


Graduate Texts in Mathematics 52 

Editorial Board 

S. Axler F.W. Gehring K.A. Ribet 



Graduate Texts in Mathematics 

most recent titles in the GTM series 

129 FULTON/HARRIS. Representation Theory: 159 CONWAY. Functions of One 
A First Course. Complex Variable II. 
Readings in Mathematics 160 LANG. Differential and Riemannian 

130 DODSON/PoSTON. Tensor Geometry. Manifolds. 
131 LAM. A First Course in Noncommutative 161 BORWEINIERDEL Yl. Polynomials and 

Rings. Polynomial Inequalities. 
132 BEARDON. Iteration of Rational Functions. 162 ALPERIN/BELL. Groups and 

133 HARRIS. Algebraic Geometry: A First Representations. 
Course. 163 DIXON/MORTIMER. Permutation 

134 RoMAN. Coding and Information Theory. Groups. 
135 ROMAN. Advanced Linear Algebra. 164 NATHANSON. Additive Number Theory: 
136 ADKINS/WEINTRAUB. Algebra: An The Classical Bases. 

Approach via Module Theory. 165 NATHANSON. Additive Number Theory: 

137 AxLERIBouRDoN/RAMEY. Harmonic Inverse Problems and the Geometry of 
Function Theory. Sumsets. 

138 CoHEN. A Course in Computational 166 SHARPE. Differential Geometry: Cartan's 
Algebraic Number Theory. Generalization of Klein's Erlangen 

139 BREDON. Topology and Geometry. Program. 
140 AUBIN. Optima and Equilibria. An 167 MORANDI. Field and Galois Theory. 

Introduction to Nonlinear Analysis. 168 EWALD. Combinatorial Convexity and 
141 BECKERIWEISPFENNING/KREDEL. Grtibner Algebraic Geometry. 

Ba~es. A Computational Approach to 169 BHATIA. Matrix Analysis. 
Commutative Algebra. 170 BREDON. Sheaf Theory. 2nd ed. 

142 LANG. Real and Functional Analysis. 171 PETERSEN. Riemannian Geometry. 
3rd ed. 172 REMMERT. Classical Topics in Complex 

143 DOOB. Measure Theory. Function Theory. 
144 DENNISIFARB. Noncommutative 173 DIESTEL. Graph Theory. 

Algebra. 174 BRIDGES. Foundations of Real and 
145 VICK. Homology Theory. An Abstract Analysis. 

Introduction to Algebraic Topology. 175 LICKORISH. An Introduction to Knot 
2nd ed. Theory. 

146 BRIDGES. Computability: A 176 LEE. Riemannian Manifolds. 
Mathematical Sketchbook. 177 NEWMAN. Analytic Number Theory. 

147 ROSENBERG. Algebraic K-Theory 178 CLARKE/LEDY AEV /STERN/W OLENSKI. 
and Its Applications. Nonsmooth Analysis and Control 

148 ROTMAN. An Introduction to the Theory. 

Theory of Groups. 4th ed. 179 DOUGLAS. Banach Algebra Techniques in 

149 RATCLIFFE. Foundations of Operator Theory. 2nd ed. 

Hyperbolic Manifolds. 180 SRIVASTAVA. A Course on Borel Sets. 

150 EISENBUD. Commutative Algebra 181 KRESS. Numerical Analysis. 
with a View Toward Algebraic 182 WALTER. Ordinary Differential 

Geometry. Equations. 
151 SILVERMAN. Advanced Topics in 183 MEGGINSON. An Introduction to Banach 

the Arithmetic of Elliptic Curves. Space Theory. 
152 ZIEGLER. Lectures on Polytopes. 184 BOLLOBAS. Modem Graph Theory. 
153 FULTON. Algebraic Topology: A 185 COXILITILEIO'SHEA. Using Algebraic 

First Course. Geometry. 
154 BROWN/PEARCY. An Introduction to 186 RAMAKRISHNAN/V ALENZA. Fourier 

Analysis. Analysis on Number Fields. 
155 KASSEL. Quantum Groups. 187 HARRIS/MORRISON. Moduli of Curves. 
156 KECHRIS. Cla~sical Descriptive Set 188 GOLDBLATT. Lectures on the Hyperreals: 

Theory. An Introduction to Nonstandard Analysis. 
157 MALLIAVIN. Integration and 189 LAM. Lectures on Modules and Rings. 

Probability. 190 ESMONDEIMURTY. Problems in Algebraic 
158 ROMAN. Field Theory. Number Theory. 



Robin Hartshorne 

Algebraic Geometry 

~Springer 



Robin Hartshorne 
Department of Mathematics 
University of California 
Berkeley, California 94720 
USA 

Editorial Board 

S. Axler 
Mathematics Department 
San Francisco State Universi~y 
San Francisco, CA 94132 
USA 

K.A. Ribet 
Department of Mathematics 
University of California at Berkeley 
Berkeley, CA 94720-3840 
USA 
ribet@ math. berkeley .edu 

Mathematics Subject Classification (2000): 13-xx, 14Al0, 14A15, 14Fxx, 14Hxx, 14Jxx 

Library of Congress Cataloging-in-Publication Data 
Hartshorne, Robin. 

Algebraic geometry. 

(Graduate texts in mathematics: 52) 
Bibliography: p. 
Includes index. 
1. Geometry, Algebraic. I. Title II. Series. 

QA564.H25 516'.35 77-1177 

ISBN 978-1-4419-2807-8 ISBN 978-1-4757-3849-0 (eBook) 
DOI 10.1007/978-1-4757-3849-0 

© 1977 Springer Science+Business Media, Inc. 
Softcover reprint of the hardcover I st edition 1977 

Printed on acid-free paper. 

All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New 
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. 
Use in connection with any form of information storage and retrieval, electronic adaptation, com
puter software, or by similar or dissimilar methodology now known or hereafter developed is for
bidden. 
The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

(ASC/SBA) 

15 14 

springeronline.com 



For Edie, Jonathan, and Berifamin 



Preface 

This book provides an introduction to abstract algebraic geometry using 
the methods of schemes and cohomology. The main objects of study are 
algebraic varieties in an affine or projective space over an algebraically 
closed field; these are introduced in Chapter I, to establish a number of 
basic concepts and examples. Then the methods of schemes and 
cohomology are developed in Chapters II and III, with emphasis on appli
cations rather than excessive generality. The last two chapters of the book 
(IV and V) use these methods to study topics in the classical theory of 
algebraic curves and surfaces. 

The prerequisites for this approach to algebraic geometry are results 
from commutative algebra, which are stated as needed, and some elemen
tary topology. No complex analysis or differential geometry is necessary. 
There are more than four hundred exercises throughout the book, offering 
specific examples as well as more specialized topics not treated in the 
main text. Three appendices present brief accounts of some areas of 
current research. 

This book can be used as a textbook for an introductory course in 
algebraic geometry, following a basic graduate course in algebra. I re
cently taught this material in a five-quarter sequence at Berkeley, with 
roughly one chapter per quarter. Or one can use Chapter I alone for a 
short course. A third possibility worth considering is to study Chapter I, 
and then proceed directly to Chapter IV, picking up only a few definitions 
from Chapters II and Ill, and assuming the statement of the Riemann
Roch theorem for curves. This leads to interesting material quickly, and 
may provide better motivation for tackling Chapters II and III later. 

The material covered in this book should provide adequate preparation 
for reading more advanced works such as Grothendieck [EGA], [SGA], 
Hartshorne [5], Mumford [2], [5], or Shafarevich [1]. 
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Introduction 

The author of an introductory book on algebraic geometry has the difficult 
task of providing geometrical insight and examples, while at the same 
time developing the modem technical language of the subject. For in 
algebraic geometry, a great gap appears to separate the intuitive ideas 
which form the point of departure from the technical methods used in 
current research. 

The first question is that of language. Algebraic geometry has 
developed in waves, each with its own language and point of view. The 
late nineteenth century saw the function-theoretic approach of Riemann, 
the more geometric approach of Brill and Noether, and the purely alge
braic approach of Kronecker, Dedekind, and Weber. The Italian school 
followed with Castelnuovo, Enriques, and Severi, culminating in the clas
sification of algebraic surfaces. Then came the twentieth-century "'Ameri
can" school of Chow, Wei!, and Zariski, which gave firm algebraic foun
dations to the Italian intuition. Most recently, Serre and Grothendieck 
initiated the French school, which has rewritten the foundations of alge
braic geometry in terms of schemes and cohomology, and which has an 
impressive record of solving old problems with new techniques. Each of 
these schools has introduced new concepts and methods. In writing an 
introductory book, is it better to use the older language which is closer to 
the geometric intuition, or to start at once with the technical language of 
current research? 

The second question is a conceptual one. Modern mathematics tends to 
obliterate history: each new school rewrites the foundations of its subject 
in its own language, which makes for fine logic but poor pedagogy. Of 
what use is it to know the definition of a scheme if one does not realize 
that a ring of integers in an algebraic number field, an algebraic curve, and 
a compact Riemann surface are all examples of a ''regular scheme of 
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Introduction 

dimension one"? How then can the author of an introductory book indi
cate the inputs to algebraic geometry coming from number theory, com
mutative algebra, and complex analysis, and also introduce the reader to 
the main objects of study, which are algebraic varieties in affine or pro
jective space, while at the same time developing the modem language of 
schemes and cohomology? What choice of topics will convey the meaning 
of algebraic geometry, and still serve as a firm foundation for further study 
and research? 

My own bias is somewhat on the side of classical geometry. I believe 
that the most important problems in algebraic geometry are those arising 
from old-fashioned varieties in affine or projective spaces. They provide 
the geometric intuition which motivates all further developments. In this 
book, I begin with a chapter on varieties, to establish many examples and 
basic ideas in their simplest form, uncluttered with technical details. Only 
after that do I develop systematically the language of schemes, coherent 
sheaves, and cohomology, in Chapters II and III. These chapters form the 
technical heart of the book. In them I attempt to set forth the most 
important results, but without striving for the utmost generality. Thus, for 
example, the cohomology theory is developed only for quasi-coherent 
sheaves on noetherian schemes, since this is simpler and sufficient for 
most applications; the theorem of "coherence of direct image sheaves" is 
proved only for projective morphisms, and not for arbitrary proper 
morphisms. For the same reasons I do not include the more abstract 
notions of representable functors, algebraic spaces, etale cohomology' 
sites, and topoi. 

The fourth and fifth chapters treat classical material, namely nonsingu
lar projective curves and surfaces, but they use techniques of schemes 
and cohomology. I hope these applications will justify the effort needed to 
absorb all the technical apparatus in the two previous chapters. 

As the basic language and logical foundation of algebraic geometry, I 
have chosen to use commutative algebra. It has the advantage of being 
precise. Also, by working over a base field of arbitrary characteristic, 
which is necessary in any case for applications to number theory, one 
gains new insight into the classical case of base field C. Some years ago, 
when Zariski began to prepare a volume on algebraic geometry, he had to 
clevelop the necessary algebra as he went. The task grew to such pro
portions that he produced a book on commutative algebra only. Now we 
are fortunate in having a number of excellent books on commutative 
algebra: Atiyah-Macdonald [1], Bourbaki [1], Matsumura [2], Nagata [7], 
and Zariski-Samuel [1]. My policy is to quote purely algebraic results as 
needed, with references to the literature for proof. A list of the results 
used appears at the end of the book. 

Originally I had planned a whole series of appendices-short expos
itory accounts of some current research topics, to form a bridge between 
the main text of this book and the research literature. Because of limited 
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Introduction 

time and space only three survive. I can only express my regret at not 
including the others, and refer the reader instead to the Arcata volume 
(Hartshorne, ed. [1]) for a series of articles by experts in their fields, 
intended for the nonspecialist. Also, for the historical development of 
algebraic geometry let me refer to Dieudonne [1]. Since there was not 
space to explore the relation of algebraic geometry to neighboring fields as 
much as I would have liked, let me refer to the survey article of Cassels [1] 
for connections with number theory, and to Shafarevich [2, Part III] for 
connections with complex manifolds and topology. 

Because I believe strongly in active learning, there are a great many 
exercises in this book. Some contain important results not treated in the 
main text. Others contain specific examples to illustrate general 
phenomena. I believe that the study of particular examples is inseparable 
from the development of general theories. The serious student should 
attempt as many as possible of these exercises, but should not expect to 
solve them immediately. Many will require a real creative effort to under
stand. An asterisk denotes a more difficult exercise. Two asterisks denote 
an unsolved problem. 

See (1, §8) for a further introduction to algebraic geometry and this 
book. 

Terminology 

For the most part, the terminology of this book agrees with generally 
accepted usage, but there are a few exceptions worth noting. A variety is 
always irreducible and is always over an algebraically closed field. In 
Chapter I all varieties are quasi-projective. In (Ch. II, §4) the definition is 
expanded to include abstract varieties, which are integral separated 
schemes of finite type over an algebraically closed field. The words curve, 
surface, and 3-fold are used to mean varieties of dimension 1, 2, and 3 
respectively. But in Chapter IV, the word curve is used only for a nonsin
gular projective curve; whereas in Chapter V a curve is any effective 
divisor on a nonsingular projective surface. A surface in Chapter V is 
always a nonsingular projective surface. 

A scheme is what used to be called a prescheme in the first edition of 
[EGA], but is called scheme in the new edition of [EGA, Ch. I]. 

The definitions of a projective morphism and a very ample invertible sheaf 
in this book are not equivalent to those in [EGA]-see (II, §4, 5). They are 
technically simpler, but have the disadvantage of not being local on the 
base. 

The word nonsingular applies only to varieties; for more general 
schemes, the words regular and smooth are used. 

Results from algebra 

I assume the reader is familiar with basic results about rin~s. ideals, 
modules, noetherian rings, and integral dependence, and is willing to ac
cept or look up other results, belonging properly to commutative algebra 
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Introduction 

or homological algebra, which will be stated as needed, with references to 
the literature. These results will be marked with an A: e.g., Theorem 
3.9A, to distinguish them from results proved in the text. 

The basic conventions are these: All rings are commutative with iden
tity element I. All homomorphisms of rings take 1 to 1. In an integral 
domain or a field, 0 -=I 1. A prime ideal (respectively, maximal ideal) is an 
ideal p in a ring A such that the quotient ring A/p is an integral domain 
(respectively, a field). Thus the ring itself is not cc'1sidered to be a prime 
ideal or a maximal ideal. 

A multiplicative system in a ring A is a subsetS, containing I, and closed 
under multiplication. The localizationS ~ 1A is defined to be the ring formed 
by equivalence classes of fractions a/s, a EA, s E S, wherea/s and a 'Is' are 
said to be equivalent if there is an s" E S such that s"(s 'a -sa') = 0 (see 
e.g. Atiyah-Macdonald [I, Ch. 3]). Two special cases which are used 
constantly are the following. If p is a prime ideal in A, then S = A - p is a 
multiplicative system, and the corresponding localization is denoted by 
A,. Iff is an element of A, then S = {I} U {f" In~ I} is a multiplicative 
system, and the corresponding localization is denoted by A 1• (Note for 
example that ifjis nilpotent, thenA1 is the zero ring.) 

References 

Bibliographical references are given by author, with a number in square 
brackets to indicate which work, e.g. Serre, [3, p. 75]. Cross references to 
theorems, propositions, lemmas within the same chapter are given by 
number in parentheses. e.g. (3.5). Reference to an exercise is given by 
(Ex. 3.5). References to results in another chapter are preceded by the 
chapter number, e.g. (II, 3.5), or (II, Ex. 3.5). 
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CHAPTER I 

Varieties 

Our purpose in this chapter is to give an introduction to algebraic geometry 
with as little machinery as possible. We work over a fixed algebraically 
closed field k. We define the main objects of study, which are algebraic 
varieties in affine or projective space. We introduce some of the most 
important concepts, such as dimension, regular functions, rational maps, 
nonsingular varieties, and the degree of a projective variety. And most im
portant, we give lots of specific examples, in the form of exercises at the end 
of each section. The examples have been selected to illustrate many inter
esting and important phenomena, beyond those mentioned in the text. The 
person who studies these examples carefully will not only have a good under
standing of the basic concepts of algebraic geometry, but he will also have 
the background to appreciate some of the more abstract developments of 
modern algebraic geometry, and he will have a resource against which to 
check his intuition. We will continually refer back to this library of examples 
in the rest of the book. 

The last section of this chapter is a kind of second introduction to the book. 
It contains a discussion of the "classification problem," which has motivated 
much of the development of algebraic geometry. It also contains a discussion 
of the degree of generality in which one should develop the foundations of 
algebraic geometry, and as such provides motivation for the theory of 
schemes. 

1 Affine Varieties 

Let k be a fixed algebraically closed field. We define affine n-space over k, 
denoted Ai: or simply An, to be the set of all n-tuples of elements of k. An 
element P E An will be called a point, and if P = (ab . .. ,an) with ai E k, then 
the ai will be called the coordinates of P. 



I Varieties 

Let A = k[x1 , ... ,xn] be the polynomial ring in n variables over k. 
We will interpret the elements of A as functions from the affine n-space 
to k, by defining f(P) = f(a 1 , .•• ,an), where f E A and P E An. Thus if 
f E A is a polynomial, we can talk about the set of zeros of f, namely 
Z(f) = {P E Anlf(P) = 0}. More generally, if T is any subset of A, we 
define the zero set of T to be the common zeros of all the elements of T, 
namely 

Z(T) = {P E Anlf(P) = 0 for all f E T}. 

Clearly if a is the ideal of A generated by T, then Z(T) = Z(a). Further
more, since A is a noetherian ring, any ideal a has a finite set of generators 
f 1, ... ,fr. Thus Z(T) can be expressed as the common zeros of the finite 
set of polynomials f1> ... ,fr. 

Definition. A subset Y of An is an algebraic set if there exists a subset T ~ A 
such that Y = Z(T). 

Proposition 1.1. The union of two algebraic sets is an algebraic set. The 
intersection of any family of algebraic sets is an algebraic set. The empty 
set and the whole space are algebraic sets. 

PROOF. If Y1 = Z(T1 ) and Y2 = Z(T2 ), then Y1 u Y2 = Z(T 1 T 2 ), where 
T 1 T 2 denotes the set of all products of an element of T 1 by an element of 
T 2 . Indeed, if P E Y1 u Y2 , then either P E Y1 or P E Y2 , so P is a zero of 
every polynomial in T 1 T 2 . Conversely, if P E Z(T 1 T 2 ), and P ¢; Y1 say, 
then there is an f E T 1 such that f(P) # 0. Now for any g E T 2 , (fg)(P) = 0 
implies that g(P) = 0, so that P E Y2 . 

If~ = Z(Ta.) is any family of algebraic sets, then n ~ = Z(UTa.), so n ~is also an algebraic set. Finally, the empty set 0 = Z(l), and the whole 
space An = Z(O). 

Definition. We define the Zariski topology on An by taking the open subsets 
to be the complements of the algebraic sets. This is a topology, because 
according to the proposition, the intersection of two open sets is open, 
and the union of any family of open sets is open. Furthermore, the empty 
set and the whole space are both open. 

Example 1.1.1. Let us consider the Zariski topology on the affine line A 1. 

Every ideal in A = k[ x] is principal, so every algebraic set is the set of zeros 
of a single polynomial. Since k is algebraically closed, every nonzero poly
nomial f(x) can be written f(x) = c(x - a 1) · · · (x - an) with c,a 1, ... ,an E 

k. Then Z(f) = { a 1, ... ,an}· Thus the algebraic sets in A 1 are just the finite 
subsets (including the empty set) and the whole space (corresponding to 
f = 0). Thus the open sets are the empty set and the complements of finite 
subsets. Notice in particular that this topology is not Hausdorff. 

2 



1 Affine Varieties 

Definition. A nonempty subset Y of a topological space X is irreducible if 
it cannot be expressed as the union Y = Y1 u Y2 of two proper subsets, 
each one of which is closed in Y. The empty set is not considered to be 
irreducible. 

Example 1.1.2. A 1 is irreducible, because its only proper closed subsets are 
finite, yet it is infinite (because k is algebraically closed, hence infinite). 

Example 1.1.3. Any nonempty open subset of an irreducible space is irre
ducible and dense. 

Example 1.1.4. If Y is an irreducible subset of X, then its closure Y in X is 
also irreducible. 

Definition. An affine algebraic variety (or simply affine variety) is an irre
ducible closed subset of An (with the induced topology). An open subset 
of an affine variety is a quasi-affine variety. 

These affine and quasi-affine varieties are our first objects of study. But 
before we can go further, in fact before we can even give any interesting 
examples, we need to explore the relationship between subsets of A" and 
ideals in A more deeply. So for any subset Y c:; A", let us define the ideal of 
Yin A by 

I(Y) = {f E Alf(P)_ = 0 for all P E Y}. 

Now we have a function Z which maps subsets of A to algebraic sets, and a 
function I which maps subsets of A" to ideals. Their properties are sum
marized in the following proposition. 

Proposition 1.2. 
(a) If T 1 c:; T 2 are subsets of A, then Z(T1) ::::2 Z(T 2 ). 

(b) If ¥1 c:; ¥2 are subsets of An, then I(Yd ::::2 I(¥2 ). 

(c) For any two subsets ¥1 , ¥2 of A", we have I(¥1 u Y2) = I(Y1) n I(¥2 ). 

(d) For any ideal a c:; A, I(Z(a)) = JO., the radical of a. 
(e) For any subset Y c:; A", Z(J(Y)) = Y, the closure of Y. 

PROOF. (a), (b) and (c) are obvious. (d) is a direct consequence of Hilbert's 
Nullstellensatz, stated below, since the radical of a is defined as 

JO. = {f E Alf' E a for some r > 0}. 

To prove (e), we note that Y c:; Z(J(Y) ), which is a closed set, so clearly 
Y c:; Z(I(Y) ). On the other hand, let W be any closed set containing Y. 
Then W = Z(a) for some ideal a. So Z(a) ::::2 Y, and by (b), IZ(a) c:; I(Y). 
But certainly a c:; IZ(a), so by (a) we have W = Z(a) ::::2 ZI(Y). Thus 
ZI(Y) = Y. 

3 



I Vanetles 

Theorem 1.3A (Hilbert's Nullstellensatz). Let k be an algebraically closed 
field, let a be an ideal in A = k[ x b ... ,x,], and let f E A be a polynomial 
which vanishes at all points of Z(a). Then rEa for some integer r > 0. 

PROOF. Llng [2, p. 256] or Atiyah-Macdonald [1, p. 85] or Zariski-Samuel 
[1. vol. 2, p. 164]. 

Corollary 1.4. There is a one-to-one inclusion-reversing correspondence 
between algebraic sets in A" and radical ideals (i.e., ideals which are equal 
to their own radical) in A, given by Y f-> /(Y) and a f-> Z(a). Furthermore, 
an algebraic set is irreducible if and only if its ideal is a prime ideal. 

PROOF. Only the last part is new. If Y is irreducible, we show that J(Y) is 
prime. Indeed, if fg E l(Y), then Y s Z(fg) = Z(f) u Z(g). Thus Y = 

( Y n Z(.j')) u ( Y n Z(g) ), both being closed subsets of Y. Since Y is irre
ducible, we have either Y = Y n Z(f), in which case Y s Z(.f), or Y s 
Z(y). Hence either f E l(Y) or g E l(Y). 

Conversely, let p be a prime ideal, and suppose that Z(p) = Y1 u Y2 . 

Then p = /(Y1) n /(Y2 ), so either p = l(YJ or p = /(Y2 ). Thus Z(p) = Y1 

or Y2 , hence it is irreducible. 

Example 1.4.1. A" is irreducible, since it corresponds to the zero ideal in A, 
which is prime. 

Example 1.4.2. Let f be an irreducible polynomial in A = k[x,y]. Then f 
generates a prime ideal in A, since A is a unique factorization domain, so 
the zero set Y = Z(f) is irreducible. We call it the affine curve defined by 
the equationf(x,y) = 0. Iff has degree d, we say that Y is a curve of degree d. 

Example 1.4.3. More generally, iff is an irreducible polynomial in A = 

k[x 1, ... ,x,], we obtain an affine variety Y = Z(f), which is called a surface 
if n = 3, or a hyperswface if n > 3. 

Example 1.4.4. A maximal ideal m of A = k[ x 1 , ... ,x,] corresponds to 
a minimal irreducible closed subset of A", which must be a point, say 
P = (ab ... ,a,). This shows that every maximal ideal of A is of the form 
m = (x 1 - a1 , ... ,x, - an), for some a 1 , ... ,a, E k. 

Example 1.4.5. If k is not algebraically closed, these results do not hold. For 
example, if k = R, the curve x2 + y2 + 1 = 0 in Ai has no points. So (1.2d) 
is false. See also (Ex. 1.12). 

Definition. If Y s A" is an affine algebraic set, we define the affine coordinate 
riny A(Y) of Y, to be A/l(Y). 

Remark 1.4.6. If Y is an affine variety, then A(Y) is an integral domain. 
Furthermore, A( Y) is a finitely generated k-algebra. Conversely, any 
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1 Affine Varieties 

finitely generated k-algebra B which is a domain is the affine coordinate 
ring of some affine variety. Indeed, write Bas the quotient of a polynomial 
ring A = k[x 1, ... ,xn] by an ideal a, and let Y = Z(a). 

Next we will study the topology of our varieties. To do so we introduce 
an important class of topological spaces which includes all varieties. 

Definition. A topological space X is called noetherian if it satisfies the de-
scending chain condition for closed subsets: for any sequence Y1 ::::::> Y2 ::::::> ••• 

of closed subsets, there is an integer r such that Y,. = Y,.+ 1 = ... 

Example 1.4.7. An is a noetherian topological space. Indeed, if Y1 ::::::> Y2 ::::::> ••• 

is a descending chain of closed subsets, then I(Y1) s;; I(Y2 ) s;; ... is an as
cending chain of ideals in A = k[x1 , ... ,xnJ. Since A is a noetherian ring, 
this chain of ideals is eventually stationary. But for each i, Y; = Z(J( Y;) ), 
so the chain Y; is also stationary. 

Proposition 1.5. In a noetherian topological space X, every nonempty closed 
subset Y can be expressed as a finite union Y = Y1 u ... u Y,. of irreducible 
closed subsets Y;. If we require that Y; ~ lj for i # j, then the Y; are 
uniquely determined. They are called the irreducible components of Y. 

PROOF. First we show the existence of such a representation of Y. Let 6 
be the set of nonempty closed subsets of X which cannot be written as a 
finite union of irreducible closed subsets. If 6 is nonempty, then since X 

is noetherian, it must contain a minimal element, say Y. Then Y is not 
irreducible, by construction of 6. Thus we can write Y = Y' u Y", where 
Y' and Y" are proper closed subsets of Y. By minimality of Y, each of Y' 
and Y" can be expressed as a finite union of closed irreducible subsets, hence 
Y also, which is a contradiction. We conclude that every closed set Y can 
be written as a union Y = Y1 u ... u Y,. of irreducible subsets. By throwing 
away a few if necessary, we may assume Y; ~ 1j for i # j. 

Now suppose Y = Y~ u ... u Y~ is another such representation. Then 
Y~ s;; Y = Y1 u ... u Y,., so Y~ = U(Y~ n Y;). But Y~ is irreducible, so 
Y~ s;; Y; for some i, say i = 1. Similarly, Y1 s;; Yj for some j. Then Y~ s;; Yj, 
so j = 1, and we find that Y1 = Y~. Now let Z = (Y - ¥1)-. Then Z = 

Y2 u ... u Y,. and also Z = Y2 u ... u Y~. So proceeding by induction on 
r, we obtain the uniqueness of the r;. 

Corollary 1.6. Every algebraic set in An can be expressed uniquely as a union 
of varieties, no one containing another. 

Definition. If X is a topological space, we define the dimension of X (denoted 
dim X) to be the supremum of all integers n such that there exists a chain 
Z 0 c Z 1 c ... c Zn of distinct irreducible closed subsets of X. We 
define the dimension of an affine or quasi-affine variety to be its dimen
sion as a topological space. 
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I Varieties 

Example 1.6.1. The dimension of A 1 is 1. Indeed, the only irreducible closed 
subsets of A 1 are the whole space and single points. 

Definition. In a ring A, the height of a prime ideal p is the supremum of all 
integers n such that there exists a chain p0 c p1 c ... c Pn = p of 
distinct prime ideals. We define the dimension (or Krull dimension) of A 
to be the supremum of the heights of all prime ideals. 

Proposition 1.7. If Y is an affine algebraic set, then the dimension of Y is 
equal to the dimension of its affine coordinate ring A( Y). 

PROOF. If Y is an affine algebraic set in An, then the closed irreducible subsets 
of Y correspond to prime ideals of A = k[x~o ... ,xn] containing I(Y). 
These in turn correspond to prime ideals of A( Y). Hence dim Y is the length 
of the longest chain of prime ideals in A( Y), which is its dimension. 

This proposition allows us to apply results from the dimension theory of 
noetherian rings to algebraic geometry. 

Theorem l.SA. Let k be a field, and let B be an integral domain which is a 
finitely generated k-algebra. Then: 

(a) the dimension of B is equal to the transcendence degree of the 
quotient field K(B) of B over k; 

(b) For any prime ideal pin B, we have 

height p + dim B/p = dim B. 

PROOF. Matsumura [2, Ch. 5, §14] or, in the case k is algebraically closed, 
Atiyah-Macdonald [ 1, Ch. 11 J 

Proposition 1.9. The dimension of An is n. 

PROOF. According to (1.7) this says that the dimension of the polynomial 
ring k[ x ~o ... ,xn] is n, which follows from part (a) of the theorem. 

Proposition 1.10. If Y is a quasi-affine variety, then dim Y = dim Y. 

PROOF. If Zo c z1 c ... c zn is a sequence of distinct closed irreducible 
subsets of Y, then Z0 c Z 1 c ... c Zn is a sequence of distinct closed 
irreducible subsets of Y (1.1.4), so we have dim Y ~ dim Y. In particular, 
dim Y is finite, so we can choose a maximal such chain Z 0 c ... c Zn, 
with n = dim Y. In that case Z 0 must be a point P, and the chain P = 

Z0 c ... c Zn will also be maximal (1.1.3). Now P corresponds to a 
maximal ideal m of the affine coordinate ring A( f) of Y. The Z; correspond 
to prime ideals contained in m, so height m = n. On the other hand, since 
Pis a point in affine space, A(f)/m ~ k (1.4.4). Hence by (1.8Ab) we find 
that n = dim A( f) = dim Y. Thus dim Y = dim Y. 
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Theorem l.llA (Krull's Hauptidealsatz). Let A be a noetherian ring, and let 
f E A be an element which is neither a zero divisor nor a unit. Then every 
minimal prime ideal p containing f has height 1. 

PROOF. Atiyah-Macdonald [1, p. 122]. 

Proposition 1.12A. A noetherian integral domain A is a unique factorization 
domain if and only if every prime ideal of height 1 is principal. 

PROOF. Matsumura [2, p. 141], or Bourbaki [1, Ch. 7, §3]. 

Proposition 1.13. A variety Yin A" has dimension n - 1 if and only if it is 
the zero set Z(f) of a single nonconstant irreducible polynomial in A = 

k[ x 1, ... ,xnJ. 

PROOF. Iff is an irreducible polynomial, we have already seen that Z(f) is 
a variety. Its ideal is the prime ideal p = (f). By (1.11A), p has height 1, 
so by (1.8A), Z(f) has dimension n - 1. Conversely, a variety of dimension 
n - 1 corresponds to a prime ideal of height 1. Now the polynomial ring A 
is a unique factorization domain, so by (1.12A), p is principal, necessarily 
generated by an irreducible polynomial f Hence Y = Z(f). 

Remark 1.13.1. A prime ideal of height 2 in a polynomial ring cannot 
necessarily be generated by two elements (Ex. 1.11 ). 

EXERCISES 

1.1. (a) Let Y be the plane curve y = x2 (i.e., Y is the zero set of the polynomial f = 
y - x2). Show that A(Y) is isomorphic to a polynomial ring in one variable 
over k. 

(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a poly
nomial ring in one variable over k. 

*(c) Let f be any irreducible quadratic polynomial in k[ x,y ], and let W be the 
conic defined by f Show that A(W) is isomorphic to A(Y) or A(Z). Which one 
is it when? 

1.2. The Twisted Cubic Curve. Let Y <::::: A 3 be the set Y = { (t,t 2 ,t3 Jlt E k}. Show that Y 
is an affine variety of dimension 1. Find generators for the ideal J(Y). Show that 
A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y 
is given by the parametric representation x = t, y = t2 , z = t 3• 

1.3. Let Y be the algebraic set in A 3 defined by the two polynomials x2 - yz and 
xz - x. Show that Y is a union of three irreducible components. Describe them 
and find their prime ideals. 

1.4. If we identify A 2 with A 1 x A 1 in the natural way, show that the Zariski topology 
on A 2 is not the product topology ofthe Zariski topologies on the two copies of A 1. 
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1.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some alge
braic set in A", for some n, if and only if B is a finitely generated k-algebra with no 
nilpotent elements. 

1.6. Any nonempty open subset of an irreducible topological space is dense and 
irreducible. If Y is a subset of a topological space X, which is irreducible in its 
induced topology, then the closure Y is also irreducible. 

1.7. (a) Show that the following conditions are equivalent for a topological space X: 

(i) X is noetherian; (ii) every nonempty family of closed subsets has a minimal 
element; (iii) X satisfies the ascending chain condition for open subsets; 
(iv) every nonempty family of open subsets has a maximal element. 

(b) A noetherian topological space is quasi-compact, i.e., every open cover has a 
finite subcover. 

(c) Any subset of a noetherian topological space is noetherian in its induced 
topology. 

(d) A noetherian space which is also Hausdorff must be a finite set with the discrete 
topology. 

1.8. Let Y be an affine variety of dimension r in A". Let H be a hypersurface in A", 
and assume that Y <;/;. H. Then every irreducible component of Y n H has 
dimension r - 1. (See (7.1) for a generalization.) 

1.9. Let a£; A = k[x1o ... ,xnJ be an ideal which can be generated by r elements. 
Then every irreducible component of Z(a) has dimension ;::, n - r. 

1.10. (a) IfYisanysubsetofatopologicalspaceX,thendim Y ~dim X. 
(b) If X is a topological space which is covered by a family of open subsets { U;}, 

then dim X = sup dim U;. 

(c) Give an example of a topological space X and a dense open subset U with 
dim U <dim X. 

(d) If Y is a closed subset of an irreducible finite-dimensional topological space X, 

and if dim Y = dim X, then Y = X. 
(e) Give an example of a noetherian topological space of infinite dimension. 

*1.11. Let Y £; A3 be the curve given parametrically by x = t 3, y = t 4 , z = t 5 . Show 
that J(Y) is a prime ideal of height 2 in k[x,y,z] which cannot be generated by 
2 elements. We say Y is not a local complete intersection-d. (Ex. 2.17). 

1.12. Give an example of an irreducible polynomial fER[ x, y ], whose zero set 
Z(f) in A~ is not irreducible (cf. 1.4.2). 

2 Projective Varieties 

To define projective varieties, we proceed in a manner analogous to the 
definition of affine varieties, except that we work in projective space. 

Let k be our fixed algebraically closed field. We defined projective n-space 
over k, denoted Pi:, or simply pn, to be the set of equivalence classes of 
(n + 1)-tuples (a0 , .. . ,an) of elements of k, not all zero, under the equiva
lence relation given by (a0 , ... ,an) ~ (.lca0 , ... ,.lean) for all A E k, A =f. 0. 
Another way of saying this is that pn as a set is the quotient of the set 
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2 Projective Varieties 

An+ 1 - {(0, ... ,0)} under the equivalence relation which identifies points 
lying on the same line through the origin. 

An element of pn is called a_point. If P is a point, then any (n + 1)
tuple (a0 , ... ,an) in the equivalence class P is called a set of homogeneous 
coordinates for P. 

LetS be the polynomial ring k[x0 , ... ,xnJ. We want to regardS as a 
graded ring, so we recall briefly the notion of a graded ring. 

A graded ring is a ring S, together with a decomposition S = EBd;.o Sd 
of S into a direct sum of abelian groups Sd, such that for any d,e ): 0, 
Sd · Se c;:: Sd+e· An element of Sd is called a homogeneous element of degree 
d. Thus any element of S can be written uniquely as a (finite) sum of 
homogeneous elements. An ideal a c;:: S is a homogeneous ideal if a = 

EBd;.o (an Sd). We will need a few basic facts about homogeneous ideals 
(see, for example, Matsumura [2, §10] or Zariski-Samuel [1, vol. 2, Ch. VII, 
§2]). An ideal is homogeneous if and only if it can be generated by homo
geneous elements. The sum, product, intersection, and radical of homo
geneous ideals are homogeneous. To test whether a homogeneous ideal is 
prime, it is sufficient to show for any two homogeneous elements f,g, that 
fg E a implies f E a or g E a. 

We make the polynomial ring S = k[x0 , ... ,xn] into a graded ring by 
taking Sd to be the set of all linear combinations of monomials of total 
weight d in x0 , ... ,xn- Iff E S is a polynomial, we cannot use it to define 
a function on pn, because of the nonuniqueness of the homogeneous co
ordinates. However, if f is a homogeneous polynomial of degree d, then 
f(Aa0 , . .. ,Aan) = Adf(a0 , . .. ,an), so that the property off being zero or 
not depends only on the equivalence class of (a 0 , ... ,an). Thus f gives a 
function from pn to {0,1} by f(P) = 0 if f(a 0 , . .. ,an) = 0, and f(P) = 1 
if f(a 0 , ... ,an) =f. 0. 

Thus we can talk about the zeros of a homogeneous polynomial, namely 
Z(f) = {P E pnlf(P) = 0}. If Tis any set of homogeneous elements of S, 
we define the zero set of T to be 

Z(T) = {P E pnlf(P) = 0 for all f E T}. 

If a is a homogeneous ideal of S, we define Z(a) = Z(T), where Tis the set 
of all homogeneous elements in a. Since S is a noetherian ring, any set of 
homogeneous elements T has a finite subset f 1, . •• ,f,. such that Z(T) = 

Z(f1, ... ,f,.). 

Definition. A subset Y of pn is an algebraic set if there exists a set T of ho
mogeneous elements of S such that Y = Z(T). 

Proposition 2.1. The union of two algebraic sets is an algebraic set. The 
intersection of any family of algebraic sets is an algebraic set. The empty 
set and the whole space are algebraic sets. 

PROOF. Left to reader (it is similar to the proof of (1.1) above). 
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Definition. We define the Zariski topology on pn by taking the open sets 
to be the complements of algebraic sets. 

Once we have a topological space, the notions of irreducible subset and 
the dimension of a subset, which were defined in §1, will apply. 

Definition. A projective algebraic variety (or simply projective variety) is an 
irreducible algebraic set in pn, with the induced topology. An open 
subset of a projective variety is a quasi-projective variety. The dimension 
of a projective or quasi-projective variety is its dimension as a topo
logical space. 

If Y is any subset of pn, we define the homogeneous ideal of Y in S, 
denoted J(Y), to be the ideal generated by {f E Slf is homogeneous and 
f(P) = 0 for all P E Y}. If Y is an algebraic set, we define the homo
geneous coordinate ring of Y to be S(Y) = Sjl(Y). We refer to (Ex. 2.1 ~ 
2.7) below for various properties of algebraic sets in projective space 
and their homogeneous ideals. 

Our next objective is to show that projective n-space has an open covering 
by affine n-spaces, and hence that every projective (respectively, quasi
projective) variety has an open covering by affine (respectively, quasi-affine) 
varieties. First we introduce some notation. 

If f E S is a linear homogeneous polynomial, then the zero set of f is 
called a hyperplane. In particular we denote the zero set of X; by H;, for 
i ;= 0, ... ,n. Let U; be the open set pn- H;. Then pn is covered by the 
open sets U;, because if P = (a 0 , • •• ,an) is a point, then at least one a; -:f= 0, 
hence PE U;. We define a mapping <p;: U;----*An as follows: if P=(a0 , ... ,an) E 

U;, then <p;(P) = Q, where Q is the point with affine coordinates 

with a;/a; omitted. Note that <p; is well-defined since the ratios a)a; are 
independent of the choice of homogeneous coordinates. 

Proposition 2.2. The map <p; is a homeomorphism of U; with its induced 
topology to An with its Zariski topology. 

PROOF. <p; is clearly bijective, so it will be sufficient to show that the closed 
sets of U; are identified with the closed sets of An by <fJ;· We may assume 
i = 0, and we write simply U for U0 and <p: U----* An for <p 0 . 

Let A = k[Yl, . .. ,ynJ. We define a map a from the set Sh of homo
geneous elements of S to A, and a map f3 from A to Sh. Given f E S\ we 
set a(f) = f(l,Yl, . .. ,yn). On the other hand, given g E A of degree e, then 
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x 0g(xdx0 , •.• ,x"jx0 ) is a homogeneous polynomial of degree e in the x;, 
which we call f3(g). 

Now let Y <;; U be a closed subset. Let Y be its closure in P". This is 
an algebraic set, so Y = Z(T) for some subset T <;; Sh. Let T' = cx(T). 
Then straightforward checking shows that cp(Y) = Z(T'). Conversely, let 
W be a closed subset of A". Then W = Z(T') for some subset T' of A, and 
one checks easily that cp - 1(W) = Z(f3(T')) n U. Thus cp and cp -l are both 
closed maps, so cp is a homeomorphism. 

Corollary 2.3. If Y is a projective (respectively, quasi-projective) variety, then 
Y is covered by the open sets Y n U;, i = 0, ... ,n, which are homeomorphic 
to affine (respectively, quasi-affine) varieties via the mapping qJ; defined 
above. 

EXERCISES 

2.1. Prove the "homogeneous Nullstellensatz," which says if a <;; S is a homogeneous 
ideal, and iff E Sis a homogeneous polynomial with deg f > 0, such that f(P) = 0 
for all P E Z( a) in P", then fq E a for some q > 0. [Hint: Interpret the problem in 
terms of the affine (n + 1)-space whose affine coordinate ring is S, and use the 
usual Nullstellensatz, (1.3A).] 

2.2. For a homogeneous ideal a <;; S, show that the following conditions are equi
valent: 

(i) Z(a) = 0 (the empty set); 
(ii) .jO. = either s or the ideals+ = ffid>O Sd; 

(iii) a ;::> Sd for some d > 0. 

2.3. (a) If T 1 <;; T2 are subsets of Sh, then Z(Td ;::> Z(T2). 

(b) If Y1 <;; Y2 are subsets ofP", then J(Y1) ;::> J(Y2 ). 

(c) For any two subsets Y1,Y2 ofP", J(Y1 u Y2) = J(Ytl n J(Y2). 

(d) If a <;; Sis a homogeneous ideal with Z(a) #- 0, then J(Z(a)) = .jO.. 
(e) For any subset Y <;; P", Z(J(Y)) = Y. 

2.4. (a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in 
P", and homogeneous radical ideals of S not equal to S+, given by Y H J(Y) 
and a H Z( a). Nate: Since S + does not occur in this correspondence, it is 
sometimes called the irrelevant maximal ideal of S. 

(b) An algebraic set Y <;; P" is irreducible if and only if J(Y) is a prime ideal. 
(c) Show that P" itself is irreducible. 

2.5. (a) P" is a noetherian topological space. 
(b) Every algebraic set in P" can be written uniquely as a finite union of irreducible 

algebraic sets, no one containing another. These are called its irreducible 
components. 

2.6. If Y is a projective variety with homogeneous coordinate ring S(Y), show that 
dim S(Y) = dim Y + 1. [Hint: Let cp;: U;--> A" be the homeomorphism of(2.2), 
let Y; be the affine variety cp;(Y n U;), and let A(Y;) be its affine coordinate ring. 
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Show that A( Y;) can be identified with the sub ring of elements of degree 0 of the 
localized ring S(YJx,· Then show that S(Y)x, ~ A(Y;)[x;,X;- 1]. Now use (1.7), 

(1.8A), and (Ex 1.10), and look at transcendence degrees. Conclude also that 
dim Y = dim Y; whenever Y; is nonempty.J 

2.7. (a) dim P" = n. 

(b) If Y s; P" is a quasi-projective variety, then dim Y = dim f. 
[Hint: Use (Ex. 2.6) to reduce to (1.10).] 

2.8. A projective variety Y s; P" has dimension n - 1 if and only if it is the zero set of 
a single irreducible homogeneous polynomial f of positive degree. Y is called a 
hypersurface in P". 

2.9. Projective Closure of an Affine Variety. If Y s; A" is an affine variety, we identify 
A" with an open set U0 s; P" by the homeomorphism <p 0 . Then we can speak of 
Y, the closure of Yin P", which is called the projective closure of Y. 
(a) Show that J(Y) is the ideal generated by f3(I(Y)), using the notation of the 

proof of (2.2). 
(b) Let Y s; A 3 be the twisted cubic of (Ex. 1.2). Its projective closure Y s; P3 

is called the twisted cubic curve in P3. Find generators for J(Y) and J(Y), and 
use this example to show that if f 1 , ..• ,f.. generate J(Y), then f3(fd, ... ,{3(!,.) 
do not necessarily generate J(Y). 

2.10. The Cone Over a Projective Variety (Fig. 1). Let Y s; P" be a nonempty algebraic 
set, and let e:A"+ 1 - {(0, ... ,0)}--+ P" be the map which sends the point with 
affine coordinates (a0 , .•• ,an) to the point with homogeneous coordinates 
(a0 , . .. ,anl· We define the affine cone over Y to be 
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C(Y) = e- 1(Y) u {(0, ... ,0)}. 

(a) Show that C(Y) is an algebraic set in A"+l, whose ideal is equal to J(Y), 
considered as an ordinary ideal in k[ x 0 , ... ,xnJ. 

(b) C(Y) is irreducible if and only if Y is. 
(c) dim C(Y) = dim Y + 1. 
Sometimes we consider the projective closure C( Y) of C( Y) in P" + 1 . This is called 
the projective cone over Y. 

Figure 1. The cone over a curve in P2 . 



2 Projective Varieties 

2.11. Linear Varieties in P". A hypersurface defined by a linear polynomial is called a 
hyperplane. 
(a) Show that the following two conditions are equivalent for a variety Yin P": 

(i) J(Y) can be generated by linear polynomials. 
(ii) Y can be written as an intersection of hyperplanes. 
In this case we say that Y is a linear variety in P". 

(b) If Y is a linear variety of dimension r in P", show that J(Y) is minimally gen
erated by n - r linear polynomials. 

(c) Let Y,Z be linear varieties in P", with dim Y = r, dimZ = s. Ifr + s - n )' 0, 
then Y n Z =f. 0. Furthermore, if Y n Z =f. 0, then Y n Z is a linear 
variety of dimension )' r + s - n. (Think of A"+ 1 as a vector space over k, 

and work with its subspaces.) 

2.12. The d-Uple Embedding. For given n,d > 0, let M 0 ,M1, ... ,MN be all the mono

mials of degree d in the n + 1 variables x 0 , . •. ,x", where N = ("!d) - 1. We 
define a mapping Pd: P" --+ pN by sending the point P = (a0, ... ,a") to the point 
pAP) = (M0(a), ... ,MN(a)) obtained by substituting the a, in the monomials Mi. 
This is called the d-uple embedding ofP" in pN_ For example, ifn = 1, d = 2, then 
N = 2, and the image Y of the 2-uple embedding ofP 1 in P2 is a conic. 
(a) Let 8: k[y0 , . .. ,yNJ --+ k[ x 0 , . .. ,x"J be the homomorphism defined by 

sending y, to M,, and let a be the kernel of 8. Then a is a homogeneous prime 
ideal, and so Z( a) is a projective variety in pN_ 

(b) Show that the image of Pd is exactly Z(a). (One inclusion is easy. The other will 
require some calculation.) 

(c) Now show that Pd is a homeomorphism ofP" onto the projective variety Z(a). 
(d) Show that the twisted cubic curve in P3 (Ex. 2.9) is equal to the 3-uple embed

ding of P 1 in P 3 , for suitable choice of coordinates. 

2.13. Let Y be the image of the 2-uple embedding of P2 in P5 . This is the Veronese 

surface. If Z £; Y is a closed curve (a curve is a variety of dimension 1), show that 
there exists a hypersurface V £; P5 such that V n Y = Z. 

2.14. The Segre Embedding. Let 1/J:P' x P'--+ pN be the map defined by sending the 
ordered pair (a 0 , . .. ,a,) x (b 0 , . .. ,b,) to ( ... ,a,bi, . .. ) in lexicographic order, 
where N = rs + r + s. Note that 1/J is well-defined and injective. It is called the 
Segre embedding. Show that the image ofljJ is a subvariety ofPN. [Hint: Let the 
homogeneous coordinates of pN be {ziili = 0, ... ,r, j = 0, ... ,s}, and let a be 
the kernel of the homomorphism k[{zii}] --+ k[x 0 , ... ,x,y0 , ... ,y,] which sends 
zii to x,yi. Then show that Im 1/1 = Z(a).] 

2.15. The Quadric Surface in P 3 (Fig. 2). Consider the surface Q (a swface is a variety of 
dimension 2) in P3 defined by the equation xy - zw = 0. 
(a) Show that Q is equal to the Segre embedding of P1 x P1 in P3, for suitable 

choice of coordinates. 
(b) Show that Q contains two families of lines (a line is a linear variety of dimen

sion 1) {L,},{M,}, each parametrized by t E P 1, with the properties that if 

L, =f. Lu, then L, n Lu = 0; if M, =f. Mu, M, n Mu = 0. and for all t,u, 

L, n Mu = one point. 
(c) Show that Q contains other curves besides these lines, and deduce that the 

Zariski topology on Q is not homeomorphic via 1/J to the product topology on 
P1 x P1 (where each P1 has its Zariski topology). 

13 
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Figure 2. The quadric surface in P3 . 

2.16. (a) The intersection of two varieties need not be a variety. For example, let Q1 

and Q2 be the quadric surfaces in P3 given by the equations x 2 - yw = 0 
and x y - zw = 0, respectively. Show that Q1 n Q2 is the union of a twisted 
cubic curve and a line. 

(b) Even if the intersection of two varieties is a variety, the ideal of the inter
section may not be the sum of the ideals. For example, let C be the conic in 
P2 given by the equation x 2 - yz = 0. Let L be the line given by y = 0. 
Show that C n L consists of one point P, but that J( C) + J(L) f= J(P). 

2.17. Complete intersections. A variety Y of dimension r in P" is a (strict) complete 
intersection if J(Y) can be generated by n - r elements. Y is a set-theoretic com
plete intersection if Y can be written as the intersection of n - r hypersurfaces. 
(a) Let Y be a variety in P", let Y = Z(a); and suppose that a can be generated 

by q elements. Then show that dim Y ;, n - q. 
(b) Show that a strict complete intersection is a set-theoretic complete inter

section. 
*(c) The converse of (b) is false. For example let Y be the twisted cubic curve in 

P 3 (Ex. 2.9). Show that J(Y) cannot be generated by two elements. On the 
other hand, find hypersurfaces H l>H 2 of degrees 2,3 respectively, such that 
Y = H 1 n H 2 . 

**(d) It is an unsolved problem whether every closed irreducible curve in P3 is 
a set-theoretic intersection of two surfaces. See Hartshorne [1 J and Hart
shorne [5, III, §5] for commentary. 

3 Morphisms 

So far we have defined affine and projective varieties, but we have not dis
cussed what mappings are allowed between them. We have not even said 
when two are isomorphic. In this section we will discuss the regular func
tions on a variety, and then define a morphism of varieties. Thus we will 
have a good category in which to work. 

14 
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Let Y be a quasi-affine variety in An. We will consider functions f from 
Yto k. 

Definition. A function f: Y --+ k is regular at a point P E Y if there is an open 
neighborhood UwithPE Us; Y,andpolynomialsg,hEA = k[x 1, ... ,xn], 
such that h is nowhere zero on U, and f = gjh on U. (Here of course we 
interpret the polynomials as functions on An, hence on Y.) We say that 
f is regular on Y if it is regular at every point of Y. 

Lemma 3.1. A regular function is continuous, when k is identified with Al 
in its Zariski topology. 

PROOF. It is enough to show that f- 1 of a closed set is closed. A closed set 
of Al is a finite set of points, so it is sufficient to show that f- 1(a) = 
{ P E Ylf(P) = a} is closed for any a E k. This can be checked locally: a 
subset Z of a topological space Y is closed if and only if Y can be covered 
by open subsets U such that Z n U is closed in U for each U. So let U be 
an open set on which f can be represented as gjh, with g,h E A, and h no
where 0 on U. Thenf- 1(a) n U = {P E Ulg(P)/h(P) =a}. But g(P)/h(P) = 
a if and only if (g - ah)(P) = 0. So f- 1(a) n U = Z(g - ah) n U which 
is closed. Hence f- 1(a) is closed in Y. 

Now let us consider a quasi-projective variety Y s; pn_ 

Definition. A function f: Y --+ k is regular at a point P E Y if there is an open 
neighborhood U with P E U s; Y, and homogeneous polynomials 
g,h E S = k[ x0 , ... ,xn], of the same degree, such that h is nowhere zero 
on U, and f = gjh on U. (Note that in this case, even though g and h 
are not functions on pn, their quotient is a well-defined function whenever 
h i= 0, since they are homogeneous of the same degree.) We say that 
f is regular on Y if it is regular at every point. 

Remark 3.1.1. As in the quasi-affine case, a regular function is necessarily 
continuous (proof left to reader). An important consequence of this is the 
fact that iff and g are regular functions on a variety X, and iff = g on 
some nonempty open subset U s; X, then f = g everywhere. Indeed, the 
set of points where f - g = 0 is closed and dense, hence equal to X. 

Now we can define the category of varieties. 

Definition. Let k be a fixed algebraically closed field. A variety over k (or 
simply variety) is any affine, quasi-affine, projective, or quasi-projective 
variety as defined above. If X, Yare two varieties, a morphism cp: X --+ Y 
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is a continuous map such that for every open set V ~ Y, and for every 
regular functionf: V--+ k, the function! o cp:cp- 1(V)--+ k is regular. 

Clearly the composition of two morphisms is a morphism, so we have a 
category. In particular, we have the notion of isomorphism: an isomorphism 
cp: X --+ Y of two varieties is a morphism which admits an inverse morphism 
ljJ: Y --+ X with ljJ o cp = idx and cp o 1jJ = idy. Note that an isomorphism is 
necessarily bijective and bicontinuous, but a bijective bicontinuous mor
phism need not be an isomorphism (Ex. 3.2). 

Now we introduce some rings of functions associated with any variety. 

Definition. Let Y be a variety. We denote by @(Y) the ring of all regular 
functions on Y. If P is a point of Y, we define the local ring of P on Y, 
@P.Y (or simply @p) to be the ring of germs of regular functions on Y 
near P. In other words, an element of @p is a pair < U,f) where U is an 
open subset of Y containing P, and f is a regular function on U, and 
where we identify two such pairs (U,f) and (V,g) iff = g on U n V. 
(Use (3.1.1) to verify that this is an equivalence relation!) 

Note that @ P is indeed a local ring: its maximal ideal m is the set of germs 
of regular functions which vanish at P. For if f(P) =1= 0, then 1/f is regular 
in some neighborhood of P. The residue field @pjm is isomorphic to k. 

Definition. If Yis a variety, we define the function field K(Y) of Y as follows: 
an element of K(Y) is an equivalence class of pairs (U,f) where U is a 
nonempty open subset of Y, f is a regular function on U, and where 
we identify two pairs (U,f) and (V,g) iff= g on U n V. The elements 
of K ( Y) are called rational functions on Y. 

Note that K(Y) is in fact a field. Since Y is irreducible, any two non
empty open sets have a nonempty intersection. Hence we can define addition 
and multiplication in K~ Y), making it a ring. Then if < U,.f) E K( Y) with 
f =I= 0, we can restrict f to the open set V = U - U n Z(f) where it never 
vanishes, so that 1/f is regular on V, hence (V,1/f) is an inverse for (U,f). 

Now we have defined, for any variety Y, the ring of global functions @( Y), 
the local ring @ P at a point of Y, and the function field K( Y). By restricting 
functions we obtain natural maps @(Y)--+ @p --+ K(Y) which in fact are 
injective by (3.1.1). Hence we will usually treat @(Y) and @pas subrings of 
K(Y). 

If we replace Y by an isomorphic variety, then the corresponding rings are 
isomorphic. Thus we can say that @(Y), @p, and K(Y) are invariants of the 
variety Y (and the point P) up to isomorphism. 

Our next task is to relate @( Y), (l] p, and K ( Y) to the affine coordinate 
ring A(Y) of an affine variety, and the homogeneous coordinate ring S(Y) 
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of a projective variety, which were introduced earlier. We will find that for 
an affine variety Y, A( Y) = (()( Y), so it is an invariant up to isomorphism. 
However, for a projective variety Y, S( Y) is not an invariant: it depends on 
the embedding of Y in projective space (Ex. 3.9). 

Theorem 3.2. Let Y c:; An be an affine variety with affine coordinate ring 
A(Y). Then: 

(a) @(Y) ~ A(Y); 
(b) for each point P E Y, let mp c:; A(Y) be the ideal of functions 

vanishing at P. Then P 1--> mp gives a 1-1 correspondence between the 
points of Y and the maximal ideals of A( Y); 

(c) for each P, @p ~ A(Y)"'P' and dim @p = dim Y; 
(d) K(Y) is isomorphic to the quotient field of A(Y), and hence K(Y) 

is a .finitely generated extension field of k, of transcendence degree = dim Y. 

PROOF. We will proceed in several steps. First we define a map a:A(Y)--> 
(()( Y). Every polynomial f E A = k[ x 1, ... ,xn] defines a regular function 
on An and hence on Y. Thus we have a homomorphism A --> @(Y). Its 
kernel is just l(Y), so we obtain an injective homomorphism a: A( Y) --> @(Y). 

From (1.4) we know there is a 1-1 correspondence between points of Y 
(which are the minimal algebraic subsets of Y) and maximal ideals of A 
containing J(Y). Passing to the quotient by l(Y), these correspond to the 
maximal ideals of A(Y). Furthermore, using a to identify elements of A(Y) 
with regular functions on Y, the maximal ideal corresponding to P is just 
mp = {f E A(Y)if(P) = 0}. This proves (b). 

For each P there is a natural map A( Y)mp --> @p. It is injective because a 
is injective, and it is surjective by definition of a regular function! This 
shows that (OP ~ A(Y)mp· Now dim (()P =height mp. Since A(Y)/mp ~ k, 
we conclude from (1.7) and (l.SA) that dim @p = dim Y. 

From (c) it follows that the quotient field of A(Y) is isomorphic to the 
quotient field of (OP for every P, and this is equal to K(Y), because every 
rational function is actually in some @p. Now A(Y) is a finitely generated 
k-algebra, so K(Y) is a finitely generated field extension of k. Furthermore, 
the transcendence degree of K(Y)/k is equal to dim Y by (1.7) and (l.SA). 
This proves (d). 

To prove (a) we note that (O(Y) c:; nPEY @p, where all our rings are re
garded as subrings of K ( Y). 

Using (b) and (c) we have 

A(Y) c:; @(Y) c:; n A(Y)"'' 
"' 

where m runs over all the maximal ideals of A(Y). The equality now follows 
from the simple algebraic fact that if B is an integral domain, then B is 
equal to the intersection (inside its quotient field) of its localizations at all 
maximal ideals. 
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Propositi' , 3.3. Let Ui s P" be the open set defined by the equation xi #- 0. 
Then tne mapping cpi: Ui --+ A" of (2.2) above is an isomorphism of varieties. 

PROOF. We have already shown that it is a homeomorphism, so we need 
only check that the regular functions are the same on any open set. On Ui 
the regular functions are locally quotients of homogeneous polynomials in 
x0 , . .. ,x" of the same degree. On A" the regular functions are locally 
quotients of polynomials in y1, ... ,Yn· One can check easily that these two 
concepts are identified by the maps ex and f3 of the proof of (2.2). 

Before stating the next result, we introduce some notation. If S is a 
graded ring, and p a homogeneous prime ideal in S, then we denote by S<Pl 
the subring of elements of degree 0 in the localization of S with respect to 
the multiplicative subset T consisting of the homogeneous elements of S 
not in p. Note that T- 1 S has a natural grading given by deg(f/g) = deg f -
deg g for f homogeneous in S and g E T. S<Pl is a local ring, with maximal 
ideal (p · T- 1S) n S<vJ· In particular, if Sis a·domain, then for p = (0) we 
obtain a field s((O))• Similarly, iff E s is a homogeneous element, we denote 
by s(f) the sub ring of elements of degree 0 in the localized ring s f• 

Theorem 3.4. Let Y s P" be a projective variety with homogeneous co
ordinate ring S( Y). Then: 

(a) (O(Y) = k; 
(b) for any point P E Y, let mp S S(Y) be the ideal generated by the 

set of homogeneous f E S(Y) such that f(P) = 0. Then @p = S(Y)(mp); 
(c) K(Y) ~ S(Y)<<OJJ· 

PROOF. To begin with, let Ui s P" be the open set xi #- 0, and let Y; = 
Y n Ui. Then Ui is isomorphic to A" by the isomorphism cpi of (3.3), so we 
can consider Y; as an affine variety. There is a natural isomorphism cpf 
of the affine coordinate ring A( Y;) with the localization S( Y)<xil of the homo
geneous coordinate ring of Y. We first make an isomorphism of k[ y 1, ... , Yn] 
with k[x0 , ••• ,xnJx;) by sending f(y 1, •.• ,yn) to f(x 0 jxi> ... ,xn/xJ, leaving 
out xdxi> as in the proof of (2.2). This isomorphism sends /( }/) to /( Y)S<x.J 
(cf. Ex. 2.6), so passing to the quotient, we obtain the desired isomorphism 
cpf:A(Y;) ~ S(Y)<x.J· 

Now to prove (b), let P E Y be any point, and choose i so that P E Y;. 
Then by (3.2), @p ~ A(}/)111"' where m~ is the maximal ideal of A(Y;) corre
sponding toP. One checks easily that cpf(m~) = mp · S(Y)<x.J· Now xi f! mp, 
and localization is transitive, so we find that A( Y;)mJ. ~ S( Y)(mp)' which 
proves (b). 

To prove (c), we use (3.2) again to see that K(Y), which is equal to K(Y;), 
is the quotient field of A(}/). But by cpf, this is isomorphic to S( Y)<<on· 

To prove (a), Jet f E (0( Y) be a global regular function. Then for each i, 
f is regular on Y;, so by (3.2), f E A( Y;). But we have just seen that A( Y;) ~ 
S(Y)<x,J• so we conclude that f can be written as gdxf' where gi E S(Y) is 
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homogeneous of degree N;. Thinking of (O(Y), K(Y) and S(Y) all as sub
rings of the quotient field L of S(Y), this means that xf'f E S(Y)N,, for each i. 
Now choose N ~ L,N;. Then S(Y)N is spanned as a k-vector space by 
monomials of degree N in x 0 , ... ,xn, and in any such monomial, at least 
one X; occurs to a power ~N;. Thus we have S(Y)N · f s:;; S(Y)N. Iterating, 
we have S(Y)N ° r s:;; S(Y)N for all q > 0. In particular, x~r E S(Y) for 
all q > 0. This shows that the sub ring S( Y)[f] of Lis contained in x0 N S( Y), 
which is a finitely generated S(Y)-module. Since S(Y) is a noetherian ring, 
S(Y)[f] is a finitely generated S(Y)-module, and therefore f is integral 
over S(Y) (see, e.g., Atiyah-Macdonald [1, p. 59]). This means that there 
are elements ab ... ,am E S(Y) such that 

fm + alfm-1 + 0 0 0 +am= 0. 

Since f has degree 0, we can replace the a; by their homogeneous components 
of degree 0, and still have a valid equation. But S(Y)0 = k, so the a; E k, 
and f is algebraic over k. But k is algebraically closed, so f E k, which 
completes the proof. 

Our next result shows that if X and Y are affine varieties, then X is iso
morphic to Y if and only if A( X) is isomorphic to A( Y) as a k-algebra. 
Actually the proof gives more, so we state the stronger result. 

Proposition 3.5. Let X be any variety and let Y be an affine variety. Then 
there is a natural bijective mapping of sets 

o::Hom(X,Y) ~ Hom(A(Y),(O(X)) 

where the left Hom means morphisms of varieties, and the right Hom 
means homomorphisms of k-algebras. 

PROOF. Given a morphism q>: X ----> Y, q> carries regular functions on Y to 
regular functions on X. Hence q> induces a map (O(Y) to (O(X), which is 
clearly a homomorphism of k-algebras. But we have seen (3.2) that (O(Y) ~ 
A(Y), so we get a homomorphism A(Y)----> (O(X). This defines o:. 

Conversely, suppose given a homomorphism h: A( Y)----> (O(X) of k-algebras. 
Suppose that Y is a closed subset of A", so that A(Y) = k[x1 , ... ,xn]/I(Y). 
Let :X; be the image of X; in A(Y), and consider the elements~; = h(xJ E (O(X). 
These are global functions on X, so we can use them to define a mapping 
1/J:X----> A" by 1/J(P) = (~ 1 (P), ... '~"(P)) for P EX. 

We show next that the image of 1jJ is contained in Y. Since Y = Z(J(Y) ), 
it is sufficient to show that for any P EX and any f E I(Y),f(lji(P)) = 0. But 

Now f is a polynomial, and h is a homomorphism of k-algebras, so we have 
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since f E J(Y). So 1/1 defines a map from X to Y, which induces the given 
homomorphism h. 

To complete the proof, we must show that 1jJ is a morphism. This is a 
consequence of the following lemma. 

Lemma 3.6. Let X be any variety, and let Y £ An be an affine variety. A 
map of sets 1/1: X --+ Y is a morphism if and only if X; o 1/J is a regular 
function on X for each i, where x 1, ... ,xn are the coordinate functions 
on An. 

PROOF. If 1jJ is a morphism, the X; o 1jJ must be regular functions, by definition 
of a morphism. Conversely, suppose the x; o 1jJ are regular. Then for any 
polynomial f = f(x 1, ... ,xn), f o 1/J is also regular on X. Since the closed 
sets of Y are defined by the vanishing of polynomial functions, and since 
regular functions are continuous, we see that 1/J- 1 takes closed sets to closed 
sets, so 1/J is continuous. Finally, since regular functions on open subsets of 
Y are locally quotients of polynomials, g o 1jJ is regular for any regular 
function g on any open subset of Y. Hence 1jJ is a morphism. 

Corollary 3.7. If X, Y are two affine varieties, then X and Y are isomorphic 
if and only if A(X) and A(Y) are isomorphic ask-algebras. 

PROOF. Immediate from the proposition. 

In the language of categories, we can express the above result as follows: 

Corollary 3.8. The functor X 1---> A( X) induces an arrow-reversing equivalence 
of categories between the category of affine varieties over k and the category 
of finitely generated integral domains over k. 

We include here an algebraic result which will be used in the exercises. 

Theorem 3.9A (Finiteness of Integral Closure). Let A be an integral domain 
which is a finitely generated algebra over a field k. Let K be the quotient 
field of A, and let L be a finite algebraic extension of K. Then the integral 
closure A' of A in L is a finitely generated A -module, and is also a finitely 
generated k-algebra. 

PROOF. Zariski-Samuel [1, vol. 1, Ch. V., Thm. 9, p. 267.] 

EXERCISES 

3.1. (a) Show that any conic in A 2 is isomorphic either to A 1 or A 1 - { 0} ( cf. Ex. 1.1 ). 
(b) Show that A 1 is not isomorphic to any proper open subset of itself. (This result 

is generalized by (Ex. 6.7) below.) 
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(c) Any conic in P 2 is isomorphic to P 1. 

(d) We will see later (Ex. 4.8) that any two curves are homeomorphic. But show 
now that A2 is not even homeomorphic to P 2• 
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(e) If an affine variety is isomorphic to a projective variety, then it consists of only 
one point. 

3.2. A morphism whose underlying map on the topological spaces is a homeomor
phism need not be an isomorphism. 
(a) For example, let <p:A 1 --> A2 be defined by t f--> (t2 ,t 3 ). Show that <p defines a 

bijective bicontinuous morphism of A 1 onto the curve y2 = x3, but that <p is 
not an isomorphism. 

(b) For another example, let the characteristic of the base field k be p > 0, and 
define a map <p :A 1 --> A 1 by t f--> tP. Show that <p is bijective and bicontinuous 
but not an isomorphism. This is called the Frobenius morphism. 

3.3. (a) Let <p:X--> Y be a morphism. Then for each P EX, <p induces a homomor
phism of local rings <pt:(!J<PiP).Y--> (!JP.x· 

(b) Show that a morphism <p is an isomorphism if and only if <p is a homeomor
phism, and the induced map <pp on local rings is an isomorphism, for all P EX. 

(c) Show that if <p(X) is dense in Y, then the map <pp is injective for all P EX. 

3.4. Show that the d-uple embedding of P" (Ex. 2.12) is an isomorphism onto its 
image. 

3.5. By abuse of language, we will say that a variety "is affine" if it is isomorphic to 
an affine variety. If H <;::; P" is any hypersurface, show that P" - H is affine. 
[Hint: Let H have degree d. Then consider the d-uple embedding of P" in pN 

and use the fact that pN minus a hyperplane is affine. 

3.6. There are quasi-affine varieties which are not affine. For example, show that 
X = A2 - {(0,0)} is not affine. [Hint: Show that (!)(X) ~ k[x,y] and use (3.5). 
See (Ill, Ex. 4.3) for another proof.] 

3.7. (a) Show that any two curves in P2 have a nonempty intersection. 
(b) More generally, show that if Y <;::; P" is a projective variety of dimension ;, 1, 

and if H is a hypersurface, then Y n H =f. 0. [Hint: Use (Ex. 3.5) and (Ex. 
3.1e). See (7.2) for a generalization.] 

3.8. Let H; and Hi be the hyperplanes in P" defined by X; = 0 and x1 = 0, with i =f. j. 

Show that any regular function on P" - (H; n Hi) is constant. (This gives an 
alternate proof of (3.4a) in the case Y = P".) 

3.9. The homogeneous coordinate ring of a projective variety is not invariant under 
isomorphism. For example, let X = P 1, and let Y be the 2-uple embedding of 
P 1 in P2. Then X ~ Y (Ex. 3.4). But show that S(X) "1. S( Y). 

3.10. Subvarieties. A subset of a topological space is locally closed if it is an open 
subset of its closure, or, equivalently, if it is the intersection of an open set with 
a closed set. 

If X is a quasi-affine or quasi-projective variety and Y is an irreducible locally 
closed subset, then Y is also a quasi-affine (respectively, quasi-projective) variety, 
by virtue of being a locally closed subset of the same affine or projective space. 
We call this the induced structure on Y, and we call Y a subvariety of X. 

Now let <p:X--> Y be a morphism, let X' s::; X and Y' s::; Y be irreducible 
locally closed subsets such that <p(X') <;::; Y'. Show that <fJix·: X' --> Y' is a mor
phism. 
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3.11. Let X be any variety and let P E X. Show there is a 1-1 correspondence between 
the prime ideals of the local ring {!)P and the closed subvarieties of X containing P. 

3.12. If P is a point on a variety X, then dim {!)P = dim X. [Hint:Reduce to the 
affine case and use (3.2c).] 

3.13. The Local Ring of a Subvariety. Let Y <:; X be a subvariety. Let {!)Y.x be the set 
of equivalence classes < U,f) where U <:; X is open, U n Y =/= 0, and f is a 
regular function on U. We say <UJ) is equivalent to <V,g), iff= g on U n V. 
Show that {!)Y.x is a local ring, with residue field K(Y) and dimension = dim X -
dim Y. It is the local ring of Yon X. Note if Y = Pis a point we get {!)p, and if 
Y = X we get K(X). Note also that if Y is not a point, then K(Y) is not alge
braically closed, so in this way we get local rings whose residue fields are not 
algebraically closed. 

3.14. Projection from a Point. Let P" be a hyperplane in pn+ 1 and let P E pn+ 1 - P". 
Define a mapping cp :P"+ 1 - { P}--> P" by cp(Q) =the intersection of the unique 
line containing P and Q with P"-
(a) Show that cp is a morphism. 
(b) Let Y <:; P3 be the twisted cubic curve which is the image of the 3-uple em

bedding of P 1 (Ex. 2.12). If t,u are the homogeneous coordinates on PI, we 
say that Y is the curve given parametrically by (x,y,z,w) = (t 3 ,t2u,tu 2,u3). Let 
P = (0,0,1,0), and let P2 be the hyperplane z = 0. Show that the projection of 
Y from P is a cuspidal cubic curve in the plane, and find its equation. 

3.15. Products of Affine Varieties. Let X <:; A" and Y <:; Am be affine varieties. 
(a) Show that X x Y <:; An+m with its induced topology is irreducible. [Hint: 

Suppose that X x Y is a union of two closed subsets Z 1 u Z 2 . Let X; = 
{xEXIx X y <:; Z;}, i = 1,2. Show that X= XI u Xz and xl,x2 are 
closed. Then X= X 1 or X 2 so X x Y = Z 1 or Z 2 .] The affine variety 
X x Y is called the product of X and Y. Note that its topology is in general 
not equal to the product topology (Ex. 1.4). 

(b) Show that A(X x Y) ~ A(X) @k A(Y). 
(c) Show that X x Y is a product in the category of varieties, i.e., show (i) the 

projections X x Y --> X and X x Y --> Y are morphisms, and (ii) given a 
variety Z, and the morphisms Z --> X, Z --> Y, there is a unique morphism 
Z --> X x Y making a commutative diagram 

z ---------+ X X y 

V><~ 
X ~Y. 

(d) Show that dim X x Y = dim X + dim Y. 

3.16. Products of Quasi-Projective Varieties. Use the Segre embedding (Ex. 2.14) to 
identify P" x pm with its image and hence give it a structure of projective variety. 
Now for any two quasi-projective varieties X <:; P" and Y <:; pm, consider 
X X Y <:; P" X pm_ 
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(a) Show that X x Y is a quasi-projective variety. 
(b) If X, Y are both projective, show that X x Y is projective. 

*(c) Show that X x Y is a product in the category of varieties. 
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3.17. Normal Varieties. A variety Y is normal at a point P E Y if @p is an integrally 
closed ring. Y is normal if it is normal at every point. 
(a) Show that every conic in P 2 is normal. 
(b) Show that the quadric surfaces Q1,Q2 in P3 given by equations Q1 :xy = zw; 

Q2 :xy = z2 are normal (cf. (II. Ex. 6.4) for the latter.) 
(c) Show that the cuspidal cubic y2 = x3 in A2 is not normal. 
(d) If Y is affine, then Y is normal= A(Y) is integrally closed. 
(e) Let Y be an affine variety. Show that there is a normal affine variety Y, and a 

morphism n: Y--+ Y, with the property that whenever Z is a normal variety, 
and cp:Z--+ Y is a dominant morphism (i.e., cp(Z) is dense in Y), then there is 
a unique morphism e:z--+ Y such that cp = no e. Y is called the normaliza
tion of Y. You will need (3.9A) above. 

3.18. Projectively Normal Varieties. A projective variety Y s; P" is projectively normal 
(with respect to the given embedding) if its homogeneous coordinate ring S(Y) 
is integrally closed. 
(a) If Y is projectively normal, then Y is normal. 
(b) There are normal varieties in projective space which are not projectively 

normal. For example, let Y be the twisted quartic curve in P3 given para
metrically by (x,y,z,w) = (t4 ,t3u,tu3,u4 ). Then Yis normal but not projectively 
normal. See (III, Ex. 5.6) for more examples. 

(c) Show that the twisted quartic curve Y above is isomorphic to P 1, which is 
projectively normal. Thus projective normality depends on the embedding. 

3.19. Automorphisms of A". Let cp:A"--+ A" be a morphism of A" to A" given by n 
polynomials f 1, ... ,fn of n variables x 1, ... ,x"" Let J = detliJ/;/iJxjl be the 
Jacobian polynomial of cp. 
(a) If cp is an isomorphism (in which case we call cp an automorphism of A") show 

that J is a nonzero constant polynomial. 
**(b) The converse of (a) is an unsolved problem, even for n = 2. See, for example. 

Vitushkin [1]. 

3.20. Let Y be a variety of dimension ~ 2, and let P E Y be a normal point. Let f be 
a regular function on Y - P. 

(a) Show that f extends to a regular function on Y. 
(b) Show this would be false for dim Y = 1. 

See (III, Ex. 3.5) for generalization. 

3.21. Group Varieties. A group variety consists of a variety Y together with a morphism 
J1: Y x Y -+ Y, such that the set of points of Y with the operation given by J1 is a 
group, and such that the inverse map y --+ y- 1 is also a morphism of Y--+ Y. 
(a) The additive group Ga is given by the variety A 1 and the morphism J1: A 2 --+ A 1 

defined by Jl(a,b) = a + b. Show it is a group variety. 
(b) The multiplicative qroup Gm is given by the variety A 1 - {(0)} and the mor

phism !liu.h) = ah. Show it is a group variety. 
(c) If G is a group variety, and X is any variety, show that the set Hom(X,G) has a 

natural group structure. 
(d) For any variety X, show that Hom(X,Ga) is isomorphic to (1J(X) as a group 

under addition. 
(e) For any variety X, show that Hom(X,Gml is isomorphic to the group of units 

in @(X), under multiplication. 
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4 Rational Maps 

In this section we introduce the notions of rational map and birational 
equivalence, which are important for the classification of varieties. A rational 
map is a morphism which is only defined on some open subset. Since an 
open subset of a variety is dense, this already carries a lot of information. 
In this respect algebraic geometry is more "rigid" than differential geometry 
or topology. In particular, the concept of birational equivalence is unique 
to algebraic geometry. 

Lemma 4.1. Let X and Y be varieties, let cp and ljJ be two morphisms fi'om 
X to Y, and suppose there is a nonempty open subset U s; X such that 
({Jiu = 1/Jiu· Then cp = 1/J. 

PROOF. We may assume that Y s; P" for some n. Then by composing with 
the inclusion morphism Y --> P", we reduce to the case Y = P". We consider 
the product P" x P", which has a structure of projective variety given by its 
Segre embedding (Ex. 3.16). The morphisms cp and ljJ determine a map 
cp x 1/f:X __. P" x P", which in fact is a morphism (Ex. 3.16c). Let .d = 

{ P x PIP E P"} be the diagonal subset of P" x P". It is defined by the 
equations {xd'j = xjy;li,j = 0,1, ... ,n} and so is a closed subset ofP" x P". 
By hypothesis cp x 1/J(U) s; .d. But U is dense in X, and .d is closed, so 
cp x 1/f(X) s; .d. This says that cp = 1/J. 

Definition. Let X, Y be varieties. A rational map cp: X --> Y is an equivalence 
class of pairs < U,cpu) where U is a nonempty open subset of X, ({Ju is a 
morphism of U to Y, and where < U,cpu) and < V,<pv) are equivalent if 
({Ju and ({Jv agree on U n V. The rational map cp is dominant if for some 
(and hence every) pair < U ,({Ju), the image of ({Ju is dense in Y. 

Note that the lemma implies that the relation on pairs < U,cpu) just 
described is an equivalence relation. Note also that a rational map cp: X --> Y 
is not in general a map of the set X to Y. Clearly one can compose dvminant 
rational maps, so we can consider the category of varieties and dominant 
rational maps. An "isomorphism" in this category is called a birational map: 

Definition. A birational map cp: X --> Y is a rational map which admits an 
inverse, namely a rational map ljJ: Y --> X such that ljJ a cp = idx and 
cp o ljJ = idy as rational maps. If there is a birational map from X to Y, 
we say that X and Yare birationally equivalent, or simply birational. 

The main result of this section is that the category of varieties and domi
nant rational maps is equivalent to the category of finitely generated field 
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extensions of k, with the arrows reversed. Before giving this result, we need 
a couple of lemmas which show that on any variety, the open affine subsets 
form a base for the topology. We say loosely that a variety is affine if it is 
isomorphic to an affine variety. 

Lemma 4.2. Let Y be a hypersurface in An given by the equationf(x 1, •.. ,xn) = 
0. Then An - Y is isomorphic to the hypersurface H in An+ 1 given by 
xn + d = 1. In particular, An - Y is affine, and its affine ring is 
k[xl, ... ,xn]f· 

PROOF. For P = (a~o ... ,an+ 1 ) E H, let cp(P) = (a 1, ..• ,an). Then clearly cp 
is a morphism from H to An, corresponding to the homomorphism of rings 
A --> A 1 , where A = k[ x 1, ... ,xn]. It is also clear that cp gives a bijective 
mapping of H onto its image, which is An - Y To show that cp is an isomor
phism, it is sufficient to show that cp- 1 is a morphism. But cp- 1(a 1, ••• ,an) = 

(a 1, .•. ,an,l/f(a 1 , ... ,an)), so the fact that cp- 1 is a morphism on An - Y 
follows from (3.6). 

Proposition 4.3. On any variety Y, there is a base for the topology consisting 
of open affine subsets. 

PROOF. We must show for any point P E Y and any open set U containing P, 
that there exists an open affine set V with P E V <:; U. First, since U is also 
a variety, we may assume U = Y Secondly, since any variety is covered by 
quasi-affine varieties (2.3), we may assume that Y is quasi-affine in An. 
Let Z = Y - Y, which is a closed set in An, and let a <:; A = k[x 1, ... ,xn] 
be the ideal of Z. Then, since Z is closed, and P ¢ Z, we can find a polynomial 
f E a such that f(P) =f. 0. Let H be the hypersurface f = 0 in An. Then 
Z <:; H but P ¢ H. Thus P E Y - Y n H, which is an open subset of 
Y Furthermore, Y - Y n H is a closed subset of An - H, which is affine 
by (4.2), hence Y - Y n H is affine. This is the required affine neighbor
hood of P. 

Now we come to the main result of this section. Let cp: X --> Y be a 
dominant rational map, represented by < U,ffJu ). Let f E K( Y) be a rational 
function, represented by < V,f) where Vis an open set in Y, and f is a regular 
function on V. Since ffJu(U) is dense in Y, cp{) 1(V) is a nonempty open subset 
of X, sofa ffJu is a regular function on cp{) 1(V). This gives us a rational 
function on X, and in this manner we have defined a homomorphism of 
k-algebras from K(Y) to K(X). 

Theorem 4.4. For any two varieties X and Y, the above construction gives a 
bijection between 

(i) the set of dominant rational maps from X to Y, and 
(ii) the set of k-algebra homomorphisms from K( Y) to K(X). 
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Furthermore, this correspondence gives an arrow-reversing equivalence of 
categories of the category of varieties and dominant rational maps with the 
category of finitely generated field extensions of k. 

PROOF. We will construct an inverse to the mapping given by the construction 
.tbove. Let B:K(Y)--+ K(X) be a homomorphism of k-algebras. We wish 
to define a rational map from X to Y. By (4.3), Y is covered by affine varieties, 
so we may assume Y is affine. Let A(Y) be its affine coordinate ring, and let 
y 1, ... ,y" be generators for A(Y) as a k-algebra. Then B(y 1), ... ,B(y") are 
rational functions on X. We can find an open set U s; X such that the func
tions B(y;) are all regular on U. Then e defines an injective homomorphism 
of k-algebras A( Y) --+ (?)( U). By (3.5) this corresponds to a morphism 
q>: U --+ Y, which gives us a dominant rational map from X to Y. It is easy 
to see that this gives a map of sets (ii) --+ (i) which is inverse to the one defined 
above. 

To see that we have an equivalence of categories as stated, we need only 
check that for any variety Y, K(Y) is finitely generated over k, and conversely, 
if K/k is a finitely generated field extension, then K = K(Y) for some Y. 
If Y is a variety, then K( Y) = K(U) for any open affine subset, so we may 
assume Y affine. Then by (3.2d), K(Y) is a finitely generated field extension 
of k. On the other hand, let K be a finitely generated field extension of k. 
Let y1 , .•. ,y" E K be a set of generators, and let B be the sub-k-algebra of K 
generated by y1 , ... ,y.. Then B is a quotient of the polynomial ring 
A = k[x1 , ... ,x"]' soB ~ A(Y) for some variety Yin A". Then K ~ K(Y) 
so we are done. 

Corollary 4.5. For any two varieties X,Y the following conditions are equiv
ulent: 

(i) X and Yare birationally equivalent; 
(ii) there are open subsets U s; X and V s; Y with U isomorphic to V, 

(iii) K(X) ~ K( Y) us k-algebrus. 

PROOF. 

(i) = (ii). Let q>: X --+ Y and lj;: Y --+ X be rational maps which are inverse 
to each other. Let q> be represented by < U,q>) and let lj; be represented by 
<V,l/J). Then lj; a q> is represented by <<r>- 1(V),lj; o q>), and since lj; o q> = idx 
as a rational map, lj; o q> is the identity on q> - 1( V). Similarly q> o lj; is the 
identity on lj;- 1(U). We now take q>- 1(lj;- 1(U)) as our open set in X, and 
lj;- 1( q>- 1( V)) as our open set in Y. It follows from the construction that these 
two open sets are isomorphic via q> and lj;. 

(ii) =(iii) follows from the definition of function field. 
(iii) = (i) follows from the theorem. 

As an illustration of the notion of birational correspondence, we will use 
some algebraic results on field extensions to show that every variety is bi-
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rational to a hypersurface. We assume familiarity with the notion of sepa
rable algebraic field extensions, and the notions of transcendence base and 
transcendence degree for infinite field extensions (see, e.g., Zariski-Samuel 
[1, Ch. II]). 

Theorem 4.6A (Theorem of the Primitive Element). Let L be a finite separable 
extension field of afield K. Then there is an element r:t.. E L which generates 
L as an extension field of K. Furthermore, if {3 1, ... ,f3n is any set of 
generators of L over K, and if K is infinite, then r:t.. can be taken to be a 
linear combination r:t.. = c 1{3 1 + ... + cnf3n of the f3i with coefficients 
C;EK. 

PROOF. Zariski-Samuel [1, Ch. II, Theorem 19, p. 84]. The second statement 
follows from the proof given there. 

Definition. A field extension Kjk is separably generated if there is a tran
scendence base { x;} for Kjk such that K is a separable algebraic extension 
of k( { x;} ). Such a transcendence base is called a separating transcendence 
base. 

Theorem 4.7A. If a field extension Kjk is finitely generated and separably 
generated, then any set of generators contains a subset which is a separating 
transcendence base. 

PROOF. Zariski-Samuel [1, Ch. II, Theorem 30, p. 104]. 

Theorem 4.8A. If k is a perfect field (hence in particular if k is algebraically 
closed), any .finitely generated field extension Kjk is separably generated. 

PROOF. Zariski-Samuel [1, Ch. II, Theorem 31, p. 105], or Matsumura 
[2, Ch. 10, Corollary, p. 194]. 

Proposition 4.9. Any variety X of dimension r is birational to a hypersurface 
Yin pr+ I. 

PROOF. The function field K of X is a finitely generated extension field of k. 
By ( 4.8A), K is separably generated over k. Hence we can find a transcendence 
base x 1, ... ,xr E K such that K is a finite separable extension of k(x 1 , . •• ,xrl· 
Then by (4.6A) we can find one further element y E K such that 
K = k(x~> . .. ,x.,y). Now y is algebraic over k(x~> . .. ,xr), so it satisfies a 
polynomial equation with coefficients which are rational functions in 
x~> ... ,xr. Clearing denominators, we get an irreducible polynomial 
f(x~> . .. ,x.,y) = 0. This defines a hypersurface in Ar+ 1 with function 
field K, which, according to (4.5}, is birational to X. Its projective closure 
(Ex. 2.9) is the required hypersurface Y c:; pr+ 1 . 
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Blowing Up 

As another example of a birational map, we will now construct the blowing
up of a variety at a point. This important construction is the main tool in 
the resolution of singularities of an algebraic variety. 

First we will construct the blowing-up of A" at the point 0 = (0, ... ,0). 
Consider the product A" x P"- 1, which is a quasi-projective variety 
(Ex. 3.16). If x1, ... ,x" are the affine coordinates of A", and if y 1 , ... ,y" 
are the homogeneous coordinates of P"- 1 (observe the unusual notation!), 
then the closed subsets of A" x P"- 1 are defined by polynomials in the 
X;,yi, which are homogeneous with respect to the Yi· 

We now define the blowing-up of A" at the point 0 to be the closed subset 
X of A" x P"- 1 defined by the equations {x;Yi = XiY;Ii,j = 1, ... ,n}. 

X A" X pn-1 

We have a natural morphism cp: X --+ A" obtained by restricting the pro
jection map of A" x P"- 1 onto the first factor. We will now study the 
properties of X. 

(1) If PEA", P # 0, then cp- 1(P) consists of a single point. In fact, 
cp gives an isomorphism of X- cp- 1(0) onto A"- 0. Indeed, let P = 

(ab ... ,an), with some a; # 0. Now if P x (Yb ... ,y") E cp- 1(P), then for 
each j, Yi = (aia;)y;, so (y1, ... ,yn) is uniquely determined as a point in 
P"- 1. In fact, setting Y; = a;, we can take (yb ... ,yn) = (a1 , ... ,an). Thus 
cp - 1(P) consists of a single point. Furthermore, for PEA" - 0, setting 
t/J(P) = (ab . .. ,an) x (a 1, ... ,an) defines an inverse morphism to cp, 
showingX- cp- 1(0)isisomorphictoA"- 0. 

(2) cp- 1( 0) ~ P"- 1 . Indeed, cp- 1( 0) consists of all points 0 x Q, with 
Q = (y1, ... ,yn) E P"-1, subject to no restriction. 

(3) The points of cp - 1( 0) are in 1-1 correspondence with the set of lines 
through 0 in A". Indeed, a line L through 0 in A" can be given by para
metric equations X; = a;t, i = 1, ... ,n, where a; E k are not all zero, and 
tEA 1. Now consider the line L' = cp - 1(L - 0) in X - cp - 1( 0). It is given 
parametrically by X; = a;t, Y; = a;t, with t E A 1 - 0. But the Y; are homo
geneous coordinates in P"- 1, so we can equally well describe L' be the 
equations X; = a;t,y; = a;, for tEA 1 - 0. These equations make sense 
also for t = 0, and give the closure L' of L' in X. Now L' meets cp - 1( 0) in 
the point Q = (a 1, ... ,an) E pn- \ so we see that sending L to Q gives a 
1-1 correspondence between lines through 0 in A" and points of cp- 1( 0). 

(4) X is irreducible. Indeed, X is the union of X - cp - 1( 0) and cp - 1( 0). 
The first piece is isomorphic to A" - 0, hence irreducible. On the other 
hand, we have just seen that every point of cp- 1( 0) is in the closure of some 
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E 

uo 
Figure 3. Blowing up. 

subset (the line L') of X - <p- 1( 0). Hence X - <p- 1( 0) is dense in X, and 
X is irreducible. 

Definition. If Y is a closed subvariety of A" passing through 0, we define 
the blowing-up of Y at the point 0 to be Y = (<p - 1( Y - 0) )-, where 
<p:X--> A" is the blowing-up of A" at the point 0 described above. We 
denote also by <p: Y --> Y the morphism obtained by restricting <p :X --> A" 
to Y. To blow up at any other point P of A", make a linear change of 
coordinates sending P to 0. 

Note that <p induces an isomorphism of Y- <p- 1(0) to Y- 0, so that 
<pis a birational morphism of Y to Y. Note also that this definition apparently 
depends on the embedding of Y in A", but in fact, we will see later that 
blowing-up is intrinsic (II, 7.15.1). 

The effect of blowing up a point of Y is to "pull apart" Y near 0 according 
to the different directions of lines through 0. We will illustrate this with 
an example. 

Example 4.9.1. Let Y be the plane cubic curve given by the equation y 2 = 

x 2(x + 1). We will blow up Y at 0 (Fig. 3). Let t,u be homogeneous co
ordinates for P1. Then X, the blowing-up of A 2 at 0, is defined by the 
equation xu= ty inside A2 x P1. It looks like A2, except that the point 0 
has been replaced by a P1 corresponding to the slopes of lines through 0. 
We will call this P1 the exceptional curve, and denote it by E. 

We obtain the total inverse image of Yin X by considering the equations 
y2 = x2(x + 1) and xu = ty in A2 x P 1 . Now P 1 is covered by the open 
sets t i= 0 and u i= 0, which we consider separately. If t i= 0, we can set 
t = 1, and use u as an affine parameter. Then we have the equations 

y2 = x 2(x + 1) 

y = xu 
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in A 3 with coordinates x, y,u. Substituting, we get x 2 u2 - x2(x + 1) = 0, 
which factors. Thus we obtain two irreducible components, one defined by 
x = 0, y = 0, u arbitrary, which is E, and the other defined by u2 = x + 1, 
y = xu. This is Y. Note that Y meets Eat the points u = ±1. These points 
correspond to the slopes of the two branches of Y at 0. 

Similarly one can check that the total inverse image of the x-axis consists 
of E and one other irreducible curve, which we call the strict transform of the 
x-axis (it is the curve L' described earlier corresponding to the line L = x-axis). 
This strict transform meets E at the point u = 0. By considering the other 
open set u =1= 0 in A 2 x P 1 , one sees that the strict transform of the y-axis 
meets E at the point t = 0, u = 1. 

These conclusions are summarized in Figure 3. The effect of blowing up 
is thus to separate out branches of curves passing through 0 according to 
their slopes. If the slopes are different, their strict transforms no longer meet 
in X. Instead, they meet E at points corresponding to the different slopes. 

EXERCISES 

4.1. Iff and g are regular functions on open subsets U and V of a variety X, and if 
f = g on U n V, show that the function which is f on U and g on V is a regular 
function on U u V. Conclude that iff is a rational function on X, then there is 
a largest open subset U of X on which f is represented by a regular function. 
We say that f is defined at the points of U. 

4.2. Same problem for rational maps. If 1.fJ is a rational map of X to Y, show there 
is a largest open set on which l.fJ is represented by a morphism. We say the ra
tional map is defined at the points of that open set. 

4.3. (a) Letfbe the rational function on P2 given by f = xdx0 . Find the set of points 
where f is defined and describe the corresponding regular function. 

(b) Now think of this function as a rational map from P2 to A 1• Embed A 1 in P 1, 

and let I.{J:P 2 --> P 1 be the resulting rational map. Find the set of points where 
1.fJ is defined, and describe the corresponding morphism. 

4.4. A variety Y is rational if it is birationally equivalent toP" for some n (or, equiva
lently by (4.5), if K(Y) is a pure transcendental extension of k). 
(a) Any conic in P2 is a rational curve. 
(b) The cuspidal cubic y2 = x3 is a rational curve. 
(c) Let Y be the nodal cubic curve y2z = x 2(x + z) in P2 . Show that the pro

jection 1.fJ from the point P = (0,0,1) to the line z = 0 (Ex. 3.14) induces a 
birational map from Y to P 1. Thus Y is a rational curve. 

4.5. Show that the quadric surface Q:xy = zw in P 3 is birational to P2, but not 
isomorphic to P2 (cf. Ex. 2.15). 

4.6. Plane Cremona Tramiformations. A birational map of P 2 into itself is called a 
plane Cremona transformation. We give an example, called a quadratic transfor
mation. It is the rational map I.{J:P2 --> P2 given by (a 0 ,a1 ,a2 )--> (a 1a2 ,a0 a2 ,a0a1) 

when no two of a0 ,a1 ,a2 are 0. 

30 



5 Nonsingular Varieties 

(a) Show that <p is birational, and is its own inverse. 
(b) Find open sets U,V s; P2 such that <p: U ---> Vis an isomorphism. 
(c) Find the open sets where <p and <p- 1 are defined, and describe the correspond

ing morphisms. See also (V, 4.2.3). 

4.7. Let X and Y be two varieties. Suppose there are points P EX and Q E Y such 
that the local rings ~P.x and (r;;Q.Y are isomorphic as k-algebras. Then show 
that there are open sets P E U s; X and Q E V s; Y and an isomorphism of 
U to V which sends P to Q. 

4.8. (a) Show that any variety of positive dimension over k has the same cardinality as 
k. [Hints: Do A" and P" first. Then for any X, use induction on the dimension 
11. Use (4.9) to make X birational to a hypersurface H <;: pn+ 1. Use (Ex. 3.7) 
to show that the projection of H to P" from a point not on H is finite-to-one 
and surjective.] 

(b) Deduce that any two cwTes over k are homeomorphic (cf. Ex. 3.1). 

4.9. Let X be a projective variety of dimension r in P". with 11 ? r + 2. Show that 
for suitable choice of P ¢X, and a linear P"- 1 s; P". the projection from P to 
pn-t (Ex. 3.14) induces a hirotionol morphism of)( onto its image x· s; P"- 1• 

You will need to use (4.6Al. (4.7A). and (4.8A). This shows in particular that the 
birational map of (4.9) can be obtained by a finite number of su~.:h proje~.:tions. 

4.10. Let r be the cusp ida! cubic curve _r 2 = x 3 in A 2 Blow up the point 0 = (0,0). 
let E be the exceptional curve, and let Y be the strict transform of Y. Show that 
E meets Y in one point, and that Y ::; A 1• In this case the morphism <p: Y ---> Y 
is bijective and bicontinuous, but it is not an isomorphism. 

5 Nonsingular Varieties 

The notion of nonsingular variety in algebraic geometry corresponds to the 
notion of manifold in topology. Over the complex numbers, for example, 
the nonsingular varieties are those which in the "usual" topology are complex 
manifolds. Accordingly, the most natural (and historically first) definition 
of nonsingularity uses the derivatives of the functions defining the variety: 

Definition. Let Y ~ A" be an affine variety, and let j 1 , ••• ,J; E A = 

k [ x 1 , ... ,x"] be a set of generators for the ideal of Y. Y is nonsingular at a 
point P E Y if the rank of the matrix IIU)Rx)(Plll is 11 - r, where r is 
the dimension of Y. Y is nonsingular if it is nonsingular at every point. 

A few comments are in order. In the first place, the notion of partial 
derivative of a polynomial with respect to one of its variables makes sense 
over any field. One just applies the usual rules for differentiation. Thus no 
limiting process is needed. But funny things can happen in characteristic 
p > 0. For example, if f(x) = xP, then df/dx = pxp-J = 0, since p = 0 ink. 
In any case, iff E A is a polynomial, then for each i, of/ex; is a polynomial. 
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The matrix ll(o/;/oxi)(P)II is called the Jacobian matrix at P. One can show 
easily that this definition of nonsingularity is independent of the set of 
generators of the ideal of Y chosen. 

One drawback of our definition is that it apparently depends on the 
embedding of Y in affine space. However, it was shown in a fundamental 
paper, Zariski [1 ], that nonsingularity could be described intrinsically in 
terms of the local rings. In our case the result is this. 

Definition. Let A be a noetherian local ring with maximal ideal m and residue 
field k = A/m. A is a regular local ring if dimk m/m2 = dim A. 

Theorem 5.1. Let Y <;; An be an affine variety. Let P E Y be a point. Then Y 
is nonsingular m P if and only if the local ring (!) P,Y is a regular local ring. 

PROOF. Let p be the point (ab ... ,an) in An, and let Op = (xl - ({1, ... ,Xn- an) 
be the corresponding maximal ideal in A = k[x 1 , ..• ,xnJ. We define a 
linear map 0: A --+ kn by 

\ of cf ) O(f) = -~ (P), ... , -0 (P) 
cx 1 Xn 

for any f E A. Now it is clear that O(x; - a;) for i = 1, ... ,n form a basis of 
kn, and that O(a~) = 0. Thus 0 induces an isomorphism O':ap/a~--+ kn. 

Now let b be the ideal of Yin A, and let f 1 , ••. ,fr be a set of generators of b. 
Then the rank of the Jacobian matrix J = li(o/;/oxi)(P)II is just the dimension 
of O(b) as a subspace of kn. Using the isomorphism 0', this is the same as the 
dimension of the subspace (b + a~)/a~ of ap/a~. On the other hand, the 
local ring(!) P of P on Y is obtained from A by dividing by b and localizing at 
the maximal ideal ap. Thus if m is the maximal ideal of (!)p, we have 

m/m 2 ~ ap/(b + a~). 
Counting dimensions of vector spaces, we have dim m/m 2 + rank J = n. 

Now let dim Y = r. Then (!)Pis a local ring of dimension r (3.2), so (!)Pis 
regular if and only if dimk mjm2 = r. But this is equivalent to rank J = n - r, 
which says that P is a nonsingular point of Y. 

Note. Later we will give another characterization of nons in gular points in 
terms of the sheaf of differential forms on Y (II, 8.15). 

Now that we know the concept of nonsingularity is intrinsic, we can extend 
the definition to arbitrary varieties. 

Definition. Let Y be any variety. Y is nonsingular at a point P E Y if the local 
ring (! P.r is a regular local ring. Y is nonsingulur if it is nonsingular at 
every point. Y is sinyular if it is not nonsingular. 

Our next objective is to show that most points of a variety are nonsingular. 
We need an algebraic preliminary. 
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Proposition 5.2A. If A is a noetherian local ring with maximal ideal m and 
residue field k, then dimk m/m2 ~ dim A. 

PROOF. Atiyah-Macdonald [1, Cor. 11.15, p. 121] or Matsumura [2, 
p. 78]. 

Theorem 5.3. Let Y be a variety. Then the set Sing Y of singular points of Y 
is a proper closed subset of Y. 

PROOF. (See also II, 8.16.) First we show Sing Y is a closed subset. It is 
sufficient to show for some open covering Y = U Y; of Y, that Sing Y; is 
closed for each i. Hence by (4.3) we may assume that Y is affine. By (5.2) and 
the proof of (5.1) we know that the rank of the Jacobian matrix is always 
~ n - r. Hence the set of singular points is the set of points where the rank is 
< n - r. Thus Sing Y is the algebraic set defined by the ideal generated by 
I( Y) together with all determinants of (n - r) x (n - r) submatrices of the 
matrix II8N8xill· Hence Sing Y is closed. 

To show that Sing Y is a proper subset of Y, we first apply (4.9) to get Y 
birational to a hypersurface in Pn. Since birational varieties have isomorphic 
open subsets, we reduce to the case of a hypersurface. It is enough to consider 
any open affine subset of Y, so we may assume that Y is a hypersurface in An, 
defined by a single irreducible polynomial f(xb . .. ,xn) = 0. 

Now Sing Y is the set of points P E Y such that (8f/8x;)(P) = 0 for i = 

1, ... ,n. If Sing Y = Y, then the functions 8fj8x; are zero on Y, and hence 
8fj8x; E I(Y) for each i. But I(Y) is the principal ideal generated by f, and 
deg(8f/8x;) ~ deg f - 1 for each i, so we must have 8f/8x; = 0 for each i. 

In characteristic 0 this is already impossible, because if X; occurs in f, 
then 8f/8x; i= 0. So we must have char k = p > 0, and then the fact that 
8f/8x; = 0 implies that f is actually a polynomial in xf. This is true for each 
i, so by taking pth roots of the coefficients (possible since k is algebraically 
closed), we get a polynomial g(x 1 , ... ,xn) such that f = gP. But th:s 
contradicts the hypothesis that f was irreducible, so we conclude that 
Sing Y < Y. 

Completion 

For the local analysis of singularities we will now describe the technique of 
completion. Let A be a local ring with maximal ideal m. The powers of m 
define a topology on A, called the m-adic topology. By completing with 
respect to this topology, one defines the completion of A, denoted A. Alter
natively, one can define A as the inverse limit !!!!! A/mn. See Atiyah
Macdonald [1, Ch. 10], Matsumura [2, Ch. 9], or Zariski-Samuel [1, vol. 2, 
Ch. VIII] for general information on completions. 

The significance of completion in algebraic geometry is that by passing 
to the completion &P of the local ring of a point P on a variety X, one can 
study the very local behavior of X near P. We have seen (Ex. 4.7) that if 
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points P EX and Q E Y have isomorphic local rings, then already P and Q 
have isomorphic neighborhoods, so in particular X and Y are birational. 
Thus the ordinary local ring (np carries information about almost all of X. 
However, the completion r!p, as we will see, carries much more local in
formation, closer to our intuition of what "local" means in topology or 
differential geometry. 

We will recall some of the algebraic properties of completion and then 
give some examples. 

Theorem 5.4A. Let A be a noetherian local ring with maximal ideal m, and 
let A be its completion. 

(a) A is a local ring, with maximal ideal m = mA, and there is a natural 
injective homomorphism A --> A. 

(b) If M is a finitely generated A-module, its completion M with respect 
to its m-adic topology is isomorphic toM ®A A. 

(c) dim A = dim A. 
(d) A is regular if and only if A is regular. 

PROOF. See Atiyah~Macdonald [1, Ch. 10, 11] or Zariski~Samuel [1, vol. 2, 
Ch. Vlll]. 

Theorem 5.5A (Cohen Structure Theorem). If A is a complete regular local 
ring of dimension n contain in?] some field, then A ~ k[[x 1 , •.• ,xn]J, the 
ring of formal power series over the residue field k of A. 

PROOF. Matsumura [2, Cor. 2, p. 206] or Zariski~Samuel [1, vol. 2, Cor., 
p. 307]. 

Definition. We say twu points P EX and Q E Y are analytically isomorphic 
if there is an isomorphism & P ~ & Q as k-algebras. 

Example 5.6.1. If P EX and Q E Y are analytically isomorphic, then 
dim X = dim Y. This follows from (5.4A) and the fact that any local ring 
of a point on a variety has the same dimension as the variety (Ex. 3.12). 

Example 5.6.2. If P E X and Q E Y are nonsingular points on varieties of the 
same dimension, then P and Q are analytically isomorphic. This follows 
from (5.4A) and (5.5A). This example is the algebraic analogue of the fact 
that any two manifolds (topological, differentiable, or complex) of the same 
dimension are locally isomorphic. 

Example 5.6.3. Let X be the plane nodal cubic curve given by the equation 
y2 = x2(x + 1 ). Let Y be the algebraic set in A 2 defined by the equation 
x.r = 0. We will show that the point 0 = (0,0) on X is analytically iso
morphic to the point 0 on Y. (Since we haven't yet developed the general 
theory of local rings of points on reducible algebraic sets, we use an ad hoc 
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definition @0 ,Y = (k[x,y]/(xy))(x,y)· Thus &o,Y ~ k[[x,y]]/(xy).) This ex
ample corresponds to the geometric fact that near 0, X looks like two lines 
crossing. 

To prove this result, we consider the completion &o,x which is isomorphic 
to k[[x,y]]/(y2 - x2 - x3). The key point is that the leading form of the 
equation, namely y2 - x2, factors into two distinct factors y + x andy - x 
(we assume char k # 2). I claim there are formal power series 

g = Y + x + gz + g3 + · · · 
h = y - x + h2 + h3 + ... 

in k[[ x, y ]], where g;,h; are homogeneous of degree i, such that y2 - x2 -

x3 = gh. We construct g and h step by step. To determine g2 and h2 , we 
need to have 

(y - x)gz + (y + x)h2 = -x3 . 

This is possible, because y - x and y + x generate the maximal ideal of 
k[[x,y]]. To determine g3 and h3, we need 

(y - x)g3 + (y + x)h3 = -g2h2 

which is again possible, and so on. 
Thus &o,x = k[[ x,y ]]/(gh). Since g and h begin with linearly independent 

linear terms, there is an automorphism of k[[ x, y ]] sending g and h to x 
andy, respectively. This shows that &o,x ~ k[[ x,y ]]/(xy) as required. 

Note in this example that @0 ,x is an integral domain, but its completion 
is not. 

We state here an algebraic result which will be used in (Ex. 5.15) below. 

Theorem 5.7A (Elimination Theory). Let f 1, ... ,f,. be homogeneous polyno
mials in x 0 , ... ,x", having indeterminate coefficients aii. Then there is a 
set g 1, ... ,g1 of polynomials in the a;i, with integer coefficients, which are 
homogeneous in the coefficients of each J; separately, with the following 
property: for any field k, and for any set of special values of the aii E k, 
a necessary and sufficient condition for the J; to have a common zero different 
from (0,0, ... ,0) is that the aii are a common zero of the polynomials gi. 

PROOF. Vander Waerden [1, vol. II, §80, p. 8]. 

EXERCISES 

5.1. Locate the singular points and sketch the following curves in A2 (assume char 
k =1- 2). Which is which in Figure 4? 
(a) x 2 = x 4 + .l: 
(b) xy = x 6 + y6; 
(c) x3 = )'2 + x4 + )'4; 

(d) x2y + xi = x4 + y4. 
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X 

Node Triple point Cusp Tacnode 

Figure 4. Singularities of plane curves. 

5.2. Locate the singular points and describe the singularities of the following sur
faces in A3 (assume char k # 2). Which is which in Figure 5? 
(a) xy2 = z2 ; 

(b) xz + yz = zz; 
(c) xy + x 3 + y3 = 0. 

z 

Conical double point Double line Pinch point 

Figure 5. Surface singularities. 

5.3. Multiplicities. Let Y ~ A 2 be a curve defined by the equation f(x,y) = 0. Let 
P = (a,b) be a point of A2 . Make a linear change of coordinates so that P be
comes the point (0,0). Then write f as a sum f = fo + f 1 + ... + f:J, where 
j; is a homogeneous polynomial of degree i in x and y. Then we define the multi

plicity of P on Y, denoted ,Up(Y), to be the least r such that fr # 0. (Note that 
P E Y = ,Up(Y) > 0.) The linear factors of fr are called the tangent directions 

at P. 
(a) Show that ,Up(Y) = 1 =Pis a nonsingular point of Y. 
(b) Find the multiplicity of each of the singular points in (Ex. 5.1) above. 

5.4. Intersection Multiplicity. If Y,Z ~ A2 are two distinct curves, given by equations 
f = 0, g = 0, and if P E Y n Z, we define the intersection multiplicity ( Y · Z)p 
of Y and Z at P to be the length of the C9p-module C9p j(f,g). 
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(a) Show that (Y · Z)p is finite, and (Y · Z)p ~ flp(Y) · ,Up(Z). 
(b) If P E Y, show that for almost all lines L through P (i.e., all but a finite number), 

(L . Y)p = ,Up(Y). 
(c) If Y is a curve of degree din P2, and if Lis a line in P2, L # Y, show that 

(L · Y) = d. Here we define (L · Y) = L)L · Y)p taken over all points P E 

L n Y, where (L · Y)p is defined using a suitable affine cover ofP2 . 
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5.5. For every degree d > 0, and every p = 0 or a prime number, give the equation 
of a nonsingular curve of degree d in P2 over a field k of characteristic p. 

5.6. Blowing Up Curve Singularities. 
(a) Let Y be the cusp or node of (Ex. 5.1). Show that the curve Y. obtained by 

blowing up Yat 0 = (0,0) is nonsingular (cf. (4.9.1) and (Ex. 4.10)). 
(b) We define a node (also called ordinary double point) to be a double point 

(i.e., a point of multiplicity 2) of a plane curve with distinct tangent directions 
(Ex. 5.3). If P is a node on a plane curve Y, show that rp - 1(P) consists of two 
distinct nonsingular points on the blown-up curve Y. We say that "blowing 
up P resolves the singularity at P". 

(c) Let P E Y be the tacnode of(Ex. 5.1). If rp: Y--> Y is the blowing-up at P, show 
that rp - 1(P) is a node. Using (b) we see that the tacnode can be resolved by 
two successive blowings-up. 

(d) Let Y be the plane curve y3 = x 5, which has a "higher order cusp" at 0. Show 
that 0 is a triple point; that blowing up 0 gives rise to a double point (what 
kind?) and that one further blowing up resolves the singularity. 

Note: We will see later (V, 3.8) that any singular point of a plane curve can be 
resolved by a finite sequence of successive blowings-up. 

5.7. Let Y <::::: P 2 be a nonsingular plane curve of degree > 1, defined by the equation 
f(x,y,z) = 0. Let X <::::: A 3 be the affine variety defined by f (this is the cone 
over Y; see (Ex. 2.1 0) ). Let P be the point (0,0,0), which is the vertex of the cone. 
Let rp:X--> X be the blowing-up of X at P. 
(a) Show that X has just one singular point, namely P. 
(b) Show that X is nonsingular (cover it with open affines). 
(c) Show that rp - 1(P) is isomorphic to Y. 

5.8. Let Y <::::: P" be a projective variety of dimension r. Let f 1, ... ,j, E S = 

k[ x 0 , . •• ,x"] be homogeneous polynomials which generate the ideal of Y. Let 
P E Y be a point, with homogeneous coordinates P = (a 0 , . .• ,a"). Show that 
Pis nonsingular on Y if and only if the rank of the matrix jj(8};/8xj)(a0 , ... ,anlll 
is n - r. [Hint: (a) Show that this rank is independent of the homogeneous 
coordinates chosen for P; (b) pass to an open affine U, <::::: P" containing P and 
use the affine Jacobian matrix; (c) you will need Euler's lemma, which says that 
iff is a homogeneous polynomial of degree d, then I,x;(3fj3x;) = d · f] 

5.9. Let f E k[x,y,z] be a homogeneous polynomial, let Y = Z(f).::::: P 2 be the 
algebraic set defined by f, and suppose that for every P E Y, at least one of 
w;ax)(P), W/3y)(P), w;az)(P) is nonzero. Show that f is irreducible (and hence 
that Y is a nonsingular variety). [Hint: Use (Ex. 3.7).] 

5.10. For a point P on a variety X, let m be the maximal ideal of the local ring {!)P· 

We define the Zariski tangent space Tp(X) of X at P to be the dual k-vector space 
ofm/m2 . 

(a) For any point P EX, dim Tp(X) ;::, dim X, with equality if and only if Pis 
nonsingular. 

(b) For any morphism rp:X--> Y, there is a natural induced k-linear map Tp(rp): 
T p(X) --> T cp<Pl( Y). 

(c) If rp is the vertical projection of the parabola x = y2 onto the x-axis, show that 
the induced map T 0(rp) of tangent spaces at the origin is the zero map. 
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5.11. The Elliptic Quartic Curve in P 3 . Let Y be the algebraic set in P 3 defined by the 
equations x2 - xz - yw = 0 and yz - xw - zw = 0. Let P be the point 
(x,y,z,w) = (0,0,0,1), and let cp denote the projection from P to the plane w = 0. 
Show that cp induces an isomorphism of Y - P with the plane cubic curve 
y2z - x3 + xz2 = 0 minus the point (1,0,-1). Then show that Y is an irre
ducible nonsingular curve. It is called the elliptic quartic curve in P3• Since it 
is defined by two equations it is another example of a complete intersection 
(Ex. 2.17). 

5.12. Quadric Hypersurfaces. Assume char k i= 2, and let f be a homogeneous poly
nomial of degree 2 in x 0 , •.. ,x •. 
(a) Show that after a suitable linear change of variables,! can be brought into the 

"form f = x6 + ... + x; for some 0 ~ r ~ n. 
(b) Show that f is irreducible if and only if r ~ 2. 
(c) Assume r ~ 2, and let Q be the quadric hypersurface in P" defined by f Show 

that the singular locus Z = Sing Q of Q is a linear variety (Ex. 2.11) of dimen
sion n - r - 1. In particular, Q is nonsingular if and only if r = n. 

(d) In case r < n, show that Q is a cone with axis Z over a nonsingular quadric 
hypersurface Q' s:::: P'. (This notion of cone generalizes the one defined in 
(Ex. 2.10). If Y is a closed subset of P', and if Z is a linear subspace of dimen
sion n - r - 1 in P", we embed P' in P" so that P' n Z = 0, and define 
the cone over Y with axis Z to be the union of all lines joining a point of Y 
to a point of Z.) 

5.13. It is a fact that any regular local ring is an integrally closed domain (Matsumura 
[2, Th. 36, p. 121 ]). Thus we see from (5.3) that any variety has a nonempty 
open subset of normal points (Ex. 3.17). In this exercise, show directly (without 
using (5.3)) that the set of nonnormal points of a variety is a proper closed sub
set (you will need the finiteness of integral closure: see (3.9A) ). 

5.14. Analytically Isomorphic Singularities. 
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(a) If P E Y and Q E Z are analytically isomorphic plane C'lrve singularities, show 
that the multiplicities Jlp(Y) and Jlq(Z) are the same (Ex. 5.3). 

(b) Generalize the example in the text ( 5.6.3) to show that iff = f.. + f..+ 1 + ... E 

k[[ x, y ]], and if the leading form f.. off factors as f.. = gsh,, where g.,h, are 
homogeneous of degrees s and t respectively, and have no common linear 
factor, then there are formal power series 

g = Os + 9s+ 1 + · · · 
h=h,+ht+1+ ... 

ink[[ x,y ]] such that f = gh. 
(c) Let Ybedefinedbytheequationf(x,y) = OinA2,andletP = (O,O)beapoint 

of multiplicity r on Y, so that when f is expanded as a polynomial in x and y, 
we have f = f.. + higher terms. We say that Pis an ordinary r-fold point if 
f.. is a product of r distinct linear factors. Show that any two ordinary double 
points are analytically isomorphic. Ditto for ordinary triple points. But show 
that there is a one-parameter family of mutually nonisomorphic ordinary 
4-fold points. 

*(d) Assume char k i= 2. Show that any double point of a plane curve is analy
tically isomorphic to the singularity at (0,0) of the curve i = x', for a uniquely 
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determined r ~ 2. If r = 2 it is a node (Ex. 5.6). If r = 3 we call it a cusp; 
if r = 4 a tacnode. See (V, 3.9.5) for further discussion. 

5.15. Families of Plane Curves. A homogeneous polynomial f of degree d in three 
variables x,y,z has (di 2 ) coefficients. Let these coefficients represent a point in 
PN, where N = (di 2) - 1 = ±d(d + 3). 
(a) Show that this gives a correspondence between points of pN and algebraic 

sets in P2 which can be defined by an equation of degree d. The correspondence 
is 1-1 except in some cases where f has a multiple factor. 

(b) Show under this correspondence that the (irreducible) nonsingular curves of 
degree d correspond 1-1 to the points of a nonempty Zariski-open subset of 
PN. [Hints: (1) Use elimination theory (5.7A) applied to the homogeneous 
polynomials 8f/8x0 , .•. ,8f/8x"; (2) use the previous (Ex. 5.5, 5.8, 5.9) above.] 

6 Nonsingular Curves 

In considering the problem of classification of algebraic varieties, we can 
formulate several subproblems, based on the idea that a nonsingular pro
jective variety is the best kind: (a) classify varieties up to birational equiva
lence; (b) within each birational equivalence class, find a nonsingular 
projective variety; (c) classify the nonsingular projective varieties in a given 
birational equivalence class. 

In general, all three problems are very difficult. However, in the case of 
curves, the situation is much simpler. In this section we will answer problems 
(b) and (c) by showing that in each birational equivalence class, there is a 
unique nonsingular projective curve. We will also give an example to show 
that not all curves are birationally equivalent to each other (Ex. 6.2). Thus 
for a given finitely generated extension field K of k of transcendence degree 1 
(which we will call a function field of dimension 1) we can talk about the 
nonsingular projective curve CK with function field equal to K. We will see 
also that if K 1,K2 are two function fields of dimension 1, then any k-homo
morphism K 2 ~ K 1 is represented by a morphism of CK, to CKz· 

We will begin our study in an oblique manner by defining the notion of an 
"abstract nonsingular curve" associated with a given function field. It will 
not be clear a priori that this is a variety. However, we will see in retrospect 
that we have defined nothing new. 

First we have to recall some basic facts about valuation rings and Dede
kind domains. 

Definition. Let K be a field and let G be a totally ordered abelian group. A 
valuation of K with values in G is a map v:K - {0} ~ G such that for all 
x,y E K, x,y i= 0, we have: 

(1) v(xy) = v(x) + v(y); 

(2) v(x + y) ;;:;, min(v(x),v(y) ). 
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Ifv is a valuation, then the set R = {xEKJv(x) ~ 0} u {0} is a subring of K, 
which we call the valuation ring ofv. The subset m = {xEKJv(x) > 0} u 
{0} is an ideal in R, and R,m is a local ring. A valuation ring is an integral 
domain which is the valuation ring of some valuation of its quotient field. 
If R is a valuation ring with quotient field K, we say that R is a valuation 
ring of K. If k is a subfield of K such that v(x) = 0 for all x E k - {0}, 
then we say vis a valuation of Kjk, and R is a valuation ring of Kjk. (Note 
that valuation rings are not in general noetherian!) 

Definition. If A,B are local rings contained in a .field K, we say that B dominates 
A if A S:::: Band m 8 n A = rnA-

Theorem 6.1A. Let K be afield. A local ring R contained inK is a valuation 

ring of K if and only if it is a maximal element of the set of local rings con
tained in K, with respect to the relation of domination. Every local ring 
contained in K is dominated by some valuation ring of K. 

PROOF. Bourbaki [2, Ch. VI, §1, 3] or Atiyah-Macdonald [1, Ch. 5, p. 65, 
and exercises, p. 72]. 

Definition. A valuation v is discrete if its value group G is the integers. The 
corresponding valuation ring is called a discrete valuation ring. 

Theorem 6.2A. Let A be a noetherian local domain of dimension one, with 
maximal ideal m. Then the following conditions are equivalent: 

(i) A is a discrete valuation ring; 
(ii) A is integrally closed; 

(iii) A is a regular local ring; 
(iv) m is a principal ideal. 

PROOF. Atiyah-Macdonald [1, Prop. 9.2, p. 94]. 

Definition. A Dedekind domain is an integrally closed noetherian domain of 
dimension one. 

Because integral closure is a local property (Atiyah-Macdonald [1, Prop. 
5.13, p. 63]), every localization of a Dedekind domain at a nonzero prime 
ideal is a discrete valuation ring. 

Theorem 6.3A. The integral closure of a De de kind domain in a finite extension 
field of its quotient field is again a Dedekind domain. 

PROOF. Zariski-Samuel [1, vol. 1, Th. 19, p. 281]. 

We now turn to the case of a function field K of dimension 1 over k, where 
k is our fixed algebraically closed base field. We wish to establish a connection 
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between non-singular curves with function field K and the set of discrete 
valuation rings of Kjk. If Pis a point on a nonsingular curve Y, then by (5.1) 
the local ring (!JP is a regular local ring of dimension one, and so by (6.2A) it 
is a discrete valuation ring. Its quotient field is the function field K of Y, 
and since k ~ (!Jp, it is a valuation ring of Kjk. Thus the local rings of Y 
define a subset of the set CK of all discrete valuation rings of Kjk. This 
motivates the definition of an abstract nonsingular curve below. But first 
we need a few more preliminaries. 

Lemma 6.4. Let Y be a quasi-projective variety, let P,Q E Y, and suppose that 
(!JQ ~ (!JP as subrings of K(Y). Then P = Q. 

PROOF. Embed Y in pn for some n. Replacing Y by its closure, we may 
assume Y is projective. After a suitable linear change of coordinates in pn, 
we may assume that neither P nor Q is in the hyperplane H 0 defined by 
x0 = 0. Thus P,Q E Y n (Pn - H 0) which is affine, so we may assume that 
Y is an affine variety. 

Let A be the affine ring of Y. Then there are maximal ideals m,n ~ A 
such that (!JP = A"' and (!JQ = Alt. If (!JQ ~ (!Jp, we must have m ~ n. But 
m is a maximal ideal, so m = n, hence P = Q, by (3.2b). 

Lemma 6.5. Let K be a function field of dimension one over k, and let x E K. 
Then {R E CKix ¢ R} is a finite set. 

PROOF. If R is a valuation ring, then x ¢ R if and only if 1/x E mR. So letting 
y = 1/x, we have to show that if y E K, y # 0, then {R E CKIY E mR} is a 
finite set. If y E k, there are no such R, so let us assume y ¢ k. 

We consider the sub ring k[ y J of K generated by y. Since k is algebraically 
closed, y is transcendental over k, hence k[y] is a polynomial ring. Further
more, since K is finitely generated and of transcendence degree 1 over k, 
K is a finite field extension of k(y). Now let B be the integral closure of 
k[y] inK. Then by (6.3A), B is a Dedekind domain, and it is also a finitely 
generated k-algebra (3.9A). 

Now if y is contained in a discrete valuation ring R of Kjk, then k[y J ~ R, 
and since R is integrally closed in K, we have B ~ R. Let n = mR n B. 
Then n is a maximal ideal of B, and B is dominated by R. But Bit is also a 
discrete valuation ring of Kjk, hence Bit = R by the maximality of valuation 
rings (6.1A). 

If furthermore y E mR, then yEn. Now B is the affine coordinate ring 
of some affine variety Y (1.4.6). Since B is a Dedekind domain, Y has di
mension one and is nonsingular. To say that yEn says that y, as a regular 
function on Y, vanishes at the point of Y corresponding to n. But y # 0, 
so it vanishes only at a finite set of points; these are in 1-1 correspondence 
with the maximal ideals of B by (3.2), and R = Bit is determined by the 
maximal ideal n. Hence we conclude that y E mR for only finitely many 
RECK, as required. 
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Corollary 6.6. Any discrete valuation ring of Kjk is isomorphic to the local 
ring of a point on some nonsingular affine curve. 

PROOF. Given R, let y E R - k. Then the construction used in the proof 
of ( 6.5) gives such a curve. 

We now come to the definition of an abstract nonsingular curve. Let 
K be a function field of dimension 1 over k (i.e., a finitely generated exten
sion field of transcendence degree 1). Let CK be the set of all discrete valua
tion rings of Kjk. We will sometimes call the elements of CK points, and 
write P E CK, where P stands for the valuation ring Rp. Note that the set 
CK is infinite, because it contains all the local rings of any nonsingular 
curve with function field K; those local rings are all distinct (6.4), and there 
are infinitely many of them (Ex. 4.8). We make CK into a topological space 
by taking the closed sets to be the finite subsets and the whole space. If 
U c:; C K is an open subset of C K• we define the ring of regular functions 
on u to be (!J(U) = nPeU Rp. An element/ E (!J(U) defines a function from 
U to k by taking f(P) to be the residue off modulo the maximal ideal of 
Rp. (Note by (6.6) that for any RECK, the residue field of R is k.) If two 
elements f,g E @(U) define the same function, then f - g E mp for infi
nitely many PECK, so by (6.5) and its proof, f = g. Thus we can identify 
the elements of @(U) with functions from U to k. Note also by (6.5) that 
any f E K is a regular function on some open set U. Thus the function 
field of CK, defined as in §3, is just K. 

Definition. An abstract nonsingular curve is an open subset U c:; CK, where 
K is a function field of dimension 1 over k, with the induced topology, 
and the induced notion of regular functions on its open subsets. 

Note that it is not clear a priori that such an abstract curve is a variety. 
So we will enlarge the category of varieties by adjoining the abstract curves: 

Definition. A morphism q>: X ~ Y between abstract nonsingular curves or 
varieties is a continuous mapping such that for every open set V c:; Y, 
and every regular function f: V ~ k, f o q> is a regular function on 
q> -l(V). 

Now that we have apparently enlarged our category, our task will be 
to show that every nonsingular quasi-projective curve is isomorphic to an 
abstract nonsingular curve, and conversely. In particular, we will show 
that CK itself is isomorphic to a nonsingular projective curve. 

Proposition 6.7. Every nonsingular quasi-projective curve Y is isomorphic 
to an abstract nonsingular curve. 
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PROOF. Let K be the function field of Y. Then each local ring (!JP of a point 
P E Y is a discrete valuation ring of Kjk, by (5.1) and (6.2A). Furthermore, 
by ( 6.4), distinct points give rise to distinct sub rings of K. So let U s; C K 

be the set of local rings of Y, and let <p: Y ---> U be the bijective map defined 
by <p(P) = @p. 

First, we need to show that U is an open subset of CK. Because open 
sets are complements of finite sets, it is sufficient to show that U contains a 
nonempty open set. Thus, by (4.3), we may assume Y is affine, with affine 
ring A. Then A is a finitely generated k-algebra, and by (3.2), K is the 
quotient field of A, and U is the set of localizations of A at its maximal 
ideals. Since these local rings are all discrete valuation rings, U consists in 
fact of all discrete valuation rings of Kjk containing A. Now let xt> ... ,x" 
be a set of generators of A over k. Then A s; Rp if and only if x 1, ... , 

Xn E Rp. Thus u = n U;, where U; = {P E CKixi E Rp }. But by (6.5), 
{ P E CKix; ¢ Rp} is a finite set. Therefore· each U; and hence also U is open. 

So we have shown that the U defined above is an abstract nonsingular 
curve. To show that <p is an isomorphism, we need only check that the 
regular functions on any open set are the same. But this follows from the 
definition of the regular functions on U and the fact that for any open set 
v s; Y, G(V) = nPeV GP,Y· 

Now we need a result about extensions of morphisms from curves to 
projective varieties, which is interesting in its own right. 

Proposition 6.8. Let X be an abstract nonsingular curve, let P E X, let Y be 
a projective variety, and let <p:X - P---> Y be a morphism. Then there 
exists a unique morphism q5: X ---> Y extending <p. 

PROOF. Embed Y as a closed subset of P" for some n. Then it will be suffi
cient to show that <p extends to a morphism of X into P", because if it does, 
the image is necessarily contained in Y. Thus we reduce to the case Y = P". 

Let pn have homogeneous coordinates x 0 , ... ,x", and let U be the open 
set where x 0 , ... ,xn are all nonzero. By using induction on n, we may 
assume that <p(X - P) n U =/= 0. Because if <p(X - P) n U = 0. then 
<p(X - P) s; P" - U. But pn - U is the union of the hyperplanes H; 
defined by X; = 0. Since <p(X - P) is irreducible, it must be contained in 
H; for some i. Now H; ~ pn-1, so the result would follow by induction. 
So we will assume that <p(X - P) n U =1- 0. 

For each i,j, x;/xi is a regular function on U. Pulling it back by <p, we 
obtain a regular function fii on an open subset of X, which we view as a 
rational function on X, i.e., fii E K, where K is the function field of X. 

Let v be the valuation of K associated with the valuation ring Rp. Let 
r; = v(f;o), i = 0,1, ... ,n, r; E Z. Then since x;/xi = (x;/x0 )/(x)x0 ), we have 

i,j = 0, ... ,n. 
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Choose k such that rk is minimal among r0 , . .. ,rn- Then v(};d ~ 0 for all i, 
hence j~b ... Jnk E Rp. Now define ip(P) = (f0k(P), ... ,j,k(P) ), and ip(Q) = 
cp(Q) for Q -=f. P. I claim that ip is a morphism of X to pn which extends cp, 
and that ip is unique. The uniqueness is clear by construction (it also follows 
from (4.1) ). To show that ip is a morphism, it will be sufficient to show that 
regular functions in a neighborhood of ip(P) pull back to regular functions 
on X. Let uk <:; pn be the open set where xk -=f. 0. Then ip(P) E ub since 
hk(P) = 1. Now Uk is affine, with affine coordinate ring equal to 

k[ x0/xb ... ,xn/xk]. 

These functions pull back to fob ... ,j,k which are regular at P by con-
struction. It follows immediately that for any smaller neighborhood ip(P) E 

V <:; Ub regular functions on V pull back to regular functions on X. Hence 
ip is a morphism, which completes the proof. 

Now we come to our main result. 

Theorem 6.9. Let K be a function field of dimension 1 over k. Then the 

abstract nonsingular curve CK defined above is isomorphic to a nonsingular 

projective curve. 

PROOF. The idea of the proof is this: we first cover C = CK with open 
subsets Ui which are isomorphic to nonsingular affine curves. Let Y; be 
the projective closure of this affine curve. Then we use (6.8) to define a 
morphism <pi: C --> Y;. Next, we consider the product mapping cp: C --> flY;, 
and let Y be the closure of the image of C. Then Y is a projective curve, 
and we show that cp is an isomorphism of C onto Y. 

To begin with, let P E C be any point. Then by (6.6) there is a nonsingular 
affine curve V and a point Q E V with Rp ~ (IJQ· It follows that the function 
field of Vis K, and then by (6.7}, Vis isomorphic to an open subset of C. 
Thus we have shown that every point P E C has an open neighborhood 
which is isomorphic to an affine variety. 

Since C is quasi-compact, we can cover it with a finite number of open 
subsets Ui, each of which is isomorphic to an affine variety V;. Embed 
V; <:; A"', think of An' as an open subset of pn,, and let Y; be the closure of 

V; in P"'. Then Y; is a projective variety, and we have a morphism tp;: U; --> Y; 
which is an isomorphism of Ui onto its image. 

By (6.8) applied to the finite set of points C - U;, we can find a morphism 

i[5;: C --> Y; extending <pi. Let f1 Y; be the product of the projective varieties 
Y; (Ex. 3.16). Then f1Y; is also a projective variety. Let cp:C--> f1Y; be the 
"diagonal" map cp(P) = f1ip;(P), and let Y be the closure of the image of 
<p. Then Y is a projective variety, and cp: C --> Y is a morphism whose 
image is dense in Y. (It follows that Y is a curve.) 

Now we must show that cp is an isomorphism. For any point P E C, we 
have P E U; for some i. There is a commutative diagram 
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c y 

J 
of dominant morphisms, where n is the projection map onto the ith factor. 
Thus we have inclusions of local rings 

(!) rp;(P),Y; ~ (!) rp(P),Y ~ (!) P,C 

by (Ex. 3.3). The two outside ones are isomorphic, so the middle one is 
also. Thus we see that for any P E C, the map cpp: (!) rp(P),Y --+ (!) P,c is an 
isomorphism. 

Next, let Q be any point of Y. Then (!)Q is dominated by some discrete 
valuation ring R of Kjk (take for example a localization of the integral 
closure of (!)Qat a maximal ideal). But R = Rp for some P E C, and (l)rp(Pl ~ 

R, so by (6.4) we must have Q = cp(P). This shows that cp is surjective. 
But cp is clearly injective, because distinct points of C correspond to distinct 
subrings of K. 

Thus cp is a bijective morphism of C to Y, and for every P E C, cpp is an 
isomorphism, so by (Ex. 3.3b), cp is an isomorphism. 

Corollary 6.10. Every abstract nonsingular curve is isomorphic to a quasi
projective curve. Every nonsingular quasi-projective curve is isomorphic 
to an open subset of a nonsingular projective curve. 

Corollary 6.11. Every curve is birationally equivalent to a nonsingular pro
jective curve. 

PROOF. Indeed, if Y is any curve, with function field K, then Y is birationally 
equivalent to CK which is nonsingular and projective. 

Corollary 6.12. The following three categories are equivalent: 

(i) nonsingular projective curves, and dominant morphisms; 
(ii) quasi-projective curves, and dominant rational maps; 

(iii) function fields of dimension 1 over k, and k-homomorphisms. 

PROOF. We have an obvious functor from (i) to (ii). We have the functor 
Y --+ K( Y) from (ii) to (iii), which induces an equivalence of categories by 
(4.4). To complete the cycle, we need a functor from (iii) to (i). 

To a function field K, associate the curve CK, which by the theorem is a 
projective nonsingular curve. If K 2 --+ K 1 is a homomorphism, then by 
(ii) ~ (iii), it induces a rational map of the corresponding curves. This can 
be represented by a morphism cp: U --+ CK2 , where U ~ CK, is an open 
subset. By (6.8) cp extends to a morphism cp:CK,--+ CK2 • If K 3 --+ K 2 --+ K 1 
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are two homomorphisms, it follows from the uniqueness part of (6.8) that 
the corresponding morphisms C1 -+ C2 -+ C3 and C1 -+ C3 are compatible. 
Hence K ~ CK is a functor from (iii) -+ (i). It is clearly inverse to the given 
functor (i) -+ (ii) -+ (iii), so we have an equivalence of categories. 

EXERCISES 

6.1. Recall that a curve is rational if it is birationally equivalent to P1 (Ex. 4.4). Let Y 
be a nonsingular rational curve which is not isomorphic to P1. 

(a) Show that Y is isomorphic to an open subset of A 1 . 

(b) Show that Y is affine. 
(c) Show that A(Y) is a unique factorization domain. 

6.2. An Elliptic Curve. Let Y be the curve y2 = x3 - x in A2, and assume that the 
characteristic of the base field k is =1= 2. In this exercise we will show that Y is not a 
rational curve, and hence K(Y) is not a pure transcendental extension of k. 
(a) Show that Yisnonsingular,anddeducethatA = A(Y):::::: k[x,y]j(y2 - x3 + x) 

is an integrally closed domain. 
(b) Let k[x] be the subring of K = K(Y) generated by the image of x in A. Show 

that k[ x] is a polynomial ring, and that A is the integral closure of k[ x] in K. 
(c) Show that there is an automorphism u: A ->A which sends y to - y and leaves 

x fixed. For any a E A, define the norm of a to be N(a) = a· u(a). Show that 
N(a) E k[x], N(l) = 1, and N(ab) = N(a) · N(b) for any a,b EA. 

(d) Using the norm, show that the units in A are precisely the nonzero elements of 
k. Show that x and y are irreducible elements of A. Show that A is not a 
unique factorization domain. 

(e) Prove that Y is not a rational curve (Ex. 6.1). See (II, 8.20.3) and (III, Ex. 5.3) 
for other proofs of this important result. 

6.3. Show by example that the result of (6.8) is false if either (a) dim X :;:, 2, or (b) Y is 
not projective. 

6.4. Let Y be a nonsingular projective curve. Show that every nonconstant rational 
function f on Y defines a surjective morphism tp: Y -> P 1, and that for every P E P 1, 

tp - 1(P) is a finite set of points. 

6.5. Let X be a nonsingular projective curve. Suppose that X is a (locally closed) 
subvariety of a variety Y (Ex. 3.10). Show that X is in fact a closed subset of Y. 
See (II, Ex. 4.4) for generalization. 

6.6. Automorphisms ofP1• Think of P 1 as A 1 u { oo }. Then we define a fractional 
linear transformation of P 1 by sending x f-> (ax + b)j(cx + d), for a,b,c,d E k, 
ad - be =1= 0. 

46 

(a) Show that a fractional linear transformation induces an automorphism of P 1 

(i.e., an isomorphism of P1 with itself). We denote the group of all these 
fractional linear transformations by PGL(l). 

(b) Let Aut P 1 denote the group of all automorphisms of P1. Show that Aut P1 :::::: 

Aut k(x), the group of k-automorphisms of the field k(x). 
(c) Now show that every automorphism of k(x) is a fractional linear transforma

tion, and deduce that PGL(l)-> Aut P 1 is an isomorphism. 
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Note: We will see later (II, 7.1.1) that a similar result holds for P": every automor
phism is given by a linear transformation of the homogeneous coordinates. 

6.7. LetP1 , ... ,P, Q1 , ... ,Qs be distinct points of A1 . IfA 1 - {P1 , ... ,P,} is isomor-
phic to A1 - {Q1 , ... ,Qs}, show that r = s. Is the converse true? Cf. (Ex. 3.1). 

7 Intersections in Projective Space 

The purpose of this section is to study the intersection of varieties in a 
projective space. If Y, Z are varieties in pn, what can one say about Y n Z? 
We have already seen (Ex. 2.16) that Y n Z need not be a variety. But it 
is an algebraic set, and we can ask first about the dimensions of its irreducible 
components. We take our cue from the theory of vector spaces: if U,V are 
subspaces of dimensions r,s of a vector space W of dimension n, then 
U n V is a subspace of dimension ~ r + s - n. Furthermore, if U and V 
are in sufficiently general position, the dimension of U n V is equal to 
r + s - n (provided r + s - n ~ 0). This result on vector spaces imme
diately implies the analogous result for linear subspaces of pn (Ex. 2.11). 
Our first result in this section will be to prove that if Y,Z are subvarieties of 
dimensions r,s ofPn, then every irreducible component of Y n Z has dimen
sion ~ r + s - n. Furthermore, if r + s - n ~ 0, then Y n Z is nonempty. 

Knowing something about the dimension of Y n Z, we can ask for more 
precise information. Suppose for example that r + s = n, and that Y n Z 
is a finite set of points. Then we can ask, how many points are there? Let 
us look at a special case. If Y is a curve of degree din P2 , and if Z is a line 
in P2 , then Y n Z consists of at most d points, and the number comes to d 
exactly if we count them with appropriate multiplicities (Ex. 5.4). This 
result generalizes to the well-known theorem of Bezout, which says that if 
Y,Z are plane curves of degrees d,e, with Y -:f. Z, then Y n Z consists of 
de points, counted with multiplicities. We will prove Bezout's theorem 
later in this section (7.8). 

The ideal generalization of Bezout's theorem to pn would be this. First, 
define the degree of any projective variety. Let Y,Z be varieties of dimen
sions r,s, and of degrees d,e in pn. Assume that Y and Z are in a sufficiently 
general position so that all irreducible components of Y n Z have di
mension = r + s - n, and assume that r + s - n ~ 0. For each ir
reducible component W of Y n Z, define the intersection multiplicity 
i(Y,Z; W) of Y and Z along W. Then we should have 

l)(Y,Z; W) · deg W = de, 

where the sum is taken over all irreducible components of Y n Z. 
The hardest part of this generalization is the correct definition of the 

intersection multiplicity. (And, by the way, historically it took many at
tempts before a satisfactory treatment was given by Severi [3] geometrically 
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and by Chevalley [1] and Wei! [1] algebraically). We will define the inter
section multiplicity only in the case where Z is a hypersurface. See Appendix 
A for the general case. 

Our main task in this section will be the definition of the degree of a 
variety Y of dimension r in P". Classically, the degree of Y is defined as the 
number of points of intersection of Y with a sufficiently general linear space 
L of dimension 11 - r. However, this definition is difficult to use. Cutting 
Y successively with r sufficiently general hyperplanes, one can find a 
linear space L of dimension 11 - r which meets Y in a finite number of 
points (Ex. 1.8). But the number of intersection points may depend on L, 
and it is hard to make precise the notion "sufficiently general." 

Therefore we will give a purely algebraic definition of degree, using the 
Hilbert polynomial of a projective variety. This definition is less geo
metrically motivated, but it has the advantage of being precise. In an 
exercise we show that it agrees with the classical definition in a special case 
(Ex. 7.4). 

Proposition 7.1 (Affine Dimension Theorem). Let Y,Z be varieties of dimen
sions r,s in A". Then every irreducible component W of Y n Z has 
dimension ;?! r + s - n. 

PROOF. We proceed in several steps. First, suppose that Z is a hypersurface, 
defined by an equation f = 0. If Y c::::: Z, there is nothing to prove. If 
Y ¢. Z, we must show that each irreducible component W of Y n Z has 
dimension r - 1. Let A( Y) be the affine coordinate ring of Y Then the 
irreducible components of Y n Z correspond to the minimal prime ideals 
p of the principal ideal (f) in A(Y). Now by Krull's Hauptidealsatz (1.11A), 
each such p has height one, so by the dimension theorem (1.8A), A( Y)/p 
has dimension r - 1. By (1.7) this shows that each irreducible component 
W has dimension r - 1. 

Now for the general case. We consider the product Y x Z c::::: A 2 ", 

which is a variety of dimension r + s (Ex. 3.15). Let L1 be the diagonal 
{P x PIPE A"} c::::: A2". ThenA"isisomorphicto.dbythemapP ~ P x P, 
and under this isomorphism, Y n Z corresponds to ( Y x Z) n .d. Since 
~ has dimension n, and since r + s - n = (r + s) + n - 2n, we reduce 
to proving the result for the two varieties Y x Z and L1 in A2". Now L1 is 
an intersection of exactly n hypersurfaces, namely, x 1 - .h = 0, ... ,x" -
Yn = 0, where xb ... ,xn, y1 , ... ,yn are the coordinates of A2 ". Now ap
plying the special case above n times, we have the result. 

Theorem 7.2 (Projective Dimension Theorem). Let Y,Z be varieties of dimen
sions r,s in P". Then every irreducible component of Y n Z has dimension 
;?! r + s - n. Furthermore, if r + s - n ;?! 0, then Y n Z is nonempty. 

PROOF. The first statement follows from the previous result, since P" is 
covered by affine n-spaces. For the second result, let C(Y) and C(Z) be the 
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cones over Y,Z in A"+ 1 (Ex. 2.10). Then C(Y), C(Z) have dimensions r + 1, 
s + 1, respectively. Furthermore, C(Y) n C(Z) # 0, because both contain 
the origin P = (0, ... ,0). By the affine dimension theorem, C(Y) n C(Z) has 
dimension ~(r + 1) + (s + 1) - (n + 1) = r + s - n + 1 > 0. Hence 
C(Y) n C(Z) contains some point Q # P, and soY n Z # 0. 

Next, we come to the definition of the Hilbert polynomial of a projective 
variety. The idea is to associate to each projective variety Y s;: Pi: a poly
nomial Py E Q[ z] from which we can obtain various numerical invariants 
of Y. We will define Pr starting from the homogeneous coordinate ring S(Y). 
In fact, more generally, we will define a Hilbert polynomial for any graded 
S-module, where S = k[x0 , ... ,xnJ. Although the next few results are almost 
pure algebra, we include their proofs, for lack of a suitable reference. 

Definition. A numerical polynomial is a polynomial P(z) E Q[ z] such that 
P(n) E Z for all n » 0, n E Z. 

Proposition 7.3. 
(a) If P E Q[ z] is a numerical polynomial, then there are integers 

c0 ,ct. ... ,c, such that 

where 

(z) = J_ z(z - 1) · · · (z - r + 1) 
r r! 

is the binomial coefficient function. In particular P(n) E Z for all n E Z. 
(b) If f:Z --+ Z is any function, and if there exists a numerical poly

nomial Q(z) such that the difference function LJf = f(n + 1) - f(n) is equal 
to Q(n) for all n » 0, then there exists a numerical polynomial P(z) such 
that f(n) = P(n) for all n » 0. 

PROOF. 

(a) By induction on the degree of P, the case of degree 0 being obvious. 
Since (;) = z' /r! + ... , we can express any polynomial P E Q[ z] of degree r 
in the above form, with c0 , ... ,c, E Q. For any polynomial P we define the 
difference polynomialLJP by LJP(z) = P(z + 1) - P(z). Since L1 (~) = {r..: d, 

L1P = c0 (r ~ 1) + C1 (r ~ 2) + ... + cr-1· 

By induction, c0 , ... ,c,_ 1 E Z. But then c, E Z since P(n) E Z for n » 0. 
(b) Write 

Q = c0 (:) + . . . + c, 
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with c0 , ... ,c, E Z. Let 

Then L1P = Q, so L1(f - P)(n) = 0 for all n » 0, so (f - P)(n) = 
constant c,+ 1 for all n » 0, so 

f(n) = P(n) + c,+ 1 

for all n » 0, as required. 

Next, we need some preparations about graded modules. Let S be a 
graded ring (cf. §2). A graded S-module is an S-module M, together with a 
decomposition M = (£ldEZ Ma, such that Sa· Me ~ Md+e· For any graded 
S-module M, and for any IE Z, we define the twisted module M(l) by shifting 
l places to the left, i.e., M(/)d = Md+l· If M is a graded S-module, we define 
the annihilator of M, Ann M = {s E Sis· M = 0} .. This is a homogeneous 
ideal inS. 

The next result is the analogue for graded modules of a well-known result 
for modules of finite type over a noetherian ring (Bourbaki [1, Ch. IV, 
§1, no. 4] or Matsumura [2, p. 51]). Again, we include the proof for lack 
of an adequate reference. 

Proposition 7.4. Let M be a .finitely generated graded module over a noetherian 
graded ringS. Then there exists a .filtration 0 = M 0 ~ M 1 ~ ... ~ M' = 

M by graded submodules, such that for each i, Mi/Mi- 1 ~ (S/p;)(l;), 
where Pi is a homogeneous prime ideal of S, and liE Z. The filtration is 
not unique, but for any such .filtration we do have: 

(a) if p is a homogeneous prime ideal of S, then .p ~ Ann M <o> .p ~ .Pi 
for some i. In particular, the minimal elements of the set { .p b ... ,.p,} are 
just the minimal primes of M, i.e., the primes which are minimal containing 
AnnM; 

(b) for each minimal prime of M, the number of times which .p occurs 
in the set { p 1, ... ,p,} is equal to the length of Mp over the local ring Sp 
(and hence is independent of the filtration). 

PROOF. For the existence of the filtration, we consider the set of graded 
submodules of M which admit such a filtration. Clearly, the zero module 
does, so the set is nonempty. M is a noetherian module, so there is a maximal 
such submodule M' ~ M. Now consider M" = MjM'. If M" = 0, we are 
done. If not, we consider the set of ideals -3 = {Im = Ann(m)lm EM" is a 
homogeneous element, m #- 0}. Each Im is a homogeneous ideal, and Jm #- S. 
Since S is a noetherian ring, we can find an element mE M", m #- 0, such 
that Im is a maximal element of the set -3. I claim that Im is a prime ideal. 
Let a,b E S. Suppose that abE Jm, but b ¢ Im. We wish to show a E Jm. By 
splitting into homogeneous components, we may assume that a,b are homo
geneous elements. Now consider the element bm EM". Since b ¢ Im, 
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bm =1- 0. We have Im ~ Ibm' so by maximality of lm, Im = Ibm· But abE Im, 
so abm = 0, so a E Ibm = Im as required. Thus Im is a homogeneous prime 
ideal of S. Call it p. Let m have degree l. Then the module N ~ M" generated 
by m is isomorphic to (S/p )( -1). Let N' ~ M be the inverse image of N in M. 
Then M' ~ N', and N'/M' ~ (S/p)( -1). So N' also has a filtration of the 
type required. This contradicts the maximality of M'. We conclude that M' 
was equal to M, which proves the existence of the filtration. 

Now suppose given such a filtration of M. Then it is clear that p 2 
Ann M <o:> p 2 Ann(M;/M;- 1) for some i. But Ann((S/p;)(l)) = p; so this 
proves (a). 

To prove (b) we localize at a minimal prime p. Since p is minimal in the 
set {PI> ... ,p,}, after localization, we will have M!, = M/,- 1 except in the 
cases where P; = p. And in those cases M~/M/,- 1 ~ (S/p)p = k(p), the 
quotient field of Sjp (we forget the grading). This shows that MP is an 
Sp-module of finite length equal to the number of times p occurs in the set 
{p1, ... ,p,}. 

Definition. If p is a minimal prime of a graded S-module M, we define the 
multiplicity of M at p, denoted flp(M), to be the length of MP over Sp. 

Now we can define the Hilbert polynomial of a graded module Mover the 
polynomial ring S = k[ x 0 , . .. ,xnJ. First, we define the Hilbert function 
CfJM of M, given by 

for each l E Z. 

Theorem 7.5. (Hilbert-Serre). Let M be a finitely generated graded S = 

k[ x 0 , ... ,xnJ-module. Then there is a unique polynomial P M(z) E Q[ z] 
such that cpM(l) = PM(l) for all l » 0. Furthermore, deg PM(z) = 
dim Z(Ann M), where Z denotes the zero set in pn of a homogeneous 
ideal (cf. §2). 

PROOF. If 0---+ M' ---+ M ---+ M" ---+ 0 is a short exact sequence, then CfJM = 

CfJM' + CfJM"' and Z(Ann M) = Z(Ann M') u Z(Ann M"), so if the theorem 
is true forM' and M", it is also true forM. By (7.4), M has a filtration with 
quotients of the form (Sjp)(l) where p is a homogeneous prime ideal, and 
l E Z. So we reduce to M ~ (S/p)(l), The shift l corresponds to a change 
of variables z f--+ z + l, so it is sufficient to consider the case M = Sjp. If 
p = (x0 ,.,. ,xn), then CfJM(l) = 0 for l > 0, so PM = 0 is the corresponding 
polynomial, and deg PM = dim Z(p), where we make the convention that 
the zero polynomial has degree -1, and the empty set has dimension - 1. 

If p =1- (x0 , ... ,xn), choose X; ¢ p, and consider the exact sequence 
0---+ M ~ M---+ M" ---+ 0, where M" = M/x;M, Then CfJM"(l) = CfJM(l) -
CfJM(l- 1) = (LJcpM)(l- 1). On the other hand, Z(Ann M") = Z(p) n H, 
where His the hyperplane X; = 0, and Z(p) '*' H by choice of X;, so by (7.2), 
dim Z(Ann M") = dim Z(p) - 1. Now using induction on dim Z(Ann M), 
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we may assume that CfJM" is a polynomial function, corresponding to a poly
nomial PM" of degree = dim Z(Ann M"). Now, by (7.3), it follows that CfJM 
is a polynomial function, corresponding to a polynomial of degree = 
dim Z(p). The uniqueness of PM is clear. 

Definition. The polynomial PM of the theorem is the Hilbert polynomial of M. 

Definition. If Y <:; P" is an algebraic set of dimension r, we define the Hilbert 
polynomial of Y to be the Hilbert polynomial Py of its homogeneous 
coordinate ring S(Y). (By the theorem, it is a polynomial of degree r.) 
We define the degree of Y to be r! times the leading coefficient of Py. 

Proposition 7 .6. 
(a) If Y <:; P", Y =I= 0, then the degree of Y is a positive integer. 
(b) Let Y = Y1 u Y2 , where Y1 and Y2 have the same dimension r, and 

where dim(Y1 n Y2 ) < r. Then deg Y = deg Y1 + deg Y2 • 

(c) deg P" = 1. 
(d) If H <:; P" is a hypersurface whose ideal is generated by a homo

geneous polynomial of degree d, then deg H = d. (In other words, this 
definition of degree is consistent with the degree of a hyperswface as defined 
earlier (1.4.2).) 

PROOF. 

(a) Since Y =I= 0, Py is a nonzero polynomial of degree r = dim Y. By 
(7.3a), deg Y = c0 , which is an integer. It is a positive integer because for 

l » 0, Py(l) = CfJs1Al) ~ 0. 
(b) Let It. I 2 be the ideals of Y1 and Y2 . Then I = I 1 n I 2 is the ideal of 

Y. We have an exact sequence 

0---> Sji ~ S/I 1 EB S/I 2 ---> S/(1 1 + I 2 )---> 0. 

NowZ(I 1 + I 2 ) = Y1 n Y2 ,whichhassmallerdimension. HencePs;u,+J 2 l 

has degree <r. So the leading coefficient of Ps11 is the sum of the leading 
coefficients of Ps11 , and Ps;lo' 

(c) We calculate the Hilbert polynomial of Pn. It is the polynomial Ps, 

where s = k[xo, 0 0 0 ,xnJ. For l > 0, C(Js(l) = e~"), soPs = (Z~"). In partic
ular, its leading coefficient is 1/n !, so deg P" = 1. 

(d) Iff E Sis homogeneous of degree d, then we have an exact sequence 
of graded S-modules 

J 
0 ---> S(- d) ---> S ---> S/(f) ---> 0. 

Hence 
CfJs;(fj(/) = CfJs(l) - CfJsU - d). 

Therefore we can find the Hilbert polynomial of H, as 

PH(z) = (z: n)- (z- ~ + n) = (n ~ 1)! zn-1 + .... 

Thus deg H = d. 
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Now we come to our main result about the intersection of a projective 
variety with a hypersurface, which is a partial gen-eralization of Bezout's 
theorem to higher projective spaces. Let Y c:; P" be a projective variety 
of dimension r. Let H be a hypersurface not containing Y Then, by (7.2), 
Y n H = Z 1 u ... u Z, where Zi are varieties of dimension r - 1. Let 
Pi be the homogeneous prime ideal of Zi. We define the intersection multi

plicity of Yand H along Zi to be i(Y,H; Z) = f.lp,(Sf(/y + lu)). Here lrJH 
are the homogeneous ideals of Y and H. The module M = Sj(/y + /H) has 
annihilator /y + IH, and Z(/y + /H) = Y n H, so pi is a minimal prime of 
M, and f.1 is the multiplicity introduced above. 

Theorem 7.7. Let Y be a variety of dimension ~ 1 in P", and let H be a hyper
surface not containing Y. Let Z 1, ... ,Zs be the irreducible components 
of Yn H. Then 

s 

L i(Y,H; Z). deg zj = (deg Y)(deg H). 
j= 1 

PROOF. Let H be defined by the homogeneous polynomial f of degree d. 
We consider the exact sequence of graded S-modules 

0--> (Sjly)( -d)!.. Sflr--> M--> 0, 

where M = Sj(I y + I H). Taking Hilbert polynomials, we find that 

PM(z) = Py(z) - Py(z - d). 

Our result comes from comparing the leading coefficients of both sides 
of this equation. Let Y have dimension r and degree e. Then Py(z) = 

(ejr!)z' + ... so on the right we have 

(ejr!)z' + ... - [(ejr!)(z - d)' + ... ] = (dej(r - l)!)z'- 1 + .... 

Now consider the module M. By (7.4), M has a filtration 0 = M 0 c:; M 1 c:; 

... c:; Mq = M, whose quotients Mi/Mi- 1 are of the form (S/q;)(l;). Hence 
PM = L1= 1 P;, where P; is the Hilbert polynomial of (S/q;)(l;). If Z(q;) is 
a projective variety of dimension r; and degree/;, then 

P; = (/;/r; !)z'' + .... 

Note that the shift I; does not affect the leading coefficient of P;. Since we 
are interested only in the leading coefficient of P;, we can ignore those P; 
of degree < r - 1. We are left with those P;, where q; is a minimal prime of 
M, namely, one of the primes p 1, ... ,ps corresponding to the Zi. Each one 
of these occurs f.1p1(M) times, so the leading coefficient of PM is 

(t
1 

i(Y,H; Zi) · deg zi)/(r- 1)! 

Comparing with the above, we have our result. 
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Corollary 7.8 (Bezout's Theorem). Let Y,Z be distinct curves in P 2, having 
degrees d,e. Let Y n Z = {P1, ... ,P5 }. Then 

2)( Y,Z; Pi) = de. 

PROOF. We have only to observe that a point has Hilbert polynomial 1, 
hence degree 1. See (V, 1.4.2) for another proof. 

Remark 7.8.1. Our definition of intersection multiplicity in terms of the 
homogeneous coordinate ring is different from the local definition given 
earlier (Ex. 5.4). However, it is easy to show that they coincide in the case of 
intersections of plane curves. 

Remark 7.8.2. The proof of (7.8) extends easily to the case where Y and Z are 
"reducible curves," i.e., algebraic sets of dimension 1 in P2 , provided they 
have no irreducible component in common. 

EXERCISES 

7.1. (a) Find the degree of the d-uple embedding ofP" in pN (Ex. 2.12). [Answer: d"] 
(b) Find the degree of the Segre embedding ofP' x ps in pN (Ex. 2.14). [Answer: 

('~s)J 

7.2. Let Y be a variety of dimension r in P", with Hilbert polynomial Py. We define 
the arithmetic genus of Y to be p.(Y) = ( -1)'(Py(0) - 1). This is an important 
invariant which (as we will see later in (Ill, Ex. 5.3)) is independent of the projective 
embedding of Y 
(a) Show that p.(P") = 0. 
(b) If Y is a plane curve of degree d, show that p.(Y) = !(d - 1)(d - 2). 
(c) More generally, if His a hypersurface of degree din P", then p.(H) = (d~ 1). 

(d) If Y is a complete intersection (Ex. 2.17) of surfaces of degrees a,b in P3 , then 
p.(Y) = !ab(a + b - 4) + 1. 

(e) Let Y' c:; P", zs c:; pm be projective varieties, and embed Y x Z c:; P" x 
pm ..... pN by the Segre embedding. Show that 

7.3. The Dual Curve. Let Y c:; P2 be a curve. We regard the set oflines in P2 as another 
projective space, (P2)*, by taking (a0 ,a1,a2) as homogeneous coordinates of the 
line L:a0 x 0 + a1x 1 + a2 x 2 = 0. For each nonsingular point P E Y, show that 
there is a unique line Tp(Y) whose intersection multiplicity with Y at Pis > 1. 

This is the tangent line to Y at P. Show that the mapping P r--> Tp(Y) defines a 
morphism of Reg Y (the set of nonsingular points of Y) into (P2)*. The closure of 
the image of this morphism is called the dual curve Y* c:; (P2)* of Y 

7.4. Given a curve Y of degree din P 2, show that there is a nonempty open subset U of 
(P2)* in its Zariski topology such that for each L E U,L meets Yin exactly d points. 
[Hint: Show that the set of lines in (P2)* which are either tangent to Y or pass 
through a singular point of Y is contained in a proper closed subset.] This result 
shows that we could have defined the degree of Y to be the number d such that 
almost all lines in P2 meet Y in d points, where "almost all" refers to a nonempty 
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open set of the set of lines, when this set is identified with the dual projective space 
(P2)*. 

7.5. (a) Show that an irreducible curve Y of degree d > 1 in P 2 cannot have a point of 
multiplicity ~ d (Ex. 5.3). 

(b) If Y is an irreducible curve of degree d > 1 having a point of multiplicity 
d - 1, then Y is a rational curve (Ex. 6.1). 

7.6. Linear Varieties. Show that an algebraic set Y of pure dimension r (i.e., every 
irreducible component of Y has dimension r) has degree 1 if and only if Y is a 
linear variety (Ex. 2.11). [Hint: First, use (7.7) and treat the case dim Y = 1. Then 
do the general case by cutting with a hyperplane and using induction.] 

7.7. Let Ybe a variety of dimension rand degree d > 1 in P". Let P E Ybe a nonsingular 
point. Define X to be the closure of the union of all lines PQ, where Q E Y, Q #- P. 
(a) Show that X is a variety of dimension r + 1. 
(b) Show that deg X < d. [Hint: Use induction on dim Y.J 

7.8. Let Y' <;; P" be a variety of degree 2. Show that Y is contained in a linear subspace 
L of dimension r + 1 in P". Thus Y is isomorphic to a quadric hypersurface in 
pr+ 1 (Ex. 5.12). 

8 What Is Algebraic Geometry? 

Now that we have met some algebraic varieties, and have encountered some 
of the main concepts about them, it is appropriate to ask, what is this subject 
all about? What are the important problems in the field, and where is it 
going? 

To define algebraic geometry, we could say that it is the study of the 
solutions of systems of polynomial equations in an affine or projective 
n-space. In other words, it is the study of algebraic varieties. 

In any branch of mathematics, there are usually guiding problems, which 
are so difficult that one never expects to solve them completely, yet which 
provide stimulus for a great amount of work, and which serve as yardsticks for 
measuring progress in the field. In algebraic geometry such a problem is the 
classification problem. In its strongest form, the problem is to classify all 
algebraic varieties up to isomorphism. We can divide the problem into 
parts. The first part is to classify varieties up to birational equivalence. As 
we have seen, this is equivalent to the question of classifying function fields 
(finitely generated extension fields) over k up to isomorphism. The second 
part is to identify a good subset of a birational equivalence class, such as the 
nonsingular projective varieties, and classify them up to isomorphism. The 
third part is to study how far an arbitrary variety is from one of the good 
ones considered above. In particular, we want to know (a) how much do you 
have to add to a nonprojective variety to get a projective variety, and (b) 
what is the structure of singularities, and how can they be resolved to give a 
nonsingular variety? 
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Typically, the answer to any classification problem in algebraic geometry 
consists of a discrete part and a continuous part. So we can rephrase the 
problem as follows: define numerical invariants and continuous invariants 
of algebraic varieties, which allow one to distinguish among nonisomorphic 
varieties. Another special feature of the classification problem is that often 
when there is a continuous family of nonisomorphic objects, the parameter 
space can itself be given a structure of algebraic variety. This is a very power
ful method, because then all the techniques of the subject can be applied to 
the study of the parameter space as well as to the original varieties. 

Let us illustrate these ideas by describing what is known about the classi
fication of algebraic curves (over a fixed algebraically closed field k). First, 
the birational classification. There is an invariant called the genus of a 
curve, which is a birational invariant, and which takes on all nonnegative 
values g ~ 0. For g = 0 there is exactly one birational equivalence class, 
namely, that of the rational curves (i.e., those curves which are birationally 
equivalent to P 1 ). For each g > 0 there is a continuous family of birational 
equivalence classes, which can be parametrized by an irreducible algebraic 
variety 9Jl9 , called the variety of moduli of curves of genus g, which has di
mension 1 if g = 1, and dimension 3g - 3 if g ~ 2. Curves with g = 1 are 
called elliptic curves. Thus for curves, the birational classification question 
is answered by giving the genus, which is a discrete invariant, and a point on 
the variety of moduli, which is a continuous invariant. See Chapter IV for 
more details. 

