complex scalars 
are not to be treated, then omit the following: all occurrences of the sym
bol "Re"; the second paragraph of the section; Proposition 1.13.1; the first 
sentence of the proof of Theorem 1.13.4; the third sentence of the sec
ond paragraph following the proof of Theorem 1.13.4; the proof of Theo
rem 1.13.15; and Exercise 1.146. 
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Metric Spaces 

The only results from topology that are used in a crucial way in Chapter 1 
are about metric spaces. These results are standard fare in most general 
topology texts, but a development of metric spaces independent of gen
eral topology, such as can be found in Kaplansky's Set Theory and Metric 
Spaces [129] and in many elementary real analysis texts, is sufficient. For 
reference, here are the definitions and results from metric space theory 
needed for Chapter 1. 

B.l Definition. A metric space is a set M with a metric or distance 
function d: M x M -+ lR such that the following three conditions are 
satisfied by all x, y, and z in M: 

(1) d(x, y) :::: 0, and d(x, y) = ° if and only if x = y; 
(2) d(x,y) = d(y,x); 
(3) d(x, z) ~ d(x, y) + dey, z) (the triangle inequality). 

For the rest of this appendix, let M, M 1 , ... ,MN be sets with respective 
metrics d, d1 , ... ,dN . 

B.2 Proposition. If S is a subset of M, then S is itself a metric space 
with the metric inherited from M. 

B.3 Proposition. If x,y,z E M, then Id(x,z) - d(y,z)1 ~ d(x,y). 

BA Definition. If x E M and r > 0, then the open ball in M with center x 
and radius r is {y : y E M, d(x, y) < r }. The corresponding closed ball is 
{y : y E M, d(x, y) ~ r}. 
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B.5 Definition. A subset S of M is open if, for every x in S, there is an 
entire open ball centered at x included in S. The topology induced by the 
metric d is the collection of all open subsets of M. 

B.6 Proposition. The following subsets of M are open. 

(1) The empty set. 

(2) The entire set M. 

(3) Every open ball. 

(4) Every intersection of finitely many open sets. 

(5) Every union of open sets, whether or not there are finitely many. 

B.7 Definition. A neighborhood of an element x of M is an open set 
containing x. 

B.8 Proposition. Let S be a subset of M. Then the following are equiv
alent. 

(a) The set 5 is open. 

(b) The set 5 can be written as the union of a (possibly empty) collection 
of open balls. 

(c) For each x in 5, there is an entire neighborhood of x included in 5. 

B.9 Definition. A subset S of M is closed if its complement is open. 

B.10 Proposition. The following subsets of M are closed. 

(1) The empty set. 

(2) The entire set M. 

(3) Every dosed ball. 

(4) Every finite set. 

(5) Every intersection of closed sets, whether or not there are finitely 
many. 

(6) Every union of finitely many closed sets. 

B.ll Definition. Let (xn ) be a sequence in M. Then (xn ) is Cauchy if, 
for every positive E, there is a positive integer NE such that d(xn, x m) < f' 

whenever n, m ;::. N E • The sequence (xn) converges to an element x of M, 
and x is called the limit of (xn ), if, for every positive E, there is a positive 
integer NE such that d(xn' x) < E whenever n ;::. N E • If (xn) converges to x, 
then this is denoted by writing xn --> x or limn Xn = X. 

B.12 Proposition. A sequence (xn) in M converges to an element x of M 
if and only if the following is true: For every neighborhood U of x, there 
is a positive integer Nu such that Xn E U whenever n ;::. Nu . 
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B.13 Proposition. No sequence in M has more than one limit. 

B.14 Proposition. If a sequence in M converges to a limit, then every 
subsequence of that sequence converges to that same limit. 

B.15 Proposition. Every convergent sequence in M is Cauchy. 

B.16 Proposition. If a Cauchy sequence in M has a convergent subse
quence, then the entire sequence converges to the limit of the subsequence. 

B.17 Definition. A subset of M is bounded if it is either empty or included 
in some open ball. 

In the preceding definition, there is no need to make a special case of the 
empty set unless M is itself empty. 

B.18 Proposition. Every Cauchy sequence in M (and hence every con
vergent sequence in M) is bounded. 

B.19 Proposition. If Xn -4 x and Yn -4 yin M, then d(xn, Yn) -4 d(x, y). 

B.20 Proposition. A subset S of M is closed if and only if every sequence 
in S that converges in M has its limit in S. 

B.2I Definition. The closure of a subset S of M, denoted by S, is the 
smallest closed set that includes S, that is, the intersection of all closed 
sets that include S. The interior of S, denoted by So, is the largest open 
subset of S, that is, the union of all open subsets of S. The boundary of S, 
denoted by as, is the set S n M \ s. 

B.22 Proposition. Let S be a subset of M and x an element of M. Then 
the following are equivalent. 

(a) XES. 

(b) Every neighborhood of x intersects S. 

(c) There is a sequence in S converging to x. 

B.23 Proposition. Let S be a subset of M. Then as = S \ So. An 
element x of M is in as if and only if every neighborhood of x intersects 
both Sand M \ s. 

B.24 Definition. A subset S of ]",1 is complete if each Cauchy sequence 
in S has a limit in S. If the entire space M is complete, then d is a complete 
metric. 

B.25 Proposition. Every complete subset of M is closed. 
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B.26 Proposition. Every closed subset of a complete subset of M is itself 
complete. 

B.27 Definition. Let S be a subset of M. Then 5 is compact if, for each 
collection Qj of open subsets of M whose union includes S, there is a finite 
subcollection of Qj whose union includes S. That is, the set 5 is compact if 
each open covering of 5 can be thinned to a finite subcovering. 

B.28 Definition. Let 5 be a subset of M. Consider 5 to be a metric 
space with the metric inherited from M. Then 5 has the finite intersection 
property if n{ F : F E ~} is nonempty whenever ~ is a collection of 
closed subsets of 5 such that each finite sub collection of ~ has nonempty 
intersection. 

In the preceding definition, the set 5, not M, should really be consid
ered to be the universal set when taking intersections of empty families ~. 
However, the property being defined is the same either way. 

B.29 Proposition. Let 5 be a subset of M. Then the following are equiv
alent. 

(a) The set 5 is compact. 

(b) The set 5 has the finite intersection property. 

(c) Each sequence in 5 has a convergent subsequence whose limit is in 5. 

B.30 Proposition. Every closed subset of a compact subset of M is itself 
compact. 

B.31 Proposition. Every compact subset of M is complete, hence closed. 

B.32 Proposition. Every compact subset of M is bounded. 

B.33 Definition. Suppose that D ~ 5 ~ M. Then D is dense in 5 if 
D~ S. 

B.34 Proposition. Suppose that D ~ 5 ~ M. Then the following are 
equivalent. 

(a) The set D is dense in 5. 

(b) For every x in 5 and every positive E, there is a y in D such that 
d(x, y) < E. 

(c) Every clement of S is the limit of a sequence from D. 

B.35 Definition. A subset of M is separable if it has a countable dense 
subset. 
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B.36 Proposition. Every subset of a separable subset of M is itself sep
arable. 

B.37 Proposition. Every compact subset of M is separable. 

B.38 Definition. Let f be a function from Ml into M 2 · Then J is 

(a) continuous at the point x of Ml if, for each neighborhood V of J(x), 
there is a neighborhood U of x such that J(U) ~ V; 

(b) continuous on Ml or just continuous if, for each open subset V of M 2, 
the set f- l (V) is open. 

B.39 Proposition. Suppose that J is a function from Ml into M2 and 
that x is an element of MI. Then the following are equivalent. 

(a) The function J is continuous at x. 

(b) For every positive E there is a positive 6, such that d2(J(x), f(y)) < E 

whenever y E MI and dl(x, y) < 6 .. 

(c) Whenever a sequence (xn ) inMl convergestox, the sequence (J(xn )) 

converges to J(x). 

B.40 Proposition. Let J be a function from Ml into M 2. Then f is 
continuous on MI if and only if J is continuous at every point of MI. 

B.41 Proposition. Suppose that f and 9 are continuous functions from 
Ml into M 2. If J and 9 agree on a dense subset of MI, then f and 9 agree 
on all of MI. 

B.42 Proposition. Suppose that S is a subset of MI and that J is a 
continuous function from MI into M 2. If S is compact or separable, then 
f(S) has that same property. 

B.43 Proposition. Suppose that S is a non empty compact subset of M 
and that f is a continuous real-valued function on M. Then f is bounded 
on S, and furthermore there are points Xl and X2 in S such that f(xd = 

inf{ f(x) : xES} and J(X2) = sup{ f(x) : xES}. 

B.44 Definition. A function J from MI into M2 is uniformly continuous 
on MI or just uniformly continuous if, for every positive E, there is a posi
tive 8, such that d2(J(x),f(y)) < E whenever x,y E MI and dl(x,y) < 6,. 

B.45 Proposition. Every uniformly continuous function from MI into M2 
is continuous. 

B.46 Proposition. If MI is compact, then every continuous function 
from MI into M2 is uniformly continuous. 
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B.47 Definition. Let (In) be a sequence of functions from Ml into M2. 
Then (In) is uniformly Cauchy if, for every positive E, there is a positive 
integer N, such that d2 (jn(x), fm(x)) < € whenever n, m 2: N, and x E MI' 
The sequence (In) converges uniformly to a function f from MI into M2 , 

and f is called the uniform limit of (In), if, for every positive €, there is a 
positive integer N, such that d2 (J n (x), I (x)) < € whenever n 2: N,. 

B.48 Proposition. Suppose that (In) and I are, respectively, a sequence 
of functions and a function, all mapping MI into M2 . If each In is contin
uous and (In) converges uniformly to I, then I is continuous. 

B.49 Corollary. Suppose that (In) is a uniformly Cauchy sequence of 
continuous functions from MI into M2 and that M2 is complete. Then 
there is a continuous function I from MI into M2 to which (In) converges 
uniformly. 

B.50 Definition. For each pair (XI, ... ,XN),(YI, ... ,YN) of elements of 
the Cartesian product M1 x ... X MN, let 

N 1/2 
dp ((X1,". ,XN), (YI, ... , YN)) = (~(dj(XJ' YJ))2) 

Then dp is the product metric on Ml x '" X MN induced by d 1 , ••• ,dN, 
and the corresponding topology is the product topology for Ml x ... X MN 
induced by d1 , ... ,dN. 

B.51 Proposition. The product metric on Ml x ... X MN induced by 
d1 , ... , dN is a metric. 

It is a standard convention that whenever reference is made to an un
specified metric or topology for the Cartesian product of a non empty finite 
list of metric spaces, for example by saying that a subset of the Cartesian 
product is open without indicating the relevant metric or topology, it is the 
product metric or product topology that is being assumed. In that spirit, 
all references in the rest of this section to Ml x ... X MN as a metric space 
imply the metric dp of Definition B.50. 

B.52 Proposition. Suppose that ((x~n), ... , x~»)) ~=l is a sequence in 
Ml x ... X 1I.1N and that (Xl, ... ,XN) E Ml x '" X M N. Then 

1. ( n) (n) ) ( ) 1m xl' ... , X N = Xl, .. ·, X N 
n 

if and only if limn x~n) = Xj when j = 1, ... , N. 
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B.53 Proposition. A subset of Ml x ... X MN is open if and only if it 
is the union of sets of the form U1 x ... x UN, where each Uj is an open 
subset of the corresponding M j . 

B.54 Proposition. Suppose that M 1 , •.. , MN are all nonempty. Then 
Ml x .,. X MN is complete, or compact, or separable, or bounded, if and 
only if each Mj has that same property. 

B.55 Definition. Two metrics on the same set are (topologically) equiva
lent if they induce the same topology. 

Clearly, a set that is closed with respect to a metric d is also closed with 
respect to every metric equivalent to d. Such properties that depend not 
on the particular metric but rather only on the topology induced by the 
metric are called topological properties. It is easy to see that convergence of 
a sequence to a particular limit, compactness, separability, and continuity 
are topological properties. Cauchyness, completeness, and boundedness are 
not. See Exercise 1.42 for an example of a metric don lR that is equivalent 
to the usual metric on lR and yet has the property that lR is bounded and 
incomplete under d; the incompleteness implies the existence of a sequence 
of reals that is not Cauchy in the usual sense but that is d-Cauchy. 

B.56 Definition. Suppose that I is a one-to-one map from Ml onto M2 
such that both I and 1-1 are continuous. Then I is a homeomorphism, 
and Ml and M2 are homeomorphic. 

Notice that two metrics on the same set are equivalent if and only if 
the identity map on the set, treated as a function between the two metric 
spaces, is a homeomorphism. 

