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Preface

There are good reasons to believe that
nonstandard analysis, in some ver­
sion or other, will be the analysis of
the future.

KURT GODEL

This book is a compilation and development of lecture notes written for
a course on nonstandard analysis that I have now taught several times.
Students taking the course have typically received previous introductions
to standard real analysis and abstract algebra, but few have studied formal
logic. Most of the notes have been used several times in class and revised
in the light of that experience. The earlier chapters could be used as the
basis of a course at the upper undergraduate level, but the work as a
whole, including the later applications, may be more suited to a beginning
graduate course.
This preface describes my motivations and objectives in writing the book.

For the most part, these remarks are addressed to the potential instructor.
Mathematical understanding develops by a mysterious interplay between

intuitive insight and symbolic manipulation. Nonstandard analysis requires
an enhanced sensitivity to the particular symbolic form that is used to ex­
press our intuitions, and so the subject poses some unique and challenging
pedagogical issues. The most fundamental of these is how to turn the trans­
fer principle into a working tool of mathematical practice. I have found it



vi Preface

unproductive to try to give a proof of this principle by introducing the
formal Tarskian semantics for first-order languages and working through
the proof of Los's theorem. That has the effect of making the subject seem
more difficult and can create an artifical barrier to understanding. But the
practical use of transfer is more readily explained informally, and typically
involves statements that are no more complicated than the "epsilon-delta"
statements used in standard analysis. My approach then has been to illus­
trate transfer by many examples, with demonstrations of why those exam­
ples work, leading eventually to a situation in which its formulation as a
general principle appears quite credible.
There is an obvious analogy with standard laws of thought, such as
induction. It would be an unwise teacher who attempted to introduce this
to the novice by deriving the principle of induction as a theorem from
the axioms of set theory. Of course one attempts to describe induction,
and explain how it is applied. Eventually after practice with examples the
student gets used to using it. So too with transfer.
It is sensible to use this approach in many areas of mathematics, for

instance beginning a course on standard analysis with a description of the
real number system JR. as a complete ordered field. The student already
has well-developed intuitions about real numbers, and the axioms serve to
summarise the essential information needed to proceed. It is rare these days
to find a text that begins by explicitly constructing JR. out of the rationals
via Dedekind cuts or Cauchy sequences, before embarking on the theory of
limits, convergence, continuity, etc.
On the other hand, it is not so clear that such a methodology is ade­
quate for the introduction of the hyperreal field *JR. itself. In view of the
controversial history of infinitesimals, and the student's lack of familiar­
ity with them, there is a plausibility problem about simply introducing *JR.
axiomatically as an ordered field that extends JR., contains infinitesimals,
and has various other properties. I hope that such a descriptive approach
will eventually become the norm, but here I have opted to use the founda­
tional, or constructive, method of presenting an ultrapower construction of
the ordered field structure of *JR., and of enlargements of elementary sets,
relations, and functions on JR., leading to a development of the calculus,
analysis, and topology of functions of a single variable. At that point (Part
III) the exposition departs from some others by making an early introduc­
tion of the notions of internal, external, and hyperfinite subsets of *JR., and
internal functions from *JR. to *JR., along with the notions of overflow, under­
flow, and saturation. It is natural and helpful to develop these important
and radically new ideas in this simpler context, rather than waiting to ap­
ply them to the more complex objects produced by constructions based on
superstructures.
As to the use of superstructures themselves, again I have taken a slightly

different tack and followed (in Part IV) a more axiomatic path by positing
the existence of a universe 1!.J containing all the entities (sets, tuples, rela-
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tions, functions, sets of sets of functions, etc., etc.) that might be needed in
pursuing a particular piece of mathematical analysis. 1U is described by set­
theoretic closure properties (pairs, unions, powersets, transitive closures).
The role of the superstructure construction then becomes the foundational
one of showing that universes exist. From the point of view of mathemat­
ical practice, enlargements of superstructures seem somewhat artificial (a
"gruesome formalism", according to one author), and the approach taken
here is intended to make it clearer as to what exactly is the ontology that
we need in order to apply nonstandard methods. Looking to the future,
if (one would like to say when) nonstandard analysis becomes as widely
recognised as its standard "shadow", so that a descriptive approach with­
out any need for ultrapowers is more amenable, then the kind of axiomatic
account developed here on the basis of universes would, I believe, provide
an effective and accessible style of exposition of the subject.

What does nonstandard analysis offer to our understanding of math­
ematics? In writing these notes I have tried to convey that the answer
includes the following five features.

(1) New definitions of familiar concepts, often simpler and more intu­
itively natural

Examples to be found here include the definitions of convergence,
boundedness, and Cauchy-ness of sequences; continuity, uniform con­
tinuity, and differentiability of functions; topological notions of inte­
rior, closure, and limit points; and compactness.

(2) New and insightful (often simpler) proofs of familiar theorems

In addition to many theorems of basic analysis about convergence and
limits of sequences and functions, intermediate and extreme values
and fixed points of continuous functions, critical points and inverses
of differentiable functions, the Bolzano-Weierstrass and Heine-Borel
theorems, the topology of sets of reals, etc., we will see nonstandard
proofs of Ramsey's theorem, the Stone representation theorem for
Boolean algebras, and the Hahn-Banach extension theorem on linear
functionals.

(3) New and insightful constructions of familiar objects

For instance, we will obtain integrals as hyperfinite sums; the reals
lR. themselves as a quotient of the hyperrationals *Q; other comple­
tions, including the p-adic numbers and standard power series rings
as quotients of nonstandard objects; and Lebesgue measure on lR. by
a nonstandard counting process with infinitesimal weights.
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(4) New objects of mathematical interest

Here we will exhibit new kinds of number (limited, unlimited, in­
finitesimal, appreciable); internal and external sets and functions;
shadows; halos; hyperfinite sets; nonstandard hulls; and Loeb mea­
sures.

(5) Powerful new properties and principles of reasoning

These include transfer; internal versions of induction, the least num­
ber principle and Dedekind completeness; overflow, underflow, and
other principles of permanence; Robinson's sequential lemma; satu­
ration; internal set definition; concurrence; enlargement; hyperfinite
approximation; and comprehensiveness.

In short, nonstandard analysis provides us with an enlarged view of the
mathematical landscape. It represents yet another stage in the emergence of
new number systems, which is a significant theme in mathematical history.
Its rich conceptual framework will be built on to reveal new systems and
new understandings, so its development will itself influence the course of
that history.
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Part I

Foundations



1
What Are the Hyperreals?

1.1 Infinitely Small and Large

A nonzero number e is defined to be infinitely small, or infinitesimal, if

lei < ~ for all n = 1,2,3, ....

In this case the reciprocal w = ~ will be infinitely large, or simply infinite,
meaning that

Iwl > n for all n = 1,2,3, ....

Conversely, if a number w has this last property, then ~ will be a nonzero
infinitesimal.
However, in the real number system JR there are no such things as nonzero

infinitesimals and infinitely large numbers. Our aim here is to study a larger
system, the hyperreals, which form an ordered field *JR that contains JR as
a subfield, but also contains infinitely large and small numbers according
to these definitions. The new entities in *JR, and the relationship between
*JR and JR, provide an intuitively appealing alternative approach to real
analysis and topology, and indeed to many other branches of pure and
applied mathematics.
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1.2 Historical Background

Our mathematical heritage owes much to the creative endeavours of people
who found it natural to think in terms of the infinite and the" infinitesimal.
By examining the words with which they expressed their ideas we can
learn much about the origins of our twentieth-century perspective, even if
that perspective itself makes it difficult, perhaps impossible, to recapture
faithfully the "mind-set" of the past.

Archimedes

An old idea that has never lost its potency is to think of a geometric
object as made up of an "unlimited" number of "indivisible" elements.
Thus a curve might be regarded as a polygon with infinitely many sides
of infinitesimal length, a plane figure as made up of parallel straight line
segments viewed as strips of infinitesimal width, and a solid as composed
of infinitely thin plane laminas.
The formula A = ~rC for the area of a circle in terms of its radius and

circumference was very likely discovered by regarding the circle as made
up of infinitely many segments consisting of isosceles triangles of height r
with infinitesimal bases, these bases collectively forming the circle itself. In
the third century Be., Archimedes gave a proof of this formula using the
method of exhaustion that had been developed by Eudoxus more than a
century earlier. This involved approximating the area arbitrarily closely by
regular polygons. From the modern point of view we would say that as the
number of sides increases, the sequence of areas of the polygons converges
to the area of the circle, but the Greek mathematicians did not develop
the idea of taking the limit of an infinite sequence. Instead, they used an
indirect reductio ad absurdum argument, showing that if the area was not
equal to A = ~rC, then by taking polygons with sufficiently many sides a
contradiction would follow.
Archimedes applied this approach to give proofs of many formulae for

areas and volumes involving circles, parabolas, ellipses, spirals, spheres,
cylinders, and solids of revolution. He wrote a treatise called The Method
of Mechanical Theorems in which he explained how he discovered these
formulae. His method was to imagine geometrical figures as being connected
by a lever that is held in balance as the elements of one figure whose
magnitude (area or volume) and centre of gravity is known are weighed
against the elements of another whose magnitude is to be determined. These
elements are as above: line segments in the case of plane figures, with
length as the comparative "weight"; and plane laminas in the case of solids,
weighted according to area. l Archimedes did not regard this procedure as

lA lucid illustration of the "Method" is given on pages 69-70 of the book
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providing a proof, but said of a result obtained in this way that

this has not therefore been proved, but a certain impression has
been created that the conclusion is true.

The demonstration of its truth was then to be supplied by the method of
exhaustion. The lesson of history is that the way in which a mathematical
fact is discovered maybe very different from the way that it is proven.
Indeed Archimedes' treatise, along with all knowledge of his "method",
was lost for many centuries and found again only in 1906.

Newton and Leibniz

In the latter part of the seventeenth century the differential and integral
calculus was discovered by Isaac Newton and Gottfried Leibniz, indepen­
dently. Leibniz created the notation dx for the difference in successive values
of a variable x, thinking of this difference as infinitely small or "less than
any assignable quantity". He also introduced the integral sign J, an elon­
gated "8" for "sum", and wrote the expression Jy dx to mean the sum of
all the infinitely thin rectangles of size y x dx. He expressed what we now
know as Leibniz's rule for the differential of a product xy in the form

dxy = xdy + ydx.

To demonstrate this he first observed that

dxy is the same thing as the difference between two successive
xy's; let one of these be xy, and the other x + dx into y + dy.

Then calculating

dxy = (x + dx)(y + dy) - xy

= xdy + ydx + dxdy,

he stated that the desired result follows by

the omission of the quantity dx dy, which is infinitely small in
comparison with the rest, for it is supposed that dx and dy are
infinitely small.

Leibniz's views on the actual existence of infinitesimals make interesting
reading. In response to certain criticisms, he drew attention to the fact that
Archimedes and others

found out their wonderfully elegant theorems by the help of such
ideas; these theorems they completed with reductio ad absurdum

by C.H. Edwards cited in Section 1.4, showing how it yields the area under the
graph of y = x 2 between 0 and 1.
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proofs, by which they at the same time provided rigorous demon­
strations and also concealed their methods,

and went on to write:

It will be sufficient if, when we speak of infinitely great (or more
strictly unlimited), or of infinitely small quantities (i.e., the very
least of those within our knowledge), it is understood that we
mean quantities that are indefinitely great or indefinitely small,
i. e., as great as you please, or as small as you please, so that
the error that one may assign may be less than a certain as­
signed quantity . .. by infinitely great and infinitely small we un­
derstand something indefinitely great, or something indefinitely
small, so that each conducts itself as a sort of class, and not
merely as the last thing of a class ... it will be sufficient sim­
ply to make use of them as a tool that has advantages for the
purpose of calculation, just as the algebraists retain imaginary
roots with great profit.

Further indication of this attitude is found in the following passage from
an argument in one of his manuscripts:

If dx, ddx ... are by a certain fiction imagined to remain, even
when they become evanescent, as if they were infinitely small
quantities (and in this there is no danger, since the whole
matter can be always referred back to assignable quan­
tities), then ...

Newton's formulation of the calculus used a different language and had a
more dynamic conception of the phenomena under discussion. He consid­
ered fluents x, y, ... as quantities varying in a spatial or temporal sense,
and their fluxions x, y, . . . as

the speeds with which they flow and are increased by their gen­
erating motion.

In modern parlance, the fluxion x is the derivative ~~ of x with respect to
time t (or the velocity of x). Newton wrote (1671):

The moments of the fluent quantities (that is, their indefinitely
small parts, by addition of which they increase during each in­
finitely small period of time) are as their speeds of flow . .. if
the moment of any particular one, say x, be expressed by the
product of its speed x and an infinitely small quantity 0 (that is
by xo) ... it follows that quantities x and y after an infinitely
small interval of time will become x + xo and y + yo. Con­
sequently, an equation which expresses a relationship of fluent
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quantities without variance at all times will express that rela­
tionship equally between x + xo and y + yo as between x and
y; and so x + xo and y + yo may be substituted in place of the
latter quantities, x and y, in the said equation.

In other words, if (x, y) is a point on the curve defined by an equation in
x and y, then (x + xo, Y + yo) is also on the curve. But this does not seem
right: surely (x + xo, Y+ yo) should lie on the tangent to the curve, the line
through (x, y) of slope y/x, rather than on the curve itself? Moreover, in
making the proposed substitution and carrying out algebraic calculations,
Newton permitted himself to divide by the infinitely small quantity 0 while
at the same time stating that

since 0 is supposed to be infinitely small so that it be able to ex­
press the moments of quantities, terms which have it as a factor
will be equivalent to nothing in respect of others. I therefore cast
them out ...

which seems to amount to equating 0 to zero.
Such perplexities are typical of the confusions caused by the concepts of
infinitesimal calculus. In later writing Newton himself tried to explain his
theory of fluxions in terms of limits of ratios of quantities. He wrote that
he did not (unlike Leibniz)

consider Mathematical Quantities as composed of Parts ex­
treamly small, but as genemted by a continual motion,

and that

fluxions are very nearly as the Augments of the Fluents.

His conception of limits is conveyed by the following passages:

Quantities, and the ratios of quantities, which in any finite time
converge continually to equality, and before the end of time ap­
proach nearer to each other than by any given difference, become
ultimately equal ... Those ultimate ratios with which quantities
vanish are not truly the ratios of ultimate quantities, but limits
towards which the ratios of quantities decreasing without limit
do always converge; and to which they approach nearer than by
any given difference, but never go beyond, nor in effect attain
to, till the quantities are diminished ad infinitum.

Newton considered that the use of limits of ratios provided an adequate
basis for his calculus, without ultimately depending on indivisibles:

In Finite Quantities so to frame a Calculus, and thus to inves­
tigate the Prime and Ultimate Ratios of Nascent or Evanescent
Finite Quantities, is agreeable to the Ancients; and I was willing
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to shew, that in the Method of Fluxions there's no need of intro­
ducing Figures infinitely small into Geometry. For this Analysis
may be performed in any Figures whatsoever, whether finite or
infinitely small, so they are but imagined to be similar to the
Evanescent Figures ...

Euler

The greatest champion of infinitely small and large numbers was Leonhard
Euler, said to be the most prolific of all mathematicians. He simply assumed
that such things exist and behave like finite numbers. A good illustration
of his approach is to be found in the book Introduction to the Analysis
of the Infinite (1748), where he developed infinite series for logarithmic,
exponential, and trigonometric functions from the following basis:

Let w be an infinitely small number, or a fraction so small that,
although not equal to zero, still aW = 1 + 7/J, where 7/J is also
an infinitely small number ... we let 7/J = kw. Then we have
aW = 1 + kw, and with a as the base for the logarithms, we
have w = log(1 + kw) ... If now we let j = ~, where z denotes
any finite number, since w is infinitely small, then j is infinitely
large. Then we have w = y, where w is represented by a fraction
with an infinite denominator, so that w is infinitely small, as it
should be.

Euler took it for granted that Newton's formula for the binomial series
works for his numbers, and applied it to the expansion of aZ = awj =
(1 + kw)j to deduce that

and hence when z = 1 that

k k2 k 3

1+ 1! + 2f + 3! + ...

In fact, since kw = k/, the gene,ral term (~)(kw)n of the binomial series for
aZ should be

j(j -1)(j - 2)··· (j - n + 1) knzn, .~,
n. J

but Euler reduced this to knf by the following extraordinary reasoning:n.

Since j is infinitely large, T = 1, and the larger the number we

substitute for j, the closer the value of the fraction T comes
to 1. Therefore, if j is a number larger than any assignable
number, then i::.!. is equal to 1. For the same reason ~ = 1,

J JT = 1, and so forth.
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His next step was a natural one:

Since we are free to choose the base a for the system of loga­
rithms, we now choose a in such a way that k = 1 ... we obtain
the value for

a= 2.71828182845904523536028.

When this base is chosen, the logarithms are called natural or
hyperbolic. The latter name is used since the quadrature of a
hyperbola can be expressed through these logarithms. For the
sake of brevity for this number 2.718281828459· .. we will use
the symbol e ...

Whereas the modern view is that

e = lim (1 + ..!.) n ,
n-oo n

Euler had obtained it by stipulating that e = (1 + J)j, and indeed eZ =

(1 + j)j, for infinitely large j. In this way he "proved" that

log(l + x)

and also showed that

Z Z2 z3
1+-+-+-+·..
I! 2! 3!
x 2 x 3 x 4

x--+---+ .. ·
2 3 4 '

cos x

sin x
2i

by using the equations cosw = 1, sinw = w, and j = j - 1 = j - 2 = ...
with w infinitely small and j infinitely large.
Euler's demonstration that the function eX is equal to its own derivative

employed the practice, which, as we saw, was adopted by Leibniz and New­
ton, of "casting out" higher-order infinitesimals like dx dy, (dX)2, (dx)3, etc.
Applying his series expansion for the exponential function to edx he argued
that

d(eX) ex+dx _ eX

eX(edx - 1)

(dX)2 (dx)3
eX(dx +-- +-- + ... )

2! 3!
= eXdx.
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Demise of Infinitesimals

The conceptual foundations of the calculus continued to be controversial
and to attract criticism, the most famous being that of Berkeley, who wrote
(1734) in opposition to the ideas of Newton and his followers:

And what are these fluxions? The velocities of evanescent incre­
ments? And what are these same evanescent increments? They
are neither finite quantities, nor quantities infinitely small, nor
yet nothing. May we not call them the ghosts of departed quan­
tities?

Eventually infinitesimals were expunged from analysis, along with the de­
pendence on intuitive geometric concepts and diagrams. The subject was
"arithmetised" by the explicit construction of the real numbers out of
the rational number system by the work of Dedekind, Cantor, and oth­
ers around 1872. Weierstrass provided the purely arithmetical 'formulation
of limits that we use today, defining limx -+a f(x) = L to mean that

(Ve > 0) (38) 0) such that 0 < Ix - al < 8 implies If(x) - LI < e.

Robinson

Three centuries after the seminal discoveries of Newton and Leibniz, in­
finitesimals were restored with a vengeance by Abraham Robinson, who
wrote in the preface to his 1966 book Non-standard Analysis:

In the fall of 1960 it occurred to me that the concepts and meth­
ods of contemporary Mathematical Logic are capable of provid­
ing a suitable framework for the development of the Differential
and Integral Calculus by means of infinitely small and infinitely
large numbers.

The progress of symbolic logic in the twentieth century had produced an
exact formulation of the syntax of mathematical statements; an account
of what it is for a statement to be true of a mathematical system or
structure-i.e. for the structure to be a model of the statement; and meth­
ods for obtaining models of prescribed statements. One such method comes
from the compactness theorem:

• If a set E of statements (of an appropriate kind) has the property
that each finite subset E' of E has a model (a structure of which all
members of E' are true), then there must be a single structure that
is a model of E itself.

Now suppose that we take EIR to consist of all appropriate statements true
ofIR (including the axioms for ordered fields amongst other things) together
with the infinitely many statements

0< e, e < 1, e < !'
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Using the compactness theorem it can be deduced that EIR has a model
*IR, which will be an ordered field in which the element € is a positive
infinitesimal. Moreover, this model will satisfy the tmnsfer principle:

• Any appropriately formulated statement is true of *IR if and only if
it is true of R

This is reminiscent of Leibniz's above-quoted remark that

the whole matter can be always referred back to assignable quan­
tities,

and might even suggest that there is no point in considering *IR, since it
satisfies the same theorems as R But on the contrary, what it offers is a
new methodology for real analysis, because the availability of infinitesimals
allows for easier and more intuitively natural proofs in *IR of some theorems
that can then immediately be inferred to hold of IR by transfer.
Of course for this to work, the theorems in question must be "appropri­

ately formulated" , and explaining what this means is one of our major goals.
As we shall see, *IR fails to satisfy Dedekind's completeness axiom stipulat­
ing that any nonempty set with an upper bound must have a least upper
bound, so this is not the sort of assertion to which transfer applies. In order
to determine which statements are subject to it we will need the "concepts
and methods of contemporary Mathematical Logic" that were available to
Robinson, but not to Leibniz, nor indeed to those in the intervening period
who tried to work with infinitesimals or construct non-Archimedean exten­
sions of the real number system. Robinson's great achievement was to turn
the transfer principle into a working tool of mathematical reasoning. In
the last few decades it has been applied to many areas, including analysis,
topology, algebra, number theory, mathematical physics, probability and
stochastic processes, and mathematical economics.

To those unfamiliar with formal logic, the use of compactness may seem
like a kind of sleight of hand. A model of EIR is produced, but we do not see
where it came from. However, the compactness theorem itself has a proof,
and one way to prove it is to use the notion of an ultmproduct, an algebraic
construction that takes all the assumed models of the finite subsets of E
and builds a model of E out of them. We can apply this construction
directly to the structure IR to build *IR as a special kind of ultraproduct
called an ultrapower. This will be our first main task.

1.3 What Is a Real Number?

Consideration of this question provides motivation for the definition of the
hyperreal number system. Here are some standard answers.
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(1) A real number is an infinite decimal expression, such as

V2 = 1.4142135623731 ... ,

that identifies v'2 as the sum of the infinite power series

(2) A real number is an element of a complete ordered field. Here "com­
plete", often called Dedekind complete, means that any nonempty
set with an upper bound must have a least upper bound. Any two
complete ordered fields are isomorphic, so this notion uniquely char­
acterises R

(3) A real number is a Dedekind cut in the set Q of rational numbers: a
partition of Q into a pair (L, U) of nonempty disjoint subsets with
every element of L less than every element of U and L having no
largest member. Thus v'2 can be identified with the cut

L = {q E Q : q2 < 2}, U = {q E Q : q2 > 2}.

The set of all Dedekind cuts ofQ can be made into a complete ordered
field.

(4) A real number is an equivalence class of Cauchy sequences of ratio­
nal numbers. A sequence (T1, T2, T3, . .. ) is Cauchy if its terms get
arbitrarily close to each other as we move along the sequence, i.e.,

lim ITn- Tml = O.
n,m~(X)

Thus v'2 is the limit of the rational Cauchy sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213,

as well as being the limit of any of the subsequences of this sequence,
and of other rational sequences besides.

Two Cauchy sequences (TllT2,T3, ... ) and (S1,S2,S3, ... ) are equiv­
alent if their corresponding terms approach each other arbitrarily
closely:

lim ITn - snl = O.
n-+oo

This defines an equivalence relation on the set of rational-valued
Cauchy sequences, and the resulting set of equivalence classes forms
a complete ordered field. Any two equivalent Cauchy sequences will
have the same limit, and so represent the same real number. For ex­
ample, v'2 corresponds to the equivalence class of the above sequence.
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Answer (2) provides the basis for the axiomatic or descriptive approach
to the analysis of JR. The object of study is simply described as being a
complete ordered field, since all its properties derive from that fact. The
axioms for a complete ordered field are listed, and everything follows from
that. This is by far the favoured approach in introductory texts on real
analysis.
The constructive approach takes as given only the rational number sys­
tem and proceeds to construct JR explicitly. There are at least two ways
to do this, due respectively to Dedekind (answer (3)) and Cantor (answer
(4)).

It would be possible to develop an axiomatic approach to the hyperreals
*JR by assuming that we are dealing with an ordered field containing JR as
well as infinitesimals and satisfying the transfer principle "appropriately
formulated". However, in view of the controversial history of the notion
of infinitesimal, one could be forgiven for wondering whether this is an
exercise in fantasy, or whether there does exist a number system satisfying
the proposed axioms. The constructive approach is needed to resolve this
issue. We will be discussing a construction of *JR out of JR that is analogous
to Cantor's construction of JR out of Q. Hyperreal numbers will arise as
equivalence classes of real-valued sequences, and the challenge will be to
find an equivalence relation on such sequences that produces the desired
outcome.

To conclude this introduction to our subject, let us examine another
putative answer to the question "what is a real number?"-namely, that a
real number is a point on the number line:

-------------e-------------

Now, the intuitive geometric idea of a line is an ancient one, much older
than the notion of a set of points, let alone an infinite set. The identification
of a line with the set of points lying on that line is a perspective that belongs
to modern times. For Euclid a line was simply " length without breadth" ,
and his diagrams and arguments involved lines with a finite number of
points marked on them. By applying the field operations and taking limits
of converging sequences we can assign a point to each real number, but the
claim that this exhausts all the points on the line is just that: a claim. One
could seek to justify it by invoking a principle such as the one attributed
to Eudoxus and Archimedes that any two magnitudes are such that

the less can be multiplied so as to exceed the other.

This entails that for each real number r there is an integer n > r, and that
precludes there being any infinitely large or small numbers in R But then
one could say that the Eudoxus-Archimedes principle is just a property
of those points on the line that correspond to "assignable" numbers. The
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hyperreal point of view is that the geometric line is capable of sustaining
a much richer and more intricate number set than the real line.

1.4 Historical References

Amongst the numerous books available, the following are worth consulting
for more details on the historical background we have been discussing.

M. E. BARON AND H. J. M. Bos. Newton and Leibniz. Open Uni­
versity Press, 1974.

J. M. CHILD. The Early Mathematical Manuscripts of Leibniz. Open
Court Publishing Co., 1920.

E. J. DIJKSTERHUIS. Archimedes. Princeton University Press, 1987.

C. H. EDWARDS. The Historical Development of the Calculus. Springer,
1979.

LEONHARD EULER. Introduction to the Analysis of the Infinite, Book
I, translated by John D. Blanton. Springer, 1988.
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Large Sets

2.1 Infinitesimals as Variable Quantities

Cauchy (1789-1857) is regarded as one of the pioneers of the precision that
is characteristic of contemporary mathematics. He wrote:

My principal aim has been to reconcile rigor, which I have made
a law to myself in my Cours d'analyse, with the simplicity which
the direct considemtion of infinitely small quantities produces.

His method was to consider infinitesimals as being variable quantities that
vanish:

When the successive numerical values of a variable decrease in­
definitely so as to be smaller than any given number, this vari­
able becomes what is called infinitesimal, or infinitely small
quantity .... One says that a variable quantity becomes in­
finitely small when its value decreases numerically so as to con­
verge to the limit zero.

Even today there are textbooks containing statements to the effect that a
sequence satisfying

lim r n = 0
n--+oo

is an infinitesimal, while one satisfying

lim r n = 00
n--+oo
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is an infinitely large magnitude. Can we then construct a number system in
which such sequences represent infinitely small and large numbers respec­
tively?
According to Cauchy, the sequence

is an infinitesimal, as is

If these represent infinitely small numbers, perhaps we should regard the
second as being half the size of the first because it converges twice as
quickly? Similarly, the sequences

1,2,3,4, ,

2,4,6,8, .

both represent infinitely large magnitudes, and arguably the second is twice
as big as the first because it diverges to 00 twice as quickly. On the other
hand, the distinct sequences

1,2,3,4, ,

2,2,3,4, .

will presumably represent the same infinite number.
These ideas are attractive because they suggest the possibility of using

infinitely small and large numbers as measures of rates of convergence. But
in the construction of real numbers out of Cauchy sequences (Section 1.3),
all sequences converging to zero are identified with the number zero itself,
while diverging sequences have no role to play at all. Clearly then we need
a very different kind of equivalence relation among sequences than the one
used in Cantor's construction of lR from Q.

2.2 Largeness

Let r = (ri, r2, ra, ... ) and S = (S1> S2, Sa, ... ) be real-valued sequences.
We are going to say that rand S are equivalent if they agree at a "large"
number of places, Le., if their agreement set

Ers = {n : rn = sn}

is large in some sense that is to be determined. Whatever "large" means,
there are some properties we will want it to have:

• N = {I, 2, 3, ... } must be large, in order to ensure that any sequence
will be equivalent to itself.
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• Equivalence is to be a transitive relation, so if E rs and Est are large,
then E rt must be large. Since E rs n Est ~ E rt , this suggests the
following requirement:

If A and B are large sets, and An B ~ C, then C is large.

In particular, this entails that if A and B are large, then so is their
intersection An B, while if A is large, then so is any of its supersets
C2A.

• The empty set 0 is not large, or otherwise by the previous require­
ment all subsets of N would be large, and so all sequences would be
equivalent.

Requiring An B to be large when A and B are large may seem restrictive,
but there are natural situations in which all three requirements are fulfilled.
One such is when a set A ~ N is declared to be large if it is cofinite,
i.e. its complement N - A is finite. This means that A contains "almost \
all" or "ultimately all" members of N. Although this is a plausible notion '
of largeness, it is not adequate to our needs. The number system we are
constructing is to be linearly ordered, and a natural way to do this, in
terms of our general approach, is to take the equivalence class of sequence
r to be less than that of s if the set

is large. But consider the sequences

r (1,0,1,0,1,0, )

s (0,1,0,1,0,1, )

Their agreement set is empty, so they determine distinct equivalence classes,
one of which should be less than the other. But L rs (the even numbers) is
the complement of L sr (the odds), so both are infinite and neither is cofi­
nite. Apparently our definition of largeness is going to require the following
condition:

• For any subset A of N, one of A and N - A is large.

The other requirements imply that A and N - A cannot both be large,
or else An (N - A) = 0 would be. Thus the large sets are precisely the
complements of the ones that are not large. Either the even numbers form
a large set or the odd ones do, but they cannot both do so, so which is it
to be?
Can there in fact be such a notion of largeness, and if so, how do we

show it?
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2.3 Filters

Let I be a nonempty set. The power set of I is the set

P(I)={A:A~I}

of all subsets of I. A filter on I is a nonempty collection F ~ P(I) of
subsets of I satisfying the following axioms:

/
• Intersections: if A, BE F, then An BE F.

• Supersets: if A E F and A ~ B ~ I, then B E :F.

Thus to show B E F, it suffices to show

Al n ... nAn ~ B,

for some n and some AI, ... , An E F.
A filter F contains the empty set 0 iff F = P(I)o We say that F is proper

if 0 f{. F. Every filter contains I, and in fact {I} is the smallest filter on I.

An ultrafilter is a proper filter that satisfies

• for any A ~ I, either A E For Ac E F, where Ac = I-A.

2.4 Examples of Filters

(1) :P = {A ~ I : i E A} is an ultrafilter, called the principal ultrafilter
generated by i. If I is finite, then every ultrafilter on I is of the form
:P for some i E I, and so is principal.

(2) F CO = {A ~ I : I - A is finite} is the cofinite, or Frechet, filter on I,
and is proper iff I is infinite. FCO is not an ultrafilter.

(3) If 0 f:. 1t ~ P(I), then the filter generated by 1t, Le., the smallest
filter on I including 1t, is the collection

F1f. = {A ~ I : A :2 B I no .. n B n for some n and some B i E 1t}

(cf. Exercise 2.7(4». For 1t = 0 we put F1f. = {I}o
If 1t has a single member B, then F1f. = {A ~ I : A :2 B}, which is
called the principal filter generated by B. The ultrafilter F i of Exam­
ple (1) is the special case of this when B = {i}.

(4) If {Fx : x E X} is a collection of filters on I that is linearly ordered by
set inclusion, in the sense that F x ~ F y or F y ~ F x for any x, y E X,
then

UXEX F x = {A: 3x E X (A E F x )}

is a filter on I.



2.6 Zorn's Lemma 19

2.5 Facts About Filters

(1) The filter axioms are equivalent to the requirement that

A n B E F iff A, B E F.

(2) If F ~ P(I) satisfies the superset axiom, then F i 0 iff IE F. Hence
{I} ~ F for any filter F.

(3) An ultrafilter F satisfies

A n B E F iff A E F and B E F,
A u B E F iff A E F or B E F,

AC E F iff A f{. F.

(4) Let F be an ultrafilter and {AI, ... ,An} a finite collection of pairwise
disjoint (Ai n A j = 0) sets such that

Al U ... UAn E F.

Then Ai E F for exactly one i such that 1 ~ i ~ n.

(5) If an ultrafilter contains a finite set, then it contains a one-element
set and is principal. Hence a nonrincipal ultrafilter must contain all
cofinite sets. This is a critical property used in the construction of
infinitesimals and infinitely large numbers (cf. Section 3.8).

(6) F is an ultrafilter on I iff it is a maximal proper filter on I, Le., a
proper filter that cannot be extended to a larger proper filter on I
(cf. Exercise 2.7(5)).

(7) A collection 1-l ~ P(I) has the finite intersection property, or fip,
if the intersection of every nonempty finite subcollection of 1-l is
nonempty, Le.,

B I n··· n Bn i 0
for any n and any B I , ..• ,Bn E 1-l.

Then the filter fH is proper iff 1-l has the fip.

(8) If 1-l has the fip, then for any A ~ I, at least one of the sets 1-l U {A}
and 1-l U {AC} has the fip.

2.6 Zorn's Lemma

Fact 2.5(8) suggests a way to construct an ultrafilter: start with a set that
has the fip, e.g., {I}, and go through all the members A of P(I) in turn,
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adding whichever of A and Ac preserves the fip. This presupposes that
there is such a thing as a listing of the members of P(I) that could be used
to "go through them all in turn" .
Now, the assertion that any set can be listed in this way is one of many

mathematical statements that are equivalent to the axiom of choice, which
asserts that for any given collection of sets there exists a function whose
range of values selects a member from each set in the collection. The version
of the axiom of choice most used in algebra is Zorn's lemma:

If (P, ~) is a partially ordered set in which every linearly ordered
subset (or "chain") has an upper bound in P, then P contains
a ~ -maximal element.

(An element p of a partially ordered set is ~-maximal if there is no element
q of P that is greater than p in the sense that p ~ q and p"# q.)
Here is an outline of how Zorn's lemma can be proven from the assump­

tion that the axiom of choice is true. Let f be a choice function defined
on the collection of all nonempty subsets of P. Thus for each such set X,
f(X) E X. Now begin with the element Po = f(P). Ifpo is maximal, we
have the desired conclusion. Otherwise, we use f to choose an element PI
that is greater than Po, Le., PI = f(X), where X = {x E P : Po < x} "# 0. If
PI is maximal, again we are done. Otherwise we can choose P2 with PI < P2·
If this process repeats denumerably many times, the Pn's form a chain. By
the hypothesis of Zorn's lemma, this chain must then have an upper bound
Pw, giving

Po < PI < ... < Pn < ... < Pw·

If Pw is maximal, we are done; otherwise there exists Pw+l > Pw, and so
on. Now, this whole construction cannot go on forever, because eventually
we will "run out of" elements of P. At some point we must finish with the
desired maximal element.
This argument shows what is going on behind the scenes when Zorn's
lemma is applied. Of course the part about running out of elements is
vague, and to make it precise we would need to introduce the theory of
infinite "ordinal" numbers and "well-orderings" in order to show that we
can generate a list of all the elements of P. In many applications, appeal­
ing directly to Zorn's lemma itself allows us to avoid such machinery. For
example:

Theorem 2.6.1 Any collection of subsets of I that has the finite intersec­
tion property can be extended to an ultrafilter on I.

Proof If 1i has the fip, then the filter ]='H generated by ]=' is proper
(2.5(7)). Let P be the collection of all proper filters on I that include ]='H,

partially ordered by set inclusion ~. Then every linearly ordered subset of
P has an upper bound in P, since by 2.4(4) the union of this chain is in
P. Hence by Zorn's lemma P has a maximal element, which is thereby a
maximal proper filter on I and thus an ultrafilter by 2.5(6). 0
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Corollary 2.6.2 Any infinite set has a nonprincipal ultrafilter on it.

Proof If I is infinite, the cofinite filter FCO is proper and has the finite
intersection property, and so is included in an ultrafilter F. But for any
i E I we have 1- {i} E FCO ~ F, so {i} ~ F, whereas {i} E P. Hence
F =1= P. Thus F is nonprincipal. D

This result is the key fact we need to begin our construction of the hy­
perreal number system. We could have simply taken it as an assumption,
but there is insight to be gained in showing how it derives from more gen­
eral principles like Zorn's lemma. In fact, a deeper set-theoretic analysis
proves that there are as many nonprincipal ultrafilters on an infinite set I
as there possibly could be: an ultrafilter is a member of the double power
set P(P(I)), and there is a one-to-one correspondence between the set of
all nonprincipal ultrafilters on I and P(P(I)) itself.

2.7 Exercises on Filters

(1) If 0 =1= A ~ I, there is an ultrafilter F on I with A E F.

(2) There exists a nonprincipal ultrafilter on N containing the set of even
numbers, and another containing the set of odd numbers.

(3) An ultrafilter on a finite set must be principal.

(4) For H ~ P(I), let fH be as defined in Example 2.4(3).

(i) Show that fH is a filter that includes H, i.e., H ~ fH.

(ii) Show that F1i is included in any other filter that includes H.

(5) Let F be a proper filter on I.

(i) Show that FU{AC} has the finite intersection property iff A ~ F.

(ii) Use (i) to deduce that F is an ultrafilter iff it is a maximal
proper filter on I.
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Ultrapower Construction of the
Hyperreals

3.1 The Ring of Real-Valued Sequences

Let N = {1, 2, ... }, and let ]RN be the set of all sequences of real numbers.
A typical member of ]RN has the form T = (Tl' T2, T3, ... ), which may be
denoted more briefly as (Tn: n EN) or just (Tn).

For T = (Tn) and S = (sn), put

T 61 S (Tn + Sn : n E N) ,

T 8 S (Tn . Sn : n E N) .

Then (]RN, 61, 8) is a commutative ring with zero 0 = (0,0,0, ... ) and unity
1 = (1,1, ... ), and additive inverses given by

-T = (-Tn: n EN).

It is not, however, a field, since

(1,0,1,0,1, ... ) 8 (0,1,0,1,0, ... ) = 0 ,

so the two sequences on the left of this equation are nonzero elements of
]RN with a zero product; hence neither can have a multiplicative inverse.
Indeed, no sequence that has at least one zero term can have such an inverse
in ]RN.
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3.2 Equivalence Modulo an Ultrafilter

Let F be a fixed nonprincipal ultrafilter on the set N (such exists by Corol­
lary 2.6.2). F will be used to construct a quotient ring of IRN •

Define a relation == on IRN by putting

When this relation holds it may be said that the two sequences agree on a
large set, or agree almost everywhere modulo F, or agree at almost all n.

3.3 Exercises on Almost-Everywhere Agreement

(1) == is an equivalence relation on IRN .

(2) == is a congruence on the ring (IRN , EEl, 8), which means that if r == r'
and s == s', then

rEEls == r' EEl s' and r 8 s == r' 8 s',

(3) (l,!,i, ... ) ¢ (0,0,0, ... ).

3.4 A Suggestive Logical Notation

It is suggestive to denote the agreement set {n EN: rn = sn} by [r = s],
rather than Ers as in Section 2.2. Thus

r == s iff [r = s] E F.

Then results like 3.3(1) and 3.3(2) can be handled by first proving proper­
ties such as those in Section 3.5 below.
The set [r = s] may be thought of as the interpretation, or value, of the
statement "r = s" , or as a measure of the extent to which "r = s" is true.
Normally we think of a statement as having one of two values: it is either
true or false. Here, instead of assigning truth values, we take the value of
a statement to be a subset of N. When [r = s] E F, it is sometimes said
that r = s almost everywhere (modulo F).
This idea can be applied to other logical assertions, such as inequalities,
by defining

and so on.

[r < s]
[r > s]
[r ::; s]

{n EN: r n < sn},

{n EN: r n > sn},

{n EN: rn ::; sn},
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3.5 Exercises on Statement Values

(1) [r = s] n [s = t] ~ [r = t].

(2) [r = r/] n [s = s/] ~ [r EB s = r' EB S/] n [r 8 s = r' 8 S/)'

(3) [r = r/] n [s = S/] n [r < s] ~ [r' < S/]'

(4) If r:= r' and S:= S', then [r < s] E:F iff [r' < S/] E:F.

3.6 The Ultrapower

The equivalence class of a sequence r E]R1Il under := will be denoted by [rIo
Thus

[r] = {SE]RIIl:r:=S}.

The quotient set (set of equivalence classes) of ]Rill by := is

Define

and

[r] + lsI
[r]· lsI

[r EB s]
[r8s]

[(rn + sn)],
[(rn . sn)] ,

[r] < lsI iff [r < s] E:F iff {n EN: rn < Sn} E:F.

By 3.3(2) and 3.5(4) these notions are well-defined, which means that they
are independent of the equivalence class representatives chosen to define
them.
A simpler notation, which is attractive but puts some burden on the
reader, is to write [rn] for the equivalence class [(rn : n EN)] ofthe sequence
whose nth term is rn. The definitions of addition and multiplication then
read

[rn] + [sn]

[rn]' [sn]

[rn + sn],

[rn·sn].

Theorem 3.6.1 The structure (*]R, +, ., <) is an ordered field with zero [0]
and unity [I].

Proof. (Sketch) As a quotient ring of ]Rill, *]R is readily shown to be a
commutative ring with zero [0] and unity [I], and additive inverses given
by

-[(rn : n EN)] = [(-rn : n EN)],
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or more briefly, -[rn) = [-rn). To show that it has multiplicative inverses,
suppose [r) =f:. [0). Then r ¢ 0, i.e., {n EN: rn = O} 1- F, so as F is an
ultrafilter, J = {n EN: rn =f:. O} E F. Define a sequence S by putting

{
.l. if n E J,s - Tn

o n - 0 otherwise.

Then [r 0 S= IB is equal to J, so [r 0 S= IB E F, giving r 0 S == 1 and
hence

[r)· [s) = [r0s) = [1)

in *lR. But this means that [s) is the multiplicative inverse [r)-l of [r).
To see that the ordering < on *JR is linear, observe that N is the disjoint
union of the three sets

[r < sB, [r = sB, [s < rB,

so exactly one of the three belongs to F (by 2.5(4)), and so exactly one of

[r) < [s), [r) = is)' [s) < [r)

is true. It remains to show that the set ([r) : [0) < [r)} of "positive"
elements in *JR is closed under addition and multiplication. This is left as
an exercise.

o
In the proof just given we were trying in effect to show that [rn)-l = [r;l),
but were constrained by the fact that the real number r;:;-l may not exist for
some n. The reason why [r)-l nonetheless exists is that r;:;-l exists for almost
all n (i.e., for all n in the set {n EN: rn =f:. O} E F). This relationship
between *JR and JR characterises the definitions of the relations =, <, >,
etc. in *JR, in the sense that

[rn) = [sn) iff rn = Sn for almost all n,

[rn) < [sn) iff rn < Sn for almost all n,

[rn) + [Sn) = [tn) iff rn + Sn = tn for almost all n,

[rn)' [Sn) = [tn) iff rn · Sn = tn for almost all n,

and so on. Let us call this relationship the almost-all criterion. As we will
see, it holds for many other properties and is the basis of the transfer
principle. Theorem 3.6.1 is itself a special case of transfer: *JR is an ordered
field because JR is. This is explained further in Section 4.5.

The ring JRN is an example of what is known in algebra as a direct power
of JR, a special case of the notion of direct product. An ultmpower is a
quotient of a direct power that arises from the congruence relation defined
by an ultrafilter.



3.8 Infinitesimals and Unlimited Numbers 27

3.7 Including the Reals in the Hyperreals

We can identify a real number r E JR with the constant sequence r
(r, r, . .. ) and hence assign to it the *JR-element

*r = [r] = [(r,r, ... )1.

It can be shown that for r, s E JR, we have

*(r + s) *r + *s,

*(r . s) *r· *s,

*r < *s iff r < s,

*r = *s iff r = s.

Hence

Theorem 3.7.1 The map r f-+ *r is an order-preserving field isomorphism
from JR into *JR. 0

This result allows us to identify the real number r with *r whenever con­
venient, and hence to regard JR as a subfield of *R In particular we may
identify [0] with 0 and [1] with 1.

3.8 Infinitesimals and Unlimited Numbers

Let e = (1,~,~, ... ) = (~ : n EN). Then

[0 < e] = {n EN: 0 < ~} = N E F,

so [0] < [e] in *JR. But if r is any positive real number, then the set

[e < r] = {n EN: ~ < r}

is cofinite (because e converges to 0 in JR I). Now, since F is nonprincipal,
it contains all cofinite sets (2.5(5)), so [e < r] E F and therefore [e] < *r
in *R Thus [e] is a positive infinitesimal.
Now let w = (1,2,3, ... ). Then for any r E JR, the set

[r<w]={nEN:r<n}

is cofinite (by the Eudoxus-Archimedes principle!) and so belongs to F,
showing that *r < [w] in *R Thus [w] is "infinitely large" compared to JR in
*JR, although we will prefer to use the adjective unlimited to describe such
entities. In fact e .w = 1, so [w] = [et l and [e] = [W]-l.
The properties observed of [e] and [w] show that *JR is a proper extension
of JR, and hence a new structure. Even more directly, for any r E JR, the
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set [r = w] is either 0, or equal to {r} when r E N, so cannot belong to F,
implying *r =I- [w]. Thus [w] E *~ - R
This argument depends crucially on the fact that F is nonprincipal. If

F were principal, then there would be some fixed 11 EN such that

F = P! = {A ~ N: 11 E A}.

But then each sequence s E ~N would agree almost everywhere with the
sequence taking the constant value Sn, and from this it would follow that
*~ = {*r : r E ~}, and hence *~ would be isomorphic to R The details
of this are left as an exercise: the essential point is that use of a principal
ultrafilter to construct *~ does not lead to anything new.

Our discussion of c and w shows in fact that if r is any real-valued
sequence converging to zero, then [r] is an infinitesimal in *~, while if r
diverges to 00, then [r] is unlimited in *~. Thus we have achieved the
objective proposed in Section 2.1 of building a number system with these
features.
Now that we have shown that there are infinitesimals in *~, we can begin
to apply the field operations to them to construct new numbers. What
happens for instance if we multiply or divide an infinitesimal by a positive
real number? Or by a negative real number? The general arithmetic of
hyperreals will be described in Chapter 5.

Exercise 3.8.1
Use only general properties of ordered fields to deduce from the fact that
[c] is a positive infinitesimal the conclusion that [c]-l is greater than every
real number.

3.9 Enlarging Sets

A subset A of ~ can be "enlarged" to a subset *A of *~: for each r E ~N,

put
[r]E*A iff {nEN:rnEA}EF.

Thus we are declaring, by the almost-all criterion, that [rn ] is in *A iff r n

is in A for almost all n. Again it has to be checked that this is well-defined.
Invoking the [...] notation, put

[r E A] = {n EN: rn E A}.

Then
[r = r'] n [r E A] ~ [r' E A],

so
r == r' & [r E A] E F implies [r' E A] E F
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as required. We have

[r] E *A iff [r E A] E F.

Observe that if sEA, then [s E A] = N E :F (where s = (s, s, . .. ) as
usual), so *s E *A. Identifying s with *s, we may regard *A as a superset of
A : A ~ *A. Elements of *A - A may be thought of as new "nonstandard",
or "ideal", members of A that live in *R
For example, let A = N, and w = (1,2,3, ... ) as above. Then [w E N] =
N E :F, so [wI E *N. [wI is a "nonstandard natural number".

Theorem 3.9.1 Any infinite subset of JR has nonstandard members.

Proof Note first that this result must depend on :F being nonprincipal,
because if :F were principal, there would be no nonstandard elements of *JR
at all.
Now, if A ~ JR is infinite, then there is a sequence r of elements of A

whose terms are all distinct. Then [r E A] = N E :F, so [r] E *A. But for
each sEA, {n : rn = s} is either 0 or a singleton, neither of which can
belong to :F (2.5(5», so [r] =I- *s. Hence [r] E *A - A. 0

The converse of this theorem is also true (cf. the next exercise), so the
property of having nonstandard members exactly characterises the infinite
sets.

3.10 Exercises on Enlargement

(1) If A is finite, show that *A = A, and hence A has no nonstandard
members.

(2) A~B iff *A ~ *B,
A=B iff *A = *B.

(3) *(A U B) *Au *B,
*(An B) *An *B,
*(A - B) *A - *B,

*0 0.

(4) Is it true that *(U~=lAn) = U~=l *An ?

(5) Show that if A ~ JR, then *A n JR = A.

(6) For a, b E JR, let [a, b] be the closed interval {x E JR : a :::; x :::; b}.
Prove that *[a,b] = {x E *JR: a:::; x:::; b}.

(7) *Z is a subring of *JR, Le., *Z is closed under +,
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(8) If JR+ = {x E JR : x > O}, show that *(JR+) = {x E *JR : x> O}, i.e.,
*(JR+) = (*JR)+.

3.11 Extending Functions

A function 1 : JR -. JR extends to *1 : *JR -. *JR as follows. First, for each
sequence r E JRl'l, let lor be the sequence (f(rl), 1 (r2), ... ). Then put

*/([rJ) = [lor].

In other words,

or in the simplified notation,

Now, in general,
[r = r'D <; [f 0 r = 1 0 r'D ,

and so
r == r' implies lor == lor',

ensuring that *1 is well-defined. Observe that *1 obeys the almost-all cri­
terion:

*/([rJ) = lsI iff [lor = sD E F

iff {n EN: I(rn ) = sn} E F
iff I(rn ) = Sn for almost all n.

For example, the sine function is extended to all of *JR by

*sin([rJ) = [(sin(rl),sin(r2),'" )] = [sin(rn )] .

3.12 Exercises on Extensions

(1) Show that *1 agrees with 1 on JR: if r E JR, then */(r) = I(r).

(2) If 1 is injective, so is *f. What about surjectivity?

(3) For x E *JR, let

{

X if x> 0,
Ixl = 0 if x = 0,

-x if x < 0
be the usual definition of the absolute value function. Show that this
extends the definition of I . I on JR: I [r]1 = [(!rI I, Ir 21,· .. )] = [Irnl]·
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(4) Let XA be the characteristic function of a set A C lR. Show that
*(XA) = X-A·

(5) Show how to define *f when f is a function of more than one argu­
ment.

3.13 Partial Functions and Hypersequences

Let f A ~ IR be a function whose domain A is a subset of IR (e.g.,
f(x) = tanx). Then f extends to a function *f : *A ~ *1R whose domain is
the enlargement of A, Le., dom *f = *(domf).
To define this extension, take r E IRN with [rl E *A, so that

[r E A] = {n EN: rn E A} E:F.

Let
sn = {f(rn) if n E [r E A] ,

o if n tj. [r E A]
(it is enough to define Sn for almost all n). Then put

*f([r]) = [sl·

Essentially, we have defined

as in Section 3.11, but with a modification to cater for the complication
that fern) may not be defined for some n. The construction works because
fern) exists for almost all n modulo :F.
It is readily shown that if rEA, then *f (*r) = *(f(r)), or identifying *r

with r etc., we have *f(r) = fer), so *f extends f. Therefore it would do
no harm to drop the * symbol and just use f for the extension as well, and
we will do so most oj the time. It is a particularly natural practice for
the more common mathematical functions. For instance, the function sin x
is now defined for all hyperreals x E *lR.

An important case of this construction concerns sequences. A real-valued
sequence is just a function s : N ~ JR, and so the construction extends this
to a hypersequence s : *N ~ *lR. Hence the term Sn is now defined even
when n E *N - N.

3.14 Enlarging Relations

Let P be a k-ary relation on lR. Thus P is a set of k-tuples: a subset of IRk.
For given sequences r 1, ,rk E IRN , define

[P(r\ ,rk
)] = {n EN: P(r~, ... ,r~)}.
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Now P can be enlarged to a k-ary relation *P on *JR, Le., a subset of (*JR)k.
For this we use the notation *P([r1], .•• , [rk]) to mean that the k-tuple
([r 1

], ..• , [r k
)) belongs to *P. The definition is:

*P([r1
], ... , [rk]) iff [P(rl, , rk)] E F

iff P(r;', ,r~) for almost all n.

As always with a definition involving equivalence classes named by partic­
ular elements, it must be shown that the notion is well-defined. In this case
we can prove

[r 1 = Sl] n ... n [rk = sk] n [P(r1 , ..• , rk)] ~ [p(Sl, ... , sk)],

so that if r1 == Sl and ... and rk == Sk and [P(rl, ... ,rk)] E F, then
[P(Sl, ... ,sk)] E F.
When r 1 , ... , r k are real numbers,

P(r1
, ••• , rk) iff *P(*r1

, ... , *rk),

showing that *P is an extension of P.
This definition of k-ary *P encompasses the work of Sections 3.9-3.13 on
extensions of sets and functions. A subset A of JR is just a unary relation
(k = 1), so the definition of *A is a special case of that of *P. When P is
any of the relations =, <, >,:::; on JR, then *P is the corresponding relation
that we defined on *JR, because

[r] = [s] iff [r = s] E F,
[r] < [s] iff [r < s] E F,

and so on.
An m-ary function f : JRm --4 JR can be identified with its (m + 1)-ary

gmph
Graphf = {(r 1

, ..• ,rm,s) : f(rl, ... ,rm) = s}.

Then the extension of Graph f to *JR is just the graph of the extension
*f: *JRm --4 *JR of f (Exercise 3.12(5)), Le.,

*(Graph f) = Graph (*f).

Moreover, Graph f is defined even when f is a partial function, and so that
case is covered as well.

3.15 Exercises on Enlarged Relations

(1) If A 1 , •.• , Ak are subsets of JR, put P = A1 X .•• X Ak and apply the
definition of *P to show that



3.16 Is the Hyperreal System Unique? 33

In particular, explain why *(lRk) = (*IR)k, so that it is okay to write
*lRk.

(2) Let dom P denote the domain of a binary relation. If P ~ 1R2 , show
that *(domP) = dom *P.

(3) Generalise Exercise (2) to k-ary relations. In particular, show that if
1 is a partial m-ary function, then the domain of *1 is given by

dom *1 = *(domJ) ~ *lRm
.

3.16 Is the Hyperreal System Unique?

The construction of *IR as a quotient ring of IRN depends on the choice of
the nonprincipal ultrafilter F that determines the congruence =. But there
are many such ultrafilters on N, as many as there are subsets of P(N)-the
set of all nonprincipal ultrafilters on N is in bijective correspondence with
P(P(N)).
Now, it has been shown that under a certain set-theoretic assumption

called the continuum hypothesis the choice ofF is irrelevant: all quotients of
IRN with respect to nonprincipal ultrafilters on N are isomorphic as ordered
fields. To explain this assumption, let us say that a set A is smaller than set
B, and that B is larger than A, if there exists an injective function from A
to B, but none from B to A. A famous result of Cantor is that IR is bigger
than N (and more generally that a set A is always smaller than its power
set P(A)). The continuum hypothesis asserts that there is no subset of IR
that is smaller than IR but bigger than N. This implies that IR represents
the least "infinite size" greater than the size of N.
The continuum hypothesis is neither provable nor disprovable from the

generally accepted axioms of set theory, including the axiom of choice. Thus
we can say that if we take the continuum hypothesis as an axiom, then our
construction of *IR produces a unique result. Without this assumption the
situation is undetermined.
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The Transfer Principle

What properties are preserved in passing from JR to *JR? We have seen a
number of examples, and will now consider some more in order to illustrate
the powerful logical transfer principle that underlies them. To formulate
this principle we will need to develop a precise language in which to de­
scribe transferable properties. Ultimately this will allow us to abandon the
ultrapower description of *JR and ultrafilter calculations, in the same way
that the Dedekind completeness principle allows us to abandon the view of
real numbers as cuts or equivalence classes of Cauchy sequence of rationals.
Later it will be seen that the strength of nonstandard analysis lies in the

ability to transfer properties back from *JR to JR, providing a new technique
for exploring real analysis.

4.1 Transforming Statements

1. The Eudoxus-Archimedes Principle. The statement

'v'x3m(x < m and mEN)

is true when the variable x ranges over JR, but is no longer true when
x ranges over *JR (e.g., let x = [(1,2,3, ... )D. But if N is replaced by
its "*-transform" *N, the result is the statement

'v'x3m(x < m and m E *N),

which is true when x ranges over all of *R



36 4. The 'fransfer Principle

This example shows that in order to determine the truth value of
a sentence, we need to explain what values a quantified variable is
allowed to take. We can achieve this by using bounded quantifiers, a
notational device that displays the range of quantification explicitly.
Thus the first sentence can be conveniently written as

'<:Ix E JR.3m E N(x < m),

which is simply true. Its *-transform

'<:Ix E *JR.3m E *N (x < m)

is also true. On the other hand,

'<:Ix E *JR.3m E N(x < m)

is false.

2. Density of the Rationals. This is expressed by the true statement

'<:Ix,y E JR.(x < y implies 3q E Q(x < q < y)).

The *-transform

'<:Ix,yE*JR.(x<y implies 3qE*Q(x<q<y))

is also true.