The second question for curves, namely, to describe all nonsingular pro
jective curves in a given birational equivalence class, has a simple answer, as 
we have seen, since there is exactly one. 

For the third question, we know that any curve can be completed to a 
projective curve by adding a finite number of points, so there is not much 
more to say there. As for the classification of singularities of curves, see 
(V, 3.9.4). 

While we are discussing the classification problem, I would like to describe 
another special case where a satisfactory answer is known, namely, the 
classification of nonsingular projective surfaces within a given birational 
equivalence class. In this case one knows that (1) every birational equivalence 
class of surfaces has a nonsingular projective surface in it, (2) the set of 
nonsingular projective surfaces with a given function field Kjk is a partially 
ordered set under the relation given by the existence of a birational mor
phism, (3) any birational morphism f: X --+ Y can be factored into a finite 
number of steps, each of which is a blowing-up of a point, and (4) unless K is 
rational (i.e., equal to K(P2)) or ruled (i.e., K is the function field of a product 
P 1 x C, where C is a curve), there is a unique minimal element of this 
partially ordered set, which is called the minimal model of the function field K. 
(In the rational and ruled cases, there are infinitely many minimal elements, 
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and their structure is also well-known.) The theory of minimal models is a 
very beautiful branch of the theory of surfaces. The results were known to the 
Italians, but were first proved in all characteristics by Zariski [ 5], [ 6]. See 
Chapter V for more details. 

From these remarks it should be clear that the classification problem is a 
very fruitful problem to keep in mind while studying algebraic geometry. 
This leads us to the next question: how does one go about defining invariants 
of an algebraic variety? So far, we have defined the dimension, and for 
projective varieties we have defined the Hilbert polynomial, and hence the 
degree and the arithmetic genus Pa· Of course the dimension is a birational 
invariant. But the degree and the Hilbert polynomial depend on the em
bedding in projective space, so they are not even invariants under isomor
phism of varieties. Now it happens that the arithmetic genus is an invariant 
under isomorphism (III, Ex. 5.3), and is even a birational invariant in most 
cases (curves, surfaces, nonsingular varieties in characteristic 0; see (V, 5.6.1) ), 
but this is not at all apparent from our definition. 

To go further, we must study the intrinsic geometry on a variety, which we 
have not done at all yet. So, for example, we will study divisors on a variety X. 
A divisor is an element ofthe free abelian group generated by the subvarieties 
of codimension one. We will define linear equivalence of divisors, and then 
we can form the group of divisors modulo linear equivalence, called the 
Picard group of X. This is an intrinsic invariant of X. Another very important 
notion is that of a differential form on a variety X. Using differential forms, 
one can give an intrinsic definition of the tangent bundle and cotangent 
bundle on an algebraic variety. Then one can carry over many constructions 
from differential geometry to define numerical invariants. For example, 
one can define the genus of a curve as the dimension of the vector space of 
global differential forms on the nonsingular projective model. From this 
definition it is clear that it is a birational invariant. See (II, §6,7,8). 

Perhaps the most important modern technique for defining numerical 
invariants is by cohomology. There are many cohomology theories, but we 
will be principally concerned in this book with the cohomology of coherent 
sheaves, which was introduced by Serre [3]. Cohomology is an extremely 
powerful and versatile tool. Not only can it be used to define numerical 
invariants (for example, the genus of a curve X can be defined as dim 
H 1(X,(()x) ), but it can be used to prove many important results which do not 
apparently have any connection with cohomology, such as "Zariski's main 
theorem," which has to do with the structure of birational transformations. 
To set up a cohomology theory requires a lot of work, but I believe it is well 
worth the effort. We will devote a whole chapter to cohomology later in the 
book (Chapter III). Cohomology is also a useful vehicle for understanding 
and expressing important results such as the Riemann-Roch theorem. This 
theorem was known classically for curves and surfaces, but it was by using 
cohomology that Hirzebruch [1 J and Grothendieck (see Borel and Serre 
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[1 ]) were able to clarify and generalize it to varieties of any dimension 
(Appendix A). 

Now that we have seen a little bit of what algebraic geometry is about, we 
should discuss the degree of generality in which to develop the foundations 
of the subject. In this chapter we have worked over an algebraically closed 
field, because that is the simplest case. But there are good reasons for allowing 
fields which are not algebraically closed. One reason is that the local ring 
of a subvariety on a variety has a residue field which is not algebraically 
closed (Ex. 3.13), and at times it is desirable to give a unified treatment of 
properties which hold along a subvariety and properties which hold at a 
point. Another strong reason for allowing non-algebraically closed fields 
is that many problems in algebraic geometry are motivated by number 
theory, and in number theory one is primarily concerned with solutions of 
equations over finite fields or number fields. For example, Fermat's problem 
is equivalent to the question, does the curve x" + y" = z" in P 2 for n ~ 3 
have any points rational over Q (i.e., points whose coordinates are in Q), 
with x,y,z # 0. 

The need to work over arbitrary ground fields was recognized by Zariski 
and Weil. In fact, perhaps one of the principal contributions of Weil's 
"Foundations" [1] was to provide a systematic framework for studying 
varieties over arbitrary fields, and the various phenomena which occur 
with change of ground field. Nagata [2] went further by developing the 
foundations of algebraic geometry over Dedekind domains. 

Another direction in which we need to expand our foundations is to define 
some kind of abstract variety which does not a priori have an embedding in an 
affine or projective space. This is especially necessary in problems such as the 
construction of a variety of moduli, because there one may be able to make 
the construction locally, without knowing anything about a global em
bedding. In §6 we gave a definition of an abstract curve. In higher dimen
sions that method does not work, because there is no unique nonsingular 
model of a given function field. However, we can define an abstract variety 
by starting from the observation that any variety has an open covering by 
affine varieties. Thus one can define an abstract variety as a topological 
space X, with an open cover Ui, plus for each Ui a structure of affine variety, 
such that on each intersection Ui n Ui the induced variety structures are 
isomorphic. It turns out that this generalization of the notion of variety is 
not illusory, because in dimension ~ 2 there are abstract varieties which 
are not isomorphic to any quasi-projective variety (II, 4.10.2). 

There is a third direction in which it is useful to expand our notion of 
algebraic variety. In this chapter we have defined a variety as an irreducible 
algebraic set in affine or projective space. But it is often convenient to allow 
reducible algebraic sets, or even algebraic sets with multiple components. 
For example, this is suggested by what we have seen of intersection theory 
in §7, since the intersection of two varieties may be reducible, and the sum 
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of the ideals of the two varieties may not be the ideal of the intersection. So 
one might be tempted to define a "generalized projective variety" in P" to 
be an ordered pair < V,J), where V is an algebraic set in P", and I s; S = 

k[x 0 , . •• ,xnJ is any ideal such that V = Z(J). This is not in fact what we will 
do, but it gives the general idea. 

All three generalizations of the notion of variety suggested above are 
contained in Grothendieck's definition of a scheme. He starts from the 
observation that an affine variety corresponds to a finitely generated integral 
domain over a field (3.8). But why restrict one's attention to such a special 
class of rings? So for any commutative ring A, he defines a topological space 
Spec A, and a sheaf of rings on Spec A, which generalizes the ring of regular 
functions on an affine variety, and he calls this an affine scheme. An arbitrary 
scheme is then defined by glueing together affine schemes, thus generalizing 
the notion of abstract variety we suggested above. 

One caution about working in extreme generality. There are many ad
vantages to developing a theory in the most general context possible. In 
the case of algebraic geometry there is no doubt that the introduction of 
schemes has revolutionized the subject and has made possible tremendous 
advances. On the other hand, the person who works with schemes has to 
carry a considerable load of technical baggage with him: sheaves, abelian 
categories, cohomology, spectral sequences, and so forth. Another more 
serious difficulty is that some things which are always true for varieties may 
no longer be true. For example, an affine scheme need not have finite di
mension, even if its ring is noetherian. So our intuition must be supported 
by a good knowledge of commutative algebra. 

In this book we will develop the foundations of algebraic geometry using 
the language of schemes, starting with the next chapter. 
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CHAPTER II 

Schemes 

This chapter and the next form the technical heart of this book. In this 
chapter we develop the basic theory of schemes, following Grothendieck 
[EGA]. Sections 1 to 5 are fundamental. They contain a review of sheaf 
theory (necessary even to define a scheme), then the basic definitions of 
schemes, morphisms, and coherent sheaves. This is the language that we use 
for the rest of the book. 

Then in Sections 6, 7, 8, we treat some topics which could have been done 
in the language of varieties, but which are already more convenient to discuss 
using schemes. For example, the notion of Cartier divisor, and of an in
vertible sheaf, which belong to the new language, greatly clarify the dis
cussion ofWeil divisors and linear systems, which belong to the old language. 
Then in §8, the systematic use of nonclosed scheme points gives much more 
flexibility in the discussion of sheaves of differentials and nonsingular 
varieties, improving the treatment of (1, §5). 

In §9 we give the definition of a formal scheme, which did not have an 
analogue in the theory of varieties. It was invented by Grothendieck as a 
good way of dealing with Zariski's theory of"holomorphic functions," which 
Zariski regarded as an analogue in abstract algebraic geometry of the 
holomorphic functions in a neighborhood of a subvariety in the classical case. 

1 Sheaves 

The concept of a sheaf provides a systematic way of keeping track of local 
algebraic data on a topological space. For example, the regular functions 
on open subsets of a variety, introduced in Chapter I, form a sheaf, as we will 
see shortly. Sheaves are essential in the study of schemes. In fact, we cannot 

60 



1 Sheaves 

even define a scheme without using sheaves. So we begin this chapter with 
sheaves. For additional information, see the book of Godement [1]. 

Definition. Let X be a topological space. A presheaf :Ji' of abelian groups on 
X consists of the data 

(a) for every open subset U s; X, an abelian group :Ji'(U), and 
(b) for every inclusion V s; U of open subsets of X, a morphism of 

abelian groups Puv::!i'(U)--+ :!i'(V), 

subject to the conditions 

(0) :!i'(0) = 0, where 0 is the empty set, 
(1) Puu is the identity map :Ji'(U) --+ :Ji'(U), and 
(2) if W s; V s; U are three open subsets, then Puw = Pvw o Puv· 

The reader who likes the language of categories may rephrase this defi
nition as follows. For any topological space X, we define a category 'Iop(X), 
whose objects are the open subsets of X, and where the only morphisms are 
the inclusion maps. Thus Hom(V,U) is empty if V <J._ U, and Hom(V,U) 
has just one element if V s; U. Now a presheaf is just a contravariant 
functor from the category 'Iop(X) to the category 'lib of abelian groups. 

We define a presheaf of rings, a presheaf of sets, or a presheaf with values 
in any fixed category <I, by replacing the words "abelian group" in the 
definition by "ring", "set", or "object of <I" respectively. We will stick to 
the case of abelian groups in this section, and let the reader make the necessary 
modifications for the case of rings, sets, etc. 

As a matter of terminology, if :Ji' is a presheaf on X, we refer to :Ji' ( U) as 
the sections of the presheaf :Ji' over the open set U, and we sometimes use 
the notation r(U,:Ji') to denote the group :Ji'(U). We call the maps Puv 
restriction maps, and we sometimes write siv instead of Puv(s), if s E :Ji'(U). 

A sheaf is roughly speaking a presheaf whose sections are determined by 
local data. To be precise, we give the following definition. 

Definition. A presheaf :Ji' on a topological space X is a sheaf if it satisfies 
the following supplementary conditions: 

(3) if U is an open set, if {V;} is an open covering of U, and if s E :Ji'(U) is 
an element such that siv, = 0 for all i, then s = 0; 
(4) if U is an open set, if {V;} is an open covering of U, and if we have 
elements si E :Ji'( V;) for each i, with the property that for each i,j, s;jv,n v j = 

sjiv,nvj' then there is an elements E :Ji'(U) such that siv, = si for each i. 
(Note condition (3) implies that sis unique.) 

Nate. According to our definition, a sheaf is a presheaf satisfying certain 
extra conditions. This is equivalent to the definition found in some other 
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books, of a sheaf as a topological space over X with certain properties 
(Ex. 1.13). 

Example 1.0.1. Let X be a variety over the field k. For each open set U s; X, 
let @(U) be the ring of regular functions from U to k, and for each V s; U, let 
Puv:l9(U)--+ l9(V) be the restriction map (in the usual sense). Then (9 is a 
sheaf of rings on X. It is clear that it is a presheaf of rings. To verify the 
conditions (3) and (4), we note that a function which is 0 locally is 0, and a 
function which is regular locally is regular, because of the definition of regular 
function (1, §3). We call (9 the sheaf of regular functions on X. 

Example 1.0.2. In the same way, one can define the sheaf of continuous real
valued functions on any topological space, or the sheaf of differentiable 
functions on a differentiable manifold, or the sheaf of holomorphic functions 
on a complex manifold. 

Example 1.0.3. Let X be a topological space, and A an abelian group. We 
define the constant sheaf d on X determined by A as follows. Give A the 
discrete topology, and for any open set U s; X, let d ( U) be the group of all 
continuous maps of U into A. Then with the usual restriction maps, we 
obtain a sheaf d. Note that for every connected open set U, d (U) ~ A, 
whence the name "constant sheaf." If U is an open set whose connected 
components are open (which is always true on a locally connected topological 
space), then d ( U) is a direct product of copies of A, one for each connected 
component of U. 

Definition. If§' is a presheaf on X, and if P is a point of X, we define the 
stalk ff'p of ff' at P to be the direct limit of the groups %( U) for all open 
sets U containing P, via the restriction maps p. 

Thus an element of ff'p is represented by a pair< U,s), where U is an open 
neighborhood of P, and sis an element of ff'(U). Two such pairs <U,s) and 
<V,t) define the same element of ff'p if and only ifthere is an open neighbor
hood W of P with W s; U n V, such that siw = tlw· Thus we may speak of 
elements of the stalk ff'p as germs of sections of§' at the point P. In the case 
of a variety X and its sheaf of regular functions (9, the stalk (9 P at a point P 
is just the local ring of P on X, which was defined in (1, §3). 

Definition. If ff' and<§ are presheaves on X, a morphism cp:ff'--+ <§consists 
of a morphism of abelian groups cp(U): ff'(U)--+ <§(U) for each open set 
U, such that whenever V s; U is an inclusion, the diagram 

ff'(U) _cp'--"(_U"-) ___. <§(U) 

]Puv jPuv 
------'cp_,_( V--')----+ <§ ( V) %( V) 
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is commutative, where p and p' are the restriction maps in ff and '!J. If 
ff and 'fJ are sheaves on X, we use the same definition for a morphism 
of sheaves. An isomorphism is a morphism which has a two-sided inverse. 

Note that a morphism cp: ff ~ 'fJ of presheaves on X induces a morphism 
q>p:ffp ~ '!Jp on the stalks, for any point P EX. The following proposition 
(which would be false for presheaves) illustrates the local nature of a sheaf. 

Proposition 1.1. Let cp: ff ~ 'fJ be a morphism of sheaves on a topological 
space X. Then cp is an isomorphism if and only if the induced map on the 
stalk q>p:ffp ~ '!Jp is an isomorphism for every P EX. 

PROOF. If cp is an isomorphism it is clear that each q>p is an isomorphism. 
Conversely, assume q>p is an isomorphism for all P EX. To show that cp is 
an isomorphism, it will be sufficient to show that cp(U):ff(U) ~ '!J(U) is 
an isomorphism for all U, because then we can define an inverse morphism 
tjJ by t/J(U) = cp(U)- 1 for each U. First we show cp(U) is injective. Let 
s E ff(U), and suppose cp(s) E '!J(U) is 0. Then for every point P E U, the 
image cp(s)p of cp(s) in the stalk '!Jp is 0. Since q>p is injective for each P, we 
deduce that Sp = 0 in ffp for each P E U. To say that sp = 0 means that s 
and 0 have the same image in ffp, which means that there is an open neigh
borhood Wp of P, with Wp s; U, such that siwp = 0. Now U is covered by 
the neighborhoods Wp of all its points, so by the sheaf property (3), s is 0 
on U. Thus cp(U) is injective. 

Next, we show that cp(U) is surjective. Suppose we have a section t E '!J(U). 
For each P E U, let tp E '!Jp be its germ at P. Since q>p is surjective, we can 
find Sp E ff P such that q>p(sp) = tp. Let sp be represented by a section s(P) 
on a neighborhood Vp of P. Then cp(s(P)) and tlvp are two elements of 
'!J(Vp), whose germs at P are the same. Hence, replacing Vp by a smaller 
neighborhood of P if necessary, we may assume that cp(s(P)) = tlvp in 
'!J(Vp). Now U is covered by the open sets Vp, and on each Vp we have a 
section s(P) E ff(Vp). If P,Q are two points, then s(P)ivpnVQ and s(Q)IvpnVQ 
are two sections of ff(Vp n VQ), which are both sent by cp to tlvpn vQ· Hence 
by the injectivity of cp proved above, they are equal. Then by the sheaf 
property (4), there is a section s E ff(U) such that sivp = s(P) for each P. 
Finally, we have to check that cp(s) = t. Indeed, cp(s), t are two sections of 
'!J(U), and for each P, cp(s)ivp = tlvP' hence by the sheaf property (3) applied 
to cp(s) - t, we conclude that cp(s) = t. 

Our next task is to define kernels, cokernels and images of morphisms 
of sheaves. 

Definition. Let cp:ff ~ 'fJ be a morphism of presheaves. We define the 
presheaf kernel of cp, presheaf cokernel of cp, and presheaf image of cp to 
be the presheaves given by U r-+ ker( cp( U) ), U r-+ coker( cp( U) ), and 
U r-+ im(cp(U)) respectively. 

63 



II Schemes 

Note that if qJ:ff---+ '§is a morphism of sheaves, then the presheafkernel 
of qJ is a sheaf, but the presheaf cokernel and presheaf image of qJ are in 
general not sheaves. This leads us to the notion of a sheaf associated to a 
presheaf. 

Proposition-Definition 1.2. Given a presheaf JF, there is a sheaf JF+ and a 
morphism e:JF---+ JF+, with the property that for any sheaf'§, and any 
morphism qJ:Ji!---+ '§, there is a unique morphism t/f:JF+ ---+ '§ such that 
qJ = t/J a e. Furthermore the pair (JF+ ,e) is unique up to unique isomorphism. 
JF+ is called the sheaf associated to the presheaf JF. 

PROOF. We construct the sheaf ff+ as follows. For any open set U, let JF+(U) 
be the set of functions s from U to the union U PE u Jl!p of the stalks of JF 
over points of U, such that 

(1) for each P E U, s(P) E Jl!p, and 
(2) for each P E U, there is a neighborhood V of P, contained in U, and an 

element t E JF(V), such that for all Q E V, the germ tQ oft at Q is equal 
to s(Q). 

Now one can verify immediately ( !) that ff+ with the natural restriction 
maps is a sheaf, that there is a natural morphism e:JF---+ JF+, and that it 
has the universal property described. The uniqueness of JF+ is a formal 
consequence of the universal property. Note that for any point P, Ji!p = JF~. 
Note also that if JF itself was a sheaf, then ff+ is isomorphic to JF via 
e. 

Definition. A subsheaf of a sheaf JF is a sheaf ff' such that for every open set 
U s X, ff'( U) is a subgroup of ff( U), and the restriction maps of the 
sheaf ff' are induced by those of JF. It follows that for any point P, the 
stalk ff~ is a subgroup of Ji!p. 
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If qJ: JF ---+ '§ is a morphism of sheaves, we define the kernel of qJ, 
denoted ker qJ, to be the presheaf kernel of qJ (which is a sheaf). Thus 
ker qJ is a subsheaf of JF. 

We say that a morphism of sheaves qJ:ff---+ '§is injective ifker qJ = 0. 
Thus qJ is injective if and only if the induced map qJ(U): ff( U) ---+ '§(U) is 
injective for every open set of X. 

If qJ: JF ---+ '§ is a morphism of sheaves, we define the image of qJ, 
denoted im qJ, to be the sheaf associated to the presheaf image of qJ. By 
the universal property of the sheaf associated to a presheaf, there is a 
natural map im qJ ---+ '§. In fact this map is injective (see Ex. 1.4), and thus 
im qJ can be identified with a subsheaf of'§. 

We say that a morphism qJ:Ji!---+ '§of sheaves is surjective ifim qJ = '§. 

We say that a sequence ... ---+ Jl!i- 1 ~ Jl!i ~ Jl!i+ 1 ---+ ••• of sheaves 
and morphisms is exact if at each stage ker qJi = im qJi- 1 . Thus a sequence 
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0 --+ fi' ~ ':§ is exact if and only if q; is injective, and fi' ~ ':§ --+ 0 is exact 
if and only if q; is surjective. 

Now let ff'' be a subsheaf of a sheaf ff'. We define the quotient sheaf 
fi' /fi'' to be the sheaf associated to the presheaf U --+ fi'(U)/ff'(U). It 
follows that for any point P, the stalk (ff' /fi'')p is the quotient Ji'pjfi'~. 

If q;: fi' --+ ':§ is a morphism of sheaves, we define the co kernel of q;, 
denoted coker q;, to be the sheaf associated to the presheaf cokernel of q;. 

Caution 1.2.1. We saw that a morphism q;:ff'--+ ':§of sheaves is injective if 
and only if the map on sections q;(U):fi'(U)--+ ':§(U) is injective for each 
U. The corresponding statement for surjective morphisms is not true: if 
q;:ff'--+ ':§is surjective, the maps q;(U):fi'(U)--+ ':§(U) on sections need not 
be surjective. However, we can say that q; is surjective if and only if the maps 
q; P: ffp --+ ':§ P on stalks are surjective for each P. More generally, a sequence 
of sheaves and morphisms is exact if and only if it is exact on stalks (Ex. 1.2). 
This again illustrates the local nature of sheaves. 

So far we have talked only about sheaves on a single topological space. 
Now we define some operations on sheaves, associated with a continuous 
map from one topological space to another. 

Definition. Let f: X --+ Y be a continuous map of topological spaces. For 
any sheaf fi' on X, we define the direct image sheaf f*Ji' on Y by 
(f*fi')(V) = fi'(f- 1(V)) for any open set V s; Y. For any sheaf ':§ on 
Y, we define the inverse image sheaf f- 1':§ on X to be the sheaf associated 
to the presheaf U ~---+ limv 2 f<UJ ':§(V), where U is any open set in X, and 
the limit is taken over all open sets V of Y containingf(U). Do not confuse 
f- 1':§ with the sheaf j*':§ which will be defined later for a morphism of 
ringed spaces (§5). 

Note that f* is a functor from the category ~b(X) of sheaves on X to 
the category ~b(Y) of sheaves on Y. Similarly,f- 1 is a functor from ~b(Y) 
to ~b(X). 

Definition. If Z is a subset of X, regarded as a topological subspace with the 
induced topology, if i: Z --+ X is the inclusion map, and if fi' is a sheaf 
on X, then we call i- 1 fi' the restriction of fi' to Z, and we often denote 
it by ff'lz· Note that the stalk of ff'lz at any point P E Z is just ffp. 

EXERCISES 

1.1. Let A be an abelian group, and define the constant presheaf associated to A on 
the topological space X to be the presheaf U 1--+ A for all U i= 0, with restriction 
maps the identity. Show that the constant sheaf sf defined in the text is the sheaf 
associated to this presheaf. 
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1.2. (a) Foranymorphismofsheavescp:ff--> ~.showthatforeachpointP,(kercp)p = 

ker(cpp) and (im cp)p = im(cpp). 
(b) Show that cp is injective (respectively, surjective) if and only if the induced map 

on the stalks qJp is injective (respectively, surjective) for all P. 

(c) Show that a sequence ... g;•- 1 S ff' ~ g;i+ 1 --> ... of sheaves and mor
phisms is exact if and only if for each P E X the corresponding sequence of 
stalks is exact as a sequence of abelian groups. 

1.3. (a) Let cp: ff --> ~ be a morphism of sheaves on X. Show that cp is surjective if 
and only if the following condition holds: for every open set U c;; X, and for 
every s E ~(U), there is a covering { U;} of U, and there are elements tiE ff(Ui), 
such that cp(t;) = siu, for all i. 

(b) Give an example of a surjective morphism of sheaves cp:ff--> ~. and an 
open set U such that cp(U):ff(U)--> ~(U) is not surjective. 

1.4. (a) Let cp:ff--> ~be a morphism ofpresheaves such that cp(U):ff(U)--> ~(U) 
is injective for each U. Show that the induced map cp + : ff + --> ~ + of asso
ciated sheaves is injective. 

(b) Use part (a) to show that if cp.:ff--> ~is a morphism of sheaves, then im cp 
can be naturally identified with a subsheaf of~. as mentioned in the text. 

1.5. Show that a morphism of sheaves is an isomorphism if and only if it is both 
injective and surjective. 

1.6. (a) Let ff' be a subsheaf of a sheaf ff. Show that the natural map of ff to the 
quotient sheaf ff Iff' is surjective, and has kernel ff'. Thus there is an exact 
sequence 

o ...... ff' ...... g; ...... ff Iff' ...... o. 

(b) Conversely, if 0 --> ff' --> ff ...... ff" ...... 0 is an exact sequence, show that ff' 
is isomorphic to a subsheaf of ff, and that ff" is isomorphic to the quotient of 
ff by this subsheaf. 

1. 7. Let cp: ff --> ~ be a morphism of sheaves. 
(a) Show that im cp ~ ff jker cp. 
(b) Show that coker cp ~ ~lim cp. 

1.8. For any open subset U <;; X, show that the functor r(U, ·) from sheaves on X to 
abelian groups is a left exact functor, i.e., if 0 --> ff' --> ff --> ff" is an exact 
sequence of sheaves, then 0 ...... r(U,ff') ...... r(U,ff) ...... r(U,ff") is an exact 
sequence of groups. The functor r(U,·) need not be exact; see (Ex. 1.21) below. 

1.9. Direct Sum. Let ff and~ be sheaves on X. Show that the presheaf U H ff( U) EB 
~(U) is a sheaf. It is called the direct sum of ff and~. and is denoted by ff EB ~. 
Show that it plays the role of direct sum and of direct product in the category of 
sheaves of abelian groups on X. 

1.10. Direct Limit. Let {ff;} be a direct system of sheaves and morphisms on X. We 
define the direct limit of the system { ff,}, denoted lim ffi, to be the sheaf associated 

----+ 
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to the presheaf U H ~ ffi(U). Show that this is a direct limit in the category 
of sheaves on X, i.e., that it has the following universal property: given a sheaf~. 
and a collection of morphisms ffi --> ~. compatible with the maps of the direct 
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system, then there exists a unique map !i!!! ff; ---+ '!J such that for each i, the original 
map :Y'; ---+ '!J is obtained by composing the maps ff; ---+ !i!!! :Y'; ---+ '!J. 

l.ll. Let {ff;} be a direct system of sheaves on a noetherian topological space X. In 
this case show that the presheaf U f---+ lim :Y';(U) is already a sheaf. In particular, 
T(X,lim :Y';) = lim T(X,:Y';). -----> 

-----> -----> 

1.12. lnrerse Limit. Let [ ff;} be an inverse system of sheaves on X. Show that the pre
sheaf U f---+ lim ff;(U) is a sheaf. It is called the inverse limit of the system {:Y';}, 
and is denoted by lim :Y';. Show that it has the universal property of an inverse 
limit in the categorYof sheaves. 

1.13. Espace Etale of a Presheaf. (This exercise is included only to establish the con
nection between our definition of a sheaf and another definition often found in 
the literature. See for example Godement [1, Ch. II, §1.2].) Given a presheaf §' 

on X, we define a topological space SpeC~). called the espace hale of §', as 
follows. As a set, Spe(.~) = UPEX :i'p. We define a projection map n:Spe(:Y')---+ X 
by sending s E :Y'p to P. For each open set U ~ X and each sections E :Y'( U), we 
obtain a maps: U ---+ Spe(:Y') by sending P f---+ sp, its germ at P. This map has the 
property that n c s = idu, in other words, it is a "section" of n over U. We now 
make SpeC~) into a topological space by giving it the strongest topology such that 

all the maps s: U ---+ Spe(.¥) for all U, and all s E :Y'( U), are continuous. Now 
show that the sheaf y;+ associated to F can be described as follows: for any 
open set U ~ X, §' + ( U) is the set of continuous sections of Spe(.~) over U. In 
particular, the original presheaf §'was a sheaf if and only if for each U, :Y'(U) is 
equal to the set of all continuous sections of Spe(.~) over U. 

1.14. Support. Let ff be a sheaf on X, and lets E ff(U) be a section over an open set U. 
The support of s, denoted Supp s, is defined to be { P E Uisp ¥= 0}, where sp 
denotes the germ of sin the stalk ffp. Show that Supp sis a closed subset of U. 
We define the support of :Y', Supp ff, to be {P E Xiffp ¥= 0}. It need not be a 
closed subset. 

1.15. Sheaf X om. Let§', '!J be sheaves of abelian groups on X. For any open set U ~ X, 
show that the set Hom(fflu,'!ilu) of morphisms of the restricted sheaves has a 
natural structure of abelian group. Show that the presheaf U f---+ Hom(fflu,'!Jiu) 
is a sheaf. It is called the sheaf of local morphisms of ff into '!J, "sheaf hom" for 
short, and is denoted Xom(ff,'!J). 

1.16. Flasque Sheaves. A sheaf ff on a topological space X is jlasque if for every in
clusion V ~ U of open sets, the restriction map ff(U) ---+ :Y'(V) is surjective. 
(a) Show that a constant sheaf on an irreducible topological space is flasque. See 

(I, §I) for irreducible topological spaces. 
(b) If 0 ---+ ff' ---+ ff ---+ §'" ---+ 0 is an exact sequence of sheaves, and if §'' is 

ftasque, then for any open set U, the sequence 0---+ ff'(U)---+ ff(U)---+ 
§'"( U) ---+ 0 of abelian groups is also exact. 

(c) If 0 ---+ ff' ---+ ff ---+ .~" ---+ 0 is an exact sequence of sheaves, and if ff' and§' 
are ftasque, then §'" is ftasque. 

(d) If f:X ---+ Y is a continuous map, and if ff is a ftasque sheaf on X, then f*:Y' 
is a ftasque sheaf on Y. 

(e) Let ff be any sheaf on X. We define a new sheaf'!J, called the sheaf of discon
tinuous sections of ff as follows. For each open set U ~ X, '!J(U) is the set of 
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maps s: U ---> UPeu :!'p such that for each P E U, s(P) E ffp. Show that '§ 

is a fiasque sheaf, and that there is a natural injective morphism of:!' to '§. 

1.17. Skyscraper Sheaves. Let X be a topological space, let P be a point, and let A be an 
abelian group. Define a sheaf ip(A) on X as follows: ip(A)(U) = A if P E U, 0 
otherwise. Verify that the stalk of ip(A) is A at every point Q E { P}-, and 0 
elsewhere, where {P}- denotes the closure of the set consisting of the point P. 
Hence the name "skyscraper sheaf." Show that this sheaf could also be described 
as i*(A), where A denotes the constant sheaf A on the closed subspace { P}-, and 
i: {P}- --->X is the inclusion. 

1.18. Adjoint Property off- 1. Let f: X ---> Y be a continuous map of topological spaces. 
Show that for any sheaf:!' on X there is a natural map f- 1f*:!' ---> :!', and for 
any sheaf'§ on Y there is a natural map'§ ---> f*f- 1'§. Use these maps to show 
that there is a natural bijection of sets, for any sheaves :!' on X and '§ on Y, 

Homx(F 1'§,:!') = Homy('§,f*ff). 

Hence we say that f- 1 is a left adjoint off*' and that f* is a right adjoint of f- 1 • 

1.19. Extending a Sheaf by Zero. Let X be a topological space, let Z be a closed subset, 
let i:Z---> X be the inclusion, let U = X - Z be the complementary open subset, 
and letj: U---> X be its inclusion. 
(a) Let:!' be a sheaf on Z. Show that the stalk (i*ff)p of the direct image sheaf on 

X is :l'p if P E Z, 0 if P r/= Z. Hence we call i*ff the sheaf obtained by extending 
:!' by zero outside Z. By abuse of notation we will sometimes write :!' instead 
of i*ff, and say "consider:!' as a sheaf on X," when we mean "consider i*ff." 

(b) Now let:!' be a sheaf on U. LetNff) be the sheaf on X associated to the pre
sheaf V c-+ ff(V) if V <;::: U, V c-+ 0 otherwise. Show that the stalk (j.(ff) )p is 
equal to :l'p if P E U, 0 if P r/= U, and show thatj,:!' is the only sheaf on X which 
has this property, and whose restriction to U is :!'. We call}!:!' the sheaf 
obtained by extending :!' by zero outside U. 

(c) Now let:!' be a sheaf on X. Show that there is an exact sequence of sheaves 
on X, 

0---> j,(fflul---> :!'---> i*(fflzl---> 0. 

1.20. Subsheaf with Supports. Let Z be a closed subset of X, and let:!' be a sheaf on X. 

We definer z(X,ff) to be the subgroup of T(X,ff) consisting of all sections whose 
support (Ex. 1.14) is contained in Z. 
(a) Show that the presheaf V c-+ r z n v(V.fflv) is a sheaf. It is called the subsheaf 

of§' with supports in Z, and is denoted by J'f~(:!'). 
(b) Let U = X - Z, and let}: U ---> X be the inclusion. Show there is an exact 

sequence of sheaves on X 

0---> J'f~(:!')---> :!' ---> j*(fflul· 

Furthermore, if:!' is fiasque, the map:!' ---> j*(fflul is surjective. 

1.21. Some Examples of Sheaves on Varieties. Let X be a variety over an algebraically 
closed field k, as in Ch. I. Let (Qx be the sheaf of regular functions on X (1.0.1). 
(a) Let Y be a closed subset of X. For each open set U <;:::X, let §y( U) be 

the ideal in the ring (1)x(U) consisting of those regular functions which vanish 
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at all points of Y n U. Show that the presheaf U H Jy(U) is a sheaf. It is 
called the sheaf of ideals Jy of Y, and it is a subsheaf of the sheaf of rings {!) x· 

(b) If Y is a subvariety, then the quotient sheaf I!Jx/ .Yy is isomorphic to i*(I!Jy), 
where i: Y-> X is the inclusion, and I!Jy is the sheaf of regular functions on Y. 

(c) Now let X= P1, and let Y be the union of two distinct points P,Q EX. Then 
there is an exact sequence of sheaves on X, where:?= i*I!Jp EB i*I!JQ, 

0-> fy ->~X -> :ff7-> 0. 

Show however that the induced map on global sections r(X,I!Jx)-> r(X,$7) 
is not surjective. This shows that the global section functor r(X, ·)is not exact 
(cf. (Ex. 1.8) which shows that it is left exact). 

(d) Again let X = P 1, and let{!) be the sheaf of regular functions. Let:£ be the 
constant sheaf on X associated to the function field K of X. Show that there 
is a natural injection 0 -> .ff. Show that the quotient sheaf:£ ji!J is isomorphic 
to the direct sum of sheaves LPEX ip(Ip), where lp is the group Kji!Jp, and 
ip(I p) denotes the skyscraper sheaf (Ex. 1.17) given by I P at the point P. 

(e) Finally show that in the case of (d) the sequence 

0 -> T(X,I!J) -> r(X,ff) -> T(X,ff j(!J) -> 0 

is exact. (This is an analogue of what is called the "first Cousin problem" in 
several complex variables. See Gunning and Rossi [1, p. 248].) 

1.22. Glueing Sheaves. Let X be a topological space, let U = { Ui} be an open cover of 
X, and suppose we are given for each i a sheaf :?i on Ui, and for each i,j an iso
morphism <flii::?ilu,nu,.:::.. :?ilu,nuj such that (1) for each i, <flii = id, and (2) for 
each i,j,k, <flik = <flik <flii on Ui n Ui n U k· Then there exists a unique sheaf 
:? on X, together with isomorphisms 1/Ji::?iu, .:::.. :?i such that for each i,j, 1/Ji = 
cpii o 1/Ji on Ui n Ui. We say loosely that.'#' is obtained by glueing the sheaves :?i 
via the isomorphisms <flii· 

2 Schemes 

In this section we will define the notion of a scheme. First we define affine 
schemes: to any ring A (recall our conventions about rings made in the 
Introduction!) we associate a topological space together with a sheaf of 
rings on it, called Spec A. This construction parallels the construction of 
affine varieties (I, § 1) except that the points of Spec A correspond to all prime 
ideals of A, not just the maximal ideals. Then we define an arbitrary scheme 
to be something which locally looks like an affine scheme. This definition 
has no parallel in Chapter I. An important class of schemes is given by the 
construction of the scheme Proj S associated to any graded ring S. This 
construction parallels the construction of projective varieties in (1, §2). 
Finally, we will show that the varieties of Chapter I, after a slight modification, 
can be regarded as schemes. Thus the category of schemes is an enlargement 
of the category of varieties. 
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Now we will construct the space Spec A associated to a ring A. As a set, 
we define Spec A to be the set of all prime ideals of A. If a is any ideal of A, 
we define the subset V(a) <:::::: Spec A to be the set of all prime ideals which 
contain a. 

Lemma 2.1. 
(a) If a and bare two ideals of A, then V(ab) = V(a) u V(b). 
(b) If {aJ is any set of ideals of A, then V(l:aJ = nv(aJ 
(c) If a and b are two ideals, V(a) <:::::: V(b) if and only if JO. 2 Jh. 

PROOF. 

(a) Certainly if p 2 a or p 2 b, then p 2 ab. Conversely, if p 2 ab, and 
if p "/2 b for example, then there is a bE b such that b ¢; p. Now for any 
a E a, ab E p, so we must have a E p since p is a prime ideal. Thus p 2 a. 

(b) p contains Ia; if and only if p contains each a;, simply because Ia; 
is the smallest ideal containing all of the ideals a;. 

(c) The radical of a is the intersection ofthe set of all prime ideals contain
ing a. So JO. 2 Jb if and only if V( a) <:::::: V(b ). 

Now we define a topology on Spec A by taking the subsets of the form 
V(a) to be the closed subsets. Note that V(A) = 0; V((O)) =Spec A; and 
the lemma shows that finite unions and arbitrary intersections of sets of the 
form V(a) are again of that form. Hence they do form the set of closed sets 
for a topology on Spec A. 

Next we will define a sheaf of rings (!) on Spec A. For each prime ideal 
p <:::::: A, let AP be the localization of A at p. For an open set U <:::::: Spec A, 
we define (!)(U) to be the set of functions s: u ~ upEU Ap, such that s(p) E Ap 
for each p, and such that sis locally a quotient of elements of A: to be precise, 
we require that for each p E U, there is a neighborhood V of p, contained in 
U, and elements a,f E A, such that for each q E V, f ¢; q, and s(q) = ajf in 
Aq. (Note the similarity with the definition of the regular functions on a 
variety. The difference is that we consider functions into the various local 
rings, instead of to a field.) 

Now it is clear that sums and products of such functions are again such, 
and that the element 1 which gives 1 in each AP is an identity. Thus (!)(U) is a 
commutative ring with identity. If V <:::::: U are two open sets, the natural 
restriction map (!)(U) ~ (!)(V) is a homomorphism of rings. It is then clear 
that(!) is a presheaf. Finally, it is clear from the local nature of the definition 
that (!) is a sheaf. 

Definition. Let A be a ring. The spectrum of A is the pair consisting of the 
topological space Spec A together with the sheaf of rings (!) defined above. 

Let us establish some basic properties of the sheaf(!) on Spec A. For any 
element f E A, we denote by D(f) the open complement of V( (f)). Note 
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that open sets of the form D(f) form a base for the topology of Spec A. 
Indeed, if V(a) is a closed set, and p ~ V(a), then p f2. a, so there is an f E a, 
f ~ p. Then p E D(f) and D(f) n V(a) = 0-

Proposition 2.2. Let A be a ring, and (Spec A, @) its spectrum. 
(a) For any p E Spec A, the stalk @P of the sheaf (1) is isomorphic to the 

local ring AP. 
(b) For any element f E A, the ring @(D(f)) is isomorphic to the localized 

ring A1 . 

(c) In particular, r{Spec A,@) ~ A. 

PROOF. 

(a) First we define a homomorphism from (1)P to AP by sending any local 
section s in a neighborhood of p to its value s(p) E AP. This gives a well
defined homomorphism cp from (1) P to AP. The map cp is surjective, because 
any element of AP can be represented as a quotient a/f, with a,f E A, f ~ p. 
Then D(f) will be an open neighborhood of p, and a/f defines a section of (1) 

over D(f) whose value at p is the given element. To show that cp is injective, 
let U be a neighborhood ofp, and let s,t E @(U) be elements having the same 
value s(p) = t(p) at p. By shrinking U if necessary, we may assume that 
s = ajf, and t = bjg on U, where a,b,f,g E A, andf,g ~ p. Since a/f and bjg 
have the same image in AP, it follows from the definition of localization that 
there is an h ~ p such that h(ga - fb) = 0 in A. Therefore alf = bjg in every 
local ring Aq such that f,g,h ~ q. But the set of such q is the open set D(f) n 
D(g) n D(h), which contains p. Hence s = t in a whole neighborhood of p, 
so they have the same stalk at p. So cp is an isomorphism, which proves (a). 

(b) and (c). Note that (c) is the special case of (b) when f = 1, and D(f) 
is the whole space. So it is sufficient to prove (b). We oefine a homomorphism 
1/1: A J ~ @(D(f)) by sending a/f" to the section s E @(D(f)) which assigns to 
each p the image of ajf" in Ap. 

First we show t/J is injective. If 1/J(a/f") = t/J(b/fm), then for every p E 

D(f), ajf" and b/fm have the same image in AP. Hence there is an element 
h ~ p such that h(fma - f"b) = 0 in A. Let a be the annihilator of fma -
f"b. Then h E a, and h ~ p, so a rj;. p. This holds for any p E D(f), so we 
conclude that V(a) n D(f) = 0. Therefore f E JO, so some power PEa, 
so PUma - f"b) = 0, which shows that ajf" = b/fm in A1 . Hence t/1 is 
injective. 

The hard part is to show that t/J is surjective. So let s E @(D(f) ). Then 
by definition of@, we can cover D(f) with open sets v;, on which sis repre
sented by a quotient a;/g;, with g; ~ p for all p E v;, in other words, Vi £ D(g;). 
Now the open sets of the form D(h) form a base for the topology, so we may 
assume that v; = D(h;) for some h;. Since D(h;) £ D(g;), we have V( (h;)) 2 
V( (g;) ), hence by (2.1c), J(hJ £ J(iJ, and in particular, h? E (g;) for some n. 
So h? = cg;, so a;/g; = cajh?. Replacing h; by h? (since D(h;) = D(h7)) and 
a; by ca;, we may assume that D(f) is covered by the open subsets D(h;), 
and that sis represented by a;/h; on D(h;). 
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Next we observe that D(f) can be covered by a finite number of the D(h;). 

Indeed, D(f) c::::: UD(hJ if and only if V((f)) 2 n V((hJ) = V(~)h;)). 

By (2.lc) again, this is equivalent to saying f E ~.DhJ, or r E L,(hJ for 
some n. This means that r can be expressed as a finite sum r = L,b;h;, 
b; E A. Hence a finite subset of the h; will do. So from now on we fix a 
finite set h1, ... A such that D(f) c::::: D(h 1 ) u ... u D(h,). 

For the next step, note that on D(hJ n D(hj) = D(h;hj) we have two 
elements of Ah,h1 , namely a;/h; and a)hj both of which represent s. Hence, 
according to the injectivity of ljJ proved above, applied to D(h;h), we must 
have a;/h; = a)hj in Ah,h1 • Hence for some n, 

(h;h;t(h;a; - h;aj) = 0. 

Since there are only finitely many indices involved, we may pick n so large 
that it works for all i,j at once. Rewrite this equation as 

h~+ 1 (h~a.)- hn+ 1 (h~a.) = 0 
} l l l J } • 

Then replace each h; by h?+ 1, and a; by h?a;. Then we still haves represented 
on D(h;) by a;/h;, and furthermore, we have hjai = h;aj for all i,j. 

Now write r = l);h; as above, which is possible for some n since the 
D(hJ cover D(f). Let a = l);a;. Then for each j we have 

hja = L: b;a;hj = I b;h;aj = raj. 
i i 

This says that afr = a)hj on D(h). So ljJ(a/r) = s everywhere, which 
shows that ljJ is surjective, hence an isomorphism. 

To each ring A we have now associated its spectrum (Spec A,(()). We 
would like to say that this correspondence is functorial. For that we need a 
suitable category of spaces with sheaves of rings on them. The appropriate 
notion is the category of locally ringed spaces. 

Definition. A ringed space is a pair (X,(Ox) consisting of a topological space 
X and a sheaf of rings (Ox on X. A morphism of ringed spaces from (X,(()x) 
to (Y,(()y) is a pair (f,f#) of a continuous map f:X--+ Y and a map 
f# :(()y--+ j*(()x of sheaves of rings on Y. The ringed space (X,(Ox) is a 
locally ringed space if for each point P EX, the stalk mx,P is a local ring. 
A morphism of locally ringed spaces is a morphism (f,f#) of ringed 
spaces, such that for each point P EX, the induced map (see below) of 
local ringsfff:(OY,J(P)--+ mx,P is a local homomorphism oflocal rings. We 
explain this last condition. First of all, given a point P E X, the morphism 
of sheaves f# :(()y--+ j*(()x induces a homomorphism of rings (()y(V)--+ 
(Ox(j- 1 V), for every open set Vin Y. As Vranges over all open neighbor
hoods of f(P), f- 1(V) ranges over a subset of the neighborhoods of P. 

Taking direct limits, we obtain a map 

(()Y,J(P) = lim (()y(V) --+ lim mxu- 1 V), 
~ ~ 
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and the latter limit maps to the stalk mx,P· Thus we have an induced 
homomorphism f: :(!)Y,J(P)--> mx,P· We require that this be a local 
homomorphism: If A and Bare local rings with maximal ideals rnA and 
mB respectively, a homomorphism cp:A --> B is called a local homo
morphism if cp- 1(mB) = mk 

An isomorphism of locally ringed spaces is a morphism with a two
sided inverse. Thus a morphism (f,f #) is an isomorphism if and only 
iff is a homeomorphism of the underlying topological spaces, and f# 
is an isomorphism of sheaves. 

Proposition 2.3. 
(a) If A is a ring, then (Spec A, (!)) is a locally ringed space. 
(b) If cp:A --> B is a homomorphism of rings, then cp induces a nat

ural morphism of locally ringed spaces 

(f,f #):(Spec B, (!)Spec a) --> (Spec A, (!)Spec A). 

(c) If A and B are rings, then any morphism of locally ringed spaces 
from Spec B to Spec A is induced by a homomorphism of rings cp: A --> B 
as in (b). 

PROOF. 

(a) This follows from (2.2a). 
(b) Given a homomorphism cp:A --> B, we define a map f: Spec B--> 

Spec A by f(p) = cp- 1(p) for any p E Spec B. If a is an ideal of A, then it is 
immediate that f- 1(V(a)) = V(cp(a)), so f is continuous. For each p E 

Spec B, we can localize cp to obtain a local homomorphism of local rings 
cpP:A"'-'<Pl--> BP. Now for any open set V ~ Spec A we obtain a homo
morphism of rings f#:(!JspecA(V)--> (!)specB(f- 1(V)) by the definition of(!), 
composing with the maps f and <fJp· This gives the morphism of sheaves 
f # :@spec A --> f* ((!)spec B). The induced maps f # on the stalks are just the 
local homomorphisms <pp, so (f,f #) is a morphism of locally ringed spaces. 

(c) Conversely, suppose given a morphism of locally ringedspaces (f,f#) 
from Spec B to Spec A. Taking global sections, f # induces a homomorphism 
of rings cp: r{Spec A, (!)Spec A) --> T(Spec B, (!)Spec B)· By (2.2c), these rings 
are A and B, respectively, so we have a homomorphism cp:A--> B. For any 
p E Spec B, we have an induced local homomorphism on the stalks, 
(!)spec A.f(P) --> (!)spec B,p or A f<Pl --> BP, which must be compatible with the 
map cp on global sections and the localization homomorphisms. In other 
words, we have a commutative diagram 

A B 

l 
Af<pJ 
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Since f # is a local homomorphism, it follows that cp- 1( p) = f( p ), which 
shows that f coincides with the map Spec B ---+ Spec A induced by cp. Now 
it is immediate that f# also is induced by cp, so that the morphism (f,f#) 
of locally ringed spaces does indeed come from the homomorphism of 
rmgs cp. 

Caution 2.3.0. Statement (c) of the proposition would be false, if in the 
definition of a morphism of locally ringed spaces, we did not insist that the 
induced maps on the stalks be local homomorphisms of local rings (see 
(2.3.2) below). 

Now we come to the definition of a scheme. 

Definition. An affine scheme is a locally ringed space (X,@x) which is iso
morphic (as a locally ringed space) to the spectrum of some ring. A 
scheme is a locally ringed space (X,@x) in which every point has an open 
neighborhood U such that the topological space U, together with the 
restricted sheaf (Dxlu, is an affine scheme. We call X the underlying topo
logical space of the scheme (X,@x), and (Dx its structure sheaf By abuse 
of notation we will often write simply X for the scheme (X,@x). If we 
wish to refer to the underlying topological space without its scheme 
structure, we write sp(X), read "space of X." A morphism of schemes is 
a morphism as locally ringed spaces. An isomorphism is a morphism 
with a two-sided inverse. 

Example 2.3.1. If k is a field, Spec k is an affine scheme whose topological 
space consists of one point, and whose structure sheaf consists of the field k. 

Example 2.3.2. If R is a discrete valuation ring, then T = Spec R is an 
affine scheme whose topological space consists of two points. One point 
t0 is closed, with local ring R; the other point t 1 is open and dense, with 
local ring equal to K, the quotient field of R. The inclusion map R ---+ K 
corresponds to the morphism Spec K ---+ T which sends the unique point 
of Spec K to t 1 . There is another morphism of ringed spaces Spec K ---+ T 
which sends the unique point of SpecK to t0 , and uses the inclusion R ---+ K 
to define the associated map f# on structure sheaves. This morphism is 
not induced by any homomorphism R ---+ K as in (2.3b,c), since it is not a 
morphism of locally ringed spaces. 

Example 2.3.3. If k is a field, we define the affine line over k, Ai, to be 
Spec k[ x]. It has a point ~' corresponding to the zero ideal, whose closure 
is the whole space. This is called a generic point. The other points, which 
correspond to the maximal ideals in k[ x ], are all closed points. They are 
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in one-to-one correspondence with the nonconstant monic irreducible poly
nomials in x. In particular, if k is algebraically closed, the closed points of 
Al are in one-to-one correspondence with elements of k. 

Example 2.3.4. Let k be an algebraically closed field, and consider the 
affine plane over k, defined as A~ = Spec k[x,y J (Fig. 6). The closed points 
of A~ are in one-to-one correspondence with ordered pairs of elements of k. 
Furthermore, the set of all closed points of M, with the induced topology, 
is homeomorphic to the variety called A 2 in Chapter I. In addition to the 
closed points, there is a generic point ~' corresponding to the zero ideal of 
k[x,y ], whose closure is the whole space. Also, for each irreducible poly
nomial f(x,y), there is a point 1J whose closure consists of 1J together with 
all closed points (a,b) for which f(a,b) = 0. We say that 1J is a generic point 
of the curve f(x,y) = 0. 

y 

~ generic 
point of 
curve 

closed 
points 

Figure 6. Spec k [ x, y]. 

X 

Example 2.3.5. Let X 1 and X 2 be schemes, let U 1 ~ X 1 and U 2 ~ X 2 be 
open subsets, and let <p:(Ubmx,[u,)---> (U 2 ,(i)x2 [u 2 ) be an isomorphism of 
locally ringed spaces. Then we can define a scheme X, obtained by glueing 
X 1 and X 2 along U 1 and U 2 via the isomorphism <p. The topological space 
of X is the quotient of the disjoint union X 1 u X 2 by the equivalence 
relation x1 ~ <p(x 1) for each x1 E U b with the quotient topology. Thus 
there are maps i 1 : X 1 ---> X and i2 : X 2 ---> X, and a subset V ~ X is open 
if and only if ij 1(V) is open in X 1 and i2 1(V) is open in X 2 . The structure 
sheaf mx is defined as follows: for any open set V ~ X, 

(l)x(V) = { <s1,sz)[s1 E (17x,(ij 1(V)) and s2 E (i)x 2(i2 1(V)) and 

<p(sl[i~ 1 (V) n u,) = s2fi2 1 (V) n uJ· 

Now it is clear that (l)x is a sheaf, and that (X,(I)x) is a locally ringed space. 
Furthermore, since X 1 and X 2 are schemes, it is clear that every point of X 
has a neighborhood which is affine, hence X is a scheme. 

Example 2.3.6. As an example of glueing, let k be a field, let X 1 = X 2 = 

AL let U 1 = U 2 = Al - { P}, where P is the point corresponding to the 
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maximal ideal (x), and let qJ: U 1 ~ U 2 be the identity map. Let X be ob
tained by glueing X 1 and X 2 along U 1 and U 2 via ([J. We get an "affine 
line with the point P doubled." 

This is an example of a scheme which is not an affine scheme ( !). It is also 
an example of a nonseparated scheme, as we will see later (4.0.1). 

Next we will define an important class of schemes, constructed from 
graded rings, which are analogous to projective varieties. 

Let S be a graded ring. See (I, §2) for our conventions about graded 
rings. We denote by s+ the ideal EBd>O Sd. 

We define the set Proj S to be the set of all homogeneous prime ideals p, 
which do not contain all of S +. If a is a homogeneous ideal of S, we define 
the subset V(a) = {p E Proj Sip 2 a}. 

Lemma 2.4. 
(a) If a and bare homogeneous ideals inS, then V(ab) = V(a) u V(b). 
(b) If {a;} is any family of homogeneous ideals of S, then V(Lai) = 

nv(aJ 
PROOF. The proofs are the same as for (2.1a,b), taking into account the 
fact that a homogeneous ideal p is prime if and only if for any two homo
geneous elements a,b E S, ab E p implies a E p or b E p. 

Because of the lemma we can define a topology on Proj S by taking the 
closed subsets to be the subsets of the form V( a). 

Next we will define a sheaf of rings(!) on Proj S. For each p E Proj S, we 
consider the ring S<vl of elements of degree zero in the localized ring T- 1S, 
where T is the multiplicative system consisting of all homogeneous elements 
of S which are not in p. For any open subset U <;; Proj S, we define (!)(U) 
to be the set of functions s: U ~ il S(p) such that for each p E U, s(.p) E S(p)• 
and such that sis locally a quotient of elements of S: for each p E U, there 
exists a neighborhood V of p in U, and homogeneous elements a,f in S, 
of the same degree, such that for all q E V, f ¢ q, and s(q) = a/fin S(q)· Now 
it is clear that (!) is a presheaf of rings, with the natural restrictions, and it is 
also clear from the local nature of the definition that (!) is a sheaf. 

Definition. If Sis any graded ring, we define (Proj S,(!)) to be the topological 
space together with the sheaf of rings constructed above. 

Proposition 2.5. LetS be a graded ring. 
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Then D +(f) is open in Proj S. Furthermore, these open sets cover Proj S, 
and for each such open set, we have an isomorphism of locally ringed 
spaces 

where s(f) is the sub ring of elements of degree 0 in the localized ring s J· 

(c) Proj Sis a scheme. 

PROOF. Note first that (a) says that Proj S is a locally ringed space, and 
(b) tells us it is covered by open affine schemes, so (c) is a consequence of 
(a) and (b). 

The proof of (a) is practically identical to the proof of (2.2a) above, so 
is left to the reader. 

To prove (b), first note that D +(f) = Proj S - V( (f)), so it is open. 
Since the elements of Proj S are those homogeneous prime ideals p of S 
which do not contain all of S +, it follows that the open sets D +(f) for homo
geneous! E s+ cover Proj S. Now fix a homogeneous! E S+. We will define 
an isomorphism (cp,cp#) of locally ringed spaces from D+(f) to Spec S<n· 
There is a natural homomorphism of rings S -+ S I' and S<n is a subring of 
S J· For any homogeneous ideal a <:; S, let cp(a) = (aS I) n S(f). In partic
ular, if p E D+(f), then cp(p) E Spec S<n' so this gives the map cp as sets. 
The properties of localization show that cp is bijective as a map from D +(f) 
to Spec S(f). Furthermore, if a is a homogeneous ideal of S, then p 2 a 
if and only if cp(p) 2 cp(a). Hence cp is a homeomorphism. Note also if 
p ED +(f), then the local rings S<P> and (S<n),<P> are naturally isomorphic. 
These isomorphisms and the homeomorphism cp induce a natural map of 
sheaves cp# :(Ospecsul-+ cp*((OProjslv+(fl) which one recognizes immediately to 
be an isomorphism. Hence (cp,cp#) is an isomorphism of locally ringed 
spaces, as required. 

Example 2.5.1. If A is a ring, we define projective n-space over A to be the 
scheme PA. = Proj A[ x0 , ... ,xnJ. In particular, if A is an algebraically 
closed field k, then P~ is a scheme whose subspace of closed points is naturally 
homeomorphic to the variety called projective n-space-see (Ex. 2.14d) 
below. 

Next we will show that the notion of scheme does in fact generalize the 
notion of variety. It is not quite true that a variety is a scheme. As we have 
already seen in the examples above, the underlying topological space of a 
scheme such as At or A~ has more points than the corresponding variety. 
However, we will show that there is a natural way of adding generic points 
(Ex. 2.9) for every irreducible subset of a variety so that the variety becomes 
a scheme. 

To state our result, we need a definition. 
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Definition. LetS be a fixed scheme. A scheme overS is a scheme X, together 
with a morphism X --4 S. If X and Y are schemes over S, a morphism 
of X to Y as schemes over S, (also called an S-morphism) is a morphism 
f: X --4 Y which is compatible with the given morphisms to S. We denote 
by 6c()(S) the category of schemes over S. If A is a ring, then by abuse of 
notation we write 6c()(A) for the category of schemes over Spec A. 

Proposition 2.6. Let k be an algebraically closed field. There is a natural 
fully faithful functor t: IBar(k) --4 6c()(k) from the category of varieties over 
k to schemes over k. For any variety V, its topological space is homeo
morphic to the set of closed points of sp(t(V) ), and its sheaf of regular 
functions is obtained by restricting the structure sheaf of t( V) via this 
homeomorphism. 

PROOF. To begin with, let X be any topological space, and let t(X) be the 
set of (nonempty) irreducible closed subsets of X. If Y is a closed subset of 
X, then t( Y) <;; t(X). Furthermore, t( Y1 u Y2 ) = t( Y1) u t( Y2 ) and t(n Y;) = 
nt(Y;). So we can define a topology on t(X) by taking as closed sets the 
subsets of the form t( Y), where Y is a closed subset of X. Iff: X 1 --4 X 2 is a 
continuous map, then we obtain a map t(f): t(X 1) --4 t(X 2) by sending an 
irreducible closed subset to the closure of its image. Thus t is a functor on 
topological spaces. Furthermore, one can define a continuous map rx: X --4 

t(X) by rx(P) = { P}-. Note that rx induces a bijection between the set of 
open subsets of X and the set of open subsets of t(X). 

Now let k be an algebraically closed field. Let V be a variety over 
k, and let 0v be its sheaf of regular functions (1.0.1). We will show that 
(t(V),rx*(Gv)) is a scheme over k. Since any variety can be covered by open 
affine subvarieties (1, 4.3), it will be sufficient to show that if V is affine, 
then (t(V),rx*(Gv)) is a scheme. So let V be an affine variety with affine 
coordinate ring A. We define a morphism of locally ringed spaces 

f3:(V, Gv) --4 X = Spec A 

as follows. For each point P E V, let f3(P) = mp, the ideal of A consisting 
of all regular functions which vanish at P. Then by (1, 3.2b), f3 is a bijection 
of V onto the set of closed points of X. It is easy to see that f3 is a homeo
morphism onto its image. Now for any open set U <;; X, we will define a 
homomorphism of rings Gx( U) --4 {3*( Gv )( U) = Gv(/3- 1 U). Given a section 
s E Gx(U), and given a point pEr 1(U), we define s(P) by taking the image 
of sin the stalk Gx,p(PJ• which is isomorphic to the local ring A"'P' and then 
passing to the quotient ring A"'Pjmp which is isomorphic to the field k. Thus 
s gives a function from f3- 1( U) to k. It is easy to see that this is a regular 
function, and that this map gives an isomorphism Gx( U) ~ Gv(/3- 1 U). 
Finally, since the prime ideals of A are in 1-1 correspondence with the irre
ducible closed subsets of V (see (1, 1.4) and proof), these remarks show that 
(X,(Cx) is isomorphic to (t(V), rx*Gv), so the latter is indeed an affine scheme. 
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To give a morphism of (t(V),cx*(i]v) to Spec k, we have only to give a 

homomorphism of rings k----> T(t(V),cx*CDv) = r(V, CDvl· We send I.E k to 
the constant function I. on V. Thus t(V) becomes a scheme over k. Finally, 
if V and Ware two varieties, then one can check (Ex. 2.15) that the natural 
map 

Homtlnr(ki(V,W)----> Hom2 rt,(kl(t(V),t(W)) 

is bijective. This shows that the functor t:llJnr(k)----> Scl)(k) is fully faithful. 
In particular it implies that t( V) is isomorphic to t( W) if and only if V is 
isomorphic to W 

It is clear from the construction that ex: V---+ t(V) induces a homeo
morphism from V onto the set of closed points of t( V ), with the induced 

topology. 

Note. We will see later (4.10) what the image of the functor tis. 

EXERCISES 

2.1. Let A be a ring, let X = Spec A, let f E A and let D(f) <;; X be the open comple
ment of V( (f)). Show that the locally ringed space (D(f), (f'xiD<fl) is isomorphic 
to Spec A1 . 

2.2. Let (X,0x) be a scheme, and let U <;; X be any open subset. Show that (U,0xluJ 
is a scheme. We call this the induced scheme structure on the open set U, and we 
refer to (U,0xlul as an open subscheme of X. 

2.3. Reduced Schemes. A scheme (X,(f;x) is reduced if for every open set U <;; X, the 
ring (!) x( U) has no nilpotent elements. 
(a) Show that (X,0x) is reduced if and only if for every P EX, the local ring crx.P 

has no nilpotent elements. 
(b) Let (X,0x) be a scheme. Let ((l:x)ced be the sheaf associated to the presheaf 

U 1--+ (l)x(U),.d, where for any ring A, we denote by A,.d the quotient of A 

by its ideal of nilpotent elements. Show that (X,((f x )"J) is a scheme. We call 
it the reduced scheme associated to X, and denote it by X"J· Show that there is 
a morphism of schemes X"d --->X, which is a homeomorphism on the under
lying topological spaces. 

(c) Letf: X ---> Y be a morphism of schemes, and assume that X is reduced. Show 
that there is a unique morphism{]: X ---> Y,,d such that f is obtained by com
posing {] with the natural map Y,,d ---> Y. 

2.4. Let A be a ring and let (X,lPx) be a scheme. Given a morphism f:X---> Spec A, 
we have an associated map on sheaves f #: cr:srccA ---> j*(!;x· Taking global sections 
we obtain a homomorphism A ---> r(X,6x ). Thus there is a natural map 

:x: Hom2 ,,(X,Spec A)---> Hom"",, .. (A,r(X,(' xl). 

Show that :x is bijective (cf. (1, 3.5) for an analogous statement about varieties). 

2.5. Describe Spec Z, and show that it is a final object for the category of schemes, 
i.e., each scheme X admits a unique morphism to Spec Z. 
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2.6. Describe the spectrum of the zero ring, and show that it is an initial object for 
the category of schemes. (According to our conventions, all ring homomorphisms 
must take 1 to 1. Since 0 = 1 in the zero ring, we see that each ring R admits a 
unique homomorphism to the zero ring, but that there is no homomorphism 
from the zero ring toR unless 0 = 1 in R.) 

2.7. Let X be a scheme. For any x EX, let (!)x be the local ring at x, and mx its maximal 
ideal. We define the residue field of x on X to be the field k(x) = (!)x/mx. Now 
let K be any field. Show that to give a morphism of SpecK to X it is equivalent 
to give a point x EX and an inclusion map k(x)--+ K. 

2.8. Let X be a scheme. For any point x EX, we define the Zariski tangent space Tx 

to X at x to be the dual of the k(x)-vector space mx/m;. Now assume that X is 
a scheme over a field k, and let k[ t: ]/t:2 be the ring of dual numbers over k. Show 
that to give a k-morphism of Spec k[t:]/t: 2 to X is equivalent to giving a point 

x EX, rational over k (i.e., such that k(x) = k), and an element of Tx. 

2.9. If X is a topological space, and Z an irreducible closed subset of X, a generic 
point for Z is a point ( such that Z = {0-. If X is a scheme, show that every 
(nonempty) irreducible closed subset has a unique generic point. 

2.10. Describe Spec R[ x]. How does its topological space compare to the set R? To C? 

2.11. Let k = F P be the finite field with p elements. Describe Spec k[ x]. What are 
the residue fields of its points? How many points are there with a given residue 
field? 

2.12. Clueing Lemma. Generalize the glueing procedure described in the text (2.3.5) as 
follows. Let {X;} be a family of schemes (possible infinite). For each i of j, 
suppose given an open subset Uij <;; Xi, and let it have the induced scheme 
structure (Ex. 2.2). Suppose also given for each i of j an isomorphism of schemes 
cp;i: Uu --+ U ii such that ( 1) for each i,j, cp ii = ({J;j 1, and (2) for each i,j,k, 
CfJu(U;i n U;k) = Uii n Uik• and CfJ;k = cpik o CfJu on Uii n Uik· Then show that 
there is a scheme X, together with morphisms 1/J;:X;--+ X for each i, such that 
(1) 1/Ji is an isomorphism of X; onto an open subscheme of X, (2) the 1/J;(X;) cover 
X, (3) 1/J;(Ui) = 1/J;(X;) n 1/Ji(X) and (4) 1/J; = 1/Ji o CfJu on Uii. We say that X is 
obtained by glueing the schemes Xi along the isomorphisms CfJu· An interesting 
special case is when the family X; is arbitrary, but the Uii and cpii are all empty. 
Then the scheme X is called the disjoint union of the X;, and is denoted UX;. 

2.13. A topological space is quasi-compact if every open cover has a finite subcover. 
(a) Show that a topological space is noetherian (I, §1) if and only if every open 

subset is quasi-compact. 
(b) If X is an affine scheme, show that sp(X) is quasi-compact, but not in general 

noetherian. We say a scheme X is quasi-compact if sp(X) is. 
(c) If A is a noetherian ring, show that sp(Spec A)is a noetherian topological space. 

(d) Give an example to show that sp(Spec A) can be noetherian even when A is not. 

2.14. (a) LetS be a graded ring. Show that Proj S = ¢ if and only if every element of 
S + is nilpotent. 
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(c) The morphism f can be an isomorphism even when cp is not. For example, 
suppose that cpd:Sd-> Td is an isomorphism for all d ;::, d0 , where d0 is an 
integer. Then show that U = Proj T and the morphism f: Proj T -> Proj S 
is an isomorphism. 

(d) Let V be a projective variety with homogeneous coordinate ringS (I, §2). Show 
that t(V) ~ Proj S. 

2.15. (a) Let V be a variety over the algebraically closed field k. Show that a point 
P E t( V) is a closed point if and only if its residue field is k. 

(b) If f:X-> Y is a morphism of schemes over k, and if P EX is a point with 
residue field k, then f(P) E Y also has residue field k. 

(c) Now show that if V,W are any two varieties over k, then the natural map 

is bijective. (Injectivity is easy. The hard part is to show it is surjective.) 

2.16. Let X be a scheme, let f E T(X,(IJx), and define X 1 to be the subset of points 
x E X such that the stalk fx off at x is not contained in the maximal ideal mx 
of the local ring (I) x· 

(a) If U = Spec B is an open affine subscheme of X, and if J E B = r(U,(I)xlul is 
the restriction off, show that U n X 1 = D(J). Conclude that X 1 is an open 
subset of X. 

(b) Assume that X is quasi-compact. Let A = r(X,(I)x), and let a E A be an 
element whose restriction to X 1 is 0. Show that for some n > 0, f"a = 0. 
[Hint:Use an open affine cover of X.] 

(c) Now assume that X has a finite cover by open affines U; such that each inter
section U; n Ui is quasi-compact. (This hypothesis is satisfied, for example, 
if sp(X) is noetherian.) Let bE r(X 1 ,(1)xJ Show that for some n > 0, f"b is 
the restriction of an element of A. 

(d) With the hypothesis of(c), conclude that r(X1 ,(1Jx1 ) ~ A1 . 

2.17. A Criterion for Affineness. 
(a) Let f: X -> Y be a morphism of schemes, and suppose that Y can be covered 

by open subsets U;, such that for each i, the induced map f- 1(U;) -> U; is an 
isomorphism. Then f is an isomorphism. 

(b) A scheme X is affine if and only if there is a finite set of elements f 1 , •• . ,f,. E 

A = r(X,(I)x), such that the open subsets X 1, are affine, andf1, ... ,f,. generate 
the unit ideal in A. [Hint: Use (Ex. 2.4) and (Ex. 2.16d) above.] 

2.18. In this exercise, we compare some properties of a ring homomorphism to the 
induced morphism of the spectra of the rings. 
(a) Let A be a ring, X = Spec A, andf EA. Show thatf is nilpotent if and only if 

D(f) is empty. 
(b) Let cp: A -> B be a homomorphism of rings, and let f: Y = Spec B -> X = 

Spec A be the induced morphism of affine schemes. Show that cp is injective if 
and only if the map of sheaves J# : (IJx -> f*(IJY is injective. Show furthermore 
in that case f is dominant, i.e., f(Y) is dense in X. 

(c) With the same notation, show that if cp is surjective, then f is a homeomor
phism of Yonto a closed subset of X, andf# :(IJx-> j*(IJY is surjective. 
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(d) Prove the converse to (c), namely, iff: Y--> X is a homeomorphism onto a 
closed subset, and f# :@x--> f*(r)Y is surjective, then qJ is surjective. [Hint: 
Consider X' = Spec(A/ker ({J) and use (b) and (c).] 

2.19. Let A be a ring. Show that the following conditions are equivalent: 

(i) Spec A is disconnected; 
(ii) there exist nonzero elements e~oe2 E A such that e1e2 = 0, ei = e1 , e~ = e2 , 

e1 + e2 = 1 (these elements are called orthogonal idempotents); 
(iii) A is isomorphic to a direct product A1 x A 2 of two nonzero rings. 

3 First Properties of Schemes 

In this section we will give some of the first properties of schemes. In particu
lar we will discuss open and closed subschemes, and products of schemes. In 
the exercises we introduce the notion of constructible subsets, and study the 
dimension of the fibres of a morphism. 

Definition. A scheme is connected if its topological space is connected. A 
scheme is irreducible if its topological space is irreducible. 

Definition. A scheme X is reduced if for every open set U, the ring (l)x(U) has 
no nilpotent elements. Equivalently (Ex. 2.3), X is reduced if and only if 
the local rings @p, for all P EX, have no nilpotent elements. 

Definition. A scheme X is integral if for every open set U <:; X, the ring 
(l)x(U) is an integral domain. 

Example 3.0.1. If X = Spec A is an affine scheme, then X is irreducible if 
and only if the nilradical nil A of A is prime; X is reduced if and only if 
nil A = 0; and X is integral if and only if A is an integral domain. 

Proposition 3.1. A scheme is integral if and only if it is both reduced and ir-
reducible. 

PROOF. Clearly an integral scheme is reduced. If X is not irreducible, then 
one can find two nonempty disjoint open subsets U 1 and U 2 . Then 
@(U1 u U2 ) = @(U 1) x @(U2 ) which is not an integral domain. Thus 
integral implies irreducible. 

Conversely, suppose that X is reduced and irreducible. Let U <:; X be an 
open subset, and suppose that there are elements f,g E @(U) with fg = 0. 
Let Y = {x E Uifx E mx}, and let Z = {x E Ulgx E mx}· Then Y and Z are 
closed subsets (Ex. 2.16a), and Y u Z = U. But X is irreducible, so U is 
irreducible, so one of Y or Z is equal to U, say Y = U. But then the restric
tion off to any open affine subset of U will be nilpotent (Ex. 2.18a), hence 
zero, so f is zero. This shows that X is integral. 
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Definition. A scheme X is locally noetherian if it can be covered by open affine 
subsets Spec A;, where each A; is a noetherian ring. X is noetherian if 
it is locally noetherian and quasi-compact. Equivalently, X is noetherian 
if it can be covered by a finite number of open affine subsets Spec A;, 
with each A; a noetherian ring. 

Caution 3.1.1. If X is a noetherian scheme, then sp(X) is a noetherian topo
logical space, but not conversely (Ex. 2.13) and (Ex. 3.17). 

Note that in this definition we do not require that every open affine 
subset be the spectrum of a noetherian ring. So while it is obvious from the 
definition that the spectrum of a noetherian ring is a noetherian scheme, the 
converse is not obvious. It is a question of showing that the noetherian 
property is a "local property". We will often encounter similar situations 
later in defining properties of a scheme or of a morphism of schemes, so we 
will give a careful statement and proof of the local nature of the noetherian 
property, to illustrate this type of situation. 

Proposition 3.2. A scheme X is locally noetherian if and only if for every open 
affine subset U = Spec A, A is a noetherian ring. In particular, an affine 
scheme X = Spec A is a noetherian scheme if and only if the ring A is a 
noetherian ring. 

PROOF. The "if" part follows from the definition, so we have to show if X 
is locally noetherian, and if U = Spec A is an open affine subset, then A is a 
noetherian ring. First note that if B is a noetherian ring, so is any localization 
B J· The open subsets D(f) ~ Spec B f form a base for the topology of Spec B. 
Hence on a locally noetherian scheme X there is a base for the topology con
sisting of the spectra of noetherian rings. In particular, our open set U can 
be covered by spectra of noetherian rings. 

So we have reduced to proving the following statement: let X = Spec A 
be an affine scheme, which can be covered by open subsets which are spectra 
of noetherian rings. Then A is noetherian. Let U = Spec B be an open 
subset of X, with B noetherian. Then for some f E A, D(f) ~ U. Let 
J be the image off in B. Then A f ~ B 1, hence A f is noetherian. So we 
can cover X by open subsets D(f) ~ Spec A J with A J noetherian. Since X 
is quasi-compact, a finite number will do. 

So now we have reduced to a purely algebraic problem: A is a ring, 
/ 1, ... ,f.. are a finite number of elements of A, which generate the unit ideal, 
and each localization AJ, is noetherian. We have to show A is noetherian. 
First we establish a lemma. Let a ~ A be an ideal, and let ({J;: A --+ A J, be 
the localization map, i = 1, ... ,r. Then 

a= n({J;- 1(cp;(a) · AJJ 

The inclusion ~ is obvious. Conversely, given an element b E A contained 
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in this intersection, we can write cp;(b) = a;/fi' in AJ, for each i, where 
a; E a, and n; > 0. Increasing the n; if necessary, we can make them all 
equal to a fixed n. This means that in A we have 

f'[''(fib - a;) = 0 

for some m;. And as before, we can make all them; = m. Thus f'['+nb E a for 
each i. Since f 1 , ... ,f.. generate the unit ideal, the same is true of their Nth 
powers for any N. Take N = n + m. Then we have 1 = 'f.cJf for suitable 
c; EA. Hence 

b = 'f.cJfb E a 
as required. 

Now we can easily show that A is noetherian. Let a 1 s; a2 s; ... be an 
ascending chain of ideals in A. Then for each i, 

qJ;(a 1)·AJ, s; o/;(a2)·AJ, s; ... 

is an ascending chain of ideals in A f•' which must become stationary because 
AJ, is noetherian. There are only finitely many AJ,, so from the lemma we 
conclude that the original chain is eventually stationary, and hence A is 
noetherian. 

Definition. A morphism f: X ---+ Y of schemes is locally of finite type ifthere 
exists a covering of Y by open affine subsets V; = Spec B;, such that for 
each i, f- 1(V;) can be covered by open affine subsets U;i = Spec Aii, where 
each A;i is a finitely generated B;-algebra. The morphism f is of finite 
type if in addition each f- 1(V;) can be covered by a finite number of the 
Uii. 

Definition. A morphism f: X ---+ Y is a finite morphism if there exists a 
covering of Y by open affine subsets V; = Spec B;, such that for each i, 
f- 1(V;) is affine, equal to Spec A;, where A; is a B;-algebra which is a 
finitely generated B;-module. 

Note in each of these definitions that a property of a morphism f: X ---+ Y 
is defined by the existence of an open affine cover of Y with certain properties. 
In fact in each case it is equivalent to require the given property for every 
open affine subset of Y (Ex. 3.1-3.4). 

Example 3.2.1. If V is a variety over an algebraically closed field k, then the 
assoc1ated scheme t(V) (see (2.6)) is an integral noetherian scheme of finite 
type over k. Indeed, V can be covered by a finite number of open affine 
subvarieties (I, 4.3), so t(V) can be covered by a finite number of open affines 
of the form Spec A;, where each A; is an integral domain which is a finitely 
generated k-algebra and hence noetherian. 
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Example 3.2.2. If P is a point of a variety V, with local ring (!) p, then Spec(!) P 

is an integral noetherian scheme, which is not in general of finite type over k. 

Next we come to open and closed subschemes. 

Definition. An open subscheme of a scheme X is a scheme U, whose topological 
space is an open subset of X, and whose structure sheaf (!)u is isomorphic 
to the restriction (!)xlu of the structure sheaf of X. An open immersion is a 
morphism f:X--> Y which induces an isomorphism of X with an open 
subscheme of Y. 

Note that every open subset of a scheme carries a unique structure of 
open subscheme (Ex. 2.2). 

Definition. A closed immersion is a morphism f: Y--> X of schemes such that 
f induces a homeomorphism of sp(Y) onto a closed subset of sp(X), 
and furthermore the induced map f #: (!)x --> f * (!)Y of sheaves on X is 
surjective. A closed subscheme of a scheme X is an equivalence class of 
closed immersions, where we say f: Y--> X and f': Y' --> X are equi
valent if there is an isomorphism i: Y'--> Y such that f' = f o i. 

Example 3.2.3. Let A be a ring, and let a be an ideal of A. Let X = Spec A 
and let Y = Spec A/a. Then the ring homomorphism A --> A/a induces a 
morphism of schemes f: Y-> X which is a closed immersion. The map fis 
a homeomorphism of Y onto the closed subset V(a) of X, and the map of 
structure sheaves (!)x--> j*(!)Y is surjective because it is surjective on the 
stalks, which are localizations of A and A/a,respectively (Ex. 2.18). 

Thus for any ideal a s; A we obtain a structure of closed subscheme on the 
closed set V(a) s; X. In particular, every closed subset Y of X has many closed 
subscheme structures, corresponding to all the ideals a for which V(a) = Y. 
In fact, every closed subscheme structure on a closed subset Y of an affine 
scheme X arises from an ideal in this way (Ex. 3.11 b) or (5.10). 

Example 3.2.4. For some more specific examples, let A = k[ x,y ], where k is 
a field. Then Spec A = M is the affine plane over k. The ideal a = (xy) 
gives a reducible subscheme, consisting of the union of the x and y axes. The 
ideal a = (x2 ) gives a subscheme structure with nilpotents on the y-axis. 
The ideal a = (x 2,xy) gives another subscheme structure on they-axis, this 
one having nilpotents only in the local ring at the origin. We say the origin 
is an embedded point for this subscheme. 

Example 3.2.5. Let V be an affine variety over the field k, and let W be a 
closed subvariety. Then W corresponds to a prime ideal p in the affine co
ordinate ring A of V (1, §1). Let X = t(V) and Y = t(W) be the associated 
schemes. Then X = Spec A and Y is the closed subscheme defined by p. 
For each n ;?: 1 let Y, be the closed subscheme of X corresponding to the 
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ideal pn. Then Y1 = Y, but for each n > 1, Y, is a nonreduced scheme struc
ture on the closed set Y, which does not correspond to any subvariety of V. 
We call Y, the nth irifinitesimal neighborhood of Yin X. The schemes Y, reflect 
properties of the embedding of Yin X. Later (§9) we will study the "formal 
completion" of Yin X, which is roughly the limit of the schemes Y, as n --+ oo. 

Example 3.2.6. Let X be a scheme, and let Y be a closed subset. In general Y 
will have many possible closed subscheme structures. However, there is one 
which is "smaller" than any other, called the reduced induced closed subscheme 
structure, which we now describe. 

First let X = Spec A be an affine scheme, and let Y be a closed subset. 
Let a <;; A be the ideal obtained by intersecting all the prime ideals in Y. This 
is the largest ideal for which V(a) = Y. Then we take the reduced induced 
structure on Y to be the one defined by a. 

Now let X be any scheme, and let Y be a closed subset. For each open 
affine subset Ui <;; X, consider the closed subset Y; = Y n Ui of Ui, and give 
it the reduced induced structure just defined for affines (which may depend 
on UJ I claim that for any i,j, the restrictions to Y; n lj of the two structure 
sheaves just defined on Y; and lj are isomorphic, and furthermore, that the 
three such isomorphisms on Y; n lj n 1k are compatible for all i,j,k. One 
reduces easily to showing that if U = Spec A is an open affine, and iff E A, 
and if V = D(f) = Spec A 1 , then the reduced induced structure on Y n U 
obtained from A when restricted to Y n V agrees with the one obtained 
from A 1 . This corresponds to the algebraic fact that if a is the intersection 
of those prime ideals of A which are in Y, then aA1 is the intersection of those 
prime ideals of A 1 which are in Y n D(f). 

So now we can glue the sheaves defined on the Y; to obtain a sheaf on Y 
(Ex. 1.22}, which gives us the desired reduced induced subscheme structure 
on Y. See (Ex. 3.11) below for a universal property of the reduced induced 
subscheme structure. 

Definition. The dimension of a scheme X, denoted dim X, is its dimension as a 
topological space (I, §1). If Z is an irreducible closed subset of X, then the 
codimension of Z in X, denoted codim(Z,X) is the supremum of integers n 
such that there exists a chain 

Z = Z 0 < Z 1 < ... < Zn 

of distinct closed irreducible subsets of X, beginning with Z. If Y is any 
closed subset of X, we define 

codim(Y,X) = inf codim(Z,X) 
Z"Y 

where the infimum is taken over all closed irreducible subsets of Y. 

Example 3.2.7. If X = Spec A is an affine scheme, then the dimension of X 
is the same as the Krull dimension of A (1, §1). 
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Caution 3.2.8. Be careful in applying the concepts of dimension and codi
mension to arbitrary schemes. Our intuition is derived from working with 
schemes of finite type over a field, where these notions are well-behaved. 
For example, if X is an affine integral scheme of finite type over a field k, 
and if Y c:; X is any closed irreducible subset, then (1, 1.8A) implies that 
dim Y + codim( Y,X) = dim X. But on arbitrary (even noetherian) schemes, 
funny things can happen. See (Ex. 3.20-3.22), and also Nagata [7], and 
Grothendieck [EGA IV, §5]. 

Definition. Let S be a scheme, and let X, Y be schemes over S, i.e., schemes 
with morphisms to S. We define the .fibred product of X and Y overS, 
denoted X x s Y, to be a scheme, together with morphisms p1 :X x s 
Y --+ X and p2 : X x s Y --+ Y, which make a commutative diagram with 
the given morphisms X --+ S and Y --+ S, such that given any scheme Z 
over S, and given morphisms f:Z--+ X and g:Z--+ Y which make a 
commutative diagram with the given morphisms X --+ S and Y --+ S, then 
there exists a unique morphism e: z --+ X X s y such that f = p 1 0 e, and 
g = p2 o e. The morphisms p1 and p2 are called the projection morphisms 
of the fibred product onto its factors. 

z ________ .. X X s y 

~y 
~/ 

s 

If X and Y are schemes given without reference to any base scheme S, 
we take S = Spec Z (Ex. 2.5) and define the product of X and Y, denoted 
X X Y, to be X Xspec z Y. 

Theorem 3.3. For any two schemes X and Y over a schemeS, the .fibred product 
X x s Y exists, and is unique up to unique isomorphism. 

PROOF. The idea is first to construct products for affine schemes and then 
glue. We proceed in seven steps. 

Step 1. Let X = Spec A, Y = Spec B, S = Spec R all be affine. Then 
A and BareR-algebras, and I claim that Spec (A ® R B) is a product for X and 
Y overS. Indeed, for any scheme Z, to give a morphism of Z to Spec (A ® R B) 
is the same as to give a homomorphism of the ring A ® R B into the ring 
r(Z,(!J2 ), by (Ex. 2.4). But to give a homomorphism of A ®R B into any ring 
is the sallie as to give homomorphisms of A and B into that ring, inducing 
the same homomorphism on R. Applying (Ex. 2.4) again, we see that to give 
a morphism of Z into Spec (A ® R B) is the same as giving morphisms of Z 
into X and into Y, which give rise to the same morphism of Z into S. Thus 
Spec (A ® R B) is the desired product. 
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Step 2. It follows immediately from the universal property of the product 
that it is unique up to unique isomorphism, if it exists. We will need this 
uniqueness for those products already constructed, as we go along. 

Step 3. Glueing morphisms. We have already seen how to glue sheaves 
(Ex. 1.22) and how to glue schemes (Ex. 2.12). Now we glue morphisms. If X 
and Yare schemes, then to give a morphism f from X to Y, it is equivalent to 
give an open cover { U;} of X, together with morphisms _[;: U; --+ Y, where U; 
has the induced open subscheme structure, such that the restrictions of J; 
and jj to U; n Ui are the same, for each i,j. The proof is straightforward. 

Step 4. If X, Yare schemes over a schemeS, if U <:::; X is an open subset, 
and if the product X x s Y exists, then p1 1( U) <:::; X x s Y is a product for U 
and Y over S. Indeed, given a scheme Z, and morphisms f: Z --+ U and 
g:Z--+ Y, f determines a map of Z to X by composing with the inclusion 
U <:::; X. Hence there is a map B:Z --+X x s Y compatible with f,g and the 
projections. But since f(Z) <:::; U, we have 8(Z) <:::; p1 1 ( U). So 8 can be 
regarded as a morphism Z --+ p1 1(U). It is clearly unique, so p1 1(U) is a 
product U x s Y. 

Step 5. Suppose given X,Y schemes over S, suppose {X;} is an open 
covering of X, and suppose that for each i, X; x s Y exists. Then X x s Y 
exists. Indeed, for each i,j, let Uii .:::; X; x s Y be p1 1(X;i), where X;i = 

X; n Xi. Then by Step 4, Uii is a product for Xii andY overS. Hence by the 
uniqueness of products there are (unique) isomorphisms ({J;/ uij --+ uji for 
each i,j compatible with all the projections. Furthermore, these isomor
phisms are compatible with each other for each i,j,k, in the sense of(Ex. 2.12). 
Thus we are in a position to glue the schemes X; x s Yvia the isomorphisms 
({J;i· We obtain by (Ex. 2.12) a scheme X x s Y which I claim is a product for 
X and Y overS. The projection morphisms p1 and p2 are defined by glueing 
the projections from the pieces X; x s Y (Step 3). Given a scheme Z and 
morphisms f:Z--+ X, g:Z--+ Y, let Z; = f~ 1 (X;). Then we get maps 
8;: Z; --+ X; x s Y, hence by composition with the inclusions X; x s Y <:::; 

X x s Y we get maps 8;: Z; --+ X x s Y. One verifies that these maps agree on 
Z; n Zi, so we can glue the morphisms (Step 3) to obtain a morphism 8: Z --+ 
X x s Y, compatible with the projections and f and g. The uniqueness of 8 
can be checked locally. 

Step 6. We know from Step 1 that if X, Y, S are all affine, then X x s Y 
exists. Thus using Step 5 we conclude that for any X, but Y, S affine, the 
product exists. Using Step 5 again, with X and Y interchanged, we find that 
the product exists for any X and any Y over an affine S. 

Step 7. Given arbitrary X,Y, S, let q:X--+ S and r: Y--+ S. be the given 
morphisms. Let S; be an open affine cover of S. Let X; = q~ 1(S;) and let 
li = r~ 1(S;). Then by Step 6, X; x s; li exists. Note that this same scheme is 
a product for X; and Y overS. Indeed, given morphisms f:Z--+ X; and 
g:Z--+ Y over S, the image of g must land inside l;. Thus X; x s Y exists 
for each i, and one more application of Step 5 gives us X x s Y. This completes 
the proof. 
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Perhaps this is a good place to make some general remarks on the im
portance and uses offibred products. To begin with, we can define the fibres 
of a morphism. 

Definition. Let f: X ---+ Y be a morphism of schemes, and let y E Y be a 
point. Let k(y) be the residue field of y, and let Spec k(y) ---+ Y be the 
natural morphism (Ex. 2.7). Then we define the fibre of the morphism 
f over the point y to be the scheme 

xy =X X y Spec k(y). 

The fibre XY is a scheme over k(y), and one can show that its underlying 
topological space is homeomorphic to the subset f- 1(y) of X (Ex. 3.10). 

The notion of the fibre of a morphism allows us to regard a morphism 
as a family of schemes (namely its fibres) parametrized by the points of the 
image scheme. Conversely, this notion of family is a good way of making 
sense of the idea of a family of schemes varying algebraically. For example, 
given a scheme X 0 over a field k, we define a family of deformations of X 0 

to be a morphism f:X ---+ Y with Y connected, together with a point y0 E Y, 
such that k(y0 ) = k, and XYo ~ X 0 . The other fibres XY off are called 
deformations of X 0 . 

An interesting kind offamily arises when we have a scheme X over Spec Z. 
In this case, taking the fibre over the generic point gives a scheme XQ over 
Q, while taking the fibre over a closed point, corresponding to a prime 
number p, gives a scheme X P over the finite field F p· We say that X P arises 
by reduction mod p of the scheme X. 

Another important application of fib red products is to the notion of base 
extension. Let S be a fixed scheme which we think of as a base scheme, 
meaning that we are interested in the category of schemes over S. For 
example, think of S = Spec k, where k is a field. If S' is another base scheme, 
and if S' ----> S is a morphism, then for any scheme X over S, we let X' = 

X x s S', which will be a scheme overS'. We say that X' is obtained from X 
by making a base extension S' ---+ S. For example, think of S' = Speck' 
where k' is an extension field of k. Note, by the way, that base extension is a 
transitive operation: if S" ---+ S' ---+ S are two morphisms, then (X x s S') x s· 
S" ~X Xs S". 

This ties in with a general philosophy, emphasized by Grothendieck in 
his "Elements de Geometrie Algebrique" ([EGA]), that one should try to 
develop all concepts of algebraic geometry in a relative context. Instead of 
always working over a fixed base field, and considering properties of one 
variety at a time, one should consider a morphism of schemes f: X ---+ S, 
and study properties of the morphism. It then becomes important to study 
the behavior of properties off under base extension, and in particular, to 
relate properties off to properties of the fibres off For example, iff: X ---+ S 

89 



II Schemes 

is a morphism of finite type, and if S'----+ Sis any base extension, thenf' :X'----+ S' 
is also a morphism of finite type, where X' = X x s S'. Hence we say the 
property of a morphism f being of finite type is stable under base extension. 
On the other hand, if for example f: X ----+ Sis a morphism of integral schemes, 
the fibres off may be neither irreducible nor reduced. So the property of a 
scheme being integral is not stable under base extension. 

Example 3.3.1. Let k be an algebraically closed field, let 

X = Spec k[x,y,t]/(ty- x2), 

let Y = Spec k[t], and let f: X ----+ Y be the morphism determined by the 
natural homomorphism k[t] ----+ k[x,y,t]/(ty - x2). Then X and Y are 
integral schemes of finite type over k, and f is a surjective morphism. We 
identify the closed points of Y with elements of k. For a E k, a i= 0, the fibre 
Xa is the plane curve ay = x2 in A~, which is an irreducible, reduced curve. 
But for a = 0, the fibre X 0 is the nonreduced scheme given by x2 = 0 in A 2 . 

Thus we have a family (Fig. 7) in which most members are irreducible curves, 
but one is nonreduced. This shows how nonreduced schemes occur naturally 
even if one is primarily interested in varieties. We can say that the nonreduced 
scheme x2 = 0 in A2 is a deformation of the irreducible parabola ay = x2 

as a ----+ 0. 

X 

t 

Figure 7. An algebraic family of schemes. 

Example 3.3.2. Similarly, if X = Spec k[x,y,t]/(xy - t), we get a family 
whose general member Xa is an irreducible hyperbola xy = a, when a i= 0, 
but whose special member X 0 is the reducible scheme xy = 0 consisting 
of two lines. 

EXERCISES 

3.1. Show that a morphism f:X-> Y is locally of finite type if and only if for every 

open affine subset V = Spec B of Y, f- 1(V) can be covered by open affine subsets 
Ui = Spec Ai, where each Ai is a finitely generated B-algebra. 
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3.2. A morphism f: X --> Y of schemes is quasi-compact if there is a cover of Y by open 
affines V; such that f~ 1(V;) is quasi-compact for each i. Show that f is quasi
compact if and only if for every open affine subset V s; Y, f~ 1(V) is quasi-compact. 

3.3. (a) Show that a morphism f: X --> Y is of finite type if and only if it is locally of 
finite type and quasi-compact. 

(b) Conclude from this that f is of finite type if and only if for er•ery open affine 
subset V = Spec B of Y, f~ 1( V) can be covered by a finite number of open 
affines U1 = Spec A1, where each A1 is a finitely generated B-algebra. 

(c) Show also iff is of finite type, then for every open affine subset V = Spec B s; 
Y, and for every open affine subset U = Spec A s; f~ 1(V), A is a finitely gener
ated B-algebra. 

3.4. Show that a morphism f: X --> Y is finite if and only if for erery open affine subset 
V = Spec B of Y, f~ 1(V) is affine, equal to Spec A, where A is a finite B-module. 

3.5. A morphism f: X --> Y is quasi-finite if for every point y E Y, f~ 1(y) is a finite set. 
(a) Show that a finite morphism is quasi-finite. 
(b) Show that a finite morphism is closed, i.e., the image of any closed subset is 

closed. 
(c) Show by example that a surjective, finite-type, quasi-finite morphism need not 

be finite. 

3.6. Let X be an integral scheme. Show that the local ring @ ~ of the generic point ~ 
of X is a field. It is called the function field of X, and is denoted by K(X). Show 
also that if U = Spec A is any open affine subset of X, then K(X) is isomorphic 
to the quotient field of A. 

3.7. A morphism f:X --> Y, with Y irreducible, is generically finite iff~ 1(1'/) is a finite 
set, where t) is the generic point of Y. A morphism f: X --> Y is dominant if f(X) 
is dense in Y. Now let f:X--> Y be a dominant, generically finite morphism of 
finite type of integral schemes. Show that there is an open dense subset U <;::: Y 

such that the induced morphism f~ 1( U) --> U is finite. [Hint: First show that the 
function field of X is a finite field extension of the function field of Y.J 

3.8. Normalization. A scheme is normal if all of its local rings are integrally closed 
domains. Let X be an integral scheme. For each open affine subset U = Spec A 
of X, let A be the integral closure of A in its quotient field, and let U = Spec A. 
Show that one can glue the schemes U to obtain a normal integral scheme X, 
called the normalization of X. Show also that there is a morphism X--> X, having 
the following universal property: for every normal integral scheme Z, and for every 
dominant morphism f: Z--> X, f factors uniquely through X. If X is of finite type 
over a field k, then the morphism X --> X is a finite morphism. This generalizes 
(I, Ex. 3.1 7). 

3.9. The Topological Space of a Product. Recall that in the category of varieties, the 
Zariski topology on the product of two varieties is not equal to the product 
topology (I, Ex. 1.4). Now we see that in the category of schemes, the underlying 
point set of a product of schemes is not even the product set. 
(a) Let k be a field, and let Ai = Spec k[ x J be the affine line over k. Show that 

At x Speck Ai ~ Af, and show that the underlying point set of the product is 
not the product of the underlying point sets of the factors (even if k is algebrai
cally closed). 
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(b) Let k be a field, lets and t be indeterminates over k. Then Spec k(s), Spec k(t), 
and Spec k are all one-point spaces. Describe the product scheme Spec 
k(s) X Speck Spec k(t). 

3.10. Fibres of a Morphism. 
(a) Iff:X -+ Yis a morphism, andy E Ya point, show that sp(Xy) is homeomor

phic tor 1(y) with the induced topology. 
(b) LetX = Speck[s,t]/(s- t2),let Y = Speck[s],andletf:X-+ Ybethemor

phism defined by sending s -+ s. If y E Y is the point a E k with a =1= 0, show 
that the fibre X Y consists of two points, with residue field k. If y E Y cor
responds to 0 E k, show that the fibre X Y is a nonreduced one-point scheme. 
If '1 is the generic point of Y, show that X q is a one-point scheme, whose residue 
field is an extension of degree two of the residue field of '1· (Assume k alge
braically closed.) 

3.11. Closed Subschemes. 
(a) Closed immersions are stable under base extension: iff: Y-+ X is a closed 

immersion, and if X' -+ X is any morphism, then f': Y x x X' -+ X' is also a 
closed immersion. 

*(b) If Y is a closed subscheme of an affine scheme X = Spec A, then Y is also 
affine, and in fact Y is the closed subscheme determined by a suitable ideal 
a c;; A as the image of the closed immersion Spec A/a -+ Spec A. [Hints: First 
show that Y can be covered by a finite number of open affine subsets of the 
form D(h) n Y, with J; EA. By adding some more J; with D(J;) n Y = 0, 
if necessary, show that we may assume that the D(J;) cover X. Next show that 
f 1, ... ,f.. generate the unit ideal of A. Then use (Ex. 2.17b) to show that Y 
is affine, and (Ex. 2.18d) to show that Y comes from an ideal a c;; A.] Note: We 
will give another proof of this result using sheaves of ideals later (5.10). 

(c) Let Y be a closed subset of a scheme X, and give Y the reduced induced sub
scheme structure. If Y' is any other closed subscheme of X with the same 
underlying topological space, show that the closed immersion Y -+ X factors 
through Y'. We express this property by saying that the reduced induced 
structure is the smallest subscheme structure on a closed subset. 

(d) Let f:Z-+ X be a morphism. Then there is a unique closed subscheme Y of 
X with the following property: the morphism f factors through Y, and if Y' 

is any other closed subscheme of X through which f factors, then Y -+ X 
factors through Y' also. We call Y the scheme-theoretic image off If Z is a 
reduced scheme, then Y is just the reduced induced structure on the closure of 
the image f(Z). 

3.12. Closed Subschemes of Proj S. 
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(a) Let cp: S -+ T be a surjective homomorphism of graded rings, preserving 
degrees. Show that the open set U of (Ex. 2.14) is equal to Proj T, and the 
morphism f: Proj T -+ Proj S is a closed immersion. 

(b) If I c;; S is a homogeneous ideal, take T = Sjl and let Y be the closed sub
scheme of X = Proj S defined as image of the closed immersion Proj Sjl-+ X. 
Show that different homogeneous ideals can give rise to the same closed sub
scheme. For example, let d0 be an integer, and let I' = EBd"'do !d. Show that 
I and I' determine the same closed subscheme. 

We will see later (5.16) that every closed subscheme of X comes from a ho
mogeneous ideal I of S (at least in the case where Sis a polynomial ring over S0). 



3 First Properties of Schemes 

3.13. Properties of Morphisms of Finite Type. 
(a) A closed immersion is a morphism of finite type. 
(b) A quasi-compact open immersion (Ex. 3.2) is of finite type. 
(c) A composition of two morphisms of finite type is of finite type. 
(d) Morphisms of finite type are stable under base extension. 
(e) If X and Yare schemes of finite type overS, then X x s Y is of finite type over 

S. 
(f) If X !... Y .!!... Z are two morphisms, and iff is quasi-compact, and g c f is of 

finite type, then f is of finite type. 
(g) Iff: X --> Y is a morphism of finite type, and if Y is noetherian, then X is 

noetherian. 

3.14. If X is a scheme of finite type over a field, show that the closed points of X are 
dense. Give an example to show that this is not true for arbitrary schemes. 

3.15. Let X be a scheme of finite type over a field k (not necessarily algebraically closed). 
(a) Show that the following three conditions are equivalent (in which case we say 

that X is geometrically irreducible). 

(i) X x k k is irreducible, where k denotes the algebraic closure of k. (By 
abuse of notation, we write X x k k to denote X x Speck Speck.) 

(ii) X x k ks is irreducible, where ks denotes the separable closure of k. 
(iii) X x k K is irreducible for every extension field K of k. 

(h) Show that the following three conditions are equivalent (in which case we say X 

is geometrically reduced). 

(i) X x k k is reduced. 
(ii) X x k kP is reduced, where kP denotes the perfect closure of k. 

(iii) X x k K is reduced for all extension fields K of k. 

(c) We say that X is geometrically integral if X x k k is integral. Give examples of 
integral schemes which are neither geometrically irreducible nor geometrically 
reduced. 

3.16. Noetherian Induction. Let X be a noetherian topological space, and let fJ' be a 
property of closed subsets of X. Assume that for any closed subset Y of X, iffY 
holds for every proper closed subset of Y, then fY holds for Y. (In particular, fY 

must hold for the empty set.) Then fY holds for X. 

3.17. Zariski Spaces. A topological space X is a Zariski space if it is noetherian and 
every (nonempty) closed irreducible subset has a unique generic point (Ex. 2.9). 

For example, let R be a discrete valuation ring, and let T = sp(Spec R). Then 
T consists of two points t0 = the maximal ideal, t 1 = the zero ideal. The open 
subsets are 0. {ti}, and T. This is an irreducible Zariski space with generic point 
t 1· 

(a) Show that if X is a noetherian scheme, then sp(X) is a Zariski space. 
(b) Show that any minimal nonempty closed subset of a Zariski space consists of 

one point. We call these closed points. 
(c) Show that a Zariski space X satisfies the axiom T0 :given any two distinct 

points of X, there is an open set containing one but not the other. 
(d) If X is an irreducible Zariski space, then its generic point is contained in every 

nonempty open subset of X. 
(e) If x0 ,x 1 are points of a topological space X, and if x 0 E {xd -, then we say 

that x 1 specializes to x 0 , written x 1 ~"W+x0 . We also say x 0 is a specialization 
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of x1, or that x 1 is a generization of x 0 . Now let X be a Zariski space. Show 
that the minimal points, for the partial ordering determined by x 1 > x 0 if x 1 Nv-> 

x 0 , are the closed points, and the maximal points are the generic points of the 
irreducible components of X. Show also that a closed subset contains every 
specialization of any of its points. (We say closed subsets are stable under 
specialization.) Similarly, open subsets are stable under generization. 

(f) Let t be the functor on topological spaces introduced in the proof of (2.6). 
If X is a noetherian topological space, show that t(X) is a Zariski space. 
Furthermore X itself is a Zariski space if and only if the map r:x: X --+ t(X) is 
a homeomorphism. 

3.18. Constructible Sets. Let X be a Zariski topological space. A constructible subset 
of X is a subset which belongs to the smallest family 0: of subsets such that (1) every 
open subset is in 0:, (2) a finite intersection of elements of 0: is in 0:, and (3) the 
complement of an element of 0: is in 0:. 
(a) A subset of X is locally closed if it is the intersection of an open subset with a 

closed subset. Show that a subset of X is constructible if and only if it can be 
written as a finite disjoint union of locally closed subsets. 

(b) Show that a constructible subset of an irreducible Zariski space X is dense if 
and only if it contains the generic point. Furthermore, in that case it contains 
a nonempty open subset. 

(c) A subset S of X is closed if and only if it is constructible and stable under 
specialization. Similarly, a subset T of X is open if and only if it is constructible 
and stable under generization. 

(d) If f:X --+ Y is a continuous map of Zariski spaces, then the inverse image of 
any constructible subset of Y is a constructible subset of X. 

3.19. The real importance of the notion of constructible subsets derives from the follow
ing theorem of Chevalley-see Cartan and Chevalley [1, expose 7] and see also 
Matsumura [2, Ch. 2, §6]: let f: X --+ Y be a morphism of finite type of noetherian 
schemes. Then the image of any constructible subset of X is a constructible 
subset of Y. In particular, f(X), which need not be either open or closed, is a 
constructible subset of Y. Prove this theorem in the following steps. 
(a) Reduce to showing that f(X) itself is constructible, in the case where X and Y 

are affine, integral noetherian schemes, and f is a dominant morphism. 
*(b) In that case, show that f(X) contains a nonempty open subset of Y by using 

the following result from commutative algebra: let A <:; B be an inclusion of 
noetherian integral domains, such that B is a finitely generated A-algebra. 
Then given a nonzero element b E B, there is a nonzero element a E A with 
the following property: if <p: A --+ K is any homomorphism of A to an algebrai
cally closed field K, such that rp(a) oft 0, then <p extends to a homomorphism 
<p' of B into K, such that <p'(b) oft 0. [Hint: Prove this algebraic result by 
induction on the number of generators of B over A. For the case of one 
generator, prove the result directly. In the application, take b = 1.] 

(c) Now use noetherian induction on Y to complete the proof. 
(d) Give some examples of morphisms f: X --+ Y of varieties over an algebraically 

closed field k, to show that f(X) need not be either open or closed. 

3.20. Dimension. Let X be an integral scheme of finite type over a field k (not necessarily 
algebraically closed). Use appropriate results from (I, §1) to prove the following. 
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(a) For any closed point P EX, dim X = dim((} p, where for rings, we always mean 
the Krull dimension. 

(b) Let K(X) be the function field of X (Ex. 3.6). Then dim X = tr.d. K(X)jk. 
(c) If Y is a closed subset of X, then codim(Y,X) = inf{ dim (I)P.xiP E Y}. 
(d) If Y is a closed subset of X, then dim Y + codim(Y,X) = dim X. 
(e) If U is a nonempty open subset of X, then dim U = dim X. 
(f) If k,;; k' is a field extension, then every irreducible component of X'= X xk k' 

has dimension = dim X. 

3.21. Let R be a discrete valuation ring containing its residue field k. Let X = 
Spec R[t] be the affine line over Spec R. Show that statements (a), (d), (e) of 
(Ex. 3.20) are false for X. 

*3.22. Dimension of the Fibres of a Morphism. Let f: X --+ Y be a dominant morphism 
of integral schemes of finite type over a field k. 
(a) Let Y' be a closed irreducible subset of Y, whose generic point rJ' is contained 

in f(X). Let Z be any irreducible component of f- 1( Y'), such that IJ' E f(Z), 
and show that codim(Z,X) ~ codim(Y',Y). 

(b) Let e = dim X - dim Y be the relative dimension of X over Y. For any point 
y E f(X), show that every irreducible component of the fibre Xy has dimen
sion ~e. [Hint: Let Y' = {y}-, and use (a) and (Ex. 3.20b).] 

(c) Show that there is a dense open subset U ,;; X, such that for any y E f(U), 
dim UY = e. [Hint: First reduce to the case where X and Yare affine, say 
X = Spec A and Y = Spec B. Then A is a finitely generated B-algebra. 
Take t 1, ..• ,teE A which form a transcendence base of K(X) over K(Y), and 
let X 1 =Spec B[t1 , •.• ,teJ. Then X 1 is isomorphic to affine e-space over Y, 
and the morphism X --+ X 1 is generically finite. Now use (Ex. 3.7) above.] 

(d) Going back to our original morphism f: X --+ Y, for any integer h, let Eh be 
the set of points x EX such that, letting y = f(x), there is an irreducible com
ponent Z of the fibre Xy, containing x, and having dim Z ~ h. Show that 
(1) Ee = X (use (b) above); (2) if h > e, then Eh is not dense in X (use (c) 
above); and (3) Eh is closed, for all h (use induction on dim X). 

(e) Prove the following theorem of Chevalley-see Cartan and Chevalley [1, 
expose 8]. For each integer h, let Ch be the set of points y E Y such that dim 
XY = h. Then the subsets Ch are constructible, and Ce contains an open 
dense subset of Y. 

3.23. If V, W are two varieties over an algebraically closed field k, and if V x W is 
their product, as defined in (1, Ex. 3.15, 3.16), and if t is the functor of (2.6), 
then t(V X W) = t(V) X Speck t(W). 

4 Separated and Proper Morphisms 

We now come to two properties of schemes, or rather of morphisms between 
schemes, which correspond to well-known properties of ordinary topological 
spaces. Separatedness corresponds to the Hausdorff axiom for a topological 
space. Properness corresponds to the usual notion of properness, namely 
that the inverse image of a compact subset is compact. However, the usual 
definitions are not suitable in abstract algebraic geometry, because the Zariski 
topology is never Hausdorff, and the underlying topological space of a scheme 
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does not accurately reflect all of its properties. So instead we will use def
initions which reflect the functorial behavior of the morphism within the 
category of schemes. For schemes of finite type over C, one can show that 
these notions, defined abstractly, are in fact the same as the usual notions if 
we consider those schemes as complex analytic spaces in the ordinary 
topology (Appendix B). 

In this section we will define separated and proper morphisms. We will 
give criteria for a morphism to be separated or proper using valuation rings. 
Then we will show that projective space over any scheme is proper. 

Definition. Let f: X -+ Y be a morphism of schemes. The diagonal morphism 
is the unique morphism L1 :X -+ X x r X whose composition with both 
projection maps p1,p2 :X x r X-+ X is the identity map of X-+ X. We 
say that the morphism f is separated if the diagonal morphism L1 is a 
closed immersion. In that case we also say X is separated over Y. A scheme 
X is separated if it is separated over Spec Z. 

Example 4.0.1. Let k be a field, and let X be the affine line with the origin 
doubled (2.3.6). Then X is not separated over k. Indeed, X x k X is the 
affine plane with doubled axes and four origins. The image of Ll is the usual 
diagonal, with two of those origins. This is not closed, because all four 
origins are in the closure of L1(X). 

Example 4.0.2. We will see later (4.10) that if Vis any variety over an alge
braically closed field k, then the associated scheme t(V) is separated over k. 

Proposition 4.1. Iff: X -+ Y is any morphism of affine schemes, then f is 
separated. 

PROOF. Let X = Spec A, Y =.Spec B. Then A is a B-algebra, and X x r X 
is also affine, given by Spec A @8 A. The diagonal morphism L1 comes from 
the diagonal homomorphism A @8 A -+ A defined by a @a' -+ aa'. This is 
a surjective homomorphism of rings, hence Ll is a closed immersion. 

Corollary 4.2. An arbitrary morphism f: X -+ Y is separated if and only if 
the image of the diagonal morphism is a closed subset of X x r X. 

PROOF. One implication is obvious, so we have only to prove that if Ll(X) is 
a closed subset, then Ll :X -+ X x r X is a closed immersion. In other words, 
we have to check that L1: X -+ L1(X) is a homeomorphism, and that the 
morphism of sheaves (!)XxyX-+ L1*(!)x is surjective. Let p1 :X x r X-+ X be 
the first projection. Since p1 o L1 = idx, it follows immediately that L1 gives a 
homeomorphism onto L1(X). To see that the map of sheaves (!)x x yX -+ Ll*(!)x 
is surjective is a local question. For any point P EX, let U be an open affine 
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neighborhood of P which is small enough so that f(U) is contained m an 
open affine subset V of Y. Then U x v U is an open affine neighborhood of 
L1(P), and by the proposition, L1: U --+ U x v U is a closed immersion. So 
our map of sheaves is surjective in a neighborhood of P, which completes 
the proof. 

Next we will discuss the valuative criterion of separatedness. The rough 
idea is that in order for a scheme X to be separated, it should not contain 
any subscheme which looks like a curve with a doubled point, as in the 
example above. Another way of saying this is that if C is a curve, and P a 
point of C, then given any morphism of C - P into X, it should admit at 
most one extension to a morphism of all of C into X. (Compare (1, 6.8) where 
we showed that a projective variety has this property.) 

In practice, this rough idea has to be modified. The question is local, so 
we replace the curve by its local ring at P, which is a discrete valuation ring. 
Then since our schemes may be quite general, we must consider arbitrary 
(not necessarily discrete) valuation rings. Finally, we make the criterion 
relative over the image scheme Y of a morphism. 

See (1, §6) for the definition and basic properties of valuation rings. 

Theorem 4.3 (Valuative Criterion of Separatedness). Let f: X --+ Y be a mor
phism of schemes, and assume that X is noetherian. Then f is separated if 
and only if the following condition holds. For any field K, and for any 
valuation ring R with quotient field K, let T = Spec R, let U = Spec K, 
and let i: U --+ T be the morphism induced by the inclusion R c::::: K. Given 
a morphism of T to Y, and given a morphism of U to X which makes a 
commutative diagram 

T Y, 

there is at most one morphism of T to X making the whole diagram com
mutative. 

We will need two lemmas. 

Lemma 4.4. Let R be a valuation ring of a field K. Let T = Spec R and let 
U = SpecK. To give a morphism of U to a scheme X is equivalent to 
giving a point x 1 EX and an inclusion of fields k(x1) c::::: K. To give a 
morphism of T to X is equivalent to giving two points x0 ,x1 in X, with x 0 

a specialization (see Ex. 3.17e) ofx1 , and an inclusion of fields k(xd c::::: K, 
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such that R dominates the local ring @ of x 0 on the sub scheme Z = { x 1}

of X with its reduced induced structure. 

PROOF. U is a one-point scheme, with structure sheaf K. To give a local 
homomorphism @x,.x --+ K is the same as giving an inclusion of k(x 1) <;; K, 
so the first part is obvious. For the second part, let t0 = mR be the closed 
point ofT, and let t1 = (0) be the generic point ofT. Given a morphism of 
T to X, let x 0 and x1 be the images of t 0 and t1 . Since Tis reduced, the 
morphism T--+ X factors through Z (Ex. 3.11). Furthermore, k(x 1) is the 
function field of Z. So we have a local homomorphism of@ = @xo,z to R 
compatible with the inclusion k(xd <;; K. In other words R dominates @. 

Conversely, given the data consisting ofx0 ,xt. and the inclusion k(x1) <;; K 
such that R dominates@, the inclusion@ --+ R gives a morphism T--+ Spec@, 
which composed with the natural map Spec @ --+ X gives the desired 
morphism T --+ X. 

Lemma 4.5. Let f: X --+ Y be a quasi-compact morphism of schemes (see 
Ex. 3.2). Then the subset f(X) of Y is closed if and only if it is stable under 
specialization (Ex. 3.17e). 

PROOF. One implication is obvious, so we have only to show that if f(X) is 
stable under specialization, then it is closed. Clearly we may assume that 
X and Y are both reduced, and that f(X)- = Y (replace Y by the reduced 
induced structure on f(X)-). So let y E Y be a point. We wish to show that 
y E f(X). Now we can replace Y by an affine neighborhood of y, and so 
assume that Y is affine. Then since f is quasi-compact, X will be a finite 
union of open affines Xi. We know that y E f(X)-. Hence y E f(XJ- for 
some i. Let Y; = f(XJ- with the reduced induced structure. Then Y; 
is also affine, and we will consider the dominant morphism Xi --+ Y; of 
reduced affine schemes. Let Xi = Spec A and Y; = Spec B. Then the cor
responding ring homomorphism B --+ A is injective, because the morphism 
is dominant. The point y E Y; corresponds to a prime ideal p <;; B. Let 
p' <;; p be a minimal prime ideal of B contained in p. (Minimal prime ideals 
exist, by Zorn's lemma, because the intersection of any family of prime ideals, 
totally ordered by inclusion, is again a prime ideal!) Then p' corresponds to 
a point y' of Y; which specializes to y. I claim y' E f(XJ Indeed, let u~ 
localize A and B at p'. Localization is an exact functor, so BP' <;; A @ BP'· 
Now Bp' is a field. Let q~ be any prime ideal of A @ BP'· Then q~ n BP' = (0). 
Let q' <;; A be the inverse image of q~ under the localization map A --+ A @ BP'· 
Then q' n B = p'. So q' corresponds to a point x' E Xi withf(x') = y'. Now 
go back to the morphismf:X--+ Y. We have x' E X,f(x') = y', soy' E f(X). 
But f(X) is stable under specialization by hypothesis, andy' /\1'-+ y, soy E f(X), 
which is what we wanted to prove. 

PROOF OF THEOREM 4.3. First suppose f is separated, and suppose given a 
diagram as above where there are two morphisms h,h' of T to X making the 
whole diagram commutative. 
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Then we obtain a morphism h": T --+ X x r X. Since the restrictions of h 
and h' to U are the same, the generic point t 1 ofT has image in the diagonal 
Ll(X). Since Ll(X) is closed, the image of t 0 is also in the diagonal. Therefore 
h and h' both send the points t 0 ,t 1 to the same points x0 ,x 1 of X. Since the 
inclusions of k(x d. s K induced by h and h' are also the same, it follows 
from (4.4) that hand h' are equal. 

Conversely, let us suppose the condition of the theorem satisfied. To 
show that f is separated, it is sufficient by (4.2) to show that Ll(X) is a closed 
subset of X x r X. And since we have assumed that X is noetherian, the 
morphism Ll is quasi-compact, so by (4.5) it will be sufficient to show that 
Ll(X) is stable under specialization. So let ~ 1 E Ll(X) be a point, and let 
~ 1 1V'-+ ~0 be a specialization. Let K = k(~ d and let (!) be the local ring of ~0 
on the subscheme { ~ 1 } - with its reduced induced structure. Then (!) is a 
local ring contained in K, so by (I, 6.1A) there is a valuation ring R of K 
which dominates(!). Now by (4.4) we obtain a morphism ofT = Spec R to 
X x r X sending t 0 and t 1 to ~0 and ~ 1. Composing with the projections 
p1,p2 gives two morphisms ofT to X, which give the same morphism to Y, 
and whose restrictions to U = Spec K are the same, since ~ 1 E Ll(X). So 
by the condition, these two morphisms ofT to X must be the same. Therefore 
the morphism T --+ X x r X factors through the diagonal morphism 
Ll :X--+ X x r X, and so ~0 E Ll(X). This completes the proof. Note in the 
last step it would not be sufficient to know only that p 1 (~0 ) = p2(~0 ). For in 
general if~ EX x r X then pd~) = p2(() does not imply¢ E Ll(X). 

Corollary 4.6. Assume that all schemes are noetherian in the following state
ments. 

(a) Open and closed immersions are separated. 
(b) A composition of two separated morphisms is separated. 
(c) Separated morphisms are stable under base extension. 
(d) If f:X--+ Y and f':X'--+ Y' are separated morphisms of schemes over 

a base scheme S, then the product morphism f x f': X x s X'--+ Y x s Y' 
is also separated. 

(e) Iff: X --+ Y and g: Y --+ Z are two morphisms and if g o f is separated, 
then f is separated. 

(f) A morphism f:X--+ Y is separated if and only if Y can be covered by 
open subsets V; such that f- 1( V;) --+ V; is separated for each i. 

PROOF. These statements all follow immediately from the condition of the 
theorem. We will give the proof of (c) to illustrate the method. Let f: X --+ Y 
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be a separated morphism, let Y' --+ Y be any morphism, and let X' = 

X x y Y' be obtained by base extension. We must show that f':X'--+ Y' 
is separated. So suppose we are given morphisms of T to Y' and U to X' as 
in the theorem, and two morphisms of T to X' making the diagram 

------+X 

T ---------> Y' y 

commutative. Composing with the map X' --+ X, we obtain two morphisms 
of T to X. Since f is separated, these are the same. But X' is the fibred 
product of X and Y' over Y, so by the universal property of the fib red prod
uct, the two maps of T to X' are the same. Hence f' is separated. 

Note on Noetherian Hypotheses. You have probably noticed that in order 
to apply the theorem, it is not necessary to assume that all the schemes 
mentioned in the corollary are noetherian. In fact, even in the theorem 
itself, you can get by with assuming something less than X noetherian (see 
Grothendieck [EGA I, new ed., 5.5.4]). My feeling is that if a noetherian 
hypothesis will make statements and proofs substantially simpler, then I 
will make that hypothesis, even though it may not be necessary. My justi
fication for this attitude is that most of the motivation and examples in 
algebraic geometry come from schemes of finite type over a field, and 
constructions made from them, and practically all the schemes encountered 
in this way are noetherian. This attitude will prevail in Chapter III, where 
noetherian hypotheses are built into the very foundations of our treatment 
of cohomology. The reader who wishes to avoid noetherian hypotheses is 
advised to read [EGA], especially [EGA IV, §8]. 

Definition. A morphism f: X --+ Y is proper if it is separated, of finite type, 
and universally closed. Here we say that a morphism is closed if the 
image of any closed subset is closed. A morphism f: X --+ Y is universally 
closed if it is closed, and for any morphism Y' --+ Y, the corresponding 
morphism f': X' --+ Y' obtained by base extension is also closed. 

Example 4.6.1. Let k be a field and let X be the affine line over k. Then X 
is separated and of finite type over k, but it is not proper over k. Indeed, 
take the base extension X --+ k. The map X x k X --+ X we obtain is the 
projection map of the affine plane onto the affine line. This is not a closed 
map. For example, the hyperbola given by the equation xy = 1 is a closed 
subset of the plane, but its image under projection consists of the affine line 
minus the origin, which is not closed. 

Of course it is clear that what is missing in this example is the point at 
infinity on the hyperbola. This suggests that the projective line would be 
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proper over k. In fact, we will see later (4.9) that any projective variety over 
a field is proper. 

Theorem 4.7 (Valuative Criterion of Properness). Let f:X--+ Y be a mor
phism of finite type, with X noetherian. Then f is proper if and only if 
for every valuation ring R and for every morphism of U to X and T to Y 
forming a commutative diagram 

u X 

i j /j .................................... f 

T y 

(using the notation of (4.3) }, there exists a unique morphism T--+ X making 
the whole diagram commutative. 

PROOF. First assume that f is proper. Then by definition f is separated, 
so the uniqueness of the morphism T--+ X will follow from (4.3), once we 
know it exists. For the existence, we consider the base extension T--+ Y, 
and let X r = X x y T. We get a map U --+ X T from the given maps U --+ X 
and U--+ T. 

U----~ Xr ------X 

T y 

Let ~ 1 EX r be the image of the unique point t 1 of U. Let Z = g d-. 
Then Z is a closed subset of X T· Since f is proper, it is universally closed, 
so the morphism f': X T --+ T must be closed, so f'(Z) is a closed subset 
ofT. But f'(~ 1 } = tt> which is the generic point ofT, so in fact f'(Z) = T. 
Hence there is a point ~0 E Z with f'(~0 } = t0 . So we get a local homo
morphism of local rings R --+ (l)~o.z corresponding to the morphism f'. 
Now the function field of Z is k(~ 1 }, which is contained inK, by construc
tion of~ 1 . By (1, 6.1A), R is maximal for the relation of domination between 
local subrings of K. Hence R is isomorphic to (!) ~0.z, and in particular R 
dominates it. Hence by (4.4) we obtain a morphism ofT to Xr sending 
t0 ,t1 to ~0 ,~ 1 . Composing with the map X r --+ X gives the desired morphism 
ofT to X. 

Conversely, suppose the condition of the theorem holds. To show f is 
proper, we have only to show that it is universally closed, since it is of finite 
type by hypothesis, and it is separated by (4.3). So let Y' --+ Y be any mor
phism, and let f':X'--+ Y' be the morphism obtained from f by base ex
tension. Let Z be a closed subset of X', and give it the reduced induced 
structure. 
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Z s;: X' -----~ X 

Y' --------+ y 

We need to show that f'(Z) is closed in Y'. Since f is of finite type, so is f' 
and so is the restriction off' to Z (Ex. 3.13). In particular, the morphism 
f':Z--+ Y' is quasi-compact, so by (4.5) we have only to show that f(Z) is 
stable under specialization. So let z1 E Z be a point, let Y1 = f'(zd, and let 
y 1 ~ y0 be a specialization. Let (!) be the local ring of y0 on { y 1}- with its 
reduced induced structure. Then the quotient field of(!) is k(y1), which is a 
subfield of k(z 1). Let K = k(z d, and let R be a valuation ring of K which 
dominates(!) (which exists by (I, 6.1A) ). 

From this data, by (4.4) we obtain morphisms U--+ Z and T--+ Y' 
forming a commutative diagram 

u --------+ z 

j 
T -------+ Y'. 

Composing with the morphisms Z --+ X' --+ X and Y' --+ Y, we get mor
phisms U --+ X and T --+ Y to which we can apply the condition of the 
theorem. So there is a morphism of T --+ X making the diagram commute. 
Since X' is a fibred product, it lifts to give a morphism T --+ X'. And since 
Z is closed, and the generic point of T goes to z 1 E Z, this morphism factors 
to give a morphism T--+ Z. Now let z0 be the image of t0 . Then f'(z0 ) = 

y0 , so Yo E f'(Z). This completes the proof. 

Corollary 4.8. In the following statements, we take all schemes to be noetherian. 
(a) A closed immersion is proper. 
(b) A composition of proper morphisms is proper. 
(c) Proper morphisms are stable under base extension. 
(d) Products of proper morphisms are proper as in ( 4.6d). 
(e) If f:X--+ Y and g: Y--+ Z are two morphisms, if go f is proper, 

and if g is separated, then f is proper. 
(f) Properness is local on the base as in (4.6£). 

PROOF. These results follow immediately from the condition of the theorem, 
taking into account (Ex. 3.13) which deals with the finite type property, 
and (4.6). We will give the proof of (e) to illustrate the method. Assume 
go f is proper and g is separated. Then f is of finite type by (Ex. 3.13). (We 
have assumed that X is noetherian, so f is automatically quasi-compact.) 
Also f is separated by (4.6). So we have to show that given a valuation 
ring R, and morphisms U --+ X and T --+ Y making a commutative diagram, 
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----------~ 

T y 

then there exists a morphism of T to X making the diagram commutative. 
Let T ~ Z be the composed map. Then since g o f is proper, there is a 

map of T to X commuting with the map of T ~ Z. By composing with f, 
we get a second map of T to Y. But now since g is separated, the two maps 
of T to Y are the same, so we are done. 

Our next objective is to define projective morphisms and to show that 
any projective morphism is proper. Recall that in Section 2 we defined 
projective n-space PA over any ring A to be Proj A[ x0 , ... ,xnJ. Note that 
if A ~ B is a homomorphism of rings, and Spec B ~ Spec A is the corre
sponding morphism of affine schemes, then P~ ;::;: PA x spec A Spec B. In 
particular, for any ring A, we have PA ;::;: P~ x Spec z Spec A. This motivates 
the following definition for any scheme Y. 

Definition. If Y is any scheme, we define projective n-space over Y, denoted 
P~, to be P~ x spec z Y. A morphism f:X ~ Y of schemes is projective 
if it factors into a closed immersion i:X ~ P~ for some n, followed by 
the projection P~ ~ Y. A morphism f:X ~ Y is quasi-projective if it 
factors into an open immersionj:X ~X' followed by a projective mor
phism g: X' ~ Y. (This definition of projective morphism is slightly 
different from the one in Grothendieck [EGA II, 5.5]. The two definitions 
are equivalent in case Y itself is quasi-projective over an affine scheme.) 

Example 4.8.1. Let A be a ring, letS be a graded ring with S0 = A, which 
is finitely generated as an A-algebra by S1 . Then the natural map Proj S ~ 
Spec A is a projective morphism. Indeed, by hypothesis S is a quotient of 
a polynomial ring S' = A[ x0 , ... ,xnJ. The surjective homomorphism of 
graded rings S' ~ S gives rise to a closed immersion Proj S ~ Proj S' = 

PA, which shows that Proj Sis projective over A (Ex. 3.12). 

Theorem 4.9. A projective morphism of noetherian schemes is proper. A quasi-
projective morphism of noetherian schemes is of finite type and separated. 

PROOF. Taking into account the results of (Ex. 3.13) and (4.6) and (4.8), it 
will be sufficient to show t~at X = P~ is proper over Spec Z. Recall by 
(2.5) that X is a union of open affine subsets v; = D + (x;), and that v; is 
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isomorphic to Spec Z[ x 0/x;, . .. ,xn/xJ. Thus X is of finite type. To show 
that X is proper, we will use the criterion of (4.7) and imitate the proof 
of (I, 6.8). So suppose given a valuation ring R and morphisms U --+ X, 
T --+ Spec Z as shown: 

T --------+ Spec Z. 

Let ~ 1 EX be the image of the unique point of U. Using induction on n, 

we may assume that ~ 1 is not contained in any of the hyperplanes X - V;, 
which are each isomorphic to P"- 1 . In other words, we may assume that 
~ 1 En J.'i, and hence all of the functions x;/xj are invertible elements of the 
local ring @ ~~. 

We have an inclusion k(~ 1 ) s;: K given by the morphism U --+X. Let 
fu E K be the image of x;/xi. Then the fii are nonzero elements of K, and 
hk = hi · jjk for all i,j,k. Let v: K --+ G be the valuation associated to the 
valuation ring R. Let g; = v(/;0 ) for i = 0, ... ,n. Choose k such that gk 

is minimal among the set {g0 , ... ,gn}, for the ordering of G. Then for 
each i we have 

hence hk E R for i = 0, ... ,n. Then we can define a homomorphism 

cp: Z[ x0 /xk, ... ,xn/xk] -4 R 

by sending x;/xk to hk· It is compatible with the given field inclusion k(~ d s;: 

K. This homomorphism cp gives a morphism T --+ ~' and hence a mor
phism ofT to X which is the one required. The uniqueness of this morphism 
follows from the construction and the way the V; patch together. 

Proposition 4.10. Let k be an algebraically closed field. The image of the 
functor t: l!Jar(k) --+ 6cl)(k) of (2.6) is exactly the set of quasi-projective 
integral schemes over k. The image of the set of projective varieties is the 
set of projective integral schemes. In particular, for any variety V, t(V) 
is an integral, separated scheme of finite type over k. 

PROOF. We have already seen in Section 3 that for any variety V, the asso
ciated scheme t( V) is integral and of finite type over k. Since varieties were 
defined as locally closed subsets of projective space (I, §3), it is clear that 
t(V) is also quasi-projective. 

For the converse, it will be sufficient to show that any projective integral 
scheme Y over k is in the image of t. Let Y be a closed subscheme of PZ, 
and let V be the set of closed points of Y. Then V is a closed subset of the 
variety P". Since V is dense in Y (Ex. 3.14) we see that V is irreducible, so 
V is a projective variety, and we see also that t(V) and Y have the same 
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underlying topological space. But they are both reduced closed subschemes 
of PZ, so they are isomorphic (Ex. 3.11). 

Definition. An abstract variety is an integral separated scheme of finite type 
over an algebraically closed field k. If it is proper over k, we will also 
say it is complete. 

Remark 4.10.1. From now on we will use the word "variety" to mean 
"abstract variety" in the sense just defined. We will identify the varieties 
of Chapter I with their associated schemes, and refer to them as quasi
projective varieties. We will use the words "curve," "surface," "three-fold," 
etc., to mean an abstract variety of dimension 1, 2, 3, etc. 

Remark 4.10.2. The concept of an abstract variety was invented by Weil 
[1]. He needed it to provide a purely algebraic construction of the Jacobian 
variety of a curve, which at first appeared only as an abstract variety 
(Weil [2]). Then Chow [3] gave a different construction of the Jacobian 
variety showing that it was in fact a projective variety. Later Weil [6] 
himself showed that all abelian varieties were projective. 

Meanwhile Nagata [1] found an example of a complete abstract non
projective variety, showing that in fact the new class of abstract varieties 
is larger than the class of projective varieties. 

We can sum up the present state of knowledge of this subject as follows. 

(a) Every complete curve is projective (III, Ex. 5.8). 
(b) Every nonsingular complete surface is projective (Zariski [5]). See also 

Hartshorne [ 5, 11.4.2]. 
(c) There exist singular nonprojective complete surfaces (Nagata [3]). See 

also (Ex. 7.13) and (III, Ex. 5.9). 
(d) There exist nonsingular complete nonprojective three-folds (Nagata 

[ 4], Hironaka [2], and (Appendix B)). 
(e) Every variety can be embedded as an open dense subset of a complete 

variety (Nagata [6]). 

The following algebraic result will be used in (Ex. 4.6). 

Theorem 4.11A. If A is a subring of a field K, then the integral closure of A 
in K is the intersection of all valuation rings of K which contain A. 

PROOF. Bourbaki [1, Ch. VI, §1, no. 3, Thm. 3, p. 92]. 

EXERCISES 

4.1. Show that a finite morphism is proper. 

4.2. Let S be a scheme, let X be a reduced scheme over S, and let Y be a separated 
scheme over S. Let f and g be two S-morphisms of X to Y which agree on an 
open dense subset of X. Show that f = g. Give examples to show that this 
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result fails if either (a) X is nonreduced, or (b) Y is nonseparated. [Hint: Consider 
the map h:X-> Y x s Y obtained from f and g.] 

4.3. Let X be a separated scheme over an affine scheme S. Let U and V be open 
affine subsets of X. Then U n Vis also affine. Give an example to show that this 
fails if X is not separated. 

4.4. Let f: X -> Y be a morphism of separated schemes of finite type over a noetherian 
scheme S. Let Z be a closed subscheme of X which is proper over S. Show that 
f(Z) is closed in Y, and that f(Z) with its image subscheme structure (Ex. 3.11d) 
is proper over S. We refer to this result by saying that "the image of a proper 
scheme is proper." [Hint: Factor f into the graph morphism r1 :X-> X Xs Y 
followed by the second projection p2 , and show that r 1 is a closed immersion.] 

4.5. Let X be an integral scheme of finite type over a field k, having function field K. 
We say that a valuation of Kjk (see I, §6) has center x on X if its valuation ring R 
dominates the local ring (!Jx,x· 
(a) If X is separated over k, then the center of any valuation of Kjk on X (if it 

exists) is unique. 
(b) If X is proper over k, then every valuation of Kjk has a unique center on X. 

*(c) Prove the converses of(a) and (b). [Hint: While parts (a) and (b) follow quite 
easily from (4.3) and (4.7), their converses will require some comparison of 
valuations in different fields.] 

(d) If X is proper over k, and if k is algebraically closed, show that r(X,(!Jx) = k. 
This result generalizes (1, 3.4a). [Hint: Let a E r(X,(!Jx), with a¢ k. Show that 
there is a valuation ring R of Kjk with a- 1 E mR. Then use (b) to get a con
tradiction. J 

Note. If X is a variety over k, the criterion of (b) is sometimes taken as the de
finition of a complete variety. 

4.6. Let f: X -> Y be a proper morphism of affine varieties over k. Then f is a finite 
morphism. [Hint: Use (4.11A).] 

4.7. Schemes Over R. For any scheme X 0 over R, let X= X 0 x R C. Let ocC-> C be 
complex conjugation, and let a: X -> X be the automorphism obtained by keeping 
X 0 fixed and applying r:t. to C. Then X is a scheme over C, and a is a semi-linear 
automorphism, in the sense that we have a commutative diagram 
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X _______ a ____ ~ 
X 

l l 
Spec C Spec C. 

Since a2 = id, we call a an involution. 
(a) Now let X be a separated scheme of finite type over C, let a be a semilinear 

involution on X, and assume that for any two points xl>x2 EX, there is an 
open affine subset containing both of them. (This last condition is satisfied 
for example if X is quasi-projective.) Show that there is a unique separated 
scheme X 0 of finite type over R, such that X 0 x R C ~ X, and such that this 
isomorphism identifies the given involution of X with the one on X 0 x R C 
described above. 
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For the following statements, X 0 will denote a separated scheme of finite 
type over R, and X,a will denote the corresponding scheme with involution 
over C. 

(b) Show that X 0 is affine if and only if X is. 
(c) If X 0 ,Y0 are two such schemes over R, then to give a morphism f 0 :X0 -+ Y0 

is equivalent to giving a morphism f:X-+ Y which commutes with the in
volutions, i.e., f o ax = ay of 

(d) If X~ A~, then X 0 ~ A~. 
(e) If X ~ P~, then either X 0 ~ P~, or X 0 is isomorphic to the conic in Pi given 

by the homogeneous equation x~ + xf + x~ = 0. 

4.8. Let [l}J be a property of morphisms of schemes such that: 
(a) a closed immersion has&; 
(b) a composition of two morphisms having [l}J has&; 
(c) [l}J is stable under base extension. 

Then show that: 
(d) a product of morphisms having & has&; 
(e) if f:X-+ Y and g: Y-+ Z are two morphisms, and if go f has & and g is 

separated, then f has&; 
(f) If f:X -+ Y has&, then feed :X"d -+ Yced has&. 

[Hint: For (e), consider the graph morphism r 1 :X-+ X x z Y and note that 
it is obtained by base extension from the diagonal morphism Ll: Y -+ Y x z Y.] 

4.9. Show that a composition of projective morphisms is projective. [Hint: Use the 
Segre embedding defined in (1, Ex. 2.14) and show that it gives a closed immersion 
P' x ps -+ prs+r+s.J Conclude that projective morphisms have properties 
(a)-(f) of (Ex. 4.8) above. 

*4.10. Chow's Lemma. This result says that proper morphisms are fairly close to pro
jective morphisms. Let X be proper over a noetherian scheme S. Then there is 
a scheme X' and a morphism g: X' -+ X such that X' is projective over S, and 
there is an open dense subset U ~ X such that g induces an isomorphism of 
g- 1(U) to U. Prove this result in the following steps. 
(a) Reduce to the case X irreducible. 
(b) Show that X can be covered by a finite number of open subsets V;, i = 1, . .. ,n, 

each of which is quasi-projective over S. Let Vi -+ Pi be an open immersion 
of Vi into a scheme Pi which is projective overS. 

(c) Let V = n Vi, and consider the map 

f:V-+X x 5 P 1 x 5 • .. x 5 Pn 

deduced from the given maps V -+ X and V -+ Pi. Let X' be the closed image 
subscheme structure (Ex. 3.1ld) f( V) -. Let g: X' -+ X be the projection onto 
the first factor, and let h: X' -+ P = P 1 x s . . . x s P" be the projection onto 
the product of the remaining factors. Show that h is a closed immersion, 
hence X' is projective over S. 

(d) Show that g- 1(V) -+ Vis an isomorphism, thus completing the proof. 

4.11. If you are willing to do some harder commutative algebra, and stick to noetherian 
schemes, then we can express the valuative criteria of separatedness and properness 
using only discrete valuation rings. 
(a) If (IJ,m is a noetherian local domain with quotient field K, and if Lis a finitely 

generated field extension of K, then there exists a discrete valuation ring R of 
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L dominating @. Prove this in the following steps. By taking a polynomial 
ring over (1), reduce to the case where Lis a finite extension field of K. Then 
show that for a suitable choice of generators x 1, ... ,x" of m, the ideal a = (x 1) 

in (!!' = (I [x 2/x 1, ••. ,x"/x 1] is not equal to the unit ideal. Then let p be a 
minimal prime ideal of a, and let (!!'~'be the localization of(!!' at p. This is a 
noetherian local domain of dimension 1 dominating@. Let lP'~'be the integral 
closure of (!!'~'in L. Use the theorem of Krull-Akizuki (see Nagata [7, p. 115]) 
to show that if·., is noetherian of dimension 1. Finally, take R to be a local
ization of if'., at one of its maximal ideals. 

(b) Let f: X -+ Y be a morphism of finite type of noetherian schemes. Show that 
f is separated (respectively, proper) if and only if the criterion of (4.3) (respec
tively, (4.7)) holds for all discrete valuation rings. 

4.12. Examples of Valuation Rings. Let k be an algebraically closed field. 
(a) If K is a function field of dimension I over k (I, §6), then every valuation ring 

of Kjk (except for K itself) is discrete. Thus the set of all of them is just the 
abstract nonsingular curve C K of (1, §6). 

(b) If K/k is a function field of dimension two, there are several different kinds of 
valuations. Suppose that X is a complete·nonsingular surface with function 
field K. 

(I) If Y is an irreducible curve on X, with generic point X~o then the local ring 
R = (!! x,.x is a discrete valuation ring of Kjk with center at the (nonclosed) 
point x 1 on X. 

(2) Iff: X' -+ X is a birational morphism, and if Y' is an irreducible curve in 
X' whose image in X is a single closed point x 0 , then the local ring R of 
the generic point of Y' on X' is a discrete valuation ring of Kjk with center 
at the closed point x 0 on X. 

(3) Let x 0 E X be a closed point. Let f: X 1 -+ X be the blowing-up of x 0 

(I, §4) and let E 1 = f- \x0 ) be the exceptional curve. Choose a closed 
point x 1 E £ 1, let / 2 : X 2 -+ X 1 be the blowing-up of X~o and let £ 2 = 
/2 1(x 1) be the exceptional curve. Repeat. In this manner we obtain a 
sequence of varieties X; with closed points X; chosen on them, and for 
each i, the local ring (lx,+,.x,., dominates (!ix,,x,. Let R0 = Ui~o (!ix,.x,· 
Then R0 is a local ring, so it is dominated by some valuation ring R of 
Kjk by (I, 6.1A). Show that R is a valuation ring of Kjk, and that it has 
center x 0 on X. When is R a discrete valuation ring? 

Note. We will see later (V, Ex. 5.6) that in fact the R0 of(3) is already a valuation 
ring itself, so R0 = R. Furthermore, every valuation ring of Kjk (except for K 
itself) is one of the three kinds just described. 

5 Sheaves of Modules 

So far we have discussed schemes and morphisms between them without 
mentioning any sheaves other than the structure sheaves. We can increase 
the flexibility of our technique enormously by considering sheaves of modules 
on a given scheme. Especially important are quasi-coherent and coherent 
sheaves, which play the role of modules (respectively, finitely generated 
modules) over a ring. 
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In this section we will develop the basic properties of quasi-coherent and 
coherent sheaves. In particular we will introduce the important "twisting 
sheaf" @(1) of Serre on a projective scheme. 

We will start by defining sheaves of modules on a ringed space. 

Definitions. Let (X,@x) be a ringed space (see §2). A sheaf of @x-modules 
(or simply an @x-module) is a sheaf !F on X, such that for each open set 
U s;:: X, the group !F(U) is an @x(U)-module, and for each inclusion of 
open sets V s;:: U, the restriction homomorphism !F(U) --+ !F(V) is com
patible with the module structures via the ring homomorphism @x(U) --+ 

@x(V). A morphism !F --+ ':§ of sheaves of @x-modules is a morphism of 
sheaves, such that for each open set U s;:: X, the map !F(U) --+ ':#(U) is a 
homomorphism of @x(U)-modules. 

Note that the kernel, co kernel, and image of a morphism of @x-modules 
is again an @x-module. If !F' is a subsheaf of @x-modules of an @x-module 
!F, then the quotient sheaf !Fj!F' is an @x-module. Any direct sum, 
direct product, direct limit, or inverse limit of (9 x-modules is an (9 x-module. 
If !F and':§ are two @x-modules, we denote the group ofmorphisms from 
!F to ':§ by Homlllx(!F,':#), or sometimes Homx(ff,':#) or Hom(!#','§) if no 
confusion can arise. A sequence of @x-modules and morphisms is exact 
if it is exact as a sequence of sheaves of abelian groups. 

If U is an open subset of X, and if !F is an @x-module, then :Flu is an 
@xlu-module. If !F and ':§ are two @x-modules, the presheaf 

U f--+ Homlllxlu(!Fiu,':#lu) 

is a sheaf, which we call the sheaf J'fom (Ex. 1.15), and denote by 
J'fomlllx(!F,':#). It is also an @x-module. 

We define the tensor product !F ®lllx ':§ of two @x-modules to be the 
sheaf associated to the presheaf U f--+ !F(U) ®lllx(UJ ':#(U). We will often 
write simply !F 0 ':#,with (Qx understood. 

An @x-module !F is free if it is isomorphic to a direct sum of copies of 
@x. It is locally free if X can be covered by open sets U for which :Flu 
is a free @xlu-module. In that case the rank of !F on such an open set is 
the number of copies of the structure sheaf needed (finite or infinite). 
If X is connected, the rank of a locally free sheaf is the same everywhere. 
A locally free sheaf of rank 1 is also called an invertible sheaf 

A sheaf of ideals on X is a sheaf of modules f which is a subsheaf 
of (Qx· In other words, for every open set U, f(U) is an ideal in @x(U). 

Let f:(X,@x)--+ (Y,@y} be a morphism of ringed spaces (see §2). If 
!F is an @x-module, then f*!F is an f*@x-module. Since we have the 
morphism f# :@y--+ f*(Qx of sheaves of rings on Y, this gives f*!F a 
natural structure of @y-module. We call it the direct image of !F by the 
morphism! 

Now let':§ be a sheaf of @y-modules. Then f- 1'§ is an f- 1@y-module. 
Because of the adjoint property off -l (Ex. 1.18) we have a morphism 
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f- 1(!Jy--+ (!Jx of sheaves of rings on X. We define f*<§ to be the tensor 
product 

f-l<g ®J-•i!!y (!Jx· 

Thus f*<§ is an @x-module. We call it the inverse image of <§ by the 
morphism! 

As in (Ex. 1.18) one can show that f* and f* are adjoint functors 
between the category of (!Jx-modules and the category of @y-modules. 
To be precise, for any @x-module ff and any @y-module <§, there is a 
natural isomorphism of groups 

Homl!!x(f*<§,ff) ~ Homi!Jy(<§,f*ff). 

Now that we have the general notion of a sheaf of modules on a ringed 
space, we specialize to the case of schemes. We start by defining the sheaf 
of modules M on Spec A associated to a module M over a ring A. 

Definition. Let A be a ring and let M be an A-module. We define the sheaf 
associated to M on Spec A, denoted by M, as follows. For each prime 
ideal p s;:: A, let MP be the localization of M at p. For any open set 
U s;:: Spec A we define the group M(U) to be the set of functions s: U --+ 

Upe u MP such that for each p E U, s(p) E MP, and such that sis locally 
a fraction m/f with mE M and f EA. To be precise, we require that for 
each p E U, there is a neighborhood V of p in U, and there are elements 
mE M and f E A, such that for each q E V, f 4 q, and s(q) = m/f in Mq. 
We make Minto a sheaf by using the obvious restriction maps. 

Proposition 5.1. Let A be a ring, let M be an A-module, and let M be the 
sheaf on X = Spec A associated toM. Then: 

(a) M is an (!Jx-module; 
(b) for each p EX, the stalk (M)v of the sheaf M at p is isomorphic to 

the localized module Mv; 
(c) for any f E A, the A rmodule M(D(f)) is isomorphic to the localized 

module M1 ; 

(d) in particular, r(X,M) = M. 

PROOF. Recalling the construction of the structure sheaf (!Jx from §2, it is 
clear that M is an @x-module. The proofs of (b), (c), (d) are identical to the 
proofs of (a), (b), (c) of (2.2), replacing A by Mat appropriate places. 

Proposition 5.2. Let A be a ring and let X = Spec A. Also let A --+ B be a 
ring homomorphism, and let f: Spec B --+ Spec A be the corresponding 
morphism of spectra. Then: 

(a) the map M --+ M gives an exact, fully faithful functor from the 
category of A-modules to the category of @x-modules; 
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5 Sheaves of Modules 

(d) for any B-module N we have f*(il) ~ (AN)-, where AN means N 
considered as an A -module; 

(e) for any A-module M we have f*(M) ~ (M ®A B)-. 

PROOF. The map M ...... M is clearly functorial. It is exact, because localiza
tion is exact, and exactness of sheaves can be measured at the stalks (use 
(Ex. 1.2) and (5.lb)). It commutes with direct sum and tensor product, 
because these commute with localization. To say it is fully faithful means 
that for any A-modules M and N, we have HomA(M,N) = Hom(l)x(M,N). 
The functor ~ gives a natural map HomA(M,N) ...... Hom(l)x(M,N). Applying 
r and using (5.ld) gives a map the other way. These two maps are clearly 
inverse to each other, hence isomorphisms. The last statements about f* 
and f* follow directly from the definitions. 

These sheaves of the form M on affine schemes are our models for quasi
coherent sheaves. A quasi-coherent sheaf on a scheme X will be an mx
module which is locally of the form M. In the next few lemmas and propo
sitions, we will show that this is a local property, and we will establish some 
facts about quasi-coherent and coherent sheaves. 

Definition. Let (X,(!)x) be a scheme. A sheaf of mx-modules ~ is quasi
coherent if X can be covered by open affine subsets U; = Spec A;, such 
that for each i there is an A;-module M; with ~lu, ~ M;. We say that 
~ is coherent if furthermore each M; can be taken to be a finitely gen
erated A;-module. 

Although we have just defined the notion of quasi-coherent and coherent 
sheaves on an arbitrary scheme, we will normally not mention coherent 
sheaves unless the scheme is noetherian. This is because the notion of 
coherence is not at all well-behaved on a nonnoetherian scheme. 

Example 5.2.1. On any scheme X, the structure sheaf (!)x is quasi-coherent 
(and in fact coherent). 

Example 5.2.2. If X = Spec A is an affine sc.heme, if Y ~ X is the closed 
subscheme defined by an ideal a s; A (3.2.3), and if i: Y ...... X is the in
clusion morphism, then i*(!)y is a quasi-coherent (in fact coherent) mx
module. Indeed, it is isomorphic to (A/ar. 

Example 5.2.3. If U is an open subscheme of a scheme X, with inclusion 
map j: U ...... X, then the sheaf j!((!)u) obtained by extending (!)u by zero 
outside of U (Ex. 1.19), is an mx-module, but it is not in general quasi
coherent. For example, suppose X is integral, and V = Spec A is any 
open affine subset of X, not contained in U. Then j!((!)u )lv has no global 
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sections over V, and yet it is not the zero sheaf. Hence it cannot be of the 
form M for any A-module M. 

Example 5.2.4. If Y is a closed subscheme of a scheme X, then the sheaf 
(()xlr is not in general quasi-coherent on Y. In fact, it is not even an @y
module in general. 

Example 5.2.5. Let X be an integral noetherian scheme, and let X be the 
constant sheaf with group K equal to the function field of X (Ex. 3.6). Then 
X is a quasi-coherent (()x-module, but it is not coherent unless X is reduced 
to a point. 

Lemma 5.3. Let X ;= Spec A be an affine scheme, let f E A, let D(f) s;: X 
be the corresponding open set, and let §' be a quasi-coherent sheaf on X. 

(a) If s E r(X,ff') is a global section of§' whose restriction to D(f) 
is 0, then for some n > 0, rs = 0. 

(b) Given a section t E §'(D(f)) of §' over the open set D(f), then 
for some n > 0, rt extends to a global section of §' over X. 

PROOF. First we note that since §' is quasi-coherent, X can be covered by 
open affine subsets of the form V = Spec B, such that ff'lv ~ M for some 
B-module M. Now the open sets ofthe form D(g) form a base for the topology 
of X (see §2), so we can cover V by open sets of the form D(g), for various 
g EA. An inclusion D(g) s;: V corresponds to a ring homomorphism 
B---+ A9 by (2.3). Hence 9""lv<o> ~ (M 0B A9)- by (5.2). Thus we have shown 
that if§' is quasi-coherent on X, then X can be covered by open sets of the 
form D(g;) where for each i, ff'lv(g;) ~ Mi for some module Mi over the ring 
A9 ,. Since X is quasi-compact, a finite number of these open sets will do. 

(a) Now suppose givens E r(X,9"") with siv<n = 0. For each i, s restricts 
to give a section si of§' over D(g;), in other words, an element si E Mi (using 
(5.ld) ). Now D(f) n D(g;) = D(fg;), so 9""lv(Jgd = (MJj using (5.lc). Thus 
the image of si in (MJ1 is zero, so by the definition of localization, rsi = 0 
for some n. This n may depend on i, but since there are only finitely many i, 
we can pick n large enough to work for them all. Then since the D(g;) cover 
X, we have rs = 0. 

(b) Given an element t E :#'(D(f) ), we restrict it for each ito get an element 
t of :#'(D(fg;)) = (M;)1 . Then by the definition of localization, for some 
n > 0 there is an element ti E Mi = :#'(D(g;)) which restricts to rt on 
D(fgJ The integer n may depend on i, but again we take one large enough 
to work for all i. Now on the intersection D(g;) n D(gj) = D(gigj) we have 
two sections ti and tj of §', which agree on D(fgigj) where they are both 
equal to rt. Hence by part (a) above, there is an integer m > 0 such that 
fm(ti - tj) = 0 on D(gigj). This m depends on i and j, but we take one m 
large enough for all. Now the local sections fmti of§' on D(gJ glue together 
to give a global sections of:#', whose restriction to D(f) is r+mt. 
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Proposition 5.4. Let X be a scheme. Then an (l}x-module ff is quasi-coherent if 
and only if for every open affine subset U = Spec A of X, there is an A
module M such that fflu ~ M. If X is noetherian, then ff is coherent if 
and only if the same is true, with the extra condition that M be a finitely 
generated A-module. 

PROOF. Let ff be quasi-coherent on X, and let U = Spec A be an open 
affine. As in the proof of the lemma, there is a base for the topology consisting 
of open affines for which the restriction of ff is the sheaf associated to a 
module. It follows that.fffu is quasi-coherent, so we can reduce to the case 
X affine = Spec A. Let M = r(X,ff). Then in any case there is a natural 
map rx: M --. ff (Ex. 5.3). Since ff is quasi-coherent, X can be covered by 
open sets D(g;) with fflv(g;) ~ M; for some A9,-module M;. Now the lemma, 
applied to the open set D(g;), tells us exactly that ff(D(g;)) ~ M 9,, so 
M; = M 9 ,. It follows that the map rx, restricted to D(g;), is an isomorphism. 
The D(g;) cover X, so rx is an isomorphism. 

Now suppose that X is noetherian, and ff coherent. Then, using the 
above notation, we have the additional information that each M9, is a 
finitely generated A9,-module, and we want to prove that M is finitely 
generated. Since the rings A and A9 , are noetherian, the modules M 9 , are 
noetherian, and we have to prove that M is noetherian. For this we just use 
the proof of (3.2) with A replaced by M in appropriate places. 

Corollary 5.5. Let A be a ring and let X = Spec A. The functor M r--+ M 
gives an equivalence of categories between the category of A-modules and 
the category of quasi-coherent (!} x-modules. Its inverse is the functor 
ff r--+ r(X,ff). If A is noetherian, the same functor also gives an equiv
alence of categories between the category of finitely generated A-modules 
and the category of coherent (l}x-modules. 

PROOF. The only new information here is that ff is quasi-coherent on X if 
and only if it is of the form M, and in that case M = r(X,ff). This follows 
from (5.4). 

Proposition 5.6. Let X be an affine scheme, let 0 --. ff' --. ff --. ff" --. 0 be 
an exact sequence of (l}x-modules, and assume that ff' is quasi-coherent. 
Then the sequence 

0 --. r(X,ff') --. r(X,ff) --. r(X,ff") --. 0 
is exact. 

PROOF. We know already that r is a left-exact functor (Ex. 1.8) so we have 
only to show that the last map is surjective. Let s E r(X,ff") be a global 
section of ff". Since the map of sheaves ff --. ff" is surjective, for any 
x E X there is an open neighborhood D(f) of x, such that sfv<n lifts to a 
section t E ff(D(f)) (Ex. 1.3). I claim that for some n > 0, f"s lifts to a 
global section of ff. Indeed, we can cover X with a finite number of open 
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sets D(g;), such that for each i, siv<9 il lifts to a section t; E ff(D(g;) ). On 
D(f) n D(g;) = D(fg;), we have two sections t,t; E ff(D(fg;)) both lifting s. 
Therefore t - t; E ff'(D(fg;) ). Since.?!'' is quasi-coherent, by (5.3b) for some 
n > 0, r(t - t;) extends to a section U; E ff'(D(g;) ). As usual, we pick one 
n to work for all i. Let t; = rti + U;. Then t; is a lifting of rs on D(g;), 
and furthermore t; and rr agree on D(fg;). Now on D(g;gj) we have two 
sections ti and tj of.?!', both of which lift rs, so ti - tj E ff'(D(g;g) ). Further
more, t; and tj are equal on D(fg;gj), so by (5.3a) we have fm(t; - tj) = 0 for 
some m > 0, which we may take independent of i and j. Now the sections 
fmt; of.?!' glue to give a global section t" of.?!' over X, which lifts r+ms. 
This proves the claim. 

Now cover X by a finite number of open sets D(/;), i = 1, ... ,r, such that 
slvuil lifts to a section of.?!' over D(/;) for each i. Then by the claim, we can 
find an integer n (one for all i) and global sections t; E r(X,ff) suchthat t; 
is a lifting of fis. Now the open sets D(/;) cover X, so the ideal (f~, . .. ,f~) 
is the unit ideal of A, and we can write 1 = Lt= 1 aJi, with a; EA. Let 
t = Ia;t;. Then t is a global section of .?!' whose image in r(X,ff") is 
IaJis = s. This completes the proof. 

Remark 5.6.1. When we have developed the techniques of cohomology, we 
will see that this proposition is an immediate consequence of the fact that 
H 1(X,ff') = 0 for any quasi-coherent sheaf .?!'' on an affine scheme X 
(III, 3.5). 

Proposition 5.7. Let X be a scheme. The kernel, cokernel, and image of any 
morphism of quasi-coherent sheaves are quasi-coherent. Any extension of 
quasi-coherent sheaves is quasi-coherent. If X is noetherian, the same is 
true for coherent sheaves. 

PROOF. The question is local, so we may assume X is affine. The statement 
about kernels, cokernels and images follows from the fact that the functor 
M r--+ M is exact and fully faithful from A-modules to quasi-coherent sheaves 
(5.2a and 5.5). The only nontrivial part is to show that an extension of quasi
coherent sheaves is quasi-coherent. So let 0 --+ .?!'' --+ .?!' --+ :JP' --+ 0 be an 
exact sequence of l'Dx-modules, with :F and $'" quasi-coherent. By (5.6), 
the corresponding sequence of global sections over X is exact, say 
0 --+ M' --+ M --+ M" --+ 0. Applying the functor "', we get an exact com
mutative diagram 

0 --+ $'' --+ $' --+ $'" --+ 0. 

The two outside arrows are isomorphisms, since §'' and §'" are quasi
coherent. So by the 5-lemma, the middle one is also, showing that .?!' is 
quasi-coherent. 

114 



5 Sheaves of Modules 

In the noetherian case, if :F' and :#'" are coherent, then M' and· M" 
are finitely generated, so M is also finitely generated, and hence :F is 
coherent. 

Proposition 5.8. Let f: X --+ Y be a morphism of schemes. 
(a) If '!I is a quasi-coherent sheaf of @y-modules, then f*'!l is a quasi

coherent sheaf of (!) x-modules. 
(b) If X andY are noetherian, and if '!I is coherent, then f*'!l is coherent. 
(c) Assume that either X is noetherian, or f is quasi-compact (Ex. 3.2) 

and separated. Then if :F is a quasi-coherent sheaf of {!}x-modules, f*:F 
is a quasi-coherent sheaf of @y-modules. 

PROOF. 

(a) The question is local on both X and Y, so we can assume X and Y both 
affine. In this case the result follows from (5.5) and (5.2e). 

(b) In the noetherian case, the same proof works for coherent sheaves. 
(c) Here the question is local on Y only, so we may assume that Y is affine. 

Then X is quasi-compact (under either hypothesis) so we can cover X with 
a finite number of open affine subsets U;. In the separated case, U; n Uj is 
again affine (Ex. 4.3). Call it Uijk· In the noetherian case, U; n Uj is at least 
quasi-compact, so we can cover it with a finite number of open affine subsets 
Uijk· Now for any open subset V of Y, giving a section s of :F over f- 1 Vis 
the same thing as giving a collection of sections S; of :F over u- 1 V) (\ U; 
whose restrictions to the open subsets f- 1(V) n Uijk are all equal. This is 
just the sheaf property (§1). Therefore, there is an exact sequence of sheaves 
on Y, 

0 --+ f*:F --+ EB f*(:Fiu) --+ EB f*(:Fiu, 1J, 
i i,j,k 

where by abuse of notation we denote also by f the induced morphisms 
U; --+ Y and Uijk --+ Y. Now !*(:Flu) and f*(:FiuijJ are quasi-coherent by 
(5.2d). Thus f*:F is quasi-coherent by (5.7). 

Caution 5.8.1. If X and Yare noetherian, it is not true in general that f* of 
a coherent sheaf is coherent (Ex. 5.5). However, it is true iff is a finite 
morphism (Ex. 5.5) or a projective morphism (5.20) or (III, 8.8), or more 
generally, a proper morphism: see Grothendieck [EGA III, 3.2.1]. 

As a first application of these concepts, we will discuss the sheaf of ideals 
of a closed subscheme. 

Definition. Let Y be a closed subscheme of a scheme X, and let i: Y --+ X be 
the inclusion morphism. We define the ideal sheaf of Y, denoted § y, to 
be the kernel of the morphism i# :(!)x--+ i*@y. 
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Proposition 5.9. Let X be a scheme. For any closed subscheme Y of X, the 
corresponding ideal sheaf 5 y is a quasi-coherent sheaf of ideals on X. If 
X is noetherian, it is coherent. Conversely, any quasi-coherent sheaf of 
ideals on X is the ideal sheaf of a uniquely determined closed subscheme 
of X. 

-

PROOF. If Yis a closed subscheme of X, then the inclusion morphism i: Y -+ X 
is quasi-compact (obvious) and separated (4.6), so by (5.8), i*(!)Y is quasi
coherent on X. Hence 5 y, being the kernel of a morphism of quasi-coherent 
sheaves, is also quasi-coherent. If X is noetherian, then for any open affine 
subset U = Spec A of X, the ring A is noetherian, so the ideal I = r(U,5 rlu ), 
is finitely generated, so 5 y is coherent. 

Conversely, given a scheme X and a quasi-coherent sheaf of ideals /, 
let Y be the support of the quotient sheaf(!) xl f. Then Y is a subspace of X, 
and (I;(!)x//) is the unique closed subscheme of X with ideal sheaf f. The 
unicity is clear, so we have only to check that ( Y, (!)x/ f) is a closed sub
scheme. This is a local question, so we may assume X = Spec A is affine. 
Since/ is quasi-coherent, cf = a for some ideal a <;; A. Then (Y,(Ilx//) is 
just the closed subscheme of X determined by the ideal a (3.2.3). 

Corollary 5.10. If X = Spec A is an affine scheme, there is a 1-1 correspon
dence between ideals a in A and closed subschemes Y of X, given by a~ 
image of Spec A/a in X (3.2.3). In particular, every closed subscheme of 
an affine scheme is affine. 

PROOF. By (5.5) the quasi-coherent sheaves of ideals on X are in 1-1 corre
spondence with the ideals of A. 

Our next concern is to study quasi-coherent sheaves on the Proj of a 
graded ring. As in the case of Spec, there is a connection between modules 
over the ring and sheaves on the space, but it is more complicated. 

Definition. Let S be a graded ring and let M be a graded S-module. (See 
(1, §7) for generalities on graded modules.) We define the sheaf associated 
toM on Proj S, denoted by M, as follows. For each p E Proj S, let M(p) 
be the group of elements of degree 0 in the localization y-t M, where T 
is the multiplicative system of homogeneous elements of S not in p 
(cf. definition of Proj in §2). For any open subset U <;; Proj S we define 
M(U) to be the set of functions s from u to upEU M(p) which are locally 
fractions. This means that for every p E U, there is a neighborhood V of 
p in U, and homogeneous elements m E M and f E S of the same degree, 
such that for every q E V, we have f ¢ q, and s(q) = m/f in M(q)· We make 
M into a sheaf with the obvious restriction maps. 

Proposition 5.11. Let S be a graded ring, and M a graded S-module. Let 
X= Proj S. 
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(a) For any p EX, the stalk (M)v = M<vJ· _ 
(b) For any homogeneous f E S+, we have Mln+<fl ~ (Mur via the 

isomorphism of D +(f) with Spec S<n (see (2.5b) ), where M<n denotes the 
group o[ elements of degree 0 in the localized module M J· 

(c) M is a quasi-coherent {!}x-module. If S is noetherian and M is 
finitely generated, then M is coherent. 

PROOF. For (a) and (b), just repeat the proof of (2.5), with M in place of S. 
Then (c) follows from (b). 