B.57 Proposition. Suppose that I is a homeomorphism from Ml onto M 2 • 

Then a subset S of Ml is open, or closed, or compact, or separable, if and 
only if I(S) has that same property. A sequence (xn) in Ml converges to 
an element x of Ml if and only if the sequence (J(xn)) converges to I(x) 
in M 2 . 

Basically, a homeomorphism is a one-to-one function from one metric 
space onto another that preserves topological properties in both directions. 
Homeomorphisms do not have to preserve Cauchyness, completeness, and 
boundedness. For example, if lR. is treated as a metric space Ml with its 
usual metric and as another metric space M2 with the metric of Exer
cise 1.42, then the identity function on lR can be viewed as a homeomor
phism from Ml onto M2 that does not preserve Cauchyness, completeness, 
and boundedness. See the comments following Definition B.55. 
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One way to force a homeomorphism to preserve properties closely related 
to the metric as well as topological properties is to require it to preserve 
distances. 

B.58 Definition. Suppose that 1 is a map from MI onto M2 such that 
d2 (J(x),j(y)) = dl(x, y) whenever x, y E MI. Then 1 is an isometry, and 
MI and M2 are isometric. 

B.59 Proposition. Suppose that 1 is an isometry from Ml onto M2 . Then 
1 is a homeomorphism. A subset 8 of Ml is complete or bounded if and 
only if 1(8) has that same property. A sequence (xn ) in Ml is Cauchy if 
and only if the sequence (J(xn)) in M2 is Cauchy. 

B.60 Definition. The metric space M2 is a completion of Ml if there is 
an isometry from Ml onto a dense subset of M 2 . 

The following result can be proved by isometrically embedding the met
ric space M into the metric space of all bounded real-valued continuous 
functions on M. See, for example, [129, pp. 90-92]. 

B.61 Theorem. Every metric space has a completion. 



Appendix C 
The Spaces Rp and R;, 1 < P < 00 

The spaces fp and f;, where 1 :::; p :::; 00 and n E N, are treated in Chapter 1 
as the Lebesgue spaces Lp(0., '£., J-t), where 0. is N or the set {I, ... , n} and J-t 
is the counting measure on the a-algebra'£. of all subsets of 0.. The purpose 
of this section is to provide a more elementary development of the spaces 
fp and f; paralleling that given in Chapter 1 but requiring only as much 
knowledge of analysis as would come from a first undergraduate course in 
real analysis without measure theory, and no knowledge of general topology 
beyond the basic facts about metric spaces from Appendix B. For the sake 
of completeness, a few words will also be said about the trivial normed 
space f~. 

In the following definition, the pth root of infinity is to be interpreted to 
be infinity when 1 :::; p < 00. 

C.l Definition. Suppose that 1 :::; P :::; 00 and that X is the vector space of 
all sequences of scalars with the usual vector space operations, that is, with 
addition of sequences and multiplication of sequences by scalars performed 
term by term. For each member (OJ) of X, let 

{ 
( I:lajIP)1/P if 1:::; p < 00; 

II(aj)llp = j=1 

sup{ laj I : j EN} if P = 00. 

Then the p-norm on X is the function II· lip : X --7 [0,00]. The collection 
of all sequences (aj) of scalars such that II(aj)llp is finite is denoted by fp 

(pronounced "little ell p" ). 
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The p-norms are not really norms on the vector space X of the preceding 
definition. For example, if aj = j for each j, then lI(aj)llp = 00 when 
1 ::; p ::; 00. It does turn out that each of the spaces fp is a subspace of X 
and has the corresponding p-norm as a norm. To show this, the first order 
of business is to obtain some classical inequalities. 

C.2 Definition. Suppose that 1 ::; P ::; 00. Define q as follows. If p = 1, 
then let q = 00. If p = 00, then let q = 1. If 1 < p < 00, then let q be 
such that p-l + q-l = 1; that is, let q = p/(p - 1). Then q is the exponent 
conjugate to p, and p and q are conjugate exponents. 

Notice that 1 ::; q ::; 00 for each conjugate exponent q, and that if q is 
conjugate to p, then p is conjugate to q. Notice also that q = 2 when p = 2, 
and that 2 is the only value of p that is its own conjugate exponent. 

C.3 Lemma. Suppose that 1 < p < 00 and that q is conjugate to p. Then 

r P sq 
rs < - +-- p q 

for all nonnegative real numbers rand s. 

PROOF. Suppose that 0 < a < 1 and that f(t) = ta - at when t > O. It is a 
straightforward calculus exercise to show that f takes on its maximum value 
when t = 1, so t a - at ::; 1- a when t > O. Substituting the quotient u/v of 
two positive numbers for t, multiplying by v, and rearranging the resulting 
inequality shows that 

uav1- a ::; au + (1 - a)v 

when u, v > O. It is clear that this inequality holds, in fact, when u, v ;::: O. 
Finally, let rand s be nonnegative reals, let u = rP , let v = sq, let a = p-l 
(so that 1 - a = q-l), and substitute into the above inequality to finish 
the proof. • 

The interpretation of one special case of the following result relies on the 
usual convention that 0 . 00 = O. 

C.4 Holder's Inequality for Sequences. Suppose that 1 ::; p ::; 00 and 
that q is conjugate to p. Then 

for all sequences (a) and (;3j) of scalars. 

PROOF. It may be assumed that neither (aj) nor (;3j) is the zero sequence, 
and therefore that II(aj)llp and 11(;3j)llq are both nonzero. It may also be 
assumed that lI(aj)llp and 11(;3)llq are finite, and therefore are positive 
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reals. Now suppose that the conclusion of Holder's inequality holds when 
II(aj)l!p = 11(,8j )llq = 1. For the general case, let, = II(aj)llp and 0 = 
IIC8j)llq, so that ,,0 E (0,00). It is easy to check that 

which implies that 

II (aj) II; 111 (fJj) 11;111 (ajfJj )Ih = II b-1 ajo-l fJj) III 
::; I!b-1aj)llp II(o-lfJj)llq 
=1. 

Multiplying through by II(aj)l!p 11(.8j)llq then yields the desired result. It 
may therefore be assumed that II(aj)llp = II(fJj)llq = 1. The proof will be 
complete once it is shown that II(aj.8j)111 ::; 1. 

Suppose first that either p or q is 1. It may be assumed that p = 1 and 
therefore that q = 00. Since II (fJj) 1100 = 1, it follows that IfJj I ::; 1 for each j, 
and therefore that 

j j 

as required. 
Finally, suppose that 1 < p < 00. It follows from the lemma that 

which finishes the proof. 

j 

::; L (~+ IfJjl q
) 

j p q 

= II(aj)ll~ + l!(fJj)ll~ 
p q 

1 1 
=-+-

p q 

= 1, 

• 
In a sense, Holder's inequality is just a generalization of Cauchy's in

equality for the spaces lFn such that n E N, and in fact Cauchy's inequality 
follows easily from Holder's. Suppose that n E N, that (al,"" an) and 
(.81, ... ,.8n) are ordered n-tuples of scalars, and that (aj) and (.8j) are the 
corresponding extensions of (aI, ... ,an) and (fJl,"" .8,,) to sequences of 
scalars formed by letting aj = .8j = 0 when j > n. Then Holder's inequality 
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with p set to 2 implies that 

l~aj;Jjl ::; ~laj{3jl 
= II(aj{3j)1I1 
::; II (a j) 112 II ({3j) 112 

( 
n ) 1/2 ( n ) 1/2 

= ~lajl2 ~1!JjI2 , 

which is the conclusion of Cauchy's inequality. 
Just as the triangle inequality for the norm of Euclidean n-space follows 

from Cauchy's inequality, a triangle inequality for the p-norm follows from 
Holder's inequality. 

C.5 Minkowski's Inequality for Sequences. Suppose that 1 ::; P ::; 00. 

Then 

for all sequences (aj) and ({3j) of scalars. 

PROOF. If P = 1, then 

j j 

If p = 00, then lak + (3kl ::; lakl + l!Jkl ::; II(aj)lloo + 11({3j)lloo for each k, so 
IICaj) + ({3j) 1100 ::; lI(aj)lloo + IIC!Jj)lloo. 

Finally, suppose that 1 < p < 00, and let q be conjugate to p. It may be 
assumed that II(aj) + ({3j)llp is nonzero and that both II(aj)llp and 1I({3j)llp 
are finite. Since 

j j 

j 

j 

::; 2P('LlajIP+ 'L1{3jIP), 
J J 
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the finiteness of II (OJ) lip and II (,Bj) lip implies that of II (O:j) + (,Bj) lip, and so 
0< II(aj) + (,Bj) lip < 00. Next, notice that 

II(aj) + (,Bj)ll~ = :~:)aj + ,BjiP 
j 

j 

j j 

Now apply Holder's inequality to the sequences (Iaj I) and (Iaj + ,Bj IP-l), 
which yields the inequality 

2)ajllaj + ,Bjlp-l S; (2)ajIP) lip (2)a j + ,Bjl(P-l)q) l/q 
J J J 

= (L::lajIPY/P (L::laj +,BjIPYP-l)/P 
J J 

= II(aj)l!p II(aj) + (,Bj)II~-l. 
Since an analogous inequality holds for I:),Bj Ilaj +,Bj IP--l, 

IICaj) + C,Bj)ll~ 5 (11(aj)l!p + 11(,Bj)llp)lI(aj) + (,Bj)II~-l. 
Dividing both sides by IICaj) + C,Bj)II~-l yields the desired result. • 

C.6 Theorem. Suppose that 1 S; P S; 00. Then 1!p is a vector space when 
the sum of two sequences of scalars and the product of a scalar and a 
sequence of scalars are defined in the usual way. The p-norm is a norm on 
this vector space. 

PROOF. It is easy to check that 0:( aj) E 1!p whenever (aj) E 1!p and a 
is a scalar. Also, each sum of two elements of 1!p is in 1!p by Minkowski's 
inequality. Since the zero sequence is in 1!p, it follows that 1!p is a subspace 
of the vector space of all sequences of scalars with the usual operations. 
Minkowski's inequality provides a triangle inequality for the p-norm, while 
the other properties that the p-norm must have to be a norm on 1!p follow 
quickly from the definitions. • 

Henceforth, when 1 5 p S; 00 and 1!p is treated as a norrned space without 
the norm being specified, the p-norm is implied. 

C.7 Definition. Suppose that 1 S; P S; 00 and that n is a positive integer. 
For each member (0:1, ... ,O:n) of][fn, let 
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Then the p-norm on lFn is the function II· lip : lFn -+ [0,00). By conven
tion, the p-norm is defined on the zero-dimensional vector space lFo by the 
formula 1I01lp = o. 

C.B Theorem. Suppose that 1 ::::: p :s: 00 and that n is a nonnegative 
integer. Then the p-norm is a norm on the vector space IFn. 

PROOF. This is obvious when n = 0, so it will be assumed that n :::: l. 
Extend each element (al, ... ,an) of IFn to an element (aj) of Pp by letting 
aj = 0 when] > n. Then 

II(al, ... , an) + ((h, ... , ~n)llp = IICaj) + (~j)llp 
:s: II(aj)llp + 11(~j)llp 
= II(al,· .. ,an)ll p + 1I(~1' ... '~n)llp 

whenever (al' ... , an), (~l' ... , ~n) E IF'', so the p-norm satisfies the trian
gle inequality. It is easily checked that the p-norm has the other properties 
required of a norm. • 

C.9 Definition. Suppose that 1 :s: p :s: 00 and that n is a nonnegative 
integer. Then e; (pronounced "little ell p n") is the normed space formed 
by the vector space lFn with the p-norm. 

C.lO Theorem. Suppose that 1 ::::: p ::::: 00. Then Pp is a Banach space, as 
is e; for each nonnegative integer n. 

PROOF. Let ((ajk»));:'=l be a Cauchy sequence of elements of ep- Since 

la;~) - a;; I :s: II(ajk)) - (ayJ)llp 

whenever ]0, k, lEN, each of the sequences (a;~))k=l such that ]0 E N 
is Cauchy, hence convergent in IF. For each positive integer ]0, let ajD = 

limk aj~). The proof for Pp will be finished once it is shown that (aj) E Pp 

and that II(ajk)) - (aj)llp -> 0 as k -> 00. 