3. Finiteness. Let A = {rl,"" rk} be a finite subset of R Then the
statement

'<:Ix E A (x = rl or x = r2 or ... or x = rk)

is true, and so is its *-transform

'<:Ix E *A (x = *rl or x = *r2 or ... or x = *rk)'

Since we identify ri with *ri in regarding JR. as a subset of *JR., this
implies that *A = A. Hence finite sets of standard numbers have no
nonstandard elements (Ex. 3.10(1)).

Question: why does this argument not work for infinite sets (Theorem
3.9.1)?

4. Finitary Set Operations. If A, B ~ JR., then the statement

'<:Ix E JR. (x E Au B iff x E A or x E B)

transforms to the true statement

'<:Ix E *JR.(x E *(AUB) iff x E *A or x E *B),
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which shows that *(A UB) = *A U *B. Similarly for the other results
of Exercise 3.10(3).

Question: why does the argument not work for unions of infinitely
many sets (3.1O(4»?

5. Discreteness of N. If n E N, then the statement

Vx EN (n :::; x :::; n + 1 implies x = n or x = n + 1)

transforms to

Vx E *N (*n :::; x :::; *(n + 1) implies x = *n or x = *(n + 1»,

which again is true. Since n = *n and likewise *(n + 1) = n + 1,
this shows that there are no nonstandard members of *N occurring
between any standard natural numbers. Also, there are no members
of *N smaller than 1, Le.,

Vx E *N(x ~ 1);

hence any member of *N - N must be greater than all members ofN,
and so is unlimited, Le., infinitely large (Section 3.8).

6. Unbounded Sets of Reals. If we assume that there is an unlimited
N E *N, then we can deduce the Eudoxus-Archimedes principle in
the following way. If r is any real number, then r < N, since N is
unlimited, and so the statement

3n E *N(r < n)

is true. This is the *-transform of the statement

3n E N(r < n),

and as we shall see, a statement must be true if its *-transform is.
This shows that there is a positive integer greater than r.

More generally, this argument can be used to show that if the en­
largement *A of a set of reals has an unlimited member, then A itself
must be unbounded in lR. in the sense that for any real r there is a
member of A that is greater than r. In brief: if A has an unlimited
nonstandard member, then it has arbitrarily large standard members.

It appears from these examples that the *-transform of a statement arises
by attaching the "*" prefix to symbols that name particular entities, but
not attaching it to variable symbols. The precise definition of *-transform
will be laid out in Section 4.4.

Exercise 4.1.1
Verify the truth of the *-transforms given in 1-5 above.
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4.2 Relational Structures

The examples just given used a semiformal logical symbolism to express
statements that were asserted to be true or false of the structures JR and
*R This symbolism will now be explicitly described.
A relational structure is a system of the form

s= (8, RelS' FunS),

where 8 is a nonempty set, RelS is a collection of finitary relations on 8, and
FunS is a collection of finitary functions on 8 (possibly including partial
functions). For instance, associated with any set 8 is the full structure

(8, Rels, Funs)

based on 8, where Rels consists of all the finitary relations on 8, and Funs
consists of all the finitary functions on S. Since sets are unary relations, a
full structure includes all subsets of 8 in Rels.
The full structure based on JR will be denoted by Vt Associated with it
is the structure

*vt = (*JR, {*P: P E RellR}, {*f : f E FunlR}).

Thus *Vi: consists of the extensions *P and *f of all relations and functions
on JR, as defined in Sections 3.9, 3.11, and 3.14. *vt is not, however, a full
structure, since there are relations on *JR that are not of the form *P for
any P E Rel'Yt.

Exercise 4.2.1
Show that none of the sets N, IE, Q, JR, and indeed no infinite subset of JR,
can belong to Rel*'Yt.

4.3 The Language of a Relational Structure

Associated with each relational structure S is a language .cs based on the
following alphabet:

• Logical Connectives:

A and
V or
...., not
~ implies
+-+ if and only if

• Quantifier Symbols:

V for all
:3 there exists
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• Parentheses: (,), [, ]

• Variables: A countable collection of symbols, for which we use letters
like x,y,Z,X1,X', etc.

Terms of LS
These are strings of symbols defined inductively by the following rules:

• Each variable is an .cs-term.

• Each element 8 of S is an .cS-term, called a constant.

• If f E FunS is an m-ary function, and 7"1, •.• ,7"m are .cS-terms, then
f(7"1, ... ,7"m) is an .cS-term.

We will adopt the customary conventions of notation that depart from this
formal definition. For instance, we continue to use the usual "infix" notation
for binary operations, writing 7"1 +7"2 or 7"1'7"2 for f(7"1, 7"2) when f is addition
or multiplication, etc. We will also retain such standard notations as l/x,
~, x 2

, lxi, eX, etc.

What Does a Term Narne?

A closed term is one that has no variables and therefore is made up of con­
stants and function symbols. Such a term is intended to name a particular
element of the structure S. But there are many opportunities in mathemat­
ics to write down symbolic expressions that have no meaning because the
element they purport to name does not exist, as in

tan(rr/2).

(In ordinary language there is the similar phenomenon of syntactically well­
formed expressions that do not denote anything, such as Chomsky's famous
"green ideas".)
A closed term is undefined if it does not name anything. Here are the
rules that determine when, and what, a closed term names:

• The constant 8 names itself.

• If 7"1,"" 7"m name the elements 81,"" 8 m , respectively, and the m­
tuple (81"'" 8m) is in the domain of f, then f(7"l , ... , 7"m) names the
element f(81,"" 8m ).

• f(7"l , ... , 7"m) is undefined if one of 7"1, ••• , 7"m is undefined, or if they
are all defined but name an m-tuple that is not in the domain of f.
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Atomic Formulae of £'S

These are strings of the form

P(1"l , ... ,1"k)

where P E RelS is k-ary, and the 1"i are .cS-terms. Such strings assert basic
relationships between elements of S and serve as the building blocks for
more complex expressions.
We also use conventional notation for atomic formulae where appropriate.
For binary relations (k = 2) there is the usual infix notation: P(1"l , 1"2) is
written

1"1 = 1"2

when P is the identity relation {(a, b) E S x S : a = b}, and as

1"1 < 1"2

when P = {(a, b) : a < b}. Similarly for 71 > 72, 71 ~ 72, 71 ~ 72.
When k = 1 we have unary, or monadic, atomic formulae of the form

P(7), with P being a subset of S. Such a formula expresses membership
of P and so will usually be written in the form

7E P.

Formulae

• Each atomic .cS-formula is an .cS-formula.

• If 'P and '¢ are .cS-formulae, then so are 'P /\ ,¢, 'P V ,¢, -''P, 'P ~ ,¢,
'P +-+' '¢.

• If 'P is an .cS-formula, x is any variable symbol, and P E RelS is
unary, Le., P is a subset of S, then

("Ix E P) 'P , (3x E P) 'P

are .cS-formulae. Here P is the bound of the quantifier in question.

A formula is said to be defined if and only if all of its closed terms are
defined.

Parentheses will be inserted or deleted in formulae where convenient to
aid legibility. Various abbreviations and informalities will be used, such as
writing

x~y~z

for the formula (x ~ y) /\ (y ~ z), or collapsing a string of similar quantifiers
with the same bound like

("Ix E P) (Vy E P) (Vz E P)

to the form ("Ix, y, z E P).
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Sentences

An occurrence of the variable x within a formula 1/J is called bound if it is
located within a formula of the form (\:Ix E P) cp or (3x E P) cp that is part
of 1/J. An occurrence that is not bound is free. Thus in

(x < 1) 1\ (\:Ix E N) (x> y),

the first occurrence of x is free, while the others are bound, and the only
occurrence of y is free.

If a formula contains free variables, then it has no particular meaning
until we assign some values to those free variables. Thus the above formula
makes a true assertion if x = y = 0, but if x = 2, then it cannot be true
whatever the value of y is.

A sentence is a formula in which all variables are bound. The role of
each symbol in a sentence is determined. There are no free variables that
need to be assigned a value, and if the closed terms of the sentence are
all defined then it has a fixed meaning and makes a definite assertion. A
defined sentence is either true or false.

An atomic sentence is just an atomic formula P('Tl,"" 'Tk) that is
a sentence. This means that the terms 'Tl,"" 'Tk are all closed, i.e., the
formula has no variables at all.

Truth and Quantification

Suppose that there is only one variable, say x, that has any free occurrence
in a certain formula cp. Then we write cp(s) for the sentence that is obtained
by substituting the constant s in place of all free occurrences of x in cp. For
example, if cp is

tan(-x) = -tan(x),
then cp(rr/2) is the (undefined) atomic sentence

tan(-rr/2) = -tan(rr/2).

Now consider the truth of a defined sentence of the form (\:Ix E P) cp. Here
only the variable x can have any free occurrence in cp, so we can form
sentences of the type cp(s). Intuitively, (\:Ix E P) cp asserts that whatever cp
"says about x" is true of each member of P, provided that this is defined,
and so it asserts that the sentence cp(s) is true for every element s of P for
which it is defined. Thus

• (\:Ix E P) cp is true if and only if for all s in P, if the sentence cp(s)
is defined, then it is true.

For example, the following sentence is true:

(\:Ix E R) [tan(-x) = -tan(x)].
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The corresponding analysis of the existential quantifier is

• (3x E P) cp is true if and only if there is some s in P for which cp(s)
is (defined and) true.

The standard meanings of the symbolic connectives A, V, ..." -., ~ are given
by the rules:

• cp A 'I/J is true if and only if cp is true and 'I/J is true.

• cp V 'I/J is true if and only if cp is true or 'I/J is true.

• ""cp is true if and only if cp is not true (i.e., is false).

• cp -. 'I/J is true if and only if the truth of cp implies that of'I/J (i.e.,
either cp is false or else 'I/J is true).

• cp ~ 'I/J is true if and only if cp -. 'I/J and 'I/J -. cp are true (i. e., cp and
'I/J are either both true or both false).

With all these rules, calculation of the truth value of a sentence is reduced
to the determination of the truth value of atomic sentences. For them we
have

• P(71, ... , 7k) is true if and only if the closed terms 71, ... ,7k are all
defined and the k-tuple of elements they name belongs to P.

This analysis of the meaning of "true" may appear to be making the ob­
vious seem complex and convoluted. But as was said in Section 1.2, it is
precisely this exact formulation of the syntax of mathematical statements,
with an associated account of their truth conditions, that makes the theory
of infinitesimals possible. We are able to distinguish exactly which prop­
erties are transferable between lR and *lR because we can give an explicit
description of the sentences that express such properties.

4.4 *-Transforms

A formula in the language L,')l of the real-number structure 9l has symbols
P, f for relations and functions of 9l. It can be turned into a formula of the
language L,'')l of the hyperreal structure *9l by replacing P by *P, and f
by *f. Any constant r naming a real number is left as is, since we identify
r in 9l with *r in fs.
More precisely, we first define the *-transform *7 of an L,')l-term 7. This is

obtained by replacing each function symbol f occurring in 7 by *f, leaving
the variables and constants of 7 alone. Even more formally, we can give the
definition by induction on the formation of 7, using the following rules:

• If 7 is a variable or an L,')l-constant, then *7 is just 7.
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• If 7 is f(71l"" 7m ), then *7 is *f(*71 , ... , *7m ).

The *-transform *cp of an £!)l-formula cp is obtained by

• replacing each term 7 occurring in cp by *7;

• replacing the relation symbol P of any atomic formula occurring in
cp by *P; and

• replacing the "bound" P of any quantifier ("Ix E P) or (3x E P)
occurring in cp by *P.

Again we can spell this out by induction on the formation of cp:

*(P(71 , ... ,7k)) .- *P(*71 , ... , *7k)

*(cp 1\ 'l/J) .- *cp 1\ *'l/J

*(cp V 'l/J) .- *cp V *'l/J
*(-,cp) .- -,(*cp)

*(cp---+'l/J) .- *cp ---+ *'l/J

*(cp i-+ 'l/J) .- *cp i-+ *'l/J

*(Vx E P) cp .- ("Ix E *P) *cp

*(3x E P) cp .- (3x E *P) *cp.

We tend to drop the * symbol when referring to the transforms of some
of the more well-known relations like =, i-, <, ~, etc., and well-known
mathematical functions like sin, cos, log, eX, etc. For instance,

*(rr < f(x + 1))

*(sineX E Q)
(rr < *f(x + 1)),
(sineX E *Q),

and so on. Even further, we noted in Section 3.13 that it would do no harm
to drop the * symbol in referring to the extension *f of any function f. If
this practice is adopted systematically, then the transform *7 of each term
7 will just be 7 itself. Then atomic formulae like

etc. that express basic equalities and inequalities will be left alone under
*-transformation, while a membership formula 7 E P becomes 7 E *P.
With all these conventions in place, the general procedure for "adding
the stars" reduces simply to replacing

P(71l ... ,7k) by *P(71 , ... ,7k),
"Ix E P by "Ix E *P,
3x E P by 3x E *P.

To summarise all of this in words; the essence of *-transformation is to
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(i) replace the bound P of any quantifier by its enlargement *Pj and

(ii) replace relations appearing in atomic formulae by their enlargements,
but only in the (unary) case of a membership formula (7 E P), or for
relations of arity greater than one other than the common relations
=, i=, <, 2:, etc.

Exercise 4.4.1
Review the examples of Section 4.1, formalising them precisely in £!)l, and
verify that they conform to our definition of *-transform.

4.5 The Transfer Principle

The notion of an £!Jt sentence and its *-transform provides an explanation
of the notion of an "appropriately formulated statement" as discussed in
Section 1.2, and hence provides a first answer to the question as to which
properties are subject to transfer between IR and *1R: any property express­
ible by an £!Jt-sentence is transferable. Formally, the transfer principle is
stated as follows:

• A defined £!Jt-sentence <p is true if and only if *<p is true.

As a first illustration of this, beyond the examples of Section 4.1, consider
the proof that *1R is an ordered field (Theorem 3.6.1). Now, the fact that
IR is an ordered field can be expressed in a finite number of £!Jt-sentences,
like

('<Ix, y E 1R) (x + Y = Y + x),
('<Ix E lR)(x . 1 = x),

('<Ix, y E lR)(x < y V x = y V Y < x),

and so on. By transfer we can immediately conclude that the *-transforms
of these sentences are true, showing that *1R is an ordered field. In partic­
ular, to show that multiplicative inverses exist in *1R, instead of making an
ultrapower construction of the inverses as in the proof of Theorem 3.6.1 we
simply observe that it is true that

('<Ix E 1R) [x i= 0 --+ (3y E 1R) x . y = 1]

and conclude by transfer that

('<Ix E *lR) [x i= 0 --+ (3y E *1R) x . y = 1].

For another example, consider the closed interval

[a, b] = {x E IR : a :S x :S b}
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in the real line defined by points a, b E R Then it is true that

("Ix E R) (x E [a, b] to-> a :::; x :::; b),

so by transfer we see that the enlargement of [a, b] is the hyperreal interval
defined by a and b (Exercise 3.10(6)):

*[a,b] = {x E *R: a:::; x:::; b}.

Similarly, we can transfer to *R many familiar facts about standard math­
ematical functions. Thus the following are true:

("Ix E *R) sin(7r - x) = sinx,

("Ix E *R) cosh x + sinh x = eX,

("Ix, y E *R+) logxy = log x + logy.

All of the above examples involve taking a universally quantified .c<.n­
sentence of the form ("Ix, y, . .. E R) ep and transforming it to an .c'<.n
sentence ("Ix, y, . .. E *R) *ep. They are instances of the following general
principle.

• Universal Transfer: if a property holds for all real numbers, then
it holds for all hyperreal numbers.

Of course the meaning of "property" has to be explained here, and that
is what the formal language .c<.n was introduced for. To use nonstan­
dard analysis we need to develop the ability to show that a given
property can be expressed in a transferable form.

Dual to universal transfer is

• Existential Transfer: if there exists a hyperreal number satisfying
a certain property, then there exists a real number with this property.

For example, take a real-valued sequence s : N --+ R for which we can
show (by some means) that the extended hypersequence *s : *N --+ *R
never takes infinitely large values. Then existential transfer can be used to
conclude that the original sequence must be bounded in R. To see this, let
w be a member of *N - N. By hypothesis it is true that

("In E *N) (l*s(n)1 < w).

Now, this sentence is not the *-transform of an .c<.n-sentence, because it
contains the constant w. But the constant can be removed in favour of an
existentially quantified variable, by observing that the sentence implies

(3y E *R)(Vn E *N) (l*s(n)1 < y),
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which is now "appropriately formulated". Existential transfer then yields
that

(3y E IR)(Vn E N) (ls(n)1 < y),

which is the desired conclusion. Put informally, from the existence of a
hyperreal bound on *s we infer the existence of a real bound on s.

Typically, in order to show that a real number of a certain type exists, it
may be easier to show that a hyperreal of this type exists and then apply
existential transfer.

Exercise 4.5.1
Which of Exercises 3.10 can be proven using transfer?

4.6 Justifying Thansfer

In constructing the ordered field *1R we repeatedly used the criterion that a
particular property was to hold of hyperreaIs [r], [s], . .. iff the corresponding
property held of the real numbers rn, Sn, . .. for almost all n. In fact, this
almost-all criterion works for any property expressible by an .c!,R-formula,
and that ultimately is why the transfer principle holds.
To spell this out some further technical notation is needed. For a formula

cp we write
CP(XI, ... , xp)

to indicate that the list Xl, ... , x p includes all the variables that occur free
in the formula cpo Then

cp(Sl, ... ,sp)

is the sentence obtained by replacing each free occurrence of Xi in cp by the
constant Si. For example, if CP(XI,X2) is the formula

(3y E Q) (x~ + x~ < y),

then cp(7r, v'2) is the sentence

(3y E Q) (7r2+ (Y'2)2 < y).

Now, if cp(Xl, ... ,xp) is a formula of .c!,R, and r l , ••. ,rP E IRN, put

[cp(r l
, ••• , rP )) = {n EN: cp(r;, ... ,r~) is true}.

This extends the definitions of [r = s], [r < s], etc. to L!,R-formulae in gen­
eral. Then such statements as

[r] = lsI iff [r = s] E F,
[r] < lsI iff [r < s] E F,
[r] E *A iff [r E A] E F

*P([r l
], ... , [rk

]) iff [P(r l
, ... , r k

)] E F
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(cf. Sections 3.6,3.9,3.14) are seen to be cases of the following fundamental
result.

For any L,lJt-formula cp(Xl, ... ,x p ) and any r 1 , .•. ,rPE JR]\/, the
sentence *cp([r1], ... , [rP]) is true if and only if cp(r~, ... ,r~) is
true for almost all n EN.

In other words,

This result is known as Los's theorem, after the Polish mathematician who
first proved it in the early 1950s. It includes transfer as a special case,
because if cp is a sentence, then it has no free variables, so that CP(Sl"'" sp)
is just cp and likewise for *cp. Hence [cp(r1, ... , rPH is N if cp is true and 0
otherwise, independently of the sequences r j . Since 0 ff. F, Los's theorem
in this case simply says

*cp is true iff cp is true,

which is the transfer principle!

A proof of Los's theorem would proceed by induction on the formation
of the formula cp, considering first atomic formulae and then dealing with
inductive cases for the logical connectives and quantifiers. We will not enter
into those details here, but rely on the examples already discussed to lend
plausibility to the assertion of Los's theorem, and hence to transfer.

4.7 Extending Transfer

We defined general relational structures S and their languages L,S, but
applied these ideas only to the language L,lJt in describing the transfer prin­
ciple. In fact, it is possible to use the ultrapower construction to build an
"enlargement" of any structure S and obtain a transfer principle for it. For
instance, by replacing JR by C this would give us a way of embarking on
the nonstandard study of complex analysis.

It is important also to realise that the language L,lJt is limited by the
fact that its quantifiable variables can range only over elements of JR, and
not over more complicated entities like subsets of JR, sequences, real-valued
functions, etc. For example, the Dedekind completeness principle,

every subset of JR that is nonempty and bounded above has a
least upper bound,

cannot be formulated in L,lJt because the language does not allow quantifiers
of the type

Vx E P(JR)
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that apply to a variable (x) whose range of values is the set of all subsets
of JR.
Later on (Chapter 13), a language will be introduced that does have such
"higher-order" quantifiers and for which an appropriate transfer principle
exists. Before then we will see that .c'J{ is still powerful enough to develop
a great deal of the standard theory of JR, including the convergence of se­
quences and series, differential and integral calculus, and the basic topology
of the real line. Indeed, for the next half-dozen chapters we will forget about
the ultrapower construction and explore all t~ese topics using only the fact
that *JR is an ordered field that

• has JR as a subfieldj

• includes unlimited numbers N E *N - N, hence infinitesimals (such
as .1...). andN'

• satisfies the transfer principle.



5
Hyperreals Great and Small

Members of *1R are called hyperreal numbers, while members of IR are real
and sometimes called standard. *Q consists of hyperrationals, *Z of hyper­
integers, and *N of hypernaturals. That *Q consists precisely of quotients
min of hyperintegers m, n E *Z follows by transfer of the sentence

Vx E lR[x E Q +-+ 3y,z E Z(z =I- Ol\x = ylz)].

It is now time to examine the basic arithmetical and algebraic structure of
*1R, particularly in its relation to the structure of lR.

5.1 (Un)limited, Infinitesimal, and Appreciable
Numbers

A hyperreal number b is:

• limited if r < b < s for some r, s E 1R;

• positive unlimited if r < b for all r E 1R;

• negative unlimited if b < r for all r E IRj

• unlimited if it is positive or negative unlimited;

• positive infinitesimal if 0 < b < r for all positive r E IRj

• negative infinitesimal if r < b < 0 for all negative r E 1R;
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• infinitesimal if it is positive infinitesimal, negative infinitesimal, or O.

• appreciable if it is limited but not infinitesimal, i.e., r < Ibl < s for
some r, s E 1R+.

Thus all real numbers, and all infinitesimals, are limited. The only infinites­
imal real is 0: all other reals are appreciable. An appreciable number is one
that is neither infinitely small nor infinitely big. Observe that b is

• limited iff Ibl < n for some n E N;

• unlimited iff Ibl > n for all n E Nj

• infinitesimal iff Ibl <*for all n E N;

• appreciable iff *< Ibl < n for some n E N.

We denote the set *N- N of unlimited hypernaturals by *Noo • Similarly, *1R~
denotes the set of positive unlimited hyperreals, and *1R~ the set of negative
unlimited numbers. This notation may be adapted to an arbitary subset
X of *1R, putting Xoo = {x EX: x is unlimited}, X+ = {x EX: x > O},
etc.
We will also use IL for the set of all limited numbers, and ][ for the set of
infinitesimals.

5.2 Arithmetic of Hyperreals

Let €,8 be infinitesimal, b, c appreciable, and H, K unlimited. Then

• Sums:
€ + 8 is infinitesimal
b+ € is appreciable

b+ c is limited (possibly infinitesimal)
H + € and H + b are unlimited

• Opposites:

-€ is infinitesimal

-b is appreciable

-H is unlimited

• Products:

€ . 8 and € • b are infinitesimal

b . c is appreciable

b . Hand H . K are unlimited
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• Reciprocals:

i is unlimited if c =1= 0

i is appreciable
iI is infinitesimal

• Quotients:
E E db' fi 't' Ib' H' an Hare m m eSlma

~ is appreciable (if c =1= 0)

~, If, and !f are unlimited (c,b =1= 0)

• Roots:
If c > 0, y'c is infinitesimal
If b > 0, ytb is appreciable

If H > 0, r:/ii is unlimited

• Indeterminate Forms:

~,!f<,c·H,H+K

It follows from these rules that the set IL of limited numbers and the set 1I
of infinitesimals are each a subring of *1R. Also, the infinitesimals form an
ideal in the ring of limited numbers. What then is the associated quotient
ring ILjlI? Read on to Theorem 5.6.3.

With regard to nth roots, for fixed n E N the function x t--7 y'x is defined
for all positive reals, so extends to a function defined for all positive hyper­
reals. But we could also consider nth roots for unlimited n. The statement

(Vn E N) (Vx E 1R+) (3y E 1R) (yn = x)

asserts that any positive real has a real nth root for all n E N. Its transform
asserts that every hyperreal has a hyperreal nth root for all n E *N.

Exercise 5.2.1
For any positive hyperreal a, explain why the function x t--7 aX is defined
for all x E *lR. Use transfer to explore its properties.

5.3 On the Use of "Finite" and "Infinite"

The words "finite" and "infinite" are sometimes used for "limited" and
"unlimited", but this does not accord well with the philosophy of our sub­
ject. A set is regarded as being finite if it has n elements for some n E N,
and therefore is in bijective correspondence with the set

{1,2, ... ,n} = {k EN: k::::; n}.
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However, if N is an unlimited hypernatural, then the collection

{1,2, ... ,N} = {k E *N: k ~ N}

is set-theoretically infinite but, by transfer, has many properties enjoyed
by finite sets. Collections of this type are called hyperfinite, and will be ex­
amined fully later. They are fundamental to the methodology of hyperreal
analysis.
There is also potential conflict with other traditional uses of the word
"infinite" in mathematics, such as in describing a series or an integral as
being infinite when it it is divergent or undefined, or in referring to the area
or volume or some more general measure of a set as being infinite when
this has nothing to do with unlimited hyperreals.

5.4 Halos, Galaxies, and Real Comparisons

• Hyperreal b is infinitely close to hyperreal c, denoted by b ~ c, if b- c
is infinitesimal. This defines an equivalence relation on *lR, and the
halo of b is the ~-equivalenceclass

hal(b) = {c E *lR: b~ c} .

• Hyperreals b, c are of limited distance apart, denoted by b rv c, if b - c
is limited. The galaxy of b is the rv-equivalence class

gal(b) = {c E *lR: b rv c}.

So, b is infinitesimal iff b ~ 0, and limited iff b rv O. Thus hal(O) = H, the
set of infinitesimals, while gal(O) = IL, the set of limited hyperreals.
Abraham Robinson called hal(b) the "monad" of b and used the notation

j-t(b), which is quite common in the literature. The more evocative name
"halo" has been popularised by a French school of nonstandard analysis,
founded by George Reeb, which is also responsible for "shadow" (see Sec­
tion 5.6). The work of this school is described in the book listed as item 10
in the bibliography of Chapter 20.

5.5 Exercises on Halos and Galaxies

(1) Verify that ~ and rv are equivalence relations.

(2) If b ~ x ~ y ~ c with band c real, show that b ~ c. What if band/or
c are not real?

(3) hal(b) = {b + c : c E hal(O)}.
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(4) gal(b) = {b + c : c E gal(O)}.

(5) If x ~ y and b is limited, prove that b· x ~ b· y. Show that the result
can fail for unlimited b.

(6) Show that any galaxy contains members of *Z, of *Q - *Z, and of
*JR. - *Q.

Real Comparisons

Exercise (2) above embodies an important general principle, which we will
often use, about comparing the sizes of two real numbers b, c. If b > c,
then the halos of the two numbers are disjoint, with everything in hal(b)
greater than everything in hal(c). Thus to show that b ~ c it is enough to
show that something in hal(b) is less than or equal to something in hal(c).
In particular, this will hold if there is some x with either b ~ x ~ c or
b~x~c.

5.6 Shadows

Theorem 5.6.1 Every limited hyperreal b is infinitely close to exactly one
real number, called the shadow of b, denoted by sh(b).

Proof Let A = {r E JR. : r < b}. Since b is limited, there exist real r, s
with r < b < s, so A is nonempty and bounded above in JR. by s. By the
completeness of JR., it follows that A has a least upper bound c E JR..
To show b ~ c, take any positive real c E JR.. Since c is an upper bound of

A, we cannot have c+ c E A; hence b ~ c+ c. Also, if b ~ c - c, then c - c
would be an upper bound of A, contrary to the fact that c is the smallest
such upper bound. Hence b i c - c. Altogether then, c - c < b ~ c + c, so
Ib - cl ~ c. Since this holds for all positive real c, b is infinitely close to c.
Finally, for uniqueness, if b ~ c' E JR., then as b ~ c, we get c ~ c', and

so c = c', since both are real. 0

Theorem 5.6.2 If band c are limited and n E N, then

(1) sh(b ± c) = sh(b) ± sh(c),

(2) sh(b· c) = sh(b) . sh(c),

(3) sh(bjc) = sh(b)jsh(c) if sh(c) i= 0 (i.e., if c is appreciable),

(4) sh(bn ) = sh(b)n,

(5) sh(lbl) = Ish(b)l,

(6) sh( V'b) = ytsh(b) if b ~ 0,
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(7) if b ::; c then sh(b) ::; sh(c).

Proof Exercise. o
We see from these last facts that the shadow map sh : b f-+ sh(b) is an
order-preserving homomorphism from the ring IL of limited numbers onto
JR. The kernel of this homomorphism is the set {b ElL: sh(b) :'::' O} of
infinitesimals, and the cosets of the kernel are the halos hal(b) for limited
b (cf. Exercise 5.5(3)). Thus we have an answer to our question about the
quotient of IL by 1[:

Theorem 5.6.3 The quotient ring 1L/1[ is isomorphic to the real number
field JR by the correspondence hal(b) f-+ sh(b). Hence I[ is a maximal ideal
of the ring IL. 0

The shadow sh(b) is often called the standard part of b.

5.7 Exercises on Infinite Closeness

(1) Show that if b, c are limited and b :'::' b', c :'::' c', then b ± c :'::' b' ± c',
b· c :'::' b' . c', and b/c :'::' b' / c' if c -:t O. Show that the last result can
fail when c :'::' O.

(2) If 10 is infinitesimal, show that

sine 0,

COSIo I,

tan 10 0,

sin 10/10 I,

(cose - 1)/10 0

(use transfer of standard properties of trigonometric functions).

(3) Show that every hyperreal is infinitely close to some hyperrational
number.

(4) Show that JR is isomorphic to the ring of limited hyperrationals *(QnIL
factored by its ideal *(Q n I[ of hyperrational infinitesimals.

5.8 Shadows and Completeness

We saw in the proof of Theorem 5.6.1 that the existence of shadows of
limited numbers follows from the Dedekind completeness of JR. In fact,
their existence turns out to be an alternative formulation of completeness,
as the next result shows.
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Theorem 5.8.1 The assertion "every limited hyperreal is infinitely close
to a real number" implies the completeness of R

Proof. Let s : N ---. ~ be a Cauchy sequence. Recall that this means that
its terms get arbitrarily close to each other as we move along the sequence.
In particular, there exists a kEN such that all terms of s beyond Sk are
within a distance of 1 of each other, Le.,

'tim, n E N (m, n 2: k ---. ISm - snl < 1)

is true. Hence the *-transform of this sentence is also true, and applies to
the extended hypersequence (sn : n E *N) as defined in Section 3.13. In
particular, if we take N to be an unlimited member of *N, then k, N 2: k,
so

ISk - sNI < 1,
and therefore SN is limited. By the assertion quoted in the statement of
the theorem, it follows that S N ~ L for some L E ~. We will show that the
original sequence s converges to the real number L.

If c is any positive real number, then again, since S is Cauchy, there exists
je E N such that beyond Sj, all terms are within c of each other:

'tim, n E N (m, n 2: je ---. ISm - snl < c).

But now we can show that beyond Sj, all terms are within c of L. The
essential reason is that all such terms are within c of S N, which is itself
infinitely close to L. For ifmEN with m 2: je, we have m, N 2: je, so by
transfer of the last sentence we get that Sm is within c of SN:

ISm-sNI<c.

Since SN is infinitely close to L, this forces Sm to be within c of L. Indeed,

ISm - LI ~ ISm - sNI + ISN - LI < c + infinitesimal,

so as Sm - Land c are real, ISm - LI ~ c.
This establishes that all the terms Sj, sj+1> Sj+2,." are within c of L,
which is enough to prove that the sequence S converges to the real number
L. All told, we have demonstrated that every real Cauchy sequence is con­
vergent in ~, a property that is equivalent to Dedekind completeness (cf.
Exercise 5.9 below). 0

This result will be revisited in the next chapter (d. Theorem 6.5.2 and the
remarks following it).

5.9 Exercise on Dedekind Completeness

For Theorem 5.8.1, instead of showing that Cauchy sequences converge we
can develop a direct proof that any subset A ~ ~ with a real upper bound
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has a least real upper bound. First, for each n E N, let Sn be the least k E ;;Z
such that kin is an upper bound of A. Then take an unlimited N E *Noo

and let L E JR. be infinitely close to sNIN.

(a) Verify that Sn exists as defined for n E N.

(b) Show that S N IN is limited, so that such a real L exists under the
hypothesis of Theorem 5.8.1.

(c) Prove that L is a least upper bound of A in JR..

Hint: consider (SN -l)IN.

5.10 The Hypernaturals

We now develop a more detailed description of *N. First, by transfer, *N is
seen to be closed under addition and multiplication. Next observe that the
only limited hypernaturals are the members of N. For if k E *N is limited,
then k ::; n for some n E N. But then by transfer of the sentence

\:Ix E N (x::; n ~ x = 1 V x = 2 V··· V x = n)

it follows that k E {I, 2, ... ,n}, so kEN.
Thus all members of *N - N are unlimited, and hence greater than all
members of N. Fixing K E *N - N, put

'Y(K) = {K} U {K ± n: n EN}.

Then all members of 'Y(K) are unlimited, and together form a "copy of ;;Z"
under the ordering <. Moreover, it may be seen that

'Y(K) = {H E *N : K '" H} = gal(K) n *N,

the restriction to *N of the galaxy of K. The set 'Y(K) will be called a
*N-galaxy. We can also view N itself as a *N-galaxy, since N = gal(l) n *N.
Thus we define 'Y(K) = N when KEN. Then in general,

'Y(K) = 'Y(H) iff K '" H,

and the *N-galaxies may be ordered by putting

'Y(K) < 'Y(H) iff K < H

whenever K f H (Le., whenever IK - HI is unlimited).
There is no greatest *N-galaxy, since 'Y(K) < 'Y(2K). Also, there is no

smallest unlimited one: since one of K and K + 1 is even (by transfer) and
'Y(K) = 'Y(K + 1), we can assume that K is even and note that KI2 E *N,
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with 'Y(Kj2) < 'Y(K) and Kj2 unlimited when K is. Finally, between any
two *N-galaxies there is a third, for if 'Y(K) < 'Y(H), with K, H both even,
then

'Y(K) < 'Y((H + K)j2) < 'Y(H).

To sum up: the ordering < of *N consists of N followed by a densely ordered
set of *N-galaxies (copies of Z) with no first or last such galaxy.

5.11 Exercises on Hyperintegers and Primes

(1) Provide an analogous description of the order structure of the hyper­
integers *Z.

(2) Show that for any M E *N there is an N E *N that is divisible in
*N by all members of {I, 2, ... ,M}. Hence show that there exists a
hypernatural number N that is divisible by every standard positive
integer.

(3) Develop a theory of prime factors in *N: if II is the set of standard
prime numbers, with enlargement *II ~ *N, prove the following.

(a) *II consists precisely of those hypernaturals > 1 that have no
nontrivial factors in *N.

(b) Every hypernatural number> 1 has a "hyperprime" factor, i.e.,
is divisible by some member of *II.

(c) Two hypernaturals are equal if they have exactly the same fac­
tors of the form pn with p E *II and n E *N.

(d) A hypernatural number is divisible by every standard positive
integer iff it is divisible by pn for every standard prime p and
every n E N.

5.12 On the Existence of Infinitely Many Primes

The set II of all standard prime numbers is infinite, a fact whose proof
is attributed to Euclid. Therefore, the enlargement *II has nonstandard
members (by Theorem 3.9.1), so there are unlimited hypernatural numbers
that are prime in the sense of having no nontrivial factors in *N.
But by using ideas suggested in the above exercises, together with a

nonstandard adaptation of Euclid's own argument, we can show directly
that *II has nonstandard members, thereby giving an alternative proof that
II must be infinite, since if it were finite it would be equal to *II.
Let N be a hypernatural number that is divisible by every member of N
(Exercise 5.11(2)), and let q be a member of *II that divides N +1 (Exercise
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5.11.(3b)). Then q is our desired nonstandard prime. For if q E il, then q
would divide N by assumption on N. But since it divides N + 1, it would
then divide the difference N +1-N = 1, which is false for a prime number.
Hence q cannot be standard.



Part II

Basic Analysis



6
Convergence of Sequences and
Series

A real-valued sequence (sn : n E N) is a function S : N --t JR., and so extends
to a hypersequence S : *N --t *lR. by the construction of Section 3.13. Hence
the term Sn becomes defined for unlimited hypernaturals n E *Noo (a fact
that was already used in Theorem 5.8.1), and in this case we say that Sn

is an extended term of the sequence. The collection

{sn : n E *Noo }

of extended terms is the extended tail of s.

6.1 Convergence

In real analysis, (sn : n E N) converges to the limit L E JR. when each open
interval (L - 10, L + 10) around L in JR. contains some standard tail of the
sequence, Le., contains all the terms

from some point on (with this point depending on e). Formally, this is
expressed by the statement

(\:Ie E JR.+) (3me EN) (\:In E N) (n > me --t ISn - £1 < e),

which is intended to capture the idea that we can approximate L as closely
as we like by moving far enough along the sequence. It turns out that this
is equivalent to the requirement that if we go "infinitely far" along the
sequence, then we become infinitely close to L:
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Theorem 6.1.1 A real-valued sequence (sn : n E N) converges to L E R
if and only if Sn ~ L for all unlimited n.

Proof. Suppose (sn : n E N) converges to L, and fix an N E *Noo . In order
to show that SN ~ L we have to show that ISN - LI < e for any positive
real e. But given such an e, the standard convergence condition implies
that there is an m g E N such that the standard tail beyond sm. is within
e of L:

(Vn E N) (n > mg --+ ISn - LI < e).
Then by (universal) transfer this holds for the extended tail as well:

(Vn E *N) (n > mg --+ ISn - LI < e).

But in fact, N > m g because N is unlimited and m g is limited, and so this
last sentence implies ISN - LI < e as desired.
For the converse, suppose Sn ~ L for all unlimited n. We have to show
that any given interval (L - e, L+ e) in R contains some standard tail of
the sequence. The essence of the argument is to invoke the fact that the
extended tail is infinitely close to L, hence contained in *(L-e,L+e), and
then apply transfer.
To spell this out, fix an unlimited N E *Noo . Then for any n E *N,

if n > N, it follows th~t n is also unlimited, so Sn ~ L and therefore
ISn - LI < e. This shows that

(Vn E *N) (n > N --+ ISn - LI < e).

Hence the sentence

(3z E *N)(Vn E *N) (n > z --+ ISn - LI < e)

is true. But this is the *-transform of

(3z E N) (Vn EN) (n > z --+ ISn - LI < e),

so by (existential) transfer the latter holds true, giving the desired conclu­
sion. D

Thus convergence to L amounts to the requirement that the extended tail
of the sequence is contained in the halo of L. In this characterisation the
role of the standard tails is taken over by the extended tail, while the stan­
dard open neighbourhoods (L - e, L +e) are replaced by the "infinitesimal
neighbourhood" hal(L).

6.2 Monotone Convergence

As a first application of this infinitesimal approach to convergence, here is
an interesting alternative proof of a fundamental result about the behaviour
of monotonic sequences.
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Theorem 6.2.1 A real-valued sequence (sn : n E N) converges in ~ if
either

(1) it is bounded above in ~ and nondecreasing: S1 ::; S2 ::; ,. or

(2) it is bounded below in JR and nonincreasing: S1 ? S2 ? .

Proof Consider case (1). Let SN be an extended term. We will show that
SN has a shadow, and that this shadow is a least upper bound of the set
{sn : n E N} in JR. Since a set can have only one least upper bound, this
implies that all extended terms have the same shadow, and so by Theorem
6.1.1 the original sequence converges to this shadow in R
Now, by hypothesis there is a real number b that is an upper bound for

{sn : n E N}. Then the statement S1 ::; Sn ::; b holds for all n EN, so
it holds for all n E *N by universal transfer. In particular, S1 ::; SN ::; b,
showing that SN is limited, so indeed has a shadow L.
Next we show that L is an upper bound of the real sequence. Since this

sequence is nondecreasing, by universal transfer we have

for all n,m E *N. In particular, if n E N, then n ::; N, so Sn ::; SN ~ L,
giving Sn ::; L, as both numbers are real.
Finally, we show that L is the least upper bound in ~. For if r is any
real upper bound of {sn : n EN}, then by transfer, Sn ::; r for all n E *N,
so L ~ SN ::; r, giving L ::; r, as both are real. 0

One significant use of this result in standard analysis is to prove that if
e is a real number between 0 and 1, then

lim en = O.
n->oo

To show this from the nonstandard perspective, note that if 0 < c < 1,
then the sequence (en: n E N) is nonincreasing and bounded below, and
hence by Theorem 6.2.1 converges to some real number L. Thus if N is
unlimited, then both eN ~ L and eN+! ~ L. But then

L ~ eN+! = e· eN (by transfer of ("In E N) en+! = e· en)
~ e· L (by Exercise 5.5(5), as e is real),

so we must have L ~ c· L. Hence L = c· L, as both numbers are real, so
as c =1= 1, it follows that L = 0 as desired.

6.3 Limits

It follows readily from Theorem 6.1.1 that a real-valued sequence has at
most one limit. For if (sn) converges to Land M in ~, then taking an
unlimited n, we have Sn ~ Land Sn ~ M, so L ~ M, and therefore L = M
because Land M are real.
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Theorem 6.3.1 If limn--+co Sn = Land limn--+co tn = M in JR, then

(1) limn--+co(sn + tn ) = L + M,

(2) limn--+co(csn) = cL, for any c E JR,

(3) limn .....co(sntn) = LM,

(4) liffin--+co(snltn) = LIM, if M =1= o.
Proof Use Exercise 5.7(1).

6.4 Boundedness and Divergence

D

Theorem 6.4.1 A real-valued sequence (sn) is bounded in JR if and only
if its extended terms are all limited.

Proof To say that (sn : n E N) is bounded in JR means that it is contained
within some real interval [-b, b], or equivalently that its absolute values ISnl
have some real upper bound b:

(Vn E N) ISnl < b.

Then by universal transfer the extended sequence is contained in *[-b, b],
i.e., ISnl < b for all n E *Nj hence Sn is limited in general.
For the converse, if Sn is limited for all unlimited n E *Nco , then it is
limited for all n E *N. Hence if r E *JR;t, is any positive unlimited hyperreal,
we observe that the entire extended sequence lies in the interval {x E *JR :
-r < x < r} and apply transfer. More formally, we have ISnl < r for all
n E *N, so the sentence

(3y E *JR) (Vn E *N) ISnl < y

is true. But then by existential transfer it follows that there is some real
number that is an upper bound to ISnl for all n E N. D

This proof can be refined to show the following:

• the real-valued sequence (sn) is bounded above in JR, i.e., there is a
real upper bound to {sn : n EN}, if and only if it has no positive
unlimited extended terms;

• (sn) is bounded below in JR, i.e., there is a real lower bound to {sn :
n EN}, if and only if it has no negative unlimited terms.

We say that (sn) diverges to infinity if for each real r there is some n E N
such that all terms of the standard tail Sn, Sn+l, Sn+2, ... are greater than
r. Correspondingly, (sn) diverges to minus infinity if for each real r there
is some n E N such that Sm < r for all m ~ n.
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Theorem 6.4.2 A real-valued sequence

(1) diverges to infinity if and only if all of its extended terms are positive
unlimited; and

(2) diverges to minus infinity if and only if all of its extended terms are
negative unlimited.

Proof Exercise.

6.5 Cauchy Sequences

The standard definition of a Cauchy sequence is one that satisfies

lim ISn - sml = 0,
m,n-+oo

o

meaning that the terms get arbitrarily close to each other as we move along
the sequence. Formally this is rendered by the sentence

(Ve E JR+) (3j E N) (Vm, n E N) (m, n ? j ---. ISm - snl < e).

Theorem 6.5.1 A real-valued sequence (sn) is Cauchy in JR if and only
if all its extended terms are infinitely close to each other, i. e., iff Sm ::: Sn
for all m, n E *Noo .

Proof Exercise. o

Theorem 6.5.2 (Cauchy's Convergence Criterion). A real-valued se­
quence converges in JR if and only if it is Cauchy.

Proof If (sn : n E N) is Cauchy, then it is bounded (standard result-why
is it true?). Thus taking an unlimited number m E *Noo , we have that Sm
is limited (Theorem 6.4.1) and so it has a shadow L E R But all extended
terms of the sequence are infinitely close to each other (Theorem 6.5.1),
hence are infinitely close to Sm, and therefore are infinitely close to L as
Sm ::: L. This shows that the extended tail of the sequence is contained in
the halo of L, implying by Theorem 6.1.1 that (sn) converges to L E JR.
Converse: exercise. 0

Note that the assertion that Cauchy sequences converge is often taken as
an "axiom" for the real number system, and is equivalent to the Dedekind
completeness assertion that sets that are bounded above have least up­
per bounds in R We used Dedekind completeness to prove the existence
of shadows (Theorem 5.6.1), which were then applied in Theorem 6.5.2
above. But we saw also in Theorem 5.8.1 that the existence of shadows in
turn implies convergence of Cauchy sequences (and existence of least upper
bounds in Exercise 5.9). The constructions in the proofs of Theorems 5.8.1
and 6.5.2 are essentially the same.
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6.6 Cluster Points

A real number L is a cluster point of the real-valued sequence (sn : n E N)
if each open interval (L - c, L + c) in ]R contains infinitely many terms of
the sequence. This is expressed by the sentence

(Yc E ]R+) (Ym E N) (3n E N) (n > m 1\ ISn - LI < c). (i)

From this it can be shown that the original sequence has a subsequence
converging to L. Cluster points are also known as limit points of the se­
quence.

Theorem 6.6.1 L E IR is a cluster point of the real-valued sequence (sn :
n E N) if and only if the sequence has an extended term infinitely close to
L, i.e., iff SN ~ L for some unlimited N.

Proof Assume that (i) holds. Let c be a positive infinitesimal and m E

*Noo • Then by transfer of (i), there is some n E *N with n > m, and hence
n is unlimited, and

ISn - LI < c ~ O.

Thus Sn is an extended term infinitely close to L. (Indeed, the argument
shows that any interval of infinitesimal width around L contains terms
arbitrarily far along the extended tail.)
Conversely, suppose there is an unlimited N with SN ~ L. To prove (i),

take any positive c E ]R and mEN. Then N > m and ISN - LI < c. This
shows that

(3n E *N)(n > m 1\ ISn - LI < c).

Thus by existential transfer, ISn - LI < c for some n E N, with n > m. 0

This characterisation shows that a shadow of an extended term is a cluster
point of a real sequence, and indeed that the cluster points are precisely
the shadows of those extended terms that have them, i.e., are limited. But
if the sequence is bounded, then all of its extended terms are limited and
so have shadows that must be cluster points. In particular, this gives a very
direct proof of a famous result:

Theorem 6.6.2 (Bolzano-Weierstrass) Every bounded sequence of real
numbers has a cluster point in R 0

6.7 Exercises on Limits and Cluster Points

(1) Let (sn) and (tn) be real-valued sequences with limits L, M respec­
tively. Show that if Sn :S tn for n E N, then L :S M.
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(2) If Tn ~ Sn ~ t n in JR. for all E N, and limn-+oo rn = limn-+oo tn, show
that (sn) converges to this same limit.

(3) If a sequence converges in JR., show that it has exactly one cluster
point.

(4) Suppose that a real-valued sequence has a single cluster point. If the
sequence is bounded, must it be convergent? What if it is unbounded?

6.8 Limits Superior and Inferior

Let S = (sn : n E N) be a bounded real-valued sequence. Even if the
sequence does not converge, its behaviour can be analysed into patterns
of regularity: the Bolzano-Weierstrass theorem guarantees that it has a
cluster point, and it may have many such cluster points with subsequences
converging to each of them. If Cs is the set of all cluster points of s, then
by the characterisation of Theorem 6.6.1 it can also be described as the set
of all shadows of the extended tail:

Cs = {sh(sn) : n is unlimited}.

Now, any real upper bound of the original sequence is an upper bound of
Cs, for if Sn ~ b for all n E N (with b E JR.), then for an unlimited n we
get sh(sn) ~ Sn ~ b and hence sh(sn) ~ b, since both are real. Similarly,
any real lower bound of S is a lower bound of Cs' Since S is a bounded
sequence, it follows that the set Cs is bounded above and below in JR., and
so has a real least upper bound, known as the limit superior of s, and a
real greatest lower bound, known as the limit inferior. The notations

lim sup Sn and
n-+oo

liminf Sn
n-+oo

are used for these two numbers.
Writing "sup" for the least upper bound (supremum) and "inf" for the

greatest lower bound (infimum), we have

limsupsn = sup{sh(sn): n E *Noo },
n-+oo

lim inf Sn inf{sh(sn): n E *Noo }.
n-+oo

The symbols lim and lim are also used for lim sup and lim inf.

Exercise 6.8.1
Prove, by nonstandard reasoning, that both the limit superior and the limit
inferior are cluster points of the sequence s. 0
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This exercise shows that lims and lims both belong to Cs, and hence are
the maximum and minimum elements of Cs respectively.

Theorem 6.8.2 A real number L is equal to lim s if and only if

(1) Sn < L or Sn ~ L for all unlimited n; and

(2) Sn ~ L for at least one unlimited n.

Proof The condition "sn < Lor Sn ~ L" holds iff sh(sn) ~ L. Thus (1) is
equivalent to the assertion that L is an upper bound of Cs' But (2) asserts
that L is a cluster point, so (1) and (2) together assert precisely that L is
the maximum element of Cs, Le., that L = lims. 0

Formulation of the nonstandard characterisation of lim S corresponding to
Exercise 6.8.1 is left as a further exercise.

Theorem 6.8.3 A bounded real-valued sequence s converges to L E IR if
and only if

lim sup Sn = lim inf Sn = L.
n--+(X) n-+oo

Proof Since lim sand lim S are the maximum and minimum elements
of Cs , requiring that they both be equal to L amounts to requiring that
Cs = {L}. But that just means that the shadow of every extended term
is equal to L, which is equivalent to having S converge to L by Theorem
6.1.1. 0

Theorem 6.8.4 If s is a bounded real-valued sequence with limit superior
lim, then for any positive real c:

(1) some standard tail of s has all its terms smaller than lim + c, i.e.,
Sn < lim + c for all but finitely many n EN;

(2) lim - c < Sn for infinitely many n E N.

Proof

(1) If mE *N is unlimited, then sh(sm) ~ lim, so

Sm ~ sh(sm) < lim + c,
showing that Sm < lim+ c because sh(sm) and lim+ c are both real.
Thus all extended terms are smaller than lim + c, and in particular,
this holds for all terms after SN for any fixed unlimited N:

("1m E *N) (m 2 N -? Sm < lim + c) .
Existential transfer then provides an n E N such that all of

are smaller than lim + C.
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(2) lim is the shadow of some extended term SN with N unlimited. Then
lim - 10 < lim ~ SN, so lim - 10 < SN. But now for any limited mEN
we have m < Nand lim - 10 < SN. Existential transfer then ensures
that there is a limited n with m < nand lim-e < Sn. This shows that
lim - 10 < Sn for arbitrarily large n EN, giving the desired conclusion.

o
The two parts of the proof just given illustrate two fundamental principles
of nonstandard reasoning:

(a) If a property (in the above case Sn < lim + e) holds throughout the
extended tail of a sequence, then it holds throughout some standard
tail. More generally, if a certain property holds for all unlimited hy­
pernatural n, then it holds for all but finitely many (limited) n E N.

(b) If a certain property (in the above case lim - 10 < sn) holds for some
unlimited n, then it holds for arbitrarily large limited n.

Principle (a) was also at work in the proof of Theorem 6.1.1, where we saw
that if the extended tail lies between L - 10 and L + 10, then so does some
standard tail. The principle itself is an instance of "underflow" (Section
11.8).
Principle (b) is manifest in the situation of Section 5.12: the existence

of a prime number bigger than some unlimited n implies the existence of
arbitrarily large standard primes.

Now, if a real sequence S is bounded in JR, any standard tail Sn, Sn+l, ...

is also bounded and hence has a least upper bound, which we denote by
Sn' Thus we are putting

Sn = sup Sm'
m~n

In general, Sn ~ Sn+l, so the sequence S = (Sn : n E N) is nonincreasing.
Moreover, it is bounded below, for if bE JR is a lower bound for s, then in
general b ~ Sn ~ Sn' Thus by monotone convergence (Theorem 6.2.1), S
converges in JR, and indeed its limit is the same as its greatest lower bound.
We will now see that this limit is also the limit superior.

Theorem 6.8.5 For any bounded real-valued sequence s,

lim sup Sn = lim Sn = lim (sup sm) .
n.-..,.<:x> n~(X) n~CX) m2:,n

Proof. First we show that

lim ~ Sm for all mEN. (ii)

To see this, take an extended term SN whose shadow is infinitely close to
the cluster point lim. Then if mEN, we have Sn ~ Sm for all limited
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n 2: m, and hence for all hypernatural n 2: m by transfer. In particular,
S N 5 Sm, so as lim ~ S N, this forces lim 5 Sm as required for (ii).
Now let L = limn->oo Sn' Then L is the greatest lower bound of the

sequence S, and by (ii), lim is a lower bound for this sequence, so lim 5 L.
But if lim < L, we can choose a positive real c with lim + c < L, and
then by Theorem 6.8.4(1) there is some n E N such that the standard tail
Sn, Sn+l, Sn+2, ... is bounded above by lim + c. This implies that the least
upper bound Sn of this tail is no bigger than lim + c. However, that gives

Sn 5lim+c < L,

which contradicts the fact that L is a lower bound of S, and so L 5 Sn'
We are left with the conclusion that lim = L, as desired. 0

The notion of limit superior can be defined for any real-valued sequence
S = (sn), bounded or not, by a consideration of cases in the following way.

(1) If S is not bounded above, put limsuPn->oo Sn = +00. In this case S

has at least one positive unlimited extended term (Section 6.4).

(2) If S is bounded above, hence has no positive unlimited extended
terms, then there are two subcases:

(i) S diverges to minus infinity. Then put lim sUPn->00 Sn = -00. In
this case all extended terms are negative unlimited (Theorem
6.4.2), so there are no limited extended terms and therefore no
cluster points.

(ii) S does not diverge to minus infinity. Then there is at least one ex­
tended term that is not negative unlimited, and hence is limited
because there are no positive unlimited terms (as S is bounded
above). The shadow of this term is a cluster point of s. Thus
the set Cs of cluster points is nonempty and bounded above (by
any upper bound for s). Then we define limsuPn->oo Sn to be
the least upper bound of Cs as previously.

6.9 Exercises on limsup and liminf

(1) Formulate the definition of the limit inferior of an arbitrary real­
valued sequence.

(2) Formulate and prove theorems about the limit inferior of a bounded
sequence that correspond to Theorems 6.8.4 and 6.8.5.

(3) If S is a bounded sequence, show that for each c E IR+ there exists an
n E N such that the standard tail Sn, Sn+l, Sn+2, ... is contained in
the interval (lim - c, lim + c ).
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6.10 Series

A real infinite series L:~ ai is convergent iff the sequence S = (sn : n E N)
of partial sums

Sn = al + ... + an

is convergent. We writeL:~ ai for Sn, and L:~ ai for Sn -Sm-l when n ? m.
Extending S to a hypersequence (sn : n E *N), we get that Sn and Sm-l
are defined for all hyperintegers n,m, so the expressions L:~ ai and L:~ ai
become meaningful for all n, mE *N, and may be thought of as hyperfinite
sums when n is unlimited.
Applying our results on convergence of sequences to the sequence of
partial sums, we have:

• L:~ ai = L in IR iff L:~ ai c:= L for all unlimited n.

• L:~ ai converges in IR iff L:~ ai c:= 0 for all unlimited m, n with
m~n.

The second of these is given by the Cauchy convergence criterion (Theorem
6.5.2), since L:~ ai c:= 0 iff Sn c:= Sm-l for unlimited m, n. Taking the
case m = n here, we get that if the series L:~ ai converges, then an c:= 0
whenever n is unlimited. This shows, by Theorem 6.1.1, that

• if L:~ ai converges, then limi-+oo ai = O.

Observe that for a convergent real series we have

L:~ ai = sh (L:~ ai)

for any unlimited n.
A series L:~ ai always converges if it is absolutely convergent, which

means that the series L:~ lai I of absolute values converges. The standard
proof of this uses the comparison test, which is itself illuminated by non­
standard ideas (see Exercise (4) below).

6.11 Exercises on Convergence of Series

(1) Give an example of a series that diverges but has an infinitesimal for
all unlimited n.

(2) Give nonstandard proofs of the usual rules for arithmetically combin­
ing convergent series:

L:~ ai + L:~ bi

L:~ ai - L:~ bi

L:~ cai

L:~(ai + bi),

L:~(ai - bi),

c(L:~ ai)'
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(3) Suppose that ai :::: 0 for all i E N. Prove that E~ ai converges iff
E~ ai is limited for all unlimited n, and that this holds iff E~ a'i is
limited for some unlimited n.

(4) (Comparison Test) Let E~ ai and E~ bi be two real series of non­
negative terms, with E~ bi convergent. If ai ~ bi for all i E N, use
result (3) to show that E~ ai is convergent.

(5) Show that the comparison test holds under the weaker assumption
that an ~ bn for all unlimited n (hint: use the Cauchy convergence
criterion). Show that this weaker assumption is equivalent to requir­
ing that there be some limited kEN with an ~ bn for all n :::: k.