Definition. LetS be a graded ring, and let X = Proj S. For any n E Z, we 
define the sheaf (!Jx(n) to be S(nr. We call (!Jx(l) the twisting sheaf of 
Serre. For any sheaf of {!}x-modules, :F, we denote by :F(n) the twisted 
sheaf :F ®mx (!Jx(n). 

Proposition 5.12. Let S be a graded ring and let X = Proj S. Assume that S 
is generated by S1 as an S0-algebra. 

(a) The sheaf(!Jx(n) is an invertible sheaf on X. 
(b) For any graded S-module M, M(n) ~ (M(n) r. In particular, 

(!Jx(n) ® (!Jx(m) ~ (!Jx(n + m). 
(c) Let T be another graded ring, generated by T1 as a T0 -algebra, 

let q>: S --+ T be a homomorphism preserving degrees, and let U <;; Y = 

Proj T and f: U --+X be the morphism determined by q> (Ex. 2.14). Then 
f*((!Jx(n)) ~ (!Jy(n)lu and f*((!Jy(n)iu) ~ (f*(!Ju)(n). 

PROOF. 
(a) Recall that invertible means locally free of rank 1. Let f E S 1, and 

consider the restriction (!Jx(n)ln+ <fl· By the previous proposition this is 
isomorphic to S(n)(jl on Spec S<n· We will show that this restriction is free 
of rank 1. Indeed, S(n)<n is a free S<n-module of rank 1. For S<n is the group 
of elements of degree 0 in S 1 , and S(n)<n is the group of elements of degree n 
in S1 . We obtain an isomorphism of one to the other by sending s tors. 
This makes sense, for any n E Z, because f is invertible inS 1 . Now since S 
is generated by S 1 as an S0 -algebra, X is covered by the open sets D +(f) 
for f E S 1. Hence (!J(n) is invertible. 

(b) This follows from the fact that (M ®s Nr ~ M ®mx N for any two 
graded S-modules M and N, when Sis generated by S1 . Indeed, for any 

f E S1 we have (M ®s N)<n = M<n ®s(f> N<n· 
(c) More generally, for any graded S-module M, f*(M) ~ (M ®s Tr lu 

and for any graded T-module N, f*(Niu) ~ (8N)-. Furthermore, the sheaf 
T on X is just f*( (!Ju ). The proofs are straightforward ( cf. ( 5.2) for the affine 
case). 

The twisting operation allows us to define a graded S-module associated 
to any sheaf of modules on X = Proj S. 
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Definition. Let S be a graded ring, let X = Proj S, and let !!1' be a sheaf of 
(()x-modules. We define the graded S-module associated to !!1' as a group, to 
be r *(.~) = ffin E z T(X,!!i'(n) ). We give it a structure of graded S-module 
as follows. If s E Sd, then s determines in a natural way a global section 
s E T(X,(()x(d) ). Then for any t E T(X,!!i'(n)) we define the products· tin 
T(X,!!i'(n + d)) by taking the tensor products ® t and using the natural 
map !!i'(n) ® (()x(d) ~ !!i'(n + d). 

Proposition 5.13. Let A be a ring, let S = A[ x 0 , . .. ,xr], r ~ 1, and let 
X = Proj S. (This is just projective r-space over A.) Then T *((()x) ~ S. 

PROOF. We cover X with the open sets D+(x;). Then to give a section 
t E T(X,Gx(n)) is the same as giving sections t; E (()x(n)(D +(x;)) for each i, 
which agree on the intersections D +(x;xi). Now t; is just a homogeneous 
element of degree n in the localization Sx,, and its restriction to D+(x;x) is 
just the image of that element in Sx,x1 . Summing over all n, we see that 
r *(0x) can be identified with the set of (r + 1)-tuples (t0 , ... ,t,) where for 
each i, t; E S,,, and for each i,j, the images oft; and ti in Sx,x1 are the same. 

Now the X; are not zero divisors in S, so the localization maps S ~ Sx, 
and Sx, ~ Sx,x1 are all injective, and these rings are all subrings of S' = 
Sxo···xr· Hence T*(lDx) is the intersection nsx, taken insideS'. Now 
any homogeneous element of S' can be written uniquely as a product 
x~ · · · x~f(x0 , ... ,x,), where the ii E Z, and f is a homogeneous polynomial 
not divisible by any X;. This element will be in Sx, if and only if ii ~ 0 for 
j =1 i. It follows that the intersection of all the Sx, (in fact the intersection of 
any two of them) is exactly S. 

Caution 5.13.1. If S is a graded ring which is not a polynomial ring, then it 
is not true in general that r *(lDx) = S (Ex. 5.14). 

Lemma 5.14. Let X be a scheme, let 2! be an invertible sheaf on X, let f E 

T(X,ff!), let X f be the open set of points x E X where fx ¢; mxff! x• and let 
'"W be a quasi-coherent sheaf on X. 

(a) Suppose that X is quasi-compact, and let s E T(X,!!i') be a global 
section of !!1' whose restriction to X f is 0. Then for some n > 0, we have 
fns = 0, where f"s is considered as a global section of !!1' ® ff!!?;~n_ 

(b) Suppose furthermore that X has a finite covering by open affine 
subsets U;, such that 2iu, is free for each i, and such that U; n Ui is quasi
compact for each i,j. Given a section t E T(X 1 ,!!1'), then for some n > 0, 
the section f"t E T(X 1 ,!!1' ® ff!®n) extends to a global section of !!1' ® ff!®n. 

PROOF. This lemma is a direct generalization of (5.3), with an extra twist due 
to the presence of the invertible sheaf 2!. It also generalizes (Ex. 2.16). To 
prove (a), we first cover X with a finite number (possible since X is quasi
compact) of open affines U = Spec A such that 2lu is free. Let 1/f: 2lu ~ lDu 
be an isomorphism expressing the freeness of 2lu· Since !!1' is quasi-coherent, 
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by (5.4) there is an A-module M with ~lu ~ M. Our section s E F(X,~) 
restricts to give an elements EM. On the other hand, our section/ E F(X,!f) 
restricts to give a section of !flu, which in turn gives rise to an element 
g = t/J(f) EA. Clearly X 1 n U = D(g). Now sixr is zero, so g"s = 0 in M 
for some n > 0, just as in the proof of (5.3). Using the isomorphism 

id x t/1°":~ ® !E"Iu ~ ~lu. 

we conclude that f"s E F(U,~ ® !£") is zero. This statement is intrinsic 
(i.e., independent of t/1). So now we do this for each open set of the covering, 
pick one n large enough to work for all the sets of the covering, and we 
find f"s = 0 on X. 

To prove (b), we proceed as in the proof of(5.3), keeping track of the twist 
due to !f as above. The hypothesis Vi n Vi quasi-compact is used to be 
able to apply part (a) there. 

Remark 5.14.1. The hypotheses on X made in the statements (a) and (b) 
above are satisfied either if X is noetherian (in which case every open set is 
quasi-compact) or if X is quasi-compact and separated (in which case the 
intersection of two open affine subsets is again affine, hence quasi-compact). 

Proposition 5.15. Let S be_ a graded ring, which is finitely generated by S 1 as 
an S0 -algebra. Let X = Proj S, and let~ be a quasi-coherent sheaf on X. 
Then there is a natural isomorphism {J: r *(~)- --+ ~-

PROOF. First let us define the morphism {J for any (!) x-module ~- Let f E S 1. 

Since r *(~)- is quasi-coherent in any case, to define {J, it is enough to give 
the image of a section of r *(~)- over D +(f) (see Ex. 5.3). Such a section is 
represented by a fraction m/fd, where mE r(X,~(d) ), for some d ~ 0. We 
can think of f-d as a section of (!)x(- d), defined over D +(f). Taking their 
tensor product, we obtain m ® f-d as a section of ~ over D +(f). This 
defines {J. 

Now let~ be quasi-coherent. To show that {J is an isomorphism we have 
to identify the module r *(~)<n with the sections of~ over D +(f). We apply 
(5.14), considering f as a global section of the invertible sheaf !f = (!)(1). 
Since we have assumed that Sis finitely generated by S 1 as an S0 -algebra, we 
can find finitely many elements / 0 , ... ,fr E S 1 such that X is covered by the 
open affine subsets D+(JJ The intersections D+(JJ n D+(fJ) are also affine, 
and !Eiv+ <JJ is free for each i, so the hypotheses of (5.14) are satisfied. The 
conclusion of(5.14) tells us that ~(D+(f)) ~ r*(~)<n• which is just what 
we wanted. 

Corollary 5.16. Let A be a ring. 
(a) If Y is a closed subscheme of P~, then there is a homogeneous ideal 

I c;: S = A[ x 0 , . .. ,x,] such that Y is the closed subscheme determined by I 
(Ex. 3.12). 
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(b) A scheme Y over Spec A is projective if and only if it is isomorphic to 
Proj S for some graded ring S, where S0 = A, and S is finitely generated by 

S 1 as an S0 -algebra. 

PROOF. 

(a) Let f y be the ideal sheaf of Y on X = PA. Now f y is a subsheaf of 
lD x; the twisting functor is exact; the global section functor r is left exact; 
hence r*(fy) is a submodule of r*(lDx). But by (5.13), r*(lDx) = S. Hence 
r *(f y) is a homogeneous ideal of S, which we will call I. Now I determines 
a closed subscheme of X (Ex. 3.12), whose sheaf of ideals will be I. Since f y 

is quasi-coherent by (5.9), we have f y ~ l by (5.15), and hence Y is the sub
scheme determined by I. In fact, r *(f y) is the largest ideal in S defining Y 
(Ex. 5.10). 

(b) Recall that by definition Y is projective over Spec A if it is isomorphic 
to a closed subscheme ofPA for some r (§4). By part (a), any such Y is isomor
phicto Proj Sji, and we can take I to be contained inS+ = ffid >O Sd (Ex. 3.12), 
so that (S//)0 = A. Conversely, any such graded ring S is a quotient of a 
polynomial ring, so Proj S is projective. 

Definition. For any scheme Y, we define the twisting sheaf lD(1) on P~ to be 
g*(lD(1) ), where g:P~ -+ Pz is the natural map (recall that P~ was defined 
as Pz X z Y). 

Note that if Y = Spec A, this is the same as the lD(1) already defined on 
PA = Proj A[ x0 , ..• ,x,], by (5.12c). 

Definition. If X is any scheme over Y, an invertible sheaf !l' on X is very ample 
relative to Y, if there is an immersion i:X -+ P~ for some r, such that 
i*(lD(1)) ~ !l'. We say that a morphism i:X-+ Z is an immersion if it 
gives an isomorphism of X with an open subscheme of a closed subscheme 
of Z. (This definition of very ample differs slightly from the one in 
Grothendieck [EGA II, 4.4.2].) 

Remark 5.16.1. Let Y be a noetherian scheme. Then a scheme X over Y is 
projective if and only if it is proper, and there exists a very ample sheaf on X 
relative to Y. Indeed, if X is projective over Y, then X is proper by (4.9). On 
the other hand, there is a closed immersion i:X -+ P~ for some r, so i*lD(1) 
is a very ample invertible sheaf on X. Conversely, if X is proper over Y, and 
!l' is a very ample invertible sheaf, then fil ~ i*(lD(1)) for some immersion 
i:X -+ P~. But by (Ex. 4.4) the image of X is closed, so in facti is a closed 
immersion, so X is projective over Y. 

Note however that there may be several nonisomorphic very ample 
sheaves on a projective scheme X over Y. The sheaf !l' depends on the 
embedding of X into P~ (Ex. 5.12). If Y = Spec A, and if X = Proj S, where S 

is a graded ring as in (5.16b), then the sheaf lD(1) on X defined earlier is a very 
ample sheaf on X. However, there may be nonisomorphic graded rings 
having the same Proj and the same very ample sheaf lD(1) (Ex. 2.14). 
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We end this section with some special results about sheaves on a projective 
scheme over a noetherian ring. 

Definition. Let X be a scheme, and let ff' be a sheaf of C9x-modules. We say 
that ff' is generated by global sections if there is a family of global sections 
{sJiEI• s; E r(X,ff'), such that for each x EX, the images of s; in the stalk 
ff'x generate that stalk as an {9x-module. 

Note that ff' is generated by global sections if and only if ff' can be 
written as a quotient of a free sheaf. Indeed, the generating sections 
{s;};EI define a surjective morphism of sheaves EBiEI C9x---> ff', and 
conversely. 

Example 5.16.2. Any quasi-coherent sheaf on an affine scheme is generated 
by global sections. Indeed, if ff' = M on Spec A, any set of generators for M 
as an A-module will do. 

Example 5.16.3. Let X = Proj S, where Sis a graded ring which is generated 
by S 1 as an S0 -algebra. Then the elements of S 1 give global sections of (9 x(l) 
which generate it. 

Theorem 5.17 (Serre). Let X be a projective scheme over a noetherian ring A, 
let (9(1) be a very ample invertible sheaf on X, and let ff' be a coherent 
C9x-module. Then there is an integer n0 such that for all n ~ n0 , the sheaf 
ff'(n) can be generated by a .finite number of global sections. 

PROOF. Let i:X---> P~ be a closed immersion of X into a projective space over 
A, such that i*(CD(l)) = C9x(l). Then i*ff' is coherent on P~ (Ex. 5.5), and 
i*(JF(n)) = (i*JF)(n) (5.12) or (Ex. 5.1d), and JF(n) is generated by global 
sections if and only if i*(ff'(n)) is (in fact, their global sections are the same), 
so we reduce to the case X = P~ = Proj A[ x0 , ... ,xrJ. 

Now cover X with the open sets D +(x;), i = 0, ... ,r. Since ff' is coherent, 
for each i there is a finitely generated module M; over B; =A[ x 0 /x;, ... ,xn/x;] 
such that ff'lv+ <xil ~ M;. For each i, take a finite number of elements 
sii EM; which generate this module. By (5.14) there is an integer n such that 
x7s;j extends to a global section t;j of ff'(n). As usual, we take one n to work 
for all i,j. Now ff'(n) corresponds to a B;-module Mi on D +(x;), and the map 
x7:ff'---> ff'(n) induces an isomorphism of M; to Mi. So the sections x7s;j 
generate M;, and hence the global sections tij E F(X,ff'(n)) generate the sheaf 
ff'(n) everywhere. 

Corollary 5.18. Let X be projective over a noetherian ring A. Then any 
coherent sheaf ff' on X can be written as a quotient of a sheaf <ff, where <ff 
is a finite direct sum of twisted structure sheaves CD(n;) for various integers 
n;. 
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PROOF. Let .?(n) be generated by a finite number of global sections. Then 
we have a surjection EBf= 1 (!Jx---+ .?(n)---+ 0. Tensoring with (!Jx(-n) we 
obtain a surjection EBf= 1 (!Jx( -n)---+.?---+ 0 as required. 

Theorem 5.19. Let k be afield, let A be a finitely generated k-algebra, let X be 
a projective scheme over A, and let .? be a coherent {!}x-module. Then 
r(X,.?) is a finitely generated A-module. In particular, if A = k, r(X,.?) 
is a finite-dimensional k-vector space. 

PROOF. First we write X = Proj S, where Sis a graded ring with S0 = A which 
is finitely generated by S1 as an S0-algebra (5.16b). Let M be the graded S
module r *(.?). Then by (5.15) we have M ~ .?. On the other hand, by (5.17), 
for n sufficiently large, .?(n) is generated by a finite number of global sections 
in r(X,.?(n) ). Let M' be the submodule of M generated by these sections. 
Then M' is a finitely generated S-module. Furthermore, the inclusion 
M' ~ M induces an inclusion of sheaves M' ~ M = .?. Twisting by n we 
have an inclusion M'(n) ~ .?(n) which is actually an isomorphism, because 
.?(n) is generated by global sections in M'. Twisting by - n we find that 
M' ~ .?. Thus .? is the sheaf associated to a finitely generated S-module, 
and so we have reduced to showing that if M is a finitely generated S-module, 
then r(X,M) is a finitely generated A-module. 

Now by (1, 7.4), there is a finite filtration 

0 = M 0 ~ M 1 ~ ... ~ Mr = M 

of M by graded submodules, where for each i, Mi/Mi- 1 ~ (S/p;}(n;) for some 
homogeneous prime ideal Pi ~ S, and some integer ni. This filtration gives 
a filtration of M, and the short exact sequences 

o ---+ Mi- 1 ---+ Mi ---+ Mi I Mi- 1 ---+ o 

give rise to left-exact sequences 

o---+ r(X,Mi- 1)---+ r(X,Mi)---+ r(X,Mi/Mi- 1 ). 

Thus to show that r(X,M) is finitely generated over A, it will be sufficient to 
show that r(X,(S/p)-(n)) is finitely generated, for each p and n. Thus we have 
reduced to the following special case: Let S be a graded integral domain, 
finitely generated by S 1 as an S0-algebra, where S0 = A is a finitely generated 
integral domain over k. Then r(X,(!Jx(n)) is a finitely generated A-module, 
for any n E Z. 

Let x 0 , . .. ,xr E S 1 be a set of generators of S 1 as an A-module. Since S 
is an integral domain, multiplication by x0 gives an injection S(n) ---+ S(n + 1) 
for any n. Hence there is an injection r(X,(!Jx(n)) ---+ r(X,(!Jx(n + 1)) for 
any n. Thus it is sufficient to prove r(X,(!Jx(n)) finitely generated for all 
sufficiently large n, say n ~ 0. 

LetS'= ffin;.o r(X,(!Jx(n) ). Then S' is a ring, containing S, and contained 
in the intersection nsx, of the localizations of Sat the elements Xo, . .. ,Xr. 
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(Use the same argument as in the proof of (5.13).) We will show that S' is 
integral over S. 

Let s' E S' be homogeneous of degree d ~ 0. Since s' E Sx, for each i, we 
can find an integer n such that x7s' E S. Choose one n that works for all i. 
Since the X; generate s 1' the monomials in the X; of degree m generate sm for 
any m. So by taking a larger n, we may assume that ys' E S for ally E S". In fact, 
since s' has positive degree, we can say that for any yES ;,n = EBe;,n Se, 
ys' E S;,n· Now it follows inductively, for any q ~ 1 that y · (s')q E S;,n for 
any y E S;,"' Take for example y = x~. Then for every q ~ 1 we have 
(s')q E (1/x~)S. This is a finitely generated sub-S-module of the quotient field 
of S'. It follows by a well-known criterion for integral dependence (Atiyah
Macdonald [1, p. 59]), that s' is integral overS. Thus S' is contained in the 
integral closure of Sin its quotient field. 

To complete the proof, we apply the theorem of finiteness of integral 
closure (I, 3.9A). Since Sis a finitely generated k-algebra, S' will be a finitely 
generated S-modqle. It follows that for every n, S~ is a finitely generated 
S0-module, which is what we wanted to prove. In fact, our proof shows that 
S~ = S" for all sufficiently large n (Ex. 5.9) and (Ex. 5.14). 

Remark 5.19.1. This proof is a generalization of the proof of (1, 3.4a). We 
will give another proof of this theorem later, using cohomology (III, 5.2.1). 

Remark 5.19.2. The hypothesis "A is a finitely generated k-algebra" is used 
only to be able to apply (1, 3.9A). Thus it would be sufficient to assume only 
that A is a "Nagata ring" in the sense of Matsumura [2, p. 231 ]-see also 
[Joe. cit., Th. 72, p. 240]. 

Corollary 5.20. Let f: X ---+ Y be a projective morphism of schemes of finite 
type over afield k. Let:#' be a coherent sheaf on X. Then f*:F is coherent 
on Y. 

PROOF. The question is local on Y, so we may assume Y = Spec A, where A 
is a finitely generated k-algebra. Then in any case, f*:F is quasi-coherent 
(5.8c), so f*:F = T( Y,f*:F)- = T(X,:Fr. But T(X,ff) is a finitely generated 
A-module by the theorem, so f*:F is coherent. See (III, 8.8) for another proof 
and generalization. 

EXERCISES 

5.1. Let (X,((x) be a ringed space, and let tC be a locally free 0x-module of finite rank. 
We define the dual of tff, denoted i, to be the sheaf Jffom(l)x(tff,C9x). 
(a) Show that (ir ~ tff. 
(b) For any C9x-module :#', Jffomf'x(tff,:J') ~ i ®(l)x :F. 
(c) For any crx-modules .'#','§, Hom~x(tff ® :#','§) ~ Hom(l)x(:J',Jffom(')x(tff,'§) ). 
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(d) (Projection Formula). If f:(X/!Jx)-+ (Y,@y) is a morphism of ringed spaces, if 
:F is an @x-module, and if<! is a locally free @y-module of finite rank, then there 
is a natural isomorphism f*(:F ®<'!x f*<!) ~ f*(:F) ®<'!y <!. 

5.2. Let R be a discrete valuation ring with quotient field K, and let X = Spec R. 
(a) To give an @x-module is equivalent to giving an R-module M, a K-vector 

space L, and a homomorphism p:M ®R K ..... L. 
(b) That @x-module is quasi-coherent if and only if pis an isomorphism. 

5.3. Let X = Spec A be an affine scheme. Show that the functors -and rare adjoint, 
in the following sense: for any A-module M, and for any sheaf of @x-modules :F, 
there is a natural isomorphism 

5.4. Show that a sheaf of @x-modules :F on a scheme X is quasi-coherent if and only 
if every point of X has a neighborhood U, such that :Flu is isomorphic to a 
cokernel of a morphism of free sheaves on U. If X is noetherian, then :F is co
herent if and only if it is locally a co kernel of a morphism of free sheaves of finite 
rank. (These properties were originally the definition of quasi-coherent and 
coherent sheaves.) 

5.5. Let f: X ..... Y be a morphism of schemes. 
(a) Show by example that if :F is coherent on X, then f*:F need not be coherent 

on Y, even if X and Y are varieties over a field k. 
(b) Show that a closed immersion is a finite morphism (§3). 
(c) Iff is a finite morphism of noetherian schemes, and if :F is coherent on X, 

then f*:F is coherent on Y. 

5.6. Support. Recall the notions of support of a section of a sheaf, support of a sheaf, 
and subsheafwith supports from (Ex. 1.14) and (Ex. 1.20). 
(a) Let A be a ring, let M be an A-module, let X = Spec A, and let :F = M. 

For any mE M = r(X,:F), show that Supp m = V(Ann m), where Ann m is 
the annihilator ofm = {a E Alam = 0}. 

(b) Now suppose that A is noetherian, and M finitely generated. Show that 
Supp :F = V(Ann M). 

(c) The support of a coherent sheaf on a noetherian scheme is closed. 
(d) For any ideal a <;; A, we define a submodule T0(M) of M by T.,(M) = 

{mE Mla"m = 0 for some n > 0}. Assume that A is noetherian, and Many 
A-module. Show that r.,(Mr ~ £'~(/F), where Z = V(a) and :F = M. 
[Hint: Use (Ex. 1.20) and (5.8) to show a priori that £'~(/F) is quasi-coherent. 
Then show that Fa(M) ~ Tz(ff).] 

(e) Let X be a noetherian scheme, and let Z be a closed subset. If :F is a quasi
coherent (respectively, coherent) @x-module, then £'~(/F) is also quasi
coherent (respectively, coherent). 

5.7. Let X be a noetherian scheme, and let :F be a coherent sheaf. 
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(a) If the stalk ffx is a free ((!x-module for some point x EX, then there is a neigh
borhood U of x such that :Flu is free. 

(b) :F is locally free if and only if its stalks .'f'x are free @x-modules for all x EX. 
(c) :F is invertible (i.e., locally free of rank 1) if and only if there is a coherent sheaf 

'!J such that :F ® '!J ~ ((!x· (This justifies the terminology invertible: it means 
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that :F is an invertible element of the monoid of coherent sheaves under the 
operation ®.) 

5.8. Again let X be a noetherian scheme, and :F a coherent sheaf on X. We will 
consider the function 

rp(x) = dimk(x) ffx ®mx k(x), 

where k(x) = (l)xfmx is the residue field at the point x. Use Nakayama's lemma 
to prove the following results. 
(a) The function rp is upper semi-continuous, i.e., for any nEZ, the set {xEXIrp(x) ;;> n} 

is closed. 
(b) If :F is locally free, and X is connected, then rp is a constant function. 
(c) Conversely, if X is reduced, and rp is constant, then :F is locally free. 

5.9. Let S be a graded ring, generated by S 1 as an S0-algebra, let M be a graded S
module, and let X = Proj S. 
(a) Show that there is a natural homomorphism cx:M---> r *(M). 

(b) Assume now that S 0 = A is a finitely generated k-algebra for some field k, 

that S1 is a finitely generated A-module, and that M is a finitely generated 
S-module. Show that the map ex is an isomorphism in all large enough 
degrees, i.e., there is a d0 E Z such that for all d ;;> d0 , cxd:Md---> T(X,M(d)) 
is an isomorphism. [Hint: Use the methods of the proof of (5.19).] 

(c) With the same hypotheses, we define an equivalence relation ~ on graded 
S-modules by saying M ~ M' if there is an integer d such that M :3d ~ M':3d· 

Here M :3d = ffin:3d Mn. We will say that a graded S-module M is quasi
finitely generated if it is equivalent to a finitely generated module. Now show 
that the functors - and r * induce an equivalence of categories between the 
category of quasi-finitely generated graded S-modules modulo the equivalence 
relation ~, and the category of coherent (l)x-modules. 

5.10. Let A be a ring, letS = A[x0 , ... ,x,] and let X = Proj S. We have seen that a 
homogeneous ideal I in S defines a closed subscheme of X (Ex. 3.12), and that 
conversely every closed subscheme of X arises in this way (5.16). 
(a) For any homogeneous ideal I c;; S, we define the saturation 1 of I to be 

{s E Slfor each i = 0, ... ,r, there is ann such that x7s E I}. We say that I is 
saturated if I = 1. Show that 1 is a homogeneous ideal of S. 

(b) Two homogeneous ideals I 1 and I 2 of S define the same closed subscheme of 
X if and only if they have the same saturation. 

(c) If Y is any closed subscheme of X, then the ideal r *( J\) is saturated. Hence 
it is the largest homogeneous ideal defining the subscheme Y. 

(d) There is a 1-1 correspondence between saturated ideals of Sand closed sub
schemes of X. 

5.11. Let S and T be two graded rings with S0 = T 0 = A. We define the Cartesian 
product s X A T to be the graded ring EBd:30 sd ®A Td. If X = Proj s and 
Y = Proj T, show that Proj(S x A T) ~ X x A Y, and show that the sheaf (1)(1) 
on Proj(S x A T) is isomorphic to the sheaf pf((l)x(1)) ® p!((l)y(1)) on X x Y. 

The Cartesian product of rings is related to the Segre embedding of projective 
spaces (1, Ex. 2.14) in the following way. If x0 , ... ,x, is a set of generators for S1 

over A, corresponding to a projective embedding X 4 PA., and if y0 , . .• ,y, is 
a set of generators for T 1, corresponding to a projective embedding Y 4 P~, 

then {xi® yj} is a set of generators for (S x A T) 1, and hence defines a projective 
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embedding Proj(S x A T) c. P~, with N = rs + r + s. This is just the image 
of X x Y c:; P' x P' in its Segre embedding. 

5.12. (a) Let X be a scheme over a scheme Y, and let 2', A be two very ample invertible 
sheaves on X. Show that fi' ®A is also very ample. [Hint: Use a Segre 
embedding.] 

(b) Let f:X -+ Y and g: Y-+ Z be two morphisms of schemes. Let fi' be a very 
ample invertible sheaf on X relative to Y, and let A be a very ample invertible 
sheaf on Y relative to Z. Show that fi' ® f*jt is a very ample invertible sheaf 
on X relative to Z. 

5.13. Let S be a graded ring, generated by S 1 as an S0 -algebra. For any integer d > 0, 
let s<d) be the graded ring EBn:. 0 s~d) where s~d) = snd· Let X = Proj S. Show 
that Proj s<dl ~ X, and that the sheaf CD(l) on Proj s<dl corresponds via this 
isomorphism to CDx(d). 

This construction is related to the d-uple embedding (1, Ex. 2.12) in the fol
lowing way. If x0 , ... ,x, is a set of generators for S 1, corresponding to an em
bedding X c. PA, then the set of monomials of degree d in the xi is a set of 
generators for S\dl = Sd. These define a projective embedding of Proj s<dl which 
is none other than the image of X under the d-uple embedding of P~. 

5.14. Let A be a ring, and let X be a closed subscheme of P~. We define the homo
geneous coordinate ring S(X) of X for the given embedding to be A[x0 , ... ,x,]/1, 
where I is the ideal r *(.I x) constructed in the proof of (5.16). (Of course if A is 
a field and X a variety, this coincides with the definition given in (1, §2) !) Recall 
that a scheme X is normal if its local rings are integrally closed domains. A closed 
subscheme X c:; P~ is projectively normal for the given embedding, if its homo
geneous coordinate ring S(X) is an integrally closed domain (cf. (1, Ex. 3.18) ). 
Now assume that k is an algebraically closed field, and that X is a connected, 
normal closed subscheme ofP~. Show that for some d > 0, the d-uple embedding 
of X is projectively normal, as follows. 
(a) LetS be the homogeneous coordinate ring of X, and letS' = EBn:.o T(X,CDx(n) ). 

Show that S is a domain, and that S' is its integral closure. [Hint: First show 
that X is integral. Then regard S' as the global sections of the sheaf of rings 
!/' = EBn:.o CDx(n) on X, and show that !/' is a sheaf of integrally closed 
domains.] 

(b) Use (Ex. 5.9) to show that Sd = S~ for all sufficiently large d. 
(c) Show that s<dl is integrally closed for sufficiently large d, and hence conclude 

that the d-uple embedding of X is projectively normal. 
(d) As a corollary of (a), show that a closed subscheme X c:; P~ is projectively 

normal if and only if it is normal, and for every n ~ 0 the natural map 
T(P',@p,(n))-+ r(X,CDx(n)) is surjective. 

5.15. Extension of Coherent Sheaves. We will prove the following theorem in several 
steps: Let X be a noetherian scheme, let U be an open subset, and let.? be a 
coherent sheaf on U. Then there is a coherent sheaf.?' on X such that .?'lu ~ .?. 
(a) On a noetherian affine scheme, every quasi-coherent sheaf is the union of its 
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coherent subsheaves. We say a sheaf.? is the union of its subsheaves Sf 
if for every open set U, the group .?(V) is the union of the subgroups Sf (U). 

(b) Let X be an affine noetherian scheme, U an open subset, and.? coherent on 
U. Then there exists a coherent sheaf.?' on X with .?'lu ~ .?. [Hint: Let 
i: U -+ X be the inclusion map. Show that i*.? is quasi-coherent, then use(a).] 



5 Sheaves of Modules 

(c) With X,U,:F as in (b), suppose furthermore we are given a quasi-coherent 
sheaf'§ on X such that :F ~ '§lu· Show that we can find ff' a coherent sub
sheaf of'§, with :F'lu ~ :F. [Hint: Use the same method, but replace i*ff 

by p- 1(i*ff), where pis the natural map'§-.. i*('§lul-] 
(d) Now let X be any noetherian scheme, U an open subset, :Fa coherent sheaf 

on U, and'§ a quasi-coherent sheaf on X such that :F ~ '§lu· Show that there 
is a coherent subsheaf :F ~ '§on X with :F'lu ~ :F. Taking'§ = i*:F proves 
the result announced at the beginning. [Hint: Cover X with open affines, and 
extend over one of them at a time.] 

(e) As an extra corollary, show that on a noetherian scheme, any quasi-coherent 
sheaf :F is the union of its coherent subsheaves. [Hint: If sis a section of :F 

over an open set U, apply (d) to the subsheaf of :Flu generated by s.] 

5.16. Tensor Operations on Sheaves. First we recall the definitions of various tensor 
operations on a module. Let A be a ring, and let M be an A-module. Let T"(M) 
be the tensor product M ® ... ® M of M with itself n times, for n ;, 1. For 
n = 0 we put T0(M) = A. Then T(M) = EB.~o T"(M) is a (noncommutative) 
A-algebra, which we call the tensor algebra of M. We define the symmetric 

algebra S(M) = ffi.~o S"(M) of M to be the quotient of T(M) by the two-sided 
ideal generated by all expressions x ® y - y ® x, for all x,y EM. Then S(M) 
is a commutative A-algebra. Its component S"(M) in degree n is called the nth 
symmetric product of M. We denote the image of x ® y in S(M) by xy, for any 
x,y EM. As an example, note that if M is a free A-module of rank r, then S(M) ~ 
A[x 1, ••• ,x,]. 

We define the exterior algebra 1\(M) = EB.~o /\"(M) of M to be the quo
tient of T(M) by the two-sided ideal generated by all expressions x ® x for 
x E M. Note that this ideal contains all expressions of the form x ® y + y ® x, 

so that /\(M) is a skew commutative graded A-algebra. This means that if u E 
/\'(M) and v E f\•(M), then u 1\ v = ( -l)"v 1\ u (here we denote by 1\ the 
multiplication in this algebra; so the image of x ®yin f\ 2(M) is denoted by 
x 1\ y). The nth component /\"(M) is called the nth exterior power of M. 

Now let (X,(!Jx) be a ringed space, and let :F be a sheaf of (!Jx-modules. We 
define the tensor algebra, symmetric algebra, and exterior algebra of :F by taking 
the sheaves associated to the presheaf, which to each open ·set U assigns the 
corresponding tensor operation applied to ff(U) as an (!Jx(U)-module. The 
results are (!Jx-algebras, and their components in each degree are (!Jx-modules. 

(a) Suppose that :F is locally free of rank n. Then T'(ff), S'(ff), and /\'(ff) are 
also locally free, of ranks n', ("~.':! 1 ), and G) respectively. 

(b) Again let :F be locally free of rank n. Then the multiplication map/\' :F ® 
1\" -, :F -.. 1\ ".~ is a perfect pairing for any r, i.t,., it induces an isomorphism 

of /\' :F with ( /\"- ':F r ® 1\" :F. As a special case, note if :F has rank 2, 
then :F ~ :F- ® 1\1:?. 

(c) Let 0 -.. :F' -.. :F -.. :F" -.. 0 be an exact sequence of locally free sheaves. 
Then for any r there is a finite filtration of S'(ff), 

S'(ff) = F0 2 F 1 2 ... 2 F' 2 pr+ 1 = 0 

with quotients 

for each p. 
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(d) Same statement as (c), with exterior powers instead of symmetric powers. In 
particular, if ff',ff,ff" have ranks n',n,n" respectively, there is an isomorphism 
1\"ff ~ 1\"'ff' ® 1\""ff". 

(e) Let f:X --+ Y be a morphism of ringed spaces, and let ff be an (l)y-module. 
Then f* commutes with all the tensor operations on ff, i.e., f*(S"(ff)) = 
S"(f* ff) etc. 

5.17. Affine M orphisms. A morphism f: X --+ Y of schemes is affine ifthere is an open 
affine cover {V;} of Y such that f- 1(V;) is affine for each i. 
(a) Show that f: X --+ Y is an affine morphism if and only if for every open affine 

V <;::; Y,f- 1(V) is affine. [Hint: Reduce to the case Yaffine, and use (Ex. 2.17).] 
(b) An affine morphism is quasi-compact and separated. Any finite morphism is 

affine. 
(c) Let Y be a scheme, and let d be a quasi-coherent sheaf of (l)y-algebras (i.e., a 

sheaf of rings which is at the same time a quasi-coherent sheaf of (l)y-modules). 
Show that there is a unique scheme X, and a morphism f:X --+ Y, such that 
for every open affine V <;::; Y, f- 1(V) ~ Spec d(V), and for every inclusion 
U 4 V of open affines of Y, the morphism f- 1(U) 4 f- 1(V) corresponds to 
the restriction homomorphism d(V)--+ d(U). The scheme X is called 
Spec d. [Hint: Construct X by glueing together the schemes Spec d(V), 
for V open affine in Y.J 

(d) If d is a quasi-coherent (l)y-algebra, then f:X = Spec d--+ Y is an affine 
morphism, and d ~ j*(l)x· Conversely, if f:X--+ Y is an affine morphism, 
then d = j*(l)x is a quasi-coherent sheaf of (l)y-algebras, and X ~ Spec d. 

(e) Letf:X--+ Ybe an affine morphism, and let d = j*(l)x· Show thatf* induces 
an equivalence of categories from the category of quasi-coherent (l)x-modules 
to the category of quasi-coherent d-modules (i.e., quasi-coherent (l)y-modules 
having a structure of d-module). [Hint: For any quasi-coherent d-module 
.A, construct a quasi-coherent (l)x-module .ii, and show that the functors f* 
and- are inverse to each other. 

5.18. Vector Bundles. Let Y be a scheme. A (geometric) vector bundle of rank n over 
Y is a scheme X and a morphism f:X--+ Y, together with additional data con
sisting of an open covering {U;} of Y, and isomorphisms lj;i:f- 1(U;)--+ Au,, 
such that for any i,j, and for any open affine subset V = Spec A <;::; Ui n Ui, 
the automorphism lj; = lj;ioi/Ji 1 of A~= SpecA[x1, ... ,x"] is given by a 
linear automorphism() of A[ x1, ... ,x"], i.e., O(a) = a for any a E A, and O(x;) = 
L.Giixi for suitable aii EA. 
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An isomorphism g:(X,f,{Ui},{lj;i})--+ (X',f',{U;},{tf;;}) of one vector bundle 
of rank n to another one is an isomorphism g:X--+ X' of the underlying schemes, 
such that f = f' o g, and such that X,f, together with the covering of Y con
sisting of all the Ui and u;, and the isomorphisms lj;i and tf;; o g, is also a vector 
bundle structure on X. 
(a) Let@' be a locally free sheaf of rank non a scheme Y. Let S(t&') be the symmetric 

algebra on t&', and let X = Spec S(t&'), with projection morphism f:X--+ Y. 
For each open affine subset U <;::; Y for which t&'lu is free, choose a basis of@', 
and let lj;:f- 1(U)--+ Au be the isomorphism resulting from the identification 
of S(t&'(U)) with (I)(U)[x 1, ... ,x"]. Then (X,f,{U},{Ij;}) is a vector bundle of 
rank n over Y, which (up to isomorphism) does not depend on the bases of 
@' u chosen. We call it the geometric vector bundle associated to@', and denote 
it by V(t&'). 
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(b) For any morphism f: X --+ Y, a section off over an open set U s Y is a mor
phism s: U--+ X such that f o s = idu. It is clear how to restrict sections to 
smaller open sets, or how to glue them together, so we see that the presheaf 
U H {set of sections off over U} is a sheaf of sets on Y, which we denote by 
Y'(X /Y). Show that iff: X --+ Y is a vector bundle of rank n, then the sheaf 
of sections Y'(X/Y) has a natural structure of @y-module, which makes it a 
locally free @y-module of rank n. [Hint: It is enough to define the module 
structure locally, so we can assume Y = Spec A is affine, and X = A~. Then a 
sections: Y--+ X comes from an A-algebra homomorphism !:I:A[x 1, •.. ,x.]--+ 
A, which in turn determines an ordered n-tuple < !:l(x 1), ... , !:l(x.)) of elements 
of A. Use this correspondence between sections s and ordered n-tuples of 
elements of A to define the module structure.] 

(c) Again let tff be a locally free sheaf of rank non Y, let X = V(tff), and let Y' = 
Y'(X/Y) be the sheaf of sections of X over Y. Show that Y' ~ tff~, as follows. 
Given a sections E r(V,tff~) over any open set V, we think of s as an element of 
Hom(tff!v,@v). So s determines an @v-algebra homomorphism S(t!lvl--+ @y. 

This determines a morphism of spectra V = Spec (Dv--+ Spec S(t!lvl = 
f- 1(V), which is a section of X /Y. Show that this construction gives an iso
morphism of ,g~ to Y'. 

(d) Summing up, show that we have established a one-to-one correspondence 
between isomorphism classes of locally free sheaves of rank n on Y, and iso
morphism classes of vector bundles of rank n over Y. Because of this, we 
sometimes use the words "locally free sheaf" and "vector bundle" inter
changeably, if no confusion seems likely to result. 

6 Divisors 

The notion of divisor forms an important tool for studying the intrinsic 
geometry on a variety or scheme. In this section we will introduce divisors, 
linear equivalence and the divisor class group. The divisor class group is 
an abelian group which is an interesting and subtle invariant of a variety. 
In §7 we will see that divisors are also important for studying maps from a 
given variety to a projective space. 

There are several different ways of defining divisors, depending on the 
context. We will begin with Weil divisors, which are easiest to understand 
geometrically, but which are only defined on certain noetherian integral 
schemes. For more general schemes there is the notion of Cartier divisor 
which we treat next. Then we will explain the connection between Weil 
divisors, Cartier divisors, and invertible sheaves. 

We start with an informal example. Let C be a nonsingular projective 
curve in Pf, the projective plane over an algebraically closed field k. For 
each line Lin P2 , we consider L n C, which is a finite set of points on C. 
If C is a curve of degree d, and if we count the points with proper multi
plicity, then L n C will consist of exactly d points (I, Ex. 5.4). We write 
L n C = l,n;P;, where P; E Care the points, and n; the multiplicities, and 
we call this formal sum a divisor on C. As L varies, we obtain a family of 
divisors on C, parametrized by the set of all lines in P2, which is the dual 
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projective space (P2 )*. We call this set of divisors a linear system of divisors 
on C. Note that the embedding of C in P 2 can be recovered just from 
knowing this linear system: if Pis a point of C, we consider the set of divisors 
in the linear system which contain P. They correspond to the lines L E (P2)* 
passing through P, and this set of lines determines P uniquely as a point 
of P 2 . This connection between linear systems and embeddings in pro
jective space will be studied in detail in §7. 

This example should already serve to illustrate the importance of divi
sors. To see the relation among the different divisors in the linear system, 
let Land L' be two lines in P2 , and let D = L n C and D' = L' n C be the 
corresponding divisors. If L and L' are defined by linear homogeneous 
equations f = 0 and f' = 0 in P2 , then f/f' gives a rational function on 
P2 , which restricts to a rational function g on C. Now by construction, g 

has zeros at the points of D, and poles at the points of D', counted with 
multiplicities, in a sense which will be made precise below. We say that 
D and D' are linearly equivalent, and the existence of such a rational func
tion can be taken as an intrinsic definition of the linear equivalence. We 
will make these concepts more precise in our formal discussion, starting now. 

Wei! Divisors 

Definition. We say a scheme X is regular in codimension one (or sometimes 
nonsingular in codimension one) if every local ring (iJ x of X of dimension 
one is regular. 

The most important examples of such schemes are nonsingular varieties 
over a field (1, §5) and noetherian normal schemes. On a nonsingular 
variety the local ring of every closed point is regular (1, 5.1), hence all the 
local rings are regular, since they are localizations of the local rings of 
closed points. On a noetherian normal scheme, any local ring of dimen
sion one is an integrally closed domain, hence is regular (1, 6.2A). 

In this section we will consider schemes satisfying the following condition: 

(*)X is a noetherian integral separated scheme which is regular in 
codimension one. 

Definition. Let X satisfy ( * ). A prime divisor on X is a closed integral sub
scheme Y of codimension one. A Weil divisor is an element of the free 
abelian group Div X generated by the prime divisors. We write a divisor 
as D = L\ }i, where the 1i are prime divisors, the n; are integers, and 
only finitely many n; are different from zero. If all the n; ~ 0, we say 
that D is effective. 

If Y is a prime divisor on X, let lJ E Y be its generic point. Then the 
local ring (iJ~.x is a discrete valuation ring with quotient field K, the 
function field of X. We call the corresponding discrete valuation vy 
the valuation of Y. Note that since X is separated, Y is uniquely deter-
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mined by its valuation (Ex. 4.5). Now let f E K* be any nonzero rational 
function on X. Then vy(f} is an integer. If it is positive, we say f has 
a zero along Y, of that order; if it is negative, we say f has a pole along Y, 
of order - Vy(f). 

Lemma 6.1. Let X satisfy (*), and let f E K* be a nonzero function on X. 
Then vy(f) = 0 for all except finitely many prime divisors Y. 

PROOF. Let U = Spec A be an open affine subset of X on which f is regular. 
Then Z = X - U is a proper closed subset of X. Since X is noetherian, 
Z can contain at most finitely many prime divisors of X; all the others 
must meet U. Thus it will be sufficient to show that there are only finitely 
many prime divisors Y of U for which vy(f) # 0. Since f is regular on U, 
we have vy(f} :;?: 0 in any case. And vy(f) > 0 if and only if Y is contained 
in the closed subset of U defined by the ideal Af in A. Since f # 0, this is 
a proper closed subset, hence contains only finitely many closed irreducible 
subsets of codimension one of U. 

Definition. Let X satisfy (*) and let f E K*. We define the divisor off, 
denoted (f), by 

(f) = Ivy(f) . Y, 

where the sum is taken over all prime divisors of X. By the lemma, this 
is a finite sum, hence it is a divisor. Any divisor which is equal to the 
divisor of a function is called a principal divisor. 

Note that if f,g E K*, then (fjg) = (f) - (g) because of the properties 
of valuations. Therefore sending a function f to its divisor (f) gives a 
homomorphism of the multiplicative group K* to the additive group 
Div X, and the image, which consists of the principal divisors, is a sub
group of Div X. 

Definition. Let X satisfy(*). Two divisors D and D' are said to be linearly 
equivalent, written D ,...., D', if D - D' is a principal divisor. The group 
Div X of all divisors divided by the subgroup of principal divisors is 
called the divisor class group of X, and is denoted by Cl X. 

The divisor class group of a scheme is a very interesting invariant. In 
general it is not easy to calculate. However, in the following propositions 
and examples we will calculate a number of special cases to give some 
idea of what it is like. 

Proposition 6.2. Let A be a noetherian domain. Then A is a unique factor
ization domain if and only if X = Spec A is normal and Cl X = 0. 
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PROOF. (See also Bourbaki [1, Ch. 7, §3]). It is well-known that a UFD 
is integrally closed, so X will be normal. On the other hand, A is a UFD if 
and only if every prime ideal of height 1 is principal (I, 1.12A). So what we 
must show is that if A is an integrally closed domain, then every prime 
ideal of height 1 is principal if and only if Cl(Spec A) = 0. 

One way is easy: if every prime ideal of height 1 is principal, consider a 
prime divisor Y <;; X = Spec A. Y corresponds to a prime ideal p of 
height 1. If p is generated by an element f E A, then clearly the divisor 
off is 1 · Y. Thus every prime divisor is principal, so Cl X = 0. 

For the converse, suppose Cl X = 0. Let p be a prime ideal of height 1, 
and let Y be the corresponding prime divisor. Then there is an f E K, the 
quotient field of A, with (f) = Y. We will show that in fact f E A and 
f generates p. Since vy(f) = 1, we have f E AP, and f generates pAP. If 
p' <;; A is any other prime ideal of height 1, then p' corresponds to a prime 
divisor Y' of X, and Vy·(f) = 0, so f E Ap'· Now the algebraic result (6.3A) 
below implies that f EA. In fact, f E A n pAv = p. Now to show that f 
generates p, let g be any other element of p. Then Vy(g) ? 1 and Vy·(g) ? 0 
for all Y' i= Y. Hence vy.(g/f) ? 0 for all prime divisors Y' (including Y). 

Thus gjf E Ap' for all p' ofheight 1, so by(6.3A) again,g/f EA. In other words, 
g E Af, which shows that p is a principal ideal, generated by f 

Proposition 6.3A. Let A be an integrally closed noetherian domain. Then 

A= n Av 
ht p = 1 

where the intersection is taken over all prime ideals of height 1. 

PROOF. Matsumura [2, Th. 38, p. 124]. 

Example 6.3.1. If X is affine n-space AJ: over a field k, then Cl X = 0. 
Indeed, X = Spec k[x 1, ... ,xn], and the polynomial ring is a UFD. 

Example 6.3.2. If A is a Dedekind domain, then Cl(Spec A) is just the ideal 
class group of A, as defined in algebraic number theory. Thus ( 6.2) generalizes 
the fact that A is a UFD if and only if its ideal class group is 0. 

Proposition 6.4. Let X be the projective space PJ: over a field k. For any 
divisor D = In;¥;, define the degree of D by deg D = In; deg Y;, where 
deg Y; is the degree of the hypersurface ¥;. Let H be the hyperplane x0 = 

0. Then: 
(a) if D is any divisor of degree d, then D ~ dH; 
(b) for any f E K*, deg(f) = 0; 
(c) the degree function gives an isomorphism deg:Cl X ---+ Z. 

PROOF. Let S = k[ x0 , .•. ,xn] be the homogeneous coordinate ring of X. 
If g is a homogeneous element of degree d, we can factor it into irreducible 
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polynomials g = g1' · · · g~r. Then g; defines a hypersurface Y; of degree 
d; = deg g;, and we can define the divisor of g to be (g) = In; Y;. Then 
deg(g) = d. Now a rational function f on X is a quotient gjh of homo
geneous polynomials of the same degree. Clearly (f) = (g) - (h), so we 
see that deg(f) = 0, which proves (b). 

If D is any divisor of degree d, we can write it as a difference D 1 - D2 

of effective divisors of degrees d1,d2 with d 1 - d2 = d. Let D 1 = (g 1) and 
D 2 = (g2 ). This is possible, because an irreducible hypersurface in pn 
corresponds to a homogeneous prime ideal of height 1 in S, which is prin
cipal. Taking power products we can get any effective divisor as (g) for 
some homogeneous g. Now D - dH = (f) where f = gtfx~g2 is a ra
tional function on X. This proves (a). Statement (c) follows from (a), (b), 
and the fact that deg H = 1. 

Proposition 6.5. Let X satisfy(*), let Z be a proper closed subset of X, and 
let U = X - Z. Then: 

(a) there is a surjective homomorphism Cl X -> Cl U defined by D = 

In; Y; f---+ In;( Y; n U), where we ignore those Y; n U which are empty; 
(b) if codim(Z,X) ;?; 2, then Cl X -> Cl U is an isomorphism; 
(c) if Z is an irreducible subset of codimension 1, then there is an exact 

sequence 
Z -> Cl X -> Cl U -> 0, 

where the first map is defined by 1 f---+ 1 · Z. 

PROOF. 

(a) If Y is a prime divisor on X, then Y n U is either empty or a prime 
divisor on U. Iff E K*, and (f) = In;Y;, then considering f as a rational 
function on U, we have (f)u = In;(Y; n U), so indeed we have a homo
morphism Cl X -> Cl U. It is surjective because every prime divisor of U 
is the restriction of its closure in X. 

(b) The groups Div X and Cl X depend only on subsets of codimension 
1, so removing a closed subset Z of codimension ;?; 2 doesn't change anyr l~ing. 

(c) The kernel of Cl X -> Cl U consists of divisors whose support is 
contained in Z. If Z is irreducible, the kernel is just the subgroup of Cl X 
generated by 1 · Z. 

Example 6.5.1. Let Y be an irreducible curve of degree d in Pl. Then 
Cl(P2 - Y) = Z/dZ. This follows immediately from (6.4) and (6.5). 

Example 6.5.2. Let k be a field, let A = k[x,y,z]/(xy - z2 ), and let X = 

Spec A. Then X is an affine quadric cone in A~. We will show that Cl X = 

Zj2Z, and that it is generated by a ruling of the cone, say Y:y = z = 0 
(Fig. 8). 

First note that Y is a prime divisor, so by (6.5) we have an exact sequence 

Z -> Cl X -> Cl(X - Y) -> 0, 
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z 

Figure 8. A ruling on the quadric cone. 

where the first map sends 1~---> 1 · Y. Now Y can be cut out set-theoretically 
by the function y. In fact, the divisor of y is 2 · Y, because y = 0 = z2 = 0, 
and z generates the maximal ideal of the local ring at the generic point of Y. 
Hence X - Y = Spec AY. NowAY = k[x,y,y-l,z]/(xy - z2). In this ring 
x = y- 1 z 2 , so we can eliminate x, and find AY ~ k[y,y- 1 ,z]. This is a UFD, 
so by (6.2), Cl(X - Y) = 0. 

Thus we see that Cl X is generated by Y, and that 2 · Y = 0. It remains 
to show that Y itself is not a principal divisor. Since A is integrally closed 
(Ex. 6.4), it is equivalent to show that the prime ideal of Y, namely p = 

(y,z), is not principal (cf. proof of (6.2) ). Let m = (x,y,z), and note that 
m/m2 is a 3-dimensional vector space over k generated by x,y;z, the images 
of x,y,z. Now p ~ m, and the image of pin m/m2 contains y and z. Hence 
p cannot be a principal ideal. 

Proposition 6.6. Let X satisfy (*). Then X x A 1 (=X x specz Spec Z[t]) 
also satisfies ( * ), and Cl X ~ Cl(X x A 1 ). 

PROOF. Clearly X x A 1 is noetherian, integral, and separated. To see that 
it is regular in codimension one, we note that there are two kinds of points 
of codimension one on X x A 1. Type 1 is a point x whose image in X 
is a pointy of codimension one. In this case xis the generic point of n- 1(y), 
where n:X x A1 --+ X is the projection. Its local ring is (!)x ~ (!)y[t]my' 

which is clearly a discrete valuation ring, since (!) Y is. The corresponding 
prime divisor {x}- isjustn- 1({y}-). 

Type 2 is a point x E X x A 1 of codimension one, whose image in X 
is the generic point of X. In this case (!)xis a localization of K[t] at some 
maximal ideal, where K is the function field of X. It is a discrete valuation 
ring because K[t] is a principal ideal domain. Thus X x A 1 also satisfies(*). 

We define a map Cl X--+ Cl(X x A1) by D =In)';~---> n*D = Inin- 1(¥;). 
Iff E K*, then n*( (f)) is the divisor off considered as an element of K(t), 
the function field of X x A 1 . Thus we have a homomorphism n*: Cl X --+ 

Cl(X X A1). 
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To show n* is injective, suppose D E Div X, and n* D = (f) for some 
f E K(t). Since n*D involves only prime divisors of type 1, f must be inK. 
For otherwise we could write f = g/h, with g,h E K[t], relatively prime. 
If g,h are not both in K, then (f) will involve some prime divisor of type 2 
on X x A 1 . Now iff E K, it is clear that D = (f), son* is injective. 

To show that n* is surjective, it will be sufficient to show that any prime 
divisor of type 2 on X x A 1 is linearly equivalent to a linear combination 
of prime divisors of type 1. So let Z s; X x A 1 be a prime divisor of type 2. 
Localizing at the generic point of X, we get a prime divisor in Spec K[t], 
which corresponds to a prime ideal p s; K[t]. This is principal, so let f 
be a generator. Then f E K(t), and the divisor off consists of Z plus perhaps 
something purely of type 1. It cannot involve any other prime divisors of 
type 2. Thus Z is linearly equivalent to a divisor purely of type 1. This 
completes the proof. 

Example 6.6.1. Let Q be the nonsingular quadric surface xy = zw in Pi. 
We will show that Cl Q ~ Z EB Z. We use the fact that Q is isomorphic 
to Pl x k Pl (1, Ex. 2.15). Let p 1 and p 2 be the projections of Q onto the 
two factors. Then as in the proof of (6.6) we obtain homomorphisms 
Pi ,p~: Cl P 1 -t Cl Q. First we show that Pi and p~ are injective. Let Y = 

pt x P 1. Then Q - Y = A 1 x P 1, and the composition 

Cl P 1 ~ Cl Q -t Cl(A 1 X P 1 ) 

is the isomorphism of (6.6). Hence p~ (and similarly pi) is injective. 
Now consider the exact sequence of(6.5) for Y: 

z -t Cl Q -t Cl(A 1 X P 1) -t 0. 

In this sequence the first map sends 1 to Y. But if we identify Cl P 1 with 
Z by letting 1 be the class of a point, then this first map is just Pi, hence is 
injective. Since the image of p~ goes isomorphically to Cl(A 1 x P 1) as we 
have just seen, we conclude that Cl Q ~ Im Pi EB Im p~ = Z EB Z. If D 
is any divisor on Q, let (a,b) be the ordered pair of integers in Z EB Z cor
responding to the class of D under this isomorphism. Then we say D is 
of type (a,b) on Q. 

Example 6.6.2. Continuing with the quadric surface Q s; P 3 , we will show 
that the embedding induces a homomorphism Cl P 3 -t Cl Q, and that the 
image of a hyperplane H, which generates Cl P 3 , is the element (1,1) in Cl Q = 

Z EB Z. Let Y be any irreducible hypersurface of P3 which does not con
tain Q. Then we can assign multiplicities to the irreducible components 
of Y n Q so as to obtain a divisor Y · Q on Q. Indeed, on each standard 
open set U; of P 3 , Y is defined by a single function f; we can take the value 
of this function (restricted to Q) for each valuation of a prime divisor of Q 
to define the divisor Y · Q. By linearity we extend this map to define a 
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divisor D · Q on Q, for each divisor D = In;¥; on P3 , such that no ¥; con
tains Q. Clearly linearly equivalent divisors restrict to linearly equivalent 
divisors. Since any divisor on P3 is linearly equivalent to one whose prime 
divisors don't contain Q by (6.4), we obtain a well-defined homomorphism 
Cl P3 ---+ Cl Q. Now if His the hyperplane w = 0, then H n Q is the divisor 
consisting of the two lines x = w = 0 and y = w = 0. One is in each 
family (I, Ex. 2.15) so H n Q is of type (1,1) in Cl Q = Z 6::> Z. Note that 
the two families of lines correspond to pt x P1 and P 1 x pt, so they are 
of type (1,0) and (0,1). 

Example 6.6.3. Carrying this example one step further, let C be the twisted 
cubic curve x = t3 , y = u3 , z = t2 u, w = tu2 which lies on Q. If Y is the 
quadric cone yz = w2, then Y n Q = C u L where Lis the line y = w = 0. 
Since Y ~ 2H on P3 , Y n Q is a divisor of type (2,2). The line L has type 
(1,0), so C is of type (1,2). It follows that there does not exist any surface 
Y s; P\ not containing Q, such that Y n Q = C, even set-theoretically! 
For in that case the divisor Y n Q would be rC for some integer r > 0. 
This is a divisor of type (r,2r) in Cl Q. But if Y is a surface of degree d, then 
Y n Q is of type (d,d), which can never equal (r,2r). Thus Y does not exist. 

Example 6.6.4. We will see later (V, 4.8) that if X is a nonsingular cubic 
surface in P3 , then Cl X ~ Z7 . 

Divisors on Curves 

We will illustrate the notion of the divisor class group further by paying 
special attention to the case of divisors on curves. We will define the degree 
of a divisor on a curve, and we will show that on a complete nonsingular 
curve, the degree is stable under linear equivalence. Further study of 
divisors on curves will be found in Chapter IV. 

To begin with, we need some preliminary information about curves and 
morphisms of curves. Recall our conventions about terminology from the 
end of Section 4: 

Definition. Let k be an algebraically closed field. A curve over k is an 
integral separated scheme X of finite type over k, of dimension one. 
If X is proper over k, we say that X is complete. If all the local rings 
of X are regular local rings, we say that X is nonsingular. 

Proposition 6.7. Let X be a nonsingular curve over k with function field K. 
Then the following conditions are equivalent: 

(i) X is projective; 
(ii) X is complete; 

(iii) X ~ t(Cx), where Cx is the abstract nonsingular curve of (1, §6), 
and t is the functor from varieties to schemes of (2.6). 
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PROOF. 

(i) => (ii) follows from (4.9). 
(ii) => (iii). If X is complete, then every discrete valuation ring of Kjk 

has a unique center on X (Ex. 4.5). Since the local rings of X at the closed 
points are all discrete valuation rings, this implies that the closed points 
of X are in 1-1 correspondence with the discrete valuation rings of Kjk, 
namely the points of Cx. Thus it is clear that X ~ t(Cx). 

(iii) => (i) follows from (1, 6.9). 

Proposition 6.8. Let X be a complete nonsingular curve over k, let Y be any 
curve over k, and let f:X ~ Y be a morphism. Then either (1) f(X) = 
a point, or (2) f(X) = Y. In case (2), K(X) is a finite extension field of 
K(Y), f is a finite morphism, and Y is also complete. 

PROOF. Since X is complete, f(X) must be closed in Y, and proper over 
Spec k (Ex. 4.4). On the other hand, f(X) is irreducible. Thus either 
(1) f(X) = pt, or (2) f(X) = Y, and in case (2), Y is also complete. 

In case (2), f is dominant, so it induces an inclusion K(Y) ~ K(X) of 
function fields. Since both fields are finitely generated extension fields of 
transcendence degree 1 of k, K(X) must be a finite algebraic extension of 
K(Y). To show that f is a finite morphism, let V = Spec B be any open 
affine subset of Y. Let A be the integral closure of B in K(X). Then A is a 
finite B-module (I, 3.9A), and Spec A is isomorphic to an open subset U of 
X (I, 6. 7). Clearly U = f- 1 V, so this shows that f is a finite morphism. 

Definition. Iff: X ~ Y is a finite morphism of curves, we define the degree 
off to be the degree of the field extension [ K(X):K(Y)]. 

Now we come to the study of divisors on curves. If X is a nonsingular 
curve, then X satisfies the condition ( *) used above, so we can talk about 
divisors on X. A prime divisor is just a closed point, so an arbitrary divisor 
can be written D = I,n;P;, where the P; are closed points, and n; E Z. We 
define the degree of D to be :Ln;. 

Definition. If f: X ~ Y is a finite morphism of nonsingular curves, we 
define a homomorphism f*: Div Y ~ Div X as follows. For any point 
Q E Y, let t E (!)Q be a local parameter at Q, i.e., tis an element of K(Y) 
with vQ(t) = 1, where vQ is the valuation corresponding to the discrete 
valuation ring (!)Q· We define f*Q = LJ<PJ;Q vp(t) · P. Since f is a 
finite morphism, this is a finite sum, so we get a divisor on X. Note 
that f*Q is independent of the choice of the local parameter t. Indeed, 
if t' is another local parameter at Q, then t' = ut where u is a unit in 
(!)Q· For any point P EX with f(P) = Q, u will be a unit in @p, so vp(t) = 
vp(t'). We extend the definition by linearity to all divisors on Y. One 
sees easily that f* preserves linear equivalence, so it induces a homo
morphism f*: Cl Y ~ Cl X. 
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Proposition 6.9. Let f: X --+ Y be a finite morphism of nonsingular curves. 
Then for any divisor Don Y we have deg f*D = deg f · deg D. 

PROOF. It will be sufficient to show that for any closed point Q E Y we have 
deg f*Q = deg f Let V = Spec B be an open affine subset of Y containing 
Q. Let A be the integral closure of B in K(X). Then, as in the proof of 
(6.8), U =Spec A is the open subset f- 1 v of X. Let mQ be the maximal 
ideal of Q in B. We localize both Band A with respect to the multiplicative 
system S = B - mQ, and we obtain a ring extension (DQ 4 A', where A' 
is a finitely generated {DQ-module. Now A' is torsion-free, and has rank 
equal to r = [K(X):K(Y)], so A' is a free {DQ-module of rank r = deg f 
If t is a local parameter at Q, it follows that A'/tA' is a k-vector space of 
dimension r. 

On the other hand, the points Pi of X such that f(P;) = Q are in 1-1 
correspondence with the maximal ideals mi of A', and for each i, A;" = 
(DP,· Clearly tA' = ni(tA;,, 11 A'), so by the Chinese remainder theor~m, 

dimk A'/tA' = L dimk A'/(tA;n, 11 A'). 
But i 

A'/(tA;", 11 A') ~ A;"jtA;", = (Dpjt@p,, 

so the dimensions in the sum above are just equal to vp.(t). But f*Q = 
l:vp,(t) · Pi, so we have shown that deg f*Q = deg f as required. 

Corollary 6.10. A principal divisor on a complete nonsingular curve X has 
degree zero. Consequently the degree function induces a surjective homo
morphism deg: Cl X --+ Z. 

PROOF. Let f E K(X)*. Iff E k, then (f) = 0, so there is nothing to prove. 
Iff ¢= k, then the inclusion of fields k(f) <;; K(X) induces a finite morphism 
cp:X --+ P 1 . It is a morphism by (1, 6.12), and it is finite by (6.8). Now (f) = 
cp*( {0} - { oo }). Since {0} - { oo} is a divisor of degree 0 on P\ we conclude 
that (f) has degree 0 on X. 

Thus the degree of a divisor on X depends only on its linear equivalence 
class, and we obtain a homomorphism Cl X --+ Z as stated. It is surjective, 
because the degree of a single point is 1. 

Example 6.10.1. A complete nonsingular curve X is rational if and only if 
there exist two distinct points P,Q E X with P "' Q. Recall that rational 
means birational to P 1. If X is rational, then in fact it is isomorphic to P1 

by (6.7). And on P 1 we have already seen that any two points are linearly 
equivalent (6.4). Conversely, suppose X has two points P =1- Q with P "' Q. 
Then there is a rational function f E K(X) with (f) = P - Q. Consider 
the morphism cp: X --+ P 1 determined by f as in the proof of ( 6.10). We 
have cp*( { 0}) = P, so cp must be a morphism of degree 1. In other words, 
cp is birational, so X is rational. 
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Example 6.10.2. Let X be the nonsingular cubic curve y2 z = x 3 - xz2 in 
P~, with char k =!= 2. We have already seen that X is not rational (I, Ex. 6.2). 
Let Cl0 X be the kernel of the degree map Cl X ~ Z. Then from the previous 
example we know that Cl0 X =!= 0. We will show in fact that there is a 
natural 1-1 correspondence between the set of closed points of X and the 
elements of the group Clo X. On the one hand this elucidates the structure 
of the group Clo X. On the other hand it gives us a group structure on the 
set of closed points of X, which makes X into a group variety (Fig. 9). 

X 

Figure 9. The group law on a cubic curve. 

Let P 0 be the point (0,1,0) on X. It is an inflection point, so the tangent 
line z = 0 at that point meets the curve in the divisor 3P0 . If Lis any other 
line in P2 , meeting X in three points P,Q,R (which may coincide), then since L 
is linearly equivalent to the line z = 0 in P2 , we have P + Q + R ~ 3P 0 

on X, as in (6.6.2) above. 
Now to any closed point P EX, we associate the divisor P - P 0 E Cl" X. 

This map is injective, because if P - P0 ~ Q - P0 , then P ~ Q, and X 
would be rational by the previous example, which is impossible. 

To show that the map from the closed points of X to Clo X is surjective, 
we proceed in several steps. Let D E Clo X. Then D = I.niPi, with I.ni = 0. 
Hence we can also write D = I.ni(Pi - P 0 ). Now for any point R, let the 
line P 0 R meet X further in the point T (always counting intersections with 
multiplicities-for example, if R = P 0 , we take the line P 0R to be the tangent 
line at P 0 , and then the third intersection Tis alsoP 0 ). Then P 0 + R + T ~ 
3P0 , so R - P0 ~ -(T - P0 ). If i is an index such that ni < 0 in D, we 
take Pi = R. Then replacing Pi by T, we get a linearly equivalent divisor 
with the ith coefficient - ni > 0. Repeating this process, we may assume that 
D = I.n;(P; - P0 ) with all n; > 0. We now show by induction on I.ni that 
D ~ P - P 0 for some point P. If In; = 1, there is nothing to prove. So 
suppose In; ~ 2, and let P,Q be two of the points P; (maybe the same) which 
occur in D. Let the line PQ meet X in R, and let the line P 0 R meet X in T. 
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Then we have 

P + Q + R ~ 3P0 and P0 + R + T ~ 3P0 

so 
(P- P0 ) + (Q - P0 ) ~ (T- P0 ). 

Replacing P and Q by T, we get D linearly equivalent to another divisor of the 
same form whose In; is one less, so by induction D ~ P - P 0 for some P. 

Thus we have shown that the group Clo X is in 1-1 correspondence with 
the set of closed points of X. One can show directly that the addition law 
determines a morphism of X x X --+X, and the inverse law determines a 
morphism X--+ X (see for example Olson [1]). Thus X is a group variety 
in the sense of (1, Ex. 3.21). See (IV, 1.3.7) for a generalization. 

Remark 6.10.3. This example of the cubic curve illustrates the general fact 
that the divisor class group of a variety has a discrete component (in this 
case Z) and a continuous component (in this case Clo X) which itself has the 
structure of an algebraic variety. 

More specifically, if X is any complete nonsingular curve, then the group 
Clo X is isomorphic to the group of closed points of an abelian variety called 
the Jacobian variety of X. An abelian variety is a complete group variety 
over k. The dimension of the Jacobian variety is the genus of the curve. 
Thus the whole divisor class group of X is an extension of Z by the group 
of closed points of the Jacobian variety of X. 

If X is a nonsingular projective variety of dimension ~ 2, then one can 
define a subgroup Clo X of Cl X, namely the subgroup of divisor classes 
algebraically equivalent to zero, such that Cl X /Clo X is a finitely generated 
abelian group, called the Neron-Severi group of X, and CloX is isomorphic 
to the group of closed points of an abelian variety called the Picard variety 
of X. 

Unfortunately we do not have space in this book to develop the theory 
of abelian varieties and to study the Jacobian and Picard varieties of a 
given variety. For more information and further references on this beautiful 
subject, see Lang [1], Mumford [2], Mumford [5], and Hartshorne [6]. 
See also (IV, §4), (V, Ex. 1.7), and Appendix B. 

Cartier Divisors 

Now we want to extend the notion of divisor to an arbitrary scheme. It 
turns out that using the irreducible subvarieties of codimension one doesn't 
work very well. So instead, we take as our point of departure the idea that 
a divisor should be something which locally looks like the divisor of a 
rational function. This is not exactly a generalization of the Weil divisors 
(as we will see), but it gives a good notion to use on arbitrary schemes. 

Definition. Let X be a scheme. For each open affine subset U = Spec A, 
letS be the set of elements of A which are not zero divisors, and let K ( U) be 
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the localization of A by the multiplicative systemS. We call K(U) the total 
quotient ring of A. For each open set U, let S(U) denote the set of elements of 
r(U,f!'x) which are not zero divisors in each local ring {!!x for x E U. Then the 
rings S(U)- 1 r(U,(!Jx) form a presheaf, whose associated sheaf of rings X we 
call the sheaf of total quotient rings of(!). On an arbitrary scheme, the sheaf 
f replaces the concept of function field of an integral scheme. We denote 
by f* the sheaf (of multiplicative groups) of invertible elements in the 
sheaf of rings f. Similarly {!!* is the sheaf of invertible elements in (!). 

Definition. A Cartier divisor on a scheme X is a global section of the sheaf 
f* j(!J*. Thinking of the properties of quotient sheaves, we see that a 
Cartier divisor on X can be described by giving an open cover { U;} of X, 
and for each i an element J; E r(U;,f*), such that for each i,j, J;!jj E 

r( U; n Ui,{!!*). A Cartier divisor is principal if it is in the image of the 
natural map r(X,f*) --> T(X,f* j{!!*). Two Cartier divisors are linearly 
equivalent if their difference is principal. (Although the group operation 
on x* j{!!* is multiplication, we will use the language of additive groups 
when speaking of Cartier divisors, so as to preserve the analogy with 
Wei! divisors.) 

Proposition 6.11. Let X be an integral, separated noetherian scheme, all of 
whose local rings are unique factorization domains (in which case we say 
X is locally factorial). Then the group Div X of Wei! divisors on X is 
isomorphic to the yroup of Cartier divisors r(X,f* j(!J*), and furthermore, 
the principal Wei/ divisors correspond to the principal Cartier divisors 
under this isomorphism. 

PROOF. First note that X is normal, hence satisfies(*), since a UFD is inte
grally closed. Thus it makes sense to talk about Weil divisors. Since X is 
integral, the sheaf ff is just the constant sheaf corresponding to the function 
field K of X. Now let a Cartier divisor be given by {(U;,J;)} where {U;} is 
an open cover of X, and J; E r(U;,f*) = K*. We define the associated 
Weil divisor as follows. For each prime divisor Y, take the coefficient of Y 
to be ry(J;), where i is any index for which Y n U; i= 0. If j is another 
such index, then J;/jj is invertible on U; n Ui, so vy(J;/jj) = 0 and vy(f) = 
t'r(jj). Thus we obtain a well-defined Weil divisor D = Ivr(J;)Y on X. 
(The sum is finite because X is noetherian!) 

Conversely, if D is a Wei! divisor on X, let x EX be any point. Then D 
induces a Weil divisor Dx on the local scheme Spec {!!x· Since {!!xis a UFD, 
Dx is a principal divisor, by (6.2), so let Dx = Ux) for some fx E K. Now 
the principal divisor Ux) on X has the same restriction to Spec {!!x as D, 
hence they differ only at prime divisors which do not pass through x. There 
are only finitely many of these which have a non-zero coefficient in D or 
Ux), so there is an open neighborhood U x of x such that D and Ux) have the 
same restriction to U x· Covering X with such open sets U x• the functions 
fx give a Cartier divisor on X. Note that if f,f' give the same Weil divisor 
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on an open set U, then f/f' E r(U,lD*), since X is normal (cf. proof of (6.2) ). 
Thus we have a well-defined Cartier divisor. 

These two constructions are inverse to each other, so we see that the 
groups of Wei! divisors and Cartier divisors are isomorphic. Furthermore 
it is clear that the principal divisors correspond to each other. 

Remark 6.11.1A. Since a regular local ring is UFO (Matsumura [2, Th. 48, 
p. 142]), this proposition applies in particular to any regular integral sepa
rated noetherian scheme. A scheme is regular if all of its local rings are 
regular local rings. 

Remark 6.11.2. If X is a normal scheme, which is not necessarily locally 
factorial, we can define a subgroup of Div X consisting of the locally prin
cipal Wei! divisors: Dis locally principal if X can be covered by open sets 
U such that Diu is principal for each U. Then the above proof shows that 
the Cartier divisors are the same as the locally principal Wei! divisors. 

Example 6.11.3. Let X be the affine quadric cone Spec k[ x,y,z ]/(xy - z2) 

treated above (6.5.2). The ruling Y is a Wei! divisor which is not locally 
principal in the neighborhood of the vertex of the cone. Indeed, our earlier 
proof shows that its prime ideal pAm is not a principal ideal even in the 
local ring Am. Thus Y does not correspond to a Cartier divisor. On the 
other hand 2 Y is locally principal, and in fact principal. So in this case the 
group of Cartier divisors modulo principal divisors is 0, whereas Cl X ~ 

Z/2Z. 

Example 6.11.4. Let X be the cuspidal cubic curve y2 z = x 3 in P~, with 
char k # 2. In this case X does not satisfy ( * ), so we cannot talk about 
Wei! divisors on X. However, we can talk about the group CaCl X of 
Cartier divisor classes modulo principal divisors. Imitating the case of the 
nonsingular cubic curve (6.10.2) we will show: 

(a) there is a surjective degree homomorphism deg:CaCl X --+ Z; 
(b) there is a 1-1 correspondence between the set of nonsingular closed 

points of X and the kernel CaClo X of the degree map, which makes it into 
a group variety; and in fact 

(c) there is a natural isomorphism of group varieties between CaCloX 

and the additive group Ga of the field k (1, Ex. 3.21a). 
To define the degree of a Cartier divisor on X, note that any Cartier 

divisor is linearly equivalent to one whose local function is invertible in some 
neighborhood of the singular point Z = (0,0,1). Then this Cartier divisor 

corresponds to a Weil divisor D = 'IniPi on X - Z, and we define the 
degree of the original divisor to be deg D = 'Ini. The proof of(6.10) shows 
that iff E K is invertible at Z, then the principal divisor (f) on X - Z has 
degree 0. Thus the degree of a Cartier divisor on X is well-defined, and it 
passes to linear equivalence classes to give a surjective homomorphism 
deg: CaCl X --+ Z. 
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Now let P 0 be the point (0,1,0) as in the case of the nonsingular cubic 
curve. To each closed point P EX - Z, we associate the Cartier divisor 
Dp which is 1 in a neighborhood of Z, and which corresponds to the Wei! 
divisor P - P 0 on X - Z. First note this map is injective: if P # Q are 
two points in X - Z, and if Dp - DQ, then there is an f E K*, which is 
invertible at Z, and such that (f) = P - Q on X - Z. Then f gives a 
morphism of X to P 1, which must be birational. But then the local ring of 
Z on X would dominate some discrete valuation ring of P 1, and this is 
impossible, because Z is a singular point. 

To show that every divisor in CaClo X is linearly equivalent to Dp for 
some closed point P E X - Z, we proceed exactly as in the case of the non
singular cubic curve above. The only difference is to note that the geometric 
constructions R H T and P,Q H R, T described above remain inside of 
X - Z. Thus the group CaCloX is in 1-1 correspondence with the set of 
closed points of X - Z, making it into a group variety. 

In this case we are able to identify the group variety as G.. Of course, 
we know that X is a rational curve, and so X - Z ~ Af (1, Ex. 3.2). But 
in fact, if we use the right parametrization, the group law corresponds. So 
define a morphism of G. = Spec k[t] to X - Z by t H (t,1,t3 ). This is 
clearly an isomorphism of varieties. Using a little elementary analytic 
geometry (left to reader!) one shows that if P = (t,1,t3 ) and if Q = (u,1,u3 ), 

then the point T constructed above is just (t + u,1,(t + u)3 ). So we have an 
isomorphism of group varieties of G. to X - Z with the group structure 
ofCaCl0 X. 

Invertible Sheaves 
Recall that an invertible sheaf on a ringed space X is defined to be a locally 
free C9x-module of rank 1. We will see now that invertible sheaves on a 
scheme are closely related to divisor classes modulo linear equivalence. 

Proposition 6.12. If f£ and .A are invertible sheaves on a ringed space X, 
so is f£ ® .A. Iff£ is any invertible sheaf on X, then there exists an 
invertible sheaf y- 1 on X such that f£ ® y- 1 ~ C9x. 

PROOF. The first statement is clear, since f£ and .A are both locally free of 
rank 1, and (!Jx ® (!Jx ~ (!Jx· For the second statement, let f£ be any in
vertible sheaf, and take f£- 1 to be the dual sheaf y~ = Yfom(fi',(!Jx). Then 
!£~ ® f£ ~ Yfom(f£,!£) = (!Jx by (Ex. 5.1). 

Definition. For any ringed space X, we define the Picard group of X, Pic X, 
to be the group of isomorphism classes of invertible sheaves on X, under 
the operation ®. The proposition shows that in fact it is a group. 

Remark 6.12.1. We will see later (III, Ex. 4.5) that Pic X can be expressed as 
the cohomology group H 1(X,(!Jk). 
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Definition. Let D be a Cartier divisor on a scheme X, represented by {(Ui,.t;)} 
as above. We define a subsheaf Y(D) of the sheaf of total quotient rings 
%by taking Y(D) to be the sub-lDx-module of% generated by fi- 1 on 
Ui. This is well-defined, since.f;/./j is invertible on Ui n Ui, so fi- 1 andfj 1 

generate the same lDx-module. We callY(D) the sheaf associated to D. 

Proposition 6.13. Let X be a scheme. Then: 
(a) for any Cartier divisor D, Y(D) is an invertible sheaf on X. The 

map D ~ Y(D) gives a 1-1 correspondence between Cartier divisors on X 
and invertible sub sheaves of %; 

(b) 2(D1 - D2) ~ 2(D1) ® 2(D2)- 1 ; 

(c) D1 ~ D2 if and only if 2(D 1) ~ 2(D2) as abstract invertible 
sheaves (i.e., disregarding the embedding in %). 

PROOF. 

(a) Since each/; E r(Ui,%*), the map lDu,-+ Y(D)Iu, defined by 1 ~ fi- 1 

is an isomorphism. Thus Y(D) is an invertible sheaf. The Cartier divisor D 
can be recovered from Y(D) together with its embedding in %, by taking 
/; on Ui to be the inverse of a local generator of Y(D). For any invertible 
subsheaf of %, this construction gives a Cartier divisor, so we have a 1-1 
correspondence as claimed. 

(b) If D1 is locally defined by /; and D 2 is locally defined by gi, then 
2(D 1 - D 2) is locally generated by fi 1gi, so 2(D1 - D 2) = 2(D1) · 2(D2)- 1 

as subsheaves of %. This product is clearly isomorphic to the abstract 
tensor product 2'(D 1 ) ® 2'(D2 )- 1 . 

(c) Using (b), it will be sufficient to show that D = D1 - D2 is principal 
if and only if Y(D) ~ lDx. If Dis principal, defined by f E F(X,%*), then 
Y(D) is globally generated by f- 1 , so sending 1 ~ f- 1 gives an isomor
phism lDx ~ Y(D). Conversely, given such an isomorphism, the image of 1 
gives an element of r(X,%*) whose inverse will define D as a principal 
divisor. 

Corollary 6.14. On any scheme X, the map D ~ Y(D) gives an injective 
homomorphism of the group CaCl X of Cartier divisors modulo linear 
equivalence to Pic X. 

Remark 6.14.1. The map CaCl X -+ Pic X may not be surjective, because 
there may be invertible sheaves on X which are not isomorphic to any 
invertible subsheaf of %. For an example of Kleiman, see Hartshorne 
[5, 1.1.3, p. 9]. On the other hand, this map is an isomorphism in most 
common situations. Nakai [2, p. 301] has shown that it is an isomorphism 
whenever X is projective over a field. We will show now that it is an isomor
phism if X is integral. 
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Proposition 6.15. If X is an integral scheme, the homomorphism CaCl X ~ 
Pic X of (6.14) is an isomorphism. 

PROOF. We have only to show that every invertible sheaf is isomorphic to a 
subsheaf of x, which in this case is the constant sheaf K, where K is the 
function field of X. So let 2 be any invertible sheaf, and consider the sheaf 
2 ®(/)x X. On any open set U where 2 ~ (!Jx, we have 2 @ X ~ X, so 
it is a constant sheaf on U. Now because X is irreducible, it follows that any 
sheaf whose restriction to each open set of a covering of X is constant, is 
in fact a constant sheaf. Thus 2 @ X is isomorphic to the constant sheaf 
X, and the natural map 2 ~ 2 @X ~ X expresses 2 as a subsheaf 
of X. 

Corollary 6.16. If X is a noetherian, integral, separated locally factorial 
scheme, then there is a natural isomorphism Cl X ~ Pic X. 

PROOF. This follows from (6.11) and (6.15). 

Corollary 6.17. If X = PI: for some field k, then every invertible sheaf on X 
is isomorphic to (!)(I) for some l E Z. 

PROOF. By (6.4), Cl X ~ Z, so by (6.16), Pic X ~ Z. Furthermore the gen
erator of Cl X is a hyperplane, which corresponds to the invertible sheaf 
(!)(1). Hence Pic X is the free group generated by (!)(1), and any invertible 
sheaf 2 is isomorphic to (!J(l) for some l E Z. 

We conclude this section with some remarks about closed subschemes of 
codimension one of a scheme X. 

Definition. A Cartier divisor on a scheme X is effective if it can be repre
sented by {(Ui,.J;)} where all the .J; E r(Ui,(!Ju). In that case we define 
the associated subscheme of codimension 1, Y, to be the closed subscheme 
defined by the sheaf of ideals § which is locally generated by .J;. 

Remark 6.17.1. Clearly this gives a 1-1 correspondence between effective 
Cartier divisors on X and locally principal closed subschemes Y, i.e., sub
schemes whose sheaf of ideals is locally generated by a single element. Note 
also that if X is an integral separated noetherian locally factorial scheme, 
so that the Cartier divisors correspond to Weil divisors by ( 6.11 ), then the 
effective Cartier divisors correspond exactly to the effective Weil divisors. 

Proposition 6.18. Let D be an effective Cartier divisor on a scheme X, and let 
Y be the associated locally principal closed subscheme. Then§ y ~ 2(-D). 
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PROOF. 2(- D) is the subsheaf of :ff generated locally by J;. Since D is 
effective, this is actually a subsheaf of (!Jx, which is none other than the ideal 
sheaf§ y of Y. 

EXERCISES 

6.1. Let X be a scheme satisfying ( * ). Then X x P" also satisfies (*),and Cl(X x P") ~ 
(ClX) X Z. 

*6.2. Varieties in Projective Space. Let k be an algebraically closed field, and let X 
be a closed subvariety of P~ which is nonsingular in codimension one (hence 
satisfies(*)). For any divisor D = IniY; on X, we define the degree of D to be 
Ini deg 1;, where deg 1; is the degree of 1;, considered as a projective variety 
itself (I, §7). 
(a) Let V be an irreducible hypersurface in P" which does not contain X, and let 

1; be the irreducible components of V n X. They all have codimension 1 by 
(I, Ex. 1.8). For each i, let J; be a local equation for Von some open set Ui of 
P" for which Y; n Ui =1= 0, and let ni = Vy (hJ, where J: is the restriction of 
J; to ui " X. Then we define the divisor v.x to be Ini Y;. Extend by linearity, 
and show that this gives a well-defined homomorphism from the subgroup of 
Div P" consisting of divisors, none of whose components contain X, to Div X. 

(b) If Dis a principal divisor on P", for which D.X is defined as in (a), show that D.X 
is principal on X. Thus we get a homomorphism Cl P" --> Cl X. 

(c) Show that the integer ni defined in (a) is the same as the intersection multiplicity 
i(X,V; Y;) defined in (I, §7). Then use the generalized Bezout theorem (I, 7.7) 
to show that for any divisor Don P", none of whose components contain X, 

deg(D.X) = (deg D)· (deg X). 

(d) If Dis a principal divisor on X, show that there is a rational function f on P" 
such that D = (f).X. Conclude that deg D = 0. Thus the degree function 
defines a homomorphism deg: Cl X --> Z. (This gives another proof of ( 6.10), 
since any complete nonsingular curve is projective.) Finally, there is a com
mutative diagram 

Cl P" ClX 

~jdeg 
z ·(deg X) z 

and in particular, we see that the map Cl P" --> Cl X is injective. 

*6.3. Cones. In this exercise we compare the class group of a projective variety V to 
the class group of its cone (I, Ex. 2.10). So let V be a projective variety in P", which 
is of dimension ~ 1 and nonsingular in codimension 1. Let X = C(V) be the 
affine cone over V in A"+ 1, and let X be its projective closure in P" + 1. Let P E X 

be the vertex of the cone. 
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(a) Let n:X - P --> V be the projection map. Show that V can be covered by 
open subsets Ui such that n- 1(U;) ~ Ui x A 1 for each i, and then show as 
in (6.6) that n*:Cl V--> Cl(X - P) is an isomorphism. Since Cl X ~ 
Cl(X - P), we have also Cl V ~ Cl X. 
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(b) We have V s X as the hyperplane section at infinity. Show that the class of 
the divisor V in Cl X is equal ton* (class of V.H) where His any hyperplane 
of P" not containing V. Thus conclude using (6.5) that there is an exact sequence 

0 --> Z --> Cl V --> Cl X --> 0, 

where the first arrow sends 1 H V.H, and the second is n* followed by the 
restriction to X - P and inclusion in X. (The injectivity of the first arrow 
follows from the previous exercise.) 

(c) Let S(V) be the homogeneous coordinate ring of V (which is also the affine 
coordinate ring of X). Show that S(V) is a unique factorization domain if and 
only if(1) Vis projectively normal (Ex. 5.14), and (2) Cl V :::::: Z and is generated 
by the class of V.H. 

(d) Let (!JP be the local ring of P on X. Show that the natural restriction map in
duces an isomorphism Cl X--> Cl(Spec (!Jp). 

6.4. Let k be a field of characteristic #2. Let f E k[x 1, ... ,xn] be a square{ree 
nonconstant polynomial, i.e., in the unique factorization off into irreducible 
polynomials, there are no repeated factors. Let A = k[x 1, •.. ,x",z]/(z2 -f). 
Show that A is an integrally closed ring. [Hint: The quotient field K of A is 
just k(xb ... ,xn)[ z]/(z2 - f). It is a Galois extension of k(x 1, ... ,xn) with Galois 
group Z/2Z generated by z H -z. If r:t. = g + hz E K, where g,h E k(x 1, ... ,xn), 
then the minimal polynomial of r:t. is X 2 - 2gX + (g 2 - h2f). Now show 
that r:t. is integral over k[x 1, ... ,xn] if and only if g,h E k[x 1, ... ,xnJ. Conclude 
that A is the integral closure of k[ x 1, ... ,xnJ in K.] 

*6.5. Quadric H ypersurfaces. Let char k # 2, and let X be the affine quadric hypersurface 
Spec k[x0 , .•• ,xnJ/(x;i +xi + ... + x?)-cf. (I, Ex. 5.12). 
(a) Show that X is normal if r ~ 2 (use (Ex. 6.4) ). 
(b) Show by a suitable linear change of coordinates that the equation of X could 

be written as x0x 1 = x~ + ... + x?. Now imitate the method of (6.5.2) to 
show that: 

(1) Ifr = 2, then Cl X :::::: Z/2Z; 
(2) lfr = 3, then Cl X:::::: Z (use (6.6.1) and (Ex. 6.3) above); 
(3) If r ~ 4 then Cl X = 0. 

(c) Now let Q be the projective quadric hypersurface in P" defined by the same 
equation. Show that: 

(1) If r = 2, Cl Q :::::: Z, and the class of a hyperplane section Q.H is twice the 
generator; 
(2) Ifr = 3, Cl Q :::::: Z E8 Z; 
(3) If r ~ 4, Cl Q :::::: Z, generated by Q.H. 

(d) Prove Klein's theorem, which says that ifr ~ 4, and if Yis an irreducible sub
variety of codimension 1 on Q, then there is an irreducible hypersurface 
V s P" such that V n Q = Y, with multiplicity one. In other words, Y is a 
complete intersection. (First show that for r ~ 4, the homogeneous coordi
nate ring S(Q) = k[ x 0 , . .. ,xn]/(x6 + ... + x;) is a UFD.) 

6.6. Let X be the nonsingular plane cubic curve y2 z = x3 - xz2 of ( 6.10.2). 
(a) Show that three points P,Q,R of X are collinear if and only if P + Q + R = 0 

in the group law on X. (Note that the point P 0 = (0,1,0) is the zero element 
in the group structure on X.) 
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(b) A point P EX has order 2 in the group law on X if and only if the tangent 
line at P passes through P0 . 

(c) A point P E X has order 3 in the group law on X if and only if Pis an inflection 
point. (An inflection point of a plane curve is a nonsingular point P of the 
curve, whose tangent line (1, Ex. 7.3) has intersection multiplicity ~ 3 with 
the curve at P.) 

(d) Let k = C. Show that the points of X with coordinates in Q form a subgroup 
ofthe group X. Can you determine the structure of this subgroup explicitly? 

*6.7. Let X be the nodal cubic curve y2z = x3 + x 2z in P2 . Imitate (6.11.4) and show 
that the group of Cartier divisors of degree 0, CaClo X, is naturally isomorphic 
to the multiplicative group Gm. 

6.8. (a) Let f: X--+ Y be a morphism of schemes. Show that ff! r--+ f* ff! induces a 
homomorphism of Picard groups, f*: Pic Y--+ Pic X. 

(b) Iff is a finite morphism of nonsingular curves, show that this homomorphism 
corresponds to the homomorphism f*: Cl Y--+ Cl X defined in the text, via 
the isomorphisms of (6.16). 

(c) If X is a locally factorial integral closed subscheme of Pi:, and iff: X --+ P" is 
the inclusion map, then f* on Pic agrees with the homomorphism on divisor 
class groups defined in (Ex. 6.2) via the isomorphisms of (6.16). 

*6.9. Singular Curves. Here we give another method of calculating the Picard group 
of a singular curve. Let X be a projective curve over k, let X be its normalization, 
and let n: X--+ X be the projection map (Ex. 3.8). For each point P EX, let 
@p be its local ring, and let (jjP be the integral closure of @p. We use a* to denote 
the group of units in a ring. 
(a) Show there is an exact sequence 

0--+ EBPeX @tj(()J--+ Pic X~ Pic X--+ 0. 

[Hint: Represent Pic X and Pic X as the groups of Cartier divisors modulo 
principal divisors, and use the exact sequence of sheaves on X 

0--+ n*@1/@l--+ %*/@l--+ %*/n*@!--+ 0.] 

(b) Use (a) to give another proof of the fact that if X is a plane cuspidal cubic 
curve, then there is an exact sequence 

0--+ G. --+ Pic X --+ Z --+ 0, 

and if X is a plane nodal cubic curve, there is an exact sequence 

0--+ Gm--+ Pic X--+ Z--+ 0. 

6.10. The Grothendieck Group K(X). Let X be a noetherian scheme. We define K(X) 
to be the quotient of the free abelian group generated by all the coherent sheaves 
on X, by the subgroup generated by all expressions:#'-:#''-:#'", whenever 
there is an exact sequence 0--+ :#'' --+ :#' --+ :#'" --+ 0 of coherent sheaves on X. 
If:#' is a coherent sheaf, we denote by y(ff) its image in K(X). 
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(a) If X= A~, then K(X) ~ Z. 
(b) If X is any integral scheme, and:#' a coherent sheaf, we define the rank of:#' 

to be dimK ~. where ~ is the generic point of X, and K = (()~is the function 
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field of X. Show that the rank function defines a surjective homomorphism 
rank:K(X)--> Z. 

(c) If Y is a closed subscheme of X, there is an exact sequence 

K(Y)--> K(X)--> K(X - Y)--> 0, 

where the first map is extension by zero, and the second map is restriction. 
[Hint: For exactness in the middle, show that if !F is a coherent sheaf on X, 
whose support is contained in Y, then there is a finite filtration !F = !F 0 2 

$'1 2 ... 2 !F" = 0, such that each !F;/!Fi+ 1 is an @y-module. To show 
surjectivity on the right, use (Ex. 5.15).] 

For further information about K(X), and its applications to the generalized 
Riemann-Roch theorem, see Borel-Serre [1], Manin [1], and Appendix A. 

*6.11. The Grothendieck Group of a Nonsingular Curve. Let X be a nonsingular curve 
over an algebraically closed field k. We will show that K(X) ~ Pic X EB Z, in 
several steps. 
(a) For any divisor D = 'IniPi on X, let 1/J(D) = 'Iniy(k(PJ) E K(X), where k(PJ 

is the skyscraper sheaf k at Pi and 0 elsewhere. If D is an effective divisor, let 
(9 v be the structure sheaf of the associated subscheme of codimension 1, and 
show that 1/J(D) = y((.Dv). Then use (6.18) to show that for any D, 1/J(D) depends 
only on the linear equivalence class of D, so 1/J defines a homomorphism 
1/J:Cl X--> K(X). 

(b) For any coherent sheaf !F on X, show that there exist locally free sheaves~ 0 

and ~ 1 and an exact sequence 0 --> ~ 1 --> ~ 0 --> !F --> 0. Let r0 = rank ~ 0 , 

r 1 = rank ~ 1, and define det !F = (/\'0~ 0 ) ® (/\''~ 1)- 1 E Pic X. Here 1\ de
notes the exterior power (Ex. 5.16). Show that det !F is independent of the 
resolution chosen, and that it gives a homomorphism det:K(X)--> Pic X. 
Finally show that if Dis a divisor, then det(lji(D)) = !i'(D). 

(c) If !F is any coherent sheaf of rank r, show that there is a divisor Don X and an 
exact sequence 0 --> !i'(D)EB'--> !F --> :Y--> 0, where :Y is a torsion sheaf. Con
clude that if !F is a sheaf of rank r, then y(!F) - ry(@x) Elm 1/J. 

(d) Using the maps 1/J, det, rank, and 1 r-> y(@x) from Z --> K(X), show that K(X) ~ 
Pic X EB Z. 

6.12. Let X be a complete nonsingular curve. Show that there is a unique way to define 
the degree of any coherent sheaf on X, deg !FEZ, such that: 

(1) If Dis a divisor, deg !i'(D) = deg D; 
(2) If !F is a torsion sheaf( meaning a sheaf whose stalk at the generic point is zero), 

then deg !F = LPEX length (!Fp); and 
(3) If 0 --> !F' --> !F --> !F" --> 0 is an exact sequence, then deg !F = deg $'' + 

deg $'". 

7 Projective Morphisms 

In this section we gather together several topics concerned with morphisms 
of a given scheme to projective space. We will show how a morphism of a 
scheme X to a projective space is determined by giving an invertible sheaf 
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5I! on X and a set of its global sections. We will give some criteria for this 
morphism to be an immersion. Then we study the closely connected topic 
of ample invertible sheaves. We also introduce the more classical language 
of linear systems, which from the point of view of schemes is hardly more 
than another set of terminology for dealing with invertible sheaves and their 
global sections. However, the geometric understanding furnished by the 
concept of linear system is often very valuable. At the end of this section 
we define the Proj of a graded sheaf of algebras over a scheme X, and we 
give two important examples, namely the projective bundle P(c&') associated 
with a locally free sheaf c&', and the definition of blowing up with respect to 
a coherent sheaf of ideals. 

M orphisms to pn 

Let A be a fixed ring, and consider the projective space PA = Proj A [ x0 , ... ,xn] 
over A. On PA we have the invertible sheaf (1)(1), and the homogeneous 
coordinates x 0 , ... ,xn give rise to global sections x 0 , ... ,xn E r(PA,(I)(1) ). 
One sees easily that the sheaf (1)(1) is generated by the global sections 
x0 , ... ,xn, i.e., the images of these sections generate the stalk (1)(1)p of the 
sheaf (1)(1) as a module over the local ring (l)p, for each point P EPA. 

Now let X be any scheme over A, and let <p:X ~ PA be an A-morphism 
of X to PA. Then 5I! = <p*((l)(1)) is an invertible sheaf on X, and the global 
sections s0 , ... ,sn, where s; = cp*(x;), s; E r(X,!I!), generate the sheaf 51!. 
Conversely, we will see that 5I! and the sections s; determine <p. 

Theorem 7.1. Let A be a ring, and let X be a scheme over A. 
(a) If <p:X ~PAis an A-morphism, then <p*((l)(1)) is an invertible sheaf 

on X, which is generated by the global sections s; = cp*(x;), i = 0,1, ... ,n. 
(b) Conversely, if 5I! is an invertible sheaf on X, and if s0 , . .. ,sn E 

r(X,!I!) are global sections which generate 51!, then there exists a unique 
A-morphisn1 r;0:X ~ PA such that 5I! ~ <p*((l)(1)) and s; = <p*(x;) under 
this isomorphism. 

PROOF. Part (a) is clear from the discussion above. To prove (b), suppose 
given 5I! and the global sections s0 , ... ,sn which generate it. For each i, 
let X; = {P E Xi(s;)p ¢ mp!l! P}· Then (as we have seen before) X; is an 
open subset of X, and since the s; generate 51!, the open sets X; must cover 
X. We define a morphism from X; to the standard open set U; = {x; =I= 0} 
of PA as follows. Recall that U; ~ Spec A[y0 , ... ,yn] where Yi = x)x;, 
with Y; = 1 omitted. We define a ring homomorphism A[y0 , ... ,yn] ~ 
r(X;,(I)x,) by sending Yi ~ s)s; and making it A-linear. This makes sense, 
because for each P EX;, (s;)p ¢ mp!l! p, and 5I! is locally free of rank 1, so 
the quotient s)s; is a well-defined element of F(X;,(I)xJ Now by (Ex. 2.4) 
this ring homomorphism determines a morphism of schemes (over A) X;~ 
U;. Clearly these morphisms glue (cf. Step 3 of proof of (3.3) ), so we obtain 
a morphism cp: X ~ PA. It is clear from the construction that cp is an A-
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morphism, that 5£ ~ CP.*(G(l) ), and that the sections s; correspond to cp*(x;) 
under this isomorphism. It is clear that any morphism with these properties 
must be the one given by the construction, so cp is unique. 

Example 7.1.1 (Automorphisms of P;;J. If llaiJII is an invertible (n + 1) x (n + 1) 
matrix of elements of a field k, then x; = 'f.aiJxj determines an automor
phism of the polynomial ring k[x 0 , . .. ,xnJ and hence also an automor
phism of PZ. If I.E k is a nonzero element, then ll!caiJII determines the same 
automorphism of PZ. So we are led to consider the group PGL(n,k) = 

GL(n + 1,k)/k*, which acts as a group of automorphisms of PJ:. By con
sidering the points (1,0, ... ,0), (0,1,0, ... ,0), ... ,(0,0, ... ,1), and (1,1, ... ,1), 
one sees easily that this group acts faithfully, i.e., if g E PGL(n,k) induces 
the trivial automorphism of P;:, then g is the identity. 

Now we will show conversely that every k-automorphism of PZ is an 
element of PGL(n,k). This generalizes an earlier result for P~ {I, Ex. 6.6). 
So let qJ be a k-automorphism of P;:. We have seen (6.17) that Pic PZ ~ Z 
and is generated by 0(1). The automorphism cp induces an automorphism 
of Pic pn, so cp*(0(1)) must be a generator of that group, hence isomorphic 
to either 0(1) or 0( -1). But 0( -1) has no global sections, so we conclude 
that cp*(0(1)) ~ 0(1). Now r(Pn,0(1)) is a k-vector space with basis 
x 0 , ... ,xn, by (5.13). Since qJ is an automorphism, the s; = cp*(x;) must be 
another basis of this vector space, so we can write s; = Ia;jxj, where llaiJII 
is an invertible matrix of elements of k. Since cp is uniquely determined by 
the s; according to the theorem, we see that cp coincides with the auto
morphism given by llaiJII as an element of PGL(n,k). 

Example 7.1.2. If X is a scheme over A, 5£ an invertible sheaf, and s0 , . .. ,sn 
any set of global sections, which do not necessarily generate 5£, we can 
always consider the open set U s; X (possibly empty) over which the s; do 
generate 5£. Then Ylu and the s;lu give a morphism U -> P~. Such is the 
case for example, if we take X = PZ+ 1, 5£ = 0(1 ), and s; = X;, i = 0, ... ,n 
(omitting xn+ tJ. These sections generate everywhere except at the point 
{0,0, ... ,0,1) = P0 . Thus U = pn+t - P0 , and the corresponding mor
phism U -> pn is nothing other than the projection from the point P 0 to 
pn {1, Ex. 3.14). 

Next we give some criteria for a morphism to a projective space to be a 
closed immersion. 

Proposition 7.2. Let qJ: X -> P~ he a morphism of schemes over A, corre
sponding to an invertible sheaf!!' on X and sections s0 , . .. ,sn E T(X,!f') 
as above. Then qJ is a closed immersion if and only if 
(1) each open set X; = Xs, is affine, and 
(2) for each i, the map of rings A[y0 , ... ,yn] -> T(XJ!ix) defined by 

yj ~---> s/\ is surjective. 
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PROOF. First suppose cp is a closed immersion. Then X; = X n U; is a 
closed subscheme of U;. Therefore X; is affine and the corresponding map 
of rings is surjective by (5.10). Conversely, suppose (1) and (2) satisfied. 
Then each X; is a closed subscheme of U;. Since in any case X;= cp- 1(U;), 
and the X; cover X, it is clear that X is a closed subscheme ofP~. 

With more hypotheses, we can give a more local criterion. 

Proposition 7.3. Let k be an algebraically closed field, let X be a projective 
scheme over k, and let cp: X -+ P~ be a morphism (over k) corresponding to 
2 and s0 , ... ,sn E r(X,2) as above. Let V s; F(X,2) be the subspace 
spanned by the s;. Then cp is a closed immersion if and only if 

(1) elements of V separate points, i.e., for any two distinct closed points 
P,Q E X, there is an s E V such that s E mp2 P but s ¢' mQ2 Q• or vice 
versa, and 

(2) elements of V separate tangent vectors, i.e.,for each closed point P EX, 
the set { s E Vlsp E mp2 P} spans the k-vector space mp2 pjm;2 P· 

PROOF. If cp is a closed immersion, we think of X as a closed subscheme of 
P~. In this case 2 = llJx(1), and the vector space V s; r(X,llJx(1)) is just 
spanned by the images of x0 , ... ,xn E r(Pn,(l)(1) ). Given closed points 
P # Q in X, there is a hyperplane containing P but not Q. If its equation 
is Ia;x; = 0, a; E k, then s = Ia;X; restricted to X has the right property 
for (1). For (2), the hyperplanes passing through P give rise to sections 
which generate mp2 pjm;2 P· For simplicity suppose that P is the point 
(1,0,0, ... ,0). Then on the open affine U 0 ~ Spec k[y 1, . .. ,yn], 2 istrivial, 
P is the point (0, ... ,0), and mpjm; is exactly the vector space spanned by 
y 1 , ••• ,yn- We use the hypothesis k algebraically closed to ensure that 
every closed point of P~ is of the form (a 0 , . .. ,an) for suitable a; E k, hence 
points can be separated by hyperplanes with coefficients in k. 

For the converse, let cp: X -+ pn satisfy (1) and (2). Since the elements of 
V are pull-backs of sections of (1)(1) on pn, it is clear from (1) that the map 
(/) is injective as a map of sets. Since X is projective over k, it is proper over 
k (4.9), so the image cp(X) in pn is closed (Ex. 4.4), and(/) is a proper morphism 
(4.8e). In particular, (/) is a closed map. But, being a morphism, it is also 
continuous, so we see that (/) is a homeomorphism of X onto its image (f)(X) 
which is a closed subset of pn_ To show that (/) is a closed immersion, it 
remains only to show that the morphism of sheaves llJpn -+ (/J*llJx is sur
jective. This can be checked on the stalks. So it is sufficient to show, for 
each closed point P, that (l)P",P -+ llJx,P is surjective. Both local rings have 
the same residue field k, and our hypothesis (2) implies that the image of 
the maximal ideal mP",P generates mx,P/mi,P· We also need to use (5.20), 
which implies that cp*(l)x is a coherent sheaf on pn, and hence that llJx,P is 
a finitely generated llJpn_p-module. Now our result is a consequence of the 
following lemma. 
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Lemma 7.4. Let f: A --+ B be a local homomorphism of local noetherian rings, 
such that 

(1) AlmA --+ BlmB is an isomorphism, 
(2) mA --+ mBim~ is surjective, and 
(3) B is a finitely generated A -module. 

Then f is surjective. 

PROOF. Consider the ideal a = mAB of B. We have a ~ mB, and by (2), a 
contains a set of generators for mBim~. Hence by Nakayama's lemma for 
the local ring B and the B-module mB, we conclude that a = mB. Now 
apply Nakayama's lemma to the A-module B. By (3), B is a finitely generated 
A-module. The element 1 E B gives a generator for BlmAB = BlmB = AlmA 
by (1), so we conclude that 1 also generates B as an A-module, i.e., f is 
surjective. 

Ample Invertible Sheaves 

Now that we have seen that a morphism of a scheme X to a projective space 
can be characterized by giving an invertible sheaf on X and a suitable set 
of its global sections, we can reduce the study of varieties in projective space 
to the study of schemes with certain invertible sheaves and given global 
sections. Recall that in §5 we defined a sheaf !l' on X to be very ample 
relative toY (where X is a scheme over Y) if there is an immersion i:X--+ P~ 
for some n such that !l' ~ i*lD(l). In case Y = Spec A, this is the same 
thing as saying that !l' admits a set of global sections s0 , . .. ,sn such that 
the corresponding morphism X--+ PAis an immersion. We have also seen 
(5.17) that if !l' is a very ample invertible sheaf on a projective scheme X 
over a noetherian ring A, then for any coherent sheaf.? on X, there is an 
integer n0 > 0 such that for all n ;?: n0 , .? ® !l'n is generated by global 
sections. We will use this last property of being generated by global sections 
to define the notion of an ample invertible sheaf, which is more general, 
and in many ways is more convenient to work with than the notion of very 
ample sheaf. 

Definition. An invertible sheaf !l' on a noetherian scheme X is said to be 
ample if for every coherent sheaf .? on X, there is an integer n0 > 0 
(depending on .?) such that for every n ;::::: n0 , the sheaf .? @ !l'n is 
generated by its global sections. (Here !l'n = !l'0 n denotes the n-fold 
tensor power of !l' with itself.) 

Remark 7.4.1. Note that "ample" is an absolute notion, i.e., it depends only 
on the scheme X, whereas "very ample" is a relative notion, depending on 
a morphism X --+ Y. 
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Example 7.4.2. If X is affine, then any invertible sheaf is ample, because 
every coherent sheaf on an affine scheme is generated by its global sections 
(5.16.2). 

Remark 7.4.3. Serre's theorem (5.17) asserts that a very ample sheaf !£:' on 
a projective scheme X over a noetherian ring A is ample. The converse is 
false, but we will see below (7.6) that if!£:' is ample, then some tensor power 
!f:'m of!£:' is very ample. Thus "ample" can be viewed as a stable version of 
"very ample." 

Remark 7.4.4. In Chapter III we will give a characterization of ample in
vertible sheaves in terms of the vanishing of certain cohomology groups 
(III, 5.3). 

Proposition 7.5. Let !£:' be an invertible sheaf on a noetherian scheme X. 
Then the following conditions are equivalent: 

(i) .!:£ is ample; 
(ii) yin is ample for all m > 0; 

(iii) !f:'m is ample for some m > 0. 

PROOF. (i) = (ii) is immediate from the definition of ample; (ii) =(iii) is 
trivial. To prove (iii) = (i), assume that !f:'m is ample. Given a coherent 
sheaf :F on X, there exists an n0 > 0 such that :F 0 (.!:Emr is generated by 
global sections for all n ;?! n0 . Considering the coherent sheaf :F 0 !£:', 
there. exists an 11 1 > 0 such that :#' 0 :E 0 (:Emt is generated by global 
sections for alln ;?! 11 1. Similarly, for each k = 1,2, ... ,m - 1, there is an 
nk > 0 such that :F 0 !f:'k 0 (!f:'mr is generated by global sections for all 
n ;?! nk. Now if we takeN = m · max{ndi = 0,1, ... ,m - 1}, then :F 0 !f:'n 
is generated by global sections for all n ~ N. Hence !£:' is ample. 

Theorem 7.6. Let X be a scheme of finite type over a noetherian ring A, and 
let .!:£ be an invertible sheaf on X. Then !£:' is ample if and only if !f:'m is 
very ample over Spec A for some m > 0. 

PROOF. First suppose !f:'m is very ample for some m > 0. Then there is an 
immersion i:X-+ P~ such that !f:'m ~ i*(0(1)). Let X be the closure of X 
in P~. Then X is a projective scheme over A, so by (5.17), 0g{l) is ample 
on X. Now given any coherent sheaf :F on X, it extends by (Ex. 5.15) to a 
coherent sheaf~ on X. If~ 0 0g(/) is generated by global sections, then 
a fortiori :F 0 0 xU) is also generated by global sections. Thus we see that 
!f:'m is ample on X, and so by (7.5), !£:'is also ample on X. 

For the converse, suppose that !£:' is ample on X. Given any P EX, let 
U be an open affine neighborhood of P such that !!:'lu is free on U. Let Y 
be the closed set X - U, and let 5 y be its sheaf of ideals with the reduced 
induced scheme structure. Then 5 r is a coherent sheaf on X, so for some 
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n > 0, § y ® y;m is generated by global sections. In particular, there is a 
sections E r(X,§y ®!.en) such that Sp ¢ mp(§y ® 5lm)p. Now §y ® ft'" 
is a subsheaf of ft'", so we can think of s as an element of r(X,ft'"). If x. 
is the open set {Q E XlsQ ¢ mQft'Q}, then it follows from our choice of s that 
P EX. and that X. s;; U. Now U is affine, and fL'Iu is trivial, so s induces 
an element! E r(U,@u), and then X.= U1 is also affine. 

Thus we have shown that for any point P EX, there is an n > 0 and a 
section s E r(X,ft'") such that P Ex. and x. is affine. Since X is quasi
compact, we can cover X by a finite number of such open affines, corre
sponding to sections s; E r(X,fi'"'). Replacing each s; by a suitable power 
s~ E r(X,ft'kn,), which doesn't change x.,, we may assume that all n; are 
equal to one n. Finally, since ft'n is also ample, and since we are only trying 
to show that some power of 5l' is very ample, we may replace 5l' by ft'". 
Thus we may assume now that we have global sections s1, ... ,sk E r(X,ft') 
such that each X; = x., is affine, and the X; cover X. 

Now for each i, let B; = r(X;,@x,). Since X is a scheme of finite type over 
A, each B; is a finitely generated A-algebra (Ex. 3.3). So let {biijj = 1, ... ,k;} 
be a set of generators forB; as an A-algebra. By (5.14), for each i,j, there is 
an integer n such that s?bij extends to a global section cii E r(X,ft'"). We 
can take one n large enough to work for all i,j. Now we take the invertible 
sheaf ft'" on X, and the sections {s?li = 1, ... ,k} and {ciili = 1, ... ,k; 
j = 1, ... ,k;} and use all these sections to define a morphism (over A) 
cp:X ~ P~ as in (7.1) above. Since X is covered by the X;, the sections s? 
already generate the sheaf 2'", so this is indeed a morphism. 

Let {x;ji = 1, ... ,k} and {x;ili = 1, ... ,k;j = 1, ... ,ki} be the homo
geneous coordinates of P~ corresponding to the sections of ft'n mentioned 
above. For each i = 1, ... ,k, let U; s;; P~ be the open subset xi =1- 0. Then 
cp ~ 1(U;) = Xi, and the corresponding map of affine rings 

is surjective, because yij ~ cufs? = b;i, and we chose the bii so as to generate 
B; as an A-algebra. Thus X; is mapped onto a closed subscheme of U;. 
It follows that cp gives an isomorphism of X with a closed subscheme of 
U ~ = 1 U; s;; P~, so cp is an immersion. Hence ft'" is very ample relative to 
Spec A, as required. 

Example 7.6.1. Let X = P~, where k is a field. Then (1)(1) is very ample by 
definition. For any d > 0, @(d) corresponds to the d-uple embedding 
(Ex. 5.13), so @(d) is also very ample. Hence @(d) is ample for all d > 0. 
On the other hand, since the sheaf @(I) has no global sections for l < 0, one 
sees easily that the sheaves @(/) for l ~ 0 cannot be ample. So on P~, we 
have@(/) is ample~ very ample~ l > 0. 

Example 7.6.2. Let Q be the nonsingular quadric surface xy = zw in P~ 
over a field k. We have seen (6.6.1) that Pic Q ~ Z Ef> Z, and so we speak 
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of the type (a,b), a,b E Z, of an invertible sheaf. Now Q ~ P 1 x P 1 . If 
a,b > 0, then we consider an a-uple embedding P 1 ~ P"' and a b-uple 
embedding P 1 -t P"2 • Taking their product, and following with a Segre 
embedding, we obtain a closed immersion 

which corresponds to an invertible sheaf of type (a,b) on Q. Thus for any 
a,b > 0, the corresponding invertible sheaf is very ample, and hence ample. 
On the other hand, if 2? is of type (a,b) with either a < 0 orb < 0, then by 
restricting to a fibre of the product P 1 x P\ one sees that 2? is not gen
erated by global sections. Hence if a ~ 0 or b ~ 0, 2? cannot be ample. 
So on Q, an invertible sheaf 2? of type (a,b) is ample-= very ample-= a,b > 0. 

Example 7.6.3. Let X be the nonsingular cubic curve y2 z = x 3 - xz2 in 
Pt, which was studied in (6.10.2). Let 2? be the invertible sheaf fi?(P 0 ). Then 
2? is ample, because 2?(3P0 ) ~ lDx(1) is very ample. On the other hand, 
2? is not very ample, because fi?(P 0 ) is not generated by global sections. If 
it were, then P 0 would be linearly equivalent to some other point Q E X, 
which is impossible, since X is not rational (6.10.1). This shows that an ample 
sheaf need not be very ample. 

Example 7.6.4. We will see later (IV, 3.3) that if Dis a divisor on a complete 
nonsingular curve X, then fi?(D) is ample if and only if deg D > 0. This is 
a consequence of the Riemann-Roch theorem. 

Linear Systems 

We will see in a minute how global sections of an invertible sheaf correspond 
to effective divisors on a variety. Thus giving an invertible sheaf and a set 
of its global sections is the same as giving a certain set of effective divisors, 
all linearly equivalent to each other. This leads to the notion of linear 
system, which is the historically older notion. For simplicity, we will employ 
this terminology only when dealing with nonsingular projective varieties 
over an algebraically closed field. Over more general schemes the geo
metrical intuition associated with the concept of linear system may lead one 
astray, so it is safer to deal with invertible sheaves and their global sections 
in that case. 

So let X be a nonsingular projective variety over an algebraically closed 
field k. In this case the notions of Weil divisor and Cartier divisor are 
equivalent (6.11). Furthermore, we have a one-to-one correspondence be
tween linear equivalence classes of divisors and isomorphism classes of 
invertible sheaves (6.15). Another useful fact in this situation is that for any 
invertible sheaf 2? on X, the global sections r(X,fl?) form a finite-dimen
sional k-vector space (5.19). 
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Let !£ be an invertible sheaf on X, and let s E T(X,!£) be a nonzero 
section of!£. We define an effective divisor D = (s)0 , the divisor of zeros of 
s, as follows. Over any open set U <::; X where!£ is trivial, let <p: !flu ..:::. (!Ju 
be an isomorphism. Then <p(s) E r(U,(!Ju). As U ranges over a covering of 
X, the collection { U,<p(s)} determines an effective Cartier divisor D on X. 
Indeed, <p is determined up to multiplication by an element ofT( U,(!Jt), so 
we get a well-defined Cartier divisor. 

Proposition 7.7. Let X be a nonsingular projective variety over the algebrai
cally closed field k. Let D0 be a divisor on X and let !£ ~ !£(D0 ) be the' 
corresponding invertible sheaf Then: 

(a) for each nonzero s E T(X,!£), the divisor of zeros (s)0 is an effective 
divisor linearly equivalent to D0 ; 

(b) every effective divisor linearly equivalent to D0 is (s)0 for some 
s E T(X,!£); and 

(c) two sections s,s' E T(X,!£) have the same divisor of zeros if and only 
if there is a A E k* such that s' = l.s. 

PROOF. 

(a) We may identify!£ with the subsheaf !£(D0 ) of%. Then s corresponds 
to a rational function f E K. If D0 is locally defined as a Cartier divisor by 
{ U i,j;} with J; E K*, then !£(D0 ) is locally generated by fi- 1, so we get a 
local isomorphism <p: !£(D0)-+ (!) by multiplying by fi· So D = (s)0 is 
locally defined by fJ Thus D = D0 + (f), showing that D ~ D0 . 

(b) If D > 0 and D = D0 + (f), then (f) ~ - D0 . Thus f gives a global 
section of !£(D0 ) whose divisor of zeros is D. 

(c) Still using the same construction, if (s)0 = (s')0 , then s and s' corre
spond to rational functions f,f' E K such that (f/f') = 0. Therefore flf' E 

r(X,(!J~). But since X is a projective variety over k algebraically closed, 
r(X,(!Jx) = k, and so flf' E k* (1, 3.4). 

Definition. A complete linear system on a nonsingular projective variety is 
defined as the set (maybe empty) of all effective divisors linearly eqhiva
lent to some given divisor D0 . It is denoted by IDol· 

We see from the proposition that the set IDol is in one-to-one corre
spondence with the set (T(X,!£) - {0})/k*. This gives IDol a structure of 
the set of closed points of a projective space over k. 

Definition. A linear system b on X is a subset of a complete linear system 
IDol which is a linear subspace for the projective space structure of IDol· 
Thus b corresponds to a sub-vector space V <::; r(X,!£), where V = 

{s E T(X,!£)1(s)0 E b} u {0}. The dimension of the linear system b is its 
dimension as a linear projective variety. Hence dim b = dim V - 1. 
(Note these dimensions are finite because r(X,!£) is a finite-dimensional 
vector space.) 
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Definition. A point P E X is a base point of a linear system b if P E Supp D 
for all DE b. Here Supp D means the union of the prime divisors of D. 

Lemma 7.8. Let b be a linear system on X corresponding to the subspace 
V <:;::; T(X,!f). Then a point P EX is a base point of b if and only if sp E 
mp!t? P for all s E V. In particular, b is base-point-free if and only if !t? is 
generated by the global sections in V. 

PROOF. This follows immediately from the fact that for any s E T(X,!f), the 
support of the divisor of zeros (s)0 is the complement of the open set X 8 • 

Remark 7.8.1. We can rephrase (7.1) in terms of linear systems as follows: 
to give a morphism from X to PZ it is equivalent to give a linear system b 
without base points on X, and a set of elements s0 , . .. ,s" E V, which span 
the vector space V. Often we will simply talk about the morphism to pro
jective space determined by a linear system without base points b. In this 
case we understand that s0 , . .. ,s" should be chosen as a basis of V. If we 
chose a different basis, the corresponding morphism of X ~ P" would only 
differ by an automorphism of P". 

Remark 7.8.2. We can rephrase (7.3) in terms of linear systems as follows: 
Let <p: X ~ P" be a morphism corresponding to the linear system (without 
base points) b. Then <pis a closed immersion if and only if 

(1) b separates points, i.e., for any two distinct closed points P,Q EX, there 
is a D E b such that P E Supp D and Q ¢ Supp D, and 

(2) b separates tangent vectors, i.e., given a closed point P E X and a tangent 
vector t E Tp(X) = (mp/m~)', there is aD E b such that P E Supp D, but 
t ¢ Tp(D). Here we think of D as a locally principal closed subscheme, 
in which case the Zariski tangent space Tp(D) = (mp.v/m~.vY is naturally 
a subspace of Tp(X). 

The terminology of "separating points" and "separating tangent vectors" 
is perhaps somewhat explained by this geometrical interpretation. 

Definition. Let i: Y ~ X be a closed immersion of nonsingular projective 
varieties over k. If b is a linear system on X, we define the trace of b on 
Y, denoted bjy, as follows. The linear system b corresponds to an in
vertible sheaf !f on X, and a sub-vector space V <:;::; T(X,!f). We take 
the invertible sheaf i* !f = !f ® @yon Y, and we let W <:;::; T(Y,i* !f) be 
the image of V under the natural map T(X,!f) ~ T(Y,i* !f). Then i* !f 
and W define the linear system bjy. 

One can also describe bjy geometrically as follows: it consists of all 
divisors D. Y (defined as in (6.6.2) ), where DEb is a divisor whose support 
does not contain Y. 

Note that even ifb is a complete linear system, bjy may not be complete. 
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Example 7.8.3. If X = pn, then the set of all effective divisors of degree 
d > 0 is a complete linear system of dimension (n~d) - 1. Indeed, it corre
sponds to the invertible sheaf cP(d), whose global sections consist exactly of 
the space of all homogeneous polynomials in x 0 , . .. ,xn of degree d. This is 
a vector space of dimension (n~d), so the dimension of the complete linear 
system is one less. 

Example 7.8.4. We can rephrase (Ex. 5.14d) in terms of linear systems as 
follows: a nonsingular projective variety X ~ Pi: is projectively normal if 
and only if for every d > 0, the trace on X of the linear system of all divisors 
of degree d on pn, is a complete linear system. By slight abuse of language, 
we say that "the linear system on X, cut out by the hypersurfaces of degree 
din pn, is complete." 

Example 7.8.5. Recall that the twisted cubic curve in P 3 was defined by the 
parametric equations x 0 = t3 , x1 = t2u, x2 = tu2 , x3 = u3 . In other words, 
it is just the 3-uple embedding ofP1 in P 3 (I, Ex. 2.9, Ex. 2.12). We will now 
show that any nonsingular curve X in P 3 , of degree 3, which is not contained 
in any P2 , and which is abstractly isomorphic to P 1, can be obtained from 
the given twisted cubic curve by an automorphism of P3 . So we will refer 
to any such curve as a twisted cubic curve. 

Let X be such a curve. The embedding of X in P 3 is determined by the 
linear system b of hyperplane sections of X (7.1). This is a linear system on 
X of dimension 3, because the planes in P 3 form a linear system of dimen
sion 3, and by hypothesis X is not contained in any plane, so the map 
r{P 3,cP(1)) --+ r(X,i*cP(1)) is injective. On the other hand, b is a linear 
system of degree 3, since X is a curve of degree 3. By the degree of a linear 
system on a complete nonsingular curve, we mean the degree of any of its 
divisors, which is independent of the divisor chosen (6.10). Now thinking 
of X as P 1 , the linear system b must correspond to a 4-dimensional subspace 
V <;; r(P\cP(3) ). But r(P 1 ,@(3)) itself has dimension 4, so V = r(P 1 ,@(3)) 
and b is a complete linear system. Since the embedding is determined by 
the linear system and the choice of basis of V by (7.1), we conclude that X 
is the same as the 3-uple embedding of P 1 , except for the choice of basis of 
V. This shows that there is an automorphism of P3 sending the given twisted 
cubic curve to X. (See (IV, Ex. 3.4) for generalization.) 

Example 7.8.6. We define a nonsingular rational quartic curve in P 3 to be a 
nonsingular curve X in P 3 , of degree 4, not contained in any P 2 , and which 
is abstractly isomorphic to P 1. In this case we will see that two such curves 
need not be obtainable one from the other by an automorphism of P 3 . To 
give a morphism ofP 1 to P 3 whose image has degree 4 and is not contained 
in any P2 , we need a 4-dimensional subspace V <;; r(P\cP(4)). This latter 
vector space has dimension 5. So if we choose two different subspaces V,V', 
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the corresponding curves in P3 may not be related by an automorphism of 
P3 . To be sure the image is nonsingular, we use the criterion of (7.3). Thus 
for example, one sees easily that the subspaces V = (t4 ,t3 u,tu 3 ,u4 ) and V' = 
(t 4 ,t3 u + at2 u2 ,tu3 ,u4) for a E k* give nonsingular rational quartic curves in 
P 3 which are not equivalent by an automorphism of P3 . 

Proj, P(t&'), and Blowing Up 

Earlier we have defined the Proj of a graded ring. Now we introduce a 
relative version of this construction, which is the Proj of a sheaf of graded 
algebras Y' over a scheme X. This construction is useful in particular 
because it allows us to construct the projective space bundle associated to 
a locally free sheaf 8, and it allows us to give a definition of blowing up 
with respect to an arbitrary sheaf of ideals. This generalizes the notion of 
blowing up a point introduced in (1, §4). 

For simplicity, we will always impose the following conditions on a 
scheme X and a sheaf of graded algebras Y' before we define a Proj : 

(t) X is a noetherian scheme, Y' is a quasi-coherent sheaf of {!:x-modules, 
which has a structure of a sheaf of graded Gx-algebras. Thus //' ~ 
ffid" 0 .~, where .~ is the homogeneous part of degree d. We assume 
furthermore that :1'0 = (!:'x, that Y'1 is a coherent ex-module, and that 
Y' is locally generated by :1'1 as an Gx-algebra. (It follows that ~ is 
coherent for all d ~ 0.) 

Construction. Let X be a scheme and Y' a sheaf of graded (!) x-algebras 
satisfying (t). For each open affine subset U = Spec A of X, let Y'( U) be 
the graded A-algebra F( U,Y'Iul· Then we consider Proj 9"( U) and its 
natural morphism nu: Proj Y'( U) ---> U. Iff E A, and U 1 = Spec A 1 , then 
since//' is quasi-coherent, we see that Proj Y'( U1 ) ~ n[} 1( U1 ). It follows 
that if U,V are two open affine subsets of X, then n[J 1( U n V) is naturally 
isomorphic to nv 1(U n V)-here we leave some technical details to the 
reader. These isomorphisms allow us to glue the schemes Proj Y'( U) 
together (Ex. 2.12). Thus we obtain a scheme Proj Y' together with a mor
phism n: Proj Y' ---> X such that for each open affine U c;; X, n- 1 ( U) ~ 
Proj Y'( U). Furthermore the invertible sheaves 0(1) on each Proj Y'( U) 
are compatible under this construction (5.12c), so they glue together to 
give an invertible sheaf (1)(1) on Proj //', canonically determined by this 
construction. 

Thus to any X, /1) satisfying (t), we have constructed the scheme Proj Y), 

the morphism n:Proj //'--->X. and the invertible sheaf (1:(1) on Proj .'f. 

Everything we have said about the Proj of a graded ringS can be extended 
to this relative situation. We will not attempt to do this exhaustively, but 
will only mention certain aspects of the new situation. 
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Example 7.8.7. If Y' is the polynomial algebra Y' = (9x[T0 , ... ,Tn], then 
Proj Y' is just the relative projective space P~ with its twisting sheaf @(1) 
defined earlier (§5). 

Caution 7.8.8. In general, (9(1) may not be very ample on Proj Y' relative to 
X. See (7.10) and (Ex. 7.14). 

Lemma 7.9. Let Y' be a sheaf of graded algebras on a scheme X satisfying 
(t). Let 2 be an invertible sheaf on X, and define a new sheaf of graded 
algebras Y'' = Y'*2 by Y'~ = .5f'a 0 2a for each d ~ 0. Then Y'' also 
satisfies (t), and there is a natural isomorphism cp: P' = Proj Y'' .; P = 

Proj Y', commuting with the projections n and n' to X, and having the 
property that 

PROOF. Let 8:(9u ~ 2lu be a local isomorphism of (9u with 2lu over a 
small open affine subset U of X. Then 8 induces an isomorphism of graded 
rings Y'(U) ~ Y''(U) and hence an isomorphism()*: Proj Y''(U) ~ Proj Y'(U). 
If 81 : (9 u ~ 21 u is a different local isomorphism, then 8 and 81 differ by an 
element f E r(U,(9tJ), and the corresponding isomorphism Y'(U) ~ Y''(U) 
differs by an automorphism 1/1 of Y'(U) which consists of multiplying by fa 
in degree d. This does not affect the set of homogeneous prime ideals in 
Y'( U), and furthermore, since the structure sheaf of Proj Y'( U) is formed 
by elements of degree zero in various localizations of Y'(U), the automor
phism 1/1 of Y'(U) induces the identity automorphism of Proj Y'(U). In other 
words, the isomorphism 8* is independent of the choice of 8. So these local 
isomorphisms 8* glue together to give a natural isomorphism cp:Proj Y'' ~ 
Proj Y', commuting with nand n'. When we form the sheaf @(1), however, 
the automorphism ljJ of Y'(U) induces multiplication by f in @(1). Thus 
(9r(1) looks like @p(1) modified by the transition functions of 2. Stated 
precisely, this says @p.(1) ~ cp*@p(1) 0 n'* 2. 

Proposition 7.10. Let X,Y' satisfy (t), let P = Proj Y', with projection 
n:P --+X and invertible sheaf @p(1) constructed above. Then: 

(a) n is a proper morphism. In particular, it is separated and of finite 
type; 

(b) if X admits an ample invertible sheaf 2, then n is a projective 
morphism, and we can take @p(1) 0 n* 2" to be a very ample invertible 
sheaf on P over X, for suitable n > 0. 

PROOF. 
(a) For each open affine U ~ X, the morphism nu: Proj Y'(U) --+ U is a 

projective morphism (4.8.1), hence proper (4.9). But the condition for a 
morphism to be proper is local on the base (4.8f), son is proper. 
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(b) Let 2 be an ample invertible sheaf on X. Then for some n > 0, 
9"1 @ 2" is generated by global sections. Since X is noetherian and 9"1 @ 
2" is coherent, we can find a finite number of global sections which generate 
it, in other words we can find a surjective morphism of sheaves m~+ 1 ~ 

9"1 @ 2" for some N. This allows us to define a surjective map of sheaves 
of graded lDx-algebras lDx[T0 , ... ,TN] ~ 9"*2", which gives rise to a 
closed immersion Proj 9"*2" 4 Proj lDx[T0 , ... ,TN] = P~ (Ex. 3.12). 
But Proj 9"*2" ~ Proj 9" by (7.9), and the very ample invertible sheaf 
induced by this embedding is just lDp(1)@ n* 2". 

Definition. Let X be a noetherian scheme, and lett! be a locally free coherent 
sheaf on X. We define the associated projective space bundle P(t!) as 
follows. Let 9" = S(t!) be the symmetric algebra oft!, 9" = ffia>o Sa(t!) 

(Ex. 5.16). Then Y' is a sheaf of graded lDx-algebras satisfying (t), and we 
define P(t!) = Proj 9". As such, it comes with a projection morphism 
n:P(t!) ~X, and an invertible sheaf lD(1). 

Note that if t! is free of rank n + 1 over an open set U, then n- 1(U) ~ 
P~, so P(t!) is a "relative projective space" over X. 

Proposition 7.11. Let X,t!,P(t!) be as in the definition. Then: 

(a) if rank t! ?: 2, there is a canonical isomorphism of graded lDx

algebras 9" ~ ffi1 e z n*( lD(l) ), with the grading on the right hand side given 

by l. In particular,for l < 0, n*(lD(l)) = O;for l = 0, n*((r)P(CJ) = lDx, and 

for l = 1, n*(lD(1)) = t!; 
(b) there is a natural surjective morphism n*t! ~ lD(l). 

PROOF. 

(a) is just a relative version of (5.13), and follows immediately from it. 
(b) is a relative version of the fact that (9(1) on P" is generated by the 

global sections x 0 , ... ,xn (5.16.2). 

Proposition 7.12. Let X,t!,P(t!) be as above. Let g: Y ~X be any morphism. 

Then to give a morphism of Y to P(t!) over X, it is equivalent to give an 

invertible sheaf 2 on Yanda surjective map of sheaves on Y, g*t! ~ 2. 

PROOF. This is a local version of (7.1). First note that iff: Y ~ P(t!) is a 
morphism over X, then the surjective map n*t! ~ lD(1) on P(t!) pulls back 
to give a surjective map g*t! = f*n*t! ~ f*lD(1), so we take 2 = f*lD(1). 

Conversely, given an invertible sheaf 2 on Y, and a surjective morphism 
g*t! ~ 2, I claim there is a unique morphism f: Y ~ P(t!) over X, such 
that 2 ~ f*lD(1), and the map g*t! ~ 2 is obtained from n*t! ~ lD(1) by 
applying f*. In view of the claimed uniqueness off, it is sufficient to verify 
this statement locally on X. Taking open affine subsets U = Spec A of X 
which are small enough so that t!lu is free, the statement reduces to (7.1). 
Indeed, if t! ~ m~+ 1, then to give a surjective morphism g*t! ~ 2 is the 
same as giving n + 1 global sections of 2 which generate. 
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Note. We refer to the exercises for further properties of P( t&") and for the 
general notion of projective space bundle over a scheme X. Cf. (Ex. 5.18) 
for the notion of a vector bundle associated to a locally free sheaf. 

Now we come to the generalized notion of blowing up. In (1, §4) we 
defined the blowing-up of a variety with respect to a point. Now we will 
define the blowing-up of a noetherian scheme with respect to any closed 
subscheme. Since a closed subscheme corresponds to a coherent sheaf of 
ideals (5.9), we may as well speak of blowing up a coherent sheaf of ideals. 

Definition. Let X be a noetherian scheme, and let § be a coherent sheaf of 
ideals on X. Consider the sheaf of graded algebras !/ = ffid ~ 0 §d, where 
§d is the dth power of the ideal §, and we set § 0 = mx. Then X,!/ 

clearly satisfy (t), so we can consider X = Proj !/. We define X to be 
the blowing-up of X with respect to the coherent sheaf of ideals §. If Y 
is the closed subscheme of X corresponding to §, then we also call X 
the blowing-up of X along Y, or with center Y 

Example 7.12.1. If X is Ak and P EX is the origin, then the blowing-up of 
P just defined is isomorphic to the one defined in (1, §4). Indeed, in this 
case X = Spec A, where A = k[xb ... ,xn], and P corresponds to the ideal 
I = (xi> ... ,xn). So X = Proj S, where S = EBDo Id. We can define a 
surjective map of graded rings cp:A[y 1, ... ,yn] --+ S by sending Y; to the 
element X; E I considered as an element of S in degree 1. Thus X is isomor
phic to a closed subscheme of Proj A[yb ... ,ynJ = p~- 1 . It is defined by 
the homogeneous polynomials in the Y; which generate the kernel of q>, and 
one sees easily that {x;yi- XiYili,j = 1, ... ,n} will do. 

Definition. Let f: X --+ Y be a morphism of schemes, and let § ~ (!) r be a 
sheaf of ideals on Y We define the inverse image ideal sheaf§' ~ (!)x as 
follows. First consider f as a continuous map of topological spaces 
X --+ Y and let f- 1 § be the inverse image of the sheaf§, as defined in 
§1. Then f- 1 § is a sheaf of ideals in the sheaf of rings f- 1(!)y on the 
topological space X. Now there is a natural homomorphism of sheaves 
of rings on X, f- 1(!)r --+ mx, so we define§' to be the ideal sheaf in mx 

generated by the image off- 1 §. We will denote §' by f- 1 § · (!) x or 
simply§· mx, if no confusion seems likely to result. 

Caution 7.12.2. If we consider § as a sheaf of my-modules, then in §5 we 
have defined the inverse image f* §as a sheaf of mx-modules. It may happen 
that f* § =1= f- 1 § · mx. The reason is that f* §is defined as 

f-1§ @J-li!Jy (!)X· 

Since the tensor product functor is not in general left exact, f* § may not 
be a subsheaf of mx. However, there is a natural map f* § --+ (!)x coming 
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from the inclusion 5 c. @y, and f- 15 · 0x is just the image off* 5 under 
this map. 

Proposition 7.13. Let X be a noetherian scheme, 5 a coherent sheaf of ideals, 
and let n: X --+ X be the blowing-up off Then: 

(a) the inverse image ideal sheaf .J = n:- 15 · (!)x is an invertible sheaf 
on X. 

(b) if Y is the closed subscheme corresponding to 5, and if U = X - Y, 
then n:n:- 1(U)--+ U is an isomorphism. 

PROOF. 
(a) Since X is defined as Proj !:/', where !:1' = EBH 0 5d, it comes 

equipped with a natural invertible sheaf 0(1). For any open affine U <;: X, 
this sheaf (!)(1) on Proj !:/'( U) is the sheaf associated to the graded !:/'( U)
module !:f'(U)(l) = EBHo 5d+ 1(U). But this is clearly equal to the ideal 
5 · !:f'(U) generated by 5 in !:f'(U), so we see that the inverse image ideal 
sheaf .} = n- 15 · (!) x is in fact equal to (!) :x( 1). Hence it is an invertible 
sheaf. 

(b) If U = X - Y, then 5lu ;:; 0u, so n- 1 U = Proj 0u[T] = U. 

Proposition 7.14 (Universal Property of Blowing Up). Let X be a noetherian 
scheme, 5 a coherent sheaf of ideals, and n: X --+ X the blowing-up with 
respect to f If f:Z--+ X is any morphism such that f- 15 · 0z is an in
vertible sheaf of ideals on Z, then there exists a unique morphism g: Z --+ X 
factoring f 

z ___ {/_ __ -+ x 

PROOF. In view of the asserted uniqueness of g, the question is local on X. 
So we may assume that X = Spec A is affine, A is noetherian, and that 5 
corresponds to an ideal I <;: A. Then X = Proj S, where S = EBd;.o Id. Let 
a0 , ... ,an E I be a set of generators for the ideal I. Then we can define a 
surjective map of graded rings <p: A[ x 0 , ... ,xn] --+ S by sending X; to a; E I, 
considered as an element of degree one in S. This homomorphism gives rise 
to a closed immersion X c. ·p~· The kernel of <p is the homogeneous ideal 
in A[ x 0 , ... ,xn] generated by all homogeneous polynomials. F(x0 , . .. ,xn) 
such that F(a0 , .•• ,an) = 0 in A. 

Now let f: Z --+ X be a morphism such that the inverse image ideal sheaf 
f- 15 · (!)z is an invertible sheaf Yon Z. Since I is generated by a0 , ... ,an, 
the inverse images of these elements, considered as global sections of 5, give 
global sections s,, . ,s" of Y which generate. Then by (7.1) there is a unique 
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morphismg:Z--+ P~withthepropertythat2' ~ g*@(l)andthats; = g- 1x; 
under this isomorphism. Now I claim that g factors through the closed 
subscheme X of P~. This follows easily from the fact that if F(x 0 , ... ,xn) 
is a homogeneous element of degree d of ker cp, where ker cp is the homoge
neous ideal described above which determines X, then F(a 0 , . .. ,an) = 0 in A 
and so F(s0 , ... ,sn) = 0 in r(Z,2'd). 

Thus we have constructed a morphism g:Z --+X factoring f For any 
such morphism, we must necessarily have f- 1 § · (!)2 = g- 1(n- 1 § · @g) · (!) 2 

which is just g- 1(@g(1)) · @2 . Therefore we have a surjective map g*@g(l) --+ 
f- 1 § · (!)2 = 2'. Now a surjective map of invertible sheaves on a locally 
ringed space is necessarily an isomorphism(Ex. 7.1), so we have g*@g(1) ~ 2'. 
Clearly the sections s; of 2' must be the pull-backs of the sections X; of @(1) 
on P~. Hence the uniqueness of g under our conditions follows from the 
uniqueness assertion of (7.1). 

Corollary 7.15. Let f: Y--+ X be a morphism of noetherian schemes, and let§ 
be a coherent sheaf of ideals on X. Let X be the blowing-up of 5, and let Y 
be the blowing-up of the inverse image ideal sheaf,$ = f- 1 §· CVy on Y. 
Then there is a unique morphism .f: Y --+ X 

- l -y -----------> X 

j 
y --"---f _ _____. X 

j 
making a commutative diagram as shown. Moreover, if f is a closed im
mersion, so is J 

PROOF. The existence and uniqueness of J follow immediately from the 
proposition. To show that J is a closed immersion iff is, we go back to the 
definition of blowing up. X = Proj // where Y = ffid, 0 §d, and Y = 

Proj Y', where Y' = ffiDo Jd. Since Y is a closed subscheme of X, we 
can consider Y' as a sheaf of graded algebras on X. Then there is a natural 
surjective homomorphism of graded rings Y --+ Y', which gives rise to the 
closed immersion J 

Definition. In the situation of (7.15), if Y is a closed subscheme of X, we call 
the closed subscheme Y of X the strict transform of Y under the blowing-up 
n:X--+ X. 

Example 7.15.1. If Y is a closed subvariety of X = A~ passing through the 
origin P, then the strict transform Y of Yin X is a closed subvariety. Hence, 
provided Y is not just P itself, we can recover Y as the closure of n- 1( Y - P), 
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where n:n- 1(X- P) ~X- Pis the isomorphism of(7.13b). This shows 
that our new definition of blowing up coincides with the one given in (I, §4) 
for any closed subvariety of AZ. In particular, this shows that blowing up as 
defined earlier is intrinsic. 

Now we will study blowing up in the special case that X is a variety. 
Recall (§4) that a variety is defined to be an integral separated scheme of 
finite type over an algebraically closed field k. 

Proposition 7.16. Let X be a variety over k, let J £ {!Jx be a nonzero coherent 
sheaf of ideals on X, and let n: X ~ X be the blowing-up with respect to J. 
Then: 

(a) X is also a variety; 
(b) n is a birational, proper, surjective morphism; 
(c) if X is quasi-projective (respectively, projective) over k, then X is 

also, and n is a projective morphism. 

PROOF. First of all, since X is integral, the sheaf Y = EBd;;,o Jd is a sheaf of 
integral domains on X, so X is also integral. Next, we have already seen that 
n is proper (7.10). In particular, n is separated and of finite type, so it follows 
that X is also separated and of finite type, i.e., X is a variety. Now since 
J =1= 0, the corresponding closed subscheme Y is not all of X, and so the 
open set U = X - Y is nonempty. Since n induces an isomorphism from 
n- 1 U to U (7.13), we see that n is birational. Since n is proper, it is a closed 
map, so the image n(X) is a closed set containing U, which must be all of X 
since X is irreducible. Thus n is surjective. Finally, if X is quasi-projective 
(respectively, projective), then X admits an ample invertible sheaf (7.6), so by 
(7.10b) n is a projective morphism. It follows that X is also quasi-projective 
(respectively, projective) (Ex. 4.9). 

Theorem 7.17. Let X be a quasi-projective variety over k. If Z is another 
variety and f:Z ~X is any birational projective morphism, then there 
exists a coherent sheaf of ideals J on X such that Z is isomorphic to the 
blowing-up X of X with respect to J, and f corresponds ton: X ~ X under 
this isomorphism. 

PROOF. The proof is somewhat difficult, so we divide it into steps. 
Step 1. Since f is assumed to be a projective morphism, there exists a 

closed immersion i:Z ~ P~ for some n. 

z c ) p~ 

~j 
X 
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Let !£ be the invertible sheaf i*(l)(1) on Z. Now we consider the sheaf of 
graded (l)x-algebras !/ = (l)x E9 ffid~ 1 f*!Ed. Each f*!Ed is a coherent sheaf 
on X, by (5.20), so!/ is quasi-coherent. However,!/ may not be generated by 
!/ 1 as an (I) x-algebra. 

Step 2. For any integer e > 0, let y<eJ = EBd ~ 0 Y<;>, where Y<;> = ~e 
(cf. Ex. 5.13). I claim that for e sufficiently large, y<e> is generated as an 
(l)x-algebra by y~>. Since X is quasi-compact, this question is local on X, 
so we may assume X = Spec A is affine, where A is a finitely generated 
k-algebra. Then Z is a closed subscheme of P~, and !/ corresponds to the 
graded A-algebraS= A E9 ffid~ 1 T(Z,(I)2 (d)). Let T = A[x0 , ... ,xn]/lz, 
where I z is a homogeneous ideal defining Z. Then, using the technique of 
(Ex. 5.9, Ex. 5.14), one can show that.the A-algebras S,T agree in all large 
enough degrees (details left to reader). But Tis generated as an A-algebra 
by T 1, so y<e> is generated by T~>, and this is the same as s<eJ fore sufficiently 
large. 

Step 3. Now let us replace our original embedding i:Z -+ P~ by i followed 
by an e-uple embedding fore sufficiently large. This has the effect of replacing 
!£ by fEe and !/ by y<eJ (Ex. 5.13). Thus we may now assume that !/ is 
generated by !/1 as an (l)x-algebra. Note also by construction that Z ~ 
Proj !/ (cf. (5.16) ). So at least we have Z isomorphic to Proj of something. 
If !/1 = f*!£ were a sheaf of ideals in (l)x we would be done. So in the next 
step, we try to make it into one. 

Step 4. Now!£ is an invertible sheaf on the integral scheme Z, so we can 
find an embedding !£ ~ %2 where %2 is the constant sheaf of the function 
field of Z (proof of 6.15). Hence f*!£ s:: f*%2 . But since f is assumed to be 
birational, we have f*%2 = Xx, and so f*!£ s:: Xx. Now let A be an ample 
invertible sheaf on X, which exists because X is assumed to be quasi-pro
jective. Then I claim that there is an n > 0 and an embedding A-n s:: Xx 
such that .A-n· f*!£ s:: (l)x· Indeed, let f be the ideal sheaf of denominators 
off*!£, defined locally as {a E (l)xla · f*!£ s:: (l)x}- This is a nonzero coherent 
sheaf of ideals on X, because f*!£ is a coherent subsheaf of Xx, so locally 
one can just take common denominators for a set of generators of the cor
responding finitely generated module. Since A is ample, f ® A" is gener
ated by global sections for n sufficiently large. In particular, for suitable 
n > 0, there is a nonzero map (l)x -+ f ®A", and hence a nonzero map 
A-n -+ f. Then by construction A-n· f*!£ S:: (l)x· 

Step 5. Since .A-n· f*!£ <;; (l)x, it is a coherent sheaf of ideals on X, which 
we call f!. This is the required ideal sheaf, as we will now show that Z is 
isomorphic to the blowing up of X with respect to f!. We already know that 
Z ~ Proj !/. Therefore by (7.9) Z is also isomorphic to Proj ff*A-". 
So to complete the proof, it will be sufficient to identify (Y*A-")d = 
.A-dn ® f*!Ed with §d for any d ~ 1. First note that f*!Ed <;; Xx for any d 
(same reason as above for d = 1), and since A is invertible, we can write 
A-dn · f*!Ed instead of (8). Now since !/ is locally generated by !/1 as an 
(l)x-algebra, we have a natural surjective map §d -+ A-dn · f*!Ed for each 
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d ? 1. It must also be injective, since both are subsheaves of Xx, so it is an 
isomorphism. This shows finally that Z ~ Proj ffiDo 5d, which completes 
the proof. 

Remark 7.17.1. Of course the sheaf of ideals 5 in the theorem is not unique. 
This is clear from the construction, but see also (Ex. 7.11). 

Remark 7.17.2. We see from this theorem that blowing up arbitrary coherent 
sheaves of ideals is a very general process. Accordingly in most applications 
one learns more by blowing up only along some restricted class of sub
varieties. For example, in his paper on resolution of singularities [ 4], 
Hironaka uses only blowing up along a nonsingular subvariety which is 
"normally flat" in its ambient space. In studying birational geometry of 
surfaces in Chapter V, we will use only blowing up at a point. In fact one of 
our main results there will be that any birational transformation of non
singular projective surfaces can be factored into a finite number of blowings 
up (and blowings down) of points. One important application of the more 
general blowing-up we have been studying here is Nagata's theorem [6] that 
any (abstract) variety can be embedded as an open subset of a complete 
variety. 

Example 7.17.3. As an example of the general concept of blowing up a co
herent sheaf of ideals, we show how to eliminate the points of indeterminacy 
of a rational map determined by an invertible sheaf. So Jet A be a ring, let X 
be a noetherian scheme over A, let !£ be an invertible sheaf on X, and Jet 
s0 , . .. ,s" E r(X,!£) be a set of global sections of !£. Let U be the open 
subset of X where the si generate the sheaf!£. Then according to (7.1) the 
invertible sheaf !flu on U and the global sections s0 , ... ,s" determine an 
A-morphism cp: U --+ P~. We will now show how to blow up a certain sheaf 
of ideals 5 on X, whose corresponding closed subsheme Y has support equal 
to X - U (i.e., the underlying topological space of Y is X - U), so that the 
morphism cp extends to a morphism if> of X to P~. 

x 
' q> j ',, -

1t .............. , 

' ' " 
X ._____) U L P~ 

So let$' be the coherent subsheaf of!£ generated by s0 , • .. ,s"" We define 
a coherent sheaf of ideals 5 on X as follows: for any open set V <;; X, such 
that !Eiv is free, let if;: !Eiv ..::::. (9v be an isomorphism, and take 5lv = 1/J(.?Ivl· 
Clearly the ideal sheaf 5lv is independent of the choice ofljl, so we get a well
defined coherent sheaf of ideals 5 on X. Note also that 5 x = (Ox if and only 
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if x E U, so the corresponding closed subscheme Y has support equal to 
X - U. Let n:X ~X be the blowing-up of .f. Then by (7.13a), n- 1 f · I!Jg 

is an invertible sheaf of ideals, so we see that the global sections n*s; of n* £" 
generate an invertible coherent subsheaf £"' ofn* £". Now£"' and the sections 
n*s; define a morphism ip:X ~ P~ whose restriction to n- 1(U) corresponds 
to cp under the natural isomorphism n:n- 1(U)..:::. U (7.13b). 

In case X is a nonsingular projective variety over a field, we can rephrase 
this example in terms oflinear systems. The given£" and sections s; determine 
a linear system b on X. The base points of b are just the points of the closed 
set X - U, and cp: U ~ P;; is the morphism determined by the base-point
free linear system blu on U. We call Y the scheme of base points of b. So our 
example shows that if we blow up Y, then b extends to a base-point-free linear 
system bon all of X. 

EXERCISES 

7.1. Let (X,@x) be a locally ringed space, and let f:!l! ->At be a surjective map of 
invertible sheaves on X. Show that f is an isomorphism. [Hint: Reduce to a 
question of modules over a local ring by looking at the stalks.] 

7.2. Let X be a scheme over a field k. Let !I! be an invertible sheaf on X, and let 
{s0 , ... ,sn} and {t0 , ... ,tm} be two sets of sections of !1!, which generate the 
same subspace V <;; T(X,fl!), and which generate the sheaf !I! at every point. 
Suppose n ~ m. Show that the corresponding morphisms <p: X ..... P~ and 1/t: X -> 

P;;' differ by a suitable linear projection pm - L ..... P" and an automorphism of 
P", where Lis a linear subspace ofPrn of dimension m - n - 1. 

7.3. Let <p:P~ ..... P;;' be a morphism. Then: 
(a) either <p(P") = pt or m ;;, nand dim <p(P") = n; 

(b) in the second case, <p can be obtained as the composition of (1) a d-uple em
bedding P" ..... pN for a uniquely determined d ;;, 1, (2) a linear projection 
pN - L ..... pm, and (3) an automorphism of pm_ Also, <p has finite fibres. 

7.4. (a) Use (7.6) to show that if X is a scheme of finite type over a noetherian ring A, 
and if X admits an ample invertible sheaf, then X is separated. 

(b) Let X be the affine line over a field k with the origin doubled ( 4.0.1 ). Calculate 
Pic X, determine which invertible sheaves are generated by global sections, 
and then show directly (without using (a)) that there is no ample invertible 
sheaf on X. 

7.5. Establish the following properties of ample and very ample invertible sheaves on 
a noetherian scheme X. fi!,At will denote invertible sheaves, and for (d), (e) we 
assume furthermore that X is of finite type over a noetherian ring A. 
(a) If !I! is ample and At is generated by global sections, then !I! ® At is ample. 
(b) If !I! is ample and At is arbitrary, then At ® !I!" is ample for sufficiently large n. 

(c) If fi!,At are both ample, so is !I! ® At. 
(d) If !I! is very ample and At is generated by global sections, then !I! ® At is 

very ample. 
(e) If !I! is ample, then there is an n0 > 0 such that !I!" is very ample for all n ;;, n0 . 
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7.6. The Riemann-Roch Problem. Let X be a nonsingular projective variety over an 
algebraically closed field, and let D be a divisor on X. For any n > 0 we consider 
the complete linear system lnDI. Then the Riemann-Roch problem is to deter
mine dimlnDI as a function of n, and, in particular, its behav.ior for large n. If 
!i' is the corresponding invertible sheaf, then dimlnDI = dim T(X,!i'") - 1, so 
an equivalent problem is to determine dim T(X,!i'") as a function of n. 
(a) Show that if D is very ample, and if X c. P~ is the corresponding embedding 

in projective space, then for all n sufficiently large, dimlnDI = Px(n) - 1, 
where Px is the Hilbert polynomial of X (1, §7). Thus in this case dimlnDI is a 
polynomial function of n, for n large. 

(b) If D corresponds to a torsion element of Pic X, of order r, then dimlnDI = 0 
if r In, - 1 otherwise. In this case the function is periodic of period r. 
It follows from the general Riemann-Roch theorem that dimlnD I is a polyno

mial function for n large, whenever Dis an ample divisor. See (IV, 1.3.2), (V, 1.6), 
and Appendix A. In the case of algebraic surfaces, Zariski [7] has shown for any 
effective divisor D, that there is a finite set of polynomials P 1, ... ,P., such that for 
alln sufficiently large, dimlnDI = Pi(n)(n), where i(n) E { 1,2, ... ,r} is a function of n. 

7.7. Some Rational Swfaces. Let X = Pt, and let IDI be the complete linear system 
of all divisors of degree 2 on X (conics). D corresponds to the invertible sheaf 
@(2), whose space of global sections has a basis x 2,y2 ,z2 ,xy,xz,yz, where x,y,z 
are the homogeneous coordinates of X. 
(a) The complete linear system IDI gives an embedding ofP2 in P5 , whose image 

is the Veronese surface (1, Ex. 2.13). 
(b) Show that the subsystemdefined by x 2,yl,z2, y(x - z), (x - y)z gives a closed 

immersion of X into P4 . The image is called the Veronese surface in P4 . 

Cf. (IV, Ex. 3.11). 
(c) Let b ~ IDI be the linear system of all conics passing through a fixed point P. 

Then b gives an immersion of U = X - Pinto P4 . Furthermore, if we blow 
up P, to get a surface X, then this map extends to give a closed immersion of 
X in P4 . Show that X is a surface of degree 3 in P4 , and that the lines in X 
through Pare transformed into straight lines in X which do not meet. X is the 
union of all these lines, so we say X is a ruled surface (V, 2.19.1). 

7.8. Let X be a noetherian scheme, let fff be a coherent locally free sheaf on X, and 
let n: P(fff) -+ X be the corresponding projective space bundle. Show that there 
is a natural 1-1 correspondence between sections of n (i.e., morphisms rJ:X -+ 

P(fff) such that no rJ = idx) and quotient invertible sheaves fff-+ !i' -+ 0 of fff. 

7.9. Let X be a regular noetherian scheme, and fff a locally free coherent sheaf of rank 
~ 2 on X. 
(a) Show that Pic P(fff) ~ Pic X x Z. 
(b) If fff' is another locally free coherent sheaf on X, show that P(fff) ~ P(fff')(over X) 

if and only if there is an invertible sheaf !i' on X such that fff' ~ fff@ !i'. 

7.10. P"-Bundles Over a Scheme. Let X be a noetherian scheme. 
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(a) By analogy with the definition of a vector bundle (Ex. 5.18), define the notion 
of a projective n-space bundle over X, as a scheme P with a morphism n:P-+ X 
such that Pis locally isomorphic to U x P", U ~ X open, and the transition 
automorphisms on Spec A x P" are given by A-linear automorphisms of the 
homogeneous coordinate ring A[ x 0 , . .. ,x.] (e.g., x; = ~)ijx1 , aij E A). 

(b) If fff is a locally free sheaf of rank n + 1 on X, then P(fff) is a P"-bundle over X. 
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*(c) Assume that X is regular, and show that every P"-bundle P over X is iso
morphic to P(n') for some locally free sheaf 8 on X. [Hint: Let U c;: X be an 
open set such that n- 1( U) ~ U x P", and let Y 0 be the invertible sheaf(': (I) 

on U x P". Show that~ 0 extends to an invertible sheaf!!' on P. Then show 
that n*!i' = 6 is a locally free sheaf on X and that P ~ P(8).] Can you 
weaken the hypothesis "'X regular'"? 

(d) Conclude (in the case X regular) that we have a 1-1 correspondence between 
P"-bundles over X, and equivalence classes of locally free sheaves 6 of rank 
11 + I under the equivalence relation&' - 6 if and only if 6' ~ 8 ®.If for 
some invertible sheaf .It on X. 

7.11. On a noetherian scheme X, different sheaves of ideals can give rise to isomorphic 
blown up schemes. 
(a) If.~ is any coherent sheaf of ideals on X, show that blowing up .~d for any 

d ~ I gives a scheme isomorphic to the blowing up oL~ (cf. Ex. 5.13). 
(b) If§ is any coherent sheaf of ideals, and if ,I is an invertible sheaf of ideals, 

then .~ and § · f give isomorphic blowings-up. 
(c) If X is regular, show that (7.17) can be strengthened as follows. Let U c;: X 

be the largest open set such that f :f- 1 U -+ U is an isomorphism. Then 1 
can be chosen such that the corresponding closed subscheme Y has support 
equal to X- U 

7.12. Let X be a noetherian scheme, and let Y, Z be two closed subschemes, neither 
one containing the other. Let X be obtained by blowing up Y n Z (defined by 
the ideal sheaf§ y + § z). Show that the strict transforms Y and Z of Y and Z 
in X do not meet. 

*7.13. A Complete Nonprojective Variety. Let k be an algebraically closed field of 
char i= 2. Let C c;: Pt be the nodal cubic curve y2z = x3 + x 2 z. If P0 = (0,0,1) 
is the singular point, then C- P0 is isomorphic to the multiplicative group 
Gm = Spec k[t,t- 1] (Ex. 6.7). For each a E k, a i= 0, consider the translation of 
Gm given by tHat. This induces an automorphism of C which we denote by q> •. 

Now consider C x (P 1 ~ {0}) and C x (P1 - { oo }). We glue their open 
subsets C x (P 1 - {0, oo}) by the isomorphism q>: <P,u)~---+<q>JP),u) for 
P E C, u E Gm = P1 - {O,oo }. Thus we obtain a scheme X, which is our example. 
The projections to the second factor are compatible with q>, so there is a natural 
morphism n: X-+ P1. 

(a) Show that n is a proper morphism, and hence that X is a complete variety 
over k. 

(b) Use the method of (Ex. 6.9) to show that Pic(C x A1) ~ Gm x Z and 
Pic(C x (A1 - {0})) ~ Gm x Z x Z. [Hint: If A is a domain and if * 
denotes the group of units, then (A[u])* ~A* and (A[u,u- 1])* ~A* x Z.] 

(c) Now show that the restriction map Pic(C x A1)-+ Pic(C x (A 1 - {0})) 
isoftheform <t,n) H <t,O,n),and that the automorphism q>ofC x (A 1 - {0}) 
induces a map of the form <t,d,n) H <t,d + n,n) on its Picard group. 

(d) Conclude that the image of the restriction map Pic X-+ Pic(C x {0}) 
consists entirely of divisors of degree 0 on C. Hence X is not projective 
over k and n is not a projective morphism. 

7.14. (a) Give an example of a noetherian scheme X and a locally free coherent sheaf 8, 
such that the invertible sheaf (11(1) on P(8) is not very ample relative to X. 
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(b) Let f: X--+ Y be a morphism of finite type, let .!f be an ample invertible 
sheaf on X, and let Sf' be a sheaf of graded C9x-algebras satisfying (t). Let 
P = Proj Y', let n: P --+ X be the projection, and let (9 p( 1) be the associated 
invertible sheaf. Show that for all n » 0, the sheaf (9 p(1) ® n* !£'"is very ample 
on P relative toY. [Hint: Use (7.10) and (Ex. 5.12).] 

8 Differentials 

In this section we will define the sheaf of relative differential forms of one 
scheme over another. In the case of a nonsingular variety over C, which is 
like a complex manifold, the sheaf of differential forms is essentially the same 
as the dual of the tangent bundle defined in differential geometry. However, 
in abstract algebraic geometry, we will define the sheaf of differentials first, 
by a purely algebraic method, and then define the tangent bundle as its dual. 
Hence we will begin this section with a review of the module of differentials of 
one ring over another. As applications of the sheaf of differentials, we will 
give a characterization of nonsingular varieties among schemes of finite 
type over a field. We will also use the sheaf of differentials on a nonsingular 
variety to define its tangent sheaf, its canonical sheaf, and its geometric genus. 
This latter is an important numerical invariant of a variety. 

Kahler Differentials 

Here we will review the algebraic theory of Kahler differentials. We will use 
Matsumura [2, Ch. 10] as our main reference, but proofs can also be found in 
the exposes of Cartier and Godement in Cartan and Chevalley [I, exposes 13, 
17], or in Grothendieck [EGA 01v, §20.5]. 

Let A be a ring (commutative with identity as always), let B be an A
algebra, and let M be a B-module. 

Definition. An A -derivation of B into M is a map d: B -+ M such that ( 1) d is 
additive, (2) d(bb') = bdb' + b'db, and (3) da = 0 for all a EA. 

Definition. We define the module of relative differential forms of B over A to 
be a B-module Q81 A, together with an A-derivation d:B-+ Q81 A, which 
satisfies the following universal property: for any B-module M, and for 
any A-derivation d': B -+ M, there exists a unique B-module homomor
phism f:Q 81 A-+ M such that d' = f o d. 

Clearly one way to construct such a module Q81 A is to take the free 
B-module F generated by the symbols { dblb E B}, and to divide out by the 
submodule generated by all expressions of the form (1) d(b + b') - db - db' 
for h,b' E B, (2) d(bh') - bdb' - h'db for b,b' E B, and (3) da for a EA. The 
derivation d:B -+ Q81 A is defined by sending b to db. Thus we see that Q81A 

exists. It follows from the definition that the pair (Q81 A,d) is unique up to 
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I 

unique isomorphism. As a corollary of this construction, we see that QB/A is 
generated as a B-module by {dblb E B}. 

Proposition 8.1A. Let B be an A-algebra. Let f:B ®A B --+ B be the "diago
nal" homomorphism defined by f(b ® b') = bb', and let I = kerf Consider 
B ®A B as a B-module by multiplication on the left. Then I/I2 inherits a 
structure of B-module. Define a map d:B --+ I/I 2 by db = 1 ® b - b ® 1 
(modulo I2). Then <I/I2,d) is a module of relative differentials forB/A. 

PROOF. Matsumura [2, p. 182]. 

Proposition 8.2A. If A' and B are A-algebras, let B' = B ®A A'. Then 
QB'JA' ~ QB/A ®B B'. Furthermore, if S is a multiplicative system in B, 
then QS-IBjA ~ s-lQB/A-

PROOF. Matsumura [2, p. 186]. 