Suppose first that p = 00. Let E be a positive real number and let N, 
be a positive integer such that II(ajk)) - (aY))IICXJ :s: E when k, 1 :::: NE • It 

follows that la;:) - a;; I ::::: E for each]o when k, 1 2: Nfl and therefore that 

la(k) - a· I = lim la(k) - a O) I < E 
Jo Jo I Jo Jo-

for each ]0 when k :::: N E • Taking the supremum over all ]0 shows that 

II(a;k») - (aj)ll= :::; E when k :::: N(. Then 

(aj) = _((ajN,)) - (aj)) + (a;N,») E Po"" 

and II(ajk)) - (aj)IICXl -> 0 as k -> 00. 
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Now suppose that 1 ::; p < 00. Let f be a positive real number and let N. 
be a positive integer such that II(ajkl) - (ojll)lIp ::; f when k, I ;::: N •. It 
follows that for each positive integer )0, 

when k, I ;::: N •. Leaving jo fixed and letting I tend to infinity shows that 

for each positive integer )0 when k 2: N •. Letting ]0 tend to infinity shows 
that 

when k 2: N,. Therefore (OJ) E fp by the argument used for foo, and 

II(a;kl) - (aj)lIp -7 0 as k -7 00. This completes the proof for f p. 

Suppose that n is a positive integer and that ((a~k), ... , a~k»)):l is a 

Cauchy sequence in f;. Then each sequence (o;k»)k'=l such that] = 1, ... , n 
is a Cauchy sequence of scalars and so has a limit aj. Depending on whether 
or not p is finite, either 

or 

II (aik), ... ,a~k») - (a1, ... ,an )lIoo 

= max{la~k) - all, ... , lo~k) - ani} -70 

as k -7 00, and so 

. ( (k) (k») _ ( ) hm a 1 , . .. , an - a1,·.·, On . 
k 

This proves that f; is complete. Since f~ is obviously complete, the theorem 
is proved. • 

C.II Corollary. For each nonnegative integer n, Euclidean n-space is a 
Banach space. 
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The following two results are necessary for Examples 1.10.3 and 1.10.5 
if the duality theory for ep and e; is not to be obtained from the more 
general duality theory for Lebesgue spaces. 

C.12 Theorem. Suppose that 1 ::; p < 00 and that q is conjugate to p. 
For each element ((3j) of eq , let T({3j) be the scalar-valued function on ep 

defined by the formula 

(T({3j») (O'j) = L O'j{3j. 
j 

Then T is an isometric isomorphism from eq onto e;. 
PROOF. If (O'j) E ep and ({3j) E eq , then 

L I O'j {3j I ::; II(O'j)llp 11({3j)llq < 00 

j 

by Holder's inequality, so Lj O'j{3j converges. This shows that the definition 
of T makes sense and that 

(C.1) 

whenever (O'j) E ep and ({3j) E eq . For each ((3j) in eq , the function T({3j) is 
clearly a linear functional on ep , and (C.l) implies that this linear functional 
is bounded and satisfies the inequality 

(C.2) 

It is easy to check that the function T: eq -> e; is a linear operator. The 
theorem will be proved once it is shown that T maps eq onto e; and that 
equality holds in (C.2) whenever ({3j) E eq . 

Suppose that x* E e;. For each standard unit vector ej of ep , let {3j = x*ej 
and let 'Yj be a scalar such that bj I = 1 and l{3j I = 'Yj{3j. Suppose for the 
moment that p -11, so that 1 < q < 00. Then for each positive integer k, 

k k 

LI{3jlq = L 'Yj!3jl!3jIQ-1 
j=l j=l 

= x* (t 'Yj l!3jIQ-1 ej ) 
J=l 

::; Ilx*IIIIt,'Yjl{3jIQ-leJ llp 

= Ilx*11 (tl{3jl(Q-l)P) lip 

J=l 

= Ilx* II (t, l{3j Iq) liP, 
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which implies that 

Letting k tend to infinity shows that ({3j) E Cq and that 

(C.3) 

Now suppose that p = 1, so that q = 00. For each positive integer j, 

which, by taking the supremum over all j, again shows that ({3j) E Cq and 
that (C.3) holds. Thus, whether or not p = 1, it follows that ({3j) E Cq and 
therefore that T({3i) E C;. For every element (OJ) of Cp , 

x*(aj) = x* (Laje j ) = L ajx*ej = L aj{3j = (T({3j))(aj), 
J J J 

so T({3j) = x*. The operator T therefore maps Cq onto f.;. 
All that remains to be shown is that IIT({3j)1f = 11({3j)ll q when ({3j) E Cq • 

First notice that T({3j) is nonzero if ({3j) is a nonzero element of £q, so 
T is one-to-one. Now fix an element ({3j) of £q and let :r* = T({3j). The 
argument of the preceding paragraph yields an element ({3;) of £q such that 
T({3;) = x*, and ({3;) must equal ({3j) since T is one-to-one. It follows 
from (C.3) that 

Combining (C.2) and (C.4) yields the desired equality. 

(C.4) 

• 
C.13 Theorem. Suppose that 1 ::; p -:; 00, that q is conjugate to p, 
and that n is a positive integer. For each element ({31, ... ,(3n) of C~, let 
T({31,"" (3n) be the scalar-valued function on C; defined by the formula 

n 

(T«(31, ... ,{3n))(al'''',O!n) = LO!J{3j· 
j=1 

Then T is an isometric isomorphism from £~ onto (C~) * . 

PROOF. For each element «(31, ... ,{3n) of £~, the map T({31, ... ,{3n) is 
clearly a linear functional on the finite-dimensional normed space £;, and 
so is automatically bounded. It follows that T is a linear operator from £~ 
into (1:;)*. It is easy to check that ker(T) = {(o, ... , On, so T is one-to
one. Since £~ and (£;)* both have dimension n, the operator T maps £~ 
onto (£;)*. 
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Let ((31, ... , (370) be an element of e~. All that remains to be shown is that 
IIT((31,.·.,(3n)11 = 11((31, ... ,(3n)llq· Suppose that (01, ... ,070 ) E e; and 
that (01, ... , On) and ((31, ... , (370) are extended to the respective sequences 
(OJ) and ((3j) by letting OJ = (3j = 0 when j > n. Holder's inequality 
implies that 

70 

I (T((31, ... , (3n)) (01, ... , On) I :s 2) OJ (3j I 
j=1 

:S II (OJ) lip II ((3j) Ilq 

= 11(01, ... ,on)llpll((31, ... ,(3n)lIq, 

and so 

(C.5) 

Now let {e1"'" en} be the standard basis for the vector space lFn and let 
11, ... "n be scalars of absolute value 1 such that l(3jl = Ij(3j for each j. 
If 1 < p < 00, then 

n n 

LI(3jlq = L Ij(3jl(3jlq-l 
j=l j=1 

which implies that 

If p = 1, then 

II ((31, ... , (3,,)1100 = max{I(311, ... , IOnl} 

= max{ I (T((31, ... ,(3n)) (et) I, ... , I (T((31' ... ,(3n)) (en) I} 
:S IIT((311'" ,,(70 )11. 
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If p = 00, then 

n 

IICBI, ... ,,Bn)lh = 'Elj,Bj 
j=l 

= (T(,BI, ... , ,Bn)) (rI, ... , In) 

:-::; IIT(,BI,··.,,Bn)IIII(r1,···,ln)lloo 
= IIT(,BI' ... ,,Bn) II· 

Therefore 11(,111, ... , ,Bn) IIq :::; IIT(,BI,' .. ,,Bn)11 whatever the value of p, which 
when combined with (C.5) yields the equality needed to finish the proof. • 

This next result should replace Theorem 1.11.10 if the reflexivity of ip 
when 1 < p < 00 is not to be obtained from the theory of Lebesgue spaces. 

C.14 Theorem. Suppose that 1 < p < 00. Then ip is reflexive. 

PROOF. Let q be conjugate to p, let Tq: iq --+ i; and Tp: ip --+ i~ be the 
usual isometric isomorphisms as in Theorem C.12, and let Q: ip --+ i;* be 
the natural map. Suppose that x** E e;*. Then x**Tq E e~, so there is a 
member (aj) of ip such that x**Tq = Tp(aj). If x* E e;;, then there is a 
member (,Bj) of iq such that x* = Tq (,Bj), so 

x**x' = x'*Tq(,Bj) = (Tp(aj)) (,Bj) = 'Eaj,Bj = (Tq(,Bj)) (aj) = x*(aj). 
j 

It follows that x*' = Q( aJ ), so Q maps ip onto i;*. • 



Appendix D 
Ultranets 

This appendix is an optional addendum to Section 2.1. Except for Proposi
tion D.lO, which requires Proposition 2.1.40 and the material on topological 
groups preceding it, this appendix uses no material past Proposition 2.1.37. 

In addition to the characterizations of compactness and relative compact
ness in terms of the behavior of nets given in Propositions 2.1.37 and 2.1.40, 
there are further characterizations of these properties in terms of the be
havior of special nets called ultmnets that can be particularly useful in 
simplifying compactness arguments involving the axiom of choice. For the 
definition of ultranets, it is useful to have the following two terms. 

D.l Definition. A net (XoJ"EI is said to frequent a set S or to be in S 
frequently if, for each a in I, there is a /3" in I such that a :::S /3" and 
xfJ", E S. The net is said to be in the set ultimately if there is an a in J 
such that xfJ E S whenever a :::S /3. 

These terms could have been used to define net convergence and accu
mulation, since a net converges to (respectively, accumulates at) a point if 
and only if the net is ultimately (respectively, frequently) in U whenever U 
is a neighborhood of the point. However, these terms would not have con
tributed much to the discussion of convergence and accumulation, while 
they will greatly streamline the presentation of ultranets that is to follow. 

Notice that a net is in a set S frequently if and only if it is not ultimately 
in the complement of S. Clearly, every net has the property that if it is 
ultimately in a set, then it must be frequently in that set. Ultranets are 
nets having the converse property. 
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D.2 Definition. An ultmnet or universal net or maximal net is a net with 
the property that if it is frequently in a set, then it must be ultimately in 
that set. 

Suppose that (xc» is a net in a set X. If S c::; X, then (xc» must frequent 
either S or X \ S, from which it follows immediately that an ultranet in X 
must be either ultimately in S or ultimately in X \ S. Conversely, suppose 
that (x o.) has the property that for each subset S of X, the net is either 
Ultimately in S or ultimately in X \ S. Since no net can be frequently in 
a set and ultimately in the complement of that set, it follows that (xc» is 
ultimately in a set whenever it is frequently in that set, and so is an ultranet. 
This gives the following result, which is often used to define ultranets. 

D.3 Proposition. A net in a set X is an ultranet if and only if it has the 
following property: For each subset S of X, the net is either ultimately 
in S or ultimately in X \ S. 

D.4 Example. Let x be an clement of a set X and let 9J1x be the collection 
of all subsets of X containing x. Let I be the set of all ordered pairs (a, A) 
such that A E 9J1x and a E A, directed by declaring that (a, A) ~ (b, B) 
whenever A :.2 B. Let X(a,A) = a whenever (a, A) E I. Then (X(a,A)) is a 
net in X. Notice that for each subset S of X, the net (X(a,A)) lies either 
entirely inside or entirely outside S from some term onward, depending OIl 

whether or not xES. The net (X(a,A)) is therefore an ultranet. 

It will be useful to study ultranets a bit before punming their relationship 
to compactncss. Thc following result is an immcdiate consequence of the 
fact that an ultranet in a topological space that is in a neighborhood of a 
point frequently must be in that neighborhood ultimately. 

D.5 Proposition. If an ultranet in a topological space accumulates at a 
point, then it converges to that point. 

Functions preserve ultranets. 

D.6 Proposition. Suppose that (xo,) is an u1tranet in a set X and that 1 
is a function from X into a set Y. Then (J (x a)) is an ultranet in Y. 

PROOF. Suppose that the net (J(xa)) is frequently in the subset S of Y. 
Then (xc» is frequently in 1-1 (S), hence ultimately in 1-1 (S), and so 
(J(xa)) is ultimately ill S. • 

It turns out that every net has a subnet that is an ultranet. The proof of 
that to be given here depends on the following technical lemma. Readers 
familiar with the theory of filters will recognize this lemma as a statement 
about ultrafilters. 
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D.7 Lemma. Suppose that (Xl\:) is a net in a set X. Then there is a 
family 9Jt of subsets of X such that 

(1) the net (x,,) frequents every member of 9Jtj 

(2) if M 1 , M2 E 9Jt, then MI n M2 E 9Jt; 

(3) if 8 ~ X, then either 8 or X \ 8 is in 9Jt. 

PROOF. Let ~ be the collection of all families 3' of subsets of X that 
satisfy (1) and (2) when "9Jt" is replaced by "3'." Then ~ is nonempty 
since {X} E ~. Let :::5'<1 be the preorder on ~ obtained by declaring that 
3'1 :::5'<1 ~2 when ~1 ~ ~2. Then every nonempty chain in ~ has an upper 
bound, namely, the union of the members of the chain, and of course {X} is 
an upper bound for the empty chain. By Zorn's lemma, there is a maximal 
element 9Jt in ~. Notice that 9Jt f 0, since 0 :::5'<1 {X} but {X} ~'<I 0. To 
finish the proof, it is enough to show that 9Jt satisfies (3). 