(6) Let E~ ai and E~ bi be two series of positive terms such that the
sequence (ai/bi : i E N) is convergent in ~. Show that for unlimited
m and n, E: ai is infinitesimal if and only ifE: bi is infinitesimal.
Deduce that either both series converge, or both diverge.

(7) Let e E ~. Recall the identity

1- en +1

1 +e+e2 + ... +en = --­
1-e

(a) Considering the case of unlimited n, show that the series L~ ei

converges if lei < 1.
(b) Show that E: ei is infinitesimal when m and n are unlimited,
either by applying result (a) or by making further use of the
above identity.

(8) (Ratio Test: Convergence) Suppose that

limsup lali~lll < 1
1,-+00 a1,

in ~ (i.e., the limit superior of the sequence of ratios is a real number
smaller than 1). Prove that the series E~ ai is absolutely convergent,
by the following reasoning.

(a) Show that there exists a positive real e < 1 with lan+ll < ciani
for all unlimited n.

(b) Hence show that there is some limited kEN such that lan +ll <
e lanl for all n ~ k.

(c) Deduce from (b) that in general,

lak+nl < en lakl ,
and hence
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(d) Use the last inequality and result 7(b) to conclude that L:~ ai
converges absolutely.

(9) (Ratio Test: Divergence) Suppose that

1· . f lai+ll 1
lmlll -1-1 >'-00 ai

in IR (i.e., the liminf is a real number greater than 1). Prove that the
series L:~ ai diverges, as follows.

(a) Show that lan+ll > lanl for all unlimited n. Hence prove that
there is some limited kEN such that lanl > lakl > 0 for all
n> k.

(b) Deduce, by considering unlimited n, that L:~ ai cannot con­
verge.

(10) Apply the ratio test with ai = (Xi Ii!) to show that for any real
number X, the hyperreal x n In! is infinitesimal when n is unlimited.

(11) (Leibniz's Alternating Series Test) Suppose (ai : i E N) is a real
sequence that is nonincreasing (i.e., ai ~ ai+l) and converges to O.
Prove that the alternating series

converges by showing that in general

and then considering the case of unlimited m.



7
Continuous Functions

Let f be an lR-valued function defined on an open interval (a, b) of R In
passing to *1R, we may regard f as being defined for all hyperreal x between
a and b, since *(a, b) = {x E *lR: a < x < b}.

7.1 Cauchy's Account of Continuity

Informally, we describe the assertion

f is continuous at a point c in the interval (a, b)

as meaning that f(x) stays "close to" f(c) whenever x is "close to" c. The
way Cauchy put it in 1821 was that

the function f(x) is continuous with respect to x between the
given limits if between these limits an infinitely small increase
in the variable always produces an infinitely small increase in
the function.

From the enlarged perspective of *1R, this account can be made precise:

Theorem 7.1.1 f is continuous at the real point c if and only if f(x) ~
f(c) for all x E *1R such that x ~ c, i.e., iff

f(hal(c)) ~ hal(f(c)).

Proof The standard definition is that f is continuous at c iff for each
open interval (f (c) - c, f (c) + c) around f (c) in lR there is a corresponding
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open interval (c - 8, c+8) around c that is mapped into (f(c) - e, f(c) +e)
by f. Since a < c < b, the number 8 can be chosen small enough so that
the interval (c - 8, c+ 8) is contained with (a, b), ensuring that f is indeed
defined at all points that are within 8 of c.
Continuity at c is thus formally expressed by the sentence

(\:Ie E R+) (38 E R+) (\:Ix E R) (Ix - cl < 8 --+ If(x) - f(c)1 < e). (i)

Now suppose x ~ c implies f(x) ~ f(c). To show that (i) holds, let e
be a positive real number. Then we have to find a real 8 small enough
to fulfill (i). First we show that this can be achieved if "small enough"
is replaced by "infinitely small", and then apply transfer. For if d is any
positive infinitesimal, then for any x E *R, if Ix - cl < d, we have x ~ c,
hence f(x) ~ f(c) by assumption, so If(x)- f(c)1 < e, as e is real. Replacing
d by an existentially quantified variable, this shows that the sentence

(38 E *]R+) (\:Ix E *R) (Ix - cl < 8 --+ If(x) - f(c)1 < e)

is true. By existential transfer we then infer

(38 E R+) (\:Ix E R) (Ix - cl < 8 --+ If(x) - f(c)1 < e),

which is enough to complete the demonstration of (i).

Conversely, assume that (i) holds. Let e be any positive real. Then by
(i) there is a positive 8 E R such that the sentence

(\:Ix E R) (Ix - cl < 8 --+ If(x) - f(c)1 < e)

is true, and hence by universal transfer we have

(\:Ix E *R) (Ix - cl < 8 --+ If(x) - f(c)1 < e).

But now if x ~ c in *R, then Ix - cl < 8, and so by this last sentence
If(x) - f(c)1 < e. Since this holds for arbitrary e E R+, it follows that
f(x) ~ f(c).
In other words, the halo hal(c) is mapped by f into the interval (f(c) ­

e, f(c) + e) for any positive real e, and hence is mapped into the halo
hal(f(c)). 0

A close inspection of the first part of this proof reveals that in order to
establish the standard criterion for continuity at c it suffices to know that
f(x) ~ f(c) for all x that are within some positive infinitesimal distance d
of c. Thus we have this stronger conclusion:

Corollary 7.1.2 The following are equivalent.

(1) f is continuous at c E R

(2) f(x) ~ f(c) whenever x ~ c.
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(3) There is some positive d ~ 0 such that f(x) ~ f(c) whenever Ix-cl <
d. 0

If A is a subset of the domain of function f, then f is continuous on the set
A if it is continuous at all points c that belong to A. Sometimes we would
like A to be something other than an open interval (a, b), such as a half­
open or closed interval (a, b], [a, b), or [a, b], or a union of such sets. In this
case the definition of continuity is modified to specify that for each positive
e there is a corresponding 8 such that f(x) belongs to (f(e) - e, f(e) + c)
whenever x is a point of A that belongs to (e - 8, e + 8). In other words,
the bounded quantification of x in sentence (i) is restricted to the set A: f
is continuous at all points e in A if

(tic E A) (tic E IR+) (38 E IR+) (tlx E A) (Ix - el < 8 -7 If(x) - f(e)/ < c).

Reworking the proofs of Theorem 7.1.1 and Corollary 7.1.2, we obtain a
hyperreal characterisation of this refinement:

Theorem 7.1.3 The following are equivalent.

(1) f is continuous at e in A.

(2) f(x) ~ f(e) for all x E *A with x ~ e.

(3) There is some positive d ~ 0 such that f(x) ~ f(e) for all x E *A
with Ix - el < d.

It would be natural at this point to ask whether continuity of f on A
entails that the condition f(hal(e)) ~ hal(f(e)) must hold for all points
e E *A and not just the real ones. It turns out that this need not be so: it
is a stronger requirement, which, remarkably, is equivalent to the standard
notion of uniform continuity. We take this up in Section 7.7.

7.2 Continuity of the Sine Function

To illustrate the use of Theorem 7.1.1, let e be real and x ~ e. Then x = e+e
for an infinitesimal e, and

sin x - sin e = sin(e + c) - sin e
sinecose + cosesine - sine
sine (cos e - 1) + cosesine
an infinitesimal,

since cose ~ 1 and sine ~ 0 (Exercise 5.7(2)), while sine and cose are real.
Hence sin x ~ sin e. This proves that the sine function is continuous at all
eER
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Note that in this proof we used the addition formula

sin(c+ €) = sinccos€ + coscsin€.

This holds for all real numbers, and hence by transfer it holds for all hy­
perreals.

7.3 Limits of Functions

Continuity is often defined in terms of limits of functions. By similar argu­
ments to those of Section 7.1, one can establish that if c, L E JR. and f is
defined on A ~ JR., then

• limx -+c+ f(x) = L iff f(x) ~ L for all x E *A with x ~ c and x > c.

• limx -+c f(x) = L iff f(x) ~ L for all x E *A with x ~ c and x < c.

• limx -+c f(x) = L iff f(x) ~ L for all x E *A with x ~ c and x i= c.

• limx -+c f(x) = +00 iff f(x) E *JR.~ for all x E *A with x ~ c and
x i= c.

• limx -+c f(x) = -00 iff f(x) E *JR.~ for all x E *A with x ~ c and
x i= c.

• limx -++oo f(x) = L iff f(x) ~ L for all positive unlimited x E *A (and
such x exist).

• limx -+_oo f(x) = L iff f(x) ~ L for all negative unlimited x E *A
(and such x exist).

7.4 Exercises on Limits

(1) Review the standard definitions of limits of functions, and derive the
above characterisations.

(2) Use these results to show the following standard facts:

• limx -+c f(x) = L iff limx -+c+ f(x) = Land limx -+c - f(x) = L .

• If limx-+cf(x) and limx-+cg(x) exist, then

lim [f(x) + g(x)]x-+c
lim [f(x)g(x)]
x-+c
lim [f(x)/g(x)]x-+c

lim f(x) + lim g(x),
x--+c x--+c

lim f(x) . lim g(x),
x-+c x--+c

lim f(x)/ lim g(x), if lim g(x) i= O.
x-+c x-+c x-+c
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• f is continuous at c iff limx -+c f(x) = f(c).

(3) Use infinitesimals to discuss the continuity of the following functions:

if x i:- 0,
if x = O.

if x i:- 0,
if x = O.

h(x)

h(x)

h(x) =

f5(X)

{ ~in~

{ ~sin ~

{0
1 if x is rational,
if x is irrational.

{

X if x is rational,
-x if x is irrational.

{
0 if x is irrational,
~ if x = ~ E Q in simplest form with n ~ 1.

7.5 The Intermediate Value Theorem

This fundamental result of standard real analysis states that

if the real function f is continuous on the closed interval [a, b]
in JR, then for every real number d strictly between f(a) and
f(b) there exists a real c E (a,b) such that f(c) = d.

There is an intuitively appealing proof of this using infinitesimals. The basic
idea is to partition the interval [a, b] into subintervals of equal infinitesimal
width, and locate a subinterval whose end points have f-values on either
side of d. Then c will be the common shadow of these end points. In this
way we "pin down" the point at which the f-values pass through d.
We deal with the case f(a) < f(b), so that f(a) < d < f(b). First, for
each (limited) n E N, partition [a, b] into n equal subintervals of width
(b - a)/n. Thus these intervals have end points Pk = a + k(b - a)/n for
0::; k::; n. Then let Sn be the greatest partition point whose f-value is less
than d. Indeed, the set

{Pk : f(Pk) < d}

is finite and nonempty (it contains Po = a but not Pn = b). Hence Sn exists
as the maximum of this set, and is given by some Pk with k < n.
Now, for all n E N we have

a ::; Sn < band f(sn) < d::; f(sn + (b - a)/n),

and so by transfer, these conditions hold for all n E *N.
To obtain an infinitesimal-width partition, choose an unlimited hypernat­
ural N. Then SN is limited, as a::; SN < b, so has a shadow c = sh(sN) E JR
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(by transfer, SN is a number of the form a+K(b-a)/N for some K E *N).
But (b - a)/N is infinitesimal, so SN and SN + (b - a)/N are both infinitely
close to c. Since f is continuous at c and c is real, it follows (Theorem 7.1.1)
that f(SN) and f(SN + (b - a)/N) are both infinitely close to f(c). But

f(SN) < d ~ f(SN + (b - a)/N),

so d is also infinitely close to f(c). Since f(c) and d are both real, they
must then be equal. 0

7.6 The Extreme Value Theorem

If the real function f is continuous on the closed interval [a, b]
in JR, then f attains an absolute maximum and an absolute
minimum on [a, b], i.e., there exist real c, d E [a, b] such that
f(c) ~ f(x) ~ f(d) for all x E [a, b].

Proof To obtain the asserted maximum we construct an infinitesimal­
width partition of [a, b], and show that there is a particular partition point
whose f-value is as big as any of the others. Then d will be the shadow
of this particular partition point. As with the intermediate value theorem,
the construction is first approximated by finite partitions with subintervals
of limited width ~. In these cases there is always a partition point with
maximum f-value. Then transfer is applied.
For each limited n E N, partition [a, b] into n equal subintervals, with

end points a + k(b - a)/n for 0 ~ k ~ n. Then let Sn E [a, b] be a partition
point at which f takes its largest value. In other words, for all integers k
such that 0 ~ k ~ n,

a ~ Sn ~ band f(a + k(b - a)/n) ~ f(sn)' (ii)

By transfer, (ii) holds for all n E *N and all hyperintegers k such that
o~ k ~ n.
Similarly to the intermediate value theorem, choose an unlimited hyper­
natural N and put d = sh(SN) E lR. Then by continuity

f(SN) ~ f(d).

Now the "infinitesimal-width partition"

P = {a + k(b - a)/N: k E *N and 0 ~ k ~ N}

(iii)

has the important property that it provides infinitely close approximations
to all real numbers between a and b: the halo of each x E [a, b] contains
points from this partition. To show this, observe that if x is an arbitrary
real number in [a, b], then for each n E N there exists an integer k < n with

a + k(b - a)/n ~ x ~ a + (k + 1)(b - a)/n.
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Hence by transfer there exists a hyperinteger K < N such that x lies in
the interval

[a + K(b - a)/N,a + (K + 1)(b - a)/N]

of infinitesimal width (b - a)/N. Therefore x ~ a + K(b - a)/N, so x is
indeed infinitely close to a member of P. It follows by continuity of f at x
that

f(x) ~ f(a + K(b - a)/N). (iv)

But the values of f on P are dominated by f(SN), as (ii) holds for all
n E *N, so

f(a + K(b - a)/N) ::; f(SN)'

Putting (iii), (iv), and (v) together gives

(v)

f(x) ~ f(a + K(b - a)/N) ::; f(SN) ~ f(d),

which implies f(x) ::; f(d), since f(x) and f(d) are real (Exercise 5.5(2)).
Thus f attains its maximum value at d.
The proof that f attains a minimum is similar. 0

7.7 Uniform Continuity

If A ~ JR and f : A --+ JR, then f is uniformly continuous on A if the
following sentence is true:

('<Ie E JR+) (36 E JR+) ('<Ix,y E A) (Ix - yl < 6 --+ If(x) - f(y)1 < e)

(compare this to the formal sentence just prior to Theorem 7.1.3). Essen­
tially, this says that for a given e, the same 6 for the continuity condition
works at all points of A.

Theorem 7.7.1 f is uniformly continuous on A if and only if x ~ y
implies f(x) ~ f(y) for all hyperreals x, y E *A.

Proof Exercise. o
Theorem 7.7.1 displays the distinction between uniform and ordinary conti­
nuity in a more intuitive and readily comprehensible way than the standard
definitions do. For by Theorem 7.1.1, f is continuous on A ~ JR iff x ~ y
implies f(x) ~ f(y) for all x, y E *A with y standard. Thus uniform conti­
nuity amounts to preservation of the "infinite closeness" relation ~ at all
hyperreal points in the enlargement *A of A, while continuity only requires
preservation of this relation at the real points.
Of course for some sets, these two requirements come to the same thing:

Theorem 7.7.2 If the real function f is continuous on the closed interval
[a, b] in JR, then f is uniformly continuous on [a, b].
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Proof Take hyperreals x, y E *[a, b] with x ~ y. Let c = sh(x). Then
since a :5 x :5 b and x ~ c, we have c E [a, b], and so f is continuous at
c. Applying Theorem 7.1.1, we get f(x) ~ f(c) and f(y) ~ f(c), whence
f(x) ~ f(y). Hence f is uniformly continuous by Theorem 7.7.1. 0

7.8 Exercises on Uniform Continuity

(1) Explain why the argument just given fails for intervals (a,b), (a,b],
(a,+oo), (-oo,b), etc. that are not closed.

(2) Show that f(x) = l/x is not uniformly continuous on (0,1).

(3) If f is uniformly continuous on ~ and (sn : n E N) is a Cauchy
sequence, show that (f(sn) : n E N) is a Cauchy sequence.

(4) Let the real function f be monotonic on [a, b], and suppose that for
all real r between f(a) and f(b) there exists a real c E [a, b] such that
f(c) = r. Prove that f is continuous on la, b].

The property of closed intervals that makes Theorem 7.7.2 work will be
examined further in Section 10.4 when we study compactness from the
hyperreal perspective.

7.9 Contraction Mappings and Fixed Points

A function f : ~ -4 ~ is said to satisfy a Lipschitz condition if there is a
positive real constant c such that

If(x) - f(y)1 :5 c Ix - yl (vi)

for all x, y E R Such a function is always continuous, indeed uniformly
continuous, as is readily explained by infinitesimal reasoning. First observe
that (vi) holds for all hyperreal x, y by transfer. But then if x ~ y, we
have that clx - yl is infinitesimal, since c is real and Ix - yl ~ 0, so by (vi)
If(x) - f(y)1 is infinitesimal, making f(x) ~ f(y)· Hence f is uniformly
continuous by the characterisation of Theorem 7.7.1.
A contraction mapping is a Lipschitz function with constant c less than

1. Such a function acts on any two points to move them closer to each
other. It turns out that a contraction mapping has a fixed point: a point x
satisfying f(x) = x. It certainly cannot have two such points, for if f(x) = x
and f(y) = y, then

Ix - yl = If(x) - f(y)1 :5 cIx - yl,
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and since c< 1, this is possible only if Ix - yl = 0 and hence x = y.
Consider for example the contraction mapping f defined by

x 1
f(x) = 2 + 2

(what is the constant c here?). Its fixed point is the unique solution to
~ + ~ = x, namely x = 1. Moreover, this fixed point can be approached by
starting at any real number x and repeatedly applying f to generate the
sequence

x 3
f(J(x)) = 4 + 4'

x 7
f(J(J(x))) = "8 + 8'

The nth term of this sequence is

x 1
2n +1- 2n '

so the sequence does indeed converge to 1 regardless of what x is (this can
also be effectively demonstrated visually by plotting a graph of the function
and the terms of the sequence).

Theorem 7.9.1 Any contraction mapping f : JR -+ JR has a (unique) fixed
point.

Proof Let c be the Lipschitz constant for f. Take any x E JR, put So = x,
and inductively define

(vii)

Observe that

ISl-s21 < clso-sll,

IS2 - s31 < e lSI - s21 ::; e21so - sll,

IS3-s41 < els2- s31::;c3 Iso-s11,

and so on. In general, for n E N we get

(viii)

Hence

Iso - snl < Iso - sll + lSI - s21 + IS2 - s31 + ... + ISn-l - snl
< Iso - sd + c Iso - sd + c21so - sll + ... + en

-
l Iso - sll

Iso - sd(l + c+ e2 + ... + en-I)
1- en
--Iso-sd,
1-c
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and therefore
1

Iso - snl ::; --Iso - s11
l-c

for all n E N.
The standard proof of this theorem uses the more general formula

(ix)

to prove that the sequence (sn : n E N) is Cauchy, hence convergent, and
that its limit is a fixed point for f. Here we will instead extend to the
hypersequence (sn :E *N) and take the shadow of any term in the extended
tail.
Thus if n E *N is unlimited, then by transfer Iso - snl is bounded by
the real right side of (ix), so Sn is limited and has a shadow L E JR. Then
Sn ~ L, and so as f is continuous, f(sn) ~ f(L). But f(sn) = Sn+I by
transfer of (vii), and Sn+I ~ Sn by transfer of (viii), since cn is infinitesimal
when c < 1 and n is unlimited, making ISn - Sn+ 11 infinitesimal. Altogether
then we have

f(L) ~ f(sn) = Sn+I ~ Sn ~ L,

giving f(L) ~ L. Since f(L) and L are real, it follows that they are equal,
so L is the desired fixed point. 0

Notice that the fact that the sequence x, f(x), f(J(x)), ... converges to a
fixed point of f now becomes a consequence of our proof, rather than being
part of the proof as in the standard argument. For we have shown that for
any unlimited n, the shadow sh(sn) exists and is a fixed point. Since there
can be only one fixed point, it follows that all extended terms have the same
shadow, and hence (Theorem 6.1.1) that the original sequence converges
to this shadow.

Theorem 7.9.1 is an instance of the Banach fixed point theorem, which
asserts the existence of a fixed point for a contraction mapping on any
"complete metric space". Essentially the same nonstandard analysis can
be used for the proof in that more general setting.

7.10 A First Look at Permanence

One of the distinctive features of nonstandard analysis is the presence of
so-called permanence principles, which assert that certain functions must
exist, or be defined, on a larger domain than that which is originally used
to define them. For instance, any real function f : A --+ JR automatically
extends to the enlargement *A of its real domain A.
In discussing continuity of a real function f at a real point c, we may
want (the extension of) f to be defined at points infinitely close to c. For
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this it suffices that f be defined on some real neighbourhood (c-e, c+e) in
~, for then the domain of the extension of f includes the enlarged interval
*(c-e, c+e), which contains the halo hal(c) of c. But the converse ofthis is
also true: if the extension of f is defined on hal(c), then f must be defined
on some real interval of the form (c - e, c+ e), and hence on *(c - e, c+ e).
In fact, for this last conclusion it can be shown that it suffices that f
be defined on some hyperreal interval (c - d, c+ d) of infinitesimal radius
d. This is our first example of a permanence statement that is sometimes
called Cauchy's principle. It asserts that if a property holds for all points
within some infinitesimal distance of c, then it must actually hold for all
points within some real (hence appreciable) distance of c. At present we
can show this for the transforms of properties expressible in the formal
language L:!I"{. If <p(x) is a formula of this language for which there is some
positive d ~ 0 such that

*<p(x) is true for all hyperreal x with c - d < x < c + d,

then the sentence

(3y E *~+) (Vx E *~) (Ix - cl < y ~ *cp)

is seen to be true by interpreting y as d. But then by existential transfer
there is some real e > 0 such that

(Vx E ~) (Ix - cl < e ~ cp),

so that cp is true throughout (c - e, c+e) in ~. Hence by universal transfer
back to *~,

(Vx E *~)( Ix - cl < e ~ *cp),

showing that

*cp(x) is true for all hyperreal x with c - e < x < c+ e.

Note that in this argument c is a real number. Later it will be shown that
permanence works for any hyperreal number in place of c, and applies to
a much broader class of properties than those expressible in the language
L:!I"{ (cf. Theorems 11.9.1 and 15.1.1).

7.11 Exercises on Permanence of Functions

(1) If f is a real function and c E ~, verify in detail that f(x) is defined
for all x ~ c if and only if f (x) is defined for all real x in some open
interval (c - e, c + e) with real radius e > O.

(2) Let f be a real function that is defined on some open neighbourhood
of c E ~. Show that if f is constant on hal(c), then it is constant on
some interval (c - e, c+ e) ~ R
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(3) Let f be a real function that is continuous on some interval A ~ JR. If
f (x) is real for all x E *A, show with the help of the previous exercise
that f is constant on A.

7.12 Sequences of Functions

Let (fn : n E N) be a sequence of functions f n : A --+ JR defined on some
subset A of JR. The sequence is said to converge pointwise to the function
f : A --+ JR if for each x E A the JR-valued sequence (fn(x) : n E N)
converges to the number f(x). Symbolically, this asserts that

(\:Ix E A) lim fn(x) = f(x),
n-+oo

which is rendered in full by the sentence

(\:Ix E A) (\:Ie E JR+) (3m E N) (\:In E N) (n > m --+ Ifn(x) - f(x)1 < e).

In this statement, the integer m that is asserted to exist depends on the
choice of x E A as well as on e. More strongly, we say that (fn : n E N)
converges uniformly to the function f if m depends only on e in the sense
that for a given e, the same m works for all x E A:

(\:Ie E JR+) (3m E N) (\:Ix E A) (\:In E N) (n > m --+ Ifn(x) - f(x)1 < e).

Now, we know how to extend a sequence of numbers to a hypersequence
(Section 3.13), but at this point we would like to do the same for a sequence
of functions. For n E N, the function fn extends to a function with domain
*A, but we would like to define fn : *A --+ *JR also for unlimited n. To
achieve this we first identify the original sequence (fn : n E N) of functions
with the single function

F:NxA--+JR

defined by putting F(n,x) = fn(x) for all n E N and x E A. This function
F has an extension

*F: *N x *A --+ *JR,

which can then be used to define fn : *A --+ *JR by putting fn(x) = *F(n, x).
Thus we now have a hypersequence of functions (fn : n E *N) as desired.
For each standard integer n E N, the new construction of fn just repro­

duces the extension of the original function fn, as defined in Section 3.13.
This follows by transfer of

(\:Ix E A) Un(x) = F(n,x».

Moreover, for each x E A, the real-number sequence s = (fn(x) : n E N)
has as its extension the hypersequence (fn(x) : n E *N). This follows by
transfer of

(\:In E N) (s(n) = F(n, x».
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In view of the characterisation of converging number sequences given by
Theorem 6.1.1, we can thus immediately infer

Theorem 7.12.1 The sequence Un : n E N) of real-valued functions de­
fined on A ~ JR converges pointwise to the function f : A --+ JR if and only
if for each x E A and each unlimited n E *N, fn(x) ':::0'. f(x). 0

On the other hand, as the discussion in Section 7.7 might suggest, we have:

Theorem 7.12.2 Un : n E N) converges uniformly to the function f :
A --+ JR if and only if for each x E *A and each unlimited n E *N, fn(x) ':::0'.

f(x).

Proof Exercise. o
The ideas underlying this characterisation are well illustrated by the be­
haviour of the sequence Un : n E N) given by fn(x) = xn on A = [0, I].
This converges pointwise to the function f that is constantly zero on [0,1)
and has f(l) = 1. Thus when x < 1, the sequence (xn : n E N) converges
to 0, but as x moves towards 1 the rate of convergence slows down, in the
sense that for a fixed c E JR+, as x approaches 1 we have to move further
and further along the sequence of powers of x before reaching a point where
the terms are less than c. Ultimately, when x becomes infinitely close to 1
(but still less than 1), it takes "infinitely long" for x n to become infinitely
close to O. Indeed, by transferring the statement of pointwise convergence
and taking c to be a positive infinitesimal, it follows that there will be
some M E *N such that for n > M we have xn < c and hence x n ':::0'. O.
Now, this M will be unlimited, because when n is limited, x ':::0'. 1 implies
xn

':::0'. 1. Hence {xn : n E N} is contained entirely within the halo of 1.
But there is a permanence principle that concludes from this that there is
some unlimited N such that {xn : n ~ N} is contained in the halo of 1
(cf. Robinson's sequential lemma in Section 15.2). In particular, x N '!- 0,
i.e., fN(x) '!- f(x), showing that the condition of Theorem 7.12.2 is vio­
lated, and therefore that the original standard sequence Un : n E N) is not
uniformly convergent to f.

7.13 Continuity of a Uniform Limit

A sequence Un : n E N) of continuous functions can converge pointwise
to a discontinuous function. We have just discussed the standard example:
take fn(x) = xn on A = [0, I]. Under uniform convergence this phenomenon
cannot occur. Here is a hyperreal approach to this classical result:

Theorem 7.13.1 If the functions Un : n E N) are all continuous on A ~

JR, and the sequence converges uniformly to the function f : A --+ JR, then
f is continuous on A.



88 7. Continuous Functions

Proof. Let c belong to A. To prove that f is continuous at c, we invoke
Theorem 7.1.3(2). If x E *A with x ~ c, we want f(x) ~ f(c), Le., If(x) ­
f(c)1 < e for any positive real e. The key to this is to analyse the inequality

If(x) - f(c)1 ~ If(x) - fn(x)1 + Ifn(x) - fn(c)1 + Ifn(c) - f(c)l. (x)

On the right side, the middle term Ifn(x) - fn(c)1 will be infinitesimal for
any n E N because x ~ c and f n is continuous at c. By taking a large
enough n, the first and last terms on the right can be made small enough
that the sum of the three terms is less than e.
To see how this works in detail, for a given e E JR+ we apply the definition

of uniform convergence to the number e f4 to get that there is some integer
mEN such that

n > m implies Ifn(x) - f(x)1 < ef4

for all n E N and all x E A, and hence for all n E *N and all x E *A by
universal transfer.
Now fix n as a standard integer, say by putting n = m + 1. Then for any

x E *A with x ~ c it follows, since x, c E *A, that

Ifn(x) - f(x)l, Ifn(c) - f(c)1 < ef4,

and so in (x) we get

If(x) - f(c)1 < ef4 + infinitesimal + ef4 < e

as desired. o
Note that this proof is a mixture of standard and nonstandard arguments:
it uses the hyperreal characterisation of continuity of fn and f, but the
standard definition of uniform convergence of (In : n E N) rather than the
characterisation given by Theorem 7.12.2.
In fact, we could invoke Theorem 7.12.2 to make the first and last terms

on the right of the inequality (x) become infinitesimal (instead of less than
ef4), by choosing n to be unlimited. But then what happens to the middle
term Ifn(x) - fn(c)1 when n is unlimited? Can we constrain it to still be
infinitesimal? We will take this up first as a separate question.

7.14 Continuity in the Extended Hypersequence

Given a sequence (In : n E N) of functions that are continuous on a set
A ~ JR, it is natural to wonder about the continuity properties of the
extended terms fn of the associated hypersequence (In : n E *N).
Now, when n is unlimited, then fn is a function from *A to *JR, and

even when restricted to A it may take values that are not real, e.g., when
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fn(x) = xn. Thus fn may not be the extension of any R-valued function,
and so we cannot apply the transfer argument of Theorem 7.1.1 directly.
However, we can demonstrate a continuity property of f n that corresponds
to that of 7.1.3(3). Thus even though fn may not map the whole of the
halo of a point y into the halo of f n (y), it will do this to some sufficiently
small infinitesimal neighbourhood of y:

Theorem 7.14.1 If the functions (In : n E N) are all continuous on A ~

R, then for any n E *N and any y E *A there is a positive infinitesimal d
such that fn(x) ~ fn(Y) for all x E *A with Ix - yl < d.

Proof The fact that f n is continuous on A for all n E N is expressed by
the sentence

('<In EN) ('<Iy E A)
('<Ie E R+) (38 E R+) ('<Ix E A)( Ix - yl < 8 -t Ifn(x) - fn(y)1 < e),

which states that "for all n E N and all YEA, fn is continuous at y in A".
Transfer this, take n E *N and y E *A, and let e be a positive infinitesimal.
Then from the transferred sentence we get that there is some hyperreal
8 E *R+ such that Ix - yl < 8 implies Ifn(x) - fn(y)1 < e for all x E *A.
Hence for all such x,

Ix - yl < 8 implies fn(x) ~ fn(Y)

because e is infinitesimal. Now replace 8 by any positive infinitesimal d < 8,
and the desired conclusion follows. 0

This last result can now be used to give the suggested alternative proof
that uniform convergence preserves continuity (Theorem 7.13.1), a proof
that does use the hyperreal characterisation of uniform convergence given
by Theorem 7.12.2. As explained, the idea was to take the inequality

If(x) - f(c)1 ~ If(x) - fn(x)1 + Ifn(x) - fn(c)1 + Ifn(c) - f(c)j (x)

used in the proof of Theorem 7.13.1 and make the terms If(x) - fn(x)1
and Ifn(c) - f(c)1 become infinitesimal, thereby forcing If(x) - f(c)1 to be
infinitesimal. To achieve this we must take n to be unlimited. In fact, the
inequality itself can be dispensed with in favour of a direct examination of
the infinitely close proximity of the terms involved.
To review this argument, let fn be continuous on A ~ R for all n E N,
and suppose (In : n E N) converges uniformly to f : A -t R Take c E R,
with the object of showing that f is continuous at c. Choose an unlimited
n E *N. Then by our new result, Theorem 7.14.1, there is some infinitesimal
d > 0 such that

Ix - cl < d implies fn(x) ~ fn(c)
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whenever x E *A. But now if x E *A and Ix - cl < d, we have fn(x) ~ f(x)
and fn(c) ~ f(c) by uniform convergence (Theorem 7.12.2) because n is
unlimited and x, c E *A. Then

f(x) ~ fn(x) ~ fn(c) ~ f(c),

making f(x) ~ f(c).
All told, we have established that there is a positive d ~ 0 such that for
all x E *A,

Ix - cl < d implies f(x) ~ f(c).

By Corollary 7.1.2(3) this guarantees that f is continuous at c.

7.15 Was Cauchy Right?

The ideas discussed in this chapter are of central importance in analysis,
and have caused difficulty and controversy in the past. There is a famous
"theorem" of Cauchy (1821) stating:

If the different terms of the series

Un + Ul + ... + Un + Un+l +...

are functions of the same variable x, continuous with respect to
this variable in the neighbourhood of a particular value for which
the series is convergent, the sum s of the series is also, in the
neighbourhood of this particular value, a continuous function
ofx.

It has been widely held that this statement is in error, because it leaves
out the hypothesis of uniform convergence. But the development of Robin­
son's nonstandard analysis has caused a reassessment of Cauchy's ideas,
producing the view that his theorem is correct if it is understood that he
intended to assert continuity of un(x) even for infinitely large n, and that
"neighbourhood of a particular value" refers to points infinitely close to
that value. The following articles explore this issue in depth:

JOHN P. CLEAVE. Cauchy, Convergence, and Continuity. British J.
Phil. Sci., 22 (1971), 27-37.

IMRE LAKATOS. Cauchy and the Continuum: The Significance of
Non-Standard Analysis for the History and Philosophy of Mathemat­
ics. In Mathematics, Science and Epistomology, Philosophical Papers
volume 2, edited by John Worrall and Gregory Currie. Cambridge
University Press, 1978, 43-60.
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Differentiation

We come now to an examination-from the modern infinitesimal perspec­
tive-of the cornerstone concept of the calculus.

8.1 The Derivative

Newton called the derivative the fluxion iJ of a fluent quantity y, thinking
of it as the "speed" with which the quantity flows. In more modern par­
lance, the derivative of a function f at a real number x is the real number
j'(x) that represents the rate of change of the function as it varies near x.
Alternatively, it is the slope of the tangent to the graph of f at x. Formally
it is defined as the number

r f(x+h)-f(x)
h~ h .

Theorem 8.1.1 If f is defined at x E JR, then the real number L E JR is
the derivative of f at x if and only if for every nonzero infinitesimal c,
f(x + c) is defined and

f(x + c) - f(x) '::::!. L .
c

Proof Let g(h) = !(x+h2-!(x) and apply the characterisation of

" lim g(h) = L"
h--+O

(i)
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given in Section 7.3.

Thus when f is differentiable (i.e., has a derivative) at x, we have

f'(x) = sh (f(X + e~ - f(X))

o

for all infinitesimal e =1= O.

If (i) holds only for all positive infinitesimal e, then L is the right-hand
derivative of f at x, defined classically as

1
. f(x + h) - f(x)
1m .

h--+O+ h

Similarly, if (i) holds for all negative e ~ 0, then L is the left-hand derivative
given by the limit as h ----> 0-.

Exercise 8.1.2
Use the characterisation of Theorem 8.1.1 to prove that the derivative of
sin x is cos x at real x (cf. Section 7.2 and Exercise 5.7(2) ).

8.2 Increments and Differentials

Let L1x denote an arbitrary nonzero infinitesimal representing a change or
increment in the value of variable x. The corresponding increment in the
value of the function f at x is

L1f = f(x + L1x) - f(x).

To be quite explicit we should denote this increment by L1f(x, L1x), since
its value depends both on the value of x and the choice of the infinitesimal
L1x. The more abbreviated notation is, however, convenient and suggestive.

If f is differentiable at x E JR, Theorem 8.1.1 implies that

L1f '()
L1x~f x,

so the Newton quotient ~ is limited. Hence as

it follows that the increment L1f in f is infinitesimal. Thus f(x + L1x) ~
f(x) for all infinitesimal L1x, and this proves

Theorem 8.2.1 If f is differentiable at x E JR, then f is continuous at x.
o



8.2 Increments and Differentials 93

The differential of f at x corresponding to Llx is defined to be

df = f'(x)Llx.

Thus whereas Llf represents the increment of the "y-coordinate" along the
graph of f at x, df represents the increment along the tangent line to this
graph at x. Writing dx for Llx, the definition of df yields

df = f'(x).
dx

Now, since f'(x) is limited and Llx is infinitesimal, it follows that df is
infinitesimal. Hence df and Llf are infinitely close to each other. In fact,
their difference is infinitely smaller than Llx, for if

Llf '()c= Llx- f x,

then c is infinitesimal, because ~ ~ f'(x), and

Llf - df = Llf - f'(x)Llx = cLlx,

which is also infinitesimal (being a product of infinitesimals). But

Llf - df = cLlx = c ~ 0,
Llx Llx

and in this sense Llf - df is infinitesimal compared to Llx (equivalently,
LJ.f:'df is unlimited). These relationships are summarised in

Theorem 8.2.2 (Incremental Equation) If f'(x) exists at real x and
Llx = dx is infinitesimal, then Llf and df are infinitesimal, and there is an
infinitesimal c, dependent on x and Llx, such that

Llf = f'(x)Llx + cLlx = df + cdx,

and so
f(x + Llx) = f(x) + f'(x)Llx + cLlx.

o
This last equation elucidates the role of the derivative function f' as the
best linear approximation to the function f at x. For the graph of the linear
function

l(Llx) = f(x) + f'(x)Llx

gives the tangent to f at x when the origin is translated to the point (x, 0),
and l(Llx) differs from f(x+Llx) by the amount cLlx, which we saw above
is itself infinitely smaller than Llx when Llx is infinitesimal, and in that
sense is "negligible".
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8.3 Rules for Derivatives

If f and 9 are differentiable at x E JR, then so to are f + g, f g, and f / g,
provided that g(x) i- O. Moreover,

(1) (f + g)'(x) = f'(x) + g'(x),

(2) (fg)'(x) = f'(x)g(x) + f(x)g'(x),

(3) (f Ig)'(x) = f'(x)g(x) - f(x)g'(x).
g(X)2

Proof We prove Leibniz's rule (2), and leave the others as exercises.
If L1x i- 0 is infinitesimal, then, by Theorem 8.1.1, f(x + L1x) and g(x +

L1x) are both defined, and hence so is

(fg)(x + L1x) = f(x + L1x)g(x + L1x).

Then the increment of f 9 at x corresponding to L1x is

L1(fg) f(x + L1x)g(x + L1x) - f(x)g(x)

(f(x) + L1f)(g(x) + L1g) - f(x)g(x)

(L1f)g(x) + f(x)L1g + L1fL1g

(compare this to Leibniz's reasoning as discussed in Section 1.2). It follows
that

L1(fg)
L1x ~~g(x) + f(x) ~; + L1f~;

~ f'(x)g(x) + f(x)g'(x) + 0,

since ~ ~ f'(x), ~ ~ g'(x), L1f ~ 0 and all quantities involved are
limited.

Hence by Theorem 8.1.1, f'(x)g(x) + f(x)g'(x) is the derivative of fg
at x. 0

8.4 Chain Rule

If f is differentiable at x E JR, and 9 is differentiable at f(x), then go f is
differentiable at x with derivative g' (f (x)) f' (x) .

Proof Let L1x be a nonzero infinitesimal. Then f(x + L1x) is defined and
f(x + L1x) ~ f(x), as we saw in Section 8.2. But 9 is defined at all points
infinitely close to f(x), since g'(f(x)) exists, so (g 0 f)(x + L1x) = g(f(x +
L1x)) is defined.
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Now let

L1f = f(x + L1x) - f(x),

L1(g 0 f) = g(f(x + L1x)) - g(f(x))

be the increments of f and go f at x corresponding to L1x. Then L1f is
infinitesimal, and

L1(g 0 f) = g(f(x) + L1f) - g(f(x)),

which shows, crucially, that

L1(gof) is also the increment ofgat f(x) corresponding to L1f.

In the full incremental notation, this reads

L1(g 0 f)(x, L1x) = L1g(f(x), L1f).

By the incremental equation (Theorem 8.2.2) for g, it then follows that
there exists an infinitesimal c: such that

L1(g 0 f) = g'(f(x))L1f + c:L1f.

Hence

L1(g 0 f)
L1x g'(f(x)) ~~ + c: ~~

g'(f(x))f'(x) + 0,
establishing that g'(f(x))f'(x) is the derivative of 9 0 f at x.

8.5 Critical Point Theorem

o

Let f have a maximum or a minimum at x on some real interval (a, b). If
f is differentiable at x, then f' (x) = O.
Proof Suppose f has a maximum at x. By transfer,

f(x + L1x) ::; f(x)

for all infinitesimal L1x. Hence if c: is positive infinitesimal and 8 is negative
infinitesimal,

f'(x) ~ f(x + c:l- f(x) ::; 0 ::; f(x + 8~ - f(x) ~ f'(x),

and so as f'(x) is real, it must be equal to O.
The case of f having a minimum at x is similar. 0

Using the critical point and extreme value theorems, the following re­
sults can be successively derived about a function f that is continuous on
[a, b] ~ IR and differentiable on (a, b). The proofs do not require any further
reasoning about infinitesimals or limits.
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• Rolle's Theorem: if f(a) = f(b) = 0, then f'(x) = 0 for some x E
(a, b).

• Mean Value Theorem: for some x E (a,b),

f'(x) = f(b) - f(a).
b-a

• If f' is zero/positive/negative on (a, b), then f is constant/increasing/
decreasing on [a, b].

8.6 Inverse Function Theorem

Let f be continuous and strictly monotone (increasing or decreasing) on
(a, b), and suppose 9 is the inverse function of f. If f is differentiable
at x in (a, b), with f' (x) =I- 0, then 9 is differentiable at y = f (x), with
g'(y) = 1/ f'(x).

Proof Using the intermediate value theorem and monotonicity of f it can
be shown that 9 is defined on some real open interval around y. The result
g'(f(x» = 1/f'(x) would follow easily by the chain rule applied to the
equation g(f(x») = x if we knew that 9 was differentiable at f(x). But
that is what we have to prove!
Now let L:Jy be a nonzero infinitesimal. We need to show that

g(y + L:Jy) - g(y) 1
L:Jy ~ f'(x)'

Now, if g(y + L:Jy) were not infinitely close to g(y), then there would be a
real number r strictly between them. But then, by monotonicity of f, f(r)
would be a real number strictly between y + L:Jy and y. Since y is real, this
would mean that y + L:Jy and y were an appreciable distance apart, which
is not so. Hence

L:Jx = g(y + L:Jy) - g(y)

is infinitesimal and is nonzero. (Thus the argument so far establishes that
9 is continuous at y.) Observe that L:Jx is, by definition, the increment
L:Jg(y, L:Jy) of 9 at y corresponding to L:Jy.
Since g(y) = x, the last equation gives g(y + L:Jy) = x + L:Jx, so

f(x + L:Jx) = f(g(y + L:Jy» = y + L:Jy.

Hence

L:Jy f(x + L:Jx) - f(x)

L:Jf, the increment of f at x corresponding to L:Jx.
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Altogether we have
L1f(x, L1x) L1y

L1x L1x
and

L1g(y, L1y) L1x L1x
L1y L1y L1f'

Put more briefly, we have shown that

L1g 1
L1y = L1f/L1x .

To derive from this the conclusion g'(y) = 1/ f'(x) we invoke the hypoth­
esis that f'(x) :f. 0 (which is essential: consider what happens at x = 0
when f(x) = x3 ). Since sh(L1f/L1x) = f'(x), it follows that L1f/L1x is
appreciable. But then

Therefore,
L1g(y, L1y) L1x 1---::.....:..:.,..;----''-'- = - ~ --

L1y L1y - f'(x)"

Because L1y is an arbitrary nonzero infinitesimal, this establishes that the
real number 1/ f'(x) is the derivative of gat y, as desired. 0

8.7 Partial Derivatives

Let z = f(x, y) be a real-valued function of two variables, with partial
derivatives denoted by fx and fy. At a real point (a, b), fx(a, b) is the
derivative of the function x 1--+ f(x, b) at a, while fy(a, b) is the derivative
of y 1--+ f(a, y) at b. Thus for nonzero infinitesimals L1x, L1y,

fy(a, b)

f(a + L1x, b) - f(a, b)
L1x

f(a, b+ L1y) - f(a, b)
L1y

Points (XI,yt) and (X2,Y2) in the hyperreal plane *JR2 are infinitely close
if both Xl ~ X2 and YI ~ Y2, which is equivalent to requiring that their
Euclidean distance apart,

J(XI - X2)2 + (YI - Y2)2,
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be infinitesimal.
The function f is continuous at the real point (a, b) if (x, y) ~ (a, b)

implies f(x, y) ~ f(a, b) for all hyperreal x, y. For this to hold it is necessary
that f be defined on some open disk about (a, b) in the real plane.
We say that f is smooth at (a, b) if f x and f y both exist and are contin­
uous at (a, b).

The increment of f at a point (a, b) corresponding to Llx, Lly is defined to
be

Llf = f(a + Llx, b + Lly) - f(a, b),

while the total differential is

df = fx(a, b)Llx + fy(a, b)Lly.

The graph of z = f(x, y) is a surface in three-dimensional space, and Llf
is the change in z-value on this surface in moving from the point (a, b) to
the point (a + Llx, b + Lly). The total differential df is the corresponding
change on the tangent plane to the surface at (a, b).

Theorem 8.7.1 (Incremental Equation for Two Variables) If f is
smooth at the real point (a, b) and Llx and Lly are infinitesimal, then

Llf = df + €Llx + I5Lly

for some infinitesimals € and 15.

Proof The increment of f at (a, b) corresponding to Llx, Lly can be writ­
ten as

Llf = [f(a + Llx, b+ Lly) - f(a + Llx, b)] + [f(a + Llx, b) - f(a, b)]. (ii)

The second main summand of (ii) is the increment at a corresponding to
Llx of the one-variable function x 1-+ f(x, b), whose derivative fx(a, b) is as­
sumed to exist. Applying the one-variable incremental equation (Theorem
8.2.2) thus gives

f(a + Llx, b) - f(a, b) = fx(a, b)Llx + €Llx

for some infinitesimal €.
Similarly, for the first summand we need to show that

(iii)

f(a + Llx, b+ Lly) - f(a + Llx, b) = fy(a, b)Lly + I5Lly (iv)

for some infinitesimal 15. Then combining (ii)-(iv) will give

Llf = fx(a, b)Llx + fy(a, b)Lly + cLlx + I5Lly,

which is the desired result.
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Now the left side of equation (iv) could be described as the increment in
the function y I--t f (a + Llx, y) at b corresponding to the infinitesimal Lly.
This is not a real function, because of the hyperreal parameter a + Llx, so
the incremental equation 8.2.2 does not apply directly to it. To overcome
this we will examine the family of functions y I--t f(a + xo, y) for real xo,
and consider their increments corresponding to real increments Yo in y.
This will give a statement about Xo and Yo to which we can apply transfer
and then replace Xo and Yo by Llx and Lly.
The technical details of this are as follows. Since fx and fy are continuous
at (a, b), f must be defined on an open disk D around (a, b) of some real
radius r. Then if xo, Yo are real numbers such that (a + xo, b + Yo) ED,
the function y I--t f(a + xo, y) is defined on the interval [b, b + Yo] and is
subject to the one-variable mean value theorem. Hence there is some real Co
between band b+ Yo such that the derivative of this one-variable function
at Co is given as

f ( ) - f(a+xo,b+yo) - f(a+xo,b)
y a + xo, Co - b b '+Yo -

and so

f(a + xo, b+ Yo) - f(a + xo, b) = fy(a + xo, c)Yo, (v)

This obtains for all real xo, Yo such that (a +xo, b+Yo) is within r of (a, b).
That is, for all such xo, Yo there exists Co E [b, b + yo] such that (v) holds.
Symbolically,

(Vxo, Yo E IR)
( y''-x'''g-+-Y""'5 < r ~ (3CO E IR) [b :S Co :S b+ Yo and (v) holds]).

But (a + Llx, b+ Lly) is within r of (a, b), since Llx, Lly are infinitesimal, so
by transfer there exists some hyperreal c between band b+ Lly such that

f(a + Llx, b+ Lly) - f(a + Llx, b) = fy(a + Llx, c)Lly. (vi)

Then c ~ b, so (a + Llx, c) ~ (a, b), and hence by continuity of fy at (a, b),

fy(a + Llx, c) ~ fy(a, b).

Therefore the difference

0= fy(a + Llx, c) - fy(a, b)

is infinitesimal, with fy(a + Llx, c) = fy(a, b) + o. Applying this to (vi)
yields (iv) and completes the proof. 0
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8.8 Exercises on Partial Derivatives

(1) Show that if f is smooth at (a, b), then it is continuous at (a, b).

(2) Let f be smooth at (a, b). Given infinitesimals .1x, L\y show that
the difference between .1f and df is itself infinitely smaller than the
infinitesimal distance .1l = J .1x2 + .1y2 between (a, b) and (a +
L\x, b + .1y), in the sense that

L\f - df '" 0
.1l -.

8.9 Taylor Series

Let f be a real function and a a real number. The Taylor series of f at
x E JR, centred on a, is the series

f"(a) f(k)(a)
f(a) + j'(a)(x - a) + --(x - a)2 +... + --(x - a)k + ...

2! k! '

or more briefly, L~ j<k~!(a) (x - a)k, where f(k) is the kth derivative of f.
For this to be defined, f must be differentiable infinitely often at a, but even
if f(k)(a) exists for all kEN, the series need not converge. Even if it does
converge, the sum need not be equal to f(x). A well-known example is the
function f(x) = e- 1/

x2 with f(O) = O. This is so "flat" at the centre a = 0
that all its derivatives f(k)(O) there are equal to O. Hence the associated
Taylor series converges at all real x, but converges to f(x) only when x = O.
The partial sums of a Taylor series are the Taylor polynomials. The nth
polynomial is

~n f{k)(a) ( _ )k
LJo k! x a

f"(a) f(n)(a)
f(a) + j'(a)(x - a) + --(x - a)2 + ... + --(x - a)n.

2! n!

For any given x, the sequence (Pn(x) : n E N) extends to a hypersequence,
so Pn(x) is defined for all n E *N, Then from our earlier work on sequences
and series (Chapter 6) we see that

• the Taylor series for f at x converges to a real number L if and only
if Pn(x) ~ L for all unlimited n.

The difference between f(x) and Pn(x) is the nth remainder at x:

Rn(x) = f(x) - Pn(x). (vii)

If f is infinitely differentiable at a, then (vii) defines Rn (x) for all n EN.
The sequence (Rn(x) : n E N) then extends to a hypersequence, and by
transfer (vii) holds for all hypernatural n. Then:
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• the Taylor series for f at x converges to f(x) if and only if Rn(x) is
infinitesimal for all unlimited n.

If the derivatives f(n) exist for all n E N on some open interval J containing
a, then the sequence of functions (f(n) : n E N} extends to a hypersequence
(f(n) : n E *N} of functions defined on *J in the manner described in Section
7.12. Formally, we put F(n,x) = f(n)(x) for n E N and x E J and then by
extension get f(n)(x) = *F(n,x) for n E *N and x E *J. Then results like

_ f(n)(a) n
Pn(x) - Pn-l(X) - --,-(x - a)

n.

continue to hold for unlimited n, by transfer.
Now, the Lagmnge form of the remainder stipulates that if f can be

differentiated n +1 times on some open interval containing a, then for each
x in that interval there is some real number e between a and x such that

f (n+l) ( )
Rn(x) = e (x _ a)n+l.

(n + I)!
Thus if f is infinitely differentiable on some open interval J containing a,
then for every n E N and every x E J we have

_ f(n+l)(e) n+l
f(x) - Pn(x) - (n + I)! (x - a) (viii)

for some e between a and x. Hence by transfer, for every n E *N and x E *J,
the Taylor formula (viii) holds for some hyperreal e between a and x (e
may no longer be real). If we can show for a real x that the right side of
(viii) is infinitesimal whenever n is unlimited, it will follow that the Taylor
series of f at x converges to f (x).
Let us illustrate this with the case of the function f(x) = cosx, analysing

its Maclaurin series, which is the Taylor series at the centre a = O. For any
x E *JR and n E *N we have

(n+l)
O( ) = cos e n+l
Un X (n + I)! x

for some e with lei ~ x. Now, if n E Nand e E JR, then cos(n+l)e is ±sine
or ±cos e, and so in all cases lies between -1 and 1. This fact then holds
by transfer for any n E *N and e E *JR, so cos(n+l)e is always limited. But
if x E JR and n is unlimited,

xn +1

(n + I)!
is infinitesimal (Exercise 6.11(10)). It follows in this case that Rn(x) is
infinitesimal, and therefore (d. (vii)) f(x) ~ Pn(x). This shows that the
Maclaurin series for the cosine function converges to cos x at all real x.
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Exercise 8.9.1
Verify that the Maclaurin series for eX converges to eX at any x E lR by
proving that the remainder Rn(x) is infinitesimal when n is unlimited.

8.10 Incremental Approximation by Taylor's
Formula

The incremental equation of Theorem 8.2.2 approximates the value f(x +
.1x) by a linear function f(x) + j'(x).1x of the increment .1x, with an
error e.1x that is infinitely smaller than .1x. We will now see that there
are similar approximations by higher-order polynomials in .1x (quadratics,
cubics, quartics, etc.).
Fix a real number x and a positive integer n E N. Consider polynomials

centred at x itself. If the nth derivative f(n) exists on an open interval
J containing x, then the Taylor formula with Lagrange remainder (viii)
stipulates that for real numbers of the form x + .1x in J,

f(x + .1x)

(ix)

for some c between x and x + .1x. By transfer this holds whenever x +.1x
belongs to *J, and so it holds for any infinitesimal .1x, in which case c ~ x.
Now (ix) can be modified to give

and ij j(n) is continuous at x, then from c ~ x we infer f(n)(c) ~ j(n)(x),
implying that the number

is infinitesimal. Altogether:

Theorem 8.10.1 Ij the nth derivative j(n) exists on an open interval con­
taining the real number x, and f(n) is continuous at x, then jor any in­
finitesimal .1x,

jor some infinitesimal e. o
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In other words, the difference between f(x + Llx) and the nth-order poly­
nomial

f "(x) f(n)(x)
f(x) + 1'(x)Llx + --Llx2 + ... + Llxn

2! n!

in Llx is the infinitesimal eLlxn , which is, as Leibniz would put it (Section
1.2), infinitely small in comparison with Llxn .

Exercise 8.10.2
There are forms for the Taylor remainder other than Lagrange's. One of
these is

for some c between a and x when f(n+l) exists between a and x.
Apply this form for Rn-1(x) to show that Theorem 8.10.1 holds without
the hypothesis of continuity of f(n).

8.11 Extending the Incremental Equation

The equation
f(x + Llx) = f(x) + f'(x)Llx + eLlx

holds for any real number x at which f is differentiable. It is natural to ask
whether a similar formula holds for nonreal x, and it turns out that this is
intimately connected with the question of the continuity of the derivative
function 1'.
Let us say that a hyperreal x is well inside an interval (y, z) if y <

x < z but x is not infinitely close to either of the end points y and z.
Equivalently, this means that the halo of x is included in the interval, so
that y < x + Llx < z for all infinitesimals Llx.

Theorem 8.11.1 Let f be differentiable on an interval (a, b) in JR. Then
the derivative l' is continuous on (a, b) if and only if for each hyperreal x
that is well inside *(a, b) and each infinitesimal Llx,

f(x + Llx) = f(x) + 1'(x)Llx + eLlx

for some infinitesimal e.

Proof Assume that the incremental equation holds at points well inside
*(a, b). To prove continuity of 1', let c be a real point in (a, b) and suppose
x ~ c. We want 1'(x) ~ f'(c).
Now, if Ll = (x - c) ~ 0, then using Theorem 8.2.2 we get

f(x) = f(c + Ll) = f(c) + 1'(c)Ll + eLl
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for some e ~ O. But x is well inside *(a, b), since a < c < b and x ~ C, so by
the assumed incremental equation at x, applied to the infinitesimal -L1,
we have

I(c) = I(x + (-L1» = I(x) + j'(x)( -L1) + e'( -L1)

for some e' ~ O. Combining these equations leads to

j'(x) - j'(c) = e - e' ~ 0,

giving our desired conclusion f'(x) ~ f'(c).
The proof that continuity of I' implies the incremental equation at points
well inside *(a, b) is indicated in the following exercises, which also give an
example to show what can happen when continuity fails. 0

8.12 Exercises on Increments and Derivatives

(1) Let I be differentiable and have f' continuous on (a, b) ~ R Let x
be well inside *(a, b) and L1x ~ O.

(a) By an argument involving transfer of the standard mean value
theorem (Section 8.5), the shadow of x, and the continuity of f',
prove that

j'(x) ~ I(x + L1;; - I(x)

(b) Hence show that for some e ~ 0,

I(x + L1x) = I(x) + j'(x)L1x + eL1x. (x)

(2) Let

{

2· 1
I(x) = ~ SIll; if x ¥= 0,

if x = O.

(a) Prove that f' exists at 0 but is not continuous there.

(b) Let x = 1/(21rN) with N unlimited. Show that there is an in­
finitesimal L1x such that equation (x) of Exercise (lb) fails for
any e ~ O.

In terms of Theorem 8.11.1, note that in Exercise (2), f' is continuous on
the interval (0,1) while the infinitesimall/(21rN) at which the incremental
equation fails is not well inside *(0,1).
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The Riemann Integral

The definite integral J: f(x)dx represents the area under the graph of the
function y = f(x) between x = a and x = b. The standard way to define
this is to partition the interval [a, b] into a finite number of subintervals,
approximate the desired area by sums of areas of rectangles based on these
subintervals, and then take the limit as the number of subintervals is in­
creased.
The hyperreal perspective suggests the alternative procedure of parti­
tioning [a, b] into subintervals of infinitesimal width, in line with Leib­
niz's conception of the expression Jy dx-with J as an elongated "8" for
"sum"-as meaning the sum of all the infinitely thin rectangles of size
y x dx. In order to develop this approach we will first review the standard
definition of the integral that is associated with Riemann.