Example 8.2.1 If B = A[x 1, ... ,xn] is a polynomial ring over A, then QBJA 
is the free B-module of rank n generated by dx 1, ... ,dxn (Matsumura 
[2, p. 184]). 

Proposition 8.3A (First Exact Sequence). Let A --+ B--+ C be rings and homo
morphisms. Then there is a natural exact sequence of C-modules 

QB/A @B C --+ QCJA --+ QC/B --+ 0. 

PROOF. Matsumura [2, Th. 57 p. 186]. 

Proposition 8.4A (Second Exact Sequence). Let B be an A-algebra, let I be 
an ideal of B, and let C = B/I. Then there is a natural exact sequence of 
C-modules 

I/I2 ~ QB/A @B C--+ QCjA --+ 0, 

where for any bE I, iflJ is its image in I/I2, then (57)= db® 1. Note in 
particular that I/I2 has a natural structure of C-module, and that (5 is a C
linear map, even though it is defined via the derivation d. 

PROOF. Matsumura [2, Th. 58, p. 187]. 

Corollary 8.5. If B is a finitely generated A-algebra, or if B is a localization 
of a finitely generated A-algebra, then QBJA is a finitely generated B-module. 

PROOF. Indeed, B is a quotient of a polynomial ring (or its localization) so the 
result follows from (8.4A), (8.2A), and the example of the polynomial ring 
itself. 

Now we will consider the module of differentials in the case of field 
extensions and local rings. Recall (I, §4) that an extension field K of a field k 
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is separably generated if there exists a transcendence base { x,J for K/k such 
that K is a separable algebraic extension of k( { x "} ). 

Theorem 8.6A. Let K be a finitely generated extension field of afield k. Then 
dimK QK!k ~ tr.d. K/k, and equality holds if and only if K is separably 
generated over k. (Here dimK denotes the dimension as a K-vector space.) 

PROOF. Matsumura [2, Th. 59, p. 191]. Note in particular that if K/k is a 
finite algebraic extension, then QK/k = 0 if and only if K/k is separable. 

Proposition 8.7. Let B be a local ring which contains afield k isomorphic to its 
residue field B/m. Then the map c5: m/m2 ---+ QB/k 0 B k of (8.4A) is an 
isomorphism. 

PROOF. According to (8.4A), the cokernel of c) is Qk/k = 0, so c) is surjective. 
To show that c5 is injective, it will be sufficient to show that the map 

c5':Homk(QB/k 0 k, k)---+ Homk(m/m2, k) 

of dual vector spaces is surjective. The term on the left is isomorphic to 
HomB(QB!k•k), which by definition of the differentials, can be identified with 
the set Derk(B,k) of k-derivations of B to k. If d:B ---+ k is a derivation, then 
c)'(d) is obtained by restricting to m, and noting that d(m2) = 0. Now, to 
show that c)' is surjective, lethE Hom(m/m2,k). For any bE B, we can write 
b = A + c, A E k, c E m, in a unique way. Define db = h(c), where c E m/m2 

is the image of c. Then one verifies immediately that d is a k-derivation of B 
to k, and that c)'(d) = h. Thus c)' is surjective, as required. 

Theorem 8.8. Let B be a local ring containing afield k isomorphic to its residue 
field. Assume furthermore that k is perfect, and that B is a localization of a 
finitely generated k-algebra. Then QB/k is a free B-module of rank equal to 
dim B if and only if B is a regular local ring. 

PRooF. First suppose QB/k is free of rank = dim B. Then by (8.7) we have 
dimk m/m2 = dim B, which says by definition that B is a regular local ring 
(I, §5). Note in particular that this implies that B is an integral domain. 

Now conversely, suppose that B is regular local of dimension r. Then 
dimk m/m2 = r, so by (8.7) we have dimk QB/k 0 k = r. On the other hand, 
let K be the quotient field of B. Then by (8.2A) we have QB/k 0B K = QKfk· 
Now since k is perfect, K is a separably generated extension field of k (I, 4.8A), 
and so dimK QK!k = tr.d. K/k by (8.6A). But we also have dim B = tr.d. K/k 
by (I, 1.8A). Finally, note that by (8.5), QB/k is a finitely generated B-module. 
We conclude that QB/k is a free B module of rank r by using the following 
well-known lemma. 

Lemma 8.9. Let A be a noetherian local integral domain, with residue field k 
and quotient field K. If M is a finitely generated A-module and if 
dimk M 0 A k = dimK M 0 A K = r, then M is free of rank r. 
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PROOF. Since dimk M ® k = r, Nakayama's lemma tells us that M can be 
generated by r elements. So there is a surjective map cp: Ar --+ M --+ 0. Let 
R be its kernel. Then we obtain an exact sequence 

0 --+ R ® K --+ Kr --+ M ® K --+ 0, 

and since dimK M ® K = r, we have R ® K = 0. But R is torsion-free, 
so R = 0, and M is isomorphic to Ar. 

Sheaves of Differentials 

We now carry the definition of the module of differentials over to schemes. 
Let f:X--+ Y be a morphism of schemes. We consider the diagonal mor
phism Ll :X--+ X x y X. It follows from the proof of (4.2) that Ll gives an 
isomorphism of X onto its image Ll{X), which is a locally closed subscheme 
of X x y X, i.e., a closed subscheme of an open subset W of X x y X. 

Definition. Let J be the sheaf of ideals of Ll(X) in W. Then we define the 
sheaf of relative differentials of X over Y to be the sheaf Qx;r = Ll*(J /.f2 ) 

on X. 

Remark 8.9.1. First note that JjJ 2 has a natural structure of @A <Xl-modure. 
Then since Ll induces an isomorphism of X to Ll{X), Qx;r has a natural 
structure of CDx-module. Furthermore, it follows from (5.9) that Qx;r is 
quasi-coherent; if Y is noetherian and f is a morphism of finite type, then 
X x y X is also noetherian, and so Qx;r is coherent. 

Remark 8.9.2. Now if U = Spec A is an open affine subset of Y and V = 

Spec B is an open affine subset of X such that f(V) s; U, then V x u Vis an 
open affine subset of X x y X isomorphic to Spec (B ®A B), and Ll(X) n 
(V xu V) is the closed subscheme defined by the kernel of the diagonal 
homomorphism B ®A B--+ B. Thus .f/.§2 is the sheaf associated to the 
module 1/12 of (8.1A). It follows that Qv;u ~ (QB1A)-. Thus our definition 
of the sheaf of differentials of X /Y is compatible, in the affine case, with the 
module of differentials defined above, via the functor ~ . This also shows 
that we could have defined Qx;r by covering X and Y with open affine sub
sets Vand U as above, and glueing the corresponding sheaves (QB/A)-. The 
derivations d:B--+ QB/A glue together to give a map d:CDx--+ Qx;r of sheaves 
of abelian groups on X, which is a derivation of the local rings at each point. 

Therefore, we can carry over our algebraic results to sheaves, and we 
obtain the following results. 

Proposition 8.10. Let f: X --+ Y be a morphism, let g: Y' --+ Y be another 
morphism, and let f': X' = X x y Y' --+ Y' be obtained by base extension. 
Then Qx·;r· ~ g'*(Qx;r) where g':X'--+ X is the .first projection. 

PROOF. Follows from (8.2A). 
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Proposition 8.11. Let f:X ~ Y and g: Y ~ Z be morphisms of schemes. 
Then there is an exact sequence of sheaves on X, 

f*QY/Z ~ QX/Z ~ QX/Y ~ 0. 

PROOF. Follows from (8.3A). 

Proposition 8.12. Let f: X ~ Y be a morphism, and let Z be a closed sub
scheme of X, with ideal sheaf .f!. Then there is an exact sequence of sheaves 
onZ, 

.f!/.f!2 ~ QX/Y@ {!)z ~ QZ/Y ~ 0. 

PROOF. Follows from (8.4A). 

Example 8.12.1. If X = A~, then QX!Y is a free (!)x-module of rank n, gener
ated by the global sections dx 1 , • •• ,dxn, where x 1, ... ,xn are affine coordi
nates for A". 

Next we will give an exact sequence relating the sheaf of differentials on 
a projective space to sheaves we already know. This is a fundamental result, 
upon which we will base all future calculations involving differentials on 
projective varieties. 

Theorem 8.13. Let A be a ring, let Y = Spec A, and let X = P~. Then there 
is an exact sequence of sheaves on X, 

0 ~ QX/Y ~ {!)x(-lt+ 1 ~{!)X~ 0. 

(The exponent n + 1 in the middle means a direct sum of n + 1 copies of 
(!)x( -1).) 

PROOF. Let S = A[ x 0 , ... ,xn] be the homogeneous coordinate ring of X. 
Let E be the graded S-module S( -1)"+ 1, with basis e0 , ... ,en in degree 1. 
Define a (degree 0) homomorphism of graded S-modules E ~ S by sending 
e; r--+ x;, and let M be the kernel. Then the exact sequence 

o~M~E~s 

of graded S-modules gives rise to an exact sequence of sheaves on X, 

0 ~ M ~ (!)x(-1)"+ 1 ~ (!)x ~ 0. 

Note that E ~ S is not surjective, but it is surjective in all degrees ): 1, so 
the corresponding map of sheaves is surjective. 

We will now proceed to show that M ~ Qx1y. First note that if we localize 
at X;, then Ex, ~ sx, is a surjective homomorphism of free sx,-modules, so 
M x; is free of rank n, generated by { ej - (xj/x;)e; jj '!: i}. It follows that if U; 
is the standard open set of X defined by X;, then Mlu, is a free (!)u,-module 
generated by the sections (1/x;)ej - (x/xf)e; for j #- i. (Here we need the 
additional factor 1/x; to get elements of degree 0 in the module Mx,.) 
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We define a map <p;:Qx1Yiu, --+ Mlu, as follows. Recall that U; ~ 
Spec A[x0/X;, ... ,xnfxJ, so Qx1ylu, is a free (i)u,-module generated by 
d(x0 jxJ, ... ,d(xnfx;). So we define (/J; by 

cpM(x/xJ) = (1/xr)(x;ej - xie;). 

Thus (/J; is an isomorphism. I claim now that the isomorphisms (/J; glue 
together to give an isomorphism <p: Qx;Y --+ M on all of X. This is a simple 
calculation. On U; n Vi, we have, for any k, (xkjx;) = (xk/x) · (x/x;). 
Hence in Qju,nu1 we have 

Now applying (/J; to the left-hand side and <pi to the right-hand side, we get 
the same thing both ways, namely (1/x;x)(xiek - xkeJ Thus the isomor
phisms (/J; glue, which completes our proof. 

N onsingular Varieties 

Our principal application of the sheaf of differentials is to nonsingular 
varieties. In (I, §5) we defined a nonsingular quasi-projective variety to be 
one whose local rings were all regular local rings. Here we extend that def
inition to abstract varieties. 

Definition. An (abstract) variety X over an algebraically closed field k is 
nonsingular if all its local rings are regular local rings. 

Note that we are apparently requiring more here, because in Chapter I 
we had only closed points, but now our varieties also have nonclosed points. 
However, the two definitions are equivalent, because every local ring at a 
nonclosed point is the localization of a local ring at a closed point, and we 
have the following algebraic result. 

Theorem 8.14A. Any localization of a regular local ring at a prime ideal is 
again a regular local ring. 

PROOF. Matsumura [2, p. 139]. 

The connection between nonsingularity and differentials is given by the 
following result. 

Theorem 8.15. Let X be an irreducible separated scheme of finite type over an 
algebraically closed field k. Then QX/k is a locally free sheaf of rank 
n = dim X if and only if X is a nonsingular variety over k. 

PROOF. Ifx EX is a closed point, then the local ring B = (i)x,x has dimension n, 
residue field k, and is a localization of a k-algebra of finite type. Furthermore 
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the module QB/k of differentials of B over k is equal to the stalk (Qx;dx of 
the sheaf QX/k· Thus we can apply (8.8) and we see that (Qx1dx is free of 
rank n if and only if B is a regular local ring. Now the theorem follows in 
view of (8.14A) and (Ex. 5.7). 

Corollary 8.16. If X is a variety over k, then there is an open dense subset U 
of X which is nonsingular. 

PROOF. (This gives a new proof of (1, 5.3).) If n = dim X, then the function 
field K of X has transcendence degree n over k, and it is a finitely generated 
extension field, which is separably generated by (1, 4.8A). Therefore by (8.6A), 
QK/k is a K-vector space of dimension n. Now QK!k is just the stalk of the 
sheaf Qx;k at the generic point of X. Thus by (Ex. 5.7), QX!k is locally free of 
rank n in some neighborhood of the generic point, i.e., on a nonempty open 
set U. Then U is nonsingular by the theorem. 

Theorem 8.17. Let X be a nonsingular variety over k. Let Y c;: X be an irre
ducible closed subscheme defined by a sheaf of ideals J. Then Y is non
singular if and only if 
(1) QY/k is locally free, and 
(2) the sequence of (8.12) is exact on the left also: 

0--> 5/52 --> QX/k 0 {l)y--> QY/k--> 0. 

Furthermore, in this case, 5 is locally generated by r = codim(Y,X) 
elements, and 5/5 2 is a locally free sheaf of rank ron Y. 

PROOF. First suppose (1) and (2) hold. Then QY/k is locally free, so by (8.15) 
we have only to show that rank QY/k = dim Y. Let rank QY/k = q. We 
know that QX/k is locally free of rank n, so it follows from (2) that 5/5 2 is 
locally free on Y of rank n - q. Hence by Nakayama's lemma, 5 can be 
locally generated by n - q elements, and it follows that dim Y ~ n -
(n - q) = q (1, Ex. 1.9). On the other hand, considering any closed point 
y E Y, we have q = dimk(my/m;) by (8.7), and so q ~ dim Y by (1, 5.2A). 
Thus q = dim Y. This shows that Y is nonsingular, and at the same time 
establishes the statements at the end of the theorem, since we now have 
n - q = codim(Y,X). 

Conversely, assume that Y is nonsingular. Then QY!k is locally free of 
rank q = dim Y, so (1) is immediate. From (8.12) we have the exact sequence 

5/52 ~ QX/k 0 {l)y ~ QYjk--> 0. 

We consider a closed pointy E Y. Then ker cp is locally free of rank r = n - q 
at y, so it is possible to choose sections x 1, ... ,xr E 5 in a suitable neigh
borhood of y, such that dx 1, ••• ,dxr generate ker cp. Let 5' be the ideal 
sheaf generated by xI> ... ,x" and let Y' be the corresponding closed sub
scheme. Then by construction, the dx 1, ... ,dxr generate a free subsheaf 
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of rank r of QX/k ® 0r· in a neighborhood of y. It follows that in the exact 
sequence of (8.12) for Y', 

§'jJ' 2 ~ QX/k @ @y, ~ QY'/k ~ 0, 

we have 6 injective (since its image is free of rank r), and QY'/k is locally free 
of rank n - r. The previous part of the proof now shows that Y' is irre
ducible and nonsingular of dimension n - r (in a neighborhood of y). 
But Y s Y', both are integral schemes of the same dimension, so we must 
have Y = Y', J = J', and this shows that JjJ 2 ~ QX!k ® @y is injective, 
as required. 

Next we include a result which tells us that under suitable conditions, a 
hyperplane section of a nonsingular variety in projective space is again 
nonsingular. There is actually a large class of such results, which say that 
if a projective variety has a certain property, then a sufficiently general 
hyperplane section has the same property. The result we give here is not 
the strongest, but it is sufficient for many applications. See also (III, 10.9) for 
another version in characteristic 0. 

Theorem 8.18 (Bertini's Theorem). Let X be a nonsingular closed subvariety 
of PZ, where k is an algebraically closed field. Then there exists a hyperplane 
H s PZ, not containing X, and such that the scheme H n X is regular at 
every point. (In fact, we will see later (III, 7.9.1) that if dim X ;?: 2, then 
H n X is connected, hence irreducible, and so H n X is a nonsingular 
variety.) Furthermore, the set of hyperplanes with this property forms an 
open dense subset of the complete linear system IHI, considered as a pro
jective space. 

PROOF. For a closed point x EX, let us consider the set Bx = {hyperplanes 
HIH :::2 X or H ~ X but x E H n X, and xis not a regular point of H n X.} 
(Fig. 10). These are the bad hyperplanes with respect to the point x. Now a 

HeBx 

HnX regular 

Figure 10. Hyperplane sections of a nonsingular variety. 
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hyperplane His determined by a nonzero global section! E V = I'(P",cYpn(l) ). 

Let us fix an foE V such that x ¢ H 0 , the hyperplane defined by f 0 . Then 
we can define a map of k-vector spaces 

<fJx: V--+ C9x,x/m~ 

as follows. Given f E V, then fifo is a regular function on P" - H 0 , which 
induces a regular function on X - X n H 0 . We take <pjf) to be the image 
of fifo in the local ring C9x,x modulo m~. Now the scheme H n X is defined 
at x by the ideal generated by f/ fo in (9 x· Sox E H n X if and only if <fJxUl E mx, 
and xis nonregular on H n X if and only if <fJAfl Em~, because in. that case, 
the local ring 0xf(<p(f)) will not be regular. Thus we see that the hyperplanes 
HE Bx correspond exactly to those f E ker <fJx (note also that <fJxUl = 0 ~ 
H 2 X.) 

Since x is a closed point and k is algebraically closed, ntx is generated by 
linear forms in the coordinates, so we see that <fJx is surjective. If dim X = r, 
then dimk C9x/m~ = r + 1. We have dim V = n + 1, so dim ker <fJx = 
n - r. This shows that Bx is a linear system of hyperplanes (in the sense 
of §7) of dimension n - r - 1. 

Now, considering the complete linear system IHI as a projective space, 
consider the subset B <:; X x IHI consisting of all pairs <x,H) such that 
x EX is a closed point and HE Bx. Clearly B is the set of closed points of 
a closed subset of X x IHI, which we denote also by B, and which we give a 
reduced induced scheme structure. We have just seen that the first projection 
p 1 : B --+ X is surjective, with fibre a projective space of dimension 11 - r - 1. 
Hence B is irreducible, and has dimension (n - r - 1) + r = 11 - 1. 

Therefore, considering the second projection p2 : B --+ I HI, we have 
dim p2(B) ~ n - 1. Since dimiHI = n, we conclude that p2(B) < IHI. If 
H E IHI - p2(B), then H ~ X and every point of H n X is regular, so that 
H satisfies the requirements of the theorem. Finally note that since X is 
projective, p2 : X x IHI --+ IHI is a proper morphism; B is closed in X x I HI, 
so p2(B) is closed in IHI. Thus IHI - p2(B) is an open dense subset of IHI, 
which proves the last statement of the theorem. 

Remark 8.18.1. This result continues to hold even if X has a finite number 
of singular points, because the set of hyperplanes containing any one of 
them is a proper closed subset of IHI. 

Applications 

Now we will apply the preceding ideas to define some invariants of non
singular varieties over a field. 

Definition. Let X be a nonsingular variety over k. We define the tangent 
sheaf of X to be :Yx = Yfomex(Qx1k,cYx). It is a locally free sheaf of 
rank n =dim X. We define the canonical sheaf of X to be Wx = (\"Qx;ko 

180 



8 Differentials 

the nth exterior power of the sheaf of differentials, where n = dim X. 
It is an invertible sheaf on X. If X is projective and nonsingular, we de
fine the yeometric yen us of X to be p9 = dimk F(X,wx ). It is a nonnegative 
integer. 

Remark 8.18.2. Earlier (I, Ex. 7.2) we defined the arithmetic genus Pa of a 
variety in projective space. In the case of a projective nonsingular curve, 
the arithmetic genus and the geometric genus coincide. This is a consequence 
of the Serre duality theorem which we will prove later (III, 7.12.2). For 
varieties of dimension ~ 2, however, Pa and p9 need not be equal (Ex. 8.3). 
See also (I I I, 7.12.3). 

Remark 8.18.3. Since the sheaf 9f differentials, the tangent sheaf, and the 
canonical sheaf are all defined intrinsically, any numbers which we can 
define from them, such as the geometric genus, are invariants of X up to 
isomorphism. In 1 fact, we will now show that the geometric genus is a 
hirational invariant of a nonsingular projective variety. This makes it ex
tremely important for the classification problem. 

Theorem 8.19. Let X and X' he two birationally equiralent nonsinyular pro-
jective rarieties over k. Then py(X) = p9(X'). 

PROOF. Recall from (1, §4) that for X and X' to be birationally equivalent 
means that there are rational maps from X to X' and from X' to X which 
are inverses to each other. Considering the rational map from X to X', 
let V <;: X be the largest open set for which there is a morphism f: V ---> X' 
representing this rational map. Then from (8.11) we have a map f*Qx·;k ---> 
Qv;k· These are locally free sheaves of the same rank n = dim X, so we get 
an induced map on the exterior powers: f*wx·---> wv. This map in turn 
inducesamaponthespaceofglobalsectionsf*:T(X',wx.)---> T(V,wv). Now 
since f is birational, by (I, 4.5), there is an open set U <;: V such that f( U) 
is open in X', and f induces an isomorphism from U to/( U). Thus wvlu ~ 
Wx·IJ<Vl via f Since a nonzero global section of an invertible sheaf cannot 
vanish on a dense open set, we conclude that the map of vector spaces 
f*: T(X',wx·) ---> T( V,wv) must be injective. 

Next we will compare T(V,wv) with T(X,wx). First I claim that X - V 
has codimension ~ 2 in X. Indeed, this follows from the valuative criterion 
of properness (4.7). If P EX is a point of codimension 1, then (!'P.x is a 
discrete valuation ring (because X is nonsingular). We already have a map 
of the generic point of X to X'; and X' is projective, hence proper over k, so 
there exists a unique morphism Spec 0P.x ---> X' compatible with the given 
birational map. This extends to a morphism of some neighborhood of P 
to X', so we must have P E V by definition of V 

Now we can show that the natural restriction map T(X,wx) ---> T( V,wv) is 
bijective. It is enough to show, for any open affine subset U <:; X such that 
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wxlu ~ (!Ju, that r(U,(!Ju) ~ r(U n V,(!Ju,v) is bijective. Since X is non
singular, hence normal, and since U - U n V has codimension ~ 2 in U, 
this is an immediate consequence of ( 6.3A). 

Combining our results, we see that pg(X') ~ pg(X). We obtain the reverse 
inequality by symmetry, and thus conclude that p9(X) = p9(X'). 

Next we study the behavior of the tangent sheaf and the canonical sheaf 
for a nonsingular subvariety of a variety X. 

Definition. Let Y be a nonsingular subvariety of a nonsingular variety X 
over k. The locally free sheaf f /52 of (8.17) we call the co normal sheaf of 
Y in X. Its dual %y;x = Yf oml'!y(f /52 ,@y) is called the normal sheaf of 
Yin X. It is locally free of rank r = codim( Y,X). 

Note that if we take the dual on Y of the exact sequence of locally free 
sheaves on Y given in (8.17), then we obtain an exact sequence 

0 ~ !Ty ~ !Tx ® @y ~ Jlly;x ~ 0. 

This shows that the normal sheaf we have just defined corresponds to the 
usual geometric notion of normal vectors being tangent vectors of the 
ambient space modulo tangent vectors of the subspace. 

Proposition 8.20. Let Y be a nonsingular subvariety of codimension r in a non
singular variety X over k. Then Wy ~ Wx ® N %y;x· In case r = 1, 
consider Y as a divisor, and let !£' be the associated invertible sheaf on X. 
Then Wy ~ Wx ® !l' ® @y. 

PROOF. We take the highest exterior powers of the locally free sheaves in 
the exact sequence 

0 ~ f/5 2 ~ Qx ® @y ~ QY ~ 0 

(Ex. 5.16d). Thus we find that wx ® @y ~ Wy ® N(f/52). Since formation 
of the highest exterior power commutes with taking the dual sheaf, we find 
Wy ~ Wx ® N %y;x· In the special case r = 1, we have f r ~ !£'- 1 by 
(6.18). Thus f/5 2 ~ !l'- 1 ® @y, and %r;x ~ !£' ® @y. So applying the 
previous result with r = 1, we obtain Wy ~ Wx ® !£' ® @y. 

Example 8.20.1. Let X = P~. Taking the dual ofthe exact sequence of(8.13) 
gives us this exact sequence involving the tangent sheaf of P": 

0 ~ (!Jx ~ (!Jx(1)"+ 1 ~ !Tx ~ 0. 

To obtain the canonical sheaf of P", we take the highest exterior powers of 
the exact sequence of (8.13) and we find wx ~ (!Jx(- n - 1). Since @(f) has 
no global sections for l < 0, we find that pg(P") = 0 for any n ~ 1. Recall 
that a rational variety is defined as a variety birational to P" for some n 
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(I, Ex. 4.4). We conclude from (8.19) that if X is any nonsingular projective 
rational variety, then p9(X) = 0. This fact will enable us to demonstrate the 
existence of nonrational varieties in all dimensions. 

Example 8.20.2. Let X = P;;, with n ~ 2. For any integer d ~ 1, the divisor 
dH, where H is a hyperplane, is a very ample divisor (7.6.1). Thus dH be
comes a hyperplane section of X in a suitable projective embedding (the 
d-uple embedding), and we can apply Bertini's theorem (8.18). We find that 
there is a subscheme Y E ldHI which is regular at every one of its points. If 
Y had at least two irreducible components, say Y1 and Y2 , then since n ~ 2, 
their intersection Y1 n Y2 would be nonempty (I, 7.2). But this cannot happen 
because Y would be singular at any point of Y1 n Y2 , so we conclude in fact 
that Y is irreducible, hence a nonsingular variety. Thus we see for any d ~ 1 
that there are nonsingular hypersurfaces of degree din P". In fact, they form 
a dense open subset of the complete linear system ldHI. (This generalizes 
(1, Ex. 5.5).) 

Example 8.20.3. Let Y be a nonsingular hypersurface of degree d in P", 
n ~ 2. Then from (8.20) and the first example above, we conclude that 
Wy ~ (0y(d - n - 1). Let's look at some particular cases. 

n = 2, d = 1. Y is a line in P2 , so Y ~ Pi, and we have Wy ~ lPy( -2) 
which we already knew. 

n = 2, d = 2. Y is a conic in P 2 , and Wy ~ @y( -1). In this case Y is 
the 2-uple embedding of Pi, so pulling Wy back to P 1 gives Wpt ~ lPpt(- 2), 
which is again what we already knew. 

n = 2, d = 3. Y is a nonsingular plane cubic curve, and Wy ~ lPy. There
fore p9(Y) =dim r(Y,lPy) = 1, and we see that Y is not rational! This 
generalizes (1, Ex. 6.2), where we gave just one example of a nonsingular 
cubic curve, and showed by a different method that it was not rational. 

n = 2, d ~ 4. Y is a nonsingular plane curve of degree d, Wy ~ lPy(d - 3), 
and d - 3 > 0. Hence p9 > 0, and Y is not rational. In fact, p9 = 
!(d - 1)(d - 2) (Ex. 8.4f), so we see that plane curves of different degrees 
d,d' ~ 3 are not birational to each other. Another way of seeing this is as 
follows. For any nonsingular projective curve, we can consider the degree of 
the canonical sheaf. Since a nonsingular projective curve is unique in its 
birational equivalence class (1, §6), this number is in fact a birational invariant. 
In the present case its value is d(d - 3), since @(1) has degree don Y. These 
numbers are also distinct for different d,d' ~ 3. This shows the existence of 
infinitely many mutually nonbirational curves. 

n = 3, d = 1. This gives Y ~ P 2 , Wy ~ lPy(- 3) which we knew. 
n = 3, d = 2. Here Y is a nonsingular quadric surface, and Wy ~ lPy(- 2). 

We have p9 (Y) = 0, which is consistent with the fact that Y is rational 
(I, Ex. 4.5). In terms of the isomorphism Y ~ P 1 x P 1, wy corresponds to a 
divisor class of type (- 2,- 2)-see ( 6.6.1 ). This illustrates the general fact 
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(Ex. 8.3) that the canonical sheaf on a direct product of nonsingular varieties 
is the tensor product of the pull-backs of the canonical sheaves on the two 
factors. 

n = 3, d = 3. Y is a nonsingular cubic surface in P 3 , wy ~ l'9y( -1) and 
so p9(Y) = 0. In this case also, Y is a rational surface, as we will see later 
(Chapter V). 

n = 3, d = 4. In this case Wy ~ l'9y. The canonical sheaf is trivial so 
p9 = 1. This is a nonrational surface which belongs to the class of "K3 
surfaces." 

n = 3, d ?: 5. Here Wy ~ l'9y(d - 4) with d - 4 > 0. Hence p9 > 0, 
and Y is not rational. Surfaces such as these on which the canonical sheaf 
is very ample belong to the class of "surfaces of general type." 

n = 4, d = 3,4. The cubic and the quartic threefold in P4 both have 
p9 = 0, but it has recently been shown (by different methods) that they are 
not in general rational varieties. For the cubic threefold, see Clemens and 
Griffiths [1]. For the quartic threefold, see lskovskih and Manin [1]. 

n arbitrary, d ?: n + 1. In this case we obtain a nonsingular hypersurface 
Yin P", with Wy ~ l'9y(d - n - 1) and d - n - 1 ?: 0. Hence p9(Y) ?: 1, 
and so Y is not rational. This shows the existence of nonrational varieties 
in all dimensions. 

Some Local Algebra 

Here we will gather some results from local algebra, mainly concerning 
depth and Cohen-Macaulay rings, which are useful in algebraic geometry. 
Then we relate them to the geometric notion of local complete intersection, 
and give an application to blowing up. We refer to Matsumura [2, Ch. 6] 
for proofs. 

If A is a ring, and M is an A-module, recall that a sequence xt> ... ,x, of 
elements of A is called a regular sequence for M if x 1 is not a zero divisor 
in M, and for all i = 2, ... ,r, X; is not a zero divisor in Mj(x 1, . .. ,x;_ 1)M. 
If A is a local ring with maximal ideal m, then the depth of M is the maximum 
lengthofaregularsequencex 1, ... ,x,for Mwithallx; Em. These definitions 
apply to the ring A itself, and we say that a local noetherian ring A is Cohen
Macaulay if depth A = dim A. Now we list some properties of Cohen
Macaulay rings. 

Theorem 8.21A. Let A be a local noetherian ring with maximal ideal m. 
(a) If A is regular, then it is Cohen-Macaulay. 
(b) If A is Cohen-Macaulay, then any localization of A at a prime ideal 

is also Cohen-M acaulay. 
(c) If A is Cohen-Macaulay, then a set of elements x 1, ... ,x, E mforms 

a regular sequence for A if and only if dim Aj(x 1, • •• ,x,) = dim A - r. 
(d) If A is Cohen-Macaulay, and x 1, ... ,x, Em is a regular sequence 

for A, then Aj(x1, ... ,x,) is also Cohen-Macaulay. 
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(e) If A is Cohen-Macaulay, and x 1, ... ,x, Em is a regular sequence, 
let I be the ideal(x 1, ... ,x,). Then the natural map(A/l)[t~> ... ,t,]-> gr1A = 
EBn"o 1"/1"+ 1, defined by sending ti 1-> xi> is an isomorphism. In other words, 
1/12 is a free A/1-module of rank r, and for each n ~ 1, the natural map 
S"(/// 2)-> I"/ I"+ 1 is an isomorphism, where S" denotes the nth symmetric 
power. 

PROOFS. Matsumura [2: (a) p. 121; (b) p. 104; (c) p. 105; (d) p. 104; 
(e) p. 110]. 

In keeping with the terminology for schemes (Ex. 3.8), we will say that a 
noetherian ring A is normal if for every prime ideal p, the localization AP 
is an integrally closed domain. A normal ring is a finite direct product of 
integrally closed domains. 

Theorem 8.22A (Serre). A noetherian ring A is normal if and only if it satisfies 
the following two conditions: 

(1) for every prime ideal p ~ A of height :C 1, AP is regular (hence a 
field or a discrete valuation ring); and 

(2) for every prime ideal p ~ A of height ~ 2, we have depth A P ~ 2. 

PROOF. Matsumura [2, Th. 39, p. 125]. Condition (1) is sometimes called 
"R 1 ", or "regular in codimension 1 ". Condition (2), supplemented by the 

I 

requirement that for ht p = 1, depth AP = 1, which is a consequence of (1) 
in our case, is called the "condition S 2 of Serre". 

Now we apply these results to algebraic geometry. We will say that a 
scheme is Cohen-M acaulay if all of its local rings are Cohen-Macaulay. 

Definition. Let Y be a closed subscheme of a nonsingular variety X over k. 
We say that Y is a local complete intersection in X if the ideal sheaf J r 
of Yin X can be locally generated by r = codim(Y,X) elements at every 
point. 

Example 8.22.1. If Y itself is nonsingular, then by (8.17) it is a local complete 
intersection inside any nonsingular X which contains it. 

Remark 8.22.2. In fact, the notion of being a local complete intersection is 
an intrinsic property of the scheme Y, i.e., independent of the nonsingular 
variety containing it. This is proved using the cotangent complex of a 
morphism, which extends the concept of relative differentials introduced 
above-see Lichtenbaum and Schlessinger [ 1]. We will not use this fact in 
the sequel. 
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Proposition 8.23. Let Y be a locally complete intersection subscheme of a 
nonsingular variety X over k. Then: 

(a) Y is Cohen-Macaulay; 
(b) Y is normal if and only if it is regular in codimension 1. 

PROOF. 

(a) Since X is nonsingular, it is Cohen-Macaulay by (8.21Aa). Since J y 

is locally generated by r = codim(Y,X) elements, those elements locally 
form a regular sequence in (!Jx, by (8.21Ac), and so Y is Cohen-Macaulay 
by (8.21Ad). 

(b) We already know that normal implies regular in codimension 1 
(1, 6.2A). For the converse, we use (8.22A) applied to the local rings of Y. 
Condition (1) is our hypothesis, and condition (2) holds automatically 
because Y is Cohen-Macaulay. 

As our last application, we consider the blowing-up of a nonsingular 
variety along a nonsingular subvariety (cf. §7 for definition of blowing-up). 
The following theorem will be useful in comparing invariants of X and X 
(Ex. 8.5). 

Theorem 8.24. Let X be a nonsingular variety over k, and let Y !:;; X be a 
nonsingular closed subvariety, with ideal sheaf J. Let n:X -->X be the 
blowing-up of J, and let Y' !:;; X be the subscheme defined by the inverse 
image ideal sheaf J' = n- 1 J ·@g. Then: 

(a) X is also nonsingular; 
(b) Y', together with the induced projection map n: Y' --> Y, is isomorphic 

to P(JjJ2), the projective space bundle associated to the (locally free) 
sheaf JjJ2 on Y; 

(c) under this isomorphism, the normal sheaf JV Y'/X corresponds to 
{!JP($/$2)( -1). 

PROOF. We prove (b) first. Since X = Proj EB Jd, we have 

Y' ~ Proj EB (Jd@ (!Jx/J) = Proj EB Jd/Jd+ 1. 

But Y is nonsingular, so J is locally generated by a regular sequence in (!Jx, 
and we can apply (8.21Ae). This implies that JjJ2 is locally free and that 
for each n ~ 1, Jn;Jn+ 1 ~ sn(J/J2). Thus Y' ~ Proj EB Sd(J/J2), which 
by definition is P(J/J2). 

In particular, Y' is locally isomorphic to Y x P'- 1 , where r = codim( Y,X), 
so Y' is also nonsingular. Since Y' is locally principal in X (7.13a), it follows 
that X is also nonsingular: if a quotient of a noetherian local ring by an 
element which is not a zero divisor is regular, then the local ring itself is regular. 

To prove (c), we recall from the proof of (7.13) that J' = n- 1(J) · (!Jg is 
isomorphic to @g(1). It follows that f'/f' 2 ~ @y.(1), and hence JV Y'/X ~ 
(!Jy.(-1). 
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We will use the following algebraic result in the exercises. 

Theorem 8.25A (I. S. Cohen). Let A be a complete local ring contaznzng a 
field k. Assume that the residue field k(A) = A/m is a separably generated 
extension of k. Then there is a subfield K s;; A, containing k, such that 
K ~ A/m is an isomorphism. (The subfield K is called a field of repre
sentatives for A.) 

PROOF. Matsumura [2, p. 205]. 

EXERCISES 

8.1 Here we will strengthen the results of the text to include information about the 
sheaf of differentials at a not necessarily closed point of a scheme X. 
(a) Generalize (8.7) as follows. Let B be a local ring containing a field k, and 

assume that the residue field k(B) = B/m of B is a separably generated ex
tension of k. Then the exact sequence of (8.4A), 

0---> mjm 2 ~ QB/k@ k(B)---> Qk(B)/k---> 0 

is exact on the left also. [Hint: In copying the proof of(8.7), first pass to Bjm 2 , 

which is a complete local ring, and then use (8.25A) to choose a field of repre
sentatives for Bjm 2 .] 

(b) Generalize (8.8) as follows. With B, k as above, assume furthermore that k is 
perfect, and that B is a localization of an algebra of finite type over k. Then 
show that B is a regular local ring if and only if QB!k is free of rank = dim B + 
tr.d. k(B)/k. 

(c) Strengthen (8.15) as follows. Let X be an irreducible scheme of finite type over 
a perfect field k, and let dim X = n. For any point x EX, not necessarily 
closed, show that the local ring (l)x.x is a regular local ring if and only if the 
stalk (.Qx1k)x of the sheaf of differentials at xis free of rank n. 

(d) Strengthen (8.16) as follows. If X is a variety over an algebraically closed field 
k, then U = {x E Xl(l)x is a regular local ring} is an open dense subset of X. 

8.2. Let X be a variety of dimension n over k. Let r! be a locally free sheaf of rank > n 
on X, and let V ~ r(X,r!) be a vector space of global sections which generate 
<!. Then show that there is an element s E V, such that for each x E X, we have 
sx rf= mxrffx. Conclude that there is a morphism (l)x---> r! giving rise to an exact 
sequence 

0 ---> (IJX ---> rff ---> rff' ---> 0 

where<!' is also locally free. [Hint: Use a method similar to the proof of Bertini's 
theorem (8.18).] 

8.3. Product Schemes. 
(a) Let X and Y be schemes over another schemeS. Use (8.10) and (8.11) to show 

that Qx x, YJS ::::; p!QxJs EB p~QYJS· 
(b) If X and Yare nonsingular varieties over a field k, show that Wx x y ::::; p!wx ® 

p~Wy. 
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(c) Let Y be a nonsingular plane cubic curve, and let X be the surface Y x Y. 
Show that pg(X) = 1 but p.(X) = -1 (I, Ex. 7.2). This shows that the arith
metic genus and the geometric genus of a nonsingular projective variety may 
be different. 

8.4. Complete Intersections in P". A closed subscheme Y ofP~ is called a (strict, global) 
complete intersection if the homogeneous ideal I of Y in S = k[ x0 , ..• ,x.J can 
be generated by r = codim(Y,P") elements (I, Ex. 2.17). 
(a) Let Y be a closed subscheme of codimension r in P". Then Y is a complete 

intersection if and only if there are hypersurfaces (i.e., locally principal sub
schemes of codimension 1) H 1, ..• ,H" such that Y = H 1 n ... n H, as schemes, 
i.e.,...fy = ...fH, + ... + ...fn,· [Hint:Usethefactthattheunmixednesstheorem 
holds inS (Matsumura [2, p. 107]).] 

(b) If Y is a complete intersection of dimension ;;;, 1 in P", and if Y is normal, then 
Y is projectively normal (Ex. 5.14). [Hint: Apply (8.23) to the affine cone over 
Y.] 

(c) With the same hypotheses as (b), conclude that for all/ ;;;, 0, the natural map 
T(P",0pn(/)) --+ T(Y,0y(l)) is surjective. In particular, taking I = 0, show that 
Y is connected. 

(d) Now suppose given integers d1, .•• ,d, ;;;, 1, with r < n. Use Bertini's theorem 
(8.18) to show that there exist nonsingular hypersurfaces H 1, .•• ,H, in P", 
with deg Hi = di, such that the scheme Y = H 1 n ... n H, is irreducible and 
nonsingular of codimension r in P". 

(e) If Y is a nonsingular complete intersection as in (d), show that Wy ~ 

0r(Ldi - n - 1). 
(f) If Y is a nonsingular hypersurface of degree din P", use (c) and (e) above to 

show that p9(Y) = (4 .- 1). Thus pg(Y) = P.(Y) (I, Ex. 7.2). In particular, if Y 
is a nonsingular plane curve of degree d, then p9 (Y) = !(d - l)(d - 2). 

(g) If Y is a nonsingular curve in P3, which is a complete intersection of nonsingular 
surfacesofdegreesd,e,thenp9(Y) = !de(d + e- 4) + 1. Againthegeometric 
genus is the same as the arithmetic genus (I, Ex. 7.2). 

8.5. Blowing up a Nonsingular Subvariety. As in (8.24), let X be a nonsingular variety, 
let Y be a nonsingular subvariety of codimension r ;;;, 2, let n: X --+ X be the 
blowing-up of X along Y, and let Y' = rr- 1(Y). 
(a) Show that the maps rr*: Pic X --+ Pic X, and Z --+ Pic X defined by n r--> class 

of nY', give rise to an isomorphism Pic X ~ Pic X EB Z. 
(b) Show that Wx ~ f*wx ® .st((r- 1)Y'). [Hint: By (a) we can write in any 

casewx ~ f* At ® .sf(q Y')for some invertible sheaf A on X, and some integer 
q. By restricting to X - Y' ~ X - Y, show that A ~ Wx. To determine q, 
proceed as follows. First show that Wy· ~ f*wx ® @y.(- q - 1). Then take 
a closed point y E Y and let Z be the fibre of Y' over y. Then show that Wz ~ 

@z(-q- 1). ButsinceZ ~ P'-l,wehavewz ~ @z(-r),soq = r- 1.] 

8.6. The Infinitesimal Lifting Property. The following result is very important in study
ing deformations of nonsingular varieties. Let k be an algebraically closed field, 
let A be a finitely generated k-algebra such that Spec A is a nonsingular variety 
over k. Let 0 --+ I --+ B' --+ B --+ 0 be an exact sequence, where B' is a k-algebra, 
and I is an ideal with I 2 = 0. Finally suppose given a k-algebra homomorphism 
f: A --+ B. Then there exists a k-algebra homomorphism g: A --+ B' making a 
commutative diagram 
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0 
~ 

I 
~ 

g ..--" B' 
.... --- ~ ,.,... .......... f 

A B 

~ 
0 

We call this result the infinitesimal lifting property for A. We prove this result 
in several steps. 
(a) First suppose that g: A ..... B' is a given homomorphism lifting f If g': A ..... B' 

is another such homomorphism, show that 8 = g - g' is a k-derivation of A 
into I, which we can consider as an element of HomA(QA/k,l). Note that since 
I 2 = 0, I has a natural structure of B-module and hence also of A-module. 
Conversely, for any e E HomA(QA/k,l), g' = g + e is another homomorphism 
lifting f (For this step, you do not need the hypothesis about Spec A being 
nonsingular.) 

(b) NowletP = k[x 1, •.. ,x.] beapolynomialringoverkofwhichA is a quotient, 
and let J be the kernel. Show that there does exist a homomorphism h: P ..... B' 
making a commutative diagram, 

0 
~ 

J 

~ 
p 

~ 

A 
~ 
0 

h 

f 

0 
~ 

I 
~ 
B' 

~ 
8 
~ 

0 

and show that h induces an A-linear map Ti:J/] 2 ..... I. 
(c) Now use the hypothesis Spec A nonsingular and (8.17) to obtain an exact 

sequence 
0 ..... J/]2 ..... QP/k@ A ..... QA/k ..... 0. 

Show furthermore that applying the functor Hom A(·,/) gives an exact sequence 

0-+ HomA(QA1k,l)-+ Homp(QP1k,J) ..... HomA(J/]2,1) ..... 0. 

Let e E Homp(QP/k,/) be an element whose image gives TiE HomA(J/12,/). 

Consider 8 as a derivation of P to B'. Then let h' = h - 8, and show that h' 
is a homomorphism of P ..... B' such that h'(J) = 0. Thus h' induces the 
desired homomorphism g: A-+ B'. 

8.7. As an application of the infinitesimal lifting property, we consider the following 
general problem. Let X be a scheme of finite type over k, and let :F be a coherent 
sheaf on X. We seek to classify schemes X' over k, which have a sheaf of ideals 
J such that J 2 = 0 and (X',@x.fJ) ~ (X,@x), and such that J with its resulting 
structure of @x-module is isomorphic to the given sheaf :F. Such a pair X',J 
we call an infinitesimal extension of the scheme X by the sheaf :F. One such 
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extension, the trivial one, is obtained as follows. Take @X' = @x EB ff as sheaves 
of abelian groups, and define multiplication by (a EB f) · (a' EB f') = aa' EB 
(af' + a'f). Then the topological space X with the sheaf of rings @X' is an in
finitesimal extension of X by ff. 

The general problem of classifying extensions of X by ff can be quite com
plicated. So for now, just prove the following special case: if X is affine and 
nonsingular, then any extension of X by a coherent sheaf ff is isomorphic to 
the trivial one. See (III, Ex. 4.10) for another case. 

8.8. Let X be a projective nonsingular variety over k. For any n > 0 we define the 
nth plurigenus of X to be P" = dimkr(X,wj'"). Thus in particular P 1 = p9 • 

Also, for any q, 0 :::;; q :::;; dim X we define an integer hq,o = dimkT(X,Q~1k) 
where m/k = 1\q.QX/k is the sheaf of regular q-forms on X. In particular, for 
q = dim X, we recover the geometric genus again. The integers hq,o are called 
Hodge numbers. 

Using the method of (8.19), show that P" and hq,o are birational invariants of 
X, i.e., if X and X' are birationally equivalent nonsingular projective varieties, 
then Pn(X) = P.(X') and hq·0(X) = hq·0(X'). 

9 Formal Schemes 

One feature which clearly distinguishes the theory of schemes from the older 
theory of varieties is the possibility of having nilpotent elements in the struc
ture sheaf of a scheme. In particular, if Y is a closed subvariety of a variety X, 
defined by a sheaf of ideals f, then for any n ;?: 1 we can consider the closed 
subscheme Y, defined by the nth power f" of the sheaf of ideals f. For n ;?: 2, 
this is a scheme with nilpotent elements. It carries information about Y 
together with the infinitesimal properties of the embedding of Y in X. 

The formal completion of Yin X, which we will define precisely below, is 
an object which carries information about all the infinitesimal neighborhoods 
Y, of Y at once. Thus it is thicker than any Y,, but it is contained inside any 
actual open neighborhood of Yin X. We might call it the formal neighbor
hood of Yin X. 

The idea of considering these formal completions is already implicit in the 
memoir of Zariski [3], where he uses the "holomorphic functions along a 
subvariety" for his proof of the connectedness principle. We will give different 
proofs of some of Zariski's results, using cohomology, in (III, §11). A striking 
application of formal schemes as something in between a subvariety and an 
ambient variety is in Grothendieck's proof of the Lefschetz theorems on 
Pic and rc 1[SGA 2]. This material is also explained in Hartshorne [5, Ch. IV]. 

We will define an arbitrary formal scheme as something which looks 
locally like the completion ofa usual scheme along a closed subscheme. 

Inverse Limits of Abelian Groups 

First we recall the notion of inverse limit. An inverse system of abelian groups 
is a collection of abelian groups An, for each n ;?: 1, together with homomor-
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phisms <f>n·n: An' --+ An for each n' ? n, such that for each n" ? n' ? n we 
have <f>n"n = <f>n·n o <f>n"n'· We will denote the inverse system by (An,<f>n•n), 
or simply (An), with the q> being understood. If (An) is an inverse system of 
abelian groups, we define the inverse limit A = fu!! An to be the set of se
quences {an} E flAn such that <f>n·n(an.) = an for all n' ? n. Clearly A is a 
group. The inverse limit A can be characterized by the following universal 
property: given a group B, and homomorphisms 1/Jn:B--+ An for each n, 
such that for any n' ? n, 1/Jn = <f>n·n o 1/Jn•, then there exists a unique homo
morphism 1/1: B --+ A such that 1/Jn = Pn o 1/1 for each n, where Pn: A --+ An is 
the restriction of the nth projection map fl An --+ A"' 

Ifthe groups An have the additional structure of vector spaces over a field 
k, or modules over a ring R, then the above discussion makes sense in the 
category of k-vector spaces orR-modules. 

Next we study exactness properties of the inverse limit (cf. Atiyah
Macdonald [1, Ch.lO]). A homomorphism (An) --+ (Bn) of inverse systems of 
abelian groups is a collection of homomorphisms fn: An --+ Bn for each n, 
which are compatible with the maps of the inverse system, i.e., for each 
n' ? n, we have a commutative diagram 

A j~. B 
n' -----"-"~-~ n' 

l<f>n•n 

---'h'-"n--~ Bn. 

A sequence 
0 --+ (An) --+ (Bn) --+ ( Cn) --+ 0 

of homomorphisms of inverse systems is exact if the corresponding sequence 
of groups is exact for each n. Given such a short exact sequence of inverse 
systems, one sees easily that the sequence of inverse limits 

0 --+ lim An --+ lim Bn --+ lim Cn 
+----- +----- +--

is also exact. However, the last map need not be surjective. So we say that 
lim is a left exact functor. 
+--

To give a criterion for exactness of lim on the right, we make the following 
+--

definition: an inverse system (An,<f>n·n) satisfies the M ittag-Le.ffler condition 
(ML) iffor each n, the decreasing family {<r>n·n(An.) ~ Anln' ? n} of subgroups 
of An is stationary. In other words, for each n, there is an n0 ? n, such that 
for all n', n" ? n0 , <f>n·n(An.) = <f>n"n(An") as subgroups of An. 

Suppose an inverse system (An) satisfies (ML). Then for each n, we let 
A~ ~ An be the stable image <f>n·n(An.) for any n' ? n0 , which exists by the 
definition. Then one sees easily that (A~) is also an inverse system, with the 
induced maps, and that the maps of the new system (A~) are all surjective. 
Furthermore, it is clear that lim A~ = lim An. So we see that A = lim An 

+----- +----- +--
maps surjectively to each A~. 
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Proposition 9.1. Let 

be a short exact sequence of inverse systems of abelian groups. Then: 
(a) if (Bn) satisfies (ML), so does ( Cn). 
(b) if (An) satisfies (ML), then the sequence of inverse limits 

0 --+ lim An --+ lim Bn --+ lim C. --+ 0 
f-- f-- f--

is exact. 

PROOF. (See also Grothendieck [EGA 0111, 13.2].) 
(a) For each n' ~ n, the image of B •. in B. maps surjectively to the image of 

c •. in c., so (ML) for (B.) implies (ML) for ( Cn) immediately. 
(b) The only nonobvious part is to show that the last map is surjective. 

So let {c.} Ell!!! c .. For each n, let En= g- 1(c.). Then E. is a subset of 
B., and (E.) is an inverse system of sets. Furthermore, each E. is bijective, 
in a noncanonical way, with An, because of the exactness of the sequence 
0 --+ An --+ Bn --+ c. --+ 0. Thus since (An) satisfies (ML), one sees easily that 
(E.) satisfies the Mittag-Leffier condition as an inverse system of sets (same 
definition). Since each En is nonempty, it follows from considering the 
inverse system of stable images as above, that lim E. is also nonempty. Taking 

f--

any element of this set gives an element of ll!!! B. which maps to {c.}. 

Example 9.1.1. If all the maps IPn·n: A •. --+ A. are surjective, then (A.) satis
fies (ML), so (9.lb) applies. 

Example 9.1.2. If(An) is an inverse system of finite-dimensional vector spaces 
over a field, or more generally, an inverse system of modules with descending 
chain condition over a ring, then (A") satisfies (ML). 

Inverse Limits of Sheaves 

In any category <£, we define the notion of inverse limit by analogy with the 
universal property of the inverse limit of abelian groups above. Thus if 
(A.,<pn·n) is an inverse system of objects of(£ (same definition as above), then 
an inverse limit A = lim A. is an object A of<£, together with morphisms 

f--

p.:A --+An for each n, such that for each n' ~ n, Pn = IPn'n o p •. , satisfying the 
following universal property: given any object B of<£, together with mor
phisms t/J.:B--+ A. for each n, such that for each n' ~ n, t/1. = IPn·n a tfJ •. , 
there exists a unique morphism ljJ:B --+A such that for each n, t/1. = Pn a t/J. 
Clearly the inverse limit is unique if it exists. But the question of existence 
depends on the particular category considered. 

Proposition 9.2. Let X be a topological space, and let (£ be the category of 
sheaves of abelian groups on X. Then inverse limits exist in<£. Furthermore, 
if (ff.) is an inverse system of sheaves on X, and ff = ll!!! ffn is its inverse 
limit, then for any open set U, we have r(U,ff) = !!!!! r(U,ffn) in the 
category of abelian groups. 
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PROOF. Given an inverse system of sheaves (~n) on X, we consider the pre
sheaf U ~ lim r(U,~n), where this inverse limit is taken in the category of <--
abelian groups. Now using the sheaf property for each ~n, one verifies 
immediately that this presheaf is a sheaf. Call it ~. Now given any other 
sheaf<:#, and a system of compatible maps 1/Jn:'§ ~ ~n for each n, it follows 
from the universal property of an inverse limit of abelian groups that we 
obtain unique maps, for each U, r(U,<:#) ~ r(U,~). These give a sheaf map 
<:§ ~ ~. thus verifying that ~ is the inverse limit of the ~n in <r. 

Caution 9.2.1. Even though inverse limits exist in the category(£: of abelian 
sheaves on a topological space, one must beware of using intuition derived 
from the category of abelian groups. In particular, the statement of(9.lb) is 
false in <r, even if all maps in the inverse system (An) are surjective. So in 
studying exactness questions, we will always pass to sections over an open 
set, and thus reduce to questions about abelian groups. For more details 
about exactness of!!!!! in <r, see Hartshorne [7, I, §4]. 

Completion of a Ring 

One important application of inverse limits is to define the completion of a 
ring with respect to an ideal. This generalizes the notion of completion of a 
local ring which was discussed in (1, §5). It also forms the algebraic model for 
the completion of a scheme along a closed subscheme which will come next. 

So let A be a commutative ring with identity (as always), and let I be an 
ideal of A. We denote by r the nth power of the ideal I. Then we have 
natural homomorphisms 

... ~ A/I3 ~ A/I2 ~A/I, 

which make (A/ r) into an inverse system of rings. The inverse limit ring 
lim Ajr is denoted by A and is called the completion of A with respect to I <--
or the 1-adic completion of A. For each n we have a natural map A ~ Ajr, 
so by the universal property we obtain a homomorphism A ~ A. 

Similarly, if M is any A-module, we define M = lim MjrM, and call it the 
<---~ 

I-adic completion of M. It has a natural structure of A-module. 

Theorem 9.3A. Let A be a noetherian ring, and I an ideal of A. We denote by ~ 
the I-adic completion as above. Then: 

(a) i = lim Ijr is an ideal of A. For any n, Jn = rA., and A.;Jn ~ Ajr; +--- ~ ~ 

(b) if M is a .finitely generated A-module, then M ~ M @A A; 
(c) the functor M H M is an exact functor on the category of finitely 

generated A -modules; 
(d) A is a noetherian ring; 
(e) if(Mn) is an inverse system, where each Mn is a .finitely generated Ajr

module, each <pn·n: M n' ~ M n is surjective, and ker <pn'n = r M n', then M = 
lim Mn is a .finitely generated A-module, and for each n, Mn ~ MjrM. +---
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PROOFS. 

(a) Atiyah-Macdonald [1, p. 109]. 
(b) [Ibid., p. 108]. 
(c) [Ibid., p. 108]. 
(d) [Ibid., p. 113]. 
(e) Bourbaki [1, Ch. III, §2, no. 11, Prop. & Cor. 14]. 

Formal Schemes 
We begin by defining the completion of a scheme along a closed subscheme. 
For technical reasons we will limit our discussion to noetherian schemes. 

Definition. Let X be a noetherian scheme, and let Y be a closed subscheme, 
defined by a sheaf of ideals .f. Then we define the formal completion of X 
along Y, denoted (X,(I)x ), to be the following ringed space. We take the 
topological space Y, and on it the sheaf of rings (!) x = lim (I) xl .f". Here we 

+--
consider each(!) xl .f" as a sheaf of rings on Y, and make them into an inverse 
system in the natural way. 

Remark 9.3.1. The structure sheaf (!Jx of X actually depends only on the 
closed subset Y, and not on the particular scheme structure on Y. For iff 
is another sheaf of ideals defining a closed subscheme structure on Y, then 
since X is a noetherian scheme, there are integers m,n such that .f 2 ;m and 
f 2 .f". Thus the inverse systems ((l)x/f") and ((l)x/fm) are cofinal with 
each other, and hence have the same inverse limit. 

One sees easily that the stalks of the sheaf (l)g are local rings, so in fact 
(X,(!)x) is a locally ringed space. If U = Spec A is an open affine subset of X, 
and if I s; A is the ideal r( U ,f), then from (9.2) we see that r(X n U ,(I) x) = 

A, the /-adic completion ~fA. Thus the process of completing X along Y 
is analogous to the /-adic completion of a ring discussed above. However, 
one should note that the local rings of X are in general not complete, and 
their dimension ( = dim X) is not equal to the dimension of the underlying 
topological space Y. 

Definition. With X, Y,.f as in the previous definition, let :F be a coherent 
sheaf on X. We define the completion of :F along Y, denoted#, to be the 
sheaf lim :F I .f" :F on Y. It has a natural structure of(!) x-module. 

+---

Definition. A noetherian formal scheme is a locally ringed space (X,@l') which 
has a finite open cover {UJ such that for each i, the pair (U;,(I).<IuJ is 
isomorphic, as a locally ringed space, to the completion of some noetherian 
scheme X; along a closed subscheme Y;. A morphism of noetherian formal 
schemes is a morphism as locally ringed spaces. A sheaf 0: of @..-modules is 
said to be coherent if there is a finite open cover U; as above, with U; ~ X;, 
and for each i there is a coherent sheaf :F; on!; such that O:lu, ~ #;as 
&x,-modules via the given isomorphism U; ~ X;. 
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Examples 9.3.2. If X is any noetherian scheme, and Y a closed subscheme, 
then its completion X is a formal scheme. Such a formal scheme, which can be 
obtained by completing a single noetherian scheme along a closed subscheme, 
is called algebraizable. It is not so easy to give examples, but there are 
nonalgebraizable noetherian formal schemes-see Hironaka and Matsumura 
[1, §5] or Hartshorne [5, V, 3.3, p. 205]. 

Example 9.3.3. If X is a noetherian scheme, and we take Y = X, then X = X. 
Thus the category of noetherian formal schemes includes all noetherian 
schemes. 

Example 9.3.4. If X is a noetherian scheme, and Y is a closed point P, then 
X is a one point space { P} with the completion@ P of the local ring at Pas its 
structure sheaf. An &rmodule M, considered as a sheaf on X, is coherent 
if and only if M is a finitely generated module. Indeed, clearly coherent 
implies finitely generated. But the converse is also true since we can obtain 
X by completing the scheme Spec@ Pat its closed point, and any finitely gener
ated &rmodule M corresponds to a coherent sheaf on Spec @p. 

Next we will study the structure of coherent sheaves on a formal scheme. 
As in the study of coherent sheaves on usual schemes in §5, we first analyze 
what happens in the affine case. 

Definition. An affine (noetherian) formal scheme is a formal scheme obtained 
by completing a single affine noetherian scheme along a closed subscheme. 
If X = Spec A, Y = V(I), and X = X, then for any finitely generated 
A-module M, we define the sheaf M6. on X to be the completion of the 
coherent sheaf M on X. Thus by definition, M6. is a coherent sheaf on X. 

Proposition 9.4. Let A be a noetherian ring, I an ideal of A, let X = Spec A, 
Y = V(I), and let X = X. Then: 

(a) 3 = J6. is a sheaf of ideals in (1) 30 , and for any n, (1),J:5" ~ (Ajl")
as sheaves on Y; 

(b) if M is a .finitely generated A-module, then Mf!,. = M ®@x mx. 
(c) The functor M ~ M6. is an exact functor from the category of 

finitely generated A-modules to the category of coherent mx-modules. 

PROOF. In each case we have a statement about sheaves on X. Since the open 
affine subsets of X form a base for the topology of X, and their intersections 
with Y a base for the topology of Y, it will be sufficient to establish the cor
responding property of the sections over any such open set. So let U = 

Spec B be an open affine subset of X, let J = r(U,l), and for any finitely 
generated A-module M, let N = r(U,M). Then B is a noetherian ring (3.2), 
N is a finitely generated B-module (5.4), and the functor M ~ N is an exact 
functor from A-modules to B-modules (5.5). 
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We prove (c) first. So let M be a finitely generated A-module. Then 
Mt> = lim MjlnM by definition, so by (9.2), r(U,Mt>) = lim r(U,Mj[nM). --- ~ --But this is equal to lim NjrN = N, where~ now denotes the J-adic comple-

+-- ~ 

tion of a B-module. Now M t--> N is exact as we saw above, and N t--> N is 
exact by (9.3A). Thus M t--> r(U,Mt>) is exact for each U, and so M t--> Mt> 
is exact. 

(a) For any U as above, r(U,It>) = lim r(U,lj[n) = J. Furthermore 
r(U,(!)x) = B similarly. But by (9.3A), J i~ ideal of B, so this shows that 
3 = It> is a sheaf of ideals in (1)_,. 

Now we consider the exact sequence of A-modules 

o ~ r ~ A ~ Afr ~ o. 

According to (c) which we have already proved, this gives an exact sequence 
of {!}x-modules 

0 ~ 3n ~ (!):li ~ (Ajr)l> ~ 0. 

Observe that the inverse system which defines (Ajr)t> as the completion of 
(Ajrf is eventually stationary, since this sheaf is annihilated by Jn. Hence 
(Ajr)t> = (A/ IT, and we conclude that (!)x j3n ~ (Afrr as required. 

(b) We have a slight abuse of notation in our statement: since M and (!)x 
are sheaves on X, we should actually write Mt> ~ Mly ®(f!xiY (!)x· But we 
will simply regard Mt> and (!)x as sheaves on X, by extending by zero outside 
of Y (Ex. 1.19). For any finitely generated A module M, and for U an open 
set as above, we have r(U,Mt>) = N as before. On the other hand, M ®(fix 
(!)x is the sheaf associated to the presheaf 

U t--> r(U,M) ®r(U,(f!x) r(U,(!)x) = N ®B B. 

Since N ~ N <8> B B by (9.3A), we conclude that the corresponding sheaves 
are isomorphic too: Mt> ~ M ®(fix (!)x· 

Definition. Let (X,@ x) be a noetherian formal scheme. A sheaf of ideals 3 s; (!)x 
is called an ideal of definition for X if Supp @_,/3 = X and the locally 
ringed space (X,@x/3) is a noetherian scheme. 

Proposition 9.5. Let (X,(!)x) be a noetherian formal scheme. 
(a) If 3 1 and 3 2 are two ideals of definition, then there are integers 

m,n > 0 such that 3 1 2 3'2 and 3 2 2 31. 
(b) There is a unique largest ideal of definition 3, characterized by the 

fact that (X,@x/3) is a reduced scheme. In particular, ideals of definition 
exist. 

(c) If3 is an ideal of definition, so is 3n,for any n > 0. 

PROOF. 

(a) Let 3 1 and 3 2 be two ideals of definition. Then on the topological 
space X, we have surjective maps of sheaves of rings f 1 :(!)x ~ @x/3 1 and 
f 2 :(!)f. ~ (9x/32 • For any point P EX, the stalk (32)p of 3 2 at Pis contained 
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in mp, the maximal ideal of the local ring {!)<,P· Indeed, 0.,,P/(3 2 )p is the local 
ring of P on the scheme (I,<'~\/3 2 ). In particular, it is nonzero, so (3 2 )p s; 
mp. Now we consider the sheaf of ideals f 1(32 ) on the scheme (I,<'9x/3d. 
For each point P, its stalk is contained inside the maximal ideal of the local 
ring. Hence every local section of f 1(32 ) is nilpotent (Ex. 2.18), and since 
(I,<'9x/3d is a noetherian scheme, f 1(3 2 ) itself is nilpotent. This shows that 
for some m > 0, 3 1 2 3~. The other way follows by symmetry. 

(b) Suppose (I,<'9.{/3d is a reduced scheme. Then in the proof of (a), we 
find f 1(:J 2 ) = 0, so 3 1 2 :J2 . Thus such an :J 1 is largest, if it exists. Since 
it is unique, the existence becomes a local question. Thus we may assume 
that I is the completion of an affine noetherian scheme X along a closed 
subscheme Y. By (9.3.1) we may assume that Y has the reduced induced 
structure. Let X = Spec A, Y = V{l). Then by (9.4), :J = 16. is an ideal in 
<'91 , and <'91 /:J ~(A/I)- = <'9y. Thus 3 is an ideal of definition for which 
(I,0x/3) is reduced. This shows the existence of the largest ideal of de.finition. 

(c) Let 3 be any ideal of definition, and suppose given n > 0. Let 3 0 be 
the unique largest ideal of definition. Then by (a), there is an integer r such 
that :J 2 3~, and hence :J" 2 :J0. First note that 30 is an ideal of defini
tion. Indeed, this can be checked locally. If 3 0 = 16. on an affine, using the 
notation of (b), then <'91 /:J() ~ (A/l"T by (9.4), so (I,<'9.d30) is a scheme 
with support Y. Let's call this scheme Y', and let f:<'9x-+ <'9y· be the corre
sponding map of sheaves. Then (Y',<'9r·l.f(3)) = (I/Dx/:3) is a noetherian 
scheme, by hypothesis, so f(:J) is a coherent sheaf. Therefore f(:J") = f(:J)" 
is also coherent, and we conclude that ( Y',<'9r·l.f(:J")) = (I,<'9.{/:J") is also a 
noetherian scheme. 

Proposition 9.6. Let I be a noetherian formal scheme and let :J be an ideal of 
definition. For each n > 0 we denote by Yn the scheme (I,<'9x/3"). 

(a) If (j is a coherent sheaf of (():cmodules, then for each n, .?n = g;j:J"(j 
is a coherent sheaf of @y"-modules, and (j ~ fu!! .?". 

(b) Conversely, suppose given for each n a coherent <'9y"-module .?", 
together with surjective maps CfJn·n: .?n' --> .?, for each n' ~ n, making { .?n} 
into an inverse system of sheaves. Assume furthermore that for each n' ~ n, 
ker CfJn·n = 3"-?n'· Then (j = fu!! .?n is a coherent (Ocmodule, and for 
each n, .?n ~ !J/3"(j. 

PROOF. 

(a) The question is local, so we may assume that l is affine, equal to the 
completion of X = Spec A along Y = V(I), and that (j = Mt::, for some 
finitely generated A-module M. Then as in the proof of (9.4a) we see that 
(jj:J"(j ~ (Mjl"M)- for each n. Thus .?n is coherent on Y. = Spec(A/1"), 
and (J ~ fu!! .?n. 

(b) Again the question is local, so we may assume that I is affine as 
above. Furthermore, we may assume that A is /-adically complete, because 
replacing A by A does not change X. For each n, let M. = T( Y,, .?.). Then 
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(Mn) is an inverse system of modules satisfying the hypotheses of (9.3Ae). 
Therefore we conclude that M = !!!!! Mn is a finitely generated A-module 
(since A is complete), and that for each n, Mn ~ MjrM. But then ~ = 
lim :Fn is just M", hence it is a coherent (!)I -module. Furthermore ~~~n~ ~ --(MWMr as in (a), so ~~~n~ ~ :Fn. 

Theorem 9.7. Let A be a noetherian ring, I an ideal, and assume that A is 
I -adically complete. Let X = Spec A, Y = V(l), and X = X. Then the 
functors M ~ Mt; and ~ ~ r(X,~) are exact, and inverse to each other, 
on the categories of finitely generated A -modules and coherent (!) :cmodules 
respectively. Thus they establish an equivalence of categories. In par
ticular, every coherent {!}x-module ~ is of the form Mt; for some M. 

PROOF. We have already seen that M ~ Mt; is exact (9.4). If M is an A
module of finite type, then F(X,Mt;) = lim MjrM = M, and M = M be---cause A is complete (9.3Ab). Thus one composition of our two functors is 
the identity. 

Conversely, let ~ be a coherent (!Jrmodule, and let ~ = It;. Then by 
(9.6a), ~ ~ lim :Fn, where for each n > 0, :Fn = ~~~n~. Now the inverse --system of sheaves (:Fn) satisfies the hypotheses of (9.6b), and the proof of 
(9.6b) shows in fact that~ ~ Mt;, for some finitely generated A-module M. 
Furthermore, by (9.2), r(X,~) = limr(Y,(MWMr) = limMjrM = M, --- --which is equal to M since A is complete. This shows that r(X,m is a finitely 
generated A-module, and~ ~ r(X,~)t;. Thus the other composition of our 
two functors is the identity. 

It remains to show that the functor r(X,-) is exact on the category of 
coherent @_.-modules. So let 

0 --+ ~1 --+ ~2 --+ ~3 --+ 0 

be an exact sequence of coherent {!}:~:-modules. For each i, let M; = r(X,~J 

Then the M; are finitely generated A-modules, and we have at least a left
exact sequence 

0--+ M 1 --+ M 2 --+ M 3 . 

Let R be the cokernel on the right. Then applying the functor t; we obtain 
an exact sequence 

0 --+ Mf --+ M~ --+ M~ --+ Rt; --+ 0 

on X. But for each i, Mf ~ ~i as we saw above, so we conclude that Rt; = 

0. But also by the above, R = r(X,Rt;), so R = 0. This shows that r(X, ·) 
is exact, which concludes the proof. 

Corollary 9.8. If X is any noetherian scheme, Y a closed subscheme, and 
X = X the completion along Y, then the functor :F ~ .# is an exact functor 
from coherent (!)x-modules to coherent (!)rmodules. Furthermore, if~ is 
the sheaf of ideals of Y, and .J its completion, then we have .#;.Jn,# ~ 
:F/~n:F for each n, and.#~ :F ®(!lx (!)x· 
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9 Formal Schemes 

PROOF. These questions are all local, in which case they reduce to (9.4). 

Corollary 9.9. Any kernel, cokernel, or image of a morphism of coherent 
sheaves on a noetherian formal scheme is again coherent. 

PROOF. These questions are also local, in which case they follow from (9. 7). 

Remark 9.9.1. It is also true that an extension of coherent sheaves on a 
noetherian formal scheme is coherent (Ex. 9.4). On the other hand, some 
properties of coherent sheaves on usual schemes do not carry over to formal 
schemes. For example, if X is the completion of a projective variety X <;; 

P~ along a closed subvariety Y, and if lDx(l) = lDx(lt, then there may be 
nonzero coherent sheaves !j on X such that r(X,!j(v)) = 0 for all v E Z. In 
particular, no twist of !j is generated by global sections (III, Ex. 11. 7). 

EXERCISES 

9.1. Let X be a noetherian scheme, Y a closed subscheme, and X the completion of 
X along Y. We call the ring r(X,(I)x) the ring of formal-regular functions on X 
along Y. In this exercise we show that if Y is a connected, nonsingular, positive
dimensional subvariety of X = P~ over an algebraically closed field k, then 
r(X,(I)x) = k. 
(a) Let § be the ideal sheaf of Y. Use (8.13) and (8.17) to show that there is an 

inclusion of sheaves on Y, §j§2 4 (l)y(-1)"+ 1. 

(b) Show that for any r ;;:: 1, T(Y,§'j§'+ 1) = 0. 
(c) Use the exact sequences 

and induction on r to show that F(Y,(I)x/§') = k for all r ;;:: 1. (Use (8.21Ae).) 
(d) Conclude that r(X,(I)x) = k. (Actually, the same result holds without the 

hypothesis Y nonsingular, but the proof is more difficult-see Hartshorne 
[3, (7.3)].) 

9.2. Use the result of (Ex. 9.1) to prove the following geometric result. Let Y c;; X = 
P~ be as above, and let f:X--> Z be a morphism of k-varieties. Suppose that 
f(Y) is a single closed point P E Z. Then f(X) = P also. 

9.3. Prove the analogue of (5.6) for formal schemes, which says, if :tis an affine formal 
scheme, and if 

0 --> ~' ..... ~ ..... ~" ..... 0 

is an exact sequence of {l)x-modules, and if ~, is coherent, then the sequence of 
global sections 

is exact. For the proof, proceed in the following steps. 
(a) Let 3 be an ideal of definition for :t, and for each n > 0 consider the exact 

sequence 
0 ..... ~'/3"~'--> ~/3"~'--> ~" ..... 0. 

199 



II Schemes 

Use (5.6), slightly modified, to show that for every open affine subset U s; l:, 
the sequence 

is exact. 
(b) Now pass to the limit, using (9.1), (9.2), and (9.6). Conclude that~ ~ !!!!! ~/3"~' 

and that the sequence of global sections above is exact. 

9.4. Use (Ex. 9.3) to prove that if 

0 --> ~' --> ~ --> ~" --> 0 

is an exact sequence of {9x-modules on a noetherian formal scheme l:, and if~',~" 
are coherent, then~ is coherent also. 

9.5. If~ is a coherent sheaf on a noetherian formal scheme l:, which can be generated 
by global sections, show in fact that it can be generated by a finite number of its 
global sections. 

9.6. Let l: be a noetherian formal scheme, let 3 be an ideal of definition, and for each 
n, let Y, be the scheme (l:,@x/3"). Assume that the inverse system of groups 
(r(Y,,@y.)) satisfies the Mittag-Leffler condition. Then prove that Pic l: = 
!!!!! Pic Y,. As in the case of a scheme, we define Pic l: to be the group of locally 
free {9x-modules of rank 1 under the operation (8). Proceed in the following steps. 
(a) Use the fact that ker(r(Y,+ 1,@yn+,) --> r(Y,,@y.)) is a nilpotent ideal to show 
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that the inverse system (r(Y,,@t)) of units in the respective rings also satisfies 
(ML). 

(b) Let ~be a coherent sheaf of @,-modules, and assume that for each n, there is 
some isomorphism cp.: ~p·~ ~ @y n' Then show that there is an isomorphism 
~-~ (!)_,. Be careful, because the <p. may not be compatible with the maps in 
the two inverse systems m/3"m and ((l)yJ! Conclude that the natural map 
Pic l: --> !!!!! Pic Y, is injective. 

(c) Given an invertible sheaf!£'. on Y, for each n, and given isomorphisms!£'.+ 1 (8) 

@y" ~ !£'.,construct maps!£' •. -->!£'.for each n' ~ n so as to make an inverse 
system, and show that £ = !!!!! !£'. is a coherent sheaf on l:. Then show that 
£ is locally free of rank 1, and thus conclude that the map Pic l: --> lim Pic Y, 
is surjective. Again be careful, because even though each !£'. is locilly free of 
rank 1, the open sets needed to make them free might get smaller and smaller 
with n. 

(d) Show that the hypothesis "(r(Y,,@y.)) satisfies (ML)" is satisfied if either l: is 
affine, or each Y, is projective over a field k. 
Note: See (III, Ex. 11.5-11. 7) for further examples and applications. 



CHAPTER III 

Cohomology 

In this chapter we define the general notion of cohomology of a sheaf of 
abelian groups on a topological space, and then study in detail the coho
mology of coherent and quasi-coherent sheaves on a noetherian scheme. 

Although the end result is usually the same, there are many different ways 
of introducing cohomology. There are the fine resolutions often used in 
several complex variables-see Gunning and Rossi [1]; the Cech coho
mology used by Serre [3], who first introduced cohomology into abstract 
algebraic geometry; the canonical flasque resolutions ofGodement [1]; and 
the derived functor approach of Grothendieck [ 1]. Each is important in its 
own way. 

We will take as our basic definition the derived functors of the global 
section functor (§1, 2). This definition is the most general, and also best 
suited for theoretical questions, such as the proof of Serre duality in §7. 
However, it is practically impossible to calculate, so we introduce Cech 
cohomology in §4, and use it in §5 to compute explicitly the cohomology of 
the sheaves llJ(n) on a projective space P'. This calculation is the basis of 
many later results on projective varieties. 

In order to prove that the Cech cohomology agrees with the derived 
functor cohomology, we need to know that the higher cohomology of a 
quasi-coherent sheaf on an affine scheme is zero. We prove this in §3 in the 
noetherian case only, because it is technically much simpler than the case 
of an arbitrary affine scheme ([EGA III, §1]). Hence we are bound to in
clude noetherian hypotheses in all theorems involving cohomology. 

As applications, we show for example that the arithmetic genus of a 
projective variety X, whose definition in (I, §7) depended on a projective 
embedding of X, can be computed in terms of the cohomology groups 
Hi(X,lDx), and hence is intrinsic (Ex. 5.3). We also show that the arithmetic 
genus is constant in a family of normal projective varieties (9.13). 
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III Cohomology 

Another application is Zariski's main theorem (11.4) which is important 
in the birational study of varieties. 

The latter part of the chapter (§8-12) is devoted to families of schemes, 
i.e., the study of the fibres of a morphism. In particular, we include a section 
on flat morphisms and a section on smooth morphisms. While these can 
be treated without cohomology, it seems to be an appropriate place to 
include them, because flatness can be understood better using cohomology 
(9.9). 

1 Derived Functors 

In this chapter we will assume familiarity with the basic techniques of 
homological algebra. Since notation and terminology vary from one source 
to another, we will assemble in this section (without proofs) the basic defini
tions and results we will need. More details can be found in the following 
sources: Godement [1, esp. Ch. I, §1.1-1.8, 2.1-2.4, 5.1-5.3], Hilton and 
Stammbach [1, Ch. II,IV,IX], Grothendieck [1, Ch. II, §1,2,3], Cartan and 
Eilenberg [1, Ch. III,V], Rotman [1, §6]. 

Definition. An abelian category is a category m:, such that: for each A,B E 

Ob m:, Hom(A,B) has a structure of an abelian group, and the composi
tion law is linear; finite direct sums exist; every morphism has a kernel 
and a cokernel; every monomorphism is the kernel of its co kernel, every 
epimorphism is the co kernel of its kernel; and finally, every morphism 
can be factored into an epimorphism followed by a monomorphism. 
(Hilton and Stammbach [1, p. 78].) 

The following are all abelian categories. 

Example 1.0.1. m:b, the category of abelian groups. 

Example 1.0.2. 9Jlob(A), the category of modules over a ring A (commutative 
with identity as always). 

Example 1.0.3. m:b(X), the category of sheaves of abelian groups on a 
topological space X. 

Example 1.0.4. 9Jlob(X), the category of sheaves of CDx-modules on a ringed 
space (X,CDx). 

Example 1.0.5 . .Qco(X), the category of quasi-coherent sheaves of CDx
modules on a scheme X (II, 5.7). 

Example 1.0.6. (tof)(X), the category of coherent sheaves of CDx-modules on 
a noetherian scheme X (II, 5. 7). 
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Example 1.0.7. <rol)(.I), the category of coherent sheaves of mx-modules on 
a noetherian formal scheme (3:,@30 ) (II, 9.9). 

In the rest of this section, we will be stating some basic results of homo
logical algebra in the context of an arbitrary abelian category. However, in 
most books, these results are proved only for the category of modules over 
a r!ag, and proofs are often done by "diagram-chasing": you pick an element 
and chase its images and pre-images through a diagram. Since diagram
chasing doesn't make sense in an arbitrary abelian category, the conscientious 
reader may be disturbed. There are at least three ways to handle this difficulty. 
(1) Provide intrinsic proofs for all the results, starting from the axioms of an 
abelian category, and without even mentioning an element. This is cumber
some, but can be done-see, e.g., Freyd [ 1]. Or (2), note that in each of the 
categories we use (most of which are in the above list of examples), one can 
in fact carry out proofs by diagram-chasing. Or (3), accept the "full embed
ding theorem" (Freyd [1, Ch. 7]), which states roughly that any abelian 
category is equivalent to a subcategory of'llb. This implies that any category
theoretic statement (e.g., the 5-lemma) which can be proved in 'llb (e.g., by 
diagram-chasing) also holds in any abelian category. 

Now we begin our review of homological algebra. A complex A. in an 
abelian category 'll is a collection of objects Ai, i E Z, and morphisms 
di:Ai--> Ai+t, such that di+ 1 o di = 0 for all i. If the objects A; are specified 
only in a certain range, e.g., i ~ 0, then we set A; = 0 for all other i. A 
morphism of complexes, f:A'-+ B. is a set of morphisms P:Ai-+ Bi for 
each i, which commute with the coboundary maps di. 

The ith cohomology object hi(A") of the complex A" is defined to be 
ker d; jim d;- 1 . Iff: A· -+ B" is a morphism of complexes, then f induces a 
natural map hi(f):hi(A")-+ hi(B"). If 0-+ A. -+ B" -+ C -+ 0 is a short 
exact sequence of complexes, then there are natural maps bi: hi( C) -+ hi+ 1(A") 
giving rise to a long exact sequence 

Two morphisms of complexes f,g:A· -+ B" are homotopic (written f ~ g) 
if there is a collection of morphisms ki:Ai-+ Bi- 1 for each i (which need 
not commute with the di) such that f - g = dk + kd. The collection of mor
phisms, k = (ki) is called a homotopy operator. Iff ~ g, then f and g induce 
the same morphism hi(A") -+ hi(B") on the cohomology objects, for each i. 

A covariant functor F: 'll -+ m from one abelian category to another is 
additive if for any two objects A,A' in 'll, the induced map Hom(A,A') -+ 
Hom(F A,F A') is a homomorphism of abelian groups. F is left exact if it is 
additive and for every short exact sequence 

0 -+ A' --> A -+ A" -+ 0 
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in~. the sequence 
0--+ FA'--+ FA--+ FA" 

is exact in '.8. If we can write a 0 on the right instead of the left, we say F is 
right exact. If it is both left and right exact, we say it is exact. If only the 
middle part FA' --+ FA --+ FA" is exact, we say F is exact in the middle. 

For a contravariant functor we make analogous definitions. For example, 
F: ~ --+ '.8 is left exact if it is additive, and for every short exact sequence as 
above, the sequence 

0--+ FA"--+ FA--+ FA' 
is exact in '.8. 

Example 1.0.8. If~ is an abelian category, and A is a fixed object, then the 
functor B --+ Hom(A,B), usually denoted Hom(A, · ), is a covariant left exact 
functor from ~ to ~b. The functor Hom(· ,A) is a contravariant left exact 
functor from ~ to ~b. 

Next we come to resolutions and derived functors. An object I of~ is 
injective if the functor Hom(· ,1) is exact. An injective resolution of an object 
A of~ is a complex r, defined in degrees i ;;::: 0, together with a morphism 
e:A --+ 1°, such that Ji is an injective object of~ for each i ;;::: 0, and such 
that the sequence 

is exact. 
If every object of~ is isomorphic to a subobject of an injective object of 

~'then we say~ has enough injectives. If~ has enough injectives, then every 
object has an injective resolution. Furthermore, a well-known lemma states 
that any two injective resolutions are homotopy equivalent. 

Now let~ be an abelian category with enough injectives, and let F: ~ --+ '.8 
be a covariant left exact functor. Then we construct the right derived functors 

RiF, i ;;::: 0, ofF as follows. For each object A of~, choose once and for all 
an injective resolution r of A. Then we define RiF(A) = hi(F(r) ). 

Theorem l.lA. Let ~ be an abelian category with enough injectives, and let 

F: ~ --+ '.8 be a covariant left exact functor to another abelian category '.8. 
Then 

(a) For each i ;;::: 0, RiF as defined above is an additive functor from~ 
to '.8. Furthermore, it is independent (up to natural isomorphism of functors) 

of the choices of injective resolutions made. 
(b) There is a natural isomorphism F ~ R 0 F. 
(c) For each short exact sequence 0--+ A' --+A --+A" --+ 0 and for each 

i;;::: 0 there is a natural morphism Ji:RiF(A")--+ Ri+ 1F(A'), such that we 

obtain a long exact sequence 

... --+ R;F(A') --+ R;F(A) --+ R;F(A") ~ Ri+ 1 F(A') --+ Ri+ 1 F(A) --+ ... 

204 



1 Derived Functors 

(d) Given a morphism of the exact sequence of (c) to another 0 ~ B' ~ 
B ~ B" ~ 0, the 6's give a commutative diagram 

R;F(A") ~ Ri+ 1 F(A') 

! ! 
R;F(B") ~ Ri+ 1 F(B'). 

(e) For each injective object I of m:, and for each i > 0, we have 
RiF(I) = 0. 

Definition. With F:m: ~mas in the theorem, an object J of m: is acyclic for 
F if RiF(J) = 0 for all i > 0. 

Proposition 1.2A. With F: m: ~ m as in (l.lA), suppose there is an exact 
sequence 

0 ~ A ~ Jo ~ 11 ~ ... 

where each f is acyclic for F, i ): 0. (We say J' is an F-acyclic resolution 
of A.) Then for each i ): 0 there is a natural isomorphism RiF(A) ~ 
h;(F(J') ). 

We leave to the reader the analogous definitions of projective objects, 
projective resolutions, an abelian category having enough projectives, and 
the left derived functors of a covariant right exact functor. Also, the right 
derived functors of a left exact contravariant functor (use projective resolu
tions) and the left derived functors of a right exact contravariant functor 
(use injective resolutions). 

Next we will give a universal property of derived functors. For this 
purpose, we generalize slightly with the following definition. 

Definition. Let m: and m be abelian categories. A (covariant) 6-functor from 
m: tom is a collection of functors T = (Ti);"o' together with a morphism 
6;: Ti(A") ~ yi+ 1(A') for each short exact sequence 0 ~A'~ A~ A"~ 0, 
and each i ): 0, such that: 

(1) For each short exact sequence as above, there is a long exact sequence 

0 ~ T 0(A') ~ T 0(A) ~ T 0(A") ~ T 1(A') ~ .. . 

. . . ~ Ti(A) ~ Ti(A") ~ yi+ 1(A') ~ yi+ 1(A) ~ ... ; 

(2) for each morphism of one short exact sequence (as above) into another 
0 ~ B' ~ B ~ B" ~ 0, the 6's give a commutative diagram 

Ti(A") ~ yi+ l(A') 

! . ! 
Ti(B") ~ yi+ 1(B'). 

Definition. The 6-functor T = (Ti):m: ~ m is said to be universal if, given 
any other 6-functor T' = (T'i):m: ~ m, and given any morphism of 
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functors f 0 : T 0 --+ T' 0 , there exists a unique sequence of morphisms 
f;: T; --+ T'; for each i ~ 0, starting with the given f 0 , which commute 
with the fi for each short exact sequence. 

Remark 1.2.1. If F:21--+ lB is a covariant additive functor, then by definition 
there can exist at most one (up to unique isomorphism) universal <5-functor 
T with T 0 = F. If T exists, the T; are sometimes called the right satellite 
functors of F. 

Definition. An additive functor F: 21 --+ lB is effaceable if for each object A 
of21, there is a monomorphism u:A--+ M, for some M, such that F(u) = 

0. It is coeffaceable if for each A there exists an epimorphism u:P --+ A 
such that F(u) = 0. 

Theorem 1.3A. Let T = (T;);;.o be a covariant <5-functor from 21 to lB. If 
T; is effaceable for each i > 0, then T is universal. 

PROOF. Grothendieck (1, II, 2.2.1] 

Corollary 1.4. Assume that 21 has enough injectives. Then for any left exact 
functor F:21 --+ !8, the derived functors (R;F);;.o form a universal <5-functor 
with F ~ R 0 F. Conversely, if T = (T;);;.o is any universal <5-functor, 
then T 0 is left exact, and the T; are isomorphic to R;To for each i ~ 0. 

PROOF. IfF is a left exact functor, then the (R;Fb 0 form a c5-functor by 
(l.lA). Furthermore, for any object A, let u:A --+I be a monomorphism of 
A into an injective. Then R;F(I) = 0 for i > 0 by (l.lA), so R;F(u) = 0. 
Thus R;F is effaceable for each i > 0. It follows from the theorem that 
(R;F) is universal. 

On the other hand, given a universal <5-functor T, we have T 0 left exact 
by the definition of <5-functor. Since 21 has enough injectives, the derived 
functors R;To exist. We have just seen that (R;T0 ) is another universal 
c5-functor. Since R 0 T 0 = T 0 , we find R;To ~ T; for each i, by (1.2.1). 

2 Cohomology of Sheaves 

In this section we define cohomology of sheaves by taking the derived 
functors of the global section functor. Then as an application of general 
techniques of cohomology we prove Grothendieck's theorem about the 
vanishing of cohomology on a noetherian topological space. To begin with, 
we must verify that the categories we use have enough injectives. 

Proposition 2.1A. If A is a ring, then every A-module is isomorphic to a sub
module of an injective A-module. 

PROOF. Godement [1, I, 1.2.2] or Hilton and Stammbach [1, I, 8.3]. 
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Proposition 2.2. Let (X,C9x) be a ringed space. Then the category Wlob(X) 
of sheaves of C9x-modules has enough injectives. 

PROOF. Let ff be a sheaf of C9x-modules. For each point x EX, the stalk 
ffx is an mx,x-module. Therefore there is an injection ffx--+ IX, where IX is 
an injective (9 x x-module (2.1A). For each point x, let j denote the inclusion 
of the one-poi~t space {x} into X, and consider the sheaf f = Oxed*(JJ. 
Here we consider Ix as a sheaf on the one-point space {x}, and j* is the 
direct image functor (II, §1). 

Now for any sheaf r§ of C9x-modules, we have Hom(l)x(r§,f) = 
0 Hom(l)x(r§,j*(JJ) by definition of the direct product. On the other hand, 
for each point x EX, we have Hom(l)x(r§,j*(IJ) ~ Hom(l)x,Jr§x,JJ as one 
sees easily. Thus we conclude first that there is a natural morphism of 
sheaves of C9x-modules ff--+ f obtained from the local maps ffx--+ Ix. It 
is clearly injective. Second, the functor Hom(l)x( ·,f) is the direct product 
over all x EX of the stalk functor r§ ~---+ r§ x• which is exact, followed by 
Hom(l)x,X(·,Jx), which is exact, since IX is an injective mx,x-module. Hence 
Hom(· ,f) is an exact functor, and therefore f is an injective C9x-module. 

Corollary 2.3. If X is any topological space, then the category mb(X) of 
sheaves of abelian groups on X has enough injectives. 

PROOF. Indeed, if we let C9x be the constant sheaf of rings Z, then (X,C9x) is 
a ringed space, and Wlob(X) = mb(X). 

Definition. Let X be a topological space. Let r(X, ·) be the global section 
functor from mb(X) to mb. We define the cohomology functors H;(X, ·) 
to be the right derived functors of r(X,- ). For any sheaf ff, the groups 
Hi(X,ff) are the cohomology groups of !F. Note that even if X and ff 
have some additional structure, e.g., X a scheme and ff a quasi-coherent 
sheaf, we always take cohomology in this sense, regarding ff simply as 
a sheaf of abelian groups on the underlying topological space X. 

We let the reader write out the long exact sequences which follow from 
the general properties of derived functors (l.lA). 

Recall (II, Ex. 1.16) that a sheaf ff on a topological space X is fiasque if 
for every inclusion of open sets V s; U, the restriction map ff(U) --+ ff(V) 
is surjective. 

Lemma 2.4. If (X,C9x) is a ringed space, any injective C9x-module is fiasque. 

PROOF. For any open subset U s; X, let C9u denote the sheaf NC9xlu), which 
is the restriction of C9x to U, extended by zero outside U (II, Ex. 1.19). Now 
let f be an injective C9x-module, and let V s; U be open sets. Then we 
have an inclusion 0--+ C9v--+ C9u of sheaves of C9x-modules. Since f is injec
tive, we get a surjection Hom(C9u.f)--+ Hom(C9v,f)--+ 0. But Hom(C9u,f) = 

f(U) and Hom(C9v,f) = f(V), so f is flasque. 
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Proposition 2.5. If :#' is a fiasque sheaf on a topological space X, then 
H;(X,ff) = 0 for all i > 0. 

PROOF. Embed:#' in an injective object§ of 2lb(X) and let<§ be the quotient: 

0 ~ g; ~ § ~ <;§ ~ 0. 

Then :#' is ftasque by hypothesis, § is flasque by (2.4), and so <§ is ftasque 
by (II, Ex. 1.16c). Now since :#' is flasque, we have an exact sequence 
(II, Ex. 1.16b) 

0 ~ r(X,:F) ~ r(X,§) ~ r{X,<§) ~ 0. 

On the other hand, since § is injective, we have H;(X,§) = 0 for i > 0 
(l.lAe). Thus from the long exact sequence of cohomology, we get 
H 1(X,ff) = 0 and H;(X,ff) ~ H;- 1(X,<§) for each i ;:::,: 2. But <§ is also 
flasque, so by induction on i we get the result. 

Remark 2.5.1. This result tells us that flasque sheaves are acyclic for the 
functor r(X, · ). Hence we can calculate cohomology using ftasque resolu
tions (1.2A). In particular, we have the following result. 

Proposition 2.6. Let (X,@x) be a ringed space. Then the derived functors of 
the functor r(X, ·) from 9Rob(X) to 2lb coincide with the cohomology 
functors Hi( X,·). 

PROOF. Considering r{X, ·) as a functor from 9Rob(X) to 2lb, we calculate 
its derived functors by taking injective resolutions in the category 9Rob(X). 
But any injective is flasque (2.4), and flasques are acyclic (2.5) so this resolu
tion gives the usual cohomology functors (1.2A). 

Remark 2.6.1. Let (X,@x) be a ringed space, and let A = r{X,@x). Then 
for any sheaf of @x-modules :#', r(X,:F) has a natural structure of A-module. 
In particular, since we can calculate cohomology using resolutions in the 
category 9Rob(X), all the cohomology groups of:#' have a natural structure 
of A-module; the associated exact sequences are sequences of A-modules, 
and so forth. Thus for example, if X is a scheme over Spec B for some ring 
B, the cohomology groups of any @x-module :#'have a natural structure of 
B-module. 

A Vanishing Theorem ofGrothendieck 

Theorem 2. 7 ( Grothendieck [ 1] ). Let X be a noetherian topological space of 
dimension n. Then for all i > n and all sheaves of abelian groups :#' on 
X, we have W(X,:F) = 0. 

Before proving the theorem, we need some preliminary results, mainly 
concerning direct limits. If (!Fa) is a direct system of sheaves on X, indexed 
by a directed set A, then we have defined the direct limit lim :Fa (II, Ex. 1.10). 

---+ 
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Lemma 2.8. On a noetherian topological space, a direct limit of jlasque 
sheaves is fiasque. 

PROOF. Let (ffJ be a directed system of flasque sheaves. Then for any 
inclusion of open sets V £ U, and for each ex, we have ffi;.(U)--+ ffi;.(V) is 
surjective. Since lim is an exact functor, we get ____. 

lim ffa(U)--+ lim ffa(V) ____. ____. 

is also surjective. But on a noetherian topological 
(!i!n ffa)(U) for any open set (II, Ex. 1.11). So we have 

space, lim ffa(U) = 
~ 

(lim ff a)( U) --+ (lim ffa)( V) ____. ____. 

is surjective, and so lim %;. is flasque. ____. 

Proposition 2.9. Let X be a noetherian topological space, and let (ffa) be a 
direct system of abelian sheaves. Then there are natural isomorphisms, 
for each i ;?: 0 

PROOF. For each ex we have a natural map ffa --+ lim ffa. This induces a 
map on cohomology, and then we take the direct limit of these maps. For 
i = 0, the result is already known (II, Ex. 1.11). For the general case, we 
consider the category inb A (mb(X)) consisting of all directed systems of 
objects of m:b(X), indexed by A. This is an abelian category. Furthermore, 
since lim is an exact functor, we have a natural transformation of c:5-functors ____. 

lim Hi( X,·) --+ H;(X,lim ·) ____. ____. 

from inb A (mb(X)) to m:b. They agree for i = 0, so to prove they are the 
same, it will be sufficient to show they are both effaceable for i > 0. For 
in that case, they are both universal by (1.3A), and so must be isomorphic. 

So let (ffa) E inb A(mb(X) ). For each ex, let '!J a be the sheaf of discon
tinuous sections of ffa (II, Ex. 1.16e). Then '!Ja is flasque, and there is a 
natural inclusion ffa --+ '!J a· Furthermore, the construction of '!J a is func
torial, so the '!J a also form a direct system, and we obtain a monomorphism 
u: (ffa) --+ ('!J a) in the category inb A(mb(X) ). Now the '!J a are all fiasque, so 
H;(X,'!Ja) = 0 for i > 0 (2.5). Thus !!!n H;(X,'!Ja) = 0, and the functor on 
the left-hand side is effaceable fori > 0. On the other hand, lim '!Ja is also . ____. 
flasque by (2.8). So H'(X,lim '!Ja) = 0 fori > 0, and we see that the functor ____. 
on the right-hand side is also effaceable. This completes the proof. 

Remark 2.9.1. As a special case we see that cohomology commutes with 
infinite direct sums. 

Lemma 2.10. Let Y be a closed subset of X, let ff be a sheaf of abelian 
groups on Y, and let j: Y--+ X be the inclusion. Then H;(Y,ff) = H;(X,j*ff), 
where j*ff is the extension of ff by zero outside Y (II, Ex. 1.19). 
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PROOF. If/. is a fl.asque resolution of ff on Y, then j*/. is a fl.asque res
olution of j*ff on X, and for each i, T(Y,/;) = T(X,j*/;). So we get the 
same cohomology groups. 

Remark 2.10.1. Continuing our earlier abuse of notation (II, Ex. 1.19), we 
often write ff instead ofj*ff. This lemma shows there will be no ambiguity 
about the cohomology groups. 

PROOF OF (2.7). First we fix some notation. If Y is a closed subset of X, 
then for any sheaf ff on X we let ff y = j * (,~ IY ), where j: Y -+ X is the 
inclusion. If U is an open subset of X, we let ff u = i.(fflu), where i: U -+ 

X is the inclusion. In particular, if U = X - Y, we have an exact sequence 
(II, Ex. 1.19) 

0-+ ffu-+ ff-+ !i'y-+ 0. 

We will prove the theorem by induction on n = dim X, in several steps. 
Step 1. Reduction to the case X irreducible. If X is reducible, let Y be 

one of its irreducible components, and let U = X - Y. Then for any ff 
we have an exact sequence 

0-+ ffu-+ ff-+ :#'y-+ 0. 

From the long exact sequence of cohomology, it will be sufficient to prove 
that Hi(X,!i'y) = 0 and H;(X,ffu) = 0 for i > n. But Y is closed and 
irreducible, and ff u can be regarded as a sheaf on the closed subset a, 
which has one fewer irreducible components than X. Thus using (2.10) and 
induction on the number of irreducible components, we reduce to the case 
X irreducible. 

Step . Suppose X is irreducible of dimension 0. Then the only open 
subsets of X are X and the empty set. For otherwise, X would have a 
proper irreducible closed subset, and dim X would be ~ 1. Thus r(X, ·) 
induces an equivalence of categories ~b(X) -+ ~b. In particular, r(X, ·) 
is an exact functor, so H;(X,ff) = 0 for i > 0, and for all ff. 

Step 3. Now let X be irreducible of dimension n, and let ff E ~b(X). 

Let B = Uus:xff'(U), and let A be the set of all finite subsets of B. For 
each a E A, let ffa be the subsheaf of:#' generated by the sections in a (over 
various open sets). Then A is a directed set, and :#' = lim ffa. So by (2.9), 

---> 
it will be sufficient to prove vanishing of cohomology for each ffa. If a' 
is a subset of a, then we have an exact sequence 

0 -+ ff'a' -+ ffa -+ '1J -+ 0, 

where '1J is a sheaf generated by # (a - a') sections over suitable open sets. 
Thus, using the long exact sequence of cohomology, and induction on 
#(a), we reduce to the case that ff is generated by a single section over 
some open set U. In that case :#' is a quotient of the sheaf Zu (where Z 
denotes the constant sheaf Z on X). Letting !!It be the kernel, we have an 
exact sequence 
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Again using the long exact sequence of cohomology, it will be sufficient to 
prove vanishing for fJl and for Zu. 

Step 4. Let U be an open subset of X and let fJl be a subsheaf of Zu. 
For each x E U, the stalk f!llx is a subgroup of Z. If f!ll = 0, skip to Step 5. 
If not, let d be the least positive integer which occurs in any of the groups f!llx. 
Then there is a nonempty open subset V s:.:: U such that f!lllv ~ d · Zlv as a 
subsheaf of Zlv· Thus f!llv ~ Zv and we have an exact sequence 

0 ~ Zv ~ fJl ~ f!ll /Zv ~ 0. 

Now the sheaf f!ll/Zv is supported on the closed subset (U - V)- of X, 
which has dimension < n, since X is irreducible. So using (2.1 0) and the 
induction hypothesis, we know Hi(X,f!ll/Zv) = 0 for i ~ n. So by the 
long exact sequence of cohomology, we need only show vanishing for Zv. 

Step 5. To complete the proof, we need only show that for any open 
subset U s:.:: X, we have H;(X,Zu) = 0 fori> n. Let Y =X - U. Then 
we have an exact sequence 

0 ~ Zu ~ Z ~ Zy ~ 0. 

Now dim Y < dim X since X is irreducible, so using (2.10) and the in
duction hypothesis, we have Hi(X,Zy) = 0 for i ;:::;: n. On the other hand, 
Z is fiasque, since it is a constant sheaf on an irreducible space (II, Ex. 1.16a). 
Hence Hi(X,Z) = 0 for i > 0 by (2.5). So from the long exact sequence 
of cohomology we have H;(X,Zu) = 0 fori > n. q.e.d. 

Historical Note: The derived functor cohomology which we defined in 
this section was introduced by Grothendieck [1]. It is the theory which is 
used in [EGA]. The use of sheaf cohomology in algebraic geometry started 
with Serre [3]. In that paper, and in the later paper [ 4], Serre used Cech 
cohomology for coherent sheaves on an algebraic variety with its Zariski · 
topology. The equivalence of this theory with the derived functor theory 
follows from the "theorem of Leray" (Ex. 4.11). The same argument, using 
Cartan's "Theorem B" shows that the Cech cohomology of a coherent 
analytic sheaf on a complex analytic space is equal to the derived functor 
cohomology. Gunning and Rossi [1] use a cohomology theory computed 
by fine resolutions of a sheaf on a paracompact Hausdorff space. The 
equivalence of this theory with ours is shown by Godement [1, Thm. 4.7.1, 
p. 181 and Ex. 7.2.1, p. 263], who shows at the same time that both theories 
coincide with his theory which is defined by a canonical flasque resolution. 
Godement also shows [1, Thm. 5.10.1, p. 228] that on a paracompact 
Hausdorff space, his theory coincides with Cech cohomology. This provides 
a bridge to the standard topological theories with constant coefficients, as 
developed in the book of Spanier [1]. He shows that on a paracompact 
Hausdorff space, Cech cohomology and Alexander cohomology and singular 
cohomology all agree (see Spanier [1, pp. 314, 327, 334]). 
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The vanishing theorem (2. 7) was proved by Serre [3] for coherent sheaves 
on algebraic curves and projective algebraic varieties, and later [5] for 
abstract algebraic varieties. It is analogous to the theorem that singular 
cohomology on a (real) manifold of dimension n vanishes in degrees i > n. 

ExERCISES 

2.1. (a) Let X = Al be the affine line over an infinite field k. Let P,Q be distinct closed 
points of X, and let U =X- [P,Q]. Show that H 1(X,Zu) i= 0. 

*(b) More generally, let Y ~X = A~ be the union of n + 1 hyperplanes in suit
ably general position, and let U = X - Y. Show that H"(X,Zu) i= 0. Thus the 
result of (2. 7) is the best possible. 

2.2. Let X = P~ be the projective line over an algebraically closed field k. Show that 
the exact sequence 0---> (!' ---> .X---> ff/C!' ---> 0 of (II, Ex. 1.21d) is a ftasque res
olution of(!. Conclude from (II, Ex. 1.21e) that Hi(X,{!!) = 0 for all i > 0. 

2.3. Cohomology with Supports (Grothendieck [7]). Let X be a topological space, let 
Y be a closed subset, and let::¥' be a sheaf of abelian groups. Let r y(X,ff) denote 
the group of sections of ff with support in Y (II, Ex. 1.20). 
(a) Show that r y(X, ·)is a left exact functor from ~b(X) to ~b. 

We denote the right derived functors of r y(X, ·) by H~(X, · ). They are the 
cohomology groups of X with supports in Y, and coefficients in a given sheaf. 

(b) If 0---> 5'---> 5---> .'F"---> 0 is an exact sequence of sheaves, with .?' ftasque, 
show that 

is exact. 
(c) Show that if::¥' is ftasque, then H~(X,ff) = 0 for all i > 0. 
(d) If ff is ftasque, show that the sequence 

0---> r r(X,ff)---> T(X,ff)---> r(X - Y,ff)---> 0 
is exact. 

(e) Let U = X - Y. Show that for any ff, there is a long exact sequence of 
cohomology groups 

0---> H~(X,ff)---> H 0(X,ff)---> H 0(U,fflul---> 

---> m(X,ff) ---> H 1(X,ff) ---> H 1(U,fflul ---> 

---> H~(X,ff) ---> .... 

(f) Excision. Let V be an open subset of X containing Y. Then there are natural 
functorial isomorphisms, for all i and ff, 

2.4. Muyer-Vietoris Seque11ce. Let Y1, Y2 be two closed subsets of X. Then there is a 
long exact sequence of cohomology with supports 
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2.5. Let X be a Zariski space (II, Ex. 3.17). Let P E X be a closed point, and let X P 

be the subset of X consisting of all points Q E X such that P E { Q}-. We call X P 

the local space of X at P, and give it the induced topology. Let j: X P ---+ X be the 
inclusion, and for any sheaf$' on X, let $'p = j* $'. Show that for all i, $', we 
have 

H~(X,$') = H~(X p,$ip). 

2.6. Let X be a noetherian topological space, and let {J,},eA be a direct system of 
injective sheaves of abelian groups on X. Then ~ J. is also injective. [Hints: 
First show that a sheaf J is injective if and only if for every open set U ~ X, and 
for every subsheaf !1lt ~ Zu, and for every map f:!Jlt---+ J, there exists an ex
tension off to a map of Zu ---+ J. Secondly, show that any such sheaf !1lt is finitely 
generated, so any map !1lt ---+ ~ J, factors through one of the J,.] 

2.7. Let S1 be the circle (with its usual topology), and let Z be the constant sheaf Z. 
(a) Show that H 1(S 1 ,Z) ~ Z, using our definition of cohomology. 
(b) Now let !1lt be the sheaf of germs of continuous real-valued functions on S1. 

Show that H 1(S1 ,!Jlt) = 0. 

3 Cohomology of a Noetherian Affine Scheme 

In this section we will prove that if X = Spec A is a noetherian affine 
scheme, then Hi(X,g;) = 0 for all i > 0 and all quasi-coherent sheaves g; of 
CDx-modules. The key point is to show that if I is an injective A-module, 
then the sheaf I on Spec A is flasque. We begin with some algebraic 
preliminaries. 

Proposition 3.1A (Krull's Theorem). Let A be a noetherian ring, let M ~ N 
be finitely generated A-modules, and let a be an ideal of A. Then the 
a-adic topology on M is induced by the a-adic topology on N. In particular, 
for any n > 0, there exists an n' ?: n such that an M 2 M n an' N. 

PROOF. Atiyah-Macdonald [1, 10.11] or Zariski-Samuel [1, vol. II, Ch. VIII, 
Th. 4]. 

Recall (II, Ex. 5.6) that for any ring A, and any ideal a ~ A, and any 
A-module M, we have defined the submodule F0 (M) to be {mE Mlanm = 0 
for some n > 0}. 

Lemma 3.2. Let A be a noetherian ring, let a be an ideal of A, and let I be an 
injective A -module. Then the submodule J = ra (I) is also an injective 
A-module. 

PROOF. To show that J is injective, it will be sufficient to show that for any 
ideal b ~ A, and for any homomorphism cp: b -+ J, there exists a homo
morphism l/1: A -+ J extending cp. (This is a well-known criterion for an 
injective module-Godement [1, I, 1.4.1 ]). Since A is noetherian, b is finitely 
generated. On the other hand, every element of J is annihilated by some 
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power of a, so there exists an n > 0 such that ancp(b) = 0, or equivalently, 
cp(anb) = 0. Now applying (3.1A) to the inclusion b <;;A, we find that there 
is an n' ~ n such that anb 2 b n an'. Hence cp(b n an') = 0, and so the 
map cp:b---+ J factors through b/(b nan} Now we consider the following 
diagram: 

A 

J 
<p 

Since I is injective, the composed map of b/(b n an') to I extends to a map 
1/J': A/an' ---+ I. But the image of 1/J' is annihilated by an', so it is contained in 
J. Composing with the natural map A ---+ Ajan', we obtain the required map 
1/J: A ---+ J extending <p. 

Lemma 3.3. Let I be an injective module over a noetherian ring A. Then for 
any f E A, the natural map of I to its localization I I is surjective. 

PROOF. For each i > 0, let b; be the annihilator of fi in A. Then b1 <;; b2 <;; 

... , and since A is noetherian, there is an r such that b, = b,+ 1 = .... Now 
let e: I ---+ I J be the natural map, and let X E I J be any element. Then by 
definition of localization, there is ayE I and ann ~ 0 such that x = 8(y)fr. 
We define a map cp from the ideal (r+') of A to I by sending r+r to f'y. 
This is possible, because the annihilator of r+r is bn+r = b, and b, anni
hilates f'y. Since I is injective, <p extends to a map 1/f:A ---+I. Let 1/J(l) = z. 
Then fn+rz = f'y. But this implies that 8(z) = 8(y)/r = x. Hence 8 is 
surjective. 

Proposition 3.4. Let I be an injective module over a noetherian ring A. Then 
the sheaf 1 on X = Spec A is fiasque. 

PROOF. We will use noetherian induction on Y = (Supp 1)-. See (II, Ex. 
1.14) for the notion of support. If Y consists of a single closed point of X, 
then 1 is a skyscraper sheaf (II, Ex. 1.17) which is obviously fiasque. 

In the general case, to show that 1 is fiasque, it will be sufficient to show, 
for any open set U <;; X, that T(X,l)---+ T(U,l) is surjective. If Y n U = 0, 
there is nothing to prove. If Y n U =f. 0, we can find an f E A such that 
the open set X I = D(f) (II, §2) is contained in U and X I n Y =f. 0. Let 
Z = X - X I• and consider the following diagram: 

T(X,l) ---+ F(U,l) ---+ T(X I}) 
j' j' 

r z(X}) ---+ r z(U}), 
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where r z denotes sections with support in Z (II, Ex. 1.20). Now given a 
section s E r( u,l), we consider its image s~ in r(X 1 ,1). But r(X 1 ,1) = If 
(II, 5.1), so by (3.3), there is a t E I = r(X,I) restricting to s'. Let t' be the 
restriction oft to r(U,l). Then s - t' goes to 0 in r(X 1 ,1), so it has support 
in Z. Thus to complete the proof, it will be sufficient to show that r z(X,l) -+ 
r z( u,l) is surjective. 

Let J = r z(X,l). If a is the ideal generated by f, then J = r.(l) (II, 
Ex. 5.6), so by (3.2), J is also an injective A-module. Furthermore, the 
support of J is contained in Y n Z, which is strictly smaller than Y Hence 
by our induction hypothesis, J is fiasque. Since r(U,J) = Tz(U}) (II, 
Ex. 5.6), we conclude that r z(X,l) -+ r z( U,l) is surjective, as required. 

Theorem 3.5. Let X = Spec A be the spectrum of a noetherian ring A. Then 
for all quasi-coherent sheaves :#' on X, and for all i > 0, we have 
H;(X,ff) = 0. 

PROOF. Given :#', let M = r(X,ff), and take an injective resolution 0 -+ 
M -+ r of M in the category of A-modules. Then we obtain an exact 
sequence of sheaves 0 -+ M -+ T on X. Now :#' = M (II, 5.5) and each I; 
is fiasque by (3.4), so we can use this resolution of:#' to calculate cohomology 
(2.5.1). Applying the functor r, we recover the exact sequence of A-modules 
0-+ M-+ r. Hence H 0(X,ff) = M, and H;(X,ff) = 0 fori > 0. 

Remark 3.5.1. This result is also true without the noetherian hypothesis, but 
the proof is more difficult [EGA III, 1.3.1]. 

Corollary 3.6. Let X be a noetherian scheme, and let :#' be a quasi-coherent 
sheaf on X. Then :#' can be embedded in a flasque, quasi-coherent sheaf '!J. 

PROOF. Cover X with a finite number of open affines U; = Spec A;, and let 
:Flu, = M; for each i. Embed M; in an injective Acmodule I;. For each i, 
let f: U; -+X be the inclusion, and let '!J = ffif*(I;). For each i we have 
an injective map of sheaves :Flu, -+ I;. Hence we obtain a map :#' -+ f*(I;). 
Taking the direct sum over i gives a map :#' -+ '!J which is clearly injective. 
On the other hand, for each i, I; is fiasque (3.4) and quasi-coherent on U;. 
Hence f*(l;) is also fiasque (II, Ex. 1.16d) and quasi-coherent (II, 5.8). Taking 
the direct sum of these, we see that '!J is fiasque and quasi-coherent. 

Theorem 3.7 (Serre [5]). Let X be a noetherian scheme. Then the following 
conditions are equivalent: 

(i) X is affine; 
(ii) H;(X,ff) = 0 for all:#' quasi-coherent and all i > 0; 

(iii) H 1(X,J) = 0 for all coherent sheaves of ideals J. 

PROOF. (i) = (ii) is (3.5). (ii) = (iii) is trivial, so we have only to prove 
(iii) = (i). We use the criterion of (II, Ex. 2.17). First we show that X can 
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be covered by open affine subsets of the form X 1 , with f E A = T(X,0x). 
Let P be a closed point of X, let U be an open affine neighborhood of P, 
and let Y = X - U. Then we have an exact sequence 

0 -+ J Yu{PJ -+ J y -+ k(P) -+ 0, 

where J y and J Yu{PJ are the ideal sheaves of the closed sets Y and Y u { P}, 
respectively. The quotient is the skyscraper sheaf k(P) = 0pjmp at P. Now 
from the exact sequence of cohomology, and hypothesis (iii), we get an 
exact sequence 

T(X,J y) -+ T(X,k(P)) -+ H 1(X,J Yu{P)) = 0. 

So there is an element f E F(X ,J y) which goes to 1 in k(P), i.e., fp = 1 
(mod mp). Since J y s;: (0 X• we can consider f as an element of A. Then by 
construction, we have P EX f s;: U. Furthermore, X f = U 1, where J is 
the image off in T(U,0u), so X f is affine. 

Thus every closed point of X has an open affine neighborhood of the 
form X J· By quasi-compactness, we can cover X with a finite number of 
these, corresponding to f 1, ... ,f.. E A. 

Now by (II, Ex. 2.17), to show that X is affine, we need only verify that 
j 1, ... ,f.. generate the unit ideal in A. We use f 1 , ... ,f.. to define a map 
()(:(0~-+ (Ox by sending (a 1, ... ,a,) to "[j;a;. Since the Xf, cover X, this is 
a surjective map of sheaves. Let :F be the kernel: 

0 -+ :F -+ (0~ ~ (Ox -+ 0. 

We filter :F as follows: 

for a suitable ordering of the factors of @~. Each of the quotients of this 
filtration is a coherent sheaf of ideals in 0x. Thus using our hypothesis (iii) 
and the long exact sequence of cohomology, we climb up the filtration and 
deduce that H 1(X,:F) = 0. But then r(X,(O~) ~ T(X,0x) is surjective, 
which tells us that f 1, ... ,f.. generate the unit ideal in A. q.e.d. 

Remark 3.7.1. This result is analogous to another theorem of Serre in 
complex analytic geometry, which characterizes Stein spaces by the vanishing 
of coherent analytic sheaf cohomology. 

ExERCISEs 

3.1. Let X be a noetherian scheme. Show that X is affine if and only if X ced (II, Ex. 2.3) 
is affine. [Hint: Use (3.7), and for any coherent sheaf ff on X, consider the filtra
tion ff 2 .AI · ff 2 % 2 · ff 2 ... , where .AI is the sheaf of nilpotent elements 
on X.] 

3.2. Let X be a reduced noetherian scheme. Show that X is affine if and only if each 
irreducible component is affine. 

216 



3 Cohomology of a Noetherian Affine Scheme 

3.3. Let A be a noetherian ring, and let a be an ideal of A. 
(a) Show that r;, (·)(II, Ex. 5.6) is a left-exact functor from the category of A-modules 

to itself. We denote its right derived functors, calculated in 9Jlob(A), by H;( · ). 
(b) Now let X = Spec A, Y = V(a). Show that for any A-module M, 

H~(M) = HHX,M), 

where H~(X, ·) denotes cohomology with supports in Y (Ex. 2.3). 
(c) For any i, show that r; (H,~(M)) = H,~(M). 

3.4. Cohomological Interpretation of Depth. If A is a ring, a an ideal, and M an A
module, then depth, M is the maximum length of an M -regular sequence x 1, ..• ,x, 
with all xi E a. This generalizes the notion of depth introduced in (II, §8). 
(a) Assume that A is noetherian. Show that if depth, M ;;, 1, then r; (M) = 0, 

and the converse is true if M is finitely generated. [Hint: When M is finitely 
generated, both conditions are equivalent to saying that a is not contained in 
any associated prime of M.] 

(b) Show inductively, for M finitely generated, that for any n ;;, 0, the following 
conditions are equivalent: 

(i) depth, M ;;, n; 
(ii) H!(M) = 0 for all i < n. 

For more details, and related results, see Grothendieck [7]. 

3.5. Let X be a noetherian scheme, and let P be a closed point of X. Show that the 
following conditions are equivalent: 

(i) depth (!JP ;;, 2; 
(ii) if U is any open neighborhood of P, then every section of (!Jx over U - P 

extends uniquely to a section of (!Jx over U. 

This generalizes (I, Ex. 3.20), in view of (II, 8.22A). 

3.6. Let X be a noetherian scheme. 
(a) Show that the sheaf':§ constructed in the proof of (3.6) is an injective object in 

the category .Oco(X) of quasi-coherent sheaves on X. Thus .Oco(X) has enough 
injectives. 

*(b) Show that any injective object of .Oco(X) is flasque. [Hints: The method of 
proof of (2.4) will not work, because (!Ju is not quasi-coherent on X in general. 
Instead, use (II, Ex. 5.15) to show that if J E .Oco(X) is injective, and if U ~ X 
is an open subset, then Jlu is an injective object of .Qco(U). Then cover X 
with open affines ... ] 

(c) Conclude that one can compute cohomology as the derived functors of r(X, · ), 
considered as a functor from .Oco(X) to tlb. 

3.7. Let A be a noetherian ring, let X= Spec A, let a~ A be an ideal, and let U ~X 
be the open set X - V(a). 
(a) For any A-module M, establish the following formula of Deligne: 

T(U,M) ~ lim HomA(a",M). 
----> 

n 

(b) Apply this in the case of an injective A-module I, to give another proof of(3.4). 
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3.8. Without the noetherian hypothesis, (3.3) and (3.4) are false. Let A= k[x0 ,x1,x2 , ••• ] 

with the relations x~x. = 0 for n = 1, 2, .... Let I be an injective A-module con
taining A. Show that I -+ I xo is not surjective. 

4 Cech Cohomology 

In this section we construct the Cech cohomology groups for a sheaf of 
abelian groups on a topological space X, with respect to a given open 
covering of X. We will prove that if X is a noetherian separated scheme, 
the sheaf is quasi-coherent, and the covering is an open affine covering, 
then these Cech cohomology groups coincide with the cohomology groups 
defined in §2. The value of this result is that it gives a practical method for 
computing cohomology of quasi-coherent sheaves on a scheme. 

Let X be a topological space, and let U = ( U ;); e 1 be an open covering 
of X. Fix, once and for all, a well-ordering of the index set I. For any 
finite set of indices io, ... ,ip E I we denote the intersection uio n ... n uip 

by uio, ... . ip" 
Now let $' be a sheaf of abelian groups on X. We define a complex 

C"(U,ff') of abelian groups as follows. For each p ): 0, let 

cP(U,ff') = fl ff'(U; 0 , •.. ,iJ 
io< .. . <.ip 

Thus an element IX E CP(U,ff') is determined by giving an element 

for each (p + 1)-tuple i0 < ... < iP of elements of I. We define the co
boundary map d: CP--+ cp+ 1 by setting 

p+1 

(diX)· · = " ( -1)k1X· ~ · lu 
lQ, · · · ,1p + 1 .i...J lQ, · · · ,1k, · · · ,lp + 1 io, .. ,lp+ 1 

k=O 

Here the notation ~ means omit ik. Then since IX;0 , ...• h .... ,ip + 1 is an ele
ment of ff'(U;0 , ...• h .... ,ip+J, we restrict to U;0 , •.. ,ip+l to get an element 
of ff'(U;0 , ... ,ip+l). One checks easily that d2 = 0, so we have indeed de
fined a complex of abelian groups. 

Remark 4.0.1. If IX E CP(U,ff'), it is sometimes convenient to have the symbol 
1X;0 , ..•• ip defined for all (p + 1)-tuples of elements of I. If there is a re-
peated index in the set {i0 , ..• ,iP}, we define 1X;0 , ... ,ip = 0. If the indices 
are all distinct, we define IX;0 , ... ,ip = ( -1)u1Xuio, ... ,uip' where (J is the per-
mutation for which (Ji0 < ... < (JiP" With these conventions, one can 
check that the formula given above for diX remains correct for any (p + 2)
tuple i0, . .. ,ip+ 1 of elements of I. 
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Definition. Let X be a topological space and let U be an open covering of 
X. For any sheaf of abelian groups ff on X, we define the pth Cech 
cohomology group of ff, with respect to the covering U, to be 

HP(U,ff) = hP( C'(U,ff) ). 

Caution 4.0.2. Keeping X and U fixed, if 0 -+ ff' -+ ff -+ ff" -+ 0 is a 
short exact sequence of sheaves of abelian groups on X, we do not in general 
get a long exact sequence of Cech cohomology groups. In other words, 
the functors JlP(U,-) do not form a <5-functor (§1). For example, ifU consists 
of the single open set X, then this results from the fact that the global section 
functor r(X, ·) is not exact. 

Example 4.0.3. To illustrate how well suited Cech cohomology is for com
putations, we will compute some examples. Let X = Pf, let ff be the sheaf 
of differentials Q (II, §8), and let U be the open covering by the two open 
sets U = A 1 with affine coordinate x, and V = A 1 with affine coordinate 
y = 1/x. Then the Cech complex has only two terms: 

Now 

C0 = r(U,Q) X r(V,Q) 

C 1 = F(U n V,Q). 

r(U,Q) = k[x] dx 

r(V,Q) = k[y] dy 

r( U n V,Q) = k [ x, ~ J dx, 

and the map d: C0 -+ C 1 is given by 

So ker dis the set of pairs <f(x)dx,g(y)dy) such that 

f(x) = _ __!__ g (~). 
x2 x 

This can happen only iff = g = 0, since one side is a polynomial in x and 
the other side is a polynomial in 1/x with no constant term. So H0(U,Q) = 0. 

To compute H 1, note that the image of d is the set of all expressions 
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where f and g are polynomials. This gives the subvector space of k[ x,ljx] dx 
generated by all xn dx, n E Z, n =!= -1. Therefore H 1(U,Q) ~ k, generated by 
the image of x- 1 dx. 

Example 4.0.4. Let S1 be the circle (in its usual topology), let Z be the 
constant sheaf Z, and let U be the open covering by two connected open 
semi-circles U, V, which overlap at each end, so that U n V consists of two 
small intervals. Then 

C0 = r(U,Z) X r(V,Z) = z X z 
C1 = nun v,z) = z x z 

and the map d: C0 ~ C 1 takes (a,b) to (b- a, b- a). Thus H0(U,Z) = Z 
and H1(U,Z) = Z. Since we know this is the right answer (Ex. 2.7), this 
illustrates the general principle that Cech cohomology agrees with the usual 
cohomology provided the open covering is taken fine enough so that there 
is no cohomology on any of the open sets (Ex. 4.11 ). 

Now we will study some properties of the Cech cohomology groups. 

Lemma 4.1. For any X,U,$' as above, we have H0(U,$') ~ r(X,$'). 

PROOF. H0(U,$') = ker(d: C0(U,$') ~ C1(U,$') ). If rt. E C0 is given by 
{rt.; E $'(U;)}, then for each i < j, (drt.)ii = rt.i - rt.;. So drt. = 0 says the 
sections rt.; and rt.i agree on U; n Vi. Thus it follows from the sheaf axioms 
that ker d = r(X,$'). 

Next we define a "sheafified" version of the Cech complex. For any 
open set V <:::; X, let f: V ~ X denote the inclusion map. Now given X,U,$' 
as above, we construct a complex ~·(U,$') of sheaves on X as follows. 
For each p ): 0, let 

~P(U,$') = n f*($'iu,o. .,) 
io< .. . < ip 

and define 
d:~P ~ ~p+l 

by the same formula as above. Note by construction that for each p we 
have r(X,~P(U,$')) = CP(U,$'). 

Lemma 4.2. For any sheaf of abelian groups$' on X, the complex~·(~,$') 
is a resolution of $', i.e., there is a natural map e: $' ~ ~0 such that the 
sequence of sheaves 

0 ~ g; ~ ~0(U,$') ~ ~ 1(U,$') ~ ... 
is exact. 
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PROOF. We define a:%--+ ~0 by taking the product of the natural maps 
% --+ f*(ff'iu,) for i E /. Then the exactness at the first step follows from 
the sheaf axioms for %. 

To show the exactness of the complex~· for p ;:;:: 1, it is enough to check 
exactness on the stalks. So let x EX, and suppose x E Vi. For each p ;:;:: 1, 
we define a map 

k:~P(U,ff')x--+ ~p- 1 (U,ff')x 

as follows. Given rxx E ~P(U,ff')x, it is represented by a section rx E 
r(V,~P(U,%)) over a neighborhood V of x, which we may choose so small 
that V c:; Vi. Now for any p-tuple i0 < ... < iP_ 1, we set 

(krx). . = rx.. . 
lQ, ... ,lp-1 J,lQ, ... ,lp-1' 

using the notational convention of (4.0.1). This makes sense because V n 
via, ... ,ip -1 = v (\ vj,ia .... ,ip -1' Then take the stalk of krx at X to get the 
required map k. Now one checks that for any p ;:;:: 1, rx E ~~. 

(dk + kd)(rx) = rx. 

Thus k is a homotopy operator for the complex ~~' showing that the iden
tity map is homotopic to the zero map. It follows (§1) that the cohomology 
groups hP(~J of this complex are 0 for p ;:;:: 1. 

Proposition 4.3. Let X be a topological space, let U be an open covering, 
and let % be a fiasque sheaf of abelian groups on X. Then for all p > 0 
we have HP(U,%) = 0. 

PROOF. Consider the resolution 0 --+ % --+ ~·(U,%) given by (4.2). Since 
% is flasque, the sheaves ~P(U,%) are flasque for each p ;:;:: 0. Indeed, for 
any io, ... ,ip, ff'iu,o. .ip is a flasque sheaf on via .... . ip; f* preserves flasque 
sheaves (II, Ex. 1.16d), and a product of flasque sheaves is flasque. So by 
(2.5.1) we can use this resolution to compute the usual cohomology groups 
of%. But% is flasque, so HP(X,%) = 0 for p > 0 by (2.5). On the other hand, 
the answer given by this resolution is 

hP(T(X,~'(U,%))) = HP(U,%). 

So we conclude that HP(U,%) = 0 for p > 0. 

Lemma 4.4. Let X be a topological space, and U an open covering. Then 
for each p ;:?;: 0 there is a natural map, functorial in %, 

HP(U,%) --+ HP(X,%). 

PROOF. Let 0 --+ % --+ f be an injective resolution of % in m:b(X). Com
paring with the resolution 0 --+ % --+ ~·(U,%) of (4.2), it follows from a 
general result on complexes (Hilton and Stammbach [1, IV, 4.4]) that there 
is a morphism of complexes ~·(U,$') --+ f, inducing the identity map on 
%, and unique up to homotopy. Applying the functors r(X, ·) and hP, 
we get the required map. 
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Theorem 4.5. Let X be a noetherian separated scheme, let U be an open 
affine cover of X, and let $' be a quasi-coherent sheaf on X. Then for 
all p ;::: 0, the natural maps of (4.4) give isomorphisms 

HP(U,ff') ~ HP(X,$'). 

PROOF. For p = 0 we have an isomorphism by (4.1). For the general case, 
embed $'in a flasque, quasi-coherent sheaf'§ (3.6), and let !?It be the quotient: 

0 --+ $' --+ '§ --+ !?It --+ 0. 

For each i0 < ... < iP, the open set U;0 •...• ip is affine, since it is an inter
section of affine open subsets of a separated scheme (II, Ex. 4.3). Since $' 
is quasi-coherent, we therefore have an exact sequence 

0 --+ ff'(U; 0 , ... ,i) --+ t§(U;0 , ... ,i) --+ !?ll(U;0 , ... ,;P) --+ 0 

of abelian groups, by (3.5) or (II, 5.6). Taking products, we find that the 
corresponding sequence of Cech complexes 

0 --+ C(U,ff') --+ C(U,'§) --+ C(U,!?ll) --+ 0 

is exact. Therefore we get a long exact sequence of Cech cohomology 
groups. Since '§ is flasque, its Cech cohomology vanishes for p > 0 by 
(4.3), so we have an exact sequence 

0 --+ H 0(U,ff') --+ H0 (U,'§) --+ H 0(U,!?ll) --+ H 1(U,ff') --+ 0 

and isomorphisms 
HP(U,!?ll) ~ jfp+ 1(U,ff') 

for each p ;::: 1. Now comparing with the long exact sequence of usual 
cohomology for the above short exact sequence, using the case p = 0, 
and (2.5), we conclude that the natural map 

H 1(U,ff') --+ H 1(X,ff') 

is an isomorphism. But !?It is also quasi-coherent (II, 5. 7), so we obtain the 
result for all p by induction. 

EXERCISES 

4.1. Letf:X -> Ybe an affine morphism of noetherian separated schemes (II, Ex. 5.17). 
Show that for any quasi-coherent sheaf ff on X, there are natural isomorphisms 
for all i ;;;. 0, 

[Hint: Use (II, 5.8).] 

4.2. Prove Chevalley's theorem: Let f:X-> Y be a finite surjective morphism of 
noetherian separated schemes, with X affine. Then Y is affine. 
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(a) Let f: X -> Y be a finite surjective morphism of integral noetherian schemes. 
Show that there is a coherent sheaf .A on X, and a morphism of sheaves 
a: @j, -> f*.A for some r > 0, such that a is an isomorphism at the generic 
point of Y 
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(b) For any coherent sheaf$' on Y, show that there is a coherent sheaf~ on X, 
and a morphism f3: f* ~ ---> $'' which is an isomorphism at the generic point 
of Y. [Hint: Apply .Yt'om( ·,$')to Cl. and use (II, Ex. 5.17e).] 

(c) Now prove Chevalley's theorem. First use (Ex. 3.1) and (Ex. 3.2) to reduce to 
the case X and Y integral. Then use (3.7), (Ex. 4.1), consider ker f3 and coker {3, 
and use noetherian induction on Y. 

4.3. Let X = Af = Spec k[x,y], and let U =X - {(0,0)}. Using a suitable cover of 
U by open affine subsets, show that H 1(U,(9u) is isomorphic to the k-vector space 
spanned by {xiyili,j < 0}. In particular, it is infinite-dimensional. (Using (3.5), 
this provides another proof that U is not affine-d. (1, Ex. 3.6).) 

4.4. On an arbitrary topological space X with an arbitrary abelian sheaf ff, Cech 
cohomology may not give the same result as the derived functor cohomology. But 
here we show that for H 1 , there is an isomorphism if one takes the limit over all 
coverings. 
(a) Let U = (U;)iei be an open covering of the topological space X. A refinement 

ofU is a covering 5B = (J'})ieJo together with a map A.:J---> I of the index sets, 
such that for each j E J, J'} ~ U ).(j)· If 5B is a refinement of U, show that there 
is a natural induced map on Cech cohomology, for any abelian sheaf ff, and 
for each i, 

A.': ii'(U,ff)---> ii'(\B,ff). 

The coverings of X form a partially ordered set under refinement, so we can 
consider the Cech cohomology in the limit 

lim H'(U,ff). 
7 

(b) For any abelian sheaf$' on X, show that the natural maps (4.4) for each 
covering 

H'(U,ff)---> Hi(X,ff) 

are compatible with the refinement maps above. 
(c) Now prove the following theorem. Let X be a topological space,$' a sheaf of 

abelian groups. Then the natural map 

~ H 1(U,ff) ---> H 1(X,ff) 
u 

is an isomorphism. [Hint: Embed$' in a flasque sheaf~, and let !3l = ~/ff, 
so that we have an exact sequence 

Define a complex D"(U) by 

0 ---> C(U,ff) ---> C(U,~) ---> D"(U) ---> 0. 

Then use the exact cohomology sequence of this sequence of complexes, and 
the natural map of complexes 

and see what happens under refinement.] 
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4.5. For any ringed space (X,@x), let Pic X be the group of isomorphism classes of 
invertible sheaves (II, §6). Show that Pic X ~ H1 (X,@~:), where (Dk denotes the 
sheaf whose sections over an open set U are the units in the ring r(U,@x), with 
multiplication as the group operation. [Hint: For any invertible sheaf fi> on X, 

cover X by open sets U; on which fi> is free, and fix isomorphisms ({J;: @u, .::::. fL>Iu,· 
Then on U; n Ui, we get an isomorphism ({J;- 1 o cpi of (Du n u with itself. These 
isomorphisms give an element of H1(U,@k). Now use (E~. 4.4).] 

4.6. Let (X,@ x) be a ringed space, let J be a sheaf of ideals with J 2 = 0, and let X 0 

be the ringed space (X,@x/J). Show that there is an exact sequence of sheaves of 
abelian groups on X, 

0 --> J --> (Dk --> (Dko --> 0, 

where (Dk (respectively, @k0 ) denotes the sheaf of (multiplicative) groups of units 
in the sheaf of rings (Dx (respectively, @x0 ); the map J--> (Dk is defined by ac-> 
1 + a, and J has its usual (additive) group structure. Conclude there is an exact 
sequence of abelian groups 

•.. --> H 1(X,J) --> Pic X --> Pic X 0 --> H 2(X,J) --> .•.• 

4.7. Let X be a subscheme of P~ defined by a single homogeneous equation 
f(x0 ,x1,x2) = 0 of degree d. (Do not assume f is irreducible.) Assume that (1,0,0) 
is not on X. Then show that X can be covered by the two open affine subsets 
U = X n {x 1 # 0} and V = X n {x2 # 0}. Now calculate the Cech complex 

r(U,@x) EB r(V,@x)--> T(U n V,@x) 

explicitly, and thus show that 

dim H 0(X,@x) = 1, 

1 
dim H 1(X,@x) = :2 (d - 1)(d - 2). 

4.8. Cohomological Dimension (Hartshorne [3]). Let X be a noetherian separated 
scheme. We define the cohomological dimension of X, denoted cd(X), to be the 
least integer n such that H;(X,ff) = 0 for all quasi-coherent sheaves ff and all 
i > n. Thus for example, Serre's theorem (3.7) says that cd(X) = 0 if and only 
if X is affine. Grothendieck's theorem (2.7) implies that cd(X) ::::; dim X. 

(a) In the definition of cd(X), show that it is sufficient to consider only coherent 
sheaves on X. Use (II, Ex. 5.15) and (2.9). 

(b) If X is quasi-projective over a field k, then it is even sufficient to consider only 
locally free coherent sheaves on X. Use (II, 5.18). 

(c) Suppose X has a covering by r + 1 open affine subsets. Use Cech cohomology 
to show that cd(X) ::::; r. 

*(d) If X is a quasi-projective scheme of dimension rover a field k, then X can be 
covered by r + 1 open affine subsets. Conclude (independently of (2.7)) that 
cd(X) ::::; dim X. 

(e) Let Y be a set-theoretic complete intersection (1, Ex. 2.17) of codimension r 
in X = P~. Show that cd(X - Y) ::::; r - 1. 

4.9. Let X = Spec k[x~>x2 ,x 3 ,x4] be affine four-space over a field k. Let Y1 be the 
plane x 1 = x 2 = 0 and let Y2 be the plane x 3 = x4 = 0. Show that Y = Y1 u Y2 

is not a set-theoretic complete intersection in X. Therefore the projective closure 
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Yin Pi is also not a set-theoretic complete intersection. [Hints: Use an affine 
analogue of (Ex. 4.8e). Then show that H 2(X - Y,@x) =I= 0, by using (Ex. 2.3) 
and (Ex. 2.4). If P = Y1 n Y2 , imitate (Ex. 4.3) to show H 3(X - P,@x) =I= 0.] 

*4.10. Let X be a nonsingular variety over an algebraically closed field k, and let:#' be a 
coherent sheaf on X. Show that there is a one-to-one correspondence between 
the set of infinitesimal extensions of X by :#' (II, Ex. 8. 7) up to isomorphism, and 
the group H 1(X,:#' ® ff), where ff is the tangent sheaf of X (I1,§8). [Hint: Use 
(II, Ex. 8.6) and (4.5).] 

4.11. This exercise shows that Cech cohomology will agree with the usual cohomology 
whenever the sheaf has no cohomology on any of the open sets. More precisely, 
let X be a topological space, :#'a sheaf of abelian groups, and U = ( U;) an open 
cover. Assume for any finite intersection V = Uio n ... n Uip of open sets of the 
covering, and for any k > 0, that Hk(V,Y'iv) = 0. Then prove that for all p ;;:, 0, 
the natural maps 

HP(U,:#')-+ W(X,:#') 

of (4.4) are isomorphisms. Show also that one can recover (4.5) as a corollary of 
this more general result. 

5 The Cohomology of Projective Space 

In this section we make explicit calculations of the cohomology of the 
sheaves (!)(n) on a projective space, by using Cech cohomology for a suitable 
open affine covering. These explicit calculations form the basis for various 
general results about cohomology of coherent sheaves on projective 
varieties. 

Let A be a noetherian ring, letS = A[x0 , ... ,x,], and let X = Proj S 
be the projective space P~ over A. Let (!)x(1) be the twisting sheaf of Serre 
(II, §5). For any sheaf of (!)x-modules :F, we denote by r *(:F) the graded 
S-module E8n E z r(X,:F(n)) (see II, §5). 

Theorem 5.1. Let A be a noetherian ring, and let X = P~, with r ;:;, 1. Then: 
(a) the natural mapS--+ r*((!)x) = E8nEZ H 0(X,(!)x(n)) is an isomor-

phism of graded S-modules; 
(b) Hi(X,(!)x(n)) = 0 for 0 < i < rand all n E Z; 
(c) H'(X,(!)x(- r - 1)) ~ A; 
(d) The natural map 

H 0(X,(!)x(n)) x H'(X,(!)x(-n- r- 1))--+ H'(X,(!)x(-r- 1)) ~A 

is a perfect pairing of finitely generated free A-modules, for each n E Z. 

PROOF. Let :F be the quasi-coherent sheaf E8n E z (!)x(n). Since cohomology 
commutes with arbitrary direct sums on a noetherian topological space 
(2.9.1), the cohomology of :F will be the direct sum of the cohomology of 
the sheaves (!)(n). So we will compute the cohomology of /F, and keep track 
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of the grading by n, so that we can sort out the pieces at the end. Note that 
all the cohomology groups in question have a natural structure of A-module 
(2.6.1). 

For each i = 0, ... ,r, let U; be the open set D+(x;). Then each U; is 
an open affine subset of X, and the U; cover X, so we can compute the 
cohomology of:#' by using Cech cohomology for the covering U = (UJ, 
by (4.5). For any set of indices i0, . .. ,iP, the open set U;0 , ... ,ip is just 
D+(X;0 • • • x;) so by (II, 5.11) we have 

the localization of S with respect to the element X;0 • • • X;p· Furthermore, 
the grading on :#' corresponds to the natural grading of Sx, ... x, under 
this isomorphism. Thus the Cech complex of:#' is given by " p 

C'(U,ff): nsx,o ~ nsXioXit ~ ... ~ sxo ... Xr' 

and the modules all have a natural grading compatible with the grading 
on$'. 

Now H 0(X,:F) is the kernel of the first map, which is just S, as we have 
seen earlier (II, 5.13). This proves (a). 

Next we consider H'(X,ff). It is the cokernel of the last map in the 
Cech complex, which is 

We think of Sxo· .. xr as a free A-module with basis x~ · · · x~, with l; E Z. 
The image of dr- 1 is the free submodule generated by those basis elements 
for which at least one I; ~ 0. Thus H'(X,ff) is a free A-module with basis 
consisting of the "negative" monomials 

{x~ · · · x~rll; < 0 for each i}. 

Furthermore the grading is given by 'f);. There is only one such monomial 
of degree -r- 1, namely x01 · · · x;l, so we see that H'(X,(!Jx(-r- 1)) 
is a free A-module of rank 1. This proves (c). 

To prove (d), first note that if n < 0, then H 0(X,(!Jx(n)) = 0 by (a), and 
Hr(X,(!Jx(- n - r - 1)) = 0 by what we have just seen, since in that case 
- n - r - 1 > - r - 1, and there are no negative monomials of that 
degree. So the statement is trivial for n < 0. For n ~ 0, H 0(X,(!Jx(n)) has 
a basis consisting of the usual monomials of degree n, i.e., { x0° ... x~r lm; ~ 0 
and Im; = n}. The natural pairing with H'(X,(!Jx(-n- r- 1)) into 
H'(X,(!Jx( -r- 1)) is determined by 

where Ll; = - n - r - 1, and the object on the right becomes 0 if any 
m; + l; ~ 0. So it is clear that we have a perfect pairing, under which 
x0m0 - 1 · · · xr-mr- 1 is the dual basis element of X0° · · · x~r. 
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It remains to prove statement (b), which we will do by induction on r. 
If r = 1 there is nothing to prove, so let r > 1. If we localize the complex 
C(U,,?) with respect to x., as graded S-modules, we get the Cech complex 
for the sheaf ,?lu, on the space U., with respect to the open affine covering 
{U; n U,li = 0, ... ,r}. By (4.5), this complex gives the cohomology of 
,?lu, on U., which is 0 for i > 0 by (3.5). Since localization is an exact 
functor, we conclude that Hi(X,,?k = 0 for i > 0. In other words, every 
element of H;(X,,?), for i > 0, is annihilated by some power of x,. 

To complete the proof of (b), we will show that for 0 < i < r, multiplica
tion by x, induces a bijective map of H;(X,,?) into itself. Then it will follow 
that this module is 0. 

Consider the exact sequence of graded S-modules 

0 ~ S(-1) ~ S ~ Sj(x,) ~ 0. 

This gives the exact sequence of sheaves 

0 ~ (!)x( -1) ~ (!)X ~ (!)H ~ 0 

on X, where His the hyperplane x, = 0. Twisting by all n E Z and taking 
the direct sum, we have 

0 ~ ,?( -1) ~ ,? ~ ,? H ~ 0, 

where ,? H = ffin e z (!)H(n). Taking cohomology, we get a long exact 
sequence 

... ~ Hi(X,,?( -1)) ~ Hi(X,,?) ~ Hi(X,,? H) ~ .... 

Considered as graded S-modules, Hi(X,,?( -1)) is just H;(X,,?) shifted 
one place, and the map Hi( X,,?( -1)) ~ Hi(X,,?) of the exact sequence 
is multiplication by x,. 

Now H is isomorphic to p~-I, and Hi( X,,? H) = Hi(H,Elj(!)H(n)) by 
(2.10). So we can apply our induction hypothesis to ,? H, and find that 
Hi(X,,? H) = 0 for 0 < i < r - 1. Furthermore, for i = 0 we have an 
exact sequence 

0 ~ H 0(X,,?( -1)) ~ H0(X,,?) ~ H 0(X,,? H) ~ 0 

by (a), since H 0(X,,?H) is just Sj(x,). At the other end of the exact sequence 
we have 

0 ~ H'- 1(X,,? H) ~ H'(X,,?( -1)) ~ H'(X,,?) ~ 0. 

Indeed, we have described H'(X,,?) above as the free A-module with basis 
formed by the negative monomials in x0 , ... ,x,. So it is clear that x, is 
surjective. On the other hand, the kernel of x, is the free submodule gen
erated by those negative monomials x~ · · · x~' with l, = -1. Since 
H'- 1(X,,? H) is the free A-module with basis consisting of the negative 
monomials in x0 , ••. ,x,_ 1, and J is division by x., the sequence is exact. 
In particular, J is injective. 
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Putting these results all together, the long exact sequence of cohomology 
shows that the map multiplication by xr: Hi( X,$'( -1)) ~Hi( X,$') is bijec
tive for 0 < i < r, as required. q.e.d. 

Theorem 5.2 (Serre [3]). Let X be a projective scheme over a noetherian 
ring A, and let CDx(l) be a very ample invertible sheaf on X over Spec A. 
Let$' be a coherent sheaf on X. Then: 

(a) for each i ? 0, Hi(X,ff) is a finitely generated A-module; 
(b) there is an integer n0 , depending on $', such that for each i > 0 

and each n ? n0 , Hi(X,ff(n)) = 0. 

PROOF. Since CDx(l) is a very ample sheaf on X over Spec A, there is a closed 
immersion i:X ~ PA of schemes over A, for some r, such that CDx(l) = 
i*CDpr(l)-cf. (II, 5.16.1). If$' is coherent on X, then i*ff is coherent on 
PA (II, Ex. 5.5), and the cohomology is the same (2.10). Thus we reduce to 
the case X = PA. 

For X = PA, we observe that (a) and (b) are true for any sheaf of the 
form CDx(q), q E z. This follows immediately from the explicit calculations 
(5.1). Hence the same is true for any finite direct sum of such sheaves. 

To prove the theorem for arbitrary coherent sheaves, we use descending 
induction on i. For i > r, we have Hi(X,ff) = 0, since X can be covered 
by r + 1 open affines (Ex. 4.8), so the result is trivial in this case. 

In general, given a coherent sheaf$' on X, we can write$' as a quotient 
of a sheaf lff, which is a finite direct sum of sheaves CD(qJ, for various integers 
qi (II, 5.18). Let f!Jl be the kernel, 

0 ~ f!Jl ~ lff ~ $' ~ 0. 

Then f!ll is also coherent. We get an exact sequence of A-modules 

... ~ Hi(X,lff) ~ Hi(X,ff) ~ Hi+ 1(X,f!ll) ~ .... 

Now the module on the left is finitely generated because C is a sum of CD(qi), 
as remarked above. The module on the right is finitely generated by the 
induction hypothesis. Since A is a noetherian ring, we conclude that the 
one in the middle is also finitely generated. This proves (a). 

To prove (b), we twist and again write down a piece of the long exact 
sequence 

... ~ Hi(X,C(n)) ~ Hi(X,ff(n)) ~ Hi+ 1(X,f!Jl(n)) ~ .... 

Now for n » 0, the module on the left vanishes because C is a sum of CD(qJ 
The module on the right also vanishes for n » 0 because of the induction 
hypothesis. Hence Hi(X,ff(n)) = 0 for n » 0. Note since there are only 
finitely many i involved in statement (b), namely 0 < i ~ r, it is sufficient 
to determine n0 separately for each i. This proves (b). 

Remark 5.2.1. As a special case of (a), we see that for any coherent sheaf 
$' on X, r(X,ff) is a finitely generated A-module. This generalizes, and 
gives another proof of (II, 5.19). 
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As an application of these results, we give a cohomological criterion 
for an invertible sheaf to be ample (II, §7). 

Proposition 5.3. Let A be a noetherian ring, and let X be a proper scheme 
over Spec A. Let !l' be an invertible sheaf on X. Then the following 
conditions are equivalent: 

(i) !l' is ample; 
(ii) For each coherent sheaf :F on X, there is an integer n0 , depending on 

:F, such that for each i > 0 and each n ? n0 , H;(X,:F ® !l'") = 0. 

PROOF. (i) = (ii). If !l' is ample on X, then for some m > 0, !l'm is very 
ample on X over Spec A, by (II, 7.6). Since X is proper over Spec A, it is 
necessarily projective (II, 5.16.1). Now applying (5.2) to each of the sheaves 
:F,:F ® !l',:F ® !£'2 , .•. ,:F ® !l'm-l gives (ii). Cf. (II, 7.5) for a similar 
technique of proof. 

(ii) = (i). To show that !l' is ample, we will show that for any coherent 
sheaf :F on X, there is an integer n0 such that :F ® !l'" is generated by 
global sections for all n ? n0 . This is the definition of ampleness (II, §7). 

Given :F, let P be a closed point of X, and let Jp be the ideal sheaf of 
the closed subset { P}. Then there is an exact sequence 

0 --+ .fp!F --+ :F --+ :F ® k(P) --+ 0, 

where k(P) is the skyscraper sheaf (!)x/.fp. Tensoring with !l'", we get 

0 --+ Jp:F ® !l'" --+ :F ® !l'" --+ :F ® !l'" ® k(P) --+ 0. 

Now by our hypothesis (ii), there is an n0 such that H 1(X,.fp:F ® !l'") = 0 
for all n ? n0 . Therefore 

r(X,:F ® !l'") --+ r(X,:F ® !l'" ® k(P)) 

is surjective for all n ? n0 . It follows from Nakayama's lemma over the 
local ring (!) p, that the stalk of :F ® !l'" at P is generated by global sections. 
Since it is a coherent sheaf, we conclude that for each n ? n0 , there is an 
open neighborhood U of P, depending on n, such that the global sections 
of :F ® !l'" generate the sheaf at every point of U. 

In particular, taking :F = (!)x, we find there is an integer n1 > 0 and 
an open neighborhood V of P such that !l'"1 is generated by global sections 
over V. On the other hand, for each r = 0,1, ... ,n 1 - 1, the above argu
ment gives a neighborhood U, of P such that :F ® .;eno+r is generated by 
global sections over U,. Now let 

up = v n u 0 n 0 0 0 n u nt -1· 

Then over Up, all of the sheaves :F ® 2", for n ? n0 , are generated by 
global sections. Indeed, any such sheaf can be written as a tensor product 

(/F@ .;eno+r)@ (.!f"t)m 

for suitable 0 ~ r < n1 and m ? 0. 
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Now cover X by a finite number of the open sets Up, for various closed 
points P, and let the new n0 be the maximum of the n0 corresponding to 
those points P. Then $' Q9 !l'" is generated by global sections over all of 
X, for all n ~ n0 . q.e.d. 

EXERCISES 

5.1. Let X be a projective scheme over a field k, and let :F be a coherent sheaf on X. 
We define the Euler characteristic of :F by 

x(:F) = D -1);dimk H;(X,:F). 
If 

0 ---> :F' ---> :F ---> :F" ---> 0 

is a short exact sequence of coherent sheaves on X, show that x(ff) = x(:F') + 
x(:F"). 

5.2. (a) Let X be a projective scheme over a field k, let @x(1) be a very ample invertible 
sheaf on X over k, and let :F be a coherent sheaf on X. Show that there is a 
polynomial P(z) E Q[ z ], such that x(ff(n)) = P(n) for all n E Z. We call P 
the Hilbert polynomial of :F with respect to the sheaf @x(1). [Hints: Use 
induction on dim Supp ff, general properties of numerical polynomials 
(1, 7.3), and suitable exact sequences 

0 --->f)£ ---> :F( -1) ---> :F ---> f2 ---> 0.] 

(b) Now let X = P~, and let M = r *(:F), considered as a graded S = k[ x0 , •.. ,x, ]
module. Use (5.2) to show that the Hilbert polynomial of :F just defined is 
the same as the Hilbert polynomial of M defined in (1, §7). 

5.3. Arithmetic Genus. Let X be a projective scheme of dimension rover a field k. We 
define the arithmetic genus Pa of X by 

p.(X) = ( -l)'(x(@x)-1). 

Note that it depends only on X, not on any projective embedding. 
(a) If X is integral, and k algebraically closed, show that H0 (X,@x) ~ k, so that 

r-1 

p.(X) = L ( -1); dimk H'-;(X,@x). 
i=O 

In particular, if X is a curve, we have 

p.(X) = dimk H 1(X,@x). 
[Hint: Use (1, 3.4).] 

(b) If X is a closed subvariety ofP~, show that this p.(X) coincides with the one 
defined in (I, Ex. 7.2), which apparently depended on the projective embedding. 

(c) If X is a nonsingular projective curve over an algebraically closed field k, show 
that p.(X) is in fact a birational invariant. Conclude that a nonsingular plane 
curve of degree d ~ 3 is not rational. (This gives another proof of (II, 8.20.3) 
where we used the geometric genus.) 

5.4. Recall from (II, Ex. 6.10) the definition of the Grothendieck group K(X) of a 
noetherian scheme X. 
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(a) Let X be a projective scheme over a field k, and let {!)x(1) be a very ample 
invertible sheaf on X. Show that there is a (unique) additive homomorphism 

P:K(X)-+ Q[z] 

such that for each coherent sheaf§' on X, P(y(ff)) is the Hilbert polynomial 
of ff (Ex. 5.2). 

(b) Now let X = P~. For each i = 0,1, ... ,r, let L; be a linear space of dimension 
i in X. Then show that 

(1) K(X) is the free abelian group generated by {y({!)L)Ii = 0, ... ,r}, and 
(2) the map P:K(X)-+ Q[z] is injective. 

[Hint: Show that (1) => (2). Then prove (1) and (2) simultaneously, by induc
tion on r, using (II, Ex. 6.10c).] 

5.5. Let k be a field, let X = P~, and let Y be a closed subscheme of dimension q ~ 1, 
which is a complete intersection (II, Ex. 8.4). Then: 
(a) for all n E Z, the natural map 

H0(X,{!)x(n)) -+ H0(Y,{!)y(n)) 

is surjective. (This gives a generalization and another proof of (II, Ex. 8.4c), 
where we assumed Y was normal.) 

(b) Y is connected; 
(c) H;(Y,{!)y(n)) = 0 for 0 < i < q and all n E Z; 
(d) p.(Y) = dimkHq(Y,{!)y). 

[Hint: Use exact sequences and induction on the codimension, starting from 
the case Y = X which is (5.1).] 

5.6. Curves on a Nonsingular Quadric Swface. Let Q be the nonsingular quadric sur
face xy = zw in X = Pf over a field k. We will consider locally principal closed 
subschemes Y of Q. These correspond to Cartier divisors on Q by (II, 6.17.1). 
On the other hand, we know that Pic Q ~ Z ® Z, so we can talk about the 
type (a,b) of Y (II, 6.16) and (II, 6.6.1). Let us denote the invertible sheaf .P(Y) by 
{!)Q(a,b). Thus for any n E Z, {!)Q(n) = {!)Q(n,n). 
(a) Use the special cases (q,O) and (O,q), with q > 0, when Y is a disjoint union of q 

lines P 1 in Q, to show: 

(1) if Ia - bl ~ 1, then H 1(Q,{!)Q(a,b)) = 0; 
(2) if a,b < 0, then H 1(Q,{!)Q(a,b)) = 0; 
(3) If a ~ - 2, then H 1(Q,{!)Q(a,O)) -# 0. 

(b) Now use these results to show: 

(1) if Y is a locally principal closed subscheme of type (a,b), with a,b > 0, 
then Y is connected; 

(2) now assume k is algebraically closed. Then for any a,b > 0, there exists an 
irreducible nonsingular curve Y of type (a,b). Use (II, 7.6.2) and (II, 8.18). 

(3) an irreducible nonsingular curve Y of type (a,b), a,b > 0 on Q is projec
tively normal (II, Ex. 5.14) if and only if Ia - bl ~ 1. In particular, this 
gives lots of examples of nonsingular, but not projectively normal curves 
in P 3. The simplest is the one of type (1,3), which is just the rational 
quartic curve (1, Ex. 3.18). 
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(c) If Y is a locally principal subscheme of type (a,b) in Q, show that p.(Y) = 

ab - a - b + 1. [Hint: Calculate Hilbert polynomials of suitable sheaves, 
and again use the special case (q,O) which is a disjoint union of q copies ofP1 . 

See (V, 1.5.2) for another method.] 

5.7. Let X (respectively, Y) be proper schemes over a noetherian ring A. We denote by 
!£ an invertible sheaf. 
(a) If!£ is ample on X, and Y is any closed subscheme of X, then i* S£' is ample on 

Y, where i: Y -> X is the inclusion. 
(b) !£is ample on X if and only if 2';,. = !£@ (!)x". is ample on X" •. 

(c) Suppose X is reduced. Then !£ is ample on X if and only if !£@ @x, IS 

ample on Xi, for each irreducible component Xi of X. 

(d) Let f: X -> Y be a finite surjective morphism, and let !£ be an invertible sheaf 
on Y. Then!£ is ample on Y if and only iff*!£ is ample on X. [Hints: Use 
(5.3) and compare (Ex. 3.1, Ex. 3.2, Ex. 4.1, Ex. 4.2). See also Hartshorne 
[5, Ch. I §4] for more details.] 

5.8. Prove that every one-dimensional proper scheme X over an algebraically closed 
field k is projective. 
(a) If X is irreducible and nonsingular, then X is projective by (II, 6.7). 
(b) If X is integral, let X be its normalization (II, Ex. 3.8). Show that X is complete 

and nonsingular, hence projective by (a). Let f: X -> X be the projection. Let 
!£ be a very ample invertible sheaf on X. Show there is an effective divisor 
D = L,Pi on X with !£(D) ~ !£,and such that f(Pi) is a nonsingular point of 
X, for each i. Conclude that there is an invertible sheaf!£ 0 on X withf* !£ 0 ~ 

!£. Then use (Ex. 5.7d), (II, 7.6) and (II, 5.16.1) to show that X is projective. 
(c) If X is reduced, but not necessarily irreducible, let X 1, •.. , X, be the irre

ducible components of X. Use (Ex. 4.5) to show Pic X-> ffi Pic X, is sur
jective. Then use (Ex. 5.7c) to show X is projective. 

(d) Finally, if X is any one-dimensional proper scheme over k, use (2. 7) and (Ex. 4.6) 
to show that Pic X-> Pic X". is surjective. Then use (Ex. 5.7b) to show X 
is projective. 

5.9. A Nonprojective Scheme. We show the result of (Ex. 5.8) is false in dimension 2. 
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· Let k be an algebraically closed field of characteristic 0, and let X = Pf. Let w 

be the sheaf of differential 2-forms (II, §8). Define an infinitesimal extension X' 

of X by w by giving the element ~ E H 1(X,w@ 3) defined as follows (Ex. 4.10). 
Let x0 ,x1,x2 be the homogeneous coordinates of X, let U 0 ,U "U 2 be the standard 
open covering, and let ~ij = (x)x;)d(x;/x). This gives a Cech 1-cocycle with 
values in Q}, and since dim X = 2, we have w @ 3 ~ Q 1 (II, Ex. 5.16b). Now 
use the exact sequence 

... -> H 1(X,w) -> Pic X' -> Pic X ~ H 2(X,w)-> ... 

of (Ex. 4.6) and show b is injective. We have w ~ (!) x(- 3) by (II, 8.20.1 ), so 
H 2(X,w) ~ k. Since char k = 0, you need only show that .:5(@(1)) # 0, which can 
be done by calculating in Cech cohomology. Since H 1(X,w) = 0, we see that 
Pic X' = 0. In particular, X' has no ample invertible sheaves, so it is not pro
jective. 

Note. In fact, this result can be generalized to show that for any nonsingular 
projective surface X over an algebraically closed field k of characteristic 0, there 
is an infinitesimal extension X' of X by w, such that X' is not projective over k. 
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Indeed, let D be an ample divisor on X. Then D determines an element c1(D) E 

H 1(X,Q1) which we use to define X', as above. Then for any divisor Eon X one 
can show that b(Sf(E)) = (D.E), where (D.E) is the intersection number (Chap
ter V), considered as an element of k. Hence if E is ample, b(Sf(E)) "# 0. There
fore X' has no ample divisors. 

On the other hand, over a field of characteristic p > 0, a proper scheme X is 
projective if and only if X "d is! 

5.10. Let X be a projective scheme over a noetherian ring A, and let .'F1 --+ :F2 --+ ... --+ 

.'F' be an exact sequence of coherent sheaves on X. Show that there is an integer 
n0 , such that for all n ~ n0 , the sequence of global sections 

T(X,:F 1(n)) --+ T(X,:F 2(n)) --+ ... --+ F(X,:F'(n)) 
is exact. 

6 Ext Groups and Sheaves 

In this section we develop the properties of Ext groups and sheaves, which 
we will need for the duality theorem. We work on a ringed space (X,@x), 
and all sheaves will be sheaves of @x-modules. 

If :F and '§ are @x-modules, we denote by Hom(:F,'§) the group of (!)x

module homomorphisms, and by Yt'om(:F,'§) the sheaf Hom (II, §5). If 
necessary, we put a subscript X to indicate which space we are on: 
Homx(:F,'§). For fixed :F, Hom(:F, ·) is a left exact covariant functor from 
9J1o)(X) to 2lb, and Yt'om(:F, ·)is a left exact covariant functor from 9J1ob(X) 
to Wlob(X). Since Wlob(X) has enough injectives (2.2) we can make the follow
ing definition. 

Definition. Let (X,@x) be a ringed space, and let :F be an @x-module. We 
define the functors Exti(:F, ·) as the right derived functors of Hom(:F, · ), 
and !Cxti(:F, ·) as the right derived functors of Yt'om(:F, · ). 

Consequently, according to the general properties of derived functors 
(l.lA) we have Ext0 = Hom, a long exact sequence for a short exact sequence 
in the second variable, Exti(:F,'§) = 0 for i > 0, '§ injective in Wlob(X), and 
ditto for the !Cxt sheaves. 

Lemma 6.1. If J is an injective object of W1ob(X), then for any open subset 
U s:::: X, Jlu is an injective object of Wlob(U). 

PROOF. Letj: U ---.X be the inclusion map. Then given an inclusion :F s:::: '§ 
in W1ob( U), and given a map :F ---. Jlu. we get an inclusion j 1:F s:::: j,'§, and 
a mapj,:F---+ j,(Jiu), wherej1 is extension by zero (II, Ex. 1.19). Butj,(Jitr) 
is a subsheaf of§, so we have a mapj,:F ---. §. Since J is injective in Wlob(X), 
this extends to a map of j,'§ ,o §. Restricting to U gives the required map 
of'§ to Jlu· 
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Proposition 6.2. For any open subset U s; X we have 

t&'xt~(g;,<§)ju ~ t&'xth(g;ju.~iu ). 

PROOF. We use (1.3A). Both sides give b-functors in ~ from 9Jlob(X) to 
9Jlob(U). They agree for i = 0, both sides vanish for i > 0 and~ injective, 
by (6.1), so they are equaL 

Proposition 6.3. For any<§ E9Jlob(X), we have: 
(a) @"xt0(@x,':#) = ':#; 
(b) t&'xti((Dx,':#) = 0 fori> 0; 
(c) Exti(@x,':#) ~ Hi(X,':#) for all i?: 0. 

PROOF. The functor Yf'om(@x, ·)is the identity functor, so its derived functors 
are 0 fori > 0. This proves (a) and (b). The functors Hom(@x, ·)and r(X, ·) 
are equal, so their derived functors (as functors from 9Jlob(X) to ~b) are the 
same. Then use (2.6). 

Proposition 6.4. If 0 --+ g;' --+ g; --+ g;" --+ 0 is a short exact sequence in 
9Jlob(X), then for any':# we have a long exact sequence 

0 --+ Hom(g;",':#) --+ Hom(g;,<§) --+ Hom(g;', '§) --+ 

--+ Ext1(g;",':#) --+ Ext1(g;,<§) --+ ... , 

and similarly for the t&'xt sheaves. 

PROOF. Let 0 --+ ':# --+ f be an injective resolution of':#. For any injective 
sheaf J, the functor Hom(· ,J) is exact, so we get a short exact sequence of 
complexes 

0--+ Hom(g;",f)--+ Hom(g;,f)--+ Hom(g;',f)--+ 0. 