Let 9Jto be the collection of all subsets of X that have a member of 9Jt 
included in them. It is easy to see that 9Jto E ~ and that m :::5'<1mO, from 
which it follows that m = mo. That is, the family m cont.ains with each 
of its elements every superset of that element. 

For the rest of this proof, let 8 be a fixed subset of X. The proof will be 
done once it is shown that either 8 or X \ 8 is in m. To this end, suppose 
that M I, M2 Em and that (xa) frequents neither M1 n8 nor M2 \8. Then 
(x,,) frequents neither (Ml n M2 ) n 8 nor (MI n M2 ) \ 8, so (x,,) does not 
frequent MI n M2. Since M1 n M2 Em, this is a contradiction. 

Thus, the net (x,,) either frequents every member of {M n 8: ME m} 
or frequents every member of {M \ 8: ME m}. By exchanging the roles 
of S and its complement if necessary, it can be assumed that (x,,) frequents 
every member of { M n 8 : M E 9Jt}. Let 9Jt 1 = m U { M n S : M Em}. 
It is easy to check that 9Jt1 E~. Since 9Jt :::52(9JtI , it follows that 9Jt = mI' 
Finally, let M be any member of the nonempty set 9Jt and observe that 9Jt 
must contain every superset of its element M n S. It follows that 8 E 9Jt .• 

D.8 Theorem. Every net has a subnet that is an ultranet. 

PROOF. Let (X")"EI be a net in a set X and let m be a family of subsets 
of X such that m has the properties listed in the preceding lemma. Let 
J = {(a, M) : M E 9Jt, a E I, x" EM} with the relation :::5J given 
by declaring that (aI, Mr) :::51 (a2' M 2) when a1 :::5 a2 and MI ;:.2 M2. It 
is easy to check that J with the relation :::5J is a directed set and that 
{a : (a, M) E J} is cofinal in I. Let g(a, M) = a for each (a, M) in J. 
Then (Xg(".M») is a sub net of (x,,). If Mo E m, then the fact that (xa) 
frequents Mo produces an aD such that (ao, Alo) E J, and the definition 
of :::5J then guarantees that Xg(",M) E Mo whenever (ao, Mo) :::5J (a, M). 
Thus, for each member Mo of m, the net (Xg(a,M») is ultimately in Mo. 
Since each subset of X either is in 9Jt or has its complement in m, it follows 
from Proposition D.3 that (Xg(a,M») is an ultranet. • 
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The next two results are the promised characterizations of compactness 
and relative compactness in terms of ultranet behavior. The proof of the 
second is essentially the same as that of the first with the obvious modifi
cations and with the references to Proposition 2.1.37 replaced by references 
to Proposition 2.1.40. Both results use the axiom of choice in their proofs, 
since the proofs are based on Theorem D.S which in turn is obtained from 
a lemma that uses Zorn's lemma in its proof. 

D.9 Proposition. A subset S of a topological space is compact if and 
only if each ultranet in S has a limit in S. 

PROOF. If S is compact, then Proposition 2.1.37 assures that every ultranet 
in S has an accumulation point in S and so has a limit in S. Conversely, 
suppose that every ultranet in S has a limit in S. Since every net in S has a 
subnet that is an ultranet, every net in S has a subnet with a limit in S, and 
so another application of Proposition 2.1.37 shows that S is compact. • 

Notice that the following result is stated only for topological groups. 

D.lO Proposition. A subset S of a topological group is relatively compact 
if and only if each ultranet in S has a limit in X. 

As an application of the results of this section, a very short proof of 
Alexander's subbasis theorem will now be given. 

D.ll Alexander's Subbasis Theorem. (J. W. Alexander, 1939 [4]). 
Suppose that (5 is a subbasis for the topology of a topological space X and 
that S is a subset of X. If every covering of S by elements of (5 can be 
thinned to a finite subcovering, then S is compact. 

PROOF. Suppose that S is not compact. Then some ultranet (xc» in S has 
no limit in S. It follows from Proposition 2.1.15 that for each x in S there is 
a member Ux of (5 containing x such that (xc» is ultimately in X \ Ux . Let 
<!: = { U x : XES}. Then ([ is a covering of S by clements of (5. For every 
finite subcollection of <!:, the net (xc» ultimately lies in the complement of 
the union of the members of the subcollection, so <!: cannot be thinned to 
a finite sub covering of S. • 

It is instructive to compare this proof of Alexander's sub basis theorem to 
one based directly on the definition of compactness and some form of the 
axiom of choice, as can be found, for example, in [200, p. 368]. It is equally 
instructive to compare the following proof of Tychonoff's theorem to stan
dard ones that directly apply the axiom of choice in one of its equivalent 
forms. 

D.l2 Tychonoff's Theorem. (A. N. Tychonoff, 1930 [234]; E. Cech, 
1937 [40]). Every topological product of compact topological spaces is 
compact. 
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PROOF. Suppose that {X(<» : Q E I} is a collection of compact topological 
spaces and that X is their topological product. It may be assumed that 
1# 0. Let (xf3) be an ultranet in X. Since functions preserve ultranets, it 

follows that (x~<») is an ultranet for each Q in I, so there is an x in X such 

that x~<» -+ x(<» whenever Q E I. Therefore xfJ -+ x, from which it follows 
that X is compact. • 
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dual space of, 91 
norm for, see direct sum norm 
is reflexive when each summand 

is reflexive, 105 
is rotund when each summand is 

rotund, 438 
is separable when each 

summand is separable, 111 
is smooth when each summand 

is smooth, 488-489 
is uniformly rotund when each 

summand is uniformly 
rotund, 456 

is uniformly smooth when each 
summand is uniformly 
smooth,502 

is weakly compactly generated 
when each summand is 
weakly compactly generated, 
256 

direct sum of subspaces, see 
internal direct sum 

disc algebra, 119 
is not reflexive, 119, 135 

distance 
function, see metric 
from a point to a set, 5, 8 
between sets, 5, 121 

Hausdorff, 8 
division algebra, 318 
double dual, see second dual 
dual space, 84-97,184,223-245, 

267 
algebraic, 84-85 
is complete, 87 
is reflexive when the main space 

is reflexive, 104 
rotundity properties of, 465-466, 

481-482,492, 499-500, 
509-510, 513-515 

second, see second dual 
of a separable Banach space, 

113, 235, 241-242, 295 

Index 575 

of a separable normed space, 
112, 230, 234 

smoothness properties of, 
481-482, 492, 499-500, 508, 
514-515 

of a vector space with a 
topology, 174 

Dunford, N., xii, 344-346 
Dunford-Pettis operator, see 

completely continuous 
operator 

Dunford-Pettis property, 344-347 
characterizations of, 344-345 

Duren, P. L., 201 
Dvoretzky, A., 20 

Eberlein, W. F., 246,248 
Eberlein-Smulian theorem, 135, 

246-252, 340 
Efimov, N. V., 469 
Efimov-Stechkin property, 478-479 
Eidelheit, M., 179 
Eidelheit's separation theorem, 

179, 184 
eigenspace, 315-316 
eigenvalue, 315-316, 327-329 
eigenvector, 315-316 
embedding, 30 

isometric, 30 
empty union or intersection, 4 
Enfio, P., 335, 336, 361, 363, 365 
equicontinuity, 322--323, 338 
equivalent bases, see Schauder 

bases, equivalent 
equivalent basic sequences, see 

Schauder basic sequences, 
equivalent 

equivalent norms, 45, 477 
conditions implying, 32, 45 
constructing, 479 

Euclidean 2-space, 264, 425-426, 
430-431, 447, 460, 481, 497 

modulus of rotundity of, 457 
modulus of smoothness of, 504 

Euclidean 3-space, 425 
Euclidean norm, 11 
Euclidean n-space, 11-12, 32, 

361-362, 456 
is complete, 13, .535 
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Euclidean topology, 11 
existence, set of, 435-436, 440--441 

is closed, 441 
exposed point, 270, 440 
extended real numbers, 217 
external direct sum, see direct sum 

of normed spaces 
extremal set, 264-265 
extreme point, 264-270 

characterization of, 269 

IF as a Banach algebra, 306 
IF as a normed space, 11 

is complete, 13 
is rotund, 427 
is smooth, 482 

factor space, see quotient space 
Fan, K., 121, 221, 467, 468, 

470--472,477 
Figiel, T., 365 
filter, 158 159 
filterbase, 158-159 
finitely subadditive function, 73, 84 
first category set, 36-41, 191 
first isomorphism thcorem for 

Banach spaces, 56-58 
flat set, 175-176 
Floret, K., 255 
Fourier coefficient, 14 
Fraktur letters 

list of, 565 
use of, 6 

Frechet, M. R., ix 
Frechet differentiability of the 

norm, 496, 504 
conditions equivalent to, 497 
uniform, 496, 510 

conditions equivalent to, 
496-497 

Frechet smoothness, see 
smoothness, Frechet 

Frechet space, 186, 193, 201 
Fredholm alternative, 329, 338 
Fredholm, 1., 325 
F-space, 186-187, 193, 197-203, 304 
~ topology, 203-207, see also X' 

topology of a vector space X, 
where X' is a subspace of X# 

compactness with respect to, 
210--211 

conditions implying 
metrizability of, 206-207 

continuity with respect to, 204 
net convergence with respect to, 

204 
separation axioms for, 205-206 
standard basis for, 203 
standard subbasis for, 203 

Gantmacher, V., 341, 343 
Gantmacher's theorem, 343, 347 
Garkavi, A. L., 478 
Gateaux derivative of the norm, 

485-486, see also Gateaux 
differentiability of the norm 

in a direction, 485 
left-hand at a point, 485-486 

in a direction, 485 
right-hand at a point, 485-486, 

493 
in a direction, 485 
is a sublinear functional, 484 

Gateaux differentiability of the 
norm, 483-487, 504, 510, see 
also Gateaux derivative of 
the norm 

conditions equivalent to, 
485-487 

in a direction, 485 
conditions equivalent to, 485 

uniform, 496, 510 
gauge functional, see Minkowski 

functional 
Go set, 41, 190, 192 
Gelbaum, B. R., 361 
Gelfand-Mazur theorem, 318 
Giles, J. R, 515, 516 
Glicksberg, 1., 121, 221, 467, 468, 

470-472, 477 
gliding hump argument, 47, 49 
Goldstine, H. H., 232 
Goldstine's theorem, 232-233, 235, 

245 
Gowers, W. T., 279, 384-385, 410 
greatest lower bound in a partially 

ordered set, 376-377 



Grothendieck, A., 330, 334-336, 
344, 346 

group, 152-153 
abelian, 153, 156 
addition, 153 
identity element, 152, 153 
inverse of an element, 152 
multiplication, 152 
operation, 152 

Guraril, V. 1., 363 

Hp ,14 
Hahn, H., x, xiii, 45, 47, 49, 74, 77, 

84, 99, 199 
Hahn-Banach extension, 75 

uniqueness of, 75, 83-84 
Hahn-Banach extension property, 

201-202 
Hahn-Banach extension theorem, 

70-84, 87-88 
analytic form, see Hahn-Banach 

extension theorem, normed 
space version 

historical roots, 76 
normed space version, 74-76, 

177, 201, 299 
vector space version, 73-74, 81, 

175 
Hahn-Banach separation theorem, 

79-81, 175 
Hahn-Banach theorem, 73, see also 

Hahn-Banach extension 
theorem; Hahn-Banach 
separation theorem 

halfspace 
closed,84 

separating, 280 
open, 433 

Halmos, P., 158 
Hamel, G. K. W., 351 
Hamel basis, see vector space basis 
Hardy space, see Hp 
Hausdorff, F., 8 
Hausdorff's maximal principle, 8 
Heine-Borel property, 32-33, 137 
Heily, E., x, 78 
Heily's theorem, 77-79, 96-97 
hereditarily indecomposable 

Banach space, 385 
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Hilbert, D., 319, 336, 337 
Hilbert space, 301, 337 

is reflexive, 458 
is rotund, 440 
is smooth, 492 
is uniformly rotund, 458 
is uniformly smooth, 504 