9.1 Riemann Sums

Let f be a function that is bounded on [a, b] in R A partition of [a, b] is
a finite set P = {xo, ... ,xn } with a = Xo < ... < Xn = b. Let Mi and
mi be the least upper bound and greatest lower bound of f on [Xi-I, Xi],
respectively, and LlXi = Xi - Xi-I. Define the

• upper Riemann sum: uiU, P) = E~=l MiLlxi;

• lower Riemann sum: L~U, P) = E~=l miLlxi;

• ordinary Riemann sum: S~U, P) = E~l f(Xi-dLlxi'
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If M and m are the least upper bound and greatest lower bound of f on
[a, b], then

m(b - a) :::; L~(f, P) :::; S~(f, P) :::; U~(f, P) :::; M(b - a).

Also, by using refinements of partitions it is shown that any lower sum is
less than or equal to any upper sum:

L~(f, PI) :::; U~(f, P2 ).

We say that f is Riemann integrable on [a, bl with integral J: f(x )dx if the
latter is a real number equal to the least upper bound of the lower sums
L~(f, P) and also to the greatest lower bound of the upper sums U~(f,P)
taken over all partitions P of [a, bl. This holds iff

(1) L~(f, P) :::; J: f(x)dx :::; U~(f, P) for all partitions P; and

(2) for any real e > 0 there is a partition P with U~(f, P) - L~(f, P) < e.

For a given positive real Llx, let PL!.x = {xo, . .. ,xn } be the partition

[a, xII, . .. , [Xn -2' xn -I1
of [a, bl into subintervals of equal width Llx, together with a (possibly
smaller) last subinterval [xn -ll bl. This is given by taking n to be the least
integer such that a +nLlx ~ b, and Xk = a + kLlx for k < n. The partition
PL!.x is uniquely determined by the number Llx (observe that if Llx ~ b- a,
then n = 1, and we just get PL!.x = {a, b}).
Now let U~(f, Llx), L~(f, Llx), S~(f, Llx) be the upper, lower, and or­

dinary Riemann sums for this partition. These quantities can be regarded
as functions of the real variable Llx, defined on ~+. Hence these functions
extend automatically to *~+. In particular, they are defined for all positive
infinitesimals, giving a hyperreal meaning to the notion of Riemann sums
for infinitesimal width partitions. For instance, we may informally think of
S~ (f, Llx) as being the "sum"

f(xo)Llx + f(XI)Llx + ... + f(Xn-2)Llx + f(Xn-I)(b - xn-d,

where n is the least hyperinteger such that a + nLlx ~ b. Wher Llx is
infinitesimal, this n will be unlimited. (In Section 12.7 we will analyse this
informal view further, and express S~(f, Llx) as a "hyperfinite sum" over
a "hyperfinite partition" .)
The relationships

m(b - a) :::; L~(f, Llx) :::; S~(f, Llx) :::; U~(f, Llx) :::; M(b - a)

hold for all Llx E ~+, and hence by universal transfer hold for all positive
hyperreal Llx, including positive infinitesimals. Similarly we have

L~(f, Llx) :::; U~(f, Lly)

for all Llx, Lly E *~+.
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Theorem 9.1.1 If f is continuous on the real interval [a, b], then for any
positive infinitesimal Llx, L~(f, Llx) ~ U~(f, Llx).

Proof. The key to this is the fact that

U~(f, Llx) - L~(f, Llx) = EZ:l (Mi - mi)Llxi.

We will find an upper bound of the right side of this equation that has the
form

[f(c) - f(d)](b - a),

where c, d are two numbers that are smaller than Llx. When Llx is infinites­
imal, the continuity of f then ensures that f(c) ~ fed), making our upper
bound infinitesimal.
By a method that is now becoming familiar, we first formalise the real
version of this construction, and then apply transfer. For positive real Llx,
let p,(Llx) be the maximum of the numbers Mi - mi for 1 ~ i ~ n in
the partition determined by Llx. Mi - mi is the oscillation of f on the
ith interval, so p,(Llx) is the largest oscillation on any subinterval of the
partition.

If p,(Llx) = Mj - mj, let c(Llx) and d(Llx) be the points in [Xj-l, Xj]
where M j and mj are attained. Existence of these points is guaranteed
by the extreme value theorem 7.6, because f is continuous on the closed
interval [Xj_l,Xj]' Then

p,(Llx) = f(c(Llx)) - f(d(Llx)),

and

Hence

and so

Ic(Llx) - d(Llx) I~ Llx.

U~(f, Llx) - L~(f, Llx) EZ:l (Mi - mdLlxi

< E~=l p,(Llx)Llxi

p,(Llx) E~=l LlXi
p,(Llx)(b - a),

(i)

U~(f, Llx) - L~(f, Llx) ~ [J(c(Llx)) - f(d(Llx))] (b - a). (ii)

Thus we have shown that for all real Llx > 0 there exist c(Llx), d(Llx) E
[a, b] such that (i) and (ii) hold. But then this transfers to *~. Choosing
Llx to be a positive infinitesimal, the transfer of (i) gives c(Llx) ~ d(Llx)
in *[a, b], so by taking their shadow we get a real r E [a, b] with

c(Llx) ~ r ~ d(Llx).
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Then by continuity of f,

f(c(Llx)) ~ fer) ~ f(d(Llx)),

so f(c(Llx)) - f(d(Llx)) is infinitesimal (this is just a repetition of the
proof from Theorem 7.7.2 that f is uniformly continuous on [a,b]). Since
(b - a) is limited, transfer of (ii) then implies that ug(j, Llx) - L~(j, Llx)
is infinitesimal, as desired. 0

Exercise 9.1.2 (Monotonic Functions)
Suppose that f is nondecreasing on [a,b] in the sense that f(x) < fey)
whenever x ::; y. Show that for Llx E 1R+,

U~(j, Llx) - L~(j, Llx) ::; Llx(j(b) - f(a)).

Similarly, if f is nonincreasing in the sense that f(x) ~ fey) whenever
x ::; y, show that

U~(j, Llx) - L~(j, Llx) ::; Llx(j(a) - feb)).

A function is monotonic on [a, b] if it is either nondecreasing or else nonin­
creasing. Prove that Theorem 9.1.1 holds for monotonic functions as well
as for continuous ones.

9.2 The Integral as the Shadow of Riemann Sums

It will now be shown that any continuous or monotonic function on a
closed interval in IR is Riemann integrable (note that any such function is
bounded).
Let LlX1 and LlX2 be positive infinitesimals, with associated lower sums

L1, L2 and upper sums U1,U2 for a continuous or monotonic function f
on [a, b]. Then L 1 ::; U1 and L2 ::; U2 • But since real upper sums dominate
all real lower sums, and this continues to be true in the hyperreal case by
transfer, we also have L2 ::; U1 and L 1 ::; U2 • Thus the possible relationships
are

or

or the corresponding statements with the subscripts interchanged. But
L 1 ~ U1 and L 2 ~ U2 by Theorem 9.1.1 or Exercise 9.1.2, so it follows
that in any case
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Also, since the associated ordinary Riemann sums lie between their corre­
sponding upper and lower sums, these are also infinitely close:

S~(f, .dXl) ~ S~(f, .dX2)'

Altogether then, the Riemann sums determined by arbitrary positive in­
finitesimals are all infinitely close to each other, and moreover are bounded
above and below by the real numbers m(b - a) and M(b - a), so are all
limited, and hence have the same shadow. Thus we may conveniently define

J: f(x)dx = sh(S~(f, .dx)) (iii)

for any positive infinitesimal .dx.
Now we show that this definition fulfills the characterising conditions (1)
and (2) of Section 9.1 for Riemann integrability. First observe that if P is
any standard partition of [a, b], then taking an infinitesimal .dx yields

L~ (f, P) ::; U~(f, .dx) ~ J: f(x)dx ~ L~(f, .dx) ::; U~(f, P),

and so as L~(f, P) and U~(f, P) are real,

L~(f, P) ::; J: f(x)dx ::; U~(f, P).

Secondly, given a positive e E JR then by Theorem 9.1.1 there exists a
hyperreal .dx (namely any positive infinitesimal) such that

U~(f, .dx) - L~(f, .dx) < e,
and so by existential transfer this holds for some real .dx.
This completes our proof using infinitesimals that a continuous or mono­

tonic function f is Riemann integrable on [a, b], with integral defined as in
(iii).

Notice that (iii) implies the standard characterisation of the integral as
a limit: J: f(x)dx = limLlx->O+ S~(f, .dx).

Here S~(f, .dx) was obtained formally as the extension of a standard func­
tion. In Section 12.7 we will see how to obtain it by a more explicit summa­
tion of terms f (x).dx, with .dx infinitesimal, over a "hyperfinite" partition
of [a,b].

If a function f is Riemann integrable on [a, b], then in the standard
theory it is shown that the upper and lower sums approximate each other
arbitrarily closely, by showing that for any given e E JR+ there exists a
DE JR+ such that

(V.dx E JR+) (.dx < D implies U~(f, .dx) - L~(f, .dx) < e).

Transferring this and taking .dx to be infinitesimal, we get U~(f, .dx) ­
L~(f, .dx) < e. Since e is an arbitrary member of JR+ here, it follows that
U~(f, .dx) and L~(f, .dx) are infinitely close. Hence
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ug(f, Llx) ::= L~(f, Llx) for all positive infinitesimals Llx.

But it was just this property that enabled us to obtain J: f(x)dx by the
definition (iii). The property is therefore equivalent to Riemann integrabil­
ity of a bounded function f on [a, b].

Exercise 9.2.1
For each (standard) n E N, let ug(f, n), L~(f,n), S~(f, n) be the upper,
lower, and ordinary Riemann sums for the partition determined by the
number Llx = b-;;a. Prove that if n E *N is unlimited, then

L~(f,n)::= S~(f,n)::=Ui(f,n).

Show how the definition and proof of existence for the Riemann integral
could be developed just using these functions of (hyper)natural numbers.

9.3 Standard Properties of the Integral

If f and 9 are integrable on [a, b] in JR, then

•J: cf(x)dx = cJ: f(x )dx.

• J: f(x) + g(x)dx = J: f(x)dx + J: g(x)dx.

• J: f(x)dx = J: f(x)dx + J: f(x)dx if a ~ c ~ b.

•J: f(x)dx ~ J: g(x)dx if f(x) ~ g(x) on [a,b] .

• m(b - a) ~ J: f(x)dx ~ M(b - a) if m ~ f(x) ~ M on [a,b].

Here is a concise proof via infinitesimals of the third (juxtaposition) prop­
erty. If Llx = (c - a)jn with n E N, then it is readily seen that

S~(f, Llx) = S~(f, Llx) + S~(f, Llx). (iv)

Hence by transfer, this equation holds when Llx = (c - a)/N with N
unlimited in *N. But then Llx is infinitesimal, so applying the shadow map
to (iv) and invoking (iii) gives the result.

Exercise 9.3.1
Derive proofs in this vein for the other properties of the integral listed
above.
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9.4 Differentiating the Area Function

Integration and differentiation are processes springing from quite different
intuitive sources, but they are intimately related and, as every calculus stu­
dent knows, are in a sense inverses of each other: differentiating the integral
gives back the original integrand. This fundamental result is explained by
examining the area function F, defined by

F(x) = J:f(t)dt

for x E [a, b], where f is continuous on [a, b]. The key to the relationship
between differentiation and integration is the following fact.

Theorem 9.4.1 The function F(x) = J:f(t)dt is differentiable on [a,b],
and its derivative is f.

(This includes the right- and left-hand derivatives at the end points of the
interval.)

There is a very intuitive explanation of why this relationship should hold.
The increment

i1F = F(x + i1x) - F(x)

of F at x corresponding to a positive infinitesimal i1x is closely approxi­
mated by the area of the rectangle of height f(x) and width i1x, i.e, by
f(x)i1x. Thus the quotient 1~ should be closely approximated by f(x)
itself.
Does "closely approximate" here mean 1~ ~ f(x)? Well, observe that

i1F is bounded above and below by f(Xl)i1x and f(X2)i1x, where Xl and
X2 are points where f has its greatest and least values between x and
x + i1x, so 1~ lies between f(xd and f(X2)' But Xl and X2 are infinitely
close to x, hence by continuity f(Xl) and f(X2) are infinitely close to f(x),
and therefore so is 1~.

We will now use transfer to legalise this intuitive approximation argu­
ment. First, if i1x is a positive real number less than b - x, then by juxta­
position of the integrals,

F(x + i1x) - F(x) = J:+6.X f(t)dt.

But on the interval [x, x + i1x], f attains maximum and minimum values
at some points Xl and X2, and so

Hence

f( ) F(x + i1x) - F(x) f( )
X2 :s: i1x :s: Xl· (v)
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Thus for all real ..1x E (0, b - x) there exist Xl, X2 such that X :5 Xl, X2 :5
x+..1x, and (v) is true. Hence by transfer, if ..1x is any positive infinitesimal,
then there are hyperreal XI, X2 E [x, X+ ..1x) for which (v) holds. But now
X ~ X + ..1x, so Xl ~ X ~ X2, and hence by the continuity of f at x,
f(xd ~ f(x) ~ f(X2), from which (v) yields

F(x + ..1x) - F(x) rv f( )
..1x - x.

Similarly, this conclusion can be derived for any negative infinitesimal ..1x.
It follows (Theorem 8.1.1) that f(x) is the derivative of F at x, proving
Theorem 9.4.1.

Theorem 9.4.2 Fundamental Theorem of Calculus. If a function G
has a continuous derivative f on [a, b), then J: f(x)dx = G(b) - G(a).

Proof This follows from Theorem 9.4.1 by standard arguments that re­
quire no ideas of limits or infinitesimals. For if F(x) = J: f(t)dt, then on
[a, b] we have (G(x) - F(x))' = f(x) - f(x) = 0, so there is a constant
c with G(x) - F(x) = c. This implies G(b) - G(a) = F(b) - F(a). But
F(b) - F(a) = J: f(t)dt. 0

9.5 Exercise on Average Function Values

Let f be continuous on [a, b) ~ JR. Define the "sample average" function
Av by putting, for each n E N,

A ( )
_ f(xo) + ... + f(xn-d

v n - ,
n

where Xi = a + i(b - a)/n.
Prove that if N E *N is unlimited, then

1 l b

Av(N) ~ b _ a a f(x)dx

(Le., the average value of f on [a, b) is given by the shadow of Av(N)).



10
Topology of the Reals

Abstract topology studies the the notions of nearness and proximity of
points by axiomatising the concept of an open neighbourhood of a point.
Intuitively, an open set is one with the property that if it contains a point
x, then it contains all points near x. In the hyperreal context we can make
this idea quite explicit by taking "near" to mean "infinitely close". As we
shall see, this leads to a very natural formulation and treatment of many
topological ideas.

10.1 Interior, Closure, and Limit Points

If A ~ JR and r E JR, then the following are standard definitions:

• r is an interior point of A if (r - €, r + €) ~ A for some real € > o.
The interior of A is the set AO of interior points of A.

• r is a closure point of A if (r - €, r + €) intersects A for every real
€ > O. The (topological) closure of A is the set A of closure points of
A.

• r is a limit point of A if for every real € > 0, (r - €, r +€) intersects A
in a point other than r. The set A' of limit points of A is the derived
set of A.

It follows readily from these definitions that

AO ~ A ~ A = A U A'.
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Now, r is an interior point of A if all points within some positive real
distance of r belong to A. Our discussion of permanence in Section 7.10
suggests that this property should be equivalent to requiring that all points
infinitely close to r should belong to *A. This is confirmed by the first part
of the next result.

Theorem 10.1.1 If A ~ JR. and r E JR.,

(1) r is interior to A if and only ifr ~ x implies x E *A, i.e., iff hal(r) ~
*A.

(2) r is a limit point of A if and only if there is an x f:. r such that
r ~ x E *A, i.e., iff hal(r) n *A contains a point other than r.

(3) r is a closure point of A if and only if r is infinitely close to some
x E *A, i.e., iff hal(r) n *A is nonempty.

Proof

(1) Let r E AO. Then (r - e, r + c) ~ A for some real e > O. Then the
sentence

(Yx E JR.) (Ir - xl < e--+ x E A) (i)

is true. But now if r ~ x in *JR., then Ir - xl < e, so by universal
transfer of (i), x E *A. This shows that hal(r) ~ *A. (An alternative
way of putting this is to observe that hal(r) ~ *(r - e, r + c) ~ *A.)

Conversely, if hal(r) ~ *A, then the sentence

(3e E *JR.+) (Yx E *JR.) (lr - xl < e --+ x E *A)

is seen to be true by interpreting e as any positive infinitesimal. But
then by existential transfer there is some real e > 0 for which (i)
holds, so (r - e,r + c) ~ A and hence r E AO.

(2) If rEA', then the sentence

(Ye E JR.+) (3x E JR.)(x f:. r 1\ Ir - xl < e 1\ x E A) (ii)

is true. Now take e to be a positive infinitesimal. Then by transfer of
(ii), there is a hyperreal x f:. r with Ir - xl < e, whence r ~ x, and
x E *A.

Conversely, suppose there exists x E hal(r) n *A with x f:. r. Then if
e > 0 is real, Ir - xl < e, since r ~ x, and thus the sentence

(3x E *JR.) (x f:. r 1\ Ir - xl < e1\ x E *A)

is true. By transfer then, there exists a real number distinct from r
that belongs to (r - e, r + c) n A. This shows that r is a limit point
of A.
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(3) If rEA, then either rEA, in which case r E hal(r) n *A, or else
rEA', in which case hal(r) n *A =f 0, again by part (2).
Conversely, if there exists x E hal(r) n *A, then either x = r, so r E
*AnJR = A, or else x =f r, and so rEA' by (2). Thus r E AuA' = A.

o

10.2 Open and Closed Sets

If A ~ JR, then

• A is open if all its points are interior to it, Le., A 0 = A.

• A is (topologically) closed if it contains ali its closure points, i.e.,
A = A. Since A = A u A', this is equivalent to requiring that A
contain all its limit points, Le., A' ~ A.

In view of Theorem 10.1.1, it follows that

• A is open if and only if for all rEA, if x is infinitely close to r, then
x E *Aj

• A is closed if and only if for all real r, if r is infinitely close to some
x E *A, then rEA.

Theorem 10.2.1

(1) A is open in JR if and only if its complement AC = JR - A is closed in
R

(2) The collection of open sets is closed under finite intersections and
arbitrary unions.

(3) The collection of topologically closed sets is closed under finite unions
and arbitrary intersections.

Proof

(1) Observe that x E *(N) iff x tJ. *A, by transfer of

(\ix E JR)(x E AC
foot X tf. A).

Suppose AC is closed. To show A is open, let x ~ rEA. Then we
must show x E *A.

Now, if x E *(AC), then we would have r ~ x E *(AC), making r a
closure point of Ac, so as A C is closed, rEAc, contradicting rEA.
Thus we must have x tf. *(AC), implying x E *A, as desired, by the
above observation.

The converse is similar, and given as an exercise.
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(2) Let AI, ... , An be open. If x ':::= rEAl n ... n An, then for each i,
x ':::= r E Ai, and so x E *Ai . Hence

x E *AI n ... n *An = *(AI n ... nAn).

This shows that Al n··· n An is open.

Now let {Ai: i E I} be a collection of open sets. If x ':::= r E UiE1 Ai,
then for some j, x ':::= r E A j , so x E *Aj ~ *(UiEI Ai)' Hence UiEI Ai
is open.

(3) Exercise.
o

Theorem 10.2.2 For any real number r,

hal(r) = n{*A : rEA and A is open}.

Proof. We have already observed that if rEA ~ JR and A is open, then
hal(r) ~ *A. On the other hand, if x ¢. hal(r), then x ':j!. r, so there must
exist some real c > 0 such that Ir - xl > c. Put A = (r - c,r + c) ~ JR.
Then rEA and A is open, but x ¢. *A = {y E *JR: Ir - yl < c}.

o

A topology on a set X is defined axiomatically to be a collection of subsets
of X that includes 0 and X and is closed under finite intersections and
arbitrary unions. The members of this collection are declared to be the open
sets, and their complements are called closed. In such a setting it is possible
to study any topological idea that can be characterised by properties of
open and closed sets, even in the absence of a notion of numerical distance
between points. For instance, the halo of a point rEX could be defined
by the equation of Theorem 10.2.2, leading to a nonnumerical account of
"infinite closeness" of points.

Exercise 10.2.3
Show that the proof of 10.2.1(2) does not work for infinite intersections by
showing that

10.3 Compactness

A set B ~ JR is compact if every open cover of B has a finite subcover, i.e.,
if whenever B ~ UiEI Ai and each Ai is open in JR, then there is a finite
J ~ I such that B ~ UiEJ Ai'



10.3 Compactness 117

This concept does not appear out of thin air. It emerged from studies
in the nineteenth century of bounded and closed intervals in the real line,
leading to a proof that such intervals are compact in the sense just de­
fined (Heine-Borel theorem). Since the definition refers only to open sets,
it becomes the appropriate one to use for an abstract topological space
where there is no notion of numerical distance to specify the notion of
boundedness.

Robinson's Compactness Criterion. B is a compact subset of IR if
and only if every member of *B is infinitely close to some member of B,
i.e., iff

*B ~ Uhal(r).
rEB

Since the members of B are all real, the only such member that a given
x E *B could be infinitely close to is its shadow. Thus another way to state
Robinson's criterion is

if x E *B, then x is limited and sh(x) E B.

This criterion gives an intuitively appealing and useful characterisation
of the notion of compactness. Constructions involving open covers are re­
placed by elementary reasoning about hyperreal points. For instance:·

• The open interval (0, 1) ~ IR is not compact, because if € is a positive
infinitesimal, then € E *(0,1) as°< € < 1, but € is not infinitely close
to any member of (0,1) because its shadow is°tj. (0,1).

• Any closed interval [a, b] ~ IR is compact, because if x E *[a, b], then
a ~ x ~ b, so x is limited and its shadow r must also satisfy a ~ r ~ b.
Thus x ~ r E [a,b].

• Any finite set is compact, because if B is finite, then *B = B, so each
member of *B is infinitely close to itself in B.

• If B ~ IR is unbounded above, in the sense that

('<Ix E 1R) (3y E B) (x < y),

then B cannot be compact: taking any unlimited x E *1R, by transfer
there exists y > x with y E *B. Then y is unlimited, so cannot be
infinitely close to any member of B. Similarly, B cannot be compact
if it is unbounded below.

Altogether then, a compact set must be bounded above and below.

• If B is not closed, then B cannot be compact: it must have a closure
point r that does not belong to B. As a closure point, r is infinitely
close to some x E *B. But then x is not infinitely close to any member
of B, since sh(x) = r tj. B.
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Hence a compact set must be closed.

Proof of Robinson's Criterion.

We will show that Robinson's criterion fails if and only if the standard
definition of compactness fails.

If Robinson's criterion fails, there is a hyperreal b E *B that is not
infinitely close to any member of B. Then for each rEB, b 't r, so there
must be a real Cr > 0 such that Ib - rl ;::: Cr' Then {(r - Cr, r + cr) : rEB}
is an open cover of B. But this cover can have no finite subcover: if, say,

then by properties of enlargements of sets (3.10),

Since b E *B, it then follows that b E *(ri -cr;, ri +crJ, and hence Ib-rd <
cr, for some i, contradicting the definition of cr;' Thus compactness fails
for B.
For the converse, suppose B is not compact, so that there is an open

cover C = {Ai : i E I} of B that has no finite subcover. Each r in B
belongs to A j for some j E I, and hence r E (r - c,r + c) ~ A j for some
c E jR+ because A j is open. But then using the density of the rationals we
can find some rational numbers P, q with r E (p, q) ~ Aj . This shows that
there is an open cover C' of B by intervals with rational end points, each of
which is included in a member of C. Because the rationals are countable,
there are only countably many intervals with rational end points, so we can
enumerate C' and write

where (Pn : n E N) and (qn : n E N) are sequences of rational numbers.
Now, C' includes no finite subcovering of B, or else this would lead to a

finite subcover from C, since each member of C' is included in a member of
C. Thus for each kEN,

We can express this fact by the following true sentence:

(Vk E N) (3x E B) (Vn E N) [n ~ k ---+ -'(Pn < X < qn)].

Now take an unlimited K E *N. Then by transfer there exists some hyper­
real x E *B such that the statement Pn < X < qn is false for all n E *N
with n ~ K. In particular, Pn < X < qn is false for all standard n. But now
x cannot be infinitely close to any rEB, because such a point r belongs
to (Pn, qn) for some n E N, and so if x ~ r, then Pn < X < qn' Hence
Robinson's criterion fails, and the proof is complete. 0
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Robinson's criterion can be established for abstract compact topological
spaces (and leads to a beautifully simple proof of Tychonoff's theorem that
the product of compact spaces is compact). In that context the reduction
to a countable cover via the density of Ql in JR is not generally applicable,
and instead a special principle of hyperreal analysis, known as enlargement
(cf. Chapter 14), is needed to establish the criterion.

Theorem 10.3.1 (Heine-Borel) A set B ~ JR is compact if and only if
it is closed and bounded.

Proof We have already seen that if B satisfies Robinson's criterion, then
it is closed and bounded (above and below).
Conversely, if B is closed and bounded, then there is some real b such
that

(Vx E B) ( Ixl ::; b).

Now, to prove Robinson's criterion, suppose x E *B. Then by transfer,
Ixl ::; b E R Hence x is limited, and so has a shadow r E JR. Then r ~
x E *B, and so rEB because B is closed. Thus we have shown that x is
infinitely close to the member r of B, proving that B is compact. 0

Exercise 10.3.2
Use Robinson's criterion to prove that in JR a closed subset of a compact
set is compact.

10.4 Compactness and (Uniform) Continuity

Compactness is an inherently topological notion, being preserved by con­
tinuous transformations. Here is a simple hyperreal proof of that fact.

Theorem 10.4.1 The continuous image of a compact set is compact.

Proof Let f be a continuous real function, and B a compact subset of JR
included in the domain of f. Now, it is true, by definition of f(B), that

(Vy E f(B» (3x E B) (y = f(x».

Thus by transfer, if y E *(/(B», then y = f(x) for some x E *B. Since B
is compact, x ~ r for some rEB. Then by continuity of f, f(x) ~ f(r),
Le., y is infinitely close to f(r) E f(B). This shows by Robinson's criterion
that f(B) is compact. 0

In Theorem 7.7.2 it was shown that a continuous function on a closed inter­
val [a, b] is uniformly continuous. We can now see that it is the compactness
of [a, b] that accounts for this phenomenon:
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Theorem 10.4.2 IJ f is continuous on a compact set B ~ R, then J is
uniJormly continuous on B.

Proof By Theorem 7.7.1 we have to show that for all x,y E *B,

x::= y implies J(x)::= f(y).

But if x, y E *B, then by compactness x ::= rEB and y ::= s E B for some
r, s. Thus if x ::= y, then r ::= s, and so r = s, as both are real. Hence by
continuity of fat rEB, f(x) ::= f(r) and f(y) ::= f(r), whence f(x) ::= J(y)
as desired. D

10.5 Topologies on the Hyperreals

There is no canonical way to extend the definitions of interior, closure,
and limit point-and hence the definitions of open and closed sets-to
general subsets of *lR. These definitions depend on the concept of an open
neighbourhood (r - c:, r + c:) of a point r, and one option would be to
allow r to be any member of *R but to continue to require that the radius
c: be a positive real number. Here (r - c:, r + c:) is the hyperreal interval
{x E *R : r - c: < x < r + c:}, and we call it a real-radius neighbourhood of
r when c: is a real number.
Thus a subset of *R will be called real-open if it is a union of real­
radius neighbourhoods. Examples of real-open sets include the sets of lim­
ited numbers, unlimited numbers, positive (respectively negative) unlimited
numbers, appreciable numbers, positive (respectively negative) appreciable
numbers, and any galaxy (Section 5.4).
The class of real-open sets is closed under arbitrary unions, but is not
a topology on *R because it is not closed under finite intersections. For
instance, if (r - c:, r + c:) and (8 - b,8 + b) are real-radius neighbourhoods
that overlap in such a way that 8 - b is infinitely close to r + c:, then the
intersection (8 - b, r + c:) has infinitesimal width and so does not contain
any real-radius neighbourhoods, hence is not real-open.
This suggests that the overlaps between real-radius neighbourhoods are
in some sense "too small". One way to remedy this is to modify the neigh­
bourhoods by removing those members that are infinitely close to the end
points, retaining those that are well inside the interval (as defined in Sec­
tion 8.11), thereby forcing any overlaps to be appreciable. To formalise this,
put

{x E *R : x is well inside (r - c:, r + c:)}
{x E *R : hal(x) ~ (r - c:, r + c:)}.

A set of the form ((r-c:, r+c:)) with real c: will be called an S-neighbourhood,
and an S-open set is one that is a union of S-neighbourhoods. The S-open
sets form the S-topology on *R, first introduced by Abraham Robinson.
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(The "S-" prefix here is for "standard" and is typically used when a stan­
dard concept, or the nonstandard characterisation of some standard con­
cept, is applied more widely to nonstandard entities. In Theorem 11.14.4,
S-openness of a set B will be related to the notion of B being open when
it includes the halo of each of its points.)
Note that when c: E 1R+, each point of «r - c:,r+ c:)) is of appreciable
distance from r - c: and from r +c:. Alternatively, we can define «r - c:, r +c:))
as consisting of those points x whose distance from r is appreciably less than
c:, in the sense that

shlr - xl < c:,

i.e., c: - Ir - xl is appreciable. The intersection of two S-neighbourhoods
«r - c:, r + c:)) and «s - 0, s + 0)) is S-open, because if t belongs to this
intersection, then

«t - " t +,)) ~ «r - c:, r + c:)) n «s - 0, s + 0)),

where, is any positive real number such that

, :::; min{ c: - shlr - tl, 0 - shls - tl}·

From this it follows that the intersection of S-open sets is S-open.

Exercise 10.5.1
Show that

(i) any S-open set is real-open;

(ii) each S-open set is a union of halos, but a union of halos need not be
S-open;

(ii) no real-radius neighbourhood can be S-open. o
Another topology on *1R is obtained if neighbourhoods are allowed to have
any positive hyperreal (possibly infinitesimal) as radius. Thus any hyperreal
open interval (a, b) can be a neighbourhood, and we define a set A ~ *1R
to be interval-open if it is a union of intervals (a, b) with a, b E *R The
interval-open sets form the interval topology on *1R. It is immediate that
all real-open sets are interval-open, but the converse is not true. There are
many hyperreal intervals (a, b) that are interval-open but not real-open, for
instance any having a ~ b. Also, any halo becomes interval-open but is not
real-open.
Consider furthermore the construction

n{A : rEA and A is open}.

If "open" here means real-open (or S-open), then this gives the halo of r.
If it means interval-open, then the result is just {r}.
Any hyperreal interval (a, b) can be readily constructed as the inter­

section of two real-radius neighbourhoods (in many ways). Therefore any
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topology that includes the real-radius neighbourhoods must include all hy­
perreal intervals, and hence all interval-open sets.

Exercise 10.5.2
Let A be an open subset of JR.

(i) Show that *A is interval-open in *JR.

(ii) Suppose A is the union of a sequence (An : n E N) of pairwise
disjoint open intervals in JR, with the length of An being less than
~. Use transfer to show that some element of *A is infinitely close to
something not in *A. Deduce that *A is not S-open.

(iii) Show further that *A contains a point that does not belong to any
real-radius neighbourhood that is included in *A. Hence deduce the
stronger result that *A is not real-open.

The relationships between various topologies on *JR will be explored further
in Section 11.14.



Part III

Internal and External
Entities



11
Internal and External Sets

In the construction of *JR. as an ultrapower in Chapter 3, each sequence of
points T = (Tn: n E N) in JR. gives rise to the single point [T] of *JR., which
we also denote by the more informative symbol [Tn]. Equality of *JR.-points
is given by

[Tn] = [sn] iff {n EN: Tn = sn} E F.

This description works for other kinds of entities than points. We will now
see that a sequence of subsets of JR. determines a single subset of *JR.. In the
next chapter we will see that a sequence of functions on JR. determines a
single function on *R

11.1 Internal Sets

Given a sequence (An: n E N) of subsets An ~ JR., define a subset [An] ~ *IR
by specifying, for each [Tn] E *IR,

Of course it must be checked that this is a well-defined notion that does
not depend on how points are named, which means that if [Tn] = [snJ, then

{n EN: Tn E An} E F iff {n EN: Sn E An} E F.

This is a slight extension of the argument given in Section 3.9.

The subsets of *JR. that are produced by this construction are called internal.
Here are some examples:
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• If (An) is a constant sequence with An = A ~ ~ for all n E N, then
the internal set [An] is just the enlargement *A of A defined in Section
3.9. Hence we may also denote *A as [A].

Thus the enlargement of any subset of ~ is an internal subset of *R
In particular, we see that *N, *Z, and *Q and *~ itself are all internal,
as is any finite subset A ~ ~, since in that case A = *A.

• More generally, any finite set X = {[r;], ... , [r~]} of hyperreals is
internal, for then X = [An], where An = {r;, ... ,r~}.

• If a < b in *~, then the hyperreal open interval

(a, b) = {x E *~ : a < x < b}

is internal. Indeed, if a = [an] and b = [bn], then (a, b) is the inter­
nal set defined by the sequence ((an, bn) : n E N) of real intervals
(an, bn) ~ R This follows because

Similarly, the hyperreal intervals (a, b], [a, b), [a, b], {x E *~ : a < x}
are internal. Notice that if a is unlimited, then each of these intervals
is disjoint from ~, so none of them can be the enlargement *A of a
set A ~ ~, since *A always includes the (real) members of A.

• If N E *N, then the set

{k E *N : k :::; N} = {I, 2, ... ,N}

is internal. If N = [Nn], then this is the internal set [An], where

An = {k EN: k:::; Nn} = {1,2, ... ,Nn}

(since N E *N, we have {n: Nn EN} E F, so we may as well assume
NnE N for all n E N).

• If N = [Nn ] E *N, then the set

is the internal set [An], where

These last two examples illustrate the notion of hyperfinite set, which will
be studied in the next chapter.
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11.2 Algebra of Internal Sets

(1) The class of internal sets is closed under the standard finite set op­
emtions n, U, and -, with

[An) n [Bn)

[An) U [Bn)

[An )- [Bn )

[An n Bn],

= [An U Bn),

[An - Bn).

(2) [An) ~ [Bn) iff {n EN: An ~ Bn} E F.

(3) [An) = [Bn) iff {n EN: An = Bn} E:F.

(4) [An) =I [Bn) iff {n EN: An =I Bn} E F.

Proof

(1) Exercise.

(2) If [An) ~ [Bn), then there is some hyperreal [rn) E [An) - [Bn), so by
(1) we have

1= {n EN: rn E An - Bn} E F.

But if
J = {n EN: An ~ B n},

then I ~ J C, so JC E :F and hence J ~ :F.

Conversely, if J ~ :F, then JC E :F, so choosing rn E An - Bn for each
n E JC and r n arbitrary for n E J, the argument reverses to give a
point [rn) E [An)- [Bn).

(3) This follows from (2) and closure properties of:F (note that the result
is not a matter of the definition of [An) via :F, since equality of [An)
and [Bnl is defined independently of :F to mean "having the same
members").

(4) Exercise.
o

Part (3) above is important for what it says about the sequence (An: n E
N) that determines a certain internal set. We can replace this sequence by
another (Bn ; n E N) without changing the resulting internal set, provided
that An = Bn for :F-almost all n. Thus we are free to alter An arbitrarily
when n is outside a set that belongs to :F. For instance, if [AnI is nonempty,
then as 0 = [0], we can assume that An =10 for every n E N (11.2(4)), while
if [AnI is a subset of *N, then as *N = [N], we can assume that An ~ N for
every n (11.2(2)). Moreover, we can combine finitely many such conditions,
using the closure of :F under finite intersections. So if [AnI is a nonempty
subset of *N, we can assume that 0 =I An ~ N for every n E N.
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Subsets of Internal Sets

The fact that the intersection of two internal sets is internal allows us to
prove now that

• if a set A of real numbers is internal, then so is every subset of A.

Proof Let X ~ A. Then *X is internal, so if A is internal, then so is
An *X. But since A ~ JR,

An*X=An*XnJR=AnX

(d. Ex. 3.10.5), so X = A n X is internal. 0

This result will be used in Section 11.7 to show that actually the only
internal subsets of JR are the finite ones.

11.3 Internal Least Number Principle and
Induction

A characteristic feature of N is that each of its nonempty subsets has a least
member (indeed this holds for any subset of Z that has a lower bound). The
same is not true, however, for *N: the set *N - N of unlimited hypernaturals
has no least member, for if N is unlimited, then so is N - 1 (why?). But
we do have '

Theorem 11.3.1 Any nonempty internal subset of *N has a least mem­
ber.

Proof Let [An] be a nonempty internal subset of *N. Then by the obser­
vations above we can assume that for each n E N,

and so An has a least member rn. This defines a point [rn] E *JR with

{n EN: rn E An} = N E F,

so [rn] E [An). Moreover, if [sn] E [An], then

{n EN: Sn E An} E F and {n EN: Sn E An} ~ {n EN: rn ::; sn},

leading to the conclusion [rn] ::; [sn] in *R Hence [An] indeed has a least
member, namely the hyperreal number [rn ] determined by the sequence of
least members of the sets An.
Writing "min X" for the least element of a set X, this construction can
be expressed concisely by the equation

min [An] = [min An].
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o
Now, the least number principle for N is equivalent to the principle of
induction:

A subset of N that contains 1 and is closed under the successor
function n 1--+ n + 1 must be equal to N.

The corresponding assertion about subsets of *N is not in general true, and
can only be derived for internal sets:

Theorem 11.3.2 (Internal Induction) If X is an internal subset of
*N that contains 1 and is closed under the successor function n 1--+ n + 1,
then X = *N.

Proof Let Y = *N - X. Then Y is internal (11.2(1)), so if it is nonempty,
it has a least element n. Then n =I- 1, as 1 EX, so n - 1 E *N. But now
n - 1 cf- Y, as n is least in Y, so n - 1 EX, and therefore n = (n - 1) + 1 is
in X by closure under successor. This contradiction forces us to conclude
that Y = 0, and so X = *N. 0

11.4 The Overflow Principle

The set N cannot be internal, or else by internal induction it would be
equal to *N. Thus if an internal set X contains all members of N, then
since X cannot be equal to N, it must "overflow" into *N - N. Indeed,
we will see that X must contain the initial segment of *N up to some
unlimited hypernatural. In fact, a slightly stronger statement than this can
be demonstrated by assuming only that X contains "almost all" members
ofN:

Theorem 11.4.1 Let X be an internal subset of *N and kEN. If n E X
for all n E N with k :::; n, then there is an unlimited K E *N with n E X
for all n E *N with k :::; n :::; K.

Proof If all unlimited hypernaturals are in X, then any unlimited K E *N
will do. Otherwise there are unlimited hypernaturals not in X. If we can
show that there is a least such unlimited number H, then all unlimited
numbers smaller than H will be in X, giving the desired result.
To spell this out: if *N - X has unlimited members, then these must be

greater than k, and so the set

Y = {n E *N: k < n E *N - X}

is nonempty. But Y is internal, by the algebra of internal sets, since it is
equal to

(*N - {I, ... ,k}) n (*N - X).
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Hence Y has a least element H by the internal least number principle.
Then H is a hypernatural that is greater than k but not in X, so it must
be the case that H ¢ N, because of our hypothesis that all limited n ~ k
are in X. Thus H is unlimited. Then K = H - 1 is unlimited and meets
the requirements of the theorem: H is the least hypernatural greater than
k that is not in X, so every n E *N with k ::; n ::; H - 1 does belong to X.

o

Exercise 11.4.2
Show that overflow is equivalent to the following statement:

If an internal subset X of *N contains arbitrarily small unlim­
ited members, then it is unbounded in N, i.e., contains arbitrar­
ily large limited members.

(Hint: consider *N - X.) o

The overflow principle implies that any cofinite subset of N is external: if
an internal A ~ N were cofinite, then it would contain {n EN: k ::; n}
for some kEN, so by overflow A would contain some unlimited number,
contradicting A ~ N.

11.5 Internal Order-Completeness

The principle of order-completeness, attributed to Dedekind, asserts that
every nonempty subset of lR with an upper bound in lR must have a least
upper bound in R The corresponding statement about *lR is false. In fact,
lR itself is a nonempty subset of *lR that is bounded but has no least upper
bound. This is because the upper bounds of lR in *lR are precisely the pos­
itive unlimited numbers, and there is no least positive unlimited number.
Just as for the least number principle, order-completeness is preserved

in passing from lR to *lR for internal sets:

Theorem 11.5.1 If a nonempty internal subset of *lR is bounded above/
below, then it has a least upper/greatest lower bound in *lR.

Proof We treat the case of upper bounds. In effect, the point of the proof
is to show that the least upper bound of a bounded internal set [AnI is the
hyperreal number determined by the sequence of least upper bounds of the
An's:

lub[Anl = [lubAnl·

More precisely, it is enough to require that F-almost all An's have least
upper bounds to make this work.
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Suppose then that a nonempty internal set [An] has an upper bound [rn].
Write An ~ X to mean that x is an upper bound of An in JR, and put

We want j E F. If not, then jC E F. But if n E jC, there exists some
an with rn < an E An. This leads to the conclusion [rn] < [an] E [An],
contradicting the fact that [rn] is an upper bound of [An].

It follows that j E F. Since [An] =1= 0, this then implies

j' = {n EN: 0 =1= An ~ rn} E :F.

Now, if n E j', then An is a nonempty subset of JR bounded above (by r n),
and so by the order-completeness of JR, An has a least upper bound Sn E JR.
Then if [bn] E [An],

{n EN: bn E An} n j' ~ {n EN: bn ~ sn},

leading to [bn] ~ [sn], and showing that [sn] is an upper bound of [An].
Finally, if [tn] is any other upper bound of [An], then {n : An ~ tn} E F
by the same argument as for [rn ], and

{n EN: An ~ tn} n j' ~ {n EN: Sn ~ tn},

so we get [sn] ~ [tn]. This shows that [sn] is indeed the least upper bound
of [An] in *R

o

Exercise 11.5.2
Let X be an internal subset of *JR. Prove the following.

(i) If X has arbitrarily large limited members, then it has a positive
unlimited member.

(ii) If X has only limited members, then there is some real r such that
X is included in the interval [-r, r] in *R

(iii) If X has arbitrarily small positive unlimited members, then it has a
positive limited member.

(iv) If X has no limited members, then there is some unlimited b such
that X ~ {x E *JR : x < -b or b < x}.

11.6 External Sets

A subset of *JR is external if it is not internal. Many of the properties that
are special to the structure of *JR define external sets:
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• Unlimited Hypernaturals. Since *N - N has no least member, the in­
ternalleast number principle (Theorem 11.3.1) implies that it cannot
be internal.

• Limited Hypernaturals. If N were internal, then by 11.2(1) so too
would be *N - N, which we have just seen to be false.

Alternatively, by the internal induction principle, Theorem 11.3.2, if
N were internal, it would be equal to *N.

• Real Numbers. IR is external, for if it were internal, then so too would
be IRn *N = N.

Alternatively, as noted at the beginning of Section 11.5, IR is bounded
but has no least upper bound in *IR, so must fail to be internal by the
internal order-completeness property, Theorem 11.5.1.

The fact that N is external will be used in the next section to show
that all infinite subsets of IR are external.

• Limited Hyperreals. The set IL of limited numbers is external for the
same reason IR is: it is bounded above by all members of *1R;t" but
has no least upper bound. Since

IL = nH-b, b) : b is unlimited},

it follows that the intersection of an infinite family of internal sets
can fail to be internal.

Observe that if X is an internal set that includes IL, then X #- IL, and
so X must contain unlimited members (cf. (i) and (ii) of Exercise
11.5.2). In fact, by considering lower and upper bounds of *1R;t, - X
and *IR;;;;' - X, respectively, we can show that if X is an internal set
with IL ~ X, then [-b, b) ~ X for some unlimited b.

• Infinitesimals. The set II = hal(O) of infinitesimals is bounded above
(by any positive real), so if it were internal, it would have a least
upper bound b E *R Such a bwould have to be positive but less than
every positive real, forcing b ::::; O. But then b < 2b E ll, so b cannot be
an upper bound of II after all.

By similar reasoning, any halo hal(r) is seen to be an external set, as
are its "left and right halves" {x > r : x ::::; r} and {x < r : x ::::; r}.

More strongly, this type of reasoning shows that if X is any internal
subset of ll, then the least upper bound and greatest lower bound of
X must be infinitesimal, and so X ~ [-e,e) for some e::::; O.
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Exercise 11.6.1
Show that the following form external sets:

the positive real numbers lR+,

the integers Z,

the rational numbers Q,

the (positive/negative) unlimited hyperreals,

the appreciable numbers.

11.7 Defining Internal Sets

In proving the internal least number and order-completeness properties,
we reverted once more to ultrafilter calculations, so it is natural to ask
whether such results could be obtained instead by a logical transfer. The
assertion that a nonempty set A of natural numbers has a least element
can be expressed by the .c!R-sentence

[(3x E lR)(x E A) 1\ ('Ix E A)(x E N)] ~ (3x E A)(Vy E A)(x ~ y).

This sentence transforms to

[(3x E *lR)(x E *A) 1\ ('Ix E *A)(x E *N)] ~ (3x E *A)(Vy E *A)(x ~ y),

which asserts the least number principle for the enlarged set *A in *lR. But
what we saw in Section 11.3 was that this transformed sentence is true
when *A is replaced by any internal set X ~ *N. The same observation
applies to the assertion

(3x E lR)(Vy E A)(y ~ x) ~

(3x E JR.) [(Vy E A)(y ~ x) 1\ (Vz E JR.) [(Vy E A)(y ~ z) ~ x ~ z 1],
which expresses the order-completeness property that if A has an upper
bound, then it has a least upper bound. The transform of this last sentence
is also true when *A is replaced by any nonempty internal set X ~ *lR
(Theorem 11.5.1).

Let us write 'P(A) to indicate that 'P is an L:!R-sentence containing the
set symbol A. Then *'P(X) denotes the sentence obtained by putting X in
place of *A in *'P. The examples just discussed suggest the following transfer
principle:

(t) If 'P(A) is true whenever A is taken as an arbitmry subset of JR., then
*'P(X) is true whenever X is taken as an arbitmry internal subset
of *JR..
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To understand what is happening here we need to look more widely at
formulae that may have free variables. Let cp(x, y, A) be a formula with
free variables x and y as well as the set symbol A; for example the formula

('t:/Z E 1R) (x < Z < Y~ Z E A).

We can replace x and y in *cp by elements of *R Thus *cp([rn]' [Sn]' [AnD
would be the sentence

('t:/Z E *1R) ([rn] < Z < [snl ~ Z E [An]).

It can be shown that this sentence is true if and only if

{n EN: 't:/z E IR (rn < Z < Sn ~ Z E An)} E :F.

The general situation here is that

(i)

if and only if
{n EN: cp(rn,Sn' An) is true} E:F. (ii)

This fact can then be used to derive the transfer principle (t). But it also
leads to a new way of defining internal sets: holding the hyperreal [sn] and
the internal set [An] fixed, and allowing the value of x to range over *1R,
define

x = {b E *1R: *cp(b, [Sn], [AnD is true}.

Correspondingly, for each n E N put

Bn = {r E 1R: cp(r,sn,An) is true}.

Then the equivalence of (i) and (ii) amounts to saying that for any hyperreal
[rn],

[rn] E X iff {n EN: rn E Bn} E F.

But this shows that X is the internal set [Bn ] determined by the sequence
of real subsets (Bn : n E N).
Expressing this phenomenon in the most general form available at this
stage, we have the following statement.

11.7.1 Internal Set Definition Principle. Let

be an L'.Jt-formula with free variables Xo, ... ,Xn and set symbols AI, ... ,Ak ·

Then for any hyperreals CI, ... , Cn and any internal sets XI, ... , Xk,
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is an internal subset of *~. 0

Note that this statement applies in particular to formulae that have only
number variables and no set symbols. It provides a ready means of demon­
strating that various sets are internal, including the examples from Section
11.1:

• Taking cp(XO, Xl, ... ,Xn ) as the formula (xo = Xl V ... V Xo = xn )

shows that any finite set

of hyperreals is internal.

• Taking cp(xo, Xl, X2) as (Xl < Xo < X2) yields that any open hyperreal
interval

is internal.

We observed at the end of Section 11.4 that the overflow principle implies
that any cofinite subset of N is external. But much more strongly than
this, we can now use internal set definition to show (as promised earlier, in
Section 11.2) that

• every infinite set of real numbers is external.

In other words, if A ~ ~ is internal, then A must be finite.

Proof: if such an A were infinite, then it would contain an infinite sequence,
Le., there would be an injective function f :N -+ A. Put X = {f(n) : n E
N}. Then X is internal, since it is a subset of the internal set A, and we
saw at the end of Section 11.2 that any subset of an internal set of real
numbers is internal.
Now, X is a bijective copy of N, so we should be able to show that N is

internal if X is, thereby getting a contradiction because we already know
that N is external. To make this work requires the internal set definition
principle, applied with cp(x, A) as the formula (x E N /\ f(x) E A). This
implies that the set

B = {n E *~: *cp(n,X)}

is internal. Observe that

B = {n E *N : *f(n) EX} = *f-I(X).

However, as f is injective, *f : *N -+ *A is an injective extension of f
(by transfer), from which it follows that B is just N itself, so we have the
contradiction. 0
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We will reconsider the internal set definition principle in a stronger formu­
lation in Section 13.15.

Exercise 11.7.1 Use the internal set definition principle to show that all
hyperreal intervals of the form

(c,d], [c,d), [c,d], {b E *R.: c::; b}, {b E *R.: b < c}

etc. are internal, as are the sets

{1,2,oo.,N}, {O,~,~, ... ,NNl,I},
for all N E *N.

11.8 The Underflow Principle

This is the order-theoretic dual of the overflow principle of Theorem 11.4.1,
but its proof requires the additional reasoning power provided by the in­
ternal set definition principle.

Theorem 11.8.1 Let X be an internal subset of *N, and let K E *N be
unlimited. If every unlimited hypernatural H ::; K belongs to X, then there
is some kEN such that every limited n with k ::; n belongs to X.

Proof For M, N E *N with M ::; N, let

LM,NJ ={zE*N:M::;z::;N}

be the interval in *N between M and N. Our hypothesis is that LH, K J ~ X
for all unlimited hypernatural H ::; K. What we want to show is that
Lk, K J ~ X for some kEN. To put this more symbolically, we want to
show that the set

Y={kE*N: Lk,KJ ~X}

has a limited member.
Now, if Y is internal, then by the internal least number principle it has a
least element k, and such a k must belong to N, because ifit were unlimited,
then k - 1 would be unlimited, so by our hypothesis k - 1 would also be
in Y but less than k.

It thus suffices to show that Y is internal. But if cp(x, y, A) is the formula

x E N A x ::; y AVz E N (x ::; z ::; y ~ z E A),

expressing "x E Nand Lx, yJ ~ A", then by the internal set definition
principle the set

{k E *R.: *cp(k,K,X)}

= {k E *N: k ::; K and Vz E *N (k ::; z ::; K ~ z E X)}

is internal. This set is just Y. o



11.9 Internal Sets and Permanence 137

Exercise 11.8.2
Show that underflow is equivalent to the following statement:

If an internal subset X of *N contains arbitrarily large limited
members, then it contains arbitrarily small unlimited members.

Deduce that if A is any infinite subset of N, then *A contains arbitrarily
small unlimited members.

11.9 Internal Sets and Permanence

In Section 7.10 it was shown that any property that is expressible by an
.em-formula cp(x) and holds for all points infinitely close to a real number
c must in fact hold for all points within some real distance of c. In other
words, *cp cannot be true exactly of the members of the halo of c, and so
hal(c) cannot be defined by the transform of any .em-formula.
Now, the set B = {b E *JR : *cp(b)} is internal, by the internal set defini­

tion principle, so cannot be equal to hal(c) because the latter is external.
Viewed in this way, the result of Section 7.10 is seen to be a manifestation
of the fact that external sets are not internal.
Similar observations hold for the overflow and underflow principles, which
are related to the fact that an internal set cannot be equal to the external
set N, and the "spillover" results of Exercise 11.5.2 and Section 11.6, which
relate to the fact that an internal set cannot be equal to IL. In general then,
we see that a permanence principle is typically a statement to the effect
that a property that defines an internal set cannot hold just of the members
of an external set like hal(r), N, N - {I, ... , k}, *N - N, IL, etc. If such an
internal property holds for all members of an external set E, then it must
continue to hold throughout a larger internal set strictly containing E.
Notice that universal transfer (Section 4.5) is a permanence assertion. It

states that if a certain kind of property holds for all members of the external
set JR, then it must continue to hold throughout the internal extension *R

Here now is a stronger version of the result of Section 7.10, which gives
the promised extension to arbitrary hyperreal numbers. We will consider
an even stronger form of the result in Section 15.1.

Theorem 11.9.1 If X is an internal subset of *JR that contains all points
that are infinitely close to b E *JR, then there is a positive real e such that
X contains all points that are within e of b.

Proof Our hypothesis is that hal(b) ~ X. For k E *N, let (b - t, b + t)
be the hyperreal interval

{Z E *JR : Iz - bl < H.
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Now,
(b _1 b+ 1) ex

k' k-

whenever k is unlimited, because in this case i is infinitesimal, and so
(b- i,b+ f) ~ hal(b) ~ X

by our hypothesis. Thus the set

Y = {k E *N: (b - i, b+ i) ~ X}
contains all unlimited members of *N. Hence by underflow we could con­
clude that (b - i, b+ f) ~ X for some kEN, and thereby complete the
proof by putting c = i, provided that Y is internal. But applying internal
set definition with cp(x, y, A) as the formula

x E N A (Vz E JR.) (Iz - yl < ~ ---+ Z E A)

(expressing "x E Nand (y - ~,y + ~) ~ A") shows that the set

{k E *lR.: *cp(k,b,X)} = {k E *N: (Vz E *JR.) (Iz - bl < i ---+ Z E X)}

is internal, and this set is just Y.

11.10 Saturation of Internal Sets

o

The internal sets form a very special collection whose members are related
to each other in remarkable ways. For instance, it is impossible to con­
struct a nested sequence of internal sets whose intersection is empty. This
fact, which we now prove, is known as countable saturation. (The use of
"saturation" is explained at the beginning of the next section.)

Theorem 11.10.1 The intersection of a decreasing sequence

of nonempty internal sets is always nonempty :

Proof This is a delicate analysis of the ultrapower construction, involving
a kind of diagonalisation argument, that is not easy to motivate intuitively.
For each kEN, let Xk = [A~l, so that X k is the internal set defined by
the sequence (A~ : n E N) of subsets of R Then by Section 11.2 the sets
{n EN: A~ =f:: 0} and {n EN: A~ 2 A~+I} belong to F. Hence if

Jk = {n EN: A~ 2 ... 2 A~ =f:: 0},
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then by closure of F under finite intersections it follows for each kEN that
Jk E F. Note that Jl ;2 J2 ;2 ....
We want to define a hyperreal [snl that belongs to every Xk. This will
require that for each k we have Sn E A~ for F-almost all n. We will arrange
this to work for almost all n ~ k, in the sense that

{n EN: k ::; n} n Jk ~ {n EN: Sn E A~}. (iii)

But the set {n EN: k ::; n} is cofinite in N, and so belongs to the
nonprincipal ultrafilter F. Since also Jk E F, (iii) then yields {n EN:
Sn E A~} E F, and therefore [snl E X k as desired.

It thus remains to define Sn fulfilling (iii). For n E Jl let

kn = max{k : k ::; nand n E Jk}. (iv)

Then n E Jkn, so by the definition of Jkn we can choose some Sn E A~n,

and hence
Sn E A; n ... n A~n. (v)

For n ~ Jl let Sn be arbitrary. Now, to prove (iii), observe that if k ::; n
and n E J k , then by (iv), k::; kn , and so by (v), Sn E A~.

o
Countable saturation has some important consequences for the nature of
countable unions and intersections of internal sets:

Corollary 11.10.2 If {Xn : n E N} is a collection of internal sets and X
is internal, then:

(1) nnENXn:f. 0 if {Xn : n E N} has the finite intersection property.

(2) If X ~ UnENXn, then X ~ Un:::;kXn for some kEN.

(3) If nnENXn ~ X, then nn:::;kXn ~ X for some kEN.

(4) If UnENXn is internal, then it is equal to Un$kXn for some kEN.

(5) If nnENXn is internal, then it is equal to nn$kXn for some kEN.

Proof·

(1) Let yk = x 1 n·· ·nxk. Then yl ;2 y2 ;2 "', and each yk is internal
by 11.2(1). The finite intersection property implies that yk :f. 0, so
by the above theorem there is some hyperreal that belongs to every
y\ and hence to every X k .

(2) Suppose that for all kEN, X g Un$kXn and hence
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Then {X - X n : n E N} is a collection of internal sets with the finite
intersection property, so by (1) there is some x with

x E nnEJIl(X - X n ) = X - (UnEJIlXn);

hence X ~ UnEJIlXn.

(3) Exercise.

(4) Put X = UnEJIlXn in (2).