Taking the associated long exact sequence of cohomology groups hi gives 
the sequence of Ext;. 

Similarly, using (6.1) we see that Yf'om( · ,J) is an exact functor from 
9Jlob(X) to 9Jlob(X). Thus the same argument gives the exact sequence 
of Sxti. 

Proposition 6.5. Suppose there is an exact sequence 

... --+ 21--+ !l'o--+ g;--+ 0 

in 9Jlob(X), where the !l'; are locally free sheaves of finite rank (in this case 
we say !l'. is a locally free resolution of g;). Then for any ':# E 9Jlob(X) 
we have 

t&'xti(g;,<§) ~ hi(Yf' om(!l'., ':#) ). 

PROOF. Both sides are b-functors in':# from 9Jlob(X) to 9Jlob(X). For i = 0 
they are equal, because then Yf'om( · ,':#) is contravariant and left exact. 
Both sides vanish for i > 0 and ':# injective, because then Yf'om( · ,':#) is exact. 
So by (1.3A) they are equal. 
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Example 6.5.1. If X is a scheme, which is quasi-projective over Spec A, where 
A is a noetherian ring, then by (II, 5.18), any coherent sheaf:#' on X is a 
quotient of a locally free sheaf. Thus any coherent sheaf on X has a locally 
free resolution 2. ~ :#' ~ 0. So (6.5) tells us that we can calculate rffxt 
by taking locally free resolutions in the first variable. 

Caution 6.5.2. The results (6.4) and (6.5) do not imply that rffxt can be con
strued as a derived functor in its first variable. In fact, we cannot even de
fine the right derived functors of Hom or Yt'om in the first variable because 
the category Wlob(X) does not have enough projectives (Ex. 6.2). However, 
see (Ex. 6.4) for a universal property. 

Lemma 6.6. If 2 E Wlob(X) is locally free of finite rank, and J E Wlob(X) 
is injective, then 2 0 J is also injective. 

PROOF. We must show that the functor Hom(· ,2 0 J) is exact. But it is 
the same as the functor Hom(· 0 2~ ,J) (II, Ex. 5.1), which is exact because 
· 0 2 ~ is exact, and J is injective. 

Proposition 6.7. Let 2 be a locally free sheaf of finite rank, and let 2~ = 

Yt'om(2,(!Jx) be its dual. Then for any:#','§ E Wlob(X) we have 

Ext;(!#' 0 2,1§) ~ Exti(:F,2~ 0 '§), 

and for the sheaf rffxt we have 

PROOF. The case i = 0 follows from (II, Ex. 5.1). For the general case, note 
that all of them are b-functors in I§ from Wlob(X) to mb (respectively, 
Wlob(X) ), since tensoring with 2 ~ is an exact functor. For i > 0 and I§ 

injective they all vanish, by (6.6), so by (1.3A) they are equal. 

Next we will give some properties which are more particular to the case 
of schemes. 

Proposition 6.8. Let X be a noetherian scheme, let :#'be a coherent sheaf on X, 
let I§ be any (!Jx-module, and let x EX be a point. Then we have 

rffxti(:#',l§)x ~ Ext~jff x,l§ J 

for any i ~ 0, where the right-hand side is Ext over the local ring (!Jx· 

PROOF. Of course, Ext over a ring A is defined as the right derived functor of 
HomA(M, ·) for any A-module M, considered as a functor from IDlob(A) to 
Wlob(A). Or, by considering a one-point space with the ring A attached, it 
becomes a special case of the Ext of a ringed space defined above. 
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Our question is local, by (6.2), so we may assume that X is affine. Then 
:F has a locally free (or even a free) resolution f£. --+ :F --+ 0, which on the 

stalks at x gives a free resolution (fE.)x --+ ffx --+ 0. So by (6.5) we can cal

culate both sides by these resolutions. Since Yt'om(fE,'.§)x = Hom(I?J.Px,'.§ x) 

for a locally free sheaf!£, and since the stalk functor is exact, we get the 
equality of Ext's. 

Note that even the case i = 0 is not true without some special hypothesis 
on :F, such as :F coherent. 

Proposition 6.9. Let X be a projective scheme over a noetherian ring A, let 

C9x(1) be a very ample invertible sheaf, and let$','.§ be coherent sheaves on X. 
Then there is an integer n0 > 0, depending on :F, '.§, and i, such that for every 

n ~ n0 we have 

PROOF. If i = 0, this is true for any !F,'.§,n. If :F = CDx, then the left-hand 
side is Hi(X,'.§(n)) by (6.3). So for n » 0 and i > 0 it is 0 by (5.2). On the 
other hand, the right-hand side is always 0 fori > 0 by (6.3), so we have the 

result for :F = CDx. 
If :F is a locally free sheaf, we reduce to the case :F = CDx by (6.7). 
Finally, if ff is an arbitrary coherent sheaf, write it as a quotient of a 

locally free sheaf S (II, 5.18), and let !!A be the kernel: 

0 --+ !!A --+ g --+ ff --+ 0. 

Since S is locally free, by the earlier results, for n » 0, we have an exact 
sequence 

0 --+ Hom(ff,'.§(n)) --+ Hom(S,'.§(n)) --+ Hom(f!A,'.§(n)) --+ Ext 1($','.§(n)) --+ 0 

and isomorphisms, for all i > 0 

Exti(8i,'.§(n)) ~ Exti+ 1(ff,'.§(n) ), 

and similarly for the sheaf Yt'om and Sxt. Now by (Ex. 5.10), the sequence of 

global sections of the sheaf sequence is exact after twisting a little more, so 
from the case i = 0, using (6.7), we get the case i = 1 for :F. But 8i is also 
coherent, so by induction we get the general result. 

Remark 6.9.1. More generally, on any ringed space X, the relation between 
the global Ext and the sheaf Sxt can be expressed by a spectral sequence 
(see Grothendieck [1] or Godement [1, II, 7.3.3]). 

Now, for future reference, we recall the notion of projective dimension of 

a module over a ring. Let A be a ring, and let M be an A-module. A 

projective resolution of M is a complex L. of projective A-modules, such that 

... --+ L2 --+ L 1 --+ L 0 --+ M --+ 0 
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is exact. If L; = 0 for i > n, and Ln #- 0, we say it has length n. Then we 
define the projective dimension of M, denoted pd(M), to be the least length 
of a projective resolution of M (or + oo if there is no finite projective reso
lution). 

Proposition 6.10A. Let A be a ring, and Man A-module. Then: 
(a) M is projective if and only if Ext1(M,N) = 0 for all A-modules N; 
(b) pd(M) < n if and only if Exti(M,N) = 0 for all i > n and all A

modules N. 

PROOF. Matsumura [2, pp. 127-128]. 

Proposition 6.11A. If A is a regular local ring, then: 
(a) for every M, pd(M) < dim A; 
(b) If k = Ajm, then pd(k) = dim A. 

PROOF. Matsumura [2, Th. 42, p. 131]. 

Proposition 6.12A. Let A be a regular local ring of dimension n, and let M be 
a .finitely generated A-module. Then we have 

pd M + depth M = n. 

PROOF. Matsumura [2, p. 113, Ex. 4] or Serre [11, IVD, Prop. 21]. 

EXERCISES 

6.1. Let (X,@x) be a ringed space, and let $'',$'" E Wlob(X). An extension of$'" by 
$'' is a short exact sequence 

0 --+ $'' --+ $' --+ $'" --+ 0 

in Wlob(X). Two extensions are isomorphic if there is an isomorphism of the 
short exact sequences, inducing the identity maps on $'' and $'". Given an 
extension as above consider the long exact sequence arising from Hom($'",·), in 
particular the map 

b:Hom(ff",ff")--+ Ext 1(ff",ff'), 

and let ~ E Ext1(ff",ff') be b(l ,.-,). Show that this process gives a one-to-one 
correspondence between isomorphism classes of extensions of$'" by $'', and 
elements of the group Ext1(ff",ff'). For more details, see, e.g., Hilton and 
Stammbach [1, Ch. III]. 

6.2. Let X = Pi, with k an infinite field. 
(a) Show that there does not exist a projective object f}J E Wlob(X), together with a 

surjective map f}J--+ (()x--+ 0. [Hint: Consider surjections of the form (()v--+ 

k(x)--+ 0, where x EX is a closed point, Vis an open neighborhood of x, 

and (()v = j!((()xlv), where j: V--+ X is the inclusion.] 
(b) Show that there does not exist a projective object f}J in either ,Oco(X) or <£of)(X) 

together with a surjection f}J--+ (()x--+ 0. [Hint: Consider surjections of the 
form !i' --+ !i' ® k(x) --+ 0, where x E X is a closed point, and !i' is an invertible 
sheaf on X.] 
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6.3. Let X be a noetherian scheme, and let :Y,<§ E Wlob(X). 
(a) If ff,<§ are both coherent, then .fxt'(ff,<§) is coherent, for all i ~ 0. 
(b) If :Y is coherent and <§ is quasi-coherent, then .fxt'(:Y,<§) is quasi-coherent, 

for all i ~ 0. 

6.4. Let X be a noetherian scheme, and suppose that every coherent sheaf on X is a 
quotient of a locally free sheaf. In this case we say [ol)(X) has enough locally frees. 
Then for any <§ E 9Jlob(X), show that the b-functor (.fxt'( · ,<§) ), from [ol)(X) to 
Wlob(X ), is a contravariant universal 6-functor. [Hint: Show .fxt'( ·,<§)is coefface
able (§I) for i > 0.] 

6.5. Let X be a noetherian scheme, and assume that [ol)(X) has enough locally frees 
(Ex. 6.4). Then for any coherent sheaf :Y we define the homological dimension 
of ff, denoted hd(ff), to be the least length of a locally free resolution of :Y (or + oo 
if there is no finite one). Show: 
(a) :Y is locally free= .fxt1(:Y,<§) = 0 for all<§ E Wlob(X); 
(b) hd(ff) ~ n = bt'(:Y,<§) = 0 for all i > nand all<§ E Wlob(X); 
(c) hd(.~) = SUPx pdex ffx. 

6.6. Let A be a regular local ring, and let M be a finitely generated A-module. In this 
case, strengthen the result (6.10A) as follows. 
(a) M is projective if and only if Ext'(M,A) = 0 for all i > 0. [Hint: Use (6.11A) 

and descending induction on i to show that Ext'(M,N) = 0 for all i > 0 and 
all finitely generated A-modules N. Then show M is a direct summand of a 
free A-module (Matsumura [2, p. 129]).] 

(b) Use (a) to show that for any n, pd M ~ n if and only if Ext'(M,A) = 0 for all 
i> n. 

6.7. Let X = Spec A be an affine noetherian scheme. Let M, N be A-modules, with M 
finitely generated. Then 

Ext~(M,N) ~ Ext~(M,N) 
and 

.fxt~(M,iir) ~ Ext~(M.N)-. 

6.8. Prove the following theorem of Kleiman (see Borelli [1]): if X is a noetherian, 
integral, separated, locally factorial scheme, then every coherent sheaf on X is a 
quotient of a locally free sheaf (of finite rank). 
(a) First show that open sets of the form X., for various s E r(X,ll'), and various 

invertible sheaves 2" on X, form a base for the topology of X. [Hint: Given a 
closed point x E X and an open neighborhood U of x, to show there is an 2" ,s 
such that x E Xs s; U, first reduce to the case that Z = X - U is irreducible. 
Then let (be the generic point of Z. Let f E K(X) be a rational function with 
f E(()x, f ¢ (!!(· Let D = (j)00 , and let 2" = ll'(D), s E T(X,ll'(D)) correspond 
to D (II, §6).] 

(b) Now use (II, 5.14) to show that any coherent sheaf is a quotient of a direct sum 
E±)Y?' for various invertible sheaves 2", and various integers n,. 

6.9. Let X be a noetherian, integral, separated, regular scheme. (We say a scheme is 
regular if all of its local rings are regular local rings.) Recall the definition of 
the Grothendieck group K(X) from (II, Ex. 6.10). We define similarly another 
group K 1(X) using locally free sheaves: it is the quotient of the free abelian group 
generated by all locally free (coherent) sheaves, by the subgroup generated by all 
expressions of the form .f - .f' - <%'", whenever 0 --> <%'' --> <%' --> <%'" --> 0 is a 
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short exact sequence of locally free sheaves. Clearly there is a natural group 
homomorphism e:K 1(X)-> K(X). Show that e is an isomorphism (Borel and 
Serre [1, §4]) as follows. 
(a) Given a coherent sheaf :F, use (Ex. 6.8) to show that it has a locally free resolu

tion C. -> $' -> 0. Then use (6.11A) and (Ex. 6.5) to show that it has a finite 
locally free resolution 

0 -> c. -> ... -> c 1 -> c 0 -> $' -> 0. 

(b) For each $', choose a finite locally free resolution C. -> $' -> 0, and let 
b($') = L( -l)iy(CJ inK 1(X). Show that()($') is independent of the resolu
tion chosen, that it defines a homomorphism of K(X) to K 1(X), and finally, 
that it is an inverse to e. 

6.10. Duality for a Finite Flat Morphism. 
(a) Let f:X -> Y be a finite morphism of noetherian schemes. For any quasi

coherent @y-module '§, Yfomy(f*@x,'§) is a quasi-coherent f*0x-module, 
hence corresponds to a quasi-coherent 0x-module, which we call j!'§ (II, 
Ex. 5.17e). 

(b) Show that for any coherent$' on X and any quasi-coherent'§ on Y, there is a 
natural isomorphism 

J*Yfomx(:F,f't§) .::. Yfomy(f*$',1§). 

(c) For each i ~ 0, there is a natural map 

<p;: Ext~(:F,j''§) -> Ext~(f*$',1§). 

[Hint: First construct a map 

Ext~(:F,f''§) -> Ext~(f*:F,f*j''§). 

Then compose with a suitable map from f*f' '§ to '§.] 
(d) Now assume that X and Yare separated, G:oi)(X) has enough locally frees, and 

assume that j*@x is locally free on Y (this is equivalent to saying f flat-see 
§9). Show that <p; is an isomorphism for all i, all :F coherent on X, and all'§ 
quasi-coherent on Y. [Hints: First do i = 0. Then do$' = @x, using (Ex. 4.1). 
Then do :F locally free. Do the general case by induction on i, writing $' as 
a quotient of a locally free sheaf.] 

7 The Serre Duality Theorem 

In this section we prove the Serre duality theorem for the cohomology of 
coherent sheaves on a projective scheme. First we do the case of projective 
space itself, which follows easily from the explicit calculations of §5. Then 
on an arbitrary projective scheme X, we show that there is a coherent sheaf 
w~, which plays a role in duality theory similar to the canonical sheaf of a 
nonsingular variety. In particular, if X is Cohen-Macaulay, it gives a 
duality theorem just like the one on projective space. Finally, if X is a non
singular variety over an algebraically closed field, we show that the dualizing 
sheaf w~ coincides with the canonical sheaf wx. At the end of the section, 
we mention the connection between duality and residues of differential 
forms. 
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Let k be a field, let X = P~ be the n-dimensional projective space over k, 

and let Wx = 1\"flx;k be the canonical sheaf on X (II, §8). 

Theorem 7.1 (Duality for P~). Let X = P~ over a field k. Then: 

(a) H"(X,wx) ~ k. Fix one such isomorphism; 

(b) for any coherent sheaf:#' on X, the natural pairing 

Hom(:#',w) x H"(X,:#') --+ H"(X,w) ~ k 

is a perfect pairing of finite-dimensional vector spaces over k; 
(c) for every i ~ 0 there is a natural functorial isomorphism 

Exti(:#',w) ~ H"-i(X,:#')', 

where ' denotes the dual vector space, which for i = 0 is the one induced 

by the pairing of (b). 

PRooF. 
(a) It follows from (II, 8.13) that Wx ~ lPx(- n - 1) (see II, 8.20.1). Thus 

(a) follows from (5.1c). 
(b) A homomorphism of:#' to w induces a map of cohomology groups 

H"(X,:#') --+ H"(X,w). This gives the natural pairing. If:#' ~ lP(q) for some 
q E Z, then Hom(:#',w) ~ H 0(X,w(- q) ), so the result follows from (5.1d). 
Hence (b) holds also for a finite direct sum of sheaves of the form lP(qJ If 
:#' is an arbitrary coherent sheaf, we can write it as a cokernel {f 1 --+ {f 0 --+ 

:#' --+ 0 of a map of sheaves tfi, each tfi being a direct sum of sheaves lP(qJ 
Now Hom(· ,w) and H"(X, · )' are both left-exact contravariant functors, so 
by the 5-lemma we get an isomorphism Hom(:#',w) ~ H"(X,:#')'. 

(c) Both sides are contravariant <'>-functors, for :#' E <£ol)(X), indexed by 
i ~ 0. For i = 0 we have an isomorphism by (b). Thus to show they are 
isomorphic, by (1.3A), it will be sufficient to show both sides are coeffaceable 
for i > 0. Given :#' coherent, it follows from (II, 5.18) and its proof that we 
can write :#' as a quotient of a sheaf {f = ffif= 1 lP(- q), with q » 0. Then 
Exti(tf,w) = E!jHi(X,w(q)) = 0 for i > 0 by (5.1). On the other hand, 
H"-i(X,tf)' = EtlH"-i(X,lP(-q))', which is 0 fori> 0, q > 0, as we see 
again from (5.1) by inspection. Thus both sides are coeffaceable for i > 0, 
so the <'>-functors are universal, hence isomorphic. 

Remark 7.1.1. One may ask, why bother phrasing (7.1) with the sheaf wx, 

rather than simply writing lPx(- n - 1), which is what we use in the proof? 
One reason is that this is the form of the theorem which generalizes well. 
But a more intrinsic reason is that when written this way, the isomorphism 
of (a) can be made independent of the choice of basis of P", hence stable 
under automorphisms of P". Thus it is truly a natural isomorphism. To do 
this, consider the Cech cocycle 

_ X~ d (X1) d (X") Ot;- /\ ••. /\ 

x1 ... Xn Xo Xo 
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in C"(U,w), where U is the standard open covering. Then one can show 
that rx determines a generator of Hn(X,w), which is stable under change of 
variables. 

To generalize (7.1) to other schemes, we take properties (a) and (b) as 
our guide, and make the following definition. 

Definition. Let X be a proper scheme of dimension n over a field k. A 
dualizing sheaf for X is a coherent sheaf w~ on X, together with a trace 
morphism t:Hn(X,w~) ~ k, such that for all coherent sheaves :F on X, 
the natural pairing 

followed by t gives an isomorphism 

Proposition 7.2. Let X be a proper scheme over k. Then a dualizing sheaf 
for X, if it exists, is unique. More precisely, if W0 is one, with its trace 
map t, and if w',t' is another, then there is a unique isomorphism ({J: W0 -==. w' 
such that t = t' o Hn( ({J ). 

PROOF. Since w' is dualizing, we get an isomorphism Hom(w 0 ,W') ~ Hn(w 0 )'. 

So there is a unique morphism ({J: W 0 ~ w' corresponding to the element 
t E Hn(w 0 )', i.e., such that t' o Hn(({J) = t. Similarly, using the fact that W0 is 
dualizing, there is a unique morphism tjl:w' ~ W0 such that to Hn(t/1) = t'. 
It follows that to Hn(t/1 o ({J) = t. But again since W0 is dualizing, this implies 
that tjJ o ({J is the identity map of W0

• Similarly ({J o tjJ is the identity map of 
w', so ({J is an isomorphism. (This proof is a special case of the uniqueness 
of an object representing a functor (see Grothendieck [EGA I, new ed., Ch. 0, 
§1 ]). For by definition (w 0 ,t) represents the functor :F ~ H"(X,:F)' from 
<£ol)(X) to ffilob(k).) 

The question of existence of dualizing sheaves is more difficult. In fact 
they exist for any X proper over k, but we will prove the existence here only 
for projective schemes. First we need some preliminary results. 

Lemma 7.3. Let X be a closed subscheme of codimension r of P = Pf. Then 
!&"xt~(lDx,wp) = 0 for all i < r. 

PROOF. For any i, the sheaf :#'; = @"xt~(lDx,wp) is a coherent sheaf on P 
(Ex. 6.3), so after twisting by a suitably large integer q, it will be generated 
by global sections (II, 5.17). Thus to show :#'; is zero, it will be sufficient to 
show that F(P,:F;(q)) = 0 for all q » 0. But by (6.7) and (6.9) we have 

F(P,:F;(q)) ~ Ext~(lDx,Wp(q)) 
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for q » 0. On the other hand, by (7.1) this last Ext group is dual to 
HN-i(P,(!)x( -q)). Fori< r, N- i >dim X, so this group is 0 by (2.7) or 
(Ex. 4.8d). 

Lemma 7.4. With the same hypotheses as (7.3), let w~ = Sxt~((!)x,Wp). Then 
for any @x-module g;, there is a functorial isomorphism 

Homx(g;,w~) ~ Ext~(g;,wp). 

PROOF. Let 0 ~ Wp ~ f be an injective resolution of Wp in Wlob(P). Then 
we calculate Ext~(g;,wp) as the cohomology groups hi of the complex 
Homp(g;,f). But since g; is an @x-module, any morphism g;-+ Ji 
factors through eli = Yfomp(@x,Ji). Thus we have 

Ext~(g;,wp) = hi(Homx(g;,f) ). 

Now each eli is an injective {!}x-module. Indeed, for g; E Wlob(X), 
Homx(g;,eli) = Homp(g;,Ji), so Homx( ·,eli) is an exact functor. Further
more, by (7.3) we have hi(el') = 0 for i < r, so the complex e~· is exact up 
to the rth step. Since the eli are injective, it is actually split exact up to the 
rth step. This implies that we can write the complex as a direct sum of two 
injective complexes, f = el~ EB el~, where el~ is in degrees 0::::; i ::::; rand 
is exact, and el~ is in degrees i ~ r. It follows that w~ = ker(d':el2-+ el2+ 1), 

and that for any @x-module g;, 

Homx(g;,w~) ~ Ext~(g;,wp). 

(It also follows that Ext~(g;,wp) = 0 for i < r, which we won't need.) 

Proposition 7.5. Let X be a projective scheme over a field k. Then X has a 
dualizing sheaf 

PROOF. Embed X as a closed subscheme of P = Pf for some N, let r be its 
codimension, and let wx = Sxt~((!)x,wp). Then by (7.4) we have an iso
morphism for any @x-module g;, 

Homx(g;,w~) ~ Ext~(g;,wp). 

On the other hand, when g; is coherent, the duality theorem for P (7.1) 
gives an isomorphism 

But N - r = n, the dimension of X, and g; is a sheaf on X, so we obtain a 
functorial isomorphism, for g; E (£:ol)(X), 

Homx(g;,w~) ~ H"(x,g;y. 

In particular, taking g; = wx, the element 1 E Hom(wx,wx) gives us a 
homomorphism t:H"(X,wx)-+ k, which we take as our trace map. Then 
it is clear by functoriality that (w~,t) is a dualizing sheaf for X. 
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Now we can prove the duality theorem for a projective scheme X. Recall 
that a scheme is Cohen-M acaulay if all of its local rings are Cohen-Macaulay 
rings (II, §8). 

Theorem 7.6 (Duality for a Projective Scheme). Let X be a projective scheme 
of dimension n over an algebraically closed field k. Let Wx be a dualizing 
sheaf on X, and let CD(l) be a very ample sheaf on X. Then: 

(a) for all i ~ 0 and :F coherent on X, there are natural functorial maps 

ei:Exti(:F,wx)--+ Hn-i(X,:F)', 

such that eo is the map given in the definition of dualizing sheaf above; 
(b) the following conditions are equivalent: 

(i) X is Cohen-Macaulay and equidimensional (i.e., all irreducible com
ponents have the same dimension); 

(ii) for any :F locally free on X, we have Hi(X,:F(- q)) = 0 for i < n 
and q » 0; 

(iii) the maps e; of (a) are isomorphisms for all i ~ 0 and all :F coherent 
on X. 

PROOF. 

(a) As in the proof of (7.1c), we can write any coherent sheaf :F as a 
quotient of a sheaf Iff= E8f= 1 CDx(-q), with q » 0. Then Exti(tff,wx) ~ 
ffiHi(X,wx(q) ), which is 0 for i > 0 and q » 0 by (5.2). Thus the functor 
Exti( · ,wx) is coeffaceable for i > 0, so we have a universal contravariant 
15-functor by (1.3A). On the right-hand side we have a contravariant <5-
functor, indexed by i ~ 0, so there is a unique morphism of 15-functors (e;) 
reducing to the given eo for i = 0. 

(b) (i) => (ii). Embed X as a dosed subscheme of P = Pf. Then for any 
:F locally free on X, and any closed point x E X, we have depth :F,. = n, 
since X is Cohen-Macaulay and equidimensional of dimension n. Let 
A = CDP.x be the local ring of x on P. Then A is a regular local ring of di
mension N. (Since k is algebraically closed, x is rational over k, so the 
fact that A is regular can be seen directly. Or it follows from the fact that P 
is a nonsingular variety over k (II, §8).) Now depth :Fx is the same, whether 
calculated over CDx.x or over A. Thus we conclude from (6.12A) that 
pdA :Fx = N - n. Therefore by (6.8) and (6.10A) we have 

fori> N- n. 
tffxt~(:F, ·) = 0 

On the other hand, using (7.1), we find that Hi(X,:F(- q)) is dual to 
Ext~-i(:F,wp(q) ). For q » 0, this Ext is isomorphic to r(P,tffxt~-i(:F,wp(q))) 
by (6.9). But this is 0 for N - i > N - n, as we have just seen. In other 
words, Hi(X,:F(- q)) = 0 for i < n and q » 0. 

(ii) => (i). Running the above argument backwards, using condition (ii) 
with :F = CDx, we find that 
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for i > N - n. This implies that over a local ring A = (!)P,x as above, we 
have Ext~((!)x,x,A) = 0 for all i > N - n. Therefore by (Ex. 6.6) we have 
pdA (!)x.x :( N - n, and so by (6.12A), depth (!)x.x ;;::, n. But since dim X = n, 
we must have equality for every closed point of X. This shows, using 
(II, 8.21Ab), that X is Cohen-Macaulay and equidimensional. 

(ii) = (iii). Since we have already seen that Ext;(· ,w~)) is a universal 
contravariant 6-functor, to show that the (]i are isomorphisms, it will be 
sufficient to show that the 6-functor (Hn- ;(X,·)') is universal also. For this 
it suffices by (1.3A) to show that Hn-i(X, · )' is coeffaceable for i > 0. So 
given a coherent sheaf ff', write ff' as a quotient of Iff = EJ:j(!)( -q) with 
q » 0. Then Hn-i(X,Iff)' = 0 fori > 0 by (ii), so the functor is coeffaceable. 

(iii) = (ii). If (}; is an isomorphism, then for any ff' locally free, we have 

But this Ext is isomorphic to w-;(X,ff'~ ® w~(q)) by (6.3) and (6.7), so 
it is 0 for n - i > 0 and q » 0 by (5.2). q.e.d. 

Remark 7.6.1. In particular, if X is nonsingular over k, or more generally 
a local complete intersection, then X is Cohen-Macaulay (II, 8.21A) and 
(II, 8.23), so the (}; are isomorphisms. In these two cases, one can show 
directly (cf. proof of (7.11) below) that pdp (!)x = N - n, and thus avoid 
use of the algebraic results (6.12A) and (Ex. 6.6). 

Corollary 7.7. Let X he a projective Cohen-Macaulay scheme of equidimen
sion n over k. Then for any locally free sheaf ff' on X there are natural 
isomorphisms 

PROOF. Use (6.3) and (6.7). 

Corollary 7.8 (Lemma of Enriques-Severi-Zariski (Zariski [ 4]) ). Let X be 
a normal projective scheme of dimension ;;::, 2. Then for any locally free 
sheaf ff' on X, 

for q » 0. 

PRooF. Since X is normal of dimension ;;::, 2, we have depth ff'x ;;::, 2 for 
every closed point x E X by (II, 8.22A). So the result follows by the same 
method as the proof of (i) = (ii) in (7.6b). 

Corollary 7.9. Let X be an integral, normal projective variety of dimension 
;;::, 2 over an algebraically closed field k. Let Y be a closed subset of codimen
sion 1 which is the support of an effective ample divisor. Then Y is con
nected. 
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PROOF. By (II, 7.6) we may assume that Y is the support of a very ample 
divisor D. Let CD(1) be the corresponding very ample invertible sheaf. For 
each q > 0, let ~ be the closed subscheme supported on Y corresponding 
to the divisor qD (II, 6.17.1). Then we have an exact sequence (II, 6.18) 

0 ~ CDx( -q) ~ CDx ~ CDy. ~ 0. 

Taking cohomology and applying (7.8), we find that for q » 0, 

H 0(X,CDx) ~ H 0(Y,CDy ) ~ 0 
q 

is surjective. But H 0(X,CDx) = k (1, 3.4a), and H 0(Y,CDy.) contains k, so we 
conclude that H 0 (Y,CDy ) = k. Hence Y is connected. (If not, there would q 

be at least one copy of k for each connected component.) 

Remark 7.9.1. This implies that the schemes H n X mentioned in Bertini's 
theorem (II, 8.18) are in fact irreducible and nonsingular when dim X ~ 2. 
Indeed, they are connected by (7.9). On the other hand, they are regular 
by (II, 8.18). Hence the local rings are all integral domains, so we could 
not have two irreducible components meeting at a point. 

Now that we have proved the duality theorem (7.6), our next task is to 
give more information about the dualizing sheaf w~ in some special cases. 
Again we need some algebraic preliminaries. 

Let A be a ring, and let f 1, ... ,f.. EA. We define the Koszul complex 
K.(f1, . •. ,f..) as follows: K 1 is a free A-module of rank r with basis e1, ... ,e,. 
For each p = 0, ... ,r, KP = NK 1• We define the boundary map d:KP ~ 
Kv_ 1 by its action on the basis vectors: 

Thus K.(fto ... ,f..) is a (homological) complex of A-modules. If M is any 
A-module, we set K.(fto ... ,f..; M) = K.(f1 , ... ,f..) ®AM. 

Proposition 7.10A. Let A be a ring, f 1, ... ,f.. E A, and let M be an A-module. 
If the J; form a regular sequence forM, then 

h;(K.(f1, ••• ,f..; M)) = 0 fori> 0 
and 

h0 (K.(f1, • .. ,f..; M)) ~ M/(/1, ... ,f..)M. 

PROOF. Matsumura [2, Th. 43, p. 135] or Serre [11, IV.AJ. 

Theorem 7.11. Let X be a closed subscheme of P = Pf which is a local com
plete intersection of codimension r. Let ~ be the ideal sheaf of X. Then 
w~ ~ Wp ® N(~/~2(. In particular, w~ is an invertible sheaf on X. 

245 



III Cohomology 

PROOF. We have to calculate w~ = l%'xt';,((9x,Wp). Let U be an open affine 
subset over which §can be generated by r elements fb . .. ,f.. E A = T( U,(!)u) 
and let x E X n U be a point corresponding to an ideal m c:; A. Because 
X has codimension rand Am is Cohen-Macaulay, f 1, ... ,f.. form a regular 
sequence for Am (II, 8.21A). Therefore the localized Koszul complex 
K.(f1, ••• ,f..; Am) gives a free resolution of Am/Ub ... ,f..)Am over A,m so 
replacing U by a smaller neighborhood of x if necessary, K.(/1 , ... ,f..) gives 
a free resolution of A/(!1 , ••• ,f..) over A. Sheafifying gives a free resolution 
K.(fb . .. ,f..; (!)p) of (!)x over U with which we can calculate 1%'xtp((!)x,Wp) 
(6.5). We get 

h'(Yfom(K.(f1, •.• ,f..; (!)p),wp)) ;::;; wpj(f1, ••• ,f..)wp. 

In other words, 
I%'Xtp({!)x,Wp) ;::;; Wp @ {!)X 

over U. However, this isomorphism depends on the choice of basis f1> ... ,J, 
for f. If g; = '[.cijjj, i = 1, ... ,r, is another basis, then the exterior powers 
of the matrix llcijll give an isomorphism of Koszul complexes. In particular, 
we have a factor of detlcijl on K" so our isomorphism of l%'xt' changes by 
detlcijl· 

To remedy this situation, we consider the sheaf fjf 2 on X, which is 
locally free of rank r (II, 8.21A). In particular, it is free over U, with basis 
f 1, ... ,f... Therefore 1\ '(f /f2) is free of rank 1, with basis f 1 1\ ... 1\ f... 
If we change to the basis gb ... ,g" this element changes by det lcijl· There
fore, we can obtain an intrinsic isomorphism above by tensoring with this 
free sheaf of rank 1 (check variance!) 

l%'xtp({!)x,Wp) ;::;; Wp@ {!)X@ 1\ '(fjf2 f. 

This isomorphism, defined over U, is independent of the choice of basis. 
Therefore when we cover P with such open sets, these isomorphisms glue to
gether, and we obtain the required isomorphism w~ ;::;; Wp@ 1\ '(f/f2f. 

Corollary 7.12. If X is a projective nonsingular variety over an algebraically 
closed field k, then the dualizing sheaf w~ is isomorphic to the canonical 
sheaf Wx· 

PROOF. Embed X in P == Pf. Then X is a local complete intersection in P 
(II, 8.17), and Wx;::;; Wp @ 1\ '(fjf2f by (II, 8.20). 

Remark 7.12.1. Thus for a projective nonsingular variety X, the duality 
theorem (7.6) and its corollary (7.7) hold with Wx in place of w~. In particular, 
we obtain an isomorphism Hn(X,wx) ;::;; k, whose existence is by no means 
obvious a priori. 

Remark 7.12.2. If X is a projective nonsingular curve, we find that H 1(X,(!)x) 
and H 0(X,wx) are dual vector spaces. Hence the arithmetic genus Pa = 

dim H 1(X,(!)x) and the geometric genus p9 = dim r(X,wx) are equal
cf. (Ex. 5.3a) and (II. 8.18.2). 
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Remark 7.12.3. If X is a projective nonsingular surface, then H 0 (X,w) is 
dual to H 2(X,(!)x), so p9 = dim H 2(X,(!)x). On the other hand Pa = 
dim H 2(X,(!)x) - dim H 1(X,(!)x) by (Ex. 5.3a). Thus p9 )! Pa· The difference, 
p9 - Pa = dim H 1(X,(!)x) is usually denoted by q, and is called the irregularity 
of X. For example, the surface of (II, Ex. 8.3c) has irregularity 2. 

Corollary 7.13. Let X be a nonsingular projective variety of dimension n. For 
any p = 0,1, ... ,n, let QP = NQx k be the sheaf of d(fferential p-forms. 
Then for each p,q = 0,1, ... ,n, we have a natural isomorphism 

Hq(X,QP) ~ Hn-q(X,Qn-p)'. 

PROOF. Indeed, for any p, Qn-p ~ (QPr ® w (II, Ex. 5.16b). Then use 
(7.7). 

Remark 7.13.1. The numbers hp,q = dim Hq(X,QP) are important biregular 
invariants of the variety X. 

Remark 7.14 (Residues of Differentials on Curves). A weakness of the duality 
theorem as we have proved it is that even for a nonsingular projective variety 
X, we don't have much information about the trace map t:Hn(X,w)-+ k. 
We know only that it exists. In the case of curves, there is another way of 
proving the duality theorem, using residues, which improves this situation. 

Let X be a complete nonsingular curve over an algebraically closed field k, 
and let K be the function field of X. Let Qx be the sheaf of differentials of 
X over k, and for a closed point P EX, let QP be its stalk at P. Let QK be 
the module of differentials of K over k. Then one first proves: 

Theorem 7.14.1 (Existence of Residues). For each closed point P EX, there is 
a unique k-lineur map resp: QK --+ k with the following properties: 

(a) resp( r) = 0 for all r E Qp; 
(b) resp(Fdf) = 0 for all f E K*, all n # -1; 
(c) resp(f- 1df) = vp(f) · 1, where Vp is the wluution associated toP. 

From these properties we see immediately how to calculate the residue 
of any differential. Indeed, let t E (!)P be a uniformizing parameter. Then 
dt is a generator for QK as a K-vector space, so we can write any r E QK as 
gdt for some g E K. Furthermore, since (!)Pis a valuation ring, we can write 
g = Li<O ai + h with ai E k, hE @p, and the sum finite. Thus r = 
'f.a/dt + hdt. Now from linearity and (a), (b), (c) we find 

(d) res P r = a_ 1 . 

Thus the uniqueness of resp is clear. 
The existence is more difficult. One approach by Serre [7, Ch. II] is to 

take (d) as the definition of the residue. Then one has an awkward time 
proving that it is independent of the choice of the uniformizing parameter t, 
especially in the case of characteristic p > 0. Another approach by Tate [2] 
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gives an intrinsic construction of the residue map by a clever use of certain 
k-linear transformations of K. 

The basic result about residues is: 

Theorem 7.14.2 (Residue Theorem). For any r E QK, we have LPex resp r = 0. 

In Serre's approach this theorem is first proved on Pl, by explicit cal
culation. Then the general case is obtained by using a finite morphism 
X --+ P 1 and studying the relationship between the residues in both places. 
In Tate's approach the residue theorem follows directly from the construction 

of the residue map. 
Once one has the theory of residues, the duality theorem for X can be 

proved by a method of Weil using repartitions. We refer to the lucid ex
positions of Serre and Tate mentioned above for the details of this classic 
story. 

The connection with our approach can be explained as follows. The 
exact sequence 

0 --+ (!)x --+ :ffx --+ :ffx/(!)x --+ 0, 

where :ffx is the constant sheaf Kx, is a ftasque resolution of (!)x (cf. Ex. 2.2). 
Furthermore, 

:ffx/(!)x ~ · EB i*(Kxf(!)p) 
PeX 

where we consider Kxf(!)p as an {!}p-module, and i: fP} --+ X is the inclusion 
map. Tensoring with Qx, we get a flasque resolution of Qx: 

0 --+ Qx --+ Qx ® :ffx--+ EB i*(QKjQp) --+ 0. 
PeX 

Taking cohomology, we get an exact sequence 

QK --+ EB QKjQp --+ H 1(X,Qx) --+ 0. 

We define a map 

by taking the sum of all the maps resp: QKjQp --+ k. Then by (7.14.2) this map 

vanishes on the image of QK, hence it passes to the quotient and gives a map 
t:H 1(X,Qx) --+ k. This is the trace map of our duality theorem, which appears 
now in a much more explicit form. 

Remark 7.15 (The Kodaira Vanishing Theorem). Our discussion of the co
homology of projective varieties would not be complete without mentioning 
the Kodaira vanishing theorem. It says if X is a projective nonsingular 
variety of dimension n over C, and if 2 is an ample invertible sheaf on X, 
then: 

(a) Hi(X,!£1 ® w) = 0 fori > 0; 
(b) H;(X,!£- 1) = 0 fori < n. 
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Of course (a) and (b) are equivalent to each other by Serre duality. The 
theorem is proved using methods of complex analytic differential geometry. 
At present there is no purely algebraic proof. On the other hand, Raynaud has 
recently shown that this result does not hold over fields of characteristic p > 0. 

The first proof was given by Kodaira [ 1]. For other proofs, including 
the generalization by Nakano, see Wells [1, Ch. VI, §2], Mumford [3], and 
Ramanujam [1]. For a relative version of the theorem, see Grauert and 
Riemenschneider [ 1]. 

References for the Duality Theorem. The duality theorem was first proved 
by Serre [2] (in the form of (7.7)) for locally free sheaves on a compact 
complex manifold, and in the case of abstract algebraic geometry by Serre [ 1]. 
Our proof follows Grothendieck [5] and Grothendieck [SGA 2, exp. XII], 
with some improvements suggested by Lipman. The duality 'theorem and 
the theory of residues have been generalized to the case of an arbitrary 
proper morphism by Grothendieck ~see Grothendieck [ 4] and Hartshorne 
[2]. Deligne has given another proof of the existence of a dualizing sheaf, 
and Verdier [ 1] has shown that this one agrees with the sheaf w for a non
singular variety. Kunz [1] gives another construction, using differentials, 
of the dualizing sheaf wx for an integral projective scheme X over k. 

The duality theorem has also been generalized to the case of a proper 
morphism of complex analytic spaces~see Ramis and Ruget [I] and Ram is, 
R uget, and Verdier [I]. For a generalization to noncom pact complex mani
folds, see Suominen [ 1]. 

In the case of curves, the duality theorem is the most important ingredient 
in the proof of the Riemann-Roch theorem (IV, §1). See Serre [7, Ch. II] 
for the history of this approach, and also Gunning [ 1] for a proof in the 
language of compact Riemann surfaces. 

EXERCISES 

7.1. Let X be an integral projective scheme of dimension ~ 1 over a field k, and let 
!£1 be an ample invertible sheaf on X. Then H 0(X,!£1- 1 ) = 0. (This is an easy 
special case of Kodaira's vanishing theorem.) 

7.2. Let f: X-+ Y be a finite morphism of projective schemes of the same dimension 
over a field k, and let w~ be a dualizing sheaf for Y. 
(a) Show that f' w~ is a dualizing sheaf for X, where f' is defined as in (Ex. 6.10). 
(b) If X and Y are both nonsingular, and k algebraically closed, conclude that 

there is a natural trace map t: f*wx -+ wy. 

7.3. Let X = P~. Show that Hq(X,Q~) = 0 for p ¥- q, k for p = q, 0 ::;; p, q::;; n. 

*7.4. The Cohomology Class of a Subvariety. Let X be a nonsingular projective variety 
of dimension n over an algebraically closed field k. Let Y be a nonsingular sub
variety of codimension p (hence dimension n - p). From the natural map Qx ® 
(!iy-+ Qr of (II, 8.12) we deduce a map QX-p-+ a;,-p. This induces a map on 
cohomology w-p(X,QX-P)-+ w-p(Y,Q'VP). Now Q~-p = Wy is a dualizing sheaf 
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for Y, so we have the trace map ty:H"-P(Y,Q'Y-p)-> k. Composing, we obtain a 
linear map H"-P(X,!l'Jc-P)-> k. By (7.13) this corresponds to an element IJ(Y) E 
HP(X,Q'\-), which we call the cohomology class of Y. 
(a) If P EX is a closed point, show that tx(IJ(P)) = 1, where IJ(P) E H"(X,Q") and 

t x is the trace map. 
(b) If X= P", identify W(X,QP) with k by (Ex. 7.3), and show that I](Y) = (deg Y) · 1, 

where deg Y is its degree as a projective variety (1, §7). [Hint: Cut with a hyper
plane H c::; X, and use Bertini's theorem (II, 8.18) to reduce to the case Y is a 
finite set of points.] 

(c) For any scheme X of finite type over k, we define a homomorphism of sheaves 
of abelian groups dlog:@}-> !lx by dlog(f) = f- 1df Here (9* is a group 
under multiplication, and !lx is a group under addition. This induces a map on 
cohomology Pic X = H 1(X,@k) -> H 1(X,Qx) which we denote by c-see 
(Ex. 4.5). 

(d) Returning to the hypotheses above, suppose p = 1. Show that IJ(Y) = c(£'(Y) ), 
where 2'(Y) is the invertible sheaf corresponding to the divisor Y. 

See Matsumura [1] for further discussion. 

8 Higher Direct Images of Sheaves 

For the remainder of this chapter we will be studying families of schemes. 
Recall (II, §3) that a family of schemes is simply a morphism f: X --+ Y, and 
the members of the family are the fibres X Y = X x y Spec k(y) for various 
points y E Y. To study a family, we need some form of"relative cohomology 
of X over Y," or "cohomology along the fibres of X over Y." This notion is 
provided by the higher direct image functors Rj* which we define below. The 
precise relationship between these functors and the cohomology of the fibres 
X Y will be studied in §11, 12. 

Definition. Let f: X --+ Y be a continuous map of topological spaces. Then 
we define the higher direct image functors Rj*: ~b(X) --+ ~b( Y) to be the 
right derived functors of the direct image functor f* (II, §1). 

This makes sense because f* is obviously left exact, and ~b(X) has 
enough injectives (2.3). 

Proposition 8.1. For each i ~ 0 and each ~ E ~b(X), Rj*(~) is the sheaf 
associated to the presheaf 

v f--+ Hi(f- 1 (V),~IJ-1(V)) 
on Y. 

PROOF. Let us denote the sheaf associated to the above presheafby Yl'i(X,~). 
Then, since the operation of taking the sheaf associated to a presheaf is 
exact, the functors Yl'i(X, ·) form a J-functor from ~b(X) to ~b(Y). For 
i = 0 we have f* ~ = Yl'0(X,~) by definition off*. For an injective object 
J E ~b(X) we have Rj*(J) = 0 for i > 0 because Rj* is a derived functor. 
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On the other hand, for each V, .J'if- 'W> is injective in m:b(f- 1(V)) by (6.1) 
(think of X as a ringed space with the constant sheaf Z), so £';(X,.J') = 0 
for i > 0 also. Hence there is a unique isomorphism of <5-functors Ri*( ·) ~ 
£';(X,·) by (1.3A). 

Corollary 8.2. If V c;; Y is any open subset, then 

Ri*(~)iv = R'i"~(~IJ-'(VJ) 

where f' :f- 1(V) --+ Vis the restricted map. 

PROOF. Obvious. 

Corollary 8.3. If~ is afiasque sheaf on X, then Ri*(~) = 0 for all i > 0. 

PROOF. Since the restriction of a flasque sheaf to an open subset is flasque, 
this follows from (2.5). 

Proposition 8.4. Let f:X--+ Y be a morphism of ringed spaces. Then the 
functors R1* can be calculated on Wlob(X) as the derived functors of 
f*:Wlob(X)--+ Wlob(Y). 

PROOF. To calculate the derived functors off* on Wlob(X), we use resolutions 
by injective objects of Wlob(X). Any injective of Wlob(X) is flasque by (2.4), 
hence acyclic for f* on m:b(X) by (8.3), so they can be used to calculate 
Ri* by (1.2A). 

Proposition 8.5. Let X be a noetherian scheme, and let f: X --+ Y be a morphism 
of X to an affine scheme Y = Spec A. Then for any quasi-coherent sheaf 
~on X, we have 

PROOF. By (II, 5.8), f*~ is a quasi-coherent sheaf on Y. Hence f*~ ~ 
r( Y,f*~)-. But r( Y,f*~) = r(X,~). So we have an isomorphism for 
i = 0. 

Since is an exact functor from Wlob(A) to Wlob(Y), both sides are <5-
functors from .Qco(X) to Wlob(Y). Furthermore, by (3.6), any quasi-coherent 
sheaf ~ on X can be embedded in a flasque, quasi-coherent sheaf. Hence 
both sides are effaceable for i > 0. We conclude from (1.3A) that there is a 
unique isomorphism of <5-functors as above, reducing to the given one for 
i = 0. 

Note that we must work in the category .Qco(X), because already the case 
i = 0 fails if~ is not quasi-coherent. 

Corollary 8.6. Let f:X --+ Y be a morphism of schemes, with X noetherian. 
Then for any quasi-coherent sheaf~ on X, the sheaves Ri*(~) are quasi
coherent on Y. 
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PROOF. The question is local on Y, so we may use (8.5). 

Proposition 8. 7. Let f: X --+ Y be a morphism of separated noetherian schemes. 
Let$' be a quasi-coherent sheaf on X, let U = (U;) be an open affine cover 
of X, and let ~·(U,$') be the Cech resolution of$' given by (4.2). Then 
for each p ? 0, 

Wf*($') ~ hP(f* ~·(U,$') ). 

PROOF. For any open affine subset V t;: Y, the open subsets Ui n f- 1(V) 
of X are all affine (check !-cf. (II, Ex. 4.3) ). Hence we may reduce to the 
case Y affine. The sheaves ~P(U,$') are all quasi-coherent, so we have 

f* ~·(U,$') ~ C"(U,$'r 

by (II, 5.8). Now the result follows from (4.5) and (8.5). 

Theorem 8.8. Let f: X --+ Y be a projective morphism of noetherian schemes, 
let (Ox(1) be a very ample invertible sheaf on X over Y, and let$' be a coherent 
sheaf on X. Then: 

(a) for all n » 0, the natural map f*f*($'(n))--+ $'(n) is surjective; 
(b) for all i ? 0, Ri_f*($') is a coherent sheaf on Y; 
(c) fori > 0 and n » 0, Ri_f*($'(n)) = 0. 

PROOF. Since Y is quasi-compact, the question is local on Y, so we may 
assume Y is affine, say Y = Spec A. Then, using (8.5), (a) says that $'(n) 
is generated by global sections, which is (II, 5.17). (b) says that Hi(X,$') 
is a finitely generated A-module, which is (5.2a). Finally, (c) says that 
Hi(X,$'(n)) = 0, which is (5.2b). 

Remark 8.8.1. Part (b) of this theorem is true more generally for a proper 
morphism of noetherian schemes-see Grothendieck [EGA III, 3.2.1]. The 
analogous theorem for a proper morphism of complex analytic spaces was 
proved by Grauert [1]. 

EXERCISES 

8.1. Let f:X --+ Y be a continuous map of topological spaces. Let §'be a sheaf of 
abelian groups on X, and assume that Ri*(ff) = 0 for all i > 0. Show that there 
are natural isomorphisms, for each i ~ 0, 

(This is a degenerate case of the Leray spectral sequence-see Godement [1, II, 
4.17.1 ].) 

8.2. Let f: X --+ Y be an affine morphism of schemes (II, Ex. 5.17) with X noetherian, 
and let§' be a quasi-coherent sheaf on X. Show that the hypotheses of (Ex. 8.1) 
are satisfied, and hence that H;(X,ff) ~ H;(Y,j*§') for each i ~ 0. (This gives 
another proof of (Ex. 4.1).) 
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8.3. Let f:X--+ Y be a morphism of ringed spaces, let ff be an (l)x-module, and let 
rff be a locally free (l)y-module of finite rank. Prove the projection formula (cf. 
(II, Ex. 5.1)) 

R1*(ff ® f*rff) ~ R1*(ff) ® rff. 

8.4. Let Y be a noetherian scheme, and let rff be a locally free (l)y-module of rank n + 1, 
n ~ 1. Let X = P(rff) (II, §7), with the invertible sheaf (l)x(1) and the projection 
morphism n:X --+ Y. 
(a) Thenn*((l)(0) ~ S1(rff)forl ~ O,n*((l)(0) = Oforl < 0(11, 7.1l);R;n*((l)(0) = 0 

for 0 < i < n and all I E Z; and R"n*( (1)(0) = 0 for I > - n - 1. 
(b) Show there is a natural exact sequence 

0 --+ QX/Y --+ (n*rff)( -1) --+ (I) --+ 0, 

cf. (II, 8.13), and conclude that the relative canonical sheaf wx1r = 1\ "Qx1r is 
isomorphic to (n* 1\ •+ 1rff)(- n - 1). Show furthermore that there is a natural 
isomorphism R"n*(wx1r) ~ (I)Y (cf. (7.1.1) ). 

(c) Now show, for any IE Z, that 

R"n*((l)(0) ~ n*((l)(-1- n- l)f ® (/\"+ 1rfff. 

(d) Show that p.(X) = ( -1)"p.(Y) (use (Ex. 8.1)) and pg(X) = 0 (use (II, 8.11) ). 
(e) In particular, if Y is a nonsingular projective curve of genus g, and rff a locally 

free sheaf of rank 2, then X is a projective surface with Pa = - g, pg = 0, and 
irregularity g (7.12.3). This kind of surface is called a geometrically ruled surface 
(V, §2). 

9 Flat Morphisms 

In this section we introduce the notion of a flat morphism of schemes. By 
taking the fibres of a flat morphism, we get the notion of a flat family of 
schemes. This provides a concise formulation of the intuitive idea of a 
"continuous family of schemes." We will show, through various results and 
examples, why flatness is a natural as well as a convenient condition to put 
on a family of schemes. 

First we recall the algebraic notion of a flat module. Let A be a ring, and 
let M be an A-module. We say that M is fiat over A if the functor N H 

M ®A N is an exact functor for N E Wlob(A). If A ~ B is a ring homomor
phism, we say that B is fiat over A if it is flat as a module. 

Proposition 9.1A. 
(a) An A-module M is fiat if and only if for every finitely generated 

ideal a s:::: A, the map a ® M ~ M is injective. 
(b) Base extension: If M is a fiat A-module, and A~ B is a homomor

phism, then M ®A B is a fiat B-module. 
(c) Transitivity: If B is a fiat A-algebra, and N is a fiat B-module, then 

N is also fiat as an A-module. 
(d) Localization: M is fiat over A if and only if Mp is fiat over Ap for all 

p E Spec A. 
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(e) Let 0 ~ M' ~ M ~ M" ~ 0 be an exact sequence of A-modules. 
If M' and M" are both fiat then M is fiat; if M and M" are both fiat, then 
M' isfiat. 

(f) A finitely generated module M over a local noetherian ring A is fiat 
if and only if it is free. 

PROOFS. Matsumura [2, Ch. 2, §3] or Bourbaki [1, Ch. I.]. 

Example 9.1.1. If A is a ring and S <;; A is a multiplicative system, then the 
localization s- 1 A is a flat A-algebra. If A ~ B is a ring homomorphism, 
if M is a B-module which is flat over A, and if S is a multiplicative system 
in B, then S- 1M is flat over A. 

Example 9.1.2. If A is a noetherian ring and a <;; A an ideal, then the a-adic 
completion A is a flat A-algebra {II, 9.3A). 

Example 9.1.3. Let A be a principal ideal domain. Then an A-module M 
is flat if and only if it is torsion-free. Indeed, by (9.1Aa) we must check that 
for every ideal a <;; A, a @ M ~ M is injective. But a is principal,. say 
generated by t, so this just says that t is not a zero divisor in M, i.e., M is 
torsion-free. 

Definition. Let f: X ~ Y be a morphism of schemes, and let :#' be an (1} x
module. We say that:#' is fiat over Y at a point x EX, if the stalk~ is a 
flat my.r-module, where y = f(x) and we consider ffx as an my,r-module 
via the natural mapf#:my,Y ~ mx,X· We say simply:#' isfiat over Yif 
it is flat at every point of X. We say X is fiat over Y if (1} x is. 

Proposition 9.2. 
(a) An open immersion is fiat. 
(b) Base change: let f: X ~ Y be a morphism, let :#' be an (1} x-module 

which is fiat over Y, and let g: Y' ~ Y be any morphism. Let X' = X x r Y', 
let f': X' ~ Y' be the second projection, and let :#'' = pf(ff). Then :#'' 
is fiat over Y'. 

(c) Transitivity: let f:X ~ Y and g: Y ~ Z be morphisms. Let :#' 
be an mx-module which is fiat over Y, and assume also that Y is fiat over Z. 
Then:#' is fiat over Z. 

(d) Let A ~ B be a ring homomorphism, and let M be a B-module. Let 
f: X = Spec B ~ Y = Spec A be the corresponding morphism of affine 
schemes, and let :#' = M. Then :#' is fiat over Y if and only if M is fiat 
over A. 

(e) Let X be a noetherian scheme, and:#' a coherent mx-module. Then:#' 
is fiat over X if and only if it is locally free. 

PROOF. These properties all follow from the corresponding properties of 
modules, taking into account that the functor ~ is compatible with @ 

(II, 5.2). 
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Next, as an illustration ofthe convenience of flat morphisms, we show that 
"cohomology commutes with flat base extension": 

Proposition 9.3. Let f: X ~ Y be a separated morphism of finite type of noe
therian schemes, and let ff be a quasi-coherent sheaf on X. Let u: Y' ~ Y 
be a fiat morphism of noetherian schemes. 

X' __ _,V:....__~ X 

Y' u y 

Then for all i ~ 0 there are natural isomorphisms 

u* Rj*(ff) ~ Rig*(v* $'). 

PROOF. The question is local on Y and on Y', so we may assume they are 
both affine, say Y = Spec A and Y' = Spec A'. Then by (8.5) what we have 
to show is that 

Since X is separated and noetherian, and ff is quasi-coherent, we can 
calculate Hi(X,ff) by Cech cohomology with respect to an open affine cover 
U of X ( 4.5). On the other hand, { v- 1( U) I U E U} forms an open affine cover 
U' of X', and clearly the Cech complex C(U',v* ff) is just C"(U,ff) ®A A'. 
Since A' is flat over A, the functor · ®A A' commutes with taking cohomology 
groups of the Cech complex, so we get our result. Note that g is also separated 
and of finite type by base extension, so X' is also noetherian and separated, 
allowing us to apply (4.5) on X'. 

Remark 9.3.1. Even if u is not flat, this proof shows that there is a natural 
map u*Rj*(ff) ~ Rig*(v*ff). 

Corollary 9.4. Let f:X ~ Y and ff be as in (9.3), and assume Y affine. For 
any point y E Y, let X Y be the fibre over y, and let ffy be the induced sheaf 
On the other hand, let k(y) denote the constant sheaf k(y) on the closed 
subset {y}- ofY. Thenfor all i ~ 0 there are natural isomorphisms 

Hi(Xy,ffy) ~ Hi(X,ff ® k(y)). 

PROOF. First let Y' c:; Y be the reduced induced subscheme structure on 
{ y}-, and let X' = X x r Y', which is a closed subscheme of X. Then both 
sides of our desired isomorphism depend only on the sheaf ff' = :#' ® k(y) 
on X'. Thus we can replace X, Y,ff by X', Y',ff', i.e., we can assume that Y is 
an integral affine scheme and that y E Y is its generic point. In that case, 
Spec k(y) ~ Y is a flat morphism, so we can apply (9.3) and conclude that 

Hi(Xy,ffy) ~ Hi(X,ff) ® k(y). 
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But after our reduction, Hi(X,g-) is already a k(y)-module, so tensoring with 
k( y) has no effect, and we obtain the desired result. (This result is used in 
§12.) 

Flat Families 

For many reasons it is important to have a good notion of an algebraic 
family of varieties or schemes. The most naive definition would be just to 
take the fibres of a morphism. To get a good notion, however, we should 
require that certain numerical invariants remain constant in a family, such 
as the dimension of the fibres. It turns out that if we are dealing with non
singular (or even normal) varieties over a field, then the naive definition is 
already a good one. Evidence for this is the theorem (9.13) that in such a 
family, the arithmetic genus is constant. 

On the other hand, if we deal with nonnormal varieties, or more general 
schemes, the naive definition will not do. So we consider a fiat family of 
schemes, which means the fibres of a fiat morphism, and this is a very good 
notion. Why the algebraic condition of flatness on the structure sheaves 
should give a good definition of a family is something of a mystery. But 
at least we will justify this choice by showing that fiat families have many 
good properties, and by giving necessary and sufficient conditions for 
flatness in some special cases. In particular, we will show that a family 
of closed subschemes of projective space (over an integral scheme) is fiat if 
and only if the Hilbert polynomials of the fibres are the same. 

Proposition 9.5. Let f:X--> Y be a flat morphism of schemes of finite type 
over afield k. For any point x EX, let y = f(x). Then 

dimx(X y) = dimx X - dimy Y. 

Here for any scheme X and any point x EX, by dimx X we mean the di
mension of the local ring (!} x,x. 

PROOF. First we make a base change Y' --> Y where Y' = Spec (!}y,Y• and 
consider the new morphism f':X'--> Y' where X' = X x y Y'. Then f' 
is also fiat by (9.2), x lifts to X', and the three numbers in question are the 
same. Thus we may assume that y is a closed point of Y, and dimy Y = dim Y. 

Now we use induction on dim Y. If dim Y = 0, then XY is defined by a 
nilpotent ideal in X, so we have dimx(Xy) = dimx X, and dimy Y = 0. 

If dim Y > 0, we make a base extension to Yrect· Nothing changes, so we 
may assume that Y is reduced. Then we can find an element t E my s;;; (!}y,Y 

such that tis not a zero divisor. Let Y' = Spec (!}y,Y/(t), and make the base 
extension Y' --> Y. Then dim Y' = dim Y - 1 by (1, 1.8A) and (1, 1.11A). 
Since f is fiat, f # t E mx is also not a zero divisor. So for the same reason, 
dimx X' = dimx X - 1. Of course the fibre X Y does not change under base 
extension, so we have only to prove our formula for f': X' --> Y'. But this 
follows from the induction hypothesis, so we are done. 
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Corollary 9.6. Let f:X --+ Y be a fiat morphism of schemes of finite type over 
a field k, and assume that Y is irreducible. Then the following conditions 
are equivalent: 

(i) every irreducible component of X has dimension equal to dim Y + n; 
(ii) for any pointy E Y (closed or not), every irreducible component of the 

fibre X Y has dimension n. 

PROOF. 

(i) = (ii). Given y E Y, let Z <;:: X Y be an irreducible component, and let 
x E Z be a closed point, which is not in any other irreducible component 
of XY. Applying (9.5) we have 

dimx Z = dimx X - dimy Y. 

Now dimx Z = dim Z since xis a closed point (II, Ex. 3.20). On the other 
hand, since Y is irreducible and X is equidimensional, and both are of finite 
type over k, we have (II, Ex. 3.20) 

dimx X = dim X - dim{x}

dimY Y = dim Y - dim { y}-. 

Finally, since x is a closed point of the fibre X Y' k(x) is a finite algebraic 
extension of k(y) and so 

dim { x}- = dim { y}-. 

Combining all these, and using (i) we find dim Z = n. 
(ii) = (i). This time let Z be an irreducible component of X, and let 

x E Z be a closed point which is not contained in any other irreducible 
component of X. Then applying (9.5), we have 

dimx(X y) = dimx X - dimy Y. 

But dimx(X y) = n by (ii), dimx X = dim Z, and dimY Y = dim Y, since 
y = f(x) must be a closed point of Y. Thus 

dim Z = dim Y + n 
as required. 

Definition. A point x of a scheme X is an associated point of X if the maximal 
ideal mx is an associated prime of 0 in the local ring (!) x.x. or in other 
words, if every element of mx is a zero divisor. 

Proposition 9.7. Let f:X --+ Y be a morphism of schemes, with Y integral 
and regular of dimension 1. Then f is fiat if and only if every associated 
point x E X maps to the generic point of Y. In particular, if X is reduced, 
this says that every irreducible component of X dominates Y. 
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PROOF. First suppose that f is flat, and let x EX be a point whose image 
y = f(x) is a closed point of Y. Then @y,Y is a discrete valuation ring. Let 
t E my - m; be a uniformizing parameter. Then t is not a zero divisor in 
(1) y,Y· Since f is flat, f # t E mx is not a zero divisor, so x is not an associated 
point of X. 

Conversely, suppose that every associated point of X maps to the generic 
point of Y. To show f is flat, we must show that for any x EX, letting y = 

f(x), the local ring @x,x is flat over @y,Y· If y is the generic point, @y,Y is a 
field, so there is nothing to prove. If y is a closed point, @y,Y is a discrete 
valuation ring, so by (9.1.3) we must show that @x,x is a torsion-free module. 
If it is not, then f # t must be a zero divisor in mx, where t is a uniformizing 
parameter of @y,Y· Therefore f#t is contained in some associated prime 
ideal :p of(O) in (1)x (Matsumura [2, Cor. 2, p. 50]). Then :p determines a point 
x' E X, which is an associated point of X, and whose image by f is y, which is a 
contradiction. 

Finally, note that if X is reduced, its associated points are just the generic 
points of its irreducible components, so our condition says that each ir
reducible component of X dominates Y. 

Example 9.7.1. Let Y be a curve with a node, and let f:X---> Y be the map 
of its normalization to it. Then f is not flat. For if it were, then j*(1) x would 
be a flat sheaf of @y-modules. Since it is coherent, it would be locally free by 
(9.2e). And finally, since its rank is 1, it would be an invertible sheaf on Y. 

But there are two points P1,P2 of X going to the node Q of Y, so (j*@x)Q 
needs two generators as an <'9y-module, hence it cannot be locally free. 

Example 9.7.2. The result of (9.7) also fails if Y is regular of dimension > 1. 
For example, let Y = A 2 , and let X be obtained by blowing up a point. Then 
X and Y are both nonsingular, and X dominates Y, but f is not flat, because 
the dimension of the fibre over the blown-up point is too big (9.5). 

Proposition 9.8. Let Y be a regular, integral scheme of dimension 1, let P E Y 

be a closed point, and let X s; P~ _ P be a closed sub scheme which is fiat 

over Y - P. Then there exists a unique closed subscheme X s; P~, fiat 

over Y, whose restriction to P~ _ P is X. 

PROOF. Take X to be the scheme-theoretic closure of X in P~ (II, Ex. 3.1ld). 
Then the associated points of X are just those of X, so by (9.7), X is flat 
over Y. Furthermore, X is unique, because any other extension·of X toP~ 
would have some associated points mapping to P. 

Remark 9.8.1. This proposition says that we can "pass to the limit," when we 
have a flat family of closed subschemes of pn over a punctured curve. Hence 
it implies that "the Hilbert scheme is proper." The Hilbert scheme is a 
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scheme H which parametrizes all closed subschemes ofP;:. It has the property 
that to give a closed subscheme X s; P;., flat over T, for any scheme T, is 
equivalent to giving a morphism cp: T--+ H. Here, naturally, for any t E T, 
cp(t) is the point of H corresponding to the fibre X1 s; P;:(tJ· 

Now once one knows that the Hilbert scheme exists (see Grothendieck 
[5, exp. 221]) then the question of its properness can be decided using the 
valuative criterion of properness (II, 4.7). And the result just proved is the 
essential point needed to show that each connected component of H is 
proper over k. 

Example 9.8.2. Even though the dimension of the fibres is constant in a 
flat family, we cannot expect properties such as "irreducible" or "reduced" 
to be preserved in a flat family. Take for example, the families given in 
(II, 3.3.1) and (II, 3.3.2). In each case the total space X is integral, the base 
Y is a non singular curve and the morphism f: X --+ Y is surjective, so the 
family is flat. Also most fibres are integral in both families. However, the 
special fibre in one is a doubled line (not reduced), and the special fibre in the 
other is two lines (not irreducible). 

Example 9.8.3 (Projection from a Point). We get some new insight into the 
geometric process of projection from a point (I, Ex. 3.14) using (9.8). Let 
P = (0,0, ... ,0,1) E pn+ 1 , and consider the projection cp:Pn+ 1 - {P}--+ pn, 
which is defined by (x0 , ... ,xn+ 1) ~ (x0 , ... ,xn). For each a E k, a =1- 0, 
consider the automorphism a a of pn+ 1 defined by (x0 , ... ,xn+ 1) ~ 
(x0 , ... ,xmaxn+ 1). Now let X 1 be a closed subscheme ofpn+ \not containing 
P. For each a =1- 0, let Xa = aa(X1). Then the Xa form a flat family param
etrized by A1 - {0}. It is flat, because the Xa are all isomorphic as abstract 
schemes, and in fact, the whole family is isomorphic to X 1 x (A 1 - { 0}) if 
we forget the embedding in pn+ 1 . 

Now according to (9.8) this family extends uniquely to a flat family defined 
over all of A 1, and clearly the fibre X 0 over 0 agrees, at least set-theoretically, 
with the projection cp(X 1) of X 1 . Thus we see that there is a flat family over 
A\ whose fibres for all a =1- 0 are isomorphic to X t> and whose fibre at 0 is 
some scheme with the same underlying space as cp(X 1). 

Example 9.8.4. We will now calculate the flat family just described in the 
special case where X 1 is a twisted cubic curve in P3 , cp is a projection to P2 , 

and cp(X 1) is a nodal cubic curve in P2 . The remarkable result of this cal
culation is that the special fibre X 0 of our flat family consists of the curve 
cp(X 1) together with some nilpotent elements at the double point! We say 
that X 0 is a scheme with an embedded point. It seems as if the scheme X 0 is 
retaining the information that it is the limit of a family of space curves, by 
having these nilpotent elements which point out of the plane. In particular, 
X 0 is not a closed subscheme of P2 (Fig. 11 ). 
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z 

Figure 11. A flat family of subschemes of P 3. 

Now for the calculation. We are just interested in what happens near the 
double point, so we will use affine coordinates x,y in A 2 and x,y,z in A 3• 

Let X 1 be given by the parametric equations 

{

X = t 2 - 1 
y = t 3 - t 

z = t. 

Then since t = z, t 2 = x + 1, t 3 = y + z, we recognize this as a twisted 
cubic curve in A 3 (1, Ex. 1.2). 

Now for any a =I= 0, the scheme X a is given by 

{: : ~: = : 
z =at. 

To get the ideal I ~ k[a,x,y,z] of the total family X extended over all of A 1, 
we eliminate t from the parametric equations, and make sure a is not a 
zero divisor in k[a,x,y,z]/I, so that X will be flat. We find 

I = (a2(x + 1) - z2, ax(x + 1) - yz, xz - ay, y2 - x 2(x + 1)). 

From this, setting a = 0, we obtain the ideal I 0 ~ k[ x,y,z] of X 0 , which is 

10 = (z 2 ,yz,xz,y2 - x 2(x + 1)). 

So we see that X 0 is a scheme with support equal to the nodal cubic curve 
y2 = x2(x + 1). At any point where x =I= 0, we get z in the ideal, so X 0 is 
reduced there. But in the local ring at the node (0,0,0), we have the element z 
with z2 = 0, a nonzero nilpotent element. 

So here we have an example of a flat family of curves, whose general 
member is nonsingular, but whose special member is singular, with an 
embedded point. See also (9.10.1) and (IV, Ex. 3.5). 
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Example 9.8.5 (Algebraic Families of Divisors). Let X be a scheme of finite 
type over an algebraically closed field k, let T be a nonsingular curve over k, 
and let D be an effective Cartier divisor on X x T (II, §6). Then we can think 
of D as a closed subscheme of-X x T, which is locally described on a small 
open set U as the zeros of a single element f E r(U,(!)u) such that f is not a 
zero divisor. For any closed point t E T, let X1(:~X) be the fibre of X x T 
over t. We say that the intersection divisor D1 = D.X1 is defined if at every 
point of X 0 the image J E r(U n X 1,(Dx,) of a local equation f of D is not a 
zero divisor. In that case the covering { U n X 1 } and the elements J define a 
Cartier divisor D1 on X 1• If D1 is defined for all t, we say that the divisors 
{ D1lt E T} form an algebraic family of divisors on X parametrized by T. 

This definition, which is natural in the context of Cartier divisors, is 
connected with flatness in the following way: the original Cartier divisor D, 
considered as a scheme over T, is flat over T if and only if D1 = D.X1 is 
defined for each t E T. Indeed, let x E D be any point, let A = (!) x,x x r be 
the local ring of x on X x T, let f E A be a local equation forD, let p2(x) = t, 
and let u E (!)r.r be a uniformizing parameter. Then D.X1 is defined at x if 
and only if J E AjuA is not a zero divisor. Since u is automatically not a 
zero divisor in A, this is equivalent to saying that (u,f) is a regular sequence 
(II, §8) in A. On the other hand, D is flat over T at x if and only if (!) x,D is 
flat over (!)r.r· By (9.1.3) this is equivalent to (!)x,D being torsion-free, i.e., u 
not being a zero divisor in (!) x,n· But (!) x,n ~ A/fA, so this says that (f,u) 
is a regular sequence in A. Since the property of being a regular sequence is 
independent of the order of the sequence (Matsumura [2, Th. 28, p. 102]), 
the two conditions are equivalent. 

Theorem 9.9. Let T be an integral noetherian scheme. Let X £ PT be a 
closed subscheme. For each point t E T, we consider the Hilbert polynomial 
P1 E Q[ z] of the fibre X 1 considered as a closed subscheme of P~<t)· Then 
X is flat over T if and only if the Hilbert polynomial P1 is independent oft. 

PROOF. Recall that the Hilbert polynomial was defined in (1, §7), and com
puted another way in (Ex. 5.2). We will use the defining property that 

P1(m) = dimk(t) H 0(X1,(!)x.(m)) 
for all m » 0. 

First we generalize, replacing (!) x by any coherent sheaf §' on P~, and 
using the Hilbert polynomial of ffi;. Thus we may assume X = P~. Se
cond, the question is local on T. In fact, by comparing any point to the• 
generic point, we see that it is sufficient to consider the case T = Spec A, 
with A a local noetherian ring. 

So now let T = Spec A with A a local noetherian domain, let X = P~, 
and let §'be a coherent sheaf on X. We will show that the following con
ditions are equivalent: 

(i) §' is flat over T; 
(ii) H0(X,§'(m)) is a free A-module of finite rank, for all m » 0; 

261 



III Cohomology 

(iii) the Hilbert polynomial Pt of ffr on Xt = Pi:<t> is independent of t, for 
any t E T. 

(i) = (ii). We compute H;(X,$'(m)) by Cech cohomology using the stan
dard open affine cover U of X. Then 

H;(X,$'(m)) = h;( C(U,$'(m)) ). 

Since$'" is flat, each term C(U,$'(m)) of the Cech complex is a flat A-module. 
On the other hand, if m » 0, then H;(X,$'(m)) = 0 fori > 0, by (5.2). Thus 
the complex C(U,$'(m)) is a resolution of the A-module H 0(X,$'(m) ): we 
have an exact sequence 

0 -+ H 0(X,$'(m)) -+ C0(U,$'(m)) -+ C1(U,$'(m)) -+ ... -+ C"(U,$'(m)) -+ 0. 

Splitting this into short exact sequences, using (9.1Ae) and the fact that the 
C; are all flat, we conclude that H 0(X,$'(m)) is a flat A-module. But it is 
also finitely generated (5.2), and hence free of finite rank by (9.1Af). 

(ii) = (i). Let S = A[ x 0 , ... ,xn], and let M be the graded S-module 

M = EB H 0(X,$'(m) ), 
m~mo 

where m0 is chosen large enough so that the H 0(X,$'(m)) are all free for 
m ): m0 . Then$'" = M by (II, 5.15). Note that M is the same as r *($'")in 
degrees m ): m0 , so M = r *($'r. Since M is a free (and hence flat) A
module, we see that$'" is flat over A (9.1.1). 

(ii) = (iii). It will be enough to show that 

Pt(m) = rank A H 0(X,$'(m)) 

for m » 0. To prove this we will show, for any t E T, that 

H 0(Xt,fft(m)) ~ H 0(X,$'(m)) 0 A k(t) 
for all m » 0. 

First we let T' = Spec AP, where p is the prime ideal corresponding to t, 
and we make the flat base extension T' -+ T. Thus by (9.3) we reduce to 
the case where t is the closed point of T. Denote the closed fibre Xt by X 0 , 

ffr by $'0 , and k(t) by k. Take a presentation of k over A, 

Aq -+ A -+ k -+ 0. 

Then we get an exact sequence of sheaves on X, 

$'q -+ $'" -+ $'0 -+ 0. 

Now by (Ex. 5.10) form » 0 we get an exact sequence 

H 0(X,$'(m)q) -+ H 0(X,$'(m)) -+ H 0(X 0 ,$'0(m)) -+ 0. 

On the other hand, we can tensor the sequence Aq -+A -+ k-+ 0 with 
H 0(X,$'(m) ). Comparing, we deduce that 

H0(X0,$'0(m)) ~ H 0(X,$'(m)) @A k 

for all m » 0, as required. 
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(iii) => (ii). According to (II, 8.9) we can check the freeness of H 0(X,.?F(m)) 
by comparing its rank at the generic point and the closed point of T. Hence 
the argument of (ii) => (iii) above is reversible. 

Corollary 9.10. Let T be a connected noetherian scheme, and let X s; PT be 
a closed subscheme which is flat over T. For any t E T, let X 1 be the fibre, 
considered as a closed subscheme of Pi:(r)· Then the dimension of X 1, the 
degree of X 1, and the arithmetic genus of X 1 are all independent oft. 

PRooF. By base extension to the irreducible components of T with their 
reduced induced structure, we reduce to the case T integral. Now the result 
follows from the theorem and the facts (1, §7) and (Ex. 5.3) that 

dim X 1 = deg P1, 

deg X 1 = (r !) · (leading coefficient of P1), 

where r = dim X, and 

Definition. Let k be an algebraically closed field, let f: X -+ T be a surjective 
map of varieties over k, and assume that for each closed point t E T, we 
have 

(I) f - 1(t) is irreducible of dimension equal to dim X - dim T, and 
(2) if m1 s; (!)r,T is the maximal ideal, and if' E f- 1(t) is the generic point, 

thenf#m1 generates the maximal ideal m, s; (!)I;,X· 

Under these circumstances, we let X<rl be the variety f- 1(t) (with the 
reduced induced structure) and we say that the X(r) form an algebraic 
family of varieties, parametrized by T. The second condition is necessary 
to be sure that X<rl occurs with "multiplicity one" in the family. It is 
equivalent to saying that the scheme-theoretic fibre X 1 is reduced at its 
generic point. 

Example 9.10.1. In the flat family of (9.8.4), if we take the fibres with their 
reduced induced structures, we get an algebraic family of varieties X<n 
parametrized by A 1 . For t i= 0 it is a nonsingular rational curve, and for 
t = 0 it is the plane nodal cubic curve. Note that the arithmetic genus is 
not constant in this family: Pa(X<n) = 0 for t i= 0 and Pa(X<0l) = 1. This 
accounts for the appearance of nilpotent elements in the scheme-theoretic 
fibre X 0 , since in a flat family of schemes Pais constant by (9.10). The em
bedded point at 0 alters the constant term of the Hilbert polynomial so 
that we get Pa(X 0 ) = 0. 

Theorem 9.11. Let X<rl be an algebraic family of normal varieties parame
trized by a nonsingular curve T over an algebraically closed field k. Then 
X<n is a flat family of schemes. 
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PROOF. Let f:X ~ T be the defining morphism of the family. Then f is a 
flat morphism by (9.7). So we have only to show that for each closed point 
t E T, the scheme-theoretic fibre xt coincides with the variety x(t)• In other 
words, we must show that X 1 is reduced. For any point x EX, let A = (!)x.x 

be its local ring, let f(x) = t, and denote also by t a uniformizing parameter 
in the local ring @1_r· Then AjtA is the local ring of x on X 1• By hypothesis 
X 1 is irreducible, so t has a unique minimal prime ideal p in A. Furthermore, 
t generates the maximal ideal of the local ring of the generic point of X 1 

on X, which says that t generates the maximal ideal of AP. Finally, the local 
ring of x on X(t) is Ajp, so our hypothesis says that Ajp is normal. Now our 
result is a consequence of the following lemma, which tells us that p = tA, 
so x(l) = xt. 

Lemma 9.12 (Lemma ofHironaka [1]). Let A be a local noetherian domain, 
which is a localization of an algebra of.finite type over a field k. Let t E A, 
and assume 

(1) tA has only one minimal associated prime ideal p, 
(2) t generates the maximal ideal of AP, 
(3) Ajp is normal. 

Then p = tA and A is normal. 

PROOF. Let A be the normalization of A. Then A is a finitely generated 
A-module by (1, 3.9A). We will show that the maps 

cp: Aft A ~ A/tA 
and 

ljJ: Aft A ~ Ajp 
are both isomorphisms. 

First we localize at p. Then ljJ is an isomorphism by hypothesis. There
fore AP is a discrete valuation ring, hence normal. So AP = AP and cp is also 
an isomorphism. 

Now suppose that at least one of cp,lj; is not an isomorphism. Then, after 
localizing A at a suitable prime ideal, we may assume that cp and ljJ are 
isomorphisms at every localization Aq with q -=1- m, but that at least one of 
cp,l/J is not an isomorphism at m. By the previous step, we have p < m, so 
dim A ~ 2. Now A is normal of dimension ~ 2, so it has depth ~ 2 (II, 
8.22A), so AjtA has depth ~ 1. Therefore it does not have mas an associated 
prime. On the other hand, Aft A agrees with Ajp outside of m, so we conclude 
that AjtA is an integral domain. Thus we have a natural map (AjtA)red ~ 
AjtA. But (A/tA)red ~ Ajp since ljJ is an isomorphism outside m. Thus 
AjtA is a finitely generated (A/p)-module with the same quotient field. Since 
Ajp is normal by hypothesis, we conclude that AjtA ~ Ajp. Therefore cp 
is surjective, so we can write A = A + tA. By Nakayama's lemma, this 
implies that A = A. Thus AjtA ~ Ajp and both cp and ljJ are isomorphisms. 
But this is a contradiction, so we conclude that cp and ljJ were already iso
morphisms on the original ring A before localization. 
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To conclude, we find that p = tA because 1/J is an isomorphism. Since 
<p is an isomorphism, we have A = A + tA, so by Nakayama's lemma as 
before, we find that A = A, so A is normal. 

Corollary 9.13 (Igusa [1]). Let X<tl be an algebraic family of normal varieties 
in PZ, parametrized by a variety T. Then the Hilbert polynomial of x(t)' 

and hence also the arithmetic genus Pa(X<1l), are independent oft. 

PROOF. Any two closed points ofT lie in the image of a morphism g: T' --+ T, 
where T' is a nonsingular curve, or can be connected by a finite number of 
such curves, so by base extension, we reduce to the case where T is a non
singular curve. Then the result follows from (9.10) and (9.11). 

Example 9.13.1 (Infinitesimal Deformations). Now that we have seen that 
flatness is a natural condition for algebraic families of varieties, we come to 
an important nonclassical example of flatness in the category of schemes. 
Let X 0 be a scheme of finite type over a field k. Let D = k[t]/t 2 be the 
ring of dual numbers over k. An infinitesimal deformation of X 0 is a scheme 
X', flat over D, and such that X' ®v k ~ X 0 • 

These arise geometrically in the following way. If f:X --+ Tis any flat 
family, having a point t E T with X 1 ~ X 0 , we say that X is a (global) de
formation of X 0 . Now given an element of the Zariski tangent space ofT 
at t, we obtain a morphism Spec D --+ T (II, Ex. 2.8). Then by base extension 
we obtain an X' flat over Spec D with closed fibre X 0 . Thus the study of 
the infinitesimal deformations of X 0 ultimately will help in the study of 
global deformations. 

Example 9.13.2. Continuing the same ideas, it is often possible to classify 
the infinitesimal deformations of a scheme X. In particular, if X is non
singular over an algebraically closed field k, we will show that the set of 
infinitesimal deformations of X, up to isomorphism, is in one-to-one corre
spondence with the elements of the cohomology group H 1(X,:Tx), where 
:Tx is the tangent sheaf. 

Indeed, given X' flat over D, we consider the exact sequence 

0--+k..!...D--+k--+0 

of D-modules. By flatness, we obtain an exact sequence 
t 

0 --+ (!J X --+ (!J X' --+ (!J X --+ 0 

of (!Jx.-modules. Thus X' is an infinitesimal extension of the scheme X by 
the sheaf (!Jx, in the sense of (II, Ex. 8.7). Conversely, such an extension 
gives X' flat over D. Now these extensions are classified by H 1(X,:Tx) by 
(Ex. 4.10). 

Remark 9.13.3. There is a whole subject called deformation theory devoted 
to the study of deformations of a given scheme (or variety) X 0 over a field k. 
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It is closely related to the moduli problem. There one attempts to classify 
all varieties, and put them into algebraic families. Here we study only those 
that are close to a given one X 0 • 

Deformation theory is one area of algebraic geometry where the influence 
of schemes has been enormous. Because even if one's primary interest is in 
a variety X 0 over k, by working in the category of schemes, one can consider 
flat families over arbitrary Artin rings with residue field k, whose closed 
fibre is X 0 . Taking the limit of Artin rings, one can study flat families over 
a complete local ring. Both of these types of families are intermediate 
between X 0 itself and a global deformation f:X ~ T where Tis another 
variety. Thus they form a powerful tool for studying all deformations of 
X 0 . For some references on deformation theory see Schlessinger [ 1 J, or 
Morrow and Kodaira [1, Ch. 4]. 

EXERCISES 

9.1. A flat morphism f:X--> Y of finite type of noetherian schemes is open, i.e, for 
every open subset U <::; X,f(U) is open in Y. [Hint: Show thatf(U) is construct
ible and stable under generization (II, Ex. 3.18) and (II, Ex. 3.19).] 

9.2. Do the calculation of (9.8.4) for the curve of (I, Ex. 3.14). Show that you get an 
embedded point at the cusp of the plane cubic curve. 

9.3. Some examples of flatness and nonflatness. 
(a) If f:X--> Y is a finite surjective morphism of nonsingular varieties over an 

algebraically closed field k, then f is flat. 
(b) Let X be a union of two planes meeting at a point, each of which maps iso

morphically to a plane Y. Show that f is not flat. For example, let Y = 
Spec k[x,y] and X= Spec k[x,y,z,w]j(z,w) n (x + z,y + w). 

(c) Again let Y =Spec k[x,y], but take X= Spec k[x,y,z,w]/(z2,zw,w2,xz- yw). 
Show that X"d ~ Y, X has no embedded points, but that f is not flat. 

9.4. Open Nature of Flatness. Letf:X--> Y be a morphism of finite type of noetherian 
schemes. Then { x E X if is flat at x} is an open subset of X (possibly empty)-see 
Grothendieck [EGA IV 3, 11.1.1]. 

9.5. Very Flat Families. For any closed subscheme X<::; P", we denote by C(X) <::; p•+ 1 

the projective cone over X (I, Ex. 2.10). If I <::; k[ x0 , ... ,x.] is the (largest) homo
geneous ideal of X, then C(X) is defined by the ideal generated by I in 
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k[ Xo, ... ,Xn+ 1]. 
(a) Give an example to show that if {X,} is a flat family of closed subschemes of 

P", then { C(X,)} need not be a flat family in p•+ 1 . 

(b) To remedy this situation, we make the following definition. Let X <::; P';-- be a 
closed subscheme, where T is a noetherian integral scheme. For each t E T, 
let I, <::; S, = k(t)[ x0 , ... ,x.J be the homogeneous ideal of X, in Pi:(r)· We 
say that the family {X,} is very fiat if for all d ;;:, 0, 

dimk(r)(S,/ I,)d 

is independent oft. Here ( )d means the homogeneous part of degree d. 
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(c) If {X,} is a very flat family in P", show that it is flat. Show also that { C(X,)} is 
a very flat family in P" + 1, and hence flat. 

(d) If {X(r)} is an algebraic family of projectively normal varieties in P~, para
metrized by a nonsingular curve T over an algebraically closed field k, then 
{ X(r)} is a very flat family of schemes. 

9.6. Let Y <;; P" be a nonsingular variety of dimension ~ 2 over an algebraically 
closed field k. Suppose pn-l is a hyperplane in P" which does not contain Y, 
and such that the scheme Y' = Y n pn-l is also nonsingular. Prove that Y is a 
complete intersection in P" if and only if Y' is a complete intersection in pn-'. 
[Hint: See (II, Ex. 8.4) and use (9.12) applied to the affine cones over Y and Y'.] 

9.7. Let Y <;; X be a closed subscheme, where X is a scheme of finite type over a 
field k. Let D = k[t]/t2 be the ring of dual numbers, and define an infinitesimal 
deformation of Y as a closed subscheme of X, to be a closed subscheme 
Y' s; X x k D, which is flat over D, and whose closed fibre is Y. Show that these 
Y' are classified by H0(Y,% Y/X), where 

A~'y 1x = Yfom~Jfy/.f~,@y). 

*9.8. Let A be a finitely generated k-algebra. Write A as a quotient of a polynomial 
ring P over k, and let J be the kernel: 

0-'-- J-'-- P-'-- A-'-- 0. 

Consider the exact sequence of (II, 8.4A) 

J/1 2 -'-> QP!k @p A-'-> QA/k-+ 0. 

Apply the functor Hom A(· ,A), and let T 1(A) be the cokernel: 

HomA(QP!k ® A,A)-+ HomA(J/]2,A)-'-- T 1(A)-+ 0. 

Now use the construction of(Il, Ex. 8.6) to show that T 1(A) classifies infinitesimal 
deformations of A, i.e., algebras A' flat over D = k[t]/t2 , with A' ®n k ~ A. It 
follows that T 1(A) is independent of the given representation of A as a quotient 
of a polynomial ring P. (For more details, see Lichtenbaum and Schlessinger [1 ].) 

9.9. A k-algebra A is said to be rigid if it has no infinitesimal deformations, or equi
valently, by (Ex. 9.8) if T 1(A) = 0. Let A= k[x,y,z,w]/(x,y) n (z,w), and show 
that A is rigid. This corresponds to two planes in A 4 which meet at a point. 

9.10. A scheme X 0 over a field k is rigid if it has no infinitesimal deformations. 
(a) Show that Pt is rigid, using (9.13.2). 
(b) One might think that if X 0 is rigid over k, then every global deformation of X 0 

is locally trivial. Show that this is not so, by constructing a proper, flat mor
phism f: X -'-- A 2 over k algebraically closed, such that X 0 ~ Pt, but there 
is no open neighborhood U of 0 in A 2 for which f- 1( U) ~ U x P1. 

*(c) Show, however, that one can trivialize a global deformation of P 1 after a flat 
base extension, in the following sense: let f: X -'-- T be a flat projective mor
phism, where T is a nonsingular curve over k algebraically closed. Assume 
there is a closed pointt E T such that X, ~ P{ Then there exists a nonsingular 
curve T', and a flat morphism g: T' -'-- T, whose image contains t, such that 
if X' = X x T T' is the base extension, then the new family f': X' -'-- T' is 
isomorphic to P}. -+ T'. 
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9.11. Let Y be a nonsingular curve of degree din P~, over an algebraically closed field k. 
Show that 

0 :::; p.(Y) :::; t(d - l)(d - 2). 

[Hint: Compare Y to a suitable projection of Y into P2, as in (9.8.3) and (9.8.4).] 

10 Smooth Morphisms 

The notion of smooth morphism is a relative version of the notion of non
singular variety over a field. In this section we will give some basic results 
about smooth morphisms. As an application, we give Kleiman's elegant 
proof of the characteristic 0 Bertini theorem. For further information about 
smooth and etale morphisms, see Altman and Kleiman [1, Ch. VI, VII], 
Matsumura [2, Ch. 11 ], and Grothendieck [SGA 1, exp. I, II, III]. 

For simplicity, we assume that all schemes in this section are of finite 
type over a field k. 

Definition. A morphism f: X -> Y of schemes of finite type over k is smooth 
of relative dimension n if: 

(1) f is flat; 
(2) if X' ~ X and Y' ~ Yare irreducible components such that f(X') ~ Y', 

then dim X' =dim Y' + n; 
(3) for each point x EX (closed or not), 

dimk(x)(Qx;Y ® k(x)) = n. 

Example 10.0.1. For any Y, A~ and P~ are smooth of relative dimension n 
over Y. 

Example 10.0.2. If X is integral, then condition (3) is equivalent to saying 
Qx;Y is locally free on X of rank n (II, 8.9). 

Example 10.0.3. If Y = Spec k and k is algebraically closed, then X is smooth 
over k if and only if X is regular of dimension n. In particular, if X is irre
ducible and separated over k, then it is smooth if and only if it is a nonsingular 
variety. Cf. (II, 8.8) and (II, 8.15). 

Proposition 10.1. 
(a) An open immersion is smooth of relative dimension 0. 
(b) Base change. If f: X -> Y is smooth of relative dimension n, and 

g: Y' -> Y is any morphism, then the morphism f': X' -> Y' obtained by 
base extension is also smooth of relative dimension n. 

(c) Composition. If f:X-> Y is smooth of relative dimension n, and 
g: Y -> Z is smooth of relative dimension m, then g of: X -> Z is smooth 
of relative dimension n + m. 
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(d) Product. If X and Yare smooth over Z, of relative dimensions nand 
m, respectively, then X x z Y is smooth over Z of relative dimension n + m. 

PROOFS. 

(a) is trivial. 
(b) f' is flat by (9.2). According to (9.6), the condition (2) in the definition 

of smoothness is equivalent to saying that every irreducible component of 
every fibre XY off has dimension n. This condition is preserved under base 
extension (II, Ex. 3.20). Finally, QXJY is stable under base extension (II, 8.1 0), 
so the number dimk<x>(Qx1y ® k(x)) is also. Hence f' is smooth. 

(c) y of is flat by (9.2). If X' s X, Y' s Y, and Z' s Z are irreducible 
components such that f(X') s Y' and g(Y') s Z', then clearly dim X' = 

dim Z' + n + m by hypothesis. For the last condition, we use the exact 
sequence of(II, 8.11) 

f*QY/Z ~ QX/Z ~ QX/Y ~ 0. 

Tensoring with k(x) we have 

j*QY/Z @ k(x) ~ QX/Z @ k(x) ~ QX/Y @ k(x) ~ 0. 

Now the first has dimension m, and the last has dimension n, by hypothesis. 
So the middle one has dimension ~ n + m. 

On the other hand, let z = y(f(x) ). Then 

QX/Z ® k(x) = QXz/k(z) ® k(x), 

since relative differentials commute with base extension. Let X' be an irre
ducible component of X z containing x, with its reduced induced structure. 
Then we have a surjective map· 

QXz/k(z) ® k(x) ~ QX'/k(z) ® k(x) ~ 0 

by (II, 8.12). But X' is an integral scheme of finite type over k(z), of dimension 
n + m, by (9.6), so QX'Jk<z> is a coherent sheaf of rank ): n + m by (II, 8.6A). 
Hence it requires at least n + m generators at every point, so 

dimk(x)(QX'/k(z) ® k(x)) ): n + m. 

Combining our inequalities, we find that 

dimk(x)(Qx1z ® k(x)) = n + m 
as required. 

(d) This statement is a consequence of(b) and (c) since we can factor into 
X Xz Y ~ Y ~ Z. 

Theorem 10.2. Let f:X ~ Y be a morphism of schemes of finite type over k. 
Then f is smooth of relative dimension 11 if and only if: 
(1) f is flat; and 
(2) for each pointy E Y, let XY =X)' ®k<Y> k(y)-, where k(y)- is the alge

braic closure of k(y). Then Xy is equidimensional of dimension 11 and 
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regular. (We say "the fibres off are geometrically regular of equi
dimension n.") 

PROOF. Iff is smooth of relative dimension n, so is any base extension. In 
particular, X Ji is smooth of relative dimension n over k( y)-, so is regular 
(10.0.3). 

Conversely, suppose (1) and (2) satisfied. Then f is flat by (1 ). From (2) 
we conclude that every irreducible component of X Y has dimension n, which 
gives condition (2) of the definition of smoothness by (9.6). Finally, since 
k(y)- is algebraically closed, regularity of XY implies that QXy/k(y)- is locally 
free of rank n (10.0.3). This in turn implies that QXy/k(y) is locally free of rank n 
(see e.g. Matsumura [2, (4.E), p. 29]), and so for any x EX, 

dimk(x)(Qx;r @ k(x)) = dimk(x)(QXy/k(y) (8) k(x)) = n 

as required. 

Next we will study when a morphism of nonsingular varieties is smooth. 
Recall (II, Ex. 2.8) that for a point x in a scheme X we define the Zariski 
tangent space Tx to be the dual of the k(x)-vector space m)m;. Iff: X ....,. Y 
is a morphism, and y = f(x), then there is a natural induced mapping on 
the tangent spaces 

TJ: Tx....,. Ty @k(y) k(x). 

Before stating our criterion, we recall an algebraic fact. 

Lemma 10.3.A. Let A ....,. B be a local homomorphism of local noetherian 
rings. Let M be a finitely generated B-module, and let t E A be a nonunit 
that is not a zero divisor. Then M is .fiat over A if and only if: 
(1) tis not a zero divisor in M; and 
(2) M/tM is .fiat over A/tA. 

PROOF. This is a special case of the "Local criterion of flatness." See Bourbaki 
[1, III, §5] or Altman and Kleiman [1, V, §3]. 

Proposition 10.4. Let f: X ....,. Y be a morphism of nonsingular varieties over 
an algebraically closed field k. Let n = dim X - dim Y. Then the 
following conditions are equivalent: 

(i) f is smooth of relative dimension n; 
(ii) Qx;r is locally free of rank n on X; 

(iii) for every closed point x E X, the induced map on the Zariski tangent 
spaces T f: T x ....,. T Y is surjective. 

PROOF. 

(i) => (ii) follows from the definition of smoothness, since X is integral 
(10.0.2). 
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(ii) ~(iii). From the exact sequence of (II, 8.11), tensoring with k(x), 
we have 

Now X and Yare both smooth over k, so the dimensions of these vector 
spaces are equal to dim Y, dim X, and n respectively. Therefore the map 
on the left is injective. But for a closed point x, k(x) ~ k, so using (II, 8. 7) 
we see thatthis map is just the natural map 

my/m; --+ mx/m; 

induced by f Taking dual vector spaces over k, we find that T f is surjective. 
(iii) ~ (i). First we show f is flat. For this, it is enough to show that 

@xis flat over @Y for every closed point x EX, where y = f(x), by localiza
tion of flatness. Since X and Y are nonsingular, these are both regular 
local rings. Furthermore, since T f is surjective, we have my/m; --+ mx/m; 
injective as above. So let t 1, ... ,tr be a regular system of parameters for 
@Y. Then their images in @x form part of a regular system of parameters 
of @x· Since @x/(t1, ... ,tr) is automatically flat over @y/(t1, ... ,tr) = k, 
we can use (10.3A) to show by descending induction on i that @x/(t 1, ... ,t;) 
is flat over @ y/(t 1, ••• ,t;) for each i. In particular, for i = 0, @ x is flat over 
@ y· Thus f is flat. 

Now we can read the argument of (ii) ~(iii) backwards to conclude that 

dimk(x)(Qx;Y ® k(x)) = n 

for each closed point x E X. On the other hand since f is flat, it is dominant, 
so for the generic point ' E X, we have 

dimk(slQx;Y ® k(()) ;;:, n 

by (II, 8.6A). We conclude that Qx;Y is coherent of rank ;;:, n, so it must be 
locally free of rank = n by (II, 8.9). Therefore Qx;Y ® k(x) has dimension n 

at every point of X, so f is smooth of relative dimension n. 

Next we will give some special results about smoothness which hold 
only in characteristic zero. 

Lemma 10.5. Let f:X--+ Y be a dominant morphism of integral schemes of 
finite type over an algebraically closed field k of characteristic 0. Then 
there is a nonempty open set U ~ X such that f: U --+ Y is smooth. 

PROOF. Replacing X and Y by suitable open subsets, we may assume that 
they are both nonsingular varieties over k (II, 8.16). Next, since we are in 
characteristic 0, K(X) is a separably generated field extension of K(Y) 
(1, 4.8A). So by (II, 8.6A), Qx;Y is free of rank n = dim X - dim Y at the 
generic point of X. Therefore it is locally free of rank non some nonempty 
open set U ~ X. We conclude that f: U --+ Y is smooth by (10.4). 
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Example 10.5.1. Let k be an algebraically closed field of characteristic p, 

let X = Y = Pf, and let f:X --+ Y be the Frobenius morphism (I, Ex. 3.2). 
Then f is not smooth on any open set. Indeed, since d(tP) = 0, the natural 
map f*QY/k --+ Qx;k is the zero map, and so Qx;Y ~ QX/k is locally free of 
rank 1. But f has relative dimension 0, so it is nowhere smooth. 

Proposition 10.6. Let f: X --+ Y be a morphism of schemes of finite type 
over an algebraically closed field k of characteristic 0. For any r, let 

xr = {closed points X E Xlrank Tf,x :(; r}. 
Then 

dim f(Xr) :(; r. 

PROOF. Let Y' be any irreducible component of f(Xr), and let X' be an 
irreducible component of Xr which dominates Y'. We give X' and Y' 
their reduced induced structures, and consider the induced dominant mor
phismf':X'--+ Y'. Then by (10.5) there is a nonempty open subset U' s; X' 
such that f': U'--+ Y' is smooth. Now let x E U' n X, and consider the 
commutative diagram of maps of Zariski tangent spaces 

Tx.U' Tx,X 

]Tr,x ]Tf,x 

Ty,Y' Ty,Y 

The horizontal arrows are injective, because U' and Y' are locally closed 
subschemes of X and Y, respectively. On the other hand, rank T f,x :(; r 

since x EX, and T f',x is surjective because f' is smooth (10.4). We conclude 
that dim T y,Y' :(; r, and therefore dim Y' :(; r. 

Corollary 10.7 (Generic Smoothness). Let f:X--+ Y be a morphism of 
varieties over an algebraically closed field k of characteristic 0, and assume 
that X is nonsingular. Then there is a nonempty open subset V s; Y such 
that f :f- 1 V --+ V is smooth. 

PROOF. We may assume Y is nonsingular by (II, 8.16). Let r = dim Y. 
Let Xr- 1 s; X be the subset defined in (10.6). Then dim f(Xr_ 1) :(; r - 1 
by (10.6), so removing it from Y, we may assume that rank T 1 ~ r for every 
closed point of X. But since Y is nonsingular of dimension r, this implies 
that T 1 is surjective for every closed point of X. Hence f is smooth by 
(10.4). 

Note that if the original f was not dominant, then V s; Y - f(X), and 
f- 1 V will be empty. 

For the next results, we recall the notion of a group variety (1, Ex. 3.21). 
A group variety G over an algebraically closed field k is a variety G, together 
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with morphisms 11: G x G ~ G and p: G ~ G, such that the set G(k) of 
k-rational points of G (which is just the set of all closed points of G, since k 
is algebraically closed) becomes a group under the operation induced by J1, 
with p giving the inverses. 

We say that a group variety G acts on a variety X if we have a morphism 
8: G x X ~ X which induces a homomorphism G(k) ~ Aut X of groups. 

A homogeneous space is a variety X, together with a group variety G 
acting on it, such that the group G(k) acts transitively on the set X(k) of 
k-rational points of X. 

Remark 10.7.1. Any group variety is a homogeneous space if we let it act 
on itself by left multiplication. 

Example 10.7.2. The projective space Pi: is a homogeneous space for the 
action of G = PGL(n)-cf. (II, 7.1.1). 

Example 10.7.3. A homogeneous space is necessarily a nonsingular variety. 
Indeed, it has an open subset which is nonsingular by (II, 8.16). But we 
have a transitive group of automorphisms acting, so it is nonsingular 
everywhere. 

Theorem 10.8 (Kleiman [3]). Let X be a homogeneous space with group 
variety G over an algebraically closed field k of characteristic 0. Let 
f: Y ~ X and g: Z ~ X be morphisms of nonsingular varieties Y, Z to X. 
For any CJ E G(k), let ya be Y with the morphism CJ a f to X. Then there 
is a nonempty open subset V s; G such that for every CJ E V(k), ya x x Z 
is nonsingular and either empty or of dimension exactly 

dim Y + dim Z - dim X. 

PROOF. First we consider the morphism 

h:G X y ~X 

defined by composing f with the group action e:G x X~ X. Now G is 
nonsingular since it is a group variety (10.7.3), and Y is nonsingular by 
hypothesis, so G x Y is nonsingular by (10.1). Since char k = 0, we can 
apply generic smoothness (10. 7) to h, and conclude that there is a non empty 
open subset Us; X such that h:h- 1(U) ~ U is smooth. Now G acts on 
G x Y by left multiplication on G; G acts on X bye, and these two actions 
are compatible with the morphism h, by construction. Therefore, for any 
(J E G(k), h: h -l(Ua) ~ ua is also smooth. Since the ua cover X, we con
clude that h is smooth everywhere. 

Next, we consider the fibred product 

w = (G X Y) X X Z, 

with maps g' and h' to G x Y and Z as shown. 
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w h' ---'-'---->Z 

G X y --'-'-h-~ X 

G 

Since h is smooth, h' is also smooth by base extension (1 0.1 ). Since Z is 
nonsingular, it is smooth over k, so by composition (10.1), W is also smooth 
over k, so W is nonsingular. 

Now we consider the morphism 

q = Pt og': W--> G. 

Applying generic smoothness (10.7) again, we find there is a nonempty 
open subset V s G such that q:q- 1(V)--> Vis smooth. Therefore, if a E 

V(k) is any closed point, the fibre W.,. will be nonsingular. But W.,. is just 
Y" x x Z, so this is what we wanted to show. Note that W.,. may not be 
irreducible, but our result shows that each connected component is a non
singular variety. 

To find the dimension of W.,., we first note that h is smooth of relative 
dimension 

dim G + dim Y - dim X. 

Hence h' has the same relative dimension, and we see that 

dim W = dim G + dim Y - dim X + dim Z. 

If W is nonempty, then q on q- 1(V) has relative dimension equal to 
dim W - dim G, so for each a, 

dim W.,. =dim Y + dimZ- dim X. 

Corollary 10.9 (Bertini). Let X be a nonsingular projective variety over an 
algebraically closed field k of characteristic 0. Let b be a linear system 
without base points. Then almost every element of b, considered as a 
closed subscheme of X, is nonsingular (but maybe reducible). 

PROOF. Let f:X --> pn be the morphism to pn determined by b (II, 7.8.1). 
We consider pn as a homogeneous space under the action of G = PGL(n) 
(10.7.2). We apply the theorem taking g:H--> pn to be the inclusion map 
of a hyperplane H ~ pn-t. We conclude that for almost all a E G(k), 
X x P" H" = f - 1(H") is nonsingular. But the divisors f- 1(H") are just 
the elements of the linear system b, by construction off Thus almost all 
elements of b are non singular. 
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Remark 10.9.1. We will see later (Ex. 11.3) that if dimf(X) ~ 2, then all 
the divisors in b are connected. Hence almost all of them are irreducible 
and nonsingular. 

Remark 10.9.2. The hypothesis "X projective" is not necessary if we talk 
about a finite-dimensional linear system b. In particular, if X was projec
tive, and b was a linear system with base points 1:, then by considering the 
base-point-free linear system b on X - 1: we obtain the more general 
statement that "a general member of b can have singularities only at the 
base points." 

Remark 10.9.3. This result fails in characteristic p > 0. For example, in 
(10.5.1) the morphism f corresponds to the one-dimensional linear system 
{pPJP E P 1 }. Thus every divisor in b is a point with multiplicity p. 

Remark 10.9.4. Compare this result to the earlier Bertini theorem (II, 8.18). 

EXERCISES 

10.1. Over a nonperfect field, smooth and regular are not equivalent. For example, 
let k0 be a field of characteristic p > 0, let k = k0(t), and let X <::; Ar be the curve 
defined by i = xP - t. Show that every local ring of X is a regular local ring, 
but X is not smooth over k. 

10.2. Let f:X--+ Y be a proper, flat morphism of varieties over k. Suppose for some 
point y E Y that the fibre XY is smooth over k(y). Then show that there is an 
open neighborhood U of y in Y such that f :f- 1(U) --+ U is smooth. 

10.3. A morphism f: X --+ Y of schemes of finite type over k is etale if it is smooth of 
relative dimension 0. It is unramified if for every x EX, letting y = f(x), we have 
my· (!)x = mx, and k(x) is a separable algebraic extension of k(y). Show that the 
following conditions are equivalent: 

(i) f is etale; 
(ii) f is flat, and QX/Y = 0; 

(iii) f is flat and unramified. 

10.4. Show that a morphism f: X --+ Y of schemes of finite type over k is etale if and 
only if the following condition is satisfied: for each x EX, let y = f(x). Let @x and 
@Y be the completions of the local rings at x andy. Choose fields of representa
tives (II, 8.25A) k(x) c;; @x and k(y) <:; @Y so that k(y) <:; k(x) via the natural map 
@Y--+ @x· Then our condition is that for every x EX, k(x) is a separable algebraic 
extension of k(y), and the natural map 

@Y ®k(y) k(x)--+ @x 
is an isomorphism. 

10.5. If x is a point of a scheme X, we define an etale neighborhood of x to be an etale 
morphism f: U--+ X, together with a point x' E U such that f(x') = x. As an 
example of the use of etale neighborhoods, prove the following: if ff is a coherent 
sheaf on X, and if every point of X has an etale neighborhood f: U --+ X for which 
f* ff is a free mu-module, then ff is locally free on X. 
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10.6. Let Y be the plane nodal cubic curve y2 = x2(x + 1). Show that Y has a finite 
etale covering X of degree 2, where X is a union of two irreducible components, 
each one isomorphic to the normalization of Y (Fig. 12). 

Figure 12. A finite etale covering. 

10.7. (Serre). A linear system with moving singularities. Let k be an algebraically closed 
field of characteristic 2. Let P 1, ... ,P 7 E P~ be the seven points of the projective 
plane over the prime field F 2 <::::; k. Let b be the linear system of all cubic curves 
in X passing through P 1, .•. ,P7 • 

(a) b is a linear system of dimension 2 with base points P 1, ... ,P 7 , which deter
mines an inseparable morphism of degree 2 from X - { P;} to P2 . 

(b) Every curve C E b is singular. More precisely, either C consists of 3 lines all 
passing through one of the P;, or C is an irreducible cuspidal cubic with 
cusp P of. any P;. Furthermore, the correspondence C r-> the singular point 
of Cis a 1-1 correspondence between band P2. Thus the singular points of 
elements of b move all over. 

10.8. A linear system with moving singularities contained in the base locus (any charac

teristic). In affine 3-space with coordinates x,y,z, let C be the conic (x - 1)2 + 
y2 = 1 in the xy-plane, and let P be the point (O,O,t) on the z-axis. Let Y, be the 
closure in P 3 of the cone over C with vertex P. Show that as t varies, the surfaces 
{ Y,} form a linear system of dimension 1, with a moving singularity at P. The 
base locus of this linear system is the conic C plus the z-axis. 

10.9. Let f: X --> Y be a morphism of varieties over k. Assume that Y is regular, X is 
Cohen-Macaulay, and that every fibre off has dimension equal to dim X - dim Y. 

Then f is fiat. [Hint: Imitate the proof of (10.4), using (II, 8.21A).] 

11 The Theorem on Formal Functions 

In this section we prove the so-called theorem on formal functions, and its 
important corollaries, Zariski's Main Theorem, and the Stein factorization 
theorem. The theorem itself compares the cohomology of the infinitesimal 
neighborhoods of a fibre of a projective morphism to the stalk of the higher 
direct image sheaves. While the corollaries use only the case i = 0 of the 
theorem (which could be stated without cohomology), the proof is by 
descending induction on i, and thus makes essential use of the cohomo
logical machinery. Zariski's first proof [2] of his "Main Theorem" was 
by an entirely different method which did not use cohomology. 

Let f:X --+ Y be a projective morphism of noetherian schemes, let ff 
be a coherent sheaf on X, and let y E Y be a point. For each n ? 1 we 
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define 
xn = X X y Spec (!Jy/m~. 

Then for n = 1, we get the fibre X Y' and for n > 1, we get a scheme with 
nilpotent elements having the same underlying space as X y· It is a kind of 
"thickened fibre" of X over the point y. 

-----=-v----. X 

-------+ y 

Let§',. = v* ff, where v:Xn --+X is the natural map. Then by (9.3.1) we have 
natural maps, for each n, 

Ri*(ff) ® (!Jy/m;--+ Ri~(ffnl· 

Since Spec (!Jy/m; is affine, concentrated at one point, the right-hand side is 
just the group Hi( X n•ffn) by (8.5). As n varies, both sides form inverse systems 
(see (II, §9) for generalities on inverse systems and inverse limits). Thus we 
can take inverse limits and get a natural map 

Rf*(ff); --+ li!!! Hi(X.,ff.). 

Theorem 11.1 (Theorem on Formal Functions). Let f:X--+ Y be a projec
tive morphism of noetherian schemes, let ff be a coherent sheaf on X, and 
let y E Y. Then the natural map 

Rf*(ff); --+ li!!! Hi( X .,ff.) 

is an isomorphism, for all i ~ 0. 

PROOF. As a first step, we embed X in some projective space P~, and consider 
ff as a coherent sheaf on P~. Thus we reduce to the case X = P~. 

Next we let A = (!JY' and make the flat base extension Spec A --+ Y. Thus, 
using (9.3), we reduce to the case where Y is affine, equal to the spectrum of a 
local noetherian ring A, andy is the closed point of Y. Then using (8.5) again, 
we can restate our result as an isomorphism of A-modules, 

Hi(X :#')~ ~ lim Hi(X ff) 
' +---- n' n · 

Now suppose ff is a sheaf of the form (!J(q) on X = P~, for some q E Z. 
Then ff. is just (!J(q) on X n = P~/m". So by the explicit calculations of (5.1) 
we see that 

Hi(Xn,ffn) ~ Hi(X,ff) ®A A/m" 

for each n. Therefore by definition of completion, we have 

Hi(X :#')~ ::::: lim Hi(X ff) 
' - +---- "' n 

in this case. Clearly the same calculation holds for any finite direct sum of 
sheaves of the form (!J(qJ 
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We will now prove the theorem for an arbitrary coherent sheaf !!i' on X, 
by descending induction on i. Fori > N, both sides are 0, because X can 
be covered by N + 1 open affine subsets (Ex. 4.8). So we assume the theorem 
has been proved for i + 1, and for all coherent sheaves. 

Given !!i' coherent on X, it follows from (II, 5.18) that we can write !!i' as 
a quotient of a sheaf Iff which is a finite direct sum of sheaves (!)(q;) for suitable 
qi E Z. Let f!ll be the kernel: 

(1) 

Now unfortunately, tensoring with (!)x" is not an exact functor-it is only 
right exact, so we have an exact sequence 

f!lln ~ Iff n ~ !fi'n ~ 0 

of sheaves on Xn for each n. We introduce the image :!Tn and the kernel Yn 
of the map &ln ~Iff", so that we have exact sequences 

(2) 
and 

(3) 

We now consider the following diagram: 

Hi(X,&l)~ ------> Hi(X,rff)~ -~ H;(X,!!i')~ -----+ Hi+ 1 (X,&l)~ ~ Hi+ 1(X,f,' 

(a1 (a4 
ll!!! Hi( X n•f!lln) IXz IX3 

1p1 

lim Hi(X :!T) ~ lim H;(X Iff ) ~ lim Hi(X !!i') ~ lim Hi+ 1(X :!T) ~lim Hi+ 1(X 0" 
-+---- "' n ,....._ "' n +--- "' n +--- "' n +--- "' r, 

The top row comes from the cohomology sequence of (1) by completion. 
Since they are all finitely generated A-modules (5.2), completion is an exact 
functor (II, 9.3A). The bottom row comes from the cohomology sequence 
of (3) by taking inverse limits. These groups are all finitely generated A/m"
modules, and so satisfy d.c.c. for submodules. Therefore the inverse systems 
all satisfy the Mittag-Leffier condition (II, 9.1.2), and so the bottom row is 
exact (II, 9.1). The vertical arrows a 1, ... ,as are the maps of the theorem. 
We have a2 an isomorphism because Iff is a sum of sheaves (!)(q;), and a4 and 
as are isomorphisms by the induction hypothesis. Finally, {3 1 and {3 2 are 
maps induced from the sequence (2). We will show below that {3 1 and {3 2 

are isomorphisms. 
Admitting this for the moment, it follows from the subtle 5-lemma that a 3 

is surjective. But this is then true for any coherent sheaf on X, so a 1 must 
also be surjective. This in turn implies a 3 is an isomorphism, which is what 
we want. 
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It remains to prove that /3 1 and /3 2 are isomorphisms. Taking the coho
mology sequence of (2), and passing to the inverse limit, using (II, 9.1) again, 
it will be sufficient to show that 

lim Hi(Xn,Y'n) = 0 
+---

for all i ~ 0. To accomplish this, we will show that for any n, there is an 
n' > n such that the map of sheaves Y'n· --+ Y'n is the zero map. By quasi
compactness, the question is local on X, so we may assume that X is affine, 
X= Spec B. We denote by R,E,Sn the B-modules corresponding to the 
sheaves f!ll,tff,!/"' and we denote by a the ideal mB. 

Recall that R is a submodule of E, and that 

Sn = ker(Rja"R --+ E/a"E). 
Thus 

Sn = (R n a"E)/a"R. 

But by Krull's theorem (3.1A), the a-adic topology on R is induced by the 
a-adic topology on E. In other words, for any n, there is an n' > n such that 

R n a"'E £: anR. 

In that case the map Sn. --+ Sn is zero. q.e.d. 

Remark 11.1.1. This theorem is proved more generally for a proper mor
phism in Grothendieck [EGA III, §4]. 

Remark 11.1.2. Many applications of this theorem use only the case i = 0. 
In that case the right-hand side is equal to F(X,#), where X is the formal 
completion of X along XY, and # = ff ® @g (II, 9.2). In particular, if 
ff = r9x, we have r(X,@g), which is the ring of formal-regular functions 
(also called holomorphic functions) on X along XY. Hence the name of the 
theorem. 

Remark 11.1.3. One can also introduce the cohomology Hi(X,ff) of# on 
the formal scheme X, and prove that it is isomorphic to the two other 
quantities in the theorem [EGA III, §4]. 

Corollary 11.2. Let f: X --+ Y be a projective morphism of noetherian schemes, 
and let r = max{dim XyiY E Y}. Then RiJ*(ff) = 0 for all i > r, and 
for all coherent sheaves ff on X. 

PROOF. For any y E Y, Xn is a scheme whose underlying topological space is 
the same as X y· Hence 

Hi(Xn,ffn) = 0 

fori > r by (2.7). If follows that RiJ*(ff); = 0 for ally E Y, i > r, and there
fore since R1*(ff) is coherent (8.8) it must be 0. 

Corollary 11.3. Let f: X --+ Y be a projective morphism of noetherian schemes, 
and assume that f*@x = @y. Then f- 1(y) is connected, for every y E Y. 
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PROOF. Suppose to the contrary that f- 1(y) = X' u X", where X' and X" 

are disjoint closed subsets. Then for each n, we would have 

H 0(XJDxJ = H0(X~,(DxJ E8 H0(X~/9xJ· 

By the theorem, we have 

&Y = (f*mx); = fu!! H0(Xn,mxJ. 

Therefore &Y = A' E8 A", where 

A' =lim H 0(X' m ) 
+--- "' Xn 

and 
A" = lim H 0(X" m ). 

+--- "' Xn 

But this is impossible, because a local ring cannot be a direct sum of two 
other rings. Indeed, let e',e" be the unit elements of A' and A". Then 
e' + e" = 1 in &Y. On the other hand, e'e" = 0, so e',e" are nonunits, hence 
contained in the maximal ideal of &Y, so their sum cannot be 1 (cf. (II, 
Ex. 2.19) ). 

Corollary 11.4 (Zariski's Main Theorem). Let f: X ~ Y be a birational pro

jective morphism of noetherian integral schemes, and assume that Y is 

normal. Then for every y E Y,f- 1(y) is connected. (See also (V, 5.2).) 

PROOF. By the previous result, we have only to verify that f*mx = my. The 
question is local on Y, so we may assume Y is affine, equal to Spec A. Then 

f*mx is a coherent sheaf of my-algebras, so B = r(Y,f*mx) is a finitely gen
erated A-module. But A and Bare integral domains with the same quotient 
field, and A is integrally closed, so we must have A =B. Thus f*mx =my. 

Corollary 11.5 (Stein Factorization). Let f:X ~ Y be a projective morphism 

of noetherian schemes. Then one can factor f into g of', where f': X ~ Y' 

is a projective morphism with connected fibres, and g: Y' ~ Y is a finite 

morphism. 

PROOF. Let Y' = Spec f*mx (II, Ex. 5.17). Then since f*mx is a coherent 
sheaf of my-algebras, the natural map g: Y' ~ Y is finite. On the other hand 
f clearly factors through g, so we get a morphism f': X ~ Y'. Since g is 
separated, we conclude that f' is projective by (II, Ex. 4.9). By construction 

f~mx =mY' so f' has connected fibres by (11.3). 

EXERCISES 

11.1. Show that the result of (11.2) is false without the projective hypothesis. For 
example, let X = A;;, let P = (0, ... ,0), let U = X - P, and let f: U --+ X be 
the inclusion. Then the fibres off all have dimension 0, but R"- 1j*{!Ju i= 0. 

11.2. Show that a projective morphism with finite fibres ( = quasi-finite (II, Ex. 3.5)) 
is a finite morphism. 

11.3. Let X be a normal, projective variety over an algebraically closed field k. Let b 
be a linear system (of effective Cartier divisors) without base points, and assume 
that b is not composite with a pencil, which means that iff: X --+ P~ is the morphism 
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determined by b, then dim f(X) ~ 2. Then show that every divisor in b is con
nected. This improves Bertini's theorem (10.9.1). [Hints: Use (11.5), (Ex. 5.7) 
and (7.9).] 

11.4. Principle of Connectedness. Let {X,} be a flat family of closed subschemes of P;: 
parametrized by an irreducible curve T of finite type over k. Suppose there is a 
nonempty open set U <;; T, such that for all closed points t E U, X, is connected. 
Then prove that X, is connected for all t E T. 

*11.5. Let Y be a hypersurface in X = Pf with N ~ 4. Let X be the formal completion 
of X along Y (II, §9). Prove that the natural map Pic X --+ Pic Y is an isomorphism. 
[Hint: Use (II, Ex. 9.6), and then study the maps Pic X"+ 1 --+ Pic X" for each n 
using (Ex. 4.6) and (Ex. 5.5).] 

11.6. Again let Y be a hypersurface in X = Pf, this time with N ~ 2. 
(a) If ff is a locally free sheaf on X, show that the natural map 

H 0(X,ff) --+ H 0(X,.#) 
is an isomorphism. 

(b) Show that the following conditions are equivalent: 

(i) for each locally free sheaf 3 on X, there exists a coherent sheaf ff on X 
such that 3 ;:;: .# (i.e., 3 is algebraizable); 

(ii) for each local~y free sheaf 3 on X, there is an integer n0 such that 3(n) is 
generated by global sections for all n ~ n0 • 

[Hint: For (ii) => (i), show that one can find sheaves if 0 ,tf 1 on X, which are 
direct sums of sheaves of the form {I)(- q;), and an exact sequence i 1 --+ i 0 --+ 

3 --+ 0 on X. Then apply (a) to the sheaf Jf'om(tf 1,S 0 ).] 

(c) Show that the conditions (i) and (ii) of(b) imply that the natural map Pic X--+ 
Pic X is an isomorphism. 

Note. In fact, (i) and (ii) always hold if N ~ 3. This fact, coupled with 
(Ex. 11.5) leads to Grothendieck's proof [SGA 2] of the Lefschetz theorem 
which says that if Y is a hypersurface in Pf with N ~ 4, then Pic Y ;:;: Z, and 
it. is generated by {l)y(l). See Hartshorne [5, Ch. IV] for more details. 

11.7. Now let Y be a curve in X = P;. 
(a) Use the method of (Ex. 11.5) to show that Pic X --+ Pic Y is surjective, and its 

kernel is an infinite-dimensional vector space over k. 
(b) Conclude that there is an invertible sheaf i! on X which is not algebraizable. 
(c) Conclude also that there is a locally free sheaf 3 on X so that no twist 3 (n) is 

generated by global sections. Cf. (II, 9.9.1) 

11.8. Let f: X --+ Y be a projective morphism, let ff be a coherent sheaf on X which is 
flat over Y, and assume that H;(Xy,ffy) = 0 for some i and some y E Y. Then 
show that Rf*(ff) is 0 in a neighborhood of y. 

12 The Semicontinuity Theorem 

In this section we consider a projective morphism f: X.--+ Y and a coherent 
sheaf :F on X, flat over Y. We ask, how does the cohomology along the 
fibre Hi( X Y':FY) vary as a function of y E Y? Our technique is to find some 
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relation between these groups and the sheaves Ri*(ff). The main results 
are the semicontinuity theorem (12.8), and the theorem on cohomology and 
base change (12.11). 

Since the question is local on Y, we will usually restrict our attention to 
the case Y = Spec A is affine. Then we compare the A-modules Hi(X,ff) 
and Hi(Xy,ffy). Using (9.4), the cohomology of the fibre is equal to 
Hi(X,ff ® k(y) ). Grothendieck's idea is to study more generally 
Hi(X,ff ®AM) for any A-module M, and consider it as a functor on A
modules. 

Definition. Let A be a noetherian ring, let Y = Spec A, let f: X ~ Y be a 
projective morphism, and let ff be a coherent sheaf on X, flat over Y. 
(This data will remain fixed throughout this section.) Then for each 
A-module M, define 

for all i ~ 0. 

Proposition 12.1. Each Ti is an additive, covariant functor from A-modules to 
A-modules which is exact in the middle. The collection (Ti);~o forms a 
J-functor (§1). 

PROOF. Clearly each Ti is an additive, covariant functor. Since ff is flat over 
Y, for any exact sequence 

0 ~ M' ~ M ~ M" ~ 0 

of A-modules, we get an exact sequence 

0 ~ ff ® M' ~ ff ® M ~ ff ® M" ~ 0 

of sheaves on X. Now the long exact sequence of cohomology shows that 
each Ti is exact in the middle, and that together they form a J-functor. 

We reduce the calculation of the functors Ti to a process involving only 
A-modules, by the following result. 

Proposition 12.2. With the hypotheses above, there exists a complex L' of 
finitely generated free A-modules, bounded above (i.e., U = 0 for n » 0), 
such that 

for any A-module M, any i ~ 0, and this gives an isomorphism of J-functors. 

PROOF. For any A-module M, the sheaf ff ®AM is quasi-coherent on X, 
so we can use Cech cohomology to compute Hi(X,ff ®AM). Let U = (U;) 
be an open cover of X. Let C = C"(U,ff) be the Cech complex of ff (§4). 
Then for any i0, ... ,iP, we have 

r(U;0 , ••• ,ip,ff @AM) = r(U;0 , •.. ,ip,ff) @AM, 
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so 
C"(U,.? @AM)= c @AM. 

Hence we have 

for each M. 
This is a step in the right direction, since C is a bounded complex of 

A-modules. However, the C will almost never be finitely generated A
modules. But the complex e· does have the good properties that for each i, 
ei is a fiat A-module (since.? is flat over Y), and for each i, hi( C) = Hi(X,ff) 
is a finitely generated A-module, since ff is coherent and f is projective. 
Now the result of the proposition is a consequence of the following algebraic 
lemma. 

Lemma 12.3. Let A be a noetherian ring, and let C be a complex of A-modules, 
bounded above, such that for each i, hi( C) is a finitely generated A-module. 
Then there is a complex L" of finitely generated free A-modules, also 
bounded above, and a morphism of complexes g:L· -+ C, such that the 
induced map hi(L") -+ hi( e·) is an isomorphism for all i. Furthermore, if 
each ei is a fiat A -module, then the map 

hi(L.@ M)-+ hi(C@ M) 

is an isomorphism for any A-module M. 

PROOF. First we fix our notation. For any complex N·, we let 

zn(N") = ker(dn:Nn-+ Nn+ 1) 

and 

Thus we have 

Now for large n, we have en = 0, so we define U = 0 there also. Suppose 
inductively that the complex L. and the morphism of complexes g: L. -+ C 
has been defined in degrees i > n in such a way that 

hi(L") ~hi( C) for all i > n + 1, and 

zn+ 1(L") -+ hn+ 1(C) is surjective. 

(1) 

(2) 

Then we will construct L n, d: U -+ U + 1, and g: L n -+ en to propagate these 
properties one step further. 

Choose a set of generators x1, ... ,x, of hn( C), which is possible since hn( C) 
is finitely generated. Lift them to a set of elements xl, ... ,x, E zn(C). On 
the other hand, let Yr+ 1, ... ,y. be a set of generators of g- 1(Bn+ 1(C") ), which 
is a submodule of u+ 1, hence finitely generated. Let g(yJ = Yi E Bn+ 1(C"), 
and lift the Yi to a set of elements x,+ 1, •.. ,x. of en. 

Now take U to be a free A-module on s generators e1, .•. ,e5 • Define 
d:U -+ L n+ 1 by dei = 0 for i = 1, ... ,r, and dei = Yi for i = r + 1, ... ,s. 
Define g: U -+ en by gei = xi for all i. 
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Then one checks easily that g commutes with d, that h" + 1(L") --+ h" + 1( C) 

is an isomorphism, and that Z"(L")--+ h"(C") is surjective. So inductively, we 
construct the complex L" required. 

Now suppose that each Ci is a flat A-module. Then we will prove, by 

descending induction on i, that 

hi(L" @ M) --+ hi( C @ M) 

is an isomorphism for all A-modules M. Fori » 0, both Li and Care 0, so 

both sides are 0. So suppose this is true for i + 1. It is sufficient to prove 

the result for finitely generated A-modules, because any A-module is a direct 

limit of finitely generated ones, and both @ and hi commute with direct 

limits. So given M finitely generated, write it as a quotient of a free finitely 
generated A-module E, and let R be the kernel: 

0 --+ R --+ E --+ M --+ 0. 

Since each Ci is flat by hypothesis, and each Li is flat, because it is free, we 

get an exact, commutative diagram of complexes 

0 ~ L. @R ----~ L. @E L"@M ~ 0 

j l j 
o~C®R----~C®E---~ C@M ~ 0. 

Applying hi, we get a commutative diagram of long exact sequences. Since 

the result holds for i + 1 by induction, mid for E, since E is free, and 
hi(L") --+ hi( c·) is an isomorphism, the result for any M follows from the 

subtle 5-lemma. 

Now we will study conditions under which one of the functors Ti is left 
exact, right exact, or exact. For any complex N·, we define 

Wi(N") = coker(di- 1 :Ni- 1 --+ Ni) 

so that we have an exact sequence 

0 --+ hi(N") --+ Wi(N") --+ Ni+ 1. 

Proposition 12.4. The following conditions are equivalent: 

(i) Ti is left exact; 
(ii) Wi = Wi(L") is a projective A-module; 

(iii) there is a finitely generated A-module Q, such that 

Ti(M) = HomA(Q,M) 

for all M. 

Furthermore the Q in (iii) is unique. 
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PROOF. Since tensor product is right exact, we have 

W;(L' 0 M) = W;(L') 0 M, 

for any A-module M. We will write simply W; for W;(L'). Hence 

T;(M) = ker(W; 0 M ~ Li+l 0 M). 

Let 0 ~ M' ~ M be an inclusion. Then we obtain an exact, commutative 
diagram 

0 

j 
0 T;(M') W;0M' ~ Li+l 0 M' 

]~ lp j 
0 T;(M) W;0M Li+10 M. 

The third vertical arrow is injective, since L; + 1 is free. A simple diagram chase 
shows that ~ is injective if and only if p is. Since this is true for any choice of 
0 ~ M' ~ M, we see that T; is left exact if and only if W; is flat. (Recall 
that in any case T; is exact in the middle (12.1).) But since W; is finitely 
generated, this is equivalent to W; being projective (9.1A). This shows 
(i) ¢> (ii). 

(iii) = (i) is obvious. 
To prove (ii) =(iii), let fi+ 1 and W; be the dual projective modules. 

Define 
Q = coker(D+ 1 ~ W;). 

Then for every A-module M, we have 

0 ~ Hom(Q,M) ~ Hom(W;,M) ~ Hom(fi+ l,M). 

But the last two groups are W; 0 M, and Li+ 1 0 M, respectively, so 
Hom(Q,M) = T;(M). 

To see the uniqueness of Q, let Q' be another module such that T;(M) = 

Hom(Q',M) for all M. Then 

Hom(Q,M) = Hom(Q',M) 

for all M. In particular, the elements 

1 E Hom(Q,Q) = Hom(Q',Q) 
and 

1' E Hom(Q',Q') = Hom(Q,Q') 

give isomorphisms of Q and Q', inverse to each other, and canonically 
defined. 
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Remark 12.4.1. There is a general theorem to the effect that any left-exact 
functor Ton A-modules, which commutes with direct sums, is of the form 
Hom(Q, ·) for s0me A-module Q. But even if T takes finitely generated 
modules into finitely generated modules, Q need not be finitely generated. 
Thus the fact that our Q in (iii) above is finitely generated is a strong fact 
about the functor Ti. 

For example, let A be a noetherian ring with infinitely many maximal 
ideals mi. Let Q = l:A/mi, and let T be the functor Hom(Q, · ). Then Q is 
not finitely generated, but for any finitely generated A-module M, T(M) is 
finitely generated, because Hom(A/mi,M) =1- 0 if and only if mi E Ass M, 
which is a finite set. 

Proposition 12.5. For any M, there is a natural map 

q>: Ti(A)@ M ~ Ti(M). 

Furthermore, the following conditions are equivalent: 

(i) Ti is right exact; 
(ii) q> is an isomorphism for all M; 

(iii) q> is surjective for all M. 

PROOF. Since Ti is a functor, we have a natural map, for any M, 

M = Hom(A,M) ~ Hom(Ti(A),Ti(M)). 

This gives q>, by setting 
q>(Lai @ mJ = Lt/l(mJai. 

Since Ti and @ commute with direct limits, it will be sufficient to consider 
finitely generated A-modules M. Write 

A'~ As~ M ~ 0. 

Then we have a diagram 

--------> 0 

where the bottom row is not necessarily exact. The first two vertical arrows 
are isomorphisms. Thus, if Ti is right exact, q> is an isomorphism. This 
proves (i) => (ii). The implication (ii) => (iii) is obvious, so we have only to 
prove (iii) => (i). We must show if 

0 ~ M' ~ M ~ M" ~ 0 

is an exact sequence of A-modules, then 

Ti(M') ~ Ti(M) ~ Ti(M") ~ 0 
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is exact. By (12.1) it is exact in the middle, so we have only to show that 
Ti(M) --+ Ti(M") is surjective. This follows from the diagram 

Ti(A) ® M -------t Ti(A) ® M" 0 

l<p(M) l<p(M") 

Ti(M) Ti(M") 

and the fact that <p(M") is surjective. 

Corollary 12.6. The following conditions are equivalent: 

(i) Ti is exact; 
(ii) Ti is right exact, and Ti(A) is a projective A-module. 

PROOF. In any case, Ti is right exact, so by (12.5) we have T;(M) ~ Ti(A) ® M 
for all A-modules M. Therefore Ti is exact if and only if T;(A) is flat. But 
T;(A) is a finitely generated A-module, so this is equivalent to being locally 
free (9.1A), hence projective. 

Now we wish to localize the above discussion. For any point y E Y = 

Spec A, we denote by r;. the restriction of the functor T; to the category of 
AP-modules, where p ~ A is the prime ideal corresponding to y. Then we 
say "T; is left exact at y" to meanT~ is left exact, and similarly for right exact, 
or exact. Note that for any Ap-module N, r;(N) = h;(L;, ® N). Also note 
that Ti is left exact if and only if it is left exact at all points y E Y; similarly 
for right exact, or exact. Finally, since cohomology commutes with flat base 
extension (9.3), we see that r; is the functor T; associated with the morphism 
f': X' --+ Y' obtained from f by the flat base extension Y' = Spec (!) Y --+ Y. 
So we can apply the results (12.4), (12.5), (12.6) locally to each r;. 
Proposition 12.7. If Ti is left exact (respectively, right exact, exact) at some 

point y 0 E Y, then the same is true for all points y in a suitable open neigh
borhood U of Yo· 

PROOF. Ti is left exact at Yo if and only if w;o is free, by (12.4). But since 
Wi is a coherent sheaf on Y, this implies that Wi is locally free in some 
neighborhood U of y0 , and so T; is left exact at all points of U. 

Ti is right exact at a pointy if and only if Ti+ 1 is left exact there, by the 
long exact sequence (12.1). So the second statement follows from the first, 
applied to Ti + 1 . 

Ti is exact at a point if and only if it is both left exact and right exact, so 
the third statement is the conjunction of the first two. 

Definition. Let Y be a topological space. A function <p: Y --+ Z is upper 
semicontinuous if for each y E Y, there is an open neighborhood U of y, 
such that for ally' E U, <p(y') ~ <p(y). Intuitively, this means that <p may 
get bigger at special points. 
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Remark 12.7.1. A function cp: Y ~ Z is upper semicontinuous if and only if 
for each n E Z, the set { y E Y[cp(y) ~ n} is a closed subset of Y. 

Example 12.7.2. Let Y be a noetherian scheme, and let :F be a coherent 
sheaf on Y. Then the function 

cp(y) = dimk(yJ(:F ® k(y)) 

is upper semicontinuous. Indeed, by Nakayama's lemma, cp(y) is equal to 
the minimal number of generators of the {9Y-module :Fy. But if s1, ... ,s, E :FY 
form a minimal set of generators, they extend to sections of :F in some 
neighborhood of y, and they generate :F in some neighborhood, because :F 
is coherent. So if y' is in that neighborhood, then cp(y'), which is the minimal 
number of generators of :Fy, is ~ r = cp( y). 

Theorem 12.8 (Semicontinuity). Let f:X ~ Y be a projective morphism of 
noetherian schemes, and let :F be a coherent sheaf on X,jlat over Y. Then 
for each i ~ 0, the function 

hi(y,:F) = dimk(yJ Hi( X Y':FY) 

is an upper semicontinuous function on Y. 

PROOF. The question is local on Y, so we may assume Y = Spec A is affine, 
with A noetherian. Thus we can apply the earlier results of this section. 
By (9.4) we have 

hi(y,:F) = dimk(yJ Ti(k(y) ). 

As in the proof of (12.4), we have 

T;(k(y)) = ker(W; ® k(y) ~ Li+ 1 ® k(y) ). 

On the other hand, there is an exact sequence 

so tensoring with k(y), we obtain a four-term exact sequence 

o ~ Ti(k(y)) ~ wi ® k(y) ~ Li+ 1 ® k(y) ~ wi+ 1 ® k(y) ~ o. 
Therefore, counting dimensions, we have 

h;(y,:F) = dimk(yJ Wi ® k(y) + dimk(yl wi+ 1 ® k(y) - dimk(yJ Li+ 1 ® k(y). 

Now Wi and wi+ 1 are finitely generated A-modules, so by (12.7.2) the first 
two terms of this sum are upper semicontinuous functions of y. But Li+ 1 

is a free A-module, so the last term is a constant function of y. Combining, 
we see that hi(y,:F) is upper semicontinuous. 

Corollary 12.9 (Grauert). With the same hypotheses as the theorem, suppose 
furthermore that Y is integral, and that for some i, the function hi(y,:F) is 
constant on Y. Then Ri*(:F) is locally free on Y, and for every y the natural 
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map 

is an isomorphism. 

PROOF. As above, we may assume that Y is affine. Using the expression for 
h;(y,%) in the proof of the theorem, we conclude that the functions dim 
W; ® k(y) and dim wi+ 1 ® k(y) must both be constant. But this implies 
(II, 8.9) that W; and J.Vi+ 1 are both locally free sheaves on Y. So by (12.4), 
T; and yi+ 1 are both left exact, soT; is exact, so by (12.6), T;(A) is a projective 
A-module. But Ri*(%) is just T;(Af, so it is a locally free sheaf. Finally by 
(12.5) we see that 

Ri*(%) ® k(y) ~ H;(Xy,%y) 

is an isomorphism for all y E Y. 

Example 12.9.1. Let {X,} be a flat family of integral curves in P;;, with k 
algebraically closed. Then for every closed point t E T, H 0(X,,(!Jx,) = k. On 
the other hand, the arithmetic genus Pa = 1 - x((!)x,) is constant, by (9.10). 
So we see that in this case the functions h0(t,(!)x) and h1(t,(!)x) are both constant 
on T. 

Example 12.9.2. In the flat family of (9.8.4), we have h0(X0 (!)x,) = 1 if 
t =1- 0, and 2 if t = 0, because of the nilpotent elements. On the other 
hand, h1(X,,(!)x,) = 0 for t =1- 0, since X, is rational, and h1(X0 ,(!)x0 ) = 

h1(X0 ,((!)x0 )red) = 1, since (X0 )red is a plane cubic curve. So in this case the 
functions h0 ,h 1 both jump up at t = 0. 

Example 12.9.3. If {X,} is an algebraic family of nonsingular projective 
varieties over C, parametrized by a variety T, then the functions h;(X,,(!)x,) 
are actually constant for all i. The proof of this result requires transcendental 
methods, namely the degeneration of the Hodge spectral sequence-cf. 
Deligne[ 4]. 

Now we wish to give some more precise information about when the map 

T;(A) ® k(y) ~ T;(k(y)) 

is an isomorphism. And here we will use a new ingredient in our proof, 
namely the theorem on formal functions (11.1). 

Proposition 12.10. Assume that for some i,y, the map 

<p: T;(A) ® k(y) ~ T;(k(y)) 

is surjective. Then T; is right exact at y (and conversely, by (12.5) ). 

PROOF. By making a flat base extension Spec (!)Y --+ Y if necessary (9.3), we 
may assume that y is a closed point of Y; A is a local ring, with maximal ideal 
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m, and k(y) = k = A/m. By (12.5), it is sufficient to show that 

qJ(M): Ti(A) ® M --+ Ti(M) 

is surjective for all A-modules M. Since Ti and tensor product commute with 
direct limits, it is sufficient to consider finitely generated M. 

First, we consider A-modules M of finite length, and we show that qJ(M) 
is surjective, by induction on the length of M. If the length is 1, then M = k, 
and qJ(k) is surjective by hypothesis. In general, write 

0 --+ M' --+ M --+ M" --+ 0, 

where M' and M" have length less than length M. Then using (12.1) we have 
a commutative diagram with exact rows 

0 

The two outside vertical arrows are surjective, by the induction hypothesis, 
so the middle one is surjective also. 

Now let M be any finitely generated A-module. For each n, M/mnM is a 
module of finite length, so that by the previous case, 

qJn: Ti(A) ® M/mnM--+ Ti(M/mnM) 

is surjective. Note that ker (/Jn is an A-module of finite length, so the inverse 
system (ker qJn) satisfies the Mittag-Leffler condition (II, 9.1.2). Hence by 
(II, 9.1) the map 

is also surjective. But by the theorem on formal functions (11.1), applied 
to the sheaf$' ®A M on X, the right hand side is just Ti(Mt. So we have a 
surjection 

(Ti(A) ® M)~ --+ Ti(M)~. 

Since completion is a faithful exact functor for finitely generated A-modules, 
it follows that 

is surjective, so we are done. 

Combining this with our earlier results, we obtain the following theorem. 

Theorem 12.11 (Cohomology and Base Change). Let f:X --+ Y be a pro
jective morphism of noetherian schemes, and let$' be a coherent sheaf on X, 
flat over Y. Let y be a point of Y. Then: 

(a) if the natural map 

qJi(y):Ri_{*($') ® k(y)--+ Hi(Xy,:f'y) 
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is surjective, then it is an isomorphism, and the same is true for all y' in a 
suitable neighborhood of y; 

(b) Assume that cpi(y) is surjective. Then the following conditions are 
equivalent: 

(i) cpi- 1(y) is also surjective; 
(ii) RiJ*($') is locally free in a neighborhood of y. 

PROOF. (a) follows from (12.10), (12.7), and (12.5). (b) follows from (12.10), 
(12.6), and (12.5), using the fact that Ti is exact if and only if yi-t and Ti are 
both right exact. 

References for §12. The semicontinuity theorem was first proved by 
Grauert [1] in the complex-analytic case. These theorems in the algebraic 
case are due to Grothendieck [EGA III, 7.7]. Our proof follows the main 
ideas ofGrothendieck's proof, with simplifications due to Mumford [5, II, §5]. 

EXERCISES 

12.1. Let Y be a scheme of finite type over an algebraically closed field k. Show that the 
function 

cp(y) == dimk(my/m;) 

is upper semicontinuous on the set of closed points of Y. 

12.2. Let {X,} be a family of hypersurfaces of the same degree in PZ. Show that for 
each i, the function hi(X,,(I)x,l is a constant function oft. 

12.3. Let X 1 <;; P~ be the rational normal quartic curve (which is the 4-uple embedding 
of P 1 in P4 ). Let X 0 <;; Pf be a nonsingular rational quartic curve, such as the 
one in (1, Ex. 3.18b). Use (9.8.3) to construct a flat family {X,} of curves in P4 , 

parametrized by T = A 1, with the given fibres X 1 and X 0 for t = 1 and t = 0. 
Let .f <;;IT P' x T be the ideal sheaf of the total family X s P4 x T. Show that 

J is flat over T. Then show that 

h0(t,J) = {~ fort ¥- 0 

fort= 0 
and also 

h1(t,J) = {~ fort ¥- 0 

fort= 0. 

This gives another example of cohomology groups jumping at a special point. 

12.4. Let Y be an integral scheme of finite type over an algebraically closed field k. 
Let f: X ---> Y be a fl~t projective morphism whose fibres are all integral schemes. 
Let 2',A be invertible sheaves on X, and assume for each y E Y that 2'Y ~ AY 
on the fibre XY" Then show that there is an invertible sheaf .AI on Y such that 
2' ~A®!* 5. [Hint: Use the results of this section to show thatf*(2' ®A- 1) 

is locally free of rank 1 on Y.] -

12.5. Let Y be an integral scheme of finite type over an algebraically closed field k. 
Let ,g be a locally free sheaf on Y, and let X = P(tff)-see (II, §7). Then show that 
Pic X ~ (Pic Y) x Z. This strengthens (II, Ex. 7.9)_ 
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*12.6. Let X be an integral projective scheme over an algebraically closed field k, and 
assume that H 1(X,(!)x) = 0. Let T be a connected scheme of finite type over k. 
(a) If !l' is an invertible sheaf on X x T, show that the invertible sheaves !l', on 

X = X x { t} are isomorphic, for all closed points t E T. 
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(b) Show that Pic( X x T) = Pic X x Pic T. (Do not assume that Tis reduced!) 
Cf. (IV, Ex. 4.10) and (V, Ex. 1.6) for examples where Pic(X x T) -# Pic X x 
Pic T. [Hint: Apply (12.11) with i = 0,1 for suitable invertible sheaves on 
X x T.] 



CHAPTER IV 

Curves 

In this chapter we apply the techniques we have learned earlier to study 
curves. But in fact, except for the proof of the Riemann-Roch theorem (1.3), 
which uses Serre duality, we use very little of the fancy methods of schemes 
and cohomology. So if a reader is willing to accept the statement of the 
Riemann-Roch theorem, he can read this chapter at a much earlier stage of 
his study of algebraic geometry. That may not be a bad idea, pedagogically, 
because in that way he will see some applications of the general theory, and 
in particular will gain some respect for the significance of the Riemann-Roch 
theorem. In contrast, the proof of the Riemann-Roch theorem is not very 
enlightening. 

After reviewing what is needed from the earlier part of the book in §1, we 
study in §2, 3 various ways of representing a curve explicitly. One way is to 
represent the curve as a branched covering ofP 1 . So in §2 we make a general 
study of one curve as a branched covering of another. The central result 
here is Hurwitz's theorem (2.4) which compares the canonical divisors on 
the two curves. 

In §3 we give two other ways ofrepresenting a curve. We show that any 
nonsingular projective curve can be embedded in P3 , and it can be mapped 
birationally into P2 in such a way that the image has only nodes for singu
larities. The proof of the latter theorem has an interesting extra twist in 
characteristic p > 0. 

In §4 we discuss the special case of curves of genus 1, called elliptic curves. 
This is a whole subject in itself, quite independent of the rest of the chapter. 
We have space for only a brief glimpse of some aspects of this fascinating 
theory. 

In §5, 6 we discuss the canonical embedding, and some classification 
questions, both for abstract curves and for curves in P 3 . 
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1 Riemann-Roch Theorem 

In this chapter we will use the word curve to mean a complete, nonsingular 
curve over an algebraically closed field k. In other words (II, §6), a curve is 
an integral scheme of dimension 1, proper over k, all of whose local rings 
are regular. Such a curve is necessarily projective (II, 6. 7). If we want to 
consider a more general kind of curve, we will use the word "scheme," 
appropriately qualified, e.g., "an integral scheme of dimension 1 of finite 
type over k." We will use the word point to mean a closed point, unless we 
specify the generic point. 

We begin by reviewing some of the concepts introduced earlier in the 
book, which we will use in our study of curves. 

The most important single invariant of a curve is its genus. There are 
several ways of defining it, all equivalent. For a curve X in projective space, 
we have the arithmetic genus Pa(X), defined as ~- Px(O), where Px is the 
Hilbert polynomial of X (I, Ex. 7.2). On the other hand, we have the geo
metric genus p9(X), defined as dimk r(X,wx), where wx is the canonical 
sheaf (II, 8.18.2). 

Proposition 1.1. If X is a curve, then 

Pa(X) = P9(X) = dimk H 1(X,@x), 

so we call this number simply the genus of X, and denote it by g. 

PROOF. The equality p0 (X) = dim H 1(X,(!)x) has been shown in (III, Ex. 5.3). 
The equality p9 = dim H 1(X,@x) is a consequence of Serre duality (III, 
7.12.2). 

Remark 1.1.1. From g = p9 , we see that the genus of a curve is always non
negative. Conversely, for any g ~ 0, there exist curves of genus g. For 
example, take a divisor of type (g + 1,2) on a nonsingular quadric surface. 
There exist such divisors which are irreducible and nonsingular, and they 
have Pa = g (III, Ex. 5.6). 

A (Wei/) divisor on the curve X is an element of the free abelian group 
generated by the set of points of X (II, §6). We write a divisor as D = L,niPi 
with ni E Z. Its degree is I,ni. Two divisors are linearly equivalent if their 
difference is the divisor of a rational function. We have seen that the degree 
of a divisor depends only on its linear equivalence class (II, 6.10). Since X 
is nonsingular, for every divisor D we have an associated invertible sheaf 
2(D), and the correspondence D --+ 2(D) gives an isomorphism of the 
group Cl(X) of divisors modulo linear equivalence with the group Pic X of 
invertible sheaves modulo isomorphism (II, 6.16). 

A divisor D = L,niPi on X is effective if all ni ~ 0. The set of all effective 
divisors linearly equivalent to a given divisor D is called a complete linear 
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system (II, §7) and is denoted by IDI. The elements of IDI are in one-to-one 
correspondence with the space 

(H0(X,f£l(D)) - {0})/k*, 

so IDI carries the structure of the set of closed points of a projective space 
(II, 7.7). We denote dimk H 0(X,f£l(D)) by l(D), so that the dimension of IDI 
is l(D) - 1. The number l(D) is finite by (II, 5.19) or (Ill, 5.2). 

As a consequence of this correspondence we have the following elemen
tary, but useful, result. 

Lemma 1.2. Let D be a divisor on a curve X. Then if l(D) # 0, we must have 
deg D ): 0. Furthermore, if l(D) # 0 and deg D = 0, we must have D ~ 0, 
i.e., fil(D) ~ r9x. 

PROOF. If l(D) # 0, then the complete linear system IDI is nonempty. Hence 
D is linearly equivalent to some effective divisor. Since the degree depends 
only on the linear equivalence class, and the degree of an effective divisor is 
nonnegative, we find deg D ): 0. If deg D = 0, then D is linearly equivalent 
to an effective divisor of degree 0. But there is only one such, namely the 
zero divisor. 

We denote by Qx1k, or simply Qx, the sheaf of relative differentials of X 
over k (II, §8). Since X has dimension 1, it is an invertible sheaf on X, and 
so is equal to the canonical sheaf Wx on X. We call any divisor in the cor
responding linear equivalence class a canonical divisor, and denote it by K. 
(We also occasionally use the letter K to denote the function field of X, 
but it should be clear from the context which meaning is intended.) 

Theorem 1.3 (Riemann-Roch). Let D be a divisor on a curve X of genus g. 
Then 

l(D) - l(K - D) = deg D + 1 - g. 

PROOF. The divisor K - D corresponds to the invertible sheaf wx ® ffl(D) ~. 
Since X is projective (II, 6.7), we can apply Serre duality (III, 7.12.1) to 
conclude that the vector space H 0(X,wx ® ffl(D) ~) is dual to H 1(X,f£l(D) ). 
Thus we have to show that for any D, 

x(£(D)) = deg D + 1 - g, 

where for any coherent sheaf :F on X, x(:F) is the Euler characteristic 

x(ff) = dim H 0(X,:F) - dim H 1(X,ff). 

First we consider the case D = 0. Then our formula says 

dim H 0(X,r9x) - dim H 1(X,r9x) = 0 + 1 - g. 

This is true, because H 0(X,r9x) = k for any projective variety (1, 3.4), and 
dim H 1(X,r9x) = g by (1.1). 
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Next, let D be any divisor, and let P be any point. We will show that the 
formula is true for D if and only if it is true for D + P. Since any divisor 
can be reached from 0 in a finite number of steps by adding or subtracting 
a point each time, this will show the result holds for all D. 

We consider Pas a closed subscheme of X. Its structure sheaf is a sky
scraper sheaf k sitting at the point P, which we denote by k(P), and its ideal 
sheaf is .P(- P) by (II, 6.18). Therefore we have an exact sequence 

0--+ .P( -P)--+ (!)x--+ k(P)--+ 0. 

Tensoring with .P(D + P) we get 

0 --+ .P(D) --+ .P(D + P) --+ k(P) --+ 0. 

(Since .P(D + P) is locally free of rank 1, tensoring by it does not affect 
the sheaf k(P).) Now the Euler characteristic is additive on short exact 
sequences (III, Ex. 5.1), and x(k(P)) = 1, so we have 

x(.P(D + P)) = x(.P(D)) + 1. 

On the other hand, deg(D + P) = deg D + 1, so our formula is true for 
D if and only if it is true forD + P, as required. 

Remark 1.3.1. If X is a curve of degree din P", and D is a hyperplane section 
X n H, so that .P(D) = (9x(1), then the Hilbert polynomial (III, Ex. 5.2) 
tells us that 

x(.P(D)) = d + 1 - Pa· 

This is a special case of the Riemann-Roch theorem. 

Remark 1.3.2. The Riemann-Roch theorem enables us to solve the 
"Riemann-Roch problem" (II, Ex. 7.6) for a divisor D on a curve X. If 
deg D < 0, then dimjnDj = -1 for all n > 0. If deg D = 0, then dimjnDI 
is 0 or -1 depending on whether nD "' 0 or not. If deg D > 0, then 
l(K - nD) = 0 as soon as n · deg D > deg K, by (1.2), so for n » 0 we have 

dimlnDI = n · deg D - g. 

Example 1.3.3. On a curve X of genus g, the canonical divisor K has degree 
2g - 2. Indeed, we apply (1.3) with D = K. Since l(K) = p9 = g and 
1(0) = 1, we have 

g - 1 = deg K + 1 - g, 

hence deg K = 2g - 2. 

Example 1.3.4. We say a divisor D is special if l(K - D) > 0, and that 
l(K - D) is its index of speciality. Otherwise D is nonspecial. If deg D > 
2g - 2, then by (1.3.3), deg(K - D) < 0, so l(K - D) = 0 (1.2). Thus D 
is nonspecial. 
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Example 1.3.5. Recall that a curve is rational if it is birational to P 1 (I, 
Ex. 6.1). Since curves in this chapter are complete and rionsingular by 
definition, a curve X is rational if and only if X ~ P 1 (1, 6.12). Now using 
(1.3) we can show that X is rational if and only if g = 0. We already know 
that Pa(P 1) = 0 (I, Ex. 7.2), so conversely suppose given a curve X of genus 
0. Let P,Q be two distinct points of X and apply Riemann-Roch to the 
divisor D = P - Q. Since deg(K - D) = -2, using (1.3.3) above, we have 
l(K - D) = 0, and so we find l(D) = 1. But D is a divisor of degree 0, 
so by (1.2) we have D ~ 0, in other words P "' Q. But this implies X is 
rational (II, 6.10.1). 

Example 1.3.6. We say a curve X is elliptic if g = 1. On an elliptic curve, 
the canonical divisor K has degree 0, by (1.3.3). On the other hand, l(K) = 

p9 = 1, so from (1.2) we conclude that K "' 0. 

Example 1.3.7. Let X be an elliptic curve, let P0 be a point of X, and let 
Pica X denote the subgroup of Pic X corresponding to divisors of degree 0. 
Then the map P --+ !l'(P - P 0 ) gives a one-to-one correspondence between 
the set of points of X and the elements of the group Pica X. Thus we get a 
group structure (with P 0 as identity) on the set of points of X, generalizing 
(II, 6.1 0.2). 

To see this, it will be enough to show that if D is any divisor of degree 0, 
then there exists a unique point P EX such that D "' P - P 0 . We apply 
Riemann-Roch to D + P0 , and get 

l(D + P0 ) - l(K - D - P0 ) = 1 + 1 - 1. 

Now deg K = 0, so deg(K - D - P0 ) = -1, and hence l(K - D - P0 ) = 
0. Therefore, l(D + P0 ) = 1. In other words, dimiD + Pol = 0. This 
means there is a unique effective divisor linearly equivalent to D + P 0 . 

Since the degree is 1, it must be a single point P. Thus we have shown that 
there is a unique point P ~ D + P0 , i.e., D "' P - P0 . 

Remark 1.3.8. For other proofs of the Riemann-Roch theorem, see Serre 
[7, Ch. II] and Fulton [1]. 

EXERCISES 

1.1. Let X be a curve, and let P E X be a point. Then there exists a nonconstant 
rational function f E K(X), which is regular everywhere except at P. 

1.2. Again let X be a curve, and let P 1, ..• ,P, EX be points. Then there is a rational 
function f E K(X) having poles (of some order) at each of the P;, and regular 
elsewhere. 

1.3. Let X be an integral, separated, regular, one-dimensional scheme of finite type 
over k, which is not proper over k. Then X is affine. [Hint: Embed X in a (proper) 
curve X over k, and use (Ex. 1.2) to construct a morphism f:X-+ P 1 such that 
rl(Al) =X.] 
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1.4. Show that a separated, one-dimensional scheme of finite type over k, none of whose 
irreducible components is proper over k, is affine. [Hint: Combine (Ex. 1.3) with 
(III, Ex. 3.1, Ex. 3.2, Ex. 4.2).] 

1.5. For an effective divisor D on a curve X of genus g, show that dimjDj ~ deg D. 
Furthermore, equality holds if and only if D = 0 or g = 0. 

1.6. Let X be a curve of genus g. Show that there is a finite morphism f:X-+ P 1 

of degree ~ g + 1. (Recall that the degree of a finite morphism of curves f: X -+ Y 
is defined as the degree of the field extension [K(X):K(Y)] (II, §6).) 

1.7. A curve X is called hypere/liptic if g ? 2 and there exists a finite morphism 
f:X -+pi of degree 2. 
(a) If X is a curve of genus g = 2, show that the canonical divisor defines a com

plete linear system jK I of degree 2 and dimension 1, without base points. Use 
(II, 7.8.1) to conclude that X is hyperelliptic. 

(b) Show that the curves constructed in (1.1.1) all admit a morphism of degree 2 
to pi_ Thus there exist hyperelliptic curves of any genus g ? 2. 
Note. We will see later (Ex. 3.2) that there exist nonhyperelliptic curves. See 

also (V, Ex. 2.10). 

1.8. Pa of a Singular Curve. Let X be an integral projective scheme of dimension 1 
over k, and let X be its normalization (II, Ex. 3.8). Then there is an exact sequence 
of sheaves on X, 

o-+ mx -+ f*mx-+ I @pj@p-+ o, 
PEX 

where i!iP is the integral closure of @p. For each P EX, let bp = length(i!ipj@p). 
(a) Show that Pa(X) = Pa(X) + IPEX bp. [Hint: Use (III, Ex. 4.1) and (III, 

Ex. 5.3).] 
(b) If Pa(X) = 0, show that X is already nonsingular and in fact isomorphic to P 1. 

This strengthens (1.3.5). 
*(c) If Pis a node or an ordinary cusp (1, Ex. 5.6, Ex. 5.14), show that bp = 1. [Hint: 

Show first that bp depends only on the analytic isomorphism class of the sin
gularity at P. Then compute b P for the node and cusp of suitable plane cubic 
curves. See (V, 3.9.3) for another method.] 

*1.9. Riemann-Roch for Singular Curves. Let X be an integral projective scheme of 
dimension 1 over k. Let X "g be the set of regular points of X. 
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(a) Let D = In;P; be a divisor with support in x"g' i.e., all P; E X,,g· Then 
define deg D = In;. Let !l'(D) be the associated invertible sheaf on X, and 
show that 

x(!l'(D)) = deg D + 1 - Pa· 

(b) Show that any Cartier divisor on X is the difference of two very ample Cartier 
divisors. (Use (II, Ex. 7.5).) 

(c) Conclude that every invertible sheaf !l' on X is isomorphic to !l'(D) for some 
divisor D with support in X"'. 

(d) Assume furthermore that X is a locally complete intersection in some pro
jective space. Then by (III, 7.11) the dualizing sheaf wx is an invertible sheaf 
on X, so we can define the canonical divisor K to be a divisor with support in 
X"' corresponding to wx. Then the formula of (a) becomes 

I(D) - l(K - D) = deg D + 1 - Pa· 



2 Hurwitz's Theorem 

1.10. Let X be an integral projective scheme of dimension 1 over k, which is locally 
complete intersection, and has Pa = 1. Fix a point P0 E X,g· Imitate (1.3.7) to 
show that the map P--> !l'(P - P0 ) gives a one-to-one correspondence between 
the points of X,g and the elements of the group Pico X. This generalizes (II, 
6.11.4) and (II, Ex. 6.7). 

2 Hurwitz's Theorem 

In this section we consider a finite morphism of curves f: X ~ Y, and study 
the relation between their canonical divisors. The resulting formula in
volving the genus of X, the genus of Y, and the number of ramification points 
is called Hurwitz's theorem. 

Recall that the degree of a finite morphism f:X ~ Y of curves is defined 
to be the degree [K(X):K(Y)] of the extension of function fields (II, §6). 

For any point P EX we define the ramification index ep as follows. Let 
Q = f(P), let t E (9Q be a local parameter at Q, consider t as an element of 
@p via the natural map f# :(9Q ~ @p, and define 

ep = vp(t), 

where Vp is the valuation associated to the valuation ring @p. If ep > 1 we 
say f is ramified at P, and that Q is a branch point off (Fig. 13). If ep = 1, we 
say f is unramified at P. This definition is consistent with the earlier definition 
of unramified (Ill, Ex. 10.3) since our groundfield k is algebraically closed, 
and so k(P) = k(Q) for any point P of X. In particular, iff is unramified 
everywhere, it is etale, because in any case it is flat by (III, 9.7). 

Q 

X y 

Figure 13. A finite morphism of curves. 

If char k = 0, or if char k = p, and p does not divide ep, we say that the 
ramification is tame. If p does divide ep, it is wild. 

Recall that we have defined a homomorphism f*: Div Y ~ Div X of the 
groups of divisors, by setting 

f*(Q) = I ep · P 
P--+Q 

for any point Q of Y, and extending by linearity (II, §6). If D is a divisor on 
Y, then f*(2(D)) ~ 2(f* D) (II, Ex. 6.8), so that this f* on divisors is com
patible with the homomorphism .f*: Pic Y ~ Pic X on invertible sheaves. 
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We say the morphism f:X ~ Y is separable if K(X) is a separable field 
extension of K( Y). 

Proposition 2.1. Let f: X ~ Y be a finite separable morphism of curves. Then 
there is an exact sequence of sheaves on X, 

0 ~ f*Qy ~ QX ~ QX/Y ~ 0. 

PROOF. From (II, 8.11) we have this exact sequence, but without the 0 on 
the left. So we have only to show that f*Qy ~ Qx is injective. Since both 
are invertible sheaves on X, it will be sufficient to show that the map is 
nonzero at the generic point. But since K(X) is separable over K(Y), the 
sheaf Qx;Y is zero at the generic point of X, by (II, 8.6A). Hence f*Qy ~ Qx 
is surjective at the generic point. 

Since QY and Qx correspond to the canonical divisors on Y and X, 
respectively, we see that the sheaf of relative differentials Qx;Y measures 
their difference. So we will study this sheaf. For any point P EX, let Q = 
f(P), let t be a local parameter at Q, and let u be a local parameter at P. 
Then dt is a generator of the free CDQ-module QY,Q, and du is a generator of 
the free CDp-module Qx,P, by (II, 8.7) and (II, 8.8). In particular, there is a 
unique element g E CDp such that f*dt = g · du. We denote this element by 
dtjdu. 

Proposition 2.2. Let f:X ~ Y be a finite, separable morphism of curves. 
Then: 

(a) QX/Y is a torsion sheaf on X, with support equal to the set of ramifi
cation points off In particular, f is ramified at only finitely many points; 

(b) for each P EX, the stalk (Qx;y)p is a principal CDp-module of finite 
length equal to vp(dtjdu); 

(c) iff is tamely ramified at P, then 

length(Qx;y)p = ep - 1. 

Iff is wildly ramified, then the length is > ep - 1. 

PROOF. 