Hildebrandt, T. H., 45, 199 
Holder's inequality for sequences, 

530-532 
homeomorphism 

between metric spaces, 31 
between normed spaces, 18, 31 
between topological vector 

spaces, 167 
Hughes, E., 440 
hyperplane problem, 385 

ideal, 322, 338 
identity of an algebra, 305-306 
identity operator, 26, 297-299, 314 
infinite sum, see series, convergent 
inner product space 

modulus of rotundity of, 458 
is rotund, 440 
is smooth, 492 
is uniformly rotund, 458 
is uniformly smooth, 504 

interior mapping principle, see 
open mapping theorem 

interior of a set, 1, 167, 183 
internal direct sum, 64-65, 69, 

295-296, 298 
algebraic, 64, 295-296, 298-299 
is reflexive when the main space 

is complete and each 
summand is reflexive, 105 

is separable when each 
summand is separable, 111 

inverse mapping theorem, 44, 198 
inverse of an element of an algebra 

with identity, 307 
invertible element of an algebra 

with identity, 307 
involution, 318 
isolated point, 41 
isometric isomorphism, 295 
isometry, linear, see isomorphism, 

isometric 
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isomorphism, 30-31, 90, 295 
conditions equivalent to, 31, 66, 

109, 214, 290, 293 
conditions implying, 31, 32, 44, 

56, 58, 67, 70 
isometric, 30--31, 90, 102-103 

conditions equivalent to, 66, 
109, 290 

conditions implying, 67, 70, 95 
Istratescu, V. 1., 439 

J, see James's space J 
James, R. C., 107, 117, 120 122, 

125, 128, 132, 134, 251, 
256-257, 260-262, 271, 272, 
35~ 372, 402, 411, 423, 472, 
478, 479 

James's sequential characterization 
of reflexivity, 117-118 

James's space J, 107, 411, 415-423 
is isometrically isomorphic to its 

second dual, 422-423 
is not isomorphic to JEll J, 423 
is not reflexive, 421 
second dual of, 419-423 
standard unit vector basis for, 

417-421 
is monotone, 417 
is shrinking, 417 

has no unconditional basis, 423 
James's theorem, 89, 101, 115, 

121-134, 136, 256-257, 
262-263, 270-271, 281, 436, 
440, 458, 472, 478, 492, 493 

for separable Banach spaces, 121 
James's weak compactness 

theorem, 121-122, 136, 
256264, 270 

Johnson, W. B., 365, 385 

K(X), 319, 341, see also K(X, Y) 
is a closed ideal in B(X), 322 

K(X, Y), 319, ;{41 
is a closed subspace of B(X, Y), 

322 
KW(X), 339, 341 

is a closed ideal in B(X), 342 
KW(X, Y), 339, 341 

is a closed subspace of B(X, Y), 
342 

Kadets, M. 1., 220-221 
Kadets-Klee property, see 

Radon-Riesz property 
Kakutani, S., 188, 301, 339 
Kalton, N. J., 201 
Karlin, S., 372 
Katznelson, Y., 271 
Kelley, J _ L., 143 
kernel of a linear operator, 4, 56, 

57, 109, 175, 289 
Klee, V. L., 63, 121, 180, 186, 

192-193, 220-221, 256-257, 
264, 270, 275, 437, 441 

Kozlov, V. Ya., 357 
Krasnoselskii, M. A., 358 
Krein, M. G., 235, 242, 252, 254, 

265, 358, 426-427 
Krein-Milman theorem, 265-267 

Milman's partial converse of, 
267-269 

Krein-Smulian theorem on weakly* 
closed convex sets, 242-244, 
291 

analogs of, for the norm and 
weak topologies, 243 

Krein-Smulian weak compactness 
theorem, 252-255, 264 

Kruse, A., 301 
Kwapien, S., 393 

£0, 183 
£p, 0 < p < 1, 165-166, 178, 183, 

186, 201 
dual space of, 184 
is not locally convex, 166 

£~,0<p<1,183 
£1,16,23,47,86,113-111,135, 

221, 222, 285-286, 304, 337, 
339, 340, 347, 367, 397, 
407-411, 415, 462-463, 465, 
481-482, 492, 515, see also 
£p, 1 -s: p < 00 

closed unit ball of, 270 
compact subsets of, 255 
dual space of, 285-286, 295, see 

also £p, 1 -s: p < 00, dual 
space of 



has the Dunford-Pettis property, 
344 

infinite-dimensional subspaces 
of, are not reflexive, 255 

is not reflexive, 106, 113 
is not rotund, 428 
rotund equivalent norm for, 

428-430 
is not uniformly rotund, 453 

has Schur's property, 219-220 
is not smooth, 482 
standard unit vector basis for, 

398, see also fp, 1 ::; p < =, 
standard unit vector basis for 

basic sequences equivalent to, 
388, 394 

block basic sequences taken 
from, 394 

coordinate functionals for, 
399--400 

permutations of, 394 
is not shrinking, 403 
subsequences of, 394 

weakly compact subsets of, 255 
is weakly sequentially complete, 

218-219 
£i, 425-426, 430, 447, 460, 476, 

479 481, 497 
£f, 428, 482 

is not rotund when n ~ 2, 428 
is not smooth when n ~ 2, 482 

£2, ix, 69, 116, 212, 217, 284, 
319-320, 328-329, 337, 340, 
346, 462, 465, 477, 478, 510, 
514, see also £p, 1 ::; p < = 

has the approximation property, 
329 330 

has the Radon-Riesz property, 
220 

does not have Schur's property, 
220 

f p , 1 ::; p < 00, 12, 15, 16, 18-19, 
68, 221, 293, 529--534, 536, 
539 

has the approximation property, 
330 

as a Banach algebra, 377 
as a Banach lattice when IF = JR, 

377 
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is complete, 13, 534 
dual space of, 85, 536 

weak* convergence in, 233 
is infinite-dimensional, 15 
is reflexive when 1 < p < =, 

101,539 
does not have Schur's property 

when 1 < p < =,222 
second dual of, when 

1 < p < =,98 
is separable, 111 
standard unit vector basis for, 

351 
when 1 < p < 00, 397, 403 
is boundedly complete, 404 
coordinate functionals for, 399 
is monotone, 357 
is shrinking when 1 < p < =, 

403 
is strictly monotone, 358 
is unconditional, 372 

is uniformly rotund when 
1 < p < 00, 448, 451 

is uniformly smooth when 
1 < p < =,501 

is weakly sequentially complete, 
218-219, 222 

£p((Xn)), 1 ::; p < 00, 439-440, 
459, 491 

dual space of, 491 
fp sum of normed spaces, 

1::; p < =, see fp((Xn)) , 
1::;p<= 

f;, 1 ::; p ::; 00, 12, 16, 529, 533-536 
is complete, 13, 534 
dual space of, 86-87, 537 
is uniformly rotund when 

1 < p < 00, 448, 451 
is uniformly smooth when 

1 < p < 00, 501 
£00, 12, 15, 16, 19, 47, 68, 71, 

82-83, 135-136, 183, 184, 
285-286, 295, 297, 301-302, 
319, 351, 371-373, 375, 378, 
386, 408, 415, 529-534 

as a Banach algebra, 306, 
317-318 

closed unit ball of, 270 
is complete, 13, 534 
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dual space of, 85-86, 235 
is infinite-dimensional, 15 
is not reflexive, 106, 113 
is not rotund, 428 
is not separable, III 
is not smooth, 482 
is not smoothable, 482, 515 
is not weakly compactly 

generated, 256 
weakly compact subsets of, 256 

£ao(Xn»),491 
£~, 264, 425-426 
£~, 428,482 

is not rotund when n 2: 2, 428 
is not smooth when n 2: 2, 482 

Lo [0,1]' 163-164, 186, 304, see also 
Lo(n,E,JL) 

has dual space {O}, 178 
is not locally bounded, 202 
is not locally convex, 164 

Lo(n,E,JL), 162-164, 182-183,186 
is complete, 163 
is a topological group under 

vector addition, 163 
is a topological vector space 

when JL(n) < 00, 163 
L1'[O,1], 0 < p < 1, 165, 186,201, 

202, 304, see also Lp(n, E, JL), 
O<p<1 

has dual space {O}, 178 
is not locally convex, 165 

Lp(n, E,JL), 0 < p < 1, 164-165, 
183, 186 

is complete, 164-165 
is locally bounded, 202 
is a topological vector space, 165 

LIlO,I], see also Ll(n,E,JL); 
Lp[O, 1], 1 ~ p < 00 

closed unit ball of, 270 
has the Dunford-Pettis property, 

346 
Haar basis for, 398 

is conditional, 383-384 
is not isometrically isomorphic 

to a dual space, 267 
is not reflexive, 106, 108, 113 

LIfn, E, JL), see also Lp(n, E, JL), 
l::;p<oo 

has the Dunford-Pettis property 
when JL is finite, 345-346 

reflexivity or nonreflexivity of, 
101, 106 

rotundity or nonrotundity of, 
427-428 

smoothness or nonsmoothness 
of,482 

Lp[O, l], 1 ::; p < 00, 11, 16, 48, 68, 
see also Lp(n, E, JL), 
l~p<oo 

Haar basis for, 359--361, 366, 384 
is infinite-dimensional, 15 
polynomial basis for, 397 
is separable, 110 

Lp[O,oo), 11, 16, see also 
Lp(n, E, JL) for appropriate p 

Lp(n, E, JL), 1 ::; p < 00, 11, 50, 
109, 183 

is complete, 13 
dual space of, 85 
has the Radon-Riesz property 

when 1 < p < 00, 220, 
453-454 

is reflexive when 1 < p < 00, 101 
is rotund when 1 < p < 00, 427 
is smooth when 1 < p < 00, 482 
is uniformly rotund when 

1 < p < 00, 448-450, 458 
is uniformly smooth when 

1 < p < 00,501 
Lp('ll') , 14 
Lao [0,1], 11, 16, 48, 68, see also 

Loo(n,E,JL) 
is infinite-dimensional, 15 
is not reflexive, 106, 113 
is not separable, 110 

Loo(n, E, JL), 11, 50, 109, 183 
as a Banach algebra, 306 
is complete, 13 
dual space of, 85 
reflexivity or nonreflexivity of, 

101, 106 
rotundity or nonrotundity of, 

427-428 
separability or nonseparability 

of, 115 
smoothness or nonsmoothness 

of, 482 



latent root, see eigenvalue 
latent value, see eigenvalue 
LCS, see locally convex space 
least upper bound in a partially 

ordered set, 37&-377 
Lebesgue, R., 49 
Lebesgue space, 11, 12 

is complete, 13 
Lewin, J., 6 
limit inferior of a net of real 

numbers, 217, 221-222 
limit superior of a net of real 

numbers, 217, 221-222 
Lindenstrauss, J., x, xi, 279, 301, 

499 
linear combination, 4 
linear equations, simultaneous 

solutions of, 76-·77, 329, 338 
linear form, see linear functional 
linear function, see linear operator 
linear functional, 4 

bounded, 276, see also linear 
functional, continuous 

adjoint of, 293 
conditions equivalent to, 57, 

212, 320 
conditions implying, 83 
extensibility of, 71, 75, 202, see 

also linear operator, 
bounded, extensibility of 

norm-attaining, 89, 95, 101, 
121··122, 134-135, 262 263, 
271-273, 281 

norming, 76, 426 
separating, 75, 76, 80-81, 84, 

87-88, 276-277, 280 
complex-, 71-72, 95 
conditions implying one is a 

linear combination of others, 
78 

continuous, 266, see also linear 
functional, bounded 

conditions equivalent to, 175 
extensibility of, 177, 201 
separating, 175-180, 184, 201 
support, see support functional 

multiplicative, see complex 
homomorphism 
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noncontinuous, 210, see also 
linear functional, unbounded 

positive, on C(K), 97 
real-, 71-72, 95, 432-433 
unbounded, 29, 34, 57, 202 
weakly continuous, see weakly 

continuous linear functional 
weakly* continous, see weakly* 

continuous linear functional 
linear hull, 3 

closed, 4, 8, 21, 23, 93, 167 
weakly* closed, 225 

linearly independent 
finite list, 2, 367 
sequence, 2 

linear operator, 4-5, 24-35,43-49, 
196-200, 283-306, 314-347 

algebraically invertible, 314 
bounded, 24, 196, 222, 228-229, 

283-295, 297, 306, 314-347, 
see also linear operator, 
continuous 

adjoint of, see adjoint operator 
vs. bounded function, 24-25 
closed-range, 55-56, 292 
conditions equivalent to, 25, 