(5) Similarly, from (3). 0

Result (4) of Corollary 11.10.2 plays a crucial role in the nonstandard
approach to measure theory discussed in Chapter 16 (cf. example 6 of
Section 16.1 and example 3 of Section 16.2).

Exercise 11.10.3
Show that the union of a strictly decreasing, or strictly increasing, sequence
of internal sets is external.
What is the corresponding result about intersections of internal sets?

11.11 Saturation Creates Nonstandard Entities

The use of the term "saturation" is intended to convey that *lR is "full
of elements". Countable saturation legislates into existence those elements
that can be characterised as belonging to the intersection of a decreasing
sequence of internal sets. For example, if we take X n to be the hyperreal
interval (0, ~), then (Xn : n E N) is a decreasing sequence of nonempty
internal sets. Its (nonempty) intersection nnEJIlXn is precisely the set of
positive infinitesimals.

Exercise 11.11.1
Use countable saturation to infer the existence of positive unlimited and
negative unlimited members of *R 0

Another interesting consequence of saturation is the property that

• every sequence of infinitesimals has an infinitesimal upper bound.

To see this, take (en : n E N) with en ~ 0 for all n E N. If X n is the
internal hyperreal interval [en, ~), then the collection {Xn : n E N} has the
finite intersection property. For in general, if e is the maximum element of
{enl, ... ,enk}' then

e E [en" ;) n ... n [enk' n~)'

But any member of nnEJIlXn is an upper bound of the en's that is smaller
than ~ for all n E N, and hence is infinitesimal.
Dually, we can use saturation to show that
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• every sequence (Sn : n E N) of unlimited hypernatuml numbers has
an unlimited hypernatuml lower bound,

by considering the internal intervals X n = (n, snJ. In this case if x belongs
to nnENXn, then x is a positive unlimited lower bound of the sn's. But
then (by transfer) we can take a member of *N between x-I and x to
get an unlimited hypernatural number that is less that Sn for all n E N.
(Alternatively, put X n = (n, SnJ n *N in this argument.)

Exercise 11.11.2
Show that the two properties

• every sequence of infinitesimals has an infinitesimal upper bound,

• every sequence of unlimited hypernatural numbers has an unlimited
hypernatural lower bound,

imply each other without using satumtion. o
We will consider this property from another perspective at the end of Sec­
tion 15.4.

11.12 The Size of an Internal Set

Countable saturation implies that *1R has so many elements that any big
internal set is very big. Such a set cannot be countably infinite:

• Every internal set is either finite or uncountable.

We already have an argument for this in the case of subsets of 1R: any in­
ternal set of reals must be finite. In proving this in Section 11.7 we showed
in effect that an internal subset of IR cannot be put in one-to-one corre­
spondence with N. But now we can demonstrate this for any internal set
whatsoever.
To see why this is so, let X = {xn : n E N} be a countable internal set.

We remove all the points from X in turn, by defining for each n the set
X n = X - {Xl, ... ,xn}, which is internal. But the Xn's form a decreasing
sequence, so if they were all nonempty, countable saturation would imply
that their intersection would be nonempty, which is false. We must therefore
conclude that there is an n for which X n = 0 and so X = {Xl, ... ,xn }.

This shows that any countable internal set must be finite. Hence an
infinite internal set must be uncountable.

This observation has an interesting bearing on the structure of the set *N
of hypernatural numbers (Section 5.10). If N is an unlimited hypernatural,
then the initial segment {I, 2, ... ,N} of *N is internal, and is certainly
infinite, since it includes all of N, so is uncountable. It follows that there
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must be uncountably many unlimited members of *N that are less than
N. The set of all unlimited hypernaturals is partitioned into *N-galaxies,
each of which looks like a copy of Z. If N is unlimited, then there are
uncountably many of these *N-galaxies between Nand N.

11.13 Closure of the Shadow of an Internal Set

For any X s:;; *JR, let

sh(X) = {sh(x) : x E X and x is limited}.

For example, if X is an interval (a, b) in *JR, then if a, b are limited, sh(X) is
the closed interval [sh(a), sh(b)] in JR, while if a is limited but b unlimited,
then sh(X) = [sh(a), +00) s:;; JR, again a topologically closed subset of R

Theorem 11.13.1 If X is internal, then sh(X) is closed.

Proof Let r E JR be a closure point of sh(X). We need to show that
r E sh(X), Le., r is the shadow of some y E X.
Now, for each n EN, the hyperreal open interval (r - ~,r + ~) meets

sh(X) in some real point Sn that must be the shadow of some X n E X.
Hence X n ~ Sn E (r - ~,r + ~), so the internal set

X = X n (r - .! r + .!)n n' n

contains X n and is thereby nonempty . The Xn's form a decreasing se­
quence, so by countable saturation there is a point y in their intersec­
tion. Then y E X and Iy - rl < ~ for all n E N, so y ~ r. Hence
r = sh(y) E sh(X).
This shows that sh(X) contains all its closure points and so is closed. 0

Topological closure of the shadow of an internal set plays an important
role in the hyperreal "reconstruction" of Lebesgue measure. This will be
explained in Chapter 16 (d. the proof of Theorem 16.8.2).

Exercise 11.13.2
Apply the internal set definition principle to show that if X is internal,
then for any hyperreal number r the set

{n E *N: X n (r - ~,r +~) # 0}

is internal. Use this fact together with overflow to give an alternative proof
of Theorem 11.13.1 that does not appeal to countable saturation. 0

The connection between countable saturation and overflow indicated by
this last exercise will emerge again in Chapter 15 (d. the proof of Theorem
15.4.2).
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11.14 Interval Topology and Hyper-Open Sets

In Section 10.5 we introduced the following notions:

• A set A of hyperreals is interval-open if each of its points belongs
to some hyperreal open interval (a, b) that is included in A. Thus
the interval-open sets are precisely those that are unions of hyperreal
open intervals. The class of interval-open sets is the interval topology
on *IR.

• A real-open set, on the other hand, is one that is a union of hyperreal
open neighbourhoods (r-e,r+e) having real radius e. Equivalently,
a real-open set is a union of hyperreal open intervals of appreciable
length. Each real-open set is interval-open, but not conversely: the
real-open sets are not a topology on *IR, since they are not closed
under intersection.

• An S-open set is a union of S-neighbourhoods ((r - e, r + e)) having
real radius e, where

((r - e, r + e)) = {x E *IR : hal(x) ~ (r - e, r + e)}.

The S-open sets form the S-topology on *IR. Every S-open set is real­
open, but not conversely. Every S-open set is a union of halos, but
not conversely.

The example of the set
IL = UnEl\l(-n, n)

of limited numbers shows that while a real-open set is always a union of
internal sets (namely, open intervals), it may itself be external.

We now introduce a further class of subsets of *IR: an internal set [An] will
be called hyper-open if

{n EN: An is open in IR} E F.

Each hyperreal interval (a,b) is hyper-open, as we saw in Section 11.1: if
a = [an] and b = Ibn], then (a, b) is the internal set defined by the sequence
(An: n EN), where An is the real interval (an, bn ), which is indeed open
in R

Lemma 11.14.1 Every hyper-open set is a union of hyperreal open inter­
vals.

Proof Let A = [An] be hyper-open. Take a point r = [rn] in A. Then we
find that the set

J = {n EN: rn E An and An is open in IR}
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belongs to the ultrafilter T. Our task is to show that r belongs to some
hyperreal interval (a, b) that is included in A.
Now, if n E J, then there is some real interval (an, bn) ~ IR with

Since JET, this is enough to specify a as the hyperreal number [an] and
bas [bn ]. Working with the properties of T, in a now familiar way, we can
then show that [an] < [rn] < [bn], and also that [sn] E [An] whenever
[an] < [snl < [bn], so that

r E (a, b) ~ A

as desired. o
This lemma implies that every hyper-open set is interval-open. But there
are interval-open sets, like the set lL of limited numbers, that are not hyper­
open, simply because they are external, whereas hyper-open sets are always
internal by definition. The example of lL shows that the class of hyper­
open sets is not a topology, because it is not closed under infinite unions.
Instead, it is what is known as a base for the interval topology, because
every interval-open set is a union of hyper-open sets (open intervals).

Exercise 11.14.2
Show that the class of hyper-open sets is closed under finite unions. 0

However, for internal sets, hyper-openness does prove to be equivalent to
interval-openness:

Exercise 11.14.3
If A = [An] is an internal set, let B = [Bn], where Bn is the interior of
An in IR (cf. Section 10.1). Show that B is interval-open, and is in fact the
interior of A in the interval topology, Le., B is the union of all interval-open
subsets of A.
Deduce from this that an internal set is interval-open iff it is hyper-open.

o

The classes of real-open sets and hyper-open sets are incomparable: lL
is real-open (indeed S-open) but not hyper-open, while any infinitesimal­
length open interval is hyper-open but not real-open. This latter example
shows that even for internal sets the two classes remain distinguishable.
There is a characterisation of S-openness of internal sets that corresponds
to the nonstandard characterisation of openness of subsets of ~, and in­
volves an interesting application of underflow:

Theorem 11.14.4 If B is an internal set, then B is S-open if and only if
it contains the halo of each of its points.

Proof We have already observed that an S-open set is a union of halos.
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Conversely, assume that hal(r) ~ B whenever rEB. For such an r,
consider the set

x = {n E *N : ("Ix E *1R) (Ir - xl < ~ --+ x E B)}.

Since B is internal, it follows by the internal set definition principle that
X is internal. Moreover, since hal(r) ~ B, it follows that X contains every
unlimited hypernatural n, because for such an n, Ir - xl < ~ implies x E

hal(r). Hence by underflow, X must contain some standard n EN, so B
includes the real-radius interval (r - ~,r + ~). But then since ~ is real,

r E ~(r - .! r + .!)~ C (r - .! r + .!) C B.'\ n' n IJ - n' n-

This shows that B is the union of S-neighbourhoods, and is thereby S-open.
o



12
Internal Functions and Hyperfinite
Sets

The method used to construct an internal subset of *~ out of a sequence of
subsets of ~ will now be adapted to build hyperreal-valued functions out
of sequences of real-valued functions.

12.1 Internal Functions

Let (fn : n E N) be a sequence of functions fn : An -7 ~, with domains An
included in R Then a *~-valued function (fn] is defined on the internal set
[An] by putting

Observe that if [rn ] E [An], then the set J = {n EN: rn E An} belongs to
F, and for each n E J, fn(rn ) is defined. This is enough to make [fn]([rn])
well-defined. We have

dom [fn] = [domfn].

Functions f : X -7 *~ that are obtained by this construction are called
internal. In the case that (fn) is a constant sequence, with fn = f : A -7 ~
for all n, then (fn] is just the function *f: *A -7 *~ extending f, as defined
in Section 3.13.
The following result shows that we only need to specify almost all of the
real functions fn in order to determine the internal function [fn].

Theorem 12.1.1 Let (fn : n E N) and (gn : n E N) be sequences of partial
functions from ~ to~. Then the internal functions [fn] and [gn] are equal
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if and only if
{n EN: f n = gn} E F.

Proof Let Jig {n EN: fn = gn}, and suppose Jig E F. Now in
general, two functions are equal precisely when they have the same domain
and assign the same values to all members of that domain. Thus

Jig <;; {n EN: domfn = domgn},

leading by 11.2(3) to the conclusion that the internal sets [dom fn] and
[domgn] are equal, Le., dom [fn] = dom [gn]' But for [rn] E dom [fn]'

Jig n {n EN: rn E domfn} <;; {n EN: fn(rn) = gn(rn)},

which leads to [In]([rn]) = [gn]([rn]). Hence [In] = [gn].
For the converse, suppose that Jig tj. F. Now, J'jg is a subset of the
union

{n EN: domfn"l domgn} U {n EN: domfn = domgn but fn"l gn},

so either {n : domfn "I domgn} E F, whence dom [In] "I dom [gn] and so
[fn] "I [gn], or else

J = {n EN: domfn = domgn but fn "I gn} E F.

But for n E J there exists some rn with fn(rn) "I gn(rn). This leads to
[fn]([rn]) "I [gn]([rn]), and so [In] "I [gn]' D

12.2 Exercises on Properties of Internal Functions

(1) The image of an internal set under an internal function is internal:
if f = [fn] is an internal function, and A = [An] is any internal subset
of dom f, then the image set

f(A) = {f(a) : a E A}

is in fact the internal set [fn(An) ].

(2) The inverse image of an internal set under an internal function is
internal: if f = [fn] is an internal function, and B = [Bn] is an
internal set, then the inverse-image set

f-l(B) = {a E domf: f(a) E B}

is the internal set [f,:;-l(Bn)].
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(3) The composition of internal functions is internal: if f and g are inter­
nal functions, with the range of f included in the domain of g, then
g 0 f is an internal function.

(4) An internal function [fn] is injective iff {n E fill: fn is injective} E F.

(5) The inverse of an internal function is internal: if [In] is injective,
then [In]-1 is the internal function [f;1] (which is well-defined by
the previous exercise and Theorem 12.1.1).

(6) If f and g are internal functions (with the same domain), then so are
the functions f + g, f· g, and cf for any hyperreal c.

(7) Let f be an internal function that takes only infinitesimal values:
f(x) ~ 0 whenever f(x) is defined. Show that the range {f(x) : x E
dom f} of f has an infinitesimal least upper bound.

(8) Give an alternative proof that every infinite subset of JR is exter­
nal (Section 11.7), by using Exercise 1 in place of the internal set
definition principle.

12.3 Hyperfinite Sets

If An is finite for (almost) all n E N, then [An] may nevertheless be infinite
(and then in fact uncountable!) but will have many properties that are
similar to those of finite sets. Thus an internal set A = [An] is called
hyperfinite if almost all An's are finite, i.e., if

{n E fill: An is finite} E F.

In that case, by 11.2(3) we may as well assume that all An's are finite and
have finite integer size IAnl. The internal cardinality (or size) of A is then
defined to be the hyperinteger

IAI = [(IAnl : n EN)].

(More succinctly, I[An] I = [IAnl].) For example:

• Let An = {1, ... ,n} ~ fill. The resulting hyperfinite set A includes fill.
Being internal, it must therefore be an uncountable subset of *fill. To
see that fill ~ A, observe that ifmE fill, then the set {n E fill : mEAn}
is cofinite, being equal to {m, m + 1, ...}, so belongs to F. Hence
*mEA.

• Refining the previous example, we see that if B is any countable
subset of JR, then there exists a hyperfinite set A with B ~ A ~ *B.
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For if B = {xn : n EN}, let A = [An] where An = {Xl,'" ,xn}. In
this case the internal size of A is w = [(1,2,3, ...)].
Later we will see that the restriction to countability here can be
removed: any subset B of IR has a "hyperfinite approximation" A
satisfying B ~ A ~ *B (cf. Sections 14.1 and 14.2).

• Any finite set of hyperreals is hyperfinite: as observed in Section 11.1,
if X = {[r;], ... , [r~]} ~ *IR, then X is the hyperfinite set [An]' where
An = {r;, ... , r~}.

• If N = [Nn ] E *N, then the set

{k E *N: k :S N} = {I, 2, ... ,N}

discussed in Section 11.1 is hyperfinite and has internal cardinality N,
since it is equal to [An], where An = {I, 2, ... ,Nn} and IAnl = Nn.

• If N = [Nn ] E *N, then the set

is hyperfinite of internal cardinality N + 1, since it is equal to [An]'
where

{
I 2 Nn -1 }

An = 0, Nn ' Nn, ..·,~,1 .

• The last example is a special case of the fact that for any hyperreals
a, b, and any N E *N, the uniform partition

{ a + k (b~ a) : k E *;E and 0 :S k :S N}

is hyperfinite of internal cardinality N + 1.

12.4 Exercises on Hyperfiniteness

(1) Any hyperfinite set has a greatest and a least element.

(2) The union and intersection of any two hyperfinite sets X and Yare
hyperfinite, with

IXuYI = IXI + 1Y1-IXnYj.

(3) Any internal subset of a hyperfinite set is hyperfinite.
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12.5 Counting a Hyperfinite Set

The above results are indicative of ways in which hyperfinite sets behave
like finite sets. More fundamentally, a finite set can be defined as one that
has n elements for some n E N, and so is in bijective correspondence with
the set {I, ... ,n}. Correspondingly, for hyperfinite sets we have

Theorem 12.5.1 An internal set A is hyperjinite with internal cardinality
N il and only il there is an internal bijection I : {I, ... ,N} --4 A.

Proof Let A = [An]. If A is hyperfinite with internal cardinality N =
[Nn], then we may suppose that for each n E N, An is a finite set of
cardinality Nn. Thus there is a bijection In : {I, ,Nn } --4 An· Let 1=
[In]' Then I is an internal function with domain {I, ,N} that is injective
(12.2(4)) and has range A (12.2(1)).
Conversely, suppose that I = [In] is an internal bijection from {I, ... ,N}

onto A. Then

[domln] = dom [In] = {I, ... ,N} = [{I, ... ,Nn }]'

so for F-almost all n,

dom In = {I, ... ,Nn }. (i)

Also, as A is the image of {I, ... ,N} under [In], Exercise 12.2(1) implies
that A = [/n({I, ... ,Nn})], so

for F-almost all n. Finally, by 12.2(4),

In is injective

(ii)

(iii)

for F-almost all n. Then the set J of those n E N satisfying (i)-(iii) must
belong to F. But for n E J, An is finite of cardinality Nn. Hence A is
hyperfinite of internal cardinality N.

D

An important feature of this result is that it gives a characterisation of
hyperfinite sets that makes no reference to the ultrafilter F, but requires
only the hypernatural numbers *N and the notion of an internal function.
This approach will be revisited in Section 13.17.

12.6 Hyperfinite Pigeonhole Principle

One classical way to distinguish the finite from the infinite is to characterise
the infinite sets as those that are equinumerous with a proper subset of
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themselves. Thus A is infinite iff there is an injection f : A ---+ A whose range
f(A) is a proper subset of A. Equivalently, A is finite iff every injection
f : A ---+ A mapping A into itself is surjective, i.e., has f(A) = A (this
latter statement is known as the pigeonhole principle). Correspondingly,
we have the following characterisation of hyperfiniteness.

Theorem 12.6.1 An internal set A = [An] is hyperjinite if and only if
every injective internal function f whose domain includes A and has
f(A) ~ A must in fact have f(A) = A.

Proof Suppose A is hyperfinite. Let f = [fn] be an internal injective
function with A ~ dom f and f(A) ~ A. Then each of the following is true
for F-almost all n E N:

An is finite,

An ~ domfn,

fn(An) ~ An,

f n is injective.

Thus the set J of those n E N satisfying all of these conditions must belong
to F. But

J ~ {n EN: fn(An ) = An}

by the standard pigeonhole principle, and so f(A) = [fn(An )] = [An] = A.
For the converse, suppose A is not hyperfinite. It follows that

J' = {n EN: An is infinite} E F.

But for each n E J' there is an injective function fn : An ---+ An and some
rn E An - fn(An ). Let f = [fn]' This makes f an internal function with
domain A that is injective (12.2(4)) and has f(A) = [fn(An)] ~ A, while
[rn] E A - f(A) and so f(A) f:. A. 0

Here now is an example of a noninternal function:

f(n) = { ~n if n E N,
if n rj. No

This function maps the internal set *N injectively into, but not onto, itself.
Hence by the hyperfinite pigeonhole principle (Theorem 12.6.1), f cannot
be internal.

12.7 Integrals as Hyperfinite Sums

The operation of forming the sum of finitely many numbers can be ex­
tended to hyperfinitely many. More generally, we can define the sum over
a hyperfinite set of the values of an internal function.
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To see this, if X is a finite set, let the symbol

EXEX g(x)

denote the sum of the members of {g(x) : x E X}. Then if A = [An] is
a hyperfinite set included in the domain of an internal function f = [fn],
define EXEA f(x) to be the hyperreal number [Tn] given by

Tn = E xEAn fn(x).

This makes sense because for F-almost all n we have An a finite subset of
domfn' Thus

EXE[Anl[fn](x) = [EXEAn fn(x)].

This operation has many of the properties familiar from finite summations:
if f, 9 are internal functions, A,Bare hyperfinite sets, and C E *1R, then:

• EXEA cf(x) = C (EXEA f(x)).

• EXEA f(x) + g(x) = EXEA f(x) + EXEA g(x).

• EXEAUB f(x) = EXEA f(x) + EXEB f(x) if A and B are disjoint.

• EXEA f(x) ~ EXEA g(x) if f(x) ~ g(x) on A.

These are analogues of familiar properties of integrals (cf. Section 9.3). We
will now see that standard integrals can be realised as hyperfinite Riemann
sums over hyperfinite partitions.
Let f : [a, b] -+ IR be an integrable function on the closed interval [a, b] ~

lR. Take a positive infinitesimal Lh = [cn]. Then for each n E N we may
assume that Cn is a positive real number less than b - a. Let Pn U {b} be
the finite partition of [a, b] into subintervals of width Cn' Thus if Pn is of
size N n , we have the description

Pn = {a + kCn : k E Z and 0 ~ k < Nn}.

Let P be the hyperfinite set [pn], of internal size N = [Nn]E *N. Then in
fact,

P = {a + kL)x : k E *Z and 0 ~ k < N},

so PU {b} is a hyperfinite partition of [a, b] into subintervals of infinitesimal
width L)x.
Now, the original function f lifts to the internal function [fn] : *[a, b] -+

*1R determined by the constant sequence of functions fn = f. We continue
to use the symbol "/" for this extended function. Its domain includes P,
so the hyperfinite sum EXEP f(x) is specified as the hyperreal number

[(EXEP
1

f(x), EXEP2 f(x), ... )] .
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Thus
L-xEP f(x) = [L-XEP

n
f(x)] .

The ordinary Riemann sum for the real partition Pn U {b} was defined in
Section 9.1 as the number

But the sequence of numbers (S~(f,en) : n E N) determines a hyperreal,
which by definition is the extension of the function S~ (f, - ) to the hyperreal
[en) = Llx:

Thus we calculate

S~(f, Llx) [(L-XEPn f(x)) en]

[L-xEPn f(x)] [en)

(L-xEPf(x)) Llx

L-xEP f(x)Llx,

showing that the hyperreal number S~(f, Llx), defined formally by the ex­
tension process of Section 3.13, can be viewed as the (extended) ordinary
Riemann sum of the hyperfinite partition P.
Finally, from the analysis in Section 9.2 of the Riemann integral as a

shadow of Riemann sums we get that for any positive infinitesimal Llx,

lb
f(x)dx = sh (S~(f, Llx)) = sh (L-XEP f(x)Llx).

Exercise 12.7.1
Verify that each member of the hyperfinite set P has the form a+ kLlx for
some nonnegative hyperinteger k < N.
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13
Universes and Frameworks

The discussion of internal sets and functions in the previous two chapters
raises some fundamental conceptual issues:

• In proving internal versions of induction, the least number principle,
order-completeness, etc., we reverted once more to ultrafilter calcu­
lations. Could we instead obtain these results by a logical transfer
principle, involving an extended version of the formal language of
Chapter 4? A limited extension of this kind is provided by the state­
ment (t) of Section 11.7, but perhaps this can be taken further by
using a more powerfully expressive language that would allow the
quantifiers "1,3 to range over collections of sets or functions rather
than just collections of numbers (cf. Section 4.7.)

• Now that we see how to identify certain subsets and functions in
*1R as being internal, can we do the same for other more complex
entities? Are there internal topologies on *1R? Or internal measures?
If A <;;;; *1R is hyperfinite of internal cardinality N, does it follow
that the power set of A is hyperfinite of cardinality 2N ? Or is it the
collection of internal subsets of A that should be hyperfinite? This
would seem to require the notion of an internal function of the type
{1, ... ,2N } -+ P(A).

It is time in fact to consider just how widely the methodology we have been
developing can be applied. To address this we will work with the entire set­
theoretic universe that can be erected on a set like IR by forming sets of
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sets, sets of sets of sets, etc., and then consider how this universe may
be "enlarged" to admit nonstandard entities, by analogy with the enlarge­
ment of IR to *R Ultimately this will provide a framework that allows the
methodology of nonstandard analysis to be applied to any kind of math­
ematical structure (function spaces, measure spaces, infinite-dimensional
Hilbert spaces, ... ). It will also cause us to review what we have been
doing so far from a more abstract set-theoretic standpoint.

13.1 What Do We Need In the Mathematical
World?

In developing a mathematical theory, or analysing a particular structure,
access may be needed to a wide range of entities: sets, members of sets,
sequences, relations, functions, etc. We will posit the existence of a "uni­
verse" IU that contains all such entities that might be required. This will
have an associated formal language £1[) whose sentences express properties
of the members of IU. Then IU will be enlarged to another universe *IU that
contains certain new (nonstandard) entities whose behaviour can be used
to establish results about IU by the use of transfer and other principles.
Here now is some more detailed discussion about the entities and closure

properties that IU should have.

• IndividuaLs. Although a real number might be viewed as a set of
Cauchy sequences, or a pair of sets of rationals (Section 1.3), when
studying real analysis we generally regard real numbers as individu­
aLs, i.e., as "points" or entities that have no internal structure. The
same applies to the basic elements of any other structure that might
concern us, be they elements of an algebraic number field, complex
numbers, vectors in some Hilbert space, and so on.

The universe IU will contain a set X of entities that are viewed as
individuals in this way. An element of X will be taken to have no
members within IU. It will be assumed that IR <;:;; X.

• FUnctions. If two sets A and B belong to IU, then we may wish to
have all functions I : A -+ B available in IU, along with the range of
I, the I-image I(C) <;:;; B of any C <;:;; A, and the inverse image of any
subset of B under I. Moreover, the set B A of all functions from A to
B should itself be in IU.

Also, we should be able to compose functions in 1U.

• ReLations. An m-ary relation is a set of m-tuples (al,'" ,am), and
is usually presented as a subset of some Cartesian product Al x
... x Am, the latter being the set of all such m-tuples that have
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al E A1 , .•. ,am E Am- Thus 1I.J should be closed under the formation
of tuples, and of Cartesian products and their subsets.

For binary relations (m = 2) the domain and range should be avail­
able, and the operations of composing and inverting relations should
be possible within our universe.

• Set Operations. All the usual set operations of intersection A n B,
union Au B, difference A - B, and power set P(A), when performed
on sets in 1I.J, should produce entities that belong to 1I.J. In fact, some
important constructions will require the union UY and intersection
ny of any (possibly infinite) collection Y E 1I.J to be available. Also,
if a set A belongs to 1I.J, then all subsets of A should too.

• Transitivity. If a set A is in 1I.J, we will want all members of A to
be present in 1I.J as well, i.e., A ~ 1I.J. This condition is usually called
transitivity of 1I.J, because it takes the form

a E A E 1I.J implies a E 1I.J.

This has an important bearing on the interpretation of a bounded
quantifier (\:Ix E A). We naturally read this as "for all x in A", but
when used to express a property of an entity of 1I.J, there is a potential
issue as to whether this means "for all x in A that belong to 1I.J", or
whether the variable x is ranging over all members of A absolutely.
When 1I.J is transitive, this is not an issue: the members of A that be­
long to 1I.J are simply all the members of A that there are. 'Iransitivity
thus ensures that quantified variables always range over members of
1U when given their natural interpretation.

Subset and Relation Closure

'Iransitivity of 1I.J together with closure under the power set operation will
guarantee that 1I.J has the property mentioned above of closure under subsets
of its members. For then if A ~ BE 1I.J, we get A E P(B) E 1I.J, and hence
A E 1I.J by transitivity.
Then closure of 1I.J under Cartesian products will lead to closure under
relations between given sets in general. Thus if A, B are sets in 1I.J and
R ~ A x B, then if Ax B E 1I.J, it follows that R E 1I.J by the argument just
given for subset closure.

13.2 Pairs Are Enough

The more we assume about the entities that exist and constructions that
can be performed within 1U, the more powerful will be this universe as a
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tool for applications. On the other hand, for demonstrating properties of
I[J itself or showing that it exists (and *I[J does too), it is desirable to have
very few primitive concepts, so that we can minimize the number of cases
and the amount and complexity of work required in carrying out proofs.
Studies of the foundations of mathematics have shown that these op­

posing tendencies can be effectively balanced by basing our conceptual
framework on set theory. To see this we will first show that apart from
purely set-theoretic operations, the other notions just described in Section
13.1 can be reduced to the construction of sets of ordered pairs:

• Functions. A function f : A -7 B can be identified with the set of
pairs

{(a, b) : b= f(a)},

which is a subset of the Cartesian product set A xB. Set-theoretically,
we define a function from A to B to be a set f of pairs satisfying

(i) if (a, b) E f then a E A and bE B;

(ii) if (a, b), (a, c) E f, then b= c (functionality);
(iii) for each a E A there exists bE B with (a, b) E f (the domain of

f is A).

• m-Tuples. Given a construction for ordered pairs (2-tuples), the case
m > 2 can be handled by defining

(all' .. , am) = {(1, al), ... , (m, am)}.

Thus an m-tuple becomes a set of ordered pairs (and actually is a
function with domain {l, ... ,m}).

Note: an alternative approach would be to inductively put

so that an m-tuple beomes a pair of pairs of ... of pairs. This works
just as well, but would be more complex set-theoretically than the
definition given.

• Relations. An m-ary relation is a set of m-tuples (al,"" am), and
hence becomes a set of sets of ordered pairs. The Cartesian product
Al x ... x Am is a particular case of this, being the set of all such
m-tuples that have al E AI, ... , am E Am·

13.3 Actually, Sets Are Enough

But what is an ordered pair? Well, one of the most effective ways to explain
a mathematical concept is to give an account of when two instances of the
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concept are equal, and for ordered pairs the condition is that

(a, b) = (c, d) iff a = c and b= d.

In fact, this condition is all that is ever needed in handling pairs, and it
can be fulfilled by putting

(a, b) = {{a}, {a, b} }.

In this way pairs are represented as certain sets, and therefore so too are m­
tuples, relations, and functions. When it comes to the study of a particular
structure whose elements belong to some given set X, all the entities we
need can be obtained by applying set theory to X. This demonstrates the
power and elegance of set theory, and explains the sense in which it provides
a foundation for mathematics.

Exercise 13.3.1

(i) Verify that { {a}, {a, b} } = {{c}, {c, d} } iff a = c and b= d.

(ii) Show that for m ~ 2,

Product Closure

Closure of llJ under Cartesian products can now be derived set-theoretically
from transitivity and closure under unions and power sets. If A, B E llJ and
(a, b) E A x B, then both {a} and {a, b} are subsets of AUB, i.e., members
of peA UB). Hence

(a, b) = {{a},{a,b}} E PP(AUB).

This shows that A x B ~ PP(AUB), and so A x BE PPP(AUB). Closure
under U and P and transitivity of llJ then give A x B E llJ.

13.4 Strong Transitivity

Before giving the axioms for a universe, there is a further important prop­
erty to be explained, which we do with the following example.

If a binary relation R belongs to llJ, then its domain domR should be
available in llJ as well. Now, if a E domR, then there is some entity b
with (a, b) E R. According to our new definition of pairs, we then have the
"membership chain"

a E {a} E (a, b) ERE llJ.
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Transitivity of llJ will ensure that it is closed downwards under such mem­
bership chains, giving a E llJ. But this leads only to the conclusion that
domR ~ llJ, whereas we want domR E llJ. Is domR perhaps too "big" to
be an element of llJ?
Now, if R itself were transitive, we would get a E R, showing domR ~

R E llJ, from which our desired conclusion would result by subset closure.
But of course R need not be transitive. On the other hand, it is reasonable
to suppose that R can be extended to a transitive set B that belongs to llJ
(Le., R ~ B E llJ). Then we can reason that dom R ~ B E llJ, leading to
dom R E llJ, as desired, by subset closure.
The justification for this is that any set A has a tmnsitive closure Tr(A),
whose members are precisely the members of members of ... of members
of A. Tr(A) is the smallest transitive set that includes A: any transitive
set including A will include Tr(A). We are going to require that llJ be "big
enough" to have room for the transitive closure of any set A E llJ. For this
to hold it is enough that some transitive set including A belong to llJ. Thus
our requirement is

• Strong Transitivity: for any set A in llJ there exists a tmnsitive
set B E llJ with A ~ B ~ llJ.

Note that the stipulation that B ~ llJ is superfluous if llJ is transitive, since
it then follows from B E llJ. But the definition of strong transitivity itself
implies that llJ is transitive (since we get A ~ llJ when A E llJ because
A ~ B ~ llJ), so this single statement captures all that is needed.
In a strongly transitive llJ we can assume that any set we are dealing

with is located within a large transitive set. This will be the "key to the
universe", as will become apparent.

13.5 Universes

In the light of the foregoing discussion, we now define a universe to be any
strongly tmnsitive set llJ such that

• if a,b E llJ, then {a,b} E llJj

• if A and B are sets in llJ, then AU B E llJj

• if A is a set in llJ, then P(A) E llJ.

Such a llJ will be called a universe over X if X is a set that belongs to llJ
(X E llJ), and the members of X are regarded as individuals that are not
sets and have no members:

(Vx E X) [x =1= 0/\ (Vy E llJ) (y fJ. x)].
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It will always be assumed further that a universe contains at least one
set, and also contains the positive integers 1,2, ... to ensure that m-tuple
formation can be carried out. In practice we will be using universes that
have ~ E lU, with each member of~ being an individual, so these conditions
will hold.
Here now is a list of the main closure properties of such universes, many

of which have been indicated already. Uppercase letters A, B, Ai, etc. are
reserved for members of lU that are sets.

Set Theory

• If a E lU, then {a} E 1U.

• AI, ... , Am E lU implies Al U ... U Am E lU.

• lU contains all its finite subsets: if A ~ lU and A is finite, then A E 1U.

• A ~ B E lU implies A E 1U.

• 0 E lU.

• If {Ai: i E I} ~ A E lU, then UEIAi E 1U. (Note: this uses strong
transitivity. )

• lU is closed under unions of sets of sets: if B = {Ai : i E I} E lU and
each Ai is a set, then UB = UiEIAi E lU.

• lU is closed under arbitrary intersections: if {Ai: i E I} ~ lU, then
niE1Ai E lU, whether or not the set {Ai: i E I} itself belongs to lU.

Relations and Functions

• If a, bE lU, then (a, b) E lU.

• If A, BE lU and R ~ A x B, then R E lU.

• If al,'" ,am E lU (m > 2), then (al,'" ,am) E lU.

• lU is closed under finitary relations: if AI, ... , Am E lU and R C
Al X •.. x Am, then R E 1U.

• If R E lU is a binary relation, then lU contains the domain dom R, the
mnge ran R, the R-image R' (C) of any C ~ dom R, and the inverse
R- I , where

domR = {a: 3b((a,b) E R)},

ranR {b: 3a ((a, b) E R)},
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R'(C)
R-1

{b: 3a E C((a,b) E R)},

{(b, a) : (a, b) E R}.

• If R, S E lU are binary relations, then lU contains their composition

Ro S = {(a,e): 3b((a,b) E Rand (b,e) E S)}.

• If f : A -t B is a function with A, BE lU, then f E lU. Moreover, for
any C ~ A and D ~ B, lU contains the image

I'(C) = {f(a) : a E C}

and the inverse image

f-l(D) = {a E A: f(a) ED}.

• If A, BE lU, then the set B A of all functions from A to B belongs to
lU.

• If {Ai: i E I} E lU and I E lU, then (I1iEI Ai) E lU.

13.6 Superstructures

It is time to demonstrate that there are such things as universes. Let X
be a set with IR ~ X. The nth cumulative power set lUn(X) of X is defined
inductively by

X,

lUn(X) U P(lUn(X)),

so that

The superstructure over X is the union of all these cumulative power sets:

The rank of an entity a is the least n such that a E lUn(X). The rank 0
entities (members of X) will be regarded as individuals:

(\:Ix E lUo(X)) [x =10/\ (\:Iy E lU(X)) (y rf. x)J.

All other members of lU(X) (those with positive rank) are sets, and so lU(X)
has just these two types of entity. We can show:
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(2) llJn(:%:) E llJn+1(J~). Hence llJn(X) E llJ(X), and in particular, X E
llJ(X).

(3) llJn+1(X) is transitive. Indeed, a E BE llJn+1(X) implies a E llJn(X).

(4) If a,b E llJn(X), then {a,b} E llJn+1(X).

(5) If A, BE llJn(X), then Au BE llJn+1(X).

(6) A E llJn(X) implies P(A) E llJn+2 (X).

From (3) it follows that llJ(X) is strongly transitive, since every element of
llJ(X) belongs to some llJn+1(X), Properties (4)-(6) then ensure that llJ(X)
is a universe, and by (2) it is a universe over X.

In fact, llJ(X) is the smallest universe containing X, in the sense that if
any universe llJ has X E llJ, then llJ(X) <;;;; llJ. Another description of this
superstructure over X is that it is the smallest transitive set that contains
X and is closed under binary unions Au B and power sets P(A).

Exercise 13.6.1
Verify results (1)-(6) above, and the observations that follow them. Show
further that if X <;;;; 'fl, then llJ(JR.) <;;;; llJ(X) <;;;; llJ('fl). 0

A universe is not closed under arbitrary subsets: if A <;;;; llJ, it need not
follow that A E llJ (e.g., consider A = llJ). In the case of a superstructure,
A will belong to llJ(X) iff there is an upper bound n E N on the ranks of
the members of A, Le., iff A <;;;; Un(X) for some n. All the entities typically
involved in studying the analysis of X can be obtained in llJ(X) using only
rather low ranks. If A, B E llJn(X), then any subset of A x B, and in
particular any function from A to B, is in llJn+2 (X). So constructing a
function between given sets increases the rank by at most 2. Using this, we
see that:

• A topology on X is a subset of P(X), hence a subset of llJ1(X), so
belongs to llJ2 (X). Thus the set of all topologies on X is itself a member
of llJ3 (X).

• An JR.-valued measure on X is a function f.L : A ---+ JR. with A a collection
of subsets of X, so A is of rank 2 and f.L of rank 4. Thus the set of all
measures on X is also an element of llJ(X), of rank 5.

• A metric on X is a function d : X x X ---+ JR. of rank 5 (since X x X has
rank 3). The set of all metrics on X has rank 6.

• The Riemann integral on a closed interval [a, b] can be viewed as a
function J: :R[a, b] ---+ JR.,
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where R[a, b] is the set of integrable functions j : [a, b] -7 JR. Such an
f is of rank 3, since [a, b] and IR have rank 1, so R[a, b] has rank 4
and therefore the integral J: is an entity of rank 6.

13.7 The Language of a Universe

Given a denumerable list of variables, a language .c1[J associated with the
universe 1U is generated as follows:

LI[J-Terms

• Each variable is an .c1[J-term.

• Each member of 1U is a constant .cv-term.

• If T1, ... , Tm are LI[J-terms (m 2:: 2), then (T1, ... , Tm ) is an .c1[J-term,
called a tuple.

• If T and a are .c1[J-terms, then 7(a) is a function-value .c1[J-term.

Notice that our rules allow iterated formations of tuples of terms, such as

((7, a), 7, (71, ..• , 7m )).

A term with no variables is closed, and will name a particular entity of 1U
if it is defined (recall the discussion of undefined terms in Section 4.3.1).
The rules for determining when a closed tuple is defined, and what it
names, are as follows:

• If 71, ... ,7mname elements aI, ... ,am, respectively, then (71, ... ,7m)
names the the m-tuple (a1, ... ,am).

• (71, ... , 7m) is undefined if one of 71, ... , 7m is undefined.

For a closed function-value term, the rules are:

• If 7 names a function f and a names an entity a that belongs to the
domain of j, then 7(a) names the entity f(a).

• 7(a) is undefined if one of 7 and a is undefined, or if they are both
defined but 7 does not name a function, or if 7 names a function but
a does not name a member of its domain.

The language .c'Y{ of Chapter 4 allowed formation of terms f (71, .•. , 7m)
where f is an m-ary function. This is catered for here because of tuple
formation. Any finitary function on IR belongs to 1U because JR ~ X, so f is
a constant of .c1[J, and f(71, ... ,7m ) can be taken to be a simplified notation
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for the .cu-term f((71, ... ,7m )). More generally, we can write a(71,'" ,7m )

for a( (71, ... ,7m )) when a is an arbitrary .cu-term (this is in line with
common practice: an m-ary function on a set A is just a one-placed function
on Am).
It follows that all .c!)l-terms are .cu-terms.

Atomic Lv-Formulae

These have one of the forms

7 = a,

7 E a,

where 7 and a are .cu-terms. For example, if P E 1IJ is a k-ary relation,
then there are atomic formulae

which may also be written P(71, ... ,7k) as in the notation of Section 4.3,
or, in the case k = 2, using infix notation, as in 71 < 72, 71 =I- 72, etc.
Since a function is a special kind of relation, symbols for functions may

occur in atomic formulae in two ways. For example, the two formulae

have the same intended meaning.

Formulae

• Each atomic .cu-formula is an .c1[J-formula.

• If <p and 'IjJ are .c1[J-formulae, then so are <p 1\ 'IjJ, <p V 'IjJ, '<p, <p - 'IjJ,
<p <-t 'IjJ.

• If <p is an .cu-formula, then so are (Vx E 7)<p and (3x E 7)<p, where 7
is any .cu-term and x is any variable symbol that does not occur in
7.

A sentence is, as usual, a formula in which every occurrence of a variable
is within the scope of a quantifier for that variable.

If <p is a formula in which only the variable x occurs freely, and 7 is a
closed term denoting the set A E 1IJ, then the sentence (Vx E 7)<p asserts
that <p(a) is true for every a E A, while (3x E 7)<p asserts that <p(a) is true
for some such a. As explained in Section 13.1, transitivity of 1IJ ensures
that quantified variables always range over members of 1IJ when given their
natural interpretation.
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As we will see later in applications of the language LV to mathematical
reasoning, the term 7 in a quantifier form ("Ix E 7) or (3x E 7) is usually
a variable or a constant.

Having observed above that the Lv-terms include all Lvt-terms, and that
LV allows the atomic formation P(71,"" 7k), we can now conclude that
the Lv-formulae include all Lvt-formulae: any subset P of lR. is in lU, so the
formation rules of LV admit the bounded quantifier forms ("Ix E P) and
(3x E P).

13.8 Nonstandard Frameworks

Let lU ~ lU' be a mapping between two universes, taking each a E lU to an
element *a of lU'. Then each Lv-term 7 has an associated *-transform *7,
which is the Lv,-term obtained by replacing each constant symbol a by *a.
A constant a occurring in an Lv-formula cp will do so as part of a term

7 that appears either in an atomic formula or within one of the quantifier
forms ("Ix E 7) and (3x E 7). Applying the replacement a fo4 *a to all such
constants transforms cp into an Lv,-formula *cp. If cp is a sentence, then so
too is *cp.
A nonstandard framework for a set X comprises a universe lU over X and
a map lU ~ lU' satisfying:

• *a = a for all a E X.

• *0 = 0.

• Transfer: an Lv-sentence cp is true if and only if *cp is true.

Such a map will be called a universe embedding or transfer map. It preserves
many set-theoretic operations:

• a = b iff *a = *b. Hence a fo4 *a is injective.

• a E B iff *a E *B.

• A ~ B iff *A ~ *B.

• If A ~ X, then A ~ *A ~ *X. In particular, X ~ *X.

• *(AnB)=*An*B.

• *(AUB)=*AU*B.

• *(A-B)=*A-*B.

• *{al,'" ,am} = {*al, ... , *am}. Thus *A = {*a: a E A} if A is finite.
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• All members of *X are individuals in lIJ'.

• ~ preserves transitivity: if A is a transitive set in 1IJ, then *A is
transitive.

• *P(A) ~ P(*A).

• If R E 1IJ is an m-ary relation, then so is *R.

• *(A1 x··· x Am) = *A1 x··· X *Am. Hence *(Am) = (*A)m for mEN.

• If R E II.J is a binary relation, then

*(domR)

*(ranR)

*(R- 1)

*(R'(C))

*(R-1(C))

dom*R,

ran *R,

(*R)-1,

(*R)'(*C)

(*R)-l (*C)

for C ~ domR,

for C ~ ranR.

• If Rand S are binary relations, then *(R 0 S) = *R 0 *S.

• If a function f : A ---. B belongs to 1IJ, then *f is a function from *A to
*B, with *(f(a)) = *f(*a) for all a E A. Also, f is injective/surjective
iff *f is.

To show that A ~ *A ~ *X whenever A ~ X, observe that if A ~ X, then
*A ~ *X, and if a E A, then a E X, and so a = *a E *A. Also, by transfer
(using *0 = 0) we have

("Ix E *X) Ix # 0/\ -,(3y E x)(y EX)]

true, so if b E *X, then b is not the empty set and has no members, and
therefore is an individual.
For preservation of transitivity by ~, let A E 1IJ be transitive, i.e.,

("Ix E A)(Vy E x)y E A.

This transforms to
("Ix E *A) (Vy E x) Y E *A,

showing that any set belonging to *A is a subset of *A, Le., *A is transitive
as desired.
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The fact that *P(A) ~ P(*A) follows by transfer of

(Vx E P(A)) (Vy E x) (y E A).

This shows that if x E *P(A), then y E x implies y E *A, and so x ~ *A,
whence x E P(*A). The exact relationship between *P(A) and P(*A) will
be revealed in Section 13.12.

Exercise 13.8.1
Verify all the other properties of the transfer map listed above. 0

If JR ~ X, all of the standard operations and relations on JR like +, -, x, lxi,
sinx, <, ~, =1=, etc. are entities in llJ, and so have corresponding entities *+,
*sinx, *=1=, etc. for *JR in llJ'. We will continue the practice of dropping the
*-prefix from such familiar notions when the intention is evident. However,
while this is harmless for functions and relations between individuals, when
entities of nonzero rank are involved, a transformed function *f need not
agree with f where their domains overlap, so more caution is needed. In
general, if a E domf, then *f(*a) = *(f(a)), but even when *a = a this will
reduce to *f(a) = f(a) only when *(f(a)) is equal to f(a). For an example
showing that this need not hold, let f : JR ---+ P(JR) be defined by

f(r) = {x E JR: x > r}.

For a given r E JR, transfer of the sentence

(Vx E JR)(x E f(r) ~ x> r)

shows (since *r = r) that

*f(r) = *(f(r)) = {x E *JR: x > r}.

In particular, f(O) = JR+, while *f(O) = *JR+.

Exercise 13.8.2
If <p(XI, ... ,xm) is an .elf-formula and A E llJ, show that

*{(aI,'" ,am) E Am: <p(al"" ,am)} =
{(b1, ... ,bm) E *Am: *<p(b1, ... ,bm)}.

Explain how various of the above results about preservation of properties
by ~ can be derived from this general fact.

13.9 Standard Entities

The members of llJ' of the form *a with a E llJ, will be called standard. The
other members of llJ' are nonstandard. Any element a of X is thus standard,
since in that case a = *a.
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The question of the existence of nonstandard entities will be taken up
in earnest in the next chapter. For now we will just assume that lU is a
universe over a set X that includes ~, and that

• there exists an element n E *N - N.

Then .! will be infinitesimal, and using transfer instead of ultrafilter calcu-n
lations we can derive in lU' the arithmetical properties of limited, unlimited,
appreciable, etc. numbers as in Chapter 5, and then develop the theory of
convergence, continuity, differentiation, integration for ~-valued sequences
and functions as in Chapters 6-9.
All standard members of *N belong to N, for if *a E *N, then by transfer

a E N, and so *a = a E N. Thus any member of *N-N must be nonstandard.
More generally, this argument shows that if A ~ X, then any member of
*A - A will be nonstandard.
We see then that standard sets *A may have nonstandard members. In

fact it turns out that *A has nonstandard members for every infinite set
A E lU (cf. Section 13.14).
Examples of nonstandard sets are provided by initial segments of *N.
Consider the sentence

(Vn E N) (3V E P(N)) (Vx E N) [x E V f--+ X ~ n],

which expresses "for all n E N, {l, ,n} E P(N)". By transfer it follows
that for any N E *N, the subset {l, , N} of *N belongs to the standard
set *P(N). If N E *N - N, then {l, ,N} cannot itself be a standard set.
For if *A is any standard subset of *N, then A ~ N, so either A is finite
and hence *A = A, or else A is unbounded in N, and hence by transfer *A
is unbounded in *N. In either case *A i- {l, ... , N}.
For another illustration, let I nt E lU2 (X) be the set of open subintervals

of the real line:
Int = {(a,b) ~ ~: a,b E ~}.

It follows by a transfer argument that

*(a, b) = {x E *~: a < x < b},

so the standard set *(a, b) will have nonstandard elements. By transfer of
the statements

(VA E Int) (3a, b E ~) ("Ix E ~) (x E A f--+ a < x < b),

(Va,b E ~)(3A E Int) (Vx E ~)(x E A f--+ a < x < b),

we get

(VA E *Int)(3a,b E *~) A = {x E ~: a < x < b},

(Va,b E *~)(3A E *Int) A = {x E ~: a < x < b},
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so we see that the standard set *Int E lU' consists precisely of the hyperreal
intervals (a, b) ~ *JR for all a, b E *lR. When one of a, b is nonstandard, the
corresponding interval is a nonstandard member of *1nt.

Exercise 13.9.1 Characterise exactly the standard elements of *Int.

External Images of Infinite Sets

If *A has nonstandard members, then it is distinguishable from the set

imA={*a:aEA},

which will be called the image of A. We have already observed that when A
is finite, then {*a : a E A} is equal to *A. If A is infinite, we will call imA the
external image of A. The reason for this name will be given in Theorem
13.14.1. imA is a subset of *A (since a E A implies *a E *A) that forms
a copy of A, in the sense that the transfer map a f---+ *a gives a bijection
between A and imA. It turns out that imA is a proper subset of *A for any
infinite A E lU (cf. Section 13.14).
Note that imN = N, imJR = JR, and in general imA = A whenever A ~ X.

Theorem 13.9.2 imA is the set of all standard members of *A:

imA = {b E lU' : bE *A and b is standard}.

Hence *A and imA have the same standard elements.

Proof The members of imA are standard by definition, and were noted
above to be members of *A.
Conversely, if b is a standard member of *A, then b = *a for some a E lU,

so then *a E *A and hence a E A by transfer, showing b = *a E imA. 0

Thus the nonstandard members of *A are precisely the members of *A - imA.

Exercise 13.9.3
Prove that standard sets are uniquely determined by their standard mem­
bers. In other words, if two standard sets have the same standard members,
then they are equal.

13.10 Internal Entities

In a nonstandard framework, an entity of lU' is called internal if it belongs
to some standard set:

• a is internal if and only if a E *A for some A E lU.

The set of all internal entities will be denoted by *lU. Observe that

• every standard entity is internal,
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because in general *a E *{a}, so the standard entity *a belongs to the
standard set *{a} and hence is itself internal. In other words, *a E *1U for
all a E 1U.
Members of 1U' that are not internal are external. The question of the

existence of external entities will be clarified once we have explored the
world of internal entities a little further: in Theorem 13.14.1 it will be
shown that imA is an external subset of the standard set *A whenever A is
infinite.

Theorem 13.10.1 Any internal set belongs to a standard set that is tmn­
sitive. Hence *1U is strongly tmnsitive, and in particular, every member of
an internal set is internal.

Proof Let A be internal, with A E *B for some B E 1U. By strong transi­
tivity of 1U there is a transitive T E 1U with B ~ T. But as we have seen,
transitivity is preserved by the transfer map, so the standard set *T E *1U
is transitive. Also, *B ~ *T, so A E *T, establishing the first part of the
theorem. But then A ~ *T, and every member of *T is internal by defini­
tion, so belongs to *1U. Thus A ~ *T ~ *1U, completing the proof that *1U is
strongly transitive.
The assertion that every member of an internal set is internal is now just
the statement that *1U is transitive. 0

We have already seen in Section 13.9 some interesting examples of nonstan­
dard internal entities. Every initial segment {1, ... ,N} of the hypernaturals
*N is internal, since it belongs to *P(N), while any open hyperreal interval
{x E *1R : a < x < b} with a, b E *1R is internal, since it belongs to *Int.
Also, any uniform partition

p'j:l = {a + k (b~a) : k E *Z & 0 ::s k ::s N}

with a, bE *1R and N E *N is internal, since it belongs to *P(IR) ~ P(*IR)
and hence is an internal subset of *lR. This follows by transfer of the state­
ment

(Va, b E 1R) (Vn E N) (::IP E P(IR)) (Vx E 1R)

[x E P ~ (::Ik E Z) (o::s k ::s n /\ x = a + k (b~a) )] .

13.11 Closure Properties of Internal Sets

• If A and B are internal sets, then so are An B, Au B, A - B, and
AxB.

• The union and intersection of any internal collection of sets are in­
ternal: if {Ai : i E I} E *1U and each Ai is a set, then UiEIAi and
niE1A are internal. (Note: {Ai: i E I} ~ *1U does not suffice here.)
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• If aI, ... ,am are internal, then so are the finite set {al,' .. ,am} and
the m-tuple (al, ... ,am).

• If a binary relation R is internal, then so is its domain dom R, its
range ran R, its inverse R- I , and the image R'(C) for any internal
C ~ domR.

• If binary relations R, S are internal, then so is their composition RoS.

• If a function j is internal and a E dom j, then j (a) is internal.
Moreover, if C is an internal subset of dom j, then f' (C) is internal,
and if D is an internal subset ofranj then j-I(D) is internal.

Here is the proof that the union of two internal sets is internal, i.e., *l[J is
closed under binary unions. The proof uses the closure of l[J under unions
together with strong transitivity of l[J to include any such union in a tran­
sitive set.
So, let A, B E *l[J, with A E *C and B E *D. Now, in l[J there is a

transitive set T including CUD. Then A, BE *T. Since *T is also transitive
(cf. the proof of Theorem 13.10.1), A and B are then subsets of *T.
Now consider the sentence

. (\:Ix, y E T)(3z E P(T))(\:Iu E T) [u E Z ~ u E x VuE y],

which asserts the existence in P(T) of the union z = xU y when x, yET
(and hence x, y ~ T). By transferring this sentence and applying it to
A, B E *T we see that there is some Z E * P(T) such that Z and A U B
contain exactly the same elements of *T:

Z n *T = (A U B) n *T.

Then Z E P(*T), so Z and Au B are subsets of *T, i.e., all members of Z
and Au B are in *T. Therefore Au B is equal to the internal set Z.

Exercise 13.11.1
Verify all the other closure properties of *1U listed above.

13.12 Transformed Power Sets

*l[J falls short of being a universe in its own right because it is not closed
under power sets. If it were, then P(*N) would be internal, i.e., P(*N) E *l[J.
By transitivity of *l[J this would imply that every subset of *N was in *l[J
too, and in particular N would be internal. However, this is incompatible
with the internal induction principle when *N - N i= 0, as will be seen in
this section.



13.12 Transformed Power Sets 175

Now, for any set A E 1[] we have

imp(A) = {*B : B E P(A)} ~ *P(A) ~ P(*A),

but these three sets derived from P(A) are not the same (for infinite A).
imp(A) is the collection of all standard subsets of *A, while *P(A) consists
of the internal subsets:

Theorem 13.12.1 *P(A) is the set of all internal subsets of*A, i.e.,

*P(A) = P(*A) n *1[] = {B ~ *A: B is internal}.

Proof We have *P(A) ~ P(*A) in general. Moreover, if BE *P(A), then
B belongs to a standard entity, so B is internal.
For the converse, let B be an internal subset of *A. Then B E *C for

some C E 1[]. Now, the sentence

(\Ix E C) [(\ly E x)(y E A) -+ x E P(A)]

is true, since it asserts of any x E C that if x ~ A, then x belongs to P(A).
By transfer it follows that for any x E *C, if x ~ *A, then x belongs to
*P(A). But B E *C and B ~ *A, i.e.,

(\ly E B)(y E *A),

so we get BE *P(A) as desired. o
This result has an extremely significant consequence for statements that
quantify over power sets. Since the Lv-sentence (\Ix E P(A»cp transforms
to (\Ix E *P(A»*cp, we now see from the characterisation of *P(A) that a
true Lv-statement of the form

for all subsets x of A, cp

gives rise to a true Lu.I'-statement of the form

for all internal subsets x of *A, *cp.

Consider for instance the least number principle

(\Ix E P(N))[x i= 0 -+ (3y E x) (\lz E x) (y ::; z)].

This transforms to show that every nonempty internal subset of *N has a
least element, which is the internal least number principle of Section 11.3.

In a similar manner we can now derive the internal induction principle by
a transfer argument. Either of these principles can then be used to conclude
that if *N - N i= 0, then N must be external, for the reasons explained in
Section 11.6.
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13.13 Exercises on Internal Sets and Functions

(1) Derive in *llJ the principles of internal induction (Theorem 11.3.2)
and internal order-completeness (Theorem 11.5.1).

(2) Show that P(A) is in bijective correspondence with the set of all
functions I: A ---+ {O, I}. Adapt this to show that *P(A) is in bijective
correspondence with the set of all internal functions 1 : *A ---+ {O, I}.

(3) Extending the previous exercise, recall that BA denotes the set of all
functions from A to B. If A, BE llJ, show that *(BA ) is the set of all
internal functions from *A to *B .

13.14 External Images Are External

Externality of N implies that of any set of the form imA with A infinite,
thereby justifying the name "external image" , as the following result shows.

Theorem 13.14.1 The image imA of any infinite set A E llJ is external.

Proof The method of proof was hinted at in Exercise 12.2(8), which is
itself the special case in which A is an infinite subset of IR (cf. also Section
11.7).
In general, if A is infinite, then there is an injection 1 : N ---+ A. Put

X = {f(n) : n E N} ~ A. Then *X is internal (indeed standard), and so if
imA were internal, then so too would be imA n *X (Section 13.11). Observe
that

imA n *X = {*a: a E A and *a E *X} = {*a: a E X} = imX.