(a) The fact that Qx;Y is a torsion sheaf follows from (2.1) since f*Qy and 
Qx are both invertible sheaves on X. Now (Qx1y)p = 0 if and only if f*dt 
is a generator for Qx,P, using the above notation. But this happens if and 
only if tis a local parameter for CDp, i.e., f is unramified at P. 

(b) Indeed, from the exact sequence of (2.1), we see that (Qx;y}p ~ 
Qx,Pif*QY,Q' which is isomorphic as an CDp-module to CDpj(dtjdu). 

(c) Iff has ramification index e = ep, then we can write t = aue for 
some unit a E CDp. Then 

dt = aeue-ldu + ueda. 
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If the ramification is tame, then e is a nonzero element of k, so we have 
vp(dtjdu) = e - 1. Otherwise vp(dtjdu) ~ e. 

Definition. Let f: X ---+ Y be a finite, separable morphism of curves. Then 
we define the ramification divisor off to be 

R = L 1ength(Qx1y)p · P. 
PEX 

Proposition 2.3. Let f:X ---+ Y be a finite, separable morphism of curves. Let 
Kx and Ky be the canonical divisors of X and Y, respectively. Then 

Kx ~f*Ky + R. 

PROOF. Considering the divisor Rasa closed subscheme of X, we see from 
(2.2) that its structure sheaf @R is isomorphic to QXJY· Tensoring the exact 
sequence of (2.1) with Qi 1, we can therefore write an exact sequence 

0 ---+ f*Qy @ Qi 1 ---+ t:9x ---+ @R ---+ 0. 

But by (II, 6.18), the ideal sheaf of R is isomorphic to £'(- R), so we have 

f*Qy ® Qil ~ £'( -R). 

Now the result follows from taking associated divisors. (One can also prove 
this proposition by applying the operation det of (II, Ex. 6.11) to the exact 
sequence of (2.1).) 

Corollary 2.4 (Hurwitz). Let f:X---+ Y be a finite separable morphism of 
curves. Let n = deg f Then 

2g(X) - 2 = n · (2g(Y) - 2) + deg R. 

Furthermore, iff has only tame ramification, then 

deg R = L (ep - 1). 

PROOF. We take the degrees of the divisors in (2.3). The canonical divisor 
has degree 2g - 2 by (1.3.3); f* multiplies degrees by n (II, 6.9); and if the 
ramification is tame, R has degree L(ep - 1) by (2.2). 

We complete our discussion of finite morphisms by describing what 
happens in the purely inseparable case. First we define the Frobenius 
morphism. 

Definition. Let X be a scheme, all of whose local rings are of characteristic p 
(i.e., contain Z/p). We define the Frobenius morphism F:X---+ X as fol
lows: F is the identity map on the topological space of X, and F*: t:9x ---+ 
t:9x is the pth power map. Since the local rings are of characteristic p, 
F* induces a local homomorphism on each local ring, so F is indeed a 
morphism. 
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Remark 2.4.1. Ifn:X ~Speck is a scheme over a field k of characteristic p, 
then F:X ~X is not k-linear. On the contrary, we have a commutative 
diagram 

X ---=F'-------> X 

Speck __ F=----> Speck 

with the Frobenius morphism F of Speck (which corresponds to the pth 
power map of k to itself). 

We define a new scheme over k, XP, to be the same scheme X, but with 
structural morphism F on. Thus k acts on (!Jxp via pth powers. Then F be
comes a k-linear morphism F':XP ~X. We call this the k-linear Frobenius 
morphism. 

Example 2.4.2. If X is a scheme over k, then X P may or may not be iso
morphic to X as a scheme over k. For example, if X = Spec k[t], where k 
is a perfect field, then XP is isomorphic to X, because the pth power map 
k ~ k is bijective. Under this identification, the k-linear Frobenius mor
phism F': X ~ X corresponds to the homomorphism k[ t] ~ k[ t] defined 
by t ~ tP. This is the morphism given in (1, Ex. 3.2). 

Example 2.4.3. If X is a curve over k, an algebraically closed field of charac
teristic p, then F': X P ~ X is a finite morphism of degree p. It corresponds 
to the field inclusion K ~ K 11P, where K is the function field of X, and 
K 11P is the field of pth roots of elements of Kin some fixed algebraic closure 
of K. 

Proposition 2.5. Let f: X ~ Y be a finite morphism of curves, and suppose 
that K(X) is a purely inseparable field extension of K(Y). Then X andY are 
isomorphic as abstract schemes, and f is a composition of k-linear Frobenius 
morphisms. In particular, g(X) = g(Y). 

PROOF. Let the degree off be p'. Then K(X)P' s; K(Y), or in other words, 
K(X) s; K(Y)11Pr. On the other hand, consider the k-linear Frobenius 
morphisms 

where for each i, YP, = (J;•-dp· The composition of these is a morphism 
f': Ypr ~ Y, also of degree p'. Since K(X) s; K(Y) 11Pr, and both have the 
same degree over K(Y), we conclude that K(X) = K(Y) 11P'. Since a curve 
is uniquely determined by its function field (1, 6.12), we have X ~ YP'' and 
f = f'. Therefore X and Yare isomorphic as abstract schemes, and their 
genus (which does not depend on the k-structure) is the same. 
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Example 2.5.1. If X = YP, and f:X--+ Y is the k-linear Frobenius mor
phism, then f is ramified everywhere, with ramification index p. Indeed, 
f is the identity on point sets, but pth power on structure sheaves. So if 
t E (!)Pis a local parameter, j#t = tP. Since d(tP) = 0, the map j*Qy--+ Qx 
is the zero map, so Qx;Y ~ Qx. 

Example 2.5.2. Iff: X --+ Y is separable, then the degree of the ramification 
divisor R is always an even number. This follows from the formula of (2.4). 

Example 2.5.3. An etale covering of a scheme Y is a scheme X, together with 
a finite etale morphism f: X --+ Y. It is called trivial if X is isomorphic to 
a finite disjoint union of copies of Y. Y is called simply connected if it has 
no nontrivial etale coverings. 

Now we show that P 1 is simply connected. Indeed, let f:X--+ P 1 be an 
etale covering. We may assume X is connected. Then X is smooth over k 
since f is etale (III, 10.1 ), and X is proper over k since f is finite, so X is a 
curve (note connected and regular imply irreducible). Again since f is etale, 
f is separable, so we can apply Hurwitz's theorem. Since f is unramified, 
R = 0 so we have 

2g(X) - 2 = n( -2). 

Since g(X) ~ 0, the only way this can happen is for g(X) = 0 and n = 1. 
Thus X= P 1. 

Example 2.5.4. Iff: X --+ Y is any finite morphism of curves, then g(X) ~ 
g(Y). We can factor the field extension K(Y) ~ K(X) into a separable 
extension followed by a purely inseparable extension. Since the genus 
doesn't change for a purely inseparable extension (2.5), we reduce to the 
case f separable. If g(Y) = 0, there is nothing to prove, so we may assume 
g(Y) ~ 1. Then we rewrite the formula of (2.4) as 

g(X) = g(Y) + (n - 1)(g(Y} - 1) + ~ deg R. 

Since n - 1 ~ 0, g(Y) - 1 ~ 0, and deg R ~ 0, we are done. By the way, 
this shows also that equality occurs (for f separable) only if n = 1, or 
g( Y) = 1 and f is unramified. 

Example 2.5.5 (Liiroth's Theorem). This says that if L is a subfield of a pure 
transcendental extension k(t) of k, containing k, then L is also pure tran
scendental. We may assume that L -=1= k, so that L has transcendence degree 
1 over k. Then Lis a function field of a curve Y, and the inclusion L ~ k(t) 
corresponds to a finite morphism f: P1 --+ Y. By (2.5.4) we conclude that 
g(Y) = 0, so by (1.3.5), Y ~ P 1 . Hence L ~ k(u) for some u. 
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Note: This proof is only fork algebraically closed, but the theorem is true 
for any field k. An analogous result over k algebraically closed is true also 
in dimension 2 (V, 6.2.1). In dimension 3 the corresponding statement is 
false, because of the existence of nonrational unirational3-folds-see Clemens 
and Griffiths [1] and Iskovskih and Manin [1]. 

EXERCISES 

2.1. Use (2.5.3) to show that P" is simply connected. 

2.2. Classification of Curves of Genus 2. Fix an algebraically closed field k of char
acteristic =1- 2. 
(a) If X is a curve of genus 2 over k, the canonical linear system IKI determines a 

finite morphism f:X---+ P1 of degree 2 (Ex. 1.7). Show that it is ramified at 
exactly 6 points, with ramification index 2 at each one. Note that f is uniquely 
determined, up to an automorphism of P1, so X determines an (unordered) 
set of6 points ofP\ up to an automorphism ofP 1. 

(b) Conversely, given six distinct elements a 1, ... ,a6 E k, let K be the extension 
of k(x) determined by the equation z2 = (x - ad · · · (x - a6). Let f: X ---+ P1 

be the corresponding morphism of curves. Show that g(X) = 2, the map f 
is the same as the one determined by the canonical linear system, and f is 
ramified over the six points x = ai of P 1, and nowhere else. (Cf. (II, Ex. 6.4).) 

(c) Using (I, Ex. 6.6), show that if P 1,P2,P3 are three distinct points of P1, then 
there exists a unique cp E Aut P 1 such that cp(P 1) = 0, cp(P 2 ) = 1, cp(P 3) = oo. 
Thus in (a), if we order the six points ofP\ and then normalize by sending the 
first three to 0,1,oo, respectively, we may assume that X is ramified over 
0,1,oo,{3 1,{32 ,{33 , where fJ~o/32 ,{3 3 are three distinct elements of k, ,.CO,l. 

(d) Let E6 be the symmetric group on 6 letters. Define an action of E6 on sets 
of three distinct elements {3 1,{32 ,{33 of k, =F-0,1, as follows: reorder the set 
O,l,oo,{31 ,{32 ,{3 3 according to a given element fiE E6 , then renormalize as in (c) 
so that the first three become 0,1,oo again. Then the last three are the new 
{3'1 ,p; ,/33. 

(e) Summing up, conclude that there is a one-to-one correspondence between the 
set of isomorphism classes of curves of genus 2 over k, and triples of distinct 
elements {3 1,{32 ,{33 of k, =F-0,1, modulo the action of E6 described in (d). In 
particular, there are many non-isomorphic curves of genus 2. We say that 
curves of genus 2 depend on three parameters, since they correspond to the 
points of an open subset of Af modulo a finite group. 

2.3. Plane Curves. Let X be a curve of degree din P2. For each point P EX, let T p(X) 
be the tangent line to X at P (1, Ex. 7.3). Considering T p(X) as a point of the dual 
projective plane (P2 )*, the map P ---+ T p(X) gives a morphism of X to its dual 
curve X* in (P2 )* (1, Ex. 7.3). Note that even though X is nonsingular, X* in 
general will have singularities. We assume char k = 0 below. 
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(a) Fix a line L ~ P2 which is not tangent to X. Define a morphism cp:X---+ L by 
cp(P) = Tp(X) n L, for each point P EX. Show that cp is ramified at P if and 
only if either (1) PEL, or (2) Pis an inflection point of X, which means that the 
intersection multiplicity (1, Ex. 5.4) ofT p(X) with X at Pis ~ 3. Conclude that 
X has only finitely many inflection points. 
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(b) A line ofP2 is a multiple tangent of X if it is tangent to X at more than one point. 
It is a bitangent if it is tangent to X at exactly two points: If L is a multiple 
tangent of X, tangent to X at the points P 1, ... ,P., and if none of the P; is an 
inflection point, show that the corresponding point of the dual curve X* is an 
ordinary r-fold point, which means a point of multiplicity r with distinct tangent 
directions (1, Ex. 5.3). Conclude that X has only finitely many multiple tangents. 

(c) Let 0 E P2 be a point which is not on X, nor on any inflectional or multiple 
tangent of X. Let L be a line not containing 0. Let ljJ: X --+ L be the morphism 
defined by projection from 0. Show that ljJ is ramified at a point P EX if and 
only if the line OP is tangent to X at P, and in that case the ramification index 
is 2. Use Hurwitz's theorem and (1, Ex. 7.2) to conclude that there are exactly 
d(d - 1) tangents of X passing through 0. Hence the degree of the dual curve 
(sometimes called the class of X) is d(d - 1). 

(d) Show that for all but a finite number of points of X, a point 0 of X lies on 
exactly (d + 1)(d - 2) tangents of X, not counting the tangent at 0. 

(e) Show that the degree of the morphism <p of (a) is d(d - 1). Conclude that if 
d ;::, 2, then X has 3d(d - 2) inflection points, properly counted. (If T p(X) has 
intersection multiplicity r with X at P, then P should be counted r - 2 times as 
an inflection point. If r = 3 we call it an ordinary inflection point.) Show that 
an ordinary inflection point of X corresponds to an ordinary cusp of the dual 
curve X*. 

(f) Now let X be a plane curve of degree d ;::, 2, and assume that the dual curve 
X* has only nodes and ordinary cusps as singularities (which should be true 
for sufficiently general X). Then show that X has exactly td(d- 2)(d- 3)(d + 3) 
bitangents. [Hint: Show that X is the normalization of X*. Then calculate 
Pa(X*) two ways: once as a plane curve of degree d(d - 1), and once using 
(Ex. 1.8).] 

(g) For example, a plane cubic curve has exactly 9 inflection points, all ordinary. 
The line joining any two of them intersects the curve in a third one. 

(h) A plane quartic curve has exactly 28 bitangents. (This holds even if the curve 
has a tangent with four-fold contact, in which case the dual curve X* has a 
tacnode.) 

2.4. A Funny Curve in Characteristic p. Let X be the plane quartic curve x 3y + lz + 
z3x = 0 over a field of characteristic 3. Show that X is nonsingular, every point 
of X is an inflection point, the dual curve X* is isomorphic to X, but the natural 
map X --> X* is purely inseparable. 

2.5. Automorphisms of a Curve of Genus ;::,2. Prove the theorem of Hurwitz [1] that 
a curve X of genus g ;::, 2 over a field of characteristic 0 has at most 84(g - 1) auto
morphisms. We will see later (Ex. 5.2) or (V, Ex. 1.11) that the group G =Aut X is 
finite. So let G have order n. Then G acts on the function field K(X). Let L be 
the fixed field. Then the field extension L <;; K(X) corresponds to a finite mor
phism of curves f: X --> Y of degree n. 
(a) If P E X is a ramification point, and ep = r, show that f- 1f(P) consists of 

exactly n/r points, each having ramification index r. Let P 1, ... ,P, be a maxi
mal set of ramification points of X lying over distinct points of Y, and let 
ep, = r;. Then show that Hurwitz's theorem implies that 

(2g - 2)/n = 2g(Y) - 2 + 2: (1 - 1/r;). 
i= 1 
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(b) Since g ~ 2, the left hand side of the equation is >0. Show that if g(Y) ~ 0, 
s ~ 0, r; ~ 2, i = 1, ... ,s are integers such that 

2g(Y) - 2 + L: (1 - 1/r;) > 0, 
i= 1 

then the minimum value of this expression is 1/42. Conclude that n ~ 84(g- 1). 
See (Ex. 5. 7) for an example where this maximum is achieved. 
Note: It is known that this maximum is achieved for infinitely many values of g 

(Macbeath [1]). Over a field of characteristic p > 0, the same bound holds, pro
vided p > g + 1, with one exception, namely the hyperelliptic curve y2 = xP - x, 

which hasp= 2g + 1 and 2p(p2 - 1) automorphisms (Roquette [1]). For other 
bounds on the order of the group of automorphisms in characteristic p, see Singh 
[1] and Stichtenoth [1]. 

2.6. f* for Divisors. Let f:X-+ Y be a finite morphism of curves of degree n. We 
define a homomorphism f*: Div X -+ Div Y by f*(l:n;P;) = L:nJ(P;) for any 
divisor D = L:n;P; on X. 
(a) For any locally free sheaf tC on Y, of rank r, we define det tC = 1\ 'tC EPic Y 

(II, Ex. 6.11). In particular, for any invertible sheaf .,It on X,f*.,H is locally free 
of rank n on Y, so we can consider det f*.,H E Pic Y. Show that for any divisor 
Don X, 

det(f*2'(D)) ;::;: (det f*@x) ® 2'(f*D). 

Note in particular that det(f*2'(D)) =/= 2'(f*D) in general! [Hint: First con
sider an effective divisor D, apply f* to the exact sequence 0 -+ 2'(-D) -+ 

@x -> @v -+ 0, and use (II, Ex. 6.11).] 
(b) Conclude thatf*D depends only on the linear equivalence class of D, so there is 

an induced homomorphism f*: Pic X --> Pic Y. Show that f* o f*: Pic Y --> 

Pic Y is just multiplication by n. 
(c) Use duality for a finite flat morphism (III, Ex. 6.10) and (III, Ex. 7.2) to show that 

detf*Qx;::;: (detf*@x)- 1 ® D?". 
(d) Now assume that f is separable, so we have the ramification divisor R. We 

define the branch divisor B to be the divisor f*R on Y. Show that 

(det f*@x) 2 ;::;: 2'(- B). 

2.7. Etale Covers of Degree 2. Let Y be a curve over a field k of characteristic =/= 2. 
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We show there is a one-to-one correspondence between finite etale morphisms 
f:X-+ Y of degree 2, and 2-torsion elements of Pic Y, i.e., invertible sheaves 2' 
on Y with 2'2 ;::;: @y. 
(a) Given an etale morphism f:X-> Y of degree 2, there is a natural map @y-> 

f*@x. Let 2' be the co kernel. Then 2' is an invertible sheaf on Y, 2' ;::;: det f*@x, 
and so 2'2 ;::;: @y by (Ex. 2.6). Thus an etale cover of degree 2 determines a 
2-torsion element in Pic Y. 

(b) Conversely, given a 2-torsion element 2' in Pic Y, define an @y-algebra structure 
on @y EB 2' by (a,b) · (a',b') = (aa' + <p(b ® b'), ab' + a'b), where <p is an 
isomorphism of 2' ® 2' -+ @y. Then take X = Spec(@y EB 2') (II, Ex. 5.17). 
Show that X is an etale cover of Y. 

(c) Show that these two processes are inverse to each other. [Hint: Let T:X-> X 
be the involution which interchanges the points of each fibre off Use the 
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trace map a c-+ a + c(a) from j*{J)x --+ @y to show that the sequence of @y
modules in (a) 

is split exact. 
Note. This is a special case of the more general fact that for (n, char k) = 1, the 

etale Galois covers of Y with group Z/nZ are classified by the etale cohomology 
group H;,(Y, Z/nZ), which is equal to the group of n-torsion points of Pic Y. See 
Serre [6]. 

3 Embeddings in Projective Space 

In this section we study embeddings of a curve in projective space. We will 
show that any curve can be embedded in P 3 . Furthermore, any curve can 
be mapped birationally into P2 in such a way that the image has at most 
nodes as singularities. 

Recall that an invertible sheaf ff on a curve X is very ample (II, §5) if 
it is isomorphic to @x(l) for some immersion of X in a projective space. 
It is ample (II, §7) if for any coherent sheaf :F on X, the sheaf :F @ !£" is 
generated by global sections for n » 0. We have seen that ff is ample if 
and only if ffn is very ample for some n > 0 (II, 7.6). If D is a divisor on X, 
we will say D is ample or very ample if .P(D) is. 

Recall that a linear system is a set b of effective divisors, which forms a 
linear subspace of a complete linear system IDI. A point P is a base point 
of the linear system b if P E Supp D for all D E b. We have seen that a com
plete linear system IDI is base-point free if and only if .P(D) is generated 
by global sections (II, 7.8). 

Our first result is a reinterpretation in the case of curves of the criterion 
of (II, §7) for when a linear system gives rise to a closed immersion into 
projective space. 

Proposition 3.1. L~t D be a divisor on a curve X. Then: 
(a) the complete linear system IDI has no base points if and only if for 

every point P EX, 

dimiD - Pi = dimiDI - 1; 

(b) Dis very ample if and only if for every two points P,Q EX (including 
the case P = Q), 

dimiD - P - Ql = dimiDI - 2. 

PROOF. First we consider the exact sequence of sheaves 

0 ~ ff(D - P) ~ ff(D) ~ k(P) ~ 0. 

Taking global sections, we have 

0 ~ r(X,ff(D - P)) ~ F(X,:t'(D)) ~ k, 
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so in any case, we see that dimiD - PI is equal to either dimiDI or dimiDI - 1. 
Furthermore, sending a divisor E to E + P defines a linear map 

which is clearly injective. Therefore, the dimensions of these two linear 
systems are equal if and only if cp is surjective. On the other hand, cp is 
surjective if and only if P is a base point of IDI, so this proves (a). 

To prove (b), we may assume that IDI has no base points. Indeed, this 
is true if D is very ample. On the other hand, if D satisfies the condition 
of (b), then we must a fortiori have 

dimiD - PI = dimiDI - 1 

for every P EX, so IDI has no base points. 
This being the case, IDI determines a morphism of X to pn (II, 7.1) and 

(II, 7.8.1), so the question is whether that morphism is a closed immersion. 
We use the criterion of (II, 7.3) and (II, 7.8.2), so we have to see whether IDI 
separates points and separates tangent vectors. The first condition says 
that for any two distinct points P,Q E X, Q is not a base point of ID - Pl. 
By (a) this is equivalent to saying 

dimiD- P- Ql = dimiDI- 2. 

The second condition says that for any point P EX, there is a divisor D' E IDI 
such that P occurs with multiplicity 1 in D', because dim Tp(X) = 1, and 
dim Tp(D') = 0 if P has multiplicity 1 in D', 1 if P has higher multiplicity. 
But this just says Pis not a base point of ID - Pi, or, using (a) again, 

dimiD - 2PI = dimiDI - 2. 

Thus our result follows from (II, 7.3). 

Corollary 3.2. Let D be a divisor on a curve X of genus g. 
(a) If deg D ~ 2g, then IDI has no base points. 
(b) If deg D ~ 2g + 1, then Dis very ample. 

PROOF. In case (a), both D and D - Pare nonspecial (1.3.4), so by Riemann
Roch, dimiD - PI = dimiDI - 1. In case (b), D and D - P - Q are both 
nonspecial, so dimiD- P- Ql = dimiDI- 2 again by Riemann-Roch. 

Corollary 3.3. A divisor D on a curve X is ample if and only if deg D > 0. 

PROOF. If D is ample, some multiple is very ample (II, 7.6), so nD ~ H 
where H is a hyperplane section for a projective embedding, so deg H > 0, 
hence deg D > 0. Conversely, if deg D > 0, then for n » 0, deg nD ~ 
2g(X) + 1, so by (3.2), nD is very ample, and so D is ample (II, 7.6). 

Example 3.3.1. If g = 0, then D is ample <o> very ample <o> deg D > 0. 
Since X ~ P 1 (1.3.5), this is just (II, 7.6.1). 
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Example 3.3.2. Let X be a curve, and let D be a very ample divisor on X, 
corresponding to a closed immersion cp: X ~ P". Then the degree of cp(X), 
as defined in (1, §7) for a projective variety, is just equal to deg D (II, Ex. 6.2). 

Example 3.3.3. Let X be an elliptic curve, i.e., g = 1 (1.3.6). Then any 
divisor D of degree 3 is very ample. Such a divisor is nonspecial, so by 
Riemann-Roch, dimiDI = 2. Thus we see that any elliptic curve can be 
embedded in P2 as a cubic curve. (Conversely, of course, any nonsingular 
plane cubic is elliptic, by the genus formula (1, Ex. 7.2).) 

In the case g = 1 we can actually say D very ample -=- deg D ;?: 3. Be
cause if deg D = 2, then by Riemann-Roch, dimiDI = 1, so IDI defines a 
morphism of X to P 1 , which cannot be a closed immersion. 

Example 3.3.4. If g = 2, then any divisor D of degree 5 is very ample. By 
Riemann-Roch, dimiDI = 3, so any curve of genus 2 can be embedded in 
P 3 as a curve of degree 5. 

Example 3.3.5. The result of (3.2) is not the best possible in general. For 
example, if X is a plane curve of degree 4, then D = X.H is a very ample 
divisor of degree 4, but g = 3 so 2g + 1 = 7. 

Our next objective is to show that any curve can be embedded in P3 . 

For this purpose we consider a curve X ~ P", take a point 0 ¢ X, and 
project X from 0 into pn- 1 (I, Ex. 3.14). This gives a morphism of X into 
pn-t, and we investigate when it is a closed immersion. 

If P,Q are two distinct points of X, we define the secant line determined 
by P and Q to be the line in P" joining P and Q. If P is a point of X, we 
define the tangent line to X at P to be the unique line L ~ P" passing through 
P, whose tangent space T p(L) is equal to T p(X) as a subspace of T p(Pn). 

Proposition 3.4. Let X be a curve in P", let 0 be a point not on X, and let 
cp:X ~ pn- 1 be the morphism determined by projection from 0. Then 
cp is a closed immersion if and only if 

(1) 0 is not on any secant line of X, and 
(2) 0 is not on any tangent line of X. 

PROOF. The morphism cp corresponds (II, 7.8.1) to the linear system cut 
out on X by the hyperplanes H of P" passing through 0. So cp is a closed 
immersion if and only if this linear system separates points and separates 
tangent vectors on X (II, 7.8.2). If P,Q are two distinct points on X, then cp 
separates them if and only if there is an H containing 0 and P, but not Q. 
This is possible if and only if 0 is not on the line PQ. If P E X, then cp sepa
rates tangent vectors at P if and only if there is an H containing 0 and P, 
and meeting X at P with multiplicity 1. This is possible if and only if 0 
is not on the tangent line at P. 
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Proposition 3.5. If X is a curve in pn, with n ;:;:: 4, then there is a point 0 ¢ X 
such that the projection from 0 gives a closed immersion of X into pn- 1 . 

PROOF. Let Sec X be the union of all secant lines of X. We call this the 
secant variety of X. It is a locally closed subset of pn, of dimension ~ 3, 
since (at least locally) it is the image of a morphism from (X x X - Ll) x P 1 

to pn which sends (P,Q,t) to the point ton the secant line through P and Q, 
suitably parametrized. 

Let Tan X, the tangent variety of X, be the union of all tangent lines of 
X. It is a closed subset of pn, of dimension ~ 2, because it is locally an 
image of X x P1. 

Since n ;:;:: 4, Sec X u Tan X i= pn, so we can find plenty of points 0 
which do not lie on any secant or tangent of X. Then the projection from 0 
gives the required closed immersion, by (3.4). 

Corollary 3.6. Any curve can be embedded in P 3 . 

PROOF. First embed X in any projective space pn_ For example, take a 
divisor D of degree d ;:;:: 2g + 1 and use (3.2). Since D is very ample, the 
complete linear system IDI determines an embedding of X in pn with n = 

dimiDI. If n ~ 3, we can consider pn as a subspace ofP3 , so there is nothing 
to prove. If n ;:;:: 4, we use (3.5) repeatedly to project from points until we 
have X embedded in P 3 . 

Next we study the projection of a curve X in P 3 to P2. In general the 
secant variety will fill up all of P 3 , so we cannot avoid all the secants, and 
the projected curve will be singular. However, we will see that it is possible 
to choose the center of projection 0 so that the resulting morphism ((J 
from X to P2 is birational onto its image, and the image ((J(X) has at most 
nodes as singularities. 

Recall (I, Ex. 5.6) that a node is a singular point of a plane curve of mul
tiplicity 2, with distinct tangent directions. We define a multisecant of X 
to be a line in P 3 which meets X in three or more distinct points. A secant 
with coplanar tangent lines is a secant joining two points P,Q of X, whose 
tangent lines Lp,LQ lie in the same plane, or equivalently, such that Lp 
meets LQ. 

Proposition 3.7. Let X be a curve in P~, let 0 be a point not on X, and let 
qJ: X --> P2 be the morphism determined by projection from 0. Then ((J 
is birational onto its image and ((J(X) has at most nodes as singularities, 
if and only if 

(1) 0 lies on only finitely many secants of X, 
(2) 0 is not on any tangent line of X, 
(3) 0 is not on any multisecant of X, and 
(4) 0 is not on any secant with coplanar tangent lines. 
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PROOF. Going back to the proof of (II, 7.3), condition (1) says that <p is 
one-to-one almost everywhere, hence birational. When 0 does lie on a 
secant line, conditions (2), (3), (4) tell us that line meets X in exactly two 
points P,Q, it is not tangent to X at either one, and the tangent lines at P,Q 
are mapped to distinct lines in P 2 . Hence the image <p(X) has a node at 
that point. 

To show that a point 0 exists satisfying (1)-(4) of (3.7), we will count 
the dimensions of the bad points, as in the proof of (3.5). The hard part is 
to show that not every secant is a multisecant, and not every secant has 
coplanar tangent lines. Over C, one could see this from differential geom
etry. However, we give a different proof, valid in all characteristics, which 
is achieved by an interesting application 9f Hurwitz's theorem. 

Proposition 3.8. Let X be a curve in P 3 , which is not contained in any plane. 
Suppose either 

(a) every secant of X is a multisecant, or 
(b) for any two points P,Q EX, the tangent lines Lp,LQ are coplanar. 
Then there is a point A E P3 , which lies on every tanyent line of X. 

PROOF. First we show that (a) implies (b). Fix a point R in X, and consider 
the morphism l/J: X - R ---> P2 induced by projection from R. Since every 
secant is a multisecant, l/J is a many-to-one map. If l/J is inseparable, then 
for any P EX, the tangent line Lp at X passes through R. This gives (b) 
and our conclusion immediately, so we may assume that each such ljJ is 
separable. In that case, let T be a nonsingular point of l/J(X) over which l/J 
is not ramified. If P,Q E l/J- 1(T), then the tangent lines Lp,LQ to X are 
projected into the tangent line LT to l/J(X) at T. So Lp and LQ are both in 
the plane spanned by R and LT, hence coplanar. 

Thus we have shown that for any R, and for almost all P,Q such that 
P,Q,R are collinear, Lp and LQ are coplanar. Therefore, there is an open 
set of (P,Q) in X x X for which Lp and LQ are coplanar. But the property 
of Lp and LQ being coplanar is a closed condition, so we conclude that for 
all P,Q EX, Lp and LQ are coplanar. This is (b). 

Now assume (b). Take any two points P,Q EX with distinct tangents, 
and let A = Lp n LQ. By hypothesis, X is not contained in any plane, 
so in particular, if n is the plane spanned by Lp and LQ, then X n n is a 
finite set of points. For any point REX - X n n, the tangent line LR 
must meet both Lp and LQ. But since LR c:j;_ n, it must pass through A. 
So there is an open set of X consisting of points R such that A E LR. Since 
this is a closed condition, we conclude that A E LR for all R EX. 

Definition. A curve X in P" is strange if there is a point A which lies on all the 
tangent lines of X. 
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Example 3.8.1. P 1 is strange. Indeed, the tangent line at any point is the 
same P 1, so any point A E P 1 will do. 

Example 3.8.2. A conic in P 2 over a field of characteristic 2 is strange. For 
example, consider the conic y = x 2 • Then dyjdx = 0, so all the tangent 
lines are horizontal, so they all pass through the point at infinity on the 
x-axis. 

Theorem 3.9 (Samuel [2]). The only strange curves in any P" are the line 
(3.8.1) and the conic in characteristic 2 (3.8.2). 

PROOF. By projecting down if necessary (3.5) we may assume that X lies 
in P 3 . Choose an A 3 in P 3 with affine coordinates x, y,z in such a way that 

(1) A is the point at infinity on the x-axis, 
(2) if A EX, then its tangent line LA is not in the xz-plane, 
(3) the z-axis does not meet X, 
(4) X does not meet the line at infinity of the xz-plane, except possibly at 

A (Fig. 14). 

y 

M 

z 
Figure 14. Proof of (3.9). 

First we project from A to the yz-plane. Since A lies on every tangent 
line to X, the corresponding morphism from X to P2 is ramified everywhere. 
So either the image is a point (in which case X is a line), or it is inseparable 
(2.2). We conclude that the functions y and z restricted to X lie in K(X)P, 
where char k = p > 0. 

Next, we project from the z-axis to the line Mat infinity in the xy-plane. 
In other words, for each point P E X, we define cp(P) to be the intersection 
of the plane spanned by P and the z-axis with the line M. This gives a 
morphism cp: X ~ M of degree d = deg X. Note that cp is ramified exactly 
at the points of X which lie in the finite part of the xz-plane, but not at A. 
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We will apply Hurwitz's theorem (2.4) to the morphism ((J. For any 
point P EX n xz-plane, we take u = x - a as a local coordinate, where 
a E k, a # 0. We take t = yjx as a local coordinate at A on M. Then by 
(2.2) we have to calculate vp(dtjdu). Write x = u + a, so t = y(u + a)- 1 . 

Since y E K(X)P, we have dyjdu = 0, so 

dtjdu = - y(u + a)- 2 . 

But u + a is a unit in the local ring @p, so 

Vp(dtjdu) = Vp(J'). 

If we let P 1, ... ,Pr be all the finite points of X n xz-plane, then Hurwitz's 
theorem tells us that 

r 

2g - 2 = -2d + I Vp,(y). 
i= 1 

Now we consider two cases. 
Case 1. If A~ X, the xz-plane meets X only at the points P;. Since 

this plane is defined by the equation y = 0, we can compute the degree of 
X as the number of intersections of X with this plane, namely 

r 

d = L Vp,(y). 
i= 1 

Substituting in the above, we have 

2g- 2 = -d 

which is possible only if g = 0 and d = 2. Thus X ~ P 1 as an abstract 
curve (1.3.5), and its embedding is by a divisor D of degree 2. We have 
dimiDI = 2 by Riemann~Roch, so X is a conic in a plane P 2 . For the conic 
to be strange, we must have char k = 2. 

Case 2. If A E X, then by condition (2) the xz-plane meets X transversally 
at A, so we see similarly 

r 

d = I Vp,(y) + 1. 
i= 1 

So 
2g- 2 = -d- 1 

which implies g = 0, d = 1. This is the line. 

Theorem 3.10. Let X be a curve in P 3 . Then there is a point 0 ~X such 
that the projection from 0 determines a birational morphism ({J from X 
to its image in P 2 , and that image has at most nodes for singularities. 

PROOF. If X is contained in a plane already, any 0 not in that plane will do. 
So we assume X is not contained in any plane. Then in particular, X is 
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neither a line nor a conic, so by (3.9), X is not strange. Therefore, by (3.8), 
X has a secant which is not a multisecant, and it has a secant without co
planar tangents. Since the same must be true for nearby secants, we see 
that there is an open subset of X x X consisting of pairs <P,Q) such that 
the secant line through P,Q is not a multisecant and does not have coplanar 
tangents. Hence the subset of X x X consisting of pairs <P,Q) where the 
secant is a multisecant or has coplanar tangents is a proper subset, has 
dimension !( 1, and so the union in P 3 of the corresponding secant lines 
has dimension !( 2. Combining with the fact that the tangent variety to X 
has dimension !( 2 (see (3.5) ), we see that there is an open subset of P 3 

consisting of points 0 which satisfy (2), (3), and ( 4) of (3. 7). 
To complete the proof, by (3.7), we must show that 0 can be chosen to 

lie on only finitely many secants of X. For this we consider the morphism 
(X x X - Ll) x P 1 ~ P 3 (defined at least locally) which sends <P,Q,t) to 
the point t on the secant line through P and Q. If the image has dimension 
< 3, then we can choose 0 lying on no secant. If the image has dimension 
= 3, then since it is a morphism between two varieties of the same dimension, 
we can apply (II, Ex. 3. 7), and find there is an open set of points in P3 over 
which the fibre is finite. These points lie on only finitely many secants, so 
we are done. 

Corollary 3.11. Any curve is birationally equivalent to a plane curve with at 
most nodes as singularities. 

PROOF. Combine (3.6) with (3.10). 

Remark 3.11.1. In view of (3.11), one way to approach the classification 
problem for all curves is to study the family of plane curves of degree d 
with r nodes, for any given d and r. The family of all plane curves of degree 
dis a linear system of dimension td(d + 3), so it is parametrized by a pro
jective space of that dimension. Inside that projective space, the (irreducible) 
curves with r nodes form a locally closed subset ~ ,. If X is such a curve, 
then the genus g of its normalization X is given by · 

g = t(d - 1)(d - 2) - r 

because of (Ex. 1.8). So in order for ~.r to be nonempty, we must have 

0 !( r !( t(d - 1)(d - 2). 

Furthermore, both extremes are possible. We have seen by Bertini's theorem 
(II, 8.20.2) that for any d, there are irreducible nonsingular curves of degree d 
in P2 , so this gives the case r = 0. On the other hand, for any d, we can 
embed P 1 in pd as a curve of degree d (Ex. 3.4), and then project it into P2 

by (3.5) and (3.10), to get a curve X of degree d in P2 having only nodes, 
and with g(X) = 0. This gives r = t(d - l)(d - 2). 

But the general problem of the structure of the ~.r is very difficult. Severi 
[2, Anhang F] states that for every d,r, satisfying 0 !( r !( t{d- l)(d- 2), the 
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algebraic set Vd,r is irreducible and nonempty of dimension !d(d + 3) - r, 
but a complete proof was given only recently by Joe Harris. 

EXERCISES 

3.1. If X is a curve of genus 2, show that a divisor D is very ample = deg D ~ 5. 
This strengthens (3.3.4). 

3.2. Let X be a plane curve of degree 4. 
(a) Show that the effective canonical divisors on X are exactly the divisors X.L, 

where L is a line in P 2 . 

(b) If Dis any effective divisor of degree 2 on X, show that dimiDI = 0. 
(c) Conclude that X is not hyperelliptic (Ex. 1.7). 

3.3. If X is a curve of genus ~ 2 which is a complete intersection (II, Ex. 8.4) in some 
P", show that the canonical divisor K is very ample. Conclude that a curve of 
genus 2 can never be a complete intersection in any P". Cf. (Ex. 5.1). 

3.4. Let X be the d-uple embedding (I, Ex. 2.12) of P 1 in Pd, for any d ~ l. We call 
X the rational normal curve of degree d in pd, 
(a) Show that X is projectively normal, and that its homogeneous ideal can be 

generated by forms of degree 2. 
(b) If X is any curve of degree din P", with d :;:;: n, which is not contained in any 

pn- \ show that in fact d = n, g(X) = 0, and X differs from the rational 
normal curve of degree d only by an automorphism of Pd. Cf. (II. 7.8.5). 

(c) In particular, any curve of degree 2 in any P" is a conic in some P 2 . 

(d) A curve of degree 3 in any P" must be either a plane cubic curve, or the twisted 
cubic curve in P 3. 

3.5. Let X be a curve in P 3, which is not contained in any plane. 
(a) If 0 ¢ X is a point, such that the projection from 0 induces a birational mor

phism rp from X to its image in P 2, show that rp(X) must be singular. [Hint: 
Calculate dim H 0 (X,0x(1)) two ways.] 

(b) If X has degree d and genus g, conclude that g < !(d - 1)(d - 2). (Use 
(Ex. 1.8).) 

(c) Now let [X,] be the flat family of curves induced by the projection (III, 9.8.3) 
whose fibre over t = 1 is X, and whose fibre X 0 over t = 0 is a scheme with 
support rp(X). Show that X 0 always has nilpotent elements. Thus the example 
(III, 9.8.4) is typical. 

3.6. Curves of Degree 4. 
(a) If X is a curve of degree 4 in some P", show that either 

(1) g = 0, in which case X is either the rational normal quartic in P 4 (Ex. 3.4) 
or the rational quartic curve in P 3 (II, 7.8.6), or 

(2) X c::::; P 2, in which case g = 3, or 
(3) X c::::; P 3 and g = 1. 

(b) In the case g = 1, show that X is a complete intersection of two irreducible 
quadric surfaces in P 3 (I, Ex. 5.11). [Hint: Use the exact sequence 0-+ .f x-+ 
@p3 -+ CDx -+ 0 to compute dim H 0(P3,.f x(2) ), and thus conclude that X is 
contained in at least two irreducible quadric surfaces.] 
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3.7. In view of (3.10), one might ask conversely, is every plane curve with nodes a 
projection of a nonsingular curve in P 3 ? Show that the curve xy + x4 + y4 = 0 
(assume char k =1- 2) gives a counterexample. 

3.8. We say a (singular) integral curve in P" is strange if there is a point which lies 
on all the tangent lines at nonsingular points of the curve. 
(a) There are many singular strange curves, e.g., the curve given parametrically by 

x = t, y = tP, z = t 2P over a field of characteristic p > 0. 
(b) Show, however, that if char k = 0, there aren't even any singular strange 

curves besides P 1. 

3.9. Prove the following lemma of Bertini: if X is a curve of degree din P3 , not con
tained in any plane, then for almost all planes H c;:: P3 (meaning a Zariski open 
subset of the dual projective space (P3)*), the intersection X n H consists of 
exactly d distinct points, no three of which are collinear. 

3.10. Generalize the statement that "not every secant is a multisecant" as follows. 
If X is a curve in P", not contained in any pn-l, and if char k = 0, show that for 
almost all choices of n- 1 points P 1 , ... ,Pn-l on X, the linear space L"- 2 

spanned by the P; does not contain any further points of X. 

3.11 (a) If X is a nonsingular variety of dimension r in P", and ifn > 2r + 1, show that 
there is a point 0 ¢' X, such that the projection from 0 induces a closed 
immersion of X into P"- 1. 

(b) If X is the Veronese surface in P5 , which is the 2-uple embedding of P2 (I, 
Ex. 2.13), show that each point of every secant line of X lies on infinitely many 
secant lines. Therefore, the secant variety of X has dimension 4, and so in this 
case there is a projection which gives a closed immersion of X into P4 (II, 
Ex. 7.7). (A theorem ofSeveri [1] states that the Veronese surface is the only 
surface in P5 for which there is a projection giving a closed immersion into 
P4 . Usually one obtains a finite number of double points with transversal 
tangent planes.) 

3.12. For each value of d = 2,3,4,5 and r satisfying 0 ::::;; r ::::;; t(d - 1)(d - 2), show 
that there exists an irreducible plane curve of degree d with r nodes and no other 
singularities. 

4 Elliptic Curves 

The theory of elliptic curves (curves of genus 1) is varied and rich, and 
provides a good example of the profound connections between abstract 
algebraic geometry, complex analysis, and number theory. In this section 
we will discuss briefly a number of topics concerning elliptic curves, to 
give some idea of this theory. First we define thej-invariant, which classifies 
elliptic curves up to isomorphism. Then we discuss the group structure on 
the curve, and show that the elliptic curve is its own Jacobian variety. Next 
we recall without proof the main results of the theory of elliptic functions 
of a complex variable, and deduce various results about elliptic curves 
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over C. Then we define the Hasse invariant of a curve over a field of char
acteristic p, and finally we consider the group of rational points of a curve 
defined over Q. 

For simplicity, we will omit the case of a ground field k of characteristic 2. 
Most of the results of this section remain true, but the proofs require special 
care. See, e.g., Tate [3] or the "formulaire" ofDeligne and Tate in Birch and 
Kuyk [1]. 

The j-Invariant 

Our first topic is to define the j-invariant of an elliptic curve, and to show 
that it classifies elliptic curves up to isomorphism. Since j can be any ele
ment of the ground field k, this will show that the affine line Ai is a variety 
of moduli for elliptic curves over k. 

Let X be an elliptic curve over the algebraically closed field k. Let P 0 EX 
be a point, and consider the linear system [2P 0 [ on X. The divisor 2P 0 

is nonspecial, so by Riemann-Roch, this linear system has dimension 1. It 
has no base points, because otherwise the curve would be rational. There
fore, it defines a morphism f: X -+ P 1 of degree 2, and we can specify that 
f(P0 ) = oo by a change of coordinates in P 1 . 

Now if we assume char k =1= 2, it follows from Hurwitz's theorem that 
f is ramified at exactly four points, with P 0 being one of them. If x = a,b,c 
are the three branch points in P 1 besides oo, then there is a unique auto
morphism of P 1 leaving oo fixed and sending a to 0 and b to 1, namely 
x' = (x - a)/(b - a). So after this automorphism, we may assume that 
f is branched over the points 0,1,A,oo of P 1 , where A E k, A =1= 0,1. This 
defines a quantity},. We define j = j(A) by the formula 

. s(A2-A+1)3 
J = 2 A2(A - 1)2 

This is thej-invariant of the curve X. (The coefficient 28 is thrown in to make 
things work in characteristic 2, despite appearances to the contrary!) Our 
main result then is the following. 

Theorem 4.1. Let k be an algebraically closed field of characteristic =I= 2. 
Then: 

(a) for any elliptic curve X over k, the quantity j defined above depends 
only on X; 

(b) two elliptic curves X and X' over k are isomorphic if and only if 
j(X) = j(X'); 

(c) every element of k occurs as the j-invariant of some elliptic curve 
over k. 

Thus we have a one-to-one correspondence between the set of elliptic 
curves over k, up to isomorphism, and the elements of k, given by X f--+ j(X). 
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We will prove this theorem after some other preliminary results. 

Lemma 4.2. Given any two points P,Q EX (including the case P = Q), there 
is an automorphism a of X such that a 2 = id, a(P) = Q, and for any 
R E X, R + a(R) "' P + Q. 

PROOF. The linear system IP + Ql has dimension 1 and is base-point free, 
hence defines a morphism g:X--+ P 1 of degree 2. It is separable, since 
X t P 1 (2.5), so K(X) is a Galois extension of K(P 1). Let a be the non
trivial automorphism of order 2 of K(X) over K(P1). Then a interchanges 
the two points of each fibre of g. Hence a(P) = Q, and for any R EX, 
R + a(R) is a fibre of g, hence R + a(R) E IP + Ql, i.e., R + a(R) "' 
p + Q. 

Corollary 4.3. The group Aut X of automorphisms of X is transitive. 

Lemma 4.4. If f 1 : X --+ P 1 and f 2 : X --+ P 1 are any two morphisms of degree 
2 from X to Pi, then there are automorphisms a E Aut X and r E Aut P 1 

such that f 2 o a = r o f 1 . 

X 
(J 

X ----------+ 

f1j k2 
pl T pl ------------+ 

PROOF. Let P 1 E X be a ramification point of f 1 and let P 2 E X be a ramifica
tion point of f 2 • Then by (4.3) there is a a E Aut X such that a(P1) = P 2 • 

On the other hand, f 1 is determined by the linear system I2P 1 1 and f 2 is 
determined by I2P 2 1. Since a takes one to the other, f 1 and f 2 o a correspond 
to the same linear system, so they differ only by an automorphism r of 
P 1 (II, 7.8.1). 

Lemma 4.5. Let the symmetric group 1:3 act on k - {0,1} as follows: given 
A E k, A =/= 0,1, permute the numbers O,l,A according to a E 1:3 , then apply 
a linear transformation of x to send the first two back to 0,1, and let a(lc) 
be the image of the third. Then the orbit of A consists of 

1 1 1 1 1 A A - 1 
11.'3:' -A, 1- A' A- 1'_A_ 

PROOF. Since the linear transformation sending a,b to 0,1 is x' = (x - a)/ 
(b - a), we have only to evaluate (c - a)/(b - a), where {a,b,c} = {0,1,A} 
in any order. 
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Proposition 4.6. Let X be an elliptic curve over k, with char k # 2, and let 
P0 EX be a given point. Then there is a closed immersion X --+ P2 such 
that the image is the curve 

y2 = x(x - 1)(x - A) 

for some A E k, and the point P0 goes to the point at infinity (0,1,0) on the 

y-axis. Furthermore, this A is the same as the A defined earlier, up to an 
element of 2: 3 as in (4.5). 

PROOF. We embed X in P2 by the linear system I3P0 I, which gives a closed 
immersion (3.3.3). We choose our coordinates as follows. Think of the 
vector spaces H 0((9(nP0 )) as contained in each other, 

k = H 0((9) s; H 0(@(P0)) s; H 0(@(2P0)) s; ... 

By Riemann-Roch, we have 

dimH0(@(nP0)) = n 

for n > 0. Choose x E H 0 ( (9(2P 0)) so that 1,x form a basis of that space, and 
choose y E H 0 ( (9(3P 0)) so that 1,x, y form a basis for that space. Then the 
seven quantities 

are in H 0 ( (9( 6P 0 ) ), which has dimension 6, so there is a linear relation among 
them. Furthermore, both x3 and y2 occur with coefficient not equal to zero, 
because they are the only functions with a 6-fold pole at P 0 . So replacing x 
and y by suitable scalar multiples, we may assume they have coefficient 1. 
Then we have a relation 

y2 + a1xy + a3 y = x 3 + a2 x 2 + a4 x + a6 

for suitable a; E k. 
Now we will make linear changes of coordinates to get the equation in the 

required form. First we complete the square on the left (here we use char 
k # 2), replacing y by 

1 1 ( y = y + 2 a1x + a 3 ). 

The new equation has y2 equal to a cubic equation in x, so it can be written 

i = (x - a)(x - b)(x - c) 

for suitable a,b,c E k. Now we make a linear change of x to send a,b to 0,1, 
so the equation becomes 

y2 = x(x - 1)(x - A) 
as required. 

Since both x andy have a pole at P0 , that point goes to the unique point 
at infinity on this curve, which is (0,1,0). 
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If we project from P 0 to the x-axis, we get a finite morphism of degree 2, 
sending P0 to oo, and ramified at 0,1,A,oo. So the A is the same as the one 
defined earlier. 

PROOF OF (4.1). 
(a) To show that j depends only on X, suppose we made two choices of 

base point P I>p 2 EX. Let f 1 : X -+ P 1 and f 2 : X -+ P 1 be the corresponding 
morphisms. Then by (4.4) we can find automorphisms a E Aut X andrE 
Aut P 1 such that f 2 o a = r o f 1. Furthermore, we could choose a such that 
a(P 1) = P 2 , hence r( oo) = oo. So r sends the branch points 0,1)1 of f 1 to 
the branch points 0,1)2 of f 2 in some order. Hence by (4.5), A1 and A2 differ 
only by an element of 2:3 , via the action of(4.5). So we have only to observe 
that for any rx E J: 3 ,j(A) = j(rx(A)). Indeed, since 2:3 is generated by any two 
elements of order 2, it is enough to show that 

j(A) = j G) and j(A) = j(l - A), 

which is clear by direct computation. Thus j depends only on X. 
(b) Now suppose X and X' are two elliptic curves giving rise to A and A', 

such thatj(A) = j(A'). First we note thatj is a rational function of A of degree 6, 
i.e.,), -+ j defines a finite morphism P 1 -+ P 1 of degree 6. Furthermore, this is 
a Galois covering, with Galois group I: 3 under the action described above. 
Therefore, j(A) = j(A') if and only if A and A' differ by an element of I: 3 . 

Now according to (4.6), X and X' can be embedded in P2 so as to have the 
equation y2 = x(x - 1)(x - A), or same with A'. Since A and A' differ by an 
element of 2:3 as in (4.5), after a linear change of variable in x, we have A = A'. 
Thus X and X' are both isomorphic to the same curve in P2 . 

(c) Given any j E k, we can solve the polynomial equation 

28(A2 - A + 1)3 - jA 2(A - V = 0 

for A, and find a value of A, necessarily #0,1. Then the equation y2 = 
x(x - 1)(x - A) defines a nonsingular curve of degree 3 in P2 , which is 
therefore elliptic, and has the givenj as its j-invariant. 

Example 4.6.1. The curve y2 = x 3 - x of(l, Ex. 6.2) is nonsingular over any 
field k with char k # 2. It has A = -1, hence j = 26 · 33 = 1728. 

Example 4.6.2. The "Fermat curve" x3 + y3 = z3 is nonsingular over any 
field k with char k # 3. Making a change of variables x = x' + z, and setting 
x' = -1/3, the equation becomes 

1 
27" 

From here one can reduce it to a standard form, as in the proof of(4.6), with 
A = -w or -w2 , where w3 = 1. Therefore,j = 0. 
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Corollary 4.7. Let X be an elliptic curve over k with char k # 2. Let P0 EX, 
and let G = Aut(X,P 0 ) be the group of automorphisms of X leaving P 0 

fixed. Then G is a finite group of order 

2 if j # 0, 1728 
4 if j = 1728 and char k # 3 
6 if j = 0 and char k # 3 

12 if j = 0 ( = 1728) and char k = 3. 

PROOF. Let f: X --+ P 1 be a morphism of degree 2, with f(P 0 ) = oo, branched 
over 0,1,A, oo as above. If a E G, then by (4.4) there is an automorphism r 
ofP1, sending oo to oo, such thatf o a = r of In particular, r sends {0,1,A} 
to {0,1,A} in some order. If r = id, then either a = id or a is the automor
phism interchanging the sheets off Thus in any case we have two elements 
in G. 

If r # id, then r permutes {0,1,A }, so A must be equal to one of the other 
expressions of ( 4.5). This can happen only in the following cases: 

(1) if A = -1 or t or 2, and char k # 3, then A coincides with one other 
element of its orbit under I: 3 , so G has order 4. This is the case j = 1728; 

(2) if A = - w or - w2 , and char k # 3, then ), coincides with two other 
elements of its orbit under I: 3 , so G has order 6. In this case j = 0; 

(3) if char k = 3 and A = -1, then all six elements of the orbit are the same, 
so G has order 12. In this case j = 0 = 1728. 

The Group Structure 

Let X be an elliptic curve, and let P 0 E X be a fixed point. We have seen, as a 
consequence of the Riemann-Roch theorem (1.3.7) that the map P f--+ 

!f(P - P 0 ) induces a bijection between the set of points of X and the group 
Pic0 X. Thus the set of points of X forms a group, with P 0 as the 0 element, 
and with addition characterized by P + Q = R if and only if P + Q ~ 
R + P 0 as divisors on X. This is the group structure on (X,P 0 ). 

If we embed X in P2 by the linear system I3P 0 1, then three points P,Q,R of 
the image are collinear if and only if P + Q + R ~ 3P0 . This in turn is 
equivalent to saying P + Q + R = 0 in the group structure. This shows that 
the group law can be recovered from the geometry of the embedding. It 
also generalizes (II, 6.10.2), where we used the geometry to define the group 
law. 

Now we will show that X is a group variety in the sense of (I, Ex. 3.21). 

Proposition 4.8. Let (X,P0 ) be an elliptic curve with its group structure. Then 
the maps p:X--+ X given by P c---> -P, and 11:X x X--+ X given by 
<P,Q) c---> P + Q are morphisms. 

PROOF. First we apply (4.2) with P = Q = P0 . Thus there is an automor
phism a of X such that for any R, R + a(R) ~ 2P 0 . In other words, 
a(R) = - R in the group structure, so this a is just p. 
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Next we apply (4.2) toP and P0 . So there is an automorphism (J of X 
with R + (J(R) ~ P + P0 , i.e., (J(R) = P - R in the group. Preceding this 
(J with p, we see that R --+ P + R, i.e., translation by P, is a morphism, for 
any P. 

Now take two distinct points P i= Q in X. Embed X in P2 by I3P ol· 
Form the equation of the line L joining P and Q. This depends on the co
ordinates of P and Q. Now intersect L with X. We get a cubic equation in 
the parameter along L, but we already know two of the intersections, so we 
obtain the coordinates of the third point of intersection R as rational func
tions in the coordinates of P and Q. Since R = - P - Q in the group 
structure, this shows that the map (X x X - Ll) --+ X defined by <P,Q) --+ 

- P - Q is a morphism. Composing with p, we see that f.1 is a morphism for 
pairs of distinct points of X. 

To show that f.1 is a morphism also at points of the form <P,P), take any 
Q i= 0. Translate one variable by Q, apply f.1 to <P,P + Q), then translate 
by - Q. Since translation is a morphism, we see that f.1 is also a morphism at 
these points. 

Example 4.8.1. By iterating f.1, we see that for any integer n, multiplication 
by n gives a morphism nx:X --+X. We will see later that for any n i= 0, nx 
is a finite morphism of degree n2 ; its kernel is a group isomorphic to Z/n x 
Z/n if (n,p) = 1, where p = char k, and is isomorphic to Z/p or 0 if n = p, 
depending on the Hasse invariant of X. See (4.10), (4.17), (Ex. 4.6), (Ex. 4.7), 
(Ex. 4.15). 

Example 4.8.2. If P is a point of order 2 on X, then 2P ~ 2P0 , so P is a 
ramification point of the morphism f: X--+ P 1 defined by I2P 0 1, and f is 
separable since X ~ P 1 (2.5). So there are only finitely many such points, and 
if char k i= 2, there are exactly 4. Thus 2x is always a finite morphism, and if 
char k i= 2, we see that it has degree 4, and its kernel is Z/2 x Z/2. 

Example 4.8.3. If P is a point of order 3 on X, then 3P ~ 3P 0 , so P is an 
inflection point of the embedding of X in P2 by I3P ol· If char k i= 2,3, we 
see by (Ex. 2.3) that there are exactly 9 inflection points of X. Thus 3x has 
degree 9, and its kernel is isomorphic to Z/3 x Z/3. By the way, this has the 
amusing geometric consequence that if P,Q are inflection points of X, then 
the line PQ meets X in a third inflection point R of X. Indeed, R = - P - Q, 
so it is also a point of order 3. 

Lemma 4.9. If X,P0 and X',P~ are two elliptic curves, and if f:X--+ X' is 
a morphism sending P 0 to P~, then f is a homomorphism of the group 
structures. 

PROOF. If P + Q = R on X, then P + Q ~ R + P 0 as divisors. It follows 
that f(P) + f(Q) ~ f(R) + f(P 0 ) by (Ex. 2.6), and since f(P 0 ) = P~, we have 
f(P) + f(Q) = f(R) in the group law on X'. 
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Definition. If f,g are two morphisms of an elliptic curve X,P 0 to itself, sending 
P 0 toP 0 , we define a morphism f + g by composing f x g: X --> X x X 
with f.l· In other words, (f + g)(P) = f(P) + g(P) for all P. We define 
the morphism f · g to befog. Then the set of all morphisms of X to 
itself sending P0 to P0 forms a ring R = End(X,P0 ), which we call the 
ring of endomorphisms of X,P 0 . Its zero element 0 is the morphism sending 
X to P0 . The unit element 1 is the identity map. The inverse morphism p 
is -1. The distributive law f · (g + h) = f · g + f · h is a consequence 
of the fact ( 4.9) that f is a homomorphism. 

Proposition 4.10. Assume char k # 2. The map n ~---> nx defines an injective 
ring homomorphism Z --> End(X,P 0 ). In particular, for all n # 0, nx is 
a finite morphism. 

PROOF. We will show by induction on n that nx # 0 for n ~ 1. It follows 
that nx is a finite morphism (II, 6.8). For n = 1 it is clear; for n = 2 we have 
seen it above (4.8.2). So let n > 2. Ifn is odd, say n = 2r + 1, and ifnx = 0, 
then (2r)x = p. But p has degree 1, and (2r)x = 2x · rx is a finite morphism 
(use induction hypothesis for r) of degree ~ 4, since 2x has degree 4 (4.8.2). 
So this is impossible. 

If n is even, say n = 2r, then nx = 2x · rx is finite by induction. 

Remark 4.10.1. The ring of endomorphisms R is an important invariant of 
the elliptic curve, but it is not easy to calculate. Let us just note for the 
moment that its group of units R* is the group G = Aut(X,P0 ) studied 
above (4.7). In particular, if j = 0 or 1728, it is bigger than { ± 1 }, so R is 
definitely bigger than Z. 

The Jacobian Variety 

Now we will give another, perhaps more natural, proof that the group law 
on the elliptic curve makes it a group variety. Our earlier proof used geo
metric properties of the embedding in P2 . Now instead, we will show that 
the group Pi co X has a structure of algebraic variety which is so natural that 
it is automatically a group variety. This approach makes sense for a curve 
of any genus, and leads to the Jacobian variety of a curve. The idea is to 
find a universal parameter space for divisor classes of degree 0. 

Let X be a curve over k. For any scheme T over k, we define Pic0 (X x T) 
to be the subgroup of Pic(X x T) consisting of invertible sheaves whose 
restriction to each fibre xt for t E T has degree 0. Let p:X X T--> T be 
the second projection. For any invertible sheaf JV on T, p* JV E Pico(X x T), 
because it is in fact trivial on each fibre. We define Pico(X/T) = 

Pico(X x T)/p* Pic T, and we regard its elements as "families of invertible 
sheaves of degree 0 on X, parametrized by T." Justification for this is the 
fact that if T is integral and of finite type over k, and if 2 ,A E Pic( X x T), 
then 2r ~ Ar on Xr for all t E T if and only if 2 @ A- 1 E p* Pic T (III, 
Ex. 12.4). 
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Definition. Let X be a curve (of any genus) over k. The Jacobian variety of X 
is a scheme J of finite type over k, together with an element 2? E Pico(XIJ), 
having the following universal property: for any scheme T of finite type 
over k, and for any .A E Pic0 (X IT), there is a unique morphism f: T --+ J 
such that f* 2? ~ .A in Pic0 (XIT). (Note that f:X x T--+ X x J in
duces a homomorphism f*: Pic0 (X I J) --+ Pico(X IT).) 

Remark 4.10.2. In the language of representable functors, this definition says 
that J represents the functor T--+ Pic0 (XIT). 

Remark 4.10.3. Since J is defined by a universal property, it is unique if it 
exists. We will prove below that if X is an elliptic curve, then J exists, and 
in fact we can take J = X. For curves of genus ~2 the existence is much 
more difficult. See, for example, Chow [3] or Mumford [2] or Grothen
dieck [5]. 

Remark 4.10.4. Assuming J exists, its closed points are in one-to-one cor
respondence with elements of the group Pico X. Indeed, to give a closed 
point of J is the same as giving a morphism Spec k --+ J, which by the uni
versal property is the same thing as an element of Pic0 (X lk) = Pica X. 

Definition. A scheme X with a morphism to another scheme S is a group 
scheme over S if there is a section e: S --+ X (the identity) and a morphism 
p:X --+X over S (the inverse) and a morphism J.l:X x X--+ X over S 
(the group operation) such that 

(1) the composition J.1 o (id x p):X--+ X is equal to the projection X --+ S 
followed by e, and 

(2) the two morphisms J.1 o (J.l x id) and J.1 o (id x J.l) from X x X x X --+ X 
are the same. 

Remark 4.10.5. This notion of group scheme generalizes the earlier notion 
of group variety (I, Ex. 3.21 ). Indeed, if S = Spec k and X is a variety over k, 
taking e to be the 0 point, the properties (1), (2) can be checked on the closed 
points of X. Then (1) says that p gives the inverse of each point, and (2) says 
that the group law is associative. 

Remark 4.10.6. The Jacobian variety J of a curve X is automatically a group 
scheme over k. Indeed, using the universal property of J, define e: Speck --+ J 
by taking the element 0 E Pico(X lk). Define p: J --+ J by taking .9?- 1 E 

Pico(X I J). Define f.1: J x J --+ J by taking pf 2? ® Pi 2? E Pic0 (X I J x J). 
The properties (1) and (2) are verified immediately by the universal property 
ofJ. 

Remark 4.10.7. We can determine the Zariski tangent space to J at 0 as 
follows. To give an element of the Zariski tangent space is equivalent to 
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giving a morphism ofT = Speck[ s ]/s2 to J sending Spec k to 0 (II, Ex. 2.8). 
By the definition of J, this is equivalent to giving .,It E Pic0 (X/T) whose 
restriction to Pico(X/k) is 0. But according to (Ill, Ex. 4.6) there is an exact 
sequence 0--+ H 1(X,(!)x)--+ Pic X[s]--+ Pic X--+ 0. So we see that the 
Zariski tangent space to J at 0 is just H 1(X,(!)x). 

Remark 4.10.8. J is proper over k. We apply the valuative criterion of 
properness (II, 4.7). It is enough to show (II, Ex. 4.11) that if R is any discrete 
valuation ring containing k, with quotient field K, then a morphism of SpecK 
to J extends uniquely to a morphism of Spec R to J. In other words, we must 
show that an invertible sheaf A on X x Spec K extends uniquely to an 
invertible sheaf on X x Spec R. Since X x Spec R is a regular scheme, this 
follows from (II, 6.5) (note that the closed fibre of X x Spec R over Spec R, 
as a divisor on X x Spec R, is linearly equivalent to 0). 

Remark 4.10.9. If we fix a base point P 0 EX, then for any n ~ 1 there is a 
morphism cpn:Xn--+ J defined by "(P1 , ... ,Pn)--+ !l'(P1 + ... + Pn- nP0 )" 

(which means cook up the appropriate sheaf on X x xn to define cpn). If g 
is the genus of X, then cpn will be surjective for n ~ g, because by Riemann
Roch, every divisor class of degree ~ g contains an effective divisor. The 
fibre of cpn over a point of J consists of all n-tuples (PI> ... ,Pn) such that 
the divisors p 1 + . . . + p n form a complete linear system. 

Ifn = g,thenformostchoicesofPI>···,P9,wehavel(P1 + ... + P9 ) = 1. 
Indeed, by Riemann-Roch, 

l(P 1 + ... + P9 ) = g + 1 - g + l(K - P 1 - ... - P9 ). 

But l(K) = g. Taking P 1 not a base point of K, l(K - P d = g - 1. At 
each step, taking P; not a base point of K- P1 - ••. - P;_ 1, we get 
l(K- P 1 - ••• - P9 ) = 0. Therefore, most fibres of cp9 are finite sets of 
points. We conclude that lis irreducible and dimJ =g. On the other hand, 
by (4.10.7), the Zariski tangent space to J at 0 is H 1(X,mx), which has dimen
sion g, so J is nonsingular at 0. Since it is a group scheme, it is a homogeneous 
space, hence nonsingular everywhere. Hence J is a nonsingular variety. 

Theorem 4.11. Let X be an elliptic curve, and fix a point P 0 EX. Take J = X, 
and take 5l' on X x J to be !l'(L1) ® pf !l'(- P 0 ), where L1 <;:::: X x X is the 
diagonal. Then J,!l' is a Jacobian variety for X. Furthermore, the resulting 
structure of group variety on J (4.10.6) induces the same group structure on 
X,P0 as defined earlier. 

PROOF. The last statement is obvious from the definitions. So we have only 
to show that if T is any scheme of finite type over k, and if A E Pic0 (X /T), 
then there is a unique morphism f: T--+ J such that f* 5l' ~ A. 

Let p: X x T --+ T be the projection, and let q: X x T --+ X be the other 
projection. Define A' = .,It ® q* !l'(P 0 ). Then A' has degree 1 along the 
fibres. Hence, for any closed point t E T, we can apply Riemann-Roch to 
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A; on X 1 = X, and we find 

dim H 0(X,.A;) = 1 

dim H 1(X,.A;) = 0. 

Since p is a projective morphism, and .A' is flat over T, we can apply the 
theorem of cohomology and base change (III, 12.11). Looking first at 
R 1p*(.A'), since the cohomology along the fibres is 0, the map qJ 1(t) of 
(III, 12.11) is automatically surjective, hence an isomorphism, so we con
clude that R 1 p*(.A') is identically 0. In particular, it is locally free, so we 
deduce from part (b) of the theorem that qJ0(t) is also surjective. Therefore, 
it is an isomorphism, and since <P - 1(t) is always surjective, we see that p*(.A') 
is locally free of rank 1. 

Now replacing .A by .A ® p*p*(Ar 1 in Pic0 (X/T), we may then assume 
that p*(.A') :::::::: (!)T· The section 1 E r(T,(!)r) gives a sections E r(X x T,.A'), 
which defines an effective Cartier divisor Z ~ X x T. By construction, Z 
intersects each fibre of p in just one point, and in fact one sees easily that the 
restricted morphism p: Z --+ T is an isomorphism. Thus we get a section 
s: T--+ Z ~ X x T. Composing with q gives the required morphism 

f:T--+X. 
Indeed, since Z is the graph off, we see that Z = f* L1, where L1 ~ X x X 

is the diagonal. Hence the corresponding invertible sheaves correspond: 
.A':::::::: f*.P(L1). Now twisting by -P0 shows that .A:::::::: f*.P, as required. 
The uniqueness off is clear for the same reasons. 

Elliptic Functions 

It is hard to discuss elliptic curves without bringing in the theory of elliptic 
functions of a complex variable. This classical topic from complex analysis 
gives an insight into the theory of elliptic curves over C which cannot be 
matched by purely algebraic techniques. So we will recall some of the 
definitions and results of that theory without proof (signaling those state
ments with a Bin their number), and give some applications to elliptic curves. 
We refer to the book Hurwitz-Courant [ 1] for proofs. 

Fix a complex number r, r ¢ R. Let A be the lattice in the complex plane 
C consisting of all n + mr, with n,m E Z (Fig. 15). 

Figure 15. A lattice in C, with one period parallelogram. 
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Definition. An elliptic function (with respect to the lattice A) is a meromorphic 
function f(z) of the complex variable z such that f(z + w) = f(z) for all 
w E A. (Sometimes these are called doubly periodic functions, since they 
are periodic with respect to the periods 1;r.) 

Because of the periodicity, an elliptic function is determined if one knows 
its values on a single period parallelogram, such· as the one bounded by 
0,1,r,r + 1 (Fig. 15). 

An example of an elliptic function is the Weierstrass t.J-function defined by 

1 ( 1 1) t.J(z) = 2 + I ( )2 - -2 ' 
Z WEA' Z - W W 

where A' = A - {0}. One shows (Hurwitz-Courant [1, II, 1, §6]) that this 
series converges at all z ¢A, thus giving a meromorphic function having a 
double pole at the points of A, and which is elliptic. Its derivative 

is another elliptic function. 

-2 
t.J'(z) = I ( )3 

WEA z- w 

If one adds, subtracts, multiplies, or divides two elliptic functions with 
periods in A, one gets another such. Hence the elliptic functions for a given 
A form a field)1 

Theorem 4.12B. The field of elliptic functions for given A is generated over 
C by the Weierstrass t.J-function and its derivative t.J'. They satisfy the 
algebraic relation 

where 
1 

g2 = 60 I 4 
WEA' w 

and 

PROOF. Hurwitz-Courant [1, II, 1, §8, 9]. 

1 
g3 = 14o I 6 . 

WEA' W 

Thus if we define a mapping cp: C -+ P~ by sending z -+ (t.J(z),t.J'(z)) in 
affine coordinates, we obtain a holomorphic mapping whose image lies 
inside the curve X with equation 

y2 = 4x3 - g2x - g3. 

In fact, cp induces a bijective mapping of C/A to X (Hurwitz-Courant [1, 
II, 5, §1 ]), and X is nonsingular, hence an elliptic curve. Under this mapping 
the field of elliptic functions is identified with the function field of the curve 
X. Thus for any elliptic function, we can speak of its divisor In;(aJ, with 
a; E C/A. 
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Theorem 4.13B. Given distinct points a 1, ... ,aq E C/ A, and given integers 
n 1 , ••• ,nq, a necessary and sufficient condition that there exist an elliptic 
function with divisor In;(a;) is that In; = 0 and In;a; = 0 in the group 
C/A. 

PROOF. Hurwitz-Courant [1, II, 1, §5, 14]. 

In particular, this says that a 1 + a2 = b (mod A) if and only if there is 
an elliptic function with zeros at a 1 and a2 , and poles at band 0. Since this 
function is a rational function on the curve X, this says that qJ(a 1) + qJ(a2 ) "' 

<P(b) + <P(O) as divisors on X. If we let P 0 = qJ(O), which is the point at 
infinity on the y-axis, and give X the group structure with origin P0 , this 
says that <P(ad + qJ(a 2 ) = <P(b) in the group structure on X. In other words, 
<P gives a group isomorphism between C/ A under addition, and X with its 
group law. 

Theorem 4.14B. Given c2 ,c3 E C, with L1 =F 0, where L1 = d - 27c~, there exists 
a r E C, r ¢. R, and an a E C, a =F 0, such that the lattice A= (1,r) gives 
g2 = a4 c2 and g3 = a 6c3 by the formulas above. 

PROOF. Hurwitz-Courant [1, II, 4, §4]. 

This shows that every elliptic curve over C arises in this way. Indeed, if X 
is any elliptic curve, we can embed X in P2 to have an equation of the form 
y2 = x(x - 1)(x - A), with A =F 0,1 (4.6). By a linear change of variable in x, 
one can bring this into the form y2 = 4x3 - c 2 x - c3 , with c2 = 
(.,y'4/3)().2 - ). + l) and c3 = (1/27)(). + 1)(2).2 - SA + 2). Then L1 = 

). 2 (). - 1)2 , which is =FO since A =F 0,1. Now the curve determined by the 
lattice A is equivalent to this one by a change of variables y' = a3 y, x' = a2x. 

Next we define J(r) = g~/LI. Then the j-invariant of X which we defined 
earlier is just j = 1728 · J(r). Thus J(r) classifies the curve X up to iso
morphism. 

Theorem 4.15B. Let r,r' be two complex numbers. Then J(r) = J(r') if and 
only if there are integers a,b,c,d E Z with ad - be = ± 1 and 

r' = ar + b_ 
cr + d 

Furthermore, given any r', there is a unique r with J(r) = J(r') such that r 
lies in the region G (Fig. 16) defined by 

and 
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-1 0 1 
2 

Figure 16. The region G. 

PROOF. Hurwitz-Courant [1, II, 4, §3]. 

Now we will start drawing consequences from this theory. 

Theorem 4.16. Let X be an elliptic curve over C. Then as an abstract group, 
X is isomorphic to R/Z x R/Z. In particular, for any n, the subgroup of 
points of order n is isomorphic to Z/n x Zjn. 

PROOF. We have seen that X is isomorphic as a group to C/A, which in turn 
is isomorphic to R/Z x R/Z. The points of order n are represented by 
(a/n) + (b/n)r, with a,b = 0,1, ... ,n - 1. The points whose coordinates are 
not rational comhinations of 1,r are of infinite order. 

Corollary 4.17. The morphism multiplication by n, nx:X -+X is a .finite mor
phism of degree n2 . 

PROOF. Since it is separable, and a group homomorphism, its degree is the 
order of the kernel, which is n2• 

Next we will investigate the ring of endomorphisms R = End(X,P0 ) of 
the elliptic curve X determined by the elliptic functions with periods 1,r. 

Proposition 4.18. There. is a one-to-one correspondence between endomor
phisms f E R and complex numbers a E C such that a · A ~ A. This cor
respondence gives an injective ring homomorphism of R to C. 

PROOF. Given fER, we have seen (4.9) that f is a group homomorphism of 
X to X. Hence under the identification of X with C/ A it gives a group 
homomorphism J of C to C, such that J(A) ~ A. On the other hand, since 
f is a morphism, the induced map J: C -+ Cis holomorphic. Now expanding 
J as a power series in a neighborhood of the origin, and expressing the fact 
that J(z + w) = J(z) + J(w) for any z,w there, we see that J must be just 
multiplication by some complex number a. 
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Conversely, given (I( E C, such that (I( • A ~ A, clearly multiplication by (I( 

induces a group homomorphism f of Cj A to itself, hence of X to itself. But 
f is also holomorphic, so in fact it is a morphism of X to itself by GAGA 
(=Serre [ 4]): see (App. B, Ex. 6.6). 

It is clear under this correspondence that the ring operations of R corre
spond to addition and multiplication of the corresponding complex num
bers (1(. 

Remark 4.18.1. Note in particular that the morphism nx E R, which is multi
plication by n in the group structure (4.8.1) corresponds to multiplication by 
n in C. This gives another proof of ( 4.1 0) for elliptic curves over C. 

Definition. If X is an elliptic curve over C, we say it has complex multiplication 
if the ring of endomorphisms R is bigger than Z. This terminology is 
explained by (4.18). 

Theorem 4.19. If X has complex multiplication, then r E Q(~) for some 
d E Z, d > 0, and in that case, R is a subring ( i= Z) of the ring of integers of 
the .field Q(~). Conversely, if r = r + s~, with r,s E Q, then X has 
complex multiplication, and in fact 

R = {a + brla,b E Z, and 2br,b(r2 + ds2 ) E Z}. 

PROOF. Given r, we can determineR as the set of all (I( E C such that (I( • A ~ A. 
A necessary and sufficient condition for (I( • A £ A is that there exist integers 
a,b,c,e such that 

(I( = a + br 

(I(T = c + er. 

If (I( E R, then (I( E Z, so we see that R n R = Z. On the other hand, if X has 
complex multiplication, then there is an (I( ¢= R, and in this case, b i= 0. 

Eliminating (I( from these equations, we see that 

br 2 + (a - e)r - c = 0, 

which shows that r is in a quadratic extension ofQ. Since r ¢= R, it must be an 
imaginary quadratic extension, so r E Q(~) for some dE Z, d > 0. 

Eliminating r from the same equations, we find that 

(1( 2 - (a - e)(l( + (ae - be) = 0, 

which shows that (I( is integral over Z. Therefore R must be a sub ring of the 
ring of integers of the field Q( ~). 

Conversely, suppose r = r + s~, with r,s E Q. Then we can deter
mine R as the set of all (I( = a + br, with a,b E Z, such that (I(T E A. Since 

330 



4 Elliptic Curves 

ocr = ar + br2 , we must have br2 EA. Now 

r 2 = r2 - ds 2 + 2rsH, 

which can be written 
r 2 = - (r2 + ds2 ) + 2rr. 

So in order to have br2 E A we must have 2br E Z and b(r2 + ds 2 ) E Z. These 
conditions are necessary and sufficient so we get the required expression for 
R. In particular, R > Z, so X has complex multiplication. 

Corollary 4.20. There are only countably many values of j E C for which the 
corresponding elliptic curve X has complex multiplication. 

PROOF. Indeed, there are only countably many elements of all quadratic 
extensions of Q. 

Example 4.20.1. If r = i, then R is the ring of Gaussian integers Z[i]. In 
this case the group of units R* of R consists of ± 1, ± i, so R* ~ Z/4. This 
means that the group of automorphisms of X has order 4, so by ( 4. 7) we must 
have j = 1728. So we see in a roundabout way that r = i gives J(r) = 1. 
Another way to see this is as follows. Since A = Z EE> Zi, the lattice A is 
stable under multiplication by i. Therefore 

g3 = 140 L w- 6 = 140 ,L i- 6w- 6 = -g 3 . 

roe A' roe A' 

So g 3 = 0, which implies that J(r) = 1. The equation of X can be written 
y2 = x 3 -Ax. 

Example 4.20.2. If r = w, where w3 = 1, then R = Z[ w ], which is the ring 
of integers in the field Q(j=-3). In this case R* = { ±1, ±w, ±w2 } which is 
isomorphic to Z/6. So again from ( 4. 7) we conclude that j = 0. One can also 
see this directly as in (4.20.1) by showing that g 2 = 0. The equation of X can 
be written y2 = x3 - B. 

Example 4.20.3. If r = 2i, then R = Z[2i]. In this case R is a proper sub ring 
of the ring of integers in the quadratic field Q(i), with conductor 2 (Ex. 4.21). 

Remark 4.20.4. Even though we have a good criterion for complex multi
plication in terms of r, the connection between r andj is not easy to compute. 
Thus if we are given a curve by its equation in P2 , or by its j-invariant, it is 
not easy to tell whether it has complex multiplication or not. See (Ex. 4.5) 
and (Ex. 4.12). There is an extensive classical literature relating complex 
multiplication to class field theory-see, e.g. Deuring [2] or Serre's article in 
Cassels and Frohlich [1, Ch. XIII]. Here are some of the principal results: 
let X be an elliptic curve with complex multiplication, let R = End(X,P 0 ), 
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let K = Q(FJ) be the quotient field of R (4.19), and letj be thej-invariant. 
Then (1) j is an algebraic integer; (2) the field K(j) is an abelian extension of 
K of degree hR = # Pic R; (3) j E Z <o> hR = 1, and there are exactly 13 such 
values ofj. 

The Hasse Invariant 

If X is an elliptic curve over a field k of characteristic p > 0, we define an 
important invariant of X as follows. Let F:X-+ X be the Frobenius mor
phism (2.4.1). Then F induces a map 

F*:H 1(X,(!)x)-+ H 1(X,(!)x) 

on cohomology. This map is not linear, but it is p-linear, namely F*(A.a) = 
A_PF*(a) for all A. E k, a E H 1(X,(!)x). Since X is elliptic, H 1(X,(!)x) is a one
dimensional vector space. Thus, since k is perfect, the map F* is either 0 or 
bijective. 

Definition. IfF* = 0, we say that X has Hasse invariant 0 or that X is super
singular; otherwise we say that X has Hasse invariant 1. 

For other interpretations of the Hasse invariant, see (Ex. 4.15), (Ex. 4.16). 

Proposition 4.21. Let the elliptic curve X be embedded as a cubic curve in P 2 

with homogeneous equation f(x,y,z) = 0. Then the Hasse invariant of X 
is 0 if and only if the coefficient of (xyz)p- 1 in fP- 1 is 0. 

PROOF. The ideal sheaf of X is isomorphic to @p(- 3), so we have an exact 
sequence 

0 -+ @p(- 3) ~ {!)p -+ {!)X -+ 0. 

From this, by taking cohomology, we obtain an isomorphism 

H 1(X,(!)x)-+ H 2 (@p( -3)), 

since Hi(@p) = 0 fori= 1,2. Recall also (III, 5.1) that H 2(@p(-3)) is a 
one-dimensional vector space with a natural basis (xyz)- 1. 

Now we can compute the action of Frobenius using this embedding. If 
F 1 is the Frobenius morphism on P2 , then Ff takes (!)x to (!)XP• where XP is 
the subscheme of P2 defined by fP = 0. On the other hand, X is a closed 
subscheme of XP, so we have a commutative diagram 

0----+ (!Jp( -3p) @p {!)XP --0 

kp-1 j j 
o---. @p(- 3) (!Jp {!)X ---.o 
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Hence we have a commutative diagram 

H1(X,(!)x) ~ Hz(Pz,(!)p( -3)) 

lFj lFj 
F* H 1(XP,(!)XP) ~ H 2(P2,(!)p( -3p)) 

j kp-1 
H1(X,(!)x) ~ Hz(Pz,(!)p( -3)) 

where F is the Frobenius morphism of X. Now Fj((xyz)- 1) = (xyz)-P, 
and its image in H 2((!)p( -3)) will be fP- 1 · (xyz)-P. On the other hand, 
H 2 ( (!)p(- 3)) has basis (xyz)- 1, and any monomial having a nonnegative 
exponent on x, y, or z is 0. Thus the image is just (xyz)- 1 times the coefficient 
of(xyz)p- 1 infp- 1, and so the Hasse invariant of X is determined by whether 
or not this coefficient is zero. 

Corollary 4.22. Assume p =1= 2, and let X be given by the equation y2 = 
x(x - 1)(x - A.), with A =I= 0,1. Then the Hasse invariant of X is 0 if and 
only if hp(A.) = 0, where 

1 
k = 2 (p - 1). 

PROOF. Weusethecriterionof(4.21). In thiscasef = y2z- x(x- z)(x- A.z). 
To get (xyz)p- 1 infP- 1, we must have (y2z)k and (x(x - z)(x - A.z) t Then, 
inside ((x - z)(x - A.z) )\ we need the coefficient of xkzk. So we take the 
coefficient of xizk-i in (x - z)k, and the coefficient of xk-izi in (x - A.z)k. 
Summing up, the coefficient of(xyz)p- 1 infP- 1 is 

Since the outer factor is = 1 (mod p), we get hp(A.) as defined above. 

Corollary 4.23. For given p, there are only finitely many elliptic curves (up to 
isomorphism) over k having Hasse invariant 0. In fact, there are at most 
[p/12] + 2 of them. 

PROOF. The polynomial hP(A.) has degree k = !(P - 1) in A., so it has at most k 
distinct roots. In particular, there are only finitely many corresponding 
values of j. Since the correspondence A. ~ j is 6 to 1 with two exceptions, 
we can have at most k/6 + 2 values ofj, hence at most [p/12] + 2. 
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Nate. In fact, lgusa [2] has shown that the roots of hP(A) are always distinct. 
Using this, one can easily count the exact number ofj with Hasse invariant 0: 
j = 0 occurs <o> p = 2 (mod 3) (Ex. 4.14);j = 1728 occurs <o> p = 3 (mod 4) 
(4.23.5); the number ofj i= 0,1728 is exactly (p/12]. There are also tables of 
these j for small values of p-see Deuring [1] or Birch and Kuyk [1, Table 6]. 

Example 4.23.1. Let p = 3. Then hp(A) = A + 1. The only solution is 
I. = -1, which corresponds to j = 0 = 1728. 

Example 4.23.2. If p = 5, hp(A) = A 2 + 4A + 1 = A 2 - A + 1 (mod 5). This 
has roots - w,- w2 in a quadratic extension ofF P' with w3 = 1. So j = 0. 

Example 4.23.3. If p = 7, then 

hp(A) = },3 + 9A2 + 9A + 1. 

This has roots - 1,2,4, which correspond to j = 1728. 

Remark 4.23.4. A very interesting problem arises if we "fix the curve and 
vary p." To make sense of this, let X ~ Pi be a cubic curve defined by an 
equation f(x,y,z) = 0 with integer coefficients, and assume that X is non
singular as a curve over C. Then for almost all primes p, the curve X<Pl ~ 
N obtained by reducing the coefficients off (mod p) will be nonsingular 

p -

over k<Pl = F p· So it makes sense to consider the set 

~ = {p primeJX<Pl is nonsingular over k<Pl' and X<Pl has Hasse invariant 0}. 

What can we say about this set? The facts (which we will not prove) are 
that if X, as a curve over C, has complex multiplication, then ~ has density 
!. Here we define the density of a set of primes ~ to be 

!~~ # {p E ~IP ~ xv# {p primeJp ~ x}. 

In fact, assuming X<Pl is nonsingular, then X<Pl has Hasse invariant 0 if and 
only if either pis ramified or p remains prime in the imaginary quadratic field 
containing the ring of complex multiplication of X (Deuring [ 1] ). If X does 
not have complex multiplication, then ~ has density 0, but Elkies has shown 
that ~ is infinite (N. Elkies, The existence of infinitely many supersingular 
primes for every elliptic curve over Q, Invent. Math. 89 (1987) 561-567). There 
is also ample numerical evidence for the conjecture of Lang and Trotter [1], 
that more precisely 

#{pE~Jp ~ x},.... c·JXjlogx 

as x -+ oo, for some constant c > 0. 

Example 4.23.5. Let X be the curve y2 = x3 - x. Then j = 1728, and as 
we have seen (4.20.1), X has complex multiplication by i. For any p i= 2, 
X<Pl is nonsingular, and we compute its Hasse invariant by the criterion of 
(4.21). With k = !(P - 1), we need the coefficient of xk in (x2 - 1t If k is 
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odd, it is 0. If k is even, say k = 2m, it is ( -1r(!) which is nonzero. We 
conclude that 

{if p = 1 (mod 4), then Hasse = 1 
if p = 3 (mod 4), then Hasse = 0. 

Thus ~ = {p primelp = 3 (mod 4)}. According to Dirichlet's theorem on 
primes in arithmetic progressions (see, e.g., Serre [14, Ch VI, §4], this is a set 
of primes of density!. In particular, there are infinitely many such primes. 
Note that p = 3 (mod 4) if and only ifp is prime in the ring of Gaussian integers 
Z[i]. 

Example 4.23.6. Let X be the curve y2 = x(x - 1)(x + 2), so A = -2, and 
j = 26 · r 2 · 73 . Then X<Pl is nonsingular for p # 2,3, but one checks by 
the criterion of ( 4.22), using a calculator, that the only value of p ::;:; 73 giving 
Hasse = 0 is p = 23. So we can guess that~ has density 0. Indeed,j is not an 
integer, so by (4.20.4), X does not have complex multiplication. See Lang and 
Trotter [1] for more extensive computations. 

Rational Points on an Elliptic Curve 

Let X be an elliptic curve over an algebraically closed field k, let P 0 be a fixed 
point, and let X be embedded in Pf by the linear system I3P ol· Suppose that X 
can be defined by an equation f(x,y,z) = 0 with coefficients in a smaller 
field k0 c:; k, and that the point P 0 has coordinates in k0 . In this case we say 
(X,P 0 ) is defined over k0 . If this happens, then it is clear from the geometric 
nature of the group law on X, that the set X(k0 ) of points of X with co
ordinates in k0 forms a subgroup of the group of all points of X. It is an 
interesting arithmetic problem to determine the nature ofthis subgroup. 

In particular, if k = C and k0 = Q, then because x, y,z are homogeneous 
coordinates in P 2 , we may assume that the equation f(x,y,z) = 0 has integer 
coefficients, and we are looking for integer solutions x,y,z. So we have a 
cubic Diophantine equation in three variables. 

A theorem of Mordell states that the group X(Q) is a finitely generated 
abelian group. We will not prove this, but just give some examples. See 
Cassels [1] and Tate [3] for two excellent surveys of the subject. 

Example 4.23.7. The Fermat curve x3 + l = z3 is defined over Q. Because 
Fermat's theorem is true for exponent 3, the only points of X(Q) are (1, -1,0), 
(1,0,1), and (0,1,1). These are three inflection points of X. Taking any one as 
base point, the group X(Q) is isomorphic to Z/3. 

Example 4.23.8. The curve y2 + y = x3 - x is defined over Q. Take 
P 0 = (0,1,0) to be the 0 element in the group law, as usual. Then (according 
to Tate [3]), the group X(Q) is infinite cyclic, generated by the point P with 
affine coordinates (0,0). Figure 17 shows this curve, with nP labeled as n, 
for various integers n. 
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X 

Figure 17. Rational points on the curve y2 + y = x3 - x. 

EXERCISES 

4.1. Let X be an elliptic curve over k, with char k of. 2, let P EX be a point, and let 
R be the graded ring R = ffin"o H 0(X,C9x(nP)). Show that for suitable choice 
of t,x,y, 

R ~ k[t,x,y ]/(y2 - x(x - t2 )(x - At2 ) ), 

as a graded ring, where k[t,x,y J is graded by setting deg t = 1, deg x = 2, 
deg y = 3. 

4.2. If D is any divisor of degree ;::. 3 on the elliptic curve X, and if we embed X in 
P" by the complete linear system JDJ, show that the image of X in P" is projec
tively normal. 

Note. It is true more generally that if D is a divisor of degree ;::. 2g + 1 on a 
curve of genus g, then the embedding of X by JDJ is projectively normal (Mumford 
[ 4, p. 55]). 

4.3. Let the elliptic curve X be embedded in P2 so as to have the equation y2 = 

x(x - 1)(x - A). Show that any automorphism of X leaving P 0 = (0,1,0) fixed 
is induced by an automorphism of P2 coming from the automorphism of the 
affine (x,y)-plane given by 

{
x' =ax+ b 

y' = cy. 

In each of the four cases of (4.7), describe these automorphisms of P2 explicitly, 
and hence determine the structure of the group G = Aut(X,P 0 ). 

4.4. Let X be an elliptic curve in P 2 given by an equation of the form 
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l + a1xy + a3 y = x 3 + a2x 2 + a4 x + a6 • 

Show that the j-invariant is a rational function of the a;, with coefficients in Q. 
In particular, if the a; are all in some field k0 s; k, then j E k0 also. Furthermore, 
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for every a E k0 , there exists an elliptic curve defined over k0 with }-invariant 
equal to a. 

4.5. Let X ,P 0 be an elliptic curve having an endomorphism f: X --> X of degree 2. 
(a) If we represent X as a 2-1 covering of P1 by a morphism n: X __. P 1 ramified 

at P 0 , then as in (4.4), show that there is another morphism n':X--> P 1 and 
a morphism g:P 1 -->Pi, also of degree 2, such that no f = go n'. 

(b) For suitable choices of coordinates in the two copies of P 1, show that g can 
be taken to be the morphism x --> x2 . 

(c) Now show that g is branched over two of the branch points of n, and that g- 1 

of the other two branch points of n consists of the four branch points of n'. 
Deduce a relation involving the invariant A of X. 

(d) Solving the above, show that there are just three values ofj corresponding to 
elliptic curves with an endomorphism of degree 2, and find the corresponding 
values of A andj. [Answers:}= 26 · 33 ;} = 26 · 53 ;j = -33 ·53.] 

4.6. (a) Let X be a curve of genus g embedded birationally in P2 as a curve of degree d 
with r nodes. Generalize the method of(Ex. 2.3) to show that X has 6(g - 1) + 
3d inflection points. A node does not count as an inflection point. Assume 
char k = 0. 

(b) Now let X be a curve of genus g embedded as a curve of degree din P", n ~ 3, 
not contained in any pn-'. For each point P EX, there is a hyperplane H 
containing P, such that P counts at least n times in the intersection HnX. 
This is called an osculating hyperplane at P. It generalizes the notion of 
tangent line for curves in P2. If P counts at least n + 1 times in H n X, we 
say H is a hyperosculating hyperplane, and that P is a hyperosculation point. 
Use Hurwitz's theorem as above, and induction on n, to show that X has 
n(n + 1)(g - 1) + (n + 1)d hyperosculation points. 

(c) If X is an elliptic curve, for any d ~ 3, embed X as a curve of degree d in 
pd- 1, and conclude that X has exactly d2 points of order din its group law. 

4.7. The Dual of a Morphism. Let X and X' be elliptic curves over k, with base points 
P 0 ,P0. 
(a) If f:X--> X' is any morphism, use (4.11) to show that f*:Pic X'--> Pic X 

induces a homomorphism J: (X',P0) --> (X,P 0 ). We call this the dual of f. 
(b) If f:X -->X' and g:X' -->X" are two morphisms, then (go Jf =Jog. 
(c) Assumef(P0 ) = P0,andletn = degf ShowthatifQEXisanypoint,and 

f(Q) = Q', then](Q') = nx(Q). (Do the separable and purely inseparable cases 
separately, then combine.) Conclude that f o j = nx· and j of= nx. 

*(d) If f,g:X--> X' are two morphisms preserving the base points P0,P0, then 
(f + gf = J + g. [Hints: It is enough to show for any If' EPic X', that 
(f + g)*ff' ~ f*!i' ® g*ff'. For any f, let rf:X--> X X X' be the graph 
morphism. Then it is enough to show (for If'' = pj.!l') that 

rJ+ 9(ff'') = rjff'' ® r: If''. 

Let a:X -->X x X' be the section x--> (x,P0). Define a subgroup of 
Pic(X x X') as follows: 

Pic~ = { .2' EPic( X x X')lff' has degree 0 along each fibre of p1 , and a* If' = 0 
in Pic X}. 
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Note that this subgroup is isomorphic to the group Pic0 (X'/X) used in the 
definition of the Jacobian variety. Hence there is a 1-1 correspondence 
between morphisms f: X --+ X' and elements !l' 1 E Pic.,. (this defines !l' 1 ). 

Now compute explicitly to show that r;(!l' 1) = rj(!l' 9) for any f,g. 
Use the fact that !l'J+g = !l'1 (8) !l'9 , and the fact that for any !l' on X', 

p~ !l' E Pic~ to prove the result.] 
(e) Using (d), show that for any n E Z, fix = nx. Conclude that deg nx = n2 . 

(f) Show for any fthat deg] = degf 

4.8. For any curve X, the algebraic fundamental group n 1(X) is defined as 
&!! Gal(K'/K), where K is the function field of X, and K' runs over all Galois 
extensions of K such that the corresponding curve X' is etale over X (III, Ex. 10.3). 
Thus, for example, n 1(P1) = 1 (2.5.3). Show that for an elliptic curve X, 

n 1(X) = f1 Z 1 x Z 1 
lprime 

n 1(X) = fl Z 1 x Z 1 

l*p 

ifchark = 0; 

if char k = p and Hasse X = 0; 

nl(X) = zp X TI Zz X Zz if char k = p and Hasse X -+ 0, 
l*p 

where Z1 = &!! Z/r' is the 1-adic integers. 
[Hints: Any Galois etale cover X' of an elliptic curve is again an elliptic curve. 

If the degree of X' over X is relatively prime top, then X' can be dominated by the 
cover nx:X --+X for some integer n with (n,p) = 1. The Galois group of the 
covering nx is Z/n x Z/n. Etale covers of degree divisible by p can occur only 
if the Hasse invariant of X is not zero.] 

Note: More generally, Grothendieck has shown [SGA 1, X, 2.6, p. 272] that 
the algebraic fundamental group of any curve of genus g is isomorphic to a quo
tient of the completion, with respect to subgroups of finite index, of the ordinary 
topological fundamental group of a compact Riemann surface of genus g, i.e., a 
group with 2g generators a 1, ... , a9 , b~o . .. , b9 and the relation (a 1b1aj 1bj 1) · · · 

(a9b9a9-
1b; 1) = 1. 

4.9. We say two elliptic curves X,X' are isogenous if there is a finite morphism 
f:X--+ X'. 
(a) Show that isogeny is an equivalence relation. 
(b) For any elliptic curve X, show that the set of elliptic curves X' isogenous to X, 

up to isomorphism, is countable. [Hint: X' is uniquely determined by X and 
kerf.] 

4.10. If X is an elliptic curve, show that there is an exact sequence 

0--+ P! Pic X EB p~ Pic X--+ Pic( X x X)--+ R --+ 0, 

where R = End(X,P 0 ). In particular, we see that Pic( X x X) is bigger than the 
sum of the Picard groups of the factors. Cf. (III, Ex. 12.6), (V, Ex. 1.6). 

4.11. Let X be an elliptic curve over C, defined by the elliptic functions with periods 
1;r. Let R be the ring of endomorphisms of X. 
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(a) Iff E R is a nonzero endomorphism corresponding to complex multiplication 
by IJ(, as in (4.18), show that degf = 11)(1 2• 
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(b) Iff E R corresponds to rx E C again, show that the dual J of (Ex. 4.7) corre
sponds to the complex conjugate cz of rx. 

{c) If r E Q{j=d) happens to be integral over Z, show that R = Z[r]. 

4.12. Again let X be an elliptic curve over C determined by the elliptic functions with 
periods 1,r, and assume that r lies in the region G of(4.15B). 
(a) If X has any automorphisms leaving P 0 fixed other than ± 1, show that either 

r = i or r = w, as in (4.20.1) and (4.20.2). This gives another proof of the 
fact (4.7) that there are only two curves, up to isomorphism, having auto
morphisms other than ± 1. 

(b) Now show that there are exactly three values of r for which X admits an 
endomorphism of degree 2. Can you match these with the three values of j 
determined in (Ex. 4.5)? [Answers: r = i; r = H; r = i( -1 + J=7).] 

4.13. If p = 13, there is just one value of j for which the Hasse invariant of the corre
sponding curve is 0. Find it. [Answer:j = 5 (mod 13).] 

4.14. The Fermat curve X:x3 + i = z3 gives a nonsingular curve in characteristic p 

for every p ¥ 3. Determine the set ~ = {p ¥ 3IX<Pl has Hasse invariant 0}, 
and observe (modulo Dirichlet's theorem) that it is a set of primes of density t. 

4.15. Let X be an elliptic curve over a field k of characteristic p. Let F': X P --+ X be 
the k-linear Frobenius morphism (2.4.1). Use (4.10.7) to show that the dual 
morphism F': X --+ X P is separable if and only if the Hasse invariant of X is 1. 
Now use (Ex. 4.7) to show that if the Hasse invariant is 1, then the subgroup of 
points of order p on X is isomorphic to Z/p; if the Hasse invariant is 0, it is 0. 

4.16. Again let X be an elliptic curve over k of characteristic p, and suppose X is de
fined over the field Fq of q = p' elements, i.e., X <;; P2 can be defined by an 
equation with coefficients in Fq. Assume also that X has a rational point over 
Fq. Let F':Xq--+ X be the k-linear Frobenius with respect to q. 
(a) Show that Xq ~ X as schemes over k, and that under this identification, 

F':X--+ X is the map obtained by the qth-power map on the coordinates 
of points of X, embedded in P2 . 

(b) Show that 1x - F' is a separable morphism and its kernel is just the set 
X(Fq) of points of X with coordinates in Fq. 

(c) Using (Ex. 4.7), show that F' + F' = ax for some integer a, and that N = 

q - a + 1, where N = #X(Fq). 
(d) Use the fact that deg(m + nF') > 0 for all m,n E Z to show that ial ~ 2J(j. 

This is Hasse's proof of the analogue of the Riemann hypothesis for elliptic 
curves (App. C, Ex. 5.6). 

(e) Now assume q = p, and show that the Hasse invariant of X is 0 if and only 
if a = 0 (mod p). Conclude for p ~ 5 that X has Hasse invariant 0 if and only 
if N = p + 1. 

4.17. Let X be the curve y2 + y = x 3 - x of(4.23.8). 
(a) If Q = (a,b) is a point on the curve, compute the coordinates of the point 

P + Q, where P = (0,0), as a function of a,b. Use this formula to find the 
coordinates ofnP, n = 1,2, ... ,10. [Check: 6P = (6,14).] 

(b) This equation defines a nonsingular curve over FP for all p ¥ 37. 
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4.18. Let X be the curve y2 = x3 - 7x + 10. This curve has at least 26 points with 
integer coordinates. Find them (use a calculator), and verify that they are all 
contained in the subgroup (maybe equal to all of X(Q)?) generated by P = (1,2) 
and Q = (2,2). 

4.19. Let X,P0 be an elliptic curve defined over Q, represented as a curve in P2 de
fined by an equation with integer coefficients. Then X can be considered as the 
fibre over the generic point of a scheme X over Spec Z. Let T ~ Spec Z be the 
open subset consisting of all primes p =/= 2 such that the fibre X<v> of X over p 
is nonsingular. For any n, show that nx:X-+ X is defined over T, and is a flat 
morphism. Show that the kernel of nx is also flat over T. Conclude that for 
any p E T, the natural map X(Q) -+ X<v>(F vl induced on the groups of rational 
points, maps the n-torsion points of X(Q) injectively into the torsion subgroup of 
X<v>(F vl, for any (n,p) = 1. 

By this method one can show easily that the groups X(Q) in (Ex. 4.17) and 
(Ex. 4.18) are torsion-free. 

4.20. Let X be an elliptic curve over a field k of characteristic p > 0, and let R = 
End(X,P0 ) be its ring of endomorphisms. 
(a) Let X P be the curve over k defined by changing the k-structure of X (2.4.1). 

Showthatj(Xp) =j(X) 11P. ThusX ~ XvoverkifandonlyifjEFP" 
(b) Show that Px in R factors into a product nft of two elements of degree p if and 

only if X ~ X v· In this case, the Hasse invariant of X is 0 if and only if nand 
ft are associates in R (i.e., differ by a unit). (Use (2.5).) 

(c) If Hasse (X)= 0 show in any casej E Fvz· 
(d) For any fER, there is an induced map f* :H1((9x)-+ H 1((9x). This must be 

multiplication by an element A.1 E k. So we obtain a ring homomorphism 
q;: R -+ k by sending f to A. 1 . Show that any f E R commutes with the 
(nonlinear) Frobenius morphism F:X-+ X, and conclude that if Hasse 
(X) =/= 0, then the image of cp is Fv. Therefore, R contains a prime ideal p 
with R/p ~ F v· 

4.21. Let 0 be the ring of integers in a quadratic number field Q(H). Show that 
any subring R ~ 0, R =/= Z, is of the form R = Z + f · 0, for a uniquely deter
mined integer f ;;:. 1. This integer f is called the conductor of the ring R. 

*4.22. If X -+ A~ is a family of elliptic curves having a section, show that the family is 
trivial. [Hints: Use the section to fix the group structure on the fibres. Show 
that the points of order 2 on the fibres form an etale cover of A~, which must be 
trivial, since A~ is simply connected. This implies that }, can be defined on the 
family, so it gives a map A~ -+ A~ - {0,1 }. Any such map is constant, so A. is 
constant, so the family is trivial.] 

5 The Canonical Embedding 

We return now to the study of curves of arbitrary genus, and we study the 
rational map to a projective space determined by the canonical linear 
system. For nonhyperelliptic curves of genus g ~ 3, we will see that it is 
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an embedding, which we call the canonical embedding. Closely related 
to this discussion is Clifford's theorem about the dimension of a special 
linear system, which we prove below. Using these results, we will say 
something about the classification of curves. 

Throughout this section, X will denote a curve of genus g over the alge
braically closed field k. We will consider the canonical linear system IKI. 
If g = 0, IKI is empty. If g = 1, IKI = 0, so it determines the constant map 
of X to a point. For g ?: 2, however, IKI is an effective linear system without 
base points, as we will see, so it determines a morphism to projective space 
which we call the canonical morphism. 

Lemma 5.1. If g ;::: 2, then the canonical linear system IKI has no base points. 

PROOF. According to (3.1), we must show that for each P EX, dimiK - PI = 

dimiKI - 1. Now dimiKI = dim H 0(X,wx) - 1 = g - 1. On the other 
hand, since X is not rational, for any point P, dimiPI = 0, so by Riemann
Roch we find that dimiK - PI = g - 2, as required. 

Recall that a curve X of genus g ;::: 2 is called hyperelliptic (Ex. 1.7) if 
there is a finite morphism f:X--+ P 1 of degree 2. Considering the corre
sponding linear system, we see that X is hyperelliptic if and only if it has a 
linear system of dimension 1 and degree 2. It is convenient here to introduce 
a classical notation. The symbol g:i will stand for "a linear system of dimen
sion r and degree d." Thus we say X is hyperelliptic if it has a gi. 

If X is a curve of genus 2, then the canonical linear system IKI is a gi 
(Ex. 1.7). So X is necessarily hyperelliptic, and the canonical morphism 
f: X --+ P 1 is the 2-1 map of the definition. 

Proposition 5.2. Let X be a curve of genus g ;::: 2. Then IKI is very ample 
if and only if X is not hyperelliptic. 

PROOF. We use the criterion of (3.1). Since dimiKI = g - 1 we see that 
IKI is very ample if and only if for every P,Q EX, possibly equal, 
dimiK - P- Ql = g - 3. Applying Riemann-Roch to the divisor P + Q, 
we have 

dimiP + Ql - dimiK - P- Ql = 2 + 1 -g. 

So the question is whether dimiP + Ql = 0. If X is hyperelliptic, then 
for any divisor P + Q of the gi we have dimiP + Ql = 1. Conversely, if 
dimiP + Ql > 0 for some P,Q, then the linear system IP + Ql contains a 
gi (in fact is a gi), so X is hyperelliptic. This completes the proof. 

Definition. If X is nonhyperelliptic of genus g ;::: 3, the embedding X --+ 

P9 - 1 determined by the canonical linear system is the canonical em
bedding of X (determined up to an automorphism of P9 - 1 ), and its 
image, which is a curve of degree 2g - 2, is a canonical curve. 
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Example 5.2.1. If X is a nonhyperelliptic curve of genus 3, then its canonical 
embedding is a quartic curve in P2 . Conversely, any nonsingular quartic 
curve X in P2 has wx ~ @x(1) (II, 8.20.3), so it is a canonical curve. In 
particular, there exist nonhyperelliptic curves of genus 3 (see also (Ex. 3.2) ). 

Example 5.2.2. If X is a nonhyperelliptic curve of genus 4, then its canonical 
embedding is a curve of degree 6 in P3 . We will show that X is contained 
in a unique irreducible quadric surface Q, and that X is the complete inter
section of Q with an irreducible cubic surface F. Conversely, if X is a non
singular curve in P3 which is a complete intersection of a quadric and a 
cubic surface, then deg X = 6, and wx = @x(1) (II, Ex. 8.4), so X is a ca
nonical curve of genus 4. In particular, there exist such nonsingular complete 
intersections by Bertini's theorem (II, Ex. 8.4), so there exist nonhyper
elliptic curves of genus 4. 

To prove the above assertions, let X be a canonical curve of genus 4 
in P 3, and let J be its ideal sheaf. Then we have an exact sequence 

0 --+ .f --+ @p --+ @X --+ 0. 

Twisting by 2 and taking cohomology, we have 

0 --+ H 0(P,J(2)) --+ H0(P,@p(2)) --+ H 0(X,@x(2)) --+ ... 

Now the middle vector space has dimension 10 by (III, 5.1), and the right 
hand vector space has dimension 9 by Riemann-Roch on X (note that 
@x(2) corresponds to the divisor 2K, which is nonspecial of degree 12). 
So we conclude that 

dim H 0(P,.f(2)) ~ 1. 

An element of that space is a form of degree 2, whose zero-set will be a 
surface Q s; P 3 of degree 2 containing X. It must be irreducible (and 
reduced), because X is not contained in any P2 . The curve X could not 
be contained in two distinct irreducible quadric surfaces Q,Q', because then 
it would be contained in their intersection Q n Q' which is a curve of degree 
4, and that is impossible because deg X = 6. So we see that X is contained 
in a unique irreducible quadric surface Q. 

Twisting the same sequence by 3 and taking cohomology, a similar 
calculation shows that 

dim H 0(P,J(3)) ~ 5. 

The cubic forms in here consisting of the quadratic form above times a 
linear form, form a subspace of dimension 4. Hence there is an irreducible 
cubic form in that space, so X is contained in an irreducible cubic surface 
F. Then X must be contained in the complete intersection Q n F, and 
since both have degree 6, X is equal to that complete intersection. 

Proposition 5.3. Let X be a hyperelliptic curve of genus g ~ 2. Then X has 
a unique g~. If f 0 :X--+ P 1 is the corresponding morphism of degree 2, 
then the canonical morphism f: X --+ P9 - 1 consists of fo followed by the 
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(g - 1)-uple embedding of P 1 in P9 - 1. In particular, the image X' = 
f(X) is a rational normal curve of degree g - 1 (Ex. 3.4), and f is a mor
phism of degree 2 onto X'. Finally, every effective canonical divisor on X 
is a sum of g- 1 divisors in the unique gL so we write IKI = I1- 1 g~. 

PROOF. We begin by considering the canonical morphism f: X --+ P9 - \ 

and let X' be its image. Since X is hyperelliptic, it has a gL by definition. 
We don't yet know that it is unique, so fix one for the moment. For any 
divisor P + Q E gL the proof of (5.2) shows that Q is a base point of IK - PI, 
so f(P) = f(Q). Since the g~ has infinitely many divisors in it, we see that 
f cannot be birational. So let the degree of the map f: X --+ X' be J1 ~ 2, 
and let d = deg X'. Then since deg K = 2g - 2, we have dJ1 = 2g - 2, 
hence d ~ g - 1. 

Next, let X' be the normalization of X', and let b be the linear system 
on X' corresponding to the morphism X' --+ X' s; P9 - 1. Then b is a linear 
system of degree d and dimension g - 1. Since d ~ g - 1, we conclude 
(Ex. 1.5) that d = g - 1, the genus of X' is 0, so X' ~ P\ and the linear 
system b is the unique complete linear system on P 1 of degree g - 1, namely 
l(g - 1) ·Pl. Therefore, X' is the (g - 1)-uple embedding of P 1 . In par
ticular, it is nonsingular, and it is a rational normal curve in the sense of 
(Ex. 3.4). 

Next, from dJ1 = 2g - 2, we conclude that J1 = 2. Since f already 
collapses the pairs of the g~ we chose above, it must be equal to the com
position of the map fo: X --+ P 1 determined by our g~ with the (g - 1)-uple 
embedding of P 1 . Thus the g~ is determined by f, and so is uniquely 
determined. 

Finally, any effective canonical divisor K on X is f- 1 of a hyperplane 
section of X'. Hence it is a sum of g - 1 divisors in the unique g~. Con
versely, any set of g - 1 points of X' is a hyperplane section, so we can 
identify the canonical linear system IK I with the set of sums of g - 1 divisors 
of the g~. Hence we write 

g-1 

IKI = I g~. 
1 

Now we come to Clifford's theorem. The idea is this. For a nonspecial 
divisor D on a curve X, we can compute dimiDI exactly as a function of 
deg D by the Riemann-Roch theorem. However, for a special divisor, 
dimiDI does not depend only on the degree. Hence it is useful to have some 
bound on dimiDI, and this is provided by Clifford's theorem. 

Theorem 5.4 (Clifford). Let D be an effective special divisor on the curve X. 
Then 

dimiDI ~ ~ deg D. 

Furthermore, equality occurs if and only if either D = 0 or D = K or X 
is hyperelliptic and D is a multiple of the unique g~ on X. 
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Lemma 5.5. Let D,E be effective divisors on a curve X. Then 

dimiDI + dimiEI ~ dimiD + El. 

PROOF. We define a map of sets 

cp: IDI X lEI --+ ID + El 

by sending (D',E') to D' + E' for any D' E IDI and E' E lEI. The map cp is 
finite-to-one, because a given effective divisor can be written in only finitely 
many ways as a sum of two other effective divisors. On the other hand, 
since cp corresponds to the natural bilinear map of vector spaces 

H 0(X,!l'(D)) x H 0(X,!l'(E)) --+ H 0(X,!l'(D + E)), 

we see that cp is a morphism when we endow IDI,IEI and ID + El with their 
structure of projective spaces. Therefore, since cp is finite-to-one, the di
mension of its image is exactly dimiDI + dimiEI, and from this the result 
follows. 

PROOF OF (5.4) (following Saint-Donat [1, §1]). If Dis effective and special, 
then K - Dis also effective, so we can apply the lemma, and obtain 

dimiDI + dimiK - Dl ~ dimiKI = g - 1. 

On the other hand, by Riemann~Roch we have 

dimiDI - dimiK - Dl = deg D + 1 - g. 

Adding these two expressions, we have 

2 dimiDI ~ deg D, 
or in other words 

dimiDI ~ ~ deg D. 

This gives the first statement of the theorem. Also, it is clear that we have 
equality in caseD = 0 or D = K. 

For the second statement, suppose that D =f. O,K, and that dimiDI = 

t deg D. Then we must show that X is hyperelliptic, and that D is a multiple 
of the g~. We proceed by induction on deg D (which must be even). If 
deg D = 2, then IDI itself is a gL so X is hyperelliptic and there is nothing 
more to prove. 

So suppose now that deg D ;;;:: 4, hence dimiDI ;;;:: 2. Fix a divisor E E 

IK - Dl, and fix two points P,Q EX such that P E Supp E and Q ¢ Supp E. 
Since dimiDI ;;;:: 2, we can find a divisor D E IDI such that P,Q E Supp D. 
Now let D' = D n E, by which we mean the largest divisor dominated by 
both D and E. This D' will accomplish our induction. 

First note that since Q E Supp D but Q ¢ Supp E, we must have Q ¢ 
Supp D', so deg D' < deg D. On the other hand, deg D' > 0 since P E 

Supp D'. 
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Next, by construction of D', we have an exact sequence 

0 --+ !E(D') --+ !E(D) (f) !E(E) --+ !E(D + E - D') --+ 0, 

where we consider these as subspaces of the constant sheaf :£ on X, and 
the first map is addition, the second subtraction. (Think of !E(D) = 

{! E K(X)j(f) ;;::: -D}, cf. (II, 7.7).) Therefore, considering global sections 
of this sequence, we have 

dimjDI + dimjEj ~ dimjD'I + dimjD + E - D'j. 

But E"' K - D and D +E-D' "' K - D', so the left-hand side is equal to 

dimjDj + dimjK - Dj, 

which must be = dimjKj = g - 1 since we have dimjDI = ! deg D by hy
pothesis. On the other hand, the right-hand side is ~g - 1 by (5.5) applied 
to D', so we must have equality everywhere. We conclude, then, that 
dimjD'I =! deg D', as above. Now by the induction hypothesis, this implies 
that X is hyperelliptic. 

Now suppose again that D =F O,K, and dimiDI = ! deg D. Let r = dimjDj. 
Consider the linear system IDI + (g - 1 - r)gi. It has degree 2g - 2, and 
dimension ;;::: g - 1, by (5.5) again, so it must be equal to the canonical 
system jKj. But we have already seen (5.3) that jKj = (g - 1)gi. So we 
conclude that IDI = rgi, which completes the proof. 

Classification of Curves 

To classify curves, we first specify the genus, which as we have seen (1.1.1) 
can be any nonnegative integer g ;;::: 0. If g = 0, X is isomorphic to P 1 

(1.3.5), so there is nothing further to say. If g = 1, then X is classified up 
to isomorphism by its j-invariant ( 4.1 ), so here again we have a good answer 
to the classification problem. For g ;;::: 2, the problem becomes much more 
difficult, and except for a few special cases (e.g., (Ex. 2.2) ), one cannot give 
an explicit answer. 

For g ;;::: 3 we can subdivide the set mg of all curves of genus g according 
to whether the curve admits linear systems of certain degrees and dimen
sions. For example, we have defined X to be hyperelliptic if it has a gi, 
and we have seen that there are hyperelliptic curves of every genus g ;;::: 2 
(Ex. 1. 7), and at least for g = 3 and 4, that there exist nonhyperelliptic curves 
(5.2.1) and (5.2.2). 

More generally, we can subdivide curves according to whether they have 
a gJ for various d. If X has a g~ it is called trigonal. 

Remark 5.5.1. The facts here are as follows. For any d ;;::: !g + 1, any 
curve of genus g has a gJ; for d < !g + 1, there exist curves of genus g 
having no gJ. See Kleiman and Laksov [1] for proofs and discussion. Note 
in particular this implies that there exist nonhyperelliptic curves of every 
genus g ;;::: 3 (V, Ex. 2.10). We give some examples of this result. 
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Example 5.5.2. For g = 3,4 this result states that there exist nonhyperelliptic 
curves (which we have seen) and that every such curve has a g~. Of course 
if X is hyperelliptic, this is trivial, by adding a point to the g~. If X is non
hyperelliptic of genus 3, then its canonical embedding is a plane quartic 
curve (5.2.1). Projecting from any point of X to Pi, we get a g~. Thus X 
has infinitely many g~'s. 

If X is nonhyperelliptic of genus 4, then its canonical embedding in P 3 

lies on a unique irreducible quadric surface Q (5.2.2). If Q is nonsingular, 
then X has type (3,3) on Q (II, 6.6.1), and each of the two families of lines 
on Q cuts out a g~ on X. So in this case X has two g~'s (to see that these 
are the only ones, copy the argument of (5.5.3) below). If Q is singular, it is 
a quadric cone, and the one family of lines on Q cuts out a unique g~ on X. 

Example 5.5.3. Let g = 5. Then (5.5.1) says that every curve of genus 5 has 
a gi, and that there exist such curves with no g~. Let X be a nonhyperelliptic 
curve of genus 5, in its canonical embedding as a curve of degree 8 in P4 . 

First we show that X has a g~ if and only if it has a trisecant in this em
bedding. Let P,Q,R EX. Then by Riemann-Roch, we have 

dimiP + Q + Rl = dimiK - P - Q - Rl - 1. 

On the other hand, since X is in its canonical embedding, dimiK - P- Q - Rl 
is the dimension of the linear system of hyperplanes in P4 which contain 
P,Q,R. Hence dimiP + Q + Rl = 1 if and only if P,Q,R are contained in 
a 2-dimensional family of hyperplanes, which is equivalent to saying that 
P,Q and R are collinear. Thus X has a g~ if and only if it has a trisecant 
(and in that case it will have a 1-parameter family oftrisecants). 

Now let X be a nonsingular complete intersection of three quadric hyper
surfaces in P4 . Then deg X = 8, and wx ~ CDx(1), so X is a canonical curve 
of genus 5. If X had a trisecant L, then L would meet each of the quadric 
hypersurfaces in three points, so it would have to be contained in these 
hypersurfaces, and so L <:; X, which is impossible. So we see that there 
exist curves of genus 5 containing no g~. 

Now projecting this X from one of its own points P to P 3 , we obtain a 
curve X' <:; P 3 of degree 7, which is nonsingular (because X had no tri
secants). This new curve X' must have trisecants, because otherwise a 
projection from one of its points would give a nonsingular curve of degree 6 
in P2 , which has the wrong genus. So let Q,R,S lie on a trisecant of X'. 
Then their inverse images on X, together with P, form four points which 
lie in a plane of P4 . Then the same argument as above shows these points 
give a g}_. 

Coming back to the general classification question, for fixed gone would 
like to endow the set 9Jl9 of all curves of genus g up to isomorphism with 
an algebraic structure, in which case we call 9Jl9 the variety of moduli of 
curves of genus g. Such is the case for g = 1, where the j-invariants form 
an affine line. 
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The best way to specify the algebraic structure on IDlg would be to require 
it to be a universal parameter variety for families of curves of genus g, in 
the following sense: we require that there be a flat family X --+ IDlg of curves 
of genus g such that for any other flat family X --+ T of curves of genus g, 
there is a unique morphism T--+ IDlg such that X is the pullback of X. In 
this case we call IDlg a fine moduli variety. Unfortunately, there are several 
reasons why such a universal family cannot exist. One is that there are 
nontrivial families of curves, all of whose fibres are isomorphic to each 
other (III, Ex. 9.10). 

However, Mumford has shown that for g ~ 2 there is a coarse moduli 
variety IDlg, which has the following properties (Mumford [1, Th. 5.11]): 

(1) the set of closed points of IDlg is in one-to-one correspondence with the 
set of isomorphism classes of curves of genus g; 

(2) if f:X--+ Tis any flat family of curves of genus g, then there is a mor
phism h: T--+ IDlg such that for each closed point t E T, X 1 is in the iso
morphism class of curves determined by the point h(t) E IDlg. 

In case g = 1, the affine j-line is a coarse variety of moduli for families 
of elliptic curves with a section. One verifies condition (2) using the fact 
that j is a rational function of the coefficients of a plane embedding of the 
curve (Ex. 4.4). 

Remark 5.5.4. In fact, Deligne and Mumford [1] have shown that IDlg for 
g ~ 2 is an irreducible quasi-projective variety of dimension 3g - 3 over 
any fixed algebraically closed field. 

Example 5.5.5. Assuming that IDlg exists, we can discover some of its prop
erties. For example, using the method of (Ex. 2.2), one can show that hy
perelliptic curves of genus g are determined as two-fold coverings of P 1, 

ramified at 0,1, oo, and 2g - 1 additional points, up to the action of a 
certain finite group. Thus we see that the hyperelliptic curves correspond 
to an irreducible subvariety of dimension 2g - 1 of IDlg. If g = 2, this is 
the whole space, which confirms that 9Jl2 is irreducible of dimension 3. 

Example 5.5.6. Let g = 3. Then the hyperelliptic curves form an irreducible 
subvariety of dimension 5 of 9Jl 3 . The nonhyperelliptic curves of genus 3 
are the nonsingular plane quartic curves. Since the embedding is canonical, 
two of them are isomorphic as abstract curves if and only if they differ by 
an automorphism of P2 . The family of all these curves is parametrized by 
an open set U s:; pN with N = 14, because a form of degree 4 has 15 coeffi
cients. So there is a morphism U --+ 9Jl3 , whose fibres are images of the 
group PGL(2) which has dimension 8. Since any individual curve has only 
finitely many automorphisms (Ex. 5.2), the fibres have dimension = 8, and 
so the image of U has dimension 14 - 8 = 6. So we confirm that 9Jl3 has 
dimension 6. 
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EXERCISES 

5.1. Show that a hyperelliptic curve can never be a complete intersection in any pro
jective space. Cf. (Ex. 3.3). 

5.2. If X is a curve of genus ~ 2 over a field of characteristic 0, show that the group 
Aut X ofautomorphisms of X is finite. [Hint: If X is hyperelliptic, use the unique 
g1 and show that Aut X permutes the ramification points of the 2-fold covering 
X ~ P1. If X is not hyperelliptic, show that Aut X permutes the hyperosculation 
points (Ex. 4.6) of the canonical embedding. Cf. (Ex. 2.5).] 

5.3. Moduli of Curves of Genus 4. The hyperelliptic curves of genus 4 form an irre
ducible family of dimension 7. The nonhyperelliptic ones form an irreducible 
family of dimension 9. The subset of those having only one g~ is an irreducible 
family of dimension 8. [Hint: Use (5.2.2) to count how many complete inter
sections Q n F 3 there are.] 

5.4. Another way of distinguishing curves of genus g is to ask, what is the least degree 
of a birational plane model with only nodes as singularities (3.11)? .Let X be 
nonhyperelliptic of genus 4. Then: 
(a) if X has two grs, it can be represented as a plane quintic with two nodes, and 

conversely; 
(b) if X has one gt then it can be represented as a plane quintic with a tacnode 

(1, Ex. 5.14d), but the least degree of a plane representation with only nodes is 6. 

5.5. Curves of Genus 5. Assume X is not hyperelliptic. 
(a) The curves of genus 5 whose canonical model in P4 is a complete intersection 

F 2 .F2 .F2 form a family of dimension 12. 
(b) X has a g~ if and only if it can be represented as a plane quintic with one node. 

These form an irreducible family of dimension 11. [Hint: If D E g ~, use K - D 
to map X ~ P2.] 

*(c) In that case, the conics through the node cut out the canonical system (not 
counting the fixed points at the node). Mapping P2 -+ P4 by this linear system 
of conics, show that the canonical curve X is contained in a cubic surface 
V £ P4 , with Visomorphic to P2 with one point blown up (II, Ex. 7.7). Further
more, Vis the union of all the trisecants of X corresponding to the g~ (5.5.3), 
so V is contained in the intersection of all the quadric hypersurfaces containing 
X. Thus Vand the g~ are unique. 
Note. Conversely, if X does not have a gL then its canonical embedding is a 

complete intersection, as in (a). More generally, a classical theorem of Enriques 
and Petri shows that for any nonhyperelliptic curve of genus g ~ 3, the canonical 
model is projectively normal, and it is an intersection of quadric hypersurfaces 
unless X has a g ~ or g = 6 and X has a g;. See Saint-Donat [ l]. 

5.6. Show that a nonsingular plane curve of degree 5 has no g~. Show thatthere are 
nonhyperelliptic curves of genus 6 which cannot be represented as a nonsingular 
plane quintic curve. 

5.7. (a) Any automorphism of a curve of genus 3 is induced by an automorphism ofP2 

via the canonical embedding. 
*(b) Assume char k -# 3. If X is the curve given by 

x 3 y + y3z + z3x = 0, 
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the group Aut X is the simple group of order 168, whose order is the maximum 
84(g - 1) allowed by (Ex. 2.5). See Burnside [1, §232] or Klein [1]. 

*(c) Most curves of genus 3 have no automorphisms except the identity. [Hint: 
For each n, count the dimension of the family of curves with an automorphism 
T of order n. For example, if n = 2, then for suitable choice of coordinates, 
T can be written as x--> -x, y--> y, z--> z. Then there is an 8-dimensional 
family of curves fixed by T; changing coordinates there is a 4-dimensional 
family of such T, so the curves having an automorphism of degree 2 form a 
family of dimensional 12 inside the 14-dimensional family of all plane curves 
of degree 4.] 
Note: More generally it is true (at least over C) that for any g ;;:, 3, a "sufficiently 

general" curve of genus g has no automorphisms except the identity-see Baily [ 1]. 

6 Classification of Curves in P 3 

In 1882, a cash prize (the Steiner prize) was offered for the best work on 
the classification of space curves. It was shared by Max Noether and 
G. Halphen, each of whom wrote a 200-page treatise on the subject (Noether 
[ 1 ], Halphen [ 1] ). They each proved a number of general results, and then 
to illustrate their theory, constructed exhaustive tables of curves of low 
degree (up to about degree 20). 

Nowadays the theoretical aspect of this problem is well understood. 
Using either the Chow variety or the Hilbert scheme, one can show that 
the nonsingular curves of given degree d and genus g in P 3 are parametrized 
by a finite union of quasi-projective varieties, in a very natural way. How
ever, the more specific task of determining the number and dimensions of 
these parameter varieties for each d,g is not solved. It is not even clear 
exactly for which pairs of integers d,g there exists a curve of degree d and 
genus g in P 3. Halphen stated the result, but a correct proof was given only 
recently by Gruson and Peskine. 

In this section we will give a few basic results concerning curves in P3, 

and then illustrate them by classifying all curves of degree ~ 7 in P 3 . 

We begin by investigating when a curve has a nonspecial very ample 
divisor of a given degree. In the case of g = 0,1, this is answered by (3.3.1) 
and (3.3.3), so we will consider the case g ? 2. 

Proposition 6.1 (Halphen). A curve X of genus g ? 2 has a nonspecial very 
ample divisor D of degree d if and only if d ? g + 3. 

PROOF. First we show the necessity of the condition. If D is nonspecial and 
very ample of degree d, then by Riemann-Roch, we have dimiDI = d - g 
and IDI gives an embedding of X in pd- 9. Since X ;f. P\ we must have 
d - g ? 2, i.e., d ? g + 2. But if d = g + 2, then X is a plane curve of 
degree d. In this case wx ~ @x(d - 3), so in order for D to be nonspecial 
we must have d ~ 3. But then g = 0 or 1, contrary to hypothesis. So we 
conclude that d ? g + 3. 
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So now we fix d ~ g + 3, and we search for a nonspecial very ample 
divisor D of degree d. In order forD to be very ample, by (3.1) it is necessary 
and sufficient that for all P,Q E X, we have 

dimiD - P - Ql = dimiDI - 2. 

Since D is nonspecial, this is equivalent, by Riemann-Roch, to saying that 
D - P - Q is also nonspecial. Replacing D by a linearly equivalent divisor 
D', we may always assume that D' - P - Q is effective. 

Now consider Xd, the product of X with itself d times. We associate an 
element (P 1, ... ,Pd) E Xd and all its permutations, with the effective divisor 
D = pl + 0 0 0 + Pd, and then by abuse of notation write DE xd. We will 
show that the set S of divisors D E Xd such that there exists D' ~ D and 
there exist points P,Q EX with E = D' - P - Q an effective special divisor, 
has dimension ~ g + 2. Since d ~ g + 3, this shows that S i= Xd. Then 
any D ¢ S will be a nonspecial very ample divisor of degree d. 

Let E be an effective special divisor of degree d - 2. Since dimiKI = 
g - 1, and since an effective special divisor is a subset of an effective ca
nonical divisor, we see that the set of all such E, as a subset of xd-z, has 
dimension ~ g - 1. Thus the set of divisors of the form E + P + Q in Xd 
has dimension ~ g + 1. Since the special divisors in Xd form a subset of 
dimension ~ g - 1, for the same reason, we may ignore them, so we may 
assume E + P + Q is nonspecial. 

Since E is special, we have dimiEI ~ d - 1 - g, by Riemann-Roch. On 
the other hand, since E + P + Q is nonspecial, we have dimiE + P + Ql = 

d - g. The difference between these two is 1, so we see that the set of 
D E Xd which are linearly equivalent to some divisor of the form E + P + Q 
has dimension ~g + 2, as required. 

Corollary 6.2. There exists a curve X of degree d and genus g in P 3, whose 
hyperplane section D is nonspecial, if and only if either 

(1) g = 0 and d ~ 1, 
(2) g = 1 and d ~ 3, or 
(3) g ~ 2 and d ~ g + 3. 

PROOF. This follows immediately from (3.3.1), (3.3.3), and the proposition. 
Given D very ample on X, the complete linear system IDI gives an em
bedding of X into pn for some n, and if n > 3 we project down to P3 , using 
(3.5). 

Proposition 6.3. If X is a curve in P 3 , not lying in any plane, for which the 
hyperplane section Dis special, then d ~ 6 and g ~ td + 1. Furthermore, 
the only such curve with d = 6 is the canonical curve of genus 4 (5.2.2). 

PROOF. If D is special, then by Clifford's theorem (5.4) we have dimiDI ~ 
td. Since X is not in any plane, dimiDI ~ 3, so d ~ 6. And since D is 
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special, d :(; 2g - 2, hence g ?: !d + 1. Now if d = 6, then we have 
equality in Clifford's theorem, so either D = 0 (which is absurd) or D = K, 
in which case X is the canonical curve of genus 4, or X is hyperelliptic and 
IDI is a multiple of the unique g~. But this last case is impossible, because 
then IDI would not separate points, so could not be very ample. 

Next, we have a result which bounds the genus of a space curve of given 
degree. 

Theorem 6.4 (Castelnuovo [1]). Let X be a curve of degree d and genus gin 
P3 , which is not contained in any plane. Then d ?: 3, and 

g=(; !1 2 
-d -d+1 
4 

1 2 
4(d -1)-d+1 

if dis even 

if dis odd. 

Furthermore, the equality is attained for every d ?: 3, and any curve for 
which equality holds lies on a quadric surface. 

PROOF. Given X, let D be its hyperplane section. The idea of the proof is to 
estimate dimlnDI - diml(n - 1)DI for any n, and then add. First of all, we 
choose the hyperplane section D = P 1 + ... + Pd in such a way that no 
three of the points Pi are collinear. This is possible because not every secant 
of X is a multisecant (3.8), (3.9), (Ex. 3.9). 

Now I claim for each i = 1,2, ... ,min(d,2n + 1), that Pi is not a base 
point of the linear system lnD - P 1 - .... - Pi_ 1 1. To show this, it is suffi
cient to find a surface of degree n in P3 containing P 1, .•. ,Pi_ 1, but not Pi. In 
fact, a union of n planes will do. We take the first plane to contain P 1 and P2 , 

but no other Pi, which is possible, since no three Pi are collinear. We take 
the second plane to contain P 3 and P 4 , and so on, until our planes contain 
P 1 , ... ,Pi_ 1, and take the remaining planes to miss all the Pi. This is possible 
for any i such that i - 1 :(; 2n, and of course i :(; d since there are only d 
points. 

It follows that for any n ?: 1, we have 

dimlnDI - diml(n - 1)DI ?: min(d,2n + 1), 

because (n - 1)D = nD - P 1 - ... - Pd, and each time we remove a non
base point from a linear system, the dimension drops by 1. 

Now we take n » 0, and add these expressions together, starting with 
n = 1, up to the given n, using the fact that dimiO · Dl = 0. If we let r = 
[!(d - 1)], then we can write the answer as 

dimlnDI ?: 3 + 5 + ... + (2r + 1) + (n - r)d 
or 

dimlnDI ?: r(r + 2) + (n - r)d. 
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On the other hand, for large n, the divisor nD will be nonspecial, so by 
Riemann-Roch we have 

dimlnDI = nd - g. 

Combining, we find that 

g ::::; rd - r(r + 2). 

To interpret this, we consider two cases. If dis even, then r = !d - 1, and 
we get 

1 2 
g::::;4d -d+l. 

If dis odd, then r = !(d - 1), and we get 

1 2 
g:::;;4(d -1)-d+1, 

which is the bound of the theorem. 
If X is a curve for which equality holds, then we must have had equality at 

every step of the way. In particular, we see that dimi2DI = 8 (or even less if 
d < 5), from which it follows that X is contained in a quadric surface. Indeed, 
from the exact sequence 

we obtain 

0 --+ H 0(.J" x(2)) --+ H 0(mp(2)) --+ H 0(mx(2)) --+ ... 

Since dim H 0((9p(2)) = 10 and dim H 0((9x(2)) = 9 (or less, by the above), 
we conclude that H 0 (.J" x(2)) i= 0, hence X is contained in a quadric surface. 

Finally, to show that equality is achieved, we look at certain curves on a 
nonsingular quadric surface Q. If d is even, d = 2s, we take a curve of type 
(s,s), which has degree d and genus s2 - 2s + 1 = ±d2 - d + 1, by (III, 
Ex. 5.6). This curve is a complete intersection of Q with a surface of 
degree s. If d is odd, d = 2s + 1, we take a curve of type (s,s + 1) on Q, 
which has degreed and genus s2 - s = t(d2 - 1) - d + 1. 

Remark 6.4.1. Let us gather together everything we know about curves in P3 . 

First, we recall various classes of curves which we know to exist. 
(a) For every d ~ 1, there are nonsingular plane curves of degree d, and 

they have g = !(d - 1)(d - 2). See (II, 8.20.2) and (II, Ex. 8.4). 
(b) For every a,b ~ 1, there are complete intersections of surfaces of 

degrees a,b in P 3 which are nonsingular curves. They have degree d = ab 
and genus g = !ab(a + b - 4) + 1 (II, Ex. 8.4). 

(c) For every a,b ~ 1, there are nonsingular curves of type (a,b) on a non
singular quadric surface. They have degree d = a + b and genus g = 

ab - a - b + 1 (III, Ex. 5.6). 
(d) We will see later (V, Ex. 2.9) that if X is a curve on a quadric cone Q, 

there are two cases. If d is even, d = 2a, then X is a complete intersection 
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of Q with a surface of degree a, so g = a2 - 2a + 1. If dis odd, d = 2a + 1, 
then X has genus g = a2 - a. Comparing with (c) above, we note that these 
values of d and g are among those possible on a nonsingular quadric surface. 

Example 6.4.2. Now we can classify curves of degree d ~ 7 in P 3 . 

d = 1. The only curve with d = 1 is P 1 (1, Ex. 7.6). 
d = 2. The only curve of degree 2 is the conic in P 2 (1, Ex. 7.8). 
d = 3. Here we have the plane cubic with g = 1, and the twisted cubic curve 

in P 3 with g = 0. That is all, by (Ex. 3.4). 
d = 4. The plane quartic has g = 3; in P 3 there are rational quartic curves, 

and elliptic quartic curves, the latter being the complete intersection 
of two quadric surfaces (Ex. 3.6). 

d = 5. The plane quintic has g = 6. In P 3 , there are curves with (1)(1) non
special of genus 0,1,2, by (6.2), and these are all by (6.3). 

d = 6. The plane sextic has g = 10. In P 3 there are curves with (1)(1)non
special of genus 0,1,2,3 by (6.2), and a curve of genus 4 which is the 
canonical curve of genus 4, a complete intersection of a quadric and 
a cubic surface (6.3). 

d = 7. The plane septic has g = 15. There are curves in P 3 with (1)(1) non
special of genus 0,1,2,3,4, and any curve of g ~ 4 must be nonspecial. 
On the other hand, there is a curve of type (3,4) on a nonsingular 
quadric surface, which has g = 6. This is the maximum genus for 
this degree, by (6.4), so any curve of g = 6 must lie on a quadric. 

We are left with the question, does there exist a curve of degree 7 with 
g = 5? By ( 6.4.1) there is no such curve on a quadric surface. So we approach 
the question from a different angle. Given an abstract curve X of genus 5, 
can we embed it as a curve of degree 7 in P 3 ? We need a very ample divisor D 
of degree 7, with dimiDI ~ 3. By Riemann-Roch, such a divisor must be 
special. Since deg K = 8, we can write D = K - P, and so we see dimiDI = 3. 
In order for D to be very ample, we must have 

dimiK - P - Q - Rl = dimiK - PI - 2 

for all Q,R in X. Using Riemann-Roch again, this says that 

dimiP + Q + Rl = 0 

for all Q,R. But this is possible if and only if X does not have a g~. Indeed, 
if X has no gL then dimiP + Q + Rl = 0 for all P,Q,R. On the other hand, 
if X does have a gL then for any given P, there exist Q,R such that 
dimiP + Q + Ri = 1. 

Summing up, we see that the abstract curve X of genus 5 admits an em
bedding of degree 7 in P 3 if and only if X has no g~. Now from (5.5.3) we 
know there are such curves, so we see that curves of degree 7 and genus 5 do 
exist in P 3 . This example should give some idea of the complexities which 
compound themselves when trying to classify curves of higher degree and 
genus in P 3 . 
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Figure 18 summarizes what we know about the existence of curves of 
degree d and genus gin P3 , ford :( 10 and g :( 12, using the results of this 
section. See (V, 4.13.1) and (V, Ex. 4.14) for further information. 
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Figure 18. Curves of degree d and genus gin P3 . 

Example 6.4.3. As another example, we consider curves X of degree 9 and 
genus 10 in P3 . This is the first case where there are two distinct families of 
curves of the same degree and genus, neither being a special case of the other. 

Type 1 is a complete intersection of two cubic surfaces. In this case, 
Wx ~ mx(2) (II, Ex. 8.4), so (?)x(2) is special, and dim H 0((1)x(2)) = 10. 
Furthermore, X is projectively normal (II, Ex. 8.4) so the natural map 
H 0((1)p(2)) --+ H 0 ((1)x(2)) is surjective. Since dim H 0 ((1)p(2)) = 10, we con
clude that H 0(f x(2)) = 0, so X is not contained in any quadric surface. 

Type 2 is a curve of type (3,6) on a nonsingular quadric surface Q. In 
this case, using the calculations of cohomology of (III, Ex. 5.6), from the 
exact sequence 

0 --+ (I)Q(- 3,- 6) --+ (I)Q --+ (I) X --+ 0, 

twisting by 2, and taking cohomology, we find that dim H 0 ((1)x(2)) = 9. 
Thus (1)(2) is nonspecial. On the other hand, since X cannot be contained 
in two distinct quadric surfaces, we have dim H 0(f x(2)) = 1. 

Since the dimension of cohomology groups can only increase under 
specialization, by semicontinuity (III, 12.8), we see that neither of these 
types can be a specialization of the other. Indeed, dim H 0(f x(2)) increases 
from type 1 to type 2, whereas dim H 0((1)x(2)) decreases. 

To complete the picture, we show that any curve of degree 9 and genus 10 
is one of the two types above. If (1)(2) is nonspecial, then dim H 0((1)(2)) = 9, 
so X must be contained in a quadric surface Q. Checking the possibilities 
ford and g (6.4.1), we see that Q must be nonsingular, and X must be of type 
(3,6) on Q. On the other hand, if (1)(2) is special, then X cannot lie on a quadric 
surface (because if it did, then it would have to be type 2, in which case (1)(2) 
is nonspecial). Since (1)(3) is nonspecial (its degree is > 2g - 2), we have 
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dim H 0(0x(3)) = 18, so we find dim H 0(J x(3)) ~ 2. The corresponding 
cubic surfaces must be irreducible, so X is contained in the intersection of 
two cubic surfaces; then by reason of its degree, X is equal to the complete 
intersection of those two cubic surfaces, so X is type 1. 

EXERCISES 

6.1. A rational curve of degree 4 in P3 is contained in a unique quadric surface Q, and 
Q is necessarily nonsingular. 

6.2. A rational curve of degree 5 in P3 is always contained in a cubic surface, but there 
are such curves which are not contained in any quadric surface. 

6.3. A curve of degree 5 and genus 2 in P3 is contained in a unique quadric surface Q. 
Show that for any abstract curve X of genus 2, there exist em beddings of degree 5 
in P 3 for which Q is nonsingular, and there exist other em beddings of degree 5 for 
which Q is singular. 

6.4. There is no curve of degree 9 and genus 11 in P 3. [Hint: Show that it would have 
to lie on a quadric surface, then use (6.4.1).] 

6.5. If X is a complete intersection of surfaces of degrees a,b in P 3 , then X does not lie 
on any surface of degree <min(a,b). 

6.6. Let X be a projectively normal curve in P3 , not contained in any plane. If d = 6, 
then g = 3 or 4. If d = 7, then g = 5 or 6. Cf. (II, Ex. 8.4) and (III, Ex. 5.6). 

6.7. The line, the conic, the twisted cubic curve and the elliptic quartic curve in P3 

have no multisecants. Every other curve in P3 has infinitely many multisecants. 
[Hint: Consider a projection from a point of the curve to P2 .] 

6.8. A curve X of genus g has a nonspecial divisor D of degree d such that JDJ has no 
base points if and only if d ::;:: g + 1. 

*6.9. Let X be an irreducible nonsingular curve in P'. Then for each m » 0, there is a 
nonsingular surface F of degree m containing X. [Hint: Let 7T : P ~ P3 be the 
blowing-up of X and let Y = n- 1(X). Apply Bertini's theorem to the projective 
embedding ofP corresponding to Jy ® n*ep3(m).] 
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CHAPTER V 

Surfaces 

In this chapter we give an introduction to the study of algebraic surfaces. 
This includes the basic facts about the geometry on a surface, and about 
birational transformations of surfaces. Also we treat two special classes of 
surfaces, the ruled surfaces, and the nonsingular cubic surfaces in P 3, both 
to illustrate the general theory, and as a first step in the more detailed study 
of various types of surfaces. 

This chapter should be adequate preparation for reading some more 
advanced works, such as Mumford [2], Zariski [5], Shafarevich [1], Bom
bieri and Husemoller [1]. We have mentioned the classification of surfaces 
only very briefly in §6, since it is adequately treated elsewhere. 

Sections 1, 3 and 5 are general. Here we develop intersection theory on a 
surface and prove the Riemann-Roch theorem. As applications we give the 
Hodge index theorem and the Nakai-Moishezon criterion for an ample 
divisor. In §3 we study the behavior of a surface and the curves on it under a 
single monoidal transformation, which is blowing up a point. Then in §5 
we prove the theorem of factorization of a birational morphism into monoidal 
transformations, and prove Castelnuovo's criterion for contracting an 
exceptional curve of the first kind. 

In §2 we discuss ruled surfaces. Here the theory of curves gives a good 
handle on the ruled surfaces, because many properties of the surface are 
closely related to the study of certain linear systems on the base curve. Also 
there is a close connection between ruled surfaces over a curve C and locally 
free sheaves of rank 2 on C, so as a byproduct, we get some information about 
the classification of these locally free sheaves on a curve. 

In §4, we study the nonsingular cubic surfaces in P 3 , and the famous 27lines 
which lie on those surfaces. By representing the surface as a P2 with 6 
points blown up, the study of linear systems on the cubic surface is reduced 
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1 Geometry on a Surface 

to the study of certain linear system of plane curves with assigned base 
points. This is a very classical subject, about which whole books have been 
written, and which we rewrite here in modern language. 

1 Geometry on a Surface 

We begin our study of surfaces with the internal geometry of a surface. A 
divisor on a surface is a sum of curves, so (in the absence of a projective 
embedding) it does not make sense to talk about the degree of a divisor, as 
in the case of curves. However, we can talk about the intersection of two 
divisors on a surface, and this gives rise to intersection theory. The Riemann
Roch theorem for surfaces gives a connection between the dimension of a 
complete linear system jDj, which is essentially a cohomological invariant, 
and certain intersection numbers on the surface. As in the case of curves, 
the Riemann-Roch theorem is basic to all further work with surfaces, espe
cially questions of classification. 

Throughout this chapter, a surface will mean a nonsingular projective 
surface over an algebraically closed field k. It is true that any complete 
nonsingular surface is projective (cf. II, 4.10.2), but since we will not prove 
that, we assume that our surfaces are projective. A curve on a surface will 
mean any effective divisor on the surface. In particular, it may be singular, 
reducible or even have multiple components. A point will mean a closed 
point, unless otherwise specified. 

Let X be a surface. We wish to define the intersection number C.D for 
any two divisors C,D on X in such a way as to generalize the intersection 
multiplicity defined in (1, Ex. 5.4) and (1, §7). If C and D are curves on X, and 
if P E C n D is a point of intersection of C and D, we say that C and D meet 
transversally at P if the local equations f,g of C,D at P generate the maximal 
ideal mp of (!)P.x· This implies, by the way, that C and Dare each nonsingular 
at P, because f will generate the maximal ideal of P in (!)P,D = (!)P,x/(g), 
and vice versa. 

If C and D are two nonsingular curves, which meet transversally at a 
finite number of points P 1, ... ,P" then it is clear that the intersection number 
C.D should be r. So we take this as our starting point, together with some 
natural properties the intersection pairing should have, to define our inter
section theory. We denote by Div X the group of all divisors on X, and by 
Pic X the group of invertible sheaves up to isomorphism, which is isomorphic 
to the group of divisors modulo linear equivalence (II, §6). 

Theorem 1.1. There is a unique pairing Div X x Div X--+ Z, denoted by 
C.D for any two divisors C,D, such that 

(1) if C and D are nonsingular curves meeting transversally, then C.D = 

#(C n D), the number of points of C n D, 
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(2) it is symmetric: C.D = D.C, 
(3) it is additive: (C1 + C2).D = C1.D + C 2 .D, and 
(4) it depends only on the linear equivalence classes: if cl ~ c2 then 

C1.D = C2 .D. 

Before giving the proof, we need some auxiliary results. Our main tool is 
Bertini's theorem, which we will use to express any divisor as a difference of 
nonsingular curves, up to linear equivalence. 

Lemma 1.2. Let C1, ... ,C, be irreducible curves on the surface X, and let D 
be a very ample divisor. Then almost all curves D' in the complete linear 
system IDI are irreducible, nonsingular, and meet each of the C; transversally. 

PROOF. We embed X in a projective space P" using the very ample divisor D. 
Then we apply Bertini's theorem (II, 8.18) and (III, 7.9.1) simultaneously to X 
and to the curves Cto ... ,C,. We conclude that most D' E IDI are irreducible 
nonsingular curves in X, and that the intersections C; n D are nonsin
gular, i.e., points with multiplicity one, which means that the C; and D' meet 
transversally. Since we did not assume the C; were nonsingular, we need to 
use (II, 8.18.1). 

Lemma 1.3. Let C be an irreducible nonsingular curve on X, and let D be any 
curve meeting C transversally. Then 

#(C n D) = degc(2'(D) ® @c). 

PROOF. Here, of course, £>(D) is the invertible sheaf on X corresponding to D 
(II, §7), and degc denotes the degree of the invertible sheaf £>(D) ® (!Jc 
on C (IV, §1). We use the fact (II, 6.18) that 2'(- D) is the ideal sheaf of Don X. 
Therefore, tensoring with (!Jc, we have an exact sequence 

where now C n D denotes the scheme-theoretic intersection. Thus £>(D) ® 
(!Jc is the invertible sheaf on C corresponding to the divisor C n D. Since the 
intersection is transversal, the degree of the divisor C n D is just the number 
ofpoints #(C n D). 

PROOF OF (1.1). First we show the uniqueness. Fix an ample divisor H on X. 
Given any two divisors C,D on X, we can find an integer n > 0 such that 
C + nH, D + nH, and nH are all very ample. Indeed, we first choose k > 0 
such that 2'( C + kH), 2'(D + kH) and 2(kH) are all generated by global 
sections. This is possible by definition of ampleness (II, §7). Then we choose 
l > 0 so that lH is very ample (II, 7.6). Taking n = k + l, it follows that 
C + nH, D + nH, and nH are all very ample (II, Ex. 7.5). 
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Now using (1.2), choose nonsingular curves 

C' E IC + nH! 
D' E ID + nH!, transversal to C' 

E' E !nH!, transversal to D' 

F' E !nH!, transversal to C' and E'. 

Then C ~ C' - E' and D ~ D' - F', so by the properties (1)-(4) of the 
theorem, we have 

C.D = #(C' n D') - #(C' n F') - #(E' n D') + #(E' n F'). 

This shows that the intersection number of any two divisors is determined by 
(1)-(4), so the intersection pairing is unique. 

For the existence, we use the same method, and check that everything is 
well-defined. To simplify matters, we proceed in two steps. Let ~ s; Div X 
be the set of very ample divisors. Then ~ is a cone, in the sense that the sum 
of two very ample divisors is again very ample. For C,D E ~'we define the 
intersection number C.D as follows: by (1.2) choose C' E ICI nonsingular, and 
choose D' E IDI nonsingular and transversal to C'. Define C.D = # ( C' n D'). 

To show this is well-defined, first fix C', and let D" E IDI be another non
singular curve, transversal to C'. Then by (1.3), we have 

#(C' n D') = deg .P(D')@ (!)c., 

and ditto forD". But D' ~ D", so .P(D') ~ .P(D"), so these two numbers 
are the same. Thus our definition is independent of D'. Now suppose C" E ICI 
is another nonsingular curve. By the previous step, we may assume D' is 
transversal to both C' and C". Then by the same argument, restricting to the 
curveD', we see that #(C' n D') = #(C" n D'). 

So now we have a well-defined pairing ~ x ~ ---+ Z, which is clearly 
symmetric, and by definition it depends only on the linear equivalence 
classes of the divisors. It also follows from (1.3) that it is additive, since 
.P(D1 + D 2 ) ~ .P(D1) @ .P(D2 ), and the degree is additive on a curve. 
Finally, this pairing on ~ x ~satisfies condition (1) by construction. 

To define the intersection pairing on all of Div X, let C and D be any two 
divisors. Then, as above, we can write C ~ C' - E' and D ~ D' - F' where 
C',D',E',F' are all in~. So we define 

C.D = C'.D' - C'.F' - E'.D' + E'.F'. 

If, for example, we used another expression C ~ C" - E" with C",E" also 
very ample, then 

C' + E" ~ C" + E', 

so by what we have shown for the pairing in~' we have 

C'.D' + E".D' = C".D' + E'.D' 
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and ditto for F' in place of D'. Thus the resulting two expressions for C.D are 
the same. This shows that the intersection pairing C.D is well-defined on all 
ofDiv X. 

It satisfies (2), (3), (4) by construction and by the corresponding properties 
on ~. The condition (1) follows using (1.3) once more. q.e.d. 

Now that we have defined the intersection pairing, it is useful to have a way 
of calculating it without having to move the curves. If C and D are curves 
with no common irreducible component, and if P E C n D, then we define 
the intersection multiplicity ( C.D)p of C and D at P to be the length of {!)P,xl(f,g), 
where f,g are local equations of C,D at P (1, Ex 5.4). Here length is the same 
as the dimension of a k-vector space. 

Proposition 1.4. If C and D are curves on X having no common irreducible 
component, then 

C.D = L ( C.D)p. 
PeCnD 

PROOF. As in the proof of (1.3), let !l'(D) be the invertible sheaf corresponding 
to D. Then we have an exact sequence 

0--+ 2( -D)@ {!)c--+ {!)c--+ {!)enD--+ 0 

where we consider C n D as a scheme. Now the scheme C n D has support 
at the points of C n D, and for any such P, its structure sheaf is the k-algebra 
@p x/(f,g). Therefore 

dimk H 0 (X,{!)cnv) = L (C.D)p. 
PeCnD 

On the other hand, we can calculate this H 0 from the cohomology sequence 
of the exact sequence above. We obtain 

where, as usual, for any coherent sheaf /F, 

x(:F) = D -1)i dimk Hi(X,:F) 

is the Euler characteristic (III, Ex. 5.1). 
This shows that the expression L( C.D)p depends only on the linear equiva

lence class of D. By symmetry, it also depends only on the linear equivalence 
class of C. Replacing C and D by differences of nonsingular curves, all 
transversal to each other as in the proof of (1.1), we see that this quantity is 
equal to the intersection number C.D defined in (1.1). 

Example 1.4.1. If D is any divisor on the surface X, we can define the self
intersection number D.D, usually denoted by D 2 • Even if Cis a nonsingular 
curve on X, the self-intersection C2 cannot be calculated by the direct method 
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of (1.4). We must use linear equivalence. However, by (1.3), we see that 
C2 = degc(.P( C) ® me). To reinterpret this, note that since the ideal sheaf .J' 
of Con X is 2'( -C) (II, 6.18), we have .1'/.1'2 ~ 2'( -C)® me. Therefore 
its dual.P(C) ®me is isomorphic to the normal sheaf .Aie1x, which is defined 
as Yfom(.J'j.J' 2 ,mc) (II, §8). So we have C2 = dege .Aic;x· 

Example 1.4.2. Let X = P 2 . Then Pic X ~ Z, and we can take the class h 
of a line as generator. Since any two lines are linearly equivalent, and since 
two distinct lines meet in one point, we have h2 = 1. This determines the 
intersection pairing on P2 , by linearity. Thus if C,D are curves of degrees 
n,m respectively, we have C "" nh, D "" mh and so C.D = nm. If C and D 
have no component in common this can be interpreted in terms of the local 
intersection multiplicities of(l.4), and we get a new proof ofBezout's theorem 
(1, 7.8). 

Example 1.4.3. Let X be the nonsingular quadric surface in P 3 . Then Pic 
X ~ Z Et> Z (II, 6.6.1) and we can take as generators lines l of type (1,0) and m 
of type (0,1), one from each family. Then F = 0, m2 = 0, l.m = 1, because 
two lines in the same family are skew, and two lines of opposite families meet 
in a point. This determines the intersection pairing on X. So for example 
if C has type (a,b) and D has type (a',b'), then C.D = ab' + a' b. 

Example 1.4.4. Using the self-intersection, we can define a new numerical 
invariant of a surface. Let QX/k be the sheaf of differentials of Xjk, and let 
wx = f\2Qx;k be the canonical sheaf, as defined in (II, §8). Any divisor K in 
the linear equivalence class corresponding to wx is called a canonical divisor. 
Then K 2 , the self-intersection of the canonical divisor, is a number depending 
only on X. For example, if X = P 2 , K = - 3h, so K 2 = 9. If X is the 
quadric surface (1.4.3), then K has type (- 2,- 2) (II, Ex. 8.4), so K 2 = 8. 

Proposition 1.5 (Adjunction Formula). If C is a nonsingular curve of genus g 
on the surface X, and if K is the canonical divisor on X, then 

2g - 2 = C.( C + K). 

PROOF. According to (II, 8.20) we have We ~ Wx@ .P(C)@ me. The degree 
of We is 2g - 2 (IV, 1.3.3). On the other hand, by (1.3) we have 

degc(wx @ .P(C) @me) = C.(C + K). 

Example 1.5.1. This gives a quick method of computing the genus of a curve 
on a surface. For example, if Cis a curve of degree din P 2 , then 

2g - 2 = d(d - 3) 

so g = ~(d - 1)(d - 2). Cf. (II, Ex. 8.4). 
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Example 1.5.2. If Cis a curve of type (a,b) on the quadric surface, then C + K 
has type (a - 2, b - 2), so 

2g - 2 = a(b - 2) + (a - 2)b, 

so g = ab - a - b + 1. Cf. (III, Ex. 5.6). 

Now we come to the Riemann-Roch theorem. For any divisor Don the 
surface X, we let l(D) = dimk H 0(X,.!l'(D) ). Thus l(D) = dim IDI + 1, where 
IDI is the complete linear system of D. We define the superabundance s(D) to 
be dim H 1(X,.!l'(D) ). The reason for this terminology is that before the in
vention of cohomology, the Riemann-Roch formula was written only with 
l(D) and l(K - D), and the superabundance was the amount by which it 
failed to hold. Recall also that the arithmetic genus Pa of X is defined by Pa = 

x(@x)- 1 (III, Ex. 5.3). 

Theorem 1.6 (Riemann-Roch). If Dis any divisor on the surface X, then 

1 
l(D) - s(D) + l(K - D) = 2 D.(D - K) + 1 + Pa· 

PROOF. By Serre duality (III, 7.7) we have 

l(K - D) = dim H 0(X,.!l'(Dr @ Wx) = dim H 2(X,.!l'(D) ). 

Thus the left-hand side is just the Euler characteristic, so we have to show 
for any D that 

1 
x(.!l'(D)) = 2 D.(D - K) + 1 + Pa· 

Since both sides depend only on the linear equivalence class of D, as in ( 1.1) 
we can write D as the difference C - E of two nonsingular curves. Now let 
us calculate. Since the ideal sheaves of C,E are .!l'(- C), .!l'(- E) respectively, 
we obtain exact sequences, tensoring with .!l'(C), 

0--+ .!l'(C - E) --+ .!l'(C)--+ .!l'(C)@ (i')E--+ 0 
and 

Since xis additive on short exact sequences (III, Ex. 5.1), we have 

Now X((i')x) = 1 + Pa by definition of Pa· Using the Riemann-Roch theorem 
for the curves C and E (IV, 1.3), and using (1.3) to find the degree, we have 

x(.!l'(C) ® @c) = C2 + 1 - 9c 
and 
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Finally, we use (1.5) to compute the genus of C and£: 

1 
gc = 2 C.(C + K) + 1 

and 
1 

gE = 2 E.(E + K) + 1. 

Combining all these, we obtain 

1 
x(!l'(C- £)) = 2(C- E).(C- E- K) + 1 + Pa 

as required. 

Remark 1.6.1. There is another formula, which is sometimes considered to 
be part of the Riemann-Roch theorem, namely 

12(1 + Pal = K 2 + C2, 

where c2 is the second Chern class of the tangent sheaf of X. This is a con
sequence ofthe generalized Grothendieck-Hirzebruch Riemann-Roch theo
rem (App. A, 4.1.2). 

As applications of the Riemann-Roch theorem, we will prove the Hodge 
index theorem and Nakai's criterion for an ample divisor. 

Remark 1.6.2. In the following, note that if we fix a very ample divisor H 
on a surface X, then for any curve Con X, the intersection number C.H is 
just equal to the degree of C in the projective embedding determined by H 
(Ex. 1.2). In particular, it is positive. More generally, having fixed an ample 
divisor H on X, the number C.H plays a role similar to the degree of a 
divisor on a curve. 

Lemma 1.7. Let H be an ample divisor on the surface X. Then there is an 
integer n0 such that for any divisor D, if D.H > n0 , then H 2(X,!l'(D)) = 0. 

PROOF. By Serre duality on X, for any divisor D we have dim H 2(X,!l'(D)) = 
l(K -D). If l(K -D)> 0, then the divisor K -Dis effective, so (K - D).H > 
0. In other words, D.H < K.H. So we have only to take n0 = K.H to get 
the result. 

Remark 1.7.1. This result can be regarded as the analogue for surfaces of 
the result that says on a curve X, there is an integer n0 (namely 2gx - 2) 
such that if deg D > n0 , then H 1(X,!l'(D)) = 0 (IV, 1.3.4). 

Corollary 1.8. Let H be an ample divisor on X, and let D be a divisor such 
that D.H > 0 and D2 > 0. Then for all n » 0, nD is linearly equivalent 
to an effective divisor. 
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PROOF. We apply the Riemann-Roch theorem to nD. Since D.H > 0, for 
n » 0 we will have nD.H > n0 , so by (1.7), l(K - nD) = 0. Since s(nD) ~ 0, 
the Riemann-Roch theorem gives 

1 1 
l(nD) ~ 2 n2D2 - 2 nD.K + 1 + Pa· 

Now since D2 > 0, the right-hand side becomes large for n » 0, so we see 
that l(nD) -> oo as n -> oo. In particular, nD is effective for all n » 0. 

Definition. A divisor D on a surface X is numerically equivalent to zero, 
written D = 0, if D.E = 0 for all divisors E. We say D and E are nu
merically equivalent, written D = E, if D - E = 0. 

Theorem 1.9 (Hodge Index Theorem). Let H be an ample divisor on the sur
face X, and suppose that D is a divisor, D ¢ 0, with D.H = 0. Then 
D 2 < 0. 

PROOF. Suppose to the contrary that D2 ~ 0. We consider two cases. If 
D2 > 0, let H' = D + nH. For n » 0, H' is ample, as in the proof of (1.1). 
Furthermore, D.H' = D2 > 0, so by (1.8), we have mD is effective for all 
m » 0. But then mD.H > 0 (think of the projective embedding defined by 
a multiple of H), hence D.H > 0, which is a contradiction. 

If D2 = 0, we use the hypothesis D ¢ 0 to conclude that there is a divisor 
E with D.E =f. 0. Replacing E by E' = (H 2)E - (E.H)H, we may assume 
furthermore that E.H = 0. Now let D' = nD + E. Then D'.H = 0, and 
D'2 = 2nD.E + E2 • Since D.E =f. 0, by suitable choice of n E Z we can make 
D' 2 > 0. But then the previous argument applies to D', and again we have 
a contradiction. 

Remark 1.9.1. We explain the title of this theorem as follows. Let Picn X 
be the subgroup of Pic X of divisor classes numerically equivalent to zero, 
and let Num X = Pic X/Picn X. Then clearly the intersection pairing in
duces a nondegenerate bilinear pairing Num X x Num X-> Z. It is a 
consequence of the Neron-Severi theorem (Ex. 1.7) that Num X is a free 
finitely generated abelian group (see also (Ex. 1.8) ). So we can consider the 
vector space Num X ®z R over R, and the induced bilinear form. A theo
rem of Sylvester (Lang [2, XIV, §7, p. 365]) shows that such a bilinear form 
can be diagonalized with ± 1's on the diagonal, and that the number of 
+ 1's and the number of -1's are invariant. The difference of these two 
numbers is the signature or index of the bilinear form. In this context, (1.9) 
says that the diagonalized intersection pairing has one + 1, corresponding 
to a (real) multiple of H, and all the rest -1's. 

Example 1.9.2. On the quadric surface X (1.4.3) we can take H of type (1,1) 
and D of type (1,-1). Then H 2 = 2, H.D = 0, D2 = -2, and D,H form a 
basis of Pic X. In this case the only divisor numerically equivalent to 0 is 
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0, so Pic X = Num X. The pairing on Num X ®z R is diagonalized by 
taking the basis (1/J'i)H, (1/J'i)D. . 

Theorem 1.10 (Nakai-Moishezon Criterion). A divisor D on the surface X is 
ample if and only if D2 > 0 and D.C > 0 for all irreducible curves C in X. 