55, 57, 66, 89, 196, 214, 320, 
339 

conditions implying, 24, 29, 34, 
46, 48, 70, 196, 198-200 

extensibility of, 59, 67-68, 
70-71, 82, 299-300, see also 
linear functional, bounded, 
extensibility of 

kernel of, 289 
norm-attaining, 278-279, see 

also linear functional, 
bounded, norm-attaining 

one-to-one, conditions 
equivalent to, 289, 290 

one-to-one, conditions 
implying, 291 

onto, conditions equivalent to, 
289, 293 

compact, see compact operator 
completely continuous, see 

completely continuous 
operator 
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continuous, 222, 297, see also 
linear operator, bounded 

conditions equivalent to, 196 
conditions implying, 182 

Dunford-Pettis, see completely 
continuous operator 

finite-rank, 4, 57, 58, 69-70, 82, 
109, 319-320, 330, 340 

graph of, 47-48 
norm of, see operator norm 
one-to-one, conditions 

equivalent to, 66 
onto, conditions equivalent to, 

66 
open, 43 

conditions equivalent to, 55 
conditions implying, 34, 43, 

197 
product, 4, 28-29 
shift-invariant, on a sequence 

space, 83 
unbounded, 26, 29, 202 
weakly compact, see weakly 

compact operator 
weak-to-norm continuous, 337, 

339 
weak*-to-norm continuous, 338 
weak-to-norm sequentially 

continuous, 336 
weak-to-weak continuous, 214 
weak*-to-weak* continuous, 

228-229, 287-288 
linear space, see vector space 
linear span, see linear hull 
linear topological space, see 

topological vector space 
linear topology, see vector topology 
linear transformation, see linear 

operator 
lipp, 17 
Lipp,17 
Lipschitz condition, 17 
local basis for a vector topology, 

187-189 
countable, 187-189 

locally convex space, 161, 162, 167, 
177-178, 180-181, 187-189, 
201 

Hausdorff, 178, 195, 201,210, 
264-266, 268-270, 300-301 

infinite-dimensional,210-211 
locally convex topology, 161, see 

also locally convex space 
local uniform convexity, see 

rotundity, local uniform 
local uniform rotundity, see 

rotundity, local uniform 
Lorch, E. R, 99 
Lovaglia, A. R, 460, 466, 515 
lower semicontinuous function, 217 
LTS, see topological vector space 
LUR modulus, see rotundity, 

modulus of local uniform 

Maurey, B., 384-385, 410 
maximal element, 5 
Mazur, S., 113, 121, 176, 192, 199, 

200, 216, 252, 254, 335-336, 
361, 363-364, 384 

Mazur's compactness theorem, 
252-255 

Mazur's separation theorem, 
176-178, 201 

McShane, E. J., 143, 448 
meager set, see first category set 
Megginson, R E., 223, 474 
metric, 5, 521 

complete, conditions implying, 
192 

invariant, 186-189, 192-193, 
197, 201-202 

left-invariant, 192 
metric induced by a norm, 10 
metric space, 5, 435, 469-470, 521 

complete, 37-38 
completion of, 98, 108 
incomplete, 38, 63 

metric space theory, see special 
subindex on p. 594 

midpoint local uniform convexity, 
see rotundity, midpoint local 
uniform 

midpoint local uniform rotundity, 
see rotundity, midpoint local 
uniform 

Milman, D. P., 265, 268, 358, 452 



Milman-Pettis theorem, 452-453, 
458,500 

minimizing sequence, 469-470 
Minkowski functional, 80-81, 84 
Minkowski's inequality for 

sequences, 532-533 
modulus of convexity, see 

rotundity, modulus of 
modulus of rotundity, see 

rotundity, modulus of 
modulus of smoothness, see 

smoothness, modulus of 
moment problem, 426 
Moore, E. H., 143 

Nakamura, M., 301, 341, 343 
natural map from a normed space 

into its second dual, 98-99, 
232, 286, 295 

adjoint of, 295 
image of a normed space in its 

second dual with respect to, 
223, 232-233, 255, 288-289, 
303 

natural projection for a Schauder 
basis, see Schauder basis, 
natural projections for; 
Schauder basis, 
unconditional, natural 
projections for 

nearest point theory, 121, 435--436, 
469-470 

nearly open set, 41 
neighborhood 

of 0 in a topological vector 
space, 167, 175, 187, 202 

of a point in a topological vector 
space, 167 

net, see also topological theory, net 
limits in a topological vector 

space, 167 
weakly convergent, 217 
weakly* convergent, 227 

Nikodym, O. M., xii, 178 
nonmeager set, see second category 

set 
Nordlander, G., 457 
norm, 9,15 
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conditions equivalent to the 
topology of a vector space 
being induced by a norm, 195 

continuity of, 17 
formula for, in terms of bounded 

linear functionals, 88 
rotund, see rotundity 
induced by a Schauder basis, 

354,358 
smooth, see smoothness 
strictly convex, see rotundity 
topology, 10, 32, 35, 137 

is locally convex, 162 
weak continuity of, conditions 

equivalent to, 217 
weak lower semicontinuity of, 

217 
weak* lower semicontinuity of, 

on a dual space, 227 
normed algebra, 305, see also 

algebra; Banach algebra 
basic properties of, 307-308 
completion of, 317 
complex, 318 
continuity of multiplication in, 

308 
with identity 

continuity of inversion in, 318 
normalization of identity of, 

317 
normed lattice, 377 
normed linear space, see normed 

space 
normed space, 9 

compactly generated, 114, 254, 
see also separability 

completion of, 98-99, 108, 503 
complex, 34, 115, 432-433, 440 
conditions equivalent to 

completeness of, 20, 63, 158, 
193 

conditions implying 
completeness of, 31, 32, 99, 
441, 478 

conditions implying 
incompleteness of, 34, 40 

continuity of vector space 
operations of, 17 
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finite-dimensional, 20, 31-34, 69, 
137, 349-350, 452, 501, see 
also Banach space, 
finite-dimensional 

is complete, 32 
conditions equivalent to, 33, 

88,215,217,226 
dual space of, 88, 99 
nth dual of, 99 
is reflexive, 100 
is separable, 111 

incomplete, 63, 243-244, 
278-279, 294, 349 

infinite-dimensional, 35, 137, 
211, 214, 221, 226, 243, 338, 
349 

inquadrate, 479 
Radon-Riesz, see Radon-Riesz 

property 
real, 34, 115, 127-132, 276, 

432-433, 442 
reflexive, see reflexivity 
regular, see reflexivity 
rotund, see rotundity 
separable, see separability 
smooth, see smoothness 
strictly convex, see rotundity 
strictly normed, see rotundity 
uniformly nonsquare, 479 
weakly compactly generated, 

254-256, 347, 464 
weakly sequentially complete, 

see weak sequential 
completeness 

normed vector space, see normed 
space 

norming functional, see linear 
functional, bounded, norming 

norming sequence, 505-508 
Cauchy, 506, 508 
weakly* Cauchy, 505, 507 

norming subspace, 505-508 
nowhere dense set, 36, 40, 41 
nth dual, 97 
null space of a linear operator, see 

kernel of a linear operator 

open mapping, 43, see also linear 
operator, open 

open mapping theorem, 41-45, 48, 
197-198 

open set, 18, 34, 37, 43, 167, 184, 
210 

operator norm, 26-28 
characterizations of, 27 
formulas for, 27, 89 

ordered vector space, 376 
order-preserving function, 87 
Orlicz, W., 199, 200, 393 
Orlicz-Pettis theorem, 392-393 

for weak reordered convergence, 
393 

Onel, M., 440 
orthodox set, 280 
Oxtoby, J. C., 40 

parallelogram law, 462, 477 
partially ordered set, 6, 8, 143, 376 
Pelczynski, A., 301, 361, 363-365, 

384,393,396,408,410 
perfect set, 41 
Pettis, B. J., 104,344, 345, 393,452 
Phelps, R. R., 271-280 
Phillips, R. S., 207, 301 
Picone, M., 143 
pointwise boundedness of a family 

of linear operators, 46, 200 
polar set, see absolute polar set 
polygon, 264, 267, 270 
positive-homogeneous function, 73, 

80,84 
positive measure, 11 
prenorm, see seminorm 
preorder,5 
preordered set, 5-6, 8, 143 
prerefiexive normed space, 99 
prerequisites, xi, 517-518 

for an undergraduate Banach 
space course, 518-520 

product metric, 61 
product topology, 61, 63, 204-205 
projection, 296-299 

algebraic adjoint of, 297 
bounded, 67, 297, 304, see also 

projection, continuous 
adjoint of, 297 
conditions implying, 299 
finite-rank, 304 



compact, 337 
continuous, 297, see also 

projection, bounded 
kernel of, 298 
range of, 298 

onto equivalence classes, 54 
in ]F2, 304 
kernel of, 298 
range of, 298 
from a topological product to a 

factor, 204 
unbounded, 299 

proper value, see eigenvalue 
property (H), see Radon-Riesz 

property 
property (SA), see semi-Radon

Riesz property 
proximinal set, see existence, set of 

quotient map, 54-55, 286, 291-292 
topological, 54-55 

quotient norm, 51-53 
characterizations of, 51-52 

quotient space, 49-59, 294, 300, 
437-438, 488, 492 

of a Banach space, 53, 366 
dual space of, 95, 286, 291 
modulus of rotundity of, 

454-455, 458 
modulus of smoothness of, 502 
norm for, see quotient norm 
nth dual of, 108 
is reflexive when the main space 

is reflexive, 105 
rotundity of, conditions 

implying, 441 
is separable when the main 

space is separable, 111 
is uniformly rotund when the 

main space is uniformly 
rotund, 455 

is uniformly smooth when the 
main space is uniformly 
smooth,502 

quotient topology, 55, 184 

]R2, hyperplanes and hyperspaces 
in, 433-434 

Radon, J., 220, 453, 454 

Index 585 

Radon-Nikodym property, 279 
Radon-Riesz property, 220--221, 

453-454, 460, 463-465, 
471-472, 474, 476, 478-479 

conditions equivalent to, 222 
conditions implying, 453, 463, 

471,478 
rank of a linear operator, 4 
rca[O, 1],271, see also rca(K) 

is not reflexive, 113 
is not separable, 110 

rca(K), 13, 17, 87, 97 
is complete, 13, 87 
reflexivity or nonreflexivity of, 

106, 109 
is not rotund when K has at 

least two elements, 440 
separability or nonseparability 

of, 114 
is not smooth when K has at 

least two elements, 492 
reflexivity, 99--109, 113, 115-136, 

271, 286, 294, 337, 339--341, 
344, 346, 347, 402, 406-407, 
410-411, 423, 435-436, 
440--441, 458, 460, 463-464, 
471-472, 478-479, 481, 493, 
509--510, 513-514 

care needed in the definition of, 
106-108 

implies completeness, 99 
conditions equivalent to, 117, 

119--120, 125, 132, 134-136, 
223-224, 245, 251, 262-263, 
347,406,410,411,436,493 

conditions implying, 99, 100, 
104-105, 108, 121, 134, 263, 
281, 347, 440--441, 452, 478, 
479, 492, 500, 515-516 

and separability, 115, 121, 136 
is separably determined, 120, 

251 
super-, see superreflexivity 
implies weak compact 

generation, 255 
implies weak sequential 

completeness, 251 
resolvent, see resolvent function 
resolvent equation, 311 
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resolvent function, 309, 311-312, 
314 

resolvent set, 309-310, 314 
Riemann partition, 160 
Riesz, F., x, 33, 220, 284, 319, 

324-325, 328, 337, 453, 454 
Riesz representation theorem for 

bounded linear functionals on 
C(K),87 

Riesz's lemma, 325 
for reflexive spaces, 338 

Rogers, C. A., 20 
Romberg, B. W., 201 
Rosenholtz, 1., 234 
Rosenthal, H. P., 222 
Rosenthal's £1 theorem, 222 
rotundity, 426-479, 493, 504-505, 

510, 514 
conditions equivalent to, 427, 

431, 434-436, 440, 457, 481, 
490, 492-493 

conditions implying, 431, 447, 
460, 465-467, 473, 477, 478, 
481, 492 

directional modulus of, 476 
is not isomorphism-invariant, 

430 
k-, 477 
local uniform, 220, 460 465, 472, 

474, 476 
conditions equivalent to, 461 
conditions implying, 460, 461 
and Frechet smoothness, 515 
is not isomorphism-invariant, 

460 
implies midpoint local uniform 

rotundity, 473 
implies the Radon-Riesz 

property, 463 
implies rotundity, 460 
implies weak local uniform 

rotundity, 467 
midpoint local uniform, 

472474,476 
conditions equivalent to, 

473-474 
conditions implying, 473 
implies rotundity, 473 

modulus of, 441-445, 448, 457 

alternative formulas for, 445 
properties of, 442 
of a quotient space, 454-455, 

458 
of a subspace, 454 
upper bound for, 457 

modulus of local uniform, 460 
modulus of weak local uniform, 

466-467 
modulus of weak uniform, 464 
modulus of weak* uniform, 466 
Q(X)-, 492 
and smoothness, 481-482, 