Since the transform *1 : *N ---+ *A is internal, this would then imply that the
inverse image of imX under *1 is internal (Section 13.11). But by transfer
*1 is injective, and from this it can be shown that *1-1(imx) is equal to
the external set N.
Therefore imA cannot be internal. 0

Exercise 13.14.2
Verify that *1-1emX) = N in the proof just given. o

Since *A is internal, it follows from Theorem 13.14.1 that there are elements
in *A - imA. By Theorem 13.9.2 these elements are nonstandard. All told
then, it has now been established that

• if *N has nonstandard elements, then so does *A for every infinite
set A E llJ.
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Since imA is an external subset of*A, it belongs to P(*A) but not to *P(A).
Thus *P(A) is always a proper subset of P(*A) when A is infinite.

Exercise 13.14.3
Explain why *P(A) = P(*A) whenever A is finite.

13.15 Internal Set Definition Principle

In Section 11.7 we saw how internal subsets of *1R could be defined from
properties expressible by (the transforms of) formulae from the language
L<J>.. We can now formulate and prove a much stronger version of this that
applies to formulae of the language LU'. Such a formula may refer to much
more complex entities than are available in L<J>., including entities of arbi­
trarily high rank in the superstructure llJ(*X) over *X .
This new version of the internal set definition principle is as follows:

If <p(x) is an internal Lu,-formula (i.e., all of its constants are internal),
with x the only free variable in <p, then for any internal set A, the set

{a E A : <p(a) is true}

is internal. In other words, if B = {a E llJ' : <p(a)} is a subset of llJ' defin­
able by an LU' -formula with only internal constants, then for any internal
set A, An B is internal.

Proof. Let CI, ... , em be all the (internal) constants that occur in <p. Re­
place each constant Ci by a new variable Xi to get a formula <p(x, Xl, ... , xm )

that has no constants, hence is an Lv-formula and is equal to its own *­
transform.
Now, the entities A, CI, ... , em all belong to some standard set *T that

is transitive (Theorem 13.10.1). But the sentence

('<Iy, Xl, ... , Xm E T) (3z E P(T)) ('<Ix E T)

X E Z f-t Ix E Y A <p(X, Xl, ... ,Xm )]

is true, because it asserts the presence in P(T) of the set

Z ~ {x E T: X E Y and <p(X,XI, ... ,xm )}.

Applying the transfer of this sentence to A, CI, ... ,em E *T, we find that
there is some internal set Z E *P(T) such that

Z = {a E *T: a E A and <p(a,cI, ... ,em)}.

But A ~ *T by transitivity of *T, so Z is just the desired set {a E A : <p(a)}.
o
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To illustrate this principle, let <p(x) be the internal formula

(::Ik E *1£) (o:S k :S N 1\ x = a + k (b-;..a) ) .

Then {c E *1R : <p(c)} is the internal partition P'Il discussed above.

13.16 Internal Function Definition Principle

Let f : A ....... B be a function between internal sets A and B. Suppose that
there is an internal Lv,-term 7"(x) with sole variable x such that f(a) = 7"(a)
for all a E A. Then f is an internal function.

Proof. By the internal set definition principle, since A x B is internal and

f = {c E A x B: (::Ix E A) (::Iy E B)(c = (x, y) 1\ Y = 7"(x))}.

o
We can illustrate this result by the internal partition example P,/:} once
more. Let 7"(x) be the internal term a+x(b-;..a). Then by the internal func­
tion definition principle the function {O, 1, ... ,N} ....... *1R defined by 7" is
internal. The image of this function is thus internal, and is just P,/:}.

13.17 Hyperfiniteness

If A E 1lJ, let
PF(A) = {B ~ A : B is finite}

be the set of all finite subsets of A. Then PF(A) E 1lJ. Under a transfer map
we have

*PF(A) ~ *P(A) ~ P(*A),

so that each member of *PF(A) is an internal subset of *A. But we should
not expect to have *PF(A) ~ PF(*A), unless A is finite. Consider for
instance the true Lv-sentence

(Vn E N) (::IV E PF(N)) (Vx E N) [x E V ...... x :S n],

which modifies the sentence of Section 13.9 to assert that for each natural
number n the set V = {I, ... ,n} is actually in PF(N). By transfer, for
each n E *N, the initial segment

{I, ... ,n} = {x E *N : x :S n}

of *N belongs to *PF(N), and when n is unlimited this set includes Nand
is infinite!
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The members of *PF(A) are called hyperjinite subsets of *A. Thus a hy­
perfinite set is one that belongs to *PF(A) for some A E lU. This notion
applies now to sets A of any rank, and is related by the following result to
our earlier study in Chapter 12 of the case A = JR.

Theorem 13.11.1 A set B is hyperjinite il and only il there is an internal
bijection

1:{l, ... ,n}--+B

lor some n E *N.

Proof Let tP(V, n, I, Z) be the conjunction of the following formulae with
free variables V, n, I, Z:

("Ix E V)(x E N 1\ x ~ n),

("Ix E N) (x ~ n --+ x E V),

(Vb E f) (3x E V) (3y E Z) [b = (x, y)],

("Ix E V) (Vy, Z E Z) [(x, y) E I 1\ (x, z) E I --+ y = Z],

("Ix E V) (3y E Z) [(x, y) E I],
(Vy E Z) (3x E V) [(x,y) E I],
(Vx,y E V) (Vz E Z) [(x,z) E 11\ (y,z) E I --+ x = y].

Thus tP(V, n, I, Z) asserts that V = {x EN: x ~ n} and I is a function
from V onto Z that is injective. Hence if we define cp(n, I, Z) to be the
formula

(3V E P(N)) tP(V, n, I, Z),

then cp asserts that I is a bijection between {1, ... ,n} and Z. Its transform
*cp makes exactly the same assertion, but replaces N by *N and so allows
the possibility that n E *N - N.

Now, if A E lU, then the .c1[J-sentence

(VZ E PF(A)) (3n E N) (31 E peN x A)) cp(n, I, Z)

is true. Hence by transfer, if BE *PF(A), then there is some n E *N and
some I E *P(N x A), Le., some internal I ~ *N x *A, such that I is a
bijection from {1, ... ,n} to B. Moreover, I is internal, as it belongs to the
standard set *P(N x A).
For the converse, suppose that there is an internal bijection I : V --+ B,
where V = {x E *N : x ~ n} for some n E *N. Thus B is internal, being
the range of an internal function, and so B E *A for some A E lU, which we
may take to be transitive, with *A transitive as well. Then B ~ *A, so I is
an internal subset of *N x *A, whence

IE P(*N x *A) n *1lJ = P(*(N x A)) n *1lJ = *P(N x A),
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and *ep(n, I, B) holds.
Now consider the sentence

(VZ E A)([(3n E N) (31 E P(N x A)) ep(n, I, Z)] -+ Z E PF(A)).

This sentence is true (using the fact that Z E A implies Z ~ A), since it
asserts that if there is a bijection to Z from a set {I, ... ,n} with n EN,
then Z is in PF(A). Thus applying transfer and taking Z = B, we conclude
that BE *PF(A), so that B is a hyperfinite subset of *A. 0

The number n in this theorem is the internal cardinality of the hyperfinite
set B: n = IBI. The map B f-+ IBI is an internal function *PF(A) -+ *N, and
is the function that arises under the *-embedding from the corresponding
function PF(A) -+ N.

13.18 Exercises on Hyperfinite Sets and Sizes

(1) If there is an internal injection {I, ,n} -+ {I, ,m}, then n :::; m.
If there is an internal bijection {I, ,n} -+ {I, ,m}, then n = m.

(2) Let A be hyperfinite. Show that any internal set B S;; A is also hy­
perfinite and has IBI < IAI.

(3) Any hyperfinite subset of *R has a greatest and a least element.

(4) If A is hyperfinite, then so is the internal power set

PI(A) = P(A) n *llJ = {B ~ A : B is internal}.

Moreover, if IAI = n, then IPI(A)! = 2n
.

(5) A set B is hyperfinite iff there is a surjection 1 : {I, ... ,n} -+ B, for
some n E *N, that is internal.

(6) Internal images of hyperfinite sets are hyperfinite: if1 is internal and
B is hyperfinite, then I(B) is hyperfinite.

13.19 Hyperfinite Summation

In Section 12.7 the ultrapower construction was used to give meaning to the
symbol LXEB I(x) when B is a hyperfinite set and 1 an internal function.
In the context of a universe embedding llJ ~ llJ/, summation of hyperfinite

sets is obtained by applying transfer to the operation of summing finite
sets. The map B f-+ L B from PF(R) to R assigns to each finite set B ~
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R the sum of its members. This map transforms to an internal function
from *PF(R) to *R, thereby giving a (hyperreal) meaning to E B for every
hyperfinite set B ~ *R
Now, if f is an internal *R-valued function whose domain includes a

hyperfinite set B, then f(B) will be a hyperfinite subset of *R for which E
is defined. Thus we can specify

EXEB f(x) = E f(B).

13.20 Exercises on Hyperfinite Sums

(1) Explain why hyperfinite summation has the following properties: if
f, 9 are internal functions, B, Care hyperfinite sets, and c E *R, then

• ExEBcf(x) =c(ExEBf(x)),

• EXEB f(x) + g(x) = EXEB f(x) + EXEB g(x),

• ExEBuc f(x) = EXEB f(x) + EXEc f(x) if B nC = 0,
• EXEB f(x) :::; EXEB g(x) if f(x) :::; g(x) on B.

(2) Explain how and when it is possible to define indexed sums E~ Xi

with n unlimited.



14
The Existence of Nonstandard
Entities

How do we know that *JR. contains new entities in addition to the real num­
bers? In the ultrapower construction of *JR. in Chapter 3, this was deduced
from the fact that the nonprincipal ultrafilter :F contains no finite sets.
That allowed us to show that *A - A is nonempty whenever A is an infinite
subset of R

If *JR. is the transform of JR. under a universe embedding, we may not be
able to conclude that *JR. -:j:. JR. (for instance, the identity function on V is a
universe embedding V -+ V making *JR. = JR.). The condition that *JR. - JR.
be nonempty will have to be added as a new requirement (as was done in
the previous chapter by assuming *N - N -:j:. 0), or else derived from some
other principle.

In Section 11.11 it was shown that countable saturation guarantees the
existence of hyperreal numbers that are characterised by countably many
internal conditions. Saturation will be discussed further in Chapter 15. In
this chapter we look at another principle, known as "enlargement", which
is particularly convenient in the way it allows us to obtain nonstandard
entities. We will then see how enlargements can be constructed by forming
ultrapowers of superstructures.

14.1 Enlargements

Assume from now on that V is a universe over some set that includes JR.. V'
is called an enlargement of V if there exists a universe embedding V ~ V'
such that:
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if A E lU is a collection of sets with the finite intersection prop­
erty, then there exists an element b E lU' that belongs to *B for
every B E A, i.e.,

Enlargements have an abundance of nonstandard internal entities:

• Let A be the set of intervals (0, r) ~ ~ for all positive real r. Then
A E lU2(~) and A has the finite intersection property. If

bE n{*(O, r) : r E ~+},

then b is a positive infinitesimal member of *~. Indeed, in this case
nimA is precisely the set of positive infinitesimals, and the enlarge­
ment principle ensures that it is nonempty.

If we take A instead to consist of the intervals (-r, r) - {O}, then
nimA is- the set of all nonzero infinitesimals.

• For r E ~+, let (r,oo) = {x E ~: r < x}. Then by transfer *(r,oo) =
{x E *~ : r < x}. The collection of intervals (r, 00) has the finite
intersection property, and any member of

is a positive unlimited hyperreal.

• Let A E lU be an infinite set. Then the collection

{A - {a} : a E A}

has the finite intersection property. Since *(A - {a}) = *A - {*a}, it
follows that in any enlargement of lU there must be an entity b that
belongs to *A but is distinct from *a for all a E A. Thus

bE *A - {*a: a E A} = *A - imA.

Such a b will be nonstandard, because if b = *a for some a E lU, then
*a E *A, implying a E A (recall from Theorem 13.9.2 that imA is the
set of standard members of *A).

So we see that in an enlargement, any infinite standard set has non­
standard members. In particular, if A is any infinite subset of~ (e.g.,
A = N,Z,Q, etc.), then as A = imA, we deduce that A is a proper
subset of *A.

• If a E A, let Aa = {Z E 'PF(A) : a E Z} be the collection of
finite subsets of A that contain a. Then {Aa : a E A} has the finite
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intersection property, for if aI, ... ,an E A, put Z = {al'" . ,an} to
get Z E AaI n ... n Aa". But if

BE n{*(Aa ) : a E A},

then B E *PF(A), since in general *(Aa ) ~ *PF(A), and *a E B for
each a E A by transfer of the sentence

(VZ E Aa)(a E Z).

Thus B is a hyperfinite subset of *A that contains {*a : a E A}, i.e.,
imA~ B ~ *A.

The last example shows that enlargement is a stronger property than we
had considered hitherto, since we were previously only able to establish the
existence of such hyperfinite approximating sets in relation to countable
subsets of JR (cf. Section 12.3).

We are left then with the question of whether enlargements themselves
exist. In fact, they can be obtained by applying the ultrapower construction
to the superstructure U(X), as will be explained below. The outcome is this:

Enlargement Theorem. For any set X there exists an enlargement of
U(X) that is of the form U(*X).

14.2 Concurrence and Hyperfinite Approximation

A binary relation R is called concurrent, or finitely satisfiable, if for any
finite subset {Xl, ... ,xn } of the domain of R there exists an element y with
XiRy for all i between 1 and n.

If a concurrent relation R belongs to lU, then an enlargement will contain
entities b with *x(*R)b for all X E domR. This provides another language
for describing the above examples:

• Let R be the "greater than" relation on JR+:

R = {(r,y) E JR+ x JR+: r > y}.

R is concurrent, and by transfer *R is the "greater than" relation on
*IR+. If r(*R)b for all r E JR+, then b is a positive infinitesimal.

• Let R be the "less than" relation on IR+:

R = {(r,y) E IR+ x JR+: r < y}.

If r(*R)b for all r E IR+, then b is a positive unlimited hyperreal.
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• Let R be the nonidentity relation on a set A E lU:

R = {(a, y) E A x A: a", y}.

Then R is concurrent precisely when A is infinite, and *R is the
nonidentity relation on *A. If *a(*R)b for all a E A, then

bE *A - {*a : a E A},

and so b is a nonstandard member of *A .

• Let R be the membership relation between A and PF(A):

R = {(a, Z) : a E Z E PF(A)}.

For any A E lU, R is a concurrent relation in lU. If *a(*R)B for all
a E A, then B is a hyperjinite subset of *A that includes imA.

These notions yield alternative characterisations of the concept of enlarge­
ment:

Theorem 14.2.1 If lU ~ lU' is a universe embedding, then the following
are equivalent.

(1) lU' is an enlargement of lU relative to ~.

(2) For any concurrent relation R E lU there exists an entity b E lU' such
that *x(*R)b for all x E domR.

(3) For each set A E lU there exists a hyperjinite subset B of *A that
contains all the standard entities of *A:

imA = {*a : a E A} S;; B E *PF(A).

Proof First assume (1). If R is a binary relation in lU, for each x E dom R
let R[x] = {y E ranR: xRy}. Then if R is concurrent, the collection

{R[x] : x E domR}

has the finite intersection property. Also, this collection is a subset of the
power set P(ranR), so belongs to lU. Hence by (1) there is abE lU' that
belongs to every *(R[xJ). By transfer of (Vy E R[xJ) (xRy) we then have
*x(*R)b for all x E domR, establishing (2).
The proof that (2) implies (3) was indicated in the discussion of the last

example above.
To show that (3) implies (1), let A E lU be a collection of sets with the

finite intersection property. Take a transitive T E lU with A S;; T. Then the
sentence

(VZ E PF(A)) (3y E T) (Vz E Z) (y E z)

is true. But assuming (3), there exists a hyperfinite B ~ *A containing
imA. Then by transfer of this sentence, since B E *PF(A), there exists
some b E *T with b E z for all z E B, and hence b E *C for all C E A.
Therefore (1) holds. 0
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14.3 Enlargements as Ultrapowers

In Chapter 3 we constructed *JR by starting with certain real-valued se­
quences, Le., functions r, S : N --+ JR, and identifying them when the set

[r = s~ = {n EN: rn = sn}

on which they agree belongs to an ultrafilter F on N.
This method of construction can be applied much more widely by allow­
ing F to be an ultrafilter on a set I other than N. Then any two functions
with domain I can be identified if the subset of I on which they agree
belongs to F. The approach can be used to build enlargements of a super­
structure 1IJ(X), and we will now sketch out the way in which it works.
So, let I be an infinite set and F a nonprincipal ultrafilter on I. Then

1IJ(X)I is the set of all functions from I to 1IJ(X). For a E 1IJ(X), let aI E
1IJ(X)I be the function with constant value a. For I, 9 E 1IJ(X) I , put

[I = g~

[I E g~

[I E a~

[a E I~

Zn

Z

{i E I: I(i) = g(i)},

{i E I: I(i) E g(i)},

[I E aI~ = {i E I: I(i) E a},

[aI E f] = {i E I: a E I(i)},

{f E 1IJ(Xl : [I E 1IJn(X)) E F},

U{Zn: n ~ O}.

Z is then the union of the increasing chain Zo ~ Zl ~ .... The members
of Z may be viewed as functions of "bounded rank" in the sense that if
IE Zn, then I(i) E 1IJn(X) for F-almost all i in I. In fact, such an I can
itself be assigned a rank, because

[I E 1IJn(X)~ ~ {i E I: I(i) has rank O} U··· U {i E I: I(i) has rank n},

and the union on the right is made up of pairwise disjoint sets, so

{i E I : I(i) has rank k} E F

for exactly one k ::; n, allowing us to define I to be of rank k. Then
Zn - Zn-l consists of the functions of rank n, and the rank of the function
aI in Z is the same as the rank of the entity a in 1IJ(X).
For I E Zo, let [I] = {g E Zo : [I = g~ E F}. Put

Y = {[/] : I E Zo}.

There is a map I ~ [I] from Z to the superstructure 1IJ(Y) over Y that com­
poses with the map a ~ aI of 1IJ(X) into Z to give a universe embedding.
The definition of [I] is by induction on the rank of f.
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For f E Zo, [f] has just been defined and is a member of Uo(''V). Thus
for n ? 0 we can make the inductive hypothesis that for all f E Zn, [f] has
been defined and is a member of Un (''V). Then for g E Zn+l - Zn put

[g] = {[f] : f E Zn and [f E gD E F}.

This specifies [g] as a subset of Un(''V), and hence a member of Un+l(''V),
and completes the inductive construction.

Now, for f, g E Z it can be shown that

[f] E [g] iff {i E f: f(i) E g(i)} E F

and
[f] = [g] iff {i E f : f(i) = g(i)} E .r.

For each a E U(X) define *a to be [aI] E U(Y). For a E X, aI is of rank 0,
Le., aI E Zo, and we let a be identified with *a E Y. For a of rank n + 1 we
find that

*a = {[f] : f E Zn and [f E aBE F}.

Consequently,

In particular,

*Un(X) { [I] : [f E IUn(X)D E F}

{[f] : f has rank ~ n}.

*X = {[f] : [f E XD E F} = Y,

showing that U(Y) is just IU(*X). Also, since [f E 0D = 0,

*0 = {[I] : [f E 0D E F} = 0.

To show that the transfer principle holds for this construction requires the
demonstration of a version of Los's theorem. This takes the following form.

For any LU(X)-formula CP(Xl""'Xp) and any !I, ... ,fp E Z,
the sentence

*cP([!I],· .. , [fp])

is true if and only if

{i E f: cp(!I(i), ... ,fp(i)) is true} E.r.

If the ultrafilter F is nonprincipal, then *lR. will have nonstandard members,
as shown in Sections 3.8 and 3.9. But to obtain U(*X) as an enlargement of
U(X) a special ultrafilter F has to be used. To define this, let f = PF (IU(X)),
the set of all finite subsets of U(X). Each member of f belongs to U(X),
but f itself does not. For each a E f, define

fa = {b E f : a ~ b}.
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Then if al, ... , an E I, putting b = al u··· U an E I gives

b E Ial n ... n Ian.

This shows that the collection {Ia : a E I} has the finite intersection
property, and so is included in some ultrafilter :F on I (Theorem 2.6.1).
To show that the superstructure IU(*X) associated with this particular :F
is an enlargement, let A E IU(X) be a collection of sets that has the finite
intersection property. For each bEl, bn A is a finite subcollection of A,
so if bn A is nonempty, it has nonempty intersection. In that case, let f (b)
be any member of this intersection. Hence

f(b) E n(b n A) E P(UA).

If, however, bn A = 0, let f(b) = 0. The resulting function f has bounded
rank, and so determines an element [f] of IU(*X). It will suffice to show that

[f] E n{*B : BE A}.

Now if BE A, then {B} E I, and so I{B} = {b E I: B E b} E:F. But now
if BE b, then B E bn A, and so f(b) E B. This shows that

I{B} ~ {b E I : f(b) E B} = [f E B],

giving [f E B] E:F, and therefore U] E *B, as desired. This completes the
proof of the enlargement theorem.

An alternative proof that IU(*X) is an enlargement can be given by
directly proving the hyperfinite approximation property that for any set
A E IU(X) there exists a B with

imA ~ B E *PF(A). (i)

For such an A put g(b) = bn A to define a function 9 : 1--+ PF(A). Then

[g E PF(A)] = I E :F,

making [g] E *PF(A). But for a E A, we have a E bn A when a E b, so

I{a} = {b E I : a E bn A} = [a E g],

implying that *a E [g]. Thus putting B = [g] fulfills (i).

14.4 Exercises on the Ultrapower Construction

(1) Verify the details of the ultrapower construction of enlargements.

(2) Suppose FEZ is such that F(i) is a function for (almost all) i E I.
Show that [F] is a function satisfying

[F]([h]) = [k] iff {i: F(i)(h(i)) = k(i)} E :F.

(3) Is the ultrafilter used in the above construction nonprincipal?
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Permanence, Comprehensiveness,
Saturation

Nonstandard analysis introduces a brave new world of mathematical enti­
ties. It also has a number of distinctive structural features and principles
of reasoning that can be used to explore this world. Already in the context
of subsets of *lR we have examined several of these principles: permanence,
internal induction, overflow, underflow, saturation. Now we will see that in
the context of a universe embedding lIJ ~ lIJ' they occur in a much more
powerful form, since they apply to properties that may refer to any internal
entities in lIJ/. We assume from now on that we are dealing with such an
embedding for which *N - N i= 0.

15.1 Permanence Principles

Several times we have discussed situations in which a property of a certain
kind that holds on a particular type of set must continue to hold on some
larger set (d. Sections 7.10 and 11.9). Here is a statement of how such
situations occur in lU':

Theorem 15.1.1 Let cp(x) be an internal Day-formula with only the vari­
able x free. Then

(1) (Overflow) If there exists kEN such that cp(n) is true for all n E N
with k :::; n, then there exists K E *N - N such that cp(n) is true for
all n E *N with k :::; n :::; K.
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(2) (Underflow) If there exists K E *N - N such that rp(n) is true for all
n E *N - N with n ::; K, then there exists kEN such that rp(n) is
true for all n E N with k ::; n.

(3) If rp(a) is true for all hyperreals a that are infinitely close to some
b E *JR, then rp(a) is true for all hyperreals a that are within some
positive real distance of b.

(4) Ifrp(a) is true for arbitrarily large (resp. small) a E JR, then it is true
for some positive (resp. negative) unlimited hyperreal a.

(5) If there exists r E JR such that rp(a) is true for all a E JR with r ::; a,
then there exists a positive unlimited b E *JR such that rp(a) is true for
all a E *JR with r ::; a ::; b.

Proof

(1) We adapt the proof of Theorem 11.4.1. Formula (k < x) 1\ -,rp(x) is
internal, and *N is internal, so by the version in Section 13.15 of the
internal set definition principle,

y = {n E *N : k < n and not rp(n)}

is an internal set. Now, if rp(n) is true for all *N - N, then any
K E *N-N gives the desired result (remember we assume *N-N =1= 0).
Otherwise Y is nonempty, and so by the internal least number prin­
ciple has a least element H. Then H is unlimited and K = H - 1
gives the result.

(2) Adapt the proof of Theorem 11.8.1, using the internal formula

y < K 1\ (T/x E *N) (y ::; x ::; K ~ rp(x)).

(3) Adapt the proof of Theorem 11.9.1.

(4) Exercise, using internal order-completeness. Likewise for (5).
o

There are other permanence results in this vein, analogous to the ones
appearing in Exercise 11.5.2 and Section 11.6. Formulation and proofs of
these are left to the reader.

Exercise 15.1.2
Let f be an internal *JR-valued function such that f(x) in limited for all x
in some internal set A ~ dom f. Show that there is a standard n E N such
that If(x)1 < n for all x E A.



15.3 Uniformly Converging Sequences of Functions 193

15.2 Robinson's Sequential Lemma

Overflow has the following useful consequence:

Lemma 15.2.1 If S : *N --+ *1R is an internal hypersequence such that Sn

is infinitesimal for all standard n EN, then there is an unlimited K E *N
such that Sn is infinitesimal for all hypernatural n ~ K.

Proof We cannot just apply overflow to {n E *N : Sn ~ O}, since we do
not know that this set is internal. Instead we use {n E *N : ISn I < ~}.

Because s is internal, the formula

Ix·s(x)I<1

is internal, and for each n E N, since Sn ~ 0 we have n· Sn ~ 0, and so
In· Sn I< 1. Hence by overflow there is a K E *Noo such that if n ~ K, then
In· snl < 1 and so ISnl < ~. But when such an n is unlimited, ~ ~ 0 and
so Sn ~ O. 0

The argument just given can be adapted to apply to an internal hyperse­
quence of the form S : {n E *N : n ~ N} --+ *IR with N unlimited, by using
the internal formula x ~ N /\ Ix, s(x)1 < 1.

Exercise 15.2.2
If c E *IR and S : *N --+ *IR (or S : {n E *N : n ~ N} --+ *IR) is an
internal hypersequence such Sn ~ c for all standard n EN, then there is an
unlimited K E *N such that Sn ~ c for all hypernatural n ~ K. 0

Variations on the theme of Robinson's lemma can derived from other per­
manence principles. For instance:

Theorem 15.2.3 If f is an internal *IR-valued function and f(x) is in­
finitesimal for all limited hyperreals x, then there is an unlimited b such
that f(x) is infinitesimal for all x E [-b, b] ~ *IR.

Proof As for the proof of Lemma 15.2.1, but using the internal formula
Ix, f(x)1 < 1 and the fact that if an internal set includes lL then it includes
[-b, b] for some unlimited b (Section 11.6). 0

15.3 Uniformly Converging Sequences of
Functions

Robinson's sequential lemma (15.2.1) can be used to give an interesting
alternative proof of the following classical result that was already discussed
in Section 7.13:
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• If a sequence Un :n E N) of continuous real-valued functions on the
closed interval [a, b] ~ lR. converges uniformly to a function g, then 9
is continuous.

The sequence Un :n E N) is identifiable with a function of the type

f :N -+ lR.[a,bj

(d. Section 7.12). This function belongs to IlJ and transforms to

*f: *N -+ * (lR.[a,bJ ) •

But * (lR.[a,bJ ) is the set of all internal functions from *[a, b] to *lR., so we get

*fn : *[a,b] -+ *lR.

for all n E *N. Thus the original sequence extends to an internal hyperse­
quence *f = (*fn : n E *N). For standard n and x, *fn(x) = fn(x).

Now, uniform convergence of the f n 's to 9 on [a, b] means that for each
c E lR.+ there exists a kEN such that

(Vx E [a, b]) (Vn E N) [k ~ n -+ Ifn(x) - g(x)j < c].

Then by transfer it follows that I*fn(x) - *g(x)1 < c whenever x E *[a,b]
and k ~ n E *N. In particular, this will hold for any unlimited n, whatever
positive real c is taken here. Therefore

*fn(x) ~ *g(x) for any n E *N - N and x E *[a, b]. (i)

To prove that 9 is continuous at any real c E [a, b] we apply the theory of
Section 7.1 and show that if x ~ C in *[a,b], then *g(x) ~ *g(c). But given
x ~ c, then for n E N, *fn(x) ~ *fn(c) by continuity of fn. Thus

I*fn(x) - *fn(c) I~ 0 for all n E N.

But the hypersequence (I*fn(x) - *fn(c) I : n E *N) is internal (by the
internal function definition principle 13.16), and therefore by Robinson's
lemma (15.2.1) it follows that there is some unlimited K for which l*fK(X)­
*fK(C)1 ~ 0, and so

*fK(X) ~ *fK(C).

Then by (i) we get that *fK(X) ~ *g(x), and *fK(C) ~ *g(c), so *g(x) ~ *g(c)
follows as desired.

Exercise 15.3.1
Show that the condition (i) above is also sufficient for the sequence Un :
n E N) of continuous real-valued functions on the closed interval [a, b] ~ lR.
to converge uniformly to the function g.
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15.4 Comprehensiveness

We know that a real-valued sequence (sn : n E N) extends to a hyperreal­
valued function (sn : n E *N) that is internal. But what about a hyperreal­
valued sequence N -+ *lR? Does this have an internal extension of the form
*N -+ *lR?
A universe embedding is called comprehensive if for each set A E lU and

each internal set B E *lU, any function f : A -+ B extends to an internal
function +f: *A -+ B, in the sense that +f(*a) = f(a) for all a E A.
The embedding is called countably comprehensive if this condition holds

whenever A is countable. If it holds whenever A = N, we will call it se­
quentially comprehensive. Since *a = a for a E N, it follows that in a
sequentially comprehensive embedding, any sequence N -+ *lR does indeed
have an internal extension of the form *N -+ *R More generally, any se­
quence (sn : n E N) of elements of any internal set B will extend to an
internal hypersequence (sn : n E *N) of elements of B.
The ultrapower construction of Section 14.3 always produces a compre­
hensive embedding of a superstructure lU(X). The reason for this, which
involves some intricate details, is as follows. If B is internal, then it is equal
to [HI, where H E Z is a function with some rank n, and we can suppose
that H(i) E lUn(X) for all i E I. For each b E B choose a function Pb E Z to
represent b, i.e., b = [Pb]. In particular, for each a E A we have f(a) E B,
and so f(a) = [Pf(a)] E [H]. Hence we can suppose Pf(a)(i) E H(i) for all
i E I.
Now for each i E I, define fi : A -+ H(i) by putting Ii(a) = Pf(a) (i) for
all a E A. Then fi E (lUn(X))A, so putting F( i) = fi makes F a function
on I of bounded rank, i.e., FEZ. Let +f = [F] E lU(*X).
Using the fact that each F(i) is a function from A to H(i), it can be

shown (with the help of Los's theorem) that the internal entity [F] is a
function from *A to [H] = B as desired. Its action on any [h] E *A (with
h(i) E A for all i E 1) is given by [F]([h]) = [k], where k is the function
k(i) = F(i)(h(i)). Thus in general,

k(i) = fi(h(i)) = Pf(h(i»(i),

and so
+f([h]) = [(Pf(h(i»(i) : i E I)].

But for a E A, we have *a = [aI] where ai(i) = a, and so

+f(*a) =+ f([aiD = [(Pf(aI(i»(i): i E I)]

[(Pf(a)(i) : i E I)]

[Pf(a)] = f(a),

showing that +f extends f in the manner required to prove comprehensive­
ness of the embedding of lU(X) into lU(*X).
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Exercise 15.4.1
For f f-+ +f defined as above, prove the following.

(i) If two functions f, g : A --+ B differ only at finitely many elements
aI, ... ,an of A, then +f and +g differ only at *al, ... , *an.

(2) If f : A --+ *C is the extension by * of some function h : A --+ C in
lU(X) , i.e., f(a) = *(h(a)) for a E A, then +f is just the *-transform
*h: *A --+ *C of h. (Use a suitable choice of the representatives Pb in
this case.) 0

Theorem 15.4.2 For any universe embedding, the following are equiva­
lent.

(1) The embedding is countably comprehensive with *N - N =1= 0.

(2) The embedding is sequentially comprehensive with *N - N =1= 0.

(3) (Countable Saturation) Every decreasing sequence of nonempty inter­
nal sets has nonempty intersection.

Proof (2) follows as a special case from (1).
To show that (2) implies (3), let (An: n E N) be a sequence of nonempty

internal sets, with An :2 An+l . Because Al is internal, it is a subset of some
standard transitive set *T (Theorem 13.10.1). Put B = *'P(T). Now, each
An is an internal subset of AI, hence of *T, and so belongs to the internal
set B. Thus by sequential comprehensiveness the sequence (An : n E N)
extends to an internal hypersequence (An: n E *N) of elements of B.
By hypothesis, for each standard kEN we have

(Vn E *N) [n ~ k implies An :2 A k =1= 01·

But this is an internal statement, so if *N - N =1= 0, we can apply overflow
to conclude that it must hold for some unlimited k. Then for such a k we
have

which establishes (3).

Finally, we derive (1) from (3). First, put An = {k E *N : n ~ k}. Then
for each n E N, An is internal by the internal set definition principle 13.15,
with An :2 An+!. Hence by (3) there exists some K E n{An : n EN},
which entails K E *N - N, so *N - N =1= 0.
Now to prove countable comprehensiveness. Let A = {an : n E N} be a
countable member oflU, and f : A --+ B with B internal. For each n E N let
An be the set of all internal functions from *A to B that have g(*ak) = f(ak)
for all k ~ n. Then An :2 A n+!, and An can be shown to be nonempty and
internal. Hence by (3) there exists agE n{An : n EN}. Such a g is an
internal function from *A to B that has g(*an) = f(an) for all n E N, so
g(*a) = f(a) for all a E A as desired.
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To see that An is internal, take a standard set *T with *A, B ~ *T. Let
IPn (g) be the statement

• 9 is a function from *A to B such that g(*ad = f(al),' .. ,g(*an ) =
f(an ).

For each particular n E N, IPn(g) is expressed by an internal formula. Also,
an internal function from *A to B is a subset of *T x *T = *(T x T) and
hence belongs to the transformed power set *P(T x T). Thus

An = {g E *P(T x T) : IPn(g) is true},

and this is internal by the internal set definition principle.
Lastly, An is shown to be nonempty by transfer of the property that
for any set Y E P(T), and any Xl, ... ,Xn E Y, there is agE P(A x T)
that is a function from A to Y such that g(al) = Xl,'" ,g(an ) = Xn . The
transferred property is applied with Y = B E *P(T) and Xi = *ai to obtain
a function from *A to B that meets the definition of An. 0

The property expressed in Theorem 15.4.2(3) was derived in Section 11.10
for sequences of internal subsets of *R Now we have seen that it holds for
any nested sequence of sets from *11.1. From what we have learned about
ultrapowers in this section it follows that the particular ultrapower con­
struction in Section 14.3 produces an enlargement that is comprehensive,
hence countably comprehensive, and so by Theorem 15.4.2 is countably
saturated. The argument of Section 11.12 then applies to show that any
infinite set in *1l.J is uncountable.
An instance of this last property is the fact that an unlimited hypernatu­
ral number K has uncountably many hypernaturals greater than it, Le., the
internal set {n E *N : K < n} is uncountable. Under countable saturation
we also have the result that K has uncountably many unlimited hyper­
naturals less than it: the internal set {n E *N : n < K} is uncountable,
while its limited part N is countable. This result can instead be obtained
from the following theorem, due to Abraham Robinson, which we derived
using countable saturation in Section 11.11. Here now is Robinson's own
proof, which uses sequential comprehensiveness and indeed was his original
reason for introducing the comprehensiveness notion.

Theorem 15.4.3 In a sequentially comprehensive enlargement, if X is
any countable set of unlimited hypernaturals, then there is an unlimited
hypernatural K less than every member of X.

Proof. Write X = (sn : n E N) and extend this to an internal hyperse­
quence (sn : n E *N) by sequential comprehensiveness. Put

Y = {k E *N: (tin E *N) (n ~ k ---+ k < sn)}'

Then Y is internal, as its defining formula is internal. Moreover, Y contains
each standard kEN, since in that case Sl, ... , Sk are all in X, hence
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unlimited and so greater than k. By overflow, then, there is some unlimited
Kin Y. Then K < Sn whenever n ~ K, which includes all n E N. Hence
K < x whenever x EX. 0

Yet another proof of this result can be obtained from Robinson's sequential
lemma, by the 'following construction. Given an internal hypersequence
s : *N -+ *R, define the hypersequence §. = (§.n : n E *N) by putting

§.n = min{sm : m ~ n}.

Note that {sm : m ~ n} is hyperfinite, being the image of {m E *N: m ~

n} under the internal function s, so §.n is indeed defined (13.18(3». The
following exercise completes the proof.

Exercise 15.4.4
Show that §. is internal. If Sn E *Noo for all n E N, apply Robinson's
sequential lemma to the reciprocals of the §.n's to obtain an unlimited
hypernatural number that is less than every member of {sn : n EN}.

15.5 Saturation

Countable saturation is itself equivalent to the assertion (cf. Corollary
11.10.2(1»:

• Every countable collection of internal sets with the finite intersection
property has nonempty intersection.

We should not, however, expect that the corresponding statement always
holds for uncountable collections of internal sets. For instance, the collection

{*R - {r} : r E *R}

of internal sets has empty intersection, but does have the finite intersection
property.

If K, is a cardinal number, then an enlargement is called K,-satumted when

• any collection of fewer than K, internal sets with the finite intersection
property has nonempty intersection.

(Consequently, "countably saturated" is the same as "Nl-saturated", where
N1 is the least uncountable cardinal.)
By using special kinds of ultrafilters it is possible to show that for any

cardinal K" any superstructure lU(X) has a K,-saturated enlargement. In such
an enlargement *R must in fact be a set of size at least K, (as indeed must
every infinite internal set!).
Some theorems of nonstandard analysis require K,-saturation for large K,.

For instance, in the theory of topological spaces there is the property that
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the shadow of an internal set is topologically closed. This was demonstrated
for the topology of the real line in Section 11.13. For a general topological
space it requires K.-saturation with K. larger than the number of open sets
in the topology.

Exercise 15.5.1
Show that K.-saturation is equivalent to the following statement:

If an internal relation R is concurrent on a subset A of its
domain that has cardinality less than K. (A need not be internal),
then there is an entity b in the range of R such that aRb for all
aEA.
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Applications



16
Loeb Measure

Measure theory studies operations that assign magnitudes to sets, like mea­
suring the length of an interval, the area of a plane region, or the volume of
a solid; counting the number of elements in a set; calculating the probabil­
ity of an event in a sample space or the definite integral of some function
over a set; etc.
Now, the "measure spaces" on which such operations are defined are
typically closed under countable set unions, and this feature is fundamental
to the theory. But an internal collection of sets typically fails to be closed in
this way. However, in 1973 Peter Loeb discovered that this very failure could
be exploited to give a new way of constructing standard measure spaces
out of nonstandard entities. 1 This has led to some interesting applications,
particularly in probability theory and stochastic analysis. For instance, it
provides a representation of Brownian motion as a "random walk with
infinitesimal steps".
We will now develop Loeb's construction, elucidating the role played in
it by the nonstandard principles of countable saturation, sequential com­
prehensiveness, and overflow. We will then apply it to show that Lebesgue
measure on the real line can be represented by a weighted counting measure
on hyperfinite sets, using infinitesimal weights.
But first, a review of some of the basic concepts of measure theory.

ISee example 6 of Section 16.1 and example 3 of Section 16.3.
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16.1 Rings and Algebras

A ring of sets is a nonempty collection A of subsets of a set S that is closed
under set differences and unions:

• If A, B E A then A - B, A u B E A.

It follows that 0 E A, since A-A = 0, and that A is closed under symmetric
differences Ab.B and intersections A n B, since

Ab.B

AnB
(A - B) U (B - A), and

A - (A - B).

An algebm is a ring A that has SEA and hence (indeed equivalently) is
closed under complements AC = S - A. If A is a ring, then Au {S - A :
A E A} is an algebra, the smallest one including A.
A a-ring is a ring that is closed under countable unions:

• If An E A for all n E N, then UnEl\IAn E A.

The equation
nnEl\IAn = Al - (UnEl\I(AI - An»

shows that a a-ring is also closed under countable intersections.
A a-algebm is a a-ring that is an algebra. The intersection of any family

of a-algebras is a a-algebra. Thus for any A ~ P(S) there is a smallest
a-algebra S(A) that includes A. This S(A) is the a-algebra genemted by
A.

Here are some examples of these concepts:

(1) P(S) itself is a a-algebra.

(2) If S is infinite, then

• the collection of all finite subsets of S is a ring that is not an
algebra;

• the collection of all finite or cofinite subsets of S is an algebra
that is not a a-algebra;

• the collection of all countable subsets of S is a a-ring that is not
an algebra when S is uncountable.

(3) Let CIR be the collection of all subsets of IR that are finite unions of
left-open intervals (a, b) = {x E IR : a < x ~ b} with a, b E IR and
a ~ b. (Thus 0 = (a, a) E CIR') CIR is ring in which each member is in
fact a disjoint union of left-open intervals (a, b). CIR is not an algebra,
and is not closed under countable unions: (0,1) is not in CIR , since each
member of CIR will have a greatest element, but (0,1) is the union of
the intervals (0,1 - ~) for n EN.
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CIR does, however, contain certain significant countable unions: for
instance (0,1] is the union of the pairwise disjoint intervals (n~l' ~].
Any reasonable notion of measure should thus assign to (0,1] the
infinite sum of the measures of the intervals (n~l' ~].

(4) Let BIR be the a-algebra generated by CIR. Each open interval (a,b) in
JR is in BIR, being the union of the countably many left-open intervals
(a, b-~] for n E N. Hence every open subset of JR is in BR' being the
union of countably many open intervals (take ones with rational end
points).

On the other hand, if a a-algebra contains all open intervals, it must
contain any left-open (a, b] as the intersection of all (a, b + ~) for
n E N. Thus BIR is also the a-algebra generated by the open intervals,
as well as the a-algebra generated by the open sets of JR.

The members of BIR are called the Borel sets.

(5) Let S = {1, ... ,N} with N an unlimited hypernatural. Then S is
hyperfinite, and the collection Pr(S) of all internal subsets of S is
an algebra (also hyperfinite) that by transfer of the finite case will
be closed under hyperfinite unions, i.e., unions of internal sequences
(An: n ~ K) for K E *N. Pr(S) is not, however, a a-algebra: it
contains each initial segment {1, ... ,n} with n EN, but does not
contain their union because that is the external set N.

This same analysis applies to the algebra of internal subsets of any
nonstandard hyperfinite set S = {sn : n ~ N}.

(6) Let A be an algebra in some universe lU. In any enlargement of lU,
*A will be an algebra, by transfer, but in a countably saturated en­
largement *A will not in general be a a-algebra, even if A is. To see
this, let (An: n E N) be a sequence of members of *A with union A.
Each An is internal, and if A were in A, it would also be internal and
hence by countable saturation would be equal to Un<kAn for some
kEN (cf. Corollary 11.10.2). Thus if A is a genuinely infinite union
of the An's, it cannot be in *A. This will happen, for example, if the
An's are strictly increasing (An £; A n+1 ) or pairwise disjoint.

For instance, in the case of the Borel algebra the internal sets *(-n, n)
belong to *BIR for all n E N, but their union is not in *BIR because it
is the external set of all limited hyperreals.

The closure condition that we do get for *A is that the sequence
(An : n E N) extends to an internal sequence (An : n E *N) whose
union can be shown by transfer to be in *A. In this sense *A is a
"hyper-a-algebra", but that is not the type of structure on which a
standard measure is defined.
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This reasoning in fact shows that for any internal algebra of sets (not
just one of the form *A)

• the union of a countable sequence of sets can belong to the algebra
only if it is equal to the union of finitely many of its terms.

It is this feature upon which Loeb measure is founded.

16.2 Measures

Standard measure theory employs the extended real numbers

[-00, +00] = {-(X)} U JR. U {+oo},

with -00 < r < +00 for r E JR., r ± 00 = ±oo, etc. We will usually put 00
for +00, and also make use of the set [0,00] = {r E JR. : r ~ O} U {oo}.
Let A be a ring of subsets of a set S, and J.L a function from A to [0,00]
that has J.L(0) = O. Then J.L is called a measure if it satisfies:

(Ml) If (An: n E N) is a sequence of pairwise disjoint elements of A
whose union is in A, then

This condition is called countable additivity. Note especially that it is not
required to hold for all (pairwise disjoint) sequences (An: n EN), but only
those whose union happens to belong to A (which is not guaranteed when
A is not a a-algebra).

The function J.L is called finitely additive if in place of Ml it satisfies

(M2) J.L(A UB) = J.L(A) + J.L(B) whenever A, B E A with An B = 0.

Since a ring is closed under finite unions, M2 implies that

whenever Ai, ... ,An is a finite sequence of pairwise disjoint members of
A. M2 also implies that J.L is monotonic:

• A ~ B implies J.L(A) :::; J.L(B), for all A, B E Aj

as well as being subtractive:

• A ~ Band J.L(B) < 00 implies J.L(B - A) = J.L(B) - J.L(A), for all
A,BEA.

Countable additivity implies the following important fact:
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• If (An: n E N) is an increasing sequence of elements of A whose
union is in A, then

An element A E A is called IL-finite if IL(A) < 00, and IL-null if IL(A) = O.
The function IL itself is u-finite if the set S is the union of countably many
IL-finite subsets.

For example:

{
IAI if A is finite,

(1) If A ~ S, put ILc(A) = 00,' if A is infinite.

Then ILc is a measure on P(S), the counting measure, which is u-finite
iff S is countable. The restriction of ILc to the ring of finite subsets of
S, or to the algebra of finite or cofinite sets, is also a measure.

(2) On the ring CIR of disjoint unions of left-open intervals (a, b), put
A((a, b]) = b - a and extend A additively to all members of CIR • Then
A proves to be a measure on CR, and A is u-finite because JR. is the
union of the intervals (-n, n].

Here the symbol A may be thought of as denoting "length", but it
also stands for "Lebesgue".

(3) Consider a countably saturated enlargement of a universe over a set
X that has [-00, +00] ~ X. Then the set

*[0,00] = {x E *lR: x ~ O} U{oo}

is internal. Now let S be a hyperfinite set and PI(S) the algebra of
all internal subsets of S. For each A E PI(S) put

(where IAI is the internal cardinality of the hyperfinite set A). Then
IL is finitely additive in the sense of M2, because IA UBI = IAI + IBI
when AnB = 0 (but note that we are referring to + in *JR. rather than
JR.). Since IAI ~ lSI whenever A ~ S, IL takes limited values between
oand 1, i.e., IL : PI(S) -+ *[0,1]. Putting

ILL(A) = sh(IL(A))

then defines ILL : PI(S) -+ [0,1] as a genuinely real-valued finitely
additive measure on PI(S), with ILL(S) = 1.

But ILL is in fact a measure, for the reason explained in example
6 of Section 16.1. If (An: n E N) is a sequence of pairwise disjoint



208 16. Loeb Measure

elements of PI(S) whose union A belongs to PI(S), then A must be
equal to Un<kAn for some k. But then when m > k, Am = 0, since
Un~kAn and Am are disjoint, and so JLdAm) = 0. Hence

UnENAn =

LnEN JLdAn)

Al U ... UAk , and

JLdAI ) + ... +JLdAk),

from which it follows that JLL satisfies Ml.

(4) Let A be an internal ring of subsets of some internal set S in a
countably saturated enlargement, and let JL : A --t *[0,00] be a finitely
additive function. Adapting the construction of (3), put

JLL(A) = { sh(JL(A)),
00,

if JL(A) is limited,
if JL(A) is unlimited or 00.

Then reasoning as in (3), we show that JLL : A --t [0,00] is countably
additive, and so is a measure on the ring A.

(5) This last construction has (3) as a special case, and also covers other
natural extensions of (3) that involve hyperfinite summation. Let w :
S --t *1R be an internal "weighting" function on a hyperfinite set S.
For each A E PI(S) put

(recall the definition of hyperfinite sums in Section 13.19). Then JLw
is a "weighted counting function" that is finitely additive and induces
the measure JLL on PI(S),

In fact, every internal finitely additive function JL : PI(S) --t *[O,ooJ
arises in this way: put w(s) = JL( {s}). Example (3) itself is the special
case of a uniform weighting in which each point is assigned the same
weight w(s) = Ik

16.3 Outer Measures

We now review the classical procedure of Caratheodory for extending a
measure JL on a ring of sets A to a measure on a a-algebra including A.

If B is an arbitrary subset of the set S on which A is based, put

Here the infimum is taken over all sequences (An : n E N) of elements
of A that cover B. The function JL+ : P(S) --t [0,00] is called the outer
measure defined by JL (although it may not actually be a measure). It has
the following properties:
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• J.L+ agrees with J.L on A: if B E A, then J.L+(B) = J.L(B).

In particular, J.L+(0) = O.

• Monotonicity: if A ~ B, then J.L+(A) ~ J.L+(B).

• Countable subadditivity: for any sequence (An) of subsets of S,

• For any B ~ S and any c E ~+ there is an increasing sequence
Al ~ A2 ~ •.• of A-elements that covers B and has

A set B ~ S is called J.L+ -measurable if it splits every set E ~ S J.L+­
additively, in the sense that

For this to hold it is enough that

whenever J.L+(E) < 00.
The class A(J.L) of all J.L+-measurable sets has the following properties.

• A(J.L) is a a-algebra.

• A ~ A(J.L)' Le., all members of A are J.L+-measurable. Hence A(J.L)
includes the a-algebra S(A) generated by A.

• All J.L+-null sets belong to A(J.L) .

• J.L+ is a measure on A(J.L), and hence is a measure on S(A).

• If J.L is a-finite on A, and A is an algebra, then J.L+ is the only extension
of J.L to a measure on S(A) or on A(J.L).

Because A(J.L) contains all J.L+-null sets, J.L+ is a complete measure on it,
which means that

• if A ~ B E A(J.L) and J.L+(B) = 0, then A E A(J.L).

This entails that

• if A, BE A(J.L) with A ~ Band J.L+(A) = J.L+(B), then any subset of
B - A belongs to A(J.L) (and is J.L+-null), and hence any set C with
A ~ C ~ B belongs to A(J.L) and has J.L+(C) = J.L+(A) = J.L+(B).
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16.4 Lebesgue Measure

Lebesgue measure is defined by the outer measure .\+ constructed from
the measure .\ on ClR that is determined by putting .\((a, b]) = b - a. The
members of the a-algebra ClR(.\) are known as the Lebesgue measumble sets
and include all members of the a-algebra BlR of Borel sets generated by ClR'
We will write .\(B) for .\+(B) whenever B is Lebesgue measurable.
Some facts about Lebesgue measure that will be needed are:

(1) .\ is the only measure on BlR that has .\«a,b)) = b - a: any measure
on an algebra including BlR that agrees with .\ on open intervals must
agree with .\ on all Borel sets.

(2) For any Lebesgue measurable set B there exist Borel sets G, D with
G ~ B ~ D and .\(D - G) = 0, hence .\(B) = .\(G) = .\(D).

(3) A set B ~ IR is Lebesgue measurable if for each c E 1R+ there is a
closed set GE: ~ B and an open set DE: ;;2 B such that .\(DE: - GE:) < c.

By using the axiom of choice it can be shown that there is a subset of IR
that is not Lebesgue measurable.

16.5 Loeb Measures

Loeb measures are defined by applying the outer measure construction
to measures of the type fJ-L introduced in example 4 of Section 16.2. We
work from now on in a nonstandard framework that is countably saturated,
and hence sequentially comprehensive (Theorem 15.4.2). Let (8, A, fJ-) be
any "measure space" consisting of an internal finitely additive function
fJ- : A ~ *[0,00] on an internal ring A of subsets of an internal set 8.
Take fJ-L : A ~ [0,00] to be the measure defined in example 16.2(4), and
let fJ-t be its associated outer measure on P(8). The members of the set
A(fJ-L) of fJ-t-measurable subsets of 8 will be called the Loeb measumble
sets determined by fJ-. We write fJ-dB) for fJ-t(B) whenever B is Loeb
measurable and refer to fJ-L as the Loeb measure and (8, A(fJ-L), fJ-d as the
Loeb measure space determined by fJ-.
This definition of Loeb measure via the outer measure construction is
the way that the notion was first arrived at. By analysing its properties
we will see that A(fJ-L) has a characterisation that would allow it and its
measure fJ-L to be defined in a more direct way (cf. the comments at the
end of Section 16.7).

Lemma 16.5.1 If B is Loeb measumble with respect to fJ-, then

fJ-dB) = inf {fJ-dA) : B ~ A E A}.
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Proof By monotonicity, J.LL(B) is a lower bound of the fLL(A)'s for B ~

A E A. If fLL(B) = 00, then the result follows. If, however, fLL(B) < 00,
to show that it is the greatest lower bound it suffices to show that for any
e E R+ there is some set Ae E A with B ~ Ae and fLdAe) ~ fLLCB) + e.
Now, for such an e, by properties of outer measure there is an increasing
sequence Al ~ A2 ~ . •. of A-elements whose union includes B and has

The sequence (An: n E N) extends by sequential comprehensiveness to an
internal sequence (An : n E *N) of elements of A. Then for each kEN we
have

(tin E *N) (n ~ k implies An ~ Ak and fL(An) < fLLCB) + e) (i)

(since fL(An) ~ fLLCAn) ~ fL!(UnENAn». But (i) is an internal assertion,
since fL and the extended sequence are internal, while k, e, and fLLCB) are
fixed internal entities (real numbers). Therefore by overflow (i) must be
true with some unlimited K E *N in place of k. For such a K we have
AK E A and An ~ AK for all n E N, so that

B ~ UnENAn ~ AK,

while fL(AK) < fLL(B) + e. Hence as fL(AK) ~ fLL(AK),

fLLCAK) ~ fLL(B) + e,
establishing that AK is the set Ae we are looking for.

o

Lemma 16.5.2 If B is Loeb measurable and fLL -finite, then

fLdB) = sup {fLdA) : A ~ B and A E A}.

Proof Given any e E R+, we will show that there is some set Ae E A
such that Ae ~ Band fLL(B) - e < fL(Ae ).

Since fLLCB) < 00, we know from Lemma 16.5.1 that there is some DE A
with B ~ D and fLLCD) < 00. The desired result is obtained by using
complementation relative to D. Firstly, D - B is Loeb measurable and
fLL-finite, so by Lemma 16.5.1 there is a set C with D - B ~ C E A and

We may assume C ~ D (since we could replace C by enD here). Let
Ae = D - C E A. Then Ae ~ B, and C is the disjoint union of D - Band
B-Ae , so



212 16. Loeb Measure

implying that p,L(B - AE) < c. Therefore

p,L(B) = P,L(AE) + p,L(B - AE) < p,L(AE) + C,

so p,L(B) - c < p,(AE) as desired.

16.6 j1.-Approximability

o

An arbitrary subset B of S is called p,-approximable if for every c E IR+
there exist "approximating" sets GEl DE E A such that

Equivalently, for every c E IR+ there exist GE, DE E A with GE~ B ~ DE
and P,L(DE- GE) < c. (The equivalence holds because p,(A) ~ p,L(A) in
general.)
The notion of p,-approximability will provide an alternative characteri­

sation of Loeb measurability (Theorem 16.7.1). For this we need several
preliminary results.

Lemma 16.6.1 If B is Loeb measurable with p,L(B) < 00, then B is p,­
approximable.

Proof Given c E IR+, by Lemmas 16.5.1 and 16.5.2 there are GEl DE E A
with GE~ B ~ DE and P,L(DE) < p,L(B) + ~ while p,L(B) < p,L(GE) + ~.

Then

o
The next lemma makes further appeal to sequential comprehensiveness and
overflow.

Lemma 16.6.2 If B is p,-approximable, then there is a set A E A that is
"almost equal" to B in the sense that their symmetric difference A~B is
p,!-null.

Proof Applying p,-approximability, construct a pair of sequences of A­
elements (Gn : n E N) and (Dn : n E N) with

and p,L(Dn - Gn ) < ~. To see how this works at the inductive stage, given
Gn and Dn , take G~+l I D~+l E A with

G~+l ~ B ~ D~+l and p,L(D~+l - G~+l) < n~l;
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put Cn+l = CnU C~+l and Dn+l = Dn n D~+l'
By sequential comprehensiveness, these sequences extend to internal hy­
persequences (Cn : n E *N) and (Dn : n E *N) of A-elements. Then for
each kEN,

(ii)

This is an internal statement, soby overflow there is some unlimited K E *N
such that for all n EN,

But then for any n E N,

and hence

J.tt(DKD.B) :::; J.tt(Dn - Cn) < .!..
n

Thus J.tt(DKD.B) = 0, and so Lemma 16.6.2 holds with A = DK EA. 0

Note that we cannot arrange to get B ~ DK in this argument, because
if we included "B ~ Dk " in (ii), we would no longer have an internal
statement to which we could apply overflow.

Lemma 16.6.3 If B is J.t-approximable, then B is Loeb measurable.