PROOF. The condition is clearly necessary, because if D is ample, then mD 
is very ample for some m > 0, in which case m2 D2 is the degree of X in the 
corresponding embedding, and mD.C is the degree of C, both of which must 
be positive (Ex. 1.2). 

Conversely, suppose D2 > 0 and D.C > 0 for all irreducible curves C. 
If H is a very ample divisor on X, then H is represented by an irreducible 
curve, so D.H > 0 by hypothesis. Therefore by (1.8) some multiple mD for 
m > 0 is effective. Replacing D by mD, we may assume that Dis effective. So 
we think of D as a curve in X, possibly singular, reducible, and nonreduced. 

Next, let !l' = !l'(D). We will show that the sheaf !l' ® (!Jv is ample on 
the scheme D. For this it is sufficient to show that !l' ® (!JD,.d is ample on 
the reduced scheme Drect (III, Ex. 5.7). And if D,ect is a union of irreducible 
curves Ct. ... ,C" it is enough to show that !l' ® (!Jc is ample on each C; 
(foe. cit.). Finally, iff: C; ---+ C; is the normalization ~f C;, it is enough to 
show that f*(!l'@ (!)c) is ample on C;, since f is a finite surjective morphism 
(foe. cit.). But deg f*(!l' @ (!)c) is just D.C; > 0, because we can represent 
!l' as a difference of nonsingular curves meeting C; transversally, so this 
degree is preserved by f*. Since the degree is positive, this sheaf is ample 
on the nonsingular curve C; (IV, 3.3). Therefore !l' ® (!JD is ample on D. 

Next we will show that !l'n is generated by global sections for n » 0. 
We use the exact sequence 

0---+ !l'- 1 ---+ (!Jx---+ (!JD---+ 0 

tensored with !l'n, and the resulting cohomology sequence 

0---+ Ho(X,!l'n-1)---+ Ho(X,!l'")---+ Ho(D,!l'n@ (!Jv)---+ 

---+ H1(X,!l'"-1)---+ H1(X,!l'n)---+ H1(D,!l'n@ (!Jv)---+ ... 

Since !l' @ (!JD is ample on D, we have H 1(D,!l'n @ (!Jv) = 0 for n » 0 
(III, 5.3). So we see that for each n, 

dim H 1(X,!l'n) ~ dim H 1(X,!l'n- 1 ). 

Since these are finite-dimensional vector spaces, these dimensions must 
eventually be all equal. Therefore the map 

Ho(X,!l'n) ---+ Ho(D,!l'n ® (!Jv) 

is surjective for all n » 0. Again since !l' ® (!JD is ample on D, the sheaf 
!£'" @ (!JD will be generated by global sections for all n » 0. These sections 
lift to global sections of !l'n on X, as we have just seen, so by Nakayama's 
lemma, the global sections of !l'n generate the stalks at every point of D. 
But since !l' = !l'(D), it has a section vanishing only along D, so in fact !l'n 
is generated by global sections everywhere. 
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Fixing an n such that !lm is generated by global sections, we obtain a 
morphism cp:X--+ pN defined by fr (II, 7.1). Next we show that the mor
phism cp has finite fibres. If not, there would be an irreducible curve C in 
X with cp( C) = a point. In this case, taking a hyperplane in pN which misses 
that point, we would have an effective divisor E ~ nD with En C = 0. 
Therefore E.C = 0, which contradicts the hypothesis D.C > 0 for all C. 
So we see that cp has finite fibres. 

Then it is a consequence of the Stein factorization theorem (III, 11.5) 
that cp is actually a finite morphism (III, Ex. 11.2). So cp*(C9(1)) = ;r is 
ample on X by (III, Ex. 5.7) and we conclude that Dis ample. q.e.d. 

Example 1.10.1. On the quadric surface X (1.4.3), the effective divisors are 
those of type (a,b) with a,b ~ 0. So a divisor D of type (a,b) is ample if and 
only if a = D.(1,0) > 0 and b = D.(0,1) > 0 (II, 7.6.2). In this case the con
dition D.C > 0 for all irreducible curves C implies D2 > 0. However, there 
is an example of Mumford of a divisor Don a surface X, with D.C > 0 for 
every irreducible curve, but D2 = 0, hence D not ample. See Hartshorne 
[5, I, 10.6]. 

References for§ 1. For another approach to intersection theory on a sur
face, see Mumford [2]. The proof of the Riemann~Roch theorem follows 
Serre [7, Ch. IV no. 8]. The proof of the Hodge index theorem is due to 
Grothendieck [2]. The criterion for an ample divisor is due to Nakai [1] 
and independently Moishezon [1]. See Appendix A for intersection theory 
and the Riemann~Roch theorem in higher dimensions. 

EXERCISES 

1.1. Let C,D be any two divisors on a surface X, and let the corresponding invertible 
sheaves be .P,A. Show that 

1.2. Let H be a very ample divisor on the surface X, corresponding to a projective 
embedding X <;; PN. If we write the Hilbert polynomial of X (III, Ex. 5.2) as 

1 
F(z) = 2 azz + bz + c, 

show that a = Hz, b = !Hz + 1 - n, where n is the genus of a nonsingular 
curve representing H, and c = 1 + Pa· Thus the degree of X in PN, as defined 
in (I, §7), is just Hz. Show also that if Cis any curve in X, then the degree of C 
in pN is just C. H. 

1.3. Recall that the arithmetic genus of a projective scheme D of dimension 1 is defined 
as Pa = 1 ~ x(lPv) (III, Ex. 5.3). 

366 

(a) If Dis an effective divisor on the surface X, use (1.6) to show that 2pa - 2 = 

D.(D + K). 
(b) p.(D) depends only on the linear equivalence class of Don X. 
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(c) More generally, for any divisor Don X, we define the virtual arithmetic genus 
(which is equal to the ordinary arithmetic genus if Dis effective) by the same 
formula: 2p. - 2 = D.(D + K). Show that for any two divisors C,D we have 

p.( -D)= D2 - p.(D) + 2 
and 

p.(C + D) = p.(C) + p.(D) + C.D - 1. 

1.4. (a) If a surface X of degree d in P3 contains a straight line C = P 1, show that 
C2 = 2- d. 

(b) Assume char k = 0, and show for every d ~ 1, there exists a nonsingular 
surface X of degree d in P3 containing the line x = y = 0. 

1.5. (a) IfXisasurfaceofdegreedinP3,thenK2 = d(d- 4)2 • 

(b) If X is a product of two nonsingular curves C,C', of genus g,g' respectively, 
then K2 = 8(g - 1)(g' - 1). Cf. (II, Ex. 8.3). 

1.6. (a) If Cis a curve of genus g, show that the diagonal Ll <;: C x C has self-inter
section Ll 2 = 2 - 2g. (Use the definition of QCfk in (II, §8).) 

(b) Let l = C x pt and m = pt x C. If g ~ 1, show that l,m, and Ll are linearly 
independent in Num( C x C). Thus Num( C x C) has rank ~ 3, and in parti
cular, Pic(C x C) i= Pi Pic C EB P! Pic C. Cf. (III, Ex. 12.6), (IV, Ex. 4.10). 

1.7. Algebraic Equivalence of Divisors. Let X be a· surface. Recall that we have 
defined an algebraic family of effective divisors on X, parametrized by a non
singular curve T, to be an effective Cartier divisor D on X x T, flat over T 
(III, 9.8.5). In this case, for any two closed points 0,1 E T, we say the corresponding 
divisors D0 ,D 1 on X are prealgebraically equivalent. Two arbitrary divisors 
are prealgebraically equivalent if they are differences of prealgebraically equiva
lent effective divisors. Two divisors D,D' are algebraically equivalent if there is 
a finite sequence D = D0 ,D1, . .. ,Dn = D' with D; and D;+ 1 prealgebraically 
equivalent for each i. 
(a) Show that the divisors algebraically equivalent to 0 form a subgroup ofDiv X. 
(b) Show that linearly equivalent divisors are algebraically equivalent. [Hint: If 

(f) is a principal divisor on X, consider the principal divisor (if- u) on X x P\ 
where t,u are the homogeneous coordinates on P 1.] 

(c) Show that algebraically equivalent divisors are numerically equivalent. [Hint: 
Use (III, 9.9) to show that for any very ample H, if D and D' are algebraically 
equivalent, then D.H = D'.H.] 
Note. The theorem of Neron and Severi states that the group of divisors 

modulo algebraic equivalence, called the Nhon-Seueri group, is a finitely gen
erated abelian group. Over C this can be proved easily by transcendental methods 
(App. B, §5) or as in (Ex. 1.8) below. Over a field of arbitrary characteristic, see 
Lang and Neron [1 J for a proof, and Hartshorne [ 6] for further discussion. Since 
Num X is a quotient of the Neron-Severi group, it is also finitely generated, and 
hence free, since it is torsion-free by construction. 

1.8. Cohomology Class of a Divisor. For any divisor D on the surface X, we define 
its cohomology class c(D) E H 1(X,Qx) by using the isomorphism Pic X ~ 
H 1(X,@k) of (III, Ex. 4.5) and the sheaf homomorphism dlog:@*--. Qx (III, 
Ex. 7.4c). Thus we obtain a group homomorphism c:Pic X--> H 1(X,Qx). On 
the other hand, H 1(X,Q) is dual to itself by Serre duality (III, 7.13), so we have a 
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nondegenerate bilinear map 

(a) Prove that this is compatible with the intersection pairing, in the following 
sense: for any two divisors D,E on X, we have 

(c(D),c(E)) = (D.E) · 1 

in k. [Hint: Reduce to the case where D and E are nonsingular curves meeting 
transversally. Then consider the analogous map c: Pic D ...... H 1(D,QD), and 
the fact (III, Ex. 7.4) that c(point) goes to 1 under the natural isomorphism of 
H 1(D,QD) with k.] 

(b) If char k = 0, use the fact that H 1(X,Qx) is a finite-dimensional vector space 
to show that Num X is a finitely generated free abelian group. 

1.9. (a) If H is an ample divisor on the surface X, and if D is any divisor, show that 

(D 2 )(H2 ) ~ (D.H) 2• 

(b) Now let X be a product of two curves X = C x C'. Let l = C x pt, and 
m = pt x C'. For any divisor Don X, let a = D.l, b = D.m. Then we say D 
has type (a,b). If D has type (a,b), with a,b E Z, show that 

D2 ~ 2ab, 

and equality holds if and only if D = bl +am. [Hint: Show that H = l + m 
is ample, let E = l - m, let D' = (H 2 )(E2)D - (E 2)(D.H)H - (H 2 )(D.E)E, and 
apply (1.9). This inequality is due to Castelnuovo and Severi. See 
Grothendieck [2].] 

1.10. Wei/'s Proof [2] of the Analogue of the Riemann Hypothesis for Curves. Let C 
be a curve of genus g defined over the finite field Fq, and let N be the number of 
points of C rational over Fq. Then N = 1 - a + q, with lal ~ 2g~q. To prove 
this, we consider C as a curve over the algebraic closure k of Fq. Let f: C ...... C 
be the k-linear Frobenius morphism obtained by taking qth powers, which 
makes sense since Cis defined over Fq, so Xq ~ X (IV, 2.4.1). Let r <;; C x C 
be the graph off, and let Ll <;; c X c be the diagonal. Show that r 2 = q(2 - 2g), 
and r.LI = N. Then apply (Ex. 1.9) to D = rr + sLI for all r and s to obtain 
the result. See (App. C, Ex. 5.7) for another interpretation of this result. 

1.11. In this problem, we assume that X is a surface for which Num X is finitely gen
erated (i.e., any surface, if you accept the Neron~Severi theorem (Ex. 1. 7) ). 
(a) If His an ample divisor on X, and dE Z, show that the set of effective divisors 

D with D.H = d, modulo numerical equivalence, is a finite set. [Hint: Use 
the adjunction formula, the fact that Pa of an irreducible curve is ;;, 0, and the 
fact that the intersection pairing is negative definite on Hj_ in Num X.] 

(b) Now let C be a curve of genus g ;;, 2, and use (a) to show that the group of 
automorphisms of C is finite, as follows. Given an automorphism a of C, let 
r <;; X = c X c be its graph. First show that if r = Ll, then r = Ll, using 
the fact that Ll 2 < 0, since g ;;, 2 (Ex. 1.6). Then use (a). Cf. (IV, Ex. 2.5). 

1.12. If D is an ample divisor on the surface X, and D' = D, then D' is also ample. 
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Give an example to show, however, that if D is very ample, D' need not be very 
ample. 
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2 Ruled Surfaces 

In this section we will illustrate some of the general concepts discussed in 
§1 by studying a particular class of surfaces, the ruled surfaces. By using 
some results from the theory of curves, we get a good hold on these surfaces, 
and can describe them and the curves lying on them quite explicitly. 

We begin by establishing some general properties of ruled surfaces. Then 
we will define an invariant e, and give some examples. After that we give a 
classification of elliptic ruled surfaces, a detailed description of the rational 
ruled surfaces, and we determine the ample divisors on a ruled surface of 
any genus. 

Definition. A geometrically ruled surface, or simply ruled surface, is a surface 
X, together with a surjective morphism n:X-+ C to a (nonsingular) curve 
C, such that the fibre XY is isomorphic to P 1 for every point y E C, and 
such that n admits a section (i.e., a morphism a: C-+ X such that no a = 

ide). 

Nate: In fact, one can show using Tsen's theorem that the existence of a 
section is a consequence of the other provisions of the definition-see, e.g., 
Shafarevich [1, p. 24]. 

Example 2.0.1. If C is a curve, then C x P 1 with its first projection is a 
ruled surface. In particular, the quadric surface in P 3 is a ruled surface in 
two different ways. We consider the data n,C as given when we speak of a 
ruled surface. 

Lemma 2.1. Let n:X -+ C be a ruled surface, let D be a divisor on X, and 
suppose that D.f = n ;, 0, where f is a fibre of n. Then n*:i'(D) is a 
locally free sheaf of rank n + 1 on C. In particular, n*@x = @c. 

PROOF. First note that any two fibres of n are algebraically equivalent 
divisors on X, since they all are parametrized by the curve C. Therefore 
they are numerically equivalent (Ex. 1.7), so that D.f is independent of the 
choice of the fibre. 

Now for any y E C, we consider the sheaf :i'(D)y on the fibre XY. This 
is an invertible sheaf of degree n on X Y ~ P 1 , so H 0(:£(D)y) has dimension 
n + 1. This is independent of y, so by Grauert's theorem (III, 12.9), n*:E(D) 
is locally free of rank n + 1. 

In caseD = 0, n*@x is locally free of rank 1. But (III, 12.9) tells us fur
thermore that the natural map 
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is an isomorphism for each y. The right-hand side is canonically isomorphic 
to k. Therefore the image of the global section 1 of C9c via the structural 
map C9c -+ n*C9x generates the stalk at every point, showing that n*C9x ~ 
C9c. 

Proposition 2.2. If n: X -+ Cis a ruled surface, then there exists a locally free 
sheaf G of rank 2 on C such that X ~ P(G) over C. (See (II, §7) for the 
definition of P(G).) Conversely, every such P(G) is a ruled surface over C. 
If iff and iff' are two locally free sheaves of rank 2 on C, then P(G) and 
P(G') are isomorphic as ruled surfaces over C if and only if there is an 
invertible sheaf ff on C such that G' ~ @" @ ff. 

PROOF. Given a ruled surface n:X -+ C, then by definition n has a section 
u. Let D = u(C). Then Dis a divisor on X, and D.f = 1 for any fibre. By 
the lemma, @" = n*ff(D) is a locally free sheaf of rank 2 on C. Furthermore, 
there is a natural map n*S = n*n*ff(D) -+ ff(D) on X. This map is sur
jective. Indeed, by Nakayama's lemma, it is enough to check this on any 
fibre X y· But XY ~ P1, and ff(D)y is an invertible sheaf of degree 1, which 
is generated by its global sections, and@" @ k(y) -+ H 0(ff(D)y) is surjective 
by (III, 12.9). 

Now we apply (II, 7.12) which shows that the surjection n*G-+ ff(D)-+ 0 
determines a morphism g: X-+ P(G) over C, with the property that ff(D) ~ 
g*@P(c)(1). Since ff(D) is very ample on each fibre, g is an isomorphism on 
each fibre, and so g is an isomorphism. 

Conversely, let @" be a locally free sheaf of rank 2 on C, let X = P(G) 
and let n: X -+ C be the projection. Then X is a nonsingular projective 
surface over k, and each fibre of n is isomorphic to P 1 . To show the exis
tence of a section, let U s;;; C be an open subset on which @" is free. Then 
n- 1(V) ~ U x Pl, so we can define a section u: U-+ n- 1(U) by y r--+ y x 
pt. Then, since X is a projective variety, by (1, 6.8) there is a unique exten
sion of u to a map of C to X, which is necessarily a section. 

For the last statement, see (II, Ex. 7.9). 

Remark 2.2.1. A surface X is called a birationally ruled surface if it is hi
rationally equivalent to C x P1 for some curve C. (This includes the 
rational surfaces, because P2 is birational to P1 x P1 .) We see from (2.2) 
that every ruled surface is birationally ruled. 

Proposition 2.3. Let n:X -+ C be a ruled surface, let C0 s;;; X be a section, 
and let f be a fibre. Then 

Pic X ~ Z EB n* Pic C, 

where Z is generated by C0 . Also 

NumX ~ Z EB Z, 

generated by C0 ,f, and satisfying C0 .f = 1, j2 = 0. 
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PROOF. Clearly C 0 .f = 1, because C0 and f meet at only one point, and 
are transversal there. We have f 2 = 0 because two distinct fibres don't 
meet. 

Now if DE Pic X, let n = D.f, and let D' = D - nC0 . Then D'.f = 0. 
Therefore by (2.1), n*(2'(D')) is an invertible sheaf on C, and clearly 2'(D') ~ 
n*n*(2'(D') ). Since n*: Pic C --+ Pic X is clearly injective, we see that 
Pic X ~ Z EEl n* Pic C. Then, since any two fibres are numerically equiva
lent, Num X ~ Z EEl Z, generated by C0 and f See also (II, Ex. 7.9) and 
(III, Ex. 12.5). 

Lemma 2.4. Let D be a divisor on the ruled surface X, and assume that 
D.f ~ 0. Then Rin*2'(D) = 0 fori > 0; and for all i, 

Hi(X,2'(D)) ~ Hi( C,n*2'(D) ). 

PROOF. Since 2'(D)y is an invertible sheaf of degree D.f ~ 0 on XY ~ P\ 
we have Hi(Xy,2'(D)y) = 0 for all i > 0. Therefore Rin*2'(D) = 0 for 
i > 0 (III, Ex. 11.8) or (III, 12.9). The second statement follows from (III, 
Ex. 8.1). 

Corollary 2.5. If the genus of Cis g, then Pa(X) = -g, p9(X) = 0, q(X) =g. 

PROOF. The arithmetic genus Pais defined by 1+pa=x(@x). Since n*@x=(r)c 
by (2.1), we have dim H 0(X,(r)x) = 1, dim H 1(X,(r)x) = g, dim H 2(X,(r)x) = 
0 using (2.4). So Pa = -g. By (III, 7.12.3), the geometric genus p9 = 
dim H 2(X,(r)x) = 0. The irregularity q = dim H 1(X,(r)x) = g. See also (III, 
Ex. 8.4). 

Proposition 2.6. Let Iff be a locally free sheaf of rank 2 on the curve C, and 
let X be the ruled surface P(!C). Let (9x(1) be the invertible sheaf (r)P(&)(1) 
(II, §7). Then there is a one-to-one correspondence between sections 
0': C--+ X and surjections Iff --+ 2' --+ 0, where 2' is an invertible sheaf on C, 
given by 2' = O"*@x(1). Under this correspondence, if JV = ker(lff --+ 2'), 
then JV is an invertible sheaf on C, and JV ~ n*((r)x(l) ® 2'(- D)), where 
D = O'(C), and n*JV ~ (r)x(1) ® 2'( -D). 

PROOF. The correspondence between sections 0' and surjections Iff --+ 2' --+ 0 
is given by (II, 7.12). (See also (II, Ex. 7.8).) Given 0', with O"(C) = D, we 
consider the exact sequence 

Taking n*' we have 

0--+ n*((r)x(1) ® 2'( -D))--+ Iff--+ 2'--+ 0, 

with 0 on the right because R 1n*((r)x(1) ® 2'( -D)) = 0 by (2.4). The middle 
term is Iff by (II, 7.11), and the right-hand term is 2', because (r)x(l) ® (r)D 
is a sheaf on D ~ C, so O"* and n* have the same effect. We conclude that 
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JV ~ n*(lDx(l) ® 2( -D)). Since the sheaf lDx(l) ® 2( -D) has degree 0 
along the fibres, we see that it is isomorphic to n* JV by (2.3) and JV is 
invertible (2.1 ). 

Corollary 2.7. Any locally free sheaf$ of rank 2 on a curve Cis an extension 
of invertible sheaves. 

PROOF. Since P($) has a section (2.2), we get an exact sequence 0 -+ JV -+ 
$ -+ 2 -+ 0 where JV and 2 are invertible sheaves. This also follows from 
(II, Ex. 8.2). 

Remark 2.7.1. The same result holds for locally free sheaves of arbitrary 
rank (Ex. 2.3). 

Proposition 2.8. If 1t: X -+ C is a ruled surface, it is possible to write X ~ 
P($) where$ is a locally free sheaf on C with the property that H 0($) =I 0 
but for all invertible sheaves 2 on C with deg 2 < 0, we have H 0($ ® 2) = 
0. In this case the integer e = -deg $is an invariant of X. Furthermore 
in this case there is a section u0 :C-+ X with image C0 , such that 2(C0 ) ~ 

lD x( 1 ). 

PROOF. First write X ~ P($') for some locally free sheaf$' on C (2.2). Then 
we will replace $' by $ = $' ® .A for a suitable invertible sheaf .A on C 
so as to have H 0($) =1 0 but H 0($ ® 2) = 0 for all 2 with deg 2 < 0. 
An invertible sheaf of positive degree on Cis ample (IV, 3.3), so it is possible 
to make H 0($) =1 0 by taking deg .A large enough. On the other hand, 
since $' is an extension of invertible sheaves (2. 7), and since an invertible 
sheaf of negative degree can have no global sections, we see that H 0($) = 0 
for deg .A sufficiently negative. So we achieve our result by taking an .A 
of least degree such that H 0($' ® .A) =1 0. 

Since all possible representations of X as a P($) are given by the sheaves 
$ = $' ® .A (2.2) we see that the integer e = - deg $ depends only on X. 
(The degree of$ is defined as the degree of the invertible sheaf (\2$ (II, 
Ex. 6.12).) 

Finally, let s E H0($) be a nonzero section. It determines an injective 
map 0-+ lDc-+ $. I claim the quotient 2 = cff/lDc is an invertible sheaf on 
C. Since C is a nonsingular curve, and 2 has rank 1 in any case, it is enough 
to show that 2 is torsion-free. If not, let g; <;; $ be the inverse image of 
the torsion subsheaf of 2 by the map $ -+ 2 -+ 0. In that case g; is torsion
free of rank 1 on C, hence invertible. Furthermore, lD c # g;, so deg g; > 0. 
But then, since g; <;; $, we have H 0($ ® g;~) =1 0, and deg g;~ < 0, so 
this contradicts the choice of$. 

Now, since 2 is invertible, it gives a section u0 : C -+ X by (2.6). Let C0 

be its image. Then JV = lDc in the notation of (2.6), so lDx(l) ® 2(- C0) ~ 

lDx, which shows that 2(C0) ~ lDx(l). 
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Figure 19. A ruled surface. 

Notation 2.8.1. For the rest of this section, we fix the following notation 
(Fig. 19). Let C be a curve of genus g, and let n:X--+ C be a ruled surface 
over C. We write X ~ P(t&"), where !&" satisfies the conditions of (2.8), in 
which case we say !&" is normalized. This does not necessarily determine 
!&" uniquely, but it does determine deg !&". We let e be the divisor on C 
corresponding to the invertible sheaf f\2 !&", so that e = -deg e. (This 
sign is put in for historical reasons.) We fix a section C0 of X with 
2(C0 ) ~ (!)P(.c)(1). If b is any divisor on C, then we denote the divisor 
n*b on X by bf, by abuse of notation. Thus any element of Pic X can be 
written aC0 + bf with a E Z and b E Pic C. Any element of Num X can 
be written aC0 + bf with a,b E Z. 

Proposition 2.9. If D is any section of X, corresponding to a surjection !&" --+ 

2 --+ 0, and if 2 = 2(b) for some divisor b on C, then deg b = C0 .D, 
and 

D "' C0 + (b - e)f 

In particular, we have C6 = deg e = -e. 

PROOF. Since 2 = a*(2(C0 ) ® (!)v), we have deg 2 = C0 .D by (1.1) and 
(1.3). Writing 

we have 2(C0 -D)~ n*JV by (2.6) and the choice of C0 (2.8.1). But 
JV = 2(e - b), so we have D "' C0 + (b - e)f in Pic X. Finally, in the 
caseD = C0 , JV = (!)c, sob = e and we have C6 = deg e = -e. 

Lemma 2.10. The canonical divisor K on X is given by 

K "' -2C0 + (f + e)f 

where f is the canonical divisor on C. 
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PROOF. Let K - aC0 + bf Using the adjunction formula (1.5) for a fibre 
f, we have 

- 2 = f.(f + K) = a. 

Now we use the adjunction formula for C0 in its invertible sheaf form 
(II, 8.20), which says that 

Wc 0 :;:;: Wx ® Y(Co) ® 0c0 :;:;: 2"(- Co + bf) ® 0ca· 

Identifying C0 with C via n, the corresponding statement for divisors on C 
is f = - e + b, so b = e + f. This result also follows from {III, Ex. 8.4). 

Corollary 2.11. For numerical equivalence, we have 

K = - 2C0 + (2g - 2 - e)f 
and therefore 

K 2 = 8(1 - g). 

PROOF. We have deg f = 2g - 2 (IV, 1.3.3) and deg e = -e. Then we 
compute K 2 using (2.3) and (2.9). 

Example 2.11.1. For any curve C, the ruled surface X = C x P 1 corre
sponds to the (normalized) locally free sheaf iff = 0c EB 0c on C. In this 
case e = 0, and C0 is any fibre of the second projection. 

Example 2.11.2. If C is a curve of genus ~ 1, and iff = 0c EEl Y where 
deg Y = 0 but Y ;f. 0c, then there are two choices of normalized iff, 
namely iff and iff ® Y- 1. We have e = 0, deg e = 0, but e is determined 
only up to sign. There are exactly two choices of C0 , both with C6 = 0. 

Example 2.11.3. On any curve C, let iff = 0c EB Y with deg Y < 0. Then 
the normalized iff is unique, Y = Y(e) and e is unique. The section C0 is 
unique, with C6 = -e < 0. In this case e = -deg Y > 0. 

Example 2.11.4. Let C be any curve embedded in P", of degree d. Let X 0 

be the cone over C in P" + 1, with vertex P 0 (I, Ex. 2.10). If we blow up the 
point P 0 , we will show that we obtain a ruled surface X over C, of the kind 
(2.11.3) above, with Y :;:;: (!Jc( -1). In particular, e = d, and the inverse 
image of P0 in X is the section C0 with C5 = -d. 

First of all, we show that P"+ 1 with one point blown up is isomorphic 
to P((!J EB 0(1)) over P". Indeed, let P"+ 1 have coordinates x 0 , ... ,xn+ 1 . 

If we blow up the point P0 = (1,0, ... ,0), then we get the variety V s; P" x 
pn+ 1 defined by the equations X;Yi = xiyi for i,j = 1,2, ... ,n + 1, where 
Yb . .. ,Yn+ 1 are the coordinates for P" (II, 7.12.1). On the other hand, if 
iff = (!J EB 0(1) on P", then P(iff) is defined as Proj S(iff), where S(iff) is the 
symmetric algebra of iff (II, §7). Now iff is generated by the global sections 1 
of (!J andY!, ... ,Yn+ 1 of 0(1). Therefore S(iff) is a quotient ofthe polynomial 
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algebra m[ Xo, 0 0 0 ,xn+ 1] by the mapping Xo f-> 1, xi f-> Yi fori = 1, 0 0 0 ,n + 1. 
The kernel of this map is the ideal generated by all xiyi - xiyi, i = 
1, ... ,n + 1. Therefore P(lff) is isomorphic to the subscheme of pn x pn+ 1 

defined by these equations, which is the same as the variety V s; pn x pn+ 1 

defined above. The first projection makes V look like P(lff), the second 
projection makes V look like blowing up a point. 

Now let Y be any subvariety ofPn, and X 0 its cone in pn+ 1 , with vertex P 0 . 

If we blow up P 0 on X 0 , we get a variety X which is the strict transform of X 0 

in V (II, 7.15.1). On the other hand, this variety X is clearly the inverse 
image of Y under the projection n: V ~ P(lff)--+ pn_ So we see that X ~ 
P((Dy EB (Dy(1) ). Twisting by (Dy( -1), we still have the same variety, so 
X ~ P(my EB my( -1) ). 

In particular, if Y is a nonsingular curve C of degree d in pn, then 
fi' = (D c( - 1) has degree - d. 

Example 2.11.5. As a special case of (2.11.4), we see that P 2 with one point 
blown up is isomorphic to the rational ruled surface over P 1 defined by 
Iff = (D EB (()( -1), having e = 1. 

Example 2.11.6. For an example of a ruled surface withe < 0, let C be an 
elliptic curve, let P E C be a point, and construct a locally free sheaf Iff of 
rank 2 as an extension 

0 --+ (D --+ Iff --+ fi'(P) --+ 0 

defined by a nonzero element ~ E Ext1(fi'(P),m) (III, Ex. 6.1). In this case 
Ext1(fi'(P},(D) ~ H 1( C,fi'(- P)) (III, 6.3) and (III, 6. 7). This is dual to 
H 0 ( C,fi'(P)) which has dimension 1. Thus~ is unique up to a scalar multiple, 
and so Iff is uniquely determined up to isomorphism. 

I claim this Iff is normalized. Clearly H 0(0") #- 0 by construction. If .A 
is any invertible sheaf, then we have an exact sequence 

0 --+ .A --+ Iff 0 .A --+ fi'(P) 0 .A --+ 0. 

If deg .A < 0, then we have H 0(.A) = 0, and H 0(fi'(P) 0 .A) = 0, and 
therefore also H 0(0" 0 .A) = 0, except for the case .A = fi'(- P). In that 
case we look at the cohomology sequence 

0 --+ H 0(.A) --+ H 0(0" 0 .A) --+ H 0(fi'(P) 0 .A) ~ H 1(.A) --+ .... 

The image of 1 E H 0(fi'(P) 0 .A) = H 0((Dc) by <5 is just the element ~ de
fining Iff (III, Ex. 6.1), which is nonzero. Therefore <5 is injective, and again 
H 0(0" 0 .A) = 0. Thus Iff is normalized. 

Now taking X = P(lff), we have an elliptic ruled surface with e = -1. 

Now that we have established some general properties of ruled surfaces 
and have given some examples, we can look more closely at some special 
cases. We begin by discussing the possible values of the invariant e. 
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Theorem 2.12. Let X be a ruled surface over the curve C of genus g, determined 
by a normalized locally free sheaf <C. 

(a) If <C is decomposable (i.e., a direct sum of two invertible sheaves) 
then <C ~ 0c ffi 2 for some 2 with deg 2 ~ 0. Therefore e ~ 0. All 
values of e ~ 0 are possible. 

(b) If <C is indecomposable, then - 2g ~ e ~ 2g - 2. (In fact, there 
are even stronger restrictions on e (Ex. 2.5).) 

PROOF. If <Cis decomposable, then <C ~ 2 1 ffi 2 2 for two invertible sheaves 
2 1 and 2 2 on C. We must have deg 2i ~ 0 because of the normalization 
(2.8) and furthermore H 0(2i) # 0 for at least one of them. Thus one of 
them is 0c, so we have <C ~ 0c ffi 2 with deg 2 ~ 0. From (2.11.1), 
(2.11.2), and (2.11.3), we see that all values of e ~ 0 are possible. 

Now suppose <C is indecomposable. Then, corresponding to the section 
C0 , we have an exact sequence 

0 --+ 0c --+ <C --+ 2 --+ 0 

for some 2 (2.8). This must be a nontrivial extension, so it corresponds to 
a nonzero element~ E Ext 1(2,0c) ~ H 1(C,2~) (III, Ex. 6.1). In particular, 
H1(2~) # 0, so we must have deg 2~ ~ 2g - 2 (IV, 1.3.4). Since e = 

-deg 2, we have e ~ 2g - 2. 
On the other hand, we have H 0 (<C ®A) = 0 for all deg A < 0 by the 

normalization. In particular, taking deg A = -1, we have 

0 = H 0 (<C ® A) --+ H 0(2 ® A) --+ H 1(A) --+ ... , 

so we must have 
dim H 0(2 ® A) ~ dim H 1(A). 

Since deg A < 0, H 0(A) = 0, so by Riemann-Roch, we have dim H 1(A) = g. 
On the other hand, also by Riemann-Roch, we have 

dim H 0(2 ® A) ~ deg 2 - 1 + 1 - g. 

Combining, we get deg 2 ~ 2g, hence e ~ - 2g. 

Corollary 2.13. If g = 0, then e ~ 0, and for each e ~ 0 there is exactly one 
rational ruled surface with invariant e, given by <C = 0 ffi 0(- e) over 
c = p1_ 

PROOF. If g = 0, case (b) of (2.12) cannot occur. Hence <C ~ 0c ffi 2. But 
the only invertible sheaves on P 1 are 0(n) for n E Z (II, 6.4). So for each 
e ~ 0 there is just one possibility. 

Corollary 2.14. Every locally free sheaf <C of rank 2 on P 1 is decomposable. 

PROOF. After tensoring with a suitable invertible sheaf, it becomes normal
ized, in which case it is isomorphic to 0 ffi 0( -e) by (2.13). See (Ex. 2.6) 
for a generalization. 
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Theorem 2.15. If X is a ruled surface over an elliptic curve C, corresponding 
to an indecomposable iff, then e = 0 or -1, and there is exactly one such 
ruled surface over C for each of these two values of e. 

PROOF. According to (2.12) we must have e = 0,-1,-2. If e = 0, then we 
have an exact sequence 

0 ~ (!)c ~ iff ~ !l' ~ 0 

with deg !l' = 0. This extension corresponds to a nonzero element 
~ E H1(!l'~ ). In particular, H1(!l'~) #- 0. It is dual to H 0(!l'), so we must 
have !l' ~ (!)c· Conversely, taking !l' = (!)c, we have dim H 1((!)c) = 1, so 
there is just one choice of nonzero ~ E H 1((!)c), up to isomorphism, which is 
a nontrivial extension 

0 ~ (!)c ~ iff ~ (!)c ~ 0. 

Clearly this iff is normalized. Furthermore, this iff is indecomposable, 
because if iff were decomposable, being normalized, it would be isomorphic 
to (!)c EB !l' for some !l', by (2.12). But f\2iff ~ (!)c, so !l' ~ (!)c, so in fact 
this extension would have to split, which it doesn't. Thus we get exactly 
one elliptic ruled surface X with e = 0 and iff indecomposable. 

If e = -1, then we have an exact sequence 

0 ~ (!)c ~ iff ~ !l'(P) ~ 0 

for some point P E C, because every invertible sheaf of degree 1 on C is of 
the form !l'(P) (IV, 1.3.7). Furthermore, for each P there exists such a nor
malized bundle, unique up to isomorphism, by (2.11.6). To show that there 
is just one elliptic ruled surface with e = -1, it will be sufficient to show 
that if iff is defined by P as above, and iff' is similarly defined by Q #- P, then 
there exists an invertible sheaf A on C such that iff' ~ iff ® A. 

Take a point R E C such that 2R ~ P + Q. This is possible, because 
the linear system IP + Ql defines a two-to-one map of C to PI, ramified 
at four points (assume char k #- 2), and we can take R to be one of them 
(IV, §4). We will show that iff' ~ iff ® !l'(R - P). In any case, we have an 
exact sequence 

0 ~ !l'(R - P) ~ iff ® !l'(R - P) ~ !l'(R) ~ 0. 

Since H 0(!l'(R)) #-0 and H 1(!l'(R- P) )=0, we see that H 0(iff®!l'(R- P)) #-0. 
So we get an exact sequence 

0 ~ (!)c ~ iff ® !l'(R - P) ~ % ~ 0, 

and the quotient % must be invertible, as in the proof of (2.8). So we have 

% ~ f\2(iff ® !l'(R- P)) ~ (J\2iff) ® !l'(2R- 2P). 

Since f\2iff ~ !l'(P), we have % ~ !l'(2R - P) ~ !l'(Q). Therefore iff® 
!l'(R - P) ~ iff' as required. This proves the uniqueness of the elliptic 
ruled surface with e = -1. 
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Finally, we will show that the case e = -2 does not occur. If it did, we 
would have a normalized bundle Iff with an exact sequence 

0 --+ {!)c --+ Iff --+ st'(P + Q) --+ 0 

for some P,Q E C, since every invertible sheaf of degree 2 is of the form 
st'(P + Q). Now take any pair of points R,S E C with R + S "' P + Q, and 
let A = Sf(- R). Then, since Iff is normalized, H 0(tff ® A) = 0, so the map 
y:H0(st'(P + Q- R))--+ H 1(st'( -R))mustbeinjective. On the other hand, 
let ~ E H 1(st'(- P - Q)) be the element defining the extension C. Then we 
have a commutative diagram, writing st'(P + Q - R) as st'(S), 

where c:5(1) = ~. ()((1) = t, a nonzero section defining the divisor S, and fJ is 
induced from the map {!)c --+ st'(S) corresponding to t. Now fJ is dual to 
the map 

{J': H 0(st'(R)) --+ H 0(st'(P + Q)) 

also induced by t. The image of any nonzero element of H 0(st'(R)) by {J' is 
a section of H 0(st'(P + Q)) corresponding to the effective divisor 
R + s E IP + Ql. 

By varying R and S, we get every divisor in the linear system IP + Ql. 
Therefore the image of {J' as R varies fills up the whole 2-dimensional vector 
space H 0(st'(P + Q) ). In particular, we can chooseR so that the image of {J' 
lands in the kernel of~. considered as a linear functional on H 0(st'(P + Q) ). 
In that case, {J(~) = 0, which contradicts the injectivity of y. Thus the case 
e = -2 is impossible. 

Caution 2.15.1. One point which came up in the first part of this proof should 
be noted. It is possible for a locally free sheaf of rank 2 to be a nontrivial 

·extension of two invertible sheaves, and yet be decomposable. For example, 
the sheaf of differentials on P1 is isomorphic to {!)(- 2), so we have an exact 
sequence (II, 8.13) 

0 --+ @(- 2) --+ @( -1) EB @( -1) --+ {!) --+ 0. 

The sequence cannot be split (because for example H 0({!)( -1) EB {!)( -1)) = 0), 
but the sheaf in the middle is decomposable. 

Corollary 2.16 (Atiyah). For each integer n, there is a natural one-to-one cor
respondence (described explicitly in the proof below) between the set of 
isomorphism classes of indecomposable locally free sheaves of rank 2 and 
degree non the elliptic curve C, and the set of points of C. 
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PROOF. Fix a point P0 E C. Let <%'' be an indecomposable locally free sheaf 
of rank 2 and degree n on C. Tensoring with !f'(mP 0 ) for some m, we may 
assume n = 0 or 1. If n = 0, then by (2.2), (2.8), and (2.15) there is a (unique) 
invertible sheaf !I' of degree 0 on C such that <%'' ® !I' is isomorphic to the 
unique nontrivial extension of (!Jc by (!)c· Since the invertible sheaves of 
degree 0 are in one-to-one correspondence with the closed points of C (IV, §4), 
we have the result. If n = 1, then as in the proof of (2.15) we find that <%'' is 
an extension of !f'(P) by (!)c for some uniquely determined point P E C, 
whence the result. 

Remark 2.16.1. More generally, for any curve C, of genus g, one can consider 
the problem of classifying all locally free sheaves<%' on Cup to isomorphism. 
The rank rand the degree d (which is deg /\'C) are numerical invariants. For 
fixed r and d, one expects some kind of continuous family. For g = 0, all 
locally free sheaves are direct sums of invertible sheaves (Ex. 2.6). For g = 1 
the general classification, which is similar to the rank 2 case we have just 
done, has been accomplished by Atiyah [ 1]. For g )!: 2, the situation be
comes more complicated. Among the indecomposable locally free sheaves, 
one has to distinguish between the stable ones (Ex. 2.8) in the sense of Mum
ford [1 ], and the rest. The stable ones form nice algebraic families, whereas 
the others do not. See for example, Narasimhan and Seshadri [1]. Similarly, 
for the ruled surfaces themselves, the ones with e < 0 are stable, and form 
nice algebraic families, but the others do not. 

Next we will study the rational ruled surfaces, which were classified 
in (2.13). 

Theorem 2.17. Let Xe, for any e )!: 0, be the rational ruled surface defined by 
<%' = (!) EB (!)(-e) on C = P 1 (2.13). Then: 

(a) there is a section D ~ C0 + nf if and only if n = 0 or n )!: e. In 
particular, there is a section C 1 ~ C0 + ef with C0 n C 1 = 0 and 
q = e; 

(b) the linear system ICo + iifl is base-point-free if and only if n ?: e; 
(c) the linear sys_tem ICo + iifl is very ample if and only if n > e. 

PROOF. 

(a) According to (2.6) and (2.9), giving a section D ~ C0 + iif is equivalent 
to giving a surjective map<%' --+ !I' --+ 0 with deg !I' = C0 .D = n - e. Since 
we are on P 1, this means a surjective map 

(!) EB (!)(-e)--+ (!)(n - e)--+ 0. 

If n < e, there are no nonzero maps of(!) to (!)(n - e), so the map {!}(-e) --+ 
(!)(n - e) must be an isomorphism, and therefore n = 0. This corresponds 
to the section C0 , which is unique if e > 0. Otherwise we have n )!: e, and 
any such n is possible. We have only to take maps (S --+ (!(n - e) and 
(!)(-e) --+ (!)(n - e) corresponding to effective divisors of degrees n - e and 
n on C which do not meet. Then the corresponding map (!' EB (!)(-e) --+ 
(!)(n - e) will be surjective. 
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In particular, if we take n = e, there is a section C1 "" C0 + ef Then 
Cf = e, and C0 .C1 = 0, so C0 n C1 = 0. 

(b) If ICo + J?JI is base-point-free, then C0 .(C0 + nf) ?: 0 so n ?: e. 
Conversely, ifn?: e, then C0 + nf"" C1 + (n- e)f, and since C0 n C1 = 0, 
and any f is linearly equivalent to any other, we can find a divisor of the form 
C0 + nf or C1 + (n - e)f which misses any given point. 

(c) If D = C0 + nf is very ample, then we must have D.C0 > 0, son > e. 
Conversely, suppose n > e. Then we will show that D is very ample by 
showing that the linear system IDI separates points and tangent vectors 
(II, 7.8.2). 

Case 1. Let P #- Q be two points not both in C0 , and not both in any 
fibre. Then a divisor of the form C0 + nf for suitable f will separate them. 

Case 2. Let P be a point and t a tangent vector at P, such that P,t are not 
both in C0 and not both in any fibre. Then a divisor of the form C0 + Ii'= 1 };, 

for suitable fibres};, will contain P but not t. 
Case 3. Suppose P,Q or P,t are both in C0 . Then a divisor of the form 

cl + 2::?:1}; will separate them. 
Case 4. Suppose P,Q, or P,t are both in the same fibre f Since D.f = 1, 

the invertible sheaf 2(D) ® (!) 1 is very ample on f ~ P 1 . Thus to separate 
P,Q or P,t, it will be sufficient to show that the natural map H 0(X,2(D)) ---+ 

H 0(f,2(D) ® (!) 1 ) is surjective. The co kernel of this map lands in 
H 1(X,2(D - f)), which by (2.4) is isomorphic to H 1( C,n*2(D - f)). On 
the other hand, D - f "" C0 + (n - 1)f, so 

n*(2(D- f))~ n*(2(C0 )) ® (!)c(n- 1) 

by the projection formula (II, Ex. 5.1). Now n*(2(C0 )) ~ ~ by (2.8) and 
(II, 7.11), so we have 

n*(2(D - f)) ~ (!)(n - 1) EB (!)(n - e - 1). 

Since n > e ;:: 0, both n - 1 ;:: 0 and n - e - 1 ;:: 0, so H 1 = 0 and the 
above map is surjective. q.e.d. 

Corollary 2.18. Let D be the divisor aC0 + bf on the rational ruled surface Xe, 
e ;:: 0. Then: 

(a) Dis very ample=- Dis ample=- a > 0 and b > ae; 
(b) the linear system IDI contains an irreducible nonsingular curve=- it 

contains an irreducible curve=- a = 0, b = 1 (namely f); or a = 1, b = 0 
(namely C0); or a > 0, b > ae; ore > 0, a > 0, b = ae. 

PROOF. 

(a) If D is very ample, it is certainly ample (II, 7.4.3). If D is ample, 
then D.f > 0, so a > 0, and D.C0 > 0, so b > ae (1.6.2). Now suppose 
that a > 0 and b > ae. Then we can write D = (a - 1)(C0 + ~cf) + 
(C0 + (b - ae + e)f). Since ICo + efl has no base points, and C0 + 
(b - ae + e)f is very ample (2.17), we conclude that D is also very ample 
(II, Ex. 7.5). 
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(b) If IDI contains an irreducible nonsingular curve, then in particular it 
contains an irreducible curve. If D is an irreducible curve, then D could be 
f (in which case a = 0, b = 1) or C0 (in which case a = 1, b = 0). Other
wise, n maps D surjectively to C, so D.f = a > 0, and D.C0 :;:, 0, so b :;:, ae. 
If e = 0 and b = ae, then b = 0 soD = aC0 . But in this case X 0 is P 1 x P 1, 

and C0 is one of the rulings, so forD to be irreducible, we must have a = 1. 
Thus the restrictions on a,b are necessary. To complete the proof, we must 
show that if a > 0, b > ae, or e > 0, a > 0, b = ae, then IDI contains an 
irreducible nonsingular curve. In the first case, Dis very ample by (a), so the 
result follows from Bertini's theorem (II, 8.18) applied to X. In the second 
case, we use the fact (2.11.4) that X e can be obtained from the cone Y over a 
nonsingular rational curve C of degree e > 0 in some P", by blowing up the 
vertex. In this case, the curve C 1 on X e is the strict transform of the hyper
plane section H of Y. By Bertini's theorem applied to the very ample divisor 
aH on Y (II, 8.18.1), we can find an irreducible nonsingular curve in the 
linear system iaHI, notcontaining the vertex of Y. Its strict transform on xe 
is then an irreducible nonsingular curve in the linear system laC 11 = IDI. 

Remark 2.18.1. In case e = 0, we get some new proofs of earlier results about 
curves on the nonsingular quadric surface, which is isomorphic to X 0 

(II, 7.6.2), (III, Ex. 5.6), (1.10.1). 

Corollary 2.19. For every n > e :;:, 0, there is an embedding of the rational 
ruled surface X e as a rational scroll of degree d = 2n - e in pd+ 1 . (A 
scroll is a ruled surface embedded in pN in such a way that all the fibres 
f have degree 1.) 

PROOF. Use the very ample divisor D = C0 + nf. Then D.f = 1, so the 
image of X e in pN is a scroll, and D2 = 2n - e, so the image has degree 
d = 2n - e. To find N, we compute H 0(X,!f(D) ). As in the proof of (2.17), 
we find that 

H 0(X,!f(D)) = H 0(C,n*!f(D)) = H 0(C,tff ® @(n)) = H 0(@(n) E8 @(n- e)). 

This has dimension 2n + 2 - e, so N = 2n + 1 - e = d + 1. 

Example 2.19.1. For e = 0, n = 1, we recover the nonsingular quadric sur
face in P 3 . 

For e = 1, n = 2, we get a rational scroll of degree 3 in P4 , which is 
isomorphic to P2 with one point blown up (II, Ex. 7. 7). 

In P 5 , there are two different kinds of rational scrolls of degree 4, cor
responding to e = 0, n = 2, and e = 2, n = 3. 

Remark 2.19.2. In fact, it is known that every nonsingular surface of degree d 
in pd+ 1, not contained in any hyperplane, is either one of these rational 
scrolls (2.19), or P2 c;:; P2 (if d = 1), or the Veronese surface in P 5 (I, Ex. 2.13). 
See, for example, Nagata [5, I, Theorem 7, p. 365]. 
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Now we will try to determine the ample divisors on a ruled surface over a 
curve of any genus, as an application ofNakai's criterion (1.10). In order to 
apply Nakai's criterion, we need to know which numerical equivalence 
classes of divisors on the surface contain an irreducible curve. On a general 
ruled surface, we cannot expect to get nearly as precise an answer to this 
question as in the case of the rational ruled surfaces (2.18), but at least we 
can get some estimates which allow us to apply Nakai's criterion successfully. 

Proposition 2.20. Let X be a ruled surface over a curve C, with invariant e ~ 0. 
(a) If Y = aC0 + bf is an irreducible curve # C0 ,f, then a > 0, b ~ ae. 
(b) A divisor D = aC0 + bf is ample if and only if a > 0, b > ae. 

PROOF. 

(a) Since Y # f, n: Y ~ C is surjective, so Y.f = a > 0. Also since 
Y # C0 , Y.C 0 = b - ae ~ 0. 

(b) If D is ample, then D.f = a > 0, and D.C0 = b - ae > 0. Con
versely,ifa > O,b- ae > O,thenD.f > O,D.C0 > O,D2 = 2ab- a2 e > 0 
and if Y = a'C0 + b'f is any irreducible curve # C0 ,f, then 

D.Y = ab' + a'b- aa'e > aa'e + aa'e- aa'e = aa'e ~ 0. 

Therefore by (1.10) Dis ample. 

Proposition 2.21. Let X be a ruled surface over a curve C of genus g, with in
variant e < 0, and assume furthermore either char k = 0 or g ::::;; 1. 

(a) If Y = aC0 + bf is an irreducible curve =I= C0 ,f, then either a = 1, 
b ~ 0 or a ~ 2, b ~ !ae. 

(b) A divisor D = aC0 + bf is ample if and only if a > 0, b > !ae. 

PROOF. 

(a) We will use Hurwitz's theorem (IV, 2.4) to get some information about 
Y. Let Y be the normalization of Y, and consider the composition of the 
natural map Y ~ Y with the projection n: Y ~ C. If char k = 0, this map 
is a finite, separable map of degree a, so by (IV, 2.4) we have 

2g(Y) - 2 = a(2g - 2) + deg R, 

where R is the(effective) ramification divisor. On the other hand,pa(Y) ~g(Y) 
by (IV, Ex. 1.8), so we find that 

2pa(Y) - 2 ~ a(2g - 2). 

Furthermore, this last inequality is true in any characteristic if g = 0,1, 
since in any case pa(Y) ~ g (IV, 2.5.4). 

By the adjunction formula (1.5), we have 

2pa(Y) - 2 = Y.(Y + K). 
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Substituting Y = aC0 + bf and K = -2C0 + (2g - 2 - e)f from (2.11), 
and combining with the inequality above, we find that 

b(a - 1) ;:?: iae(a - 1). 

Therefore if a ;:?: 2, we have b ;:?: iae as required. Now Y.f = a > 0 in any 
case, so it remains to show that if a = 1, then b ;:::: 0. In the case a = 1, Y is 
a section, corresponding to a surjective map rff --+ ff! --+ 0. Because of the 
normalization of rff, we must have deg ff! ;:?: deg rff. But deg ff! = C0 . Y 
(2.9), so we have b - e ;:::: - e, hence b ;:::: 0. 

(b) If D is ample, then D.f = a > 0, and D2 = 2ab - a2e > 0, so 
b > iae. Conversely, if a > 0, b > iae, then D.f > 0, D2 > 0, D.C0 = 

b - ae > -iae > 0, and if Y = a'C0 + b'f is any irreducible curve 
=f. C0 ,f, then 

D.Y = ab' + a'b - aa'e. 

Now if a' = 1, then b' ;:?: 0, so D. Y > iae - ae = -iae > 0. If a' ;:?: 2, 
then b' ;:?: !a' e, so D. Y > iaa' e + iaa' e - aa' e = 0. Therefore by (1.10), 
Dis ample. 

Remark 2.21.1. In the remaining case e < 0, char k = p > 0, g ;:?: 2, we can
not get necessary and sufficient conditions forD to be ample, but it is possible 
to get some partial results (Ex. 2.14) and (Ex. 2.15). 

Remark 2.22.2. The determination of the very ample divisors on a ruled sur
face with g ;:?: 1 is more subtle than in the rational case (2.18), because it 
does not depend only on the numerical equivalence class of the divisor 
(Ex. 2.11) and (Ex. 2.12). 

References for §2. Since the theory of ruled surfaces is very old, I cannot 
trace the origins of the results given here. Instead, let me simply list a few 
recent references: Atiyah [1], Hartshorne [4], Maruyama [1], Nagata [5], 
Shafarevich [1, Ch. IV, V], Tjurin [1], [2]. 

EXERCISES 

2.1. If X is a birationally ruled surface, show that the curve C, such that X is birationally 
equivalent to C x P 1, is unique (up to isomorphism). 

2.2. Let X be the ruled surface P(6') over a curve C. Show that @' is decomposable if 
and only if there exist two sections C',C" of X such that C' n C" = 0. 

2.3. (a) If@' is a locally free sheaf of rank ron a (nonsingular) curve C, then there is a 
sequence 

Q = @' 0 s; @'I s; · · · s; @', = @' 

of subsheaves such that 6';/6';_ 1 is an invertible sheaf for each i = 1, ... ,r. We 
say that@' is a successive extension of invertible sheaves. [Hint: Use (II, Ex. 8.2).] 
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(b) Show that this is false for varieties of dimension ;::, 2. In particular, the sheaf of 
differentials Q on P2 is not an extension of invertible sheaves. 

2.4. Let C be a curve of genus g, and let X be the ruled surface C x P 1. We consider 
the question, for what integers s E Z does there exist a section D of X with D2 = s? 
First show that s is always an even integer, say s = 2r. 
(a) Show that r = 0 and any r ;::, g + 1 are always possible. Cf. (IV, Ex. 6.8). 
(b) If g = 3, show that r = 1 is not possible, and just one of the two values r = 2,3 

is possible, depending on whether C is hyperelliptic or not. 

2.5. Values of e. Let C be a curve of genus g ;::, 1. 
(a) Show that for each 0 ~ e ~ 2g - 2 there is a ruled surface X over C with 

invariant e, corresponding to an indecomposable t£. Cf. (2.12). 
(b) Let e < 0, let D be any divisor of degree d = - e, and let~ E H 1(£'(- D)) be a 

nonzero element defining an extension 

0 --> (!)c --> t£ --> !l'(D) --+ 0. 

Let H <;::: ID + Kl be the sub linear system of codimension 1 defined by ker ~. 
where ~ is considered as a linear functional on H 0(!l'(D + K) ). For any 
effective divisor E of degree d - 1, let LE <;::: ID + Kl be the sublinear system 
ID + K - El + E. Show that t£ is normalized if and only if for each E as 
above, LE 'j. H. Cf. proof of (2.15). 

(c) Now show that if -g ~ e < 0, there exists a ruled surface X over C with 
invariant e. [Hint: For any given Din (b), show that a suitable~ exists, using 
an argument similar to the proof of (II, 8.18).] 

(d) For g = 2, show that e;::, -2 is also necessary for the existence of X. 
Note. It has been shown that e ;::, -g for any ruled surface (Nagata [8]). 

2.6. Show that every locally free sheaf of finite rank on P 1 is isomorphic to a direct 
sum of invertible sheaves. [Hint: Choose a subinveitible sheaf of maximal degree, 
and use induction on the rank.] 

2.7. On the elliptic ruled surface X of(2.11.6), show that the sections C0 with C6 = 1 
form a one-dimensional algebraic family, parametrized by the points of the base 
curve C, and that no two are linearly equivalent. · 

2.8. A locally free sheaf t£ on a curve Cis said to be stable if for every quotient locally 
free sheaf t£ --+ ff -> 0, ff ¥ t£, ff ¥ 0, we have 

(deg ff)/rank ff > (deg tff')/rank t£. 

Replacing > by ;::, defines semistable. 
(a) A decomposable t£ is never stable. 
(b) If t£ has rank 2 and is normalized, then t£ is stable (respectively, semistable) if 

and only if deg t£ > 0 (respectively, ;::,0). 
(c) Show that the indecomposable locally free sheaves t£ of rank 2 that are not 

semistable are classified, up to isomorphism, by giving (1) an integer 0 < e ~ 
2g - 2, (2) an element£' EPic C of degree - e, and (3) a nonzero~ E H 1(£'~), 

determined up to a nonzero scalar multiple. 

2.9. Let Y be a nonsingular curve on a quadric cone X 0 in P 3 . Show that either Y is a 
complete intersection of X 0 with a surface of degree a ;::, 1, in which case deg Y = 

2a, g(Y) = (a - 1)2, or, deg Y is odd, say 2a + 1, and g(Y) = a2 - a. Cf. 
(IV, 6.4.1). [Hint: Use (2.11.4).j 
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2.10. For any n > e ~ 0, let X be the rational scroll of degree d = 2n - e in pd+ 1 

given by (2.19). If n ~ 2e - 2, show that X contains a nonsingular curve Y of 
genus g = d + 2 which is a canonical curve in this embedding. Conclude that for 
every g ~ 4, there exists a nonhyperelliptic curve of genus g which has a g~. 
Cf. (IV, §5). 

2.11. Let X be a ruled surface over the curve C, defined by a normalized bundle Iff, 
and let e be the divisor on C for which 2'(e) ~ f\2 tC (2.8.1). Let b be any divisor on 
c. 
(a) If lbl and lb + el have no base points, and if b is nonspecial, then there is a 

section D - C0 + bf, and IDI has no base points. 
(b) lfb and b + e are very ample on C, and for every point P E C, we have b - P 

and b + e - P nonspecial, then C0 + bf is very ample. 

2.12. Let X be a ruled surface with invariant e over an elliptic curve C, and let b be a 
divisor on C. 
(a) If deg b ~ e + 2, then there is a section D- C0 + bf such that IDI has no 

base points. 
(b) The linear system !Co + bfl is very ample if and only if deg b ~ e + 3. 
Note. The case e = -1 will require special attention. 

2.13. For every e p -1 and n ~ e + 3, there is an elliptic scroll of degree d = 2n - e 
in pd- 1. In particular, there is an elliptic scroll of degree 5 in P4 . 

2.14. Let X be a ruled surface over a curve C of genus g, with invariant e < 0, and assume 
that char k = p > 0 and g ~ 2. 
(a) If Y = aC0 + bf is an irreducible curve i= C0 ,f, then either a = 1, b ~ 0, or 

2 ~ a ~ p - 1, b ~ !ae, or a ~ p, b ~ !ae + 1 - g. 

(b) If a > 0 and b > a(!e + (1/p)(g - 1) ), then any divisor D = aC0 + bf is 
ample. On the other hand, if Dis ample, then a > 0 and b > !ae. 

2.15. Funny behavior in characteristic p. Let C be the plane curve x 3y + y 3z + z3x = 0 
over a field k of characteristic 3 (IV, Ex. 2.4). 
(a) Show that the action of the k-linear Frobenius morphism f on H 1(C,f9c) is 

identically 0 (Cf. (IV, 4.21) ). 
(b) Fix a point P E C, and 8how that there is a nonzero~ E H 1(2'(- P)) such that 

f*~ = 0 in H 1(2'(- 3P) ). 
(c) Now let Iff be defined by~ as an extension 

0 -> f9c -> Iff -> 2'(P) -> 0, 

and let X be the corresponding ruled surface over C. Show that X contains a 
nonsingular curve Y = 3C0 - 3/, such that n: Y-> Cis purely inseparable. 
Show that the divisor D = 2C0 satisfies the hypotheses of(2.21b), but is not 
ample. 

2.16. Let C be a nonsingular affine curve. Show that two locally free sheaves tff,tff' of 
the same rank are isomorphic if and only if their classes in the Grothendieck group 
K(X) (II, Ex. 6.10) and (II, Ex. 6.11) are the same. This is false for a projective curve. 

*2.17. (a) Let tp:Pl -> Pt be the 3-uple embedding (1, Ex. 2.12). Let f be the sheaf of 
ideals of the twisted cubic curve C which is the image of qJ. Then f/f 2 is a 
locally free sheaf of rank 2 on C, so tp*(f /f2) is a locally free sheaf of rank 2 on 
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P1 . By(2.14), therefore, cp*(J/J2) ~ (r)(l) EB (r)(m)for some l,m E Z. Determine 
land m. 

(b) Repeat part (a) for the embedding cp:P1 -> P3 given by x 0 = t4 , x1 = t 3u, 

x2 = tu3 , x3 = u4 , whose image is a nonsingular rational quartic curve. 
[Answer: If char k =1= 2, then l = m = -7; if char k = 2, then l,m = -6, -8.] 

3 Monoidal Transformations 

We define a monoidal transformation of a surface X to be the operation of 
blowing up a single point P. This new terminology is to distinguish it from 
the more general process of blowing up an arbitrary closed subscheme 
(II, §7). It also goes by many other names in the literature: locally quadratic 
transformation, dilatation, a-process, Hopf map, to mention a few. 

We will see later (5.5) that any birational transformation of surfaces can be 
factored into monoidal transformations and their inverses. Thus the mono
ida! transformation is basic to the birational study of surfaces. 

In this section we will study what happens under a single monoidal 
transformation. As an application, we will show how to resolve the singulari
ties of a curve on a surface by monoidal transformations, and begin a study 
of the different types of curve singularities. 

First we fix our notation. Let X be a surface, and let P be a point of X. 
We denote the monoidal transformation with center P by n:X--+ X. Then 
we know (1, §4) or (II, §7) that n induces an isomorphism of X - n - 1(P) onto 
X - P. The inverse image of P is a curve E, which we call the exceptional 

curve (1, 4.9.1). 

Proposition 3.1. The new variety X is a nonsingular projective swface. The 

curve E is isomorphic to P 1. The self-intersection of E on X is E 2 = - 1. 

PROOF. Since a single point is nonsingular, we can apply (II, 8.24). This tells 
us that X is nonsingular, and we know already from (II, 7.16) that X is 
projective, of dimension 2, and birational to X. We also conclude from 
(II, 8.24) that E ;;;: P 1, since it is the projective space bundle over the point P 
corresponding to the two-dimensional vector space mpjm~. Finally, the 
normal sheaf JV E/X is just (DE( -1), so by (1.4.1) we have E 2 = -1. 

Remark 3.1.1. There is a converse to this result, which we will prove later 
(5.7), namely, any curve E ;;;: P 1 in a surface X', with E 2 = -1, is obtained as 
the exceptional curve by a monoidal transformation from some other 
surface X. 

Proposition 3.2. The natural maps n*: Pic X --+ Pic X and Z --+ Pic X defined 

by 1 ~ 1 · E give rise to an isomorphism Pic X ;;;: Pic X E8 Z. The inter-
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section theory on X is determined by the rules: 
(a) if C,D EPic X, then (n*C).(n*D) = C.D; 
(b) if C EPic X, then (n*C).E = 0; 
(c) E2 = -1. 

Finally, if n*: Pic X --> Pic X denotes the projection on the first factor, 
then: 

(d) ifC EPic X and DE Pic X, then (n*C).D = C.(n*D). 

PROOF. (See also (II, Ex. 8.5).) From (II, 6.5) we see that Pic X ~ Pic( X - P). 
But X - P ~ X - E, so also from (II, 6.5) we have an exact sequence 

Z --> Pic X --> Pic X --> 0, 

where the first map sends 1 to 1· E. Since for any n # 0 we have 
(nE) 2 = - n2 # 0, this map is injective. On the other hand, n* splits this 
sequence, so we have Pic X ~ Pic X EB Z. 

We have already seen that E2 = -1. To prove (a) and (b), we use the 
fact (§1) that C and D are linearly equivalent to differences of nonsingular 
curves, meeting everywhere transversally, and not containing P. For in the 
proof of(1.2) we can require also that D' misses any given finite set of points. 
Then n* does not affect their intersection, which proves (a). Also clearly 
n*C does not meet E, So (n*C).E = 0. The same argument also proves (d), 
because we may assume that Cis a difference of curves not containing P. 

Proposition 3.3. The canonical divisor of X is given by Kx = n* Kx + E. 
Therefore Kj = KI - 1. 

PROOF. (See also (II, Ex. 8.5).) Since the canonical sheaf on X - E and X - P 
is the same, clearly Kx = n* Kx + nE for some n E Z. To determine n, we 
use the adjunction formula (1.5) for E . . It says -2 = E.(E + Kg), so using 
(3.2) we find n = 1. The formula for K 2 follows directly from (3.2). 

Remark 3.3.1. Thus the invariant K 2 of a surface is not a birational invariant. 
For a specific example, we have K 2 ofP2 is 9 (1.4.4), K 2 of the rational ruled 
surface X 1 is 8 (2.11), and X 1 is isomorphic to a monoidal transformation 
of P2 (2.11.5). 

Next we want to show that the arithmetic genus Pa is preserved by a 
monoidal transformation. For that, we must compare the cohomology of 
the structure sheaves on X and X. We will use the theorem on formal 
functions (III, 11.1) to compute R;n/9x. 

Proposition 3.4. We have n*(l)x = (!)x, and R;n*(!)x = 0 fori > 0. Therefore 
H;(X,(!)x) ~ H;(X,(!)x) for all i ;::: 0. 

PROOF. Since n is an isomorphism of X - E onto X - P, it is clear that the 
natural map (!)x --> n*(!)x is an isomorphism except possibly at P, and that 
the sheaves :F; = R;n*(!)x fori > 0 have support at P. We use the theorem on 
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formal functions (III, 11.1) to compute these !Fi. It says (taking completions 
of the stalks at P) that 

/#i ::::::: lim H;(E (!) ) 
- <E--- n' En 

where En is the closed subscheme of X defined by ,r, where f is the ideal 
of E. There are natural exact sequences 

0 ----> fn / fn + 1 ----> {!)En+ 1 ----> {!)En ----> 0 

for each n. Furthermore, by (II, 8.24) we have f// 2 = (!)E(1), and by 
(II,8.21Ae),fn/fn+l;::; S\f//2 );::; (!)E(n). NowE;::; P\soHi(E,(!)E(n)) = 
0 for i > 0 and all n > 0. Since E 1 = E, we conclude from the long exact 
sequence of cohomology, using induction on n, that Hi((!)EJ = 0 for all i > 0, 
all n ~ 1. It follows that /#i = 0 fori > 0. Since !Fi is a coherent sheaf with 
support at P, !Fi = /#i, so !Fi = 0. 

The fact that (!)x ;::; n*(!)x follows simply from the fact that X is normal 
and n is birational. Cf. proof of (III, 11.4). 

Now from (III, Ex. 8.1) we conclude that Hi(X,(!)x) ;::; Hi(X,(!)g) for all 
i ~ 0. 

Corollary 3.5. Let n:X ---->X be a monoidal transformation. Then pa(X) = 
Pa(X). 

PROOF. From (III, Ex. 5.3) we have Pa(X) = dim H 2(X,(!)x) - dim H 1(X,(!)x) 
and similarly for Pa(X). 

Remark 3.5.1. It follows also from (3.4) that X and X have the same ir
regularity q(X) = dim H 1(X,(!)x) and the same geometric genus p9(X) = 
dim H 2(X,(!)x) (III, 7.12.3). The invariance of p9 is also of course a con
sequence of the fact that p9 is a birational invariant in general (II, 8.19). 

Next we will investigate what happens to a curve under a monoidal 
transformation. Let C be an effective divisor on X, and let n:X----> X be 
the monoidal transformation with center P. Recall that the strict transform 
C of C is defined as the closed subscheme of X obtained by blowing up P 
on C (II, 7.15). It is also the closure in X ofn- 1(C n (X- P)) (II, 7.15.1). 
So it is clear that C can be obtained from n*C by throwing away E (with 
whatever multiplicity it has in n*C). 

The multiplicity of E in n*C will depend on the behavior of Cat the point 
P. So we make the following definition of the multiplicity, which generalizes 
the definition for plane curves given in (I, Ex. 5.3). 

Definition. Let C be an effective Cartier divisor on the surface X, and let f 
be a local equation for C at the point P. Then we define the multiplicity 
of Cat P, denoted by JiAC), to be the largest integer r such that f Em~, 
where mp <;: (!)P,x is the maximal ideal. 
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Remark 3.5.2. We always have Jl-p{C) ~ 0, since f E r9p,x· Furthermore 
f.lp( C) ~ 1 if and only if P E C, and equality holds if and only if C is non
singular at P, because in that case mp c will be a principal ideal, so f ¢ m~ x· . . 
Proposition 3.6. Let C be an effective divisor on X, let P be a point of multi

plicity r on C, and let n: X ---+ X be the monoidal transformation with 
center P. Then 

n*C = C + rE. 

PROOF. We will go back to the definition of blowing up, and compute ex
plicitly what happens in a neighborhood of P, so that we can trace the local 
equation of Con X and n*C on X. 

Let m be the sheaf of ideals of P on X. Then X is defined as Proj !/', 
where !/' is the graded sheaf of algebras !/' = ffid ~ 0 md (II, §7). Let x, y be 
local parameters at P. Then x,y generate min some neighborhood U of P, 
which we may assume to be affine, say U = Spec A. The Koszul complex 
(III, 7.10A) gives a resolution ofm over U: 

where we denote the two generators of@~ by t,u, and send t to x, u to y. Then 
the kernel is generated by ty - ux. Therefore!/' over U is the sheaf associated 
to the A-algebra A[t,u ]/(ty - ux), so X is the closed subscheme ofPb defined 
by ty - ux, where t,u are the homogeneous coordinates of P 1. (Note how 
this construction generalizes the example (1, 4.9.1).) 

Now let f be a local equation for C on U (shrinking U if necessary). 
Then by definition of the multiplicity, we can write 

f = .f..(x,y) + g 

where f.. is a nonzero homogeneous polynomial of degree r with coefficients 
ink, and gEm~+ 1 . Indeed, f Em', f ¢ m'+ 1, and m'/m'+ 1 is the k-vector 
space with basis x',x'- 1y, ... ,y'. 

Consider the open affine subset V of Pb defined by t = 1. Then on 
X n V we have y = ux, so we can write 

n*f = x'(.f..(1,u) + xh) 

for some hE A[ u]. Indeed, m'+ 1 A[ u] is generated by x'+ 1 ,x'+ 1u, ... , 
x'+ 1u'+ 1, so n*g is divisible by x'+ 1. 

Now x is a local equation forE, and .f..(1,u) is zero at only finitely many 
points of E, so we see that E occurs with multiplicity exactly r in n*C, which 
is locally defined by n*f 

Corollary 3.7. With the same hypotheses, we have C.E = r, and Pa(C) = 

Pa(C) - tr(r - 1). 
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PROOF. Since C = n*e - rE, we have C.E = r by (3.2). We compute Pa(C) 
by the adjunction formula (1.5) and (Ex. 1.3) 

so 

2pa(C) - 2 = C.(C + Kg) 

= (n*e - rE)(n*e - rE + n* Kx + E) 

= 2pa(e) - 2 - r(r - 1), 

- 1 
Pa(e) = Pa(e) - 2 r(r - 1). 

Proposition 3.8. Let e be an irreducible curve in the surface X. Then there 
exists a finite sequence of monoidal transformations (with suitable centers) 
Xn ~ Xn_ 1 ~ ... ~X 1 ~X 0 = X such that the strict transform en of e 
on X n is nonsingular. 

PROOF. If e is already nonsingular, take n = 0. Otherwise, let P E e be a 
singular point, and let r ): 2 be its multiplicity. Let X 1 ~ X be the monoidal 
transformation with center P, and let e 1 be the strict transform of C. Then 
from (3.7) we see that pa(e 1) < Pa(e). If e 1 is nonsingular, stop. Otherwise 
choose a singular point of e 1 and continue. In this way we obtain a sequence 
of monoidal transformations 

such that the strict transform ei of e on Xi satisfies Pa(eJ < pa(ei- d for 
each i. Since the arithmetic genus of any irreducible curve is nonnegative 
(Pa(eJ =dim H 1(@c) (III, Ex. 5.3)), this process must terminate. Thus for 
some n, en is nonsingular. 

Remark 3.8.1. The general problem of resolution of singularities is, given a 
variety V, to find a proper birational morphism f: V' ~ V with V' non
singular. If V is a curve, we know this is possible, because each birational 
equivalence class of curves contains a unique nonsingular projective curve 
(I, 6.11). In fact, in this case it is sufficient to take V' to be the normalization 
of V. But in higher dimensions, this method does not work. 

So we approach the general problem as follows. Whenever Vis singular, 
blow up some subvariety contained in the singular locus, to get a morphism 
f 1 : V1 ~ V. Then (and this is the hard part) find some quantitative way of 
showing that the singularities of V1 are less severe than those of V, so that as 
we repeat this process, we must eventually obtain a nonsingular variety. 

Two things become clear quite soon: first, to maintain reasonable control 
of the singularities, one should only blow up subvarieties which are them
selves nonsingular (such as a point); second, to set up an induction on the 
dimension of V, one should also consider the problem of embedded resolution. 
This problem is, given a variety V, contained in a nonsingular variety W, to 
find a proper birational morphism g: W' ~ W with W' nonsingular, such 
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that not only is the strict transform V of V in W' nonsingular, but the entire 
inverse image g- 1(V) is a divisor with normal crossings, which means that 
each irreducible component of g- 1(V) is nonsingular, and whenever r irre
ducible components Y1, ... , Y,. of g- 1(V) meet at a point P, then the local 
equationsf1 , ... ,/,.of the~ form part of a regular system of parameters at P 
(i.e., f 1 , ... ,/,.are linearly independent (mod m;) ). 

The result just proved (3.8) shows that if C is a curve contained in a non
singular surface, then one can resolve the singularities of C by successive 
monoidal transformations. We will prove the stronger theorem of embedded 
resolution for curves in surfaces below (3.9). 

The status of the general resolution problem is as follows. The resolution 
of curves was known in the late 19th century. The resolution of surfaces 
(over C) was known to the Italians, but the first "rigorous" proof was given 
by Walker in 1935. Zariski gave the first purely algebraic proof of resolution 
for surfaces (char k = 0) in 1939. Then in 1944 he proved embedded reso
lution for surfaces and resolution for threefolds (char k = 0). Abhyankar 
proved resolution for surfaces in characteristic p > 0 in 1956, and in 1966 
he proved resolution for threefolds in characteristic p > 5. Meanwhile in 
1964 Hironaka proved resolution and embedded resolution in all dimensions 
in characteristic 0. For more details and precise references on the resolution 
problem, see Lipman [1], Hironaka [ 4] and Hironaka's introduction to 
Zariski's collected papers on resolution in Zariski [8]. 

Theorem 3.9 (Embedded Resolution of Curves in Surfaces). Let Y be any 
curve in the surface X. Then there exists a finite sequence of monoidal 
transformations X'= X"--+ Xn-t--+ ... --+ X 0 =X, such that if f:X'--+ X 
is their composition, then the total inverse image f- 1(¥) is a divisor with 
normal crossings (3.8.1). 

PROOF. Clearly we may assume that Y is connected. Furthermore, since the 
multiplicities of the irreducible components do not enter into the definition 
of normal crossings, we may assume that Y is reduced, i.e., each irreducible 
component has multiplicity 1. Now for any birational morphism f: X' --+ X, 
let us denote by f- 1(Y) the reduced inverse image divisor f*(Y)red· In other 
words, f- 1(Y) is the sum of all the irreducible components of f*(Y), with 
multiplicity 1. If f is a composition of monoidal transformations, then 
f- 1(¥) will also be reduced and connected, so H 0((!!1 _,(YJ) = k, and 
Pa(f- 1(¥)) = dimH1(@f_'(Yl) ~ 0. 

Let n:X --+X be the monoidal transformation at a point P, and let 
Jlp(Y) = r. Then the divisor n- 1(¥) is just Y + E = n*(Y) - (r- l)E, by 
(3.6), so we can easily compute the arithmetic genus, using the adjunction 
formula as in (3.7). We find 

1 
Pa(n- 1(Y)) = Pa(Y) - 2 (r - l)(r - 2). 
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To prove our result, we proceed as follows. First we apply (3.8) to each 
irreducible component of Y. Thus we reduce to the case where each irre
ducible component of Y is nonsingular, because all the new exceptional 
curves we add are already nonsingular. Then, if the total curve Y has a 
singular point P other than a node, we blow it up. 

If f!p(Y) ?: 3, then Pa(n- 1(Y)) < pu(Y), so there can be only finitely 
many steps of this kind. If ,Up(Y) = 2, then Pa(n- 1(Y)) = Pa(Y), and we 
must look more closely. In that case we have Y.E = 2, by (3.7). There are 
three possibilities. One is that Y meets E transversally in two distinct points, 
in which case we can stop. The second is that Y meets E in one point Q, Y 
is nonsingular there, but Y and E have intersection multiplicity 2 at Q. In 
this case, blowing up Q produces a triple point (check!), so one further 
blowing-up makes Pa(Y) drop again. The third possibility is that Y has a 
singular point Q of multiplicity 2 where it meets E. In this case Y + E has 
multiplicity 3 at Q, so blowing up Q makes Pa drop again. 

So we see that any kind of singularity except a node gives rise to a 
monoidal transformation, or a finite sequence of such, which forces Pa to 
drop. Therefore the process must terminate. When it does, f- 1(Y) will be 
a divisor with normal crossings, because each irreducible component is non
singular, and the only singularities of the total curve f- 1(Y) are nodes. 

Example 3.9.1. If Y is the plane cuspidal curve y2 = x 3 , then the singularity 
of Y is resolved by one monoidal transformation. However, to get f- 1(Y) 
to have normal crossings, we need three monoidal transformations (Fig. 20). 

y 

Figure 20. Embedded resolution of a cusp. 

In the context of successive monoidal transformations, it is convenient 
to introduce the language of infinitely near points. 

Definition. Let X be a surface. Then any point on any surface X', obtained 
from X by a finite succession of monoidal transformations, is called an 
infinitely near point of X. If g: X" -+ X' is a further succession of monoidal 
transformations, and if Q" E X" is a point in the open set where g is an 
isomorphism, then we identify Q" with g(Q") as infinitely near points 
of X. In particular, all the ordinary points of X are included among 
the infinitely near points. We say "Q is infinitely near P" if P lies on 
some X' and Q lies on the exceptional curve E obtained by blowing up 
P. If C is a curve in X, and Q' E X' is an infinitely near point of X, we 
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say Q' is an infinitely near point of C if Q' lies on the strict transform of 
Con X'. 

Example 3.9.2. Let C be an irreducible curve on a surface X, with nor
malization C. Then we have 

- 1 
g(C) = Pa(C)- ~lrp(rp- 1), 

where rp is the multiplicity, and the sum is taken over all singular points 
P of C, including infinitely near singular points. Indeed, by (3.8) we pass 
from C to C by blowing up the singular points in succession, until there 
are none left. Each time, by (3.7), the arithmetic genus drops by !r(r - 1). 

Example 3.9.3. In particular, working with the infinitesimal neighborhood 
of one point at a time, we see that the integer bp of (IV, Ex. 1.8) can be com
puted as I!rQ(rQ - 1) taken over all infinitely near singular points Q 
lying over P, including P. 

Remark 3.9.4 (Classification of Curve Singularities). With the ideas of this 
section we can begin a new classification of the possible singularities of a 
(reduced) curve lying on a surface, which is weaker than the classification 
by analytic isomorphism introduced in (I, 5.6.1) and (I, Ex. 5.14)-see 
(Ex. 3.6). For references, see Walker [1, Ch. III, §7] and Zariski [10, Ch. I]. 

As a first invariant of a singular point P on a curve C (lying always on a 
surface X) we have its multiplicity. Next we have the multiplicities of the 
infinitely near singular points of C, and their configuration around P. 
This data already suffices to determine bp (3.9.3). 

We define a slightly more complex, but still discrete, invariant of a 
singular point (or set of singular points), to be its equivalence class for the 
following equivalence relation. A (reduced) curve C in an open set U of a 
surface X is equivalent to another C' ~ U' ~ X' if there is a sequence of 
monoidal transformations u n ~ u n- 1 ~ ... ~ u 0 = u and another u~ ~ 
U~_ 1 ~ ••. ~ U0 = U', which give embedded resolutions for C and C' 
respectively, and if there is a one-to-one correspondence between the ir
reducible components of the reduced total transforms and their singular 
points at each step, preserving multiplicities, incidence, and compatible 
with the maps U; ~ U;_ 1 and u; ~ u;_ 1 for each i. One checks easily 
that this is in fact an equivalence relation. To define equivalence of a single 
singular point P E C, just take U so small that C n U has no other singular 
points. 

Example 3.9.5. To illustrate this concept, let us classify all double points 
up to equivalence. Let P E C be a double point, and let n:X ~X be the 
monoidal transformation with center P. Then as in the proof of (3.9), there 
are three possibilities: (a) C meets E transversally in two points, in which 
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case P is a node; (b) C meets E in one point, and is tangent to it there, in 
which case P is a cusp; (c) C is singular, with a double point Q. In this 
case E must pass through Q in a direction not equal to any tangent direction 
of Q, since C.E = 2. Therefore the equivalence class of Q determines the 
equivalence class of P. 

Thus we can classify double points according to the number of times n 
we must blow up to get C nonsingular, and the behavior (a) or (b) at the 
last step. 

In this case it happens that the classification for equivalence coincides 
with the classification for analytic isomorphism, although that is not true 
in general (Ex. 3.6). Indeed, up to analytic isomorphism, any double point 
is given by y2 = x' for some r ;:::;: 2 (I, Ex. 5.14d). To blow up, set y = ux. 
Then we get u2 = x'- 2• So we see inductively that the equivalence class 
is given by n = [r/2] and the type is (a) if r is even, (b) if r is odd. 

ExERCISES 

3.1. Let X be a nonsingular projective variety of any dimension, let Y be a nonsingular 
subvariety, and let n:X-+ X be obtained by blowing up Y. Show that PaC¥) = 

Pa(X). 

3.2. Let C and D be curves on a surface X, meeting at a point P. Let n:X ...... X be 
the monoidal transformation with center P. Show that C.D = C.D - Jlp( C)· Jlp(D). 

Conclude that C.D = LJlp(C) · Jlp(D), where the sum is taken over all intersection 
points of C and D, including infinitely near intersection points. 

3.3. Let n:X -+X be a monoidal transformation, and let D be a very ample divisor 
on X. Show that 2n*D - E is ample on X. [Hint: Use a suitable generalization 
of (1, Ex. 7.5) to curves in P".] 

3.4. Multiplicity of a Local Ring. (See Nagata [7, Ch III, §23] or Zariski-Samuel 
[1, vol 2, Ch VIII, §10].) Let A be a noetherian local ring with maximal ideal m. 
For any l > 0, let 1/J(I) = length(A/m1). We callljl the Hilbert-Samuel function of A. 

(a) Show that there is a polynomial P A(z) E Q [ z] such that P A(l) = 1/J(l) for all 
l » 0. This is the Hilbert-Samuel polynomial of A. [Hint: Consider the graded 
ring grm A = EB D 0 md /md+ 1, and apply (1, 7.5).] 

(b) Show that deg P A = dim A. 

(c) Let n = dim A. Then we define the multiplicity of A, denoted Jl(A), to be (n!) · 
(leading coefficient of P A)· If P is a point on a noetherian scheme X, we define 
the multiplicity of P on X, Jlp{X), to be Jl((!)P.x). 

(d) Show that for a point P on a curve Con a surface X, this definition of Jlp(C) 
coincides with the one in the text just before (3.5.2). 

(e) If Y is a variety of degree din P", show that the vertex of the cone over Y is a 
point of multiplicity d. 

3.5. Let a 1 , ... ,a, r ~ 5, be distinct elements of k, and let C be the curve in P 2 given 
by the (affine) equation y2 = fli= 1 (x - aJ Show that the point P at infinity 
on they-axis is a singular point. Compute bp and g(Y), where Y is the normaliza
tion of Y. Show in this way that one obtains hyperelliptic curves of every genus 
g ~ 2. 
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3.6. Show that analytically isomorphic curve singularities (1, 5.6.1) are equivalent in 
the sense of (3.9.4), but not conversely. 

3.7. For each of the following singularities at (0,0) in the plane, give an embedded 
resolution, compute Op, and decide which ones are equivalent. 
(a) x3 + y5 = 0. 
(b) x 3 + x4 + y5 = 0. 
(c) x3 + Y4 + ys = 0. 
(d) x3 + ys + y6 = 0. 
(e) x 3 + xy3 + y 5 = 0. 

3.8. Show that the. following two singularities have the same multiplicity, and the 
same configuration of infinitely near singular points with the same multiplicities, 
hence the same Op, but are not equivalent. 
(a) x4 - xy4 = 0. 
(b) x4 - xzl - xzys + YB = 0. 

4 The Cubic Surface in P 3 

In this section, as in §2, we consider a very special class of surfaces, to illus
trate some general principles. Our main result is that the projective plane 
with six points blown up is isomorphic to a nonsingular cubic surface in P 3 . 

We use this isomorphism to study the geometry of curves on the cubic 
surface. The isomorphism is accomplished using the linear system of plane 
cubic curves with six base points, so we begin with some general remarks 
about linear systems with base points. 

Let X be a surface, let IDI be a complete linear system of curves on X, and 
let P b ... ,P, be points of X. Then we will consider the sublinear system b 
consisting of divisors D E IDI which pass through the points P 1, ... ,P" and 
we denote it by ID - P 1 - ... - P,l. We say that P 1 , ... ,P, are the assigned 
base points of b. 

Let n::X'-+ X be the morphism obtained by blowing up P 1, ... ,P" 
and let E 1, ... ,E, be the exceptional curves: Then there is a natural one-to
one correspondence between the elements of b on X and the elements of the 
complete linear system b' = In* D - E 1 - ... - E,l on X' given by D f---* 

n:* D - E 1 - ... - E" because the latter divisor is effective on X' if and 
only if D passes through P 1 , ... ,P,. 

The new linear system b' on X' may or may not have base points. We call 
any base point ofb', considered as an infinitely near point of X, an unassigned 
base point of b. 

These definitions also make sense if some of the P; themselves are infinitely 
near points of X, or if they are given with multiplicities greater than 1. For 
example, if P 2 is infinitely near P 1, then for D E b we require that D contain 
P 1, and that nf D - E 1 contain P 2 , where n 1 is the blowing-up of P 1. On the 
other hand, if P 1 is given with multiplicity r ~ 1, then we require that D have 
at least an r-fold point at P 1, and in the definition of b', we taken* D - rE 1. 
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(Note that if we assign base points Qt. ... ,Qs infinitely near a point P, 
then every divisor containing Q1, ... ,Qs will automatically have at least an 
s-fold point at P. So we make the convention that every point P must be 
assigned with a multiplicity at least equal to the sum of the multiplicities of 
the assigned base points infinitely near P.) 

The usefulness of this language is that it gives us a way of talking about 
linear systems on various blown-up models of X, in terms of suitable linear 
systems with assigned base points on X. 

Remark 4.0.1. Using this language, we can rephrase the condition (II, 7.8.2) 
for a complete linear system IDI to be very ample as follows: IDI is very ample 
if and only if(a) IDI has no base points, and (b) for every P EX, ID - PI has no 
unassigned base points. Indeed, IDI separates the points P and Q if and only 
if Q is not a base point of ID - PI, and IDI separates tangent vectors at P if 
and only if ID - PI has no unassigned base points infinitely near to P. 

Remark 4.0.2. If we observe that the dimension drops by exactly one when 
we assign a base point which was not already an unassigned base point of a 
linear system, then we can rephrase this condition in a form reminiscent 
of (IV, 3.1) as follows: IDI is very ample if and only if for any two points 
P,Q EX, including the case Q infinitely near P, 

dimiD- P- Ql = dimiDI - 2. 

Remark 4.0.3. Applying (4.0.1) to a blown-up model of X, we see that ifb = 

ID - P 1 - ... - P,l is a linear system with assigned base points on X, 
then the associated linear system b' on X' is very ample on X' if and only 
if (a) b has no unassigned base points, and (b) for every P EX, including 
infinitely near points on X', b - P has no unassigned base points. 

Now we turn our attention to the particular situation ofthis section, which 
is linear systems of plane curves of fixed degree with assigned base points. 
We ask whether they have unassigned base points, and if not, we study the 
corresponding morphism of the blown-up model to a projective space. To 
get the cubic surface in P 3 we will use the linear system of plane cubic curves 
with six base points. But first we need to consider linear systems of conics 
with base points. Here we use the word conic (respectively, cubic) to mean any 
effective divisor in the plane of degree 2 (respectively, 3). 

Proposition 4.1. Let b be the linear system of conics in P 2 with assigned base 

points P 1, ... ,P, and assume that no three of the P; are collinear. If r :::::; 4, 
then b has no unassigned base points. This result remains true if P 2 is 
infinitely near P 1. 
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PROOF. Clearly it is sufficient to consider the case r = 4. First suppose 
P 1,P2 ,P3 ,P4 are all ordinary points. Let Lii denote the line containing Pi 
and Pi. Then b contains L 12 + L 34 and L 13 + L 24 . Since no three of the Pi 
are collinear, the intersection of these two divisors consists of the points 
P 1,P2 ,P3 ,P 4 with multiplicity 1 each, so there are no unassigned base points. 

Now suppose P 2 is infinitely near P 1. In this case b contains L 12 + L 34 

and L 13 + L 14 . (Here, of course, L 12 denotes the line through P 1 with the 
tangent direction given by P2 .) This intersection again is just {P1,P2 ,P3 ,P4 }, 

so there are no further base points. 

Corollary 4.2. With the same hypotheses, we have: 
(a) if r :( 5, then dim b = 5 - r; 
(b) if r = 5, then there exists a unique conic containing P 1, ... ,P 5 , which 

is necessarily irreducible. 
Furthermore, these results remain true if P 5 is infinitely near any one of 

P1, ... ,P4. 

PROOF. 

(a) Every time we prescribe a new base point on a linear system without 
unassigned base points, the dimension drops by one. Since the linear system 
of all conics in P 2 has dimension 5, this follows from (4.1). 

(b) For r = 5, dim b = 0, so there is a unique conic containing P to ••• ,P 5 . 

It must be irreducible since no three of the Pi are collinear. 

Remark 4.2.1. This last statement is the classical result that a conic is 
uniquely determined by giving 5 points, or 4 points and a tangent direction 
at one of them, or 3 points with tangent directions at two of them, or even 3 
points with a tangent direction and a second order tangent direction at one 
of them (when P 5 is infinitely near P 2 which is infinitely near P 1 ). 

Example 4.2.2. If r = 1, then b has no unassigned base points, and for any 
point P, b - P has no unassigned base points, so by (4.0.3), b' is very ample 
on X'. Since dim b' = 4, it gives an embedding of X' in P4 , as a surface of 
degree 3, which is the number of unassigned intersection points oftwo divisors 
in b. In fact, X' is just the rational ruled surface with e = 1, and this em
bedding is the rational cubic scroll (2.19.1). 

Example 4.2.3. If r = 3, then X' is P 2 with three points blown up, and 
dim b = 2. Since b' has no base points, it determines a morphism lf; of X' to 
P 2. We may take the three points to be P 1 = (1,0,0), P2 = (0,1,0) and P 3 = 
(0,0,1). Then the vector space V £:: H 0(0pz(2)) corresponding to b is spanned 
by x 1x2 , x 0 x 2 , and x0x1o so lf; can be defined by y0 = x 1x2 , y1 = x 0 x 2 , 

y2 = x 0x 1, where Yi are the homogeneous coordinates of the new P 2 . Con
sidered as a rational map from P 2 to P 2 , this is none other than the quadratic 
transformation qJ of (I, Ex. 4.6). 
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Now we will show that t/1 identifies X' with the second P2 , blown up at 
the points Q 1 = (1,0,0), Q2 = (0,1,0), and Q 3 = (0,0,1), in such a way that 
the exceptional curve t/J- 1(QJ is the strict transform of the line Ljk joining 
Pj,Pk on the first P2 , for each (i,j,k) = (1,2,3) in some order. Furthermore 
t/J(E;) is the line Mjk joining Qj and Qk, for each (i,j,k) = (1,2,3). Thus we 
can say that the quadratic transformation cp is just "blowing up the points 
P 1,P 2 ,P 3 and blowing down the lines L12 ,L13,l23" (Fig. 21). 

r 
--~----

Figure 21. The quadratic transformation of P 2 • 

To prove this, we consider the variety V in P2 x P 2 defined by the 
bihomogeneous equations x 0 y0 = x 1y 1 = x2 Y2. I claim the first projection 
p1 : V --+ P 2 identifies V with X'. This is a local question, since blowing up 
a point depends only on a neighborhood of the point, so we consider the 
open set U ~ P2 defined by x 0 = 1. Then U =Spec A with A = k[x1,x2], 

and p1 1(U) can be written as 

p1 1(U) = Proj A[y0 ,y1 ,Y2]/(Y0 - X1Y1, X1Y1 - X2Y2). 

We can eliminate y0 from the graded ring, so 

P1 1(U) ~ Proj A[y 1,Y2]/(x 1 y1 - X2Y2). 

But this shows that p1 1(U) is isomorphic to U with the point (x 1,x2) = (0,0) 
blown up, as in the proof of (3.6). 

Doing the same with the open sets x 1 = 1 and x 2 = 1 of P2 , we see that 
V, via the first projection, is just P 2 with the points P 1,P2 ,P3 blown up, so 
V ~ X'. By symmetry, V with the second projection is the second P2 with 
the points Q 1,Q 2 ,Q 3 blown up. So p2 a p1 1 gives a birational transforma
tion ofP2 to itself. Solving the equations x 0 y0 = x 1 y1 = x 2 Y2 in the case 
x0 ,x1,x2 =f. 0, we get Yo = x 1x2 , y 1 = x0x2 , y2 = x0x 1, so that this trans
formation is again the quadratic transformation cp above. 

We conclude that t/f:X' --+ P2 is the same as p2 : V--+ P2, so that cp is just 
blowing up three points and blowing down three lines. Finally, it is clear 
from the equations that pz(Lij) = Qk and pz(E;) = Mjk for each i,j,k. 
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Proposition 4.3. Let b be the linear system of plane cubic curves with assigned 
base points P 1, ... ,P" and assume that no 4 of the P; are collinear, and 
no 7 of them lie on a conic. If r :::::; 7, then b has no unassigned base points. 
This result remains true if P 2 is infinitely near P 1. 

PROOF. It is sufficient to consider the case r = 7. We will show first that if 
P 1, ... ,P 7 are all ordinary points, then b has no unassigned ordinary base 
points. For this it is sufficient to exhibit, for each point Q not equal to any 
P;, a cubic curve containing P 1, ... ,P 7 but not Q. 

Case 1. Suppose there exist some three points P 1,P 2 ,P 3 lying on a line L * 
with Q. The points P 4 ,P 5 ,P 6 ,P 7 are not all collinear, so we may assume that 
P 4 ,P 5 ,P 6 are not collinear. Then the conic r 12456 through P 1,P 2,P 4 ,P 5 ,P 6 , 

together with the line L37 through P 3 and P 7 forms a cubic curve containing 
P 1, ... ,P7 but not Q. Indeed, if Q E F 12456 , then this conic contains the 
line L*, so it is reducible, in which case P4,P5 ,P6 must be collinear, which 
is a contradiction. If Q E L37 , then P 7 E L*, so P 1,P2,P3,P7 are collinear, 
which is a contradiction. 

Case 2. Suppose that Q is not collinear with any set of three of the points 
P;, but that Q lies on a conic r* (necessarily irreducible) containing 6 of 
them, say P 1, ... ,P6 . Then F 12347 + L 56 is a cubic not containing Q. 
Indeed, if Q E r12347, then P1,P2,P3,P4,Q are in this conic and also in r*, 
so by (4.2), F 12347 = r*. But then P 1, ... ,P7 are all in r*, a contradiction. 
If Q E L56, then r* is reducible, a contradiction. 

Case 3. Q is not collinear with any 3 of the P;, and not on a conic with 
any 6 of them. Then consider the three cubic curves C; = r 1234; + Ljk, 

where (i,j,k) = (5,6,7) in some order. We will show that one of these does 
not contain Q. If Q E L 56 , then Q ¢ L 57 and Q ¢ L67 , because in either case 
P 5 ,P6 ,P7 ,Q would be collinear. So, ruling out C7 , we may assume Q ¢ L 57 

and Q ¢ L67 . Then, if Q E C5 and Q E C6 , we have Q E r 12345 and Q E 

r 12346 . Consider the conic r' = r 1234Q. If r' is irreducible, then from 
(4.2) we have all three conics equal, so Q E r 123456 , which is a contradic
tion. If r' is reducible, then for a suitable relabeling, we have either (a) r' = 

L 123 + L4 Q or (b) r' = L12Q + L34 . In case (a), F 12345 = L 123 + L45 and 
r 12346 = L 123 + L46 , soP 4 ,P 5 ,P 6 and Q are collinear, a contradiction. In 
case (b), r 12345 = L 12 + L345 and r 12346 = L 12 + L 346 , so P 3 ,P4,P5 ,P6 

are collinear, a contradiction. 
THis completes the proof in the case P 1, ... ,P 7 and Q are all ordinary 

points. The same proof also works in case P 2 is infinitely near P 1, or Q is 
infinitely near one of P 1, ... ,P 7 , or both. One has to relabel the P; occa
sionally so that the constructions make sense, and one has to use (4.2) in 
the case of infinitely near points also. (Details left to reader.) 

Corollary 4.4. With the same hypotheses, we have 
(a) if r :::::; 8, then dim b = 9 - r, and 
(b) if r = 8, dim b = 1 and almost every curve in b is irreducible. 
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PROOF. For r ~ 7 there are no unassigned base points, so at each step, the 
dimension drops by one. The cubics with no base points form a linear 
system of dimension 9. This proves (a). To prove (b), we observe that with 
no 4 points collinear and no 7 on a conic, there are only finitely many ways 
of passing three lines, or one line and one irreducible conic through the 
8 points. 

Corollary 4.5. Given 8 points P 1, ... ,P 8 in the plane, no 4 collinear, and no 7 
lying on a conic, there is a uniquely determined point P 9 (possibly an 
infinitely near point) such that every cubic through P 1 , ... ,P 8 also passes 
through P 9 . This is still true if P 2 is infinitely near P 1, and P 8 is infinitely 
near any one of P 1, ... ,P7 . 

PROOF. By (4.4) the linear system b of all cubics through P 1, ... ,P8 has 
dimension one, and we can choose two distinct irreducible ones C,C' E b. 
Then by Bezout's theorem (1.4.2) (cf. Ex. 3.2), C and C' meet in 9 points, 
8 of which are P 1, ... ,P 8 . So this determines a ninth point P 9 , possibly an 
infinitely near point. Now since dim b = 1, any other curve C" E b, irre
ducible or not, is a linear combination of C and C', so it must also pass 
through P 9 . Thus P 9 is an unassigned base point of b. 

Remark 4.5.1. This classical result has a number of interesting geometrical 
consequences. See (Ex. 4.4), (Ex. 4.5). 

Theorem 4.6. Let b be the linear system of plane cubic curves with assigned 
(ordinary) base points P 1, ... ,P_, and assume that no 3 of the P; are col
linear, and no 6 of them lie on a conic. If r ~ 6, then the corresponding 
linear system b' on the surface X' obtained from P 2 by blowing up P to ... , 

P_, is very ample. 

PROOF. According to (4.0.3) we must verify that b has no unassigned base 
points, and that for every point P, possibly infinitely near, b - P has no 
unassigned base points. The first statement is an immediate consequence of 
(4.3). For the second, we note that since no 3 of the Pi are collinear, and 
no 6 of them lie on a conic, the r + 1 points P to ... ,P" P satisfy the hy
potheses of (4.3). So this case also follows from (4.3). 

Corollary 4.7. With the same hypotheses, for each r = 0,1, ... ,6, we obtain 
an embedding of X' in P9 -' as a surface of degree 9 - r, wbose canonical 
sheaf Wx· is isomorphic to lDx.( -1). In particular, for r = 6, we obtain a 
nonsingular cubic surface in P 3 . 

PROOF. We embed X' in pN via the very ample linear system b'. Since 
dim b = dim b' = 9 - r by (4.4), we have N = 9 - r. If L is a line in P 2 , 

then b' = ln*3L - E 1 - ... - E,l, so for any D' E b', we have D'2 = 9 - r. 

Therefore the degree of X' in pN is 9 - r. Finally, since the canonical 
divisor on P 2 is -3L, we see from (3.3) that Kx· = -n*3L + E 1 + ... + 
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E., which is just - D'. Therefore wX' ~ (l)x,( -1) in the given projective 
embedding. 

Remark 4.7.1. A Del Pezza surface is defined to be a surface X of degree d 
in pd such that Wx ~ (l)x( -1). So (4.7) gives a construction of Del Pezza 
surfaces of degrees d = 3,4, ... ,9. A classical result states that every Del 
Pezza surface is either one given by (4.7) for a suitable choice of points 
P; E P2 , or the 2-uple embedding of a quadric surface in P\ which is a Del 
Pezza surface of degree 8 in P 8 . In particular, every nonsingular cubic 
surface in P3 can be obtained by blowing up 6 points in the plane. Indeed, 
for a cubic surface in P 3 , the condition Wx ~ (l)x( -1) is automatic (II, Ex. 
8.4). For proofs see, e.g., Manin [3, §24] or Nagata [5, I, Thm. 8, p. 366]. 

Remark 4.7.2. In the case of cubic surfaces in P 3 , we can prove a slightly 
weaker result by counting constants. The choice of 6 points in the plane 
requires 12 parameters. Subtract off the automorphisms of P2 (8 param
eters) and add automorphisms of P 3 (15 parameters). Thus we see that the 
cubic surfaces in P 3 given by (4.7) form a 19-dimensional family. But the 
family of all cubic surfaces in P3 has dimension equal to dim H 0 ( (l)p,(3)) - 1, 
which is also 19. Thus we see at least that almost all nonsingular cubic 
surfaces arise by ( 4. 7). 

Notation 4.7.3. For the rest of this section, we specialize to the case of the 
cubic surface in P\ and fix our notation. Let P 1, ... ,P 6 be six points of 
the plane, no three collinear, and not all six lying on a conic. Let b be 
the linear system of plane cubic curves through P 1, ... ,P 6 , and let X be 
the nonsingular cubic surface in P 3 obtained by (4.7). Thus X is iso
morphic to P 2 with the six points P 1, ... ,P 6 blown up. Let n: X ~ P 2 

be the projection. Let E 1, ... ,E6 ~ X be the exceptional curves, and 
let e1, ... ,e6 EPic X be their linear equivalence classes. Let l EPic X be 
the class of n* of a line in P 2 . 

Proposition 4.8. Let X be the cubic surface in P 3 (4.7.3). Then: 
(a) Pic X ~ Z 7 , generated by l,e1, ... ,e6 ; 

(b) the intersection pairing on X is given by 12 = 1, e? = -1, I.e; = 0, 
e;.ei = 0 fori =1- j; 

(c) the hyperplane section h is 31 - Ie;; 
(d) the canonical class is K = - h == - 31 + Ie;; 
(e) if D is any effective divisor on X,D ,...., al - Lb;e;, then the degree 

of D, as a curve in P3 , is 
d = 3a- ~b-· L." 

(f) the self-intersection of D is D2 = a2 - Ib?; 
(g) the arithmetic genus of D is 

1 1 1 
pu(D) = 2 (D 2 - d) + 1 = 2 (a - 1)(a - 2) - 2 l:b;(b; - 1). 
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PROOF. All of this follows from earlier results. (a) and (b) follow from (3.2). 
(c) comes from the definition of the embedding in P 3 . (d) comes from (3.3). 
For (e), we note that the degree of D is just D.h. (f) is immediate from (b), 
and (g) follows from the adjunction formula 2pa(D) - 2 = D.(D + K) 
(Ex. 1.3) and the fact that D.K = -D.h = -d by (d). 

Remark 4.8.1. If Cis any irreducible curve in X, other than E 1, ... ,E6 , then 
n(C) is an irreducible plane curve C0 , and C in turn is the strict transform 
of C0 . Let C0 have degree a, and suppose that C0 has a point of multiplicity 
b; at each P;. Then n*C0 = C + 'j);E;, by (3.6). Since C0 ~ a · line, we 
conclude that C ~ al - 'j);e;. Thus for any a,b 1, . .. ,b6 ~ 0, we can in
terpret an irreducible curve C on X in the class al - 'L.b;e; as the strict 
transform of a plane curve of degree a with a b;-fold point at each P;. So 
the study of curves on X is reduced to the study of certain plane curves. 

Theorem 4.9 (Twenty-Seven Lines). The cubic surface X contains exactly 27 
lines. Each one has self-intersection -1, and they are the only irreducible 
curves with negative self-intersection on X. They are 

(a) the exceptional curves E;, i = 1, ... ,6 (six of these), 
(b) the strict transform Fii of the line in P 2 containing P; and Pi, 1 :::::; 

i < j :::::; 6 (fifteen of these), and 
(c) the strict transform Gi of the conic in P 2 containing the five P; for 

i #- j,j = 1, ... ,6 (six of these). 

PROOF. First of all, if L is any line in X, then deg L = 1 and Pa(L) = 0, so 
by (4.8) we have L 2 = -1. (See also (Ex. 1.4).) Conversely, if C is an irre
ducible curve on X with C2 < 0, then since Pa(C) ~ 0, we must have C2 = 

-1, Pa(C) = 0, deg C = 1 again by (4.8), soC is a line. 
Next, from (4.8.1) we see that E; ~ e;, Fii ~ 1 - e; - ei, and Gi ~ 21 -

Li>'i e;, and we see immediately from (4.8) that each of these has degree 1, 
i.e., is a line. 

It remains to show that if C is any irreducible curve on X with deg C = 1 
and C2 = -1, then C is one of those 27 lines listed. Assuming Cis not one 
of theE;, we can write C ~ al - 'L.b;e;, and by (4.8.1) we must have a > 0, 
b; ~ 0. Furthermore, 

deg C = 3a - 'j); = 1 

cz = az - 'L.bf = - 1. 

We will show that the only integers a,b 1, • .. ,b6 satisfying all these condi
tions are those corresponding to the Fii and Gi above. 

Recall Schwarz's inequality, which says that if x 1,x2 , ... ,y1,y2 , • •• are 
two sequences of real numbers, then 

I'Ix;Y;I 2 :::::; I'Ixfl· I'L.Yfl. 
Taking X; = 1, Y; = b;, i = 1, ... ,6, we find 
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Substituting 'f.bi = 3a - 1 and "[}? = a2 + 1 from above, we obtain 

3a2 - 6a - 5 :(; 0. 

Solving the quadratic equation, this implies a :(; 1 + (2/3)ft < 3. There
fore a = 1 or 2. Now one quickly finds all possible values of the bi by trial: 
if a = 1, then bi = bj = 1 for some i,j, the rest 0. This gives Fij. If a = 2, 
then all bi = 1 except for one bj = 0. This gives Gj. 

Remark 4.9.1. There is lots of classical projective geometry associated with 
the 27lines. For example, the configuration of 12lines £ 1, ... ,E6 , G1, ... ,G6 

in P 3 with the property that the Ei are mutually skew, the Gj are mutually 
skew, and E; meets Gj if and only if i =I j, is called Sch/afli's double-six. 
One can show that given a line £ 1, and five lines G2 , ... ,G6 meeting it, but 
otherwise in sufficiently general position, then other lines £ 2 , •.• ,E6 and 
G1 are uniquely determined so as to form a double-six. Furthermore, each 
double-six is contained in a unique nonsingular cubic surface, and thus 
forms part of a set of 27 lines on a cubic surface. See Hilbert and Cohn
Vossen [1, §25]. The 27 lines have a high degree of symmetry, as we see in 
the next result. 

Proposition 4.10. Let X be a cubic surface as above, and let E'1 , • •• ,E~ he 
any subset of six mutually skew lines chosen from among the 27 lines on 
X. Then·there is another morphism n':X--> P 2 , making X isomorphic to 
that P2 with six points P'b ... ,P~ blown up (no 3 collinear and not all 6 
on a conic), such that E'1 , ••• ,E6 are the exceptional curves for n'. 

PROOF. We proceed stepwise, working with one line at a time. We will show 
first that it is possible to find n' such that £'1 is the inverse image of P'1. 

Case I. If E~ is one of the E;, we take n' = n, but relabel the Pi so that 
Pi becomes P~. 

Case 2. If £'1 is one of the Fij, say £'1 = F 12 , then we apply the quadratic 
transformation with centers P 1 ,P2 ,P3 (4.2.3) as follows. Let X 0 be P 2 with 
P 1,P2 ,P3 blown up, let n0 :X0 --> P 2 be the projection, and let tjJ:X 0 --> P 2 

be the other map to P 2 of(4.2.3), so that X 0 via tjJ is P2 with Q 1,Q 2 ,Q 3 blown 
up. Since n: X --> P 2 expresses X as P 2 with P 1, ... ,P 6 blown up, n factors 
through n0 , say n = n0 o 8, where 8:X--> X 0 • Now we define n' as tjJ o 8. 

~p2"\\ 
X X 0 I([J 

~p2/ 
Then, using the notation of (4.2.3), 8(F 12 ) = L12 , so n'(Fu) = Q3 . Fur
thermore, n' expresses X as P 2 with Q 1 ,Q 2 ,Q 3 ,P~,P~,P6 blown up, where 
P~,P~,P6 are the images of P 4 ,P 5 ,P 6 under tjJ a n0 1 . Now taking P'1 = Q3 , 

and P~,P~ to be Q1,Q 2 , we have £'1 = n'- 1(P'1). 
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We still have to verify that no 3 of Q 1 ,Q 2 ,Q 3 ,P~,P~,P~ lie on a line, and 
no 6 on a conic. Q1,Q 2 ,Q3 are noncollinear by construction. If QI>Q 2 ,P~ 
were collinear, then I/J- 1 (P~) E E3 , so P 4 would be infinitely near P 3 • If 
Q 1,P~,P~ were collinear, let L' be the line containing them. Then the strict 
transform of L' by cp -l will be a line L containing P 1,P 4 ,P 5 . Indeed, cp- 1 

is the rational map determined by the linear system of conics through 
Q1,Q 2 ,Q 3 . Such a conic has one free intersection with L', so the strict trans
form of L' is a line L. Furthermore, L' meets M 23 , soL passes through P 1 . 

Finally, suppose P~,P~,P~ were collinear. Since cp is determined by the 
conics through P 1,P2 ,P3 , the strict transform of the line L' containing 
P~,P~,P~ would be a conic r containing P 1, ... ,P 6 , which is impossible. 
For the same reason, if Q 1 ,Q 2 ,Q 3 ,P~,P~,P~ lay on a conic, then P4 ,P5 ,P6 

would be collinear. This completes Case 2. 
Case 3. If E'1 is one of the G i' say E'1 = G 6 , we again apply the quadratic 

transformation of (4.2.3) with centers P 1,P2 ,P3 . Since n(G6 ) is the conic 
through P 1, ... ,P5 , we see that n'(G6 ) is the line through P~,P~. Thus E'1 

is the curve F~5 for n', which reduces us to Case 2. 
Now that we have moved E'1 to the position of E 1 , we may assume E'1 = 

E 1, and we consider E~. Since E~ does not meet E 1 , the possible values of 
E~ are E2 , •.• ,E6 , Fii with 1 < i,j, or G1 . We apply the same method as in 
Cases 1, 2, and 3 above, and find that we can move E'z to the role of E2 without 
touching P 1. That is to say, we allow ourselves only to relabel P 2 , ... ,P5 , 

or use quadratic transformations based at three points among P 2 , ... ,P 5 . 

Continuing in this manner, we eventually have E'1, ... ,E~ in the position 
of E 1 , ... ,E6 , which proves the proposition. For example, the last step is 
this. Assuming that Ei = Ei for i = 1,2,3,4, there are only 3 lines left which 
do not meet EI> ... ,E4 . They are E 5 ,E6 ,F 56 . Since F 56 meets E 5 and E6 , 

the lines E~ and E~ must be E 5 and E6 in some order. So for the last step 
we have only to permute 5 and 6 if necessary. 

Remark 4.10.1. The proposition says that any six mutually skew lines among 
the 27 lines play the role of E 1, ... ,E6 . Another way of expressing this is 
to consider the corifiguration of the 27 lines (forgetting the surface X). That 
means we consider simply the set of 27 elements named Ei,Fii,Gi (the lines) 
together with the incidence relations they satisfy. These incidence relations 
are easily deduced from (4.8) and (4.9), and say (explicity) Ei does not meet 
Ei for i =1- j; Ei meets Fik if and only if i = j or i = k; Ei meets Gi if and 
only if i =1- j; Fii meets Fk1 if and only if i,j,k,l are all distinct; Fii meets Gk 
if and only if i = k or j = k; Gi does not meet Gk for j =1- k. 

Now to say that E'1, ... ,E6 play the same role as E 1 , ... ,E6 means that 
there is another way of labeling all 27 lines, starting with E'1, ... ,E6, so as 
to satisfy the same incidence relations. In other words, there is an automor
phism of the configuration (meaning a permutation of the set of 27 elements, 
preserving the incidence relations) which sends E 1, ... ,E6 to E'1, ... ,E6. 
Notice furthermore that naming E 1, ... ,E6 uniquely determines the names 
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of the remaining 21 lines: Fii is the unique line which meets Ei,Ei but not 
other Ek; Gi is the unique line which meets all Ei except Ei. 

So (4.10) tells us that for every (ordered) set of six mutually skew lines 
among the 27 lines, there is a unique automorphism of the configuration 
taking Et. ... ,E6 to those six. Since any automorphism must send skew 
lines to skew lines, we get all elements of the group G of automorphisms of 
the configuration this way. From the incidence relations it is easy to count 
the ways of choosing six mutually skew lines: there are 27 choices for E 1 , 

16 for E 2 , 10 for E 3 , 6 for £ 4 , 2 for E 5 and 1 for E 6 • So the order of the 
group G is 27 · 16 · 10 · 6 · 2 = 51,840. 

One can show that G is isomorphic to the Weyl group E6 , and that it 
contains a normal subgroup of index 2 which is a simple group of order 
25,920. See (Ex. 4.11) and Manin [3, §25, 26]. 

We will use this symmetry of the 27 lines to determine the ample and 
very ample divisor classes on the cubic surface. 

Theorem 4.11. The following conditions are equivalent, for a divisor D on the 
cubic surface X: 

(i) D is very ample; 
(ii) D is ample; 

(iii) D 2 > 0, and for every line L ~ X, D.L > 0; 
(iv) for every line L ~ X, D.L > 0. 

PROOF. Of course (i) => (ii) => (iii) => (iv), using the easy direction of Nakai's 
criterion (1.10). For (iv) => (i) we will first prove a lemma. 

Lemma 4.12. Let D ~ al - 'i);e; be a divisor class on the cubic surface X, 
and suppose that b1 ~ b2 ~ ••. ~ b6 > 0 and a ~ b1 + b2 + b 5 • Then 
D is veryample. 

PROOF. We use the general fact that a very ample divisor plus a divisor 
moving in a linear system without base points is very ample (II, Ex. 7.5). 
Let us consider the divisor classes 

D0 =I 

D 1 = I - e1 

D2 = 21 - e1 - e2 

D 3 = 21 - e1 - e2 - e3 

D4 = 21 - e1 - e2 - e3 - e4 

D 5 = 31 - e1 - e2 - e3 - e4 - e5 

D6 = 31 - e1 - e2 - e3 - e4 - e5 - e6 • 

Then ID0 I,ID 1 1 correspond to the linear systems of lines in P2 with 0 or 1 
assigned base points, which have no unassigned base points. ID2 I,ID3 I,ID4 1 
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have no base points by (4.1), IDsl has no base points by (4.3), and D 6 is very 
ample by (4.6). Therefore any linear combination of these, D = L,c;D;, with 
c; ? 0 and c6 > 0, will be very ample. 

Clearly D0 , . .. ,D6 form a free basis for Pic X ~ Z 7. Writing D "' al -
'L,b;e;, we have b6 = c6 , b5 = c5 + c6 , .•. , b1 = c1 + ... + c6 , a = c1 + 
2(c2 + c3 + c4 ) + 3(c5 + c6 ). Then one checks easily that the conditions 
c; ? 0, c6 > 0 are equivalent to the conditions b1 ? ... ? b6 > 0 and a ? 
b1 + b2 + b5 , so all divisors satisfying these conditions are very ample. 

PROOF OF ( 4.11 ), CONTINUED. Suppose D is a divisor satisfying D.L > 0 for 
every line L ~ X. Choose six mutually skew lines E'1, . .. ,E~ as follows: 
choose E~ so that D.E~ is equal to the minimum value of D.L for any line L; 
choose E~ so that D.E~ is equal to the minimum value of D.L among those 
lines L which do not meet E~; and choose E~,E~ similarly. There will be 
just three remaining lines which do not meet E~,E~,E~,E~, one of them 
meeting the other two. Choose E't>E~ so that D.E'1 ? D.E~. 

Now according to (4.10), we may assume that E; = E; for each i. Writing 
D "' al - L,b;e;, we have D.E; = b;, so by construction we have b1 ? 
b2 ? ... ? b6 > 0. On the other hand, F 12 was available as a candidate 
at the time we chose E 3 , so we have D.F 12 ? D.E 3 . This translates as 
a - b1 - b2 ? b3 , i.e., a ? b1 + b2 + b3 . Since b3 ? b5 , these conditions 
imply the conditions of the lemma, so D is very ample. q.e.d. 

Corollary 4.13. Let D "' al - L,b;e; be a divisor class on X. Then: 
(a) D is ample¢;> very ample¢;> b; > 0 for each i, and a > b; + bi for 

each i,j, and 2a > Li,., i b; for each j; 
(b) in any divisor class satisfying the conditions of (a), there is an irre-

ducible nonsingular curve. 

PROOF. (a) is just a translation of(4.11), using the enumeration ofthe 27lines 
in (4.9), and (b) is a consequence of Bertini's theorem (II, 8.18) and 
(III, 7.9.1). 

Example 4.13.1. Taking a = 7, b1 = b2 = 3, b3 = b4 = b5 = b6 = 2 we 
obtain an irreducible nonsingular curve C "' al - L,b;e;, which according 
to (4.8) has degree 7 and genus 5. This gives another proof of the existence 
of a curve of degree 7 and genus 5 in P 3 (IV, 6.4.2). 

ExERCISEs 

4.1. The linear system of conics in P 2 with two assigned base points P 1 and P2 (4.1) 
determines a morphism l/1 of X' (which is P2 with P 1 and P2 blown up) to a 
nonsingular quadric surface Y in P\ and furthermore X' via l/J is isomorphic 
to Y with one point blown up. 

4.2. Let cp be the quadratic transformation of (4.2.3), centered at P 1,P2 ,P3 • If Cis 
an irreducible curve of degree d in P2, with points of multiplicity r1.rzh at 
P 1,P 2 ,P3 , then the strict transform C' of C by cp has degree d' = 2d- r 1 - r2 - r3 , 
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and has points of multiplicity d - r2 - r3 at Q1, d - r1 - r3 at Q2 and d -
r1 - r2 at Q3 . The curve C may have arbitrary singularities. [Hint: Use(Ex. 3.2).J 

4.3. Let C be an irreducible curve in P2. Then there exists a finite sequence of qua
dratic transformations, centered at suitable triples of points, so that the strict 
transform C' of C has only ordinary singularities, i.e., multiple points with all 
distinct tangent directions (1, Ex. 5.14). Use (3.8). 

4.4. (a) Use (4.5) to prove the following lemma on cubics: If C is an irreducible plane 
cubic curve, if Lis a line meeting C in points P,Q,R, and L' is a line meeting C 
in points P',Q',R', let P" be the third intersection of the line PP' with C, and 
define Q",R" similarly. Then P",Q",R" are collinear. 

(b) Let P 0 be an inflection point of C, and define the group operation on the set 
of regular points of C by the geometric recipe "let the line PQ meet Cat R, and 
let P0 R meet Cat T, then P + Q = T" as in (II, 6.10.2) and (II, 6.11.4). Use 
(a) to show that this operation is associative. 

4.5. Prove Pascal's theorem: if A,B,C,A',B',C' are any six points on a conic, then the 
points P = AB'.A'B, Q = AC'.A'C, and R = BC'.B'C are collinear (Fig. 22). 

B' 
Figure 22. Pascal's theorem. 

4.6. Generalize ( 4.5) as follows: given 13 points P 1, ••. ,P 13 in the plane, there are 
three additional determined points P 14,P15,P16 , such that all quartic curves 
through P 1, ••. ,P13 also pass through P 14,P15 ,P16 . What hypotheses are 
necessary on P 1o ••• ,P 13 for this to be true? 

4.7. If Dis any divisor of degree don the cubic surface (4.7.3), show that 

p.(D) ~ {~ (d - 1)(d - 2) if d = 1,2 (mod 3) 

1 2 
6 (d - 1)(d - 2) + J if d = 0 (mod 3). 

Show furthermore that for every d > 0, this maximum is achieved by some 
irreducible nonsingular curve. 

*4.8. Show that a divisor class Don the cubic surface contains an irreducible curve= 
it contains an irreducible nonsingular curve= it is either (a) one of the 27 lines, 
or (b) a conic (meaning a curve of degree 2) with D 2 = 0, or (c) D.L;;:. 0 for every 
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line L, and D2 > 0. [Hint: Generalize (4.11) to the surfaces obtained by blowing 
up 2, 3, 4, or 5 points of P2 , and combine with our earlier results about curves 
on P 1 x P1 and the rational ruled surface X 1o (2.18).] 

4.9. If C is an irreducible non-singular curve of degree d on the cubic surface, and 
if the genus g > 0, then 

g~ {~(d- 6) 

~ (d - 5) 
2 

if d is even, d ~ 8, 

if d is odd, d ~ 13, 

and this minimum value of g > 0 is achieved for each din the range given. 

4.10. A curious consequence of the implication (iv) =(iii) of (4.11) is the following 
numerical fact: Given integers a,b 1, • •. ,b6 such that bi > 0 for each i, a - bi -
bj > 0 for each i,j and 2a - Li,;j bi > 0 for each j, we must necessarily have 
a2 - Ib? > 0. Prove this directly (for a,b 1 , . •• ,b6 E R) using methods of 
freshman calculus. 

4.11. The Weyl Groups. Given any diagram consisting of points and line segments 
joining some of them, we define an abstract group, given by generators and 
relations, as follows: each point represents a generator xi. The relations are 
x? = 1 for each i; (xix) 2 = 1 if i and j are not joined by a line segment, and 
(xixj)3 = 1 ifi andj are joined by a line segment. 
(a) The Weyl group A. is defined using the diagram 

o-o-o ... --() 

of n - 1 points, each joined to the next. Show that it is isomorphic to the 
symmetric group L:. as follows: map the generators of A. to the elements 
(12),(23), ... ,(n - 1,n) of L:., to get a surjective homomorphism A. -+ 1: .. 
Then estimate the number of elements of A. to show in fact it is an isomorphism. 

(b) The Weyl group E 6 is defined using the diagram 

Call the generators x 1, •.. ,x 5 andy. Show that one obtains a surjective homo
morphism E 6 -+ G, the group of automorphisms of the configuration of 27 
lines (4.10.1), by sending x 1, •.. ,x5 to the permutations (12),(23), ... ,(56) of 
the Ei, respectively, and y to the element associated with the quadratic trans
formation based at P 1,P2 ,P3 . 

*(c) Estimate the number of elements in E6 , and thus conclude that E6 ~ G. 
Note: See Manin [3, §25,26] for more about Weyl groups, root systems, and 
exceptional curves. 

4.12. Use (4.11) to show that if D is any ample divisor on the cubic surface X, then 
H 1(X,@x(- D)) = 0. This is Kodaira's vanishing theorem for the cubic surface 
(III, 7.15). 

4.13. Let X be the Del Pezzo surface of degree 4 in P4 obtained by blowing up 5.points 
of P 2 (4.7). 
(a) Show that X contains 161ines. 
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(b) Show that X is a complete intersection of two quadric hypersurfaces in P4 

(the converse follows from (4.7.1) ). 

4.14. Using the method of (4.13.1), verify that there are nonsingular curves in P 3 

with d = 8, g = 6,7; d = 9, g = 7,8,9; d = 10, g = 8,9,10,11. Combining with 
(IV, §6), this completes the determination of all posible g for curves of degree 
d~10inP3 • 

4.15. Let P 1, .•• ,P, be a finite set of(ordinary) points ofP2, no 3 collinear. We define 
an admissible transformation to be a quadratic transformation (4.2.3) centered 
at some three of the P; (call them P 1,P2 ,P3 ). This gives a new P 2, and a new set 
ofrpoints, namely Q1,Q2 ,Q3 , and the images of P 4 , ... ,P,. We say that P 1 , ... ,P, 
are in general position if no three are collinear, and furthermore after any finite 
sequence of admissible transformations, the new set of r points also has no three 
collinear. 
(a) A set of 6 points is in general position if and only if no three are collinear and 

not all six lie on a conic. 
(b) If P 1, •.. ,P, are in general position, then the r points obtained by any finite 

sequence of admissible transformations are also in general position. 
(c) Assume the ground field k is uncountable. Then given P 1, .•• ,P, in general 

position, there is a dense subset V ~ P 2 such that for any P,+ 1 E V, P 1, ••• ,P,+ 1 

will be in general position. [Hint: Prove a lemma that when k is uncountable, 
a variety cannot be equal to the union of a countable family of proper closed 
subsets.] 

(d) Now take Pt. . .. ,P, E P2 in general position, and let X be the surface obtained 
by blowing up P 1, •.. ,P,. If r = 7, show that X has exactly 56 irreducible 
nonsingular curves C with g = 0, C2 = -1, and that these are the only 
irreducible curves with negative self-intersection. Ditto for r = 8, the number 
being 240. 

*(e) For r = 9, show that the surface X defined in (d) has infinitely many irreducible 
nonsingular curves C with g = 0 and C2 = -1. [Hint: Let L be the line 
joining P 1 and P 2 • Show that there exist finite sequences of admissible trans
formations such that the strict transform of L becomes a plane curve of 
arbitrarily high degree.] This example is apparently due to Kodaira-see 
Nagata [5, II, p. 283]. 

4.16. For the Fermat cubic surface x6 + xi + x~ + x~ = 0, find the equations of 
the 27 lines explicitly, and verify their incidence relations. What is the group of 
automorphisms of this surface? 

5 Birational Transformations 

Up to now we have dealt with one surface at a time, or a surface and its 
monoidal transforms. Now we will show that in fact any birational trans
formation of (nonsingular projective) surfaces can be factored into a finite 
sequence of monoidal transformations and their. inverses. This confirms 
the central role played by the monoidal transformations in the study of 
surfaces. A consequence of this result is the fact that the arithmetic genus 
of a surface is a birational invariant. 
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In this section we will also prove Castelnuovo's criterion for contracting 
exceptional curves of the first kind, and deduce the existence of relatively 
minimal models for surfaces. See Shafarevich [1, Ch. I, II], Zariski [5], and 
Zariski [10, Ch. IV] as general references. 

We begin by recalling some general facts about birational maps between 
varieties of any dimension, including Zariski's Main Theorem. 

Let X and Y be projective varieties of any dimension. Recall (1, §4) 
that to give a birational transformation T from X to Y is to give an open 
subset U s; X and a morphism cp: U --+ Y which induces an isomorphism 
of function fields K(Y) ~ K(X). If we have another open set V s; X and 
another morphism ljJ: V --+ Y representing T, then cp and ljJ agree where 
both are defined, so we can glue them to obtain a morphism defined on 
U u V (1, Ex. 4.2). So there is a largest open set U s; X on which T is 
represented by a morphism cp: U --+ Y. We say that Tis defined at the points 
of U, and we call the points of X - U fundamental points ofT. 

Now let T:X --+ Y be a birational transformation, represented by the 
morphism cp: u --+ Y. Let r 0 s; u X y be the graph of cp, and let r s; 
X X y be the closure of r o· We call r the graph of T. For any subset 
Z s; X, we define T(Z) to be p2(p1 1(Z) ), where p1 and p 2 are the projec
tions of r to X and Y. We call T(Z) the total transform of Z. If Tis defined 
at a point P, then T(P) will be the point cp(P). However, if Pis a fundamental 
point of T, then in general T(P) will consist of more than one point. 

Lemma 5.1. If T:X --+ Y is a birational transformation of projective va
rieties, and if X is normal, then the fundamental points of T form a closed 
subset of codimension ~ 2. 

PROOF. If p EX is a point of codimension 1, then mP,X is a discrete valuation 
ring. Since Tis defined at the generic point of X, and Y is projective, hence 
proper, it follows from the valuative criterion of properness (II, 4.7) that 
T is also defined at P. (We have already used this argument in the proof 
of (II, 8.19), to show that the geometric genus is a birational invariant.) 

Example 5.1.1. Let X be a surface, and let n:X --+X be the monoidal 
transformation with center P. Then n is defined everywhere. Its inverse 
n- 1 : X --+ X is a birational transformation having P as a fundamental point. 

Theorem 5.2 (Zariski's Main Theorem). Let T: X --+ Y be a birational trans
formation of projective varieties, and assume that X is normal. If P is a 
fundamental point of T, then the total transform T(P) is connected and 
of dimension ~ 1. 

PRooF. This is just a variant of the earlier form of Zariski's Main Theorem 
(III, 11.4). Let r be the graph ofT, and consider the morphism p1 :r--+ X. 
This is a birational projective morphism, so by (III, 11.4), p1 1(P) is connected. 
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If it has dimension 0, then the same is true in a neighborhood V of P (II, 
Ex. 3.22). In that case p1 1(V) --+ V is a projective, birational morphism, 
with finite fibres, so it is a finite morphism (III, Ex. 11.2). But V is normal, 
so it must be an isomorphism. This says that T is defined at P, which is a 
contradiction. We conclude that p! 1(P) is connected of dimension ~ 1. 
Since p2 maps this set isomorphically onto T(P), we have the result. 

Now we come to the key result which enables us to factor birational 
transformations of surfaces. 

Proposition 5.3. Let f:X' --+X be a birational morphism of (nonsingular, 
projective) surfaces. Let P be a fundamental point of f- 1. Then f factors 
through the monoidal transformation n:X--+ X with center P. 

PROOF. Let T be the birational transformation of X' to X defined as n- 1 of 
Our object is to show that Tis a morphism. If not, then it has a fundamental 
(closed) point P'. Clearly f(P') = P. Furthermore T(P') has dimension ~ 1 
in X, by (5.2). Thus T(P') must be the exceptional curve E of n. 

On the other hand, by (5.1), T- 1 is defined at all except finitely many 
points of X, so we can find a closed point Q E E where T- 1 is defined, and 
hence T- 1(Q) = P'. We will show that this situation leads to a contradiction. 

Choose local coordinates x,y at P on X. Then as in the proof of (3.6), 
there is an open neighborhood V of P such that n - 1(V) is defined by the 
equation ty - ux in P~. By a linear change of variables in x,y and t,u, we 
may assume that Q is the point t = 0, u = 1 in E. Then t,y form local 
coordinates at Q on X; the local equation of E is y = 0, and x = ty. 

Since Pis a fundamental point off- 1, by (5.2) we have f- 1(P) connected 
of dimension ~ 1, so there is an irreducible curve C in f- 1(P) containing 
P'. Let z = 0 be a local equation for C at P'. 

Since f- 1(P) is defined by x = y = 0, the images of x,y in (!JP, are in 
the ideal generated by z, so we can write x = az, y = bz, a,b E (!Jr· On 
the other hand, (!JQ dominates (!Jr· (We consider (!Jp,(!Jp.,(!JQ all as subrings 
of the common function field K of X,X',X.) Since t,y are local coordinates 
at Q, y ¢ m~, so we conclude that y ¢ m~. in (!Jr· Therefore b is a unit in 
(!Jp., and so t = xjy = a/b is in the local ring (!Jr· Since t E mQ, we must 
have t E mr. 

Now we use the fact that T(P') = E. This implies that for any wE mp·, 
the image of w in (!) Q must be contained in the ideal generated by y, since y 
is the local equation for E. In particular, taking w = t, we find t E (y), 
which is a contradiction, since t and y are local coordinates at Q. 

Corollary 5.4. Let f: X' --+ X be a birational morphism of surfaces. Let 
n(f) be the number of irreducible curves C' s; X' such that f( C') is a 
point. Then n(f) is finite and f can be factored into a composition of 
exactly n(f) monoidal transformations. 
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PROOF. If f(C') is a point P, then Pis a fundamental point of f- 1 . By (5.1) 
the fundamental points off- 1 form a finite set, and for each one, its inverse 
image f - 1(P) is a closed subset of X', having only finitely many irreducible 
components, so the set of curves C' which are mapped to a point is finite. 

Now let P be a fundamental point off- 1. Then by (5.3) f factors through 
the monoidal transformation n:X -X with center P, i.e., f = no f 1 for 
some morphism f 1 :X' -X. We will show that n(f1) = n(f) - 1. Indeed, 
if f 1 ( C') is a point, then certainly f( C') is a point. Conversely, iff( C') is a 
point, then either f 1 ( C') is a point, or f 1 ( C') = E, the exceptional curve of n. 
Furthermore, since f 11 is a morphism except at finitely many points, 
there is a unique irreducible curve E' in X' with f 1(E') = E. Thus n(f1) = 
n(f) - 1. 

Continuing in this fashion, after factoring through n(f) monoidal trans
formations, we reduce to a morphism with n(f) = 0. But by (5.2), such a 
morphism has no fundamental points, so it is an isomorphism. Thus f is 
factored into n(f) monoidal transformations. 

Remark 5.4.1. It is interesting to compare the factorization of (5.3) with the 
universal property of blowing up proved in (II, 7.14). While the new result 
implies the old one in the special case ofblowing up a point (sincef- 1mp ·(!)X' 

being invertible implies f- 1(P) has dimension 1, so P is a fundamental 
point), it is actually stronger, since it uses Zariski's Main Theorem. We 
cannot deduce (5.3) from (II, 7.14), because the hypothesis that f- 1mp ·(!)X' 

is invertible is impossible to verify in our case. 

Remark 5.4.2. Comparing (5.4) to the earlier theorem (II, 7.17), we see that 
the new result is more precise, because it uses only monoidal transforma
tions, rather than the more general concept of blowing up an arbitrary sheaf 
of ideals. 

Remark 5.4.3. It is easy to see that (5.3) is false for nonsingular projective 
varieties of dimension ~ 3. For example, let f: X' - X be the blowing-up 
of a nonsingular curve C in a nonsingular projective 3-fold X. Then any 
point P E C is a fundamental point off- 1, but f cannot factor through the 
monoidal transformation n:X -X with center P, because f- 1(P) has 
dimension 1, while n- 1(P) has dimension 2. 

Remark 5.4.4. The example (5.4.3) suggests posing the following modified 
problem: given a birational morphism f: X' - X of nonsingular projective 
varieties, is it possible to factor f into a finite succession of monoidal 
transformations along nonsingular subvarieties? This is also false in 
dimension ~ 3: see Sally [ 1 J and Shannon [ 1]. 

Theorem 5.5. Let T:X -X' be a birational transformation of surfaces. Then 
it is possible to factor T into a finite sequence of monoidal transformations 
and their inverses. 
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PROOF. Using (5.4), it will be sufficient to show that there is a surface X", 
and birational morphisms f: X" ~ X and g: X" ~ X' such that T = g of- 1 . 

To construct X", we proceed as follows. 
Let H' be a very ample divisor on X', and let C' be an irreducible non

singular curve in the linear system I2H'I, which does not pass through any 
of the fundamental points of r- 1 . In other words, C' is entirely contained 
in the largest open set U' s X' on which r- 1 is represented by a morphism 
cp: U' ~X. Let C = cp(C') be the image of C' in X. We define an integer m 
by m = Pa(C) - pa(C'). Since we have a finite birational morphism of C' 
to C, we see that m ~ 0, and m = 0 if and only if C' is isomorphic to C 
(IV, Ex. 1.8). Note also that if we replace C' by a linearly equivalent curve C'1, 

also missing the fundamental points of r-1, then C 1 = cp( C'1) is linearly 
equivalent to C. In fact, if C' - C'1 = (f) for some rational function f on X', 
then C - C 1 = (f) on X. Since the arithmetic genus of a curve depends 
only on its linear equivalence class (Ex. 1.3), we see that the integer m depends 
only on T and H', and not on the particular curve C' E I2H'I chosen. 

Now fix C' temporarily. If m > 0, then C must be singular. Let P be a 
singular point of C, let n:X ~X be the monoidal transformation with 
center P, and let C be the strict transform of C. Then by (3.7), Pa(C) < Pa(C). 
Thus if T = Ton, then m('T} < m(T). 

Continuing in this fashion, as in the proof of (3.8), we see that there is a 
morphism f:X" ~X, obtained by a finite number of monoidal trans
formations, such that if T' = To f, then m(T') = 0. 

We will show that in fact T' is a morphism. If not, then T' will have a 
fundamental point P. By (5.2), T'(P) contains an irreducible curve E' s X'. 
Since H' is very ample, E'.H' > 0, and so C'.E' ~ 2 for any C' E I2H'I· Let 
us choose C', not containing any fundamental point of T'-1, such that C' 
meets E' transversally (1.2). Then C' meets E' in at least two distinct points, 
so the corresponding curve C in X" has at least a double point at P. But this 
contradicts m(T') = 0. 

We conclude that T' is a morphism of X" to X', so that applying (5.4) 
completes the proof, as mentioned above. 

Corollary 5.6. The arithmetic genus of a nonsingular projective surface is a 
birational invariant. 

PROOF. Indeed, Pa is unchanged by a monoidal transformation (3.5), so this 
follows directly from the theorem. 

Remark 5.6.1. Even though the factorization theorem (5.5) in a form analo
gous to (5.4.4) is false in dimension ~ 3, Hironaka [3] is able to deduce 
the birational invariance of Pa, for nonsingular projective varieties over a 
field of characteristic 0, from the following statement, which is a consequence 
of his resolution of singularities: If T: X ~ X' is any birational transforma
tion of nonsingular projective varieties over a field of characteristic 0, then 
there is a morphismf:X" ~X, obtained by a finite succession ofmonoidal 
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transformations along nonsingular subvarieties, such that the birational map 
T' = To f is a morphism. There is another proof of the birational in variance 
of Pa, for varieties over C, by Kodaira and Spencer [1 ], using the equalities 
h0q = hqo from Hodge theory, and the birational invariance of hq0 (II, 
Ex. 8.8). 

Now we come to Castelnuovo's criterion for contracting a curve on a 
surface. We have seen that if E is the exceptional curve of a monoidal 
transformation, then E ~ P 1, and E 2 = -1 (3.1). In general, any curve Y 

on a surface X, withY ~ P 1 and Y 2 = -1 is classically called an exceptional 
curve of the first kind. The following theorem tells us that any exceptional 
curve of the first kind is the exceptional curve of some monoidal trans
formation. 

Theorem 5.7 (Castelnuovo). If Y is a curve on a surface X, with Y ~ P 1 and 
Y 2 = -1, then there exists a morphism f: X ---> X 0 to a (nonsingular 
projective) surface X 0 , and a point P E X 0 , such that X is isomorphic via f 
to the monoidal transformation of X 0 with center P, and Y is the exceptional 
curve. 

PROOF. We will construct X 0 using the image of X under a suitable mor
phism to a projective space. Choose a very ample divisor H on X such that 
H 1(X,!f>(H)) = 0: for example, a sufficiently high multiple of any given very 
ample divisor (III, 5.2). Let k = H. Y, and let us assume k ~ 2. Then we 
will use the invertible sheaf A = !fl(H + kY) to define a morphism of X 
to pN_ 

Step 1. First we prove that H 1(X,!f>(H + (k - 1) Y)) = 0. In fact, we 
will prove more generally that for every i = 0,1, ... ,k, we have 
H 1(X,!fl(H + iY)) = 0. For i = 0, this is true by hypothesis, so we pro
ceed by induction on i. Suppose it is true for i - 1. We consider the exact 
sequence of sheaves 

0---> !fl(H + (i- 1)Y)---> !fl(H + iY)---> c'9y@ !fl(H + iY)---> 0. 

Now Y ~ P 1, and (H + iY). Y = k - i, so 

c'9y @ !fl(H + iY) ~ @p1(k - i). 

We get an exact cohomology sequence 

... ---> H 1(X,!fl(H + (i - 1) Y)) ---> H 1(X,!fl(H + iY)) ---> 

---> H 1(Pi,c'9pl(k - i)) ---> .... 

So from the induction hypothesis, and the known cohomology of P 1 , we 
conclude that H 1(X,!f>(H + iY)) = 0 for any i :( k. 

Step 2. Next we show that A is generated by global sections. Since H is 
very ample, the corresponding linear system IH + k Yl has no base points 
away from Y, so A is generated by global sections off Y. On the other hand, 
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the natural map 
H 0(X,A)--+ H 0(Y,A ® @y) 

is surjective, because A® ~r ~ Sf(H + (k - 1)Y), and 

H 1(X,Sf(H + (k - 1) Y)) = 0 

by Step 1. Next observe that (H + k Y). Y = 0, so A ® @y :;-=: (I)P,, which 
is generated by the global section 1. Lifting this section to H 0(X,A), and 
using Nakayama's lemma, we see that A is generated by global sections 
also at every point of Y. 

Step 3. Therefore A determines a morphismf1 :X--+ pN (II, 7.1). Let X 1 

be its image. Since ff(l)(1) ~ A, and since the degree of A ® (i)r is 0, 
f 1 must map Y to a point P 1. On the other hand, since H is very ample, 
the linear system IH + k Yl separates points and tangent vectors away from 
Y, and also separates points of Y from points not on Y, so f 1 is an isomorphism 
of X - Y onto X 1 - P 1 (II, 7.8.2). 

Step 4. Let X 0 be the normalization of X 1 (II, Ex. 3.8). Since X is non
singular, hence normal, the map f 1 factors to give a morphism f:X--+ X 0 • 

Since Y is irreducible, f( Y) is a point P, and since X 1 - P 1 was nonsingular, 
we still have f: X - Y --+ X 0 - P an isomorphism. 

Step 5. Now we will show that X 0 is nonsingular at the point P. Since in 
any case X 0 is normal, and f is birational, we have f*(i)x ~ (i)xo (see proof of 
(III, 11.4) ). So we can apply the theorem on formal functions (Ill, 11.1) to 
conclude that 

f!JP ~ lli!! Ho(Y,,(I)yJ, 

where Y, is the closed subscheme of X defined by m~ · (i)x· But since 
f- 1(P) = Y, the sequence of ideals m~(i)x is cofinal with the sequence of ideals 
~~'so we may use these instead in the definition of Y, (II, 9.3.1). 

We will show for each n that H 0(Y,(I)y ) is isomorphic to a truncated power 
seriesringAn = k[[x,y]]/(x,y)n. Itwillfollowthatf!Jp ~ ll!!!An ~ k[[x,y]J, 
which is a regular local ring. This in turn implies that (I) P is regular (1, 5.4A), 
hence P is a nonsingular point. 

For n = 1, we have H 0 ( Y,(l) r) = k. For n > 1, we use the exact sequences 

0 --+ ~~~~~+ 1 --+ (i}Yn+ 1 --+ (i}Yn --+ 0. 

Since Y ~Pi, and Y 2 = -1, we have ~/~2 ~ @p,(1) by (1.4.1), and 
~n ;~n+ 1 ~ (l)p,(n) for each n, as in the proof of (3.4). Taking cohomology, 
we have 

0 --+ H 0((1)p,(n)) --+ H 0((1)yn+) --+ H 0((i)yJ --+ 0. 

For n = 1, H 0((1)p,(1)) is a 2-dimensional vector space. Take a basis x,y. 
Then H 0(@y,), which in any case contains k, is seen to be isomorphic to A 2 • 

Now inductively, if H 0((1)rJ is isomorphic to An, lift the elements x,y to 
H 0((i)rn+J Since H 0((1)p,(n)) is the vector space with basis xn,xn- 1y, ... ,yn, 
we see that H 0(@yn+',) ~ An+ 1 . Now as above we see that Pis a nonsingular 
point. 
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Step 6. We complete the proof using the factorization theorem (5.4). Since 
X 0 is nonsingular, we can apply (5.4) to f:X-+ X 0 . We have n(f) = 1 by 
construction, so f must be the monoidal transformation with center P. 

Step 7. As an addendum, we show in fact that X 0 = X 1, so the normaliza
tion was unnecessary. The natural map 

H 0(X,.A@ Jy)-+ H 0(Y,.A@ JyjJ~) 

is surjective, because the next term of the cohomology sequence is 
H 1(X,!E(H + (k - 2) Y) ), which is 0 by Step 1. Since A @ CDy ~ CDy, this 
shows that there are global sections s,t E H 0(X,.A @ J Y) <;: H 0(X,.A), 
which map to the parameters x,y E H 0{CDy2 ) ~ A 2 • On the other hand, these 
sections s,t become sections of CD(l) on PN, defining hyperplanes containing 
P 1. So they give elementss;t E mp,, whose images in (D P generate the maximal 
ideal mp. Since in any case CDp is a finitely generated CDp,-module, we conclude 
that CDp ~ CDp, (II, 7.4), and so X 0 ~ X 1 . 

Example 5.7.1. Let n:X-+ C be a geometrically ruled surface (§2), let P be a 
point of X, and let L be the fibre of n containing P. Let f:X -+X be the 
monoidal transformation with center P. Then the strict transform L of L 
on X is isomorphic to P 1 , and hasP = -1. Indeed, L 2 = 0 by (2.3), and P 
is a nonsingular point of L, so L ~ f* L - E by (3.6). It follows that 
L2 = -1. Therefore by the theorem, we can blow down L. In other words, 
there is a morphism g:X -+X' sending L to a point Q, and such that g is 
the monoidal transformation with center Q. If M = g(E), then M ~ P 1 

and M 2 = 0, for a similar reason to the above. Note also that the rational 
mapn':X'-+ CobtainedfromnonX- L ~X'- Misinfactamorphism. 
Therefore n': X' -+ C is another geometrically ruled surface. Indeed, the 
fibres of n' are all isomorphic to P 1, and since n has a section, its strict 
transform on X' will be a section of n'. This new ruled surface is called the 
elementary transform of X with center P, and is denoted by elmp X (Fig. 23). 
See (Ex. 5.5) for some applications. 

X 

~,.-............ -~~c 

Figure 23. An elementary transformation of a ruled surface. 
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Remark 5.7.2 (The General Contraction Problem). With the theorem of 
Castelnuovo (5.7) in mind, one can pose the following general problem: 
Given a variety X, and a closed subset Y £ X, find necessary and sufficient 
conditions for the existence of a birational morphism f: X ~ X 0 such that 
f( Y) is a single point P, and f: X - Y ~ X 0 - P is an isomorphism. If 
such a morphism exists, we say that Y is contractible. A number of special 
cases of this problem have been treated, but a general solution is unknown. 
See Artin [3], [ 4], Grauert [2], and Mumford [ 6]. 

In case Y is an irreducible curve on a surface X, here is what is known. 
If we require X 0 to be nonsingular, then by (5.7) the necessary and sufficient 
conditions are that Y ~ P 1 and Y 2 = -1. If we allow X 0 to be singular, 
then a necessary condition is that Y 2 < 0 (Ex. 5.7). If Y ~ P\ this condition 
is also sufficient (Ex. 5.2). If Y is arbitrary, with Y 2 < 0, and if the base field 
is C, then a theorem of Grauert [2] shows that X 0 exists as a complex 
analytic space. However, Y may not be contractible to an algebraic variety, 
as we show in the following example. 

Example 5.7.3 (Hironaka). Let Y0 be a nonsingular cubic curve in P 2 over an 
uncountable algebraically closed field k (e.g., k = C). Fix an inflection point 
P 0 E Y0 to be the origin of the group law on Y0 . Since the abelian group Y0 

is uncountable, and since the torsion points are countable (IV, 4.8.1), the 
torsion-free part must have infinite rank. Therefore we can choose 10 points 
P 1, ... ,P 10 E Y0 which are linearly independent over Z in the group law. 

Now blow up P 1, ... ,P 10 in P 2 , let X be the resulting surface, and let Y 
be the strict transform of Y0 . Since Y~ = 9, and we have blown up 10 points 
on Y, we have Y 2 = -1, using (3.6). So by Grauert's theorem (5.7.2), if 
k = C, then Yin X would be contractible to a complex analytic space. We 
will show, however, that Y is not contractible to a point P in an algebraic 
variety X 0 . If it were, let P E U £ X 0 be an open affine neighborhood of P. 
Let C~ £ U be a curve not containing P. Let C0 £ X 0 be its closure, which 
still does not contain P. Then its inverse image in X will be a curve C £ X 
which does not meet Y. The image of C in P2 will be a curve C* which does 
not meet Y0 except at the points Pt. ... ,P10 . 

But this is impossible. Let d = deg C*. Then by Bezout's theorem 
(1.4.2), C*. Y0 = 3d > 0. So we can write 

10 

C*. Y0 = L n;P; 
i= 1 

on Y0 , with n; ?: 0, In; = 3d. But C* "' dL, where Lis a line in P2 , and 
L. Y0 "' 3P 0 , so we have 

10 

L n;P; = 0 
i= 1 

in the group law on Y0 (IV, 1.3.7). This contradicts the fact that P 1, ... ,P10 

were chosen to be linearly independent over Z. 
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To conclude this section, we will prove the existence of relatively minimal 
models of surfaces. The idea is to find, within each birational equivalence 
class of surfaces, one which is as canonical as possible. Since one can always 
blow up a point, there is never a unique nonsingular projective model of a 
function field, as in the case of curves. However, we can look for one which 
is minimal for the relation of domination. So we say that a (nonsingular 
projective) surface X is a relatively minimal model of its function field, if 
every birational morphism f:X--+ X' to another (nonsingular projective) 
surface X' is necessarily an isomorphism. If X is the unique relatively 
minimal model in its birational equivalence class, then we say that X is a 
minimal model. (This somewhat irregular use of the word "minimal" is re
tained for historical reasons.) 

Theorem 5.8. Every surface admits a birational morphism to a relatively mini-
mal model. 

PROOF. Combining (5.4) and (5.7), it is clear that a surface is a relatively min
imal model if and only if it contains no exceptional curves of the first kind. 
So given a surface X, if it is already a relatively minimal model, stop. If not, 
let Y be an exceptional curve of the first kind. By (5.7) there is a morphism 
X --+ X 1 contracting Y. 

We continue in this manner, contracting exceptional curves of the first 
kind whenever one exists, and so we obtain a sequence of birational mor
phisms X --+ X 1 --+ X 2 --+ .... We must show that this process eventually 
stops. 

The following proof is due to Matsumura [1]. Suppose that we have a 
sequence of n contractions 

X = X 0 --+ X 1 ... --+ Xn 

as above. For each i = 1, ... ,n, let E; ~ X;_ 1 be the exceptional curve of 
the contraction X;_ 1 --+ X;, and let E; be its total transform on X. Then by 
(3.2) we have Ef = -1 for each i, and E;.Ei = 0 for i #- j. 

Now for each i, let e; = c(E;) be the cohomology class of E; in H 1(X,Q) 
(Ex. 1.8). Then we have (e;,e;) = -1 and (e;,ei) = 0 in the intersection 
pairing on H 1(X,Q), by (Ex. 1.8). It follows that e1, ... ,en are linearly in
dependent elements of the vector space H 1(X,Q) over k. 

We conclude that n ~ dimk H 1(X,Q). Since this is a finite-dimensional 
vector space, n is bounded, so the contraction process must terminate. 

Note: One can give another proof of this result by showing that the rank 
of the Neron-Severi group drops by 1 with each contraction, so that n ~ 
rank NS(X), which is finite-Cf. (Ex. 1. 7). 

Remark 5.8.1. In spite of this result, it is not true that a surface necessarily 
has only finitely many exceptional curves of the first kind. For example, if 
we blow up r points in general position in P2 , with r ~ 9, then the resulting 
surface has infinitely many exceptional curves of the first kind (Ex. 4.15). 
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Example 5.8.2. In the birational equivalence class of rational surfaces, P 2 is 
a relatively minimal model, and so is the rational ruled surface X e for each 
e ~ 0, e #- 1. This follows easily from the determination of all irreducible 
curves on Xe (2.18). On the contrary, X 1 is not relatively minimal (2.11.5). 

Example 5.8.3. In the class of surfaces birational to P 1 x C, where C is a 
curve of genus g > 0, every geometrically ruled surface n: X ---+ Cis relatively 
minimal. Indeed, if Y is any rational curve in X, then n( Y) is a point because 
of (IV, 2.5.4). Thus Y is a fibre of n, Y 2 = 0, and so we see that X has no 
exceptional curves of the first kind. 

Remark 5.8.4. A classical theorem, proved in all characteristics b) 
Zariski [ 5], [ 6], [9] states that except for the rational and ruled surfaces, every 
surface is birational to a (unique) minimal model. One can also show that in 
the case of rational and ruled surfaces, every relatively minimal model is one 
of those listed in (5.8.2) and (5.8.3). See Nagata [ 5] or Hartshorne [ 4]. 

EXERCISES 

5.1. Let f be a rational function on the surface X. Show that it is possible to "resolve 
the singularities of f" in the following sense: there is a birational morphism g: 
X'--> X so that f induces a morphism of X' to P1. [Hints: Write the divisor off 
as (f) = l;n;C;. Then apply embedded resolution (3.9) to the curve Y = UC;. 
Then blow up further as necessary whenever a curve of zeros meets a curve of 
poles until the zeros and poles off are disjoint.] 

5.2. Let Y ~ P 1 be a curve in a surface X, with Y 2 < 0. Show that Y is contractible 
(5.7.2) to a point on a projective variety X 0 (in general singular). 

5.3. If n:X--> X is a monoidal transformation with center P, show that H 1(X,Qx) ~ 
H 1(X,Qx) EB k. This gives another proof of (5.8). [Hints: Use the projection 
formula (III, Ex. 8.3) and (III, Ex. 8.1) to show that Hi(X,Qx) ~ Hi(X,n*Qx) for each 
i. Next use the exact sequence 

0 --> n*Qx --> !2x --> !2x;x --> 0 

and a local calculation with coordinates to show that there is a natural isomorphism 
!2x;x ~ QE, where E is the exceptional curve. Now use the cohomology sequence 
of the above sequence (you will need every term) and Serre duality to get the result.] 

5.4. Let f: X --> X' be a birational morphism of nonsingular surfaces. 
(a) If Y ,;: X is an irreducible curve such that f(Y) is a point, then Y ~ P1 and 

yz < 0. 
(b) (Mumford [6].) Let P' EX' be a fundamental point off-\ and let Y1 , ... ,Y,. be 

the irreducible components ofj- 1(P'). Show that the matrix p;.lJII is negative 
definite. 

5.5. Let C be a curve, and let n: X --> C and n': X' --> C be two geometrically ruled 
surfaces over C. Show that there is a finite sequence of elementary transformations 
(5.7.1) which transform X into X'. [Hints: First show if D ,;: X is a section of n 
containing a point P, and if i5 is the strict transform of D by elmp, then 152 = D2 - 1 
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(Fig. 23). Next show that X can be transformed into a geometrically ruled surface 
X" with invariant e » 0. Then use (2.12), and study how the ruled surface P(6') 
with @' decomposable behaves under elmp.] 

5.6. Let X be a surface with function field K. Show that every valuation ring R of K/k 
is one of the three kinds described in (II, Ex. 4.12). [Hint: In case (3), let fER. Use 
(Ex. 5.1) to show that for all i » 0, f E {f)x,, so in fact f E R0 .] 

5.7. Let Y be an irreducible curve on a surface X, and suppose there is a morphism 
f: X -+ X 0 to a projective variety X 0 of dimension 2, such that f( Y) is a point P 
andr 1(P) = Y. Then show that Y 2 < 0. [Hint: Let JHJ be a very ample (Cartier) 
divisor class on X 0 , let H 0 E JHJ be a divisor containing P, and let H 1 E Jl;lJ be a 
divisor not containing P. Then consider f* H 0 ,/* H 1 and fi 0 = f*(H 0 - P)- .] 

5.8. A surface singularity. Let k be an algebraically closed field, and let X be the surface 
in M defined by the equation x2 + y3 + z5 = 0. It has an isolated singularity at 
the origin P = (0,0,0). 
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(a) Show that the affine ring A = k[ x,y,z ]/(x2 + y3 + z5) of X is a unique 
factorization domain, as follows. Let t = z- 1 ; u = t3x, and v = t2y. Show 
that z is irreducible in A; t E k[ u,v ], and A[ z- 1 J = k[u,v,t- 1]. Conclude that 
A is a UFD. 

(b) Show that the singularity at P can be resolved by eight successive blowings-up. 
If X is the resulting nonsingular surface, then the inverse image of P is a union 
of eight projective lines, which intersect each other according to the Dynkin 
diagram E8 : 

Here each circle denotes a line, and two circles are joined by a line segment 
whenever the corresponding lines intersect. 

Nate. This singularity has interesting connections with local algebra, invariant 
theory, and topology. 

In case k = C, Mumford [6] showed that the completion A of the ring A at the 
maximal ideal m = (x,y,z) is also a UFD. This is remarkable, because in general the 
completion of a local UFD need not be UFD, although the converse is true (theorem 
of Mori)-see Samuel [3]. Brieskorn [2] showed that the corresponding analytic 
local ring C{x,y,z}/(x2 + y3 + z5) is the only nonregular normal2-dimensional ana
lytic local ring which is a UFD. Lipman [2] generalized this as follows: over any 
algebraically closed field k of characteristic ¥- 2,3,5, the only nonregular normal 
complete 2-dimensional local ring which is a UFD is k[[x,y,z]]/(x2 + y3 + z5). 

See also Lipman [3] for a report on recent work connected with UFD's. 
This singularity arose classically out of Klein's work on the icosahedron. The 

group I of rotations of the icosahedron, which is isomorphic to the simple group 
of order 60, acts naturally on the 2-sphere. Identifying the 2-sphere with P~ by 
stereographic projection, the group I appears as a finite subgroup of Aut P~. This 
action lifts to give an action of the binary icosahedral group I on C2 by linear 
transformations of the complex variables t 1 and t 2 • Klein [2, I, 2, §13, p.62] found 
three invariant polynomials x,y, z in t 1 and t 2 , related by the equation x2 + y3 + 
z5 = 0. Thus the surface X appears as the quotient of A~ by the action of the 
group I. In particular, the local fundamental group of X at P is just I. 



6 Classification of Surfaces 

With regard to the topology of algebraic varieties over C, Mumford [ 6] showed 
that a normal algebraic surface over C, whose underlying topological space (in its 
"usual" topology) is a topological manifold, must be nonsingular. Brieskom 
showed that this is not so in higher dimensions. For example, the underlying 
topological space of the hypersurface in C4 defined by xi + X~ + X~ + xl = 0 is 
a manifold. Later Brieskorn [ 1] showed that if one intersects such a singularity 
with a small sphere around the singular point, then one may get a topological sphere 
whose differentiable structure is not the standard one. Thus for example, by 
intersecting the singularity 

xi + x~ + x~ + xl + x~k-l = 0 

in C5 with a small sphere around the origin, fork = 1,2, ... ,28, one obtains all28 
possible differentiable structures on the 7-sphere. See Hirzebruch and Mayer [1 J 
for an account of this work. 

6 Classification of Surfaces 

In the case of curves, we could achieve a classification as follows. Each hi
rational equivalence class has a unique nonsingular projective model. There 
is a numerical invariant, the genus g, which can take on every value g ~ 0. 
For fixed g, the curves of genus g are parametrized by the points of the variety 
of moduli 9Jl9 (IV, §5). 

For surfaces, the situation is much more complicated. First of all, the non
singular projective model is not unique. However, we can standardize by 
always considering a relatively minimal model. For rational and ruled 
surfaces, these are known, and for other birational classes there is a unique 
minimal model (5.8.4). 

Next, we have the birational invariants Pa (5.6) and p9 (II, 8.19), and K 2 , 

which is well-defined if we specify the minimal model. However, it is not 
known exactly which triples of integers can occur as Pa,p9 ,K2 of a surface. 
As to the existence of varieties of moduli, this question is wide open except in 
some special cases. So we must settle for less complete information than in 
the case of curves. 

In this section we will mention very briefly a few basic results, and refer 
to Bombieri and Husemoller [1] and Shafarevich [1] for more details and 
further references. 

To begin with, for any projective variety X over k, we define the Kodaira 
dimension K(X) to be the transcendence degree over k of the ring 

R = EB H 0(X,.!£(nK) ), 
n?!:O 

minus 1, where K is the canonical divisor. One sees, as in the proof of 
(II, 8.19), that R and hence K are birational invariants. Another way of 
expressing this is that K is the largest dimension of the image of X in pN by 
the rational map determined by the linear system lnKI, for some n ~ 1, or 
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K = -1 if lnKI = 0 for all n ?:; 1. It is known, for varieties of dimension n, 
that K can take on every value from -1 to n. For example, for curves, we 
have K = - 1 <=> g = 0; K = 0 <=> g = 1 ; K = 1 <=> g ?:; 2. 

We will classify surfaces according to K = -1,0,1,2. Some more specific 
information about each group is provided by the following theorems. 

Theorem 6.1. K = -1 <=> I12KI = 0 <=>X is either rational or ruled. 

Theorem 6.2 (Castelnuovo). X is rational<=> Pa = P 2 = 0, where P 2 = dim 
H 0(X,2(2K)) is the second plurigenus. 

PROOF. A modern proof over C, due to Kodaira, is given in Serre [13]. In 
characteristic p > 0, the proof is due to Zariski [5], [6], [9]. 

Remark 6.2.1. As a consequence of (6.2), one can prove the analogue of 
Liiroth's theorem (IV, 2.5.5) in dimension 2: let k be an algebraically closed 
field, let L be a subfield of a pure transcendental extension k(t,u) of k, con
taining k, such that k(t,u) is a finite separable extension of L. Then L is also 
a pure transcendental extension of k. This is Castelnuovo's theorem "on 
the rationality of plane involutions." 

For the proof, let X' be a nonsingular projective model of L, and let X 
be a nonsingular projective model of k(t,u). Then as in (II, 8.19) or (II, Ex. 8.8), 
using separability, one shows that p9(X') ~ p9(X) and P 2(X') ~ P 2(X), hence 
p9(X') = P 2(X') = 0 since the same is true of X. One must also show that 
q(X') ~ q(X) to conclude that Pa(X') = p9(X') - q(X') = 0. Then the 
rationality of X follows from (6.2). See Serre [13] and Zariski [9]. 

This result is false if one does not assume k(t,u) separable over L-see 
Zariski [9] or Shioda [1]. 

Theorem 6.3. K = 0 <=> 12K = 0. A surface in this class must be one of the 
following (assume char k #- 2,3): 

(1) a K3 surface, which is defined as a surface with K = 0 and irregularity 

q = 0. These have Pa = p9 = 1; 
(2) an Enriques surface, which has Pa = p9 = 0 and 2K = 0; 
(3) a two-dimensional abelian variety, which has Pa = -1, p9 = 1; or 
(4) a hyperelliptic surface, which is a surface .fibred over P 1 by a pencil of 

elliptic curves. 

Theorem 6.4. A surface with K = 1 is an elliptic surface, which is a surface X 
with a morphism n:X --t C to a curve C, such that almost all .fibres of n 
are nonsingular elliptic curves (assume char k #- 2,3). 

Theorem 6.5. K = 2 if and only if for some n > 0, InK I determines a birational 
morphism of X onto its image in pN_ These are called surfaces of general 
type. 
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6 Classification of Surfaces 

EXERCISES 

6.1. Let X be a surface in P", n ;::, 3, defined as the complete intersection ofhypersurfaces 
of degrees d1, ... ,d._ 2 , with each d; ;::, 2. Show that for all but finitely many choices 
of (n,d 1, • •• ,d._ 2), the surface X is of general type. List the exceptional cases, and 
where they fit into the classification picture. 