491-492 
strong, 467-472, 474, 476, 478, 

510,515 
conditions equivalent to, 

468-470, 472, 478-479, 
508-509 

conditions implying, 467, 
471-472, 477 

and Frechet smoothness, 
508-510 

implies midpoint local uniform 
rotundity, 473 

implies the Radon-Riesz 
property, 471 

implies reflexivity for Banach 
spaces, 472, 515-516 

implies rotundity, 467 
uniform, 426, 441-460, 462-465, 

476, 479, 510, 514 
conditions equivalent to, 447, 

452, 459, 477, 499-500, 503 
conditions implying, 447 
directional, see rotundity, 

uniform, in every direction 
directionalizations of, 476 
in every direction, 476, 478 
is not isomorphism-invariant, 

447 
implies k-rotundity, 477 
implies local uniform 

rotundity, 460 
implies midpoint local uniform 

rotundity, 473 
implies the Radon-Riesz 

property, 453 



implies reflexivity for Banach 
spaces, 452 

implies rotundity, 447 
implies strong rotundity, 467 
and uniform smoothness, 500, 

502 
in weakly compact sets of 

directions, 476-478 
implies weak uniform 

rotundity, 465 
weak local uniform, 466-467, 

472, 474, 476-477 
conditions implying, 467 
implies rotundity, 467 

weak uniform, 464-465, 472, 
474, 476, 514 

conditions equivalent to, 464, 
477, 478, 513-514 

conditions implying, 465, 514 
implies rotundity, 465 
and uniform Gateaux 

smoothness, 514 
implies uniform rotundity in 

every direction, 478 
implies uniform rotundity in 

weakly compact sets of 
directions, 477 

implies weak local uniform 
rotundity, 467 

implies weak* uniform 
rotundity in dual spaces, 466 

weak* uniform, 465-466, 477 
conditions equivalent to, 510, 

513 
conditions implying, 466 
implies rotundity, 466 
and uniform Gateaux 

:;moothness, 510 
Rudin, W., xi 
Ruston, A. F., 434 

scalar, 1 
scalar multiple of a set, 3, 7, 18, 167 
scalar operator, 26 
Schauder, J., 43, 197, 323, 350, 352, 

361 
Schauder bases, equivalent, 386-398 

conditions equivalent to two 
bases being, 387 

Index 587 

Schauder basic sequence, 350, 
361-364, 367, 386, see also 
Schauder basis 

block, 393-398 
basis constant for, 394 

bounded, 351 
conditions equivalent to a 

sequence being, 359 
existence of, in a Banach space, 

361-363 
is linearly independent, 352 
monotone, 357, 398 
normalized, 351, 363 
subsequence of, is basic, 359 
unconditional, 373, 384-385, 

398, 410-411 
conditions equivalent to a 

sequence being, 381-382 
weak limit points of, 367 

Schauder basic sequences, 
equivalent, 387 

Schauder basis, 121, 349-423, see 
also Schauder basic sequence; 
Banach space with a 
Schauder basis 

absolute, see Schauder basis, 
unconditional 

bounded,351 
boundedly complete, 404-406, 

408-410 
conditions equivalent to a basis 

being, 405-406 
conditional, 372, 382-384 
conditions equivalent to a 

sequence being, 358, 366, 368 
constant, see basis constant 
coordinate functionals for, ~50, 

354, 366-368, 399-407 
form a basic sequence, 399 
basis constant for, 399 
are bounded, 356 
form a weak* basis for the 

dual space, 400 
is linearly independent, 352 
monotone, 356-358, 363, 

366-367, 402, 406, 411-415 
characterizations of, 357-358 
strictly, 358 
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natural projections for, 354, 356, 
366, 368, 378 

are bounded, 356 
nonmonotone, 366 
normalized, 351, 373 
norm induced by, see norm, 

induced by a Schauder basis 
orthogonal, 356-357, see also 

Schauder basis, monotone 
shrinking, 402-406, 408-415 

has a boundedly complete dual 
basis, 404 

conditions equivalent to a basis 
being, 403, 405-406 

unconditional, 368-387, 409--411 
bounded multiplier 

unconditional norm induced 
by, see bounded multiplier 
unconditional norm 

conditions equivalent to a 
sequence being, 381, 386 

natural projections for, 
378-379 

normalized, 375-376 
unconditional basis constant 

for, see unconditional basis 
constant 

unconditional constant for, see 
unconditional constant 

unconditional norm induced 
by, 386 

weak*, 400 
Schauder's theorem, 323, 343 
Schlumprecht, T., 385 
Schmidt, E., ix 
Schur, J., 220 
Schur's property, 219-220, 222, 

251, 347, 515 
Schwartz, J. T., xii, 346 
Scottish Book, 336 
second category set, 36-41, 192 
second dual, 97 

modulus of smoothness of, 504 
secular value, see eigenvalue 
self-adjoint element of an algebra 

with involution, 319 
seminorm, 42-43, 73, 80 

induced by a linear operator, 42 

semi-Radon-Riesz property, 
222-223 

conditions implying, 516 
separability, 109-115, 230, 234-235, 

241-242,252,254-256,271, 
295, 338, 361, 365, 367, 408, 
411,423 

conditions equivalent to, 111, 
113, 114, 231 

conditions implying, 109, 
111-112, 114 

conditions precluding, 109 
and reflexivity, 115, 121, 136 
implies weak compact 

generation, 255 
separating family of functions, 

205-207 
separation of convex sets, 79--81, 

84,175-180,184,280 
separation theorem, 275-277, see 

also Hahn-Banach separation 
theorem; separation of 
convex sets 

sequence, indexing of, 3 
series, 18--20 

convergent, 18-20 
absolutely, 20, 23 
conditionally, 20 
unconditionally, 20, 23, 

368-372, 385, 398 
weakly reordered, 392-393, 398 
weakly subseries, 392-393, 398 
weakly unconditionally, 392 

formal, 19 
partial sum of, 18 
sum of, 18 
weakly unconditionally Cauchy, 

390-392 
conditions equivalent to a 

series being, 390, 398 
Shields, A. L., 201 
shift operator, 319, 346 

adjoint of, 293 
Sierpinski, W., 190 
Singer, Ivan, 478 
Smith, H. L., 143 
Smith, M. A., 462, 463, 465, 467, 

472, 474, 476-478, 510, 514 
smoothness, 280-281, 479-516 



conditions equivalent to, 481, 
487, 488, 490, 492-493 

conditions implying, 481, 492, 
496, 504, 510 

Frechet, 504-510, 514-515 
conditions equivalent to, 504, 

508-509 
conditions implying, 504, 506, 

510,515 
and local uniform rotundity, 

515 
implies smoothness, 504 
and strong rotundity, 508-510 
implies very smoothness, 515 

is not isomorphism-invariant, 
481 

modulus of, 494-496, 504 
alternative formulas for, 499, 

503 
is continuous, 503 
is convex, 503 
properties of, 495 
of a quotient space, 502 
of a subspace, 501 

point of, 480 
characterizations of, 480, 

486-487, 492-493 
Q(X)-,492 
and rotundity, 481-482, 491-492 
uniform, 493-504, 510, 514 

conditions equivalent to, 
494495, 499-501, 503 

conditions implying, 497 
implies Frechet smoothness, 

504 
is not isomorphism-invariant, 

497 
implies reflexivity for Banach 

spaces, 500 
implies smoothness, 496 
is equivalent to uniform 

Frechet smoothness, 496 
implies uniform Gateaux 

smoothness, 510 
and uniform rotundity, 500, 

502 
uniform Frechet, see 

smoothness, uniform 
uniform Gateaux, 510-514 

Index 589 

conditions equivalent to, 510, 
514 

conditions implying, 510 
implies the semi-Radon-Riesz 

property, 516 
implies smoothness, 510 
and weak uniform rotundity, 

514 
and weak* uniform rotundity, 

510 
very, 280-281, 514-515 

conditions implying, 516 
implies smoothness, 515 

Smulian, V. L., xiii, 119, 235, 242, 
246, 248, 252, 254, 263, 464, 
467, 468, 487, 492, 500, 
505-510, 515 

Sobczyk, A., 74 
Soukhomlinoff, G. A., 74 
spectral radius, 312-314, 318 
spectral radius formula, 313, 317 
spectral value, see eigenvalue 
spectrum, 309, 311-319, 328-329, 

346 
continuous, 315 
point, 315-316, 319, 327-329, 

346 
residual, 315 

sphere, 15-16 
unit, 10, 33, 273, 425-427, 431, 

434-435, 440, 442-444, 
479-481, 489-491 

spherical image map, 489-491, 493 
continuity properties of, 

490--491, 497-499, 504, 
514- 515 

is weakly* -compact-valued, 490 
standard coordinate vector, 15 

basis, 351-352 
standard unit vector, 15 

basis, 351 
Stechkin, S. B., 469 
Steenrod, N. E., 143 
Steinhaus, R., 45, 200 
Sternbach, L., 192 
Straszewicz, S., 270 
strict convexity, see rotundity 
strong convexity, see rotundity, 

strong 
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strong rotundity, see rotundity, 
strong 

subadditive function, see finitely 
subadditive function 

subgroup, 192 
sublinear functional, 73, 80-81, 84 
subreflexivity, 271-272, 278-280 
subseries, 370 

unordered, 371 
subspace, 2, 5, 13, 23, 64, 279, see 

also quotient space 
closed, 13, 32, 64-65, 75, 120, 

177, 181, 182, 211, 216, 
295-296, 300-301, 325 

is reflexive when the main 
space is reflexive, 104 

sum, 58 
closure of, 21, 83, 93, 167, 216 
complementary, 67, 295, 304, see 

also subspace, complemented 
complemented, 67, 295-296, 

299--305, 347 
algebraically, 295-296, 298-299 
conditions equivalent to, 

299--300 
conditions implying, 300-301 

dual space of, 94 
finite-codimensional, 300 
finite-dimensional, 32, 58, 84, 

182, 246, 300, 362 
modulus of rotundity of, 454 
modulus of smoothness, 501 
norming, see norming subspace 
nth dual of, 102, 108 
reflexive, 441 

infinite-dimensional, 410-411 
is a set of existence, 441 

relative topology of, 167 
is rotund when the main space 

is rotund, 436 
second dual of, 102 
separable, 120 
is separable when the main 

space is separable, 111 
is smooth when the main space 

is smooth, 488 
sum, 64 
uncomplemented closed, 

301-302 

is uniformly rotund when the 
main space is uniformly 
rotund, 454 

is uniformly smooth when the 
main space is uniformly 
smooth, 502 

weak closure of, 216 
weak* closure of, 225 
weakly closed, 216 
weakly* closed, 242,294 
weakly* sequentially closed, 242 
weak topology of, 218 

substitution principle for 
isometrically isomorphic 
normed spaces, 102-103 

Sudakov, V. N., 301 
sum of sets, algebraic, 3, 7, 18, 63, 

167, 183-184 
superreflexivity, 452-453, 459--460 

conditions equivalent to, 479, 
502 

conditions implying, 459 
support cone, 272, 273 
support functional, 272-273, 

275-278, 280, 432 
characterizations of, 486 
modulus, 280 

support hyperplane, 432-434, 480 
support point, 272-275, 279, 280, 

432 
conical, 273-275 
modulus, 280 

Swaminathan, S., 478 
Sylvester, J. J., 315 
Szarek, S. J., 365 

tensor product, 63 
third dual, 97 
three-space property, 53 

completeness is, 54 
finite-dimensionality is, 58 
reflexivity is, 105 
separability is, 112 

topological completeness, 63, 186, 
190, 192-193 

topological group, 162, 189, 
191-192 

topological product, 40, 204-205 



topological theory, see special 
subindex on pp. 595-596 

topological vector space, 161-203, 
264-265, 268, 272-273, 275, 
279-280, 295-297, 305, 378, 
432-434 

basic properties, 167 
is completely regular when To, 

174 
finite-dimensional, 181-182, 185, 

211 
Hausdorff, 174, 178,181-182, 

184-185, 187-189, 194, 195, 
200, 202, 211, 222, 264, 267, 
270, 298-301,440 

locally bounded, 194-195,201 
metrizable, 185-203 

conditions implying, 188, 194 
topologizing family of functions, 

203-207 
topology of convergence in 

measure, 163 
topology of termwise convergence, 

194-195 
topology of uniform convergence on 

compact sets, 201 
total family of functions, see 

separating family of functions 
totally bounded set, 320 
translate of a set, 3, 7, 18, 167 
triangle inequality 

for metric spaces, 5 
for normed spaces, 9, 432 

Troyanski, S. L., 464, 482, 488 
Tukey, J. W., 180 
TVS, see topological vector space 
Tychonoff, A. N., 544 
Tychonoff's theorem, 544-545 
Tzafriri, L., x, xi, 301 

Uhl, J. J., 279, 346 
Ulam, S., 336 
ultranet, 223 
unconditional basis constant, 