Proof We have to show that any E ~ S is split J.tt-additively by B, for
which it suffices that

Now, by Lemma 16.6.2 there is an A E A that is almost equal to B. The
desired inequality holds with A in place of B, since A is Loeb measurable,
and so as J.tt(BD.A) = 0, we can show it holds for B as well. Formally, let

C (EnB) -A,

D (EnA) - B,

G = E- (AU B),

H EnAnB

(draw a Venn diagram!). Then C and D are included in Bb.A, so ttt(C) =
ttt(D) = 0. Thus

J.tt(E n B) = J.tt(C U H) :::; J.tt(C) + J.tt(H) = J.tt(H),

and similarly
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Hence

J.tt(E n B) + J.tt(E - B) < J.tt(H) + J.tt(G)

< J.tt(E n A) + J.tt(E - A) by monotonicity

= J.tt(E),

with the last step given by the J.tt -measurability of A. 0

Lemma 16.6.4 If J.tt(B) < 00, then B is Loeb measurable with respect to
J.t if and only if it is J.t-approximable.

Proof By Lemmas 16.6.1 and 16.6.3.

16.7 Loeb Measure as Approximability

o

The work of the last section yields the following characterisation of Loeb
measurable sets.

Theorem 16.7.1 An arbitrary subset B of S is Loeb measurable with re­
spect to J.t if and only if B n A is J.t-approximable for all J.t-finite A E A.

Proof Let B be Loeb measurable. If A E A is J.t-finite, then B n A is Loeb
measurable, since the Loeb measurable sets are n-closed, and J.tt -finite
since B n A ~ A, so by Corollary 16.6.4 B n A is J.t-approximable.
Conversely, let B n A be /L-approximable for all /L-finite A E A. To show
that B is Loeb measurable, we have to show that for any J.tt-finite E ~ S,

(iii)

But in such a case J.tt (EnB) < 00, so there must be a sequence (An: n E N)
of A-elements that covers EnB with each An being J.t-finite. Each BnAn is
then /L-approximable, by hypothesis, and so is Loeb measurable by Lemma
16.6.3. Hence if

A = UnEl\l(B nAn),

it follows that A is Loeb measurable, and so

J.tt(E) ~ J.tt(E n A) + J.tt(E - A).

But

(iv)

En A = En (UnEl\l(BnAn»= En B,

as the An's cover En B. Then E - A = E - B, and hence (iii) follows from
(iv). 0

The statement of Theorem 16.7.1 could be used to provide a direct def­
inition of the class A(J.td of Loeb measurable sets, with Lemma 16.5.1
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providing the definition of the Loeb measure I-lL itself. But then we would
have work to do in proving that A(I-ld was a a-algebra including A, on
which I-lL was a complete measure.

16.8 Lebesgue Measure via Loeb Measure

Let N E *N be a fixed unlimited hypernatural number, and

S {~:kE*Zandlkl~N2}

= {-;: 1 ~ k ~ N 2
} U {O} U {~ : 1 ~ k ~ N 2

}.

S is a hyperfinite set, of internal cardinality 2N2 +1, forming a grid of points
spread across the hyperreal line between - Nand N, with adjacent points
being of infinitesimal distance 1:t apart. Each real number r is approximated
infinitely closely on either side by these grid points. This follows by transfer
of the statement

(Vn EN) (Irl < n -+ (3k E Z) [Ikl < n2 and (~ ~ r < ~)]) .

Now, let A = PI(S) be the set of all internal subsets of S. A is an algebra,
is itself internal and hyperfinite, and all its members are hyperfinite. The
function I-l : A -+ *[0,00) given by

I-l(A) = 0.1
N

is internal and finitely additive (and similar to example 16.2(3)). I-l is a
weighted counting function in the sense of 16.2(5), determined by assigning
the infinitesimal weight 1:t to each grid point. It induces the measure I-lL
on A having

if 1# is limited,
otherwise.

Let (S,A(I-lL),I-lL) be the associated Loeb measure space as defined in
Section 16.5. Our first step is to show that the Lebesgue measure of any
real interval is obtainable by using I-lL to count the weighted number of
grid points between the end points of the interval.

Theorem 16.8.1 For any a, b E IR with a < b,

I-ld{s E S : a < s < b}) = b - a.

Proof Let A = {s E s: a < s < b}. Then A = Sn*(a,b), so A is internal
and belongs to A, hence is Loeb measurable. Moreover, A is hyperfinite,
so has smallest and greatest elements, say sand t. Since a and b can be
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approximated infinitely closely by members of S, we must then have a ~ s
and b ~ t. Also, we can put s = KJl and t = js, for some K, L E *1:. Thus

A - {K+l K+2 L} - {M . K M < L}- ---rr-,---rr-'···'N - N· < - ,

which is hyperfinite of cardinality L - K, since the internal function f(x) =
Kit is a bijection from {l, ... ,L - K} onto A. It follows that

1# = LNK = js, - ~ ~ b - a,

and so ILL(A) = b - a as desired. D

Note that the proof of Theorem 16.8.1 shows readily that ILL assigns
measure b - a as well to the sets

S n *(a, bl, S n *[a, b), S n *[a, bl.

Thus if B is any finite interval in JR, the Lebesgue measure of B is equal
to the Loeb measure of the set S n *B of grid points that are (possibly
nonstandard) members of B. One might wonder whether this equation

A(B) = ILL(S n *B)

holds in general, but that suggestion is quickly dispelled by the case B = Q.
Every grid point is a hyperrational number, so S ~ *Q and hence ILL(S n
*Q) = ILL(S) = 00, while A(Q) = O.
Rather than S n *B, the appropriate set to represent B in S is the set of

grid points that approximate members of B infinitely closely. This is the
set

{s E S : s is infinitely close to some rEB}

{s E S: s is limited and sh(s) E B},

which may be called the inverse shadow of B. The definition of sh-1(B)
uses a condition that is not internal, so the set itself cannot be guaranteed
to be internal, and more strongly may not be Loeb measurable, Le., may
not belong to A(ILd. One case in which it is not internal but nonetheless
is Loeb measurable occurs when B = JR: since

sh-1(JR) = {s E S: s is limited} = UnEN(Sn *(-n,n)),

while each set S n*(-n, n) is an internal subset of S and so belongs to A, it
follows that sh-1(JR) belongs to A(ILd by closure under countable unions.
But sh-1(JR) cannot be internal, because it is bounded in *JR but has no
least upper (or greatest lower) bound.
The general situation is this:
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Theorem 16.8.2 A subset B of IR is Lebesgue measumble if and only if
sh- 1(B) is Loeb measumble. When this holds, the Lebesgue measure of B is
equal to the Loeb measure of the set of grid points infinitely close to points
of B:

)"(B) = J1dsh- 1(B».

Proof. Let M = {B ~ 1R: sh- 1(B) E A(J1L)}. For B E M, put

v(B) = J1dsh- 1(B».

Our task is to show that M is the class CIR()..) of Lebesgue measurable sets,
and that v is the Lebesgue measure )...
By properties of inverse images of functions,

sh- 1(0)

sh- 1(A - B)

sh- 1 (UnEN An)

0,
sh- 1(A) - sh- 1(B),

UnENSh- 1(An).

Since A(J1L) contains 0 and is closed under set differences and countable
unions, these facts imply that M has the same closure properties. Since
sh-1 (1R) E A(J1L), as was shown above, we also have IR E M. Altogether
then M is a a-algebra, on which v proves to be a measure.
At this point we need the the following lemma.

Lemma 16.8.3 M includes the Borel algebm BIR, and v agrees with Lebes­
gue measure on all Borel sets.

Proof. Each open interval (a, b) ~ IR belongs to M, since sh-1 «a, b» is
the union of the sequence (An: n E N), where

An = S n *(a + ~,b - ~) E A.

But BIR is the smallest a-algebra containing all open intervals (a, b), so this
implies that BIR ~ M. Also, by Theorem 16.8.1,

J1dAn) = (b - ~) - (a + ~) = b - a - ~,

and hence as the An's form an increasing sequence,

v«a, b» = J1dsh~l«a, b» = lim J1dAn) = b - a.
n--+oo

Thus v is a measure on BIR that agrees with ).. on all open intervals. But
any such measure must agree with)" on all Borel sets (16.4(1». 0

Now, if B ~ IR is Lebesgue measurable, then (16.4(2» there are Borel
sets C, D with C ~ B ~ D and )"(C) = )"(B) = )"(D). Then

sh- 1(C) ~ sh- 1 (B) ~ sh- 1 (D),
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and by Lemma 16.8.3, C,D EM, whence sh-1(C),sh- 1(D) E A(JLL), and

JLL(sh- 1(C)) = v(C) = A(C) = A(D) = v(D) = JLL(sh- 1(D)).

Since JLL is a complete measure on A(JLL) (by the general theory of outer
measures), it follows that sh- 1(B) E A(JLL), and hence B E M, with

This establishes that every Lebesgue measurable set is in M (i.e., CIR(A) ~
M) and that v agrees with A on all Lebesgue measurable sets.
It remains now to show that M ~ CR(A), and for this we need the
result from Section 11.13 that the shadow of any internal subset of *JR is
topologically closed as a subset of JR, and so is a Borel set.
Let B E M, Le., sh-1(B) E A(JLL). First we consider the case that
sh-1(B) is JLL-finite and show that B is Lebesgue measurable by the crite­
rion 16.4(3). But if JLL(sh- 1(B)) < 00, then by Lemma 16.6.1, sh-1(B) is
JL-approximable, so for any given c E JR+ there exist sets C, D E A with

Let Ce = sh(C) = {sh(s): s E CnlL}. Now, C is internal, being a member
of A, and so by Theorem 11.13.1 Ce is closed, hence Borel, and therefore
Ce E M by Lemma 16.8.3. But since C ~ sh-1(B), every member of C
has a shadow, so

Hence
JLL(C) ~ JLL(sh-1(Ce )). (v)

Similarly, sh(S-D) is closed, and is disjoint from B because sh-1(B) ~ D.
Thus Dc = JR - sh(S - D) is open in JR, hence Borel, and has B ~ Dc.
Moreover, sh-1(De ) ~ D, and so

(vi)

Thus we have Ce ~ B ~ Dc, with Ce closed, Dc open, and

A(De ) - A(Ce ) JLL(sh- 1(De )) - JLL(sh- 1(Ce )) by Lemma 16.8.3

< JLL(D) - JLL(C) by (v) and (vi)

< c.

According to 16.4(3), this is enough to ensure that B is Lebesgue measur­
able.
For the general case, we use the fact that the set B of reals is the count­
able union

B = UnEJIl(B n (-n, n)),
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so that it is enough to show that each B n (-n, n) is Lebesgue measurable
in order to deduce that B itself is Lebesgue measurable.
Now, sh-1((-n,n)) belongs to A(JLL), since (-n,n) belongs to M, and

so A(JLL) contains the set

But this set is JLL-finite, because

so the case just considered proves that Bn (-n, n) is Lebesgue measurable.

This finishes the proof of Theorem 16.8.2, completing our demonstration
that the Lebesgue measure )"(B) of a subset B of lR can be obtained as the
Loeb measure JLdsh- 1(B)).

o



17
Ramsey Theory

So far, the nonstandard methodology has been applied to calculus, analysis,
and topology. This is to be expected, since the notions of infinitely small
and large numbers, infinitely close approximation, limiting concepts, etc.
belong to those subjects. But there are other areas of mathematics that
can be illuminated by the methodology of enlargement, and we will look
at one such now: the combinatorics of infinite sets.

17.1 Colourings and Monochromatic Sets

Let C1 , ... ,Cr be a finite sequence of pairwise disjoint sets and A a set
satisfying

(i)

If each of the sets Ci is finite, then so too is A. To put this another way:

• If A is infinite, then at least one of the Ci's must be infinite.

This observation can be reformulated in the language of colourings. We
regard (i) as inducing a partition of the set A given by an assignment of
r different colours to the members of A. Then B i = A n Ci is the set of
elements of A that are assigned colour i. In these terms we have we have:

• For any colouring of an infinite set A using finitely many colours,
there must be an infinite subset B of A that is monochromatic, i.e.,
all members of B get the same colour.
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This is the simplest case of a powerful principle known as Ramsey's theo­
rem, which has significant combinatorial applications and which forms the
basis of a subject called Ramsey theory. To formulate the general case we
introduce the notation [Alk for the set of all k-element subsets of A (where
kEN):

[Al k = {B ~ A: IBI = k}.

Notice that if B ~ A, then [Blk ~ [Alk. Given a finite colouring

[Al k ~ C1 U ... U Cr

of the k-element subsets of A, a set B ~ A is called monochromatic if all
its k-element subsets get the same colour, Le., [Bl k ~ Ci for some i.

Ramsey's Theorem. IfA is infinite, then for any finite colouring of [Alk
there exists an infinite monochromatic subset of A.

Here is an illustration of the use of this principle.

Theorem 17.1.1 If (P, ::;) is an infinite partially ordered set, then P con­
tains a sequence (Pn : n E N) that is

(1) strictly increasing: PI < P2 < . . . or

(2) strictly decreasing: PI > P2 > . . . or

(3) an antichain, i.e., Pn and PTn are incomparable under the ordering ::;
for all n i= m.

Proof Take a colouring

of the 2-element subsets of P in which

Cb = {{p, q} : P ::; q or q ::; p}

and
Cw = [Pl 2

- Cb·

Thus Cb (the black sets) consists of pairs of elements that are comparable,
and Cw (white) consists of the incomparable pairs.
By Ramsey's theorem there is an infinite set Q ~ P that is monochro­

matic for this colouring. If [QJ2 ~ Cw, then any sequence of distinct points
in Q will be an antichain fulfilling (3). If, however, [Ql2 ~ Cb , then Q is
an infinite chain, from which we can extract a sequence satisfying (1) or
(2). Indeed, ifQ is not well-ordered by::;, then it must contain an infinite
decreasing sequence (2), and if it is well-ordered, then each of its nonempty
subsets has a least element, and we can use this fact to construct an in­
creasing sequence (1) inductively. 0
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17.2 A Nonstandard Approach

The proof of Theorem 17.1.1 reveals nothing about the structure of the
poset (P, ~), and leaves an air of mystery: we simply invoke this marvelous
new principle called Ramsey's theorem, and it delivers the set Q we need.
We do not see whether [Qj2 turned out to be black or white.
Here now is a nonstandard argument that does analyse the structure

of the partial ordering. We work in an enlargement of a universe 1U that
contains P and ~ and in which members of P are individuals. The extension
of the relation ~ to *P will also be denoted by ~. It will be assumed that
P has a least element 0 and a greatest element 1 (we can always add such
elements and then take them away at the end to get the desired result).
Let 7r be a nonstandard member of *P in this enlargement (recall from
Section 14.1 that infinite sets from 1U always have such members). Put

L {pEP:P<7r},

U {p E P : P > 7r}.

These sets are nonempty, since they contain 0 and 1 respectively. Several
cases are considered.
First, if L has no maximal member, then it must contain an increasing

sequence of the type (1) (p is maximal in L if there is no x E L with P < x).
Likewise, if U has no minimal member, it yields a decreasing sequence (2).
If neither of these cases holds, then L has a maximal element qt and U has
a minimal element quo Since qt < 7r < qr, the statement

(3y E *P)(qt < y < qu)

is then true, and so by transfer it follows that the set

M = {p E P : qt < P < qu}

is nonempty, and contains an element Pl' We will now inductively define
an antichain in M to complete the proof. The entity 7r belongs to *M and
is used to guide the construction of the antichain.
Assume that PI, ... Pn E M have been defined and are pairwise incom­
parable. Now, M is disjoint from L, since all members of M are greater
than qt, which is maximal in L. Similarly, M is disjoint from U. But then
no member of M can be comparable with 7r, because an element of P that
is comparable with 7r must belong to L or U. Hence the statement

is true (when y = 7r). By transfer it follows that there is some Pn+l E M
that is incomparable with each of PI, ... ,Pn. This completes the inductive
step, showing that we can indeed obtain (Pn : n E N) as an antichain in M.
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17.3 Proving Ramsey's Theorem

The essence of the inductive construction just given is that at each stage
the nonstandard element 1f of *M has the desired property (incomparability
with PI, ... ,Pn), and so by existential transfer gives rise to a (standard)
element of M having the same property.
By an argument similar to this we can prove Ramsey's theorem itself, us­

ing a nonstandard entity to guide the construction of a monochromatic set.
But first we observe that it is enough to obtain the result for 2-colourings,
because the rest can be done by standard induction. Fixing the parame­
ter k, assume inductively that any r-colouring of a set of the form [B]k
with B infinite has an infinite monochromatic subset of B. Then given an
r + I-colouring

[A]k ~ Cl U··· U Cr +l ,

put Cb = C l U ... U Cr and Cw = Cr +l to turn it into a 2-colouring. If
the 2-colouring case holds, then it yields an infinite monochromatic set
B ~ A for this 2-colouring. If [B]k ~ Cb , then C l , ... , Cr induce an r­
colouring on [B]k that by the induction hypothesis on r has an infinite
monochromatic set B' ~ B. Then B', being a subset of A, is an infinite
monochromatic set for the original (r + I)-colouring of [A]k. If on the other
hand [B]k ~ Cw = Cr+l, then B itself is a monochromatic set for the
(r + 1)-colouring.

Thus we are reduced to proving Ramsey's theorem for 2-colourings

for infinite sets A. Now we proceed by induction on the parameter k. The
case k = 1 is just the special case described at the beginning: [Ajl can be
identified with A, via the correspondence {a} f--> a, and if A ~ Cb UCw ,

then one ofCb and Cw must be infinite. For the inductive case, assume that
Ramsey's theorem holds for any 2-colouring of any set of the form [D]k.
Let

[A]k+l ~ CbU Cw (ii)

be a 2-colouring of [A]k+l, with A infinite. Then the enlarged sets *Cb
and *Cw give a 2-colouring of [*A]k+l, Le., the partition of (k + I)-element
subsets of A into "black" and "white" extends to all (k+I)-element subsets
of *A. To see this, observe that the fact that every (k + 1)-element subset
of A belongs to [A]k+l can be expressed by the sentence

(\tal, ... ,ak+l E A)

(!\l$i,ej$k+l ai i- aj) -+ (3z E [A]k+l) Z = {al, . .. ,ak+d,

where "z = {aI, ... ,ak+l}" abbreviates the formula

al E z 1\ ... 1\ ak+l E z 1\ (\tx E z) (x = al V ... V x = ak+I).
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By transfer of this sentence it follows that every (k + I)-element subset of
*A belongs to *([A]k+l):

[*A]k+l ~ *([A]k+l).

Exercise 17.3.1 Show that in fact, [*A]k+l = *([A]k+l).

Now by transfer of (ii),

o

(iv)

and *Cb and *Cw are disjoint, by transfer of the fact that Cbn Cw = 0.
Altogether then we get a 2-colouring

[*A]k+l c *C u *C_ b w

of the claimed type.
Because A is infinite, it includes a denumerable subset, so we may as well
assume N ~ A. Now, let 7r E *N - N be an unlimited hypernatural number.
Then 7r E *A, and we use 7r to control the construction of an increasing
sequence 81 < 82 < of standard positive integers with the property
that whenever nl < < nk+l, then

This property asserts that each member of the sequence behaves in relation
to its predecessors just like 7r.

If such a sequence exists, then putting D = {sn : n E N} ~ A, a 2­
colouring

of [D]k may be defined by

{Snll,,,,Snk}EC~ iff {Snll,,,,Snk,7r}E*Cb, (v)

and C:., = [D]k - q. (Here we list the members of any k-element subset of
D in increasing order.)
By the inductive assumption that Ramsey's theorem holds for k, it fol­
lows that there is an infinite B ~ D that is monochromatic for the colouring
(iv). But then B will also be our desired monochromatic set for (ii). For if
[B]k ~ q, then [B]k+l ~ Cb , because if

(with nl < ... < nk+d, then

{Snl"'" Snk} E [B]k ~ C~,

and so by (v),
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and hence by (iii),

Similarly, if [Bl k ~ C:", then [Blk+l ~ Cw , because (iii) and (v) also imply

It remains now to construct a sequence of standard integers satisfying (iii).
Choose SI < ... < Sk arbitrarily. For n ::::: k suppose inductively that
SI, ... ,Sn have been defined in such a way that (iii) holds whenever nl <
. .. < nk+l ~ n. We have to define Sn+l so that it behaves in relation to
its predecessors just like 1L Thus Sn+l must satisfy the condition

(vi)

whenever nl < ... < nk ~ nand

(vii)

Likewise, Sn+l must satisfy the condition

(viii)

whenever nl < ... < nk ~ nand

(ix)

But there are only finitely many such conditions to be fulfilled, and so
our requirements can be expressed in a sentence of the formal language
associated with U.
To facilite this we will list the members of any (k + I)-element subset of

{SI, ... , Sn} in increasing order, so that such (k + I)-element subsets can
be identified with (k + I)-tuples (Snw .. ' snk+J having nl < ... < nk+l·
Now, let rp(x) be the conjunction of all (atomic) formulae

such that (vii) holds and all formulae

such that (ix) holds (where nl < ... < nk ~ n).
The transformed formula *rp(x) is a conjunction of formulae of the form
(Snl' ... ,snk' x) E *Cb or (Snl' ... ' snk' x) ~ *Cb. It makes an assertion
about x that is true of the unlimited hypernatural number n, Le., *rp(n) is
true. Since Sn is standard, it follows that the sentence

(3x E *N) (sn < x 1\ *rp(x))
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is true. By existential transfer this implies that there is an sn+l E N with
Sn < Sn+l and cp(sn+d true. The definition of cp then ensures that (vi) and
(viii) hold according as (vii) and (ix) hold. Together with the induction
hypothesis on n, this guarantees that (iii) holds whenever nl < ... <
nk+l :::; n+ 1.
This completes the construction of a sequence fulfilling (iii) in general,
and hence completes the proof of Ramsey's theorem.

17.4 The Finite Ramsey Theorem

If a set A is finite, then of course no colouring of [A]k can produce an infinite
monochromatic subset of A. But we can ask for a large monochromatic set,
by specifying in advance a minimum size for it. In this situation there
is a finitary version of Ramsey's theorem, which can be deduced in an
interesting way from the infinite version by further nonstandard reasoning.
In essence the new version says that if we specify the required size m for a
monochromatic subset of A, then such a monochromatic subset will exist
if the size n of A itself is great enough.
To simplify the formulation, we will confine the discussion of finite sets
to initial segments {I, ... ,n} of N.

Finite Ramsey Theorem. For any given numbers k, r, mEN there
exists a number n E N such that the following holds:

1/J(n) : for any r-colouring

of [{I, ... ,n}]k there is a subset B of {I, ... ,n} that is monochro­
matic, i.e., [B]k ~ Ci for some i, and has at least m elements, i.e.,
IBI?m.

Proof Fix the numbers k, r, m. Then the condition 1/J(n) can be written
out as a formula of the language for lU, with n as a variable. This formula
begins with the quantifier form

and has B as a variable bound by the quantifier (3B E PF(N)). The trans­
formed formula *1/J(n) asserts that

for any r-colouring of [{I, ... ,nW by sets in *p([N]k) (Le., by
internal subsets of [*N]k) there exists a hyperfinite subset of
{I, ... ,n} that is monochromatic and has at least m elements.
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Now, if n is interpreted as some unlimited hypernatural number N, then
the sentence *'l/J(N) is readily shown to be true by using the infinite Ramsey
theorem. To see this, observe that any r-colouring

of [{l, ... ,N}]k induces an r-colouring of [N]k, because N ~ {l, ... ,N}.
But for the latter colouring we know that there is an infinite set D ~ N
that is monochromatic: [D]k ~ C i for some i. Since D is infinite, we can
then take any m-element subset B of D to get [B]k ~ C i and IBI = m,
giving a B that fulfills the condition *'l/J(N).
Thus by interpreting n as an unlimited hypernatural we establish that

(3n E *N) *'l/J(n).

By transfer it then follows that there is some n E N such that 'l/J(n) , and
so the finite Ramsey theorem is proved. 0

Exercise 17.4.1
Verify in detail that 'l/J(n) can be written out as a formula of the language
for llJ.

17.5 The Paris-Harrington Version

The proof just given of the finite Ramsey theorem leaves room for its con­
clusion to be strengthened, since the desired monochromatic set B was
chosen arbitrarily from the infinitely many m-element subsets of the infi­
nite monochromatic set D. This gives us scope to impose further properties
on B. For instance, consider the requirement

IBI 2:: min(B)

that the size of B be at least as great as the smallest element of B. This is
sometimes expressed by saying that B is relatively large. From an infinite
set D ~ N we can select relatively large finite subsets of unbounded size:
given a lower bound m for IBI, choose any number JED that is at least
as big as m, and add to j another j - 1 elements of D that are bigger than
j to form a B having IBI = min(B) = j 2:: m.
Applying these observations to the above arguments leads to a proof that

for any given numbers k, r, mEN there exists a number n E
N such that for any r-colouring of [{I, ... ,n}]k there exists a
relatively large subset B of {I, ... ,n} that is monochromatic
and has at least m elements.
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This statement may appear to be a rather innocuous strengthening of the
finite Ramsey theorem, but in fact it is a remarkable one. It was shown
by Paris and Harrington that the statement cannot be proved in the first­
order axiom system of Peano arithmetic. This was the first mathematically
significant example of the Godel incompleteness phenomenon: a true state­
ment about the structure of the natural numbers that cannot be proven
from an appropriate set of axioms. Godel's own argument constructs such
sentences that are designed specifically to make his proof work and do
not have independent status. The Paris-Harrington version of Ramsey's
theorem, however, involves natural combinatorial ideas that arise quite in­
dependently of considerations of the proof theory of statements about N.

17.6 Reference

The nonstandard approach to Ramsey theory presented in this chapter is
due to Joram Hirshfeld, and was presented in the following article:

JORAM HIRSHFELD. Nonstandard Combinatorics. Studia Log­
ica 47 (1980), 221-232.
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Completion by Enlargement

There are many mathematical structures that are "incomplete" because
they lack certain elements, such as the limit of a Cauchy sequence, the sum
of infinite series, the least upper bound of a set of elements, a point "at
infinity", and so on. A variety of standard techniques exist for completing
such structures by adding the missing elements.
Now, the enlargement of a structure in a nonstandard framework is a
kind of completion, and we are going to explore ways in which enlarge­
ments give an alternative approach to standard completions. From this
perspective there is some redundancy in the enlargement process because
in a sense it "saturates" a structure with all the elements one could ever
imagine adjoining to it. Some of these new elements are irrelevant to com­
pletion, while others may be distinct but indistinguishable in terms of their
role in completing the original structure. Thus we need to factor out such
redundancy, and as we shall see, standard completions can typically be
obtained as quotients of certain kinds of enlargement.

18.1 Completing the Rationals

The set *Q of hyperrationals contains infinitely close approximations of all
real numbers. For if r E JR, then by transfer

("Ix E *lR) [r < x -+ (3q E *Q) (r < q < x)].

So, putting x = r + e with e a positive infinitesimal implies that there is
some q E *Q with r < q < r+e and hence q ~ r. Thus q E *lQnhal(r) and
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r is the shadow of q.
There are two points to immediately note here:

• By this argument, for each x E hal(r) there is a member of *Ql between
x and r, and these members are all equally good as infinitely close
hyperrational approximations to r .

• There are many members of *Ql, namely all the unlimited ones, that
are "infinitely far away" and hence irrelevant to the issue of approx­
imating reals.

This suggests that we confine attention to the set

*Qllim = {x E *Ql : x is limited} = *Ql n IL
of limited hyperrationals, and that we identify those that are in the same
halo. The way to make this work is to use the shadow map

sh : *Qllim ~ JR.

introduced in Section 5.6. We have just seen in effect that this map is a
surjection from *Qllim to JR.: for each r E JR. there is an element q E *Qllim with
sh(q) = r. But *Qllim is closed under addition and multiplication, so forms
a subring of *JR., and the shadow map preserves addition and multiplication
(Theorem 5.6.2) so is a ring homomorphism from *Qllim onto R Thus by
the fundamental homomorphism theorem for rings, IR. is isomorphic to the
quotient ring of *Qllim factored by the kernel

{x E *Qllim : sh(x) = O}

of the shadow map. But this kernel is just the set

*Qlinf = {x E *Ql : x ~ O} = *Ql n ][
of infinitesimal hyperrationals. So we have an isomorphism

*Qllim!*Qlinf ~ JR.

(cf. Exercise 5.7(4)). The members of *Qllim/*Qlinf are the cosets

*Qlinf + X = {q + x : q E *Qlinf}

of elements x E *Qllim. These are the same as the equivalence classes of *Qllim
under the relation ~ of infinite closeness, because the following conditions
are all equivalent:

x ~ y,

sh(x) sh(y),

sh(x - y) 0,

(x -y) E *Qlinf,

*Qlinf + X *Qlinf + y.
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Hence
*Qlinf + X = {y E *Qllim : x ~ y} = hal(x) n *Ql,

and *Qllim /*Qlinf can also be described as the quotient set *Qllim/ ~. Its
isomorphism with JR. is given by the map *Qlinf + X 1-+ sh(x).

This construction can be viewed as providing an alternative way of build­
ing the reals out of the rationals. As it stands, we have assumed the ex­
istence of JR. in the above analysis and used its Dedekind completeness in
obtaining the shadow map on which the discussion was based. But we could
try to prove directly that *Qllim/*Qlinf is a complete ordered field: since all
complete ordered fields are isomorphic, this would show that the construc­
tion was independent of the choice of nonstandard framework in which *Ql,
*Qllim, and *Qlinf reside. The question of completeness of quotient structures
like *Qllim/*Qlinf will be addressed in the next two sections. We will see that
there are many structures X for which *xlim/ ~ is a "completion" of X.

18.2 Metric Space Completion

A metric on a set X is a function d : X x X ~ JR.::: = JR.+ U {O} satisfying
the axioms

• d(x, y) = 0 iff x = y;

• d(x,y) = d(y,x)j

• d(x, y) :::; d(x, z)+ d(z, y) (triangle inequality).

The pair (X, d) is a metric space, in which the number d(x, y) is to be
thought of as the distance from x to y. The Euclidean metric on JR. is given
by d(x, y) = Ix - yl.

When X carries a commutative ring structure, a metric sometimes comes
from a norm, which is a function x 1-+ IIxll E JR.::: satisfying

• Ilxll = 0 iff x = OJ

• Ilx, yll = IIxll'llyll;

• IIx+yll:::; IIxll + Ilyll·

Then putting d(x, y) = Ilx - yll induces a metric on X. The absolute value
function Ixl is a norm on JR. that induces the Euclidean metric.
A sequence (xn : n E N) in a metric space (X, d) is Cauchy if

(tic E JR.+) (3ke E N) (tim, n E N) [m, n 2: ke ~ d(xm , x n ) < c].
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This is just like the definition of a Cauchy sequence in JR, but with d in
place of the Euclidean metric on JR. In fact, many of the ideas and results
about convergence etc. of sequences can be lifted to an abstract metric
space in this way. For instance, the sequence (xn : n E N) converges to x
in (X, d) if

(Vc E JR+) (3ke EN) (Vn E N) [n ~ ke ~ d(xn , x) < c].

Then the metric space can be defined to be complete if every Cauchy se­
quence in the space converges to a point in the space.
A completion of a metric space (X, d) is another space (X', d' ) such that

• X ~ X' and d is the restriction of d' to X, Le., (X, d) is a subspace of
(X',d' );

• (X', d' ) is complete;

• X is dense in X'.

The last condition means that any point x' in X' can be approximated
arbitrarily closely by points of X, Le., there is a sequence (xn : n E N) of
points X n E X that converges to x'. For this it suffices that for each c E JR+
there is some X e E X with d' (x', xe ) < c. Thus JR is a completion ofQ under
the Euclidean metric.
It can be shown that any two completions of a metric space are isometric,
meaning that there is a bijection between them that preserves their metrics
and leaves the original space fixed. In this sense a completion of a metric
space is unique. In particular, JR is the completion of Q.

18.3 Nonstandard Hulls

Consider a nonstandard framework for a set X that carries a metric d. We
will take this framework to be a sequentially comprehensive enlargement.
The extended function *d on *X is not a metric, because it takes values in

*JR~ rather than JR~. But it does satisfy the axioms of a metric, by transfer,
and this is enough to ensure that we can define equivalence relations ~ and
"" of infinitesimal and limited proximity in *X. Put

x ~ y iff *d(x,y) ~ 0,

x"" y iff *d(x, y) is limited,

for all x, y E *X. The equivalence classes under ~ are the halos

hal(x) = {y E *X: x ~ y},

while the equivalence classes under "" are the galaxies

gal(x) = {y E *X: x "" y}.
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A member x of *X is limited if it is of limited distance from some member
of X, Le., if x 'V y for some y E X. Let

*Xlim = {x E *X : x is limited}.

*xlim proves to be a galaxy including X, and is sometimes called the prin­
cipal galaxy. At first sight it might be thought that the metric d could be
extended to *xlim by taking the distance between limited points x, y to be
the real number sh(*d(x, y)). But this number will be 0 whenever x ~ y, so
the first axiom for a metric is not satisfied. What we must do therefore is
identify points that are infinitely close, by passing to the quotient set

x= (*Xlim/~) = {hal(x) : x is limited}

(note that if x E *Xlim, then hal(x) ~ *xlim, so *xlim is partitioned by the
halos of its points). A metric is then defined on Xby

d(hal(x),hal(y)) = sh(*d(x,y)).

This is well-defined, since if hal(x) = hal(x') and hal(y) = hal(y'), then
*d(x, y) ~ *d(x', y').
The pair (X, d) is called the nonstandard hull of (X, d). Observe that if

x, yare distinct members of X, then hal(x) and hal(y) are distinct (indeed,
they are disjoint), so the mapping x 1--+ hal(x) is an injection of X into X,
allowing us to identify X with a subset of its nonstandard hull. Moreover,
when x,y E X,

d(x,y) = *d(x,y) = sh(*d(x,y)) = d(hal(x),hal(y)),

so under this identification (X, d) becomes a subspace of (X, d), and this is
what justifies us continuing to use the symbol "d" for the metric on X.

Theorem 18.3.1 The nonstandard hull (X, d) is complete.

Proof Let (hal(xn ) : n E H) be a Cauchy sequence in X. The sequence
(xn : n E H) of points in *xlim extends to an internal hypersequence
(xn : n E *H) in *X, by sequential comprehensiveness. We will show that
(hal(xn ) : n E H) converges to hal(xK) for some K E *Hoo .
Now, for each n E H, by the Cauchy property there exists kn E H such
that for all standard m ~ kn ,

1
d(hal(xm ), hal(xk )) < -,

n 2n

and hence

(i)
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But the set {m E *N : *d(Xm,XkJ < 1/(2n)} is internal, so by overflow we
conclude that there is some unlimited K n E *N such that (i) holds for all
m E *N with kn ~ m ~ K n .

Invoking sequential comprehensiveness again, there is some unlimited
K E *N that is smaller than every K n (cf. Theorem 15.4.3). Then XK is
limited (e.g., *d(XK,Xk,) < ~ and Xk, is limited), so hal(xK) EX. To show
that (hal(xn ) : n E N) converges to hal(xK) it is enough to show that for
each n E N we get

*d(Xm,XK) < .!.
n

whenever mEN and kn ~ m. But for such m we have kn ~ m, K < K n ,

so by two applications of (i),

*d(Xm,XK) ~ *d(Xm,XkJ + *d(Xkn,XK) < 2~ + 2~ = ~.

o
The nonstandard hull Xneed not be a completion of (X, d). It may contain
points that cannot be approximated arbitrarily closely (in the real sense)
by points of X. To clarify this situation we introduce the concept of a point
x E *X being approachable from X, meaning that for each c E lR+ there is
some (standard) Xc: in X such that *d(x, xc:) < c. Let

*Xap = {x E *X : x is approachable from X} ~ *Xlim .

Now, if x is approachable from X, then so is any point infinitely close to x,
i.e., hal(x) ~ *xap. Thus

{hal(x) : x E *Xap} ~ X,

and so *xap/ ~ is a subspace of Xin which X is dense, as follows readily
from the definition of "approachable". Moreover, in the completeness proof
of Theorem 18.3.1, if the points X n E *Xlim are all approachable from X,
then so is the point xK. This implies that Cauchy sequences in *Xap/ ~
converge in *xap/~, and so

Theorem 18.3.2 (*xap/ ~,d) is a completion of (X, d). o
A point x E *X is near to X if it is infinitely close to some y E X, i.e., if x
has the same halo as a (standard) point from X. Thus if a limited point x
is not near to X, then its halo is distinct from the halos of all points of X,
so hal(x) is a point of Xthat is not (identifiable with) a point of X.
All points near to X are approachable from X. If, conversely, every mem­
ber of *xap is near to X, then

(*Xap/~) = {hal(x) : x EX},

which is the set we identify with X itself. Thus:
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Corollary 18.3.3 If in *X every point approachable from X is actually
near to X, then (X, d) is a complete metric space. 0

Exercise 18.3.4
Prove, conversely to Corollary 18.3.3, that if a metric space (X, d) is com­
plete, then in *X every point approachable from X is near to X. 0

Consider for example a hyperrational x E *Q that is infinitely close to
v'2 (recall that every real number is the shadow of some hyperrational).
Then x is not near to Q, because it is not infinitely close to any standard
rational number, but x is approachable from Q, since there is a sequence
in Q converging to v'2. This is a manifestation of the fact that Q is not
complete under the Euclidean metric.
A point near X is often called nearstandard, since it is infinitely close
to a standard point. (Points approachable from X are sometimes referred
to by the less evocative term pre-nearstandard.) The hyperrational x just
considered as not being near to Q is, on the other hand, near to JR, hence
nearstandard, because x ~ v'2 E lR. This underlines the point that nearness
is always specified in relation to a particular set.

In the case of the rationals it turns out that

and so the nonstandard hull ij is equal to the completion *Qap/ ~ of Q
(which is isomorphic to JR). This is because if x E *Qlim, then the shadow
sh(x) is a real number that can be approximated arbitrarily closely by
rational numbers. Therefore, x can be approximated by rationals in this
way too and so is approachable from Q.
In Section 18.6 we will see an example, involving power series, of a metric

space (X, d) whose enlargement has limited points that are not approach­
able from X. In that case the nonstandard hull X is strictly larger than the
completion *Xap/~.

18.4 p-adic Integers

Integers Modulo m

Recall that for x, y E Z, x == y(mod m) means that x is congruent to y
modulo m, Le., the difference (x - y) is divisible by m, or equivalently, x
and y have the same remainder upon division by m.

Z/m = {O, 1, ... ,m - I}

is the set of residues modulo m, Le., remainders for division by m. Each
integer z is congruent modulo m to exactly one member of Z/m, which
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will be denoted by Z mod m. Z/m is itself a commutative ring under the
operations EBm and ®m of addition and multiplication modulo m.

p-adic Distance

Fix a prime number pEN. Each positive integer Z has an expansion in
base P of the form

Z = Zo + ZIP + Z2p2 + ... + znpn

with each Zi belonging to Zip, i.e., 0 :::; Zi < p. Let

Zo
Zo + ZIP

= Zo + ZIP + Z2p2

E Zip,
E Zlp2,

E Zlp3,

Consider the notion that the list aI, a2, ... ,an+! = Z provides a sequence of
successively better approximations to z. This would require that successive
ai'S get closer to each other, which is evidently not the case ifthe Euclidean
metric is used to measure proximity. But notice that

a2=al(mod p), a3=a2(mod p2), a4 =a3(mod p3), ... ,

which suggests that we should view two numbers as being "close" if their
difference is divisible by a power of p: the higher the power of p, the closer
together are the numbers in question.
Now, every nonzero integer Z E Z has a highest power of p dividing it,
i.e., there is a largest n ~ 0 such that Z = O(mod pn). In other words, Z
can be written uniquely in the form

Z =pny

with y an integer that does not have p as a factor. This unique n will be
denoted by op(n) and called the p-adic order of z. (It is also known as
the p-adic valuation of z, denoted by vp(z), and could equally naturally be
thought of as the p-adic "exponent" or "logarithm"-important concepts
often have more than one name.) Thus if Z:2: = N U{O}, we have

op : Z - {O} __ Z:2:

(sometimes op(O) is set equal to 00, but we will avoid this). The p-adic
order satisfies the laws

op(Z) + op(w),

> min{op(z), op(w)}.
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Now put

{
P-op(z) = 1

Izlp = pop(zj

o
if z =f=. 0,

if z = O.

The function I Ip is a norm on Z (sometimes called the p-adic absolute
value), and satisfies

Izlplwlp,
< max{lzlp,lwlp}·

It gives rise to the p-adic metric

dp(x, y) = Ix - yip'

Observe that Ipn Ip = p-n, so the sequence p, p2 ,p3, ... converges to zero in
the sense of this p-adic size of its terms. Thus an expression like

with 0 :::; Zi < p, can be seen as analogous to the decimal representation of
certain real numbers in the form

ro + rl Uo) + r2 Uo) 2 + ... + rn L~r + ...

with 0 :::; ri < 10.

p-adic Integers

A p-adic integer is a sequence a = (an: n E N) such that for each n E N,

(1) an E Zjpn, and

(2) an+l == an(mod pn).

This implies that

(3) am == an(mod pn) whenever m ~ n

(hence if am = 0, then an = 0 for all n < m).
The set Zp of all p-adic integers is a subset of the direct product

Zjp X Zjp2 X ••• X Zjpn X .••

and inherits operations of addition and multiplication from this direct prod­
uct. Thus if a and bare p-adic integers, then

a + b (an EBn bn : n E N),

ab (an I8ln bn : n EN),
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where an EBn bn and an ®n bn are the sum and product modulo n. Zp proves
to be an integral domain under these operations, and we now briefly review
its basic structure.
The divisibility relation I is defined in Zp just as it is in Z: for x, y E Zp,

xly iff (3z E Zp) y = xz.

Each integer z E Z (positive or negative) can be identified with the p-adic
integer

az = (z mod p, z mod p2, ... , z mod pn, ... )

For instance, -1 corresponds to the p-adic integer

(p - 1, p2 _ 1, ... , pn - 1, ... )

The map z 1-+ az is an injection of Z into Zp that preserves addition and
multiplication and allows us to identify Z with a subring of Zp.
A p-adic integer a has a multiplicative inverse in Zp iff al =1= 0. When
al =1= 0, then in general an 1= O(mod p) and an has an inverse bn in Z/pn, Le.,
anbn == l(mod pn). Then (bn : n E N) is the inverse of a in Zp. Invertible
elements of Zp are called p-adic units, and can also be characterised as
those elements that divide 1 in Zp.
Let a be a unit. Then any factor of a is also a unit. But p itself is not a

unit, since it corresponds to the sequence ap = (O,p,p, ... ), so p is not a
factor of a, and therefore the only way to express a in the form pnb is to
put n =°and b= a.
On the other hand, if a is a nonunit, and nonzero, then taking the least

n 2': °such that an+l =1= 0, we have n 2': 1 and an = 0, so an+m == O(mod pn)
for all m E No Then

proves to be a unit of Zp with a = pnb.
This shows that the p-adic units are precisely those members of Zp that
are not divisible by p. The representation of any nonzero a in the form pnb
with b not divisible by p is unique, and this allows us to put op(a) = n.
Then defining lalp = p-op(a) and 10lp = °gives a norm on Zp extending
the p-adic norm on Z and inducing the associated extended metric dp on
Zp. Note that a is a p-adic unit iff lalp= 1.
Any p-adic integer a has

in Zp, Le., the difference a-an is equal to pnb for some bE Zp. This implies
op(a - an) 2': n, hence la - anl p ~ p-n. Thus the sequence al,a2,a3, ...
converges to a in the p-adic metric, showing that Z is dense in the metric
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space (Zp, dp ). But in fact, using (1) and (2) it can be shown that a has
the form

(Zo, Zo + ZIP, Zo + ZIP + Z2p
2

, ... )

with 0 ~ Zn < P, and so we can also write

a = Zo + ZIP + Z2p
2 + ... + znp

n + ....

For instance, when P = 5,

-1 (-1 mod 5, -1 mod 25, ... , -1 mod 5n , ... )

(4, 24, 124, 624, ... )

4 + 4 . 5 + 4 . 52 + 4 . 53 + ... + 4 . 5n + ....

The Nonstandard Analysis

Zp is complete under the p-adic metric dp , and is a completion of (Z, dp ).

We are going to demonstrate this fact, not by appealing to any of the
convergence results just claimed for Zp, but by showing:

• (Zp, dp ) is isometric to the nonstandard hull of (Z, dp ) •

• In (*Z, *dp ) , every limited point is approachable from Z.

This implies that the nonstandard hull of (Z, dp ) is equal to the completion
of (Z, dp ) based on approachable points, as given by Theorem 18.3.2.
The symbols I Ip and op will continue to be used for the extension of

these functions from Z to the commutative ring *Z, as provided by the
nonstandard framework. In general, op(x) is a nonnegative hyperinteger,
i.e., op takes values in the set *Z~ = *N U {O}. The basic properties and
relationships of I jp and op are preserved by transfer. In particular,

1
Ixlp= pOp (x)

for all nonzero hyperintegers x, so I Ip takes hyperreal values in the set
{p- n : n E *Z~}. These values consist of positive infinitesimals (when n in
unlimited) and real numbers ~ 1 (when n is standard).
These functions can then be used to define the sets of limited and in­

finitesimal elements in the p-adic sense as

{x E *Z : Ix - zip is limited for some Z E Z},

{x E *Z: Ixlp ~ 0 in ~}.

Now, Ix - 0lp = Ixlp ~ 1 holds for all standard integers x E Z, and hence
for all hyperintegers x E *Z by transfer. This means that every member
of *Z is p-adically limited, so *Zlimp = *Z and the nonstandard hull here
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is just *zl ~ with the metric induced by the shadows of *dp • To explain
what the p-adic infinitesimals are, observe first that pN will be infinitesimal
whenever N is unlimited because then by transfer IpNlp = p-N ~ O. The
idea that a p-adically "small" number is one that is divisible by a "large"
power of p finds its ultimate expression in the following characterisation.

Theorem 18.4.1 For any nonzero hyperinteger x E *Z, the following are
equivalent.

(1) x E *Zinfp •

(2) op(x) is unlimited.

(3) x is divisible by pn in *Z for all n E N.

(4) x is divisible by pN for some unlimited N E *N.

Proof Ixlp is the reciprocal of pOp (X) , so is infinitesimal iff pOp (X) is unlim­
ited, which holds iff op(x) is unlimited, as p is standard. Thus (1) and (2)
are equivalent.
Since the divisibility relation I is defined in Z by

xly iff (3z E Z) y = xz,

it follows by transfer that xly for hyperintegers in *Z iff y = xz for some
z E *Z. Now, the statement

(ii)

holds for all x E *Z and n E *Z:::, again by transfer. Hence if (2) holds, then
for every n E N we have n ~ op(x), as op(x) is unlimited, and so pnlx by
(ii). Thus (2) implies (3).
Next, observe that for each x E *Z the set

is internal, by the internal set definition principle, so if (3) holds, this set
contains all members ofN, and hence by overflow it contains some unlimited
N, establishing (4).
Finally, if pNlx with N unlimited, then (ii) gives N ~ op(x), so op(x) is
also unlimited. Thus (4) implies (2). 0

This result shows that

*zinfp = {pNq : N is unlimited and q E *Z}.

The main properties of congruence relations lift to *Z by transfer. In par­
ticular, if mEN, then each x E *Z is congruent modulo m to a unique
element r E Zlm, Le., x - r is divisible by m in *Z. We continue to denote
this unique element r by x mod m. The map x f-4 x mod m, which is a ring
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homomorphism from Z onto Z/m, thereby lifts to a ring homomorphism
from *Z onto *(Z/m) = Z/m. This allows us to define a homomorphism

by putting

(}p (x) = (x mod p, x mod p2, ... , x mod pn, ... ) .

It is left as an instructive exercise to check that (}p(x) E Zp, i.e.,

x mod pn+1 == x mod pn(mod pn),

and that (}p preserves addition and multiplication. Notice also that since
we identify the standard integer z with the p-adic integer

(z mod p, z mod p2, ... , z mod pn, ... ) ,

it follows that (}p leaves all members of Z fixed. The kernel

{x E *Z : (}p(x) = O}

of (}p consists of those x E *Z such that for all n E N we have x mod pn = 0,
which means that pn divides x. By Theorem 18.4.1 this holds precisely when
Ixlp ~ O. Thus the kernel is exactly the set *Zinf" of p-adic infinitesimals,
which is therefore an ideal of the ring *Z. Then the coset

*zinf" + X = {pNq + x: N is unlimited and q E *Z}

is the set of all hyperintegers that are infinitely close to x in the p-adic
metric, because Iy - xlp is infinitesimal if and only if y - x is of the form
pNq with N unlimited.

If we can show that (}p maps onto Zp, then by the homomorphism theo­
rem we will have a ring isomorphism

To prove that (}p is onto Zp requires us to invoke the concurrence version of
enlargement (Theorem 14.2.1). If a = (an: n E N) E Zp, define a relation
Ra ~ N x Z by putting

R a has domain N and is concurrent: given integers nl, ... , nk E N, take
any mEN with m 2: nl, ... ,nk. Then since am == an(mod pn) whenever
m 2: n (condition (3) of the definition of p-adic integer), it follows that
nlRaam , ... ,nkRaam' Hence as Ra is concurrent, there must be an x E *Z
such that n(*Ra)x for all n E N. Transferring the definition of R a then
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shows that for all such n, x == an(mod pn), and hence x mod pn = an'
Thus Bp(x) = a, and the proof that Bp is onto is complete.

Note that in proving the concurrence of Ra here we can choose m such
that am > 0, so the proof shows that Ra is concurrent as a relation from
N to N, and hence will produce a positive x (i.e., a member of *N) with
Bp(x) = a. This fact will be used at the end of this chapter to derive a
description of p-adic integers as certain hyperfinite formal sums. Another
explanation of why such a positive x can be found is that the hyperintegers
whose Bp-image is equal to a form a coset *Zinfp + y, and any coset must
contain positive elements. Indeed, for a given y, pN + Y (which belongs to
*Zinfp + y) will be positive for large enough unlimited N.

Preserving the Metrie

We have observed that the coset *Zinfp + x is just the ~-equivalenceclass

halp(x) = {y E *Z : Ix - yip ~ O}

of x in *Z. Hence
(*Zj~) = *Zj*zinfp ~ Zp.

This bijection between the nonstandard hull *Zj ~ and Zp is given by
halp(x) 1-+ Bp(x). If we can show that it preserves the metrics, we will
have our desired demonstration that the nonstandard hull is isometric to
(Zp, dp ). But the metric on *Zj ~ is induced by the norm function

so we want shlxlp = IBp(x)lp, or equivalently, Ixlp ~ IBp(x)lp. There are two
cases:

(1) Bp(x) = 0. Then x E *Zinfp and Ixlp ~°= 10lp = IBp(x)lp·
(2) Bp(x) =f. 0. Then by definition of Bp(x) there must be some standard

n ~ °such that x mod pn+l =f. 0, and op(Bp(x» is the least such n by
definition of the p-adic norm on Zp. Now,

pnlx iff n ~ op(x)

for all n ~ °(ef. (ii) in the proof of Theorem 18.4.1), and op(x) is a
standard integer because Ixlp 't 0, so op(x) is the least standard n for
which pn+l f x, Le., the least standard n for which x mod pn+l =f. 0.

Thus in this case op(x) = op(Bp(x» and Ixlp = IBp(x)lp.

Having now shown that the nonstandard hull of (Z, dp ) is isometric to
(Zp, dp ), it remains to show that this hull is a completion of (Z, dp ) by
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showing that any point x E *Z is approachable from Z. But for each n E N,
pn divides x - (x mod pn), so

Then for any c: E 1R+, by choosing a standard n large enough that p-n < c:
we get the standard integer x mod pn that is within c: of x in the p-adic
metric. This shows that x is approachable from Z. Thus

Nearstandardness

To round out this discussion, consider the points in *Z that are near to Z.
If Ix - zip ~ 0, then pN divides x - z for some unlimited N E *N. So the
nearstandard points of *Z are precisely those of the form x = pNy + z with
N unlimited and z standard.
Since (Z, dp ) is incomplete, there must be points in *Z that are approach­

able from Z but not near to Z (Corollary 18.3.3). Indeed, if Ix - zip ~ °
with z standard, then Op(x - z) = 0, and so Op(x) = Op(z) = z. This shows
that the nearstandard points in *Z are just the Op-preimages of members
of Z. Any x E *Z with Op(x) E (Zp - Z) fails to be near to Z.

18.5 p-adic Numbers

The ring Zp has a field of fractions

Qp = {~ : a, b E Zp and b =f:. O} .

Members of Qp are called p-adic numbers, and equality between them is
given by

a

b
c
d
iff ad = bc in Zp.

The field operations are given by the familiar formulae from rational arith­
metic:

a c ad+bc
-+-
b d bd
a c ac
b d bd'

-G) (~a) ,

(~) -1 (~).



246 18. Completion by Enlargement

Thus Qlp stands in the same relation to Zp that Ql stands to Z. Moreover,
since Z ~ Zp, it follows that Ql ~ Qlp.
The p-adic order function extends to Qlp by putting

op(ajb) = op(a) - op(b).

This is well-defined, because if ajb = cjd, then op(a) - op(b) = op(c) ­
op(d) by the "logarithmic" law op(ad) = op(a) + op(d) etc. Then we put
Ixlp = p-op(x) and dp(x, y) = Ix - yip as before, but now for x, y E Qlp. In
particular, this gives a p-adic order function and norm on Ql. To analyse
this further, recall that nonzero p-adic integers a, b can be written uniquely
in the form a = pnc and b= pmd with n,m ;::: 0, c, d units in Zp, and p not
a factor of c or d. Then

a pnc n-mc
b = pmd =p d'

Here op(ajb) = n - mE Z, and cjd is a unit in Zp.
In general, then, any nonzero p-adic number has a representation in the
form pmb with m a standard integer and b a unit in Zp, and this represen­
tation is unique (the case m ;::: 0 giving the p-adic integers). Moreover, in
view of the representation in Section 18.4 of p-adic units as power series
with nonzero initial term, each p-adic number x =I- 0 is uniquely expressible
in the form

X pm(zo + ZIP + Z2p2 + ... + znpn + ... )
zopm + Zlpm+l + Z2pm+2 +"',

where m is the integer op(x), 0 :::; Zn < p, and Zo ;::: 1. Since m can be
negative here, it follows that a p-adic number can be written in the general
form

Z_kp-k + ... + Z_lP-l + Zo + ZIP + Z2p2 + ... + znpn + ... ,

with 0 :::; Zi < p, showing that it is the sum of a standard rational number
Z-kp-k + ... + Z-lP-l and a p-adic integer. Note the analogy with the fact
that any real number can be represented as an infinite decimal expression

r-k (l~)-k+ ...+r-1 (l~)-l +ro +rl (l~) +r2 C~)2 ...+rn uor + ....
Under the metric dp , Qlp is a completion of Ql.

Limited p-adics

In a nonstandard framework, the functions op and I Ip extend from Ql to *Ql
by the transfer map and continue to satisfy the usual properties, including

p-Op(X) ,

Ixlp
Iylp
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for x, y E *Q. The sets of hyperrationals that are limited or infinitesimal
in the p-adic sense are given by

*Qlimp = {x E *Q : Ix - qlp is limited for some q E Q}

= {x E *Q : Ixlp is limited}
and

*Qinfp = {x E *Q : Ixlp ~ 0 in *R}.

The p-adic order op(x) of a nonzero hyperrational x is itself a hyperinteger,
so falls under one of three cases:

(1) op(x) is limited, and hence is a standard integer. Then Ixl p is a non­
negative real number, equal to 0 when x = 0, and otherwise of the
form pm with m E Z.

(2) op(x) is positive unlimited (Le., in *Noo ). Then pOp(x) is positive un­
limited, and Ixlp is a positive infinitesimal: Ixlp~ O.

(3) op(x) is negative unlimited. Then -op(x) E *Noo , and so Ixlp is posi­
tive unlimited.

This shows that x can fail to be p-adically limited only when case (3)
occurs, so

*Qlimp = {x E *Q : op(x) is not negative unlimited}

{x E *Q: op(x) E ZU *Noo }.

This characterisation gives rise to a more useful one: p-adic limitedness of
a hyperrational depends on the size of the denominator, as the next result
indicates.

Theorem 18.5.1 Let y,z E *Z. If Izlp is not infinitesimal, then yjz is
p-adically limited.

Proof op(z) is a nonnegative hyperinteger, so if Izlp = p-op(z) 't- 0, then
op(z) must be limited, i.e., op(z) EN U{O}. But then since op(Y) 2: 0,

op(yjz) = op(Y) - op(z)

cannot be negative unlimited. Hence as above, y j z E *Qlimp • o
The converse of this can fail. If Izlp ~ 0, then Iyjzlp will still be limited if
Iylp $ nlzl p for some n E N (in which case Iylp is also infinitesimal). For
instance, this happens when y = 2pN and z = pN with N unlimited.
Now, we can express any hyperrational as a ratio of hyperintegers that

have no factors on common. It is the presence of unlimited powers pN of p
as factors that makes a hyperinteger p-adically infinitesimal, and it turns
out that the absence of common factors of this particular kind is enough
to give the converse to Theorem 18.5.1.
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Theorem 18.5.2 Let y, z be hyperintegers that have no common factors
of the form pN with N E *Noo . If Iy/zlp is limited, then Izlp is not in­
finitesimal.