6.2. Prove the following theorem of Chern and Griffiths. Let X be a nonsingular surface 
of degree d in p~+ 1, which is not contained in any hyperplane. If d < 2n, then 
p9(X) = 0. If d = 2n, then either p9(X) = 0, or pg(X) = 1 and X is a K3 surface. 
[Hint: Cut X with a hyperplane and use Clifford's theorem (IV, 5.4). For the last 
statement, use the Riemann-Roch theorem on X and the Kodaira vanishing 
theorem (III, 7.15).] 
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APPENDIX A 

Intersection Theory 

In this appendix we will outline the generalization of intersection theory and 
the Riemann-Roch theorem to nonsingular projective varieties of any 
dimension. To motivate the discussion, let us look at the case of curves and 
surfaces, and then see what needs to be generalized. For a divisor D on a 
curve X, leaving out the contribution of Serre duality, we can write the 
Riemann-Roch theorem (IV, 1.3) as 

x(.!Z'(D)) = deg D + 1 - g, 

where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write 
the Riemann-Roch theorem (V, 1.6) as 

1 
x(!l'(D)) = 2 D.(D - K) + 1 + Pa· 

In each case, on the left-hand side we have something involving cohomol
ogy groups of the sheaf !l'(D), while on the right-hand side we have some 
numerical data involving the divisor D, the canonical divisor K, and some 
invariants of the variety X. Of course the ultimate aim of a Riemann-Roch 
type theorem is to compute the dimension of the linear system IDI or of lnDI 
for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) 
with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems 
of Serre (III, 5.2) or Kodaira (III, 7.15). 

We will now generalize these results so as to give an expression for x(!l'(D)) 
on a nonsingular projective variety X of any dimension. And while we are 
at it, with no extra effort we get a formula for x(t&"), where @" is any coherent 
locally free sheaf. 

To generalize the right-hand side, we need an intersection theory on X. 
The intersection of two divisors, for example, will not be a number, but a 
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1 Intersection Theory 

cycle of codimension 2, which is a linear combination of subvarieties of 
codimension 2. So we will introduce the language of cycles and rational 
equivalence (which generalizes the linear equivalence of divisors), in order 
to set up our intersection theory. 

We also need to generalize the correspondence between the invertible 
sheaf !l'(D) and the divisor D. This is accomplished by the theory of Chern 
classes: to each locally free sheaf. ~ of rank r, we associate Chern classes 
c 1 (~), ... ,c.(~), where ci(~) is a cycle of codimension i, defined up to rational 
equivalence. 

As for invariants of the variety X, the canonical class K and the arithmetic 
genus Pa are not enough in general, so we use all the Chern classes of the 
tangent sheaf of X as well. 

Then the generalized Riemann-Roch theorem will give a formula for x(~) 
in terms of certain intersection numbers of the Chern classes of~ and of the 
tangent sheaf of X. 

1 Intersection Theory 

The intersection theory on a surface (V, 1.1) can be summarized by saying 
that there is a unique symmetric bilinear pairing Pic X x Pic X --+ Z, which 
is normalized by requiring that for any two irreducible nonsingular curves C,D 
meeting transversally, C.D is just the number of intersection points of C and D. 
Our main tool in proving this theorem was Bertini's theorem, which allowed 
us to move any two divisors in their linear equivalence class, so that they 
became differences of irreducible nonsingular curves meeting transversally. 

In higher dimensions, the situation is considerably more complicated. 
The corresponding moving lemma is weaker, so we need a stronger normal
ization requirement. It turns out that the most convenient way to develop 
intersection theory is to do it for all varieties at once, and include some 
functorial mappings f* and f* associated to a morphism f: X --+ X' as part 
of the structure. 

Let X be any variety over k. A cycle of codimension r on X is an element 
of the free abelian group generated by the closed irreducible subvarieties of X 
of codimension r. So we write a cycle as Y = L:ni }j where the }j are sub
varieties, and ni E Z. Sometimes it is useful to speak of the cycle associated 
to a closed subscheme. If Z is a closed subscheme of codimension r, let 
Y1, ... , r; be those irreducible components of Z which have codimension r, 
and define the cycle associated to Z to be L:ni }j, where ni is the length of 
the local ring (1J y;,z of the generic point Yi of }j on Z. 

Let f: X --+ X' be a morphism of varieties, and let Y be a subvariety of X. 
If dim f(Y) < dim Y, we set f*(Y) = 0. If dim f(Y) = dim Y, then the 
function field K(Y) is a finite extension field of K(f(Y) ), and we set 

f*(Y) = [K(Y):K(f(Y))] · f(Y). 
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Extending by linearity defines a homomorphism f* of the group of cycles on X 
to the group of cycles on X'. 

Now we COf!le to the definition of rational equivalence~ For any subvariety 
V of X, let f: V ---+ V be the normalization of V. Then V satisfies the condi
tion(*) of(II, §6), so we can talk about Weil divisors and linear equivalence 
on V. Whenever D and D' are linearly equivalent Weil divisors on V, we say 
that f*D and f*D' are rationally equivalent as cycles on X. Then we define 
rational equivalence of cycles on X in general by dividing out by the group 
generated by all such f*D ""' f*D' for all subvarieties V, and all linearly 
equivalent Weil divisors D,D' on V. In particular, if X itself is normal, then 
rational equivalence for cycles of codimension 1 coincides with linear 
equivalence ofWeil divisors. 

For each r we let A'(X) be the group of cycles of codimension r on X 

modulo rational equivalence. We denote by A( X) the graded group c:B~= 0 

A'(X), where n = dim X. Note that A 0(X) = Z, and that A'(X) = 0 for 
r > dim X. Note also that if X is complete there is a natural group homo
morphism, the degree, from A"(X) to Z, defined by degQ)iPJ = Ini, where 
the Pi are points. This is well-defined on rational equivalence classes because 
of (II, 6.1 0). 

An intersection theory on a given class of varieties m consists of giving a 
pairing A'( X) x As(X) ---+ Ar+s(X) for each r,s, and for each X E m, satisfying 
the axioms listed below. If YEA'( X) and Z E As( X) we denote the inter
section cycle class by Y.Z. 

Before stating the axioms, for any morphism f: X ---+ X' of varieties in m, 
we assume that X x X' is also in m, and we define a homomorphism 
f*: A(X') ---+ A(X) as follows. For a subvariety Y' <;; X' we define 

f*( Y') = P 1 *(r J·P1 1( Y') ), 

where p 1 and p 2 are the projections of X x X' to X and X', and r J is the 
graph off, considered as a cycle on X x X'. 

This data is now subject to the following requirements. 

Al. The intersection pairing makes A(X) into a commutative associative 
graded ring with identity, for every X E m. It is called the Chow ring of X. 

A2. F 9r any morphism f: X ---+ X' of varieties in m, f*: A(X') ---+ A(X) is a 
ring homomorphism. If g: X' ---+ X" is another morphism, then f* o g* = 
(g 0 f)*. 

A3. For any proper morphism f:X---+ X' of varieties in m, f*:A(X)---+ 
A(X') is a homomorphism of graded groups (which shifts degrees). If 
g:X' ---+X" is another morphism, then g* of* = (g a f)*. 

A4. Projection formula. Iff: X ---+ X' is a proper morphism, if x E A(X) 

andy E A(X'), then 
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A5. Reduction to the diagonal. If Y and Z are cycles on X, and if L1: X ---+ 

X x X is the diagonal morphism, then 

Y.Z = L1*(Y X Z). 

A6. Local nature. If Y and Z are subvarieties of X which intersect properly 
(meaning that every irreducible component of Y n Z has codimension equal 
to codim Y + codim Z), then we can write 

Y.Z = Li(Y,Z; ltj)ltj, 

where the sum runs over the irreducible components ltj of Y n Z, and where 
the integer i(Y,Z; ltj) depends only on a neighborhood of the generic point 
of ltj on X. We call i(Y,Z; ltj) the local intersection multiplicity of Y and Z 
along ltj. 

A7. Normalization. If Y is a subvariety of X, and Z is an effective Cartier 
divisor meeting Y properly, then Y.Z is just the cycle associated to the Cartier 
divisor Y n Z on Y, which is defined by restricting the local equation of 
Z to Y. (This implies in particular that transversal intersections of non
singular subvarieties have multiplicity 1.) 

Theorem 1.1. Let lD be the class of nonsingular quasi-projective varieties over 
a fixed algebraically closed field k. Then there is a unique intersection 
theory for cycles modulo rational equivalence on the varieties X E m which 
satisfies the axioms Al-A 7 above. 

There are two main ingredients in the proof of this theorem. One is the 
correct definition of the local intersection multiplicities; the other is Chow's 
moving lemma. There are several ways of defining intersection multiplicity. 
We just mention Serre's definition, which is historically most recent, but 
has the advantage of being compact. If Y and Z intersect properly, and if W 
is an irreducible component of Y n Z, we define 

i(Y,Z; W) = D -1); length Tor!(A/a,A/b) 

where A is the local ring (l)w.x of the generic point of Won X, and a and bare 
the ideals of Y and Z in A. Serre [ 11] shows that this is a nonnegative integer, 
and that it has the required properties. Note in particular that the naive 
definition, taking the length of A/(a + b) = A/a ® A/b, modeled after the 
case of curves on a surface (V, 1.4) does not work (1.1.1). 

The other ingredient is Chow's moL·ing lemma, which says that if Y,Z are 
cycles on a nonsingular quasi-projective variety X, then there is a cycle Z', 
rationally equivalent to Z, such that Y and Z' intersect properly. Further
more, if Z" is another such, then Y.Z' and Y.Z" are rationally equivalent. 
There are proofs of this moving lemma by Chevalley [2] and Roberts [1]. 

The uniqueness of the intersection theory is proved as follows: given cycles 
Y,Z on X, by the moving lemma we may assume they intersect properly. 
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Then using the reduction to the diagonal (AS) we reduce to the case of 
computing Ll.( Y x Z) on X x X. This has the advantage that L1 is a local 
complete intersection. Since the intersection multiplicity is local (A6) we 
reduce to the case where one of the cycles is a complete intersection of 
Cartier divisors, and then repeated application of the normalization (A 7) 
gives the uniqueness. 

Some general references for intersection theory are Wei! [1 ], Chevalley 
[2], Samuel [1 ], and Serre [11]. For discussion of some other equivalence 
relations on cycles, and attempts to calculate the groups Ai(X), see Harts
horne [6]. 

Example 1.1.1. To see why the higher Tor's are necessary, let Y be the union 
of two planes in A4 meeting at a point, so the ideal of Y is (x,y) n (z,w) = 

(xz,xw,)".?.yw). Let Z be the plane (x - z, y - w). Since Z meets each 
component of Y in one point P, we have i( Y,Z; P) = 2 by linearity. How
ever, if we naively take A/(a + b) where a,b are the ideals of Y and Z, we get 

k[x,y,z,w]/(xz,xw,yz,yw,x- z,y- w);::;:: k[x,y]/(x2 ,xy,y2 ), 

which has length 3. 

Example 1.1.2. We cannot expect to have an intersection theory like the 
one of the theorem on singular varieties. For example, suppose there was 
an intersection theory on the quadric cone Q given by xy = z2 in P 3 . Let L 
be the ruling x = z = 0, and M the ruling y = z = 0. Then 2M is linearly 
equivalent to a hyperplane section, which could be taken to be a conic Con Q 
which meets L,M each transversally in one point. So 

1 = L.C = L.(2M). 

By linearity we would have to have L.M = !, which is not an integer. 

2 Properties of the Chow Ring 

For any nonsingular quasi-projective variety X we now consider the Chow 
ring A( X), and list some of its properties. See Chevalley [2] for proofs. 

A8. Since the cycles in codimension 1 are just Wei! divisors, and rational 
equivalence is the same as linear equivalence for them, and X is nonsingular, 
we have A 1(X) ;::;:: Pic X. 

Thus, for example, if X is a nonsingular projective surface, we recover the 
intersection theory of (V, 1.1), using the pairing A 1(X) x A 1(X) ---+ A 2(X) 
followed by the degree map. 

A9. For any affine space Am, the projection p:X x Am---+ X induces an 
isomorphism p*: A(X) ---+ A( X x Am). 
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3 Chern Classes 

A10 Exactness. If Y is a nonsingular closed subvariety of X, and U = 
X - Y, there is an exact sequence 

i* j* A(Y) ~ A(X) ~ A(U) ~ 0, 

where i: Y ~X is one inclusion, andj: U ~X is the other. 

The proofs of these two results are similar to the corresponding results 
for divisors (II, 6.5), (II, 6.6). 

Example 2.0.1. A(P") ~ Z[h ]/h"+ 1, where h in degree 1 is the class of a 
hyperplane. One can prove this inductively from (A9) and (AlO), or directly, 
by showing that any subvariety of degree d in P" is rationally equivalent to 
d times a linear space of the same dimension (Ex. 6.3). 

The next property is important for the definition of the Chern classes in 
the next section. 

All. Let tff be a locally free sheaf of rank ron X, let P(tff) be the associated 
projective space bundle (II, §7), and let ~ E A 1(P(tff)) be the class of the 
divisor corresponding to @P(c)(1). Let n:P(tff) ~ X be the projection. Then 
n* makes A(P(tff)) into a free A(X)-module generated by 1,~,~2, ... ,~r- 1 . 

3 Chern Classes 

Here we follow the treatment of Grothendieck [3]. 

Definition. Let C be a locally free sheaf of rank r on a nonsingular quasi
projective variety X. For each i = 0,1, ... ,r, we define the ith Chern 
class c;(C) E A;(X) by the requirement c0(C) = 1 and 

r 

L ( -1)in*c;(C).~r-i = 0 
i=O 

in Ar(P(C) ), using the notation of (All). 

This makes sense, because by (All), we can express ~rasa unique linear 
combination of 1,~, ... ,~r-t, with coefficients in A(X), via n*. Here are 
some properties of the Chern classes. For convenience we define the total 
Chern class 

and the Chern polynomial 
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Cl. If tff ~ 2(D) for a divisor D, ct(tff) = 1 + Dt. Indeed, in this case 
P(tff) = X, (9P(c)(1) = 2(D), so ~ = D, so by definition 1.~ - c1(tff).1 = 0, 
so c1(tff) =D. 

C2. If f:X' ~X is a morphism, and tff is a locally free sheaf on X, then 
for each i 

c;(f*tff) = f*c;(tff). 

This follows immediately from the functoriality properties of the P(tff) con
struction and f*. 

C3. If 0 ~ tff' ~ tff ~ tff" ~ 0 is an exact sequence of locally free sheaves 
on X, then 

In fact, forgetting the definition for a moment, one can show that there 
is a unique theory of Chern classes, which for each locally free sheaf tff on 
X assigns c;(tff) E A;(X), satisfying (C1), (C2), and (C3). For the proof of this 
uniqueness and for the proof of (C3) and the other properties below, one 
uses the splitting principle, which says that given tff on X, there exists a 
morphism f: X' ~ X such that f*: A(X) ~ A(X') is injective, and Iff' = j*tff 
splits, i.e., it has a filtration Iff' = tff~ ;2 1!'1 ;2 ... ;2 tff~ = 0 whose successive 
quotients are all invertible sheaves. Then one uses the following property. 

C4. If tff splits, and the filtration has the invertible sheaves 2 1, ... ,2, 
as quotients then 

r 

ct(tff) = n ct(2;). 
i= 1 

(And of course we know each ct(2;) from (C1).) 

Using the splitting principle, we can also calculate the Chern classes of 
tensor products, exterior products, and dual locally free sheaves. Let tff 
have rank r, and let fF have rank s. Write 

r 

ct(tff) = n (1 + a;t) 
i= 1 

and 
s 

ct(ff) = n (1 + b;t), 
i= 1 

where a 1, ... ,a" b1, ... ,bs are just formal symbols. Then we have 

cs. 
ct(tff 0 ff) = n (1 + (a; + b)t) 

i,j 

cr( 1\ P tff) = n (1 + (a;, + ... + a;)t) 
l~i1< ... <ip~r 
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4 The Riemann-Roch Theorem 

These expressions make sense, because when multiplied out, the coeffi
cients of each power oft are symmetric functions in the a; and the bj. Hence 
by a well-known theorem on symmetric functions, they can be expressed as 
polynomials in the elementary symmetric functions of the a; and bj, which 
are none other than the Chern classes of C and :F. For a further reference 
on this formalism, see Hirzebruch [1, Ch. I, §4.4]. 

C6. Let s E r(X,C) be a global section of a locally free sheaf C of rank r 
on X. Then s defines a homomorphism ((jx--+ C by sending 1 to s. We 
define the scheme of zeros of s to be the closed subscheme Y of X defined 
by the exact sequence 

g~ :::. ((jx --+ @y --+ 0 

where s~ is the dual of the map s. Let Y also denote the associated cycle 
of Y. Then if Y has codimension r, we have cr(C) = Yin Ar(X). 

This generalizes the fact that a section of an invertible sheaf gives the 
corresponding divisor (II, 7.7). 

C7. Self-intersection formula. Let Y be a nonsingular subvariety of X of 
codimension r, and let JV be the normal sheaf (II, §8). Let i: Y--+ X be the 
inclusion map. Then 

i*i*(1y) = cr(JV). 

Therefore, applying the projection formula (A4) we have 

i*(cr(JV)) = Y. Y 
on X. 

This result, due to Mumford (see Lascu, Mumford, and Scott [1]), gen
eralizes the self-intersection formula (V, 1.4.1) for a curve on a surface. 

4 The Riemann-Roch Theorem 

Let C be a locally free sheaf of rank r on a nonsingular projective variety X 
of dimension n, and let fT = fix be the tangent sheaf of X (II, §8). We 
want to give an expression for x(C) in terms of the Chern classes of C and 
fT. For this purpose we introduce two elements of A(X) ® Q, which are 
defined as certain universal polynomials in the Chern classes of a sheaf C. 
Let 

r 

C1(C) = fl (1 + a;t) 
i= 1 

as above, where the a; are formal symbols. Then we define the exponential 
Chern character 

r 

ch(C) = L ea;, 
i= 1 

where 
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and the Todd class of Iff, 

r ai 
td($) = Ill - e a, 

where 
X 1 1 2 1 4 

1 - e x = l + 2 X + 12 X - 720 X + ... 

As before, these are symmetric expressions in the a;, so can be expressed as 
polynomials in the c;(S), with rational coefficients. By elementary but 
tedious calculation, one can show using these definitions that 

1 2 1 3 
ch($) = r + c1 + 2 (c 1 - 2c2 ) + 6 (c 1 - 3c1c2 + 3c3) 

and 

1 4 2 2 - 720 (cl - 4c 1c2 - 3c2 - c1c3 + c4 ) + ... 

where we set c; = c;($), c; = 0 if i > r. 

Theorem 4.1 (Hirzebruch-Riemann-Roch). For a locally free sheaf @" of 
rank r on a nonsingular projective variety X of dimension n, 

x(S) = deg(ch(S).td(§") )", 

where ( )n denotes the component of degree n in A(X) ® Q. 

This theorem was proved by Hirzebruch [1 J over C, and by Grothendieck 
in a generalized form (5.3) over any algebraically closed field k (see Borel and 
Serre [1 ]). 

Example 4.1.1. If X is a curve, and@" = !l'(D), we have ch($) = 1 + D. The 
tangent sheaf 5""x is the dual of f2x. Therefore 5""x ~ !l'(- K), where K is 
the canonical divisor, and so td(5""x) = 1 - !K. Thus (4.1) tells us that 

x(!l'(D)) = deg((l + D)(l- ~K)) 1 
= deg (D- ~K} 

ForD = 0, this says that 1 - g = -t deg K, so we can write the theorem as 

x(!l'(D)) = deg D + 1 - g, 

which is the Riemann-Roch theorem for curves proved earlier (IV, 1.3). 
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4 The Riemann-Roch Theorem 

Example 4.1.2. Now let X be a surface, and again let $ = !l'(D). Then 
ch($) = 1 + D + !D 2 . We denote by c1 and c2 the Chern classes of the 
tangent sheaf ffx. These depend only on X, so they are sometimes called 
the Chern classes of X. Since ffx is the dual of Qx, and since c1(Qx) = 
c1(/\ 2 Qx)by(C5),andsince J\ 2 Qx = wxisjust!l'(K),whereKisthecanoni
cal divisor, we see that c1C'1x) = -K. But c2 (or rather its degree) is a new 
numerical invariant of a surface which we have not met before. 

Using c1 = -K and c2 , we have 

td(ffx) = 1 - ~ K + 1
1
2 (K 2 + c2 ). 

Multiplying, and taking degrees (by abuse of notation we let D 2 denote both 
the class in A 2( X), and its degree), we can wr.ite ( 4.1) as 

1 1 
x(!l'(D)) = 2 D.(D - K) + 12 (K 2 + c2). 

In particular, forD = 0, we find that 

1 2 
X(@x) = 12 (K + C2). 

By definition of the arithmetic genus (III, Ex. 5.3), this says 

1 2 
1 + Pa = 12 (K + c2). 

So the new Riemann-Roch theorem for surfaces gives us the earlier one 
(V, 1.6), together with the additional information that c2 can be expressed 
in terms of the invariants p0 ,K2 by this last formula. 

Example 4.1.3. As an application, we derive a formula relating the numerical 
invariants of a surface in P4 . For perspective, note that if X is a surface of 
degree din P3 , then the numerical invariants p0 ,K2 , and hence c2 , are uniquely 
determined by d (1, Ex. 7.2) and (V, Ex. 1.5). On the other hand, any projective 
surface can be embedded in P 5 (IV, Ex. 3.11), so for surfaces in P 5 we do not 
expect any particular connection between these invariants. However, a 
surface cannot in general be embedded in P4 , so for those which can, we 
expect some condition to be satisfied. 

So let X be a nonsingular surface of degree din P4 . In the Chow ring of 
P4 , X is equivalent to d times a plane, so X.X = d2 . On the other hand, we 
can compute X.X, using the self-intersection formula (C7), as deg cz(JV) 
where JV is the normal bundle of X in P4 . There is an exact sequence 

where i:X -+ P4 is the inclusion. We use this sequence to compute c2(JV), 
and thus get our condition. 
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First we use the exact sequence 

0 --+ C9p4 --+ C9p.(1 )5 --+ ffp4 --+ 0. 

Letting h E A 1(P4 ) be the class of a hyperplane, we see that 

C1(ffp.) = (1 + ht) 5 = 1 + 5ht + 10h2 t2 + ... 

On the other hand, 
C1(ffx) = 1 - Kt + c2 t2 

as in (4.1.2). Therefore, denoting by HE A \X) the class of a hyperplane 
section of X, we have from the exact sequence above, using (C3), that 

(1 - Kt + c2 t 2)(1 + clA')t + c2(%)t2 ) = 1 + 5Ht + 10H2 t2 • 

Comparing coefficients of t and t2 , we find that 

c1(%) = 5H + K 

c2(%) = 10H2 - c2 + 5H.K + K 2 • 

Now take degrees and combine with deg c2(%) = d2 • Also note that 
deg H 2 = d, and use the expression for c2 in (4.1.2). The final result is 

d2 - 10d - 5H.K - 2K 2 + 12 + 12pa = 0. 

This holds for any nonsingular surface of degree d in P4 . See (Ex. 6.9) for 
some applications. 

5 Complements and Generalizations 

Having developed an intersection theory for n-dimensional varieties, we can 
ask whether some of the other theorems we proved for surfaces in Ch. V 
also extend. They do. 

Theorem 5.1 (Nakai-Moishezon Criterion). Let D be a Cartier divisor on a 

scheme X which is proper over an algebraically closed field k. Then D is 

ample on X if and only if for every closed integral subscheme Y ~ X 

(including the case Y = X if X is integral), we have D'. Y > 0 where 

r = dim Y. 

This theorem was proved by Nakai [1] for X projective over k, and in
dependently by Moishezon [ 1 J for X an abstract complete variety. The 
proof was clarified and simplified by Kleiman [ 1]. Strictly speaking, this 
theorem uses a slightly different intersection theory than the one we have 
developed. We do not assume X nonsingular projective, so we do not have 
Chow's moving lemma. On the other hand, the only intersections we need 
to consider are those of a number of Cartier divisors with a single closed 
subscheme. And this intersection theory is in fact more elementary to develop 
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than the one we outlined in §1. See Kleiman [1] for details. Notice that this 
theorem extends the one given earlier for a surface (V, 1.10), because taking 
Y = X gives D 2 > 0, and for Y a curve we have D. Y > 0. 

We can also generalize the Hodge index theorem (V, 1.9) to a nonsingular 
projective variety X over C. We consider the associated complex manifold 
Xh (App. B) and its complex cohomology Hi(Xh,C). For any cycle Y of 
codimension ron X, one can define its cohomology class 17(Y) E H 2'(Xh,C). 
We say that Y is homologically equivalent to zero, written Y ~hom 0, if 
17(Y) = 0. 

Theorem 5.2 (Hodge Index Theorem). Let X be a nonsingular projective 
variety over C, of even dimension n = 2k. Let H be an ample divisor on 
X, let Y be a cycle of codimension k, and assume that Y.H ~ham 0, and 
Y '7'-ham 0. Then ( -1)kY 2 > 0. 

This theorem is proved using Hodge's theory of harmonic integrals
see Weil [5, Th. 8, p. 78]. It generalizes the earlier result for surfaces (V, 1.9), 
because for divisors, one can show that homological and numerical equiva
lence coincide. It is conjectured by Grothendieck [9] to be true over an 
arbitrary algebraically closed field k, using 1-adic cohomology for the 
definition of homological equivalence. He suggests that it might also be 
true using numerical equivalence of cycles, but that isn't known even over 
C. See Kleiman [2] for a discussion of these and Grothendieck's other 
"standard conjectures." 

Now let us turn to further generalizations of the Riemann-Roch theorem 
following Borel and Serre [1]. The first step is to extend the definition of 
the Chern classes to the Grothendieck group K(X) (II, Ex. 6.10). For X 
nonsingular, we can compute K(X) using only locally free sheaves (Ill, 
Ex. 6.9). Then, because of the additivity property (C3) of Chern classes, it 
is clear that the Chern polynomial c1 extends to give a map 

c1:K(X)-+ A(X)[t]. 

Thus we have Chern classes defined on K(X). The exponential Chern 
character ch extends to give a mapping 

ch: K(X) -+ A( X) ® Q. 

One shows that K(X) has a natural ring structure (defined by Iff ® :#' for 
locally free sheaves Iff and :#'), and that ch is a ring homomorphism. If 
f: X' -+ X is a morphism of nonsingular varieties, then there is a ring 
homomorphism 

f':K(X)-+ K(X') 

defined by Iff H f*!% for locally free Iff. The exponential Chern character 
ch commutes with f'. 
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lff:X --+ Yis a proper morphism, one defines an additive mapf,:K(X)--+ 
K(Y) by 

for :#' coherent. 
This map f, does not commute with ch. The extent to which it fails to 

commute is the generalized Riemann-Roch theorem of Grothendieck. 

Theorem 5.3 (Grothendieck-Riemann-Roch). Let f:X--+ Y be a smooth 
projective morphism of nonsingular quasi-projective varieties. Then for 
any x E K(X) we have 

ch(f,(x)) = f*(ch(x).td(§"f)) 

in A(Y) ® Q, where §"f is the relative tangent sheaf off 

If Y is a point, this reduces to the earlier form ( 4.1 ). 
After wrestling with formidable technical obstacles, this theorem has been 

further generalized in the Paris seminar of Grothendieck [SGA 6], to the 
case where Y is a noetherian scheme admitting an ample invertible sheaf, 
and f is a projective locally complete intersection morphism. See Manin 
[1] for a readable account of this work. 

We should also mention another Riemann-Roch formula, for the case 
of a closed immersion f: X c. Y of nonsingular varieties, due to Jouanolou 
[1]. In the case of a closed immersion, the formula of (5.3) gives a way of 
computing the Chern classes c;(f*:F), for any coherent sheaf:#' on X, in 
terms of f*(C;(:F)) and f*(C;(%) }, where % is the normal sheaf. It turns 
out this can be done using polynomials with integer coefficients, but the 
proofof(5.3) gives the result only in A(Y) ® Q, i.e., mod torsion. Jouanolou's 
result is that the result actually holds in A(Y) itself. 

Recently another kind of generalization of the Riemann-Roch theorem 
to singular varieties has been developed by Baum, Fulton, and MacPherson. 
See Fulton [2]. 

EXERCISES 

6.1. Show that the definition of rational equivalence in §1 is equivalent to the equiva
lence relation generated by the following relation: two cycles Y,Z of codimension 
r on X are equivalent if there exists a cycle W of codimension r on X x A 1, 

which intersects X x { 0} and X x { 1} properly, and such that Y = W.(X x { 0} ), 
Z=W.(Xx {1}). 

6.2. Prqve the following result about Wei! divisors, which generalizes (IV, Ex. 2.6), 
and which is needed to show that f* is well-defined modulo rational equivalence 
(A3): Let f:X--> X' be a proper, generically finite map of normal varieties, and 
let D1 and D2 be linearly equivalent Weil divisors on X. Then f*D 1 and f*D 2 

are linearly equivalent Wei! divisors on X'. [Hint: Remove a subset ofcodimen
sion ~ 2 from X' so that f becomes a finite flat morphism, then generalize 
(IV, Ex. 2.6).] 
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6.3. Show directly that any subvariety of degree d in P" is rationally equivalent to d 
times a linear space of the same dimension, by using a projection argument 
similar to (III, 9.8.3). 

6.4. Let n:X-+ C be a ruled surface (V, §2) over a nonsingular curve C. Show that 
the group A 2(X) of zero-cycles modulo rational equivalence is isomorphic to 
Pic C. 

6.5. Let X be a surface, let P E X be a point, and let n: X -+ X be the monoidal trans
formation with center P (V, §3). Show that A( X) ~ n* A( X) EB Z, where Z is 
generated by the exceptional curve E E A 1(X), and the intersection theory is 
determined by E 2 = -n*(P). 

6.6. Let X be a nonsingular projective variety of dimension n, and let Ll .-:; X x X 
be the diagonal. Show that c.(ffx) = Ll 2 in A"(X), under the natural isomor
phism of X with Ll. 

6.7. Let X be a nonsingular projective 3-fold, with Chern classes c1,c2 ,c3 . Show that 

1 
1 - Pa = 24 c 1 c2, 

and for any divisor D, 

1 1 
x(.'l'(D)) = 12 D.(D - K).(2D - K) + 12 D.c2 + 1 - Pa· 

6.8. Let Iff be a locally free sheaf of rank 2 on P 3, with Chern classes c1,c2 • Since 
A(P3 ) = Z[h]/h4 , we can think of c1 and c2 as integers. Show that c1c2 = 0 
(mod 2). [Hint: In the Riemann-Roch theorem for Iff, the left-hand side is au
tomatically an integer, while the right-hand side is a priori only a rational number.] 

6.9. Surfaces in P4 . 

(a) Verify the formula of (4.1.3) for the rational cubic scroll in P4 (V, 2.19.1). 
(b) If X is a K3 surface in P4 , show that its degree must be 4 or 6. (Examples of 

such are the quartic surface in P3, and the complete intersection of a quadric 
and a cubic hypersurface in P4 .) 

(c) If X is an abelian surface in P4 , show that its degree must be 10. (Horrocks 
and Mumford [1] have shown that such abelian surfaces exist.) 

*(d) Determine which of the rational ruled surfaces X., e ~ 0 (V, §2), admit an 
embedding in P4 . 

6.10. Use the fact that the tangent sheaf on an abelian variety is free, to show that it 
is impossible to embed an abelian 3-fold in P 5. 
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APPENDIX B 

Transcendental Methods 

If X is a nonsingular variety over C, then we can also consider X as a complex 
manifold. All the methods of complex analysis and differential geometry 
can be used to study this complex manifold. And, given an adequate dic
tionary between the language of abstract algebraic geometry and complex 
manifolds, these results can be translated back into results about the original 
variety X. 

This is an extremely powerful method, which has produced and is still 
producing many important results, proved by these so-called "transcen
dental methods," for which no purely algebraic proofs are known. 

On the other hand, one can ask where do the algebraic varieties fit into 
the general theory of complex manifolds, and what special properties 
characterize them among all complex manifolds? 

In this appendix we will give a very brief report of this vast and important 
area of research. 

1 The Associated Complex Analytic Space 

A complex analytic space (in the sense of Grauert) is a topological space X, 
together with a sheaf of rings (!Jx, which can be covered by open sets, each 
of which is isomorphic, as a locally ringed space, to one of the following 
kind Y: let U ~ C" be the polydisc {Jzd < 1Ji = 1, ... ,n}, let f 1, ... ,fq 
be holomorphic functions on U, let Y ~ U be the closed subset (for the 
"usual" topology) consisting of the common zeros of f 1, ... ,fq, and take 
(!JY to be the sheaf (!Ju!Ut. ... ,fq), where (!Ju is the sheaf of germs of holo
morphic functions on U. Note that the structure sheaf may have nilpotent 
elements. See Gunning and Rossi [1] for a development of the general theory 
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1 The Associated Complex Analytic Space 

of complex analytic spaces, coherent analytic sheaves, and cohomology. 
See also Banica and Stana~ila [ 1] for a survey of recent techniques in the 
cohomology of complex analytic spaces, parallel to the algebraic techniques 
in Chapter III. 

Now if X is a scheme of finite type over C, we define the associated com
plex analytic space X h as follows. Cover X with open affine subsets Y; = 
Spec A;. Each A; is an algebra of finite type over C, so we can write it as 
A;~ C[x 1, ... ,xn]/(!1, ... ,Jq). Here/1, ... ,fqarepolynomialsinx1 , ... ,xn. 
We can regard them as holomorphic functions on C", so that their set of 
common zeros is a complex analytic subspace (Y;)h ~ C". The scheme X is 
obtained by glueing the open sets Y;, so we can use the same glueing data 
to glue the analytic spaces (Y;h into an analytic space Xh. This is the asso
ciated complex analytic space of X. 

The construction is clearly functorial, so we obtain a functor h from the 
category of schemes of finite type over C to the category of complex analytic 
spaces. In a similar way, if :F is a coherent sheaf on X, one can define the 
associated coherent analytic sheaf :Fh as follows. The sheaf :F is locally 
(for the Zariski topology) a cokernel 

mv ~ m~ --+ :F --+ o 
of a morphism cp of free sheaves. Since the usual topology is finer than the 
Zariski topology, Uh is open in Xh. Furthermore, since cp is defined by a 
matrix of local sections of mu, these give local sections of muh' so we can 
define :F h as the co kernel of the corresponding map cph of free coherent 
analytic sheaves locally. 

One can prove easily some basic facts about the relationship between a 
scheme X and its associated analytic space Xh (see Serre [4]). For example, 
X is separated over C if and only if X h is Hausdorff. X is connected in the 
Zariski topology if and only if X h is connected in the usual topology. X is 
reduced if and only if X h is reduced. X is smooth over C if and only if X h 
is a complex manifold. A morphism f: X --+ Y is proper if and only if 
J,: X h --+ Y, is proper in the usual sense, i.e., the inverse image of a compact 
set is compact. In particular, X is proper over C if and only if X h is compact. 

One can also compare the cohomology of coherent sheaves on X and X h. 

There is a continuous map cp: X h --+ X of the underlying topological spaces, 
which sends Xh bijectively onto the set of closed points of X, but of course 
the topology is different. There is also a natural map of the structure 
sheaves cp- 1mx--+ mxh' which makes cp into a morphism of locally ringed 
spaces. It follows from our definitions that for any coherent sheaf :F of 
mx-modules, :Fh ~ cp* :F. From this one can show easily that there are 
natural maps of cohomology groups 

a;: Hi(X,:F)--+ Hi(Xh,:Fh) 

for each i. Here we always take cohomology in the sense of derived functors 
(III, §2), but one can show that on the analytic space X h• this coincides with 
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the other cohomology theories in use in the literature-see the historical 
note at the end of(III, §2). 

2 Comparison of the Algebraic and 
Analytic Categories 

To stimulate our thinking about the comparison between schemes of finite 
type over C and their associated complex analytic spaces, let us consider 
five questions which arise naturally from contemplating the functor h. 

Ql. Given a complex analytic space .r, does there exist a scheme X such 
that xh ~ .I? 

Q2. If X and X' are two schemes such that Xh ~ X~, then is X ~ X'? 

Q3. Given a scheme X, and a coherent analytic sheaf 1Y on Xh, does 
there exist a coherent sheaf ff on X such that ff h ~ 1J? 

Q4. Given a scheme X, and two coherent sheaves Iff and ff on X such 
that lffh ~ ffh on Xh, then is Iff ~ ff? 

Q5. Given a scheme X, and a coherent sheaf ff, are the maps rx; on 
cohomology isomorphisms? 

As one might expect, when phrased in this generality, the answer to all 
five questions is NO. It is fairly easy to give counterexamples to Q1, Q3, 
and Q5-see (Ex. 6.1), (Ex. 6.3), (Ex. 6.4). Q2 and Q4 are more difficult, 
so we mention the following example. 

Example 2.0.1 (Serre). Let C be an elliptic curve, let X be the unique non
trivial ruled surface over C with invariant e = 0 (V, 2.15), and let C0 be 
the section with C6 = 0 (V, 2.8.1). Let U = X - C 0 . On the other hand, 
let U' = (A 1 - {0}) x (A 1 - {0}). Then one can show that Uh ~ U~, but 
U ;t_ U', because U is not affine. In particular, Uh is Stein although U is not 
affine. Furthermore, one can show that Pic U ~ Pic C, whereas Pic U h ~ 
Z. In particular, there are nonisomorphic invertible sheaves fi' and !£'' on 
U such that fi'h ~ !£'~. For details see Hartshorne [5, p. 232]. 

In contrast, if one restricts one's attention to projective schemes, then 
the answer to all five questions is YES. These results were proved by Serre 
in his beautiful paper GAGA (Serre [4]). The main theorem is this. 

Theorem 2.1 (Serre). Let X be a projective scheme over C. Then the functor 
h induces an equivalence of categories from the category of coherent 
sheaves on X to the category of coherent analytic sheaves on Xh. Further-
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more, for every coherent sheaf :F on X, the natural maps 

rx;:H;(X,.'F)-> H;(Xh,:Fh) 

are isomorphisms, for all i. 

This answers questions Q3, Q4, and Q5. The proof requires knowing 
the analytic cohomology groups H;(P~,(D(q)) for all i,n,q, which can be 
computed using Cartan's Theorems A and B. The answer is the same as 
in the algebraic case (III, 5.1). Then the result follows from the standard 
technique of embedding X in P", and resolving :F by sheaves of the 
form L@(q;), as in (III, §5). This theorem has also been generalized by 
Grothendieck [SGA 1, XII] to the case when X is proper over C. 

As a corollary, Serre obtains a new proof of a theorem of Chow [1 J: 

Theorem 2.2 (Chow). If X is a compact analytic subspace of the complex 
manifold P(:, then there is a sub scheme X c;; P" with X h = X. 

This answers Q1 in the projective c-ase. We leave Q2 as an exercise 
(Ex. 6.6). 

3 When is a Compact Complex 
Manifold Algebraic? 

If X is a compact complex manifold, then one can show that a scheme X 
such that X h ~ X, if it exists, is unique. So if such an X exists, we will simply 
say X is algebraic. Let us consider the modified form of question 1: 

Ql'. Can one give reasonable necessary and sufficient conditions for a 
compact complex manifold X to be algebraic? 

The first result in this direction is 

Theorem 3.1 (Riemann). Every compact complex manifold of dimension 1 
(i.e., a compact Riemann surface) is projective algebraic. 

This is a deep result. To understand why, recall that the notion of com
plex manifold is very local. It is defined by glueing small discs, with holo
morphic transition functions. We make one global hypothesis, namely 
that it is compact, and our conclusion is that it can be embedded globally 
in some projective space. In particular, by considering a projection to P 1, 

we see that it has nonconstant meromorphic functions, which is not at all 
obvious a priori. One proves the theorem in two steps: 

(a) One shows that X admits a global nonconstant meromorphic func
tion. This requires some hard analysis. One proof, given by Weyl [1 ], 
following Hilbert, uses Dirichlet's minimum principle to prove the existence 
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of harmonic functions, and hence of meromorphic functions. Another 
proof, given by Gunning [1 ], uses distributions to first prove the finite
dimensionality of cohomology of coherent analytic sheaves, and then de
duce the existence of meromorphic functions. 

(b) The second step is to take a nonconstant meromorphic function f 
on X, and to regard it as giving a finite morphism of X to P 1. Then one 
shows that X is a nonsingular algebraic curve, hence projective. 

Part (b), which is often called the "Riemann existence theorem," is ele
mentary by comparison with part (a). It has been generalized to higher 
dimensions by Grauert and Remmert [1]. Recently Grothendieck [SGA 1, 
XII] has given an elegant proof of their generalization, using Hironaka's 
resolution of singularities. The result is this: 

Theorem 3.2 (Generalized Riemann Existence Theorem). Let X be a normal 

scheme of finite type over C. Let X' be a normal complex analytic space, 

together with a finite morphism f:X'--+ Xh. (We define a finite morphism 

of analytic spaces to be a proper morphism with finite fibres.) Then there 

is a unique normal scheme X' and a finite morphism g: X' --+ X such that 

X~ ~ X' and gh = f. 

One corollary of this theorem is that the algebraic fundamental group 
of X, n~1g(X), defined as the inverse limit of the Galois groups of finite etale 
covers of X (IV, Ex. 4.8), is isomorphic to the completion n~0P(Xhf of the 
usual fundamental group of X h with respect to subgroups of finite index. 

Indeed, if 'D is any finite unramified topological covering space of X h• then 
'D has a natural structure of normal complex analytic space, so by the 
theorem it is algebraic (and etale) over X. 

In dimensions greater than 1, it is no longer true that every compact 
complex manifold is algebraic. But we have the following result which 
gives a necessary condition. 

Proposition 3.3 (Siegel [ 1] ). Let X be a compact complex manifold of dimen

sion n. Then the field K(X) of meromorphic functions on X has transcen

dence degree ~ n over C, and (at least in the case tr.d. K(X) = n) it is a 

finitely generated extension field of C. 

If X is algebraic, say X ~ Xh, then one can show that K(X) ~ K(X), 
the field of rational functions on X, so in this case we must have tr.d. K(X) = 

n. Compact complex manifolds X with tr.d. K(X) = dim X were studied by 
Moishezon [2], so we call them M oishezon manifolds. 

In dimension n ?: 2, there are compact complex manifolds with no non
constant meromorphic functions at all, so these cannot be algebraic. For 
example, a complex torus Cn/A, where A ~ Z 2n is a sufficiently general 
lattice, for n ?- 2, will have this property. See for example Morrow and 
Kodaira [1]. 
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3 When is a Compact Complex Manifold Algebraic? 

Restricting our attention to Moishezon manifolds, we have the following 
theorem in dimension 2. 

Theorem 3.4 (Chow and Kodaira [1]). A compact complex manifold of di
mension 2, with two algebraically independent meromorphic functions, is 
projective algebraic. 

In dimensions ~ 3, both Hironaka [2] and Moishezon [2] have given 
examples of Moishezon manifolds which are not algebraic. They exist in 
every birational equivalence class of algebraic varieties of dimension ~ 3 
over C. However, Moishezon shows that any Moishezon manifold be
comes projective algebraic after a finite number of monoidal transforma
tions with nonsingular centers, so they are not too far from being algebraic. 

Example 3.4.1 (Hironaka [2]). We describe two examples with a similar 
construction. The first is a nonsingular complete algebraic three-fold over 
C which is not projective. The second is a Moishezon manifold of dimen
sion three which is not algebraic. 

For the first example, let X be any nonsingular projective algebraic 
three-fold. Take two nonsingular curves c,d s; X which meet transversally 
at two points P,Q, and nowhere else (Fig. 24). On X - Q, first blow up the 
curve c, then blow up the strict transform of the curve d. On X - P, first 

Figure 24. A complete nonprojective variety. 
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Appendix B Transcendental Methods 

blow up the curve d, then blow up the strict transform of the curve c. On 
X - P - Q it doesn't matter in which order we blow up the curves c and 
d, so we can glue our blown-up varieties along the inverse images of X -
P - Q. The result is a nonsingular complete algebraic variety X. We will 
show that X is not projective. It follows, incidentally, that the birational 
morphism f: X --+ X cannot be factored into any sequence of monoidal 
transformations, because it is not a projective morphism. 

To do this, we must examine what happens in a neighborhood of P 
(Fig. 24). Let l be the inverse image in X of a general point of c. Let m be 
the inverse image of a general point of d. Note that land mare projective 
lines. Then the inverse image of P consists of two lines 10 and m0 , and we 
have algebraic equivalence of cycles l "' 10 + m0 and m "' m0 . Note the 
asymmetry resulting from the order in which we blew up the two curves. 
Now in the neighborhood of Q the opposite happens. So f- 1(Q) is the 
union of two lines I~ and m~, and we have algebraic equivalence l "' 10 and 
m "' l~ + m~. Combining these equivalences, we find that /0 + m~ "' 0. 
This would be impossible on a projective variety, because a curve has a 
degree, which is a positive integer, and degrees are additive and are pre
served bv algebraic equivalence. So X is not projective. 

Example 3.4.2. For the second example, we start with any nonsingular pro
jective algebraic threefold, as before. Let c be a curve in X which is non
singular except for one double point P, having distinct tangent directions. 
In a small analytic neighborhood of P, blow up one branch first, then the 
other. Outside of that neighborhood, just blow up c. Then glue to obtain 
the compact complex manifold X. Clearly X is Moishezon, because the 
meromorphic functions on X are the same as those on X. We will show 
that X is not an abstract algebraic variety. 

Using the same notation as before (Fig. 25) we have homological equiva
lences l "' 10 + m0 , m "' m0 , and l "' m, because the two branches meet 

Figure 25. A nonalgebraic Moishezon manifold. 
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4 Kahler Manifolds 

away from P. So we find that 10 ~ 0. But this is impossible if x is algebraic. 
Indeed, let T be a point of 10 . Then T has an affine neighborhood U in x. 
Let Y be an irreducible surface in U which passes through T but does not 
contain 10 . Extend Y by closure to a surface Yin x. Now Y meets 10 in a 
finite nonzero number of points, so the intersection number of Y with 10 is 
defined and is =f. 0. But the intersection number is defined on homology 
classes, so we cannot have 10 ~ 0. Hence x is not algebraic. 

Remark 3.4.3. At this point we should also mention the algebraic spaces of 
Artin [2] and Knutson [1]. Over any field k, they define an algebraic space 
to be something which is locally a quotient of a scheme by an etale equiva
lence relation. The category of algebraic spaces contains the category of 
schemes. If X is an algebraic space of finite type over C, one can define its 
associated complex analytic space Xh. Artin shows that the category of 
smooth proper algebraic spaces over C is equivalent, via the functor h, to 
the category of Moishezon manifolds. Thus every Moishezon manifold is 
"algebraic" in the sense of algebraic spaces. In particular, Hironaka's 
example (3.4.2) gives an example of an algebraic space over C which is not 
a scheme. 

4 Kahler Manifolds 

The methods of differential geometry provide a powerful tool for the study 
of compact complex manifolds, and hence of algebraic varieties over the 
complex numbers. Notable among such applications of differential geome
try are Hodge's [1] theory of harmonic integrals, and the resulting decom
position of the complex cohomology into its (p,q)-components (see also 
Wei! [5]); the vanishing theorems ofKodaira [1] and Nakano [1], recently 
generalized by Grauert and Riemenschneider [ 1 J; and the work of Griffiths 
on the intermediate Jacobians and the period mapping. Here we will only 
mention the definition of a Kahler manifold, and how that notion helps to 
characterize algebraic complex manifolds. 

Any complex manifold admits a Hermitian metric (in many ways). A 
Hermitian metric is said to be Kahler if the associated differential 2-form of 
type (1,1) is closed. A complex manifold with a Kahler metric is called a 
Kahler manifold. One can show easily that complex projective space has a 
natural Kahler metric on it, and hence that every projective algebraic 
manifold is a Kahler manifold with the induced metric. A compact Kahler 
manifold x is called a Hodge manifold if the cohomology class in H 2(x,C) 
of the 2-form mentioned above is in the image of the integral cohomology 
H 2(x,Z). Now a fundamental result is 

Theorem 4.1 (Kodaira [2]). Every Hodge manifold is projective algebraic. 
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This can be thought of as a generalization of the theorem of Riemann 
(3.1) quoted above, because every compact complex manifold of dimension 
one is trivially seen to be a Hodge manifold. We also have the following 

Theorem 4.2 (Moishezon [2]). Every Moishezon manifold which is Kahler is 
projective algebraic. 

Summing up, we have the following implications among properties of 
compact complex manifolds, and there are examples to show that no further 
implications are possible. 

I Hodge I 
projective abstract 

<=> 
algebraic ==> algebraic 

' A I 
I Kiihle' I Moishezon 

5 The Exponential Sequence 

Let us give one simple example of the use of transcendental methods, by 
looking at the exponential sequence. The exponential function f(x) = e2"ix 

gives an exact sequence of abelian groups 

0 ---+ Z ---+ C ~ C* ---+ 0, 

where C has its additive structure, and C* = C - {0} has its multiplicative 
structure. If l: is any reduced complex analytic space, by considering holo
morphic functions with values in the above sequence, we get an exact 
sequence of sheaves 

where Z is the constant sheaf, (!)I is the structure sheaf, and (!)~ is the sheaf 
of invertible elements of(!) I under multiplication. 

The cohomology sequence of this short exact sequence of sheaves is very 
interesting. Let us apply it to X h' where X is a projective variety over C. 
At the H 0 level, we recover the original exact sequence of groups 0 ---+ Z ---+ 
C ---+ C* ---+ 0, because the global holomorphic functions are constant. Then 
starting with H\ we have an exact sequence 

0---+ H 1(X h,Z)---+ H 1(Xh,(!Jx_}---+ H 1(Xh,(!Jt)---+ H 2(X h,Z)---+ H 2(X h,(!Jxh)---+ .. .. 

By Serre's theorem (2.1), we have H;(Xh,(!Jxh) ;::; H;(X,(!Jx). On the other 
hand 
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5 The Exponential Sequence 

by (III, Ex. 4.5), which is valid for any ringed space. But Serre's theorem 
(2.1) also gives an equivalence of categories of coherent sheaves, so m 
particular, Pic Xh ~ Pic X. So we can rewrite our sequence as 

0 ----+ H 1(Xh,Z) ----+ H 1(X,@x) ----+ Pic X ----+ H 2(Xh,Z) ----+ H 2(X,(()x) ----+ ••• 

The only nonalgebraic part is the integral cohomology of X h. Since any 
algebraic variety is triangulable (see for example, Hironaka [5]), the coho
mology groups Hi(Xh,Z) are finitely generated abelian groups. From this 
sequence we can deduce some information about the Picard group of X. 

First of all, one sees easily that algebraically equivalent Cartier divisors 
give the same element in H 2(Xh,Z). Therefore the Neron-Severi group of 
X is a subgroup of H 2(Xh,Z), and hence is finitely generated (V, Ex. 1.7). 
On the other hand, the group Pico X of divisors algebraically equivalent to 
zero modulo linear equivalence is isomorphic to H 1(X,(()x)/H 1(Xh,Z). One 
shows that this is a complex torus, and in fact it is an abelian variety, the 
Picard variety of X. 

If X is a nonsingular curve of genus g, we can see even more clearly what 
is happening. In that case Xh is a compact Riemann surface of genus g. 
As a topological space, it is a compact oriented real 2-manifold which is 
homeomorphic to a sphere with g handles. So we have 

H 0(Xh,Z) = H 2(Xh,Z) = Z, 

On the other hand, H 1(X,(()x) ~ C9, so 

and 

Pica X ~ C9jZ 29• 

This is the Jacobian variety of X (IV, §4), which is an abelian variety of 
dimension g. Of course NS(X) ~ Z in this case, the isomorphism being 
given by the degree function. 

EXERCISES 

6.1. Show that the unit disc inC is not isomorphic to Xh for any scheme X. 

6.2. Let z1,z2 , ... be an infinite sequence of complex numbers with lz.l---> oo as n---> oo. 
Let :1 <:; (I) c be the sheaf of ideals of holomorphic functions vanishing at all of the 
z •. Show that there is no coherent algebraic sheaf of ideals§ <:; (l)x, where X = 
A~ is the affine line, such that 3 = §has an ideal in (l)c· Show on the other hand 
that there is a coherent sheaf$' on X such that $'h ::::::: ~as coherent sheaves. 

6.3. (Serre [12].) On C2 - [0, 0}, we define an invertible analytic sheaf i.' as follows: 
£ ::::::: (I) when z =1 0; £ ::::::: (I) when w =1 0, and when both z,w =1 0, the two copies 
of (I) are glued by multiplication by e-t;zw in the local ring at the point (z,w). 
Show that there is no invertible algebraic sheaf!£' on A2 - {0,0} with !i'h ::::::: £. 

6.4. Show directly that if X is a scheme which is reduced and proper over C, then 
H 0(X,(I)x) ::::::: H 0(Xh,(l)xJ. Conversely, show that if X is not proper over C, then 
there is a coherent sheaf$' on X with H 0(X,$') =I H 0(Xh,$'h). 
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6.5. If X,X' are nonsingular affine algebraic curves, with Xh ~ X~, show that X ~ X'. 

6.6. Show that if X and Yare projective schemes over C, and f:Xh-> Y, is a morphism 
of analytic spaces, then there exists a (unique) morphism f:X -> Y with fh = f. 
[Hint: First reduce to the case Y = P". Then consider the invertible analytic 
sheaf 5! = f*(l)(l) on Xh, use (2.1), and the techniques of(II, §7).] 
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APPENDIX C 

The W eil Conjectures 

In 1949, Andre Weil [ 4] stated his now famous conjectures concerning the 
number of solutions of polynomial equations over finite fields. These con
jectures suggested a deep connection between the arithmetic of algebraic 
varieties defined over finite fields and the topology of algebraic varieties 
defined over the complex numbers. Weil also pointed out that if one had a 
suitable cohomology theory for abstract varieties, analogous to the ordinary 
cohomology of varieties defined over C, then one could deduce his conjec
tures from various standard properties of the cohomology theory. This 
observation has been one of the principal motivations for the introduction 
of various cohomology theories into abstract algebraic geometry. In 1963, 
Grothendieck was able to show that his /-adic cohomology had sufficient 
properties to imply part of the Wei! conjectures (the rationality of the zeta 
function). Deligne's [3] proof in 1973 of the remainder of the Wei! conjectures 
(specifically the analogue of the "Riemann hypothesis") may be regarded as 
the culmination of the study of /-adic cohomology begun by Grothendieck, 
M. Artin, and others in the Paris seminars [SGA 4], [SGA 5], and [SGA 7]. 

1 The Zeta Function and the Weil Conjectures 

Let k = Fq be a finite field with q elements. Let X be a scheme of finite type 
over k. For example, X could be the set of solutions in affine or projective 
space over k of a finite number of polynomial equations with coefficients in 
k. Let ]( be an algebraic closure of k, and let X = X x k k be the corre
sponding scheme over k. For each integer r ~ 1, let N, be the number of 
points of X which are rational over the field k, = Fqr of q' elements. In 
other words, N, is the number of points of X whose coordinates lie in k,. 
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Appendix C The Wei! Conjectures 

The numbers N 1,N 2 ,N 3 , ... are clearly of great importance in studying 
arithmetical properties of the scheme X. To study them, we form the zeta 
function of X (following Weil), which is defined as 

( 
00 t') Z(t) = Z(X; t) = exp L N,- . 

r= 1 r 

Note that by definition, it is a power series with rational coefficients: 
Z(t) E Q[[t]J. 

For example, let X = P 1 . Over any field, P 1 has one more point than 
the number of elements of the field. Hence N, = q' + 1. Thus 

( 
GO t') Z(P\t) = exp ,~1 (q' + 1)-;: . 

It is easy to sum this series, and we find that 

1 1 
Z(P ,t) = (1 - t)(1 - qt) 

In particular, it is a rational function oft. 

Now we can state the Weil conjectures. Let X be a smooth projective 
variety of dimension n defined over k = Fq. Let Z(t) be the zeta function 
of X. Then 

1.1. Rationality. Z(t) is a rational function oft, i.e., a quotient of poly
nomials with rational coefficients. 

1.2. Functional equation. Let E be the self-intersection number of the 
diagonal L1 of X x X (which is also the top Chern class of the tangent 
bundle of X (App. A, Ex. 6.6) ). Then Z(t) satisfies a functional equation, 
namely 

1.3. Analogue of the Riemann hypothesis. It is possible to write 

where P 0(t) = 1 - t; P 2n(t) = 1 - qnt; and for each 1 ~ i ~ 2n - 1, P;(t) 
is a polynomial with integer coefficients, which can be written 

where the r:xii are algebraic integers with lrxiil = qi12. (Note that these con
ditions uniquely determine the polynomials P;(t), if they exist.) 
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2 History of Work on the Wei! Conjectures 

1.4. Betti numbers. Assuming (1.3), we can define the ith Betti number 
B; = B;(X) to be the degree of the polynomial P;(t). Then we have E = 
L( -1)iB;. Furthermore, suppose that X is obtained from a variety Y 
defined over an algebraic number ring R, by reduction modulo a prime ideal 
p of R. Then B;(X) is equal to the ith Betti number of the topological space 
Y, = ( Y x R C)h (App. B), i.e., B;(X) is the rank of the ordinary cohomology 
group Hi(Y,,Z). 

Let us verify the conjectures for the case X = P 1. We have already seen 
that Z(t) is rational. The invariant E ofP1 is 2, and one verifies immediately 
the functional equation which says in this case 

z Gt) = qt2Z(t). 

The analogue of the Riemann hypothesis is immediate, with P 1(t) = 1. 
Hence B 0 = B2 = 1 and B1 = 0. These are indeed the usual Betti numbers 
ofP~, which is a sphere, and finally we have E = 2:( -l)iB;. 

2 History of Work on the Weil Conjectures 

Weil was led to his conjectures by consideration of the zeta functions of 
some special varieties. See his article Weil [ 4] for number-theoretic back
ground, and calculations for the "Fermat hypersurfaces" l:a;x7 = 0. One 
of Weil's major pieces of work was the proof that his conjectures hold for 
curves. This is done in his book Weil [2]. The rationality and the func
tional equation follow from the Riemann-Roch theorem on the curve. The 
analogue of the Riemann hypothesis is deeper (V, Ex. 1.10). He deduces it 
from an inequality of Castelnuovo and Severi about correspondences on a 
curve (V, Ex. 1.9). This proof was later simplified by Mattuck and Tate [1 J 
and Grothendieck [2]. Weil [3] also gave another proof using the /-adic 
representation of Frobenius on abelian varieties, which inspired the later 
cohomological approaches. Recently a completely independent elementary 
proof of the Riemann hypothesis for curves has been discovered by Stepanov, 
Schmidt and Bombieri (see Bombieri [1 ]). 

For higher-dimensional varieties, the rationality of the zeta function and 
the functional equation were first proved by Dwork [1 ], using methods of 
p-adic analysis. See also Serre [8] for an account of this proof. 

Most other work on the Weil conjectures has centered around the search 
for a good cohomology theory for varieties defined over fields of charac
teristic p, which would give the "right" Betti numbers as defined in (1.4) 
above. Furthermore, the cohomology theory should have its coefficients in 
a field of characteristic zero, so that one can count the fixed points of a 
morphism as a sum of traces on cohomology groups, a la Lefschetz. 
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The first cohomology introduced into abstract algebraic geometry was 
that of Serre [3] using coherent sheaves (Ch. III). Although it could not 
satisfy the present need, because of its coefficients being in the field over 
which the variety is defined, it served as a basis for the development of later 
cohomology theories. Serre [ 6] proposed a cohomology with coefficients 
in the Witt vectors, but was unable to prove much about it. Grothendieck, 
inspired by some of Serre's ideas, saw that one could obtain a good theory 
by considering the variety together with all its unramified covers. This 
was the beginning of his theory of etale topology, developed jointly with 
M. Artin, which he used to define the 1-adic cohomology, and thus to obtain 
another proof of the rationality and functional equation of the zeta function. 
See Grothendieck [ 4] for a brief announcement; Artin [1] and Grothendieck 
[SGA 4] for the foundations of etale cohomology; Grothendieck [ 6] for the 
proof of rationality of the zeta function, modulo general facts about 1-adic 
cohomology which are supposed to appear in [SGA 5] (as yet unpublished). 
Lubkin [1] more or less independently developed a p-adic cohomology 
theory which led also to a proof of rationality and the functional equation, 
for varieties which could be lifted to characteristic zero. The crystalline 
cohomology of Grothendieck [8] and Berthelot [1] gives another similar 
cohomological interpretation of the Weil conjectures. 

The analogue of the Riemann hypothesis has proved more difficult to 
handle. Lang and Weil [ 1] established an inequality for n-dimensional 
varieties, which is equivalent to the analogue of the Riemann hypothesis if 
n = 1, but falls far short of it if n :,;;, 2. Serre [9] established another analogue 
of the Riemann hypothesis for the eigenvalues of certain operators on the 
cohomology of a Kahler manifold, using the powerful results of Hodge 
theory. This suggests that one should try to establish in abstract algebraic 
geometry some results known for varieties over C via Hodge theory, in 
particular the "strong Lefschetz theorem" and the "generalized Hodge index 
theorem." Grothendieck [9] optimistically calls these the "standard con
jectures," and notes that they immediately imply the analogue of the 
Riemann hypothesis. See also Kleiman [2] for a more detailed account of 
these conjectures and their interrelations. 

Until Deligne's proof [3] of the general analogue of the Riemann hy
pothesis, only a few special cases were known: curves (above), rational 
threefolds by Manin [2]-see also Demazure [1 ], K3 surfaces by Deligne 
[2], and certain complete intersections by Deligne [5]. 

In addition to the references given above, I would like to mention Serre's 
survey article [10] and Tate's companion article [1] suggesting further (as 
yet untouched) conjectures about cycles on varieties over fields of charac
teristic p. Also, for the number-theorists, Deligne's article [1] which shows 
that the analogue of the Riemann hypothesis implies the conjecture of 
Ramanujan about the r-function. 
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3 The /-adic Cohomology 

3 The 1-adic Cohomology 

In this and the following section we will describe the cohomological inter
pretation of the Weil conjectures in terms of the 1-adic cohomology of 
Grothendieck. Similar results would hold in any cohomology theory with 
similar forinal properties. See Kleiman [2] for an axiomatic treatment of 
a "Weil cohomology theory." 

Let X be a scheme of finite type over an algebraically closed field k of 
characteristic p :;:,: 0. Let l be a prime number l -=F p. Let Z 1 = lim Z/l'Z -be the ring of 1-adic integers, and Q 1 its quotient field. We consider the 
etale topology of X (see Artin [1] or [SGA 4]), and then using etale coho
mology, we define the 1-adic cohomology of X by 

H;(X,Q1) = (fu!! mt (X,Z/l'Z)) ®z, Qz. 

We will not go into a detailed explanation of this definition here (see [SGA 
41]). Rather, we will content ourselves with listing some of the main 
properties of the 1-adic cohomology. 

3.1. The groups H;(X,Q 1) are vector spaces over Q1• They are zero 
except in the range 0 ~ i ~ 2n, where n = dim X. They are known to be 
finite-dimensional if X is proper over k. (They are expected to be finite
dimensional in general, but there is no proof yet because of the problem of 
resolution of singularities in characteristic p > 0.) 

3.2. H;(X,Q1) is a contravariant functor in X. 

3.3. There is a cup-product structure 

H;(X,Q1) x Hi(X,Q1) ~ Hi+ i(X,Q1) 

defined for all i,j. 

3.4. Poincare duality. If X is smooth and proper over k, of dimension n, 
then H 2"(X,Q1) is !-dimensional, and the cup-product pairing 

Hi(X,Qz) X H2n-i(X,Qz) ~ H2"(X,Qz) 

is a perfect pairing for each i, 0 ~ i ~ 2n. 

3.5. Lefschetz fixed-point formula. Let X be smooth and proper over k. 
Let f; X ~ X be a morphism with isolated fixed points, and for each fixed 
point x EX, assume that the action of 1 - df on Q} is injective. This last 
condition says that the fixed point has "multiplicity 1." Let L(f,X) be the 
number of fixed points off Then 

L(f,X) = 2) -1); Tr(f*; H;(X,Q1)) 

where f* is the induced map on the cohomology of X. 
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3.6. Iff: X -.. Y is a smooth proper morphism, with Y connected, then 
dim Hi( X Y,Q1} is constant for y E Y. In particular, dim Hi(X,Q1) is constant 
under base field extension. 

3.7. Comparison theorem. If X is smooth and proper over C, then 

Hi(X,Q1) ®Q, C ~ Hi(Xh,C) 

where X his the associated complex manifold in its classical topology (App. B). 

3.8. Cohomology class of a cycle. If X is smooth and proper over k, and 
if Z is a subvariety of codimension q, then there is associated to Z a coho
mology class tJ(Z) E H 2q(X,Q1). This map extends by linearity to cycles. 
Rationally equivalent cycles have the same cohomology class. Intersection 
of cycles becomes cup-product of cohomology classes. In other words, fJ 
is a homomorphism from the Chow ring A(X) to the cohomology ring 
H*(X,Q1}. Finally, it is non-trivial: if P EX is a closed point, then rJ(P) E 
H 2n(X,Q1) is nonzero. 

This list of properties has no pretensions to completeness. In particular, 
we have not mentioned sheaves of twisted coefficients, higher direct images, 
Leray spectral sequence, and so forth. For further properties, as well as 
for the proofs of the properties given above, we refer to [SGA 4] for the 
corresponding statement with torsion coefficients, and to [SGA 5] for the 
passage to the limit of Z1 or Q1 coefficients. 

4 Cohomological Interpretation of the Weil Conjectures 

Using the 1-adic cohomology described above, we can give a cohomological 
interpretation of the Weil conjectures. The main idea, which goes back to 
Weil, is very simple. Let X be a projective variety defined over the finite 
field k = Fq, and let X = X x k k be the corresponding variety over the 
algebraic closure k of k. We define the Frobenius morphism f:X -..X by 
sending the point P with coordinates (a;), ai E k, to the point f(P) with 
coordinates (a'!). This is the k-linear Frobenius morphism, where Xq is 
identified with X (IV, 2.4.1). Since X is defined by equations with coeffi
cients in k, f(P) is also a point of X. Furthermore, P is a fixed point of 
f if and only if its coordinates lie in k. More generally, P is a fixed point of 
the iterate f' if and only if it has coordinates in the field k, = F qr· Thus 
in the notation of §1, we have 

N, = # {fixed points off'} = L(f',X). 

If X is smooth, we can calculate this number by the Lefschetz fixed-point 
formula (3.5). We find 

2n 

N, = L ( -1)i Tr(f'*; Hi(X,Q1) ). 

i=O 
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4 Co homological Interpretation of the Wei! Conjectures 

Substituting in the definition of the zeta function, we have 

2n [ ( oo t')](-1)' Z(X,t) =I\ exp ,~1 Tr(f'*; H;(X,QJ)-;: 

To simplify this expression, we need an elementary lemma. 

Lemma 4.1. Let cp be an endomorphism of a finite-dimensional vector space 
V over a field K. Then we have an identity of formal power series in t, 
with coefficients in K, 

exp L Tr(cp'; V)- = det(1 - cpt; V)- 1. ( 

00 t') 
r= 1 r 

PROOF. If dim V = 1, then cp is multiplication by a scalar A E K, and it says 

exp .LA'- = --. (

00 t') 1 
r= 1 r 1 - At 

This is an elementary calculation, which we already did in computing the 
zeta function of P 1 . For the general case, we use induction on dim V. 
Furthermore, we may clearly assume that K is algebraically closed. Hence 
cp has an eigenvector, so we have an invariant subspace V' s:::: V. We use 
the exact sequence 

0 ~ V' ~ V ~ V jV' ~ 0 

and the fact that both sides of the above equation are multiplicative for 
short exact sequences of vector spaces. By induction, this gives the result. 

Using the lemma, we immediately obtain the following result. 

Theorem 4.2. Let X be projective and smooth over k = F q• of dimension n. 
Then 

P1(t) · · · P2n-1(t) 
Z(X,t) = , 

P0(t) · · · Pzn(t) 
where 

P;(t) = det(1 - f*t; H;(X,Q1)) 

and f* is the map on cohomology induced by the Frobenius morphism f: 
x~x. 

This theorem shows immediately that Z(t) is a quotient of polynomials 
with Q1 coefficients. One can show by an elementary argument on power 
series (Bourbaki [2, Ch. IV §5, Ex. 3, p. 66]) that Q [[ t ]] n Q1( t) = Q( t). Since 
we know that Z(t) is a power series with rational coefficients, we deduce that 
Z(t) is a rational function, which proves (1.1). Notice, however, that we do 
not know yet whether the P;(t) have rational coefficients, and we do not know 
whether they are the polynomials referred to in (1.3) above. 
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Appendix C The Wei! Conjectures 

We can extract a bit more information from this theorem. Since f* acts 
on H 0(X,Q1) as the identity, P 0(t) = 1 - t. Furthermore, we can determine 
P zn(t). The Frobenius morphism is a finite morphism of degree qn. Hence 
it must act as multiplication by qn on a generator of H 2n(X,Q1). So P 2it) = 
1 - qnt. If we provisionally define the ith Betti number B; as dim H;(X,Q1), 

then B; = degree P;(t), and one can show easily that the invariant E of X is 
given by 

So we call E the "topological Euler-Poincare characteristic" of X. We do not 
yet know that this definition of the Betti numbers agrees with the one in (1.4) 
above. However, once we do know this, the statement (1.4) will follow from 
the general properties (3.6) and (3. 7) of the l-adic cohomology. 

Next, we will show that the functional equation follows from Poincare 
duality. Again we need a lemma from linear algebra. 

Lemma 4.3. Let V x W ~ K be a perfect pairing of vector spaces V,W of 
dimension r over K. Let A E K, and let qJ: V ~ V and t/J: W ~ W be 

endomorphisms such that 

(((Jv,t/Jw) = A(v,w) 

for all v E V, wE W. Then 

and 

( -1)'A't' ( ((J ) 
det(1 - t/Jt,W) = det(((J; V) det 1 - At; V 

X 
det(t/J; W) = (det(((J; V) 

Theorem 4.4. With the hypotheses of (4.2), the zeta function Z(X,t) satisfies 
the functional equation (1.2). 

PROOF. One applies the lemma (whose proof is elementary) to the pairings 
H;(X,Q1) x H 2n-i(X,Q1) ~ H 2n(X,Q1) given us by Poincare duality (3.4). 
Using the fact that f* is compatible with cup-product, and that it acts by 
multiplication by qn on H 2n(X,Q1), we get an expression for Pzn-i in terms of 
P;, namely 

qnB;tB; ( 1 \ 
Pzn-Jt) = (-1)B' det(f*;Hi)P; qntj" 

Furthermore, we have 
nBi 

d t(f*· H2n-i) _ q 
e ' - -de-t-=(f-*-; -H--,---;)" 

Substituting these in the formula of(4.2) and using E = 2_) -l);B;, we obtain 
the functional equation. 
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4 Cohomological Interpretation of the Wei! Conjectures 

So we see that the conjectures (1.1), (1.2), and (1.4) follow from the formal 
properties of 1-adic cohomology once we have interpreted the zeta function 
as in ( 4.2). The analogue of the Riemann hypothesis is much deeper. 

Theorem 4.5 (Deligne [3]). With the hypotheses of(4.2), the polynomials P;(t) 
have integer coefficients, independent of l, and they can be written 

P;(t) = 0(1 - rx;/) 

where the r:xii are algebraic integers with lrxiil = qi1 2 • 

This result completes the solution of the Weil conjectures. Note that it 
implies that the polynomials P;(t) of (4.2) are the same as those of (1.3), and 
hence the two definitions of the Betti numbers agree. 

We cannot describe the proof of Deligne's theorem here, except to say 
that it relies on the deeper properties of 1-adic cohomology developed in 
[SGA 4], [SGA 5] and [SGA 7]. In particular it makes use of Lefschetz's 
technique of fibering a variety by a "Lefschetz pencil," and studying the 
monodromy action on the cohomology near a singular fibre. 

EXERCISES 

5.1. Let X be a disjoint union oflocally closed subschemes X;. Then show that 

Z(X,t) = fJZ(X;,t). 

5.2. Let X = P~, where k = Fq, and show from the definition of the zeta function 
that 

1 
Z(P",t) = . 

(1 - t)(l - qt) 0 0 0 (1 - q"t) 

Verify the Wei! conjectures for P". 

5.3. Let X be a scheme of finite type over Fq, and let A 1 be the affine line. Show that 

Z(X x A 1 ,t) = Z(X,qt). 

5.4. The Riemann zeta function is defined as 

1 
((s) = f1 1 s' -p 

for s E C, the product being taken over all prime integers p. If we regard this 
function as being associated with the scheme Spec Z, it is natural to define, for 
any scheme X of finite type over Spec Z, 

(x(s) = [1{1 - N(x)-s)- 1 

where the product is taken over all closed points x EX, and N(x) denotes the 
number of elements in the residue field k(x). Show that if X is of finite type over 
Fq, then this function is connected to Z(X,t) by the formula 

(x(s) = Z(X,q-s). 

[Hint: Take dlog of both sides, replace q-s by t, and compare.] 
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Appendix C The Wei! Conjectures 

5.5. Let X be a curve of genus g over k. Assuming the statements (1.1) to (1.4) of the 
Wei! conjectures, show that N 1,N 2 , •.. ,N9 determine N, for all r ~ 1. 

5.6. Use (IV, Ex. 4.16) to prove the Wei! conjectures for elliptic curves. First note 
that for any r, 

N, = q' - (f' + ]') + 1, 

where f = F'. Then calculate Z(t) formally and conclude that 

(1 - ft)(1 - ]t) 
Z(t) = (1 - t)(1 - qt) 

and hence 
1 -at+ qt2 

Z(0 = , 
(1 - t)(1 - qt) 

where f + J = ax. This proves rationality immediately. Verify the functional 
equation. Finally, if we write 

1 - at + qt2 = (1 - IJ(t)(1 - {Jt), 

show that lal ~ 2.jq if and only if 11)(1 = lfJI = Jq. Thus the analogue of the 
Riemann hypothesis is just (IV, Ex. 4.16d). 

5.7. Use (V, Ex. 1.10) to prove the analogue of the Riemann hypothesis (1.3) for any 
curve C of genus g defined over Fq. Write N, = 1 - a, + q'. Then according to 
(V, Ex. 1.10), 
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la,l ~ 2gJ(l. 

On the other hand, by ( 4.2) the zeta function of C can be written 

Z(t) = p 1(t) 
(1 - t)(l - qt) 

where 
2g 

P l(tl = IT (1 - IJ(;t) 
i= 1 

is a polynomial of degree 2g = dim H 1(C,Q1). 

(a) Using the definition of the zeta function and taking logs, show that 

2g 

a,= L (I)(;)' 
i= 1 

for each r. 
(b) Next show that 

Ia, I ~ 2g J(l for all r 

[Hint: One direction is easy. For the other, use the power series expansion 

for suitable t E C.] 
(c) Finally, use the functional equation (4.4) to show that II)(;! ~ Jq for all i implies 

that IIJ(d = Jq for all i. 
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Glossary of Notations 

s- 1A 

Av 
A! 
k 
A'k 
k[xb···•xnJ 
Z(f) 
l(Y) 
Yo 
A(Y) 
R 
dim X 
pk 
S(Y) 
tl(Y) 
tfp,y 

K(Y) 

s<vJ 
s«OJ) 
s(f) 
Ga 
Gm 
SingY 
A 
CK 
Aut 
PGL(l) 
AnnM 
!Lv(M) 
i(Y,H;Z) 
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localization by a multiplicative system, xvi 
localization by a prime ideal, xvi 
localization by an element, xvi 
a field, I 
affine n-space over k, 
polynomial ring, 2 
zero set, 2 
ideal of a set of points, 3 
radical of an ideal, 3 
affine coordinate ring, 4 
real numbers, 4 
dimension of a topological space, 5 
projective n-space, 8 
homogeneous coordinate ring, lO 
ring of regular functions on a variety, 16 
local ring of a point, 16 
function field, 16 
degree zero localization of a graded ring, 18 
ditto, 18 
ditto, 18 
additive group, 23 
multiplicative group, 23 
set of singular points, 33 
completion of a local ring, 33 
abstract nonsingular curve, 42 
group of automorphisms, 46 
group of fractional linear transformations, 46 
annihilator of a module, 50 
multiplicity, 51 
intersection multiplicity, 53 



RegY 
Q 
Spec A 
:.top( X) 
~b 

f( U,Y) 
ker 
coker 
im 
j*Y 
~b(X) 
YEB;§ 
limY; 

--+ 

limY; 
spe(Y) 
Supp s 
Supp Y 
:YI'om(Y, .~) 
i!(Y) 
f z(X,Y) 
:YI"~ (Y) 
tJx 
-'r 
SpecA 
tJ 
V(a) 
D(j). 
(X, tJx) 
sp(X) 
A} 
s+ 
ProjS 
D+(f) 
P1 
®c~(S) 

~ar(k) 

t( V) 

V'x )red 

A red 

X red 

tJX 
mx 
k(x) 
Tx 
c 
FP 
X! 
nil A 
Yn 

Glossary of Notations 

set of nonsingular points, 54 
the rational numbers, 58 
spectrum of a ring, 59 
category of open sets of X, 61 
category of abelian groups, 61 
sections of a sheaf, 61 
kernel, 63 
cokernel, 63 
image, 63 
direct image sheaf, 65 
category of sheaves of abelian groups on X, 65 
direct sum of sheaves, 66 
direct limit of sheaves, 66 

inverse limit of sheaves, 67 
espace etale of a presheaf, 67 
support of a section of a sheaf, 67 
support of a sheaf, 67 
sheaf of local morphisms, 67 
extension of a sheaf by zero, 68 
sections with support in Z, 68 
subsheaf with support in Z, 68 
sheaf of regular functions on a variety, 68 
sheaf of ideals of a subvariety, 69 
spectrum of a ring, 70 
sheaf of rings, 70 
closed subset of an ideal, 70, 76 
open subset of Spec A, 70 
scheme, 74 
space of X, 74 
affine line (as a scheme), 74 
ideal of positive elements, 76 
Proj of a graded ring, 76 
open subset of Proj, 76 
projective n-space over a ring, 77 
category of schemes over S, 78 
category of varieties over k, 78 
scheme associated to a variety, 78 
associated reduced sheaf of rings, 79 
reduced ring, 79 
reduced scheme, 79 
local ring of a point on a scheme, 80 
maximal ideal of local ring at x, 80 
residue field at x, 80 
Zariski tangent space at x, 80 
complex numbers, 80 
finite field of p elements, 80 
open set defined by j, 81 
nilradical of a ring, 82 
nth infinitesimal neighborhood, 85 
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Glossary of Notations 

dim X 
codim(Z,X) 
XXsY 
XXY 
K(X) 
ks 
kp 
xi-x2 
.:l 
rt 
Homt'x(Y, ;:1) 
d'Y'om t1 x ( Y, ;:§' ) 

Y}i!)tlx~ 

f*'!J 

M 
fy 

M 
M(V) 

M(f) 
tlx (I) 
Y(n) 
r.(Y) 
XI 
iJ 
Annm 
f 0 (M) 
s<d> 
T(M) 
S(M) 
1\(M) 
Speed 
V(6') 
Div(X) 
Vy 

(f) 
K* 
D-D' 
CIX 
degD 
[K(X):K(Y)] 
f* 
Cia X 
,'%* 

CaCIX 
Pic X 
./(D) 
K(X) 
y(Y) 
PGL(n,k) 
GL(n,k) 
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dimension of a scheme, 86 
codimension of a subscheme, 86 
fibred product of schemes, 87 
product of schemes, 87 
function field of an integral scheme, 91 
separable closure of a field, 93 
perfect closure of a field, 93 
specialization, 93 
diagonal morphism, 96 
graph morphism, 106 
group of morphisms of sheaves of t'x-modules, 109 
sheaf Hom, 109 
tensor product, I 09 
inverse image sheaf, 110 
sheaf associated to an A-module, 110 
ideal sheaf of a closed subscheme, 115 
sheaf associated to a graded S-module, 116 
degree zero localization, 116 
degree zero localization, 117 
twisting sheaf, 117 
twisted sheaf, 117 
graded module associated to a sheaf, 118 
open set defined by a section of an invertible sheaf, 118 
dual of a locally free sheaf, 123 
annihilator of an element of a module, 124 
submodule with supports in a, 124 
the graded ring EBn;;.oSnd, 126 
tensor algebra of M, 127 
symmetric algebra of M, 127 
exterior algebra of M, 127 
spectrum of a sheaf of algebras, 128 
vector bundle associated to a locally free sheaf, 128 
group of divisors, 130 
valuation of a prime divisor, 130 
divisor of a rational function, 131 
multiplicative group of a field, 131 
linear equivalence of divisors, 131 
divisor class group, 131 
degree of a divisor, 132 
degree of a finite field extension, 137 
inverse image for divisors, 137 
divisor class group of degree 0, 139 
sheaf of invertible elements, 141 
Cartier divisor class group, 142 
Picard group of X, 143 
sheaf associated to a Cartier divisor, 144 
Grothendieck group, 148 
image of a sheaf in the Grothendieck group, 148 
projective general linear group, 151 
general linear group, 151 



Proj 
P(6') 
rlf· t!x 
QB/A 
d 
tr. d. 
dimx 
QX/Y 

Yx 
wx 
Pg 
fjf2 

AY;x 
gr1 A 
pn 
hq,O 

Qi/k 
'771 

(ML) 
A 
x 
:T 
(I, t'l) 
M6 

Ob~ 

~b 

~b(X) 

!mob( X) 
Gco(X) 
(Iol)(X) 
R;F 
H;(X,Y) 
fy(X,Y) 
H~(X, ·) 
C(U,Y) 
IfP(U,Y) 
6'"(U,Y) 
Exti(Y, ·) 
flxt; (Y, ·) 
hd(Y) 
K 1(X) 

w~ 
q 
resp 
dlog 
Rj* 
T 1(A) 
T;(M) 
r; 

Glossary of Notations 

160 
projective space bundle, 160 
inverse image ideal sheaf, 163 
module of relative differential forms, 172 
the derivation B~QB/A• 172 
transcendence degree, 174 
dimension of a K-vector space, 174 
sheaf of relative differentials, 175 
tangent sheaf, 180 
canonical sheaf, 180 
geometric genus, 181 
conormal sheaf, 182 
normal sheaf, 182 
associated graded ring, 185 
nth plurigenus, 190 
Hodge number, 190 
sheaf of regular q-forms, 190 
fundamental group, 190 
Mittag-Leffler condition, 191 
completion of a ring with respect to an ideal, 193 
formal completion of a scheme, 194 
completion of a coherent sheaf, 194 
formal scheme, 194 
sheaf on an affine formal scheme associated to a module M, 195 
set of objects of a category, 202 
category of abelian groups, 202 
category of sheaves of abelian groups on X, 202 
category of sheaves of modules on a ringed space, 202 
category of quasi-coherent sheaves, 202 
category of coherent sheaves, 202 
right derived functor, 204 
cohomology group, 207 
sections with support in Y, 212 
cohomology with support in Y, 212 
Cech complex, 218 
Cech cohomology group, 219 
sheafified Cech complex, 220 
Ext group, 233 
Ext sheaf, 233 
homological dimension, 238 
Grothendieck group, 238 
dualizing sheaf, 241 
irregularity of a surface, 247 
residue map, 247 
logarithmic derivative, 250 
higher direct image functor, 250 
functor of Lichtenbaum and Schlessinger 267 
functor associated to a projective morphism, 282 
localization of T;, 287 
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Glossary of Notations 

l(D) 
K 

X reg 

8p 
ep 
dtjdu 
R 
xp 
Sec X 
Tan X 
j 
Aut X 
~n 
w 
Aut(X,P0) 

nx 
End(X,P0) 

Pic 0 (X / T) 
e 
p 

p. 
p(z) 
J(r) 
Z[i] 
'IT•( X) 
Zt 
gd 
Wlg 
C.D 
degc 
(C.D)p 
D2 
K2 

l(D) 
s(D) 

c2 
D=oE 
Picn X 
NumX 
c(D) 
'IT:x-c 
f 
e 
e 
'IT:i-x 
E 
JJ.p( C) 
r•<n 
grm(A) 
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dimension of H 0(X,_I'(D)), 295 
canonical divisor on a curve, 295 
set of regular points of a curve, 298 
measure of a curve singularity, 298 
ramification index, 299 
quotient of differentials, 300 
ramification divisor, 301 
modified scheme in characteristic p, 302 
secant variety, 310 
tangent variety, 310 
the )-invariant of an elliptic curve, 317 
group of automorphisms of an elliptic curve, 318 
symmetric group on n letters, 318 
a cube root of 1, 320 
group of automorphisms leaving P0 fixed, 320 
multiplication by n, 322 
ring of endomorphisms, 323 
relative Picard group, 323 
identity section of a group scheme, 324 
inverse morphism of a group scheme, 324 
multiplication of a group scheme, 324 
Weierstrass $)-function, 327 
]-invariant of a lattice, 328 
ring of Gaussian integers, 331 
fundamental group, 338 
/-adic integers, 338 
a linear system of dimension rand degree d, 341 
set of all curves of genus g, 345 
intersection number, 357 
degree of an invertible sheaf on a curve, 358 
intersection multiplicity at P, 360 
self-intersection number, 360 
self-intersection of the canonical divisor, 361 
dimension of H 0(X,.:I'(D)), 362 
superabundance, 362 
second Chern class, 363 
numerical equivalence of divisors, 364 
divisor classes numerically equivalent to 0, 364 
group of divisors modulo numerical equivalence, 364 
cohomology class of a divisor, 367 
a ruled surface, 369 
a fibre of a ruled surface, 369 
invariant of a ruled surface, 372 
divisor of 1\ 21], 373 
a monoidal transformation, 386 
the exceptional curve, 386 
multiplicity of a curve C at a point P, 388 
reduced inverse image divisor, 391 
associated graded ring of a local ring, 394 



p.(A) 
'1T:x~p2 

E~>···,£6 
eh···,e6 
I 

~ 
An 
T(Z) 
elmpX 
tc(X) 
p2 
J.(Y) 
A'(X) 
A(X) 
Y.Z 
i(Y,Z; Wj) 
C;(6') 
c(6') 
c,( 6') 
ch(6') 
td(6') 
17( Y) 
Y -homO 

!' 
!! 
xh 
N, 
Z(t) 
E 
B; 
z, 
Q, 
H;(X,Q1) 

L(f,X) 
ns) 

Glossary of Notations 

multiplicity of a local ring, 394 
projection of a cubic surface, 401 
the exceptional curves, 40 I 
their linear equivalence classes, 401 
the class of a line, 40 I 
a Weyl group, 405 
a Weyl group, 408 
total transform of Z by T, 410 
elementary transformation of a ruled surface, 416 
Kodaira dimension, 421 
second plurigenus, 422 
direct image cycle, 425 
cycles modulo rational equivalence, 426 
Chow ring, 426 
intersection cycle class, 426 
local intersection multiplicity, 427 
ith Chern class, 429 
total Chern class, 429 
Chern polynomial, 429 
exponential Chern character, 431 
Todd class, 432 
cohomology class of Y, 435 
homological equivalence, 435 
inverse image in K(X), 435 
direct image in K(X), 436 
associated complex analytic space, 439 
number of points of X rational over F q'• 449 
the zeta function, 450 
self-intersection of the diagonal, 450 
ith Betti number, 451 
/-adic integers, 453 
/-adic numbers, 453 
/-adic cohomology, 453 
number of fixed points of a morphism, 453 
Riemann zeta function, 457 
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Index 

Abelian category, 202-206 
with enough injectives, 204, 217 

Abelian variety, 105, 140,422, 437,447,451. 
See also Jacobian variety 

Abhyankar, Shreeram, 391 
Abstract nonsingular curve, 42-46, 108, 136 

is quasi-projective, 45 
Abstract variety, 58, 105 
Acyclic resolution, 205 
Additive functor, 203 
-Adic completion, 193, 254 
-Adic topology, 33, 213, 279 
Adjoint functors, 68, 110, 124 
Adjunction formula, 361, 368, 374, 382, 387, 

390 
Affine coordinate ring, 4, 8, 17, 20, 23 
Affine curve, 4, 7, 8, 47 

any noncomplete curve is, 297, 298 
locally free sheaves on, 385 

Affine formal scheme, 195 
global section functor is exact, 198, 199 

Affine line, A 1, 74 
is not proper, 100 
with a point doubled, 76, 96, 169 

Affine morphism, 128, 222, 252 
Affine n-space, An, I 

automorphisms of, 23 
Affine plane, A2, 75 (Fig) 
Affine scheme, 59, 74, 124 

cohomology of, 114, 213-216 
criterion for, 81, 215, 216 
global section functor is exact, 113 
is quasj_-compact, 80 
sheaf M on, 110-113 

Affine variety, 1-8, 20, 21, 25 
Algebraic equivalence of cycles, 444 
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Algebraic equivalence of divisors, 140, 367, 
369 

Algebraic family. See Family 
Algebraic integer, 330-332, 450, 457 
Algebraic set, 2, 4, 5, 9, 47 
Algebraic space, 445 
Algebraizable formal scheme, 195 
Algebraizable sheaf, 281 
Altman, Allen, 268 
Ample divisor. See also Ample invertible 

sheaf 
Nakai-Moishezon criterion, 356, 365, 382, 

405, 434 
on a curve, 156, 307, 308, 372 
on a surface, 365, 368, 405 

Ample invertible sheaf, 150, 153-156, 161, 
248 

cohomological criterion of, 229 
existence of ~separated, 169 
not very ample, 156 
on a curve, 307, 308, 365 
on a quadric surface, 156 
on P", 155 
properties of, 169, 232 
scheme without an, 169, 171 

Analytically isomorphic singularities, 34, 
38, 298, 393-395 

Annihilator, 50, 124 
Arithmetic genus,p0 , 54, 57, 201, 230, 232, 

246, 268 
constant in a family, 263, 265, 289 
invariant by monoidal transformation, 

388, 394 
is a birational invariant, 230, 409, 413 
of a complete intersection, 54, 231 
of a curve, 54, 181, 246, 294, 298 



of a curve on a surface, 366, 389, 401 
of a P(lf), 253 
of a product, 54 
of a surface, 188,247, 362, 371,409,421 

Artin, Michael, 417, 445, 449, 452, 453 
Artin ring, 266 
Assigned base point of a linear system, 395, 

399,400 
Associated point (of a scheme), 257 
Atiyah, Michael F., 378, 383 
Automorphisms 

of a curve of genus > 2, 305, 348, 349, 
368 

of a curve of genus 3, 348 
of A", 23 
of an elliptic curve, 318, 321, 336 
of k(x), 46 
of P1, 46 
of P", 151, 158, 347 
of the configuration of 27 lines, 405, 408 

Baily, W. L., Jr., 349 
Biinicii, Constantin, 439 
Base extension, 89, 254, 265 

behavior of cohomology, 282, 290, 326, 
369 

behavior of differentials, 175 
flat, 255, 287 
stable under, 90 

Base for topology, 25, 71 
Base-point free, 158, 307, 318 
Base points 

of a linear system, 158, 307, 395 
scheme of, 169 

Base scheme, 89 
Baum, Paul, 436 
Berthelot, Pierre, 452 
Bertini, E., 316 
Bertini's theorem, 179 (Fig), 183, 187, 188, 

245, 250, 281, 425 
gives nonsingular curves, 183, 231, 314, 

342, 358, 381, 406 
in characteristic 0, 268, 274 
with singularities, 180 

Betti numbers, 451, 456 
Bezout's theorem, 47, 54, 146, 361, 400, 417 
Bilinear form, 364 
Binomial coefficient, 49, 52 
Birational equivalence, 24,26-31,45, 55, 

181, 314, 370, 418 
Birational invariant, 56, 181, 190, 387,409, 

421 
Birationally ruled surface, 370, 383, 419. See 

also Ruled surface 
Birational morphism, 56, 166,280, 310, 313 
Birational transformation, 409-420 

defined at a point, 410 
factorization of, 386, 409, 411-413, 416 
fundamental point of, 410 
of a ruled surface, 416 (Fig) 

Index 

Birch, B. J., 317, 334 
Bitangent, 305 
Blowing down lines, 398, 416 (Fig) 
Blowing up, 28-31, 163-171, 356. See also 

Monoidal transformation 
a curve on a surface, 388-394 
a nonsingular subvariety, 186, 188, 394, 

443 
canonical sheaf of, 188 
curve singularities, 29 (Fig), 37, 390 
is birational, 29, 166 
is intrinsic, 166 
is not flat, 258 
Picard group of, 188 
strict transform under, See Strict trans-

form 
surfaces, 56, 395 
to construct valuation rings, 108, 420 
universal property of, 164, 412 
vertex of cone, 37, 374, 381 

Bombieri, Enrico, 356, 421, 451 
Borel, Armand, 149, 239, 432, 435 
Borelli, Mario, 238 
Branch divisor, 306 
Branched covering, 293 
Branch of a curve, 30 
Branch point, 299, 317 
Brieskom, Egbert, 420, 421 
Burnside, W., 349 

Canonical curve, 341,346,348,353,385 
Canonical divisor 

on a curve, 293, 295, 299, 373 
on a hyperelliptic curve, 343 
on a singular curve, 298 
on a surface, 361, 373, 387, 421, 424 

Canonical embedding, 293, 340-349 
Canonical linear system, 340, 341 
Canonical morphism, 341, 422 
Canonical sheaf, wx, 180, 239, 246 

of a blowing-up, 188 
of a complete intersection, 188, 315 
of a curve, 294, 295 
of a hypersurface, 183, 184 
of a nonsingular subvariety, 182 
of a product, 187 
of P", 182 

Cardinality of a variety, 31 
Cartan, Henri, 172 
Cartan's theorem B, 211, 441 
Cartesian product (of graded rings), 125 
Cartier divisor, 140-146, 231. See also 

Divisor 
algebraic family of, 261 
associated Wei! divisor of, 141 
effective, 145, 427 
linear equivalence of, 141 
on a singular curve, 142, 148, 298 
principal, 141 
sheaf ~(D) associated to, 144 
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Index 

Cartier, Pierre, 172 
Cassels, J. W. S., 331, 335 
Castelnuovo, G., 351, 368, 422 
Castelnuovo's criterion for contracting a 

curve, 356, 410, 414-417 
Category 

abelian, 202-206 
inverse limit in, 192 
of abelian groups, mo, 61 
of open sets, ~op(X), 61 
of schemes overS, ®c!)(S), 78 
of sheaves on X, mo(X), 65 
of varieties over k, ~ar(k), 78 

• product in, 22 
<;ech cocyle, 232, 240 
Cech cohomology, 201, 211, 218-225, 255, 

262 
computation of, 219, 220, 225-227 
computes R1 •. 252, 282 
limit over coverings, 223 
of a plane curve, 224 

Center of a valuation, 106, 108, 137 
Center of blowing up, 163 
Characteristic p, 21, 31, 33, 80, 89, 276, 293, 

312, 316, 317, 332-335, 339, 385, 391, 
422. See also Frobenius morphism 

funny curve in, 305, 385 
reduction mod p, 89, 334, 340, 451 
search for good cohomology, 451 

Characteristic 2, 312, 317 
Characteristic zero, 232, 268, 271-275, 304, 

305, 348, 382, 391. See also Complex 
numbers 

Chern class, 363, 425,429-431, 433,435, 
437, 450 

Chern polynomial, 429, 435 
Chern, S. S., 423 
Chevalley, Claude, 48, 94, 95, 172, 222,427, 

428 
Chinese remainder theorem, 138 
Chow ring, 426, 428, 429, 433, 437, 454 
Chow's Lemma, 107 
Chow's moving lemma, 427, 434 
Chow variety, 349 
Chow, Wei-Liang, 105, 324, 441, 443 
Circle, 213, 220 
Class field theory, 331 
Classical projective geometry, 403, 407 
Classification 

of curves, 56, 341, 345-347 
of curve singularities, 38, 393-395 
of curves in P3, 349-355, 354 (Fig), 409 
of curves of genus 2, 304 
of elliptic curves, 317, 345 
of elliptic ruled surfaces, 377 
of locally free sheaves of rank 2 on an 

elliptic curve, 378 
of rational ruled surfaces, 376, 419 
of surfaces, 56, 421-423 
problem, 39, 55-57, 181, 293, 345 
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Class of a curve, 305 
Clemens, C. Herbert, 184, 304 
Clifford's theorem, 341, 343, 350, 423 
Closed immersion, 85, 92. See also Closed 

subscheme 
criterion for, 151, 152, 158, 307 
is finite, 124 
is of finite type, 93 
is proper, 102 
is separated, 99 

Closed morphism, 91, 100 
Closed points are dense, 93 
Closed subscheme. See also Closed immer-

sion 
associated Cartier divisor, 145, 149 
associated cycle, 425 
completion along, 86, 190, 194, 279 
criterion to be nonsingular, 178 
ideal sheaf of, 115 
image of a morphism, 92 
locally principal, 145 
of an affine scheme, 85, 92, Ill, 116 
of a Proj, 92, 119, 125 
of codimension one, 145 
reduced induced structure, 86, 92 
with nilpotents. See Nilpotent element 

Coarse moduli variety, 347 
Codimension, 86, 87 
Coeffaceable functor, 206, 238, 240, 243 
Cohen, I. S., 34, 187 
Cohen-Macaulay ring, 184 
Cohen-Macaulay scheme, 185, 239,243, 

276 
Coherence of direct image sheaf, 115 

for a finite morphism, 124 
for a projective morphism, 123, 152, 252, 

280 
Coherent analytic sheaf, 439, 440, 447 
Coherent sheaf, 111-115. See also Quasi

coherent sheaf 
completion along a closed subscheme, 

194 
extending from an open set, 126 
Grothendieck group of. See Grothendieck 

group 
old definition, 124 
on a formal scheme, 194-200 
on Proj S, 116-123, 125 
on Spec A, 110-116 
quotient of a locally free sheaf, 121, 238 

Cohn-Vossen, S., 403 
Cohomological dimension, 224 
Cohomology. See also Cech cohomology 

and base change, 282, 290, 326, 369 
as a derived functor, 207, 211, 439 
Cech process, 218-225 
characterizes ample sheaf, 154, 229 
class of a cycle, 435, 454 
class of a divisor, 367, 418 
class of a subvariety, 249 



commutes with flat base extension, 255, 
287 

commutes with lim, 209 
crystalline, 452 ~ 
etale, 307, 452, 453 
functor, 207 
gives numerical invariants, 57, 230, 246, 247 
group, 207, 424 
1-adic, 435, 449, 452-457 
of a circle, 213, 220 
of a complete intersection, 231 
of a complex, 203 
of an affine scheme, 114, 213-216 
of fibres, 250, 255, 281, 290 
of P 1, 219 
of projective space, 225-230 
of sheaves, 206-211 
p-adic, 452 
Picard group as, 143, 224, 367, 446 
theories, 211, 449 
with supports, 212, 217 

Cokemel, 63, 65, 109 
Complete intersection, 14, 188, 452 

a divisor on a quadric hypersurface is, 
147 

arithmetic genus of, 54, 231 
canonical sheaf of, 188, 315 
cohomology of, 231 
curve, 38, 342, 346, 352, 355 
elliptic quartic curve is, 38 
geometric genus of, 188 
hyperelliptic curve is not, 348 
hyperplane section of, 267 
is connected, 188, 231 
is every curve?, 14 
local, 184-186, 245, 428 
normal ~ projectively normal, 188 
not a local, 8 
set-theoretic, 14, 224 
strict, 14, 188 
surface, 409, 423, 437 

Complete linear system, 157, 159, 170, 294. 
See also Linear system 

dimension of. See Riemann-Roch prob
lem 

Complete variety, 105, 106, 136 
any variety is contained in a, 168 
nonprojective, 171, 443 (Fig) 

Completion 
along a subscheme, 86, 190, 194, 279 
ofalocalring,33-35, 187,275,278,420 
of a ring with respect to an ideal, 193 

Complex analytic space, 96, 252, 291, 417 
associated to a scheme over C, 439, 440 
cohomology of, 439 
definition, 438 

Complex cohomology, H; (·,C), 435 
Complex in an abelian category, 203, 282 
Complex manifold, 249, 289, 435, 438, 454 

when is it algebraic?, 441-445 

Index 

Complex multiplication, 330-332, 334, 
337-339 

Complex numbers, C, 106, 317, 326-332, 
367,391,414,417,420,422,432.See 
also Transcendental methods 

Condition (t), 160 
Condition (ML) of Mittag-Leffler, 191, 192, 

200, 278, 290 
Condition (*), 130, 426 
Condition S2 of Serre, 185 
Conductor, 331, 340 
Cone, 12 (Fig), 13, 38, 49, 266 

blowing up vertex of, 37, 374, 381 
divisor class group of, 146 
quadric. See Quadric cone 
ruling on, 134 (Fig) 

Configuration of 27 lines, 404 
Conic, 7, 20, 30, 183, 312 

as a real form of P 1, 107 
determined by 5 points, 397 
linear system of, 170, 396-398 
Pascal's theorem, 407 (Fig) 

Conical double point, 36 (Fig) 
Connected. See also Zariski's Main Theorem 

ample divisor is, 244 
complete intersection is, 188, 231 
fibre is, 279, 280 
total transform of a point is, 410 
when Spec A is, 82 

Connectedness principle, 190, 281 
Conormal sheaf, .fj .P, 182, 245, 246. See 

also Normal sheaf 
of a nonsingular subvariety, 178 
of a twisted cubic curve, 385 
relation to differentials, 175, 176 

Constant sheaf, 62, 65 
is flasque, 67 
of function field, 69, 112, 145 

Constructible set, 94, 266 
Continuous family. See Family 
Contractible curve, 417, 419, 420 
Contraction 

of exceptional curves, 410, 414-416 
problem, 417, 419 

Coordinates 
affine, I 
homogeneous, 9 

Correspondence on a curve, 451 
Cotangent complex, 185 
Counting constants, 401 
Courant, R., 326 
Cousin problem, 69 
Cremona transformation, 30. See also 

Quadratic transformation 
Crystalline cohomology, 452 
Cubic curve. See also Cuspidal cubic curve; 

Elliptic curve; Nodal cubic curve; 
Nonsingular cubic curve; Twisted cubic 
curve 

linear system of, 399 
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Index 

Cubic curve (cont.) 
through 8 points determines a 9th, 400 

Cubic surface in pJ, 356, 395-409 
ample divisors on, 405 
as P2 with 6 points blown up, 400 
canonical sheaf of, 184, 401 
curves on, 401, 406-409 
Picard group of, 136, 401 
27 lines on, 402-406 

Cubic threefold is not rational, 184 
Cup-product, 453, 454, 456 
Curve, 105, 136. See also Abstract nonsingu

lar curve; Nonsingular curve; Plane 
curve 

affine, 4, 7, 8, 47, 297, 298, 385 
ample divisor on, 156, 307, 308, 372 
any two homeomorphic, 31 
behavior under monoidal transformation, 

388-394 
birational to a plane curve with nodes, 

314 
can be embedded in p3, 310 
classification of, 56, 341, 345-347 
complete intersection, 38, 342, 346, 352, 

355 
complete~ projective, 44, 136, 232, 294 
cubic. See Cubic curve 
definition for Ch. II, 105 
definition for Ch. IV, 294 
definition for Ch. V, 357 
divisors on, 129, 136-140, 294 
dual, 54, 304 
elliptic. See Elliptic curve 
elliptic quartic, 38, 315, 353 
equivalence of singularities, 393 
exceptional. See Exceptional curve 
existence for all g ;;. 0, 294, 385, 394 
genus bounded by degree, 315,351,407, 

408 
genus of. See Genus 
genus of normalization, 393 
hyperelliptic. See Hyperelliptic curve 
in P3, classification of, 349-355, 354 (Fig), 

409 
invariant ~P of a singularity, 298, 393-395 
locally free sheaf on, 369, 370, 372, 376, 

378, 379, 384, 385 
of degree 2, 315, 353. See also Conic 
of degree 3, 159, 315, 353. See also Cubic 

curve 
of degree 4, 159, 309, 315, 342, 353, 355, 

407. See also Quartic curve 
of degree 5, 348, 353, 355 
of degree 6, 342, 350, 353 
of degree 7, 353, 406 
of degree 8, 346, 409 
of degree 9, 354, 355, 409 
of genus 0, 297, 345. See also Rational 

curve 
of genus I. See Elliptic curve 
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of genus 2, 298, 304, 309, 315, 341, 347, 
355. See also Hyperelliptic curve 

of genus 3, 342, 346-349 
of genus 4, 342, 346, 348 
of genus 5, 346, 348, 353, 406 
of genus 6, 348, 409 
of genus 10, 354, 409 
of genus II, 355, 409 
on a cubic surface, 401, 406-409 
on a quadric surface. See Quadric surface, 

curves on 
over a finite field, 339, 368, 458. See also 

Riemann hypothesis 
over R, 4 
product of, 44, 338, 367, 368 
rational. See Rational curve 
ruled surface over. See Ruled surface 
singularities, 35, 36 (Fig), 38, 386, 393. 

See also Cusp; Node; Tacnode 
singular, Picard group of, 148 
strange, 311, 316 
trigonal, 345 
twisted cubic. See Twisted cubic curve 
twisted quartic. See Rational quartic curve 
zeta function of, 458 

Cusp, 36 (Fig), 37, 39, 298, 305, 392 (Fig), 
394. See also Cuspidal cubic curve 

higher order, 37 
Cuspidal cubic curve, 21, 171, 276 

as a projection, 22, 266 
blown up, 31, 392 (Fig) 
divisor class group of, 142, 148 
is not normal, 23 
is rational, 30 

Cycle, 425 
associated to a closed subscheme, 425 
cohomology class of, 435, 454 
homological equivalence of, 435, 444 
of dimension zero, 437 
rational equivalence of, 425, 426, 436, 454 

Decomposable locally free sheaf, 376, 378, 
383, 384 

Dedekind domain, 40, 41, 58, 132 
Deformation, 89, 90 (Fig), 188, 267. See also 

Family 
Deformation theory, 265 
Degree 

of a coherent sheaf on a curve, 149, 372 
of a divisor on a curve, 137, 142, 294 
of a divisor on a projective variety, 132, 

146 
of a finite morphism of curves, 137, 298 
of a hypersurface, 52 
of a linear system on a curve, 159 
of an intersection, 53 
of a plane curve, 4, 54 
of a projective variety, 47, 52, 57, 250, 309, 

366 
of a zero-cycle, 426, 428 



Deligne, Pierre, 217,249, 289, 317, 347, 449, 
452 

Del Pezzo surface, 401, 408 
6-functor, 205, 219, 234, 238, 240, 243, 282 
Demazure, M., 452 
Density of a set of primes, 334, 339 
Depth, 184, 237, 243, 264 

cohomological interpretation of, 217 
Derivation, 172, 189 
Derivative, 31, 300 
Derived functor, 201-206 

cohomology, 207, 211, 439. See also 
Cohomology 

Ext, 233 
higher direct images, R'i., 250. See also 

Higher direct image sheaf 
local cohomology modules, H~(M), 217 

Determinant of a coherent sheaf, 149, 306 
Deuring, M., 331, 334 
Diagonal, 24, 48 

closed ~ scheme separated, 96 
homomorphism, 96, 173 
morphism, 96, 99, 107, 175, 427 
reduction to the, 427, 428 
self-intersection of, 367, 368, 437, 450 

Diagonalized bilinear form, 364 
Diagram-chasing, 203 
Difference polynomial, 49 
Differentiable structures on a sphere, 421 
Differential form. See Differentials 
Differential geometry, 311, 438, 445 
Differentials, 57, 172-190. See also Canoni-

cal sheaf 
Kahler, 172-175 
module free ~ regular local ring, 174 
of a polynomial ring, 173 
on An, 176 
on a product, 187 
on P", 176 
residues of, 247 
sheaf locally free~ nonsingular variety, 

177, 178, 276 
sheaf of, 175-177, 219, 247, 268, 295, 300 
sheaf of q-forms, 01/k• 190, 247, 249 

Dilatation, 386 
Dimension 

equal to transcendence degree, 6 
of a linear system, 157, 295, 357, 424. See 

also Riemann-Roch problem 
of An is n, 6 
of a projective variety, 10, 57 
of a ring, 6, 86 
of a scheme, 86, 87, 94 
of a special linear system, 341. See also 

Clifford's theorem 
of a topological space, 5, 8, 208 
of fibres of a morphism, 95, 256, 257, 269 
of intersections, 48 
of P" is n, 12 
relative, 95 

Index 

Diophantine equation, 335, 340 
Direct image 

cycle, 425 
divisor, 306, 436 
sheaf, f.:F, 65, 109, 115, 123, 124, 250. 

See also Higher direct image sheaf 
Direct limit, lim, 66, 72, 109, 208, 209 

--> 
Direct product, 82, 109. See also Product 
Direct sum, $, 66, 109 
Dirichlet's minimum principle, 441 
Dirichlet's theorem, 335, 339 
Discrete valuation ring, 40, 42, 45, 107, 108, 

258, 325. See also Valuation; Valuation 
ring 

center of, on a curve, 137 
of a prime divisor, 130 
set of. See Abstract nonsingular curve 
spectrum of, 74, 93, 95, 124 

Disjoint union, 80 
Divisor, 57, 129-149. See also Cartier 

divisor; Divisor class group; Invertible 
sheaf; Wei) divisor 

algebraic equivalence of, 140, 367, 369 
associated to an invertible sheaf, 144, 145, 

157, 294, 425 
cohomology class of, 367, 418 
degree of, 132, 137, 142, 146, 294 
effective, 130 
group of all, Div(X), 130, 357 
inverse image of, j*, 135, 137, 299 
linear equivalence of, 57, 131, 141, 294, 

367, 425, 426 
locally principal, 142 
numerical equivalence of, 364, 367, 369 
of an elliptic function, 327 
of a rational function, 130, 131, 294 
on a curve, 129, 136-140, 294 
on a surface, 135, 357 
prime, 130 
principal, 131, 132, 138, 141 
special, 296 
very ample. See Very ample divisor 
with normal crossings, 391 

Divisor class group, CI(X), 131, 145. See 
also Picard group 

exact sequence of an open subset, 133 
is zero~ UFO, 131 
of a cone, 146 
of a cubic surface, 136 
of a curve, 139, 140, 142, 148 
of a Dedekind domain, 132 
of a product, 134, 146 
of a quadric hypersurface, 147 
of a quadric surface, 133, 135 
of a variety in P", 146 
of P", 132 

Dominant morphism, 23, 81, 91, 137 
Dominant rational map, 24, 26 
Domination (of local rings), 40, 98 
Double line, 36 (Fig), 90 (Fig) 
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Index 

Double point, 36 (Fig), 37, 38, 393. See also 
Cusp; Tacnode 

ordinary. See Node 
Doubly periodic function, 327 
Dual curve, 54, 304 
Duality, 239-249. See also Serre duality 

for a finite flat morphism, 239, 306 
Dualizing sheaf, 239, 241, 242, 246, 249, 298 
Dual locally free sheaf, if, 123, 143, 235, 

430 
Dual numbers, ring of, 80, 265, 267, 324 
Dual projective space, (P")•, 54, 55, 130, 

304, 316 
d-Uple embedding. See -Uple embedding 
Dwork, Bernard M., 451 
Dynkin diagram, 420 

Effaceable functor, 206 
Effective divisor, 130, 145, 157, 294, 363 
Elements de Geometrie Algebrique (EGA), 

89, 100, 462 
Elimination theory, 35, 39 
Elliptic curve, 46, 56, 293, 316-340. See also 

Cubic curve 
as a plane cubic curve, 309, 319 
automorphisms of, 318, 321, 336 
canonical divisor, 297 
classified by }-invariant, 317, 345 
complex multiplication on, 330-332, 334, 

337-339 
defined over Q, 335 
dual of a morphism, 337 
group structure, 297, 316, 321-323. See 

also Group, law on cubic curve 
group structure over C, 329 
Hasse invariant of, 317, 322, 332-335, 339, 

340 
in characteristic p, 317, 332-335 
isogeny of, 338 
Jacobian variety of, 316, 323-326, 338 
}-invariant, 316-321, 331, 336, 345, 347 
locally free sheaves on, 378 
over C, 326-332 
Picard group of, 297, 323 
points of order n, 322, 323, 329, 337, 340 
points of order p, 339 
points with integer coordinates, 340 
quartic, 38, 315, 353 
rational points over F q• 339 
rational points over Q, 317,335,336 (Fig) 
ring of endomorphisms, 323, 329, 330, 

338, 340 
supersingular, 332 
withj=O, 320, 321, 331, 334 
with}= 1728, 320, 321, 331, 334 
zeta function of, 458 

Elliptic function, 316, 326-332, 338 
Elliptic ruled surface, 369, 375, 384, 385, 

440 
classification of, 377 
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Elliptic scroll, 385 
Elliptic surface, 422 
Embedded point, 85, 259 
Embedded resolution of singularities, 390, 

391, 392 (Fig), 419 
Embedding 

a curve in projective space, 307-316 
a variety in a complete variety, 168 

Enough injectives, 204, 217 
Enough locally frees, 238, 239 
Enough projectives, 235 
Enriques, Federigo, 348 
Enriques-Severi-Zariski, lemma of, 244 
Enriques surface, 422 
Equidimensional, 243 
J?:space etale of a presheaf, 67 
Etale 

cohomology, 307, 452, 453 
covering, 303, 306, 338, 340, 442 
equivalence relation, 445 
morphism, 268, 275, 276 (Fig), 299 
neighborhood, 275 
topology, 452, 453 

Euler characteristic, 230, 295, 360, 362, 366, 
424 

Euler-Poincare characteristic, topological, 
456 

Euler's lemma, 37 
Exact in the middle, 204, 282 
Exact sequence of sheaves, 64, 66, 68, 109 
Exceptional curve, 29, 31, 108, 386, 392, 395, 

408, 437 
contraction of, 410, 414-416 
infinitely many, 409, 418 
of the first kind, 410, 414, 418 
self-intersection of, 386 

Excision, 212 
Exotic sphere, 421 
Exponential Chern character, 431, 435 
Exponential sequence, 446, 447 
Extending 

a function to a normal point, 23, 217 
a morphism, 43, 44, 97, 370 
a section of a sheaf, 67, 112, 118 
a sheaf by zero, 68, Ill, 149 
coherent sheaves, 126 

Extension 
of invertible sheaves, 372, 375, 376, 383, 

430 
of £T!x-modules, 237 
of quasi-coherent sheaves, 114 

Exterior algebra, 1\M, 127 
Exterior power, NM, 127, 149, 181, 430 
Ext group, 233-240,375,376 
Ext sheaf, 233-239, 241 

Faithful functor, 290 
Family 

flat, 253, 256-266, 260 (Fig), 289, 315 
of curves of genus g, 347 



of divisors, 261, 367, 384 
of elliptic curves, 340, 347 
of hypersurfaces, 291 
of invertible sheaves, 323 
of locally free sheaves, 379 
of plane curves, 39 
of plane curves with nodes, 314 
of schemes, 89, 90 (Fig), 202, 250, 253 
of varieties, 56, 263 

Fermat curve, 320, 335, 339 
Fermat hypersurface, 451 
Fermat's problem, 58, 335 
Fermat surface, 409 
Fibre 

cohomology of, 250, 255, 281, 290 
dimension of, 95, 256, 257, 269 
is connected, 279, 280 
of a morphism, 89, 92 
with nilpotent elements, 259, 277, 315 

Fibred product, 87, 100. See also Product 
Field 

algebraically closed, I, 4, 22, 152 
of characteristic p. See Characteristic p 
of complex numbers. See Complex 

numbers, C 
of elliptic functions, 327 
of meromorphic functions, 442 
of quadratic numbers, 330-332, 334, 

340 
of rational numbers. See Rational num-

bers, Q 
of real numbers, R, 4, 8, 80, 106 
of representatives, 187, 275 
perfect, 27, 93, 187 
separable closure of, 93 
spectrum of, 74 
transcendence degree of, 6, 27 
uncountable, 409, 417 

Field extension 
abelian, 332 
purely inseparable, 302, 305, 385 
pure transcendental, 303 
separable, 27, 300, 422 
separably generated, 27, 174, 187, 271 

Final object, 79 
Fine moduli variety, 347 
Fine resolution, 201 
Finite field, 80, 339. See also Characteristic p 

number of solutions of polynomial equations 
over, 449 

Finite morphism, 84, 91, 124, 280, 456 
a projective, quasi-finite morphism is, 280, 

366 
is affine, 128 
is closed, 91 
is proper, 105 
is quasi-finite, 91 
of curves, 137, 148, 298-307, 299 (Fig) 

Finite type, morphism locally of, 84, 90 
Finite type, morphism of, 84, 91, 93, 94 

Index 

Fixed point of a morphism, 451,453,454 
Flasque resolution, 201, 208, 212, 248 
Flasque sheaf, 67, 207 

cohomology vanishes, 208, 221, 251 
direct limit of, 209 
injective sheaf is, 207 

Flat 
base extension, 255, 287 · 
family, 253,256-266, 260 (Fig), 289, 315. 

See also Family 
module, 253 
morphism, 239, 253-267, 269, 299, 340, 

436 
morphism is open, 266 
sheaf, 254, 282 

Flatness 
is an open condition, 266 
local criterion of, 270 

Formal completion. See Completion 
Formal functions, 276-281, 290, 387, 415 
Formal neighborhood, 190 
Formal power series, 35 
Formal-regular functions, 199,279. See also 

Holomorphic functions 
Formal scheme, 190-200, 279 

Picard group of, 281 
Fractional linear transformation, 46, 328 
Free module, 174 
Freshman calculus, 408 
Freyd, Peter, 203 
Frobenius morphism, 21,272, 301,332, 340. 

See also Characteristic p 
fixed points of, 454 
k-linear, 302, 339, 368, 385 
1-adic representation of, 451 
trace on cohomology, 455 

Frohlich, A., 331 
Fulton, William, 297, 436 
Functional equation, 450, 458 
Function field, 16 

determines birational equivalence class, 
26 

of an integral scheme, 91 
of a projective variety, 18, 69 
of dimension I, 39, 44 
transcendence degree of, 17 
valuation rings in, 106, 108 

Functor 
additive, 203 
adjoint, 68, 110, 124 
coeffaceable, 206, 238, 240, 243 
derived. See Derived functor 
effaceable, 206 
exact in the middle, 204, 282 
faithful, 290 
left exact, 113, 203, 284, 286 
of global sections. See Global sections 
representable, 241, 324 
right exact, 204, 286 
satellite, 206 
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Fundamental group, '171, 190, 338, 420, 442 
Fundamental point, 410 
Funny curve in characteristic p, 305, 385 

GAGA, 330, 440 
Galois extension, 318 
Galois group, 147, 320, 338, 442 
Gaussian integers, 331, 335 
General position, 409, 418 
Generically finite morphism, 91, 436 
Generic point, 74, 75 (Fig), 80, 294 

in a Zariski space, 93 
local ring of, 91, 425 

Generic smoothness, 272 
Generization, 94 
Genus 

arithmetic. See Arithmetic genus 
bounded by degree, 315, 351,407,408 
geometric. See Geometric genus 
of a curve, 54, 56, 140, 183, 188, 294, 345, 

421 
of a curve on a surface, 361, 362, 393, 401, 

407, 408 
Geometrically integral scheme, 93 
Geometrically irreducible scheme, 93 
Geometrically reduced scheme, 93 
Geometrically regular, 270 
Geometrically ruled surface. See Ruled 

surface 
Geometric genus,p8 , 181, 190, 246,247, 294, 

421 
is a birational invariant, 181 
of a complete intersection, 188 

Geometry on a surface, 357-368 
Germ, 62, 438 
Global deformation, 265, 267. See also 

Deformation; Family 
Global sections. See also Section 

finitely generated, 122, 156, 228 
functor of, 66, 69, 113 
restricted to open set D(f), 112 
sheaf generated by, 121, 150-156, 307, 

358, 365 
Glueing 

analytic spaces, 439 
morphisms, 88, 150 
schemes, 75, 80, 91, 171, 439, 444 
sheaves, 69, 175 

Godement, Roger, 61, 172, 201 
Graded module, 50 

associated to a sheaf, r .(JF), 118 
quasi-finitely generated, 125 
sheaf M associated to, 116 

Graded ring, 9, 394, 426 
associated to an elliptic curve, 336 
graded homomorphism of, 80, 92 
Proj of, 76 

Graph 
morphism, 106, 107 
of a birational transformation, 410 
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of a morphism, 368, 426 
Grauert, Hans, 249, 252, 288, 291, 369, 417, 

438, 442, 445 
Griffiths, Phillip A., 184, 304, 423, 445 
Grothendieck, A., 57, 59, 60, 87, 89, 100, 

115, 120, 172, 190, 192, 201, 208, 217, 
249,252,259,279,281,282,291,324, 
338,363,366,368,429,432,435,436, 
441, 442, 449, 451-453 

Grothendieck group, K(X), 148, 149,230, 
238, 385, 435 

Group 
additive, G0 , 23, 142, 148, 171 
fundamental, '17 1, 190, 338, 420, 442 
Galois, 147, 320, 338, 442 
general linear, GL, 151 
Grothendieck. See Grothendieck group 
law on cubic curve, 139 (Fig), 142, 147, 

148, 297, 299, 407, 417 
multiplicative, Gm, 23, 148, 149 
Neron-Severi, See Neron-Severi group 
of automorphisms. See Automorphisms 
of cycles modulo rational equivalence. 

See Chow ring 
of divisor classes, See Divisor class group 
of divisors, Div(X), 130, 357 
of divisors modulo algebraic equivalence, 

See Neron-Severi group 
of divisors modulo numerical equivalence, 

Num X, 364, 367-369 
of invertible sheaves. See Picard group 
of order 6, 318, 321 
of order 12, 321 
of order 60, 420 
of order 168, 349 
of order 51840, 405 
projective general linear, PGL, 46, 151, 

273, 347 . 
scheme, 324 
symmetric, 304, 318, 408 
variety, 23, 139 (Fig), 142, 147, 148, 272, 

321, 323, 324 
Weyl, 405, 408 

Gunning, Robert C., 69, 201, 249, 438,442 

Halphen, G., 349 
Harmonic function, 442 
Harmonic integrals, 435, 445 
Hartshorne, Robin, 14, 105, 140, 144, 190, 

193, 195, 199,224, 249, 281, 366, 367, 
383, 419, 428, 440 

Hasse, H., 339 
Hasse invariant, 317, 322, 332-335, 339, 340 
Hausdorff toplogy, 2, 8, 95, 439 
Height of a prime ideal, 6 
Hermitian metric, 445 
Higher direct image sheaf, Ri.(JF), 250, 276, 

282, 290, 371, 387, 436 
locally free, 288, 291 

Hilbert, David, 51, 403, 441 



Hilbert function, 51 
Hilbert polynomial, 48, 49, 52, 57, 170, 230, 

231, 294, 296, 366 
constant in a family, 256, 261, 263 

Hilbert-Samuel polynomial, 394 
Hilbert scheme, 258, 349 
Hilbert's Nullstellensatz, 4, II 
Hironaka, Heisuke, 105, 168, 195, 264, 391, 

413, 417, 442, 443, 445, 447 
Hinebruch, Friedrich,57,363,421,431,432 
Hodge index theorem, 356, 364, 366, 435, 

452 
Hodge manifold, 445 
Hodge numbers, hP,q, 190, 247 
Hodge spectral sequence, 289 
Hodge theory, 414, 435, 445, 452 
Holomorphic functions, 60, 190, 279, 330, 

438, 447. See also Formal-regular 
functions 

Homeomorphism, 21, 31 
Homogeneous coordinate ring, 10, II, 18, 

23, 49, 128, 132 
criterion to be UFD, 147 
depends on embedding, 2 I 
Proj of, 81 

Homogeneous coordinates, 9 
Homogeneous element, 9 
Homogeneous ideal, 9, 10, 92, 125 
Homogeneous space, 273 
Homological dimension, 238 
Homological equivalence of cycles, 435, 444 
Homotopy of maps of complexes, 203 
Homotopy operator, 203, 221 
Hopf map, 386 
Horrocks, G., 437 
Hurwitz, Adolf, 301, 305, 326 
Hurwitz's theorem, 293, 299-307, 31 I, 313, 

317, 337, 382 
Husemoller, Dale, 356, 421 
Hyperelliptic curve, 298, 306, 341, 345, 384. 

See also Nonhyperelliptic curve 
canonical divisor of, 342, 343 
existence of, 298, 394 
moduli of, 304, 347 
not a complete intersection, 315, 348 

Hyperelliptic surface, 422 
Hyperosculating hyperplane, 337 
Hyperosculation point, 337, 348 
Hyperplane, 10, 429 

corresponds to sheaf Ill (I), I 45 
Hyperplane section, 147, 179 (Fig) 
Hypersurface, 4, 7, 8, 12 

any variety is birational to, 27 
arithmetic genus of, 54 
canonical sheaf of, I 83, 184 
complement of is affine, 21, 25 
existence of nonsingular, 183 

Icosahedron, 420 
Ideal class group, 132 

Index 

Ideal of a set of points, 3, 10 
Ideal of definition, 196 
Ideal sheaf, .fy, 109 

blowing up, 163, 171 
of a closed subscheme, I 15, I 16, 120, 145 
of a subvariety, 69 
of denominators, 167 

Idempotent, 82 
Igusa, Jun-ichi, 265, 334 
Image 

direct See Direct image 
inverse. See Inverse image 
of a morphism of sheaves, 63, 64, 66 
of a proper scheme is proper, I 06 
scheme-theoretic, 92 

Immersion, 120 
closed, See Closed immersion 
open, 85 

Indecomposable locally free sheaf, 376, 384 
Index of a bilinear form, 364 
Index of speciality, 296 
Induced structure 

of scheme, 79, 86, 92 
of variety, 21 

Inequality of Castelnuovo and Severi, 368, 
451 

Infinitely near point, 392, 395 
Infinitesimal deformation. See Deformation 
Infinitesimal extension, 189, 225, 232, 265 
Infinitesimal lifting property, 188 
Infinitesimal neighborhood, 86, 190, 276, 

393 
Inflection point, 139, 148, 304, 305, 335, 337 

cubic curve has 9, 305, 322 
Initial object, 80 
Injective module, 206, 207, 213, 214, 217 
Injective object (of a category), 204, 217, 233 
Injective resolution, 204, 242 
Injective sheaf, 207, 213, 217 
Inseparable morphism, 276, 311, 312 
Integers, Z, 79, 340 
Integral closure, 40, 91, 105 

finiteness of, 20, 38, 123 
Integrally closed domain, 38, 40, 126, 132, 

147, See also Normal 
Integral scheme, 82, 91 
Intersection divisor, 135, 146, 261 
Intersection multiplicity, 36, 47, 53, 233, 304, 

357, 360, 394, 427 
Intersection number, 357-362, 366, 394, 445 
Intersection of affines is affine, I 06 
Intersection of varieties, 14, 21, 47-55 
Intersection, proper, 427 
Intersection, scheme-theoretic, 171, 358 
Intersection theory, 47-55, 58, 424-437 

axioms, 426 
on a cubic surface, 401 
on a monoidal transform, 387 
on a nonsingular quasi-projective variety, 

427 
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Intersection theory (cont.) 
on a quadric surface, 361, 364 
on a ruled surface, 370 
on a singular variety, 428 
on a surface, 356-362, 366, 425 
on p2, 361. See also Bezout's theorem 

Invariant theory, 420 
Inverse image 

ideal sheaf,j- 1..1·1Vx, 163, 186 
of cycles, 426 
of divisors,j*, 135, 137, 299 
sheaf, f- 1$"", 65 
sheaf, j*$"", I 10, 115, 128, 299 

Inverse limit, lim 
in a category':I92 
of abelian groups, 190-192, 277 
of rings, 33 
of sheaves, 67, 109, 192 

Inverse system, 190 
Invertible sheaf, 109, 117, 118, 124, 143-146, 

169 
ample. See Ample invertible sheaf 
associated to a divisor, 144, 145, 157, 294, 

425 
determines a morphism toP", 150-153, 

158, 162, 307, 318, 340 
extension of, 372, 375, 376, 383, 430 
generated by global sections, 150-156, 

307, 358, 365 
group of. See Picard group 
on a family, 291 
very ample. See Very ample invertible 

sheaf 
Involution, 106, 306 
Irreducible 

closed subset, 78, 80 
component, 5, 7, II, 47, 365 
scheme, 82 
topological space, 3, 4, 8, II 

Irregularity, 247, 253, 422 
Irrelevant ideal, II 
Iskovskih, V.A., 184, 304 
Isogeny of elliptic curves, 338 
Isolated singularity, 420 
Italians, 391 

Jacobian matrix, 32 
Jacobian polynomial, 23 
Jacobian variety, 105, 140, 316, 323-326, 

338, 445, 447. See also Abelian variety 
j-Invariant of an elliptic curve, 316-321, 

331, 345, 347 
Jouanolou, J. P., 436 

Kahler differentials. See Differentials 
Kahler manifold, 445, 446, 452 
Kernel, 63, 64, I 09 
Kleiman, Steven L., 144, 238, 268, 273, 345, 

434, 435, 452, 453 
Klein, Felix, 147, 349, 420 
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Knutson, Donald, 445 
Kodaira dimension, 421, 422 
Kodaira, Kunihiko, 249, 266,409,414,422, 

442,443 
Kodaira vanishing theorem, 248, 249, 408, 

423, 424, 445 
Koszul complex, 245, 389 
Krull-Akizuki, theorem of, 108 
Krull dimension, 6, 86. See also Dimension 
Krull's Hauptidealsatz, 7, 48 
Krull, Wolfgang, 213, 279 
K3 surface, 184, 422, 423, 437, 452 
Kunz, E., 249 
Kuyk, W., 317, 334 

1-Adic cohomology, 435, 449, 452-457 
1-Adic integers, 338, 453 
Laksov, D., 345 
Lang, Serge, 140, 334, 364, 367, 452 
Lascu, A.T., 431 
Lattice, 326 (Fig) 
Lefschetz fixed-point formula, 453, 454 
Lefschetz pencil, 457 
Lefschetz, Solomon, 451 
Lefschetz theorem, 190, 281 

strong, 452 
Left derived functor, 205 
Left exact functor, 113, 203, 284, 286 
Length of a module, 50, 290, 360, 394 
Leray spectral sequence, 252 
Leray, theorem of, 211 
Lichtenbaum, Stephen, 185, 267 
Lie group, 328 
Line, 22, 28, 129, 183. See also Linear 

variety; Secant line; Tangent line 
on a surface, 13, 136, 367, 402-406, 408 

Linear equivalence, 57, 131, 141, 294, 425, 
426. See also Divisor 

=>algebraic equivalence, 367 
Linear projection. See Projection 
Linear system, 130, 150, 156-160, 274 

complete, 157, 159, 170, 294 
determines a morphism toP", 158, 307,318 
dimension of, 157, 295, 357, 424 
not composite with a pencil, 280 
of conics, 170, 396-398 
of plane cubic curves, 399, 400 
on a curve, 307 
separates points, 158, 308, 380 
separates tangent vectors, 158, 308, 380 
very ample, 158, 307, 308, 396 
with assigned base points, 395 
without base points, 158, 307, 341 

Linear variety, 13, 38, 48, 55, 169, 316. See 
also Line 

Lipman, Joseph, 249, 391, 420 
Local cohomology. See Cohomology, with 

supports 
Local complete intersection, 8, 184-186, 245, 

428. See also Complete intersection 



Local criterion of flatness, 270 
Local homomorphism, 72, 74, 153 
Locally closed subset, 21, 94 
Locally factorial scheme, 141, 145, 148, .238 
Locally free resolution, 149, 234, 239 
Locally free sheaf, 109, 124, 127, 178 

as an extension of invertible sheaves, 372, 
375, 376, 383, 430 

Chern classes of. See Chern class 
decomposable, 376, 378, 383, 384 
dual of, 123, 143, 235, 430 
indecomposable, 376, 384 
of rank 2, 356, 370, 376, 378, 437 
on a curve, 369, 370, 379, 384 
on an affine curve, 385 
projective space bundle of. See Projective 

space bundle 
resolution by, 149, 234, 239 
stable, 379, 384 
trivial subsheaf of, 187 
vector bundle V(lf) of, 128, 170 
zeros of a section, 157, 431 

Locally noetherian scheme, 83 
Locally principal closed subscheme, 145 
Locally principal Weil divisor, 142 
Locally quadratic transformation, 386 
Locally ringed space, 72, 73, 169. See also 

Ringed space 
Local parameter, 137, 258, 299 
Local ring 

complete, 33-35, 187, 275, 278, 420 
local homomorphism of, 72, 74 
of a point, 16-18, 22, 31, 41, 62, 71, 80 
of a subvariety, 22, 58 
regular. See Regular local ring 

Local space, 213 
Logarithmic differential, dlog, 250, 367, 457 
Lubkin, Saul, 452 
Liiroth's theorem, 303, 422 

Macbeath, A.M., 306 
MacPherson, R.D., 436 
Manifold, 31. See also Complex manifold 
Manin, Ju. 1., 149, 184, 304, 401, 405, 408, 

436,452 
Maruyama, Masaki, 383 
Matsumura, Hideyuki, 123, 172, 184, 195, 

250, 268, 418 
Mattuck, Arthur, 451 
Maximal ideal, 4 
Mayer, K.H., 421 
Mayer-Vietoris sequence, 212 
Meromorphic function, 327, 442 
Minimal model, 56, 410, 418, 419, 421 
Minimal polynomial, 147 
Minimal prime ideal, 7, 50, 98 
Mittag-Leffler condition, (ML), 191, 192, 

200, 278, 290 
Module 

flat, 253 
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free, 174 
graded. See Graded module 
of finite length, 50, 290, 360, 394 

Moduli, variety of, 56, 58, 266, 317, 346, 421 
Moishezon, Boris, 366, 434, 442, 443, 446 
Moishezon manifold, 442-446 

nonalgebraic, 444 (Fig) 
Monodromy, 457 
Monoidal transformation, 356, 386-395, 

409, 410, 414, 443. See also Blowing-up 
ample divisor on, 394 
behavior of a curve, 388-394 
behavior of arithmetic genus, 387-389 
behavior of cohomology groups, 387, 419 
canonical divisor of, 387 
Chow ring of, 437 
intersection theory on, 387 
local computation, 389 
Picard group of, 386 

Morden, L. J., 335 
Morphism 

affine, 128, 222, 252 
closed, 91, 100 
determined by an open set, 24, I 05 
dominant, 23, 81, 91 
etale, 268, 275, 276 (Fig), 299 
finite. See Finite morphism 
flat. See Flat, morphism 
Frobenius. See Frobenius morphism 
generically finite, 91, 436 
glueing of, 88, 150 
injective, of sheaves, 64 
inseparable, 276, 311, 312 
locally of finite type, 84, 90 
of finite type, 84, 91, 93, 94 
of Spec K to X, 80 
projective, 103, 107, 123, 149-172, 277, 

281,290 
proper. See Proper morphism 
quasi-compact, 91 
quasi-finite, 91, 280, 366 
quasi-projective, 103 
ramified, 299, 312 
separated. See Separated morphism 
smooth, 268-276, 303 
smjective, of sheaves, 64, 66 
toP", determined by an invertible sheaf, 

150-153, 158, 162, 307, 318, 340 
universally closed, I 00 . 
unramified, 275, 299. See also Etale 

morphism 
Morrow, James, 266, 442 
Moving lemma, 425, 427, 434 
Moving singularities, 276 
Multiple tangent, 305 
Multiplicity, 36, 51, 388, 393, 394. See also 

Intersection multiplicity 
Multisecant, 310, 355 
Mumford, David, 140, 249, 291, 324, 336, 

347, 356, 366, 379,417,419-421, 431,437 
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Nagata, Masayoshi, 58, 87, 105, 108, 168, 
381, 383, 384, 394, 401, 409, 419 

Nakai-Moishezon criterion, 356, 365, 382, 
405, 434 

Nakai, Yoshikazu, 144, 366, 434 
Nakano, Shigeo, 249, 445 
Nakayama's Lemma, 125, 153, 175, 178, 288 
Narasimhan, M.S., 379 
Natural isomorphism, 240 
Negative definite, 368, 419 
Neron, Andre, 367 
Neron-Severi group, 140, 367, 418 

is finitely generated, 447 
Neron-Severi theorem, 364, 367, 368 
Nilpotent element. See also Dual numbers, 

ring of 
in a ring, 79-81 
in a scheme, 79, 85, 190, 259, 277, 315 

Nilradical of a ring, 82 
Nodal cubic curve, 259, 263, 276 

blown up, 29 (Fig) 
divisor class group of, 148 
is rational, 30 

Node, 36 (Fig), 37, 258, 293, 298, 392, 394. 
See also Nodal cubic curve 

analytic isomorphism of, 34, 38 
plane curve with, 310-316 

Noetherian formal scheme, 194 
Noetherian hypotheses, 100, 194, 201, 

213-215, 218 
Noetherian induction, 93, 94, 214 
Noetherian ring, 80 
Noetherian scheme, 83 
Noetherian topological space, 5, 8, II, 80, 

83. See also Zariski space 
Noether, Max, 349 
Nonalgebraic complex manifold, 444 (Fig) 
Nonhyperelliptic curve, 340. See also 

H yperelliptic curve 
existence of, 342, 345, 385 

Nonprojective scheme, 232 
Nonprojective variety, 171, 443 (Fig) 
Nonsingular cubic curve 

ample sheaves on, 156 
canonical sheaf of, 183 
divisor class group of, 139 
group law on, 139 (Fig), 147, 297, 417 
has 9 inflection points, 305, 322 
is not rational, 46, 139, 183, 230 

Nonsingular curve, 39-47, 136 
abstract. See Abstract nonsingular curve 
divisors on, 129 
existence of, 37, 231, 352, 406 
Grothendieck group of, 149 
morphism of, 137 
projective ~ complete, 136 

Nonsingular in codimension one, 130 
Nonsingular points, 32, 37 

form an open subset, 33, 178, 187 
Nonsingular variety, 31-39, 130, 177-180, 
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268, 424. See also Regular scheme; 
Smooth morphism 

hyperplane section of. See Bertini's 
theorem 

infinitesimal lifting property, 188 
fl is locally free, 177, 178, 276 

Nonspecial divisor, 296, 343, 349 
Norm (of a field extension), 46 
Normal. See also Projectively normal 

bundle. See Normal, sheaf 
crossings, divisor with, 391 
cuspidal cubic curve is not, 23 
point, 23, 38 
quadric surface is, 23, 147 
ring, 185, 264 
~ R1 +S2, 185 
scheme, 91, 126, 130, 244, 280 
sheaf, X y /X' 182, 361, 386, 431, 433, 436. 

See also Conormal sheaf 
variety, 23, 263, 410 

Normalization, 23, 91, 426 
of a curve, 148, 232, 258, 298, 343, 365, 

382 
Number theory, 58, 316, 451, 452 
Numerical equivalence, 364, 367, 369, 435 
Numerical invariant, 56, 256, 361, 372, 379, 

425, 433 
Numerical polynomial, 49 

Olson, L., 140 
Open affine subset, 25, 106 
Open immersion, 85 
Open set X1, 81, 118, 151 
Open subscheme, 79, 85 
Ordinary double point. See Node 
Ordinary inflection point, 305. See also 

Inflection point 
Ordinary r-fold point, 38, 305 
Osculating hyperplane, 337 

p-Adic analysis, 451 
p-Adic cohomology, 452 
Parameter space, 56. See also Variety, of 

moduli 
Parametric representation, 7, 8, 22, 260 
Paris seminar, 436, 449 
Pascal's theorem, 407 (Fig) 
Pencil, 280, 422 
Perfect field, 27, 93, 187 
Period mapping, 445 
Period parallelogram, 326 (Fig) 
Petri, K., 348 
Picard group, Pic X, 57, 143, 232, 250, 357, 

428. See also Divisor class group 
as H 1(X, £!! 1 ), 143, 224, 367, 446 
Lefschetz theorem, 190 
of a blowing-up, 188 
of a cubic surface in P3, 401 
of a family, 323 
of a formal scheme, 200, 281 



of a line with point doubled, 169 
of a monoidal transformation, 386 
of an elliptic curve, 297, 323 
of a nonprojective variety, 171 
of a P(<n, 170, 291 
of a product, 292, 338, 367 
of a projective variety over C, 447 
of a ruled surface, 370 
of a singular curve, 148 
torsion elements of, 306 

Picard variety, 140, 447 
Pinch point, 36 (Fig) 
Plane curve, 7, 35-39, 304, 305, 319,407 

birational to a curve with ordinary 
singularities, 407 

with nodes, 310-316, 337, 348 
p-Linear map, 332 
Plurigenus, Pn, 190, 422 
Poincare duality, 453, 456 
Point 

closed, 74, 75 (Fig), 81, 93 
embedded, 85, 259 
generic. See Generic point 
open, 74 
rational over k. See Rational points 

Pole of a rational function, 130, 131, 297 
Polynomial equations, 55 

over finite fields, 449 
Presheaf, 61, 62, 109, 193 
Prime divisor, 130 
Prime ideal, 4, II, 22, 70, 76, 132 
Primes in an arithmetic progression, 335 
Primitive element, theorem of, 27 
Principal divisor, 131, 141, 367 

has degree zero, 132, 138 
Principal ideal domain, 254 
Product. See also Direct product 

arithmetic genus of, 54 
canonical sheaf of, 187 
Cartesian, of graded rings, 125 
differentials on, 187 
fibred, 87, 100 
in a category, 22, 66, 87 
morphism, 99 
of curves, 44, 338, 367 
of schemes, 87 
of varieties, 22 
Picard group of, 292, 338, 367 
Segre embedding of. See Segre embedding 
topological space of, 91 
Zariski topology on, 7 

Proj, 76, 77 
closed subschemes of, 92, 119, 125 
of a graded homomorphism, 80, 92 
sheaves of modules on, 116-123, 125 

Proj, 160-169 
Projection 

birational, 30, 31, 310 
formula, 124, 253, 380, 419, 426, 431 
from a linear space, 169 
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from a point, 22, 151, 259, 309-316 
morphism, 87 
of a twisted cubic curve, 22 

Projective closure, 12 
Projective cone. See Cone 
Projective dimension, 237 
Projective general linear group, PGL, 46, 

151, 273, 347 
Projectively normal, 23, 126, 147, 159, 188,267 

canonical curve is, 348 
curve, 23, 231, 315, 336, 354, 355 
d-uple embedding is, 126 

Projective module, 238, 284 
Projective morphism, 103, 107, 123, 149-172, 

277, 281, 290 
Projective n-space, pn, 8, 10, 77, 103, 120, 

151, 155, 225-230 
Projective object (in a category), 205, 237 
Projective resolution, 205, 236 
Projective scheme, 103, 120, 121, 232 
Projective space bundle, 170, 171, 186 

associated to a locally free sheaf, P( lf ), 

162-169 
canonical sheaf of, 253 
Chow ring of, 429 
cohomology of, 253 
Picard group of, 170, 291 
ruled surface as, 370 

Projective variety, 8-14 
Proper intersection, 427 
Proper morphism, 95-108, 161, 252, 279 

is closed, I 00, 152 
Purely inseparable, 302, 305, 385 
Pure transcendental field extension, 303 

Quadratic number field, 330-332, 334, 340 
Quadratic transformation, 30, 31, 397, 398 

(Fig), 403, 406, 408, 409. See also 
Birational transformation 

Quadric cone, 23, 133, 134 (Fig), 142, 346, 
352, 428 

curves on, 384 
Quadric hypersurface, 38, 55 

divisor class group of, 147 
Quadric surface, 13, 14 (Fig), 23, 30 

ample sheaves on, 156, 366 
as a ruled surface, 369, 381 
canonical sheaf of, 183 
cohomology of, 231 
curves on, 231,294,346,351,352,354, 

362, 381 
divisor class group of, 133, 135 
intersection theory on, 361, 364 
2-uple embedding of, 401 

Quartic curve. See also Curve, of degree 4 
elliptic, 38, 315, 353 
has 28 bitangents, 305 
rational. See Rational quartic curve 

Quartic threefold is not rational, 184 
Quasi-affine variety, 3, 21, 223 
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Quasi-coherent sheaf, 111-115, 126. See also 
Coherent sheaf 

Quasi-compact morphism, 91 
Quasi-compact scheme, 80, 119 
Quasi-compact topological space, 8, 80 
Quasi-finite morphism, 91, 280, 366 
Quasi-projective morphism, 103 
Quasi-projective variety, I 0 
Quotient sheaf, 65, 109, 141 
Quotient topology, 75 

Radical ideal, 4 
Radical of an ideal, 3 
Ramanujam, C. P., 249 
Ramanujan T-function, 452 
Ramification divisor, 301, 382 
Ramification index, 299 
Ramification point, 299 
Ramified morphism, 299, 312 
Ramis, J. P., 249 
Rank, 109, 148 
Rational curve, 46, 55, 138, 143, 297, 315, 

343, 345. See also Rational quartic 
curve; Twisted cubic curve 

elliptic curve is not, 46, 139, 183 
Rational equivalence of cycles, 425, 426, 

436, 454 
Rational function, 16, 30, 46, 297, 419 

divisor of, 130, 131, 294 
Rationality of plane involutions, 422 
Rationality of the zeta function, 449, 450, 

452 
Rational map, 24-31, 168 
Rational normal curve, 315, 343 
Rational numbers, Q, 58, 148, 335 
Rational points, 80 

on an elliptic curve, 317, 335, 336 (fig), 
339 

over a finite field, 368, 449 
Rational quartic curve, 23, 159, 231,291, 

315, 353, 386 
Rational ruled surface, 369, 379-381. See 

also Ruled surface 
blow-up of P2, 375, 381, 397 
classification of, 376, 419 
embedded in pn, 381, 385, 437 
of degree 3 in P 4 , 170,348,381, 397,437 

Rational surface, 56, 170, 422. See also 
Rational ruled surface; Veronese 
surface 

blow-up of P2, 375, 381, 395, 397,400, 
406, 408 

Rational variety, 30, 183, 184 
Raynaud, Michel, 249 
Real numbers, R, 4, 8, 80, 106 
Reduced induced structure, 86, 92 
Reduced inverse image divisor, 391 
Reduced scheme, 79, 82, 365 
Reduction mod p, 89, 334, 340, 451 
Reduction to the diagonal, 427, 428 
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Refinement of a covering, 223 
Regular function, 15, 21, 23, 30, 42, 62, 70 
Regular in codimension one, 130, 185 
Regular local ring, 32, 38, 40, 130, 136, 237, 

238, 243, 415 
complete, 34 
is Cohen-Macaulay, 184 
is UFD, 142 
localization of is regular, 177 
~ 0 is free, 174, 187 

Regular q-forms, sheaf of, Oi;k• 190, 247, 
249 

Regular scheme, 142, 170, 179,238, 268, 275. 
See also Nonsingular variety; Smooth 
morphism 

Regular sequence, 184, 217, 245, 261 
Relative cohomology, 250 
Relative differentials. See Differentials 
Relative dimension, 268 
Relatively minimal model. See Minimal 

model 
Relative projective space, 162 
Relative tangent sheaf, 436 
Remmert, Reinbold, 442 
Repartitions, 248 
Representable functor, 241, 324 
Residue, 239, 247, 248 
Residue field, 22, 80 
Resolution 

acyclic, 205 
by Cech c0mplex, 220 
fine, 201 
flasque, 201, 208, 212, 248 
injective, 204, 242 
locally free, 149, 234, 239 
projective, 205, 236 

Resolution of singularities, 28, 55, 168, 386, 
390, 391, 413, 420, 442, 453 

embedded, 390, 391, 392 (Fig), 419 
Restriction 

of a sheaf to a subset, §'lz, 65, 112 
of sections of a sheaf, 61, 118 

Riemann, Bernhard, 446 
Riemann existence theorem, 442 
Riemann hypothesis, 339, 368, 449-452, 457, 

458 
Riemann-Roch problem, 170, 296, 424 
Riemann-Roch theorem 

generalized, 57, 149, 170, 363, 424, 
431-436 

on a curve, 156, 249, 293-299, 317, 325, 
341, 343, 349, 362, 376, 424, 432 

on a singular curve, 298 
on a surface, 356, 357, 362-364, 366, 423, 

424,433 
on a 3-fold, 437 

Riemann surface, 338, 441, 447 
Riemann zeta function, 457 
Riemenschneider, Oswald, 249, 445 
Right derived functor, 204, 207, 233, 250 



Right exact functor, 204, 286 
Rigid algebra, 267 
Rigid scheme, 267 
Ring 

graded. See Graded ring 
local. See Local ring 
of dual numbers, 80, 265, 267, 324 
of endomorphisrns of an elliptic curve, 

323, 329, 330, 338, 340 
of integers in a number field, 330, 331 
of regular functions, 16-18, 21 
spectrum of, 70-75, 110-113 

Ringed space, 72, 143. See also Locally 
ringed space 

sheaf of modules on, 109, 110, 123, 124, 
127, 233 

Roberts, Joel, 427 
Root systems, 408 
Roquette, P., 306 
Rossi, Hugo, 69, 201, 438 
Ruget, G., 249 
Ruled surface, 56, 170, 253, 356, 369-385, 

373 (Fig), 422. See also Rational ruled 
surface 

ample divisors on, 380, 382, 383 
arithmetic genus of, 371 
birationally, 370, 419 
blown-up cone, 374, 381 
canonical divisor of, 373 
elementary transformation of, 416 (Fig), 

419 
elliptic, 369, 375, 377, 384, 385, 440 
embedded in P", 381, 385 
geometric genus of, 371 
intersection theory on, 370 
invariant e, 372, 374-377, 384 
invariant K 2, 374 
nonsingular curves on, 380 
normalized, 373 
Picard group of, 370 
sections of, 371, 373 (Fig), 379, 383-385 
stable, 379 
very ample divisors on, 379, 380, 383, 385 
zero-cycles on, 437 

Ruling on a quadric cone, 133, 134 (Fig), 
428 

Saint-Donat, Bernard, 344, 348 
Sally, Judith, 412 
Samuel, Pierre, 312, 394, 420, 428 
Satellite functor, 206 
Saturation of a homogeneous ideal, 125 
Scheme, 59, 69-82 

affine. See Affine scheme 
associated complex analytic space. See 

Complex analytic space 
associated to a variety, 78, 84, 104, 136 
connected, 82. See also Connected 
formal. See Formal scheme 
geometrically integral, 93 

Index 

geometrically irreducible, 93 
geometrically reduced, 93 
glueing of, 75, 80, 91, 171, 439, 444 
integral, 82, 91 
irreducible, 82 
locally factorial, 141, 145, 148, 238 
locally noetherian, 83 
noetherian, 83 
nonprojective, 171, 232, 443 (Fig) 
nonseparated, 76, 96 
nonsingular in codimension one, 130 
normal. See Normal 
of finite type over a field, 93 
over another scheme, 78 
over R, 106 
reduced, 79, 82, 365 
regular. See Regular scheme 
regular in codimension one, 130, 185 
separated. See Separated scheme 

Scheme-theoretic closure, 258 
Scheme-theoretic image, 92 
Scheme-theoretic intersection, 171, 358 
Schlafli's double-six, 403 
Schlessinger, Michael, 185, 266, 267 
Schwarz's inequality, 402 
Scott, D. B., 431 
Scroll, 381, 385 
Secant line, 309, 316 

not a multisecant, 314, 316, 351 
with coplanar tangents, 310 

Secant variety, 310, 316 
Section. See also Global sections 

discontinuous, sheaf of, 67 
of a morphism, 129, 170, 369 
of a presheaf, 61 

Segre embedding, 13, 22, 54, 107, 125, 126, 
156 

Self-intersection, 360, 386, 40 I, 437, 450 
formula, 431, 433 
of the canonical divisor, K 2, 361, 367, 374, 

387, 421 
Semicontinuity theorem, 281-292, 354, 369 
Semi-linear automorphism, 106 
Semistable, 384 
Separable field extension, 27, 300, 422 
Separable morphism, 300 
Separably generated field extension, 27, 174, 

187,271 
Separated morphism, 95-108 
Separated scheme, 76, 96, 106, 119, 130, 169 
Separate points, 152, 158, 308, 380 
Separate tangent vectors, 152, 158, 308, 380 
Separating transcendence base, 27 
Serre duality, 181, 239-249, 293-295, 362, 

363, 367, 419, 424 
Serre, Jean-Pierre, 51, 57, 121, 149, 154, 185, 

201,211,215,228,239,247,249,297, 
307,330,331,335,366,422,427,428, 
432, 435, 440, 446, 447, 451, 452 

Seshadri, C. S., 379 
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Set-theoretic complete intersection, 14, 224 
Severi, Francesco,47,244, 314,316,368 
SGA, 436, 449, 462 
Shafarevich, I. R., 356, 369, 383,410,421 
Shannon, David L., 412 
Sheaf, 60-69 

associated to a presheaf, 64, 250 
coherent. See Coherent sheaf 
constant. See Constant sheaf 
flasque. See Flasque sheaf 
free, 109 
generated by global sections, 121, 

150-156, 307, 358, 365 
glueing, 69, 175 
Horn, 67, 109 
inverse image of, 65, 110, 115, 128, 299 
invertible. See Invertible sheaf 
locally free. See Locally free sheaf 
M associated to a module, 110-1 13, 116 
of differentials. See Differentials, sheaf 

of 
of discontinuous sections, 67 
of graded algebras, 160 
of ideals. See Ideal sheaf 
of modules, 108-129, 233 
of (!) y -algebras, 128 
of rings, 62, 70 
of total quotient rings, 141 
quasi-coherent. See Quasi-coherent sheaf 

Sh-ioda, T., 422 
Siegel, Carl Ludwig, 442 
o-Process, 3 86 
Signature, 364 
Simple group 

of order 60, 420 
of order 168, 349 
of order 25920, 405 

Simply connected scheme, 303, 304, 340 
Singh, Balwant, 306 
Singular locus, 390 
Singular point, 32, 33, 35, 36 (Fig) 

analytically isomorphic, 34, 38, 298, 393 
moving in a linear system, 276 
multiplicity of. See Multiplicity 
of a cone, blowing up, 37, 374, 381 
of a curve on a surface, 386 
of a surface, 36 (Fig), 420 
resolution of. See Resolution of singulari-

ties 
Skew commutative graded algebra, 127 
Skyscraper sheaf, 68, 296 
Slope, 30 
Smooth morphism, 268-276, 303 
Space curves, 349 
Special divisor, 296 

existence of, 345 
Specialization, 93, 97, 354 
Special linear system 

dimension of. See Clifford's theorem 
Spectral sequence, 236, 252, 289 
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Spectrum of a ring, Spec A, 70-75, 82 
sheaf M on, 110-113 

Spectrum of a sheaf of algebras, Spec, 128, 
280, 306 

Spencer, D. C., 414 
Splitting principle, 430 
Square-free polynomial, 147 
Stable image, 191 
Stable locally free sheaf, 379, 384 
Stable ruled surface, 379 
Stable under base extension, 90, 93, 99, 102, 

107 
Stable under generization, 94, 266 
Stable under specialization, 94, 98 
Stalk, 62, 71, 76, 124 
Stanasila, Octavian, 439 
Standard conjectures of Grothendieck, 435 
Steiner prize, 349 
Stein factorization, 276, 280, 366 
Stein space, 216, 440 
Stepanov, S. A., 451 
Stereographic projection, 420 
Stichtenoth, H., 306 
Strange curve, 311, 316 
Strict transform, 30, 31, 165, 171, 381, 388, 

390, 406. See also Blowing up 
Strong Lefschetz theorem, 452 
Structure sheaf, 74, Ill 
Subrnodule with supports f.,(M), 124,213 
Subscherne 

closed. See Closed subscherne 
open, 79, 85 

Subsheaf, 64 
with supports£'~ (Y), 68 

Subvariety, 21, 425 
cohomology class of, 249 
local ring of, 22, 58 

Suorninen, Kalevi, 249 
Superabundance, 362 
Supersingular elliptic curve, 332 
Support, 67, 124, 212, 215, 217 
Surface, 4, 105 

algebraic equivalence of divisors, 367, 369 
complete intersection, 409, 423, 437 
cubic. See Cubic surface in P3 

definition for Ch. II, 105 
definition for Ch. V, 357 
Del Pezzo, 401, 408 
divisor on, 135, 357 
elliptic, 422 
elliptic ruled. See Elliptic ruled surface 
Enriques, 422 
factorization of birational transformations, 

386, 409, 411-413, 416 
geometry on, 357-368 
group Nurn X, 364, 367, 368 
in P 4, 170, 348, 381, 397,433, 434,437 
invariant K 2, 361, 367, 374, 387, 421 
K3, 184, 422, 423, 437, 452 
lines on, 13, 136, 367, 402-406, 408 



minimal model of. See Minimal model 
of degree din pd, 401 
of degree d in pd+ 1, 381 
of degree 3 in P\ 170,348, 381, 397,437 
of general type, 184, 422, 423 
product of two curves, 338, 367, 368 
P2 with I point blown up, 375, 381, 397 
P2 with 2 points blown up, 406 
P2 with 3 points blown up, 397 
P2 with 5 points blown up, 408 
P2 with 6 points blown up, 395, 400 
quadric. See Quadric surface 
rational. See Rational ruled surface; 

Rational surface 
ruled. See Ruled surface 
valuation rings of, 108, 420 
Veronese, 13, 170, 316, 381 
with infinitely many exceptional curves, 

409, 418 
Sylvester, J. J., 364 
Symmetric algebra of a module, 127, 162, 374 
Symmetric function, 431 
Symmetric group, 304, 318, 408 
Symmetric product of a module, 127, 185 

Tacnode, 36 (Fig), 37, 39, 305, 348 
Tame ramification, 299 
Tangent bundle, 57, 450. See also Tangent 

sheaf 
Tangent direction, 36 
Tangent line, 54, 139, 148, 304, 309, 337 
Tangent sheaf, Yx, 180, 182, 225, 265, 363, 

425, 431, 437 
Tangent variety, 310 
Tate, John T., 247, 317, 335, 451, 452 
Tensor algebra, 127 
Tensor operations, 127 
Tensor product, ®, 22, 87, 109, 127, 153, 430 
Thickened fibre, 277 
Three-fold, 105, 184, 437 
Tjurin, Andrei, 383 
Todd class, 432 
Topological covering space, 442 
Topological space 

axiom T0, 93 
dimension of, 5. See also Dimension 
disconnected, 82 
generic point of, 74, 75 (Fig), 80, 93 
irreducible, 3 
noetherian. See Noetherian topological 

space 
quasi-compact, 8, 80 
set of irreducible closed subsets of, 78 
underlying a scheme, 74 

Topology, 
etale, 452, 453 
Hausdorff, 2, 8, 95, 439 
of algebraic varieties over C, 421 
quotient, 75 
Zariski, 2, 5, 7, 10, 14, 70 

Index 

Tor group, 427, 428 
Torsion sheaf, 149, 372 
Torus, 328, 442, 447 
Total Chern class, 429 
Total quotient ring, 141 
Total transform, 410 
Trace map, 241, 247, 249, 307, 453, 455 
Trace of a linear system, 158 
Transcendence base, 27 
Transcendence degree, 6, 27, 421 
Transcendental methods, 289, 326, 367, 

438-448 
Transversal intersection, 357-360, 392, 425, 

427 
Triangulable, 447 
Trigonal curve, 345 
Triple point, 36 (Fig) 
Trisecant, 346, 348 
Trotter, H., 334 
Tsen's theorem, 369 
Twenty-seven lines, 402-406 
Twisted cubic curve, 7, 12-14, 159, 315, 353 

conormal sheaf of, 385 
not a complete intersection, 14, 136 
projection of, 22, 259 

Twisted module, M(n), 50 
Twisted quartic curve. See Rational quartic 

curve 
Twisted sheaf, $'(n), 117 

cohomology vanishes, 228 
generated by global sections, 121 

Twisting sheaf, IV(l), 117, 120, 225 
generated by global sections, 150 
generates Pic P", 145 
not very ample, 171 
on P(<f), 162 
on Proj .9', 160 

Type (a, b) of a divisor on a quadric surface, 
135 

Unassigned base point of a linear system, 395 
Uncountable field, 409, 417 
Underlying topological space, 74 
Uniformizing parameter, 258. See also Local 

parameter 
Unique factorization domain, UFD, 7, 46, 

131, 141, 147, 420 
Union of two planes, 224, 266, 267, 428 
Universal 11-functor, 205, 238, 243 
Universally closed morphism, 100 
Universal parameter space, 323, 347. See 

also Variety, of moduli 
Unmixedness theorem, 188 
Unraplified morphism, 275, 299. See also 

Etale morphism 
-Uple embedding, 13, 21, 54, 155, 156, 159, 

167, 183, 291, 343, 385 
is projectively normal, 126, 315 

Upper semi-continuous function, 125, 287, 
291 
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Index 

Valuation, 39, 43, 299 
center of, 106 
of a prime divisor, 130, 135 

Valuation ring, 40, 97, 101, 105. See also 
Discrete valuation ring 

examples of, 108, 420 
nondiscrete, 108 

Valuative criterion of properness, 10 I, 107, 
181, 259, 325, 410 

Valuative criterion of separatedness, 97, 107 
Vanishing theorem 

of Grothendieck, 208 
of Kodaira, 248, 249, 408, 423, 424, 445 
of Nakano, 445 
of Serre, 228, 424 

Variety 
abelian. See Abelian variety 
abstract, 58, 105 
affine. See Affine variety 
algebraic family of. See Family 
complete. See Complete variety 
isomorphisms of, 16, 18 
morphisms of, 14-23 
nonprojective, 171, 443 (Fig) 
normal. See Normal 
of moduli, 56, 58, 266, 317, 346, 421 
over k, 15, 78 
projective. See Projective variety 
projectively normal. See Projectively 

normal 
quasi-affine, 3, 21, 223 
rational. See Rational variety 
scheme associated to, 78, 84, 104 

Vector bundle, 128, 170. See also Locally 
free sheaf 

sheaf of sections of, .9"(X j Y), 129 
Verdier, Jean-Louis, 249 
Veronese surface, 13, 170, 316, 381 
Vertex of a cone, 37, 394. See also Cone 
Very ample divisors, 307, 308, 358 

form a cone, 359 
Very ample invertible sheaf, 120, 126, 

153-156, 228, 236 
on a curve, 307 
on Proj [/, 161 
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Very flat family, 266 
Virtual arithmetic genus, 367 
Vitushkin, A. G., 23 

Walker, R. J., 391, 393 
Weierstrass ~-function, 327 
Wei!, Andre, 48, 58, 105, 248, 368, 428, 435, 

445, 449-452, 454 
Weil cohomology, 453 
Wei! conjectures, 449-458 

cohomological interpretation of, 454-457 
Wei! divisor, 130-136, 294,426,428,436. 

See also Divisor 
Weyl group, 405, 408 
Weyl, Hermann, 441 
Wild ramification, 299 
Witt vectors, 452 

Zariski, Oscar, 32, 57, 58, 60, 105, 170, 190, 
244,276,356,391,393,394,410,419, 
422 

Zariski's Main Theorem, 57, 276, 280, 410, 
412 

Zariski space, 93, 94, 213 
Zariski tangent space, 37, 80, !58, 265, 270, 

324 
Zariski topology, 2, 5, 7, 10, 14, 70 

base of open affine subsets, 25 
is not Hausdorff, 2, 95 
weaker than usual topology, 439 

Zeros 
common, 35 
of a polynomial, 2, 9 
of a rational function, 130, 131 
of a section of a locally free sheaf, 157, 

431 
Zeta function, 449-452, 455-458 

functional equation of, 450 
of a curve, 458 
of an elliptic curve, 458 
of P1, 450, 451 
of P", 457 
of Riemann, 457 
rationality of, 449, 450, 452 
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