379-380 
characterizations of, 379 

unconditional constant, 379-380, 
386 

characterizations of, 380 

Index 591 

unconditional norm, 386 
uniform boundedness of a family of 

linear operators, 46, 199-200 
uniform boundedness principle, 

41-42, 45-46, 48-49, 197, 
199-200 

uniform convexity, see rotundity, 
uniform 

uniform Frechet smoothness, see 
smoothness, uniform 

uniform Gateaux smoothness, see 
smoothness, uniform Gateaux 

uniform rotundity, see rotundity, 
uniform 

uniform smoothness, see 
smoothness, uniform 

uniqueness, set of, 435 
upper bound, 5 

vector lattice, 377-378 
vector space, 1-2, 8-9, 49-51, 

63-64, 273, 279, 283-284, 
295-300, 432-433 

complex, 2, 71-72 
existence of a basis for, 6, 8 
finite-dimensional, 181 
infinite-dimensional, 35 
operations, 1--2, 17 
ordered, 279-280, 376 

positive cone of, 280 
positive elements of, 280 
positive wedge of, 280 

real, 2, 71-72 
sum, 59 

vector space basis, 6, 8, 349-351 
for a Banach space, 34, 40, 

365-366 
for an F -space, 202 
for a normed space, 366 

vector space of finitely nonzero 
sequences, 15-16, 34 

vector topology, 161, see also 
topological vector space 

Vlasov, L. P., 223, 477, 516 
Vyborny, R., 46a 

weak compactness, 245--264, see 
also weakly compact set 
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conditions equivalent to, 257, 
260-261, 263 

is separably determined, 250 
weak* completeness, 230 
weak local uniform convexity, see 

rotundity, weak local uniform 
weak local uniform rotundity, see 

rotundity, weak local uniform 
weakly bounded set, 213 

is norm bounded, 213 
weakly* bounded set, 225, 233 

is norm bounded when the 
predual is complete, 225 

weakly Cauchy net, 213, 223, 235 
weakly* Cauchy net, 224, 243 
weakly Cauchy sequence, 218 

it; bounded, 214 
weakly* Cauchy sequence, 234 

is bounded when the predual is 
complete, 226 

is weakly* convergent when the 
predual is complete, 230 

weakly closed set, 257, 260-261, 263 
weakly* closed set, 230, 240, 

242-244, 263 
weakly compact operator, 339-347 

is bounded, 340 
characterizations of, 340-341, 

343, 346-347 
conditions implying, 340 
on an infinite-dimensional 

Banach space, 346 
range of, 340-341 

has weakly compactly 
generated closure, 341 

spectrum of, 346 
weakly* compact operator, 347 
weakly compact set, see also weak 

compactness 
is bounded, 214 
characterizations of, 245, 248, 

250 
closed convex hull of, 252-255 
closed linear hull of, 254-255 
in a dual space, 255 
extreme points of closed convex 

hull of, in a Banach space, 
269 

relatively, 250 

characterizations of, 249-250 
is a set of existence, 441 

weakly* compact set, 229-230, 
234-235 

is bounded when the predual is 
complete, 226 

extreme points of weakly* closed 
convex hull of, 269 

is a set of existence, 441 
weakly continuous linear 

functional, 212 
weakly* continuous linear 

functional, 223-224, 241, 243 
weakly convergent net, 213, 244 
weakly* convergent net, 224, 234, 

239 
weakly convergent sequence, 116, 

119, 220, 251, 364 
is bounded, 214 
norm convergent sequence is, 

116 
uniqueness of limits for, 116 

weakly* convergent sequence, 234 
is bounded when the predual is 

complete, 226 
weakly countably compact set, 248 

relatively, 249 
weakly limit point compact set, 248 

relatively, 246--247, 249 
weakly open set, 214 
weakly* open set, 226 
weakly sequentially closed set, 135 
weakly* sequentially closed set, 242 
weakly sequentially compact set, 

248 
relatively, 249 

weakly* sequentially compact set, 
235 

weakly* sequentially continuous 
linear functional, 241 

weak property, 212 
weak* property, 223 
weak sequential completeness, 

218-219, 492, 515 
weak* sequential completeness, 230 
weak topology, 137,211-223 

Baire category of a normed 
space with respect to, 222 

basis for, 213 



is completely regular, 212 
completeness of, conditions 

equivalent to, 215 
dual space with respect to, 212 
induced by an arbitrary family 

of functions, see ~ topology 
is locally convex, 212 
metrizability of, conditions 

equivalent to, 215 
and norm topology, conditions 

equivalent to equality of, 215 
relative, on bounded sets, 244 
is a subtopology of the bounded 

weak topology, 244 
is a subtopology of the norm 

topology, 212 
weak* topology, 137, 223-235 

basis for, 224 
of the closed unit ball of the 

dual 
is compact, 229 
metrizability of, conditions 

equivalent to, 231 
is completely regular, 223-224 
completeness of, conditions 

equivalent to, 226 
dual space with respect to, 

223-224, 241, 243 
generalized, 235 
is locally convex, 223-224 
metrizability of, conditions 

equivalent to, 226 
and norm topology, conditions 

equivalent to equality of, 224 
relative, on bounded sets, 236 
of the second dual, 232-233 
is a subtopology of the bounded 

weak* topology, 236 
is a subtopology of the weak 

topology, 223-224 
and weak topology, conditions 

equivalent to equality of, 
223-224 

weak uniform convexity, see 
rotundity, weak uniform 

weak* uniform convexit.y, see 
rotundity, weak* uniform 

weak uniform rotundity, see 
rotundity, weak uniform 
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weak* uniform rotundity, see 
rotundity, weak* uniform 

wedge, 273 
characterizations of, 279 

Wehausen, J. V., 222 
Weierstrass, K. T. W., 38 
Weierstrass approximation 

theorem, 110, 271 
Wheeler, R. F., 245 
Whitley, R. J., 301 
wLUR modulus, see rotundity, 

modulus of weak local 
uniform 

wUR modulus, see rotundity, 
modulus of weak uniform 

w·UR modulus, see rotundity, 
modulus of weak* uniform 

X topology of the dual space of a 
normed space X, see weak* 
topology 

X' topology of a vector space X, 
where X' is a subspace 
of X#, 207-210 

basis for, 208 
bounded ness of sets with respect 

to, 209-210 
Cauchyness of nets with respect 

to, 209 
dual space of, 207 
is locally convex, 207 
subbasis for, 208 

X· topology of a normed space X, 
see weak topology 

Yosida, K., 339 

Zabre'iko, P. P., 42 
Zabre'iko's lemma, 41-43, 47, 48, 

202 
zero operator, 26 
Zizler, V. E., 46.5 
Zorn, M., 6 
Zorn's lemma, 6, 8 
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metric space theory, 5, 155-156, 
158-159, 161, 521-528, see 
also separate entries for 
certain individual topics 

boundary of a set, 523 
bounded set, 523, 527, 528 
Cauchy net, 155-156, 161 
Cauchy sequence, 161, 522-523, 

527,528 
is bounded, 523 
inherits limits from 

subsequences, 523 
closed ball, 521 
closed set, 522, 527 

inherits compactness from 
supersets, 524 

inherits completeness from 
supersets, 524 

closure of a set, 523 
compact set, 524, 527 

is bounded, 524 
is closed, 524 
is complete, 524 
is separable, 525 

complete set, 523, 527, 528 
is closed, 523 

completion, 528 
continuity of a metric, 521 
continuous function, 525-527 

on a compact set is bounded, 
525 

on a compact set is uniformly 
continuous, 525 

at a point, 525 
preserves compactness, 525 
preserves separability, 525 
uniformly, 525 

convergent sequence, 522-523, 
527 

is bounded, 523 
is Cauchy, 523 

dense set, 524 
equivalent metrics, topologically, 

527 
finite int.ersection property, 524 

equival.ence to compactness, 
524 

homeomorphic metric spaces, 
527 

homeomorphism, 527-528 
interior of a set, 523 
isometric metric spaces, 528 
isometry, 528 
limit of a sequence, 522-523 

inheritance by subsequences, 
523 

uniqueness of, 523 
metric, 5, 521 

complete, 158, 523, 527 
invariant, on a group, 156 
left-invariant, on a group, 156 
right-invariant, on a group, 156 
translation-invariant, on an 

abelian group, 156 
metric space, 5, 521 

complete, 528 
neighborhood, 522 
open ball, 521 
open set, 522, 527 
product metric, 526 
product topology, 526-527 
separable set, 524-525, 527 

has separable subsets, 525 
sequential conditions for: 

closed, set being, 523 
closure, point lying in, 523 
compactness, 524 
continuity, 525 
density, 524 

topological property, 527 
lists of conditions that are and 

ones that are not, 527 
topology induced by a metric, 

522 
triangle inequality, 521 
uniform limit of a sequence of 

functions, 526 
uniformly Cauchy sequence of 

functions, 526 
uniformly convergent sequence 

of functions, 526 



topological theory, 137-161, 
541-545, see also separate 
entries for certain individual 
topics 

accumulation point of a net, 
151-152 

acclUnulation point of a set, see 
topological theory, limit 
point of a set 

basis for a topology, 138-139 
at a point, 138-139 

Bolzano-Weierstrass property, 
see topological space, 
compact set, limit point 

boundary of a set, 140 
Cauchy net in an abelian 

topological group, 155-157, 
161 

closed set, 139, 142, 146, 151, 
159 

sequentially, 141, 142, 159 
closure of a set, 140, 146 

sequential, 141 
cluster point of a set, see 

topological theory, limit 
point of a set 

cofinal subset of a directed set, 
147 

compact Hausdorff space, 148 
is normal, 159 

compactness, relationships 
between types of, 141 

compact set, 140-141, 152, 
159-161 

count ably, 140, 141 
Frechet, see topological theory, 

compact set, limit point 
limit point, 141, 159, 161 
relatively, 140, 141, 152, 154 
relatively count ably, 140, 141 
relatively limit point, 141, 159, 

161 
relatively sequentially, 141, 

159, 161 
sequentially, 141, 159-161 

complete abelian topological 
group, 157-158 

completely regular space, 140, 
141 

Index 595 

connected space, 160 
continuity, relationships between 

types of, 142 
continuous function, 142, 146, 

159 
at a point, 142, 146 
sequentially, 142 
sequentially, at a point, 142 

convergent net, 144, 151 
in a topological product, 145 

convergent sequence, 141 
dense set, 140 

sequentially, 141 
directed set, 143 
discrete topology, 160 
filter, 158-159 
filterbase, 158-159 
first countability axiom, 142 
Hausdorff space, 139, 141, 145, 

159 
homeomorphism, 142 
index set for a net, 143 
induced topology, see 

topological theory, relative 
topology 

inherited topology, see 
topological theory, relative 
topology 

interior of a set, 140 
limit of a net, 144 
limit of a sequence, 141 
limit point of a set, 140, 146 
Lindelof set, 160 
local basis for a topology at a 

point, see topological theory, 
basis for a topology, at a 
point 

locally compact space, 140 
maximal net, see topological 

theory, ultranet 
Moore-Smith sequence, 143, see 

also topological theory, net 
neighborhood, 139 
net, 137, 142-161, 541-545 

frequently in a set, 541 
nonsequential characteristics 

of, 143-144 
sequence is a, 143 
ultimately in a set, 541 
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net conditions for: 
accumulation at a point, 151 
closed, set being, 146, 151 
closure, point lying in, 146 
compactness, 152, 544 
completeness of a metric space, 

158 
continuity, 146 
Hausdorff, space being, 145 
limit point of a set, point 

being, 146 
relative compactness, 154, 544 
topologies, equality of, 147 

normal space, 140, 141, 159 
open function, 142 
open set, 138 
preceding terms in a net, 143 
product topology, 139, 159 
regular space, 140, 141, 159 
relative topology, 140 
separated space, see topological 

theory, Hausdorff space 
separation axiom, 141 
subbasis for a topology, 

138-139,144-145 
subnet, 147 152 

properties, 150 
of a sequence need not be a 

sequence, 149 
To space, 139, 141 
Tl space, 139, 141, 159 
T2 space, see topological theory, 

Hausdorff space 
T3 space, see topological theory, 

regular space 
T 3! space, see topological 

theory, completely regular 
space 

T 4 space, see topological theory, 
normal space 

term of a net, 143 
topological group, 153-158 

Hausdorff, 153 
is Hausdorff when To, 161 

topological product, 139, 159 
topological space, 138 
topology, 138 

generated by a basis, 138 -139 

generated by a sub basis, 
138-139 

induced by an invariant metric 
on a group, 156, 158 

Tychonoff space, see topological 
theory, completely regular 
space 

ultranet, 541--545 
accumulation implies 

convergence, 542 
characterization of, 542 

ultranet conditions for: 
compactness, 544 
relative compactness, 544 

universal net, see topological 
theory, ultranet 
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