Proof. Suppose that Iy/zlp is limited, but Izlp ~ O. Then op(z) is positive
unlimited (Theorem 18.4.1), while op(Y/z) = op(Y) - op(z) is not negative
unlimited. But this can be so only if op(Y) is also positive unlimited. Then
if N is the smaller of op(Y) and op(z), we have N E *Noo and pN a factor
of both y and z. However, this contradicts the hypothesis. D

The Completion

We are going to show that Qp is a completion ofQ under the p-adic metric
by exhibiting an isomorphism

(iii)

and demonstrating that all elements of *QliIDp are approachable from Q.
For the isomorphism we need a homomorphism from *QliIDp onto Qp. We
already have a homomorphism ()p : *Z --+ Zp, and the relationships between
*Q and *Z and Qp and Zp suggest that we extend ()p to hyperrationals by
putting

()+ (::) = ()p(x). (iv)
p y ()p(y)

Of course for this to be defined we need ()p(y) =I- 0, but that is exactly
where limitedness comes in. We apply the definition (iv) only when x/y is in
reduced form, i.e., x and y have no proper factors in common. In particular,
they have no common factors pN with N unlimited, so by Theorem 18.5.2
if x/y E *QliIDp , then Iylp 'f- 0, and so ()p(y) =I- O. Thus (iv) is well-defined
for all members of *QliIDp •

The fact that ()p : *Z --+ Zp preserves addition and multiplication and
maps *Z onto Zp can be used to show:

• ()t is a ring homomorphism from *QliIDp onto Qp that extends ()p.

Thus to obtain the isomorphism (iii) we have only to show that *Qinfp is
the kernel of ()t. But for x/y E *QliIDp in reduced form, Ix/yip = Ixlp/lylp
with Iylp 'f- 0, and hence Iylp is a standard real number. Therefore

Ix/yip ~ 0 iff Ixlp ~ 0 iff ()p(x) = 0 iff ()t(x/y) = 0,

so indeed x / y belongs to *Qinfp iff it is in the kernel of ()t.

Preserving the Metric

In order to show that the isomorphism (iii) preserves the metric of the space
*QliIDp j*Qinfp , and hence show that Qp is isomorphic to the nonstandard



18.6 Power Series 249

hull of (Q,dp), we need to show that shlvlp = lot(v)lp, or equivalently,
Ivlp ~ lot(v)lp, for all v E *QliffiP • As with the integer case in Section 18.4,
there are two parts to this:

(1) 0t(v) = 0. Then v E *Qinfp and Ivlp ~ °= 10lp = lot(v)lp"

(2) 0t(v) i- 0. Then in fact, lot(v)lp = Ivlp, because if v = x/y in
reduced form with x,y E *Z, then Op(x),Op(y) i- 0, so Ixlp = IOp(x)lp
and Iylp = IOp(y)lp by the integer case, and therefore

Ix/yip = Ixlp/lylp· = IOp(x)lp/IOp(y)lp = IOp(x)/Op(y)lp = lot(x/y)lp"

It remains now to prove that each v E *Qliffip is approachable from Q.
Again there are two parts:

(1) If 0t(v) = 0, then Iv - Olp ~ 0, so v is actually near to Q.

(2) If 0t(v) i- 0, then as just shown, Ivlp = lot(v)lp. Since 0t(v) is a
p-adic number, it is equal to pmb for some m E Z and some b E Zp
with p t b, and so Iblp = 1. Now choose an x E *Z with Op(x) = b.
Then 0t leaves pm fixed because it is a standard integer, and

0t(v - pmx) = 0t(v) - 0t(pmx) = 0t(v) - (pmb) = 0,

so Iv - pmxlp c:: 0.

But given any E: E ~+, since x E *Z is approachable from Z, there
must be a standard z E Z such that

cpm
Ix-zlp<T·

Then pm Z is a standard rational number that is p-adically within c
of v, since

Iv - pmzlp < Iv - pmxlp+ Ipmx - pmzlp
= Iv - pmxlp+ Ipmlplx - zip
< Iv - pmxlp+ p-m(cpm)/2

< c

because Iv - pmxlp is infinitesimal.

18.6 Power Series

Polynomials

Let (R, +, -,·,0,1) be a commutative ring. A polynomial in x of degree n
over R is a "finite formal sum"

ao + aiX + a2x2 + ... + anxn
,
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where ao, ... , an are elements ofR, called the coefficients of the polynomial.
Coefficient ai is of degree i. The leading coefficient is an, which is required
to be nonzero if n =I- O. The set of all polynomials in x over R of all possible
degrees n E Z~ is denoted by R[x].
When n = 0, a single element ao of R is regarded as a polynomial, and
has degree 0 (unless ao = 0: the zero polynomial 0 will not be assigned a
degree). Thus we have R ~ R[x]. Members of R are constant polynomials.
Two polynomials are equal if they have the same degree and correspond­
ing coefficents (i.e., those of the same degree) are identical. Thus a poly­
nomial is uniquely determined by its list of coefficents, and this suggests
that a more explicit way to define a polynomial is to view it as a se­
quence a = (ao, ... , an, . .. ) of elements of R, or equivalently, a function
a : Z~ ---+ R, that is ultimately zero in the sense that

(3n E Z~) ('tim E N) (m > n ---+ am = 0).

The least such n is the degree of a. The inclusion of R in R[x] arises by
identifying each r E R with the sequence (r, 0, 0, ... ,0, ... ).
The set R[x] of polynomials over R forms a commutative ring under the
operations

a + b = (ao + bo, ... , an + bn, ... ) ,

-a (-ao, ... , -an, ... ),

ab = (aobo, aOb l + a1bo, ... , aobn + a1bn- 1 + ... + anbo, ... ) .

Power Series

A power series over R is an "infinite formal sum"

with coefficients from R. Thus we may simply say that a power series is
any sequence a = (ao, ... , an, ... ) of elements of R, or equivalently, any
function a : Z~ ---+ R. The set of all power series over R will be denoted by
R[xD. It forms a ring under the operations defined as for R[x] and has R[x]
as a subring. Altogether now we have

R ~ R[x] ~ R[xD.

If a power series a is nonzero, then it must have a nonzero coefficient. The
least n such that an =I- 0 is called the order of a, denoted by o(a). Put

{

2-o(a)

lal = o
if a =I- 0,
if a = O.

Then d(a, b) = la-bl defines a metric on R[xl Note that lal ~ 1 in general.
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A power series a as above determines the sequence

ao, ao +alx, ao +alx + a2x2, ... ,ao + alx + ... + anxn,

of partial sums, which are polynomials. The order of
"

a - (ao + alx + ... + anxn)

is at least n + 1, and so
la - (ao + alX + ... + anxn)1 < Tn.

It follows that the sequence of partial sums converges to a in the metric
just defined. This implies that R[x] is dense in R[x]. In fact, R[xD is a
complete metric space, hence a completion of R[x] , as we will now show by
invoking the nonstandard hull construction again.

Enlargement

Let *R[x] abbreviate the enlargement *(R[x]) of R[x] in a nonstandard
framework for R. Since members of R[x] are functions from Z~ to R, the
members of *R[x] are internal functions from *Z~ to *R (Exercise 13.13(3»,
or alternatively internal hypersequences a = (an: n E *Z~). Since polyno­
mials are ultimately zero, so too are members of *R[x]. This is because

(3n E Z~) (Vm EN) (m > n - am = 0)

is true for all a E R[x], so

(3n E *Z~) (Vm E *N) (m > n - am = 0)

is true for all a E *R[x]. But now the largest n for which an i- 0 may
be unlimited, so in general a member of *R[x] may be thought of as a
hyperfinite formal sum

ao + alX + a2x2 + ... + aNxN

with its degree N E *N possibly being unlimited. The coefficients an can
be nonstandard here, even when n is standard. Thus a member of *R[x]
is an internal hyperpolynomial with coefficients from *R (note that *R is a
commutative ring, by transfer of the fact that R is).

*R[x] is not the same thing as (*R)[x]. The latter is the ring of (finite)
polynomials ao+alx+a2x2+ .. '+anxn with coefficients from *R. Of course
we can view a polynomial as a special case of a hyperpolynomial, and so
identify each member of (*R) [x] with a member of *R[x]. To be precise this
requires a use of transfer: for a fixed n E Z~, the statement

(Vao, ... ,an E R)(3b E R[x])

[bo = ao /\ ... /\ bn = an /\ (Vm E N)(m > n - bm = 0)]
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asserts (correctly) that for any list ao, . .. ,an of elements of R there is a
polynomial b in R[x] having this list as its coefficients. By transfer then,
for any list ao, ... , an of elements of *R (possibly including nonstandard
elements) there is a hyperpolynomial b in *R[x] with ao, ... , an as its coef­
ficients.
In particular, *R[x] includes all members of *R as constant hyperpolyno­
mials. Also, if a E R[x], then a is regarded as being in *R[x] by identifying
it with its extension to *Z2 having an = 0 for all unlimited n. The functions
o(a), lal, a + b, ab all extend from R[x] to *R[x], preserving many of their
properties by transfer.

Theorem 18.6.1 a E *R[x] is approachable from R[x] if and only if the
coefficient an belongs to R for all standard n.

Proof Fix a standard n E Z2. Then if two polynomials a, b E R[x] are
closer than 2-n to each other (Le., la - bl < 2-n ), the order of a- b must
be at least n + 1, so (a - b)n = 0 and hence an = bn. Thus the statement

holds for all a, b E R[x], and so by transfer holds for all a, b E *R[x].
Now suppose that a is in *R[x]ap , the set of all members of *R[x] ap­
proachable from R[x]. Then for each standard n there must be some poly­
nomial b E R[x] with la - bl < 2-n . From the' previous paragraph it then
follows that an = bn E R. Thus the coefficient an is in R for each standard
n.
Conversely, suppose a E *R[x] has an E R for all standard n. For each

such n, the polynomial

belongs to R[x]. But a rn is within 2-n of a, because the statement

!a - a rnl < 2-n

holds for all a E R[x] (see above) so holds for all a E *R[x] by transfer.
This shows that a is approachable from R[x]. 0

At the end of Section 18.3 we promised to provide an example of a metric
space having limited entities that are not approachable. The theorem just
proved furnishes many examples. All members of *R[x] are limited, and
indeed satisfy lal ~ 1 by transfer. But if R is infinite then *R[x] will have
members that have some coefficents of standard degree that are nonstan­
dard, i.e., belong to *R - R. Such hyperpolynomials are not approachable
from R[x], as Theorem 18.6.1 shows.
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Infinitesimals

The infinitesimal members of *R[x] can be characterised as those internal
hyperpolynomials whose coefficients of standard degree all vanish:

Theorem 18.6.2 For any nonzero a E *R[x], the following are equivalent.

(1) lal ~ O.
(2) o(a) is unlimited.

(3) There is an unlimited N E *N such that an = 0 for all n < N.

(4) an = 0 for all standard n.

Proof In general, lal = 2-o(a) and o(a) is a nonnegative hyperinteger,
so lal will be appreciable iff o(a) is limited, or equivalently, lal will be
infinitesimal iff o(a) is unlimited. Thus (1) and (2) are equivalent.
Now, by transfer we have that for any nonzero a E *R[x],

(Vm E *Z2:) [m < o(a) ~ (Vn E *Z2:) (n ~ m --+ an = 0)].

From this, (2) implies (3) by putting N = o(a). It is immediate that (3)
implies (4). Finally, if (4) holds, then the above transferred sentence ensures
that each standard m is smaller than o(a), so (2) follows. 0

Corollary 18.6.3 In *R[x], two hyperpolynomials are infinitely close pre­
cisely when their coefficients of standard degree are identical: a ~ b if and
only if an = bn for all standard n. 0

The Completion

Let 0 : *R[x]ap --+ R[x] be the restriction map

Le., O(a) is the standard power series defined by putting O(a)n = an for all
standard n. By Theorem 18.6.1, O(a) is indeed a member of R[x] whenever
a E *R[x]ap •

The map 0 is a ring homomorphism. To see that it preserves addition,
notice that

(a+b)n=an+bn

holds for all n E *Z2: and all a, b E *R[x], by transfer, and this is more than
enough to guarantee

O(a + b) = O(a) + O(b).

For multiplication, observe that for any fixed standard n,
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for all a,b E R[x], and hence for all a,b E *R[x]. But this equation asserts
that «(}(ab))n = «(}(a)(}(b))n. As this holds for all standard n, we conclude
that

(}(ab) = (}(a)(}(b).

Next we want to establish that (} maps onto R[xl Given a power series
a E R[x], then a is a function from Z~ to R, and so it transforms to a
function *a : *Z~ ---t *R that has *an = an E R for all standard n. In spite
of Theorem 18.6.1 we cannot conclude from this that (}(*a) = a, because we
do not know whether *a is in the domain *R[x]ap of (} at all. Indeed, *a will
not even be in *R[x] unless it is ultimately zero, and if all the coefficients
of a are nonzero, then we will have *am =I- 0 for all m E *Z~ by transfer.
To overcome this, consider the statement

• for any function c E RZ~ and any n E Z~ there is a polynomial
bE R[x] that agrees with c up to n, i.e., Cm = bm for all m ::; n.

Since this is manifestly true, so is its *-transform. But *a is a standard,
hence internal, function from *Z~ to *R, so belongs to *(RZ~ ). Therefore
if we take an unlimited N E *N, by this *-transform we deduce that there
is some bE *R[x] that agrees with *a up to N. Hence b agrees with *a on
all standard n, so that bn = an E R for all such n, implying both that
bE *R[x]ap (Theorem 18.6.1) and (}(b) = a. Thus (} maps onto R[x].
From the definition of (} we have that

(}(a) = 0 iff an = 0 for all n E Z~.

Theorem 18.6.2 then gives

(}(a) = 0 iff lal ~ 0,

so the kernel of (} is the set *R[xpnf of infinitesimal elements of *R[x]. As
with previous cases, the cosets of the kernel are the equivalence classes
under the infinite closeness relation ~, and we conclude that R[x] is iso­
morphic to the corresponding quotient:

(*R[x]apj~) ~ R[x].

It remains only to show that this isomorphism preserves metrics, in the
sense that shlal = 1(}(a)l, to conclude that the space R[x] of power series
over R is isometric to the completion (*R[x]apj ~,d) of (R[x],d). This is
left as an exercise:

Exercise 18.6.4
If a is a nonzero member of *R[x]ap , show:

(1) If o(a) is limited, then lal = 1(}(a)l.

(2) If o(a) is unlimited, then lal ~ 1(}(a)l.
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18.7 Hyperfinite Expansions in Base p

Any p-adic integer can be represented as an infinite sum

L:~=o znpn = Zo + ZIP + Z2p2 + ... + znpn + ...

with coefficients Zn from Zip. In view of our discussion of power series in
the last section, this suggests that we could view it instead as a hyperfinite
sum.
To see how this works, recall that each standard positive integer zEN
has a unique expansion in base p of the form

Z = Zo + ZIP + Z2p
2 + ... + znp

n

and so is represented in this base by the sequence (Zi : 0 ::; i ::; n) of
numbers that are between 0 and P - 1. The representation gives a bijection
between N and the set Seq(p) of all finite sequences of elements of Zip.
This bijection is provided by the operator

L: : Seq(p) -t N

taking (Zi : 0 ::; i ::; n) to the number L:~=o Zipi. In a nonstandard frame­
work L: will lift to a bijection

L: :*Seq(p) -t *N.

By appropriate transfer arguments we can see that *Seq(p) is the set of
all internal hyperfinite sequences of elements of *(Zlp) = Zip. A typical
member of *Seq(p) is an internal function of the form

(Zi : i E *Z~ and i ::; n),

with 0 ::; Zi < P and n possibly unlimited. The operator L: takes this
hypersequence to an element of *N that we denote by L:~o Zipi. Every
member of *N is represented in this way as a hyperfinite sum determined
by a unique member of *Seq(p), and so has an expansion in base p.
Now, within Z~, if n < m, then the difference (L::'o Zipi) - (L:~o Zipi)

is divisible by pn+l, so

"m i - "n i( d n+I)LJi=O ZiP = LJi=O ZiP mo P . (v)

By transfer, (v) holds for all n,m E *Z~ with n < m when these sums
are defined. This property can be used to analyse the relation of infinite
closeness of hyperintegers in terms of the behaviour of the coefficients of
their base p expansions.
Consider two hyperintegers that have base p expansions

"N .
Z = LJi=O ZiP' ,

"M .
W = LJi=O WiP'
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with N, M unlimited. If Z and ware infinitely close in the p-adic metric,
Le., Iz-wlp ~ 0, then for any standard n ~ 0, pn+l divides z-w (Theorem
18.4.1), so

",N i _ ",M i( d n+l)
L."i=O ZiP = L."i=OWiP mo P .

But n < N, M, so applying result (v) gives

",N i _ ",n i( d n+l)
L."i=O ZiP = L."i=O ZiP mo P

and likewise
",M i _ ",n i( d n+l)
L."i=OWiP = L."i=OWiP mo P .

Consequently,
",n i _ ",n i( d n+l)
L."i=O ZiP = L."i=OWiP mo P .

But then
2:~o Zipi = 2:~=O wipi(mod pn+l)

because both sums belong to 7l/pn +1 , and so the uniqueness of the base
P expansion of standard integers implies that Zi = Wi for i ::; n, and in
particular, Zn = Wn·
This argument can be worked in reverse, to establish the following ana­

logue of Corollary 18.6.3.

Theorem 18.7.1 Two positive hyperintegers are p-adically infinitely close
precisely when their base p expansions have identical coefficients of standard
degree:

",N . ",M .
L."i=O ZiP' ~ L."i=OWiP' iff Zi = Wi for all standard i.

o
Now, we saw in Section 18.4 that if

a = Zo + ZlP + Z2p2 + ... + znpn + ...

is a p-adic integer, then there exists a positive hyperinteger x with

a = (Jp(x) = (x mod p, x mod p2, ... , x mod pn, ... ) .

Hence x mod pn+l = Zo + ZlP + Z2p2 + ... + znpn for all n E 7l~.

But x has a base-p expansion

x = Xo + X1P + ... + XNpN

for some N E *71~, and for each standard n ~ °we get by result (v) that
x = ",n x.pi(mod pn+l)- L."i=O , ,

so
",n i _ d n+l _ ",n . i
L."i=O XiP - x mo p - L."i=O Z,p ,
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and therefore Xi = Zi for all i :::; n. Thus the p-adic integer a and the
hyperinteger X have the same coefficients of standard degree in these base­
p expansions.
Of course for any given a E Zp there will be more than one x E *N

representing a in this way, i.e., having (}p(x) = a, but all such x's will be
infinitely close in the p-adic metric. Altogether, this discussion shows that
we can view any p-adic integer as a hyperfinite base-p expansion

with 0 :::; Zi < p, provided that we identify any two such expansions that
differ only at coefficients of unlimited degree.

18.8 Exercises

(1) Write out in full the transfer arguments showing that members of
*Seq(p) are internal hyperfinite sequences of members of Z/p (cf. the
proof of Theorem 13.17.1 for guidance).

(2) Complete the proof of Theorem 18.7.1 by showing that if two positive
hyperintegers have identical coefficients of standard degree in their
hyperfinite base p expansions, then they are p-adically infinitely close.
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Hyperfinite Approximation

In some nonstandard frameworks there are infinite sets that can be "ap­
proximated" by hyperfinite sets. From the discussion in Chapter 14 we
know that in an enlargement of a universe over a set A there will be a
hyperfinite set B with

A ~ B ~ *A.

This phenomenon suggests a new methodology for analysing infinite struc­
tures by "lifting" a corresponding analysis that is known for finite ones.
The steps involved are as follows:

(1) Obtain information about finite structures by standard reasoning.

(2) Use transfer to lift this to hyperfinite structures, including the set B
above.

(3) Find some way of "pushing down" the results from B to the infinite
set A.

This procedure will now be illustrated with three applications: colouring of
graphs, representation of Boolean algebras, and the Hahn-Banach theorem
about extensions of linear functionals on vector spaces. For the first two
of these, the pushing-down step (3) is immediate. For the Hahn-Banach
theorem, however, it requires a little further nonstandard analysis in the
form of an appeal to the shadow map.
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19.1 Colourings and Graphs

An r-colouring of a set G is a sequence C 1 , ... , Cr of pairwise disjoint sets
satisfying

G ~ C1 U··· uCr .

Thus each member of G belongs to exactly one of the sets Ci . This situation
induces a partition of G, which we regard as being given by an assignment
of r different colours to the members of G. G n Ci is the set of elements of
G that are assigned colour i (cf. Section 17.1).
Notice that the way we have defined this notion ensures that any r­

colouring of G is also an r-colouring of any subset of G.
In any nonstandard framework for G we will get

*G ~ *C1 U ... U *Cr,

with *Ci n *Cj = 0 whenever i =/:. j. Hence the enlarged sets *C1 , ... , *Cr

form an r-colouring of *G, which moreover agrees with the original colouring
when restricted to G.

A graph is a structure (G, E) comprising a nonempty set G with a binary
relation E on G that is irreflexive and symmetric:

(\:Ix E G) (x,x) t/. E,

(\:Ix,y E G) ((x,y) E E ~ (y,x) E E).

This is visualised as a collection of nodes, or vertices, labelled by the mem­
bers of G, with a line connecting the nodes labelled by x and y whenever
(x, y) E E. A pair (x, y) that belongs to E is called an edge with vertices x
and y.
Any subset H of G defines the subgraph of (G, E) determined by retaining

just those edges whose vertices both belong to H. In other words, there is
a line connecting x and y in this subgraph precisely when x, y E Hand
(x,y) E E.
In a nonstandard framework for G the structure (*G, *E) is a graph,

since transfer ensures that *E is irreflexive and symmetric: Moreover, the
subgraph of this enlarged graph defined by G is just the original graph
(G, E), because

(x,y)EE iff (x,Y)E*E

for each x, y E G by transfer (note here that *(x, y) = (*x, *y) = (x, y),
since x and yare individuals in a nonstandard framework for G).

An r-colouring of a graph is an r-colouring of its set of nodes with the
additional property that the vertices of any edge have different colours, Le.,
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there is no line connecting two nodes of the same colour. This requires that
each of the statements

(Vx, y E G) «x, y) E E 1\ x E Ci ---7 Y fJ. Ci )

must hold true for i = 1, ... ,r. An r-colouring of any graph is automatically
an r-colouring of any of its subgraphs.
Now, the assertion

"01, . .. ,Cr is an r-colouring of (G, E)"

can be expressed by a formula that we abbreviate as

Colour(C1 , ... ,Cr,G,E).

If C 1 , • •. ,CT> G, E are all taken to be constants naming particular entities
in a universe over G, then this formula is a sentence whose *-transform
asserts that *C1, ... , *Cr is an r-colouring ofthe enlarged graph (*G, *E). If,
however, we take C1 , , Cr to be variables, then we can form the sentence

(3C1 , , Cr E P(G)) Colour(C1, ... , CT> G, E),

which states that there exists an r-colouring of (G, E). This can be modified
further to express the assertion that every finite subgraph of (G, E) has an
r-colouring: replace G by a variable H and form

(VH E PF(G)) (3C1 , •.. , Cr E P(G)) Colour(C1 , ••• , CT> H, E). (i)

Note that for (i) to be true it is required only that each finite subgraph
have its own r-colouring. The colourings of different finite subgraphs need
not agree with each other, so it is not obvious from (i) that the whole graph
(G, E) can itself be r-coloured. Nonetheless, it is true that

• if every finite subgraph of a graph has an r-colouring, then the graph
itself has an r-colouring.

A proof of this result will now be given by a simple application of the
hyperfinite approximation methodology. We work in an enlargement of a
universe over G, and observe first that by applying transfer to (i) we can
infer that each member of *PF(G) defines a subgraph of (*G, *E) that has
an r-colouring. Thus the fact that every finite subgraph of (G, E) has an
r-colouring can be lifted to the conclusion that

every hyperfinite subgraph of (*G, *E) has an r-colouring.

But in the enlargement there is a hyperfinite approximant of G, Le., a set
HE *PF(G) with G ~ H ~ *G. Then the subgraph of (*G, *E) defined by
H has an r-colouring, and it remains only to push this situation down to
(G, E) itself. But this is immediate, since (G, E) is a subgraph of the graph
defined by H, so the r-colouring of H is also an r-colouring of (G, E).

Exercise 19.1.1
Write out explicitly the formula Colour(C1, ... , Cr, G, E).
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19.2 Boolean Algebras

George Boole (1815-1864) was a pioneer of mathematical logic. He showed
that the study of logical connectives, and the validity of inferences, could
be carried out by a mathematical analysis of equations involving operations
that constitute what we now refer to as Boolean algebm.
To explain this, consider first the collection P(A) of all subsets of a set

A. This is closed under the binary operations nand U of intersection and
union of sets, and under the unary operation - of complementation relative
to A. The structure

(P(A); n, u, -,0, A)

is the power set algebm of A. More generally, a field of sets is any nonempty
collection B of subsets of a set A (Le., B S;;; P(A» that is closed under n,
U, and -. Then

(B; n, U,,,.., 0, A)

is a subalgebra of the power set algebra of A.
These are concrete examples of the abstract notion of a Boolean algebra,
which can be defined as any structure

(B; n, u, ',0,1)

in which B is a nonempty set that contains elements °(the zero) and 1
(the unit) and carries binary operations nand U and a unary operation '
such that the following equations hold for all x, y, z in B:

xny ynx,

xUy yUx,

xn(yUz) (x n y) U (x n z),

xu(ynz) (x u y) n (x u z),

xn1 = x,

xuo x,

xnx' 0,

xux' 1.

From these many other properties are deducible, including

xnx x,

xUx x,

xn(ynz) (x n y) n z,

xu(yUz) (x Uy) U z,

xU (y n x) x,



x n (y u x)

(x n y)'

(x u y)'

xUl

xno
0'
I'

xny'=o iff
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x,

x'Uy',

x'ny',

1,
0,

1,

0,

xny = x.

The element x n y is called the meet of x and y, while xU y is their join.
A relation :::; is defined in any Boolean algebra by

x :::; y iff x n y = x (iff xU y = y iff x ny' = 0).

Then:::; proves to be a partial ordering (reflexive, transitive, antisymmetric)
in which the meet x n y is the greatest lower bound of x and y, and the
join x U y is the least upper bound. In a field of sets, :::; is the relation ~ of
set inclusion.
Notice that in any nonstandard framework for B, the operations n, U, ,

will extend to corresponding operations on *B, for which we continue to use
the same symbols. The Boolean algebra axioms hold for these operations by
transfer, and so *B becomes a Boolean algebra having B as a subalgebra.
Of singular importance is the two-element algebra based on the set {O, I},

in which 1 is identified with "true" and 0 with "false", and n, U, ' are the
operations specified by the truth tables that give the usual meanings of the
logical connectives 1\, V, '. This algebra is denoted by 2. It is isomorphic
to the power set algebra of anyone-element set {a}, identifying 1 with
{a} and 0 with 0. The algebra 2 is a fundamental building block: from
the representation to be discussed below it can be shown that any Boolean
algebra is isomorphic to a subalgebra of an algebra that is constructed as
a direct product of copies of 2. This implies that any equation satisfied by
2 will be satisfied by every Boolean algebra.
Now, the properties of the set operations n, U, - follow from their defi­

nitions,

CnD

CUD

-C

{x: x E C and xED},

{x: x E C or xED},

{x E A : not x E C},

and hence depend on the meaning of the words and, or, not. Thus it is the
behaviour of these logical connectives that dictate that P(A) should be a
Boolean algebra, indicating a natural connection between the algebra of sets
and the algebra of connectives. This is further exemplified by a construction
that builds Boolean algebras out of formulae. Let II be a nonempty set,
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whose members will be called sentence letters, and consider the class of
II -formulae generated inductively from members of II by the connectives
1\, V, ',-t, +-+. A II -valuation is a function v : II -t {a, I} assigning a truth
value to each sentence letter. Any valuation extends in a unique way to all
formulae by the usual truth conditions:

v('<p) = 1 iff v(<p) = 0,
v(<p 1\ 7/J) = 1 iff v(<p) = v(7/J) = 1,

v(<pV 7/J) = 1 iff v(<p) = 1 or v(7/J) = 1,

v(<p -t 7/J) = 1 iff v(<p) = °or v(7/J) = 1,

v(<p +-+ 7/J) = 1 iff v(<p) = v(7/J).

A II-formula is a tautology ifit is assigned the value 1 by every II-valuation.
Examples oftautologies are <p V '<p, <p -t <p, and <p 1\ 7/J -t <p, where ¢ and
7/J are any formulae. An inconsistent formula is one that always takes value
0, such as <p 1\ '<p.
An equivalence relation""'" on the set of all II-formulae is defined by

<p ,....., 7/J iff <p +-+ 7/J is a tautology
iff v(<p) = v(7/J) for all II-valuations v.

The purpose of this relation is to identify formulae that are indistinguish­
able by any truth-value assignment. Thus <p 1\ 7/J and 7/J 1\ <p, while being
distinct formulae, will belong to the same equivalence class.
The equivalence class of a formula <p will be denoted by [<pl. The set

B II of all such equivalence classes becomes a Boolean algebra under the
operations

In this algebra we get

[<p] ~ [7/J]
[<p] = 1
[<p] =°

[<p] n [7/J]
[<p] u [7/J]

[<p]'
1

°
iff

iff

iff

[<p 1\ 7/J],
[<p V 7/J]'
[,<pI,
[<p V ,<pI,

[<p 1\ '<p].

<p -t 7/J is a tautology,
<p is a tautology,
<p is inconsistent.

If II is infinite, then so too is B II, since no two sentence letters are equiv­
alent. On the other hand, if II is finite, then the algebra BII will be finite,
even though there are infinitely many II-formulae. Indeed, if II consists
of n sentence letters, then there are only 2n valuations II -t {a, I} for
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distinguishing formulae. Each equivalence class can be identified with the
set of valuations {v : v(r.p) = I}, and there are no more than 22n such sets.
Further investigation establishes that B II has exactly this number 22n of
members:

Exercise 19.2.1
Show that if II is finite, then for any set V of II-valuations there is a II­
formula r.p such that in general, v(r.p) = 1 iff v E V. Hence verify in detail
that B II has exactly 22n members if II has n.

19.3 Atomic Algebras

We are going to prove (in Section 19.4) that any Boolean algebra has an
isomorphic representation as a field of sets. The key to this is the notion of
an "atom". To see what this means, observe that in the power set algebra
of a finite set each nonzero element of the algebra is itself a finite set and
so can be decomposed as the unionfjoin

of finitely many singleton sets. These singletons themselves cannot be fur­
ther decomposed into smaller elements (so this is analogous to the decom­
position of integers into primes). One way to characterise the singletons is
by the fact that the only element smaller than them is 0.
In an abstract Boolean algebra we define an atom to be a nonzero element
that has no nonzero element smaller than itself in the partial ordering. This
can be symbolized by the formula atom(a, B), defined as

a =I- 0/\ (Yx E B) (x ~ a -+ x = 0 V x = a),

which expresses "a is an atom of B". Note that reference to the ambient
algebra B is crucial here, since an atom of one algebra may fail to be an
atom within a larger algebra. This is the case with the atom {I,2} of the
field of sets

{0,{O},{I,2},{O,I,2}},
which is not an atom in P({O, 1, 2}).
Now let

B x = {a E B: atom(a,B) /\ a ~ x}

be the set of atoms in B that are "below" x. Thus B 1 is the set of all atoms
of B, while Bo = 0. In general, it can be shown for any atom a that

a ~ x n y iff a ~ x and a ~ y,

a ~ xU y iff a ~ x or a ~ y,

a ~ x' iff a 1:. x,
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implying that

B xny B x n By,

B xuy Bx U By,

B x ' -Bx ·

These conditions state that the map x f-+ Bx is a homomorphism from B
into the power set algebra P(B1 ) of all subsets of the set of atoms of B.
A Boolean algebra is atomic if each of its nonzero elements has an atom

below it:

(Vx E B) [x =I- 0 --+ (3a E B) (atom(a, B) 1\ a ~ x)].

This means that
x =I- 0 implies Bx =I- 0,

which can be used to show that

x =I- y implies B x =I- By,

and so altogether the map x f-+ B x is an injective homomorphism from B
into P(B1 ). The image of B under this injection will be a subalgebra of
P(B1) isomorphic to B itself. This establishes that

• any atomic Boolean algebm is isomorphic to a field of sets.

If B is finite, the injection x f-+ Bx maps onto P(B1 ) (and so B has exactly
2n elements, where n is its number of atoms). This is because each nonzero
element {all ... ak} of P(B1) is equal to Bx, where

For infinite B the injection need not be onto, so we cannot conclude that
B is isomorphic to P(Bd. For example, if II is countably infinite, then so
is the formula algebra B rr , and hence this algebra cannot be isomorphic
to any power set. The point is that there is no such thing as a countably
infinite power set: if A is finite, then so is P(A) (since IP(A)I = 2IA1 ), while
if A is infinite, then P(A) is uncountable (by a famous diagonalisation
argument of Cantor, showing that there is no map from A onto P(A»).

This whole theory fails to apply to an algebra that is not atomic, i.e.,
has at least one element that lacks atoms below it. An extreme example
of this is provided by the formula algebra B rr whenever II is infinite. This
has no atoms at all! For if [ep) is a nonzero element of B rr and II is infinite,
we can choose a sentence letter p E II that does not occur in ep. Then

o=I- [ep 1\ p) < [ep],
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showing that [<p] is not an atom in B II. We have [<p A p] ::; [<p] because
<p AP --+ <p is a tautology. As [<p] i=- 0, there is a valuation v with v(<p) = 1.
Since p does not occur in <p, we can define a valuation VI that agrees with
V on the letters occurring in <p and has VI (P) = 1. Then VI (<p) = v(<p) = 1,
so vI(<pAp) = 1, showing [<pAp] i=- O. Similarly, there is a V2 with V2(<P) = 1
but V2(P) = 0, so v2(<pAp) i=- V2(<P), implying [<pAp] i=- [<pl·

On the other hand, the theory does always apply to a finite Boolean
algebra, since a finite one is always atomic. To see this, observe that if a
nonzero element a is not an atom, then there must be some nonzero al
below it. If al is not an atom, then there must be an a2 i=- 0 with a2 < aI,
and so on. If this argument could be repeated infinitely often, it would
generate an infinite chain

... < an < ... < a2 < al < a

of distinct elements of B. Thus if B is finite, the argument must stop at
some atom an below a.
To sum up:

• Every finite Boolean algebra is atomic and is isomorphic to the power
set algebra of its set of atoms.

19.4 Hyperfinite Approximating Algebras

The discussion of Boolean algebras so far has been entirely concerned with
their standard theory. We now bring in some nonstandard ideas to prove
that for any Boolean algebra B there is an atomic Boolean algebra B+ that
has B as a subalgebra. From the results described above we know that B+
is isomorphically embeddable into the power set algebra of its set of atoms,
and so B is likewise embeddable into that power set by the map

(x E B) 1--+ B:

that takes each member of B to the set of atoms of B+ that are below it.
Thus the representation of B+ as a field of sets immediately pushes down
to B itself. This establishes the fundamental representation result that

• every Boolean algebra is isomorphic to a field of sets.

Our desired algebra B+ is hyperfinite, and will be obtained as an approxi­
mation to B in the sense that

(ii)

in a nonstandard framework for B. The essential reason why B+ turns
out to be atomic is that all finite Boolean algebras are atomic, and this
property is preserved by transfer to the hyperfinite B+.
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We already know how to realise B+ as a hyperfinite set fulfilling (ii), but
now we want it to be a Boolean algebra. For this it suffices that it be closed
under the Boolean operations n, U, and " so that it is a subalgebra of the
Boolean algebra *B and hence is a Boolean algebra in its own right. There
is one more piece of standard theory that we need to make this work:

• Every finitely generated Boolean algebra is finite.

To explain this, let C be a subset of Boolean algebra B. Then there is a
smallest subalgebra of B that includes C. This is known as the subalgebra
generated by C. It may be defined in a "top-down" way as the intersection
of all subalgebras of B that include C, or given a "bottom-up" construction
by starting with the elements of C and repeatedly applying n, U, and' until
a set of elements is produced that is closed under these operations. A finitely
generated algebra is one that is generated in this way by a finite set C.
Now, if C = {bl, ... , bn }, then because of the particular equations satis­

fied by Boolean algebras it can be shown that any member of the subalgebra
of B generated by C is equal to the join of finitely many elements of the
form

b~ n ... n b~ n ... n b~,

where b~ is either bi or b~. But there are at most 2n elements of this form
in B, and hence at most 22" joins of sets of such elements. In other words,

• a Boolean algebra with n generators has at most 22" elements

(cf. Exercise 19.5(2) below for an alternative proof of this).
Now let us work in a nonstandard framework for B that is an enlarge­

ment. Define a binary relation R ~ B x PF(B) by letting

bRA iff bE A E PF(B) and A is a subalgebra of B.

Then R is concurrent, for if b1 , ... , bk E B, and A is the subalgebra of B
generated by {b1 , ..• , bk }, then (as above) A is finite, and so biRA for all
1 ~ i ~ k. In particular, this shows (when k = 1) that the domain of R is
B itself.

It follows (Theorem 14.2.1) that in the enlargement there exists an entity
B+ such that b(*R)B+ for all b E B. This B+ is a hyperfinite subset of *B
including B, since by transfer *R ~ *B x *PF(B) and

b(*R)A -+ b E A

in general. Hence (ii) holds.
Next we show that B+ is a subalgebra of *B, and so is a Boolean algebra.

Every member of the range of R is a subalgebra of B, hence is closed under
the Boolean operations:

(VA E ranR)(Vx,y E B)(x,y E A -+ xny E Al\xuy E Al\x' E A).
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By transfer it follows that every member of the range of *R is likewise
closed (recall that *(ranR) = ran (*R)). In particular, this applies to B+,
which is thereby a subalgebra of *B.
Finally, we want B+ to be atomic. But every member of the range of R
is a finite Boolean algebra, so is atomic:

(VA E ranR) ('Ix E A) [x =f. 0 ---+ (3a E A) (atom(a, A) 1\ a ~ x)],

where atom(a, A), as defined earlier, is the formula

a =f. 01\ ('Ix E A) (x ~ a ---+ x = 0 V x = a).

Transfer of this asserts that all members of the range of *R, and in particular
B+, are atomic.
This completes the proof of the existence of a B+ with the desired prop­
erties.

19.5 Exercises on Generation of Algebras

(1) Let C be a hyperfinite subset of *B. Prove that there exists a smallest
internal subalgebra of *B including C, and that this subalgebra is
hyperfinite.

(2) If B is a Boolean algebra with an n-element generating set, show
that there is a homomorphism from B II onto B where II is an n­
element set of sentence letters. Deduce from this that B has at most
22n elements (cf. Exercise 19.2.1).

19.6 Connecting with the Stone Representation

The fact that every Boolean algebra is isomorphic to a field of sets is known
as the Stone representation theorem after its discoverer, Marshall Stone.
The most commonly presented proof of this consists of an embedding of
the algebra into the power set of its set of ultrafilters.
Now, a filter of a Boolean algebra B is a nonempty set F ~ B satisfying

x n y E F iff x E F and x E F

for all x, y E F. Thus a filter on a set I, in the sense of Section 2.3, is the
same thing as a filter of the power set algebra P(I). A filter is proper if
o (j. F, and is an ultrafilter if it is proper and has

x E F or x' E F
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for all x E B. For example, if a E B, the principal filter

{xEB:a::;x}

of B generated by a is an ultrafilter of B if and only if a is an atom of
B. More generally, if a is an atom of any algebra B+ that has B as a
subalgebra, then the set

{y E B : a ::; y in B+}

is an ultrafilter of B. This is just the restriction to B of the principal
ultrafilter {y E B+ : a ::; y} of B+ generated by a. The restriction itself
need not have a generator in B (see below).
Any ultrafilter F satisfies

x U Y E F iff x E F or y E F,

x' E F iff x rJ. F,

so if Ux is the set of ultrafilters of B that have x as an element, then U1 is
the set of all ultrafilters of B, Uo = 0, and

Ux nuy ,

Ux u Uy ,

-Ux .

This means that the map x ~ Ux is a homomorphism from B into P(U1).

To make it injective it is enough to show that

x =AD implies Ux =1= 0,

or in other words,

any nonzero element of a Boolean algebra belongs to an ultrafilter. (iii)

To prove this, we have to invoke Zorn's lemma to extend any proper filter
to a maximal one, and then observe that a maximal proper filter is the
same thing as an ultrafilter. This establishes the

Ultrafilter Theorem: any proper filter of a Boolean algebra
B can be extended to an ultrafilter of B.

By applying this theorem to the principal filter generated by a given nonzero
element, we obtain the desired result (iii) (cf. Section 2.6).

When the ultrafilter theorem is applied to power set algebras it pro­
duces the ultrafilters needed to carry out the construction of ultrapowers
of superstructures as in Section 14.3. This construction then yields the en­
largement theorem, asserting the existence, for any set X, of an enlargement
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of a universe over X. Here we can turn the tables by assuming the existence
of enlargements and using them to give an explicit demonstration of the
ultrafilter theorem lying at the heart of Stone's theory.
We saw in the last section that if B is any Boolean algebra, then in a

suitable enlargement there is a hyperfinite and atomic Boolean algebra B+
having B as a subalgebra. Now, if F is a proper filter of B, we can extend
F to a maximal filter by showing that in B+ there is an atom that is below
all members of F, and then using this atom to define an ultrafilter of B in
the way described above.
There are two main steps in this procedure:

(1) Extend F to an internal proper filter F+ of B+.

(2) Show that in B+, every internal filter is principal.

To carry out (1), note that the enlargement *F of F will be a proper filter
of *B, by transfer of

(0 tI. F) A (Vx, Y E B) [x n y E F - x E FAx E F].

Hence if we define F+ = *F n B+, then F+ will be a proper filter of B+.
Moreover, F+ is internal, being the intersection of two internal sets. Note
that F ~ *F n B ~ F+.
Result (2) holds in any hyperfinite :j3oolean algebra like B+, because

in a finite Boolean algebra any filter is principal: the filter {bI, ... , bn } is
generated by the element b1n ... nbn . This fact transfers to show that any
internal subset of a hyperfinite Boolean algebra that is a filter must have
a generating element.
By (1) and (2), there is some element b E B+ that generates F+ =

*FnB+:
F+ = {y E B+ : b ::; y}.

Now, b f:. 0, since F+ is proper, and B+ is atomic, so there is an atom a
in B+ with a ::; b. Then the set

G = {y E B : a ::; y in B+}

is an ultrafilter of B, and G includes F because F ~ F+ ~ G. This com­
pletes our nonstandard proof of the ultrafilter theorem.

The ultrafilter G is just the restriction to B of the principal ultrafilter

{y E B+ : a ::; y in B+}

of B+. G itself may be nonprincipal in B, for instance when F is the prin­
cipal filter of B generated by some x f:. 0 and there is no atom in B below
x. Thus we may think of a nonprincipal ultrafilter as a rather complicated
"ghost of a departed atom", just as a sequence of real numbers that con­
verges to 0 is a vestige in the standard world of a missing infinitesimal.
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It would be incorrect to conclude on the basis of this discussion alone
that the ultrafilter theorem and the enlargement theorem are equivalent
as axiomatic principles. To construct an enlargement as an ultrapower, we
need to establish Los's theorem to verify the transfer principle, and the
proof of Los's theorem involves some form of choice principle in handling
the inductive case of the quantifiers. In fact, it has been shown that Los's
theorem and the ultrafilter theorem together are equivalent to the axiom
of choice, while the ultrafilter theorem by itself is weaker than the axiom
of choice. On the other hand, there are other model-theoretic techniques
for building enlargements that depend on principles no stronger than the
ultrafilter theorem-but that is outside of our present scope.

19.7 Exercises on Filters and Lattices

(1) Verify that G above is an ultrafilter of B.

(2) Write out in detail the transfer argument that every internal filter of
a hyperfinite Boolean algebra is principal.

(3) Work in an enlargement of a universe over a set I. Show that for any
nonprincipal ultrafilter :F on I (in the sense of Chapter 2) there is an
element of *1 that belongs to every member of :F.

(4) (This is really a project rather than an exercise.) A lattice is an
algebra of the form (L; n, u) with nand u being binary operations
on the set L that are commutative and associative and satisfy the
idempotence laws

xnx=x=xux

and the absorption laws

x n (x u y) = x = x U (x n y).

A distributive lattice is one satisfying

x n (y u z) = (x n y) u (x n z),

xu(ynz) = (xuy)n(xuz).

These laws are satisfied by any set lattice, which is one of the form
(8, n, u) where 8 is a collection of subsets of some fixed set. Any
finitely generated distributed lattice is finite.

An element a of a lattice is called join-irreducible if

a = x U y implies a = x or a = y

for all x, y E L. By using join-irreducible elements in place of atoms,
adapt the analysis of Boolean algebras to give proofs by hyperfinite
approximation of the following facts.
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(a) Every distributive lattice is isomorphic to a set lattice.

(b) Every proper filter of a distributive lattice can be extended to a
proper filter G that is prime, meaning

xU Y E G implies x E G or y E G.

19.8 Hyperfinite-Dimensional Vector Spaces

Our study of Boolean algebras made use of a special feature: any Boolean
algebra B is locally finite, which means that its finitely generated subal­
gebras are finite. This implies that the finitely generated subalgebras are
atomic, a property that can then be transferred to the approximating al­
gebra B+. It also leads to the conclusion that B+ is hyperfinite.
A similar construction to this can be carried out for other kinds of al­

gebraic structure, even if they are not locally finite. By working with the
finitely generated subalgebras we can obtain an analogue of B+ that is hy­
perfinitely generated rather than hyperfinite. This is particularly relevant
to linear algebra, where the emphasis is on finite dimensionality rather
than actual finiteness. By making an enlargement it is possible to ap­
proximate an infinite-dimensional vector space by one that is hyperfinite­
dimensional. This provides a methodology for transferring results about
finite-dimensional spaces to vector spaces in general.

We will assume familiarity with the general theory of vector spaces over
fields. Recall that a real vector space is an Abelian group (V, +, -,0) with
a scalar multiplication map (A, x) f-+ AX from JR x V to V satisfying, for all
vectors x, y E V and scalars A, J.1, E JR,

A(X + y)

(A + J.1,)x
A(J.1,x)

Ix

AX + AY,

AX+J.1,X,

(AJ.1,)X,

X.

In a nonstandard framework for V the operations + and - lift to *V,
and scalar multiplication becomes a map of the form *JR x *V -+ *V. The
vector space axioms are preserved by transfer, and so *V is a vector space
over the field *JR, Le., a hyperreal vector space. We can of course ignore the
nonstandard scalars and restrict scalar multiplication to a map from JR x *V
to *V, thereby viewing *V as a real vector space. It is important to recognise
that these two descriptions of *V, as a real space and as a hyperreal space,
are descriptions of spaces with different properties. For instance, *JR itself
is a one-dimensional vector space over *JR, but is infinite-dimensional as a
vector space over JR (see Exercise 19.9.(2)).



274 19. Hyperfinite Approximation

A subspace of a real vector space V is a subset W ~ V that is closed
under vector addition and under multiplication by real scalars, and hence
contains all finite linear combinations

(iv)

for which Xl, ... , X n E Wand .AI, ... ,.An E R W is of dimension n,
dim(W) = n, if there exists a sequence Xl, ... ,Xn of vectors in W (a ba­
sis) such that each member of W can be written uniquely as the linear
combination E? .AiXi for some scalars .Ai.
In a nonstandard framework the vector summation operator E? can be
defined for unlimited n, allowing the formation of hyperfinite sums and
linear combinations in *V. To achieve this we regard the symbol "E" as
denoting a function whose domain is the set Seq(V) of finite sequences of
elements of V, and whose range is included in V. A member of Seq(V) is
itself a function into V from some initial segment {i EN: i :::; n} of N.
Thus by transfer, *Seq(V) is the set of all internal hyperfinite sequences
of elements of *V. A typical member of *Seq(V) is an internal function of
the form (Xi : i :::; n) defined on some initial segment {i E *N : i :::; n} of
*N, with Xi E *V and n possibly unlimited. The operator E extends to a
function from *Seq(V) to *V, giving a meaning to the expression E? Xi for
all internal hyperfinite sequences (Xi: i :::; n).
Let Fin(V) be the set of all finite-dimensional subspaces of V. The func­

tion dim: Fin(V) ---.. N assigns to each member of Fin(V) its dimension.
This extends to a function dim: *Fin(V) ---.. *N. By transfer, since mem­
bers of Fin(V) are closed under finite combinations with real scalars, a
typical member of *Fin(V) will be an internal subset of *V that is closed
under internal hyperfinite linear combinations with hyperreal scalars. If
W E *Fin(V) with dim(W) = n (possibly n E *Noo ), then W is a hyper­
real subspace of *V, and there exists an internal sequence (Xi : i :::; n) of
vectors in W that forms a "basis" in the sense that each member of W is
equal to E? .AiXi for a unique internal sequence (.Ai: i :::; n) of hyperreal
numbers. Thus W is a hyperfinite-dimensional vector space over *lR., with
hyperfinite dimension n.

Exercise 19.8.1
Write out the formal sentences whose transforms ensure that *Seq(V) and
*Fin(V) fulfill the descriptions just given of them. (The proof of Theorem
13.17.1 may provide some guidance.) 0

The approximation of a general vector space by hyperfinite-dimensional
ones is given by the following result:

Theorem 19.8.2 If V is a real vector space, then in any enlargement of
a universe over V there is a hyperreal subspace v+ of *V with

V ~ v+ E *Fin(V).
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Proof Let R be the membership relation from V to Fin(V), i.e.,

xRW iff x EWE Fin(V).

Then R is concurrent, for if Xl, ... , X n are vectors in V, and W is the
subspace they span (Le., the set of all linear combinations I:~ AiXi with real
scalars), then W has dimension at most n, and so XiRW for all 1 ~ i ~ n.
This also shows that the domain of R is V.
Since *R ~ *V x *Fin(V), it follows that in the enlargement there is

some V+ E *Fin(V) with x(*R)V+ for all X E V, and hence V ~ V+. 0

19.9 Exercises on (Hyper) Real Subspaces

(1) Let (Xi: i ~ n) be an internal hyperfinite sequence of elements of *V.
Show that there exists aWE *Fin(V) such that

(i) W is the smallest internal hyperreal subspace of *V that contains
Xl,'" ,xn ; and

(ii) each member of W is equal to I:~ AiXi for some internal se­
quence (Ai: i ~ n) of hyperreal numbers.

(2) Let r E *JR - JR. Prove that r is not a root of any polynomial with
real coefficients. (Hint: a polynomial has finitely many roots.) Deduce
that the set {rn : n E N} of finite powers of r is linearly independent
over JR, and therefore that *JR is infinite-dimensional as a vector space
over JR.

(3) Explain why the set lL of limited hyperreals is an infinite-dimensional
real subspace of *JR.

19.10 The Hahn-Banach Theorem

A function of the form f : V -. JR is called a functional on a real vector
space V. A linear functional is one that is additive, in the sense that

f(x + y) = f(x) + f(y)

for all x, v E V, and homogeneous in the sense that

f(AX) = Af(x)

(v)

(vi)

for all X E V and AE JR. If f satisfies (vi) only for A~ 0, then it is positively
homogeneous, and if it satisfies

f(x + y) ~ f(x) + f(y)
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in place of (v), then it is subadditive. Finally, a function f is dominated by
a function p if f(x) ~ p(x) for all x in the domain of f.
Armed with these definitions we can state the following cornerstone result

from functional analysis.

Hahn-Banach Theorem: Let p be a positively homogeneous
and subadditive functional on a real vector space V, and f a
linear functional on a subspace W of V with f dominated by
p. Then there exists a linear functional g on V that extends f
and is still dominated by p.

They key idea for the proof is a construction that takes a vector x E V - W
and extends f to the subspace generated by adjoining x to W:

Lemma 19.10.1 Given the hypothesis of the Hahn-Banach theorem, if
x E V - W, then there exists a linear functional h on a subspace of V
including W U {x} such that h extends f and is dominated by p.

Proof We give only a sketch of the proof of this standard piece of linear
algebra. The subspace of V generated by W U {x} is the set

{y + AX: yEW and A E 1R}.

A functional h is defined on this subspace by putting h(Y+Ax) = f(Y)+AC,
where c is a real constant. Any such c will make h a linear functional
extending f, but c has to be chosen suitably to ensure that h is dominated
by p. It turns out that for this purpose c can any number bounded above
by the infimum of the numbers p(y +x) - f (y) and below by the supremum
of the numbers -p(-y - x) - f(y) as y ranges over W. 0

The nature of this result suggests that we can prove the Hahn-Banach the­
orem by repeatedly applying the procedure of adjoining elements. Having
extended f to an h whose domain contains x, we then choose an x' (j. dom h
and extend h to a linear functional h' that is dominated by p and defined
at x'. We continue this until we run out of elements of V to adjoin.
Recalling the discussion in Section 2.6, we see that this process involves
the axiom of choice in selecting x, x', etc. Alternatively, we could "well­
order" V - W into a linear list along which we iterate the construction
transfinitely often. This was precisely how Hahn and Banach (indepen­
dently) proved their theorem, and in fact, Banach expressed it very briefly.
Having explained the procedure that proves Lemma 19.10.1, he completed
his argument by simply stating,

It now suffices to well-order the set V - W, obtaining, by suc­
cessive extensions of f, following the procedure described above,
a functional g satisfying the conclusion of the theorem.

Modern treatments of the Hahn-Banach theorem use Zorn's lemma instead
to make a maximal extension of f and then show that its domain is the
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whole of V. Here we will show that a proof can be developed in the language
of enlargements. The essential idea is to iterate the construction of Lemma
19.10.1 hyperjinitely often, adjoining enough elements to the domain of the
functional to include all of V.
By iterating the adjunctions finitely many times we can take any finite

sequence (Xi : i :::; n) of elements of V and extend f to a linear functional
dominated by p whose domain includes the subspace generated by the Xi'S.

Hence by applying transfer we can take any internal hyperfinite sequence
(Xi : i :::; n) and extend f to the hyperfinite-dimensional subspace of *V
that it generates. In particular, this would allow us to lift f to the space
V+ E *Fin(V) including V that was obtained in Theorem 19.8.2, and then
push this extension down to V itself.

In fact, an even more direct approach is to incorporate into our present
situation the kind of concurrency argument used to derive V+. Given the
hypothesis of the Hahn-Banach theorem, define a binary relation R by
specifying that xRh if and only if

X E V and h is a linear functional that extends f and is domi­
nated by p and whose domain is a subspace of V that includes
WU {x}.

If Xl, . .. ,Xn E V (where n EN), then applying Lemma 19.10.1 at most n
times produces an h having xiRh for all 1 :::; i :::; n. So R is current and
has domain V. Working in an enlargement of a universe over V, we then
obtain an f+ such that x(*R)f+ for all X E V. By transferring properties
of R we conclude that:

• f+ is a *~-valued function whose domain is a hyperreal subspace of
*V that includes V.

• f+ is hyperlinear, meaning that it is additive and is homogeneous for
hyperreal scalars: f(>.x) = >.f(x) whenever>. E *~.

• f+ extends f: f+(x) = f(x) for all X E W.

• f+ is dominated by the extension of p to *V: f+(x) :::; p(x) for all
x E domf+.

At this stage we cannot simply restrict f+ to V to produce our desired
functional extension of f, because f+ may take nonstandard values on V.
However, these values are always at least limited, so we can take their
shadows. To see that this is so, note that in general,

whence
-p(-x) :::; f+(x) :::; p(x)
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for all x E dom f+. Therefore when x E V, f+ (x) is sandwiched between
the real numbers -p(-x) and p(x), so is limited and has a shadow. Putting

g(x) = sh(f+(x))

defines g : V ---+ IR as a function that extends f. Then g is dominated by p
because g(x) ~ f+(x) ::; p(x), implying g(x) ::; p(x), since both g(x) and
p(x) are real. Finally, the shadow map sh : lL ---+ IR is a linear functional
that composes with the restriction of the hyperlinear f+ to V to make g
linear.
This completes our nonstandard proof of the Hahn-Banach theorem.

19.11 Exercises on (Hyper) Linear Functionals

(1) Verify that sh : lL ---+ IR is a linear functional on the real vector space
lL of limited hyperreal numbers.

(2) Write out in full the transfer arguments showing that f+ has the
properties listed above.

(3) (Due to W. A. J. Luxemburg) Given the hypothesis of the Hahn­
Banach theorem, let {fi : i E I} be the set of all linear functionals
that extend f, are dominated by p, and are defined on a subspace of
V including W. For each x E V, put Ax = {i E I : x E domfi}, and
let rx : I ---+ IR be a function satisfying rx(i) = fi (x) for all i E Ax
(for definiteness r x can be equated to 0 outside of Ax).

(a) Show that {Ax: x E V} has the finite intersection property.

(b) Let F be an ultrafilter on I including {Ax: x E V}. Taking *1R
to be the ultrapower of IR by F, define f# : V ---+ *1R by putting
f#(x) = [rx ]. Show that f# is hyperlinear.

(c) Use f# in place of f+ to prove that there is a linear functional
g on V that extends f and is dominated by p.

This gives a direct derivation of the Hahn-Banach theorem from the
ultrafilter theorem.
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Many monographs about nonstandard analysis and its applications have
been published since the appearance in 1966 of Abraham Robinson's im­
mortal text on the subject he founded. Most of them are listed here (Robin­
son's book is item 34).
There is also an extensive and growing body of articles in journals. The
book by J. E. Rubio (36) has a bibliography with more than 80 pages of
references to this literature.
The biography by Joseph Dauben (8) provides a comprehensive account

of the life and work of a remarkable figure in the history of mathematics.
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